
POLY : A new polynomial data
structure for Maple 17 ?

Michael Monagan and Roman Pearce

Abstract
We demonstrate how a new data structure for sparse distributed polyno-

mials in the Maple kernel significantly accelerates several key Maple library
routines. The POLY data structure and its associated kernel operations (de-
gree, coeff, subs, has, diff, eval, ...) are programmed for compactness, scal-
ability, and low overhead. This allows polynomials to have tens of millions
of terms, increases parallel speedup, and improves the performance of Maple
library routines.

1 Introduction

Figure 1 shows the default polynomial data structure in Maple 16 and all pre-
vious versions of Maple, for the polynomial f = 9xy3z−4y3z2−6xy2z−8x3−
5. It is a “sum-of-products” where each monomial is a separate Maple object,
a PROD. To compute the degree of f , a coefficient in x, test for a subexpres-
sion, or do almost anything else, the Maple kernel must recursively descend
through multiple levels of dags. This involves extensive branching and ran-
dom memory access, which prevents Maple from achieving high-performance
on modern computer processors.

For example, to compute the degree of f in x, when Maple sees x in
the monomial PROD 7 x 1 y 3 z 1 , because Maple does not have a dedicated
polynomial data structure, Maple does not know that the next factor does not
have x in it. The monomial could x(x+ y)3z or x sin(x)3 z. Thus, computing
the degree of a polynomial with t terms in n variables is O(nt) in Maple.

Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A

1S6, Canada. e-mail: mmonagan@cecm.sfu.ca and e-mail: rpearcea@cecm.sfu.ca

? This work was supported by Maplesoft and the MITACS NCE of Canada.

1

2 Michael Monagan and Roman Pearce

Fig. 1 Maple’s sum-of-products representation encodes each object in an array of words

where the first word encodes the type and length (in words) of the object.

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

Monomial operations are particularly slow. To multiply xy3z by xz Maple
forms the product PROD 11 x 1 y 3 z 1 x 1 z 1 . It then “simplifies” this prod-
uct to obtain PROD 7 x 2 y 3 z 2 . Since the variables in a PROD are not sorted,
Maple cannot simply merge the two monomials on the variables. Maple
searches the PROD on the variables before adding exponents of like variables.
Finally, because Maple stores unique copies of objects, the resulting PROD

object is hashed and inserted in an internal table if it not already present. In
all, there are many function calls and many loops. We estimate that Maple
takes more than 200 clock cycles for each monomial multiplication involving
3 variables.

For comparison, Figure 2 below shows Singular’s data structure for the
same polynomial. Singular uses a linked list of terms and dense exponent
vectors to represent monomials.

Fig. 2 Singular’s polynomial representation for f = 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5.

−4

3

2

0

POLY

−6

1

2

1

−8

3

0

0

−5

0

0

0

x

y

z

1

3

1

9

Singular is representative of several computer algebra systems which have
a dedicated distributed polynomial representation with obvious advantages.
Monomial multiplication consists of a memory allocation and a loop of fixed
length to add exponents. This is the main reason Singular is faster than
Maple at polynomial multiplication.

The relatively slow performance of Maple for polynomials lead us to de-
velop a high performance C library for sparse polynomial arithmetic which we
integrated into Maple in [16]. To multiply two polynomials, we first convert
the Maple inputs to a special polynomial representation, then we call our li-

POLY : A new polynomial data structure for Maple 17 3

brary to compute the product using our parallel algorithm from [18], then we
convert the result to Maple’s sum-of-products representation. This substan-
tially improved Maple’s performance for large polynomials. However, for very
sparse polynomials, and small polynomials, the overhead of constructing the
sum-of-products representation often negated the parallel speedup achieved
by our library. Furthermore, algorithms in the Maple library continued to
use the sum-of-products structure, so the cost of ancillary operations like
computing the degree or coefficients in a variable could easily overshadow
the cost of arithmetic. These problems are addressed by the introduction of
a new polynomial data structure called POLY in the Maple kernel. The new
data structure was integrated into Maple 17 which was released in April 2013.

Our paper is organized as follows. In Section 2 we describe POLY, list
some of its obvious advantages, and detail how it is integrated into Maple. In
Section 3 we describe how we implemented various Maple kernel operations
and give benchmarks demonstrating the improvement in their performance.
In Section 4 we consider the impact of the POLY data structure and im-
proved kernel routines on Maple library codes and measure improved parallel
speedup in polynomial arithmetic. We end with a conclusion.

2 The POLY Data Structure

Figure 3 shows our new data structure for sparse distributed polynomials.
The first word is a header word, which encodes the length and type of the
object. The second word points to the variables, which are sorted in Maple’s
canonical ordering for sets. This is followed by the monomials and coefficients,
where the monomials encode the exponents and the total degree in a single
machine word. For example, for xy2z3 we encode the values (6, 1, 2, 3) as the
integer 6 ·248 +232 +2 ·216 +3, using 16 bits each on a 64-bit machine. Terms
are sorted into graded lexicographical order by comparing the monomials as
unsigned integers. This gives a canonical representation for the polynomial.
Small integer coefficients −262 < x < 262 are encoded as 2x+ 1, so that the
rightmost bit is 1. Larger integers are a pointer (with rightmost bit 0) to
a GMP multiprecision integer [8]. The current implementation requires all
coefficients to be integers.

Fig. 3 The new packed representation for f = 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5.

SEQ 4 x y z

−4 −6 −8 −59 5032 4121 3300 00005131POLY 12

4 Michael Monagan and Roman Pearce

Five advantages of the new representation are readily apparent.

1. It is much more compact. Polynomials use two words per term instead
of 2n + 3 words, where n is the number of variables. For polynomials in
three variables this saves over a factor of four.

2. Monomial comparisons become machine word comparisons and mono-
mial multiplication becomes machine word addition (provided there is no
overflow), and monomial division becomes subtraction with a bitwise test
for failure. This dramatically speeds up polynomial arithmetic.

3. Explicitly storing variables and sorting the terms lets us perform many
common Maple idioms without looking at all of the terms, e.g. degree(f)
(total degree), indets(f) (extract the set of variables), has(f, x), and
type(f, polynom).

4. Other operations such as degree(f, x), diff(f, x), or coeff(f, x, i) (ex-
tract the coefficient of xi) access memory sequentially to make good use
of cache. We can isolate groups of exponents using masks. This eliminates
branching and loops at the level of the exponents.

5. For large polynomials, we avoid creating many small Maple objects (the
PRODs) that must be simplified by Maple’s internal simplifier and stored
in Maple’s simpl table, an internal hash table of all Maple objects. They
fill the simpl table and slow down Maple’s garbage collector.

The idea of packing monomials in one or more computer words is not
new; the ALTRAN computer algebra system [11] allowed the user to pack
monomials in lexicographical order to conserve memory. Bruno Buchberger
[4] experimented with packed monomials using the gradex lexicogrpahical or-
dering when he was computing Gröbner bases in the early 1960s because of
the scarcity of main memory. A number of special purpose computer alge-
bra systems have supported monomial packing. For example, the McCaulay2
computer algebra system [9] for computing Gröbner bases supports packing
for the lexicographical and graded reverse lexicographical monomial orderings
and the Magma computer algebra system [3] dynamically packs monomials
using bytes. In [1], Bachmann and Schönemann compared the graded packing
with packings for other monomial orderings for Gröbner basis computation.

We have integrated the POLY data structure into the Maple kernel and it
is used by default as of Maple 17. When Maple parses input from the user or
a file it creates the sum of products structure which is then simplified. When
the simplifier detects an expanded polynomial with integer coefficients and at
least two terms it creates a POLY structure when: (i) the number variables
n < β/2 for β-bit machines, (ii) the total degree d satisfies 1 < d < 2b where
b = bβ/(n + 1)c for n > 1 and b = β − 2 for n = 1, (iii) the variables are
Maple names with regular evaluation rules, e.g. {x, y1, π} but not infinity or
undefined. Otherwise the sum-of-products format is retained. On output, for
cases where it was convenient or necessary, Maple recreates a sum-of-products
structure for a POLY and caches it. Thus Maple 17 uses two representations

POLY : A new polynomial data structure for Maple 17 5

for polynomials, automatically selecting between the two. All conversions
between representations are automatic and invisible to the Maple user.

Note, the monomial encoding is determined solely by the number of vari-
ables in the polynomial. We use b bits for the exponent in each variable and
for the total degree. It follows that arithmetic operations between polynomi-
als in the same variables do not need to repack monomials.

Note, for polynomials with total degree d = 1, we do not store them in as
a POLY dag because Maple’s sum-of-products representation is better in this
case. For example f = 2x+3y+4z+5 is represented as SUM 9 2 x 3 y 4 z 5 1 .
This is compact as monomials are not explicitly represented. Maple’s sparse
linear solver uses this polynomial representation.

We chose the graded lex ordering rather than pure lexicographical order-
ing for several reasons. First, the graded ordering appears more natural for
output. Second, when multiplying a× b, if the total degree d = deg a+ deg b
does not overflow, that is, d < 2b, then the entire product can be computed
without overflow and with no overflow detection. This allows us to look at
only the leading terms of polynomials and predict overflow in O(1) time.
Third, in the division algorithm, if one uses pure lexicographical order, de-
grees in the remainder can increase and overflow the exponents. For example,
consider the following division

x2y5 + y3 ÷ x2y + xy5

in lexicographical order with x > y. The quotient is y4 and the remainder is
−xy9 + y3. If we had 3 bits per variable, the y9 would overflow. In contrast,
when a graded ordering is used the total degree of the monomials in the
division algorithm always decreases. In our example the leading term of the
divisor would be xy5 and the division

x2y5 + y3 ÷ xy5 + x2y

would result in the quotient x and remainder −x3y + y3.
We encode the monomial xiyjzk as d i j k where d = i + j + k. Notice,

however, that we could store d i j and recover k = d − i − j as needed to
allow for more bits. We rejected this idea because it adds too much code
complexity, both in the kernel routines and in external libraries that must
support POLY. It also makes the cost of some monomial operations O(n)
instead of O(1).

We expect to pack many practical problems into 64-bit words, which is
the norm for today’s computers. For example, if a polynomial has 8 variables
then we store 9 integers for each monomial using b64/9c = 7 bits each. So the
POLY dag can accommodate polynomials in 8 variables of total degree up to
127. Table 1 below shows the number of bits per exponent for a polynomial in
n variables assuming a 64-bit word. Column lex shows how many bits would
be available if lexicographical order were used and one bit (at the top) were
left unset to test for overflow. To check for overflow in a+b we would compute

6 Michael Monagan and Roman Pearce

(a+ b)⊕ a⊕ b. This sets the bits that are carried into (see [21]) after which
we can apply a mask.

Table 1 The number of bits per exponent for n variables in the two orderings.

n lex grlex unused n lex grlex unused n lex grlex unused n lex grlex unused

1 63 62 2 7 9 8 0 13 4 4 8 19 3 3 4
2 31 21 1 8 7 7 1 14 4 4 4 20 3 3 1
3 21 16 0 9 7 6 4 15 4 4 0 21 3 2 20

4 15 12 4 10 6 5 9 16 3 3 13 22 2 2 18
5 12 10 4 11 5 5 4 17 3 3 10
6 10 9 1 12 5 4 12 18 3 3 7 31 2 2 0

Column grlex is our packing. It shows how many bits are available for each
variable and for the total degree. For univariate polynomials we do not store
the degree because it simply duplicates the exponent. Instead we restrict the
degree to the range of Maple immediate integers (62 bits signed x is stored as
2x+ 1) to avoid handling multiprecision exponents in conversions. The table
also shows the number of unused bits at the top of each word.

When this work was presented at the Asian Symposium on Computer
Mathematics meeting in Beijing in October 2012, Joris van der Hoven asked
“Why don’t you use the extra bits for increased total degree?”. For example,
in Table 1 we see that for n = 10 variables, we allocate b = 5 bits per exponent
and 5 bits for the total degree leaving 9 unused bits. The answer we gave was
that doing so would increase the complexity of the code significantly. We
also just did not know how much difference those extra bits would make.
Over the following year, when computing determinants of various matrices of
polynomials, we encountered three determinants which do not fit in POLY.
In all three cases, however, they would fit if we used the unused bits for total
degree. Consider the n× n Vandermonde matrix Vn where the (i, j)’th entry
of Vn is xj−1i . For example

V4 =


1 x1 x21 x31

1 x2 x22 x32

1 x3 x23 x33

1 x4 x24 x34


The determinant Dn of Vn is a polynomial in n variables of total degree
0 + 1 + 2 + 3 + ...+ n− 1 = n(n− 1)/2. Looking at Table 1, we can see that
D10 which has total degree 45 does not fit in POLY because there are only 5
bits for the total degree. However, it would easily fit if the extra 9 bits were
used for the total degree. In fact, Dn would fit for n = 11, 12, 13 and 14 as
well. This example, and the significant number of unused bits in the range
9 ≤ n ≤ 14 has convinced us that it will be worthwhile using them for the
total degree. We are presently implementing this.

POLY : A new polynomial data structure for Maple 17 7

3 Operations in the Maple Kernel

The new representation allowed us to design new high performance algorithms
for the Maple kernel. In the old data structure most operations are O(nt)
where n is the number of variables and t is the number of terms. Maple
must examine the entire sum of products structure because its contents are
unknown.

With the new data structure we can often avoid doing expensive operations
on all of the terms, or we can do them much more efficiently. Our first example
is the command diff(f, x). To compute the derivative with respect to x in
the sum of products representation, Maple searches for x in each PROD. If
x is found it copies the PROD, decreases the exponent of x, and scales the
coefficient. Our algorithm for diff(f, x) first locates x in the set of variables.
If x is not there it returns zero. Otherwise let x be variable k of n, let
s = b64/(n + 1)c be the width of the exponents, sk = s(n − k) is the shift
to find the exponent of x, and b = 2s − 1 is a mask of s bits. The core of
diff(f, x) is a loop that updates the exponent of x and the total degree (if
present) using one subtraction.

/* subtracted from monomial */

d = 1 << sk;

if (n > 1) d += 1 << (s*n);

for (i=j=2; i < LENGTH(f); i+=2) {

m = f[i]; /* monomial */

e = (m >> sk) & b; /* exponent */

if (!e) continue; /* skip the constant */

r[j+0] = m - d; /* new monomial */

r[j+1] = mulint(f[i+1], IMMEDIATE(e), NULL);

j += 2; }

The new monomials in the derivative remain sorted in the graded ordering.
For example, consider f = 9xy3z−4y3z2−6xy2z−8x3−5. If we differentiate
with respect to x we obtain f ′ = 9y3z + 0 − 6y2z − 24x2 + 0 and the non-
zero terms remain sorted in the graded monomial ordering. Thus we can
differentiate in O(n+ t) instead of O(nt).

As a second example, consider degree(f, {x, z}); for f ∈ Z[x, y, z]. We
exploit a trick from Hacker’s Delight [21]. If a and b are packed monomials
(a−b)⊕a⊕b sets the bits that are borrowed to subtract a−b. The absence of
underflow in the exponent fields indicates that two monomials divide and a−b
is their quotient. To test for division in {x, z} only, we construct a mask m
with 1 bits above the x and z fields and compute ((a-b) ^ a ^ b) & m. If this
is zero we know b divides a in {x, z}, so degree(b, {x, z}) < degree(a, {x, z})
and we can skip over b without computing its degree. This optimization is
also used for lcoeff which computes the leading terms of polynomials. In
the case of degree we can stop when the total degree of the monomials is
less than or equal to the largest degree already found.

Another optimization that we use is binary search. Consider has(f, x5)
and coeff(f, x, 5). In both cases it is pointless to examine terms of total

8 Michael Monagan and Roman Pearce

degree less than five, but rather than test each monomial with an additional
branch in the main loop, we use binary search to adjust the endpoint for
linear search.

Our results are summarized in Table 2 which reports the speedup for kernel
operations on a polynomial with 990,000 terms in 3 variables. Note that none
of these operations are parallelized, and the cost for evaluation is added to
the other commands if you are using Maple interactively.

Table 2 Improvements for Maple kernel operations. The polynomial f is constructed as

follows f := expand(mul(randpoly(i,degree=100,dense), i=[x,y,z])):

command description Maple 16 Maple 17 speedup

f; top level evaluation 0.162 s 0.000 s → O(n)

evaluate the variables, interactive statements incur this cost

coeff(f, x, 20) coefficient of x20 2.140 s 0.005 s 420x

linear search to degree 19, binary search for univariate f

coeffs(f, x) extract all coefficients in x 0.979 s 0.119 s 8x

reorder exponents [d, x, y, z]→ [x, d, y, z], sort to collect in x

frontend(g, [f]) subs functions for variables 3.730 s 0.000 s → O(n)

there’s nothing to do since POLY has no functions

degree(f) total degree in all variables 0.175 s 0.000 s → O(1)

degree(f, x) degree in x 0.073 s 0.003 s 24x

diff(f, x) differentiate wrt x 0.956 s 0.031 s 30x

eval(f, x = 6) compute f(6, y, z) 3.760 s 0.175 s 21x

reorder exponents [d, x, y, z]→ [d, y, z, x], sort, Horner form

expand(2xf) multiply by a term 1.190 s 0.066 s 18x

has(f, x101) search for subexpression 0.040 s 0.002 s 20x

linear search to degree 100, O(n) for names, O(log t) for terms

indets(f) set of indeterminates 0.060 s 0.000 s → O(1)

lcoeff(f, x) leading coefficient in x 0.058 s 0.005 s 11x

monomial division avoids comparisons, stop early using degree

op(f) extract terms of f 0.634 s 2.420 s 0.26x

create old structure, cached until the next garbage collection

subs(x = y, f) replace variable 1.160 s 0.076 s 15x

add exponents of like variables, sort and combine like terms

taylor(f, x, 50) Taylor series to O(x50) 0.668 s 0.055 s 12x

reorder exponents [d, x, y, z]→ [x, d, y, z], sort to collect in x

type(f, polynom) type check 0.029 s 0.000 s → O(n)

type check the variables, other types are optimized as well

For some algorithms we need to sort polynomials after modifying the
monomial data. We sort by treating the monomials as unsigned 64-bit in-
tegers and using an inplace MSD American flag radix sort [15]. For example,
the coeffs(f,x), eval(f,x=6) and taylor(f,x,n) commands all need the
coefficients of f in x. Suppose f is a polynomial in {w, x, y}. For each mono-
mial wixjyk in f , encoded as dijk where d = i + j + k is its degree, with

POLY : A new polynomial data structure for Maple 17 9

a constant number of masks and bit operations (seven suffices) we move j,
the degree of x to the front to obtain the jdik . We sort this modified data

to group terms by power of x with ties broken by the monomial ordering on
{w, y}. From that we extract the coefficients in x, already sorted, in linear
time.

The biggest improvement we have seen for a Maple library command is the
collect command, which is used to write a polynomial in recursive form. For
example, if f = xy3 + x2y− x2z+ xyz− 2 then collect(f,x) will rewrite f
as (y−z)x2 +(y3 +yz)x−2. The Maple code for the collect command uses
the series(f,x,3) command to implement this. Since the series command
is 8x faster, we did not expect collect to be 6.196/0.111 = 56 times faster.
Below is a profile showing that most of the time in Maple 16 was not in
series at all, but rather in the frontend and indets commands.

Table 3 Profiles for executing collect(f,x) in Maple 16 and Maple 17.

Maple 16 Maple 17

function calls time time% time time%

frontend 1 3.672 59.26 0.004 3.60

indets 2 1.617 26.10 0.000 0.00
series 1 0.747 12.06 0.094 84.68
collect 1 0.160 2.58 0.013 11.71

total: 5 6.196 100.00 0.111 100.00

In Maple 17, the cost of frontend and indets are now negligible since
they no longer need to descend into the sum-of-products dag. In Maple 16,
frontend recursively descends the sum-of-products dag looking for objects
like x1/2, sin(x), 2n, etc. But our polynomial has none; it only has variables
x, y and z in it.

3.1 Unpacking

The one case where we lose is when we must unpack the POLY dag and
convert to the old data structure. The Maple command op(f) constructs a
sequence of all the terms of f . Other Maple commands which effectively do
the same thing include the common Maple programming idioms:

map(g,f) apply the function g to each term of f
for t in f do iterate over the terms of f
indets(f,t) extract all subexpressions in f of type t

Each term, e.g. 8xy2, is stored as SUM ↑ P 8 where P is the monomial stored
as PROD x 1 y 2 . Thus Maple 17 must build a SUM and a PROD for each
term in f whereas Maple 16 only builds a SUM and the PROD already exists.

10 Michael Monagan and Roman Pearce

Theoretically, Maple 17 is O(nt) compared with O(t) for Maple 16. We have
tried to improve the speed of unpacking by creating the PROD objects in
simplified form, but the slowdown for op(f) remains a factor of 4.

However, we observed a tendency of Maple library code to either frequently
unpack POLY or rarely unpack, often in the course of checking high level
types. Alongside other internal caches in the Maple kernel (e.g. for subs and
indets) we added a cache for unpacked POLY dags. This cache is cleared
out on every garbage collection, so its practical effect is restricted to small
polynomials that would be repeatedly unpacked.

For indets(f,t) we can avoid unpacking in many cases by detecting types
that do not appear in POLY or appear only in the variables. Table 4 shows
the most common types in indets(f,t) when f is a POLY when the entire
Maple library test suite is run. For products or powers we must unpack the
terms of f to create the result, but in the top ten cases (and many others)
that is avoided.

Table 4 Calls to indets(f, t) for f a POLY in the Maple library test suite.

type t number type t number

name 11937973 {rtable, table} 1509366
nonreal 7081486 specfunc(anything, RootOf) 1429737

float 6930777 radical 1101539
function 6678146 indexed 1089504

Or(RootOf, radical) 1863699 ‘^‘ 1047368
{name, function} 1861368 Or(‘+‘,‘*‘,‘^‘) 828257

3.2 Repacking

A number of the Maple kernel operations require us to repack monomials. For
example, when adding x2 +y2 +z2 and x2 +y2−z2, the result 2x2 +2y2 does
not have the variable z. When Maple simplifies the result it must detect that
z is missing and repack the polynomial into Z[x, y]. Repacking also occurs in
the coeff, coeffs, eval, lcoeff, and taylor commands that remove one
or more variables, or expand and divide, which convert polynomials to a
common ring. Critically, these operations do not permute the variables; they
insert or remove exponent fields and change the sizes of the remaining fields.

In Maple 17 this is coded as a straightforward O(n) loop, but we digress
on the topic because new Intel microprocessors (codenamed Haswell, see [13])
have added two new instructions with exciting possibilities. The PEXT in-
struction is short for parallel extract, and it flushes masked bits to the bottom
of the word.

POLY : A new polynomial data structure for Maple 17 11

monomial x3y5z7 00001111 00000011 00000101 00000111
mask for {x, z} 00000000 11111111 00000000 11111111

result from PEXT 00000000 00000000 00000011 00000111

Its inverse is PDEP, short for parallel deposit, which distributes bits to various
locations in a word, starting from the lowest bit. Both operations are O(1).

input data 00000000 00000000 00000011 00000111
mask of locations 00000000 11111111 00000000 11111111

result from PDEP 00000000 00000011 00000000 00000111

The parallel design for these operations was originally proposed by Hilewitz
and Lee in [12]. With these instructions, we can repack monomials without
any branches or loops, e.g. to convert from Z[x, z] to Z[x, y, z] we would do:

3× 21 bits
d i k

extract
−→

4× 16 bits

0 d i k
deposit
−→

4× 16 bits

d i 0 k

This would be needed, for example, to multiply f(x, z) and g(x, y) in
Z[x, y, z]. In fact Maple 17 does use the PEXT operation to reorder mul-
tiple variables for coeffs, but we coded this in C using the algorithm in
Hacker’s Delight [21]. After precomputation it uses 24 bit instructions per
word, and it is called twice per term by coeffs to reorder the exponents. We
attempted to use a C routine for PDEP to repack monomials but it was hard
to get a gain. Nevertheless this should be our approach as soon as there is
widespread hardware support.

3.3 Hashing and Simplification

When an algebraic expression is created in Maple, it is simplified recursively
by the kernel. For example, consider the polynomial f = 9xy3z − 4y3z2 −
6xy2z − 8x3 − 5 from Figure 1. Each object in f that is not a small integer
is simplified and hashed to see if it already exists in memory. In Maple 16,
this is first done for the variables x, y, z then for the monomials (PRODs in
Figure 1) xy3z, y3z2, xy2z and x3, and finally for the whole expression f .
These objects are hashed and stored in the internal simpl table, which maps
each object to a unique copy in memory. This feature of Maple allows it to
identify equal objects by address.

In Maple 17 (see Figure 3), because monomials are encoded immediately
as machine integers, they are not stored in the simpl table. Rather, only
the POLY object, the SEQ object (the sequence of varibles), and multiprecision
coefficients are stored in the simpl table.

What is gained from not having to create, simplify, and hash each mono-
mial as a PROD object? The following benchmark gives us a clue. Consider

> f := expand((1 + s + t + u + v + w + x + y + z)16):

12 Michael Monagan and Roman Pearce

which creates a polynomial f in 8 variables with 735471 terms. By first issuing
the command sdmp:-info(1): we can obtain profiling information from the
C library that computes this result. Table 5 shows that most of the time is
spent simplifying the result in Maple 16, whereas in Maple 17 this time is
fairly small. The C routine itself is identical with only a tiny difference due
to the compiler.

Table 5 Real time in seconds for computing and simplifying a large power.

expand power allocate dag simplify dag total time

Maple 16 0.133 s 0.080 s 1.180 s 1.420 s

Maple 17 0.128 s 0.000 s 0.010 s 0.139 s

The C library uses the same monomial representation as Maple 17, so it
can copy the term data to a new POLY object. Maple 16 has to allocate the
sum of products structure, which is almost as expensive as the computation.
Maple 17 simplifies the POLY by checking that its terms and variables are
sorted and all variables have a non-zero exponent. This takes 0.01 seconds or
7.2% of the time. Maple 16 must do considerably more work to simplify the
sum of products dag. For each PROD, it checks that the variables are distinct
(they are) using an O(n2) loop, then it hashes the PROD and inserts it into
the simpl table. Then it has to sort the SUM to check that all the PRODs
are distinct (they are), because hashing has destroyed any previous order.
Finally, it hashes the SUM.

A hidden cost is that the code to simplify SUMs and PRODs is quite ex-
pensive. It handles special objects like infinity and undefined, complex and
floating point arithmetic, operator overloading, binary relations like < or =
because equations can be added or scaled, matrix arithmetic, etc. These rou-
tines implement much of the expressive power of the Maple language, and this
is not free. To simplify POLY, we have the luxury of analyzing the variables
and calling algorithms that work in restricted domains.

4 Benchmarks

What is the impact of the POLY data structure on Maple’s overall per-
formance? This was difficult to predict in advance. One goal was to reduce
sequential overhead in polynomial algorithms so that parallel speedup in mul-
tiplication and division (see [18, 19]) would speed up the Maple library. Was
that achieved? To this end we developed two benchmarks; expanding deter-
minants of polynomial matrices and factoring multivariate polynomials. Both
are higher level algorithms.

POLY : A new polynomial data structure for Maple 17 13

4.1 Determinant Benchmark

Our first benchmark computes the determinant of the n × n symmetric
Toeplitz matrix A for 6 ≤ n ≤ 11. This is a matrix with n variables
{x1, . . . , xn} with xi along the ith diagonal and ith subdiagonal. To compute
det(A) we use our own implementations of the Bariess algorithm [2], which
we provide in the appendix. At the kth elimination step, ignoring pivoting,
the Bareiss algorithm computes

Ai,j :=
Ak,kAi,j −Ai,kAk,j

Ak−1,k−1
for i = k + 1, . . . , n and j = k + 1, . . . , n (1)

where the division is exact. At the end of the algorithm An,n = ±det(A).
Thus the Bariess algorithm does a sequence of O(n3) polynomial multiplica-
tions and divisions that grow in size, with the largest one occurring in the
last step when k = n− 1.

In Table 6 below, #det is the number of terms in the determinant which has
degree n, and #num is the number of terms in An−1,n−1An,n−An,n−1An−1,n
which has degree 2n− 2 and is much larger than det(A).

Table 6 Real time in seconds to compute det(A) using the Bareiss algorithm.

Maple 13 Maple 16 Maple 17 Magma 2.17
n #det #num 1 core 1 core 4 cores 1 core 4 cores 1 core
6 120 575 0.015 0.008 0.009 0.002 0.002 0.000
7 427 3277 0.105 0.030 0.030 0.010 0.010 0.020
8 1628 21016 1.123 0.181 0.169 0.047 0.037 0.200
9 6090 128530 19.176 1.450 1.290 0.482 0.294 2.870
10 23797 813638 445.611 14.830 12.240 5.680 2.940 77.020
11 90296 5060172 − 151.200 94.340 78.500 26.890 2098.790

We used a quad core Intel Core i7 920 2.66 GHz CPU running 64-bit Linux.
Timings are real times in seconds. With four cores we achieve a factor of 3 to
4 speedup over Maple 16, which is large. That gain is entirely from reducing
the overhead of Maple data structures; there is no change in polynomial
arithmetic versus Maple 16, which the same C library routines. The reduction
of overhead increases parallel speedup from 1.6x to 2.59x over Maple 16. For
comparison we include times for Maple 13 (which does not use our C library)
and Magma 2.17.

By default, Maple and Magma do not use the Bareiss algorithm to com-
pute these determinants. Instead, they use the method of minor expansion of
Gentleman and Johnson [7]. Recall that given an n× n matrix A

det(A) =

n∑
i=1

(−1)n+1Ai,1 det(M(1, i)) (2)

14 Michael Monagan and Roman Pearce

where M(1, i) is the n − 1 by n − 1 matrix obtained from A by deleting
column 1 and row i. Applied naively, this formula recomputes the determi-
nants of sub-matrices many times. Gentleman and Johnson avoided that by
computing from the bottom up; they compute all 2 × 2 determinants then
all 3 × 3 determinants and so on. This is still exponential in n. It computes(
n
k

)
determinants of k × k sub-matrices for a total of

∑n
k=1

(
n
k

)
= 2n − 1

determinants.
For our Toeplitz matrices, the multiplications in (2) are of the form variable

times polynomial. For example, to multiply f = 9xy3z−4y3z2−6xy2z−8x3−5
by y, we add the monomial representation for y to each monomial in f , namely
y = 1010 = 248 + 216 to the encodings of 5131 , 5032 , 4121 , 3300 , 0000 .
Notice how the result remains sorted in the monomial ordering. The additions
in (2) are n-ary, for which we copy terms to a new POLY and apply radix
sort. The improvement shown in Table 7 was huge. It surprised us.

Table 7 Real times in seconds for determinants using minor expansion.

n #det Maple 16 Maple 17 Magma 2.17
6 120 0.002 0.002 0.001
7 427 0.010 0.004 0.003
8 1628 0.049 0.013 0.019
9 6090 0.305 0.047 0.116
10 23797 1.991 0.252 0.770
11 90296 19.370 1.322 6.210
12 350726 274.990 6.737 44.500
13 1338076 2024.370 37.570 337.770

4.2 Factorization benchmark

Our second benchmark is multivariate factorization. For perspective we in-
clude timings for Magma [3], Mathematica, Maxima [14], Sage [20], Singular
[10], and Trip [5] which is a computer algebra system for celestial mechanics.

Table 8 reports the real times for multiplication, division, and factorization
on a hyperthreaded quad core Intel Core i7 920 2.66 GHz running 64-bit
Linux. For each timing we report the median of three test runs. Maple 16
and 17 start up to four threads depending on the size of each multiplication
or division. The factorization routine is sequential Maple code, which gains
parallelism from our multiplication and division routines.

For Mathematica 9 we timed the internal functions Algebra‘IPExpand

and Algebra‘IPExactQuotient for multiplication and division. The addi-
tional time for the top level Expand was small, and we found no suitable
command for exact division at the top level. The Factor command did not
make use of parallelism.

P
O

L
Y

:
A

n
ew

p
o
ly

n
o
m

ia
l

d
a
ta

stru
ctu

re
fo

r
M

a
p

le
1
7

1
5

Table 8 Real times in seconds for polynomial multiplication, division and factorization.

Maple 13 Maple 16 Maple 17 Magma Sage Singular Maxima Mathematica Trip 1.2.26
1 core 4 cores 1 core 4 cores 2.19-1 5.8 3-1-4 3-1-6 5.25.0 7.0 9.0 (RS) (RD)

multiply
p1 := (f1 + 1)(f1 + 2) 1.561 0.063 0.030 0.041 0.012 0.33 1.09 0.57 0.585 0.56 4.79 0.120 0.010 0.008
p2 := (f2 + 1)(f2 + 2) 1.544 0.063 0.032 0.041 0.012 0.33 1.08 0.58 0.608 0.57 5.06 0.115 0.024 0.016
p3 := (f3 + 1)(f3 + 2) 26.501 0.521 0.171 0.403 0.102 3.99 10.86 6.77 6.595 24.25 50.36 0.855 0.093 0.083

p4 := (f4 + 1)(f4 + 2) 98.351 2.180 0.649 1.814 0.416 13.70 61.77 30.99 31.806 5.83 273.01 5.732 0.501 0.396
p5 := f5 · g5 13.666 1.588 0.384 0.153 0.154 13.24 32.73 18.22 17.776 15.83 1.526
p6 := f6 · g6 11.486 0.772 0.628 0.204 0.082 0.89 3.04 2.75 1.787 2.52

divide
q1 := p1/(f1 + 1) 1.451 0.065 0.033 0.042 0.015 0.36 1.30 0.40 0.183 0.55 6.09 0.197 0.296 0.208

q2 := p2/(f2 + 1) 1.435 0.065 0.033 0.042 0.015 0.36 1.30 0.39 0.183 0.56 6.53 0.194 0.293 0.225
q3 := p3/(f3 + 1) 25.054 0.524 0.184 0.411 0.117 4.14 17.81 3.64 4.737 24.63 46.39 1.510 2.490 1.880
q4 := p4/(f4 + 1) 92.867 2.253 0.736 1.842 0.483 18.54 80.39 14.96 11.420 5.93 242.87 5.662 9.880 6.100

q5 := p5/f5 5.570 1.636 0.417 1.445 0.333 12.48 50.16 10.80 10.478 16.14 2.789
q6 := p6/f6 10.421 0.769 0.627 0.215 0.095 7.90 4.87 1.84 1.484 2.69

factor

p1 : 12341 terms 31.330 2.792 2.658 0.790 0.650 6.51 1.51 2.01 0.853 4.54 11.82 18.478
p2 : 12341 terms 275.508 3.240 3.071 0.991 0.850 7.09 1.58 2.10 0.933 4.97 64.31 112.243

p3 : 38711 terms 360.862 16.714 14.110 6.927 4.399 119.32 18.14 12.48 10.074 163.06 164.50 276.161

p4 : 135751 terms 2856.388 59.009 46.151 24.345 12.733 320.04 68.32 61.85 39.353 44.94 655.49 951.725
p5 : 12552 terms 302.453 26.435 16.152 12.131 6.800 105.55 14.63 13.83 9.604 1046.67 935.149
p6 : 417311 terms 1359.473 51.702 48.808 8.295 6.330 369.12 37.56 42.08 20.603 155.49

f1 = (1 + x + y + z)20

1771 terms

f2 = (1 + x2 + y2 + z2)20

1771 terms

f3 = (1 + x + y + z)30

5456 terms

f4 = (1 + x + y + z + t)20

10626 terms

f5 = (1 + x)20(1 + y)20(1 + z)20 + 1

g5 = (1− x)20(1− y)20(1− z)20 + 1

9261 terms

f6 = (1 + u2 + v + w2 + x− y)10 + 1

g6 = (1 + u + v2 + w + x2 − y)10 + 1

3003 terms

16 Michael Monagan and Roman Pearce

We report two timings for Trip: the (RS) time is for the optimized re-
cursive sparse polynomial data structure POLYV, while the (RD) time is the
optimized recursive dense data structure POLPV. Both use Trip’s parallel
routines (see [6]) with 8 threads and rational arithmetic, including a fast
representation for small machine integers similar to Maple’s.

There are some anomalies in Table 8. Maple’s times for division are close
to those for multiplication, except on Problem 5 where Maple 17 uses a se-
quential dense method to multiply. Singular’s timings for p3/f3 and p4/f4
are over twice as fast as the times for multiplication. This is because Sin-
gular multiplies in the distributed representation and divides in a recursive
representation. In contrast, Trip’s times for division are slower than those for
multiplication, partly because division in Trip 1.2 is not parallelized.

In comparing the timings for factoring p1 and p2 we see that factoring p2
is much slower in Maple 13 and Mathematica, but not in Maple 16 or 17,
Magma, or Singular. The fast systems apply the substitution p2(x2 = u, y2 =
v, z2 = w) to reduce the degree of the input polynomial before factoring it.
This halves the number of Hensel lifting steps in each variable.

We note that Singular’s timings for factorization have improved enor-
mously since version 3-1-0, Times for version 3-1-0 on the first four factor-
izations were 12.28, 23.67, 97.10, 404.86 seconds. The factorization code was
changed to use a recursive representation for polynomials by Michael Lee.

Our first improvement from Maple 13 to Maple 16 was due to our C library
for polynomial multiplication and division described in [16, 17, 18, 19] and
reported at ISSAC 2010. The speedup in multiplication and division produces
a speedup in multivariate factorization, because most of the time is spent
in “Hensel lifting” which consists of many multiplications and some exact
divisions.

Our second improvement was to parallelize the algorithms for multipli-
cation and division. In many cases we obtain superlinear speedup in our C
library but the top level expand and divide have lower speedup, because of
the extra time to import and export Maple data structures. For higher level
algorithms such as factor, parallel speedup is further reduced by the need
to perform many small operations in sequence. The cost of degree, indets,
and type(f,polynom) also reduce parallelism in higher level code.

With the introduction of the POLY dag in Maple 17, we have substan-
tially reduced data structure overhead and the cost of almost all supporting
routines. Table 9 shows the improvements to parallel speedup which come on
top of the large gains achieved for sequential time. The speedup for expand

and divide is now much closer to our C library, and the speedup for factor,
while modest, is respectable for a sequential algorithm.

Table 10 shows the speedup of Maple 17 over Maple 16, on 4 cores versus
1. Notice how the gain is larger in parallel. This is just a pleasant consequence
of Amdahl’s Law when you reduce sequential overhead in parallel algorithms.
The sole exception (Problem 5 expand) uses a sequential dense method in
Maple 17.

POLY : A new polynomial data structure for Maple 17 17

Table 9 Parallel speedup (1 core)/(4 cores) in Maple 17 versus Maple 16.

Maple 17 Maple 16
expand 3.41 3.41 3.95 4.36 1.00 2.49 2.10 1.97 3.04 3.36 4.13 1.23
divide 2.80 2.80 3.51 3.81 4.34 2.26 1.97 1.97 2.85 3.06 3.92 1.23
factor 1.21 1.16 1.57 1.91 1.78 1.31 1.05 1.05 1.18 1.28 1.63 1.06

Table 10 Observed speedup (Maple 17)/(Maple 16) on 4 cores versus 1 core.

4 cores 1 core
expand 2.50 2.66 1.67 1.56 2.49 7.65 1.53 1.53 1.29 1.20 10.38 3.78
divide 2.20 2.20 1.57 1.52 1.25 6.60 1.54 1.54 1.27 1.22 1.13 3.57
factor 4.09 3.61 3.20 3.62 2.37 7.71 3.53 3.27 2.41 2.42 2.18 6.32

With the POLY dag in Maple 17, the time for factorization on one core has
been reduced by more than 50%, but the parallel speedups are even greater:

The savings are entirely sequential time, as can be seen by subtracting the
parallel times from the sequential times. The reduction in overhead improves
parallel speedup significantly, from 1.3x to 2.0x in the case of factoring p4.

To see where the improvements in the factorization have come from we
have profiled the main parts of the factorization code. The profile (see Table 6)
shows the %age of the time in the main parts of the factorization algorithm for
Maple 16 and Maple 17. The data under improved coeftayl includes a further
algorithmic improvement. The data shows we have eliminated 0.599−0.377 =
0.222s of overhead from the polynomial multiplications (see row expand) or
37%. The biggest speedup is division (see row divide). This is because the
divisions are mostly trial divisions which fail quickly. In such cases almost all
the time is in conversion which is wasted.

Table 11 profile for factor(p1); (1 core).

Maple 16 Maple 17 improved coeftayl

function time time% time time% time time%

coeftayl 1.086s 41.06 0.310s 28.21 0.095s 12.03
expand 0.506s 19.13 0.263s 23.93 0.255s 32.28
diophant 0.424s 16.03 0.403s 34.94 0.299s 37.85
divide 0.256s 9.68 0.034s 3.09 0.035s 4.43
factor 0.201s 7.60 0.011s 1.00 0.010s 1.27

factor/hensel 0.127s 4.80 0.064s 5.82 0.063s 7.97
factor/unifactor 0.045s 1.70 0.033s 3.00 0.033s 4.18

total: 2.645s 100.00% 1.099s 100.00% 0.790s 100.00%

The biggest absolute gain is for the routine coeftayl(f,x-a,k) which com-
putes the coefficient of f in (x − a)k. This computation is not done by ex-
panding f as a Taylor series about x = a but rather by using the formula
g(x = a)/k! where g = df

dkx
, the k’th derivative of f . Referring back to Table

18 Michael Monagan and Roman Pearce

1, we can see that the speedup is due to the improvement of differentiation
and polynomial evaluation. We also tried the following formula to compute

the coefficient:
∑degx f

i=k coeff(f, xi)ai
(
i
k

)
. We can see that this is 3× faster

again (see improved coeftayl). The total real time is reduced from 2.59s to
1.07s to 0.790s.

5 Conclusion

Maple, Mathematica, Magma and Singular all use a distributed represen-
tation for multivariate polynomials. Maple’s sum-of-products data structure
and Singular’s linked list data structure are illustrated in Figures 1 and 1
in the introduction. We ask the the reader take another good look at them.
Mathematica’s data structure is similar to Maple’s and Magma’s data struc-
ture is similar to Singular’s. These data structures, which were designed in the
1980s when memory access was constant time, will not yield high-performance
on todays computers because memory access is not sequential.

One way to speed up polynomial multiplication, division, or factorization
would be to convert the input to a more suitable data structure, compute the
result, then convert back. This is what we did in [16] for Maple 14 for poly-
nomial multiplication and division. Singular 3-1-4 does this for polynomial
division and factorization. It switches to using a recursive representation for
division and factorization. However, the conversion overhead will limit par-
allel speedup. Amdahl’s law states that if the sequential proportion of a task
is S then parallel speedup on N cores is limited to

speedup ≤ 1

S + (1− S)/N
.

When S is large (50% or more say), then we cannot get good parallel speedup.
What we have done in this work for Maple is to make our POLY data

structure the default data structure in Maple. The POLY data structure
is used when all monomials in a polynomial can be packed into a single
word. This enabled us to eliminate conversion overhead in multiplication and
division. The data in Table 5 shows improved parallel speedup for polynomial
multiplication and division. We also implemented highly efficient algorithms
for many Maple kernel operations for POLY. The data in Table 4 shows a
speedup of a factor of 50 over Maple 16 for a routine polynomial determinant
computation. The data in Table 5 shows speedups of factors of between 2
and 3 for large multivariate polynomial factorizations which is a huge gain.
Although not reported here, we also find speedups of a factor of 2 for large
multivariate polynomial gcd computations.

The cost incurred is mainly in code complexity. We must manage two
data structures for polynomials, one where the coefficients are integers and

POLY : A new polynomial data structure for Maple 17 19

the monomials can be packed into a single machine word, and one, Maple’s
sum-of-products data structure, which does not have these restrictions. A
substantial programming effort was required to support the new data struc-
ture in the Maple kernel. The gains suggest this is worthwhile.

In closing, the reader may have wondered why we only use one word of
memory to encode monomials, and not two, or more? For if we use two
words, we could encode polynomials in twice as many variables or of much
higher degree. With 128 bits, one will cover almost all applications. We would
like to see how far 64-bits takes us before considering such an extension.
For supporting two word exponents potentially doubles the amount of code.
Another desirable extension is to allow the coefficients in the POLY dag to
be fractions or floating point numbers as well as integers.

References

1. O. Bachmann and H. Schönemann. Monomial representations for Grobner bases com-

putations. Proceedings of ISSAC ’98, pp. 309–316, 1998.

2. E. Bariess, 1968. Sylvester’s Identity and Multistep Integer-Preserving Gaussian Elim-
ination. Mathematics of computation 22 (102): 565−578.

3. Bosma, W., Cannon, J., Playoust, C., 1997. The Magma Algebra Sys-

tem I: The User Language. J. Symb. Cmpt. 24(3-4), 235–265. See also
http://magma.maths.usyd.edu.au/magma

4. Buchberger, B. Private Communication, May 2013.

5. Gastineau, M., Laskar, J., 2006. Development of TRIP: Fast Sparse Multivariate Poly-
nomial Multiplication Using Burst Tries. Proceedings of ICCS 2006, Springer LNCS

3992, pp. 446–453.
6. Gastineau, M., 2010. Parallel operations of sparse polynomials on multicores - I. Mul-

tiplication and Poisson bracket. Proceedings of PASCO ’2010, ACM Press, pp. 44–52,

2010.
7. Gentleman, W.M., Johnson, S.C. Analysis of Algorithms, A Case Study: Determinants

of Matrices with Polynomial Entries. ACM Trans. on Math. Soft., 2(3), pp. 232–241,

September 1976.
8. Granlund, T., 2008. The GNU Multiple Precision Arithmetic Library, version 4.2.2.

http://www.gmplib.org/

9. Grayson, Daniel R. Stillman, Michael E., Macaulay2, a software system for research
in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/

10. Greuel, G.-M., Pfister, G., Schönemann, H., 2005. Singular 3.0: A Computer Algebra

System for Polynomial Computations. Centre for Computer Algebra, University of
Kaiserslautern. http://www.singular.uni-kl.de

11. Hall, A.D. Jr., The ALTRAN System for Rational Function Manipulation – A Survey.
Communications of the ACM, 14, 517–521, ACM Press, 1971.

12. Hilewitz, Y., Lee, R.B., 2006. Fast Bit Compression and Expansion with Parallel Ex-
tract and Parallel Deposit Instructions. Proceedings of ASAP ’06, IEEE, pp. 65–72,
2006.

13. Intel Corporation. Advanced Vector Extensions Programming Reference. June 2011.

http://software.intel.com/sites/default/files/m/8/a/1/8/4/36945-319433-011.pdf

14. The Maxima computer algebra system. http://maxima.sourceforge.net/

15. Peter M. McIlroy, Keith Bostic, and M. Douglas McIlroy. Engineering Radix Sort,
Computing Systems, 6(1): 5–27, 1993.

20 Michael Monagan and Roman Pearce

16. Monagan, M., Pearce, R., 2010. Sparse Polynomial Multiplication and Division in

Maple 14. Communications in Computer Algebra, 44:4, 205–209, December 2010.
17. Monagan, M., Pearce, R., 2011. Sparse Polynomial Division using Heaps. J. Symb.

Cmpt. 46(7):807–822, 2011.

18. M. Monagan, R. Pearce., 2009. Parallel Sparse Polynomial Multiplication Using Heaps.
Proceedings of of ISSAC 2009, ACM Press, pp. 295–315.

19. M. Monagan, R. Pearce., 2010. Parallel Sparse Polynomial Division Using Heaps. Proc.

of PASCO 2010, ACM Press, pp. 105–111.
20. William A. Stein et al. Sage Mathematics Software (Version 5.0), The Sage Develop-

ment Team, 2012, http://www.sagemath.org.
21. Warren, Henry S. Hacker’s Delight. Addison-Wesley, 2003.

Appendix A

Maple code (no pivoting) for the Bareiss algorithm.

ffge := proc(A,n) local d,i,j,k,t;

d := 1;

for k to n-1 do

for i from k+1 to n do

for j from k+1 to n do

t := expand(A[k,k]*A[i,j]-A[i,k]*A[k,j]);

divide(t, d, evaln(A[i,j]));

od;

A[i,k] := 0;

od;

d := A[k,k];

od:

A[n,n];

end;

n := 8;

T := linalg[toeplitz]([seq(x[i],i=1..n)]);

A := array(1..n,1..n):

for i to n do for j to n do A[i,j] := T[i,j] od od:

det := CodeTools[Usage](ffge(A,n)):

Magma code for the Bareiss algorithm.

Z := IntegerRing();

P<x,y,z,u,v,w,p,q,r,s,t,a> := PolynomialRing(Z,12);

X := [x,y,z,u,v,w,p,q,r,s,t,a];

n := 8;

A := Matrix(P,n,n,[0 : i in [1..n^2]]);

for i in [1..n] do

for j in [1..n] do

A[i,j] := X[AbsoluteValue(j-i)+1];

POLY : A new polynomial data structure for Maple 17 21

end for;

end for;

d := 1;

time for k in [1..n-1] do

for i in [k+1..n] do

for j in [k+1..n] do

t := A[k,k]*A[i,j]-A[i,k]*A[k,j];

A[i,j] := ExactQuotient(t,d);

end for;

end for;

d := A[k,k];

end for;

det := A[n,n];

Appendix B

Maple code for timing benchmarks.

f := expand((1+x+y+z)^20)+1:

p := CodeTools[Usage](expand(f*(f+1))):

CodeTools[Usage](divide(p,f,’q’));

CodeTools[Usage](factor(p)):

Magma code for timing benchmarks.

Z := IntegerRing();

P<x,y,z> := PolynomialRing(Z,3);

f := (1+x+y+z)^20+1;

g := f+1;

time h := f*g;

time q := ExactQuotient(h,f);

time ff := Factorization(h);

Mathematica code for timing benchmarks.

f = Expand[(1+x+y+z)^20]+1;

AbsoluteTiming[p = Expand[f*(f+1)];]

AbsoluteTiming[q = PolynomialQuotient[p,f,x];]

AbsoluteTiming[h = Factor[p];]

Maxima code for timing benchmarks.

showtime : true;

f : rat((1+x+y+z)^20) +1 $

22 Michael Monagan and Roman Pearce

h : f*(f+1)$

qr : divide(h, f)$

f : factor(h)$

Sage code for timing benchmarks

Q = RationalField()

P.<x,y,z> = PolynomialRing(Q,3,order=’deglex’)

f = (1+x+y+z)^20+1

%time p = f*(f+1)

%time q,r = p.quo_rem(f)

%time h = factor(p)

Singular code for timing benchmarks.

ring R=0,(x,y,z),lp;

poly f = (1+x+y+z)^20+1;

poly g = f+1;

int TIMER;

TIMER = timer; poly p = f*g; timer-TIMER;

TIMER = timer; poly q = p/f; timer-TIMER;

TIMER = timer; list L = factorize(p); timer-TIMER;

Trip code for timing benchmarks. POLYV means recursive sparse, POLPV
means recursive dense.

reset; _cpu=4$ _mode=POLYV$ _modenum=NUMDBL$

f=(1+x+y+z)^20+1$ g=f+1$ p = 0$

time_s; p = f*g$ time_t(usertime, realtime); realtime;

time_s$ div(p,f,q,r)$ time_t(ctime,rtime)$ rtime;

