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ABSTRACT
Consider the linear ordinary differential equation
d
> pi(@) 95z(x) = t(x) (1)
k=0

where pi(x) are polynomials for 0 < k < d, pg # 0, and
t(z) is an exponential function. Under a constraint on pg,
we present an efficient method for computing exponential
solutions of (1). The method is based on differential Gosper
forms of rational functions and their properties.

This work is the differential analogue of the work by
Petkovsek [10].

1. PRELIMIN ARIES

Let IF be a field of characteristic 0, and 0, denote the usual
derivation w.r.t. . A nonzero function T'(z) is exponential
over [ if there are coprime nonzero polynomials p, ¢ € F[z],
g monic, such that ¢(z) 9,1 (x) = p(x)T'(x). The rational
function 9,7'(z)/T(x) = p/q is unique, and is called the
certificate of T'.

A representation of a rational function R € F(z) in the form

025(x)

R(z) = K(z) + S(2)

(2)

where K,S € F(z) satisfy certain conditions provides a
key step in a number of algorithms related to exponen-
tial functions [4, 7]. In this paper, the use of a particular
canonical form of the form (2), known as the differential
Gosper-Petkovsek form (or the GP’-form), leads to an effi-
cient method for finding exponential solutions z(z) of (1).

Let r € F(z) be the certificate of the exponential function
t(z) in (1). The general approach is to write the GP’-form
of r in two different forms. The uniqueness of GP’-form then
allows one to equate the components of these two forms, and
the problem of finding exponential solutions of (1) is reduced
to finding polynomial solutions of a linear ordinary differen-
tial equation of order d (which is the order of the differential
equation (1)), and with polynomial coefficients. This pro-
vides an efficiency improvement over the known method,
called the rational method, where the problem is reduced
to finding rational solutions of a linear ordinary differential
equation also of order d and with polynomial coefficients.

Note that this general approach is used by Petkovsek [10], by
Paule and Strehl [9] in deriving the Gosper’s ansatz (shift
case). It is also used by Petkovsek [10] in the algorithm
which finds hypergeometric solutions z, of the recurrence
Ez:o Pk(Nn)zZntk = tn where t, is a nonzero sequence, and
pr € F[n], for 0 < k < d, with the additional restriction that
po and pg are constant. In this respect, our work can be
considered as the differential analogue of Petkovsek’s work.

The structure of the paper is as follows. In Section 2, we
give an overview of differential Gosper forms (or G'-forms)
and of the GP’-form of a rational function, describe their
construction, and state an important common property of
G'-forms. In Section 3, under a restriction on the polynomial
pa(z) in (1), we show a reduction of finding exponential
solutions z(z) of (1) to the problem of finding polynomial
solutions of a linear differential equation with polynomial
coefficients. In Section 4, we compare our method with the
rational method. A Maple implementation, and experiments
on the two methods are presented in Section 5.

Throughout the paper, [F is a field of characteristic zero; Z
and N denote the set of integers and nonnegative integers,
respectively. For p, ¢ € Flz], we write p_L ¢ to indicate that
the polynomials p and ¢ are coprime. For R € F(z), num(R)
and den(R) denote the numerator and the denominator of R,
respectively.



2. DIFFERENTIAL GOSPERFORM
Following [6], we call an ordered pair (a,b) € Flz]* weakly-
normalized if b_L (a—i(0b)) for all i € N. A rational func-
tion R in F(z) is weakly-normalized if (num(R),den(R)) is
weakly-normalized.

DEFINITION 1. Let R € F(z). If there are a,b,c € Fz],
b, c monic, such that (i) R = Z azc’ (i) the pair (a,b)
is weakly-normalized, then (a,b,c) is a differential Gosper-
form, or a G'-form, of R. If, in addition, (i) b_Lc, then
(a,b,¢) is a differential Gosper-Petkovsek form, or a GP'-
form, of R. We call a/b and c the kernel and the shell of a
G'-form (a, b, c), respectively.

Every nonzero rational function has a G’-form and a unique
GP'-form. See [4, 8] for proofs and algorithms for construct-
ing them. A G’-form of a rational function R can also be
constructed from a classification and distribution of the sim-
ple fractions in the irreducible partial fraction decomposition
of R. This construction is very similar to that of DRNF’s
of R [7, Section 2], and can be summarized as follows.

Consider the irreducible partial fraction decomposition
R=Y )
(3

Each simple fraction u; /v; in (3) belongs to one of the follow-
ing three classes: (I) u;i/vi = m; (Opvs)/vi, mi € N\{0}, v?
does not divide den(R); (II) wu;/v; = m; (0zvi)/vi, ms €
N\ {0}, v} divides den(R); (IIT) u;/v; is not a logarithmic
derivative of any polynomial. Let (a,b,c) be a G'-form of R.
Then the simple fractions in class (I) appear in the irre-
ducible partial fraction decomposition of (9z¢)/c, not in the
irreducible partial fraction decomposition of a/b; the sim-
ple fractions in class (III) appear in the irreducible partial
fraction decomposition of a/b, not in the irreducible par-
tial fraction decomposition of (9zc)/c; the simple fractions
in class (II) can appear in the irreducible partial fraction
decomposition of either a/b or (9zc)/c. This construction
leads to the following lemma.

LEMMA 1. For R € F(z), if (a1,b1,c1) and (a2, b2, c2) are
two G'-forms of R, then b1 = ba.

Note that if all simple fractions in class (II) are moved to the
kernel a/b, then the constructed G'-form is the GP’-form.

ExAMPLE 1. Consider the rational function

R - 4 + 4 3 - 9 +
Tz —-2 x4+1 (x4+1)2 (x-—1)2
922 + 12 1
o3 +4dr —2 (23 + 4z —2)2°
The simple fractions of R are classified as follows:
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Now we construct four different G’-forms of R.

The first G'-form is constructed by moving both simple frac-
tions in class (II) to the shell: ( num(wi+wa2+ws),

den(wi+w2+ws), den(u1)4den(U1)4den(v2)3) .

The second G'-form is constructed by moving both simple
fractions in class (II) to the kernel (this G’-form is also the
GP'-form of R): ( num(wi+watws+vi+vs),

den(wi4wa+ws+vi+v2), den(u1)4) .

The third G'-form is constructed by moving v1 to the shell
and vz to the kernel: ( num(wi+wz+ws+wvs),

den(wi+wa+wz+v2), den(uy)*den(vy )4) .

Finally, the fourth G'-form is constructed by moving v2 to
the shell and v1 to the kernel: ( num(wi+wz+ws+wv1),

den(w1+wa+ws+wv1), den(u1 )4den(v2)3) .

3. GOSPER’S ALGORITHM FOR EQUA-
TIONS OF ARBITRAR Y ORDER

Consider a differential equation of the form (1). For the
remainder of the paper, we denote r(z) and R(z) the cer-
tificates of t(z) and z2(z), respectively, (a, b, c) the GP’'-form
of r(z), and (A, B,C) the GP'-form of R(z).

LEMMA 2.
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The substitution of z/t = 1/M into (5) yields (4). n

r(z) = R(z) a Z(“’)

(4)

Proof: Since 0y (t((

~

The following lemma shows an explicit form of M.

LEMMA 3. For an indeterminate P, let Po = 1, P, =
P,y P+ 0.P;_1, fori e N\ {0}. Then

LEAEOEE.) o

Proof: Since (A, B,C) is the GP'-form of R,

z(a:)zCexp(/%dm).

H

Hence, the lemma is proven if we can show that

k .
O x(w) = 0K (CH) = H (Z (f) (o) (%)M) NG

Jj=0



The validity of (7) can be obtained by induction. It is clear
that (7) holds for k = 0. Assume that it holds for k. Then

dhricH) = o, (ok(CH)

o (H (Jz: (f) (e20) (g)k_)) )

By applying the chain rule to (8), by making use of the
fact that 0, H = H (A/B), and by applying a change of
summation index, one obtains

(5) (0ic) (%)wﬂ') .
(j K 1) (220) (%)>
()

]
Let L = EZ:O pr(2)0% be the differential operator corre-
sponding to the differential equation (1). Let S be the
symmetric product of L and 0, + A(z)/B(z). Then M =
S(C(z)). Note that the sequence (P;);>o in Lemma 3 is used
to defined the associated Riccati equation [5].
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The following theorem follows from Lemmas 2 and 3.

THEOREM 1. Set

By, = Zk: (f) (a;’c) (g)k_,-’ 0<k<d (9

Jj=0

Then

d
r(z) = R(z) + 5}3‘4, M= é (ZpkBk) . (10)
k=0

Recall that (a,b,c) is the GP’'-form of r(x). We now at-
tempt to transform the right hand side of the first relation
in (10) into another GP'-form of r(x), equate the corre-
sponding components, and solve for the unknown polyno-
mials A, B,C. The last step is equivalent to finding poly-
nomial solutions of a linear differential equation of order d
and with polynomial coefficients.

LEMMA 4. den((5),) =B’, BLnum ((5),), i € N.

3 i

Proof: 1t is clear that the two relations in Lemma 4 hold
for i = 0. Assume that they hold for 7. Let (é)i =

B
L. fe Fz], BL f. By definition,

AL ()@

(awf)B + f(A —i (azB))

Bi+1 .
Since BLf and since (A,B) is weakly-normalized,
B 1 num ((%)Hl), and den ((%)Hl) _ pitl n

The following lemma reveals some insight into the structure
of M in (10).

LEMMA 5. den(By) = B*, B Lnum(By), 0 < k < d.
Proof: Expand By, in (9) as
A A "
Bkzc*(—) +k(azc)<—> - (0FC).
5), 5), (o)

A 2
By Lemma 4, <§>1 = %, fi € Flz], fi L B. Hence,

5 _ Cfu+k(0:C) fusB+---+ (95C) B}

k B .(11)
Since (4, B,C) is the GP'-form of R(z), B L C; and since
B 1 fy, (Lemma 4), B L num(By), den(By,) = B*. -

The structure of M leads to the following G'-form of r(z).

LEMMA 6. The triple (A —d(0.B), B, num(M)) is a G'-
form of the certificate r(x) of the right hand side t(x) in (1).

Proof: By Lemma 5, write M in (10) as

_ Do num(Bg) Bl4 . 4 pg num(Bg)

M e (12)
It follows from (10), (12) and Theorem 1 that
A 0,C  9y(num(M)/(B0C))
r@) = et T amD) (B0
_ (A—d(0:B)) , Oznum(M)
N B + num(M) ° (13)

Since the pair (A, B) is weakly-normalized, the pair (A —
d(0:B), B) is also weakly-normalized for any d € N. -

Note that both (a,b,c) and (A — d(9:B), B, num(M)) are
G'-forms of r(z). Hence, it follows from Lemma 1 that

COROLLARY 1. B=b.
The following is the main theorem of the paper.

THEOREM 2. Consider a differential equation of the
form (1). Let (a,b,c) be the GP'-form of the certificate of
the exponential right hand side t(x). If b Lpg, then finding
exponential solutions z(x) of (1) is reduced to finding poly-
nomial solutions C(x) of the differential equation of order d
and with polynomial coefficients

num(M)| (4 p)—(ataob).p) = © (14)

which can be explicitly written as

o (S (3 () (e22),_ )=

Jj=0



Proof: Tt follows from (12) that

d—1
num(M) = (Zpk num(By.) B”) + pa num(Ba), (16)
k=0

where the By’s are defined in (9). If b_L pg, then it follows
from (16), the second relation of Lemma 5, and Corollary 1
that B L num(M). Hence, (A — d(9-B), B,num(M)) is the
GP'-form of r(z). Since GP’-form is canonical, and since
(a, b, c) is another GP'-form of 7(x), we have A = a+d(0:b),
B = b, num(M) = ¢, and the relation (14) holds. The
explicit form (15) is readily derived from (9), (10) and (14).m

It follows from (1) and (4) that z/t = 1/M. Hence, the ex-
ponential solution corresponding to a polynomial solution C'
of (15) is
BiC
num(M)| 4 p ¢

t(z). (17)

Note that for the special case of (1) where d = 1, p1 = 1,
and po = 0, i.e., (1) becomes 9,2z(x) = t(z), the differential
equation (15) becomes

b(0:C)+ (a+0:b)C =,

which is the “key equation” (G8) in the differential Gosper’s
algorithm for exponential indefinite integration [4]. This
helps derive the differential Gosper’s ansatz ((G7) in [4]),
and also helps justify the title of this paper.

ExAMPLE 2. Consider the differential equation

p2

——T—
(*422°42241) 2 2(z)— (¢ +22° +-220° +22—1) Dy 2 () —
(2 +2°+32+1)2(z) = t(x), (18)

27 +8x%+2925 +6521+1012° + 10722 +642+15
(z+2)*

tx) = —

1
X exp (m) .

The G P’-form of the certificate of t(z) is (a,b,c) =

—4x -9, (z+2)%
——

b

(x +1)(2® + 72° 4 222* + 4323 + 5822 4 492 + 15)) .

Since pa2 L b, Theorem 2 is applicable. The value of the pair
(A, B)in (14) is (A, B) = (=1, (z + 2)?), and the differential
equation (15) has C = —1 as the only polynomial solution.
. . . 1
By (17), the only exponential solution of (18) is exp (m)

4. A COMPARISON

By using our polynomial method, the problem is reduced to
finding polynomial solutions C' € F[z] of the linear differen-
tial equation (15). Let L = EZ:O pr(2)0% be the differential
operator corresponding to (1), (a,b,¢) € F[z]® be the GP'-
form of the certificate r of the exponential right hand side t.
Let S be the symmetric product of L and (9 + r(z)). By

using the rational method, the problem of computing ex-
ponential solutions of (1) is reduced to finding rational so-
lutions f € F(z) of S(f(z)) = 1', which can be explicitly
written as

¢ * (k& a  OzC
T j d
num Epk E (J) 7T o aLf = (be)“.
k=0 j=0 N
T k—j
(19)

Note the similarity of the two forms (19) and (15), and the
difference in the right hand sides. (The rewrite of r in terms
of its GP’'-form is for comparing (19) with (15).)

In order to reduce the problem of finding rational solutions f
of (19) to finding polynomial solutions of a linear differen-
tial equation with polynomial coefficients and polynomial
right hand side, one first computes a universal denomina-
tor u € Flz], ie., a polynomial which is divisible by the
denominator of any rational solution of (19). This can be
attained by the use of balanced factorization [2]. Then the
substitution of f by f/u in (19) where f € Flz] is unknown,
and the transformation into a linear differential equation
with polynomial coefficients can increase the degrees of the
polynomial coefficients of the differential equation and also
the degree of the polynomial right hand side dramatically.
The higher the order of the input differential equation is, the
more dramatic the increase of the degrees of these polynomi-
als is. This explains the efficiency gain by using our method
provided that it is applicable. For instance, if one uses the
method of undetermined coefficients for finding polynomial
solutions [1], the size of the linear system of algebraic equa-
tions would be smaller using our method.

In the case where our method is not applicable, one reverts
to the rational method. The additional cost is that of com-
puting the GP’-form of the rational certificate of the expo-
nential right hand side ¢ in (1), a rather negligible cost in
the comparison with the cost of finding rational solutions.

5. IMPLEMENT ATION, EXPERIMENTS

We implemented the rational method and the polynomial
method in the computer algebra system Maple. Both
programs are for finding a particular exponential solu-
tion of (1). The program for the rational method, called
rat_esols (or simply R) is built on top of the function
DEtools[ratsols] (see [2] for the main reference), and our
program, called esols (or simply P) is built on top of the
function DEtools [polysols] (see [1] for the main reference).

In the following two experiments, we compare the resource
requirements of R and P2. In the first experiment, the order
of the input differential equation is fixed, while the degrees
of the polynomials r1,rs € Zx] in the exponential solution
exp(r1/r2 + Ou73/rs) vary, rs € Zlx],degrs = 2. In the
second experiment, the degrees of r; and r2 are fixed, while
the order of the input differential equation varies.

Ezxperiment 1. The first experiment consists of four sets of

!The author would like to thank Mark v. Hoeij for his ex-
planation on how the rational method works.

2All the reported timings were obtained on a 2.8Ghz Intel
P4 Xeon with 4Gb RAM.



tests. Each set consists of ten randomly-generated linear
ordinary differential equations with polynomial coefficients
and exponential right hand sides. Each element in a set is
of the form

Lez(z)=1t(z), L€ Zx,0.], (20)

L = lclm (L17L2)7 L; = Piy Oz + DPigs Pij € Z[SE], 2 <
degpi; < 3, and each p;; has at most two monomials. The
right hand side exponential ¢(z) is such that the randomly-
generated exponential function exp(ri/ra+0yrs/r3) is a so-
lution of (20). Table 1 shows the average resource require-
ments for different values of degri and degrsa.

Table 1: First experiment: resource requirements

degri | degre | Timing (seconds) | Memory (kilobytes)
R P R P

1 2 53.32 0.31 653,077 9,034

2 3 151.23 0.38 | 2,689,441 | 12,379

3 4 | 367.83 0.51 | 8,222,518 | 14,649

4 5 860.42 0.67 | 24,088,511 | 21,065

Ezperiment 2. The second experiment consists of three
sets of tests. Each set consists of ten randomly-generated
equations each of which is of the form (20) where L =
lclm (Lla Lo,..., Ln), Li =ps, Oz +DPig, pi; € Z[LU], degpij =
1, each p;; has only one monomial, and the integer coeffi-
cients of p;;, 71, 2, r3 are in the interval [—5,5]. These
restrictions are necessary because of the “expression-swell”
problem in the rational method. The right hand side expo-
nential ¢(z) is such that the randomly-generated exponential
function exp(r1/r2 + 0:73/713), 71, 72,73 € Z[x], degri = 1,
degry = 2, degrs = 2, is a solution of (20). Table 2 shows
the average resource requirements for different values of n.
Note that the polynomial method is not applicable to one
element in the first set and one element in the third set (and
hence the rational method is used). This explains the “high”
average resource requirements for these two sets.

Table 2: Second experiment: resource requirements

n | Timing (seconds) | Memory (kilobytes)
R P R P

2 3.70 0.31 90,059 9,057

3 72.47 0.27 731,833 7,740

4 | 2,563.9 5.27 | 6,819,517 79,833

The Maple source code, the help page, and details of the
experiments reported in this paper are available, and can be
downloaded from

http://wuw.cecm.sfu.ca/“hle/maple/esols/.
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