A Cryptographically Secure Random Number Generator for Maple

Michael Monagan and Greg Fee*
Centre for Experimental and Constructive Mathematics
Simon Fraser University,
Burnaby, B.C., V5A 1S6, Canada.
monagan@cecm.sfu.ca, gfee@cecm.sfu.ca

Abstract

The best known pseudo-random number generators are the linear congruential generator (LCG) and the linear feedback shift register (LFSR). Neither, however, is good for cryptographic applications. The Blum-Blum-Shub (BBS) generator is one of the first and best known cryptographically secure pseudo-random bit generators. If \(p \) and \(q \) primes and \(n = pq \), the security of the BBS generator assumes that deciding quadratic residuosity in \(\mathbb{Z}_n \) and factoring \(n \) are computationally infeasible.

In this paper we show why an LCG is not good for cryptographic applications. We sketch the proof of the security of the BBS generator and show how to choose the primes so that the period of the BBS generators is guaranteed to be long.

We then construct BBS generators for Maple using primes of lengths 512, 768 and 1024 bits with guaranteed long period. We also support primes of length 10, 12, 15, and 16 decimal digits. While not cryptographically secure, these BBS generators are expected to yield pseudo-random bits of high quality and fast enough to be competitive with Maple’s built-in LCG. And they have been constructed so that it we can easily choose the seed to get the maximal period.

*The work was supported by the MITACS NCE of Canada.
1 Introduction

Definition 1.1 A pseudo random number generator, PRNG for short, is a function $F : \mathbb{Z}_m \rightarrow \mathbb{Z}_n^L$ where m is strictly less than n^L. The input $x_0 \in \mathbb{Z}_m$ is called the seed of the PRNG and the output sequence of L numbers $x_1, x_2, ..., x_L$ is called the pseudo-random number sequence. If $n = 2$ we will call F a pseudo-random bit generator or PRBG for short.

Example 1.2: Perhaps the PRNG most often used is the linear congruential generator, or LCG for short. An LCG is based on modular arithmetic. Let n be a positive integer, $a, b \in \mathbb{Z}_n$. For $k > 0$ define

$$x_k = ax_{k-1} + b \mod n.$$

Thus the next number in the pseudo-random number sequence is a linear function of the previous one. If n is chosen to be a prime, a is chosen to be a primitive element in \mathbb{Z}_n b is set to 0, and $x_0 \neq 0$, then the pseudo-random-number sequence generated by such an LCG has period $\pi = n - 1$. Maple’s pseudo-random number generator rand is an LCG of this form.

Example 1.3: An example of a PRBG which can be very efficiently implemented in hardware is the linear feedback shift register, or LFSR for short. It is based on the following linear recurrence. Let m be a positive integer and let $c_0, c_1, ..., c_{m-1} \in \mathbb{Z}_2$ with $c_0 = 1$. For $k \geq 0$ define

$$x_{k+m} = c_0x_k + c_1x_{k+1} + ... + c_{m-1}x_{k+m-1} \mod 2.$$

Then if the seed $x_0, x_1, ..., x_{k-1} \in \mathbb{Z}_2$ are not all 0, and $m(y) = c_0 + c_1y + ... + c_{m-1}y^{m-1} + y^m$ is a primitive polynomial in $\mathbb{Z}_2[y]$, that is, $m(y)$ is irreducible and y is a primitive element in the finite field $\mathbb{Z}_2[y]/(m)$, then the period of the pseudo-random bit sequence is $2^m - 1$.

Since $m < n^L$, the output of a PRNG cannot be truly random because not all possible pseudo-random number sequences are possible. What one aims to do in constructing a good PRNG is that the pseudo-random number sequence “appears to be random” in the sense that it will pass known statistical tests for randomness. For example, in a long pseudo-random bit sequence $x_1, x_2, ..., x_L$, the bit sequence 0101 should appear with a certain probability distribution. An obvious necessary but insufficient requirement for a PRNG to be good is that the period π of the PRNG be sufficiently large.
It is rather surprising to find that LCGs and LFSRs produce pseudo-random number sequences that are very good for many applications. How good are the pseudo random numbers generated by Maple’s LCG \texttt{rand} ? Knuth [1] gives a table comparing, using the spectral test, LCGs with several values of \(n \), e.g. \(2^{32}, 2^{35} \) and \(10^{10} \). Based on the spectral test, Maple’s PRNG \texttt{rand} is significantly better than all the LCGs in Knuths table except one with \(n = 2^{64} \) where it is comparable.

However, LCGs are not secure for cryptographic purposes. The reason is that if an adversary can obtain a consecutive sequence of sufficiently many \(x_i \)'s he will be able, in polynomial time, to determine \(n, a \) and \(b \), and hence all of the \(x_i \)'s. That is, given \(x_1, ..., x_L \) he will be able to determine \(x_{L+1} \) with probability 1 knowing only that the sequence was generated by an LCG. This may enable him to break a cryptographic protocol. In this sense, an LCG is not random at all. For if a sequence is truly random, one should not be able to predict \(x_{L+1} \) with probability significantly greater than \(1/n \). LFSRs are not secure either for cryptographic purposes.

We will show how one can easily attack an LCG using Maple’s LCG as an example. Notice that if \(b = 0 \) then

\[
x_i = ax_{i-1} \bmod n = a^2 x_{i-2} \bmod n = x_0 a^i \bmod n.
\]

Now suppose we obtain \(x_1, x_2, x_3, x_4, x_5 \). Hence

\[
x_1 x_4 \equiv x_0^2 a^5 \equiv x_2 x_3 \bmod n
\]

hence \(n | x_1 x_4 - x_2 x_3 \). Also \(n | x_1 x_3 - x_2^2 \). Thus

\[
g = \gcd(x_1 x_4 - x_2 x_3, x_1 x_3 - x_2^2)
\]

will be a multiple of \(n \). Since \(n \) is a prime and \(0 < x_i x_j < n^2 \) then \(n \) is the largest prime dividing \(g \), hence \(n \) can be obtained by factoring \(g \). However, we do not need to factor \(g \) which might be difficult if \(n \) is large. Instead we take the gcd with more differences, so that \(g \) is likely to be a small multiple of \(n \). Once we have found \(n \) we can determine \(a \) from \(a = x_2 x_1^{-1} \bmod n \). And once we have \(n \) and \(a \) we can then compute \(x_{L+1} \). Trying this in Maple we find

\[
> \text{for } i \text{ to } 5 \text{ do } x[i] := \text{rand()} \odot; \\
> x[1] := 427419669081
\]
\[x[2] := 321110693270 \]
\[x[3] := 343633073697 \]
\[x[4] := 474256143563 \]
\[x[5] := 558458718976 \]

 \(g := 999999999989 \)

> \(n := \text{gcd}(g, x[1] \cdot x[5] - x[2] \cdot x[4]) \);
 \(n := 999999999989 \)

> \(a := x[2]/x[1] \mod n \);
 \(a := 427419669081 \)

> \(x[0] := x[1]/a \mod n \);
 \(x[0] := 1 \)

Thus the modulus used by Maple’s LCG is \(n = 999,999,999,989 = 10^{12} - 11 \),
the multiplier \(a = 427,419,669,081 \), and the seed \(x_0 = 1 \). Thus knowing \(n \)
and \(a \) we can compute \(x_6 \).

> \(x[6] := a \cdot x[5] \mod n \);
 \(x[6] := 746753830538 \)

> rand();

\[746753830538 \]

1.1 Surprises with LCGs: The Smith Normal Form

When one is using a PRNG to generate pseudo-random numbers, sometimes
the construction will lead to highly non-random results. In this section we
will give one such example that we ran into when testing an algorithm for
computing the Smith normal form of a matrix of integers.

Definition 1.4 Let \(A \) be an \(n \) by \(n \) square matrix of integers. Let \(D_{i,i} \),
\(1 \leq i \leq n \) be the greatest common divisor of the determinant of all \(i \) by \(i \)
minors of \(A \). The Smith form of \(A \) is a diagonal matrix \(S \) where

\[S_{1,1} = D_{1,1} \text{ and } \text{and} S_{i,i} = D_{i,i}/(D_{1,1} \times \ldots \times D_{i-1,i-1}) \text{ for } i > 1. \]

Example 1.5 Consider the matrix

\[
A = \begin{bmatrix}
2 & 4 & 6 \\
8 & 10 & 12 \\
10 & 4 & 2
\end{bmatrix}.
\]
Clearly 2 divides each entry hence $S_{1,1} = 2$. We find that 4 divides all 2 by 2 minors hence $S_{2,2} = 4/S_{1,1} = 2$. We obtain

$$S = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 12 \end{bmatrix}.$$

This matrix can be obtained from A by doing elementary row and column operations on A where note we are working over the integers, so we may only multiply a row or column by $+1$. Now, suppose we start with a matrix A of random integers. From the definition, we would expect that $S_{1,1} = 1$. Possibly all entries in the matrix will be even, as in our example, so there is a small probability that $S_{1,1} = 2$. But it is very unlikely to find that $S_{1,1}$ is a large integer. Similarly $S_{2,2}$ will most likely be 1. Thus we expect to find $S_{1,1} = 1$, ..., $S_{n-1,n-1} = 1$ and $S_{n,n} = 4$. Let us create a 4 by 4 matrix A with pseudo-random integer entries using Maple’s `rand` command and compute its Smith form.

```plaintext
> with(LinearAlgebra);
> A := Matrix(4,4,proc() rand() end);
[427419669081 321110693270 343633073697 474256143563]
[ ]
[558458718976 746753830538 32062222085 722974121768]
A := [ ]
[604305613921 745580037409 259811952655 310075487163]
[ ]
[797179490457 39169594160 88430571674 960498834085]

> S := SmithForm(A);
[1 0 0 0]
[ ]
[0 999999999999 0 0]
S := [ ]
[0 0 999999999999 0]
[ ]
[0 0 0 74958179117175460029702]

> ifactor(S[4,4]);
2
(2) (3) (17) (19) (23) (31) (999999999999) (3191)
```

Notice that the prime $p = 999999999999$ that Maple uses for its pseudo-random number generator `rand` shows up as $S_{2,2}$. Why? Since $S_{1,1} = 1,$
then $S_{2,2} = D_{2,2}$ is the gcd of the determinants of all two by two minors of A. These integers are of form $x_i x_j - x_k x_l$ where the $x's$ are generated by Maple’s LCG. And it is precisely these combinations that p divides. Notice also that $S_{3,3} = p$ and also that $p^3 | \det(A)$. Hardly what one would expect from a matrix of “random integers”!!

1.2 The Blum-Blum-Shub Generator

The following definition for what it means for a PRNG to be pseudo-random seems to be the right one.

Definition 1.6 A pseudo-random-bit generator is said to be *cryptographically secure* if given a consecutive sequence of L output bits $x_i, x_{i+1}, ..., x_{i+L-1}$ of the PRBG, it is computationally infeasible to determine x_{i-1} or x_{i+L} with probability significantly greater than $1/2$.

Here *computationally infeasible* is understood to mean not polynomial time in L and *significantly greater than $1/2$* may, for our purposes here, may be replaced by $1/2 + \epsilon$ where $0 < \epsilon \leq 1/2$ is a constant, e.g., $\epsilon = 1/4$.

The cryptographically secure PRBG that we look at in this paper is the Blum-Blum-Shub generator, or BBS generator for short. See [3] for the original paper. We refer the reader to Chapter 12 of Stinson’s book [2] for an accessible reference. Let n be a product of two large primes p and q both congruent to 3 modulo 4. The Blum-Blum-Shub generator works as follows;

Algorithm BBS

Input x_0 a quadratic residue in \mathbb{Z}_n
Set $x_i = x_{i-1}^2 \mod n$ for $1 \leq i \leq L$.
Set $z_i = x_i \mod 2$ for $1 \leq i \leq L$.
Output $z_1, z_2, ..., z_L$.

See section 2 for a definition of the quadratic residues. The cryptographic security of the BBS generator is based on the difficulty of testing whether $x \in \mathbb{Z}_n$ is a quadratic residue (a square) modulo n. Note this is no more difficult than factoring n for if the factorization of n is known, the quadratic residue of x in \mathbb{Z}_n is easily decidable. Thus the primes p and q need to be large enough such that it is computationally infeasible to factor n. As of the
year 2003 that means that \(p \) and \(q \) should be 512 bit primes or, for longer term security, 768 or 1024 bit primes. In section 3 we will formalize these ideas more precisely and sketch the proof of security of the BBS generator. The basic idea though is quite simple; we will prove that given \(z_2, z_3, \ldots, z_l \) it is computationally infeasible to determine \(z_1 \). More precisely, we will prove that if you could do this in polynomial time then we would have a polynomial time algorithm to decide if any \(x \in \mathbb{Z}_n \) is a quadratic residue. It follows that the BBS generator should pass all statistical tests, including those not yet invented. For if a statistical test could predict \(z_1 \) with probability significantly greater then \(1/2 \), then essentially that test would yield a polynomial time algorithm for the quadratic residue problem. The security of the BBS generator is therefore not absolute but it does say that the breaking of the BBS generator is at least as difficult as a well studied problem which is thought to have no efficient solution.

To use a BBS generator one must first choose \(x_0 \), the seed in such a way that the generator has a sufficiently long period. Since the user may not know the factorization of \(n \), and hence cannot determine the period, this needs to be done with care so that the user does not, unknowingly, choose a seed with a short period.

In section 4 we show that if one chooses the primes \(p \) and \(q \) for use in the BBS generator to be of the form \(2r + 1 \) where \(r \) is a prime and 2 is a primitive element in \(\mathbb{Z}_r \), then provided \(x_0 \neq 1 \), we will get a pseudo-random number sequence with a long period. Finding 512, 768, and 1024 bit primes of this form is computationally difficult. We show how to do this using Maple in section 5 and we give Maple code for our implementation of the BBS generator. Here is an example to illustrate our routine using 512 bit primes. The Maple subroutine BBS (see appendix) outputs a Maple subroutine which when called generates a sequence of \(L \) random bits, and when called again, generates the next \(L \) random bits, and so on.

> B := BBS[512](10,4);
 B := proc() x := irem(x^2, n); T[irem(x, 1024)] end proc

> B(); # 10 bits
 1, 0, 0, 0, 1, 1, 0, 1

> B(); # next 10 bits
 1, 1, 0, 0, 0, 0, 1, 0, 1

Our generator also allows for primes of length 10, 12, 15 and 16 decimal digits
in length. Although not cryptographically secure, these generators should produce pseudo-random bits of high quality in comparison with LCGs and other PRBGs.

Our paper is organized as follows. Section 2 presents background material on quadratic residues for understanding the results in sections 3 and 4. Section 3 sketches the proof of the cryptographic security of the BBS generator. Section 4 shows how to choose the primes for the BBS generator so that the period will be long. Section 5 details our Maple implementation and compares the efficiency of our BBS generators in Maple with Maple’s LCG.

2 The Quadratic Residues in \(\mathbb{Z}_n \)

Let \(\mathbb{Z}_n^* = \{ x \in \mathbb{Z}_n \mid \gcd(x, n) = 1 \} \) denote the set of invertible integers modulo \(n \). We recall the definition of the quadratic residues in \(\mathbb{Z}_n \).

Definition 2.1: Let \(n \) be a positive integer. The set of quadratic residues of \(\mathbb{Z}_n \) is \(QR(n) = \{ x^2 \bmod n \mid x \in \mathbb{Z}_n^* \} \).

Let \(p \) and \(q \) be odd primes and let \(n = pq \). It is not difficult to see that the number of quadratic residues in \(\mathbb{Z}_n \) is \(|QR(p)| = (p-1)/2 \). Applying the Chinese remainder theorem we have \(|QR(n)| = (p-1)(q-1)/4 \). For example, \(QR(5) = \{1, 4\} \), \(QR(7) = \{1, 2, 4\} \) and \(QR(35) = \{1, 4, 9, 11, 16, 29\} \). We now look at some tests for whether \(x \) is a quadratic residue.

Lemma 2.2 (Euler’s Criterion): Let \(p \) be an odd prime and let \(x \in \mathbb{Z}_p^* \). Then \(x \in QR(p) \iff x^{(p-1)/2} \equiv 1 \bmod p \).

Since the power \(x^{(p-1)/2} \bmod p \) can be computed in polynomial time, in \(O(\log_2 p) \) multiplications in \(\mathbb{Z}_p \) using the well known repeated squaring algorithm, it follows that we can decide quadratic residuosity in \(\mathbb{Z}_p \) in polynomial time. Again, applying the Chinese remainder theorem we have \(x \in QR(n) \iff x \in QR(p) \) and \(x \in QR(q) \).

Definition 2.3 The Jacobi symbol of \(x \in \mathbb{Z}_p^* \) is defined to be

\[
J(x/p) = +1 \text{ if } x \in QR(p), \quad \text{and} \quad -1 \text{ otherwise.}
\]

The Jacobi symbol is multiplicative, that is, it satisfies

\[
J(x/pq) = J(x/p)J(x/q).
\]
Therefore in \mathbb{Z}_n^* we have $J(x/pq) = +1$ if either $J(x/p) = +1$ and $J(x/q) = +1$ or $J(x/p) = -1$ and $J(x/q) = -1$. The Jacobi symbol can be computed in polynomial time using the Euclidean algorithm and hence it is a much more efficient test for quadratic residuosity than the test based on Euler’s criterion. This is the algorithm that Maple’s \texttt{numtheory}[jacobi] routine uses.

Definition 2.4 We define the pseudo-squares by

$$QR(n) = \{ x \in \mathbb{Z}_n^* | J(x/p) = -1 \text{ and } J(x/q) = -1 \}.$$

For example, $QR(35) = \{ 3, 12, 13, 17, 27, 33 \}$. From the above we see that $J(x/n)$ does not distinguish quadratic residues from pseudo-squares in \mathbb{Z}_n.

We gather some additional properties about the set of quadratic residues and pseudo squares in \mathbb{Z}_n in the following lemma without proof.

Lemma 2.5: Let p and q be odd primes congruent to 3 modulo 4 and $n = pq$. Let $w, x \in QR(n)$ and $y, z \in QR(n)$. Then $wx \in QR(n)$, $wy \in QR(n)$, $yz \in QR(n)$, $-x \in QR(n)$ and $-y \in QR(n)$. Moreover, since also $1 \in QR(n)$ then $QR(n)$ is a subgroup of \mathbb{Z}_n^*.

Problem 2.6: The Quadratic Residue Problem in \mathbb{Z}_n.

Let p and q be odd primes and $n = pq$. The quadratic residue problem in \mathbb{Z}_n is: given $x \in \mathbb{Z}_n^*$ with $J(x/n) = +1$, is $x \in QR(n)$?

In the above we have seen that the Jacobi symbol $J(x/n) = +1$ tells us that $x \in QR(n) \cup QR(n)$ so the Jacobi symbol does not distinguish quadratic residues from pseudo-squares. If the factorization of n is known then $x \in QR(n)$ if and only if $x \in QR(p)$ and $x \in QR(q)$, equivalently, $J(x/p) = +1 = J(x/q)$. The problem, however, is that there is no known way to decide if $x \in QR(n)$ in polynomial time if the factorization of n is not known. It is not known if solving the quadratic residue problem is as hard as factoring n.

We now look at the related problem of computing the square roots. If $p \equiv 3 \text{ mod } 4$ and $x \in QR(p)$ then the two square roots of x are given by the formula $\pm x^{(p+1)/4}$. If $p \equiv 1 \text{ mod } 4$ and $x \in QR(p)$ then there is no simple formula but there is a random polynomial time algorithm for computing the two square roots, which is implemented by the \texttt{numtheory}[msqrt] command in Maple. If $x \in QR(n)$ then there are four square roots which can be computed using the Chinese remainder theorem if the factorization of n is known. Again, if the factorization of n is not known there is no known
polynomial time algorithm to compute \(\sqrt{x} \mod n \). However, in this case, a polynomial time algorithm for finding square roots in \(\mathbb{Z}_n \) yields a random polynomial time algorithm for factoring \(n \) - see [2].

Recall that the BBS generator computes the sequence of squares, i.e. sequence \(x_1 = x_0^2 \mod n, x_2 = x_1^2 \mod n, x_3 = x_2^2 \mod n, \ldots \), where \(x_0 \) is chosen from \(QR(n) \). Since the square of a quadratic residue is also a quadratic residue, this sequence must enter a cycle in \(QR(n) \). Hence we are interested in the sizes of the cycles in \(QR(n) \) under the map \(x \rightarrow x^2 \mod n \). The reason that we are interested in these cycles is because if it should happen that the seed of the BBS generator \(x_0 \) is on a cycle of small period, the sequence of pseudo-random bits will not be cryptographically secure even if the general BBS generator is shown to be secure.

There are two possibilities that could occur, namely cycles which are simple loops and cycles of the form \(x_1, x_2, \ldots, x_{j-1}, x_j, x_{j+1}, \ldots, x_r, x_{j}, \ldots \). Notice that in the latter case the quadratic residue \(x_j \) has two square roots, \(x_{j-1} \) and \(x_r \), both of which are quadratic residues, and this does not happen in a cycle which is a closed loop. The following example illustrates that both cases do occur.

Example 2.5: The following two figures show the cycles in \(QR(55) \) and \(QR(77) \). For \(n = 77 \) we have one cycle of period 1, namely 1, one of period 2, namely (23,67), and three of period 4, namely (4,16,25,9), (15,71,36,64), and (37,60,58,53).

![Cycles in QR(55)](image.png)

Figure 1: Cycles in QR(55)

Recall that in the BBS generator the primes \(p \) and \(q \) are chosen to be congruent to 3 modulo 4. The following lemma says that only closed loops can occur when this requirement on the primes is made.
Lemma 2.6: If p and q are primes both congruent to 3 modulo 4, $n =pq$ and $x \in QR(n)$ then exactly one square root of x is a quadratic residue in \mathbb{Z}_n.

Proof. We have $\pm z = \sqrt{x} = \pm x^{(p+1)/4} \mod p$. Since x is a quadratic residue, $J(x/p) = 1$, and

$$J(+z/p) = J(+x^{(p+1)/4}/p) = J(x/p)^{(p+1)/4} = 1$$

and

$$J(-z/p) = J(-x^{(p+1)/4}/p) = J(-1/p)J(x/p)^{(p+1)/4} = (-1)^{(p-1)/2} = -1.$$

Hence $+x^{(p+1)/4} \mod p$ is a quadratic residue modulo p and $-x^{(p+1)/4} \mod p$ is a quadratic non-residue modulo p. Letting

$$\pm y = \sqrt{x} \mod q = \pm x^{(q+1)/4} \mod q$$

and applying the Chinese remainder theorem we have one square root (from $+y \mod q$ and $+z \mod p$) which is a quadratic residue in \mathbb{Z}_n.

3 The Security of the BBS Generator

Following Stinson [2] we sketch the proof that the BBS generator is cryptographically secure. Let p and q be two odd primes congruent to 3 modulo
4, \(n = pq \) and \(x \in QR(n) \cup \bar{QR}(n) \). Let \(BBS : \mathbb{Z}_n \to \mathbb{Z}_2^l \) be a Blum-Blum-Shub generator with input \(x_0 \in QR(n) \) and output \(z_1, z_2, \ldots, z_l \). The output bits come from \(z_k = x_k \mod 2 \) for \(1 \leq k \leq l \) and \(x_{k+1} = x_k^2 \mod n \) for \(1 \leq k \leq l \). Consider the following problem; given \(n \) and \(z_1, z_2, \ldots, z_l \), but not the factorization of \(n \), determine \(z_0 = x_0 \mod 2 \).

We first establish that this problem has a unique solution. Lemma 2.6 says that \(x_0 \) is the only square root of \(x_1 \) which is a quadratic residue. Secondly, if \(y_k \in QR(n) \) such that \(y_k^2 \equiv x_{k+1} \mod n \) then \(y_k \not\equiv x_k \mod 2 \), i.e. the least significant bit of the two square roots \(y_k \) and \(x_k \) of \(x_{k+1} \) differ. To see this first note that since \(p \equiv q \equiv 3 \mod 4 \), it follows that

\[
J\left(\frac{-1}{n}\right) = J\left(\frac{-1}{p}\right)J\left(\frac{-1}{q}\right) = (-1)^{(p-1)/2}(-1)^{(q-1)/2} = (-1)^2
\]

since \((-1)^{(p-1)/2} = (-1)^{(4k+2)/2} = -1 \). Therefore

\[
J\left(\frac{-x}{n}\right) = J\left(\frac{-1}{n}\right)J\left(\frac{x}{n}\right) = J\left(\frac{x}{n}\right).
\]

Hence if \(x \in QR(n) \) then \(-x \in \bar{QR}(n) \). Since also \(n \) is odd implies \((-x \mod n) = n - x \not\equiv x \mod 2 \) the result follows.

Let \(O \) be a subroutine or oracle which on input of \(z_1, z_2, \ldots, z_l \) can predict whether \(z_0 = x_0 \mod 2 \) is 1 or 0 with probability greater than \(1/2 + \epsilon \). Let \(x \in QR(n) \cup \bar{QR}(n) \). We will construct a Monte-Carlo algorithm which can decide whether \(x \in QR(n) \) in probabilistic polynomial time in \(\log n \) and \(-\log \epsilon \). Remark: The reason the subroutine \(O \) is called an oracle is because we believe that it does not exist.

Algorithm A

Input: \(x \in \mathbb{Z}_n^* \) such that \(J\left(\frac{x}{n}\right) = 1 \) i.e., \(x \in QR(n) \cup \bar{QR}(n) \).

Output: true \(\iff \) \(x \in QR(n) \), false \(\iff \) \(x \in \bar{QR}(n) \).

Compute \(x_0 = x^2 \mod n \) and \(z_0 = x_0 \mod 2 \).

Compute \(z_1, z_2, \ldots, z_l \leftarrow BBS(x_0) \).

If \(O(z_0, z_1, \ldots, z_{l-1}) \equiv x \mod 2 \) then output true, otherwise output false.

It follows that if \(O \) predicts \(z_0 \) correctly with probability \(1/2 + \epsilon \) then algorithm 2.3 outputs whether \(x \in QR(n) \) with probability \(1/2 + \epsilon \). The next idea is to randomize algorithm A so that we can make the probability of guessing whether \(x \in QR(n) \) as high as we wish.
Algorithm B

Input: $x \in \mathbb{Z}_n^*$ such that $J(\frac{x}{n}) = 1$.
Output: true $\iff x \in QR(n)$, false $\iff x \in Q(n)$.
Choose $z \in \mathbb{Z}_n^*$ at random.
With probability $1/2$ compute $y = r^2x \mod n$,
otherwise $y = -r^2x \mod n$.
If $A(y)$ and $y = r^2x \mod n$ or not $A(y)$ and $y = -r^2 \mod n$
then output true, otherwise output false.

Algorithm B multiplies x by a random quadratic residue with probability
1/2 and a random quadratic non-residue otherwise. Applying Lemma 3.3,
if $x \in QR(n)$, then r^2x is a random quadratic residue and $-r^2x \mod n$ is
a random pseudo-square. Similarly, if $x \in Q(n)$ then r^2x is a random
pseudo-square and $-r^2x$ is a random quadratic residue. It follows that if
algorithm A determines quadratic residuosity correctly with probability at
least $1/2 + \epsilon$ then algorithm B is a Monte-Carlo algorithm for the quadratic
residue problem with error or failure probability at most $1/2 - \epsilon$. The last
step is to run algorithm B many times, say $2m + 1$ times, and take the most
frequent result to the the output. In other words, take the majority vote as
the correct answer. One can show that if we do this then the error probability
is at most

$$\frac{(1 - 4\epsilon^2)^m}{2}.$$

Hence, if we want the error probability to be less than some fixed constant, δ
say, it suffices to take $m = \lceil \frac{1 + \log_4 \delta}{\log_4 (1 - 4\epsilon^2)} \rceil$. For example, if $\epsilon = 1/4$ and $\delta = 10^{-10}$
then we have $m = 78$, hence, we need $2m + 1 = 157$ calls to algorithm B to
reduce the error probability to below 10^{-10}.

In summary, if one could predict the previous bit of a consecutive sequence
of l bits from a BBS generator with probability significantly greater than 1/2,
then we would have a probabilistic polynomial time algorithm for deciding
quadratic residuosity in \mathbb{Z}_n. Since it is believed that no such algorithm exists,
this provides some evidence that the bits generated by the Blum-Blum-Shub
PRBG are cryptographically secure.
4 The Period of the BBS Generator

In this section we will show how to choose the primes p and q and then how the user, without knowledge of p and q, can choose the seed $x_0 \in QR(n)$ in such a way that the BBS sequence $x_0^2, x_0^4, x_0^8, \ldots$ will have a long period modulo n.

Let p and q be two odd primes both congruent to 3 modulo 4, $n = pq$ and $x \in QR(n)$. Let $p = 2r + 1$ and $q = 2s + 1$. Let π be the period of the sequence $x, x^2, x^4, x^8, \ldots, x$. Then π is the smallest positive integer such that

$$x^{2\pi} \equiv x \mod n.$$

The first observation to make is that since $x \in QR(n) \subset \mathbb{Z}_n^*$ then x is relatively prime to n hence

$$x^{2\pi - 1} \equiv 1 \mod n.$$

Now since $n = pq$, $x \in QR(p)$ and $x \in QR(q)$, hence

$$x^{2\pi - 1} \equiv 1 \mod p.$$

Let α be a primitive element in \mathbb{Z}_p. Noting that

$$QR(p) = \{\alpha^2, \alpha^4, \ldots, \alpha^{p-1} = 1\} = \{\alpha^0 = 1, \alpha^2, \ldots, \alpha^{p-3}\}$$

it follows that $x = \alpha^{2k}$ for some $0 \leq k < (p - 1)/2 = r$. Hence

$$x^{2\pi - 1} = \alpha^{2k(2^\pi - 1)} \equiv 1 \mod p.$$

If α is a primitive element in \mathbb{Z}_p then

$$(p - 1)|2k(2^\pi - 1)$$

and since $(p - 1) = 2r$ then

$$r|k(2^\pi - 1).$$

Now suppose r is prime. Then since $0 \leq k < r$ either $k = 0$ or $r|(2^\pi - 1)$. That is either $x = 1$ or

$$2^\pi \equiv 1 \mod r.$$
Hence the period modulo p is either 1 if $x = 1$ or it depends on the order of 2 modulo r where r is prime.

Let us turn to the particular case in example 2.5 where $p = 7 = 2 \times 3 + 1$ and $q = 11 = 2 \times 5 + 1$. In this case 3 and 5 are prime and we find that the order of 2 in \mathbb{Z}_3 is 2 and the order of 2 in \mathbb{Z}_5 is 4, that is, 2 is a primitive element in \mathbb{Z}_3 and in \mathbb{Z}_5. In \mathbb{Z}_n where $n = pq$, if we have cycles of period π_p in \mathbb{Z}_p and π_q in \mathbb{Z}_q, then we will have cycles of period $\text{lcm}(\pi_p, \pi_q)$. In our example we have cycles of period 1 and 2 modulo p and 1 and 4 modulo q, hence, since $\text{lcm}(2, 4) = 4$ we can only have cycles of period 1, 2, and 4 modulo $n = 77$. In the data shown in example 2.5 we find cycles of each possible period.

Now back to the problem of how to choose p, q and the seed x such that the cycles in the BBS sequence will be large. If we choose r such that 2 is a primitive element in \mathbb{Z}_r then 2 will have order $r - 1$ hence the period π of $x \in QR(p)$ is 1 or $r - 1$. Note, to choose r such that 2 is a primitive element in \mathbb{Z}_r we may choose r of the form $2t + 1$ such that t is prime and the order of 2 in \mathbb{Z}_r is $r - 1$. Note, since $p = 2r + 1 = 2(2t + 1) + 1 = 4t + 3$, it follows that p will be congruent to 3 modulo 4. We will choose q in the same way. Applying the Chinese remainder theorem we have the following lemma.

Lemma 4.1 Let $p = 2r + 1$ and $q = 2s + 1$ be primes satisfying also (i) s and r are prime and (ii) 2 is a primitive element in \mathbb{Z}_r, and also in \mathbb{Z}_s. Let $n = pq$ and $0 < x < n$ be in $QR(n)$. Then the period π of the sequence $x, x^2 \mod n, x^4 \mod n, ...$ is

$$\pi \in \{1, r - 1, s - 1, \text{lcm}(r - 1, s - 1) = (r - 1)(s - 1)/2\}.$$

Moreover, if $\pi = 1$ then $x = 1$.

Hence we have the following solution to the short cycles problem: We choose p and q to be of the form stated in Lemma 4.1. Then we have $x = 1$ has period 1 and any other $x \in QR(n)$ has period $\pi \in \{r - 1, s - 1, \text{lcm}(r - 1, s - 1)\}$, all of which are large. Hence choosing the seed $x_0 \neq 1$ from $QR(n)$ will necessarily have a long period.

For applications where we know p and q, that is, non-cryptographic applications, if we choose the seed $x \in QR(n)$ such that $x \not\equiv 1 \mod p$ and $x \not\equiv 1 \mod q$ then the period π will be $\text{lcm}(s - 1, r - 1)$ which is maximal.
5 A Maple BBS Generator

In this section we construct BBS generators for cryptographic applications using primes of length 512, 768, and 1024 bits. From section 4 the period of these generators will be at least 2^{511}, 2^{767} and 2^{1023} respectively. Because the pseudo-random bits produced by the BBS generator are cryptographically secure, they should pass all statistical tests for randomness. Hence even for primes for which n could be factored, the pseudo-random bits generated by the BBS generator should be very good for non-cryptographic applications. For this reason we also provide BBS generators using the first allowable primes less than 10, 12, 15 and 16 decimal digits in length since these generators will be considerably more efficient than the BBS generators with primes of length 512 bits and longer. At the end of this section we will compare the efficiency of the BBS generators with Maple’s \texttt{rand} command.

Generating the Primes

In section 4 we showed that if we choose the primes p and q to be of the form $2r + 1$ and $2s + 1$ respectively where r and s are also prime and 2 is a primitive element in \mathbb{Z}_r and \mathbb{Z}_s respectively, then if x_0 is chosen from $QR(n)$ so that $x_0 \not\equiv 1 \mod p$ and $x_0 \not\equiv 1 \mod q$ then the $\pi = \text{lcm}(r - 1, s - 1)$ is maximal. Since $\gcd(r - 1, s - 1) = 2$ then the period will be approximately $n/8$. We computed the following primes p and q of lengths 10, 12, 15 and 16 decimal digits respectively.

<table>
<thead>
<tr>
<th>n digits</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(99999948359)</td>
<td>(9999854759)</td>
</tr>
<tr>
<td>12</td>
<td>(99999991447)</td>
<td>(99999811607)</td>
</tr>
<tr>
<td>15</td>
<td>(99999999847799)</td>
<td>(9999999771959)</td>
</tr>
<tr>
<td>16</td>
<td>(99999999716999)</td>
<td>(999999999691319)</td>
</tr>
</tbody>
</table>

If we require that the primes p and q be large enough so that factoring $n = pq$ is computationally infeasible then finding primes of the required form becomes difficult. To find a prime p of this form such that 2 is a primitive element in \mathbb{Z}_r we required that $r = 2t + 1$ where t is also prime. The obvious approach to find primes of this form is to generate an odd integer t and test if t is prime, then test if $r = 2t + 1$ is prime, then test if $p = 2r + 1$ is prime and then test if $2^t \not\equiv 1 \mod r$. The cost of a Fermat pseudo-prime test,
testing if $3^{p-1} \equiv 1 \mod p$ is $O(\log^3 p)$. From the prime number theorem, the density of primes is $1/\ln p$ hence we expect to find that one random number in $\ln^3 p$ satisfies the above requirements. This means that the cost of the search is $O(\log^6 p)$. It is considerably more efficient to sieve out non-prime t, r, p using trial division. We use trial division of all primes up to 499. Then we apply Fermat pseudo-primes to the base 3. If t, r, p pass these tests then they are very probably prime. Next we test if 2 would be a primitive element in \mathbb{Z}_r. For this it suffices to test if $2^t \not\equiv 1 \mod r$. Finally we apply Maple’s isprime command to test the primality of t, r, p. This order of the computation efficiently sieves out all non-prime triples t, r, p before the they are tested for primality. Nevertheless, this took 50,000 seconds in Maple on a 3.0GHz computer to find the 1024 bit primes of the required form. The values of n for 512, 768, and 1024 bit primes are shown in the appendix as the values $n512, n768$ and $n1024$.

Generating the Random Bits

To build a BBS generator we note the following: in section 3 we showed that the least significant bit of the quadratic residues is cryptographically secure. It can be shown that the least significant $\log_2 \log_2 n$ bits are cryptographically secure. For 512 bit primes, this means we can use the least significant 10 bits, i.e. we get 10 pseudo-random bits per quadratic residue. For the BBS generators with primes of length 10, 12, 15 and 16 decimal digits in length we use the half of the digits of x_i namely the least significant half of the digits for increased efficiency.

Generating the Seed

For cryptographic purposes, the user should input a random $x_0 \in QR(n)$ such that $x_0 \neq 1$ as the seed of the BBS generator. One way to do this is as follows

Algorithm Generate Seed

repeat
Choose $x \in \mathbb{Z}_n$ at random.
Set $x_0 = x^2 \mod n$.
until $\gcd(x_0, n) = 1$ and $x_0 > 1$.
Output x_0.

17
Our Maple procedure below takes three inputs, l the length of the primes in bits, $k > 0$ the number of bits to be output, and the seed. It outputs a procedure, the PRBG, which when called outputs a sequence of L bits. The first input l is given as a subscript. If this is not specified the default $l = 512$ is assumed. We show an example where we use 768 bit primes and generate 60 random bits. The Maple code for the BBS procedure is given in the Appendix.

> B := BBS[768](20, 2):
> B();
0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1
> B();
1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0
> B();
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1

For non-cryptographic purposes, we want to allow the user to specify any seed $0 < y < n$. We then compute the actual x_0 from y so that it has maximal period as follows.

Algorithm Generate Seed

repeat
 Set $x_0 = y^2 \mod n$.
 Set $y = y + 1 \mod n$.
until \(\gcd(x_0, n) = 1 \) and $x_0 \mod p \neq 1$ and $x_0 \mod q \neq 1$

Output x_0.

The following timing results are comparing the speed of the various BBS generators versus Maple’s `rand` command. We compare the BBS generators with 512 bit primes, the 1024 bit primes, 10 digit primes and 16 digit primes. Shown in the table below is the ratio of the speed relative to Maple’s `rand` command and the period of the generators π.

The timings indicate that the 10 digit prime BBS generator is slightly about 10% faster than Maple’s `rand` command and the 16 digit BBS generator is 30% slower.

6 Conclusion

We have presented a Maple implementation of the Blum-Blum-Shub generator and provided the reader with a sketch of the proof that the BBS generator
is cryptographically secure. We have shown how to choose the primes so that the input seed cannot accidentally hit a cycle with small period. Our implementation provides the user a choice of prime lengths of size 512, 768, and 1024 bits which offers a range of security at additional computational cost.

We also provide BBS generators for primes of length 10, 12, 15 and 16 decimal digits in length. While not cryptographically secure, these generators are expected to yield high quality pseudo-random bits at approximately the same cost as Maple’s built-in LCG `rand()`. This is about the best we can hope to achieve using modular arithmetic because all pseudo-random number generators which are linear functions are not cryptographically secure and the Blum-Blum-Shub generator, which computes $x^2 \mod n$, is the simplest (cheapest to compute) non-linear function.

References

Appendix

The following Maple code may be downloaded from
http://www.eecm.sfu.ca/CAG/products.html

n512 :=
26066645293949051030719592905562956135330228107469961043942513269914842\n483484929237964679620381006081104118891860849212268204134097143119166213\n304570371773919690053665613922396224627734952928135496691891852242493\n10134174467129337447068810077317462049525433477860112592306288673322340\n4213064415720576165169:

n768 :=
7350645359646162108596099663532391848847169918534649357262147888186348\n43137164001860306489083956344017692596023923507305466348432226209929625\n32712084954402182331364966323999605740350179604019018717612919365208249\n98655216324143906374113490121271580497396942623012567599272847418855029\n2706078452984653768982980569318979963395058857899878801808746033685079\n461863573328248877341098953931604645777360376801279914964879837772340175\n30466276827943734815372776396473:

n1024 :=
635889565683303470220852308455762122983221277287779039164249075860849290\n711328455142085797721577620292498442415284885037290996033020661533622294\n49475216470037707964501679044251308281941454266979029668222148064727832\n663001711071029154045794962368198487742131217646034434677205561098385\n18550998080515031962523838970096899499776455809014509194221314006479\n978167719335773901423256287889635007066554334497232940782313674257551\n86913095499643980287744695032261686400749081812107662576723610451504484\n6463953806593262420570124238308875102402123685071832322542397275128352595\n49723357647718327998754795646911307672321:
BBS := proc(k::posint,seed::posint) local x,g,T,i,j,l,m,n,q,z,t;

if type(procname,indexed) then l := op(procname) else l := 512; fi;
elif l=512 then m := 10; n := n512;
elif l=768 then m := 10; n := n768;
elif l=1024 then m := 11; n := n1024;
else error "prime bit length must be 512, 768 or 1024"; fi;

if seed <= 1 or seed >= n-1 then
 error "seed must be in the range 1 < seed < n-1"; fi;
Note the following should never happen; it means that someone
'guessed' the factorization of n = p q which is extremely unlikely
if igcd(seed,n)>1 then seed := seed+1; fi;

Don’t allow x0 be small e.g. 2, 3, because squaring will
preserve the parity of x until x becomes bigger than n.
Also, squaring x at least once ensures that x_0 is in QR(x)
x := seed; while x < n do x := x^2 od; x := irem(x,n);

T := Array(0..2^-m-1); # m random bits at a time
for i from 0 to 2^-m-1 do t := i; T[i] := seq(irem(t,2,'t'), j=1..m) od;

if k = m then
 subs('L' = 2^m, proc() x := irem(x^2,n); T[irem(x,L)]; end);
else
 z := [0$2^m];
 subs({'K' = k, 'L'=2^m},
 proc()
 z := z[k+1..-1];
 while nops(z) < k do
 x := irem(x^2,n);
 z := [op(z),T[irem(x,L)]];
 od;
 op(1..k,z);
 end);
 fi;

end: