Fast Rational Function Reconstruction ”

Sara Khodadad
School of Computing Science,
Simon Fraser University,
Burnaby, B.C. V5A 1S6, CANADA.

skhodada@cecm.sfu.ca.

ABSTRACT

Let F be a field and let f and g be polynomials in F[t]
satisfying deg f > degg. Recall that on input of f and g
the extended Euclidean algorithm computes a sequence of
polynomials (si, i, r;) satisfying s;f + tig = r;. Thus for 4
with ged(t;, f) = 1, we obtain rational functions r; /t; € F(t)
satisfying r;/t; = g (mod f).

In this paper we modify the fast extended Euclidean al-
gorithm to compute the smallest r; /¢;, that is, an r;/¢; min-
imizing degr; + degt;. This means that in an output sen-
sitive modular algorithm when we are recovering rational
functions in F'(t) from their images modulo f(t) where f(t)
is increasing in degree, we can recover them as soon as the
degree of f is large enough and we can do this fast.

We have implemented our modified fast Euclidean algo-
rithm for F = Z,, p a word sized prime, in Java. Our fast
algorithm beats the ordinary Euclidean algorithm around
degree 200. This has application to polynomial gcd compu-
tation and linear algebra over Z,(t).

1. INTRODUCTION

Rational number reconstruction, originally developed by
Paul Wang in [15], (see [2] or [14] for an accessible refer-
ence), has found many applications in computer algebra. It
enables us to design efficient modular algorithms for com-
puting with polynomials, vectors and matrices over Q. Such
algorithms first solve a problem modulo a sufficiently large
integer m which is usually a product of primes or a power
of a prime. Then they apply rational reconstruction to re-
cover the rational numbers in the solution from their images
modulo m. The same basic strategy can also be used to
recover fractions in F'(t) from their image modulo a poly-
nomial f(¢t) € F[t] where F is a field. Some applications
where rational reconstruction has been used include poly-
nomial ged computation over Q(a), solving linear systems
over Q and Grobner basis computation over Q.

*Supported by NSERC of Canada and the MITACS NCE
of Canada

Permissionto male digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republisho poston senersor to redistritute to lists, requiresprior specific
permissiorand/orafee.

Copyright 200X ACM X-XXXXX-XX-XIXX/XX ...$5.00.

Michael Monagan
Department of Mathematics,
Simon Fraser University,
Burnaby, B.C. V5A 1S6, CANADA.

mmonagan@cecm.sfu.ca.

A key advantage of rational reconstruction is that it en-
ables us to make modular algorithms “output sensitive”,
that is, the size of the modulus m needed, and hence over-
all efficiency, depends on the size of the actual rationals in
the output and not on bounds for their size which might be
much larger. For example, consider the problem of comput-
ing the monic gcd g of two non-zero univariate polynomials
fi and fo in L[z] where L = Q(a) is a number field with
minimal polynomial m(z). Let lc(f) € L denote the leading
coefficient of f. Let den(f) € Z denote the lcm of the denom-
inators in the rational coefficients of f and let f = den(f)f.
Thus Ic(g) = 1 and § has no fractions in the coefficients.
A modular algorithm for the gcd problem in L[z] for the
case m(z) € Z[z]. was first given by Langemyr and Mac-
Callum in [5] Their algorithm computes g1, g2, ... the ged of
f1 and f> modulo a sequence of primes pi,p2,... using the
Euclidean algorithm and applies the Chinese remainder the-
orem to reconstruct Dg from the images Dg; mod p; where
D is a known multiple of den(g). They use

D = A x GCD(den((Icf1)™"), den((lcf2) ™))

where A = res,(m(z),m’(z)) is the discrimant of the num-
ber field. But g might be the polynomial z+2a+5/3 and the
inputs f1 and f> and m(z) might have large integers in their
coefficients. In such cases, the integer coefficients of Dg can
be much larger than those of den(g)g = 3g = 3z + 6 + 5.
In [3], Encarnacion modified Langemyr and MacCallum’s
algorithm to work for m(z) € Q[z] and to use rational num-
ber reconstruction to make it output sensitive. For i =
1,2, ... Encarnacion computes ¢; = ¢ mod m; from g1, g2, ..., g;
where m; = p1 X ... X p; and applies rational reconstruction
to the coefficients of ¢; to obtain h;. When the output of
rational reconstruction succeeds and does not change from
one prime to the next, then h; = g with high probability.
One verifies this by trial division, that is, by checking h;|f
and h;|f2. Thus for g = z+2a+5/3, only two primes would
be needed regardless of how large fi(x), f2(x) and m(z) are.

Wang’s Algorithm

Let n/d € Q with d > 0 and ged(n,d) = 1. Let m € Z
with m > 0 and gcd(m,d) = 1. Suppose we have computed
u = n/d mod m and we want to recover the rational n/d.
Recall that extended Euclidean algorithm (EEA), on input
of m and u with m > u > 0, computes a sequence of triples
(siyti,ri) € Z3 for 4 = 0,1,...,1,1 + 1 satisfying 741 = 0
and s;m + t;u = r;. It does this by initializing (7o, So,t0) =
(m,1,0) and (r1, s1,t1) = (u,0,1) and computing

(rig1, Sit1,tit1) = (Pic1 — @i, Si—1 — €iSiy i1 — Qits)

for : =1,2,...,l where g; is the quotient of r;_; divided r;.
Observe that s;ym + t;u = r; implies r;/t; = u (mod m) for
all ¢ with gcd(m, t;) = 1. In [15], Wang observed that if m >
2|n|d then the rational n/d = r;/t; for some 0 < ¢ <+ 1.
In fact, it is the r;/t; satisfying r;_1 > |n| > r;, that is, we
just need to compute up to the first remainder less than or
equal to |n|.

One way to use Wang’s observations to recover the ra-
tional number n/d in the output from its image v modulo
m is as follows. First bound the size of n and d, that is,
compute N > |n| and D > d. Then solve the problem
modulo a sequence of primes p1, p2, ... satisfying m > 2ND
where m = p; X p2 X Then run the Euclidean algorithm
until 7,1 > N > r;, and output r;/t; after checking that
ged(ti, m) = 1.

However, as remarked earlier, the bounds are often much
too big. To make a modular algorithm output sensitive we
let m increase in size and periodically apply rational re-
construction as follows. Given the image w of the ratio-
nal n/d modulo m, Wang computes N = D = |\/m/2]
and runs the Euclidean algorithm with input m > w stop-
ping when 7,1 > N > r;. One then checks if |¢t;| < D
and ged(ti,m) = 1. If yes then we output r;/t; else ra-
tional reconstruction “fails”. Thus Wang’s algorithm suc-
ceeds in reconstructing n/d when m becomes bigger than
2 max(n?, d?).

If one uses the ordinary Euclidean algorithm, the complex-
ity of Wang’s algorithm is O(log? m). In 2002 Pan and Wang
in [11] modified the fast Euclidean algorithm of Schénhage
[12] to solve the rational number reconstruction problem in
time O(M(k) log k) where k = log m is the length of the mod-
ulus m and M(k) is the cost of multiplying integers of length
k. The authors did not implement their algorithm and re-
marked during their presentation at ISSAC 2002 that the
algorithm might not be practical. In 2005 Lichtblau in [6]
implemented a variation on the fast Euclidean algorithm for
rational number reconstruction for Mathematica and found
that it is practical. In fact, Steel (see [13]) had already
implemented fast rational number reconstruction in Magma
version 2.8 in 2000. Steel found that the fast Euclidean al-
gorithm beat his implementation of Lehmer’s algorithm (an
improvement of a constant factor on the ordinary Euclidean
algorithm) for integers of length around 50,000 bits.

Maximal Quotient Rational Reconstruction

There is an inefficiency in Wang’s approach because of the
choice of N = D = |y/m/2]. This choice means we are using
half of the bits of m to recover the numerator and half for the
denominator. To recover n/d, we require m > 2|n|d but this
choice for N and D means the modulus m > 2max(n?, d?).
This choice is efficient if the numerator n and denominator d
are of the same length. But if |n| > d or |n| < d, it requires
m to be up to twice as long as is necessary. This inefficiency
was noted by Monagan in [9]. In particular, for gcd problems
in L[z], Monagan has observed that the denominators in g
are often much smaller than numerators.

Monagan in [9] observed that if m > 2|n|d then with high
probability there will be only one small rational r;/¢; in the
Euclidean algorithm, namely n/d. In fact, if m is just a few
bits longer than 2|n|dlog, m, the smallest rational will be
n/d with high probability. Thus another way to solve the
rational reconstruction problem is to simply select and out-
put the smallest r; /t;. How do we do this without explicitly

multiplying r; x ¢;7 Monagan observed that if the size of the
rational r;/t; is small compared with m, that is, |rit;| K m
then ¢; = [ri—1/7:] is necessarily large, indeed ¢; satisfies
T3 < giri|t;] < m. Hence, it is sufficient to select the ratio-
nal r; /t; corresponding to the largest quotient g;. Moreover,
since the quotients are available and they are mostly very
small integers, this selection is efficient.

In this way, it does not really matter whether n is much
longer or much shorter than d, for as soon as m is a few bits
longer than 2|n|dlog, m, we can select n/d from the r;/t;
with high probability. If m is a product of primes and one is
using the Chinese remainder theorem, one saves up to half
the number of primes. Thus in an application where the size
of the numerators might be much larger or smaller than the
size of the denominators, Monagan’s algorithm is preferred.

Monagan’s algorithm, like Wang’s algorithm, is also a sim-
ple modification of the extended Euclidean algorithm, and
thus also has complexity O(log? m) if the ordinary extended
Euclidean algorithm is used. Just as Pan and X. Wang
modified the fast Euclidean algorithm to accelerate Wang’s
algorithm, can Monagan’s algorithm also be accelerated? In
this paper we answer this question in the affirmative. We
show how to modify the fast Euclidean algorithm to output
the smallest rational r;/¢; without increasing the asymptotic
time complexity of the fast Euclidean algorithm. Rather
than modifying the fast Euclidean algorithm for Z, we mod-
ify the fast Euclidean algorithm for Z,[t] where p is a prime
to recover the rational function for Z,(t) of least degree.

We call our algorithm FMQRFR for fast maximal quotient
rational function reconstruction. We have implemented it
in Java. In comparing it to an implementation using the
ordinary extended Euclidean algorithm for Z,[t] we found
that the fast Euclidean algorithm beats the ordinary ex-
tended Euclidean algorithm at around degree 200. In order
to achieve such a result, one must implement fast multi-
plication in Z,[t] carefully. For this we have implemented
an “in-place” version of Karatsuba’s algorithm (see Maeder
[7]) so that fast multiplication in Z,[t] already beats classical
multiplication at degree 50.

We also show how to accelerate Wang’s algorithm for Z,|t]
using the fast Euclidean algorithm. Given m(t), the cost of
FMQRFR is no more than twice as expensive as the ac-
celerated Wang’s algorithm. If one uses Wang’s algorithm,
one runs the (fast) Euclidean algorithm half way, that is,
stopping as soon as the degree of the remainder is below
(degm)/2. In our algorithm, one cannot stop in the middle
in general. One must run through to the end computing all
quotients to determine the largest. Hence the factor of 2.

Our paper is organized as follows. In section 2 we describe
the maximal quotient rational reconstruction algorithm for
Flz]. In section 3 we describe the fast extended Euclidean
algorithm (FEEA) for F[z]. Our presentation of the FEEA
follows the presentation given by von zur Gathen and Ger-
hard in [14]. We give timings for our implementation of the
FEEA for F = Z, where p is a word size prime, comparing
it with the ordinary extended Euclidean algorithm. In sec-
tion 4 we show how to modify the FEEA to compute the
smallest rational function r;/t;. The reason this is possible
is that the FEEA computes all the quotients ¢;. In section 4
we also show how to modify the FEEA to compute the ra-
tional function r;/t; satisfying degr;—1 > (deg f)/2 > degr;
so that we can compare the efficiency of our algorithm with
Wang’s algorithm.

2. MAXIMAL QUOTIENT RATIONAL FUNC-

TION RECONSTRUCTION

Let F be a field. A rational function n/d € F(z) is said
to be in canonical form if lc(d) = 1 and ged(n,d) = 1. Let
f, g € F[z] with deg f > degg. Let r; and ¢; be the elements
of the ith row of the Extended Euclidean Algorithm (EEA)
with inputs f and g. Then any rational function n/d with
n = r;/lc(t;) and d = t;/Ic(t;) satisfies n/d = g mod f,
provided that ged(f,¢;) = 1. Moreover, if n/d is a canonical
form solution to n/d = g mod f satisfying degn + degd <
deg f, then there exists some row j in the EEA for inputs f
and g such that n = r;/lc(¢;) and d = ¢;/lc(t;). Thus the
EEA with inputs f and g generates all rational functions
n/d (up to scalar multiples in F') satisfying n/d = g mod f,
ged(f,d) = 1 and degn+degd < deg f. Refer to [14, Lemma
5.15] for the proof.

If degree bounds N > degn and D > degd satisfying
N+ D < deg f are known, then the rational function n/d is
uniquely determined by running the EEA on inputs f and g.
But we do not always know the values of N and D in advance.
In this section we will present an efficient algorithm that
with high probability finds the correct solution for deg f >
degn + degd + 1. The following example helps us in the
design of the algorithm.

ExAMPLE 2.1. Consider f = [[;2,(z—14) and g = 102" +
284225 +1024 +1223 + 722+ 12248 in Z13[z]. The Eztended
Euclidean Algorithm with inputs f and g yields the following
table.

i degr; degt; degr;+degt; degq;
1 7 0 7 1
2 6 1 7 1
3 5 2 7 1
4 2) 5 9
5 1 6 7 1
6 0 7 7 1

The data in the table suggest that we simply return the
rational function r;[t; where degr; + degt; is minimal. As
illustrated in the table, r4/tsa has minimal total degree of
5. Note that it also corresponds to the quotient of maxi-
mal degree qs. The reason for this is easily explained by the
following lemma.

LEMMA 2.2. Let F be a field and f,g € F[z]. In the EEA
for f and g we have

degr; + degt; + degq; = deg f

for 1 < i <1 wherel is the total number of division steps in
the EEA for inputs f and g.

ProoF. We know degt; = deg f — degri—1, thus

degr; + degt; + degq; =

degr; + (deg f — degri—1) + degri—1 — degr; = deg f.

O

The following lemma states that when deg f is large enough

then there would only be one pair of (r;,t;) such that deg r;+
degt; is minimal.

LEMMA 2.3. Let F be a field, and n,d € F[x] withlc(d) =
1 and ged(n,d) = 1. Let f,g be two polynomials in F|x]

satisfying ged(f,d) =1 and g =n/d mod f. Let q; denote
a quotient with mazimal degree in the Extended FEuclidean
Algorithm with inputs f and g. If deg f > 2(degn + degd)
then q; is unique, n =r; and d = t;.

ProOOF. Since deg f > degn + degd, then in the Ex-
tended Euclidean Algorithm with inputs f and g there exists
a unique index j such that r;/¢t; = n/d. Thus according to
Lemma 2.2 we have degg; > 1/2deg f. On the other hand,
we know Ei;:l deg g; = deg f —degr; < deg f which implies
that g; is the quotient with maximal degree or degr; +degt;
is minimal. Therefore n = r; and d = t; with j being the
index for which degr; + degt; is minimal. [

Maximal Quotient RFR Algorithm (MQRFR)
Input: f,g € Zp[z] with deg f > degg, and T € N
Output: Either n,d € Zy[z] satisfying n/d = g mod f,
le(d) =1, ged(n,d) = 1, and degn + degd + T < deg f, or
FAIL implying no solution exists

1. if g = 0 then if deg f > T then return (0, 1) else return
FAIL

2. (ro,m) = (f,9)
(to,t1) = (01 1)
(nad) = (Tlatl)

3. while r1 #0 do
if degn + degd > degri + degt: then
(na d) = (Tlatl)
g =roquori
(ro,r1) = (r1,70 — qr1)
(to,t1) = (t1,t0 — gt1)

4. if degn + degd + T > deg f or gcd(n,d) # 1 then
return FAIL

5. return (n/lc(d), d/lc(d))

If we let m = deg f, then assuming classical algorithms
are used for multiplication, division and GCD computation
in Zy[z], step 3 and step 4 take O(m?) operations in Z,.
Thus MQRFR is of time complexity O(m?).

3. THE FAST EUCLIDEAN ALGORITHM

In 1971 Schonhage in [12] presented a fast integer GCD
algorithm with time complexity O(nlog®nloglogn). An
asymptotically fast rational number reconstruction algorithm
based on Schénhage’s algorithm was presented by Pan and
Wang in [11]. Before that Allan Steel had implemented
in Magma a fast rational number reconstruction algorithm
based on the half-gcd algorithm presented in Montgomery’s
PhD thesis [10] for polynomials in F[z]. Maple v. 10, Math-
ematica v. 4.0 and Magma v. 2.10 all have fast integer multi-
plication and division implemented, but Magma is the only
computer algebra system having implemented the fast inte-
ger GCD algorithm.

Assuming a multiplication algorithm of time complexity
O(nlog® n) is available for polynomials of size n in F[z], in
1973 Moenck in [8] adapted Shoiihage’s algorithm into an
O(nlog®™' n) algorithm for polynomial GCD computation
in Flz]. In 1980 Brent, Gustavson, and Yun in [1] gave
two speedups for Moenck’s algorithm. They also pointed

out (but did not prove) a generalization of Moenck’s algo-
rithm. Later in 1992, Montgomery in his PhD thesis [10]
independently stated and proved a similar generalization of
Moenck’s algorithm with some of the same speedups.

In this section we describe the Fast Euclidean Algorithm
presented by von zur Gathen and Gerhard in [14] and then in
the next section we show how it can be modified to be used
in the Maximal Quotient Rational Function Reconstruction
Algorithm. Thus we follow [14] in our assumptions and def-
initions.

Let F be a field and ro,71 € Flx] with degro > degri.
Let

Pit1Tit1 = Ti—1 — GiT4,

Pi+18i+1 = Si—1 — i Si,

pititit1 = ti—1 — qits,
for 1 < i < I, be the results of the Extended Euclidean
Algorithm for ro,r1, where so = t1 = 1, $1 = to = 0 and
ri+1 = 0. We let p; to denote the leading coefficient of the

remainders, that is lc(r;) = 1. Let R; = @i ...Q1Ro, for
1 <t <1, where

0 1] R_[1 0]
Upivr —qifpitr |° °° 01

in F[z]**2. Then it can be easily proved by induction on i
that

o |

R = [i ti]
P Sit1 tip1 |
This matrix is of great importance in the design of the Fast
Extended Euclidean Algorithm.
Let f = foz™ + fo_12™ ' + ...+ fo € Flz] and f, # 0.
We define the truncated polynomial

flk=fquoz" * = fua® + fu 12"+ ...+ fak,

for k € Z. The polynomial f | k is of degree k for £k > 0 and
its coefficients are the k + 1 highest coefficients of f. The
pairs (f,g) and (f*,g*) coincide up to k if

flrk=f" Tk,
g1 (k—(degf—degg))=g" | (k— (degf" —degg")),
where f,g, f*,g" € F[z]\{0}, deg f > deg g, deg f* > deg g~

and k € Z. Following [14], we define the positive integer
number 7y (k) for any k € N and f, g € F[z] by

Np.g(k) = max {j : Zmz <k},
where [denotes the number of division steps in the Euclidean
algorithm with inputs f and g. The following lemma implies
that the first 7y 4 (k) results of the Euclidean Algorithm only
depend on the top part of the inputs, which is the basic idea
leading to a fast GCD algorithm.

LEMMA 3.1. [14, Lemma 11.8] Let k € N, h = 1,y ,r, (k)
and h* = 1,5 o1 (k), with ro,71,75, 7] monic polynomials in
Flz]. If (ro,r1) and (ry,ri) coincide up to 2k and k >
degro — degri, then

1. h=h",
2. qi=qi for1<i<h,

3. pi=p for2 <i<h,

where q;,q; € Flx] and p;, p; € F are defined by

(1<i<,
(1<i<l),

Ti—1 = qiT; + Pi+1Ti+1 riy1 =0,

* * %k * * *
Ti1 =q;i T + Pir1Tit1 Ty = 0.

Refer to [14] for a detailed proof of this lemma. To im-
prove the efficiency of the EEA a divide-and-conquer algo-
rithm, called Fast Ezxtended Euclidean Algorithm, is designed
based on the above lemma. Von zur Gathen and Gerhard
in [14, Ch. 11] present Shonhage’s Fast Extended Euclidean
Algorithm for polynomials in F[z], however, the algorithm
presented in the book needs some minor corrections. We
asked the authors to send us the correct version of the algo-
rithm which is described by the following algorithm, how-
ever, we have modified it by removing some unnecessary
outputs in the following.

Fast Extended Euclidean Algorithm (FEEA)
Input: ro and 71 two monic polynomials in F[z] with no =
degro > ny =degr: >0 and k € N with no/2 <k <ng

t
Output: h=1,y,,(k) EN, prs1 € F, Ry = [Siil th.hH]

1. if 11 =0 or k < np —n1 then

10

01

else if ng < cutoff then
return EEA (ro, r1, k)

2. ki = |k/2]
’I“S =To [2k1,T‘f =T [(2k1 — (no — ’I‘L1))
j - 17 P;, ;'(—lz FEEA(’I"S, T;,kl)

return 0, 1,

3. compute pj, Rj_1,rj—1,7; and n; = degr;
4. if r; =0 or k < no — n; then

return j — 1, p;, Rj_1
5. compute g;, pj+1,7j+1,nj+1 = degr;j+1 and

0
R = 1/pj+1
6. k'2 :k'—(no—nj)
ri =1j [2ks, i = rie1 [(2k2 — (0 — nj41))
h—j, PZ+1a S*= FEEA(T;:T;+1,"72)

R;_
—qj/pj+1 |07

7. compute ppy1,S,7h and Tp41

8. return h, pp+1, SR;

As illustrated above, besides the two monic polynomials
ro and 71, the algorithm gets a third input £ € N. A se-
quence of quotients is recursively computed as in the Ex-
tended Euclidean Algorithm, until the some of the degrees
of the quotients is greater than k. That is, if h = 7.y, (k)
denotes the last computed quotient, then we will have

h41

Zdeng <k< Zdegql

The FEEA divides the problem into two subproblems of
almost the same size, i.e., the sum of the degrees of the
quotients computed in each recursive call is less than or
equal to k/2. Note that in this algorithm all elements of the
EEA are computed except the remainders. However, having
s and tp as the entries of the second row of the matrix Rp,
one can easily compute a single remainder r;, by writing

rh, = Spro +tpr1. It is not hard to see that rp, = ged(ro, r1),
if we set k = degro.

According to Lemma, 3.1, p; is not necessarily equal to pj,
and thus R;j_1 and R;_; are not equal either. Therefore we
use the following relations

Ti—1 | _ To o1 0 *
5)] -8 sy e

pi = pilc(7y), 1 =75 /lc(75),

in step 3 to compute pj, Rj_1, rj—1 and r;. Similar compu-
tations are performed in step 7 to compute pp+1, S, rn, and
rh+1. The algorithm has a time complexity of O(M(k) log k),
where M(k) denotes the number of field operation required
to multiply two univariate polynomials of degree k. Refer
to [4, p. 27] for a detailed cost analysis of the algorithm and
a detailed proof of correctness of the algorithm.

We have implemented the FEEA for polynomials in Flz] =
Zp[z] in Java. We used Karatsuba’s algorithm for univari-
ate polynomial multiplication in our implementation which
is of time complexity O(n'°823) for polynomials of degree
n. The algorithm is not effective in practice for polynomials
of low degree. We use the classical multiplication method
for polynomials of degree less than 50 and switch to Karat-
suba’s when the input polynomials have a degree greater
than 50. The following table includes the timings we gath-
ered for our implementation of the Classical and Karatsuba’s
multiplication algorithms over Z,[z], where p is a 15 bit
prime. As illustrated below, the timings of Karatsuba’s al-
gorithm increase by a factor close to 3 as the degree doubles
which confirms that our implementation is of time complex-
ity O(n'0823),

n | Karatsuba(ms) Classical(ms)
128 0.34 0.38
256 0.98 1.40
512 2.93 5.40

1024 8.93 21.62
2048 26.48 84.43
4096 79.78 345.67
8192 245.04 1375.42

It turns out that in practice the EEA performs better
than the FEEA as well for polynomials of low degree. Our
implementation of the FEEA beats the EEA when degro =
200. Thus we use the EEA for dividends of degree below 200
in step 1 of the FEEA. The following figure illustrates the
timings (in ms) of the FEEA on two random polynomials of
degree 10000 for different cutoff degrees.

820

810

|
ol | r

Eal /
o W

740

Time {ms)
~
E]
7

T T T T T T T T
0 50 100 150 200 250 300 350 400
Cutoff Degree

Our Java implementation of the EEA accepts 3 inputs and
returns the same outputs as the FEEA. The following table
includes our timings for the EEA and the FEEA on random
polynomials of degree n. It shows that we see a significant
speedup by n = 1000.

n EEA(ms) FEEA(ms) r1 r2
1000 373.80 295.63 0.00052 1.26
2000 1427.18 942.83 0.00050 1.51
4000 5602.18 2972.08 0.00049 1.88
8000 22295.47 9588.76 0.00048 2.33
16000 | 88766.90 31278.50 0.00049 2.84
32000 | 354085.71 99273.77 0.00048 3.54

r1 = FEEA/(n'°82%log n), r» =EEA/FEEA

4. MQRFR USING FEEA

To make the MQRFR algorithm more efficient we use the
FEEA instead of the EEA. As pointed out before, the FEEA
does not compute the intermediate remainders, but it does
compute all the quotients. Also s; and ¢; are available as the
entries of the first row of R;. Thus according to lemma 2.2
instead of selecting r; and t; such that degr; + degt; is min-
imal, we can return g; the quotient with maximal degree
along with corresponding values of s; and ¢;. The remainder
r; is then obtained from s; and ¢; using two long multiplica-
tions (r; = sif +tig). The following algorithm presents the
FEEA modified to return the quotient of maximal degree.

Modified FEEA (MFEEA)
Input: ro and 71 two monic polynomials in F[z] with no =
degro > n1 =degr: >0 and k € N with ng/2 <k < ng
Sh, th
tput: = Tro,r) F, =)
Output: h =10, (k) EN, pat1 € Ry, [Shat thit :|

Qmax,; Smax, tmax

1. if r1 =0 or £ < no — n1 then
10
01] 1,1,0
else if ng < cutoff then
return EEA (ro, r1, k)

2. k1 = |k/2]
7“3 =70 r 2]61,7"1(=T r (2k1 — (no — n1))
J=1, p;, Ri_1, qmax, Smax, tmax = MFEEA(rg, r{,k1)

return 0, 1,

3. compute p;, Rj_1,7rj—1,7; and n; = degr;

4. if r; =0 or k < no — n; then
return] -1, Pis ijl, Jmax; Smax, tmax
5. compute gj, pj+1,Tj+1, 71 = degr;j41 and
0 1
R; =
? 1/pj+1 —4j/pi+
if deg g; > deg gmax then
Qmax, Smax; tmax = 45, Rj [1; 1], Rj [1’ 2]

6. ko =k—(n0—nj)
’I“;f : T‘];k r 2]6'2:(7“;-(1_1 = Zj+1 l(?k‘g — (’Ilj — njt1))*
h—j, Ph+1, S, Qmax> Smax> bmax = MFEEA(TJ‘ yTj+15 k2)
if deg gmax > deg gmax then

R; 1

Gmax = Jmax
[Smax Pmax] = [Smax tmax]Rj

7. compute pp+1,S,7h and rhp41

8. return A, pr+1, SRj, ¢max, Smax, tmax

As illustrated above the only modification we have made
to the FEEA is to return three more outputs, i.e., gmax, Smax,
tmax. Thus assuming the FEEA works correctly, we require
to prove that gmax is the quotient with maximal degree and
Smax and tmax have the same index as gmax in the Euclidean
Algorithm with inputs r¢ and ;.

We see by induction on k that the results of the recursive
call in step 2 are correct, that is, gmax represents the quotient
with maximal degree in {q1,...,¢j—1} and Smax and tmax are
in the same row with gmax. In step 4 the correct result is
returned, since no other quotient has been computed. We
have

| st

i = [i+t ti+] ’

thus in step 5 if deggq; > deggmax then Smax and tmax are
easily update by the entries of the first row of R;. Again
by induction, in step 6 ¢... represents the quotient with
maximal degree in {gj+1,...,qn}.- But smayx and tn,, are
not on the same row as ¢n,, in the Euclidean algorithm for
ro and 1. Let I represent the index of ¢j,. in the EEA
for ro and r1. In step 6, if deggmax > deggmax then we
require to update Smax and tmax by s and t;, respectively.
According to the definition of R; we have

[S] =R =QiQi-1---Qjn1R;

Si+1 tig1
i |: S:nax t:na.x :| R
= s
ma ma

where m1, my € F[z], hence
[st] = [s:nax t’;nax]RJ

So to update Smax and tmax we simply multiply the vector
[Simax: timax | by matrix R;. Therefore, at the end of step 6,
gmax holds the quotient with maximal degree in {q1,...,qn}
and Smax and tmax have the same index as gmax in the EEA
for ro and r1. This implies that the final results in step 8 are
correct. Note that the EEA should be modified as well to
return the maximal quotient and the corresponding values
of s and ¢ in step 1. We now show how to call MFEEA to
compute the desired rational function.

Fast Maximal Quotient RFR Algorithm(FMQRFR)
Input: f,g € Zy[x] with g # 0, degf > degg > 0, and
TeN

Output: Either n,d € Zy[z] satisfying n/d = g mod f,
le(d) =1, ged(n,d) = 1, and degn + degd + T < deg f, or
FAIL implying no solution exists

L. ro = f/le(f), 71 = g/lc(g)

2. h7 Ph+1; Rhy q, gv 'l" = MFEEA(T07 T1, deg TO)
if degq < T then return FAIL

3. 7 =3ro +tr1
if gcd(7,t) # 1 then return FAIL

4. n=lc(g)/lc(F) - 7
d=1/lc(f) -t
return (n,d)

As pointed out earlier r is obtained from s and ¢ using 7 =
sf + tg, but § and ¢ that are returned as the corresponding
values of g, the quotient with maximal degree, are off by a

constant factor. From the definitions of s and ¢ we find that
s = §/lc(f) and t = t/lc(g) and hence

s t
r L0 T @? _ elg)Grotin) _ (@) F.
t L t t
le(g)

If we let m = deg f, then step 2 takes O(M(m)logm)
operations in Z,. To compute 7 in step 3, we perform two
multiplications on polynomials of size at most m and one
addition. The total cost for computing 7 is thus 2M(m) +
O(2m) operations in Z,. Checking the coprimality of # and
t, using the FEEA, takes O(M(m) log m) operations in Z,.
Steps 1 and 4 both cost O(m) operations in Z,. Thus the
asymptotic cost of the algorithm is O(M(m) logm).

The following algorithm is an extension of Wang’s algo-
rithm for F[z] and uses the FEEA instead of the EEA.

Wang’s Fast Rational Function Reconstruction Al-
gorithm

Input: f,g € F[z] with F a field, g # 0 and M = deg f >
degg >0

Output: Either n,d € F[z] satisfying n/d = g mod f,
le(d) = 1, ged(n,d) = 1 and degn + degd < M, or FAIL
implying no such n/d exists

1. N=|M/2|, D=M—N—1
ro = f/lc(f), to =0
1 :g/lc(g)a t1=1

2. h, Ph+1, Rh = FEEA(’I‘(), T1, deg T0 — N — 1)

3. n="rpe1 = Sp4170 +th4a1T1
d=th1
if gcd(n,d) # 1 then return FAIL

4. n=1lc(g)/lc(d) - n
d=1/lc(d)-d
return (n,d)

If the FEEA is also used for computing gcd(n,d) in step
3, then the time complexity of Wang’s algorithm would
be O(M(M)log M) as well. Algorithm FMQRFR normally
must compute all the quotients to determine the largest but
Wang’s algorithm stops half way, and hence, is expected to
take half the time. On the other hand Wang’s algorithm
outputs n/d only if

deg f > 2max(degn + degd).
But the Maximal Quotient algorithm requires
deg f > degn +degd + T,

which requires only one more point than the minimum neces-
sary when T is chosen to be 1. The following table compares
the time of both algorithms where the timings in columns 2
and 3 are for the EEA and the timings in columns 4 and 5 are
for the FEEA. We have chosen n/d and f with degn = degd
and deg n+deg d+ 2 = deg f where the coefficients of f,n,d
are chosen at random from Z,. The data shows that Wang’s
algorithm (both versions) is almost 2 times faster than the
maximal quotient algorithm (both versions). All the timings
are in milliseconds.

deg f | MQRFR Wang | FMQRFR Fast Wang

64 21.72 12.50 21.51 12.37
128 80.94 38.45 83.54 169.01
256 278.18 142.93 212.04 131.65
512 1012.35 531.35 681.13 332.43

1024 3874.80 1903.78 1954.20 1056.44
2048 | 14802.39 7185.59 6325.23 3319.55
4096 | 59086.61 28345.89 20664.24 10875.93

5. OPENPROBLEMS

Let f,g € Zp[x] where f = [[!_,(z —as), n = deg f >
deg g > 0 and p is prime. Let g be a quotient in the EEA for
inputs f,g and k € N\{1}. If a; € Z, is chosen uniformly
at random and g is a random polynomial, then

Prob(degq > k) ~ n;ki’ij‘l

The above conjecture implies that in the EEA the proba-
bility of getting a quotient of degree 2 or more is almost equal
to n/p. Therefore if p is large enough compared to n, then
with high probability all quotients are of degree less than
2. Hence in the Fast Maximal Quotient RFR, Algorithm by
choosing T' = 1, with high probability we get a correct result
and we require f to be at least of degree degn + degd + 1.

6. REFERENCES

[1] Richard P. Brent, Fred G. Gustavson, and David
Y. Y. Yun. Fast solution of Toeplitz systems of
equations and computation of Padé approximants.
Journal of Algorithms, 1:259-295, 1980.

[2] G. E. Collins and M. J. Encarnacion. Efficient
Rational Number Reconstruction. J. Symbolic
Computation 20, pp. 287-297, 1995.

[3] M. J. Encarnacion, Computing GCDs of Polynomials

over Algebraic Number Fields, J. Symbolic

Computation 20 (1995), pp. 299-313.

Sara Khodadad. Fast Rational Function

Reconstruction. Master’s thesis, Simon Fraser

University (SFU), Burnaby, BC, Canada, 2005.

[5] L. Langemyr, S. McCallum, The Computation of
Polynomial GCD'’s over an Algebraic Number Field, J.
Symbolic Computation 8 (1989), pp. 429-448.

[6] Daniel Lichtblau. Half-gcd and fast rational recovery.
In ISSAC ’05: Proceedings of the 2005 International
Symposium on Symbolic and Algebraic Computation,
pages 231-236. ACM Press: New York, NY, 2005.

[7] R. E. Maeder. Storage allocation for the Karatsubs
integer multiplication algorithm. In DISCO ’93:
Proceedings of the Interational Symposium on the
Design and Implementation of Symbolic Computation
Systems, Springer-Verlag LNCS, 1:59-65, 1993.

[8] R. T. Moenck. Fast computation of geds. In STOC
"18: Proceedings of the fifth annual ACM Symposium
on Theory of Computing, pages 142-151. ACM Press:
New York, NY, 1973.

[9] Michael Monagan. Maximal quotient rational
reconstruction: An almost optimal algorithm for
rational reconstruction. In Proceedings of the
International Symposium on Symbolic and Algebraic
Computation, pages 243-249. ACM Press: New York,
NY, 2004.

[4

[l

[10] Peter Lawrence Montgomery. An FFT extension of
the elliptic curve method of factorization. PhD thesis,
Los Angeles, CA, USA, 1992.

[11] Victor Y. Pan and Xinmao Wang. Acceleration of
Euclidean Algorithm and Extensions. In Proceedings
of the International Conference on Symbolic and
Algebraic Computation, pages 207-213. ACM Press:
New York, NY, 2002.

[12] A. Schénhage. Schnelle Berechnung von
Kettenbruchentwicklungen. Acta Informatica,
1:139-144, 1971.

[13] Allan Steel. Private Communication.

[14] Joachim von zur Gathen and Jirgen Gerhard. Modern
Computer Algebra. Cambridge University Press:
Cambridge, New York, Port Melbourne, Madrid, Cape
Town, second edition, 2003.

[15] Paul S. Wang. A p-adic Algorithm for Univariate
Partial Fractions. In Proceedings of the fourth ACM
Symposium on Symbolic and Algebraic Computation,
pages 212-217. ACM Press: New York, NY, 1981.

