
A Sparse Modular GCD Algorithm for Polynomials over
Algebraic Function Fields ∗

Seyed Mohammad Mahdi Javadi
School of Computing Science

Simon Fraser University
Burnaby, B.C. Canada.

sjavadi@cecm.sfu.ca.

Michael Monagan
Department of Mathematics

Simon Fraser University
Burnaby, B.C. Canada.

mmonagan@cecm.sfu.ca.

ABSTRACT
We present a first sparse modular algorithm for computing
a greatest common divisor of two polynomials f1, f2 ∈ L[x]
where L is an algebraic function field in k ≥ 0 parameters
with r ≥ 0 field extensions. Our algorithm extends the dense
algorithm of Monagan and van Hoeij from 2004 to support
multiple field extensions and to be efficient when the gcd
is sparse. It uses the modified Zippel interpolation of de
Kleine, Monagan, and Wittkopf from 2005.

We have implemented our algorithm in Maple. We pro-
vide timings demonstrating the efficiency of our algorithm
compared to that of Monagan and van Hoeij and with a
primitive fraction-free Euclidean algorithm for both dense
and sparse gcd problems.

1. INTRODUCTION
Let F = Q(t1, . . . , tk), k ≥ 0. For i, 1 ≤ i ≤ r, let

mi(z1, . . . , zi) ∈ F [z1, . . . , zi] be monic and irreducible over
F [z1, . . . , zi−1]/ 〈m1, . . . , mi−1〉. Let L = F [z1, . . . , zr]/
〈m1, . . . , mr〉. L is an algebraic function field in k parame-
ters t1, . . . , tk (this also includes number fields). Let f1 and
f2 be non-zero polynomials in L[x] and let g be their monic
gcd. Our problem is, given f1 and f2 to compute g or an
associate (scalar multiple) of g.

One way to compute g would be to use the Euclidean al-
gorithm. If one does this in L[x] there is an expression swell
in F and one must compute with large fractions in F . In
[6] Moreno Maza and Rioboo show how to avoid arithmetic
with fractions in F for univariate gcd computation modulo
a triangular set of polynomials which includes L as a special
case. However, the k + 1 dimensional expression swell that
occurs in the coefficients in F makes their algorithm very
slow even for inputs of moderate degree.

In [3], Monagan and van Hoeij presented ModGcd, a first
modular GCD algorithm for computing gcds over algebraic

∗Supported by NSERC of Canada and the MITACS NCE
of Canada

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XXX-X/XX/XXXX ... $5.00.

function fields presented with one field extension. Their
algorithm uses a dense interpolation method and hence the
time complexity is at least O(dk) where d bounds the degree
of g in the k parameters.

Our algorithm, presented in Section 3, which we call
SparseModGcd is a sparse modular GCD algorithm. Similar
to ModGcd (see [3]), our algorithm uses rational number
reconstruction (see [8, 7]) and a variable at a time rational
function reconstruction (see [3, 7]) to recover the coefficients
of the gcd one parameter at a time. Like ModGcd, our
algorithm is also output sensitive, i.e., the number of images
it computes depends on the size of the gcd g and not on the
sizes of f1 and f2 which may be much larger.

Unlike ModGcd, our algorithm uses a sparse interpolation
to reduce the number of images needed to interpolate g when
g is sparse. Zippel’s sparse interpolation in [9], was originally
developed for gcd computation in Z[x1, . . . , xn]. It is not
efficient when the gcd is not monic in the main variable x1.
In [5], Wittkopf, et al. presented two techniques to make
Zippel’s sparse interpolation efficient for non-monic gcds.
We adapt one of these techniques for L[x].

Our paper is organized as follows. In Section 2 we present
an example of our algorithm showing the main flow of our
algorithm. It also shows the reader how Zippel’s sparse in-
terpolation works, and illustrates some of the problems that
may occur, the use of rational reconstruction and other key
design features of the algorithm. We then identify all prob-
lems that can occur and provide the theory for the basis of
our algorithm which is presented in Section 3.

In Section 4 we compare Maple implementations of our
algorithm with ModGcd and with a primitive fraction-free
algorithm (see Appendix) on both dense and sparse prob-
lem sets to demonstrate its efficiency. Some of our prob-
lem sets are multivariate polynomials, that is, problems in
L[x1, . . . , xn]. In order to use our algorithm for multivari-
ate polynomial inputs we use the same method described
by Monagan and van Hoeij in [3], namely, compute the con-
tent c ∈ L[x2, . . . , xn] of the gcd g from the inputs f1 and
f2, then apply our algorithm to f1/c and f2/c treating the
polynomial variables x2, . . . , xn as parameters.

We mention also the GCD algorithm of Dahan et al. in
[2] which computes the gcd of two univariate polynomials
modulo a triangular set T of dimension zero over Q, that
is, not involving any parameters. Their algorithm, which
uses Hensel lifting, is designed to treat also the case where
the triangular set does not generate a prime ideal and conse-
quently a zero divisor could be encountered in the Euclidean

algorithm. In the conclusion we will describe how one may
in principle modify our algorithm to treat zero divisors and
explain why we do not use Hensel lifting.

2. AN EXAMPLE
Similar to ModGcd (see [3]), our algorithm works with

primitive associates of the inputs and the minimal polyno-
mials and computes the primitive associate of the gcd g,
which we now define.

Definition 1. Let D = Z[t1, ..., tk]. A non-zero poly-
nomial in D[z1, . . . , zr, x] is said to be primitive
wrt (z1, . . . , zr, x) if the gcd of its coefficients in D is 1.
Let f be non-zero in L[x] where L is the algebraic func-
tion field previously defined. The denominator of f is the
polynomial den(f) ∈ D of least total degree in (t1, . . . , tk)
and with smallest integer content such that den(f)f is in
D[z1, . . . , zr, x]. The primitive associate f̌ of f is the asso-
ciate of den(f)f which is primitive in D[z1, . . . , zr, x] and
has positive leading coefficient in a term ordering.

Example 1. Let f = 3tx2 + 6tx/(t2 − 1) + 30tz/(1− t)
where m1(z) = z2 − t. Here f ∈ L[x] where L = Q(t)[z]/˙
z2 − t

¸
is an algebraic function field in one parameter t.

We have den(f) = t2 − 1 and f̌ = den(f)f/(3t) = (t2 −
1)x + 2x− 10z(t + 1).

We demonstrate our algorithm on the following example
where note we have used s and t for the parameters instead
of t1 and t2.

Example 2. Let z =
√

1− st and let

f1 = (x2 +
1

2t
zx + st + 5)(3zx− 3x + 5zt + 10s− 1),

f2 = (x2 +
1

2t
zx + st + 5)(3zx− 3x + 10s + 4).

Here ǧ = 2tx2 +zx+2st2 +10t. First we compute f̌1 = 2tf1

and f̌2 = 2tf2. To find ǧ we first compute g1 = gcd(f̌1, f̌2)
modulo p1 = 17. Let t = 5 be our first evaluation point. To
compute g1(5, s, z, x) we need at least two evaluation points
to interpolate s but our algorithm will use three since we
do not know yet that ǧ is linear in t. Using the Euclidean
algorithm with evaluation points s = 4, s = 11 and s = 3 we
compute

h0 = g1(5, 4, z, x) = x2 + 12zx + 8,

h1 = g1(5, 11, z, x) = x2 + 12zx + 9 and

h2 = g1(5, 3, z, x) = x2 + 12zx + 3.

Applying a dense interpolation to (4, h0), (11, h1) and (3, h2)
to interpolate s yields

G = x2 + 12zx + 5s + 5.

Now we apply rational function reconstruction to the co-
efficients of G in Z17[s]. We have three points so we attempt
to reconstruct rational functions with linear numerators and
denominators. We obtain as output h = G and accept it
as probably correct since h has the minimum degree in s
(degs(h) = 1) among all possible rational functions A

B
satis-

fying A
B
≡ G mod (s−4)(s−11)(s−3). This method, which is

called Maximal Quotient Rational Reconstruction was first
introduced by Monagan in [7]. Since h|f1(5, t, z, x) and
h|f2(5, t, z, x) we conclude that g1(5, s, z, x) = h. Now
in order to compute g1 we choose another evaluation point
t = 10. Assuming that g1(5, s, z, x) is of the correct form, in
particular degs lcx(g1) = 0,

g1(10, s, z, x) = 1.x2 + Azx + Bs + C

for some constants A, B and C. If we choose the next eval-
uation point to be s = 13 using the Euclidean algorithm we
compute

g1(10, 13, z, x) = x2 + 6zx + 16.

From this we obtain

{A = 6, 13B + C = 16} mod 17.

Notice that because of the form of the gcd, we have two in-
dependent linear systems, one of dimension 1 and the other
of dimension 2 so we need another evaluation point to solve
for B and C. Take s = 14. Again, using the Euclidean
algorithm we obtain

g1(10, 14, z, x) = x2 + 6zx + 9,

hence 14B + C = 9 mod 17. Solving for A, B, C we obtain
A = 6, B = 10 and C = 5 and hence

g1(10, s, z, x) = x2 + 6zx + 10s + 5.

Interpolating the images of g1 at t = 5 and t = 10 yields

G = x2 + (9t + 1)xz + st + 5.

Applying the rational function reconstruction to the coeffi-
cients of G fails. This means we need to choose another
evaluation point.

If we choose the next evaluation point t = 1, and use
s = 6, using the Euclidean algorithm we compute

g1(1, 6, z, x) = x3 + (13z + 4)x2 + (2z + 1)x + 10z + 13.

The degree of this new image wrt x is greater than the de-
gree of the assumed form. In fact no matter, what value
of s we choose, this always happens. This is because t = 1
is an unlucky evaluation point which must be detected and
rejected.

Suppose we try t = 11. Again using sparse interpolation
we obtain

g1(11, s, z, x) = x2 + 7zx + 11s + 5.

By interpolating the images of g1 at t = 5, t = 10 and t = 11
we get

G = x2 + (10t2 + 12t + 8)xz + st + 5.

This time rational function reconstruction applied to the co-
efficients of G modulo (t − 5)(t − 10)(t − 11) succeeds and
outputs

h = x2 +
9

t
zx + st + 5.

Hence ȟ = tx2 + 9zx + st2 + 5t. Since ȟ|f̌1 mod p1 and
ȟ|f̌2 mod p1, g1 = ȟ. Now we apply the integer rational
number reconstruction to the coefficients of g1. It fails be-
cause our prime is not big enough, so we need another im-
age. We choose p2 = 11. Let g2 = GCD(f̌1, f̌2) mod p2.
Assuming that g1 is of the correct form, we know that

g2 = 1.tx2 + Hzx + (Ist2 + Jt).

Again we use sparse interpolation. We need two images to
determine I and J. We choose two random evaluations for
(s, t) ∈ Z2

p. We obtain H = 6, I = 1 and J = 5, hence

g2 = tx2 + 6zx + st2 + 5t.

Now we apply the Chinese Remaindering algorithm to g1 and
g2 modulo primes p1 = 17 and p2 = 11. This results in

G = tx2 + 94zx + st2 + 5t mod 13× 11.

This time integer rational number reconstruction succeeds
and outputs

h = tx2 +
1

2
zx + st2 + 5t,

hence

ȟ = 2h = 2tx2 + zx + 2st2 + 10t.

Since ȟ|f̌1 and ȟ|f̌2, ȟ = GCD(f̌1, f̌2) and we are done.

Remark 1: Because we chose evaluation points from Z17

and not the finite ring Z17[z], the linear system of equations
was over Zp which means it could not run into zero divi-
sors, which would further complicate the algorithm. Also,
because we equate coefficients in zixj instead of xj , in gen-
eral, this reduces the number of images needed and the size
of the independent linear systems to be solved.

Remark 2: If the leading coefficient of ǧ in x (2t in our
example) was a sum of two or more terms, the interpola-
tion as shown in the example would not work. This is called
Normalization Problem (or leading coefficient problem). We
will solve this problem by adapting one of the solutions in-
troduced by Wittkopf, et al. in [5].

2.1 Problems
In the example we encountered an unlucky evaluation

point. There are several other problems that may arise de-
pending on the primes and the evaluation points that the
algorithm chooses, including the possibility of hitting a zero
divisor while using the Euclidean algorithm to compute the
univariate images of the gcd. Here we identify all problems.
We follow the terminology of van Hoeij and Monagan [3].

Bad primes and bad evaluation points.
Definition 2. A prime p is said to be a bad prime if

the leading coefficient of f̌1 or f̌2 wrt x or any m̌i wrt zi

vanishes mod p. Similarly an evaluation point tj = α is
called a bad evaluation point if the degree of f̌1 or f̌2 wrt x
or any m̌i wrt zi decreases after evaluating at this point.

Example 3. Suppose f̌1 = 28tx3 +19ztx+2t2 +10, f̌2 =
52zx2 + 10x + zt3 − t and m(z) = (s − 1)z2 + 3. Here
p1 = 2, p2 = 7 and p3 = 13 are bad primes. Also t = 0 and
s = 1 are bad evaluation points.

The good thing about bad primes and bad evaluation
points is that they can be ruled out in advance.

Unlucky primes and unlucky evaluation points.
Definition 3. A prime p is said to be unlucky if ǧp =

gcd(f̌1, f̌2) mod p has higher degree in x than the gcd ǧ.
Similarly an evaluation point tj = α is said to be unlucky if
gcd(f̌1(α), f̌2(α)) mod p has higher degree in x than ǧ.

Example 4. Consider the input polynomials

f̌1 = (x + z)(x + 17t + t2 + z) and f̌2 = (x + t)(x + t2 + z).

Here ǧ = 1 but ǧ17 = gcd(f̌1, f̌2) mod 17 = x+t2+z which
obviously has higher degree than ǧ, so p = 17 is an unlucky
prime. Similarly t = 0 is an unlucky evaluation point.

Unlucky primes must be avoided if ǧ is to be correctly
reconstructed. Unlike bad primes, unlucky primes can not
be detected and discarded in advance. Brown in [1] showed
how to do this in a way that is efficient for Z[x]; whenever
images of the gcd do not have the same degree, one keeps
only those images of smallest degree and discard the others.
The same solution works here. See Theorem 1.

Zero Divisors
Recall that a non-zero element α of a ring R is a zero divisor
if there exists a non-zero element β ∈ R s.t. αβ = 0. When
we are using the Euclidean algorithm to compute the gcd of
f1(α1, . . . , αk, x), f2(α1, . . . , αk, x) (α1, . . . , αk are the eval-
uation points) modulo a prime p, we might encounter a zero
divisor, in which case the Euclidean algorithm fails (see [4]).
The bigger the prime p is, the smaller the chance of hitting
a zero divisor would be.

Example 5. Let f1 = (z+2t)x2+tx+z, f2 = zx3+tx2+
(z− 2)x+8t and m(z) = z2− t. Suppose we choose the first
prime p = 7. If we evaluate the inputs at t = 2 we obtain
f ′1 = (z − 3)x2 + 2x + z and f ′2 = zx3 + 2x2 + (z − 2)x + 2.
When we run the Euclidean algorithm on the inputs f ′1 and
f ′2 we hit a zero divisor while trying to invert lc(f ′1) = z− 3.
Note z2 − 2 = (z − 3)(z + 3) mod 7.

The solution to the problem with zero divisors is described
in the next section.

Theorem 1. Let f1, f2 ∈ L[x] be two non-zero polyno-
mials where L = F [z1, . . . , zr]/ 〈m1, . . . , mr〉 and F =
Q(t1, . . . , tk). Let ǧ = gcd(f̌1, f̌2). Let p be a prime and
α = (t1 = α1, . . . , tk = αk). Suppose that the monic Eu-
clidean algorithm applied to f̌1(α, x) and f̌2(α, x) modulo p
does not encounter a zero divisor and outputs gp (monic in
x). If α is not a bad evaluation point and p is not a bad
prime, degx(gp) ≥ degx(ǧ). Moreover if degx(gp) = degx(ǧ)
then gp = monic(ǧ(α, x) mod p) and we say α is a good
evaluation point and p is a good prime.

Proof: See Monagan and van Hoeij [3]. The difference is
the number of field extensions but this has no significant
change in the proof in [3].

Theorem 1 and Brown’s method for detecting unlucky
primes and unlucky evaluation points tells us how to get
good primes and good evaluation points which will give us
univariate images from which we will reconstruct the multi-
variate coefficients of ǧ in Z[t1, ..., tk]. There are three addi-
tional problems to address, the first is due our using sparse
interpolation.

Missing Terms
Definition 4. A prime p is said to introduce missing

terms if any term of ǧ vanishes modulo p. Similarly an
evaluation point tk = α is said to introduce missing terms
if any coefficient of ǧ in Zp[tk] vanishes at this evaluation
point.

Example 6. Let ǧ = (t2 − s + 1)x3 + 70zx2 + (13t + 26).
Here the primes 2, 5, 7 and 13 introduce missing terms (the
first three cause the second term to vanish and the last one
makes the last term to vanish). The prime p = 11 does
not introduce missing terms, but when we are computing the
image of the gcd modulo this prime, t = 9 makes the last
term vanish.

Unfortunately primes (or evaluation points) which intro-
duce missing terms can not be avoided in advance. We
detect an incorrect assumed form gf as follows. If dur-
ing the sparse interpolation we compute an image with the
same degree as the assumed form gf in x but with terms
in (x, z1, . . . , zr) not present in gf , the assumed form gf is
wrong. The following example shows what will happen if
the assumed form is wrong but the terms are the same.

Example 7. Suppose ǧ = x + tz + 13z. Suppose the first
prime used is p1 = 13. Then the assumed form for g(x, z, t)
will be gf = x+Btz. Now suppose we pick the second prime
p2 = 11 and attempt sparse interpolation, equating ǧ(t) =
gf (t) for different t. For t = 1 we obtain x+3z = x+Bz =⇒
B = 3. For t = 2 we obtain x + 4z = x + 2Bz =⇒ B = 2,
an inconsistency.

We argue that an incorrect assumed form gf will be iden-
tified with high probability if we use one more evaluation
point than the minimum needed to solve for the unknowns
in the assumed form. Once an incorrect assumed form is
identified, because we do not know whether it was the cur-
rent evaluation point or a previous evaluation point or the
current prime that caused the missing terms, we must allow
our algorithm to restart with a new prime.

Remark 3: Suppose ǧ = (7s2 + 9t + 1)x2 + z. Here p = 7
is not bad but we still can not use it because the image of
the gcd computed modulo p = 7 does not have the correct
leading term (see [3]). Note that in our algorithm p = 7
causes a missing term and this is treated in the same way
we treat missing terms.

Normalization problem
An image of the gcd computed modulo a prime p is unique
up to a scaling factor in the integers mod p. This causes a
complication in the sparse interpolation when lcxǧ has more
than one term in the parameters.

Example 8. Let z =
√

s + t. Suppose the input polyno-
mials are f̌1 = (x− s + 1)ǧ and f̌2 = (x + t + s)ǧ where

ǧ = (15s + t)x2 + 12s2xz + 40st

is the gcd of f̌1 and f̌2. Suppose we have computed

ǧ7 = (s + t)x2 + 5s2xz + 5st,

our first image modulo p1 = 7. So our assumed form is

gf = (As + Bt)x2 + Cs2xz + Dst

for some constants A, B, C and D. Now we want to com-
pute the next image of the gcd modulo p2 = 11. Consider
the evaluation point α = (s = 2, t = 1), we have

ǧ21 = gcd(f̌1(2, 1), f̌2(2, 1)) = 1 · x2 + 9xz + 4.

The problem is that this image is unique up to a scaling
factor m. That is

m(x2 + 9xz + 4) = (2A + B)x2 + 4Cxz + 2D, (∗)

but we do not know what m is. If we knew the leading coef-
ficient of ǧ, lcx(ǧ) = 15s + t, then we could easily compute

m = lcx(ǧ(2, 1)) mod 11 = 9.

Unfortunately there is no easy way of computing lcxǧ.

Suppose gf is the assumed form of the gcd and we have
computed h = gcd(f̌1(α), f̌2(α)) mod p. If g is monic then
we have the equation h = gf (α), otherwise we let m be an
unknown in (*). Because m is a new unknown, we may need
more images to construct a consistent system of linear equa-
tions. The above solution was first introduced by Wittkopf,
et al. in [5]. In their paper, they discuss the efficiency of the
multiple scaling case. To see how this affects the structure
of the linear systems consider the problem of finding a gcd

266664
c c 1
c c 1

c c c
c c c

c c c
c c c

377775

26666664

a1
a0
b1
b0
c1
c0
1

m2

37777775 =

26666664

0
0
0
0
0
0
0
0

37777775

Figure 1: Structure of the linear system for multiple
scaling case

which looks like

gf = (a1s
2 + a0)x

2 + (b1st
2 + b0)x + (c1t

2 + c0)z.

Here we need two images. The linear system of equations has
a structure shown in Figure 2.1 where all entries not shown
are zero and m1 = 1. The solution can be easily computed
by solving a number of smaller subsystems corresponding to
the rectangular blocks of non-zero entries augmented with
the multiplier columns. With this method, the solution ex-
pense turns out to be of the same order as the case where ǧ
is monic.

Unlucky Contents
Definition 5. For a polynomial f = anxn+· · ·+a1x+a0

with ai ∈ R for 0 ≤ i ≤ n, the content

contx(f) = gcd(a0, a1, . . . , an) ∈ R.

A prime p, is said to introduce an unlucky content if for two
input polynomials f1, f2 with gcd g = gcd(f1, f2), contx(ǧ) =
1 but contx(ǧ mod p) 6= 1. Similarly an evaluation point
t = α is said to introduce an unlucky content if contx(ǧ) = 1
but contx(ǧ(α))6= 1.

Example 9. Suppose ǧ = (12s + t)x + (s + 12t)z. We
have contx(ǧ) = gcd(12s+ t, s+12t) = 1. But for p = 11 we
obtain contx(ǧ mod p) = s + t. Hence p = 11 introduces an
unlucky content and, for any prime p, the evaluation points
t = 0 and s = 0 introduce unlucky contents.

Suppose during sparse interpolation we choose our as-
sumed form, gf , based on an image which is computed mod-
ulo a prime (or evaluation point) which introduced an un-
lucky content, e.g. p1 = 11 in our example. Then the as-
sumed form gf will have different terms in x, z1, ..., zr, t1, ..., tk

than in ǧ. This will, with high probability, result in an in-
consistent linear system during sparse interpolation.

Suppose instead that our assumed form gf is correct but
it is a subsequent prime or evaluation point that introduces
an unlucky content. This can lead to an under determined
linear system.

Example 10. Consider f1 = f2 = zx + t + 1 where
m(z) = z2 − t − 14. Here g = x + (t + 1)/(t + 14)z and
hence ǧ = (t + 14)x + (t + 1)z thus 13 introduces an unlucky
content t. Suppose our first prime is p1 6= 13 and we ob-
tain the correct assumed form gf = (At + B)x + (Ct + D)z.
Suppose our second prime is p2 = 13 and we perform a
sparse interpolation in t using t = 1, 2, 3, Since gf is
not monic in x we will equate gf (t) = mtǧ(t) and solve for
A, B, C, D, m1, m2, ... with m1 = 1. For t = 1, 2, 3 we obtain
the following equations modulo 13.

(A + B)x + (C + D)z ≡ m1(x + z),

(2A + B)x + (2C + D)z ≡ m2(x + z),

(3A + B)x + (3C + D)z ≡ m3(x + z).

Equating coefficients of xizj we obtain the following linear
system: A+B = m1, 2A+B = m2, 3A+B = m3, C+D = 1,
2C + D = 1, 3C + D = 1. The reader may verify that this
system, with m1 = 1, is not determined, and also, adding
further equations, e.g. from t = 4, does not make the system
determined.

If our primes are sufficiently large and our evaluation
points are chosen at random, then primes and evaluation
points which introduce unlucky contents are rare. Because
also, in L[x], we cannot easily identify them in advance (it
is not necessarily true that lcxǧ divides lcxf̌1) we will detect
them through their effect. We will assume that if the linear
system in sparse interpolation is not determined, an unlucky
content is present, and we will design our algorithm to fail
back to the point where the unlucky content was introduced.

It is also possible that the linear system is under deter-
mined because of the evaluation points chosen in sparse in-
terpolation. For example, for ǧ = x+(t3− t)z with assumed
form gf = x + (At3 + B)z, evaluation points t = 0, 1,−1 do
not constrain the system. Thus when we mistakenly assume
that this is because of an unlucky content, we will waste
some useful work.

3. ALGORITHM SPARSEMODGCD
We now present the SparseModGcd algorithm. This mod-

ular GCD algorithm first calls subroutine M which computes
the gcd in L[x] from a number of images in Lp[x]. Subrou-
tine P which is called by subroutine M computes the gcd in
Lp[x] using both dense and sparse interpolations. Finally
subroutine S, which stands for Sparse Interpolation and is
called by subroutine P, does the sparse interpolation.

Algorithm SparseModGcd
Input: f1,f2 ∈ L[x] and m1, . . . , mr ∈ F [z1, . . . , zr] where
F = Q(t1, . . . , tk) s.t. contx(g) = 1.
Output: ǧ, where g is the monic gcd of f1 and f2 in L[x].

1. Call Subroutine M with input f̌1, f̌2 and m̌1,. . . ,m̌r.

Subroutine M
Input: f1,f2 ∈ D[z1, ..., zr]/ 〈m1, ..., mr〉 [x] and m1, ..., mr

∈ D[z1, . . . , zr] were D = Z[t1, . . . , tk].
Output: ǧ, where g is the monic gcd of f1 and f2.

1. Set n = 1, G = 0, and the assumed form gf = 0.

2. Take a new prime pn that is not bad.

3. Let gn ∈ Dpn [z1, . . . , zr, x] be the output of subroutine
P applied to f1, f2, gf , m1 mod p,. . . , mr mod p.

4. If gn = “ZeroDivisor” or gn = “Unlucky” or gn =
“UnluckyContent” then go back to step 2.

5. If gn = “BadForm” then go back to step 1.

6. If gn = 1 then return 1.

7. If G = 0 then set G = gn, M = p and go to step 11.

8. If degx(gn) < degx(G) then set G = gn, M = p, and
go to step 11. (All previous primes were unlucky.)

9. If degx(gn) > degx(G) then go back to step 2.
(pn is an unlucky prime.)

10. Set M = M × p and combine gn with {g1, . . . , gn−1}
using Chinese remaindering to obtain G mod M .

11. Set gf = gn, n = n + 1.

12. Apply integer rational reconstruction to obtain h sat-
isfying h ≡ G mod M . If this fails then go back to
step 2.

13. Clear fractions in Q: Set h = ȟ.

14. Trial division: if h|f1 and h|f2 then return h, other-
wise, go back to step 2.

Subroutine P
Input: f1, f2, gf ∈ Dp[z1, . . . , zr]/〈m1, . . . , mr〉 [x] and
m1, . . . , mr∈ Dp[z1, . . . , zr].
Output: Either ǧ or “ZeroDivisor” or “Unlucky” or “Bad-
Form” or “UnluckyContent” if the algorithm fails to com-
pute the primitive associate of the monic gcd of f1 and f2

because of the bad choice of the prime or evaluation point.

1. If k (the number of parameters) = 0 then output the re-
sult of the monic Euclidean algorithm applied to f1,f2.
If a zero divisor is encountered then output “ZeroDi-
visor”.

2. If the assumed form gf = 0 then go to step 4.

3. Sparse Interpolation: (we already know the form
gf of the gcd from subroutine M.)
Return gn ∈ Dp[z1, . . . , zr, x], the output of subroutine
S applied to f1,f2,m1, . . . , mr and gf .

4. Choose α1 at random from Zp that is not bad.

5. Let g1 ∈ Zp[t1, . . . , tk−1][z1, . . . , zr, x] be the output of
subroutine P applied to f1,f2,m1, . . . , mr at tk = α1

and assumed form gf = 0.

6. If g1 = 1 then return 1.

7. If g1 ∈ { “Unlucky”, “UnluckyContent”, “ZeroDivi-
sor” } then return g1.

8. Set gf = g1, G = g1, M = (tk − α1), n = 2, c = 1, d =
1, u = 1.

9. Main Loop: Take a new evaluation point αn at ran-
dom from Zp that is not bad.

10. Let gn ∈ Zp[t1, . . . , tk−1][z1, . . . , zr, x] be the output of
subroutine S applied to f1,f2,m1, . . . , mr evaluated at
tk = αn and gf .

11. If gn = “BadForm” then return “BadForm”.

12. If gn = “UnluckyContent” then set c = c + 1 and if
c > n return “UnluckyContent” else go to main loop.

13. If gn = “Unlucky” then set u = u + 1 and if u > n
then return “Unlucky”, else go back to main loop.

14. If gn = “ZeroDivisor” then set d = d + 1 and if d > n
then return “ZeroDivisor”, else go back to main loop.

15. If gn = 1 then return 1.

16. If degx(gn) < degx(G) then set G = gn, M = tk − αn,
gf = gn then go to step 19.
(All previous evaluation points were unlucky)

17. If degx(gn) > degx(G) then go back to main loop.
(αn is an unlucky evaluation point)

18. Set M = M × (tk −αn) and Chinese remainder gn

with {g1, . . . , gn−1} to obtain G mod M(tk).

19. Set n = n + 1.

20. Apply rational function reconstruction to coefficients
of G to obtain h ∈ Zp(tk) [t1, . . . , tk−1][z1, . . . , zr, x]
s.t. h ≡ G mod M(tk). If this fails, go back to main
loop.

21. Clear fractions in Zp(tk): Set h = ȟ.

22. Trial division: if h|f1 and h|f2 then return h, other-
wise, go back to main loop.

Subroutine S
Input: f1, f2, gf ∈ Dp[z1, . . . , zr]/ 〈m1, . . . , mr〉 [x] and
m1, . . . , mr ∈ Dp[z1, . . . , zr] where Dp = Zp[t1, . . . , tk].
Output: Either ǧ, the primitive associate of the monic gcd
of f1 and f2, or “BadForm” or “ZeroDivisor” or “Unlucky”
or “UnluckyContent.”

1. If k (the number of parameters) = 0 then call the monic
Euclidean algorithm on f1,f2 and output the result.

2. Suppose the assumed form gf =
P

i CiTi where Ti

is a monomial in (x, z1, . . . , zr) and Ci =
P

j cijSj

where Sj is a monomial in parameters t1, . . . , tk with
unknown cij .

3. Set U to be the minimum number of images needed –
see below. (the algorithm uses one more image than
U to detect a wrong assumed form gf .)

4. Set z = 1, u = 1, n = 1.

5. While n ≤ U + 1 do

5.1. Take a new random evaluation point αn = (t1 =
a1, . . . , tk = ak) in Zk

p which is not bad.

5.2. Let gn be the output of the monic Euclidean al-
gorithm applied to f1(αn), f2(αn), m1(αn),...,
mr(αn).

5.3. If gn = “ZeroDivisor” then set z = z + 1 and if
z > n then return “ZeroDivisor” else go back to
step 5.1.

5.4. If degx(gn) > degx(gf) then set u = u + 1 and if
u > n then return “Unlucky” else go back to step
5.1.

5.5. If degx(gn) < degx(gf) return “BadForm”.

5.6. If gn has terms in (x, z1, . . . , zr) not present in the
assumed form gf then return “BadForm”.

5.7. Set n = n + 1.

6. Construct the system of U + 1 linear equations by
equating gf (αn) = mn gn with mn unknown. Solve
the linear system with m1 = 1 to determine the cij ’s.

7. If the system is inconsistent, return “BadForm”.

8. If the system is under determined, return “Unlucky-
Content”.

9. Set gp =
P

i (
P

j cijSj)Ti.

10. Make lcx,t1,...,tk (gp) = 1 and return gp.

Let ni be the number of terms in the i’th coefficient Ci

of the assumed form gf . The minimum number of images
needed in the sparse interpolation (with multiple scaling fac-

tors) to determine the c′ijs is max(M,
l

N−1
T−1

m
) where T is the

number of monomials in gf in (x, z1, . . . , zr), N is the total
number of monomials in gf and M is the maximum of the
ni’s.

If the assumed form gf in subroutine S is wrong, the lin-
ear system will most probably be inconsistent. It can, how-
ever, be consistent. If consistent, control passes back to
subroutine P (or subroutine M) which will attempt ratio-
nal function reconstruction (respectively, rational number
reconstruction in subroutine M). If this succeeds the trial
divisions prevent the algorithm from returning a wrong an-
swer. Then subroutine P will call subroutine S at a new
evaluation point with the same wrong assumed form. We
argue that, provided p is sufficiently large, subroutine S will
eventually get an inconsistent system and determine that
the assumed form is wrong.

To treat zero divisors we use the same strategy used by
Monagan and van Hoeij in ModGcd algorithm (see [3]). The
variable d, in subroutine P, counts the number of times the
Euclidean algorithm encounters a zero divisor. The case
d > n happens when the algorithm encounters a lot of zero
divisors. This could relate to our choice of prime in sub-
routine M or a previous evaluation point in subroutine P. In
this case subroutine P will quit. Note that if most evaluation
points are good, and if subroutine P has already computed
many good images, then the test d > n prevents, with high
probability, that an unlucky choice in Step 9 could cause a
lot of useful work to be lost.

A similar strategy is also used in subroutine S for both
zero divisors and unlucky primes to prevent useful work from
being lost. The same strategy is also used in subroutine P
to prevent useful work from being lost should the current
evaluation point t = αn in Step 10 introduce an unlucky
content.

4. IMPLEMENTATION
Here we explain trial division which is a bottleneck in the

implementation of SparseModGcd algorithm.

Trial Division
In Step 14 of subroutine M and Step 22 of subroutine P, the
algorithm uses trial division to test whether it has computed
the correct gcd. The only difference is that in subroutine P,
the trial divisions take place in characteristic p. In [4] Mon-
agan, van Hoeij presented an algorithm for doing trial divi-
sions (in characteristic p) of polynomials in Z[z][x] modulo
m(z) ∈ Z[z] which uses pseudo-division to avoid fractions
and some gcds in Z to minimize growth of the integer coef-
ficients. We can use the same idea for our algorithm, except
that the coefficient ring is Dp = Zp[t1, . . . , tk] instead of Z.
The same algorithm can also be used for subroutine M with
Dp replaced by D. Here we show how to extend it to treat
multiple field extensions.

Algorithm Trial Division with Multiple Field Exten-
sions
Input: A, B ∈ Dp[z1, ..., zr]/ 〈m1, ..., mr〉 [x] and m1, ..., mr

∈ Dp[z1, ..., zr], B 6= 0.
Output: True if B|A, False otherwise.

1. Set m = degx(A), n = degx(B).

2. Set d1 = degz1
(m1), . . . , dr = degzr

(mr).

3. Set lb = lcx(B).

4. Set lm1 = lcz1(m1), . . . , lmr = lczr (mr).

5. Set R = A.

6. While R 6= 0 and m ≥ n do

6.1. Set lR = lcx(R).
6.2. Set g = gcd(contz1,...,zr (lR), lb) mod p.
6.3. Set lR = lR/g, s = lb/g.
6.4. Set t = lRxm−n.
6.5. Set R = sR− tb.
6.6. For i from 1 to r do

i. While R 6= 0 and degzi
(R) ≥ di do

A. Set lR = lczi(R).

B. Set g = gcd(contx(lR), lmi) mod p.

C. Set lR = lR/g.

D. Set t = lRz
degzi

(R)−di

i .

E. Set R = (lmi/g)R− tmi.
6.7. Set m = degx(R).

7. If R 6= 0 then return False, otherwise, return True.

Note that degzj
(mi) = 0 if j > i. The outer loop reduces

the degree of the remainder R in x. In the inner loops, for
each i, the algorithm reduces the degree of R in zi to be less
than the degree of mi in zi.

4.1 Timings
We have compared Maple implementations of SparseMod-

Gcd, ModGcd and a primitive PRS algorithm (see appendix)
on three problem sets. The input polynomials have a sparse
gcd in the first and third set and a dense gcd in the sec-
ond problem set. All timings are in CPU seconds and were
obtained using Maple 10 on a 64 bit AMD Opteron CPU
running Linux using 31.5 bit primes.

SPARSE-1
Let m(z) = z3−(s+r)z2−(t+v)2z−5−3u. For n = 1, 2, . . . , 10,
let f1 = a× g and f2 = b× g where

g = sxn
1 +txn

2 +uxn
3 +

4X
j=1

n−1X
i=0

r
(1)
ij

zj−1xi
j+

X
w=[r,s,t,u,v]

nX
k=0

r
(1)
wk

wk,

a = txn
1 +uxn

2 +sxn
3 +

4X
j=1

n−1X
i=0

r
(2)
ij

zj−1xi
j+

X
w=[r,s,t,u,v]

nX
k=0

r
(2)
wk

wk,

b = uxn
1 +sxn

2 +txn
3 +

4X
j=1

n−1X
i=0

r
(3)
ij

zj−1xi
j +

X
w=[r,s,t,u,v]

nX
k=0

r
(3)
wk

wk

and each r
(i)
jk

is a positive random integer less than 100. Thus

we have 10 gcd problems, all with one field extension m(z),
five parameters r, s, t, u and v and four variables x1, x2, x3

and x4. Each input polynomial is of degree 2n in the first
three variables and 2n − 2 in x4. We wanted a data set of
polynomials which are sparse but not too sparse.

Table 1 gives the running times for the three algorithms.
In the first column, the numbers shown in parentheses are
the percentages of the time which is spent computing uni-
variate images of the gcd. Since the gcd g in this case is very
sparse (g has 9n + 3 terms and deg(g) = n in any of x1, x2

and x3), a better performance is expected from SparseMod-
Gcd. The data demonstrates this clearly.

n SparseModGcd ModGcd PPRS
1 0.38 (51.72%) 8.70 3.83
2 0.98 (62.15%) 114.78 > 2000
3 2.03 (67.06%) 879.26 NA
4 3.82 (73.40%) > 2000 NA
5 6.58 (75.17%) NA NA
6 11.03 (77.76%) NA NA
7 17.31 (79.78%) NA NA
8 26.55 (81.31%) NA NA
9 39.02 (82.31%) NA NA
10 54.54 (82.34%) NA NA

Table 1: Timings (in CPU seconds) for SPARSE-1
(NA means not attempted)

DENSE-1
Let m(z) = z2 − sz − 3. Suppose g, a and b are three ran-
domly chosen polynomials in x1, x2, s and z of total degree
n which are dense. That is the term xd1

1 xd2
2 sd3zd4 with

d1 + d2 + d3 + d4 ≤ n is present in each of these three poly-
nomials. So each of them has exactly

Pn
i=0

`
i+4
4

´
terms. For

n = 1, 2, . . . , 10, 15, let f1 = g × a and f2 = g × b. Since the
gcd g is dense, ModGcd algorithm is expected to perform
better.

n SMGCD (EA,TDIV) ModGcd PPRS
1 0.031 (67.74%,6.45%) 0.029 0.002
2 0.070 (58.57%,21.43%) 0.058 0.384
3 0.150 (60.66%,24.67%) 0.141 367.234
4 0.308 (44.80%,34.42%) 0.307 > 2000
5 0.497 (40.44%,42.86%) 0.557 NA
6 0.901 (44.73%,43.40%) 1.272 NA
7 1.516 (38.19%,49.93%) 2.091 NA
8 2.443 (34.67%,53.70%) 3.244 NA
9 3.847 (30.93%,58.33%) 5.024 NA
10 6.120 (27.78%,63.71%) 7.437 NA
15 59.878 (29.48%,66.40%) 50.228 NA

Table 2: Timings (in CPU seconds) for DENSE-1
(NA means not attempted)

Table 2 shows the running times of the three algorithms
for this set of problems. In the second column, the first
number shown in parentheses is the percentage of the time
spent computing univariate images of the gcd and the second
is the percentage spent doing trial division. The reader may
see that SparseModGcd is very competitive with ModGcd
even though the gcds are completely dense.

SPARSE-2
Let T = [s, t, u, s, t, u, . . .] and Z = [z1, z2, z1, z2, . . .]. Sup-
pose we have

m1(z1) = z2
1−(t2+s)z1−5−3u, m2(z2) = z2

2 +(s−z1)z2+3t−u,

g = sxn +

n−1X
i=0

iTi+1Zi+1xi,

a = txn +

n−1X
i=0

iTi+2Zi+2xi,

b = uxn +

n−1X
i=0

iTi+3Zi+3xi.

Again for n = 1, 2, . . . , 10, let f1 = a× g and f2 = b× g. So
we have 10 gcd problems, with two field extensions m1 and
m2, three parameters s, t and u and one variable x. Each
input polynomial is of degree 2n in x.

n SparseModGcd PPRS
1 0.096 (87.50%) 0.004
2 0.229 (84.28%) 194.540
3 0.361 (87.53%) > 2000
4 0.510 (88.82%) NA
5 0.695 (90.37%) NA
6 0.921 (91.42%) NA
7 1.180 (90.34%) NA
8 1.493 (90.69%) NA
9 1.811 (93.04%) NA
10 2.172 (93.42%) NA

Table 3: Timings (in CPU seconds) for SPARSE-2
(NA means not attempted)

The timings for SparseModGcd and primitive PRS algo-
rithms for this problem set are shown in Table 3. In the
first column, the numbers shown in parentheses are the per-
centages of the time spent computing univariate images of
the gcd. Since ModGcd does not support multiple field ex-
tensions, there are no timings for ModGcd. The data here
demonstrates the superiority of SparseModGcd algorithm.

5. CONCLUDING REMARKS
Suppose L = F [z]/〈m〉 and m is reducible over F . Thus

L is not a field. It is a commutative ring with zero divisors.
Then it may still be desirable to compute a gcd (if it exists)
over L. If the Euclidean algorithm when applied to f1 and
f2 would encounter a zero divisor (a factor of m(z)) then
our algorithm, will most likely go into an infinite loop – it
will most likely repeatedly encounter an image of the zero
divisor.

In principle, one may modify our algorithm to interpo-
late (using sparse interpolation) the zero divisor. Since one
will not know whether the zero divisor exists over Q or is
caused by an unlucky choice of prime or evaluation point,
one simultaneously interpolates the gcd and/or zero divisor.
Subroutines M and P would terminate when either the in-
terpolated zero divisor divides m(z) or the interpolated gcd
divides f1 and f2.

The algorithm of Dahan et al. is also a sparse GCD algo-
rithm. It uses Hensel lifting instead of sparse interpolation.
We did not consider using Hensel lifting here for GCD com-
putation over L because of the following problem. To use
Hensel lifting one would need to compute, and possibly also
factor, α(t) ∈ Z[t1, ..., tk], a multiple of the leading coeffi-
cient of ǧ. For an algebraic function field L computing α(t)
requires us to invert the leading coefficients of f̌1 and f̌2 (or
compute a resultant) which may introduce a severe expres-
sion swell.

Another advantage of sparse interpolation over Hensel lift-
ing is that it is easy to parallelize the most time consum-
ing part. In our implementation most of the time is either
spent reducing (evaluating) f̌1, f̌2, and m̌1, . . . , m̌r mod-
ulo I = 〈t1 − α1, . . . , tr − αr〉 modulo a prime and/or spent

in the Euclidean algorithm when computing the gcd of the
images f̌1 and f̌2 modulo m̌1, . . . , m̌r modulo I. If we need
n images to interpolate the i’th parameter ti, after com-
puting the first image, the remaining n − 1 images can be
computed (using sparse interpolation) in parallel. And if we
need m images for each sparse interpolation, these too can
be computed in parallel.

6. REFERENCES

[1] W. S. Brown, On Euclid’s Algorithm and the Computation
of Polynomial Greatest Common Divisors. J. ACM, ACM
Press, 18 (4), 478–504, 1971.

[2] X. Dahan, M. Moreno Maza, E. Schost, W. Wu and Y.
Xie, Lifting Techniques for Triangular Decompositions.
Proceedings of ISSAC ’05, ACM Press, pp. 108–115, 2005.

[3] Mark van Hoeij and Michael Monagan. Algorithms for
Polynomial GCD Computation over Algebraic Function
Fields, Proceedings of ISSAC ’04, ACM Press, pp.
297–304, 2004.

[4] Mark van Hoeij and Michael Monagan, A modular GCD
algorithm over number fields presented with multiple
extensions. Proceedings of ISSAC ’02, ACM Press, pp.
109–116, 2002.

[5] J. de Kleine, M. Monagan and A. Wittkopf, Algorithms for
the non-monic case of the sparse modular GCD algorithm.
Proceedings of ISSAC ’05, ACM Press, pp. 124–131, 2005.

[6] Marc Moreno Maza and Renaud Rioboo. Polynomial Gcd
Computations over Towers of Algebraic Extensions.
Proceedings of AAECC-11, Springer-Verlag, pp. 365–382,
1995.

[7] Michael Monagan, Maximal Quotient Rational
Reconstruction: An Almost Optimal Algorithm for
Rational Reconstruction. Proceedings of ISSAC ’04, ACM
Press, 243–249, 2004.

[8] P. S. Wang, M. J. T. Guy, J. H. Davenport. Early
detection of true factors in Univariate Polynomial
Factorization. Proceedings of EUROCAL ’83,
Springer-Verlag LNCS 162, pp. 225–235.

[9] Richard Zippel, Probabilistic algorithms for sparse
polynomials. Proceedings of EUROSAM ’79,
Springer-Verlag, pp. 216–226, 1979.

Appendix
We describe the algorithm and give Maple code for the prim-
itive fraction-free algorithm that we used to compute a gcd
in L[x] for comparison with SparseModGcd algorithm. We
think of computing in L as computing modulo the triangu-
lar set M = {m1, . . . , mr}. To avoid fractions, we first set
f1 := f̌1, f2 := f̌2 and M := {m̌1, . . . , m̌r}. Now suppose we
apply the Euclidean algorithm to compute the gcd of f1 and
f2 modulo M . We would divide f1 by f2. In the ordinary
division algorithm we would invert the leading coefficient u
of the divisor f2, an algebraic function. The coefficients of
the inverse of u would have fractions in F = Q(t1, . . . , tk).

To avoid fractions here we compute instead v, a quasi-
inverse of u, an element of D[z1, . . . , zr] satisfying vu = c
for some constant c ∈ D = Z[t1, . . . , tk]. Now we divide f1

by vf2 using pseudo division (mod M). And we make the
pseudo remainder “primitive”, i.e., we compute and cancel
out any common factor in D from the coefficients.

To compute the quasi-inverse v we first apply the (ex-
tended) Euclidean algorithm to m̌r and u viewing them as
elements of K[zr] where K = F [z1, ..., zr−1]/〈m1, ..., mr−1〉.
Again, we want to avoid fractions so we use pseudo-division.
We perform pseudo-division in D[z1, . . . , zr−1][zr]. We ob-

tain s, t, c satisfying

smr + tu = c where c ∈ D[z1, . . . , zr−1].

Here c does not involve zr but may involve z1, . . . , zr−1.
Next we recursively compute a quasi-inverse w of c satisfying
wc ∈ D and hence v = wt is a quasi-inverse of u and we
reduce wt modulo M using pseudo-division. Here is the
algorithm in Maple code.

macro(‘mod‘ = MOD);
MOD := proc(f,M,Z) local r,i;

r := expand(f);
for i to nops(M) do r := prem(r,M[i],Z[i]) od;
r;

end:

This uses the reduced PRS
QuasiInv := proc(x,M,Z)
local u,r0,r1,r2,t0,t1,t2,pq,mu,i,z,beta;

if M=[] then return 1 fi;
u := primpart(x,Z);
r0,r1,t0,t1,beta := M[1],u,0,1,1;
z := Z[1]; # main variable
while degree(r1,z)>0 do

r2 := prem(r0,r1,z,’mu’,’pq’);
divide(r2,beta,’r2’);
divide(mu*t0 - pq*t1,beta,’t2’);
r0,r1,t0,t1,beta := r1,r2,t1,t2,mu;

od;
if r1=0 then error "inverse does not exist" fi;
if nops(M)>1 then

r1 := r1 mod (M,Z);
t1 := t1 mod (M,Z);
i := QuasiInv(r1,M[2..-1],Z[2..-1]);
t1 := i*t1 mod (M,Z):

fi;
primpart(t1,Z);

end:

PrimitivePRS := proc(f1,f2,x,M,Z)
local xZ,i,r0,r1,r2;

xZ := [x,op(Z)];
r0 := primpart(f1,xZ);
r1 := primpart(f2,xZ);
while r1 <> 0 do

i := QuasiInv(lcoeff(r1,x),M,Z);
r1 := primpart(i*r1 mod (M,Z), xZ);
r2 := prem(r0,r1,x) mod (M,Z);
r2 := primpart(r2,xZ);
r0,r1 := r1,r2;

od;
r0;

end:

