
A Modular GCD algorithm over Number Fields presented
with Multiple Extensions.

Mark van Hoeij
∗

Department of Mathematics
Florida State University

Tallahassee, FL 32306-4510, USA.

Michael Monagan
†

Department of Mathematics
Simon Fraser University

Burnaby, B.C. Canada. V5A 1S6.

ABSTRACT
We consider the problem of computing the monic gcd of
two polynomials over a number field L = Q(α1, . . . , αn).
Encarnacion, Langemyr and McCallum have already shown
how Brown’s modular GCD algorithm for polynomials over
Q can be modified to work for Q(α).

Our first contribution is an extension of Encarnacion’s mod-
ular GCD algorithm to the case n > 1 without converting to
a single field extension. Our second contribution is a proof
that it is not necessary to test if p divides the discriminant.
This simplifies the algorithm; it is correct without this test.

Our third contribution is the design of a data structure
for representing multivariate polynomials over number fields
with multiple field extensions. We have a complete imple-
mentation of the modular GCD algorithm using it. We pro-
vide details of some practical improvements.

1. INTRODUCTION
We recall the relevant details of the so called modular GCD
algorithm first developed by Brown in [3] for polynomials
over Z and then by Langemyr and McCallum in [7] and
Encarnacion in [4] for polynomials over L = Q(α), which we
shall generalize to L = Q(α1, . . . , αn). First some notation.

We denote the input polynomials by f1 and f2, their monic
gcd by g. The cofactors are the polynomials f1/g and f2/g.
If f ∈ Q[x] then let the denominator den(f) be the smallest
positive integer such that den(f)f ∈ Z[x]. See section 2 for
the definition of den(f) if f ∈ Q(α1, . . . , αn)[x]. The asso-

ciate f̃ of f is defined as f̃ = den(g)g where g = monic(f).
Here monic(f) is defined as lc(f)−1f where lc(f) is the
leading coefficient of f . Define the semi-associate f̌ as rf

∗Supported by NSF grant 0098034.
†Supported by NSERC of Canada and the MITACS NCE
of Canada.

where r is the smallest positive rational number for which
den(rf) = 1.

Computing the associate f̃ is useful for removing denomi-
nators, but could be expensive if lc(f) is a complicated al-
gebraic number. So we preprocess the input polynomials
in our algorithm by taking the semi-associate instead. If
lc(f) ∈ Q then the two notions are the same up to a sign:

f̌ = ±f̃ ⇐⇒ lc(f) ∈ Q

Examples: If f = 2x−2/3 then f̌ = f̃ = 3x−1. If α =
√

2
and f = −αx + 1 then f̌ = f , monic(f) = x − α/2 and

f̃ = 2x− α.

The modular GCD algorithm computes the monic gcd g ∈
L[x] of f1 and f2. It does this by reducing f1, f2 modulo one
or more primes and calling the Euclidean algorithm mod p
for each of these primes p. If p is a good prime, the Eu-
clidean algorithm mod p returns g mod p. The modular
GCD algorithm reconstructs g from these modular images.
Only good primes should be used during the reconstruction
for it to be successful. However, not all primes are good.
We distinguish the following cases:

Definition 1. Let f1, f2 ∈ L[x] and g be their monic gcd.
We will distinguish four types of primes.

• lc-bad primes. Let m1, . . . ,mn be the minimal polyno-
mials of the field extensions α1, . . . , αn. So mi(z) is
a monic irreducible polynomial in Q(α1, . . . , αi−1)[z]
and mi(αi) = 0. If den(f1), den(f2) or any leading
coefficient of f̌2, m̌1, . . . , m̌n vanishes mod p then we
call p an lc-bad prime.

• Fail primes. If p is not an lc-bad prime, and the Eu-
clidean algorithm mod p returns “failed”, then p is
called a fail prime.

• Unlucky primes. If p is not an lc-bad prime nor a fail
prime, and if the output of the Euclidean algorithm
mod p has higher degree than g, then p is called an
unlucky prime.

• Good primes. A prime p is called a good prime if the
Euclidean algorithm mod p returns g mod p. Theo-
rem 1 in section 2 says that all primes that are not
lc-bad are either fail, unlucky or good.

Remarks:

1. Our definition of lc-bad prime is not symmetric in
f1, f2. It could be that p is lc-bad for f1, f2 but not
lc-bad for f2, f1. In that case, because of how we set
up the algorithm, we should either: not use p, or: in-
terchange f1, f2 mod p before calling the Euclidean
algorithm mod p.

2. Our definitions are not the same as the standard def-
initions in [3]. For example, it is possible that the
Euclidean algorithm mod p fails even if the monic gcd
of f1 mod p, f2 mod p exists and equals g mod p. We
call such p a fail prime and not a good prime. This
distinction is not necessary if f1, f2 ∈ Q[x] where there
are no fail primes.

3. If p | den(g) (in the standard definition these primes
are called bad primes) then g mod p is not defined and
so p can not be a good prime. According to theorem 1,
p must then be either lc-bad, fail, or unlucky.

4. Minimal polynomials are monic so the leading coeffi-
cients of m̌1, . . . , m̌n are den(m1), . . . ,den(mn) ∈ Z.
However, lc(f̌2) is in general not an integer but an al-
gebraic number.

5. It is very easy to tell if a prime p is lc-bad or not, but
we can not tell in advance if p is fail, unlucky, or good.
So we will end up calling the Euclidean algorithm mod
p with fail, unlucky, and good primes but never with
lc-bad primes.

1.1 lc-bad primes
If f1 = 5x + 1, f2 = 5x − 1 and p = 5 then p satisfies our
definition of an lc-bad prime as well as the definition of a
good prime. However, there are good reasons not to use any
lc-bad prime. Take for example f1 = f2 = 5x+ 1. Also, the
proof of theorem 1 requires that p not be lc-bad.

Another example is L = Q(α), f1, f2 ∈ L[x] with gcd g =
x + α3, p = 5, and the minimal polynomial of α is m =
z5+z4+ 1

5
z3− 1

5
. Because of preprocessing, in the algorithm

we work with m̌ = 5z5 + 5z4 + z3 − 1. Modulo p = 5 this
becomes z3 + 4. If we used the prime p = 5, it is easy to
give an example f1, f2 where the Euclidean algorithm mod
p returns g mod (5, α3 + 4) which is x + 1. But, viewing α
as a variable, g 6≡ x+ 1 mod 5.

For our algorithm, the best solution to the above problems
is: never use an lc-bad prime.

1.2 Fail primes
Fail primes are primes for which the Euclidean algorithm
mod p tries to divide by a zero divisor, in which case it
returns “failed”. Take for example f1 = x2 − 1, f2 = ax− a
where a = 21/5 + 5. Denote a mod p as a. The Euclidean
algorithm mod p will first try to make f2 mod p monic by
multiplying it with 1/a. But if N(a), the norm of a, vanishes
mod p then a is zero or a zero-divisor, and the computation
of 1/a fails. In this example N(a) = 53 ·59 so the fail primes
are 53 and 59.

The reason that in our terminology 53 and 59 are called fail
primes and not lc-bad primes in the example (after all, the
problem was caused by lc(f2) mod p) is to indicate how these
primes are discarded: We do not actively avoid these primes,
instead, they “discard themselves” when the Euclidean al-
gorithm mod p is called.

One can also construct examples where p is not lc-bad, lc(f2)
is a unit mod p, but p still divides den(g) (occasionally
such p can be unlucky instead of fail). Take for example
α with minimal polynomial m = z3 + 3z2 − 46z + 1, f1 =
x3−2x2+(−2α2+8α+2)x−α2+11α−1, f2 = x3−2x2−x+1.
The monic gcd is g = x− 1

91
α2 − 23

91
α− 50

91
. The denomina-

tor is den(g) = 91 = 7 · 13. In this example, if p ∈ {7, 13}
then p is not lc-bad and the leading coefficient of f2 (as
well as of f1) is a unit mod p. Nevertheless, p can not be
a good prime because p | den(g). In this type of example
p must divide the discriminant. For this reason, Encarna-
cion [4] tests if the discriminant is 0 mod p and avoids such
primes. However, even without the discriminant-test, the
primes p ∈ {7, 13} would still have been discarded at some
point: The Euclidean algorithm mod p will calculate r3 =
f1 mod (p, f2), try to make r3 monic and fail because the
leading coefficient of r3, namely, −2α2 + 8α + 3, is a zero
divisor mod p.

Although one can generalize the discriminant-test to L, see
section 3 in [6], our algorithm does not use it because it
makes no difference for the correctness of the algorithm.
For an intuitive explanation see lemma 4 and for a proof see
theorem 1.

1.3 Unlucky primes
Unlucky primes are not trivially detectable like lc-bad primes
and do not “discard themselves” like fail primes do, but
need to be detected and discarded nevertheless. Fortunately,
Brown [3] showed how to do this in a way that is efficient
and easy to implement: Whenever modular gcd’s do not
have the same degree, keep only those of smallest degree
and discard the others.

As an example, take f1 = x2+(2
√

5+1)x+3, f2 = x2−x−1,
g = x + (

√
5 − 1)/2. Then the Euclidean algorithm mod 2

will return x2 + x+ 1, so p = 2 is an unlucky prime. But if
f1 = x2 +

√
5 x+1, f2 and g the same as before, then p = 2

is a fail prime.

1.4 Good primes
All but finitely many primes must be good. This is because
if one would run the Euclidean algorithm in characteristic 0,
it would be a finite computation, and so there can only be
finitely many conditions on the primes and each condition
only excludes finitely many primes (see lemma 5).

Of course we will not run the Euclidean algorithm in char-
acteristic 0, so this does not tell us which primes to use. But
this is not a problem because to guarantee correctness of the
algorithm, just as in Brown’s algorithm, all we need to do is
to avoid the lc-bad primes. Experiments show that random
primes are good with high probability. Hence, even if there
was an oracle that quickly provided good primes, it would
not noticeably improve the running time.

1.5 Motivation for the algorithm
The goal of this paper is to present an efficient modular GCD
algorithm over a field L that consists of multiple extensions
over Q. Suppose the largest numerator or denominator in g
is c. To reconstruct g by computing g mod P = p1 · · · pm

using primes p1, . . . , pm, if we want log(P) = O(log(c)), that
is, if we want the number of primes used to be proportional
to the size of the coefficients in g, then we are forced to

1. Not use a primitive element to convert to a single ex-
tension, which is expensive and can cause a blowup in
the size of the coefficients. This problem is well known,
e.g. see [1].

2. Not invert lc(f2), which can also cause a blowup, and
can also be more expensive than computing g.

3. Use rational reconstruction. Otherwise a denomina-
tor bound would be necessary, but such bounds are
generally too large. The defect bound (usually the
(reduced [6]) discriminant), which is part of the de-
nominator bound, is usually also too large.

Encarnacion’s paper confirms and deals with these items. As
a result, Encarnacion’s algorithm is the fastest algorithm for
a single extension. As for item 1, his paper deals only with a
single extension, but he does illustrate that modifying that
extension (making α1 an algebraic integer) is not efficient.
But if modifying one extension α1 is not efficient, then mod-
ifying n extensions (replacing it by a primitive element) is
certainly not efficient.

Our goal is to generalize Encarnacion’s algorithm to multiple
extensions, without using a primitive element. A technical
difficulty is how to generalize the discriminant test, which
we did a preprint [6], where we also gave a formula for the
reduced discriminant. It turned out, however, that a dis-
criminant test is not necessary, it can be omitted.

Omitting the discriminant test simplifies the algorithm but
has no noticeable impact on the running time. So for the
single extension case, our algorithm is essentially the same
as Encarnacion’s algorithm. For the multiple extension case
our algorithm provides an obvious efficiency improvement
because the primitive element conversion alone can easily
cost more time than our entire algorithm, especially if the
gcd is small.

In this paper we only treat univariate polynomials f1, f2 ∈
L[x], but our implementation handles the multivariate case
as well.

2. THE EUCLIDEAN ALGORITHM OVER
A RING

Let α1, . . . , αn be algebraic numbers. Let Li = Q(α1, . . . , αi)
and L = Ln. Let di be the degree of αi over Li−1. The di-
mension of L as a Q-vector space is d∗ := d1 · · · dn. A basis
of L is:

M := {
nY

i=1

αei
i | 0 ≤ ei < di}.

Let R̃ be the set of all Z-linear combinations of M and let
R̃i = R̃

T
Li. Let mi be the minimal polynomial of αi over

Li−1. The degree of mi is di, mi is monic (the leading
coefficient is lc(mi) = 1) and mi(αi) = 0. The coefficients
of mi are in Li−1. Let li be the smallest positive integer such
that the coefficients of limi are in R̃i−1. Denote Fp = Z/pZ
and l∗ = l1 · · · ln.

In general R̃ is not a ring. For example, α1 ∈ R̃, but αd1
1

is not in R̃ unless l1 = 1. When a, b ∈ R̃, to compute the
product ab ∈ L we replace α1, . . . , αn by variables z1, . . . , zn,
then multiply a,b as polynomials, and after that take the re-
mainder modulo the polynomials m1(z1), . . . ,mn(zn). Dur-
ing this computation we only divide a bounded number of
times by l1, . . . , ln. Hence, if k is a sufficiently large integer,
then lk∗ab ∈ R̃ for all a, b ∈ R̃.

If a ∈ L then define the denominator of a as the smallest
positive integer den(a) such that den(a)a ∈ R̃. Note that

R̃, and hence den(a), depends on the choice of α1, . . . , αn.
For example, if α1 =

√
8 and a = 1

2
α1 then den(a) = 2.

For a ∈ L one has a ∈ R̃ ⇐⇒ den(a) = 1, in particular
den(0) = 1. Define

Rp = {a ∈ L | den(a) 6≡ 0 mod p} (1)

= { a
m
| a ∈ R̃, m ∈ Z, m 6≡ 0 mod p}. (2)

If a, b ∈ L then den(ab) divides den(a)den(b)lk∗ for some k.
Hence, if p - l∗ then Rp is a ring. We will always assume
that p does not divide l∗ so that Rp is a ring (if p | l∗ then p
is an lc-bad prime). Denote

Z(p) = Rp

\
Q = { a

m
| a,m ∈ Z, m 6≡ 0 mod p}.

Then Rp is a Z(p)-module with basis M . Define

R = Rp/pRp.

If a ∈ Rp then we use the notation a, or also a mod p, for
the image of a in R. If a ∈ L, then (primes that divide l∗
are always excluded)

a is defined ⇐⇒ a ∈ Rp ⇐⇒ p - l∗den(a).

If a is defined we will say that a can be reduced mod p.

Now R is a ring and also an Fp-vector space with basis M
mod p. We can do the following identifications:

Rp = R̃⊗Z Z(p), L = R̃⊗Z Q, and R = R̃⊗Z Fp (3)

If a ∈ L then a is a unit in Rp if and only if both a and 1/a
are in Rp (whenever we write 1/a it is implicitly assumed
that a 6= 0). This is equivalent to p - l∗den(a)den(1/a). If
a ∈ L we will call a a unit mod p if a ∈ Rp and a is a unit in
R. The following lemma shows that these two notions are
equivalent.

Lemma 1. Let a ∈ Rp. Then a is a unit in Rp if and
only if a is a unit in R.

Proof: If a is a unit in Rp then a and 1/a are in Rp, hence

a and 1/a are defined, and since a 7→ a is a ring homomor-

phism Rp → R one sees that 1/a is the inverse of a. Hence

a is a unit in R.
Conversely, assume a is a unit. Then a 6= 0 so we can
take b := 1/a ∈ L. To finish the proof we need to show that
b ∈ Rp. Take the smallest integer k for which c := bpk ∈ Rp.
Since k is minimal, we have c 6= 0 but then ac is the product
of a unit and a nonzero element in R and hence nonzero.
But ac equals abpk = pk so pk 6= 0, hence k = 0, so b ∈ Rp

and a is invertible in Rp.

If f ∈ L[x] then the denominator den(f) is defined as the

smallest positive integer such that den(f)f ∈ R̃[x]. Now
f ∈ Rp[x] if and only if p - den(f)l∗. The polynomial f
is the image of f in R[x], and is defined if and only if f ∈
Rp[x], in which case we will say that f can be reduced mod p.
Furthermore, if f and f have the same degree (when lc(f)
is nonzero mod p) then we will say that f reduces properly
mod p. If p is not an lc-bad prime it means that f1, f2 can
be reduced mod p, and that f2 reduces properly mod p.

Let 0 ≤ i ≤ j ≤ n and a ∈ Lj . Multiplication by a is an
Li-linear map ψ : Lj → Lj . The characteristic polynomial
cpj

i (a) ∈ Li[x] of a over the extension Lj : Li is defined as
the characteristic polynomial of this linear map. The trace
Trj

i (a) of a over Lj : Li is the trace of ψ and the norm N j
i (a)

of a over Lj : Li is the determinant of ψ. Whenever we do
not mention the extension Lj : Li it is assumed to be L : Q
(so i = 0 and j = n) in which case we write Tr(a), N(a),
cp(a). Now the integral closure of Z in L is

O = {a ∈ L | cp(a) ∈ Z[x]}.

This is a ring (see [5]), and the elements of O are called the
algebraic integers in L. We will use the following notation
for the integral closure of Z(p) in L

Op = {a ∈ L | cp(a) ∈ Z(p)[x]}.

Suppose a ∈ L and m = den(cp(a)). Then by definition
a ∈ Op if and only if m 6≡ 0 mod p. The characteristic
polynomial of ma is in Z[x], hence ma ∈ O and hence

Op = { a
m
| a ∈ O, m ∈ Z, m 6≡ 0 mod p}. (4)

Lemma 2. If 0 ≤ i ≤ j ≤ n and a ∈ Op

T
Lj then a is a

unit in Op if and only if N j
i (a) is a unit in Op. In particular,

a ∈ Op is a unit if and only if N(a) ∈ Q is a unit in Z(p), in
other words, both numerator and denominator of N(a) are
not divisible by p. The same is also true for Rp.

Remark: If p - l∗ then Rp ⊆ Op and the lemma implies
that if a ∈ Rp and 1/a ∈ Op then 1/a ∈ Rp.

Proof: The Li-linear map ψ : Lj → Lj that corresponds to
multiplication by a is defined over Op, i.e. the entries of the
matrix of ψ are in Op. If N j

i (a), the determinant of ψ, is
a unit in Op then the matrix is invertible over Op. So then
ψ−1(1) ∈ Op, so 1/a ∈ Op. Conversely, if a is invertible in
Op then ψ is an invertible linear map, so its determinant
must be a unit.
Now N(a) = Nn

0 (a) ∈ L0 = Q and Q
T
Op = Z(p) so the

second statement follows. The proof for Rp is the same,
although as always p must not divide l∗ so Rp is a ring.

Note that one can check if a ∈ Rp is invertible, and if so,
compute its inverse, with linear algebra over Z(p) or over its

field of fractions Q. The matrix of the system to be solved is
the matrix of ψ. The same also holds for a ∈ R, whenever it
is invertible, its inverse can be computed with linear algebra
over Fp. But instead of solving linear equations, we will use
the extended Euclidean algorithm to calculate inverses in R.
However, this can increase the number of fail primes because
the calculation can fail even if a is invertible. This is not a
serious problem because the number of fail primes will still
be finite (see section 1.4).

In the following, let R be a commutative ring with identity
1 6= 0. For a univariate polynomial f ∈ R[x] define monic(f)
as follows: If f = 0 then monic(f) = 0. If f 6= 0 and if
the leading coefficient lc(f) ∈ R of f is a unit, then define
monic(f) = lc(f)−1f . If f 6= 0 and lc(f) is not a unit then
define monic(f)=“failed”.

If f1, f2 ∈ R[x] then the monic gcd is defined as a polynomial
g ∈ R[x] such that g = monic(g) and for every polynomial
h one has: h | f1 and h | f2 if and only if h | g. It is easy to
show that if a monic gcd of f1, f2 exists, then it is unique.
The well-known Euclidean algorithm over R works as fol-
lows.

Euclidean algorithm.
Input: a list (f1, f2) of two univariate polynomials with co-
efficients in R.
Output: Either a message “failed” or the monic gcd.

1. Set r1 = f1, r2 = f2, i = 2.

2. If r2 = 0 then set r1 = monic(r1). If r1 = “failed”
then return “failed”.

3. If ri = 0 then return ri−1.

4. Set ri = monic(ri). If ri = “failed” then return “failed”.

5. Set ri+1 to be the remainder of ri−1 divided by ri.

6. Set i = i+ 1 and go back to Step 3.

Remark on a shortcut: Suppose that ri in step 3 is a
nonzero constant. Some implementations of the Euclidean
algorithm over a field will then take a shortcut: stop the
computation, the output is 1. Over a ring we should not use
this shortcut because that would invalidate lemma 3 below.
This plays a role because our algorithm will not test if p
divides the discriminant. We may only use the shortcut
if ri is a unit. For ri ∈ R we can test that efficiently by
computing N(ri) mod p (see lemmas 1,2).

Denote GCDR(f1, f2) as the output of this algorithm. If
GCDR(f1, f2) 6= “failed” then the sequence of polynomi-
als r1, . . . , rm with rm−1 6= 0, rm = 0, is called the monic
polynomial remainder sequence of f1, f2.

Lemma 3. If g = GCDR(f1, f2) and g 6= “failed” then
the ideal (ri−1, ri) = R[x]ri−1 + R[x]ri remains the same
during each step. In particular (f1, f2) = (g) which implies:

1. There exist s, t ∈ R[x] such that g = sf1 + tf2.

2. f1 and f2 are divisible by g.

3. g is the monic gcd of f1 and f2.

Proof: When we make ri monic, we divide by a unit, which
does not change the ideal. In step 6 we increase i so we
must show that (ri−1, ri) = (ri, ri+1) which is clear because
ri+1 is the remainder of ri−1 modulo ri. Hence (f1, f2) =
(r1, r2) = (rm−1, rm) = (g, 0) = (g). So g ∈ (f1, f2) which
is part 1, f1, f2 ∈ (g) which is part 2. Finally, every h that
divides both f1 and f2 divides any element of (f1, f2) in
particular it divides g. Since g is monic it satisfies precisely
the definition of the monic gcd.

Remark: If GCDR(f1, f2) 6= “failed” then the extended
Euclidean algorithm, which calculates s and t as well as g
will not fail either.

Let d = GCDR(f1, f2) be the output of the Euclidean al-
gorithm. If all leading coefficients during the computation
are units then the algorithm succeeds, the monic gcd exists
and equals d = rm−1. If there is no monic gcd in R[x] then
d = “failed”. If a monic gcd g does exist then it is not
necessarily true that the algorithm will find it; the output
d is then either g or “failed”. A situation where the out-
put is “failed” even when a monic gcd exists is given in the
following lemma.

Lemma 4. Suppose p - l∗ and f1, f2 ∈ Rp[x]. Then f1, f2 ∈
Op[x]. Suppose a monic gcd g ∈ Op[x] exists and that
g 6∈ Rp[x]. Then GCDOp(f1, f2) = “failed”.

Proof: If p - l∗ then α1, . . . , αn ∈ Op, hence Rp ⊆ Op

so f1, f2 ∈ Op[x]. Since GCDRp(f1, f2) = “failed”, when
we run the Euclidean algorithm over Rp we will encounter
a leading coefficient in Rp that is not a unit in Rp. But
according to the remark after lemma 2, if a ∈ Rp is not a
unit in Rp then it is also not a unit in Op and hence the
algorithm fails over Op as well.

If the ring R in the Euclidean algorithm is a field L, then
the output is never “failed”, so GCDL(f1, f2) is always the
monic gcd of f1, f2 ∈ L[x].

Lemma 5. Suppose f1, f2 ∈ L[x] and r1, . . . , rm ∈ L[x] is
the monic polynomial remainder sequence. Let lc1, . . . , lcm−1

in L be the leading coefficients that we divided by in steps 2
and 4. For all but finitely many primes the following holds:

1. f1, f2 ∈ Rp[x], and lc1, . . . , lcm−1 are units in Rp.

2. r1, . . . , rm ∈ Rp[x] and r1, . . . , rm is the monic polyno-
mial remainder sequence of f1, f2.

3. p is a good prime which means: The monic gcd of
f1, f2 exists, will be found by the Euclidean algorithm,
and equals g where g ∈ L[x] is the monic gcd of f1, f2.

Proof: Part 1 holds for all primes that do not divide any of
the following: l∗, den(f1), den(f2), den(lci), den(1/lci) for
i < m. Since these are finitely many integers, all nonzero,
we see that part 1 holds for all but finitely many primes.
The only divisions in the Euclidean algorithm are divisions
by lci, so if the input is in Rp[x] and all lci are units in Rp,
then all polynomials in the GCDL(f1, f2) computation are

in Rp[x]. Induction shows that r1, . . . , rm is precisely the
monic polynomial remainder sequence of f1, f2, so part 2
follows from part 1. Part 3 follows from part 2.

Since we will only run the Euclidean algorithm in R[x] for
various primes p, and not in L[x], we do not know the val-
ues of lci. So the lemma does not tell us which primes are
good, it only says that all but finitely many primes are good.
We now investigate the relation between GCDR(f1, f2) and
GCDL(f1, f2) when p is not an lc-bad prime.

Theorem 1. Let f1, f2 ∈ L[x] and let g ∈ L[x] be the
monic gcd. Assume p - l∗den(f1)den(f2), f2 6= 0 and lc(f2) 6≡
0 mod p, so p is not an lc-bad prime. Let d = GCDR(f1, f2).
If d 6= “failed” then

deg(d) ≥ deg(g).

Furthermore, if deg(d) = deg(g) then g reduces properly
mod p and d = g.

Remark: The theorem says that if p is not lc-bad then
p is either fail, unlucky, or good. This implies that if lc-
bad primes are avoided then the modular GCD algorithm is
correct.

Proof: lc(f2) 6≡ 0 mod p, so if we assume d 6= “failed” then
lc(f2) must be a unit mod p, see step 4 in the Euclidean
algorithm. There exist (see lemma 3) s0, t0 ∈ Rp[x] such
that

s0f1 + t0f2 = d.

Now take a monic polynomial d0 ∈ Rp[x] such that d = d0.
Then we have

s0f1 + t0f2 ≡ d0 mod p.

We will apply Hensel lifting to increase the modulus p to a
higher power of p. Define (starting with i = 1)

hi = (si−1f1 + ti−1f2 − di−1)/p
i ∈ Rp[x]

and let qi, ri ∈ Rp[x] be the quotient and remainder of hi

divided by d0 (this division works because d0 is monic).
Then define

s̃i = si−1 − piqis0, t̃i = ti−1 − piqit0, di = di−1 + piri.

Then

s̃if1 + t̃if2 ≡ di mod pi+1.

Now s̃i, t̃i can have higher degrees than si−1, ti−1. To rem-
edy this, do the following. For j ∈ {1, 2} denote fj,d ∈ Rp[x]
as a polynomial whose modular image equals fj/d. Take
qis0 mod p, and divide it by f2,d ∈ R[x]. This division
works because the leading coefficient of f2,d is lc(f2) mod p,
which is invertible. Take q, r ∈ Rp[x] such that q, r are the
quotient and remainder of this division. Take q, r in such a
way that they have the same degree as q, r. Then define

si = si−1 − pir, and ti = ti−1 − pi(qit0 + qf1,d),

and we still have

sif1 + tif2 ≡ di mod pi+1.

We can now increase i and do the next Hensel step, and con-
tinue in this way. Because deg(r) < deg(f2,d) and deg(ri) <

deg(d0), the degrees of si and di will be bounded as i in-
creases, and hence the degree of ti mod pi+1 is bounded as
well. So when i → ∞, the limit ŝ, t̂, d̂ of si, ti,di exists in
the ring R̂p[x] defined below.

Denote Ẑp as the ring of p-adic integers. Ẑp is the comple-
tion of Z(p) with respect to the p-adic valuation norm. Let

Q̂p be the field of p-adic numbers, the field of fractions of

Ẑp. Denote L̂p = Rp⊗Z(p) Q̂p = L⊗Q Q̂p. This is in general
not an integral domain because minimal polynomials can
become reducible when one replaces Q by a larger field Q̂p.

Denote R̂p = Rp ⊗Z(p) Ẑp. Now R̂p and L can be viewed as

subrings of L̂p and

Rp = R̂p

\
L (5)

After doing infinitely many Hensel steps we find ŝ, t̂, d̂ ∈
R̂p[x] such that

ŝf1 + t̂f2 = d̂.

Now d̂ is monic and deg(d̂) = deg(d0) = deg(d) because the
piri, i = 1, 2, . . ., that we added to d0 have smaller degree
than d0. The polynomials f1, f2 are elements of L[x]g ⊆
L̂p[x]g. Hence ŝf1 + t̂f2, which equals d̂, is a also an element

of L̂p[x]g. But d̂ 6= 0 so

deg(d) = deg(d̂) ≥ deg(g).

If the degrees are the same then d̂ = g because g is the only
monic element of L̂p[x]g of that degree. Equation (5) then

implies g ∈ Rp[x] (recall that d̂ ∈ R̂p[x] and g ∈ L[x]). So
g can be reduced mod p. Hence g reduces properly mod p
because it is monic. The theorem now follows because d
equals d̂ mod p, which equals g mod p.

3. IMPLEMENTATION
In this section we describe our implementation of the mod-
ular GCD algorithm for multivariate polynomials over L.
There are several multivariate “modular” GCD algorithms
over Q that one may consider extending to work over L.
We have completed an implementation of Brown’s algorithm
(see [3]) which uses rational reconstruction and trial division
(see [8]), and have begun work on an implementation of Zip-
pel’s algorithm (see [11]). We have encountered three bottle-
necks on real problems, namely, (i) rational reconstruction,
(ii) the trial divisions, and (iii) extensions of low degree.
We will address (i) and (ii) in this paper. Problem (iii) is
addressed in [8].

We first give details of the data structure that we use for
multivariate polynomials over L. The data structure is de-
signed to make the modular GCD algorithm fast. It sup-
ports n ≥ 0 extensions over Q and Fp. To fix notation,
recall that L = Q(α1, . . . , αn) where αi is algebraic over
Li−1 = Q(α1, . . . , αi−1), and mi(zi) ∈ Li−1[zi] is the min-
imal polynomial for αi over Li−1. Let R = L[x1, . . . , xk].
Let f1, f2 be non-zero polynomials in R and let g be their
monic GCD.

3.1 A Data Structure for R
In [9], Stoutemyer asked the question “Which polynomial
representation is best?” (for a general purpose computer
algebra system). Based on his data, he concluded that the

recursive dense representation was best overall, a conclu-
sion that ran contrary to the general belief that one must
use a sparse representation. In our context, we have ad-
ditional reasons to choose this representation. Our input
polynomials to the modular GCD algorithm are multivari-
ate polynomials in x1, . . . , xk and z1, . . . , zn. Because the
modular GCD algorithm is recursive and because the ex-
tensions must also be defined recursively if they are depen-
dent, a recursive data structure will minimize data structure
overhead. Because we compute the GCD modulo machine
primes p1, p2, . . ., most of the work takes place in the last
variable, i.e. in the ring Fp[z1]. Since the bottom level of the
recursive dense representation is a dense vector of machine
integers, this yields the best representation for arithmetic in
Fp[z1]. We now describe the data structure <poly> using a
BNF notation with some examples.

<poly> ::= POLYNOMIAL(<ring>, <data>)

<ring> ::= [<char>, <vars>, <exts>]

<char> ::= <nonnegative integer>

<data> ::= <rational number> | <immediate integer>

| vector(<data>)

<vars> ::= vector(<variables>)

<exts> ::= vector(<data>)

The characteristic of the ring is encoded by <char> and
<exts> is a vector of the minimal polynomials. Thus the ring
for the polynomial is encoded in the data structure. Since
this information is identical for polynomials in the same ring
it should be stored once so that the cost of storing the ring
information is one word.

We impose the following restriction which is a key property
of the recursive dense representation; a zero coefficient at
any level in the data structure is represented by the imme-
diate integer 0 (or nil pointer). This means that every algo-
rithm must treat 0 as a special case. This exceptional case
does not bother us greatly because in the implementation of
most operations 0 is a special case anyway.

The bottom of the data structure is a word of storage which
is either a pointer to a rational number or an immediate
integer. In our Maple implementation, immediate integers
are signed integers of 30 bits in length, hence, one bit is used
to distinguish them from pointers. In the examples below,
vectors are indicated by square brackets.

Example 1: The representation of the polynomial z4 −
10z2 + 1 in characteristic 0 and characteristic 3 is

POLYNOMIAL([0,[z],[]], [1,0,-10,0,1])

POLYNOMIAL([3,[z],[]], [1,0,2,0,1])

The empty vector [] indicates that there are no extensions
and the data in both these examples is a vector of machine
integers. Allowing one word as a header word for the POLY-
NOMIAL structure and for each vector, the storage require-
ment for both polynomials is 16 words (count one word for
POLYNOMIAL and each [in the above). Since the ring in-
formation can be shared between polynomials over the same
ring, a more accurate count is that 9 words are required.
From now on we will not count the storage for the ring.

Example 2: The representation of the polynomial x3−zx+
z2 in Q[z][x] and Q[z]/(z2 − 2) is

POLYNOMIAL([0,[x,z],[]], [[0,0,1],[0,-1],0,[1]])

POLYNOMIAL([0,[x,z],[[-2,0,1]]],[[2],[0,-1],0,[1]])

In the data structure, polynomials are reduced modulo the
mi on input. The storage requirement is 17 and 15 words
respectively.

Example 3: The recursive dense data structure is not
sparse, but neither is it truly dense. On sparse polynomi-
als, the storage requirement is still very good. Consider the
sparse polynomial 1 + 2xn + 3yn + 4zn where n = 3. Our
data structure for this polynomial is

POLYNOMIAL(R,[[[1,0,0,4],0,0,[3]],0,0,[[2]]]);

This is 24 words (not counting the storage for the ring).
In general it is 15 + 3n words. One of the main sparse
representations for polynomials that is used in AXIOM is a
linked list of pairs where each pair is a pointer to a coefficient
and a pointer to a monomial where the monomial xiyjzk

would be stored as an exponent vector [i, j, k]. Thus each
non-zero term of the polynomial requires 2 + 2 + 4 = 8
words of storage. On our example this would be 35 words,
allowing 3 words for the top level of the data structure. Of
course, this is not truly a sparse data structure because the
monomial representation is not sparse. Nevertheless, on this
example, the recursive dense representation uses less storage
for n ≤ 6.

Example 4: Multiple extensions are handled in the ob-

vious way. The polynomial x +
p

1/5 y +
q

1 +
p

1/5 is

represented by

POLYNOMIAL([0, [x,y,z2,z1], [[[-1,-1],0,[1]],

[-1, 0, 5]]], [[[0,[1]], [[0,1]]], [[[1]]]])

where the two minimal polynomials m1(z1) and m2(z2) have
been replaced by m̌1 and m̌2. We remark that although this
makes the test for whether a prime p in the modular GCD
algorithm divides den(mi) easy, and makes reduction of the
minimal polynomials modulo p easy, after having reduced
the minimal polynomials modulo p, one should make them
monic over Fp so that we do not repeatedly invert their
leading coefficients.

3.2 Rational Reconstruction
If one naively applies rational reconstruction after comput-
ing the GCD modulo each prime p, the cost of the rational
reconstruction may become the bottleneck asymptotically as
well as in practice. Suppose g = x+ a/b where a and b are
integers of m digits in length. Then we need O(m) primes
to reconstruct g. The total cost of Chinese remaindering
will be O(m2) but the total cost of rational reconstruction
will be O(m3). The reason is that Chinese remaindering
can be done “incrementally” after each prime in O(m) time
but, as far as we know, rational reconstruction cannot. We
resolve this problem by attempting rational reconstruction
after 1, 2, 3, 5, 8, 13, . . . primes. This ensures that the cost of
rational reconstruction is also O(m2).

We now state the modular GCD algorithm. As a prepro-
cessing step, we compute f̌1 and f̌2, that is, we cancel any
rational scalar from the input polynomials before proceed-
ing. We do not compute f̃1 or f̃2 which can cause a blowup.
Let ic(f) denote the integer content of a polynomial. This is
the rational constant c such that f/c = f̌ , the semi-associate
of f . For example, if f = 10/3x2 − 15 then ic(f) = 5/3 and
f̌ = 2x2 − 9.

Modular GCD algorithm.
Input: Non-zero f1, f2 ∈ L[x].
Output: g, the monic GCD.

1. Set n = 0, f1 = f1/ic(f1) and f2 = f2/ic(f2).

2. Take a new prime p that is not lc-bad.

3. Let d be the result of the Euclidean algorithm mod p.
If d = “failed” then go back to Step 2.

4. If d = 1 then return 1.

5. If n = 0 or deg(d) < deg(G) then
set G = d,m = p, n = 1 and go to Step 9.

6. If deg(d) > deg(G) then go back to Step 2.

7. Let G be the result of Chinese remaindering on G mod
m and d mod p. Set m = mp, n = n+ 1.

8. If n is not a Fibonacci number go back to Step 2.

9. Apply rational reconstruction to obtain h ∈ L[x] from
G mod m. If this fails, go back to Step 2.

10. Apply the Euclidean algorithm mod one more prime p
to obtain d and test if h mod p = d. If not, go back
to Step 4.

11. Trial division. If h|f1 and h|f2 then return h, otherwise
go back to Step 4.

The algorithm will terminate as soon as we have enough
good primes to reconstruct the coefficients of g. We will (i)
state the expected running time in terms of f̌1 and f̌2, (ii)
not include the cost of the trial divisions, and (iii) assume
classical (quadratic) algorithms for integer and polynomial
arithmetic.

Let m be the number of good primes needed to reconstruct
g. The algorithm as stated has been designed so that m
is proportional to the length of largest integer in the coeffi-
cients of g. We will assume that the probability that a prime
is good is high, so that m is close to the actual number of
primes that were used. This assumption is true in practice.
However, for theoretical completeness of the complexity es-
timate, we would need to determine some B = B(f1, f2)
such that if p > B then the probability that p is good is
greater than some constant. We did not determine such B
because this issue would not have consequences for the al-
gorithm in practice (one hardly ever encounters primes that
are not good).

The other quantities appearing in the running time are (i)
D, the degree of the number field L, (ii) N , the degree of
the largest input polynomial, (iii) n the degree of the GCD,
and (iv) M the size of the largest integer coefficient in f̌1
and f̌2. The average running time of the modular GCD al-
gorithm is O(mMND+mN2D2 +m2nD)) where the three
contributions are for reducing f̌1 and f̌2 modulo m primes,
applying the Euclidean algorithm m times, and the recon-
struction time, respectively. If we consider the case where

M = 2m and N = 2n corresponding to a GCD problem
where the cofactors are the same size as the GCD, then this
simplifies to O(MND(M +ND)).

3.3 Trial Division
Another bottleneck of the modular GCD algorithm is the
trial divisions. If h is the result of rational reconstruction
then we must check that h|f1 and h|f2 to show that h = g.
Because these trial divisions can be expensive, we have con-
sidered abandoning trial divisions altogether in favor of a
probabilistic result, that is, check that result of rational re-
construction agrees, say, with the GCD modulo five addi-
tional primes instead of one. However, in many applications
where one computes GCDs, for example, normalizing a ra-
tional function, one wants to compute also the cofactors f1/g
and f2/g, hence, the divisions cannot be avoided.

We can use either classical division or a modular division
algorithm. If g is small in size compared with f1 and f2
then classical division is asymptotically faster. On the other
hand, if g is of similar size to its cofactors f1/g and f2/g then
a modular division algorithm will be asymptotically faster.
When dividing f1 and f2 by h over L using the classical divi-
sion algorithm, a significant improvement (we saw a speedup
of a factor of 10 on one large example) can be obtained if
one avoids fractions as much as possible. Notice that the
leading coefficient of ȟ in the modular GCD algorithm is an
integer. If also li = den(mi) = 1, which is often the case,
then the entire division algorithm can be completed using
only integer arithmetic. If li 6= 1 for some i then the division
algorithm can still be modified to avoid fractions. We will
describe how to do this for univariate polynomials with one
field extension with minimal polynomial M .

Algorithm Fraction Free Trial Division.
Input: A,B ∈ Q[x, z], M ∈ Z[z] : B 6= 0, lcx B ∈ Q, and
degM ≥ 1.
Output: Q = A/B mod M if B|A mod M ; “failed” other-
wise.

Set m = degx A, n = degx B and d = degz M .

Set ia = ic(A) and a = A/ia.

Set ib = ic(B) and b = B/ib.

Set lb = lcx b and lm = lcz M .

Set s = 1, r = a, and q = 0.

While r 6= 0 and m ≥ n do

Set lr = lcx r. Note that lr ∈ Z[z].
Set g = GCD(ic(lr), lb) and lr = lr/g.
Set s = (lb/g)× s.
Set t = lr × xm−n and q = q + t/s.
Set r = (lb/g)× r − t× b.
Set p = 1.
While r 6= 0 and degz r ≥ d do

Set lr = lcz r. Note that lr ∈ Z[x].

Set g = GCD(ic(lr), lm) and lr = lr/g.

Set t = lrz
degz r−m and p = p× (lm/g).

Set r = (lm/g)× r − t×M .

Set s = s× p.
Set m = degx r.

If r 6= 0 then output “failed”.

Set Q = (ia/ib)× q and output Q.

The algorithm first makes the inputs A and B primitive
over Z. We claim that each time round the outer loop r
and q satisfy a = bq + cr for some scalar c ∈ Q and r has
integer coefficients. The outer loop reduces the degree of the
remainder r in x. In the outer loop we multiply r by the
smallest possible integer so that lcx r, a polynomial in Z[z],
will be divisible by lcx b. The inner loop then reduces the
remainder r modulo M . In the inner loop we multiply r by
the smallest integer so that lcz r, a polynomial in Z[x], will
be divisible by lcz M . The integers s and p are multipliers.
They keep track of the integer factors of lcx b and lcz M ,
respectively, that r was multiplied by so that the quotient
Q may be correctly computed from q.

Acknowledgement
We acknowledge the help of Craig Pastro with parts of the
implementation, and the referees for valuable comments.

4. REFERENCES
[1] J. A. Abbott, R. J. Bradford, J. H. Davenport, The

Bath Algebraic Number Package, Proceedings of
SYMSAC ’86, ACM press (1986), pp. 250–253.

[2] R. J. Bradford, Some Results on the Defect, Proceedings
of ISSAC ’89, ACM press (1989), pp. 129–135.

[3] W. S. Brown, On Euclid’s Algorithm and the
Computation of Polynomial Greatest Common Divisors,
J. ACM 18 (1971), pp. 476–504.

[4] M. J. Encarnacion, Computing GCDs of Polynomials
over Algebraic Number Fields, J. Symbolic Computation
20 (1995), pp. 299–313.

[5] E. Hecke, Lectures on the Theory of Algebraic
Numbers, Springer Graduate Texts in Mathematics 77,
(1981).

[6] M. van Hoeij, M. Monagan, A Modular GCD algorithm
over Number Fields presented with Multiple Extensions,
FSU preprint 02-03, (2002).

[7] L. Langemyr, S. McCallum, The Computation of
Polynomial GCD’s over an Algebraic Number Field, J.
Symbolic Computation 8 (1989), pp. 429–448.

[8] M. B. Monagan, A. D. Wittkopf, On the Design and
Implementation of Brown’s Algorithm over the Integers
and Number Fields, Proceedings of ISSAC ’2000 (2000),
ACM Press, pp. 225–233.

[9] D. Stoutemyer, Which Polynomial Representation is
Best?, Proceedings of the 1984 Macsyma User’s
Conference, 1984.

[10] P. Wang, M. J. T. Guy, J. H. Davenport, p-adic
Reconstruction of Rational Numbers, in SIGSAM
Bulletin, 16, No 2 (1982).

[11] R. Zippel, Probabilistic algorithms for sparse
polynomials, Proceedings of EUROSAM ’79,
Springer-Verlag LNCS, 2 (1979), pp. 216–226.

