
On Sparse Polynomial Interpolation over Finite Fields ∗

Seyed Mohammad Mahdi Javadi
School of Computing Science

Simon Fraser University
Burnaby, B.C. Canada.

sjavadi@cecm.sfu.ca.

Michael Monagan
Department of Mathematics

Simon Fraser University
Burnaby, B.C. Canada.

mmonagan@cecm.sfu.ca.

ABSTRACT
We present a Las Vegas algorithm for interpolating a sparse
multivariate polynomial over a finite field, represented with
a black box. Our algorithm modifies the algorithm of Ben-
Or and Tiwari in 1988 for interpolating polynomials over
rings with characteristic zero to characteristic p by doing
additional probes.

One of the best algorithms for sparse polynomial inter-
polation over a finite field is Zippel’s algorithm from 1990.
To interpolate a polynomial in n variables with t non-zero
terms, Zippel’s algorithm does O(ndt) probes to the black
box where d bounds the degree of the polynomial in each
variable. Our new algorithm does O(nt) probes.

We have implemented both Zippel’s algorithm and the
new algorithm in C. We provide benchmarks demonstrating
the efficiency of our algorithm. We also analyze the failure
probability for our algorithm.

1. INTRODUCTION
Let p be a prime and let f ∈ Zp[x1, . . . , xn] be a multi-

variate polynomial with t > 0 non-zero terms which is rep-
resented with a black box Znp → Zp. On input (α1, . . . , αn) ∈
Znp , the black box evaluates and outputs f(x1 = α1, . . . , xn =
αn). Given also a degree bound d on the degree of f in each
variable, our goal is to interpolate the polynomial f with
minimum number of evaluations (probes to the black box).

Sparse interpolation is a key part of many algorithms in com-
puter algebra such as GCD computation [15, 5, 2]. We are
interested in algorithms whose computational complexity is
polynomial in t, n, and d. The first efficient sparse inter-
polation algorithm is due to Richard Zippel in 1979 [15].
Zippel’s algorithm is probabilistic. It relies heavily on the
assumption that if a polynomial is zero at a random evalu-
ation point, then it is the zero polynomial with high prob-
ability. Zippel’s algorithm requires a bound on the degree

∗Supported by NSERC of Canada and the MITACS NCE
of Canada

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’10, July 25–28, 2010, Munich, Germany.
Copyright 2010 ACM X-XXXXX-XXX-X/XX/XXXX ...$10.00.

of f in each variable. In his algorithm, the interpolation is
done variable by variable. Zippel’s algorithm makes O(ndt)
probes to the black box.

In 1990, Zippel in [16] improved his 1979 algorithm to use
evaluation points of the form (αi1, . . . , α

i
k) ∈ Zkp so that the

linear systems to be solved become transposed Vandermonde
systems which can be solved in O(t2) time instead of O(t3)
– see [6].

In 1989, Ben-Or and Tiwari [1] presented a deterministic
algorithm for interpolating a multivariate polynomial with
integer, real or complex coefficients. Given a bound T on
the number of terms t of the polynomial f , the algorithm
evaluates the black box at powers of the first n primes; it
evaluates at the points (2i, 3i, 5i, . . . , pin) for 0 ≤ i < 2T . If
Mj(x1, . . . , xn) are the monomials of the t non-zero terms
of f , it then uses Berlekamp/Massey algorithm [12] from
coding theory to find the evaluations Mj(2, 3, 5, . . . , pn) of
the monomials in f for 1 ≤ j ≤ t and then determines
the degree of a monomial Mj in xk by trial division of
Mj(2, 3, 5, . . . , pn) by pj . This algorithm is not variable by
variable. Instead, it interpolates the polynomial f with only
2T probes to the black box. The major disadvantage of the
Ben-Or/Tiwari algorithm is that the evaluation points are
large (O(T logn) bits long − see [1]) which makes computa-
tions slow.

In 2009, Giesbrecht, Labahn and Lee in [11] present two
new algorithms for sparse interpolation for polynomials with
floating point coefficients. The first is a modification of the
Ben-Or/Tiwari algorithm. To avoid numerical problems, it
evaluates at powers of complex roots of unity. In principle,
their algorithm can be made to work over finite fields when
we can choose p. The recovery of the degrees of variables
requires computing a discrete logarithm where the size of the
field needs to be > dn. If f is modestly large, say n = 10
variables of degree d < 30, then p would need to be larger
than 31 · 37 · 41 · · · · · 71, a 56 bit integer. The t discrete
logarithms in such a field would be too expensive.

Our approach in this paper for sparse interpolation over a fi-
nite field is to use evaluation points of the form (αi1, ..., α

i
n) ∈

Znp and modify the Ben-Or/Tiwari algorithm to do extra
probes to determine the degrees of the variables in each
monomial in f . One of the main motivations for the new
algorithm is to be able to use the Ben-Or/Tiwari approach
in modular algorithms (e.g. GCD computations in charac-
teristic 0 – see [5]) where the prime p used can be selected.
In the new algorithm we do a factor of at most 2n more
evaluations in order to recover the monomials from their
images.

We cite also the following related work. To reduce the num-
ber of probes needed, early termination versions of both Zip-
pel’s algorithm and Ben-Or/Tiwari algorithm were devel-
oped by Kaltofen et al. in [8, 7]. Also, the Ben-Or/Tiwari
algorithm has been extended to sparsity with respect to
non-standard polynomial bases (e.g. Chebyshev bases and
shifted bases) [4, 9, 10, 3].

Our paper is organized as follows. In Section 2 we present an
example showing the main flow and the key features of our
algorithm. We then identify possible problems that can oc-
cur and how the new algorithm deals with them in Section 3.
In Section 4 we present our new algorithm and analyze its
time complexity. Finally, in Section 5 we compare the C im-
plementations of our algorithm with Zippel’s algorithm on
various sets of polynomials.

2. THE IDEA AND AN EXAMPLE
Let f =

Pt
i=1 aiMi ∈ Zp[x1, . . . , xn] be the polynomial

represented with the black box with ai ∈ Zp\{0}. Here t is
the number of non-zero terms in f . Mi = xei1

1 ×x
ei2
2 ×· · ·×

xein
n is the i’th monomial in f where Mi 6= Mj for i 6= j.

Let d be a bound on the degree of f in each variable xi, i.e.
eij ≤ d for all 1 ≤ i, j ≤ n.

We demonstrate our algorithm on the following example.
Here we use x, y and z for variables instead of x1, x2 and x3.

Example 1 Let f = 91yz2 + 94x2yz + 61x2y2z + 42z5 + 1
and p = 101. Given the number of terms t = 5, the number
of variables n = 3, a degree bound d = 5 and the black box
that computes f , we want to find f .

The first step is to pick n = 3 distinct generators α1, α2, α3

of Z∗p. We evaluate the black box at the points β0, . . . , β2t−1

where βi = (αi1, α
i
2, . . . , α

i
n). Thus we make 2t probes to

the black box. The reason to use generators instead of ran-
dom values from Zp is that it decreases the probability of two
distinct monomials having the same evaluation. For our ex-
ample, let the generators be

α1 = 66, α2 = 12 and α3 = 3

and let vi be the output of the black box on input βi and let
V = (v0, . . . , v2t−1). In this example we obtain

V = (87, 78, 65, 41, 49, 38, 87, 29, 23, 86).

Now we use the Berlekamp/Massey algorithm [12] (See [8]
for a more accessible reference). The input to this algorithm
is a sequence of elements b0, b1, . . . , b2t−1, . . . where bi ∈ Zp.
The algorithm computes a linear generator for the sequence,
i.e. the univariate polynomial Λ(z) = zt−λt−1z

t−1−· · ·−λ0

such that

bt+i = λt−1bt+i−1 + λt−2bt+i−2 + · · ·+ λ0bi

for all i ≥ 0. In our example the input is V = (v0, . . . , v2t−1)
and the output is

Λ1(z) = z5 + 28z4 + 62z3 + 54z2 + 11z + 46.

The next step is to find the roots of Λ1(z). We know (see [1])
that this polynomial is the product of exactly t = 5 linear
factors. The roots are r1 = 1, r2 = 7, r3 = 41, r4 = 61 and
r5 = 64. Ben-Or and Tiwari prove that for each 1 ≤ i ≤ t,
there exists 1 ≤ j ≤ t such that

mi = Mi(α1, . . . , αn) ≡ rj mod p.

Our goal now is to determine the degrees of each monomial
in f in each variable. We do this one variable at a time
starting with the first variable x. Let αn+1 be a new random
generator of Z∗p. In this example we choose α4 = 34. This
time we choose the evaluation points β′0, . . . , β

′
2t−1 where

β′i = (αin+1, α
i
2, . . . , α

i
n). Note that this time we are eval-

uating the first variable at powers of αn+1 instead of α1.
We evaluate the black box at these points and apply the
Berlekamp/Massey algorithm on the sequence of the outputs
to compute the linear generator for the new sequence

Λ2 = z5 + 45z3 + 54z2 + 60z + 42.

Let r̄1, . . . , r̄5 be distinct roots of Λ2.
We know that Mi(αn+1, α2, . . . , αn) is a root of Λ2 for 1 ≤
i ≤ n. On the other hand we have

Mi(αn+1, α2, . . . , αn)

Mi(α1, α2, . . . , αn)
= (

αn+1

α1
)
ei1
. (1)

Let rj = Mi(α1, α2, . . . , αn) and r̄k = Mi(αn+1, α2, . . . , αn).
From Equation 1 we have

r̄k = rj × (
αn+1

α1
)
ei1
,

i.e. for every root rj of Λ1, rj × (
αn+1
α1

)
ei1 is a root of Λ2

for some ei1 which is the degree of some monomial in f
with respect to x. This gives us a way to compute the degree
of each monomial Mi in the variable x. In this example we
have

αn+1
α1

= 25. We start with the first root of Λ1 and check

if r1 × (
αn+1
α1

)
i

is a root of Λ2 for 0 ≤ i ≤ d. For r1 = 1 we

have that r1 × (
αn+1
α1

)
0

is a root of Λ2 and for 0 < i ≤ d,

r1 × (
αn+1
α1

)
i

is not a root of Λ2, hence we conclude that the
degree of the first monomial of f in x is 0. We continue this
to find the degrees of all the monomials in f in the variable
x. We obtain

e1 = {e11 = 0, e21 = 0, e31 = 0, e41 = 2, e51 = 2}.

Now we proceed to the next variable y. This time the evalu-
ation points used for probing the black box are β′′0 , . . . , β

′′
2t−1

where β′′i = (αi1, α
i
n+1, α

i
3, . . .). Note that this time we are

evaluating the second variable y at powers of αn+1 instead of
α2. We evaluate the black box at these points and apply the
Berlekamp/Massey algorithm on the sequence of the outputs
to compute the linear generator for the new sequence

Λ3 = z5 + 5z4 + 27z3 + 36z2 + 93z + 40.

Let r̃1, . . . , r̃5 be distinct roots of Λ3. Again using the same
approach as above, we find the degrees of the monomials in
the second variable y

e2 = {e12 = 0, e22 = 1, e32 = 0, e42 = 2, e52 = 1}.

And finally we proceed to the last variable z. This time we
evaluate z at powers of αn+1 instead of α3 and compute
the following linear generator for the sequence of outputs
obtained by probing the black box

Λ4 = z5 + 27z4 + 99z3 + 18z2 + 16z + 41.

We compute the degrees with the same technique

e3 = {e13 = 0, e23 = 2, e33 = 5, e43 = 1, e53 = 1}.

At this point we have computed all the monomials. Recall
that Mi = xei1

1 × xei2
2 × · · · × xein

n hence we have

M1 = 1,M2 = yz2,M3 = z5,M4 = x2y2z and M5 = x2yz.

Now we need to compute the coefficients. We can easily do
this by solving one linear system of equations. We computed
the roots of Λ1 and we have computed the monomials such
that Mi(α1, . . . , αn) = ri. Recall that vi is the output of the
black box on the input βi = (αi1, . . . , α

i
n) hence we have

vi = a1r
i
1 + a2r

i
2 + · · ·+ atr

i
t

for 0 ≤ i ≤ 2t−1. Note that the system of equations obtained
from the above set of equations is a Vandermonde system
which can be solved in O(t2) time and O(t) space (See [16]).
After solving this system of equations we get

a1 = 1, a2 = 91, a3 = 42, a4 = 61 and a5 = 94

and hence f = 1 + 91yz2 + 42z5 + 61x2y2z + 94x2yz is
interpolated and we are done.

3. PROBLEMS
The evaluation points α1, . . . , αn, αn+1 must satisfy cer-

tain conditions for our new algorithm to work properly. Here
we identify all problems.

Distinct Monomials
The first condition is that for i 6= j

Mi(α1, . . . , αn) 6= Mj(α1, . . . , αn) in Zp.

Also at the k’th step of the algorithm, when computing the
degrees of the monomials in xk, we must have

∀ 1 ≤ i 6= j ≤ t⇒ mk
i 6= mk

j , in Zp

where mk
i = Mi(α1, . . . , αk−1, αn+1, αk+1, . . . , αn). If mk

i =
mk
j in Zp then degz(Λk+1) < t and hence Λk+1 will not have

t distinct linear factors. To reduce the probability of mono-
mial evaluations colliding, we should pick αi to be distinct
and to have order > d. The easiest way to do this is to use
generators. There are φ(p − 1) generators in Zp where φ is
Euler’s function.

We now compute an upper bound on the probability that
Mi(α1, . . . , αn) 6= Mj(α1, . . . , αn) for all 1 ≤ i 6= j ≤ t, for
a set of random evaluation points {α1, . . . , αn}, where αi’s
are distinct generators of Z∗p.

Lemma 1 Let Mi and Mj be two distinct monomials in
x1, . . . , xn. If α1, α2, . . . , αn are distinct generators of Z∗p,
chosen at random, then in Zp

Prob(Mi(α1, ..., αn) = Mj(α1, ..., αn)) ≤ d

φ(p− 1)− n+ 1
.

Proof. We will give a proof for n = 3. Suppose Mi =
xaybzc and Mj = xkylzm. Since Mi 6= Mj , their degree
must differ in at least one variable, say y so that b 6= l.
Since α1 is a generator, distinct from α2 and α3, we have
α2 = αs1 and α3 = αt1 for some 1 < s, t < p − 1 and s 6= t
thus if

αa1α
b
2α

c
3 ≡ αk1αl2αm3 (mod p)

then

αa−k1 α
s(b−l)
1 α

t(c−m)
1 ≡ 1 (mod p).

Since α1 has order p− 1 this implies

(a− k) + s(b− l) + t(c−m) ≡ 0 (mod p− 1).

For any t, the number of solutions to this equation for s
is at most g = gcd(b − l, (a − k) + t(c − m), p − 1). Since

|a−k|, |b−l| and |c−m| are all bounded by d, and b−l 6= 0, we
have g ≤ d. The maximum number of solutions occurs, for
example, when Mi = xdy0zc and Mj = x0ydzc and d|(p−1).
Since α2 is a generator distinct from α1 and α3, we have
gcd(s, p− 1) = 1 and 1 6= s 6= t. Thus there are φ(p− 1)− 2
choices for s and we obtain

Prob(Mi(α1, . . . , αn) = Mj(α1, . . . , αn)) ≤ d

φ(p− 1)− 2
.

Remark 1 Note that this upper bound is pessimistic. In
applications where the prime p can be chosen, if one chooses
p with q = (p− 1)/2 also prime and q > d, which will often
be easy to do, then g ≤ 2 and φ(p−1) = q−1 and hence the
bound d

φ(p−1)−2
reduces to 2

q−1−n+1
= 4

p−1−2n
∈ O(1/p).

Theorem 1 Since there are
`
t
2

´
pairs of monomials Mi and

Mj, the probability that no two evaluate to the same value
is at most

t(t− 1)

2
· d

φ(p− 1)− n+ 1
<

dt2

φ(p− 1)
.

Root Clashing
Let r1, . . . , rt be the roots of Λ1(z) which is the output of
the Berlekamp/Massey algorithm on the sequence of the out-
puts from the black box on the first set of evaluation points
α1, . . . , αn. Suppose at the k’th step, we want to compute
the degrees of all the monomials in the variable xk. As men-
tioned in the Example 1, the first step is to compute Λk+1.
Then if degxk

(Mi) = eik we have r̄i = ri × (
αn+1
αk

)eik is a

root of Λk+1. If ri × (
αn+1
αk

)e
′
, 0 ≤ e′ 6= eik ≤ d is also a

root of Λk+1 then we may not be able to uniquely identify
the correct degree of the i’th monomial in the k’th variable
xk. We will illustrate this with an example.

Example 2 Consider the polynomial given in Example 1.
Suppose instead of choosing α4 = 34, we choose α4 = 72
which is another generator of Z∗p. Since α1, α2 and α3 are
the same as before, Λ1 does not change and hence the roots
of Λ1 are r1 = 1, r2 = 7, r3 = 41, r4 = 61 and r5 = 64.
In the next step we substitute α4 = 72 for α1 and compute
Λ2 = z5 + 61z4 + 39z3 + 67z2 + 37z + 98. We proceed to
compute the degrees of the monomials in x but we find that
both

r4 × (
α4

α1
)2 = 15 and r4 × (

α4

α1
)4 = 7

are roots of Λ2 and hence we can not decide the correct degree
of the last monomial in x.

Theorem 2 The probability that we would not be able to
uniquely compute all the degrees in one variable xk (1 ≤
k ≤ n) is approximately 3dt2

2p
.

Proof. Let Si = {rj×(
αn+1
αk

)i | 1 ≤ j ≤ t} for 0 ≤ i ≤ d.

We assume that ri 6= rj for all 1 ≤ i 6= j ≤ t. We will not
be able to uniquely identify the degree of the j’th monomial

in xk if there exists d̄ such that rj × (
αn+1
αk

)d̄ = r̄i is a root

of Λk+1 (r̄i) and 0 ≤ d 6= ejk ≤ d where ejk is degxk
(Mj).

But we have r̄i = ri × (
αn+1
αk

)eik thus rj × (
αn+1
αk

)d̄ = ri ×
(
αn+1
αk

)eik . With out loss of generality, assume d̃ = d̄−eik >

0. We have ri = rj×(
αn+1
αk

)d̃ and hence ri ∈ Sd̃ ⇒ S0∩Sd̃ 6=
∅. Hence we will not be able to compute the degrees in xk if
S0 ∩ Si 6= ∅ for some 1 ≤ i ≤ d. Assuming that

αn+1
αk

has a

sufficiently high order in Zp (at least d+ 1), we can assume
that the elements in Si are random elements in Zp. Hence
the probability that S0 ∩ Si 6= ∅ is

1−
tY
i=1

(1− t+ i

p
) ≈ 1− e

−t(3t+1)
2p .

If we sum this quantity for all 1 ≤ i ≤ d we obtain that

the overall probability is approximately d× (1− e
−t(3t+1)

2p).

For t2 � p we have 1− e
−t(3t+1)

2p ≈ 3t2

2p
. This completes the

proof.

Using Theorem 2, the probability that we will not be able
to uniquely identify the degrees of the monomials in all the

variables is approximately 3ndt2

2p
, i.e. for p ≈ 3ndt2 with

probability about half, the algorithm succeeds without deal-
ing with any problem. We will now discuss our solution
to this problem. Note that we assume the images of the
monomials are distinct, i.e. ∀ 1 ≤ i 6= j ≤ t ⇒ mk

i 6= mk
j .

Suppose we have computed Λk+1 and we want to compute
the degrees of the monomials in xk and let R1 = {r1, . . . , rt}
be the set of all the roots of Λ1 and Rk = {r̄1, . . . , r̄t} be
the set of all the distinct roots of Λk+1. Let

Dj = {(i, r) | 0 ≤ i ≤ d, r = rj × (
αn+1

α1
)i ∈ Rk}.

Dj contains the set of all possible degrees of the j’th mono-
mial Mj in the k’th variable xk. We know that (ejk, r̄j) ∈ Dj
and hence |Dj | ≥ 1. If |Dj | = 1 for all 1 ≤ j ≤ t, then the
degrees are unique and this step of the algorithm is complete.
Let Gk be a balanced bipartite graph defined as follows. Gk
has two independent sets of nodes U and V each of size t.
Nodes in U and V represent elements in R1 and Rk respec-
tively, i.e. ui ∈ U and vj ∈ V are labelled with ri and
r̄j . We connect ui ∈ U to vj ∈ V with an edge of weight
(degree) dij if and only if (dij , r̄j) ∈ Di.

Lemma 2 We can uniquely identify the degrees of all the
monomials in xk, if and only if the bipartite graph Gk has a
unique perfect matching.

The proof of this lemma is immediate by looking at the
structure of the graph Gk. We illustrate this with an exam-
ple.

Example 3 Let f be the polynomial given in Example 1 and
suppose for some evaluation points α1, . . . , α4 we obtain the
graph G1 as shown in Figure 1. This graph has a perfect
matching, i.e. the set of edges {(ri, r̄i) | 1 ≤ i ≤ 5}. If there
was an edge connecting r1 to r̄2 then the new graph would
no longer have a unique perfect matching and we would fail
to uniquely compute the degrees of monomials in x.

We now give a solution for the case where Gk does not
have a unique perfect matching for some 1 ≤ k ≤ n. The
solution involves 2t more probes to the black box. Suppose
we choose a random element αn+2 ∈ Zp such that γ =

αn+2
αn+1

is a generator of Z∗p (or is of order greater than d). Let

βi = (αi1, . . . , α
i
k−1, α

i
n+2, α

i
k+1, . . . , α

i
n) and let vi be the

output of the black box on input βi (0 ≤ i ≤ 2t − 1). On
input V = (β0, . . . , β2t−1), the Berlekamp/Massey algorithm

1
r

2
r

3
r

4
r

5
r

1
r

2
r

3
r

4
r

5
r

0 4 0 3 0

5
5

2

2

Figure 1: The bipartite graph G1

computes a linear generator Λ′k+1(z) for V . Let {r̃1, . . . , r̃t}
be the set of distinct roots of Λ′k+1. Let G′k be the balanced
bipartite graph, obtained from Λ1 and Λ′k+1.

Definition 1. We define Ḡk, the intersection of G′k and
Gk, as follows. Ḡk has the same nodes as G′k and there is an
edge between ri and r̃j with weight (degree) dij if and only
if ri is connected to r̄j in Gk and to r̃j in G′k, both with the
same degree dij .

Lemma 3 Let eij = degxj
(Mi). The two nodes ri and r̃i

are connected in Ḡk with degree eij.

We take advantage of the following theorem which implies
we need at most one extra set of probes.

Theorem 3 Let Ḡk = Gk ∩ G′k. Ḡk has a unique perfect
matching.

Proof. Let U and V be the set of independent nodes in
Ḡk such that ui ∈ U and vj ∈ V are labelled with ri and
r̃j respectively where r̃j is a root of Λ′k+1. We will prove
that each node in V has degree exactly 1 and hence there
is a unique perfect matching. The proof is by contradiction.
Suppose the degree of vj ∈ V is at least 2. With out loss of
generality assume that r1 and r2 are both connected to r̃j
with degrees d1j and d2j respectively (See Figure 2).

1r 2r

rj

2j
d

1j
d

~

Figure 2: Node r̃j of graph Ḡk

Using Definition 1 we have

r̄j = r1 × (
αn+1

αk
)d1j = r2 × (

αn+1

αk
)d2j and

r̃j = r1 × (
αn+2

αk
)d1j = r2 × (

αn+2

αk
)d2j .

Dividing the two sides of these equations results in

(
αn+2

αn+1
)d1j = (

αn+2

αn+1
)d2j .

Since we chose αn+2 such that
αn+2
αn+1

has a sufficiently large

order (greater than the degree bound d) we have d1j = d2j ⇒
r1 = r2. But this is a contradiction because both r1 and r2

are roots of Λ1 which we assumed are distinct.

Lemma 3 and Theorem 3 prove that the intersection of Gk
and G′k will give us the correct degrees of all the monomials
in the k’th variable xk. We will illustrate with an example.

Example 4 Let f = −10 y3 − 7x2yz − 40 yz5 + 42 y3z5 −
50x7z2+23x5z4+75x7yz2−92x6y3z+6x3y5z2+74xyz8+4
and p = 101. We choose the first set of evaluation points
to be α1 = 66, α2 = 11, α3 = 48 and α4 = 50. For the first
variable x we will obtain the bipartite graph G1 shown in
Figure 3.

2
r

3
r

4
r

5
r

6
r

8
r

9
r

10
r

11
r

1
r

7
r

2
r

3
r

4
r

5
r

6
r r r r r

11
r

1
r

0

7 8 9 10

5 1 0 0 3 72 6 7

3 9

34

10

0

2 9 3 8
6 1

Figure 3: The bipartite graph G1

This graph does not have a unique perfect matching, so we
proceed to choose a new evaluation point α5 = 89. This time
we will get the bipartite graph G′1 shown in Figure 4.

2
r

3
r

4
r

5
r

6
r

8
r

9
r

10
r

11
r

1
r

7
r

2
r

3
r

4
r

5
r

6
r r r r r

11
r

1
r

0

7 8 9 10

5 1 0 0 3 72

6 0

7

664

7

5

13

1 8

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Figure 4: The bipartite graph G′1

Again G′1 does not have a unique perfect matching. We com-
pute the intersection of G1 and G′1: Ḡ1 = G1 ∩ G′1. Ḡ1 is
shown in Figure 5.

2
r

3
r

4
r

5
r

6
r

8
r

9
r

10
r

11
r

1
r

7
r

2
r

3
r

4
r

5
r

6
r r r r r

11
r

1
r

0

7 8 9 10

5 1 0 0 3 72 6 70

~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~

Figure 5: The bipartite graph Ḡ1

As stated by Theorem 3, Ḡ1 has a unique perfect matching
and the degrees of every monomials in x is correctly com-
puted.

In this section we proved that if the prime p is sufficiently
large (φ(p− 1) must be approximately dt2 for us to be able
to get distinct images of monomials with reasonable prob-
ability), we will be able to compute the degrees of all the
t monomials in each variable xk using up to 4t evaluation
points. If the graph Gk has a unique perfect matching, we

will be able to compute the degrees in xk with only 2t probes
to the black box.

We conclude this section with the following lemma which we
will later use in Section 4.

Lemma 4 Let Gk be the bipartite graph for the k’th vari-
able. Let ui1 → vj1 → ui2 → vj2 → · · · → vjs → ui1 be a
cycle in Gk where ul ∈ U is labelled with rl (a root of Λ1)
and vm ∈ V is labelled with r̄m (a root of Λk+1). Let dlm be
the weight (degree) of the edge between ul and vm. We havePs
m=1 dimjm −

Ps
m=1 dim+1jm = 0.

Proof. It is easy to show that ri1 = (
αn+1
αk

)d̄ris where

d̄ = di1j1 − di2j1 + di2j2 − di3j2 + · · · + dis−1js−1 − disjs−1 .
Also both ui1 and uis are connected to vjs in Gk hence we
have ri1 = (

αn+1
αk

)di1js r̄is and ris = (
αn+1
αk

)disjs r̄is . These

three equations yield to ri1 = (
αn+1
αk

)d̃ri1 where d̃ = di1j1 −
di2j1 +di2j2 −di3j2 + · · ·+dis−1js−1 −disjs−1 +disjs −di1js .

But if
αn+1
αk

is of sufficiently high order, d̃ must be zero thusPs
m=1 dimjm −

Ps
m=1 dim+1jm = 0.

Example 5 In the graph G′1 shown in Figure 4, there is a
cycle r3 → r̃4 → r7 → r̃7 → r3. The weights (degrees) of the
edges in this cycle are as 7, 3, 0 and 4 respectively. We have
7− 3 + 0− 4 = 0.

4. THE ALGORITHM
Algorithm: Interpolation
Input:

• A black box Znp → Zp that on input α1, . . . , αn ∈
Znp outputs f(α1, . . . , αn) where f ∈ Zp[x1, . . . , xn]
is the target polynomial.

• A degree bound d ∈ Z such that degxi
(f) ≤ d for

any 1 ≤ i ≤ n. Also φ(p − 1) > dt2 + n (See
Theorem 1).

• A bound T ≥ t on the number of terms in f .

Output: The polynomial f .
1: Factor p−1 and let Q be the set of all the prime divisors.
2: For 1 ≤ i ≤ n + 1, choose distinct αi ∈ Zp at random

s.t. α
p−1
qj

i 6= 1 mod p, for all qj ∈ Q. αi is a random
primitive (p− 1)’th root of unity.

3: Choose γ to be a random generator of Z∗p and let αn+2 =
αn+1 × γ. Repeat until αn+2 /∈ {α1, . . . , αn+1}.

4: Let βi = (αi1, . . . , α
i
n) for 0 ≤ i ≤ 2T − 1 and let vi be

the output of the black box on input vi.
5: Use the Berlekamp/Massey algorithm to compute a gen-

erator Λ1(z) for v0, . . . , v2T−1 and set t = degz(Λ1).
6: Let {r1, . . . , rt} be the set of distinct roots of Λ1(z).
7: for k from 1 to n do
8: Determine degxk

(Mi) for 1 ≤ i ≤ t:
9: Let βi = (αi1, . . . , α

i
k−1, α

i
n+1, α

i
k+1, . . . , α

i
n) for 0 ≤

i ≤ 2t + 1 and let vi be the output of the black box
on input βi. (Substitute αk by αn+1).

10: Use the Berlekamp/Massey algorithm to compute a
linear generator Λk+1 for the sequence v0, . . . , v2t+1.

11: If degz(Λk+1) < t then the monomial evaluations are
not all distinct so choose a new generator αn+1 for Z∗p
and go back to Step 7.

12: If degz(Λk+1) > t then the monomial evaluations used
to compute Λ1(z) were not all distinct so t is wrong
so go back to Step 2 and restart.

13: Construct the bipartite graph Gk as described in Sec-
tion 3.

14: if Gk has a unique perfect matching then
15: Set eik = dil where dil is the weight (degree) of the

edge that matches the node ri to r̄l in the perfect
matching. For 1 ≤ i ≤ t, eik = degxk

(Mi).
16: else
17: Repeat Steps 7 and 12 but use αn+2 instead of αn+1

to obtain Λ′k+1.
18: Construct the bipartite graph G′k as described in

Section 3.
19: Find the intersection of Gk and G′k: Ḡk = Gk∩G′k.
20: Set eik = dil where dil is the weight (degree) of

the edge that matches the node ri to r̃l in the
perfect matching of graph Ḡk. For 1 ≤ i ≤ t,
eik = degxk

(Mi).
21: end if
22: end for
23: Let S = {a1r

i
1+a2r

i
2+· · ·+atrit = vi | 0 ≤ i ≤ 2t−1} be

a Vandermonde system of linear equations. Solve this
to obtain a1, . . . , at. (ai ∈ Zp is the coefficient of Mi)

24: Output f =
Pt
i=1 aiMi where Mi =

Qn
j=1 x

eij

j .

Remark 2 In Step 4, if monomial evaluations collide, the
degree of Λ1(z) will be less than the number of terms of f .
To detect this, each time we apply the Berlekamp/Massey
algorithm in Step 10, instead of using 2t evaluation points,
we use 2t+ 2 probes to detect if Λ1(z) has the right degree
with high probability.

Remark 3 We use the version of the Berlekamp/Massey
algorithm given by Kaltofen et al. in [8]. We believe there is
a minor error in the algorithm presented in [8]. The variable
B0 must be initialized to one rather than zero.

4.1 Complexity Analysis
We now discuss the complexity of the algorithm presented

in Section 4. To compute the roots of Λ1(z) at Step 6 of
the algorithm, we use Rabin’s probabilistic algorithm [13].
Rabin’s algorithm tries to split the polynomial of degree t
into two polynomials with smaller degrees at each step by
computing the gcd((z − β)(p−1)/2 − 1,Λ1(z)) for randomly
chosen β ∈ Zp. Since degz(Λ1) = t, the cost of finding the t
roots of Λ1(z), assuming classical algorithms for polynomial
arithmetic in Zp[z] are used, is O(t2 log p) (See Algorithm
14.15 of [14]).

The Vandermonde system of equations at Step 23 can be
solved in O(t2) using the technique given in [16]. Note
that as mentioned in [16], when inverting a t × t Vande-
monde matrix defined by k1, . . . , kt, one of the most expen-
sive parts of this technique is to compute the master poly-
nomial M(z) =

Qt
i=1(z−ki). However, in our algorithm we

can use the fact that M(z) =
Qt
i=1(z − ri) = Λ1(z). Also

the Berlekamp/Massey algorithm (as presented in [8]) runs
in O(t2) time.

We can compute the information needed to construct the
bipartite graph Gk in O(dt2) time. This involves evaluating
Λk+1(z) at d points for each monomial and testing if it is
zero or not. Also computing the intersection of Gk and G′k
can be done in O(td log d) time. This is because we know

that each node in the intersection is of degree one (See proof
of Theorem 3). Hence, the total time for running the loop
in Step 7 of the algorithm is O(ndt2 + nt2 + td log d) =
O(ndt2 + td log d).

We also need to consider the cost of probing the black box.
Let E(n, t, d) be the cost of one probe to the black box. If
Gk has a unique perfect matching for 1 ≤ k ≤ n then we
can correctly compute the degrees using only Gk. In this
case the total number of evaluation points used is exactly
2(n + 1)t. In the worst case where Gk does not have a
unique perfect matching for all 1 ≤ k ≤ n, we need to
do additional 2nt probes to the black box to construct all
G′k graphs. In this case the total number of probes to the
black box is 2(n + 1)t + 2nt = 2(2n + 1)t. In both cases
the number of probes is Ns = O(nt) and hence the total
cost of probes to the black box is O(ntE(n, t, d)). Thus
the total cost of running the algorithm is in O(t2(log(p) +
nd) + ntE(n, t, d)). Assuming log(p) ∈ O(nd) (this is true
if p ∈ O(ndt2) because t ≤ (d + 1)n), the total cost is in
O(ndt2 + ntE(n, t, d)).

Zippel’s Algorithm
For comparison, we will briefly discuss the complexity of
Zippel’s 1990 interpolation algorithm. Let ti be the number
of terms in the target polynomial f after evaluating variables
xi+1, . . . , xn. We have t0 = 1 and tn = t. The number of
probes to the black box using Zippel’s algorithm is

Nz = d+ 1 + (t1d+ t2d+ . . . tn−1d) = 1 + d

n−1X
i=0

ti.

Since ti ≤ tn for all 1 ≤ i ≤ n−1, the number of probes is in
O(ndt). Also Zippel’s interpolation algorithm does O(ndt2)
operations so the total cost is in O(ndt2 + ndtE(n, t, d)).

Example 6 Let f = x20+y20+z20+1 with p = 1009, d = 20
and t = 4. Our new algorithm will do Ns = 32 probes to the
black box while Zippel’s does about Nz = 121 probes. Also
note that a bad degree bound d will not affect the number of
probes to the black box in our new algorithm but this number
will linearly increase in Zippel’s algorithm. As an example
if choose the bound d = 40 instead of d = 20, the number of
probes in Zippel’s algorithm will almost double: Nz = 241.

We expect Zippel’s algorithm to perform better than our
algorithm for dense target polynomials.

Lemma 5 Let f be a completely dense polynomial such that
degxi

(f) = d (total degree of f is nd). The number of terms
in f is t = (d+ 1)n. The number of probes to the black box
in Zippel’s algorithm is exactly Nz = t.

Proof. Here we have ti = (d + 1)i thus Nz = 1 + d ×Qn−1
i=0 (d+ 1)i = 1 + d× (d+1)n−1

d+1−1
= (d+ 1)n = t.

In this case, our algorithm does at most 4(n+ 1)t probes.

4.2 Optimizations
Let dmax = max {degxi

(f) | 1 ≤ i ≤ n}. If the prime p is

large enough, i.e. p > 3ndmaxt
2

2ε
then with probability 1 − ε

the degree of every monomial in xk can correctly be com-
puted using only Gk and without needing any extra probes
to the black box. In fact in this case, with high probability,

every ri will be matched with exactly only one r̄j and hence
every node in Gk would have degree one (e.g. see Figure 5).
But if d � dmax, i.e. the degree bound d is not tight, the
probability that we could identify the degrees uniquely drops
significantly even though p is large enough. This is because
the probability that root clashing (see Section 3) happens,
linearly depends on d. In this case, with probability 1 − ε,
the degree of Mi in xk would be min {dij | (dij , ri) ∈ Gk},
i.e. the edge connected to ri in Gk with minimum weight
(degree) is our desired edge in the graph which will show up
in the prefect matching.

We can also use the following theorem.

Theorem 4 Let Hk be a graph obtained by eliminating all
edges connected to ri in Gk except the one with minimum
weight (degree) for all 1 ≤ i ≤ t. If the degree of every node
in Hk is exactly one, then eik is equal to the weight of the
edge connected to ri in Hk.

This theorem can be proved using Lemma 4 and the fact
that there can not be any cycle in the graph Hk. We will
give an example.

Example 7 Let f = 25y2z+90yz2+93x2y2z+60y4z+42z5.
Here t = 5, n = 3, dmax = 5 and p = 101. We choose
the following evaluation points α1 = 85, α2 = 96, α3 = 58
and α4 = 99. Suppose we want to construct G2 in order
to compute the degrees of the monomials in y. Suppose our
degree bound is d = 40 which is not tight. The graph G2 and
H2 are shown in Figures 6 and 7 respectively.

1
r

2
r

3
r

4
r

5
r

1
r

2
r

3
r

4
r

5
r

4 0

20

2

28 26

24
11

6

Figure 6: The bipartite graph G2

1
r

2
r

3
r

4
r

5
r

1
r

2
r

3
r

4
r

5
r

2 20 4 0

Figure 7: The bipartite graph H2

The graph H2 has the correct degrees of the monomials in
variable y.

Theorem 4 suggests the following optimization. In the con-
struction of the bipartite graph Gk, connect ri to r̄j with

degree dij only if there is no d̄ < dij such that ri× (
αn+1
αk

)d̄

is a root of Λk+1, i.e. the degree of the node ri in U is always
one for all 1 ≤ i ≤ n. If there is a perfect matching in this
graph, this perfect matching is unique because this implies
that the degree of each node r̄j in V is also one (e.g. see
Figure 7). If not, go back to and complete the graph Gk.

The second optimization is to compute the degree of each
monomial Mi = xei1

1 xei2
2 ...xein

n in the last variable xn with-
out doing any more probes to the black box. Suppose we
have computed the degree of Mi in xk for 1 ≤ k < n. We
know that Mi(α1, . . . , αn) is equal to ri, a root of Λ1. Hence
ri = αei1

1 · αei2
2 · · · · · αein

n . Since we know the degrees eij
for 1 ≤ j < n we can determine ein by division by αn. This
reduces the total number of probes from 4(n+ 1)t to 4nt.

5. BENCHMARKS
We have implemented both Zippel’s sparse interpolation

algorithm and our new algorithm in C programming lan-
guage. We have also implemented an interface to call the
interpolation routines from Maple. In this section we will
give benchmarks comparing the performances on five prob-
lem sets. The polynomials in the first three sets have n = 3
variables while those in the last two sets have n = 6 and
n = 12 variables respectively.

We count the number of probes to the black box and measure
the total CPU time. All the timings given in this section are
in CPU seconds and are obtained using Maple 13 on a 64 bit
Intel Core i7 920 @ 2.66GHz, running Linux. The black box
in our benchmarks computes a multivariate polynomial with
coefficients in Zp where p = 3037000453 is a 31.5 bit prime.
In all these benchmarks, the black box simply evaluates the
polynomial at the given evaluation point. To evaluate effi-
ciently we pre-compute and cache the values of xji mod p in
a loop for 0 ≤ j ≤ d for each variable in O(nd). Then we
evaluate the t terms in O(nt). Hence the cost of one black
box probe is O(nd+ nt) arithmetic operations in Zp.

Benchmark #1

This set of problems consists of 13 multivariate polynomials
in n = 3 variables. The i’th polynomial (1 ≤ i ≤ 13) is
generated at random using the following command in Maple:

> randpoly([x1,x2,x3], terms = 2^i, degree = 30) mod p;

The i’th polynomial will have about 2i non-zero terms. Here
D = 30 is the total degree hence the maximum number of
terms in each polynomial is tmax =

`
n+D
D

´
= 5456. We

run both the Zippel’s algorithm and our new algorithm with
degree bound d = 30. The timings and the number of probes
are given in Table 1.

Note that the last polynomial i = 13, is almost completely
dense. The data in Table 1 shows that for sparse polynomials
1 ≤ i ≤ 6, our new algorithm does a lot less probes to
the black box compared to Zippel’s algorithm. It is also
faster than Zippel’s algorithm for 1 ≤ i ≤ 9. However, as
the polynomials get denser, Zippel’s algorithm has a better
performance. For a completely dense polynomial with t non-
zero terms, Zippel’s algorithm only does O(t) probes to the
black box while the new algorithm does O(nt) probes, a
factor of n more. This is clearly shown in the last row of
Table 1.

As i increases, the polynomial f becomes denser. For
i > 6, f has more than

√
tmax non-zero terms which means

i #f New Algorithm Zippel’s Algorithm
Time Probes Time Probes

1 2 0.00 15 0.01 961
2 4 0.00 27 0.01 558
3 8 0.00 51 0.01 1209
4 16 0.00 99 0.01 1054
5 32 0.00 195 0.01 1612
6 64 0.01 387 0.03 2728

7 128 0.03 771 0.09 4433
8 253 0.11 1521 0.21 6603
9 512 0.43 3075 0.55 9765
10 1015 1.64 6093 1.15 12431
11 2041 6.42 12249 2.42 15128
12 4081 24.96 24489 4.56 16182
13 5430 43.67 32583 5.92 16430

Table 1: Timings and number of probes for the first
set of problems.

it is becoming dense. This is indicated by a horizontal line
in Table 1 and also in the subsequent benchmarks.

To show how effective the first optimization described in
Section 4.2 is, we run both our algorithm and Zippel’s algo-
rithm on the same set of polynomials but with a bad degree
bound d = 100. The timings and the number of probes are
given in Table 2.

i #f New Algorithm Zippel’s Algorithm
Time Probes Time Probes

1 2 0.00 15 0.04 3131
2 4 0.00 27 0.02 1818
3 8 0.00 51 0.04 3939
4 16 0.00 99 0.04 3434
5 32 0.00 195 0.07 5252
6 64 0.01 387 0.15 8888

7 128 0.04 771 0.36 14433
8 253 0.12 1521 0.80 21513
9 512 0.45 3075 1.96 31815
10 1015 1.66 6093 3.98 40501
11 2041 6.48 12249 8.16 49288
12 4081 25.05 24489 15.14 52722
13 5430 43.77 32583 19.61 53530

Table 2: Timings and number of probes for the first
set of problems with bad degree bound d = 100.

Benchmark #2

In this set of benchmarks the i’th polynomial is in three vari-
ables and generated at random using the following command
in Maple:

> randpoly([x1,x2,x3], terms = 2^i, degree = 100) mod p;

This set of polynomials is similar to polynomials in the first
benchmark except that the total degree of each polynomial
is set to be 100 in the second set. We run both the Zippel’s
algorithm and our new algorithm with degree bound d =
100. The timings and the number of probes are given in
Table 3.

i #f New Algorithm Zippel’s Algorithm
Time Probes Time Probes

1 2 0.00 15 0.03 2929
2 4 0.00 27 0.04 3131
3 8 0.00 51 0.09 6363
4 16 0.00 99 0.09 6767
5 31 0.01 189 0.19 11514
6 64 0.01 387 0.29 14948
7 127 0.05 765 0.55 21008
8 253 0.17 1521 1.47 37744

9 511 0.64 3069 4.42 58479
10 1017 2.50 6105 14.00 99384
11 2037 9.69 12225 43.28 167155
12 4076 38.17 24489 121.54 263105
13 8147 150.00 48885 282.54 359863
14 16282 590.81 97695 589.82 442178

Table 3: Timings and number of probes for the sec-
ond set of problems.

Comparing this table to the data in Table 1 shows that the
number of probes to the black box in our new algorithm does
not depend on the degree of the target polynomial whereas
it does for Zippel’s algorithm.

Benchmark #3

This set of problems consists of 14 multivariate polynomials
in n = 6 variables. The i’th polynomial (1 ≤ i ≤ 13) is
generated at random using the following command in Maple:

>randpoly([seq(x||j,j=1..6)],terms=2^i,degree=30) mod p;

The i’th polynomial will have about 2i non-zero terms. Here
D = 30 is the total degree. We run both the Zippel’s algo-
rithm and our new algorithm with degree bound d = 30.
The timings and the number of probes are given in Table 4.

i #f New Algorithm Zippel’s Algorithm
Time Probes Time Probes

1 2 0.00 30 0.01 744
2 3 0.00 42 0.01 961
3 8 0.00 102 0.01 1550
4 16 0.00 198 0.02 2697
5 31 0.00 378 0.05 4557
6 64 0.02 774 0.15 8246
7 127 0.06 1530 0.44 14632
8 255 0.21 3066 1.51 27714
9 511 0.81 6138 5.19 50685
10 1016 3.08 12198 17.92 91047

11 2037 12.10 24450 65.31 168330
12 4083 47.82 49002 230.44 301382
13 8151 187.94 97818 803.60 532580
14 16287 741.21 195450 > 1000 −

Table 4: Timings and number of probes for the third
set of problems.

Benchmark #4

In this set of problems, the 14 polynomials are chosen at
random in 12 variables with total degree D = 10.

>n := 12;
>randpoly([seq(x||j,j=1..n)],terms=2^i,degree=10) mod p;

We run both the Zippel’s algorithm and our new algorithm
with degree bound d = 10. The timings and the number of
probes are given in Table 5.

i #f New Algorithm Zippel’s Algorithm
Time Probes Time Probes

1 2 0.00 60 0.00 396
2 3 0.00 108 0.01 605
3 8 0.00 204 0.01 1001
4 16 0.00 396 0.02 1760
5 32 0.01 780 0.04 3113
6 64 0.04 1548 0.14 6017
7 128 0.12 3036 0.47 11154
8 253 0.48 6132 1.57 19976
9 512 1.88 12252 5.81 37609

10 1016 7.28 24396 20.30 67364
11 2039 28.70 48804 73.61 123343
12 4075 114.39 97764 257.39 217987
13 8146 454.91 195516 916.81 391919
14 16284 1809.32 390828 3142.69 679294

Table 5: Timings and number of probes for the
fourth set of problems.

Tables 1,3,4 and 5 show that our algorithm is more efficient
compared to Zippel’s sparse interpolation algorithm if the
target polynomial is sparse. For denser polynomials Zippel’s
algorithm does less probes to the black box and hence is
more efficient. Also the number of probes to the black box
in our new algorithm is independent of the degree bound
d. This is not true for Zippel’s algorithm which depends
linearly on d.

6. CONCLUSION
Our sparse interpolation algorithm is a modification of

the Ben-Or/Tiwari algorithm [1] for polynomials over finite
fields. It costs an extra factor of between n and 2n probes.
Although we presented our algorithm for interpolating over
Zp, it also works over an arbitrary finite field F = GF (q).
Further, if p (or q) is too small, one can work inside a suitable
extension field. Our benchmarks show that it in practice, it
does fewer probes to the black box than Zippel’s algorithm
when the polynomial is sparse, e.g., when f has fewer than
the square root of the maximum possible number of terms.

7. REFERENCES
[1] M. Ben-Or and P. Tiwari. A deterministic algorithm

for sparse multivariate polynomial interpolation. In
Proc. of the twentieth annual ACM symposium on
Theory of computing, pages 301–309. ACM, 1988.

[2] Jennifer de Kleine, Michael Monagan, and Allan
Wittkopf. Algorithms for the non-monic case of the
sparse modular gcd algorithm. In Proceedings of
ISSAC’05, pages 124–131. ACM, 2005.

[3] Mark Giesbrecht, Erich Kaltofen, and Wen-shin Lee.
Algorithms for computing the sparsest shifts of
polynomials via the berlekamp/massey algorithm. In
Proceedings of ISSAC’02, pages 101–108. ACM, 2002.

[4] Dima Yu. Grigoriev and Y. N. Lakshman. Algorithms
for computing sparse shifts for multivariate
polynomials. In Proceedings of ISSAC’95, pages
96–103. ACM, 1995.

[5] S. M. Mahdi Javadi and M. B. Monagan. A sparse
modular gcd algorithm for polynomials over algebraic
function fields. In Proceedings of ISSAC ’07, pages
187–194. ACM, 2007.

[6] Erich Kaltofen and Yagati N. Lakshman. Improved
sparse multivariate polynomial interpolation
algorithms. In Proceedings of ISSAC’88, pages
467–474. Springer-Verlag, 1989.

[7] Erich Kaltofen and Wen-shin Lee. Early termination
in sparse interpolation algorithms. J. Symb. Comput.,
36(3-4):365–400, 2003.

[8] Erich Kaltofen, Wen-shin Lee, and Austin A. Lobo.
Early termination in ben-or/tiwari sparse
interpolation and a hybrid of zippel’s algorithm. In
Proceedings of ISSAC’00, pages 192–201. ACM, 2000.

[9] Y. N. Lakshman and B. David Saunders. Sparse
polynomial interpolation in nonstandard bases. SIAM
J. Comput., 24(2):387–397, 1995.

[10] Y. N. Lakshman and B. David Saunders. Sparse shifts
for univariate polynomials. Applicable Algebra in
Engineering, Communication and Computing,
7(5):351–364, 1996.

[11] G. Labahn M. Giesbrecht and W s. Lee.
Symbolic-numeric sparse interpolation of multivariate
polynomials. J. Symb. Comput., 44:943–959, 2009.

[12] J. L. Massey. Shift-register synthesis and bch
decoding. IEEE Trans. Inf. Theory it-15, pages
122–127, 1969.

[13] Michael O. Rabin. Probabilistic algorithms in finite
fields. SIAM J. Comput, 9:273–280, 1979.

[14] Joachim von zur Gathen and Jürgen Gerhard. Modern
Computer Algebra. Cambridge University Press:
Cambridge, New York, Port Melbourne, Madrid, Cape
Town, second edition, 2003.

[15] Richard Zippel. Probabilistic algorithms for sparse
polynomials. In Proceedings of EUROSAM ’79, pages
216–226. Springer-Verlag, 1979.

[16] Richard Zippel. Interpolating polynomials from their
values. J. Symb. Comput., 9(3):375–403, 1990.

