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In science, computing, and engineering, a black box is a de-
vice, system or object where the inputs and outputs are ob-
servable, but the functionality of the black box 1s not. Here,
a black box 1s a computer program (procedure) that outputs
a value, but we cannot view the code.

aluck.

Algorithm Descriptions

Let f € Z|x1, 2o, ..., ,]. In our implementation of the black
box, we create a procedure which simulates the black box.
The black box receives integer input for n variables and a
prime p, and outputs an integer in Z,. See figure 1 below.

p =52l
1

Black Box BB

v\ f ez, x, .. 1) — f(3,4,...1) mod 521 = 213

Figure 1:BB Concept

Using this evaluation procedure, we wish to successfully 1m-
plement the four following functions:

e isBBZero - Checks whether f is the O polynomial.

e degBB - Outputs the total degree of the polynomial f, or
the maximum degree of one of the n variables.

e suppBB - Outputs the support, i.e. the monomials of f,
{ My, M>, ..., My}

¢ sintBB - Outputs the polynomial f, f = Zzzl a; M,;.

We require several variables for algorithm functionality and
analysis. Let BB represent the unknown polynomial f, D be

a degree bound of f, 7" be a term bound on f, and H be a
height bound of f.

The BB procedure consists of 2 major operations: evaluating
the n variables in f and preforming modular division using

a prime p. For analysis, will count the number of calls to the
black box BB.

Algorithm Analysis

isBBZero

This procedure determines if f is the zero polynomial. We
accomplish this by evaluating f at a € S” where S=|0, p—1]
and p is a prime. We then evaluate BB(«) mod p and verify
whether the results are O for multiple primes. The pseudo-
code for the algorithm 1s below.
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Input: BB,D, H e
Output: true/false

n <— # variables

error <— 1

M + 1

while error > € do
J 1

p; < random prime € [10',2 - 10"]

pick a € Z; at random

eval, < BB(a) mod p

while M < 2H do

J<J+1

p; < random prime € [10',2 - 10"]

M +— M - D;

pick a € Z; at random

eval; <~ BB(a) mod p

end

eval; <— Use CRT using evaluation points and
corresponding primes

if eval; # 0 then
- Return false

end

error <— error-(D/pps...p;)
end

Return true

D >deg f, H > ||f]]

<+ O(BB)

Algorithm 1: isBBZero Algorithm

Consider when a nonzero polynomial would evaluate to 0. Firstly,
when a prime p divides every co-efficient of the determinant poly-
nomial. To avoid this, if p < 2H, then we can use the Chinese
Remainder Theorem with multiple primes. Secondly, we must
consider when BB(ay, ao, ...a;;) mod p = 0. By the Schwartz-

Zippel Lemma, Prob[BB(a;, s, ...a;,) mod p = 0] < df§|f= @%

= %. By using multiple primes we can reduce the probability of
selecting bad evaluation points to within an error bound e.

The algorithm is restricted by procedure BB. Assuming that |log
H| < |log €|, there will be approximately log ¢/ log(%) evaluation

points. So, this algorithm has a time complexity of (li‘;% Q€>)O(B B).

p

degBB

We can use a similar method to find the total degree d of f. Let
a € 5" S=|0,p—1|. We evaluate BB at D + 1 unique evaluation
points, then interpolate a univariate polynomial of degree d.

Input: BB,D D > deg f
Output: total degree d of f
n <— # variables
p < random prime € [10', 2 - 10%]
pick a € Z; at random
C + BB(ia) mod p,2=0,1,2,..., D — (D +1)O(BB)
E < Interpolate C with evaluation points 0,1,2,...,D
«— O((D + 1)

Return d < max degree of E
Algorithm 2: degBB Algorithm

For the probabilistic analysis of procedure degBB, consider The-
orem 1.
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Theorem 1. Let f € Z|x1, xs, ..., x,] with total degree d and

a € S" at random where S C Z.. If g(y) = f(a1y, any..., apy)
and S=[0, p — 1], then Prob[deg g(y) < d] < %.

Proof. g(y) = f(oqy, agy..., Oény)
d—
= falauy, aoy..., any) + Zz’:()l filawy, aoy...; y)

We are examining the Prob[deg g(y) < d], so we need only ob-
serve the sum of monomial terms of degree d.

fd(a1y7 aoly..., Ckny) — Z;Zl aj(gly)aj(azy)egj.“(O{ny)em

= y' 3 aj(a) (@) ()™ =y falon, ag..., )

The degree of g(y) is less than d, when yf (a1, co..., o) =
0. As we are in a field, y?fs(cy, as..., ;) = 0 when either
yd = 0 or fylay,a0...,ap,) = 0. As we are in the field Z,,
y? mod p # 0 unless y = 0. By the Schwartz-Zippel Lemma,

Prob[ fy(aq, as..., ) = 0] < deg f

— |5
So, Prob[deg ¢g(y) < d] = Prob| fs(a1, as..., a;) = 0]
< deg f _d _d < D
— ‘S‘ Zp p — D

This algorithm has a probability to fail when the interpolated
polynomial has a degree less than the total degree. Using Theo-

rem 1, Prob[deg ¢g(t) < d] < UTTg‘f = ]C—f < 45 As d will be much
smaller than 10", we can say with high probability that the algo-
rithm will output the total degree successtully. The algorithm’s
run time is dominated by having to call BB (D + 1) times, so that

algorithm has a running time of D-O(BB).

suppBB

This procedure will find the support of f,{ My, Ms, ..., M;}. We
adapt Ben-Or/Tiwar1’s Interpolation algorithm[1] to calculate the
support and the Berlekamp-Massey algorithm for finding the min-
imum polynomial in a field[3].

Input BB,D., T
Output A

n <— #* variables
g < prime such that g > pf??

Vi< BB(a) mod p,7=0.2T —1 < 2T - O(BB)
A < Berlekamp-Massey Algorithm(V, ¢, 2)€ Z,[z] + O(T?)
R <+ Roots(\) «— O(T%log q)
t < #£ roots of R

for i=7/rotdo

factor R; over Z, R; < > | p;’
M; + 2?21 ZC?]

end

A [Ml, MQ, ey M, ]

Return A

D >degf, T > #f

<~ O(TD)

Algorithm 3: suppBB Algorithm

This 1s a deterministic algorithm, so it will always output the sup-
port successfully. The number of arithmetic operations 1s dom-
inated from having to call BB 27" times and having to find the
roots of a polynomial R using Rabin’s factoring algorithm. The
algorithm requires 27" - O(BB) arithmetic operations.

sintBB

This procedure will find the coefficients and monomials of f. First,
it uses suppBB to calculate the monomial terms, then uses Zip-

pel’s Algorithm[4] for solving transposed Vandermonde systems
in O(T?) to find the coefficients.

Input BB,D, I’ H
Output £
M < suppBB(BB,D, 1)
n <— # variables, t <— # terms in M
for i=/ ro t do
Mi < MZ(Q, 3, 5, ,pn)
end
while frue do
¢ < random prime € [2%,2%] ¢ > p?

D>deg f, T >+#f, H>||f|

< O(suppBB)

v; <BB(2",3",....,p") mod p,i =0..t — 1 + T - O(BB)
g+ (z— M)z — My)...(2 — M)

si < g/(z— M;) mod q,i =1..t

R; < ;&% mod q,7 = 1..t

Vo' <= coeff(R;, z,j — 1)

A« V1o «— O(T?)

k < 2221 A M, € Zq[iﬁl, Lo, ..., Zl?n]
Preform the Chinese Remainder Theorem mod ¢, on £ until

the product of primes exceeds 2H

Return £
end

Algorithm 4: sintBB Algorithm

This 1s a deterministic algorithm, so it will always output the sup-
port successfully. The number of arithmetic operations 1s domi-
nated from having to call BB, so this algorithm has the same run

time: T - O(BB).

Example

We have implemented every algorithm described in Maple. For our
implementation, we have created an m X m matrix of polynomials,
and BB evaluates the matrix at o € ZZ, then takes the determinant
of the matrix modular some prime p. This process takes O(m*> +
m?T D) Please consider the following matrix:

—69 %%, 62 x:° 10"
BB = det( o .

—03 X 4$212ZE32 84 $]2£E21021336

Let D=30,7 =10, H=10000, and ¢ = 10~°Y
1sSBBZero(B, D, H ,e) = false

degBBZero(5, D) =28

suppBB(B, D, T) = [xx3 28, vzl 23]

sintBB(B, D, T, H) = —5796 2323 x5 + 4216 xi2 3
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