
Discrete Logarithms
For each of the ti roots mk = αdk, we want to efficiently compute the discrete log-
arithm given by dk = logαmk in Zp. In general, this is very difficult (many people
suspect that it is NP-hard, and the security of the Diffie-Hellman key exchange pro-
tocol from cryptography relies on this). However, for Fourier primes of the form
p = 2rq + 1 with q sufficiently small, the problem is no longer intractable.

By using the Pohlig-Hellman algorithm [4], we can compute each dk using only
O(
√
q + r log r) operations in the cyclic group Z∗p. This choice for p also means that

we can apply the Fast Fourier Transform inside Zp to accelerate Rabin’s algorithm
from O(t2 log p) to O(t log t log p). Note that to ensure that the mk are distinct, we
require that p > degy Ĝ. We may use degy Ĝ ≤ min{degy Â, degy B̂}.

Shifted Transposed Vandermonde Systems
To solve for the unknown coefficients ck we solve the shifted transposed Vander-
monde system 



m1 m2 · · · mt

m2
1 m2

2 · · · m2
t

...
...

. . .
...

mt
1 mt

2 · · · mt
t







c1
c2
...
ct


 =




gi1
gi2
...
git




By taking advantage of its structure, we can accomplish this by using only O(t2)
arithmetic operations in Zp and O(t) space (see Zippel [6]).

Parallel Implementation and Benchmarks
We have implemented our algorithm in Cilk C, a parallel extension of C which has
been adopted by Intel for the Intel C compiler. We have parallelized the evaluations,
and we interpolate the coefficients gi(y) of Ĝ in parallel. Since our algorithm re-
quires that p > dn, we have implemented our algorithm for 31-bit and 63-bit primes,
and we are working on a 127-bit prime implementation.

To assess our algorithm’s performance, we compared it with the implementation
of Zippel’s algorithm in Maple and a Hensel Lifting algorithm in Magma. The
following timings are in CPU seconds:

3 variables 6 variables
#G d 1 core 8 cores Maple Magma 1 core 8 cores Maple Magma

1000 10 0.062 0.015 0.076 0.08 1.306 0.232 35.61 3.38
2000 20 0.238 0.048 0.385 0.89 2.585 0.488 166.55 137.76
5000 50 1.231 0.270 5.174 20.00 6.623 1.239 1338.18 8527.85

10000 100 3.628 0.770 72.461 228.84 13.239 2.459 5310.27 −
20000 200 7.094 1.666 693.088 3003.23 26.610 4.915 − −

References
[1] N. B. Atti, G. M. Diaz-Toca, and H. Lombardi. The Berlekamp-Massey Algorithm revisited. Communication and Computing, AAECC 17(1),

75-82, 2006.

[2] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial interpolation. Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, pp. 301-309, 1988.

[3] W. S. Brown. On Euclid’s Algorithm and the Computation of Polynomial Greatest Common Divisors. J. ACM 18 (1971), 478-504.

[4] S. C. Pohlig and M. E. Hellman. An Improved Algorithm for Computing Logarithms over GF (p) and its Cryptographic Significance. IEEE
Trans. on Inf. Theory 24(1), pp. 106-110, 1978.

[5] M. O. Rabin. Probabilistic Algorithms in Finite Fields. SIAM J. Computing, 9(3), 273-280, 1980.

[6] R. Zippel. Interpolating Polynomials from their Values. J. Symbolic Comput. 9, 3 (1990), 375-403.

The Kronecker Substitution
Given any F (x0, x1, . . . , xn) ∈ Zp[x0, x1, . . . , xn], fix some m > degF . Then we
define the Kronecker substitution of F to be:

F̂ = F (x, y, ym, ym
2

, . . . , ym
n−1

)

Notice that the Kronecker substitution allows us to map a GCD computation modulo
p in n + 1 variables into just 2 variables. Furthermore, observe that we can recover
F from F̂ (since m > degF ). Unfortunately, there are certain values of m that
represent “unlucky” Kronecker substitutions. For example, consider:

A = x2
0 − x2

1x2 B = x3
0 + x1x

2
2 m = 4

Notice that Ĝ = gcd(Â, B̂) = gcd(x2− y6, x3 + y9) = x+ y3 while the true GCD is
G = gcd(A,B) = 1. In this case, it is impossible to recover G from Ĝ. Fortunately,
we can prove that there are only finitely many m > d for which the Kronecker
substitution fails in this way.

The Evaluation Points
Let:

F̂ =

degx F̂∑

i=0

fi(y)xi

︸ ︷︷ ︸
dense format

=

s∑

i=1

uix
viMi(y)

︸ ︷︷ ︸
sparse format

where s = #F̂ is the number of terms in F̂ and Mi(y) = ywi are called the monomi-
als. We want to evaluate F̂ at y = αj for each j ∈ {1, . . . , 2t}.
At first, we did this by evaluating the monomials one at a time using simple binary
powering. Since degy F̂ < (d + 1)n, this required a total of O(stn log d) multiplica-
tions in Zp. However, since evaluation turned out to be the bottleneck of the entire
GCD algorithm, we decided to use a different technique.

Notice that Mi(α
j) = (αj)wi = (αwi)j = (Mi(α))j. Hence, if we compute Γ =

[M1(α), . . . ,Ms(α)] ∈ Zsp in O(s log d) multiplications, then we can compute the
next F̂ (x, αj+1) from F̂ (x, αj) using only s multiplications so that this step requires
a total of O(s log d + st) multiplications in Zp. Note however that this makes the
evaluations serial. To parallelize this for N cores, we use a baby-step giant-step
algorithm.

Sparse Interpolation via Λi(z)

Given the points (αj, gij) for j ∈ {1, . . . , 2t}, we want to interpolate the sparse
polynomial gi(y) =

∑ti
k=1 ckMk(y) where ti = #gi and ck ∈ Z∗p and Mk(y) = ydk.

That is, we seek each ck and dk. To this end, let mk = Mk(α) = αdk and consider
the linear generator defined by:

Λi(z) =

ti∏

k=1

(z −mk) = zti +

ti−1∑

k=0

λkz
k

We could obtain each λk from the (αj, gij) by solving a linear system in O(t3) arith-
metic operations in Zp. Instead, we obtain the λk by using an extended Euclidean
version of the Berlekamp-Massey algorithm [1], which only takes O(t2) operations.
We then compute each of the roots mk via Rabin’s Las Vegas algorithm [5] in
O(t2 log p) operations.

The Multivariate GCD Problem
Fix a prime p and some n ∈ N and choose any multivariate polynomials A,B ∈
Z[x0, x1, . . . , xn]. Then the multivariate GCD problem is to efficiently compute G =
gcd(A,B) (mod p). It turns out that the fastest known algorithms for solving this
problem each use the same general strategy: compute several univariate images of
G in Zp[x0], then recover G via sparse interpolation.

Sparse Polynomials
In practice, multivariate polynomials are usually sparse. More precisely, let d =
degG be the total degree of G and let T = #G be the number of nonzero terms in
G. Then we say that G is sparse iff T �

(
n+d+1
d

)
, the maximum number of terms.

For example, the following polynomial contains only T = 5 terms (which is much
less than

(
6+10+1

10

)
= 19448) and thus is considered very sparse:

G = x10
0 + 7x3

0x1x
2
6 + 6x3

0x5 + 8x1x2x
7
3 + 1

Previous Multivariate GCD Algorithms
Let G =

∑
i gi(x1, . . . , xn)xi0 and let ti = #gi be the number of terms in gi and let

t = maxi ti. Generally, we want to minimize the number of images required for
interpolation since evaluations typically represent the bottleneck step. Below is a
table of previous multivariate GCD algorithms:

Year Author(s) Randomness # of Images
1971 Brown [3] Deterministic O(dn)
1979 Zippel [6] Probabilistic O(ndt)
1988 Ben-Or/Tiwari [2] Probabilistic O(t)

We present a modified version of Ben-Or/Tiwari’s algorithm [2] that also requires
only O(t) images. Unlike Ben-Or/Tiwari’s algorithm however (which requires that
we choose p to be bigger than pdn, where pn is the nth smallest prime), our approach
only requires that p > dn.

Overview of our Multivariate GCD Algorithm

A =
∑

i ai(x1, . . . , xn)xi0
B =

∑
i bi(x1, . . . , xn)xi0

G =
∑

i gi(x1, . . . , xn)xi0

Â =
∑

i ai(y)xi

B̂ =
∑

i bi(y)xi
Ĝ =

∑
i gi(y)xi

Âj =
∑

i aijx
i

B̂j =
∑

i bijx
i

Ĝj =
∑

i gijx
i

Kronecker
substitution

(x, y, ym, . . . , ym
n−1

)
where m > d

Multivariate GCD

in Zp[x1, . . . , xn][x0]

Evaluate
at y = αj

∀j ∈ {1, . . . , 2t}
where 〈α〉 = Zp

Bivariate GCD

in Zp[y][x]

Read off from
m-adic expansion

Inverse
Kronecker
substitution

2t Univariate GCDs

in Zp[x]

∀i ∈ {0, . . . , d} Sparse interpolate
(αj , gij) → gi(y)

ADRIANO ARCE MICHAEL MONAGAN HAO ZHUANG

SPARSE POLYNOMIAL INTERPOLATION VIA DISCRETE LOGS

4

S I M O N  F R A S E R  U N I V E R S I T Y   

SFU Logo


