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ABSTRACT
We present a new algorithm for pseudo-division of sparse
multivariate polynomials with integer coefficients. It uses a
heap of pointers to simultaneously merge the dividend and
partial products, sorting the terms efficiently and delaying
all coefficient arithmetic to produce good complexity. The
algorithm uses very little memory and we expect it to run
in the processor cache. We give benchmarks comparing our
implementation to existing computer algebra systems.

1. INTRODUCTION
Polynomial arithmetic is an essential feature of computer

algebra systems. This paper examines the division of multi-
variate polynomials with rational coefficients. First observe
that there are

`
n+d

d

´
monomials in n variables of degree ≤ d.

Thus as n and d increase, polynomials must be sparse if they
are to fit in computer memory.

The best representation for sparse polynomials is likely
to depend on the application. For example, a recursive
dense format permits the use of asyptotically fast algorithms
[12], and is well suited to GCD and factorization algorithms
which construct the result one variable at a time [6].

This paper is about the sparse distributed representation,
which is commonly used at the top level of computer algebra
systems. Users enter polynomials in this format and they
write programs using it, expecting the cost of arithmetic to
reflect the work they would do by hand.

Algorithms for the sparse distributed representation have
a distinctly classical feel. Their performance depends on how
you sort terms and do coefficient arithmetic. On a modern
computer, cache memory also critically affects performance.
Division in particular has been a frequent bottleneck [6, 8].

Our paper is organized as follows. In §2 we analyze the
problem and present our strategy for performing arithmetic.
In §3 we present the heap algorithms for division and our
new algorithm for pseudo division. We also discuss opti-
mizations and issues of performance. In §4 we present a
series of benchmark problems.
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2. SPARSE POLYNOMIAL DIVISION
Consider the problem of dividing f ∈ Z[x1, . . . , xn] by

g ∈ Z[x1, . . . , xn], producing a quotient q and a remainder
r in Q[x1, . . . , xn]. We will assume that the polynomials
are stored in a sparse distributed format that is sorted with
respect to a monomial order <.

Starting with q = r = 0, each division step examines the
next non-zero term of f − qg − r in descending order by <.
Call this current term t. When t is divisible by g1, we add
a new term t/g1 to the quotient q to cancel t using −qg.
Otherwise we move t to the remainder r.

How we compute t does not affect the correctness of the
division algorithm, but it will determine the performance.
There are two tasks to perform: the terms of f − qg − r
must be sorted, and the coefficients of any equal monomials
must be added up.

2.1 Monomial Comparisons
First consider how to sort the terms of f − qg− r that are

generated in a division. There are #f + #q(#g − 1) terms
in total, since the terms of −qg1 are constructed to cancel
something and the terms of r come from f − qg. We will
use a comparison sort, however trie-based digital sorts have
also been used [4].

The naive approach to sorting the terms is to merge them
into an ordered linear structure, such as a linked list or a
dynamic array. This is the classical algorithm for division:
create an intermediate polynomial p := f , and when a new
term of the quotient qi is computed subtract qig from p using
a merge. Unfortunately each merge is O(#p + #g). This
means, for example, that an exact division with #q = #g =
1000 and #f = 106 can do O(109) comparisons.

The problem of too many comparisons was noticed by
Johnson [9], whose “quotient heap” algorithm we present in
§3. Another solution is the “geobucket” data structure of
Yan [15]. It uses buckets with {4, 8, 16, . . . , 2i} terms and
merges each polynomial with the first bucket that is larger.
If the result is too large to store in that bucket then it is
merged with the next bucket, and so on, until the sum can
be stored. The division algorithm with a geobucket does
O(N log N) comparisons where N = #f + #q(#g− 1) [15].
The actual number of comparisons is often better than a
heap, but the algorithm runs slower because it uses main
memory whereas a heap can fit in the cache [13].

Next we consider the minimum number of comparisons
required to divide. Horowitz studied sparse multiplication
and observed that products of sorted polynomials generate
a rectangular tableau [7, 11].



Definition 1. Let n1 ≥ · · · ≥ nm be positive integers.
A standard Young tableau of shape (n1, n2, . . . , nm) is an
arrangement of the integers 1 to n1 + · · ·+ nm into m rows,
where row i has ni elements and rows and columns strictly
increase.

To construct a tableau, order the products figj using the
monomial order so that the largest term is assigned 1, the
second largest 2, and so on. Ties can be broken in any way.
We will prefer terms closer to the bottom. Note that ties can
not occur in any row or column of the matrix of products if
the monomials of the multiplicands are distinct.

Example 2. Consider (x3 + x + 1)(x5 + x3 + x + 1). We
show a product matrix of the exponents that appear and a
corresponding tableau that orders the terms.

× x5 x3 x1 x0

x3 8 6 4 3
x1 6 4 2 1
x0 5 3 1 0

product matrix

1 3 6 8
2 5 9 11
4 7 10 12

tableau

Sorting an n×m tableau requires O(nm log(min(n, m)))
comparisons [5], which is achieved by a divide-and-conquer
merge or a simultaneous min(n, m)-ary merge of the rows
or columns. Surprisingly, this may not be a lower bound for
sorting the product matrix. That problem is “X+Y sorting”,
and finding a faster algorithm for it is an open problem [2].

Due to this uncertainty, we will state the complexity of
division in terms of multiplication. Let M(n, m) be a lower
bound on the number of comparisons needed to multiply two
sparse polynomials with n and m terms. The product could
have nm terms so we will assume nm ≤ M(n, m).

A sparse division f ÷ g = (q, r) multiplies the quotient q
by g − LT (g), producing up to #q(#g − 1) terms. These
terms must be merged with the dividend f , since only one
term of f must be divisible and the rest could be anything.
This merge requires O(#f + #q(#g − 1)) comparisons, so
the number of comparisons required for a sparse division is
O(#f + M(#q, #g − 1)).

2.2 Coefficient Arithmetic
We now consider the arithmetic that must be performed.

Multiplying sparse polynomials with n and m terms requires
nm coefficient multiplications, but the number of additions
depends on the number of equal monomials. This is limited
by the product matrix structure which can not have ties in
any row or column. The most ties occur when the monomials
in each “slice” {aij | i + j = c}, c ∈ {2, ..., n + m} are equal.
This is what happens in a dense univariate multiplication,
but it can happen even when the polynomials are not dense.
One term from each slice is not added to anything, so at
most nm− n−m + 1 additions are required.

Consider a sparse division f ÷ g = (q, r) that runs over Z.
Merging −q(g − LT (g)) with f does at most #f additions,
and a division is needed to construct each coefficient of q.
A total of #q(#g− 1) multiplications, #q divisions, and up
to #f +(#q− 1)(#g− 2) additions are performed, which is
comparable to a sparse polynomial multiplication.

Now suppose the quotient q has rational coefficients and
we use fractions for the arithmetic. Each of the #q(#g− 1)
products now multiplies a fraction by an integer, which we
would implement as follows:

# compute (a/b)*c

mulqz(numerator a, denominator b, integer c)

g := gcd(b,c);

if (g = 1) then

A := a*c;

return (A, b);

else

B := b/g;

C := c/g;

A := a*C;

return (A, B);

end;

The cost of mulqz is easy to see. Note that all divisions
are exact. To construct each term of the quotient we divide
a fraction by an integer, calling mulqz with the numerator
and denominator swapped. To add fractions we will use the
grade-school method: a/b + c/d = (ad + bc)/(bd) followed
by a gcd and two exact divisions. The alternatives in [10]
can be faster, but they require more operations.

Using our formulas for sparse division in the integer case,
we computed the number of integer operations performed in
a division over Q when fractions are used. The results are
summarized in Table 1.

Table 1: Operations in Z when fractions are used
multiplications 3f + 3(q − 1)(g − 1) + qg
exact divisions 2f + 2(q − 1)(g − 1) + 2qg
gcds f + (q − 1)(g − 1) + qg
additions f + (q − 1)(g − 1)

A quick estimate says that if multiplications, divisions,
and gcds are about the same cost then we will do ten times
more arithmetic using fractions than we did over Z. When
#f = #q#g it will be sixteen times more. Note that most
of this cost is from adding fractions. The costs from mulqz
are isolated in the table. They are qg, 2qg, qg, and 0.

The process of pseudo division was developed in response
to the high cost of fraction arithmetic. Fractions are scaled
to a common denominator that is updated with each new
term of the quotient, so that instead of adding fractions we
add integers. Let us examine this algorithm as it is typically
implemented. LM(p), LC(p), and LT(p) denote the leading
monomial, coefficient, and term of a polynomial p.

pseudo_remainder(polynomial f, polynomial g)

p := f;

r := 0;

S := 1; # common denominator

while (p != 0) do

if (LM(g) divides LM(p)) then

G := gcd(LC(p), LC(g));

A := LC(p)/G;

B := LC(g)/G;

S := S*B; # update denominator

q := LM(p)/LM(g); # monomial quotient

p := B*p - (A*q)*g;

else

r := r + LT(p);

p := p - LT(p);

end loop;

return (r, S);

end;



The algorithm performs one gcd, two exact divisions, and
one multiplication for each term of the quotient. Those are
necessary to update the common denominator. The problem
is p := B ∗ p− (A ∗ q) ∗ g and the number of multiplications
this could do.

Consider an exact division f ÷ g = q where #f = #q#g
and the denominators of q strictly increase. In step i of this
division p will have (#q − i + 1)#g terms and we will do
(#q − i + 2)#g multiplications. In total

#qX
i=1

(#q − i + 2)#g =
(#q + 3)#q#g

2

multiplications will be done. This is an order of magnitude
more work than using fractions. A division with remainder
is even worse if f has many terms that are moved to the
remainder at the end. The algorithm can do O(qf + q2g)
multiplications in general when the polynomials are sparse.

For dense univariate polynomials the algorithm above is
faster than using fractions. In that case #f = #q + #g − 1
and each division step removes one term from p. The total
number of multiplications is

#qX
i=1

(#q + 2#g − i) =
#q(#q + 4#g − 1)

2
.

The total amount of arithmetic is given by Table 2 below.
If multiplications, exact divisions, and gcds are about the
same cost and #q ∼ #g, the algorithm will be roughly four
times faster than using fractions. The q2/2 multiplications
are impractical for divisions with large quotients though.

Table 2: Classical dense pseudo division in Q[x]
multiplications q(q + 4g − 1)/2 + q
exact divisions 2q
gcds q
additions qg

The reason for the poor complexity of pseudo division is
that terms are scaled multiple times before they are used.
This is obvious for sparse polynomials but it appears as a
q2/2 term in the dense univariate case as well. This extra
arithmetic is an artifact of how we sort the terms.

The correct number of integer operations is the following.
Imagine we have a common denominator S and and we are
adding up the coefficient of the next term into a sum A/S.
To add a term of f we would compute A += S*f_i and to
add a product qigj we could compute

A -= (S / denominator(q_i)) * numerator(q_i) * g_j

If the current monomial is divisible by LM(g) we will divide
A/S by LC(g) with (S, q) := mulqz(S, A, LC(g)). This
updates S and computes the numerator q of the next term
of the quotient. We computed the cost of this scheme from
the operation counts of the integer case. The result is Table
3. Pseudo division is about three times more work than a
division over Z or four times more when #f ∼ #q#g.

Table 3: Operations in Z for pseudo division
multiplications f + 2q(g − 1) + q
exact divisions q(g − 1) + 2q
gcds q
additions f + (q − 1)(g − 2)

3. DIVISION USING A HEAP
Let us put it all together and develop three algorithms.

We have seen that to implement pseudo division efficiently
we must delay all coefficient arithmetic as long as possible.
We have also seen that multiplication generates a tableau
that can be sorted in nm log(min(n, m)) comparisons.

The idea of these algorithms is to simultaneously merge
all of the polynomials that appear in the division. We will
use a pointer into each polynomial and a binary heap. Each
iteration extracts the terms with the largest monomial and
adds them up. If the sum is not zero we will compute a new
term of the quotient or move the term to the remainder.
Finally the next term of each polynomial that was used is
inserted into the heap for the next iteration.

Example 3. Consider f ÷ g where f = 2x9 + 3x8 + 10x7

and g = x5 + 5x3 + 7. The quotient is q = 2x4 + 3x3 − 15x
and the remainder is r = 61x4− 21x3 +105x. We will write
out the division and step through the algorithm.

f 2x9 3x8 10x7

−q1g −2x9 −10x7 −14x4

−q2g −3x8 −15x6 −21x3

−q3g 15x6 75x4 105x

r 61x4 −21x3 105x

1: We begin with f1 = 2x9 in the heap. We extract it and
compute the first term of the quotient q1 = 2x4. We now
merge the rest of f with −q1g. We insert f2 = 3x8 and
−q1g2 = −10x7 into the heap for the next iteration.
2: The heap now contains f1 = 3x8 and −q1g2 = −10x7.
We extract the largest term, 3x8, and compute q2 = 3x3.
Now we are merging {f,−q1g,−q2g}. We insert f3 = 10x7

and −q2g2 = −15x6 into the heap.
3: The heap contains f3 = 10x7, −q1g2 = −10x7, and
−q2g2 = −15x6. We extract the first two, sum them to
zero, and insert −q1g3 = −14x4. We are done merging f .
4: The heap contains −q2g2 = −15x6 and −q1g3 = −14x4.
We extract −15x6 and compute q3 = −15x. We insert
−q2g3 = −21x3 and −q3g2 = 75x4 into the heap.
5: The heap contains −q1g3 = −14x4, −q3g2 = 75x4, and
−q2g3 = −21x3. We extract the first two and compute
−14x4 + 75x4 = 61x4. This is not divisible by LT(g) so
we move it to the remainder. We insert −q3g3 = 105x.
6: The heap contains −q2g3 = −21x3 and −q3g3 = 105x.
We extract −21x3 and move it to the remainder.
7: The heap contains −q3g3 = 105x. We extract this term
and move it to the remainder. Division is complete.

Figure 1: Example 3 step 3 in computer memory
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We have described the “quotient heap” division algorithm
of Johnson [9]. It divides f÷g = (q, r) by using a heap with
#q + 1 elements to merge f with each −qig. The cost to
insert and extract terms is O(log(#q + 1)) comparisons, so
the total number of comparisons is

O((#f + #q(#g − 1)) log(#q + 1)).

What makes this algorithm especially competitive is its
memory requirement. It is not necessary to store each −qig,
their terms may be generated as the algorithm runs if we
store the right information. Each element of the heap needs
a pointer to qi and an index j into g so that we can compute
−qigj+1 from −qigj and insert the next term. The terms of
f may be distinguished by a null pointer in place of qi. This
design is illustrated in Figure 1.

The total amount of memory required is O(#q + #r),
which is highly desirable since it is the size of the result.
By comparison, geobuckets use O(N log N) storage where
N = #f + #q(#g − 1). This order of magnitude savings
allows the algorithm to run entirely in the processor cache
provided the quotient is not too large.

3.1 The Divisor Heap Algorithm
When the quotient is large and the divisor is small the

algorithm above is not very efficient. There are important
cases where this occurs. For example, if we compute g =
gcd(a, b) and divide a/g and b/g to recover the cofactors,
the divisor g will often be much smaller than the quotients.
This is actually a bottleneck in gcd algorithms [6, 8].

The divisor heap algorithm of Monagan and Pearce [13]
lowers the complexity of these divisions by using a heap to
merge f with each −giq. That is, heap elements increment
along the quotient and multiply by a term of the divisor
instead of the reverse. There are #g elements in the heap
so the total number of comparisons is

O((#f + #q(#g − 1)) log(#g)).

A subtlety in the algorithm is that we may merge −giqj

before qj+1 has been computed. In that case we can not
compute −giqj+1 and insert it into the heap immediately,
we must wait until qj+1 is known. Our solution is to keep
track of which gi have a product in the heap. After −giqj

is extracted from the heap and we go to insert −giqj+1, we
check whether gi+1 has a term in the heap. If not, and if
−gi+1qk can be computed (for some qk), we compute this
term and insert it into the heap.

Figure 2: Example 4 Step 3 in computer memory
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Example 4. We revisit Example 3 with the divisor heap
algorithm. Let f = 2x9 + 3x8 + 10x7 and g = x5 + 5x3 + 7.
We compute f ÷ g = (q, r) where q = 2x4 + 3x3 − 15x and
r = 61x4 − 21x3 + 105x. The shaded row −g1q shows the
cancellations that occur, its terms are not in the heap.

f 2x9 3x8 10x7

−g1q −2x9 −3x8 15x6

−g2q −10x7 −15x6 75x4

−g3q −14x4 −21x3 105x

r 61x4 −21x3 105x

1: Initially k = 3 and f1 = 2x9 is in the heap. We extract
f1 = 2x9 and compute q1 = 2x4. We insert −g2q1 = −10x7

and f2 into the heap.
2: We extract f2 = −3x8, compute q2 = 3x3, and insert f3.
3: We extract f3 = 10x7 and −g2q1 = −10x7 and get zero.
We insert −g2q2 = −15x6 and −g3q1 = −14x4.
4: We extract −g2q2 = −15x6 and compute q3 = −15x. We
insert −g2q3 = 75x4 and check for a product involving g3.
5: We extract −g2q3 = 75x4 and −g3q1 = −14x4 and move
61x4 to the remainder. We insert −g3q2 = −21x3.
6: We extract −g3q2 = −21x3 and move it to the remainder.
We insert −g3q3 = 105x.
7: We extract −g3q3 = 105x and move it to the remainder.
Now the heap is empty so division is complete.

3.2 Minimal Heap Division
We now have two heap algorithms to divide f ÷ g = (q, r)

that add a factor of log(#q + 1) or log(#g) to the number
of comparisons. However we may not know what algorithm
to run because the size of the quotient is a priori unknown.
Instead we will dynamically switch from a quotient heap to
a divisor heap in the middle of a computation. This will
ensure that we always have the best bound on the number
of monomial comparisons.

Figure 3: Switching from quotient to divisor heap
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A general instance of this problem is shown in Figure 3.
The shaded regions show what products have been merged.
On the left is a quotient heap with −qigj for all 1 ≤ i ≤ n.
This is a covering set for the tableau with one element in
each row [7]. Our task is to compute the covering set on the
right that has one element in each column. We store the row
set as a list of indices into g, that is R = [5, 4, 4, 3, 2]. The
column set C = [5, 4, 2, 1, 1] is the list of indices into q that
we must compute.

We give a simple algorithm that is linear time. Starting
from the bottom left corner of the row set, we search up
through each column to find the smallest row index and
assign this index to the column set. The tableau structure
implies that the algorithm only needs to move up and right.



# compute a column set from a row set

# R has elements 1..n

column_set(array R, integer n)

C := array(1..n);

i := n;

j := 1;

while (j <= n) do

while (i > 1 and R[i-1] = j+1) do

i := i-1;

end loop;

C[j] := i;

j := j+1;

end loop;

return C;

end;

With the algorithm above, we can switch from a quotient
heap to a divisor heap when #q + 1 = #g to guarantee
minimality. Although the heap is destroyed by the switch,
it can be rebuilt in linear time [11]. This approach does not
adapt very well to divisions with multiple divisors though.
The heap may be destroyed and rebuilt multiple times, and
the resulting algorithm is complicated.

We give a simpler algorithm that does not destroy the
heap and does O(#f + #q(#g − 1) log(min(#q, #g − 1)))
comparisons. Our benchmarks show that it is as fast as a
multiplication.

The algorithm uses a heap with two types of products in
it. We say that a product qigj “moves along g” if the next
term we insert into the heap is qigj+1. This corresponds
to products in the quotient heap algorithm. Likewise, qigj

“moves along q” if the next term is qi+1gj , like in the divisor
heap algorithm.

The new algorithm begins by adding products qig2 that
move along g each time a term of the quotient is computed.
When #q = #g − 1, it initializes indices (= #q) for each
gj into q and adds q#qg2 to the heap. This product and
subsequent products move along q starting from that term.

We now present the algorithm. Its cost in comparisons
and arithmetic operations is given by Theorem 5.

Theorem 5. Algorithm 1 divides f by g using at most
O(#f + #q(#g − 1) log(min(#q, #g − 1))) comparisons. If
the denominator s = 1 at most #q(#g − 1) multiplications
and #q divisions in Z are performed. Otherwise the maxi-
mum number of operations in Z is given by Table 3.

Proof. If #q < #g − 1 the maximum size of the heap
is #q, otherwise it is 2(#g − 1). O(log(min(#q, #g − 1)))
comparisons are needed to insert and extract the terms of
q(g−LT (g)). An additional #f + #q(#g− 1) comparisons
are required to merge f with these terms. In total we do
O(#f + #q(#g − 1) log(min(#q, #g − 1))) comparisons.

If s = 1 all denom(qi) = s and we don’t scale terms of f .
LC(g) | c always succeeds, and #q(#g − 1) multiplications
and #q divisions are performed in total.

When s > 1 the strategy is described at the end of §2.2.
Each of the #q(#g−1) terms in the heap is scaled using an
exact division and two multiplications. One multiplication
is used to scale terms of f . There are #q extra divisions
(not exact) for testing LC(g) | c. If these return a remainder
it should be used to speed up the mulqz gcd. Finally mulqz
performs a gcd, two exact divisions, and one multiplication
for each term of the quotient q.

Algorithm 1: Minimal Heap Pseudo Division.
Input: f, g ∈ Z[x1, ..., xn], g 6= 0, a monomial order <.
Output: q, r ∈ Q[x1, ...xn] with f = qg + r and no term of r
divisible by LT (g).

(q, r, s) := (0, 0, 1).
H := empty heap ordered by <.
k := 1.
while (|H| > 0 or k ≤ #f) do

if (k ≤ #f and (|H| = 0 or LM(fk) ≥ LM(H1)))
m := LM(fk).
if (s = 1)

c := LC(fk).
else

c := s ∗ LC(fk).
k := k + 1.

else
m := LM(H1).
c := 0.

while (|H| > 0 and LM(H1) = m) do
extract H1 = qigj from the heap.
if (denom(qi) = s)

c := c− LC(numer(qi)) ∗ LC(gj).
else

c := c−(s/denom(qi))∗LC(numer(qi))∗LC(gj).
if (qigj moves along g and j ≤ #g)

insert qigj+1 into H moving along g.
else if (i < #q)

insert qi+1gj into H moving along q.
increment the index of gj into q.

if (qigj moves along q and j < #g)
t := the index of gj+1 into q.
if (t ≤ #q and qtgj+1 6∈ H)

insert qtgj+1 into H moving along q.
end loop.
if (c 6= 0 and LM(g) |m)

if (LC(g) | c)
c := c/LC(g).

else
(s, c) := mulqz(s, c, LC(g)).

q := q + (c/s)(m/LM(g).
if (#q < #g − 1)

insert q(#q)g2 into H moving along g.
else if (#q > #g − 1)

t := the index of g2 into q.
if (qtg2 6∈ H)

insert qtg2 into H moving along q.
else

set the index of each gj into q to be #q.
insert q(#q)g2 into H moving along q.

else if (c 6= 0)
r := r + (c/s) ∗m.

end loop.
return (q, r)

3.3 Optimizations
Although Theorem 5 provides some basic performance

guarantees, we have found many optimizations that greatly
improve the real world performance of Algorithm 1.

The most important optimization is to implement the
heap efficiently. The best known algorithm for shrinking
a heap uses twice as many comparisons as another classical
algorithm described in [13, 14].



Another optimization described in [13] is chaining equal
elements in the heap. This is needed to reduce the number
of comparisons in the dense case to linear. That is, a dense
multiplication of n×m terms does O(nm) comparisons.

For this paper we made a third optimization to the heap.
Monomials are stored directly in the heap if they are one
word long. This greatly improves memory locality and helps
the compiler to do more optimizations. Disabling this slows
down our program by 30-50%.

Another important optimization is to add up products
of word-sized integers separately. We wrote some assembly
code to avoid calling multiprecision routines. Disabling this
code slows down our program by 30-50%. It adds precisely
50 seconds to Fateman’s benchmark.

A significant feature of our software is the ability to pack
multiple exponents into each machine word. The details are
presented in [13]. Decreasing the size of monomials speeds
everything up and lets us do larger problems. For example,
the second benchmark has a polynomial with 20M terms.
With no packing it takes 1.6GB. With packing it is 300MB.
Packing exponents allows us to handle polynomials with up
to 500M terms in 16 GB of RAM.

We end with two remarks about why the heap algorithms
are fast. Fateman studied sparse polynomial multiplication
in [3] and found that performance was critically affected by
locality and cache. In particular: traversing large structures
was slow, randomly accessing them was very slow, creating
many intermediate multiprecision integers was slow, and it
had poor locality which made integer operations very slow.
It also necessitated garbage collection, which was slow.

The heap algorithms do none of those things. An n × m
multiplication randomly accesses O(min(n, m)) memory. If
one polynomial is large, its terms are accessed in min(n, m)
simultaneous passes. No structures are used other than the
heap, and for all feasible computations it fits in the cache.
Terms are added up and written out in order, so only one
multiprecision integer is needed to run the whole algorithm.
No “garbage” is created at all. Finally, the multiprecision
coefficients of a polynomial can be stored in a second array
in order, ensuring good locality for them as well.

4. BENCHMARKS
We ran benchmarks using one core of an Intel Xeon 5160

(Core 2 Duo) 3.0 GHz with 4 MB of L2 and 16 GB of RAM,
running in 64 bit mode with GMP 4.2.1. Our software is a
C library that uses heaps of pointers to compute with sparse
polynomials [13]. We give two times for our library. In the
slow time we store each exponent in a 64 bit integer. For
the fast time we pack all of the exponents into one 64 bit
integer and use word operations to compare, multiply, and
divide monomials.

4.1 Fateman’s Benchmark
Our first benchmark is due to Fateman [3], who compared

the routines for sparse polynomial multiplication in differ-
ent computer algebra systems and offered insights into how
cache and memory access can affect performance.

Let f = (1 + x + y + z + t)30 and g = f + 1. We multiply
p = f ∗ g and divide q = p/f . The polynomials f and g
have 46376 terms and 61 bit coefficients. The product p has
635376 terms and 128 bit coefficients. We use lexicographic
order with x > y > z > t.

Table 4: Dense multiplication and division over Z
46376× 46376 = 635376 p = f ∗ g q = p/f

heap (1 word monomial) 80.480 101.490
heap (4 word monomial) 242.870 236.600
Trip v0.98.84 (floating point) 76.161 -
Trip v0.98.84 (rationals) 352.045 -
Magma V2.14-7 679.070 610.620
Singular 3-0-4 1482.360 364.490

Fateman’s benchmark is a dense computation. The
`

n+d
d

´
monomials of degree ≤ d are multiplied to produce a result

with
`

n+2d
2d

´
terms. We could expect up to

`
n+d

d

´2
terms if

the problem were sparse.
As a measure of sparsity, we introduce the dispersion D

of a multiplication as the size of the result divided by the
size of each multiplicand. Then 1/D is the average number
of terms added to produce each term of the result. For the
problem above D = 635376/463762 = .0295%.

4.2 Sparse Problems in Many Variables
Our next benchmark is a sparse computation in many

variables. For (n, d) let f = (x1x2 + x2x3 + · · · + xnx1 +Pn
i=1 xi+1)d and g = (

Pn
i=1 x2

i +
Pn

i=1 xi+1)d. We multiply
p = f ∗ g and divide q = p/f .

We will use n = 10 and d = 5. Then f has 26599 terms, g
has 36365 terms, and p has 19631157 terms. Although this
is a sparse problem, the dispersion is only 2%. We will use
lexicographic order with x1 > x2 > · · · > x10.

Table 5: Sparse multiplication and division over Z
26599× 36365 = 19631157 p = f ∗ g q = p/f

heap (1 word monomial) 49.090 52.580
heap (10 word monomial) 221.910 208.280
Trip v0.98.84 (floating point) 91.573 -
Trip v0.98.84 (rationals) 259.408 -
Magma V2.14-7 313.020 5744.600
Singular 3-0-4 655.250 206.600

We managed to beat Trip on this benchmark despite the
fact that it uses a burst-trie to sort the terms in linear time.
The difference in speed is due to caching effects [3]. The
heap algorithms write out the result one term at a time while
accessing O(#f + #g) memory. Trip (and other systems)
add terms to an intermediate structure that is O(#p). If
the result is large this structure will not fit in the cache, and
memory access penalties (200 cycles) will be incurred. The
heap algorithms in general do not incur these penalties.

4.3 Unbalanced Divisions (Very Sparse)
Our next benchmark is extremely sparse, and tests the

efficiency of sorting as the quotient and divisor vary in size.
Let f = (1 + x + y + 2z2 + 3t3 + 5u5)12 and g = (1 + u +

t + 2z2 + 3y3 + 5x5)12. We multiply p = f ∗ g and divide
q = p/f . f and g have 6188 terms and 37 bit coefficients.
p has 5821335 terms and its coefficients are 75 bits. The
dispersion D = 15.2%.

Next we use different powers {4, 8, 12, 18, 30} in f and g
to vary the size of the quotient and the divisor. We report
the number of divisor terms #f and quotient terms #g, and
the time for multiplication p = f ∗ g and division q = p/f .
We do not count the time to export the result of either



computation. We conclude that our minimal heap division
sorts the terms as efficiently as a multiplication.

Table 6: Sparse multiplication and division over Z
6188× 6188 = 5821335 p = f ∗ g q = p/f

heap (1 word monomial) 2.910 2.240
heap (5 word monomial) 7.540 5.460
Trip v0.98.84 (floating point) 2.854 -
Trip v0.98.84 (rationals) 8.369 -
Magma V2.14-7 23.770 151.990
Singular 3-0-4 58.910 39.250

Table 7: Varying the quotient and the divisor
powers #f #g, #q p = f ∗ g q = p/f

30 4 324632 126 2.990 2.770
18 8 33649 1287 2.270 2.220
12 12 6188 6188 2.440 2.240
8 18 1287 33649 2.380 2.460
4 30 126 324632 2.840 2.530

4.4 Pseudo Remainder
Our final problem is a pseudo-remainder computation.

Let f = ((x−2)(2y−3)(3z−5)(5t−7)(7u−11)(11v−13))8

and g = ((2x−1)(3y−2)(5z−3)(7t−5)(11u−7)(13v−11))4.
We compute the remainder of f divided by g using grevlex
order with x > y > z > t > u > v. This order uses one
extra word per monomial in our software.

f has 531441 terms and 143 bit coefficients. The divisor
has 15625 terms and 69 bit coefficients. The quotient has
15625 terms and 132 bit numerators, and the remainder has
515816 terms and 206 bit numerators. The denominator for
the quotient and remainder is 9480443485314601800, which
is 64 bits.

Table 8: Pseudo-remainder in Q[x, y, z, t, u, v]

531441÷ 15625 = 15625 + 515816 f/g = (q, r)

heap (2 word monomial) 31.170
heap (7 word monomial) 44.780
Magma V2.14-7 225.260
Singular 3-0-4 3686.870

5. CONCLUSIONS
We analyzed sparse polynomial division and presented a

new algorithm for pseudo division. It does less arithmetic
than previous algorithms and it sorts terms as efficiently as
a divide-and-conquer multiplication. Its space requirements
are linear in the size of the input and the result, allowing it
to run inside the cache of modern processors. We presented
benchmarks showing that the algorithm achieved very good
performance on a variety of problems.
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