
On Factorization of Multivariate Polynomials over
Algebraic Number and Function Fields ∗

Seyed Mohammad Mahdi Javadi
School of Computing Science

Simon Fraser University
Burnaby, B.C. Canada.

sjavadi@cecm.sfu.ca.

Michael Monagan
Department of Mathematics

Simon Fraser University
Burnaby, B.C. Canada.

mmonagan@cecm.sfu.ca.

ABSTRACT
We present an efficient algorithm for factoring a multivari-
ate polynomial f ∈ L[x1, . . . , xv] where L is an algebraic
function field with k ≥ 0 parameters and r ≥ 0 field ex-
tensions. Our algorithm uses Hensel lifting and extends the
EEZ algorithm of Wang which is designed for factorization
over rationals. We also give a multivariate p-adic lifting al-
gorithm which uses sparse interpolation. This enables us to
avoid using poor bounds on the size of the integer coefficients
in the factorization of f when using Hensel lifting.

We have implemented our algorithm in Maple 13. We pro-
vide timings demonstrating the efficiency of our algorithm.

1. INTRODUCTION
In a computer algebra system, computations with polyno-

mials over algebraic function fields such as computing GCDs
and factorization arise, for example, when one solves non-
linear polynomial equations involving parameters.

One way to factor f is to use Trager’s algorithm [?]. His
algorithm computes and factors the norm(f) which is a poly-
nomial in x1, . . . , xv over Q(t1, . . . , tk) where t1, . . . , tk are
parameters. Trager’s algorithm exploits the fact that if fi | f
then hi = norm(fi) | norm(f) and hi is an irreducible factor
of norm(f) if and only if fi = gcd(f, hi) is an irreducible
factor of f . One problem is that the norm(f) can be much
larger than f . For example the norm of

f =
19

2
c24−
√

11
√

5
√

2c5c4−2
√

5c1c2−6
√

2c3c4+
3

2
c20+

23

2
c25+

7

2
c21−
√

7
√

3
√

2c3c2 +
11

2
c22−
√

3
√

2c0c1 +
15

2
c23−

10681741

1985
,

is degree 64 in c0, c1, c2, c3, c4, c5 and has about 3 million
terms and the integers in the rational coefficients have over
200 digits so it is not easy to compute norm(f) let alone
factor it. Here L = Q(

√
2,
√

3,
√

5,
√

7,
√

11) is a number

∗Supported by NSERC of Canada and the MITACS NCE
of Canada

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’09, July 28–31, 2009, Seoul, Korea.
Copyright 2009 ACM X-XXXXX-XXX-X/XX/XXXX ...$5.00.

field and f ∈ L[c0, . . . , c5]. But we can easily prove that f
is irreducible by evaluating the variables c0, . . . , c4 at small
integers and then using Trager’s algorithm. In this paper we
generalize this to factor polynomials in L[x1, . . . , xv] using
Hensel lifting. We evaluate all parameters and all variables
except one, thus reducing the factorization in L[x1, . . . , xv]
to L(α)[x1].

Some algorithms (See [?, ?, ?]) have been developed for
factorization over an algebraic field L. A challenge is to solve
the leading coefficient problem for lifting non-monic poly-
nomials. Abbott in [?], suggests using a trick by Kaltofen
in [?] which recursively computes the leading coefficients
from their bivariate images using Hensel lifting. Our ap-
proach is to modify Wang’s ingenious method given in [?] for
factoring polynomials over Z. His idea is to first factor the
leading coefficient l(x2, . . . , xv) = lcx1(f) of the input poly-
nomial f in the main variable x1 recursively. Then evaluate
all the variables except x1 at an evaluation point α and fac-
tor the univariate polynomial f(α). Now using the integer
leading coefficients of the univariate factors, one can deter-
mine which factor of l(x2, . . . , xv) belongs to the leading co-
efficient of which factor of f(α). To do this, Wang identifies
unique prime divisors for each factor of l(x2, . . . , xv) evalu-
ated at α by computing integer GCDs only. Unfortunately
this does not generalize. We show an example.

Example 1 Let L = Q(
√
−5) and

f = ((y +
√
−5 + 1)x+ 1)((y +

√
−5− 1)x+ 1)

= (y2 + 2
√
−5y − 6)x2 + 2(y +

√
−5)x+ 1.

We have lcx,y(f) = 1 ∈ Z but lcx(f) = y2 + 2
√
−5y − 6 ∈

L[y], so if we evaluate y at an evaluation point, we will
obtain an element of Z[

√
−5]. But Z[

√
−5] is not a unique

factorization domain and so GCDs do not always exist in
this ring. For example, for y = 0 we have lcx(f)(y = 0) =
−6 = −2× 3 = −(1−

√
−5)× (1 +

√
−5).

Another problem is that one needs to do computations
with fractions in Hensel lifting. To solve this problem, one
can work modulo a power of a prime, pl. This modulus must
be at least twice the size of the biggest coefficient in any
factor of f . Unfortunately the known bounds on the sizes
of the integer coefficients in the factors of f are usually very
big, which makes the computations really slow. In [?] it is
suggested that it is better not to do the calculations modulo
pl because of the bad bounds but instead to lift over Q.
In our algorithm we choose a prime p of a modest size and
then lift the integer coefficients to their correct values using a



new multivariate p-adic lifting algorithm which uses a sparse
interpolation method similar to Zippel’s algorithm [?].

Our paper is organized as follows. In Section 2 we present
an example showing the main flow and the key features of
our algorithm. We then identify possible problems that can
occur and how the new algorithm deals with them in Sec-
tion 3. In Section 4 we present our new algorithm. Finally,
in Section 5 we compare Maple implementations of our al-
gorithm with Trager’s algorithm for a set of polynomials. In
our implementation of Trager’s algorithm we use the Sparse-
ModGcd algorithm [?] to compute GCDs of polynomials
over L, which makes Trager’s algorithm much more efficient
than it is otherwise.

2. AN EXAMPLE
Let F = Q(t1, . . . , tk), k ≥ 0. For i, 1 ≤ i ≤ r, let

mi(z1, . . . , zi) ∈ F [z1, . . . , zi] be monic and irreducible over
F [z1, . . . , zi−1]/ 〈m1, . . . ,mi−1〉. Let L = F [z1, . . . , zr]/
〈m1, . . . ,mr〉. L is an algebraic function field in k parame-
ters t1, . . . , tk (this also includes number fields). Let f be a
non-zero square-free polynomial in L[x1, . . . , xv]. Our prob-
lem is given square-free f , compute f1, f2, . . . , fn such that
f = lcx1,...,xv (f) × f1 × f2 × · · · × fn where fi is a monic
irreducible polynomial in L[x1, . . . , xv].

Our algorithm works with the monic associate of the input
and primitive associates of the minimal polynomials which
we now define.

Definition 1 Let D = Z[t1, . . . , tk]. A non-zero polyno-
mial in D[z1, . . . , zr, x1, . . . , xv] is said to be primitive
wrt (z1, . . . , zr, x1, . . . , xv) if the GCD of its coefficients in
D is 1. Let f be non-zero in L[x1, . . . , xv]. The denomina-
tor of f is the polynomial den(f) ∈ D of least total degree
in (t1, . . . , tk) and with smallest integer content such that
den(f)f is in D[z1, . . . , zr, x1, . . . , xv]. The primitive asso-
ciate f̌ of f is the associate of den(f)f which is primitive
in D[z1, . . . , zr, x] and has positive leading coefficient in a

term ordering. The monic associate f̃ of f is defined as
f̃ = ȟ where h = monic(f). Here monic(f) is defined by
lcx1,...,xv (f)−1f .

Example 2 Let f = 3tx2+6tx/(t2 − 1)+30tz/(1− t) where
m1(z) = z2 − t. Here f ∈ L[x] where L = Q(t)[z]/

˙
z2 − t

¸
is an algebraic function field in one parameter t. We have
den(f) = t2 − 1 and f̃ = f̌ = den(f)f/(3t) = (t2 − 1)x +
2x − 10z(t + 1). For f = zx2 + 1/t we have f̌ = tzx2 + 1,

monic(f) = x2 + z/t2 and f̃ = t2x2 + z. Note f̃ 6= f̌ in
general.

We demonstrate our algorithm using the following exam-
ple. Here we use t for the parameter and x and y for vari-
ables.

Example 3 Let

f = (t3 − t)y2x2 + (20t3z − t2z − 20tz + z)yx2+

(−20t5+40t3−20t)x2+(−tz+21z)yx+(421t3−421t)x−21t

= (t3 − t)(xy + 20zx− z

t2 − 1
)(xy − zx

t
+

21z

t3 − t )

and m(z) = z2 − t3 + t. Here L = Q(t)[z]/
˙
z2 − t3 + t

¸
and f ∈ L[x, y]. We have f̌ = f and m̌ = m. The first

step in our algorithm is to eliminate any field extensions in
l = lcx,y(f̌) = t3−t by computing f̃ . Since l does not involve

the algebraic extension z, we have f̃ = f̌ .
Suppose we choose x as the main variable. In order to use

Hensel lifting we need to factor the leading coefficient

lcx(f̃) = (t3−t)y2+(20t3z−t2z−20tz+z)y−20t5+40t3−20t.

We do this by recursively using our algorithm, this time with
one less variable. We will obtain

lcx(f̃) = γ × l̄1 × l̄2 = (t2 − 1)(ty − z)(y + 20z).

We factor γ = t2 − 1 = l̄3 × l̄4 = (t − 1)(t + 1). In order

to factor f̃ , we evaluate it at the point α for all the param-
eters and variables except the main variable, x. We factor
the resulting univariate polynomial in Q[z][x]/ 〈m̌(α)〉 using
Trager’s algorithm and then we lift the variables and param-
eters one by one using Hensel lifting. Suppose we choose the
evaluation point to be α = (t = 12, y = 5). This evaluation
point must satisfy certain conditions that we will discuss in
Section 3.1. We have

f̃(α) = (170885z − 4864860)x2 + (45z + 722436)x− 252

and m̌(α) = z2− 1716 hence L(α) is a field. Using Trager’s
algorithm we obtain

f̃(α) = lcx(f̃(α))× u1 × u2 = (170885z − 4864860)×

(x+
1

19630325
z − 48

137275
)× (x+

105

22451
z +

21

157
).

Before doing Hensel lifting, we need to determine the true
leading coefficient of each factor of f̃ . To do this, we use
the denominators of u1 and u2. We know that

di = den(ui) | den(
1

lcx(f̃i(α))
)

where f̃i is a factor of f̃ . We have

d1 = den(u1) = 19630325 = (5)2(11)(13)(17)2(19),

d2 = den(u2) = 22451 = (11)(13)(157),

d̄1 = den(1/l̄1(α)) = 1884 = (2)3(3)(157),

d̄2 = den(1/l̄2(α)) = (5)2(17)2(19),

d̄3 = den(1/l̄3(α)) = 11,

d̄4 = den(1/l̄4(α)) = 13.

The evaluation point α was chosen so that d̄i’s have a set of
distinct prime divisors, namely {3, 17, 11, 13}. Here d̄i’s are
relatively prime so we have

gcd(di, d̄j) > 1⇒ l̄j | l̃i

where l̃i = lcx1(f̃i). Using this we obtain l̃1 = (t2 − 1)(y +

20z) and l̃2 = (t2 − 1)(ty − z) and we have

f̃ ≡ 1

t2 − 1
× (l̃1(α)u1)× (l̃2(α)u2) mod 〈t− 12, y − 5〉 .

To avoid fractions we set

f̃ :=
l̃1 × l̃2
lcx1(f̃)

= (t2 − 1)× f̃ .

Now we use Hensel lifting to lift the parameter t and the
variable y in the other coefficients of f̃i. To avoid any com-
putations with fractions, we do the calculations modulo a



prime, say p = 17. After applying Hensel lifting we obtain
f̃1 = ((t2−1)(y+20z)x−z) and f̃2 = ((t2−1)(ty−z)x+4z)

s.t. f̃ ≡ f̃1 × f̃2 (mod 17). The final task is to lift the in-

teger coefficients of f̃1 and f̃2. To do this, we use sparse
interpolation. We have e1 = f̃ − f̃1 × f̃2, the first error
polynomial. We want to find σ1, σ2 ∈ L[x, y] s.t.

f̃ ≡ (f̃1 + σ1 × p)(f̃2 + σ2 × p) mod p2.

Assuming that neither α nor p has caused any terms in the
polynomials f̃1 and f̃2 to vanish, we know that the monomi-
als in σ1 and σ2 are the same as those in f̃1 and f̃2 respec-
tively, so we have the assumed forms for σ1 and σ2. Since
f̃1 and f̃2 have correct leading coefficients we have σ1 = Az
and σ2 = Bz for unknown coefficients A and B. To find the
values for A and B we have

σ1 × f̃2 + σ2 × f̃1 −
e1
p
≡ 0 mod p.

After equating every coefficient in x, y, z and t in the above
expression to zero, we will get the following system of linear
equations

{A = 0,−B + 1 = 0, B − 1 = 0,−1− 4A+B = 0, 1−B + 4 = 0,

A = 0,−A− 20 + 20B = 0, 2A+ 40− 40B = 0,−A = 0}.
After solving this linear system of equations modulo p, we
find that A = 0 and B = 1 so we update

f̃1 := f̃1 + σ1 × p = ((t2 − 1)(y + 20z)x− z)

and

f̃2 := f̃2 + σ2 × p = ((t2 − 1)(ty − z)x+ 21z).

Now we have f̃ ≡ f̃1 × f̃2 mod p2. This time the new error
e2 = f̃− f̃1× f̃2 is zero, so we have f̃ = f̃1× f̃2. To complete
the factorization of f we have f = lcx,y(f) × monic(f̃1) ×
monic(f̃2), thus

f = (t3 − t)(xy + 20zx− z

t2 − 1
)(xy − zx

t
+

21z

t3 − t )

and we are done.

3. PROBLEMS
In the example we mentioned that the evaluation point

must satisfy certain conditions in order for the algorithm to
work properly. Another issue is the defect of the algebraic
field which is the biggest denominator in an integral basis
for the algebraic field L. Here we identify all problems.

The Defect
Unlike factorization over rationals, when factoring a poly-
nomial f̃ over the algebraic field L, the leading coefficient of
a factor f̃i in the variables x1, . . . , xv might not divide the
leading coefficient of f̃ , i.e. lcx1,...,xv (f̃i) - lcx1,...,xv (f̃).

Example 4 Let m = z2 − t3, L = Q(t)[z]/ 〈m〉 and f =
x2 − t. We have

f = (x− z

t
)(x+

z

t
) =

1

t2
(tx− z)(tx+ z).

Here f̃1 = tx− z but lcx(f̃1) = t - lcx(f̃) = 1.

The denominator t in this example is a factor of the defect
of the algebraic function field L. The defect is the biggest
denominator appearing in an integral basis for the algebraic
field L ( See [?, ?]).

Theorem 1 (See [?]) The defect is the biggest square
that divides ∆, the discriminant of the algebraic field.

When r = 1 (one field extension), ∆ = resz1(m̌1, m̌
′
1). For

example, for m̌ = z2 − t3 we have ∆ = resz(z2 − t3, 2z) =
−4t3 and hence 2t is the defect.

Theorem 2 (See [?]) Let di = degzi
(m̌i). The discrimi-

nant of L is

∆ =

r−1Y
i=1

N1(N2(. . . (Ni−1(discr(m̌i)
di+1...dr )) . . . ))

where Ni(f) = reszi(f, m̌i) and discr(m̌i) = reszi(m̌i, m̌
′
i).

Suppose using Theorem 2 we have computed the discrim-
inant ∆ ∈ Z[t1, . . . , tk]. Let δ×De1

1 ×· · ·×D
ek
k be a square-

free factorization of ∆ where δ ∈ Z. Since we want to avoid
integer factorization, we choose D to be an integer multiple
of the defect:

D = δ ×Db
e1
2 c

1 × · · · ×Db
ek
2 c

k .

Theorem 3 If f̃i is a factor of f̃ and D is an integral mul-
tiple of the defect, then

lcx1,...,xv (f̃i) | D× lcx1,...,xv (f̃)

Remark 1 To compute an integral multiple of D in our
algorithm, we compute ∆ using Theorem 2. We then do a
square-free factorization of ∆/c where c = contt1,...,tk (∆) ∈
Z is the integer content of ∆, to find the biggest square D
which divides ∆/c. We use c×D as the integral multiple of
the defect.

Remark 2 As seen in Example 3, the leading coefficient
of f̃ (lcx1,...,xv (f̃) ∈ Z[t1, . . . , tk]) may not split among the

leading coefficients of the factors. That is
Qn

i=1 lcx1,...,xv (f̃i)

may not divide Dl × lcx1,...,xv (f̃) for any l ∈ Z+.

3.1 Good evaluation points
Let α = (t1 = α1, . . . , tk = αk, x2 = β2, . . . , xv = βv) ∈

Zk+v−1 be the evaluation point that we choose in our al-
gorithm to factor the univariate polynomial f̃(α). It must
satisfy certain conditions. We say α is good if:

1. The leading coefficient of f̃ in the main variable x1

and the leading coefficient of m̌i in zi must not vanish
after evaluating at α, i.e. degx1

(f̃) = degx1
(f̃(α)) and

degzi
(m̌i) = degzi

(m̌i(α)).

2. The second requirement on the evaluation point α is
that L(α), the algebraic field evaluated at α, must re-
main a field in order to have a unique factorization.
As an example, the evaluation point t = 0 is not
a good choice for our Example 3 because the mini-
mal polynomial evaluated at this point is no longer
irreducible. This also happens for evaluation points
t = 1, 4, 9, 16, . . . (a curiosity?).

3. The input polynomial evaluated at α, i.e. f̃(α) ∈
L(α)[x1], must remain square-free in x1 so that we
can apply Hensel lifting.



4. The fourth condition on the evaluation point α is to
be able to distribute factors of lcx1(f̃) to the monic
univariate factors u1, . . . , un where ui ∈ L(α)[x1] and

f̃(α) = lcx1(f̃)(α)× u1 × · · · × un.

Suppose γ× l̂e1
1 ×· · ·× l̂em

m is the factorization of lcx1(f̃)

and D is the defect. Here γ ∈ Z[t1, . . . , tk] and l̂ ∈
L[x2, . . . , xn]. Let β = D × γ = Ω × βc1

1 × βc2
2 ×

· · · × β
ck
k where Ω ∈ Z and β ∈ Z[t1, . . . , tk]. Let

d̄i = den(1/l̂i(α)). In order to be able to uniquely

distribute the factors of D × lcx1(f̃) to the univariate
factors, the numbers in the set

A = {β1(α), . . . , βk(α), d̄1, . . . , d̄m}

must have distinct prime divisors that do not divide
Ω.

Example 5 In Example 3 we have lcx(ũ1) = 19630325,

lcx(ũ2) = 22451. We have β1 = t − 1, β2 = t + 1, l̂1 =

ty − z, l̂2 = y + 20z and Ω = 2. We can not use the evalu-
ation point α = (t = 7, y = 5) because the numbers in A =
{6 = (2)(3), 8 = (2)3, 889 = (7)(127), 26875 = (5)4(43)} do
not have distinct prime divisors. This is because the only
prime that divides 8 is 2 which also divides 6.

Remark 3 Condition 4 will not be satisfied, no matter
what α is, if any two of the irreducible factors of lcx1(f̃)

have the same norm, i.e. ∃i, j : norm(l̂i) = norm(l̂j) where

l̂i and l̂j are irreducible factors of lcx1(f̃). In this case, the

denominators d̄i = den(1/l̂i(α)) and d̄j = den(1/l̂j(α)) will

be images of the same polynomial norm(l̂i) = norm(l̂j). In
this case we shift the variables x2, x3, . . . in the input poly-
nomial by computing

f̃ := f̃(x1, x2 + S2, x3 + S3, . . . , xv + Sv)

where Si = si1z1 + si2z2 + · · ·+ sizzr and sij ∈ Z (See [?]).
The following is an example.

Example 6 Let m̌ = z2−t and f̃ = ((y+z)x+t)((y−z)x+

t). We have lcx(f̃) = l̂1× l̂2 = (y−z)(y+z) and norm(l̂1) =

norm(l̂2) = y2 − t. If we choose α = (y = 1, t = 6) we will

have d̄1 = den(1/l̂1(α)) = 5 and d̄2 = den(1/l̂2(α)) = 5
and the set A = {5, 5} will not have a set of distinct prime
divisors. If we shift the variable y to y + 3z, we will get
f̃ := f̃(x, y+ 3z) = ((y+ 4z)x+ t)((y+ 2z)x+ t) and factors

of lcx1(f̃) have different norms and the numbers in A =

{den(1/l̂1(α)) = 23, den(1/l̂2(α)) = 95} have distinct prime
divisors.

An evaluation point α is said to be unlucky if it does not
satisfy any of the following conditions:

1. The number of irreducible factors of f̃(α) is the same

as the number of irreducible factors of f̃ .

2. If l̂i | lcx1(f̃j) where f̃j is an irreducible factor of f̃

then gcd(den(1/l̂i(α)), lcx1(ũj)) 6= 1.

3. If βi | lcx1(f̃j) then gcd(βi(α), lcx1(ũj)) 6= 1

If α does not satisfy condition 2,3 or 4 then we will not
be able to compute the correct leading coefficients of the
factors. If the evaluation point α is unlucky, the algorithm
must restart and choose a new evaluation point.

Remark 4 If α is unlucky and there are extraneous fac-
tors in the factorization of f̃(α) then Hensel lifting will fail
with high probability. Hensel lifting may succeed with low
probability if the prime p in Hensel lifting is also unlucky
and results in extraneous factors in f̃ mod p corresponding
to those of f̃(α).

Example 7 Suppose f̃ = x2 + 17(t − 1)zx − t2. The eval-

uation point α = (t = 1) is unlucky because f̃ is irreducible

but f̃(α) = (x − 1)(x + 1). If we choose α as the evalua-
tion point and p = 17, Hensel lifting will succeed and return
(x− t)(x+ t).

If Hensel lifting does not fail when α is unlucky, then we
will not be able to lift the integer coefficients of factors of f̃
and the algorithm will restart by choosing a new evaluation
point.

A good idea is to choose a few evaluation points (instead
of only one) and not start lifting until we get the same num-
ber of factors with consistent degrees for all the evaluation
points.

Remark 5 Since we will use sparse interpolation to lift the
integer coefficients of the factors computed using Hensel lift-
ing, the evaluation point α must not have introduced any
missing terms in any factors of f̃ . That is no term in any
factor of f̃ must vanish (including the leading coefficient)
after evaluating at α. Unfortunately we will not be able to
identify such bad evaluation points in advance. Instead, if
α is unlucky and the forms for any of the correcting poly-
nomials σ1, σ2, . . . is wrong, the system of linear equations
in the sparse interpolation would be inconsistent with high
probability. A similar problem can happen for the prime p
that we choose as the modulus for Hensel lifting.

To decrease the probability of choosing an evaluation point
(or a prime) that introduces missing terms in factors of f̃ ,
one should choose α (and p) at random from a large set of
evaluation points (or primes), e.g. p = 231 − 1 and α ∈ Zp

at random.

Degree Bound for the Parameters
In order to use Hensel lifting, we need to have bounds on
the degrees of the parameters and variables in the factors
of f̃ . Unlike factorization over rationals, degti

(f̃i) is not

necessarily less than or equal to degti
(f̃).

Example 8 Let m = z2 − 1
t3

and f̃ = x2 − t. We have

f̃ = f̃1f̃2 = (x+ t2z)(x− t2z).

Here degt f̃1 = degt f̃2 = 2 > degt f̃ = 1.

In [?] Abbott, gives a possible bound Ti on the degree of
each factor in ti based on Trager’s algorithm which is usu-
ally much bigger than the actual degrees of the factors. In
our algorithm when we lift the parameter ti in the factor-
ization of f̃ , as soon as the factors have been lifted to the
correct degree, the error would be zero with high probability
and the algorithm succeeds. Unfortunately if the evaluation
point is unlucky, our algorithm will have to lift the param-
eter ti to the degree Ti before realizing it. This happens
with low probability. Instead of using the bad bound Ti, we
start the algorithm with a heuristic bound T for the degree



of the parameters. Now Hensel lifting fails if either the eval-
uation point is unlucky or the heuristic bound T is not big
enough. In this case, we will double the heuristic bound, i.e.
T := 2 × T , and restart the algorithm by choosing a new
evaluation point. This way, we will eventually get a good
evaluation point and a big enough bound T and Hensel lift-
ing will eventually succeed.

In our implementation we choose the initial bound T based
on the following conjecture from Abbott [?]:

Conjecture 1 (Abbott [?])

degti
(f̃i) ≤ degti

(f̃) +

rX
j=1

degti
(m̌j).

Numerical Bound
If one uses Hensel lifting modulo a power of a prime, one
also needs a numerical bound B on the size of the integer
coefficients in the factors of f̃ . Abbott in [?] presents a
bound. Most algorithms that use Hensel lifting (See [?, ?])
either avoid working modulo a power of a prime or work with
a very huge modulus (based on the numerical bound). Both
cases result in Hensel lifting having a very poor performance.
The following is an example from [?].

Example 9 Let m̌ = z2 − 4t − 1 and f̃ = x2 + x − t =
(x+ 1+z

2
)(x+ 1−z

2
). The bound given by Abbott for factoring

f̃ is greater than 5000000.

We avoid both these problems by working modulo a prime
p of a modest size and then lift the integer coefficients using
our sparse p-adic lifting algorithm if necessary.

We still need a bound B for the case where α is unlucky
and Hensel lifting has not detected this due to the unlucky
choice of the prime p (See Example 7). For this, we choose
p > B′ for some B′ of a modest size. Now if the sparse p-adic
lifting fails, either α is unlucky or the bound B′ is not big
enough. In this case, we square the bound, i.e. B′ := B′2,
and restart the algorithm by choosing a new evaluation point
α. This way, we will eventually get a good evaluation point
and a bound big enough to lift the integer coefficients.

The case that both the evaluation point α and the prime
p are unlucky happens with very low probability if they have
been chosen at random from a large set of candidates.

4. THE ALGORITHM
Algorithm efactor
Input: f ∈ L[x1, x2, . . . , xv] where L is the algebraic func-

tion field.
Output: Factorization of f : f = l×fe1

1 ×· · ·×fen
n where fi

is a monic irreducible polynomial and l = lcx1,...,xv (f).
1: Let c = contx1(f). If c 6= 1 then factor c and f/c sepa-

rately using Algorithm efactor and return the combined
result.

2: Do a square-free factorization of f . Call algorithm 1 on
each square-free factor and return the result.

Algorithm 1: Main algorithm
Input: f ∈ L[x1, x2, . . . , xv] where contx1(f) = 1 and f is

square-free.
Output: Factorization of f : f = l×f1×f2×· · ·×fn where

fi is monic and l = lcx1,...,xv (f).

1: Compute f̃ (See Definition 1).
2: Compute D, an integral multiple of the defect of the

algebraic field L (See Theorem 2).
3: if v = 1 (univariate case) then

4: Call algorithm 3 on f̃ and D and return the result.
5: end if
6: Let l̄ = lcx1,...,xv (f̃) ∈ Z[t1, . . . , tk].
7: Choose a bound B of a modest size (Heuristic numerical

bound).

8: Let T = maxk
i=1 (degti

(f̃) +
Pr

j=1 degti
m̌j) (Heuristic

bound on the degree of f̃ in any parameter. See Conjec-
ture 1).

9: Factor lcx1(f̃) ∈ L[x2, . . . , xv] by calling algorithm efac-

tor. Let lcx1(f̃) = γ × le1
1 × l

e2
2 × · · · × lem

m where li is
monic.

10: Compute l̃i. Find γ̄, D̄ ∈ Z[t1, . . . , tk] s.t. D̄× lcx1(f̃) =

γ̄×
Qm

i=1 lcx2,...,xv (l̃i). Update f̃ := D̄× f̃ . (Note D̄ | Dc

for some c ∈ Z+).
11: Main Loop: Choose a new good evaluation point α =

(t1 = α1, t2 = α2, . . . , tk = αk, x2 = β2, . . . , xv = βv)
that satisfies the requirements in Section 3.1.

12: Let Di = den(l̃i(α)−1). If ∃i, j : i 6= j,Di = Dj then

shift the variables x2, . . . , xv in f̃ and l̃1, . . . , l̃m and go
to step 11 (See Example 6).

13: Using Trager’s algorithm factor f̃(α) to obtain f̃(α) =

Ω′×u1×· · ·×un where Ω′ = lcx1(f̃)(α) ∈ Q[z1, . . . , zr].

If n = 1 then return l ×monic(f̃) (f̃ is irreducible)

14: Using algorithm 5 on inputs {u1, . . . , un}, lcx1(f̃) =

γ̄ × l̃e1
1 × l̃

e2
2 × · · · × l̃em

m , the evaluation point α, D and
{D1, . . . , Dm} compute the true leading coefficients of
each univariate factor {l̄1, l̄2, . . . , l̄n}. If this fails, go to

step 11. Note that f̃ may be updated in order to dis-
tribute the integer content of D× lcx1(f̃).

15: Compute δ, l̂ ∈ Z[t1, . . . , tk] s.t. δ × lcx1,...,xv (f̃) = l̂ ×Qn
i=1 lcx2,...,xv (l̄i). (δ | Dc for some c ∈ Z+ and l̂ is a

factor of lcx1,...,xv (f̃) that is not in l1, . . . , ln).

16: Set f̃ := δf̃ . At this point we have

f̃(α) = l̂(α)× (l̄1(α)u1)× · · · × (l̄n(α)un).

17: Choose a prime p s.t. p > 2B satisfying lcx1(f̃(α)) mod
p 6= 0 and lczi(m̌i(α)) mod p 6= 0.

18: Using algebraic Hensel lifting on inputs f̃ , l̂, the set of
univariate images {u1, . . . , un}, the set of correspond-
ing true leading coefficients {l̄1, l̄2, . . . , l̄n}, the prime p,
the bound T and the evaluation point α, lift the vari-
ables x2, x3, . . . , xv and the parameters t1, . . . , tk to ob-
tain f̃ = l̂ × f̄1 × f̄2 × · · · × f̄n mod p.

19: If Hensel lifting fails then Set T := 2 × T and go to
Step 11 (Main loop).

20: Call algorithm 2 on inputs f̃ = l̂×f̄1×f̄2×· · ·×f̄n mod p,
B and {l1, l2, . . . , ln}. If this fails, set B := B2 and go
to step 11 otherwise let f ′1, f

′
2, . . . , f

′
n be the output s.t.

f̃ = l̂ × f ′1 × · · · × f ′n.
21: If the variables x2, . . . , xv were shifted in Step 12, shift

them back in f ′1, . . . , f
′
n.

22: return lcx1,...,xv (f)×monic(f ′1)× · · · ×monic(f ′n)

Algorithm 2: Sparse p-adic lifting
Input: f̃ , f̃1, . . . , f̃n ∈ L[x1, . . . , xv] s.t. f̃ − f̃1 × f̃2 × · · · ×

f̃n ≡ 0 mod p. The numerical bound B and {l1, . . . , ln}



the set of the leading coefficients of the factors.
Output: Either FAIL, if the evaluation point is unlucky or

h1, h2, . . . , hn s.t. f̃ = h1 × h2 × · · · × hn.
1: Let hi be f̃i with its leading coefficient replaced by li.
2: Let e = f̃ − h1 × · · · × hn. (degx1

(e) < degx1
(f̃))

3: Let P = p.
4: Suppose f̃i =

PTi
j=1 aijMij with aij ∈ Zp andMij mono-

mials.
5: Let σi =

PTi
j=1AijMij where Aij is an unknown coeffi-

cient.
6: while e 6= 0 and P < 2B do
7: e′ = e/P (exact division)

8: Let pz = e′ −
Pn

i=1 σi

Qn
j=1 hj

hi
.

9: Solve for Aijs by collecting and equating coefficients
of pz in x1, . . . , xv, t1, . . . , tk and z1, . . . , zr to zero
modulo P .

10: If the system of linear equations is inconsistent then
return FAIL. (Missing term in the form due to the
choice of the modulus)

11: Update hi := hi + σi × P .
12: Set P := P 2

13: Set e = f̃ − h1 × · · · × hn.
14: end while
15: If e = 0 then return h1, h2, . . . , hn else return FAIL.

Algorithm 3: Univariate factorization
Input: Square-free f ∈ L[x1] and D the defect of L.
Output: Unique factorization of f = lcx1(f) × f1 × f2 ×
· · · × fn over L s.t. fi is monic in x1.

1: Compute f̃ (See Definition 1) and Let l̄ = lcx1(f̃).
2: Choose the bound B of a modest size (Heuristic numer-

ical bound).

3: Let T = maxk
i=1 (degti

(f̃) +
Pr

j=1 degti
m̌j) (Heuristic

bound on the degree of f̃ in any parameter. See Conjec-
ture 1).

4: Factor γ = D × l̄ ∈ Z[t1, . . . , tk] over Z to obtain γ =
Ω× βc1

1 × · · · × β
ck′
k′ .

5: Main Loop: Choose a new good evaluation point. α =
(t1 = α1, . . . , tk = αk) that satisfies the requirements in
Section 3.1.

6: Using Trager’s algorithm, factor h = f̃(α) = l̄(α)×h1×
h2× · · ·×hn over the algebraic number field. Note that
lcx1(hi) = 1.

7: Compute h̃i and let d̄i = lcx1(hi) ∈ Z. Find the biggest
eij s.t. β

eij

i | d̄j . Let li = βe1i
1 × · · · × βek′i

k′ . Distribute

Ω ∈ Z to li’s and if needed, update f̃ and h̃i. At this
point we have li = lcx1(f̃i).

8: Compute δ, l̂ ∈ Z[t1, . . . , tk] s.t. δ × l̄ = l̂ ×
Qn

i=1 li.

(δ | Dc for some c ∈ Z and l̂ is a factor of lcx1(f̃) that
is not in l1, . . . , ln)

9: Let f̂ = δf̃ (f̂(α) = l̂(α)× h̃1 × h̃2 × · · · × h̃n).

10: Choose a prime p s.t. p > 2B. satisfying degx1
(f̃ mod

p) = degx1
(f̃) and lczi(m̌i(α)) mod p 6= 0.

11: Lift the parameters {t1, . . . , tk} in f̂(α)−l̂×h̃1×h̃2×· · ·×
h̃n ≡ 0 mod p using Hensel lifting with li ∈ Z[t1, . . . , tk]

as the true leading coefficient of h̃i and T as the degree
bound. If this fails, set T := 2 × T and go to step 5
(unlucky evaluation point).

12: Call algorithm 2 on inputs f̂ = l̂ × h̃1 × h̃2 × · · · ×
h̃n mod p, {l1, . . . , ln} and B. If this fails, set B := B2

and go to step 5 (main loop) otherwise let f ′1, f
′
2, . . . , f

′
n

be the output s.t. f̂ = l̂ × f ′1 × · · · × f ′n.
13: return lcx1(f)×monic(f ′1)× · · · ×monic(f ′n).

Algorithm 4: Distinct prime divisors
Input: A set {a1, a2, . . . , an} where ai ∈ Z.
Output: Either FAIL or a set of divisors {d1, d2, . . . , dn}

s.t. di 6= 1 and di | ai and ∀j 6= i : gcd(di, dj) = 1.
1: for i from 1 to n do
2: Let di = ai.
3: for j from 1 to i− 1 do
4: Let g = gcd(di, dj).
5: Set di := di/g and dj := dj/g.
6: Let g1 = gcd(g, di) and g2 = gcd(g, dj). (Either

g1 = 1 or g2 = 1)
7: while g1 6= 1 do
8: Let g1 = gcd(di, g1).
9: Set di := di/g1.

10: end while
11: while g2 6= 1 do
12: Let g2 = gcd(dj , g2).
13: Set dj := dj/g2.
14: end while
15: if di = 1 or dj = 1 then
16: return FAIL.
17: end if
18: end for
19: end for
20: return {d1, . . . , dn}.

Algorithm 5: Distributing leading coeffi-
cients
Input: f̃ and U = {u1, u2, . . . , un}, the set of monic uni-

variate factors where ui ∈ L(α)[x1]. l = γ × le1
1 × l

e2
2 ×

· · · × lem
m the non-monic factorization of l = lcx1(f̃)

where γ ∈ Z[t1, . . . , tk]. The evaluation point α and
D the defect of the algebraic field. {D1, . . . , Dm} where
Di = den(li(α)−1).

Output: Either FAIL, if the leading coefficient is unlucky
or {l̂1, l̂2, . . . , l̂n} where l̂i ∈ L[x2, . . . , xv] is the true
leading coefficient of ui in x1 together with possibly up-
dated f̃ .

1: Let β = D×γ = Ω×βc1
1 ×β

c2
2 ×· · ·×β

ck′
k′ where Ω ∈ Z.

2: Let di = den(ui) and µi = βi(α).
3: Let {p1, . . . , pm, q1, . . . , qk′} be the output of algorithm 4

on input {D1, . . . , Dm, µ1, . . . , µk′}. If this fails, return
FAIL.

4: For all 1 ≤ i ≤ m, let gi = gcd(Ω, pi) and Set pi := pi/gi.
If pi = 1 then return FAIL.

5: For all 1 ≤ i ≤ k′, let g′i = gcd(Ω, qi) and Set qi := qi/g
′
i.

If qi = 1 then return FAIL.
6: for each dj do
7: for i from 1 to m do
8: Let g1 = gcd(dj , pi).
9: Set e′ji = 0.

10: while g1 6= 1 do
11: Set e′ji := e′ji + 1.
12: Set dj = dj/g1.
13: Set g1 = gcd(dj , g1).
14: end while
15: end for
16: for i from 1 to k′ do
17: Let g2 = gcd(dj , qi).
18: Set c′ji = 0.



19: while g2 6= 1 do
20: Set c′ji := c′ji + 1.
21: Set dj = dj/g2.
22: Set g2 = gcd(dj , g2).
23: end while
24: end for
25: end for
26: for i from 1 to m do
27: if

Pn
j=1 e

′
ji 6= ei then return FAIL.

28: end for
29: Let l̂i = βci1

1 βci2
2 . . . β

cik′
k′ lei1

1 lei2
2 . . . leim

m . Distribute Ω ∈
Z to l̂is and if needed update f̃ .

30: return {l̂1, l̂2, . . . , l̂n}.

Remark 6 In our implementation of algorithm 1, we first
choose an evaluation point and compute a univariate factor-
ization then factor lcx1(f̃). This is because if f̃ is irreducible,
then we do not bother factoring the leading coefficient which
might be a big polynomial.

Description of Algorithm 2: In algorithm 2, we have

f̃ − f̃1 × f̃2 × · · · × f̃n ≡ 0 mod p.

Let e1 = f̃ − f̃1 × · · · × f̃n. We know that p | e1. If e1 = 0
then we are done. We want to find polynomials σ1, . . . , σn

s.t.

f̃ − (f̃1 + σ1p)(f̃2 + σ2p) . . . (f̃n + σnp) ≡ 0 mod p2.

Expanding the above expression results in g ≡ 0 mod p
where

g = σ1f̃2f̃3 . . . f̃n + · · ·+ σnf̃1f̃2 . . . f̃n−1 −
e

p
.

We assume that the terms in σi are the same as the terms
in f̃i with the integer coefficient replaced by an unknown.
We compute the polynomial g and equate each coefficient in
z1, . . . , zr, t1, . . . , tk, x1, . . . , xv to zero. This gives us a lin-
ear system which will not be underdetermined because we
already know the exact leading coefficient in the main vari-
able of each factor f̃i and the uniqueness is guaranteed by
Hensel lemma. After solving this system we will obtain the
correction polynomials σ1, . . . , σn. We update each factor
f̃i := f̃i + σip. Now we have

f̃ − f̃1 × f̃2 × · · · × f̃n ≡ 0 mod p2.

We repeat this non-linear lifting algorithm until p2k

> 2|B|
where B is the biggest integer coefficient in the factors of
f̃ . Thus if there are no extraneous factors and no missing
terms caused by the choice of primes and evaluation points,
the algorithm will not depend on a bound on the size of the
coefficients in the factor of f̃ which could be big.

Remark 7 In Step 8 of algorithm 3 and Step 15 of algo-
rithm 1, we compute l̂ ∈ Z[t1, . . . , tk] which is the factor of

the leading coefficient of f̃ in all the variables which does
not show up in the leading coefficient of any factors of f̃ .

Example 10 Let m = z2 − 1
t

and f = x2 − 1
t
. We have

m̌ = tz2 − 1 and f̃ = tx2 − 1. The factorization of f̃ is

f̃ = t(x− z)(x+ z).

Here l1 = l2 = 1 and l̂ = t. We have l̂ | lcx(f̃) but l̂ - li.

A Failed Experiment
The bottleneck of Hensel lifting algorithm is solving the Dio-
phantine equations. One can solve these Diophantine equa-
tions using sparse interpolation with a similar technique as
in algorithm 2. Here is an example.

Example 11 Let m̌ = z2 − (t− 1)3 and

f̃ =
`
t3 − t− t2 + 1

´
x2 − x (2 t+ 1) z − t4 + t2.

Suppose we choose the evaluation point to be t = 4. We
compute the univariate factors using Trager’s algorithm and
after computing and attaching the leading coefficients of the
factors we have

f̂ = (t− 1)2f̃ ,

f̃1 =
`
t3 − t− t2 + 1

´
x+ 16 z,

f̃2 =
`
t2 − 2 t+ 1

´
x− 5 z,

where f̂− f̃1f̃2 ≡ 0 mod (t−4). Now we start Hensel lifting.

The first error polynomial is e1 = f̂ − f̃1f̃2. We have

e1
t− 4

=
`
3 t2z − 6 tz + 3 z

´
x−t5−2 t4−8 t3+46 t2−55 t+20.

Now we need to find two polynomials σ1 and σ2 s.t.

σ2f̃1 + σ1f̃2 −
e1
t− 4

≡ 0 mod (t− 4). (1)

Similar to algorithm 2, we can assume that σ1 and σ2 have
the same monomials as f̃1 and f̃2 respectively and since we
know that the leading coefficient of f̃1 and f̃2 are correct, the
forms for σ1 and σ2 are σ1 = Az and σ2 = Bz. Using these
forms and Equation 1 we construct and solve a linear system
to obtain A = 8, B = −1. We update f̃1 := f̃1 + σ1 × (t− 4)

and f̃2 := f̃2 + σ2 × (t− 4) to get

f̃1 = (t3 − t2 − t+ 1)x+ 16z + 8(t− 4)z,

f̃2 = (t2 − 2t+ 1)x− (t− 4)z − 5z.

This time the new error polynomial is e2 = f̂ − f̃1f̃2 and we
have

e2
(t− 4)2

=
`
t2z − 2 tz + z

´
x− t4 + 2 t3 − 2 t+ 1

and

σ2f̃1 + σ1f̃2 −
e2

(t− 4)2
≡ 0 mod (t− 4)2. (2)

The new assumed forms are

σ1 = Az +Bz(t− 4),

σ2 = Czt+Dz.

Again we construct a system of linear equations using Equa-
tion 2 and after solving this system we have A = 1, B =
0, C = 0, D = 0. We update f̃1 and f̃2 and to obtain

f̃1 =
`
t3 − t2 − t+ 1

´
x+ zt2,

f̃2 =
`
t2 − 2 t+ 1

´
x− zt− z.

The new error polynomial e3 = f̂ − f̃1f̃2 is zero so f̃ =
lcx(f̃)×monic(f̃1)×monic(f̃2) and we are done.

We do not use this method in our new algorithm for lift-
ing parameters and variables. This is because it is slower
than solving the Diophantine equations using the traditional
method for two main reasons:



1. The systems of linear equations in each step can be
very big if the factors are dense.

Example 12 Suppose f̃1, f̃2 and f̃1× f̃2 have N1, N2

and N terms respectively. Then the system of linear
equation has N equations and as many as N1 − 1 +
N2 − 1 unknowns.

2. As Hensel lifting algorithm progresses, usually, the er-
ror term gets smaller and smaller, so solving the Dio-
phantine equation is usually easier at the next step.
But using sparse interpolation, as the Hensel lifting
algorithm proceeds, each factor f̃i usually gets bigger
and bigger, because we add new terms, so the system
of linear equations gets bigger which means Hensel lift-
ing will be slower.

We do not have the second problem above for sparse in-
terpolation in algorithm 2, when we lift integer coefficients,
mainly because the forms of the σ polynomials do not change
due to the fact that only integer coefficients of factors of f̃
are being updated.

5. BENCHMARKS
We have compared Maple 13 implementations of our new

algorithm (efactor) with Maple’s implementation of Trager’s
algorithm modified to use SparseModGcd (See [?]) for com-
puting GCDs over L on the eight problems in the Appendix.

The timings are given in Table 1. All timings are in CPU
seconds and were obtained on Maple 13 on a 64 bit AMD
Opteron CPU @ 2.4 GHz, running Linux. In the table, n is
the number of variables, r is the number of field extensions,
k is the number of parameters, d is the total degree of f ,
#f is the number of terms in f and #f̃ is the number of
terms in f̃ . In all the following problems, f factors into two
irreducible factors f1 and f2.

For each problem we used p = 3037000453, a 31.5 bit
prime, for Hensel lifting. For problems 3,4,5 and 7, p is big
enough so that there is no need to lift the integer coefficients
using sparse p-adic lifting algorithm. However, for problems
1,2,6 and 8, p is not big enough. In problems 1,2 and 6, the
number of lifting steps is one, i.e., p2 > 2||fi||. For the last
problem, the number of lifting steps is three, i.e. p8 > 2||fi||.

The last column in Table 1 is the time for computing

gcd(f1f2, f1(f2 + 1))

using our SparseModGcd algorithm in [?]. One can see that
our factorization algorithm is often as fast as the GCD algo-
rithm on a problem of comparable size, except for problem
6. In problem 6, almost all (99%) of the time was factor-
ing the univariate polynomial over Q(

√
2,
√

3,
√

5,
√

7,
√

11)
using Trager’s algorithm.

For the sixth problem, we have multiplied the polynomial
f from Section 1 by one of its conjugates. Table 1 illustrates
that Trager’s algorithm did not finish in a reasonable time.
In fact Maple did not succeed to compute even the norm of
the input polynomial after 50000 seconds.

The percentages of timings for different parts of our new
algorithm for these problems are presented in Table 2. In
this table, the second column is the percentage of time spent
on univariate factorization over L(α) using Trager’s algo-
rithm. The numbers in the third column correspond to the
time spent on lifting variables and integer coefficients re-
spectively. And finally, numbers in the last column are the

# (n, r, k, d,#f,#f̃) Trager efactor GCD
1 (2,2,1,17,191,6408) 5500 259.91 47.47
2 (2,2,1,22,228,12008) 37800 296.74 56.90
3 (2,2,2,10,34,34) 120 0.22 0.16
4 (2,2,2,12,34,34) 571 0.31 0.19
5 (3,2,2,10,69,69) 5953 0.27 0.29
6 (6,5,0,4,46,46) > 50000 88.43 1.93
7 (5,2,1,10,15489,17052) > 50000 58.41 57.75
8 (1,1,2,102,426,928) 16427 72.10 7.71

Table 1: Timings (in CPU seconds)

# Univariate Lifting Sqr-free
1 0.30% (4.99%,90.1%) 4.01%
2 0.80% (7.82%,84.42%) 6.45%
3 51.61% (17.05%,0%) 19.35%
4 57.23% (22.03%,0%) 12.50%
5 42.86% (35.53%,0%) 19.41%
6 99.47% (0.31%,0.52%) 0.14%
7 0.80% (28,289%,0%) 67.41%
8 2.06 % (91.68%,5.47%) 0.70 %

Table 2: Timing (percentile) for different parts of
efactor

percentages of time spent on doing square-free factorizations
of the inputs.

Remark 8 The bottleneck of our new algorithm for the
first two problems is the sparse p-adic lifting algorithm. This
is because of the large number of terms in f̃ .

6. CONCLUDING REMARKS
We gave a new algorithm for factorization over an alge-

braic function field. We generalized Wang’s algorithm for
leading coefficient predetermination for the algebraic field
L. We gave a sparse p-adic lifting algorithm for lifting the
integer coefficient of the factors of the input polynomial.
Here we list some of the inefficiencies of our algorithm.

1. One of the bottlenecks of the sparse p-adic lifting al-
gorithm is multiplying the polynomial f̃i by the forms
of σ polynomials, i.e.

f̃i × σ1 × · · · × σi−1 × σi+1 × . . . σn,

and reducing it modulo the minimal polynomials. This
is expensive when factors of f̃ are dense. Since all
the coefficients in σ polynomials are distinct unknown
variables, one may be able to devise a more efficient
multiplication algorithm for this task.

2. We use Trager’s algorithm for univariate factorization
of f̃(α) over the algebraic number field L(α). As illus-
trated in problem six of Section 5, this algorithm can
be expensive when there are several extensions and
f̃ has several variables, resulting in big coefficients in
norm(f̃(α)). To solve this problem, one could use a
modular algorithm similar to the algorithm for uni-
variate factorization over Z.

3. We need to choose the evaluation point α in algorithms
1 and 3 at random from a large set of points to avoid



any missing terms in the factors of f̃ and also to get
a set of distinct prime divisors for the inverses of the
factors of the leading coefficient. This results in large
integer coefficients in f̃(α) which makes both Trager’s
algorithm and Hensel lifting slower. If there are any
missing terms due to the choice of α (or the prime p),
the system of linear equations in Step 10 of algorithm 2
will not have a unique solution with high probability.

Appendix
Here we give the polynomials (in factored form) for the eight
problems presented in Section 5. Here f1 and f2 are the
factors and f = f1×f2. Problems 3-5 are from [?]. Problems
1 and 2 have large leading coefficients in the main variable x.
Problem 6 is from [?]. Problems 7 and 8 have large number
of variables and large integer coefficients respectively. In all
problems s, t are parameters and u, v, w, x, y are polynomial
variables.

1. Problem 1:

f1 = 63x2yt+ 16x2t2 + 7xz1
3 − 43y2t2 − 34yz1

2z2−

20xyz1
2z2 − 35y2z2x

2z1 + 29y2x2t3z2 − 27y2x2tz1
3+

78y2x2tz1z2
3 + 25y2x2tz2

4 + 30y2x2z2
5,

f2 = −27x− 99yz1 − 81xy2t− 42t3z2 + 30xyz1
3−

21yz1
4 − 85y2z2x+ 50y2xz1

2z2
2 − 55y2xz2

4−
64y2xz1t

2z2
2 − 75y2xtz1z2

3 + 90y2xz1
3z2

2

2. Problem 2:

f1 = −51z1
2 + 77xz1z2

2 + 95x4z2 + x3z1z2+

55xtz2
3 + 53x4y2z1z2 − 28x4y2z2

2 + 5x4y2t2z1+

xy2tz2 + 13x4y2tz1z2 − 10x4y2t2z1
2z2 − 82x4y2z1

4z2,

f2 = −15xy3 − 59xy2t− 96t2z1z2 + 72x4z1 − 87ytz2
3+

98x4y3z1
3 − 48x4y3t3z1z2 − 19x4y3t2z1

2z2+

47t2z1
2z2 + 62x4y3t2z2

3 + 37x4y3z1
4z2 + 5x4y3z1z2

4

3. Problem 3:

f1 = x2 +
`
3 + z2z1y + t3

´
x+ y2 + z2

2s,

f2 = 2tx2 +
`
−z2s3y + z2

2s
´
x+ 5z1t

3 − 3sy2.

4. Problem 4:

f1 = x3 + y3 + z2z1xy
2 + t3x2 + x+ z2

2s,

f2 = 2tx3 − 3sy3 − z2s2txy2 + z2
2sx+ 5z1t

3.

5. Problem 5:

f1 = x2 + (t3 + 3z2z1y + wt)x+ 3swz2 + y2 + w2 + z2
2s,

f2 = 2tx2 + (z2
2s− z2s3y)x+ 5z1t

3 − 3sy2 − 2wyz2z1 + stw2.

6. Problem 6:

f1 =
19

2
c24−
√

11
√

5
√

2c5c4−2
√

5c1c2−6
√

2c3c4+
3

2
c20+

23

2
c25

+
7

2
c21−
√

7
√

3
√

2c3c2+
11

2
c22−
√

3
√

2c0c1+
15

2
c23−

10681741

1985
,

f2 =
19

2
c24−
√

11
√

5
√

2c5c4−2
√

5c1c2+6
√

2c3c4+
3

2
c20+

23

2
c25

+
7

2
c21+
√

7
√

3
√

2c3c2+
11

2
c22+
√

3
√

2c0c1+
15

2
c23−

10681741

1985

7. Problem 7:

>f1 := randpoly([x,y,u,v,w,t,z1,z2], terms = 200);
>f2 := randpoly([x,y,u,v,w,t,z1,z2], terms = 200);

8. Problem 8:

>f1 := s*x^50 + randpoly([x,z,t,s], degree = 50,
coeffs = rand(10^50)) + 1;
>f2 := t*x^50 + randpoly([x,z,t,s], degree = 50,
coeffs = rand(10^50)) + 1;

Also the minimal polynomials are

1. Problems 1,2 and 7:

m1 = z1
2 − t,

m2 = z2
3 − z1z22 − t2z2 + 7.

2. Problems 3 to 5:

m1 = z1
2 − 2,

m2 = z2
3 + tz2

2 + s.

3. Problem 8:

m1 = z2 − tz − s.


