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The key to writing high quality parallel software is to develop a robust software 
design.  This applies to the overall architecture of the program, but also to the 
lower layers in the software system where the concurrency and how it is 
expressed in the final program is defined.  Technology to more systematically 
describe such designs and reuse them between software projects is the 
fundamental problem facing software for terascale processors.  This is far more 
important than programming models and their supporting environments, since 
with a good design in hand, most any programming system can be used to 
actually generate the program’s source code. 

In this paper, we will develop our thesis about the central role played by the 
architecture/design for software.  We will then show how design patterns 
provide a technology to define the reusable design elements in software 
engineering.  This leads us to the ongoing project centered at UC Berkeley’s Par 
Lab to pull the essential set of design patterns for parallel software design into a 
Design Pattern Language.  After describing out pattern language, we’ll present a 
case study from the field of machine learning as a concrete example of how 
patterns are used in practice. 

 

The software engineering crisis 

The trend has been well established [Asanovic09]: parallel processors will dominate most 
if not every niche of computing.  Ideally, this transition would be driven by the needs of 
software. Scalable software would demand scalable hardware and that would drive 
CPU’s to add cores.  But this is not the case.  The motivation for parallelism comes from 
the inability to deliver steadily increasing frequency gains without pushing power 
dissipation to unsustainable levels. Thus, we have a dangerous mismatch; the 
semiconductor industry is banking its future on parallel microprocessors, while the 
software industry is still searching for an effective solution to the parallel programming 
problem.  

The parallel programming problem is not new.  It has been an active area of research for 
the last three decades.  And we can learn a great deal from what has not worked in the 
past. 
 

• Automatic parallelism: Compilers can speculate, prefetch data and reorder 
instructions to balance the load among the components of a system.  But they can 



not look at a serial algorithm and create a different algorithm better suited for 
parallel execution.   

• New languages: Hundreds of new parallel languages and programming 
environments have been created over the last few decades. Many of them are 
excellent and provide high level abstractions that simplify the expression of 
parallel algorithms.  But these languages have not dramatically grown the pool of 
parallel programmers.  The fact is, in the one community with a long tradition of 
parallel computing (high performance computing) the old standards of MPI and 
OpenMP continue to dominate.  There is no reason to believe new languages will 
be any more successful as we move to more general purpose programmers; i.e. it 
is not the quality of our programming models that is inhibiting the adoption of 
parallel programming. 

The central cause of the parallel programming problem is fundamental to the enterprise 
of programming itself. In other words, we believe that our challenges in programming 
parallel processors point to deeper challenges in programming software in general.  We 
believe the only way to solve the programming problem in general is to first understand 
how to architect software. Thus we feel that the way to solve the parallel programming 
problem is to first understand how to architect parallel software.  Given a good software 
design grounded on solid architectural principles, a software engineer can produce high 
quality and scalable software.  Starting with an ill-suited sense of the architecture for a 
software system, however, almost always leads to failure.  Therefore it follows that the 
first step in addressing the parallel programming problem is to focus on software 
architecture. From that vantage point, we have a hope of choosing the right programming 
models and building the right software frameworks that will allow the general population 
of programmers to produce parallel software.  

In this paper, we describe our work on software architecture.  We use the device of a 
pattern language to write our ideas down and put them into a systematic form that can be 
used by others.  After we present our pattern language [OPL09], we present a case study 
to show how these patterns can be used to understand software architecture.   

Software architecture and design patterns 

Productive, efficient software follows from good software architecture.  Hence, we need 
to develop a theory of how software is architected, and in order to do this we need a way 
to write down architectural ideas in a form that groups of programmers can study, debate, 
and come to consensus on.  This systematic process has at its core the peer review 
process that has been instrumental in advancing scientific and engineering disciplines.   

The prerequisite to this process is a systematic way to write down the design elements 
from which anarchitecture is defined.  Fortunately, the software community has already 
reached consensus on how write these elements down: design patterns [Gamma94].   

Design patterns give names to solutions to recurring problems that experts in a problem-
domain gradually learn and “take for granted.”  It is the possession of this tool-bag of 



solutions, and the ability to apply them with facility, that precisely defines what it means 
to be an expert in a domain.    

For example, consider the Dense-linear-
algebra pattern. Experts in fields that make 
heavy use of linear algebra have worked out a 
family of solutions to these problems. These 
solutions have a common set of design 
elements that can be captured in a Dense-
Linear-Algebra design pattern. We summarize 
the pattern in the sidebar, but it is important to 
know that in the full text to the pattern 
[OPL09] there would be sample code, 
examples, references, invariants and other 
information needed to guide a software 
developer interested in dense linear algebra 
problems.   

The dense linear algebra pattern is just one of 
the many patterns a software architect might use when designing an algorithm.  A full 
design includes high-level patterns that describe how an application is organized, 
midlevel patterns about specific classes of computations, and low level patterns 
describing specific execution strategies. We can take this full range of patterns and 
organize them into a single integrated pattern language – a web of interlocking of patterns 
that guide a designer from the beginning of a design problem to its successful realization 
([Alexander72][Mattson04]). 

To represent the domain of software engineering in terms of a single pattern language is a 
daunting undertaking.  Fortunately, based on our studies of successful application 
software, we believe software architectures can be built up from a manageable number of 
design patterns.  These patterns define the building blocks of all software engineering and 
are fundamental to the practice of architecting parallel software.   Hence, an effort to 
propose, argue about, and finally agree on what this set of patterns are is the seminal 
intellectual challenge of our field 

Our Pattern Language 

Software architecture defines the components that make up a software system, the roles 
played by those components, and how they interact.  Good software architecture makes 
design choices explicit and the critical issues addressed by a solution clear.  A software 
architecture is hierarchical rather than monolithic.  It lets the designer localize problems 
and define design elements that can be reused from one problem to another. 

The goal of OPL is to encompass the complete architecture of an application; from the 
structural patterns (also known as architectural styles) that define the overall organization 
of an application [Garlan94] [Shaw95], to the basic computational patterns (also known 

Computational Pattern: Dense-linear-
algebra 

Solution: a computation is organized as a 
sequence of arithmetic expressions acting 
on dense arrays of data. The operations 
and data access patterns are well defined 
mathematically so data can be pre-
fetched and CPUs execute close to their 
theoretically allowed peak performance.  
Applications of this pattern typically use 
standard building defined in terms of the 
dimensions of the dense arrays with 
vectors (BLAS level 1), matrix-vector 



as computational motifs) for each stage of the problem [Asanovic06][Asanovic09], to the 
low level details of the parallel algorithm [Mattson04].   With such a broad scope, 
organizing our design patterns into a coherent pattern language was extremely 
challenging.   

Our approach is to use a layered hierarchy of patterns.  Each level in the hierarchy 
addresses a portion of the design problem.  While a designer may in some cases work 
through the layers of our hierarchy “in order”, it is important to appreciate that many 
design problems do not lend themselves to a top-down or bottom-up analysis.  In many 
cases, the pathway through our patterns will be bounce around between layers with the 
designer working at whichever layer is most productive at a given time (so called 
opportunistic refinement).  In other words, while we use a fixed layered approach to 
organize our patterns into OPL, we expect designers will work though the pattern 
language in many different ways.  This flexibility is an essential feature of design pattern 
languages.  

 
Figure 1  The structure of OPL and the five categories of design patterns.   

 

 

 



As shown in Figure 1, we organize OPL into five major categories of patterns.  
Categories one and two sit at the same level of the hierarchy, and cooperate to create one 
layer of the software architecture. 

1. Structural patterns: Describe the overall 
organization of the application and the way the 
computational elements that make up the 
application interact.  These patterns are closely 
related to the architectural styles discussed in 
[Garlan94].  Informally, these patterns correspond 
to the “boxes and arrows” and architect draws to 
describe the overall organization of an application. 
An example of a structural pattern is pipe-and-
filter described in the sidebar. 

2. Computational patterns: These patterns describe 
the classes of computations that make up the 
application.  They are  essentially the thirteen 
motifs made famous in [Asanovic06] but 
described more precisely as patterns rather than 
simply computational families.  These patterns 
can be viewed as defining the “computations 
occurring in the boxes” defined by the structural 
patterns.  A good example is the dense-linear-algebra pattern described in an earlier 
sidebar.  Note that some of these patterns (such as graph algorithms or N-body) 
define complicated design problems in their own right and serve as entry points into 
smaller design pattern languages focused on a specific class of computations.  This is 
yet another example of the hierarchical nature of the software design problem.    

In OPL, the top two categories, the structural and computational patterns, are placed side 
by side with connecting arrows.  This shows the tight coupling between these patterns 
and the iterative nature of how a designer works with them.  In other words, a designer 
thinks about his or her problem, chooses a structure pattern, then considers the 
computational patterns required to solve the problem.  The selection of computational 
patterns may suggest a different overall 
structure for the architecture and force a 
reconsideration of the appropriate structural 
patterns.  This process, moving between 
structural and computational patterns, 
continues until the designer settles on a high 
level design for the problem.     

The structural and computational patterns 
are used in both serial and parallel programs.  
Ideally, the designer working at this level, 
even for a parallel program, will not need to 
focus on parallel computing issues.  For the 

Structural Pattern: Pipe-and-Filter 

Solution: Structure an application 
as a fixed sequence of filters that 
take input data from preceding 
filters, carry out computations on 
that data, and then pass the output 
to the next filter.  The filters are 
side-effect free; i.e. the result of 
their action is only to transform 
input data into output data.  
Concurrency emerges as multiple 
blocks of data move through the 
Pipe-and-Filter system so that 
multiple filters are active at one 
time. 

Concurrent Algorithm Strategy 
Pattern: Data Parallelism 

Solution: An algorithm is organized as 
operations applied concurrently to the 
elements of a set of data structures. 
The concurrency is in the data. This 
pattern can be generalized by defining 
an index space.  The data structures 
within a problem are aligned to this 
index space and concurrency is 
introduced by applying a stream of 
operations for each point in the index 



remaining layers of the pattern language, 
parallel programming is a primary concern. 

Parallel programming is the art of using 
concurrency in a problem to make the 
problem run to completion in less time.    
We divide the parallel design process into 
the following three layers. 

3. Concurrent Algorithm strategies: 
These patterns define high-level 
strategies to exploit concurrency in a 
computation for execution on a 
parallel computer.  They address the 
different ways concurrency is naturally 
expressed within a problem providing well known techniques to exploit that 
concurrency.  A good example of an algorithm strategy pattern is the Data Parallelism 
pattern. 

4. Implementation strategies: These are the structures that are realized in source code to 
support (a) how the program itself is organized and (b) common data structures 
specific to parallel programming.  The loop parallel pattern is a well known example 
of an implementation strategy pattern. 

5. Parallel execution patterns: These are the approaches used to support the execution of 
a parallel algorithm.  This includes (a) strategies that advance a program counter and 
(b) basic building blocks to support the coordination of concurrent tasks.  The SIMD 
pattern is a good example of a parallel execution pattern. 

Patterns in these three lower layers are 
tightly coupled.   For example, a problem 
using the “recursive splitting” algorithm 
strategy is likely to utilize a fork-join 
implementation strategy which is commonly 
supported at the execution level with a 
thread pool.   These connections between 
patterns are a key point in the text of the 
patterns.   

There is a large intellectual history leading 
up to OPL. The structural patterns of 
Category 1 are largely taken from the work 
of Garlan and Shaw on architectural styles 
[Garlan94] [Shaw95].  That these 
architectural styles could also be viewed as 
design patterns was quickly recognized by 
Buschmann [Buschmann96]. To Garlan and 
Shaw’s architectural styles we added two 

Implementation Strategy Pattern: 
Loop Parallel 

Solution: An algorithm is implemented 
as loops (or nested loops) that execute in 
parallel.  The challenge is to transform 
the loops so iterations can safely execute 
concurrently and in any order.  Ideally, 
this leads to a single source code tree that 
generates a serial program (using a serial 
compiler) or a parallel program (using 
compilers that understand the parallel 
loop constructs).    

Parallel Execution Pattern: Single 
Instruction Multiple Data (SIMD) 

Solution: an implementation of a 
strictly data parallel algorithm is 
mapped onto a platform that 
executes a single sequence of 
operations applied uniformly to a 
collection of data elements. The 
instructions execute “in lockstep” 
by a set of processing elements but 
on their own streams of data. SIMD 
programs use specialized data 
structure, data alignment 
operations, and collective 
operations to extend this pattern to 
a wider range of data parallel 
problems.    



structural patterns that have their roots in parallel computing: Map Reduce, influenced by 
[Dean04] and Iterative Refinement, influenced by Valiant’s bulk-synchronous pattern 
[Valiant90]. The computation patterns of Category 2 were first presented as “dwarfs” in 
[Asanovic06] and their role as computational patterns was only identified later   
[Asanovic09].  The identification of these computational patterns in turn owes a debt to 
Phil Colella’s unpublished work on the “Seven Dwarfs of Parallel Computing.”  The 
lower three Categories within OPL build off earlier and more traditional patterns for 
parallel algorithms [Mattson04]. Mattson’s work was somewhat inspired by Gamma’s 
success in using design patterns for object-oriented programming [Gamma94]. Of course 
all work on design patterns has its roots in Alexander’s ground-breaking work identifying 
design patterns in civil architecture [Alexander72]. 

Case Study: Content Based Image retrieval 

Experience has shown that an easy way to understand patterns and how they are used is 
to follow an example. In this new section we will describe a problem and its 
parallelization using patterns from OPL.  In doing so we will describe a subset of the 
patterns and give some indication of the way we make transitions between layers in the 
pattern language. 

In particular, to understand how OPL can help software architecture, we use a content-
based image retrieval (CBIR) application as an example. From this example we will show 
how structural and computational patterns can be used to describe the CBIR application 
and how the lower layer patterns can be used to parallelize an exemplar component of the 
CBIR application. 

In Figure 2 we see the major elements of our CBIR application as well as the data flow. 
The key elements of the application are the feature extractor, the trainer, and the classifier 
components. Given a set of new images the feature extractor will collect features of the 
images. Given the features of the new images, chosen examples, and some classified new 
images from user feedback, the trainer will train the parameters necessary for the 
classifier. Given the parameters from the trainer, the classifier will classify the new 
images based on their features. The user can classify some of the resulting images and 
give feedback to the trainer repeatedly in order to increase the accuracy of the classifier. 
This top level organization of CBIR is best represented by the pipe-and-filter structural 
pattern. The feature-extractor, trainer, and classifier are filters or computational elements 
which are connected by pipes (data communication channels). Data flows through the 
succession of filters which do not share state and only take input from their input pipe(s). 
The filters perform the appropriate computation on that data and pass the output to the 
next filter(s) via its output pipe. The choice of pipe-and-filter pattern to describe the top 
level structure of CBIR is not unusual. Many applications are naturally described by pipe-
and-filter at the top level. 

In our approach we architect software using patterns in a hierarchical fashion. Since each 
of the filters of CBIR are complex computations they can be further decomposed. In the 
following discussion we consider the classifier filter. There are many approaches to 



classification but in our CBIR application we use a support-vector machine (SVM) 
classifier. SVM is widely used in many classification tasks such as image recognition, 
bioinformatics, and text processing. The structure and computations in the SVM classifier 
are described in Figure 3. The basic structure of the classifier filter is itself a simple pipe-
and-filter structure with two filters: The first filter takes the test data and the support 
vectors needed to calculate the dot products 
between the test data and each support vector. 
This dot product computation is naturally 
performed using the dense linear algebra 
computational pattern. The second filter takes the 
resulting dot products and the following steps are 
to compute the kernel values, sum up all the 
kernel values, and scale the final results if 
necessary. The structural pattern associated with 
these computations is MapReduce (see the 
MapReduce sidebar). 

In a similar way the feature-extractor and trainer 
filters of the CBIR application can be 
decomposed. With that elaboration we would 
consider the “high-level” architecture of the CBIR 
application complete. In general, to construct a 
high-level architecture of an application we 
hierarchically decompose the application using 
the structural and computational patterns of OPL. 

Results

Classifier

Trainer

Feature Extractor 

User Feedback

Choose Examples 

New Images 

Figure 2: The CBIR application framework. 

Structural Pattern: Map-Reduce 

Solution: a solution is structured in two 
phases: (1) a map phase where items 
from an “input data set” are mapped onto 
a “generated data set”, and (2) a 
reduction phase where the generated data 
set is reduced or otherwise summarized 
to generate the final result. Concurrency 
in the map phase is straightforward to 
exploit since the map functions are 
applied independently for each item in 
the input data set.  The reduction phase, 
however, requires synchronization to 
safely combine partial solutions into the 
final result.    



Constructing the high-level architecture of an application is essential, and this effort 
improves not just the software 
viability but also eases 
communication regarding the 
organization of the software. 
However, there is still much work 
to be done before we have a 
working software application. To 
perform this work we move from 
the top layers of OPL (structural 
and computational patterns) down 
into lower layers (concurrent 
algorithmic strategy patterns etc.). 
To illustrate this process we will 
give additional detail on the SVM 
classifier filter. 

After identifying the structural 
patterns and the computational 
patterns in the SVM classifier, we 
need to find appropriate strategies 
to parallelize the computation. In 
the MapReduce pattern the same 
computation is mapped to different 
non-overlapping partitions of the 
state set. The results of these 
computations are then gathered, or 
reduced. If we are interested in arriving 
at a parallel implementation of this 
computation then we define the 
MapReduce structure in terms of a 
Concurrent Algorithmic Strategy. The 
natural choices for Algorithmic 
Strategies are the data parallelism and 
geometric decomposition patterns. Using 
data parallelism we can compute the 
kernel value of each dot product in 
parallel (see the data parallelism side 
bar). Alternatively, using geometric 
decomposition (see the geometric 
decomposition side bar) we can divide 
the dot products into regular chunks of 
data, apply the dot products locally on 
each chunk, and then apply a global 
reduce to compute the summation over all chunks for the final results. We are interested 
in designs that can utilize large numbers of cores.  Since the solution based on the Data 
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Figure 3: Architecture of the SVM classifier filter 
Algorithm Strategy Pattern: 
Geometric Decomposition 

Solution: An algorithm is organized 
by: (1) dividing the key data 
structures within a problem into 
regular chunks, and (2) updating each 
chunk in parallel. Typically, 
communication occurs at chunk 
boundaries so an algorithm breaks 
down into three components: (1) 
exchange boundary data, (2) update 
the interiors or each chunk, and (3) 
update boundary regions. The size of 
the chunks is dictated by the 
properties of the memory hierarchy to 
maximize reuse of data from local 
memory/cache.  



parallelism pattern exposes more concurrent 
tasks (due to the large numbers of dot 
products) compared to the  more coarse 
grained to geometric decomposition solution, 
we choose the data parallelism pattern for 
implementing the map reduce computation. 

The use of the data parallelism algorithmic 
strategy pattern to parallelize the 
MapReduce computation is shown in the 
pseudo code of the kernel value calculation 
and the summation. These computations can 
be summarized as shown in Figure 4. Line 1 
to line 4 is the computation of the kernel value on each dot product, which is the map 
phase. Line 5 to line 13 is the summation over all kernel values, which is the reduce 
phase. Function NeedReduce checks whether element “i” is a candidate for the reduction 
operation. If so, the ComputeOffset function calculates the offset between element “i” 
and another element. Finally, the Reduce function conducts the reduction operation on 
element “i” and “i+offset”.   

To implement the data parallelism strategy from the MapReduce pseudo-code, we need 
to find the best Implementation Strategy Pattern. Looking at the patterns in OPL, both 
strict data parallel and loop parallel are applicable. 

Whether we choose either strict data parallel or loop parallel in the implementation layer, 
we can use the SIMD pattern for realizing the execution. For example, we can apply 
SIMD on line 2 in Figure 4 for calculating the kernel value of each dot product in parallel. 
The same concept can be used on line 7 in Figure 4 for conducting the checking 
procedure in parallel. Moreover, in order to synchronize the computations on different 
processing elements on line 4 and line 12 in Figure 4, we can use the barrier construct 
described within the collective synchronization pattern for achieving this goal. 

Implementation Strategy Pattern: 
Strict Data Parallel 

Solution: Implement a data parallel 
algorithm as a single stream of 
instructions applied concurrently to 
the elements of a data set.  Updates 
to each element are either 
independent, or they involve well 
defined collective operations such 
as reductions or prefix scans.   



In summary, the computation of the SVM classifier can be viewed as a composition of 
the pipe-and-filter, dense linear algebra, and MapReduce patterns. To parallelize the 
MapReduce computation, we used the data parallelism pattern. To implement the data 
parallelism Algorithmic Strategy, both the strict-data-parallel and loop-parallel patterns 
are applicable.  We choose the strict-data-parallel pattern since it seemed a more natural 
choice given the fact we wanted to expose large amounts of concurrency for use on 
many-core chips with large numbers of cores.  It is important to appreciate, however, that 
this is a matter of style and a quality design could have been produced using the loop-
parallel pattern as well.  To map the strict-data-parallel pattern onto a platform for 
execution, we chose SIMD pattern.   While we didn’t show the details of all the patterns 
used, along the way we used the shared-data pattern to define the synchronization 
protocols for the reduction and the collective synchronization pattern to describe the 
barrier construct.  It is common that these functions (reduction and barrier) are provided 
as part of a parallel programming environment; hence, while a programmer needs to be 
aware of these constructs and what they provide, it is rare that they will need to explore 
their implementation in any detail.      

Other Patterns 

OPL is not complete. Currently OPL is restricted to those parts of the design process 
associated with architecting and implementing applications targeting parallel processors.  
There are countless additional patterns that software development teams utilize.  Probably 
the best known example is the set of design patterns used in object-oriented design 

function ComputeMapReduce( DataArray, Result) { 
1    for i ← 1 to n { 

2        LocalValue[i] ← ComputeKernelValue(DataArray[i]); 
3 } 
4 Barrier(); 
5 for reduceLevel ←  1 to MaxReduceLevel { 

6        for i ← 1 to n { 
7         if (NeedReduce(i, reduceLevel) ) { 
8         offset ← ComputeOffset(i, reduceLevel); 

9         LocalValue[i] ← Reduce(LocalValue[i],   
                                  LocalValue[i+offset]); 
10     } 
11     } 
12     Barrier(); 
13    } 



[Gamma94]. We made no attempt to include these in OPL.  An interesting framework 
that supports common patterns in parallel object oriented design is TBB [Reinders07].  

OPL focuses on patterns that are ultimately expressed in software.  These patterns do not 
address, however, methodological patterns experienced parallel programmers use when 
designing or optimizing parallel software.  The following are some examples of 
important classes of methodological patterns. 

• Finding concurrency patterns [Mattson04]:  These patterns capture the process 
that experienced parallel programmers use when exploiting the concurrency 
available in a problem. While these patterns were developed before our set of 
Computational Patterns was identified, they appear to be useful in moving from 
the Computational Patterns category of our hierarchy to the Parallel Algorithmic 
Strategy category. For example applying these patterns would help to indicate 
when geometric decomposition is chosen over data parallelism as a dense linear 
algebra problem moves toward implementation.  

• Parallel programming “best practices” patterns: This describes a broad range of 
patterns we are actively mining as we examine the detailed work in creating 
highly-efficient parallel implementations.  Thus, these patterns appear to be useful 
when moving from the Implementation Strategy patterns to the Concurrent 
Execution patterns. For example, we are finding common patterns associated with 
optimizing software to maximize data locality. 

Summary, Conclusions and Future Work 

We believe that the key to addressing the challenge of writing software is to architect the 
software. In particular, we believe that the key to addressing the new challenge of 
programming multicore and manycore processors is to carefully architect the parallel 
software.  We can define a systematic methodology for software architecture in terms of 
design patterns and a pattern language. Toward this end we have taken on the ambitious 
project of creating a comprehensive pattern language that spans all the way from the 
initial software architecture of an application down to the lowest level details of software 
implementation.  

OPL is a “work in progress”. We have defined the layers in OPL, listed the patterns at 
each layer, and written text for many of the patterns.  Details are available online [OPL].  
On the one hand, much work remains to be done. On the other hand, we do feel confident 
that our structural patterns capture the critical ways of composing software and our 
computational patterns capture the key underlying computations. Similarly, as we move 
down through the pattern language we feel that the patterns at each layer do a good job of 
addressing most of the key problems for which they are intended. The current state of the 
textual descriptions of the patterns in OPL is somewhat nascent. We need to finish 
writing the text for some of the patterns and have them carefully reviewed by experts in 
parallel applications programming. We also need to continue mining patterns from 
existing parallel software to identify patterns that may be missing from our language. 
Nevertheless, last year’s effort spent in mining five applications netted (only) three new 



patterns for OPL. This shows that while OPL is not fully complete, it is not, with the 
caveats described in Section 5, dramatically deficient.  

Complementing the efforts to mine existing parallel applications for patterns is the 
process of architecting new applications using OPL. We are currently using OPL to 
architect and implement a number of applications in areas such as machine learning, 
computer vision, computational finance, health, physical modeling, and games. During 
this process we are watching carefully to identify where OPL helps us and where OPL 
does not offer patterns to guide the kind of design decisions we must make. For example, 
mapping a number of computer-vision applications to new generations of manycore 
architectures helped identify the importance of a family of data layout patterns.   

OPL is an ambitious project. Its scope stretches across the full range of activities in 
architecting a complex application.  It has been suggested that we have taken on too large 
of a task; that it is not possible to define the complete software design process in terms of 
a single design pattern language.  However, after many years of hard work nobody has 
been able to solve the parallel programming problem with specialized parallel 
programming languages or tools that automate the parallel programming process.  We 
believe a different approach is required; one that emphasizes how people think about 
algorithms and design software.  This is precisely the approach supported by design 
patterns, and based on our results so far we believe that patterns and a pattern language 
may indeed be the key to finally resolving the parallel programming problem. 

While this claim may seem grandiose, we have an even greater aim for our work. We 
believe that our efforts to identify the core computational and structural patterns for 
parallel programming has led us to begin to identify the core computational elements 
(computational patterns, analogous to atoms) and means of assembling them (structural 
patterns, analogous to molecular bonding) of all electronic system. If this is true then 
these patterns not only serve as a means to assist software design but can be used to 
architect a curriculum for a true discipline of computer science. 
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Appendix: Design pattern Descriptions 

In this appendix, we will describe the contents of each category of patterns within OPL.   
For each category of patterns, we will define the goal of the patterns within that category, 
the artifacts from the design process produced with this category of patterns, the activities 
associated with these patterns, and finally the patterns themselves. 

Structural patterns 
Goal: These patterns define the overall structure for a program. 
Output: The overall organization of a program; often represented as an informal picture 
of a program’s high level design. These are the “boxes and arcs” a software architect 
would write on a whiteboard in describing their design of an application. 
Activities:  The basic program structure is identified from among the structural patterns. 
Then the architect examines the "boxes" of the program structure to identify 
computational kernels. 
 

• Pipe-and-filter:  These problems are characterized by data flowing through 
modular phases of computation.  The solution constructs the program as filters 
(computational elements) connected by pipes (data communication channels). 
Alternatively, they can be viewed as a graph with computations as vertices and 
communication along edges.  Data flows through the succession of stateless filters, 
taking input only from its input pipe(s), transforming that data, and passing the 
output to the next filter via its output pipe  



• Agent and Repository:  These problems are naturally organized as a collection of 
data elements that are modified at irregular times by a flexible set of distinct 
operations.  The solution is to structure the computation in terms of a single 
centrally-managed data repository, a collection of autonomous agents that operate 
upon the data, and a manager that schedules the agents’ access to the repository 
and enforces consistency.  

• Process control: Many problems are naturally modeled as a process that either 
must be continuously controlled; or must be monitored until completion.  The 
solution is to define the program analogously to a physical process control 
pipeline: sensors sense the current state of the process to be controlled; controllers 
determine which actuators are to be affected; actuators actuate the process. This 
process control may be continuous and unending (e.g. heater and thermostat), or it 
may have some specific termination point (e.g. production on assembly line).  

• Event-based implicit invocation: Some problems are modeled as a series of 
processes or tasks which respond to events in a medium by issuing their own 
events into that medium.  The structure of these processes is highly flexible and 
dynamic as processes may know nothing about the origin of the events, their 
orientation in the medium, or the identity of processes that receive events they 
issue. The solution is to represent the program as a collection of agents that 
execute asynchronously: listening for events in the medium, responding to events, 
and issuing events for other agents into the same medium.  The architecture 
enforces a high level abstraction so invocation of an event for an agent is implicit; 
i.e. not hardwired to a specific controlling agent.  

• Model-view-controller: Some problems are naturally described in terms of an 
internal data model, a variety of ways of viewing the data in the model, and a 
series of user controls that either change the state of the data in the model or select 
different views of the model. While conceptually simple, such systems become 
complicated if users can directly change the formatting of the data in the model or 
view-renderers come to rely on particular formatting of data in the model. The 
solution is to segregate the software into three modular components: a central data 
model which contains the persistent state of the program; a controller that 
manages updates of the state; and one or more agents that export views of the 
model. In this solution the user cannot modify either the data model or the view 
except through public interfaces of the model and view respectively. Similarly the 
view renderer can only access data through a public interface and cannot rely on 
internals of the data model. 

• Iterative refinement: Some problems may be viewed as the application of a set of 
operations over and over to a system until a predefined goal is realized or 
constraint is met.  The number of applications of the operation in question may 
not be predefined, and the number of iterations through the loop may not be able 
to be statically determined.   The solution to these problems is to wrap a flexible 
iterative framework around the operation that operates as follows:  the iterative 
computation is performed; the results are checked against a termination condition; 
depending on the results of the check, the computation completes or proceeds to 
the next iteration. 



• Map reduce: For an important class of problems the same function may be applied 
to many independent data sets and the final result is some sort of summary or 
aggregation of the results of that application. While there are a variety of ways to 
structure such computations, the problem is to find the one that best exploits the 
computational efficiency latent in this structure.  The solution is to define a 
program structured as two distinct phases.  In phase one a single function is 
mapped onto independent sets of data. In phase two the results of mapping that 
function on the sets of data are reduced. The reduction may be a summary 
computation, or merely a data reduction. 

• Layered systems: Sophisticated software systems naturally evolve over time by 
building more complex operations on top of simple ones. The problem is that if 
each successive layer comes to rely on the implementation details of each lower 
layer then such systems soon become ossified as they are unable to easily evolve. 
The solution is to structure the program as multiple layers in such a way that 
enforces a separation of concerns. This separation should ensure that:  (1) only 
adjacent layers interact and (2) interacting layers are only concerned with the 
interfaces presented by other layers. Such a system is able to evolve much more 
freely.  

• Puppeteer: Some problems require a collection of agents to interact in potentially 
complex and dynamic ways.  While the agents are likely to exchange some data 
and some reformatting is required, the interactions primarily involve the 
coordination of the agents and not the creation of persistent shared data.  The 
solution is to introduce a manager to coordinate the interaction of the agents, i.e. a 
puppeteer, to centralize the control over a set of agents and to manage the 
interfaces between the agents. 

• Arbitrary static task graph:  Sometimes it’s simply not clear how to use any of the 
other structural patterns in OPL, but still the software system must be architected.  
In this case, the last resort is to decompose the system into independent tasks 
whose pattern of interaction is an arbitrary graph.  Since this must be expressed as 
a fixed software structure, the structure of the graph is static and does not change 
once the computation is established.     
 

Computational patterns 
Goal: These patterns define the computations carried out by the components that make 
up a program.  
Output: Definitions of the types of computations that will be carried out.  In some cases, 
specific library routines will be defined. 
Activities: The key computational kernels are matched with computational patterns. Then 
the architect examines how the identified computational patterns should be implemented. 
This may lead to another iteration through structural patterns, or a move downward in the 
hierarchy to algorithmic strategy patterns. 

• Backtrack, branch and bound:  Many problems are naturally expressed as either 
the search over a space of variables to find an assignment of values to the 
variables that resolves a Yes/No question  (a decision procedure) or assigns values 



to the variables that gives a maximal or minimal value to a cost function over the 
variables, respecting some set of constraints. The challenge is to organize the 
search such that solutions to the problem, if they exist, are found, and the search is 
performed as computationally efficiently as possible. The solution strategy for 
these problems is to impose an organization on the space to be searched that 
allows for sub-spaces that do not contain solutions to be pruned as early as 
possible.  

• Circuits: Some problems are best described as Boolean operations on individual 
Boolean values or vectors (bit-vectors) of Boolean values.  The most direct 
solution is to represent the computation as a combinational circuit and, if 
persistent state is required in the computation, to describe the computation as a 
sequential circuit: that is, a mixture of combinational circuits and memory 
elements (such as flip-flops). 

• Dynamic programming: Some search problems have the additional characteristic 
that the solution to a problem of size N can always be assembled out of solutions 
to problems of size ≤ N-1. The solution in this case is to exploit this property to 
efficiently explore the search space by finding solutions incrementally and not 
looking for solutions to larger problems until the solutions to relevant  sub-
problems are found.  

• Dense linear algebra: A large class of problems expressed as linear operations 
applied to matrices and vectors for which most elements are non-zero.   a 
computation is organized as a sequence of arithmetic expressions acting on dense 
arrays of data. The operations and data access patterns are well defined 
mathematically so data can be pre-fetched and CPUs execute close to their 
theoretically allowed peak performance.  Applications of this pattern typically use 
standard building defined in terms of the dimensions of the dense arrays with 
vectors (BLAS level 1), matrix-vector 

• Sparse Linear Algebra: This includes a large class of problems expressed in terms 
of linear operations over sparse matrices (i.e. matrices for which it is advantages 
to explicitly take into account the fact that many elements are zero).   Solutions 
are diverse and include a wide range of direct and iterative methods.    

• Finite state machine: Some problems have the character that a machine needs to 
be constructed to control or arbitrate a piece of real or virtual machinery. Other 
problems have the character that an input string needs to be scanned for syntactic 
correctness. Both problems can be solved by creating a finite-state machine that 
monitors the sequence of input for correctness and may, optionally, produce 
intermediate output.  

• Graph algorithms:  A broad range of problems are naturally represented as actions 
on graphs of vertices and edges.  Solutions to this class of problems involve 
building the representation of the problem as a graph, and applying the 
appropriate graph traversal or partitioning algorithm that results in the desired 
computation.   

• Graphical  models: Many problems are naturally represented as graphs of random 
variables, where the edges represent correlations between variables.  Typical 
problems include inferring probability distributions over a set of hidden states, 



given observations on a set of observed states observed states, or estimating the 
most likely state of a set of hidden states, given observations.  To address this 
broad class of problems is an equally broad set of solutions known as graphical 
models.  

• Monte Carlo: Monte Carlo approaches use random sampling to understand 
properties of large sets of points. Sampling the set of points produces a useful 
approximation to the correct result.     

• N-body: Problems in which the properties of each member of a system depends 
on the state of every other member of the system.  For modest sized systems, 
computing each interaction explicitly for every point is feasible (a naïve O(N2) 
solution).  In most cases, however, the arrangement of the members of the system 
in space is used to define an approximation scheme that produces an approximate 
solution for a complexity less than the naïve solution.     

• Spectral methods: These problems involve systems that are defined in terms of 
more than one representation.  For example, a periodic sequence in time can be 
represented as a set of discrete points in time or as a linear combination of 
frequency components.  This pattern addresses problems where changing the 
representation of a system can convert a difficult problem into a straightforward 
algebraic problem.   The solutions depend on an efficient mechanism to carry out 
the transformation such as a fast Fourier transform.     

• Structured mesh:  These problems represent a system in terms of a discrete 
sampling of points in a system that is naturally defined by a mesh.  For a 
structured mesh, the points are tied to the geometry of the domain by a regular 
process.  Solutions to these problems are computed for each point based on 
computations over neighborhoods of points (explicit methods) or as solutions to 
linear systems of equations (implicit methods) 

• Unstructured mesh: Some problems that are based on meshes utilize meshes that 
are not tightly coupled to the geometry of the underlying problems.   In other 
words, these meshes are irregular relative to the problem geometry.  The solutions 
are similar to those for the structured mesh (i.e. explicit or implicit) but in the 
sparse case, the computations require gather and scatter operations over sparse 
data.   

Algorithm Strategy patterns  
Goal: These patterns describe the high level strategies used when creating the parallel 
algorithms used to implement the computational patterns.    
Output: Definition of the algorithms and choice of concurrency to be exploited. 
Activities: Once the pattern for a key computation is identified, there may be a variety of 
different ways to perform that computation. At this step the architect chooses which 
particular algorithm, or family of algorithms, will be used to implement this computation. 
Also, this is the stage where the opportunities for concurrency, which are latent in the 
computation, are identified. Trade-offs among different algorithms and strategies will be 
examined in attempt to identify the best match to the computation at hand. 

• Task parallelism: These problems are characterized in terms of a collection of 
activities or tasks. The solution is to schedule the tasks for execution in a way that 



keeps the work balanced between the processing elements of the parallel 
computer and manages any dependencies between tasks so the correct answer is 
produced regardless of the details of how the tasks execute.  This pattern includes 
the well known embarrassingly parallel pattern (no dependencies). 

• Pipeline: For these problems consist of a stream of data elements and a serial 
sequence of transformations to apply to these elements.  On initial inspection, 
there appears to be little opportunity for concurrency.  If the processing for each 
data element, however, can be carried out concurrently with that for the other data 
elements, the problem can be solved in parallel by setting up a series of fixed 
coarse-grained tasks (stages) with data flowing between them in an assembly-line 
like manner. The solution starts out serial as the first data element is handled, but 
with additional elements moving into the pipeline, concurrency grows up to the 
number of stages in the pipeline (the so-called depth of the pipeline) 

• Discrete event: Some problems are defined in terms of a loosely connected 
sequence of tasks that interact at unpredictable moments.   The solution is to setup 
an event handler infrastructure of some type and then launch a collection of tasks 
whose interaction is handled through the event handler.   The handler is an 
intermediary between tasks, and in many cases the tasks do not need to know the 
source or destination for the events.   This pattern is often used for GUI design 
and discrete event simulations. 

• Speculation: The problem contains a potentially large number of tasks that can 
usually run concurrently; however, for a subset of the tasks unpredictable 
dependencies emerge and these make it impossible to safely let the full set of 
tasks run concurrently.  An effective solution may be to just run the tasks 
independently, that is speculate that concurrent execution will be committed, and 
then clean up after the fact any cases where concurrent execution was incorrect.  
Two essential element of this solution are: 1) to have an easily identifiable safety 
check to determine whether a computation can be committed and 2)  the ability to 
rollback and re-compute the cases where the speculation was not correct.      

• Data parallelism: Some problems are best understood as parallel operations on the 
elements of a data structure. When the operations are for the most part uniformly 
applied to these elements, an effective solution is to treat the problem as a single 
stream of instructions applied to each element.  This pattern can be extended to a 
wider range of problems by defining an index space and then aligning both the 
parallel operations and the data structures around each point in the index space. 

• Recursive splitting: Sometimes, an algorithm can be expressed as the composition 
of a series of tasks that are generated recursively or generated during the traversal 
of a recursive data structure. The problem is how to efficiently execute such 
algorithms that might exhibit data dependent and dynamic task creation behavior 
with limited knowledge of the available hardware resources. The solution is to (1) 
Express problem recursively with more than one task generated per call (2) Use a 
balanced data structure, if possible (3) Use a fork-join or task-queue 
implementation (4) Use optimizations to improve locality. 



• Geometric decomposition: An algorithm is organized by: (1) dividing the key data 
structures within a problem into regular chunks, and (2) updating each chunk in 
parallel. Typically, communication occurs at chunk boundaries so an algorithm 
breaks down into three components: (1) exchange boundary data, (2) update the 
interiors or each chunk, and (3) update boundary regions. The size of the chunks 
is dictated by the properties of the memory hierarchy to maximize reuse of data 
from local memory/cache.. 

Implementation strategy patterns 
Goal: These patterns focus on how a software architecture is implemented in software.  
They describe how threads or processes execute code within a program; i.e. they are 
intimately connected with how an algorithm design is implemented in source code.  
These patterns fall into two sets: program structure patterns and data structure patterns.   
Output: pseudo-code defining how a parallel algorithm will be realized in software. 
Activities: This is the stage where the broad opportunities for concurrency identified by 
the parallel algorithmic strategy patterns are mapped onto particular software constructs 
for implementing that concurrency. Advantages and disadvantages of different software 
constructs will be weighed. 

• Program structure 
• Single-Program Multiple Data (SPMD):  Keeping track of multiple streams of 

instructions can be very difficult for a programmer.  If each instruction stream 
comes from independent source code, the software can quickly become 
unmanageable.  There are a number of solutions to this problem.  One is to 
have a single program (SP) that is used for all of the streams of instructions.  
An process/thread ID (or rank) is defined for each instance of the program and 
this can be used to index into multiple data sets (MD) or branch into different 
sub-sets of instructions.       

• Strict data parallel: Data parallel algorithms constitute a large class of 
algorithms depending on the details of how data is shared as operations are 
applied concurrently to the data.  If the sharing is minimal or if it can be 
handled by well-defined collective operations (e.g. parallel pre-fix or shift and 
mask operations) it may be possible to solve the problem with a single stream 
of instructions applied to data elements concurrently.  In other words, the 
concurrency is strictly represented as a single stream of instructions applied to 
parallel data structures. 

• Fork/join:  The problem is defined in terms of a set of functions or tasks that 
execute within a shared address space.   The solution is to logically create 
threads (fork), carry out concurrent computations, and then terminate them 
after possibly combining results from the computations (join).   

• Actors:  An important class of object oriented programs represents the state of 
the computation in terms of a set of persistent objects.   These objects 
encapsulate the state of the computation and include the fundamental 
operations to solve the problem as methods for the objects.   In these cases, an 
effective solution to the concurrency problem is to make these persistent 



objects distinct software agents (the actors) that interact over distinct channels 
(message passing). 

• Master-worker:  A common problem in parallel programming is how to 
balance the computational load among a set of processing elements within a 
parallel computer.  For task parallel programs with no communication 
between tasks (or infrequence but well-structured, anonymous 
communication) and effective solution with “automatic dynamic load 
balancing” is to define a single master to mange the collection of tasks and 
collect results.  Then a set of workers grab a task, do the work, send the results 
back to the master, and then grab the next task. This continues until all the 
tasks have been computed.   

• Task queue: For task parallel problems with independent tasks, the challenge 
is how to schedule the execution of tasks to balance the computational load 
among the processing elements of a parallel computer. One solution is to 
place the tasks into a task queue. The runtime system then pulls tasks out of 
the queue, carries out the computations, then goes back to the queue for the 
next task.  Notice that this is closely related too the master/worker pattern but 
in this case, there is no need for extra processing by a master to either manage 
the tasks or to deal with the results of the tasks. Also, unlike master-worker, 
task generation is not restricted to the master thread alone. 

• Graph Partitioning: A graph is typically a single monolithic structure with 
edges indicating relations among vertices. The problem is how to organize 
concurrent computation on this single structure in such a way that 
computations on many parts of the graph can be done concurrently. The 
solution is to find a strategy for partitioning the graph such that 
synchronization is minimized and the workload is balanced. 

• Loop-level parallelism:  The problem is expressed in terms of a modest 
number of compute intensive loops.  The loop iterations can be transformed so 
they can safely execute independently.  The solution is to transform the loops 
as needed to support safe concurrent execution,  and then replace the serial 
compute intensive loops with parallel loop constructs (such as the “for 
worksharing construct” in OpenMP).  A common goal of these solutions is to 
create a single program that executes in serial using serial compilers or in 
parallel using compilers that understand the parallel loop construct. 

• BSP:  Managing computations and communications plus overlapping them to 
optimize performance can be very difficult.  When the computations break 
down into a regular sequence of stages with well defined communication 
protocols between phases, a simplified computational structure can be used.  
One such structure is the BSP model of computation described in [Valiant90]. 
In this solutions, a  computation is organized as a sequence of super-steps.  
Within a super-step, computation occurs on a local view of the data.  
Communication events are posted within a super-step but the results are not 
available until the subsequent super-step.  Communication events from a 
super-step are guaranteed to complete before the subsequent super-step starts.  
This structure lets the supporting runtime system overlap communication and 
computation while making the overall program structure easier to understand. 



• Data Structure Patterns 
• Shared queue:  Some problems generate streams of results that must be 

handled in some predefined order.  It can be very difficult to safely put items 
into the stream or pull them off the stream when concurrently executing tasks 
are involved.  The solution is to define a shared queue where the safe 
management of the queue is built into the operations upon the queue.   

• Distributed array:  The array is a critical data structure in many problems.  
Operating on components of the array concurrently (for example, using the 
geometric decomposition pattern) is an effective way to solve these problems 
in parallel.  Concurrent computations may be straightforward to define, but 
defining how the array is decomposed among a collection of processes or 
threads can be very difficult. In particular, solutions can require complex 
book-keeping to map indices between global indices in the original problem 
domain and local indices visible to a particular thread or process.  The 
solution is to define a distributed array and fold the complicated index algebra 
into access methods on the distributed array data type.  The programmer still 
needs to handle potentially complex index algebra, but it’s localized to one 
place and can possibly be reused across programs that use similar array data 
types.    

• Shared hash table:  A hash table is one an important data structure in a wide 
range of problems. It is particularly important in parallel algorithms as a wide 
range of distributed data structures can be mapped onto a hash table.  As with 
the distributed array pattern, the problem is the indexing required to transform 
a global hash key into a local hash key for a particular member of the set of 
processes or threads involved with a parallel computation.  The solution is to 
place the indexing operations inside a method associated with a hash table 
data type to insulate this complexity for the larger source code and support 
reuse between related program.    

• Shared data:  Programmers should always try to represent data shared between 
threads or processes as shared data types with a well defined API to hide the 
complexity of safe concurrent access to the data.  In some cases, however, this 
just is not practical.  The solution is to put data into a shared address space 
and then define synchronization protocols to protect that data.    

Parallel Execution Patterns 
Goal: These patterns describe how a parallel algorithm is organized into software 
elements that execute on real hardware and interact tightly with a specific programming 
model.  We organize these into two sets: (1) process/thread control patterns and (2) 
coordination patterns. 
Output: Should produce particular approaches to exploit the hardware capabilities for 
parallelism so that we can execute programs efficiently. 
Activities: This is the stage where the previously identified software constructs ware 
matched up with the actual execution capability of the underlying hardware. At this point 
the performance of the underlying hardware mechanisms may be known and the 
advantages and disadvantages of different mappings to hardware can be precisely 
measured. 



• Patterns that “advance a program counter” 
• MIMD: The problem is expressed in terms of a set of tasks operating 

concurrently on their own streams of data.  The solution is to construct the 
parallel program as sequential processes that execute independently and 
coordinate their execution through discrete communication events.  

• Data flow: When a problem is defined as a sequence of transformations 
applied to a stream of data elements, an effective parallel execution strategy is 
to organize the computation around the flow of data.  The tasks become the 
nodes in a fixed network of sequential processes and the data flows through 
the network from one node to the other.  Task-graph: Higher order structure to 
a problem can be used to help make a concurrent program easier to 
understand.  In some cases, however, no such structure is apparent.  In these 
cases, the computation can be viewed as a directed acyclic graph of threads or 
processes which can be mapped onto the elements of a parallel computer.  
This is a very general pattern that can be used at a low level to support the 
other execution patterns.   

• Single-Instruction Multiple Data (SIMD): Some problems map directly onto a 
sequence of operations applied uniformly to a collection of data structures.  
These problems can be solved by applying a single stream of instructions that 
are executed “in lockstep” by a set of processing elements but on their own 
streams of data.  Common examples are the vector instructions built into 
many modern microprocessors. 

• Thread pool: Fork/Join and other patterns based on dynamic sets of threads 
may include frequent operations to create or destroy threads.  This is a very 
expensive operation on most systems.  The solution is to maintain a pool of 
threads.  Instead of creating a new thread, a thread is used from the pool. 
Instead of destroying a thread (e.g. when a fork operations is encountered) the 
thread is returned to the pool.  This approach is commonly used with task-
queue programs with work stealing to enforce a more balanced load. 

• Speculative execution:  Compilers and parallel runtime systems must make 
conservative assumptions about the data shared between tasks to assure that 
correct results are produced. This approach can overly constrain the 
concurrency available to a problem.  The solution is to have a compiler or 
runtime system that is enabled for speculative execution.  This means that 
additional concurrent tasks are exposed together with a way to test after the 
fact that speculation was safe and a way to rollback and re-compute unsafe 
results when speculation was not warranted.    

• Digital circuits: The implementation of system functionality is often so highly 
constrained that it cannot be entirely implemented in software and still meet 
speed or power constraints. One solution strategy for highly concurrent 
implementation is to implement functionality in digital circuits. These circuits 
may operate asynchronously as special-purpose execution units or they may 
be  implemented as instruction extensions of a instruction-set processor. 

• Patterns that Coordinate the execution of threads or processes  



• Message passing: The problem is to coordinate the execution of a collection of 
processes or threads, but with no support from the hardware for data structures 
in a shared memory.  The solution is to organize coordination operations 
(synchronization and communication) in terms of distinct messages passed 
over some sort of interconnection network.    

• Collective communication:  Working directly with messages passed between 
pairs of processes/threads is error prone and can be difficult to understand.  In 
some cases, you can avoid low level pair-wise communication by casting the 
problem in terms of communications operations over collections of 
processes/threads.  Common examples include reductions, broadcasts, prefix 
sums, and scatter/gather.   

• Mutual exclusion: When executing on a shared address space machine, 
undisciplined mixtures of reads and writes can lead to race conditions 
(programs that yield different results as an OS makes different choices about 
how to schedule threads).  In this case, the solution is to define blocks of code 
or updates of memory that can only be executed by one process or thread at a 
time.  

• Point to point synchronization: In some problems, pairs of threads have 
ordering constraints that must be satisfied to support race-free and correct 
results.  In this case, a range of synchronization events such as a mutex are 
needed that operate just between pairs of threads.   

• Collective synchronization: Using synchronization to impose a partial order 
over a collection of threads is error prone and can result in programs riddled 
with race conditions.  The solution is to wherever possible, to use higher level 
synchronization operations (such as barrier synchronization) to apply across 
collections of threads or processes.    

• Transactional memory: Writing race free programs can be a difficult problem 
on shared address space computers.  This is particularly the case with relaxed 
memory models.  The solution is to use either the point-to-point or collective 
synchronization patterns to protect blocks of code at a course level of 
granularity.  This greatly restricts opportunities to exploit concurrency.  Low 
level synchronization operations at a fine level of granularity can be used 
(using, for example, the shared data pattern) but these fine grained 
synchronization protocols are difficult to implement correctly.  The solution is 
to use the high level concept of transactions and a transactional memory.  The 
idea is to fold into the memory system the operations required to detect access 
conflicts and to rollback and reissue transactions when a conflict occurs.   The 
transactional memory lets a programmer avoid the complexity of fine grained 
locking, but, it is a speculative parallelism approach and is only effective 
when data access conflicts are rare and the need to roll-back and reissue 
transactions is infrequent. 

 


