
Computing GCDs of polynomials modulo triangular sets

John Kluesner and Michael Monagan

Department of Mathematics, Simon Fraser University
Burnaby, British Columbia, V5A-1S6, Canada
jkluesne@sfu.ca mmonagan@sfu.ca

Abstract

We present a modular algorithm for computing GCDs of univariate polynomials with coef-
ficients modulo a zero-dimensional triangular set. Our algorithm generalizes previous work for
computing GCDs over algebraic number fields. The main difficulty is when a zero divisor is
encountered modulo a prime number. We give two ways of handling this: Hensel lifting, and
fault tolerant rational reconstruction. We compare the two methods with illustrative examples.
Both approaches have been implemented in Maple using the RECDEN package.

1 Introduction

Suppose that we seek to find the greatest common divisor of two polynomials a, b ∈ Q(α1, . . . , αn)[x]
where αi are algebraic numbers. This problem was first solved using a modular algorithm by
Langemyr and McCallum [11] and improved by Encarnacion [6]. Their solution first found a
primitive element and then applied an algorithm for one extension. Monagan and van Hoeij [9]
improved the multiple extension case by circumventing the primitive element.

The computational model used for an algebraic number field is Q[z1, . . . , zn]/T where T =
〈t1(z1), t2(z1, z2), . . . , tn(z1, . . . , zn)〉 and each ti is the minimal polynomial of αi over Q(α1, . . . , αi−1).
A standard result in a course on rings and fields states that ti is irreducible in its associated field.
A natural generalization is to consider the same problem when each ti is possibly reducible. Let
R = Q[z1, . . . , zn]/T and a, b ∈ R[x]. This paper considers when gcd(a, b) exists and how to com-
pute it. This problem also has applications to solving systems of polynomial equations and also to
computing with solutions sets of polynomial systems.

The generators of T form what is known as a triangular set. Moreno Maza has done extensive
research on the gcd problem and created an algorithm using subresultants [12]. Hubert also has
considered this problem in a tutorial article [10]. Her article is recommended as an introduction to
the theory of triangular sets. See also Aubry, Lazard and Moreno-Maza [2].

Our approach is best viewed as a generalization of Monagan and van Hoeij’s algorithm. It
is a modular algorithm that finds gcds modulo multiple primes, combines them using Chinese
remaindering and uses rational number reconstruction (see [14, 13, 7]) to recover any fractions in
g. This may make the algorithm sound simple, but this is far from true. We’d like to share some
examples that illustrate some of the difficulties.

1

Example 1. Suppose we are working in R[x] where R = Q[z1, z2]/T and T = 〈z21 + 1, z22 + 1〉. Note
that z1 − z2 is a zero divisor with cofactor z2 + z1 in R. Consider computing the gcd of

a = x5 + 18x4z1 + (20 z1 − 1)x3 + (−323 z1 − z2 − 18)x2 + (−321− 324 z1 − z2)x+ 4,

b = x4 + (18 z1 − 1)x3 + (z1 − 18)x2 + (−324 z1 − z2)x+ 4

using the Euclidean algorithm. The remainder of a÷ b is

r1 = (z1 + 18)x3 − 325x

Since z1 + 18 is a unit, a division can be performed; dividing b by r1 gives the remainder

r2 = (z1 − z2)x+ 4.

At this point, the Euclidean algorithm would attempt to invert z1 − z2, but instead will determine
that it’s a zero divisor.

Working modulo a prime p, one would expect the Euclidean algorithm to terminate at the same
step, finding the zero divisor z1−z2 (mod p). However, consider p = 17. Here, r1 = (z1+z2)x

3−2x
and it will instead terminate when it encounters the zero divisor z1 + z2 (mod 17). Because of this,
attempting to combine zero divisors using the CRT will always fail if the modular algorithm happens
to pick the prime 17 and encounter the unlucky zero divisor z1 + z2.

Example 2. In the last example, suppose the zero divisor z1 − z2 was found and lifted successfully.
From here, the algorithm would like to split the computation into two triangular sets T (1) =
{z21 − 1, z2 − z1} and T (2) = {z21 − 1, z2 + z1}. This works if the new zero divisor found is monic.
However, it’s possible for a monic polynomial to factor as two polynomials with zero divisors as
leading coefficients. If this occurs, it will limit our ability reduce polynomials modulo the triangular
sets. For example, consider the triangular set T = {(z21 + 2)(z21 + 1), z32 − z2}. Observe that when
working modulo (z21 + 2)(z21 + 1),

z32 − z2 =
(
(z21 + 2)z22 − 1

) (
(z21 + 1)z32 + z2

)
.

Of course, a nicer factorization may exist, like z32 − z2 = (z22 − 1)z. However, it’s not clear how
to obtain one factorization from the other. This greatly enhances the complexity of handling zero
divisors. The above example also shows that the degree formula for the product of two polynomials
doesn’t hold in this setting.

Example 3. Another difficulty is that denominators in the factors of a polynomial a(x) ∈ R[x] may
not appear in the denominators of a(x). Weinberger and Rothschild give the following example in
[15]. Let t1(z1) = z61 + 3z51 + 6z41 + z31 − 3z21 + 12z1 + 16 which is irreducible over Q. The polynomial

f = x+ 4
3 −

11
12z1 + 7

12z
2
1 − 1

6z
3
1 − 1

12z
4
1 − 1

12z
5
1

is a factor of a(x) = x3 − 3 in R[x].
The denominator of any factor of a(x) (denom(f) = 12 in this example) must divide the defect

d of the field R. It is known that the discriminant ∆ of t1(z1) is a multiple of d, usually, much
larger than d. Thus we could try to recover ∆f with Chinese remaindering then make this result
monic. Although one could try to generalize the discriminant to the case n > 1, using rational
number reconstruction circumvents this difficulty and also allows us to recover g without using a
lot more primes than necessary.

2

In section 2, we prove that greatest common divisors exist if the triangular set is radical and
zero-dimensional. We use this to state exactly what will be computed. We also include relevant
results that will be useful later. In section 3, we consider the monic Euclidean algorithm over a
ring, as seen in Monagan’s and van Hoeij’s paper [9]. This will be used when computing modulo a
prime number p. We modify the algorithm to output either a gcd or a zero divisor, if encountered.

In section 4, we present our new modular algorithm. The main complication comes when
attempting to invert a zero divisor modulo a prime p. In Monagan and van Hoeij’s paper R was a
field, so they simply disregarded p and chose a new prime; this can’t be done modulo a triangular
set. Examples will be given illustrating this. We consider two approaches to handle zero divisors:
one based on Hensel lifting and one based on Fault Tolerant Rational Reconstruction by Abbott
[1]. Finally, in section 5 we give some details for our Maple implementation of our algorithm and
make some concluding remarks.

2 Triangular Sets

We begin with some notation. All computations will be done in the ring k[z1, . . . , zn] endowed with
the monomial ordering zi < zi+1 and k a field. Let f ∈ k[z1, . . . , zn] be non-constant. The main
variable mvar(f) of f is the largest variable with nonzero degree in f , and the main degree of f is
mdeg(f) = degmvar(f)(f).

As noted in the introduction, triangular sets will be of key interest in this paper. Further, they
are to be viewed as a generalization of an algebraic number field with multiple extensions. For this
reason, we impose extra structure than is standard:

Definition 1. A triangular set T is a set of non-constant polynomials in k[z1, . . . , zn] with distinct
main variables. Further:

(i) |T | = n,
(ii) T = {t1, . . . , tn} where mvar(ti) = zi,
(iii) ti is monic with respect to zi, and
(iv) degzj (ti) < mdeg(tj) for j < i.

The degree of T is
∏n

i=1 mdeg(ti). Also, T = ∅ is a triangular set.

Condition (i) states there are no unused variables. This is be equivalent to T being zero-
dimensional. Condition (ii) gives a standard notation that will be used throughout this paper.
Conditions (iii) and (iv) relates the definition to that of minimal polynomials. Condition (iv) is
commonly referred to as a reduced triangular set as seen in [2]. The degree of T is akin to the
degree of an extension.

Example 4. The polynomials {z31 + 4z1, z
2
2 + (z1 + 1)z2 + 4} form a triangular set. However,

{z22 + (z1 + 1)z2 + 4} wouldn’t since there’s no polynomial with z1 as a main variable. Also,
{t1 = z31 + 4z1, t2 = z22 + z41z2 + 3} isn’t because degz1(t2) = 4 > mdeg(t1).

Given a triangular set T , we define Ti = {t1, . . . , ti} and T0 = ∅. For example, let T =
{z31 + 1, z32 + 2, z33 + 3}. Then, T3 = T , T2 = {z31 + 1, z32 + 2}, T1 = {z31 + 1}.
Proposition 1. Let T ⊂ k[z1, . . . , zn] be a triangular set. Then T forms a Groebner basis with
respect to the ordering z1 < z2 < · · · < zn.

Proof. Let ti, tj ∈ T . Observe that lt(ti) = z
mdeg(ti)
i and lt(tj) = z

mdeg(tj)
j . They are relatively

prime, and so Proposition 4 of Sec 2.9 of Cox, Little, O’Shea [5] completes the proof.

It follows that k[z1, . . . , zi]∩ 〈T 〉 = 〈Ti〉 when 〈Ti〉 is viewed as an ideal of k[z1, . . . , zi]; this is a
standard result of elimination theory, see Cox, Little, O’Shea [5].

3

2.1 Useful Lemmas About Rings

The section will contain useful lemmas about commutative rings that will be used throughout
this paper. Some are standard exercises in a class on commutative algebra, and the others are
straightforward to verify, see [3].

Proposition 2. Suppose ψ : R → R1 × R2 is a ring isomorphism. Let π1, π2 be the canonical
projections R1 × R2 to R1, R2, respectively. Let a, b ∈ R and g1 = gcd(π1ψ(a), π1ψ(b)), g2 =
gcd(π2ψ(a), π2ψ(b)). Then, g = ψ−1(g1, g2) is a gcd of a and b.

Proof. This follows directly from the definition of a gcd. For a formal proof, see the appendix.

Proposition 3. Suppose n is a positive integer and ψ : R →
∏n

j=1Rj is a ring isomorphism. Let
πi :

∏n
j=1Rj → Ri be the canonical projections. Let a, b ∈ R and gi = gcd(πiψ(a), πiψ(b)). Then,

g = ψ−1(g1, g2, . . . , gn) is a gcd of a and b.

Proof. Follows by induction using Proposition 2.

Proposition 4. Let R be a finite dimensional F -algebra where F is a field. Then any nonzero
element of R is either a unit or zero divisor.

Proof. Let ω1, . . . , ωn be a basis for R over F . Let u be a nonzero element of R. Then, there exists
aij ∈ F satisfying uωi =

∑n
j=1 aijωj . Let 1 = b1ω1 + · · · + bnωn with bi ∈ F . Let A = (aij),

b = [b1, . . . , bn], and x = [x1, . . . , xn] where xi are variables. Suppose u isn’t a unit. Then,
u(x1ω1 + · · · + xnωn) = 1 has no solution. Equivalently, there’s no solution to the linear system
Ax = b. This means A is not invertible and so ker(A) is nontrivial; i.e., a(x1ω1 + · · ·+ xnωn) = 0
has a nontrivial solution.

Lemma 1 (CRT for ideals). Let R be a ring with ideals I1, . . . , In satisfying Ii + Ij = R for i 6= j.
Then there is a canonical isomorphism R/

∏n
i=1 Ii

∼=
∏n

i=1R/Ii where the Cartesian product of the
rings R/Ii is viewed as a ring under componentwise addition and multiplication.

Lemma 2. Let R be a commutative ring with unity. Then,
√
R[x] =

√
R ·R[x]. Furthermore,

R[x]∗ = R∗ +
√
R · 〈x〉

where the right hand side is to be interpreted as the set of all polynomials
∑d

i=0 aix
i where a0 ∈ R∗

and ai ∈ rad(R) for i > 0.

2.2 Radical Triangular Sets

To start, we give a structure theorem for triangular sets. The given proof is more difficult than
necessary. For example, one could prove this more generally by using the associated primes of T .
But, it allows us to introduce common ideas used throughout the paper. Since it is quite long, see
the appendix for the proof.

Proposition 5. Let I = 〈f〉 ⊂ k[x] be an ideal. Then, k[x]/I is isomorphic to a direct product of
fields if and only if f is square-free.

Proof. Use the CRT.

Theorem 1. Let T ⊆ k[z1, . . . , zn] be a triangular set and I = 〈T 〉. Then, k[z1, . . . , zn]/I is
isomorphic to a direct product of fields if and only if I zero-dimensional and radical.

4

Example 5. This example illustrates a nonradical triangular set. Consider T = {z21−1, z22 +2z1z2 +
1}. Observe that z1 + z2 6∈ T , but

(z2 + z1)
2 = z22 + 2z1z2 + z21 = (z22 + (2z1)z2 + 1) + (z21 − 1) ∈ T.

This shows z1 + z2 is nilpotent modulo T and so T isn’t radical.

The structure theorem above gives many powerful corollaries:

Corollary 1. Let T ⊂ k[z1, . . . , zn] be a radical, zero-dimensional triangular set andR = k[z1, . . . , zn]/T .
Let a, b ∈ R[x]. Then a greatest common divisor of a and b exists.

Proof. Use Theorem 1 and Proposition 3.

Corollary 2 (Extended Euclidean Representation). Let T ⊂ k[z1, . . . , zn] be a radical, zero-
dimensional triangular set and R = k[z1, . . . , zn]/T . Let a, b ∈ R[x] with g = gcd(a, b). Then,
there exists polynomial A,B ∈ R[x] such that aA+ bB = g.

Proof. Note that R ∼=
∏
Fi where Fi is a field, and we can extend this to R[x] ∼=

∏
Fi[x]. Let

a 7→ (ai)i and b 7→ (bi)i. Define hi = gcd(ai, bi) in Fi[x]. By the extended Euclidean algorithm,
there exists Ai, Bi ∈ Fi[x] such that aiAi + biBi = hi. Let h 7→ (hi)i and A 7→ (Ai)i and B 7→ (Bi)i.
Clearly, aA+ bB = h in R[x]. Since h | g, we can multiply through by the quotient to write g as a
linear combination of a and b.

It should be noted that Corollary 2 works even if lc(g) is a zero divisor. This shows it’s more
powerful than the extended Euclidean algorithm.

Corollary 3 (Division Algorithm). Let T ⊂ k[z1, . . . , zn] be a radical, zero-dimensional triangular
set and R = k[z1, . . . , zn]/T . Let a, b ∈ R[x] with deg(a) ≥ deg(b) ≥ 1. Suppose b isn’t a zero
divisor. Then there exists a quotient q and remainder r satisfying a = bq + r and deg(r) < deg(b).
The remainder r is unique if and only if lc(b) is a unit.

Proof. Note that R ∼=
∏
Fi is isomorphic to a product of fields, and we can extend this to R[x] ∼=∏

Fi[x]. Let a 7→ (ai)i and b 7→ (bi)i. Note that all bi 6= 0 or else b would a zero divisor.
Apply the division algorithm over a field to get qi, ri ∈ Fi[x] with ai = qibi + ri and ri = 0 or
deg(ri) < deg(bi). The element r 7→ (ri)i will have degree less than b since all of its images do. This
shows existence. For uniqueness, first let lc(b) be a unit. Suppose a = bq1 + r1 and a = bq2 + r2.
Then, b(q1− q2) = r2− r1. Since lc(b) is a unit, deg(b(q1− q2)) ≥ deg(b) unless q1− q2 = 0. Clearly,
deg(r2 − r1) < deg(b) which leaves q1 − q2 = 0 as the only possibility. It follows that r1 = r2.
Conversely, suppose lc(b) isn’t a unit, and hence a zero divisor by Proposition 4. Let v ∈ R be such
that with lc(b)v = 0. Note that deg(bv) < deg(b). Given a remainder r and quotient q, algebraic
manipulation gives

a = bq + r = (q − v)b+ bv + r.

Since deg(bv+ r) < deg(b), this gives two distinct remainders as long as bv 6= 0, which must be the
case as b isn’t a zero divisor.

3 The Euclidean Algorithm over a Ring

3.1 The Monic Euclidean Algorithm

In this section, we will assume we’re working over a commutative ring R with unity where every
non-zero element of the ring is either a unit or a zero divisor, and that there’s an algorithm that

5

Algorithm 1: MonicEuclideanAlgorithm

Input : A ring R as specified in the opening of the section, and two polynomials
a, b ∈ R[x]. Assume degx(a) ≥ degx(b) ≥ 0.

Output: Either gcd(a, b) or an error if a zero divisor is encountered.
1 Set r0 := a and r1 := b;
2 i := 1;
3 while ri 6= 0 do
4 if lc(ri) is a zero divisor then return ZERODIV ISOR(lc(ri));
5 ri := lc(ri)

−1ri;
6 Set ri+1 to be the remainder of ri−1 divided by ri;
7 i = i+ 1;

8 end
9 return ri−1

can decide if an element is a unit, and we have a method to compute inverses. This sufficient to be
able to use the monic Euclidean algorithm in R[x].

Proposition 6. Let a, b ∈ R[x] with deg(a) ≥ deg(b). Suppose no zero divisors are encountered
when running the monic Euclidean algorithm on a and b. Then the output is a gcd(a, b).

Proof. Let g = ri−1, the last nonzero remainder. We have to show that (i) g | a and g | b, and (ii)
any common divisor d | a and d | b also divides g. It will be useful to index the quotient qj and
leading coefficient cj = lc(rj) at the jth iteration; so rj−2 = qjrj−1 + cjrj . With that in mind, for
(i), note that ri−2 = qiri−1, and g | ri−2. This implies g | qi−1ri−2 + ci−1ri−1 = ri−3 as well. We can
repeat the above argument i− 3 more times to get g | r0 and g | r1. Clearly, g | lc(b)r1 = b as well.
This completes (i). For (ii), consider a common divisor d. Then, d | r0 = a and d | lc(b)−1b = r1.
This implies d | r0−q2r1 = r2. Apply this argument i−2 more times to get d | ri−1, as desired.

One could use this algorithm for R = Q[z1, . . . , zn]/T when T is radical and zero-dimensional.
However, this will lead to coefficient growth. Instead, we will use it over Zp := Z/pZ for a prime
number p. The details of the implementation will be given later, but the general idea is that every
non-zero element is a zero divisor or unit since R is a finite-dimensional Zp-algebra; and recursively
running the extended Euclidean algorithm with parameters lc(ri) and tn can be used for computing
lc(ri)

−1 and testing for invertibility.

4 The Modular Algorithm

The main content of this section is to fully present and show the correctness of our modular
algorithm. First, let’s suppose a zero divisor w over Q is found while running the algorithm. It will
be used to factor tk = uv mod 〈Tk−1〉 where u and v are monic with main variable zk. From here,
the algorithm proceeds to split T into T (u) and T (v) where tk is replaced with u in T (u) and tk is
replaced with v in T (v). Of course ti is reduced for i > k as well. The algorithm then continues
recursively. Once the recursive calls are finished, we could use the CRT to combine gcds into a
single gcd, but this would be very time consuming. Instead, it’s better to just return both gcds
along with the associated triangular sets. This approach is similar to Hubert’s in [10] which she
calls a pseudo-gcd. Here, we refer to this as a component-wise gcd, or c-gcd for short:

6

Definition 2. Let R be a commutative ring with unity such that R ∼=
∏r

i=1Ri and a, b ∈ R[x]. Let
πi : R → Ri be the natural projections. A component-wise gcd of a and b is a tuple (g1, . . . , gr) ∈∏r

i=1Ri[x] where each gi = gcd(πi(a), πi(b)) and lc(gi) is a unit.

The modular algorithm’s goal will be to compute c-gcd(a, b) given a, b ∈ R[x] where R =
Q[z1, . . . , zn]/T and T ⊂ Q[z1, . . . , zn] is a radical triangular set.

Section 4.1 will describe the primes the modular algorithm chooses. We have to make sure for
each prime chosen, the triangular set T remains radical modulo p. We will prove all but finitely
many prime numbers enjoy this property. Further, we will give an algorithm that can determine if
T remains radical modulo a prime p. Also, we need the the modular image of the gcd to be the gcd
of the modular images; i.e., we will need the chosen prime p to not be unlucky, see section 4.1.2.
We will prove finiteness in this case as well. In section 4.2, we give an overview of the modular
algorithm. It is based on Brown’s classical modular algorithm from [4] (see also [7, 8]), but care
has to be taken when zero divisors are encountered. In section 4.3, we discuss using Hensel lifting
for handling zero divisors. We give details of the algorithm as well as proofs. In section 4.4, we
consider Fault Tolerant Rational Reconstruction (FTRR) for handling zero divisors. This method
is based on a new algorithm by Abbott in [1]. We refer to the original article for the details of
FTRR. Proofs will be provided showing its correctness in our application.

4.1 Primes

4.1.1 Radical Primes

Consider a radical triangular set T ⊂ Q[z1, . . . , zn]. For many reasons, the modular algorithm will
cease to work if T doesn’t remain radical modulo a prime p. This leads to the definition of a radical
prime:

Definition 3. Let T ⊂ Q[z1, . . . , zn] be a radical triangular set. A prime number p is a radical prime
if p doesn’t appear as a denominator of any of the polynomials in T , and if T mod p ⊂ Zp[z1, . . . , zn]
remains radical.

Example 6. The triangular set {z21 − 3} is radical over Q. Since the discriminant of z21 − 3 is 12, it
follows that 2, 3 aren’t radical primes, but all other primes are.

If there were an infinite family of nonradical primes, it would present a problem for the algo-
rithm. The following proofs show this won’t happen.

Lemma 3. Let T ⊂ k[z1, . . . , zn] be a zero-dimensional triangular set over a perfect field k. Then
T is radical if and only if gcd(ti, t

′
i) = 1 (mod Ti−1) for all i.

Proof. (=⇒) Suppose Tj−1 is radical. Then, k[z1, . . . , zj]/Tj−1 ∼=
∏
Fi[zj] for some fields Fi. Let

tj 7→ (tji) and gi = gcd(tji, t
′
ji) over Fi. We claim all gi are units. If any gi weren’t a unit, then

Fi[zj]/tji would contain a nilpotent element because tji wouldn’t be square-free. However, Tj is
radical and so k[z1, . . . , zj]/Tj ∼=

∏
Fi[zj]/tji contains no nilpotents. Well, g 7→ (gi) would then also

be a unit as well as a gcd of tj and t′j modulo Tj−1. Since gcds divide each other, gcd(tj , t
′
j) = 1

(mod Tj−1).
(⇐=) Proceed by induction on n. If n = 1 we have gcd(t1, t

′
1) = 1 in Q[z1] which implies t1

is square-free hence T1 = {t1} is radical. The induction hypothesis asserts Tn−1 is radical, and
so Q[z1, . . . , zn−1/Tn−1 ∼=

∏
Fi where Fi are finite extensions of k, and hence perfect as well. Let

tn 7→ (tni) under this isomorphism. Let gi = gcd(tni, t
′
ni) over Fi and g 7→ (gi). Then, g would be

a common divisor of gcd(tn, t
′
n) = 1 and so g is a unit. Since homomorphisms preserve units, gi is

a unit and we may assume gi = 1. It follows that tni is square-free because Fi is a perfect field.

7

Then, Fi[zn]/tni contains no nilpotent elements, and so k[z1, . . . , zn]/T ∼=
∏
Fi[zn]/tni contains no

nilpotents as well.

Theorem 2. Let T ⊂ Q[z1, . . . , zn] be a radical, zero-dimensional triangular set. All but finitely
many primes are radical primes.

Proof. By Lemma 3, gcd(ti, t
′
i) = 1. By the extended Euclidean representation (Corollary 2), there

exist polynomials Ai, Bi ∈ (Q[z1, . . . , zi−1]/Ti−1)[zi] where Aiti + Bit
′
i = 1 mod 〈Ti−1〉. Take any

prime p that doesn’t divide the denominator of any Ai, Bi, ti, t
′
i. This means one can reduce this

equation modulo p and so Aiti + Bit
′
i mod 〈Ti−1, p〉. This implies gcd(ti, t

′
i) = 1 mod 〈Ti−1, p〉

and so T remains radical modulo p by Lemma 3. There are only a finite amount of primes that
divide the denominator of any of these polynomials.

Lemma 3 also gives the main idea of an algorithm to test if a prime is radical:

Algorithm 2: isRadical

Input : A zero-dimensional, radical triangular set T ⊂ Q[z1, . . . , zn] and a prime number p
where p 6 | den(T).

Output: A boolean indicating if T remains radical modulo p, or a zero divisor.
1 for i = 1, . . . , n do

2 dt := ∂
∂zi
T [i];

3 g := gcd(T [i], dt) over Zp[z1, . . . , zi]/Ti−1;
4 if g = ZERODIVISOR(u) then return ZERODIVISOR(u);
5 if g 6= 1 then return False;

6 end
7 return True;

4.1.2 Unlucky Primes

As with all modular algorithms, it’s possible that some primes are unlucky. We also prove this only
happens for a finite amount of cases.

Definition 4. Let T ⊂ Q[z1, . . . , zn] be a radical triangular set, and R = Q[z1, . . . , zn]/T . Let
a, b ∈ R[x] and g = c-gcd(a, b). A prime number p is an unlucky prime if g doesn’t remain a
componentwise greatest common divisor of a and b modulo p. Additionally, a prime is bad if the it
divides any denominator in T , any denominator in a or b, or if lc(a) or lc(b) vanishes modulo p.

Theorem 3. Let T ⊂ Q[z1, . . . , zn] be a radical triangular set, and R = Q[z1, . . . , zn]/T . Let
a, b ∈ R[x] and g = c-gcd(a, b). Only finitely many primes are unlucky.

Proof. Let R[x] ∼=
∏
Ri[x] where (gi) = c-gcd(a, b) ∈ Ri[x]. Let a 7→ (ai) and b 7→ (bi). If

gi = 0, then ai = 0 and bi = 0 and no primes are unlucky since, gcd(0, 0) ≡ 0 (mod p). Suppose
gi = gcd(ai, bi) is nonzero and monic. Let ai and bi be the cofactors ai = giai and bi = gibi. I
claim gcd(ai, bi) = 1. To show this, consider a common divisor f of ai and bi. Note that fgi | ai
and fgi | bi. Since gi = gcd(ai, bi), it follows that fgi | gi; so there exists q ∈ Ri[x] where fgiq = gi.
Rewrite this equation as (fq− 1)gi = 0. Well, gi is monic in x, and so can’t be a zero divisor. This
implies fq − 1 = 0 and so indeed f is a unit. Thus, gcd(ai, bi) = 1. By the extended Euclidean
representation (Corollary 2), there exists Ai, Bi ∈ Ri[x] where aiAi + biBi = 1.

8

Let p be a prime where p doesn’t divide any of the denominators in ai, ai, Ai, bi, bi, Bi, gi. Then,
we can reduce the equations

aiAi + biBi = 1 (mod p) (1)

ai = giai (mod p), bi = gibi (mod p). (2)

We will now show that gi = gcd(ai, bi) (mod p). By (2), we get gi is a common divisor of ai
and bi. Consider a common divisor c of ai and bi. Multiplying equation (1) through by gi gives
aiAi + biBi = gi. Clearly, c | gi. Thus, gi is indeed a greatest common divisor of ai and bi. As
there are finitely many primes that can divide the denominators of fractions in the polynomials
ai, ai, Ai, bi, bi, Bi, gi, there are indeed finitely many unlucky primes.

4.2 The Modular Algorithm

This main content of this section is Algorithm ModularC-GCD. It has Monagan and van Hoeij’s al-
gorithm as its backbone but handles zero divisors differently. This is because we have to account for
the case where the Euclidean algorithm over Q encounters a zero divisor. We will give two ways to
handle this zero divisor problem later, for now we leave a blackbox algorithm HandleZeroDivisor(u)
that gives ModularC-GCD instructions on how to proceed.

Example 7. This example illustrates how the IsRadical function can run into a zero divisor. Consider
T = {z21 − 1, z22 + 2(z1 − 1)z2 + 1}. We will be running the algorithm over Q. First, it would
determine that T1 = {z21 − 1} is radical. Now, when it is running the Euclidean algorithm on
t2 = z22 + 2(z1 − 1)z2 + 1 and t′2 = 2z2 + 2(z1 − 1), the first remainder would be (z1 − 1)z2 + 1.
However, z1 − 1 is a zero divisor, so the algorithm would output ZERODIVISOR(z1 − 1). This
same zero divisor will show up for every prime besides 2. This explains why we can’t just simply
pick a new prime in Algorithm ModularC-GCD if IsRadical encounters a zero divisor.

The crux of ModularC-GCD is an algorithm to compute gcd(a, b) for two polynomials a, b ∈
(Zp[z1, . . . , zn]/T)[x]. The algorithm we’ll be using for this is EuclideanC-GCD. It is a variant of
the monic Euclidean algorithm. For computing inverses, the Extended Euclidean algorithm (EEA)
can be used; modifying EuclideanC-GCD to do this is straightforward.

A short discussion about the zero divisors that may appear is warranted. To compute an
inverse, the modular algorithm will be using the Extended Euclidean algorithm. The first step
would be to invert a leading coefficient u of some polynomial. This requires a recursive call to
ExtendedEuclideanC-GCD(u, tk) mod 〈Tk−1〉 where zk = mvar(u). If u isn’t monic, then it would
again attempt to invert lc(u). Because of the recursive nature, it will keep inverting leading coef-
ficients until it succeeds or a monic zero divisor is found. The main point is that we may assume
that the zero divisors encountered are monic.

4.3 Zero-Divisors: Hensel Lifting

The main content of this section will be to show how a variant of Hensel lifting can be used for
handling the zero divisor problem. First, section 4.3.1 will show that Hensel lifting can be done in
the given ring. Next, section 4.3.2 will give the idea for using it to solve the zero divisor problem
and a proof of correctness.

4.3.1 Hensel Lifting

A general factorization ab = f (mod p) for a, b, f ∈ R[x] will not be liftable. Certain conditions are
needed for both existence and uniqueness of each lifting step. For one, we will need gcd(a, b) = 1

9

Algorithm 3: ModularC-GCD

Input : A zero-dimensional, radical triangular set T ⊂ Q[z1, . . . , zn] and two polynomials
a, b ∈ R[x] where R = Q[z1, . . . , zn]/T . Assume deg(a) ≥ deg(b) ≥ 0.

Output: A tuple consisting of comaximal triangular sets T (i) such that T =
⋂
T (i) and

gi = gcd(a, b) mod 〈T (i)〉 where gi = 0 or lc(gi) is a unit.
1 Initialize dg := deg(b), P = 1;
2 Main Loop: Pick a prime p that isn’t bad (see Definition 4);
3 Test if p is a radical prime: B := isRadical(T, p);
4 if B =ZERODIVISOR(u) then
5 Call HandleZeroDivisor(u) and react accordingly;
6 else if B =False then
7 Pick a new prime: Go to Main Loop;
8 end
9 Set g := gcd(a, b) mod 〈T, p〉 using algorithm MonicEuclideanAlgorithm;

10 if g =ZERODIVISOR(u) then
11 Call HandleZeroDivisor(u) and react accordingly;
12 else
13 if deg(g) = dg then
14 The chosen prime seems to be lucky;
15 Use CRT to combine g other gcds (if any), store the result in G and set P := P × p;
16 else if deg(g) > dg then
17 The chosen prime was unlucky, discard g;
18 Pick a new prime: Go to Main Loop;

19 else if deg(g) < dg then
20 All previous primes were unlucky, discard G;
21 Set G := g and P := p;

22 end
23 Set h :=RationalReconstruction(G (mod P));
24 if h 6= FAIL and h | a and h | b then return (T, h);
25 Pick a new prime: Go to Main Loop;

26 end

Algorithm 4: EuclideanC-GCD

Input : A zero-dimensional, radical triangular set T ⊂ k[z1, . . . , zn] and two polynomials
a, b ∈ R[x] where R = k[z1, . . . , zn]/T . Assume deg(a) ≥ deg(b) ≥ 0.

Output: Either gcd(a, b) (mod T) or a zero divisor.
1 Initialize r0 := a, r1 := b and i := 1;
2 while ri 6= 0 do
3 Compute s := lc(ri)

−1 mod 〈Tk−1〉 using the EEA;
4 if s = ZERODIVISOR(u) then return ZERODIVISOR(u) else ri := s× ri;
5 Let ri+1 be the remainder of ri−1 divided by ri;
6 i = i+ 1;

7 end
8 return ri−1

10

(mod p) as is required in the case with no extensions to satisfy existence. Further, we will need
both a and b to be monic to satisfy uniqueness. The following lemma gives a uniqueness criteria
to the extended Euclidean representation. It is a generalization of theorem 26 in Geddes, Czapor,
Labahn [8] from F [x] to R[x].

Lemma 4. Let T ⊂ k[z1, . . . , zn] be a radical, zero-dimensional triangular set andR = k[z1, . . . , zn]/T .
Let a, b ∈ R[x] be nonzero and monic with 1 = gcd(a, b). Then, for any polynomial c ∈ R[x], there
exist unique polynomials σ, τ ∈ R[x] such that

aσ + bτ = c, deg(σ) < deg(b).

Proof. Existence: By Corollary 2, there exist polynomials A,B satisfying aA+bB = 1. Multiplying
through by c gives a(cA) + b(cB) = c. Dividing cA by b, which we can do since b is monic, gives
cA = qb+ r with r = 0 or deg(r) < deg(b). Define σ = r and τ = cB + qa. Observe that

aσ + bτ = ar + b(cB + qa) = ar + bcB + abq = a(r + bq) + bcB = acA+ bcB = c(aA+ bB) = c

thus σ and τ satisfy the conditions of the Lemma. Uniqueness: Suppose both pairs σ1, τ1 and σ2, τ2
satisfy aσi + bτi = c with the desired degree constraint. This yields

(σ1 − σ2)a = b(τ2 − τ1).

Since gcd(a, b) = 1, it follows that b | σ1−σ2. However, since b is monic and deg(σ1−σ2) < deg(b),
this is only possible if σ1−σ2 = 0. Thus 0 = b(τ2− τ1). Next, since b is not a zero divisor (because
it’s monic), this can only happen if τ2 − τ1 = 0 as well.

We’re also particularly interested in trying to factor tn modulo Tn−1. That’s because a zero
divisor leads to such a factorization. That is, if w is a zero divisor with main variable zn, we can
write u = gcd(tn, w) and then tn = uv mod 〈Tn−1〉 by the division algorithm. We know u 6= 1
since w is a zero divisor. As long as T is radical, the next lemma shows we automatically get
gcd(u, v) = 1.

Lemma 5. Let T ⊂ k[z1, . . . , zn] be a radical, zero-dimensional triangular set. Suppose uv ≡ tn
(mod Tn−1). Then, 1 = gcd(u, v) (mod Tn−1).

Proof. Let u = ug (mod Tn−1) and v = vg (mod Tn−1). Note that tn ≡ uvg2 (mod Tn−1). This
would imply (uvg)2 ≡ 0 (mod T); that is, uvg is a nilpotent element. However, since nilpotent
elements don’t exist modulo a radical ideal, uvg ≡ 0 (mod T). This would imply uvg ≡ qtn
(mod Tn−1) for some polynomial q. Then,

(gq − 1)tn ≡ gqtn − tn ≡ guvg − tn ≡ 0 (mod Tn−1).

Since tn is monic in zn, it can’t be a zero divisor modulo Tn−1. Therefore, gq− 1 ≡ 0 (mod Tn−1).
Thus, g is a unit modulo Tn−1 and so indeed 1 = gcd(u, v) (mod Tn−1).

Finally, the next proposition shows that lifting is possible. The proof given is simply the Hensel
construction.

Proposition 7. Let T ⊂ Zp[z1, . . . , zn] be a zero-dimensional, radical triangular set with p a prime
number. Suppose tn ≡ u0v0 (mod Tn−1, p) where u0 and v0 are monic. Then, there exist unique
monic polynomials uk, vk such that tn ≡ ukvk mod 〈Tn−1, pk〉 and uk ≡ u0 mod 〈Tn−1, p〉 and
vk ≡ v0 mod 〈Tn−1, p〉 for all k ≥ 1.

11

Proof. Work by induction on k. The base case is clear. For the inductive step, we want to be able
to write uk = uk−1 + pk−1a mod 〈Tn−1, pk〉 and vk = vk−1 + pk−1b mod 〈Tn−1, pk〉 satisfying

tn ≡ ukvk mod 〈Tn−1, pk〉.

Multiplying out uk, vk gives

tn ≡ ukvk ≡ uk−1vk−1 + pk−1(avk−1 + buk−1) mod 〈Tn−1, pk〉.

Subtracting uk−1vk−1 on both sides and dividing through by pk−1 gives

tn − uk−1vk−1
pk−1

≡ av0 + bu0 mod 〈Tn−1, p〉.

Note that gcd(u0, v0) = 1 mod 〈Tn−1, p〉. Let c =
tn−uk−1vk−1

pk−1 . By Lemma 4, there exists unique

polynomials σ, τ such that u0σ + v0τ ≡ c mod 〈Tn−1, p〉 with deg(σ) < deg(v0) and deg(τ) <
deg(u0) since certainly deg(c) = deg(tn − uk−1vk−1) < deg(tn) = deg(u0) + deg(v0). Set a = τ and
b = σ. Because of these degree constraints, uk = uk−1 + apk−1 has the same leading coefficient as
uk−1 and hence u0; in particular uk is monic. Similarly, vk is monic as well. By uniqueness of σ
and τ , we get uniqueness of uk and vk.

What follows is the formal presentation of the Hensel construction. Algorithm HenselLift takes
input u0, v0, f ∈ R/〈p〉[x] where u0, v0 are monic and f = u0v0 (mod p). It also requires a bound
B that’s used to notify termination of the Hensel construction and output FAIL. The HenselLift
algorithm can also output ZERODIVISOR(u) if it encounters a zero divisor u ∈ R/〈p〉 in the course
of its run.

Algorithm 5: HenselLift

Input : A zero-dimensional, radical triangular set T ⊂ Q[z1, . . . , zn], a radical prime p,
polynomials f ∈ R[x] and a0, b0 ∈ R/〈p〉[x] where R = Q[z1, . . . , zn]/T , and a
bound B. Further, assume f ≡ a0b0 (mod p) and gcd(a0, b0) = 1.

Output: Either polynomials a, b ∈ R[x] where f = ab, FAIL if the bound B is reached, or
ZERODIVISOR(w) if a zero divisor w ∈ R/〈p〉 is encountered.

1 Solve sa0 + tb0 = 1 using the Monic extended Euclidean algorithm for s, t ∈ R/〈p〉[x];
2 if a zero divisor w is encountered then return ZERODIVISOR(w);
3 Initialize u = a0, v = b0 and lift u and v from R/〈p〉 to R;
4 for i = 1, 2, . . . do
5 Apply rational reconstruction mod pi to the coefficients of u;
6 if rational reconstruction succeeded with output a and a|f in R[x] then return (a,f/a);
7 if pi > 2B then return FAIL;
8 Compute e := f − uv in R[x];
9 Set c := (e/pi) mod p ;

10 Solve σa0 + τb0 = c for σ, τ ∈ R/〈p〉[x] using sa0 + tb0 = 1;
11 Lift σ and τ from R/〈p〉 to R and set u := u+ τpi and v := v + σpi;

12 end

In general f will have fractions thus the error e in our Hensel lifting algorithm will also have
fractions and hence it can never become 0. Note the size of the rational coefficients of e grow linearly
with i as f is fixed and the magnitude of the integer coefficients in the product uv is bounded by
p2i(1 + deg u).

12

The standard implementation of Hensel lifting requires a bound on the coefficients of the factors
of the polynomial f ∈ R[x]. For the base case n = 0 where R[x] = Q[x] one can use the Mignotte
bound (see [7]). For the case n = 1 Weinberger and Rothschild [15] give a bound but note that it is
large. We do not know of any bounds for the general case n > 1. Therefore a more “engineering”
based approach is suitable. Since we do not know whether the input zero divisor a0 is the image
of a monic factor of f , we repeat the Hensel lifting each time a zero divisor is encountered in
our modular GCD algorithm, first using a bound of 260, then 2120, then 2240 and so on, until the
rational coefficients of any monic factor of f can be recovered using rational number reconstruction.
In section 4.4 we prove that the Euclidean algorithm over Q agrees with the Euclidean algorithm
modulo a prime for all but finitely many primes, which is enough to show that this strategy
terminates.

4.3.2 Lifting Zero-Divisors

The prime application of Hensel lifting will be as a solution to the zero divisor problem. Suppose
that we’re using the Hensel construction on the factorization tn = uv mod 〈Tn−1, p〉. Part of the
Hensel construction is running the extended Euclidean algorithm (see Step 1). It’s possible that a
new zero divisor is encountered. This has to be accounted for.

Algorithm 6: HandleZeroDivisorHensel

Input : A zero-dimensional, radical triangular set T ⊂ k[z1, . . . , zn] and a zero divisor
u0 ∈ R where R = k[z1, . . . , zn]/T . Assume mvar(u) = n.

Output: A message telling ModularC-GCD what to do and any important parameters;
1 Set v0 :=Quotient(tn, u0) (mod Tn−1, p);
2 if v0 = ZERODIVISOR(w) then return HandleZeroDivisorHensel(w);
3 if the global variable B is unassigned then set B := 260 else set B := B2;
4 Set u, v :=HenselLift(tn, u0, v0, B);
5 if u = ZERODIVISOR(w) then
6 return HandleZeroDivisorHensel(w)
7 else if u =FAIL then
8 Tell ModularC-GCD to pick a new prime;
9 else

10 Create two new triangular sets T (u) and T (v) where tn is replaced by u and v;

11 Tell ModularC-GCD to recursively compute c-gcd(a, b) modulo T (u) and T (v);

12 end

Now that all algorithms have been given, the following series of lemmatta leads to a proof of
correctness for ModularC-GCD.

Lemma 6. Let R = k[z1, . . . , zn]/T where T is a radical zero-dimensional triangular set and let
a, b ∈ R[x]. If g = gcd(a, b) is monic, any other gcd(a, b) has the same degree. In particular, g is
the unique monic gcd(a, b).

Proof. Let h be a gcd(a, b). Then, h | g and g | h. This implies the existence of u, v where hu = g
and gv = h. Basic algebraic manipulation gives g(uv − 1) = 0. Since g is monic, it can’t be a
zero divisor. Therefore, v is a unit and so degx(v) = 0 by Lemma 2. Thus, degx(h) = degx(g). In
particular, if h were monic, then v = 1 by comparing leading coefficients of gv = h.

13

Lemma 7. Let R = Q[z1, . . . , zn]/T where T is a radical zero-dimensional triangular set. Put
a, b ∈ R[x]. Suppose p is a radical prime and denom(a)denom(b)denom(T)lc(a)lc(b) 6≡ 0 (mod p).
Let g = gcd(a, b) over Q be monic, and let gp = gcd(a, b) (mod p). Then, degx(gp) ≥ degx(g).

Proof. Note that g | a and g | b. Let π : Z〈p〉 → Z/pZ be reduction by p. Then, we may reduce
these equations modulo p to get π(g) | π(a) and π(g) | π(b). This shows π(g) is a common divisor
of a and b modulo p. Therefore, π(g) | gp. Since g is monic, degx(g) = degx(π(g)) ≤ deg(gp).

Theorem 4. Let R = Q[z1, . . . , zn]/T where T is a radical zero-dimensional triangular set. Put
a, b ∈ R[x]. A finite number of zero divisors are encountered when running ModularC-GCD(a, b).

Proof. First, there are a finite number of non-radical primes. So we may assume that T remains
radical modulo any chosen prime. Second, consider (theoretically) running the Euclidean algorithm
over Q where we split the triangular set if a zero divisor is encountered. In this process, a finite
number of primes divide either denominators or leading coefficients; so we may assume the algorithm
isn’t choosing these primes without loss of generality.

We use induction on the degree of the extension δ = d1 · · · dn where di = mdeg(ti). If δ = 1,
then R = Q so no zero divisors occur. Now, suppose a prime p is chosen by the algorithm and a
zero divisor up is encountered modulo p at some point of the algorithm. This implies gcd(up, tk) 6≡ 1
mod 〈Tk−1, p〉. We may assume that up = gcd(up, tk) mod 〈Tk−1, p〉 and that up is monic; this is
because the Euclidean algorithm with error handling will only output such zero divisors. If up lifts
to a zero divisor over Q, the algorithm constructs two triangular sets, each with degree smaller than
δ. So by induction, a finite number of zero divisors occur in each recursive call. Now, suppose lifting
fails. This implies there is some polynomial u over Q that reduces to up modulo p and appears in
the theoretical run of the Euclidean algorithm over Q. Note that gcd(u, tk) = 1 mod 〈Tk−1〉 over
Q since we’re assuming the lifting failed. By Theorem 3, this happens for only a finite amount of
primes. Thus, a finite number of zero divisors are encountered.

Theorem 5. Let R = Q[z1, . . . , zn]/T where T is a radical zero-dimensional triangular set and let
a, b ∈ R[x]. The modular algorithm using Hensel lifting to handle zero divisors outputs a correct
c-gcd if run on a and b.

Proof. It is enough to prove this for a single component of the decomposition. In particular, let h
be the monic polynomial returned from the modular algorithm modulo a triangular set T . First,
we claim that running EuclideanC-GCD on a and b over Q terminates without encountering a zero
divisor. For if it did, the image of that zero divisor would be encountered modulo a prime p; this
is against our assumption of the modular algorithm returning a gcd in this particular component
of the decomposition. Now, let g = gcd(a, b) (mod T) be the monic polynomial that’s output from
running EuclideanC-GCD on a and b over Q. Since h passed the trial division, it follows that h | g.
Since g is monic, deg(h) ≥ deg(g) by Lemma 7, and deg(h) ≤ deg(g) since h | g. Therefore, h must
be an associate of g and so is a gcd of a and b.

4.3.3 Zero-Divisors: FTRR

When trying to recover a polynomial from Zp to Q, the techniques often employed in computer
algebra are Chinese remaindering and Hensel lifting. Using Chinese remaindering here is not
straightforward. To motivate, consider the following example:

Example 8. Consider the triangular set T = {z2 + 14z + 24} and polynomials a = x4 + x3 +
(z + 3)x2 + (z + 4)x + 3 z + 1 and b = x2 + x + z. The remainder of a divided by b modulo T
is (z + 1)x + 1. Here, z + 1 isn’t a zero divisor since z2 + 14z + 24 = (z + 2)(z + 12). But, if

14

we’re working modulo 11, it becomes a zero divisor. Any attempt at combining zero divisors using
Chinese remaindering would fail if p = 11 was one of the chosen primes.

Abbott’s new algorithm Fault Tolerant Rational Reconstruction (FTRR) in [1] circumvents this
problem. It can still find the desired value if there are enough correct images. In particular, we use
the heuristic algorithm HRR given in [1] which requires a 2-to-1 correct to incorrect images ratio.

Algorithm 7: HandleZeroDivisorHRR

Input : A zero-dimensional, radical triangular set Zp ⊂ k[z1, . . . , zn] and a zero divisor
u ∈ R where R = Zp[z1, . . . , zn]/T . Assume mvar(u) = n.

Output: A message telling modular cgcd what to do and any important parameters;
1 Use CRT to combine u with previous zero divisors (if any);
2 Set w :=HRR(u);
3 if w 6= FAIL and w | tn over Q then

4 Create two new triangular sets T (w) and T (v) where tn is replaced by w and v := tn/w;
5 return A message to ModularC-GCD instructing it to recursively compute c-gcd(a, b)

modulo T (w) and T (v);

6 end
7 return A message to ModularC-GCD instructing it to pick a new prime;

Proving this variant of the modular algorithm works is based entirely on the idea of the Euclidean
algorithm over Q agreeing with the Euclidean algorithm over Zp for all but finitely many primes.
We give a thorough proof of this.

Lemma 8. The Euclidean algorithm over Q agrees with the Euclidean algorithm modulo a prime
for all but finitely many primes.

Proof. The main idea is that the Euclidean algorithm only encounters a finite amount of prime
numbers. For a formal proof, see the Appendix.

Theorem 6. Let R = Q[z1, . . . , zn]/T where T is a radical zero-dimensional triangular set. Put
a, b ∈ R[x]. The modular algorithm using HRR to handle zero divisors outputs a correct c-gcd if
run on a and b.

Proof. The modular algorithm would eventually encounter a sufficient number of primes from the
infinite family of primes that agree with Q when running the Euclidean algorithm.

4.4 Implementation Notes and Closing Remarks

We have implemented both variants of the modular algorithm described above. We used Maple’s
RECDEN package. It provides a recursive dense data structure and support for polynomial com-
putation modulo a triangular set in characteristic 0 and p. Details of RECDEN can be found in
Monagan and van Hoeij’s paper [9].

Our software is available at http://www.cecm.sfu.ca/CAG/code/MODGCD. The reader will find
several examples there for running our algorithm. Whenever a zero divisor w is encountered in
one of our algorithms we generate an error (a non-local goto) containing u and catch it (using the
traperror command in Maple) in the main algorithm (ModularC-GCD) and process it there and
print a message.

The purpose of the following example is to illustrate the strengths and weaknesses of the two
ways of handling zero divisors. First, let’s consider Hensel lifting. Suppose u and v are zero divisors

15

over Q, and the Euclidean algorithm (when run over Q) encounters a leading coefficient v + pq.
Afterward, it then encounters the zero divisor u and stops. Here, if the modular algorithm chooses
p, it will encounter v. This will cause a lifting to occur and it will lift to the actual zero divisor v
and not u.

Example 9. This example illustrates a situation in which handling zero divisors with Hensel lifting
is superior to FTRR. Suppose we are working in Q[z1, z2][x]/T where T = {z21 + 1, z22 + 1} and we
want to compute gcd(a, b) where

a = 229x3 + (−182 + 19z1 − 17z2 + 2z1z2)x
2 + (−2z1z2 − 14z1 + 16z2 + 182)x+ 34,

b = (z1 − z2 + 15)x2 − 15x+ 15

via the monic Euclidean algorithm. Initialize r0 = a and r1 = b. First, it would determine that
(z1 − z2 + 15)−1 exists and proceed with Euclidean division giving

r3 = (z1 + z2)x− 11.

Next, it would try inverting z1 + z2 and determine that it’s a zero divisor. The algorithm would
then terminate with the error ZERODIVISOR(z1 + z2).

Now, if we were working over Z3, the first step would be try to invert z1+2z2 (mod 3). However,
this is a zero divisor too. Oddly enough, it does actually lift to a zero divisor over Q. The Hensel
lifting algorithm would compute this and proceed recursively. The FTRR algorithm would store
the zero divisor and proceed to the next prime. Assuming it chooses p = 5, it would again find
an earlier zero divisor z1 + 4z2 (mod 5). Next, any other prime will find the image of the zero
divisor z1 + z2 over Q. However, HRR will require at least 4 correct zero divisor images before it
can actually combine with the faulty ones.

There are of course situations when FTRR outperforms Hensel lifting. For instance, suppose
the Euclidean algorithm over Q doesn’t encounter a single divisor. It’s possible that a zero divisor
is encountered modulo a prime p. The FTRR would store the found zero divisor and move on the
next prime. However, Hensel lifting would attempt to lift the zero divisor, wasting time.

However, if our algorithm uses moderately large primes, say 63 bit primes on a 64 bit machine,
then the chance of hitting an unlucky prime or an unlucky zero divisor is very low. That is, if the
monic Euclidean algorithm when run modulo p it encounters a zero divisor, it is very likely the
image of a zero divisor over Q. Thus it is best to use the Hensel lifting approach to determine the
zero divisor over Q.

We note that if the Euclidean algorithm does not encounter a zero divisor over Q then the
additional cost of our algorithm over the modular GCD algorithm of Monagan and van Hoeij is
the cost of checking if the prime is a radical prime (Algorithm isRadical) which is small. For a
gcd problem with 3 extensions of degree 5, and for inputs a = gā and b = gb̄, we generated g, ā, b̄
of degree 5 in x, dense, with 10 digit random coefficients. Three 31 bit primes were sufficient to
recover g and less than 0.5% of the time was spent checking if the primes were radical.

References

[1] John Abbott. Fault-tolerant modular reconstruction of rational numbers. Journal of Symbolic
Computation Volume 80, pages 707− 718. May-June 2017.

[2] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets. J. Symb. Comp.,
28: 105− 124, 1999.

16

[3] S. Bosch. Algebraic Geometry and Commutative Algebra. Springer-Verlag London. 2013.

[4] W. S. Brown. On Euclid’s Algorithm and the Computation of Polynomial Greatest Common
Divisors. J. ACM 18: 478− 504. 1971.

[5] D. Cox, J. Little, D. O’Shea. Ideals, Varieties and Algorithms. Springer-Verlag, 1991.

[6] M. J. Encarnacion. Computing GCDs of Polynomials over Algebraic Number Fields, J. Symb.
Comp. 20: 299− 313, 1995.

[7] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, 3rd ed., Cambridge University
Press, 2013.

[8] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer, 1992.

[9] Mark van Hoeij and Michael Monagan, A modular GCD algorithm over number fields presented
with multiple extensions. Proceedings of ISSAC 02, ACM Press, pp. 109− 116. 2002.

[10] E. Hubert. Notes on Triangular Sets and Triangulation-Decomposition Algorithms I: Polyno-
mial Systems. In Symbolic and Numerical Scientific Computing edited by F. Winkler and U.
Langer. Lecture Notes in Computer Science 2630, pp. 1− 39. 2003.

[11] L. Langemyr, S. McCallum. The Computation of Polynomial GCDs over an Algebraic Number
Field, J. Symbolic Computation 8, pp. 429− 448. 1989.

[12] Xin Li, Marc Moreno Maza, and Wei Pan. Gcd computations modulo regular chains. Technical
report, Univ. Western Ontario. 2009.

[13] M. B. Monagan. Maximal Quotient Rational Reconstruction: An Almost Optimal Algorithm
for Rational Reconstruction. Proceedings of ISSAC ’2004, ACM Press, pp. 243–249, 2004.

[14] Paul S. Wang, M.J.T. Guy, and J.H. Davenport. P-adic reconstruction of rational numbers.
ACM SIGSAM Bulletin 16(2): 2–3, 1982.

[15] P.J. Weinberger and L.P. Rothschild. Factoring Polynomials over Algebraic Number Fields.
ACM Trans. on Math. Soft. 2(4): 335–350, 1976.

Appendix

Proposition 2. Suppose ψ : R → R1 × R2 is a ring isomorphism. Let π1, π2 be the canonical
projections R1 × R2 to R1, R2, respectively. Let a, b ∈ R and g1 = gcd(π1ψ(a), π1ψ(b)), g2 =
gcd(π2ψ(a), π2ψ(b)). Then, g = ψ−1(g1, g2) is a gcd of a and b.

Proof. There are two things to show: (i) g is a common divisor of a and b, (ii) any common divisor
d of a and b is a divisor of g. For (i), note that g1q1 = π1ψ(a) for some q1 ∈ R1, and g2q2 = π2ψ(a)
for some q2 ∈ R2. Then,

a = ψ−1(π1ψ(a), π2ψ(a)) = ψ−1(g1q1, g2q2) = ψ−1(g1, g2)ψ
−1(q1, q2) = gq

where q = ψ−1(q1, q2). This shows g | a, and similarly g | b. For (ii), consider d ∈ R where
d | a and d | b. Then, πiψ(d) | πiψ(a) and πiψ(d) | πiψ(b) since πi, ψ are homomorphisms. By

17

properties of greatest common divisors, d | g1 and d | g2. Then, there exists (q1, q2) ∈ R1 × R2

where (g1, g2) = (π1ψ(d)q1, π2ψ(d)q2). Next,

g = ψ−1(g1, g2) = ψ−1(π1ψ(d)q1, π2ψ(d)q2) = ψ−1(π1ψ(d), π2ψ(d))ψ−1(q1, q2) = dq

where q = ψ−1(q1, q2). This shows d | g, and hence g = gcd(a, b).

Theorem 1. Let T ⊆ k[z1, . . . , zn] be a triangular set and I = 〈T 〉. Then, k[z1, . . . , zn]/I is
isomorphic to a direct product of fields if and only if I zero-dimensional and radical.

Proof. (⇐=) Induct on the number of variables n. Our induction hypothesis will give more details
on the fields that occur:

Induction hypothesis: Let S ⊆ k[z1, . . . , zn−1] be a triangular set. Then, k[z1, . . . , zn−1]/〈S〉
is isomorphic to a direct product of fields if and only if 〈S〉 is zero-dimensional and rad-
ical. Further, the fields are of the form k[z1, . . . , zn−1]/〈P 〉 where P is a triangular set
made up of polynomials mi where mvar(mi) = zi and zi divides the polynomial in T
with main variable zi.

If n = 1, use the previous proposition. Let J = I∩k[z1, . . . , zn−1], an ideal of k[z1, . . . , zn−1]. I claim
J is radical. To see this, suppose gk ∈ J . Then, gk ∈ I which implies g ∈ I by I being radical. Also,
g ∈ k[z1, . . . , zn−1] by assumption. Therefore, g ∈ J . I also claim that V(J) is finite. To verify,
if V(J) were infinite, then we could extend zeros of J to zeros of I. So, k[z1, . . . , zn−1]/J ∼=

∏
Fi

where Fi are as in the induction hypothesis. Then,

(k[z1, . . . , zn−1]/J)[zn] ∼= (
∏

Fi)[zn] =
∏

Fi[zn].

Recall that f ∈ T is the polynomial with mvar(f) = zn. Observe that

k[z1, . . . , zn]/I = (k[z1, . . . , zn−1]/J)[zn]/f ∼= (
∏

Fi[zn])/f ∼=
∏

Fi[zn]/f

where we are assuming that f is reduced appropriately in Fi. I claim that f is square-free and
nonzero in Fi[zn]. If f evaluated to 0 in Fi, then taking the roots associated to the field Fi and
any other field element for zn would produce infinitely many zeros for V (T), which contradicts the
finiteness assumption. Next, if f weren’t square-free, there would be some gk | f in Fi and so
(0, . . . , g, . . . , 0), where g is in the ith coordinate, would be nilpotent. This implies k[z1, . . . , zn]/I
has a nilpotent element, contradicting that I is radical. Thus, by the previous theorem each Fi[zn]/f
will be isomorphic to a product of fields by the previous proposition. This completes the inductive
step and this direction of the proof.

(=⇒) Since k[z1, . . . , zn]/I ∼=
∏
Fi is isomorphic to a direct product of fields, it will have no

nilpotent elements. Therefore, I is radical. Any subfield of k[z1, . . . , zn]/I will be of the form
k[z1, . . . , zn]/〈f1, . . . , fk〉 for some polynomials fi ∈ k[z1, . . . , zn]. Therefore, it will be a finitely
generated algebraic extension of k, and hence a finite extension. Since each of fields Fi will be
finite extensions, we can view k[z1, . . . , zn]/I as a k-vector space of finite dimension. Therefore, by
Theorem 6 on page 234 of Ideals, Varieties, and Algorithms, V (T) is finite.

Lemma 8. The Euclidean algorithm over Q agrees with the Euclidean algorithm modulo a prime
for all but finitely many primes.

18

Proof. Note that the Euclidean algorithm consists of a finite amount of divisions; so it enough to
show that a single division over Q agrees with a single division modulo all but finitely many primes.
In symbols, let a, b ∈ R[x] with degx(b) ≤ degx(a) and remainder r when a is divided by b. Work
by induction on n, the number of extensions. Consider the base case n = 0. Let a = bq + r and
p be a prime number. As long as p doesn’t divide any of the relevant denominators, this equation
can be reduced modulo p. Further, if p 6 | lc(b), then deg(r mod p) < deg(b mod p). Since there
are finitely many primes that cause these issues, the base case is satisfied. Now consider the nth
case. In the process of dividing a by b over Q, numerous smaller degree divisions must be done,
in particular, they all only use n− 1 or less extensions. Use the induction hypothesis here to rule
out a set of finitely many primes S. Take a prime number p 6∈ S. If a zero divisor is encountered
in one of the smaller divisions, the algorithm would terminate both over Q and Zp with the same
zero divisor after reduction modulo p. So suppose no zero divisors are encountered in any of these
smaller divisions. In particular, lc(b) is a unit over Q and Zp. Next, degx(b mod p) < degx(b) is
only true for primes p | lc(b), which happens for finitely many primes. We may safely disregard
these. After that, the uniqueness of remainders establishes that the remainders are the same after
reduction by p.

19

