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Abstract 

 
In the first of five parts in a series, the Schroedinger equation is solved in spherical polar 

coordinates to yield wave functions that enable an accurate calculation of the frequencies and 

intensities of lines in the absorption spectrum of the Lyman series in the vacuum-ultraviolet 

region. Accurate plots of surfaces of amplitude functions illustrate the variation of shapes and 

sizes varying with quantum numbers k, l, m for comparison with the corresponding plots of 

amplitude functions in other systems of coordinates. 

 

 
Resumen 

 

En este primer artículo de cinco, la ecuación de Shroedinger se resuelve usando coordinadas 

polares esféricas para obtener funciones de onda que facilitan un cálculo preciso de las 

frecuencias e intensidades del especto de absorción de una serie de Lyman en la región de 

ultravioleta al vacío.  Los gráficos precisos de las funciones de amplitud muestran la variación 

de las formas y tamaños con los números cuánticos k, l y m para comparar con los gráficos 

correspondientes a las funciones de amplitud en otros sistemas de coordenadas. 

 
key words:  hydrogen atom, wave mechanics, spherical polar coordinates, orbitals, atomic 

spectra  
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I. INTRODUCTION 

 

 Several months after Heisenberg initiated quantum mechanics in 1925 [1], Schroedinger 

introduced wave mechanics with four articles, of translated title Quantisation as a Problem of Proper 

Values [2,3,4,5], that have since served as a general basis of calculations on microscopic systems for 

physical and chemical purposes. Heisenberg attacked first the problem of an anharmonic oscillator 

[1], which eventually involved operations with explicit matrices [6].  Pauli then applied a symbolic 

method, involving no explicit matrix, to generate the energies of states of the hydrogen atom, but 

“the calculation of transition probabilities (intensities) [was] omitted from consideration” [7].  In 

his first article on wave mechanics, Schroedinger solved his differential equation independent of 
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time for the hydrogen atom in spherical polar coordinates on assuming an amplitude function of 

appropriate properties [2], and achieved an account of the energies of the discrete states that was 

intrinsically no great advance on Bohr’s grossly flawed derivation and even on Pauli’s quantum-

mechanical achievement [7]. In contrast, in an astonishing achievement in his third article, 

Schroedinger not only analogously solved the differential equation for the hydrogen atom in 

paraboloidal coordinates [4] but also developed a perturbation theory and calculated the 

intensities of spectral lines; in a fourth part [5], on incorporating time as a variable, he eliminated 

the energy parameter from the partial-differential equation, producing a temporal dependence in 

the resulting wave function. 

Among the eleven systems of coordinates [8] that allow a separation of three spatial 

variables in the Helmholtz equation, or hence also the Laplace equation because that Helmholtz 

equation contains the laplacian operator, only four systems enable a complete separation of 

variables of Schroedinger’s partial-differential equation for the hydrogen atom to yield ordinary-

differential equations, specifically the two specified above plus ellipsoidal coordinates [9], for 

which only indirect solutions in series had been achieved [10] before the present work, and 

spheroconical coordinates for which no explicit algebraic solution has ever been reported.  The 

objective of the few articles in this series is to present in turn the solution, derived directly with 

advanced mathematical software (Maple) for symbolic computation, of Schroedinger’s temporally 

dependent or independent equation in each of the four systems of coordinates, accompanied with 

numerous accurate illustrations of surfaces of amplitude functions in the various systems, and 

then to discuss the ramifications of these multiple solutions in a chemical context. Although the 

governing equations are, of necessity, defined in other systems of coordinates with three spatial 

dimensions, we view these surfaces invariably in rectangular cartesian coordinates:  a computer 

program translates effectively from another or original system of coordinates, in which the algebra 

and calculus are performed, to the system to which a human eye is accustomed.  The scope of 

treatments in articles in this series is limited to that appropriate to Schroedinger's equations in a 

context of pioneer quantum mechanics in its wave-mechanical variety, so neglecting relativistic 

effects, effects of electronic and nuclear intrinsic angular momenta, radiative effects and other 

aspects that are typically omitted from general undergraduate courses in chemistry and physics. 

 The most fundamental application of quantum mechanics is in atomic physics, which has 

also chemical implications. The simplest chemical species is the hydrogen atom, 1H, which consists 

of a simple atomic nucleus – a proton in the most common instance – and one electron, bound 

through an electrostatic attraction that acts between these particles. Heisenberg recognized that the 

observable properties of an atom or molecule are the frequencies and intensities of its spectral 

lines, and that the fundamental properties of an atomic or molecular system that are involved in a 

calculation of a spectrum are the relative positions and momenta of the particles comprising that 

system [1].  Within pioneer quantum mechanics, nobody has yet succeeded in predicting the 

intensities of lines in the discrete spectrum of a hydrogen atom without involving explicitly 

Schroedinger’s amplitude or wave functions, or equivalent.  For this reason, even though the latter 

are incontestably artefacts of both a particular method of calculation and a selected system of 

coordinates, they seem at present to be unavoidable for a calculation of important observable 

properties of an atomic or molecular system. In this part I, we review the solution of 

Schroedinger’s equation for the hydrogen atom in spherical polar coordinates, presenting merely 

the most pertinent equations and formulae as a basis to explain the quintessential mathematical 

and physical implications.  Details of the derivation of the formulae appear elsewhere [11]. 

 

 



THE HYDROGEN ATOM ACCORDING TO WAVE MECHANICS – I. SPHERICAL POLAR COORDINATES. 

Ciencia y Tecnología, 32(2): 1-24, 2016 - ISSN: 0378-0524 3

II. SCHROEDINGER’S EQUATION IN SPHERICAL POLAR COORDINATES 

 

 The magnitude of a central force on an object depends on only the distance of that object 

from the origin; the direction of the force is along the line joining the origin and the object.  The 

coulombic attraction is a central force, which implies a conservative field and which signifies that it 

is expressible as the gradient of a potential energy. Schroedinger’s equation for an electron moving 

in a central force field is invariably separable in spherical polar coordinates, which in 

Schroedinger's paper is called simply polar coordinates [2]. We assume the electron and the 

proton, or other atomic nucleus, to constitute point masses that interact according to Coulomb’s 

law; a deviation from that law might imply a non-zero rest mass of a photon, for which no 

evidence exists, apart from the effects of the finite volume and shape of a massive atomic nucleus, 

and their isotopic variation, for which experimental evidence exists.  We first relate these 

coordinates, i.e. radial coordinate r, polar angular coordinate  and equatorial angular coordinate 

, to cartesian coordinates x, y, z as algebraic formulae, according to ISO standard 80000-2:2009, 

 

x = r sin() sin(),     y = r sin() cos(,     z = r cos() 

 

with domains 0 ≤  r < ∞, 0 ≤ < , 0 ≤ < 2 , so that axis z in cartesian coordinates becomes the 

polar axis in spherical polar coordinates.  For the motion of the electron relative to the atomic 

nucleus, the use of a reduced mass converts the problem of treating two interacting particles into a 

treatment of effectively a single particle subject to a force field; the motion of the atom as a whole 

through space is of little interest – only the internal motion produces observable properties readily 

observable in atomic spectra in absorption or emission. Coordinate r signifies the distance between 

reduced mass  and the origin; coordinate  signifies the angle of inclination between a line joining 

that reduced mass to the origin and polar axis z in cartesian coordinates; coordinate  signifies the 

equatorial angle between a half-plane containing that line, between the reduced mass and the 

origin, and half-plane x=0; a half-plane extends from the polar axis to ∞ in any direction.  The 

limiting cases are thus for r a point at the origin as r → 0, and for  a line along positive axis z as  

→ 0 and along negative axis z as → .  Surfaces of coordinates r,  and  as constant quantities 

are exhibited, with definitions, in figure 1.  For use within an integrating element in subsequent 

integrals, the jacobian of the transformation of coordinates between cartesian and spherical polar, 

as defined above, is r2 sin().   

After the separation of the coordinates of the centre of mass of the H atom, Schroedinger’s 

temporally dependent equation in explicit SI units, 

 

 

 

contains within terms on the left side an electrostatic potential energy proportional to r-1 and first 

and second partial derivatives of an assumed wave function (r, , t) with respect to spatial 

coordinates r,  and on the right side a first partial derivative with respect to time t.  Apart from 

fundamental physical constants, specifically electric permittivity of free space 0, Planck constant h 
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and protonic charge e, there appear constant parameters Z for atomic number – Z = 1 for H – and 

= meM /(M + me) for the reduced mass of the atomic system with nuclear mass M; this reduced 

mass is practically equal to the electronic rest mass me. In the limit of infinite nuclear mass, the 

position of that nuclear mass coincides with the origin of the system of coordinates.  After the 

separation of the variables and the solution of the four consequent ordinary-differential equations 

including definition of the integration constants and separation parameters, the full solution of the 

above equation has this form [11]. 

 

 

 

 
 

FIGURE 1.  Definition of spherical polar coordinates r, :  a sphere (red) has radius r = 1 

unit; a cone (blue) has polar angle  = 6 rad with respect to polar axis +z; a half-plane 

(green) has equatorial angle /10 rad with respect to plane x = 0.  

 

The presence of i = √−1 in two exponential factors as product with  or t signifies that this formula 

is complex, thus containing real and imaginary parts.  Coefficient c, which here does not denote 

the speed of light and which equals any complex number of magnitude unity such as a fourth root 

( ) , , ,r   t c
Z   e2 !k


0

h2 !( ) k 2 l 1













2   e2 Z

( ) k l 1 h2 
0

( )l 1

rl












LaguerreL , ,k 2 l 1

2   e2 Z r

h2 
0

( ) k l 1
e


















 e2 Z r

h
2

0

( ) k l 1

e
( )i m 

( )2 l 1 !( )l m

!( )l m
( )LegendreP , ,l m ( )cos  e
















i  Z2 e4  t

4 h3 
0

2
( ) k l 1 2

(

2 ( ) k l 1  )



THE HYDROGEN ATOM ACCORDING TO WAVE MECHANICS – I. SPHERICAL POLAR COORDINATES. 

Ciencia y Tecnología, 32(2): 1-24, 2016 - ISSN: 0378-0524 5

of unity – i. e. c = ±1, ±√−1, appears because Schroedinger’s equation is linear and homogeneous, or 

equally because Schroedinger’s temporally independent equation is of form an eigenvalue relation,   

 

  

 

in which H(r,) denotes a hamiltonian operator with contributions from kinetic and potential 

energies. A conventional choice c = 1, which is arbitrary and lacks physical justification, signifies 

that some amplitude function (r,), as solution from the temporally independent Schroedinger 

equation with m=0, appears in a real form, whereas most must be complex; with a mathematically 

valid alternative choice c = i, some amplitude functions would be entirely imaginary but most 

would still be complex. Choosing c = −1 or −i merely reverses the phase of an amplitude function 

or its constituent parts.  Parameters that appear in the solution but not in the partial-differential 

equation take discrete values, imposed by boundary conditions, as follows: m is called the 

equatorial, or magnetic, quantum number that assumes only integer values and that arises in the 

solution of the angular equation to define , as indicated below; l is called the azimuthal 

quantum number that assumes values of only non-negative integers and that arises in the solution 

of the angular equation to define , which also involves m as its absolute value; product 

Y constitutes a special function known as spherical harmonic to represent 

functions defined on the surface of a sphere; k is a radial quantum number that assumes values of 

only non-negative integers, and arises in the solution of the radial equation to define R(r), which 

also involves quantum number l. The names of quantum numbers k and m hence pertain to the 

coordinates from which they arise.  There is no relative limitation of the values of k and l, but, for a 

given value of l, m assumes 2 l + 1 integer values from −l to +l. The total wave function is thus a 

product  

 

(r, , t) = c R(r) t) = c (r, t) 

 

from the normalised solutions of the four separate ordinary-differential equations. The 

multiplicative terms in the total product that contain no variable serve as normalizing factors, to 

ensure that, for the amplitude function, 

 

∫(r,)* (r,) dvol = 1 , 

 

in which the integration, with (r,)* formed from (r,) on replacing i by –i and with volume 

element dvol incorporating the jacobian specified above, is performed over all space according to 

the domains of the spatial variables as specified above.  Henceforth we take c = 1. 

 

The coefficient of t with i in one exponential term above has the physical dimensions and 

significance of a radial frequency, as Schroedinger noted [5], but we interpret that quantity in its 

particular context as energy E of a particular state divided by Planck constant h, as Schroedinger 

also applied.  We associate sum k + l + 1, which must assume a value of a positive integer, in the 

same exponent with experimental quantum number n for energy, 

 

n = k + l + 1 ;  

 

according to the formula for the discrete spectral lines of H derived by Balmer and elaborated by 

Rydberg, the energy of a discrete state of H is proportional to −1/n2.  That sum of integers occurs 

( )H , ,r   ( ) , ,r   E ( ) , ,r  
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also in associated Laguerre function LaguerreL that represents in R(r) the radial dependence of 

wave function (r,  t), but not in associated Legendre function LegendreP of the first kind, 

, that contains the angular dependence on .   

The physical significance of equatorial quantum number m is that, for a given value of l, 2 l 

+ 1 specifies the number of states, distinguished by their values of m from −l to +l, that have distinct 

energies for a H atom in the presence of an externally applied magnetic field; that field hence 

removes a degeneracy whereby multiple states have the same energy. Multiple amplitude 

functions, corresponding to particular values of k, l, m and explicitly numbering (k + l + 1)2, yield 

the same energy of a H atom, according to the eigenvalue relation above, in the absence of an 

externally applied magnetic or electric field; for the solution of Schroedinger’s temporally 

dependent or independent equation in spherical polar coordinates, the energy in the absence of a 

magnetic field is thus independent of equatorial quantum number m.  The mathematical 

significance of azimuthal quantum number l is that it specifies the number of angular nodes of an 

amplitude function – i.e. the number of times that a particular amplitude function changes sign on 

 varying between 0 and  rad.  The mathematical significance of radial quantum number k is that 

it specifies the number of radial nodes of an amplitude function – i.e. the number of times that a 

particular amplitude function changes sign on r varying from 0 to ∞, or the number of zero points 

of product (r,)* (r,) = |(r,)|2 between r = 0 and ∞ in any direction from the origin,  

Whereas equatorial quantum number m has hence a direct physical significance, the azimuthal, l, 

and radial, k, quantum numbers have directly a mathematical significance within only a restricted 

geometric context, and are therefore artifacts of this derivation in spherical polar coordinates; in 

contrast, product l (l + 1) has a physical significance as discussed below. 

Among many properties of a hydrogen atom that one might explore after having derived 

explicit formulae for the amplitude or wave functions, we mention only the principal properties 

that concerned Heisenberg, namely the frequencies and intensities of spectral lines.  The frequency 

 of a spectral line is that of a photon emitted or absorbed by an atom, and bears no direct relation 

to any purported internal frequency of an atom that produces that spectrum. That optical 

frequency is specifically the difference of energies, Ej and Ej’ > Ej, of two states of an atom between 

which an optical transition occurs, divided by Planck’s constant, according to Bohr's relation: 

 

 = (Ej’ − Ej ) / h 

 

The energies of states of H defined with energy quantum number n = k + l + 1 are depicted in figure 

2, in which energies are expressed in rydberg unit; in terms of fundamental physical constants, 

 

1 rydberg = me e4 / 8 e02 c h3  = 2.179872325x10−18 J 

 

For energies less than a limiting energy as n → ∞ that corresponds to ionization of the atom, the 

energies are discrete, although of formally uncountable number, whereas above that threshold the 

energies are continuous. 
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FIGURE 2.  Energies of continuous states with positive energies and of discrete states with 

negative energies, relative to E = 0 that pertains to a proton and an electron infinitely separate 

and at rest; energies at five discrete values bear labels of energy quantum number n from 1 to 

5. In order of increasing length, four vertical arrows with greek letters indicate transitions 

between discrete states, observed in absorption in the Lyman series of lines in the vacuum-

ultraviolet spectral region; two further arrows indicate a minimum ionization and a 

transition into the continuum of energies above the threshold of ionization. 

 

 The electric-dipolar moment appropriate to an optical transition in absorption from a state 

with quantum numbers k, l, m to another state with quantum numbers k’, l’, m’ involving 

component z, with z = r cos(), of the electric component of the electromagnetic field is calculated, 

in the length representation and with spherical polar coordinates, as quantity < e z > = < e r cos() > 

involving integration over the corresponding wave functions that hence include the temporal 

dependence. 
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In this triple integral over the spatial coordinates, * denotes a complex-conjugate wave 

function in terms of spatial r,  and temporal t variables and of quantum numbers k’, l’, m’; a 

transformation from to  involves the replacement everywhere of i by –i. For this observable 

property, intensity, as for any other observable property, the chosen value of coefficient c in the 

definition of the wave function above is hence immaterial.  The intensity of an optical transition is 

proportional to the square of the above matrix element for the electric-dipolar moment of that 

transition, which is thus independent of the sense of z and of time t.  In Dirac’s notation with bra 

and ket, for a H atom (Z = 1), an optical transition corresponding to vertical arrow  in figure 2 is 

indicated from the state of least accessible energy specified with quantum numbers k = 0, l = 0, m = 

0, so n = k + l + 1=1, to the first excited state, specified with quantum numbers k’ = 0, l’ = 1, m’ = 0, so 

n=2. This matrix element of dipolar moment is calculated symbolically to have this value: 

 

< 0, 1, 0 | e z | 0, 0, 0 >   =   

 

The states, denoted 2S for the electronic ground state and 2P for an excited state accessible 

therefrom in absorption, are distinct from the amplitude or wave functions expressed in a 

particular coordinate system with which calculations might be made, but for the particular 

transition indicated we associate the amplitude function specified with quantum numbers k=0, l=0, 

m=0 uniquely with state 2S and amplitude function with quantum numbers k=0, l=1, m=0 with state 
2P.  In the latter formula we interpret the coefficient, with i, of t in the exponent to specify the 

optical frequency, i.e. the angular frequency of the photon that is absorbed when a H atom 

undergoes the pertinent transition with a gain of one unit, in terms of h/2, of angular momentum 

through conservation of that quantity; the circular frequency is hence 

 

  =  

 

A contrast with the above interpretation of the coefficient of i t in the exponent of the wave 

function itself, as energy divided by Planck constant, is noteworthy.  In figure 3, we show 

quantitatively the absorption spectrum of the H atom below the threshold of ionization:  the scale 

of the abscissa variable has unit 1015 Hz = PHz for frequency ; because the intensities of transitions 

decrease rapidly with increasing frequency, for illustrative purposes the ordinate scale is 

logarithmic in a quantity 103 f; oscillator strength f is a dimensionless quantity that serves as an 

appropriate measure of intensity. The greek letters above the spectral lines in figure 3 pertain to 

the designations of features of the spectrum of the H atom in the vacuum-ultraviolet region, in 

which transitions in absorption occur from the ground state |0,0,0> to states denoted |k, 1, 0 > with 

values of k increasing from zero, and correlate with the same greek letters in figure 2.  The 

absorption spectrum in the continuous region above the minimum energy of ionization is 

calculated quantitatively elsewhere [12]; like the discrete spectrum, the intensity per unit energy in 

the continuous spectrum diminishes rapidly with energy increasing above the threshold of 

ionization. 
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FIGURE 3.  Quantitative representation of the absorption spectrum of the H atom for 

transitions from the ground state to ten discrete excited states as lines at particular 

frequencies/1015 Hz with intensities according to log10(103f); f denotes the oscillator strength. 

 

III. GRAPHICAL REPRESENTATIONS OF AMPLITUDE FUNCTION (r,) 

 

 Not only for comparison with graphical representations of amplitude functions calculated 

in coordinates of other systems but also to present quantitatively accurate shapes and sizes of these 

functions, here follow plots of the surfaces of selected amplitude functions.  As a plot involving 

three independent variables – spatial coordinates r– and one dependent variable (r,) 

would require four spatial dimensions, the best way to proceed with two dimensions, or three 

pseudo-dimensions, is to exhibit a surface of constant  at a value selected to display the overall 

spatial properties in a satisfactory manner.  Because in many published papers and textbooks these 

surfaces are portrayed inaccurately, we explain our procedure to produce an accurate plot, 

deploying first for this purpose amplitude function 0,0,0.  Its formula,  
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shows no dependence on angular variables, merely an exponential decay with distance r of the 

reduced mass from the origin of coordinates that effectively marks the location of the atomic 

nucleus.  By assumption, the electron interacts with the nuclear matter only through the 

electrostatic interaction; with point particles, the probability of finding the electron is maximum at 

the atomic nucleus, at which the amplitude function has a cusp:  i.e. d/dr is discontinuous at the 

origin.  We plot this dependence on r in figure 4 to demonstrate pertinent properties. 

 

 
 

FIGURE 4.  Radial dependence of 0,0,0/m˗3/2; the intersection of the dotted line with the curve 

indicates the point at which 0.995 of the density of electronic charge is within that distance 

from the origin of coordinates. Here, and in succeeding plots, notation 2e+14 implies 2x1014 ; 

2e−10 implies 2x10−10, and analogously for other values. 

 

In figure 4, a dotted line intersects the curve depicting the radial dependence of 0,0,0 at a 

point rc chosen such that 0.995 of the total density of electronic charge according to an integral, 

 

 

 

is within a domain 0...rc; for 0,0,0, that distance is rc = 2.45x10-10 m.  When we plot a surface of 

constant 0,0,0 = 1.43x1013 m−3/2, which is 0.01 times the maximum value of 0,0,0, at r = 0, we obtain 

necessarily a sphere, having the stated radius rc, because 0,0,0 exhibits no angular dependence.  We 
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must adopt such a strategy to derive a meaningful idea of any size or shape of an amplitude 

function, or the corresponding density of electronic charge that is proportional to |2| or 

according to Born’s interpretation, because amplitude function 0,0,0  has zero value only as r 

→ ∞; i.e. according to Schroedinger’s amplitude function, a single H atom in its ground state 

occupies the entire universe, but not to the practical exclusion of other atoms! 

 

 
 

FIGURE 5. Surface of 0,0,0 = 1.43x1013 m−3/2.  Here, and in succeeding plots in three pseudo-dimensions, the 

unit of length along each coordinate axis is m. 

 

 We next consider amplitude function 1,0,0 that has this explicit formula, 

 

 

 

first as its radial profile, shown in figure 6 with two dotted lines at ±3.17x1012 m−3/2.  The 

intersection of the line at −3.17x1012 m−3/2 with the curve at rc = 7.2x10−10 m indicates the distance 

within which 0.995 of the total electronic charge is contained. Two other intersections of the curve 
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surface, the single spherical surface between r = 0 and r → ∞ at which function 1,0,0 has zero 
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that radius.  Figure 7 shows a complete inner sphere that has a positive phase, and two spheres of 

negative phase cut open to show that inner sphere. These plotted surfaces of 0,0,0 and 1,0,0 and the 

explanation underlying their generation provide a basis for further plots to illustrate salient 

features of selected amplitude functions.   

 
 

FIGURE 6.  Radial dependence of 1,0,0; the intersection, farthest from the origin, of the lower 

dotted line with the curve indicates the point at which 0.995 of the electronic charge occurs 

within that distance from the origin of coordinates. 
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FIGURE 7.  Surfaces of amplitude function 1,0,0 = ±3.17x1012 m−3/2; of three spheres, the inner 

one (cyan) contains the amplitude function in its positive phase; in a thick shell between an 

intermediate sphere (brown), of radius only slightly larger than that of the inner sphere, and 

the outer sphere (also brown), both shown cut open with  = 0 .. 3  /2 rad, the amplitude 

function has a negative phase corresponding to the profile in figure 6. 

 

 We consider next 0,1,0, according to this formula: 

 

 

 

Consistent with azimuthal quantum number l = 1, we expect one angular node in the 

domain  = 0 .. , which is shown in figure 8 to lie in plane z = 0 or  = /2.  This figure exhibits two 

lobes, each almost hemispherical but with rounded edges:  the positive lobe for 0,1,0 > 0 is axially 

symmetric about axis z with z > 0; the negative lobe for 0,1,0 < 0 is also axially symmetric about axis 

z but with z <  0; a narrow gap between those surfaces contains a nodal plane between these two 

lobes at which 0,1,0 = 0.  At the selected value |0,1,0| = 3.17x1012 m−3/2 for this surface, the same as 

for 1,0,0, the maximum extent of the surface along axis z, about 1.5x10-9 m, is slightly larger than 

the maximum extent perpendicular to this direction, about 1.2x10-9 m, contrary to what one might 

expect from published plots of only the angular parts or of qualitative sketches based mostly on 

wishful thinking. The overall shape, nearly spherical or slightly prolate spheroidal, is consistent 

with a coulombic attraction between a proton and an electron that has no angular dependence.   

The square of this amplitude function has essentially the same relative size and shape. 


, ,0 1 0

2 e5 









5
2

Z









5
2
2 r e
















 Z e2 r

2 h2 
0

( )cos 

8 h5 
0









5
2



J. F. OGILVIE 
 

Ciencia y Tecnología, 32(2): 1-24, 2016 - ISSN: 0378-0524 14 

 
 

FIGURE 8.  Surface of amplitude function (0,1,0)  =  ±3.17x1012 m−3/2; the upper lobe (red) has 

a positive phase, the lower lobe (blue) negative. 

 

 Like most amplitude functions expressed in spherical polar coordinates, amplitude 

functions 0,1,1 and 0,1,−1 are complex:  for a given value of energy quantum number n, explicitly n2 

– n functions have both real and imaginary parts for the choice of coefficient c = 1.  For this 

function, 
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more intriguing aspect is the square of either 0,1,1 or 0,1,−1, which are identical according to this 

formula because the dependence on  is lost in the square, 
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0,1,1 or 0,1,−1, calculated as |0,1,1|2  = 0,1,1* 0,1,1 or analogously, displays as an oblate toroid with 

zero density along polar axis z. The extent of this toroid at the given value of 0,1,12 is about 1.15x 

10-9 m along axis z and 1.3x10-9 m perpendicular to this axis.  The surface of sum 0,1,02 + |0,1,1|2+ 

|0,1,−1|2 = 1.0x1025 m˗3 displays as a perfect sphere, of diameter 1.55x109 m with the same criterion of 

enclosed electronic charge. 

 

 
 

FIGURE 9.  Surface of squared amplitude function 0,1,12 = 1.0x1025 m−3, shown cut open 

with = 0 .. 3 /2 rad to reveal the zero density along polar axis z. 

 

 A plot of amplitude function 2,0,0 exhibits two nodal concentric spherical surfaces, 

consistent with k = 2, between one inner sphere of positive phase and two larger spherical shells, of 

successively negative and positive phases, analogously to 1,0,0 in figure 6 that displays only one 

inner spherical nodal surface; with the surfaces set for |2,0,0| = 1.23x1012 m−3/2, the diameters/10−10 

m of the nodal surfaces are equal to about 2 and 8. According to our stated criterion of enclosed 

electronic charge being 0.995 of the total negative charge, the diameter of the outer sphere is 

2.8x10−9 m, increased from 0.49x10−9 m for 0,0,0 and 1.44x10−9 m for 1,0,0.   

We show in figure 10 the surface of 1,1,0 that has this formula, 
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1,1,1  + 1,1,−1* 1,1,−1 = 1.25x1024 m−3 is again a perfect sphere, of diameter about 3x10−9 m, with no 

internal structure.  

 
 

FIGURE 10.  Surface of amplitude function 1,1,0 = ±1.23x1012 m−3/2 shown cut open with  = 0 

.. 3 /2 rad to exhibit the inner structure; phases positive (pink) and negative (light blue) are 

indicated. 

 

 As an amplitude function that presents further features, we consider 0,2,0 that implies l = 2, 

according to this formula: 

 

 

Its surface with 0,2,0 = ±1.23x1012 m−3/2 appears in figure 11.  In accordance with k = 0, there is no 

radial node – along a line in any direction from the origin, the amplitude function does not change 

sign, but from polar angle = 0 to  = rad there are two changes of sign, from positive to negative 
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phase separating two, somewhat conical, negative lobes.  The figure is axially symmetric about 

axis z; its maximum extents/10−9 m are 2.9 along polar axis z and 2.6 perpendicular to that axis, so 

again slightly prolate spheroidal in overall shape.  The square of this amplitude function has 

approximately the same relative size and shape.   

For contrast we show surfaces of the real and imaginary parts of complex amplitude 
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FIGURE 11.  Surface of amplitude function 0,2,0 = ±1.23x1012 m−3/2, shown cut open with  = 0 

.. 3  /2 rad to reveal the angular nodes and lack of radial node; coral colour indicates a 

positive phase, aquamarine negative. 

 

The real part of the surface of this amplitude function 0,2,2, containing cos(2) and shown 

in figure 12, and the imaginary part, containing sin(2) and shown in figure 13, reveal a four-fold 

symmetry about axis z, apart from their phases. 
 

 

 
 

FIGURE 12. Surface of real part of amplitude function0,2,2 = ±1.23x1012 m−3/2; the wheat lobes 

have positive phase, the maroon lobes negative. 



J. F. OGILVIE 
 

Ciencia y Tecnología, 32(2): 1-24, 2016 - ISSN: 0378-0524 18 

 
 

FIGURE 13.  Surface of imaginary part of amplitude function (0,2,2) = ±1.23x1012 m−3/2; the 

golden lobes have positive phase, the magenta lobes negative. 

 

The maximum extent of the displayed surface of the real part of 0,2,2= ±1.23x1012 m−3/2 along 

axes x and y is 2.7x10−9 m, but the thickness of the body, parallel to axis z, is only about 1.8x10−9 m; 

the imaginary part has similar dimensions but its orientation is rotated about polar axis z by /8 

rad.  The surface of the square of 0,2,2, calculated as 0,2,2* 0,2,2, resembles a torus with a narrow 

core along axis z that is empty of electronic charge, similar to that in figure 9. The surfaces of 0,2,−2 

= ±1.23x1012 m−3/2 in their real and imaginary parts are practically identical to those of the 

corresponding parts of 0,2,2= ±1.23x1012 m−3/2.  The surfaces of 0,2,1 and 0,2,−1 are analogous to those 

of the imaginary parts of 0,2,2 and 0,2,−2 except that they display a nearly four-fold symmetry about 

axes x and y, respectively, rather than about polar axis z; their lobes extend only between the 

cartesian axes, as in figure 13, rather than along axes as in figure 12.  The surface of the square of 

0,2,1, calculated as 0,2,1* 0,2,1 = 1.5x1024 m−3, is shown in figure 14; it exhibits a narrow core of zero 

electronic charge density along polar axis z and a nodal plane at z = 0 at which the electronic 

charge density is also zero. Its maximum extent parallel to axis z is 2.1x10−9 m and perpendicular to 

polar axis z is 2.3x10−9 m, making its overall shape approximately slightly oblate spheroidal. 

According to the same criterion of enclosed electronic charge, the surface of sum 

 

= 1.5x1024 m−3 

 

of the squared amplitude functions for k = 0 and l = 2 is a perfect sphere of diameter 2.9x10−9 m. 

 As examples of the general features of surfaces of spherical polar amplitude functions with 

further values of azimuthal quantum number l, we show in figure 15 the surface of 0,3,0, 
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FIGURE 14.  Surface of |0,2,1|2 =  0,2,1* 0,2,1 = 1.5x1024 m−3, shown cut open with  = 0 .. 3 /2 

rad to expose zero density along polar axis z and in plane z = 0.  

 

which exhibits the corresponding numbers of angular nodes, l = 3, with two tori of roughly conical 

cross section separating two roughly conical lobes along the polar axis, but no radial node.    

 

 

 
FIGURE 15.  Surface of spherical polar amplitude function 0,3,0 = ±1.85x1011 m−3/2, shown cut 

open with x = −2.5x10−9...0.5x10−9 m to expose the nodal surfaces; the red lobes have positive 

phase, the green lobes negative. 

 

Figure 16 displays a surface of 0,4,0,  
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with l = 4, which exhibits three tori of roughly conical cross section separating two lobes of roughly 

conical shape. 

 

 
FIGURE 16. Surface of spherical polar amplitude function 0,4,0 = ±1.1x1011 m−3/2, shown cut 

open with x = −2.8x10−9... 0.8x10−9 m to expose the nodal surfaces; the violet lobes have 

positive phase, the yellow lobes negative.   

 

 Many other plots of surfaces of amplitude functions or their squares might be presented, 

but the examples provided above likely demonstrate both the qualitative and the quantitative 

features of these functions in spherical polar coordinates as solutions of Schroedinger’s temporally 

independent equation that is applicable to states of the hydrogen atom with discrete energies. 

 

IV. DISCUSSION 

  

 Although the treatment of the hydrogen atom, or a hydrogenic atom with one electron or 

the Kepler problem or the central-field problem as alternative descriptions, with Schroedinger’s 

equation temporally dependent or independent in spherical polar coordinates is much discussed 

elsewhere, a principal objective here is to emphasize the particular quantitative aspects of this 

system of coordinates for comparison with the results in other systems in succeeding parts of this 

series.  A treatment of this system of spatial coordinates comprising r,  and  yields results in the 

form of amplitude functions involving quantum numbers k, l and m; we summarize this condition 

according to notation k,l,m(r,) for the amplitude function.  Including the temporal variable to 

specify the wave function as k,l,m(r,,t) produces no advantage because the temporal part of the 

solution of Schroedinger’s equation is, naturally, common to all pertinent systems of coordinates in 

a non-relativistic sense; energy quantum number n results from an analysis of experiments in the 

form of optical spectra, and the form of its dependence is duly reproduced in the theoretical 

derivation incorporating a temporal dependence as summarized above for spherical polar 

coordinates when we associate k + l + 1 with n. 

 With each plot presented here is specified an explicit formula of the particular associated 

amplitude function to emphasize that these plots depict mathematical functions; for the same 

reason, these functions include explicitly the pertinent fundamental physical constants, evaluated 

for all purposes rigorously in SI units. A shape of a surface illustrated in any such plot implies an 
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associated formula, and vice versa; such a shape is meaningless in the absence of both such a formula 

and the specified system of coordinates, and even a specific constant value of that formula.  An 

accurate surface of each such amplitude function displayed within a preceding plot hence pertains 

to a particular value of that function k,l,m or its square; such an amplitude function has an 

accompanying unit in terms of a unit of length to the appropriate power, specifically m˗3/2 in SI 

units for , and accordingly m˗3 for 2; integration over all space effectively multiplies the units of 

the squared amplitude function by m3, generating a dimensionless value of that integral that we 

might associate with unit probability according to Born's interpretation.  The shape of the surface 

depends also on the chosen value of  or 2 for that surface to some extent; the criterion for the 

value of  might be chosen to differ from that of 2 containing 0.995 of the total electronic charge, 

which would accordingly affect the shape, and size, of the surface. 

 The important results of the preceding treatment are that spatial coordinates r,  in this 

spherical polar system lead irrevocably, on solution of Schroedinger's equations, to formulae 

expressed in terms of quantum numbers k, l, m.  Unlike energy quantum number n that is 

independent of any system of coordinates and that arises indisputably from experiment, quantum 

numbers k and l have only a parochial significance:  they are artifacts of this particular system and 

can be accordingly expected to have no meaning for the formulae and shapes of surfaces of 

amplitude functions apart from this system. Whereas equatorial quantum number m is directly 

related to the angular-momentum properties of the atom in states that are independent of 

coordinates in a chosen system, l is only indirectly related, because the squared total angular 

momentum L2, hence a scalar quantity with no directional property, is equal to l (l + 1) h2/42. For 

each value of k + l + 1, there are 2 l + 1 values of m; the values of l run from 0 to n – 1 = k +  l.  There 

are hence quantum numbers in 

 

 

 

sets that specify a particular amplitude function for each value of n; among these orthogonal 

functions, for coefficient c = 1, n2 – n functions are complex, so having real and imaginary parts; 

apart from any other consideration, the fact of these imaginary parts means that these functions 

have no direct physical reality.  There are also n2 spectrometric states for each value of n. We 

reiterate that there is, in general, no direct relation between a spectrometric state, as denoted 

below, and a particular amplitude function k,l,m corresponding to quantum numbers k, l, m in a 

specific set; the ground state is an exception to this condition. The importance of this reasoning 

becomes incontestable when one proceeds to contemplate solutions of Schroedinger’s equation 

temporally independent with coordinates in other systems and their associated quantum numbers, 

as discussed in succeeding parts of articles in this series. The designation of a spectrometric state of 

the hydrogen atom is based conventionally on a value of azimuthal quantum number l – S states 

for l = 0, P states for l = 1, D states for l = 2 et cetera, originating in the terminology of Liveing and 

Dewar for sharp, principal and diffuse series of lines in atomic spectra; the quantum number for 

energy might be included in such a designation as n l, and all states are doublet states, indicated as 

a prefixed superscript, when the purported intrinsic angular momentum of the electron is taken 

also into account, to yield a term symbol such as 1 2S, 2 2S, 2 2P et cetera.  Such an intrinsic angular 

momentum is beyond the purview of Schroedinger's treatment.  The line marked  in the discrete 

absorption spectrum in figure 3, of least energy of the photon, hence represents a transition that 

might be denoted 2 2P ← 1 2S; all such spectral lines have fine structure, not indicated in figure 3 
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because its calculation is beyond the scope of pioneer quantum mechanics and is related to the 

coupling of intrinsic electronic and nuclear angular momenta.   

 The Zeeman effect, whereby spectral lines split and have their frequencies or wave lengths 

altered when a sample of atoms is subjected to an external magnetic field, is related to component 

Lz of electronic angular momentum due to its motion, which yields equatorial quantum number m.  

Although a treatment of this Zeeman effect is practicable with amplitude functions in spherical 

polar coordinates, to produce the normal Zeeman effect, taking into consideration also the intrinsic 

angular momentum of the electron -- its purported spin -- produces the anomalous Zeeman effect.  

Because such an electron spin is beyond the scope of the Schroedinger equation as presented 

above, we omit this discussion. 

The shapes of surfaces of these amplitude functions k,l,m(r,) are likewise parochial; they 

are hence artifacts of this particular system, and accordingly lack meaning beyond this system, as 

is demonstrated on comparison with shapes of surfaces of amplitude functions in other systems of 

coordinates, presented in further articles in this series. The sizes of the surfaces of these amplitude 

functions at the selected values according to a particular criterion of enclosed electronic charge are, 

in contrast, a result of the coulombic potential energy, and are seen to be approximately common 

to amplitude functions, expressed in various coordinates, corresponding to the same energy 

quantum number n.  In the preceding figures, the shapes of the nodal surfaces that lie between 

lobes of opposite phase are spheres centred at the origin, or cones centred about the polar axis, or 

planes containing the cartesian axes, reflecting the nature of the system of spherical polar 

coordinates r,  respectively. 

 Apart from any fine structure that results from the purported electronic spin, the energy of 

a discrete state of a H atom is commonly stated to depend only on n; as n must be regarded as the 

energy quantum number, such a statement appears tautological.  For only a hydrogenic atom, as 

defined above, is the energy synonymous with an energy quantum number.  As n represents, for 

only spherical polar (and spheroconical) coordinates, a sum k + l + 1, the energy of a discrete state 

hence depends equivalently on quantum numbers k and l, but not on m in the absence of an 

external field applied to the atom. Whereas l has an indirect connexion with angular momentum, 

as explained above, an interpretation of k other than as signifying the number of radial nodes is 

challenging.  For instance, the mean distance of the electron from the origin near the atomic 

nucleus for atomic number Z, or expectation value <r>, as a function of quantum numbers is, 

expressed in terms of Bohr radius a0, 

 

<r>  =  ( ), 

 

which depends, to comparable extents, on both k and l, which can vary independently.  In the 

absence of an externally applied electric or magnetic field, the independence of the energy on 

equatorial quantum number m is attributed to the isotropic nature of space:  there is no preferred 

axis or direction. 

 One might seek to overcome the complex nature of amplitude functions on forming linear 

combinations of two or more functions with the same values of quantum numbers k and l, but 

different m, such as in the following examples. This sum of two particular amplitude functions, 
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=  

produces a plot exactly like that in figure 8 except that the axis of cylindrical symmetry is x instead 

of z.   The difference of the same two particular amplitude functions, divided by i, 

 

=   

 

likewise produces a plot exactly like that in figure 8 except that the axis of cylindrical symmetry is 

y instead of z, but both such plots depend on an arbitrary choice of coefficient c = 1. The value of l 

for the sum and difference appears to remain unity, but the value of equatorial quantum number m 

is indeterminate – until one recognizes that those results simply correspond to a rotation of the 

coordinate axes [13] to redirect 0,1,0.  Such a rotation hence implies again no direct physical reality. 

 Another notable aspect of the figures showing surfaces of constant amplitude is the 

dominance of the polar axis, to which polar angle  is referred.  Although an amplitude function 

such as 0,1,1(r,,) is not axially symmetric with respect to this polar axis, its square acquires that 

property. Despite this apparent special spatial feature, in the absence of an externally applied 

electric or magnetic field a hydrogen atom is spherically symmetric – there is no preferred axis of 

symmetry, as mentioned above. The solution of Schroedinger's equation, temporally dependent or 

independent, in spherical polar coordinates is valid only under conditions of rigorously spherical 

symmetry -- no other matter in the system, no externally applied electric field. A related aspect is 

the small extent of a deviation from spherical symmetry demonstrated by the only slightly prolate 

or oblate spheroidal overall shapes of the surfaces of amplitude functions and their squares. A 

major distinction between the surfaces of amplitude functions 0,0,0 and 1,0,0 in figures 5 and 7 or 

between 0,1,0 and 1,1,0 in figures 8 and 10 is the appearance of an inner sphere, in the functions 

with l = 0, or two hemispheres, for l = 1.  This feature is common to all further amplitude functions 

in spherical polar coordinates in which radial quantum number k increases by one unit between 

two instances; when k increases by two units, the distinction amounts to two further inner spheres 

or their parts or two further radial or spherical nodal surfaces. This property is a direct result of the 

fundamental significance of this quantum number k:  it specifies the number of radial nodes.  

Likewise, as is evident from figures 5, 8, 11, 15 and 16, quantum number l specifies the number of 

angular nodes.  As amplitude functions for l > 4 have no practical application in a chemical or 

physical context, further plots of surfaces to show the shapes are of negligible interest.  

 A claim [14] to have obtained an additional solution of Schroedinger's equation in 

rectangular or cartesian coordinates is misleading because those four coordinates (x,y,z,r) include 

also the radial distance r.  The other coordinates provide, as ratios of cartesian coordinates and 

their combinations, an alternative to spherical harmonics, and allow eigenfunctions of angular 

momentum to avoid reference to polar angles.  This system of coordinates must be considered to 

be merely a variant of spherical polar coordinates. 
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 In a subsequent part of this sequence of articles, we form an overview of all solutions of 

Schroedinger’s temporally dependent equation in the four systems of coordinates, the quantum 

numbers in their corresponding sets and the related properties.  
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