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Introduction

Given an undirected graph G = (V, F), we can associate with
it a bivariate polynomial T'(G, x,y) called the Tutte polynomial
which gives information about certain connectivity properties of
the graph. It 1s a graph invariant that 1s a generalization of the chro-
matic polynomial, reliability polynomial, and other related graph
polynomials. The Tutte polynomial has applications in knot theory,
theoretical computer science, statistical physics, and chemistry.

Definition (Tutte [3]). Let GG be an undirected graph. Let e = (u, v)
be an edge in G. Let G — e denote the graph obtained by deleting
e and let G / e denote the graph obtained by contracting e, that is,
first deleting e then joining vertices u and v.
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The Tutte polynomial, denoted 7'(G, x, y), is defined by

1 if GG has no edges,
T(G) rT(G /e) if e is a cut-edge in G,
yT(G —e) if eis aloop in G

T(G—e)+T(G/e) otherwise.

This definition yields a recursive algorithm to compute T'(G, z, y).
In general the algorithm will make an exponential amount of calls,
as computing the Tutte polynomial 1s NP-hard. Haggard, Pearce,
and Royle [1] developed a main strategy for reducing the computa-
tion time of the Tutte polynomial, which 1s to remember graphs that
have already been handled in the computation tree, and using that
information if an identical and/or 1somorphic graph 1s encountered
later. The question then becomes finding ways to select the edges
for deletion/contraction to maximize the isomorphic graphs seen,
as high in the computation tree as possible.

In [2], the first author found heuristics that significantly improved
the time needed to compute the Tutte polynomial of sparse graphs.
These heuristics include finding a short-arc (SHARC) ordering of
the vertices that the algorithm follows to choose the next edge, an
edge contraction scheme called VORDER-push which lowers the
average degree of the next vertex in the ordering, and using a canon-
ical graph representation that eliminates the need for an explicit 1so-
morphism test. Implementing these features in Maple, he was able
to find polynomial time algorithms for certain families of graphs.
The research presented here is an extension of his work.

—~
Maplesoft

Mathematics ¢ Modeling « Simulation

Identities and heuristics for computing the Tutte polynomial.
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Heuristics

We noticed that graphs with higher average degree and higher girth seem to be more
difficult to compute, so we modified the ordering to start in a region of the graph that
1s relatively sparse and has relatively short cycles. For each vertex, we ran a SHARC
ordering starting at that vertex, and then computed a score for that vertex based on the
degree sequence and nearby cycle/arc lengths of its ordering. Demonstrated below 1s a
comparison of vertex score with the computation time of the Tutte polynomial given a

SHARC ordering starting at that vertex, for a random biconnected graph on 30 vertices
and 50 edges.
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After selecting the vertex with the lowest score, we run the SHARC order again, with
the modification that if at one step we must choose between arcs of the same length, we
will pick the one with the lowest average score. We call this new ordering ModSHARC.

Identities

Further improvements can be made by finding identities that relate the Tutte polynomial
of a graph and 1ts subgraphs, giving us a natural way to parallelize the algorithm. For
example, consider this theorem from Tutte:

Theorem ([3]). Let G be a graph with with m blocks By, By, ...B,,. Then T(G, x,y) =
H;Zl T(BZ7 €, y)

We developed a similar 1dea for triconnected components. Shown below 1s an undirected,
biconnected graph G with a 2-separation (H, K'), separation pair u, v such that H, K are
connected. Let H™ be the graph obtained from H by adding the edge uv to H, and let
K’ be the graph obtained from K by identifying u, v.

Theorem 1. Let A(H) = (1 —2)T(H",z,y)+2T(H,x,y))/(x+y—xy) and B(H) =
(T(H",x,y) —yA(H))/x. Then T (G, z,y) = A(H)T(K',z,y) + B(H)T(K, z,y).

Benchmarks

We implemented the new ordering scheme in Maple, and computed the Tutte
polynomial of 200 random biconnected graphs for each pair n, m (number of
vertices/edges) in the table below. The data was collected 1n 8 batches of 25

graphs (simultaneously run unless indicated by parentheses) on a 2 x 8 core
2.2/3.0 GHz Intel Xeon computer with 64 GB RAM.

The first two columns are timings using ModSHARC, one version using only
degrees to calculate the vertex score, the other using a combination of degrees
and cycle lengths. The last column uses the SHARC ordering as implemented
in the current TuttePolynomial function in Maple.

DegScore Only CycleDegScore SHARC

n m avg med max | avg med max avg med max

24 40 0.89 0.73 3.08 1091 0.73 448 195 1.18 14.28

2745 2.64 1.75 3326 232 1.67 1485 | 6.72 434 72.09

30 50/ 7.92 4.08 98.48 @ 8.54 4.89 85.46 | 32.84 15.09 576.25
3355 23 11 393 27 12 511 | (692 49 58284)
36 60 (956 49 144790)| 227 53 9365 @ (4210 239 340320)

39 65 (2193 182 55095)
Timings (in seconds) for random graphs with n vertices and m edges using SHARC and
ModSHARC orderings.

To demonstrate where Theorem 1 would potentially have the most benefit,
we built 48 graphs with a 2-separation between a pair of random biconnected
graphs of equal size and computed the Tutte polynomial on a 3.2 GHz Intel
Core 17 computer with 64 GB RAM. Shown below are the ten slowest times.
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Timings (in seconds) of biconnected graphs with a 2-separation
(H, K) where |V(H)| = |V(K)| =32, |E(H)| = |E(K)| = 54
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