
A Design Pattern Language for Engineering (Parallel)
Software

Kurt Keutzer (EECS UC Berkeley) and Tim Mattson (Intel)

The key to writing high quality parallel software is to develop a robust software
design. This applies to the overall architecture of the program, but also to the
lower layers in the software system where the concurrency and how it is
expressed in the final program is defined. Technology to more systematically
describe such designs and reuse them between software projects is the
fundamental problem facing software for terascale processors. This is far more
important than programming models and their supporting environments, since
with a good design in hand, most any programming system can be used to
actually generate the program’s source code.

In this paper, we will develop our thesis about the central role played by the
architecture/design for software. We will then show how design patterns
provide a technology to define the reusable design elements in software
engineering. This leads us to the ongoing project centered at UC Berkeley’s Par
Lab to pull the essential set of design patterns for parallel software design into a
Design Pattern Language. After describing out pattern language, we’ll present a
case study from the field of machine learning as a concrete example of how
patterns are used in practice.

The software engineering crisis

The trend has been well established [Asanovic09]: parallel processors will dominate most
if not every niche of computing. Ideally, this transition would be driven by the needs of
software. Scalable software would demand scalable hardware and that would drive
CPU’s to add cores. But this is not the case. The motivation for parallelism comes from
the inability to deliver steadily increasing frequency gains without pushing power
dissipation to unsustainable levels. Thus, we have a dangerous mismatch; the
semiconductor industry is banking its future on parallel microprocessors, while the
software industry is still searching for an effective solution to the parallel programming
problem.

The parallel programming problem is not new. It has been an active area of research for
the last three decades. And we can learn a great deal from what has not worked in the
past.

• Automatic parallelism: Compilers can speculate, prefetch data and reorder
instructions to balance the load among the components of a system. But they can

not look at a serial algorithm and create a different algorithm better suited for
parallel execution.

• New languages: Hundreds of new parallel languages and programming
environments have been created over the last few decades. Many of them are
excellent and provide high level abstractions that simplify the expression of
parallel algorithms. But these languages have not dramatically grown the pool of
parallel programmers. The fact is, in the one community with a long tradition of
parallel computing (high performance computing) the old standards of MPI and
OpenMP continue to dominate. There is no reason to believe new languages will
be any more successful as we move to more general purpose programmers; i.e. it
is not the quality of our programming models that is inhibiting the adoption of
parallel programming.

The central cause of the parallel programming problem is fundamental to the enterprise
of programming itself. In other words, we believe that our challenges in programming
parallel processors point to deeper challenges in programming software in general. We
believe the only way to solve the programming problem in general is to first understand
how to architect software. Thus we feel that the way to solve the parallel programming
problem is to first understand how to architect parallel software. Given a good software
design grounded on solid architectural principles, a software engineer can produce high
quality and scalable software. Starting with an ill-suited sense of the architecture for a
software system, however, almost always leads to failure. Therefore it follows that the
first step in addressing the parallel programming problem is to focus on software
architecture. From that vantage point, we have a hope of choosing the right programming
models and building the right software frameworks that will allow the general population
of programmers to produce parallel software.

In this paper, we describe our work on software architecture. We use the device of a
pattern language to write our ideas down and put them into a systematic form that can be
used by others. After we present our pattern language [OPL09], we present a case study
to show how these patterns can be used to understand software architecture.

Software architecture and design patterns

Productive, efficient software follows from good software architecture. Hence, we need
to develop a theory of how software is architected, and in order to do this we need a way
to write down architectural ideas in a form that groups of programmers can study, debate,
and come to consensus on. This systematic process has at its core the peer review
process that has been instrumental in advancing scientific and engineering disciplines.

The prerequisite to this process is a systematic way to write down the design elements
from which anarchitecture is defined. Fortunately, the software community has already
reached consensus on how write these elements down: design patterns [Gamma94].

Design patterns give names to solutions to recurring problems that experts in a problem-
domain gradually learn and “take for granted.” It is the possession of this tool-bag of

solutions, and the ability to apply them with facility, that precisely defines what it means
to be an expert in a domain.

For example, consider the Dense-linear-
algebra pattern. Experts in fields that make
heavy use of linear algebra have worked out a
family of solutions to these problems. These
solutions have a common set of design
elements that can be captured in a Dense-
Linear-Algebra design pattern. We summarize
the pattern in the sidebar, but it is important to
know that in the full text to the pattern
[OPL09] there would be sample code,
examples, references, invariants and other
information needed to guide a software
developer interested in dense linear algebra
problems.

The dense linear algebra pattern is just one of
the many patterns a software architect might use when designing an algorithm. A full
design includes high-level patterns that describe how an application is organized,
midlevel patterns about specific classes of computations, and low level patterns
describing specific execution strategies. We can take this full range of patterns and
organize them into a single integrated pattern language – a web of interlocking of patterns
that guide a designer from the beginning of a design problem to its successful realization
([Alexander72][Mattson04]).

To represent the domain of software engineering in terms of a single pattern language is a
daunting undertaking. Fortunately, based on our studies of successful application
software, we believe software architectures can be built up from a manageable number of
design patterns. These patterns define the building blocks of all software engineering and
are fundamental to the practice of architecting parallel software. Hence, an effort to
propose, argue about, and finally agree on what this set of patterns are is the seminal
intellectual challenge of our field

Our Pattern Language

Software architecture defines the components that make up a software system, the roles
played by those components, and how they interact. Good software architecture makes
design choices explicit and the critical issues addressed by a solution clear. A software
architecture is hierarchical rather than monolithic. It lets the designer localize problems
and define design elements that can be reused from one problem to another.

The goal of OPL is to encompass the complete architecture of an application; from the
structural patterns (also known as architectural styles) that define the overall organization
of an application [Garlan94] [Shaw95], to the basic computational patterns (also known

Computational Pattern: Dense-linear-
algebra

Solution: a computation is organized as a
sequence of arithmetic expressions acting
on dense arrays of data. The operations
and data access patterns are well defined
mathematically so data can be pre-
fetched and CPUs execute close to their
theoretically allowed peak performance.
Applications of this pattern typically use
standard building defined in terms of the
dimensions of the dense arrays with
vectors (BLAS level 1), matrix-vector

as computational motifs) for each stage of the problem [Asanovic06][Asanovic09], to the
low level details of the parallel algorithm [Mattson04]. With such a broad scope,
organizing our design patterns into a coherent pattern language was extremely
challenging.

Our approach is to use a layered hierarchy of patterns. Each level in the hierarchy
addresses a portion of the design problem. While a designer may in some cases work
through the layers of our hierarchy “in order”, it is important to appreciate that many
design problems do not lend themselves to a top-down or bottom-up analysis. In many
cases, the pathway through our patterns will be bounce around between layers with the
designer working at whichever layer is most productive at a given time (so called
opportunistic refinement). In other words, while we use a fixed layered approach to
organize our patterns into OPL, we expect designers will work though the pattern
language in many different ways. This flexibility is an essential feature of design pattern
languages.

Figure 1 The structure of OPL and the five categories of design patterns.

As shown in Figure 1, we organize OPL into five major categories of patterns.
Categories one and two sit at the same level of the hierarchy, and cooperate to create one
layer of the software architecture.

1. Structural patterns: Describe the overall
organization of the application and the way the
computational elements that make up the
application interact. These patterns are closely
related to the architectural styles discussed in
[Garlan94]. Informally, these patterns correspond
to the “boxes and arrows” and architect draws to
describe the overall organization of an application.
An example of a structural pattern is pipe-and-
filter described in the sidebar.

2. Computational patterns: These patterns describe
the classes of computations that make up the
application. They are essentially the thirteen
motifs made famous in [Asanovic06] but
described more precisely as patterns rather than
simply computational families. These patterns
can be viewed as defining the “computations
occurring in the boxes” defined by the structural
patterns. A good example is the dense-linear-algebra pattern described in an earlier
sidebar. Note that some of these patterns (such as graph algorithms or N-body)
define complicated design problems in their own right and serve as entry points into
smaller design pattern languages focused on a specific class of computations. This is
yet another example of the hierarchical nature of the software design problem.

In OPL, the top two categories, the structural and computational patterns, are placed side
by side with connecting arrows. This shows the tight coupling between these patterns
and the iterative nature of how a designer works with them. In other words, a designer
thinks about his or her problem, chooses a structure pattern, then considers the
computational patterns required to solve the problem. The selection of computational
patterns may suggest a different overall
structure for the architecture and force a
reconsideration of the appropriate structural
patterns. This process, moving between
structural and computational patterns,
continues until the designer settles on a high
level design for the problem.

The structural and computational patterns
are used in both serial and parallel programs.
Ideally, the designer working at this level,
even for a parallel program, will not need to
focus on parallel computing issues. For the

Structural Pattern: Pipe-and-Filter

Solution: Structure an application
as a fixed sequence of filters that
take input data from preceding
filters, carry out computations on
that data, and then pass the output
to the next filter. The filters are
side-effect free; i.e. the result of
their action is only to transform
input data into output data.
Concurrency emerges as multiple
blocks of data move through the
Pipe-and-Filter system so that
multiple filters are active at one
time.

Concurrent Algorithm Strategy
Pattern: Data Parallelism

Solution: An algorithm is organized as
operations applied concurrently to the
elements of a set of data structures.
The concurrency is in the data. This
pattern can be generalized by defining
an index space. The data structures
within a problem are aligned to this
index space and concurrency is
introduced by applying a stream of
operations for each point in the index

remaining layers of the pattern language,
parallel programming is a primary concern.

Parallel programming is the art of using
concurrency in a problem to make the
problem run to completion in less time.
We divide the parallel design process into
the following three layers.

3. Concurrent Algorithm strategies:
These patterns define high-level
strategies to exploit concurrency in a
computation for execution on a
parallel computer. They address the
different ways concurrency is naturally
expressed within a problem providing well known techniques to exploit that
concurrency. A good example of an algorithm strategy pattern is the Data Parallelism
pattern.

4. Implementation strategies: These are the structures that are realized in source code to
support (a) how the program itself is organized and (b) common data structures
specific to parallel programming. The loop parallel pattern is a well known example
of an implementation strategy pattern.

5. Parallel execution patterns: These are the approaches used to support the execution of
a parallel algorithm. This includes (a) strategies that advance a program counter and
(b) basic building blocks to support the coordination of concurrent tasks. The SIMD
pattern is a good example of a parallel execution pattern.

Patterns in these three lower layers are
tightly coupled. For example, a problem
using the “recursive splitting” algorithm
strategy is likely to utilize a fork-join
implementation strategy which is commonly
supported at the execution level with a
thread pool. These connections between
patterns are a key point in the text of the
patterns.

There is a large intellectual history leading
up to OPL. The structural patterns of
Category 1 are largely taken from the work
of Garlan and Shaw on architectural styles
[Garlan94] [Shaw95]. That these
architectural styles could also be viewed as
design patterns was quickly recognized by
Buschmann [Buschmann96]. To Garlan and
Shaw’s architectural styles we added two

Implementation Strategy Pattern:
Loop Parallel

Solution: An algorithm is implemented
as loops (or nested loops) that execute in
parallel. The challenge is to transform
the loops so iterations can safely execute
concurrently and in any order. Ideally,
this leads to a single source code tree that
generates a serial program (using a serial
compiler) or a parallel program (using
compilers that understand the parallel
loop constructs).

Parallel Execution Pattern: Single
Instruction Multiple Data (SIMD)

Solution: an implementation of a
strictly data parallel algorithm is
mapped onto a platform that
executes a single sequence of
operations applied uniformly to a
collection of data elements. The
instructions execute “in lockstep”
by a set of processing elements but
on their own streams of data. SIMD
programs use specialized data
structure, data alignment
operations, and collective
operations to extend this pattern to
a wider range of data parallel
problems.

structural patterns that have their roots in parallel computing: Map Reduce, influenced by
[Dean04] and Iterative Refinement, influenced by Valiant’s bulk-synchronous pattern
[Valiant90]. The computation patterns of Category 2 were first presented as “dwarfs” in
[Asanovic06] and their role as computational patterns was only identified later
[Asanovic09]. The identification of these computational patterns in turn owes a debt to
Phil Colella’s unpublished work on the “Seven Dwarfs of Parallel Computing.” The
lower three Categories within OPL build off earlier and more traditional patterns for
parallel algorithms [Mattson04]. Mattson’s work was somewhat inspired by Gamma’s
success in using design patterns for object-oriented programming [Gamma94]. Of course
all work on design patterns has its roots in Alexander’s ground-breaking work identifying
design patterns in civil architecture [Alexander72].

Case Study: Content Based Image retrieval

Experience has shown that an easy way to understand patterns and how they are used is
to follow an example. In this new section we will describe a problem and its
parallelization using patterns from OPL. In doing so we will describe a subset of the
patterns and give some indication of the way we make transitions between layers in the
pattern language.

In particular, to understand how OPL can help software architecture, we use a content-
based image retrieval (CBIR) application as an example. From this example we will show
how structural and computational patterns can be used to describe the CBIR application
and how the lower layer patterns can be used to parallelize an exemplar component of the
CBIR application.

In Figure 2 we see the major elements of our CBIR application as well as the data flow.
The key elements of the application are the feature extractor, the trainer, and the classifier
components. Given a set of new images the feature extractor will collect features of the
images. Given the features of the new images, chosen examples, and some classified new
images from user feedback, the trainer will train the parameters necessary for the
classifier. Given the parameters from the trainer, the classifier will classify the new
images based on their features. The user can classify some of the resulting images and
give feedback to the trainer repeatedly in order to increase the accuracy of the classifier.
This top level organization of CBIR is best represented by the pipe-and-filter structural
pattern. The feature-extractor, trainer, and classifier are filters or computational elements
which are connected by pipes (data communication channels). Data flows through the
succession of filters which do not share state and only take input from their input pipe(s).
The filters perform the appropriate computation on that data and pass the output to the
next filter(s) via its output pipe. The choice of pipe-and-filter pattern to describe the top
level structure of CBIR is not unusual. Many applications are naturally described by pipe-
and-filter at the top level.

In our approach we architect software using patterns in a hierarchical fashion. Since each
of the filters of CBIR are complex computations they can be further decomposed. In the
following discussion we consider the classifier filter. There are many approaches to

classification but in our CBIR application we use a support-vector machine (SVM)
classifier. SVM is widely used in many classification tasks such as image recognition,
bioinformatics, and text processing. The structure and computations in the SVM classifier
are described in Figure 3. The basic structure of the classifier filter is itself a simple pipe-
and-filter structure with two filters: The first filter takes the test data and the support
vectors needed to calculate the dot products
between the test data and each support vector.
This dot product computation is naturally
performed using the dense linear algebra
computational pattern. The second filter takes the
resulting dot products and the following steps are
to compute the kernel values, sum up all the
kernel values, and scale the final results if
necessary. The structural pattern associated with
these computations is MapReduce (see the
MapReduce sidebar).

In a similar way the feature-extractor and trainer
filters of the CBIR application can be
decomposed. With that elaboration we would
consider the “high-level” architecture of the CBIR
application complete. In general, to construct a
high-level architecture of an application we
hierarchically decompose the application using
the structural and computational patterns of OPL.

Results

Classifier

Trainer

Feature Extractor

User Feedback

Choose Examples

New Images

Figure 2: The CBIR application framework.

Structural Pattern: Map-Reduce

Solution: a solution is structured in two
phases: (1) a map phase where items
from an “input data set” are mapped onto
a “generated data set”, and (2) a
reduction phase where the generated data
set is reduced or otherwise summarized
to generate the final result. Concurrency
in the map phase is straightforward to
exploit since the map functions are
applied independently for each item in
the input data set. The reduction phase,
however, requires synchronization to
safely combine partial solutions into the
final result.

Constructing the high-level architecture of an application is essential, and this effort
improves not just the software
viability but also eases
communication regarding the
organization of the software.
However, there is still much work
to be done before we have a
working software application. To
perform this work we move from
the top layers of OPL (structural
and computational patterns) down
into lower layers (concurrent
algorithmic strategy patterns etc.).
To illustrate this process we will
give additional detail on the SVM
classifier filter.

After identifying the structural
patterns and the computational
patterns in the SVM classifier, we
need to find appropriate strategies
to parallelize the computation. In
the MapReduce pattern the same
computation is mapped to different
non-overlapping partitions of the
state set. The results of these
computations are then gathered, or
reduced. If we are interested in arriving
at a parallel implementation of this
computation then we define the
MapReduce structure in terms of a
Concurrent Algorithmic Strategy. The
natural choices for Algorithmic
Strategies are the data parallelism and
geometric decomposition patterns. Using
data parallelism we can compute the
kernel value of each dot product in
parallel (see the data parallelism side
bar). Alternatively, using geometric
decomposition (see the geometric
decomposition side bar) we can divide
the dot products into regular chunks of
data, apply the dot products locally on
each chunk, and then apply a global
reduce to compute the summation over all chunks for the final results. We are interested
in designs that can utilize large numbers of cores. Since the solution based on the Data

Compute
dot

products

Compute
Kernel values,
sum & scale

OOuuttppuutt

TTeesstt DDaattaa

SSVV

Dense Linear
Algebra

MapReduce

Figure 3: Architecture of the SVM classifier filter
Algorithm Strategy Pattern:
Geometric Decomposition

Solution: An algorithm is organized
by: (1) dividing the key data
structures within a problem into
regular chunks, and (2) updating each
chunk in parallel. Typically,
communication occurs at chunk
boundaries so an algorithm breaks
down into three components: (1)
exchange boundary data, (2) update
the interiors or each chunk, and (3)
update boundary regions. The size of
the chunks is dictated by the
properties of the memory hierarchy to
maximize reuse of data from local
memory/cache.

parallelism pattern exposes more concurrent
tasks (due to the large numbers of dot
products) compared to the more coarse
grained to geometric decomposition solution,
we choose the data parallelism pattern for
implementing the map reduce computation.

The use of the data parallelism algorithmic
strategy pattern to parallelize the
MapReduce computation is shown in the
pseudo code of the kernel value calculation
and the summation. These computations can
be summarized as shown in Figure 4. Line 1
to line 4 is the computation of the kernel value on each dot product, which is the map
phase. Line 5 to line 13 is the summation over all kernel values, which is the reduce
phase. Function NeedReduce checks whether element “i” is a candidate for the reduction
operation. If so, the ComputeOffset function calculates the offset between element “i”
and another element. Finally, the Reduce function conducts the reduction operation on
element “i” and “i+offset”.

To implement the data parallelism strategy from the MapReduce pseudo-code, we need
to find the best Implementation Strategy Pattern. Looking at the patterns in OPL, both
strict data parallel and loop parallel are applicable.

Whether we choose either strict data parallel or loop parallel in the implementation layer,
we can use the SIMD pattern for realizing the execution. For example, we can apply
SIMD on line 2 in Figure 4 for calculating the kernel value of each dot product in parallel.
The same concept can be used on line 7 in Figure 4 for conducting the checking
procedure in parallel. Moreover, in order to synchronize the computations on different
processing elements on line 4 and line 12 in Figure 4, we can use the barrier construct
described within the collective synchronization pattern for achieving this goal.

Implementation Strategy Pattern:
Strict Data Parallel

Solution: Implement a data parallel
algorithm as a single stream of
instructions applied concurrently to
the elements of a data set. Updates
to each element are either
independent, or they involve well
defined collective operations such
as reductions or prefix scans.

In summary, the computation of the SVM classifier can be viewed as a composition of
the pipe-and-filter, dense linear algebra, and MapReduce patterns. To parallelize the
MapReduce computation, we used the data parallelism pattern. To implement the data
parallelism Algorithmic Strategy, both the strict-data-parallel and loop-parallel patterns
are applicable. We choose the strict-data-parallel pattern since it seemed a more natural
choice given the fact we wanted to expose large amounts of concurrency for use on
many-core chips with large numbers of cores. It is important to appreciate, however, that
this is a matter of style and a quality design could have been produced using the loop-
parallel pattern as well. To map the strict-data-parallel pattern onto a platform for
execution, we chose SIMD pattern. While we didn’t show the details of all the patterns
used, along the way we used the shared-data pattern to define the synchronization
protocols for the reduction and the collective synchronization pattern to describe the
barrier construct. It is common that these functions (reduction and barrier) are provided
as part of a parallel programming environment; hence, while a programmer needs to be
aware of these constructs and what they provide, it is rare that they will need to explore
their implementation in any detail.

Other Patterns

OPL is not complete. Currently OPL is restricted to those parts of the design process
associated with architecting and implementing applications targeting parallel processors.
There are countless additional patterns that software development teams utilize. Probably
the best known example is the set of design patterns used in object-oriented design

function ComputeMapReduce(DataArray, Result) {
1 for i ← 1 to n {

2 LocalValue[i] ← ComputeKernelValue(DataArray[i]);
3 }
4 Barrier();
5 for reduceLevel ← 1 to MaxReduceLevel {

6 for i ← 1 to n {
7 if (NeedReduce(i, reduceLevel)) {
8 offset ← ComputeOffset(i, reduceLevel);

9 LocalValue[i] ← Reduce(LocalValue[i],
 LocalValue[i+offset]);
10 }
11 }
12 Barrier();
13 }

[Gamma94]. We made no attempt to include these in OPL. An interesting framework
that supports common patterns in parallel object oriented design is TBB [Reinders07].

OPL focuses on patterns that are ultimately expressed in software. These patterns do not
address, however, methodological patterns experienced parallel programmers use when
designing or optimizing parallel software. The following are some examples of
important classes of methodological patterns.

• Finding concurrency patterns [Mattson04]: These patterns capture the process
that experienced parallel programmers use when exploiting the concurrency
available in a problem. While these patterns were developed before our set of
Computational Patterns was identified, they appear to be useful in moving from
the Computational Patterns category of our hierarchy to the Parallel Algorithmic
Strategy category. For example applying these patterns would help to indicate
when geometric decomposition is chosen over data parallelism as a dense linear
algebra problem moves toward implementation.

• Parallel programming “best practices” patterns: This describes a broad range of
patterns we are actively mining as we examine the detailed work in creating
highly-efficient parallel implementations. Thus, these patterns appear to be useful
when moving from the Implementation Strategy patterns to the Concurrent
Execution patterns. For example, we are finding common patterns associated with
optimizing software to maximize data locality.

Summary, Conclusions and Future Work

We believe that the key to addressing the challenge of writing software is to architect the
software. In particular, we believe that the key to addressing the new challenge of
programming multicore and manycore processors is to carefully architect the parallel
software. We can define a systematic methodology for software architecture in terms of
design patterns and a pattern language. Toward this end we have taken on the ambitious
project of creating a comprehensive pattern language that spans all the way from the
initial software architecture of an application down to the lowest level details of software
implementation.

OPL is a “work in progress”. We have defined the layers in OPL, listed the patterns at
each layer, and written text for many of the patterns. Details are available online [OPL].
On the one hand, much work remains to be done. On the other hand, we do feel confident
that our structural patterns capture the critical ways of composing software and our
computational patterns capture the key underlying computations. Similarly, as we move
down through the pattern language we feel that the patterns at each layer do a good job of
addressing most of the key problems for which they are intended. The current state of the
textual descriptions of the patterns in OPL is somewhat nascent. We need to finish
writing the text for some of the patterns and have them carefully reviewed by experts in
parallel applications programming. We also need to continue mining patterns from
existing parallel software to identify patterns that may be missing from our language.
Nevertheless, last year’s effort spent in mining five applications netted (only) three new

patterns for OPL. This shows that while OPL is not fully complete, it is not, with the
caveats described in Section 5, dramatically deficient.

Complementing the efforts to mine existing parallel applications for patterns is the
process of architecting new applications using OPL. We are currently using OPL to
architect and implement a number of applications in areas such as machine learning,
computer vision, computational finance, health, physical modeling, and games. During
this process we are watching carefully to identify where OPL helps us and where OPL
does not offer patterns to guide the kind of design decisions we must make. For example,
mapping a number of computer-vision applications to new generations of manycore
architectures helped identify the importance of a family of data layout patterns.

OPL is an ambitious project. Its scope stretches across the full range of activities in
architecting a complex application. It has been suggested that we have taken on too large
of a task; that it is not possible to define the complete software design process in terms of
a single design pattern language. However, after many years of hard work nobody has
been able to solve the parallel programming problem with specialized parallel
programming languages or tools that automate the parallel programming process. We
believe a different approach is required; one that emphasizes how people think about
algorithms and design software. This is precisely the approach supported by design
patterns, and based on our results so far we believe that patterns and a pattern language
may indeed be the key to finally resolving the parallel programming problem.

While this claim may seem grandiose, we have an even greater aim for our work. We
believe that our efforts to identify the core computational and structural patterns for
parallel programming has led us to begin to identify the core computational elements
(computational patterns, analogous to atoms) and means of assembling them (structural
patterns, analogous to molecular bonding) of all electronic system. If this is true then
these patterns not only serve as a means to assist software design but can be used to
architect a curriculum for a true discipline of computer science.

References
[Alexander77] C. Alexander, S. Ishikawa, M. Silverstein, A Pattern Language: Towns,
Buildings, Construction, Oxford University Press, 1977.

[Asanovic06] K. Asanovic, et al, “The landscape of parallel computing research: A view
from Berkeley,” EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2006-183, 2006.

[Asanovic09] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J.
Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick,
“A View of the Parallel Computing Landscape”, Submitted to Communications of the
ACM, May 2008, to appear in 2009.

[Buschmann96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture - A System of Patterns. Wiley 1996.

[Dean04] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters,” in Proceedings of OSDI ’04: 6th Symposium on Operating System Design and
Implemention, San Francisco, CA, Dec. 2004.

[Gamma94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns:
Elements of reusable Object Oriented Software, Addison-Wesley, 1994.

[Garlan94] D. Garlan and M. Shaw. An introduction to software architecture. Technical
report, Pittsburgh, PA, USA, 1994.

[Hwu08] W-M. Hwu, K. Keutzer, T. Mattson, “The Concurrency Challenge,” IEEE
Design and Test, 25, 4, 2008. pp. 312 – 320.

[Mattson04] T. G. Mattson, B. A. Sanders, B. L. Massingill, Patterns for Parallel
Programming, Addison Wesley, 2004.

[OPL09] http://parlab.eecs.berkeley.edu/wiki/patterns/patterns

[Reinders07] J. Reinders, Intel Threaded Building Blocks, O’Reilly Press, 2007.

[Shaw95] Mary Shaw and David Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1995.

[Valiant90] L. G. Valiant, “A Bridging Model for parallel Computation”, Communication
of the ACM, vol, 33, pp. 103-111, 1990.

Appendix: Design pattern Descriptions

In this appendix, we will describe the contents of each category of patterns within OPL.
For each category of patterns, we will define the goal of the patterns within that category,
the artifacts from the design process produced with this category of patterns, the activities
associated with these patterns, and finally the patterns themselves.

Structural patterns
Goal: These patterns define the overall structure for a program.
Output: The overall organization of a program; often represented as an informal picture
of a program’s high level design. These are the “boxes and arcs” a software architect
would write on a whiteboard in describing their design of an application.
Activities: The basic program structure is identified from among the structural patterns.
Then the architect examines the "boxes" of the program structure to identify
computational kernels.

• Pipe-and-filter: These problems are characterized by data flowing through
modular phases of computation. The solution constructs the program as filters
(computational elements) connected by pipes (data communication channels).
Alternatively, they can be viewed as a graph with computations as vertices and
communication along edges. Data flows through the succession of stateless filters,
taking input only from its input pipe(s), transforming that data, and passing the
output to the next filter via its output pipe

• Agent and Repository: These problems are naturally organized as a collection of
data elements that are modified at irregular times by a flexible set of distinct
operations. The solution is to structure the computation in terms of a single
centrally-managed data repository, a collection of autonomous agents that operate
upon the data, and a manager that schedules the agents’ access to the repository
and enforces consistency.

• Process control: Many problems are naturally modeled as a process that either
must be continuously controlled; or must be monitored until completion. The
solution is to define the program analogously to a physical process control
pipeline: sensors sense the current state of the process to be controlled; controllers
determine which actuators are to be affected; actuators actuate the process. This
process control may be continuous and unending (e.g. heater and thermostat), or it
may have some specific termination point (e.g. production on assembly line).

• Event-based implicit invocation: Some problems are modeled as a series of
processes or tasks which respond to events in a medium by issuing their own
events into that medium. The structure of these processes is highly flexible and
dynamic as processes may know nothing about the origin of the events, their
orientation in the medium, or the identity of processes that receive events they
issue. The solution is to represent the program as a collection of agents that
execute asynchronously: listening for events in the medium, responding to events,
and issuing events for other agents into the same medium. The architecture
enforces a high level abstraction so invocation of an event for an agent is implicit;
i.e. not hardwired to a specific controlling agent.

• Model-view-controller: Some problems are naturally described in terms of an
internal data model, a variety of ways of viewing the data in the model, and a
series of user controls that either change the state of the data in the model or select
different views of the model. While conceptually simple, such systems become
complicated if users can directly change the formatting of the data in the model or
view-renderers come to rely on particular formatting of data in the model. The
solution is to segregate the software into three modular components: a central data
model which contains the persistent state of the program; a controller that
manages updates of the state; and one or more agents that export views of the
model. In this solution the user cannot modify either the data model or the view
except through public interfaces of the model and view respectively. Similarly the
view renderer can only access data through a public interface and cannot rely on
internals of the data model.

• Iterative refinement: Some problems may be viewed as the application of a set of
operations over and over to a system until a predefined goal is realized or
constraint is met. The number of applications of the operation in question may
not be predefined, and the number of iterations through the loop may not be able
to be statically determined. The solution to these problems is to wrap a flexible
iterative framework around the operation that operates as follows: the iterative
computation is performed; the results are checked against a termination condition;
depending on the results of the check, the computation completes or proceeds to
the next iteration.

• Map reduce: For an important class of problems the same function may be applied
to many independent data sets and the final result is some sort of summary or
aggregation of the results of that application. While there are a variety of ways to
structure such computations, the problem is to find the one that best exploits the
computational efficiency latent in this structure. The solution is to define a
program structured as two distinct phases. In phase one a single function is
mapped onto independent sets of data. In phase two the results of mapping that
function on the sets of data are reduced. The reduction may be a summary
computation, or merely a data reduction.

• Layered systems: Sophisticated software systems naturally evolve over time by
building more complex operations on top of simple ones. The problem is that if
each successive layer comes to rely on the implementation details of each lower
layer then such systems soon become ossified as they are unable to easily evolve.
The solution is to structure the program as multiple layers in such a way that
enforces a separation of concerns. This separation should ensure that: (1) only
adjacent layers interact and (2) interacting layers are only concerned with the
interfaces presented by other layers. Such a system is able to evolve much more
freely.

• Puppeteer: Some problems require a collection of agents to interact in potentially
complex and dynamic ways. While the agents are likely to exchange some data
and some reformatting is required, the interactions primarily involve the
coordination of the agents and not the creation of persistent shared data. The
solution is to introduce a manager to coordinate the interaction of the agents, i.e. a
puppeteer, to centralize the control over a set of agents and to manage the
interfaces between the agents.

• Arbitrary static task graph: Sometimes it’s simply not clear how to use any of the
other structural patterns in OPL, but still the software system must be architected.
In this case, the last resort is to decompose the system into independent tasks
whose pattern of interaction is an arbitrary graph. Since this must be expressed as
a fixed software structure, the structure of the graph is static and does not change
once the computation is established.

Computational patterns
Goal: These patterns define the computations carried out by the components that make
up a program.
Output: Definitions of the types of computations that will be carried out. In some cases,
specific library routines will be defined.
Activities: The key computational kernels are matched with computational patterns. Then
the architect examines how the identified computational patterns should be implemented.
This may lead to another iteration through structural patterns, or a move downward in the
hierarchy to algorithmic strategy patterns.

• Backtrack, branch and bound: Many problems are naturally expressed as either
the search over a space of variables to find an assignment of values to the
variables that resolves a Yes/No question (a decision procedure) or assigns values

to the variables that gives a maximal or minimal value to a cost function over the
variables, respecting some set of constraints. The challenge is to organize the
search such that solutions to the problem, if they exist, are found, and the search is
performed as computationally efficiently as possible. The solution strategy for
these problems is to impose an organization on the space to be searched that
allows for sub-spaces that do not contain solutions to be pruned as early as
possible.

• Circuits: Some problems are best described as Boolean operations on individual
Boolean values or vectors (bit-vectors) of Boolean values. The most direct
solution is to represent the computation as a combinational circuit and, if
persistent state is required in the computation, to describe the computation as a
sequential circuit: that is, a mixture of combinational circuits and memory
elements (such as flip-flops).

• Dynamic programming: Some search problems have the additional characteristic
that the solution to a problem of size N can always be assembled out of solutions
to problems of size ≤ N-1. The solution in this case is to exploit this property to
efficiently explore the search space by finding solutions incrementally and not
looking for solutions to larger problems until the solutions to relevant sub-
problems are found.

• Dense linear algebra: A large class of problems expressed as linear operations
applied to matrices and vectors for which most elements are non-zero. a
computation is organized as a sequence of arithmetic expressions acting on dense
arrays of data. The operations and data access patterns are well defined
mathematically so data can be pre-fetched and CPUs execute close to their
theoretically allowed peak performance. Applications of this pattern typically use
standard building defined in terms of the dimensions of the dense arrays with
vectors (BLAS level 1), matrix-vector

• Sparse Linear Algebra: This includes a large class of problems expressed in terms
of linear operations over sparse matrices (i.e. matrices for which it is advantages
to explicitly take into account the fact that many elements are zero). Solutions
are diverse and include a wide range of direct and iterative methods.

• Finite state machine: Some problems have the character that a machine needs to
be constructed to control or arbitrate a piece of real or virtual machinery. Other
problems have the character that an input string needs to be scanned for syntactic
correctness. Both problems can be solved by creating a finite-state machine that
monitors the sequence of input for correctness and may, optionally, produce
intermediate output.

• Graph algorithms: A broad range of problems are naturally represented as actions
on graphs of vertices and edges. Solutions to this class of problems involve
building the representation of the problem as a graph, and applying the
appropriate graph traversal or partitioning algorithm that results in the desired
computation.

• Graphical models: Many problems are naturally represented as graphs of random
variables, where the edges represent correlations between variables. Typical
problems include inferring probability distributions over a set of hidden states,

given observations on a set of observed states observed states, or estimating the
most likely state of a set of hidden states, given observations. To address this
broad class of problems is an equally broad set of solutions known as graphical
models.

• Monte Carlo: Monte Carlo approaches use random sampling to understand
properties of large sets of points. Sampling the set of points produces a useful
approximation to the correct result.

• N-body: Problems in which the properties of each member of a system depends
on the state of every other member of the system. For modest sized systems,
computing each interaction explicitly for every point is feasible (a naïve O(N2)
solution). In most cases, however, the arrangement of the members of the system
in space is used to define an approximation scheme that produces an approximate
solution for a complexity less than the naïve solution.

• Spectral methods: These problems involve systems that are defined in terms of
more than one representation. For example, a periodic sequence in time can be
represented as a set of discrete points in time or as a linear combination of
frequency components. This pattern addresses problems where changing the
representation of a system can convert a difficult problem into a straightforward
algebraic problem. The solutions depend on an efficient mechanism to carry out
the transformation such as a fast Fourier transform.

• Structured mesh: These problems represent a system in terms of a discrete
sampling of points in a system that is naturally defined by a mesh. For a
structured mesh, the points are tied to the geometry of the domain by a regular
process. Solutions to these problems are computed for each point based on
computations over neighborhoods of points (explicit methods) or as solutions to
linear systems of equations (implicit methods)

• Unstructured mesh: Some problems that are based on meshes utilize meshes that
are not tightly coupled to the geometry of the underlying problems. In other
words, these meshes are irregular relative to the problem geometry. The solutions
are similar to those for the structured mesh (i.e. explicit or implicit) but in the
sparse case, the computations require gather and scatter operations over sparse
data.

Algorithm Strategy patterns
Goal: These patterns describe the high level strategies used when creating the parallel
algorithms used to implement the computational patterns.
Output: Definition of the algorithms and choice of concurrency to be exploited.
Activities: Once the pattern for a key computation is identified, there may be a variety of
different ways to perform that computation. At this step the architect chooses which
particular algorithm, or family of algorithms, will be used to implement this computation.
Also, this is the stage where the opportunities for concurrency, which are latent in the
computation, are identified. Trade-offs among different algorithms and strategies will be
examined in attempt to identify the best match to the computation at hand.

• Task parallelism: These problems are characterized in terms of a collection of
activities or tasks. The solution is to schedule the tasks for execution in a way that

keeps the work balanced between the processing elements of the parallel
computer and manages any dependencies between tasks so the correct answer is
produced regardless of the details of how the tasks execute. This pattern includes
the well known embarrassingly parallel pattern (no dependencies).

• Pipeline: For these problems consist of a stream of data elements and a serial
sequence of transformations to apply to these elements. On initial inspection,
there appears to be little opportunity for concurrency. If the processing for each
data element, however, can be carried out concurrently with that for the other data
elements, the problem can be solved in parallel by setting up a series of fixed
coarse-grained tasks (stages) with data flowing between them in an assembly-line
like manner. The solution starts out serial as the first data element is handled, but
with additional elements moving into the pipeline, concurrency grows up to the
number of stages in the pipeline (the so-called depth of the pipeline)

• Discrete event: Some problems are defined in terms of a loosely connected
sequence of tasks that interact at unpredictable moments. The solution is to setup
an event handler infrastructure of some type and then launch a collection of tasks
whose interaction is handled through the event handler. The handler is an
intermediary between tasks, and in many cases the tasks do not need to know the
source or destination for the events. This pattern is often used for GUI design
and discrete event simulations.

• Speculation: The problem contains a potentially large number of tasks that can
usually run concurrently; however, for a subset of the tasks unpredictable
dependencies emerge and these make it impossible to safely let the full set of
tasks run concurrently. An effective solution may be to just run the tasks
independently, that is speculate that concurrent execution will be committed, and
then clean up after the fact any cases where concurrent execution was incorrect.
Two essential element of this solution are: 1) to have an easily identifiable safety
check to determine whether a computation can be committed and 2) the ability to
rollback and re-compute the cases where the speculation was not correct.

• Data parallelism: Some problems are best understood as parallel operations on the
elements of a data structure. When the operations are for the most part uniformly
applied to these elements, an effective solution is to treat the problem as a single
stream of instructions applied to each element. This pattern can be extended to a
wider range of problems by defining an index space and then aligning both the
parallel operations and the data structures around each point in the index space.

• Recursive splitting: Sometimes, an algorithm can be expressed as the composition
of a series of tasks that are generated recursively or generated during the traversal
of a recursive data structure. The problem is how to efficiently execute such
algorithms that might exhibit data dependent and dynamic task creation behavior
with limited knowledge of the available hardware resources. The solution is to (1)
Express problem recursively with more than one task generated per call (2) Use a
balanced data structure, if possible (3) Use a fork-join or task-queue
implementation (4) Use optimizations to improve locality.

• Geometric decomposition: An algorithm is organized by: (1) dividing the key data
structures within a problem into regular chunks, and (2) updating each chunk in
parallel. Typically, communication occurs at chunk boundaries so an algorithm
breaks down into three components: (1) exchange boundary data, (2) update the
interiors or each chunk, and (3) update boundary regions. The size of the chunks
is dictated by the properties of the memory hierarchy to maximize reuse of data
from local memory/cache..

Implementation strategy patterns
Goal: These patterns focus on how a software architecture is implemented in software.
They describe how threads or processes execute code within a program; i.e. they are
intimately connected with how an algorithm design is implemented in source code.
These patterns fall into two sets: program structure patterns and data structure patterns.
Output: pseudo-code defining how a parallel algorithm will be realized in software.
Activities: This is the stage where the broad opportunities for concurrency identified by
the parallel algorithmic strategy patterns are mapped onto particular software constructs
for implementing that concurrency. Advantages and disadvantages of different software
constructs will be weighed.

• Program structure
• Single-Program Multiple Data (SPMD): Keeping track of multiple streams of

instructions can be very difficult for a programmer. If each instruction stream
comes from independent source code, the software can quickly become
unmanageable. There are a number of solutions to this problem. One is to
have a single program (SP) that is used for all of the streams of instructions.
An process/thread ID (or rank) is defined for each instance of the program and
this can be used to index into multiple data sets (MD) or branch into different
sub-sets of instructions.

• Strict data parallel: Data parallel algorithms constitute a large class of
algorithms depending on the details of how data is shared as operations are
applied concurrently to the data. If the sharing is minimal or if it can be
handled by well-defined collective operations (e.g. parallel pre-fix or shift and
mask operations) it may be possible to solve the problem with a single stream
of instructions applied to data elements concurrently. In other words, the
concurrency is strictly represented as a single stream of instructions applied to
parallel data structures.

• Fork/join: The problem is defined in terms of a set of functions or tasks that
execute within a shared address space. The solution is to logically create
threads (fork), carry out concurrent computations, and then terminate them
after possibly combining results from the computations (join).

• Actors: An important class of object oriented programs represents the state of
the computation in terms of a set of persistent objects. These objects
encapsulate the state of the computation and include the fundamental
operations to solve the problem as methods for the objects. In these cases, an
effective solution to the concurrency problem is to make these persistent

objects distinct software agents (the actors) that interact over distinct channels
(message passing).

• Master-worker: A common problem in parallel programming is how to
balance the computational load among a set of processing elements within a
parallel computer. For task parallel programs with no communication
between tasks (or infrequence but well-structured, anonymous
communication) and effective solution with “automatic dynamic load
balancing” is to define a single master to mange the collection of tasks and
collect results. Then a set of workers grab a task, do the work, send the results
back to the master, and then grab the next task. This continues until all the
tasks have been computed.

• Task queue: For task parallel problems with independent tasks, the challenge
is how to schedule the execution of tasks to balance the computational load
among the processing elements of a parallel computer. One solution is to
place the tasks into a task queue. The runtime system then pulls tasks out of
the queue, carries out the computations, then goes back to the queue for the
next task. Notice that this is closely related too the master/worker pattern but
in this case, there is no need for extra processing by a master to either manage
the tasks or to deal with the results of the tasks. Also, unlike master-worker,
task generation is not restricted to the master thread alone.

• Graph Partitioning: A graph is typically a single monolithic structure with
edges indicating relations among vertices. The problem is how to organize
concurrent computation on this single structure in such a way that
computations on many parts of the graph can be done concurrently. The
solution is to find a strategy for partitioning the graph such that
synchronization is minimized and the workload is balanced.

• Loop-level parallelism: The problem is expressed in terms of a modest
number of compute intensive loops. The loop iterations can be transformed so
they can safely execute independently. The solution is to transform the loops
as needed to support safe concurrent execution, and then replace the serial
compute intensive loops with parallel loop constructs (such as the “for
worksharing construct” in OpenMP). A common goal of these solutions is to
create a single program that executes in serial using serial compilers or in
parallel using compilers that understand the parallel loop construct.

• BSP: Managing computations and communications plus overlapping them to
optimize performance can be very difficult. When the computations break
down into a regular sequence of stages with well defined communication
protocols between phases, a simplified computational structure can be used.
One such structure is the BSP model of computation described in [Valiant90].
In this solutions, a computation is organized as a sequence of super-steps.
Within a super-step, computation occurs on a local view of the data.
Communication events are posted within a super-step but the results are not
available until the subsequent super-step. Communication events from a
super-step are guaranteed to complete before the subsequent super-step starts.
This structure lets the supporting runtime system overlap communication and
computation while making the overall program structure easier to understand.

• Data Structure Patterns
• Shared queue: Some problems generate streams of results that must be

handled in some predefined order. It can be very difficult to safely put items
into the stream or pull them off the stream when concurrently executing tasks
are involved. The solution is to define a shared queue where the safe
management of the queue is built into the operations upon the queue.

• Distributed array: The array is a critical data structure in many problems.
Operating on components of the array concurrently (for example, using the
geometric decomposition pattern) is an effective way to solve these problems
in parallel. Concurrent computations may be straightforward to define, but
defining how the array is decomposed among a collection of processes or
threads can be very difficult. In particular, solutions can require complex
book-keeping to map indices between global indices in the original problem
domain and local indices visible to a particular thread or process. The
solution is to define a distributed array and fold the complicated index algebra
into access methods on the distributed array data type. The programmer still
needs to handle potentially complex index algebra, but it’s localized to one
place and can possibly be reused across programs that use similar array data
types.

• Shared hash table: A hash table is one an important data structure in a wide
range of problems. It is particularly important in parallel algorithms as a wide
range of distributed data structures can be mapped onto a hash table. As with
the distributed array pattern, the problem is the indexing required to transform
a global hash key into a local hash key for a particular member of the set of
processes or threads involved with a parallel computation. The solution is to
place the indexing operations inside a method associated with a hash table
data type to insulate this complexity for the larger source code and support
reuse between related program.

• Shared data: Programmers should always try to represent data shared between
threads or processes as shared data types with a well defined API to hide the
complexity of safe concurrent access to the data. In some cases, however, this
just is not practical. The solution is to put data into a shared address space
and then define synchronization protocols to protect that data.

Parallel Execution Patterns
Goal: These patterns describe how a parallel algorithm is organized into software
elements that execute on real hardware and interact tightly with a specific programming
model. We organize these into two sets: (1) process/thread control patterns and (2)
coordination patterns.
Output: Should produce particular approaches to exploit the hardware capabilities for
parallelism so that we can execute programs efficiently.
Activities: This is the stage where the previously identified software constructs ware
matched up with the actual execution capability of the underlying hardware. At this point
the performance of the underlying hardware mechanisms may be known and the
advantages and disadvantages of different mappings to hardware can be precisely
measured.

• Patterns that “advance a program counter”
• MIMD: The problem is expressed in terms of a set of tasks operating

concurrently on their own streams of data. The solution is to construct the
parallel program as sequential processes that execute independently and
coordinate their execution through discrete communication events.

• Data flow: When a problem is defined as a sequence of transformations
applied to a stream of data elements, an effective parallel execution strategy is
to organize the computation around the flow of data. The tasks become the
nodes in a fixed network of sequential processes and the data flows through
the network from one node to the other. Task-graph: Higher order structure to
a problem can be used to help make a concurrent program easier to
understand. In some cases, however, no such structure is apparent. In these
cases, the computation can be viewed as a directed acyclic graph of threads or
processes which can be mapped onto the elements of a parallel computer.
This is a very general pattern that can be used at a low level to support the
other execution patterns.

• Single-Instruction Multiple Data (SIMD): Some problems map directly onto a
sequence of operations applied uniformly to a collection of data structures.
These problems can be solved by applying a single stream of instructions that
are executed “in lockstep” by a set of processing elements but on their own
streams of data. Common examples are the vector instructions built into
many modern microprocessors.

• Thread pool: Fork/Join and other patterns based on dynamic sets of threads
may include frequent operations to create or destroy threads. This is a very
expensive operation on most systems. The solution is to maintain a pool of
threads. Instead of creating a new thread, a thread is used from the pool.
Instead of destroying a thread (e.g. when a fork operations is encountered) the
thread is returned to the pool. This approach is commonly used with task-
queue programs with work stealing to enforce a more balanced load.

• Speculative execution: Compilers and parallel runtime systems must make
conservative assumptions about the data shared between tasks to assure that
correct results are produced. This approach can overly constrain the
concurrency available to a problem. The solution is to have a compiler or
runtime system that is enabled for speculative execution. This means that
additional concurrent tasks are exposed together with a way to test after the
fact that speculation was safe and a way to rollback and re-compute unsafe
results when speculation was not warranted.

• Digital circuits: The implementation of system functionality is often so highly
constrained that it cannot be entirely implemented in software and still meet
speed or power constraints. One solution strategy for highly concurrent
implementation is to implement functionality in digital circuits. These circuits
may operate asynchronously as special-purpose execution units or they may
be implemented as instruction extensions of a instruction-set processor.

• Patterns that Coordinate the execution of threads or processes

• Message passing: The problem is to coordinate the execution of a collection of
processes or threads, but with no support from the hardware for data structures
in a shared memory. The solution is to organize coordination operations
(synchronization and communication) in terms of distinct messages passed
over some sort of interconnection network.

• Collective communication: Working directly with messages passed between
pairs of processes/threads is error prone and can be difficult to understand. In
some cases, you can avoid low level pair-wise communication by casting the
problem in terms of communications operations over collections of
processes/threads. Common examples include reductions, broadcasts, prefix
sums, and scatter/gather.

• Mutual exclusion: When executing on a shared address space machine,
undisciplined mixtures of reads and writes can lead to race conditions
(programs that yield different results as an OS makes different choices about
how to schedule threads). In this case, the solution is to define blocks of code
or updates of memory that can only be executed by one process or thread at a
time.

• Point to point synchronization: In some problems, pairs of threads have
ordering constraints that must be satisfied to support race-free and correct
results. In this case, a range of synchronization events such as a mutex are
needed that operate just between pairs of threads.

• Collective synchronization: Using synchronization to impose a partial order
over a collection of threads is error prone and can result in programs riddled
with race conditions. The solution is to wherever possible, to use higher level
synchronization operations (such as barrier synchronization) to apply across
collections of threads or processes.

• Transactional memory: Writing race free programs can be a difficult problem
on shared address space computers. This is particularly the case with relaxed
memory models. The solution is to use either the point-to-point or collective
synchronization patterns to protect blocks of code at a course level of
granularity. This greatly restricts opportunities to exploit concurrency. Low
level synchronization operations at a fine level of granularity can be used
(using, for example, the shared data pattern) but these fine grained
synchronization protocols are difficult to implement correctly. The solution is
to use the high level concept of transactions and a transactional memory. The
idea is to fold into the memory system the operations required to detect access
conflicts and to rollback and reissue transactions when a conflict occurs. The
transactional memory lets a programmer avoid the complexity of fine grained
locking, but, it is a speculative parallelism approach and is only effective
when data access conflicts are rare and the need to roll-back and reissue
transactions is infrequent.

