On Sparse Polynomial Interpolation over Finite Fields *

Seyed Mohammad Mahdi Javadi
School of Computing Science
Simon Fraser University
Burnaby, B.C. Canada.
sjavadi@cecm.sfu.ca.

Michael Monagan
Department of Mathematics Simon Fraser University
Burnaby, B.C. Canada.
mmonagan@cecm.sfu.ca.

Abstract

We present a Las Vegas algorithm for interpolating a sparse multivariate polynomial over a finite field, represented with a black box. Our algorithm modifies the algorithm of BenOr and Tiwari in 1988 for interpolating polynomials over rings with characteristic zero to characteristic p by doing additional probes.

One of the best algorithms for sparse polynomial interpolation over a finite field is Zippel's algorithm from 1990. To interpolate a polynomial in n variables with t non-zero terms, Zippel's algorithm does $O(n d t)$ probes to the black box where d bounds the degree of the polynomial in each variable. Our new algorithm does $O(n t)$ probes.

We have implemented both Zippel's algorithm and the new algorithm in C. We provide benchmarks demonstrating the efficiency of our algorithm. We also analyze the failure probability for our algorithm.

1. INTRODUCTION

Let p be a prime and let $f \in \mathbb{Z}_{p}\left[x_{1}, \ldots, x_{n}\right]$ be a multivariate polynomial with $t>0$ non-zero terms which is represented with a black box $\mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}$. On input $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in$ \mathbb{Z}_{p}^{n}, the black box evaluates and outputs $f\left(x_{1}=\alpha_{1}, \ldots, x_{n}=\right.$ α_{n}). Given also a degree bound d on the degree of f in each variable, our goal is to interpolate the polynomial f with minimum number of evaluations (probes to the black box).
Sparse interpolation is a key part of many algorithms in computer algebra such as GCD computation $[15,5,2]$. We are interested in algorithms whose computational complexity is polynomial in t, n, and d. The first efficient sparse interpolation algorithm is due to Richard Zippel in 1979 [15]. Zippel's algorithm is probabilistic. It relies heavily on the assumption that if a polynomial is zero at a random evaluation point, then it is the zero polynomial with high probability. Zippel's algorithm requires a bound on the degree

[^0]of f in each variable. In his algorithm, the interpolation is done variable by variable. Zippel's algorithm makes $O(n d t)$ probes to the black box.

In 1990, Zippel in [16] improved his 1979 algorithm to use evaluation points of the form $\left(\alpha_{1}^{i}, \ldots, \alpha_{k}^{i}\right) \in \mathbb{Z}_{p}^{k}$ so that the linear systems to be solved become transposed Vandermonde systems which can be solved in $O\left(t^{2}\right)$ time instead of $O\left(t^{3}\right)$ - see [6].

In 1989, Ben-Or and Tiwari [1] presented a deterministic algorithm for interpolating a multivariate polynomial with integer, real or complex coefficients. Given a bound T on the number of terms t of the polynomial f, the algorithm evaluates the black box at powers of the first n primes; it evaluates at the points $\left(2^{i}, 3^{i}, 5^{i}, \ldots, p_{n}^{i}\right)$ for $0 \leq i<2 T$. If $M_{j}\left(x_{1}, \ldots, x_{n}\right)$ are the monomials of the t non-zero terms of f, it then uses Berlekamp/Massey algorithm [12] from coding theory to find the evaluations $M_{j}\left(2,3,5, \ldots, p_{n}\right)$ of the monomials in f for $1 \leq j \leq t$ and then determines the degree of a monomial M_{j} in x_{k} by trial division of $M_{j}\left(2,3,5, \ldots, p_{n}\right)$ by p_{j}. This algorithm is not variable by variable. Instead, it interpolates the polynomial f with only $2 T$ probes to the black box. The major disadvantage of the Ben-Or/Tiwari algorithm is that the evaluation points are large $(O(T \log n)$ bits long - see [1]) which makes computations slow.

In 2009, Giesbrecht, Labahn and Lee in [11] present two new algorithms for sparse interpolation for polynomials with floating point coefficients. The first is a modification of the Ben-Or/Tiwari algorithm. To avoid numerical problems, it evaluates at powers of complex roots of unity. In principle, their algorithm can be made to work over finite fields when we can choose p. The recovery of the degrees of variables requires computing a discrete logarithm where the size of the field needs to be $>d^{n}$. If f is modestly large, say $n=10$ variables of degree $d<30$, then p would need to be larger than $31 \cdot 37 \cdot 41 \cdots \cdot 71$, a 56 bit integer. The t discrete logarithms in such a field would be too expensive.
Our approach in this paper for sparse interpolation over a finite field is to use evaluation points of the form $\left(\alpha_{1}^{i}, \ldots, \alpha_{n}^{i}\right) \in$ \mathbb{Z}_{p}^{n} and modify the Ben-Or/Tiwari algorithm to do extra probes to determine the degrees of the variables in each monomial in f. One of the main motivations for the new algorithm is to be able to use the Ben-Or/Tiwari approach in modular algorithms (e.g. GCD computations in characteristic $0-$ see [5]) where the prime p used can be selected. In the new algorithm we do a factor of at most $2 n$ more evaluations in order to recover the monomials from their images.

We cite also the following related work. To reduce the number of probes needed, early termination versions of both Zippel's algorithm and Ben-Or/Tiwari algorithm were developed by Kaltofen et al. in [8, 7]. Also, the Ben-Or/Tiwari algorithm has been extended to sparsity with respect to non-standard polynomial bases (e.g. Chebyshev bases and shifted bases) [4, 9, 10, 3].
Our paper is organized as follows. In Section 2 we present an example showing the main flow and the key features of our algorithm. We then identify possible problems that can occur and how the new algorithm deals with them in Section 3. In Section 4 we present our new algorithm and analyze its time complexity. Finally, in Section 5 we compare the C implementations of our algorithm with Zippel's algorithm on various sets of polynomials.

2. THE IDEA AND AN EXAMPLE

Let $f=\sum_{i=1}^{t} a_{i} M_{i} \in \mathbb{Z}_{p}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial represented with the black box with $a_{i} \in \mathbb{Z}_{p} \backslash\{0\}$. Here t is the number of non-zero terms in $f . M_{i}=x_{1}^{e_{i 1}} \times x_{2}^{e_{i 2}} \times \cdots \times$ $x_{n}^{e_{i n}}$ is the i 'th monomial in f where $M_{i} \neq M_{j}$ for $i \neq j$. Let d be a bound on the degree of f in each variable x_{i}, i.e. $e_{i j} \leq d$ for all $1 \leq i, j \leq n$.
We demonstrate our algorithm on the following example. Here we use x, y and z for variables instead of x_{1}, x_{2} and x_{3}.

Example 1 Let $f=91 y z^{2}+94 x^{2} y z+61 x^{2} y^{2} z+42 z^{5}+1$ and $p=101$. Given the number of terms $t=5$, the number of variables $n=3$, a degree bound $d=5$ and the black box that computes f, we want to find f.
The first step is to pick $n=3$ distinct generators $\alpha_{1}, \alpha_{2}, \alpha_{3}$ of \mathbb{Z}_{p}^{*}. We evaluate the black box at the points $\beta_{0}, \ldots, \beta_{2 t-1}$ where $\beta_{i}=\left(\alpha_{1}^{i}, \alpha_{2}^{i}, \ldots, \alpha_{n}^{i}\right)$. Thus we make $2 t$ probes to the black box. The reason to use generators instead of random values from \mathbb{Z}_{p} is that it decreases the probability of two distinct monomials having the same evaluation. For our example, let the generators be

$$
\alpha_{1}=66, \alpha_{2}=12 \text { and } \alpha_{3}=3
$$

and let v_{i} be the output of the black box on input β_{i} and let $V=\left(v_{0}, \ldots, v_{2 t-1}\right)$. In this example we obtain

$$
V=(87,78,65,41,49,38,87,29,23,86)
$$

Now we use the Berlekamp/Massey algorithm [12] (See [8] for a more accessible reference). The input to this algorithm is a sequence of elements $b_{0}, b_{1}, \ldots, b_{2 t-1}, \ldots$ where $b_{i} \in \mathbb{Z}_{p}$. The algorithm computes a linear generator for the sequence, i.e. the univariate polynomial $\Lambda(z)=z^{t}-\lambda_{t-1} z^{t-1}-\cdots-\lambda_{0}$ such that

$$
b_{t+i}=\lambda_{t-1} b_{t+i-1}+\lambda_{t-2} b_{t+i-2}+\cdots+\lambda_{0} b_{i}
$$

for all $i \geq 0$. In our example the input is $V=\left(v_{0}, \ldots, v_{2 t-1}\right)$ and the output is

$$
\Lambda_{1}(z)=z^{5}+28 z^{4}+62 z^{3}+54 z^{2}+11 z+46
$$

The next step is to find the roots of $\Lambda_{1}(z)$. We know (see [1]) that this polynomial is the product of exactly $t=5$ linear factors. The roots are $r_{1}=1, r_{2}=7, r_{3}=41, r_{4}=61$ and $r_{5}=64$. Ben-Or and Tiwari prove that for each $1 \leq i \leq t$, there exists $1 \leq j \leq t$ such that

$$
m_{i}=M_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \equiv r_{j} \bmod p
$$

Our goal now is to determine the degrees of each monomial in f in each variable. We do this one variable at a time starting with the first variable x. Let α_{n+1} be a new random generator of \mathbb{Z}_{p}^{*}. In this example we choose $\alpha_{4}=34$. This time we choose the evaluation points $\beta_{0}^{\prime}, \ldots, \beta_{2 t-1}^{\prime}$ where $\beta_{i}^{\prime}=\left(\alpha_{n+1}^{i}, \alpha_{2}^{i}, \ldots, \alpha_{n}^{i}\right)$. Note that this time we are evaluating the first variable at powers of α_{n+1} instead of α_{1}. We evaluate the black box at these points and apply the Berlekamp/Massey algorithm on the sequence of the outputs to compute the linear generator for the new sequence

$$
\Lambda_{2}=z^{5}+45 z^{3}+54 z^{2}+60 z+42
$$

Let $\bar{r}_{1}, \ldots, \bar{r}_{5}$ be distinct roots of Λ_{2}.
We know that $M_{i}\left(\alpha_{n+1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ is a root of Λ_{2} for $1 \leq$ $i \leq n$. On the other hand we have

$$
\begin{equation*}
\frac{M_{i}\left(\alpha_{n+1}, \alpha_{2}, \ldots, \alpha_{n}\right)}{M_{i}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)}=\left(\frac{\alpha_{n+1}}{\alpha_{1}}\right)^{e_{i 1}} . \tag{1}
\end{equation*}
$$

Let $r_{j}=M_{i}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ and $\bar{r}_{k}=M_{i}\left(\alpha_{n+1}, \alpha_{2}, \ldots, \alpha_{n}\right)$. From Equation 1 we have

$$
\bar{r}_{k}=r_{j} \times\left(\frac{\alpha_{n+1}}{\alpha_{1}}\right)^{e_{i 1}},
$$

i.e. for every root r_{j} of $\Lambda_{1}, r_{j} \times\left(\frac{\alpha_{n+1}}{\alpha_{1}}\right)^{e_{i 1}}$ is a root of Λ_{2} for some $e_{i 1}$ which is the degree of some monomial in f with respect to x. This gives us a way to compute the degree of each monomial M_{i} in the variable x. In this example we have $\frac{\alpha_{n+1}}{\alpha_{1}}=25$. We start with the first root of Λ_{1} and check if $r_{1} \times\left(\frac{\alpha_{n+1}}{\alpha_{1}}\right)^{i}$ is a root of Λ_{2} for $0 \leq i \leq d$. For $r_{1}=1$ we have that $r_{1} \times\left(\frac{\alpha_{n+1}}{\alpha_{1}}\right)^{0}$ is a root of Λ_{2} and for $0<i \leq d$, $r_{1} \times\left(\frac{\alpha_{n+1}}{\alpha_{1}}\right)^{i}$ is not a root of Λ_{2}, hence we conclude that the degree of the first monomial of f in x is 0 . We continue this to find the degrees of all the monomials in f in the variable x. We obtain

$$
e_{1}=\left\{e_{11}=0, e_{21}=0, e_{31}=0, e_{41}=2, e_{51}=2\right\}
$$

Now we proceed to the next variable y. This time the evaluation points used for probing the black box are $\beta_{0}^{\prime \prime}, \ldots, \beta_{2 t-1}^{\prime \prime}$ where $\beta_{i}^{\prime \prime}=\left(\alpha_{1}^{i}, \alpha_{n+1}^{i}, \alpha_{3}^{i}, \ldots\right)$. Note that this time we are evaluating the second variable y at powers of α_{n+1} instead of α_{2}. We evaluate the black box at these points and apply the Berlekamp/Massey algorithm on the sequence of the outputs to compute the linear generator for the new sequence

$$
\Lambda_{3}=z^{5}+5 z^{4}+27 z^{3}+36 z^{2}+93 z+40
$$

Let $\tilde{r}_{1}, \ldots, \tilde{r}_{5}$ be distinct roots of Λ_{3}. Again using the same approach as above, we find the degrees of the monomials in the second variable y

$$
e_{2}=\left\{e_{12}=0, e_{22}=1, e_{32}=0, e_{42}=2, e_{52}=1\right\}
$$

And finally we proceed to the last variable z. This time we evaluate z at powers of α_{n+1} instead of α_{3} and compute the following linear generator for the sequence of outputs obtained by probing the black box

$$
\Lambda_{4}=z^{5}+27 z^{4}+99 z^{3}+18 z^{2}+16 z+41
$$

We compute the degrees with the same technique

$$
e_{3}=\left\{e_{13}=0, e_{23}=2, e_{33}=5, e_{43}=1, e_{53}=1\right\}
$$

At this point we have computed all the monomials. Recall that $M_{i}=x_{1}^{e_{i 1}} \times x_{2}^{e_{i 2}} \times \cdots \times x_{n}^{e_{i n}}$ hence we have
$M_{1}=1, M_{2}=y z^{2}, M_{3}=z^{5}, M_{4}=x^{2} y^{2} z$ and $M_{5}=x^{2} y z$.

Now we need to compute the coefficients. We can easily do this by solving one linear system of equations. We computed the roots of Λ_{1} and we have computed the monomials such that $M_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=r_{i}$. Recall that v_{i} is the output of the black box on the input $\beta_{i}=\left(\alpha_{1}^{i}, \ldots, \alpha_{n}^{i}\right)$ hence we have

$$
v_{i}=a_{1} r_{1}^{i}+a_{2} r_{2}^{i}+\cdots+a_{t} r_{t}^{i}
$$

for $0 \leq i \leq 2 t-1$. Note that the system of equations obtained from the above set of equations is a Vandermonde system which can be solved in $O\left(t^{2}\right)$ time and $O(t)$ space (See [16]). After solving this system of equations we get

$$
a_{1}=1, a_{2}=91, a_{3}=42, a_{4}=61 \text { and } a_{5}=94
$$

and hence $f=1+91 y z^{2}+42 z^{5}+61 x^{2} y^{2} z+94 x^{2} y z$ is interpolated and we are done.

3. PROBLEMS

The evaluation points $\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1}$ must satisfy certain conditions for our new algorithm to work properly. Here we identify all problems.

Distinct Monomials

The first condition is that for $i \neq j$

$$
M_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \neq M_{j}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \text { in } \mathbb{Z}_{p}
$$

Also at the k 'th step of the algorithm, when computing the degrees of the monomials in x_{k}, we must have

$$
\forall 1 \leq i \neq j \leq t \Rightarrow m_{i}^{k} \neq m_{j}^{k}, \quad \text { in } \mathbb{Z}_{p}
$$

where $m_{i}^{k}=M_{i}\left(\alpha_{1}, \ldots, \alpha_{k-1}, \alpha_{n+1}, \alpha_{k+1}, \ldots, \alpha_{n}\right)$. If $m_{i}^{k}=$ m_{j}^{k} in \mathbb{Z}_{p} then $\operatorname{deg}_{z}\left(\Lambda_{k+1}\right)<t$ and hence Λ_{k+1} will not have t distinct linear factors. To reduce the probability of monomial evaluations colliding, we should pick α_{i} to be distinct and to have order $>d$. The easiest way to do this is to use generators. There are $\phi(p-1)$ generators in \mathbb{Z}_{p} where ϕ is Euler's function.

We now compute an upper bound on the probability that $M_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \neq M_{j}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for all $1 \leq i \neq j \leq t$, for a set of random evaluation points $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, where α_{i} 's are distinct generators of \mathbb{Z}_{p}^{*}.

Lemma 1 Let M_{i} and M_{j} be two distinct monomials in x_{1}, \ldots, x_{n}. If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are distinct generators of \mathbb{Z}_{p}^{*}, chosen at random, then in \mathbb{Z}_{p}
$\operatorname{Prob}\left(M_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=M_{j}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right) \leq \frac{d}{\phi(p-1)-n+1}$.
Proof. We will give a proof for $n=3$. Suppose $M_{i}=$ $x^{a} y^{b} z^{c}$ and $M_{j}=x^{k} y^{l} z^{m}$. Since $M_{i} \neq M_{j}$, their degree must differ in at least one variable, say y so that $b \neq l$. Since α_{1} is a generator, distinct from α_{2} and α_{3}, we have $\alpha_{2}=\alpha_{1}^{s}$ and $\alpha_{3}=\alpha_{1}^{t}$ for some $1<s, t<p-1$ and $s \neq t$ thus if

$$
\alpha_{1}^{a} \alpha_{2}^{b} \alpha_{3}^{c} \equiv \alpha_{1}^{k} \alpha_{2}^{l} \alpha_{3}^{m} \quad(\bmod p)
$$

then

$$
\alpha_{1}^{a-k} \alpha_{1}^{s(b-l)} \alpha_{1}^{t(c-m)} \equiv 1 \quad(\bmod p) .
$$

Since α_{1} has order $p-1$ this implies

$$
(a-k)+s(b-l)+t(c-m) \equiv 0 \quad(\bmod p-1)
$$

For any t, the number of solutions to this equation for s is at most $g=\operatorname{gcd}(b-l,(a-k)+t(c-m), p-1)$. Since
$|a-k|,|b-l|$ and $|c-m|$ are all bounded by d, and $b-l \neq 0$, we have $g \leq d$. The maximum number of solutions occurs, for example, when $M_{i}=x^{d} y^{0} z^{c}$ and $M_{j}=x^{0} y^{d} z^{c}$ and $d \mid(p-1)$. Since α_{2} is a generator distinct from α_{1} and α_{3}, we have $\operatorname{gcd}(s, p-1)=1$ and $1 \neq s \neq t$. Thus there are $\phi(p-1)-2$ choices for s and we obtain

$$
\operatorname{Prob}\left(M_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=M_{j}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right) \leq \frac{d}{\phi(p-1)-2}
$$

Remark 1 Note that this upper bound is pessimistic. In applications where the prime p can be chosen, if one chooses p with $q=(p-1) / 2$ also prime and $q>d$, which will often be easy to do, then $g \leq 2$ and $\phi(p-1)=q-1$ and hence the bound $\frac{d}{\phi(p-1)-2}$ reduces to $\frac{2}{q-1-n+1}=\frac{4}{p-1-2 n} \in O(1 / p)$.

Theorem 1 Since there are $\binom{t}{2}$ pairs of monomials M_{i} and M_{j}, the probability that no two evaluate to the same value is at most

$$
\frac{t(t-1)}{2} \cdot \frac{d}{\phi(p-1)-n+1}<\frac{d t^{2}}{\phi(p-1)}
$$

Root Clashing

Let r_{1}, \ldots, r_{t} be the roots of $\Lambda_{1}(z)$ which is the output of the Berlekamp/Massey algorithm on the sequence of the outputs from the black box on the first set of evaluation points $\alpha_{1}, \ldots, \alpha_{n}$. Suppose at the k 'th step, we want to compute the degrees of all the monomials in the variable x_{k}. As mentioned in the Example 1, the first step is to compute Λ_{k+1}. Then if $\operatorname{deg}_{x_{k}}\left(M_{i}\right)=e_{i k}$ we have $\bar{r}_{i}=r_{i} \times\left(\frac{\alpha_{n+1}}{\alpha_{k}}\right)^{e_{i k}}$ is a root of Λ_{k+1}. If $r_{i} \times\left(\frac{\alpha_{n+1}}{\alpha_{k}}\right)^{e^{\prime}}, 0 \leq e^{\prime} \neq e_{i k} \leq d$ is also a root of Λ_{k+1} then we may not be able to uniquely identify the correct degree of the i^{\prime} 'th monomial in the k 'th variable x_{k}. We will illustrate this with an example.

Example 2 Consider the polynomial given in Example 1. Suppose instead of choosing $\alpha_{4}=34$, we choose $\alpha_{4}=72$ which is another generator of \mathbb{Z}_{p}^{*}. Since α_{1}, α_{2} and α_{3} are the same as before, Λ_{1} does not change and hence the roots of Λ_{1} are $r_{1}=1, r_{2}=7, r_{3}=41, r_{4}=61$ and $r_{5}=64$. In the next step we substitute $\alpha_{4}=72$ for α_{1} and compute $\Lambda_{2}=z^{5}+61 z^{4}+39 z^{3}+67 z^{2}+37 z+98$. We proceed to compute the degrees of the monomials in x but we find that both

$$
r_{4} \times\left(\frac{\alpha_{4}}{\alpha_{1}}\right)^{2}=15 \text { and } r_{4} \times\left(\frac{\alpha_{4}}{\alpha_{1}}\right)^{4}=7
$$

are roots of Λ_{2} and hence we can not decide the correct degree of the last monomial in x.

Theorem 2 The probability that we would not be able to uniquely compute all the degrees in one variable $x_{k} \quad(1 \leq$ $k \leq n$) is approximately $\frac{3 d t^{2}}{2 p}$.

Proof. Let $S_{i}=\left\{\left.r_{j} \times\left(\frac{\alpha_{n+1}}{\alpha_{k}}\right)^{i} \right\rvert\, 1 \leq j \leq t\right\}$ for $0 \leq i \leq d$. We assume that $r_{i} \neq r_{j}$ for all $1 \leq i \neq j \leq t$. We will not be able to uniquely identify the degree of the j 'th monomial in x_{k} if there exists \bar{d} such that $r_{j} \times\left(\frac{\alpha_{n+1}}{\alpha_{k}}\right)^{\bar{d}}=\bar{r}_{i}$ is a root of $\Lambda_{k+1}\left(\bar{r}_{i}\right)$ and $0 \leq d \neq e_{j k} \leq d$ where $e_{j k}$ is $\operatorname{deg}_{x_{k}}\left(M_{j}\right)$. But we have $\bar{r}_{i}=r_{i} \times\left(\frac{\alpha_{n+1}}{\alpha_{k}}\right)^{e_{i k}}$ thus $r_{j} \times\left(\frac{\alpha_{n+1}}{\alpha_{k}}\right)^{\bar{d}}=r_{i} \times$ $\left(\frac{\alpha_{n+1}}{\alpha_{k}}\right)^{e_{i k}}$. With out loss of generality, assume $\tilde{d}=\bar{d}-e_{i k}>$
0. We have $r_{i}=r_{j} \times\left(\frac{\alpha_{n+1}}{\alpha_{k}}\right)^{\tilde{d}}$ and hence $r_{i} \in S_{\tilde{d}} \Rightarrow S_{0} \cap S_{\tilde{d}} \neq$ \emptyset. Hence we will not be able to compute the degrees in x_{k} if $S_{0} \cap S_{i} \neq \emptyset$ for some $1 \leq i \leq d$. Assuming that $\frac{\alpha_{n+1}}{\alpha_{k}}$ has a sufficiently high order in \mathbb{Z}_{p} (at least $d+1$), we can assume that the elements in S_{i} are random elements in \mathbb{Z}_{p}. Hence the probability that $S_{0} \cap S_{i} \neq \emptyset$ is

$$
1-\prod_{i=1}^{t}\left(1-\frac{t+i}{p}\right) \approx 1-\mathrm{e}^{\frac{-t(3 t+1)}{2 p}}
$$

If we sum this quantity for all $1 \leq i \leq d$ we obtain that the overall probability is approximately $d \times\left(1-\mathrm{e}^{\frac{-t(3 t+1)}{2 p}}\right)$. For $t^{2} \ll p$ we have $1-\mathrm{e}^{\frac{-t(3 t+1)}{2 p}} \approx \frac{3 t^{2}}{2 p}$. This completes the proof.

Using Theorem 2, the probability that we will not be able to uniquely identify the degrees of the monomials in all the variables is approximately $\frac{3 n d t^{2}}{2 p}$, i.e. for $p \approx 3 n d t^{2}$ with probability about half, the algorithm succeeds without dealing with any problem. We will now discuss our solution to this problem. Note that we assume the images of the monomials are distinct, i.e. $\forall 1 \leq i \neq j \leq t \Rightarrow m_{i}^{k} \neq m_{j}^{k}$. Suppose we have computed Λ_{k+1} and we want to compute the degrees of the monomials in x_{k} and let $R_{1}=\left\{r_{1}, \ldots, r_{t}\right\}$ be the set of all the roots of Λ_{1} and $R_{k}=\left\{\bar{r}_{1}, \ldots, \bar{r}_{t}\right\}$ be the set of all the distinct roots of Λ_{k+1}. Let

$$
D_{j}=\left\{(i, r) \mid 0 \leq i \leq d, r=r_{j} \times\left(\frac{\alpha_{n+1}}{\alpha_{1}}\right)^{i} \in R_{k}\right\}
$$

D_{j} contains the set of all possible degrees of the j 'th monomial M_{j} in the k 'th variable x_{k}. We know that $\left(e_{j k}, \bar{r}_{j}\right) \in D_{j}$ and hence $\left|D_{j}\right| \geq 1$. If $\left|D_{j}\right|=1$ for all $1 \leq j \leq t$, then the degrees are unique and this step of the algorithm is complete. Let G_{k} be a balanced bipartite graph defined as follows. G_{k} has two independent sets of nodes U and V each of size t. Nodes in U and V represent elements in R_{1} and R_{k} respectively, i.e. $u_{i} \in U$ and $v_{j} \in V$ are labelled with r_{i} and \bar{r}_{j}. We connect $u_{i} \in U$ to $v_{j} \in V$ with an edge of weight (degree) $d_{i j}$ if and only if $\left(d_{i j}, \bar{r}_{j}\right) \in D_{i}$.

Lemma 2 We can uniquely identify the degrees of all the monomials in x_{k}, if and only if the bipartite graph G_{k} has a unique perfect matching.

The proof of this lemma is immediate by looking at the structure of the graph G_{k}. We illustrate this with an example.
Example 3 Let f be the polynomial given in Example 1 and suppose for some evaluation points $\alpha_{1}, \ldots, \alpha_{4}$ we obtain the graph G_{1} as shown in Figure 1. This graph has a perfect matching, i.e. the set of edges $\left\{\left(r_{i}, \bar{r}_{i}\right) \mid 1 \leq i \leq 5\right\}$. If there was an edge connecting r_{1} to \bar{r}_{2} then the new graph would no longer have a unique perfect matching and we would fail to uniquely compute the degrees of monomials in x.

We now give a solution for the case where G_{k} does not have a unique perfect matching for some $1 \leq k \leq n$. The solution involves $2 t$ more probes to the black box. Suppose we choose a random element $\alpha_{n+2} \in \mathbb{Z}_{p}$ such that $\gamma=\frac{\alpha_{n+2}}{\alpha_{n+1}}$ is a generator of \mathbb{Z}_{p}^{*} (or is of order greater than d). Let $\beta_{i}=\left(\alpha_{1}^{i}, \ldots, \alpha_{k-1}^{i}, \alpha_{n+2}^{i}, \alpha_{k+1}^{i}, \ldots, \alpha_{n}^{i}\right)$ and let v_{i} be the output of the black box on input $\beta_{i}(0 \leq i \leq 2 t-1)$. On input $V=\left(\beta_{0}, \ldots, \beta_{2 t-1}\right)$, the Berlekamp/Massey algorithm

Figure 1: The bipartite graph G_{1}
computes a linear generator $\Lambda_{k+1}^{\prime}(z)$ for V. Let $\left\{\tilde{r}_{1}, \ldots, \tilde{r}_{t}\right\}$ be the set of distinct roots of Λ_{k+1}^{\prime}. Let G_{k}^{\prime} be the balanced bipartite graph, obtained from Λ_{1} and Λ_{k+1}^{\prime}.

Definition 1. We define \bar{G}_{k}, the intersection of G_{k}^{\prime} and G_{k}, as follows. \bar{G}_{k} has the same nodes as G_{k}^{\prime} and there is an edge between r_{i} and \tilde{r}_{j} with weight (degree) $d_{i j}$ if and only if r_{i} is connected to \bar{r}_{j} in G_{k} and to \tilde{r}_{j} in G_{k}^{\prime}, both with the same degree $d_{i j}$.

Lemma 3 Let $e_{i j}=\operatorname{deg}_{x_{j}}\left(M_{i}\right)$. The two nodes r_{i} and \tilde{r}_{i} are connected in \bar{G}_{k} with degree $e_{i j}$.

We take advantage of the following theorem which implies we need at most one extra set of probes.

Theorem 3 Let $\bar{G}_{k}=G_{k} \cap G_{k}^{\prime} . \bar{G}_{k}$ has a unique perfect matching.

Proof. Let U and V be the set of independent nodes in \bar{G}_{k} such that $u_{i} \in U$ and $v_{j} \in V$ are labelled with r_{i} and \tilde{r}_{j} respectively where \tilde{r}_{j} is a root of Λ_{k+1}^{\prime}. We will prove that each node in V has degree exactly 1 and hence there is a unique perfect matching. The proof is by contradiction. Suppose the degree of $v_{j} \in V$ is at least 2. With out loss of generality assume that r_{1} and r_{2} are both connected to \tilde{r}_{j} with degrees $d_{1 j}$ and $d_{2 j}$ respectively (See Figure 2).

Figure 2: Node \tilde{r}_{j} of graph \bar{G}_{k}
Using Definition 1 we have

$$
\begin{aligned}
& \bar{r}_{j}=r_{1} \times\left(\frac{\alpha_{n+1}}{\alpha_{k}}\right)^{d_{1 j}}=r_{2} \times\left(\frac{\alpha_{n+1}}{\alpha_{k}}\right)^{d_{2 j}} \quad \text { and } \\
& \tilde{r}_{j}=r_{1} \times\left(\frac{\alpha_{n+2}}{\alpha_{k}}\right)^{d_{1 j}}=r_{2} \times\left(\frac{\alpha_{n+2}}{\alpha_{k}}\right)^{d_{2 j}}
\end{aligned}
$$

Dividing the two sides of these equations results in

$$
\left(\frac{\alpha_{n+2}}{\alpha_{n+1}}\right)^{d_{1 j}}=\left(\frac{\alpha_{n+2}}{\alpha_{n+1}}\right)^{d_{2 j}} .
$$

Since we chose α_{n+2} such that $\frac{\alpha_{n+2}}{\alpha_{n+1}}$ has a sufficiently large order (greater than the degree bound d) we have $d_{1 j}=d_{2 j} \Rightarrow$ $r_{1}=r_{2}$. But this is a contradiction because both r_{1} and r_{2} are roots of Λ_{1} which we assumed are distinct.

Lemma 3 and Theorem 3 prove that the intersection of G_{k} and G_{k}^{\prime} will give us the correct degrees of all the monomials in the k 'th variable x_{k}. We will illustrate with an example.

Example 4 Let $f=-10 y^{3}-7 x^{2} y z-40 y z^{5}+42 y^{3} z^{5}-$ $50 x^{7} z^{2}+23 x^{5} z^{4}+75 x^{7} y z^{2}-92 x^{6} y^{3} z+6 x^{3} y^{5} z^{2}+74 x y z^{8}+4$ and $p=101$. We choose the first set of evaluation points to be $\alpha_{1}=66, \alpha_{2}=11, \alpha_{3}=48$ and $\alpha_{4}=50$. For the first variable x we will obtain the bipartite graph G_{1} shown in Figure 3.

Figure 3: The bipartite graph G_{1}

This graph does not have a unique perfect matching, so we proceed to choose a new evaluation point $\alpha_{5}=89$. This time we will get the bipartite graph G_{1}^{\prime} shown in Figure 4.

Figure 4: The bipartite graph G_{1}^{\prime}
Again G_{1}^{\prime} does not have a unique perfect matching. We compute the intersection of G_{1} and $G_{1}^{\prime}: \bar{G}_{1}=G_{1} \cap G_{1}^{\prime} . \bar{G}_{1}$ is shown in Figure 5.

Figure 5: The bipartite graph \bar{G}_{1}
As stated by Theorem 3, \bar{G}_{1} has a unique perfect matching and the degrees of every monomials in x is correctly computed.

In this section we proved that if the prime p is sufficiently large ($\phi(p-1)$ must be approximately $d t^{2}$ for us to be able to get distinct images of monomials with reasonable probability), we will be able to compute the degrees of all the t monomials in each variable x_{k} using up to $4 t$ evaluation points. If the graph G_{k} has a unique perfect matching, we
will be able to compute the degrees in x_{k} with only $2 t$ probes to the black box.

We conclude this section with the following lemma which we will later use in Section 4.

Lemma 4 Let G_{k} be the bipartite graph for the k 'th variable. Let $u_{i_{1}} \rightarrow v_{j_{1}} \rightarrow u_{i_{2}} \rightarrow v_{j_{2}} \rightarrow \cdots \rightarrow v_{j_{s}} \rightarrow u_{i_{1}}$ be a cycle in G_{k} where $u_{l} \in U$ is labelled with r_{l} (a root of Λ_{1}) and $v_{m} \in V$ is labelled with \bar{r}_{m} (a root of Λ_{k+1}). Let $d_{l m}$ be the weight (degree) of the edge between u_{l} and v_{m}. We have $\sum_{m=1}^{s} d_{i_{m} j_{m}}-\sum_{m=1}^{s} d_{i_{m+1} j_{m}}=0$.

Proof. It is easy to show that $r_{i_{1}}=\left(\frac{\alpha_{n+1}}{\alpha_{k}}\right)^{\bar{d}} r_{i_{s}}$ where $\bar{d}=d_{i_{1} j_{1}}-d_{i_{2} j_{1}}+d_{i_{2} j_{2}}-d_{i_{3} j_{2}}+\cdots+d_{i_{s-1} j_{s-1}}-d_{i_{s} j_{s-1}}$. Also both $u_{i_{1}}$ and $u_{i_{s}}$ are connected to $v_{j_{s}}$ in G_{k} hence we have $r_{i_{1}}=\left(\frac{\alpha_{n+1}}{\alpha_{k}}\right)^{d_{i_{1}} j_{s}} \bar{r}_{i_{s}}$ and $r_{i_{s}}=\left(\frac{\alpha_{n+1}}{\alpha_{k}}\right)^{d_{i_{s}} j_{s}} \bar{r}_{i_{s}}$. These three equations yield to $r_{i_{1}}=\left(\frac{\alpha_{n+1}}{\alpha_{k}}\right) \tilde{d} r_{i_{1}}$ where $\tilde{d}=d_{i_{1} j_{1}}-$ $d_{i_{2} j_{1}}+d_{i_{2} j_{2}}-d_{i_{3} j_{2}}+\cdots+d_{i_{s-1} j_{s-1}}-d_{i_{s} j_{s-1}}+d_{i_{s} j_{s}}-d_{i_{1} j_{s}}$. But if $\frac{\alpha_{n+1}}{\alpha_{k}}$ is of sufficiently high order, \tilde{d} must be zero thus $\sum_{m=1}^{s} d_{i_{m} j_{m}}-\sum_{m=1}^{s} d_{i_{m+1} j_{m}}=0$.
Example 5 In the graph G_{1}^{\prime} shown in Figure 4, there is a cycle $r_{3} \rightarrow \tilde{r}_{4} \rightarrow r_{7} \rightarrow \tilde{r}_{7} \rightarrow r_{3}$. The weights (degrees) of the edges in this cycle are as $7,3,0$ and 4 respectively. We have $7-3+0-4=0$.

4. THE ALGORITHM

Algorithm: Interpolation Input:

- A black box $\mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}$ that on input $\alpha_{1}, \ldots, \alpha_{n} \in$ \mathbb{Z}_{p}^{n} outputs $f\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $f \in \mathbb{Z}_{p}\left[x_{1}, \ldots, x_{n}\right]$ is the target polynomial.
- A degree bound $d \in \mathbb{Z}$ such that $\operatorname{deg}_{x_{i}}(f) \leq d$ for any $1 \leq i \leq n$. Also $\phi(p-1)>d t^{2}+n$ (See Theorem 1).
- A bound $T \geq t$ on the number of terms in f.

Output: The polynomial f.
Factor $p-1$ and let Q be the set of all the prime divisors.
For $1 \leq i \leq n+1$, choose distinct $\alpha_{i} \in \mathbb{Z}_{p}$ at random s.t. $\alpha_{i}^{\frac{p-1}{q_{j}}} \neq 1 \bmod p$, for all $q_{j} \in Q . \alpha_{i}$ is a random primitive $(p-1)$ 'th root of unity.
3: Choose γ to be a random generator of \mathbb{Z}_{p}^{*} and let $\alpha_{n+2}=$ $\alpha_{n+1} \times \gamma$. Repeat until $\alpha_{n+2} \notin\left\{\alpha_{1}, \ldots, \alpha_{n+1}\right\}$.
4: Let $\beta_{i}=\left(\alpha_{1}^{i}, \ldots, \alpha_{n}^{i}\right)$ for $0 \leq i \leq 2 T-1$ and let v_{i} be the output of the black box on input v_{i}.
5: Use the Berlekamp/Massey algorithm to compute a generator $\Lambda_{1}(z)$ for $v_{0}, \ldots, v_{2 T-1}$ and set $t=\operatorname{deg}_{z}\left(\Lambda_{1}\right)$.
6: Let $\left\{r_{1}, \ldots, r_{t}\right\}$ be the set of distinct roots of $\Lambda_{1}(z)$.
7: for k from 1 to n do
8: \quad Determine $\operatorname{deg}_{x_{k}}\left(M_{i}\right)$ for $1 \leq i \leq t$:
9: Let $\beta_{i}=\left(\alpha_{1}^{i}, \ldots, \alpha_{k-1}^{i}, \alpha_{n+1}^{i}, \alpha_{k+1}^{i}, \ldots, \alpha_{n}^{i}\right)$ for $0 \leq$ $i \leq 2 t+1$ and let v_{i} be the output of the black box on input β_{i}. (Substitute α_{k} by α_{n+1}).
10: Use the Berlekamp/Massey algorithm to compute a linear generator Λ_{k+1} for the sequence $v_{0}, \ldots, v_{2 t+1}$.
11: If $\operatorname{deg}_{z}\left(\Lambda_{k+1}\right)<t$ then the monomial evaluations are not all distinct so choose a new generator α_{n+1} for \mathbb{Z}_{p}^{*} and go back to Step 7.

12: If $\operatorname{deg}_{z}\left(\Lambda_{k+1}\right)>t$ then the monomial evaluations used to compute $\Lambda_{1}(z)$ were not all distinct so t is wrong so go back to Step 2 and restart.
13: Construct the bipartite graph G_{k} as described in Section 3.
if G_{k} has a unique perfect matching then
Set $e_{i k}=d_{i l}$ where $d_{i l}$ is the weight (degree) of the edge that matches the node r_{i} to \bar{r}_{l} in the perfect matching. For $1 \leq i \leq t, e_{i k}=\operatorname{deg}_{x_{k}}\left(M_{i}\right)$. else

Repeat Steps 7 and 12 but use α_{n+2} instead of α_{n+1} to obtain Λ_{k+1}^{\prime}.
Construct the bipartite graph G_{k}^{\prime} as described in Section 3.
Find the intersection of G_{k} and $G_{k}^{\prime}: \bar{G}_{k}=G_{k} \cap G_{k}^{\prime}$. Set $e_{i k}=d_{i l}$ where $d_{i l}$ is the weight (degree) of the edge that matches the node r_{i} to \tilde{r}_{l} in the perfect matching of graph \bar{G}_{k}. For $1 \leq i \leq t$, $e_{i k}=\operatorname{deg}_{x_{k}}\left(M_{i}\right)$.
end if
end for
Let $S=\left\{a_{1} r_{1}^{i}+a_{2} r_{2}^{i}+\cdots+a_{t} r_{t}^{i}=v_{i} \mid 0 \leq i \leq 2 t-1\right\}$ be a Vandermonde system of linear equations. Solve this to obtain $a_{1}, \ldots, a_{t} .\left(a_{i} \in \mathbb{Z}_{p}\right.$ is the coefficient of $\left.M_{i}\right)$
24: Output $f=\sum_{i=1}^{t} a_{i} M_{i}$ where $M_{i}=\prod_{j=1}^{n} x_{j}^{e_{i j}}$.
Remark 2 In Step 4, if monomial evaluations collide, the degree of $\Lambda_{1}(z)$ will be less than the number of terms of f. To detect this, each time we apply the Berlekamp/Massey algorithm in Step 10, instead of using $2 t$ evaluation points, we use $2 t+2$ probes to detect if $\Lambda_{1}(z)$ has the right degree with high probability.

Remark 3 We use the version of the Berlekamp/Massey algorithm given by Kaltofen et al. in [8]. We believe there is a minor error in the algorithm presented in [8]. The variable B_{0} must be initialized to one rather than zero.

4.1 Complexity Analysis

We now discuss the complexity of the algorithm presented in Section 4. To compute the roots of $\Lambda_{1}(z)$ at Step 6 of the algorithm, we use Rabin's probabilistic algorithm [13]. Rabin's algorithm tries to split the polynomial of degree t into two polynomials with smaller degrees at each step by computing the $\operatorname{gcd}\left((z-\beta)^{(p-1) / 2}-1, \Lambda_{1}(z)\right)$ for randomly chosen $\beta \in \mathbb{Z}_{p}$. Since $\operatorname{deg}_{z}\left(\Lambda_{1}\right)=t$, the cost of finding the t roots of $\Lambda_{1}(z)$, assuming classical algorithms for polynomial arithmetic in $\mathbb{Z}_{p}[z]$ are used, is $O\left(t^{2} \log p\right)$ (See Algorithm 14.15 of [14]).

The Vandermonde system of equations at Step 23 can be solved in $O\left(t^{2}\right)$ using the technique given in [16]. Note that as mentioned in [16], when inverting a $t \times t$ Vandemonde matrix defined by k_{1}, \ldots, k_{t}, one of the most expensive parts of this technique is to compute the master polynomial $M(z)=\prod_{i=1}^{t}\left(z-k_{i}\right)$. However, in our algorithm we can use the fact that $M(z)=\prod_{i=1}^{t}\left(z-r_{i}\right)=\Lambda_{1}(z)$. Also the Berlekamp/Massey algorithm (as presented in [8]) runs in $O\left(t^{2}\right)$ time.

We can compute the information needed to construct the bipartite graph G_{k} in $O\left(d t^{2}\right)$ time. This involves evaluating $\Lambda_{k+1}(z)$ at d points for each monomial and testing if it is zero or not. Also computing the intersection of G_{k} and G_{k}^{\prime} can be done in $O(t d \log d)$ time. This is because we know
that each node in the intersection is of degree one (See proof of Theorem 3). Hence, the total time for running the loop in Step 7 of the algorithm is $O\left(n d t^{2}+n t^{2}+t d \log d\right)=$ $O\left(n d t^{2}+t d \log d\right)$.

We also need to consider the cost of probing the black box. Let $E(n, t, d)$ be the cost of one probe to the black box. If G_{k} has a unique perfect matching for $1 \leq k \leq n$ then we can correctly compute the degrees using only G_{k}. In this case the total number of evaluation points used is exactly $2(n+1) t$. In the worst case where G_{k} does not have a unique perfect matching for all $1 \leq k \leq n$, we need to do additional $2 n t$ probes to the black box to construct all $G^{\prime} k$ graphs. In this case the total number of probes to the black box is $2(n+1) t+2 n t=2(2 n+1) t$. In both cases the number of probes is $N_{s}=O(n t)$ and hence the total cost of probes to the black box is $O(n t E(n, t, d))$. Thus the total cost of running the algorithm is in $O\left(t^{2}(\log (p)+\right.$ $n d)+n t E(n, t, d)$). Assuming $\log (p) \in O(n d)$ (this is true if $p \in O\left(n d t^{2}\right)$ because $\left.t \leq(d+1)^{n}\right)$, the total cost is in $O\left(n d t^{2}+n t E(n, t, d)\right)$.

Zippel's Algorithm

For comparison, we will briefly discuss the complexity of Zippel's 1990 interpolation algorithm. Let t_{i} be the number of terms in the target polynomial f after evaluating variables x_{i+1}, \ldots, x_{n}. We have $t_{0}=1$ and $t_{n}=t$. The number of probes to the black box using Zippel's algorithm is

$$
N_{z}=d+1+\left(t_{1} d+t_{2} d+\ldots t_{n-1} d\right)=1+d \sum_{i=0}^{n-1} t_{i}
$$

Since $t_{i} \leq t_{n}$ for all $1 \leq i \leq n-1$, the number of probes is in $O(n d t)$. Also Zippel's interpolation algorithm does $O\left(n d t^{2}\right)$ operations so the total cost is in $O\left(n d t^{2}+n d t E(n, t, d)\right)$.
Example 6 Let $f=x^{20}+y^{20}+z^{20}+1$ with $p=1009, d=20$ and $t=4$. Our new algorithm will do $N_{s}=32$ probes to the black box while Zippel's does about $N_{z}=121$ probes. Also note that a bad degree bound d will not affect the number of probes to the black box in our new algorithm but this number will linearly increase in Zippel's algorithm. As an example if choose the bound $d=40$ instead of $d=20$, the number of probes in Zippel's algorithm will almost double: $N_{z}=241$.

We expect Zippel's algorithm to perform better than our algorithm for dense target polynomials.

Lemma 5 Let f be a completely dense polynomial such that $\operatorname{deg}_{x_{i}}(f)=d$ (total degree of f is nd). The number of terms in f is $t=(d+1)^{n}$. The number of probes to the black box in Zippel's algorithm is exactly $N_{z}=t$.

Proof. Here we have $t_{i}=(d+1)^{i}$ thus $N_{z}=1+d \times$ $\prod_{i=0}^{n-1}(d+1)^{i}=1+d \times \frac{(d+1)^{n}-1}{d+1-1}=(d+1)^{n}=t$.

In this case, our algorithm does at most $4(n+1) t$ probes.

4.2 Optimizations

Let $d_{\text {max }}=\max \left\{\operatorname{deg}_{x_{i}}(f) \mid 1 \leq i \leq n\right\}$. If the prime p is large enough, i.e. $p>\frac{3 n d_{\max } t^{2}}{2 \epsilon}$ then with probability $1-\epsilon$ the degree of every monomial in x_{k} can correctly be computed using only G_{k} and without needing any extra probes to the black box. In fact in this case, with high probability,
every r_{i} will be matched with exactly only one \bar{r}_{j} and hence every node in G_{k} would have degree one (e.g. see Figure 5). But if $d \gg d_{\max }$, i.e. the degree bound d is not tight, the probability that we could identify the degrees uniquely drops significantly even though p is large enough. This is because the probability that root clashing (see Section 3) happens, linearly depends on d. In this case, with probability $1-\epsilon$, the degree of M_{i} in x_{k} would be $\min \left\{d_{i j} \mid\left(d_{i j}, r_{i}\right) \in G_{k}\right\}$, i.e. the edge connected to r_{i} in G_{k} with minimum weight (degree) is our desired edge in the graph which will show up in the prefect matching.
We can also use the following theorem.
Theorem 4 Let H_{k} be a graph obtained by eliminating all edges connected to r_{i} in G_{k} except the one with minimum weight (degree) for all $1 \leq i \leq t$. If the degree of every node in H_{k} is exactly one, then $e_{i k}$ is equal to the weight of the edge connected to r_{i} in H_{k}.

This theorem can be proved using Lemma 4 and the fact that there can not be any cycle in the graph H_{k}. We will give an example.
Example 7 Let $f=25 y^{2} z+90 y z^{2}+93 x^{2} y^{2} z+60 y^{4} z+42 z^{5}$. Here $t=5, n=3, d_{\max }=5$ and $p=101$. We choose the following evaluation points $\alpha_{1}=85, \alpha_{2}=96, \alpha_{3}=58$ and $\alpha_{4}=99$. Suppose we want to construct G_{2} in order to compute the degrees of the monomials in y. Suppose our degree bound is $d=40$ which is not tight. The graph G_{2} and H_{2} are shown in Figures 6 and 7 respectively.

Figure 6: The bipartite graph G_{2}

Figure 7: The bipartite graph H_{2}
The graph H_{2} has the correct degrees of the monomials in variable y.

Theorem 4 suggests the following optimization. In the construction of the bipartite graph G_{k}, connect r_{i} to \bar{r}_{j} with
degree $d_{i j}$ only if there is no $\bar{d}<d_{i j}$ such that $r_{i} \times\left(\frac{\alpha_{n+1}}{\alpha_{k}}\right)^{\bar{d}}$ is a root of Λ_{k+1}, i.e. the degree of the node r_{i} in U is always one for all $1 \leq i \leq n$. If there is a perfect matching in this graph, this perfect matching is unique because this implies that the degree of each node \bar{r}_{j} in V is also one (e.g. see Figure 7). If not, go back to and complete the graph G_{k}.
The second optimization is to compute the degree of each monomial $M_{i}=x_{1}^{e_{i 1}} x_{2}^{e_{i 2}} \ldots x_{n}^{e_{i n}}$ in the last variable x_{n} without doing any more probes to the black box. Suppose we have computed the degree of M_{i} in x_{k} for $1 \leq k<n$. We know that $M_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is equal to r_{i}, a root of Λ_{1}. Hence $r_{i}=\alpha_{1}^{e_{i 1}} \cdot \alpha_{2}^{e_{i 2}} \cdots \cdots \alpha_{n}^{e_{i n}}$. Since we know the degrees $e_{i j}$ for $1 \leq j<n$ we can determine $e_{i n}$ by division by α_{n}. This reduces the total number of probes from $4(n+1) t$ to $4 n t$.

5. BENCHMARKS

We have implemented both Zippel's sparse interpolation algorithm and our new algorithm in C programming language. We have also implemented an interface to call the interpolation routines from Maple. In this section we will give benchmarks comparing the performances on five problem sets. The polynomials in the first three sets have $n=3$ variables while those in the last two sets have $n=6$ and $n=12$ variables respectively.
We count the number of probes to the black box and measure the total CPU time. All the timings given in this section are in CPU seconds and are obtained using Maple 13 on a 64 bit Intel Core i7 920 @ 2.66 GHz , running Linux. The black box in our benchmarks computes a multivariate polynomial with coefficients in \mathbb{Z}_{p} where $p=3037000453$ is a 31.5 bit prime. In all these benchmarks, the black box simply evaluates the polynomial at the given evaluation point. To evaluate efficiently we pre-compute and cache the values of $x_{i}^{j} \bmod p$ in a loop for $0 \leq j \leq d$ for each variable in $O(n d)$. Then we evaluate the t terms in $O(n t)$. Hence the cost of one black box probe is $O(n d+n t)$ arithmetic operations in \mathbb{Z}_{p}.

Benchmark \#1

This set of problems consists of 13 multivariate polynomials in $n=3$ variables. The i 'th polynomial $(1 \leq i \leq 13)$ is generated at random using the following command in Maple:

```
> randpoly([x1,x2,x3], terms = 2^i, degree = 30) mod p;
```

The i^{\prime} th polynomial will have about 2^{i} non-zero terms. Here $D=30$ is the total degree hence the maximum number of terms in each polynomial is $t_{\text {max }}=\binom{n+D}{D}=5456$. We run both the Zippel's algorithm and our new algorithm with degree bound $d=30$. The timings and the number of probes are given in Table 1.

Note that the last polynomial $i=13$, is almost completely dense. The data in Table 1 shows that for sparse polynomials $1 \leq i \leq 6$, our new algorithm does a lot less probes to the black box compared to Zippel's algorithm. It is also faster than Zippel's algorithm for $1 \leq i \leq 9$. However, as the polynomials get denser, Zippel's algorithm has a better performance. For a completely dense polynomial with t nonzero terms, Zippel's algorithm only does $O(t)$ probes to the black box while the new algorithm does $O(n t)$ probes, a factor of n more. This is clearly shown in the last row of Table 1.

As i increases, the polynomial f becomes denser. For $i>6, f$ has more than $\sqrt{t_{\max }}$ non-zero terms which means

i	$\# f$	New Algorithm		Zippel's Algorithm	
		Time	Probes	Time	Probes
1	2	0.00	15	0.01	961
2	4	0.00	27	0.01	558
3	8	0.00	51	0.01	1209
4	16	0.00	99	0.01	1054
5	32	0.00	195	0.01	1612
6	64	0.01	387	0.03	2728
7	128	0.03	771	0.09	4433
8	253	0.11	1521	0.21	6603
9	512	0.43	3075	0.55	9765
10	1015	1.64	6093	1.15	12431
11	2041	6.42	12249	2.42	15128
12	4081	24.96	24489	4.56	16182
13	5430	43.67	32583	5.92	16430

Table 1: Timings and number of probes for the first set of problems.
it is becoming dense. This is indicated by a horizontal line in Table 1 and also in the subsequent benchmarks.

To show how effective the first optimization described in Section 4.2 is, we run both our algorithm and Zippel's algorithm on the same set of polynomials but with a bad degree bound $d=100$. The timings and the number of probes are given in Table 2.

i	$\# f$	New Algorithm		Zippel's Algorithm	
		Time	Probes	Time	Probes
1	2	0.00	15	0.04	3131
2	4	0.00	27	0.02	1818
3	8	0.00	51	0.04	3939
4	16	0.00	99	0.04	3434
5	32	0.00	195	0.07	5252
6	64	0.01	387	0.15	8888
7	128	0.04	771	0.36	14433
8	253	0.12	1521	0.80	21513
9	512	0.45	3075	1.96	31815
10	1015	1.66	6093	3.98	40501
11	2041	6.48	12249	8.16	49288
12	4081	25.05	24489	15.14	52722
13	5430	43.77	32583	19.61	53530

Table 2: Timings and number of probes for the first set of problems with bad degree bound $d=100$.

Benchmark \#2

In this set of benchmarks the i 'th polynomial is in three variables and generated at random using the following command in Maple:

```
> randpoly([x1,x2,x3], terms = 2^i, degree = 100) mod p;
```

This set of polynomials is similar to polynomials in the first benchmark except that the total degree of each polynomial is set to be 100 in the second set. We run both the Zippel's algorithm and our new algorithm with degree bound $d=$ 100. The timings and the number of probes are given in Table 3.

i	$\# f$	New Algorithm		Zippel's Algorithm	
		Time	Probes	Time	Probes
1	2	0.00	15	0.03	2929
2	4	0.00	27	0.04	3131
3	8	0.00	51	0.09	6363
4	16	0.00	99	0.09	6767
5	31	0.01	189	0.19	11514
6	64	0.01	387	0.29	14948
7	127	0.05	765	0.55	21008
8	253	0.17	1521	1.47	37744
9	511	0.64	3069	4.42	58479
10	1017	2.50	6105	14.00	99384
11	2037	9.69	12225	43.28	167155
12	4076	38.17	24489	121.54	263105
13	8147	150.00	48885	282.54	359863
14	16282	590.81	97695	589.82	442178

Table 3: Timings and number of probes for the second set of problems.

Comparing this table to the data in Table 1 shows that the number of probes to the black box in our new algorithm does not depend on the degree of the target polynomial whereas it does for Zippel's algorithm.

Benchmark \#3

This set of problems consists of 14 multivariate polynomials in $n=6$ variables. The i 'th polynomial $(1 \leq i \leq 13)$ is generated at random using the following command in Maple:
>randpoly ([seq(x||j,j=1..6)],terms=2^i, degree=30) mod p;

The i^{\prime} th polynomial will have about 2^{i} non-zero terms. Here $D=30$ is the total degree. We run both the Zippel's algorithm and our new algorithm with degree bound $d=30$. The timings and the number of probes are given in Table 4.

i	$\# f$	New Algorithm		Zippel's Algorithm	
		Time	Probes	Time	Probes
1	2	0.00	30	0.01	744
2	3	0.00	42	0.01	961
3	8	0.00	102	0.01	1550
4	16	0.00	198	0.02	2697
5	31	0.00	378	0.05	4557
6	64	0.02	774	0.15	8246
7	127	0.06	1530	0.44	14632
8	255	0.21	3066	1.51	27714
9	511	0.81	6138	5.19	50685
10	1016	3.08	12198	17.92	91047
11	2037	12.10	24450	65.31	168330
12	4083	47.82	49002	230.44	301382
13	8151	187.94	97818	803.60	532580
14	16287	741.21	195450	>1000	-

Table 4: Timings and number of probes for the third set of problems.

Benchmark \#4

In this set of problems, the 14 polynomials are chosen at random in 12 variables with total degree $D=10$.

```
>n := 12;
>randpoly([seq(x||j,j=1..n)],terms=2^i,degree=10) mod p;
```

We run both the Zippel's algorithm and our new algorithm with degree bound $d=10$. The timings and the number of probes are given in Table 5.

i	$\# f$	New Algorithm		Zippel's Algorithm	
		Time	Probes	Time	Probes
1	2	0.00	60	0.00	396
2	3	0.00	108	0.01	605
3	8	0.00	204	0.01	1001
4	16	0.00	396	0.02	1760
5	32	0.01	780	0.04	3113
6	64	0.04	1548	0.14	6017
7	128	0.12	3036	0.47	11154
8	253	0.48	6132	1.57	19976
9	512	1.88	12252	5.81	37609
10	1016	7.28	24396	20.30	67364
11	2039	28.70	48804	73.61	123343
12	4075	114.39	97764	257.39	217987
13	8146	454.91	195516	916.81	391919
14	16284	1809.32	390828	3142.69	679294

Table 5: Timings and number of probes for the fourth set of problems.

Tables $1,3,4$ and 5 show that our algorithm is more efficient compared to Zippel's sparse interpolation algorithm if the target polynomial is sparse. For denser polynomials Zippel's algorithm does less probes to the black box and hence is more efficient. Also the number of probes to the black box in our new algorithm is independent of the degree bound d. This is not true for Zippel's algorithm which depends linearly on d.

6. CONCLUSION

Our sparse interpolation algorithm is a modification of the Ben-Or/Tiwari algorithm [1] for polynomials over finite fields. It costs an extra factor of between n and $2 n$ probes. Although we presented our algorithm for interpolating over \mathbb{Z}_{p}, it also works over an arbitrary finite field $\mathbb{F}=G F(q)$. Further, if p (or q) is too small, one can work inside a suitable extension field. Our benchmarks show that it in practice, it does fewer probes to the black box than Zippel's algorithm when the polynomial is sparse, e.g., when f has fewer than the square root of the maximum possible number of terms.

7. REFERENCES

[1] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial interpolation. In Proc. of the twentieth annual ACM symposium on Theory of computing, pages 301-309. ACM, 1988.
[2] Jennifer de Kleine, Michael Monagan, and Allan Wittkopf. Algorithms for the non-monic case of the sparse modular gcd algorithm. In Proceedings of ISSAC'05, pages 124-131. ACM, 2005.
[3] Mark Giesbrecht, Erich Kaltofen, and Wen-shin Lee. Algorithms for computing the sparsest shifts of polynomials via the berlekamp/massey algorithm. In Proceedings of ISSAC'02, pages 101-108. ACM, 2002.
[4] Dima Yu. Grigoriev and Y. N. Lakshman. Algorithms for computing sparse shifts for multivariate polynomials. In Proceedings of ISSAC'95, pages 96-103. ACM, 1995.
[5] S. M. Mahdi Javadi and M. B. Monagan. A sparse modular gcd algorithm for polynomials over algebraic function fields. In Proceedings of ISSAC '07, pages 187-194. ACM, 2007.
[6] Erich Kaltofen and Yagati N. Lakshman. Improved sparse multivariate polynomial interpolation algorithms. In Proceedings of ISSAC'88, pages 467-474. Springer-Verlag, 1989.
[7] Erich Kaltofen and Wen-shin Lee. Early termination in sparse interpolation algorithms. J. Symb. Comput., 36(3-4):365-400, 2003.
[8] Erich Kaltofen, Wen-shin Lee, and Austin A. Lobo. Early termination in ben-or/tiwari sparse interpolation and a hybrid of zippel's algorithm. In Proceedings of ISSAC'00, pages 192-201. ACM, 2000.
[9] Y. N. Lakshman and B. David Saunders. Sparse polynomial interpolation in nonstandard bases. SIAM J. Comput., 24(2):387-397, 1995.
[10] Y. N. Lakshman and B. David Saunders. Sparse shifts for univariate polynomials. Applicable Algebra in Engineering, Communication and Computing, 7(5):351-364, 1996.
[11] G. Labahn M. Giesbrecht and W s. Lee. Symbolic-numeric sparse interpolation of multivariate polynomials. J. Symb. Comput., 44:943-959, 2009.
[12] J. L. Massey. Shift-register synthesis and bch decoding. IEEE Trans. Inf. Theory it-15, pages 122-127, 1969.
[13] Michael O. Rabin. Probabilistic algorithms in finite fields. SIAM J. Comput, 9:273-280, 1979.
[14] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge University Press: Cambridge, New York, Port Melbourne, Madrid, Cape Town, second edition, 2003.
[15] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of EUROSAM '79, pages 216-226. Springer-Verlag, 1979.
[16] Richard Zippel. Interpolating polynomials from their values. J. Symb. Comput., 9(3):375-403, 1990.

[^0]: *Supported by NSERC of Canada and the MITACS NCE of Canada

 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
 ISSAC'10, July 25-28, 2010, Munich, Germany.
 Copyright 2010 ACM X-XXXXX-XXX-X/XX/XXXX ...\$10.00.

