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Abstract

We demonstrate how a new data structure for sparse distributed polynomials in the Maple kernel
significantly accelerates several key Maple library routines. The POLY data structure and its associated
kernel operations (degree, coeff, subs, has, diff, eval, ...) are programmed for high scalability, allowing
polynomials to have hundreds of millions of terms, and very low overhead, increasing parallel speedup
in existing routines and improving the performance of high level Maple library routines.

1 Introduction

The figure below shows the default polynomial data structure in Maple 16 and all previous versions for the
polynomial 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5. It is a “sum-of-products” where each term has a separate
Maple object, a PROD, to represent the monomial. To compute the degree of f , a coefficient in x, test for
a subexpression, or do almost anything else, the Maple kernel must recursively descend through multiple
levels of dags. This involves extensive branching and random memory access, both of which are slow, and
will prevent Maple from achieving high-performance on modern CPUs.
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Maple’s sum-of-products representation has
irregular Maple dags for each term.

Another operation that is very slow is monomial multiplication. Consider multiplying f by xyz2. Maple
must allocate memory for each new monomial in the product and, in a loop, add exponents of like variables.
Then, because exponents can be negative, Maple must simplify the monomials. Finally, because Maple
stores unique copies of objects, the resulting monomial is hashed, and inserted in an internal table. In all,
there are many function calls and many loops. We estimate that Maple takes over 200 clock cycles for each
monomial multiplication.

∗This work was supported by Maplesoft and the MITACS NCE of Canada.
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The figure below shows our new data structure for sparse distributed polynomials. The first word is
a pointer to the variables which are sorted in Maple’s canonical ordering for sets. This is followed by
monomials and coefficients where the monomials encode the exponents together with the total degree in a
single machine word. E.g. for xy2z3 we store the values (6, 1, 2, 3) as 6 · 248 + 232 + 2 · 216 + 3 on a 64-bit
machine. The terms are sorted into graded lex order by comparing the monomials as unsigned integers.
This gives a canonical representation for the polynomial.

SEQ 4 x y z

−4 −6 −8 −59 5032 4121 3300 00005131POLY 12

The new packed distributed representation.

Five advantages of the new representation are readily apparent.

1. It is much more compact. Polynomials use two words per term instead of 2n + 3 words, where n is
the number of variables. For polynomials in 3 variables we save over a factor of 4.

2. By explicitly storing the variables and sorting the terms, we can execute many common Maple
idioms without looking at all the terms, e.g. degree(f), indets(f) (extract the set of variables in
f), has(f, x), and type(f, polynom).

3. Other operations such as degree(f, x), diff(f, x), and coeff(f, x, i) (extract the coefficient of xi in
f) now access memory sequentially and will execute faster.

4. For large polynomials we avoid creating a lot of small Maple objects (the PRODs) each of which
must be simplified by Maple’s internal simplifier and then stored in Maple’s simpl table, an internal
hash table of all Maple objects. They fill the simpl table and slow down Maple’s garbage collector.

5. Provided no overflow occurs, monomial multiplication is now integer addition, thus one machine
instruction. This improves the efficiency of polynomial multiplication and division.

The idea of packing monomials in a computer word is not new; the ALTRAN computer algebra system
[8] allowed the user to pack monomials in lexicographical order to conserve memory. In [1], Bachmann and
Schönemann compared the graded packing with packings for other monomial orderings for Gröbner basis
computation. However, as far as we know, none of the current general purpose computer algebra systems
pack monomials.

We have integrated the new POLY data structure into the Maple kernel which we hope to have available
for Maple 17, the next release of Maple. We describe here when the new Maple uses the new POLY dag
representation. A polynomial in n variables with integer coefficients of total degree d with t terms in our
new Maple is automatically stored in the POLY dag representation on a 64 bit computer if (i) t > 1, (ii)
d > 1, (iii) d < 2b where b = b64/(n + 1)c. Otherwise it is stored in the “sum-of-products” representation.
All conversions between representations are automatic and invisible to the Maple user.

Note, for polynomials with total degree d = 1, we chose not to store them in as a POLY dag because
Maple’s sum-of-products representation is better in this case. For example f = 2x+3y+4z+5 is represented
as SUM |2|x|3|y|4|z|5|1 . This is compact and monomials are not explicitly represented.

Note, the monomial encoding is determined solely by the number of variables in the polynomial. This
means that operations between polynomials in the same variables require no repacking. For example, on
a 64 bit computer, if a polynomial has 8 variables then we have to store 9 integers for each monomial
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which means we have b64/9c = 7 bits each so the maximum total degree for a polynomial in 8 variables
in the POLY dag representation is 127. The 64 bit word which is the norm on todays desktop and laptop
computers, really makes this packing design workable as we expect the majority of practical problems will
fit in a 64 bit word.

We chose a graded ordering as the default rather than pure lexicographical ordering for several reasons.
Firstly, the graded ordering is the more natural ordering for output and secondy, unlike lexicographical
order, in a graded ordering, the division algorithm cannot cause an overflow of the exponents from one bit
field to another. Also, when multiplying a× b if the total degree d = deg a + deg b does not overflow, then,
unlike lexicographical order, the entire product can be computed without overflow. Thus we do not need
to use up any bits to detect overflow.

2 Algorithms

The new representation has allowed us to write many high performance algorithms for the Maple kernel.
In the old data structure, most operations are O(nt), where n is the number of variables and t is the
number of terms. Maple must examine the entire “sum-of-products” structure because its contents are
unknown. In the new data structure, we can often avoid doing expensive operations on all of the terms.
We measured the speedup on a polynomial with one million terms in three variables, constructed as
f := expand(mul(randpoly(i, degree = 100, dense), i = [x, y, z])) : The cost for evaluation is added to the
other commands if you are using Maple interactively.

command description Maple 16 new dag speedup notes
f ; evaluation 0.162 s 0.000 s → O(n) evaluate the variables
coeff(f, x, 20) coefficient of x20 2.140 s 0.005 s 420x binary search for univariate f
coeffs(f, x) extract all coefficients in x 0.979 s 0.119 s 8x reorder exponents and radix sort
frontend(g, [f ]) subs functions for variables 3.730 s 0.000 s → O(n) looks at variables only
degree(f, x) degree in x 0.073 s 0.003 s 24x stop early using monomial degree
degree(f) total degree in all variables 0.175 s 0.000 s → O(1) first term in polynomial
diff(f, x) differentiate wrt x 0.956 s 0.031 s 30x terms remain sorted
eval(f, x = 6) compute f(6, y, z) 3.760 s 0.175 s 21x use Horner form recursively
expand(2xf) multiply by a term 1.190 s 0.066 s 18x terms remain sorted
has(f, x101) search for subexpression 0.040 s 0.002 s 20x O(n) for names, O(log t) for terms
indets(f) set of indeterminates 0.060 s 0.000 s → O(1) first word in dag
lcoeff(f, x) leading coefficient in x 0.058 s 0.005 s 11x stop early using monomial degree
op(f) extract terms of f 0.634 s 1.740 s 0.36x has to construct old structure
subs(x = y, f) replace variable 1.160 s 0.076 s 15x combine exponents, sort, merge
taylor(f, x, 50) Taylor series to O(x50) 0.668 s 0.055 s 12x get coefficients in one pass
type(f, polynom) type check 0.029 s 0.000 s → O(n) type check the variables

Table 1: Improvements for Maple kernel operations.

To achieve these gains, we employ a bit-level programming style [14] to avoid branches and loops. For
example, to compute the degree of a monomial x3y5z7 in {x, z}, we would mask the exponents for x and
z and sum all of the fields using a parallel-prefix algorithm, which is O(log n). This is illustrated below,
for a 32-bit monomial.

monomial x3y5z7 00001111 00000011 00000101 00000111
mask for {x, z} 00000000 11111111 00000000 11111111

sum fields of 00000000 00000011 00000000 00000111
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In the graded ordering, many of the above operations can still be done without need to sort the result.
For example, consider our polynomial f = 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5. If we differentiate f with
respect to x we obtain f ′ = 9y3z +0−6y2z−24x2 +0. Notice that the non-zero terms in the derivative are
sorted in the graded ordering. Thus we can compute the derivative in O(n + t) instead of O(nt). Another
operation which can be done in O(n + t) instead of O(nt) is multiplication by a single term or monomial.

The one case where the new data structure loses is when we need to convert to the old data structure.
The Maple command op(f) construct a sequence of all terms of f . Each term, e.g. 8xy2 is stored
SUM 3 ↑ P 3 where P is the monomial stored as PROD 5 x 1 y 2 . Thus the new Maple must

build a SUM and a PROD whereas the old Maple need only build the SUM as the PROD is already there.
The coeffs(f,x), eval(f,x=6) and taylor(f,x,n) commands all need the coefficients of f in x.

Suppose f is a polynomial in w, x, y. For each monomial wixjyk in f , encoded as dijk where d = i+ j +k

is its degree, using a constant number of masks and bit operations (7 are sufficient), we move j, the degree
of x to the front to obtain the jdik . Next we sort the terms of f on the new monomial encodings jdik

using a radix sort.1 This groups the terms of f in xn together, and for each group, sorts them in graded
lex ordering in w and z so that the coefficient in xn when extracted is already sorted.

The biggest improvement we have seen for a Maple library command was the collect command. It is
used to write a polynomial in recursive form. For example, if f = xy3 + x2y−x2z + xyz− 2, the command
collect(f,x) writes f as (y− z)x2 + (y3 + yz)x− 2. The Maple code for the collect command uses the
series(f,x,3); command to implement this. Since the series command is 8x faster in our new Maple,
we were not expecting collect to be 31 times faster. Here is a profile showing that most of the time in
Maple 16 was not in the series command, but in the frontend and indets commands.

Maple 16 New Maple
function depth calls time time% time time%
frontend 1 1 3.932 59.43 0.000 0.00
indets 1 2 1.522 23.00 0.000 0.00
series 1 1 0.919 13.89 0.109 88.62
collect/recursive 1 1 0.160 2.42 0.010 8.13
collect/series 1 1 0.083 1.25 0.004 3.25
collect 1 1 0.000 0.00 0.000 0.00
total: 6 7 6.616 100.00 0.123 100.00
Profile for executing collect(f,x) in Maple 16 and Maple 17.

In our new Maple, the cost of frontend and indets are now negligible since they no longer need to
descend into the sum-of-products dag. In the new Maple, they only need to look at the variables which
costs O(n). Why were frontend and indets so expensive? They need to search the sum-of-products dag
to see if there are any indeterminates which are not variables. They are looking for objects like x1/2, sin(x),
2n, etc. But our polynomial has none; it only has variables x, y and z in it. In order to do this they pick
appart each products and each power, e.g., given x3yz4 it recursively constructs x3 and z4 as new objects
before descending them to see x, 3, z, 4.

3 Benchmarks

What impact on Maple’s performance does the new POLY dag have for high level computations? And
since the new POLY dag reduces the sequential overhead of computing with polynomials in Maple, how
does this improve parallel speedup? Do we see any parallel speedup for high level operations? We consider
two problems; computing determinants of matrices of polynomials and factoring polynomials.

1We use American flag sort, an in-place radix sort.
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3.1 A determinant benchmark.

Our first high level benchmark computes the determinant of the n × n symmetric Toeplitz matrix A for
6 ≤ n ≤ 11. This is a matrix in n variables x1, . . . , xn with xi appearing along the ith diagonal and ith

subdiagonal. We implemented the Bareiss algorithm [2] in Maple and Magma (see Appendix for code) to
compute det(A). At the kth elimination step, ignoring pivoting, the Bareiss algorithm computes

Ai,j :=
Ak,kAi,j −Ai,kAk,j

Ak−1,k−1
for i = k + 1, . . . , n and j = k + 1, . . . , n (1)

where the division is exact. At the end of the algorithm An,n = ±det(A). Thus the Bariess algorithm
does a sequence of O(n3) polynomial multiplications and divisions which grow in size, the largest of which
occurs at the last step when k = n− 1.

In Maple 16, the larger multiplications and divisions are done by our external library. This includes our
software for parallel polynomial multiplication and parallel polynomial division from [12, 13]. Polynomials
are converted from the old sum-of-products representation into our new POLY dag, and back. We observed
that for very sparse products, for example (x + x2 + . . . + xn) × (y + y2 + . . . yn) whose product has n2

terms, up to 90% of the time is spent converting the POLY dag for the product to the sum-of-products
dag, and simplifying it. In our new Maple where the POLY dag is the default; the same library is used
but there are now no conversions.

In the table below column #det is the number of terms in the determinant, which has total degree n.
Column #num is the number of terms in An−1,n−1An,n − An,n−1An−1,n which has degree 2n − 2 and is
much larger than det(A). We used a quad core Intel Core i5 CPU @ 2.66 GHz running 64-bit Mac OS X.
Timings are real times in seconds, not cpu times. On 4 cores, we achieve a factor of 3 to 4 speedup over
Maple 16, which is huge. These gains are entirely from reducing the overhead of Maple data structures;
there is no change to the polynomial arithmetic over Maple 16. The reduction of overhead increases parallel
speedup to 2.59x, from 1.6x in Maple 16.

Maple 13 Maple 14 Maple 16 new POLY dag Magma 2.17
n #det #num 1 core 1 core 4 cores 1 core 4 cores 1 core 4 cores 1 core
6 120 575 0.015 0.010 0.010 0.008 0.009 0.002 0.002 0.000 s
7 427 3277 0.105 0.030 0.030 0.030 0.030 0.006 0.006 0.020 s
8 1628 21016 1.123 0.180 0.180 0.181 0.169 0.050 0.040 0.200 s
9 6090 128530 19.176 1.330 1.330 1.450 1.290 0.505 0.329 2.870 s
10 23797 813638 445.611 18.100 13.800 14.830 12.240 6.000 3.420 77.020 s
11 90296 5060172 − 217.020 145.800 151.200 94.340 88.430 34.140 2098.790 s

Table 2: timings (real times in seconds) for determinants using the Bareiss algorithm.

Maple and Magma do not use the Bareiss algorithm to compute these determinants. They use the method
of minor expansion as presented by Gentleman and Johnson in [6]. Recall that given an n by n matrix A

det(A) =
n∑

i=1

(−1)n+1Ai,1 det(M(1, i)) (2)

where the M(1, i) is n − 1 by n − 1 matrix obtained from A by deleting column 1 and row i. If one
applies this identity naively, one will recompute determinants of sub-matrices. To avoid recomputation,
Gentleman and Johnson compute determinants of the sub-matrices bottom up, that is of size 1× 1, 2× 2,
3× 3, etc. This is still exponential in n; it computes

(
n
k

)
determinants of sub-matrices of size k by k for a

total of
∑n

k=1

(
n
k

)
= 2n − 1 determinants.
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For our Toeplitz matrices, the polynomial multiplications in (2) are all of the form variable × poly-
nomial. For example, to multiply f = 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5 by y, we add the monomial
representation for y, namely 1010 = 248 + 216 to each monomial in f , namely the integer encodings of
5131 , 5032 , 4121 , 3300 , 0000 . Notice that result will already be sorted in the graded ordering.

The polynomial additions and subtractions in (2) are also done in linear time by a simple merge. The
improvement is huge. It surprised us.

n #det Maple 16 new POLY dag Magma 2.17
6 120 0.002 0.002 0.001
7 427 0.010 0.004 0.003
8 1628 0.049 0.013 0.019
9 6090 0.305 0.047 0.116
10 23797 1.991 0.252 0.77
11 90296 19.37 1.322 6.21
12 350726 274.99 6.737 44.50
13 1338076 2024.37 39.819 337.77

3.2 A factorization benchmark.

In our second benchmark we see a large gain in performance on polynomial factorization. To provide some
perspective, we include timings for Magma [3], Singular [7], Mathematica, and Trip [4], a computer algebra
system for celestial mechanics.

We report two times for Trip. The (RS) time is for Trip’s optimized recursive sparse polynomial
data structure POLYV. The (RD) time is the optimized recursive dense data structure POLPV. Both use
multiprecision rational coefficients and Trip’s parallel routines [5].

We used an Intel Core i5 750 @ 2.66GHz and an Intel Core i7 920 @ 2.66GHz which had identical times
in Maple 16. These are 64-bit quad core cpus. All of the times in the following table are real times, not
cpu times, in seconds. Both timings reported for Trip are for 4 cores.

Maple 13 Maple 16 new POLY dag Magma Singular Mathem Trip 1.2
1 core 4 cores 1 core 4 cores 2.17-1 3-1-4 atica 7.0 (RS) (RD)

multiply
p1 := f1(f1 + 1) 1.60 0.053 0.029 0.042 0.017 0.30 0.57 4.79 0.010 0.008
p2 := f2(f2 + 1) 1.55 0.054 0.028 0.042 0.016 0.30 0.58 5.06 0.018 0.016
p3 := f3(f3 + 1) 26.76 0.422 0.167 0.398 0.137 4.09 6.77 50.36 0.088 0.073
p4 := f4(f4 + 1) 95.97 1.810 0.632 1.730 0.508 13.25 30.99 273.01 0.433 0.336
divide
q1 := p1/f1 1.53 0.053 0.026 0.042 0.016 0.36 0.40 6.09 0.200 0.122
q2 := p2/f2 1.53 0.053 0.026 0.042 0.018 0.36 0.39 6.53 0.170 0.144
q3 := p3/f3 24.74 0.440 0.162 0.402 0.135 4.31 3.64 46.39 1.676 0.950
q4 := p4/f4 93.42 1.880 0.662 1.760 0.560 20.23 14.96 242.87 7.292 4.277
factor
p1 12341 terms 31.10 2.58 2.46 1.06 0.93 6.15 2.01 11.82
p2 12341 terms 296.32 2.86 2.74 1.18 1.06 6.81 2.10 64.31
p3 38711 terms 391.44 15.19 13.00 8.22 6.13 117.53 12.48 164.50
p4 135751 terms 2953.54 53.52 44.84 26.43 16.17 332.86 61.85 655.49

f1 = (1 + x + y + z)20 + 1
1771 terms

f2 = (1 + x2 + y2 + z2)20 + 1
1771 terms

f3 = (1 + x + y + z)30 + 1
5456 terms

f4 = (1 + x + y + z + t)20 + 1
10626 terms

Table 3: timings (real times in seconds) for polynomial multiplication, division and factorization. Maple
timings are for executing the commands expand(f1*(f1+1)), divide(p1,f1,’q1’) and factor(p1).
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There are some anomalies in Table 3. Maple’s timings for division on 1 core and 4 cores are very close
to those for multiplication. However Singular’s division timings for p3/f3 and p4/f4 are more than twice
as fast as the time for multiplication. This is because Singular uses a recursive representation for the
polynomials for division but not multiplication. On the other hand, Trip’s timings for division are much
slower than for multiplication. This is because division in Trip 1.2 has not been parallelized. In comparing
the timings for factoring p1 and p2 we see that factoring p2 is much slower in Maple 13 and Mathematica
but this is not the case for Maple 16, Magma and Singular. This is because Maple 16, Magma and
Singular are using a substitution p2(x2 = u, y2 = v, z2 = w) to reduce the degree of the input polynomial
before factoring it. This halves the number of Hensel lifting steps. We note that Singular timings for
factorization have improved from version 3-1-0 to 3-1-4 by a factor of 6. Timings for version 3-1-0 for the
four factorizations were 12.28, 23.67, 97.10, 404.86 seconds. The factorization code was changed to use a
recursive representation for polynomials by Michael Lee.

The first improvement (compare Maple 13 and Maple 16) is due to our improvements to polynomial
multiplication and division in [11, 12, 13] which we reported at ISSAC 2010 in [10]. The speedup for factor-
ization is due to the speedup in polynomial multiplication and division. This is because most of the time
in multivariate factorization is spent in “Hensel lifting” which consists of many polynomial multiplications
and some exact divisions. We note that Maple’s factorization code has not changed since 1984. However,
there is little parallel speedup. We achieve significant additional speedup (compare Maple 16 with the new
POLY dag) with the POLY dag used by default. For factoring p4 we obtained a sequential improvement of
a factor of 53.52/26.43 = 2.02× and an improvement of a factor of 44.84/16.17 = 2.77×. Parallel speedup
for factoring p4 improved from 53.52/44.84 = 1.19× to 26.43/16.17 = 1.63× in our new Maple.

A closer examination of the timings shows that parallel speedup for the multiplication p4×(p4+1), which
is a factor of 1.810/0.632 = 2.76× is still quite poor even though our parallel C library for multiplication
is 4 times faster on the actual multiplication. Why is this? There are two reasons. One is that on
the Core i5, if one uses one core only, that core will run in turbo boost mode which on our Core i5 is
≤ 3.33Ghz/2.66Ghz = 1.25× faster. The other reason is the sequential overhead in the integration of
our parallel multiplication and division software. For a polynomial multiplication c := a × b, Maple 16
first converts the input polynomials a and b from the sum-of-products data structure to our POLY data
structure, then multiplies them using our external parallel C library, which does achieve a factor of 4
speedup on 4 cores, then converts the product c back to Maple’s sum-of-products data structure. There is
additional sequential overhead required to determine how many words are required to pack the monomials.
Maple must compute the union of the sets of variables in a and b and the total degree of a and b in those
variables. This involves many passes through the sum-of-products data structures for a, b and c. This
overhead is largely eliminated in the new Maple. Adjusting for the turbo boost the parallel speedup in the
new Maple for 4 cores is 1.73

0.508 ×
3.33
2.66 = 3.86×.

To see where the improvements in the factorization have come from we have profiled the main parts
of the factorization code. The profile (see Figure 1) shows the %age of the time in the main parts of the
factorization algorithm for Maple 16 and our new Maple. The data under improved coeftayl includes a
further algorithmic improvement.

The data shows that we have eliminated 0.599 − 0.377 = 0.222s of overhead from the polynomial
multiplications (see row expand) or 37%. The biggest speedup is division (see row divide). This is
because the divisions are mostly trial divisions which fail quickly. In such cases almost all the time is in
conversion which is wasted.
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Maple 16 New Maple improved coeftayl
function time time% time time% time time%
coeftayl 1.086s 41.06 0.310s 28.21 0.095s 12.03
expand 0.506s 19.13 0.263s 23.93 0.255s 32.28
diophant 0.424s 16.03 0.403s 34.94 0.299s 37.85
divide 0.256s 9.68 0.034s 3.09 0.035s 4.43
factor 0.201s 7.60 0.011s 1.00 0.010s 1.27
factor/hensel 0.127s 4.80 0.064s 5.82 0.063s 7.97
factor/unifactor 0.045s 1.70 0.033s 3.00 0.033s 4.18
total: 2.645s 100.00% 1.099s 100.00% 0.790s 100.00%

Figure 1: profile for factor(p1); (1 core).

The biggest absolute gain is for the routine coeftayl(f,x-a,k) which computes the coefficient of f in
(x− a)k. This computation is not done by expanding f as a Taylor series about x = a but rather by using
the formula g(x = a)/k! where g = df

dkx
, the k’th derivative of f . Referring back to Table 1, we can see

that the speedup is due to the improvement of differentiation and polynomial evaluation. We also tried
the following formula to compute the coefficient

degx f∑
i=k

coeff(f, xi)ai

(
i

k

)
.

We can see that this is 3× faster again (see improved coeftayl). The total real time is reduced from 2.59s
to 1.07s to 0.790s.

4 Conclusion

Maple, Mathematica, Magma and Singular all use a distributed representation for multivariate polynomials.
Maple’s sum-of-products data structure and Singular’s linked list data structure are illustrated in the
figure below. Mathematica’s data structure is similar to Maple’s and Magma’s data structure is similar
to Singular’s. These data structures, which were designed in the 1980s when memory access was constant
time, will not yield high-performance on todays computers because memory access is not sequential.
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Singular’s linked list representation.

One way to speed up polynomial multiplication, division, or factorization would be to convert the
input to a more suitable data structure, compute the result, then convert back. This is what we did in
[10] for Maple 14 for polynomial multiplication and division. Singular does this for polynomial division
and factorization. It switches to using a recursive representation. However, the conversion overhead will
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limit parallel speedup. Ahmdah’s law states that if the sequential proportion of a task is S then parallel
speedup on N cores is limited to

speedup ≤ 1
S + (1− S)/N

.

When S is large (30% or more say), then in order to get good parallel speedup we have to also speed up
the sequential part of the problem.

What we have done in this work for Maple is to make our POLY data structure the default data structure
in Maple. The POLY data structure is used when all monomials in a polynomial can be packed into a
single word. This enabled us to eliminate conversion overhead in multiplication and division. The data
in Table 3 shows improved parallel speedup for polynomial multiplication and division. However, we were
also able to implement highly efficient algorithms for many Maple kernel operations. This substantially
improved the speedup of multivariate polynomial factorization. The data in Table 3 shows speedups of
factors of between 2 and 3 for large polynomial factorizations which is a huge gain. Although not reported
here, we also find speedups of a factor of 2 for large multivariate polynomial gcd computations.

The cost incurred is mainly in code complexity. We must manage two data structures for polynomials,
one where the coefficients are integers and the monomials can be packed into a single machine word, and
one, Maple’s sum-of-products data structure, which does not have these restrictions. The gains suggest
this is worthwhile.
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Appendix

Maple code (no pivoting) for the Bareiss algorithm.

ffge := proc(A,n) local d,i,j,k,t;
d := 1;
for k to n-1 do

for i from k+1 to n do
for j from k+1 to n do

t := expand(A[k,k]*A[i,j]-A[i,k]*A[k,j]);
divide(t, d, evaln(A[i,j]));

od;
A[i,k] := 0;

od;
d := A[k,k];

od:
A[n,n];

end;
n := 8;
T := linalg[toeplitz]([seq(x[i],i=1..n)]);
A := array(1..n,1..n):
for i to n do for j to n do A[i,j] := T[i,j] od od:
det := CodeTools[Usage]( ffge(A,n) ):

Magma code for the Bareiss algorithm.

Z := IntegerRing();
P<x,y,z,u,v,w,p,q,r,s,t,a> := PolynomialRing(Z,12);
X := [x,y,z,u,v,w,p,q,r,s,t,a];
n := 8;
A := Matrix(P,n,n,[0 : i in [1..n^2]]);
for i in [1..n] do

for j in [1..n] do
A[i,j] := X[AbsoluteValue(j-i)+1];

end for;
end for;
d := 1;
time for k in [1..n-1] do

for i in [k+1..n] do
for j in [k+1..n] do

t := A[k,k]*A[i,j]-A[i,k]*A[k,j];
A[i,j] := ExactQuotient(t,d);

end for;
end for;
d := A[k,k];

end for;
det := A[n,n];
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