
A New Sparse Polynomial GCD by Separating Terms
Qiao-Long Huang

School of Mathematics, Shandong University

Jinan, China

huangqiaolong@sdu.edu.cn

Michael Monagan
∗

Department of Mathematics, Simon Fraser University

Burnaby, British Columbia, Canada

mmonagan@sfu.ca

ABSTRACT
In this paper, we propose a new sparse GCD algorithm for multi-

variate polynomials over finite fields. Our algorithm uses a new

type of substitution to recover the terms of the GCD in batches. We

present a detailed complexity analysis of our new algorithm and

experimental results which show that our algorithm is faster than

Zippel’s GCD algorithm and competitive with the Monagan-Hu

GCD algorithm.

CCS CONCEPTS
• Computing methodologies → Symbolic and algebraic manipu-

lation; • Theory of Computation→ Analysis of Algorithms and
Problem Complexity.

KEYWORDS
Polynomial GCD, sparse polynomial, polynomial complexity

ACM Reference Format:
Qiao-Long Huang and Michael Monagan. 2024. A New Sparse Polynomial

GCD by Separating Terms. In ISSAC ’24: ACM Symposium on Symbolic and
Algebraic Computation, July 16–19, 2024, Raleigh, NC. ACM, New York, NY,

USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Let 𝐴 and 𝐵 be polynomials in Z[𝑥1, . . . , 𝑥𝑛] and let𝐺 = gcd(𝐴, 𝐵)
be their greatest common divisor (GCD). Computing 𝐺 is a key

operation in a Computer Algebra System. One application is to

simplify the fraction 𝐴/𝐵. Another is to compute gcd(𝐴, 𝜕𝐴/𝜕𝑥1)
to identify the repeated factors in 𝐴. GCD computation is inter-

esting because all modifications of the Euclidean algorithm [2, 4]

to compute 𝐺 result in an expression swell where the size of the

intermediate polynomials grows exponentially in 𝑛 the number of

variables.

In 1971, Brown [1] solved the intermediate expression swell

problem by interpolating 𝑥2, 𝑥3, . . . , 𝑥𝑛 in 𝐺 from many univariate

images of 𝐺 in 𝑥1. For polynomials of degree 𝑑 Brown’s algorithm

uses 𝑂 (𝑑𝑛−1) univariate images which is effective for dense poly-

nomials but not sparse polynomials.

Early sparse GCD algorithms include Zippel’s algorithm [20]

from 1979 andWang’s EEZ-GCD algorithm [19] from 1980. Zippel’s

algorithm is currently the main GCD algorithm in Fermat, Magma,

Maple and Mathematica. The literature for the polynomial GCD

∗
Corresponding author

ISSAC 2024, July 16–19, 2024, Raleigh, NC
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in ISSAC ’24: ACM
Symposium on Symbolic and Algebraic Computation, July 16–19, 2024, Raleigh, NC,
https://doi.org/XXXXXXX.XXXXXXX.

problem is large. Many ideas have been tried. We cite the works

[3, 5, 7–13, 15–17]. See also Ch. 7 of [6].

Let F𝑞 be a finite field with 𝑞 elements. In this work we present a

new sparse GCD algorithm for F𝑞 [𝑥1, . . . , 𝑥𝑛] that is different from
all previous algorithms. The main result of the paper is given below.

Theorem 1.1. Let 𝐴, 𝐵 be polynomials in F𝑞 [𝑥1, . . . , 𝑥𝑛] with
partial degree bound 𝑑 = max

𝑛
𝑖=1

max(deg(𝐴, 𝑥𝑖), deg(𝐵, 𝑥𝑖)). Then
there exists a randomized algorithm that takes as inputs 𝐴, 𝐵 and
returns 𝐺 = gcd(𝐴, 𝐵) with probability ≥ 11/12, using expected
𝑂∼ (𝑛𝑇in𝑑 log𝑞 log

3𝑇o + 𝑛2𝑑2𝑇o log𝑞) bit operations where 𝑇in =

#𝐴 + #𝐵 and 𝑇o = #𝐺 .

We’ve implemented our algorithm in Maple with parts of it im-

plemented in C for increased efficiency. We use our algorithm to

compute a GCD in Z[𝑥1, . . . , 𝑥𝑛] by computing it modulo primes

and using the Chinese remainder theorem to recover the integer

coefficients. This creates GCD problems over large prime fields. The

benchmarks in Section 7 show that it is faster than the implemen-

tations of Zippel’s algorithm in Maple and Magma and compares

well with the Monagan-Hu algorithm [7, 11].

1.1 Overview of the Algorithm
Let𝐴, 𝐵 be in F𝑞 [𝑥1, . . . , 𝑥𝑛] and𝐺 = gcd(𝐴, 𝐵). Our new algorithm

uses substitutions of the form

𝑥𝑖 = (𝛾𝑖𝑧 − 𝛼𝑖)𝑦𝑠𝑖 for 1 ≤ 𝑖 ≤ 𝑛

where 𝛾𝑖 , 𝛼𝑖 are chosen from F𝑞 and 𝑠𝑖 are non-negative integers.

The substitution converts a GCD problem in 𝑛 variables into a

bivariate GCD problem in F𝑞 [𝑦, 𝑧]. The purpose of the 𝛾𝑖 is to

prevent a degree loss in 𝑧. For now assume 𝛾𝑖 = 1 works.

Our algorithm chooses 𝛼𝑖 from F𝑞 at random and distinct. It

then chooses 𝑠𝑖 from [0,𝑇) at random where𝑇 is a parameter of the

algorithm that takes on the values 2, 4, 8, 16, . . . until the algorithm

succeeds. Suppose 𝑞 is a large prime and

𝐺 = 𝑥2

1
+ 3𝑥1𝑥2 + 2𝑥3

2
− 𝑥2 .

Suppose we choose 𝛼 = [2, 5] and s = [2, 3]. Let 𝜙 (𝑓) = 𝑓 ((𝑧 −
2)𝑦2, (𝑧 − 5)𝑦3) be our substitution. We have

𝜙 (𝐺) = (𝑧 − 2)2𝑦4 + 3(𝑧 − 2) (𝑧 − 5)𝑦5 + 2(𝑧 − 5)3𝑦9 − (𝑧 − 5)𝑦3 .

Notice that each monomial in𝐺 mapped to a unique monomial in 𝑦.

We say s separated the terms of𝐺 . Since 𝑧−2 and 𝑧−5 are relatively

prime, we can recover all terms in 𝐺 from 𝜙 (𝐺) by dividing the

coefficients of 𝜙 (𝐺) by 𝑧 − 2 and 𝑧 − 5. If a coefficient factors as

𝑐 (𝑧 − 2)𝑑1 (𝑧 − 5)𝑑2
for a constant 𝑐 , we recover the term 𝑐𝑥

𝑑1

1
𝑥
𝑑2

2
.

If 𝐺 has 𝑡 terms, we need 𝑇 ∼ 𝑡2 for 𝜙 (𝐺) to be separated with

reasonable probability. If 𝐷 = max(deg𝐴, deg𝐵), this would create

a bivariate gcd problem of degree 𝑂 (𝐷𝑡2) in 𝑦 and 𝐷 in 𝑧 which

will be expensive to compute for large 𝑡 . Instead, we use a much

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ISSAC 2024, July 16–19, 2024, Raleigh, NC Huang and Monagan

smaller 𝑇 and several choices for s. Suppose we choose s = [1, 1].
Let 𝜙1 (𝑓) = 𝑓 ((𝑧 − 2)𝑦1, (𝑧 − 5)𝑦1). Then

𝜙1 (𝐺) = 2(𝑧 − 5)3𝑦3 + (𝑧 − 2) (4𝑧 − 17)𝑦2 − (𝑧 − 5)𝑦.
Since GCDs are unique up to a scalar, the GCD algorithm will

normalize 𝜙1 (𝐺). Suppose it makes 𝜙1 (𝐺) monic in lexicographical

order with 𝑦 > 𝑧. Here LC(𝜙1 (𝐺)) = 2 so we obtain

𝐺1 := 1

2
𝜙1 (𝐺) = (𝑧 − 5)3𝑦3 + 1

2
(𝑧 − 2) (4𝑧 − 17)𝑦2 − 1

2
(𝑧 − 5)𝑦.

The factor 4𝑧 − 17 is divisible by neither 𝑧 − 2 nor 𝑧 − 5 thus at

least two monomials collided in the term (𝑧 − 2) (4𝑧 − 17)𝑦2
. If a

coefficient of 𝐺1 factors as 𝑐 (𝑧 − 𝛼1)𝑑1 (𝑧 − 𝛼2)𝑑2
, it is unlikely it

comes from a collision because we chose the 𝛼𝑖 randomly from

[0, 𝑞). Thus 𝑥3

2
and 𝑥2 are monomials in 𝐺 with high probability.

We extract the good terms of 𝐺 found in 𝐺1 as 𝐺∗
:= 𝑥3

2
− 1

2
𝑥2.

Our algorithm now tries a new s and 𝛼 , say s = [2, 1] and 𝛼 =

[2, 5]. Let 𝜙2 (𝑓) = 𝑓 ((𝑧 − 2)𝑦2, (𝑧 − 5)𝑦1). We have

𝐺2 := 𝜙2 (𝐺) = (𝑧 − 2)2𝑦4 + (𝑧 − 5) (2𝑧2 − 17𝑧 + 44)𝑦3 − (𝑧 − 5)𝑦.
This time the monomials 𝑥1𝑥2 and 𝑥3

2
collided under 𝜙2. We could

recover one new monomial 𝑥2

1
in 𝐺 but we can do better. We use

𝐺∗
to recover more new monomials from 𝐺2.

Notice that the monomial 𝑥2 is recovered from both 𝐺1 and 𝐺2

but the coefficient is − 1

2
and −1 respectively. As long as 𝐺1 and 𝐺2

share at least one monomial𝑀 , we can scale 𝐺∗
(or 𝐺2) so that 𝐺∗

and𝐺2 have the same coefficient for𝑀 . In our example we multiply

𝐺∗
by 2 so that 2𝐺∗ = 2𝑥3

2
− 𝑥2. Now we compute

𝐻2 := 𝐺2 − 𝜙2 (2𝐺∗) = (𝑧 − 2)2𝑦4 + 3(𝑧 − 2) (𝑧 − 5)𝑦3 .

The terms of 𝐻2 yield two new monomials 𝑥2

1
and 𝑥1𝑥2. We obtain

the new terms 𝐺∗∗
:= 𝑥2

1
+ 3𝑥1𝑥2 of 𝐺 . We set

𝐺∗
:= 2𝐺∗ +𝐺∗∗ = 𝑥2

1
+ 3𝑥1𝑥2 + 2𝑥3

2
− 𝑥2 .

Since there were no collisions detected in 𝐻2 our algorithm stops

and outputs 𝐺∗
. Otherwise it would try another s.

Our algorithm tries 𝑇 = 2, 4, 8, 16, . . . until log
2
𝑇 choices for s

are enough to recover all the terms of 𝐺 . For example, on one of

our benchmarks where 𝐺 has 𝑛 = 9 variables, #𝐺 = 996 terms, and

deg(𝐺) = 30, using 𝑇 = 64, it recovered 279 good terms from 𝐺1

then 309, 226, 118, 56, 8 new terms from 𝐺2,𝐺3,𝐺4,𝐺5,𝐺6.

2 NOTATION
Fix the lexicographical monomial order with 𝑥1 > · · · > 𝑥𝑛 . For

a polynomial 𝐴 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛], denote LC(𝐴) as the leading

coefficient of 𝐴. For a polynomial 𝐹 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛, 𝑦], denote
LC(𝐹,𝑦) as the leading coefficient of 𝐹 w.r.t. the main variable 𝑦.

Definition 2.1. Let 𝐴, 𝐵 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛]. Then 𝐺 is called the

greatest common divisor (GCD) of 𝐴, 𝐵 if

(1) 𝐺 divides 𝐴 and 𝐵,

(2) every common divisor of 𝐴 and 𝐵 divides 𝐺 , and

(3) LC(𝐺) = 1.

We say that𝐴 is similar to 𝐵,𝐴 ∼𝑦 𝐵, if𝐴 = 𝑎 ·𝑦𝑘 ·𝐵, where 𝑎 ∈ F∗𝑞
and 𝑘 ∈ Z. In particular, if 𝑘 = 0, we use notation 𝐴 ∼ 𝐵.

Definition 2.2. Let 𝑓 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛]. For 𝛾𝑖 , 𝛼𝑖 ∈ F𝑞 , 𝑠𝑖 ∈ N and

𝑦, 𝑧 new variables. We define

𝜙 (𝑓) = 𝑓 (𝑥𝑖 = (𝛾𝑖𝑧 − 𝛼𝑖)𝑦𝑠𝑖 for 1 ≤ 𝑖 ≤ 𝑛).

Definition 2.3. For s = (𝑠1, . . . , 𝑠𝑛) ∈ N𝑛 define

𝑓s = 𝑓 (𝑥𝑖 = 𝑥𝑖𝑦𝑠𝑖 for 1 ≤ 𝑖 ≤ 𝑛) = 𝑔1𝑦
𝑑1 + · · · + 𝑔𝑘𝑦𝑑𝑘 ,

where 𝑔𝑖 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛] and 𝑑1 > · · · > 𝑑𝑘 . If 𝑔𝑖 = 𝑐𝑚 has only

one term, then we call it a non-colliding term in 𝑓s. Collect all
non-colliding terms in 𝑓s and generate the following set

NC(𝑓 , s) = { 𝑐𝑚 ∈ 𝑓 | 𝑐𝑚 is a non-colliding term in 𝑓s}.
Define the other terms in 𝑓s as the colliding terms by

C(𝑓 , s) = { 𝑐𝑚 ∈ 𝑓 | 𝑐𝑚 is a colliding term in 𝑓s}.

Definition 2.4. Let 𝑓 =
∑𝑡
𝑖=1

𝑎𝑖𝑀𝑖 (𝑥1, . . . , 𝑥𝑛) be a polynomial

with coefficients 𝑎𝑖 and monomials𝑀𝑖 . Define the monomial con-

tent MoCont(𝑓) = gcd(𝑀1, 𝑀2, . . . , 𝑀𝑡) =
∏𝑛
𝑖=1

𝑥
𝑑𝑖
𝑖

for some 𝑑𝑖 ∈
N. We say 𝑓 is monomial primitive if MoCont(𝑓) = 1.

3 PRELIMINARY RESULTS
Our proofs will make extensive use of the Schwartz-Zippel Lemma.

Lemma 3.1. [18, Lemma 6.44] Let R be an integral domain and
𝐴 ∈ R[𝑥1, . . . , 𝑥𝑛] be non-zero and with total degree 𝐷 and let 𝑆 ⊂ R
be a finite set. If a = (𝑎1, . . . , 𝑎𝑛) is chosen at random from 𝑆𝑛 then
Prob[𝐴(a) = 0] ≤ 𝐷

|𝑆 | .

Lemma 3.2. [7, Lemma 4] Let 𝐹1, 𝐹2 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛, 𝑦] with 𝑑 =

deg(𝐹1, 𝑦) > 0 and ℓ = deg(𝐹2, 𝑦) > 0. Let 𝑎𝑑 = LC(𝐹1, 𝑦), 𝑏ℓ =

LC(𝐹2, 𝑦) and 𝑅 = res𝑦 (𝐹1, 𝐹2). The resultant 𝑅 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛].
For 𝛼 ∈ F𝑛𝑞 , if 𝑎𝑑 (𝛼) ≠ 0 and 𝑏ℓ (𝛼) ≠ 0 then

(i) deg𝑦 gcd(𝐹1 (𝛼,𝑦), 𝐹2 (𝛼,𝑦)) > 0 ⇐⇒ 𝑅(𝛼) = 0 and
(ii) res𝑦 (𝐹1 (𝛼,𝑦), 𝐹2 (𝛼,𝑦)) = 𝑅(𝛼).

Lemma 3.3. Let 𝐴, 𝐵 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛], 𝐺 = gcd(𝐴, 𝐵). If 𝛾𝑖 , 𝛼𝑖
for 1 ≤ 𝑖 ≤ 𝑛 are regarded as variables and 𝜙 (𝐴), 𝜙 (𝐵), 𝜙 (𝐺) ∈
F𝑞 [𝑧,𝑦,𝛾1, . . . , 𝛾𝑛, 𝛼1, . . . , 𝛼𝑛]. Then 𝜙 (𝐺) ∼𝑦 gcd(𝜙 (𝐴), 𝜙 (𝐵)).

Proof. (See Appendix)

4 OUR NEW GCD ALGORITHM
Let 𝐴, 𝐵 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛] and 𝐺 = gcd(𝐴, 𝐵). This section presents

and analyses three algorithms.

(1) Algorithm 1: for any vector s ∈ N𝑛 , this algorithm computes

the non colliding set NC(𝐺, s).
(2) Algorithm 2: for an approximation 𝐺∗

of 𝐺 , this algorithm

computes half of the terms in 𝐺 −𝐺∗
using Algorithm 1.

(3) Algorithm 3: this is the main algorithm for computing the

𝐺 = gcd(𝐴, 𝐵). It calls Algorithm 2 in a loop.

4.1 Computing the non-colliding set
We hope to recover the polynomial 𝐺 from the bivariate images

𝜙 (𝐺) = 𝐺 ((𝛾1𝑧 − 𝛼1)𝑦𝑠1 , . . . , (𝛾𝑛𝑧 − 𝛼𝑛)𝑦𝑠𝑛). The variable 𝑦 is used

to separate the terms, and the variable 𝑧 is used to compute the

exponents of terms.

Let𝐺 = 𝑐1𝑚1+· · ·+𝑐𝑡𝑚𝑡 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛]. For s = (𝑠1, . . . , 𝑠𝑛) ∈
N𝑛 , assuming 𝐺 (𝑥𝑖 = 𝑥𝑖𝑦

𝑠𝑖
for 1 ≤ 𝑖 ≤ 𝑛) = 𝑔1𝑦

𝑑1 + · · · + 𝑔𝑡𝑦𝑑𝑡 ,
where 𝑔𝑖 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛] and 𝑑𝑖 ’s are different degrees. Then

𝜙 (𝐺) = ∑𝑡
𝑖=1

𝑔𝑖 (𝛾1𝑧 − 𝛼1, . . . , 𝛾𝑛𝑧 − 𝛼𝑛)𝑦𝑑𝑖 .
If #𝑔𝑖 = 1 and 𝑔𝑖 = 𝑐𝑥

𝑒1

1
· · · 𝑥𝑒𝑛𝑛 , then 𝑔𝑖 (𝛾1𝑧 − 𝛼1, . . . , 𝛾𝑛𝑧 − 𝛼𝑛) =

𝑐 (𝛾1𝑧−𝛼1)𝑒1 · · · (𝛾𝑛𝑧−𝛼𝑛)𝑒𝑛 . If the𝛼𝑖/𝛾𝑖 ’s are different, then 𝑐 (𝛾1𝑧−

A New Sparse Polynomial GCD by Separating Terms ISSAC 2024, July 16–19, 2024, Raleigh, NC

𝛼1)𝑒1 · · · (𝛾𝑛𝑧 − 𝛼𝑛)𝑒𝑛 is one-to-one corresponding to 𝑐𝑥
𝑒1

1
· · · 𝑥𝑒𝑛𝑛

by unique factorization. However, for some𝑔𝑖 with #𝑔𝑖 > 1,𝑔𝑖 (𝛾1𝑧−
𝛼1, . . . , 𝛾𝑛𝑧 − 𝛼𝑛) may still have the form 𝑐 (𝛾1𝑧 − 𝛼1)𝑒1 · · · (𝛾𝑛𝑧 −
𝛼𝑛)𝑒𝑛 . The intuitive way to avoid this is to randomly select 𝛼𝑖 , 𝛾𝑖
from a larger set. The following theorem indicates the success

probability. We first assume NC(𝐺, s) ≠ ∅.

Theorem 4.1. Let 𝐺 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛], s = (𝑠1, . . . , 𝑠𝑛) ∈ N𝑛 and
MoCont(𝐺) = 1. AssumingNC(𝐺, s) ≠ ∅ and𝐺 (𝑥1𝑦

𝑠1 , . . . , 𝑥𝑛𝑦
𝑠𝑛) =

𝑔1𝑦
𝑑1+· · ·+𝑔𝑘𝑦𝑑𝑘 where𝑑𝑖 ’s are different and𝑔𝑖 ≠ 0 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛].

If (𝛼1, . . . , 𝛼𝑛, 𝛾1, . . . , 𝛾𝑛) is randomly chosen from F2𝑛
𝑞 , then with a

probability of ≥ 1 − (3𝑛+1) ∥s∥∞𝐷2+3𝑛𝐷+𝑛2

𝑞 , the following hold.

(1) Cont(𝜙 (𝐺), 𝑦) = 1.
(2) If #𝑔𝑖 = 1, then 𝑔𝑖 (𝛾1𝑧−𝛼1, . . . , 𝛾𝑛𝑧−𝛼𝑛) has the form 𝑐 (𝛾1𝑧−

𝛼1)𝑒1 · · · (𝛾𝑛𝑧 − 𝛼𝑛)𝑒𝑛 for some 𝑒𝑖 ∈ N.
(3) If #𝑔𝑖 > 1, then 𝑔𝑖 (𝛾1𝑧 − 𝛼1, . . . , 𝛾𝑛𝑧 − 𝛼𝑛) does not have a

form 𝑐 (𝛾1𝑧 − 𝛼1)𝑒1 · · · (𝛾𝑛𝑧 − 𝛼𝑛)𝑒𝑛 for some 𝑒𝑖 ∈ N.

Proof. Suppose that 𝜙 (𝐺) = ℎ1𝑦
𝑑1 + · · · +ℎ𝑘𝑦𝑑𝑘 , where ℎ𝑖 (𝑧) =

𝑔𝑖 (𝛾1𝑧 − 𝛼1, . . . , 𝛾𝑛𝑧 − 𝛼𝑛). Thus Cont(𝜙 (𝐺), 𝑦) = gcd(ℎ1, . . . , ℎ𝑘).
Since NC(𝐺, s) ≠ ∅, there exists a ℎ𝑖 corresponding to a term in

NC(𝐺, s). Therefore Cont(𝜙 (𝐺), 𝑦) = (𝑧−𝛼1/𝛾1)ℓ1 · · · (𝑧−𝛼𝑛/𝛾𝑛)ℓ𝑛
for some ℓ𝑖 ∈ N. To prove Cont(𝜙 (𝐺), 𝑦) = 1, it suffices to show that

(𝑧 − 𝛼𝑖/𝛾𝑖) ∤ Cont(𝜙 (𝐺), 𝑦) for 𝑖 = 1, . . . , 𝑛. Due to MoCont(𝐺) =
gcd(𝑔1, . . . , 𝑔𝑘) = 1, for each 𝑥𝑖 , there is a 𝑔 𝑗𝑖 in {𝑔1, . . . , 𝑔𝑘 } such
that 𝑥𝑖 ∤ 𝑔 𝑗𝑖 . Substitute 𝑥𝑖 = 𝛾𝑖𝑧−𝛼𝑖 into 𝑔 𝑗𝑖 , then ℎ 𝑗𝑖 (𝑧) = 𝑔 𝑗𝑖 (𝑥𝑖 =
𝛾𝑖𝑧 − 𝛼𝑖 for 1 ≤ 𝑖 ≤ 𝑛). Let 𝜅0 :=

∏𝑛
𝑖=1

𝛾𝐷
𝑖

· ℎ 𝑗𝑖 (
𝛼𝑖
𝛾𝑖
). Claim: if

𝜅0 ≠ 0, then Cont(𝜙 (𝐺), 𝑦) = 1. This is because that if 𝜅0 ≠ 0, then

ℎ 𝑗𝑖 (𝛼𝑖/𝛾𝑖) ≠ 0 for 𝑖 = 1, . . . , 𝑛, which implies that (𝑧 − 𝛼𝑖/𝛾𝑖) ∤
ℎ 𝑗𝑖 (𝑧), thus (𝑧 − 𝛼𝑖/𝛾𝑖) ∤ Cont(𝜙 (𝐺), 𝑦). Therefore ℓ𝑖 = 0 and

Cont(𝜙 (𝐺), 𝑦) = 1. If 𝛼𝑖 , 𝛾𝑖 are regarded as variables then 𝜅0 ∈
F𝑞 [𝛼1, . . . , 𝛼𝑛, 𝛾1, . . . , 𝛾𝑛]. Claim: 𝜅0 is a non-zero polynomial with

degree ≤ 3𝑛𝐷 . Proof of the claim: we prove the case 𝑖 = 1 that

𝛾𝐷
1
·ℎ 𝑗1 (

𝛼1

𝛾1

) is a non-zero polynomial. Let𝑔 𝑗1 = 𝑥1𝜃+𝜂, where 𝜃, 𝜂 ∈
F𝑞 [𝑥2, . . . , 𝑥𝑛] and 𝜂 ≠ 0. Then ℎ 𝑗1 (𝛼1/𝛾1) = 𝜂 (𝑥ℓ = 𝛾ℓ (𝛼1/𝛾1) −
𝛼ℓ for 2 ≤ ℓ ≤ 𝑛) = 𝜂 (𝑥ℓ = (𝛾ℓ𝛼1 − 𝛼ℓ𝛾1)/𝛾1 for 2 ≤ ℓ ≤ 𝑛).
As deg𝜂 ≤ 𝐷 , then 𝛾𝐷

1
· ℎ 𝑗1 (

𝛼1

𝛾1

) is a non-zero polynomial and

the degree of 𝛾𝐷
1

· ℎ 𝑗1 (
𝛼1

𝛾1

) is ≤ 𝐷 + 2 deg𝑔 𝑗1 ≤ 3𝐷 . Other cases

for 𝑖 = 2, . . . , 𝑛 can be similarly proven. Thus 𝜅0 is a non-zero

polynomial with degree ≤ 3𝑛𝐷 .

Case (2) is always correct. Consider case (3). Without loss of

generality assume #𝑔1 > 1. Let 𝑔1 = 𝑐𝑚 · 𝑄 , where 𝑥𝑖 ∤ 𝑄 for 1 ≤
𝑖 ≤ 𝑛. Assuming 𝛽 (𝑧) := 𝑄 (𝑥𝑖 = 𝛾𝑖𝑧 − 𝛼𝑖 for 1 ≤ 𝑖 ≤ 𝑛) = 𝑟1𝑧𝑢1 +
· · · + 𝑟𝑡𝑧𝑢𝑡 where 𝑢1 > · · · > 𝑢𝑡 and 𝑟𝑖 ∈ F𝑞 . Here 𝑟𝑖 depends on
the choice of 𝛼1, . . . , 𝛼𝑛, 𝛾1, . . . , 𝛾𝑛 . Let 𝜅1 := 𝑟1 ·

∏𝑛
𝑖=1

𝛾𝐷
𝑖
· 𝛽 (𝛼𝑖/𝛾𝑖) .

Claim: if 𝜅1 ≠ 0, then 𝑔1 (𝛾1𝑧 − 𝛼1, . . . , 𝛾𝑛𝑧 − 𝛼𝑛) does not have the
form like 𝑐 (𝛾1𝑧 − 𝛼1)𝑒1 · · · (𝛾𝑛𝑧 − 𝛼𝑛)𝑒𝑛 . Proof of claim: it suffices

to show that (i) (𝑧 − 𝛼𝑖/𝛾𝑖) ∤ 𝑄 (𝛾1𝑧 − 𝛼1, . . . , 𝛾𝑛𝑧 − 𝛼𝑛), 𝑖 = 1, . . . , 𝑛

and (ii) 𝑄 (𝛾1𝑧 − 𝛼1, . . . , 𝛾𝑛𝑧 − 𝛼𝑛) ∉ F𝑞 . 𝜅1 ≠ 0 implies that 𝑟1 ≠ 0

and 𝛽 (𝛼𝑖/𝛾𝑖) ≠ 0 for 1 ≤ 𝑖 ≤ 𝑛. First, 𝑟1 ≠ 0 is enough to prove

𝑄 (𝛾1𝑧 − 𝛼1, . . . , 𝛾𝑛𝑧 − 𝛼𝑛) ∉ F𝑞 . Second, 𝛽 (𝛼𝑖/𝛾𝑖) ≠ 0 implies that

(𝑧 − 𝛼𝑖/𝛾𝑖) ∤ 𝛽 (𝑧) = 𝑟 (𝛾1𝑧 − 𝛼1, . . . , 𝛾𝑛𝑧 − 𝛼𝑛). We proved it.

If𝛼𝑖 , 𝛾𝑖 are regarded as variables, then𝜅1 ∈ F𝑞 [𝛼1, . . . , 𝛼𝑛, 𝛾1, . . . ,

𝛾𝑛]. Claim: 𝜅1 is a non-zero polynomial with degree ≤ 3𝑛𝐷 + 𝐷 .
As #𝑔1 > 1, then 𝑢1 > 0 and 𝑟1 is a non-zero polynomial with

degree ≤ 𝐷 . As 𝑥𝑖 ∤ 𝑄 , for the same reason for 𝜅0, 𝛾
𝐷
𝑖

· 𝛽 (𝛼𝑖/𝛾𝑖) is
a non-zero polynomial with degree ≤ 3𝐷 . We proved it.

Assuming 𝑔𝑖1 , . . . , 𝑔𝑖ℓ are all in 𝐺s with more than one term, for

the same reason, there are corresponding nonzero polynomials 𝜅𝑖 ∈
F𝑞 [𝛼1, . . . , 𝛼𝑛, 𝛾1, . . . , 𝛾𝑛], 𝑖 = 1, . . . , ℓ . Then 𝜅1 · · ·𝜅ℓ ≠ 0 implies

that case (3) is correct. Let

Γ :=
∏
𝑖=1

𝛾𝑖 ·
∏

1≤𝑖< 𝑗≤𝑛
(𝛼𝑖𝛾 𝑗−𝛼 𝑗𝛾𝑖)·

ℓ∏
𝑖=0

𝜅𝑖 ∈ F𝑞 [𝛼1, . . . , 𝛼𝑛, 𝛾1, . . . , 𝛾𝑛] .

Therefore, if Γ ≠ 0, then 𝛾𝑖𝑧 − 𝛼𝑖 are different irreducible poly-

nomials and Cases (1), (2) and (3) are all met. As deg𝜅0 ≤ 3𝑛𝐷

and deg𝜅𝑖 ≤ 3𝑛𝐷 + 𝐷, 𝑖 = 1, . . . , ℓ and ℓ ≤ deg(𝐺s, 𝑦) ≤ ∥s∥∞𝐷 ,
we have deg Γ ≤ (3𝑛 + 1)∥s∥∞𝐷2 + 3𝑛𝐷 + 𝑛2

. By Lemma 3.1, if

(𝛼1, . . . , 𝛼𝑛, 𝛾1, . . . , 𝛾𝑛) are randomly chosen from F2𝑛
𝑞 , the probabil-

ity that Γ(𝛼1, . . . , 𝛼𝑛, 𝛾1, . . . , 𝛾𝑛) ≠ 0 is ≥ 1 − (3𝑛+1) ∥s∥∞𝐷2+3𝑛𝐷+𝑛2

𝑞 .

□

The condition NC(𝐺, s) ≠ ∅ is necessary for Theorem 4.1. The

following shows a counter-example.

Example 4.2. Assume 𝐺 = 𝑥2

1
𝑥2 + 𝑥2𝑥

2

3
+ 𝑥2

1
+ 𝑥2

3
and choose

s = (1, 1, 1). Then𝐺 (𝑥1𝑦, 𝑥2𝑦, 𝑥3𝑦) = (𝑥2

1
𝑥2 +𝑥2𝑥

2

3
)𝑦3 + (𝑥2

1
+𝑥2

3
)𝑦2

.

So 𝑔1 = 𝑥2

1
𝑥2 + 𝑥2𝑥

2

3
and 𝑔2 = 𝑥2

1
+ 𝑥2

3
. As gcd(𝑔1, 𝑔2) = 𝑥2

1
+ 𝑥2

3
, no

matter what 𝛼1, 𝛼2, 𝛼3, 𝛾1, 𝛾2, 𝛾3 (≠ 0) choose, (𝛾1𝑧 − 𝛼1)2 + (𝛾3𝑧 −
𝛼3)2) | Cont(𝜙 (𝐺), 𝑦). The coefficient of 𝑧2

is 𝛾2

1
+𝛾2

2
. If 𝛾2

1
+𝛾2

2
= 0,

then −1 is a quadratic residue, which happens only in some finite

fields, for example, F𝑝 with 𝑝 ≡ 1 mod 4. In other finite fields, the

content w.r.t 𝑦 is not 1.

4.2 Solving the case NC(𝐺, s) = ∅
Let 𝐺 = gcd(𝐴, 𝐵), then 𝐺s ∼𝑦 gcd(𝐴s, 𝐵s). We can quickly detect

situations similar to Example 4.2 based on 𝐴s and 𝐵s.
Suppose that 𝐴 and 𝐵 are monomial primitive and

𝐴(𝑥𝑖 = 𝑥𝑖𝑦𝑠𝑖 for 1 ≤ 𝑖 ≤ 𝑛) = 𝐴1𝑦
𝑣1 + · · · +𝐴𝑘𝑦𝑣𝑘 , (1)

𝐵(𝑥𝑖 = 𝑥𝑖𝑦𝑠𝑖 for 1 ≤ 𝑖 ≤ 𝑛) = 𝐵1𝑦
𝑢1 + · · · + 𝐵ℓ𝑦𝑢ℓ . (2)

The main idea comes from the following two facts:

(1) If gcd(𝐴1, . . . , 𝐴𝑘 , 𝐵1, . . . , 𝐵ℓ) ≠ 1, then NC(𝐺, s) = ∅;
(2) If gcd(𝐴1, . . . , 𝐴𝑘 , 𝐵1, . . . , 𝐵ℓ) = 1, then Cont(𝜙 (𝐺), 𝑦) = 1

with high probability if 𝛼𝑖 , 𝛾𝑖 are randomly selected in F𝑞 .

Lemma 4.3. Let 𝐴, 𝐵 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛] and 𝐴 and 𝐵 be monomial
primitive. If gcd(𝐴1, . . . , 𝐴𝑘 , 𝐵1, . . . , 𝐵ℓ) ≠ 1, then NC(𝐺, s) = ∅.

Proof. Denote 𝐻 := gcd(𝐴1, . . . , 𝐴𝑘 , 𝐵1, . . . , 𝐵ℓ). Then 𝐻 |𝐴 and

𝐻 |𝐵. Thus𝐻 | gcd(𝐴, 𝐵) = 𝐺 . Therefore𝐻s |𝐺s. We prove𝐻s = 𝐻 ·𝑦𝑑
for some 𝑑 ∈ N. Assume to a contradiction𝐻s = 𝐻1𝑦

𝑑1 +· · ·+𝐻𝑡𝑦𝑑𝑡
where 𝑑1 > · · · > 𝑑𝑡 . Since 𝐻 |𝐴1, let 𝐴1 = 𝐻 · 𝐻 . Then (𝐴1)s =

𝐴1𝑦
𝑣1 = 𝐻s · 𝐻 s = (𝐻1𝑦

𝑑1 + · · · + 𝐻𝑡𝑦𝑑𝑡) · 𝐻 s. Then the number of

terms w.r.t 𝑦 in 𝐴1𝑦
𝑣1

is at least two, a contradiction.

Thus 𝐻 · 𝑦𝑑 |𝐺s. So 𝐻 divides all the coefficients of 𝐺s w.r.t 𝑦.
Since 𝐴 and 𝐵 are monomial primitive and 𝐻 ≠ 1, 𝐻 has at least

two terms, which implies that each coefficient of 𝐺s w.r.t 𝑦 has at

least two terms. Thus there is no non-colliding term in 𝐺s. □

Lemma 4.4. Let 𝐺 = gcd(𝐴, 𝐵) and let 𝐷 = max(deg𝐴, deg𝐵).
Then there exists a non-zero polynomial Γ with degree ≤ 2𝐷2 +

ISSAC 2024, July 16–19, 2024, Raleigh, NC Huang and Monagan

2𝐷 , such that if Γ(𝛼1, . . . , 𝛼𝑛, 𝛾1, . . . , 𝛾𝑛) ≠ 0 for 𝛼𝑖 , 𝛾𝑖 ∈ F𝑞 , then
𝐺 (𝛾1𝑧 − 𝛼1, . . . , 𝛾𝑛𝑧 − 𝛼𝑛) ∼

gcd(𝐴(𝛾1𝑧 − 𝛼1, . . . , 𝛾𝑛𝑧 − 𝛼𝑛), 𝐵(𝛾1𝑧 − 𝛼1, . . . , 𝛾𝑛𝑧 − 𝛼𝑛)) .

Proof. If 𝛼𝑖 , 𝛾𝑖 ’s are regarded as variables, then by Lemma 3.3,

𝜙 (𝐺) ∼𝑦 gcd(𝜙 (𝐴), 𝜙 (𝐵)) for s = (0, . . . , 0). As both sides have

degree 0 in 𝑦, 𝜙 (𝐺) ∼ gcd(𝜙 (𝐴), 𝜙 (𝐵)). Let Γ := LC(𝜙 (𝐴), 𝑧) ·
LC(𝜙 (𝐵), 𝑧) · res𝑧 (𝜙 (𝐴)/𝜙 (𝐺), 𝜙 (𝐵)/𝜙 (𝐺)). As the degrees of the
coefficients of 𝜙 (𝐴) and 𝜙 (𝐵) in 𝑧 are at most 𝐷 , deg(Γ) ≤ 𝐷 +𝐷 +
2𝐷2

. For 𝛼𝑖 , 𝛾𝑖 ∈ F𝑞 , by Lemma 3.2, if Γ(𝛼1, . . . , 𝛼𝑛, 𝛾1, . . . , 𝛾𝑛) ≠ 0,

then 𝜙 (𝐺), 𝜙 (𝐴), 𝜙 (𝐵) ∈ F𝑞 [𝑧] and 𝜙 (𝐺) ∼ gcd(𝜙 (𝐴), 𝜙 (𝐵)). □

Corollary 4.5. Suppose gcd(𝐴1, . . . , 𝐴𝑘 , 𝐵1, . . . , 𝐵ℓ) = 1. Let𝐷 =

max(deg𝐴, deg𝐵). If 𝛼𝑖 , 𝛾𝑖 ’s are randomly chosen from F𝑞 , then with

probability ≥ 1 − (2𝐷2+2𝐷) (2∥s∥∞𝐷+1)
𝑞 , gcd(𝐴𝑖 (𝛾1𝑧 − 𝛼1, . . . , 𝛾𝑛𝑧 −

𝛼𝑛), 𝐵 𝑗 (𝛾1𝑧 − 𝛼1, . . . , 𝛾𝑛𝑧 − 𝛼𝑛), 𝑖 = 1, . . . , 𝑘, 𝑗 = 1, . . . , ℓ) = 1.

Proof. As gcd(𝐴1, . . . , 𝐴𝑘) = gcd(𝐴1, gcd(· · · gcd(𝐴𝑘−1
, 𝐴𝑘)))

and gcd(𝐵1, . . . , 𝐵ℓ) = gcd(𝐵1, gcd(· · · gcd(𝐵ℓ−1, 𝐵ℓ))), we need to

compute 𝑘 + ℓ − 1 GCDs. For each GCD, there exists a non-zero

polynomial Γ𝑖 (𝛼1, . . . , 𝛼𝑛, 𝛾1, . . . , 𝛾𝑛), so that if 𝛼𝑖 , 𝛾𝑖 ’s are chosen

from F𝑞 and Γ𝑖 (𝛼1, . . . , 𝛼𝑛, 𝛾1, . . . , 𝛾𝑛) ≠ 0, then the GCD is still

correct when replacing 𝑥𝑖 = 𝛾𝑖𝑧 − 𝛼𝑖 . Multiply all polynomials Γ𝑖
together, the degree of the product is ≤ (2𝐷2 + 2𝐷) (𝑘 + ℓ − 1) ≤
(2𝐷2 + 2𝐷) (2∥s∥∞𝐷 + 1). By Lemma 3.1, we proved it. □

4.3 Reduce Multivariate GCD to Univariate GCD
To compute 𝜙 (𝐺) = gcd(𝜙 (𝐴), 𝜙 (𝐵)) in F𝑞 [𝑦, 𝑧] we interpolate 𝑧 in
𝜙 (𝐺) from gcd(𝜙 (𝐴) (𝑧 = 𝑏𝑘 , 𝑦), 𝜙 (𝐵) (𝑧 = 𝑏𝑘 , 𝑦)) for some 𝑏𝑘 ∈ F𝑞 .
Condition (2) in Lemma 4.6 identifies which 𝑏𝑘 can be used.

Lemma 4.6. Let 𝐴, 𝐵 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛] and 𝐺 = gcd(𝐴, 𝐵). Let
s = (𝑠1, . . . , 𝑠𝑛) ∈ N𝑛 . If the 𝛼𝑖 , 𝛾𝑖 ’s are randomly chosen from F𝑞 and
𝑏𝑘 for 0 ≤ 𝑘 ≤ 𝐷 are randomly chosen from F𝑞 , then with probability

≥ 1 − (4∥s∥∞𝐷2+5𝐷) (𝐷+1)+𝑛2

𝑞 , we have

(1) the 𝛼𝑖/𝛾𝑖 are distinct and the 𝑏𝑘 are distinct;
(2) 𝜙 (𝐺) (𝑧 = 𝑏𝑘 , 𝑦) ∼𝑦 gcd(𝜙 (𝐴) (𝑧 = 𝑏𝑘 , 𝑦), 𝜙 (𝐵) (𝑧 = 𝑏𝑘 , 𝑦)).

Proof. Regard 𝛼𝑖 , 𝛾𝑖 ’s as variables. By Lemma 3.3, we have

𝜙 (𝐺) ∼𝑦 gcd(𝜙 (𝐴), 𝜙 (𝐵)). Suppose 𝑦ℓ · 𝜙 (𝐺) ∼ gcd(𝜙 (𝐴), 𝜙 (𝐵))
for some ℓ ∈ N. Let 𝑅 := res𝑦 (𝜙 (𝐴)/(𝜙 (𝐺) · 𝑦ℓ), 𝜙 (𝐵)/(𝜙 (𝐺) · 𝑦ℓ))
and Γ := 𝑅 ·LC(𝜙 (𝐴), 𝑦)·LC(𝜙 (𝐵), 𝑦) ∈ F𝑞 [𝛼1, . . . , 𝛼𝑛, 𝛾1, . . . , 𝛾𝑛, 𝑧] .
By [6, p288, Sylvester’s Criterion], 𝑅 ≠ 0, so Γ ≠ 0. By the definition

of resultant, we have deg𝑅 ≤ 4∥s∥∞𝐷2
. So deg Γ ≤ 4∥s∥∞𝐷2 +4𝐷.

For each 𝑘 , let Γ𝑘 := Γ(𝛼1, . . . , 𝛼𝑛, 𝛾1, . . . , 𝛾𝑛, 𝑧 = 𝑏𝑘). Let

Ω :=

𝐷∏
𝑘=0

Γ𝑘 ·
∏

0≤𝑖< 𝑗≤𝐷
(𝑏𝑖 − 𝑏 𝑗) ·

∏
1≤𝑖< 𝑗≤𝑛

(𝛼𝑖𝛾 𝑗 − 𝛼 𝑗𝛾𝑖) ·
𝑛∏
𝑖=1

𝛾𝑖

Claim: if 𝛼𝑖 , 𝛾𝑖 , 𝑏𝑘 ’s are chosen from F𝑞 and Ω ≠ 0, then conditions

(1) and (2) are satisfied. Proof of claim: Ω ≠ 0 implies Γ𝑘 ≠ 0

and

∏
0≤𝑖< 𝑗≤𝐷 (𝑏𝑖 − 𝑏 𝑗) ≠ 0 and

∏
1≤𝑖< 𝑗≤𝑛 (𝛼𝑖𝛾 𝑗 − 𝛼 𝑗𝛾𝑖) ≠ 0 and

𝛾𝑖 ≠ 0. The last three inequalities imply that 𝛼𝑖/𝛾𝑖 ’s are distinct
and 𝑏𝑘 ’s are distinct. By (i) of Lemma 3.2, Γ𝑘 ≠ 0 implies that

gcd(𝜙 (𝐴) (𝑧 = 𝑏𝑘 , 𝑦), 𝜙 (𝐵) (𝑧 = 𝑏𝑘 , 𝑦)) ∼ 𝜙 (𝐺) (𝑧 = 𝑏𝑘 , 𝑦) · 𝑦ℓ . We

proved it. As deg Ω ≤ (4∥s∥∞𝐷2 + 4𝐷) (𝐷 + 1) + (𝐷 + 1)𝐷/2 + 𝑛2
,

by Lemma 3.1, if 𝛼𝑖 , 𝛾𝑖 ’s and 𝑏𝑘 are randomly chosen from F𝑞 , the

probability that Ω ≠ 0 is ≥ 1 − (4∥s∥∞𝐷2+5𝐷) (𝐷+1)+𝑛2

𝑞 . □

4.4 An Algorithm for Computing 𝑁 (𝐺, s)
Let𝐺∗

be an approximation polynomial containing some terms of𝐺

and let Terms(𝐺∗) denote those terms. For an s ∈ N𝑛 , the following
algorithm computes the set (NC(𝐺, s)\Terms(𝐺∗))⋃NC(𝐺−𝐺∗, s)
which is a set that contains all the terms in NC(𝐺, s) and NC(𝐺 −
𝐺∗, s) but not in Terms(𝐺∗).

Algorithm 1 Computing the Non-colliding Set

Require: Twomonomial primitive polynomials𝐴, 𝐵 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛];
an approximation polynomial 𝐺∗

containing some terms of 𝐺 ;

a vector s = (𝑠1, . . . , 𝑠𝑛) ∈ N𝑛 ; a tolerance 𝜀 ∈ (0, 1).
Ensure: If NC(𝐺, s)⋂Terms(𝐺∗) ≠ ∅ or 𝐺∗ = 0, return the set

(NC(𝐺, s) \ Terms(𝐺∗))⋃NC(𝐺 −𝐺∗, s) with a probability of

≥ 1 − 𝜀; or “Failure".
1: Let 𝐷 = max(deg𝐴, deg𝐵) and let 𝜀 := min(𝜀, 1/𝐷).
2: if 𝑞 <

8∥s∥∞ (𝐷+1)3+6𝑛∥s∥∞ (𝐷+1)2+3𝑛2

𝜀 then

3: Find ℓ such that 𝑞ℓ >
8∥s∥∞ (𝐷+1)3+6𝑛∥s∥∞ (𝐷+1)2+3𝑛2

𝜀 . Extend

F𝑞 to F𝑞ℓ . We still denote F𝑞ℓ as F𝑞 .

4: end if
5: Let 𝐷𝑚𝑖𝑛 := min(deg𝐴, deg𝐵).
6: Compute𝐴s = 𝐴(𝑥1𝑦

𝑠1 , . . . , 𝑥𝑛𝑦
𝑠𝑛) and𝐵s = 𝐵(𝑥1𝑦

𝑠1 , . . . , 𝑥𝑛𝑦
𝑠𝑛).

Assume 𝐴s = 𝐴1𝑦
𝑣1 + · · · + 𝐴𝑟𝑦𝑣𝑟 where 𝑣1 > · · · > 𝑣𝑟 and

𝐵s = 𝐵1𝑦
𝑢1 + · · · + 𝐵ℓ𝑦𝑢ℓ with 𝑢1 > · · · > 𝑢ℓ .

7: Randomly pick 𝛼1, . . . , 𝛼𝑛, 𝛾1, . . . , 𝛾𝑛, 𝑏0, 𝑏1, . . . , 𝑏𝐷𝑚𝑖𝑛
from F𝑞

until 𝛼𝑖/𝛾𝑖 ’s are distinct and 𝑏𝑖 ’s are distinct and deg𝑧 𝐴1 (𝛾1𝑧−
𝛼1, . . . , 𝛾𝑛𝑧−𝛼𝑛) = deg𝐴1 and𝐴1 (𝛾1𝑏𝑖 −𝛼1, . . . , 𝛾𝑛𝑏𝑖 −𝛼𝑛) ≠ 0

and 𝐵1 (𝛾1𝑏𝑖 − 𝛼1, . . . , 𝛾𝑛𝑏𝑖 − 𝛼𝑛) ≠ 0 for all 𝑖 = 0, . . . , 𝐷𝑚𝑖𝑛 .

Stage 1: Test if NC(𝐺, s) = ∅. See section 4.2.

8: if gcd(𝐴𝑖 (𝛾1𝑧−𝛼1, . . . , 𝛾𝑛𝑧−𝛼𝑛), 𝐵 𝑗 (𝛾1𝑧−𝛼1, . . . , 𝛾𝑛𝑧−𝛼𝑛), 𝑖 =
1, . . . , 𝑟 , 𝑗 = 1, . . . , ℓ) ≠ 1 then

9: return “Failure". {* This means NC(𝐺, s) = ∅ (Lemma 4.3).*}

10: end if

Stage 2: Interpolate the bivariate GCD 𝜙 (𝐺) (upto 𝑦𝑚) from
𝐷𝑚𝑖𝑛 + 1 monic univariate GCDs 𝑔𝑘 ∈ F𝑞 [𝑦]. That 𝐷𝑚𝑖𝑛 + 1

values are sufficient see Lemma 8.1 in the Appendix.

11: if deg𝐴 < deg𝐵 then Γ := 𝐴1 else Γ := 𝐵1 end if
12: for 𝑘 = 0, 1, 2, . . . , 𝐷𝑚𝑖𝑛 do
13: Compute 𝑔𝑘 := gcd(𝐴((𝛾1𝑏𝑘 − 𝛼1)𝑦𝑠1 , . . . , (𝛾𝑛𝑏𝑘 − 𝛼𝑛)𝑦𝑠𝑛),

𝐵((𝛾1𝑏𝑘 − 𝛼1)𝑦𝑠1 , . . . , (𝛾𝑛𝑏𝑘 − 𝛼𝑛)𝑦𝑠𝑛)).
14: Set 𝑔𝑘 := Γ(𝛾1𝑏𝑘 − 𝛼1, . . . , 𝛾𝑛𝑏𝑘 − 𝛼𝑛) · 𝑔𝑘 and assume 𝑔𝑘 =

𝑐𝑘,1𝑦
𝑑1 + · · · + 𝑐𝑘,𝑡𝑦𝑑𝑡 .

15: end for
16: for 𝑖 = 1, 2, . . . , 𝑡 do
17: Interpolate 𝐶𝑖 (𝑧) from (𝑏𝑘 , 𝑐𝑘,𝑖) so that 𝐶𝑖 (𝑏𝑘) = 𝑐𝑘,𝑖 for

0 ≤ 𝑘 ≤ 𝐷𝑚𝑖𝑛 .

18: end for
19: Compute𝐶 (𝑧) = gcd(𝐶1 (𝑧), . . . ,𝐶𝑡 (𝑧)) then𝐶𝑖 (𝑧) := 𝐶𝑖 (𝑧)/𝐶 (𝑧)

for 𝑖 = 1, . . . , 𝑡 . {* Then 𝜙 (𝐺) ∼𝑦 𝐶1 (𝑧)𝑦𝑑1 + · · · +𝐶𝑡 (𝑧)𝑦𝑑𝑡 . *}
Stage 3: compute the non-colliding set NC(𝐺, s).

20: NC := ∅.
21: for 𝑖 = 1, . . . , 𝑡 do
22: if 𝐶𝑖 (𝑧) can be factored into the form 𝑐𝑖

∏𝑛
𝑗=1

(𝛾 𝑗𝑧 − 𝛼 𝑗)𝑒𝑖,𝑗
then

A New Sparse Polynomial GCD by Separating Terms ISSAC 2024, July 16–19, 2024, Raleigh, NC

23: NC := NC

⋃{𝑐𝑖 · 𝑥𝑒𝑖,1
1

· · · 𝑥𝑒𝑖,𝑛𝑛 }.
24: end if
25: end for
26: if 𝐺∗ = 0 then return NC end if

Stage 4: Adjust the coefficients of 𝜙 (𝐺) and 𝜙 (𝐺∗) using a

common term to make them consistent to get 𝜙 (𝐺 −𝐺∗).
27: Let ℎ1 := 𝐶1 (𝑧)𝑦𝑑1 + · · · +𝐶𝑡 (𝑧)𝑦𝑑𝑡 . {* ℎ1 ∼𝑦 𝜙 (𝐺). *}
28: Computeℎ2 := 𝐺∗ ((𝛾1𝑧−𝛼1)𝑦𝑠1 , . . . , (𝛾𝑛𝑧−𝛼𝑛)𝑦𝑠𝑛) and assume

ℎ2 = 𝐸1 (𝑧)𝑦𝑤1 + · · · + 𝐸𝛾 (𝑧)𝑦𝑤𝛾 . {* ℎ2 = 𝜙 (𝐺∗). *}
29: if the monomials of NC and 𝐺∗

do not have a common one

then return “Failure" end if
30: Assume one of the same monomials corresponds to terms

𝐶𝜌 (𝑧)𝑦𝑑𝜌 and 𝐸𝛿 (𝑧)𝑦𝑤𝛿
in ℎ1 and ℎ2.

31: Let ℎ3 := ℎ1 ·𝑦max(𝑑𝜌 ,𝑤𝛿)−𝑑𝜌 · LC(𝐸𝛿 (𝑧))
LC(𝐶𝜌 (𝑧))

−ℎ2 ·𝑦max(𝑑𝜌 ,𝑤𝛿)−𝑤𝛿
.

Assume ℎ3 = 𝐹1 (𝑧)𝑦𝜂1 + · · · + 𝐹𝜏 (𝑧)𝑦𝜂𝜏 . {* ℎ3 = 𝜙 (𝐺 −𝐺∗). *}
32: if ℎ3 = 0 return ∅ end if
33: Multiply each term in NC by the scalar

LC(𝐸𝛿 (𝑧))
LC(𝐶𝜌 (𝑧))

in F𝑞 .

Stage 5: Compute the non-colliding terms of NC(𝐺 −𝐺∗, s).
34: Set NCG∗

:= ∅. {* Store the elements of NC(𝐺 −𝐺∗, s). *}
35: for 𝑘 = 1, . . . , 𝜏 do
36: if 𝐹𝑘 (𝑧) can be factored into the form 𝑐𝑘

∏𝑛
𝑖=1

(𝛾𝑖𝑧 − 𝛼𝑖)𝑒𝑘,𝑖
then

37: NCG∗
:= NCG∗⋃{𝑐𝑘 · 𝑥𝑒𝑘,1

1
· · · 𝑥𝑒𝑘,𝑛𝑛 }.

38: end if
39: end for
40: if NCG∗ = ∅ then return “Failure" end if
41: return (NC \ Terms(𝐺∗))⋃NCG∗

.

Theorem 4.7. Algorithm 1 works correctly as specified.

Proof. Consider two cases.

Case 1: If 𝑄 := gcd(𝐴1, . . . , 𝐴𝑟 , 𝐵1, . . . , 𝐵ℓ) ≠ 1, then by Lemma 4.3,

NC(𝐺, s) = ∅. In Step 7, as deg𝑧 𝐴1 (𝛾1𝑧−𝛼1, . . . , 𝛾𝑛𝑧−𝛼𝑛) = deg𝐴1,

then deg𝑧 𝑄 (𝛾1𝑧 − 𝛼1, . . . , 𝛾𝑛𝑧 − 𝛼𝑛) = deg𝑄 ≥ 1. Thus this case

can be detected in Step 8. We analyse the success rate. In Step 7,

the leading coefficient of𝐴1 (𝛾1𝑧 −𝛼1, . . . , 𝛾𝑛𝑧 −𝛼𝑛) is a polynomial

in 𝛾𝑖 ’s with degree ≤ 𝐷 . To make 𝛼𝑖/𝛾𝑖 distinct, we should make∏
1≤𝑖< 𝑗≤𝑛 (𝛼𝑖𝛾 𝑗 − 𝛼 𝑗𝛾𝑖) ·

∏𝑛
𝑖=1

𝛾𝑖 ≠ 0. This polynomial has degree

≤ 𝑛2
. As 𝛼1, . . . , 𝛼𝑛, 𝛾1, . . . , 𝛾𝑛 are randomly chosen from F𝑞 , the

output of Step 8 is correct with probability ≥ 1 − 𝐷+𝑛2

𝑞 ≥ 1 − 𝜀.
Case 2: If gcd(𝐴1, . . . , 𝐴𝑟 , 𝐵1, . . . , 𝐵ℓ) = 1, Step 23 computes the

correct NC(𝐺, s) if the following three conditions are met.

(1) The gcd in Step 8 is 1.

(2) In Step 13 𝑔𝑘 is similar to 𝜙 (𝐺) (𝑧 = 𝑏𝑘 , 𝑦)) for all 𝑘 .
(3) In Step 22, if 𝐶𝑖 corresponds to a non-colliding term in 𝐺s,

then 𝐶𝑖 has the form of 𝑐𝑖 (𝛾1𝑧 − 𝛼1)𝑒𝑖,1 · · · (𝛾𝑛𝑧 − 𝛼𝑛)𝑒𝑖,𝑛 ; if
not it doesn’t have this form.

ByCorollary 4.5, (1) happenswith probability ≥ 1− (2𝐷2+2𝐷) (2∥s∥∞𝐷+1)
𝑞 .

By Lemma 4.6, (2) happenswith probability ≥ 1− (4∥s∥∞𝐷2+5𝐷) (𝐷+1)+𝑛2

𝑞 .

By Theorem 4.1, (3) happenswith probability ≥ 1− (3𝑛+1) ∥s∥∞𝐷2+3𝑛𝐷+𝑛2

𝑞 .

Step 37 computes the correct NC(𝐺 − 𝐺∗, s) if the following

condition is met.

(4) In Step 36, if 𝐹𝑘 is corresponding to a non-colliding term in

(𝐺−𝐺∗)s, then 𝐹𝑘 has the form of 𝑐𝑘 (𝛾1𝑧−𝛼1)𝑒𝑘,1 · · · (𝛾𝑛𝑧−𝛼𝑛)𝑒𝑘,𝑛 ;
if not it doesn’t have this form. By Theorem 4.1, (4) happens with

probability ≥ 1− (3𝑛+1) ∥s∥∞𝐷2+3𝑛𝐷+𝑛2

𝑞 . Thus our algorithm returns

the correct set with probability (1) times (2) times (3) times(4) which

simplifies to ≥ 1 − 8∥s∥∞ (𝐷+1)3+6𝑛∥s∥∞ (𝐷+1)2+3𝑛2

𝑞 .

As in Step 2, we have 𝑞 >
8∥s∥∞ (𝐷+1)3+6𝑛∥s∥∞ (𝐷+1)2+3𝑛2

𝜀 , then the

probability ≥ 1 − 8∥s∥∞ (𝐷+1)3+6𝑛∥s∥∞ (𝐷+1)2+3𝑛2

𝑞 ≥ 1 − 𝜀. □

Theorem 4.8. The expected bit complexity of Algorithm 1 is 𝑂∼ (𝑛𝑇in

(log𝑑+log ∥s∥∞)+log
2 1

𝜀
+log

1

𝜀
log𝑞+(𝑇in𝐷+∥s∥∞𝐷2+𝑇o𝐷

2+𝑛∥s∥∞𝐷) ·
(log𝑞 + log(𝑛∥s∥∞𝐷/𝜀))) , where 𝑇in := #𝐴 + #𝐵 and 𝑇o := #𝐺 .

Proof. In Step 3, as ℓ = 𝑂 (log ∥s∥∞ + log𝐷 + log𝑛 + log
1

𝜀),
the complexity of extension is 𝑂 (ℓ2 + ℓ log𝑞) bit operations [14],
which is 𝑂 (log

2 ∥s∥∞ + log
2 𝐷 + log

2 𝑛 + log
2 1

𝜀 + log ∥s∥∞ log𝑞 +
log𝐷 log𝑞 + log𝑛 log𝑞 + log

1

𝜀 log𝑞). Step 6 costs 𝑂∼ (𝑛𝑇in (log𝑑 +
log ∥s∥∞) +𝑇in log𝑞) bit operations.

In Step 8, first, compute 𝐴𝑖 (𝛾1𝑧 − 𝛼1, . . . , 𝛾𝑛𝑧 − 𝛼𝑛) and 𝐵𝑖 (𝛾1𝑧 −
𝛼1, . . . , 𝛾𝑛𝑧 − 𝛼𝑛), which costs up to 𝑂∼ (𝑇in𝐷 log𝑞) bit operations.
Then compute 𝑟 + ℓ polynomial GCDs with degree 𝐷 , resulting

in a complexity of 𝑂∼ ((𝑟 + ℓ)𝐷 log𝑞) bit operations. As 𝑟 + ℓ is
𝑂 (∥s∥∞𝐷), the complexity is 𝑂∼ (∥s∥∞𝐷2

log𝑞) bit operations.
In Step 13, compute all 𝜙 (𝐴) (𝑧 = 𝑏𝑘 , 𝑦) and 𝜙 (𝐵) (𝑧 = 𝑏𝑘 , 𝑦),

which costs 𝑂∼ (𝑇in𝐷 log𝑞) bit operations. Then, we totally com-

pute 𝑂 (𝐷) univariate GCDs of degree 𝑂 (∥s∥∞𝐷), the complexity

is 𝑂∼ (∥s∥∞𝐷2
log𝑞) bit operations.

In Step 17, we interpolate 𝑡 polynomials with degrees 𝑂 (𝐷). As
𝑡 ∈ 𝑂 (∥s∥∞𝐷), the complexity is 𝑂∼ (∥s∥∞𝐷2

log𝑞) bit operations.
In Step 19, we compute 𝑡 polynomial GCDs of degree 𝑂 (𝐷). As

𝑡 ∈ 𝑂 (∥s∥∞𝐷), the complexity is 𝑂∼ (∥s∥∞𝐷2
log𝑞) bit operations.

Step 22 costs 𝑂 (𝑡𝐷2
log𝑞) bit operations to factor all 𝐶𝑖 (𝑧) by

continuously dividing them by 𝛾 𝑗𝑧 − 𝛼 𝑗 in F𝑞 [𝑧]. If 𝑡 > 𝑇o, then

we computed the wrong result, as stated in Theorem 4.7, the proba-

bility of this case happening is ≤ 𝜀. In this case, 𝑡 ≤ ∥s∥∞𝐷 , there-
fore the complexity is 𝑂 (∥s∥∞𝐷3

log𝑞) bit operations. If 𝑡 < 𝑇o,

𝑂 (𝑡𝐷2
log𝑞) is 𝑂 (𝑇o𝐷

2
log𝑞). In Step 1, we let 𝜀 ≤ 1

𝐷
. The ex-

pected complexity is 𝑂 (𝜀 · ∥s∥∞𝐷3
log𝑞 + 𝑇o𝐷

2
log𝑞), which is

𝑂∼ (∥s∥∞𝐷2
log𝑞 +𝑇o𝐷

2
log𝑞) bit operations.

Step 28 does 𝑂∼ (𝑇o𝐷 log𝑞) bit operations as #𝐺∗ ≤ #𝐺.

In Step 31, the complexity is𝑂∼ ((𝑡 +𝑇o) log𝑞+(𝑡 +𝑇o) log ∥s∥∞+
(𝑡+𝑇o) log𝐷) bit operations, as 𝑡 ≤ ∥s∥∞𝐷 , the cost is𝑂∼ (∥s∥∞𝐷 log𝑞+
𝑇o log𝑞 +𝑇o log ∥s∥∞ +𝑇o log𝐷) bit operations.

Steps 35-37 have the same the complexity as Steps 21-23, which

is 𝑂∼ (∥s∥∞𝐷2
log𝑞 +𝑇o𝐷

2
log𝑞 + 𝑛∥s∥∞𝐷 log𝑞) bit operations.

After Step 6, F𝑞 is actually F𝑞ℓ , so in the complexity analysis,

log𝑞ℓ ∈ max(𝑂 (log𝑞, log(𝑛∥s∥∞𝐷𝜀))). To simplify it, we replace it

with 𝑂 (log𝑞 + log(𝑛∥s∥∞𝐷𝜀)). □

4.5 Good Kronecker Substitutions
When s = (𝑠1, 𝑠2, . . . , 𝑠𝑛) is chosen randomly, the substitution 𝑥𝑖 =

𝑥𝑖𝑦
𝑠𝑖 , 𝑖 = 1, 2, . . . , 𝑛 is called a randomized Kronecker substitution.

We call a vector s that causes #NC(𝐺, s) ≥ 1

2
#𝐺 a “good" Kronecker

substitution for𝐺 . The following key lemma shows that there is an

upper bound on the number of “bad" vectors s.

ISSAC 2024, July 16–19, 2024, Raleigh, NC Huang and Monagan

Lemma 4.9. Let 𝐺 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛] and 𝑡 = #𝐺 . If there exist 𝐾
different integer vectors s ∈ [0, 𝑁)𝑛 , such that C(𝐺, s) ≥ ℓ then

𝐾 ≤ 𝑡 (𝑡 − 1)𝑁𝑛−1/ℓ .

Proof. Assume𝐺 = 𝑐1𝑚1+· · ·+𝑐𝑡𝑚𝑡 and𝑚𝑖 = 𝑥𝑒𝑖,1
1

· · · 𝑥𝑒𝑖,𝑛𝑛 . Let

ℎ𝑖, 𝑗 (𝑠1, . . . , 𝑠𝑛) =
∑𝑛
𝑘=1

(𝑒𝑖,𝑘 − 𝑒 𝑗,𝑘)𝑠𝑘 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑡 . Denote 𝑅𝑖, 𝑗
as the number of integer roots in [0, 𝑁)𝑛 and let 𝑅 =

∑
1≤𝑖< 𝑗≤𝑡 𝑅𝑖, 𝑗 .

For eachℎ𝑖, 𝑗 , there are up to𝑁
𝑛−1

different points in [0, 𝑁)𝑛 . There-
fore 𝑅𝑖, 𝑗 ≤ 𝑁𝑛−1

and 𝑅 ≤ 𝑡 (𝑡−1)
2

𝑁𝑛−1
. Assuming s is a vector such

that C(𝐺, s) ≥ ℓ . Without loss of generality, assume 𝑐1𝑚1, . . . , 𝑐ℓ𝑚ℓ
are colliding terms, then at least ⌈ ℓ

2
⌉ pairs of terms in C(𝐺, s) col-

lide together. Therefore, s is the root of at least ⌈ ℓ
2
⌉ different ℎ𝑖, 𝑗 .

There are 𝐾 such points, so for all ℎ𝑖, 𝑗 ’s, there are at least ⌈ ℓ
2
⌉ · 𝐾

roots. So we have
ℓ
2
· 𝐾 ≤ ⌈ ℓ

2
⌉ · 𝐾 ≤ 𝑅 ≤ 𝑡 (𝑡−1)

2
𝑁𝑛−1, therefore

ℓ · 𝐾 ≤ 𝑡 (𝑡 − 1)𝑁𝑛−1 . □
The following theorem provides a method to find a vector s so

that, with high probability,𝐺s has at least 𝛽#𝐺 non-colliding terms.

Theorem 4.10. Let 𝐺 (𝑥1, . . . , 𝑥𝑛) ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛], 𝑇 ≥ #𝐺 = 𝑡 .
Let 𝛽 ∈ (0, 1) and 𝜇 ∈ (0, 1). Let 𝑁 = ⌈ 𝑇−1

𝜇 (1−𝛽) ⌉. If we choose s ∈
[0, 𝑁)𝑛 at random, then Pr[#NC(𝐺, s) > 𝛽 · #𝐺] ≥ 1 − 𝜇.

Proof. Observe that Pr[#NC(𝐺, s) > 𝛽 ·#𝐺] = 1−Pr[#NC(𝐺, s) ≤
𝛽 · #𝐺] = 1 − Pr[#C(𝐺, s) ≥ (1 − 𝛽) · #𝐺]. The second equality fol-

lows from #NC(𝐺, s) + #C(𝐺, s) = #𝐺 . Thus it suffices to show that

Pr[#C(𝐺, s) ≥ (1− 𝛽) · #𝐺] ≤ 𝜇. According to Lemma 4.9, the num-

ber of integer vectors s in [0, 𝑁)𝑛 such that #C(𝐺, s) ≥ (1 − 𝛽)#𝐺
is ≤ 𝑡 (𝑡−1)𝑁𝑛−1

(1−𝛽)#𝐺 . Since there are 𝑁𝑛 integer vectors in [0, 𝑁)𝑛 , we
have Pr[#C(𝐺, s) ≥ (1 − 𝛽) · #𝐺] ≤ (𝑡 − 1)𝑁𝑛−1/(1 − 𝛽)/𝑁𝑛 =

(𝑡 − 1)/(1 − 𝛽)/𝑁 ≤ 𝜇 (𝑡 − 1)/(𝑇 − 1) ≤ 𝜇. So Pr[#NC(𝐺, s) >

𝛽 · #𝐺] ≥ 1 − 𝜇. □

If we choose 𝛽 = 1

2
, 𝜇 = 1

4
⌈log

2
𝑇 ⌉−1

, we have :

Corollary 4.11. Let 𝐺 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛], 𝑇 ≥ #𝐺 and 𝑁 =

8(𝑇 − 1) ⌈log
2
𝑇 ⌉. If we choose s ∈ [0, 𝑁)𝑛 at random then

Pr[#NC(𝐺, s) > 1

2
· #𝐺] ≥ 1 − 1

4
⌈log

2
𝑇 ⌉−1 .

Actually, if we choose 𝛽 = 𝜇 = 1

2
, then Pr[#NC(𝐺, s) > 1

2
· #𝐺] ≥

1

2
, the probability that at least half of the terms in𝐺s do not collide,

is ≥ 1

2
. This is a very satisfactory result and 𝑁 = 4(𝑇 −1). However,

because we only recover𝑇 /2 terms each time, in order to find all the

terms, we need to loop ⌈log
2
𝑇 ⌉ times, which reduces the probability

of success to 2
−⌈log

2
𝑇 ⌉ ≤ 1

𝑇
, which is too low. Therefore, in the

Corollary 4.11, we increase 𝑁 a little to increase the probability of

success from
1

2
to 1 − 1

4
⌈log

2
𝑇 ⌉−1

, so the probability of computing

all terms is (1 − 1

4
⌈log

2
𝑇 ⌉−1) ⌈log

2
𝑇 ⌉ ≥ 3

4
.

4.5.1 Structure of Our GCD Algorithm. Stage 1: First, randomly

choose a vector s ∈ [0, 𝑁)𝑛 where 𝑁 = 8(𝑇 − 1) ⌈log
2
𝑇 ⌉. Then

by Corollary 4.11, with high probability, #NC(𝐺, s) > 1

2
· #𝐺 . By

Algorithm 1, we can compute NC(𝐺, s). Denote𝐺∗
as the sum of all

terms in NC(𝐺, s). Then 𝐺∗
is an approximation polynomial of𝐺

and satisfies #𝐺∗ ≥ 1

2
#𝐺 (or #(𝐺 −𝐺∗) ≤ 1

2
#𝐺). Generally 𝐺 ≠ 𝐺∗

,

so we choose other vectors s′ to find the remaining terms in𝐺 −𝐺∗
.

Stage 2: Let Terms(𝐺∗
) denote the set of all terms in 𝐺∗

. We want

to choose a new vector s′ ∈ N𝑛 that satisfies

(1) #NC(𝐺 −𝐺∗, s′) > 1

2
#(𝐺 −𝐺∗);

(2) NC(𝐺, s′)⋂Terms(𝐺∗) ≠ ∅.
Condition (1) ensures NC(𝐺−𝐺∗, s′) contains at least half the terms

in 𝐺 −𝐺∗
. Let 𝐺∗∗

be the sum of the terms in NC(𝐺 −𝐺∗). Then
we have #(𝐺 −𝐺∗ −𝐺∗∗) < 1

2
(𝐺 −𝐺∗) < 1

4
#𝐺 . By performing the

same steps for 𝐺 −𝐺∗ −𝐺∗∗
, we can find a polynomial 𝐺∗∗∗

such

that #(𝐺 −𝐺∗ −𝐺∗∗ −𝐺∗∗∗) < 1

2
3
#𝐺 . Repeating this ⌈log

2
𝑇 ⌉ times

we obtain all the terms of 𝐺 .

Condition (2) is used to match the terms in NC(𝐺, s′) and the

previous approximation polynomial 𝐺∗
. This is because NC(𝐺, s′)

is computed based on the factorization of the coefficients of 𝑦 in

𝐺s′ (𝑥𝑖 = 𝛾𝑖𝑧 − 𝛼𝑖 for 1 ≤ 𝑖 ≤ 𝑛).
To compute𝐺s′ (𝑥𝑖 = 𝛾𝑖𝑧 −𝛼𝑖), we compute the GCD of𝐴s′ (𝑥𝑖 =

𝛾𝑖𝑧 − 𝛼𝑖) and 𝐵s′ (𝑥𝑖 = 𝛾𝑖𝑧 − 𝛼𝑖). We will get a polynomial 𝜅𝑦𝑚 ·
𝐺s′ (𝑥𝑖 = 𝛾𝑖𝑧 − 𝛼𝑖), where 𝜅 ≠ 1 and𝑚 ≠ 0 are likely. We need to

identify 𝜅 and𝑚 for our algorithm to work.

Let𝐻 := 𝐺 −𝐺∗
. NC(𝐺 −𝐺∗, s′) is computed based on the factor-

ization of the coefficients of 𝑦 in 𝐻s′ (𝑥𝑖 = 𝛾𝑖𝑧 − 𝛼𝑖). Here 𝐻s′ (𝑥𝑖 =
𝛾𝑖𝑧 − 𝛼𝑖) = 𝐺s′ (𝑥𝑖 = 𝛾𝑖𝑧 − 𝛼𝑖) − 𝐺∗

s′ (𝑥𝑖 = 𝛾𝑖𝑧 − 𝛼𝑖). 𝐺
∗
is known,

so 𝐺∗
s′ (𝑥𝑖 = 𝛾𝑖𝑧 − 𝛼𝑖) is known. But the 𝜅 and 𝑦𝑚 are unknown to

us, which means 𝐺s′ (𝑥𝑖 = 𝛾𝑖𝑧 − 𝛼𝑖) is also unknown. Condition (2)

means that𝐺∗
and NC(𝐺, s′) have a common monomial, so we can

remove the factor 𝜅𝑦𝑚 in 𝜅𝑦𝑚 · 𝐺s′ (𝑥𝑖 = 𝛾𝑖𝑧 − 𝛼𝑖) by comparing

its coefficients with the coefficients of𝐺∗
, as they have at least one

common term. Therefore we can compute 𝐻s′ (𝑥𝑖 = 𝛾𝑖𝑧 − 𝛼𝑖) and
ultimately find NC(𝐺 −𝐺∗, s′).

The following theorem shows the probability of successfully

choosing a vector s that satisfies the two conditions.

Theorem 4.12. Let 𝐺 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛], 𝑇 ≥ #𝐺 . Let 𝐺∗ be a
polynomial containing some terms of 𝐺 , and #𝐺∗ ≥ 1

2
#𝐺 . Let 𝑁 =

8(𝑇−1) ⌈log
2
𝑇 ⌉. If we choose s ∈ [0, 𝑁)𝑛 at random then Pr[#NC(𝐺−

𝐺∗, s) ≥ 1

2
#(𝐺 −𝐺∗) and NC(𝐺, s)⋂Terms(𝐺∗) ≠ ∅] ≥ 1 − 1

4⌈log
2
𝑇 ⌉ .

Proof. Denote 𝐻 := 𝐺 − 𝐺∗
. Assuming there are 𝐾1 integer

vectors in [0, 𝑁)𝑛 , such that #NC(𝐻, s) < 1

2
#(𝐻) and there are 𝐾2

integer vectors in [0, 𝑁)𝑛 such that NC(𝐺, s)⋂Terms(𝐺∗) = ∅.
Below we give an upper bound for 𝐾1 + 𝐾2.

Let 𝑡𝐻 := #𝐻 . Then 𝑡𝐻 ≤ 𝑇
2
. #NC(𝐻, s) < 1

2
#(𝐻) is equivalent

to #C(𝐻, s) > 1

2
𝑡𝐻 , by Lemma 4.9,

𝐾1 ≤ (𝑡𝐻 (𝑡𝐻 − 1)𝑁𝑛−1)/(1

2
𝑡𝐻) = 2(𝑡𝐻 − 1)𝑁𝑛−1 ≤ (𝑇 − 2)𝑁𝑛−1 .

Now consider 𝐾2. Assume𝐺 =
∑𝑡
𝑖=1

𝑐𝑖𝑚𝑖 and𝑚𝑖 = 𝑥
𝑒𝑖,1
1

· · · 𝑥𝑒𝑖,𝑛𝑛 .

W.l.o.g., assume 𝑐1𝑚1 ∈ Terms(𝐺∗). As NC(𝐺, s)⋂Terms(𝐺∗) = ∅,
𝑐1𝑚1 ∉ NC(𝐺, s), which means 𝑐1𝑚1 ∈ C(𝐺, s). Set ℎ(𝑠1, . . . , 𝑠𝑛) =∏𝑡
𝑗=2

[(𝑒 𝑗,1 − 𝑒1,1)𝑠1 + (𝑒 𝑗,2 − 𝑒1,2)𝑠2 + · · · + (𝑒 𝑗,𝑛 − 𝑒1,𝑛)𝑠𝑛]. Then
𝑐1𝑚1 ∈ C(𝐺, s) means ℎ(𝑠1, . . . , 𝑠𝑛) = 0. Since degℎ(𝑠1, . . . , 𝑠𝑛) ≤
𝑇 − 1, by Zippel’s lemma, there exist at most (𝑇 − 1)𝑁𝑛−1

points

s ∈ [0, 𝑁)𝑛 such that ℎ(𝑠1, . . . , 𝑠𝑛) = 0. So 𝐾2 ≤ (𝑇 − 1)𝑁𝑛−1
.

Therefore we have 𝐾1 + 𝐾2 ≤ 2(𝑇 − 1)𝑁𝑛−1
. So the probability

Pr[#NC(𝐺 − 𝐺∗, s) ≥ 1

2
#(𝐺 − 𝐺∗) and NC(𝐺, s)⋂Terms(𝐺∗) ≠

∅] ≥ 1 − 𝐾1+𝐾2

𝑁𝑛 ≥ 1 − 2(𝑇−1)
𝑁

= 1 − 1

4
⌈log

2
𝑇 ⌉−1 . □

Because we may only recover 𝑇 /2 terms each time, in order to

find all the terms, we need to loop ⌈log
2
𝑇 ⌉ times, so the probability

of computing all terms becomes (1 − 1

4
⌈log

2
𝑇 ⌉−1) ⌈log

2
𝑇 ⌉ ≥ 3

4
.

4.5.2 Algorithms.

Theorem 4.13. Algorithm 2 works correctly as specified.

A New Sparse Polynomial GCD by Separating Terms ISSAC 2024, July 16–19, 2024, Raleigh, NC

Algorithm 2 Generating a Newly Added Polynomial 𝐺∗∗

Require: Monomial primitive polynomials 𝐴, 𝐵 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛];
an approximation polynomial 𝐺∗

of 𝐺 , satisfying #(𝐺 −𝐺∗) ≤
1

2
#𝐺 or 𝐺∗ = 0; an upper bound 𝑇 ≥ #𝐺 .

Ensure: A polynomial𝐺∗∗
such that #(𝐺−𝐺∗−𝐺∗∗) ≤ 1

2
#(𝐺−𝐺∗)

with probability ≥ 1 − 1

3⌈log
2
𝑇 ⌉ or “Failure".

1: Let 𝑁 = 8(𝑇 − 1) ⌈log
2
𝑇 ⌉. Randomly choose s ∈ [0, 𝑁)𝑛 .

2: Compute 𝐶 := (NC(𝐺, s) \ Terms(𝐺∗))⋃NC(𝐺 − 𝐺∗, s) by
Algorithm 1 with input 𝐴, 𝐵, 𝐺∗

, s and 𝜀 = 1

12⌈log
2
𝑇 ⌉ .

3: if 𝐶 is “Failure” then return “Failure" end if
4: Let 𝐺∗∗

be the sum of the terms in 𝐶 .

5: return 𝐺∗∗
.

Algorithm 3 GCD algorithm

Require: 𝐴, 𝐵 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛]; an upper bound 𝑇 ≥ #𝐺 .

Ensure: 𝐺∗ = gcd(𝐴, 𝐵) up to a constant with probability ≥ 2

3
; or

“Failure".

1: Compute monomial contents MoCont(𝐴) and MoCont(𝐵) and

set MoCont(𝐺) := gcd(MoCont(𝐴),MoCont(𝐵)). (see 2.4)

2: 𝐴 := 𝐴/MoCont(𝐴). 𝐵 := 𝐵/MoCont(𝐵).
3: 𝐺∗

:= 0;

4: for 𝑖 = 1, 2, . . . , ⌈log
2
𝑇 ⌉ do

5: Let 𝐺∗∗
be the output of Algorithm 2 with inputs 𝐴, 𝐵, 𝐺∗

and 𝑇 .

6: if 𝐺∗∗
= “Failure" then return “Failure" end if

7: if 𝐺∗∗ = 0 then return 𝐺∗ · MoCont(𝐺) end if
8: 𝐺∗

:= 𝐺∗ +𝐺∗∗
.

9: end for
10: return “Failure".

Proof. We consider two cases. (1)𝐺∗ = 0. In Step 1, as we choose

s ∈ [0, 𝑁)𝑛 , by Corollary 4.11, we have

Pr[#NC(𝐺, s) > 1

2
· #𝐺] ≥ 1 − 1

4
⌈log

2
𝑇 ⌉−1 .

In Step 2, we compute (NC(𝐺, s) \ Terms(𝐺∗))⋃NC(𝐺 −𝐺∗, s) =
NC(𝐺, s) by Algorithm 1with probability ≥ 1− 1

12⌈log
2
𝑇 ⌉ . So in Step

5, we have #(𝐺 −𝐺∗∗) ≤ 1

2
#𝐺 with probability ≥ (1− 1

4⌈log
2
𝑇 ⌉) (1−

1

12⌈log
2
𝑇 ⌉) ≥ 1 − 1

3⌈log
2
𝑇 ⌉ .

(2) #(𝐺 − 𝐺∗) ≤ 1

2
#𝐺 . In Step 1, as we choose s ∈ [0, 𝑁)𝑛 , by

Corollary 4.12, we have

Pr[#NC(𝐺 −𝐺∗, s) ≥ 1

2
#(𝐺 −𝐺∗) and NC(𝐺, s)⋂Terms(𝐺∗) ≠ ∅] ≥

1− 1

4⌈log
2
𝑇 ⌉ . In Step 2, we compute (NC(𝐺, s)\Terms(𝐺∗))⋃NC(𝐺−

𝐺∗, s) by Algorithm 1 with probability ≥ 1 − 1

12⌈log
2
𝑇 ⌉ . So in

Step 5, we have #(𝐺 − 𝐺∗ − 𝐺∗∗) ≤ 1

2
#(𝐺 − 𝐺∗) with probabil-

ity ≥ (1 − 1

4⌈log
2
𝑇 ⌉) (1 −

1

12⌈log
2
𝑇 ⌉) ≥ 1 − 1

3⌈log
2
𝑇 ⌉ . □

Now we analyse the complexity of Algorithm 2. We assume

𝑇 ∈ 𝑂 (𝑇o), that is, 𝑇 is not a bad bound.

Theorem 4.14. The expected complexity of Algorithm 2 is𝑂∼ (𝑛𝑇in

(log𝑑 + log𝑇o) +𝐷 (𝑇in+𝑛𝑇o+𝑇o𝐷) (log𝑞+ log(𝑛𝑇o))) bit operations,
where 𝑇in := #𝐴 + #𝐵 and 𝑇o := #𝐺 , where 𝐷 = max(deg𝐴, deg𝐵).

Proof. In Step 2, we call Algorithm 1, as ∥s∥∞ is 𝑂∼ (𝑇o) and
𝜀 = 1

12⌈log
2
𝑇 ⌉ , the expected complexity is𝑂∼ (𝑛𝑇in (log𝑑 + log𝑇o) +

𝐷 (𝑇in + 𝑛𝑇o +𝑇o𝐷) (log𝑞 + log(𝑛𝑇o))) bit operations, by Theorem

4.8. □

Theorem 4.15. Algorithm 3 works correctly as specified.

Proof. Steps 5-8 compute the new approximation𝐺∗+𝐺∗∗
from

𝐺∗
using Algorithm 2. As #(𝐺 −𝐺∗ −𝐺∗∗) ≤ 1

2
#(𝐺 −𝐺∗), ⌈log

2
𝑇 ⌉

loops are enough. If 𝐺∗∗ = 0, then all terms have been discovered,

so 𝐺∗
is the monomial primitive part of the GCD 𝐺 . Therefore we

output 𝐺∗ · MoCont(𝐺) in Step 7.

If when Algorithm 2 called in Step 5 it always returns the correct

newly added polynomial𝐺∗∗
, Algorithm 3 returns the correct GCD

in Step 7. Since Algorithm 2 is correct with probability ≥ 1 −
1

3⌈log
2
𝑇 ⌉ , the probability is ≥ (1− 1

3⌈log
2
𝑇 ⌉)

⌈log
2
𝑇 ⌉ ≥ 1− 1

3
= 2

3
. □

We analyze the complexity of Algorithm 3. Again we assume

𝑇 ∈ 𝑂 (𝑇o), that is, 𝑇 is not a bad bound.

Theorem 4.16. The expected complexity of Algorithm 3 is𝑂∼ (𝑛𝑇in

(log𝑑 log𝑇o+log
2𝑇o)+𝐷 (𝑇in+𝑛𝑇o+𝑇o𝐷) (log𝑞 log𝑇o+log(𝑛𝑇o) log𝑇o))

bit operations where𝑇in := #𝐴+#𝐵,𝑇o := #𝐺 and𝐷 = max(deg𝐴, deg𝐵).

Proof. The cost of computing the monomial contents in Step

1 and the monomial primitive parts in Step 2 is 𝑂∼ (𝑛𝑇in log𝑑)
which negligible. As we call Algorithm 2 at most ⌈log

2
𝑇o⌉ times, by

Theorem 4.14, the complexity is 𝑂∼ (𝑛𝑇in (log𝑑 log𝑇o + log
2𝑇o) +

𝐷 (𝑇in+𝑛𝑇o+𝑇o𝐷) (log𝑞 log𝑇o+log(𝑛𝑇o) log𝑇o)) bit operations. □

Remark 4.1. If Algorithm 3 outputs a polynomial, with probability
≥ 11

12
, this polynomial is the GCD of 𝐴 and 𝐵, up to a constant. This

probability is greater than 2/3 because we have excluded the case
where the output is “Failure". We analyze the rate. In Step 2 of Algo-
rithm 2, Algorithm 1 is called. If Algorithm 1 returns a correct set, then
Algorithm 2 also returns a correct newly added polynomial𝐺∗∗. There-
fore, in Algorithm 3, we get a truly better approximation 𝐺∗ +𝐺∗∗.
Due to a maximum of ⌈log

2
𝑇 ⌉ calls to Algorithm 1, and the selection

of 𝜀 = 1

12⌈log
2
𝑇 ⌉ , the probability is ≥ (1 − 1

12⌈log
2
𝑇 ⌉)

⌈log
2
𝑇 ⌉ ≥ 11

12
.

Remark 4.2. In addition, from the above analysis, it can be seen
that even if 𝑇 is not the upper bound of 𝐺 , if Algorithm 3 returns a
polynomial, then with probability ≥ 11

12
, it is still the correct GCD of

𝐴 and 𝐵 up to a constant. This is because the correctness of Algorithm
1 ensures the output of Algorithm 3 is always correct.

5 DROPPING THE TERM BOUND
Algorithm 3 requires a term bound𝑇 for #𝐺 as input. In this section

we remove this requirement. Remark 4.2 means we can simply call

Algorithm 3 with 𝑇 = 2, 22, 23, 24, Once a polynomial is output

instead of “Failure", it is the GCD with probability ≥ 11

12
.

Theorem 5.1. Algorithm 4 works correctly as specified.

Proof. We let𝑇 = 2, 4, 8, . . . , once𝑇 ≥ 𝑇o, then with probability

≥ 2

3
, Algorithm 3 returns 𝐺 = gcd(𝐴, 𝐵) up to a constant. As

mentioned in Remark 4.2, once Algorithm 3 returns a polynomial,

with probability ≥ 11

12
, it is the GCD of𝐴 and 𝐵 up to a constant. □

The following theorem gives the complexity of Algorithm 4.

ISSAC 2024, July 16–19, 2024, Raleigh, NC Huang and Monagan

Algorithm 4 GCD algorithm for F𝑞 [𝑥1, . . . , 𝑥𝑛].
Require: Two polynomials 𝐴, 𝐵 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛].
Ensure: 𝐻 = gcd(𝐴, 𝐵) up to a constant with probability ≥ 11

12
.

1: Compute 𝑑𝑚𝑖𝑛 = max
𝑛
𝑖=1

min(deg(𝐴, 𝑥𝑖), deg(𝐵, 𝑥𝑖)).
2: 𝑇 := 2.

3: repeat
4: Compute 𝐻 the GCD of 𝐴, 𝐵 with the guess terms bound 𝑇

using Algorithm 3.

5: if 𝐻 ≠ “Failure” then return 𝐻 end if
6: if 𝑇 < (𝑑𝑚𝑖𝑛 + 1)𝑛 then 𝑇 := 2𝑇 end if
7: end repeat

Theorem 5.2. Let 𝐴, 𝐵 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛]. Algorithm 4 computes
the correct GCD𝐺 = gcd(𝐴, 𝐵) using expected𝑂∼ (𝑛𝑇in𝑑 log𝑞 log

3𝑇o+
𝑛2𝑑2𝑇o log𝑞) bit operations where 𝑇in = #𝐴 + #𝐵 and 𝑇o = #𝐺 and
𝑑 = max

𝑛
𝑖=1

max(deg(𝐴, 𝑥𝑖), deg(𝐵, 𝑥𝑖)).

Proof. Let’s first analyze the complexity when𝑇 is fixed. In Step

4, the complexity is 𝐶𝑇 := 𝑂∼ (𝑛𝑇in𝑑 log
2𝑇 log𝑞 + 𝑛2𝑑2𝑇 log𝑞) bit

operations as Algorithm 3 calling at most ⌈log
2
𝑇 ⌉ times Algorithm

1 and 𝐷 ∈ 𝑂 (𝑛𝑑). We obtain the complexity due to Theorem 4.16.

Now 𝑇 = 2, 22, . . . , 2𝜅−1, 2𝜅 , 2𝜅 , 2𝜅 , . . . , where 𝜅 = 𝑛⌈log(𝑑𝑚𝑖𝑛 +
1)⌉. We keep calling Algorithm 3 until it outputs a polynomial.

When 𝑇 ≥ #𝐺 , Algorithm 3 returns 𝐺 with probability ≥ 2

3
. Let

𝐿 := ⌈log
2
𝑇o⌉. Then 2

𝐿 ≥ 𝑇o. Set the event Eℓ := {when Algorithm

4 calls Algorithm 3 ℓth times, it returns a polynomial}, where ℓ ≥
𝐿. When event Eℓ occurs, it means that in the 𝐿, 𝐿 + 1, . . . , (ℓ − 1)-
th calling of Algorithm 3, it does not return a polynomial. So the

probability 𝑃 (Eℓ) ≤ (1

3
)ℓ−𝐿 . In this case, Com𝐿 :=

∑𝐿
𝑖=1

𝐶
2
𝑖 ∈

𝑂∼ (𝑛𝑇in𝑑 log𝑞 log
3𝑇o + 𝑛2𝑑2𝑇o log𝑞) is the bit complexity. And

for ℓ ≥ 𝐿, Comℓ :=
∑ℓ
𝑖=1

𝐶
2
𝑖 ∈ 𝑂∼ (𝑛𝑇in𝑑 log𝑞ℓ3 + 𝑛2𝑑2

ℓ
log𝑞)

is the bit complexity. So the expected complexity is ≤ Com𝐿 +∑∞
ℓ=𝐿

𝑃 (Eℓ)Comℓ . As
∑∞
ℓ=𝐿

ℓ3 (1

3
)ℓ−𝐿 ∈ 𝑂 (𝐿3) and∑∞

ℓ=𝐿
2
ℓ (1

3
)ℓ−𝐿 ∈

𝑂 (2𝐿), we have

∑∞
ℓ=𝐿

𝑃 (Eℓ)𝐶ℓ + 𝐶𝐿 ∈ 𝑂∼ (𝑛𝑇in𝑑 log𝑞 log
3𝑇o +

𝑛2𝑑2𝑇o log𝑞) bit operations. □

6 IMPLEMENTATION NOTES
We have implemented our algorithm in Maple and Stage 2 of Algo-

rithm 1 coded in C for prime fields F𝑝 for 𝑝 < 2
63

using signed 64 bit

integer arithmetic. We use Algorithm 4 to compute 𝐺 = gcd(𝐴, 𝐵)
of polynomials in Z[𝑥1, . . . , 𝑥𝑛] by computing𝐺 modulo a sequence

of primes and using Chinese remaindering. We wait until the result

of Chinese remaindering does not change then use trial division

over Z to prove correctness.

Algorithm 4 tries 𝑇 = 2, 4, 8, . . . until it succeeds. The total num-

ber of calls to Algorithm 1, equivalently, the total number of bi-

variate gcds in F𝑞 [𝑦, 𝑧] done, is then
∑log

2
𝑇

𝑖=1
𝑖 ∈ 𝑂 (log

2

2
𝑇). We can

reduce this for the second and subsequent primes to 𝑂 (log
2
𝑇) by,

if Algorithm 4 used 𝑇 = 𝑡 , then for the next prime we initialize

𝑇 := max(2, 𝑡
2
) in Step 2 of Algorithm 4.

In Algorithm 1 𝑡 is the number of terms in 𝑦 of our the bivariate

gcd. If |𝐺∗ | ≪ 𝑡 , this value for 𝑇 is unlikely to succeed. So we

require 2|𝐺∗ | ≥ 𝑡 to try to recover more terms in 𝐺 . This reduces

the total number of calls to Algorithm 1 to 𝑂 (log
2
𝑇).

Let𝐴, 𝐵 ∈ F𝑝 [𝑥1, . . . , 𝑥𝑛],𝐺 = gcd(𝐴, 𝐵),𝐶 = 𝐴/𝐺 and𝐷 = 𝐵/𝐺 .
Another key improvement is to reconstruct the smaller of 𝐺,𝐶 and

𝐷 . If #𝐶 ≪ #𝐺 then reconstructing 𝐶 instead of 𝐺 will require a

smaller value of 𝑇 . Maple’s gcd algorithm does not do this and it is

very evident in our Benchmarks.

Let 𝑇in = #𝐴 + #𝐵 and 𝑇o = min(#𝐺, #𝐶, #𝐷). For sparse inputs
𝑇in ≫ 𝑇o. This means the dominating cost of our algorithm will

usually be evaluating the inputs at 𝑥𝑖 = (𝛾𝑖𝑧 − 𝛼𝑖)𝑦𝑠𝑖 at 𝑧 = 𝑏𝑘 in

Step 13 of Algorithm 1. In Step 13, Algorithm 1 computes

𝑔𝑘 = gcd(𝐴(𝑥𝑖 = (𝛾𝑖𝑏𝑘 − 𝛼𝑖)𝑦𝑠𝑖), 𝐵(𝑥𝑖 = (𝛾𝑖𝑏𝑘 − 𝛼𝑖)𝑦𝑠𝑖))

for each 𝑏𝑘 in a loop. Because we evaluate 𝑧 and not 𝑦, if we store

the evaluations of the monomials of 𝐴 and 𝐵 at 𝑥𝑖 = (𝛾𝑖𝑏𝑘 − 𝛼𝑖),
for each 𝑏𝑘 , we can reuse them for all choices of s. Similarly, if we

also store the evaluations of the monomials of 𝐴 and 𝐵 at 𝑥𝑖 = 𝑦
𝑠𝑖
,

we can reuse them for each 𝑏𝑘 .

7 EXPERIMENTAL RESULTS
Our benchmarks were run on an Intel Gold 6342 server using one

core. Maple 2022 and Magma V2.26-12 were used.

Our first benchmark is for GCD problems with 𝑛 = 9 variables.

We create 𝑡 terms for𝐺 and 𝑠 terms for 𝐶 and 𝐷 where each mono-

mial is chosen randomly from the set of monomials of total degree

at most 30 and each integer coefficient is chosen randomly from

[−99, 99]. The values of 𝑠 and 𝑡 mean the input polynomials𝐴 = 𝐶𝐺

and 𝐵 = 𝐺𝐷 have about 10
6
terms. The different choices of 𝑠 and 𝑡

include cases where #𝐺 ≪ #𝐶 , #𝐺 = #𝐶 and #𝐺 ≫ #𝐶 .

The timings in Table 1 in column MGCD are for our new algo-

rithm. It used two primes 𝑝1 = 2
62−57 and 𝑝2 = 2

62−87 to compute

gcd(𝐴, 𝐵). Column eval is the time spent evaluating the input poly-

nomials 𝐴 and 𝐵. Column 𝑇 is the value of the 𝑇 parameter in our

algorithm. Notice 𝑇 is much smaller than min(𝑠, 𝑡).
The timings in columns Maple and Magma are for their main

gcd algorithm. Maple and Magma both use Zippel’s algorithm [20].

The Maple implementation is described in [5]. The timings in col-

umn MonHu are for the Monagan-Hu gcd algorithm from [7]. The

implementation is described in [11].

𝑠 𝑡 MGCD 𝑇 eval Maple Magma MonHu

10
5

10
1

11.69 4 10.22 78.92 39.90 0.661

10
4

10
2

13.55 8 10.24 197.6 9.98 1.488

10
3

10
3

29.65 64 10.27 1054.9 37.49 6.868

10
2

10
4

13.43 16 10.24 14568. 27.68 1.087

10
1

10
5

10.67 4 9.47 NA 144.8 0.696

Table 1: Benchmark 1: Timings in CPU seconds for 𝑛=9

One reason why the Monagan-Hu algorithm is faster than ours

on Benchmark 1 is that its evaluation points form a geometric se-

quence which reduces the number of multiplications needed by

a factor of 𝑛 for each evaluation. Monagan-Hu does a Kronecker

substitution to map the coefficients of 𝐴 and 𝐵 from F𝑝 [𝑥2, . . . , 𝑥𝑛]
into F𝑝 [𝑦]. If the inputs have more variables or have higher de-

gree, the prime 𝑝 needed may overflow machine precision and then

Monagan-Hu will use multi-precision integer arithmetic. This hap-

pens for Benchmark 1 when 𝑛 ≥ 12. Benchmark 2 below is the

A New Sparse Polynomial GCD by Separating Terms ISSAC 2024, July 16–19, 2024, Raleigh, NC

same as Benchmark 1 but with 𝑛 = 18 variables instead of 𝑛 = 9.

For Benchmark 2 our new algorithm is the fastest.

𝑠 𝑡 MGCD 𝑇 eval Maple Magma MonHu

10
5

10
1

38.17 4 22.67 494.9 166.5 310.2

10
4

10
2

48.76 16 24.62 1473.2 79.50 450.8

10
3

10
3

92.60 128 24.68 14287. 447.8 4358.

10
2

10
4

50.54 16 24.64 NA 76.73 605.7

10
1

10
5

39.61 4 22.59 NA 188.1 150.6

Table 2: Benchmark 2 timings in CPU seconds for 𝑛=18

Zippel’s algorithm and the Monagan-Hu algorithm choose a

main variable, say 𝑥1, and scale univariate images of 𝐺 in 𝑥1 by

the image of Γ = gcd(LC(𝐴, 𝑥1), LC(𝐵, 𝑥1)) = LC(𝐺, 𝑥1)Δ where

Δ = gcd(LC(𝐶, 𝑥1), LC(𝐷, 𝑥1)). They interpolate 𝐻 = Δ𝐺 , a mul-

tiple of 𝐺 , which can be much larger than 𝐺 . Our new algorithm

does not do this. An application where #Δ ≫ 1 is likely is mul-

tivariate polynomial factorization. Let ℎ ∈ Z[𝑥1, . . . , 𝑥𝑛] be irre-

ducible and 𝐴 = ℎ3
. To factor 𝐴 the first step is to compute the

𝐺 = gcd(𝐴, 𝜕𝐴/𝜕𝑥1) = ℎ2
. We have 𝐶 = ℎ and 𝐷 = 3𝜕ℎ/𝜕𝑥1 and

Δ = 𝐿𝐶 (ℎ, 𝑥1). Our new algorithm will recover 𝐶 or 𝐷 . Maple’s

GCD algorithm interpolates 𝐺 = ℎ2
which is much larger than 𝐶

and 𝐷 . Magma and the Monagan-Hu algorithm interpolate Δ2ℎ or

Δ2𝜕ℎ/𝜕𝑥1, which are also much larger than 𝐶 and 𝐷 .

For Benchmark 3 in Table 3 we constructed

ℎ = 𝑐𝑡
∏𝑛
𝑖=1

𝑥𝑑
𝑖
+∑𝑡−1

𝑖=2
𝑐𝑖
∏𝑛
𝑗=1

𝑥
𝑒𝑖 𝑗
𝑖

+ 𝑐0

where 𝑑 = 10, the exponents 𝑒𝑖 𝑗 are chosen at random from [0, 𝑑]
and the coefficients 𝑐𝑖 are chosen at random from [1, 100]. Here
Δ = LC(ℎ, 𝑥𝑖) has about 𝑡/10 terms for all 𝑖 . The input 𝐴 = ℎ3

in expanded form and 𝐵 = 𝜕𝐴/𝜕𝑥1. In Table 3, 𝑡𝑚𝑎𝑥 is number

of terms of the largest polynomial in 𝑥2, . . . , 𝑥𝑛 that Monagan-Hu

interpolated. It is much bigger than 𝑡 .

𝑡 #𝐴 MGCD 𝑇 Maple Magma MonHu tmax

50 22100 0.945 4 82.86 2.17 0.279 150

100 169096 6.359 8 2794.8 6.15 5.718 829

150 573732 21.36 16 25407. 148.2 37.10 1848

200 1352967 46.57 16 NA 1058.9 136.8 3349

300 4538198 143.5 32 NA 13752. 1079.1 7409

500 20849989 671.9 32 NA NA 12400. 20656

Table 3: Benchmark 3 timings in CPU seconds

8 CONCLUSION
In this paper, we proposed a new method for computing the GCD of

sparsemultivariate polynomials over finite fields. GCD computation

is an important operation of a Computer Algebra System. We gave

the explicit bit complexity for the algorithm, which is polynomial in

the sparse representation of the input and output and their degrees.

Our initial experimental results are very good. The core of our

algorithm, Steps 12 to 15 of Algorithm 1, is easily parallelized.

REFERENCES
[1] W. S. Brown. On Euclid’s algorithm and the computation of polynomial greatest

common divisors. Journal of the ACM (JACM), 18(4):478–504, 1971.
[2] W. S. Brown and J. F. Traub. On Euclid’s algorithm and the theory of subresultants.

J. ACM, 18(4):505–514, 1971.

[3] B. W. Char, K. O. Geddes, and G. H. Gonnet. GCDHEU: heuristic polynomial

GCD algorithm based on integer GCD computation. J. Symb. Comput., 7(1):31–48,
1989.

[4] G. E. Collins. Subresultants and reduced polynomial remainder sequences. J.
ACM, 14(1):128–142, 1967.

[5] J. de Kleine, M. B. Monagan, and A. D. Wittkopf. Algorithms for the non-monic

case of the sparse modular GCD algorithm. In Proceedings of ISSAC 2005, pages
124–131. ACM, 2005.

[6] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Algebra.
Kluwer Academic, 1992.

[7] J. Hu and M. Monagan. A fast parallel sparse polynomial GCD algorithm. Journal
of Symbolic Computation, 105:28–63, 2021.

[8] E. Kaltofen. Sparse hensel lifting. In Proceedings of EUROCAL ’85, volume 204 of

LNCS, pages 4–17, 1985.
[9] E. Kaltofen. Greatest common divisors of polynomials given by straight-line

programs. Journal of the ACM (JACM), 35(1):231–264, 1988.
[10] E. Kaltofen and B. M. Trager. Computing with polynomials given by black boxes

for their evaluations: Greatest common divisors, factorization, separation of

numerators and denominators. J. Symb. Comput., 9(3):301–320, 1990.
[11] M. Monagan. Speeding up polynomial gcd, a crucial operation in maple. Maple

Transactions, 2(1), 2022.
[12] J. Moses and D. Y. Y. Yun. The EZ GCD algorithm. In I. E. Perlin and T. J. M. Jr.,

editors, Proceedings of the ACM annual conference, Atlanta, Georgia, USA, August
27-29, 1973, pages 159–166. ACM, 1973.

[13] T. Sasaki and M. Suzuki. Three new algorithms for multivariate polynomial GCD.

J. Symb. Comput., 13(4):395–412, 1992.
[14] V. Shoup. Fast construction of irreducible polynomials over finite fields. J. Symb.

Comput., 17(5):371–391, 1994.
[15] M. Tang, B. Li, and Z. Zeng. Computing sparse GCD of multivariate polyno-

mials via polynomial interpolation. Journal of Systems Science and Complexity,
31(2):552–568, 2018.

[16] K. Tsuji. An improved EZ-GCD algorithm for multivariate polynomials. J. Symb.
Comput., 44(1):99–110, 2009.

[17] J. van der Hoeven and G. Lecerf. On sparse interpolation of rational functions

and gcds. Communications in Computer Algebra, 55(1):1–12, 2021.
[18] J. Von Zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge

university press, 2013.

[19] P. S. Wang. The EEZ-GCD algorithm. SIGSAM Bull., 14(2):50–60, 1980.
[20] R. Zippel. Probabilistic algorithms for sparse polynomials. In E. W. Ng, editor,

Proceedings of EUROSAM ’79, volume 72 of LNCS, pages 216–226. Springer, 1979.

APPENDIX
Proof of Lemma 3.3.

As 𝐺 |𝐴 and 𝐺 |𝐵, we have 𝜙 (𝐺) |𝜙 (𝐴) and 𝜙 (𝐺) |𝜙 (𝐵).
So 𝜙 (𝐺) | gcd(𝜙 (𝐴), 𝜙 (𝐵)).

For the opposite direction suppose

𝑃 (𝑧,𝑦,𝛾1, . . . , 𝛾𝑛, 𝛼1, . . . , 𝛼𝑛) = gcd(𝜙 (𝐴), 𝜙 (𝐵)). Let 𝑥𝑖 = (𝛾𝑖𝑧 −
𝛼𝑖)𝑦𝑠𝑖 , 𝑖 = 1, . . . , 𝑛. Then 𝛼𝑖 = 𝛾𝑖𝑧 − 𝑥𝑖𝑦−𝑠𝑖 . Substitute them into

𝑃, 𝜙 (𝐴) and 𝜙 (𝐵). Let𝑄 = 𝑃 (𝑧,𝑦,𝛾1, . . . , 𝛾𝑛, 𝛾1𝑧 − 𝑥1𝑦
−𝑠1 , . . . , 𝛾𝑛𝑧 −

𝑥𝑛𝑦
−𝑠𝑛).𝑄 may be a rational function as it may has negative degree

in 𝑦. As 𝑃 |𝜙 (𝐴) and 𝑃 |𝜙 (𝐵), there is a 𝑘 ∈ Z, such that 𝑄 · 𝑦𝑘 is a

polynomial and𝑄 ·𝑦𝑘 divides both𝐴 and 𝐵. Thus𝑄 ·𝑦𝑘 | gcd(𝐴, 𝐵) =
𝐺. Substitute 𝑥𝑖 = (𝛾𝑖𝑧 − 𝛼𝑖)𝑦𝑠𝑖 back, we have
𝑃 (𝑧,𝑦,𝛾1, . . . , 𝛾𝑛, 𝛼1, . . . , 𝛼𝑛) · 𝑦𝑘 |𝜙 (𝐺) . □

In Steps 11 to 19 of Algorithm 1 we interpolate 𝑧 in 𝜙 (𝐺) a
bivariate polynomial in F𝑞 [𝑦, 𝑧]. The following Lemma shows that

𝐷𝑚𝑖𝑛 + 1 values for 𝑧 are sufficient. This result is likely known but

it is not obvious; it is not in [1] or [6] or [18].

Lemma 8.1. Let𝐴, 𝐵 ∈ F𝑞 [𝑦, 𝑧] and𝐺 = gcd(𝐴, 𝐵). Let𝑏0, 𝑏1, . . . , 𝑏𝑁
be distinct points in F𝑞 . Let ℎ𝑘 = gcd(𝐴(𝑦,𝑏𝑘), 𝐵(𝑦,𝑏𝑘)) for 0 ≤ 𝑘 ≤
𝑁 . If

ISSAC 2024, July 16–19, 2024, Raleigh, NC Huang and Monagan

(1) Cont(𝐺,𝑦) = 1 and
(2) ℎ𝑘 ∼ 𝐺 (𝑦,𝑏𝑘) in F𝑞 [𝑦] for 0 ≤ 𝑘 ≤ 𝑁

then 𝐺 can be interpolated from ℎ𝑘 for 𝑁 = 𝐷𝑚𝑖𝑛 where 𝐷𝑚𝑖𝑛 =

min(deg(𝐴, 𝑧), deg(𝐵, 𝑧)).

Proof. Let 𝐶 = 𝐴/𝐺 and 𝐷 = 𝐵/𝐺 . WLOG assume deg(𝐴, 𝑧) ≤
deg(𝐵, 𝑧). Let Γ(𝑧) = LC(𝐴,𝑦). Then Γ(𝑧) = LC(𝐺,𝑦) LC(𝐶,𝑦). Let

𝑔𝑘 (𝑦) = Γ(𝑏𝑘) monic(ℎ𝑘 (𝑦))
= LC(𝐶,𝑦) (𝑏𝑘) LC(𝐺,𝑦) (𝑏𝑘) monic(ℎ𝑘 (𝑦)))
= LC(𝐶,𝑦) (𝑏𝑘)𝐺 (𝑦,𝑏𝑘) .

Interpolating the 𝑔𝑘 (𝑦) gives us 𝐻 = LC(𝐶,𝑦)𝐺 not𝐺 . To compute

𝐺 we compute Cont(𝐻,𝑦) = LC(𝐶,𝑦) and remove it from 𝐻 . So

we need sufficient values for 𝑧 to interpolate 𝑧 in LC(𝐶,𝑦) ×𝐺 . We

have

deg(LC(𝐶,𝑦)𝐺, 𝑧) = deg(LC(𝐶,𝑦), 𝑧) + deg(𝐺, 𝑧)
≤ deg(𝐶, 𝑧) + deg(𝐺, 𝑧)
= deg(𝐴, 𝑧) = 𝐷𝑚𝑖𝑛 .

Thus 𝐷𝑚𝑖𝑛 + 1 values are sufficient. □

	Abstract
	1 Introduction
	1.1 Overview of the Algorithm

	2 Notation
	3 Preliminary Results
	4 Our new GCD algorithm
	4.1 Computing the non-colliding set
	4.2 Solving the case NC(G,s)=
	4.3 Reduce Multivariate GCD to Univariate GCD
	4.4 An Algorithm for Computing N(G,s)
	4.5 Good Kronecker Substitutions

	5 Dropping the Term Bound
	6 Implementation Notes
	7 Experimental Results
	8 Conclusion
	References

