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Computing polynomials using black box representation
Garrett Paluck. Department of Mathematics, Simon Fraser University, British Columbia.

Mathematical Operations
Common manipulations (simplify,
factor, expand,…) Right-click expression and select from menu

Solve equations Right-click equation Solve

Solve numerically (floating-point) Right-click equation Numerically Solve 

Solve ODE Right-click DE expression Solve DE Interactively

Integrate, differentiate Right-click expression Integrate or Differentiate

Evaluate expression at a point Right-click expression Evaluate at a Point

Create a matrix or vector Matrix palette Choose Insert

Invert, transpose, solve matrix
Right-click matrix Standard Operations select
Inverse, Transpose, ...

Evaluate as floating-point Right-click expression Approximate

Various operations and tasks Use Task Templates: Tools Tasks Browse

Expressions vs. Functions
Operations Expression x2+y2 Function (operator) g(x,y) = x2+y2

Definition !"#$"%&'"(")&'* +"#$",%-)."/0""%&'()&'*

Evaluate at x=1, y=2 1234,!-"5%$6-)$'7.*"produces 5 +,6-'.*"produces 5

3-D plot for x from 0 to 1, y from 0 to 1 849:;<,!-%$=>>6-)$=>>6.* 849:;<,+,%-).-%$=>>6-)$=>>6.*

Conversion to other form
!'"#$"?@3884),!-%-).*

!',6-'.*

produces 5

+'"#$"+,%-6.*""

+'"("A*

produces x2+1+z

Units and Tolerances

Add units to value or expression
Place cursor to right of quantity. Use Units (SI) or 
Units (FPS) palette or right-click Units Affix unit.

Add arbitrary unit from Units (SI) or Units (FPS) palette and
enter desired unit

Simplify units in an expression Right-click expression Units Simplify

Convert units Right-click expression Units Convert

Enable automatic units simplification BC:D,E@C:F5G:3@<3H<7.*

Enable tolerance calculations BC:D,I941H3@J1F.*

Tolerance quantity in 2-D Math !"#$ %&% for 9 ± 1.1

Tolerance quantity in 1-D Math K"L(/"6>6* for 9 ± 1.1

Input and Output
Interactive data import assistant Tools Assistants Import Data

Import audio or image file Tools Assistants Import Data

Code generation (C, FORTRAN,
Java, Visual Basic®, MATLAB®)

Right-click expression Language Conversions. 
See ?CodeGeneration for help and details.

Publish document in HTML, PDF,
LaTeX, or Microsoft® Word-RTF

File Export As select HTML, PDF, LaTeX, 
or Rich Text Format

Select Interactive Tools and Utilities
Quick introductory tour Help Take a Tour of Maple

Show available task templates Tools Tasks Browse

Plot Builder
Right-click expression Plots Plot Builder, 
or Tools Assistants Plot Builder

ODE Analyzer Tools Assistants ODE Analyzer

Data Analysis Assistant Tools Assistants Data Analysis

Unit Conversion utility Tools Assistants Units Calculator

Back-Solving Assistant Tools Assistants BackSolver

Apply numeric formatting Right-click expression Numeric Formatting

Maple Portal Help      Manuals, Resources and more 
Maple Portal

Manuals Help Manuals, Resources, and more Manuals

Graphing Calculator Interface Installs as separate program. Launch from Start
Maple Maple Calculator

Interactive education tutors for 
topics in Calculus, Precalculus, 
and Linear Algebra

Tools Tutors
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Important Maple Syntax
#$ Assignment 3#$'*"M#$;(%*"J#$3(M* produces 5 + x for J

$ Mathematical equation F9421,'N%"("3"$"6-%.* produces x =
1-a
—
2

$ Boolean equality C!"3"$"="":D1@"O

Suppress display of output Terminate command with a colon, e.g. 6===P"#

[ ]  List (ordered) A#$5J-"M-"37*"A567* produces c

{ } Set (unordered, no duplicates) Q3-"M-"3-"JR* produces {a,b,c }

Display help on topic S:98CJ
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Plotting and Animation
Plot an existing expression - click expression Plots Plot Builder

Plot new expression Tools Assistants Plot Builder

Add new expression to existing plot Highlight and drag expression into plot

Add annotations to plots Click on plot, then on the toolbar

Animation and parameter plots for 
functions of several variables

Right-click expression Plots Plot Builder
and select a plot type

!"#$%&'(&)*+,-&.%/%0%1,%&2"03& Windows® version

In science, computing, and engineering, a black box is a de-
vice, system or object where the inputs and outputs are ob-
servable, but the functionality of the black box is not. Here,
a black box is a computer program (procedure) that outputs
a value, but we cannot view the code.

Algorithm Descriptions
Let f ∈ Z[x1, x2, ..., xn]. In our implementation of the black
box, we create a procedure which simulates the black box.
The black box receives integer input for n variables and a
prime p, and outputs an integer in Zp. See figure 1 below.

Figure 1:BB Concept

Using this evaluation procedure, we wish to successfully im-
plement the four following functions:

• isBBZero - Checks whether f is the 0 polynomial.

• degBB - Outputs the total degree of the polynomial f , or
the maximum degree of one of the n variables.

• suppBB - Outputs the support, i.e. the monomials of f ,
{M1,M2, ...,Mt}.
• sintBB - Outputs the polynomial f , f =

∑t
i=1 aiMi.

We require several variables for algorithm functionality and
analysis. Let BB represent the unknown polynomial f , D be
a degree bound of f , T be a term bound on f , and H be a
height bound of f .

The BB procedure consists of 2 major operations: evaluating
the n variables in f and preforming modular division using
a prime p. For analysis, will count the number of calls to the
black box BB.

Algorithm Analysis
isBBZero

This procedure determines if f is the zero polynomial. We
accomplish this by evaluating f at α ∈ Sn where S=[0, p−1]
and p is a prime. We then evaluate BB(α) mod p and verify
whether the results are 0 for multiple primes. The pseudo-
code for the algorithm is below.

Input: BB,D,H ,ε D ≥ deg f , H ≥ ||f ||
Output: true/false
n← # variables
error← 1
M ← 1
while error > ε do
j ← 1
pj ← random prime ∈ [1010, 2 · 1010]
pick α ∈ Znp at random
evalj ←BB(α) mod p ← O(BB)
while M ≤ 2H do
j ← j + 1
pj ← random prime ∈ [1010, 2 · 1010]
M ←M · pj
pick α ∈ Znp at random
evalj ←BB(α) mod p ← O(BB)

end
eval1← Use CRT using evaluation points and
corresponding primes ← O( logH

log(D
p )
)

if eval1 6= 0 then
Return false

end
error← error·(D/p1p2...pj)

end
Return true

Algorithm 1: isBBZero Algorithm

Consider when a nonzero polynomial would evaluate to 0. Firstly,
when a prime p divides every co-efficient of the determinant poly-
nomial. To avoid this, if p < 2H , then we can use the Chinese
Remainder Theorem with multiple primes. Secondly, we must
consider when BB(α1, α2, ...αn) mod p = 0. By the Schwartz-
Zippel Lemma, Prob[BB(α1, α2, ...αn) mod p = 0] ≤ deg f

|S| = D
|Zp|

= D
p . By using multiple primes we can reduce the probability of

selecting bad evaluation points to within an error bound ε.

The algorithm is restricted by procedure BB. Assuming that |log
H| < |log ε|, there will be approximately log ε/ log(Dp ) evaluation
points. So, this algorithm has a time complexity of ( log ε

log(Dp )
)O(BB).

degBB

We can use a similar method to find the total degree d of f . Let
α ∈ Sn, S = [0, p−1]. We evaluate BB at D+1 unique evaluation
points, then interpolate a univariate polynomial of degree d.

Input: BB,D D ≥ deg f
Output: total degree d of f
n← # variables
p← random prime ∈ [1010, 2 · 1010]
pick α ∈ Znp at random
C← BB(iα) mod p, i = 0, 1, 2, ..., D ← (D + 1)O(BB)
E← Interpolate C with evaluation points 0,1,2,...,D
← O((D + 1)2)

Return d← max degree of E
Algorithm 2: degBB Algorithm

For the probabilistic analysis of procedure degBB, consider The-
orem 1.

Theorem 1. Let f ∈ Z[x1, x2, ..., xn] with total degree d and
α ∈ Sn at random where S ⊂ Z. If g(y) = f (α1y, α2y..., αny)
and S=[0, p− 1], then Prob[deg g(y) < d] ≤ D

p .

Proof. g(y) = f (α1y, α2y..., αny)

= fd(α1y, α2y..., αny) +
∑d−1

i=0 fi(α1y, α2y..., αny)

We are examining the Prob[deg g(y) < d], so we need only ob-
serve the sum of monomial terms of degree d.

fd(α1y, α2y..., αny) =
∑t

j=1 aj(α1y)
e1j(α2y)

e2j...(αny)
enj

= yd
∑t

j=1 aj(α1)
e1j(α2)

e2j...(αn)
enj = ydfd(α1, α2..., αn)

The degree of g(y) is less than d, when ydfd(α1, α2..., αn) =
0. As we are in a field, ydfd(α1, α2..., αn) = 0 when either
yd = 0 or fd(α1, α2..., αn) = 0. As we are in the field Zp,
yd mod p 6= 0 unless y = 0. By the Schwartz-Zippel Lemma,
Prob[fd(α1, α2..., αn) = 0] ≤ deg f

|S| .

So, Prob[deg g(y) < d] = Prob[fd(α1, α2..., αn) = 0]
≤ deg f

|S| = d
Zp =

d
p ≤

D
p

This algorithm has a probability to fail when the interpolated
polynomial has a degree less than the total degree. Using Theo-
rem 1, Prob[deg g(t) < d] ≤ degf

|S| = d
p <

d
1010. As d will be much

smaller than 1010, we can say with high probability that the algo-
rithm will output the total degree successfully. The algorithm’s
run time is dominated by having to call BB (D+1) times, so that
algorithm has a running time of D·O(BB).

suppBB

This procedure will find the support of f, {M1,M2, ...,Mt}. We
adapt Ben-Or/Tiwari’s Interpolation algorithm[1] to calculate the
support and the Berlekamp-Massey algorithm for finding the min-
imum polynomial in a field[3].

Input BB,D,T D ≥ deg f , T ≥ #f
Output A
n← # variables
q← prime such that q > pDn
Vi← BB(α) mod p, i = 0..2T − 1 ← 2T ·O(BB)
λ← Berlekamp-Massey Algorithm(V, q, z)∈ Zq[z] ← O(T 2)
R← Roots(λ) ← O(T 2 log q)
t← # roots of R
for i=1 to t do

factor Ri over Z, Ri←
∑n

j=1 p
αj
j ← O(TD)

Mi←
∑n

j=1 x
αj
j

end
A← [M1,M2, ...,Mt]
Return A

Algorithm 3: suppBB Algorithm

This is a deterministic algorithm, so it will always output the sup-
port successfully. The number of arithmetic operations is dom-
inated from having to call BB 2T times and having to find the
roots of a polynomial R using Rabin’s factoring algorithm. The
algorithm requires 2T ·O(BB) arithmetic operations.

sintBB

This procedure will find the coefficients and monomials of f . First,
it uses suppBB to calculate the monomial terms, then uses Zip-
pel’s Algorithm[4] for solving transposed Vandermonde systems
in O(T 2) to find the coefficients.

Input BB,D,T,H D ≥ deg f , T ≥ #f,H ≥ ||f ||
Output k
M ← suppBB(BB,D,T ) ← O(suppBB)
n← # variables, t← # terms in M
for i=1 to t do
Mi←Mi(2, 3, 5, ..., pn)

end
while true do
qm← random prime ∈ [262, 263], q > pD

n

vi←BB(2i, 3i, ..., pin) mod p, i = 0..t− 1 ← T ·O(BB)
g ← (z −M1)(z −M2)...(z −Mt)
si← g/(z −Mi) mod q, i = 1..t

Ri← si(z)
si(Mi)

mod q, i = 1..t

V −1i,j ← coeff(Ri, z, j − 1)
A← V −1 · v ← O(T 2)
k ←

∑t
i=1AiMi ∈ Zq[x1, x2, ..., xn]

Preform the Chinese Remainder Theorem mod qm on k until
the product of primes exceeds 2H

Return k
end

Algorithm 4: sintBB Algorithm

This is a deterministic algorithm, so it will always output the sup-
port successfully. The number of arithmetic operations is domi-
nated from having to call BB, so this algorithm has the same run
time: T ·O(BB).

Example
We have implemented every algorithm described in Maple. For our
implementation, we have created anm×mmatrix of polynomials,
and BB evaluates the matrix at α ∈ Znp , then takes the determinant
of the matrix modular some prime p. This process takes O(m3 +
m2TD) Please consider the following matrix:

BB = det(

[
−69 x1 3x2 7 62 x1

5x2
3

−68 x1 4x2 12x3 2 84 x1 2x2 10x3 6

]
)

Let D = 30, T = 10, H = 10000, and ε = 10−50

isBBZero(B,D,H ,ε) = false
degBBZero(B,D) = 28
suppBB(B,D, T ) = [x51x

17
2 x

6
3, x

9
1x

15
2 x

2
3]

sintBB(B,D, T,H) = −5796x51x172 x63 + 4216 x91x
15
2 x

2
3
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