In-place Arithmetic for Univariate Polynomials over an Algebraic Number Field *

Seyed Mohammad Mahdi Javadi ${ }^{1}$ and Michael Monagan²
${ }^{1}$ School of Computing Science, Simon Fraser University, Burnaby, B.C. Canada.
2 Department of Mathematics, Simon Fraser University, Burnaby, B.C. Canada.

Abstract

We present a C library of in-place subroutines for univariate polynomial multiplication, division and GCD over L_{p} where L_{p} is an algebraic number field L with multiple field extensions reduced modulo a machine prime p. We assume elements of L_{p} and L are represented using a recursive dense representation. The key feature of our algorithms is that we eliminate the storage management overhead which is significant compared to the cost of arithmetic in \mathbb{Z}_{p} by pre-allocating the exact amount of storage needed for both the output and working storage. We give an analysis for the working storage needed for each in-place algorithm and provide benchmarks demonstrating the efficiency of our library.

1 Introduction

In 2002, van Hoeij and Monagan in [8] presented an algorithm for computing the monic GCD $g(x)$ of two polynomials $f_{1}(x)$ and $f_{2}(x)$ in $L[x]$ where $L=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ is an algebraic number field. The algorithm is a modular GCD algorithm. It computes the GCD of f_{1} and f_{2} modulo a sequence of primes $p_{1}, p_{2}, \ldots, p_{l}$ using the monic Euclidean algorithm and it reconstructs the rational numbers in $g(x)$ using Chinese remaindering and rational number reconstruction. The algorithm is a generalization of earlier work of Langymyr and MaCallum [4], and Encarnación [1] to treat the case where L has multiple extensions $(k>1)$. It can be generalized to multivariate polynomials in $L\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ using evaluation and interpolation (see $[9,3]$).

Monagan implemented the algorithm in Maple in 2001 and in Magma in 2003 using the recursive dense polynomial representation to represent elements of L and $L\left[x_{1}, \ldots, x_{n}\right]$. For Maple, Monagan developed a Maple package called RECDEN for doing polynomial arithmetic in $L\left[x_{1}, \ldots, x_{n}\right]$ in this representation. This package was subsequently implemented in C in the Maple kernel in 2004. For Magma, Monagan used the UnivariatePolynomial and quo constructors to build a recursive dense representation.

The recursive dense representation was chosen because it is known to be generally more efficient than the distributed and recursive sparse representations. See for example the comparison by Fateman in [2]. And since efficiency in the

[^0]recursive dense representation improves for dense polynomials, and elements of L are often dense, it should be a good choice for implementing arithmetic in L and $L \bmod p$. However, we observed that it is slow when computing modulo p and α_{1} has low degree (the data in columns REC_MUL and REC_GCD in Table 1 at the end of the paper gives measurements of the overhead for α_{1} of different degrees). We explain why this is the case with an example.

Example 1. Let $L=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)$ where $\alpha_{1}=\sqrt{2}$ and $\alpha_{2}=\sqrt[3]{1 / 5+\alpha_{1}} . L$ is an algebraic number field of degree $d=6$ over \mathbb{Q}. We represent elements of L as polynomials in $\mathbb{Q}[u][v]$ and we do arithmetic in L modulo the ideal $I=$ $\left\langle m_{1}(u), m_{2}(v, u)\right\rangle$ where $m_{1}(u)=u^{2}-2$ and $m_{2}(v, u)=v^{3}-u-1 / 5$ are the minimal polynomials for α_{1} and, respectively, α_{2}.

To implement the modular GCD algorithm one uses machine primes, that is, the largest available primes that fit in the word of the computer so that arithmetic in \mathbb{Z}_{p} can be done by the computer's hardware. After choosing the next machine prime p, we build the ring $L_{p}[x]$ where $L_{p}=L \bmod p$, iteratively, as follows; first we build the residue ring $L_{u}=\mathbb{Z}_{p}[u] /\left\langle u^{2}-2 \bmod p\right\rangle$. We use a dense array of machine integers to represent elements of L_{u}. Then we build $L_{v}=L_{u}[v] /\left\langle v^{3}-u-1 / 5 \bmod p\right\rangle$ and finally the polynomial ring $L_{p}[x]$. In the recursive dense representation we represent elements of L_{v} as dense arrays of pointers to elements of L_{u}. So a general element of L_{v}, which looks like

$$
\left(a_{1} u+b_{1}\right) v^{2}+\left(a_{2} u+b_{2}\right) v+\left(a_{3} u+b_{3}\right),
$$

would be stored as follows where the degree of each element is explicitly stored.

When the monic Euclidean algorithm is executed in $L_{p}[x]$, it will do many multiplications and additions of elements in L_{v}, each of which will do many in L_{u}. This results in many calls to the storage manager to allocate small arrays for intermediate and final results in L_{u} and L_{v} and rapidly produces a lot of small pieces of garbage. Consider one such multiplication in L_{u}

$$
(a u+b)(c u+d) \bmod u^{2}-2
$$

The algorithms compute the product $P=a c u^{2}+(a d+b c) u+b d$ and then divide P by $u^{2}-2$ to get the remainder $R=(a d+b c) u+(b d+2 a c)$. They allocate arrays to store the polynomials P and R. We have observed that, even though the storage manager is not inefficient, the cost of these storage allocations and the other overhead for arithmetic in $\mathbb{Z}_{p}[u] /\left\langle u^{2}-2\right\rangle$ overwhelms the cost of the actual integer arithmetic in \mathbb{Z}_{p} needed to compute $(a d+b c) \bmod p$ and $(b d+2 a c) \bmod p$.

In this paper we design in-place algorithms for arithmetic in L_{p} and $L_{p}[x]$ where L_{p} has multiple extensions. The idea is to eliminate all calls to the storage manager by pre-allocating one large piece of working storage, and re-using parts of it in a computation. In Section 2 we present algorithms for multiplication and inversion in L_{p} and multiplication, division with remainder and GCD in $L_{p}[x]$ which are given one array of storage in which to write the output and one additional array W of working storage for intermediate results. In Section 3 we give formulae for determining the size of W needed for each algorithm. In each case the amount of working storage is linear in d the degree of L.

We have implemented our algorithms in the C language in a library which includes also algorithms for addition, subtraction, and other utility routines. The library is available at http://www.cecm.sfu.ca/~sjavadi/inplace_web.c. In Section 3 we present benchmarks demonstrating its efficiency.

1.1 Related Work

We have also developed an interface to Maple so that we can implement the dense GCD algorithm of van Hoeij and Monagan [9] and the sparse algorithm of Javadi and Monagan in [3] efficiently. These algorithms compute GCDs of polynomials in $K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ over an algebraic function field K in parameters $t_{1}, t_{2}, \ldots, t_{l}$ by evaluating first the parameters then all variables except x_{1} and using rational function interpolation to recover the GCD. This results in many (hundreds) of GCD computations in $L_{p}\left[x_{1}\right]$. In many applications, K has field extensions of low degree, often quadratic or cubic.

In [5], Xin, Moreno Maza and Schost develop asymptotically fast algorithms for multiplication in L_{p} and use their algorithms to implement the Euclidean algorithm in $L_{p}[x]$ for comparison with Magma and Maple. The authors obtain a speedup for L_{p} of sufficiently large degree (for $d>150$) when compared with a classical recursive implementation. Our results here are complementary. Our benchmarks demonstrate greatest improvement when L has low degree or α_{1} has low degree - cases occurring frequently in practice.

An in-place algorithm for long integer multiplication using Karatsuba's algorithm was developed by Maeder in [6]. In-place algorithms for polynomial arithmetic were developed by Monagan in [7] for computation in the ring $\mathbb{Z}_{m}[x]$ where $m=p^{k}$ is a multi-precision integer to improve the performance of quadratic Hensel lifting for polynomial factorization in $\mathbb{Z}[x]$.

2 Polynomial Representation

Let $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ be our number field L. We build L as follows. For $1 \leq i \leq r$, let $m_{i}\left(z_{1}, \ldots, z_{i}\right) \in \mathbb{Q}\left[z_{1}, \ldots, z_{i}\right]$ be the minimal polynomial for α_{i}, monic and irreducible over $\mathbb{Q}\left[z_{1}, \ldots, z_{i-1}\right] /\left\langle m_{1}, \ldots, m_{i-1}\right\rangle$. Let $d_{i}=\operatorname{deg}_{z_{i}}\left(m_{i}\right)$. We assume $d_{i} \geq 2$. Let $L=\mathbb{Q}\left[z_{1}, \ldots, z_{r}\right] /\left\langle m_{1}, \ldots, m_{r}\right\rangle$. So L is an algebraic number field of degree $d=\prod d_{i}$ over \mathbb{Q}. For a prime p for which the rational coefficients of m_{i} exist modulo p, let $R_{i}=\mathbb{Z}_{p}\left[z_{1}, \ldots, z_{i}\right] /\left\langle\bar{m}_{1}, \ldots, \bar{m}_{i}\right\rangle$ where $\bar{m}_{i}=m_{i} \bmod p$ and
let $R=R_{r}=L \bmod p$. We use the following recursive dense representation for elements of R and polynomials in $R[x]$ for our algorithms. We view an element of R_{i+1} as a polynomial with degree at most $d_{i+1}-1$ with coefficients in R_{i}.

To represent a non-zero element $\beta_{1}=a_{0}+a_{1} z_{1}+\cdots+a_{d_{1}-1} z_{1}^{d_{1}-1} \in R_{1}$ we use an array A_{1} of size $S_{1}=d_{1}+1$ indexed from 0 to d_{1}, of integers (modulo p) to store β_{1}. We store $A_{1}[0]=\operatorname{deg}_{z_{1}}\left(\alpha_{1}\right)$ and, for $0 \leq i<d_{1}: A_{1}[i+1]=a_{i}$. Note that if $\operatorname{deg}_{z_{1}}\left(\alpha_{1}\right)=\bar{d}<d_{1}-1$ then for $\bar{d}+1<j \leq d_{1}, A_{1}[j]=0$. To represent the zero element of R_{1} we use $A[0]=-1$.

Now suppose we want to represent an element $\beta_{2}=b_{0}+b_{1} z_{2}+\cdots+$ $b_{d_{2}-1} z_{2}^{d_{2}-1} \in R_{2}$ where $b_{i} \in R_{1}$ using an array A_{2} of size $S_{2}=d_{2} S_{1}+1=$ $d_{2}\left(d_{1}+1\right)+1$. We store $A_{2}[0]=\operatorname{deg}_{z_{2}}\left(\beta_{2}\right)$ and for $0 \leq i<d_{2}$

$$
A_{2}\left[i\left(d_{1}+1\right)+1 \ldots(i+1)\left(d_{1}+1\right)\right]=B_{i}\left[0 \ldots d_{1}\right]
$$

where B_{i} is the array which represents $b_{i} \in R_{1}$. Again if $\beta_{2}=0$ we store $A_{2}[0]=-1$.

Similarly, we recursively represent $\beta_{r}=c_{0}+c_{1} z_{r}+\cdots+c_{d_{r}-1} z_{r}^{d_{r}-1} \in R_{r}$ based on the representation of $c_{i} \in R_{r-1}$. Let $S_{r}=d_{r} S_{r-1}+1$ and suppose A_{r} is an array of size S_{r} such that $A_{r}[0]=\operatorname{deg}_{z_{r}}\left(\beta_{r}\right)$ and for $0 \leq i<d_{r}$

$$
A_{r}\left[i\left(d_{r-1}\right)+1 \ldots(i+1)\left(d_{r-1}+1\right)\right]=C_{i}\left[0 \ldots S_{r-1}-1\right] .
$$

Remark 1. We store the degrees of the elements of R_{i} in $A_{i}[0]$ simply to avoid re-computing them repeatedly.

We have

$$
\prod_{i=1}^{r} d_{i}<S_{r}<\prod_{i=1}^{r}\left(d_{i}+1\right), S_{r} \in O\left(\prod_{i=1}^{r} d_{i}\right)
$$

Now suppose we use the array C to represent a polynomial $f \in R_{i}[x]$ of degree d_{x} in the same way. Each coefficient of f in x is an element of R_{i} which needs an array of size S_{i}, hence C must be of size

$$
P\left(d_{x}, R_{i}\right)=\left(d_{x}+1\right) S_{i}+1 .
$$

Example 2. Let $r=2$ and $p=17$. Let

$$
\begin{aligned}
\bar{m}_{1} & =z_{1}^{3}+3 \\
\bar{m}_{2} & =z_{2}^{2}+5 z_{1} z_{2}+4 z_{2}+7 z_{1}^{2}+3 z_{1}+6, \quad \text { and } \\
f & =3+4 z_{1}+\left(5+6 z_{1}\right) z_{2}+\left(7+8 z_{1}+9 z_{1}^{2}+\left(10 z_{1}+11 z_{1}^{2}\right) z_{2}\right) x+12 x^{2} .
\end{aligned}
$$

The representation for f is

Here $d_{x}=2, d_{1}=3, d_{2}=2, S_{1}=d_{1}+1=4, S_{2}=d_{2} S_{1}+1=9$ and the size of the array A is $P\left(d_{x}, R_{2}\right)=\left(d_{x}+1\right) S_{2}+1=28$.

We also need to represent the minimal polynomial \bar{m}_{i}. Let $\bar{m}_{i}=a_{0}+a_{1} z_{i}+$ $\ldots a_{d_{i}} z_{i}^{d_{i}}$ where $a_{j} \in R_{i-1}$. We need an array of size S_{i-1} to represent a_{j} so to represent \bar{m}_{i} in the same way we described above, we need an array of size $\bar{S}_{i}=1+\left(d_{i}+1\right) S_{i-1}=d_{i} S_{i-1}+1+S_{i-1}=S_{i}+S_{i-1}$. We define $S_{0}=1$.

We represent the set of minimal polynomials $\left\{\bar{m}_{1}, \ldots, \bar{m}_{r}\right\}$ as an Array E of size $\sum_{i=1}^{r} \bar{S}_{i}=\sum_{i=1}^{r}\left(S_{i}+S_{i-1}\right)=1+S_{r}+2 \sum_{i=1}^{r-1} S_{i}$ such that $E\left[M_{i} \ldots M_{i+1}-\right.$ 1] represents m_{r-i} where $M_{0}=0$ and $M_{i}=\sum_{i=r-i+1}^{r}=1 \bar{S}_{i}$. The minimal polynomials in Example 2 will be represented in the following figure where $E[0 \ldots 12]$ represents \bar{m}_{2} and $E[13 \ldots 17]$ represents \bar{m}_{1}.

$$
E=\underbrace{\underbrace{}_{2|2| 6|3| 7|1| 4|5| 0|0| 1|0| 0} \underbrace{3|3| 0|0| 1}_{\bar{m}_{1}}}_{\bar{m}_{2}}
$$

3 In-place Algorithms

In this section we design efficient in-place algorithms for multiplication, division and GCD computation of two univariate polynomials over R. We will also give an in-place algorithm for computing the inverse of an element $\alpha \in R$, if it exists. This is needed for making a polynomial monic for the monic Euclidean algorithm in $R[x]$. We assume the following utility operations are implemented.

- IP_ADD (N, A, B) and $\operatorname{IP} _S U B(N, A, B)$ are used for in-place addition and subtraction of two polynomials $a, b \in R_{N}[x]$ represented in arrays A and B.
- IP_MUL_NO_EXT is used for multiplication of two polynomials over \mathbb{Z}_{p}. The algorithm is given by Monagan in [7].
- IP_REM_NO_EXT is used for computing the quotient and the remainder of dividing two polynomials over \mathbb{Z}_{p}. The algorithm is given by Monagan in [7].
- IP_INV_NO_EXT is used for computing the inverse of an element in $\mathbb{Z}_{p}[z]$ modulo a minimal polynomial $m \in \mathbb{Z}_{p}[z]$.
- IP_GCD_NO_EXT is used for computing the GCD of two univariate polynomials over \mathbb{Z}_{p} (the Euclidean algorithm, See [7]).

3.1 In-place Multiplication

Suppose we have $a, b \in R[x]$ where $R=R_{r-1}\left[z_{r}\right] /\left\langle m_{r}\left(z_{r}\right)\right\rangle$. Let $a=\sum_{i=0}^{d_{a}} a_{i} x^{i}$ and $b=\sum_{i=0}^{d_{b}} b_{i} x^{i}$ where $d_{a}=\operatorname{deg}_{x}(a)$ and $d_{b}=\operatorname{deg}_{x}(b)$ and Let $c=a \times b=$ $\sum_{i=0}^{d_{c}} c_{i} x^{i}$ where $d_{c}=\operatorname{deg}_{x}(c)=d_{a}+d_{b}$. To reduce the number of divisions by $m_{r}\left(z_{r}\right)$ when multiplying $a \times b$, we use the Cauchy product rule to compute c_{k} as suggested in [7], that is,

$$
c_{k}=\left[\sum_{i=\max \left(0, k-d_{b}\right)}^{\min \left(k, d_{a}\right)} a_{i} \times b_{k-i}\right] \bmod m_{r}\left(z_{r}\right) .
$$

Thus the number of multiplications in $R_{r-1}\left[z_{r}\right]$ is $\left(d_{a}+1\right) \times\left(d_{b}+1\right)$ and the number of divisions in $R_{r-1}\left[z_{r}\right]$ is only $d_{a}+d_{b}+1$.

```
Algorithm IP_MUL: In-place Multiplication
Input: - N the number of field extensions.
    - Arrays }A[0\ldots\overline{a}]\mathrm{ and B[0_.b}] representing univariate polynomials a,b\in R R [x
        ( R
        P(d
```



```
        P( }\mp@subsup{\operatorname{deg}}{x}{}(a)+\mp@subsup{\operatorname{deg}}{x}{}(b),\mp@subsup{R}{N}{})-1
    - E[0\ldots... N ] : representing the set of minimal polynomials where e}\mp@subsup{e}{N}{}=\mp@subsup{S}{N}{}
```



```
    -W[0\ldots\mp@subsup{w}{N}{}]: the working storage for the intermediate operations.
Output: For 0\leqk\leqd
```



```
    if }\mp@subsup{d}{a}{}=-1\mathrm{ or }\mp@subsup{d}{b}{}=-1\mathrm{ then
        Set C[0]:=-1.
        return
    end if
    if N=0 then
        Call IP_MUL_NO_EXT on inputs }A,B\mathrm{ and }C\mathrm{ and return.
    end if
    Let M=E[0\ldots. 的 - 1] and E'}=E[\mp@subsup{\overline{S}}{N}{}\ldots\mp@subsup{e}{N}{}](M\mathrm{ points to }\mp@subsup{\overline{m}}{N}{}\mathrm{ in }E[0\ldots\mp@subsup{e}{N}{}])\mathrm{ .
    Let }\mp@subsup{T}{1}{}=W[0\ldotst-1] and T T = W[t\ldots2t-1] and W' W W[2t\ldots\mp@subsup{w}{N}{}]\mathrm{ where
```



```
    Set d}\mp@subsup{d}{c}{}:=\mp@subsup{d}{a}{}+\mp@subsup{d}{b}{}\mathrm{ and }\mp@subsup{s}{c}{}:=1
    for }k\mathrm{ from 0 to d}\mp@subsup{d}{c}{}\mathrm{ do
        Set }\mp@subsup{s}{a}{}:=1+i\mp@subsup{S}{N}{}\mathrm{ and }\mp@subsup{s}{b}{}:=1+(k-i)\mp@subsup{S}{N}{}
        Set T1[0]:=-1 (T T = 0).
        for }i\mathrm{ from max (0,k-d
            Call IP_MUL(N - 1, A[sa\ldots\overline{a}],B[sb\ldots\overline{b}],T2, E',}\mp@subsup{W}{}{\prime})
            Call IP_ADD (N-1,T1,T2) (T1:= T1 + T2)
            Set }\mp@subsup{s}{a}{}:=\mp@subsup{s}{a}{}+\mp@subsup{S}{N}{}\mathrm{ and }\mp@subsup{s}{b}{}:=\mp@subsup{s}{b}{}-\mp@subsup{S}{N}{}
        end for
        Call IP_REM(N - 1, T1,M, E', W'). (Reduce T1 modulo M = =\mp@subsup{m}{N}{}}\mathrm{ ).
        Copy C[sc\ldots\overline{c}] into T1.
    end for
    Determine deg
    Set }i:=\mp@subsup{d}{c}{}\mathrm{ and }\mp@subsup{s}{c}{}:=\mp@subsup{s}{c}{}-\mp@subsup{S}{N}{}
    while }i\geq0\mathrm{ and }C[sc]=-1 d
        Set }i:=i-1 and scc:= sc - SN
    end while
Set C[0]:= i.
```

Note that we let the values accumulate in the variable T_{1} (line 17) before reducing modulo the minimal polynomials and hence doing the division outside the inner loop in line 20 . This will save half of the work in practice.

The temporary variables T_{1} and T_{2} must be big enough to store the product of two coefficients in $a, b \in R_{N}[x]$. Coefficients of a and b are in $R_{N-1}\left[z_{N}\right]$ with degree $\left(\right.$ in $\left.z_{N}\right)$ at most $d_{N}-1$. Hence these temporaries must be of size $P\left(d_{N}-1+d_{N}-1, R_{N-1}\right)=P\left(2 d_{N}-2, R_{N-1}\right)$.

3.2 In-place Division

The following algorithm divides a polynomial $a \in R_{N}[x]$ by a monic polynomial $b \in R_{N}[x]$. The remainder and the quotient of a divided by b will be stored in the array representing a hence a is destroyed by the algorithm.

Algorithm IP_REM: In-place Remainder
Input: $-N$ the number of field extensions.

- Arrays $A[0 \ldots \bar{a}]$ and $B[0 \ldots \bar{b}]$ representing univariate polynomials $a, b \neq 0 \in$ $R_{N}[x]\left(R_{N}=\mathbb{Z}_{p}\left[z_{1}, \ldots, z_{N}\right] /\left\langle\bar{m}_{1}, \ldots, \bar{m}_{N}\right\rangle\right)$ where $d_{a}=\operatorname{deg}_{x}(a) \geq d_{a}=$ $\operatorname{deg}_{x}(b)$. Note b must be monic and $\bar{a}=P\left(d_{a}, R_{N}\right)-1$ and $\bar{b}=P\left(d_{b}, R_{N}\right)-1$.
$-E\left[0 \ldots e_{N}\right]$: representing the set of minimal polynomials where $e_{N}=S_{N}+$ $2 \sum_{i=1}^{N-1} S_{i}$.
$-W\left[0 \ldots w_{N}\right]$: the working storage for the intermediate operations.
Output: The remainder \bar{R} of a divided by b will be stored in $A[0 \ldots \bar{r}]$ where $\bar{r}=$ $P\left(D, R_{N}\right)-1$ and $D=\operatorname{deg}_{x}(\bar{R}) \leq d_{b}-1$. Also let Q represent the quotient \bar{Q} of a divided by b. $Q[1 \ldots \bar{q}]$ will be stored in $A\left[1+d_{b} S_{N} \ldots \bar{a}\right]$ where $\bar{q}=P\left(d_{a}-\right.$ $\left.d_{b}, R_{N}\right)-1$. Note that we will no longer have the representation for a.
Set $d_{a}:=A[0]$ and $d_{b}:=B[0]$.
if $d_{a}<d_{b}$ then return.
if $N=0$ then
Call IP_REM_NO_EXT on inputs A and B and return.

end if

Set $D_{q}:=d_{a}-d_{b}$ and $D_{r}:=d_{b}-1$.
Let $M=E\left[0 \ldots \bar{S}_{N}-1\right]$ and $E^{\prime}=E\left[\bar{S}_{N} \ldots e_{N}\right]$ (M points to \bar{m}_{N} in $E\left[0 \ldots e_{N}\right]$).
Let $T_{1}=W[0 \ldots t-1]$ and $T_{2}=W[t \ldots 2 t-1]$ and $W^{\prime}=W\left[2 t \ldots w_{N}\right]$ where $t=P\left(2 d_{N}-2, R_{N-1}\right)$ and $d_{N}=M[0]=\operatorname{deg}_{z_{N}}\left(\bar{m}_{N}\right)$.
Set $s_{c}:=1+d_{a} S_{N}$
for $k=d_{a}$ to 0 by -1 do
Copy $C[s c \ldots \bar{c}]$ into T_{1}.
Set $i:=\max \left(0, k-D_{q}\right)$.
Set $s_{b}:=1+i S_{N}$
Set $s_{a}:=1+\left(k-i+d_{b}\right) S_{N}$
while $i \leq \min \left(D_{r}, k\right)$ do
Call IP_MUL $\left(N-1, A\left[s_{a} \ldots \bar{a}\right], B\left[s_{b} \ldots \bar{b}\right], T_{2}, E^{\prime}, W^{\prime}\right)$.
Call IP_SUB $\left(N-1, T_{1}, T_{2}\right)\left(T_{1}:=T_{1}-T_{2}\right)$.
Set $s_{b}:=s_{b}+S_{N}$ and $s_{a}:=s_{a}-S_{N}$.
end while
Call IP_REM $\left(N-1, T_{1}, M, E^{\prime}, W^{\prime}\right)\left(\right.$ Reduce T_{1} modulo $\left.M=\bar{m}_{N}\right)$.
Copy $A\left[s_{c} \ldots \bar{c}\right]$ into T_{1}.
Set $s_{c}:=s_{c}-S_{N}$.
end for
Set $i:=D_{r}$ and $s_{c}:=1+D_{r} S_{N}$
while $i \geq 0$ and $A\left[s_{c}\right]=-1$ do
Set $i:=i-1$ and $s_{c}:=s_{c}-S_{N}$.
end while
Set $A[0]:=i$.
Let arrays A and B represent polynomials a and b respectively. Let $d_{a}=$ $\operatorname{deg}_{x}(a)$ and $d_{b}=\operatorname{deg}_{x}(b)$. Array A has enough space to store $d_{a}+1$ coefficients in
R_{N} plus one unit of storage to store d_{a}. Hence the total storage is $\left(d_{a}+1\right) S_{N}+1$. The remainder \bar{R} is of degree at most $d_{b}-1$ in x, i.e. \bar{R} needs storage for d_{b} coefficients in R_{N} and one unit for the degree. Similarly the quotient \bar{Q} is of degree $d_{a}-d_{b}$, hence needs storage for $d_{a}-d_{b}+1$ coefficients and one unit for the degree. This the remainder and the quotient together need $d_{b} S_{N}+1+\left(d_{a}-\right.$ $\left.d_{b}+1\right) S_{N}+1=\left(d_{a}+1\right) S_{N}+2$. This means we are one unit of storage short if we want to store both \bar{R} and \bar{Q} in A. This is because this time we are storing two degrees for \bar{Q} and \bar{R}. Our solution is that we will not store the degree of \bar{Q}. Any algorithm that calls IP_REM and needs both the quotient and the remainder must use $\operatorname{deg}_{x}(a)-\operatorname{deg}_{x}(b)$ for the degree of \bar{Q}.

After applying this algorithm the remainder \bar{R} will be stored in $A\left[0 \ldots d_{b} S_{N}\right]$ and the quotient \bar{Q} minus the degree will be stored in $A\left[d_{b} S_{N} \ldots\left(d_{a}+1\right) S_{N}\right]$. Similar to IP_MUL, the remainder operation in line 20 has been moved to outside of the main loop to let the values accumulate in T_{1}.

3.3 Computing (In-place) the inverse of an element in \boldsymbol{R}_{N}

In this algorithm we assume the following in-place functions:

- IP_SCAL_MUL($N, A, C, E, W)$: This is used for multiplying a polynomial $a \in R_{N}[x]$ (represented by array A) by a scalar $c \in R_{N}$ (represented by array $C)$. The algorithm will multiply every coefficient of a in x by c and reduce the result modulo the minimal polynomials. It can easily be implemented using IP_MUL and IP_REM
- IP_LIN $(N, C, A, B, E, W):$ On inputs $a, b, c \in R_{N}[x]$ (represented with arrays A, B and C respectively), the algorithm will compute (in-place) $c:=a-b c$.

The algorithm computes the inverse of an element in R_{N}. If the element is not invertible, i.e. there exist a zero-divisor, the algorithm will store the zerodivisor in the space provided for the inverse and return the index of the minimal polynomial which is reducible and has caused the zero-divisor.

Algorithm IP_INV: In-place inverse of an element in R_{N}

Input: $-N$ the number of field extensions.

- Array $A[0 \ldots \bar{a}]$ representing the univariate polynomial $a \in R_{N}$ Note that $N \geq 1$ and $\bar{a}=S_{N}-1$.
- Array $I[0 \ldots \bar{i}]$: Space needed for storing the inverse $a^{-1} \in R_{N}$. Note that $\bar{i}=S_{N}-1$.
$-E\left[0 \ldots e_{N}\right]$: representing the set of minimal polynomials. Note that $e_{N}=$ $S_{N}+2 \sum_{i=1}^{N-1} S_{i}$.
$-W\left[0 \ldots w_{N}\right]$: the working storage for the intermediate operations.
Output: The inverse of a (or a zero-divisor, if there exists one) will be computed and stored in I. If there is a zero-divisor, the algorithm will return the index k where \bar{m}_{k} is the reducible minimal polynomial, otherwise it will return 0 .
Let $M=E\left[0 \ldots \bar{S}_{N}-1\right]$ and $E^{\prime}=E\left[\bar{S}_{N} \ldots e_{N}\right]\left(M=\bar{m}_{N}\right)$.
if $N=1$ then
Call IP_INV_NO_EXT on inputs A, I, E and M and return.
end if

```
5: if \(A[i]=0\), for all \(0 \leq i<N\) and \(A[N]=1\) ( Test if \(a=1\) ) then
    Copy \(A\) into \(I\) and return 0.
end if
Let \(r_{1}=W[0 \ldots t-1], r_{2}=W[t \ldots 2 t-1], s_{1}=I, s_{2}=W[2 t \ldots 3 t-1], T=\)
\(W[3 t \ldots 4 t-1]\) and \(W^{\prime}=W\left[4 t \ldots w_{N}\right]\) where \(t=P\left(d_{N}, R_{N-1}\right)-1=\bar{S}_{N}-1\) and
\(d_{N}=M[0]=\operatorname{deg}_{z_{N}}\left(\bar{m}_{N}\right)\).
9: Copy \(A\) and \(M\) into \(r_{1}\) and \(r_{2}\) respectively
10: Set \(s_{2}[0]:=-1\left(s_{2}\right.\) represents 0\()\).
11: Let \(Z \in \mathbb{Z}:=\operatorname{IP} \operatorname{INV}\left(N-1, A\left[D_{a} S_{N-1}+1 \ldots \bar{a}\right], T, E^{\prime}, W^{\prime}\right)\) where \(D_{a}=A[0]=\)
\(\operatorname{deg}_{z_{N}}(a) . \quad\left(A\left[D_{a} S_{N-1}+1 \ldots \bar{a}\right]\right.\) represents \(l=l c_{z_{N}}(a)\) and \(T\) represents \(l^{-1}\), the
inverse of the leading coefficient).
if \(Z>0\) then
    Copy \(T\) into \(I\). (I will contain the zero-divisor).
    return \(Z\left(\bar{m}_{Z}\right.\) is reducible and there is a zero-divisor).
end if
Copy \(T\) into \(s_{1}\).
Call IP_SCAL_MUL( \(\left.N, r_{1}, T, E^{\prime}, W^{\prime}\right)\left(r_{1}\right.\) is made monic).
while \(r_{2}[0] \neq-1\) do
    Let \(Z \in \mathbb{Z}:=\operatorname{IP} \operatorname{INV}\left(N-1, r_{2}\left[D_{r_{2}} S_{N-1}+1 \ldots \bar{a}\right], T, E^{\prime}, W^{\prime}\right)\) where \(D_{r_{2}}=\)
    \(r_{2}[0]=\operatorname{deg}_{z_{N}}\left(r_{2}\right)\).
    if \(Z>0\) then
        Copy \(T\) into \(I\). ( \(I\) will contain the zero-divisor).
        return \(Z\left(\bar{m}_{Z}\right.\) is reducible and there is a zero-divisor).
        end if
        Call IP_SCAL_MUL \(\left(N, r_{2}, T, E^{\prime}, W^{\prime}\right)\left(r_{2}\right.\) is made monic \()\).
        Call IP_SCAL_MUL( \(\left.N, s_{2}, T, E^{\prime}, W^{\prime}\right)\).
        Set \(D_{q}:=r_{1}[0]-r_{2}[0]\). If \(D_{q}<0\) then set \(D_{q}:=-1\).
        Call IP_REM \(\left(N, r_{1}, r_{2}, E^{\prime}, W^{\prime}\right)\).
        Swap the arrays \(r_{1}\) and \(r_{2}\). (Interchange only the pointers).
        Set \(t_{1}:=r_{2}\left[r_{1}[0] S_{N-1}\right]\).
        Set \(r_{2}\left[r_{1}[0] S_{N-1}\right]:=D_{q}\).
        Call IP_LIN \(\left(N, s_{1}, q, s_{2}, E^{\prime}, W^{\prime}\right)\) where \(q=r_{2}\left[r_{1}[0] S_{N-1} \ldots \bar{a}\right] .\left(s_{1}:=s_{1}-q s_{2}.\right)\)
        Set \(r_{2}\left[r_{1}[0] S_{N-1}\right]:=t_{1}\).
        Swap the arrays \(s_{1}\) and \(s_{2}\). (Interchange only the pointers).
end while
if \(r_{1}[i]=0\) for all \(0 \leq i<N\) and \(r_{1}[N]=1\) then
    Copy \(s_{1}\) into \(I .\left(r_{1}=1\right.\) and \(s_{1}\) is the inverse \()\).
    return 0 .
else
    Copy \(r_{1}\) into \(R\left(r_{1} \neq 1\right.\) is the zero-divisor \()\).
    return \(N-1\left(\bar{m}_{N-1}\right.\) is reducible \()\).
end if
```

As discussed in Section 3.2, IP_REM will not store the degree of the quotient of a divided by b hence in line 30 we explicitly compute and set the degree of the quotient before passing it to the function IP_LIN as an argument. Here $r_{2}\left[r_{1}[0] S_{N-1} \ldots \bar{a}\right]$ is the quotient of dividing r_{1} by r_{2} in line 27 .

3.4 In-place GCD Computation

In the following algorithm we want to compute the GCD of $a, b \in R_{N}[x]$ in-place using the monic Euclidean algorithm. This is the main functionality which will be used to compute univariate images of a multivariate GCD over an algebraic function field in algorithm SparseModGcd [3].

Algorithm IP_GCD: In-place GCD Computation
 Input: $-N$ the number of field extensions.

- Arrays $A[0 \ldots \bar{a}]$ and $B[0 \ldots \bar{b}]$ representing univariate polynomials $a, b \neq 0 \in$ $R_{N}[x]\left(R_{N}=\mathbb{Z}_{p}\left[z_{1}, \ldots, z_{N}\right] /\left\langle\bar{m}_{1}, \ldots, \bar{m}_{N}\right\rangle\right)$ where $d_{a}=\operatorname{deg}_{x}(a) \geq d_{a}=$ $\operatorname{deg}_{x}(b)$ and $A, B \neq 0$. Note that b is monic and $\bar{a}=P\left(d_{a}, R_{N}\right)-1$ and $\bar{b}=P\left(d_{b}, R_{N}\right)-1$.
$-E\left[0 \ldots e_{N}\right]$: representing the set of minimal polynomials where $e_{N}=S_{N}+$ $2 \sum_{i=1}^{N-1} S_{i}$.
$-W\left[0 \ldots w_{N}\right]$: the working storage for the intermediate operations.
Output: If there exist a zero-divisor, it will be stored in A and the index of the reducible minimal polynomial will be returned. Otherwise the monic GCD $g=$ $\operatorname{gcd}(a, b)$ will be stored in A and 0 will be returned.

if $N=0$ then

CALL IP_GCD_NO_EXT on inputs A and B and return $\mathbf{0}$.
end if
Set $d_{a}:=A[0]$ and $d_{b}:=B[0]$.
Let r_{1} and r_{2} point to A and B respectively.
Let $I=W[0 \ldots t-1]$ and $W^{\prime}=W\left[t \ldots w_{N}\right]$ where $t=\bar{S}_{N}-1=S_{N}+S_{N-1}-1$.
Let Z be the output of $\operatorname{IP} \operatorname{INV}\left(N, r_{1}\left[1+r_{1}[0] S_{N} \ldots \bar{a}\right], I, E, W^{\prime}\right)$.
if $Z>0$ then
Copy I into A. (A will contain the zero-divisor).
return $Z\left(\bar{m}_{Z}\right.$ is reducible and there is a zero-divisor).
end if
Call IP_SCAL_MUL($\left.N, r_{1}, I, E, W^{\prime}\right)$.
while $r_{2}[0] \neq-1$ do
Let Z be the output of $\operatorname{IP} \operatorname{INV}\left(N, r_{2}\left[1+r_{2}[0] S_{N} \ldots \bar{b}\right], I, E, W^{\prime}\right)$.
if $Z>0$ then
Copy I into A. (A will contain the zero-divisor).
return $Z\left(\bar{m}_{Z}\right.$ is reducible and there is a zero-divisor).
end if
Call IP_SCAL_MUL $\left(N, r_{2}, I, E, W^{\prime}\right)$.
Call IP_REM $\left(N, r_{1}, r_{2}, E, W^{\prime}\right)$.
Swap r_{1} and r_{2} (interchange pointers).

end while

Copy r_{1} into A.
return 0 .
Similar to the algorithm IP_INV, if there exists a zero-divisor, i.e. the leading coefficient of one of the polynomials in the polynomial remainder sequence is not invertible, the algorithm will store the zero-divisor in the space provided for a. It will also return the index of the minimal polynomial which is reducible and has caused the zero-divisor.

4 Working Space

In this section we will determine recurrences for the exact amount of working storage w_{N} needed for each operation introduced in the previous section. Recall that $d_{i}=\operatorname{deg}_{z_{i}}\left(\bar{m}_{i}\right)$ is the degree of the i th minimal polynomial which we may assume is at least 2 . Also S_{i} is the space needed to store an element in R_{i} and we have $S_{i+1}=d_{i+1} S_{i}+1$ and $S_{1}=d_{1}+1$.

Lemma 1. $S_{N}>2 S_{N-1}$ for $N>1$.
Proof. We have $S_{N}=d_{N} S_{N-1}+1$ where $d_{N}=\operatorname{deg}_{z_{N}}\left(\bar{m}_{N}\right)$. Since $d_{N} \geq 2$ we have $S_{N} \geq 2 S_{N-1}+1 \Rightarrow S_{N}>2 S_{N-1}$.
Lemma 2. $\sum_{i=1}^{N-1} S_{i}<S_{N}$ for $N>1$.
Proof. (by induction on N). For $N=2$ we have $\sum_{i=1}^{1} S_{i}=S_{1}<S_{2}$. For $N=$ $k+1 \geq 2$ we have $\sum_{i=1}^{k} S_{i}=S_{k}+\sum_{i=1}^{k-1} S_{i}$. By induction we have $\sum_{i=1}^{k-1} S_{i}<S_{k}$ hence $\sum_{i=1}^{k} S_{i}<S_{k}+S_{k}=2 S_{k}$. Using Lemma 1 we have $2 S_{k}<S_{k+1}$ hence $\sum_{i=1}^{k} S_{i}<2 S_{k}<S_{k+1}$ and the proof is complete.

Corollary 1. $\sum_{i=1}^{N} S_{i}<2 S_{N}$ for $N>1$.
Lemma 3. $P\left(2 d_{N}-2, R_{N-1}\right)=2 S_{N}-S_{N-1}-1$ for $N>1$.
Proof. We have $P\left(2 d_{N}-2, R_{N-1}\right)=\left(2 d_{N}-1\right) S_{N-1}+1=2 d_{N} S_{N-1}-S_{N-1}+1=$ $2\left(d_{N} S_{N-1}+1\right)-S_{N-1}-1=2 S_{N}-S_{N-1}-1$.

4.1 Multiplication and Division Algorithms

Let $M(N)$ be the amount of working storage needed to multiply $a, b \in R_{N}[x]$ using the algorithm IP_MUL. Similarly let $Q(N)$ be the amount of working storage needed to divide a by b using the algorithm IP_REM. The working storage used in lines 10,16 and 20 of algorithm IP_MUL and lines 8,16 and 20 of algorithm IP_REM is

$$
\begin{gather*}
M(N)=2 P\left(2 d_{N}-2, R_{N-1}\right)+\max (M(N-1), Q(N-1)) \text { and } \tag{1}\\
Q(N)=2 P\left(2 d_{N}-2, R_{N-1}\right)+\max (M(N-1), Q(N-1)) \tag{2}
\end{gather*}
$$

Comparing equations (1) and (2) we see that $M(N)=Q(N)$ for any $N \geq 1$. Hence

$$
\begin{equation*}
M(N)=2 P\left(2 d_{N}-2, R_{N-1}\right)+M(N-1) \tag{3}
\end{equation*}
$$

Simplifying (3) gives $M(N)=2 S_{N}-2 N+2 \sum_{i=1}^{N} S_{i}$. Using Corollary 1 we have the following:
Theorem 1. $M(N)=Q(N)=2 S_{N}-2 N+2 \sum_{i=1}^{N} S_{i}<6 S_{N}$.

Remark 2. When calling the algorithm IP_MUL to compute $c=a \times b$ where $a, b \in R[x]$, we should use a working storage array $W\left[0 \ldots w_{n}\right]$ such that $w_{n} \geq$ $M(N)$. Since $M(N)<6 S_{N}$, the working storage must be big enough to store only six coefficients in L_{p}. This is very small.

Let $C(N)$ and $L(N)$ denote the amount of working storage needed for operations IP_SCAL_MUL and IP_LIN. It is easy to show that $C(N)=M(N-1)+$ $P\left(2 d_{N}-2, R_{N-1}\right)<M(N)$. Also we have $L(N)=M(N)$.

4.2 Inversion

Let $I(N)$ denote the amount of working storage needed to invert $c \in R_{N}$. In lines $8,11,17,19,24,25,27$ and 31 of algorithm IP_INV we use the working storage. We have

$$
\begin{equation*}
I(N)=4 P\left(d_{N}, R_{N-1}\right)+\max (I(N-1), M(N-1), L(N-1), Q(N-1)) . \tag{4}
\end{equation*}
$$

But we have $M(N-1)=L(N-1)=Q(N-1)$, hence

$$
\begin{equation*}
I(N)=4 P\left(d_{N}, R_{N-1}\right)+\max (I(N-1), M(N-1)) \tag{5}
\end{equation*}
$$

Lemma 4. For $N \geq 1$, we have $M(N)<I(N)$.

Proof. (by contradiction) Assume $M(N) \geq I(N)$. Using (5) we have

$$
I(N)=4 P\left(d_{N}, R_{N-1}\right)+M(N-1)
$$

On the other hand using (3) we have

$$
M(N)=2 P\left(2 d_{N}-2, R_{N-1}\right)+M(N-1)
$$

We assumed $I(N) \leq M(N)$ hence we have $4 P\left(d_{N}, R_{N-1}\right)+M(N-1) \leq$ $2 P\left(2 d_{N}-2, R_{N-1}\right)+M(N-1)$ thus $2 P\left(d_{N}, R_{N-1}\right) \leq P\left(2 d_{N}-2, R_{N-1}\right) \Rightarrow$ $2 S_{N}+2 S_{N-1} \leq 2 S_{N}-S_{N-1}-1$ which is a contradiction. Thus $I(N)>M(N)$.

Using Equation (4) and Lemma 4 we conclude that $I(N)=4 P\left(d_{N}, R_{N-1}\right)+$ $I(N-1)$. Simplifying this yields:

Theorem 2.

$$
I(N)=4 \sum_{i=1}^{N} P\left(d_{i}, R_{i-1}\right)=4 \sum_{i=1}^{N} S_{i}+S_{i-1}=4 S_{N}+8 \sum_{i=1}^{N-1} S_{i} .
$$

Using Lemma 1 an upper bound for $I(N)$ is $I(N)<4 S_{N}+8 S_{N}=12 S_{N}$.

4.3 GCD Computation

Let $G(N)$ denote the amount of working storage needed to compute the GCD of $a, b \in R_{N}[x]$. In lines $6,7,12,14,19$ and 20 of algorithm IP_GCD we use the working storage. We have

$$
\begin{equation*}
G(N)=\bar{S}_{N}+\max (I(N), C(N), Q(N)) \tag{6}
\end{equation*}
$$

Lemma 4 states that $I(N)>M(N)=C(N)=Q(N)$ hence
$G(N)=\bar{S}_{N}+I(N)=S_{N}+S_{N-1}+4 S_{N}+8 \sum_{i=1}^{N-1} S_{i}=9 S_{N}+S_{N-1}+8 \sum_{i=1}^{N-1} S_{i}$.
Since $I(N)<12 S_{N}$, we have an upper bound on $G(N)$:
Theorem 3. $G(N)=S_{N}+S_{N-1}+I(N)<S_{N}+S_{N-1}+12 S_{N}<14 S_{N}$.

5 Benchmarks

We have compared our C library with the Maple implementation of RECDEN [8] on a set of benchmark problems. The results are reported in Table 1. For our benchmarks we used $p=3037000453$, two field extensions with minimal polynomials \bar{m}_{1} and \bar{m}_{2} of varying degrees d_{1} and d_{2} but with $d=d_{1} \times d_{2}=60$ constant so that we may compare the overhead for varying d_{1}. We choose three polynomials a, b, g of the same degree d_{x} in x with coefficients chosen from R at random. The data in the fifth column is the time (in CPU seconds) for computing both $f_{1}=a \times g$ and $f_{2}=b \times g$ using IP_MUL. The data in the seventh column is the time for computing $\operatorname{gcd}\left(f_{1}, f_{2}\right)$ using IP_GCD. The data in the sixth and eight columns is the time for the corresponding routines in RECDEN. The data in the column labelled $\# f_{i}$ is the number of terms in f_{1} and f_{2}.

The timings in Table 1 show that as the degree d_{x} doubles from 80 to 160 , the time consistently goes up by a factor of 4 indicating that the underlying algorithms are all quadratic in d_{x}. One can also see that for $d_{x}=80$, as d_{1} increases from 2 to 30 , the timings for $I P_{-} M U L$ decrease from 2.46 to a minimum of 1.72 demonstrating that the overhead is relatively low when compared with the corresponding decrease for mulrpoly. Since the overhead for very small d_{1} is still significant, in our C library we tried in-lining special code for multiplying and inverting elements in R_{1} when \bar{m}_{1} is quadratic. To multiply $a, b \in R_{1}$ where $a=$ $a_{2} z_{1}+a_{1}, b=b_{2} z_{1}+b_{1}$ and $m_{1}=z_{1}^{2}+c_{2} z_{1}+c_{1}$ we have $a \times b \bmod \bar{m}_{1}=\left(a_{1} b_{2}-\right.$ $\left.a_{2} b_{2} c_{2}+a_{2} b_{1}\right) z-a_{2} b_{2} c_{1}+a_{1} b_{1}$ which we can in-line as 6 integer multiplications, 6 divisions and 3 additions and subtractions. Timings with this optimization are shown in parentheses.

The reader can observe that as d_{1} decreases, the timings for $I P_{-} M U L$ decrease as the overhead drops, but then they increase. This puzzled us. The reason is because of how we multiply in $R[x]$ using the Cauchy product rule. For each multiplication in $R_{1}\left[z_{2}\right]$ where $R_{1}=\mathbb{Z}_{p}\left[z_{1}\right] /\left\langle\bar{m}_{1}\left(z_{1}\right)\right\rangle$, we do d_{2}^{2} multiplications in $\mathbb{Z}_{p}\left[z_{1}\right]$ but only $2 d_{2}-1$ divisions (see section 3.1) by \bar{m}_{1} in $\mathbb{Z}_{p}\left[z_{1}\right]$. And since divisions and multiplications here cost about the same, the proportion of the time in division compared with multiplication increases as d_{2} decreases.

d_{1}	d_{2}	d_{x}	$\# f_{i}$	IP_MUL	mulrpoly	IP_GCD	gcdrpoly
2	30	80	3960	$2.46(2.22)$	95.34	$9.19(8.18)$	481.38
3	20	80	3960	2.04	45.49	7.84	220.10
4	15	80	3960	1.89	28.40	7.31	130.96
6	10	80	3960	1.76	16.06	6.90	69.90
10	6	80	3960	1.72	8.52	6.72	34.84
15	4	80	3960	1.77	5.84	6.77	22.65
20	3	80	3960	1.85	4.80	6.88	18.00
30	2	80	3960	2.02	4.04	6.96	14.05
2	30	160	7980	$9.84(8.86)$	410.20	$36.75(32.59)$	2291.85
3	20	160	7980	8.19	197.87	31.02	993.36
4	15	160	7980	7.55	122.41	28.91	581.17
6	10	160	7980	7.06	68.51	27.25	303.92
10	6	160	7980	6.89	35.97	26.44	148.02
15	4	160	7980	7.11	24.41	26.78	94.92
20	3	160	7980	7.43	20.09	27.20	74.44
30	2	160	7980	8.12	16.65	27.52	57.65

Table 1. Timings (in CPU seconds)

References

1. Mark J. Encarnación. Computing gcds of polynomials over algebraic number fields. J. Symb. Comp., 20(3):299-313, 1995.
2. Richard Fateman. Comparing the speed of programs for sparse polynomial multiplication. SIGSAM Bull., 37(1):4-15, 2003.
3. Seyed Mohammad Mahdi Javadi and Michael Monagan. A sparse modular gcd algorithm for polynomials over algebraic function fields. Proceedings of ISSAC '07, pages 187-194. ACM, 2007.
4. Lars Langemyr and Scott McCallum. The computation of polynomial greatest common divisors over an algebraic number field. J. Symb. Comp., 8(5):429-448, 1989.
5. Xin Li, Marc Moreno Maza, and Éric Schost. Fast arithmetic for triangular sets: from theory to practice. Proceedings of ISSAC '07, pages 269-276. ACM, 2007.
6. Roman Maeder. Storage Allocation for the Karatsuba Integer Multiplication Algorithm. Proceedings of DISCO '93, pages 59-65. Springer-Verlag LNCS 722, 1993.
7. Michael B. Monagan. In-place arithmetic for polynominals over \mathbb{Z}_{n}. Proceedings of DISCO '92, pages 22-34. Springer-Verlag LNCS 721, 1992.
8. Mark van Hoeij and Michael Monagan. A modular gcd algorithm over number fields presented with multiple extensions. Proceedings of ISSAC '02, pages 109-116. ACM Press, 2002.
9. Mark van Hoeij and Michael Monagan. Algorithms for polynomial gcd computation over algebraic function fields. Proceedings of ISSAC '04, pages 297-304. ACM Press: New York, NY, 2004.

[^0]: * This work was supported by NSERC of Canada and the MITACS NCE of Canada

