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Introduction

Let A be an n×n matrix of integers. In this paper we present details of our Maple implementation
of a modular method for computing c(x), the characteristic polynomial of A. Our implementation
considers several different representations for the primes, including the use of double precision floats.
The algorithm presently implemented in Maple releases 7–9 is the Berkowitz algorithm [2, 1]. We
present some timings comparing the two methods on a 364×364 matrix arising from an application
in combinatorics from Quaintance [6].

One way to compute the characteristic polynomial of A is to evaluate the characteristic matrix
at n points, compute n determinants of integer matrices, then interpolate to obtain the character-
istic polynomial. The determinants of the integer matrices can be computed using a fraction-free
Gaussian elimination algorithm (see Chapter 9 of Geddes et. al [4]) in O(n3) integer multiplications
and divisions. This approach will lead to an algorithm that requires O(n4) integer operations.

Another algorithm is the “Berkowitz” algorithm [2]. It is a division free algorithm and thus
can be used to compute the characteristic polynomial of a matrix over any commutative ring R.
It does O(n4) multiplications in R. In [1], Abdeljaoued described a Maple implementation of a
sequential version of the Berkowitz algorithm and compared it with the interpolation method and
other methods. His implementation improves with sparsity to O(n3) multiplications when the
matrix has O(n) non-zero entries.

A Modular Algorithm

The modular algorithm we have implemented computes the characteristic polynomial of A modulo
a sequence of machine primes p1, p2, ... and applies the Chinese remainder theorem to reconstruct
the coefficients of the characteristic polynomial. For each prime p it computes the characteris-
tic polynomial modulo p via the Hessenberg matrix in O(n3) arithmetic operations in Zp. The
algorithm is described in Chapter 2 of Cohen’s book. See [3].

Consider a sequence of k machine primes p1, p2, . . . , pk, where 2 < pi < B. B should be chosen
small enough such that B2 fits into a single register, so arithmetic operations in Zp can be done
directly by the hardware, but also large enough so that we don’t require too many primes. Therefore,
we let B = �√231 − 1� for 32-bit integers, B = �√263 − 1� for 64-bit integers, and B = �√252 − 1�
for 64-bit floating point representations.
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Algorithm:

1. Compute a bound M for the size of coefficients of c(x).

2. Choose k machine primes p1, p2, . . . , pk < B such that
∏k

i=1 pi > 2M .

3. for i = 1 to k do

(a) Ai ← A mod pi.

(b) Compute ci(x) — the characteristic polynomial of Ai over Zpi .

4. Apply the Chinese remainder theorem to reconstruct c(x) from the ci(x)’s.

Implementation Details and Timings

In order to improve the running time of our algorithm, we’ve implemented the Hessenberg algorithm
over Zpi in the C programming language and the rest of the algorithm in Maple. We used the Maple
foreign function interface to call the C code. See [5]. We’ve implemented both the 32-bit integer
version and 64-bit integer versions, and also several versions using 64-bit double precision floating
point values for comparison.

The following table consists of some timings of our modular Hessenberg algorithm for a sparse
364 × 364 input matrix arising from an application in combinatorics. See [6]:

Representation of values time (secs)1 time (secs)2 time (secs)3

1. 64-bit integer 132.4 100.7 109.7
2. 32-bit integer 48.2 68.4 45.7
3. 64-bit float using fmod() 58.7 22.3 140.9
4. 64-bit float using floor() with fix 46.2 42.2 49.8
5. 64-bit float using floor() without fix 38.8 36.3 42.0
6. Berkowitz algorithm 2470.2 2053.6 1886.2

Explanations of the different representations of values:

1. The 64-bit integer version is implemented using the long long int datatype in C, or equivalently
the integer[8] datatype in Maple. All modular arithmetic is first being done by executing the
corresponding operation, then taking the result mod p because we work in Zp. In order to
compute the inverses mod p, we have implemented the half extended Euclidean Algorithm in
C.

2. The 32-bit integer version is similar, but implemented using the long int datatype in C, or
equivalently the integer[4] datatype in Maple.

3. The 64-bit float using fmod() version is implemented using the double datatype in C, or
equivalently the float[8] datatype in Maple. This works because floating point numbers are
stored as mantissa and exponent, thus any integer a with a2 ≤ B2 can be represented exactly
as a 64-bit floating point number. Operations such as additions, subtractions, multiplications
are followed by a call to fmod() to reduce the results mod p, since we are working in Zp.

1Intel Xeon 2.0 GHz 32-bit processor
2Operon 246 2.0 GHz 64-bit processor
3Optipex Pentium IV 3 GHz 32-bit processor
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4. The 64-bit float using floor() with fix version is similar to above, but uses floor() instead of
fmod(). To compute b ← a mod p, we first compute c ← a − p × �a/p�, then b ← c if c �= p,
b← 0 otherwise.

5. The 64-bit float using floor() without fix vision is similar to above, but does not do the
extra check for equality to p at the end. So to compute b ← a mod p, we actually compute
b← a− p× �a/p�, which results in 0 ≤ b ≤ p.

Asymptotic Comparison of the Methods

Let A be an n × n matrix of integers. To compare the running times of the two algorithms, we
suppose that the entries of A are bounded by Bm in magnitude, that is, they are m base B digits
in length. For both algorithms, we need a bound on the size of the coefficients of the characteristic
polynomial c(x). A generic bound on the size of the determinant of A is sufficient since this is the
largest coefficient of c(x). The magnitude of the determinant of A is bounded by M = n!Bmn and
its length is bounded by n logB n + mn base B digits. If B > 215 then we may assume logB n < 2
in practice and hence the length of the determinant is O(mn) base B digits.

In Berkowitz’s algorithm, the O(n4) integer multiplications are on integers of average size O(mn)
digits in length, hence the complexity (assuming classical integer arithmetic is used) is O(n4(mn)2).
Since Maple 9 uses the FFT for integer multiplication and division, the complexity is reduced to
Õ(n5m).

In the modular algorithm, we will need O(mn) machine primes. The cost of reducing the n2

integers in A modulo one prime is O(mn2). The cost of computing the characteristic polynomial
modulo each prime p is O(n3). The cost of the Chinese remaindering assuming a classical method
for the Chinese remainder algorithm (which is what Maple uses) is O(n(mn)2). Thus the total
complexity is O(mnmn2 + mnn3 + n(mn)2) = O(m2n3 + mn4).
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