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Abstract

PolynomialIdeals is a new Maple package for computing with ideals
in a polynomial ring. We introduce the package, describe some of its
innovative features, and show how it can be used to solve systems of
polynomial equations. We also present the algorithms for primary de-
composition and radical computation, since our implementations differ
from what has been advanced in the literature.

Introduction

The PolynomialIdeals package provides a suite of efficient algorithms for
computing with ideals of polynomial rings over a field. Much of this function-
ality is new to Maple, being previously available only to users of specialized
computer algebra systems, such as Magma and Singular. A preliminary ver-
sion of the package is installed in Maple 9.5, but development is ongoing.
The latest version can be downloaded from
http://www.cecm.sfu.ca/∼rpearcea .

Using the Package

Definition. Let R be a commutative ring, a subset I ⊂ R is an ideal if

1. f + g ∈ I for all f, g ∈ I

2. f h ∈ I for all f ∈ I and h ∈ R
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In our case R = k[x1, . . . , xn], the polynomial ring in n variables over
a field k. We begin by loading the package using the with command. To
create an ideal, simply enclose its generators within angled brackets.

> with(PolynomialIdeals);

Warning, the assigned names <,>, NormalForm and UnivariatePolynomial
now have a global binding

[<,>, Add , Contract , EliminationIdeal , Generators, GroebnerBasis, HilbertDimension,

IdealContainment , IdealInfo, IdealMembership, Intersect , IsMaximal , IsPrimary ,

IsPrime, IsProper , IsRadical , LeadingMonomial , MaximalIndependentSet ,Multiply ,

NormalForm, Operators, PolynomialIdeal , PrimaryDecomposition,

PrimeDecomposition, Quotient , Radical , Saturate, SimplifyIdeal ,
SuggestVariableOrder , UnivariatePolynomial , ZeroDimensionalDecomposition, in]

> J := <x^2*z-y^2, x^2-y^2*z>;

J := 〈x2 z − y2, x2 − y2 z〉

The coefficients are assumed to be rational numbers by default, and
any indeterminates which appear are considered variables of the poly-
nomial ring, so this ideal resides in Q[x, y, z]. We can construct ideals
in other rings using the optional arguments (characteristic=p) and
(variables={. . . }). The next example constructs an ideal in Z5(a)[x, y].
The IdealMembership command tests polynomials for membership in an
ideal.

> K := <x^2-a*y+a^3,a*x*y-1,(characteristic=5,variables={x,y})>;
K := 〈x2 + 4ay + a3, axy + 4〉

> IdealMembership(a^2*y^3-a^4*y^2-x*y, K);

true

In the computation above, a Gröbner basis was computed for K auto-
matically. Gröbner bases are stored directly in the ideal data structure
and reused whenever possible during subsequent computations. On large
systems this produces significant savings in time. In the example below
we decompose the katsura-4 system into an intersection of four prime
components. The radical test which follows is instantaneous.

> katsura4 := <2*t+u+2*x+2*y+2*z-1, 2*x*t+2*u*y+2*z*t-y,
> 2*t^2+u^2+2*x^2+2*y^2+2*z^2-u, 2*t*u+x*y+2*z*t+2*y*z-t,
> t^2+2*y*t+2*z*u+2*x*z-z>:
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> SimplifyIdeal(PrimaryDecomposition(katsura4));

〈x, t, y, z, u− 1〉, 〈3 u− 1, t, y, z, 3 x− 1〉,
〈28 z2 − 12 z + 1, t, u− 2 z, y, 2 x + 4 z − 1〉,
〈2 u− 1, 4 t + 1, 2 y − 1, z + x, 32 z2 + 3〉, 〈40692092 t2 u− 105009548 t3

− 68613814 t u− 10030652 y t− 53644024 z t− 38567838 t2 + 2681921 u

− 716492 y − 654138 z + 47103408 t− 1259797,

280 y2 − 102 t u + 660 y t− 252 z t + 442 t2 − 11 u− 98 y + 2 z − 72 t + 7,

10 z u + 39 t u + 10 y t + 24 z t + 16 t2 − 3 u + y − 4 z − 21 t + 1,

13044680499934600 t4 − 8556027057302680 t3 − 3578757194560758 t u

− 501760691393260 y t− 3254487989979588 z t− 2095088940432442 t2

+ 151144400960241 u− 53209818728462 y − 38482104708202 z

+ 2729106609887472 t− 73450460152097,

7 u2 − 52 t u− 16 y t− 28 z t− 22 t2 − 3 u− 2 z + 30 t, 40692092 z t2

+ 165357276 t3 + 91414257 t u + 15750880 y t + 76052144 z t + 25036598 t2

− 3710605 u + 1015455 y + 909676 z − 64918943 t + 1760115, 406920920 y t2

+ 1514910180 t3 + 644633608 t u + 39424940 y t + 600529328 z t + 51085042 t2

− 25722351 u + 8516802 y + 5023342 z − 447608702 t + 12129467,

2 t + u + 2 x + 2 y + 2 z − 1,

280 y z + 388 t u + 240 y t + 308 z t + 302 t2 − 11 u− 28 y + 2 z − 282 t + 7,

2 u y − t u− 2 y t− 2 t2 − y + t,

−31 u− 12 t + 42 y − 58 z − 218 t2 + 280 z2 + 308 z t + 158 t u− 380 y t + 7〉
> IsRadical(katsura4);

true
> HilbertDimension(katsura4);

0

Gröbner bases can also be computed explicitly. The syntax for monomial
orders is a superset of Maple’s Groebner package. Below we compute a
Gröbner basis for an elimination order with {x, u} >> {y, z} >> t. Instead
of using Buchberger’s algorithm, the Gröbner basis is converted automati-
cally using the FGLM algorithm [3]. In this example the speedup is about
a factor of fifty. Future versions of this package will contain the Gröbner
Walk algorithm [2], so that non zero-dimensional systems can be converted
as well.
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Next we compute the intersection of the ideal with the subring Q[y, z, t].
This is instantaneous because a suitable Gröbner basis is already known.

> GroebnerBasis(katsura4, lexdeg([x,u],[y,z],[t])):

> EliminationIdeal(katsura4,{y,z,t}):

By default, prime and primary decompositions are computed over the
field implied by the coefficients of the generators. Algebraic field ex-
tensions can also be specified directly, similiar to Maple’s factor com-
mand.

> J := <x^2+6>;

J := 〈x2 + 6〉
> SimplifyIdeal(PrimeDecomposition(J, {I,sqrt(2),RootOf(z^2-3)}));

〈x +
√

2 RootOf( Z 2 − 3) I〉, 〈x−
√

2 RootOf( Z 2 − 3) I〉
> K := <x^3-5, y^2+3, (characteristic=13)>;

K := 〈x3 + 8, y2 + 3〉
> SimplifyIdeal(PrimaryDecomposition(K, sqrt(5)));

〈y + 6, x + 6〉, 〈x + 6, y + 7〉, 〈y + 6, x + 2〉, 〈x + 5, y + 7〉, 〈y + 7, x + 2〉, 〈x + 5, y + 6〉

Solving Polynomial Systems

The PolynomialIdeals package contains a number of routines that will be
of interest to anyone solving large polynomial systems in Maple. In this
section we demonstrate two techniques for pre-processing systems which are
particularly useful.

The most basic technique is to compute a lexicographic Gröbner basis
prior to calling solve. For zero-dimensional systems this computation
uses FGLM, which is typically much faster than the Buchberger algo-
rithm. The system below is otherwise intractable in Maple 9.

> cassou;
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{261 + 4 d b2 c− 3 d2 b2 − 4 c2 b2 + 22 e c− 22 d e, 216 d b2 c− 162 d2 b2 − 81 c2 b2

+ 5184 + 1008 e c− 1008 d e + 15 c2 b2 d e− 15 c3 b2 e− 80 d e2 c + 40 d2 e2

+ 40 e2 c2, 15 b4 c d2 + 6 b4 c3 + 21 b4 c2 d− 144 b2 c− 8 b2 c2 e− 28 b2 c d e

− 648 b2 d + 36 b2 d2 e + 9 b4 d3 − 120, 30 c3 b4 d− 32 d e2 c− 720 d b2 c

− 24 c3 b2 e− 432 c2 b2 + 576 e c− 576 d e + 16 c b2 d2 e + 16 d2 e2 + 16 e2 c2

+ 9 c4 b4 + 5184 + 39 d2 b4 c2 + 18 d3 b4 c− 432 d2 b2 + 24 d3 b2 e− 16 c2 b2 d e

− 240 c}
> TIMER:=time():

> cassou := <cassou>:

> SuggestVariableOrder(cassou);

e, d, c, b

> G := GroebnerBasis(cassou, plex(e,d,c,b)):

> solve({op(G)}):
> time()-TIMER;

2.810

The second technique is to remove solutions which are not of interest
in hopes of simplifiying the problem. The system below is from [6]. It
describes an optimal packing of 10 identical circles in a square where
the variable m is proportional to the radius. The goal is to compute a
univariate polynomial in m, which can then be solved to produce the
maximum possible radius. The difficulty lies in the fact that the system
is not zero-dimensional, so that the FGLM algorithm can not be used.

> circles;

〈x2 + y2 −m2, 2− 2 z + z2 + w2 + 2 w m− 2 w − 2 m,

1− 2 x− 2 m + x2 + 2 xm + w2, z2 + 1− 2 y − 2 m + y2 + 2 y m− 3 m2,

5− 6 m− 4 z + m2 + 4 m z + z2 + 4 w2 − 4 w − 4 w y − 4 w m + 2 y + y2 + 2 y m〉
> HilbertDimension(circles);

1
> newcircles := SimplifyIdeal(circles, m<>0):

> HilbertDimension(newcircles);

0
> UnivariatePolynomial(m, newcircles);
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98015844 m16 + 1526909568 m11 + 114038784 m2 + 1145811528 m14 − 563649536 m3

− 1038261808 m10 − 11436428 m17 − 9722063488 m7 − 4564076288 m5

+ 7918461504 m6 + 227573920 m12 − 14172160 m− 2960321792 m9

+ 7803109440 m8 + 819200− 1398966480 m13 + 1180129 m18 − 462103584 m15

+ 1899131648 m4

Radicals and Primary Decomposition

For many basic operations the PolynomialIdeals package relies on the
standard algorithms given in [1]. For primary decomposition however, this
approach was wholly inadequate and an alternative had to be found. The
following result of [4] forms the basis of our current algorithms.

Theorem. Let I ⊂ k[x1, . . . , xn] be a zero-dimensional ideal, and let G be a
reduced Gröbner basis for I under lexicographic order with x1 > x2 > · · · >
xn. Then for each i, G contains a unique polynomial gi ∈ I ∩ k[xi, . . . , xn]
whose leading monomial is a power of xi. If, for all i, gi is irreducible mod√

I ∩ k[xi−1, . . . , xn] then I is a prime ideal.

The implications of this theorem are obvious, because there are only two
reasons why a polynomial might fail to be irreducible. First, gi could be
a power of an irreducible, in which case the ideal is still primary and we
can continue with the next variable. Second, the polynomial could factor as
gi =

∏t
i=1 fei

i in which case the ideal factors as I =
⋂t

i=1 (I + 〈fei
i 〉). To

compute a prime decomposition, we can simply remove the exponents.

Combined with the FGLM algorithm and Maple’s excellent factor com-
mand, this method of primary decomposition is very effective. An even
bigger improvement can be made to radical computations, however. The
traditional algorithm for computing the radical of a zero-dimensional ideal
dates back to Seidenberg [5]. We compute univariate polynomials in each
variable, typically using FGLM, and add their square-free parts to the gen-
erating set. The problem with this method is that in practice, computation
of a single univariate polynomial is a majority of the work towards com-
puting a full lexicographic Gröbner basis. Furthermore, for some variables
the univariate polynomial computation may produce disasterous coefficient
growth.
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A better method is thus desired for systems with high degree and a large
number of variables. We observe the following. If we were to proceed instead
with a prime decomposition using the method above, we would encounter a
polynomial

gi =
t∏

i=1

fei
i mod

√
I ∩ k[xi−1, . . . , xn]

At this point

√
I ∩ k[xi−1, . . . , xn] =

t⋂
i=1

(I + 〈fi〉) ∩ k[xi−1, . . . , xn]

= (I + 〈
t∏

i=1

fi〉) ∩ k[xi−1, . . . , xn]

so we could strip away the exponents and compute the radical of I. However,
this doesn’t require a complete factorization at all – we need only add the
square-free part of each gi to make the ideal radical. The resulting algorithm
performs one total degree Gröbner basis computation one conversion to a
lexicographic order of our choice. The time required to compute the square-
free parts is insignificant.

Benchmarks

Everybody loves benchmarks, especially when they contribute to an ongo-
ing war over which computer algebra system is better. Setting aside issues
of fairness and the relative speed of compiled versus interpreted code, we
will compare the current version of PolynomialIdeals running on Maple 9
to version 2.10-8 of the Magma computer algebra system. The tests were
performed on a 2.8 GHz Pentium 4 Xeon machine with 4 GB of memory.
All times are in seconds.

In the tests below, we have tried our best to be a gracious competitor.
PolynomialIdeals chooses heuristically optimal variable orders in all its com-
putations, so we have been careful to use the same orders in Magma. This
test focuses entirely on zero-dimensional systems, since our implementation
of the Gröbner Walk is still preliminary.
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Primary Decomposition
cyclic6 eco7 rose katsura6 reimer5 virasoro rbpl24

Maple 74.87 85.55 52.83 188 717 1607 2244
Magma .360 .120 .950 25.25 103 23.1 561.3

Is Radical
cyclic6 eco7 rose katsura6 reimer5 virasoro rbpl24

Maple 65.16 83.3 48.08 165.5 452.5 1523 2232
Magma 1.17 2.11 47.31 250.1 9.8 168.64 6144

The times for cyclic6 and eco7 clearly demonstrate the advantage Magma
enjoys due to its compiled Gröbner basis implementation. The rose sys-
tem illustrates our point about the relative difficulty of computing all the
univariate polynomials. In this case there are only three. The katsura6
system is a generically nasty example. Not impossible, but its high degree
and bad coefficient growth are enough to tax any computer algebra system.
PolynomialIdeals makes a good showing, and our radical algorithm proves
its point once again. Reimer5 is another difficult system, but one in which
the univariate polynomials have significantly lower degree than the rest of
the system. Needless to say, the standard radical algorithm demolishes our
method in this particular case.

Virasoro is a difficult system for PolynomialIdeals, which gets bogged
down by horrendous coefficient blowup in both the Buchberger algorithm
and FGLM. Magma’s primary decomposition does extremely well. The
last system is rbpl24, a nine variable system from robotics included to test
asymptotic behavior. PolynomialIdeals finishes within a factor of four, and
our radical algorithm demonstrates its worth conclusively.
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[6] D. Würtz, M. Monagan, R. Peikert The History of Packing Circles in a
Square Maple in Mathematics and the Sciences – A Special Issue of the
Maple Technical Newsletter, pp. 35-42, 1994

Appendix

Here we collect the various systems that were used in the benchmarks.
All of them are available in electronic form from either
http://www2.math.uic.edu/∼jan/Demo/TITLES.html or
http://www.symbolicdata.org/SD HTML/index.html.
The second link is not a direct one, follow the links for ”Data” and ”INTPS”.
We would like to thank the authors of these pages for providing a valuable
resource.
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> cyclic6;

〈x1 x2 x3 x4 x5 x6 − 1, x1 + x2 + x3 + x4 + x5 + x6 ,

x1 x2 + x2 x3 + x3 x4 + x4 x5 + x1 x6 + x5 x6 ,

x1 x2 x3 + x2 x3 x4 + x3 x4 x5 + x1 x2 x6 + x1 x5 x6 + x4 x5 x6 ,

x1 x2 x3 x4 + x2 x3 x4 x5 + x1 x2 x3 x6 + x1 x2 x5 x6 + x1 x4 x5 x6 + x3 x4 x5 x6 ,

x1 x2 x3 x4 x5 + x1 x2 x3 x4 x6 + x1 x2 x3 x5 x6 + x1 x2 x4 x5 x6 + x1 x3 x4 x5 x6
+ x2 x3 x4 x5 x6 〉

> eco7;

〈x7 x4 + x7 x1 x5 + x7 x6 x2 − 4, x7 x5 + x1 x6 x7 − 5, x6 x7 − 6,

x1 + x2 + x3 + x4 + x5 + x6 + 1,

x1 x7 + x1 x2 x7 + x7 x2 x3 + x7 x3 x4 + x7 x4 x5 + x5 x6 x7 − 1,

x7 x2 + x7 x1 x3 + x7 x2 x4 + x7 x3 x5 + x7 x6 x4 − 2,

x7 x3 + x7 x1 x4 + x7 x2 x5 + x7 x6 x3 − 3〉

> rose;

〈7 y4 − 20 x2, 2160 x2 z4 + 1512 x z4 + 315 z4 − 4000 x2 − 2800 x− 490, 40320000 x6 y2 z

+ 67200000 x5 y3 + 28800000 x5 y2 z + 94080000 x4 y3 − 23520000 x4 y z2

− 10080000 x4 z3 + 40924800 x3 y3 + 21168000 x3 y2 z − 41395200 x3 y z2

− 28224000 x3 z3 + 2634240 x2 y3 + 4939200 x2 y2 z − 26726560 x2 y z2

− 15288000 x2 z3 − 2300844 x y3 + 347508 x y2 z − 7727104 x y z2 − 1978032 x z3

− 432180 y3 − 852355 y z2 − 180075 z3〉

> katsura6;

〈x0 + 2 x1 + 2 x2 + 2 x3 + 2 x4 + 2 x5 + 2 x6 − 1,

2 x2 x3 + 2 x1 x4 + 2 x0 x5 + 2 x1 x6 − x5 ,

x2 2 + 2 x1 x3 + 2 x0 x4 + 2 x1 x5 + 2 x6 x2 − x4 ,

2 x1 x2 + 2 x0 x3 + 2 x1 x4 + 2 x2 x5 + 2 x6 x3 − x3 ,

x1 2 + 2 x0 x2 + 2 x1 x3 + 2 x2 x4 + 2 x3 x5 + 2 x6 x4 − x2 ,

2 x0 x1 + 2 x1 x2 + 2 x2 x3 + 2 x3 x4 + 2 x4 x5 + 2 x5 x6 − x1 ,

x0 2 + 2 x1 2 + 2 x2 2 + 2 x3 2 + 2 x4 2 + 2 x5 2 + 2 x6 2 − x0 〉
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> reimer5;

〈−1 + 2 x2 − 2 y2 + 2 z2 − 2 t2 + 2 u2, −1 + 2 x3 − 2 y3 + 2 z3 − 2 t3 + 2 u3,

−1 + 2 x4 − 2 y4 + 2 z4 − 2 t4 + 2 u4, −1 + 2 x5 − 2 y5 + 2 z5 − 2 t5 + 2 u5,

−1 + 2 x6 − 2 y6 + 2 z6 − 2 t6 + 2 u6〉

> virasoro;

〈−6 x4 x5 + 6 x4 x8 + 6 x5 x8 − 6 x6 x7 + 6 x6 x8 + 6 x7 x8 + 8 x8 2 − x8 , 8 x1 2 + 8 x1 x2
+ 8 x1 x3 + 2 x1 x4 + 2 x1 x5 + 2 x1 x6 + 2 x1 x7 − 8 x2 x3 − 2 x7 x4 − 2 x5 x6
− x1 , 8 x1 x2 − 8 x1 x3 + 8 x2 2 + 8 x2 x3 + 2 x2 x4 + 2 x2 x5 + 2 x6 x2 + 2 x7 x2
− 2 x6 x4 − 2 x7 x5 − x2 ,−8 x1 x2 + 8 x1 x3 + 8 x2 x3 + 8 x3 2 + 2 x3 x4 + 2 x3 x5
+ 2 x6 x3 + 2 x7 x3 − 2 x4 x5 − 2 x6 x7 − x3 , 2 x1 x4 − 2 x1 x7 + 2 x2 x4 − 2 x6 x2
+ 2 x3 x4 − 2 x3 x5 + 8 x4 2 + 8 x4 x5 + 2 x6 x4 + 2 x7 x4 + 6 x4 x8 − 6 x5 x8 − x4 ,

2 x1 x5 − 2 x1 x6 + 2 x2 x5 − 2 x7 x2 − 2 x3 x4 + 2 x3 x5 + 8 x4 x5 − 6 x4 x8
+ 8 x5 2 + 2 x5 x6 + 2 x7 x5 + 6 x5 x8 − x5 ,−2 x1 x5 + 2 x1 x6 − 2 x2 x4 + 2 x6 x2
+ 2 x6 x3 − 2 x7 x3 + 2 x6 x4 + 2 x5 x6 + 8 x6 2 + 8 x6 x7 + 6 x6 x8 − 6 x7 x8 − x6 ,

−2 x1 x4 + 2 x1 x7 − 2 x2 x5 + 2 x7 x2 − 2 x6 x3 + 2 x7 x3 + 2 x7 x4 + 2 x7 x5
+ 8 x6 x7 − 6 x6 x8 + 8 x7 2 + 6 x7 x8 − x7 〉
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> rbpl24;

〈62500 x1 2 + 62500 y1 2 + 62500 z1 2 − 74529, 3200 x2 + 1271,

625 x2 2 + 625 y2 2 + 625 z2 2 − 1250 x2 − 2624,

12500 x3 2 + 12500 y3 2 + 12500 z3 2 + 2500 x3 − 44975 y3 − 10982,

400000 x1 x2 + 400000 y1 y2 + 400000 z1 z2 − 400000 x2 + 178837,

1000000 x1 x3 + 1000000 y1 y3 + 1000000 z1 z3 + 100000 x3 − 1799000 y3
− 805427, 2000000 x2 x3 + 2000000 y2 y3 + 2000000 z2 z3 − 2000000 x2
+ 200000 x3 − 3598000 y3 − 1403, 113800000000000 x2 y1 z3
− 113800000000000 x2 y3 z1 − 113800000000000 x3 y1 z2
+ 113800000000000 x1 y3 z2 − 113800000000000 x1 y2 z3 + 1475978220000 y2
− 151600474800000 z2 + 292548849600000 x3 − 825269402280000 y3
+ 825859951200000 z3 − 206888400000000 y2 x3 − 362960716800000 x1
+ 38025201600000 x2 + 113800000000000 x3 y2 z1 − 1212982689600000 z1
+ 11809567440000 y1 − 206888400000000 x2 y1 + 206888400000000 x3 y1
+ 206888400000000 x1 y2 − 206888400000000 x1 y3 + 206888400000000 x2 y3
− 2014260000000 x2 z1 + 2014260000000 x3 z1 − 61907200000000 y2 z1
+ 61907200000000 y3 z1 + 2014260000000 x1 z2 − 2014260000000 x3 z2
+ 61907200000000 y1 z2 − 61907200000000 y3 z2 − 2014260000000 x1 z3
+ 2014260000000 x2 z3 − 61907200000000 y1 z3 + 61907200000000 y2 z3
− 19295432410527,−777600000000 x2 y1 z3 + 777600000000 x2 y3 z1
+ 777600000000 x3 y1 z2 − 777600000000 x1 y3 z2 + 777600000000 x1 y2 z3
− 268090368000 y2 + 354583756800 z2 + 158626915200 x3 + 72704002800 y3
+ 307085438400 z3 − 1409011200000 y2 x3 + 235685027200 x1
+ 398417510400 x2 − 777600000000 x3 y2 z1 + 412221302400 z1
− 311668424000 y1 + 282499646407− 1409011200000 x2 y1
+ 1409011200000 x3 y1 + 1409011200000 x1 y2 − 1409011200000 x1 y3
+ 1409011200000 x2 y3 − 1065312000000 x2 z1 + 1065312000000 x3 z1
− 805593600000 y2 z1 + 805593600000 y3 z1 + 1065312000000 x1 z2
− 1065312000000 x3 z2 + 805593600000 y1 z2 − 805593600000 y3 z2
− 1065312000000 x1 z3 + 1065312000000 x2 z3 − 805593600000 y1 z3
+ 805593600000 y2 z3 〉
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