A Cryptographically Secure Random Number
Generator for Maple

Michael Monagan and Greg Fee*
Centre for Experimental and Constructive Mathematics

Simon Fraser University,
Burnaby, B.C., V5A 156, Canada.
mmonagan@cecm.sfu.ca, gfee@cecm.sfu.ca

Abstract

The best known pseudo-random number generators are the lin-
ear congruential generator (LCG) and the linear feedback shift regis-
ter (LFSR). Neither, however, is good for cryptographic applications.
The Blum-Blum-Shub (BBS) generator is one of the first and best
known cryptographically secure pseudo-random bit generators. If p
and ¢ primes and n = pq, the security of the BBS generator assumes
that deciding quadratic residuosity in Z,, and factoring n are compu-
tationally infeasible.

In this paper we show why an LCG is not good for cryptographic
applications. We sketch the proof of the security of the BBS generator
and show how to choose the primes so that the period of the BBS
generators is guaranteed to be long.

We then construct BBS generators for Maple using primes of lengths
512, 768 and 1024 bits with guaranteed long period. We also sup-
port primes of length 10, 12, 15, and 16 decimal digits. While not
cryptographically secure, these BBS generators are expected to yield
pseudo-random bits of high quality and fast enough to be competitive
with Maple’s built-in LCG. And they have been constructed so that
it we can easily choose the seed to get the maximal period.

*The work was supported by the MITACS NCE of Canada.

1 Introduction

Definition 1.1 A pseudo random number generator, PRNG for short, is a
function F : Z,, — Z% where m is strictly less than n”. The input zy €
Zy, 1s called the seed of the PRNG and the output sequence of L numbers
x1, X, ...,y is called the pseudo-random number sequence. If n = 2 we will
call F' a pseudo-random bit generator or PRBG for short.

Example 1.2: Perhaps the PRNG most often used is the linear congruential
generator, or LCG for short. An LCG is based on modular arithmetic. Let
n be a positive integer, a,b € Z,. For k > 0 define

T = axk_1 + b mod n.

Thus the next number in the pseudo-random number sequence is a linear
function of the previous one. If n is chosen to be a prime, a is chosen to be
a primitive element in Z, b is set to 0, and xy # 0, then the pseudo-random-
number sequence generated by such an LCG has period 7 =n — 1. Maple’s
pseudo-random number generator rand is an LCG of this form.

Example 1.3: An example of a PRBG which can be very efficiently imple-
mented in hardware is the linear feedback shift register, or LFSR for short.
It is based on the following linear recurrence. Let m be a positive integer
and let cg, ¢1, ..., Cpp_1 € Zig with ¢y = 1. For k > 0 define

Tktm = CoTg + C1Tg41 + oo + C1Th4m—1 mod 2.

Then if the seed xg, 1, ..., Tx_1 € Zo are not all 0, and m(y) = co+c1y+ ...+
Cm_1y™ ! +y™ is a primitive polynomial in Z,[y], that is, m(y) is irreducible
and y is a primitive element in the finite field Zs[y]/(m), then the period of
the pseudo-random bit sequence is 2™ — 1.

Since m < n”, the output of a PRNG cannot be truly random because not
all possible pseudo-random number sequences are possible. What one aims
to do in constructing a good PRNG is that the pseudo-random number se-
quence “appears to be random” in the sense that it will pass known statistical
tests for randomness. For example, in a long pseudo-random bit sequence
x1, T, ..., xr, the bit sequence 0101 should appear with a certain probability
distribution. An obvious necessary but insufficient requirement for a PRNG
to be good is that the period 7 of the PRNG be sufficiently large.

2

It is rather surprising to find that LCGs and LFSRs produce pseudo-
random number sequences that are very good for many applications. How
good are the pseudo random numbers generated by Maple’s LCG rand 7
Knuth [1] gives a table comparing, using the spectral test, LCGs with several
values of n, e.g. 232,23%° and 10'°. Based on the spectral test, Maple’s PRNG
rand is significantly better than all the LCGs in Knuths table except one
with n = 2% where it is comparable.

However, LCGs are not secure for cryptographic purposes. The reason is
that if an adversary can obtain a consecutive sequence of sufficiently many
z;’s he will be able, in polynomial time, to determine n,a and b, and hence
all of the z;’s. That is, given x4, ..., z7, he will be able to determine z;,; with
probability 1 knowing only that the sequence was generated by an LCG. This
may enable him to break a cryptographic protocol. In this sense, an LCG is
not random at all. For if a sequence is truly random, one should not be able
to predict z;,1 with probability significantly greater than 1/n. LFSRs are
not secure either for cryptographic purposes.

We will show how one can easily attack an LCG using Maple’s LCG as
an example. Notice that if b = 0 then

) .
T; = ax;—, mod n = a”x;_o mod n = zya’ mod n.

Now suppose we obtain 1, x9, T3, T4, T5. Hence

5

T1%4 = x%a = Tox3 mod n

hence n|r1z4 — Tox3. Also n|zx3 — 2. Thus
2
g = ged(zxy — x93, T123 — T3)

will be a multiple of n. Since n is a prime and 0 < z;z; < n? then n is the
largest prime dividing g, hence n can be obtained by factoring g. However,
we do not need to factor g which might be difficult if n is large. Instead we
take the gecd with more differences, so that g is likely to be a small multiple
of n. Once we have found n we can determine a from a = z,z; " mod n. And

once we have n and a we can then compute xy,;. Trying this in Maple we
find

> for i to 5 do x[i] := rand() od;

x[1] := 427419669081

x[2] := 321110693270
x[3] := 343633073697
x[4] := 474256143563
x[6] := 558458718976
> g := iged(x[1]1*x[4]-x[2]*x[3], x[1]1*x[3]1-x[2]1"2);
g := 999999999989
>n := igcd(g, x[1]1*x[6]-x[2]*x[4]);

n := 999999999989
> a := x[2]/x[1] mod n;
a := 427419669081
> x[0] := x[1]/a mod n;
x[0] := 1

Thus the modulus used by Maple’s LCG is n = 999, 999, 999, 989 = 10'2 —11,
the multiplier a = 427,419,669, 081, and the seed o = 1. Thus knowing n
and a we can compute xg.

> x[6] := a*x[5] mod n;
x[6] := 746753830538

> rand();
746753830538

1.1 Surprises with LCGs: The Smith Normal Form

When one is using a PRNG to generate pseudo-random numbers, sometimes
the construction will lead to highly non-random results. In this section we
will give one such example that we ran into when testing an algorithm for
computing the Smith normal form of a matrix of integers.

Definition 1.4 Let A be an n by n square matrix of integers. Let D,
1 <4 < n be the greatest common divisor of the determinant of all ¢ by i
minors of A. The Smith form of A is a diagonal matrix S where

Sl,l = D1,1 and andSi,,- = Di,i/(Dl,l X ... X Di—l,i—l) for ¢+ > 1.

Example 1.5 Consider the matrix

2 4 6
A= 8 10 12
10 4 2

4

Clearly 2 divides each entry hence S;; = 2. We find that 4 divides all 2 by
2 minors hence Sy 9 = 4/51; = 2. We obtain

2 0 0
S=102 0
0 0 12

This matrix can be obtained from A by doing elementary row and column
operations on A where note we are working over the integers, so we may only
multiply a row or column by + — 1. Now, suppose we start with a matrix
A of random integers. From the definition, we would expect that S;; = 1.
Possibly all entries in the matrix will be even, as in our example, so there
is a small probabilty that S;; = 2. But it is very unlikely to find that S;,
is a large integer. Similarly S;o will most likely be 1. Thus we expect to
find S11 =1, ..., Sp—1n—1 = 1 and S,,,, = |A|. Let us create a 4 by 4
matrix A with pseudo-random integer entries using Maple’s rand command
and compute its Smith form.

> with(LinearAlgebra):

> A := Matrix(4,4,proc() rand() end);
[427419669081 321110693270 343633073697 4742561435631

L]
[658458718976 746753830538 32062222085 722974121768]
A :=[]
[604305613921 745580037409 259811952655 310075487163]
[]
[797179490457 39169594160 88430571674 960498834085]

> S := SmithForm(A);

[1 0 0 0]
[]
[o 999999999989 0 0]
S := []
[o 0 999999999989 0]
[]
[o 0 0 74958179117175460029702]

> ifactor(S[4,4]);
2
(2 @3 Aan (19) (23) (31) (999999999989) (3191)

Notice that the prime p = 999999999989 that Maple uses for its pseudo-
random number generator rand shows up as Soo. Why? Since Si; = 1,

5

then Sy9 = D, is the ged of the determinants of all two by two minors of
A. These integers are of form z;x; — x4z, where the z's are generated by
Maple’s LCG. And it is precisely these combinations that p divides. Notice
also that S33 = p and also that p*|det(A). Hardly what one would expect
from a matrix of “random integers” !!

1.2 The Blum-Blum-Shub Generator

The following definition for what it means for a PRNG to be pseudo-random
seems to be the right one.

Definition 1.6 A pseudo-random-bit generator is said to be cryptographically
secure if given a consecutive sequence of L output bits x;, x;11, ..., X1 p—1 of
the PRBG, it is computationally infeasible to determine x;_; or z;,; with
probability significantly greater than 1/2.

Here computationally infeasible is understood to mean not polynomial time
in L and significantly greater than 1/2 may, for our purposes here, may be
replaced by 1/2 4+ € where 0 < € < 1/2 is a constant, e.g., e = 1/4.

The cryptographically secure PRBG that we look at in this paper is the
Blum-Blum-Shub generator, or BBS generator for short. See [3] for the
original paper. We refer the reader to Chapter 12 of Stinson’s book [2] for
an accessible reference. Let n be a product of two large primes p and ¢ both
congruent to 3 modulo 4. The Blum-Blum-Shub generator works as follows;

Algorithm BBS

Input zy a quadratic residue in Z,
Set z; = 22, mod n for 1 <4 < L.
Set z;=x; mod 2 for 1 <7< L.
Output 2, 29, ..., 2.

See section 2 for a definition of the quadratic residues. The cryptographic
security of the BBS generator is based on the difficulty of testing whether
x € Zyp is a quadratic residue (a square) modulo n. Note this is no more
difficult than factoring n for if the factorization of n is known, the quadratic
residuosity of x in Z, is easily decidable. Thus the primes p and ¢ need to be
large enough such that it is computationally infeasible to factor n. As of the

year 2003 that means that p and ¢ should be 512 bit primes or, for longer
term security, 768 or 1024 bit primes. In section 3 we will formalize these
ideas more precisely and sketch the proof of security of the BBS generator.
The basic idea though is quite simple; we will prove that given 2z, 23, ..., 2; it
is computationally infeasible to determine z;. More precisely, we will prove
that if you could do this in polynomial time then we would have a polynomial
time algorithm to decide if any x € Z,, is a quadratic residue. It follows that
the BBS generator should pass all statistical tests, including those not yet in-
vented. For if a statistical test could predict z; with probability significantly
greater then 1/2, then essentially that test would yield a polynomial time
algorithm for the quadratic residue problem. The security of the BBS gen-
erator is therefore not absolute but it does say that the breaking of the BBS
generator is at least as difficult as a well studied problem which is thought
to have no efficient solution.

To use a BBS generator one must first choose xy, the seed in such a way
that the generator has a sufficiently long period. Since the user may not
know the factorization of n, and hence cannot determine the period, this
needs to be done with care so that the user does not, unknowingly, choose a
seed with a short period.

In section 4 we show that if one chooses the primes p and ¢ for use in
the BBS generator to be of the form 2r + 1 where r is a prime and 2 is a
primitive element in Z,, then provided xy # 1, we will get a pseudo-random
number sequence with a long period. Finding 512, 768, and 1024 bit primes of
this form is computationally difficult. We show how to do this using Maple
in section 5 and we give Maple code for our implementation of the BBS
generator. Here is an example to illustrate our routine using 512 bit primes.
The Maple subroutine BBS (see appendix) outputs a Maple subroutine which
when called generates a sequence of L random bits, and when called again,
generates the next L random bits, and so on.

> B := BBS[512](10,4);
B := proc() x := irem(x"2, n); T[irem(x, 1024)] end proc

> B(); # 10 bits
i, 0, 0, 0, 1, 1, 0, 1, 0, 1

> B(); # next 10 bits
i, 1, 0, 0, 0, O, O, 1, O, 1

Our generator also allows for primes of length 10, 12, 15 and 16 decimal digits

7

in length. Although not cryptographically secure, these generators should
produce pseudo-random bits of high quality in comparison with LCGs and
other PRBGs.

Our paper is organized as follows. Section 2 presents background mate-
rial on quadratic residues for understanding the results in sections 3 and 4.
Section 3 sketches the proof of the cryptographic security of the BBS gen-
erator. Section 4 shows how to choose the primes for the BBS generator so
that the period will be long. Section 5 details our Maple implementation and
compares the efficiency of our BBS generators in Maple with Maple’s LCG.

2 The Quadratic Residues in Z,

Let Z; = {x € Z, | ged(xz,n) = 1} denote the set of invertible integers
modulo n. We recall the definition of the quadratic residues in Z,,.

Definition 2.1: Let n be a positive integer. The set of quadratic residues of
Zy, is QR(n) = {z* mod n|z € Z}}.

Let p and ¢ be odd primes and let n = pq. It is not difficult to see that
the number of quadratic residues in Z, is |QR(p)| = (p — 1)/2. Applying the
Chinese remainder theorem we have |QR(n)| = (p—1)(¢—1)/4. For example,
QR(5) = {1,4},QR(7) = {1,2,4} and QR(35) = {1,4,9,11,16,29}. We
now look at some tests for whether z is a quadratic residue.

Lemma 2.2 (Euler’s Criterion): Let p be an odd prime and let x € Z,.
Then z € QR(p) <= z® /2 = 1 mod p.

Since the power 2 1/2 mod p can be computed in polynomial time, in
O(log, p) multiplications in Z, using the well known repeated squaring al-
gorithm, it follows that we can decide quadratic residuosity in Z, in poly-
nomial time. Again, applying the Chinese remainder theorem we have z €
QR(n) <= z € QR(p) and =z € QR(q).

Definition 2.3 The Jacobi symbol of z € Zj is defined to be

J(z/p) =+11if z € QR(p), and — 1 otherwise.

The Jacobi symbol is multiplicative, that is, it satisfies

J(z/pq) = J(z/p)J (z/q).

Therefore in Z} we have J(z/pq) = +1 if either J(z/p = +1and J(z/q) = +1
or J(x/p = —1 and J(z/q) = —1. The Jacobi symbol can be computed in
polynomial time using the Euclidean algorithm and hence it is a much more
efficient test for quadratic residuosity than the test based on Euler’s criterion.
This is the algorithm that Maple’s numtheory[jacobi] routine uses.

Definition 2.4 We define the pseudo-squares by

QR(n) = {z € Z;,|J (¢/p) = =1 and J(z/q) = —1}.

For example, QR(35) = {3,12,13,17,27,33}. From the above we see that
J(xz/n) does not distinguish quadratic residues from pseudo-squares in Z,,.
We gather some additional properties about the set of quadratic residues and
pseudo squares in Z, in the following lemma without proof.

Lemma 2.5: Let p and q be odd primes congruent to 8 modulo 4 and n = pq.
Let w,z € QR(n) and y, z € QR(n). Then wx € QR(n), wy € QR(n), yz €
QR(n), —z € QR(n) and —y € QR(n). Moreover, since also 1 € QR(n)
then QR(n) is a subgroup of Z%,.

Problem 2.6: The Quadratic Residue Problem in Z,.
Let p and ¢ be odd primes and n = pqg. The quadratic residue problem in Z,
is: given z € Z; with J(z/n) = +1,is z € QR(n)?

In the above we have seen that the Jacobi symbol J(x/n) = +1 tells us that
z € QR(n) UQR(n) so the Jacobi symbol does not distinguish quadratic
residues from pseudo-squares. If the factorization of n is known then x €
QR(n) if and only if z € QR(p) and z € QR(q), equivalently, J(z/p) =
+1 = J(z/q). The problem, however, is that there is no known way to decide
if x € QR(n) in polynomial time if the factorization of n is not known. It is
not known if solving the quadratic residue problem is as hard as factoring n.

We now look at the related problem of computing the square roots. If
p=3mod 4 and z € QR(p) then the two square roots of = are given by the
formula +x®*1)/4, If p = 1 mod 4 and x € QR(p) then there is no simple
formula but there is a random polynomial time algorithm for computing the
two square roots, which is implemented by the numtheory[msqrt] command
in Maple. If z € QR(n) then there are four square roots which can be
computed using the Chinese remainder theorem if the factorization of n is
known. Again, if the factorization of n is not known there is no known

9

polynomial time algorithm to compute /= mod n. However, in this case, a
polynomial time algorithm for finding square roots in Z,, yields a random
polynomial time algorithm for factoring n — see [2].

Recall that the BBS generator computes the sequence of squares, i.e.
sequence T = z2 mod n,z2 = z? mod n,z3 = 2% modn, ..., where zg is
chosen from QR(n). Since the square of a quadratic residue is also a quadratic
residue, this sequence must enter a cycle in QR(n). Hence we are interested
in the sizes of the cycles in QR(n) under the map x — x? mod n. The reason
that we are interested in these cycles is because if it should happen that the
seed of the BBS generator x, is on a cycle of small period, the sequence of
pseudo-random bits will not be cryptographically secure even if the general
BBS generator is shown to be secure.

There are two possibilities that could occur, namely cycles which are sim-
ple loops and cycles of the form z1, %o, ...,x;-1, %, Tj41, ..., Tr, T4, Notice
that in the latter case the quadratic residue x; has two square roots, x;_;
and z,, both of which are quadratic residues, and this does not happen in
a cycle which is a closed loop. The following example illustrates that both
cases do occur.

Example 2.5: The following two figures show the cycles in QR(55) and
QR(77). For n = 77 we have one cycle of period 1, namely 1, one of period
2, namely (23,67), and three of period 4, namely (4,16,25,9), (15,71,36,64),
and (37,60,58,53).

€

O—0

@ O,

Figure 1: Cycles in QR/(55)

Recall that in the BBS generator the primes p and ¢ are chosen to be con-
gruent to 3 modulo 4. The following lemma says that only closed loops can
occur when this requirement on the primes is made.

10

O—®

O————O

(18— —=(e—(29)
@)=

Figure 2: Cycles in QR(77)

Lemma 2.6: If p and q are primes both congruent to 3 modulo 4, n = pq

and x € QR(n) then exactly one square root of x is a quadratic residue in
L.

Proof. We have +z = \/z = £2P*1)/* mod p. Since z is a quadratic residue,
J(xz/p) =1, and

J(+2/p) = J(+x@+V/* [p) = J(z/p)@+I/* =1
and
J(—z/p) = J(—x(p+1)/4/p) — J(—l/p)J(ac/p)(p+1)/4 _ (_1)(p_1)/2 -1

Hence +2®t9/* mod p is a quadratic residue modulo p and —z®*Y/* mod p
is a quadratic non-residue modulo p. Letting

+y = /2 mod ¢ = £2(9"Y/* mod ¢

and applying the Chinese remainder theorem we have one square root (from
+y mod g and +z mod p) which is a quadratic residue in Z,.

3 The Security of the BBS Generator

Following Stinson [2] we sketch the proof that the BBS generator is crypto-
graphically secure. Let p and ¢ be two odd primes congruent to 3 modulo

11

4, n = pg and z € QR(n) UQR(n). Let BBS : Z, — Z) be a Blum-
Blum-Shub generator with input zo € QR(n) and output zi, 2, ..., 2;. The
output bits come from zj = 7 mod 2 for 1 < k <[and z,; = 2% mod n for
1 < k < I. Consider the following problem; given n and z1, 2», ..., 2;, but not
the factorization of n, determine zy = g mod 2.

We first establish that this problem has a unique solution. Lemma 2.6 says
that x¢ is the only square root of x1 which is a quadratic residue. Secondly,
if y, € QR(n) such that Y2 = 141 mod n then y; # z mod 2, i.e. the least
significant bit of the two square roots y; and x of zx,, differ. To see this
first note that since p = ¢ = 3 mod 4, it follows that

e Nt NN) VPN PRy S
J(n) J(p)J(q) (=1) (-1) (=1)
since (—1)?~1/2 = (—1)#+2)/2 = _1. Therefore
1 =G =),

Hence if 2 € QR(n) then —2 € QR(n). Since also n is odd implies (—z
mod n) =n — x # z (mod2) the result follows.

Let O be a subroutine or oracle which on input of 21, 25, ..., 2; can predict
whether zy = 2o mod 2 is 1 or 0 with probability greater than 1/2 + e. Let
z € QR(n) UQR(n). We will construct a Monte-Carlo algorithm which
can decide whether z € QR(n) in probabilistic polynomial time in logn and
—loge. Remark: The reason the subroutine O is called an oracle is because
we believe that it does not exist.

Algorithm A

Input: x € 7, such that J(Z) =1 i.e., v € QR(n) U QR(n).
Output: true = x € QR(n), false = = € QR(n).
Compute o = x> mod n and zy = o mod 2.

Compute z1, 2o, ..., 21 + BBS(xg)

If O(z0, 21, .-, z1-1) = x mod 2 then output true,

otherwise output false.

It follows that if O predicts 2z correctly with probability 1/2 + € then algo-
rithm 2.3 outputs whether x € QR(n) with probability 1/2 + €. The next
idea is to randomize algorithm A so that we can make the probability of
guessing whether z € QR(n) as high as we wish.

12

Algorithm B

Input: = € Z;, such that J(¥) = 1.

Output: true = z € QR(n), false = = € QR(n).
Choose z € 7, at random.

With probability 1/2 compute y = r*x mod n,

otherwise y = —r?z mod n.

If A(y) and y = r?z mod n or not A(y) and y = —r?> mod n
then output true, otherwise output false.

Algorithm B multiplies by a random quadratic residue with probability
1/2 and a random quadratic non-residue otherwise. Applying Lemma 3.3,
if z € QR(n), then 72z is a random quadratic residue and —r?z mod n is
a random pseudo-square. Similarly, if z € QR(n) then 7’z is a random
pseudo-square and —r2z is a random quadratic residue. It follows that if
algorithm A determines quadratic residuosity correctly with probability at
least 1/2 + € then algorithm B is a Monte-Carlo algorithm for the quadratic
residue problem with error or failure probability at most 1/2 — e. The last
step is to run algorithm B many times, say 2m + 1 times, and take the most
frequent result to the the output. In other words, take the majority vote as
the correct answer. One can show that if we do this then the error probability
is at most

(1—4ek)™
5 :

Hence, if we want the error probability to be less than some fixed constant, §
say, it suffices to take m = [%]. For example, ife = 1/4and § = 10~1°
then we have m = 78, hence, we need 2m + 1 = 157 calls to algorithm B to
reduce the error probability to below 1071°.

In summary, if one could predict the previous bit of a consecutive sequence
of [bits from a BBS generator with probability significantly greater than 1/2,
then we would have a probabilistic polynomial time algorithm for deciding
quadratic residuosity in Z,. Since it is believed that no such algorithm exists,
this provides some evidence that the bits generated by the Blum-Blum-Shub
PRBG are cryptographically secure.

13

4 The Period of the BBS Generator

In this section we will show how to choose the primes p and ¢ and then how

the user, without knowledge of p and ¢, can choose the seed zy € QR(n)

in such a way that the BBS sequence z2,z¢, 8, ... will have a long period

modulo n.
Let p and ¢ be two odd primes both congruent to 3 modulo 4, n = pq

and x € QR(n). Let p=2r +1 and ¢ = 2s + 1. Let 7 be the period of the

sequence x, 2%, z*, 28, ...,x. Then 7 is the smallest positive integer such that

us
22" =z mod n.

The first observation to make is that since x € QR(n) C Z! then x is
relatively prime to n hence

227! =1 mod n.
Now since n = pg, x € QR(p) and x € QR(q), hence

m_
.’L'2 ! =

1 mod p.
Let a be a primitive element in Z,. Noting that

QR(p) = {o?,a*,..,a? P =1} = {a® = 1,07, ...,0"?}
it follows that z = o for some 0 < k < (p — 1)/2 = r. Hence

271 _ \2k(2" 1)

x = 1 mod p.

If o is a primitive element in Z, then
(p—1)[2k(2"7)
and since (p — 1) = 2r then
r|k(2" —1).

Now suppose r is prime. Then since 0 < k < r either £ = 0 or r|(2" — 1).
That is either x =1 or

2" =1 mod r.

14

Hence the period modulo p is either 1 if x = 1 or it depends on the order of
2 modulo r where r is prime.

Let us turn to the particular case in example 2.5 where p =7=2x3+1
and ¢ =11 =2 x 5+ 1. In this case 3 and 5 are prime and we find that the
order of 2 in Zs is 2 and the order of 2 in Zs is 4, that is, 2 is a primitive
element in Zj3 and in Zs. In Z, where n = pq, if we have cycles of period
Tp in Z, and 7, in Z,, then we will have cycles of period lem(m,, ;). In our
example we have cycles of period 1 and 2 modulo p and 1 and 4 modulo
g, hence, since lem(2,4) = 4 we can only have cycles of period 1, 2, and 4
modulo n = 77. In the data shown in example 2.5 we find cycles of each
possible period.

Now back to the problem of how to choose p, ¢ and the seed = such that
the cycles in the BBS sequence will be large. If we choose r such that 2 is
a primitive element in Z, then 2 will have order » — 1 hence the period 7 of
x € QR(p) is 1 or r — 1. Note, to choose r such that 2 is a primitive element
in Z, we may choose r of the form 2¢ + 1 such that ¢ is prime and the order
of 2in Z, is r — 1. Note, since p =2r+1 =2(2t+ 1) + 1 = 4t + 3, it follows
that p will be congruent to 3 modulo 4. We will choose ¢ in the same way.
Applying the Chinese remainder theorem we have the following lemma.

Lemma 4.1 Let p = 2r + 1 and ¢ = 2s + 1 be primes satisfying also (i)
s and r are prime and (ii) 2 is a primitive element in Z, and also in Zs.
Let n = pq and 0 < z < n be in QR(n). Then the period © of the sequence
z, 22 mod n,z* mod n, ... is

mne{l,r—1,s—Llem(r—1,s—1)=(r—1)(s—1)/2}.
Moreover, if m =1 then x = 1.

Hence we have the following solution to the short cycles problem: We choose
p and ¢ to be of the form stated in Lemma 4.1. Then we have x = 1 has period
1 and any other x € QR(n) has period 7 € {r — 1,s — 1,lem(r — 1,s — 1)},
all of which are large. Hence choosing the seed zy # 1 from QR(n) will
necessarily have a long period.

For applications where we know p and ¢, that is, non cryptographic ap-
plictions, if we choose the seed x € QR(n) such that x #Z 1 mod p and
xo # 1 mod ¢ then the period = will be lem(s — 1,7 — 1) which is maximal.

15

5 A Maple BBS Generator

In this section we construct BBS generators for cryptographic applications
using primes of length 512, 768, and 1024 bits. From section 4 the period of
these generators will be at least 2°'%, 2767 and 21923 respectively. Because the
pseudo-random bits produced by the BBS generator are cryptographically
secure, they should pass all statistical tests for randomness. Hence even for
primes for which n could be factored, the pseudo-random bits generated by
the BBS generator should be very good for non-cryptographic applications.
For this reason we also provide BBS generators using the first allowable
primes less than 10, 12, 15 and 16 decimal digits in length since these gener-
ators will be considerably more efficient than the BBS generators with primes
of length 512 bits and longer. At the end of this section we will compare the
efficiency of the BBS generators with Maple’s rand command.

Generating the Primes

In section 4 we showed that if we choose the primes p and ¢ to be of the
form 2r 4+ 1 and 2s + 1 respectively where r and s are also prime and 2 is a
primitive element in Z, and Z respectively, then if zq is chosen from QR(n)
so that zy # 1 mod p and zy # 1 mod ¢ then the 7 = lem(r — 1,5 — 1)} is
maximal. Since ged(r — 1, s — 1) = 2 then the period will be approximately
n/8. We computed the following primes p and ¢ of lengths 10, 12, 15 and 16
decimal digits respectively.

n digits p q
10 (9999948359) (9999854759)
12 (999999911447) (999999811607)
15 (999999999847799) (999999999771959)

16 (9999999999716999) (9999999999691319)

If we require that the primes p and ¢ be large enough so that factoring
n = pq is computationally infeasible then finding primes of the required form
becomes difficult. To find a prime p of this form such that 2 is a primitive
element in Z, we required that r = 2¢ + 1 where ¢ is also prime. The obvious
approach to find primes of this form is to generate an odd integer ¢ and test
if ¢ is prime, then test if r = 2t + 1 is prime, then test if p = 2r + 1 is prime
and then test if 28 Z 1 mod r. The cost of a Fermat pseudo-prime test,

16

testing if 3" = 1 mod p is O(log3 p). From the prime number theorem,
the density of primes is 1/Inp hence we expect to find that one random
number in In® p satisfies the above requirements. This means that the cost
of the search is O(log® p). It is considerably more efficient to sieve out non-
prime ¢, r, p using trial division. We use trial division of all primes up to 499.
Then we apply Fermat pseudo-primes to the base 3. If ¢, r, p pass these tests
then they are very probably prime. Next we test if 2 would be a primitive
element in Z,. For this it suffices to test if 2 # 1 mod r. Finally we apply
Maple’s isprime command to test the primality of ¢,7, p. This order of the
computation efficiently sieves out all non-prime triples ¢, r, p before the they
are tested for primality. Nevertheless, this took 50,000 seconds in Maple on
a 3.0GHz computer to find the 1024 bit primes of the required form. The
values of n for 512, 768, and 1024 bit primes are shown in the appendix as
the values n512, n768 and n1024.

Generating the Random Bits

To build a BBS generator we note the following: in section 3 we showed that
the least significant bit of the quadratic residues is cryptographically secure.
It can be shown that the least significant log, log, n bits are cryptographically
secure. For 512 bit primes, this means we can use the least significant 10
bits, i.e. we get 10 pseudo-random bits per quadratic residue. For the BBS
generators with primes of length 10, 12, 15 and 16 decimal digits in length we
use the half of the digits of z; namely the least significant half of the digits
for increased efficiency.

Generating the Seed

For cryptographic purposes, the user should input a random zy € QR(n)
such that xy # 1 as the seed of the BBS generator. One way to do this is as
follows

Algorithm Generate Seed
repeat
Choose x € Z,, at random.
Set o = =2 mod n.
until ged(zg,n) =1 and xo > 1.
Output xg.

17

Our Maple procedure below takes three inputs, [the length of the primes
in bits, £ > 0 the number of bits to be output, and the seed. It outputs
a procedure, the PRBG, which when called outputs a sequence of L bits.
The first input [is given as a subscript. If this is not specified the default
[= 512 is assumed. We show an example where we use 768 bit primes and
generate 60 random bits. The Maple code for the BBS procedure is given in
the Appendix.

> B := BBS[768](20,2):
> BQO);

o, 0, 0, 0, 1, 0, 1, 1,1, 0, 1, 0, O, 1, 1, 1, 0, O, O, 1
> BQ);

1,1, 1,1, 0, 1,0, 1, 0,0, 1, 1, 1,0, 0, 1, 0, 1, 0, 0
> BQ);

0,0,1,1,1,90,0,1,1,0,0,1,1,1,0,0, 0,0, 1,0

For non-cryptographic purposes, we want to allow the user to specify any
seed 0 < y < n. We then compute the actual zy from y so that it has
maximal period as follows.

Algorithm Generate Seed
repeat
Set o = y? mod n.
Set y =y + 1 mod n.
until ged(zg,n) =1 and xg mod p # 1 and o mod q # 1
Output xq.

The following timing results are comparing the speed of the various BBS
generators verses Maple’s rand command. We compare the BBS generators
with 512 bit primes, the 1024 bit primes, 10 digit primes and 16 digit primes.
Shown in the table below is the ratio of the speed relative to Maple’s rand
command and the period of the generators 7.

The timings indicate that the 10 digit prime BBS generator is slightly
about 10% faster than Maple’s rand command and the 16 digit BBS gener-
ator is 30% slower.

6 Conclusion

We have presented a Maple implementation of the Blum-Blum-Shub genera-
tor and provided the reader with a sketch of the proof that the BBS generator

18

ratio T
rand 1.0 | 102 — 12

10 digits | 0.89 > 10%
16 digits | 1.3 > 103!
512 bits | 29.8 > 2510

1024 bits | 70.8 > 21022

Table 1: Maple BBS generator Timings

is cryptographically secure. We have shown how to choose the primes so that
the input seed cannot accidentally hit a cycle with small period. Our imple-
mentation provides the user a choice of prime lengths of size 512, 768, and
1024 bits which offers a range of security at additional computational cost.

We also provide BBS generators for primes of length 10, 12, 15 and 16
decimal digits in length. While not cryptographically secure, these generators
are expected to yield high quality pseudo-random bits at approximately the
same cost as Maple’s built-in LCG rand(). This is about the best we can
hope to achieve using modular arithmetic because all pseudo-random number
generators which are linear functions are not cryptographically secure and
the Blum-Blum-Shub generator, which computes z2 mod n, is the simplest
(cheapest to compute) non-linear function.

References

(1] Knuth, D. E., The Art of Computer Programming: Volume II Semi-
Numerical Algorithms, second edition, Addison Wesley, 1981.

[2] Stinson, D. R., Cryptography: Theory and Practice first edition, CRC
Press, 1995.

(3] L. Blum, M. Blum, M Shub, A Simple Unpredictable Random Number
Generator. SIAM Journal on Computing, 15, pp 364-383, 1986.

19

Appendix

The following Maple code may be downloaded from
http://www.cecm.sfu.ca/CAG /products.html

nbl12 :=
26066645293949051030719592905562956135330228107469961043942513269914842\
483484929237964679620381006081104118891860849212268204134097143119166213\
304570371773919690053665661392234962224627734952928135496691891852242493\
101341744671293374470688100773174620495254334778601125923062888673322340\
4213064415720576165169:

n768 :=
73506453596461621085950995635332391848847169918534649357262147888186348\
431371640018603064890839586344017692596023923507305466348432226209929625\
327120849544021823313649663239999605740350179604019018717612919365208249\
986552163241439306374113490121271580497396942623012567599272847418855029\
270607845298465376898629980569318979953395058857899878081808746033685079\
461863573328248877341098953931604645777360376801279914964879837772340175\
304662768279343734815372776395473:

nl1024 :=
63588955658330347022085230845576212298322127728777903916429075860849290\
711328455142085797721576720292498442415284885037290996033020681533362294\
494752164700377079645016790442513082819414542669790929668222148064727832\
663001711071029154045794996236819848774213121764609344365772055561098385\
185509980861530091962523838987009868994997764555809014509194221314006479\
978167719335773901423256287889635007056554334449723329407823136742755751\
869134095499543980287744695032261686400749081811270662576723610451504484\
646395380593262420570124238308875102402123685071832322542397275128352595\
49723357647718327998754795646911307672321:

20

BBS := proc(k::posint,seed::posint) local x,g,T,i,j,l,m,n,q,z,t;

if type(procname,indexed) then 1 := op(procname) else 1 := 512; fi;
elif 1=512 then m := 10; n := nbl2;

elif 1=768 then m := 10; n := n768;

elif 1=1024 then m := 11; n := n1024;

else error "prime bit length must be 512, 768 or 1024";

fi;

if seed <= 1 or seed >= n-1 then
error "seed must be in the range 1 < seed < n-1"; fi;
Note the following should never happen; it means that someone
‘‘guessed’’ the factorization of n = p q which is extremely unlikely
if igcd(seed,n)>1 then seed := seed+1l; fi;

Don’t allow x0 be small e.g. 2, 3, because squaring will
preserve the parity of x until x becomes bigger than n.
Also, squaring x at least once ensures that x_0 is in QR(x)

x := seed; while x < n do x := x"2 od; x := irem(x,n);
T := Array(0..2°m-1); # m random bits at a time
for i from 0 to 2°m-1 do t := i; T[i] := seq(irem(t,2,’t’), j=1..m) od;

if k = m then

subs(’L’ = 2°m, proc() x := irem(x"2,n); T[irem(x,L)]; end);
else

z := [0$k];

subs({’K’ = k, ’L’=2"m},

proc()

z = z[k+1..-1];
while nops(z) < k do

x := irem(x"2,n);
z := [op(z),T[irem(x,L)]];
od;
op(1l..k,z);
end) ;
fi;
end:

21

