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Figure 1: cross section of a river. measured data point: (z,d, v)

River flow (discharge) 1s the volume of water which flows through a cross section of a river
per unit of time. It is commonly expressed in cubic meters per second. The data values
(x,d, v) in Figure 1 mean at position x, the river is d meters deep, and the average velocity
at position x is v m/s. The velocity is measured at a depth of 40% from the river bed. In
deeper rivers(> 0.75 meters), we take the average of the two velocities at depths 20% and
80%.

In general, river flow 1s computed by multiplying the area of the cross section by the
average velocity of the water in that cross section. The main goal of this project is to
find accurate methods to calculate the river discharge from data measurements. We have
researched and studied the existing methods, and developed new approximation methods.

Methods Used 1n Practice
A Trapezoidal Rule Estimate
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Figure 2: trapezoidal rule. measured data point: (z, d, v)

flow i a section =~ trapezoid area X average velocity in that section
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Figure 3: midpoint rule. measured data point: (z, d, v)

flow i a section =~ rectangle area x average velocity in that section
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Exact River Flow

If we had analytical functions d(x) for the depth at position x, and v(x) for the velocity at position z,
then the total flow from Calculus is given by the integral on the interval |x(), z,).

exact total flow = f;i)” d(x) x v(x)dx

However, in practice we have a finite number of data measurements so we use approximation meth-
ods.

Piecewise Approximation Method

Our approach used piecewise approximation. It involved estimating river flow by first generating the
approximate d;(x) any v;(x) separately on a sequence of intervals. Then it applied the composite
numerical integration to find the approximate flow.

estimated total flow =) f;ﬁ di(z) X v;(x) dx

The following three methods are the approximate methods to find the d;(x) and v;(x).

New Trapezoidal Rule

We noticed that the Trapezoidal rule 1s biased; it underestimates the flow on each section when the
depth and velocity on one side 1s lower than the other side of the section. This 1s because there 1s
more flow on the deeper faster side. To correct this bias we compute for a section (xL,dL,vL) to
(xR, dR,vR) a formula for the following integral

(xR — xL)

TR
flow in section = / D(x)V(x)dx = X (2dLvL + dLvR + dRvL + 2dRvR)
xL

where D(z) = dL + (dR —dL)/(xR — xL)x is the linear interpolant for the depth on the section and
V(z)=vL+ (vR—vL)/(xR — xL)x is the linear interpolant for the velocity.

Simpson’s Rule

Instead of approximating the depth and the velocities by straight lines, Simpson’s rule approximates
the depth and velocity on two sections, so three consecutive points, with a quadratic polynomial.
Those three points are not necessarily equally spaced. The formula 1s complicated but easily com-
puted with Maple.

Quartic Rule

An even more accurate rule 1s to interpolate five consecutive points with a quartic polynomial for the
depth d(x) and velocity v(x). Again the formulas, although complicated, are easily computed using
Maple’s interp command as follows:

interp([2, Tit1, Ti+2, Tit3s Titals [di, dip1, divo, digs, dital).

Experimental Data

To measure the accuracy of the methods we chose functions for the depth d(x) and velocity v(x) for
which we can compute the exact flow using Flow = | ;O "d(z)v(x)dx.

Sample Data 1: Equally Spaced Intervals
1

River Flow Computation Using Composite Numerical Integration

Casie Bao Michael Monagan Department of Mathematics, Stmon Fraser University, British Columbia.

Sample Data 2: Equally Spaced Intervals(Sine Functions)

NSERC
CRSNG

d(x) = sin (W<x+20>> v(x) = sin (W(xJFQO)) for —20 <ax <20
40 40
Trapezoid Midpoint New Trap Simpson’s Quartic

n error ratio error ratio error ratio error ratio error ratio
4 2.0928932 341 0.0000000 NA | 1.9526214 3.41| 0.2287638 5.83| 0.0078731 NA
8 0.7612047 3.84| 0.0000000 NA 0.5074698 3.85 0.0154515 14.8| 0.0014386 5.47
16 0.1921472 3.96| 0.0000000 NA | 0.1280981 3.97| 0.0009845 15.7| 0.0000237 60.4
32 10.0481527 3.99| 0.0000000 NA| 0.0321018 3.99| 0.0000618 15.9| 0.0000004 63.1
64 10.0120454 4.00| 0.0000000 NA| 0.0080302 4.00| 0.0000039 15.9/ 0.0000000 63.8
128 0.0030118 4.00 0.0000000 NA | 0.0020079 4.00| 0.0000002 16.0/ 0.0000000 63.9
256 10.0007530 4.00| 0.0000000 NA  0.0005020 4.00 0.0000000 16.0| 0.0000000 64.0
512 10.0001882 4.00| 0.0000000 NA| 0.0001255 4.00| 0.0000000 16.0] 0.0000000 64.0
10241 0.0000471 4.00 0.0000000 NA| 0.0000314 4.00| 0.0000000 16.0| 0.0000000 64.0

Table 2: Exact Flowzfggo d(z)v(z)dz = 20 m3/s

Sample Data 3: Randomly Spaced Intervals

Data points x; are taken at random from the middle half of each interval to simulate realistic data.

For this experiment —20 < x < 20 and

d(z) = sin (4—107T(x + 20)) v(z) = G i 108(—;1;4 + 1523 + 10022 — 60002 + 1.2 x 10°)(x + 1000)
Trapezoid Midpoint New Trap Simpson’s Quartic
n error ratio error ratio error ratio error ratio error ratio
4 3.1622248 2.87| 0.3892531 8.74| 2.2178991 3.11| 0.3774289 7.29| 0.1155416 NA
8 0.6857692 4.61 0.1007413 3.86| 0.4733846 4.66| 0.1084517 3.48| 0.0150185 7.70
16 0.1723907 3.98| 0.0090092 11.2) 0.1166641 4.06| 0.0078219 13.9| 0.0005089 29.5
32 10.0432944 398 0.0011178 7.73] 0.0291405 4.00 0.0004769 16.4| 0.0000080 63.7
64 0.0104214 4.15| 0.0002130 5.52| 0.0070291 4.15| 0.0000157 30.4| 0.0000002 51.3
128 10.0026366 3.95| 0.0000581 3.73 0.0017595 4.00| 0.0000033 4.80 0.0000000 51.4
256 10.0006617 3.98 0.0000065 8.97| 0.0004421 3.98| 0.0000003 11.4  0.0000000 92.1
512 0.0001663 3.98  0.0000008 7.97 0.0001110 3.98| 0.0000000 13.6] 0.0000000 40.8
1024 0.0000412 4.04 | 0.0000002 3.94 0.0000274 4.05| 0.0000000 17.7| 0.0000000 27.1

d(z) = oo(x=20)(z+20)  v(z) = TR 109(51,2—400)(:52—1600)(332—3600) for —20 < z < 20
Trapezoid Midpoint New Trap Simpson’s Quartic
n error ratio error ratio error ratio error ratio error ratio
4 2.9661011 3.46| 0.0071167 36.7| 1.9797733 3.50 0.1672730 6.41| 0.0070547 NA
8 0.7676737 3.87 0.0003265 21.8] 0.5112671 3.87| 0.0122843 13.6| 0.0010058 7.01
16 0.1932586 3.97 0.0000187 17.5 0.1288453 3.97| 0.0007892 15.6| 0.0000201 50.1
32 10.0484130 3.99 0.0000011 16.4] 0.0322757 3.99 0.0000496 15.9| 0.0000003 60.7
64 0.0121094 4.00 0.0000001 16.1 0.0080730 4.00| 0.0000031 16.0] 0.0000000 63.2
128 10.0030277 4.00 0.0000000 16.0 0.0020185 4.00| 0.0000002 16.01 0.0000000 63.8
256 [0.0075696 4.00 0.0000000 16.0) 0.0005046 4.00| 0.0000000 16.0] 0.0000000 64.0
512 0.0001892 4.00 0.0000000 16.0) 0.0001262 4.00| 0.0000000 16.0| 0.0000000 64.0
1024 0.0000473 4.00 0.0000000 16.0 0.0000315 4.00| 0.0000000 16.0| 0.0000000 64.0

Table 1: Exact Flow = [20, d(z)v(z)dz = 20.26102293 m?/s

Table 3: Exact Flow = [20, d(z)v(z)dz = 15.60866260 m?/s.

Analysis and Remarks

(1) Experimental Error: As the table[1] indicated, we conclude that:

Trapezoidal - O(h?)
New Trapezoidal :  O(h?)
Midpoint : O(h™)
Simpson : O(hh)
Quartic : O(hY)

where h represents the width of the interval. We were surprised by how good the simple midpoint
rule 1s.

(2) We noticed that if we use the sine function for both the depth and velocity, that is, d(x) = sin (W—x)

w
: X . . . .
and v(x) = sin (—) where w is the width of the river, and the data points xy = 0, x1, z9, ..., Ty, = W

are equally spaced, then the error of the Midpoint rule 1s always zero! This 1s because of the following
identity

w
/ sin’ (W—x) dr = % (exact flow)
0
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