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The Multivariate GCD Problem

ADRIANO ARCE

Fix a prime p and some n € N and choose any multivariate polynomials A, B €
Z\xy, x1, . .., x,]. Then the multivariate GCD problem is to efficiently compute G =
gcd(A, B) (mod p). It turns out that the fastest known algorithms for solving this
problem each use the same general strategy: compute several univariate images of
G in Z,| x|, then recover GG via sparse interpolation.

Sparse Polynomials

In practice, multivariate polynomials are usually sparse. More precisely, let d =
deg G be the total degree of G and let 7' = #G be the number of nonzero terms in
(. Then we say that G is sparse iff T' <K ("+fil+1), the maximum number of terms.
For example, the following polynomial contains only /" = 5 terms (which 1s much

less than ("1"") = 19448) and thus is considered very sparse:

G = 2y + Tagrizg + 6xpxs + 8117075 + 1

Previous Multivariate GCD Algorithms

Let G = > . gi(x1,...,x,)x) and let t; = #g; be the number of terms in g; and let
t = max;t;. Generally, we want to minimize the number of images required for
interpolation since evaluations typically represent the bottleneck step. Below 1s a
table of previous multivariate GCD algorithms:

Year Author(s) Randomness # of Images
1971 Brown [3] Deterministic/,  O(d")
1979 Zippel [6] Probabilistic  ~ O(ndt)

1988 | Ben-Or/Tiwari [2] Probabilistic O(t)

We present a modified version of Ben-Or/Tiwari’s algorithm [2] that also requires
only O(t) images. Unlike Ben-Or/Tiwari’s algorithm however (which requires that
we choose p to be bigger than p?, where p, is the n™ smallest prime), our approach
only requires that p > d".

Overview of our Multivariate GCD Algorithm
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The Kronecker Substitution

Given any F'(xo, 21,...,2,) € Zylzo, x1,...,T,], fix some m > deg F'. Then we

define the Kronecker substitution of F' to be:

AN
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Notice that the Kronecker substitution allows us to map a GCD computation modulo
p in n + 1 variables 1nto just 2 variables. Furthermore, observe that we can recover

F' from F' (since m > deg F'). Unfortunately, there are certain values of m that
represent “‘unlucky” Kronecker substitutions. For example, consider:

2 2 3 2
A =x;— xix) B =xy+ 125 m =4

Notice that G = ged(A, B) = ged(2? — yb, 2° + y°) = = + ¢° while the true GCD is
G = ged(A, B) = 1. In this case, it is impossible to recover G from G. Fortunately,
we can prove that there are only finitely many m > d for which the Kronecker
substitution fails in this way.

The Evaluation Points
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degx

Z fily ZE — Zuzx“M

dense format

sparse format

where s = #ﬁ is the number of terms in F' and M;(y) = y" are called the monomi-
als. We want to evaluate I at y = o foreach j € {1,...,2t}.

At first, we did this by evaluating the monomials one at a time using simple binary
powering. Since deg, F < (d 4 1)", this required a total of O(stn log d) multiplica-
tions 1n Z,. However, since evaluation turned out to be the bottleneck of the entire
GCD algorithm, we decided to use a different technique.

Notice that M;(a’) = (o) = () = (M;(«))’. Hence, if we compute [ =
Mi(),. .., M) € Z; in O(slogd) multiplications, then we can compute the
next F'(z, o) from F(z, /) using only s multiplications so that this step requires
a total of O(slogd + st) multiplications in Z,. Note however that this makes the
evaluations serial. To parallelize this for N cores, we use a baby-step giant-step
algorithm.

Sparse Interpolation via A;(z)

Given the points (o, g;;) for j € {1,...,2t}, we want to interpolate the sparse
polynomial g;(y) = 22:1 cr.My(y) where t; = #g; and ¢, € Z; and M.(y) = Tl
That is, we seek each ¢, and dj. To this end, let m; = M(a) = o and consider
the linear generator defined by:
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We could obtain each )\, from the (a’, g;;) by solving a linear system in O(¢”) arith-
metic operations in Z,. Instead, we obtain the A\, by using an extended Euclidean
version of the Berlekamp-Massey algorithm [1], which only takes O(t*) operations.
We then compute each of the roots m; via Rabin’s Las Vegas algorithm [5] in
O(t*log p) operations.

Discrete Logarithms

For each of the ¢; roots m;, = o, we want to efficiently compute the discrete log-

arithm given by d;, = log, my in Z,. In general, this 1s very difficult (many people
suspect that 1t 1s NP-hard, and the security of the Ditfie-Hellman key exchange pro-
tocol from cryptography relies on this). However, for Fourier primes of the form
p = 2"q + 1 with ¢ sufficiently small, the problem is no longer intractable.

By using the Pohlig-Hellman algorithm [4], we can compute each d; using only
O(4/q + rlog ) operations in the cyclic group Z;. This choice for p also means that
we can apply the Fast Fourier Transform inside Z, to accelerate Rabin’s algorithm
from O(t*logp) to O(tlogtlogp). Note that to ensure that the m; are distinct, we
require that p > deg, G. We may use deg, G < min{deg, A ,deg, B I3

Shifted Transposed Vandermonde Systems

To solve for the unknown coefficients ¢, we solve the shifted transposed Vander-
monde system

myp Mmoo TNy C1 gi1
2 2 2
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t t t

_m1 m2 * e mt_ _Ct_ _git_

By taking advantage of its structure, we can accomplish this by using only O(¢*)
arithmetic operations in Z, and O(t) space (see Zippel [6]).

Parallel Implementation and Benchmarks

We have implemented our algorithm in Cilk C, a parallel extension of C which has
been adopted by Intel for the Intel C compiler. We have parallelized the evaluations,
and we interpolate the coefficients g;(y) of G in parallel. Since our algorithm re-
quires that p > d", we have implemented our algorithm for 31-bit and 63-bit primes,
and we are working on a 127-bit prime implementation.

To assess our algorithm’s performance, we compared it with the implementation
of Zippel’s algorithm in Maple and a Hensel Lifting algorithm in Magma. The
following timings are in CPU seconds:

3 variables 6 variables
#G  d|1 core 8 cores| Maple Magma 1 core 8 cores| Maple Magma
1000 10 0.062 0.015] 0.076 0.08 1.306 0.232] 35.61 3.38
2000 207 0.238  0.048  0.385 0.89 2.585 0.488] 166.50 137.76
b000 50| 1.231 0.270 5.174  20.000 6.623 1.239 1338.18 8527.85
10000 100 3.628 0.770) 72.461 228.84 13.239 2.459 5310.27 —
20000 2001 7.094  1.666/693.088 3003.23/26.610 4.915 — —
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