The Non-Monic Case in the Sparse Modular GCD Algorithm

Jennifer de Kleine* Michael Monagan* Allan Wittkopf
dekleine@cecm.sfu.ca mmonagan@cecm.sfu.ca awittkop@maplesoft.com

Centre for Experimental and Constructive Mathematics
Simon Fraser University,

Burnaby, British Columbia, V5A 1S6 Canada

Abstract

The sparse modular GCD algorithm was presented by Zippel [5, 6] for computing the greatest
common divisor of two multivariate polynomials over the integers. It improves the efficiency
of Brown’s algorithm when the ged is sparse. We extend this algorithm to work for non-monic
GCDs.

The non-monic case occurs when the GCD has a leading coefficient involving one or more vari-
ables. For example, the GCD G = (4y + 22)x? + 7 € Z[z,y, 2] is non-monic in the main variable
z. The problem is that at the bottom level of our algorithm we call the Euclidean algorithm,
which returns a monic GCD. We describe two different approaches for handling the non-monic
case. One involves solving a sequence of large structured linear systems. The other method uses
a sparse rational function interpolation algorithm.

1 Introduction

In [1], Brown presented a first efficient solution to the polynomial greatest common divisor (GCD)
problem: given two non-zero polynomials A, B € Z[z1,...,x,] compute their GCD G. Brown’s
algorithm is a dense modular algorithm. By reducing the inputs modulo primes and evaluating
out all variables except one, x; say, it reduces the multivariate GCD problem to a possibly large
number of univariate GCD problems over a finite field where Euclid’s algorithm works well. If d
bounds the degree of A and B in all variables, then Brown’s algorithm uses O(d"~!) evaluation
points and does O(d" ') univariate GCD computations.

In practice, most polynomial GCD problems in many variables are sparse. For example, G =
¢ + 23 + ... + 24 — 1 is sparse. It has n + 1 non-zero terms. If all terms of total degree < d were
present it would have ("ji'd) non-zero terms. On this problem Brown’s algorithm will do O(d"~1)
univariate GCD computations even though G has only n + 1 terms.

In [5, 6], Zippel presented a modification of Brown’s modular GCD algorithm [1], providing
an effective algorithm for when G is sparse. If ¢ is the maximum number of terms of a coefficient
of G in z1 (in the example t = n), Zippel’s algorithm requires O((n — 1)dt) evaluations and does
O((n — 1)dt) univariate GCD computations. This is clearly much better than Brown’s algorithm
for n = 10 or more variables.

*This work was supported by the MITACS NCE of Canada and NSERC of Canada

A discussion of both algorithms together with examples can be found in Chapter 7 of the text
“Algorithms for Computer Algebra” by Geddes, Czapor and Labahn [2]. Zippel’s algorithm is
limited in that it is only designed to handle monic GCDs. Although many sparse inputs will be
monic in one of the variables we need an effective algorithm for when this is not the case. In
this paper we investigate two different approaches for extending Zippel’s algorithm to work for the
non-monic case.

The organization of this paper is as follows. In section 2. we give a brief overview of Zippel’s
sparse modular GCD algorithm together with a simple example. In section 3. we discuss the non-
monic problem and two approaches to dealing with it. In particular, in section 3.1 we discuss a
normalization technique and in section 3.2 we discuss an alternative approach which uses a sparse
rational function interpolation method. In section 4 we conclude with some final remarks about
the current state of the project and future plans.

2 Zippel’s Sparse Modular GCD Algorithm

Zippel’s sparse modular GCD algorithm differs from Brown’s modular GCD algorithm in the in-
terpolation step. Zippel’s algorithm is based on the idea that the number of non-zero terms in a
multivariate polynomial is often much smaller than the number of possible terms.

There are two stages to the algorithm. In the first stage the input polynomials A, B €
Z[x1,...,xy] are reduced modulo primes p such that the leading coefficients do not vanish. The
GCDs G, = GCD(Ap, Bp) mod p are computed (using the second stage of the algorithm) and the
GCD(A, B) over Z is then reconstructed by applying the Chinese Remainder Theorem.

In the second stage of the algorithm the GCD in Zy[z1, ..., z,] is computed as follows. The
n-variate problem is reduced to a series of (n — 1)-variate problems by evaluating at random points,
« € Zy, for z,,. This is done for sufficiently many « until the n — variate ged can be recovered
by interpolation. This step is applied recursively. At the bottom level we apply the Euclidean
Algorithm to compute the univariate GCD modulo p.

In both stages of the algorithm, the first image at any given level is computed recursively, call
this G1. Any subsequent images computed at that level are then reconstructed using a sparse
interpolation based on the form of Gi. The main assumption is that G is of the correct form,
that is, all non-zero terms are present. The remaining images may then be computed by solving a
sequence of linear systems for the unknown coefficients.

Example 1. Let G, A, B € Z[z,y] be defined as follows
G =2?+3y3z+ 35
A=(y+1)xG=(y+1)2® + (3y" +3y>) z + 35y + 35
B=(z+1)xG=2*+ 3y +1)z? + (3y> +35)z + 35
Working modulo p; = 11 we compute our first GCD image in Zi1[z,y] using a dense interpolation:

1. Compute a degree bound on y, dy, = degree(Ged(A(1, y), B(1, y)) mod 11) = 3.

2. Evaluate at four random points for y and compute our univariate GCD images in Z11[z] using
the Euclidean algorithm:

g1 + Ged(A(z,2), B(z,2)) mod 11 = 2 + 2z + 2
go « Ged(A(z,4), B(z,4)) mod 11 = 22 + 5z + 2
g3 < Ged(A(z,5), B(z,5)) mod 11 = z? + z + 2
g4 < Ged(A(z,6), B(z,6)) mod 11 = z? + 10z + 2.

3. Interpolate in y to construct our first bivariate image modulo 11,

Gl ~ |nterp([2, 47 5’ 6]’ [gla g2, 93, g4]’y) mod 11 = 1.2 + 3y3$+2

Working modulo p2 = 13 we compute a second GCD image in Z13[z, y| using a sparse interpolation:

1. Assume the form of the GCD, substituting unknowns for the coefficients of G,

2

H + 2* + ay’z + B.

2. We have at most one unknown per coefficient in our main variable so we need only one
evaluation point. We evaluate at y = 8, and compute our univariate GCD image in Zi3[z]:
H(z,8) mod 13 = 22 + 5az + f8
Ged(A(x,8), B(x,8)) mod 13 = 22 + 2z + 9
3. Equate by coefficient and solve for the unknowns in Z3:
dSa =
B =
4. Substitute these values back into H to get our second bivariate image modulo 13,

Go «—subs({a=3,6=9}, H) = x> + 3y3z + 9.

2
9}=>a—3,ﬁ—9.

Apply the Chinese Remainder Theorem to the integer coefficients of G; and G2 to reconstruct our
GCD in Z[z,y],
chrem([Gl, GQ], [pl, pg]) = 1‘2 + 3y3x + 35.

3 The Non-Monic Case

In Example 1, the leading coefficient of our GCD is 1 and so Zippel’s algorithm works fine. Consider
the problem in Z[z, y):
G = (y + 50)z> + 100

A= (y+1)x G = (y* + 51y + 50)z® + 100y + 100
B=(y+2) x G = (y*+ 52y + 100)z* + 100y + 200

Here our GCD is non-monic, G has leading coefficient y+50 in the main variable . Suppose we have
computed our first bivariate image modulo 13 using a dense interpolation, G1 = (y+11)z3 +9. We
proceed to compute a second image using a sparse interpolation working modulo 17. First, assume
the GCD has the form H = (y + «)z® + 8 for some «, 3 € Z17. We have at most one unknown
per coefficient in z so we evaluate at one random point, y = 5 and compute one univariate GCD in
Zyr[z]:

H(z,5) mod 17 = b+a)z+p

Ged(A(z,5), B(z,5)) mod 17 = 2% +8
Equating by coefficient, we get the equations, 5 + « = 1 and § = 8. Solving for @ and § in
717, gives us the bivariate image, Go = (y + 13)z3 + 8, which is incorrect. The correct image is
G(z,5) mod 17 = (y + 16)z3 + 15. The problem is that at the bottom level we are computing a
univariate GCD modulo p which will always be monic. We are thus always equating the leading
coefficient to be 1, giving us incorrect results.

We now present two approaches to dealing with the non-monic case. First, we will look at the

problem of normalization and present a new idea for making it work with the sparse interpolation
step. Second we will look at the sparse rational function interpolation method.

3.1 Normalization

One way of dealing with the non-monic problem is to normalize the univariate GCD images by
multiplying through by some scalar, =y, such that solving the linear systems gives us correct results.
Consider again, the previous problem in Z[z,y]. If we take y(y) to be the GCD of the leading
coefficients of A and B in our main variable z, we get

v = ged((y +1)(y +50), (y + 2)(y + 50)) =y + 50 € Z[y].

We can then normalize our monic univariate GCD image by multiplying through by (5) mod 17 =4
to get 4z3 + 15. Equating by coefficient with H(z,5) mod 17 we get the equations, 5 + o = 4 and
B = 15. Solving for o and 3 in Z17, gives us the bivariate image, Go = (y + 16)z3 + 15, which is the
correct image. Now in this example the GCD of the leading coefficients of our input polynomials
happened to be exactly the leading coefficient of our actual GCD, but in general this is not the
case. It may happen that

v = ged(leg(A),lcz(B)) = A x Icz(ged(A, B))

for some factor A € Z[y]. For example, the first main step in a polynomial factorization algo-
rithm for factoring f(z,y) € Z[z,y] is to compute the square-free factorization of f(z,y). This is
accomplished by a sequence of GCD computations, the first of which is to compute

g =gcd(f(w,y),w)-

In this case y(y) = lc,(f) even though lc;(g) may be 1. Normalizing our univariate GCDs by 7 with
this extra factor A causes two problems. Firstly, it causes problems in the sparse interpolation step.
Secondly, to make the sparse interpolation work, we have to reconstruct a possibly much bigger
polynomial where we may lose sparsity.

We are left with the following, we know that there is some scalar for each univariate GCD image
that will give us the correct normalization, we just don’t know what it is. The solution is to treat
these scalars as unknowns and incorporate them into the problem. We illustrate this idea with an
example.

Example 2. Let G, A, B € Z[xz,y] be defined as follows
G = (y +50)z> + 100
A= (yz+1) x G = (> + 50y)z* + (y + 50)z> + 100yz + 100
B = (yz+2) x G = (y* + 50y)z* + (2y + 100)z> + 100y + 200
Using a dense interpolation we get our first GCD image in Z11[z, y],
Gi= (y+6)z> + 1.
Working modulo 13 we compute a second GCD image in Zi3[z,y] using sparse interpolation:

1. Assume the form of the GCD, substituting unknowns for the coefficients of G,

H + (ay + B)z® + 6.

2. We have at most two unknowns per coefficient in our main variable z so we need two evaluation
points. We evaluate at y = 3,12, and compute our univariate GCD images in Zi3[z]:

hi + H(z,3) mod 13 = (3a+B)z3+46
hy < H(z,12) mod 13 = (12a+B)z® +4
g1 + Gcd(A(x,3), B(z,3)) mod 13 = 23 +9

g2 + Ged(A(x,12), B(z,12)) mod 13 = 2% +10
3. Normalize ¢g; and g2 by some unknown scalars v;,7v2 € Zi3:

NnXxg = M+
Yo X g2 = Y13+ 107

4. Equate by coefficient and solve for the unknowns in Z3:

3a+B = m, I

0

5. We get a solution in terms of d, allowing us to set it arbitrarily. We choose § such that our
GCD image is normalized to have leading coefficient 1, that is, § + 37! mod 13 = 9, which
givesus a =1, § =11.

6. Substitute these values back into H to get our second bivariate image modulo 13,

Go « subs({a =1,8=11,6 = 9}, H) = (y + 11)z3 + 9.

This is precisely our GCD, G mod 13. As you can see, this method results in a larger system to
solve in more unknowns. However, it turns out that the system is highly structured, as illustrated
in the following example.

Example 3. Consider a GCD of the form
H =1 (a1 yz* + a2 2%) + 2 (b1 yz + b2) + cl y’z — c2yz*.
And say the GCD we are looking at is given by
G =" (Py —522) + 7 (9yz +11) + 32y — Tyz*.
Working modulo 23 we evaluate at the points (y, z) = (14, 12), (4, 3), (16,21) to get the following:

hi + H(z,14,12) mod 23 = (19al +6a2)z* + (7Tb1 +b2)x+6cl +8c2
hy ¢ H(z,4,3) mod 23 = (16af +9a2)az + (1251 + b2)z + 2 ¢l + 10 2
hy < H(z,16,21) mod 23 = (10al +4a2)z* + (1451 +b2)z + 17 ¢l +5¢2

g1+ G(2,14,12) mod 23 = z* +10z+10
g2 — G(z,14,12) mod 23 = z* + 7z + 18
g3 « G(x,14,12) mod 23 = z*+ 7z + 19

Scaling the images gi,92 and g3 by the unknown multipliers mi,ms and mgs, respectively, and
equating by coefficient we get the following system to solve in Zog:

19a1 +6a2 = mi, Tb1+b2 = 10ml, 6clI+8c2 = 10ml
16al +9a2 = m2, 1201 4+02 = Tm2, 2cl+10c2 = 18m2
10al +4a2 = m3, 14b1+02 = "m3, 17c¢l1+5c2 = 19m3

Looking at this system as a matrix:

04000 0 0 0 -1
69 000 0 0 -1 0
96 000 0 -1 0 0
0014100 0 0 -7
001210 0 0 -7 0 [,
00710 0 -10 0 0
000017 5 0 0 -19
0000 2 10 0 -18 0
| 00006 8 -0 0 0 |

we see that we have a block-form matrix, for which a fast solver has been constructed.

It should be noted that if the GCD has a content in the main variable, this algorithm will fail.
Thus the content must be computed and removed at the top level of the algorithm. Unfortunately
this is not sufficient for avoiding problems. It may happen that a certain choice of prime or
evaluation point may introduce a content. Consider, for example, the GCD, G = (y? +y + 1)z? +
y? +12y + 1. G has no content in the main variable = over Z but if we choose the prime p = 11 we
introduce the content 2 + y + 1. There is no inexpensive way to detect at what level the content
was introduced. We propose to deal with this problem as follows. At each level of the computation,
keep track of the number of successes, s, and the number of failures, f. If at any point f > s, then
return FAIL to the next level up.

3.2 Sparse Rational Function Interpolation

An alternative way of handling the non-monic case is to use sparse rational function interpolation.
The idea is as follows. If we are computing the GCD of two polynomials in Z[z,w,y, z], we take x
as our main variable and compute the monic GCD in Z(w, y, z)[z], of the form:

= ai(w,y, 2)
$n+ (2 2 .'L'Z,
Z-z_% bi(wayaz)

where a;,b; € Z]w,y, z]. The idea is to interpolate the rational function coefficients using a sparse
interpolation process. For example, if our GCD is (y + 14)yx3 4+ 129z + y + 14, then we compute
the monic GCD
12y 1
J+ 14 T + &
We can then recover the non-monic GCD by multiplying through by the least common multiple of
the denominators. In our example, we multiply through by lem(y + 14,y) = (y + 14)y to get our
non-monic GCD (y + 14)yz® + 12y%z + y + 14.

To illustrate how the sparse rational function reconstruction works, consider the following.
Suppose one of the rational function coefficients is

3+

*w? + xzy?
x22 + xy? + wy?’

here * indicates an integer. Suppose we have reconstructed C at w = 5 to get

. * + *zy2

T kg2 4oay2 4 g3
Notice we have normalized the leading coeflicient of the denominator to be 1, essentially dividing
through by w. We then assume the form to be:

__a(w) + B(w)zy?
6(w)z? +y(w)y? + y3’

where a(w), B(w), §(w),y(w) are rational functions in w. We have 4 unknowns so we need 4
equations to solve for the next image, Co. We do this for as many w values as we need. We then
do rational function interpolation in w to get:

sw? + = zy?
w22+ Ty? 43

Clearing the fractions in w gets us what we want:

*wS -+ *zy2
*22 + *xy2 + wyd’

Example 4. Let G, A, B € Z[z,y] be defined as follows
G = (y+14)yz® +12y%c +y + 14

A=(yz+1)xG and B=(yz+2)xG

Working modulo p; = 11 we compute our first monic GCD image in Z11(y)[z] using a dense rational
function interpolation.

Note, rather than doing the rational function interpolations by solving systems of linear equa-
tions, which would have a cubic time complexity in the number of evaluation points, we use poly-
nomial interpolation and rational function reconstruction which both have only quadratic time
complexity. Details of the algorithm used by Maple’s Ratrecon command below for rational func-
tion reconstruction may be found in [3].

1. We need 4 evaluation points to reconstruct the rational functions in y. Evaluate at four
random points, y = 1,4,9, 3, and compute our univariate GCD images in Zi1[z]:

g1 — Gecd(A(z,1), B(z,1)) mod 11 = 23 + 3z + 1
g2 + Gcd(A(w,4), B(z,4)) mod 11 = 23 + 10z + 3
g3 +— Gcd(A(z,9), B(z,9)) mod 11 = 22 4+ 9z + 5
g1 < Gcd(A(z,3), B(x,3)) mod 11 = 23 + 6z + 4

2. Interpolate in y,

G1 < Interp([1,4,9,3],[91, 92, 93, 94],) mod 11 = z3 + (y3+24°+8y+3) = + 63> +8y> + Ty +2.

3. Apply rational reconstruction to the coefficients in z:
m + expand((y — 1) x (y —4) x (y — 9) x (y — 3)) mod 11,

1
G1 < Ratrecon(G1,m,y) mod 11 = z° + Y . + -
y+3 oy
Working modulo ps = 13 we compute a second monic GCD image in Zi3(y)[z] using a sparse
rational function interpolation:

1. Assume the form of the GCD, substituting unknowns for the integer coefficients of the rational

functions of G,
e é
He b+ 742
y+8 vy
2. We have at most two unknowns per coefficient in our main variable z so we need two evaluation
points. We evaluate at y = 1,6, and compute our univariate GCD images in Zi3[z]:

hi < H(z,1) mod 13 = z° + S5 +
hg < H(z,6) mod 13 = :(:34—66_1_—0‘/3304—

D=

g1 + Gcd(A(z,1), B(z,1)) mod po = z3 + 6z + 1
go < Gcd(A(z,6), B(z,6)) mod pp = 2% + z + 11

3. Equate by coefficient and solve for the unknowns in Z3:

= 2 1 9
187 Ly =sa=12,=1,6 =1

4. Substitute these values back into H to get our second monic image in Z13(y)[z],

12 1
2y 1

Gy subs({a =12, =1, =1}, H) :$3+y—|—1$,

Apply the Chinese Remainder Theorem to the integer coefficients of the rational functions of G
and Gy to reconstruct our monic GCD in Z(y)[z],

12y n 1
T + —.
y + 14 Y

chrem([G1, G2], [11,13]) =23 +

Finally, we clear the fractions to get our non-monic GCD in Z[z,y], (y + 14)yz3 + 12¢%z + y + 14.

Since the first approach requires that the inputs don’t have contents in the main variable, and
the second approach reconstructs the monic gcd, we need to compute and remove the content
in the main variable at the top level of both algorithms. Computing the content can be very
expensive as it may involve doing many multivariate GCD computations in one less variable than
the actual GCD problem, content(G,z) = gcd(content(A,), content(B, z)), where content(A,z) =
ged(coeffs(A, z)). A more efficient way of computing the content is as follows.

1. Let ¢ = [coeffs(4,z), coeffs(B,z)].

2. Let ¢pin be the coefficient of minimum total degree.

3. Take a random linear combination of the coefficients:

nops(c)
f = Z a; X ¢, a; €7

=1
4. cont_g + gcd(f, cmin)

5. If cont_g | A and cont_g | B then we have our content.

6. Otherwise go back to 3. and try again.

4 Conclusion

We have done an implementation in Maple using the “recden” data structure of Zippel’s algorithm
extended to work for monic input over finite fields and algebraic number fields, as well as for non-
monic input over the integers using the sparse rational function interpolation method. We are
currently working on an implementation of the modified normalization technique in the “recden”
data structure. The aim is to get a running time comparison of the two methods in Maple. We plan
to extend these methods to work for non-monic problems over finite fields and algebraic number
fields.

References

[1] W. S. Brown. On Euclid’s Algorithm and the Computation of Polynomial Greatest Common
Divisors. J. ACM 18 (1971), 478-504.

[2] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer Aca-
demic Publ., Boston, Massachusetts, USA, 1992.

[3] M. van Hoeij, M. Monagan. Algorithms for Polynomial GCD Computation over Algebraic Func-
tion Fields. To appear in Proceedings of ISSAC ’04, ACM Press, 2004.
Preprint available from http://www.cecm.sfu.ca/CAG /products.html .

[4] M. Monagan, J. Ales, J. de Kleine, C. Pastro, A. Wittkopf. Data Structures and Algorithms for
Polynomials. MITACS Research Report, November, 2000.
Available from http://www.cecm.sfu.ca/CAG /products.html .

[5] R. Zippel. Probabilistic Algorithms for Sparse Polynomials. Ph.D. Thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA, 1979.

[6] R. Zippel. Interpolating Polynomials from their Values. J. Symbolic Comput. 9, 3 (1990), 375-
403.

