
Factoring Multivariate Polynomials Represented
by Black Boxes – A Maple + C Implementation

Tian Chen and Michael Monagan

Department of Mathematics, Simon Fraser University,
Burnaby, British Columbia, V5A 1S6, CANADA

tca71@sfu.ca, mmonagan@sfu.ca

Abstract. Our goal is to develop fast parallel algorithms to factor mul-
tivariate polynomials with integer coefficients. The authors contributed a
parallel sparse Hensel lifting algorithm (CMSHL) to factor multivariate
polynomials in their sparse representation (Chen and Monagan, 2020).
The dominating cost of CMSHL is polynomial evaluations.

To reduce this cost, in this work we represent the polynomial to be
factored by a black box. We give an algorithm that computes the factors
of the polynomial in their sparse representation directly using our modi-
fied CMSHL algorithm. Our new algorithm requires fewer probes to the
black box than the algorithm of Kaltofen and Trager from 1990.

We have implemented our algorithm in Maple with major subroutines
coded in C. We present timing benchmarks for two examples of factoring
determinants of matrices of polynomials. Our algorithm is much faster
than Maple’s best determinant and factor algorithms on our benchmarks.
We are able to compute the factors of detTn for n = 16 where Tn is the
n× n symmetric Toeplitz matrix with symbolic entries x1, x2, . . . , xn.

Keywords: Sparse Hensel Lifting, Multivariate Polynomial Factoriza-
tion, Black Box Representation, Determinant Algorithms

1 Introduction

Polynomial factorization has been a central topic in computer algebra. It has ap-
plications in diverse fields such as algebraic coding theory, cryptography, number
theory, algebraic geometry and biological modelling [12]. Our work focuses on
the design and implementation of algorithms to factor multivariate polynomi-
als with integer coefficients. In 2020, Chen and Monagan [6] developed a highly
parallelizable sparse Hensel lifting algorithm (CMSHL) to factor multivariate
polynomials input in the sparse representation. The dominating cost of CMSHL
is evaluating the input polynomial a(x1, . . . , xn) at many points. To reduce this
cost, in this work, we represent the polynomial to be factored by a black box and
aim to compute its factors in their sparse representation. An example is to factor
the determinant of a matrix A with multivariate polynomial entries. Usually the
factors of a = detA ∈ Z[x1, . . . , xn] have a lot fewer terms than a. We reduce
the cost of evaluating a as well as the memory space needed to store a in its
sparse representation.

To factor a multivariate polynomial a ∈ Z[x1, · · · , xn], Yun [35] and Wang
[34] initially developed multivariate Hensel lifting (MHL). MHL first chooses
integers α2, · · · , αn and factors the univariate image a(x1, α2, · · · , αn) in Z[x1].
Then it recovers the factors one variable at a time (see Chap. 6 of [12] for
a detailed description). Wang’s MHL has been implemented in many computer
algebra systems including Maple, Magma, Macsyma, Mathematica and Singular,
and it is still widely used today.

However, when factors are sparse and the evaluation points α2, · · · , αn are
mostly non-zero, Wang’s MHL algorithm can be exponential in the number of
variables [26]. To overcome this, Zippel [37] introduced sparse Hensel lifting
(SHL) algorithm in 1981 which was the first random polynomial time algorithm
that takes sparsity into account. Kaltofen [16] presented another SHL algorithm
in 1985. In 2016, Mongan and Tuncer [26] developed a new sparse Hensel lifting
algorithm MTSHL. It solves the multivariate Diophantine equations that appear
in Wang’s MHL in random polynomial time. MTSHL was integrated into Maple
2019 [30]. In 2018, Monagan and Tuncer [28] gave another algorithm which is
more suitable for parallelization. In 2020, the authors presented the algorithm
CMSHL [6]. It is highly parallelizable as it does not do any multivariate poly-
nomial arithmetic and it has eliminated a long standing problem of expression
swell.

If the polynomial a is dense then alternative methods for factoring should
be used. We cite the work of Lecerf [22] who factors a in Q[[x2, . . . , xn]][x1] and
uses fast arithmetic for power series in Q[[x2, . . . , xn]].

The dominating cost of CMSHL is evaluating the input polynomial a ∈
Z[x1, · · · , xn] at many points (see Sect. 4 of [6]). To reduce this cost, we represent
the polynomial to be factored by a black box. The goal is to compute the factors
in their sparse representation. The sparse and the black box representations are
defined in Sect. 2.1.

In 1990, Kaltofen and Trager [18] contributed the first black box factoriza-
tion algorithm for multivariate polynomials. Given an evaluation point of the
input polynomial with coefficients in a field, their factorization algorithm out-
puts an evaluation of each factor. The sparse representation of the factors can
then be recovered using sparse polynomial interpolation. Early references for
sparse polynomial interpolation include [3, 19, 38]. For a recent bibliography we
refer the reader to Roche [32]. Kaltofen and Trager’s algorithm was implemented
in FOXBOX [9] which was written in C++.

As far as we know, there has not been any black box factorization algorithm
developed since Kaltofen and Trager [18] in 1990. Instead of first getting the
evaluations of the factors and then doing a sparse interpolation as in [18], our new
black box factorization algorithm outputs the factors in sparse representation
directly via the modified algorithm CMSHL. Our new algorithm requires fewer
probes to the black box than Kaltofen and Trager’s algorithm (see Sect. 2.3).
We have made a hybrid Maple + C implementation for our new algorithm. The
main program is written in Maple (the user has the option to input a symbolic

2

black box, e.g. a matrix with multivariate polynomial entries) and the major
subroutines are coded in C to speed up computations.

This paper is organized as follows. Sect. 2 describes two existing algorithms
to tackle the black box factorization problem and our new algorithm (modified
CMSHL). We have modified algorithm CMSHL in [6] to incorporate the black
box and extended it to compute multi-factors (still monic). Sect. 3 describes
the implementation details of the subroutines that were carefully coded in C. In
Sect. 4 we present timing benchmarks for two examples of factoring determinants
of matrices of polynomials. Our timing benchmarks show that our new algorithm
is much faster than Maple’s current best determinant and factor algorithms. We
were able to compute the factors of det(Tn) for a symmetric Toeplitz matrix
Tn with symbolic entries x1, x2, . . . , xn for n = 16. To our knowledge, this has
never been computed before. Sect. 5 describes several algorithms for computing
the determinants of symbolic matrices in the sparse representation. All run out
of space when computing det(T16). We contribute a space improvement for the
Gentleman-Johnson algorithm [14] so that we could compute det(T15) in Maple.
Sect. 6 is a conclusion.

2 Algorithms for Black Box Factorization

2.1 The sparse and the black box representation of a polynomial

The sparse representation of a polynomial f ∈ Z[x1, · · · , xn] consists of a list of
coefficients ck and exponents (ek1 , · · · , ekn) such that f =

∑t
k=1 ck ·x

ek1
1 · · ·xeknn ,

ck ∈ Z, where ck 6= 0 and t is the number of non-zero terms of f . It is a natural,
readable and explicit representation (Sect. 16.6 of [11]). On the other hand, the
black box representation of a polynomial f ∈ Z[x1, · · · , xn] is a program which
takes inputs a prime p and an evaluation point ααα ∈ Znp and outputs f(ααα) mod p
(Figure 1). It is one of the most space efficient implicit representations [18].

α1

α2

αn

f(α1, ..., αn) mod p

p

...

Fig. 1. The black box representation of f ∈ Z[x1, ..., xn].

Given a black box representation for a polynomial a, what information can we
determine about it? For our factorization algorithm, we need to know the degrees,
deg(a, xi), for each variable xi, i = 1, · · · , n. To compute deg(a, xi), we first pick
α1, · · · , αn ∈ Zp at random and define h(v) := a(α1, · · · , αi−1, v, αi+1, · · · , αn).
Theorem 1 below says that if p is large, then deg(h, v) = deg(a, xi) with high
probability.

3

Theorem 1.

Prob[deg(h, v) 6= deg(a, xi)] ≤
deg(a)− deg(a, xi)

p
. (1)

The proof of Theorem 1 uses the Schwartz-Zippel Lemma [33, 36]:

Lemma 1.
Let D be an integral domain and let f ∈ D[x1, ..., xn] such that f 6= 0. Let
S ⊆ D such that |S| = k, k ∈ Z+, and let β ∈ Sn be chosen at random, then

Prob[f(β) = 0] ≤ d

|S| , where d = deg(f). (2)

Proof of Theorem 1 .
Let di = deg(a, xi) and let a =

∑di
j=0 qj(x1, ..., xi−1, xi+1, ..., xn)xji .

For example, a = (96x2 + 5)x1 + (25x32 + 91x33 − 17x2x3) where deg(a, x1) = 1.
We have q1 = 96x2 + 5 and q2 = 25x32 + 91x33 − 17x2x3.
Now,

h(v) := a(v, α2, α3) = (96α2 + 5)v + (25α3
2 + 91α3

3 − 17α2α3)

= q1(α2, α3)v + q0(α2, α3).

We can see that deg(h, v) 6= deg(a, x1) ⇐⇒ q1(α2, α3) = 0.
In general, by Schwartz-Zippel Lemma,

Prob[deg(h, v) 6= deg(a, xi)] = Prob[qdi(α1, ..., αi−1, αi+1, ..., αn) = 0]

≤ deg(a)− di
p

.

�
If we know a degree bound d ≥ deg(a, xi) then we may interpolate h(v)

using any points v0, v1, . . . , vd in Zp, that is, we interpolate h(v) from (vk, h(vk)),
k = 0, 1, · · · , d. If we do not have such a degree bound then, we interpolate h(v)
using random points in Zp to determine deg(h) with high probability.

2.2 Modified algorithm CMSHL for the black box

Let a ∈ Z[x1, · · · , xn] be represented by a black box B. Three ways to compute
its factors in the sparse representation are shown in Figure 2. Method 0 first
interpolates the sparse representation of a then factors it using a sparse Hensel
lifting algorithm [6]. Method I adapts Kaltofen and Trager’s algorithm [18] to
first get black boxes for the factors and then performs sparse interpolation. We
contribute Method II which outputs the factors in their sparse representation
directly using our modified CMSHL algorithm.

If the input polynomial a is represented in its sparse form, a few preliminary
steps are done before sparse Hensel lifting [6, 29]. The first step is to remove

4

f1(ααα), ..., fr(ααα)
ααα ∈ Zn

p

p

a ∈ Z[x1, ..., xn] f1, ..., fr ∈ Z[x1, ..., xn]

Sparse representation Sparse representation

Sparse interpolation Sparse interpolation

Kaltofen and Trager (1990)

Algorithm CMSHL

Chen and Monagan (2020)

FOXBOX (written in C++)

Modified CMSHL

Black box representation of a
Evaluations of the factors

Method I: Method II:Method 0:

Fig. 2. Factoring a ∈ Z[x1, ..., xn] given by a black box.

the content of a in a chosen variable, say x1. For a =
∑d
i=0 ai(x2, · · · , xn)xi1,

the content of a is gcd(a0, · · · , ad), a polynomial with one fewer variables which
can be factored recursively. The second step is to identify any repeated factors
in a by doing a square-free factorization (see Chap. 8 of [12]). After this, let
a = f1f2 · · · fr denote the irreducible factorization of a over Z. Thirdly, an
evaluation point ααα = (α2, · · · , αn) is chosen and then a(x1,ααα) is factored over
Z. From Hilbert’s irreducibility theorem [13, 20], the evaluated factors fρ(x1,ααα),
ρ = 1, · · · , r, remain irreducible over Z with high probability. Finally, sparse
Hensel lifting is performed to recover the factors one variable at a time.

If a is represented by a black box, the order of the above steps is different.
One way is to first make a hence all the factors of a monic, in x1 say. Then
an evaluation point ααα is chosen and a(x1,ααα) is factored over Z. The square-free
factors can be identified at this point. After sparse Hensel lifting, the leading
coefficients (as well as the content) can be recovered at the end.

For simplicity, in this paper, we only consider irreducible factors that are
monic in x1. We modified algorithm CMSHL in [6] to replace the evaluations of
a with probes to the black box. Let fρ,j denotes fρ(x1, · · · , xj , αj+1, · · · , αn),
ρ = 1, · · · , r. The input to CMSHL is a, f1,1, f2,1, · · · , fr,1, ααα and a prime p
such that gcd(fk,1, fl,1) = 1 for 1 ≤ k, l ≤ r in Zp[x1]. Algorithm CMSHL lifts
f1,1, f2,1, · · · , fr,1 to f1,2, f2,2, · · · , fr,2, then lifts f1,2, f2,2, · · · , fr,2 to f1,3, f2,3,
· · · , fr,3 etc. After the jth step of Hensel lifting we have aj =

∏
fρ,j mod p so

that at the end, an =
∏
fρ,n mod p. To recover the integer coefficients, one may

choose a sufficient large p, or, if necessary, do a subsequent p-adic lift [27].

The jth Hensel lifting step is shown in Algorithm 1. There are 4 major steps,
namely (1) the probes to the black box to interpolate the bivariate images
Ak(x1, xj) of a in step 10, (2) evaluating the factors fi,j−1 for 1 ≤ i ≤ r in
step 11, (3) the bivariate Hensel lifts (see [5, 31]) in step 13, and (4) solving the
Vandermonde systems (see [38]) in step 19. In order to get the best performance
we have coded each of these four steps in C. The number of arithmetic opera-

5

Algorithm 1 CMSHL for black box: Hensel lifting xj (multi-factors).

1: Input: A prime p, αj ∈ Zp, B (black box representation of a monic in x1),
f1,j−1, · · · , fr,j−1 ∈ Zp[x1, · · · , xj−1] s.t. aj(xj = αj) =

∏r
ρ=1 fρ,j−1 with j > 2.

2: Output: f1,j, · · · , fr,j ∈ Zp[x1, · · · , xj] s.t. aj =
∏r
ρ=1 fρ,j where fρ,j(xj =αj) = fρ,j−1 for

1 ≤ ρ ≤ r; Otherwise, return FAIL.
3: Let fρ,j−1 = x

dfρ
1 +

∑dfρ−1

i=0 σρ,i(x2, ..., xj−1)x
i
1 where σρ,i =

∑sρ,i
k=1 cρ,ikMρ,ik and Mρ,ik

are the monomials in σρ,i for 1 ≤ ρ ≤ r.
4: Pick βββ = (β2, · · · , βj−1) ∈ Zj−2

p at random.
5: Evaluate: {Sρ = {Sρ,i = {mρ,ik = Mρ,ik(βββ), 1 ≤ k ≤ sρ,i}, 0 ≤ i ≤ dfρ − 1}, 1 ≤ ρ ≤ r}.
6: if any |Sρ,i| 6= sρ,i then return FAIL end if
7: Let s be the maximum of sρ,i.
8: for k from 1 to s in parallel do
9: Let Yk = (x2 = βk

2 , · · · , xj−1 = βk
j−1).

10: Ak ← aj(x1,Yk, xj). // via probes to B and interpolation .O(sd1dj · C(probe B))
11: F1,k, · · · ,Fr,k ← f1,j−1(x1,Yk), · · · , fr,j−1(x1,Yk). O(s(#f1 + · · ·+ #fr))
12: if gcd(Fρ,k,Fφ,k) 6= 1 for any ρ 6= φ (1 ≤ ρ, φ ≤ r) then return FAIL end if
13: f1,k, · · · fr,k ← BivariateHenselLift(Ak,F1,k, · · · ,Fr,k, αj, p). . . O(sr(d1d

2
j + d21dj))

14: end for
15: Let fρ,k = x

dfρ
1 +

∑µρ
l=1 αρ,klM̃ρ,l(x1, xj) for 1 ≤ k ≤ s where µρ ≤ d1dj for 1 ≤ ρ ≤ r.

16: for ρ from 1 to r do
17: for l from 1 to µρ in parallel do
18: i← deg(M̃ρ,l, x1).
19: Solve the linear system for cρ,lk:

{∑sρ,i
k=1 m

n
ρ,ikcρ,lk = αρ,nl for 1 ≤ n ≤ sρ,i

}
.

20: end for .O(sdj(#f1 + · · ·+ #fr))

21: Construct fρ,j ← x
dfρ
1 +

∑µρ
l=1

(∑sρ,i
k=1 cρ,lkMρ,ik(x2, ..., xj−1)

)
M̃ρ,l(x1, xj).

22: end for
23: Pick βββ ∈ Zjp at random.
24: if B(βββ, αj+1, · · · , αn) =

∏r
ρ=1 fρ,j(βββ) then return f1,j · · · , fr,j else return FAIL

end if

tions in Zp for these steps is shown in blue. #f denotes the number of terms in
a polynomial f . Note that all four steps are parallelizable.

2.3 The number of probes to the black box

To analyze black box algorithms we are mostly interested in the number of
probes to the black box (the number of calls to the program B). The following
estimates show that our new algorithm (Method II) requires fewer probes to the
black box than Method I since s < #fmax [6]. The quantity s is the number
of bivariate images needed in algorithm CMSHL which is max #σρ,i where the

fρ,n = xd1 +
∑d−1
i=0 σρ,i(x2, . . . , xn)xi1 are the factors of a. The number #fmax is

the maximum number of terms of the factors of a.

– Method I: O(nd1dmax#fmax) probes to the black box B, plus
O(ndmax#fmax) univariate polynomial factorizations.

– Method II: O(nd1dmaxs) probes to the black box B, plus
one univariate polynomial factorization in total.

6

In the above, n is the number of variables of a, d1 = deg(a, x1), dmax =
max1≤j≤n(dj). For Method I, since we factor polynomials with coefficients in
Z, we use integer substitutions for each variable x1, . . . , xn and factor univariate
polynomials instead of using linear substitutions and factoring bivariate polyno-
mials as in [18] (the polynomial to be factored in [18] has coefficients in a field).
By the Hilbert irreducibility theorem, the resulting univariate polynomial has
the same number of factors as a with high probability. Zippel’s sparse interpo-
lation requires O(ndt) probes to the black box of a polynomial with n variables,
total degree d and t non-zero terms. To obtain each evaluation of the factors, we
need O(d1) probes to the black box B and interpolation to get a univariate image
in x1 plus a univariate factorization. Thus in total we have O(nd1dmax#fmax)
number of probes to the black box B and O(ndmax#fmax) univariate polynomial
factorizations.

For Method II, Step 10 of Algorithm 1 is the only step that probes the black
box B. Using dense interpolation to interpolate the bivariate image Ak(x1, xj) =
aj(x1, Yk, xj) we need (d1+1)(dj+1) points, hence the total number of probes is
O(nd1dmaxs). And there is only one univariate polynomial factorization needed
in total, at the initial stage, i.e. before CMSHL starts.

As an example consider factoring the determinant of Tn the n×n symmetric
Toeplitz matrix shown in Figure 3. The determinant detTn has two factors f1

Tn =


x1 x2 x3 · · · xn
x2 x1 x2
x3 x2 x1
...

. . .
...

xn · · · x1



Fig. 3. The symmetric Toeplitz matrix Tn.

and f2. Table 1 shows the number of terms of detTn, f1, f2 and the parameter
s. Here s is coefficient of degree 0 in x1 of the larger factor f1. The data shows
that the number of terms of detTn is much larger than the largest factor which
justifies the black box approach. Also s is smaller than max(#f1,#f2). Also
shown in Table 1 is s̃ which is the number of trivariate images that would be
needed to interpolate the factors from trivariate images in Zp[x1, x2, xj] instead
of bivariate images in Zp[x1, xj]. Since s̃ < s we might get a speedup if we did
that.

The cost of each probe to the black box, C(probe B), differs from case to
case. For Method II, the dominating cost is either probes to the black box (step
10) or, if the factors have a large number of terms, solving Vandermonde systems
(step 19) (see Theorem 4 in [6] for a detailed complexity analysis of algorithm
CMSHL). We present both cases (benchmarks 1 and 2) in Sect. 4. Bivariate
Hensel lifts (step 13) do not dominate unless the degrees deg(a, xi) are high.

7

n # det(Tn) #f1, #f2 s̃ s

8 1628 167, 167 38 93
9 6090 294, 153 50 86
10 23797 931, 931 229 522
11 90296 1730, 849 337 814
12 350726 5579, 5579 1465 3174
13 1338076 10611, 4983 2297 5223
14 5165957 34937, 34937 9705 19960
15 19732508 66684, 30458 15712 34081
16 - 221854, 221854 64524 127690

Table 1. Number of terms of det(Tn) and its factors f1 and f2.

If the dominating cost is probes to the black box, Method II is certainly more
efficient than Method I. If the dominating cost is solving Vandermonde systems
(due to a large s, the number of bivariate images needed), we could try using
trivariate images instead.

3 Implementation

We have made a hybrid Maple + C implementation for our new algorithm. The
main program is coded in Maple and all major subroutines are coded in C. Our
Maple code and C code can be downloaded from

http://www.cecm.sfu.ca/~mmonagan/code/CMSHL/.
Instructions for compiling the C code are given there. The four main steps coded
in C are the following.

Step 10 interpolates Ak(x1, xj) = aj(x1, Yk, xj) by probing the black box at
points. The black box B can be Maple code or C code.

Step 11 evaluates the factors at Yk to obtain univariate images. This step,
which initially was a bottleneck, is described in Sect 3.1.

For the bivariate Hensel lifts in Step 13 we use the new cubic algorithm of
Monagan and Paluck [24, 31] that costs O(d1d

2
j + d21dj) arithmetic operations in

Zp.
To solve the Vandermonde systems in Step 19 we implemented in C the

quadratic algorithm of Zippel [38]. It does O(s2ρ,i) arithmetic operations in Zp.
To call C code from Maple we use Maple’s foreign function interface. This

allows us to pass arrays of 32 bit or 64 bit integers between Maple and C.

3.1 Evaluating the factors

In Step 11 of Algorithm 1 we evaluate the factors fρ,j−1(x1, Yk) for 1 ≤ k ≤ s
where Yk = βk2 , . . . , β

k
j−1. If we use Maple’s Eval(...) mod p command, al-

though coded in C, because Maple does each evaluation independently, it can-
not take advantage of the geometric point sequence Yk = βk2 , . . . , β

k
j−1. Sup-

pose f =
∑t
i=1 cix

ei
1 Mi(x2, . . . , xj−1) is one of the factors where the Mi are

8

monomials in x2, . . . , xj−1. If we pre-compute the monomial evaluations mi =
Mi(β2, . . . , βj−1), then we can exploit

Mi(β
k
2 , . . . , β

k
j−1) = Mi(β2, . . . , βj)

k = mk
i

to get a speedup as follows. Initializing C = [c1, . . . , ct] we compute

for k = 1, 2, . . . , s do
1 C ← [Ci ×mi : 1 ≤ i ≤ t].
2 g ←∑t

i=1 Cix
ei
1 . // g = f(x1, Y

k).

This algorithm does st multiplications in step 1 plus some additions in step 2
plus the work to compute the monomial evaluations mi.

To compute f(x1, β
k
2 , . . . , β

k
j−1) using C code from Maple we first create the

arrays C, m, e and g of size t, t, t, and d1 + 1 respectively in Maple. We call a
C program from Maple with the polynomial f and array β and output arrays
C, m, and e. Then, for k = 1, 2, . . . , s we call two C programs from Maple. The
first has inputs C, m and the prime p. It computes Ci = Ci ×mi mod p. The
second has inputs C, e, g and p. It assembles the polynomial

∑t
i=1 Cix

ei
1 in g.

4 Benchmarks

We present two timing benchmarks. All timings were obtained on an Intel Xeon
E5-2660 8 core CPU.

The first benchmark is shown in Tables 2 and 3. Table 2 shows the CPU
time in seconds for computing the factors of det(Tn) where Tn is a symmetric
Toeplitz matrix. We compared our timings with timings for computing det(Tn)
then factoring det(Tn) in Maple 2021 and in Magma V2.25−5. For this bench-
mark, we have implemented Bareiss’ algorithm [2] to compute the determinant in
Zp for the black box in O(n2) arithmetic operations in Zp rather than O(n3) by
Gaussian elimination. For Maple we used Gentleman & Johnson’s determinant
algorithm [14] to compute det(Tn). Maple 2021 uses MTSHL [30] for factoring
polynomials.

In Table 2, the first block of rows is the time for our new algorithm and the
total number of probes to the black box it made. The second block shows the time
for computing detTn in the sparse representation using Maple’s determinant
command with the option method=minor, our implementation of the Gentleman-
Johnson algorithm [14] and the time of Maple’s factor command. The third
block shows the time of determinant computation and factorization in Magma.

Table 3 is a summary of the breakdown of the 4 major steps of Algorithm 1
for Hensel lifting the last variable xn. The first block shows the total time for
Hensel lifting the last variable xn and the number of bivariate images needed
to recover xn. In the second block, BB and Interp2var are timings for probes to
the black box and interpolation to get aj(x1, Yk, xj) (step 10). Eval fρ,j−1 is the
time for evaluating fρ,j−1 (step 11). BHL is the time for bivariate Hensel lifts
(step 13). VSolve is the time for solving Vandermonde systems (step 19).

9

n 10 11 12 13 14 15 16

total time 5.790 13.430 50.855 154.441 722.310 1967.725 17,212.991

total probes 109,139 267,465 894,358 2,180,399 6,981,462 17,175,949 53,416,615

Det minor 0.306 1.754 8.429 49.080 315.842 > 72gb N/A

Gentleman 0.67 3.52 10.41 57.99 339.77 2058.20 N/A

Maple factor 1.91 3.48 23.11 57.75 509.82 7334.50 N/A

Maple total 2.22 5.23 31.54 106.83 825.66 9392.70 -

Magma det 1.89 5.10 36.12 327.79 2108.42 > 72gb N/A

Magma fac 1.21 7.58 158.97 583.39 13,640.79 > 72gb N/A

Magma tot 3.10 12.68 195.09 911.18 15,749.21 - -

Table 2. CPU timings in seconds for computing det(Tn) using CMSHL black box
factorization algorithm.

n 10 11 12 13 14 15 16

H.L. xn total 1.045 1.819 9.256 20.785 143.883 266.496 4182.199

s (H.L. xn) 522 814 3174 5223 19,960 34,081 127,690

BB 0.137 0.240 1.304 3.043 11.363 20.350 109.592

Interp2var 0.046 0.081 0.307 0.631 2.172 3.469 17.191

Eval fρ,j−1 0.153 0.262 1.327 2.931 21.158 41.056 683.224

BHL 0.106 0.180 0.754 1.678 5.200 8.238 51.347

VSolve 0.058 0.101 1.937 4.219 72.887 143.183 2903.867
Table 3. Breakdown of CPU timings in seconds for Hensel lifting the last variable xn.

Our algorithm becomes faster at n = 14. Maple runs out of space (exceeds
72gigs) when trying to compute det(T16). Note that solving Vandermonde sys-
tems dominates the cost after n = 13. We could improve this by implementing
the fast Vandermonde solver of Kaltofen and Yagati [19] which reduces Vander-
monde solving to fast polynomial multiplication and division. In [7], Connolly’s
implementation of the fast Vandermonde solver from [19] first beats Zippel’s
O(s2) Vandermonde solver at size s = 2024.

Our first benchmark does not show the power of the black box approach,
since det(Tn) has only two factors and they are relatively dense compared to the
examples in the second benchmark. The second benchmark shows CPU times
for factoring determinants which have four factors where the size of the factors
is much smaller than the size of the determinant. The matrices are generated
as follows. We first create two different n × n symmetric Toeplitz matrices T1
and T2 with multivariate polynomial entries. Then we create the N × N block
diagonal matrix

B =

(
T1 0
0 T2

)
.

If we ask Maple to compute detB, Maple’s determinant routine will automati-
cally identify the block structure and find the factorization detB = detT1 detT2.

10

To hide this factorization from Maple we create an upper triangular matrix Pu
with diagonal entries 1 and entries above the diagonal chosen from {0, 1} at
random and also a lower triangular matrix Pl with diagonal entries 1 and en-
tries below the diagonal chosen at random from {0, 1}. Now we create the input
matrix A = PlBPu so that

detA = detPl detB detPu = detB = detT1 detT2.

For example, when n = 2, taking

T1 =

(
x1 x2 + 5

x2 + 5 x1

)
and T2 =

(
x1 2x22 + 3

2x22 + 3 x1

)
,

and matrices

Pu =


1 0 0 1
0 1 1 0
0 0 1 1
0 0 0 1

 and Pl =


1 0 0 0
0 1 0 0
1 1 1 0
1 0 0 1


we obtain the matrix

A =


x1 x2 + 5 2x2

2 + x2 + 8 2x2
2 + 2x1 + 3

x2 + 5 x1 2x1 2x2
2 + x1 + x2 + 8

x1 + x2 + 5 x1 + x2 + 5 5 + 2x1 + x2 2x2
2 + 2x1 + x2 + 8

x1 x2 + 5 2x2
2 + x2 + 8 2x2

2 + 2x1 + 3

 .

We still have det(A) = det(T1) det(T2). However, Maple’s determinant routine
will no longer find this factorization.

The matrices for the second benchmark and Maple code and Magma code
for computing and factoring their determinants can be found on the web under
http://www.cecm.sfu.ca/~mmonagan/code/CMSHL/.

The timings are shown in Tables 4 and 5. In both tables, the first block
of rows are the number of variables n and the matrix size N . In Table 4, the
second block shows the total time for our algorithm, the total number of probes
to the black box, and information about the number of terms in each factor and
the determinant det(A). Note that the number of terms in each factor is much
smaller than # det(A). The third block shows the time for computing det(A)
using our implementation of the Gentleman & Johnson’s algorithm, Maple’s
factor time and the total time Maple uses. The last block is the timings for
Magma’s determinant computation and factorization. The categories of Table 5
are the same as Table 3.

In this example, our algorithm is faster than Maple and Magma for all n ≥ 5
and at n = 8, our algorithm is more than 330 times faster than Maple. Maple
runs out of memory for computing det(A) at n = 9. The bottleneck is probes
to the black box since evaluations of the polynomial entries are needed prior to
each determinant computation in Zp.

11

n 5 6 7 8 9 10 11

N = 2n 10 12 14 16 18 20 22

total time 0.383 1.537 4.778 20.971 77.894 342.264 1334.654

total probes 3064 10,772 27,490 95,212 278,098 973,240 3,089,700

#fi 12,24 52,63 69,147 319,363 411,891 1953,1951 2780,2634
12,25 52,63 66,136 319,363 431,897 2066,2067 5768,6017

det(A) 3644 19,750 70,522 811,363 3,980,956 36,906,753 147,531,107

Gentleman 0.675 13.717 161.22 6628.5 N/A N/A N/A

Maple factor 0.170 0.405 1.270 11.706 242.81 N/A N/A

Maple total 0.845 14.122 162.49 6640.206 - - -

Magma fac 0.030 1.810 13.020 1757.1 N/A N/A N/A

Magma det 1.600 20.490 422.77 >120,000 N/A N/A N/A

Magma tot 1.63 22.3 435.79 >121,757 - - -

Table 4. CPU timings for computing det(A) using CMSHL black box algorithm.

n 5 6 7 8 9 10 11

N = 2n 10 12 14 16 18 20 22

H.L. xn total 0.086 0.116 0.273 0.997 2.675 9.690 31.161

s (H.L. xn) 10 28 80 218 466 1221 3074

BB 0.029 0.039 0.116 0.514 1.580 6.362 21.586

Interp2var 0.002 0.003 0.004 0.016 0.037 0.156 0.258

Eval fρj−1 0.004 0.023 0.045 0.126 0.275 0.898 2.385

BHL 0.002 0.006 0.013 0.041 0.088 0.233 0.596

VSolve 0.003 0.003 0.003 0.009 0.033 0.263 1.221
Table 5. Breakdown of CPU timings in seconds for Hensel lifting the last variable xn.

5 Computing Determinants of Symbolic Matrices

In our first benchmark, factoring detTn, we first compared our new factoriza-
tion algorithm with computing detTn in its sparse representation using Maple’s
LinearAlgebra:-Determinant command then factoring it using Maple’s poly-
nomial factorization routine. Our initial timing results were impressive but we
were fooled. The default algorithm Maple uses to compute detTn is the Bareiss/
Edmonds fraction-free Gaussian elimination algorithm [1, 8]. For Tn a severe
expression swell occurs. In this section we quantify this expression swell and
consider two other symbolic determinant algorithms.

There are many algorithms for computing determinants of symbolic matri-
ces. For our two benchmarks we tried (1) Maple’s implementation of the Bareiss
fraction-free algorithm [1], which was also discovered independently by Edmonds
[8], (2) Gentleman & Johnson’s method of minor expansion [14] and (3) the
Berkowitz algorithm [4] as described by Law in [21]. For matrices over an integral
domain D, these three algorithms do O(n3), O(n2n) and O(n4) arithmetic oper-
ations in D respectively. The Gentleman-Johnson algorithm and the Berkowitz

12

algorithm are division free algorithms. The Bareiss/Edmonds algorithm does
exact divisions in D.

For the first benchmark, computing det(Tn) where Tn is the symmetric
Toeplitz matrix with symbolic entries, the Gentleman-Johnson algorithm was
the fastest. Maple uses this algorithm when we specify

LinalgAlgebra:-Determinant(A,method=minor).

However, Maple ran out of space on T15. To compute det(T15) we implemented
the Gentleman-Johnson algorithm in Maple as follows. Let Rk denote the set
of k × k submatrices of A with k rows chosen from 1 to n and the k rightmost
columns of A. There are

(
n
k

)
matrices in Rk. Let Dk be the determinants of those

submatrices. Let us use [r1, . . . , rk][c1, . . . , ck] to indicate the k× k submatrix of
A with rows ri and columns ci. Then if n = 4 then

R1 = [1][4], [2][4], [3][4], [4][4],
R2 = [1, 2][3, 4], [1, 3][3, 4], [1, 4][3, 4], [2, 3][3, 4], [2, 4][3, 4], [3, 4][3, 4],
R3 = [1, 2, 3], [2, 3, 4], [1, 2, 4][2, 3, 4], [1, 3, 4][2, 3, 4], [2, 3, 4][2, 3, 4] and
R4 = [1, 2, 3, 4][1, 2, 3, 4] = A.

The Gentleman-Johnson algorithm executes the following loop:

for k = 2, 3, . . . , n do compute the Dk using Dk−1 end for

We modified the algorithm so that after computing Dk we explicitly discard
Dk−1 to save space in order to compute T15. Maple cannot compute det(T16) as
this polynomial will overflow Maple’s POLY data structure forcing Maple to use
the much slower and much less space efficient SUM-OF-PRODS data structure
(see [25]).

Although the Bareiss/Edmonds fraction-free algorithm does only O(n3) poly-
nomial operations, a significant intermediate expression swell occurs for the
Toeplitz matrices Tn. We quantify this precisely. Ignoring pivoting, and initial-
izing A0,0 = 1, the kth step of fraction-free Gaussian elimination computes Ai,j
as follows:

Ai,j =
Ak,kAi,j −Ai,kAk,j

Ak−1,k−1
for k ≤ i ≤ n, k ≤ j ≤ n.

The division by Ak−1,k−1 is exact in our polynomial ring. Also, at the end of the
elimination, Ak,k is the determinant of the k×k principle minor of the original A,
that is, Ak,k = det(Tk). Thus at the very last step of the algorithm we compute

det(Tn) = An,n =
An−1,n−1An,n −An,n−1An−1,n

An−2,n−2

=
An−1,n−1An,n −An,n−1An−1,n

det(Tn−2)
.

Therefore the numerator polynomial is det(Tn) det(Tn−2). For n = 10 we find
that # det(T10) = 23797, # det(T8) = 1628 and # det(T10) det(T8) = 813638,
an expression swell of a factor of 34.

13

Berkowitz Gentleman Bareiss factor

n #det real cpu real cpu real cpu real

10 5,318 1.48s 1.72s 1.45s 1.49s 1.43s 5.16s 0.282s
12 23,953 13.9s 22.7s 20.5s 21.3s 17.3s 112.4s 0.499s
14 231,714 6.85m 16.29m 9.14m 9.54m 15.0m 3.74h 2.676s
16 858,441 62.56m 3.11h 2.49h 2.61h >72gb – 21.9s
18 – >72gb – >72gb – NA – –

Table 6. Maple timings for determinant algorithms for benchmark 2

For the second benchmark, we obtained the timing data in Table 6. The
method that used the least CPU was the Gentleman-Johnson algorithm. The
method that used the least real time was the Berkowitz algorithm. Interestingly,
the Berkowitz algorithm uses significantly less real time than CPU time, the
Bareiss/Edmonds algorithm uses much less real time than CPU time, but the
Gentleman-Johnson algorithm does not. This is because when we multiply two
polynomials f × g and both f and g have many terms, Maple is able to use
it’s parallel polynomial multiplication algorithm. In the Gentleman-Johnson al-
gorithm, every polynomial multiplication f × g, f is one of the original matrix
entries which has few terms which limits parallel speedup.

6 Conclusion and Future Work

We have designed and implemented a new black box factorization algorithm that
outputs the factors in sparse representation directly. It is highly space efficient
and our determinant benchmarks show that the new algorithm is faster than
Maple’s current best determinant and factor algorithms. We were able to com-
pute the factors of det(T16), where T16 is a symmetric Toeplitz matrix. This has
never been computed before. To achieve these results we needed to implement
several subroutines carefully in C. In the future, we want to try to parallelize
our code using Cilk C, since each subroutine is parallelizable.

Acknowledgment

We would like to thank our colleague Garrett Paluck for his multi-factor bivariate
Hensel lifting C code.

References

1. Bareiss, E.: Sylvester’s Identity and multistep integer-preserving Gaussian elimina-
tion. Math Comp. 22(103), 565–578 (1968)

2. Bareiss, E.: Numerical solution of linear equations with Toeplitz and vector Toeplitz
matrices. Numerische Mathematik, 13(5), 404–424 (1969)

14

3. M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate poly-
nomial interpolation. In Proceedings of STOC ’88, pp. 301–309. ACM (1988)

4. Berkowitz, S.J.: On computing the determinant in small parallel time using a small
number of processors. Inf. Processing Letters 18(3), 147–150 (1984)

5. Bernardin, L.: On Bivariate Hensel Lifting and its Parallelization. In Proceedings
of ISSAC ’98, pp. 96–100. ACM (1998)

6. Chen, T., Monagan, M.: The complexity and parallel implementation of two sparse
multivariate Hensel lifting algorithms for polynomial factorization. In Proceedings
of CASC 2020, LNCS 12291, 150–169. Springer (2020)

7. Connolly, K.: A Maple implementation of FFT-based algorithms for
polynomial multipoint evaluation, interpolation, and solving transposed
Vandermonde systems. Masters Project, Simon Fraser University, 2020.
http://www.cecm.sfu.ca/CAG/theses/kimberly.pdf

8. Edmonds, J.: Systems of Distinct Representatives and Linear Algebra J. Research
of the National Bureau of Standards, 718(4), 241–245 (1967)

9. Diaz, A., Kaltofen E.: FOXBOX: A system for manipulating symbolic objects in
black box representation. In Proceedings of ISSAC ’98, pp. 30–37. ACM (1998)

10. Von zur Gathen, J.: Irreducibility of multivariate polynomials. Journal of Computer
and System Sciences, 31(2), 225–264 (1985)

11. Von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press (2013)

12. Geddes, K.O., Czapor, S.R. and Labahn, G.: Algorithms for Computer Algebra.
Kluwer Acad. Publ (1992)

13. David Hilbert. Über die Irreducibilität ganzer rational Functionen mit ganzzahigen
Koeffizienten. J. Renie Agewandte Mathematik, 110, 104–129 (1982)

14. Gentleman, W.M. and Johnson, S.C.: Analysis of algorithms, a case study: de-
terminants of matrices with polynomial entries. ACM Trans. on Math. Soft. 2(3),
232–241. ACM (1976)

15. Kaltofen, E.: Effective Hilbert irreducibility. Information and Control, 66, 123–137
(1985)

16. Kaltofen, E.: Sparse Hensel lifting. In Proceedings of EUROCAL ’85, LNCS 204,
4–17. Springer (1985)

17. Khovanova, T., Scully, Z.: Efficient Calculation of Determinants of Symbolic Ma-
trices with Many Variables, ArXiv: 1304.4691 (2013)

18. Kaltofen E., Trager, B.M.: Computing with polynomials given by black boxes for
their evaluations: Greatest common divisors, factorization, separation of numerators
and denominators. J. Symb. Cmpt. 9(3), 301–320. Elsevier (1990)

19. Kaltofen, E., Yagati, L.: Improved sparse multivariate polynomial interpolation
algorithms. In Proceedings of ISSAC ’88, LNCS 358, 467–474. Springer (1988)

20. Lang, S.: Fundamentals of Diophantine Geometry. Springer-Verlag New York
(1983)

21. Law, M.: Computing characteristic polynomials of matrices of structured polyno-
mials. Masters Thesis, Simon Fraser University, 2017.

22. Lecerf, G.: Improved dense multivariate polynomial factorization algorithms. J.
Symbolic Computation 42:477–494 (2007)

23. Lee, W.S.: Early termination strategies in sparse interpolation algorithms. Ph.D.
Thesis (2001)

24. Monagan, M.: Linear Hensel lifting for Fp[x, y] and Z[x] with cubic cost. In Pro-
ceedings of ISSAC 2019, pp. 299–306. ACM (2019)

15

25. Monagan, M., Pearce, R.: The design of Maple’s sum-of-products and POLY data
structures for representing mathematical objects. Communications of Computer Al-
gebra, 48(4), 166–186. ACM (2014)

26. Monagan, M., Tuncer, B.: Using Sparse Interpolation in Hensel Lifting. In Pro-
ceedings of CASC 2016, LNCS 9890, 381–400. Springer (2016)

27. Monagan, M., Tuncer, B.: Factoring multivariate polynomials with many fac-
tors and huge coefficients. In Proceedings of CASC 2018, LNCS 11077, 319–334.
Springer (2018)

28. Monagan, M., Tuncer, B.: Sparse multivariate Hensel lifting: a high-performance
design and implementation. In Proceedings of ICMS 2018, LNCS 10931, 359–368.
Springer (2018)

29. Monagan, M., Tuncer, B.: The complexity of sparse Hensel lifting and sparse poly-
nomial factorization. J. Symb. Cmpt. 99, 189–230. Elsevier (2020)

30. Monagan, M., Tuncer, B.: Polynomial factorization in Maple 2019. In Maple in
Mathematics Education and Research. Communications in Computer and Informa-
tion Science, 1125, 341–345. Springer (2020)

31. Paluck, G., Monagan, M.: New bivariate Hensel lifting algorithm for n factors.
ACM Communications in Computer Algebra, 53(3), 142–145 (2019)

32. Roche, D.: What can (and can’t) we do with sparse polynomials? In Proceedings
of ISSAC 2018, pp. 25–30. ACM (2018)

33. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27(4), 701–717 (1980)

34. Wang, P.S., Rothschild, L.P.: Factoring multivariate polynomials over the integers.
Math. Comp. 29, 935–950 (1975)

35. Yun, D.Y.Y.: The Hensel Lemma in algebraic manipulation. Ph.D. Thesis (1974)
36. Zippel, R.E.: Probabilistic algorithms for sparse polynomials. LNCS 72, 216–226

(1979)
37. Zippel, R.E.: Newton’s iteration and the sparse Hensel algorithm. In Proceedings

of the ACM Symposium on Symbolic Algebraic Computation, pp. 68–72 (1981)
38. Zippel, R.E.: Interpolating polynomials from their values. J. Symb. Cmpt. 9(3),

375–403 (1990)

16

