Algorithms for the Non-monic case of the Sparse Modular GCD
Algorithm

Jennifer de Kleine Michael Monagan Allan Wittkopf
dekleine@cecm.sfu.ca * mmonagan@cecm.sfu.ca * awittkop@maplesoft.com *

Centre for Experimental and Constructive Mathematics
Simon Fraser University,
Burnaby, British Columbia, V5A 156 Canada

Abstract

Let G be the greatest common divisor (GCD) of two polynomials A, B € Z[z,y, 2] where z is the
main variable. Suppose G = (4y? + 2z)x? + (5y2 + 3z). Because G is not monic in x the sparse
modular G¢D algorithm of Richard Zippel cannot be applied directly as one is unable to scale
the univariate images of G in x consistently. We call this the normalization problem. It can be
solved in a number of ways. The approach taken by Paul Wang is to factor the leading coeflicient
L(y, z) of one of the input polynomials over Z and determine which factors of L belong with G.
If A or B is sparse then one can usually select a main variable and leading coefficient that is
easy to factor. If A and B are not sparse, the factorization could be expensive.

We present two new sparse modular GCD algorithms which do not require any factorization.
The first algorithm is a modification of Zippel’s algorithm where the scaling factors are treated
as unknowns to be solved for. This leads to a structured coupled linear system for which an
efficient solution is still possible. The second algorithm reconstructs the monic GcD z2 + (10y% +
62)/(2y? + z) from monic univariate images using a sparse, variable at a time, rational function
interpolation algorithm. We present an initial run-time comparison of a Maple implementation
of the two methods on three classes of GCD problems.

1 Introduction

Let A, B be polynomials in Z[z1, ..., z,]. Let G be their greatest common divisor (GCD) and let
A = A/G, B = B/G be their cofactors. Our problem is to compute G, A and B. It was Brown
in [1] who first presented an efficient solution. Brown’s algorithm reconstructs G, A and B from
a sequence of univariate images of G. It does this by reducing the inputs modulo a sequence of
primes of near constant bit length and then successively, evaluating out all variables except z1, the
main variable. If d bounds the degree of A and B in all variables, then Brown’s algorithm requires
O(d™ 1) univariate GCD computations for each prime.

Consider G = ¢ + z¢ + ... + z¢ — 1. For this problem Brown’s algorithm will perform at least
d"~! univariate GCD computations even though G has only n + 1 non-zero terms. In [13] (see also
[15] for a more accessible reference) Zippel presented a Las Vegas algorithm for computing G when
G is monic which improves on the running time of Brown’s algorithm when G is also sparse. If ¢ is
the maximum number of terms of a coefficient of G in z; (in the example ¢ = n), Zippel’s algorithm

*This work was supported by the MITACS NCE of Canada and NSERC of Canada

requires only O((n — 1)td) univariate GCD computations on average. Zippel’s algorithm is also an
output sensitive algorithm. Unlike Brown’s algorithm, the number of univariate GCD computations
depends on the size of G, only, and not also on A nor B. The improvement obtained in practice is
often dramatic for problems with many variables.

Zippel’s algorithm has been implemented in Macsyma, Magma, and Mathematica. A parallel
implementation of the algorithm is described by Rayes, Wang and Weber in [11]. Previous work
done to improve the asymptotic efficiency of the algorithm includes that of Zippel in [14], and
Kaltofen and Li in [5, 6].

In this paper we present two new approaches for extending Zippel’s algorithm to the case where
G is not monic in the main variable. In section 2 we give a description of Zippel’s algorithm
and previous approaches to extend it to the non-monic case. In section 3 we describe our first
solution and in section 4 our second solution. In section 5 we describe our Maple implementation
of the two algorithms and present a run time comparison of the two algorithms on three classes of
GCD problems. We end with some remarks about further improvements. Although our algorithms
do not require any polynomial factorizations, both require the content of G in the main variable z;
to be computed and removed from the inputs. We describe how to do this in Appendix A.

2 Zippel’s Algorithm

There are two subroutines in the algorithm, subroutines M and P. Subroutine M, the main subrou-
tine, computes G = GCD(A, B) where A, B € Z[zy,...,zy]. It does this by computing GCD(A, B)
modulo a sequence of primes pi,po,... and it reconstructs G from these images by applying the
Chinese Remainder Theorem. The first image G is computed by calling subroutine P with inputs
A mod p; and B mod p;.

Subroutine P, which is recursive, computes G = GCD(A, B) where A, B in Zy[z1, ..., 2] for some
prime p as follows. If n = 1 it uses the Euclidean algorithm. If n > 1 it computes GCD(A4, B) at
a sequence of random points a1, @, ... € Zj, for z,, and reconstructs G € Zy|z1, ..., z,]| from the
images using dense interpolation, e.g., using Newton interpolation. The first image G; is computed
by calling subroutine P recursively with inputs A mod (z,, — @1) and B mod (z,, — a1).

In both subroutines, after the first image G is computed, subsequent images are computed
using sparse interpolations. This involves solving a set of independent linear systems which are
constructed based on the form of G;. The main assumption is that G is of the correct form, that
is, all non-zero terms of the GCD G are present. This is likely true if the primes are sufficiently
large and the evaluation points are chosen at random from Z,. If it is not true then the algorithm
needs to detect this. Let’s work through an example. Our examples use = for the main variable
and y, z for non-main variables.

Example 1 Consider the computation of the bivariate GCD G = z?+3y3x+35 € Z[z,y], with input
polynomials A= (y+1)G and B = (z +1)G. Suppose p1 = 11. We call subroutine P and compute
our first GCD image G1 € Z1i[z,y] as follows. First we compute dy a degree bound on deg,(G).
We set dy = degy(GCD(A(L,y),B(1,y)) mod 11) = 3. Neat, we compute dy + 1 monic univariate
GCD images at random points for y using the Euclidean algorithm. Suppose we use y = 2,4,5,6.
We obtain

g1 = GCD(A(x,2), B(z,2)) mod 11 = 22 + 2z + 2 (mod 11)
go = GCD(A(x,4), B(z,4)) mod 11 = z? + 5z + 2 (mod 11)
g3 = GOD(A(z,5), B(z,5)) mod 11 = 22 4+ =z + 2 (mod 11)
g4 = GCD(A(z,6), B(z,6)) mod 11 = z? + 10z + 2 (mod 11).

Now we interpolate y to construct our first bivariate image. We obtain G1 = z°? + 3y3z + 2
(mod 11). Our assumed form of the GCD G in subroutine M is

Gy =22+ ay’z + B.

Notice that if we had used py = 3,5 or 7, a coefficient of G would vanish and we would not get the
correct assumed form. Let po = 13. We compute a second GCD image in Zis|z,y] using a sparse
interpolation based on the assumed form Gy. We have at most one unknown per coefficient in our
main variable so we need only one evaluation point. We choose y = 8, and obtain the univariate
GCD image 2 + 2z + 9. We evaluate Gy at our chosen point and equate, to get:

2 +5ax+ = x2+2z409.

Solving the two independent systems {ba = 2} and {8 = 9} modulo 13 gives « = 3 and f =9
resulting in the new image Go = 22 + 3y®z +9 (mod 13). We now apply the Chinese Remainder
Theorem to the integer coefficients of G1 and Go to reconstruct our GCD over Z.

Not all primes and evaluation points can be used in the algorithm. We will identify three
cases here indicating three ways the algorithm can go wrong and hence three classes of primes and
evaluation points that must be detected.

Definition 1 (bad prime and bad evaluation point.) A prime p in subroutine M is bad if
deg,, (6CcD(A mod p, B mod p)) < deg,, (G). Similarly, an evaluation point (a1, ...,on_1) € Zg_l is
bad if deg,, (GCD(A mod I, B mod I)) < deg,, (G) where I = (x3 — a1, ..., Tp — Qp_1)-

For example, if A = (3yz + 1)(3z —y) and B = (3yz + 1)(z — 3y) then 3 is a bad prime and
y = 0 is a bad evaluation point. Bad primes and bad evaluation points must be avoided so that
the univariate images can be scaled consistently.

Definition 2 (unlucky prime and unlucky evaluation point.) A prime p is unlucky if the
cofactors are not relatively prime modulo p, i.e., degwl(GCD(A mod p, B mod p)) > 0. Similarly
an evaluation point (a,...,an—1) € Zi~" is unlucky if deg,, (GcD(A mod I, B mod I)) > 0 where
I=(x9— 01y, Ty — Qp_1).

For example, if A = 7z + 6y and B = 12z + y then p = 5 is an unlucky prime and y = 0 is an
unlucky evaluation point. Unlucky primes and evaluation points must be avoided if G is to be
correctly reconstructed. Unlike bad primes and bad evaluation points, they cannot be ruled out in
advance. Instead they identify themselves when we encounter a univariate image in x; of higher
degree than other univariate images.

Definition 3 (missing terms.) A prime p is said to introduce missing terms if any integer co-
efficient of G vanishes modulo p. Similarly, an evaluation x, = « (in subroutine P) is said to
introduce missing terms if any coefficient in Zylx,) of G vanishes at z,, = a.

In example 1 where ccD G = z2 + 3y3z + 35 € Z[z, y], the primes p = 3,5 or 7 and the evaluation
y = 0 cause terms in G to vanish. Zippel’s algorithm cannot reconstruct G if it uses such primes
and evaluation points for the first image G1. Such cases are detected in subroutines M and P by
trial division. Suppose G’ is the reconstructed result. Before terminating in subroutine M and P,
the correctness of G’ is established by testing if G’ divides A and B.

Example 2 Consider computing the non-monic bivariate GCD
G = (y + 50)z® + 100y € Z[z,]

from input polynomials A = (y + 1) G and B = (y + 2) G. Here G has leading coefficient y + 50
in the main variable x. Suppose we compute our first bivariate image modulo p1 = 13 and obtain
Gi1 = (y+11)z3+9y (mod 13). We proceed to compute a second image using sparse interpolation
working modulo 17. First, assume the GCD has the form Gy = (y + a)z® + By for some a, B € Zq7.
We have at most one unknown per coefficient in x so we evaluate at one random point, y =5, and
compute the univariate GCD 22 +6 (mod 17). We evaluate Gy at y =5 and equate to obtain:

G+a)z>+58 = 2246

Solving for o and 8 in Z17, we obtain the bivariate image Go = (y + 13)2® 4 8y, which is incorrect.
The correct image is G mod 17 = (y + 16)x® + 15y. The problem is that at the bottom level we
compute a univariate GCD modulo p which will always be monic. We thus always equate the leading
coefficient to be 1, giving us incorrect results. We call this the normalization problem.

A solution to this problem can be obtained in a number of ways. One approach is to normalize
the univariate images by multiplying through by the image of v = G¢D(lcz, (A), e, (B)), the gD of
the leading coefficients of the input polynomials. Now lc,(G) divides y hence v = A X I, (G). If
A = 1 then this approach works very well. However, it may happen that A is a non-trivial
polynomial. In that case, we would have to reconstruct A x G a larger and likely denser polynomial
than G. Another disadvantage is that one must compute v and also compute the content of A x G
both of which require additional multivariate GCD computations.

A better solution is to factor L the (possibly multivariate) leading coefficient of one of the input
polynomials, A say, and then determine which factors of L belong with G and (implicitly) which
belong with A. Tn [9, 10], Wang shows how to do this heuristically (for the EEZ-GCD algorithm)
for polynomials with integer coefficients. The problem then becomes one of factoring a multivariate
polynomial in at least one fewer variable. If the inputs are not dense, the factorization is usually
not hard. Kaltofen in [3] shows how to reduce the factorization to a bivariate factorization and how
to make Wang’s heuristic work for coeflicient rings other than Z.

3 Algorithm LINZIP

In Zippel’s algorithm, if the leading coefficient of G in x; is a monomial in o, ..., z,, then there
is an easy solution. In fact, if any coefficient of the GCD with respect to the main variable z; is a
monomial then the normalization is straightforward. For example, consider the GCD problem from
Example 2. Notice that the O(z°) term in our first GCD image G1 = (y + 11)z3 + 9y has a single
term coefficient, 9y. Since we know the exact form, we can scale our univariate GCD images based
on this term. Our assumed form becomes Gy = (ay+B)z3+(1)y for some a, B € Z17. Now we have
two unknowns in our O(z3) term so we need two evaluation points, neither of which may be 0. We
choose y = 5,7, to get the univariate GcDs 22 + 6 (mod 17) and 3 + 9 (mod 17), respectively.
Now we scale the first univariate GoD by 2 (mod 17), and the second by & (mod 17) before
equating, giving:

(Ga+ Bz +5 = 152 +5
(Ta+pB)z>+7 = 142® +7.

Solving for and 8 in Z17, gives us the bivariate image, (8y + 9)z> + y, which when made monic
gives us the correct image Gy = (y +16)z3 + 15y (mod 17). Thus if (at any level in the recursion)
an image has a coefficient in x; which is a single term, the normalization problem is easily solved.

The normalization problem essentially reduces to scaling of the univariate GOD images so that
the solution of the linear system produces a correct scalar multiple of the GoD. The approach
followed now is quite simple in concept, and is to treat the scaling factors of the computed univariate
GCDs as unknowns as well. This may result in larger linear systems requiring additional univariate
GeD images. We call this the multiple scaling case (as opposed to the single scaling case).

Scaling of both the univariate GCDs and the coefficients of the assumed form of the multivariate
GCD results in a system that is under-determined by exactly 1 unknown (the computation is only
determined up to a scaling factor). Rather than fixing an unknown in the form of the G¢p to 1, we
instead fix the scaling factor of the first ccD to 1. The following example illustrates this approach.

Example 3 Consider the computation of the bivariate GCD (3y? — 90)z3 + 12y + 100. We obtain
g=23y? + 923 + 4y + 3 (mod 13), and assumed form of the GCD gf = ax3y® + Bz + vy + 0.
Instead of computing two univariate GCD images for the new prime ps = 17, we compute three,
choosing y = 1,2,3 and obtain the GCDs x> + 12, 2° + 8, and =3 respectively. We form the modified
system as follows:

ar® + P +y+o = my(z®+12) =23 +12,
dar® + Bz +2y+ o = my(z® +8),
9ar® + B2* +3y+o = m3(z?),

where mo, m3 are the new scaling factors, and we have set the first scaling factor mi1 to 1. Solving
this system yields a = 7,8 = 11,y = 11,0 = 1, with scaling factors mo = 5,m3 = 6, so our new
GCD image is given by g = Tx3y? + 1123 + 11y + 1 (mod 17) which is consistent with our GCD.

Now we explain the reason for fixing a univariate GCD multiplier value instead of a coefficient
in the assumed form of the GCD. In general it is possible that the chosen prime or evaluation sets
the scaling term in the GCD to zero, but there is no way to detect it. In example 3, suppose we
set &« = 1. In this case, the evaluation y = 0 is not bad but o = 0, so the resulting system will be
incorrect. Attempting to set § = 1 will have the same problem for the prime p = 5. In contrast,
choosing primes and evaluations so that the leading term of the GCD does not vanish (detected as
a bad prime or evaluation) does not exhibit this problem.

One might wonder why the multiple scaling case can be even mildly efficient, as we are con-
structing a system that ties together all unknowns of the problem through the multipliers. This
is in direct contrast to the single scaling case, for which each degree in x; has an independent
subsystem. The trick is to realize that the resulting system is highly structured, and the structure
can be exploited to put the solution expense of the multiple scaling case on the same order as the
solution expense of the single scaling case.

Example 4 Consider the linear system that must be solved to compute the GCD for a problem with
the assumed form:

gr = (032?!2 +az1y + a30)$3 + (a23y3 + agoy? +any + CLQO):IC2 + (a12y3 +a11y+a)r+ (a(ny2 + ago)

We require 4 images to have a sufficient number of equations to solve for all unknowns (we note
that for this problem the number of required images is exactly the same as would be required for the
single scaling case). The resulting linear system, involving 16 equations for the 15 unknowns (12
image unknowns and 8 unknown scaling factors) has the following structure:

OO0
AOO0
AOO0
—
e
[\)
w

OOO0
OOOO0
o
IS
N
(=)

TR NeNe
TR NeNe]

T EeEeNel
T EeEeNel
[EeNeNel

9]

)

—

[e=)

e EeNeNe|
(e EeNeNe)
O
—

O
S
—
[\
I
C OO O OO DO OO OO0 O
—~
—_
p—

Where the equations are ordered by decreasing degree in x then by image number, the unknowns are
in the same order as in the image followed by the scaling factors, the ¢’s denote (possibly) non-zero
entries, and the 1’s denote value 1 enitries, all other entries being strictly zero.

The solution of the above system can be easily computed by solution of a number of smaller
subsystems corresponding to the rectangular blocks of non-zero entries augmented with the multiplier
columns. Once the subsystems are upper triangular, remaining rows, only involving the multipliers,
can be used to compute the multiplier values, which can then be back-substituted into the subsystems
to obtain the image coefficients.

Note that for the single scaling case, the structure is similar to the above, except that the scaling
columns would be replaced by a single column of constants. For that case, all blocks are clearly
independent, making the efficient solution of the problem obvious.

This approach does offer a solution to our problem, but it also introduces another difficulty, as
illustrated by the following example:

Example 5 Consider the computation of the bivariate GeD (y + 2)x3 + 12y? + 24y. By a call to
algorithm P we obtain our first image as g1 = x3y + 22° + 12y? + 11y (mod 13), and assumed
form of the GCD as gy = axdy + B + yy? + oy.

We require at least three univariate GCD images for the new prime po = 17. Choosingy = 1,2,3
we obtain the GCDs 2 +12, £3 47, and 23 +2 respectively, and form the modified system as follows:

ard + 2 +y+o = 412
2023 + B + 4y +20 = my(xd +7),
3az® + Bz + 9y + 30 = ma(z® +2),

In attempting to solve this system, we find that it is under-determined, so we add a new evaluation
point, y = 4, obtaining a GCD of 3 + 14, and the new equation

4oz + Bxd + 16y + 40 = my(a® + 14).

In attempting to solve the new system of equations, we find that it is still under-determined. In
fact, we could continue to choose new evaluation points for y until we run out of points in Z,, and
the linear system would remain under-determined. This is the case for any chosen prime and set
of evaluations, so the algorithm fails to find the GCD for this problem.

What is not necessarily obvious from example 5 is the cause of the failure, which is the presence
of a content in the GOD with respect to the main variable xz, namely y + 2. The existence of a
content in the evaluated variables can be immediately recognized as a source of problems for the
algorithm, as the evaluated content can be absorbed into the multipliers on the right hand side
of the formed system for the equations with multipliers, and otherwise absorbed into each of the
unknowns (for the first equation where the multiplier is set to 1).

This is exactly what occurs in example 5, as the content in y is absorbed into the unknowns,
so we are unable to obtain a solution for the coefficients in our candidate form as only the relative
ratio between terms can be computed.

It is clear that content can cause a problem for the algorithm, so just as for many other sparse
algorithms (EEZ-GCD for example), the content must be removed before the algorithm is called.

One may ask is it sufficient to simply remove the GCD content before calling the algorithm to take
care of this problem? Unfortunately, the answer is no, as certain choices of primes and evaluation
points can cause an unlucky content to appear in the GCD.

Definition 4 (Unlucky Content) Given a € Z[x1,...,zn] with conty, (a) = 1, a prime p is said
to introduce an unlucky content if conty, (a mod p) # 1. Similarly for a € Zplz1,...,z,] with
conty, (a) =1, an evaluation x; = oy is said to introduce an unlucky content if conty, (a mod (z; —

;) # 1.

Consider, for example, computation of the ccD z(y + 1) + y + 14. If we choose p = 13 the
GOD has a content of y + 1, while for any other prime, or over Z[z,y|, no content is present. This
is a significant consideration in the design of the algorithm. An argument can be made as to the
similarity between the probability of obtaining an unlucky content, and the probability of selecting
an unlucky prime or evaluation, and the fact that these are both equally unlikely. As a result we
will design the algorithm so this problem is not detected in advance, but rather through its effect,
so that detection of this problem does not become a bottleneck of the algorithm.

We now present the LINZIP M algorithm, which computes the GCD in Z[zy,...,z,] from a
number of images in Z,[z1,...,2y], and the LINZIP P algorithm, which computes the GCD in
Zplz1, ..., zy) from a number of images in Zp[z1, ..., Tp_1].

Algorithm 1 (LINZIP M)

Input: a,b € Z[z,...,z,] such that GCD(conty, (a),conty, (b)) = 1 and degree bounds dx on the
GCD N Z1,-.., Tp

Output: g = GeD(a,b) € Zz, ..., Ty

1 Compute the scaling factor v = GCD(lcy, .. z,(a),1cz, ... 2,(D) € Z

2 Choose a random prime p such that vy, = vy mod p # 0, and set a, = a mod p, b, = b mod p,
then compute from these a modular GCD image g, € Zp|z1, ..., 2,) with a call to LINZIP P. If
the algorithm returns Fail, repeat, otherwise set dy, = deg, (gp) and continue.

3 Assume that g, has no missing terms, and that the prime is not unlucky. We call the assumed
form g¢. There are two cases here.

3.1 If there exists a coefficient of x1 in gy that is a monomial, then we can use single scaling
and normalize by setting the integer coefficient of that monomial to 1. Count the largest
number of terms in any coefficient of x1 in gy, calling this n,.

3.2 If there is no such coefficient, then multiple scaling must be used. Compute the minimum
number of images needed to determine gy with multiple scaling, calling this n,.

4 Set gm = (Vp/1cz1,....0.(9p)) X gp mod p and m = p.

5 Repeat
5.1 Choose a new random prime p such that v, = ymodp # 0, and set a, = a mod p,
b, = b mod p.
5.2 Set S=0, n; =0.
5.3 Repeat

5.3.1 Choose ay, ..., an € Zp\{0} at random such that for I = (z9—ay, ..., T, —ay,) we have
deg,, (ap mod I) = deg,, (a), deg,, (bp mod I) = deg,, (b), and set a; = ap mod I,
by = b, mod I

5.3.2 Compute g1 = GCD(aq,by)

5.3.3 If deg, (91) < dg, our original image and form g; and degree bounds were unlucky,
so0 set dy, = deg,, (g1) and goto 2.

5.3.4 If deg,, (91) > ds, our current image g, is unlucky, so goto 5.3.1, unless the number
of failures > min(2,n;), in which case assume p is unlucky and goto 5.1.

5.3.5 For single scaling, check that the scaling term in the image g1 is present. If not, the
assumed form must be wrong, so goto 2.

5.3.6 Add the equations obtained from equating coefficients of g1 and the evaluation of
gy mod I to S, and set n; = n; + 1.

Until n; > ng

5.4 We may now have a sufficient number of equations in S to solve for all unknowns in
gy mod p so attempt this now, calling the result g,.

5.5 If the system is inconsistent then our original image must be incorrect (missing terms
or unlucky), so goto 2.

5.6 If the system is under-determined, then record the degrees of freedom, and if this has
occurred twice before with the same degrees of freedom then assume that an unlucky
content problem was introduced by the current prime p so goto 5.1. Otherwise we need
more images so goto 5.5.1.

5.7 The resulting solution is consistent and determined, so we have a new image gp
Set gp = 15,2y X 9p mod p, gm = CRA([gp, gm], [p,m]), m =m x p.

Until g has stopped changing for one iteration.

7 Remove integer content from g, placing the result in g., and check that g. | a and g. | b.
If not we need more primes, so goto 5.1.

8 Return g..
Algorithm 2 (LINZIP P)

Input: a,b € Zy[z1,...,z,], a prime p, and degree bounds dx on the GCD in 1, ..., Zp,

Output: g = GeD(a,b) € Zy[z1, ..., z,] or Fail

0 Check the GCD of the inputs for content in x,, if present return Fail.

1 Compute the scaling factor v = GeD(leg, ... z,_,(a), e, . . 1 (D)) € Zp|zy]

Choose v € Zjp \ {0} at random such that vy mod (z, — v) # 0 and set a, = a mod (z, — v),
b, = b mod (z,, —v), then compute from these a modular GCD image g, € Zyp[T1, ..., Tn—1] with
a recursive call to LINZIP P (n > 2) or via the Euclidean algorithm (n = 2).

If for n > 2 the algorithm returns Fail or for n = 2 we have deg, (gv) > dy, then return
Fail, otherwise set dy, = deg, (g,) and continue.

Assume that g, has no missing terms, and that the evaluation is not unlucky. We call the
assumed form gy. There are two cases here.

3.1 If there exists a coefficient of x1 in gy that is a monomial, then we can use single scaling
and normalize by setting the integer coefficient of that monomial to 1. Count the largest
number of terms in any coefficient of x1 in gy, calling this n,.

3.2 If there is no such coefficient, then multiple scaling must be used. Compute the minimum
number of images needed to determine gy with multiple scaling, calling this n,.
4 Set gseqg = (Y(0)/1cg1,..am_1(90)) X go mod p and veeq = v.
Repeat
5.1 Choose a new random v € Z,\{0} such that y mod (z,—v) # 0 and set a, = a mod (zp—
v), by = b mod (z, — v).
5.2 Set S=0, n; =0.
5.3 Repeat
5.3.1 Choose g, ...,an_1 € Zp\ {0} at random such that for I = (xo— 09, ..., Tp—1 —p_1)
we have deg, (a, mod I) = deg, (a), deg, (b, mod I) = deg,, (b), and set a; =
ay, mod I, by = b, mod 1
5.3.2 Compute g1 = GCD(a1, by)
5.3.3 If deg, (g1) < dgz, then our original image and form g; and degree bounds were
unlucky, so set dy, = deg,, (g1) and goto 2.

5.3.4 Ifdeg, (91) > dg, our current image g1 is unlucky, so goto 5.8.1, unless the number
of failures > min(1,n;), in which case assume T, = v is unlucky and goto 5.1.

5.3.5 For single scaling, check that the scaling term in the image g1 is present. If not, the
assumed form must be wrong, so goto 2.

5.3.6 Add the equations obtained from equating coefficients of g1 and the evaluation of
grmod I to S, and set n; = n; + 1.

Until n; > ng

5.4 We should now have a sufficient number of equations in S to solve for all unknowns in
gy mod p so attempt this now, calling the result g,.

5.5 If the system is inconsistent then our original image must be incorrect (missing terms
or unlucky), so goto 2.

5.6 If the system is under-determined, then record the degrees of freedom, and if this has
occurred twice before with the same degrees of freedom then assume the content problem

was introduced by the evaluation of x, so goto 5.1. Otherwise we need more images so
goto 5.3.1.

5.7 The resulting solution is consistent and determined, so we have a new image g,.
Set Gseq = Yseq; oy 1)) X Gu; Vseq = Useq, ¥V

----- Ty 1 (gv

Until we have dg, +deg, (v)+ 1 images.

6 Reconstruct our candidate GCD g. using Newton interpolation (dense) on gseq,Vseq, then re-
moving content in T,,.

7 Probabilistic division test
Choose o, ...,y € Zy at random such that for gy = g. mod I we have deg,, (91) = deg,, (g¢),
and compute a1 = amod I, by = bmod I. Verify that g1 | a1 and g1 | b1, and if not goto 2.

8 Return g..

We make some remarks before discussing the correctness and termination of the algorithm. For an
asymptotic analysis of the LINZIP algorithm, the interested reader may consult [12].

1. The degree bound of the GCD in the main variable z; is used to detect unlucky primes and eval-
uations, but only detects those that involve x1, and we update the degree bound whenever we
compute a GCD of lower degree in ;. The degree bounds of the GCD in the non-main variables
Z9,...,Zn are used to compute the number of images needed in the Newton interpolation in
step 6 of LINZIP P, and are not updated by the algorithm. The degree bound for a variable
can be obtained by evaluating the inputs mod a random prime and set of evaluations for all
but that variable, then as long as the prime and evaluations are not bad, the univariate GCD
provides a bound on the degree of the multivariate GcD for that variable.

2. The number of required images for the multiple scaling case computed in step 3.2 can be the
same as the number of required images for the single scaling case computed in step 3.1, and no
more than 50% higher. The worst case is quite infrequent, and will only occur when there are
only two coefficients with respect to the main variable, each having exactly the same number
of terms. The extra expense of this step can usually be reduced by an intelligent choice of
the main variable z;. The exact formula for the number of images needed for a problem with
coefficients having term counts of n1,...,n; and a maximum term count of nmax is given by

max(nmax, [(32— 7 — 1)/(s — 1)]).

3. The check in step 0 of LINZIP P is used to detect an unlucky content in the initial GCD introduced
higher up in the recursion by either a prime or evaluation. We note that this approach only
requires computation of univariate contents to detect the problem (if not the source of the
problem), as any content in the GCD with respect to z; will eventually show up as a univariate
content as we evaluate z,,T,_1,....

4. The check in step 5.6 of either algorithm is intended to check for an unlucky content introduced
by the evaluation (LINZIP P) or prime (LINZIP M) chosen in step 5.1 of both algorithms.
Since it is possible that a new random image from step 5.3.1 does not necessarily constrain
the form of the GCD (even without the content problem) we check for multiple failures before
rejecting the current iteration of loop 5.

5. The LINZIP P algorithm performs one probabilistic univariate division test in step 7 instead
of testing if g. | a and g, | b. This check is substantially less expensive than a multivariate
trial division, though there is still a chance that the test fails to detect an incorrect answer,
so the termination division test in LINZIP M must be retained. Note that to improve the
probability that this check detects an incorrect answer, it could be run more than once.

6. Random evaluation points are chosen from Z, \ {0} rather than Z, because zero evaluations
are likely to cause missing terms in the assumed form, and possibly scaling problems when
normalizing images.

10

To verify the correctness of this algorithm, in addition to the standard issues with modular
algorithms we need also verify that the images are scaled consistently to allow the image recon-
struction to proceed. We need to consider 4 main problems, namely bad primes or evaluations,
unlucky contents, unlucky primes or evaluations, and missing terms in an initial image.

Bad primes and bad evaluations: The treatment of bad primes and bad evaluations is straight-
forward. It is handled for the first prime or evaluation by the check that v does not evaluate to 0
in step 2 of the algorithms, handled for subsequent primes or evaluations by the check that v does
not evaluate to 0 in step 5.1 of the algorithms, and handled for the univariate images in step 5.3.1
of the algorithms.

Unlucky content: The unlucky content problem for the first prime or first evaluation is treated in
step 0 of LINZIP P by the single variable content check. As in point 3 above we emphasize that this
check will always detect the problem at some level of the recursion, specifically the level containing
the last variable contained in the unlucky content (as all the other variables in the content have
been evaluated, so the content becomes univariate). There is no efficient way to detect which prime
or evaluation introduced the unlucky content. It may have been introduced by the prime chosen
in LINZIP M or any evaluation in prior calls (for z; with j > n) to LINZIP P in the recursion.
Thus we fail all the way back up to the LINZIP M algorithm which restarts with a completely new
prime and set of evaluations. This strategy is efficient, as only evaluations (modular and variable)
and other single variable content checks have been performed before a failure is detected at any
level of the recursion.

The introduction of an unlucky content by the prime or evaluation chosen in step 5.1 of either
algorithm will be handled in the combination of steps 5.4 and 5.6. The result is a system with
additional degrees of freedom, so this always results in an under-determined system. The check
in step 5.6 handles this, as eventually we will obtain a solution for all variables but the free ones
resulting from the unlucky content, so the degrees of freedom will stabilize, and we will go back to
step 5.1 choosing a new prime or evaluation.

Unlucky primes and unlucky evaluations: The treatment of unlucky primes and evaluations
is less straightforward. First we consider an unlucky evaluation in step 2 of LINZIP P for x, for
which the factor added to the GcD depends upon ;. If the degree bound dg, is tight, then this
will be detected at a lower level of the recursion by step 2 of LINZIP P when n = 2. If the degree
bound d;, is not tight, then the GCD computed in that step may be unlucky, but we proceed with
the computation. Once we reach loop 5, we begin to choose new evaluation points for z,, and with
high probability we will choose a new point that is not unlucky in step 5.1, the problem will be
detected in step 5.3.3, and we will go back to step 2, and compute a new image. In the worst case,
all evaluations in step 5.1 may also be unlucky, introducing the same factor to the Gcp, and we will
proceed to step 6, and reconstruct an incorrect result. Note that if the factor is in fact different,
then the equations accumulated in step 5.3.5 will most likely be inconsistent, and this problem will
most likely be detected in steps 5.4 and 5.5. Step 7 will again perform checks much like those in
step 5.3.3, and will detect this problem with high probability, but if it does not, an invalid result
may be returned from LINZIP P. If we continue to choose unlucky evaluations we will eventually
return an incorrect image to LINZIP M.

This problem (as well as the unlucky prime case for step 2 of LINZIP M) is handled by the
structure of the LINZIP M algorithm. Since the steps are essentially the same, the same reasoning
follows, and we need the computation to be unlucky through all iterations of loop 5. Now in this
case, since the form of the GCD is incorrect, it is unlikely that g, will stabilize, and we will continue

11

to loop. Note that in the event that g,, does stabilize, the invalid image will not divide a and b, so
step 7 will put us back into the loop. Now within that loop, which will not terminate until we have
found the GCD, step 5.3.4 will eventually detect this problem, as we must eventually find a prime
that is not unlucky.

Now consider the case where the unlucky evaluation or prime is chosen in step 2 of either
algorithm, and the factor added to the GCD is independent of x1. In this case, the factor is actually
a content with respect to z1, so this is handled by the same process as the unlucky content problem,
specifically it is handled on the way down by step 0 of LINZIP P.

Now if an unlucky prime or evaluation occurs in step 5.1 of either algorithm, it will either raise
the degree in z1, in which case it will be detected in step 5.3.4 of either algorithm, or it will be
independent of z;, in which case it is a content. If the content is purely a contribution of the
cofactors, then this case will not cause a problem for the algorithm, as it will simply reconstruct
the new GCD image without that content present (as a result of the assumed form). The only type
of unlucky evaluation that can occur in step 5.3.1 of either algorithm must raise the degree of the
GCD in z1, so is handled by step 5.3.4.

Missing terms: If the initial image (in either algorithm) has missing terms, the resulting system
will likely be inconsistent, so will be detected by step 5.5 with high probability, but this may not
be the case. If the problem is not detected in any iteration of loop 5, then an incorrect image will
be reconstructed in step 6 of LINZIP P. The additional check(s) in step 7 of LINZIP P will, with
high probability, detect this problem with the new images, but if this also fails, then we return an
incorrect image from LINZIP P. Again assuming a sequence of failures to detect this problem, we
arrive at LINZIP M. Now we will compute new images in LINZIP M until g, divides both a and
b, so the problem must eventually be detected.

Note that the missing term case is the most likely failure case, as unlucky primes, unlucky
evaluations, and unlucky contents are in general much less likely. The probability of choosing a
prime or evaluation that causes a term to vanish is (9(1—2), where t is the number of terms in the
polynomial, and p is the prime. Thus the primes used by the algorithm need to be much larger
than the number of terms.

4 Algorithm RATZIP

An alternative way of handling the non-monic case is to use sparse rational function interpolation.
The idea is as follows. Suppose we are are computing the GCD of two polynomials in Z[z, w,y, Z]
with z as the main variable. We will compute the monic GCD in Z(w,y, z)[z] in the form:

where a;,b; € Z|w,y, z] by interpolating the rational function coefficients using a sparse interpola-
tion. For example, if our GeD is (y + 14)yx? + 12y%x + y + 14, we compute the monic GCD

12y 1

3

r° + T +
y + 14 Y

We then recover the non-monic GCD by multiplying through by the least common multiple of the
denominators. In our example, we multiply through by LcM(y + 14,y) = (y + 14)y to get our
non-monic GCD (y + 14)yz® + 12y%z + y + 14.

12

To illustrate how sparse rational function reconstruction works in general, suppose one of the
*w3—|—*zy2
x22+xy2 +wy3”

2
reconstructed C at w = 5 to get C; = % Notice we have normalized the leading coefficient

of the denominator to be 1, essentially dividing through by w. We then assume the form to

rational function coefficients is C = here * indicates an integer. Suppose we have

be Cf = 5(35202):&%);5?/3, where a(w), f(w), d(w),y(w) are rational functions in w. We have 4

unknowns so we need 4 equations to solve for the next image, Cy. We do this for as many w values
*w? 4 = 2y
T Iy

as we need, then perform rational function interpolation in w to obtain Clearing the

*w3 4x2y?

fractions in w gets us what we want, namely Fo e S

Example 6 Let G, A, B € Z[z,y] be defined as follows
G=(y+ 14)y$3+12y2x+y+14, A=(yz+1)G, and B = (yz+2)G.

Using p1 = 11 we compute our first monic GCD image in Z11(y)[z] using dense rational function
interpolation. Given a degree bound in y, dy = 2, we need N = 2dy + 1 = 5 evaluation points to

interpolate a rational function of the form %ﬂ% in y. If we do this by constructing a linear

system, the rational function interpolation will cost O(N3). Instead we use the Euclidean Algorithm.
We first apply the Chinese Remainder Theorem to reconstruct polynomial coefficients in y followed
by rational function reconstruction (see [2]). This reduces the cost to O(N?%). We choose y =
1,4,9,3,6, to get the GCD images in Zy1[z], 23 + 3z + 1, 23 + 10z + 3, 23 + 92 + 5, 23 + 62 + 4
and z3 + 8z + 2, respectively. We interpolate in y to get z3 + (6y* +9y> +9y> + 10y +2)z + 10y* +
y3 + 592 + 3y + 4 and then apply rational function reconstruction to the coefficients of:v to get our
first monic GeD image G = =3+ y+3x+ € Z11(y)[z], and our assumed form Gy = z*+ y+/337+ U

Working modulo po = 13 we compute a second monic GCD image in Zi3(y)[z] using sparse
rational function interpolation. We have at most two unknowns per coefficient in our main variable
z so we need two evaluation points. We evaluate aty = 1,6, and compute the univariate GCD images
in Zas[z], 23 + 6z + 1 and 23 + = + 11, respectively. We evaluate Gy at our chosen y values and
equate by coefficient to get the following system.

= a1 9
By Ld=a=12,=16=1
1= $£o u g

Substituting back into Gy we get our second monic image in Z13(y)[z], Go = 2® + 12y x + 5

We then apply the Chinese Remainder Theorem to the integer coefficients of the mtwnal Sfunc-

tions of G1 and G to reconstruct our monic GCD in Z(y)[z], =2 + ylf “or+ i Clearing fractions

gives us our non-monic GCD in Z[z,y], (y + 14)yz® + 12y°z + y + 14.

We now present the RATZIP M algorithm, which computes the GeD in Z[z,...,z,] from a
number of images in Zy(z2, ..., zy)[z1], and the RATZIP P algorithm, which computes the GCD in
Zip(22, ..., Tp)[z1] from a number of images in Z,(z2, ..., Zn—1)[z1]. As for the LINZIP M algorithm
any content of the GCD with respect to 1 must be removed before the initial call to the RATZIP
M algorithm, and content belonging only to the cofactors can be safely ignored. Unlike in the
LINZIP algorithms, we do not use single scaling. It is plausible that it may be applied here but
it is not straightforward and we have yet to work out the details. The RATZIP algorithms are
very similar to the LINZIP algorithms. The differences are highlighted in shaded boxes. The
algorithm is sufficiently similar to the LINZIP algorithm so that the treatment of the bad/unlucky
primes/evaluations; unlucky contents; and missing terms, applies here without modification.

13

Algorithm 3 (RATZIP M)

Input: a,b € Z[zy,...,zy] such that GCD(conty, (a),conty, (b)) = 1 and degree bounds dx on the
GCD N Z1,-.., Tp

Output: ¢ = ¢cp(a,b) € Z[z1, ..., 4]

1 Compute the scaling factor v = GCD(lcy, . z.(a),1cs, ... 2,(D)) € Z| (for detection of bad primes)

2 Choose a random prime p such that v, = ymodp # 0, and set ap = amodp, b, =

b mod p, then compute from these a modular GCD image | gp € Zp(T2, ..., Ty)[x1] | with a call

to | RATZIP P. | If the algorithm returns Fail, repeat, otherwise set dy, = deg, (gp) and

continue.

3 Assume that g, has no missing terms, and that the prime s not unlucky. We call the assumed
form g;.

For each coefficient of x1 in gy, count the number of terms in the numerator nt and
the number of terms in the denominator dt. Take the mazimum sum nt + dt over all
coefficients and set n, = nt +dt — 1. The —1 here is because we normalize the leading
coefficients of the denominators to be 1.

4 Set and m = p.

5 Repeat
5.1 Choose a new random prime p such that v, = ymodp # 0, and set a, = a mod p,
by, = b mod p.
5.2 Set S=0, n; =0.
5.3 Repeat

5.3.1 Choose oy, ..., an € Zp\{0} at random such that for I = (zo—ag, ..., Tp—ay) we have
deg,, (ap mod I) = deg, (a), deg,, (b, mod I) = deg, (b), and set a1 = a, mod I,
b1 = by mod I

5.3.2 Compute g1 = GCD(a1, by)

5.3.3 If deg, (g1) < dgz, then our original image and form gy and degree bounds were
unlucky, so set dy, = deg, (g1) and goto 2.

5.3.4 Ifdeg,, (91) > dy, our current image g1 is unlucky, so goto 5.8.1, unless the number
of failures > min(2,n;), in which case assume p is unlucky and goto 5.1.

5.3.5 Add the equations obtained from equating coefficients of g1 and the evaluation of
gy mod I to S, and set n; = n; + 1.

Until n; > ng

5.4 We may now have a sufficient number of equations in S to solve for all unknowns in
gy mod p so attempt this now, calling the result g,.

5.5 If the system is inconsistent then our original image must be incorrect (missing terms
or unlucky), so goto 2.

5.6 If the system is under-determined, then record the degrees of freedom, and if this has
occurred twice before with the same degrees of freedom then assume that an unlucky

14

content problem was introduced by the current prime p so goto 5.1. Otherwise we need
more images so goto 5.3.1.

5.7 The resulting solution is consistent and determined, so we have a new image gy,.

Apply the Chinese remainder theorem to update g, by combining the coefficients of
9p € Zp(x2, ...y) [21] With gm € Ly (z2, ..., 2n)[Z1],

updating m = m X p.

5.8 Apply rational reconstruction to the integer coefficients of gm, then clear the fractions
to get g € Z(xa, ..., Tn)[Z1].

Until @ has stopped changing for one iteration.

7 | Clear the rational function denominators of g to get g € Z[z1, ..., zy]. | Compute
9c = PPy, .,...z,(g) and check that g. | a and g. | b. If not we need more primes, so goto 5.1.

8 Return g..

Note that in step 7 of RATZIP M, clearing the denominators involves a series of multivariate
lowest common multiple computations, which could potentially be expensive.

Algorithm 4 (RATZIP P)

Input: a,b € Zy[z1,...,z,], a prime p, and degree bounds dx on the GCD in 1, ..., Zp,

Output: g = GeD(a,b) € | Zp(x2, ..., Ty)[z1] | or Fail

0 Check the GCD of the inputs for content in x,, if present return Fail.
1 Compute the scaling factor v = GCD(leg, .. 2, 1 (a),lcg,, . 2, (D)) € Zp[zy).
If vy =1 then set RR = False else set RR = True.

2 Choose v € Zy at random such that deg,, . (a mod (z, —v)) =deg,, . (a),
degwlj___’wnil(b mod (z,—v)) = degxl,___,wnil(b), and set a, = a mod {x, —v), b, = b mod (z, —

v), then compute from these a modular GCD image g, € | Zp(Z2, ..., Tn—1)[Z1] | with a recursive

call to| RATZIP P | (n > 2) or via the Euclidean algorithm (n = 2).

If for n > 2 the algorithm returns Fail or for n = 2 we have deg, (gv) > dz, then return
Fail, otherwise set dy, = deg, (g,) and continue.

3 Assume that g, has no missing terms, and that the evaluation is not unlucky. We call the
assumed form gy.

For each coefficient of x1 in gy, count the number of terms in the numerator nt and
the number of terms in the denominator dt. Take the mazimum sum nt + dt over all
coefficients and set n, = nt +dt — 1. The —1 here is because we normalize the leading
coefficients of the denominators to be 1.

4 | Set g =gy, m =1z, — v, and N; = 1.
5 Repeat

15

5.1 Choose a new random v € Zyp such that deg,, ., . (amod (z, —v))
= degarl,..,a:n_1(a)7 degml,..,xn_l(b mod <'Tn - U)) = degzl,..,mn_l(b); and
set a, = a mod (z, — v), by = b mod (x,, — v).
5.2 Set S = @, n; = 0.
5.3 Repeat
5.3.1 Choose ag,...,an_1 € Zy at random such that for I = (zo — a2, ..., Tp—1 — Ap_1)
we have deg,. (a, mod I) = deg, (a), deg, (b, mod I) = deg, (b), and set a; =
ay, mod I, by = b, mod I
5.3.2 Compute g1 = GCD(a1,b1)
5.3.3 If deg, (91) < dg, then our original image and form g; and degree bounds were
unlucky, so set dy, = deg, (g1) and goto 2.

5.3.4 Ifdeg,, (91) > dy, our current image g1 is unlucky, so goto 5.8.1, unless the number
of failures > min(1,n;), in which case assume x, = v is unlucky and goto 5.1.

5.3.5 Add the equations obtained from equating coefficients of g1 and the evaluation of
gy mod I to S, and set n; = n; + 1.
Until n; > ng
5.4 We should now have a sufficient number of equations in S to solve for all unknowns in
gy mod p so attempt this now, calling the result g,.

5.5 If the system is inconsistent then our original image must be incorrect (missing terms
or unlucky), so goto 2.

5.6 If the system is under-determined, then record the degrees of freedom, and if this has
occurred twice before with the same degrees of freedom then assume the content problem
was introduced by the evaluation of x, so goto 5.1. Otherwise we need more images so
goto 5.3.1.

5.7 The resulting solution is consistent and determined, so we have a new image g,.

Solve f = gp, (mod m(zy,)) and f = g, (mod x,, — v) using the Chinese remainder
algorithm for f € Zy[zy|(z2, ..., Zn—1)[z1] mod m(zy) X (zn — v).
Set gm = f,m = m(zy) X (x, —v), and N; = N; + 1.

Until| Nj > dy, +1 and (RR = False or N; > 3)

6 Reconstruct

6 If RR = True then apply rational function reconstruction in x, and assign the
result to g.. For n > 2, clear the rational function denominators of g. €
Zip(n) (2, ey Tn—1)[z1] to Obtain g. € Zp(za,...,xyn)[z1]. If rational function recon-
struction fails then we need more points, goto 5.1.

6.2 If RR = False then set g. = gm,.

7 Probabilistic division test
Choose o, ...,y € Zy at random such that for g1 = g mod I we have deg,, (91) = deg,, (g¢),
and compute a; = amod I, by = bmod I. Verify that g1 | a1 and g1 | b1, and if not goto 2.

8 Return g..

16

5 Implementation

We have implemented both algorithms in Maple using the “recden” [7] data structure. Because it

supports multiple field extensions over Q and Z,, it will allow us to extend our implementations
to work over finite fields and algebraic number fields. The linear algebra over Z, and univariate
polynomial computations over Z, and the integer arithmetic are all coded in C. The rest is coded
in Maple. The data structure is currently being implemented in the kernel of Maple for improved
efficiency.

We present timings on three classes of test problems. All problems were run on a Pentium 4
3.0 GHz processor with 1 GB of RAM and all times are given in CPU seconds.

Balanced Sparse Problems

These problems are in Z[z,y, z,w, t], with £ chosen to be the main variable. The GCD and cofac-
tors are random polynomials of maximum degree d in each variable, with 2d terms, and integer
coeflicients taken from the range 100 to 1000. We vary d from 3 to 10.

d | Total Number of Univariate GCDs Total Time Time Ratio
LINZIP RATZIP LINZIP (t1) | RATZIP (t3) | (t1/ t2)
3 62 73 0.55 0.73 2.75
4 85 94 1.09 1.49 0.73
5 147 112 2.42 2.15 1.13
6 178 148 4.04 4.33 0.93
7 219 159 6.97 5.52 1.26
8 187 127 8.46 7.48 1.13
9 340 280 17.20 14.55 1.18
10 325 271 24.62 21.89 1.12

Table 1: Run time results for balanced sparse GCDs

Balanced Semi-Sparse Problems

These problems are intended to reflect a typical class of problems frequently encountered in realistic
applications. The polynomials are in Z[z,y, z, w, t], with z chosen to be the main variable. The
GeD and cofactors are random polynomials of maximum degree d in each variable, with \/(d + 1)°

terms, and integer coefficients taken from the range 100 to 1000. We vary d from 3 to 8.

d | Terms | Total Number of Univariate GCDs Total Time Time Ratio
LINZIP RATZIP LINZIP (t1) | RATZIP (t2) | (t1/ t2)
3 32 214 303 5.59 8.34 0.67
4 56 396 541 21.00 33.66 0.62
5 89 466 754 56.92 98.11 0.58
6 130 583 1275 143.57 245.92 0.58
7| 182 977 1490 478.84 834.84 0.57
8 | 243 1237 1783 1039.92 1834.02 0.57

Table 2: Run time results for balanced semi-sparse GCDs

17

Sparse Problems with Extraneous Leading Coefficient GcD

These test problems are constructed such that the GcD of leading coefficients of the input polyno-
mials is larger than the leading coefficient of the actual ccp . These problems are in Z[z,y, z, w, t],
with 2 chosen to be the main variable. We take f = (z¢ + a)?((y%z%w?? 4+ b)z¢ + c), where a, b and
¢ are random polynomials in Z[y, z, w, t] of total degree d — 1 with d terms and integer coefficients
ranging from 100 to 1000. We impose the condition that the Gop(y¢z¢wtd + b,c) = 1, and we
vary d from 3 to 10. We compute the GCD of f and % which is z¢ + a. Note that the GcD of the
leading coefficients of the input polynomials is y%z%w%% + b. We note that this problem set is a
highly specialized case designed to show the behavior of the algorithms when the rational function
approach provides performance superior to the modified normalization approach.

d | Total Number of Univariate GCDs Total Time Time Ratio
LINZIP RATZIP LINZIP (t1) | RATZIP (t2) | (t1/ t2)
3 37 20 0.20 0.17 1.18
4 65 37 0.40 0.34 1.17
5 118 67 1.16 0.93 1.25
6 148 74 1.70 1.29 1.32
7 209 108 2.87 2.12 1.35
8 294 141 5.16 3.45 1.50
9 312 137 5.67 3.79 1.50
10 381 175 9.27 6.57 1.41

Table 3: Run time results for sparse GCDs with extraneous leading coefficient GcD
Final Remarks

Our implementation of the RATZIP algorithm includes the following enhancement. To reconstruct
the rational functions in some variable y with degree bound dy, we need 2dy + 1 evaluation points.
In fact, we may need fewer points than this, depending on the form of the rational functions being
reconstructed. In our implementation we are using the Mazimal Quotient Rational Reconstruction
algorithm [8], which uses at most one more evaluation point than the minimum number of points
required for the reconstruction to succeed. For example, to reconstruct the rational functions in y
of G =z + %a: + 1 from Example 6, we would need 4 points, not 5.

A disadvantage of Zippel’s algorithm is the large number of univariate images that must be
computed for the sparse interpolations. Most of the time is usually in the evaluations in step 5.3.1
and not the univariate GCD computations in step 5.3.2. For the test problems presented in section 5,
the percentage of time spent on evaluations was on average 68% and 75% for LINZIP and RATZIP,
respectively. The multivariate trial division in step 7 of LINZIP M and RATZIP M took 19% and
11% of the time, respectively. Together the evaluations and the division cost comprise over 86% of
the total time.

To improve the efficiency, instead of evaluating out all but one variable x1, consider evaluating
out all but 2 variables z;,z2 and computing the bivariate images using a dense GCD algorithm.
Thus think of G as a polynomial in z; and zo (main variables) with coefficients in Z|z3, ..., z,]. If
G is dense in z; and xo then little efficiency is lost. We gain a likely significant reduction in ¢ the
maximum number of terms of the coefficients in z; and x5, hence a reduction in the maximum size of
the linear systems and a reduction in the number of images needed for the sparse interpolations. We
also increase the likelihood of not needing to apply the multiple scaling or rational reconstruction
methods. Furthermore, we simplify the multivariate GCD computation for the content of G and, in
RATZIP, the final LCM computation.

18

References

[1] W. S. Brown. On Euclid’s Algorithm and the Computation of Polynomial Greatest Common
Divisors. J. ACM 18 (1971), 478-504.

[2] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press,
UK, 1999.

[3] E. Kaltofen. Sparse Hensel lifting. Proceedings of EUROCAL 85, Springer-Verlag LNCS 2, pages
4-17, 1985.

[4] E. Kaltofen and B. Trager. Computing with polynomials given by black boxes for their evalu-
ations: Greatest common divisors, factorization, separation of numerators and denominators. .J.

Symbolic Comp. 9 (1990), 301-320.

[5] E. Kaltofen, W. Lee, A. Lobo. Early Termination in Ben-Or/Tiwari Sparse Interpolation and a
Hybrid of Zippel’s Algorithm. Proceedings of ISSAC 2000, ACM Press, (2000), 192-201

[6] E. Kaltofen, W. Lee. Early Termination in Sparse Interpolation Algorithms. J. Symbolic Comp.
36 (3-4) (2003), 365-400.

[7] M. van Hoeij, M. B. Monagan. A Modular GCD Algorithm over Number Fields Presented with
Multiple Field Extensions. Proceedings of ISSAC ’2002, ACM Press, pp. 109-116, 2002.

[8] M. B. Monagan. Maximal Quotient Rational Reconstruction: An Almost Optimal Algorithm
for Rational Reconstruction. Proceedings of ISSAC ’2004, ACM Press, 243-249, 2004.

[9] P. S. Wang. An Improved Multivariate Polynomial Factorization Algorithm. Mathematics of
Computation 32, pp. 1215-1231, 1978.

[10] P. S. Wang. The EEZ-GCD algorithm. ACM SIGSAM Bull. 14, (1980), 50-60.

[11] M. O. Rayes, P. S. Wang, K. Weber. Parallelization of The Sparse Modular GCD Algorithm for
Multivariate Polynomials on Shared Memory Multiprocessors, Proceedings of ISSAC ’94, ACM
Press, pp. 66-73, 1994.

[12] A. D. Wittkopf, Algorithms and Implementations for Differential Elimination, Ph.D. Thesis,
Simon Fraser Univ. (2004) (http://www.cecm.sfu.ca/ wittkopf/WittThesis.pdf).

[13] R. Zippel, Probabilistic Algorithms for Sparse Polynomials, Proceedings of EUROSAM 79,
Springer-Verlag LNCS, 2 pp. 216-226, 1979.

[14] R. Zippel. Interpolating Polynomials from their Values. J. Symbolic Comput. 9, 3 (1990),
375-403.

[15] R. Zippel, Effective Polynomial Computation, Kluwer Academic, 1993.

19

Appendix

We describe how to remove the content of G' from the inputs A,B. Let G = Zfzo girh, A =
Yl oairt, and B = S0 bizl. Recall that the content C of G in z; is ged(go, g1, ---)9a). The
obvious way to compute C is to compute the GCD of the contents of A and B, that is, to compute
C = ged(ged({a;}),ged({b;})) and set A = A/C and B = B/C. This should not be done in this
manner, as it requires at least three (probably multivariate) GCD computations, and is expensive
when the contents of the inputs A and B are larger than the content of G. Indeed, if G = 1
computing the contents of A and B would make the overall algorithm no longer output sensitive
to the size of G. Instead, select the coefficient of A and B of smallest size and compute H the
GCD of that coefficient and a random linear combination of all other coefficients. Then verify that
H divides the other coefficients.

That our algorithms must compute and divide out by the content of G may introduce an
inefficiency. For example, take G = (y? — 1)z% + (y? — 1) for primes p # q. Then C = y — 1 and
G/C =P +..+y+1)z®+ (¥ ' + ..+ y+1) is dense in y. In practice this is not a serious
problem. If the content of G is 1, the recursive GCD will determine this quickly because it is using a
modular GCD algorithm, and hence, little time is wasted. If the content C of G is non-trivial, then
most likely G/C will have fewer terms than G, not more, and as a result the main GCD computation
will complete more rapidly.

We mention that Kaltofen and Trager’s black box approach in [4] solves both the normalization
problem and the content problem by a clever change of variables. Replace each non-main variable
z; in the input by z; + ax; for some random integer «. Notice that this makes the inputs monic in
the main variable ;. Thus the modified input has no content (it has become part of the main GCD)
and there is no normalization problem. In the black-box model these substitutions cost essentially
nothing but in the standard expanded representations for polynomials they make the inputs dense,
hence we do not do this.

20

