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Preface

This volume contains the proceedings of the Ninth Asian Symposium on Computer
Mathematics (ASCM 2009), held at the JAL Resort Sea Hawk Hotel, Fukuoka,
Japan, December 14–17, 2009, and the proceedings of the Tenth Asian Symposium
on Computer Mathematics (ASCM 2012), held at the Chinese Academy of
Sciences, Beijing, China, October 26–28, 2012. In both conferences, the contrib-
uted papers were selected by the Program Committee for presentation at the
symposium and went through a standard refereeing process after the symposium.
Both Program Committees had strong Asian participation, and the reviewing pro-
cess was aided by reviewers from around the world.

The ASCM 2009 was jointly held with the Third International Conference on
Mathematical Aspects of Computer and Information Sciences (MACIS 2009). The
invited speakers at the joint conference were Markus Rosenkranz, Toshinori Oaku,
Kokichi Sugihara, and Lihong Zhi. The ASCM 2012 had three excellent plenary
talks delivered by Erich Kaltofen, Markus Püschel, and Josef Schicho. This volume
also contains the extended abstracts provided by Erich Kaltofen and Josef Schicho
after the symposium.

In addition to the regular sessions, both ASCM 2009 and ASCM 2012 had
organized sessions presenting research of selected topics. The three organized
sessions of ASCM 2009 were “Digitizing Mathematics: From Pen and Paper to
Digital Content” organized by Volker Sorge and Alan P. Sexton, “Validated
Numerical Computation” by Mitsuhiro Nakao, and “Computational Algebraic
Number Theory” by Guenael Renault. The four organized sessions of ASCM 2012
were “On the Latest Progress in Verified Computation” organized by Lihong Zhi,
“Computational Geometry” by Jin-San Cheng, “Parametric Polynomial Computa-
tions” by Yosuke Sato, and “Differential and Difference Algebra” by Chun-Ming
Yuan.

We would like to express our gratitude to all those who have contributed to the
present volume and the organization of ASCM 2009 and ASCM 2012. We thank
the authors of the papers for contributing their work and the conference participants
for their presence. We also thank the organizers of the organized sessions for
presenting selected research topics and the invited speakers for accepting our
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invitations. We are very grateful to the Program Committee members and the
reviewers for their time and efforts in evaluating the submissions before and after
each conference. We especially thank both teams for the local arrangements, who
made the conferences successful and enjoyable. Last but not least, we thank Ziming
Li for his valuable assistance in the conference organization and the publication of
the proceedings. ASCM 2009 thanks Math-for-industry and Mathematical Research
Center for Industrial Technology at Kyushu University, Ehime Campus Information
Service, Cybernet, Japan Society for Symbolic and Algebraic Computation, Ma-
plesoft, and JAL Hotels for their financial support. ACSM 2012 gratefully
acknowledges the generous support of the Academy of Mathematics and Systems
Science and the Key Laboratory of Mathematics Mechanization at the Chinese
Academy of Sciences, the National Natural Science Foundation of China, Maple-
soft, Cybernet Systems China.

Previous ASCM meetings were held in Beijing, China (1995), Kobe, Japan
(1996), Lanzhou, China (1998), Chiang Mai, Thailand (2000), Matsuyama, Japan
(2001), Beijing, China (2003), Seoul, Korea (2005), and Singapore, Singapore
(2007). We hope that the ASCM continues to serve as a forum for participants to
present original research, learn of research progress and developments, and
exchange ideas and views on doing mathematics using computers.

Beijing, May 2014 Ruyong Feng
Antwerp Wen-shin Lee
Tokyo Yosuke Sato
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Part I
Invited Talks of ASCM2012



Symbolic Computation and Complexity Theory
Transcript of My Talk

Erich L. Kaltofen

Keywords Computational complexity · Exponential-time algorithms · Practicality

1 The Setting

I gave talks at the conference Alan Turing’s Heritage: Logic, Computation & Com-
plexity in Lyon, France on July 3, 2012, at the Pierre and Marie Curie University
(UPMC) Paris 6, France on July 17, 2012, and at the Tenth Asian Symposium on
Computer Mathematics (ASCM) in Beijing, China, on October 26, 2012 on the
complexity theoretic hardness of many problems that the discipline of symbolic
computation tackles. Here is a brief transcript of part of those talks.

1.1 NP-Completeness and Beyond

A fundamental problem of symbolic computation, that of solving systems of polyno-
mial equations, is easily shown to beNP-hard: x∨¬y ≡ (1−x)y = 0, x(x−1) =
0, y(y − 1) = 0, which shows how to encode a clause in a satisfiability problem as
polynomial equations.

This material is based on work supported in part by the National Science Foundation under
Grants CCF-1115772.

E.L. Kaltofen (B)

Department of Mathematics, North Carolina State University,
Raleigh, NC 27695-8205, USA
e-mail: kaltofen@math.ncsu.edu

© Springer-Verlag Berlin Heidelberg 2014
R. Feng et al. (eds.), Computer Mathematics, DOI 10.1007/978-3-662-43799-5_1
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4 E.L. Kaltofen

Real geometry, when the solutions of the polynomial systems are restricted to real
numbers, is by Tarski’s algorithm decidable. However, Fischer and Rabin [1] have
shown that the problem requires exponential space, 2Ω(n), where n is the number
of variables in the polynomials. Furthermore, Mayr and Meyer [2] have extended
the result to Polynomial Ideal Membership over the rationals, that is, they show
2Ω(n)-space hardness.

Finally, Fröhlich and Shepherdson [3] shows that there are fields K in which the
five arithmetic operations, namely addition, negation, multiplication, division, and
equality testing are computable but where factorization in K[x] is undecidable (“un-
entscheidbar”). The proof is based on the infinite tower of extensions by squareroots
of prime integers and the fact that

√
2 �∈ Q(

√
3,

√
5,

√
7,

√
11, . . .), for instance.

These are indeed formidable computational complexity theoretic barriers to the
discipline of symbolic computation.

1.2 Early Symbolic Computation Algorithms

Buchberger’s famous 1965 Gröbner basis algorithm tackles exactly these hard prob-
lems: it decides ideal membership and computes solutions to polynomial systems.
Berlekamp’s and Zassenhaus’s 1968 polynomial factorization algorithms work for
coefficients in finite fields and the rational numbers. Collins’s 1974 cylindrical alge-
braic decomposition algorithm performs Tarski’s quantifier elimination.

The pursuit of symbolic computation algorithms that solved these computational
hard problems in the early 1980s was ridiculed by some theorists as hopeless.

2 Cook’s Thesis

In his plenary talk at the ICM in Kyoto Cook [4], three function classes were intro-
duced:
polytime, the functions computable by polynomial-time algorithms,
NAT, functions arising from natural computational problems,
PracSolv, functions computable on an actual computer on all inputs of 10,000 bits
or less.

Stephen Cook then formalizes his thesis:
Thesis: PracSolv ∩ NAT = polytime ∩ NAT.
The notion that polytimecaptures the domain of efficiently computable functions

is ingrained in theoretical computer science. Many reductions in modern theoretical
cryptography make use of the device. Stephen Cook refines the notion to natural
functions. As an unnatural function he gives the example of 2�log n	1000 ∈ polytime,
that with high exponent of 1,000, and which he excludes from NAT.



Symbolic Computation and Complexity Theory Transcript of My Talk 5

As evidence in 1990 there were polynomial-time algorithms for linear program-
ming and for polynomial factorization over rational numbers. Polynomial identity
testing via the Zippel-Schwartz lemma was and is random polynomial time, and at
that time it was hypothesized that with randomization in polynomial-time algorithms
one could not reach beyond the class polytime. Today, results of Impagliazio and Ka-
banets raise more doubts. Indeed, already in 1990 polynomial factorization, even for
polynomials in many variables, was known to be in randomized polytime Kaltofen
and Trager [5]. Supersparse polynomial factorization algorithms would follow 15
years later Kaltofen and Koiran [6].

Richard D. Jenks had expressed some doubt in the thesis at that time, telling me
as PhD student: You prove that problems are hard and I write computer programs
that solve them. In the following I will attempt to challenge Cook’s Thesis.

The Thesis can fail in two directions. There may exist an f ∈ PracSolv ∩ NAT
but f �∈ polytime. Many programs in symbolic computation can produce outputs to
problems that are, in the worst case, hard.

1. Proofs that a positive semidefinite polynomial is not a sum-of-squares: 462-
dimensional linear matrix inequalities (LMI) with 7,546 variables Guo, Kaltofen
and Zhi [7]. Semidefinite programming constitutes a far-reaching generalization
to linear programming with a limited nonlinearity in its control parameters: the
solution must remain a definite matrix.

2. Large Gröbner basis problems, e.g., compact McEliece crypto system: 115 vari-
ables, 193,584 equations, degrees = 2, 3, . . . , 256 Faugére et al. [8].

3. Proofs that certain nonlinear polynomial equation problems (LMIs) do not have
a rational solution, while they have a real solution Guo, Din and Zhi [9]. I have
substituted this diophantine problem to my list for this paper; in my talk I listed
a problem in real algebraic geometry with 4 variables.

The above examples do not violate Cook’s Thesis. Clearly, a superpolynomial-
time algorithm can have polynomial-time running time on a subset of inputs. Many
algorithms in symbolic computation, such as Buchberger’s algorithm and its modern
variant FGb, have unpredictable running time. Cook’s NAT is the class of “natural”
functions, not “natural” inputs. It is important for algorithmic infrastructure to know
the worst-case behavior of an algorithm: Google returns a list of ranked pages for
all queries. Nonetheless, it is the hallmark of the symbolic computation discipline to
have greatly enlarged the domain of natural and solvable inputs to hard problems.

The Thesis can also fail in the opposite: We may have an f ∈ polytime ∩ NAT
but f �∈ PracSolv. It is actually not so easy to find a natural problem in symbolic
computation that is in polytime but whose worst-case complexity is super-quadratic
in its input size. I offer three examples:

1. The characteristic polynomial of a sparse matrix ∈ Zn×n
p with O(n) nonzero

entries is notoriously difficult to compute with O(n) auxiliary space in the worst
case. The best algorithm is of n2+1/2+o(1)-time, O(n)-space Villard [10]. For
n = 106 this is, ignoring the implied no(1), ≥ 109× input size. We restrict to
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O(n) space because by using quadratic space one has O(n2.38) time with fast
matrix multiplication, although the solution is quite impractical.

2. The Sylvester resultant in x of f (x, y), g(x, y) can be computed by the half-
GCDalgorithm inmax{degx ( f ), degx (g)}2+o(1) ×max{degy( f ), degy(g)}1+o(1)

scalar operations.
3. Lattice basis reduction is polynomial-time, but the dependency on the dimension

may be superquadratic. I have substituted this diophantine problem to my list for
this paper; in my talk I listed sharp estimates for the structured condition numbers
of Hankel matrices.

In sparse/structured linear algebra, O(n log(n)) versus O(n2) running timemakes
all the difference, for example in discrete Fourier transform algorithms. Polynomial
factorization is again a forerunner: polynomials modulo 2 can be factored in sub-
quadratic time since Kaltofen and Shoup [11].

Shaoshi Chen mentioned while he was at NCSU that some of the algorithms
for symbolic summation have worst-case performance beyond quadratic. Those and
the above are all candidates for polynomial-time problems that are not practically
solvable for large inputs, although one may require much more than Cook’s original
10,000 bits for the inputs. It is my conclusion that the Thesis fails on that side:
PracSolv ∩ NAT � polytime ∩ NAT.

Stephen Cook at the Turing Centennial celebration in San Francisco in June 2012
suggested to me to consider in place of polytime the class of logarithmic space as
the practical one (in my talk I stated it as poly-logarithmic space).

3 Faugère’s Question

Aftermy talk in Paris, Jean-Charles Faugère askedme the following question: Does it
make sense to study and implement algorithms that have exponential running time?
My answer was “no,” with some disapproval from the audience. I clarified that one
may study algorithms that are worst-case exponential, but that run polynomial-time
on the inputs studied. Executing an exponential-time algorithm, say a combinatorial
search, constitutes a single computation, not providing an algorithm for general use.

I should add Ludovic Perret’s comment to me at NCSU in October 2012: One
studies exponential algorithms to know their run times, for example when choosing
size of a key in a crypto scheme.
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Factorization of Motions

Josef Schicho

1 Extended Abstract

We define motion polynomials as polynomials with coefficients in the dual
quaternions and study their factorizations. The motion polynomials correspond to
motions in 3D space, and factoring into linear factors means to compose the motion
into translations and rotations. This allows to realize the motion by a linkage with
revolute or prismatic joints. This is joint work with G. Hegedüs (Univ. Oboda), Z. Li
(RICAM), and H.-P. Schröcker (Univ. Innsbruck). The results are published in [1].
This research has been supported by the Austrian Science Fund (FWF): DKW1214-
N15.

LetH = 〈1, i, j, k〉R be the skew field of quaternions. It is well known [2] thatH
is algebraically closed, in the sense that every univariate left polynomial P ∈ H[t]
can be written as a product of linear polynomials. Here, the variable t is supposed to
commute with the coefficients. To decompose P , one looks for right zeroes in H: if
P(q) = 0, then (t −q) is a right factor of P , and the polynomial quotient has degree
one less.

In order to find right zeroes, we compute the norm polynomial N (t) = P(t)P(t),
where P is obtained by conjugating all coefficients. It is a real polynomial that does
not assume negative values when evaluated at real numbers. Generically, it has no
real zeroes, so that it can be written as a product of irreducible quadratic factors.
For any such factor Q, there is a unique common right zero of P and Q in H, and
this common right zero can be computed by polynomial division: the polynomial
remainder of P mod Q is linear.

The factorization algorithm can be extended to skew ring DH = 〈1, i, j, k〉D of
dual quaternions, where D = R ⊕ Rε is the two-dimensional R-algebra generated
by R and ε with ε2 = 0. We are especially interested in polynomials with real
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norm polynomials; these polynomials are called motion polynomials. Since D is not
a field, the algorithm may sometimes fail, so that there exist polynomials in DH[t]
without factorization into linear ones. For generic motion polynomials of degree
d, the algorithm works, and one gets d! different factorizations into linear motion
polynomials. (In contrast to the commutative case, it is not allowed to permute the
factors.)

The special interest in motion polynomials comes from a well-known isomor-
phism of the six-dimensional Lie group SE3 of Euclidean displacements and the
multiplicative group of dual quaternions with nonzero real norm modulo multipli-
cation by nonzero real scalars. Motions are curves in SE3, and in this sense motion
polynomials parameterize motions. Conversely, every motion that has a parameteri-
zation by rational functions can also be parameterized by a motion polynomial.

Linear motion polynomials parameterize revolutions around a fixed axis or trans-
lational pushes in fixed directions. Hence the factorization into linear motion poly-
nomials decomposes the parameterized motion into revolutions or pushes, and the
motion can be realized by a chain of revolute or prismatic joints.

A generic quadratic motion has two factorizations into two revolutions. The two
chains of revolute joints can be combined to a movable closed chain with four links
and four revolute joints. This linkage is called the Bennett linkage after its discoverer
Bennett [3].

For d > 2, a generic motion of degree d can be decomposed into d revolutions in
d! different ways. Again, it is possible to combine the corresponding chains into one
linkage. For instance, for d = 3 we obtain a movable linkage with 8 links connected
by 12 revolute joints. Since the 6 decompositions are in relation to the permutations
of the 3 irreducible factors of the norm polynomial of the parameterizing cubic
motion polynomial, and the group of permutations is generated by transpositions,
one can construct all decompositions by composing two neighboring revolutions and
decomposing in the second way, as above. We call this operation Bennett flip.

By multiplying linear motion polynomials and applying Bennett flips, one can
construct various families of closed overconstrained linkages. For instance, let us
multiply two linear motion polynomials parameterizing revolutions around the same
axes and a third linear motion polynomial; then we do two Bennett flips and con-
struct a closed 5R linkage. This linkage is called the Goldberg 5R linkage after its
discoverer [4]. It was shown in [5] that the Goldberg 5R linkage is the only movable
5R linkage with all 5 joints actually moving that is neither planar nor spherical.

Similar constructions lead to various families of 6R linkages, some well known,
and some new. It should be mentioned that the classification of closed 6R linkages
is a famous open problem in kinematics. Not all known families have a motion that
can be rationally parameterized. An upper bound for the genus of the motion of a 6R
linkage is given in [6].
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Simplification of the Lattice Based Attack
of Boneh and Durfee for RSA Cryptoanalysis

Yoshinori Aono

Abstract We present a new formulation and its simpler analysis of the lattice-
based attack of Boneh and Durfee for the RSA cryptography [1]. We follow the
same approach as theirs, however, we propose a new way of defining a lattice with
which we can achieve the same solvable key bound d < N 0.292. Our lattice is
represented as a lower triangle matrix, which makes its analysis much simpler than
that of [1]. We think that our analysis technique would be useful for considering
applications/generalizations of this approach.

1 Introduction

Boneh and Durfee [1] proposed a polynomial time attack by which we can recover
the RSA secret key d from the public information (e, N ) when d < N 0.292; which
we will refer as the Boneh-Durfee bound. The basic idea of the attack is based
on the Coppersmith technique [3] by which we can obtain small solutions of a
modular equation such as f (x1, x2, . . . , xn) ≡ 0 (mod W ). The technique converts
the problem of finding small solutions of the equation into the problem of solving
an algebraic equation by a lattice reduction algorithm.

Here is a detailed explanation of their approach. The goal is to obtain a small
solution (x0, y0) of the following target equation to recover the secret key:

fBD(x, y) = −1 + x(y + A) ≡ 1 (mod e) (1)

Here A = N + 1. From this, the following bivariate polynomials are defined:

gi, j (x, y) =
{

xi− j ( fBD(x, y)) j em− j for i ≥ j
y j−i ( fBD(x, y))i em−i for i < j

(2)

for a certain range of (i, j) and a fixed integer m. These polynomials are converted to
a lattice represented by a row echelon matrix LBD defined by using the coefficients
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of gi, j (x, y) with some parameters. Then by using a lattice reduction algorithm, we
obtain a system of polynomial equations from which we can compute polynomial
number of candidates of the solution (x0, y0) numerically.

In this approach a technically crucial point is to design a matrix for a lattice with
a small determinant. They showed that their matrix has a sufficiently small deter-
minant; however, its analysis is complicated since the technique is of geometrically
progressive matrices, and it seems hard to apply for the other situations. The purpose
of this paper is to give a new way to construct a lattice with asymptotically the same
determinant that is much simpler to analyze.

Since Boneh and Durfee’s work, variants of their technique have been proposed.
Blömer and May [2] proposed a new lattice-based algorithm for attacking RSA
with a short secret key. They constructed a lower triangle lattice by eliminating
some columns from the original lattice; this simplifies the determinant analysis. In
[7], Jochemsz and May gave an algorithm for finding small roots of a multivariate
modular/integer equation based on a generalized lattice construction strategy. Note
that both algorithms achieve a slightly weaker solvable key bound than the Boneh–
Durfee bound.

In this paper we follow the strategy of Boneh and Durfee to give a new variation
of the lattice-based attack with a simpler analysis. We propose a conversion from
the polynomials (2) to three-variable polynomials Gi, j (x, y, z) when we construct
lattice; on the other hand, Boneh and Durfee directly constructed the lattice from
gi, j (x, y). Since we obtain a lower triangle matrix representation of our lattice, we
can easily compute its determinant. Therefore, we give a new simple algorithm to
achieve the Boneh–Durfee bound. We remark that the same idea was independently
found by Herrmann and May [6]; they referred their technique as “llinearization”
and applied it for analyzing an attack for RSA-CRT.

We carry out our computer experiments to compare the qualities of our lattice and
that ofBoneh andDurfee.We check the solvable key ranges, the determinants, and the
length of obtained vectors by L2 algorithm [9] on lattice generated by these two algo-
rithms. As shown in Sect. 5, we confirm that the qualities of the two lattice series are
equivalent for various parameters in practice. We find the computational time of the
L2 algorithm is reduced by about 30% from the original attack of Boneh and Durfee.

This paper is organized as follows: In Sect. 2, we give basic symbols, notations,
lemmas.We give our formulation of the lattice-based attack in Sect. 3 and its detailed
analysis is explained in Sect. 4. The computer experiments to compare our lattice
construction and that in [1] are described in Sect. 5.

2 Preliminaries

In this section, for the following discussions, we introduce some notations and state
some known facts and key technical lemmas.

We use the standard RSAnotations throughout this paper. A givenRSA instance is
defined by p, q, e, and d, where p and q are large primes, e is a public key, and d is the
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corresponding secret key. Let N = p×q, and assume that gcd(e, (p−1)(q−1)) = 1.
The key relation between e and d is

ed ≡ 1 (mod (p − 1)(q − 1)) (3)

from which we derive our target Eq. (1) by following the argument in [1].
The basic strategy of the lattice-based attack is to convert the problem of recover-

ing RSA key into the problem of finding small solution of a modular equation within
the certain range. In general, solving modular equation is not easy, whereas there are
some cases where we may be able to use the standard numerical method for solving
this problem. The Howgrave–Graham lemma [5] provides us with one of such cases.

To state the Howgrave–Graham lemma, we introduce the notion of XY -norm for
a bivariate polynomial f (x, y) = ∑

i, j ai, j x i y j and integers X and Y by

|| f (x, y)||XY
def=

√∑
i, j

a2
i, j X2i Y 2 j .

Lemma 1 (Howgrave–Graham [5]) For any positive integers X, Y and W , let
f (x, y) be a bivariate polynomial consisting of w terms with integral coefficients
such that the following holds:

|| f (x, y)||XY < W/
√

w.

Then we have for x and y satisfying |x | < X and |y| < Y ,

f (x, y) ≡ 0 (mod W ) ⇔ f (x, y) = 0.

Note that f (x, y) = 0 clearly implies f (x, y) ≡ 0 (mod W ). What is important is
its converse. This lemma guarantees that we can find all solutions of the modular
equation within the range from the integer solutions of f (x, y) = 0.

Now we introduce some definitions and lemmas about the lattice; we need to
obtain a polynomial having small XY -norm to use Lemma 1, and this problem can
be reduced to a problem of finding short vectors in a lattice.

Consider linearly independent vectors b1, . . . , bn , then the lattice with basis
b1, . . . , bn is defined as

L(b1, . . . , bn) = {a1b1 + a2b2 + · · · + anbn|ai ∈ Z for i = 1, . . . , n}. (4)

That is, the lattice is the set of integral linear combinations of its basis vectors. We

often represent the lattice L(b1, . . . , bn) by the matrix

( b1
...

bn

)
.
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To find short vectors in a lattice, it can be used a lattice reduction algorithm; here
we use the LLL algorithm [8] in our analysis. The two short vectors in the LLL
reduced basis described in the following theorem are important.

Theorem 1 [1, Fact 3.3] Let b1, . . . , bn be a lattice basis. Then the LLL algorithm
can find linearly independent lattice vectors v1 and v2 such that

|v1| ≤ 2(n−1)/4| det(L)|1/n and |v2| ≤ 2n/2| det(L)|1/(n−1). (5)

Here, det(L) is the determinant of the lattice which is defined by the determinant
of a matrix representation of the lattice; note that suppose we have a lower triangle
matrix representation of a lattice, det(L) is easily calculated by the product of its
diagonal elements.

In the lattice-based attack, it needs to convert polynomials to vectors; since a lattice
reduction algorithm is designed for vectors, while our targets are polynomials. Then
we introduce a mapping.

We divide this mapping into two steps, named a vectorisation and an instantiation
respectively. We introduce a way to map three-variable polynomials to vectors since
we consider three-variable polynomials in our construction.

Definition 1 (Polynomials ⇒ vectors)
Let K be a finite sequence of distinct three-variable monomials; let its order be
fixed, and for any t , xit y jt zkt be the t th monomial in this order. Then for any
f (x, y, z) = ∑

1≤t≤|K| at xit y jt zkt , we map it to the following vector b, which is
called the vectorization of f (x, y, z) and is denoted as VK( f ).

f (x, y, z) = a1xi1 y j1 zk1 + a2xi2 y j2 zk2 + · · · + a|K|xi|K| y j|K| zk|K|

↓ ↓ ↓
b = (a1xi1 y j1 zk1 , a2xi2 y j2 zk2 , . . . , a|K|xi|K| y j|K| zk|K|).

For example the polynomial f (x, y, z) = −3x3 + 4x2yz − 2xy2z2 + 7xy3z3 is
mapped to the vector (−3x3, 4x2yz,−2xy2z2, 7xy3z2).

We introduce a conversion named an instantiation and its inverse; it converts a
three-variable monomials to integers by substitution. Our matrix is defined using
the vectorizations and hence each element of the matrix is monomial. On the other
hand, a lattice reduction algorithm is designed for integer lattices or integer matrices.
Thus, for using a lattice reduction algorithm, we need to instantiate our matrix by
substituting some integers X , Y and Z to x , y and z, which we call an instantiation
with X , Y and Z . Conversely, converting an integer vector to a polynomial is called
a deinstantiation. Note that (since K and the order of monomials is fixed) we know
a monomial xit y jt zkt corresponding to the t th entry of a given vector; hence, dein-
stantiation at the t th entry can be achieved by simply dividing its integral value by
Xit Y jt Zkt .

These vectorization, instantiation, and deinstantiation procedures are essentially
the same as those used by some published works such as Boneh and Durfee.
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3 A New Lattice-Based Algorithm

In this section, we give a new lattice-based algorithm for RSA with a short secret
key; that is, a new lattice construction and its simpler analysis to derive the same
Boneh–Durfee bound d < N 0.292. Our analysis requires only elementary calcula-
tions. The detailed analysis is given in the next section. What is different from the
original algorithm is to use three-variable polynomials to construct a lattice; while
the bivariate polynomials (2) are used directly in the original paper. We first state
some definitions and lemma to explain our lattice construction.

3.1 Canonical Replacement

We introduce away to convert the bivariate polynomials gi, j (x, y) into three-variable
polynomials artificially. We first express gi, j (x, y) as a sum of monomials and then
replace every xy by z + 1 in gi, j (x, y). For example, the polynomial g2,3(x, y) =
em−2(−1 + xy + Ax)2y = em−2y + A2em−2x2y + · · · is converted into the
polynomial G3,2(x, y, z) = em−2y + A2em−2(1 + z)x + · · · . Like this example,
we denote the converted polynomial from gi, j (x, y) by Gi, j (x, y, z), and we call this
conversion a canonical replacement. It is clear thatGi, j (x, y,−1+ xy) = gi, j (x, y).
Though artificial, this canonical replacement allows us to define a lower triangle
matrix representation of our lattice.

Here we extend the notion of XY -norm for converted three-variable polynomials
and show some useful bound. Though we consider such converted three-variable
polynomials, they are essentially bivariate polynomials; hence, we still discuss its
XY -norm. Let F(x, y, z) = ∑

i, j,k bi, j,k xi y j zk be a three-variable polynomial. For
this F , we define a three-variable version of the XY -norm as

||F(x, y, z)||XY
def=

√∑
i, j,k

b2i, j,k X2i Y 2 j (X2Y 2 + 1)k .

Again this is somewhat artificial; one motivation is to have the following bound:

Lemma 2 Let f (x, y) be any bivariate polynomial and F(x, y, z) be its canon-
ical replacement. Let v be the maximum degree of z in F(x, y, z). Then for any
nonnegative integers X and Y , we have || f (x, y)||XY ≤ (v + 1)||F(x, y, z)||XY .

Proof We let f (x, y) = ∑
s,t as,t xs yt , and let F(x, y, z) = ∑

i, j,k bi, j,k xi y j zk .
Then since F is obtained from f by the canonical replacement, it follows that
f (x, y) = F(x, y,−1 + xy) = ∑

i, j,k bi, j,k xi y j (−1 + xy)k . Thus we have

∑
i, j,k

bi, j,k xi y j (−1 + xy)k =
∑
i, j,k

bi, j,k xi y j
k∑

c=0

(
k

c

)
(−1)k−cxc yc
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=
∑

i, j,k,c

bi, j,k

(
k

c

)
(−1)k−cxi+c y j+c

=
∑

s,t,k,c

bs−c,t−c,k

(
k

c

)
(−1)k−cxs yt .

Here, we let s = i + c and t = j + c. Comparing the coefficient of xs yt , we have

as,t =
∑
k,c

bs−c,t−c,k(−1)k−c
(

k

c

)
. (6)

Now k and c are integers between 0 and v since its range is from the degree of z in
F(x, y, z). Hence, the number of terms on the right-hand side of (6) is equal to or

less than (v + 1)2. Thus we have |as,t |2 ≤ (v + 1)2
∑

k,c

∣∣∣bs−c,t−c,k
(k

c

)∣∣∣2. Hence, we
derive our claim as follows:

|| f (x, y)||2XY =
∑
s,t

|as,t |2X2sY 2t ≤
∑
s,t

(v + 1)2
∑
k,c

∣∣∣∣bs−c,t−c,k

(
k

c

)∣∣∣∣
2

X2sY 2t

= (v + 1)2
∑

s,t,k,c

∣∣∣∣bs−c,t−c,k

(
k

c

)∣∣∣∣
2

X2sY 2t

= (v + 1)2
∑

i, j,k,c

∣∣bi, j,k
∣∣2 (k

c

)2

X2(i+c)Y 2( j+c)

= (v + 1)2
∑
i, j,k

∣∣bi, j,k
∣∣2 X2i Y 2 j

k∑
c=0

(
k

c

)2

X2cY 2c

= (v + 1)2
∑
i, j,k

∣∣bi, j,k
∣∣2 X2i Y 2 j (1 + X2Y 2)k

= (v + 1)2||F(x, y, z)||2XY .

�

Remark We will assume that Z = √
X2Y 2 + 1 whenever we consider instantia-

tion/deinstantiation with some X and Y to keep its consistent with this extended
XY -norm notion. Thus, for any three-variable polynomial F(x, y, z) obtained as
a sum of monomials of the deinstantiation of some vector F w.r.t. X and Y , the
following relation is immediate:

||F(x, y, z)||XY = |F|. (7)
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Step 1: Choose attack parameters m and δ .
Step 2: Define an index sequence I and a monomial sequence K (as explained in Sec-

tion 4). For each (i, j) ∈ I, define a polynomial gi, j(x,y) as (2) and a polynomial
Gi, j(x,y,z) by the canonical replacement of gi, j(x,y). Construct a lattice L using
vectors K(Gi, j) as row vectors in the order of (i, j) following I.

Step 3: Instantiate L with X = Nδ , Y = N0.5 (and Z =
√
X2Y 2+1). Then apply a lattice

reduction algorithm to it.
Step 4: For two short vectors v1 and v2 computed by the LLL algorithm, compute their

deinstantiations v1 and v2. Define polynomialsH1(x,y,z) andH2(x,y,z) by summing
up the monomials in v1 and v2 respectively. Then define h1(x,y) =H1(x,y,−1+xy)
and h2(x,y) = H2(x,y,−1+ xy).

Step 5: Enumerate all integral solutions of h1(x,y) = h2(x,y) = 0. For each of those solu-
tions, compute d by (1) and check whether it is an integer.

Fig. 1 Our version of the lattice-based attack

Now we explain our version of the lattice-based attack for RSA following its
outline stated in Fig. 1. This is essentially the same as the one by Boneh and Durfee
except for polynomials and a lattice construction.

We first define symbols used in the algorithm. Let δ be the ratio of the bit-length
of d to that of N ; here we assume that δ < 0.5. Let m ∈ N be another parameter; the
larger m would yield the better solvable key range but the more computation time is
necessary. The Boneh–Durfee bound δ < 0.292 is the approximated value when we
take sufficiently large m. Thus, considering available computational resource and δ,
an appropriate number should be chosen for m; for our experiment, we set m from 6
to 10.

Then we define the set I = {(i, j) ∈ Z
2|0 ≤ i ≤ m, 0 ≤ j ≤ 2(1 − δ)i}.

The sequence I is defined by introducing some order to elements in I ; however, we
postpone its explanation to the next section. For (i, j) ∈ I , polynomials gi, j (x, y)

are defined as (2); thus, they are the same polynomials defined in [1].1

We then further extend them to three-variable polynomials Gi, j (x, y, z) by the
canonical replacement. Consider the set of monomials of type xi y j zk that appear
in some Gi, j (x, y, z). Again its ordered version K is defined in the next section.
Now our lattice L is defined by the vectors VK(Gi, j ) for (i, j) ∈ I. One important
point here is that we can choose some appropriate ordering for K and I so that the
matrix representation of L becomes lower triangle, which makes us the determinant
analysis simply.

Next we carry out the LLL algorithm on L ′ that is obtained as the instantiation of
L with parameters X = �N δ� and Y = �3N 0.5� (and Z = √

1 + X2Y 2).
From two short vectors v′

1 and v′
2 in the reduced basis, we construct the corre-

sponding polynomials h1(x, y) and h2(x, y). For each c = 1 and 2, convert the vector
vc to its deinstantiation vc. Then define Hc(x, y, z) as the sums of all monomials
in vc, and define hc(x, y) = Hc(x, y,−1 + xy). Here, it can be shown that each

1 Our gi, j (x, y) for i ≥ j and for i < j correspond to their gi, j (x, y) and hi, j (x, y) respectively.
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Hc(x, y, z) is an integer linear combination of Gi, j (x, y, z)’s since each v′
c is also

an integer linear combination of VK(Gi, j )’s.
Finally, in step 5, we solve the simultaneous equation h1(x, y) = h2(x, y) =

0. For each (x1, y1) of the found integral solutions, compute d by d = (−1 +
x1(y1 + A))/e and check it is indeed the correct secret key, i.e., check whether it is
a nonnegative integer. This is the outline of our version of the lattice-based attack.

Now we show relationships between the polynomials computed in the algorithm;
our target is to derive the Boneh–Durfee bound via considering a sufficient condition
of Lemma 1. We have by construction

∀x, y

[
fBD(x, y) ≡ 0 (mod e)
⇒ gi, j (x, y) = Gi, j (x, y,−1 + xy) ≡ 0 (mod em) for∀(i, j) ∈ I

]
.

Then, since each Hc(x, y, z) is an integral linear combination of Gi, j (x, y, z),

∀x, y

[
Gi, j (x, y,−1 + xy) ≡ 0 (mod em) for ∀(i, j) ∈ I
⇒ Hc(x, y,−1 + xy) = hc(x, y) ≡ 0 (mod em) for c = 1, 2

]

holds. Thus, if both h1(x, y) and h2(x, y) satisfy the condition of the Howgrave–
Graham lemma for X , Y and W = em , we have

∀x, y, |x | < X, |y| < Y
[
hc(x, y) ≡ 0 (mod em) ⇔ hc(x, y) = 0 for c = 1, 2

]
,

and this implies that

∀x, y, |x | < X, |y| < Y
[

fBD(x, y) ≡ 0 (mod e) ⇒ hc(x, y) = 0 for c = 1, 2
]
.

(8)

Therefore, a small solution of fBD(x, y) ≡ 0 (mod e) must be included in the set
of small integer solutions of h1(x, y) = h2(x, y) = 0 when h1 and h2 satisfy the
Howgrave–Graham condition; thus, it suffices that the polynomials satisfy

||hc(x, y)||XY < em/
√

w. (9)

Here w is the number of terms in hc(x, y).
Now we consider this condition for each hc(x, y) to derive the Boneh–Durfee

bound. We have by Lemma 2,

||hc(x, y)||XY ≤ (v + 1)||Hc(x, y, z)||XY ≤ (m + 1)||Hc(x, y, z)||XY .

Note that the second inequality is from the degree of z in Hc(x, y, z) is smaller than
m. Moreover, by Theorem 1 and (7) we have

||Hc(x, y, z)||XY = |vc| ≤ 2n/2 det(L ′)1/(n−1).
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Rearranging these conditions, we have a sufficient condition for the Howgrave–
Graham lemma as (m + 1)2n/2 det(L ′)1/(n−1) < em/

√
1 − δm.

Following the analysis ofBoneh andDurfee,wedisregard the numbers (m+1)2n/2

and
√
1 − δm because they are sufficiently small compared to the RSA parameters,

and we use det(L ′)1/n instead of det(L ′)1/(n−1). Hence we have our simplified suf-
ficient condition:

det(L ′)1/n < em . (10)

Here from the analysis in the next section, we have both

n = (1 − δ)m2 + o(m2) and det(L ′) = N

(
− 1

3 δ2− 1
3 δ+ 5

6

)
m3+o(m3)

.

Therefore, the condition (10) is equivalent to

N

(
− 1

3 δ2− 1
3 δ+ 5

6

)
m3+o(m3) = det(L ′) < enm = N (1−δ)m3+o(m3).

Hence we have − 1
3δ

2 − 1
3δ + 5

6 < 1 − δ for sufficiently large m. Then we have the
condition for δ which s the same as the Boneh–Durfee bound [1]:

δ < 1 − 1/
√
2 ≈ 0.292. (11)

4 Analysis in Detail

In this section we show that L defined in the above section is lower triangle; hence
we can easily derive the determinant of the L ′ defined as the instantiation of L with
parameters X , Y and Z = √

1 + X2Y 2.
We need to give the detailed construction of L to prove our claim; before this,

we define an index sequence I and a monomial sequence K to set an order of terms

in our matrix. For fixed m and δ < 0.5, we define the set I
def= {(i, j) ∈ Z

2|0 ≤
i ≤ m, 0 ≤ j ≤ 2(1 − δ)i}. We respectively define I1 and I2 by the lexicographic
order of (i, j) in {(i, j) ∈ I |i ≥ j} and that of ( j, i) in {(i, j) ∈ I |i < j}; we use
these sequences to define the order of the vector Gi, j (x, y, z). We further set the
index sequence I as the concatenation of I1 and I2. For I1 = ((i1, j1), . . . , (iu, ju))

and I2 = ((i ′1, j ′1), . . . , (i ′u′ , j ′u′)), we construct monomial sequences K1 and K2;
we use these sequences to set the monomial order in vectorization. We define the
monomial sequences K1 and K2 by K1 = (xi1− j1 z j1, . . . , xiu− ju z ju ) and K2 =
(y j ′1−i ′1 zi ′1 , . . . , y j ′

u′−i ′
u′ zi ′

u′ ) respectively. We also set K by the concatenation of K1
and K2. We use these sequences to define our lattice.2

2 For example, for m = 3 and δ = 0.25; we have I1 = ((0, 0), (1, 0), (1, 1), (2, 0),
(2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (3, 3)) and I2 = ((2, 3), (3, 4)). By them, we have the mono-
mial sequence K1 = (1, x, z, x2, xz, z2, x3, x2z, xz2, z3) and K2 = (yz2, yz3).
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We state two facts for our analysis; we use them in the proof of Lemma 3 and
Lemma 4. We denote a symbol ≺ the order in K1 and K2.
Fact 1 We have for the elements in K1, xi z j ≺ xi ′ z j ′ ⇔ i + j < i ′ + j ′ or
[i + j = i ′ + j ′ and j < j ′]. For the elements in K2, yi z j ≺ yi ′ z j ′ ⇔ i + j < i ′ + j ′
or [i + j = i ′ + j ′ and j < j ′].
Fact 2 For elements in K, we have x j zi ∈ K1 ⇔ 0 ≤ i + j ≤ m, and y j zi ∈ K2 ⇔
[0 ≤ i ≤ m and 0 < j < (1 − 2δ)i].

Nowwe define our lattice L by using the polynomialsGi, j (x, y, z) and the defined
sequences; here we actually give a matrix representation of L . Our matrix is defined
by the rowmatrix of vectorsVK(Gi, j ) for (i, j) ∈ I whose order is from I. We divide
L as follows to show its lower triangularity:

L =
⎡
⎣ VK(G0,0)

...
VK(Gm,m′)

⎤
⎦ =

K1 K2︷ ︸︸ ︷ ︷ ︸︸ ︷⎡
⎣ L00 L01

L10 L11

⎤
⎦

}
I1}
I2

(12)

Here, m′ = �2(1 − δ)m�. Therefore, we need to show that L00 and L11 are lower
triangle matrices and show that L01 is the zero matrix to proof the triangularity of
L . Moreover, we prove that the monomials in Gi, j (x, y, z) are contained in K; this
will be shown via the proof of Lemma 3 and Lemma 4.

Lemma 3 L00 and L01 are a lower triangle and the zero matrix respectively.

Proof Let (ik, jk) be the kth element in I1. We first show the triangularity of L00;
we need to show that the polynomial Gi, j (x, y, z) can be expressed as a linear
combination of the first k elements in K1, and show that the coefficient of xik− jk z jk

in Gik , jk (x, y, z) is not zero.
Here, Gi, j (x, y, z) is expressed for certain integers a� by the definition (2) and

the canonical replacement:

Gik , jk (x, y, z) = xik− jk (z + Ax) jk em− jk =
jk∑

�=0

a�xik−�z�.

Thus, by Fact 1, xik− jk z jk (the kth element in K1) is the most right nonzero element
in VK(Gik , jk ) in the order≺; this also corresponds to the kth diagonal element in our
matrix. Hence the nonzero elements in bik , jk are on the diagonal position or its left;
this shows that L00 is a lower triangle matrix. It is clear that L01 is the zero-matrix
since the polynomial Gik , jk (x, y, z) for (ik, jk) ∈ I1 does not have a monomial of
type z j ′ yi ′ . �

Lemma 4 L11 is a lower triangle matrix.

Proof Let (ik, jk) be the kth element in I2. We carry the proof by showing the
monomials Gik , jk (x, y, z) are included in K1 or the first k elements in K2.
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We first give an expression of Gik , jk (x, y, z) for (ik, jk) ∈ I2; we have by (2) and
the canonical replacement,

Gik , jk (x, y, z)/em−ik = y jk−ik (−1 + xy + Ax)ik = y jk−ik (z + Ax)ik

=
ik∑

t=0

(
ik

t

)
(Ax)t y jk−ik zik−t

=
jk−ik−1∑

t=0

(
ik

t

)
(Ax)t y jk−ik zik−t

+
ik∑

t= jk−ik

(
ik

t

)
(Ax)t y jk−ik zik−t

=
jk−ik−1∑

t=0

(
ik

t

)
At (xy)t y jk−ik−t zik−t

+
ik∑

t= jk−ik

(
ik

t

)
At (xy) jk−ik x t− jk+ik zik−t

=
jk−ik−1∑

t=0

(
ik

t

)
At (1 + z)t y jk−ik−t zik−t

+
ik∑

t= jk−ik

(
ik

t

)
At (1 + z) jk−ik x t− jk+ik zik−t

=
jk−ik−1∑

t=0

(
ik

t

)
At

t∑
�=0

(
t

�

)
y jk−ik−t zik−t+�

+
ik∑

t= jk−ik

(
ik

t

)
At

jk−ik∑
�=0

(
t

�

)
xt− jk+ik zik−t+�.

Therefore, the monomials included in the expression of Gik , jk (x, y, z) are

xt− jk+ik zik−t+� for jk − ik ≤ t ≤ ik and 0 ≤ � ≤ jk − ik, (13)

and

y jk−ik−t zik−t+� for 0 ≤ t ≤ jk − ik − 1 and 0 ≤ � ≤ t. (14)

We show that the terms in (13) and (14) are included in K1 and K2 respectively.
First we argue the terms in (13). By Fact 2, we have xt− jk+ik zik−t+� ∈ K1 ⇔

0 ≤ (t − jk + ik) + (ik − t + �) = 2ik − jk + � ≤ m, thus we need to show
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0 ≤ 2ik − jk + � ≤ m for (ik, jk) ∈ I2 and 0 ≤ � ≤ jk − ik .

Here, jk − ik ≤ t ≤ ik implies 0 ≤ t − jk + ik ≤ 2ik − jk . Then by 0 ≤ � ≤ jk − ik ,
we have 0 ≤ 2ik − jk + � ≤ ik ≤ m and thus the monomials (13) are in K1.

Next we show the terms (14) are in K2. By Fact 2, we have

y jk−ik−t zik−t+� ∈ K2 ⇔ [0 ≤ ik−t+� ≤ m and 0 < jk−ik−t < (1−2δ)(ik−t+�)].

Hencewe show that these two inequalities satisfy for (ik, jk) ∈ I2, 0 ≤ t ≤ jk −ik −1
and 0 ≤ � ≤ t . We have ik − t + � ≤ ik ≤ m from 0 ≤ � ≤ t . On the other hand,

ik − t + � ≥ 2ik − jk + 1 > 2ik − 2(1 − δ)ik + 1 = 2δik + 1 ≥ 0

holds from t ≤ jk − ik −1 and � ≥ 0. Thus, 0 ≤ ik − t +� ≤ m holds. This is the first
inequality. Next we show the second inequality. We have that t ≤ jk − ik −1 derives
jk −ik −t ≥ 1 > 0. On the other hand, jk −ik −t < (1−2δ)ik −t ≤ (1−2δ)ik −t +�

holds. Then we have for 0 ≤ δ < 0.5, −t + � ≤ (1− 2δ)(−t + �) since −t + � ≤ 0.
Hence we have

jk −ik −t < (1−2δ)ik −t +� ≤ (1−2δ)ik +(1−2δ)(−t +�) ≤ (1−2δ)(ik −t +�).

Therefore, the monomials (14) are in K2.
Finally, we need to show that each maximum element in (14) in the order ≺

corresponds to a diagonal element in L11. We have by Fact 1, the maximum element
in (14) is a monomial y jk−ik−t zik−t+� such that:

( jk − ik − t) + (ik − t + �) = jk + � − 2t is maximum, and jk − ik − t is also
maximum under maximized jk + � − 2t within the range of (14).

Hence this is the case � = t = 0; this corresponds to the monomial y jk−ik zik ,
which is the kth element in K2; thus; it corresponds to the kth diagonal element in
L11. Therefore L11 is a lower triangle matrix. �

Now we can easily calculate det(L ′); since L and its instantiation L ′ are lower
triangle matrices by combining Lemma 3 and Lemma 4. We have from the expres-
sions, the diagonal elements in L ′ corresponding to Gi, j (x, y, z) are em− j X i− j Z j

for (i, j) ∈ I1, and em−i Y j−i Z i for (i, j) ∈ I2 respectively. Hence by using the
approximations e ≈ N , X ≈ N δ, Y ≈ N 0.5 and Z = √

X2Y 2 + 1 ≈ N δ+0.5, we
have

det(L00) = em(m+1)(m+2)/3Xm(m+1)(m+2)/6Y m(m+1)(m+2)/6

= N

(
5
12+ 1

3 δ
)

m3+o(m3)
,

det(L11) = e(1−2δ)m3/6+o(m3)Y (1−2δ)2m3/6+o(m3)Z (1−2δ)m3/3+o(m3)

= N

(
− 1

3 δ2− 2
3 δ+ 5

12

)
m3+o(m3)

, and

det(L ′) = det(L00) · det(L11) = N

(
− 1

3 δ2− 1
3 δ+ 5

6

)
m3+o(m3)

.

(15)
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On the other hand, the dimension of the matrix is |I| = (1− δ)m2 + o(m2), thus we
have enm = N (1−δ)m3+o(m3).

Therefore as explained in the previous section, we can derive the bound δ < 0.292
by using these values.

5 Computer Experiments

We carry out our computer experiments to check that our lattice construction is valid
for recovering short secret key; for various parameters, we compare the solvable key
ranges, the determinants and the computational times of lattices between our lattice L
and Boneh and Durfee’s LBD. The results of our experiments are shown in Tables1
and 2. Then we confirm the qualities between two lattice series are equivalent in
practice. Moreover, we find the computational time of the L2 algorithm is reduced
by about 30% from the original attack.

We implement our experiment procedure by the C++ language using Shoup’s
NTL [10] of version 5.4.2. We carry out the lattice reduction part by the L2 algo-
rithm [9] with parameters3 δ = 0.99 and η = 0.51, and implement the resultant
calculation algorithm by [4]. We compile our source code by gcc-4.1.2 (64 bit
version) with -O6 option. We conduct our computer experiments on the TSUBAME
supercomputer.4

The procedures of our experiments are shown in Fig. 2. In steps 1-2 and 2-2, the
reason for using L2 algorithm, while we used the LLL algorithm in the analysis,
is to speed up the experiment. Moreover, we verify that the L2 algorithm can find
sufficiently short vectors for our propose, see Table2. In step 2-2, we use a parameter
Z = �√X2Y 2 + 1� for instantiation, while we used Z = √

X2Y 2 + 1 in analysis;
this is from our implementation of L2 algorithm designed for the integer vectors.
However, we think that this does not affect the quality of the algorithm. In steps 1-3
and 2-3, the vectors obtained by the L2 algorithm are sorted by their length; this is
because these vectors are approximate ones and we cannot guarantee that v′

1 and v′
2

are the shortest two in the reduced basis b′
1, . . . , b′

n . In steps 1-4 and 2-4, we check
the algebraic independence of h1(x, y) and h2(x, y) by checking R(x) �= 0 holds
or not, where R(x) is the resultant of h1 and h2. Moreover, we regard an experiment
instance is successful if R(x) �= 0 and R(x0) = 0 where x0 is from the small solution
of the target equation.

Input parameters of experiments are �, m, and δ which define respectively the bit
length of N , the parameter for constructing the lattice, and the ratio of bit length of d

3 This δ is L2 algorithm’s parameter and different from δ used for defining RSA instance. See the
original paper [9] about this δ.
4 TSUBAME is a grid type supercomputer at Tokyo Inst. of Tech. A node of the supercomputer
which we used contains eight Opteron Dual Core model 880 processors of 2.4GHz and 32GB
RAM. Note, however, we have not been able to make a parallel version of our algorithm; it was
used only for reducing the total experiment time.
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Table 1 Key recoverability and computational time for � = 512 and 1024

Experiment Lattice Results

parameters

m δ s. L2 time Total time

� = 512

6 0.265 LBD 5 31.9 s 49.5 s

L 5 22.6 s 39.9 s

0.270 LBD 4 31.0 s 50.2 s

L 4 21.8 s 40.8 s

8 0.265 LBD 5 360s 721s

L 5 251s 610s

0.270 LBD 4 318s 613s

L 4 218s 514s

10 0.270 LBD 5 39min 159min

L 5 28min 147min

0.275 LBD 4 33min 132min

L 4 23min 121min

� = 1024

6 0.270 LBD 5 123s 195s

L 5 86s 157s

0.275 LBD 0 112s 120s

L 0 75s 82s

8 0.275 LBD 5 1322s 2553s

L 5 860s 2081s

0.280 LBD 0 1096s 1230s

L 0 695s 823s

10 0.270 LBD 5 150min 572min

L 5 110min 575min

0.275 LBD 4 127min 493min

L 4 91min 489min

0.280 LBD 0 108min 267min

L 0 78min 250min

to that of N . We carry out the experiments for m = 6, 8 and 10, � = 512 and 1024,
and δ = 0.260–0.280 in 0.005 intervals.

We generate each sample instance for given parameters � and δ as follows. First,
randomly choose �/2-bit primes p and q, and let N = pq (Here we choose the
primes as the Euler–Jacobi pseudoprimes to bases 2, 3, 5, 7 and 11.) Next, randomly
choose �δ��-bit odd integer as the secret key d such that gcd(d, (p −1)(q −1)) = 1.
Compute the corresponding public key e ≡ d−1( mod (p − 1)(q − 1)) and let
A = N + 1, y0 = p + q and x0 = (1 − ed)/(p − 1)(q − 1). Note that they
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Fig. 2 Our computer experiment procedure for LBD and L

satisfy fBD(x0, y0) ≡ 0( mod e). Then the generating algorithm outputs the tuple
(e, d, N , x0, y0) of RSA instances and the solution of the target equation.

The results are shown in Tables1 and 2. Table1 shows the solvable key ranges
of our lattices and that of [1]; that is, the experiment is successful or not, for each
parameter. The computational times on the table is the average of five experiments
for each parameter. Table2 shows some values for comparing the qualities of L and
LBD for some experiment instances; for example, log2 of the determinants, log2 of
the length of short vectors and other values.

5.1 Key Recoverability

We check that the difference in the key recoverable ranges between LBD and L .
We regard that a lattice can recover the secret key if the polynomials h1(x, y) and
h2(x, y) pass the check in step 1-4 or 2-4. We perform our experiments five times
for each parameter.

The results of the experiments are shown in Table1. The column “lattice” and
“s.” mean the type of lattice used in the procedure and the number of experiments
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that pass the check respectively. We also give the “L2 time”, which means the CPU
time processing step 1-2 or 2-2, and give the “total time”, which means the CPU
time processing the routine ExpBD or ExpOurs in the table. We conclude that the
key recoverable ranges of both algorithms are equivalent in our experiments.

We give some remark on the computational times. We can see the L2 time is
reduced by about 30% compared with the L2 time of the previous lattice; we think
this is caused as the matrix representation of L is simpler than that of LBD. We
remark that the total computational time is approximately the sum of L2 time and
the time for computing the resultant; thus, we can see the time of the resultant
computation is longer than that of L2 algorithm when m is large. We are able to
avoid this by improving the source code for computing the resultant polynomial of
bivariate polynomials; however, our interest is in the lattices, hence we think that
this is not essential for our study.

We further remark on the recoverable range at � = 1024. We can see the qualities
of lattices for m = 8 are better than those for m = 10 in the table, while we find
that the recoverable range expands with larger m. This is caused by an irregular
instance; in fact, the fault sample instance for m = 8 and δ = 0.275 has the public
key e ≈ 21018; which is smaller than N ≈ 21024 while we assumed that e ≈ N in
our analysis. Since then, this error is caused by the sample instance is not suitable
for our analysis.

5.1.1 Determinant and Obtained Vectors

We compare the determinants, the length of obtained vectors, and some amounts to
check the qualities of L and LBD; we pick up some instances in our experiments.
These are shown in Table2.

Weexplain the columns inTable2. The columndeg. shows the degree of the lattice,
that is, the number of vectors in the lattice basis. The column D means the value
log2(|v′

1|/ det1/deg). The columns B1, H1, B2 and H2, respectively, mean the value
log2 |v′

1|, log2 ||h1(x, y)||XY , log2 |v′
2| and log2 ||h2(x, y)||XY .

We give some remarks on the results in the table. The values D in the table are
sufficiently smaller than (deg−1)/4; this is the upper boundguaranteed byTheorem1
when we use the LLL algorithm. Hence, we verify the L2 algorithm finds sufficiently
short vectors for our objective. We can see values in “result” are equivalent for L and
LBD; in fact, we confirmed that they are equivalent at least 10 most significant digits
in practice. On the other hand, we have for c = 1 and 2, |v′

c| = ||hc(x, y)||XY for the
lattice LBD and |v′

c| = ||Hc(x, y, z)||XY ≥ ||hc(x, y)||XY /(m + 1) for the lattice L .
That is, the result shows that the inequality is unnecessary pessimistic. In sum, we
verified that the obtained polynomials by L are valuable as those by the algorithm
of Boneh and Durfee.
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6 Conclusion

We study the lattice-based attack for RSA with short secret key. We give the new
simple analysis to obtain the Boneh–Durfee bound δ < 0.292. Through computer
experiments, we verify that the recoverable ranges of our lattice and that of Boneh
and Durfee’s are equivalent, and furthermore, by our approach, the computational
time of L2 algorithm is reduced by about 30% compared with the original lattice.
One important advantage of our technique is that it does not require any technical
method or involved calculation required in the original technique. We hope that our
analysis technique will be applicable in other situations of the lattice-based attack.
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Real Root Isolation of Regular Chains

François Boulier, Changbo Chen, François Lemaire
and Marc Moreno Maza

Abstract We present an algorithm RealRootIsolate for isolating the real roots of
a polynomial system given by a zerodimensional squarefree regular chain. The out-
put of the algorithm is guaranteed in the sense that all real roots are obtained and
are described by boxes of arbitrary precision. Real roots are encoded with a hybrid
representation, combining a symbolic object, namely a regular chain and a numeri-
cal approximation given by intervals. Our algorithm is a generalization, for regular
chains, of the algorithm proposed by Collins and Akritas. We have implemented
RealRootIsolate as a command of the module SemiAlgebraicSetTools of
the RegularChains library in Maple. Benchmarks are reported.

1 Introduction

Finding real roots for univariate polynomials has beenwidely studied. Somemethods
guarantee the number of real roots and isolate each real root in an arbitrary small
interval. The algorithm presented in this paper is a generalization to regular chains
of the algorithm given by Collins and Akritas [6].

There exist many different approaches for isolating real roots of univariate poly-
nomials by means of Descartes rules of signs [11]. Uspensky [30] rediscovered
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independently1 an inefficient version of Vincent’s work [1]. More recent algorithms
are closer to the original work of Vincent and based on continuous fractions
[2, 3]. The approach of [28] is efficient in memory since it avoids the storage of
one polynomial at each node of the tree of the recursive calls.

The methods mentioned above are all for univariate polynomials with integral or
rational coefficients. In [12], the authors apply Descartes Algorithm for polynomials
with bit-stream coefficients. In [7, 14], the authors present algorithms for isolat-
ing the real roots of univariate polynomials with real algebraic number coefficients.
There exist different approaches for isolating real roots of polynomial systems with
finitely many complex solutions. Various constructions are employed to generalize
to multivariate systems the techniques known for univariate equations: rational uni-
variate representation [26], polyhedron algebra [22], and triangular decompositions
[5, 19, 24, 33].

In this paper, we generalize the Vincent-Collins-Akritas Algorithm to zerodimen-
sional squarefree regular chains; therefore our work falls in the same category as this
latter group of papers. Our idea is to build inductively (one variable after another)
“boxes” in which one and only one real solution lies. This basically amounts to
applying the Vincent-Collins-Akritas Algorithm to polynomials with real algebraic
coefficients defined by a regular chain. Our main algorithm RealRootIsolate takes
a zerodimensional squarefree regular chain T as an input and returns a list of dis-
joint boxes (Cartesian products of intervals) such that each box contains exactly
one real root of T . We have implemented our algorithm in Maple in the module
SemiAlgebraicSetTools of the RegularChains library.

Although rediscovered independently, the techniques presented here share some
ideas with those of [24, 25]. However, our algorithm focuses on finding isolation
boxes for real solutions of polynomial systems, whereas Rioboo’s primary goal is
to implement the real closure of an ordered field. Moreover, Rioboo uses Sturm
sequences and subresultants for univariate polynomial real root isolation.

Other real root isolation algorithmsbasedon triangular decompositions [5, 19, 33]
rely on the so-called “sleeve polynomials”, see Sect. 2.5.

We do not report on a comparative implementation with the methods in [5, 7, 19,
24, 33]. In order to ensure a fair comparison, one would need to bring these six real
root isolation methods (including ours) in a common implementation framework,
which would require a significant amount of work.

As mentioned, the algorithm presented here has been implemented in Maple
interpreted code. However, it does not rely yet on fast polynomial arithmetic nor
modular methods for regular chain computations. As shown in [17], these techniques
should speedup our implementation dramatically.

We compare our code with the RootFinding[Isolate] command (available in
Maple) based on the rational univariate representation [26]. With no surprise, the
highly optimized supporting C code allows RootFinding[Isolate] to outperform our
modest Maple implementation on systems that are in Shape Lemma position [4].

1 Recent investigations ofA.Akritas seem to prove thatUspenskyonly had an incomplete knowledge
of Vincent’s paper, from [29, pp. 363–368].
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However, for different families of examples, corresponding to non-equiprojectable2

varieties the situation is reversed which demonstrates the interest of our approach,
even in this unfair comparative implementation framework.

Another contribution of our work is that it equips Maple with a tool for manip-
ulating real numbers exactly. For instance, our code provides a data-type (called a
box) for encoding a point with n coordinates that are real algebraic numbers, together
with a function for deciding whether this point cancels a given n-variate polynomial.

We investigate the impact of different strategies for isolating roots. In particular,
we identify a family of examples where the use of normalized regular chains instead
of arbitrary (but still zero-dimensional) regular chains can speedup the root isola-
tion even though normalization tends to substantially increase coefficient sizes, as
established in [9].

2 Real Root Isolation of a Zerodimensional Regular Chain

After recalling the Vincent-Collins-Akritas algorithm in Sect. 2.1 and introducing
definitions in Sects. 2.2 and 2.3, the algorithm RealRootIsolate and its subalgo-
rithms are presented in Sect. 2.4. In Sect. 2.5 we compare our method with other
existing approaches.

2.1 The Vincent-Collins-Akritas Algorithm

The Vincent-Collins-Akritas algorithm isolates the real roots of a squarefree poly-
nomial (with rational coefficients) with an arbitrary precision. A basic version
(Algorithm 1) is recalled here, before its generalization in Sect. 2.4.

Definition 1 Let V be a finite set of t real numbers. An interval decomposition of
V is a list I1, . . . , It such that each Ii is an open rational interval ]a, b[ or a rational
singleton {a}, each Ii contains one element of V and Ii ∩ I j = ∅ if i �= j .

In Algorithm 1, there are different ways to compute a strict bound H (in the sense
that any root α of p satisfies |α| < H ). For example, if p = ∑d

i=0 ai xi , take the
Cauchy bound H = 1

|ad |
∑d

i=0 |ai |. Sharper bounds are given in [2].
The main arguments for the correctness of Algorithm 1 are the following. Algo-

rithm 1 computes a polynomial p̄ whose positive real roots are in bijection with the
real roots of p which lie in ]a, b[. The application of Descartes’ rule of signs on p̄
thus provides a bound on the number of real roots of p which lie in ]a, b[. This bound
is exact when equal to 0 or 1 [23, Theorem 1.2]. Since p is squarefree, the bound
returned by Algorithm 3 will eventually become 0 or 1, by [23, Theorem 2.5] so that
the whole method terminates.
2 The notions of an equiprojectable variety and equiprojectable decomposition are discussed in [8].

http://dx.doi.org/10.1007/978-3-662-43799-5_1
http://dx.doi.org/10.1007/978-3-662-43799-5_2
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Algorithm 1 RootIsolateVCA(p)

Input: p squarefree polynomial of Q[x]
Output: an interval decomposition of the real roots of p
1: H ← a strict bound on the roots of p
2: return RootIsolateAuxVCA(p, ] − H, H [)

Algorithm 2 RootIsolateAuxVCA(p, ]a, b[)
Input: p squarefree polynomial in Q[x] and a < b rational
Output: an interval decomposition of the real roots of p which lie in ]a, b[
1: nsv ← BoundNumberRootsVCA(p, ]a, b[)
2: if nsv = 0 then return ∅
3: else if nsv = 1 then return ]a, b[
4: else
5: m ← (a + b)/2 res ← ∅
6: if p(m) = 0 then res ← {{m}}
7: {Next line ensures the roots are sorted increasingly}
8: return RootIsolateAuxVCA(p, ]a, m[) ∪ res ∪ RootIsolateAuxVCA(p, ]m, b[)

Algorithm 3 BoundNumberRootsVCA(p, ]a, b[)
Input: p ∈ Q[x] and a < b rational
Output: a bound on the number of roots of p in the interval ]a, b[
1: p̄ ← (x + 1)d p

(
a x+b
x+1

)
where d is the degree of p, and denote p̄ = ∑d

i=0 ai xi

2: a′
e, . . . , a′

0 ← the sequence obtained from ad , . . . , a0 by removing zero coefficients
3: return the number of sign variations in the sequence a′

e, . . . , a′
0

2.2 Regular Chains

In this paper one only considers zerodimensional squarefree regular chains, denoted
zs-rc. Roughly speaking, a zerodimensional regular chain is a triangular set3 of
polynomials, with as many equations as variables, and which has a finite number of
complex roots (and consequently a finite number of real roots).

Let x1 < · · · < xs be s variables, and denoteQs = Q[x1, . . . , xs]. Let p ∈ Qs be
a non-constant polynomial.We denote bymvar(p) themain variable of p, by init(p)

the initial (or leading coefficient w.r.t. mvar(p)) of p, by mdeg(p) the degree of p in
its main variable and by sep(p) the separant of p, that is, ∂p/∂mvar(p). If T is a set
of polynomials in Qs , 〈T 〉 denotes the ideal generated by T and V (T ) denotes the
set of all complex solutions of the system T = 0. For a given xi , T≤xi (resp. T>xi )
denotes the elements of T whose main variable is less (resp. strictly greater) than xi .

Definition 2 Let T = {p1, . . . , ps} where each pi lies in Qs . The set T is a zerodi-
mensional squarefree regular chain (or zs-rc) ofQs if mvar(pi ) = xi for 1 ≤ i ≤ s,
init(pi ) does not vanish on V ({p1, . . . , pi−1}) for any 2 ≤ i ≤ s, and sep(pi ) does
not vanish on V ({p1, . . . , pi }) for any 1 ≤ i ≤ s.

3 triangular set in the sense that each polynomial introduces exactly one more variable.
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Thanks to the first two conditions, it is easy to show that the system T = 0 has
a finite number of complex solutions (counted with multiplicity), which is equal to
the product of the main degrees of the elements of T denoted Deg(T ). The third
condition, which forbids multiple roots, is the natural generalization of squarefree
polynomials to regular chains. As for the algorithm RootIsolateVCA, this condition
is only required to make the isolation algorithms terminate.

In practice, the zs-rc can be computed using the TriangularizeAlgorithm [21]
available in the RegularChains library shipped withMaple. Moreover, the reg-
ular chains are not built by checking the conditions of Definition 2 but by using
regularity tests of polynomials modulo ideals. A polynomial p is said to be regular
modulo an ideal I if it is neither zero nor a zero-divisor modulo I . If T is a regular
chain, p is said to be regular modulo T if p is regular modulo the ideal 〈T 〉. Thus,
the following definition is equivalent to Definition 2.

Definition 3 Let T = {p1, . . . , ps} where each pi lies in Qs . The set T is a zerodi-
mensional squarefree regular chain (or zs-rc) of Qs if mvar(pi ) = xi for any
1 ≤ i ≤ s, init(pi ) is regular modulo the ideal 〈p1, . . . , pi−1〉 for any 2 ≤ i ≤ s,
and sep(pi ) is regular modulo the ideal 〈p1, . . . , pi 〉 for any 1 ≤ i ≤ s.

The next lemmamakes the link between the regularity property of a polynomial q
modulo a zs-rc and the fact that q does not vanish on the solutions of a zs-rc. It is
implicitly used to check whether or not a polynomial vanishes on a root of a regular
chain in the CheckZeroDivisor algorithm.

Lemma 1 Let T be a zs-rc ofQs and q a polynomial ofQs . Then q is regular modulo
T iff q does not vanish on any complex solution of T .

2.3 Boxes

This section defines the boxes used for isolating solutions of zs-rc, as well as extra
definitions needed to specify the algorithms of Sect. 2.4.

Definition 4 An s-box (or box) B is a Cartesian product B = I1 . . . Is where each
Ii is either a rational open interval ]a, b[ (a and b are rational) or a singleton {a}with
a rational. The width of B, denoted by |B|, is defined as the maximum of the |Ii |
where |Ii | = 0 if it is a singleton and b − a if Ii =]a, b[.

The algorithm EvalBox(p, B), where p ∈ Qs , and B is a s-box, returns an inter-
val I such that p(v) ∈ I for any v ∈ B. Different variants for EvalBox(p, B) exist.
Any variant for EvalBox(p, B) satisfying the following property can be used: the
box EvalBox(p, B) should tend to the singleton {p(x0)} when the width of B tends
to zero (by keeping the condition x0 ∈ B). This simply ensures that the interval
EvalBox(p, B) should shrink as the width of the box B decreases.
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Definition 5 Let B = I1 . . . Is be an s-box and T = {p1, . . . , ps} be a zs-rc of Qs .
We say (B, T ) satisfies the Dichotomy Condition (or DC) if

• one and only one real root of T lies in B
• if I1 =]a, b[, p1(x1 = a) and p1(x1 = b) are nonzero and have opposite signs
• for each 2 ≤ k ≤ s, if Ik =]a, b[ then the two intervals EvalBox(pk(xk = a), B)

and EvalBox(pk(xk = b), B) do not meet 0 and have opposite signs.4

This last condition is the natural generalization of the condition p(a) and p(b) are
nonzero and have opposite sign, and p vanishes only once on the interval ]a, b[ in
the univariate case. Condition DC allows to refine a box very much like one refines
the interval ]a, b[ by dichotomy.

Definition 6 Let V be a finite set of t points of Rs . A list B1, . . . , Bt of s-boxes
is called a box-decomposition of V if each point of V lies in exactly one Bi and
Bi ∩ B j = ∅ if i �= j . If T is a zs-rc, we call box-decomposition of T a box-
decomposition of the real roots of T = 0.

Definition 7 A task M = task(p, ]a, b[, B, T ) is defined as: T is a zs-rc of Qs ,
p ∈ Qs+1, T ∪ {p} is a zs-rc, B is an s-box, (B, T ) satisfies DC, and a < b are
rational numbers. The solutions ofM denoted by Vt (M) are defined as V (T ∪{p})∩
(B×]a, b[) (i.e. the real solutions of T ∪ {p} which prolong the real root in B and
whose component xs+1 lies in ]a, b[).

2.4 Algorithms

The main algorithm RealRootIsolate, which isolates the real roots of a zerodimen-
sional squarefree regular chain, is presented here. Only elements of proofs are given.
However, specifications are stated with details. One assumes n > 1.

The algorithms presented here use themechanism of exceptionswhich is available
in a lot of programming languages. We find it appropriate since doing computations
using theD5 principle [10] can be seen as doing computations as if the coefficient ring
were a field.When a zero divisor is hit (leading to a splitting), one raises an exception
exhibiting the splitting. This exception can then be caught to restart computations.
This shortens and makes clearer5 the algorithms presented here. Only Algorithm 4
throws exceptions.

Algorithm4checkswhether p is regularmodulo T or not. If p is regularmodulo T ,
the algorithm returns normally, otherwise an exception is raised.Algorithm4 is called
whenever one needs to know whether a polynomial vanishes or not, on a real root x0

of T isolated by a box B. Indeed, if p is regular modulo T , thanks to Lemma 1, p does
not vanish on x0. This allows to refine B until EvalBox(p, B) does not contain 0,
which gives the sign of p(x0).

4 the sign of an interval not meeting zero is just the sign of any element of it.
5 otherwise, splittings need to be handled each time a function returns a value.
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Algorithm 4 CheckZeroDivisor(p, T )

Input: T a zs-rc Qs and p ∈ Qs
Output: If p is regular modulo T , then the algorithm terminates normally. Otherwise, an exception

is thrown exhibiting t zs-rc T1, . . . , Tt such that C1 V (T1) ∪ · · · ∪ V (Tt ) = V (T ), and C2∑t
i=1 Deg(Ti ) = Deg(T ) hold.

1: T1, . . . , Tt ← Regularize(p, T )

2: if p belongs to at least one 〈Ti 〉 then throw exception(T1, . . . , Tt )

Algorithm 5 RefineBox(B, T )

Input: T is a zs-rc of Qs , (B, T ) satisfies DC and |B| > 0
Output: an s-box B̄ such that |B̄| ≤ |B|/2, B̄ ⊂ B and (B̄, T ) satisfies the DC

Algorithm 6 RealRootIsolate(T )
Input: T is a zs-rc
Output: a box-decomposition B1, . . . , Bp of T
1: I1, . . . , It ← RootIsolateVCA(Tx1 )

2: toDo ← {(T>x1 , (Ii , T≤x1 ))}1≤i≤t
3: res ← ∅
4: while toDo �= ∅ do
5: pick and remove a (T>xi , (B, T≤xi )) from toDo
6: B′

1, . . . , B ′
t ′ ← SolveNewVar(Txi+1 , B, T≤xi )

7: if xi+1 = xn then res ← res ∪ {B ′
1, . . . , B ′

t ′ }
8: else toDo ← toDo ∪ {(T<xi+1 , (B ′

j , T≥xi+1 ))}1≤ j≤t ′
9: return res

The algorithm Regularizeis not recalled here (see [21] for details) but its specifi-
cation is: if T is a zs-rc, Regularize(p, T ) returns a list of zs-rc T1, . . . , Tt such that
for each Ti , p either belongs to 〈Ti 〉 or is regular modulo Ti . Moreover T1, . . . , Tt is
(what we call) a splitting of T , which in dimension 0 satisfies the two conditions C1
and C2 of the output of Algorithm 4. Due to condition C2, splittings cannot occur
indefinitely.

Algorithm 5 is able to refine a box containing a real root by dividing its width
by 2. It is simply the generalization of the dichotomy process for splitting into two
an isolating interval. The algorithm is not detailed here for brevity. The main idea is
to divide by two each interval Ii of B = I1 × · · · × Is which is larger than |B|/2
while keeping the DC condition.

Algorithm 6 is a generalization of Algorithm 1 for a zs-rc. Line 1 isolates the real
roots of the univariate polynomial Tx1 . The variable toDo is a set of (T>xi , (B, T≤xi ))

such that each (B, T≤xi ) satisfies DC. It means that (B, T≤xi ) represents one (and
only one) real root of T≤xi . The set T>xi simply is the set of polynomials which have
not be solved yet. Algorithm 6 calls Algorithm 7 (which allows to solve one new
variable) until all variables are solved. Note that Algorithm 6 could be followed by a
refinement of each returned box so that the width of each box is smaller than a given
precision.
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Algorithm 7 SolveNewVar(p, B, T )

Input: T is a zs-rc of Qs , p ∈ Qs+1, T ∪ {p} is a regular chain, (B, T ) satisfies DC
Output: a box-decomposition of the roots (x01 , . . . , x0s+1) of T ∪ {p} such that (x01 , . . . , x0s ) is the

root of T which lies in B
1: refine B into a box B ′ such that 0 /∈ EvalBox(i p, B ′)
2: compute a bound H on the roots of p(x01 , . . . , x0s , xs+1)

3: toDo ← {task(p, ] − H, H [, B ′, T )}
4: res ← ∅
5: while toDo �= ∅ do
6: pick and remove a task M from toDo
7: for all e in SolveTask(M) do
8: if e is a box then res ← res ∪ {e} else toDo ← toDo ∪ {e}
9: return res

Algorithm 8 SolveTask(M)

Input: a task M = task(p, ]a, b[, B, T ) where T is a zs-rc of Qs
Output: One of the four following cases:

1: ∅ which means Vt (M) = ∅.
2: a box B ′ such that (B ′, T ∪ {p}) satisfies DC and B ′ is a box-decomposition of Vt (M),
which means Vt (M) is composed of only one point 3: two tasksM1 andM2 such that Vt (M1)

and Vt (M2) forms a partition of Vt (M) 4: two tasks M1 and M2 plus a box B ′ such that
(B ′, T ∪ {p}) satisfies DC and the three sets Vt (M1), Vt (M2) and {x0} form a partition of
Vt (M), where x0 denotes the only real root of T ∪ {p} which lies in B ′.

1: nsv, B ′ ← BoundNumberRoots(M)

2: if nsv = 0 then return ∅
3: else if nsv = 1 then
4: B′′ ← B ′×]a, b[
5: refine B ′′ until (B ′′, T ∪ {p}) satisfies DC
6: return {B ′′}
7: else
8: m ← (a + b)/2 res ← ∅ p′ ← p(xs+1 = m)

9: if p′ ∈ 〈T 〉 then res ← {B ′ × {m}} else CheckZeroDivisor(p′, T )

10: return res ∪ {task(p, ]a, m[, B ′, T ), task(p, ]m, b[, B ′, T )}

Also remark that any raised exception will hit Algorithm 6 since none of the algo-
rithms presented here catches any exception. It is however easy to adjust Algorithm 6
so that it would catch exceptions and recall itself on each regular chain returned by the
splitting. The recursion would eventually stop because of condition C2 of Algorithm
4 (i.e. splittings cannot occur indefinitely).

Algorithm 7 finds the real roots of p (seen as univariate in xs+1) that “prolong”
the real root which lies in B. Line 1 always terminates, since i p is regular modulo T ,
so it does not vanish on any root of T . The bound H at line 2 can be computed in
the following way. Denote p = ∑d

i=0 ai xi
s+1 and Ai = EvalBox(ai , B ′). Then take

H = 1
min |Ad |

∑d
i=0(max |Ai |)wheremin |Ai | (resp. max |Ai |) denotes theminimum

(resp. maximum) of the modulus of the bounds of the interval Ai . The rest of the
algorithm is based on Algorithm 8 which transforms tasks into new tasks and boxes.
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Algorithm 9 BoundNumberRoots(M)

Input: a task M = task(p, ]a, b[, B, T ) where T is a zs-rc of Qs
Output: (nsv, B ′) such that B ′ ⊂ B, (B ′, T ) satisfies DC, and nsv is a bound on the cardinal of

Vt (M). The bound is exact if nsv = 0 or 1.

1: p̄ ← (xs+1 + 1)d p
(

xs+1 = a xs+1 + b
xs+1 + 1

)
with d = mdeg(p)

2: denote p̄ = ∑d
i=0 ai xi

s+1
3: a′

e, . . . , a′
0 ← the sequence obtained from ad , . . . , a0 by removing the ai belonging to 〈T 〉

4: for all a′
i do CheckZeroDivisor(a′

i , T )

5: B ′ ← B
6: while there is an a′

i such that 0 ∈ EvalBox(a′
i , B ′) do B ′ = RefineBox(B ′, T )

7: return the number of sign variations of the sequence
EvalBox(a′

e, B ′), EvalBox(a′
e−1, B ′), …, EvalBox(a′

0, B ′)

Algorithm 8 is a generalization of Algorithm 2. The cases nsv = 0 or 1 are
straightforward. When nsv > 1, one needs to split the interval ]a, b[ into two,
yielding two tasks returned on line 10. Lines 8–9 correspond to the lines 5–6 of
Algorithm 2. Indeed, checking p(m) = 0 is transformed into checking if p′ lies in
〈T 〉 or is not a zero divisor modulo T .

Algorithm 9 is a generalization of Algorithm 3. One discards the coefficients of
p′ which lie in 〈T 〉 because they vanish on the real root v which is in B. One also
ensures that the other coefficients (the a′

i ) are not zero divisors, so they cannot vanish
on v. Thus the loop at line 6 terminates. Moreover, this guarantees that the number
of sign variations is correct. Please note that the sequence a′

e, . . . , a′
0 is never empty.

Indeed if all ai ’s were in 〈T 〉, then all coefficients of p would lie in 〈T 〉 (impossible
since i p is regular modulo T ).

2.5 Comparison with Other Methods

In the introductionwe provided a comparison of ourworkwith others.More technical
details are reported below.

References [24, 25] give algorithmic methods (available in AXIOM) to manipu-
late real algebraic numbers. These developments were designed for improvingCylin-
drical Algebraic Decomposition (CAD)methods inAXIOM. Although [24] contains
all the tools to solve our problem, this paper focuses on the problem of manipulat-
ing real algebraic numbers. It does not address directly the problem of isolating the
real roots of a given zerodimensional regular chain [25] provides tools to perform
univariate polynomial real root isolation by using quasi Sylvester sequence which
according to [25] can be faster than the techniques based on the Descartes rules.

References [7, 14] present algorithms for isolating real roots of univariate polyno-
mials with algebraic coefficients. Their algorithms require the ideal to be prime, and
this condition is ensured by performing univariate factorization [20] into irreducible
factors for polynomials with algebraic coefficients. Our method does not require
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such factorizations and only requires the ideal to be squarefree. Thus, our method
replaces a decomposition into prime ideals by regularity tests which are often less
costly. Please note that the regularity tests we perform are in fact replaced by interval
arithmetics, as explained in the paragraph CheckZeroDivisorof Sect. 3.1.

Reference [26] is based on Gröbner basis computations and rational univariate
representation. Thus, [26] transforms the initial problem into the problem of isolating
the real roots of a univariate polynomial with rational number coefficients

Reference [19] starts from a zerodimensional regular chain (although [19] uses the
terminology of characteristic sets) and proceeds variable by variable. Their technique
is different from ours. After isolating a real root say x01 for p1(x1) = 0, they build
two univariate polynomials p2(x2) and p

2
(x2)whose real roots will interleave nicely

(see [19, Definition 2]) when the precision on x01 is sufficiently low, yielding isolation
intervals for the variable x2 [33] improves techniques of [19] by avoiding restarting
the isolation from the beginning when decreasing the precision. Such techniques
are also used in [5], where the authors consider general zerodimensional triangular
systems (which may not be a regular chain) and treat multiple zeros directly.

Quoting the abstract of [22], the authors use a powerful reduction strategy based
on univariate root finder using Bernstein basis representation and Descartes’ rule.
Basically, they reduce the problem to solving univariate polynomials by using the
Bernstein basis representation and optimizations based on convex hulls.

3 Implementation

3.1 The SemiAlgebraicSetTools Package

The algorithm RealRootIsolate has been coded using exceptions in Maple in the
module SemiAlgebraicSetTools of the RegularChains library [16]. We
present some implementation issues and optimizations integrated in our code.

Precision. The user can specify a positive precision so all isolation boxes have a
width smaller than the given precision. If an infinite precision is provided, then the
algorithm only isolates the real roots by refining the boxes the least possible. We take
the precision into account as soon as possible in the algorithm, meaning that the box
is refined each time an box is extended with a new variable.

Constraints. The user can restrict the solutions by imposing that some variables lie
in a prescribed interval. If the intervals are restrictive (i.e., smaller than the intervals
computed using bounds), many useless branches are cut.

The CheckZeroDivisor algorithm is not directly called in our code. Indeed, regu-
larity test can be very expensive and should be avoided as much as possible. When a
call CheckZeroDivisor(p, T ) returns, one knows that a box B isolating a real root
of T can always be refined until the interval EvalBox(p, B) does not meet zero.
This is in fact the only reason why we call CheckZeroDivisor. In order to avoid a
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regularity test, we first try to refine B a few times to see if EvalBox(p, B) still meets
zero. If it does not, we do not need to check the regularity.

Refining boxes. In the Maple implementation, Algorithm 5 receives an extra para-
meter xk . In that case, the box is only refined for the variables smaller than xk (i.e. the
variables xi with i ≤ k). This is useful at line 6 of Algorithm BoundNumberRoots.
Indeed, if mvar(a′

i ) = xk holds, then it is not necessary to refine the complete box
B ′ to ensure that EvalBox(a′

i , B ′) does not meet 0.

Change of variables. BymodifyingAlgorithms 7 and 8,we call Algorithm9with a =
0 and b = 1. This replaces (xs+1+1)d p

(
xs+1 = a xs+1 + b

xs+1 + 1

)
by several substitutions

p(xs+1 = xs+1/2), p(xs+1 = 1/xs+1) and p(xs+1 = xs+1+1)which can bewritten
efficiently, the last one using fast Taylor shift [31].

Refining other branches. Due to the triangular structure of the system, many roots
share a common part (i.e., values for some variables are equal). When refining a root,
we refine the roots sharing a common part to save computations.

Further refining. After being computed, an isolation box of a real root v can be
refined further using theMaple command RefineBox. To do so, exceptions have to
be caught. Our implementation associates a regular chain T to each box B encoding
a real root. Thus, if T is split into T1, . . . , Ts , one replaces (B, T ) by the right (B, Ti )

which also defines the real root v as done in [25, p. 528].

EvalPoly. For evaluatingEvalBox(p, B), we apply a Hörner scheme to p. For exam-
ple, the polynomial p := x32 x1 + 3x22 + x2x21 + x21 + x1 + 1 is rearranged as
1 + (1 + x1)x1 + (x21 + (3 + x1x2)x2)x2. Assuming x2 > x1, the interval of B for
the variable x2 tends to be in practice wider than that for the variable x1, since the
intervals for smaller variables tend to be more refined than those for higher variables.
On the example, the Hörner form decreases the exponents of x2.

3.2 Further Development

Using fast polynomial arithmetic and modular methods. The current implementation
of theCheckZeroDivisor algorithmcan be improved in a significantmanner. Indeed,
the modular algorithm for regularity test of [17] and implemented with the Modpn
library [18] outperform the regularity test used in CheckZeroDivisor by several
orders of magnitude.

Computing with algebraic numbers. Using the two algorithms RefineBox and
CheckZeroDivisor, one can encode algebraic numbers and check if a multivari-
ate polynomial cancels on some algebraic numbers. This allows computing with
algebraic numbers, very much as in [24]. Moreover, inequations and inequalities
could be included with almost no work. Indeed they can be handled at the end of
RealRootIsolate usingCheckZeroDivisor. They can also be treated inside the sub-
algorithms as soon as a box in construction involves all the variables of an inequality
or inequation, allowing to cut some branches.
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Floating-point computations. As suggested by Fabrice Rouillier (private commu-
nication), it would speedup the algorithm to use multiple-precision floating-point
computations with exact rounding (as in the MPFI library [27]).

Exceptions could be caught sooner to avoid losing already done computations.

Using continuous fractions as in [2, 3] may also be investigated.

Interval arithmetics. The algorithm EvalBox could certainly benefit from techniques
for “optimizing” polynomial expressions, as in [15].

Newton’s method. Some attempts were made to incorporate a Newton method for
system of polynomials in the RefineBox algorithm. Due to the triangular form of the
system, the Jacobian is also triangular which eases the method. However, although
the convergence was really faster, it was not satisfactory because of the coefficient
swell in the isolation intervals. However, we believe that Newton’s method should
be investigated further.

4 Benchmarks

4.1 Description of the Experimentation

The names of the examples used for benchmarking are listed in Fig. 1. Most of them
are classical. The lhlp files tests are taken from [19]. The examples chemical-reaction,
geometric-constraints, neural-network, p3p-special and Takeuchi-Lu appear in [32].
The nld-d-n and nql-n-d examples are described in Sect. 4.3. The set of all the
examples can be found at www.lifl.fr/~lemaire/BCLM09/BCLM09-systems.txt.
Benchmark results are given in Fig. 1. They were run on an AMD Phenom II X4
(4Gb of mem.) using Maple 14 64bits and our latest development version of the
RegularChains library. Timings are in seconds. Timeouts are indicated with >.
The column Sys denotes the name of the system. The column v/e/s stands for the
number of variables/equations/real solutions.

The Maple command RootFinding[Isolate] isolates real roots within the times
indicated in the group of columns RF/Is. For multivariate systems, this command
relies onGröbner basis computations [13] and rational univariate representation [26].
In Column 1, the command used is RootFinding [Isolate](sys, variables, dig-
its=10, output=interval). For Column 2 the same command is used with the vari-
able ordering reversed, in case the variable ordering is important. Note that the option
digits=10 ensures that the first ten digits of the results are correct which is not the
same as guaranteeing a width less than 1e-10 for the isolation boxes in RealRoo-
tIsolate. However, the difficulty in isolating the real roots is comparable since the
roots are neither close to zero nor too big.

The other groups of columns correspond to three strategies for isolating real roots
using our algorithm RealRootIsolate. In each strategy, the initial system is first
decomposed into zs-rc using the Triangularize command together with the option

www.lifl.fr/~lemaire/BCLM09/BCLM09-systems.txt
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RF/Is Strategy 1 Strategy 2 Strategy 3
Sys v/e/s 1 2 Tr Is/10 Tr/No Is/10 Tr Is/∞ ∞/5 5/10

4-body-homog 3/3/7 0.16 0.17 0.58 4.1 1.9 4.6 0.58 1.5 1.5 1.5
5-body-homog 3/3/11 0.19 0.2 0.83 11 10 16 0.81 3.5 3.9 3.7

Arnborg-Lazard-rev 3/3/8 <0.1 <0.1 0.35 2.9 0.42 2.8 0.34 0.88 1.1 1
Arnborg-Lazard 3/3/8 <0.1 <0.1 0.36 3 0.42 2.7 0.35 0.91 1.3 1.1

Barry 3/3/2 <0.1 <0.1 0.2 0.64 0.22 1.6 0.19 0.19 0.26 0.2
Caprasse-Li 4/4/18 <0.1 <0.1 0.61 1.4 0.77 0.9 0.63 0.35 0.62 0.46
Caprasse 4/4/18 <0.1 <0.1 0.65 1.4 0.8 0.9 0.62 0.37 0.65 0.5

chemical-reaction 4/4/4 <0.1 <0.1 0.23 1.3 0.26 1 0.23 0.29 0.71 0.45
circles 2/2/22 0.6 0.57 0.32 10 0.41 10 0.32 6.4 1.8 1.6
cyclic-5 5/5/10 0.22 0.22 1.1 1.9 1.6 0.77 1.1 0.4 1.5 0.69

Czapor-Geddes-Wang 5/5/2 <0.1 <0.1 0.98 2.5 5.4 3.3 0.99 1.1 1 0.84
fabfaux 3/3/3 <0.1 <0.1 0.65 2.9 14 3.4 0.66 0.89 1.3 1.3

geometric-constraints 3/3/8 <0.1 <0.1 0.16 0.91 0.18 0.92 0.17 0.23 0.41 0.35
GonzalezGonzalez 3/3/2 <0.1 <0.1 0.21 0.45 0.26 0.42 0.22 0.19 0.16 0.14

Katsura-4 5/5/12 <0.1 <0.1 0.41 5.7 0.51 7.8 0.41 1.4 2.6 2.4
lhlp1 3/3/6 <0.1 <0.1 0.19 0.54 0.21 0.76 0.19 0.19 0.2 0.17
lhlp2 3/3/2 <0.1 <0.1 0.2 0.46 0.24 0.65 0.19 0.18 0.19 0.14
lhlp3 3/3/2 <0.1 <0.1 0.15 0.37 0.18 0.4 0.16 0.14 0.15 <0.1
lhlp4 2/2/4 <0.1 <0.1 0.18 1.3 0.22 2.1 0.18 0.3 0.63 0.42
lhlp5 3/3/4 <0.1 <0.1 0.26 0.97 0.3 1.1 0.27 0.27 0.39 0.34
lhlp6 4/4/4 <0.1 <0.1 0.29 1.1 0.33 0.84 0.28 0.26 0.59 0.34

neural-network 4/4/22 0.57 0.57 0.44 7 0.67 6.1 0.42 1.7 3 2.7
nld-3-4 4/4/27 0.72 0.73 1.1 2.9 1.6 1.9 1.2 0.6 1.5 1.3
nld-3-5 5/5/111 47 47 9.1 23 12 14 8.9 4 12 10
nld-4-5 5/5/? >2000 >2000 >2000 ? >2000 ? >2000 ? ? ?
nld-7-3 3/3/7 58 58 1.7 3.8 2.9 3.1 1.6 4.6 <0.1 <0.1
nld-8-3 3/3/8 275 275 2.1 9.9 11 7 2.1 8.7 1.3 1.2
nld-9-3 3/3/7 1078 1083 7.9 14 32 27 7.9 16 <0.1 <0.1
nld-10-3 3/3/8 >2000 >2000 10 45 341 118 10 44 2.4 2.3
nql-5-4 5/5/2 66 62 0.2 0.59 0.22 0.57 0.2 0.26 0.11 0.14
nql-10-2 10/10/2 144 132 0.25 1.4 0.29 1.4 0.25 0.49 0.31 0.44
nql-10-4 10/10/2 >2000 >2000 0.32 1.4 0.38 1.4 0.31 0.53 0.27 0.37
nql-15-2 15/15/2 >2000 >2000 0.39 2.6 0.45 2.5 0.38 1.5 0.52 0.81

p3p-special 5/5/24 0.22 0.27 0.31 9 0.5 13 0.31 2.8 3.2 3.4
PlateForme2d-easy 6/6/0 <0.1 <0.1 0.57 0.16 0.76 0.17 0.56 0.14 <0.1 <0.1

r-5 5/5/1 1.1 1.1 0.32 0.13 0.36 0.13 0.31 0.12 <0.1 <0.1
r-6 6/6/1 >2000 >2000 0.48 0.11 0.56 0.1 0.48 <0.1 <0.1 <0.1

Rose 3/3/18 0.34 0.37 0.46 15 0.54 22 0.45 2.2 8.5 7.3
simple-nql-20-30 20/20/2 >2000 >2000 0.57 12 0.65 12 0.55 28 1.2 0.13

Takeuchi-Lu 4/4/14 <0.1 <0.1 0.27 3 0.31 3.9 0.27 0.46 1.9 1.2
Trinks-2 6/7/0 <0.1 <0.1 0.18 <0.1 0.19 <0.1 0.18 <0.1 <0.1 <0.1

Trinks-difficult 6/6/2 <0.1 <0.1 0.24 1.2 0.29 1.8 0.24 0.25 0.64 0.53
wilkinson20 1/1/21 <0.1 <0.1 0.11 0.49 0.13 0.5 0.11 0.13 0.21 0.17
wilkinsonxy 2/2/25 <0.1 <0.1 0.17 3.2 0.19 3.2 0.17 1.2 1 1

Fig. 1 Benchmark

radical =’yes’ ensuring these regular chains are squarefree. In order to keep things
simple and uniform, the option probability=xx of Triangularize is not used. Thus
the modular algorithm of [8] is not applied even though it can solve all our examples
that the non-modular version cannot.

Strategy 1. We build regular chains (column Tr) and call the RealRootIsolate
algorithm (column Is/10) on each regular chain with a precision of 1e-10.

Strategy 2. A variant of Strategy 1 where we compute strongly normalized regular
chains (column Tr/No) using the option normalized= ’strongly’ of Triangularize.

Strategy 3. Another variant of Strategy 1. We build regular chains (column Tr) and
call the RealRootIsolatealgorithm on each regular chain with an infinite precision
(column Is/∞), in the sense that the width of the boxes are not constrained. Thus,
only the isolation is performed. Then we call the command RefineListBox to refine
the list of boxes with a precision of 1e-5 (column ∞/5). Then we refine again the
boxes for a precision of 1e-10 (column 5/10).
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4.2 Comparison of Different Strategies

Strategies 1 and 2 are comparable. Strongly normalized regular chains take more
time to be computed, since normalization is a post-process for the command Trian-
gularize. The isolation time is roughly the same in general for both types of regular
chains. For the nld-d-n (except nld-9-3) family of examples, normalization helps
the isolation process. However, for some other examples, such as 5-body-homog,
p3p-special and Rose, normalization makes things worse.

Comparing Strategies 1 and 3 shows two things. First, it is usually faster to isolate
solutions with an infinite precision rather than with a small precision. Second, it
shows that the overall times for Strategies 1 and 3 are comparable.

4.3 Comparison with RootFinding

The RootFinding[Isolate] is obviously a lot faster on many examples. One should
keep in mind that this command calls internal routines written in C that have been
developed intensively for years. However, the RootFinding[Isolate] has difficulties
on some systems such as the nql-n-d and nld-d-n ones.

The nql-n-d (for non quasi linear) example is specific and was suggested by
Fabrice Rouillier. It is defined by n equations in n variables xd

1 −2 = 0, xd
i + xd/2

i −
xi−1 = 0 for 2 ≤ i ≤ n for some even degree d . This system is already a zs-rc. The
algorithm RealRootIsolate solves it easily since the degrees are distributed evenly
among the equations. On the other hand, the RootFinding[Isolate] needs to build a
rational univariate representation which we believe has a very large degree roughly
equal to dn (i.e., about one million when d = 4 and n = 10).

A similar example is simple-nql-n-d defined by xd
1 − 2 = 0, xd

i − xi−1 = 0 for
2 ≤ i ≤ n. The degree of the rational univariate representation is also roughly dn .
For the example simple-nql-20-30, dn is around 1029.

The second family of systems which causes difficulties to RootFinding[Isolate]
are the nld-d-n (for non-leading linear) defined by n equations of the form x1+· · ·+
xi−1 + xd

i + xi+1 + · · · + xn − 1 = 0 for 1 ≤ i ≤ n. On these systems the compu-
tations performed by Triangularize tend to split into many branches, even though
the equiprojectable decomposition consists of a few components (generally 2). For
System nld-9-3, the command Triangularize (used without normalization option)
produces 15 components where the largest coefficient has size 20 digits. The com-
mand EquiprojectableDecomposition (which requires the use of normalized reg-
ular chains) produces 3 components for nld-9-3, where most coefficients have more
than 500 digits. Since nld-9-3 has 729 complex solutions, this suggests that the
univariate polynomial in the rational univariate representation has degree 729 and
coefficients with size at least 500 digits. This makes it difficult to isolate the real
roots of such polynomial. Therefore, the nld-d-n examples show that splitting can
help in solving some problems.
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5 Conclusion

We presented a generalization of the Vincent-Collins-Akritas Algorithm for zerodi-
mensional squarefree regular chains, and its implementation in Maple. Each box
isolating a root can be refined arbitrarily after being computed. This allows manipu-
lating algebraic numbers (encoded by a isolation box and a regular chain) very much
like in [24]. Many improvements in the algorithm RealRootIsolate are possible and
should be investigated. Among them, we believe that writing a C library to perform
the isolation would improve a lot the timings. Yet for some non-equiprojectable vari-
eties, our algorithm and itsMaple implementation show favorable performances.
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A Practical Implementation of a Modular
Algorithm for Ore Polynomial Matrices

Howard Cheng and George Labahn

Abstract We briefly review a modular algorithm to perform row reduction of a
matrix of Ore polynomials with coefficients in Z[t], and describe a practical imple-
mentation in Maple that improves over previous modular and fraction-free versions.
The algorithm can be used for finding the rank, left nullspace, and the Popov form
of such matrices.

1 Introduction

Ore domains provide a general setting for describing the arithmetic of linear differ-
ential, difference, and q-difference operators. Systems of differential, difference, and
q-difference equations can then be defined via matrices of Ore operators (polynomi-
als) evaluated at unknown functions. One can then make use of matrix constructions
to investigate such systems. For example, performing row reduction on a matrix of
Ore polynomials to simpler forms allows one to determine its rank and left nullspace
which give the minimum number of equations needed to represent the system of
equations [1]. When a transformation is invertible, the normal form gives the matrix
representing an equivalent system with a minimum number of equations. When
the leading coefficient is triangular (as in the weak Popov form), then the normal
form allows one to rewrite high-order operators (e.g. derivatives) in terms of lower
ones [2]. These transformations can also be applied to the computation of greatest
common right divisors (GCRDs) and least common left multiples (LCLMs) [3–6],
which represents the intersection and the union of the solution spaces of systems of
equations.
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The FFreduce algorithm [3] is a procedure for row reducing a matrix of Ore
operators which performs row operations in a fraction-free way to reduce to simpler
form while still controlling coefficient growth. This algorithm computes the rank
and left nullspace of these matrices, and can be used to compute the row-reduced
and weak Popov forms of shift polynomial matrices [3], as well as the Popov form
of general Ore polynomial matrices [7]. It can also be used to compute a greatest
common right divisor (GCRD) and a least common left multiple (LCLM) of such
matrices. Besides their general use with systems of equations, LCLMs are also used
in nonlinear control theory in order to define the notion of transfer function in some
cases [8].

A modular version of the FFreduce algorithm was developed by the authors to
reduce the computational complexity [2]. In the modular algorithm, it was observed
that the evaluation reduction Zp[t][Z; σ, δ] → Zp[Z; σ, δ] is not generally an Ore
ring homomorphism [6]. Instead of performing the row operations on theOre polyno-
mial matrices directly, the problem was converted to one involving a system of linear
equations over Zp. Larger striped Krylov matrices over Zp was constructed and row
reductions were performed on these matrices. Each Krylov matrix was constructed
dynamically—rows were added depending on which row is selected as the pivot in
each step. This was needed to ensure that the correct image was computed during
the reduction in the presence of potential unlucky homomorphisms, even though
unlucky homomorphisms occur rarely in practice. Thus, the modular algorithm was
a trade-off between not exploiting polynomial arithmetic (or equivalently, the struc-
ture of the matrix) and the improved efficiency of coefficient arithmetic in simpler
domains.

One obstacle in obtaining further improvement was that the row operations to
reduce the Krylov matrix have to be done one step at a time, because it is not
possible to construct the entire Krylov matrix a priori or the wrong system of solu-
tions may have been solved. As a result, the only linear algebra subroutines in the
LinearAlgebra:-Modular package in Maple used to accelerate the computa-
tion were operations on individual rows instead of the entire matrix. The resulting
implementation has to switch back and forth between high-levelMaple code and low-
level compiled linear algebra subroutines that are significantly faster. In practice, the
resulting modular algorithm was only faster than the corresponding fraction-free
algorithm for very large inputs.

In this work, we investigate the applicability of linear algebra subroutines on
blocks of matrices to speedup the computation. Assuming that the first evaluation
point is “lucky,” the Krylov matrices for the remaining evaluation points can be
constructed and the entire matrix can be reduced with a few calls to the appropriate
linear algebra subroutines. This allows more sophisticated implementations of linear
algebra subroutines to speedup the reduction process (e.g. [9]).
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2 Notation and Definitions

The definitions given here are similar to those in our previous works [2, 3].
For any vector of integers (also called multi-index) ω = (ω1, . . . , ωp), we denote

by |ω| = ∑p
i=1 ωi . The vector ei denotes the i th unit vector (of the appropriate

dimension) such that (ei ) j = δi j ; we also have e = (1, . . . , 1) (of the appropriate
dimension). We denote by Zω the diagonal matrix having Zωi on the diagonal.

Let k be any field and let σ : k → k be an injective endomorphism of k. Then, a
derivation δ : k → k with respect to σ is an endomorphism of the additive group of
k satisfying

δ(rs) = σ(r)δ(s) + δ(r)s

for all r , s ∈ k. In this paper, we examine Ore polynomial rings with coefficients in
Z[t]. That is, the ring Z[t][Z; σ, δ] with σ an automorphism, δ a derivation and with
the multiplication rule

Z · a = σ(a)Z + δ(a)

for all a ∈ Z[t]. When δ = 0, we call the polynomials shift polynomials. For brevity,
we use Z[t][Z ] when the specific choices of σ and δ are not important.

LetZ[t][Z ]m×n be the ring of m ×n Ore polynomial matrices overZ[t]. We adapt
the following conventions for the remainder of this paper. Let F(Z) ∈ Z[t][Z ]m×n ,
N = degF(Z), and write

F(Z) =
N∑

j=0

F ( j)Z j , with F ( j) ∈ Z[t]m×n .

We also write c j (F(Z)) = F ( j) to denote the j th coefficient matrix. The row degree
of an Ore polynomial matrix F(Z) is ν = rdeg F(Z) if the i th row has degree νi .
Some useful properties of matrices of Ore polynomials, such as linear independence
and rank, can be found in [3].

The problem of row reduction of Ore polynomial matrices can be formalized as
follows. An Ore polynomial vector P(Z) ∈ Z[t][Z ]1×m is said to have order1 ω with
respect to F(Z) if

P(Z) · F(Z) = R(Z) · Zω

for some residual R(Z). The set of all vectors of a particular orderω forms aQ[t][Z ]-
module. An order basis for this module, M(Z) ∈ Z[t][Z ]m×m of row degree μ, is a
basis such that

1 Orders in this paperwill bewith respect toF(Z) and it will not be explicitly stated for the remainder
of the paper.
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1. every row, M(Z)i,∗, has order ω for all 1 ≤ i ≤ m;
2. the rows of M(Z) form a basis of the module of all vectors of order ω. That is,

every P(Z) ∈ Q[t][Z ]1×m of order ω can be written as P(Z) = Q(Z) · M(Z) for
some Q(Z) ∈ Q[t][Z ]1×m ;

3. the leading column coefficient is normalized. That is, there exists a nonzero d ∈
Z[t] such that

M(Z) = d · Zμ + L(Z)

where degL(Z)k,l ≤ μl − 1.

An order basis represents all row operations to eliminate a specified number of low-
order coefficients. An order basis of a particular order and degree, if it exists, is
unique up to a constant multiple [3, Theorem 4.4]. When ω = (m N + 1) · e and
R(Z) is the corresponding residual, the rows in M(Z) corresponding to the zero
rows in R(Z) give a basis for the left nullspace of F(Z). However, it is not known
a priori the row degree μ of the order basis. A row-reduced form and weak Popov
form, together with the unimodular transformation matrix, can be extracted from
M(Z) and R(Z) if F(Z) is a matrix of shift polynomials [3]. In the general case of
matrices of Ore polynomials, the computation of the Popov form can be formulated
as a left nullspace computation and can be extracted from the result of an order basis
computation [2].

3 The Modular Algorithm

A modular algorithm was given in [2] to compute the order basis and the residual.
The fraction-free algorithm [3] can be reduced easily fromZ[t][Z ] toZp[t][Z ] using
Chinese remaindering. The usual issue of normalization of the image, detecting
unlucky homomorphisms, and termination can be dealt with as described in [2]. It
should be noted that the algorithm is output-sensitive in that the number of primes
used is determined by the output size, and there is no need to verify the result (e.g.
by trial division).

However, the reduction from Zp[t][Z ] to Zp[Z ] was not possible because the
evaluation homomorphism t ← α is generally not an Ore ring homomorphism.
Instead, we formulate the order basis problem as a system of linear equations over
Zp and perform Gaussian elimination on the coefficient matrix. The method we
follow is similar to polynomial GCD computation by Gaussian elimination on the
well-known Sylvester matrix [10]. It can also be considered an extension to the
modular algorithm for Ore polynomial GCRD computation of Li and Nemes [6].

Given row degree μ and order ω, the coefficients in the order basis M(Z) can
be viewed as a solution to a linear system of equations over the coefficient ring. By
equating the coefficients of like powers, each row of the order basis satisfies a system
of equations of the form
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Z0 · · · Zμk−1+δ1,k

[
· · · p(0)

kp
(0)
k · · · p

(μk−1+δ1,k )

k · · · p(0)
k

]
·

Z0 · · · Zω−e

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...

· · · Z0 · Fk,·(Z) · · ·
...

· · · Zμk−1+δ1,k · Fk,·(Z) · · ·
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

More formally, for any P(Z) ∈ Q[t][Z ]m×n we define

Pv =
[

P(0)
∗,1 · · · P(v1)∗,1 | · · · |P(0)∗,n · · · P(vn)∗,n

]
.

We also define (recall that ω = σ · e)

K (μ,ω) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0( F(Z)1,∗) · · · cσ−1( F(Z)1,∗)
...

...

c0( Zμ1 · F(Z)1,∗) · · · cσ−1(Zμ1 · F(Z)1,∗)
...

...

c0( F(Z)m,∗) · · · cσ−1( F(Z)m,∗)
...

...

c0( Zμm · F(Z)m,∗) · · · cσ−1(Zμm · F(Z)m,∗)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

Then the i th row of the order basis satisfies

(Mi,∗)μ−e+ei · K (μ − e + ei ,ω) = 0. (2)

The matrix K (μ,ω) has dimensions |μ + e| × |ω|, and is called a striped Krylov
matrix (with m stripes). This is a generalization of the well-known Sylvester matrix
when m = 2 and n = 1. We also define K ∗(μ,ω) to be the matrix K (μ,ω) with
linearly dependent columns removed.

Example 1 Let μ = (2, 2), ω = (3, 3), and

F(Z) =
[
2Z2 + 3t Z + 6t2 Z2 − Z + 2
(t − 1)Z + 3t3 3t Z + t

]
∈ Z[t][Z; σ, δ]2×2,

with σ(a(t)) = a(t) and δ(a(t)) = d
dt a(t). Then
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K (μ,ω) =

⎡
⎢⎢⎢⎢⎢⎢⎣

6t2 2 3t −1 2 1
12t 0 6t2 + 3 2 3t −1
12 0 24t 0 6t2 + 6 2
3t3 t t − 1 3t 0 0
9t2 1 3t3 + 1 t + 3 t − 1 3t
18t 0 18t2 2 3t3 + 2 t + 6

⎤
⎥⎥⎥⎥⎥⎥⎦

.

��
One way to obtain an order basis of degree μ and order ω is to perform Gaussian

elimination on K (μ,ω) so that the first ω columns are eliminated. The rows in
the submatrix K (μ − e,ω) are used for pivots in the elimination process, and the
remaining rows give the residual R(Z). The order basis can be recovered from the
transformation matrix corresponding to these rows.

Example 2 Continuing from Example1, we perform Gaussian elimination on
K ((2, 2), (3, 3)) using the first two rows of each stripe as pivots. After removing
some common factors in each row to reduce the results, the resulting matrix is

⎡
⎢⎢⎣

6 t2 2 3 t −1 2 1
0 −4 6 t3 − 3 t 2 t + 2 3 t2 − 4 −t − 2
0 0 0 0 −252 t5 + 270 t4 − 234 t3 − 22 t2 − 16 t + 16 882 t4 − 104 t2 − 56 t − 10
0 0 −3 t2 + 2 t − 2 7 t −2 t −t
0 0 0 21 t2 − 14 9 t4 − 12 t3 + 10 t2 − 8 t + 8 −21 t3 + 11 t2 − 14 t + 2
0 0 0 0 −126 t6 + 135 t5 − 180 t4 − 11 t3 + 118 t2 − 20 t 441 t5 − 52 t3 − 28 t2 − 103 t

⎤
⎥⎥⎦

with the corresponding transformation matrix

⎡
⎢⎣

1 0 0 0 0 0
−2 t 0 0 0 0

−6 t2 + 4 −126 t4 + 6 t3 − 4 t2 + 4 t + 14 21 t3 − 14 t −252 t2 + 24 t + 34 252 t3 − 12 t2 − 34 t − 8 0
−t 0 0 2 0 0

−3 t2 + 2 3 t3 − 2 t2 + 2 t 0 12 t − 4 −6 t2 + 4 t − 4 0
−3 t3 + 2 t −63 t5 + 3 t4 − 2 t3 + 2 t2 + 21 t 0 −126 t3 + 12 t2 + 59 t 126 t4 − 6 t3 − 59 t2 − 4 t 21 t3 − 14 t

⎤
⎥⎦ .

The order basis M(Z) of degree μ = (2, 2) and order ω = (3, 3) can be easily
extracted. The rows of M(Z) are:

[(21t3 − 14t)Z2 + (−126t4 + 6t3 − 4t2 + 4t + 14)Z − 6t2 + 4 (252t3 − 12t2 − 34t − 8)Z − 252t2 + 24t + 34]

and

[(−63t4 + 3t3 − 2t2 + 2t + 21)Z − 3t2 + 2 (21t3 − 14t)Z2 + (126t3 − 6t2 − 59t − 4)Z − 126t2 + 12t + 59] .

��
Unfortunately, the row degreeμ of the order basisM(Z) of orderω is not known a

priori. In practice, one starts withμ0 = 0 and performs elimination on K (μ0,ω). For
any i ≥ 0,μi+1 is determined by the pivoting needed to reduce K (μi ,ω) by onemore
column. Thus, each step in the algorithm involves performing Gaussian elimination
of one column followed by adding one row to the matrix. Unlucky homomorphisms
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occur when the determinant of K ∗(μ,ω) vanishes under the evaluation t ← α.
In such case, the pivoting that occurs during the elimination is different. Unlucky
homomorphisms can be detected by comparing the different row degrees of the final
order basis computed under each evaluation homomorphism.

The LinearAlgebra:-Modular package inMaple was used to perform effi-
cient computations over Zp. The use of Gaussian elimination for solving the system
of linear equations instead of working on theOre polynomial matrices directlymeans
that the modular algorithm is no longer exploiting the structure present in the Krylov
matrix. On the other hand, coefficient arithmetic overZ[t] can be replaced by simpler
coefficient arithmetic over Zp. For larger problems, the gain in simpler coefficient
arithmetic more than offsets the loss in efficiency by not exploiting the structure.
The algorithm outperforms the fraction-free algorithm [3] for very large problems
even though the fraction-free algorithm exploits the structure of the Krylov matrix.
However, the modular algorithm is not competitive for small input [2].

4 Improved Implementation

The implementation of the modular algorithm described in [2] has two drawbacks.
First, the interleaving between matrix construction and row elimination means that
routines such as Gaussian elimination (on an entire matrix) or block matrix multi-
plication cannot be applied to speedup the computation further. The implementation
would have to switch between high-level Maple code and the faster, low-level com-
piled code in the LinearAlgebra:-Modular package. Second, the extra work
and bookkeeping required for incremental matrix construction reduce the advantage
of the modular algorithm. We would like to make use of low-level compiled linear
algebra routines as much as possible without switching to Maple code.

In order to improve the modular algorithm, we note the unpredictability of the
final row degree is mostly due to the presence of unlucky homomorphisms, but
they occur rarely in practice. Therefore, the incremental elimination algorithm given
previously [2] is used on one evaluation point in Zp. Assuming that the evaluation
point (and the prime p) is not unlucky, the order basis computed has the correct
degree μ. If μ turns out to be incorrect, it will be detected when combined with the
results from other primes. In that case, we perform extra computations in Zp that are
wasted. However, this does not occur often in practice.

When the correct degreeμ of the order basis is known (as assumed), it is relatively
straightforward to compute the order basis and the residual:

1. construct A = [K (μ,ω + (N + 1) · e) | I];
2. perform Gaussian elimination on A to compute a reduced row echelon form to

eliminate the first |ω| columns, using only rows in K (μ − e,ω) as pivots;
3. record the linearly dependent columns J as well as d = det K ∗(μ − e,ω) which

is (up to sign) the product of the pivots used;
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4. construct B from −A∗,J after removing the pivot rows and inserting the m × m
identity matrix into the columns corresponding to those rows.

5. compute C = (−1)
∑m

i=2 μi · d · B · A;
6. if C is not zero in the first |ω| columns, then the homomorphism is unlucky.

Otherwise, extract R(Z) from the left part and M(Z) from the right part of C.

The Gaussian elimination in Step 2 can be performed, for example, by calling the
RowReduce routine in the LinearAlgebra:-Modular package of Maple on
the entire matrix A. The matrix multiplication in Step 5 can be performed by the
Multiply routine. As a result, the new implementation can fully take advantage
of good low-level implementation of block Gaussian elimination and multiplication
(e.g. [9]). Since there is no need to perform incremental matrix construction, both
memory management and bookkeeping are reduced. In addition, the control of the
program can stay inside the low-level LinearAlgebra:-Modular subroutines
instead of switching back and forth between them and Maple code.

Example 3 We apply this method to Example1. We perform our calculations in
Z31 and perform the evaluation t ← 7. To conserve space, we only show A′ =
[K (μ,ω) | I] and compute only M(Z). Initially,

A′ =

⎡
⎢⎢⎢⎢⎣

15 2 21 30 2 1 1 0 0 0 0 0
22 0 18 2 21 30 0 1 0 0 0 0
12 0 13 0 21 2 0 0 1 0 0 0
6 7 6 21 0 0 0 0 0 1 0 0
7 1 7 10 6 21 0 0 0 0 1 0
2 0 14 2 8 13 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

Performing Gaussian elimination on rows 1, 2, 4, and 5, we obtain:
⎡
⎢⎢⎢⎢⎣

1 0 0 0 14 14 29 5 0 27 1 0
0 1 0 0 25 9 11 1 0 24 28 0
12 0 13 0 21 2 0 0 1 0 0 0
0 0 1 0 14 25 0 23 0 6 20 0
0 0 0 1 25 8 22 2 0 21 26 0
2 0 14 2 8 13 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

Here, J = {1, 2, 3, 4} and d = 26. Thus,

C = 26 ·
[−12 0 1 −13 0 0

−2 0 0 −14 −2 1

]
· A′

=
[
0 0 0 0 2 6 4 28 26 26 27 0

0 0 0 0 28 14 14 6 0 1 27 26

]
,

where the highlighted entries are the identity matrix inserted to form B. Therefore,
the image of the order basis computed is

M(Z) = 5 ·
[
6Z2 + 16Z + 20 11Z + 6

30Z + 8 6Z2 + 11Z + 5

]
.
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One may easily verify that this is a scalar multiple of the image of the order basis
computed in Example2 under the evaluation t ← 7 in Z31.

The introduction of the scalar multiple is due to the removal of content in
Example2. The implementation given here in fact computes exactly the same result
(including the scalar multiple) as the previous fraction-free and modular implemen-
tations for the order basis problem [2, 3]. ��

5 Experimental Results

Experiments were performed on Ore polynomial matrices in differential case. The
results of these experiments are shown in Tables1 and 2.

The application of block linear algebra routines reduces the running time of the
modular algorithm in all cases. The improvement ismore significant for smaller prob-
lems, where the original modular algorithm is not competitive against the fraction-
free problems.

For the larger problems, however, the improvement is less significant. For larger
problems, the size of the coefficients in the output becomes larger as well. More
time is spent on the other parts of the algorithm such as reconstruction by Chinese

Table 1 Comparison of fraction-free, modular, and the new modular algorithm on random m × n
matrices with degt = 1 and integer coefficients having magnitude ≤5

m, n N FFreduce (s) Modular (s) New modular (s) Improvement (%)

2 1 0.023 0.115 0.069 40

2 2 0.107 0.242 0.192 21

2 4 1.689 2.984 2.301 23

2 8 15.047 28.499 23.232 18

2 16 278.883 279.041 232.877 17

2 32 5447.542 4669.801 3992.689 15

3 1 0.472 1.060 0.723 32

3 2 3.808 6.268 5.416 20

3 4 41.549 51.498 44.253 14

3 8 667.682 599.466 521.571 13

4 2 41.348 47.841 41.765 13

4 4 663.707 554.060 487.000 12

4 6 3850.143 2561.281 2303.989 10

5 2 293.122 260.021 227.314 13

5 4 6179.169 3845.945 3362.376 13

8 1 1660.258 1088.609 998.659 8

10 1 16179.879 8019.137 7524.240 6
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Table 2 Comparison of fraction-free, modular, and the new modular algorithm on random m × n
matrices with degt = 2 and integer coefficients having magnitude ≤5

m, n N FFreduce (s) Modular (s) New modular (s) Improvement (%)

2 2 0.470 1.647 1.378 16

2 4 5.920 11.611 10.004 14

2 8 86.214 128.528 109.911 14

2 16 1237.410 1437.492 1300.804 10

3 2 14.718 25.101 21.954 13

3 4 216.214 267.295 238.497 11

3 6 1157.705 1220.524 1114.106 9

3 8 3933.234 3994.955 3735.837 6

4 2 170.561 193.981 174.399 10

4 4 2397.460 2270.272 2096.580 8

remaindering andmemorymanagement, and the amount of time spent on actual elim-
ination is proportionally smaller. Since the new implementation improves mainly the
elimination process, the improvement is less significant for larger problems. On the
other hand, we see that the improved implementation given in this paper increases
the advantage of the modular algorithm over the fraction-free algorithm, and allows
the modular algorithm to be used beneficially for smaller problems.
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Computing Popov Forms of Matrices Over PBW
Extensions

Mark Giesbrecht, George Labahn and Yang Zhang

Abstract In this paper we define the Popov and weak Popov forms of matrices
over Poincaré–Birkhoff–Witt (PBW) extensions, and exhibit effective algorithms to
find them. As applications we give general methods to calculate the ranks of such
matrices, and a method to transfer a system of differential equations into a first order
equation.

1 Introduction

When seeking to determine left and right equivalence properties of a matrix over
a domain, one often seeks to transform that matrix into canonical form, such as
the Hermite or Smith form. These forms capture all left and two-sided equivalence
properties, respectively, but suffer from substantial growth in the size of entries. For
example, for polynomial matrices, their degrees are generally of the order of the size
of the matrix, even when the degrees of the entries in the original matrix are small.
In order to avoid this increase in degree, [1] introduced another normal form, which
has been successfully applied to control theory (see for example, [2]). This form has
come to be known as the Popov normal form.

Recently, the Popov form has attracted considerable interest in the computer
algebrafield for its lowdegree and correspondingly efficient algorithms. For example,
[3, 4] defined and discussed shifted-Popov forms. In [5] the weak Popov form (called
the quasi-Popov form in [4]) is discussed, which while not canonical, is easier to
compute and elicits many of the matrix properties that we are interested in.
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In the noncommutative case, matrices over Ore domains (domains which satisfy
the Ore condition, which essentially says that any two elements have a nontriv-
ial left (or right) common multiple) have been considered at least since the 1930s
(see [6–8]). In [7] the Hermite and Smith forms of matrices over skew polynomial
rings are considered. Recent treatments from a ring theoretic perspective can be
found in [9]. In the computer algebra field, [10] gave a method to calculate the
ranks of matrices over skew polynomial rings R[x, x−1; σ ], and their method can
be applied to Weyl algebras [11] use fraction-free methods to discuss weak Popov
form of matrices over skew polynomial rings. Giesbrecht et al. [12] discuss Popov
forms of matrices over valuation domains. Davies et al. and Giesbrecht et al. [13, 14]
develop reductions to linear algebra over a (commutative) field to give polynomial-
time algorithms for Popov and, respectively, Hermite forms of matrices over an Ore
domain.

Matrices over multivariate polynomial rings and rings of differential operators
have been extensively used in multidimensional linear systems since the mid-1970s
(see, for example [15–19]), and also in other areas such as operator algebras; see for
example [20]. This work motivates us not only to consider the univariate case, but
also the case of multivariate noncommutative polynomial rings.

In this paper, we discuss matrices over noncommutative rings called PBW exten-
sions, which includes most popular rings with derivations studied in computer alge-
bra. At first, we consider the row spaces of matrices as left modules over base rings
and define two kinds of reductions which are used to construct weak Popov forms and
Popov forms respectively. The rank of matrices remains invariant under our reduc-
tions, and equals the number of nonzero rows of the (weak) Popov forms. Note that
the ranks of matrices are independent of term orders. Therefore some term orders
may produce ranks very quickly, while some may be considerably slower.

As an application, this gives a direct method to calculate the rank of matrices over
Weyl algebras, as compared to the method given by [10], which sets up a bijection
between the Weyl algebra and a skew–Laurent polynomial ring.

In this extended abstract, we first recall the definition of PBW extensions, and
then outline how to define (weak) Popov forms of matrices over PBW extensions.
We then present an algorithm to construct Popov forms. More results will appear in
a forthcoming journal version.

2 Definitions and Some Results

The definition of a PBW extension was first given by [21]. This led to a unified
treatment of many polynomial-type rings which are currently studied in associative
ring theory and computer algebra.

Definition 1 Let R and E be two associative rings with R ⊆ E. E is called a (finite)
PBW extension of R if there exist x1, x2, . . . , xn ∈ E such that

(a) monomials xi1
1 . . . xin

n form a basis forE as a free leftR-odule, for i1, . . . , in ∈ N;
(b) xir − r xi ∈ R for each i = 1, . . . , n and any r ∈ R;
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(c) xi x j − x j xi ∈ R + Rx1 + · · · + Rxn for all i, j = 1, . . . , n.

LetR = R〈x1, . . . , xn〉 be a PBW extension of an Ore domain R. One can natu-
rally define a term-ordering onR which satisfies the usual multiplicative properties
and respects degree; we refer to [22, Section2] for details. Furthermore, we can
extend the term ordering on R to the left R-module Rm and define leading mono-
mials, leading coefficients and leading terms in the natural way. Throughout this
paper assume that ≺ is a term-over-position admissible term order on Rm , i.e., the
monomial term order has higher priority than the position in the vector.

We now define the notions of weak reduction and reduction as mechanisms for
cancelling terms in vectors via the leading term (designated by lt(·)) of another vector.
Definition 2 Given a, b, c ∈ �m , we say that

(a) a weakly reduces to c modulo b in one step if and only if lt(b) divides lt(a) and
c = a − q1b, where q1 ∈ � is such that lt(a) = lt(q1b).

(b) a reduces to c modulo b in one step if and only if lt(b) divides a term d that
appears in a and c = a − q2b, where q2 ∈ � is such that d = lt(q2b).

Thus, weak reduction uses the leading term of b to cancel the leading term of a,
whereas full reduction is much stronger, and uses the leading term of b to cancel
any possible term in a. The weak division algorithm (resp. the division algorithm)
for r ∈ Rm by a set Γ ⊆ Rm is defined correspondingly to reduce the least leading
monomials (resp. all possible monomials) in r by the leading monomials of elements
of Γ .

Definition 3 A nonzero vector a in �m is called (weakly) reduced with respect to a
set S = {s1, . . . , sl} of nonzero vectors in �m if no (leading) term that appears in a
is divisible by any one of the lt(si), i = 1, . . . , l.

Furthermore, a set S = {s1, . . . , s�} of nonzero vectors is called (weakly) reduced
if each vector si (for 1 ≤ i ≤ �) is (weakly) reduced with respect to S\{si}.
We can now define the weak Popov and Popov forms as follows:

Definition 4 Given a matrixRm×n and a term-over-position admissible term order
on Rm , let Γ = {r1, . . . , rm} be its set of its row vectors.

(a) Rm×n is in weak Popov form with respect to ≺ if Γ is a weakly reduced set.
(b) Rm×n is in Popov form with respect to ≺ if

(i) Γ is a reduced set;
(ii) the leading coefficients of {ri } are monic;
(iii) rows are in a descending chain with respect to ≺, that is, rm ≺ · · · ≺

r2 ≺ r1.

The weak reduction and reduction correspond to weak Popov form and Popov
form, respectively. In this paper, we first describe two algorithms to present (weak)
divisions, and then use them to construct (weak) Popov forms. Here we list one as
follows:
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Algorithm: Popov form for Rm×n

Input: � row vectors r1, . . ., rm of a matrix A ∈ Rm×n ;
Output: � row vectors p1, . . . , pm of Popov form of A ∈ Rm×n ;

Initialization: p1 := 0, . . ., pm := 0; changes:=true;
While (changes) do

changes := false;
Swap rows so that they are in a descending chain with respect to ≺;
For i from 2 to m do

If ri is reducible modulo r1 then
Using the division algorithm, let ri be remainder of ri by r1;
changes := true;

end do;
end do;
Return: p1 := r1, . . ., pm := rm ;
Make leading coefficients 1 by multiplying by suitable elements of quotient
field of R.

Theorem 1 The Popov form algorithm terminates after a finite number of steps and
produces a Popov form.

The proof follows relatively easily from the fact that Rm is noetherian, and the
repeated reduction yields a descending chain of idealswhichmust befinite.Of course,
the number of reduction steps is of great interest in the efficiency of our algorithms.

One of the applications of Popov forms is to provide the rank information effi-
ciently. First, we prove the following theoremwhich implies that the ranks ofmatrices
are invariant under Popov form transformations.

Theorem 2 For any matrix A ∈ Rm×n there exists a unimodular matrix U such
that U A is in Popov form (similarly for weak Popov form).

The transformation matrix U and the Popov form can be computed by our algo-
rithms. As an application, we can find the rank of a matrix by counting the number of
nonzero rows. Also, given a unimodular matrix Rn×n (one whose inverse is also in
Rn×n), one can find its inverse simply by noting that the Popov form of a unimodular
matrix is the identity.

We also anticipate that the Popov form will be useful as an intermediate step to
efficiently computing the Hermite and Smith/Jacobson forms in an effective manner.

Acknowledgments All the authors would like to thank NSERC Canada for their support of this
research.
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On the Simplest Quartic Fields and Related
Thue Equations

Akinari Hoshi

Abstract Let K be a field of char K �= 2. For a ∈ K , we give an explicit answer to
the field isomorphism problem of the simplest quartic polynomial X4 − aX3 − 6X2

+ aX + 1 over K as the special case of the field intersection problem via multi-
resolvent polynomials. From this result, over an infinite field K , we see that the
polynomial gives the same splitting field over K for infinitely many values a of K .
We also see by Siegel’s theorem for curves of genus zero that only finitely many
algebraic integers a ∈ OK in a number field K may give the same splitting field. By
applying the result over thefieldQof rational numbers,we establish a correspondence
between primitive solutions to the parametric family of quartic Thue equations

X4 − m X3Y − 6X2Y 2 + m XY 3 + Y 4 = c,

where m ∈ Z is a rational integer and c is a divisor of 4(m2 + 16), and isomorphism
classes of the simplest quartic fields.

1 Introduction and Main Results

Let K be a field of char K �= 2 and K (s) the rational function field over K with
variable s. We take the simplest quartic polynomial

fs(X) := X4 − s X3 − 6X2 + s X + 1 ∈ K (s)[X ]

with discriminant 4(s2 + 16)3. The Galois group GalK (s) fs(X) of the polynomial
fs(X) over K (s) is isomorphic to the cyclic group C4 of order four.
In the case where K = Q, for a ∈ Z\{0,±3} the polynomials fa(X) are irre-

ducible over Q with GalQ fa(X) ∼= C4 and the splitting fields SplQ fa(X) of fa(X)
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over Q are totally real cyclic quartic number fields which are called the simplest
quartic fields (cf. e.g. [1–3], [4, Sect. 6.2], [5–8]).

For b = −a ∈ K , the polynomials fa(X) and fb(X) have the same splitting field
over K . In this paper, we consider the field isomorphism problem of fs(X), i.e., for
a fixed a ∈ K , determine whether b ∈ K gives the same splitting field over K as
SplK fa(X) = SplK fb(X) or not.

For n ≥ 3, Rikuna [9] constructed one-parameter families of cyclic polynomials
of degree n over K with char K � | n and K � ζ + ζ−1 where ζ is a primitive
n-th root of unity, and fs(X) may be obtained the quartic case n = 4 of Rikuna’s
cyclic polynomials (see also [10, 11]). An answer to the field isomorphism problem
to Rikuna’s cyclic polynomials was given by Komatsu [12] as a generalization of
Kummer theory (cf. also [13, 14]).

In Sect. 3, by using multi-resolvent polynomials, we give an explicit form of
answer to the field isomorphism problem of fs(X) over K as the special case
of the field intersection problem (cf. the simplest cubic case [12, 14–18]). One of
the advantages of using multi-resolvent polynomials is the validity for non-abelian
groups (see [19–22]).

Theorem 1.1 Let K be a field of char K �= 2 and fa(X) = X4 − aX3 − 6X2

+aX +1 ∈ K [X ] for a ∈ K . For a, b ∈ K with a �= ±b and (a2+16)(b2+16) �= 0,
the following three conditions are equivalent :
(i) the splitting fields of fa(X) and of fb(X) over K coincide ;
(ii) the polynomial f A(X) splits completely into four linear factors over K for A = A1
or A = A2 where

A1 = ab + 16

−a + b
and A2 = ab − 16

a + b
;

(iii) there exists z ∈ K such that

B = a + (a2 + 16)z(z + 1)(z − 1)

fa(z)

where B = b or B = −b.
Moreover, if GalK fa(X) ∼= C4 (resp. GalK fa(X) ∼= C2 or {1}) then (ii) occurs

for only one of A1 and A2 (resp. for both of A1 and A2) and (iii) occurs for only one
of b and −b (resp. for both of b and −b).

Note that the equivalence of the conditions (i) and (iii) is valid also for a = ±b.
By Theorem1.1, for a fixed a ∈ K with a2 + 16 �= 0, we have SplK fb(X) =

SplK fa(X)whereb is given as inTheorem1.1 (iii) for arbitrary z ∈ K with fa(z) �= 0
and b2 + 16 �= 0. Hence we have the following:

Corollary 1.2 Let K be an infinite field of char K �= 2. For a fixed a ∈ K with
a2 + 16 �= 0, there exist infinitely many b ∈ K such that SplK fb(X) = SplK fa(X).

The following theorem is well known as Siegel’s theorem for curves of genus
zero (cf. [23, Theorem 6.1], [24, Chap. 8, Sect. 5]).



On the Simplest Quartic Fields and Related Thue Equations 69

Theorem (Siegel) Let K be a number field and OK the ring of integers in K . If a
rational function ϕ(s) ∈ K (s) has at least three distinct poles, then there are only
finitely many z ∈ K such that ϕ(z) ∈ OK .

In contrast with Corollary1.2, by applying Siegel’s theorem to Theorem1.1, we
get:

Corollary 1.3 Let K be a number field and OK the ring of integers in K . Assume
that a ∈ OK with a2 + 16 �= 0. Then there exist only finitely many integers b ∈ OK

such that SplK fb(X) = SplK fa(X). In particular, there exist only finitely many
integers b ∈ OK such that f Ai (X), (i = 1, 2), has a linear factor over Q where Ai

is given in Theorem1.1 (ii).

We treat the case of K = Q and a = m ∈ Z.We get an application of Theorem1.1
to a related family of quartic Thue equations as follows.

Consider the parametric family of quartic Thue equations

Fm(X, Y ) := X4 − m X3Y − 6X2Y 2 + m XY 3 + Y 4 = c

for m, c ∈ Zwith c �= 0. Note that fm(X) = Fm(X, 1). The equation Fm(X, Y ) = c
has the following solutions:

Fm(0,±e) = Fm(±e, 0) = e4, Fm(∓e,±e) = Fm(±e,±e) = −4e4.

We call such solutions (x, y) to Fm(x, y) = c with xy(x + y)(x − y) = 0 the trivial
solutions.

For c ∈ {±1,±4}, Lettl–Pethö [3] and Chen–Voutier [25] gave a complete solu-
tion to Thue equation Fm(X, Y ) = c independently (cf. Section4).

In [26], Lettl–Pethö–Voutier showed that for m ≥ 58, the only primitive solutions
(x, y) ∈ Z

2, i.e., gcd(x, y) = 1, to the Thue inequality

|Fm(x, y)| ≤ 6m + 7

with |x | ≤ y are trivial solutions (0, 1), (±1, 1) and (±1, 2). Note that Fm(±1, 2) =
±6m − 7. Wakabayashi [27] investigated Thue inequalities |Fl,m(x, y)| ≤ k with
two parameters l, m and F1,m = Fm .

For m ∈ Z, we put
Lm := SplQ fm(X).

We give the following correspondence between integer solutions to Fm(X, Y ) = c
and isomorphism classes of the simplest quartic fields Lm .

Theorem 1.4 Let m ∈ Z\{0,±3} and Lm = SplQ fm(X). There exists an integer
n ∈ Z\{±m} such that Ln = Lm if and only if there exists nontrivial solution
(x, y) ∈ Z

2, i.e., xy(x + y)(x − y) �= 0, to the quartic Thue equation
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Fm(x, y) = c (∗)

where c is a divisor of 4(m2+16). Moreover, integers m, n, and solutions (x, y) ∈ Z
2

to (∗) can be chosen to satisfy the equation

N = m + (m2 + 16)xy(x + y)(x − y)

Fm(x, y)
(∗∗)

where either N = n or N = −n, and the equation (∗∗) occurs for only one of N = n
and N = −n.

The assumptionm �= 0,±3 ensures that fm(X) is irreducible overQ, GalQ fm(X)
∼= C4 and the equality (∗∗) holds for only one of N = n and N = −n. This phenom-
enon comes from the group theoretical reason (see Sect. 2). Indeed, in the case of
m = ±3, f±3(X) = (X2±X−1)(X2∓4X−1) and the equation (∗∗) occurs for both
of N = 3 and N = −3. Thus nontrivial solutions (x, y) ∈ Z

2 to (∗) which satisfy
(∗∗) for N = −m exist (cf. Theorem1.1). Hence the assumption m �= 0,±3 also
ensures that a nontrivial solution (x, y) to (∗) corresponds N ∈ Z\{±m} via (∗∗).

If there exists an integer n ∈ Z\{±m} such that Ln = Lm , then we may choose
a primitive solution (x, y) ∈ Z

2 to (∗) with (x, y) ≡ (1, 0) (mod 2). Then four
solutions±(x, y),±(y,−x) to (∗) for c = d and four solutions±(x ′, y′),±(y′,−x ′)
to (∗) for c = −4d are primitive, where (x ′, y′) = (x − y, x + y) and d is an odd
divisor of m2 + 16, and only these eight primitive solutions satisfy (∗∗) for the same
N as in Theorem1.4.

Corollary 1.5 For m ∈ Z\{0,±3}, let N be the number of primitive solutions
(x, y) ∈ Z

2 with xy(x + y)(x − y) �= 0 to Fm(x, y) = c where c is a divisor of
4(m2 + 16). Then we have

#
{

n ∈ Z \ {±m}
∣∣∣ Ln = Lm, n > 0

}
= N

8

where Lm = SplQ fm(X). In particular, if there does not exist n ∈ Z\{±m} with
Ln = Lm then Fm(x, y) = c where c is a divisor of 4(m2 + 16) has only trivial
solutions (x, y) ∈ Z

2 with xy(x + y)(x − y) = 0.

However we do not know nontrivial solutions to (∗)withm ≥ 0 except form = 1,
2, 3, 4, 22, 103, 956. By Theorem 1.1, we can check that L1 = L103, L2 = L22,
L4 = L956. Some numerical examples are given in Sects. 6, 7 and 8.

2 Preliminaries

In order to prove Theorem1.1, we recall known results of the resolvent polynomi-
als which are fundamental tools in the computational aspects of Galois theory (cf.
[28–30]). We intend to explain how to get an answer to the field intersection prob-
lem of fs(X) = X4 − s X3 − 6X2 + s X + 1, i.e., for a, b ∈ K how to determine
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the intersection of SplK fa(X) and SplK fb(X). An answer to the field isomorphism
problem (Theorem1.1) may be obtained as the special case of the field intersection
problem.

Let K be a fixed algebraic closure of a field K . Let f (X) := ∏m
i=1(X − αi ) ∈

K [X ] be a separable polynomial of degree m with some fixed order of the roots
α1, . . . , αm ∈ K . By resolvent polynomials with suitable invariants, we may deter-
mine the Galois group of the polynomial f (X) over K as follows.

Let R := K [x1, . . . , xm] be the polynomial ring over K with m variables
x1, . . . , xm . ForΘ ∈ R, take a surjective homomorphismω f : R → k(α1, . . . , αm),

Θ(x1, . . . , xm) →Θ(α1, . . . , αm), which is called the specializationmap. The kernel
of ω f is the ideal I f := {Θ ∈ R | Θ(α1, . . . , αm) = 0} in R.

Let Sm be the symmetric group of degree m. We extend the action of Sm on m
letters {1, . . . , m} to that on R by π(Θ(x1, . . . , xm)) := Θ(xπ(1), . . . , xπ(m)). We
define the Galois group of f (X) over K by Gal( f/K ) := {π ∈ Sm | π(I f ) ⊆ I f }.

Then the Galois group of the splitting field SplK f (X) of f (X) over K is isomor-
phic to Gal( f/K ). If we take another ordering of roots απ(1), . . . , απ(m) of f (X) for
some π ∈ Sm , the corresponding realization of Gal( f/K ) is conjugate in Sm . Hence,
for arbitrary ordering of the roots of f (X), Gal( f/K ) is determined up to conjugacy
in Sm .

For H ≤ U ≤ Sm , an element Θ ∈ R is called a U -primitive H -invariant if
H = StabU (Θ) := {π ∈ U | π(Θ) = Θ}. For a U -primitive H -invariant Θ , the
polynomial

RPΘ,U (X) =
∏

π∈U/H

(X − π(Θ)) ∈ RU [X ]

where π runs through the left cosets of H in U , is called the formal U -relative
H -invariant resolvent by Θ . The polynomial

RPΘ,U, f (X) := ω f (RPΘ,U (X))

is called the U -relative H -invariant resolvent of f by Θ . The following theorem is
fundamental in the theory of resolvent polynomials (see e.g. [28, p. 95]).

Theorem 2.1 Let G = Gal( f/K ), H ≤ U ≤ Sm be finite groups with G ≤ U and
Θ a U-primitive H-invariant. Suppose that RPΘ,U, f (X) = ∏l

i=1 hei
i (X) gives

the decomposition of RPΘ,U, f (X) into a product of powers of distinct irreducible
polynomials hi (X), (i = 1, . . . , l), in K [X ]. Then we have a bijection

G\U/H −→ {he1
1 (X), . . . , hel

l (X)}
G π H −→ hπ (X) =

∏
τ H⊆G π H

(
X − ω f (τ (Θ))

)

where the product runs through the left cosets τ H of H in U contained in G π H,
that is, through τ = πσ π where πσ runs a system of representative of the left cosets
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of G ∩ π Hπ−1; each hπ (X) is irreducible or a power of an irreducible polynomial
with deg(hπ (X)) = |G π H |/|H | = |G|/|G ∩ π Hπ−1|.
Corollary 2.2 If G ≤ π Hπ−1 for some π ∈ U then RPΘ,U, f (X) has a linear
factor over K . Conversely, if RPΘ,U, f (X) has a non-repeated linear factor over
K then there exists π ∈ U such that G ≤ π Hπ−1.

Note that when RPΘ,U, f (X) is not squarefree, there exists a suitable Tschirn-
hausen transformation f̂ of f over K such thatRP

Θ,U, f̂ (X) is squarefree (cf. [31],
[29, Algorithm 6.3.4]).
We apply Theorem2.1 to the cyclic quartic case. Let f 1(X) ∈ K [X ] and f 2(X) ∈
K [X ] be separable quartic polynomials over K respectively.

We put
f (X) := f 1(X) f 2(X)

and

G1 := Gal( f 1/K ), G2 := Gal( f 2/K ), G := Gal( f/K ).

We assume that G1, G2 ≤ C4 and apply Theorem 2.1 to m = 8, f (X) =
f 1(X) f 2(X), U = 〈σ 〉 × 〈τ 〉, H = 〈στ 〉 or 〈στ 3〉 where σ, τ ∈ S8 act on
R = K [x1, . . . , x8] by

σ : x1 → x2 → x3 → x4 → x1,

τ : x5 → x6 → x7 → x8 → x5.

We put U := 〈σ 〉 × 〈τ 〉. Let Θ1 (resp. Θ2) be a U -primitive 〈στ 〉-invariant (resp.
〈στ 3〉-invariant). Then we have theU -relative 〈στ 〉-invariant (resp. 〈στ 3〉-invariant)
resolvent polynomial of f (X) = f 1(X) f 2(X) by Θ1 (resp. Θ2) as

Ri
f (X) := RPΘi ,U, f (X), (i = 1, 2).

This kind of resolvent polynomial is also called (absolute)multi-resolvent polynomial
(cf. [32, 33]).

For a squarefree polynomial R(X) ∈ K [X ] of degree l, we define the decom-
position type DT(R) of R(X) by the partition of l induced by the degrees of the
irreducible factors of R(X) over K . By Theorem2.1, we get the intersection field
SplK f 1(X) ∩ SplK f 2(X) via the decomposition types DT(R1

f ) and DT(R2
f ).

Theorem 2.3 For f (X) = f 1(X) f 2(X) ∈ K [X ] with G1, G2 ≤ C4, we assume
that #G1 ≥ #G2 and bothR1

f (X) andR2
f (X) are squarefree. Then the Galois group

G = Gal( f/K ) and the intersection field SplK f 1(X)∩SplK f 2(X) are given by the
decomposition types DT(R1

f ) and DT(R2
f ) as on Table1.

We checked the decomposition types DT(Ri
f ), (i = 1, 2), on Table1 by GAP

[34].
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Table 1 The decomposition types

G1 G2 G DT(R1
f ) DT(R2

f )

C4 × C4 L1 ∩ L2 = K 4 4

C4 C4 × C2 [L1 ∩ L2 : K ] = 2 2, 2 2, 2

C4 L1 = L2 2, 2 1, 1, 1, 1

C4 1, 1, 1, 1 2, 2

C2 C4 × C2 L1 ∩ L2 = K 4 4

C4 L1 ⊃ L2 4 4

{1} C4 L1 ⊃ L2 = K 4 4

C2 C2 × C2 L1 ∩ L2 = K 2, 2 2, 2

C2 C2 L1 = L2 1, 1, 1, 1 1, 1, 1, 1

{1} C2 L1 ⊃ L2 2, 2 2, 2

{1} {1} {1} L1 = L2 = K 1, 1, 1, 1 1, 1, 1, 1

Now we get an answer to the field isomorphism problem of

fs(X) = X4 − s X3 − 6X2 + s X + 1

via multi-resolvent polynomials Ri
fa,b

(X) := RPΘi ,〈σ 〉×〈τ 〉, fa,b , (i = 1, 2), where

fa,b(X) := fa(X) fb(X)

as the special case of Theorem2.3. Note that disc( fs(X)) = 4(s2 + 16)3.

Theorem 2.4 For a, b ∈ K with (a2 + 16)(b2 + 16) �= 0, we assume that both
R1

fa,b
(X) and R2

fa,b
(X) are squarefree. Then two splitting fields of fa(X) and of

fb(X) over K coincide if and only if R1
fa,b

(X) or R2
fa,b

(X) splits completely into
four linear factors over K .

This is an analog of the classical result by Kummer theory. Namely for a field K
which contains a primitive fourth root of unity and a, b ∈ K , the splitting fields of
X4−a and of X4−b over K coincide if and only if X4−ab or X4−ab3 has a linear
factor (equivalent to split completely) over K . It is remarkable that Theorem2.4 does
not need the assumption that K contains a primitive fourth root of unity.

3 Proof of Theorem 1.1

We give an explicit answer to the field intersection problem of the simplest quartic
polynomials fs(X) via suitable invariants Θ1 and Θ2. As a special case, we obtain
Theorem1.1.

Let K (z) be the rational function field over K and σ a K -automorphism of K (z)
of order four which is defined by
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σ : z → z − 1

z + 1
→ −1

z
→ − z + 1

z − 1
→ z.

We consider the fixed field K (z)〈σ 〉 and the C4-extension K (z)/K (z)〈σ 〉. Then
we get

fs(X) =
∏

x∈Orb〈σ 〉(z)

(
X − x

)
=

(
X − z

)(
X − z − 1

z + 1

)(
X + 1

z

)(
X + z + 1

z − 1

)

= X4 − s X3 − 6X2 + s X + 1

where

s = z4 − 6z2 + 1

z(z2 − 1)
= (z2 + 2z − 1)(z2 − 2z − 1)

z(z + 1)(z − 1)

as the generating polynomial of the field extension K (z)/K (z)〈σ 〉. It follows that
K (z)〈σ 〉 = K (s) and the Galois group of the polynomial fs(X) over K (s) is isomor-
phic to C4.

We also take another rational function field K (w) over K with indeterminate w,
τ ∈ AutK K (w) with

τ : w → w − 1

w + 1
→ − 1

w
→ −w + 1

w − 1
→ w

and ft (X) = X4 − t X3 − 6X2 + t X + 1 where

t = w4 − 6w2 + 1

w(w2 − 1)
= (w2 + 2w − 1)(w2 − 2w − 1)

w(w + 1)(w − 1)

in the same manner as K (z), σ , and fs(X).
PutU := 〈σ 〉×〈τ 〉. Then the field K (z, w) is (C4×C4)-extension of K (z, w)U =

K (s, t).
In order to apply Theorem2.4, we should find suitableU -primitive 〈στ 〉-invariant

Θ1 and U -primitive 〈στ 3〉-invariant Θ2.
We may find the following two U -primitive 〈στ 〉-invariants which are candidates

to Θ1:

Θ1 =
3∑

i=0

(στ)i (zw) = (w + z)(wz − 1)(zw − w − z − 1)(zw + w + z − 1)

zw(z2 − 1)(w2 − 1)
, or

Θ1 =
3∏

i=0

(στ)i (z + w)

= (z2w2 − zw2 − z2w + 2zw + w + z + 1)(z2w2 + zw2 + z2w + 2zw − w − z + 1)

zw(z2 − 1)(w2 − 1)
.
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However, themulti-resolvent polynomialR1
fa,b

(X)where fa,b(X) = fa(X) fb(X)

becomes complicated in both the cases above.

Example 3.1 We present two explicit examples of the multi-resolvent polynomials
Ri

fa,b
(X) := RPΘi ,〈σ 〉×〈τ 〉, fa,b (X) for i = 1, 2 where fa,b(X) := fa(X) fb(X).

(i) In [20], we gave an answer to the field isomorphism problem of fs(X) by
taking

Θ1 = 2(z2 + 1)(w2 + 1)(zw + 1)(z − w)

zw(z2 − 1)(w2 − 1)
, Θ2 = 2(z2 + 1)(w2 + 1)(zw − 1)(z + w)

zw(z2 − 1)(w2 − 1)
.

Then the corresponding multi-resolvent polynomials are given as

R1
fa,b

(X) = X4 − (a2 + 16)(b2 + 16)(X2 − 4(a − b)2),

R2
fa,b

(X) = X4 − (a2 + 16)(b2 + 16)(X2 − 4(a + b)2).

(ii) If we take another U -primitive 〈στ 〉-invariant Θ1 and 〈στ 3〉-invariant Θ2 as

Θ1 = 2(zw + 1)(z − w)

(z2 + 1)(w2 + 1)
, Θ2 = 2(zw − 1)(z + w)

(z2 + 1)(w2 + 1)

then we get

R1
fa,b

(X) = X4 − X2 + 4(a − b)2

(a2 + 16)(b2 + 16)
,

R2
fa,b

(X) = X4 − X2 + 4(a + b)2

(a2 + 16)(b2 + 16)
.

The multi-resolvent polynomials in Example3.1 are useful since they are
biquadratic, i.e., quadratic polynomial with respect to X2. However, we do not
understand for a fixed a ∈ K whether there exist infinitely many b ∈ K such
that Ri

fa,b
(X), (i = 1, 2), splits completely over K or not. By Theorem2.4, this

question means that for a fixed a ∈ K whether there exist infinitely many b ∈ K
such that SplK fa(X) = SplK fb(X).

It follows from [35, Theorem 1.4] that there exist 〈στ 〉-invariant Θ1 and 〈στ 3〉-
invariant Θ2 such that K (z, w) = K (z,Θ1) = K (z,Θ2). The following gives such
invariants Θ1 and Θ2 which is the key lemma of this paper.

Lemma 3.2 Let U = 〈σ 〉 × 〈τ 〉. We take

Θ1 := zw + 1

−z + w
and Θ2 := zw − 1

z + w
.
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Then the following assertions hold :
(i) the element Θ1 is a U-primitive 〈στ 〉-invariant ;
(ii) the element Θ2 is a U-primitive 〈στ 3〉-invariant ;
(iii) the U-orbit of Θi is given by the same as 〈σ 〉-orbit of z ;

OrbU (Θi ) =
{
Θi ,

Θi − 1

Θi + 1
, − 1

Θi
, −Θi + 1

Θi − 1

}
, (i = 1, 2).

proof We can check the assertions by direct computations. �
The multi-resolvent polynomialsRi

fa,b
(X) :=RPΘi ,〈σ 〉×〈τ 〉, fa fb (X), (i = 1, 2),

with respect to

Θ1 = zw + 1

−z + w
and Θ2 = zw − 1

z + w

as in Lemma 3.2 are given by

R1
fa,b

(X) = f A1(X) = X4 − ab + 16

−a + b
X3 − 6X2 + ab + 16

−a + b
X + 1, (1)

R2
fa,b

(X) = f A2(X) = X4 − ab − 16

a + b
X3 − 6X2 + ab − 16

a + b
X + 1

where

A1 = ab + 16

−a + b
and A2 = ab − 16

a + b
.

Note that

disc(R1
fa,b

(X)) = 4(a2 + 16)3(b2 + 16)3

(a − b)6
, disc(R2

fa,b
(X)) = 4(a2 + 16)3(b2 + 16)3

(a + b)6
.

By Theorem2.3, we get the intersection field SplK fa(X) ∩ SplK fb(X) via
Table1.

Theorem 3.3 Let Ri
fa,b

(X), (i = 1, 2), be as in (1). For a, b ∈ K with a �= ±b

and (a2 + 16)(b2 + 16) �= 0, we assume that #GalK fa(X) ≥ #GalK fb(X). Then
the intersection field SplK fa(X) ∩ SplK fb(X) is given by the decomposition types
DT(R1

fa,b
) and DT(R2

fa,b
) as on Table1 in Theorem2.3.

Proof of Theorem 1.1. As the special case of Theorem 3.3, we see the conditions
(i) and (ii) are equivalent (cf. also Theorem 2.4).

The condition (iii) is just a restatement of (ii). Indeed, we may check that z ∈ K
is a root of f A1(X) (resp. f A2(X)) if and only if z satisfies the condition (iii) for
B = b (resp. B = −b). Note that if z is a root of f Ai (X) then z−1

z+1 , − 1
z , − z+1

z−1 are
also roots of f Ai (X) for i = 1, 2. By Table1 as in Theorem 2.3, if SplK fa(X) ∼= C4
(resp. C2 or {1}) and f Ai (z) splits completely then f A j (X) is irreducible (resp. splits
completely) over K for (i, j) = (1, 2) and (2, 1). This completes the proof. �
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4 Simplest Quartic Fields and Related Thue Equations

In this section, we treat the case of K = Q and a = m ∈ Z for

fa(X) = fm(X) = X4 − m X3 − 6X2 + m X + 1 ∈ Z[X ].

We first see

Lemma 4.1 (i) For m ∈ Z\{0,±3}, fm(X) is irreducible over Q ;
(ii) f±3(X) = (X2 ± X −1)(X2 ∓4X −1), f0(X) = (X2 +2X −1)(X2 −2X −1).

proof It follows from GalQ(s) fs(X) ∼= C4 that GalQ fm(X) ∼= C4, C2 or {1} for
m ∈ Z. Thus if fm(X) is reducible over Q then there exist a, b, c ∈ Z such that
fm(X) = (X2+aX +c)(X2+bX +c)with c = ±1. By comparing the coefficients,
we see c = −1, because if c = 1 then (m, a, b) = (0,±2

√
2,∓2

√
2). Also by

comparing the coefficients, if c = −1 then (m, a) = (−b + 4/b,−4/b) ∈ Z
2.

Hence b ∈ {±1,±2,±4}. In each case, we have (m, a, b) = (3,−4, 1), (−3, 4,−1),
(0,−2, 2), (0, 2,−2), (−3,−1, 4), (3, 1,−4). �

For m ∈ Z\{0,±3}, the splitting fields Lm := SplQ fm(X) of fm(X) over Q are
totally real cyclic quartic number fields and called the simplest quartic fields.

We consider the related parametric family of quartic Thue equations

Fm(X, Y ) : = X4 − m X3Y − 6X2Y 2 + m XY 3 + Y 4 = c

for m, c ∈ Z with c �= 0. Note that fm(X) = Fm(X, 1).
We may assume that m ≥ 0 because if (x, y) ∈ Z

2 is a solution to Fm(x, y) = c
then (y, x) becomes a solution to F−m(y, x) = c. The equation Fm(x, y) = c has
the following solutions:

Fm(0,±e) = Fm(±e, 0) = e4, Fm(∓e,±e) = Fm(±e,±e) = −4e4.

We call such solutions (x, y) ∈ Z
2 to Fm(x, y) = c with xy(x + y)(x − y) = 0 the

trivial solutions.
If (x, y) ∈ Z

2 is a solution to Fm(x, y) = c then four pairs±(x, y),±(y,−x) are
also solutions because Fm(X, Y ) is invariant under the action X −→ Y −→ −X of
order four.

For c ∈ {±1,±4}, Lettl and Pethö [3] and Chen and Voutier [25] gave a complete
solution to Thue equation Fm(X, Y ) = c independently. For c ∈ {±1,±4} and
m ≥ 0, all solutions to Fm(X, Y ) = c are given by eight trivial solutions

Fm(0,±1) = Fm(±1, 0) = 1, Fm(∓1,±1) = Fm(±1,±1) = −4

for arbitrary m ≥ 0 and additionally
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F1(∓2,±1) = F1(±1,±2) = −1, F1(±3,±1) = F1(∓1,±3) = 4,

F4(∓3,±2) = F4(±2,±3) = 1, F4(±5,±1) = F4(∓1,±5) = −4.

We put
(x ′, y′) := (x − y, x + y).

Then if (x, y) ∈ Z
2 is a solution to Fm(x, y) = c then (x ′, y′) ∈ Z

2 is a solution
to Fm(x ′, y′) = −4c. Conversely, if (x ′, y′) is a solution to Fm(x ′, y′) = −4c then
x ′ ≡ y′ (mod 2) and (x, y) = (

x ′+y′
2 ,

−x ′+y′
2 ) ∈ Z

2 is a solution to Fm(x, y) = c.
In [26], Lettl–Pethö–Voutier showed that for m ≥ 58, the only primitive solutions

(x, y) ∈ Z
2, i.e., gcd(x, y) = 1, to the Thue inequality

|Fm(x, y)| ≤ 6m + 7

are trivial solutions ±(0, 1), ±(1, 0), ±(1, 1), ±(−1, 1) and nontrivial solutions
±(2, 1), ±(−1, 2), ±(−2, 1), ±(1, 2). We note that Fm(±2, 1) = Fm(∓1, 2) =
∓6m − 7.

If (x, y) ∈ Z
2 is a primitive solution to (∗) then four pairs ±(x, y), ±(y,−x) are

primitive solutions to (∗). We also see the following lemma:

Lemma 4.2 Put (x ′, y′) := (x − y, x + y). If (x, y) ∈ Z
2 with (x, y) ≡ (0, 1) or

(1, 0) (mod 2) is a primitive solution to Fm(x, y) = c then c is an odd integer and
(x ′, y′) ≡ (1, 1) (mod 2) is a primitive solution to Fm(x ′, y′) = −4c. Conversely, if
(x ′, y′) ∈ Z

2 with (x ′, y′) ≡ (1, 1) (mod 2) is a primitive solution to Fm(x ′, y′) = d
then d = −4c for an odd integer c and (x, y) = (

x ′+y′
2 ,

−x ′+y′
2 ) ≡ (0, 1) or (1, 0)

(mod 2) is a primitive solution to Fm(x, y) = c.

proof Assume that (x, y) ∈ Z
2 with (x, y) ≡ (0, 1) or (1, 0) (mod 2) is a primitive

solution to Fm(x, y) = c. Then c is odd because Fm(0, 1) = Fm(1, 0) = 1. It
follows by the definition that (x ′, y′) ≡ (1, 1) (mod 2) and Fm(x ′, y′) = −4c. If
gcd(x ′, y′) = k′ > 1 then k′ is odd and k′ divides both x = x ′+y′

2 and y = −x ′+y′
2 .

This contradicts to gcd(x, y) = 1. Hence we have gcd(x ′, y′) = 1.
Conversely, we assume that (x ′, y′) ∈ Z

2 with (x ′, y′) ≡ (1, 1) (mod 2) is a
primitive solution to Fm(x ′, y′) = d. Then Fm(1, 1) = −4 ≡ 0 (mod 4) and �≡ 0
(mod 8). Thus d = −4c for an odd integer c ∈ Z. We also see Fm(x, y) = c. If
gcd(x, y) = k > 1 then k divides both x ′ = x − y and y′ = x + y. This contradicts
to gcd(x ′, y′) = 1. Therefore we have gcd(x, y) = 1. Because if (x, y) ≡ (1, 1)
(mod 2) then Fm(x, y) ≡ 0 (mod 4), we also obtain (x, y) ≡ (0, 1) or (1, 0)
(mod 2). �
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5 Proof of Theorem 1.4: the Correspondence

The aim of this section is to establish the correspondence between isomorphism
classes of the simplest quartic fields Lm and nontrivial solutions to quartic Thue
equations (∗) as follows:

Theorem (Theorem1.4) Let m ∈ Z\{0,±3} and Lm = SplQ fm(X). Then there
exists an integer n ∈ Z\{±m} such that Lm = Ln if and only if there exists nontrivial
solution (x, y) ∈ Z

2, i.e., xy(x + y)(x − y) �= 0, to the quartic Thue equation

Fm(x, y) = x4 − mx3y − 6x2y2 + mxy3 + y4 = c (∗)

where c is a divisor of 4(m2+16). Moreover, integers m, n, and solutions (x, y) ∈ Z
2

to (∗) can be chosen to satisfy the equation

N = m + (m2 + 16)xy(x + y)(x − y)

Fm(x, y)
(∗∗)

where either N = n or N = −n, and the equation (∗∗) occurs for only one of N = n
and N = −n.

Proof of Theorem1.4. We use Theorem1.1 in the case where K = Q.

For m ∈ Z\{0,±3}, we assume that there exists an integer n ∈ Z\{±m} such that
Lm = Ln . By Theorem1.1, there exists z ∈ Q such that

N = m + (m2 + 16)z(z + 1)(z − 1)

fm(z)

where either N = n or N = −n. Write z = x/y with x, y ∈ Z and gcd(x, y) = 1
then we have

N = m + (m2 + 16)xy(x + y)(x − y)

Fm(x, y)
∈ Z.

By the assumption n �= ±m, we have xy(x + y)(x − y) �= 0.

We show that c := Fm(x, y) divides 4(m2 + 16). We make use of a resultant
and the Sylvester matrix (cf. [36], [37, Section1.3], see also [23, Theorem 6.1],
[24, Chap. 8, Sect. 5]).

Put h(z) := (m2+16)z(z +1)(z −1) and f (z) := Fm(z, 1). We take the resultant

Rm := Resz(h(z), f (z)) = 16(m2 + 16)4

of h(z) and f (z) with respect to z. We see that Rm is also given by
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Rm =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m2 + 16 0 −m2 − 16 0 0 0 h(z)z3

0 m2 + 16 0 −m2 − 16 0 0 h(z)z2

0 0 m2 + 16 0 −m2 − 16 0 h(z)z
0 0 0 m2 + 16 0 −m2 − 16 h(z)
1 −m −6 m 1 0 f (z)z2

0 1 −m −6 m 1 f (z)z
0 0 1 −m −6 m f (z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 4(m2 + 16)3

(
h(z)p(z) + f (z)q(z)

)

where

p(z) = 5z3 − 5mz2 − 29z + 4m, q(z) = −(m2 + 16)(5z2 − 4).

Hence we have

h(z)p(z) + f (z)q(z) = 4(m2 + 16).

Put

H(x, y) := (m2 + 16)xy(x + y)(x − y),

P(x, y) := 5x3 − 5mx2y − 29xy2 + 4my3,

Q(x, y) := −(m2 + 16)y(5x2 − 4y2).

Then it follows from z = x/y that

H(x, y)P(x, y) + Fm(x, y)Q(x, y) = 4(m2 + 16)y7.

Because the cubic forms Fm(X, Y ) and H(X, Y ) are invariants under the action of
σ : X → Y , Y → −X , we also get

H(x, y)P(y,−x) + Fm(x, y)Q(y,−x) = 4(m2 + 16)(−x)7.

Hence we have

H(x, y)P(x, y)

Fm(x, y)
+ Q(x, y) = 4(m2 + 16)y7

Fm(x, y)
∈ Z,

H(x, y)P(y,−x)

Fm(x, y)
+ Q(y,−x) = −4(m2 + 16)x7

Fm(x, y)
∈ Z.

Since x and y are relatively prime, we conclude that c = Fm(x, y) divides
4(m2 + 16).
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Conversely, if there exists (x, y) ∈ Z
2 with xy(x + y)(x − y) �= 0 such that

c = Fm(x, y) divides 4(m2 + 16) then we can take N ∈ Q\{m} by

N = m + (m2 + 16)xy(x + y)(x − y)

Fm(x, y)
.

From the assumption m ∈ Z\{0,±3}, we have GalQ fm(X) ∼= C4. Hence it follows
from Theorem 1.1 (i) and (iii) that N ∈ Q\{±m} and Lm = L N .

We should show that N ∈ Z. If x �≡ y (mod 2) then c = Fm(x, y) divides
m2 + 16 and hence N ∈ Z\{±m}, because Fm(x, y) ≡ Fm(x, y) ≡ 1 (mod 2).

If x ≡ y (mod 2) then c = Fm(x, y) divides (m2 + 16)xy(x + y)(x − y) and
hence N ∈ Z\{±m}, because xy(x + y)(x − y) ≡ 0 (mod 4). �

6 Primitive Solutions

By the proof of Theorem1.1 and Theorem1.4, a nontrivial solution (x, y) ∈ Z
2 to

(∗) may be obtained as z = x/y with gcd(x, y) = 1 where z ∈ Q is a root of
f A(X) = X4 − AX3 − 6X2 + AX + 1 for A = A1 or A = A2 with

A1 = mn + 16

−m + n
and A2 = mn − 16

m + n

as in Theorem1.1 (ii). Hence we now consider only primitive solutions (x, y) ∈ Z
2,

i.e., gcd(x, y) = 1, to (∗).

Lemma 6.1 Let m ∈ Z\{0,±3} and Lm = SplQ fm(X). We assume that there exists
n ∈ Z\{±m} such that Ln = Lm.
(i) We may choose nontrivial primitive solution (x, y) ∈ Z

2 with (x, y) ≡ (0, 1)
(mod 2) to Fm(x, y) = d where d is an odd divisor of m2 + 16. Then four pairs
±(x, y), ±(y,−x) are primitive solutions to Fm(X, Y ) = d and four pairs ±(x ′, y′),
±(y′,−x ′) are primitive solutions to Fm(X, Y ) = −4d where (x ′, y′) = (x − y, x +
y).
(ii) All primitive solutions to (∗) which satisfy (∗∗) for either N = n or N = −n are
given by the eight solutions as in (i), and such solutions exist for only one of N = n
and N = −n.

proof ByTheorem1.4, there exists nontrivial solution (x0, y0) ∈ Z
2 to Fm(x0, y0) =

c for a divisor c of 4(m2 + 16). By Lemma4.2, we may choose (x, y) ∈ Z
2 with

(x, y) ≡ (0, 1) or ≡ (1, 0) (mod 2) to Fm(x, y) = d where d is an odd divisor of
m2+16. Again by Lemma4.2, eight pairs±(x, y),±(y,−x) for d and±(x − y, x +
y), ±(x + y,−x + y) for −4d are all primitive solutions. Hence we may assume
that (x, y) ≡ (0, 1) (mod 2).
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These eight solutions correspond to the same N as in Theorem1.4 because

xy(x + y)(x − y)

Fm(x, y)

is invariant under the actions of x −→ y −→ −x and x −→ x − y, y −→ x + y.
For z = x/y, the equation (∗∗) holds if and only if f A(z) = 0 where

A = m N + 16

−m + N

(see the proof of Theorem1.1). We see that if z = x/y is a root of f A(X) then the
other three roots of f A(X) are given by

z − 1

z + 1
= x − y

x + y
, −1

z
= y

−x
, − z + 1

z − 1
= x + y

−x + y
.

Hence only the primitive solutions to (∗) which satisfy (∗∗) for N are the eight
solutions above. �

Corollary (Corollary1.5) For m ∈ Z\{0,±3}, let N be the number of primitive
solutions (x, y) ∈ Z

2 with xy(x + y)(x − y) �= 0 to Fm(x, y) = c where c is a
divisor of 4(m2 + 16). Then we have

#
{

n ∈ Z \ {±m}
∣∣∣ Ln = Lm, n > 0

}
= N

8

where Lm = SplQ fm(X). In particular, if there does not exist n ∈ Z\{±m} with
Ln = Lm then Fm(x, y) = c where c is a divisor of 4(m2 + 16) has only trivial
solutions (x, y) ∈ Z

2 with xy(x + y)(x − y) = 0.

By Theorem1.1, we obtain

L1 = L103, L2 = L22, L4 = L956.

Hence for m ∈ {1, 2, 4, 22, 103, 956}, we get nontrivial eight primitive solutions to
(∗) via Theorem1.4 as in Table2.

7 Reducible Case

In the reducible casem ∈ {0,±3}, fm(X) splits as f0(X) = (X2+2X−1)(X2−2X−
1) and f±3(X) = (X2±X−1)(X2∓4X−1)overQ, and henceSplQ f0(X) = Q(

√
2)

and SplQ f±3(X) = Q(
√
5).



On the Simplest Quartic Fields and Related Thue Equations 83

If m = 0, the trivial solutions correspond to N = ±m = 0.
If m = 3, then the eight trivial solutions±(0, 1),±(1, 0) for c = 1 and±(−1, 1),

±(1, 1) for c = −4 give N = 3 and nontrivial eight solutions ±(2, 1), ±(−1, 2) for
c = −25 and ±(−3, 1), ±(1, 3) for c = 100 give N = −3 (see Table3).

8 Computational Result

We do not know nontrivial primitive solutions to (∗) for m ≥ 0 except in Tables2
and 3. By the correspondence as in Theorem1.4, in order to find primitive solutions
to (∗) we should get Lm = Ln for some m �= ±n. In [20, Example5.4], however,
we checked with the aid of computer that for integers 0 ≤ m < n ≤ 105, Lm = Ln

if and only if (m, n) ∈ {(1, 103), (2, 22), (4, 956)}. Using Magma [38], we can get
the following:

Theorem 8.1 For 0 ≤ m ≤ 1000, all nontrivial primitive solutions (x, y) ∈ Z
2,

i.e., xy(x + y)(x − y) �= 0 and gcd(x, y) = 1, to (∗) are given in Tables2 and 3. In
particular, for 0 ≤ m ≤ 1000 with m �∈ {1, 2, 4, 22, 103, 956} and n ∈ Z, Lm = Ln

implies m = n or m = −n.

Table 2 Nontrivial primitive solutions

m N Fm(x, y) = c m2 + 16 xy(x + y)

(x − y)

(x, y)

1 103 −1 17 −6 ±(−2, 1), ±(1, 2)

1 103 4 17 24 ±(3, 1), ±(−1, 3)

2 −22 5 20 −6 ±(−2, 1), ±(1, 2)

2 −22 −20 20 24 ±(3, 1), ±(−1, 3)

4 −956 1 32 −30 ±(−3, 2), ±(2, 3)

4 −956 −4 32 120 ±(5, 1), ±(−1, 5)

22 −2 125 = 53 500 = 2253 −6 ±(−2, 1), ±(1, 2)

22 −2 −500 = −2253 500 = 2253 24 ±(3, 1), ±(−1, 3)

103 1 −625 = −54 10625 = 5417 6 ±(2, 1), ±(−1, 2)

103 1 2500 = 2254 10625 = 5417 −24 ±(−3, 1), ±(1, 3)

956 −4 28561 = 134 913952 = 25134 −30 ±(−3, 2), ±(2, 3)

956 −4 −114244 = −22134 913952 = 25134 120 ±(5, 1), ±(−1, 5)

Table 3 Nontrivial primitive solutions (reducible case)

m N Fm(x, y) = c m2 + 16 xy(x + y)(x − y) (x, y)

3 −3 −25 25 6 ±(2, 1),±(−1, 2)

3 −3 100 25 −24 ±(−3, 1),±(1, 3)
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On the Implementation of Boolean
Gröbner Bases

Shutaro Inoue and Akira Nagai

Abstract We show how we can make Boolean Gröbner base computations feasible
on standard computer algebra systemswhichhave a routine to computeGröbner bases
in polynomial rings over theGalois fieldGF2.Wealso show thatwe can even compute
a comprehensive Boolean Gröbner basis using only computations of Gröbner bases
in a polynomial ring overGF2. Our implementation on the computer algebra system
Risa/Asir achieves tremendous speedup compared with previous implementations of
Boolean Gröbner bases.

1 Introduction

A commutative ring B with an identity is called a Boolean ring if every element of
which is idempotent. A residue class ring B[X1, . . . , Xn]/〈X2

1 − X1, . . . , X2
n − Xn〉

with an ideal 〈X2
1 − X1, . . . , X2

n − Xn〉 also becomes a Boolean ring, which is
called a Boolean polynomial ring and denoted by B(X1, . . . , Xn). A Gröbner basis
in a Boolean polynomial ring (called a Boolean Gröbner basis) was first introduced
in [1, 2] and further developments were done in [3–7]. The original computation
algorithm introduced in [1, 2] used a special monomial reduction which was more
complicated than a usual monomial reduction in a polynomial ring over a field. It is
also directly applicable for computations of comprehensive Boolean Gröbner bases.
This algorithmwasfirst implemented inProlog as a free software [4] for computations
of both Boolean Gröbner bases and comprehensive Boolean Gröbner bases for the
case that B is a Boolean ring PFC (S) that consists of all finite or co-finite subsets
of S. (Here, S is a set of all strings of the computer language.)

It seems a natural and easy way to implement them in a computer algebra sys-
tem which has a facility to manipulate polynomials, however, it is not very simple
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to implement computations of the above Boolean ring (including how to represent
their data structures) in standard computer algebra systems. In [5], an alternative algo-
rithm is introduced where we can obtain a Boolean Gröbner basis by only computing
usual Gröbner bases in a polynomial ring over the Galois field GF2. Its implemen-
tation brought us a much faster program than [4]. Unfortunately, this algorithm is
not applicable for computations of comprehensive Boolean Gröbner bases, and no
implementations had been done in any computer algebra system.

After a decade of pioneering work on Boolean Gröbner bases, further devel-
opments were recently done by [3, 6, 7]. Based on these results, we have imple-
mented a software [8] to compute both Boolean Gröbner bases and comprehensive
Boolean Gröbner bases for the Boolean ring PFC (S) in the computer algebra sys-
tem Risa/Asir [9]. Our software achieves tremendous speedup compared with the
previous one. It enables us to do our recent work [10] of a nontrivial application of
Boolean Gröbner bases.

In this short paper, we describe how we can implement computations of both
Boolean Gröbner bases and comprehensive Boolean Gröbner bases for the Boolean
ring PFC (S) in the computer algebra system Risa/Asir. We can also easily modify
our method for any other computer algebra systems which have a routine to compute
Gröbner bases in polynomial rings over the Galois field GF2.

The reader is referred to [3, 7] for detailed descriptions of the properties ofBoolean
Gröbner bases which we use in this paper together with important definitions such
as a Boolean closed polynomial, a reduced Boolean Gröbner basis, and a stratified
Boolean Gröbner basis.

2 Several Key Facts of Boolean Gröbner Bases

Given a finite set F of Boolean polynomials in B(X1, . . . , Xn), let B
′
be its smallest

Boolean subring that contains all coefficients of polynomials in F . Obviously, any
Boolean Gröbner basis G of the ideal 〈F〉 in B

′
(X1, . . . , Xn) is also a Boolean

Gröbner basis of the ideal 〈F〉 in B(X1, . . . , Xn). Note that B
′
is a finite Boolean

ring, so it is isomorphic to a direct product GF
k
2 of the Galois field GF2 for some

natural number k.
In what follows, ci denotes the ith component of c ∈ GF

k
2 for each i = 1, . . . , k,

fi denotes the Boolean polynomial of GF2(X̄) obtained from a Boolean polyno-
mial f of GF

k
2(X̄) by replacing each coefficient c with ci . X̄ is an abbreviation of

X1, . . . , Xn .
Computation of Boolean Gröbner bases in GF2(X̄) is quite easy.

Theorem 1 For a finite set { f1, . . . , fl} of Boolean polynomials in GF2(X̄), let
G be a (reduced) Gröbner basis of the ideal 〈 f1, . . . , fl , X2

1 − X1, . . . , X2
n − Xn〉

in the polynomial ring GF2[X̄ ] over the field GF2 w.r.t. some term order. Then
G\{X2

1 − X1, . . . , X2
n − Xn} is a (reduced) Boolean Gröbner basis of the ideal

〈 f1, . . . , fl〉 in GF2(X̄) w.r.t. the same term order.
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The next theoremwhich is essentially a special instance of Theorem 2.3 of [11] plays
an important role in the computation algorithm of Boolean Gröbner bases employed
in [5].

Theorem 2 In a Boolean polynomial ring GF
k
2(X̄), let G be a finite set of Boolean

closed Boolean polynomials. Then, G is a (reduced) Boolean Gröbner basis of an
ideal I in GF

k
2(X̄) if and only if Gi = {gi |g ∈ G}\{0} is a (reduced) Gröbner bas is

of the ideal Ii = { fi | f ∈ I } in GF2(X̄) for each i = 1, . . . , k.

Example 1 The following left constraint with unknown set variables X and Y is
equivalent to the right system of equations of a Boolean polynomial ring B(X, Y ),
where B is a Boolean ringPFC (S).

⎧⎪⎪⎨
⎪⎪⎩

X ∪ Y ⊆ {s1, s2}
s1 ∈ X
s2 ∈ Y
X ∩ Y = ∅

⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

(1 + {s1, s2})(XY + X + Y ) = 0
{s1}X + {s1} = 0
{s2}Y + {s2} = 0
XY = 0

Let F = {(1 + {s1, s2})(XY + X + Y ), {s1}X + {s1}, {s2}Y + {s2}, XY }. B
′
is a

finite subring of B that consists of {0, 1, {s1}, {s2}, {s1, s2}, 1 + {s1}, 1 + {s2}, 1 +
{s1, s2}}. It is isomorphic to GF3 with the isomorphism ψ given by ψ({s1}) =
(1, 0, 0), ψ({s2}) = (0, 1, 0) and ψ(1 + {s1, s2}) = (0, 0, 1). Considering B

′
as

GF3 with this isomorphism, F1 = {0, X + 1, 0, XY }, F2 = {0, 0, Y + 1, XY }
and F3 = {XY + X + Y, 0, 0, XY }. Reduced Gröbner bases of them in a Boolean
polynomial ring GF2(X, Y ) w.r.t. a lexicographic term order such that X > Y are
G1 = {(1, 0, 0)Y, (1, 0, 0)(X + 1)}, G2 = {(0, 1, 0)(Y + 1), (0, 1, 0)X} and G3 =
{(0, 0, 1)X, (0, 0, 1)Y } respectively. And we have a reduced Boolean Gröbner basis
G = {{s1}Y, {s1}(X + 1), {s2}(Y + 1), {s2}X, (1 + {s1, s2})X, (1 + {s1, s2})Y } of
F . Stratified Boolean Gröbner basis is obtained by simply adding elements that
have the same leading monomial. For this G, its stratified Boolean Gröbner basis is
{X + {s1}, Y + {s2}}.
The computation of comprehensive Boolean Gröbner bases is much simpler than the
computation of usual comprehensive Gröbner bases in polynomial rings over fields.
Given a finite set F of Boolean polynomials in B(A1, . . . , Am, X1, . . .,Xn), let G be
a (stratified) Boolean Gröbner basis of the ideal 〈F〉 in the Boolean polynomial ring
(B(A1, . . . , Am))(X1, . . . , Xn) over the coefficient Boolean ring B(A1, . . . , Am),
then G is a (stratified) comprehensive Boolean Gröbner basis of F with parame-
ters A1, . . . , Am . We can also apply the above method for them, however, when
m is not very small we need a huge natural number k for the isomorphism between
B(A1, . . . , Am) andGF

k
2, namely k ≥ 2m . Therefore the abovemethod is not feasible

when we have many parameters. The next result recently reported in [3] enables us
to apply the above method for the computation of comprehensive Boolean Gröbner
bases.

Theorem 3 Let G = {g1( Ā, X̄), . . . , gk( Ā, X̄)} be a Boolean Gröbner basis of 〈F〉
for F = { f1( Ā, X̄), . . . , fl( Ā, X̄)} in a Boolean polynomial ring B( Ā, X̄) w.r.t. a
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block term order > such that X̄  Ā. Then G is a comprehensive Boolean Gröbner
basis of F w.r.t. >X̄ (restriction of > on T (X̄)).

Example 2 The following left constraint is the same as the previous example except
that we have another unknown variable a for an element. Using another set variable
A to represent a singleton set {a}, it is equivalent to the right system of equations of
a Boolean polynomial ring B(A, X, Y ).

⎧⎪⎪⎨
⎪⎪⎩

X ∪ Y ⊆ {s1, s2}
s1 ∈ X
a ∈ Y
X ∩ Y = ∅

⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

(1 + {s1, s2})(XY + X + Y ) = 0
{s1}X + {s1} = 0
AY + A = 0
XY = 0

Let F = {(1 + {s1, s2})(XY + X + Y ), {s1}X + {s1}, AY + A, XY }.
The stratified Boolean Gröbner basis G of F w.r.t. a lexicographic term order such
that X > Y > A has the following form:

G = {{s2}XY, {s2}Y A + {s2}A, (1 + {s2})Y,

{s2}X A, (1 + {s2})X + {s1}, (1 + {s2})A}.

This is not reduced as a Boolean Gröbner basis in (B(A))(X, Y ). In fact, if we
specialize A by {s2}, G({s2})\{0} becomes {{s2}XY, {s2}Y +{s2}, (1+{s2})Y, {s2}X ,
(1+{s2})X+{s1}}, which is not reduced.But, from the above comprehensiveBoolean
Gröbner basis we can easily construct the stratified Boolean Gröbner basis of F in
(B(A))(X, Y ):

{({s2}A + {s2})XY, (A + 1 + {s2})X + {s1}A + {s1},
(A + 1 + {s2})Y + {s2}A, (1 + {s2})A}.

3 Implementation

We show how we can implement the computation method of Boolean Gröbner bases
described in the last section using only the manipulations of polynomial rings over
the Galois field GF2.
In our implementation, an element of PFC (S) is represented as a polynomial over
GF2. For example, an element 1+{s1, s2} ofPFC (S) is represented as a polynomial
1+ s1 + s2 ofGF2[s1, s2]. Using this representation, a polynomial f ofPFC (S)[X̄ ]
is translated into a polynomial in GF2[s1, . . . , st , X̄ ], where s1, . . . , st are all the
strings which occurs in some coefficient of f . The smallest Boolean subring of
PFC (S) that contains s1, . . . , st is isomorphic to the direct product GF

t+1
2 . Using

an isomorphism ψ such that ψ({si }) is the (t + 1)-tuple of 0, 1 such that only the ith
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component is 1 and the others are all 0 and ψ(1 + {s1, . . . , st }) is the (t + 1)-tuple
of 0, 1 such that only the last component is 1, we can consider f as a polynomial of
GF

t+1
2 [X̄ ]. Under this isomorphism, fi can be computed by simply specializing si

with 1 and other s j with 0 for i = 1, . . . , t , for i = t +1 by specializing all variables
s1, . . . , st with 0.

Example 3 f = (1 + {s1, s2})XY is translated into XY + s1s2XY .
g = {s1, s2}X ({s1}Y ) is translated into (s1 + s2)Xs1Y = s21 XY + s1s2XY .

Note that the second polynomial g could be further simplified to s1XY , however, we
do not employ this simplification since it does not affect the above specializations. By
this rather lazy strategy together with the computation technique of Boolean Gröbner
bases described in Theorem1, we can construct most part of Boolean Gröbner bases
computations by only using facilities of Risa/Asir. Our codes for the computations
of both Boolean Gröbner bases and comprehensive Boolean Gröbner bases consist
less than 300 lines.

Example 4 The following are computation examples of Examples1 and 2 by our
software.

[1378] G=cbgb([(1+(s1+s2))*(x*y+x+y),s1*x+s1,s2*y+s2,x*y],

[x,y],[],[s1,s2],2,1,1,1)$

[1379] bp_str(G,[x,y],[]);

[1*y+[s2],1*x+[s1]]

[1380] G=cbgb([(1+(s1+s2))*(x*y+x+y),s1*x+s1,a*y+a,x*y],

[x,y],[a],[s1,s2],2,1,1,1)$

[1382] bp_str(G,[x,y],[a]);

[([s2]+1)*a,1*a*y+([s2]+1)*y+[s2]*a,

1*a*x+([s2]+1)*x+[s1]*a+[s1],[s2]*a*y*x+[s2]*y*x]

4 Conclusions and Remarks

Our program achieves tremendous speedup compared with the old implementa-
tion of [5]. It enables us to do our recent work [10] of a nontrivial application of
boolean Gröbner bases. Table1 contains computation time(in terms of seconds) of
seven Boolean Gröbner bases for solving seven Sudoku puzzles which are ranked
as extremely difficult. The row Risa/Asir and Klic contain computation times of
the same Boolean Gröbner basis in each column by our new program and by the
old program of [5] respectively, the symbol ∞ means that the computation did not
terminate within 2h. All computations are done on a PC with 2GB memory and
Core2Duo2GHZ CPU (Table1).
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Table 1 Timing data

Puzzle 1 2 3 4 5 6 7

Risa/Asir 41.7 43.6 48.1 40.1 44.3 48.9 76.2

Klic 134.1 398.3 1025.3 ∞ 1242.3 686.5 ∞
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Comprehensive Gröbner Bases in a Java
Computer Algebra System

Heinz Kredel

Abstract We present an implementation of the algorithms for computing com-
prehensive Gröbner bases in a Java computer algebra system (JAS). Contrary to
approaches to implement comprehensive Gröbner bases with minimal requirements
to the computer algebra system, we aim to provide all necessary algebraic structures
occurring in the algorithm. In the implementation of a condition we aim at the max-
imal semantic exploitation of the occurring algebraic structures: the set of equations
that equal zero are implemented as an ideal (with Gröbner base computation) and
the set of inequalities are implemented as a multiplicative set which is simplified to
polynomials of minimal degrees using squarefree or irreducible decomposition. The
performance of our implementation is compared on well-known examples. With our
approach we can also make the transition of a comprehensive Gröbner system to a
polynomial ring over a regular coefficient ring and test or compute Gröbner bases.

1 Introduction

In this paper we present an implementation of the algorithms for computing com-
prehensive Gröbner bases [1–4] in a Java computer algebra system (JAS) [5–8]. This
paper contains revised and expanded parts of [9].

JAS uses Java to implement a computer algebra library with special emphasis on
object-oriented programming in an algebraic setting. The emphasis of this paper is
also on the library design for comprehensive Gröbner bases. Contrary to approaches
to implement comprehensive Gröbner bases with minimal requirements to the com-
puter algebra system, like that of Suzuki and Sato [10], we aim to provide and
utilize all necessary algebraic structures occurring in the algorithm. For example
there are parametric polynomials, colored polynomials, or coefficients in residue
class rings.
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In the implementation of a condition we aim at the maximal semantic exploitation
of the occurring algebraic structures: the set of equations that equal zero are imple-
mented as an ideal (with Gröbner base computation and ideal membership test) and
the set of inequalities are implemented as a multiplicative set which is simplified to
polynomials of minimal degrees using squarefree or irreducible decomposition. This
approach has partially been taken by [11–13].

With our approach we can moreover make the transition of a comprehensive
Gröbner system to an ideal basis in a polynomial ring over a (von Neuman) regular
coefficient ring [14, 15]. In this polynomial ring we can then check if the resulting
boolean closed ideal basis is a Gröbner base.

1.1 Related Work

Comprehensive Gröbner bases have been introduced by Weispfenning [3] and
improved to obtain canonical properties in [4]. Further improvements are by Montes
and Manubens [1, 16] and alternative approaches are presented by Sato and Suzuki
[2, 10, 17].

A first implementation comprehensive Gröbner bases was by [13] in ALDES/
SAC-2 and MAS, which was improved in [11, 12]. Newer implementations are
presented in [10, 18–20].

Due to limited space we do not discuss the related mathematical work on Gröbner
bases and other computer algebra algorithms, which can be found in standard text
books.

1.2 Overview of JAS

JAS provides a well-designed library for algebraic computations implemented with
the aid of Java’s generic types. The library can be used as any other Java soft-
ware package or it can be used interactively or interpreted through an jython (Java
Python) front end. JAS implements interfaces and classes for basic arithmetic of arbi-
trary precision integers, rational numbers and multivariate polynomials with such
coefficients. Further implemented packages are: algorithms for unique factorization
domains including polynomial factorization, algorithms for polynomial and solvable
polynomial Gröbner bases, and ideal arithmetic including (commutative) primary
ideal decomposition and real root isolation, algorithms for multivariate power series
and standard bases. Additionally, there are thread parallel and distributed versions
of Buchberger’s algorithm.

For an introduction to the JAS type system see [8, 21]. Details on the JAS library
can be found, as already mentioned, in [5, 7, 8, 21, 22].
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1.3 Outline

Section2 presents the design of the classes for the implementation of comprehensive
Gröbner bases. In the subsectionswe cover conditions and colored polynomials, para-
metric reduction and colored systems, Gröbner systems and comprehensive Gröbner
bases. In Sect. 3 we present some examples with new performancemeasurements and
the transition to regular coefficient rings. Finally Sect. 4 draws some conclusions. The
sections contain revised and expanded parts of [9].

2 Comprehensive Gröbner Bases

Recall some definitions from [3]. Let K be a field, R = K [U1, . . . , Um] a poly-
nomial ring over K in the variables U1, . . . , Um . Let S = R[X1, . . . , Xn] be a
polynomial ring over R in the variables X1, . . . , Xn and let ≺S be a term order
of S. S is called a parametric polynomial ring with parameters U1, . . . , Um in the
main variables X1, . . . , Xn . K [U1, . . . , Um][X1, . . . , Xn] will be abbreviated by
K [U][X]. For polynomials f ∈ S, the highest term, the leading coefficient, and
the leading monomial of f with respect to ≺S is denoted by HT( f ), HC( f ), and
HM( f ) = HT( f )HC( f ) as usual.

A specialization σ of S is a ring homomorphism σ : R −→ K ′ into some field
K ′. Let F be a subset of S and let ideal(F) denote the ideal generated by F. A finite
subset G ⊂ S is a comprehensive Gröbner base for ideal(F) (with respect to ≺), if
for all fields K ′ and all specializations σ : R −→ K ′ of S, σ(G) is a Gröbner base
for ideal(σ(F)) in K ′[X1, . . . , Xn] (with respect to ≺).

Comprehensive Gröbner bases can be computed, for example, via Gröbner sys-
tems. A Gröbner system G for an ideal(F), F ⊂ S is a finite set of pairs (γ, Gγ)

where γ is a condition and Gγ ⊂ S is a finite set of polynomials, determined by γ. A
comprehensive Gröbner base G for an ideal(F) is then obtained as the union of all
Gγ , where each γ also determines F . The meaning of ‘condition’ and ‘determined’
is explained next. If in S we have ideal(F) = ideal(G) then G is called a faithful
comprehensive Gröbner base.

A condition γ is a finite set {zi (U) = 0} ∪ {n j (U) �= 0} of polynomial equations
and inequalities. A coloring of the ring R by a condition γ associates a color, namely
green, red and white, with each polynomial in R. For a ∈ R, a is colored green if
a(U) = 0 can be deduced from γ, a is colored red if a(U) �= 0 can be deduced from
γ, else a is colored white. If a is colored c we write color(a) = c. The coloring of
R is extended to a coloring of S by the coloring of the coefficients. For p ∈ S we
write p = pgreen + pred + pwhite with the restriction pgreen 	 pred 	 pwhite for
pc �= 0 (for a color c). Note that we allow pwhite to contain green, red and white
coefficients, but pgreen and pred may only contain green respectively red coefficients,
if they are not zero. The wording ‘deduced’ is left unspecified. It may mean simple
inspection of the polynomials in γ or the usage of more sophisticated methods, like
ideal membership tests.
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A polynomial p is said to be determined with respect to a condition γ, if pred �= 0
or if pred = 0 and pwhite = 0. A set F of polynomials is said to be determined w.r.t.
γ, if each p ∈ F is determined w.r.t. γ. A polynomial p is said to be determined with
respect to a set of conditions �, if p is determined w.r.t. each γ ∈ �.

More on the mathematical background can be found in [3, 4, 15], see also
[2, 10, 18, 19].

2.1 Class Layout

We turn now to the algorithms for the computation of comprehensive Gröbner bases
in JAS. Due to space restrictions, we must assume some knowledge of Java, object-
oriented programming and JAS [7, 8, 21] in the following. An overview of the
object-oriented approach to computer algebra software is given in [23].

The overall layout of the implemented classes is shown in Fig. 1. The computation
of comprehensive Gröbner bases in class ComprehensiveGroebnerBaseSeq
is done via Gröbner systems, classGroebnerSystem. Gröbner systems are imple-
mented as lists of colored systems in class ColoredSystem. The colored systems
consist of a tuple of a condition in class Condition, a list of colored polynomials
and data structure OrderedCPairlist representing the critical pairs to be con-
sidered. Class ColorPolynomial implements a polynomial colored with respect
to a certain condition.

The last classCReductionSeq providesmethods for parametric reductions rel-
ative to conditions and alsomethods for computing conditionswhich determine poly-

Fig. 1 Overview of involved
classes
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nomials and sets of polynomials. All classes are parameterized by a type parameter
C which extends the interface RingElem〈C〉. The implementation is defined for
polynomials with polynomial coefficients over a coefficient ring of type C, namely
GenPolynomial〈GenPolynomial〈C〉〉.

In the following sections we discuss the functionality of each of the mentioned
classes.

2.2 Colored Polynomials and Conditions

Figure2 shows a class diagram with attributes and methods of the classes
Condition and ColorPolynomial. A condition is defined by a finite set of
polynomial equations, polynomials equal to zero z(U) = 0, and a finite set of polyno-
mial inequalities, polynomials not equal to zero n(U) �= 0. A condition then ‘colors’
the coefficients of a parametric polynomial in the following way: if a coefficient is
contained in the “equals zero” set, it is colored green, if a coefficient is contained in
the “not equals zero” set, it is colored red. In case a coefficient is not contained in

Fig. 2 Conditions and
colored polynomials
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one of these sets, it is colored white. Before we discuss the implementation of these
sets, we first explain the rest of the functionality and the colored polynomials.

The class Condition provides the method color() to deduce if a given
(parametric) coefficient is zero or not with respect to this condition. The method
determine() takes a parametric polynomial as input and returns a colored poly-
nomial with respect to this condition. Themethods extendZero() and extend-
NonZero() add a (parametric) coefficient to the set of zero, respectively the set of
nonzero, polynomial equations.

A colored polynomial ColorPolynomial consists of these three colored parts
determined by a condition, with the following restriction on the ordering on the
terms. A nonzero green part green is greater with respect to the term order of the
main variables than a nonzero red part red, which is greater than a nonzero white
part white. In case one or more of these parts are zero the restriction holds on
the remaining nonzero parts. The method checkInvariant() provides a test,
if these restrictions are fulfilled. The method isDetermined() tests if the red
part is nonzero or the white part is also zero. Methods isZERO() and isONE()
ignore the green part in performing the respective test. The getPolynomial()
method returns the sum of all colored parts. Themethods sum() and subtract()
compute a colored polynomial which consists of the sum (difference) of the green
parts, a zero red part, and a white part computed from the sum (difference) of the
given red and white parts. The methods multiply() and divide() compute a
colored polynomial with each colored part multiplied (divided) by a coefficient.

We now turn to the implementation of the sets of equations and inequalities defin-
ing a condition. First we do not store the equations themselves, but only the respective
polynomials. The implementation is partially inspired by the implementation in [12]
which is based on the implementation of [13].

The test if a polynomial is zero, by inspecting a list of polynomials, is not very
efficient. For example, the test polynomial might be a linear combination of some
polynomials in the list (in otherwords, it lies in the ideal generated by the polynomials
in the list), a fact which is not detected by just inspecting the list. So we replace the
list of polynomials by the ideal generated by the list. Then the test if a polynomial
is a linear combination of the polynomials is replaced by an ideal membership test.
This test can be performed via a normal form computation modulo a Gröbner base
of the ideal generated by the polynomials. This functionality is provided by the class
Ideal. Its method contains() lazily computes a Gröbner base if it is required
for the ideal membership test. Further, we add the squarefree part of the polynomials
that are put into the ideal, since the test only requires a radical membership test.

Similarly, the test if a polynomial is nonzero can be improved. Instead of just
inspecting the list of polynomials if the given polynomial is contained, we can check
if the given polynomial is some product of the polynomials in the list. This is done
by computing quotients and remainders with respect to polynomials in the list as
long as the remainders are zero. If a quotient is constant, the given polynomial
was a product of other nonzero polynomials. These algorithms are implemented in
classMultiplicativeSet. In subclasses further optimizations are implemented,
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for example, making the polynomials in the set co-prime Multiplicative-
SetCoPrime, co-prime and squarefree MultiplicativeSetSquarefree
or irreducible MultiplicativeSetFactors. The irreducible factors version
relies on the new factorization package, which became usable in 2010. Since it uses
Kronecker substitution to reduce multivariate to univariate problems its performance
can be improved when Hensel lifting becomes available (see Sect. 3). The default is
to use squarefree and co-prime multiplicative sets which are also not too expensive
to compute.

The methods extendZero() and extendNonZero() of Condition use
the tests just described to avoid adding unnecessary polynomials and to add only
maximally reduced polynomials to the respective sets. The methods further try to
simplify the conditionwithmethodsimplify() and perform checks for contradic-
tions and return null as condition in such a case. Contradictions can show up during
the extension operations, as a polynomial in the nonzero list might be contained in
the extended ideal generated by the zero polynomials. Similarly a polynomial in the
zero polynomial ideal could be a product of polynomials in the extended nonzero
polynomials set, again a contradiction. In particular the ideal of zero polynomials
might contain one at some extension operation. Such contradictory conditions can
then be given special treatment.

2.3 Parametric Reductions and Colored Systems

Class CReductionSeq implements parametric reductions with respect to condi-
tions. The class diagram is shown in Fig. 3. The methods isNormalform() and
normalform() test if a polynomial is in reduced form with respect to a list of
polynomials or compute such a reduced form relative to a condition and a list of
polynomials. All polynomials are colored polynomials and must be colored consis-
tently and be determined. isNormalform() checks if a termwith a red coefficient
is divisible by a red head term of a polynomial in the list.

The computation of the normal form proceeds by inspecting the first non-green
term (of the main variables) in the polynomial to be reduced. If it is actually colored
green with respect to the condition, then it is put to the green terms of the result
polynomial. If it is colored red or white, the term is reduced with respect to a suitable
polynomial in the list. If no such polynomial is found, the process ends for top
reduction. For non top-reduction the term is put to the result polynomial and the
process continues with the next term. Method SPolynomial() computes the S-
polynomial of two determined polynomials.

The other methods in class CReductionSeq implement the computation of
sets of conditions and a list of determined polynomial lists. Method determine()
takes a list of parametric polynomials as input List〈GenPolynomial〈GenPoly
nomial 〈C〉〉〉 and returns a list of colored systems List〈ColoredSystem〈C〉〉
(explained later). The method first computes a set of conditions for the list of input
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Fig. 3 Parametric reduction

polynomials with method caseDistinction() and then determines the poly-
nomials with a method determine() which takes a case distinction as input.

A case distinction (a set of conditions) is represented by a list of Condition
objects. The conditions are constructed in away, such that every polynomialwill have
a red head term (or the white part is zero). In the construction of the condition, each
(parametric) coefficient of the given polynomial is checked if it is already colored
red or green relative to a given condition. If this is not the case, i.e. the coefficient is
colored white, the condition is extended two times. First it is extended by adding the
coefficient to the set of nonzero polynomials and then it is extended again by adding
the coefficient to the set of zero polynomials (as explained in the previous section).
If such a newly computed condition is not contradictory and is not already contained
in the list of conditions, it is added to the list of conditions.

The twomethodsdetermine() take a list of parametric polynomials and return
a list of ColoredSystems, see Fig. 4. A ColoredSystem is a container for a
Condition, which determines a list of ColorPolynomials and a Ordered-
CPairlist. Besides the pair-list which is explained below, the ColoredSystem
class provides methods similar to the ColorPolynomial class. Namely, there are
methods to check for the validity of the term order invariants or to check if the list
of polynomials is correctly determined. Further there are methods to extract lists
of the green or red coefficients, the essential parts or the parametric polynomials
them-selfs. Other methods just return respective parts of the condition.

To construct a list of ColoredSystems, method determine() with a list
of Condition parameter, uses a list variant of method determine() of class
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Fig. 4 Colored systems and critical pair lists

Condition to compute a list of colored polynomials from the list of the given
parametric polynomials. The condition together with the list of determined colored
polynomials are then the building parts for the ColoredSystem container. The
determine() method without a Condition parameter, first constructs a set
of conditions and then constructs a colored system for each condition in the case
distinction.

Class OrderedCPairlist implements a data structure for the critical pairs
to be considered during the curse of the Buchberger algorithm. It encapsulates pair
selection strategies and book keeping for criteria to avoid critical pairs.

2.4 Gröbner Systems and Comprehensive Gröbner Bases

A GroebnerSystem is a container for a list of ColoredSystems, see Fig. 5.
Like class ColoredSystem, it has a method isDetermined() to test if all
contained colored systems are determined and a method checkInvariant()
to check all invariants of all contained colored polynomials. The method
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Fig. 5 Gröbner systems and comprehensive Gröbner bases

getConditions() extracts a list of all Conditions from all Colored-
Systems and stores them for later access in attribute conds. Method getCGB()
extracts a list of all parametric polynomials as a union of all parametric polynomials
from all colored systems.

The computation of comprehensive Gröbner bases via Gröbner systems is
implemented in class ComprehensiveGroebnerBaseSeq. This class has
methods to test if a given list of parametric polynomials is a comprehensive Gröb-
ner base (method isGB()) and to test if a given list of colored systems is a
Gröbner system (method isGBsys()). Both methods are over-loaded to allow
also GroebnerSystems as parameters and perform the respective checks. Inter-
nally there exist two tests, if a list of parametric polynomials is a comprehen-
sive Gröbner base. isGBcol() determines the given list of polynomials and
calls method isGBsys() on the list of ColoredSystems. The second test
isGBsubst() also determines the given list of polynomials but then maps the
polynomials to each residue class modulo the zero polynomial ideal contained in the
Condition and test if it is a Gröbner base over these coefficient rings. To this end
we transform the polynomials from GenPolynomial〈GenPolynomial〈C〉〉 to
GenPolynomial〈Residue〈C〉〉 and use method isGB() from implementation
GroebnerBasePseudoSeq for the test, that is, we map

K [U1, . . . , Um][X1, . . . , Xn] −→ K [U1, . . . , Um]/ideal(Zi )[X1, . . . , Xn],



Comprehensive Gröbner Bases in a Java Computer Algebra System 103

where Zi is the set of polynomials to be treated as zero in condition i. As one last test
a random ideal in the coefficient polynomial ring is generated (an ideal generated by
random polynomials) and the test is performed modulo this random ideal. Note, that
the ideal(Zi ) of the zero conditions might not be a prime ideal. However, the head
terms of the polynomials have moreover been colored red by the multiplicative set
of nonzero conditions. And, if the condition is not a contradiction, it is guaranteed
that they miss all prime ideals which contain the residue class ideal.

To compute a faithful comprehensive Gröbner base, the method GB() first com-
putes a GroebnerSystem and then extracts the comprehensive Gröbner base with
getCGB().

Themainwork is performed inmethod GBsys(), which takes a list of parametric
polynomials as input an returns a GroebnerSystem container. In thismethod, first
the method determine() of the parametric reduction engine is used to construct
a list of determined colored systems. Each ColoredSystem is then augmented by
a pair list OrderedCPairlist containing all critical pairs of the colored polyno-
mials of it. For each ColoredSystem, an inner loop iterates over all critical pairs
of this system. For each critical pair a parametric S-polynomial and a parametric
normalform of it with respect to the list of colored polynomials is computed. If the
normal-form polynomial is nonzero, the condition is refined so that it becomes deter-
mined with method determineAddPairs(). This method also adds new pairs
to the critical pair list if required. The method returns a list of ColoredSystems,
consisting of successors of the actual condition, an updated list of colored polyno-
mials and an updated list of critical pairs. This list of new ColoredSystems is
then merged with the existing list of ColoredSystems and the actual Colored-
System is replaced by a suitable new system. In this way, a depth first search for a
ColoredSystemwith empty pair list is performed. If all critical pairs of the actual
ColoredSystem are done, it is moved to the result list and the next colored system
is taken. By the termination argument for the computation of Gröbner systems only
finitelymany new colored systems are added at each step and for each colored system
only finitely many new critical pairs are generated. So by Königs tree lemma com-
bined with Dickson’s lemma the two interleaved loops eventually terminate. Upon
termination all critical pairs in a colored system have been processed, so the poly-
nomials form a Gröbner base relative to the given condition. Since the conditions
of the colored system cover the empty condition, the list of colored systems form a
Gröbner system for the list of given input polynomials.

3 Examples and Gröbner Bases Over Regular Rings

In this section we summarize some old (from [9]) and report on new performance
measurements. Then we discuss relations to Gröbner bases for regular rings. We first
show the performance on the examples from Raksanyi and Hawes2, see [24]. The
examples are contained in the examples directory of [21].
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Table 1 Gröbner system for Raksanyi and Hawes examples

Example MAS time Conditions JAS time Conditions

Raksanyi, S, Gr 40 3 520/229/190 5

Raksanyi, L 5,630 22 511/225/175 4

Raksanyi, G 30 3 337/147/99 3

Hawes2, G >20 min – 1,119/603/578 5

Time in ms, Term order: G = graded, L = lexicographical, S = Gr = reverse
graded, timings in slashes are for subsequent runs

Table 2 Gröbner system for Nabeshima examples

Example From [19] Cond JAS, L Cond JAS, G Cond JAS, sqf 64 Cond

F1 31 4 285/97 7 270/99 7 205/162 G, 6

F2 93 6 2,299/1,664 12 509/165 10 1,070/287 L, 9

F3 2,203 22 1,186/660 29 1,199/681 29 1,507/363 L, 24

F4 234 15 1,231/674 34 1,365/751 34 1,084/226 L, 18

F5 109 6 359/126 11 367/125 8 303/97 L, 8

F6 359 17 5,280a/1,223a 9a 2,187a/861a 9a 1,312/175 G, 9

F7 375 7 392/117 6 424/128 6 552/261 G, 6

F8 133,200 458 2,548/1,788 32 4,883/3,664 32 1,941/416 G, 20

Time in ms, Term order: G = graded, L = lexicographical, cond = number of conditions, timings
after slashes are for third run, sqf = squarefree multiplicative sets, 64 = 64 bit JVM
a corrected entries from [9]

In Table1 (parts from [9]) we compared the computation with MAS [12] on the
same computer. For JAS we compute the same Gröbner system three times in the
same instance of a Java virtual machine. The time for the second and third run is
separated by a slash. We see, that for the first run there is considerable time spend
in JVM code profiling and just-in-time compilation. In subsequent runs we then see
performance improvements. In most cases, the computing times for the third run are
less than half to one third of the computing for the first run. We see that for small
examples theMAS code runs faster, but for bigger examples the JAS code runs faster.

In Table2 (with corrected parts from [9]) we present the JAS computation times
of the examples from Nabeshima. The timings of Nabeshima are the original tim-
ings from the article [19]. These timings are measured on a Pentium M running at
1.73GHz. The computing times for JAS are in ms on one older AMD 2.1GHz CPU
and a newer AMD 3.0GHz Dual Core CPU, with JDK 1.6 and 32-bit respectively
64-bit server JVM. So the timings are not directly comparable, but the CPU influence
should not be more than a factor of two for the older CPU. Nevertheless we can draw
the conclusion, that the CPU or the system software (C, Risa/Asir vs. Java, JAS) is
qualitatively in the same speed region and the timing differences seem to be mainly
caused by different algorithms. That is, the mathematical optimization to produce
a minimal number of conditions, is more important than the relative CPU speed.
The new timings and condition count in the last columns are for the algorithms as
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Table 3 Gröbner system for Montes examples

Example From [1] Cond JAS Cond JAS, sqf 64 Cond JAS, irr 64 Cond

11.1, L 8,800 6 777/327 23 762/408 16 1,722/554 16

11.2, L 5,200 6 490/143 10 425/175 9 >60 s –

11.3, L 115,900 7 1,013/516 9 1,244/694 8 1,420/663 8

11.4, L 33,000 7 371,939/355,794 7 64,575/36,653 7 80,865/53,192 7

5.1 simp, L 8,400 4 248/86 3 180/109 3 344/117 3

Time inms, Termorder: L= lexicographical, timings after slashes are for third run, sqf= squarefree,
irr = irreducible multiplicative sets, 64 = 64 bit JVM

they have improved over the last year. Again, the times do not reflect the different
CPU speeds but the different algorithms which is indicated by the smaller number
of conditions (converging to the counts of [19]).

In Table3 (parts from [9]) we present the JAS computation times of the examples
from Montes. The timings of Montes are the original timings from [1]. The last
four columns are new timings on the 64-bit CPU and JVM. The colum labeled ‘sqf’
presents times for the algorithm with squarefree multiplicative sets and column ‘irr’
with irreducible multiplicative sets. Only for example ‘11.4’ we see an improvement
by the faster CPU. The new algorithms have improved in the number of conditions.
However, the irreducible factorization does not pay off and increases the computation
time considerably without improving the number of conditions. As in the examples
above we conclude that the different algorithms are most important for the different
computing times. As it is not the primary focus of this paper to compare different
algorithmic details the timings show that our object-oriented approach with Java is
not slower than other approaches.

As pointed out in [15, 25, 26] there is some strong relation between comprehensive
Gröbner bases andGöbner bases over (vonNeuman) regular rings [14]. Sincewe also
have Gröbner bases over (finite) regular rings implemented in JAS, we can check,
for example, if a comprehensive Gröbner base is indeed also a Gröbner base over a
corresponding regular ring.

We take a list of colored polynomials from GroebnerSystem (which could
be a Gröbner system). From the condition of each colored system we construct a
residue class ring modulo the ideal generated from the condition zero polynomials.
The (finite) product of these residue class rings are then used as coefficient ring for
a polynomial ring with type

GenPolynomialRing<Product<Residue<C>>>,

in mathematical notation
(∏k

i=1 K [U1, . . . , Um]/ideal(Zi )

)
[X1, . . . , Xn], where k

is the number of colored systems. Note, as mentioned above, the ideal(Zi ) of the
zero conditions might not be a prime ideal. However, the head terms of the para-
metric polynomials have also been colored red by the multiplicative set of nonzero
conditions. So, if the condition is not contradictory, it is guaranteed that the head
coefficients miss all prime ideals which contain the residue class ideal.
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Then the union of the parametric polynomials from the colored polynomials is
mapped to this polynomial ring. The described conversion is implemented by the
(static) method toProductRes() of class PolyUtilApp. The boolean closure
of such a list of polynomials is constructed by method booleanClosure() of
class RReductionSeq. The computation of Gröbner bases for a regular ring is
provided via class RGroebnerBasePseudoSeq<C> and method GB(). The test
for a Gröbner base is implemented by method isGB(). So if we start with a boolean
closed set derived from a comprehensive Gröbner system, the method isGB() of
the regular coefficient ring Gröbner base will return true. An example is contained
in the jython file examples/raksanyi_cr.py in [21]. For this example the
output of the polynomial ring object looks like this:

PolyRing(RR([

RC(Ideal(PolyRing(QQ(),"a1, a2, a3, a4",PolyRing.lex),

list=[])),

RC(Ideal(PolyRing(QQ(),"a1, a2, a3, a4",PolyRing.lex),

list=[((a4 - a2))])),

RC(Ideal(PolyRing(QQ(),"a1, a2, a3, a4",PolyRing.lex),

list=[((a4 - a2)), (a1 * a2 * a3)])),

RC(Ideal(PolyRing(QQ(),"a1, a2, a3, a4",PolyRing.lex),

list=[(a1 * a3 * a4)]))

]),"x1, x2, x3, x4",PolyRing.lex)

The regular ring coefficients RR consist of four residue class rings RC corresponding
to the four conditions of the Gröbner system.

4 Conclusions

We have presented an implementation of the algorithms for computing comprehen-
sive Gröbner bases in a JAS. We provide and utilize all necessary algebraic struc-
tures occurring in the comprehensive Gröbner bases algorithm, such as parametric
polynomials, colored polynomials, conditions, or colored systems. A condition is
implemented as an ideal, with normal Gröbner base computations to decide ideal
membership and a multiplicative set which is targeted to produce polynomials of
minimal degrees using squarefree or irreducible decomposition.

The computing times for our object-oriented approach using Java are at least as
fast as other implementations. Faster CPUs give improvements only for bigger exam-
ples and using irreducible multiplicative sets increase computing times considerably
without improving the number of conditions. Recent improvements of our imple-
mentations have reduced the number of conditions. So we conclude that differences
in the computing times are mainly due to different mathematical details (which have
not been the primary focus of investigation in this paper). With our explicit algebraic
types approach we showed how to transform a comprehensive Gröbner system to a
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polynomial ring over a (von Neuman) regular coefficient ring and test for Gröbner
bases in such polynomial rings. This was possible since the software representations
of all rings in JAS snap together like ‘LEGO blocks’ to build up arbitrary structured
rings.

Further, we plan to implement comprehensive Gröbner bases for parametric
solvable polynomial rings [27]. There are also many opportunities for utilizing par-
allelism, see [18, 28, 29] for a start.

Acknowledgments I thank Thomas Becker for discussions on the implementation of a polynomial
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computer algebra system. JAS itself was improved by requirements from various users, especially
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Thomas Sturm, andWolfgangK. Seiler, to name a few. This paper profitedmoreover from comments
and feedbackwe received at the conference. Thanks also toMarkusAleksy andHans-GüntherKruse
for encouraging and supporting this work.
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A Practical Method for Floating-Point Gröbner
Basis Computation

Tateaki Sasaki

Abstract Computing Gröbner bases with inexact coefficients is eagerly desired
in industrial applications, but the computation with floating-point numbers is quite
unstable if performed naively. In previous papers, the present author clarified that
large term-cancellations occur frequently making the computation unstable, and he
proposed a method of removing the harm of exact term-cancellations and a method
of estimating the amounts of inexact term-cancellations. However, the estimation
is very rough and never satisfactory. The inexact cancellations cause the accuracy
loss of the output system, hence it is important to estimate their amounts precisely.
In this chapter, we propose a practical method of estimating the amounts of inexact
cancellations fairly well and very simply. We have tested our method by several
examples, and obtained reasonable results.We also propose a simple device to reduce
the amounts of exact term-cancellations.

1 Introduction

By “floating-point Gröbner basis” we mean a Gröbner basis of polynomial ideal
computed with floating-point numbers. There are two kinds of floating-point
Gröbner bases. The first kind is that the coefficients of the input polynomials are
exact (say algebraic numbers or transcendental numbers) but we utilize the floating-
point numbers for some reasons. The second kind is that the coefficients of input
polynomials are inexact; hence, we inevitably express the coefficients by floating-
point numbers. If the numerical errors increase during the computation,we can replay
the computation with higher precision for the first kind; however, for the second kind,
we must devise to preserve the initial accuracies of the given polynomials as far as
possible. In this chapter, we deal with the second kind.
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The first kind of floating-point Gröbner bases were studied by Shirayanagi and
Sweedler [16–18]. The second kind of floating-point Gröbner bases were studied by
Stetter [19], Kalkbrener [5], Fortuna et al. [3], Traverso and Zanoni [24], Traverso
[23], Weispfenning [25], Kondratyev et al. [7], Gonzalez-Vega et al. [4], Stetter
[21], Bodrato and Zanoni [1], and so on. In spite of these studies, computation of
floating-point Gröbner bases of the second kind has been a serious problem until
recent years; the computation was so unstable in most cases if performed naively.
This seriousness forced Mourrain to propose the so-called “border bases” [9, 10].
Furthermore, recently, Suzuki [22] and Nagasaka [11] proposed to compute Gröbner
bases by reducing large numerical matrices by Gaussian elimination. The border
basis is constructed from a set of monomials surrounding the monomials which
constitute a basis of the residue class ring of the ideal, hence it is definable only
for zero-dimensional ideals. The author is wondering whether the border bases can
be computed stably when the input polynomials are inexact. The linear algebra
algorithms are currently very time-consuming.

Why the floating-point Gröbner basis computation is so unstable? Shirayanagi
[16] pointed out the appearance of fully-erroneous terms and Sasaki and Kako [13]
pointed out the occurrence of main-term cancellations. In the computation with
floating-point numbers, subtraction of mathematically the same terms often gives a
term with coefficient of no significant bit, and we call such a term fully-erroneous
term. In [13], Sasaki and Kako clarified a simple mechanism of term-cancellations in
theGröbner basis computation. If there appears a polynomial of small or large leading
term then, in the subsequent computation, cancellations of all the main terms often
occur causing large errors. The fully-erroneous terms can be removed simply and
efficiently by expressing the input coefficients either by intervals [16] or by “effective
floating-point numbers” (“efloats” in short) [13]. Here, the efloats are floating-point
numbers proposed by Kako and Sasaki [6] to detect the cancellation errors efficiently
but approximately; see Appendix for details. Thus, the biggest problem is how to
protect the initial accuracy from large cancellation errors.

Sasaki andKako classified the termcancellations into two types, exact and inexact.
In [14], Sasaki and Kako pointed out that if we increase the precision then we can
remove the harm of the exact cancellations completely, which is the high-precision
method; we will explain this method in Sect. 2. The systematic inexact cancellation
occurs when the input system is ill-conditioned; we will explain this in Sect. 3.
The systematic inexact cancellation cannot be removed unless we perform some
preconditioning of the input system. Since they cause accuracy loss in the output
system, we must know the amount of inexact cancellation. In [14], Sasaki and Kako
proposed also a method to estimate the amounts of inexact cancellations occurred
on the coefficients. However, the method is very complicated yet it is incomplete
theoretically and gives only rough estimations. Therefore, the remaining problem is
how to estimate the amounts of inexact cancellations precisely.

In this chapter, we propose a simple and practical method of estimating the
amounts of inexact cancellations occurring on the coefficients of intermediate as
well as final polynomials fairly precisely. In new method, the high-precision method
is combined with a “marking” method which we propose in this chapter. We explain
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our new method in Sect. 4.1 and implementation details in Sect. 4.2 . We have tested
our method by simple examples, and the results are given in Sect. 4.3 . We also dis-
cuss a fault of our current marking method in Sect. 4.4 . In Sect. 5, we propose a
simple device to reduce the amounts of exact term-cancellations.

2 On Exact Cancellation and High-Precision Method

By F , P , etc., we denote polynomials in C[x, y, . . . , z]; the coefficients are actu-
ally represented by floating-point numbers. By ‖F‖, we denote the norm of F ; we
employ the infinity norm. The term (monomial) with no coefficient is called the
power product. By lt(F), lc(F), and rt(F), we denote the leading term (monomial),
the leading coefficient, and the rest terms, of F , respectively, with respect to a given
order �: F = lt(F) + rt(F), lt(F) � rt(F). By Spol(F, G) and Lred(F, G), we
denote the S-polynomial of F and G and the leading-term reduction of F by G,

respectively. We express Lred(F, G) also as F
G−→.

In this chapter, we restrict the reduction of polynomials only to the leading term
reduction: we compute the Gröbner bases by constructing S-polynomials and per-
forming the leading-term reductions successively. If we need the reduced Gröbner
basis then we perform the reduction of nonleading terms after computing an unre-
duced Gröbner basis.

No matter how the exact cancellation is caused, Sasaki and Kako showed in [14]
that the following method protects the initial accuracy from the cancellation errors,
so long as the cancellation is exact.

High-precision method Let the accuracy of polynomials of the given initial basis
be εinit (εinit � 1). Let Cexct be the maximum of the exact cancellations occurred
on the coefficients of floating-point Gröbner basis computed. Then, initially, set
the computational precision εcal to εinit/Cexct, convert all the coefficients of the
input polynomials to efloats or intervals of precision εcal, and perform theGröbner
basis computation (Buchberger’s procedure). After computing the Gröbner basis,
recover the original precision.

Of course, Cexct is not known before the computation but we can know it by
increasing the precision as εcal = 10−30 ⇒ 10−60 ⇒ 10−90 ⇒ · · · , for example.

We explain why this method protects the initial accuracy even if large main-term
cancellations occur. Consider, for example, the computation of c + d − c, where c
and d are floating-point numbers such that c � 1010 and d � 1 and that c+d is
computed first, hence the exact cancellation of about 1010 occurs in the computation
of (c +d) − c. Suppose that both c and d have relative accuracy 10−15 initially;
see Fig. 1 at the next page. In the high-precision method, c and d are converted to
numbers of 30 decimal figures, for example, among which 15 figures padded at tails
are completely meaningless. However, all the 30 figures of c and d are treated by
the computer as definite numbers with formal relative errors 10−30. When c and d
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1010

1

10−10

10−20

c

d

−c

initial
accuracy

padded
bits

=⇒ c+d −c

cancel
exactly

...... lost bits

=⇒ (c+d)−c

d
preserved

Fig. 1 Computation of c+d −c, |c| � |d|, by high-precision method

are added, c+d becomes a number of formal error about 10−20. After subtracting c
from c+d, the result becomes a number of magnitude 1 with formal relative error
about 10−20, because c and −c cancel exactly. Hence the initial accuracy 10−15 of
d is preserved in the computation.

3 On Inexact Cancellation and Matrix Formulation

The high-precision method is ineffective for errors caused by inexact cancellation;
the mechanism illustrated by Fig. 1 is not applicable to inexact cancellations. We
show a simple example in which inexact cancellations occur.

Example 1 (inexact cancellation) Let P1, P2, P3 be as follows.

⎧⎨
⎩

P1 = 57/56 x2y + 68/67 xz2 − 79/78 xy + 89/88 x,

P2 = xyz3 − xy2z + xyz,
P3 = 56/57 xy2 − 67/68 yz2 + 78/79 y2 − 88/89 y.

⎫⎬
⎭ (3.1)

Note that there is the following approximately linear dependent relation among
P1, P2, P3:

‖56/57 yz P1 − 57/56 xz P3 − 2P2‖ = 0.000041.

We convert the coefficients into double-precision floating-point numbers, which
introduces relative errors of 2×10−16 into the coefficients. Computing a Gröbner
basis w.r.t. the total-degree order with floating-point numbers of 10−30-precision,
we obtained the following basis (cf. Example4 in Sect. 4.3 ); the underlines show
correct figures found by comparing with the computation over Q.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 and P3 are unchanged, P2 → Q2 (no cancellation),
P6 = y2z2 − 2.995436947732552644538319700370 xy2 + · · · ,

P7 = xz2 − 0.001764316342370426661429391997 yz2

− 0.994723245018680541945733244338 xy
+ 0.001767982973726193638564792753 y2

+ 0.996490641711230003668442003074 x
− 0.177052976567912666260821875292 y.

We see that cancellations of about 104–105 and 102 occurred on the coefficients
even in high-precision computation. These large errors are due to inexact main-term
cancellations. 	

3.1 Matrix Formulation of Buchberger’s Procedure

We can formulate Buchberger’s procedure by matrices composed of coefficient vec-
tors of polynomials concerned, just aswe can formulateEuclidean algorithm for poly-
nomials by subresultants; see [8, 11]. First, we define Spol(F, G) and Lred(F, G)

similarly as the pseudo-division of polynomials. Let

F = f1S1 + f2S2 + · · · + fm Sm, G = g1T1 + g2T2 + · · · + gnTn, (3.2)

where f1, . . . , fm and g1, . . . , gn are numbers and S1, . . . , Sm and T1, . . . , Tn are
power-products satisfying S1 � S2 � · · · � Sm and T1 � T2 � · · · � Tm . Let
S = M/S1 and T = M/T1, where M = lcm(S1, T1). In defining Spol(F, G),
we assume that we have SSi = T Ti (i = 2, . . . ,min{m, n}) (we pad zero-
coefficient terms to satisfy these equalities, if necessary). We define Spol(F, G)

to be Spol(F, G) = g1SF − f1T G, then we can represent Spol(F, G) by the fol-
lowing matrix (eliminating f1 by the second row, we obtain the coefficient vector of
Spol(F, G)).

Spol(F, G) ⇐=
(

f1 f2 · · · fm

g1 g2 · · · gn

)
. (3.3)

Similarly, we define Lred(F, G) to be Lred(F, G) = g1F − f1U1G, where

U1 = S1/T1. Hence, if F
G−→→ F̃ is k times reductions of F by G then we must

multiply gk
1 to G. Let F̃ = gk

1 F − b1U1G − · · · − bkUk G, where U1, . . . , Uk are
power-products, then F̃ can be represented by the following matrix (eliminating left
elements of the last row, we obtain the coefficient vector of F̃).

F̃ ⇐=

⎛
⎜⎜⎜⎝

g1 g2 . . . gn
. . .

. . . · · · . . .

g1 g2 . . . gn

f1 f2 · · · fm

⎞
⎟⎟⎟⎠ . (3.4)
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Here, each column corresponds to the same power-product (we pad zero-coefficient
terms to satisfy this condition), and the upper k rows are coefficient vectors of
U1G, . . . , Uk G; the g1 elements may not be on the diagonal positions.

3.2 Characterization of Inexact Cancellations

The matrix formulation tells us what kinds of term cancellations occur in Buch-
berger’s procedure. In Sect. 1, we mentioned that the term cancellations can be clas-
sified into two types, exact and inexact. The term cancellations can be classified in
another way, accidental and systematic, as was done in [15]. The accidental term-
cancellation happens when the coefficients of two terms coincide accidentally, hence
it is not interesting theoretically, although we cannot neglect them practically. On
the other hand, in the computation of polynomial remainder sequence, we encounter
that many terms cancel each time the remainder is computed except for the first
often remainder. Such cancellation is the systematic term-cancellation, and it occurs
frequently in Buchberger’s procedure, too. The mechanism of systematic exact term-
cancellation in Buchberger’s procedure was unclear until recently, although a typical
mechanism was clarified by Sasaki and Kako [13, 14]. Recently, the present author
clarified the mechanism [12]. Since the exact term-cancellations can be made harm-
less by the high-precision method, we do not consider this type of cancellations any
more in this chapter.

The matrix theory tells us that the systematic inexact term-cancellations occur
only when there is an approximately linear-dependent relation among coefficient
vectors of initial polynomials and their monomial multiples.

Let the initial basis be Φ0 = {F1, . . . , Fr }. Any polynomial P appearing
in executing Buchberger’s procedure can be expressed by F1, . . . , Fr as P =
A1F1 + · · · + Ar Fr , where A1, . . . , Ar are polynomials. The tuple (A1, . . . , Ar ) is
called the syzygy for P . (The syzygy is not unique and we can compute a syzygy
for P by extending Buchberger’s procedure slightly). Let Ai = ai,1Ui,1 +
ai,2Ui,2 + · · · , (i = 1, . . . , r), where Ui,1, Ui,2, . . . are power-products satisfying
Ui,1 � Ui,2 � · · · , then P can be represented by the following matrix:

P ⇐=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

coefficient vector ofU1,1F1
coefficient vector ofU1,2F1

. . .
. . .

. . .
. . .

...
...

...
...

...

coefficient vector ofUr,1Fr

coefficient vector ofUr,2Fr
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.5)
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By computing approximately linear-dependent relations among rows of the above
matrix, we can know the amounts of inexact cancellations occurred on P .

One may think that we can know the amounts of inexact cancellations by com-
puting syzygies, as was proposed in [13, 14], but it is wrong. We show an example
(Example6 in [13]).

Example 2 (syzygy and cancellation) Let P1, P2, P3 be as follows.

⎧⎨
⎩

P1 = x2 (2yz + 1)/2.0,
P2 = (x (3xz − 2) − (2yz + 1))/3.0,
P3 = (yz (3xz − 2))/3.0.

⎫⎬
⎭ (3.6)

A Gröbner basis w.r.t. the total-degree order is {Q1, Q2}. Let the syzygy for Q1 be
(A11, A12, A13). We have ‖A11‖ = 1021.8, ‖A12‖ = 560.0 and ‖A13‖ = 443.9, if
we normalize Q1 to be 1.0, and max{‖A1P1‖, ‖A2P2‖, ‖A3P3‖} ≈ 2044. However,
thematrix representation of Q1 shows that there is no approximately linear dependent
relation among its rows. 	

Thematrix representation allows us to define condition number for polynomial P .
We omit the discussion because the condition number is not useful in our case.

4 A New Method: High-Precision and Marking Method

In this section, we propose a new practical and stable method for floating-point
Gröbner basis computation. From now on, by inexact cancellations, we mean the
systematic inexact term-cancellations. Before describing the method, we specify the
conditions we are given and point out problems we must solve.

• Each coefficient of the input system contains an error, and we assume that we
know the amount of error. Let εinit be the accuracy of the coefficients of the initial
system: εinit is an average value of |error(ci )|/|value(ci )| (i = 1, 2, . . .), where ci

is the i-th coefficient of the input system. If large inexact cancellations occur on an
intermediate polynomial and its initial accuracy is almost lost then the polynomial
is meaningless and we must discard it. Similarly, if the accuracy of a coefficient
has been lost fully then we must discard the term. Therefore, we are necessary to
estimate the amounts of inexact cancellations occurred on the coefficients of not
only the output system but also all the polynomials appearing in the computation.

• The high-precision method does not reduce the amounts of exact cancellations,
and efloats allow us to detect only the sum of exact and inexact cancellations in
each coefficient. In many cases, syzygy for P allows us to estimate the amount
of inexact cancellation occurred on P , but the estimation is very bad in some
cases. We need some clever device to estimate the amount of inexact cancellation
occurred on each coefficient fairly precisely.
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The above first point indicates that we are going to compute an “approximateGröbner
basis” if the input coefficients are inexact.

4.1 Description of the New Method

Our new method, which we call high-precision and marking method, is based on
the following three devices; we introduce “marks” to solve the problem mentioned
above.

1. We remove the harm of exact cancellations by the high-precision method, as
before; we convert all the coefficients of the input system to high-precision efloats.
Let εcal be the computational precision, and let Ctotal be the maximum of the total
cancellations (exact + inexact) occurred on the coefficients of output system. If

εcal < εinit/Ctotal, (4.1)

then εcal is sufficient for the computation. If εcal is found to be insufficient then
we increase the precision and replay the Gröbner basis computation.

2. We prepare two initial systems which are marked differently, and compare two
Gröbner bases computed from two initial systems. Here, the marking is done as
follows. Consider an initial coefficient c0 of high-precision efloat, with an error
r0. The mark to this coefficient is a tiny number of magnitude r0/|c0| and either
added to or subtracted from c0. By this, a bit of c0 at the head position of r0 is
changed (marked).

3. LetΦ ′
0 = {F ′

1, . . . , F ′
r } andΦ ′′

0 = {F ′′
1 , . . . , F ′′

r } be two initial systemswith high-
precision coefficients,where F ′

1, . . . , F ′
r aremarked in onewaywhile F ′′

1 , . . . , F ′′
r

are marked in another way. Hence, mutually corresponding coefficients inΦ ′
0 and

Φ ′′
0 are the same only in their leading bits above the marks. Suppose εcal satisfies

(4.1), and consider mutually corresponding coefficients c′ and c′′ appearing in
intermediate bases started fromΦ ′

0 andΦ ′′
0 , respectively. We divide c′ and c′′ into

two parts, as follows.
c′ = c̄ + d ′, c′′ = c̄ + d ′′, (4.2)

where c̄ = (c′ + c′′)/2 and d ′ and d ′′ are different in their leading bits. We
can regard that d ′ and d ′′ are errors while c̄ is accurate down to the bit just
before the leading bits of d ′ and d ′′. Then, we can estimate the amount of inexact
cancellation occurred on the unmarked coefficient c corresponding to c′ and c′′
by |c′ − c′′|/(εinit c̄).
Figure2 below illustrates the high-precision and marking method. The c′

0 and c′′
0

aremutually corresponding coefficients (normalized to 1.0) of initial systemsmarked
differently at εinit: symbols ◦◦◦ and ∗∗∗ show different figures padded to make their
precision εcal. Although padded figures are different, the computations are performed
almost the same because the computer treats c′

0 and c′′
0 as numbers of accuracy
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1.0

εinit

εcal

Initial

◦◦◦◦◦◦◦◦◦
c0 c0

∗∗∗∗∗∗∗∗∗

initial
accuracy

padded
bits

marks

=⇒ Final

inexact
cancell.

◦◦

c c

∗∗
exact
cancell.

...
......
......
...· ·

Fig. 2 Illustration of high-precision and marking method

εcal. The c′ and c′′ are mutually corresponding coefficients in an intermediate or
the final systems marked differently. Tail figures of c′ and c′′ will be lost by exact
cancellations and some leading figures will be lost by inexact cancellations. Since
the same inexact cancellation must occur on c′ and c′′, we can estimate the amount
of inexact cancellation by dividing c′ and c′′, as in (4.2).

4.2 Implementation Details

Although our ideamentioned above is very simple, we need careful considerations on
not only how to make marking but also how to normalize intermediate polynomials.
For example, if we put mark εinit to every coefficient in the system Φ ′

0 and mark
−εinit to every coefficient in the system Φ ′′

0 , then systems Φ ′
0 and Φ ′′

0 are essentially
the same.

We tested several methods of marking and have chosen the following one.

How to mark: We put marks only on nonleading coefficients of the polynomials.
We generate random numbers distributed in (−0.6, −0.3) and (0.3, 0.6). Let c
be a nonleading coefficient of the initial systemΦ0, and let r be a random number
not used in previous marking. We mark on coefficients c′

0 and c′′
0 in Φ ′

0 and Φ ′′
0 ,

respectively, as follows:

c′
0 = (1 + rεinit) c0 and c′′

0 = (1 − rεinit) c0. (4.3)

Merit of our method: Let c′, c′′, and c be mutually corresponding coefficients
in any corresponding intermediate bases (may be final bases) Φ ′, Φ ′′ and Φ,
respectively. Then, so long as the cancellation errors and rounding errors are
ignored, we have

(c′ + c′′)/2 = c. (4.4)
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(This relation can be proved easily by induction). This means that we can recover
the original basis Φ from Φ ′ and Φ ′′ easily.

We need to normalize intermediate polynomials: without normalization, they may
become very large or small. Given mutually corresponding polynomials P ′ and P ′′
in Φ ′ and Φ ′′, respectively, we must normalize them by the same normalization
constant; otherwise, we cannot compute c̄, d ′, and d ′′ correctly. Thus, we should
not normalize them as P ′ → P ′/lc(P ′) and P ′′ → P ′′/lc(P ′′). Our normalization
method is as follows:

How to normalize: Let c = [lc(P ′)+ lc(P ′′)]/2. We normalize P ′ and P ′′ by
dividing them by c. The normalization is made just after reducing P ′ and P ′′ by
Φ ′ \ {P ′} and Φ ′′ \ {P ′′}, respectively.

Merit of our method: The relation in (4.4) is preserved, so we can make
re-marking during the computation.

Remark 1 After many operations, values of d ′ and d ′′ in (4.2) will distribute prob-
abilistically, and the distribution is often pretty wide. We can determine the amount
of inexact cancellation occurred on P precisely, as follows. Let P be obtained by
reducing P̆ by Φ \ P̆ . Then, express this reduction by a matrix as in (3.5), and elim-
inate the matrix with pivoting as was done in [15]. In Sect. 4.3 below, we show data
obtained by using marks only.

Remark 2 One may think that, if the distribution of marks becomes wide, we had
better make re-marking by using the relation (P ′ + P ′′)/2 = P . However, the
re-marking destroys the mechanism of removing harm of systematic exact cancella-
tions. If, however, we know that the computation before re-marking does not cause
large systematic exact cancellations in the subsequent computation, thenwe canmake
re-marking. Such a case occurs if no polynomial with small/large leading coefficient
appears before the re-marking.

4.3 Experiments by Simple Examples

In examples given below, we performed the computation as follows: The input ratio-
nal coefficients are converted into double-precision floating-point numbers, which
introduces about 2 × 10−16 relative errors, then converted to efloats of 30 decimal
precision. We set εinit to 2× 10−16, and put marks to the coefficient as mentioned in
Sect. 4.2 . We employ the total-degree order. In the S-polynomial construction, we
choose a pair of lowest-order polynomials not chosen yet, and in the reduction, we
choose lower-order polynomial earlier as the reducer. We perform only the leading-
term reduction, hence the Gröbner basis obtained is unreduced. By #BE[ f, e] we
denote the big-efloat, where f and e are the value-part and the error-part, respec-
tively. The e was set to 10−28| f | initially.
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Example 3 (marking method for the system given in Example2) The unreduced
Gröbner basis obtained is {Q1, Q2}. We show Q′

1 and Q′′
1:

Q′
1 = #BE[1.00000000000000297762204178224, 6.7e−25] x

+ #BE[1.33333333333333792713449632636, 8.9e−25] y,

Q′′
1 = #BE[0.99999999999999702237795821775, 6.7e−25] x

+ #BE[1.33333333333332903559164357369, 8.9e−25] y.

Note that Q′
1+Q′′

1 gives Q1 very accurately.
Remember that the syzygy polynomials for Q1 are of large norms. The error-

parts of coefficients in Q′
1 suggest us that about 6,700∼8,900 cancellations (exact

+ inexact) occurred. Observing the computation steps carefully, we found that no
big systematic exact term-cancellation occurs. Hence, we must conclude that small
errors in big-efloats accumulate to a big one in this example. The marking method
shows that the inexact cancellations occurred on the x- and y-terms are about 15
and 17, respectively. (The matrix representation tells us that there occurs almost no
systematic inexact cancellation on Q1). 	
Example 4 (marking method for the system given in Example1) Computing P4 :=
Spol(P3, P1), and reducing P2 as P2

P4−→ P3−→→ Q2, we obtain

Q′
2 = #BE[1.00000000001985833510517071954, 1.2e−23] yz3

−#BE[1.99830912987876101272750355832, 1.2e−23] xyz

−#BE[1.00207821653227441077235356979, 1.2e−23] y2z

+#BE[1.00352171727634254594810956165, 1.2e−23] yz,

Q′′
2 = #BE[0.99999999998014166489482928045, 1.2e−23] yz3

−#BE[1.99830912992294005311770077080, 1.2e−23] xyz

−#BE[(1.0020782164924752407626366487, 1.2e−23] y2z

+#BE[1.00352171723648640478326087468, 1.2e−23] yz.

We see that large inexact cancellations occurred on Q2: Q′
2 and Q′′

2 show that inexact
cancellations of amounts 99300, 55300, 99300, and 99300 occurred on yz3-, xyz-,
y2z-, and yz-terms, respectively.

The Gröbner basis obtained is {P7, P3, P1, Q2, P6}. We show P ′
7 and P ′′

7 .

P ′
7 = #BE[0.99999999996908746835878173841, 7.0e−21] xz2

−#BE[0.00176431634237037774912473699, 2.5e−23] yz2

−#BE[0.99472324498787699169197654204, 7.0e−21] xy

+#BE[0.00176798297372614458928774883, 2.5e−23] y2

+#BE[0.99649064168042595164407743626, 7.0e−21] x

−#BE[0.00177052976567907722524820352, 2.5e−23] y,
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P ′′
7 = #BE[1.00000000003091253164121826158, 7.0e−21] xz2

−#BE[0.00176431634237047557373188086, 2.5e−23] yz2

−#BE[0.99472324504948409219949209434, 7.0e−21] xy

+#BE[0.00176798297372624268783966603, 2.5e−23] y2

+#BE[0.99649064174203405569280657009, 7.0e−21] x

−#BE[0.00177052976567917609996606021, 2.5e−23] y.

We again see that the sum of coefficients of xz2-terms is very close to 1.0.
P ′
7 and P ′′

7 show that inexact cancellations of amounts 154600, 139, 145800, 139,
154600, and 140 occurred on xz2-, xy-, y2- x-, and y-terms, respectively. On the
other hand, the error-parts show that the amounts of exact cancellations are not so
large. This result is roughly consistent with that in Example1. 	
Example 5 (a system which causes very large exact cancellations) Let the input
system be as follows:

⎧⎨
⎩

P1 = x3/30 + x2y + y2/3,
P2 = x2y2/3 − xy2 − xy/3,
P3 = y3/20 + x2.

⎫⎬
⎭

This is the system investigated in [13] and known to cause large systematic exact
cancellations of amounts O(109).

The Gröbner basis obtained is {Q2, Q4, Q5}, where Q2 = y2 and

Q4 = xy

+ #BE[0.08440225504521958676284694861, 3.1e−20] y2,

Q5 = x2

+ #BE[7.14849689746270700639023440400, 4.2e−19] xy

+ #BE[0.57371613952464572257619626087, 3.4e−20] y2.

The error-parts show that big cancellations of O(108)–O(109) have occurred. Q′
5

and Q′′
5, for example, are as follows:

Q′
5 = #BE[1.00000000000000043403304762146, 2.4e−19] x2

+ #BE[7.14849689746270864028809323982, 8.4e−19] xy

+ #BE[0.57371613952464591195996112900, 6.8e−20] y2,

Q′′
5 = #BE[0.99999999999999956596695237853, 2.4e−19] x2

+ #BE[7.14849689746270537249237556819, 8.4e−19] xy

+ #BE[0.57371613952464553319243139273, 6.8e−20] y2.
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Q′
5 and Q′′

5 show that the amounts of inexact cancellations occurred on x2-, xy-,
and y2-terms are 2, 1, and 2, respectively. Therefore, the cancellations occurred are
mostly systematic exact ones. This result is consistent with the estimation by matrix
representations. 	

4.4 Discussion

By the experiments given above, we may say that our high-precision marking
method is quite effective for detecting the occurrence of systematic inexact term-
cancellations. Looking into details of the computation in Example4, however, we
notice that the estimation of inexact cancellations occurred on xz2-, xy-, and x-terms
are considerably larger than those shown in Example1. So, we consider the compu-
tation in Example4. There occurs no cancellation in P4 = Spol(P3, P1). When P2 is
reduced by P4 to P̃2, large systematic exact cancellations of amount O(105) occur:
P̃2 := P2 − z P4 ≈ 0.8144e−5 xy2z − 1.632e−5 xyz. In the succeeding reduction of
P̃2 by P3, the marks in lc(P̃ ′

2) and lc(P̃ ′′
2 ) “contaminate” all the terms of rt(P ′

3) and
rt(P ′′

3 ), respectively. On the other hand, in the computation by pure high-precision
method, there is no such contamination. In this way, in the marking method, the
accuracy loss in the leading coefficient contaminates the subsequent computations.
A more elaborated implementation than the current one will be necessary.

5 Reducing the Systematic Exact Cancellations

In [24], Traverso and Zanoni tested many practical examples and reported that the
cancellations of 2100 or more occur frequently. The most parts of such big cancel-
lations are exact ones. Therefore, it is strongly desirable to reduce the amounts of
exact cancellations, because the smaller the εcal is the more time the computation
spends.

Since large main-term cancellations are caused by polynomials of small or large
leading terms, we define the abnormality of polynomial as follows:

Definition 1 (abnormality) Let a polynomial P be P = cT + P ′, where cT = lt(P)

with c = lc(P) and we assume P ′ �= 0. We define abnormality of P as follows:

abnormality =
{ ‖P ′‖/|c| if |c| ≤ ‖P ′‖,

−|c|/‖P ′‖ if |c| > ‖P ′‖. (5.1)

We expect that, by treating polynomials of large |abnormalities| specially, we will
be able to reduce the amounts of exact cancellations. We have tested the following
three strategies:
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Strategy 1: Divide the computation into two stages. In the first stage, the reduction
is performed only by polynomials of small |abnormalities|. The reduction by
polynomials of large |abnormalities| are done after the termination of the first
stage.
Result: The first stage sometimes does not terminate, because many
S-polynomials are constructed and not reduced to 0.

Strategy 2: Divide the computation into two stages. In the first stage, construct
only S-polynomials by combining polynomials of similar abnormalities. Com-
bining polynomials of non-similar abnormalities is done in the second stage.
Result: One may expect that many abnormal polynomials are reduced to 0 in
the first stage by this strategy. Actually, however, many abnormal polynomials
survive to the second stage, and large cancellations occur in the second stage.

Strategy 3: Sort existing polynomials in small-to-large order w.r.t. their
|abnormalities|. In constructing S-polynomials and in reducing polynomials, take
up polynomials of smaller |abnormalities| earlier.
Result: This strategy succeeds considerably, as shown in Example6.

Example 6 (test of strategy 3 by the system in Example5) We compute the Gröbner
basis w.r.t. total-degree order, with two strategies for choosing polynomials in the
S-polynomial construction and the reduction.

⎧⎨
⎩

P1 = x3/10.0 + 3.0x2y + 1.0y2

P2 = 1.0x2y2 − 3.0xy2 − 1.0xy
P3 = y3/10.0 + 2.0x2

⎫⎬
⎭ ⇒

⎧⎨
⎩

Q2 = y2

Q4 = xy + · · ·
Q5 = x2 + · · ·

⎫⎬
⎭

We found that, with the Strategy 3 mentioned above, the exact cancellations
occurred on Q5, Q2, andQ4 are 1010, 89, and 1010, respectively. Compared with
the amounts of cancellations in Example5, we see that the Strategy 3 is quite effective
for reducing the amounts of exact cancellations. 	

Appendix: Effective Floating-Point Numbers

The efloat number was proposed by Kako and Sasaki in 1997 [6] so as to detect
the cancellation errors automatically. (Similar ideas would be proposed by other
authors). We represent an efloat as #E[ f, e] (big-efloat as #BE[ f, e]), where f is a
floating-point number representing the value of this efloat, either of fixed precision or
of arbitrary precision, and e is a fixed-precision floating-point number representing
an approximate error of f . The efloat arithmetic is as follows: (we put a = #E[ fa, ea]
and b = #E[ fb, eb]).

a + b =⇒ #E[ fa + fb, max{ea, eb}],
a − b =⇒ #E[ fa − fb, max{ea, eb}],
a × b =⇒ #E[ fa × fb, max{| fbea |, | faeb|}],
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a ÷ b =⇒ #E[ fa ÷ fb, max{|ea/ fb|, | faeb/ f 2b |}].

Thus, the value-part of efloat is nothing but the conventional floating-point value.
On the other hand, the error-part of efloat represents the cancellation error approx-
imately; the rounding errors are neglected in determining the error-parts. Suppose
the coefficients of the input polynomials contain relative errors of εinit . Then, we set
the initial error-part of each coefficient to (5 ∼ 50)εinit×| f |; we set the error-part
to 10−15 × | f | for double-precision efloat, and to a much larger value for big-efloat.
In our algebra system, the efloat #E[ f, e] with | f | < e is set to 0 automatically.
Therefore, our algebra system detects fully-erroneous terms and remove them auto-
matically, unless the rounding errors accumulate to (5 ∼ 50)εinit or more, which is
extremely rare in practical computations. We note that the computation in Example1
was done by using efloats; if we use the conventional floating-point numbers we will
encounter many very small terms which are fully erroneous.
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Series-Expansion of Multivariate Algebraic
Functions at Singular Points: Nonmonic Case

Tateaki Sasaki and Daiju Inaba

Abstract In a series of papers, we have developed a method of expanding multi-
variate algebraic functions at their singular points. The method applies the Hensel
construction to the defining polynomial of the algebraic function, so we named the
resulting series “Hensel series”. In [1], we derived a concise representation of Hensel
series for the monic defining polynomial, and clarified several characteristic prop-
erties of Hensel series theoretically. In this paper, we study the case of nonmonic
defining polynomial. We show that, by determining the so-called Newton polynomial
suitably, we can construct Hensel series which show reasonable behaviors at zero-
points of the leading coefficients and we can derive a representation of Hensel series
in the nonmonic case just similarly as in the monic case. Furthermore, we investigate
the convergence/divergence behavior and many-valuedness of Hensel series in the
nonmonic case.

1 Introduction

Series expansion is a fundamental tool in numerical analysis, such as for solving
differential equations [2], for tracing analytic functions numerically [3], and so on.
So far, the Taylor expansion, multivariate as well as univariate, has mostly been used
in numerical analysis. The Taylor expansion breaks down at singular points, and
most numerical algorithms are constructed to avoid the singular points. However,
singular points are very important in mathematics; many important mathematical
properties are concentrated at singular points. It is strongly desirable to establish
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numerical analysis at and near the singular points. For this purpose, we need useful
and tractable method of series expansion at singular points.

In a series of papers [1, 4–6, 8, 9], we have developed a method of expanding
multivariate algebraic functions into series at singular points, where the algebraic
functions are defined as roots of a given multivariate polynomial. Since our method
is based on the Hensel construction, we named the series obtained by our method
Hensel series. For bivariate polynomials, our method computes Puiseux series roots
simultaneously and efficiently; for Puiseux series, see [10]. For multivariate poly-
nomials, different kinds of expansions are possible, and the series obtained by our
method are very different from multivariate Puiseux series [11–13].

The Hensel series was used so far to the analytic continuation of algebraic func-
tions via singular points [14], solving multivariate algebraic equations in series forms
[8, 9], the analytic factorization of polynomials of more than two variables [15, 16],
and so on. For other researches of utilizing series expansions at singular points, see
[17–21].

Let F(x, u)
def= F(x, u1, . . . , u�) be a given multivariate polynomial, and let

fn(u) be its leading coefficient w.r.t. x . The algebraic function is affected strongly
and delicately by fn(u). If u approaches a zero-point of fn(u) then at least one branch
of algebraic function goes to infinity, and if u approaches another zero-point then
another branch will go to infinity. One will think that generalization to nonmonic
case is straightforward. For example, we can employ a famous transformation which
converts any nonmonic polynomial to a monic one. However, with such a transfor-
mation, the effect of fn(u) is not fully taken into the Hensel series. We want to treat
the nonmonic case so that the effect of leading coefficient is taken into the Hensel
series as fully as possible.

In this paper, we propose a reasonable treatment of the leading coefficient. In our
method, the so-called Newton polynomial plays an essential role, so we include the
leading coefficient into the Newton polynomial. This treatment seems to be peculiar
at the first glance. However, the Hensel series are expressed in the roots of Newton
polynomial and many analytic properties of Hensel series are determined by the
roots. Therefore, by including the leading coefficient into the Newton polynomial,
the effect of the leading coefficient is taken into Hensel series largely. Furthermore,
with our treatment, the Hensel series are represented by the same formula as that
in the monic case, and we can clarify the properties of Hensel series simply. It is,
however, emphasized that this paper treats only the case that the Newton polynomial
is squarefree; treatment of general case is complicated, as [5, 8, 9] show.

2 Our Approach to Nonmonic Case

Let F(x, u)
def= F(x, u1, . . . , u�) ∈ C[x, u1, . . . , u�] be a given multivariate poly-

nomial. By deg(F) and lc(F), we denote the degree and the leading coefficient,
respectively, w.r.t. x , of F(x, u). We put deg(F) = n and lc(F) = fn(u). By
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tdeg( f ), with f (u) ∈ C[u], we denote the total-degree of f (u) w.r.t. subvariables
u1, . . . , u�; if T = c ue1

1 · · · ue�

� , c ∈ C, then tdeg(T ) = e1 + · · ·+ e�. By ord( f ) we
denote the order of f (u), i.e., the minimum of the total-degrees of terms of f (u).
Let ϕ(u) be an algebraic function defined as a root w.r.t. x , of F(x, u), hence we
have F(ϕ(u), u) = 0.

Let s
def= (s1, . . . , s�) ∈ C

� be an expansion point. Without loss of generality, we
assume that F(x, u) is irreducible over C hence squarefree. If fn(s) �= 0 and F(x, s)
is squarefree then every root of F(x, u) w.r.t. x can be expanded into Taylor series
in u1−s1, . . . , u�−s�.

Definition 1 (Singular point, singular leading coefficient) We call the expansion
point s ∈ C

� a singular point of algebraic function, or a singular point in short, if
F(x, s) is not squarefree. If fn(s) = 0 then we say the leading coefficient is singular
at s.

Without loss of generality, we assume that the origin u = 0 is a singular point or
fn(u) is singular at the origin, and we consider the series expansion at the origin. We
show the importance of treatment of leading coefficient by a simple example (below,
“H.T.” denotes higher order terms).

Example 1 Let F1(x, u, v) be as follows.

F1(x, u, v) = [(u+v) x − (u2+v2)] · [uv x2 − (u4+v4)] + H.T.

If deg(H.T.) ≤ 2 then the root ϕ(u, v) of F1(x, u, v) w.r.t. x behaves as

ϕ(u, v) ≈ u2+v2

u+v
, ϕ(u, v) ≈ ±

(u4+v4

uv

)1/2
,

for small |u| and |v|, hence ϕ(u, v) diverges on lines u +v = 0 or u = 0, v = 0.
However, if H.T. of F1(x, u, v) contains (u4+v4) x3, for example, which changes the
leading coefficient of F1 only a little near the origin, then ϕ(u, v) does not diverge
on lines u+v = 0, u = 0, v = 0. That is, the algebraic function is affected strongly
by the leading coefficient of its defining polynomial. �

The key concept in the Hensel construction at a singular point is the Newton
polynomial FNew(x, u); see [8, 9]. In treating nonmonic case, we want to define
FNew(x, u) so that the resulting Hensel series reflect the effects of leading coefficient
as fully as possible yet we can treat the Hensel series near the expansion point as
simply as possible.

An approach which we adopt in this paper is quite simple, although it seems rather
peculiar; we define the Newton polynomial as follows.

Definition 2 (Newton polynomial FNew(x, u), the nonmonic case) For each mono-
mial c xi t j u j1

1 · · · u j�
� of F(x, tu), with c ∈ C and j = j1 +· · ·+ j�, plot a dot at the

point (i, j) in the (ex , et )-plane. Let ν = ord( fn), and let LNew be a straight line in
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(ex , et )-plane, such that it passes the point (n, ν) and another dot plotted and that any
dot plotted is not below LNew. Construct FNew(x, tu) by summing all the monomials
plotted on LNew and by replacing lc(FNew) by fn(u). (Hence, lc(FNew) = fn(u).)

Let the slope of LNew be −λ (note the “minus” sign). We have assumed that the
origin u = 0 is a singular point. In drawing figures of ϕ(u) near the origin, we
should “regularize” ϕ(u). The behavior of ϕ(u) near the origin is approximately
determined by the Newton polynomial: if the slope of LNew is positive (negative)
then ϕ(u) goes to infinity (zero, resp.) as (u1, . . . , u�) → (0, . . . , 0). Therefore, we
define “regularized-root” ϕ̄(u) as follows (below, ‖u‖ has the meaning only when
we substitute values to all the variables u1, . . . , u�).

ϕ̄(u)
def= ‖u‖−λϕ(u), ‖u‖ def= (|u1|2 + · · · + |u�|2)1/2. (2.1)

Note that ϕ̄(s) → [finite value] as ‖s‖ → 0 for most values of s ∈ C�. We also
regularize Hensel series φ(u) to be determined in the next section.

3 Hensel Series in a Compact Representation

First of all, we confine ourselves to discussing the following restricted case.
Assumption N We assume that FNew(x, u) is square-free not only exactly but

also approximately, i.e., we assume that FNew(x, u) has no multiple/close roots.
Furthermore, we assume that FNew(x, u) has no numeric root.

If FNew(x, u) has a numeric root then the corresponding branch of the algebraic
function can be expanded into Taylor series, and we are not interested in such a case.
If FNew(x, u) has multiple roots then we must apply Hensel construction repeatedly,
see [9].

Let the roots of FNew(x, u) be α1(u), . . . ,αn(u), which we often write as
α1, . . . ,αn ; the roots are usually algebraic functions.

FNew(x, u) = fn(u)(x − α1(u)) · · · (x − αn(u)), αi �= α j (∀i �= j). (3.1)

We define F̃(x, u, η) by introducing an auxiliary variable η, as follows.
{

F(x, u)
def= FNew(x, u) + Fh(x, u),

F̃(x, u, η)
def= FNew(x, u) + η Fh(x, u).

(3.2)

Let FNew(x, u) be factored as FNew(x, u) = G(0)
1 (x, u) · · · G(0)

r (x, u), where

G(0)
1 , . . . , G(0)

r are relatively prime by Assumption N. Then, using G(0)
1 , . . . , G(0)

r
as initial factors, we perform the Hensel construction of F̃(x, u, η) with modulus η
to satisfy
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F̃(x, u, η) ≡ G(k)
1 (x, u, η) · · · G(k)

r (x, u, η) (mod ηk+1), k = 1, 2, . . . .

Choosing the initial factors as G(0)
1 = x − α1 and G̃(0) = FNew(x, u)/(x −α1), we

obtain
{

F̃(x, u, η) ≡ G(k)
1 (x, u, η) · G̃(k)(x, u, η) (mod ηk+1),

G(0)
1 (x, u, 1) = x − α1, G(k)

1 (x, u, η) = x − φ
(k)
1 (u, η).

(3.3)

The φ
(∞)
1 (u, 1) is the Hensel series corresponding to α1.

Once the Newton polynomial is defined, the Hensel construction is straightfor-
ward. Because of the page limit, we omit the details of deriving a representation of
Hensel series, for which the reader can refer to [1].

Theorem 1 Let FNew(x, u) be squarefree. Then, the Hensel factors G(∞)
1 (x, u, η)

and G̃(∞)(x, u, η) in (3.3) are expressed as follows (F ′
New = d FNew/dx).

G(∞)
1 (x, u, η) = x − α1 +

∞∑
k=1

ηk δF (k)(α1, u)

F ′
New(α1, u)

, (3.4)

G̃(∞)(x, u, η) = FNew(x, u)

x−α1

+
n∑

j=2

FNew(x, u)

(x−α1)(x−α j )

( ∞∑
k=1

ηk δF (k)(α j , u)

F ′
New(α j , u)

)
, (3.5)

where δF (1) = Fh(x, u) and the kth order residual δF (k) (k ≥ 2) is given by

δF (k)(x, u) = −
n∑

j=2

FNew(x, u)

(x − α1)(x − α j )

( k−1∑
k′=1

δF (k′)(α1, u)

F ′
New(α1, u)

δF (k−k′)(α j , u)

F ′
New(α j , u)

)
.

(3.6)

Example 2 (Numerical evaluation of Hensel series) Let F2(x, u, v) be

F2(x, u, v) = [(u+v) x − 1] [uv x2 + (u−v)x + 1] + (u3+v3) x2 + (u+v).

The Newton polynomial for F2(x, u, v) is as follows.

F2New(x, u, v) = [(u+v) x − 1] [uv x2 + (u−v)x + 1].

Let α1 be the root of F2New(x, u, v) corresponding to the factor [(u+v) x − 1] and
let the roots of F2(x, u, v) be ϕi (u, v) (i =1, 2, 3).

We have computed Hensel series φ
(k)
1 (u, v) starting from α1 up to k = 4, and com-

pared with algebraic functions ϕi (u, v) (i =1, 2, 3) which we computed exactly by
Mathematica. Table 1 shows values of regularized truncated Hensel series φ̄

(4)
1 (u, v)
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Table 1 Numerical evaluation

u φ̄
(4)
1 (u, 0.1) ϕ̄i (u, 0.1) (i = 1, 2, 3)

−0.20 −7.11517 0.696242 −2.75189 ±1.12207 i

−0.15 ∞ 0.635459 −3.33738 ±1.33045 i

−0.10 ∞ 0.585786 −3.41421 ∞
−0.05 2.46037 0.573904 2.46039 −3.76102

0.00 ∞ 0.626789 1.59543 ∞
0.05 0.590837 0.590885 0.552400 ±1.54123 i

0.10 0.565685 0.565685 ±1.41421 i

0.15 0.559016 0.559010 −0.324574 ±1.41098 i

0.20 0.552161 0.552125 −0.630106 ±1.40194 i

and ϕ̄1(u, v) (i = 1, 2, 3) in the real range −0.20 ≤ u ≤ 0.20, where we fixed
v to 0.1.

The “convergence domain” of φ̄
(4)
1 (u, v) will be shown in Sect. 5 (Fig. 1a, b). We

see that, in the “convergence domain”, the Hensel series agrees with one branch of
the algebraic function fairly well. Note that the values at u =−0.05 show “jumping”
of Hensel series among branches of algebraic function, which we will discuss in
Sect. 6. �

4 Order Estimations Near the Expansion Point

Formula (3.4) shows that the behavior of each Hensel series depends critically on
the roots α1, . . . ,αn . In this section, we order-estimate α1, . . . ,αn etc. when u is
near the expansion point (= the origin).

Below, we put F(x, u) = fn(u)xn + fn−1(u)xn−1 + · · · + f0(u), and we define

‖u‖ to be the Euclidean norm of u, ‖u‖ def= (|u1|2 +· · ·+|u�|2)1/2, after substituting
suitable numbers for u1, . . . , u�. Note that we have ‖u‖  1 in this section, and that
if actual values are substituted for u1, . . . , u� then we may have ‖αi (u)−α j (u)‖ = 0
in special cases. The following order estimations are for generic u. By o(‖u‖a) we
mean either O(‖u‖a+1) or less.

4.1 When ord( fn) = 0

The condition ord( fn) = 0 means that fn(0) �= 0. Since fn(u) has a nonzero constant
term, we obtain the same order estimations as in the monic case.
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Lemma 1 When ord( fn) = 0, we have the following order estimations for small
‖u‖, so long as u is not close to the zero-points of αi (u)−α j (u) (∀i �= j).

‖α1‖, ‖α1−α j‖ = O(‖u‖λ) ( j = 2, . . . , n), (4.1)

‖F ′
New(αi , u)‖ = O(‖u‖(n−1)λ) (i = 1, . . . , n), (4.2)

‖Fh(αi , u)‖ = o(‖u‖nλ) (i = 1, . . . , n). (4.3)

Proof For small ‖u‖, α1, . . . ,αn are determined mostly by the homogeneous parts
of FNew(x, u) (that is, we can discard the higher order terms of fn(u) when ‖u‖
is small). Hence, by Assumption N, we obtain (4.1) and (4.2) at once. Since each
coefficient of Fh(x, u) is of higher order w.r.t. u1, . . . , u� than the corresponding
coefficient of FNew(x, u) by at least 1, we obtain (4.3). �

4.2 When ord( fn) = ν > 0 and ‖ fn(u)‖ = O(‖u‖ν)

Under Assumption N, condition ord( fn) = ν > 0 means that ord( fi ) > 0 for
i ≥ 1 so long as fi �= 0; ord( f0) may be 0 or positive. Hence, fi (0) = 0 for
any i ≥ 1. If fi = 0 or ord( fi ) is large for many i then the theoretical treatment
becomes complicated. In this section, we make the order estimations by imposing
the following assumption.

Assumption F1 We assume the following for any i .

‖ fi (u)‖ = O(‖u‖ν+(n−i)λ) so long as ν + (n − i)λ is an integer. (4.4)

Lemma 2 For small ‖u‖ satisfying (4.4), we have the following order estimations,
so long as u is not close to the zero-points of fn(u) and αi (u)−α j (u) (∀i �= j).

‖α1‖, ‖α1−α j‖ = O(‖u‖λ) ( j = 2, . . . , n), (4.5)

‖F ′
New(αi , u)‖ = O(‖u‖ν+(n−1)λ) (i = 1, . . . , n), (4.6)

‖Fh(αi , u)‖ = o(‖u‖ν+nλ) (i = 1, . . . , n). (4.7)

Proof Order estimations in (4.5) and (4.6) are direct consequences of Assumption
N and Assumption F1. Since each coefficient of Fh(x, u) is of higher order w.r.t.
u1, . . . , un than the corresponding coefficient of FNew(x, u) by at least 1, we obtain
(4.7). �

Proposition 1 Let δφ(k)
1 (u) be the coefficient of ηk-term of Hensel series φ(∞)

1 (u, t).
Then, except near the zero-points of αi (u)−α j (u) (∀i �= j), we have

‖δφ(k)
1 (u)‖ = o(‖u‖λ+k−1) for small ‖u‖ satisfying (4.4). (4.8)
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Proof Consider (3.4) with Lemma 2. Since δF (1) = Fh(x, u), we see

‖δφ(1)
1 (u)‖ = O(‖Fh(α1, u)‖)

O(‖F ′
New(α1, u)‖) = o(‖u‖ν+nλ)

O(‖u‖ν+(n−1)λ)
= o(‖u‖λ).

Hence, (4.8) is valid for k = 1. Suppose the proposition is valid up to k−1, so

‖δF ( j)(αi , u)‖
‖F ′

New(αi , u)‖ = o(‖u‖λ+ j−1) for small ‖u‖, j = 1, . . . , k−1.

Then, we can order-estimate ‖δF (k)(α1, u)‖ in (3.6), k ≥ 2, as follows.

O
( n∑

j=2

‖F ′
New(α1, u)‖
‖α1 − α j‖ ×

[ k−1∑
k′=1

‖δF (k′)(α1, u)‖
‖F ′

New(α1, u)‖
‖δF (k−k′)(α j , u)‖
‖F ′

New(α j , u)‖
] )

= O(‖u‖ν+(n−1)λ)

O(‖u‖λ)
·

k−1∑
k′=1

o(‖u‖λ+k′−1) o(‖u‖λ+(k−k′)−1) = o(‖u‖ν+nλ+k−1).

Therefore, ‖δφ(k)
1 (u)‖ = ‖δF (k)(α1, u)‖/‖F ′

New(α1, u)‖ = o(‖u‖λ+k−1). �

The above order estimation in (4.8) is the same as that in monic case.

4.3 When ord( fn) = ν > 0 and ‖ fn(u)‖ = O(‖u‖μ), μ > ν

Let s0 �= 0 be a zero-point of fn(u). As we have mentioned in Sect. 2, if u approaches
s0 then at least one root among α1, . . . ,αn goes to infinity. If fn(u) is a nonconstant
multivariate polynomial, there are infinitely many zero-points of fn(u). It will be
tedious to consider all the cases of how u approaches s0. In this subsection, we
consider only a typical and simple case by setting the following assumption.

Assumption F2 We assume that fn−1(u) �= 0. We also assume that

‖ fn(u)‖ = O(‖u‖μ), μ > ν,

‖ fi (u)‖ = O(‖u‖ν+(n−i)λ) so long as ν + (n − i)λ is an integer.
(4.9)

Then, one root of FNew(x, u), let it be α1(u), is determined approximately by
fn(u)x − fn−1(u) = 0, and ‖α1‖ is much larger than ‖α2‖, . . . , ‖αn‖.

Lemma 3 For small ‖u‖ satisfying (4.9), the following order estimations hold so
long as u is not close to the zero-points of αi (u)−α j (u) (∀i �= j).
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‖α1‖, ‖α1−α j‖ = O(‖u‖λ−μ+ν) ( j = 2, . . . , n), (4.10)

‖F ′
New(α1, u)‖ = O(‖u‖μ+(n−1)(λ−μ+ν)), (4.11)

‖Fh(α1, u)‖ = o(‖u‖ν+λ+(n−1)(λ−μ+ν)), (4.12)

‖α j‖, ‖α j −α j ′ ‖ = O(‖u‖λ) ( j, j ′ = 2, . . . , n; j �= j ′), (4.13)

‖F ′
New(α j , u)‖ = O(‖u‖ν+(n−1)λ) ( j = 2, . . . , n), (4.14)

‖Fh(α j , u)‖ = o(‖u‖ν+nλ) ( j = 2, . . . , n). (4.15)

Proof We note that ‖u‖μ  ‖u‖ν for small ‖u‖. The magnitude of α1 is deter-
mined mostly by fn(u) and fn−1(u), hence we obtain (4.10). ‖F ′

New(α1, u)‖ and
‖Fh(α1, u)‖ are dominated by ‖ fn(u)αn−1

1 ‖ and ‖ fn−1(u)αn−1
1 ‖, respectively, so

we obtain (4.11) and (4.12).
For (4.13), see the previous subsection. ‖F ′

New(α j , u)‖ and ‖Fh(α j , u)‖ are dom-
inated by ‖ fn−1(u)αn−2

j ‖ and ‖ fn−1(u)αn−1
j ‖, respectively, so we obtain (4.14) and

(4.15). �

Proposition 2 For small ‖u‖ satisfying (4.9), the following order estimations hold,
so long as u is not close to the zero-points of αi (u)−α j (u) (∀i �= j).

‖δφ(1)
1 (u)‖ = o(‖u‖λ−μ+ν), ‖δφ(k)

1 (u)‖ = o(‖u‖λ+k−1) (k ≥ 2). (4.16)

Proof Consider (3.4) with Lemma 3. We first note that

‖Fh(α1, u)‖
‖F ′

New(α1, u)‖ = o(‖u‖λ−μ+ν).
‖Fh(α j , u)‖

‖F ′
New(α j , u)‖ = o(‖u‖λ) ( j ≥ 2). (4.17)

We next order-estimate δF (2)(α1, u)/F ′
New(α1, u) and δF (2)(α j , u)/F ′

New(α j , u),
j ≥ 2, as follows.

‖δF (2)(α1, u)‖
‖F ′

New(α1, u)‖ = O
( n∑

j=2

1

‖α1−α j‖ × ‖δF (1)(α1, u)‖
‖F ′

New(α1, u)‖
‖δF (1)(α j , u)‖
‖F ′

New(α j , u)‖
)

= o(‖u‖λ+1),

‖δF (2)(α j , u)‖
‖F ′

New(α j , u)‖ = O
( n∑

j ′=2

δ j, j ′

‖α j −α1‖ × ‖δF (1)(α1, u)‖
‖F ′

New(α1, u)‖
‖δF (1)(α j ′ , u)‖
‖F ′

New(α j ′, u)‖
)

= o(‖u‖λ+1).

Since δφ(k)
1 = −δF (k)(α1, u)/F ′

New(α1, u), the proposition is valid for k = 1, 2.
Suppose that the proposition and the following order estimations are valid for k′ =
2, . . . , k−1 (we have showed the validity for k′ = 2 above).
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‖δF (k′)(αi , u)‖
‖F ′

New(αi , u)‖ = o(‖u‖λ+k′−1) (i =1, 2, . . . , n). (4.18)

Then, we can order-estimate δF (k)(α1, u)‖/F ′
New(α1, u), k ≥ 3, as follows.

O
( n∑

j=2

1

‖α1 − α j‖ ×
[ k−1∑

k′=1

‖δF (k′)(α1, u)‖
‖F ′

New(α1, u)‖
‖δF (k−k′)(α j , u)‖
‖F ′

New(α j , u)‖
] )

= max{o(‖u‖λ−μ+ν) o(‖u‖λ+k−2), o(‖u‖λ+1) o(‖u‖λ+k−3) }
O(‖u‖λ−μ+ν)

= o(‖u‖ν+k−1).

Similarly, we can order-estimate ‖δF (k)(α j , u)‖/‖F ′
New(α j , u)‖, k ≥ 3. Therefore,

the right equality in (4.16) and (4.18) are valid for k′ = k. �

5 On Convergence Property Near the Expansion Point

The formula (3.4) with (3.6) is very useful for analyzing the properties of Hensel
series theoretically. In [1], we have done such an analysis in the case of monic defining
polynomials. In this section, we perform a similar analysis in the nonmonic case. We
will see that, except near the zero-points of the leading coefficient, the regularized
Hensel series in the nonmonic case show quite similar convergence behaviors as
those in the monic case.

Theorem 2 In a neighborhood of the expansion point, except near the zero-points of
fn(u), any divergence domain of regularized Hensel series φ̄

(∞)
1 (u, 1) starts from the

expansion point and spreads outside radially along the zero-points of α1(u)−α j (u),
2 ≤ j ≤ n.

Proof G(k)
1 (x, u, t) in (3.4) with (3.6) tells us that, in the neighborhood of the

expansion point, φ̄
(∞)
1 (u, 1) diverges on the zero-points of FNew(α1, u) = fn(u)∏n

j=2(α1(u) − α j (u)), may diverge on zero-points of fn(u), and diverges on no
other point. �

Theorem 3 In the neighborhood of the expansion point, two branches ϕ̄1(u) and
ϕ̄ j (u) ( j ≥ 2) of the regularized algebraic function cross along the zero-points of
α1(u)−α j (u) if α1(u) and α j (u) cross, or they are tangent to each other if α1(u)

and α j (u) are so.

Proof Theorem 2 tells that, in the neighborhood of the expansion point, the diver-
gence domains spread from the expansion point radially along the zero-points of
α1(u)−α j (u), and Proposition 1 says that the Hensel series are well approximated
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by the initial terms. Furthermore, the branches of algebraic function are also approx-
imated well by the roots of the Newton polynomial. Therefore, near the zero-points
of α1(u)−α j (u), ϕ̄1(u) either crosses with ϕ̄ j (u) or is tangent to ϕ̄ j (u). �

Theorem 4 Let Sr be the surface of the hypersphere, ‖u‖2 = r2, where r is a small
real positive number. Suppose Sr contains zero-points of fn(u) on which α1(u)

diverges, and let δSr be small neighborhood of the zero-points, on Sr . Let Šr be
Sr − δSr . Then, we have

[divergence area of φ̄1(u) on Šr ]
[convergence area of φ̄1(u) on Šr ]

→ 0 as r → 0. (5.1)

Proof The regularized root ᾱ1(u) does not diverge on Šr , and the higher order

regularized terms δφ
(k)

1 (u) (k ≥ 1) diverge only at the zero-points of FNew(α1, u).
Lemma 2 tells us that ‖δφ(k)

1 (u)‖/‖α1(u)‖ = o(‖u‖k−1) for small ‖u‖ except near
the zero-points of FNew(α1, u). Hence, the ratio in (5.1) becomes smaller and smaller
as r → 0. �

Corollary 1 The regularized Hensel series ϕ̄
(∞)
1 (u, 1) converges in most area of

the small neighborhood of the expansion point.

Example 3 (Convergence domain; for F2(x, u, v) in Example 2) We compare the
regularized truncated Hensel series φ̄

(4)
1 (u, v) with ϕ̄i (u, v) (i = 1, 2, 3) in the real

region −a ≤ u, v ≤ a. Since we do not know the correspondence between the
Hensel series and the branches, we compute the quantity

d = min{ |φ̄(4)
1 (u, v) − ϕ̄i (u, v)|, i =1, 2, 3 }

at many points in the region and draw a domain in which we have d ≤ δ (δ = 0.01
or δ = 0.001). Figure 1a, b show the results; gray areas are “convergence domains”
determined as mentioned above.

We see from Fig. 1a that the “convergence domain” is pretty wide and long-range.
On the other hand, looking around the origin, we notice that Theorem 4 seems to
be unsatisfied. So, we investigate the “convergence domain” around the origin by
magnifying the neighborhood of the origin by 10 times. Figure 1b shows the result,
which is consistent with Theorem 4.

The φ̄
(4)
1 (u, v) drawn in Fig. 1a, b corresponds to the initial factor (u +v)x −

1. Hence, φ̄(4)
1 (u, v) diverges on the line u +v = 0. We see that the divergence

domain near the line is very narrow, showing that the Hensel series truncated at
k = 4 approximates the corresponding algebraic function well even in a small
neighborhood of the zero-points of the leading coefficient. On the other hand, we
have F ′

2New(α1, u, v) = u(2u + 3v)/(u + v), hence φ̄
(4)
1 (u, v) diverges along lines

u = 0 and 2u+3v = 0. �
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6 On Many-Valuedness of Hensel Series

In [4], we observed that a Hensel series may jump from one branch of algebraic
function to another when it passes a divergence domain, and we verified this property
theoretically in [1] for monic defining polynomials. In this paper, we verify this
property for nonmonic defining polynomials.

Formulas in Theorem 1 tells us that if α1(u) is a rational function in u1, . . . , u�

then so is δF (k)(α1, u)/F ′
New(α1, u) for any k > 0. Hence, we classify the Hensel

series as follows.

Definition 3 If α1(u) ∈ C(u) then the Hensel series φ
(∞)
1 (u, 1) is called rational,

otherwise the series is called algebraic.

Let FNew(x, u) is factored into irreducible factors in C[x, u] as FNew(x, u) =
FNew,1(x, u) · · · FNew,r (x, u), and α1 be a root of FNew,1(x, u). If deg(FNew,1) =
m > 1 then there are m conjugate roots, let them be α1,1(= α1), . . . , α1,m . Let the
algebraic Hensel series φ(∞)

1,i correspond to α1,i (1 ≤ i ≤ m).

Lemma 4 (Sasaki–Kako 1993) The truncated algebraic Hensel seriesφ
(k)
1,1, . . . ,φ

(k)
1,m

(k ≥ 1) are mutually conjugate, hence φ
(k)
1 (u, 1) is m-valued. �

Continuous singular points usually form a line when � = 2, a surface when � = 3,
or an (�−1)-dimensional hypersurface when � ≥ 4, and we call them singularity
lines for simplicity.

Let P0 and P1 be points in C
�, which are in a convergence domain of Hensel series

φ
(∞)
1 (u, 1), in the neighborhood of the expansion point. Let C0 be a path which starts

P0, rounds a singularity line one time, and comes back to P0. Let C1 be a path which
starts P0 and arrives at P1, without rounding any singularity line.
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Theorem 5 Tracing the truncated algebraic Hensel series φ
(k)
1 (u, 1) (k ≥ 2) along

the path C0, the series transfers to one of the conjugate Hensel series when it arrives
at P0.

Proof Obvious from Lemma 4. �

Theorem 6 Tracing the truncated Hensel series φ̄
(k)
1 (u, 1) (k ≥ 2) along the path

C1, we encounter the same Hensel series at P1, no matter whether the series is
rational or algebraic, and no matter whether the path passes a divergence domain
or not.

Proof Since the divergence domain spreads from the expansion point radially and
the most area of the small neighborhood of the expansion point is the convergence
domain, we can move the path C1 in C

� so that it does not pass any divergence
domain. Then, the value of φ̄

(k)
1 (u, 1) changes continuously from P0 to P1, proving

the theorem. �

Corollary 2 Let φ̄
(∞)
1 (u, 1) correspond to a branch ϕ̄1(u) of the algebraic function

at P0. Tracing φ̄(k)
1 (u, 1) along C1 by passing a divergence domain for φ̄(∞)

1 (u, 1),
it may jump to another branch of the original algebraic function.

Proof Theorem 3 says that two branches of the algebraic function cross or tangent
to each other in each divergence domain near the origin. Therefore, if we trace the
Hensel series along C1, the series either may stay on the same branch of the algebraic
function or may jump to another branch, if these branches cross there. �

If m < n then a discrepancy of the many-valuedness seems to arise between
Hensel series and the original algebraic function, because the former is m-valued
while the latter is n-valued. This superficial discrepancy seems to be resolved by the
property mentioned in Corollary 2.

We show the jumping by two simple examples; one is for rational Hensel series
and other is for algebraic Hensel series. Note that each branch is continuous except
at zero-points of the leading coefficient. Hence, we can recognize the jumping if a
Hensel series runs along a branch of the algebraic function in some region and runs
along another branch in a different region.

Example 4 (Jumping of rational Hensel series) Let F3(x, u, v) be

F3(x, u, v) = [(u+v)x − 1] (ux − 1) (vx + 1) + (u4+v4) x2 + u3v3.

We have FNew(x, u, v) = [(u+v)x − 1] (ux − 1) (vx + 1), which gives three roots
α1 = 1/(u + v), α2 = 1/u, α3 = 1/v, hence we obtain three rational Hensel
series. We trace truncated Hensel series φ(10)

3 (u, v) corresponding to the root α3 and
three branches ϕi (u, v) (i = 1, 2, 3) of the algebraic function, along the circle C3:
(u, v) = 0.1 × (cos θ, sin θ) (0 ≤ θ ≤ 2π). (If we make the circle C3 bigger,
the graphs become more complicated.) The Hensel series are real on C3, while the
branches become complex in several narrow regions of C3.
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Fig. 2 a ϕi (u, v) (i = 1, 2, 3). b φ
(10)
3 (u, v)

The φ
(10)
3 (u, v) will diverge at θ = 0, π, 2π, where the corresponding leading

coefficient v becomes 0. Since, we have F ′
3New(−1/v, u, v) = (u+v)(u+2v)/v2,

the divergence domain will spread along the lines u + v = 0 and u + 2v = 0; C3
will cross the divergence domains at about θ = 3π /4, 5π /6, 7π /4, 11π /6.

In Fig. 2a at the next page, we show real parts of ϕi (u, v) (i = 1, 2, 3)

(gray curves) traced along C3; the value of ϕi becomes complex around θ =
0, 3π /4, π, 7π /4, 2π. (We have used Mathematica to draw the figures in this
paper. Mathematica draws only the principal values of algebraic functions, and four
fake vertical lines in Fig. 2a are due to Mathematica.)

In Fig. 2b, we show φ
(10)
3 (u, v) = −1/v + H.T. (black curve) traced along C3;

for comparison, we show ϕi (u, v) (i = 1, 2, 3) by gray curves. The graph diverges
as we have mentioned above. We see that the Hensel series jumps from one branch
to another of the algebraic function, when it passes θ = 5π /6, 11π /6, showing a
natural behavior if the behaviors around jumping points are neglected. Note that, no
jumping occurs at θ = 0, π, 2π where the leading coefficient vanishes. Note, further
that φ

(10)
3 (u, v) is real on C3 and it is in the divergence domain where ϕi becomes

complex. Hence, no inconsistency appears between algebraic function and Hensel
series. �

Example 5 (Jumping of algebraic Hensel series) Let F4(x, u, v) be

F4(x, u, v) = [(u+v) x − 1] [(u2+v2) x2 − 1] + (u5+v5) x2 + u4v4.

The Newton polynomial is FNew(x, u, v) = [(u + v) x − 1] [(u2 + v2) x2 − 1],
which gives three roots α1 = 1/(u+v) and α± = ±1/

√
u2+v2. Hence, we obtain

one rational Hensel series φ
(k)
1 (u, v) and mutually conjugate algebraic Hensel series

φ
(k)
± (u, v), corresponding to α1 and α±, respectively. The φ

(k)
1 and φ

(k)
± (u, v) diverge

on u + v = 0 and u2 + v2 = 0, respectively, where the leading coefficient of
F4(x, u, v) vanishes. We have
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Fig. 3 a ϕi (u, v) (i = 1, 2, 3). b φ
(10)
1 (u, v). c φ

(10)
+ (u, v). d φ

(10)
− (u, v)

F ′
4New(α1, u, v) = −2uv

u + v
, F ′

4New(α±, u, v) = 2
u+v ∓ √

u2+v2
√

u2+v2
.

Thus, when observed on the real plane, φ(k)
1 (u, v) diverges on lines u = 0 and v = 0,

while φ
(k)
+ (u, v) diverges on half lines u = 0 (v ≥ 0) and v = 0 (u ≥ 0), and

φ
(k)
− (u, v) diverges on half lines u = 0 (v ≤ 0) and v = 0 (u ≤ 0).

We trace ϕi (u, v) (i = 1, 2, 3) and φ
(10)
1 (u, v), φ

(10)
± (u, v) along the circle C4:

(u, v) = 0.3 × (cos θ, sin θ) (0 ≤ θ ≤ 2π).
In Fig. 3a at the next page, we show real parts of ϕi (u, v) (i = 1, 2, 3) traced

along C4 (gray curves); among the three gray curves in this figure, the curve which
diverges at θ = 3π /4, 7π /4 corresponds to α1, and two branches become complex
around θ =π /2, 2π. Three vertical lines are fake due to Mathematica.

In Fig. 3b, we show φ
(10)
1 (u, v) (black curves) traced along C4. For comparison, we

show ϕi (u, v) (i =1, 2, 3) by gray curves. Note that, both φ(k)
1 (u, v) and φ(k)

± (u, v)

are real on C4. We see that the Hensel series jumps from one branch to another
when it passes θ = π, 3π /2, showing a natural behavior if the behaviors around
jumping points are neglected. Furthermore, jumping occurs at θ =π /2, 2π, although
it is rather difficult which curve corresponding to the same branch. In Fig. 3c, d, we
show φ

(10)
± (u, v) (black curves) traced along C4. We see that jumping occurs only at
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θ = 0,π /2, 2π on φ
(10)
+ (u, v) and at θ =π, 3π /2 on φ

(10)
− (u, v), as F ′

4New(α±, u, v)

predicts. �
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A Sequence of Nearest Polynomials
with Given Factors

Hiroshi Sekigawa

Abstract Let K be eitherR orC, and p and f0 be polynomials in K [x1, . . . , xs] such
that p �= 0, ‖ f0‖ = 1, where ‖ f0‖ is the Euclidean norm of f0, and the coefficient
of f0 with the maximal absolute value is a positive real number. For j = 1, 2,
…, let p2 j−1 = f j−1g j be the nearest polynomial to p such that f j−1|p2 j−1 and
deg(p2 j−1) ≤ deg(p), where deg is the total degree, and p2 j = c j f jg j be the
nearest polynomial to p such that c j ∈ K , g j |p2 j , deg(p2 j ) ≤ deg(p), ‖ f j‖ = 1,
and the coefficient of f j with the maximal absolute value is a positive real number.
We investigate the behavior of the sequences { p j }, { f j }, { g j }, and { c j }.

1 Introduction

Since the mid 1990s, there have been many studies on the nearest polynomials to
given polynomials with given properties. Finding the nearest polynomial with a given
zero is a typical problem [3]. This problem can be generalized to finding the nearest
polynomial with a given factor.

Let K be eitherR orC.Wemeasure the distance between f and g in K [x1, . . . , xs]
by using ‖ f − g‖, the Euclidean norm of f − g. Let p and f0 be polynomials in
K [x1, . . . , xs] such that p �= 0, ‖ f0‖ = 1, and one of the coefficients of f0 with
the maximal absolute value is a positive real number. For j = 1, 2, …, let p2 j−1 =
f j−1g j be the nearest polynomial to p such that f j−1|p2 j−1 and deg(p2 j−1) ≤
deg(p), where deg is the total degree, and p2 j = c j f jg j be the nearest polynomial
to p such that c j ∈ K , g j |p2 j , deg(p2 j ) ≤ deg(p), ‖ f j‖ = 1, and one of the
coefficients of f j with the maximal absolute value is a positive real number. Do the
sequences { p j }, { f j }, { g j }, and { c j } converge? If they converge to p̃, f̃ , g̃, and
c̃, respectively, does p̃ = f̃ g̃ or p̃ = c̃ f̃ g̃ hold? The aim of this article is to answer
these questions.
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If f j and g j+1 (or g j ) are not constant, f jg j+1 (or c j f jg j ) is an approximate
factorization of p. Hence, by perturbing f0, we might obtain a good approximate
factorization of p.

2 Partial Answers to the Questions

Let P and F be polynomials in K [x1, . . . , xs] with deg(P) = n and deg(F) = d
(1 ≤ d < n), V be { H ∈ K [x1, . . . , xs] | deg(H) ≤ n }, and W be { H ∈ V |
F is a factor of H }. V is a finite dimensional K -vector space and W is a K -subspace
of V . Let Q be the orthogonal projection of P ∈ V onto W . Then, Q is the unique
nearest polynomial to P such that F |Q and deg(Q) ≤ deg(P).

Since V ⊃ { H ∈ K [x1, . . . , xs] | deg(H) ≤ n −d } � X �→ F X ∈ W is a linear
map, we can represent the product of F as a matrix M(F). Let v(H) be the vector
of coefficients of H ∈ V . Then, P1 = FG is the nearest polynomial to P if and only
if Y = v(G) minimizes ‖v(P) − M(F)Y‖. Y = v(G) is the unique solution of the
normal equation

M(F)∗M(F)Y = M(F)∗v(P), (1)

where M(F)∗ is the conjugate transpose of M(F) (Theorem 2.1.2 in [1]). Therefore,
we can easily obtain G. Note that M(F)∗M(F) is nonsingular.

We define the sequences { p j }, { f j }, { g j }, and { c j }, as described in Sect. 1.
Note that if p and f0 are real polynomials so are all p j ’s, f j ’s, and g j ’s.

Proposition 1 When p1 �= 0, ‖p j‖ is monotone nondecreasing and converges, and
‖p j+1 − p j‖, ‖c j+1 f j+1 − f j‖, ‖g j+1 − c jg j‖ → 0 and |c j | → 1 as j → ∞.

Remark 1 g1 and p1 might be 0. For example, g1 = p1 = 0 when s = 1, p =
x21 + x1 + 1, and f0 = (x1 − 1)/

√
2. If g1 �= 0, then p j ’s, f j ’s, and g j ’s are nonzero

for every j because ‖p1‖ > 0 and ‖p j‖ is monotone nondecreasing.
If ‖pN+1 − p‖ = ‖pN − p‖ holds for some N , then p j = pN for every j ≥ N .

This follows from the fact that f j (resp. g j ) is a factor of p2 j and p2 j+1 (resp. p2 j−1
and p2 j ) and that p2 j+1 (resp. p2 j ) is the unique nearest polynomial to p having f j

(resp. g j ) as a factor.

To prove Proposition 1, we need the following lemma.

Lemma 1 For F, G ∈ K [x1, . . . , xs], there exist positive constants m and M
depending on only deg(FG) such that m ≤ ‖FG‖

‖F‖·‖G‖ ≤ M hold.

Proof First, we consider the case of s = 1. Let FG = an xn
1 + · · · + a1x1 + a0

(an �= 0). We can take 2−n as m (Corollary 6.33 in [4]). Since the inequality
|a j | ≤ ‖F‖ · ‖G‖ holds for every 0 ≤ j ≤ n, we can take

√
n + 1 as M .

Next we consider the case of s ≥ 2. Since the Kronecker substitution σ : K
[x1, . . . , xs] → K [x] that maps x j to xn j−1

(n = deg(FG)) for 1 ≤ j ≤ s is a
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ring homomorphism and ‖H‖ = ‖σ(H)‖ holds for any H ∈ K [x1, . . . , xs], we can
reduce this case to that of s = 1. �
Proof of Proposition 1. Let r j = p − p j . ‖r j‖ converges because it is monotone
nonincreasing. Thus, ‖p j‖ is monotone nondecreasing and converges because
‖p j‖2 = ‖p‖2 − ‖r j‖2. Note that 〈p j , r j 〉 = 0, where 〈·, ·〉 is the inner product
of { h ∈ K [x1, . . . , xs] | deg(h) ≤ n }. Since ‖p j+1 − p j‖2 = ‖r j‖2 − ‖r j+1‖2
holds, ‖p j+1− p j‖ → 0. Note that p j+1− p j = r j −r j+1 and 〈r j+1, r j+1−r j 〉 = 0.

There exist positive constants m and M not depending on j such that

‖p2 j+2 − p2 j+1‖ = ‖g j+1(c j+1 f j+1 − f j )‖ ≥ m‖g j+1‖ · ‖c j+1 f j+1 − f j‖,
‖p1‖ ≤ ‖p2 j+1‖ = ‖ f jg j+1‖ ≤ M‖ f j‖ · ‖g j+1‖ = M‖g j+1‖

from Lemma 1. Therefore, ‖c j+1 f j+1 − f j‖ ≤ M‖p2 j+2−p2 j+1‖
m‖p1‖ holds and

‖c j+1 f j+1 − f j‖ converges to 0. Similar arguments for p2 j+1 − p2 j = f j (g j+1 −
c jg j ) implies that ‖g j+1 −c jg j‖ converges to 0. The triangle inequality implies that
‖c j+1 f j+1− f j‖ ≥ | ‖c j+1 f j+1‖−‖ f j‖ | = ||c j+1|−1|. Thus, lim j→∞ |c j | = 1.�

The following is the main theorem.

Theorem 1 We assume that p1 �= 0. The sequence { p j } converges or there are
infinitely many limit points. Let { p jk } be a convergent subsequence of { p j }.
1. { f jk } and {c jk g jk } are convergent sequences and p̃ = f̃ g̃, where p̃ =

limk→∞ p jk , f̃ = limk→∞ f jk , and g̃ = limk→∞
(
c jk g jk

)
.

2. p̃ satisfies the conditions (i) p̃ is the unique nearest polynomial to p such that
f̃ | p̃ and deg( p̃) ≤ deg(p), and (ii) p̃ is the unique nearest polynomial to p such
that g̃| p̃ and deg( p̃) ≤ deg(p).

3. For the univariate case, if p̃ �= p, then deg(gcd( f̃ , g̃)) ≥ 1 holds.

Proof { p j } converges or there are infinitelymany limit points fromLemma 2 below.
Let p̃k = p jk , f̃k = f� jk/2�, and g̃k = g�( jk+1)/2�. Then, p̃k = c̃k f̃k g̃k holds,where

c̃k = 1 or c�( jk+1)/2�. Let { f̃ jk } be a convergent subsequence of { f̃ j }. We write p̃ jk ,
f̃ jk , g̃ jk , and c̃ jk as p̂k , f̂k , ĝk , and ĉk , respectively. Let f̂ be lim j→∞ f̂ j . Noting
that p̂ j = ĉ j f̂ j ĝ j , f̂ is a factor of p̃, ĉ j ĝ j converges, and p̃ = f̂ · lim j→∞

(
ĉ j ĝ j

)
ĉ j f̂ j − f̂ = (ĉ j f̂ j − f̂ j−1) + ( f̂ j−1 − f̂ ) p̃ − p̂ j 0. ‖ f̂ ‖ = 1 and one of the
coefficients of f̂ with maximal absolute value is a positive real number. Since the
number of factors h’s of p̃ such that ‖h‖ = 1 and a coefficient of h with maximal
absolute value is a positive real number is finite, Lemma 2 implies that { f̃ j } is a
convergent sequence. Thus, {c̃ j g̃ j } is also a convergent sequence.

The normal equation (1) implies that the nearest polynomial p̂ to p such that f
is a factor of p̂ and deg( p̂) ≤ deg(p) is continuous with respect to f . If q ( �= p̃)
is the nearest polynomial to p such that f̃ is a factor of q and deg(q) ≤ deg(p),
‖p − q‖ < ‖p − p̃‖ holds. Then, ‖p − p̃ j‖ < ‖p − p̃‖ holds for sufficiently large
j since f̃ j → f̃ . This contradicts the fact that ‖p − p̃ j‖ is monotone nonincreasing
and converges to ‖p − p̃‖. Similar arguments hold for g̃.
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For the univariate case, when p̃ �= p let deg( f̃ ) = d, deg(g̃) = e, and

V ′ = { h ∈ K [x1] | deg(h) ≤ d + e },
W1 = { f̃ h | h ∈ K [x1], deg(h) ≤ e }, W2 = { g̃h | h ∈ K [x1], deg(h) ≤ d }.

W1 and W2 are K -subspaces of the K -vector space V ′. The dimensions of V ′,
W1, and W2 are d + e + 1, e + 1, and d + 1, respectively. For every v1 ∈ W1 and
v2 ∈ W2, 〈p − p̃, v1〉 = 〈p − p̃, v2〉 = 0 hold. Therefore, 〈p − p̃, w〉 = 0 for every
w ∈ W = W1+W2. Thus, dim(W ) ≤ d + e and dim(W1∩W2) ≥ 2 since p− p̃ �= 0.
Take a nonzero polynomial h ∈ (W1 ∩ W2) \ { a f̃ g̃ | a ∈ K }. If deg(h) = d + e
we can take c ∈ K such that deg(h − c f̃ g̃) < d + e because deg( f̃ g̃) = d + e.
Since 0 �= h − c f̃ g̃ ∈ (W1 ∩ W2) \ { a f̃ g̃ | a ∈ K }, by replacing h with h − c f̃ g̃, if
necessary, we can assume that h ∈ W1 ∩ W2, h �= 0, and deg(h) < d + e. Therefore,
deg(gcd( f̃ , g̃)) ≥ 1 holds. �
Lemma 2 Let { a j } ⊂ K n and a ∈ K n. When ‖a j − a‖ is monotone nonincreasing
and lim j→∞ ‖a j+1 − a j‖ = 0, { a j } converges or there are infinitely many limit
points.

Proof Let B = { c ∈ K n | ‖c − a‖ ≤ ‖a1 − a‖ }. Note that there exists at least one
limit point of { a j } because { a j } ⊂ B and B is compact.

It is sufficient to prove that if the number of limit points of { a j } is finite, the
number is one and { a j } converges. Let ã1, …, ãt (t < ∞) be all the limit points
and B j (δ) = { c ∈ K n | ‖c − ã j‖ < δ } (δ > 0). For any ε > 0, we can take δ

such that 0 < δ < ε and B j (2δ) ∩ Bk(2δ) = ∅ ( j �= k). If there are infinitely many
a j ’s in A(δ) = B1(δ)

c ∩ · · · ∩ Bt (δ)
c, where Bk(δ)

c = K n \ Bk(δ), there exists a
limit point in A(δ) because A(δ) ∩ B is compact and { a j } ⊂ B. This contradicts
the assumption that ã1, …, ãt are all the limit points. Thus, { a j } ∩ A(δ) is a finite
set. Hence, there exists N ∈ N such that ak �∈ { a j } ∩ A(δ) and ‖ak+1 − ak‖ < δ

for every k ≥ N . Let μ be the number such that aN ∈ Bμ(δ). Then, ak ∈ Bμ(δ)

for every k ≥ N ; that is, ‖ak − ãμ‖ < δ < ε. Therefore, there exists only one limit
point ãμ and limk→∞ ak = ãμ. �

3 Conclusion

Weinvestigated someproperties of the sequences { p j }, { f j }, { g j }, and { c j }.Oneof
the directions of the future research is to study algorithms for finding an approximate
factorization of a given polynomial based on the properties of the sequences. The
algorithms must be compared with existing methods such as proposed in [2] and in
the references there. Another direction is to prove that { p j } always converges or to
find an example { p j } that does not converge.
Acknowledgments This work was supported by the Japan Society for the Promotion of Science
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Digitization Workflow in the Czech Digital
Mathematics Library

Petr Sojka

Abstract Experience in setting up aworkflow from scanned images ofmathematical
writings into a fully fledged mathematical library is described on the example of the
project Czech Digital Mathematics Library DML-CZ. An overview of the whole
process is given, with detailed description of production steps involving scanned
image processing and optical character recognition. Experience gained, lessons
learned, and tools prepared during development of DML-CZ are described. DML-
CZ now serves more than 30,000 articles (more than 300,000 digitised pages) to
the public.

Keywords Digital mathematical library ·Mathematical knowledge representation ·
Digitisation workflow · Optical character recognition · OCR · Retro-digitisation ·
DML-CZ

"Viva la Workflows! (Carole Goble [1])"

1 Motivation

Digital Library business has moved from data/files centered processing toward
process-oriented workflows. Workflows enact the machinery of building and running
a digital library. Instead of running simple tools and mirroring file repositories more
subtle solutions have to be devised: data curatorship changes to workflow curatorship
and services.

There are communities and systems that start to dominate in some thematic areas:
PubMed Central (PMC) is one such system in the medical domain, speeding up
research and author’s citation indexes in the area. Unfortunately, only domains where
global initial funding was available took advantages of the platforms established and
tools and workflows developed. In the PMC case, journal publishers are now eager
to join the club, and authors enjoy global topical ontology-based search. Researchers
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Fig. 1 DML-CZ top-level workflow scheme

send their papers only to journals available in PMC as this leverages their citation
indexes. However, the realization of the dream of a World Digital Mathematics
Library [2] is yet to come.

We report on the experience gained, lessons learned, and tools prepared during the
development of a digitization workflow for The Czech Digital Mathematics Library
DML-CZ project. The aim of the project approved for the five years’ period 2005–
2009 was to digitize the relevant mathematical literature published in the Czech
lands. It comprises periodicals, selected monographs, and conference proceedings
from the nineteenth century up until currently produced mathematical publications.
It has been launched and is readily available on dml.cz, serving almost 30,000 articles
on 300,000 pages to the public.

The general workflow of the project, shown in Fig. 1, reflects different types of
acquired input data:

full digitisation from print work starts from a paper copy;
full digitisation from bitmap image work starts from an electronic bitmap of pages;
retro-born-digital work starts from an electronic version of the document (usually

in PostScript or PDF);
born-digital workflow of the journal production is enriched with an automated

export of data for the digital library.

Within the project, several general purpose tools have been developed:
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1. scripting of transformation pipes of scanned images,
2. DML-CZ OCR workflow allowing recognition of scanned mathematical docu-

ments,
3. web-based Metadata Editor [3],
4. tools for classification of mathematical documents and measuring their similar-

ity [4],
5. workflow for born-digital publication production with direct export of metadata

for DML [5] and
6. plenty of other smaller tools like: extensions to Lucene engine allowing index-

ing of mathematics, batch PDF stamper for digital signing of produced PDF, an
optimizer re-compressing image objects in PDF with the new JBIG compression
filter supported by Adobe since PDF specification version 1.6 (Adobe Reader 5)
or batch article PDF generation with title page by XeLaTeX.

In the following sections we describe part (steps 2, 3, 7 and 8 in Fig. 1) of our
digitization workflow with the hope that they can be used by similar projects or even
in other domains.

"We are all apprentices in a craft
where no-one ever becomes a master. (Ernest Hemingway)"

2 Scanning and Image Transformations

Processing of scanned images is aimed at final delivery of 600 DPI bi-tonal images
suitable for quality OCR and a fine print. This is the quality recommended by the
Committee on Electronic Information and Communication (CEIC) and used for
example by JSTOR and NUMDAM. Images from the Göttingen Digitisation Centre
(GDZ) and images scanned in the Digitisation Centre of the Library of Academy
of Sciences, Czech Republic prior to the project DML-CZ have bi-tonal 400 DPI
quality. The difference is visible, and leads to a higher OCR error rate. We strongly
support the recommendation to scan with a resolution of at least 600 DPI.

We perform our new scans at 600 DPI with 4-bit depth, ‘having a depth/space’ for
geometrical and other transformations done on images before binarization. Scanning
is carried out inDigitizationCentre of the Library ofAcademy of Sciences in Jenštejn
near Prague on the Zeutschel OS 7000 A2 book scanners.

The primary scans in TIFF format are archived for a possible future reprocessing if
needed. We use Book Restorer™ image restoration software by i2S for interactive
and batch image processing in an uncompressed TIFF format. Operations performed
on images are:

1. geometrical correction as narrowing the baselines and widths of the same char-
acters on the same line;

2. cropping the page to cut out the speckles at page borders;
3. blur filter, 3× 3 pixels, to eliminate one or two pixel size variations;
4. binarization with manually adjusted parameters for every batch (usually journal

volume);
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5. despeckle filter, with both white and black spotting, 3× 3 pixels;
6. publish/export: processedTIFF s are stored being compressed by the Lempel-Ziv-

Welsh method for compressing grayscale and the G4 one for binarized images to
speed up further processing (OCR) and to save space.

Both the order of these steps and the parameter adjustments for images of different
quality are very important. For the data from GDZ, slightly different operations are
needed as the input files are already bi-tonal and some filters are applicable only on
grayscale images.

Step 1 employs the algorithms that allow perspective correction of a scanned image.
As most of the material to digitize cannot be cut, we scan 2-up page spreads,
making the text size nonuniform even when trying to flatten the spread by
pane of glass. Book Restorer can also flatten the lighting across the scanned
spead. For more details of this step see [6, p. 2].

Step 2 crops the unnecessary border parts of the page shot.
Step 3 aims at better binarization and despeckling by unsharping the shapes in the

image.
Step 4 is necessary as most OCR engines work on bi-tonal images. It may be left

to the high-quality OCR engine—clever thresholding starts to be a standard
part of OCR programs [7], or perform it ourselves adaptively based on OCR
feedback [8].

Step 5 is inserted to remove small impurities in the image.
Step 6 is the final step: image is stored as LZW-compressed grayscale or G4-

compressed bi-tonal TIFF.

For the lower resolution data from GDZ, slightly different operations are needed
as the input files are already bi-tonal (e.g. we did upscaling before unsharping) and
because some filters are applicable only on grayscale images.

It is wise to differentiate processing of pages with grayscale images (e.g. photos)
so that they are not degraded by image filters suitable for text. To avoid possible dif-
ficulties in the later steps it is important from the very beginning to carefully check
image quality before proceeding with the remaining steps. At least automated proce-
dures that check the technical metadata (e.g. tiffinfo) and image quality (pixel
width and height) has to be the part of quality assurance. Metrics of compressibility
by the JBIG2 encoder were used to trigger quality checks.

There is a tradeoff between price of image cleanup and quality results within con-
straints of digitization budget. When acquiring a craftmanship in good image editing
software, results very close to (or even better than) the original could be achieved [9].
These handmade touches are usually beyond the budget of most digitization projects,
where the highest degree of automation is needed to reduce the cost of digitisation. In
DML-CZ, we have prepared [10] set of batches of typical transformation procedures
to be used by Book Restorer™ operators to achieve the best price/effort ratio.

Fine-tuning of operations on the pixel level pays back in the following step: the
OCR.
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"The road to wisdom?
Well, it’s plain and simple to express:

Err and err and err again,
but less and less and less. (Piet Hein)"

3 Optical Character Recognition: DML-CZ OCR

To have papers indexed we need to get full text from page bitmaps by the process
of optical character recognition. Also, we need to recognize logical page numbers
located in every TIFF, to link the page images to article metadata.

Tests with various OCR programs showed that no single one gives acceptable
results for mathematical content, with character error rates often above 10 (count-
ing wrong character positions and font types as errors too). For text recognition,
FineReader by textABBYY® gave the best results, whereas for the structural recog-
nition of mathematics InftyReader [11] had impressive results.

The FineReader software development kit (SDK for Windows version 8.1) was
used to develop a part of the system for the location and recognition of page numbers,
and abatch systemDML-CZOCR[12, 13]which takes sequences ofTIFF images and
produces two-layered one page PDFs (with invisible full-texts behind the images).
The processing starts with the recognition of languages used in every paragraph, and
then blocks are recognized again with a special setting (language dictionaries used)
for every given block of text. With such fine-tuning of parameters, we are able to
achieve a one percent character error rate [13].

Among solutions and software evaluated on plain texts, FineReader gave the
best results, but it has no support for the recognition of mathematical expressions.
Texts without recognized maths may be sufficient for basic indexing and search.
However, it is not surprising that omitting maths matters when the full texts are used
for such tasks as automated text classification and categorization or for computing
paper similarity [14]. Therefore we strive to enhance the state-of-the-art possibilities
for mathematical OCR.

Neither ABBYY® nor Google responded positively on the near future of math
OCR development plans—mathematics is only a small market niche for them. On the
other hand, developers of the InftyReader system [11] were willing to gradually
improve their support for European languages, MathML and LATEX export filters
and to enrich their recognized database of mathematical symbols.

We found that setting the parameters of the OCR engine (language, word-list
consultation) influences the precision significantly. We trained FineReader on the
type cases used at the printer where journals were typeset.

At the end of extensive experiments, we developed a method of OCR process-
ing consisting of several phases, both in FineReader and Infty. Processing using
FineReader consist of the following:
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1. A page or block of text is recognized for the first time using a universal setup
(non-language specific). A histogram of character bigrams and trigrams from
words with lengths greater than three is created.

2. The computed histogram of the text block is compared [15] to the histograms
created from the journal data during the training phase for all languages used
(English, French, Russian, German, and Czech). Perl module Lingua::Ident
is used. Block with bibliography is detected by different algorithms and is treated
differently.

3. Page or block of text is processed for the second time with parameters optimized
for recognized ‘language’ in previous step and saved as a two-layer PDF (with
text layer used for searching, indexing and similarity computation).

Recognition of mathematical formulae in FineReader is not satisfactory, how-
ever. The only suitable tool for this domain that we have found and experimented
with is Infty. Infty’s new PDF import capability is very significant to us: it will
allow to import our current FineReader’s two-layer PDFs, use the text part only,
throw away badly recognized maths and to detect and recognize maths expressions.
A new Infty version that combines FineReader’s technology (OCR voting [16])
is in preparation. In the meantime,

1. PDF is passed to InftyReader and results are stored in the InftyReader
Markup Language (IML) and in LaTeX (Human readable LaTeX).

2. IML is postprocessed by a home-grown program in Java to fix recognition errors
of some of the accented characters that InftyReader does not yet have in its
glyph database.

Using the process outlined above we havemanaged to decrease the character error
rate from an initial 11.35% (universal language setup of FineReader) to an average
0.98% character error rate [17–19]. The whole processing is fully automated after
initial font recognition and language detection training. The error rate may be further
decreased when InftyReader’s character database is semiautomatically enriched
when processing a new journal.

"When in doubt, use brute force. (Ken Thompson)"

4 Text Postprocessing and Metadata Enhancements

The OCR step is followed by further text processing, and its results are used for
editing of metadata and references.

4.1 Metadata Editor

The Metadata Editor (ME) [3, 20] has gradually developed into a fully fledged and
efficient web application, https://editor.dml.cz, that allows simultaneous remote edit-
ing according to assigned structured access rights. It supports two levels of actions.

https://editor.dml.cz
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On the first one the operator editing the data is provided with page thumbnails so
that he can visually check the completeness, scan the quality and configuration of the
articles, easily shuffle the pages and cut or merge articles if necessary. On the other
level the operator can check the automatically imported metadata, edit and com-
plete them. An integral part of the ME is the module for administration of authority
files with authors’ names. It enables the most suitable version of the name for the
DML-CZ to be selected and to match it with all its other versions.

We consider bibliographical references as important metadata of every paper.
Their availability makes it possible to use professional systems like CrossRef® for
cross-publisher citation linking. The work starts from OCR of the text, in which
a block of references is found. Citations are tagged by a script based on regular
expressions written for the citation style of every journal. The operator then checks,
edits, and approves the list of paper citations.

For fixing errors that can be safely detected (such as a Mathematics Subject Clas-
sification (MSC) code string that is invalid in the MSC 2000 standard) procedures
are formulated and coded in XSchema generated also from a web-based interface
(forms). Other sets of constraint checkers run as overnight jobs together with updates
of the database and metadata statistics and logs useful for the management of Meta-
data Editor workflow.

Finally, various detection procedures for possible errors have been suggested,
evaluated, and implemented for finding anomalous and suspicious content of meta-
data fields, with lists of warnings generated, including hyperlinks for easy checking
by an operator. An important control concerns the integrity of TeX sequences in
metadata to assure seamless typesetting of article cover pages in the later stages:
all metadata to be typeset are exported in one big file with unique references to the
article, and typeset by XeLaTeX to check the TeX control sequences used in the
metadata fields. This ensures that all of the TeX encoded mathematics converts into
MathML format smoothly. Similar procedures allow for an efficient and economical
increase of metadata completeness and quality.

4.2 Mathematical Document Classification and Categorization

Article full texts have many applications, e.g., for document classification and cat-
egorization. Fine document classification allows document filtering to reach higher
precision in information retrieval systems such as DML. The most commonly used
classification system today is the Mathematics Subject Classification (MSC) scheme
(www.ams.org/msc/), We have developed an MSC classifier (guessed MSC) that is
able to assign top-level MSC for retro-digitized articles. Our results convincingly
demonstrated the feasibility of a machine learning approach to the classification of
mathematical papers [4].

Another round of experiments was done with mathematical document similarity
computation.Wehave collected corpus of full texts ofmore than 40,000 articles (from
DML-CZ and NUMDAM) and we have computed paper similarities using tfidf [21]

www.ams.org/msc/
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and Latent Semantic Analysis (LSA) [22] and RandomProjectionmethods.Methods
use aVector SpaceModel, first converting articles to vectors and then using the cosine
of the angle between the two document vectors to assess their content similarity [23].
The difference between the methods is that while tfidf works directly over tokens,
LSAfirst extracts concepts, then projects the vectors into this conceptual spacewhere
it only computes similarity.

We are now showing the links to closest document lists inDML-CZ article landing
pages to get feedback from authors and readers to evaluate metrics computed in this
experiment. Given that we will enrich our full text mathematical corpus significantly
(with data from JSTOR, arXiv and other sources as planned), we hope it will help
to tackle plagiarism, too.

"Automating the creation of useful digital libraries—that is, digital libraries affording search-
able text and reusable output—is a complicated process, whether the original library is
paper-based or already available in electronic form (Simske and Lin [9])"

5 Summary, Conclusions, and Acknowledgement

We have described several steps of DML-CZ workflow, as introduced and tested
developed during the project development.We carried outmost of the steps ourselves,
to gain expertize and retain control of fine details, allowing us to plug-in newmodules
arising from leading edge research in the future—there are, currently, many new
developments appearing and much research underway in the digitisation area. It is
advisable for smaller project to outsource most of the workflow steps.

The most time-consuming and costly step is metadata handling and editing, and
image transformation and editing (if it cannot be automated). Bare scanning costs
amount to less than 10% of the total page costs, and even less when pages can be
physically cut before being used for batch scanning.

The complexity of the full digitization workflow should not be underestimated,
especially when digitizing heterogeneous sources—continuous and flexible work-
flow adaptation is a must.

We believe that the methods, algorithms, and tools developed do represent impor-
tant step toward a European (EuDML) or even worldwide framework for a digi-
tal mathematics library, evolved, bottom-up, from smaller regional digital library
projects.

This research has been partially supported by the grant reg. no. 1ET200190513 of
theAcademy of Sciences of theCzechRepublic, byMŠMTgrantsMSM0021622419
and 2C06009. The author thanks other DML-CZ colleagues for fruitful discussions
that led to the design of the workflow described there and to the paper reviewers for
improvement suggestions. Drawing of Fig. 1 by Mirek Bartošek is acknowledged.
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The Implementation and Complexity Analysis
of the Branch Gröbner Bases Algorithm Over
Boolean Polynomial Rings

Yao Sun and Dingkang Wang

Abstract A new branch of Gröbner basis algorithm over boolean ring has been
presented in an earlier paper. In this paper, the detailed implementation and a rough
complexity analysis is given. The branch Gröbner basis algorithm implements a
variation of the F5 algorithm and bases on the ZDD data structure, which is also the
data structure of the framework PolyBoRi. This branch Gröbner basis algorithm is
mainly used to solve algebraic systems and attack multivariable cryptosystems, and
its goal is to lower the complexity in each branch and expect better total complexity.
An important proposition ensures the two original criteria of the non-branch F5
algorithm could still reject almost all unnecessary computations in this new branch
algorithm. The timings show this branch algorithm performs very well for randomly
generated systems as well as a class of stream ciphers which is generated by the
linear feedback shift register (LFSR).

1 Introduction

Solving system of polynomial equations is a basic problem in computer algebra,
through which many practical problems can be solved easily. Among all the methods
for this purpose, Gröbner bases method, the characteristic set method and resultant
method are the most famous ones [1, 2].

Since Buchberger proposed the Gröbner bases algorithm in 1965, this algorithm
has been improved by many researchers, both from the data structure and the criteria
to remove the redundant S-pairs. Now the most famous Gröbner bases algorithms
are the F4 and F5 algorithms proposed by Faugère [3, 4]. The F4 algorithm imports
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the matrix technique to make the reduction process more efficient, while the F5
algorithm presents two new criteria to eliminate the useless S-pairs, which can be
definitely reduced to 0.

So far, both F4 and F5 algorithms have been implemented. The most efficient
implementation of F4 algorithm is presented by Steel, and is available on the com-
puter algebraic system Magma, while the the most efficient version of F5 algorithm
is implemented by Faugère himself, which is not open. However, the F4 algorithm is
still not perfect, as high efficiency leads to the cost of enormousmemories. For exam-
ple, attacking the cryptographic systemHFE80 by using F4 algorithm inMagmawill
cost nearly 16G memories.

For solving system of boolean polynomial equations, a Gröbner bases algorithm
based on the ZDD data structure has been proposed by Brickenstein in 2007 (the
PolyBoRi framework) [5]. His algorithm works very well for computing Gröbner
basis with the pure lexicographic monomial order. However, since it is expensive
to compute the total degree leading monomial for a polynomial in the ZDD form,
this algorithm possibly does not perform very well with total degree orders. So in
our implementation, we prefer a new graded expression of polynomials such that
the leading monomial for total degree order can be calculated extremely fast, so
our algorithm is more efficient with graded monomial orders. A characteristic set
method for solving system of boolean polynomial equations is presented byGao, and
his method has pretty good performance on the problem of stream cipher systems [6].
Gao’s implementation is also based on ZDD data structure and he uses the branch
technique to compute the ascending set series.

The success of Gao’s algorithm is amotivation for our research on branchGröbner
basis. Our algorithmmakes improvements both on saving the usage of memories and
limiting the size of matrices. That is, on one hand, we utilize the ZDD data structure
to save polynomials and decrease the cost of space, and on the other hand, we make
new branches when the matrix grows bigger so that we only need to handle matrix
with a reasonable size.

In theory, we employ a modified matrix F5 algorithm. Details can be found in [7].
In this paper, we concentrate on the implementation and complexity analysis of our
algorithm. The contents of this paper are organized as follows: the second section
involves some preliminaries and the modified algorithm; the third section introduces
the ZDD data structure and some sub-algorithms; complexity analysis comes in the
fourth section; some examples and timings are given in the fifth section; we end this
paper with conclusions.

2 The Algorithm

2.1 Notations

Let F2 be the finite field with two elements 0 and 1, and X = x1, . . . , xn stands for
the set of variables. Let H be the set of field polynomials {x21 +x1, . . . , x2n +xn}, then
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the ring R2 = F2[X]/〈H〉 is actually a boolean ring, where 〈H〉 is the ideal generated
by H in F2[X], and in addition, we call the elements in R2 boolean polynomials.

Let N be the set of nonnegative integer and T be the power set of X, which means
T = {xα1

1 · · · xαn
n |αi ∈ {0, 1}, i = 1, . . . , n}. Assume ≺ is an admissible monomial

order defined over T , then given t = xα1
1 · · · xαn

n ∈ T , we define the degree of t as
deg(t) = ∑n

i=1 αi. For a polynomial 0 �= f ∈ F2[X], we have f = ∑
xα1
1 · · · xαn

n .
Define the degree of f as deg(f ) = max{α1 +· · ·+αn}, while the leading monomial
of f is lm(f ) = max≺{xα1

1 · · · xαn
n }.

2.2 Definitions

To introduce our algorithm, some definitions are necessary and the following defin-
itions are imported from [7]:

Definition 1 Let L = T × F2[X] × N × F2[X] × N, and a labeled polynomial is a
five-tuple vectorG = (xα, f , i, g, k) ∈ L.We define the signature ofG as S(G ) = xα ,
the initial as init(G ) = f , the extended signature as ES(G ) = S(G )lm(init(G )) =
xαlm(f ), the index as G ) = i, the polynomial as poly(G ) = g and the number as
num(G ) = k.

Definition 2 Let F ,G ∈ L be two labeled polynomials. We say F ≺es G (or
G �es F ), if one of the following three cases is satisfied: 1. ES(F ) ≺ ES(G ).
2. ES(F ) = ES(G ) and F ) > G ). 3. ES(F ) = ES(G ), F ) = G ) and num(F ) >

num(G ).

The order of labeled polynomials, which alleviate the influence of the order of
the input polynomials or the initial polynomials, is modified from the F5 algorithm.
Therefore, the criteria should be revised correspondingly. In the following two defin-
itions, letF ∈ L be a labeled polynomial and B ⊂ L be a set of labeled polynomials.

Definition 3 We say F is normalized by B, if there do not exist a labeled poly-
nomial G ∈ B and a monomial v ∈ T , such that S(F ) = vlm(poly(G )), F �es

vlm(init(F ))G . Particularly, in the boolean ring R2, the condition lm(init(F )) �

S(F ) should hold as well.

Definition 4 We say F can be rewritten by B, if there exists a labeled polynomial
G ∈ B and amonomial v ∈ T , such that S(F ) = S(vG ), (F ) = (G ) and num(F ) <

num(G ).

2.3 Criteria

Now, we give two new criteria modified from the F5 algorithm without proofs. A
partial proof can be found in [7], and the complete one will come in a future paper.
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1. Syzygy criterion: Given a critical pair: s(G1,G2) = (m, u1,G1, u2,G2), where
u1, u2 ∈ T and G1,G2 ∈ B. If either u1G1 or u2G2 is not normalized by B, then
the critical pair s(G1,G2) can be discarded.

2. Rewritten criterion:Given a critical pair: s(G1,G2) = (m, u1,G1, u2,G2), where
u1, u2 ∈ T and G1,G2 ∈ B. If either u1G1 or u2G2 can be rewritten by B, then the
critical pair s(G1,G2) can be discarded.

Our non-branch Gröbner bases algorithm is nothing else than a general Buch-
berger algorithm except replacing the polynomials with the labeled polynomials,
adding two criteria and using matrix reduction. After revising the two criteria, our
algorithm has less influence from the input order of the initial polynomials than the
F5 algorithm. Furthermore, the two revised criteria can also eliminate almost all the
useless critical pairs as the F5 algorithm does. For semi-regular systems, there does
not exist the critical pairs that can be reduced to 0, too. In fact, we proved in [7] that
the modifications in the comparison of two labeled polynomials do not affect the
function of the criteria. To illustrate how the two new criteria work, we have tested
some randomly generated boolean polynomial systems in Sect. 4.

2.4 Trick

Although the two modified criteria can remove almost all the useless critical pairs
generated during the computation, the total efficiency is not as good as we wished.
One possible reason may be the conflict between the signature and the polynomial.

In fact, the motivation of the signature is to record the origin of the present
label polynomial. Take a labeled polynomial, say G = (xα, f , i, g, k) ∈ L, for
example. The signature tells us that the polynomial g is obtained by reducing the
polynomial xαfi with ‘smaller’ labeled polynomials under the order ≺es. So
the signature actually works as a clue of the computation, and that is exactly why
the two criteria work. However, there exists a natural conflict between the signature
and the polynomial. That is, during the computation, the label polynomials gener-
ated later sometimes have smaller size but with bigger signature. By our algorithm
as well as the F5 algorithm, the label polynomial with a bigger signature should be
dealt with later. It is possible that some polynomials of smaller size cannot be used
immediately and this may lead to more computations. One trick can be used to solve
this conflict. The key idea is to clear the signatures of some simple polynomials and
to append them to the initial polynomials. We have

Proposition 1 Adding an initial polynomial with the largest index at any time will
not affect the correctness of the two criteria.

Although adding new polynomials will not affect the correctness of the two cri-
teria, in order to keep the algorithm correct, we must add polynomials that are in the
original ideal. Usually, we add new initial polynomials in the following cases:

1. The new generated polynomial has a very low total degree, such as 1 or 2.



The Implementation and Complexity Analysis … 161

2. The leading monomials of some present initial polynomials can be reduced by
the new generated polynomial.

However, adding too many polynomials cannot speedup the algorithm. Because
adding new initial polynomials is actually to cut off the relationship between this
polynomial and the initial polynomials, which will weaken the criteria, since the
system of initial polynomials may not be semi-regular any more, and many useless
pairs cannot be detected.

2.5 Branch Strategy

In both the F4 and F5 algorithms, the sizes of matrices in the computation grow
quickly with the degree of critical pairs. Huge matrices occupy enormous memories
and are difficult to deal with. In consideration of the complexity, a natural idea comes
to us, and that is, we should prevent the degree of critical pairs growing too high.

In order to control the size of thematrix, we can add polynomials that are not ideal,
but this will apparently make the output incorrect. Fortunately, the cases are better
in the boolean ring R2. Since in R2, any boolean polynomial has only two possible
values 0 and 1, whichmakes the branch algorithm available.We can clone the present
system and add a new polynomial with the value 0 and 1 to them respectively such
that two polynomial sets are obtained. The original ideal is the intersection of the
ideals generated by these two polynomial sets. This fact is important for solving the
original system. Furthermore, after adding the new polynomial, each system may
have smaller matrices and are easier to be dealt with. This is the motivation of our
branch algorithm.

Theoretically, any polynomial can be added. In consideration of the complexity,
we usually add polynomials that are simple enough or that can be used to reduce
other polynomials. When should we add polynomials? Based on our experiments,
we prefer to add polynomials when the degree of critical pairs is high enough. We
can set a degree bound D ∈ N. When the remaining pairs have higher degrees than
D, we add a new polynomial, or equivalently we make a new branch.

We have many options to choose the new polynomials and it is difficult to tell
which is the best. So we list some alternatives that have good performance in the
experiments.

1. The polynomial with degree one.
2. The polynomial which is the highest homogeneous part of some present polyno-

mial.
3. The polynomial with a high reference degree, which is a parameter that comes

from the shared ZDD data structure.

After all, we can present our branch Gröbner bases algorithm.
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Algorithm 1 : Branch Grönber bases algorithm

Input: An ordered polynomials set F = (f1, . . . , fm) ⊂ F2[X].
Output:The branch Gröbner bases BranchGB of the ideal generated by F ∪ H,
where H = {x21 + x1, . . . , x2n + xn} ⊂ F2[X] are the field polynomials.

1 Set Fi := (1, fi, i, fi, i), i = 1, . . . , m, Fm+i := (1, x2i + xi, m + i, x2i + xi, m + i), i = 1, . . . , n.
index := m + n, k := m + n, BranchSet := {{Fi|i = 1, . . . , k}}, BranchGB := {}.

2 While BranchSet �= ∅ do
2.1 Select a B ∈ BranchSet and BranchSet := BranchSet \ {B}.
2.2 Generate CP := {s(P,Q)|P,Q ∈ B}.
2.3 While CP �= ∅ do

2.3.1 d := min{deg(c)|c ∈ CP}, D := {c ∈ CP| deg(c) = d} and CP := CP \ D.
2.3.2 D′ := {c ∈ D|c is not satisfied either of the Syzygy or Rewritten criterion }.
2.3.3 Reduce D′ by matrix and collect the new generated labeled polynomials as F+.
2.3.4 For P ∈ F+ do

2.3.4.1 If P is simple enough
then index := index + 1, P := (1, poly(P), index, poly(P), k + 1).
else num(P) := k + 1.

2.3.4.2 k := k + 1, CP := CP ∪ {s(P,Q)|Q ∈ B}. B := B ∪ {P}.
2.3.5 If the minimal degree of CP is high enough, then

2.3.5.1 choose a new polynomial p ∈ F2[X].
2.3.5.2 index := index + 1, k := k + 1
2.3.5.3 SetP ′ := (1, p + 1, index, p + 1, k), BranchSet := BranchSet ∪ {B ∪ {P ′}}.
2.3.5.4 Set P := (1, p, index, p, k), CP := CP ∪ {s(P,Q)|Q ∈ B}, B := B ∪ {P}.

2.4 BranchGB := BranchGB ∪ {{poly(P)|P ∈ B}}.
3 Return BranchGB.

In this algorithm, step 2.3.4.1 is to clear the signature of a polynomial, and step
2.3.5 is to introduce new polynomials so as to add new branches to the algorithm.
In order to make the algorithm more efficient, some auxiliary data can be kept in
BranchSet as well, such as the number index, k, the set CP and so on.

3 Complexity Analysis

3.1 The Principle for Making Branch

One of the motivations of our branch Gröbner bases algorithm is to decrease the
complexity in each branch so as to lessen the total complexity for solving the boolean
polynomial system. Therefore, if we hope our branch algorithm has better efficiency
than the non-branch algorithms, we should constrain the branch number within a
reasonable bound.

The complexity of Gröbner bases using the F4 and F5 algorithm is determined
by a degree Dreg, which is the upper bound of the highest degree of matrices, say Dp,
constructed during the computation. Then the total complexity of F4 orF5 algorithm
is roughly O(nωDreg), where n is the number of variables and ω is the efficiency of
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matrix elimination that has a bound 2 ≤ ω ≤ 3. Similarly, since we make a new
branch when the degree of pairs exceed a degree D, the complexity of each branch
is roughly O(nω′D), where ω′ is efficiency of our matrix reduction. Assuming the
number of branches is M, the total complexity of our branch algorithm is O(Mnω′D).
If we hope our branch algorithm performs better, the complexity O(Mnω′D) must
smaller thanO(nωDreg). Roughly speaking, the numberM should satisfy the following
inequality:

Mnω′D < nωDreg , or M < nωDreg−ω′D.

However, it is difficult to predict the number of branches produced in our algo-
rithm. What we can do is to set up a bound such that when the number of branches
exceed it, we stop the program. Fortunately, the number of branches for one kind
of examples is usually stable, so we can anticipate the general performance for all
problems of this kind by induction. The principle above sets up a criterion to check
whether it is possible for our algorithm to have good performance.

3.2 The Estimation of Dreg

Before the system is computed by the F5 algorithm, we cannot obtain the practical
value of Dp, so we have to try to estimate it or give an upper bound for it. Fortunately,
the upper bound Dreg for F5 algorithm can be obtained from [8]. For a general semi-
regular system in the boolean ring, Dreg can be achieved from the following series:

Sm,n(z) =
∑
d≥0

hd,m(n)zd = (1 + z)n/

m∏
k=1

(1 + zdk ).

where m is the number of the initial polynomials (f1, . . . , fm) and dk = deg(fk). Then
Dreg is the first d such that hd,m is nonpositive. Therefore, the upper bound can be
calculated easily when m, n, and the dks are given.

3.3 Theoretical Analysis of Randomly Generated Systems

Faugère has claimed that almost all the systems are semi-regular systems when n
is not too small. So the randomly generated systems can be supposed to be semi-
regular systems naturally, and the estimation of Dreg is a powerful tool to analyze
the complexity of the F5 algorithm as well as our branch algorithm.

For convenience, we only consider some special cases and the others can be
analyzed in a similar way. We assume the initial polynomials are m quadratic poly-
nomials in R2 and n is the number of variables. So when m = n, we can draw a
picture of Dreg.
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Fig. 2 Dreg when adding
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Although Dreg is only an upper bound of the practical highest degree Dp, the
degree Dreg is reached almost all the time for randomly generated systems.

The motivation of our branch algorithm is to add new polynomials in order to
lower the degree of matrices in the computation. Since randomly generated systems
are semi-regular, we can use the series in the last subsection to compute Dreg and
then find out how many polynomials should be added such that Dreg becomes lower.
If the number of polynomials is fixed, the number of branches can be obtained easily.

For example, we consider the systems when m = n = 40 and in Fig. 1, the
corresponding Dreg is 7. By the series, we can calculate the specific number of
polynomials we should add in order to lower the degree. Since adding different
polynomials lead to different results, here we only consider two cases, one is adding
polynomials with degree 1 and the other with degree 2. Figure2 shows how the Dreg
varies with m′, which is the number of new added polynomials. We can see that
adding 6 polynomials of degree 1 will lower Dreg to 6, while adding 11 polynomials,
the Dreg becomes 5 and so on. Then we obtain the following table. TH-Num is the
theoretic branch number calculated by the inequality in Sect. 3.1 with ω = ω′ = 2.
NumPoly is the smallest number of m′ to lower Dreg to the corresponding degree and
EXP-Num is the expected branch number calculated by NumPoly.



The Implementation and Complexity Analysis … 165

Table 1 Adding polynomials with degree 1

Dreg 6 5 4 3 2 1

TH-Num 1,600 404 406 408 4010 4012

NumPoly 6 11 17 23 31 40

EXP-Num 64 2,048 217 223 231 240

TH/EXP(≈) 24.6 210.3 214.9 219.6 222.2 223.9

Fig. 3 Dreg when adding
polynomials with degree 2
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In Table1, all the expected branch numbers are smaller than the theoretical bound,
so as discussed in 3.1, our branch algorithm will have better performance than the
non-branch algorithm and the practical results in Sect. 4 proves this. Recall that,
the proportion in Table1 shows that adding 40 polynomials will lead to the best
efficiency, however, this is not the truth, since the matrices with lower degree are
denser than the bigger ones, then the parameter ω′ is no longer 2 and combined with
other factors, TH-Num will be much smaller than that in the table.

When adding polynomials with degree 2, the cases are not so good as that with
degree 1, and Fig. 3 shows the variation of Dreg. At least 15 quadratic polyno-
mials should be added to lower Dreg to 6, while in Fig. 2, only 6 is enough, so
the corresponding expected branch number will be bigger than in Table1. We can
generate a similar table (Table2).

The expected branch number are all bigger than the theoretic bound, so we cannot
expect a better performance of our branch algorithm. However, the practical cases
are not as bad as the table shows, since the data in the table are calculated under a
hypothesis that the new systems are still semi-regular systems, and so if we add some
special polynomials which can reduce the present system significantly, the practical
branch number can still be control in a reasonable bound.

Other examples can be analyzed in the same way as well. Based on our experi-
mental results, we can conclude that for almost all randomly generated systems, our
branch algorithm has better performance than non-branch algorithms, such as F4 in
Magma.
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Table 2 Adding polynomials with degree 2

Dreg 6 5 4 3 2

TH-Num 1,600 404 406 408 4010

NumPoly 15 40 88 207 740

EXP-Num 215 240 288 2207 2704

Table 3 The criteria

n 6 8 10 12 14 16 18

T-pairs 198 740 2,483 3,296 94,077 144,801 211,385

D-pairs 7 64 727 1,146 46,221 80,308 112,925

0-Polys 0 0 0 0 0 0 0

D/T(%) 3.54 8.65 29.28 34.77 49.13 55.46 53.42

4 Computational Examples

In this section, some timings are imported from [7], but the complexity information
is obtained by the method discussed in Sect. 3. The branch strategy we used in the
experiments is the first strategy in Sect. 2.5 and all the timings are obtained from a
computer (OS Linux, CPU Xion 4*3.0GHz, 16.0GB RAM).

4.1 The Criteria

In this subsection, we see how the twomodified criteria work. The initial polynomials
are all randomly generated quadratic polynomials with m = n.

In Table3, T-pairs stand for the total number of pairs generated in the computation,
while D-pairs are the number of pairs detected by the two criteria and D/T is the
proportion of these two numbers. Besides, 0-Polys is the number of polynomials
that are reduced to 0 in the algorithm. From the table, all useless pairs are detected
and the two criteria play an important role for improving the efficiency during the
computation.

4.2 The Randomly Generated Systems

In this section we see how the branch algorithm performs for randomly generated
systems. In the following table, three groups of data will be presented. The first group
involves the theoretical degree bound Dreg and the theoretical upper bound for the
branch number M; the second group consists of the practical degree Dp computed
by the F4 algorithm and the corresponding theoretical upper bound for M; in the
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Table 4 The randomly generated systems

n EST MGB BGB

TH-Deg TH-Num P-Deg TH-Num Time P-Deg P-Num Time

18 5 184 6 186 3.890 3 2,048 0.791

20 5 204 6 206 14.220 3 8,160 2.992

22 5 224 6 226 82.790 3 29,046 13.235

24 6 246 − − − 3 65,400 47.682

26 6 266 − − − 3 262,018 149.121

last group, the degree D and the practical number of the branches is given. For the
second and third groups, the practical timings are given as well.

The initial polynomials are randomly generated quadratic polynomials with m =
n. The practical degree Dp in the second group are obtained by the F4 algorithm in
Magma. The upper bound of M is estimated with ω = ω′ = 2. In Table4, we use
EST to represent the estimated data and MGB is the experiments data from the F4
algorithm, while BGB is that from our branch algorithm. TH- is short for theoretical
and P- for practical and “–” means Magma runs out of memory.

Remark that in Table4, the theoretical degrees for n = 18, 20, 22 are lower than
the corresponding practical degrees, and the reason is that the F4 algorithm does not
have a powerful criteria to remove all the useless pairs, so some useless computations
are still done in the F4 algorithm. From the table we can also see that the practical
numbers of branches in our algorithm is always kept within the two theoretical
bounds, so our branch algorithm will have better performance and the timings prove
that.

4.3 The Stream Ciphers

In this section, we use our branch algorithm to attack a class of stream ciphers, which
is an important class of encryption algorithm. Here we only consider stream ciphers
based on the LFSR, and the filter functions are from [9].

• CanFil 2, x1x2x3 + x1x2x4 + x1x2x5 + x1x4 + x2x5 + x3 + x4 + x5
• CanFil 3, x2x3x4x5 + x1x2x3 + x2x4 + x3x5 + x4 + x5
• CanFil 8, x1x2x3 + x2x3x6 + x1x2 + x3x4 + x5x6 + x4 + x5
• CanFil 9, x2x4x5x7 + x2x5x6x7 + x3x4x6x7 + x1x2x4x7 + x1x3x4x7 + x1x3x6x7 + x1x4x5x7+

x1x2x5x7 + x1x2x6x7 + x1x4x6x7 + x3x4x5x7 + x2x4x6x7 + x3x5x6x7 + x1x3x5x7 + x1x2x3x7+
x3x4x5 + x3x4x7 + x3x6x7 + x5x6x7 + x2x6x7 + x1x4x6 + x1x5x7 + x2x4x5 + x2x3x7 + x1x2x7 +
x1x4x5 + x6x7 + x4x6 + x4x7 + x5x7 + x2x5 + x3x4 + x3x5 + x1x4 + x2x7 + x6 + x5 + x2 + x1

• CanFil 10, x1x2x3 + x2x3x4 + x2x3x5 + x6x7 + x3 + x2 + x1

The data here consist of two parts: one part involves the practical degree Dp, the
theoretical upper bound for M and the practical time costed by the F4 algorithm in
Magma; the other part includes the degree D which is given by the user, the practical
branch number and the time used by our branch algorithm. Again, ω = ω′ = 2
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Table 5 The stream ciphers

Filters n 81 100 128

Time Deg Num Time Deg Num Time Deg Num

MGB 18.730 7 818 32.930 7 1008 − − −
CanFil2 BGB 0.027 3 9 0.172 3 66 0.357 3 40

MGB − − − 1.360 7 1008 − − −
CanFil3 BGB 0.085 3 11 0.150 3 19 1.210 3 17

MGB 49.460 7 818 12.590 7 1008 − − −
CanFil8 BGB 0.046 3 27 0.170 3 190 0.371 3 140

MGB − − − − − − − − −
CanFil9 BGB 0.418 4 40 1.230 4 217 20.901 4 77

MGB 331.880 7 818 − − − − − −
CanFil10 BGB 0.131 3 99 0.612 3 501 1.296 3 340

and MGB and BGB represent the F4 algorithm in Magma and our branch algorithm
respectively.

Table5 shows that the practical number of branches is smaller than the estimated
upper bound, so it is not strange to see that our branch algorithm is more efficient
than the F4 algorithm for such problems.

5 Conclusion

In this paper, we present an implementation of the branch Gröbner bases algorithm
and analyze the complexity briefly. The experimental results show that for both
randomly generated systems and a class of Stream Ciphers problems, our branch
algorithm has better efficiency than the F4 algorithm in Magma. However, there are
some problems that are still not solved completely, for example, how to find a general
strategy for all problems and how to anticipate the number of branches before the
computation, and these can be investigated in the future.

Acknowledgments We thank Professor Xiaoshan Gao for his useful suggestions and Zhenyu
Huang for discussing the programming codes.
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Towards the Calculation of Casimir Forces
for Inhomogeneous Planar Media

C. Xiong, T.W. Kelsey, S.A. Linton and U. Leonhardt

Abstract Casimir forces arise from vacuum fluctuations. They are fully understood
only for simplemodels, and are important in nano- andmicrotechnologies.We report
our experience of computer algebra calculations toward the Casimir force for mod-
els involving inhomogeneous dielectrics. We describe a methodology that greatly
increases confidence in any results obtained, and use this methodology to demon-
strate that the analytic derivation of scalar Green’s functions is at the boundatry of
current computer algebra technology. We further demonstrate that Lifshitz theory of
electromagnetic vacuum energy can not be directly applied to calculate the Casimir
stress for models of this type, and produce results that indicate the possibility of alter-
native regularizations. We discuss the relative strengths and weaknesses of computer
algebra systems when applied to this type of problem, and suggest combined numer-
ical and symbolic approaches toward a more general computational framework.

1 Introduction

Casimir forces result from zero-point vacuum fluctuations confined between two
dielectric materials [1]. Although these forces were predicted theoretically in the
1940s, empirical evidence confirming the theory has only been obtained in recent
years [2–6]. Casimir forces are important in nanotechnology and microtechnology:
repulsive Casimir forces can reduce friction in nano- and micromechanical devices,
whereas attractive forces can “glue” components together that are designed to be
free-moving. Lifshitz theory [7] is a theoretical approach to the calculation ofCasimir
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forces, in which the Green’s tensor for the electric field is used to derive electromag-
netic stress and energy density.

The standard planar model is to have two plates, L and R, of uncharged dielec-
tric materials separated in the x direction by a few micrometers. The materials have
permittivities εL(x, iξ) and εR(x, iξ), depending on displacement and frequency
ξ , which completely describe the media since we assume that there is no magnetic
response (we enforce μL(x, iξ) = 1 = μR(x, iξ) for the magnetic permeabilities
involved). The gap between the plates, C , is either a quantum vacuum or third dielec-
tric with εC (x, iξ) equal to a constant; we consider such a model to be homogeneous.
For this model, and for variations of this model that include moving plates [8], the
Casimir force can be both calculated analytically and measured empirically [9]. For
extensions of this model involving more than two plates, numerical methods can be
used to obtain the Casimir forces for specific types of plate [10].

In this paper we consider inhomogeneous models where the permittivity of the
central region, εC (x, iξ), varies with x . The primary aim of the paper is to see
which, if any, inhomogeneous models allow the analytic derivation of their Casimir
forces from calculations performed in the widely-used computer algebra systems
Maple (Waterloo Maple Inc., London, Ontario, Canada) and Mathematica (Wolfram
Research Inc., Champaign, IL, USA). All computations were run on an Intel Xeon
E5430 2.66GHz with 8 cores and 16 Gb memory, using Maple version 13.0 and
Mathematica version 7.0 under CentOS 5. In particular we explore the applicability
of Lifshitz theory to inhomogeneous models. The Lifshitz regularization process
described in Sect. 2 was derived with homogeneous media in mind, we therefore
explore the possibility that this could be a confounding factor in attempts to calculate
Casimir forces in the inhomogeneous case.

In Sect. 2 we give the standard Lifshitz theoretic approach to deriving Casimir
stresses for homogeneous media, and discuss how these may be calculated using
Maple andMathematica. In Sect. 3 we describe our methodology for performing and
checking similar calculations for inhomogeneous models, and outline the strengths
and weakness of the two computer algebra systems. We present results that suggest
that many, but not all, inhomogeneous models can not be dealt with analytically
using current computer algebra capabilities. Section 4 contains our analysis of stan-
dard Lifshitz theory applied to the model in which the central permittivity decays
exponentially (εC (x, iξ) = ae−bx ), together with results that suggest that suitable
alternative regularizations may be deriveable. In Sect. 5 we discuss computational
aspects, such as the limitations of existing computer algebra systems, and the possi-
bility of future numeric-symbolic approaches.

2 The Calculation of Casimir Stress in Planar Media

In this section we describe the mathematical and physical concepts involved in
our computations, and present the sequence of calculations involved in determining
the Casimir force for planar models. A more detailed exposition of the underlying
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physics, together with full derivation of the equations involved and descriptions of
theoretic approaches other than that of Lifshitz, is given in [9]. The resulting sequence
of calculations can, in principle, be done by hand, using symbolic computer algebra,
via numeric techniques, or by a combined numeric-symbolic approach. We report
on our experiences of the second of these options in Sect. 3.

Stresses on objects in electromagnetic fields are given byMaxwell’s stress tensor,
in which Ê and Ĥ are respectively the electric and magnetic fields, B̂ is the magnetic
induction and D̂ is the electric displacement.

σ̂ = Ê ⊗ D̂ + B̂ ⊗ Ĥ − 1

2
(Ê · D̂ + B̂ · Ĥ)I3 (1)

For stationary electromagnetic fields, the divergence of the Maxwell’s stress tensor
gives the force density f̂ ,

f̂ = ∇ · σ̂ . (2)

The expectation values (also known as correlation functions) for the tensor prod-
ucts in Eq. (1) are related to the retarded Green’s function as follows:

〈Ê(r, t) ⊗ D̂(r′, t)〉 = − �

πc2

∞∫
0

dξε(r, iξ)ξ2G(r, r′, iξ), (3)

〈B̂(r, t) ⊗ Ĥ(r′, t)〉 = �

π

∞∫
0

dξ
1

μ(r, iξ)
∇ × G(r, r′, iξ) × ←−∇′ (4)

The notation×←−∇′ denotes a curl on r′ inG(r, r′, iξ) from the right.G(r, r′, iξ) is the
retarded Green’s tensor for the vector potential in a Coulomb gauge, and is defined
as the solution of the following inhomogeneous electromagnetic wave equation

∇ × 1

μ
∇ × G(r, r′, iξ) + ε

ξ2

c2
G(r, r′, iξ) = δ(r − r′)I3. (5)

The Green’s function should always obey the reciprocity relation:

G(r, r′, iξ) = G(r′, r,−iξ); (6)

we describe our extensive use of this as a check for correctness of our calculated
scalar Green’s functions in Sect. 3.

We are considering planar dielectrics, for which the permittivity ε(r, iξ) =
ε(x, iξ) and magnetic permeability μ(r, iξ) = μ(x, iξ), i.e. depend only on the
x-coordinate. The Green’s function in terms of its Fourier transform in y and z is
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G(x, x ′, u, v, iξ) =
∞∫

−∞
dy

∞∫
−∞

dzG(r, r′, iξ)e−iu(y−y′)−iv(z−z′). (7)

The Fourier-transformed Green’s function G(x, x ′, u, v, iξ) is given by the Fourier-
transformed wave equation:

∇ × 1

μ(x, iξ)
∇ × G(x, x ′, u, v, iξ)

+ ε(x, iξ)
ξ2

c2
G(x, x ′, u, v, iξ) = δ(x − x ′). (8)

The Casimir force depends only on the xx-component of Maxwell’s stress tensor
because the force density is also independent of y and z. In the limit r → r′, the
result for σxx is

σxx = − �c

8π3

∞∫
−∞

∞∫
−∞

∞∫
0

u

(
1

μ
(w2 − ∂x∂x ′)g̃Es + 1

ε
(w2 − ∂x∂x ′ )g̃Ms

)
du dv dκ |x′=x

= − �c

4π2

∞∫
0

du

∞∫
0

dκ u

(
1

μ
(w2 − ∂x∂x ′)g̃Es + 1

ε
(w2 − ∂x∂x ′ )g̃Ms

)
|v=0,x′=x, (9)

with

w =
√

u2 + v2 + εμκ2, κ = ξ

c
,

g̃Es = g̃E − μg̃0, and g̃Ms = g̃M − εg̃0.

In Lifshitz theory, g̃Es and g̃Ms are the regularized electric and magnetic Green’s
functions (where regularization involves subtraction of the relevant divergent part).
g̃0 is the infinite contribution from the retarded Green’s function in a space with
homogeneous medium:

g̃0 = − 1

2w
e(−w|x−x ′|). (10)

In summary, to obtain the Casimir force for a planar dielectricmodel, the sequence
of calculations is:

1. calculate the scalar Green’s functions—Eq. (8)—for the permittivity of the spe-
cific media under consideration (recalling the modeling assumptionμ(x, iξ) = 1
described in Sect. 1)

2. perform the regularization that removes the infinite parts from the above scalar
Green’s functions

3. solve the double integral—Eq. (9)—to obtain the stress tensor σxx
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4. the divergence of σxx is the theoretically predicted Casimir force—Eq. (2).

In the homogeneous case all the calculations can be performed analytically using
either Maple or Mathematica, since ε(x, iξ) does not vary with x . Eq. (8) reduces to

d2

dx2
g̃(x) − (u2 + v2 + εκ2)g̃(x) = δ(x − x ′) (11)

where g̃ denotes either the electric ormagneticGreen’s function, and inwhich none of
the left-hand parameters depends on x . The general solution involves trigonometric
functions and the Heaviside function; specific solutions are easily obtained from the
boundary conditions. The subtractions involved in stage 2 are also straightforward,
again since neither μ nor ε varies with x . The double integrals with infinite ranges
produce finite results, since the integrand converges to zero with increasing u and
κ . Stage 4 is relatively simple. In Sect. 3 we commence our analysis of how the
computational details are affected when homogeneity is no longer assured.

3 Specific Inhomogeneous Permittivity Models

For a given model of the permittivity ε(x) and μ = 1 (no magnetic response), we
first need to find the scalar Green functions,

d2 g̃E

dx2
−

(
u2 + ε(x)κ2

)
g̃E = δ(x − x ′), (12)

d

dx

(
1

ε(x)

d

dx
g̃M

)
−

(
u2

ε(x)
+ κ2

)
g̃M = δ(x − x ′). (13)

An intrinsic problem is the assessment of the validity of any results. The output from
a computer algebra system will consist of symbolic expressions, which can be eval-
uated as real numbers for supplied values of the parameters involved. Empirical val-
idation is not known to be possible for all models, and is expensive, time-consuming
and technically demanding.

Our solution is to constrain our results to be the same when solving from the
left and from the right. This is not a guarantee that any results obtained are correct,
but it does increase confidence and allows us to detect models for which analytic
solution is intractable using current computer algebra capabilities. Our methodology
therefore is to perform the calculations using two computer algebra systems (Maple
and Mathematica) and to use the reciprocity relations given in Eq. (6). If the results
from the two independent systems coincide, and if the results are the same from
either the left or from the right, then we have a high level of confidence in their
correctness.

For models such as ε(x) = 1 + e−x and ε(x) = x2 using Maple we find that
the reciprocity relations are violated in the magnetic case. Using Mathematica to
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Fig. 1 The inhomogeneous
model given by εL = 5,
εC = 5 exp(−4/5x) and
εR = 1. The central part runs
from x = 0 to
x = log(a)/b ≈ 2.0118

perform the same calculations, we were unable to solve the equations analytically,
and were therefore unable to perform the reciprocity check. The difference between
the two systems is that recent versions of Maple contain an implementation of the
use of Heun’s functions [11] to solve ODEs. Heun’s functions are the solutions of
the Heun form of 2nd order linear ODEs; any such ODE can be converted into Heun
form. Equation (12) is a linear 2nd order ODE, so, in Maple, it can be converted
to Heun form and solved directly, with perfect agreement from the right and left
directions. Equation (13) is nonlinear, however. We can convert it into a modified
Heun ODE and obtain a solution in the form of the product of a Heun C function and
an exponential correction factor. There is a discrepancy between the left and right
solutions, which appears to be introduced when the correction factor is computed.
Unfortunately, we are never sure which, if either, of these results is correct, hence
further work is needed to correct the Maple implementation. Mathematica, on the
other hand, has no Heun ODE or function capabilities, and neither the linear nor
nonlinear ODEs could be solved analytically.

We have found only one permittivity model for which the scalar Green’s functions
can be derived analytically (i.e., without using any numeric calculation options) with
the reciprocity relations fully satisfied (Fig. 1 is an illustrative example). This is
exponentially decaying permittivity,

ε(x) = ae−bx , for positive constants a and b, (14)

bounded on each side by homogeneous dielectrics.
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For this case, the general solutions for g̃E and g̃M were found to be

g̃E = CE1 Iν1(−λ) + CE2Kν1(λ) + 2

b
(Iν1(−λ)Kν1(λ

′)

−Iν1(−λ′)Kν1(λ))Heaviside(λ − λ′),
g̃M = CM1λIν2(−λ) + CM2λKν2(λ) (15)

+ bλλ′

2κ2 (Iν2(−λ)Kν2(λ
′)

−Iν2(−λ′)Kν2(λ))Heaviside(λ − λ′), (16)

where λ = 2κ
√

a

b
e−bx/2, ν1 = 2u2/b, ν2 =

√
1 + ν12, (17)

and in which the Cs are arbitrary coefficients determined by the continuity of

g̃E , g̃M ,
1

μ(x, iκ)
∂x g̃E , and

1

ε(x, iκ)
∂x g̃M (18)

at the boundaries, and I and K are the modified Bessel functions.
Two interesting computational aspectswere encountered. First,Mathematica does

not return solutions of the PDEs in terms of Bessel K function; it instead returns
expressions involving Gamma functions which are mathematically equivalent, but
which are lengthy and hard for humans to interpret. Secondly, intermediate Maple
output suggested the variable changes involving λ, ν1 and ν2—Eq. (17). These sim-
plifying re-arrangements both (i) greatly aid the efficiency of the remaining calcu-
lations, and (ii) helped us to interpret and check the results. The calculations were
therefore easier to perform in Maple than in Mathematica, but, for this model, both
systems returned the same results, from the left and from the right, when evaluated as
floats. We are therefore confident that our scalar Green’s functions are exactly those
needed for the Lifshitz regularization process.

4 The Testing of Standard Lifshitz Regularization

Standard Lifshitz theory involves the subtraction of the contribution to the stress
that does not arise from material inhomogeneity. This is known to produce accurate
(i.e. empirically verifiable) results for the standard model where the gap between
the two plates is either empty or filled with a homogeneous dielectric. However, this
approach is known to result in an infinite Casimir force in models involving cylinders
and spheres [12]. In certain cases an alternative regularization has been found (but
not always agreed upon by the expert community), whilst for others the problem of
calculating a finite stress using any theoretical approach remains unsolved. For our
model (exponentially decaying permittivity for the central medium) we therefore
expect to either (i) use standard Lifshitz theory to calculate a finite Casimir force,
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Fig. 2 The integrand of the stress tensor obtained fromGreen’s functions regularized using Lifshitz
theory.We use the conventions that the physical constants� = c = 1. The central permittivitymodel
is ε(x) = 5 exp(−bx). As κ increases, the integrand converges to zero (left plot). As u increases,
the integrand converges to a nonzero constant, the value of which depends on the model parameter
b but not on a (right plot)

(ii) derive an infinite force, with the structure of the results indicating the possibility
of alternative regularization, or (iii) derive an infinite force, with no clues on how to
proceed.

Our results, displayed for illustrative parameter choices in Fig. 2, indicate that the
for one of the wave parameters (κ) we obtain convergence to a finite integrand, but
for the other (u) the integrand diverges. Unfortunately, we can no longer consider
κ and u to be the respective x and y wave components, since we have performed a
Fourier transformation. Further investigation of the divergence shows that the con-
stant nonzero value depends neither on a or x , but only on b (Fig. 3). Routine sim-
plification, (setting x = x ′) gives the divergence constant DC for the stress tensor
as a function of b:

DC ≈ −0.0036 b2, (19)

This divergent behavior leads to the prediction of an infinite Casimir force, which
is not a physically realistic outcome. However, the predictability of the amount
of divergence suggests that it may be possible to modify Lifshitz theory for this
model, so that a plausible finite Casimir force is predicted. Such as regularization
has recently been proposed [13], with the resulting Casimir forces calculated using
the methodology presented in this paper.
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Fig. 3 The integrand of the
stress tensor obtained from
Green’s functions regularized
using Lifshitz theory. We use
the conventions that the
physical constants � = c = 1.
The central permittivity
model is ε(x) = 5 exp(−bx).
Model parameters have been
set as a = 5 and b = 4/5. We
observe that for fixed b, the
nonzero convergence value is
the same for all choices of x
in the central region

5 Conclusions

Our findings suggest that the calculation of scalar Green’s functions for arbitrary
inhomogeneous media is at the boundary of the current capabilities of Maple and
Mathematica. Using Maple we can get satisfactory results for exactly one model,
and believe we could increase the number of such models if the modified Heun func-
tion implementation within Maple were to be improved. Mathematica is less useful
for these calculations, as no Heun function implementation is present in the current
system. However, we have successfully replicated Maple results using Mathemat-
ica, indicating that the lengthy and complex Mathematica expressions produced as
intermediate output are completely correct.

We are highly confident that our scalar Green’s function calculations are accu-
rate. In addition to the approach described in Sect. 3, we split the Green’s functions
into bare and scattered parts, allowing us to derive the specific solution of the bare
part using initial rather than boundary conditions. The results of these calculations
agree with those described in this paper for both systems, and hence also satisfy out
reciprocity constraints.

In Sects. 3 and 4 we discussed the first two stages of Casimir force prediction
using Lifshitz theory. The third stage, a complicated double integration over infinite
ranges, is, in general, not computable analytically in eitherMaple orMathematica for
inhomogeneous models. Instead, we substitute a realistically high finite value for the
infinities and obtain numeric approximations. For example, in the model presented
in Figs. 2 and 3 with u = 150 the integrand has a magnitude of 10−13, descreasing to
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zero with increasing u. Stage 4 is well within the capabilities of any decent computer
algebra system.

Future avenues of research include (i) the testing of any proposed alternative
regularization using ourmethodology of comparing results from two systems for both
the the right and left limits, (ii) the development of a combined numeric-symbolic
framework that agrees with the symbolically derived results presented here for the
exponential model, and which can be used to calculate Casimir forces for those
inhomogeneous model that lie beyond the current analytic capabilities of Maple and
Mathematica.
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Sparse Polynomial Interpolation by Variable
Shift in the Presence of Noise and Outliers
in the Evaluations

Brice Boyer, Matthew T. Comer and Erich L. Kaltofen

Abstract We compute approximate sparse polynomial models of the form f̃ (x) =∑t
j=1 c̃ j (x − s̃)e j to a function f (x), of which an approximation of the evaluation

f (ζ ) at any complex argument value ζ can be obtained. We assume that several of
the returned function evaluations f (ζ ) are perturbed not just by approximation/noise
errors but also by highly perturbed outliers. None of the c̃ j , s̃, e j and the location of
the outliers are known beforehand. We use a numerical version of an exact algorithm
by [4] together with a numerical version of the Reed–Solomon error correcting
coding algorithm.We also compare with a simpler approach based on root finding of
derivatives, while restricted to characteristic 0. In this preliminary report, we discuss
how some of the problems of numerical instability and ill-conditioning in the arising
optimization problems can be overcome. By way of experiments, we show that our
techniques can recover approximate sparse shifted polynomial models, provided that
there are few terms t , few outliers and that the sparse shift is relatively small.

Keywords Approximate function recovery · Numeric and exact polynomial inter-
polation · Outlier detection · Sparse representations

1 Introduction

Sparse polynomial interpolation algorithms, where the number of values required
depends on the number of nonzero terms in a chosen representation base rather than
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on the degree of the polynomial, originate from two sources. One is Prony’s 1795
algorithm for reconstructing an exponential sum [18] (see also [2]) and another is
Blahut’s exact sparse polynomial interpolation algorithm in the decoding phase of the
Reed–Solomon error correcting code. Both algorithms first determine the term struc-
ture via the generator (“error locator polynomial”) of the linear recurrent sequence of
the values f (ωi ), i = 0, 1, 2, . . ., of the sparse function f . Blahut’s algorithm has led
to a rich collection of exact sparse multivariate polynomial interpolation algorithms,
among them [1, 12, 13, 16, 20]. Prony’s algorithm suffers from numerical instability
unless randomization controls, with high probability and for functions of significant
sparsity, the conditioning of intermediate Hankel matrices. The probabilistic spectral
analysis in the GLL algorithm [5, 7] adapts the analysis of the exact early termina-
tion algorithm of [13]. The resulting numerical sparse interpolation algorithms have
recently had a high impact on medical signal processing; see the web site http://
smartcare.be of Wen-shin Lee and her collaborators. The GLL algorithm can be
generalized to multivariate polynomial and rational function recovery via Zippel’s
variable-by-variable sparse interpolation [14].

Already in the beginning days of symbolic computation, the choice of polynomial
basis was recognized: (x − 2)100 + 1 is a concise representation of a polynomial
with 101 terms in power basis representation. The discrete-continuous optimiza-
tion problem of computing the sparsest shift of an exact univariate polynomial
surprisingly has a polynomial-time solution [4, 9, 10]. Our subject is the com-
putation of an approximate interpolant that is sparsified through a shift. One can
interpret our algorithm as a numerical version of the exact sparsest shift algo-
rithms. As in least squares fitting, noise can be controlled by oversampling (cf. [8]).
The main difficulty is that the shift is unknown. Our numerical algorithm adapts
Algorithm UniSparsestShifts 〈one proj, two seq 〉 in [4] to compute
the shift: UniSparsestShifts 〈one proj, two seq 〉 carries the shift as a
symbolic variable z throughout the sparse interpolation algorithm. Since the coef-
ficients of the polynomials in the shift variable z are spoiled by noise, the GCD
step becomes an approximate polynomial GCD. A main question answered here is
whether the arising nonlinear optimization problems remain well-conditioned. Our
answer is a conditional yes: an optimal approximate shift is found among the argu-
ments of all local minima, but the number of local minima is high, preventing the
application of standard approximate GCD algorithms. Instead, we perform global
optimization, as a fallback, by computing all zeros of the gradient ideal. In addition,
our algorithm requires high precision floating point arithmetic.

In [3], we have introduced outlier values to the sparse interpolation problem.
There, outlier removal requires high oversampling, as the worst case of k-error
linear complexity is 2t (2k + 1), where t is the generator degree. However, ours
is only an upper bound for sparse interpolation. The situation is different for
Algorithm UniSparsestShifts 〈one proj, two seq 〉. Outliers can be
removed at the construction stage of the values containing the shift variable z, by a
numeric version of Blahut’s decoding algorithm for interpolation with errors. The
algorithm, numerical interpolation with outliers, is interesting in its own right. As we
will show in Sect. 3, the analysis in [3, 7] does not directly apply, as randomization

http://smartcare.be
http://smartcare.be


Sparse Polynomial Interpolation by Variable Shift in the Presence of Noise … 185

can only be applied with a limited choice of random evaluation points. We have
successfully tested it as a subroutine of our numerical sparsest shift algorithm. Note
that a few outliers per interpolation lead to a very small sparse interpolation problem
for error location, which can be handled successfully by sparse interpolation with
noisy values.

For the sake of comparison with this algorithm, we restrict to characteristic 0 and
compare a sparse shift representation to a Taylor expansion expressed at a point that
will make the representation sparse. This leads to finding a root common to many
derivatives. Combined with a weighted least squares fit for removing outliers and
tolerating noise, we manage to compare favorably to the main algorithm.

In Sect. 4, we present the preliminary experimental results that our algorithms
can recover sparse models even in the presence of substantial noise and outliers. See
Sect. 4.3 for our conclusions.

2 Computing Sparse Shifts

We introduce in this subsection an algorithm to compute a shifted sparse interpolant in
a numerical setting. The exact algorithm accepts outliers and uses early termination;
we adapt it to a numerical setting, considering noisy and erroneous data. It is based
on a numerical version of Blahut’s decoding algorithm.

2.1 Main Algorithm with Early Termination

The Early Termination Theorem in [13] is at the heart of computing a sparsest shift.
Let

g(x) =
t∑

j=1

c j xe j , c j �= 0 for all 1 ≤ j ≤ t,

be a t-sparse polynomial with coefficients in an integral domain D. Furthermore, let

αi (y) = g(yi ) ∈ D[y], for i = 1, 2, . . .

be evaluations of g at powers of an indeterminate y. Prony’s/Blahut’s theorem states
that the sequence of the αi is linearly generated by

∏t
j=1(λ− ye j ). Therefore, if one

considers the Hankel matrices

Hi (y) =

⎡
⎢⎢⎢⎣

α1 α2 . . . αi

α2 α3 . . . αi+1
...

...
. . .

...

αi αi+1 . . . α2i−1

⎤
⎥⎥⎥⎦ ∈ D[y]i×i , for i = 1, 2, . . .
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one must have det(Ht+1) = 0. Theorem 4 in [13] simply states that det(Hi ) �= 0 for
all 1 ≤ i ≤ t . One can replace the indeterminate y by a randomly sampled coefficient
domain element to have det(Hi ) �= 0 for all 1 ≤ i ≤ t with high probability (w.h.p.).

We seek an s in any extension of the field of K such that for a given f (x) ∈ K[x]
the polynomial f (x + s) = h(x) is t-sparse for a minimal t . Now consider g(x) =
f (x + z) ∈ D[x] with D = K[z]. We have Δi (y, z) = det(Hi ) ∈ (K[z])[y]; note
that αi (y, z) = g(yi ) = f (yi + z). By the above Theorem 4, the sparsest shift is an
s with Δt+1(y, s) = 0 for the smallest t . Algorithm UniSparsestShifts 〈one
proj, two seq 〉 computes s as

z + s divides (w.h.p.)GCD(Δt+1(y1, z),Δt+1(y2, z)),

where y1, y2 are random inK;

note that the first t with a nontrivial GCD is possibly smaller for the projection by
y = y1 and y = y2, but with low probability.

For numeric sparse interpolation with a shift, we assume that for f (x) ∈ C[x]we
can obtain

f (ζ ) + noise + outlier error, for any ζ ∈ C.

Here only a fraction of the values contain an outlier error, and noise is a random
perturbation of f (ζ ) by a relative error of 10−10, say. Our algorithm returns a sparse
interpolant g(x) that at all probed values ζ , save for a fraction that are removed as
outliers, approximates the returned f (ζ )+noise. Note that probing f at ζ twice may
produce a different noise and possibly an outlier.

We now give the outline of our Algorithm ApproxUniSparseShift 〈one
proj, sev seq 〉. Note that because of the approximate nature of the shifted
sparse interpolant, there is a trade-off between backward error and sparsity. Hence
we call our algorithm a “sparse shift” algorithm. As in Algorithm UniSparsest
Shifts 〈one proj, two seq 〉, for L complex values y = ω[1],ω[2], . . .,ω[L]
we compute δ̃i

[� ]
(z) = Δ̃i (ω

[� ], z) from α̃i (ω
[� ], z), � = 1, 2, . . . , L . Here the tilde

accent mark ˜ indicates that the values have noise in their scalars. As in [7], we
choose the ω[� ] to be different random roots of unity of prime order. Our algorithm
consists of the four following tasks:

Step 1: For � = 1, 2, . . . , L , compute the numeric complex polynomials α̃i (ω
[� ], z)

via a numeric version of the Blahut decoding algorithm; see Sect. 3. Step 1
is assumed to have removed all outliers.

Step 2: Compute the determinants δ̃i
[� ]

(z) of numeric polynomial Hankel matrices

H̃i
[� ]

(z) for all �, iterating Steps 3 and 4 on i . We perform the determinant
computations with twice the floating point precision as we use for Steps 1,
3 and 4.

Step 3: Determine the sparsity and an approximate shift. Note that the approxi-
mate shift s̃ is an approximate root of the polynomials δ̃i

[1]
(z), δ̃i

[2]
(z),

. . ., δ̃i
[L]

(z). Our method finds the smallest perturbation of the δ̃
[� ]
i (z) that
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produces a common root, simultaneously for all �. If that distance is large,
we assume that there is no common root and the dimension of the Hankel
matrix was too small. It might happen that an accurate shift is diagnosed too
early, but then the constructed model produces a worse backward error.
The 2-norm distance to the nearest polynomial system with a common root
s̃ is given by formula (see [11] and the literature cited there):

s̃ = arginf
ζ∈C

L∑
�=1

|̃δ[� ]
i (ζ )|2

/( d∑
m=0

|ζm |2
)
,

where d = max�{deg(̃δ[� ]
i (z))} and in all polynomials, any term coefficients

of zm , where m ∈ {0, 1, . . . , d}, can be deformed.
In our experiments in Sect. 4, we have only considered real shifts s̃ ∈ R. The
optimization problem is then

s̃real = arginf
ξ∈R

L∑
�=1

(
(�δ̃

[� ]
i )(ξ)2 + (�̃δ

[� ]
i )(ξ)2

)/( d∑
m=0

ξ2m
)
, (1)

where �δ̃
[� ]
i and �̃δ

[� ]
i are the real and imaginary parts of the polynomials

δ
[� ]
i , respectively. We find s̃real among the real roots of the numerator of the
derivative of the objective function in (1),

∂
∑

l((�δ̃
[� ]
i )(z)2 + (�̃δ

[� ]
i )(z)2)

∂z
×

( d∑
m=0

z2m
)

−
L∑

�=1

((�δ̃
[� ]
i )(z)2 + (�̃δ

[� ]
i )(z)2) ×

( d∑
m=0

(2m)z2m−1
)
, (2)

and choose the root that minimizes the objective function in (1).
We have observed that a larger number L of separate ω[� ] can improve
the accuracy of the optimal shift, at a cost of oversampling. We have also
observed that the optimization problem (1) and (2) has numerous local
optima, some near the optimal approximate shift, which prevents the use
of any local approximate GCD algorithm.

Step 4: With the approximate sparsest shift s̃, complete the sparse polynomial recon-
struction, as in [6] and [3, Sect. 6].
One reuses the evaluations from previous steps, having removed those that
were declared outliers in Step 1.

In the remainder of this section, we restrict ourselves to characteristic 0. We now
describe a more naïve approach for the same problem. Some early termination can
also be achieved here. Unlike the main algorithm, this one cannot recover errors in
the exact setting.
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2.2 Using Taylor Expansions

Let f (x) = ∑t
i=1 ci (x − s)ei be a t-sparse shifted polynomial of degree d. We can

see this expression as a Taylor expansion of f at x = s:

f (x) =
∞∑

i=0

(
∂ i f/∂xi

)
(s)

i ! (x − s)i .

A sparsest shift is then an s that is a root of the maximum number of polynomials in
the list S = {(

∂ i f/∂xi
)
(x) | i ∈ {0, . . . , d − 1}}.

Remark 1 It is stated in Theorem 1 in [17] that if t ≤ (d + 1)/2 then the shift s is
unique and rational. Moreover, the proof gives the stronger statement: for any other
shift ŝ, with a sparsity t̂ , one has t̂ > d + 1 − t .

This statement is not true in characteristic p �= 0: for instance, consider the two
shifts −1 and 0 in the polynomial (x + 1)p = x p + 1 mod p.

Lemma 1 Let S2t be the list of the last 2t elements in S. The root that zeros the
maximum number of polynomials in S2t is the sparsest shift.

Proof We prove this by contradiction. Assume a shift s appears r times in S2t and
another shift ŝ appears r̂ times. We first notice that the number of elements in S for
which ŝ is a root, and the number of elements for which it is not a root, sum to d +1.
So we have the inequality r̂ + t̂ ≤ d + 1.

Suppose now that r̂ ≥ r . The sparsity of f in the s-shifted basis being t , the
number of elements in S2t that do not have ŝ as a root is 2t − r̂ ≤ t , thus r̂ ≥ t . On
the other hand, t̂ > d+1−t . Summing these last two inequalities yields r̂ + t̂ > d+1,
which is impossible. �

Early termination can be achieved; indeed, under certain circumstances, one need
not compute all 2t derivatives. For example, suppose that the degree (d − 1) term of
f in the sparsest shifted basis is missing and try s̄, the root of

(
∂d−1 f/∂xd−1

)
(x),

as a shift; this is the Tschirnhaus transformation (originally introduced for solving
cubic equations). If the “back-shifted” polynomial f (x + s̄) has fewer than (d +1)/2
terms, then by Remark 1, s̄ is the unique sparsest shift. We can extend this technique
by trying all rational roots in the list Sτ for a small τ .

Now we state the naïve algorithm based on the above, then we modify it for a
numeric setting. Consider first the following exact algorithm:

Step 1: Compute the exact interpolant using D + 1 calls to the black box, where
D ≥ d.

Step 2: Try early termination on Sτ , for a small τ , and return if successful.
Step 3: Compute all remaining derivatives in Sθ , for θ = min(2T, D).
Step 4: The sparsest shift is the rational root s that zeros the most derivatives in Sθ .
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Step 5: The “back-shifted” polynomial f (x + s) gives the support for the sparse
polynomial.

This algorithm can be easily translated to a numerical one, based on least squares
fitting:

Step 1: Compute a degree-D weighted least squares fit with O(D+E) calls to the
black box.

Step 2: Remove outliers by comparing relative errors, then update the fit.
Step 3: Compute the θ derivatives in Sθ (possibly terminate early and proceed to

Step 6).
Step 4: The approximate root s that zeros most derivatives is the sparsest shift.
Step 5: The polynomial f (x + s) gives the support for the sparse polynomial.
Step 6: A Newton iteration can be conducted on the result of Step 5 to increase

accuracy.

2.3 Discussion on the Numeric Algorithm

Step 4 is sensitive to noise and requires more sampling from Step 1. The approximate
roots are determined to be equal up to a certain tolerance (for instance 10−2). In
Steps 5 and 6, the coefficients near 0 may be forced to 0 (which would accelerate
convergence in Step 6). Step 6 is conducted on the function f (m′

1, . . . , m′
k, s′) =∑k

i=1 m′
i (x − s′)hi , with initial condition from Step 5, random samples x j and noisy

evaluations f (x j ); the outliers are removed by checking relative errors. If the random
samples x j are not only taken from data in Step 1, then oversampling will help “de-
noising” the outputs.

Remark 2 It is unknown to us, in the exact algorithm, how to use a number of calls
to the black box in Step 1 depending only on T , in order to compute the derivatives.
However, it is reasonable to expose the following:we are only interested in the higher-
degree terms of f . Consider the Euclidean division f (x) = Q(x)xq + R(x); then,
with high numeric precision and big random xi , we can recover an approximation of
Q by a least squares fit on samples f (xi )/xq

i ≈ Q(xi ).

3 Numeric Interpolation with Outliers

Blahut’s decoding algorithm for Reed/Solomon codes is based on sparse interpola-
tion. Suppose one has values of

f (x) = cd−1xd−1 + · · · + c0 ∈ K[x], deg( f ) ≤ d − 1

at powers ωi : ai = f (ωi ), i = 0, 1, 2, . . . , n − 1, where n = d + 2E . Furthermore
suppose for k ≤ E , where the upper bound E is known, those values are spoiled by
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k outlier errors: bi = ai + a′
i , with a′

e j
�= 0 exactly at the indices 0 ≤ e1 < e2 <

· · · < ek ≤ d + 2E − 1. If ω is an nth = (d + 2E)th primitive root of unity, then the
n × n Fourier (Vandermonde) matrix V (ω) = [ωi ·m]0≤i,m≤n−1 satisfies

W = V (ω)−1 = 1

n
V (ω−1) where ω−1 = ωn−1, (3)

hence

W b = W a + W a′ =
[

c
0

]
+ 1

n
V (ω−1)a′. (4)

The last 2E entries in W b allow sparse interpolation of g(x) = ∑k
j=1 a′

e j
xe j :

c′
l = (V (ω−1)b )l = g(ω−l) for d ≤ l ≤ d + 2E − 1.

Note that all vectors are indexed 0, 1, . . . , n − 1, e.g.,

a =
⎡
⎢⎣

a0
...

an−1

⎤
⎥⎦ and b =

⎡
⎢⎣

b0
...

bn−1

⎤
⎥⎦ .

By our convention, primed ′ quantities contain outlier information. Thus, as in
Sect. 2, the sequence c′

d , c′
d+1, . . . is linearly generated by (λ) = ∏k

j=1(λ−ω−e j )

( called the “error locator polynomial”), which is a squarefree polynomial by virtue
of the primitivity of ω. One may also compute  from the reverse sequence
c′

d+2E−1, c′
d+2E−2, . . ., which is linearly generated by the reciprocal polynomial∏k

j=1(λ − ωe j ).
Not knowing k, the probabilistic analysis of early termination as in [13] and Sect. 2

does not directly apply, as the choice ofω is restricted to a primitive n’th root of unity.
Furthermore, the locations e j of the outlier errors a′

e j
may depend on the evaluation

points ωi . Blahut’s decoding algorithm processes all 2E values c′
l .

If one has εi in each evaluation, namely b̃i = ai + a′
i + εi , where |ae j −

a′
e j

|/|ae j |  0 (one may assume that εe j = 0), then

W b̃ =
[

c
0

]
+ 1

n
V (ω−1)a′ + 1

n
V (ω−1)ε,

so

c̃′
l = (V (ω−1)b̃ )l = g(ω−l)+(V (ω−1)ε )l = g(ω−l)+ε̄l for d ≤ l ≤ d+2E−1,

where |ε̄l | ≤ |ε1| + · · · + |εn|. Again, there is an immediate trade-off between
noise and outliers: at what magnitude does noise εi become an outlier a′

i? For now
we assume that the relative error in noise is small, say 10−10, while the relative
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error in outliers is big, say 105. The recovery of an approximate interpolant g̃(x) =∑k
j=1 ã′

e j
xe j for the evaluations c̃′

l hinges on the condition number of the k × k
Hankel matrix:

H̃ ′
k =

⎡
⎢⎢⎢⎣

c̃′
d c̃′

d+1 . . . c̃′
d+k−1

c̃′
d+1 c̃′

d+2 . . . c̃′
d+k

...
...

. . .
...

c̃′
d+k−1 c̃′

d+k . . . c̃′
d+2k−2

⎤
⎥⎥⎥⎦ .

If the matrix is well-conditioned, the error locations e j can be determined from
the approximate linear generator Λ̃ as in the GLL algorithm [3, 7]. As is shown there,
the conditioning is bounded by 1/|ωeu − ωev |. Large values there are prevented by
randomizing ω, as the term exponents e j are fixed for any evaluation. Using an ωr

instead of ω here, where GCD(r, n) = 1, allows redistributing of the ωe j , but the e j

may then become different.
A special case is k = 1: In that case

H̃1
′ = [̃c′

d ] = [g(ω−d) + ε̄d ] = [a′
e1ω

−de1 + ε̄d ],

which, by our assumption on a large outlier a′
e1 and small noise, is a well-conditioned

matrix. This is the case we tested in Sect. 4.

Remark 3 When the relative difference between themagnitudes of the outlier a′
e1 and

noise ε0, ε1, . . . , εd+2E−1 is not so pronounced, erroneous recovery of the exponent
e1 can occur: we have (̃c′

d , c̃′
d+1, . . . , c̃′

d+2E−1) = (̃c′
d , c̃′

d+1), so the linear generator
Λ̃(λ) = λ − ω−e1 can be approximated by computing

c̃′
d+1

c̃′
d

= a′
e1ω

−(d+1)e1 + ε̄d+1

a′
e1ω

−de1 + ε̄d
= ω−e1 + ε̄d+1 − ω−e1 ε̄d

a′
e1ω

−de1 + ε̄d
= ω̃. (5)

For this reason, we define a bound εnoise ≥ maxi |εi | and assume nεnoise < |a′
e1 | so

that

|ω̃ − ω−e1 | =
∣∣∣∣∣
ε̄d+1 − ω−e1 ε̄d

a′
e1ω

−de1 + ε̄d

∣∣∣∣∣ ≤ |ε̄d+1| + |ε̄d |
|a′

e1 | − |ε̄d | ≤ 2nεnoise

|a′
e1 | − nεnoise

. (6)

By the distribution of complex roots of unity (of order n) on the unit circle, we
have that |ωs+1−ωs | = |ω−1| = 2 sin(π /n) for any integer s. Thus, |ω̃−ω−e1 | <

sin(π /n) will guarantee |ω̃ − ω−e1 | < |ω̃ − ωs | for any s �≡ −e1 (mod n).
Combining this fact with (6) above, we arrive at the sufficient condition

|ω̃ − ω−e1 | ≤ 2nεnoise

|a′
e1 | − nεnoise

< sin(π /n) ⇔ nεnoise < |a′
e1 | · sin(π /n)

2 + sin(π /n)
.

(7)
Table1 shows some experiments of decreasing Θ

[abs]
outlier for a fixed ε

[abs]
noise. Throughout

the experiment, we have f (x) = 87 x11 − 56 x10 − 62 x8 + 97 x7 − 73 x4 − 4 x3 −
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83 x − 10 and d − 1 = 11, evaluating at powers of the order n = d + 2E = 14
complex root of unity ω = exp(2π i /14). We add to each evaluation noise, which is
implemented as a complex number with polar modulus uniformly chosen at random
in the range [0, ε[abs]noise] and polar argument uniformly chosen at random in the range
[0, 2π]. An absolute outlier value is chosen the same way, but the modulus is in
the range [Θ [abs]

outlier, 2Θ
[abs]
outlier]; the exponent e1 is also chosen uniformly at random

from {0, 1, . . . , d + 2E − 1 = 13}. Each row of the table corresponds to 1,000
realizations of the random variable that generates noise and outliers, re-seeding the
random number generator with each run. All computations were performed with 15
floating point digits of precision. In the table, Cn = sin(π /n)/

(
2 + sin(π /n)

)
.

The column “% Circle” shows the percentage of runs where |ω̃ − ω−e1 | <

sin(π /n); “% Sector” shows the percentage of runs where |ω̃ − ω−e1 | ≥ sin(π /n),
but |ω̃−ω−e1 | < |ω̃−ωs | for any s �≡ −e1 (mod n); “%Wrong” shows the percent-
age of the remainder of the runs. When the ratio ε

[abs]
noise/Θ

[abs]
outlier is either sufficiently

large or small, one can see from (5) that the value of ω̃ is determined mainly by the
value of either a′

e1 or ε̄d+1/ε̄d , respectively; this corresponds with the first and last
rows of each section of Table1, where ε̄d+1/ε̄d is far from ω−e1 in general.

However, between the extreme values of ω̃, more interesting behavior can occur.
Figure1 shows two individual algorithm runs of the table rows for ε

[abs]
noise = 1. Each

Table 1 Experiments of varying outlier error in the presence of noise

ε
[abs]
noise Θ

[abs]
outlier

nε
[abs]
noise

CnΘ
[abs]
outlier

nε
[abs]
noise

Θ
[abs]
outlier

% Circle % Sector % Wrong

2.5e−01 8.0e+00 4.4e+00 4.4e−01 99.7 0.3 0.0

2.5e−01 4.0e+00 8.7e+00 8.8e−01 92.4 5.0 2.6

2.5e−01 2.0e+00 1.7e+01 1.8e+00 47.5 27.0 25.5

2.5e−01 1.0e+00 3.5e+01 3.5e+00 17.0 26.1 56.9

2.5e−01 5.0e−01 7.0e+01 7.0e+00 4.2 15.0 80.8

2.5e−01 2.5e−01 1.4e+02 1.4e+01 1.8 9.2 89.0

5.0e−01 1.6e+01 4.4e+00 4.4e−01 99.7 0.3 0.0

5.0e−01 8.0e+00 8.7e+00 8.8e−01 92.4 5.0 2.6

5.0e−01 4.0e+00 1.7e+01 1.8e+00 47.5 27.0 25.5

5.0e−01 2.0e+00 3.5e+01 3.5e+00 17.0 26.1 56.9

5.0e−01 1.0e+00 7.0e+01 7.0e+00 4.2 15.0 80.8

5.0e−01 5.0e−01 1.4e+02 1.4e+01 1.8 9.2 89.0

1.0e+00 3.2e+01 4.4e+00 4.4e−01 99.7 0.3 0.0

1.0e+00 1.6e+01 8.7e+00 8.8e−01 92.4 5.0 2.6

1.0e+00 8.0e+00 1.7e+01 1.8e+00 47.5 27.0 25.5

1.0e+00 4.0e+00 3.5e+01 3.5e+00 17.0 26.1 56.9

1.0e+00 2.0e+00 7.0e+01 7.0e+00 4.2 15.0 80.8

1.0e+00 1.0e+00 1.4e+02 1.4e+01 1.8 9.2 89.0
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(a) (b)

Fig. 1 Examples of varying outlier relative error (labeled as percentages). Noise relative error is
approximately 0.40%

power of ω is represented by a “×”; the sphere of radius sin(π /n) is drawn around
each power of ω, as well as the corresponding (interior) sector; the solid square
denotes ω−e1 , while the solid circle denotes ε̄d+1/ε̄d ; a complex outlier a′

e1 = ξ is
fixed, then the function ω̃(tξ) (for t ∈ [2−7, 27]) is plotted as a curve, with several
points whose label is the relative error of tξ compared to ω−e1 . In Fig. 1a, outliers
of relative error less than 6% cause ω̃ to approach 0, so that it becomes infeasible
to compute a reliable guess for e1; here, noise constitutes approximately a 0.38%
relative error. By contrast, Fig. 1b shows an example where nearly any outlier relative
error greater than 0.375% would result in |ω̃ − ωs | < sin(π /n) for one of three
values of s (mod n), so that the “nearestωs neighbor” criterion is no longer reliable;
here, noise constitutes approximately a 0.40% relative error.

Decoding the interpolant W b can also be done via the extended Euclidean algo-
rithm for any ω with ωeu �= ωev : the Berlekamp–Welch algorithm; see [15]. We will
study the numerical properties of variants based on approximate GCD techniques in
follow-up work.

4 Implementation and Experiments of NumericSparsest
Shift

4.1 Illustrative Examples for the Main Algorithm

We reversely engineer a noisy black box for

f1(x) = 2 (x − 7)3 + 3 (x − 7)6 − 7 (x − 7)10

= −7x10 + 490x9 − 15435x8 + 288120x7 − 3529467x6
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+ 29647422x5 − 172941825x4 + 691755542x3 − 1815804312x2

+ 2824450258x − 1976974482. (8)

Our algorithm computes with a precision of 100 floating-point digits (except in
Step 2, where the precision is doubled). To each evaluation, we add random noise
causing a relative error of 1×10−28. For each interpolation problem of a given degree
i in Step 1, we add one outlier error of relative error 5. We use L = 3 different 17th
roots of unity ω[� ].

Step 1 correctly locates each of the outliers in its 21 = 3 × 7 interpolation calls.
The relative 2-norm differences

‖δ[� ]
4 (z) − δ̃

[� ]
4 (z)‖2/‖δ[� ]

4 (z)‖2
of the coefficient vectors of the 4 × 4 matrix determinants after Step 2 are 2.126 ×
10−27, 2.681×10−27, 6.596×10−27 for � = 1, 2, 3 all within the added noise (after
outlier removal).

The polynomial (2) in Step 3 has 4 real roots, and its minimum objective function
value (1) is at s̃ = 6.9989162726 with an objective function value of 2.028×10−57,
as opposed to the exact case (without noise) of 2.280× 10−71 at s = 7 (there is one
more root with much larger objective value).

The sparse model recovered from s̃ produces the correct term exponents e1 = 3,
e2 = 6, and e3 = 10, and the least squares fit at the non-erroneous 252 = 273 − 21
prior black box evaluations produces the approximate model for (8),

2.009369(x − s̃)3 + 2.998102(x − s̃)6 − 6.997705(x − s̃)10, s̃ = 6.9989162726.

The relative 2-norm backward error of the model (with respect to the noisy black
box evaluations) is 1.596557× 10−3, while that of f1 itself is 5.774667× 10−28. A
similar model can be produced with 90 floating-point digits, but not with 80.

When doubling the noise to relative error 2×10−28 with 100 floating-point digits,
the computed model is

2.036489(x − s̃)3 + 2.992182(x − s̃)6 − 6.991277(x − s̃)10, s̃ = 6.9957389337,

with relative 2-normbackward error 6.222096×10−3, compared to 1.154933×10−27

for f1. Even with relative noise of 4 × 10−28, the computed model is

2.125876(x − s̃)3 + 2.967832(x − s̃)6 − 6.972579(x − s̃)10, s̃ = 6.9848087178,

with relative 2-normbackward error 2.151040×10−2, compared to 2.309866×10−27

for f1. At relative noise of 8 × 10−28, the algorithm fails to determine a sparse
approximant, even when increasing the number of sequences to L = 10.
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Such failure is deceptive. The lack of sparsity, namely 3 of amaximumof 11 terms,
allows for denser models that provide fits. In addition, a shift of 7 produces large
evaluations at roots of unity, as indicated in the power basis representation of (8).
Making the shift smaller and the degree larger, and considering the polynomial

f2(x) = 2 (x − 1.55371)3 + 3 (x − 1.55371)6 − 7 (x − 1.55371)15,

we can recover from L = 3 sequences, with a relative noise in the evaluations of
1 × 10−14, and again 1 outlier per interpolation, the approximate model

1.999718(x − s̃)3 + 2.998609(x − s̃)6 − 7.000117(x − s̃)15, s̃ = 1.5537114392,

with relative 2-norm backward error 8.000329 × 10−1, compared to 8 × 10−1 (to 7
digits) for f1 itself.

For this particular example, we see a case of the effect mentioned in [3], where
the sparse model can fit the noisy evaluations nearly as well (and sometimes better)
than the exact black box.

Increasing the noise still, another model with s̃ = 1.5537013193 can be recovered
with relative noise of 2 × 10−13, where now the model and f1 relative 2-norm
backward errors are 5.180450 × 10−2 and 1.108027 × 10−11, respectively. In this
case, a different choice of L = 3 different 17th roots of unity was needed in order to
compute a sparse model. Both computations used 357 black box evaluations.

4.2 Comparison with the Naïve Algorithm

For the examples given above, the naïve algorithm recovers the sparsest representa-
tion with noise such as 1×10−10 and precision 20 floating point digits. The precision
obtained is close to the level of noise (1×10−8 relative error for the shift and 2×10−10

maximum relative error on the coefficients in the shifted basis). The number of calls
to the black box is below 170.

For a more demanding example such as a degree 55 polynomial with sparsity 8
and a shift between 1 and 2, a level of relative noise 1 × 10−28 is tolerable with
precision 200 digits (as in an example above). However, the number of calls was
above 600 to get a relative error less than 1 × 10−20 on shift and coefficients. Due
to the numerical optimization in Step 3, this is unattainable with the main algorithm,
for the moment. The Tschirnhaus early termination was not used yet.

Besides, with more calls to the black box during the Newton iterations, we can
further increase the precision on the shift and coefficients, this may however be
considered as de-noising.

We can also run experiments on a black box of the type P + Qε where P is a
polynomial with a sparse shift representation and Qε is a dense polynomial of same
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degree with coefficients bounded by ε—this may be viewed as perturbation on the
coefficients. The algorithms described perform well, however they do not remove
outliers if they are introduced as an erroneous term.

4.3 Discussion

Our preliminary experiments lead to the following conclusions: Our correction of
1 outlier per interpolation with Blahut’s numerical decoding is highly numerically
reliable. The optimization problem in Step 3 requires substantial precision for its
real root finding, and is numerically sensitive when the shift is large and there is
noise in the evaluations. Our main algorithm works well without noise and outliers,
or in high precision with noise when the shift is small and the sparsity is high. We
plan to work on a more thorough experimental analysis, including the case of two or
more outliers per interpolation. The naïve algorithm gives motivation and potential
for improvements to the main one. On the other hand, the number of calls to the
black box in the former could be reduced.
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An Incremental Algorithm for Computing
Cylindrical Algebraic Decompositions

Changbo Chen and Marc Moreno Maza

Abstract In this paper, we propose an incremental algorithm for computing cylin-
drical algebraic decompositions. The algorithm consists of two parts: computing a
complex cylindrical tree and refining this complex tree into a cylindrical tree in real
space. The incrementality comes from the first part of the algorithm, where a com-
plex cylindrical tree is constructed by refining a previous complex cylindrical tree
with a polynomial constraint. We have implemented our algorithm in Maple. The
experimentation shows that the proposed algorithm outperforms existing ones for
many examples taken from the literature.

1 Introduction

Cylindrical algebraic decomposition (CAD) is a fundamental tool in real algebraic
geometry. Itwas invented byCollins in 1973 [1] for solving real quantifier elimination
(QE) problems. In the last 40 years, following Collins’ original projection-lifting
scheme, many enhancements have been performed in order to ameliorate the
efficiency of CAD construction, including adjacency and clustering techniques [2],
improved projection methods [3–6], partially built CADs [7–9], improved stack
construction [10], efficient projection orders [11], making use of equational
constraints [12–15], and so on. Moreover, CADs can be computed by several soft-
ware packages, such as Qepcad [16, 17], Mathematica [9, 18], Redlog [19], and
SyNRAC [20].

In [21], together with Xia and Yang, we presented a different way of computing
CADs, based on triangular decomposition of polynomial systems. In that paper, we
introduced the concept of cylindrical decomposition of the complex space (CCD),
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from which a CAD can be easily derived. The concept of CCD is reviewed in Sect. 2.
In the rest of the present paper, we use TCAD to denote CAD based on triangular
decompositions while PCAD refers to CAD based on Collins’ projection-lifting
scheme.

The CCD part of TCAD can be seen as an enhanced projection phase of PCAD.
However, w.r.t. PCAD (especially when the projection operator is using Collins’ [1]
or Hong’s [5]), the “case discussion” scheme of TCAD avoids unnecessary com-
putations that projection operator performs on unrelated branches. In addition, one
observes that the reason why McCallum’s [22] (including Brown’s [3]) projection
operators may fail for some examples is due to the fact that they are missing a “case
discussion” scheme. McCallum’s operator relies on the assumption that generically
all coefficients of a polynomial1 will not vanish simultaneously above a positive-
dimensional component. If this assumption fails, then this operator is replaced by
Collins-Hong projection operator [5]. The fact that all coefficients of a polynomial
could vanish simultaneously above some component is never a problem in TCAD.
For this reason, we view it as an improvement of previous works.

Trying to use sophisticated algebraic elimination techniques to improve CAD
constructions is not a new idea. In the papers [23, 24], the authors investigated how
to use Gröbner bases to preprocess the input system in order to make the subsequent
CAD computations more efficient. The main difference between these two works
and the work of [21] is that the former approach is about preprocessing input for
CAD while the latter one presents a different way of constructing CADs.

In [21], the focus was on how to apply triangular decomposition techniques to
compute CADs. To this end, lots of existing high-level routines were used to facilitate
explaining ideas. These high-level routines involve many black boxes, which hide
many unnecessary or redundant computations. As a result, the computation time of
TCAD is much higher than that of PCAD, although TCAD computes usually less
cells as noted in [25].

In the present paper, we abandon those black boxes and compute TCAD from
scratch. It turns out that the key solution for avoiding redundant computations is
to compute CCD in an incremental manner. The same motivation and a similar
strategy appeared in [26, 27] in the context of triangular decomposition of algebraic
sets. The core operation of such an incremental algorithm is an Intersect operation,
which refines an existing cylindrical tree w.r.t. a polynomial. We dedicate Sect. 4 to
presenting a complete incremental algorithm for computing TCAD by means of this
Intersect operation.

In [28], the author presented an algorithm for computing with semi-algebraic sets
represented by cylindrical algebraic formulas. That algorithm also allows computing
CAD in an incremental manner. The underlying technique is based on the projection-
lifting scheme where one first computes projection factor sets by a global projection
operator. In contrast, the incremental algorithm presented here, is conducted by
refining different branches of an existing tree via GCD computations.

1 More precisely, a multivariate polynomial regarded as a univariate one with respect to its main
variable.
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This Intersect operation can systematically take advantage of equational
constraints. The problem of making use of equational constraints in CAD has been
studied by many researchers [12–15]. In Sect. 6, we provide a detailed discussion on
how we solve this problem.

When applied to a polynomial system having finitelymany complex solutions, our
incremental CCD algorithm specializes into computing a triangular decomposition,
say D, such that the zero sets of the output regular chains are disjoint. Moreover,
such a decomposition has no critical pairs in the sense of the equiprojectable decom-
position algorithm of [29]. This implies that only the “Merge” part of the “Split and
Merge” algorithm of [29] is required for turning D into an equiprojectable decom-
position (which is a canonical representation of the input variety, once the variable
order is fixed). Consequently, one could hope extending the notion of equiprojectable
decomposition (and related algorithms) to positive dimension by means of our
incremental CCD algorithm. This perspective can be seen as an indirect applica-
tion of CAD to triangular decomposition.

As we shall review in Sect. 2, a CCD is encoded by a tree data-structure. Then
each path of this tree is a simple system in the sense of [30, 31]. So the work
presented here can also be used to compute a Thomas decomposition of a polynomial
system [31, 32]. Moreover, the decomposition we compute is not only disjoint, but
also cylindrically arranged.

The complexity of our algorithm cannot be better than doubly exponential in the
number of variables [33]. So the motivation of our work is to suggest possible ways
to improve the practical applicability of CAD. The benchmark in Sect. 7 shows that
TCAD outperforms Qepcad [16, 17] and Mathematica [9] for many well-known
examples. The algorithm presented in this paper can support QE. We have realized a
preliminary implementation of an algorithm for doing QE via TCAD. We will report
on this work in a future paper.

2 Complex Cylindrical Tree

Throughout this paper, we consider a field k of characteristic zero and denote by
K the algebraic closure of k. Let k[x] be the polynomial ring over the field k with
ordered variables x = x1 < · · · < xn . Let p ∈ k[x] be a nonconstant polynomial
and x ∈ x be a variable. We denote by deg(p, x) and lc(p, x) the degree and the
leading coefficient of p w.r.t. x . The greatest variable appearing in p is called themain
variable, denoted by mvar(p). The leading coefficient, the degree, the reductum of
p w.r.t. mvar(p) are called the initial, the main degree, the tail of p; they are denoted
by init(p), mdeg(p), tail(p) respectively. The integer k such that xk = mvar(p)

is called the level of the polynomial p. We denote by der(p) the derivative of p
w.r.t. mvar(p). The notions presented below were introduced in [21] and they are
illustrated at the beginning of Sect. 3.
Separation Let C be a subset of Kn−1 and P ⊂ k[x1, . . . , xn−1, xn] be a finite set
of level n polynomials. We say that P separates above C if for each α ∈ C :
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• for each p ∈ P , the polynomial init(p) does not vanish at α,
• the polynomials p(α, xn) ∈ K[xn], for all p ∈ P , are squarefree and coprime.

Note that this definition allows C to be a semi-algebraic set, see Theorem 3.
Cylindrical Decomposition By induction on n, we define the notion of a cylindrical
decomposition of Kn together with that of the tree associated with a cylindrical
decomposition of Kn . Forn = 1, a cylindrical decompositionofK is afinite collection
of sets D = {D1, . . . , Dr+1}, where either r = 0 and D1 = K, or r > 0 and there
exists r nonconstant coprime squarefree polynomials p1, . . . , pr of k[x1] such that
for 1 ≤ i ≤ r we have Di = {x1 ∈ K | pi (x1) = 0}, and Dr+1 = {x1 ∈ K |
p1(x1) . . . pr (x1) �= 0}. Note that the Di ’s, for all 1 ≤ i ≤ r + 1, form a partition of
K. The tree associated with D is a rooted tree whose nodes, other than the root, are
D1, . . . , Dr , Dr+1 which all are leaves and children of the root. Now let n > 1, and
let D′ = {D1, . . . , Ds} be any cylindrical decomposition of Kn−1. For each Di , let
ri be a non-negative integer and let {pi,1, . . . , pi,ri } be a set of polynomials which
separates above Di . If ri = 0, set Di,1 = Di × K. If ri > 0, set

Di, j = {(α, xn) ∈ Kn | α ∈ Di and pi, j (α, xn) = 0},

for 1 ≤ j ≤ ri and set

Di,ri +1 =
⎧⎨
⎩(α, xn) ∈ Kn | α ∈ Di and

⎛
⎝ ri∏

j=1

pi, j (α, xn)

⎞
⎠ �= 0

⎫⎬
⎭ .

The collection D = {Di, j | 1 ≤ i ≤ s, 1 ≤ j ≤ ri + 1} is called a cylindrical
decomposition ofKn . The sets Di, j are called the cells ofD. If T ′ is the tree associated
with D′ then the tree T associated with D is defined as follows. For each 1 ≤ i ≤ s,
the set Di is a leaf in T ′ which has all Di, j ’s for children in T ; thus the Di, j ’s are
the leaves of T .

Note that each node N of T is either associated with no constraints, or associated
with a polynomial constraint, which itself is either an equation or an inequation. Note
also that, if the level of the polynomial defining the constraint at N is �, then � is the
length of a path from N to the root. Moreover, the polynomial constraints along a
path from the root to a leaf form a polynomial system called a cylindrical system of
k[x1, . . . , xn] induced by T . Let S be such a cylindrical system. We denote by Z(S)

the zero set of S. Therefore, each cell of D is the zero set of a cylindrical system
induced by T .

Let Γ be a subtree of T such that the root of Γ is that of T . Then, we call Γ a
cylindrical tree of k[x1, . . . , xn] induced by T . This cylindrical tree Γ is said partial
if it admits a nonleaf node N such that the zero set of the constraint of N is not equal
to the union of the zero sets of the constraints of the children of N . If Γ is not partial,
then it is called complete.

In the algorithms of Sect. 4, the cylindrical tree is an essential data structure.
Section3 discusses the main properties and operations on this data structure.
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x = 0 x + 1 = 0

y + 1 = 0 y = 0 y2 + x = 0

y = 0 y2 + y �= 0 y + 1 = 0 y3 − y �= 0 y2 + y = 0

(y2 + x)(y2 + y) �= 0

x2 + x �= 0

y − 1 = 0

Fig. 1 An F := {y2 + x, y2 + y} invariant complex cylindrical tree

Let F = { f1, . . . , fs} be a finite set of polynomials of k[x1 < · · · < xn].
A cylindrical decomposition D of Kn is called F-invariant if for any given cell D
of D and any given polynomial f ∈ F , either f vanishes at all points of D or f
vanishes at no points of D.

Example 1 Let F := {y2 + x, y2 + y}. An F-invariant cylindrical decomposition
of C2 is illustrated by Fig. 1 .

We observe that every cylindrical system induced by a cylindrical tree is a simple
system, as defined by Wang in [31]. This notion was first introduced by Thomas in
1937 [30]. Simple systems have many nice properties. For example, if [A, B] is a
simple system, then the pair [A,

∏
p∈B p] is a squarefree regular system, as defined

by Wang in [31, 34].
Let Γ be a cylindrical system of k[x] and let p be a polynomial of k[x]. We say

that p is invertible modulo Γ if for any α ∈ Z(Γ ), we have p(α) �= 0. We say
that p is zero modulo Γ if for any α ∈ Z(Γ ), we have p(α) = 0. We say that p is
sign invariant above Γ if p is either zero or invertible modulo Γ . Let q be another
polynomial of k[x]. We say that p = q modulo Γ if Z(Γ ) ∩ Z(p) = Z(Γ ) ∩ Z(q).
Greatest Common Divisor (GCD)

Let p and f be two level n polynomials in k[x]. Let Γ be a cylindrical system of
k[x1, . . . , xn−1]. For any u ∈ Kn−1 of Z(Γ ), assume at least one of lc(p, xn)(u) and
lc( f, xn)(u) is not zero. A polynomial g ∈ k[x] is called a GCD of p and f modulo
Γ if for any u ∈ Kn−1 of Z(Γ ),

• g(u) is a GCD of p(u) and f (u) in K[xn], and
• we have lc(g, xn)(u) �= 0.

Let dp = deg(p, xn), d f = deg( f, xn). Recall that we assume dp, d f ≥ 1. Let λ =
min (dp, d f ). Let Γ be a cylindrical system of k[x1, . . . , xn−1]. Let S0, . . . , Sλ−1 be
the subresultant polynomials [35, 36] of p and f w.r.t. xn . Let si = coeff(Si , xi

n)

be the principle subresultant coefficient of Si , for 0 ≤ i ≤ λ − 1. If dp ≥ d f , we
define Sλ = f , Sλ+1 = p, sλ = init( f ), and sλ+1 = init(p). If dp < d f , we define
Sλ = p, Sλ+1 = f , sλ = init(p), and sλ+1 = init( f ).
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Theorem 1 Let j be an integer, with 1 ≤ j ≤ λ + 1, such that s j is invertible
modulo Γ and such that for any 0 ≤ i < j , we have si = 0moduloΓ . Then S j is a
GCD of p and f modulo Γ .

Proof It can be easily proved by the specialization property of subresultant chains.
In particular, it is a direct corollary of Theorem 5 in [37].

3 Data Structure for Cylindrical Decomposition

In this section, we describe the data structures that are used by the algorithms pre-
sented in this paper for computing cylindrical decompositions. To understand the
motivation of our algorithm design, let us consider a simple example with n = 2
variables. Let a, b be two coprime squarefree nonconstant univariate polynomials in
k[x1]. Observe that L := k[x1]/〈a b〉 is a direct product of fields. Let also c, d be two
bivariate polynomials of k[x1, x2], such that deg(c, x2) > 0, deg(d, x2) > 0, and
lc(c, x2) = lc(d, x2) = 1 hold and such that c, d are coprime and squarefree uni-
variate as polynomials of L[x2]. Therefore, the following four polynomial systems
are simple systems

{
a(x1)b(x1) = 0
c(x1, x2) = 0

,

{
a(x1)b(x1) = 0
d(x1, x2) = 0

,

{
a(x1)b(x1) = 0

c(x1, x2)d(x1, x2) �= 0
,

{
a(x1)b(x1) �= 0

that we denote respectively by S1, S2, S3, S4. It is easy to check that the zero sets
Z(S1), Z(S2), Z(S3), Z(S4) are the cells of a cylindrical decomposition D of K2.

Let f ∈ k[x1] be another univariate polynomial. Assume that one has to refine
D into a cylindrical decomposition of K2 which is required to be { f }-invariant.
That is, one has to test whether f is invertible or zero modulo each of the systems
S1, S2, S3, S4, and further decomposewhen appropriate. Assume that the polynomial
a divides f whereas b, f are coprime. Assume also that the system S1 is processed
first in time.By computing gcd( f, ab), which yieldsa, one splits S1 into the following
two subsystems that we denote by S1,1 and S1,2.

{
a(x1) = 0

c(x1, x2) = 0
, and

{
b(x1) = 0

c(x1, x2) = 0.

Assume that S2 is processed next. By computing gcd( f, ab) (again) one splits S2
into the following two subsystems that we denote by S2,1 and S2,2.

{
a(x1) = 0

d(x1, x2) = 0
, and

{
b(x1) = 0

d(x1, x2) = 0.

Consequently, in the course of the creation of S1,1, S1,2, S2,1, and S2,2, the same
polynomial GCD and the same field extensions (namely k[x1]/〈a〉 and k[x1]/〈b〉)
were computed twice. This duplication of calculation and data is a common phenom-
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enon and a performance bottleneck in most algorithms for decomposing polynomial
systems.

Mathematically, each constructible set should not be represented more than once
in a computer program. To implement this idea, all constructible sets manipulated
during the execution of a given computer program should be seen as part of the same
universe, say Kn . Moreover, the subroutines of this program should have the same
view on the universe, which is then a shared data-structure, such that whenever a sub-
routine modifies the universe all subroutines have immediate access to the modified
universe. Satisfying these requirements is a well-known challenge in computer sci-
ence, an instance of which is the question of memory consistency for shared-memory
parallel computer architectures, such as multicores. With our above example, even
if we do not intend to run computations concurrently, we are concerned with the
practical efficiency and ease-of-use of the mechanisms that maintain up-to-date all
views on the universe.

Recall that a cylindrical decomposition can be identified as a tree where each node
is a constructible set of Kn given by either an equation constraint, or an inequation
constraint, or no constraints at all. In this latter case, the corresponding constructible
set is the whole space. All algorithms in Sect. 4 work on a given cylindrical decom-
position D encoded by a tree T (as defined in Sect. 2). That is, the tree T is regarded
as the universe.

We assume that there is a procedure for updating the tree T , which, given
a “node-to-be-replaced” N and its “replacing nodes” N1, . . . , Ne, is called split
(N ; N1, . . . , Ne) and works as follows:

1. for i = 1, . . . , e, for each child C of N deeply copy (thus creating new nodes)
the subtree rooted at C and make that copy of C a child of Ni ,

2. update the parent of N such that N1, . . . , Ne are new children of the the parent
of N ,

3. remove the entire subtree rooted at N from the universe, including N .

We assume that all updates are performed sequentially (thus using mutual exclusion
mechanism in case of concurrent execution of the algorithms of Sect. 4) such that no
data races can occur.

We also assume that each node N (whether it is a node in the present or has been
removed from the universe) has a unique key, called key(N ), and a data field, called
value(N ), storing various information including:

• a time stamp past or present,
• if past, the list of its replacing nodes (as specified with the split procedure) and
the list of its children at the time it was replaced,

• if present, the list of its children and a pointer to the parent.

All nodes are stored in a dictionary H which can be accessed by all subrou-
tines. Modifying the universe means updating H using the split procedure. Since all
our algorithms stated in Sect. 4 are sequential, no synchronization issue has to be
considered. The mechanism described above allows us to achieve our goals.
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4 Constructing a Cylindrical Tree Incrementally

In this section, we present an incremental algorithm for computing a cylindrical
tree, as defined in Sect. 2. We start by commenting on the style of the pseudo-code.
Secondly, we present the specifications of the algorithm and related subroutines.
Thirdly, we state all the algorithms in pseudo-code style. Finally, proof sketches of
the algorithms are provided at the end of this section.

Following the principles introduced in Sect. 3, our procedures operate on a
“universe” (which is a cylindrical tree T ) that they modify when needed. These
modifications are of two types:

• splitting a node,
• attaching information to a node.

In addition to the attributes described in Sect. 3, a node has attributes corresponding
to the results of operations like Squarefree, Gcd, Intersect. In other words, our
procedures do not return values; instead they store their results in the nodes of the
universe. This technique greatly simplifies pseudo-code.

Since attributes of nodes are intensively used in our pseudo-code, we use the
standard “dot” notation of object oriented programming languages. In addition, since
a node can have many attributes, we make the following convention. Suppose that a
node V is split into two nodes V1 and V2. Some attributes are likely to have different
values in V1 (resp. V2) and V . But most of them will often have the same values
in both nodes. Therefore, after setting up the values of the attributes that differ, we
simply write V1.others := V .others to define the attributes of V1 whose values are
unchanged w.r.t. V .

Several procedures iterate through all the paths of the universe T . By path, we
mean a path (in the sense of graph theory) from the root of T to a leaf of T . The current
path is often denoted by Γ or C . Recall from Sect. 2 that a path in T corresponds
to a simple system, say S. Computing modulo S may split S and thus modify the
universe automatically, that is, in a transparent manner in the pseudo-code. However,
splitting S also changes the current path. For clarity, we explicitly invoke a function
called UpdatePath, which updates its first argument (namely the current path) from
the universe.

In order to iterate through all the paths of the universe T , we use a function
NextPathToDo. This command is a generator or an iterator in the sense of the theory
of programming languages. That is, it views T as a stream of paths and returns the
next path-to-be-visited, if any. Thanks to the fact that the universe is always up-to-
date, the function NextPathToDo is able to return the next path-to-be-visited in the
current state of the universe.

A frequently used operation on the universe and its paths is ExtractProjection,
see for instance Algorithm 6. When applied to the universe T and an integer k
(for 0≤k <n, where n is the length of a path from the root of T to a leaf of T )
ExtractProjection returns a “handle” on the universe “truncated” at level k, that is,
the universe where all nodes of level higher than k are ignored (thus viewing the level
k nodes as leaves). When applied to path, ExtractProjection has a similar output.
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We often say that a function (see for instance Algorithm 5) returns a refined
cylindrical decomposition. This is another way of saying that the universe is updated
to a new state corresponding to a cylindrical decomposition refining (in the sense
of a partition of a set refining another partition of the same set) the cylindrical
decomposition of the previous state.

After these preliminary remarks on the pseudo-code, we present the specifications
of the algorithm and related subroutines.

The top level algorithm for computing a cylindrical tree is described by Algo-
rithm 4. It takes a set F of nonconstant polynomials in k[x1 < · · · < xn] as input
and returns an F-invariant cylindrical decomposition of Kn . This algorithm relies
on a core operation, called Intersect, which computes a cylindrical decomposition
in an incremental manner.

The Intersect operation is described by Algorithm 5. It takes a cylindrical tree
T and a polynomial p of k[x1 < · · · < xn] as input. It refines tree T such that p is
sign invariant above each path of the refined tree T . This operation is achieved by
refining each path of T with IntersectPath.

The IntersectPath operation is described by Algorithm 6. It takes a polynomial
p, a cylindrical tree T , and a path Γ of T in k[x1 < · · · < xn] as input. It refines
Γ and updates the tree T accordingly such that p is sign invariant above each path
derived from Γ in the updated tree T . This operation finds the node N in Γ whose
level is the same as that of p. Let ΓN be the subpath of Γ from N to the root of T .
The IntersectPath operation then calls the routine IntersectMain so as to refine ΓN

into a tree TN such that p becomes sign invariant w.r.t. TN .
The routine IntersectMain is described by Algorithm 7. It takes a cylindrical

tree T , a path Γ of T , and a polynomial of the same level as the leaves of T in
k[x1 < · · · < xn] as input. It refines Γ and updates the tree T accordingly such that
p becomes sign invariant above each path derived from Γ in the updated tree.

The routine IntersectMain works in the following way. It first splits Γ such
that above the projection Cn−1 of each new branch C of Γ in Kn−1, the number of
distinct roots of p w.r.t. xn is invariant. This is achieved by the operationSquarefree,
described by Algorithm 8. The squarefree part of p above a branch C is denoted by
sp. If p has no roots or is identically zero above Cn−1, the sign of p above C
is determined immediately. Otherwise, a case discussion is made according to the
structure of the leaf node V of C . If V has no constraints associated to it, then V
is simply split into two new nodes sp = 0 and sp �= 0. Assume now that V has a
constraint, which can be either of the form f = 0 or of the form f �= 0, where f
is a level n polynomial squarefree modulo Cn−1. This case is handled by computing
the GCD g of sp and f moduloCn−1. The node V then splits based on the GCD g
and the cofactors of sp and f .

TheGCDis computedby theoperationGcd, describedbyAlgorithm9and10.The
cofactors are computed by Algorithm 11. The Squarefree and Gcd operations rely
on the operation MakeLeadingCoefficientInvertible, described by Algorithm 12.
This latter operation takes as input a polynomial p of k[x1 < · · · < xn], a cylindrical
tree T of k[x1 < · · · < xn−1], and a path Γ of T . Then, it refines Γ and updates T



208 C. Chen and M. Moreno Maza

accordingly such that above each path C of T derived from Γ , the polynomial p is
either zero or its leading coefficient is invertible.

All the algorithms also rely on the following three operations which perform
manipulations and traversal of the tree data structure. For these three operations, only
specifications are provided below while their algorithms are explained in Sect. 3.

Theorem 2 For a set of polynomials in k[x1, . . . , xn], Algorithm 4 computes an
F-invariant cylindrical decomposition of Kn.

Algorithm 1: UpdatePath(Γ, T )

- Input: A cylindrical tree T . A path Γ in some past state of T .
- Output: A subtree ST in present state of T . ST is derived from Γ according to the historical

data of T .

Algorithm 2: ExtractProjection(T, k)

- Input: A cylindrical tree T of k[x1 < · · · < xn]. An integer k, 0 ≤ k ≤ n.
- Output: A cylindrical tree Tk in k[x1 < · · · < xk ] such that Tk is the projection of T in

k[x1 < · · · < xk ].

Algorithm 3: NextPathToDon(T)
- Input: A cylindrical tree T in k[x1 < · · · < xn].
- Output: For a fixed traversal order of a tree, return the first “ToDo” path Γ of T .

Algorithm 4: CylindricalDecompose(F)

Input: F is a set of nonconstant polynomials in k[x1 < · · · < xn].
Output: An F-invariant cylindrical decomposition of Kn .
begin1

create a tree T with only one vertex V0: the root of T ;2
for i from 1 to n do3

create a vertex Vi ; Vi .signs := ∅; Vi . f ormula := “any xi”;4
Vi−1.child := Vi ;5

for p ∈ F do6
Intersectn(p, T );7

return T ;8
end9
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Algorithm 5: Intersectn(p, T )

Input: A cylindrical tree T of k[x1 < · · · < xn]. A nonconstant polynomial p of
k[x1 < · · · < xn].

Output: A refined cylindrical decomposition such that p is sign invariant above each path
of T .

while Γ := NextPathToDon(T ) �= ∅ do1
IntersectPathn(p, Γ, T );2

Algorithm 6: IntersectPathn(p, Γ, T )

Input: A cylindrical tree T of k[x1 < · · · < xn]. A path Γ of T . A polynomial p of
k[x1 < · · · < xn].

Output: A refined cylindrical decomposition T such that p is sign invariant above each path
derived from Γ .

begin1
if p ∈ k then2

return;3
4

else5
k := level(p);6
if k = n then7

IntersectMainn(p, Γ, T );8
9

else10
Tk := ExtractProjection(T, k);Γk := ExtractProjection(Γ, k);11
IntersectMaink(p, Γk , Tk);12
UpdatePath(Γ, T );13
for each leaf V of Γ do14

Let Lk be the ancestor of V of level k; V .signs[p] := Lk .signs[p] ;15

end16

Proof Firstly, we prove the termination. The basic mutual calling graph of its sub-
routines are:

IntersectMainn → Squarefreen → IntersectMainn−1 → · · · ,

and
IntersectMainn → Gcdn → IntersectMainn−1 → · · ·

So the termination is easily proved by induction. The correctness follows from the
specification of its subroutines and Theorem 1.

Example 2 In this example, we illustrate the operation IntersectPath. Let F :=
{y2 + x, y2 + y}. The incremental algorithm first computes an y2 + x sign invariant
complex cylindrical tree, which is described by the following tree T .
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Algorithm 7: IntersectMainn(p, Γ, T )

Input: A cylindrical tree T of k[x1 < · · · < xn ]. A path Γ of T . A polynomial p of level n in
k[x1 < · · · < xn ].

Output: A refined cylindrical decomposition T such that p is sign invariant above each path derived
from Γ .

begin1
Tn−1 := ExtractProjection(T, n − 1); Γn−1 := ExtractProjection(Γ, n − 1);2
Squarefreen(p, Γn−1, Tn−1);3
UpdatePath(Γ, T );4
while C := NextPathToDon(Γ ) �= ∅ do5

V := C.lea f ; Cn−1 := ExtractProjection(C, n − 1);6
sp := Cn−1.lea f.Square f ree[p];7
if sp = 0 then8

V .signs[p] := 0;9
10

else if sp = 1 then11
V .signs[p] := 1;12

else if V . f ormula is “any xn” then13
split V into two new vertices V1 and V2;14
V1. f ormula := sp = 0; V1.signs := V .signs; V1.signs[p] := 0;15
V2. f ormula := sp �= 0; V2.signs := V .signs; V2.signs[p] := 1;16
V1.others := V .others; V2.others := V .others;17
Cn−1.lea f.children := V1, V2;18

else19
//V . f ormula is of the form f = 0 or f �= 0
Gcdn(sp, f, Cn−1, Tn−1);20
UpdatePath(C, T );21
for each leaf V of C do22

let L be the parent of V ;23
cp, g, c f := CoFactor(sp, L .Gcd[sp, f ], f );24
if V . f ormula is of the form f = 0 then25

if g = 1 then26
V .signs[p] := 1;27

28
else if c f = 1 then29

V .signs[p] := 0;30
else31

split V into two new vertices V1 and V2;32
V1. f ormula := g = 0;V1.signs := V .signs; V1.signs[p] := 0;33
V2. f ormula := c f = 0;V2.signs := V .signs; V2.signs[p] := 1;34
V1.others := V .others; V2.others := V .others;35
L .children := V1, V2;36

37
else38

if cp = 1 then39
V .signs[p] := 1;40

else41
split V into two new vertices V1 and V2;42
V1. f ormula := cp = 0; V1.signs := V .signs; V1.signs[p] := 0;43
V2. f ormula := ( f ∗ cp) �= 0;44
V2.signs := V .signs; V2.signs[p] := 1;45
V1.others := V .others; V2.others := V .others;46
L .children := V1, V2;47

end48
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Algorithm 8: Squarefreen(p, Γ, T )

Input: A cylindrical tree T of k[x1 < · · · < xn−1]. A path Γ of T . A polynomial p of
level n.

Output: A refined cylindrical tree T of k[x1 < · · · < xn−1]. Above each path C of T
derived from Γ , there is a dictionary C.lea f.Square f ree. Let
p∗ := C.lea f.Square f ree[p]. We have:

- p = p∗ modulo C .
- If p∗ is of level n, then both init(p∗) and discrim(p∗) are invertible modulo C .
- If p∗ is of level less than n, then p∗ is either 0 or 1.

begin1
if n = 1 then2

let r be the root of T ; r.Square f ree[p] := SquarefreePart(p);3
return4

MakeLeadingCoefficientInvertiblen(p, p, Γ, T );5
while C := NextPathToDon−1(Γ ) �= ∅ do6

f := C.lea f.I nvert Lc[p];7
if level( f ) < n or deg( f, xn) = 1 then8

C.lea f.Square f ree[p] := f9
10

else11
Gcdn( f, der( f ), C, T );12
for each leaf L of C do13

g := L .Gcd[ f, der( f )];14
if g = 1 then15

L .Square f ree[p] := f16
17

else18
L .Square f ree[p] := pquo( f, g)19

end20

Algorithm 9: Gcdn(p, f, Γ, T )

Input: A cylindrical tree T of k[x1 < · · · < xn−1]. A polynomial p ∈ k[x1 < · · · < xn] of
level n. A path Γ of T . A polynomial f of level n such that init( f ) is invertible
modulo Γ .

Output: A refined cylindrical tree T . Above each path C of T derived from Γ , there is a
dictionary C.lea f.Gcd such that C.lea f.Gcd[p, f ] is a GCD of p and f modulo C .

begin1
let S be the subresultant chain of p and f ;2
if mdeg(p) ≥ mdeg( f ) then3

d := mdeg( f )4
else5

d := mdeg(p) + 16

return Gcdn(p, f, S, d, 0, Γ, T );7
end8
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Algorithm 10: Gcdn(p, f, S, d, i, Γ, T )

Input:
– A polynomial p ∈ k[x1 < · · · < xn] of level n.
– A polynomial f of level n such that lc( f ) is invertible modulo Γ .
– The subresultant chain S of p and f w.r.t. xn .
– A non-negative integer d (as defined in the pseudo-code of Algorithm 9) and such that the

principle subresultant coefficient sd is invertible modulo Γ .
– A non-negative integer i such that 0 ≤ i ≤ d and the principle subresultant coefficient s j is

zero modulo Γ , for all 0 ≤ j < i .
– A path Γ of T .
– A cylindrical tree T of k[x1 < · · · < xn−1].
Output: A refined cylindrical tree T . Above each path C of T derived from Γ , there is a

dictionary C.lea f.Gcd such that C.lea f.Gcd[p, f ] is a GCD of p and f modulo C .
begin1

if i = d then2
Γ.lea f.Gcd[p, f ] := Si ;3
return;4

IntersectPathn−1(si , Γ, T );5
while C := NextPathToDon−1(Γ ) �= ∅ do6

if C.lea f.signs[si ] = 1 then7
if i = 0 then8

C.lea f.Gcd[p, f ] := 19
10

else11
C.lea f.Gcd[p, f ] := Si12

13
else14

Gcdn(p, f, S, d, i + 1, C, T )15

end16

T :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x = 0

{
y = 0 : y2 + x = 0
y �= 0 : y2 + x �= 0

x �= 0

{
y2 + x = 0 : y2 + x = 0
y2 + x �= 0 : y2 + x �= 0

Let Γ be the path {x = 0, y �= 0} of T . Calling IntersectPath(y2 + y, Γ, T ) will
update T into the following tree.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x = 0

⎧⎨
⎩

y = 0 : y2 + x = 0
y = −1 : y2 + x �= 0 ∧ y2 + y = 0

otherwise : y2 + x �= 0 ∧ y2 + y �= 0

x �= 0

{
y2 + x = 0 : y2 + x = 0
y2 + x �= 0 : y2 + x �= 0
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Algorithm 11: CoFactor(p, g, f )

Input: Two polynomials p and f of level n in k[x1 < · · · < xn]. A polynomial g which is
either 1 or of level n in k[x1 < · · · < xn].

Output: As described by the algorithm.
begin1

if g = 1 then2
cp := p; gg := 1; c f := f ;3

4
else if mdeg(g) = mdeg( f ) then5

gg := f ;6
if mdeg(g) = mdeg(p) then7

c f := 1; cp := 1;8
else9

c f := 1; cp := pquo(p, gg)10

else if mdeg(g) = mdeg(p) then11
gg := p; c f := pquo( f, gg); cp := 1;12

else13
cp := pquo(p, g); c f := pquo( f, g); gg := g;14

return cp, gg, c f ;15
end16

Algorithm 12: MakeLeadingCoefficientInvertiblen(p, p̄, Γ, T )

Input: A polynomial p of k[x1 < · · · < xn]. A polynomial p̄ of k[x1 < · · · < xn] such that
p = p̄ modulo Γ . A cylindrical tree T of k[x1 < · · · < xn−1]. A path Γ of T .

Output: A refined cylindrical tree T of k[x1 < · · · < xn−1]. Above each path C of T
derived from Γ , there is a dictionary C.lea f.I nvert Lc. Let p∗ be the polynomial
C.lea f.I nvert Lc[p]. Then, we have:

- p = p∗ modulo C .
- If p∗ is of level n, then init(p∗) is invertible modulo the path C .
- If p∗ is of level less than n, then p∗ is either 0 or 1.

begin1
IntersectPathn−1(lc( p̄, xn), Γ, T );2
while C := NextPathToDon−1(Γ ) �= ∅ do3

if C.lea f.signs[lc( p̄, xn)] = 1 then4
if level( p̄) < n then5

C.lea f.I nvert Lc[p] := 16
7

else8
C.lea f.I nvert Lc[p] := p̄9

10
else11

if level( p̄) < n then12
C.lea f.I nvert Lc[p] := 013

14
else15

MakeLeadingCoefficientInvertiblen(p, tail( p̄), C, T )16

end17
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5 Building a CAD Tree from a Complex Cylindrical Tree

In this section, we review briefly how to compute a CAD of Rn from a cylindrical
decomposition of Cn . The reader may refer to [21] for more details. Recall that
n ≥ 1 holds. We denote by πn−1 the standard projection from R

n to Rn−1 that maps
(x1, . . . , xn−1, xn) onto (x1, . . . , xn−1).
Stack Over a Connected Semi-Algebraic Set Let S be a connected semi-algebraic
subset of Rn−1. The cylinder over S in R

n is defined as ZR(S) := S × R. Let
θ1 < · · · < θs be continuous semi-algebraic functions defined on S. The intersection
of the graph of θi with ZR(S) is called the θi -section of ZR(S). The set of points
between two consecutive sections of ZR(S) is a connected semi-algebraic subset of
R

n , called a sector of ZR(S). All the sections and sectors of ZR(S) form a disjoint
decomposition of ZR(S), called a stack over S.
Cylindrical Algebraic Decomposition A finite partition D of Rn is called a cylin-
drical algebraic decomposition (CAD) ofRn if one of the following properties holds.

• Either n = 1 and D is a stack over R0.
• Or the set of {πn−1(D) | D ∈ D} is a CAD of Rn−1 and each D ∈ D is a section
or sector of the stack over πn−1(D).

When this holds, the elements of D are called cells.
Sign Invariance and Delineability Let p be a polynomial of R[x1, . . . , xn], and
let S be a subset of Rn . The polynomial p is called sign invariant on S if the sign
of p(α) does not change when α ranges over S. Let F ⊂ R[x1, . . . , xn] be a finite
polynomial set. We say S is F-invariant if each p ∈ F is invariant on S. A cylindrical
algebraic decomposition D is F-invariant if F is invariant on each cell D ∈ D. Let
p be a polynomial of R[x1, . . . , xn], and let S be a connected semi-algebraic set of
R

n−1. We say that p is delineable on S if the real zeros of p define continuous semi-
algebraic functions θ1, . . . , θs such that, for all α ∈ S we have θ1(α) < · · · < θs(α).
In other words, p is delineable on S if its real zeros naturally determine a stack over
S. We recall the following theorem introduced in [21].

Theorem 3 Let P = {p1, . . . , pr } be a finite set of polynomials inR[x1 < · · · < xn]
of level n. Let S be a connected semi-algebraic subset of Rn−1. If P separates above
S, then each pi is delineable on S. Moreover, the product of the p1, . . . , pr is also
delineable on S.

Let F be a finite set of polynomials inQ[x1 < · · · < xn]. LetCT be an F-invariant
complete cylindrical tree of Cn . Applying Theorem 3 to polynomials in CT , we can
derive an F-invariant cylindrical algebraic decomposition of Rn by induction on n.
A procedure MakeSemiAlgebraic, was introduced in [21] to derive a CAD from a
CT via real root isolation of zero-dimensional regular chains.

Example 3 Let F := {y2 + x}. An F-invariant cylindrical algebraic decomposition
is described by the following tree.
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T :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x < 0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y < −√|x | : y2 + x > 0
y = −√|x | : y2 + x = 0
y > −√|x | ∧ y <

√|x | : y2 + x < 0
y = √|x | : y2 + x = 0
y >

√|x | : y2 + x > 0

x = 0

⎧⎨
⎩

y < 0 : y2 + x > 0
y = 0 : y2 + x = 0
y > 0 : y2 + x > 0

x > 0 for any y : y2 + x > 0

6 Making Use of Equational Constraints and Other
Optimizations

In this section, we discuss several possible optimizations to algorithms presented in
Sect. 4.

Firstly, we discuss how to compute a CAD dedicated to a semi-algebraic system,
which provides a systematic solution for making use of equational constraints when
computing CADs. The motivation for making use of equational constraints comes
from quantifier elimination. Let

P F := (Qk+1xk+1 . . . Qn xn)F F(x1, . . . , xn),

be a prenex formula, where F F is a DNF formula. To perform QE by CAD,
the first computation step is to collect all the polynomials appearing in F F as a
polynomial set F and compute an F-invariant CAD of Rn . This process of com-
puting an F-invariant CAD exhausts all possible sign combinations of F , including
those which do not appear in F F , and thus often computes much more than needed
for solving the input QE problem. Different techniques in the literature have been
proposed for taking advantage of the structure of the input problem. These methods
include partial CAD [7] for lazy lifting, simplified projection operator for handling
pure strict inequalities [8, 9], smaller projection sets for making use of equational
constraints [12–15].

To make the discussion clear, we first quote a paragraph of [12]. “The idea is as
follows: if an input formula includes the constraint f = 0, then decompose Rr into
regions in which f has invariant sign, and then refine the decomposition so that the
other polynomials have invariant sign in those cells in which f = 0. The signs of
the other polynomials in cells in which f �= 0 are, after all, irrelevant. Additionally,
the method of equational constraints seeks to deduce and use constraints that are not
explicit in the input formula, but rather arise as consequences of two or more explicit
constraints (e.g., if f = 0 and g = 0 are explicit constraints, then res( f, g) = 0 is
also a constraint.)”
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This idea, of course, is attractive. Much progress on it has also been made. How-
ever, the reason why it is a generally hard problem for CAD is that the framework of
PCAD does not have much flexibility to allow propagation of equational constraints.
In the world of PCAD, one always tries to obtain a generic projection operator and
then applies the same projection operator recursively. To obtain a generic projec-
tion operator for handling equational constraints is hard because many problems
inherently require different projection operators during projection. Therefore, case
discussion is important.

In fact, case discussion is very common in algorithms for computing triangular
decompositions. For such algorithms, equational constraints are natural input of these
algorithms. The two key ideas “splitting only above f = 0” and “if f = 0 and g = 0
are explicit constraints, then res( f, g) = 0 is also a constraint” have already been
systematically taken care of in the Intersect operation of the authors’ paper for
computing triangular decompositions [26].

Next we explain how to modify algorithms presented in Sect. 4 to automatically
implement these ideas.

Suppose now that the input of Algorithm CylindricalDecompose is a system
of equations or inequations, this algorithm will then compute a partial cylindrical
tree such that its zero set is exactly the zero set of input system. This can be simply
achieved by passing an equation or inequation to the function Intersect. W.l.o.g.,
let us assume that an equation p = 0 is passed as an argument of Intersect. Then
for this function and all its called subroutines, we will cut the computation branches
above which p is known to be nonzero and never proceed with computation branches
above which p cannot be zero. For example, we will not create a new vertex at step
15, 32, 42 in Algorithm IntersectMain. We will delete the vertex V at step 11, 26,
37 since p is nonzero on V .

The first important optimization in IntersectMain which can be implemented is
to avoidSquarefree computation at step 3 ifΓ.lea f is an equational constraint. This
idea is quite close to “splitting only above f = 0”. Another important optimization
can be done at step 19 of IntersectMain. Assume that V .formula is an equational
constraint f = 0, then when Gcd is called, in step 5 of Algorithm 10, we can do as
follows. If i = 0, then si is the resultant of p and f . Thus, we should pass si = 0
to the IntersectPath operation in order to avoid useless computations on the branch
si �= 0. This addresses the idea “if f = 0 and g = 0 are explicit constraints, then
res( f, g) = 0 is also a constraint”. Moreover, these optimizations are systematically
performed during the whole computation.

Next, we briefly mention several other important optimizations. Let V be a leaf
of a path Γ of a cylindrical tree. Assume that V . f ormula is of the form f �= 0
or of the form f = 0. We can safely replace f by its primitive part since lc( f ) is
invertible modulo Γn−1. Replacing f by its irreducible factors overQ is often a more
efficient choice. Last but not least, recall that a path Γ in the cylindrical tree is a
simple system. Writing Γ as two parts Γ := [T, H ], where T is a set of equations
and H is a set of inequations. We know that T is a regular chain and Γ is a squarefree
regular system. Thus, the Zariski closure of Γ is the variety of the saturated ideal
of T . We can call the pseudo division operation prem(p, T ) or prem( f, T ) to test
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whether p or f is zero modulo Γ . And sometimes replacing p by prem(p, T ) and
f by prem( f, T ) also ease the computations.

Example 4 Let F := {y2 + x = 0, y2 + y = 0} be a system of equations. Taking
F as input, Algorithm CylindricalDecompose generates a partial cylindrical tree
T of C2 such that the zero set of F is exactly the union of the zero sets of the paths
in T , see (Fig. 2).

x = 0

y = 0

x + 1 = 0

y + 1 = 0

Fig. 2 A partial cylindrical tree T adapted to F

7 Benchmarks

In this section, we report on the experimental results of a preliminary implementation
in the RegularChains library of Maple of the algorithms of Sects. 4 and 5.

The examples in Tables1 and 2 are from papers on polynomial system solving,
such as [38, 39] and the references therein. All the tests were launched on a machine
with Intel Core 2 Quad CPU (2.40GHz) and 8.0Gb total memory. The time-out is set
as 1 h. In the tables, the symbol >1h means time-out.

The Maple functions are launched in Maple 15 with the latest Regular-
Chains library. Thememory usage is limited to 60% of total memory. The software
Qepcad is launched with the option +N500000000 + L200000, where the first
option specifies the memory to be preallocated (about 23% of total memory for our
machine) and the second option specifies the number of prime numbers to be used.

In Table1, we report on timings for computing cylindrical decomposition of the
complex space with different algorithms and options. Each input system is a set of
polynomials. The notation tcd-rec denotes an implementation of the original recur-
sive algorithm in [21], while the notation tcd-inc denotes the incremental algorithm
presented in Sect. 4. Both tcd-rec and tcd-inc take a set of polynomials as input. The
notation tcd-eqs refers to an optimized version of tcd-inc which makes use of equa-
tional constraints, as explained in Sect. 6. With the implementation tcd-eqs, every
input polynomial set is regarded as a set of equations (equating each input polyno-
mial to zero). As we can see in Table1, the incremental algorithm presented in this



218 C. Chen and M. Moreno Maza

Table 1 Timings for computing cylindrical decomposition of the complex space

System tcd-rec tcd-inc tcd-eqs System tcd-rec tcd-inc tcd-eqs

AlkashiSinus 3373.966 14.568 4.168 MontesS10 >1h >1h 2.952

Alonso 9.636 1.404 0.700 MontesS12 >1h >1h 7.528

Arnborg-Lazard-rev 2759.940 2419.543 16.233 MontesS15 >1h >1h 77.048

Barry 39.346 1.808 0.556 MontesS16 >1h >1h 8.228

Blood coagulation-2 235.310 9.472 0.808 MontesS4 556.390 102.122 0.488

Bronstein-Wang 255.427 35.990 1.120 MontesS5 1449.810 119.059 1.004

cdc2-cyclin >1h 68.920 65.976 MontesS7 >1h >1h 1.060

Circles 276.389 2.280 0.520 MontesS9 269.636 4.212 0.980

genLinSyst-3-2 916.245 19.537 1.384 nql-5-4 >1h 1.056 0.528

genLinSyst-3-3 >1h 160.406 12.408 r-5 68.364 3.232 0.876

Gerdt >1h >1h 1.188 r-6 1456.883 46.458 1.200

GonzalezGonzalez 141.072 53.451 0.732 Raksanyi 1471.351 118.227 1.000

hereman-2 >1h 40.042 0.908 Rose >1h 51.855 1.072

lhlp5 31.069 3.984 0.648 Wang93 >1h >1h 18.877

Maclane >1h >1h 6.420 YangBaxterRosso 54.895 1.560 0.844

paper is much more efficient than the original recursive algorithm. The timings of
tcd-eqs show that the optimizations presented in Sect. 6 for making use of equational
constraints are very effective.

In Table2, we report on timings for computing CADwith three different computer
algebra packages: Qepcad, the CylindricalDecomposition command of Mathe-
matica, and the algorithm presented in Sect. 4. Each system is a set of polynomials.
Two categories of experimentation are conducted. The first category is concerned
with the timings for computing a full CAD of a set of polynomials. For Mathe-
matica, we cannot find any options of CylindricalDecomposition for computing a
full CAD of a set of polynomials. Therefore for this category, only the timings of
Qepcad and TCAD are reported. The second category is concerned with the tim-
ings for computing a CAD of a variety. For this category, the timings for Qepcad,
Mathematica, and TCAD are all reported.

The notation qepcad denotes computations that Qepcad performs by (1) treating
each input system as a set of nonstrict inequalities and, (2) treating all variables as free
variables and, (3) executingwith the “full-cad” option. The notation tcad corresponds
to computations that TCAD performs by (1) treating each input system as a set of
nonstrict inequalities and, (2) computing a sign invariant full CAD of polynomials in
the input system and, (3) selecting the cells which satisfy those nonstrict inequalities.
In this way, both qepcad and TCAD compute a full CAD of a set of polynomials.

The notation qepcad-eqs denotes the computations that Qepcad performs by
(1) treating each input system as a set of equations and, (2) treating all vari-
ables as free variables and, (3) executing with the default option. The notation
mathematica-eqs represents computations where the CylindricalDecomposition
commandofMathematica treats each input systemas a set of equations.Thenotation
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Table 2 Timings for computing CAD

System qepcad qepcad-eqs mathematica-eqs tcad tcad-eqs

Alonso 7.516 5.284 0.74 61.591 5.776

Arnborg-Lazard-rev >1h >1h 0.952 >1h 17.325

Barry Fail 216.425 0.032 8.580 1.004

Blood coagulation-2 >1h >1h >1h 985.709 7.260

Bronstein-Wang >1h >1h 26.726 333.892 2.564

cdc2-cyclin >1h >1h 0.208 574.127 503.863

Circles 21.633 5.996 41.211 >1h 40.902

GonzalezGonzalez 10.528 10.412 0.012 214.213 1.136

lhlp2 960.756 5.076 0.016 3.124 0.952

lhlp5 10.300 10.068 0.016 35.338 1.084

MontesS4 >1h >1h 0.004 2682.391 0.888

MontesS5 Fail Fail >1h >1h 9.400

nql-5-4 93.073 5.420 1303.07 113.675 1.004

r-5 >1h 1802.676 0.016 1282.928 1.208

r-6 >1h >1h 0.024 >1h 1.500

Rose Fail >1h >1h 606.361 3.136

AlkashiSinus >1h >1h 2.232 >1h 58.775

genLinSyst-3-2 Fail Fail 217.062 3013.764 6.588

MontesS10 >1h >1h >1h >1h 22.797

MontesS12 >1h >1h >1h >1h 330.996

MontesS15 >1h >1h 0.004 >1h 395.964

MontesS7 >1h >1h 245.807 >1h 2.452

MontesS9 Fail Fail >1h 110.902 4.944

Wang93 Fail Fail >1h >1h 152.673

tcad-eqs corresponds to computations where TCAD treats each input system as a set
of equations.

From Table2, we make the following observations. When full CADs are com-
puted, within one hour time limit, Qepcad only succeeds on 6 out of 24 examples
while TCAD succeeds on 14 out of 24 examples. When CADs of varieties are com-
puted, for all the 10 out of 24 examples that Qepcad can solve within one hour time
limit, both Mathematica and TCAD succeed with usually less time. For the rest 14
examples, TCAD solves all of themwhileMathematica only succeeds on 7 of them.

8 Conclusion

In this paper, we present an incremental algorithm for computingCADs.A key part of
the algorithm is an Intersect operation for refining a given complex cylindrical tree.
If this operation is supplied with an equational constraint, it only computes a partial



220 C. Chen and M. Moreno Maza

cylindrical tree, which provides an automatic solution for propagating equational
constraints. We have implemented our algorithm in Maple. The experimentation
shows that the new algorithm is much more efficient than our previous recursive al-
gorithm.We also compared our implementation with the software packagesQepcad
and Mathematica. For many examples, our implementation outperforms the other
two. This incremental algorithm can support quantifier elimination. We will present
this work in a future paper.
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Major-27145 of The University of Western Ontario.
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Finding the Symbolic Solution of a Geometric
Problem Through Numerical Computations

Liangyu Chen, Tuo Leng, Liyong Shen, Min Wu, Zhengfeng Yang
and Zhenbing Zeng

Abstract In this paper we prove that if L is the maximal perimeter of triangles
inscribed in an ellipse with a, b as semi-axes, then

(a2 − b2)2 · L4 − 8(2a2 − b2)(2b2 − a2)(a2 + b2) · L2 − 432a4b4 = 0

by accomplishing the following tasks through numeric computations: (1) compute
the determinants of matrices of order from 25 to 34 whose entries are polynomials of
degree up to 44, (2) construct a series of rectangles R1, R2, . . . , RN so that if L , a, b
satisfies the relation f (L , a, b) = 0 then

C1 := {(b, L)| f (L , 1, b) = 0, 0 ≤ b ≤ 1} ⊂ R1 ∪ R2 ∪ · · · ∪ RN ,
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and, (3) present a mechanical procedure to decide the validity of

R ∩ C(F) = ∅,

where R is a closed rectangle region and C(F) is an algebraic curve defined by
F(x, y) = 0.

Keywords Symbolic solution ·Optimization ·Resultant ·Lower andupper bounds ·
Algebraic curves

1 The Problem and Results

In the Sixth ASCM held in October 2003 in Beijing, one of the authors of this paper
was asked by a participant of the conference whether or not computer can help to
solve the following geometric optimization problem: Given an ellipse with a, b as
major-axis and minor-axis, with respectively, let L be the maximal perimeter of
triangles inscribed into the ellipse. Find an explicit formula which connects L , a, b
[1, 3]. People believe that the solution is a polynomial f (L , a, b) = 0 according to
the following observation: If the ellipse is expressed by

E(a,b) : x2

a2 + y2

b2
= 1

in the plane, and the following three points:

A =
(

(1 − t21 )a

1 + t21
,

2t1b

1 + t21

)
, B =

(
(1 − t22 )a

1 + t22
,

2t2b

1 + t22

)
,

C =
(

(1 − t23 )a

1 + t23
,

2t3b

1 + t23

)

form the triangle with maximal perimeter among all triangles inscribed into the
ellipse E(a,b), then the triangle PQR formed by the tangent lines TA, TB, TC of the
ellipse at points A, B, C , with

P = TB ∩ TC , Q = TC ∩ TA, R = TC ∩ TA

satisfies that

∠C AQ = ∠B AR, ∠AB R = ∠C B P, ∠BC P = ∠AC Q,

as shown in the Fig. 1. For otherwise, if∠C AQ �= ∠B AR, then the following ellipse

K := {(x, y) | P B + PC = AB + AC, P = (x, y)}
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Fig. 1 A necessary condition
for f (L , a, b) = 0 is
∠C AQ = ∠B AR,
∠AB R = ∠C B P and
∠BC P = ∠AC Q

intersects the given ellipse E(a,b) transversally at point A, which implies that there is
a point A′ ∈ E(a,b) lies in the outside of K , and therefore, A′B + A′C > AB + AC ,
so ABC is not the maximal one. This fact leads to the following three equations:

f1 = ϕ(a, b, t2, t3, t1) = 0, f2 = ϕ(a, b, t3, t1, t2) = 0,

f3 = ϕ(a, b, t1, t2, t3) = 0,

where

ϕ(a, b, t1, t2, t3) := b2(t2 + t3)t
4
1 − 2(b2(1 + t2t3) − 2a2)t31

+2(b2(1 + t2t3) − 2a2t2t3)t1 − b2(t2 + t3).

Note that ( f1, f2, f3) is not algebraic independent, so the original question can
be reduced to solve the following optimization problem:

max L =
∑

1≤i< j≤3

√√√√a2

(
1 − t2i
1 + t2i

− 1 − t2j
1 + t2j

)2

+ b2

(
2ti

1 + t2i
− 2t j

1 + t2j

)2

(1)

s.t. f1 = 0, f2 = 0.

This problem can be transformed to the following one:

max L

s.t. f0(L , a, b, t1, t2, t3) = 0, f1(a, b, t1, t2, t3) = 0, f2(a, b, t1, t2, t3) = 0,

−∞ < t1, t2, t3 < +∞,
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by applying the following formula:

(L − √
u − √

v − √
w) · (L − √

u − √
v + √

w) · (L − √
u + √

v − √
w)

·(L − √
u + √

v + √
w) · (L + √

u − √
v − √

w) · (L + √
u − √

v + √
w)

·(L + √
u + √

v − √
w) · (L + √

u + √
v + √

w)

= L8 − 4(u + v + w) · L6 + 2(3u2 + 3v2 + 3w2 + 2uv + 2vw + 2wu) · L4

−4((u + v + w)(u2 + v2 + w2 − 2uv − 2vw − 2wu) + 16uvw) · L2

+(u2 + v2 + w2 − 2uv − 2vw − 2wu)2 = ψ(L , u, v, w)

and

u = u(t1, t2) = a2

(
1 − t21
1 + t21

− 1 − t22
1 + t22

)2

+ b2
(

2t1
1 + t21

− 2t2
1 + t22

)2

,

v = u(t2, t3), w = u(t3, t1).

to change the objective function L = √
u +√

v+√
w of (1) to a constraint condition

f0 = ψ(L , u, v, w). And therefore, for any given a, b, the maximal perimeter L and
the parameters (t1, t2, t3) corresponding to the maximal triangle ABC satisfy the
following equation system:

⎧⎪⎪⎨
⎪⎪⎩

f−1(L , a, b, t1, t2, t3) = 0,
f0(L , a, b, t1, t2, t3) = 0,
f1(a, b, t1, t2, t3) = 0,
f2(a, b, t1, t2, t3) = 0,

(2)

where

f−1(L , a, b, t1, t2, t3) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
∂ f0
∂L

∂ f1
∂L

∂ f2
∂L

0
∂ f0
∂t1

∂ f1
∂t1

∂ f2
∂t1

0
∂ f0
∂t2

∂ f1
∂t2

∂ f2
∂t2

0
∂ f0
∂t3

∂ f1
∂t3

∂ f2
∂t3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

and

f0 = ψ(L , u, v, w), f1 = ϕ(a, b, t2, t3, t1), f2 = ϕ(a, b, t3, t1, t2)

are defined as before. So the polynomial R(L , a, b) = 0 obtained by eliminating
t1, t2, t3 from the equation system (2) gives a polynomial relation connecting the
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maximal perimeter and the semi-axes a, b, that is, f (L , a, b)|R(L , a, b). If

R(L , a, b) = c ·
k∏

i=1

ri (L , a, b)di

is the irreducible factorization of R(L , a, b), then we define

δi :=
{
0, if ri (L , a, b) �= f (L , a, b) for all a, b,

1, else.

for i = 1, 2, . . . , k, and call

R0(L , a, b) :=
k∏

i=1

ri (L , a, b)δi

the minimal polynomial of f (L , a, b).

In this paper we devote to compute the elimination and verification problem in
this specific example. The paper is organized as follows: In Sect. 2, we investigate
the elimination problem, and show that, via interpolations, the result R(L , a, b) is
a product of 6 irreducible polynomials ri (L , a, b), i = 0, 1, . . . , 5. In Sect. 3 we
compute the lower bounds l j and upper bounds l j of the maximal perimeter L for
a = 1 and b j = j/256, 0 ≤ j ≤ 256 so that the curve

C1 := {(b, L)| f (L , 1, b) = 0}

can be covered by the union of the following rectangles:

R j := {(x, y)|b j ≤ x ≤ b j+1, l j ≤ y ≤ l j+1}, j = 0, 1, 2, . . . , 255.

In Sect. 4 we present a mechanical method for checking that a given closed rectan-
gle region R has no intersection with the curve generated by a given polynomial
F(x, y). Applying this procedure to the rectangles R j ( j = 0, 1, 2, . . . , 255) created
in the Sect. 3 and the factors ri (L , a, b), i = 1, 2, . . . , 5 we prove that the minimal
polynomial of f (L , a, b) is r0(L , a, b).

2 Elimination via Interpolating Resultant

For two polynomials

P(x, y, . . .) = am(y, . . .)xm + am−1xm−1 + · · · + a1(y, . . .)x + a0(y, . . .),

Q(x, y, . . .) = bn(y, . . .)xn + bn−1xn−1 + · · · + b1(y, . . .)x + b0(y, . . .),
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the Sylvester resultant

Resultant(P, Q, x) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am am−1 · · · · · · a1 a0
am am−1 · · · · · · a1 a0

. . .

am am−1 · · · · · · a1 a0
bn bn−1 · · · b1 b0

bn bn−1 · · · b1 b0
. . .

. . .

bn bn−1 · · · b1 b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎬
⎪⎪⎭

n rows

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

mrows

satisfies that if both am(y, . . .), bn(y, . . .) are not zero, then Resultant(P, Q, x)

(y, . . .) = 0 if and only if there exists x0 such that

P(x0, y, . . .) = 0, Q(x0, y, . . .) = 0.

This property can be used to transform the following polynomial equation system
(P = 0, Q = 0) into the following three systems:

(i) : (P = 0, Q = 0, am = 0, bn = 0),

(ii) : (P = 0, Q = 0,Resultant(P, Q, x) = 0, am �= 0),

(iii) : (P = 0, Q = 0,Resultant(P, Q, x) = 0, bn �= 0).

Note that in each of the three new systems, at least one polynomial doesn’t contain
variable x , so this procedure can be regarded as elimination. It is also clear that if
P, Q can be factorized, for example,

P = c1 · Pd1
1 · Pd2

2 · · · · · Pdk
k , Q = c2 · Q

d ′
1

1 · Q
d ′
2

2 · · · · · Q
d ′

l
l ,

are squarefree factorizations, then

f_Resultant(P, Q, x) :=
∏

1≤i≤k,1≤ j≤l

Resultant(Pi , Q j , x)

can be used to simplify the computation. To the purpose of calculating the intersecting
points in the real plane or space, we can omit the factors of P, Q which are positive or
negative definite, namely, if P = P0 · P1 and P0 > 0 for all points (x, y, . . .) ∈ Rn ,
then

(P = 0, Q = 0) ⇔ (P1 = 0, Q = 0).
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For the equation system (2) induced from the geometric optimization problem,
we have

degs( f−1) = [8, 10, 10, 12, 12, 9], length( f−1) = 10818,

degs( f0) = [8, 6, 6, 8, 8, 8], length( f0) = 1867,

degs( f1) = [0, 2, 2, 4, 1, 1], length(g11) = 10,

degs( f2) = [0, 2, 2, 1, 4, 1], length(g21) = 10,

here

degs(F) = [deg(F, L), deg(F, a), deg(F, b), deg(F, t1), deg(F, t2), deg(F, t3)].

We can eliminate t3, t2, t1 through computing the resultants successively as follow-
ing. In the first step, eliminate t3 by:

g0 := Resultant( f0, f1, t3),

g1 := Resultant( f2, f1, t3), (3)

g2 := Resultant( f−1, f1, t3),

factorize the results and remove those explicit nonzero factors (like t1 − t2 and g
shown as below),

g0 = g01 · g02,

g1 = −(t1 − t2) · g11(a, b, t1, t2), (4)

g2 = −8g · g21(L , a, b, t1, t2),

where g := b2(1 − t22 )2 + 4a2t22 , and

degs(g01) = [4, 10, 10, 16, 8, 0], length(g01) = 582,

degs(g02) = [4, 12, 12, 24, 8, 0], length(g02) = 1548,

degs(g11) = [0, 4, 4, 4, 4, 0], length(g11) = 25,

degs(g21) = [8, 26, 26, 44, 21, 0], length(g21) = 18705.

In the second step, eliminate t1 by

h01 := Resultant(g01, g11, t1), h02 := Resultant(g02, g11, t1),

h1 := i_ Resultant(g21, g11, t1), (5)

where i_ Resultant(P, Q, x) means that interpolation is required in the computing
of res(P, Q, x). In this step we obtained

h01 = 1099511627776a16b16(a − b)4(a + b)4 · g16 · r0(L , a, b)2 · h011,
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h02 = 72057594037927936a16b16(a − b)12(a + b)12 · g16 · h021 · h2
022,

(h021 = h011),

h1 = −1424967069597696b4(b4 − a2b2 + a4)2t42 · g42 · r0(L , a, b)2 · h11 · h2
12 · h13,

with

r0 = (a−b)2(a+b)2 ·L4−8(−b2+2a2)(−2b2+a2)(a2+b2)·L2−432a4b4, (6)

h11 = 16a8t42 + (t22 − 1)4b8 + 8a2b2t22 (t22 − 1)(2a4 − 3a2b2 + 2b4) > 0,

h12 = 4a2t22 − b2t42 − 2b2t22 + 3b2,

and

degs(h011) = [8, 24, 24, 0, 32, 0], length(h011) = 734,

degs(h022) = [4, 14, 14, 0, 16, 0], length(h022) = 128,

degs(h13) = [12, 34, 34, 0, 36, 0], length(h13) = 1663.

In the third step, eliminate t2 by doing the following the squarefree resultant:

R = r0 ·f_ Resultant(h011 · h022, h12, t2)

· i_ Resultant(h011, h13, t2) · i_ Resultant(h022, h13, t2). (7)

The final eliminating result is

R = r0 · r1 · · · · · r5,

where r0 is as in (6),

r1 = (a − b)2(a + b)2L4 − 8(−2b2 + a2)(3b4 − 3b2a2 + 2a4)L2 − 48a4b4, (8)

and r2, r3, r4, r5 are polynomials of L , a, b with

degs(r2) = [8, 22, 24, 0, 0, 0], length(r2) = 47,

degs(r3) = [8, 26, 26, 0, 0, 0], length(r3) = 51,

degs(r4) = [68, 152, 148, 0, 0, 0], length(r4) = 1811,

degs(r5) = [120, 262, 258, 0, 0, 0], length(r5) = 5655.

Note that in (5) and (7), the resultants can be reduced to compute the determinants
of matrices with multivariate polynomials. In (5), we need to compute a determinant
of a matrix of order 25 whose entries are polynomials of L , a, b, t1, t2 with degree
up to 44. In (7), we need to compute the determinants of two matrices of order 26
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and 34, whose entries are polynomial of L , a, b, t2 with degree up to 18. See [2] for
more details about the implementation of the interpolation for resultant.

The discussion on the elimination in this section can be summarized as the fol-
lowing result:

Theorem 1 Let a, b be the semi-axes of an ellipse E and L the largest perimeter of
triangles inscribed in E. Then L , a, b satisfies

R(L , a, b) = r0 · r1 . . . r5 = 0,

where r0, r1 are given in (6), (8), with respectively, and

r2 = 589824a8b20 + 1624320a12b16 + 9L8a20 + · · · ,

r3 = −10616832a14b18 − 589824a14b16L2 + 5308416a12b20 + · · · ,

r4 = 276601249554588747146723328L28a42b130

+18671961262265342238549249460535296L34a90b76

+14529033298121441055294357504L2a92b106 + · · · ,

r5 = 365724928581890017679824998575469577063650647945893048810274291712a160b176

+596406314598540887544796628604850426670425873007023635824640000a152b184

+57699678470541246927877210133810319163169908060531846545408L88a124b124

+ · · · .

In the following two sections, we show that r1, r2, . . . , r5 are extraneous factors
so r0(L , a, b) is the minimal polynomial of f (L , a, b).

3 Lower and Upper Bounds of the Maximal Perimeters

In this section, we will construct a set of rectangles, R1, R2, . . . , RN , so that the
point set {(L , a, b)| f (L , a, b) = 0} can be covered by the union of these rectangles.
It is clear that

f (L , a, b) = 0 ⇔ f (L/a, 1, b/a) = 0,

thus we can limit our discussion to the ellipses with a = 1, 0 < b ≤ 1. The following
properties are obvious:

Lemma 1 If 0 < b1 < b2 ≤ 1 and l1, l2 satisfy that f (l1, 1, b1) = 0, f (l2, 1,
b2) = 0, then l1 < l2.

Lemma 2 If 0 < b1 < b2 ≤ 1 and l1, l2 satisfy that f (l1, 1, b1) = 0, f (l2, 1,
b2) = 0, then for any b, l with b1 < b < b2, f (l, 1, b) = 0 and l1, l2 with
l1 ≤ l1, l2 ≤ l2, we have

(b, l) ⊂ [b1, b2] × [l1, l2] := {(x, y)|b1 ≤ x ≤ b2, l1 ≤ y ≤ l2}
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For a fixed number b with 0 < b ≤ 1, we may find a upper bound l for the largest
perimeter l(b) of triangles inscribed in the ellipse

Eb : x2 + y2

b2
= 1

through the following procedure. For any integer n > 0 and real number b, 0 <

b ≤ 1, define

l p(n, b) := max
0≤i, j,k≤n

{
Ai B j + B j Ck + Ck Ai | Ai =

(
1 − ( i

n

)2
1 + ( i

n

)2 ,
2b · ( i

n

)
1 + ( i

n

)2
)

,

B j =
⎛
⎜⎝−

1 −
(

j
n

)2

1 +
(

j
n

)2 ,−
2b ·

(
j
n

)

1 +
(

j
n

)2
⎞
⎟⎠ , Ck =

(
1 − ( k

n

)2
1 + ( k

n

)2 ,− 2b · ( k
n

)
1 + ( k

n

)2
)⎫⎪⎬
⎪⎭ .

Then l p(n, b) ≤ l(b) for all n ∈ N and limn→∞ l p(n, b) = l(b). Therefore, if take
n = 500 and b j = j/256, j = 0, 1, 2, . . . , 256, for example, we can get a sequence
l j := l p(500, b j ), j = 0, 1, 2, . . . , 256 with l j ≤ l(b j ). Following data is a part of
the sequence of l p(500, b) for b = j/256, j = 0, 1, 2, . . . , 256.

[[0,4],
[1/32, 4.000976], [1/16, 4.003910], [3/32, 4.008808], [1/8, 4.015686],
[5/32, 4.024563], [3/16, 4.035465], [7/32, 4.048423], [1/4, 4.063475],
[9/32, 4.080663], [5/16, 4.100035], [11/32, 4.121645], [3/8, 4.145549],
[13/32, 4.171811], [7/16, 4.200496], [15/32, 4.231676], [1/2, 4.265420],
[17/32, 4.301804], [9/16, 4.340898], [19/32, 4.382775], [5/8, 4.427501],
[21/32, 4.475137], [11/16, 4.525736], [23/32, 4.579338], [3/4, 4.635974],
[25/32, 4.695657], [13/16, 4.758382], [27/32, 4.824128], [7/8, 4.892855],
[29/32, 4.964504], [15/16, 5.038999], [31/32, 5.116250], [1, 5.196152]]

We can construct upper bounds for l(b) from l p(n, b) according to following
estimation:

Lemma 3 For any integer n > 0 and b with 0 < b ≤ 1,

l(b) ≤ l p(n, b) + 6

n
.

Proof It is easy to see that if ABC is a triangle inscribed in the ellipse x2+y2/b2 = 1
and two of A, B, C are on the same quadrant of x Oy, the perimeter of ABC is not
the largest one. Therefore assume that Ai Ai+1, B j B j+1, CkCk+1 (0 ≤ i, j, k < n)

are three arcs on the ellipse with

Ai =
(
1 − ( i

n

)2
1 + ( i

n

)2 ,
2b · ( i

n

)
1 + ( i

n

)2
)

, Ai+1 =
(
1 − ( i+1

n

)2
1 + ( i+1

n

)2 ,
2b · ( i+1

n

)
1 + ( i+1

n

)2
)

,
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B j =
⎛
⎜⎝−

1 −
(

j
n

)2

1 +
(

j
n

)2 ,−
2b ·

(
j
n

)

1 +
(

j
n

)2
⎞
⎟⎠ , B j+1 =

⎛
⎜⎝−

1 −
(

j+1
n

)2

1 +
(

j+1
n

)2 ,−
2b ·

(
j+1
n

)

1 +
(

j+1
n

)2
⎞
⎟⎠ ,

Ck =
(
1 − ( k

n

)2
1 + ( k

n

)2 ,− 2b · ( k
n

)
1 + ( k

n

)2
)

, Ck+1 =
(
1 − ( k+1

n

)2
1 + ( k+1

n

)2 ,− 2b · ( k+1
n

)
1 + ( k+1

n

)2
)

,

with A ∈ arc(Ai Ai+1), B ∈ arc(B j B j+1), C ∈ arc(CkCk+1), as shown in the Fig. 2.
Then

AB + BC + C A ≤ (AAi + Ai B) + (B B j + B j C) + (CCk + Ck A)

≤ AAi + (Ai B j + B B j ) + B B j + (B j Ck + CCk)

+ CCk + (Ck Ai + AAi )

= Ai B j + B j Ck + Ck Ai + 2(AAi + B B j + CCk)

≤ l p(n, b) + 2(AAi + B B j + CCk),

and

AB + BC + C A ≤ Ai+1B j+1 + B j+1Ck+1 + Ck+1Ai+1

+ 2(AAi+1 + B B j+1 + CCk+1)

≤ l p(n, b) + 2(AAi+1 + B B j+1 + CCk+1),

Fig. 2 Perimeter(ABC) ≤
perimeter(Ai B j Ck) +
2(AAi + B B j + CCk)
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which imply that

AB + BC + C A ≤ l p(n, b) + (Ai A + AAi+1 + B j B + B B j+1 + CkC + CCk+1).

Since A ∈ arc(Ai Ai+1), there exists x , 0 ≤ x ≤ 1 such that

A =
(
1 − ( i+x

n

)2
1 + ( i+x

n

)2 ,
2b · ( i+x

n

)
1 + ( i+x

n

)2
)

,

Now we consider about Ai A + AAi+1. Note that

tan
θ1

2
= i

n
, tan

θ

2
= i + x

n
, tan

θ2

2
= i + 1

n
,

then Ai = (cos θ1, b sin θ1), Ai+1 = (cos θ2, b sin θ2), A = (cos θ, b sin θ).
Suppose the perpendicular line of X axis through the points Ai , A, Ai+1 inter-

sect the unit circle at Mi , M, Mi+1. Notice that |Ai A| ≤ |Mi M |, |AAi+1| ≤
|M Mi+1|, so

|Ai A| + |AAi+1| ≤ |Mi M | + |M Mi+1|
≤ |M̂i Mi+1| = |θ2 − θ1|

By the inequality of common trigonometric function |α − β|≤| tan α − tan β|
(while α, β ∈ (0, π/2)), hence

|Ai A| + |AAi+1| ≤ |θ2 − θ1| = 2|θ2
2

− θ1

2
|

≤ 2| tan θ2

2
− tan

θ1

2
|

= 2| i + 1

n
− i

n
| = 2

n

Similarly

B j B + B B j+1 ≤ 2

n
, CkC + CCk+1 ≤ 2

n

holds for any B ∈ arc(B j B j+1), C ∈ arc(CkCk+1). Then we get

AB + BC + C A ≤ l p(n, b) + 6

n

holds for any A ∈ arc(Ai Ai+1), B ∈ arc(B j B j+1), C ∈ arc(CkCk+1) and 0 ≤
i, j, k < n. Lemma 3 is proved. ��



Finding the Symbolic Solution of a Geometric Problem… 235

Thus, from the obtained lower bound sequence l j , j = 0, 1, 2, . . . , 256 we can

construct the following sequence of upper bounds l j :

l(b j ) ≤ l j = l p

(
500,

j

256

)
+ 3

250
, j = 0, 1, 2, . . . , 256.

According to Lemma 2, we have the following inequalities

l j = l p

(
500,

j

256

)
≤ l(b) ≤ l j+1 = l p

(
500,

j + 1

256

)
+ 3

250

for all b with j/256 ≤ b ≤ ( j + 1)/256, j = 0, 1, 2, . . . , 255. Define R j ,

j = 0, 1, 2, . . . , 255 as the following rectangles

R j :=
[

j

256
,

j + 1

256

]
×
[

l p

(
500,

j

256

)
, l p

(
500,

j + 1

256

)
+ 3

250

]
.

Then, we have the following result:

Theorem 2 Let C1 be the curve defined by

C1 := {(b, L)| f (L , 1, b) = 0}.

Then C1 is covered by the union of R0, R1, . . . , R255.

Fig. 3 The 32 rectangles that
cover
f (L , 1, b) = 0 (0 < b < 1)
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In Fig. 3 we draw the 32 rectangles that cover f (L , 1, b) = 0 from the lower
bounds l p(500, j/32), j = 0, 1, 2, . . . , 32 and the upper bounds l p(500, j/32) +
3/250, j = 0, 1, . . . , 32.

4 Mechanical Verification for the Disjointness of Algebraic
Curves to Rectangle Regions

In this section, we will present a general method for proving that a given alge-
braic curve has no common point with a given rectangle region. The method was
established in [4] for mechanization proof to a geometric inequality involving sum
of radical functions of three variables, but there is no English introduction to the
method until now. Let F(x1, x2, . . . , xn) be a polynomial with integer coefficients
and R := [a1, b1]× [a2, b2]× · · ·× [an, bn] a rectangle region in the n dimensional
Euclidean space. Without loss of generality we may assume that F is expanded
into a sum of monomials and 0 ≤ ai < bi for i = 1, 2, . . . , n. We claim that if
F(x1, x2, . . . , xn) = 0 has no common point with R, then the following procedure
terminates after a finite recursive execution.

Procedure: Rectangular-Partition

Input: A 2-tuple (F, R) where F is an expanded polynomial

F(x1, x2, . . . , xn) =
∑

I=i1i2···in

cI · x1
i1x2

i2 · · · xn
in ,

and

R := [a1, b1] × [a2, b2] × · · · × [an, bn]

is a rectangle in Rn with 0 ≤ ai < bi for i = 1, 2, . . . , n.

Compute the upper bound of partial derivatives: Let

Di := ∂ F

∂xi
, i = 1, 2, . . . , n.

Apply the sub-procedure Value-Bound to get

Bi = Bi (F, R) := Value-Bound(Di , [a1, b1] × [a2, b2] × · · · × [an, bn])

for i = 1, 2, . . . , n.
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Partition and Recursive: Let

X0 :=
(

a1 + b1
2

,
a2 + b2

2
, . . . ,

an + bn

2

)

and F0 := F(X0). If F0 ≤ 0 then return -1, else if

F0 >

n∑
i=1

Bi · (bi − ai ),

then return 1, else construct 2n sub-rectangles R j1 j2··· jn ( jk ∈ {0, 1}for k = 1,
2, . . . , n) as follows:

R j1 j2··· jn := I j1 × I j2 × · · · × I jn ,

in which

I jk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
ak,

ak + bk

2

]
, if jk = 0,

[
ak + bk

2
, bk

]
, if jk = 1,

(k = 1, 2, . . . , n),

and do the Procedure Rectangular-Partition for the following 2n pairs of polynomial
and rectangles:

2-Tuple( j1, j2, . . . , jn) : (F, R j1 j2··· jn ), jk = 0, 1, k = 1, 2, . . . , n.

Sub-Procedure: Value-Bound of Polynomials

Input: A 2-tuple (F, R) where F is an expanded polynomial

F(x1, x2, . . . , xn) =
∑

I=i1i2···in

cI · x1
i1x2

i2 · · · xn
in ,

and

R := [a1, b1] × [a2, b2] × · · · × [an, bn]

is a rectangle in Rn with 0 ≤ ai < bi for i = 1, 2, . . . , n.

Output: Let

F+ =
∑

CI >0

cI · x1
i1x2

i2 · · · xn
in , F− =

∑
CI <0

(−cI ) · x1
i1x2

i2 · · · xn
in ,
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compute

d1 := F+(a1, a2, . . . , an) − F−(b1, b2, . . . , bn),

d2 := F+(b1, b2, . . . , bn) − F−(a1, a2, . . . , an),

and return max{|d1|, |d2|}. It is clear that

d1 ≤ F(x1, x2, . . . , xn) ≤ d2

for all (x1, x2, . . . , xn) ∈ [a1, b1] × [a2, b2] × · · · × [an, bn], and therefore the sub-
procedure gives an upper bound for |F(x1, x2, . . . , xn)| over the given rectangle.

We have the following result.

Theorem 3 Let F(x1, x2, . . . , xn) be a polynomial and R := [a1, b1] × [a2, b2] ×
· · · × [an, bn] a rectangle in the n-dimensional Euclidean space. Then F > 0 for
all (x1, x2 . . . , xn) ∈ R if and only if the Procedure Rectangle-Partition terminates
after finitely many recursive callings.

Proof If the Procedure Rectangle-Partition does not terminate in any finitely many
steps of recursive callings, then there exists a sequence of rectangles

R, RJ1 = RJ1(R), RJ1,J2 = RJ2(RJ1), . . . , RJ1,J2,...,Jk = RJk (RJ1,J2,...,Jk−1), . . .

so that
RJ1 ⊃ RJ1,J2 ⊃ · · · ⊃ RJ1,J2,...,Jk ⊃ · · ·

and the barycenters X J1,J2,...,Jk := X0(RJ1,J2,...,Jk ) of the rectangles satisfy

0 ≤ F(X J1,J2,...,Jk ) <

n∑
i=1

Bi (F, RJ1,J2,...,Jk ) · bi − ai

2k

for all k ≥ 1. Note that

B(F, RJ1) ≥ B(F, RJ1,J2) ≥ · · · ≥ B(F, RJ1,J2,...,Jk ) ≥ · · · ≥ 0,

we have

0 ≤ F(X J1,J2,...,Jk ) ≤ 1

2k
·

n∑
i=1

Bi (bi − ai ),

for all k ≥ 1, and therefore, limk→+∞F(X J1,J2,...,Jk ) = 0, which implies that
limk→+∞ X J1,J2,...,Jk = X0 ∈ R exists and F(X0) = 0. This contradicts to
F(X) > 0 for all X ∈ R.
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Now we prove that if the Procedure Rectangle-Partition terminates after finitely
many recursive callings, then F(X) > 0 for all X ∈ R. In this case, R is partitioned
into a union of finite sub-rectangles R1, R2, . . . , Rk so that on each rectangle R j ,

F(X0(R j )) >

n∑
i=1

Bi (F, R j ) · ||xi (R j )||
2

, (9)

where ||xi (R j )|| is the diameter of the projection of R j on xi -axis, that is,

||xi (R j )|| = b j
i − a j

i , i = 1, 2, . . . , n

provides R j = [a j
1 , b j

1 ] × [a j
2 , b j

2 ] × · · · × [a j
n , b j

n ]. Let X0(R j ) = (x01 , x02 , . . . , x0n )

be the bary-center of R j . Then from (9) we prove that for each R j and any point
(x1, x2, . . . , xn) ∈ R j there exists (ξ1, ξ2, . . . , ξn) ∈ R j such that

F(x1, x2, . . . , xn) = F(x01 , x02 , . . . , x0n ) +
n∑

i=1

∂ F

∂xi
(ξ1, ξ2, . . . , ξn) · (ξi − x0i ),

which implies that

|F(x1, x2, . . . , xn)| ≥ F(x01 , x02 , . . . , x0n ) − |
n∑

i=1

∂ F

∂xi
(ξ1, ξ2, . . . , ξn) · (ξi − x0i )|

>

n∑
i=1

Bi (F, R j ) · b j
i − a j

i

2
−

n∑
i=1

| ∂ F

∂xi
(ξ1, ξ2, . . . , ξn)| · |ξi − x0i |

≥ 0,

in point of view (ξ1, ξ2, . . . , ξn) ∈ [a j
1 , b j

1 ] × [a j
2 , b j

2 ] × · · · × [a j
n , b j

n ] and

Bi (F, R j ) = |D+
i (b j

1 , b j
2 , . . . , b j

n) − D−
i (a j

1 , a j
2 , . . . , a j

n )|
≥ max{| ∂ F

∂xi
(x1, x2, . . . , xn)|, (x1, x2, . . . , xn) ∈ R j }.

This proves the Theorem 3. ��

According to the following lemma, the Procedure Rectangular-Partition can ter-
minate before recursive callings in the following special case.

Lemma 4 Let F(x1, x2, . . . , xn) be a polynomial, R = [a1, b1] × [a2, b2] × · · · ×
[an, bn] a rectangle in the n-dimensional Euclidean space, and ∂ R the union of the
n − 1 dimensional facets of R, i.e.,

∂ R := R|x1=a1 ∪ R|x1=b1 ∪ R|x2=a2 ∪ R|x2=b2 ∪ · · · ∪ R|xn=an ∪ R|xn=bn ,
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where

R|x1=a1 = {a1} × [a2, b2] × · · · × [an, bn],
R|x1=b1 = {b1} × [a2, b2] × · · · × [an, bn], . . . .

Then F(X) > 0 for all X ∈ R, provided that

1. F(X) > 0 for all X ∈ ∂ R,
2. there exists no point X1 ∈ R \ ∂ R such that

∂ F

∂xi
(X1) = 0 for i = 1, 2, . . . , n.

Proof If there exists a point X0 ∈ interior(R) such that F(X0) < 0, then there exists
X1 ∈ interior(R) such that F(X1) = min{F(X), X ∈ R} ≤ F(X0) < 0 and

∂ F

∂x j
(X1) = 0, for i = 1, 2, . . . , n,

which contradicts to the Assumption 2. This proves Lemma 4. ��

For a plane algebraic curve F(x, y) = 0 and a rectangle R := [a1, a1] × [a2, b2]
in the plane, we have

∂ R = ({a1} × [b1, b2]) ∪ ([a1, a2] × {b1}) × ({a2} × [b1, b2]) ∪ ([a1, a2] × {b2}),

and therefore, F |∂ R > 0 if and only if F |x1=a1 , F |x=a2 have no real root in [b1, b2]
and F |y=b1, F |y=b2 have no real root in [a1, a2]. Meanwhile, the number (N ) of
point set

{(x1, y1) | (x1, y1) ∈ [a1, a2] × [b1, b2], ∂ F

∂x
(x1, y1) = ∂ F

∂y
(x1, y1) = 0}

can also be determined by calculating the real root number (N1) of the univariate
equation

Resultant(
∂ F

∂x
,
∂ F

∂y
, x) = 0

in [b1, b2] and the real root number (N2) of the equation

Resultant(
∂ F

∂x
,
∂ F

∂y
, y) = 0

in [a1, a2]. Namely, if N1 = 0 or N2 = 0, then N = 0.
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Applying this to the polynomials ri (L , 1, b), i = 1, 2, . . . , 5 obtained in
Theorem 1 and the 256 rectangles R j , j = 0, 1, . . . , 255 constructed in last section,
we get the following result.

Theorem 4 If L is the largest perimeter of the triangles inscribed in the ellipse with
major semi-axis a and minor semi-axis b, then

(a − b)2(a + b)2 · L4 − 8(−b2 + 2a2)(−2b2 + a2)(a2 + b2) · L2 − 432a4b4 = 0.

Proof For each pair of F(b, L) = ri (L , 1, b), i = 1, 2, . . . , 5 and R j = [b j , b j+1]×
[l j , l j ], where

b j = j

256
, ( j = 0, 1, . . . , 256),

and

l j = l p(500,
j

256
), l j = l p(500,

j + 1

256
) + 3

250
, ( j = 0, 1, . . . , 255),

we can check that

1. the polynomials F |b=b j , F |b=b j+1 have no real root in the interval [l j , l j ];
2. the polynomials F |L=l j

, F |L=l j
have no real root in the interval [b j , b j+1];

3. the equation system

{∂ F

∂b
= 0,

∂ F

∂L
= 0}

has no real root in the rectangle region R j .

Therefore, each ri (L , 1, b) = 0(i = 1, 2, . . . , 5) has no intersection point with
f (L , 1, b) = 0. This implies that r0 = 0 is the minimal polynomial of f (L , a, b)

and hence Theorem 4 is true. ��
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A Symbolic Approach to Compute a Null-Space
Basis in the Projection Method

Mark Giesbrecht and Nam Pham

Abstract We present a hybrid symbolic-numeric approach for the so-called projec-
tion method for solving the parameterized differential-algebraic constraint equations
associated with multibody mechanical systems. A primary problem in this approach
is computing a null-space basis of a matrix of multivariate rational functions, the
Jacobian of the symbolic constraint matrix. A purely symbolic approach is unten-
able in terms of the sheer size of the output, whereas a purely numerical approach
does not offer the flexibility of leaving some or all parameters unspecified. Instead
we propose a hybrid approach, which does a symbolic preconditioning, followed by
representing the null-space basis by straight-line C code, i.e., a black-box null-space
basis. We do this in a numerically sensitive way, and show that our black box is
numerically robust at almost all parameter settings. This is verified by experimental
results on inputs from typical multibody models.

1 Introduction

In recent years, a large amount of work has been devoted to developing symbolic-
computation software for modelling and simulating physical systems; for example,
MapleSim [15]. The primarymotivation has beenpotential gains over a purely numer-
ical approach that such software could provide engineers in the model-based devel-
opment process. In this paper, we aim to use and optimize a symbolic approach in
solving a constrained mechanical system using the so-called projection method [3].
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Consider a constrained mechanical system represented by a set of m nonlinear
algebraic equations:

Φ(q, t) = 0, (1)

where q is a set of n generalized coordinates, q = (x1, . . . , xn), and each constraint
equation is a function of the coordinates q and the time t . The Jacobian is the m × n
matrix of first partial derivatives of the constraint equations (1):

Φq =
[
∂(Φ1, Φ2, · · · , Φm)

∂(x1, x2, · · · , xn)

]
=

⎡
⎢⎢⎢⎢⎣

∂Φ1
∂x1

∂Φ1
∂x2

· · · ∂Φ1
∂xn

∂Φ2
∂x1

∂Φ2
∂x2

· · · ∂Φ2
∂xn

· · · · · · . . . · · ·
∂Φm
∂x1

∂Φm
∂x2

· · · ∂Φm
∂xn

⎤
⎥⎥⎥⎥⎦ . (2)

The equations describing the system dynamics in augmented form can then be
obtained as

Mẍ + ΦT
q λ = F, (3)

where M is an n × n symmetric generalized mass matrix, Φq is the m × n Jacobian
of the constraint matrix Φ with respect to the generalized coordinates, and λ is the
(m × 1) Lagrange multiplier. We will assume that the Jacobian matrix Φq above
has rank r , which may not be full. This in itself is atypical—full rank is assumed in
the standard situation [8]—but is important in the case of automatically generated
equations where redundancies may lead to rank deficiencies.

We could solve the n+m differential and algebraic equations formed by (1) and (3)
for the coordinate q and the Lagrangemultiplier λ by using the appropriate numerical
methods. However, solving those nonlinear DAEs is computationally expensive,
making it unsuitable for real-time simulation. Hence, it is desirable to express the
system equations in a set of purely ordinary differential equations (ODEs).

Reference [2] proposed a new method, called the projection method, to eliminate
algebraic equations from (3). Specifically, in this method, we find a null-space basis
D for Φq , an n × r matrix such that

Φq D = 0 or DTΦT
q = 0. (4)

By multiplying both sides of (3) by DT , the resulting equation can be written in an
embedded form:

DTMẍ = DTF. (5)

The tangent velocity u in D is defined as

ẋ = Du. (6)
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The determination of the null-space D and its tangent velocity u allows us to analyze
the constrained system as two separate problems. First, by substituting (6) into (5), we
can derive the dynamic equations of the constrained system in the subspace defined
by D:

DTM Du̇ = DT(F − M Ḋu). (7)

Equations (1) and (7) form a system of n +r purely differential equations in x and u,
which can be easily solved using a standard differential equation solver. Given x0 and
v0, we can compute the required initial tangent speeds for simulation. Secondly, the
constraint reactions can be determined at any instant of the simulation by substituting
(6) into (3):

λ = (Φq M−1ΦT
q )−1Φq(M−1F − Ḋu). (8)

Thus, the projection method requires an effective algorithm capable of finding a
null-space basis D of a large and complicated matrix Φq . In the traditional setting,
the matrices M andΦq are purely numerical, real valued matrices. However, in many
applications, these equations depend upon unknown parameters, which would have
to be instantiated before the projection method could be applied. A more interest-
ing symbolic approach has been pursued by MapleSim [11, 15], where unknown
parameters are simply left as parameters and the equations are handled symbolically,
i.e., over the function field defined by the parameters. This has the advantage of
completely reflecting knowledge (or lack thereof) of the underlying system, but of
course can lead to massive expression swell. The approach we will take here is a
hybrid one: from the symbolic system we will generate straight-line code to evaluate
solutions to the symbolic system at any specific settings of the parameters. This can
potentially be used in further manipulations, to reconstruct a symbolic solution (say
via sparse interpolation), or as a plugin to a numerical solver. The code produced will
(heuristically) be numerically robust in that, assuming reasonable properties of the
symbolic system, the straight-line code will have good relative error at most specific
parameters.

Numerically, the matrix D is often calculated via the Singular Value Decom-
position (SVD) of the Jacobian matrix Φq [1]. However, from the symbolic mod-
elling point of view, any numeric processes should be avoided since they require a
repeated evaluation of the model. Moreover, a symbolic computation of the SVD (as
a symbolic eigenvalue computation) will be both very large, and, when it is used for
numerical evaluation, will not necessarily lead to a numerically robust algorithm.

On the other hand, classical symbolic methods (such as fraction-free Gaussian
elimination; see, e.g., [4]) to compute the null-space basis will generally work only
for small problem instances, or when the number of parameters is very small. The
constraint matrixΦq in a multi-body system is often condensed withmanymultivari-
ate functions. For any medium-sized model, symbolic manipulation easily leads to
intermediate swell problems that exceed the capabilities of general purpose symbolic
software like Maple and Mathematica [13]. To handle the intermediate swell prob-
lems, [16] proposed to use fraction-free factoring and implicit reduced involutive
form to control the generation of large expression during computation [16, 17].
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Fig. 1 Slider crank mechanism [7]

In this paper, we make preliminary steps towards a different approach. We aim to
develop a hybrid symbolic-numeric computation technique to derive the orthogonal
complement matrix D directly. First, we replace the SVD computation by Gaussian
elimination with complete row and column pivoting.We then show how to efficiently
find row and column permutations of Φq such that an LU decomposition of Φq pro-
ceeds without further pivoting (equivalently, we are determining an a priori pivoting
strategy we hope is effective almost everywhere). From the permuted matrix, we
can then generate straight-line C code to evaluate a clearly defined null-space basis
at any settings of the parameters. The method has similarity to the so-called static
pivoting approach of [10], where a good pivoting strategy is established in advance
for the purposes of parallelization.

While we could, at this point, reconstruct a symbolic representation of the null-
space (say with sparse interpolation—[5]), it is more likely that the black box is used
directly in later numerical solvers. Our method has an important advantage that once
the symbolic preconditioning is done, the generated code evaluates a single, unique
basis for the null-space.

1.1 Example: Slider Crank Mechanism

In this section, we will introduce the simple slider crank mechanism, which will be
used in the following sections to demonstrate the basic ideas of our approach.

As illustrated in Fig. 1 above, a slider-crank consists of three bodies: a crank-
shaft rotating around the fixed axis, a slider and a connecting rod. The system
has one degree of freedom. It is modelled using four generalized coordinates
q = [α, β, θ, s]T , which are coupled by three algebraic constraints. Numerical values
for system parameters are borrowed from [7].
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The Jacobian of the constraint matrix is a 3 × 4 matrix. Each entry is a function
of the coordinates. For example, Φq has second column

Φq [∗, 2] =
⎡
⎣ −3/10 cos (β)

−3/10 sin (β) cos (α) cos (θ) − 3/10 sin (β) sin (α) sin (θ)

3/10 sin (β) cos (α) sin (θ) − 3/10 sin (β) sin (α) cos (θ)

⎤
⎦ .

It is convenient to convert all trigonometric functions (such as sine and cosine)
into rational functions by using the tangent half-angle formula sin(α) = 2z

1+z2
and

cos(α) = 1−z2

1+z2
where z = tan(α

2 ), whence

Φq [∗; 2] =

⎡
⎢⎢⎢⎢⎣

−3
10 · 1−z23

1+z23
−3
5 ·

(
1−z22

)
z3
(
1−z21

)
(
1+z22

)(
1+z23

)(
1+z21

) − 12
5 · z2z1z3(

1+z22
)(
1+z23

)(
1+z21

)
6
5 · z2z3

(
1−z21

)
(
1+z22

)(
1+z23

)(
1+z21

) − 6
5 ·

(
1−z22

)
z3z1(

1+z22
)(
1+z23

)(
1+z21

)

⎤
⎥⎥⎥⎥⎦ .

2 Generating a Straight-Line Program to Compute
a Null-Space Basis

Throughout the rest of this paper we will assume that we are working with a matrix
A whose entries are rational functions with real (floating point) coefficients. That is,
trigonometric and other functions have been replaced by independent indeterminates.
This will be represented algebraically by the function field F = R(z1, z2, · · · , z�).

Our goal in this section is to demonstrate how to take a matrix A ∈ Fm×n and
generate efficient code which, at “almost all” settings of the parameters z1, . . . , z�

from R, produces an evaluation of a specific basis of the null-space of A at those
values. The two primary difficulties are that (i) there is no unique null-space basis
for A, and (ii) we need to ensure that the output is numerically “good” for any setting
of the parameters. A typical symbolic computation of the null-space will require
us to make arbitrary decisions on pivots. Under any specialization of the values of
z1, . . . , z� we must be sure to make the same choices, and hence evaluate the same
null-space. We will assume for the remainder of this paper that A has rank r and that
entries in A are rational functions whose numerators and denominators have degree
less than d.

Our approach is to do a randomized symbolic preconditioning, after which a
canonical basis of the null-space is completely determined, even under “almost all”
specializations. The idea is similar to the static pivoting strategy of [10], though for
entirely different purposes. Moreover, we heuristically proceed in a manner that our
choice of pivots is numerically good at “most” numerical specializations.
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2.1 Algebraically Effective Static Pivoting

We start by building a preconditioner for A so that all leading k × k minors are non-
singular, for 1 ≤ k ≤ r . Such a matrix will have a unique, strict LU-decomposition,
with no need for pivoting choices (i.e., always use the diagonal element as a pivot). An
efficient algorithm is provided to do the preconditioning, which involves no expres-
sion swell. This is equivalent to recording the pivots in a Gaussian elimination with
complete pivoting and applying them every time (but for the efficiency of the gener-
ated code we will actually reorder the input matrix). Note that if we only computed
the null-space after specializing the variables (z1, . . . , z�) ← (α1, . . . , α�) ∈ R

�,
it would be difficult to determine which basis to choose. In particular, it is impor-
tant that we are evaluating a specific (symbolic) null-space basis at different points
(α1, . . . , α�), and not simply evaluating a different null-space basis depending upon
the parameters (for example, we could not interpolate a symbolic representation from
the latter approach).

We start by observing some standard properties of the symbolic matrix A over
the function field F = R(z1, . . . , z�).

Theorem 1 Let A ∈ Fm×n have m ≤ n and rank r, and be such that all the
leading k × k minors of A are nonzero, for 1 ≤ k ≤ r . Then there exists a
unique lower triangular matrix L ∈ Fm×m, a unique upper triangular matrix
U ∈ Fn×n, each with only ones on the diagonal, such that L AU = D, where
D = diag(d1, . . . , dr , 0, . . . , 0) ∈ Fm×n is a (truncated) diagonal matrix. A basis
for the null-space of A is formed by the last n − r columns of U.

Proof This follows from standard Gaussian elimination with complete (row and
column) pivoting. See, for example [12], Sect. 3.10. �

The null-space basis given by the last n − r columns of U in the above theorem
is uniquely defined, even up to order; we will refer to it as the canonical null-space
of A: w1, . . . , wn−r ∈ Fn×1.

Our first goal then is to find and fix permutation matrices P and Q such that
the conditions of the theorem are met by P AQ. Our approach is a very simple
randomization technique.

2.1.1 Algebraic Static Pivot Selection

(1) Choose “random” valuesα1, . . . , α� of parameters z1, . . . , z� from afinite subset
S ⊆ C;

(2) Return P, Q such that P · A(α1, . . . , α�) · Q has an LU-decomposition (without
pivoting), using Gaussian elimination with complete pivoting. This is equiva-
lent to recording the choice of pivots used to do the Gaussian elimination with
complete pivoting.
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Since P · A(α1, . . . , α�) · Q has an LU-decomposition, all its leading minors are
nonsingular, and hence this must be the case that P AQ is as well. The only thing
that could go wrong is that the rank of A(α1, . . . , α�) drops below rankA at this
evaluation point. The next theorem shows this happens rarely.

Theorem 2 Suppose A ∈ R(z1, . . . , z�)
m×n, with m ≤ n, has rank r and the degrees

of all numerators and denominators of entries are less than d. Let δ = nm2d · ξ ,
for some user-chosen parameter ξ , and S a subset of R with at least δ numbers. If
α1, . . . , α� are chosen uniformly and randomly from S , then rankA(α1, . . . , α�) =
rankA with probability at least 1 − 1/ξ .

Proof The product of all denominators in A has degree at most nmd, so we may
assume that A · h ∈ R[z1, . . . , z�]m×n for some polynomial h of degree at most
nmd, and A · h has total degree at most nm(d + 1). There exists a nonsingular
r × r minor Δ ∈ R[z1, . . . , z�] of A · h which has degree at most rnm(d + 1).
Thus, if we choose α1, . . . , α� such that h(α1, . . . , α�) �= 0 and Δ(α1, . . . , α�) �= 0,
rankA(α1, . . . , α�) = rankA. It is easy to see that deg h +degΔ ≤ 3nm2d, so by the
Schwarz–Zippel Lemma [14, 18], the probability that both (h · Δ)(α1, . . . , α�) �= 0
is at least 1 − (nmd + rnm(d + 1))/#S ≥ 1 − 1/ξ . �

A better probability estimate might be obtained by looking more carefully at the
degrees of the entries of A and of the common denominator of its entries.

2.2 Numerically Effective Static Pivoting

Since we are concerned also about the numerical properties of our algorithm, it is
not reasonable to assume that the choice of points will be effective at all settings of
the parameters. To remedy this, we will be more numerically judicious in our choice
of static pivots.

First, we recall the following easy theorem about the pivots, assuming that they
are all on the diagonal.

Fact 3 Let A ∈ R(z1, . . . , z�)
m×n be such that all leading i × i minors are

nonsingular, for 1 ≤ i ≤ m. Suppose A = LU , where L ∈ R(z1, . . . , z�)
m×m

is lower triangular with ones on the diagonal, and U ∈ R(z1, . . . , z�)
m×n is upper

triangular. Then

Uii = det A

[
1 . . . i
1 . . . i

] /
det A

[
1 . . . i − 1
1 . . . i − 1

]
.

In other words the pivots are quotients of minors of A. Whereas from a symbolic
point of view, any nonzero pivot is sufficient for effective Gaussian elimination,
numerically we want to choose the largest pivot (see [6], Sect. 3.4.8). Our challenge
is to estimate the size of the minors/pivots a priori. Thus, we will attempt to estimate
the “size” of the symbolic pivots via random evaluations. For this, we offer two
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heuristics: evaluating at all but one variable for each variable in turn (to get an idea
of the degree of the pivot), and evaluating at all variables to get an idea of coefficient
size. All evaluations are on the unit circle which both supports our analysis and
heuristically at least provides some numerical robustness.

2.2.1 Estimating the Degrees of the Chosen Pivots

We first show how to estimate the degree of an unknown, but evaluable, rational
function through partial evaluation. This will applied to the pivots in our application.
First, the degree of a univariate rational function is defined as the degree of the
numerator minus the degree of the denominator. Next, the maximum degree and
maximum specialized degree of a multivariate rational function at an evaluation
point, respectively, are as defined as follows.

maxdeg f (z1, . . . , z�) = max
i

degzi
f,

maxdegα1,...,α�
f (z1, . . . , z�) = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

degz1 f (z1, α2, . . . , α�),

degz2 f (α1, z2, . . . , α�),
...

degz�
f (α1, α2, . . . , z�).

We will regard the maximum degree as a good estimate of the overall size of f , and
estimate it by showing that themaximum degree is equal to themaximum specialized
degree at most specializations.

Theorem 3 Let f ∈ R(z1, . . . , z�) with total (of numerator or denominator) degree
at most d. Choose a prime p > 2μd�, where μ > 1 is a “confidence” parameter.
Let ω ∈ C be a primitive pth root of unity. Then, for uniformly and randomly chosen
e j ∈ {0, . . . , p − 1} we have

degzi
f = degzi

f (ωe1, . . . , ωei−1 , zi , ω
ei+1 , . . . , ωe� ),

for all 1 ≤ i ≤ �, with probability at least 1 − 1/μ.

Proof For each i , let gi (z1, . . . , zi−1, zi+1, . . . , z�) and hi (z1, . . . , zi−1, zi+1, . . . , z�)

be the leading terms of the numerator and denominator f , respectively, as a polynomi-
als in zi . Then the Schwartz–Zippel Lemma [14, 18] implies that the probability that
gi (ω

e1 , . . . , ωei−1 , ωe1 , . . . , ωei−1) �= 0 and hi (ω
e1 , . . . , ωei−1 , ωe1 , . . . , ωei−1) �= 0

is at least 1− d/(μd�). The probability that this is true for at each variable simulta-
neously is then at least (1 − 1/(μ�))� > 1 − 1/μ. �
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2.2.2 Estimating Coefficient Size

For an estimate of the coefficient size of an unknown (but evaluable) multivariate
polynomial, the following is useful. First, for

f (z1, . . . , z�) =
∑

i

fi z
ei1
1 zei2

2 · · · zei�
� ,

let ‖ f ‖2 =
√∑

i | fi |2, the coefficient 2-norm. The next theorem says the expected
value of f at an appropriately random point on the unit circle closely approximates
‖ f ‖2 (see also Lemma 3.1 of [9]).

Theorem 4 Let f ∈ R[z1, . . . , z�] with degzi
f = di for 1 ≤ i ≤ �. For each i fix

a prime pi > di , with pi �= p j for i �= j , and let ωi ∈ C be a primitive pi th root of
unity. Then

‖ f ‖22 = E
[

| f (ω
e1
1 , ω

e2
2 , . . . , ω

e�

� )|2 : for randomly chosen 0 ≤ ei < pi

]
.

Proof We start by doing a Kronecker-like substitution to convert this to a univariate
problem. Let Q1, . . . , Q� be the multipliers from the Chinese remainder theorem
for p1, . . . , p�, i.e., Qi ≡ 1 mod pi and Qi ≡ 0 mod p j for j �= i . Let P =
p1 p2 · · · p�; clearly Qi < P for 1 ≤ i ≤ �. Now let F(y) = f (yQ1 , yQ2 , . . . , yQ� ).
It is easy to see that there is a 1–1 mapping between nonzero terms in f to nonzero
terms in F . Now let ζ be a Pth root of unity, so ζ P/pi is a pi th primitive root of
unity. Then

‖ f ‖22 = ‖F‖22 = 1

P

∑
0≤i<P

|F(ζ i )|2 = 1

P

∑
0≤i1<p1

· · ·
∑

0≤i�<p�

| f (ω
i1
1 , · · · ωi�

� )|2,

where the univariate equality follows from the fact that the Fourier matrix on powers
of ζ is orthogonal. �

This theorem is somewhat weaker than we would like: the expected value being
indicative of the size does not prove that a randomvalue is indicative.But nonetheless,
heuristically we can take this as a good estimate, especially if we make more than
one random choice.

2.2.3 Numerical Static Pivot Selection

Suppose A ∈ R(z1, . . . , z�)
m×n , where numerators and denominators have degree

at most di in variable zi , and total degree at most d. As above wemay assume that we
can clear denominators through a common denominator h ∈ R[z1, . . . , z�] of degree
at most nmdi in each variable zi , or nmd in total degree, though we will certainly
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not compute this. Thus, a crude bound on the degree of all pivots is nm2(di + 1) in
each variable, or nm2(d + 1) in total. Choose a prime p0 > 200 nm2(d + 1) and
ω0 ∈ C a p0th root of unity. Similarly, choose distinct primes pi > 2 nm2(di + 1),
and let ωi ∈ C be an pi th root of unity, for 1 ≤ i ≤ �.

(1) Choose random evaluation points:

(1.1) For 1 ≤ j ≤ � choose a random c j ∈ {0, . . . , p0−1}, and letα(0)
j = ω

c j
0 ;

(1.2) For 1 ≤ i ≤ 4 and 1 ≤ j ≤ � choose a random e(i)
j ∈ {0, . . . , p j − 1},

and let α(i)
j = ω

e(i)
j

j .

(2) Perform Gaussian elimination “simultaneously” with full pivoting on each of
the following (� + 4) matrices:

(2.1) A(z1, α
(0)
2 , . . . , α

(0)
� ), A(α

(0)
1 , z2, . . . , α

(0)
� ), …, A(α

(0)
1 , α

(0)
2 , . . . , z�);

(2.2) A(α
(i)
1 , α

(i)
2 , . . . , α

(i)
� ), for i ∈ {1, . . . , 4}.

(3) At each stage choose the same pivot for all the eliminations, using a pivot that has
the highest maxdeg. In case of tie, we choose the one with the largest average
evaluation in (2.2). If any choices are zero, or “too small”, restart the entire
process with different random choices.

(4) Record all the pivot choices and construct permutation matrices P ∈ Z
m×m ,

Q ∈ Z
n×n such that P AQ has the same elimination with no pivoting.

The idea behind this heuristic strategy is that in each case we estimate the largest
pivot as a rational function, first by its degree on each variable, then by its evaluation
random points. In particular, by Theorem 3 we expect to get the degree correct with
probability at least 99/100. In a tie for highest degree, we expect to find the “largest”
pivot by Theorem 4.

In practice we might consider many practical refinements to this approach, espe-
cially taking into account the source of the parameters and their meaning in the prob-
lem space. For example, some parameters may be known to be large, or near zero.
Some parameters may be more important or more numerically sensitive, and hence
crucial to get correct. We can also increase the probability of success by considering
more choices of random evaluations for our simultaneous Gaussian elimination. We
hope to explore these further with application-driven examples, better probabilistic
analyses, and better heuristics.

2.3 Example with Numerical Static Pivoting

Continuing the slider crank example from the previous section, we note that the
maximum degree in many variable is 2, so we should use 3 distinct primes greater
than 216 and proceed to evaluate at random roots of unity of those orders to get
evaluations in (1.1) and (1.2).
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For the sake of a simple example, we will instead choose p0 = 3, p1 = 3, p2 = 5,
and p3 = 7, so ω0 = exp(2π i/3), ω1 = exp(2π i/3), ω2 = exp(2π i/5), and ω3 =
exp(2π i/7). We then choose c1 = 2, c2 = 1, and c3 = 3 to create three univariate
matrices Φq(z1, ω1

2, ω
3
3), Φq(ω2

1, z2, ω3
3)), and Φq(ω2

1, ω
1
2, z3). These matrices are

messy to write down, but we note their “degree matrices” as follows:

⎡
⎣0 2 0 2
2 2 2 0
2 2 2 0

⎤
⎦ ,

⎡
⎣ 0 2 0 2
2 2 2 0
2 2 2 0

⎤
⎦ ,

⎡
⎣ 0 2 0 2
2 1 2 0
2 1 2 0

⎤
⎦ .

We then perform Gaussian elimination with complete row-column pivoting
simultaneously on the three univariate matrices and four random evaluations of
Φq (z1, z2, z3):

Φq (ω2
1, ω

2
2, ω

2
3) =

⎡
⎣ 0.0 7.7405e-12 − 1.4447e-1i 0.0 1.0

−5.1923e-1 + 3.7140e-10i 1.2421−8.6191e-10i 3.9562e-1 − 8.7185e-2 0.0
3.5456e-10 + 5.3896e-1i −8.5540e-10 − 1.19671i −1.4832e-1 − 4.6630e-1i 0.0

⎤
⎦ ,

Φq (ω1
1, ω

3
2, ω

6
3) =

⎡
⎣ 0.0 4.8246e-11 − 1.3143i 0.0 1.0

4.7239+ 1.7945e-9i 5.0294 + 2.4527e-9i −4.8475 + 8.7185e-2i 0.0
−1.7148e-9 + 4.9033i −2.9437 + 4.8454i −1.4832e-1 − 4.9760i 0.0

⎤
⎦ ,

Φq (ω2
1, ω

1
2, ω

4
3) =

⎡
⎣ 0.0 5.2880e-10 − 0.3761i 0.0 1.0

4.4241 − 3.2567e-9i 5.6790 − 4.7758e-9i −4.1005 + 0.3693i 0.0
−3.3540e-9 + 4.4400i −4.8105e-9 − 5.6586i 0.3883 − 4.1323i 0.0

⎤
⎦ ,

Φq (ω1
1, ω

3
2, ω

2
3) =

⎡
⎣ 0.0 7.7405e-12 − 0.1444i 0.0 1.0

0.5192 + 2.6403e-10i 1.2421 + 4.1261e-10i −0.6428 + 0.0871i 0.0
−1.9690e-10 + 0.5389i −3.8619e-10 + 1.1967i −0.1483 − 0.6116i 0.0

⎤
⎦ .

From this, we ultimately choose permutation matrices P , Q to maximize overall
pivot size, in term of their maxdeg and then their coefficient sizes, as follows:

P =
⎡
⎣0 1 0
0 0 1
1 0 0

⎤
⎦ , Q =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ .

2.4 Generating Straight-Line Code

Once we have identified permutation matrices P and Q such that P AQ has all
leading minors nonsingular, and hence has a unique LU-decomposition as above,
the computation of the canonical null-space w1, . . . , wn−r ∈ Fn×1 is completely
determined. In particular, we can then generate straight-line code (i.e., without any
conditional statements) which take parameters α1, . . . , α� ∈ R, and will produce
wi (α1, . . . , α�) ∈ R

n for 1 ≤ i ≤ n − r .
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Theorem 5 Let A ∈ m × n, with m ≤ n and rank r. Suppose that we have deter-
mined permutation matrices P ∈ Z

m×m and Q ∈ Z
n×n such that all leading k × k

leading minors of P AQ are nonsingular, so that the canonical null-space of P AQ
is w1, . . . , wn−r ∈ Fn Then we can generate straight-line (C) code which, given
α1, . . . , α� ∈ R, produces

w1(α1, . . . , α�) ∈ R
n, . . . , wn−r (α1, . . . , α�) ∈ R

n .

Proof Assume the input in α1, . . . , α� ∈ R. The code to be generated is simply the
code for LU-decompositionwithout pivoting on thematrix (P AQ)(α1, . . . , α�). The
null-space basis is precisely the last n − r columns of the computed U , evaluated at
α1, . . . , α�. �

Of course, the generated code is not foolproof. Aside from the (controllably small)
probability that the rank of A is incorrectly computed through our randomized spe-
cialization (as in Theorem 2), there is also a probability that the instantiation of the
parameters lies on a zero or pole of one of the pivots. This will be exceedingly rare,
and will immediately cause a floating point exception, which is easy to catch. As in
the proof of Theorem 2, any such point must be the root of a specific polynomial
(defined by the input system) of degree O(r2nmd). Hence, the straight-line program
will be defined almost everywhere.

Of perhaps greater concern is the numerical robustness of the evaluations pro-
vided by the straight-line program. For this our static pivot selection attempted to
find pivots which were largest “most” of the time, by estimating the “size” of the
pivot functions. Our method is only an effective heuristic, though we are working on
stronger probabilistic guarantees and heuristic, as well as numerically robust “fall-
back” procedures (i.e., provide black boxes for two distinct bases, one of which is
guaranteed to be valid and numerically robust everywhere the input is). Another
possibility, explored by [10] is to do some number of steps of iterative refinement on
the solution.

3 Implementation and Experimental Results

In this section, we will present some experiment results to illustrate the efficiency
of our approach in terms of time and memory management, and to compare its
performancewith the purely symbolic null-space solver provided byMaple.Note that
this comparison is, in some sense, quite unfair: the symbolic solution is a complete
solution over the function field, whereas we produce a black box which can evaluate
that solution. Nonetheless, since the ultimate application is usually to evaluate the
solution, we believe this is useful. Moreover, as we will see below, the complete
symbolic solution is unattainable for even moderately sized problems.

All experiments are run on Intel Xeon E7330 4 Quad Core CPUS (16 CPUs
in total) with 128GB of RAM. Since the goal of our experiment is to evaluate the
usefulness of our technique in real applications, we choose a test set of 4 typical
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Table 1 Multibody models from MapleSim

Models Number of coordinates Number of constraints Number of parameters

3D Rigid Slider
Crank

4 3 3

Planar Seven Body
Mechanism

7 6 7

Quadski Turning 19 11 16

Hydraulic Stewart
Platform

24 18 41

Table 2 Running time (in seconds)

Models Maple’s nullspace Our nullspace

3D Rigid Slider
Crank

0.046 0.016

Planar Seven Body
Mechanism

0.078 0.031

Quadski Turning Timeout (>200s) 0.56

Hydraulic Stewart
Platform

Timeout (>200s) 1.64

multibody models obtained from MapleSim. Refer to Table1 for the description of
each model.

3.1 Time Efficiency

We measured the running time of our algorithm and Maple’s NullSpace function to
give an idea of the overall performance. Since our algorithm is heuristic in choosing
the pivots, its execution time was measured to the average of 5 rounds for each of the
models. We also set a time limit of 200 seconds on every call. Table2 presents the
comparison of running time between our algorithm and Maple’s NullSpace solver.

We also compare the running time of our algorithm with different numbers of
parameters on a samemodel. Figure2 shows its performanceon theHydraulic Stewart
Platform model. Starting with 41 parameters from the original model, we reduce the
number of parameters by substituting numerical values into each of them. When the
number of symbolic parameters is reduced to zero, our algorithm is basically run on
a purely numerical matrix. It’s also worth noting that when the same experiment is
performed using Maple’s NullSpace, it fails to return an answer in a reasonable time
for more than 3 parameters.

Of course, we are not really comparing similar quantities; on one hand Maple
is generating a complete solution, whereas we are simply generating C code which
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Fig. 2 Running time on hydraulic stewart platformwith different numbers of parameters

can evaluate one specialized solution (in fact the Maple code is remarkably fast in
small instances). Nonetheless, the results clearly show that our generated C code
is substantially faster than the NullSpace solver in Maple. Much more importantly,
we are able to find a null-space basis far beyond when the computing the symbolic
solution fails.

3.2 Memory Use

Aprimary difficulty with the symbolic computation is the need to produce a complete
(and very large) presentation of the null-space, and also the need to work with these
large entities during the Gaussian elimination. As the size of the intermediate result
and the output can grow exponentially, it may well exhaust memory even with a
relatively small input, and in particular one which would be quickly evaluable at
any specialization of the parameters. We now examine the expected size of the null-
space basis that our algorithm generates in term of the length of directed acyclic
graph (DAG), which is Maple’s internal representation for straight-line code:

Table3 shows a weakness of our algorithm. Without doing any simplification, the
size of the expression in our null-space basis will expand dramatically. However,
there is at least some potential for identifying common subexpressions, computing
them once, and then re-using these evaluations. While opportunities may be few in
a truly generic matrix, in the potentially structured (or at least someone redundant)
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Table 3 DAG size of the null-space of Φq

Models Φq dimensions DAG size of D

Planar Slider Crank 3 × 4 5671

Planar Seven Body
Mechanism

6 × 7 75045

Quadski Turning 11 × 19 41706824

Hydraulic Stewart Platform 18 × 24 11849101

matrices from kinematic equations, there may well be many opportunities for such
simplifications. Such simplification is, unfortunately, quite nontrivial in general, and
a topic of current research.

3.3 Code Generation

A strength of our approach is that the null-space is ultimately computed by straight-
line C code. This lends itself to highly optimized compilation. As the null-space is
used to computed to themassmatrix M̃ and the force D̃ during simulation and control,
it is desirable to port its evaluation to C for numerical computation. The intermediate
“symbolic” representation of the straight-line code also has the potential for some
optimization. The Maple CodeGeneration package with the “optimize” option in
Maple can identify at least some common subexpressions while generating the code
[13]. For example, in the case of the slider crank mechanism, the null-space basis of
Φq could be simplified and converted to the followingCcode for further computation:

CodeGeneration[C](NullSpaceD) = t1 = pow(x[2], 0.2e1);
t2 = 0.1e1 + t1; t3 = pow(x[0], 0.2e1); t4 = x[0] * t2;
t5 = 0.5e1 * t4 + 0.3e1 * (-0.1e1 + t3) * t1 + 0.3e1 * t3 - 0.3e1;
t6 = -0.1e1 + t1; t5 = 0.1e1 / t5; t7 = 0.1e1 / t6;
t8 = -0.3e1 + (0.5e1 + 0.3e1 * x[0]) * x[0]; t2 = 0.1e1 / t2;
t8 = 0.1e1 / t8;
cg17[0][0] = (-0.20e2 * t3 + 0.20e2 * t1 + 0.12e2 * t4

+ 0.10e2 * t1 * t3-0.10e2) * x[2] * t5* t7;
cg17[1][0] = 1; cg17[2][0] = (0.15e2 + 0.15e2 * t3) * x[2] * t8 * t2;
cg17[3][0] = -0.3e1 / 0.10e2 * t6 * t2;

A more thorough examination of the preconditioned LU-decomposition we
employ, or use of some other equivalent method, will hopefully expose more opti-
mization opportunities.
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4 Conclusions and Future Work

In this paper, a new hybrid algorithm to compute the null-space basis of amultivariate
matrix has been presented, and employed in the symbolic version of the projec-
tion method for solving a constrained mechanical system. The novelty of this algo-
rithm lies in the combination of numeric and symbolic computation to generate fast
“black box” code, which can be employed later for numerical or symbolic evaluation.
Specifically, instead of computing the null-space directly using LU-decomposition,
it is shown that by choosing the ordering of row and column interchanges “ran-
domly”, using numerical values from a constrained set, we can emit code to evaluate
a symbolic null-space quickly. This is similar to so-called static pivoting schemes.
This avoids many of the problems of intermediate expression swell encountered in
purely symbolic approaches. Preliminary experiments have been presented to show
that this approach is significantly faster than computing null-space symbolically,
supporting the use of symbolic computation in engineering problems such as the
projection method for multibody systems.

So far we have only done a pilot experiment with small to medium-sized multi-
body models. It is necessary to test our algorithm with larger models with tens or
hundreds of parameters and constraints. There are also several avenues of algorithmic
development. First, in the current implementation, we rely on Maple’s CodeGener-
ation package to simplify the straight-line code at the the final step. A more careful
analysis of the actual LU-decomposition or equivalent method should lead to identi-
fication of common subexpressions. Also, the ultimate “output” of our techniques is
C code for a numerical evaluator at specialized values of the parameters. Currently,
the numerical robustness of this code is relatively heuristic, estimating the static
pivots through randomized evaluation. While we believe this is a good approach, a
more rigorous treatment is warranted. Following [10], we will also investigate post
hoc iterative refinement in cases when numerical stability is questionable.
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A Simple Quantifier-Free Formula of Positive
Semidefinite Cyclic Ternary Quartic Forms

Jingjun Han

Abstract The problem of quantifier elimination of positive semidefinite cyclic
ternary quartic forms is studied in this paper. We solve the problem by function
RealTriangularize in Maple15, the theory of complete discrimination sys-
tems and the so-called Criterions on Equality of Symmetric Inequalities method. The
equivalent simple quantifier-free formula is proposed, which is difficult to obtain
automatically by previous methods or quantifier elimination tools.

1 Introduction

The elementary theory of real closed fields (RCF) is expressed in a formal language
with atomic formulas of the forms A = B and A > B, where A and B aremultivariate
polynomials with integer coefficients. The problem of quantifier elimination (QE)
for RCF can be expressed as: for a given formula of RCF, find an equivalent formula
containing the same free (unquantified) variables and no quantifiers.

QE is what many researchers have contributed to, including Tarski, who gave
a first quantifier elimination method for RCF in the 1930s, although its publishing
delayed for nearly 20 years [25], and Collins, who introduced a so-called cylindrical
algebraic decomposition (CAD) algorithm for QE problems in the 1970s [12], which
has turned into one of the main tools for QE problems, along with its improved
variations. Over the years, new algorithms and important improvements on CAD
have appeared, including, for instance, [1, 2, 4–7, 10, 13, 19, 20, 22–24, 29]. Most
of the works, including Tarskis algorithm, were collected in a book [9].

Many researchers have studied a special quantifier elimination problem (see, for
example [3, 10, 21, 28]),

(∀x ∈ R)[x4 + px2 + qx + r ≥ 0],
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which is called quartic problem in the book just mentioned. There are also many
researchers that have studied some special QE problems in other ways. In 1987, Choi
etc. obtained the necessary and sufficient condition for the positive semidefiniteness
of a symmetric form of degree 3 with n variables [11]. González-Vega etc. proposed
a theory on root classification of polynomials in [14] which is based on the Sturm-
Habicht sequence and the theory of subresultants. For QE problems in the form
(∀x)( f (x) ≥ 0) where the degree of f (x) is a positive even integer, González-Vega
proposed a combinatorial algorithm [15] based on thework in [14]. In 1996,Yang etc.
proposed the theory of complete discrimination systems for polynomials to discuss
the root classification problem of one variable polynomial with real parameters [31,
32]. Yang’s theory is equivalent to González-Vega’s. In 1999, Harris gave a necessary
and sufficient condition for the positive semidefiniteness of a symmetric form of
degree 4 and 5 with 3 variables [17]. In 2003, Timofte considered the necessary and
sufficient condition for the positive semidefiniteness for symmetric forms of degree d
with n variables in Rn(d ≤ 5) [26, 27]. By applying Timofte’s result and the theory
of complete discrimination systems, Yao etc. obtained a quantifier elimination of
the positive semidefiniteness for symmetric forms of degree d with n variables in
R

n(d ≤ 5) [33]. However, the above results are for symmetric forms. Therefore,
the author discussed the positive semidefiniteness for more general forms with n
variables, including symmetric forms and cyclic forms [16].

In computer-aided geometric design, an interesting problem is to get the quantifier-
free formula of ternary quartic forms problem [30],

(∀x, y, z ∈ R)[
∑

i+ j+k=4

ai jk xi y j zk ≥ 0].

Let
∑

cyc xa ybzc = xa ybzc + yazbxc + za xb yc, namely the cyclic sum of xa ybzc.
In this paper, we consider a quantifier-free formula of positive semidefinite cyclic
ternary quartic forms, namely the quantifier-free formula of

(∀x, y, z ∈ R)[F(x, y, z) =
∑
cyc

x4+k
∑
cyc

x2y2+l
∑
cyc

x2yz +m
∑
cyc

x3y +n
∑
cyc

xy3 ≥ 0],

which is similar to yet also more complex than quartic problem and is a special
case of ternary quartic forms problem. It is difficult to get an answer directly by
previousmethods orQE tools. Recall Hilbert’s 1888 theorem that says, every positive
semidefinite ternary quartic (homogeneous polynomial of degree 4 in 3 variables) is
a sum of three squares of quadratic forms [18]. Hilbert’s proof is non-constructive in
the sense that it gives no information about the production of an equivalent quantifier-
free formula. Notice that F(x, y, z) ≥ 0 for x, y, z ∈ R is equivalent to the following
inequality (see, for example [16]),

(∀x, y, z ∈ R)[ f (x, y, z) = σ 4
1 + Bσ 2

1 σ2 + Cσ 2
2 + Dσ1σ3 + Eσ1

∑
cyc

x2y ≥ 0],
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where σ1 = x + y + z, σ2 = xy + yz + zx , σ3 = xyz and B, C, D, E satisfying

k = 2B + C + E + 6, l = 2C + D + E + 12 + 5B, n = B + 4, m = B + E + 4.

The author [16] obtained the following necessary and sufficient condition of
f (x, y, z) ≥ 0,

(∀m ∈ R)[ f (m, 1, km + 1 − k) ≥ 0],

where k is a real root of the equation

Ek3 − Dk2 − 3Ek + Dk + E = 0.

However, it is still difficult to get a quantifier-free formula by previous methods or
QE tools.

The author developed several other methods to solve cyclic and symmetric
inequalities including the so-called Criterions on Equality of Symmetric Inequal-
ities method [16]. These methods can solve a class of QE problems. This paper is
firmly rooted in the author’s book [16], especially the technique dealing with the
cyclic and symmetric inequalities. In order to be self contained, we will prove some
results later in this paper. In order to obtain a simple quantifier-free formula, func-
tion RealTriangularize [8] of RegularChains package in Maple15 is used to
prove inequalities and illustrate semi-algebraic systems without real solution. We
also need the theory of complete discrimination systems for root classification.

The rest of the paper is organized as follows. Section2 introduces some basic con-
cepts and results about complete discrimination systems for polynomials. Section3
presents our solution to the positive semidefinite cyclic ternary quartic form.

2 Preliminaries

Given a polynomial

f (x) = a0xn + a1xn−1 + · · · + an,

we write the derivative of f (x) as

f ′(x) = 0 · xn + na0xn−1 + (n − 1)a1xn−2 + · · · + an−1.

Definition 1 [31, 32] (discriminant matrix) The Sylvester matrix of f (x) and f ′(x)
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . an

0 na0 (n − 1)a1 . . . an−1
a0 a1 . . . an−1 an

0 na0 . . . 2an−1 an
...

...
. . .

...
...

a0 a1 . . . an

0 na0 . . . an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is called the discrimination matrix of f (x), and denoted by Discr( f ).

Definition 2 [31, 32] (discriminant sequence) Denoted by Dk the determinant of
the submatrix of Discr( f ) formed by the first 2k rows and the first 2k columns. For
k = 1, . . . , n, we call the n-tuple

{D1( f ), D2( f ), . . . , Dn( f )}

the discriminant sequence of polynomial f (x).

Definition 3 [31, 32] (sign list). We call list

[sign(D1( f )), sign(D2( f )), . . . , sign(Dn( f ))]

the sign list of the discriminant sequence {D1( f ), D2( f ), . . . , Dn( f )}.
Definition 4 [31, 32] (revised sign list). Given a sign list

[s1, s2, . . . , sn],

we construct a new list
[ε1, ε2, . . . , εn]

as follows (which is called the revised sign list): if [si , si+1, . . . , si+ j ] is a section of
the given list satisfying

si �= 0, si+1 = si+2 = · · · = si+ j−1 = 0, si+ j �= 0, (1)

then we replace the subsection

[si+1, si+2, . . . , si+ j−1]

by
[−si ,−si , si , si ,−si ,−si , si , si , . . .],

i.e., let
εi+r = (−1)[

r+1
2 ] · si
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for r = 1, 2, . . . , j − 1, where [a] is the floor function i.e., [a] is the greatest integer
b such that b ≤ a. Otherwise, [si , s2, . . . , si+ j ] does not satisfy (1), let εk = sk i.e.,
no change for other terms.

Lemma 1 [31, 32] Given a polynomial with real coefficients, f (x) = a0xn +
a1xn−1 + · · · + an . If the number of the sign changes of the revised sign list of

{D1( f ), D2( f ), . . . , Dn( f )}

is v, then the number of the pairs of distinct conjugate imaginary root of f (x) equals
v. Furthermore, if the number of non-vanishing members of the revised sign list is l,
then the number of the distinct real roots of f (x) equals l − 2v.

Theoretically, we can get a quantifier-free formula of the positive semidefinite cyclic
ternary quartic form by complete discrimination systems for polynomials. But it is
impossible because of the complexity.

3 Main Result

Lemma 2 [16] Let x, y, z ∈ C, x + y + z = 1 and xy + yz + zx, xyz ∈ R. The
necessary and sufficient condition of x, y, z ∈ R is xyz ∈ [r1, r2], where

r1 = 1

27
(1 − 3t2 − 2t3), r2 = 1

27
(1 − 3t2 + 2t3)

and t = √
1 − 3(xy + yz + zx) ≥ 0.

Proof We consider the polynomial

f (X) = X3 − (x + y + z)X2 + (xy + yz + zx)X − xyz,

it is obvious that x, y, z are three roots of f (X) = 0. By Lemma 1, the equation
f (X) = 0 has three real roots if and only if

D3( f ) ≥ 0 ∧ D2( f ) ≥ 0,

where

D2( f ) = (x + y + z)2 − 3(xy + yz + zx) = 1 − 3(xy + yz + zx),

D3( f ) = (x − y)2(y − z)2(z − x)2 = 1

27
(4D2( f )3 − (3D2( f ) − 1 + 27xyz)2).

Therefore, using the substitution t = √
D2( f ) and r = xyz, we have
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x, y, z ∈ R ⇐⇒ (x − y)2(y − z)2(z − x)2 ≥ 0 ∧ (x + y + z)2 ≥ 3xy + 3yz + 3zx,

⇐⇒ 4t6 − (3t2 − 1 + 27r)2 ≥ 0 ∧ t ≥ 0

⇐⇒ 1

27
(1 − 3t2 − 2t3) ≤ r ≤ 1

27
(1 − 3t2 + 2t3) ∧ t ≥ 0.

That completes the proof. �

Remark 1 The author also got this result by the Criterions on Equality of Symmetric
Inequalities method [16]. This Lemma implies that if x, y, z ∈ R and x + y + z = 1,
then

√
1 − 3(xy + yz + zx) = t ≥ 0, and the range of xyz is [r1, r2].

We now try to reduce the number of quantifiers of the positive semidefinite cyclic
ternary quartic form which is mentioned in the Introduction,

(∀x, y, z ∈ R)[F(x, y, z) =
∑
cyc

x4+k
∑
cyc

x2y2+ l
∑
cyc

x2yz +m
∑
cyc

x3y +n
∑
cyc

xy3 ≥ 0].

Lemma 3 [16] The inequality F(x, y, z) ≥ 0 holds for any x, y, z ∈ R if and
only if

2
∑
cyc

x4 + 2k
∑
cyc

x2y2 + 2l
∑
cyc

x2yz + (n + m)
∑
cyc

x3y + (m + n)
∑
cyc

xy3

≥ |(m − n)(x + y + z)(x − y)(y − z)(z − x)|

x, y, z ∈ R.

Proof It is easy to show that for all x, y, z ∈ R, F(x, y, z) ≥ 0 is equivalent to: for
all x, y, z ∈ R,

2
∑
cyc

x4 + 2k
∑
cyc

x2y2 + 2l
∑
cyc

x2yz + (n + m)
∑
cyc

x3y + (m + n)
∑
cyc

xy3

≥ (m − n)(x + y + z)(x − y)(y − z)(z − x).

On the other hand, if F(x, y, z) ≥ 0 holds for any x, y, z ∈ R, then F(x, z, y) ≥ 0
also holds for any x, y, z ∈ R. This inequality is equivalent to

2
∑
cyc

x4 + 2k
∑
cyc

x2y2 + 2l
∑
cyc

x2yz + (n + m)
∑
cyc

x3y + (m + n)
∑
cyc

xy3

≥ (n − m)(x + y + z)(x − y)(y − z)(z − x)

for all x, y, z ∈ R.

Thus, F(x, y, z) ≥ 0 for any x, y, z ∈ R is equivalent to
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2
∑
cyc

x4 + 2k
∑
cyc

x2y2 + 2l
∑
cyc

x2yz + (n + m)
∑
cyc

x3y + (m + n)
∑
cyc

xy3

≥ |(m − n)(x + y + z)(x − y)(y − z)(z − x)|

for all x, y, z ∈ R. �

Theorem 1 The positive semidefinite cyclic ternary quartic form

∀x, y, z ∈ R F(x, y, z) ≥ 0

holds if and only if the following inequality holds.

(∀t ∈ R)[g(t) := 3(2 + k − m − n)t4 + 3(4 + m + n − l)t2 + k + 1 + m + n + l

−
√
27(m − n)2 + (4k + m + n − 8 − 2l)2t3 ≥ 0].

Proof Since
√
27(m − n)2 + (4k + m + n − 8 − 2l)2t3 ≤ 0 when t ≤ 0, (∀t ≥

0)[g(t) ≥ 0] implies (∀t ∈ R)[g(t) ≥ 0], thus they are equivalent. We only need to
prove (∀x, y, z ∈ R)[F(x, y, z) ≥ 0] is equivalent to (∀t ≥ 0)[g(t) ≥ 0].

According to Lemma 3, the positive semidefinite cyclic ternary quartic form is
equivalent to

2
∑
cyc

x4 + 2k
∑
cyc

x2y2 + 2l
∑
cyc

x2yz + (n + m)
∑
cyc

x3y + (m + n)
∑
cyc

xy3

≥ |(m − n)(x + y + z)(x − y)(y − z)(z − x)|

for all x, y, z ∈ R.
Substituting x + y + z, xy + yz + zx, xyz with p, q, r , we have

∑
cyc

x4 = p4 − 4p2q + 2q2 + 4pr,
∑
cyc

x2y2 = q2 − 2pr,

∑
cyc

x2yz = pr,
∑
cyc

x3y + xy3 = q(p2 − 2q) − pr,

|(x − y)(y − z)(z − x)| =
√

(x − y)2(y − z)2(z − x)2

=
√
4(p2 − 3q)3 − (2p3 − 9pq + 27r)2

27
.

The last inequality above becomes
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G(x, y, z) = 2p4 + np2q − 8p2q + mp2q + 2kq2 − 2nq2 − 2mq2

+ 4q2 + 2lpr + 8pr − npr − mpr − 4kpr

− |m − n||p|
√
4(p2 − 3q)3 − (2p3 − 9pq + 27r)2

27
≥ 0.

We first prove the sufficiency.
If p = 0, then the inequality G(x, y, z) ≥ 0 becomes

2(2 + k − m − n)q2 ≥ 0.

We can deduce (2+k −m−n) ≥ 0 from g(t) ≥ 0 for all t ≥ 0. Since (2+k −m−n)

is the leading coefficient of g(t).
If p �= 0, since the inequality F(x, y, z) ≥ 0 is homogenous and the degree of F

is an even integer, we can assume that p = 1. Notice that

(x + y + z)2 ≥ 3(xy + yz + zx),

thus we have q ≤ 1
3 . Using the substitution t = √

1 − 3q ≥ 0, the inequality
G(x, y, z) ≥ 0 is equivalent to

2(2 + k − m − n)t4 + (16 − 4k + m + n)t2 − 2 + 2k + m + n

+ 9(8 − 4k + 2l − m − n)r ≥ √
3|m − n|

√
4t6 − (3t2 − 1 + 27r)2, (2)

where t ≥ 0, r ∈ [r1, r2] (r1 and r2 are the same as those in the Lemma 2). Since
2
3g(t) ≥ 0 is equivalent to

2(2 + k − m − n)t4 + (16 − 4k + m + n)t2 − 2 + 2k + m + n

+ 9(8 − 4k + 2l − m − n)r ≥ 2
√
27(m − n)2 + (8 − 4k + 2l − m − n)2t3

3

+ (8 − 4k + 2l − m − n)(3t2 − 1 + 27r)

3
,

thus, in order to prove G(x, y, z) ≥ 0, it is sufficient to prove that

√
3|m − n|

√
4t6 − (3t2 − 1 + 27r)2

≤ 2
√
27(m − n)2 + (8 − 4k + 2l − m − n)2t3

3

+ (8 − 4k + 2l − m − n)(3t2 − 1 + 27r)

3
. (3)
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After we square both sides and collect terms, the inequality (3) is equivalent to

H2(r) ≥ 0,

where

H(r) = 2(8 − 4k + 2l − m − n)

3
t3

+ (3t2 − 1 + 27r)

√
3(m − n)2 + (8 − 4k + 2l − m − n)2

9
.

The inequality (3) is obviously true.
So the sufficiency is proved. Now we prove the necessity, which is equivalent

of proving that when the inequality (2) holds for all x, y, z ∈ R, then (∀t ≥ 0)
[g(t) ≥ 0]. For any t ≥ 0, if there exist x, y, z ∈ R such that H(r) = 0, x +y+z = 1
and 1− 3(xy + yz + zx) = t2, then the equality of inequality (3) could be attained.
Choosing such x, y, z ∈ R, inequality (2) becomes

2(2 + k − m − n)t4 + (16 − 4k + m + n)t2 − 2 + 2k + m + n

+ 9(8 − 4k + 2l − m − n)r ≥ 2
√
27(m − n)2 + (8 − 4k + 2l − m − n)2t3

3

+ (8 − 4k + 2l − m − n)(3t2 − 1 + 27r)

3
,

which is equivalent to (∀t ≥ 0)[g(t) ≥ 0]. Thus, it suffices to show that there exist
such x, y, z ∈ R. Notice that

H(r1)H(r2) =(
2(8 − 4k + 2l − m − n)

3
t3 − 2t3

√
3(m − n)2 + (8 − 4k + 2l − m − n)2

9
)

(
2(8 − 4k + 2l − m − n)

3
t3 + 2t3

√
3(m − n)2 + (8 − 4k + 2l − m − n)2

9
)

= − 12t6(m − n)2 ≤ 0,

where

r1 = 1

27
(1 − 3t2 − 2t3), r2 = 1

27
(1 − 3t2 + 2t3).

Therefore, for any given t = √
1 − 3(xy + yz + zx) ≥ 0, there exists r0 ∈ [r1, r2],

such that H(r0) = 0. By Lemma 2, such x, y, z ∈ R exist andwe prove the necessity.
�

We will apply function RealTriangularize of RegularChains package in
Maple15 to prove the following lemma.
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Lemma 4 Let a0 > 0, a4 > 0, a1 �= 0, a1, a2 ∈ R, we consider the following
polynomial

f (x) = a0x4 + a1x3 + a2x2 + a4.

The discriminant sequence of f (x) is

D f = [D1( f ), D2( f ), D3( f ), D4( f )],

where

D1( f ) = a0
2,

D2( f ) = − 8a3
0a2 + 3a2

1a2
0,

D3( f ) = − 4a3
0a3

2 + 16a4
0a2a4 + a2

0a2
1a2

2 − 6a3
0a2

1a4,

D4( f ) = − 27a2
0a4

1a2
4 + 16a3

0a4
2a4 − 128a4

0a2
2a2

4

− 4a2
0a2

1a3
2a4 + 144a3

0a2a2
1a2

4 + 256a5
0a3

4 .

For all x ∈ R, f (x) ≥ 0 holds if and only if one of the following cases holds,

(1) D4( f ) > 0 ∧ (D2( f ) < 0 ∨ D3( f ) < 0),

(2) D4( f ) = 0 ∧ D3( f ) < 0.

Proof =⇒: If f (x) ≥ 0 holds for all x ∈ R, then the number of distinct real roots
of f (x) is less than 2. If it equals 2, then the roots of f (x) are all real. If it equals 0,
then f (x) has no real root.

If D4( f ) < 0 and D2( f ) > 0, then the number of non-vanishing members
of revised sign list, l, equals 4. Since D4( f )D2( f ) < 0, then the number of the
sign changes of revised sign list, v, equals 1, thus l − 2v = 2. By Lemma 1,
the number of distinct real roots of f (x) equals two and the number of the pairs
of distinct conjugate imaginary root of f (x), v = 1, which is impossible. Using
function RealTriangularize, we can prove that the semi-algebraic system
a4 > 0, D4( f ) < 0, D2( f ) ≤ 0 has no real solution. Therefore, D4( f ) ≥ 0.
Since D1( f ) ≥ 0, the number of the sign changes of revised sign list v ≤ 2.

If D4( f ) > 0, thus l = 4. Notice that the number of real roots of f (x), namely
l − 2v ≤ 2, so v ≥ 1, from which, we get

D2( f ) ≤ 0 ∨ D3( f ) ≤ 0.

Using function RealTriangularize, we can prove that both the semi-algebraic
system a4 > 0, a0 > 0, D4( f ) > 0, D2( f ) ≥ 0, D3( f ) = 0, a1 �= 0 and the semi-
algebraic system a4 > 0, a0 > 0, D4( f ) > 0, D3( f ) ≥ 0, D2( f ) = 0, a1 �= 0
have no real solution. Hence, if D4( f ) > 0 and D2( f ) = 0, then D3( f ) < 0;
if D4( f ) > 0 and D3( f ) = 0, then D2( f ) < 0. Thus, when D4( f ) > 0, either
D2( f ) < 0 or D3( f ) < 0 holds.
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If D4( f ) = 0 and D3( f ) > 0, then l = 3. The number of sign changes of
revised sign list v equals either 2 or 0. From 0 ≤ l − 2v ≤ 2, we have v = 1, which
leads to contradiction. That implies if D4( f ) = 0, then D3( f ) ≤ 0. Using function
RealTriangularize, we can prove that the semi-algebraic system a4 > 0,
a0 > 0, D4( f ) = 0, D3( f ) = 0, a1 �= 0 has no real solution. Hence, when
D4( f ) = 0, we have D3( f ) < 0.

⇐=: If D4( f ) > 0∧(D2( f ) < 0∨ D3( f ) < 0), then the number of sign changes
of revised sign list v = 2, so the number of distinct real roots of f (x), l − 2v, equals
0, which means for any x ∈ R, f (x) > 0.

If D4( f ) = 0 and D3( f ) < 0, then l = 3, the number of the sign changes of
revised sign list v = 2. Thus, the number of distinct real roots of f (x), l −2v, equals
1, and the number of the pairs of distinct conjugate imaginary root of f (x), v, equals
1, so f has a real root with multiplicity two, which means for any x ∈ R, f (x) ≥ 0.

�

Now, we can provide a quantifier-free formula of the positive semidefinite cyclic
ternary quartic form.

Theorem 2 Given a cyclic ternary quartic form of real coefficients

F(x, y, z) =
∑
cyc

x4 + k
∑
cyc

x2y2 + l
∑
cyc

x2yz + m
∑
cyc

x3y + n
∑
cyc

xy3,

then
(∀x, y, z ∈ R) [F(x, y, z) ≥ 0]

is equivalent to

(g4 = 0 ∧ f2 = 0 ∧ ((g1 = 0 ∧ m ≥ 1 ∧ m ≤ 4) ∨ (g1 > 0 ∧ g2 ≥ 0) ∨ (g1 > 0 ∧ g3 ≥ 0 ∧ g5 ≥ 0)))

∨ (g2
4 + f 22 > 0 ∧ f1 > 0 ∧ f3 = 0 ∧ f4 ≥ 0)

∨ (g2
4 + f 22 > 0 ∧ f1 > 0 ∧ f3 > 0 ∧ (( f5 > 0 ∧ ( f6 < 0 ∨ f7 < 0)) ∨ ( f5 = 0 ∧ f7 < 0)))

where

f1 :=2 + k − m − n, f2 := 4k + m + n − 8 − 2l,

f3 :=1 + k + m + n + l, f4 := 3(1 + k) − m2 − n2 − mn,

f5 := − 4k3m2 − 4k3n2 − 4k2lm2 + 4k2lmn − 4k2ln2

− kl2m2 + 4kl2mn − kl2n2 + 8klm3 + 6klm2n + 6klmn2

+ 8kln3 − 2km4 + 10km3n − 3km2n2 + 10kmn3 − 2kn4

+ l3mn − 9l2m2n − 9l2mn2 + lm4 + 13lm3n − 3lm2n2

+ 13lmn3 + ln4 − 7m5 − 8m4n − 16m3n2 − 16m2n3 − 8mn4

− 7n5 + 16k4 + 16k3l − 32k2lm − 32k2ln + 12k2m2

− 48k2mn + 12k2n2 − 4kl3 + 4kl2m + 4kl2n − 12klm2
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− 60klmn − 12kln2 + 40km3 + 48km2n + 48kmn2 + 40kn3

− l4 + 10l3m + 10l3n − 21l2m2 + 12l2mn − 21l2n2

+ 10lm3 + 48lm2n + 48lmn2 + 10ln3 − 17m4 − 14m3n

− 21m2n2 − 14mn3 − 17n4 − 16k3 + 32k2l − 48k2m

− 48k2n + 80kl2 − 48klm − 48kln + 96km2 + 48kmn + 96kn2

− 24l3 − 24l2m − 24l2n + 24lm2 − 24lmn + 24ln2 − 16m3

− 48m2n − 48mn2 − 16n3 − 96k2 − 64kl + 64km + 64kn + 96l2

− 32lm − 32ln − 16m2 − 32mn − 16n2 + 64k − 128l + 64m + 64n + 128,

f6 := 4k2 + 2kl − 4km − 4kn + l2 − 7lm − 7ln + 13m2 − mn + 13n2

− 40k + 20l + 8m + 8n − 32,

f7 := − 768 + 352k2 − 332l2 + 180n2 + 180m2 + 56k3 − 8k4

+ 14l3 + 132n3 + 132m3 + 42n4 + 42m4 − 480k − 60lmn − 192n

+ 32klmn − 192m + 912l + l4 − 354kmn + 158kln + 158klm + 26k2mn

− 11kln2 + 22k2lm + 22k2ln − 45kmn2 − 90lm2n − 45km2n

− 11klm2 + 23l2mn − 90lmn2 + kl2m + kl2n + 36mn − 480km + 592kl

− 480kn − 60lm − 60ln + 8k3m + 8k3n − 20k2l + 32k2n + 32k2m

− 12k3l + 234mn2 + 234m2n − 192ln2 − 258kn2 − 192lm2 − 258km2

+ 116l2m + 116l2n + 87m3n + 87mn3 − 15kn3 + 90m2n2 − 30ln3

− 15km3 − 30lm3 + 25l2m2 + 25l2n2 − 14k2m2 − 14k2n2

− 146kl2 − 10l3m − 10l3n − 2k2l2 + 3kl3,

g1 := k − 2m + 2, g2 := 4k − m2 − 8, g3 := 8 + m − 2k, g4 = m − n, g5 = k + m − 1.

Proof By Theorem 1, it suffices to find a quantifier-free formula of

(∀t ∈ R)[g(t) := 3(2 + k − m − n)t4 + 3(4 + m + n − l)t2 + k + 1 + m + n + l

−
√
27(m − n)2 + (4k + m + n − 8 − 2l)2t3 ≥ 0].

Case 1
√
27(m − n)2 + (4k + m + n − 8 − 2l)2 = 0, that is m = n and 4k + m +

n − 8 − 2l = 0. Hence

g(t) = 3(2 + k − 2m)t4 + 3(4 + 2m − l)t2 + k + 1 + 2m + l

= 3(2 + k − 2m)t4 + 3(8 + m − 2k)t2 + 3(k + m − 1).

If 2 + k − 2m = 0, then

∀t ∈ R g(t) ≥ 0 ⇐⇒ 1 ≤ m ≤ 4.
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If 2 + k − 2m > 0, then

∀t ∈ R g(t) ≥ 0 ⇐⇒ (g1 > 0 ∧ g2 ≥ 0) ∨ (g1 > 0 ∧ g3 ≥ 0 ∧ g5 ≥ 0).

Case 2
√
27(m − n)2 + (4k + m + n − 8 − 2l)2 �= 0 and 1 + k + m + n + l = 0.

In this case, it is easy to show that 2 + k − m − n > 0. Thus,

∀t ∈ R, g(t) ≥ 0 ⇐⇒∀t ∈ R, 3(2 + k − m − n)t2 + 3(4 + m + n − l)

−
√
27(m − n)2 + (4k + m + n − 8 − 2l)2t ≥ 0

⇐⇒27(m − n)2 + (4k + m + n − 8 − 2l)2

≤ 36(2 + k − m − n)(4 + m + n − l)

⇐⇒3(1 + k) ≥ m2 + n2 + mn.

Case 3
√
27(m − n)2 + (4k + m + n − 8 − 2l)2 �= 0 and 1 + k + m + n + l �= 0.

In this case, by Lemma 4, we know that for all x ∈ R, g ≥ 0 holds if and only if

f1 > 0 ∧ f3 > 0 ∧ (( f5 > 0 ∧ ( f6 ≤ 0 ∨ f7 ≤ 0)) ∨ ( f5 = 0 ∧ f7 < 0)).

To summarize, the theorem is proved. �
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The Vanishing Ideal of a Finite Set of Points
with Multiplicity Structures

Na Lei, Xiaopeng Zheng and Yuxue Ren

Abstract Given a finite set of arbitrarily distributed points in affine space with
multiplicity structures,we present an algorithm to compute the reducedGröbner basis
of the vanishing ideal under the lexicographic order.We split the problem into several
smaller ones which can be solved by induction over variables and then use our new
algorithm for intersection of ideals to compute the result of the original problem. The
new algorithm for intersection of ideals is mainly based on the Extended Euclidean
Algorithm. Our method discloses the essential geometric connection between the
relative position of the points with multiplicity structures and the leading monomials
of the reduced Gröbner basis of the vanishing ideal.

Keywords Vanishing ideal · Points with multiplicity structures · Reduced Gröbner
basis · Intersection of ideals

1 Introduction

To describe the problem, first we give the definitions below.

Definition 1 D ⊆ Nn
0 is called a lower set in n dimensional affine space as long as

∀d ∈ D if di �= 0, d − ei lies in D where ei = (0, . . . , 0, 1, 0, . . . , 0) with the 1
situated at the i th position (1 ≤ i ≤ n). For a lower set D, we define its limiting set
E(D) to be the set of all β ∈ Nn

0 − D such that whenever βi �= 0, then β − ei ∈ D.
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Fig. 1 Illustration of three lower sets and their limiting sets

As showed in Fig. 1, there are three lower sets and their limiting sets. The elements
of the lower sets are marked by solid circles and the elements of the limiting sets are
marked by blank circles.

Let k be a field and p be a point in the affine space kn , i.e. p = (p1, . . . , pn) ∈ kn .
Let k[X ] be the polynomial ring over k, where we write X = (X1, X2, . . . , Xn) for
brevity’s sake.

Definition 2 〈p, D〉 represents a point p with multiplicity structure D, where p is
a point in affine space kn and D ⊆ Nn

0 is a lower set. �D is called the multiplicity
of point p (here we use the definition in [1]). For each d = (d1, . . . , dn) ∈ D, we
define a corresponding functional

L( f ) = ∂d1+···+dn

∂xd1
1 , . . . , ∂xdn

n

f (p).

Hence for any given finite set of points with multiplicity structures H =
{〈p1, D1〉, . . . , 〈pt , Dt 〉}, m functionals {Li ; i = 1, . . . , m} can be defined where
m � �D1 + · · · + �Dt . We call

I (H) = { f ∈ k[X ]; Li ( f ) = 0, i = 1, . . . , m}

the vanishing ideal of the set of the points H . The vanishing ideal problem we are
focusing on is to compute the reduced Gröbner basis of the vanishing ideal for any
given finite set of points H , which arises in several applications, for example, see [2]
for statistics, [3] for biology, and [4–6] for coding theory.

A polynomial time algorithm for this problem was first given by Buchberger and
Möller [7], then significantly improved by Marinari et al. [8], and Abbott et al. [9].
These algorithms perform Gauss elimination on a generalized Vandermonde matrix
and have a polynomial time complexity in the number of points and in the number
of variables. Jeffrey and Gao [10] presented a new algorithm that is essentially a
generalization of Newton interpolation for univariate polynomial and has a good
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computational performance when the number of variables is small relative to the
number of points.

In this paper the problem we consider is under the Lexicographical order with
X1 	 X2 	 · · · Xn and a more transparent algorithm will be given. The ideas are
summed-up as follows:

• Construct the reduced Gröbner basis of I (H) and get the quotient basis by induc-
tion over variables (define {M; M is a monomial and it is not divisible by the
leading monomial for any polynomial in I (H)} as the quotient basis for the
vanishing ideal I (H)).

• Get the quotient basis of the vanishing ideal purely according to the geometric
distribution of the points with multiplicity structures.

• Split the original n-variable problem into smaller ones which can be solved by
converting them into (n − 1)-variable problems.

• Compute the intersection of the ideals of the smaller problems by using Extended
Euclidean Algorithm.

Our algorithm can get a lower set by induction over variables for any given set
of points with multiplicity structures, and by constructing the reduced Gröbner basis
at the same time we can prove that the lower set is the quotient basis. There are
several publications which have a strong connection to the our work although they
are all only focusing on the quotient basis, ignoring the reduced Gröbner basis of
the vanishing ideal. Paper [11] gives a computationally efficient algorithm to get the
quotient basis of the vanishing ideal over a set of pointswith nomultiplicity structures
and the authors introduce the interesting lex game to describe the problem and the
algorithm. Paper [12] offers a purely combinatorial algorithm to obtain the quotient
basis and the algorithm can handle the set of points with multiplicity structures as
well.

The advantage of our method is insight rather than efficient computation. The
computation cost depends closely on the structure of the given set of points and a
full complexity analysis would be infeasible. Our method may not be particularly
efficient, but is geometrically intuitive and appealing. The clear geometric meaning
of our method reveals the essential connection between the relative position of the
points with multiplicity structures and the quotient basis of the vanishing ideal,
providing us a new perspective of view to look into the vanishing ideal problem and
helping study the structure of the reduced Gröbner basis of zero dimensional ideal
under lexicographic order. What’s more, our method leads to the discovery of a new
algorithm to compute the intersection of two zero dimensional ideals.

Since one important feature of our method is the clear geometric meaning, to
demonstrate it we present an example in Sect. 2 together with some auxiliary pictures
which can make the algorithms and conclusions in this paper easier to understand. In
Sects. 3 and 4 some definitions and notions are given. Sections5 and 6 are devoted
to our main algorithms of computing the reduced Gröbner basis and the quotient
basis together with the proofs. In Sect. 7 we demonstrate the algorithm to compute
the intersection of two ideals and some applications.
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2 Example

We will use two different forms to represent the set of points with multiplicity struc-
tures H in this paper.

For easier description, we introduce the matrix form which consists of two matri-
ces 〈P = (pi, j )m×n,D = (di, j )m×n〉 with Pi ,Di denoting the i th row vectors of
P and D respectively. Each pair {Pi ,Di } (1 ≤ i ≤ m) defines a functional in the
following way.

Li ( f ) = ∂di,1+···+di,n

∂x
di,1
1 . . . ∂x

di,n
n

f |x1=pi,1,...,xn=pi,n .

And the functional set defined here is the same with that defined by the way in
Sect. 1 with respect to H .

For example, given a set of three points with their multiplicity structures {〈p1,
D1〉, 〈p2, D2〉, 〈p3, D3〉}, where p1 = (1, 1), p2 = (2, 1), p3 = (0, 2), D1 =
{(0, 0), (0, 1), (1, 0)}, D2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, D3 = {(0, 0), (1, 0)}, the
matrix form is like the follows.

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 1
1 1
2 1
2 1
2 1
2 1
0 2
0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
1 0
0 1
0 0
1 0
0 1
1 1
0 0
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For intuition’s sake, we also represent the points with multiplicity structures in
a more intuitive way as showed in the left picture of Fig. 2 where each lower set
that represents the multiplicity structure of the corresponding point p is also put in

Fig. 2 The left picture represents H , the middle one is for H1 and the right one for H2
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the affine space with the zero element (0,0) situated at p. This intuitive representing
form is the basis of the geometric interpretation of our algorithm.

We take the example above to showhowourmethodworks andwhat the geometric
interpretation of our algorithm is like:

Step 1: Define mapping π : H 
→ k such that 〈p = (p1, . . . , pn), D〉 ∈ H is
mapped to pn ∈ k. So H = {〈p1, D1〉, 〈p2, D2〉, 〈p3, D3〉} consists of two π -fibres:
H1 = {〈p1, D1〉, 〈p2, D2〉} and H2 = {〈p3, D3〉} as showed in the middle and the
right pictures in Fig. 2. Each fibre defines a new problem, so we split the original
problem defined by H into two small ones defined by H1 and H2 respectively.

Step 2: Solve the small problems. Take the problem defined by H1 for example.
First, it’s easy to write down one element of I (H1):

f1 = (X2 − 1)(X2 − 1) = (X2 − 1)2 ∈ I (H1).

The geometry interpretation is: we draw two lines sharing the same equation of
X2 − 1 = 0 to cover all the points as illustrated in the left picture in Fig. 3 and the
corresponding polynomial is f1.

According to themiddle and the right pictures in Fig. 3, we canwrite down another
two polynomials in I (H1):

f2 = (X2 − 1)(X1 − 1)(X1 − 2)2 and f3 = (X1 − 1)2(X1 − 2)2.

It can be checked that G1 = { f1, f2, f3} is the reduced Gröbner basis of I (H1),
and the quotient basis is {1, X1, X2, X1X2, X2

1, X2X2
1, X3

1}. In the following, we

don’t distinguish explicitly an n-variablemonomial Xd1
1 Xd2

2 . . . Xdn
n with the element

(d1, d2, . . . , dn) in Nn
0. Hence this quotient basis can be written as a subset of Nn

0:{(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (2, 1), (3, 0)}, i.e. a lower set, denoted by D′.
In fact we can get the lower set in a more direct way by pushing the points with

multiplicity structures leftward which is illustrated in the picture below (lower set
D′ is positioned in the right part of the picture with the (0,0) element situated at
point (0,1)). The elements of the lower set D′ in the right picture in Fig. 4 are marked
by solid circles. The blank circles constitute the limiting set E(D′) and they are the
leading terms of the reduced Gröbner basis { f1, f2, f3}.

Fig. 3 Three ways to draw lines to cover the points
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Fig. 4 Push the points leftward to get a lower set

Fig. 5 Get the lower set D based on D′ and D′′

In the sameway,we canget theGröbner basisG2 = {h1, h2} and a lower set D′′ for
the problem defined by H2, where h1 = (X2 − 2), h2 = X2

1, D′′ = {(0, 0), (1, 0)}.
Step 3: Compute the intersection of the ideals I (H1) and I (H2) to get the result

for the problem defined by H .
First, we construct a new lower set D based on D′, D′′ in an intuitive way: let the

solid circles fall down and the elements of D′′ rest on the elements of D′ to form
a new lower set D which is showed in the right part of Fig. 5 and the blank circles
represent the elements of the limiting set E(D).

Then we need to find �E(D) polynomials vanishing on H with leading terms
being the elements of E(D). Take X3

1X2 ∈ E(D) for example to show the general
way we do it.
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We need two polynomials which vanish on H1 and H2 respectively, and their
leading terms both have the same degrees of X1 with that of the desired monomial
X3
1X2 and both have the minimal degrees of X2. Notice that f2 and X1 · h2 satisfy

the requirement. And then we multiply f2 and X1 ·h2 with h1, f1 respectively which
are all univariate polynomials in X2 to get two polynomials q1, q2 such that q1 and
q2 both vanish on H . Obviously q1 and q2 still have the same degrees of X1 with
that of the desired monomial X3

1X2.

q1 = f2 · h1 = (X2 − 1)(X1 − 1)(X1 − 2)2(X2 − 2),

q2 = X1 · h2 · f1 = X3
1(X2 − 1)2.

Next try to find two univariate polynomials in X2: r1, r2 such that q1 · r1 + q2 ·
r2 vanishes on H (which is obviously true already) and has the desired leading
term X3

1X2.

q1 = (X2 − 2)(X2 − 1)X3
1 − (5X2

2 − 15X2 + 10)X2
1

+ (8X2
2 − 24X2 + 16)X1 − 4X2

2 + 12X2 − 8,

q2 = (X2 − 1)2X3
1.

To settle the leading term issue, write q1, q2 as univariate polynomials in X1 as
above. Because X2 ≺ X1 and the highest degrees of X1 of the leading terms of q1, q2
are both 3, we know that as long as the leading term of (X2 − 2)(X2 − 1)X3

1 · r1 +
(X2 − 1)2X3

1 · r2 is X3
1X2, the leading term of q1 · r1 + q2 · r2 is also X3

1X2.

(X2 − 2)(X2 − 1)X3
1 · r1 + (X2 − 1)2X3

1 · r2

= X3
1(X2 − 1) ((X2 − 2) · r1 + (X2 − 1) · r2)

Obviously if and only if (X2 − 2) · r1 + (X2 − 1) · r2 = 1 we can keep the leading
term of q1 · r1 + q2 · r2 to be X3

1X2. In this case r1 = −1 and r2 = 1 will be just
perfect. In our algorithm we use Extended Euclidean Algorithm to compute r1, r2.

Finally, we obtain
g3 = q1 · r1 + q2 · r2

= (X2 −1)X3
1 + (5X2

2 −15X2 +10)X2
1 − (8X2

2 −24X2 +16)X1 +4X2
2 −12X2 +8

which vanishes on H and has X3
1X2 as its leading term.

In the same way, we can get g1 = (X2 − 1)2(X2 − 2) for X3
2, g2 = (X2 − 1)2X2

1
for X2

1 X2
2 and g4 = X4

1 +6(X2
2 −2X2)X3

1 −13(X2
2 −2X2)X2

1 +12(X2
2 −2X2)X1−

4(X2
2 −2X2) for X4

1. In fact we need to compute g1, g2, g3 and g4 in turn according
to the lexicographic order because we need reduce g2 by g1, reduce g3 by g2 and g1,
and reduce g4 by g1, g2 and g3.
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The reduced polynomial set can be proved in Sect. 6 to be the reduced Gröbner
basis of the intersection of two ideals which is exactly the vanishing ideal over H ,
and D is the quotient basis.

This example shows what the geometric interpretation of our method is like: for
any given point with multiplicity structure 〈pi , Di 〉, we put the lower set Di into
the affine space with the (0,0) element situated at pi to intuitively represent it, and
it can be imagined as �Di small balls in the affine space; for bivariate problem, we
first push the balls along the X1-axis, then along the X2-axis to get a lower set as we
did in the example above; the lower set is exactly the quotient basis and the limiting
set of the lower set is the set of the leading monomials of the reduced Göbner basis.
This intuitive understanding can be applied to the n-variable problem and can help
us understand the algorithm better in the following.

3 Notions

First, we define the following mappings:
proj : Nn

0 −→ N0
(d1, . . . , dn) −→ dn .

p̂roj : Nn
0 −→ Nn−1

0
(d1, . . . , dn) −→ (d1, . . . , dn−1).

embedc : Nn−1
0 −→ Nn

0
(d1, . . . , dn−1) −→ (d1, . . . , dn−1, c).

Let D ⊂ Nn
0, and naturally we define p̂roj(D) = {̂proj(d)|d ∈ D}, and

embedc(D′) = {embedc(d)|d ∈ D′} where D′ ⊂ Nn−1
0 . In fact we can apply

these mappings to any set O ⊂ kn or any matrix of n columns, because there is no
danger of confusion. For example, let M be a matrix of n columns, and p̂roj(M) is
a matrix of n − 1 columns with the first n − 1 columns of M reserved and the last
one eliminated.

The embedc mapping embeds a lower set of the n − 1 dimensional space
into the n dimensional space. When the embedc operation parameter c is zero,
we can get a lower set of Nn

0 by mapping each element d = (d1, . . . , dn−1) to
d = (d1, . . . , dn−1, 0) as showed below.

Blank circles represent the elements of the limiting sets. Note that after the embedc

mapping, there is one more blank circle. In this case, the limiting set is always
increased by one element (0, . . . , 0, 1).

In the case the embedc operation parameter c is not zero, it is obvious that what
we got is not a lower set any more. But there is another intuitive fact we should
realize (Fig. 6).

Theorem 1 Assume D0, D1, . . . , D� are lower sets in n − 1 dimensional space,
and D0 ⊇ D1 ⊇ · · · ⊇ D�. Let D̂i = embedi (Di ), i = 0, . . . , �. Then
D = ⋃�

i=0 D̂i is a lower set in n dimensional space, and E(D) ⊆ C where
C = ⋃�

i=0 embedi (E(Di ))
⋃{(0, . . . , 0, � + 1)}.
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Fig. 6 Embed the lower set in 2-D space into 3-D space with parameter c = 0

Proof First to prove D is a lower set. ∀d ∈ D, let i = proj(d), then d ∈ D̂i i.e.
p̂roj(d) ∈ p̂roj(D̂i ) = Di . Because Di is a lower set, hence for j = 1, . . . , n − 1, if
d j �= 0, then p̂roj(d) − p̂roj(e j ) ∈ Di where e j = (0, . . . , 0, 1, 0, . . . , 0) with the
1 situated at the j th position. So d − e j ∈ D̂i ⊆ D. For j = n, if i = 0, we are
finished. If i �= 0, there must be d − en ∈ D̂i−1 ⊆ D. Because if d − en /∈ D̂i−1,
we have p̂roj(d) /∈ Di−1. Since we already have p̂roj(d) ∈ Di , this is contradictory
to Di ⊆ Di−1.

Second, assume ∀d ∈ E(D), p̂roj(d) /∈ Di , i = 0, . . . , �. If p̂roj(d) is a zero
tuple, then dn must be � + 1, that is d ∈ C. If p̂roj(d) is not a zero tuple, then we
know dn < � + 1. If d j �= 0, j = 1, . . . , n − 1 , then d − e j ∈ embeddn (Ddn ).

Then p̂roj(d) − p̂roj(e j ) ∈ Ddn , that is p̂roj(d) ∈ E(Ddn ). Finally with the embeddn

operation we have d ∈ embeddn (E(Ddn )) where dn < � + 1. So d ∈ C . ��

4 Addition of Lower Sets

In this section, we define the addition of lower sets which is the same with that in
[13], the following paragraph and Fig. 7 are basically excerpted from that paper with
a little modification of expression.

To get a visual impression of what the addition of lower sets are, look at the
example in Fig. 7. What is depicted there can be generalized to arbitrary lower sets
D1, D2 and arbitrary dimension n. The process can be described as follows. Draw
a coordinate system of Nn

0 and insert D1. Place a translate of D2 somewhere on the
X2-axis. The translate has to be sufficiently far out, so that D1 and the translate D2 do
not intersect. Then push the elements of the translate of D2 down along the X2-axis
until on room remains between them and the elements of D1. The resulting lower
set is denoted by D1 + D2.
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Fig. 7 Addition of D1 and D2

Intuitively, we define algorithm ALS (short for Addition of Lower Sets) to realize
the addition of lower sets.

Algorithm ALS: Given two lower sets in n dimensional space D1, D2, determine
another lower set as the addition of D1, D2, denoted by D := D1 + D2.

Step 1 D := D1;
Step 2 If �D2 = 0 return D. Else pick a ∈ D2, D2 := D2 \ {a}.
Step 2.1 If a ∈ D, add the last coordinate of a with 1. Go to Step 2.1.

Else
D := D

⋃{a}, go to Step 2.

Given three lower sets D1, D2, D3, the addition we defined satisfies:

1. D1 + D2 = D2 + D1,

2. (D1 + D2) + D3 = D1 + (D2 + D3),

3. D1 + D2 is a lower set,
4. �(D1 + D2) = �D1 + �D2.

These are all the same with that in [13]. And the proof can be referred to it.
As implied in the example of Sect. 2, when we want to get a polynomial with

leading term d3 showed in the right part of Fig. 8, we need two polynomials with
the leading terms d1, d2 which are not the elements of the lower sets and have the
same degrees of X1 as d3 and the minimal degrees of X2 as showed in the left part
of Fig. 8. In other words, d1 /∈ D1, d2 /∈ D2, p̂roj(d1) = p̂roj(d2) = p̂roj(d3),
proj(d1) + proj(d2) = proj(d3). It’s easy to understand that these equations hold for
the addition of three or even more lower sets.

We use algorithm CLT (short of Computing the Leading Term) to get the leading
terms d1 and d2 from d3 respectively.
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Fig. 8 p̂roj(d1) = p̂roj(d2) = p̂roj(d3), proj(d1) + proj(d2) = proj(d3)

Algorithm CLT: Given a ∈ Nn
0, and a lower set D in n dimensional space

satisfying a /∈ D. Determine another r = (r1, . . . , rn) ∈ Nn
0 which satisfies

that r /∈ D, p̂roj(r) = p̂roj(a) and (r1, . . . , rn−1, rn − 1) ∈ D, denoted by
r := CLT(a, D).

Step 1 Initialize r such as p̂roj(r) = p̂roj(a) and proj(r) = 0.
Step 2 if r /∈ D, return r, else rn := rn + 1, go to Step 2.

Then d1 = CLT(d3, D1), d2 = CLT(d3, D2).

Definition 3 For any f ∈ k[X ], view it as an element in k(Xn)[X1, . . . , Xn−1] and
define LCn( f ) to be the leading coefficient of f which is a univariate polynomial
in Xn .

Here is the algorithm CP (short for Computing the Polynomial) which can com-
pute the polynomial with the leading term returned by algorithm CLT.

Algorithm CP: D is a lower set in n dimensional space, a ∈ Nn
0 and a /∈ D,

G := { fed ∈ k[X ];the leading term of fed is ed, ed ∈ E(D)}, algorithm CP returns
a polynomial p whose leading term is CLT(a, D). Denoted by p := CP(a, D, G).

Step 1 c := CLT(a, D).
Step 2 Select c′ ∈ E(D), s.t. c′ is a factor of c. d := c

c′ .
(d is well defined because c /∈ D).

Step 3 p := fc′ · d where fc′ is an element of G whose leading term is c′ ∈ E(D).
(p is well defined because d is well defined).
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Remark 1 LCn( fc′) = LCn(p) in Step 3. Since c has the minimal degree of Xn

according to algorithm CLT, there exists no element c′′ ∈ E(D) which is a factor of
c satisfying proj(c′′) < proj(c). Hence monomial d in the algorithm does not involve
the variable Xn .

5 Associate a Lower set D(H) to a set of Points H with
Multiplicity Structures

For any given set of points H with multiplicity structures in n dimensional space,
we can construct a lower set D(H) in n dimensional space by induction.

Univariate case: Assume H = {〈p1, D1〉, . . . , 〈pt , Dt 〉} is a set of points with
multiplicity structures in one dimensional space, then the lower set is D(H) =
{0, 1, . . . ,∑t

i=1 �Di }.
Assume the n − 1 (n > 1) dimensional problem has been solved, now for the n

dimensional situation, we first focus on the Special case.
Special case: Assume H = {〈p1, D1〉, . . . , 〈pt , Dt 〉} is a set of points with mul-

tiplicity structures in the n (n > 1) dimensional space where all the points share the
same Xn coordinate. Write H in matrix form as 〈P,D〉 and all the entries in the last
column of matrixP have the same value. Classify the row vectors of 〈P,D〉 to get
{〈P0,D0〉, . . . , 〈Pw,Dw〉} according to the values of the entries in the last column
of matrix D and we guarantee the corresponding relationship between the row vec-
tors of matrixP and matrixD holds in 〈Pi ,Di 〉 (0 ≤ i ≤ w). All the entries in the
last column of Di are the same i and the entries of the last column of Pi stay the
same too. Then eliminate the last columns ofPi andDi to get 〈̂proj(Pi ), p̂roj(Di )〉
which represents a set of points with multiplicity structures in n − 1 dimensional
space, by induction we get a lower set D̂i in n − 1 dimensional space. Then we set

D(H) =
w⋃

i=0

embedi (D̂i ).

Next we deal with the General case.
General case: Assume H = {〈p1, D1〉, . . . , 〈pt , Dt 〉} is a set of points with

multiplicity structures in the n (n > 1) dimensional space. Split the set of points:
H = H1

⋃
H2

⋃ · · ·⋃ Hs such that the points of each Hi are in the sameπ -fibre, i.e.
they have the same Xn coordinate ci , i = 1, . . . , s,and ci �= c j ,∀i, j = 1, . . . , s, i �=
j.According to the Special case, for each i = 1, . . . , s, we can get a lower set D(Hi ),
then we set

D(H) =
s∑

i=1

D(Hi ).

We now prove D(H) is a lower set although it is easy to understand as long as
the geometric interpretation involves. Since it is obviously true for Univariate case,
induction over dimension would be helpful for the proof.
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Proof Assume D(H) is a lower set for the n − 1 dimensional situation and now we
prove the conclusion for n dimensional situation (n > 1).

First to prove D(H) of the Special case is a lower set.
We claim that 〈̂proj(Pi ), p̂roj(Di )〉 represents a set of points with multiplicity

structures in n − 1 dimensional space (i = 0, . . . , w). For any D ⊂ Nn
0, define

Fa(D) = {d ∈ D| proj(d) = a}. Let U = {u|u ∈ {1, . . . , t}, Fi (Du) �= ∅}.
So 〈̂proj(Pi ), p̂roj(Di )〉 can be written in the form of {〈̂proj(pu), p̂roj(Fi (Du))〉|u ∈
U }. It is apparent that p̂roj(Fi (Du)) is a lower set inn−1dimensional space and canbe
viewed as themultiplicity structure of the point p̂roj(pu).Hence 〈̂proj(Pi ), p̂roj(Di )〉
is a set of points with multiplicity structures in n − 1 dimensional space.

What’s more, we assert p̂roj(P j ) is a sub-matrix of p̂roj(Pi ), and p̂roj(D j ) is a

sub-matrix of p̂roj(Di ), 0 ≤ i < j ≤ w. Because of the corresponding relationship
between the row vectors inP andD , we need only to prove p̂roj(D j ) is a sub-matrix

of p̂roj(Di ). If it is not true, there exists a row vector g of p̂roj(D j ) which is not a

row vector of p̂roj(Di ). That is, there exists b (1 ≤ b ≤ t) such that embed j (g)

is an element of the lower set Db, and embedi (g) is not included in any lower set
Da (1 ≤ a ≤ t). However since i < j and embed j (g) ∈ Db, embedi (g) must be
included in Db. Hence our assertion is true.

Since p̂roj(P j ) is a sub-matrix of p̂roj(Pi ), and p̂roj(D j ) is a sub-matrix of

p̂roj(Di ), 0 ≤ i < j ≤ w. According to the assumption of induction and the way we
construct D(H), we have D̂i ⊇ D̂ j , 0 ≤ i < j ≤ w, where D̂i , D̂ j are both lower
sets. Based on the Theorem 1 in Sect. 3, D(H) = ⋃w

i=0 embedi (D̂i ) is a lower set,
and E(D(H)) ⊆ ⋃w

i=0 embedi (E(D̂i ))
⋃{(0, . . . , 0, w + 1)}.

Then to prove D(H) of General case is a lower set. Since D(Hi ), i = 1, . . . , s
are lower sets, and the addition of lower sets is also a lower set according to Sect. 4,
D(H) is obviously a lower set. ��

6 Associate a set of Polynomials poly(H) to D(H)

For every lower set constructed during the induction procedure showed in the last
section, we associate a set of polynomials to it.

We begin with the univariate problem as we did in the last section.

6.1 Univariate Problem

P-Univariate case:
Assume H = {〈p1, D1〉, . . . , 〈pt , Dt 〉} is a set of points with multiplicity struc-
tures in one dimensional space, and D(H) = {0, 1, . . . ,∑t

i=1 �Di }. Then the set of
univariate polynomials associated to D(H) is poly(H) = {∏t

i=1(X1 − pi )
�Di }.
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Obviously poly(H) of P-Univariate case satisfies the following Assumption.

Assumption For any given set of points with multiplicity structures H in the n − 1
(n > 1)dimensional space, there are the followingproperties. For anyλ ∈ E(D(H)),
there exists a polynomial fλ ∈ k[X ] where X = (X1, . . . , Xn−1) such that

• The leading term of fλ under lexicographic order is Xλ.
• The exponents of all lower terms of fλ lies in D(H).
• fλ vanishes on H .
• poly(H) = { fλ|λ ∈ E(D(H))}.

Now assume the (n − 1)-variable (n > 1) problem has been solved i.e. for any
given set of points with multiplicity structures H in n −1 dimensional space, we can
construct a set of polynomial poly(H) which satisfies the Assumption. And then to
tackle the n-variable problem, we still begin with the special case.

6.2 Special Case of the n-variable (n > 1) Problem

P-Special case:
Given a set of points with multiplicity structures in n (n > 1) dimensional space
H = {〈p1, D1〉, . . . , 〈pt , Dt 〉} or in matrix form 〈P = (pi j )m×n,D = (di j )m×n〉.
All the given points have the same Xn coordinate, i.e. the entries in the last column
of P are the same. We compute poly(H) with the following steps.

Step 1 c := p1n; w = max{din; i = 1, . . . , m}.
Step 2 ∀i = 0, . . . , w, define SD i as a sub-matrix of D containing all the row

vectors whose last coordinates equal i . Extract the corresponding row vectors
ofP to form matrixSP i , and the corresponding relationship between the
row vectors inP and D holds forSP i and SD i .

Step 3 ∀i = 0, . . . , w, eliminate the last columns of SP i and SD i to get
〈 ˜SP i , ˜SD i 〉 which represents a set of points in n − 1 dimensional space
with multiplicity structures.According to the induction assumption, we have
the polynomial set G̃i = poly(〈 ˜SP i , ˜SD i 〉) associated to the lower set
D̃i = D(〈 ˜SP i , ˜SD i 〉).

Step 4 D := ⋃w
i=0 embedi (D̃i ).Multiply every element of G̃i with (Xn −c)i to get

Gi . G̃ := ⋃w
i=0 Gi

⋃{(Xn − c)w+1}.
Step 5 Eliminate the polynomials in G̃ whose leading term is not included in E(D)

to get poly(H).

Theorem 2 The poly(H) obtained in P-Special case satisfies the Assumption.

Proof According to the Sect. 5, 〈 ˜SP i , ˜SD i 〉 represents a set of points with mul-
tiplicity structures in n − 1 dimensional space for i = 0, . . . , w. And D̃ j ⊇ D̃i ,

0 ≤ j ≤ i ≤ w. D is a lower set and E(D) ⊆ ⋃w
i=0 embedi (E(D̃i ))

⋃
{(0, . . . , 0, w + 1)}.
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For λ = (0, . . . , 0, w + 1) ∈ E(D), we have fλ = (Xn − c)w+1. It is easy to
check that it satisfies the first three terms of the Assumption.

For any other element ed of E(D),∃� s.t. ed ∈ embed�E(D̃�). So let ẽd be the ele-
ment in E(D̃�) such that ed = embed�(ẽd).We have fẽd vanishes on 〈 ˜SP�, ˜SD�〉
whose leading term is ẽd ∈ E(D̃�) and the lower terms belong to D̃�. According to
the algorithm fed = (Xn − c)� · fẽd ∈ poly(H) .

First it is easy to check that the leading term of fed is ed since ed = embed�(ẽd).
Second, the lower terms of fed are all in the set S = ⋃�

j=0 embed j (D̃�) because

all the lower terms of fẽd are in the set D̃�. D̃0 ⊇ D̃1 ⊇ . . . D̃�, so embed j (D̃�) ⊂
embed j (D̃ j ) (0 ≤ j ≤ �), hence S ⊆ D = ⋃w

j=0 embed j (D̃ j ) and the second term
of the Assumption is satisfied.

Third, we are going to prove that fed vanishes on all the functionals defined by
〈P,D〉, i.e. all the functionals defined by 〈SP i ,SD i 〉 (i = 0, . . . , w). Write all

the functionals defined by 〈SP i ,SD i 〉 in this form: L ′ · ∂ i

∂ Xi
n
|Xn=c where L ′ is an

n − 1 variable functional. Substitute the zeroes and use the fact that fẽd vanishes on

〈 ˜SP�, ˜SD�〉, it’s apparent that fed = (Xn −c)� · fẽd vanishes on these functionals.
So fed vanishes on H , and satisfies the first three terms of the Assumption.
In summary poly(H) satisfies the Assumption. ��

Remark 2 For fλ ∈ poly(H), λ ∈ E(D) where poly(H) is the result gotten in the
algorithm above, we have the conclusion that LCn( fλ) = (Xn − c)proj(λ).

6.3 General Case of the n-variable (n > 1) Problem

P-General case:
Given a set of points with multiplicity structures in n (n > 1) dimensional space
H = {〈p1, D1〉, . . . , 〈pt , Dt 〉} or in matrix form 〈P = (pi j )m×n,D =(di j )m×n〉,
we are going to get poly(H).

Step 1 Write H as H = H1
⋃

H2
⋃ · · ·⋃ Hs where Hi (1 ≤ i ≤ s) is a π -fibre

(π : H 
→ k such that 〈p = (p1, . . . , pn), D〉 ∈ H is mapped to pn ∈ k)
i.e. the points of Hi have the same Xn coordinate ci , i = 1, . . . , s, and
ci �= c j ,∀i, j = 1, . . . , s, i �= j.

Step 2 According to the P-Special case, we have D′
i = D(Hi ), Gi = poly(Hi ).

Write Hi as 〈Pi ,Di 〉, and define wi as the maximum value of the elements
in the last column of Di .

Step 3 D := D′
1, G := G1, i := 2.

Step 4 If i > s, go to Step 5. Else

Step 4.1 D := D + D′
i ; Ĝ := ∅. View E(D) as a monomial set M S := E(D).

Step 4.2 If �M S = 0, go to Step 4.7, else select the minimal element of M S
under lexicographic order, denoted by LT . M S := M S \ {LT }.
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Step 4.3
f1 := CP(LT, D, G), f2 := CP(LT, D′

i , Gi ).

v℘ := proj(g℘), where g℘ := CLT(LT, D′
℘), ℘ = 1, . . . , i .

Step 4.4

q1 := f1 · (Xn − ci )
wi +1; q2 := f2 ·

i−1∏
℘=1

(Xn − c℘)w℘+1.

pp1 := (Xn − ci )
wi +1−vi ; pp2 :=

i−1∏
℘=1

(Xn − c℘)w℘+1−v℘ .

Step 4.5 Use Extended Euclidean Algorithm to compute r1 and r2 s.t. r1 · pp1 +
r2 · pp2 = 1.

Step 4.6 f := r1 · q1 + r2 · q2. Reduce f with the elements in Ĝ to get f ′;
Ĝ := Ĝ

⋃{ f ′}. Go to Step 4.2.
Step 4.7 G := Ĝ. i := i + 1. Go to Step 4.

Step 5 poly(H) := G.

Theorem 3 The poly(H) obtained in P-General case satisfies the Assumption.

Proof It is easy to know v℘ ≤ w℘ + 1 according to their definitions, so the polyno-
mials pp1 and pp2 in Step 4.4 do make sense. And to prove Theorem 3, we need
only to prove the situation that s ≥ 2 in Step 1.

For i = 2, D = D′
1+D′

2, ∀ed ∈ E(D), v := proj(ed) and X0 := Xed

Xv
n
. According

to Sect. 4, we have v = v1 + v2. Based on the Remarks 1 and 2, f1 and f2 can be
written as polynomials of k(Xn)[X1, . . . , Xn−1] : f1 = X0 ·(Xn−c1)v1+the rest and
f2 = X0 · (Xn −c2)v2 + the rest and none of the monomials in the rest is greater than
or equal to X0. Because f1 and (Xn − c1)w1+1 vanish on H1, f2 and (Xn − c2)w2+1

vanish on H2, we know that q1 = f1 · (Xn − c2)w2+1 and q2 = f2 · (Xn − c1)w1+1

both vanish on H1
⋃

H2. Then f vanishes on H1
⋃

H2 where

f = r1 · q1 + r2 · q2

= X0 · (Xn −c1)
v1 · (Xn −c2)

v2(r1 · (Xn − c2)
w2+1−v2 + r2 · (Xn − c1)

w1+1−v1)

+ the rest

= X0 · (Xn − c1)
v1 · (Xn − c2)

v2(r1 · pp1 + r2 · pp2) + the rest

= X0 · (Xn − c1)
v1 · (Xn − c2)

v2 + the rest.

None monomial in the rest is greater than or equal to X0 , so the leading term of
f is obviously X0 · Xv

n which is equal to ed. Naturally LCn( f ) = ∏i
j=1(Xn − c j )

v j

for i = 2.
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We assert that for any i , the polynomial f in [step 4.6] satisfies that LCn( f ) =∏i
j=1(Xn − c j )

v j .
When i > 2, assume the assertion above holds for i − 1. ∀ ed ∈ E(D), v :=

proj(ed) and X0 := Xed

Xv
n
. According to Sect. 4, we have v = v1 + · · · + vi . Based on

the assertion for i − 1, Remarks 1 and 2, f1 and f2 can be written as polynomials
of k(Xn)[X1, . . . , Xn−1] :

f1 = X0 ·
i−1∏
j=1

(Xn − c j )
v j + the rest

f2 = X0 · (Xn − ci )
vi + the rest

and none of the monomials in the rest is greater than or equal to X0. Because f1 and∏i−1
j=1(Xn − c j )

w j +1 vanish on
⋃i−1

j=1 Hj , f2 and (Xn − ci )
wi +1 vanish on Hi , we

know that q1 = f1 · (Xn − ci )
wi +1 and q2 = f2 · ∏i−1

j=1(Xn − c j )
w j +1 both vanish

on
⋃i

j=1 Hj . Then f vanishes on
⋃i

j=1 Hj where

f = r1 · q1 + r2 · q2

= X0 ·
i∏

j=1

(Xn − c j )
v j (r1 · (Xn − ci )

wi +1−vi + r2 ·
i−1∏
j=1

(Xn − c j )
w j +1−v j )

+ the rest

= X0 ·
i∏

j=1

(Xn − c j )
v j (r1 · pp1 + r2 · pp2) + the rest

= X0 ·
i∏

j=1

(Xn − c j )
v j + the rest.

Nonemonomial in the rest is greater than or equal to X0 and the leading term of f
is obviously X0 · Xv

n which is equal to ed. Hence the assertion holds for arbitrary i .
Therefore we have proved that for any element ed ∈ E(D), fed := f vanishes on

H and the leading term is ed. In the algorithm, we compute fed in turn according to
the lexicographic order of the elements of E(D). Once we get a polynomial, we use
the polynomials obtained previously to reduce it (refer to Step 4.6). Now to prove
the lower terms of the polynomial are all in D after such a reduction operation.

Let D be a lower set, a be amonomial, define L(a, D) = {b ∈ Nn
0; b ≺ a, b ∈ D}.

Given any d /∈ D, there exist only two situations: d ∈ E(D) or d /∈ E(D) but
∃d ′ ∈ E(D), s.t. d ′ is a factor of d. Of course d ′ ≺ d.

Consider the sequence � = {T1, T2, T3, . . .} of all the monomials with the ele-
ments of D discarded and all the elements are arranged according to the lexicographic
order, use induction on it to prove that for every element Tt (t > 0) we can construct
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a vanishing polynomial with the leading term Tt and all the lower terms are in D,
i.e. Tt can be represented as the linear combination of the elements of L(Tt , D).

The very first vanishing polynomial we got in the algorithm is a univariate poly-
nomial in Xn whose leading term is exactly T1. It is obvious that the lower terms are
in D, i.e. T1 can be represented as the combination of the elements of L(T1, D).

Assume that Tm−1 (m ≥ 2) can be written as the combination of the elements of
L(Tm−1, D), now to prove it is true for Tm .

If Tm ∈ E(D), the algorithm provides us a vanishing polynomial whose leading
term is Tm , i.e. Tm can be represented as the combination of the terms which are all
smaller than Tm . According to the induction assumption, for any lower term T /∈ D
of the polynomial, T can be represented as the linear combination of the elements
of L(T, D), then Tm can be represented as the linear combination of the elements of
L(Tm, D).

If Tm /∈ E(D), there exists d ′ ∈ E(D) s.t. Tm = T ′
m ·d ′. Since d ′ ≺ Tm , according

to the assumption, we can substitute d ′ with the linear combination of the elements
of L(d ′, D). Since all the elements in L(d ′, D) are smaller than d ′, then Tm can be
represented as the combination of elements which are all smaller than Tm . Then for
the same reason described in the last paragraph, Tm can be represented as the linear
combination of the elements of L(Tm, D).

Therefore for every element Tt (t > 0) we can construct a vanishing polynomial
with the leading term Tt and all the lower terms are in D. Particularly for any ed ∈
E(D), all the lower terms of the polynomial fed we got in the algorithm after the
reduction operation are in D. ��
Remark 3 According to the proof of Theorem 3, f and f ′ in Step 4.6 for arbitrary
i satisfy that LCn( f ) = LCn( f ′) = ∏i

j=1(Xn − c j )
v j .

Theorem 4 Given a set of points H with multiplicity structures, poly(H) is the
reduced Gröbner basis of the vanishing ideal I (H) and D(H) is the quotient basis
under lexicographic order.

Proof Let m be the number of functionals defined by H and then m = dim(k[X ]/
I (H)). Denote by J the ideal generated by poly(H). According to the Assump-
tion, poly(H) ⊆ I (H). So dim(k[X ]/I (H)) ≤ dim(k[X ]/J ). Let C be the
set of the leading terms of polynomials in J under lexicographic order, then
C ⊇ ⋃

β∈E(D(H))(β+Nn
0)where the latter union is equal toNn

0\D(H). Then we can
get C ′ = Nn

0\C ⊆ D(H). Because k[X ]/J is isomorphic as a k-vector space to the
k-span of C ′, here C ′ is viewed as a monomial set. So dim(k[X ]/J ) ≤ �D(H) = m.
Hence we have

m = dim(k[X ]/I (H)) ≤ dim(k[X ]/J ) ≤ m.

Therefore J = I (H), where J = 〈poly(H)〉. Hence it is easy to know that
poly(H) is exactly the reduced Gröbner basis of the vanishing ideal under lexico-
graphic order, and D(H) is the quotient basis. ��
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Based on Remark 3 and Theorem 4, we can naturally get the following lemma.

Lemma 1 Assume G is the reduced Gröbner basis of some zero dimensional
n-variable polynomial ideal under lexicographic order with X1 	 X2 	 · · · 	 Xn.
Define p0(G) as the univariate polynomial in Xn of G. View g ∈ G as polynomial
of k(Xn)[X1, . . . , Xn−1] and define LCn(g) to be the leading coefficient of g which
is a univariate polynomial in Xn and we have the conclusion that LCn(g) is always
a factor of p0(G).

Proof In fact for any given zero dimensional n-variable polynomial ideal, its reduced
Gröbner basis G can be constructed from its zeros in the way our algorithm pro-
vides. Because the reduced Gröbner basis under lexicographic order is unique,
Remark 3 holds for all the elements of G i.e. ∀g ∈ G, LCn(g) = ∏s

j=1(Xn − c j )
v j

and particularly p0(G) = ∏s
j=1(Xn − c j )

w j +1 (refer the algorithm of P-General
case for the symbols c j , v j , w j ). Because v j ≤ w j + 1, LCn(g) is a factor
of p0(G). ��

7 Intersection of Ideals

Based on Lemma 1 and the algorithm of P-General case in Sect. 6, we present
a new algorithm named Intersection to compute the intersection of two ideals I1
and I2 satisfying that the greatest common divisor of p0(G1) and p0(G2) equals 1
where G1 and G2 are respectively the reduced Gröbner bases of I1 and I2 under the
lexicographic order i.e. satisfying that the zeros of I1 and that of I2 does not share
even one same Xn coordinate.

Denote by Q(G) the quotient basis where G is the reduced Gröbner basis. The
following algorithm CPI (short for Computing the Polynomial for Intersection) is a
sub-algorithm called in algorithm Intersection.

Algorithm CPI: G is a reduced Gröbner basis, for any given monomial LT which
is not in Q(G), we get a polynomial p in 〈G〉 whose leading term is a factor of LT :
the X1, . . . , Xn−1 components of the leading term are the same with that of LT and
the Xn component has the lowest degree. Denoted by p := CPI(LT, G).

Step 1 G ′ := {g ∈ G| the leading monomial of g is a factor of LT }.
Step 2 G ′′ := {g ∈ G ′| the leading monomial of g has the smallest degree of Xn for

that of all the elements in G ′}.
Step 3 Select one element of G ′′ and multiply it by a monomial of X1, . . . , Xn−1 to

get p whose leading monomial is LT .

Algorithm Intersection: G1 andG2 are the reducedGröbner bases of twodifferent
ideals satisfying that GCD(p0(G1), p0(G2)) = 1. Return the reduced Gröbner basis
of the intersection of these two ideals, denoted by G := Intersection(G1, G2).

Step 1 D := Q(G1) + Q(G2). View E(D) as a monomial set. G := ∅.
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Step 2 If E(D) = ∅, the algorithm is done. Else select the minimal element of
E(D), denoted by T . E(D) := E(D)\{T }.

Step 3
f1 := CPI(T, G1), f2 := CPI(T, G2).

q1 := f1 · p2, q2 := f2 · p1.

Step 4

t1 := p0(G2)

LCn( f2)
, t2 := p0(G1)

LCn( f1)
.

Step 5 Use Extended Euclidean Algorithm to find r1, r2 s.t.

r1 · t1 + r2 · t2 = 1.

Step 6 f := q1 · r1 + q2 · r2. Reduce f with G to get f ′, and G := G
⋃{ f ′}. Go to

Step 2.

Remark 4 This algorithm is essentially the same with Step 4.1–Step 4.7 of
P-General case in Sect. 6, so it is obvious that r1, r2 in Step 5 do exist and the
polynomials in the algorithm are all well defined. Besides, D in Step 1 is not empty,
so it is easy to know the result of this algorithm can never be empty.

Because this algorithm is essentially the same with Step 4.1–Step 4.7 of
P-General case in Sect. 6, here we omit the proof. And in return, the algorithm
of P-General case in Sect. 6 can be simplified according to this Intersection algo-
rithm: we can delete the last sentence in Step 2 and replace Step 4.3 and Step 4.4
respectively by:

Step 4.3′
f1 := CP(LT, D, G), f2 := CP(LT, D′

i , Gi ).

Step 4.4′
q1 := f1 · p0(Gi ); q2 := f2 · p0(G).

pp1 := p0(Gi )

LCn( f2)
; pp2 := p0(G)

LCn( f1)
.

8 Conclusion

During the induction of the algorithm in Sect. 6,we can record the leading coefficients
for later use to save the computation cost and the computation cost is mainly on the
Extended Euclidean Algorithm. But it’s hard to compute how many times we need
to use the Extended Euclidean Algorithm for a given problem, and the computation
cost depends closely on the structures of the given set of points.
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The benefit is the explicit geometric interpretation. For any given point with
multiplicity structure 〈p, D〉, we put the lower set D into the affine space with the
(0, 0) element situated at p to intuitively represent it, and it can be imagined as �Di

small balls in the affine space. Given a set of points with multiplicity structures in
n dimensional space, in the way showed in Sect. 2, we push the balls first along
X1-axis, then along X2-axis, and so on, at last along Xn-axis to finally get a lower set
which turns out to be exactly the quotient basis under the lexicographic order with
X1 	 X2 	 · · · 	 Xn . In the future, wewill try to apply this geometric interpretation
to our previous work on Birkhoff problem [14].

The geometric interpretation in this paper reveals the essential connection between
the relative position of the points with multiplicity structures and the quotient basis
of the vanishing ideal. It provides us a new perspective of view to look into the van-
ishing ideal problem and helps study the structure of the reduced Gröbner basis of
zero dimensional ideal under lexicographic order. The new algorithm Intersection
which computes the intersection of two ideals and Lemma 1 are the direct byprod-
ucts of our algorithm. Lemma 1 reveals important property of the reduced Gröbner
basis under lexicographic order, which is necessary for a set of polynomials to be
a reduced Gröbner basis. Lemma 1 can also help us to solve the polynomial sys-
tem. It is well-known that the Gröbner basis of an ideal under lexicographic order
holds good algebraic structures and hence is convenient to use for polynomial system
solving [15]. Once we get the reduced Gröbner basis G of a zero dimensional ideal,
to solve the polynomial system, we need first compute the roots of p0(G). Since
LCn(g) (g �= p0(G), g ∈ G) is a factor of p0(G), computing the roots of LCn(g)

which has a smaller degree would be helpful for saving the computation cost.
Lederer [13] presented an algorithm to compute the reduced Gröbner basis of the

vanishing ideal over a set of points with no multiplicity structures. The author splits
the problem into several small ones and combines the results of the small problems
by using Lagrange interpolation method to get the final result and the idea really
inspired us a lot. Because the problem considered here concerning the points with
multiplicity structures, we have to consider P-Special case and P-General case, and
the Lagrange interpolation method is not available any more, we use the Extended
Euclidean Algorithm instead.
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7. Buchberger, B., Möller, H.M.: The construction of multivariate polynomials with preassigned
zeros. In: Computer Algebra, EUROCAM’82. Lecture Notes in Computer Science, vol. 144,
Springer, Berlin, pp. 24–31 (1982)

8. Marinari, M.G., Möller, H.M., Mora, T.: GrRobner basis of ideals defined by functionals with an
application to ideals of projective points. Appl. Algebra Eng. Commun. Comput. 4, 103–145
(1993)

9. Abbott, J., Bigatti, A.,Kreuzer,M.,Robbiano, L.: Computing ideals of points. J. Symb.Comput.
30, 341–356 (2000)
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Signature-Based Method of Deciding
Program Termination

Yaohui Li, Yuqing Song and Zhifeng Wu

Abstract We present a method based on the discriminant sequence and Gröbner
bases to verify the termination of a class of linear program. This method relates
the program termination to the existence of real zeros of polynomial system with
constraint conditions. To avoid the wrong determination due to approximate com-
putation, we use Gröbner bases and revised sign list to count sign changes of char-
acteristic polynomial of a trace matrix. This method need not solve the equations of
polynomial system but count the number of real zeros which satisfy the constraint
condition by using symbolic computation. The number of real zeros of polynomial
in the linear program can always be computed correctly. Therefore, the termination
of the program can be decided accurately.

Keywords Linear loop program · Termination · Program verification · Gröbner
basis · Sturm sequence

1 Introduction

Analysis of program termination plays a very important role in program verification.
However, the total program verification problem is undecidable, it is doomed to be
impossible to find an universal approach to mechanically verify the correctness of
programwithout any simplification or restriction [1]. Considering the linear program
of the following form

P : while(cT x > 0){x := Ax} (1)
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where x ∈ Rn and A is a M × N matrix. Tiwari proves that the termination of
a class of single-path loop with linear guards is decidable and provides a decision
procedure via constructive proofs [2]. Yang et al. convert the program verification to
a semi-algebraic system, then use DISCOVERER to solve it [1, 3] so as to decide
the termination of the program. If the system has nontrivial zero points, then it is
nonterminating. Li et al. in their paper discuss the termination of a linear programwith
nonlinear loop condition [4]. In Yang and Li’s method, they have to solve algebraic
equations so as to decide the termination of linear program. In order to guarantee
the accuracy of solution, they isolate the real root in the tiny interval rather than the
approximate value.

In this paper, we present new results on using signature of characteristic poly-
nomial of a matrix to decide the termination of a class of linear programs. When
checking the existence of real zeros of polynomial system, we do not solve the semi-
algebraic system but using improved Sturm sequence and signature theory to deter-
mine whether thematrix have positive eigenvalue and eigenvector such that cT v > 0.
It can be seen that there is no approximate computation in our method. Hence, all
procedures of computation are accurate and the result of decision is trustworthy.

2 Determination of Positive Eigenvalues

2.1 Linear Loop Program

As to the simple loop program P , Tiwari analyzes the decidability of its termination.
His decision procedure is based on the observation that only the eigenvectors (and the
generalized eigenspace) corresponding to positive real eigenvalues of the assignment
matrix are relevant for program termination.

Theorem 1 If the linear loop program P, defined by an (N × N ) matrix A and a
nonzero N × 1-vector c, is nonterminating then there exists a real eigenvector v of
A, corresponding to positive eigenvalue, such that cT v ≥ 0.

For the proof of Theorem1 refer to [2] for further detail. Usually, in order to decide
the termination of program many papers compute the eigenvalues of A directly after
converting this problem to algebraic expression. However, this may lead to the wrong
result because of the error in approximate computation. To overcome this, we count
the number of positive eigenvalues in the characteristics polynomial of A by using
Sturm sequence and improved Descart’s rule of sign.

According to the definition of linear algebra, suppose λ is the eigenvalue of matrix
A, then (A − λE)x = 0 and λ is the root of |A − λE | = 0. Assume that fcp(λ) =
a0λm + a1λm−1 + · · ·+ am−1λ+ am , where m is the order of A, is the characteristic
polynomial. To decide the termination of the program accurately, we do not solve this
univariate equation for checking the positivity of eigenvalue. In our method, the idea
is counting the number N of positive eigenvalues over R by using sturm sequence or
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revised sturm sequence in real algebra. If number N is 0, this means that program P
is terminating undoubtedly. Our idea is to check whether λ has positive root directly
by using Sturm-Tarski theorem and number of sign changes in real algebra.

2.2 Real Roots Discrimination System of Polynomials

In this section, we review some definitions and theorems which mainly come from
[3, 7]. Yang in [7] presented a method to determine the number of real roots of
univariate polynomial. Let f (x) ∈ R[x] with f (x) = a0xm + a1xm−1 + · · · + am

and g(x) be another polynomial. Then, consider r(x) as

r(x) = rem( f ′g, f ) = b1xm−1 + · · · + bm,

where f ′ is the derivation of f .

Definition 1 The 2n × 2n matrix M =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 · · · am

0 b1 b2 · · · bm

a0 a1 a2 · · · am

0 b1 b2 · · · bm
...

...
...

a0 a1 a2 · · · am

0 b1 b2 · · · bm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is called as discriminant matrix of f and g, and denoted it by Discr(f,g). If g = 1,
the matrix is called as discriminant matrix of f .

Definition 2 For 1 ≤ k ≤ 2n, let Mk be the kth principal minor of M , let D0 = 1,
Dk( f, g) = M2k . The n-tuple D = [D0, D1( f, g), D2( f, g), . . . , , Dn( f, g)] is
called the discriminant sequence of f with respect to g, denoted by G DL( f, g)

In practice, we usually get the discriminant sequence from the Bezout matrix of
f (x) and g(x), which is the same as that getting from the Sylvester matrix, read [3,
7] for details.

Definition 3 If sgn(x) is the signum function, sgn(0) = 0, then the list
[s0, s1, s2, . . .,sn] = [sgn(D0), sgn(D1), sgn(D2),…, sgn(Dn)] is called the sign list
of the discriminant sequence D.

Definition 4 Given a sign list [s1, s2, . . . , sn], we construct a new list
[ε1, ε2, . . . , εn] as follows:

If [si , si+1, . . . , si+ j ] is a section of the given list, where si �= 0, si+1 = si+2 =
· · · = si+ j−1 = 0, si+ j �= 0, then,we replace the subsection [si+1, si+2, . . . , si+ j−1]
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by [−si ,−si , si , si , −si , −si , si , si,−si , . . .], i.e. εi+r = (−1)�(r+1)/2� · si for
r = 1, 2, . . . , j − 1. Otherwise, εk = sk . We call this new list as revised sign
list(RSL).

Based on the symbol and definition above, there is the following theorem:

Theorem 2 Given real coefficient polynomials f = f (x) and g = g(x), if the sign
changes number of RSL( f, g) is n and Dη �= 0 but Dt = 0(t > η), then

η − 2n = # fg+ − # fg− ,

where

# fg+ = card({x ∈ R| f (x) = 0, g(x) > 0}),
# fg− = card({x ∈ R| f (x) = 0, g(x) < 0}).

If there is only one variate in x of P , regard the constraint condition as g(x) and
then count the number of real zeros of characteristic polynomial such that g(x) > 0
according to Theorem 2. If there is no positive eigenvalue, termination of the program
can be decided easily according to Theorem 1. While the positive eigenvalue exists,
we have to consider whether there is eigenvector v corresponding to it such that
cT v ≥ 0.

2.3 Existence of Positive Eigenvalues of Matrix
in Linear Program

By t we represent the variable in character polynomial of thematrice in the paper. Let
f (t) = fcp(t) and the number of positive eigenvalue be N . According to Theorem
1, if N is greater than 0 and there exists at least an eigenvector v, which a positive
eigenvalue corresponds to, such that cT v > 0 then program p is not termination.
So, the termination of linear program can be converted to the problem whether
matrix A has positive eigenvalues at first. We determine the existence of positive real
eigenvalues by using the result in the above subsection.

To determine the number of positive eigenvalues, we choose a suitable g(t) and let
g(t) = t .We construct discriminantmatrix by usingBezoutmethod but not Sylvester
method because the size of Bezout matrix is small. Assume that the revised sign list
RSL of ( fcp(t), t) has m + 1 nonzero elements in total, we count the sign changes
number of RSL and let the number be n. As g(t) = t , fg+ represents the number of
eigenvalues such that t > 0, i.e., positive eigenvalues; similarly, fg− represents the
number of negative eigenvalues. Therefore, η−2n is the difference between them. It
is meaningful in counting real zeros even if we do not know the numbers of positive
eigenvalues and negative ones at present.

The next step is to count the total number of nontrivial eigenvalues. In this step,
let g(t) = t2, then we construct the revised sign list similarly to the above and count
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the number of sign changes. According to Theorem 2, we still count the number of
sign changes, and suppose it is n′. In fact, n′ is the number of real roots of f (t) in
the first step such that t2 > 0 no matter whatever t < 0 or t > 0. Thus, we count
the total number of nonzero real eigenvalues according to Theorem 2. On the other
hand, the number of elements in revised sign list is decided by the size of Bezout
matrix. The order of Bezoutmatrix ismax(deg( f ), deg(r)). Although f ′g(t) = t2 f ′,
deg( f ′g/ f ) ≤ m − 1. From this, max(deg( f ), deg(r)) = m. Therefore, the length
of sign list is still m and m − 2n′ is the total number of real eigenvalues which is not
equal to 0.

(
1 −1
1 1

)(
# ft>
# ft<

)
=

(
m − 2n
m − 2n′

)

# ft(·) represents card({t ∈ R| f (t) = 0, g(t) · 0}). Finally, the number of positive
eigenvalues is a = # ft> = (m − 2n + m − 2n′)/2 = m − (n + n′).

Theorem 3 Let the characteristic polynomial of A in program P be fcp(t), its
discriminant sequence, and the discriminant sequences with respect to g = 1, g = t ,
g = t2 be D , D′,D′′, respectively. The numbers of sign changes in RSLs they
corresponding to are n, n′ and n′′. If m = 2n′′ or m = (n′ + n′′), then program p is
terminating.

Proof According to the definition, the sequences of D is constructed when g = 1.
No matter what real zero of fcp(t) is, g is always greater than 0. Therefore, m − 2n
is the number of all real zeros, where n is the sign changes in RSL formed by the
discriminant matrix Discr( f ).

⎛
⎝ 1 1 1
0 1 −1
0 1 1

⎞
⎠
⎛
⎝ # ft=
# ft>
# ft<

⎞
⎠ =

⎛
⎝m − 2n

m − 2n′
m − 2n′′

⎞
⎠ ,

By this, there is

⎛
⎝# ft=
# ft>
# ft<

⎞
⎠ =

⎛
⎜⎝
1 0 −1

0 1
2

1
2

0 −1
2

1
2

⎞
⎟⎠
⎛
⎝m − 2n

m − 2n′
m − 2n′′

⎞
⎠ .

Characteristic polynomial fcp has trivial eigenvalues only if m = 2n′′. On the other
hand, # ft+ = m − (n′ + n′′) = 0 means there is no positive eigenvalues either.
Therefore, the theorem holds.

In paper [2, 4], they discussed several kinds of linear program with different loop
conditions—linear or nonlinear conditions. Our method can be used always because
all of them are determined also by using positive eigenvalue and eigenvector.
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2.4 Signature Method of Determining Positive Eigenvalues

When using the method in Sect. 2.3 to determine program termination, we have to
compute the sequence of principal minors. However, it is expensive to compute the
determinant of different size for sign list. To overcome this, we propose a signature
method to determine if there exists positive eigenvalues in the matrix of linear loop
program.

Same with last subsection, we construct discriminant matrix by using Bezout
method. It is lucky that discriminant matrix D of A is a real symmetry one. Hence, all
eigenvalues of D are real according to the theory in linear algebra. The number of real
eigenvalues of D is related to A in linear loop program. Suppose D is the discriminant
matrix of fcp(t) with respect to polynomial g(t), there exists the following Theorem
for the number of eigenvalues of fcp(t).

Theorem 4 The symbols are defined as above. Let D be discriminant matrix of f (x)

with respect to g(x), its characteristic polynomial fcp(t). The difference σ between
the number of sign changes of fcp(t) and fcp(−t) satisfies

σ( fcp) = # fg+ − # fg− .

Proof According to the definition of Bezoutian, D is as follows:

f (x)r(y) − f (y)r(x)

x − y
=

m∑
i, j=1

bi j xi−1y j−1 = (
1 x · · · xm−1

)
(bi j )

⎛
⎜⎜⎜⎝

1
y
...

ym−1

⎞
⎟⎟⎟⎠ ,

where (bi j ) is M × M matrix produced by coefficients bi j , it is called as Bezout
matrix. On the other hand, there exists [6]

f (x)r(y) − f (y)r(x)

x − y
=

{
f (x)r(y) − f (y)r(x)

x − y , x �= y,

r(x) f ′(x) − r ′(x) f (x), x = y.

Let α1, α2, . . . , αm be the eigenvalues of D, construct Vandermonde matrix

�(α) =

⎛
⎜⎜⎜⎝

1 1 · · · 1
α1 α2 · · · αm
...

...
. . .

...

αm−1
1 αm−1

2 · · · αm−1
m

⎞
⎟⎟⎟⎠

Consider a new matrix S = �T (bi j )�(�T is the transpose of �), the elements in
matrix satisfy
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(
1 αi · · · αm−1

i

)
(bi j )

⎛
⎜⎜⎜⎝

1
α j
...

αm−1
j

⎞
⎟⎟⎟⎠ =

⎧⎪⎨
⎪⎩

f (αi )r(α j ) − f (α j )r(αi )
x − y = 0, αi �= α j ,

r(αi ) f ′(α j ) − r ′(αi ) f (αi ) = r(αi ) f ′(α j ),

αi = α j .

Therefore,

S =

⎛
⎜⎜⎜⎝

r(α1) f ′(α1)

r(α2) f ′(α2)

. . .

r(αm) f ′(αm)

⎞
⎟⎟⎟⎠

Because f ′g(α) = r(α), hence

S =

⎛
⎜⎜⎜⎝

g(α1) f ′(α1)
2

g(α2) f ′(α2)
2

. . .

g(αm) f ′(αm)2

⎞
⎟⎟⎟⎠

The quadratic form Q(g) is defined by S as follows

Q(g) =
m∑

i=1

g(αi ) f ′(αi )
2x2m =

∑
α∈R

g(αi ) f ′(αi )
2x2m +

∑
α/∈R

g(αi ) f ′(αi )
2x2m

The signature of
∑
α/∈R

g(αi ) f ′(αi )
2x2m

is 0, since for α and ᾱ complex eigenvalues of cp,

g(α) f ′(α)2x2m + g(ᾱ) f ′(ᾱ)2x2m

is a difference of two real squares. So the signature of cp(x) agrees with the ones of∑
α∈R

g(αi ) f ′(αi )
2x2m . Clearly, the signature of

∑
α∈R

g(α) f ′(α)2x2m is equal to that of

g(α)x2m .
Furthermore, S = �T (bi j )� indicates Bezout matrix is congruent to diagonal

matrix S. Therefore, both S and (bi j ) have same signature. Meanwhile, the signature
of S is equal to the difference of the number of positive eigenvalues and negative
ones. Hence, the theorem holds.

According to this theorem, we construct discriminant matrix D of f (t) with
respect to g(t) = t . Then, derive its characteristic polynomial fcp(t) and count the
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number σ+ and σ− of sign changes of coefficients when t = t and t = −t . From
this, it is easy to compute the signature of σ(t) = σ+ − σ−, that is, the difference of
the number between positive eigenvalues and negative ones. After this, Let g(t) = t2

and count the signature σ(t2), i.e., the total number of eigenvalues except zeros. Last,
we compute the number of positive eigenvalues and the result is (σ (t) + σ(t2))/2.

Remark 1 Usually, the coefficients in cp(t) are very large. We concern with the
positivity or negativity of these numbers but not their value when counting number
of sign changes. Therefore, we replace those coefficients that are greater than 0 by 1,
that are less than 0 by−1 and ignore zero coefficients. The characteristic polynomial
whose coefficients replaced by 1 or −1 is called as sign polynomial.

By using Theorem 4, unlike the method in above subsection, we can determine
the existence of eigenvalues of A in program P in one step once having constructed
discriminant matrix D. It is more efficient because we need not compute the principal
minor sequence.

3 Positivity of Eigenvectors

The method in Sect. 2 is only suitable to the circumstance that there is no positive
eigenvalue in Rn . But if positive eigenvalue in A exists, the problem of checking
program termination is complicated. Furthermore, we should also check whether its
corresponding eigenvector v such that cT v > 0 exists. Only such a condition satisfies,
nontermination of the program P can be decided. In the following, we determine the
existence of such a eigenvector but not solving equations directly.

Definition 5 In matrix A of program P , if there exists eigenvector v such that cT v >

0, then we call it as positive eigenvector.

Regarding λ as variable, we still use x1, x2, . . . , xm to represent all xi and λ. Suppose
the polynomial system that the equations corresponds to is ps ∈ R(x1, x2, . . . , xm)

and its ideal is I . Construct finite-dimensional algebra A = R(x1, x2, . . . , xm)/I .
Clearly, all polynomials in A are linear combinations of the monomials xα /∈ 〈I 〉.
Since this set of monomials is linearly independent in A, it can be regarded as a basis
of A and is called as S-basis [5]. In order to obtain S-basis of polynomials, compute
Gröbner basis G for total degree order of ideal I . Let G = {g1, g2, . . . , gn}, the
leading items of g1, g2, . . . , gn be xαg1 , xαg2 , . . . , xαgn respectively, where xαgi =
x

αgi1
1 x

αgi2
2 . . . x

αgim
m and gi1 + gi2 + · · · + gim = gi . All of these terms are the

generators of 〈LT (I )〉. Thosemonomials not lying in the ideal 〈LT (I )〉 are supposed
to be {m1, m2, . . . , mk} and mi /∈ LT (I )(1 ≤ i ≤ k). All mi form the S-basis of A.
Then, we use multiplication to define a linear map m f from A = C[x1, . . . , xn]/I to
itself, where f is any polynomial. Using f multiply with mi , the result is mapping
to A and let it be f mi = a1i m1 + a2i m2 + · · · + aki mk . Therefore, for polynomial
f there is a matrix
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m =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
. . .

...

ak1 ak2 · · · akk

⎤
⎥⎥⎥⎦

and T r(m) =
m∑

i=1
aii . According to the theory in Ref. [5], any eigenvalue of m

is a value of the function f on V (I ). Same with polynomial f , there is a matrix
corresponding to each monomial mi j = mi · m j ∈ A respectively, we represent it as
mi j still. The traces of matrix mi j constructs an another matrix

M =

⎡
⎢⎢⎢⎣
Tr(m11) Tr(m12) · · · Tr(m1m)

Tr(m21) Tr(m22) · · · Tr(m2m)
...

...
. . .

...

Tr(mm1) Tr(mm2) · · · Tr(mmm)

⎤
⎥⎥⎥⎦

Clearly, M is a symmetry matrix. Hence, all of its eigenvalues are real. Moreover,
T r(mi j ) equals to the sum of mi j ’s eigenvalues and it is

∑
p∈V (I )

μ(p)pα(i) pα( j),

where pα(i) denotes the value of the monomial xα(i) at the point p ∈ V (I ) and μ(p)

is the multiplicity of p. Similarly, given a polynomial h ∈ k[x1, x2, . . . , xm] and
hmi j = hmi m j , there exists a matrix Mh whose entry is the form of∑
p∈V (I )

h(p)μ(p)pα(i) pα( j). From this, we obtain a matrix factorization Mh =
WΔhW t , where W is a matrix whose entry is mi (p j ) and Δh is the diagonal matrix
with entries h(p1), h(p2) . . . h(pk). According to linear algebra, there are two funda-
mental invariants under such changes of basis—the signature σ(hmi j ) and the rank
ρ(hmi j ). There is the following theorem.

Theorem 5 [5] Let I be a zero-dimensional ideal generated by polynomials in
k[x1, . . . , xn](k ⊂ R), so that V (I ) ⊂ Cn is finite. Then, for h ∈ k[x1, . . . , xn],
the signature and rank of the bilinear form Sh( f, g) = T r(mh f g) satisfy: σ(Sh) =
#{a ∈ V (I ) ∩ Rn : h(a) > 0} − #{a ∈ V (I ) ∩ Rn : h(a) < 0} ρ(Sh) = #{a ∈
V (I ) : h(a) �= 0}.
If h = h1, h2, . . . , hs are the constraint conditions in the linear program P , we use
Theorem 5 to determine whether there exists positive v such that h(v) > 0. The detail
is as follows: Let λ be the eigenvalue of A and h = CT x , now the problem converts
to proving the existence of λ > 0 and h > 0 if the program P is nonterminating.
Therefore, once computing the number of real zeros satisfies the above constraints,
we determine the termination of P immediately. We use the signature of Mh to count
the number of positive vectors.

In order to compute m1, . . . , mk , we compute the Gröbner basis of ideal that
polynomial system X − AX generates. As the system is linear, it is easy to compute
Gröbner basis (g1, . . . , gm) of the ideal generated by p1, . . . , pk .
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Definition 6 The remainder on division of polynomial f by a Gröbner basis G for

I is called as Normal form of f , denoted by f
G
.

Let the normal forms of p1, . . . , pk w.r.t. G be p1G , . . . , pk
G , the leading

terms of these normal forms are (xαi |xαi /∈ 〈LT (I )〉, 1 ≤ i ≤ s), where
xαi = xαi1

1 xαi12
2 . . . xαis

s and αi1 + · · · + αis = αi . Because G is Gröbner basis
of I in some order, therefore xα

i is not always 1 and let them be m1, m2, . . . , mm .
Then, we use any constraint condition, say hk , to multiply mi m j and construct a
matrix mhmi j . Its trace is the i, j entry in Mhk . After getting Mhk , we compute its
characteristic polynomial cp(t). The number of positive eigenvalues of Mhk is equal
to the number of sign changes in the sequence of coefficients of cp(t). Let t = −t ,
we count the number of sign changes and it is the negative eigenvalues. Assume they
are n1 and n2 respectively, then we calculate the signature σ(Mh) = n1 − n2 and
it is the signature of Δhk too. According to Theorem 5, n1 − n2 is the difference
of number of real zeros such that hk > 0 and number of those such that hk < 0.
Similarly, let h′ = h2

k , we obtain the signature of σ(M ′
h) and let it be n′

1 − n′
2. It

is the total number of real zeros such that hk �= 0. On the base of this, it is easy to
compute the number of real zeros such that hk > 0.

Usually, h is a set of n constraint conditions and those conditions form a “box”.We
should determine whether there exists positive eigenvector in this box. We count the
number of sign changes of cp(t) for any hk > 0. H ||m represents the multiplication
of any m constraint conditions, for example H ||2 = hi h j (i = 1..k, j = j + 1..k).
Then, we compute the number of sign changes of each H ||mk(k = 1..Cm

n ). Finally,
according to Theorem 2 we obtain the number of real zeros such that h > 0 and
it is

NR = 1

2n

m∑
i=1

Ci
n∑

j=1

S(H ||i j ), m = 1..n. (2)

4 Experimental Result

In this section, we use three examples to show the use of signature-based method
discussed above. It can be seen that the termination of the program is determined by
using RSL or number of sign changes in characteristic polynomial of discriminant
matrix directly.

Example 1 [2] The effect of two sequential assignments x := x − y; y := x + 2y
is captured by the simultaneous assignment

(
x
y

)
=

(
1 −1
1 2

)(
x
y

)
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In the example,

A =
(
1 −1
1 2

)

Its characteristic polynomial is fcp = t2 − 3t + 3. Let g(t) = 1, we compute the
revised sign list of discriminant sequence and it turns out to be [1, 1,−1]. Clearly,
the number of sign change is 1, which means the number of real eigenvalues is
2 − 2 × 1 = 0. Therefore, no matter what the loop condition is, this program is
terminating always.

Example 2 While (7x + 9y − 10z > 0){X := AX} [8], where X = [x y z]T and

A =
⎛
⎝ 7 −10 17

3 9 2
−4 5 13

⎞
⎠

At first, we construct the equations (A − λE)X = 0 in eigenvalues λ. As a
result, the system becomes three equations with four variables. However, as the
system is homogenous, the solution of eigenvector is sure on the unit ball, that is,
x2 + y2 + z2 − 1 = 0. In the following, we compute the Gröbner basis G in total
degree ordering of ideal that these four polynomial generates and G = [λ3 −29λ2 +
359λ−2086, 106020x2+761λ2−11100λ−29096, 106020yx −469λ2+11775λ−
108266, 106020y2 −382λ2 +5955λ−43838, 106020zx +56λ2 −6285λ+41674,
106020zy − 139λ2 + 2190λ− 38756, 106020z2 − 33086+ 5145λ− 379λ2,−7x +
xλ + 10y − 17z,−3x − 9y + yλ − 2z, 4x − 5y − 13z + zλ]. According to G,
those monomials mm /∈ 〈I 〉 are A = [1, x, y, z, λ, λ2]. Let h = 1, then compute the
entries of matrix of H = hmi m j (i = 1..k, j = 1..k). when i = j = 1, hmi m j = 1

and Hm1
G = 1 = 1+ 0x + 0y + 0z + 0a + 0a2, so the first column in matrix Mb11

is (1 0 0 0 0 0)T ; Hm2 is x , its coefficients in A are (0 1 0 0 0 0)T ..., so Mb11 is
identity matrix and tr(Mb11) = 6. This is the 1, 1 entry in Mh . In the second loop,

when i = 1, j = 2, H = x, Hm1
G = x and the coefficients in A are (0 1 0 0 0 0)T ;

As Hm2 = 1× x × x = x2, Hm2
G = − 761

106020λ
2 + 185

1767λ+ 7274
26505 . The coefficients

of Hm2
G
w.r.t. A is 7274

26505 , 0, 0, 0,
185
1767 ,− 761

106020 . Same with this, Hm3 = xy, the

coefficients of Hm3
G
w.r.t. A is 54133/53010, 0, 0, 0,−785/7068, 469/106020...

From this, we obtain Mb11 and it is

Mb12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 7274
26505

54133
53010 − 20837

53010 0 0
1 0 0 0 7 −49
0 0 0 0 −10 −75
0 0 0 0 17 320
0 185

1767 − 785
7068

419
7068 0 0

0 − 761
106020

469
106020 − 14

26505 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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Clearly, the 1, 2 entry of Mh is tr(Mb12) = 0. Finally, all traces of Mbi j form Mh and is

Mh=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 0 0 0 58 246
0 7013

1178
1367
1767

1119
1178 0 0

0 1367
1767

129
1178

4657
3534 0 0

0 1119
1178

4657
3534 − 37

589 0 0

58 0 0 0 246 −1172
246 0 0 0 −1172 −1314

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The characteristic polynomial is fcp(t) = t6 + 1056t5 − 37605102449
21204 t4 + 38103207691

589

t3− 1692609345794
5301 t2 − 103356487836

589 t + 270918780300
589 . For our purpose, the exact values

of the coefficients are much less important than their signs. The sign characteristic
polynomial of Mh=1 is fscp = t6+t5−t4+t3−t2−t +1. Its number of sign changes
is s1 = 2. Then, let h = 7x +9y −10z, we get the number of sign changes is sh = 0.
At last, NR = 1

2 (2 + 0) = 1, it means that there exists a positive eigenvalue and its
eigenvector such that cT v > 0. Therefore, this linear loop program is nonterminating.

Example 3 While (3x51−5x2x43 +4x54 −x23 x34 > 0∧5x33 x22 +45x1x42 −6x32 x21 +x54 >

0){X := AX} [4], where

A =

⎛
⎜⎜⎝

−55 −94 87 −56
0 −62 97 −73

−4 −83 −10 62
−82 80 −44 71

⎞
⎟⎟⎠

Its characteristic polynomial is fcp(t) = t4+56t3+7938t2+708976t−42287841.
At first, we construct discriminant matrix of f c with respect to g(t) = t , it is

D =

⎡
⎢⎢⎣

−56 −15876 −2126928 169151364
−15876 −2571456 89746052 7104357288

−2126928 89746052 1476505800 671361763716
169151364 7104357288 671361763716 29981064360816

⎤
⎥⎥⎦

Then, compute principal minor sequence ps from D and it is ps = [−56, −10804
5840, 17985254002673987840, 2757698689534963996815770632971264]. Fur-
ther, the sign list is sl = [1,−1,−1, 1, 1]. As there is no zero in the list, so we
need not revise it. From sign list sl, we obtain the number of sign changes is sct = 2.

Besides this, we have to know the total number of positive eigenvalues and
negative ones. Let g(t) = t2. Repeat the method above and get sign list sl =
[1,−1,−1,−1,−1] of fcp with respect to t2. The number of sign changes is sc2t = 1.
According to Theorem 3, the number of positive eigenvalues is a =deg( fcp)−(sct +
sc2t ) = 4 − (2 + 1) = 1. It means that matrix A has one positive eigenvalue.
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Next, we discuss how to use signature method by using this example. On the
basis of discriminant matrix of f c with respect to t , compute its characteristic poly-
nomial and it is fcp = t4 − a1t3 − a2t2 − a3t + a4, where a1 = 29982538295104,
a2 = 406587011388106372964416, a3 = 1584658605516216478199865724928,
a4 = 2757698689534963996815770632971264. In fact, the coefficients in fcp is not
important because we only concern with the number of sign changes. Simplify fcp

as fcp = t4− t3− t2 − t +1. The number of sign changes sc+ is 2. Then, let t = −t .
Count sign changes sc− and its number is 2. So, when g(t) = t , σ = 0. It means that
the number of the positive eigenvalues and that of negative ones is equal. Similar to
the RSL method, then let g(t) = t2. Sign polynomial is fcp = t4 − t3 + t2 − t − 1.
The signature of fcp(t) and fcp(−t) is 2. It is easy to compute the number of positive
eigenvalues of A and the result is 1.

Because this program has only one positive eigenvalue accurately, therefore we
have to check whether there still exists positive eigenvector. The semi-algebraic
system that the linear program corresponds to is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 = −(λ + 55)x1 − 94x2 + 87x3 − 56x4 = 0,
f2 = −(λ + 62)x2 + 97x3 − 73x4 = 0,
f3 = −4x1 − 83x2 − (λ + 10)x3 + 62x4 = 0,
f4 = −82x1 + 80x2 − 44x3 + (71 − λ)x4 = 0,
f5 = x21 + x22 + x23 + x24 − 1 = 0,
λ > 0,
g1 = 3x51 − 5x2x43 + 4x54 − x23 x34 > 0,
g2 = 5x33 x22 + 45x1x42 − 6x32 x21 + x54 > 0

Weuse softwaremaple to compute the gröbner basisG of ideal that f1, f2, f3, f4, f5
generates in total degree order. In G, there are 15 polynomials and they are very
long, so we do not write it out here. According to G, we obtain S-basis of A is
m = {1, x1, x2, x3, x4, x24 , λ, λ2}. Then, let h = 1 and compute Mh according to
Sect. 4 for further. As Mh is a numerical matrix. We compute its characteristic poly-
nomial very quickly. When h = 1, the sign style of characteristic polynomial is
fcp(t) = t8 − t7 − t6 + t5 + t4 − t3 + t2 − t + 1. The number of sign changes in the
sequence of coefficients of fcp(t) is 6. Let t = −t , the number of sign changes is
2. So, the signature is σ(M1) = 4. Same with this, we compute the signature of Mh

when h = λ, g1, g2, λg1, λg2, g1g2, λg1g2. They are 0,2,0,2,0,2,−2, respectively.
Finally, we obtain NR = 1 according to formula (2). It means that there exists a
positive eigenvalue and its eigenvector satisfies cT v > 0. From this, it can be seen
that this program is nonterminating.
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5 Conclusion

In this paper, we present a symbolic method to decide the termination of a class
of linear program. When the program is univariate, we use Sylvester resultant of
discriminant matrix of the polynomial in the program to compute the number of pos-
itive eigenvalues. If there is no positive eigenvalue, the linear program is terminating.
When positive eigenvalue exists or the program is multivariate, it is complicated to
determine whether the program is terminating. In this case, we convert the terminat-
ing problem to the number of real zeros of polynomial systembyusing number of sign
changes of characteristic polynomial. This method counts the number of real zeros
by using the number of sign changes of characteristic polynomial but not computing
the value of real zeros. Therefore, it avoids the error of approximate computation
and can always determine the termination of the program trustworthily.
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High-Precision Eigenvalue Bound
for the Laplacian with Singularities

Xuefeng Liu, Tomoaki Okayama and Shin’ichi Oishi

Abstract For the purpose of bounding eigenvalues of the Laplacian over a bounded
polygonal domain, we propose an algorithm to give high-precision bound even in the
case that the eigenfunction has singularities around reentrant corners. The algorithm
is a combination of the finite element method and the Lehmann–Goerisch theorem.
The interval arithmetic is adopted in floating point number computation. Since all
the error in the computation, e.g., the function approximation error, the floating
point number rounding error, are exactly estimated, the result can be mathematically
correct. In the end of the chapter, there are computational examples over an L-shaped
domain and a square-minus-square domain that demonstrate the efficiency of our
proposed algorithm.

Keywords Eigenvalue problem ·Elliptic operator ·Finite elementmethod ·Verified
computation · Lehmann-Goerisch’s theorem

1 Introduction

This chapter is a continuedworkof [10] on evaluating the eigenvalues of theLaplacian
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−�u = λu in �, u = 0 on ∂�.

The above eigenvalue problem has a spectrum of infinitely many eigenvalues (see,
e.g., [5]), 0 < λ1 ≤ λ2 ≤ λ3 · · · . To give explicit bounds for the eigenvalues is not
an easy work, especially when the eigenfunction associated to the eigenvalue has a
singularity around the reentrant corner.

In [10], based on the finite element method (FEM), X. Liu et al. proposed a robust
method to bound the eigenvalues of the Laplacian, where the difficulty caused by the
singularity of the eigenvalue problem is solved by introducing a hyper-circle equation
originating from Prager–Synge’s theorem. For detailed literature on approximate and
rigorous eigenvalue estimation, refer to [10] and the references therein. A drawback
of the method proposed in [10] is that it can only provide relatively rough bounds for
the eigenvalues; a high-precision bound requires mesh refinement and the resulting
huge matrices are very difficult to process.

In this chapter, we aim to develop a method that provides rigorous high-precision
bounds for the leading eigenvalues of the Laplacian while only light computation is
needed. The Lehmann–Goerisch theorem and Kato’s bound [2, 7, 8] are well known
for being able to provide precise bounds for up to the nth eigenvalue if the lower
bound ν for the (n+1)th eigenvalue is available. As an example, the efficiency of such
bound has been demonstrated by solving the eigenvalue problems over an L-shaped
domain [18], where a pseudo lower bound ν is used. However, finding an exact a
priori estimation ν is not an easy task. The homotopymethod developed by Goerisch
[6] and Plum [13] independently is a good choice for this purpose, which sets up
a connection between a base problem with an explicit spectrum and the objective
eigenvalue problem.When the domain in consideration is not so regular, for example,
a dumbbell-shaped domain, the base problem in need is not so easy to construct and
a slightly complex domain deformation homotopy becomes necessary; see e.g., [15].

Since the proposed method of [10] can provide the a priori bound needed by the
Lehmann–Goerisch theorem, it is natural to combine the twomethods to obtain high-
precision bounds. The Lehmann–Goerisch theorem is an extension of Lehmann’s
theorem [8] by weakening the strict preconditions while the precision is a little
dropped. In this chapter, we only apply Lehmann’s theorem to bound the eigenvalues
of the Laplacian.

The remainder of this chapter is organized as follows: In Sect. 2, we provide
some preliminary background and introduce the result of [10]. In Sect. 3, Lehmann’s
theorem and the way to construct the approximate function needed by this theorem
are introduced. In Sect. 4, we explain how to calculate the integration of singular
base functions. In Sect. 5, two computation examples are presented.

2 Eigenvalue Bound Based on FEM

First, let us introduce the function spaces to be used. The space L2(�) contains all
the real-square integrable functions over � with standard norm ‖ · ‖L2 , and Hk(�)

(k = 1, 2, . . . ,) are the kth order Sobolev function spaces that the function has up to
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the kth derivative to be in L2(�). Let | · |Hk and ‖·‖Hk be the semi-norm and norm of
Hk(�), respectively. Denote by (·, ·)� the inner product in L2(�) or (L2(�))2. The
inner product is abbreviated to be (·, ·) if the domain is obvious. Define V := H1

0 (�)

by H1
0 (�) = {v ∈ H1(�) | v = 0 on ∂�} associated with the norm ‖ · ‖V := | · |H1 .

The following Poisson’s equation plays an important role in considering the eigen-
value problem of the Laplacian: For f ∈ L2(�), find u in V such that

(∇u,∇v) = ( f, v), ∀v ∈ V . (1)

In the case that the domain has a reentrant corner, the solution of problem (1) may
have a singularity around the reentrant corner. Suppose that the angle of the inner
corner is π/ω , and set up the polar coordinate (r, θ) with the origin point at the
reentrant corner. Then, we have (see [11]),

u(r, θ) = c0rω sin(ωθ) + O(r2ω) + O(rω+2) (1/2 < w < 1). (2)

Due to the leading term rω , such a solution does not belong to H2(�) if c0 �= 0.

Let Th be a proper triangulation of the domain � and h the mesh size of the
triangulation. Denote by V h(⊂ V ) the conforming FEM space over Th , in which
we seek an approximation solution of (1). The FEM solution uh ∈ V h is given by
solving the above weak formulation (1) in V h :

(∇uh,∇vh) = ( f, vh) ∀vh ∈ V h . (3)

By proper selection of the finite element space, the following a priori error estimate
is expected,

‖u − uh‖V ≤ Mh‖ f ‖L2 ,

where Mh is a quantity with an explicit value and Mh → 0 as h → 0.
Generally, due to the singularity of solution u, i.e., u /∈ H2(�), the a priori error

estimation with explicit Mh is not an easy task. In [10], X. Liu et al. successfully
constructed an explicit a priori bound for the eigenvalues by adopting several FEM
spaces (see, e.g., [3], for detailed description of the spaces):

• V h : the conforming piecewise linear FEM space;
• Xh : the piecewise constant function space;
• W h : the lowest order Raviart-Thomas mixed FEM space;
• W h

fh
(⊂ W h): each wh ∈ W h

fh
satisfies div wh + fh = 0 for fh ∈ Xh .

In the rest of this section, we review the result of [10] in a brief way. Let πh
0 be

the L2 orthogonal projection that maps L2(�) to Xh and

‖ f − πh
0 f ‖L2 ≤ Ch

0 | f |H1 if f ∈ H1(�),
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where Ch
0 is a constant independent on f . There are several results on providing an

explicit upper bound for Ch
0 ; see the references in [10]. Here, we follow the way of

[9] to define C0(K ) on each element K of the triangulation,

C0(K ) := L

π

√
1 + | cos θ|,

where θ is the maximal inner angle of K and L is the second longest edge length of
K . Thus Ch

0 can be taken as

Ch
0 := max

K∈Th

C0(K ).

To give an explicit value of Mh , a quantity κh is introduced in [10],

κh := max
fh∈Xh\{0}

min
vh∈V h

min
ph∈W h

fh

‖ph − ∇vh‖L2/‖ fh‖L2 . (4)

The quantities Ch
0 and κh can help to construct an a priori error estimate for FEM

solution uh .

Theorem 1 (A priori error estimation [10]) For any f ∈ L2(�), let u ∈ V and
uh ∈ V h be the solutions of variational problems (1) and (3), respectively. Let

Mh :=
√

Ch
0
2 + κh

2. Then, we have

|u − uh |H1 ≤ Mh‖ f ‖L2 , ‖u − uh‖L2 ≤ Mh |u − uh |H1 ≤ M2
h‖ f ‖L2 . (5)

By using the quantity Mh , we can obtain lower bounds for eigenvalues of the
Laplacian.

Theorem 2 (Explicit eigenvalue bounds [10]) Consider the variational form of the
eigenvalue problem in Vh: find λh ∈ R and uh ∈ V h such that

(∇uh,∇vh) = λh(uh, vh) ∀vh ∈ V h . (6)

Denote by {λh
k }n

k=1(n = Dim(V h)) the eigenvalues of (6) in an increasing order.
Suppose that the kth eigenvalue λk of the Laplacian satisfies λk M2

h < 1. Then a
bound for λk is given as,

λh
k /(1 + M2

hλh
k ) ≤ λk ≤ λh

k . (7)

Remark 1 In practical computation, we consider a loosed condition for λk M2
h < 1,

that is, λh
k M2

h < 1, since λh
k (≥ λk) can be easily computed using FEMs.

Remark 2 The computation of κh and λh
k is in fact to solve generalized eigenvalue

problems for matrices. In particular, to obtain high-precision verified evaluation of
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κh , a relatively large-scale of full matrix must be processed. For detailed discussion
the computation of κh , refer to [10].

3 Sharpen the Eigenvalue Bounds by Applying
Lehmann’s Theorem

The smaller value of Mh , the higher precision of eigenvalue bound is possible. To
refine the value of Mh , we need a dense mesh and have to deal with large-scale
matrices. It can be even worse if the domain has a reentrant corner, which is due
to the missing of H2-regularity of eigenfunction around the corner. Another try
is to utilize higher degree FEM and even the singular function characterizing the
singularity of the eigenfunction. However, for such kinds of trial spaces, it is hard to
obtain explicit error estimates.

To give a high-precision bound with light computation, we introduce Lehmann’s
theorem [8], which can greatly sharpen the eigenvalue bounds by using a rough a
priori bound. We display Lehmann’s theorem in a compact form; see [14] for a
concise proof.

Theorem 3 (Section5 of [14]) Let H be a pre-Hilbert space with inner product
〈·, ·〉, D(L) ⊂ H a dense subspace, and L : D(L) → H a self-adjoint operator.
Suppose that the real eigenvalues of Lu = λu to be λ1 ≤ λ2 ≤ · · · and H possesses
an orthonormal basis {φk}k∈N, where φk ∈ D(L) is the eigenfunction of L corre-
sponding to eigenvalue λk . Take m linearly independent function v1, . . . , vm from
D(L). Define m × m matrices A1, A2, A3, the components of which are

A1(i, j) := 〈Lvi , v j 〉, A2(i, j) := 〈vi , v j 〉, A3(i, j) := 〈Lvi , Lv j 〉 (i, j = 1, . . . , m).

Denoted by �m the upper bound of λm obtained by Rayleigh–Ritz’s method, that is,
the maximum eigenvalue of A1x = λA2x. Suppose ν is a quantity satisfying

�m < ν ≤ λm+1. (8)

Define B1, B2 by

B1 := A1 − ν A2, B2 := A3 − 2ν A1 + ν2A2.

Thus, (−B1) and B2 must be positive definite matrices. Let the eigenvalues of eigen-
problem B1x = μB2x be μ1 ≤ μ2 ≤ · · · ≤ μm < 0. Then lower bound for
eigenvalue problem Lu = λu is given by

λm+1−k ≥ ν + 1

μk
(k = 1, . . . , m). (9)
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Remark 3 The test function {vi } should be well designed to approximate the exact
eigenfunction accurately. Once {vi } is fixed, the lower bound is monotonically
increasing on variable ν. However, the selection of ν is not so sensible; even rough
lower bound ν of λm+1 can produce precise lower bounds through (9).

A proper selection of ν satisfying (8) can be obtained in three steps. First, index
m should be selected that λm and λm+1 are not close to each other, which can be
done through approximate computation based on FEMs. Second, by applying the
conforming piecewise linear FEM with proper mesh size, a lower bound ν of λm+1
can be obtained through Theorem 2,

ν := λh
m+1/(1 + M2

hλh
m+1) ≤ λm+1.

Third, withwell-designed trial functions space, for example, the FEMspace of higher
order, we can take the approximate eigenfunction as the vi needed in Theorem 3. If
the quantity ν satisfies �m < ν, then we can apply Lehmann’s theorem to evaluate
the eigenvalues with high precision. Otherwise, we may need to select new index m,
refine the mesh to get improved lower bound of λm+1 and choose better vi ’s to make
�m smaller.

Let us take uniform rectangular mesh Th of L-shape domain as an example. The
origin point of the coordinate is located at the reentrant corner of the domain, c.f.,
Fig. 1. Denote by �s the sub-domain that contains the elements neighbor to the
reentrant corner. Let h be the size of the element. The trial function v ∈ C1(�) is
defined as follows:

v =
∑

K∈Th

N∑
i, j=0

aK ,i j B N
i (x)B N

j (y) + b1η1 + b2η2. (10)

Here B N
i (t) = (N

i

)
t i (1 − t)(N−i) is Bernstein polynomial with degree N ; ηk’s

(k = 1, 2) are special functions presented in polar coordinate (r, θ) with the support
being �s ,

ηk := r2k/3 sin
2k

3
(θ + π/2) � (k = 1, 2),

Fig. 1 Uniform rectangle
mesh of L-shape domain and
support of ηi (h = 1/2)
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where � is a C1 continuous cut-off function that makes ηk vanish outside �s :

� := (1 − x2/h2)2(1 − y2/h2)2 for |x |, |y| ≤ h; � := 0, otherwise.

The C1 continuous condition of v and boundary condition will add constraint con-
ditions to the coefficients aK ,i j . We point out that η1 /∈ H2(�) but �η1 ∈ L2(�).

Denote by Sh the finite dimensional space constructed by the C1 functions in the
form (10). Thus, the m test function {vi }i=1,...,m in Theorem 3 can be taken as the
eigenfunctions associated to the leading mth eigenvalues of the following variational
eigenvalue problem over Sh : find λ ∈ R and uh ∈ Sh such that,

(∇uh,∇vh) = λ(uh, vh) ∀vh ∈ Sh .

The aboveway to construct trial functions has the flexibility to dealwith domain of
general shape. For a domain of general shape, Bernstein polynomials over elements
of a triangulation of given domain, which is also called Bézier patch, can be used to
construct C1 base functions.

4 Integration of Singular Base Function

For the purpose of bounding the eigenvalues correctly, thematrices Ai (i = 1, 2, 3) in
Lehmann’s theorem should be constructed exactly or enclosed by interval matrices,
where the integration of the singular base function ηk is involved. In this section, we
show the techniques used in calculating these integrations.

Let us consider a sample rectangle element which is divided into two right tri-
angles, K and K ′; see Fig. 2. Suppose that the singular point is located at (0, 0). To
illustrate the main technique used in the integration evaluation, we focus on the inte-
gration over the triangle K . Let ψi, j := B N

i (x)B N
j (y). The inner products between

{ψi, j }’s can be easily done. We need pay efforts to evaluate the terms involving ηk ,

(ψi, j , ηk)K , (∇ψi, j ,∇ηk)K , (�ψi, j ,�ηk)K , (ηk, ηk′)K

(∇ηk,∇ηk′)K , (�ηk,�ηk′)K (i, j = 1, . . . , N ; k, k′ = 1, 2). (11)

Fig. 2 A sample rectangle
element
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As ψi, j , ηk and their derivatives are productions of polynomials of x and y, power
of r , and trigonometric functions of θ, each term in (11) can be presented by linear
combinations of terms like

∫
K rβg(θ)d rd θ, where β is a certain positive fraction

number and g(θ) is a function depending only on θ. Substituting r = x/ cos θ, we
have

π/4∫
θ=0

1/ cos θ∫
r=0

rβg(θ)d rd θ =
1∫

x=0

xβdx ·
π/4∫

θ=0

(1 + tan2 θ)
β/2 g(θ)

cos θ
dθ. (12)

Thus the 2-dimensional integrations are reduced to be the 1-dimensional ones. Thanks
to the powerful symbolic computation ability of Mathematica [12], all of the inte-
grations can be given with explicit form. Particularly, the integration on θ is a little
complicated, which may contain the hypergeometric function 2F1. As an example,
let us consider the integration of ηk defined over above element,

ηk = r2k/3 sin
2k

3
(θ) (1 − x2)2(1 − y2)2 (k = 1, 2).

The integration values Ik,k′ := (�ηk,�ηk′)K (k, k′ = 1, 2) are given as follows:
where the underlined numbers denote the same digits shared by the left side and the
right side of an interval that contains the integration value.

I11 = −
6 · 22/3

(
124570561120 2F1

( 1
6 , 1; 3

2 ;−1
) + 40223569113

√
3 − 192961512624

)
201713136625

∈ (0.4006375503492909, 0.4006375503492910)

I12 = I21 = −
2

(
−369380860536

√
3 + 1063726624119 + 706947619840

√
3 tanh−1

(
3 − 2

√
3
))

580054565475
∈ (0.6598956098827474, 0.6598956098827475)

I22 =
446104569792 2F1

( 1
2 , 2

3 ; 3
2 ; −1

) + 36 3
√
2

(
6306697864 − 3823310403

√
3
)

296527606375
∈ (1.226203919233479, 1.226203919233480).

When the domain � is of general shape, we need to adopt triangular meshes.
In this case, the integrations on each element K can still be separated into two 1-
dimensional integrations as in (12), while the one of θ may not have an explicit
value. Thus, verified numerical quadrature algorithms, e.g., [4], will be applied to
give verified enclosure of the integrations of θ.

5 Computation Examples

In this section, we show two computation examples: one is the eigenvalue problem
over an L-shaped domain; the other over a square domain containing a square hole.
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In the practical computation, the inner products involving singular functions is
computed by using Mathematica [12]. The numerical computation of floating point
number is executed with interval arithmetic; the INTLAB toolbox for MATLAB
(developed by Rump [16]) are used for interval computation. To give sharp bound
for the matrices eigenvalues, we adopt the method of Behnke [1]. As the rounding
error in floating point number computation is estimated, the desired results can be
mathematically accurate if there is no programming bug in the computation codes.

5.1 L-Shaped Domain

Let us consider the eigenvalue problem over an L-shaped domain: (0, 2) × (0, 2) \
[1, 2] × [1, 2]. A uniform triangulation of the domain is performed, as is displayed
in Fig. 3.

The rough bounds for the leading 6 eigenvalues are obtained by applying the
result of Theorem 2 along with FEM spaces V h , Xh and W h ; the result is displayed
in Table1. The several important quantities in the computation are,

#Elements = 6144, Ch
0 = 0.010, κh = 0.033, Mh = 0.035.

The relative error for the lower bound λlow and the upper bound λupper is estimated
by ReErr:= 2(λupper − λlow)/(λupper + λlow). To apply Lehmann’s theorem, we take
λ5 < ν := 39 < λ6. Thus we obtain more precise bound for λ1, . . . ,λ5, where

Fig. 3 Uniform mesh for
L-shaped domain

Table 1 Eigenvalue
evaluation for L-shaped
domain (uniform mesh with
h = 1/32) Note the third
eigenpair is known:{λ3 =
2π2, u3 = sin πx sin πy}

λi Lower bound Upper bound ReErr

1 9.5585 9.6699 0.012

2 14.950 15.225 0.018

3 19.326 19.787 0.024

4 28.605 29.626 0.035

5 30.866 32.058 0.038

6 39.687 41.680 0.049
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Table 2 High-precision bound for eigenvalues over L-shaped domain

λi Yuan-He [18] Liu-Oishi (N = 6) Liu-Oishi (N = 10)

1 9.639723844404 9.6397355 9.63972417
2 15.197251926659 15.19725330 15.1972519375
3 19.7392088021789531 19.73292088165 19.73920880218025
4 29.521481114238 29.5214934 29.52148277
5 31.91263595937 31.9126418 31.91263621

Bernstein function up to degree 10 and singular basis introduced in §3 is used. The
high-precision eigenvalue bounds are displayed in Table2, together with the ones
from Q. Yuan and Z. He [18].

The result of [18] is also based on Lehmann’s theorem, where the trial functions
{vi } are taken as Bessel functions and quite accurate eigenvalue bounds become
possible. However, there have been no efforts on verified computations of the inte-
grations of these trial functions. Also, the quantity ν in [18] is upon the result of [17],
which is not a guaranteed estimation and only available for special domains.

5.2 Square-Minus Domain

Let us consider the eigenvalue problem over a square-minus-square domain: (0, 8)×
(0, 8)\ [1, 7]× [1, 7]. To apply the FEM to obtain rough bounds for the eigenvalues,
we triangulate the domain by a nonuniform mesh; see Fig. 4. The quantities in the

Fig. 4 A sample nonuniform
mesh for
square-minus-square domain
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computation are

#Elements = 48920, Ch
0 = 0.033, κh = 0.027, Mh = 0.043.

The rough bounds for the leading several eigenvalues are displayed in Table3.
From Theorem 2, we obtain an a priori estimate as: λ17 < ν := 13.71 ≤ λ18.

Then, we turn to Lehmann’s theorem to sharpen the eigenvalue bounds. To set poly-
nomial functions space, we subdivide the domain into 16 small rectangles. As the
domain has four reentrant corners, around each of the corners, we introduce sin-
gular base functions, the support of which is plotted in gray color; see the graph
around Table4. In the computation, the degree of the polynomial base function is
taken to be 10. The high-precision eigenvalue bounds are displayed in Table4. The
eigenfunctions associated to the leading 4 eigenvalues are plotted in Fig. 5.

Table 3 Eigenvalue evaluation for square-minus-square domain (uniform mesh with h = 1/32)

λi Lower bound Upper bound ReErr

1 9.029 9.182 0.017

2 9.039 9.192 0.017

3 9.039 9.193 0.017

4 9.050 9.203 0.017

5 9.920 10.104 0.018

17 13.080 13.403 0.024

18 13.710 14.064 0.026

Table 4 Bounds for the eigenvalues over square-minus-square domain

λi Eigenvalue bound ReErr

1 9.160216437 2.8E-7

2 9.170088961 2.9E-7

3 9.170088961 2.9E-7

4 9.180568052 3.0E-7

5 10.0898433714 2.2E-8

17 13.37517900 5.8E-6
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Fig. 5 Eigenfunctions corresponding to the leading 4 eigenvalues

6 Conclusion

In this chapter, we propose an algorithm to give high-precision eigenvalue bound
for the Laplacian even with singularity. In the future, we would like to apply the
technique developed in this chapter to verify the solution existence of semilinear
elliptic differential equation,where the investigationof the spectrumof certain elliptic
operator is the essential task.

Acknowledgments The first author of this chapter is supported by Japan Society for the Promotion
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POLY: A New Polynomial Data Structure
for Maple 17

Michael Monagan and Roman Pearce

Abstract We demonstrate how a new data structure for sparse distributed
polynomials in the Maple 17 kernel significantly accelerates several key Maple
library routines. The POLY data structure and its associated kernel operations are
programmed for compactness, scalability, and low overhead. This allows polynomi-
als to have tens of millions of terms, increases parallel speedup, and improves the
performance of Maple library routines.

1 Introduction

Figure1 shows the default polynomial data structure in Maple 16 and previous ver-
sions of Maple for the polynomial f = 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5. It is a
“sum-of-products” where each monomial is stored a separate Maple object, a PROD.
To compute the degree of f , a coefficient in x , test for a subexpression, or do almost
anything else, the Maple kernel must recursively descend through multiple levels of
dags. This involves extensive branching and randommemory access, which prevents
Maple from achieving high-performance on modern computer processors.

For example, to compute the degree of f in x , when Maple sees x in the mono-
mial PROD 7 x 1 y 3 z 1 , because Maple does not have a dedicated polyno-
mial data structure, Maple does not know that the next factor does not have x in it.
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Fig. 1 Maple’s sum-of-products representation encodes each object in an array of words where the
first word encodes the type and length (in words) of the object
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Fig. 2 Singular’s polynomial representation for f = 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5

The monomial could be x(x + y)3z or x sin(x)3 z. Thus, computing the degree of a
polynomial with t terms in n variables is O(nt) in Maple.

Monomial operations are particularly slow. To multiply xy3z by xz Maple forms
the product PROD 11 x 1 y 3 z 1 x 1 z 1 . It then “simplifies” this product to

obtain PROD 7 x 2 y 3 z 2 . Since the variables in a PROD are not sorted, Maple
uses an O(n2) double loop to add the exponents of like variables. Finally, because
Maple stores unique copies of objects, the resulting PROD object is hashed and
inserted in an internal table if it not already present. In all, there are many function
calls and many loops. We estimate that Maple takes more than 200 clock cycles to
multiply monomials in 3 variables.

For comparison, Fig. 2 shows Singular’s data structure for the same polynomial.
Singular uses a linked list of terms and dense exponent vectors to represent mono-
mials.

Singular is representative of several computer algebra systems which have a ded-
icated distributed polynomial representation with obvious advantages. Monomial
multiplication consists of a memory allocation and a loop of fixed length to add
exponents. This is the main reason Singular is faster than Maple at polynomial mul-
tiplication.

The relatively slow performance of Maple for polynomials lead us to develop a
high performance C library for sparse polynomial arithmetic which we integrated
into Maple in [1]. To multiply two polynomials, we first convert the Maple inputs to
a special polynomial representation, then we call our library to compute the product
using our parallel algorithm from [2], then we convert the result to Maple’s sum-
of-products representation. This substantially improved Maple’s performance for
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large polynomials. However, for very sparse polynomials, and small polynomials,
the overhead of constructing the sum-of-products representation often negated the
parallel speedup achievedbyour library. Furthermore, algorithms in theMaple library
continued to use the sum-of-products structure, so the cost of ancillary operations
like computing the degree or coefficients in a variable could easily overshadow the
cost of arithmetic. These problems are addressed in this paper by introducing a new
polynomial data structure in the Maple kernel. The new data structure, called POLY,
was integrated into Maple 17 which was released in April 2013.

Our paper is organized as follows. In Sect. 2 we describe POLY, list some of
its obvious advantages, and detail how it is integrated into Maple. In Sect. 3 we
describe howwe implemented variousMaple kernel operations and give benchmarks
demonstrating the improvement in their performance. In Sect. 4 we consider the
impact of the POLY data structure and improved kernel routines on Maple library
codes andmeasure improved parallel speedup in polynomial arithmetic.We endwith
a conclusion.

2 The POLY Data Structure

Figure3 shows our new data structure for sparse distributed polynomials. The first
word is a header word, which encodes the length and type of the object. The second
word points to the variables, which are sorted in Maple’s canonical ordering for sets.
This is followed by the monomials and coefficients, where the monomials encode
the exponents and the total degree in a single machine word. For example, for xy2z3

we encode the values (6, 1, 2, 3) as the integer 6 · 248 + 232 + 2 · 216 + 3, using 16
bits each on a 64-bit machine. Terms are sorted into graded lexicographical order by
comparing themonomials as unsigned integers. This gives a canonical representation
for the polynomial. Small integer coefficients−262 < x < 262 are encoded as 2x+1,
so that the rightmost bit is 1. Larger integers are a pointer (with rightmost bit 0) to a
GMPmultiprecision integer [3]. The current implementation requires all coefficients
to be integers.

Five advantages of the new representation are readily apparent.

1. It is much more compact. Polynomials use two words per term instead of 2n + 3
words, where n is the number of variables. For polynomials in three variables this
saves over a factor of four.

−4 −6 −8 −59

SEQ 4 x y z

5032 4121 3300 00005131POLY 12

Fig. 3 The new packed representation for f = 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5
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2. Monomial comparisons become machine word comparisons and monomial mul-
tiplication becomes machine word addition (provided there is no overflow), and
monomial division becomes subtraction with a bitwise test for failure. This dra-
matically speeds up polynomial arithmetic.

3. Explicitly storing variables and sorting the terms lets us perform many common
Maple idioms without looking at all of the terms, e.g. degree( f ) (total degree),
indets( f ) (extract the set of variables), has( f, x), and type( f, polynom).

4. Other operations such as degree( f, x), diff( f, x), or coeff( f, x, i) (extract
the coefficient of xi ) access memory sequentially to make good use of cache.
We can isolate groups of exponents using masks. This eliminates branching and
loops at the level of the exponents.

5. For large polynomials, we avoid creating many small Maple objects (the PRODs)
that must be simplified by Maple’s internal simplifier and stored in Maple’s
simpl table, an internal hash table of all Maple objects. They fill the simpl
table and slow down Maple’s garbage collector.

The idea of packing monomials in one or more computer words is not new;
the ALTRAN computer algebra system [4] allowed the user to pack monomials in
lexicographical order to conserve memory. Bruno Buchberger [5] experimented with
packedmonomials using the gradex lexicogrpahical orderingwhenhewas computing
Gröbner bases in the early 1960s because of the scarcity of main memory. A number
of special purpose computer algebra systems have supported monomial packing.
For example, the McCaulay2 computer algebra system [6] for computing Gröbner
bases supports packing for the lexicographical and graded reverse lexicographical
monomial orderings and theMagma computer algebra system [7] dynamically packs
monomials using bytes. In [8], Bachmann and Schönemann compared the graded
packing with packings for other monomial orderings for Gröbner basis computation.

We have integrated the POLY data structure into the Maple kernel and it is used
by default as of Maple 17. When Maple parses input from the user or a file it creates
the sum of products structure which is then simplified. When the simplifier detects
an expanded polynomial with integer coefficients and at least two terms it creates
a POLY structure when: (i) the number variables n < β/2 for β-bit machines, (ii)
the total degree d satisfies 1 < d < 2b where b = �β/(n + 1)� for n > 1 and
b = β − 2 for n = 1, (iii) the variables are Maple names with regular evaluation
rules, e.g. {x, y1, π} but not infinity or undefined. Otherwise the sum-of-products
format is retained. On output, and for other cases where it was convenient, Maple
recreates a sum-of-products structure for a POLY and caches it. Thus Maple 17 uses
two representations for polynomials, automatically selecting between the two. All
conversions between representations are automatic and invisible to the Maple user.

Note, the monomial encoding is determined solely by the number of variables in
the polynomial.Weuseb bits for the exponent in eachvariable and for the total degree.
It follows that arithmetic operations between polynomials in the same variables do
not need to repack monomials.

Note, for polynomials with total degree d = 1, we do not store them in as a
POLY dag because Maple’s sum-of-products representation is better in this case.
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For example f = 2x +3y +4z +5 is represented as SUM 9 x 2 y 3 z 4 1 5 . This
is compact as monomials are not explicitly represented. Maple’s sparse linear solver
uses this polynomial representation.

We chose the graded lex ordering rather than pure lexicographical ordering for
several reasons. First, the graded ordering appears more natural for output. Second,
when multiplying a ×b, if the total degree d = deg a +deg b does not overflow, that
is, d < 2b, then the entire product can be computed without overflow and with no
overflow detection. This allows us to look at only the leading terms of polynomials
and predict overflow in O(1) time. Third, in the division algorithm, if one uses
pure lexicographical order, degrees in the remainder can increase and overflow the
exponents. For example, consider the following division

x2y5 + y3 ÷ x2y + xy5

in lexicographical order with x > y. The quotient is y4 and the remainder is−xy9 +
y3. If we had 3 bits per variable, the y9 would overflow. In contrast, when a graded
ordering is used the total degree of the monomials in the division algorithm always
decreases. In our example the leading term of the divisor would be xy5 and the
division

x2y5 + y3 ÷ xy5 + x2y

would result in the quotient x and remainder −x3y + y3.
We encode the monomial xi y j zk as d i j k where d = i + j + k. Notice,

however, that we could store d i j and recover k = d − i − j as needed to allow for
more bits. We rejected this idea because it adds too much code complexity, both in
the kernel routines and in external libraries that must support POLY. It also makes
the cost of some monomial operations O(n) instead of O(1).

We expect to pack many practical problems into 64-bit words, which is the norm
for today’s computers. For example, if a polynomial has 8 variables then we store
9 integers for each monomial using �64/9� = 7 bits each. So the POLY dag can
accommodate polynomials in 8 variables of total degree up to 127. Table1 below
shows the number of bits per exponent for a polynomial in n variables assuming a
64-bit word. Column lex shows how many bits would be available if lexicographical
order were used and one bit (at the top) were left unset to test for overflow. To check
for overflow in a + b we would compute (a + b) ⊕ a ⊕ b. This sets the bits that are
carried into (see [9]) after which we can apply a mask.

Column grlex is our packing. It shows how many bits are available for each
variable and for the total degree. For univariate polynomials we do not store the
degree because it simply duplicates the exponent. Instead we restrict the degree to
the range of Maple immediate integers (62 bits signed x is stored as 2x + 1) to avoid
handling multiprecision exponents in conversions. The table also shows the number
of unused bits at the top of each word.
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Table 1 The number of bits per exponent for n variables in the two orderings

n lex grlex Unused n lex grlex Unused n lex grlex Unused n lex grlex Unused

1 63 62 2 7 9 8 0 13 4 4 8 19 3 3 4

2 31 21 1 8 7 7 1 14 4 4 4 20 3 3 1

3 21 16 0 9 7 6 4 15 4 4 0 21 3 2 20

4 15 12 4 10 6 5 9 16 3 3 13 22 2 2 18

5 12 10 4 11 5 5 4 17 3 3 10 ... ... ... ...

6 10 9 1 12 5 4 12 18 3 3 7 31 2 2 0

When thisworkwas presented at theAsianSymposiumonComputerMathematics
meeting in Beijing in October 2012, Joris van der Hoven asked “Why don’t you use
the extra bits for increased total degree?”. For example, in Table1 we see that for
n = 10 variables, we allocate b = 5 bits per exponent and 5 bits for the total degree
leaving 9 unused bits. The answer we gave was that doing so would increase the
complexity of the code significantly. We also just did not know howmuch difference
those extra bits would make. Over the following year, when computing determinants
of various matrices of polynomials, we encountered three determinants which do not
fit in POLY. In all three cases, however, they would fit if we used the unused bits for
total degree. Consider the n × n Vandermonde matrix Vn where the (i, j)th entry of
Vn is x j−1

i . For example

V4 =

⎡
⎢⎢⎢⎣
1 x1 x21 x31
1 x2 x22 x32
1 x3 x23 x33
1 x4 x24 x34

⎤
⎥⎥⎥⎦

The determinant Dn of Vn is a polynomial in n variables of total degree 0+ 1+ 2+
3 + · · · + n − 1 = n(n − 1)/2. Looking at Table1, we can see that D10 which has
total degree 45 does not fit in POLY because there are only 5 bits for the total degree.
However, it would easily fit if the extra 9 bits were used for the total degree. In fact,
Dn would fit for n = 11, 12, 13 and 14 as well. This example, and the significant
number of unused bits in the range 9 ≤ n ≤ 14 has convinced us that it will be
worthwhile using them for the total degree. We are presently implementing this.

3 Operations in the Maple Kernel

The new representation allowed us to design new high performance algorithms for
the Maple kernel. In the old data structure most operations are O(nt) where n is the
number of variables and t is the number of terms. Maple must examine the entire
sum of products structure because its contents are unknown.
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With the new data structure we can often avoid doing expensive operations on
all of the terms, or we can do them much more efficiently. Our first example is the
command diff( f, x). To compute the derivative with respect to x in the sum of
products representation, Maple searches for x in each PROD. If x is found it copies
the PROD, decreases the exponent of x , and scales the coefficient. Our algorithm
for diff( f, x) first locates x in the set of variables. If x is not there it returns zero.
Otherwise let x be variable k of n, let s = �64/(n+1)� be the width of the exponents,
sk = s(n − k) is the shift to find the exponent of x , and b = 2s − 1 is a mask of s
bits. The core of diff( f, x) is a loop that updates the exponent of x and the total
degree (if present) using one subtraction.

/* subtracted from monomial */

d = 1 << sk;

if (n > 1) d += 1 << (s*n);

for (i=j=2; i < LENGTH(f); i+=2) {

m = f[i]; /* monomial */

e = (m >> sk) & b; /* exponent */

if (!e) continue; /* skip the constant */

r[j+0] = m - d; /* new monomial */

r[j+1] = mulint(f[i+1], IMMEDIATE(e), NULL);

j += 2; }

The new monomials in the derivative remain sorted in the graded ordering. For
example, consider f = 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5. If we differentiate with
respect to x we obtain f ′ = 9y3z + 0 − 6y2z − 24x2 + 0 and the nonzero terms
remain sorted in the gradedmonomial ordering. Thuswe can differentiate in O(n+t)
instead of O(nt).

As a second example, considerdegree( f, {x, z}); for f ∈ Z[x, y, z].We exploit
a trick from Hacker’s Delight [9]. If a and b are packed monomials (a − b) ⊕ a ⊕ b
sets the bits that are borrowed to subtract a − b. The absence of underflow in the
exponent fields indicates that two monomials divide and a − b is their quotient. To
test for division in {x, z} only, we construct a mask m with 1 bits above the x and z
fields and compute ((a-b) ^ a ^ b) & m. If this is zero we know b divides a in
{x, z}, so degree(b, {x, z}) < degree(a, {x, z}) and we can skip over b without
computing its degree. This optimization is also used for lcoeff which computes
the leading terms of polynomials. In the case of degree we can stop when the total
degree of the monomials is less than or equal to the largest degree already found.

Another optimization that we use is binary search. Consider has( f, x5) and
coeff( f, x, 5). In both cases it is pointless to examine terms of total degree less
than five, but rather than test each monomial with an additional branch in the main
loop, we use binary search to adjust the endpoint for linear search.

Our results are summarized in Table2 which reports the speedup for kernel oper-
ations on a polynomial with 9,90,000 terms in 3 variables. Note that none of these
operations are parallelized, and the cost for evaluation is added to the other commands
if you are using Maple interactively.
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Table 3 Profiles for executing collect(f,x) in Maple 16 and Maple 17

Function Calls Maple 16 Maple 17

Time Time (%) Time Time (%)

frontend 1 3.672 59.26 0.004 3.60

indets 2 1.617 26.10 0.000 0.00

series 1 0.747 12.06 0.094 84.68

collect 1 0.160 2.58 0.013 11.71

Total: 5 6.196 100.00 0.111 100.00

For some algorithms we need to sort polynomials after modifying the mono-
mial data. We sort by treating the monomials as unsigned 64-bit integers and using
an inplace MSD American flag radix sort [10]. For example, the coeffs(f,x),
eval(f,x=6) and taylor(f,x,n) commands all need the coefficients of f in
x . Suppose f is a polynomial in {w, x, y}. For each monomialwi x j yk in f, encoded
as dijk where d = i + j + k is its degree, with a constant number of masks and
bit operations (seven suffices) we move j , the degree of x to the front to obtain the
jdik . We sort this modified data to group terms by power of x with ties broken by
the monomial ordering on {w, y}. From that we extract the coefficients in x , already
sorted, in linear time.

The biggest improvement we have seen for a Maple library command is the
collect command, which is used to write a polynomial in recursive form. For
example, if f = xy3 + x2y − x2z + xyz − 2 then collect(f,x) will rewrite f
as (y − z)x2 + (y3 + yz)x − 2. The Maple code for the collect command uses
the series(f,x,3) command to implement this. Since the series command
is 8x faster, we did not expect collect to be 6.196/0.111 = 56 times faster. In Table3
is a profile showing that most of the time in Maple 16 was not in series at all, but
rather in the frontend and indets commands.

In Maple 17, the cost of frontend and indets are now negligible since they
no longer need to descend into the sum-of-products dag. In Maple 16, frontend
recursively descends the sum-of-products dag looking for objects like x1/2, sin(x),
2n , etc. But our polynomial has none; it only has variables x, y and z in it.

3.1 Unpacking

The one case where we lose is when we must unpack the POLY dag and convert to
the old data structure. The Maple command op(f) constructs a sequence of all the
terms of f . Other Maple commands which effectively do the same thing include the
common Maple programming idioms:
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Table 4 Calls to indets( f, t) for f a POLY in the Maple library test suite

Type t Number Type t Number

name 11937973 {rtable, table} 1509366

nonreal 7081486 specfunc(anything, RootOf) 1429737

float 6930777 radical 1101539

function 6678146 indexed 1089504

Or(RootOf, radical) 1863699 ‘ˆ’ 1047368

{name, function} 1861368 Or(‘ + ’,‘ ∗ ’, ‘ˆ’) 828257

map(g,f) apply the function g to each term of f
for t in f do iterate over the terms of f
indets(f,t) extract all subexpressions in f of type t

Each term, e.g. 8xy2, is stored as SUM ↑ P 8 where P is the monomial stored as
PROD x 1 y 2 . Thus Maple 17 must build a SUM and a PROD for each term in f
whereas Maple 16 only builds a SUM and the PROD already exists. Theoretically,
Maple 17 is O(nt) compared with O(t) for Maple 16. We have tried to improve
the speed of unpacking by creating the PROD objects in simplified form, but the
slowdown for op(f) remains a factor of 4.

However, we observed a tendency of Maple library code to either frequently
unpack POLY or rarely unpack, often in the course of checking high level types.
Alongside other internal caches in theMaple kernel (e.g. for subs and indets) we
added a cache for unpacked POLY dags. This cache is cleared out on every garbage
collection, so its practical effect is restricted to small polynomials that would be
repeatedly unpacked.

For indets(f,t) we can avoid unpacking in many cases by detecting types
that do not appear in POLY or appear only in the variables. Table4 shows the most
common types in indets(f,t) when f is a POLY when the entire Maple library
test suite is run. For products or powers we must unpack the terms of f to create the
result, but in the top ten cases (and many others) that is avoided.

3.2 Repacking

A number of theMaple kernel operations require us to repack monomials. For exam-
ple, when adding x2 + y2 + z2 and x2 + y2 − z2, the result 2x2 + 2y2 does not have
the variable z. When Maple simplifies the result it must detect that z is missing and
repack the polynomial into Z[x, y]. Repacking also occurs in the coeff, coeffs,
eval, lcoeff, and taylor commands that remove one or more variables, or
expand and divide, which convert polynomials to a common ring. Critically,
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these operations do not permute the variables; they insert or remove exponent fields
and change the sizes of the remaining fields.

In Maple 17 this is coded as a straightforward O(n) loop, but we digress on the
topic because new Intel microprocessors (codenamed Haswell, see [11]) have added
two new instructions with exciting possibilities. The PEXT instruction is short for
parallel extract, and it flushes masked bits to the bottom of the word.

monomial x3y5z7 00001111 00000011 00000101 00000111
mask for {x, z} 00000000 11111111 00000000 11111111

result from PEXT 00000000 00000000 00000011 00000111

Its inverse is PDEP, short for parallel deposit, which distributes bits to various
locations in a word, starting from the lowest bit. Both operations are O(1).

input data 00000000 00000000 00000011 00000111
mask of locations 00000000 11111111 00000000 11111111
result from PDEP 00000000 00000011 00000000 00000111

The parallel design for these operations was originally proposed by Hilewitz and
Lee in [12]. With these instructions, we can repack monomials without any branches
or loops, e.g. to convert from Z[x, z] to Z[x, y, z] we would do:

3 × 21 bits
d i k

extract
−→

4 × 16 bits
0 d i k

deposit
−→

4 × 16 bits
d i 0 k

This would be needed, for example, to multiply f (x, z) and g(x, y) in Z[x, y, z].
In fact Maple 17 does use the PEXT operation to reorder multiple variables for
coeffs, but we coded this in C using the algorithm in Hacker’s Delight [9]. After
precomputation it uses 24 bitwise instructions per word, and it is called twice per
term by coeffs to reorder the exponents.We attempted to use a C routine for PDEP
to repack monomials but it was hard to get a gain. Nevertheless this should be our
approach as soon as there is widespread hardware support.

3.3 Hashing and Simplification

When an algebraic expression is created in Maple, it is simplified recursively by the
kernel. For example, consider the polynomial f = 9xy3z −4y3z2−6xy2z −8x3−5
from Fig. 1. Each object in f that is not a small integer is simplified and hashed to see
if it already exists in memory. In Maple 16, this is first done for the variables x, y, z
then for the monomials (PRODs in Fig. 1) xy3z, y3z2, xy2z and x3, and finally for
the whole expression f . These objects are hashed and stored in the internal simpl
table, which maps each object to a unique copy in memory. This feature of Maple
allows it to identify equal objects by address.
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Table 5 Real time in seconds for computing and simplifying a large power

Expand power (s) Allocate dag (s) Simplify dag (s) Total time (s)

Maple 16 0.133 0.080 1.180 1.420

Maple 17 0.128 0.000 0.010 0.139

InMaple 17 (see Fig. 3), becausemonomials are encoded immediately asmachine
integers, they are not stored in the simpl table. Rather, only the POLY object, the
SEQ object (the sequence of variables), and multiprecision coefficients are stored in
the simpl table.

What is gained from not having to create, simplify, and hash each monomial as a
PROD object? The following benchmark gives us a clue. Consider

> f := expand ((1+s+t+u+v+w+x+y+z)16):

which creates a polynomial f in 8 variables with 7,35,471 terms. By first issuing
the command sdmp:-info(1): we can obtain profiling information from the
C library that computes this result. Table5 shows that most of the time is spent
simplifying the result in Maple 16, whereas in Maple 17 this time is fairly small. The
C routine itself is identical with only a tiny difference due to the compiler.

The C library uses the same monomial representation as Maple 17, so it can copy
the term data to a new POLY object. Maple 16 has to allocate the sum of products
structure, which is almost as expensive as the computation. Maple 17 simplifies the
POLY by checking that its terms and variables are sorted and all variables have a
nonzero exponent. This takes 0.01 s or 7.2% of the time. Maple 16 must do consid-
erably more work to simplify the sum of products dag. For each PROD, it checks that
the variables are distinct (they are) using an O(n2) loop, then it hashes the PROD
and inserts it into the simpl table. Then it has to sort the SUM to check that all
the PRODs are distinct (they are), because hashing has destroyed any previous order.
Finally, it hashes the SUM.

A hidden cost is that the code to simplify SUMs and PRODs is quite expensive.
It handles special objects like infinity and undefined, complex and floating point
arithmetic, operator overloading, binary relations like < or = because equations can
be added or scaled, matrix arithmetic, etc. These routines implement much of the
expressive power of the Maple language, and this is not free. To simplify POLY,
we have the luxury of analyzing the variables and calling algorithms that work in
restricted domains.

4 Benchmarks

What is the impact of the POLY data structure on Maple’s overall performance?
This was difficult to predict in advance. One goal was to reduce sequential overhead
in polynomial algorithms so that parallel speedup in multiplication and division
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(see [2, 13]) would speed up the Maple library. Was that achieved? To this end
we developed two benchmarks; expanding determinants of polynomial matrices and
factoring multivariate polynomials. Both are higher level algorithms.

4.1 Determinant Benchmark

Ourfirst benchmark computes the determinant of then × n symmetricToeplitzmatrix
A for 6 ≤ n ≤ 11. This is a matrix with n variables {x1, . . . , xn}with xi along the i th
diagonal and i th subdiagonal. To compute det(A) we use our own implementations
of the Bareiss algorithm (see [14]), which we provide in Appendix A. At the kth
elimination step, ignoring pivoting, the Bareiss algorithm computes

Ai, j := Ak,k Ai, j − Ai,k Ak, j

Ak−1,k−1
for i = k + 1, . . . , n and j = k + 1, . . . , n (1)

where the division is exact. At the end of the algorithm An,n = ± det(A). Thus the
Bariess algorithmdoes a sequence of O(n3) polynomialmultiplications and divisions
that grow in size, with the largest one occurring in the last step when k = n − 1.

In Table6 below, #det is the number of terms in the determinant which has degree
n, and #num is the number of terms in An−1,n−1An,n − An,n−1An−1,n which has
degree 2n − 2 and is much larger than det(A).

We used a quad core Intel Core i7 920 2.66 GHz CPU running 64-bit Linux.
Timings are real times in seconds. With four cores we achieve a factor of 3 to 4
speedup over Maple 16, which is large. That gain is entirely from reducing the
overhead of Maple data structures; Maple 16 and Maple 17 use the same C library
routines for polynomial arithmetic. The reduction of overhead increases parallel
speedup from 1.6x to 2.59x over Maple 16. For comparison we include times for
Maple 13 (which does not use our C library) and Magma 2.17.

Table 6 Real time in seconds to compute det(A) using the Bareiss algorithm

n #det #num Maple 13 Maple 16 Maple 17 Magma 2.17

1 core 1 core 4 cores 1 core 4 cores 1 core

6 120 575 0.015 0.008 0.009 0.002 0.002 0.000

7 427 3277 0.105 0.030 0.030 0.010 0.010 0.020

8 1628 21016 1.123 0.181 0.169 0.047 0.037 0.200

9 6090 128530 19.176 1.450 1.290 0.482 0.294 2.870

10 23797 813638 445.611 14.830 12.240 5.680 2.940 77.020

11 90296 5060172 − 151.200 94.340 78.500 26.890 2098.790
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By default, Maple and Magma do not use the Bareiss algorithm to compute these
determinants. Instead, they use the method of minor expansion of Gentleman and
Johnson [15]. Recall that given an n × n matrix A

det(A) =
n∑

i=1

(−1)n+1Ai,1 det(M(1, i)) (2)

where M(1, i) is the n −1 by n −1 matrix obtained from A by deleting column 1 and
row i . Applied naively, this formula recomputes the determinants of sub-matrices
many times. Gentleman and Johnson avoided that by computing from the bottom up;
they compute all 2 × 2 determinants then all 3 × 3 determinants and so on. This is
still exponential in n. It computes

(n
k

)
determinants of k × k sub-matrices for a total

of
∑n

k=1

(n
k

) = 2n − 1 determinants.
For our Toeplitz matrices, the multiplications in (2) are of the form variable times

polynomial. For example, to multiply f = 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5 by
y, we add the monomial representation for y to each monomial in f , namely y =
1010 = 248 + 216 to the encodings of 5131 , 5032 , 4121 , 3300 , 0000 .
Notice how the result remains sorted in the monomial ordering. The additions in
(2) are n-ary, for which we copy terms to a new POLY and apply radix sort. The
improvement shown in Table7 was huge. It surprised us.

4.2 Factorization Benchmark

Our second benchmark is multivariate factorization. For perspective we include tim-
ings for Magma [7], Mathematica, Maxima [16], Sage [17], Singular [18], and Trip
[19] which is a computer algebra system for celestial mechanics.

Table8 reports the real times for multiplication, division, and factorization on a
hyperthreaded quad core Intel Core i7 920 2.66GHz running 64-bit Linux. For each
timing we report the median of three test runs. Maple 16 and 17 start up to four
threads depending on the size of each multiplication or division. The factorization

Table 7 Real times in seconds for determinants using minor expansion

n #det Maple 16 Maple 17 Magma 2.17

6 120 0.002 0.002 0.001

7 427 0.010 0.004 0.003

8 1628 0.049 0.013 0.019

9 6090 0.305 0.047 0.116

10 23797 1.991 0.252 0.770

11 90296 19.370 1.322 6.210

12 350726 274.990 6.737 44.500

13 1338076 2024.370 37.570 337.770



340 M. Monagan and R. Pearce

Ta
bl

e
8

R
ea
lt
im

es
in

se
co
nd

s
fo
r
po

ly
no

m
ia
lm

ul
tip

lic
at
io
n,
di
vi
si
on

an
d
fa
ct
or
iz
at
io
n

M
ap
le
13

M
ap
le
16

M
ap
le
17

M
ag
m
a

Sa
ge

Si
ng
ul
ar

M
ax
im

a
M
at
he
m
at
ic
a

T
ri
p
1.
2.
26

1
co
re

4
co
re
s

1
co
re

4
co
re
s

2.
19
-1

5.
8

3-
1-
4

3-
1-
6

5.
25
.0

8.
0

9.
0

(R
S)

(R
D
)

m
ul
tip

ly

p 1
:=

f 1
·(

f 1
+

1)
1.
56
1

0.
06
3

0.
03
0

0.
04
1

0.
01
2

0.
33

1.
09

0.
57

0.
56

0.
31

5.
92

0.
12
0

0.
01
1

0.
00
8

p 2
:=

f 2
·(

f 2
+

1)
1.
54
4

0.
06
3

0.
03
2

0.
04
1

0.
01
2

0.
33

1.
08

0.
58

0.
56

0.
31

5.
86

0.
11
5

0.
03
1

0.
01
5

p 3
:=

f 3
·(

f 3
+

1)
26
.5
01

0.
52
1

0.
17
1

0.
40
3

0.
10
2

3.
99

10
.8
6

6.
77

6.
60

3.
95

59
.3
2

0.
85
5

0.
09
4

0.
08
0

p 4
:=

f 4
·(

f 4
+

1)
98
.3
51

2.
18
0

0.
64
9

1.
81
4

0.
41
6

13
.7
0

61
.7
7

30
.9
9

30
.7
7

13
.8
5

30
6.
10

5.
73
2

0.
48
8

0.
38
8

p 5
:=

f 5
·g

5
13
.6
66

1.
58
8

0.
38
4

0.
15
3

0.
15
4

13
.2
4

32
.7
3

18
.2
2

17
.4
1

10
.0
0

19
6.
28

1.
52
6

0.
17
7

0.
14
5

p 6
:=

f 6
·g

6
11
.4
86

0.
77
2

0.
62
8

0.
20
4

0.
08
2

0.
89

3.
04

2.
75

1.
75

1.
44

22
.4
5

1.
33
8

0.
06
4

0.
04
7

di
vi
de

q 1
:=

p 1
/

f 1
1.
45
1

0.
06
5

0.
03
3

0.
04
2

0.
01
5

0.
36

1.
30

0.
40

0.
18

0.
31

5.
00

0.
19
7

0.
23
8

0.
19
1

q 2
:=

p 2
/

f 2
1.
43
5

0.
06
5

0.
03
3

0.
04
2

0.
01
5

0.
36

1.
30

0.
39

0.
18

0.
31

5.
04

0.
19
4

0.
22
5

0.
20
8

q 3
:=

p 3
/

f 3
25
.0
54

0.
52
4

0.
18
4

0.
41
1

0.
11
7

4.
14

17
.8
1

3.
64

4.
65

4.
07

47
.0
1

1.
51
0

2.
34
0

1.
77
6

q 4
:=

p 4
/

f 4
92
.8
67

2.
25
3

0.
73
6

1.
84
2

0.
48
3

18
.5
4

80
.3
9

14
.9
6

11
.2
1

14
.2
9

22
8.
83

5.
66
2

9.
54
0

7.
37
4

q 5
:=

p 5
/

f 5
5.
57
0

1.
63
6

0.
41
7

1.
44
5

0.
33
3

12
.4
8

50
.1
6

10
.8
0

10
.2
7

10
.5
8

35
.9
4

2.
78
9

8.
82
7

5.
67
0

q 6
:=

p 6
/

f 6
10
.4
21

0.
76
9

0.
62
7

0.
21
5

0.
09
5

7.
90

4.
87

1.
84

1.
45

1.
56

30
.2
8

6.
80
0

1.
18
1

1.
01
6

(c
on
tin

ue
d)



POLY: A New Polynomial Data Structure for Maple 17 341

Ta
bl

e
8

(c
on
tin

ue
d)

M
ap
le
13

M
ap
le
16

M
ap
le
17

M
ag
m
a

Sa
ge

Si
ng

ul
ar

M
ax
im

a
M
at
he
m
at
ic
a

T
ri
p
1.
2.
26

1
co
re

4
co
re
s

1
co
re

4
co
re
s

2.
19
-1

5.
8

3-
1-
4

3-
1-
6

5.
25
.0

8.
0

9.
0

(R
S)

(R
D
)

fa
ct
or

p 1
:1

23
41

te
rm

s
31
.3
30

2.
79
2

2.
65
8

0.
79
0

0.
65
0

6.
51

1.
51

2.
01

0.
84

3.
18

11
.7
0

18
.4
78

N
A

N
A

p 2
:1

23
41

te
rm

s
27
5.
50
8

3.
24
0

3.
07
1

0.
99
1

0.
85
0

7.
09

1.
58

2.
10

0.
91

3.
52

67
.8
3

11
2.
24
3

N
A

N
A

p 3
:3

87
11

te
rm

s
36
0.
86
2

16
.7
14

14
.1
10

6.
92
7

4.
39
9

11
9.
32

18
.1
4

12
.4
8

9.
81

34
.0
2

16
6.
10

27
6.
16
1

N
A

N
A

p 4
:1

35
75
1
te
rm

s
28
56
.3
88

59
.0
09

46
.1
51

24
.3
45

12
.7
33

32
0.
04

68
.3
2

61
.8
5

38
.7
0

11
0.
97

60
4.
74

95
1.
72
5

N
A

N
A

p 5
:1

25
52

te
rm

s
30
2.
45
3

26
.4
35

16
.1
52

12
.1
31

6.
80
0

10
5.
55

14
.6
3

13
.8
3

9.
45

79
2.
60

56
3.
54

93
5.
14
9

N
A

N
A

p 6
:4

17
31
1
te
rm

s
13
59
.4
73

51
.7
02

48
.8
08

8.
29
5

6.
33
0

36
9.
12

37
.5
6

42
.0
8

20
.2
8

95
.7
0

29
0.
07

42
3.
03
2

N
A

N
A

f 1
=

(1
+

x
+

y
+

z)
20

+
1

17
71

te
rm

s
f 2

=
(1

+
x2

+
y2

+
z2

)2
0
+

1
17
71

te
rm

s
f 3

=
(1

+
x

+
y

+
z)

30
+

1
54
56

te
rm

s
f 4

=
(1

+
x

+
y

+
z
+

t)
20

+
1

10
62
6
te
rm

s
f 5

=
(1

+
x)

20
(1

+
y)

20
(1

+
z)

20
+

1
g 5

=
(1

−
x)

20
(1

−
y)

20
(1

−
z)

20
+

1
92
61

te
rm

s
f 6

=
(1

+
u
2
+

v
+

w
2
+

x
−

y)
10

+
1

g 6
=

(1
+

u
+

v
2
+

w
+

x2
−

y)
10

+
1

30
03

te
rm

s



342 M. Monagan and R. Pearce

routine is sequential Maple code, which gains parallelism from our multiplication
and division routines.

For Mathematica 9 we timed the internal functions Algebra‘IPExpand and
Algebra‘IPExactQuotient for multiplication and division. The additional
time for the top levelExpandwas small, andwe foundno suitable command for exact
division at the top level. The Factor command did not make use of parallelism.

We report two timings for Trip: the (RS) time is for the optimized recursive sparse
polynomial data structure POLYV, while the (RD) time is the optimized recursive
dense data structure POLPV. Both use Trip’s parallel routines (see [20]) with 8 threads
and rational arithmetic, including a fast representation for small machine integers
similar to Maple’s.

There are some anomalies in Table8. Maple’s times for division are close to
those for multiplication, except on Problem 5 where Maple 17 uses a sequential
dense method to multiply. Singular’s timings for division are often twice as fast as
multiplication. This is because Singular multiplies in the distributed representation
and divides in a recursive representation. Trip’s times for division are much slower
than those formultiplication. This is partly because division inTrip is not parallelized.

In comparing the timings for factoring p1 and p2 we see that factoring p2 is much
slower inMaple 13 andMathematica, but not inMaple 16 or 17,Magma, or Singular.
The fast systems apply the substitution p2(x2 = u, y2 = v, z2 = w) to reduce the
degree of the input polynomial before factoring it. This halves the number of Hensel
lifting steps in each variable.

We note that Singular’s timings for factorization have improved enormously since
version 3-1-0. Times for version 3-1-0 on the first four factorizations were 12.28,
23.67, 97.10, 404.86 s. The factorization code in 3-1-4 was changed by Michael Lee
to use a recursive representation for polynomials instead of the default distributed
representation shown in Fig. 2.

Our first improvement from Maple 13 to Maple 16 was due to our C library for
polynomial multiplication and division described in [1, 2, 13, 21]. The speedup in
multiplication and division produces a speedup in multivariate factorization, because
most of the time is spent in “Hensel lifting” which consists of many multiplications
and some exact divisions.

Our second improvement was to parallelize the algorithms for multiplication and
division. In many cases we obtain superlinear speedup in our C library but the top
level expand and divide have lower speedup, because of the extra time to import
and export Maple data structures. For higher level algorithms such as factor,
parallel speedup is further reduced by the need to perform many small operations
in sequence. The cost of degree, indets, and type(f,polynom) also reduce
parallelism in higher level code.

With the introduction of the POLYdag inMaple 17, we have substantially reduced
data structure overhead and the cost of almost all supporting routines. Table9 shows
the improvements to parallel speedup which come on top of the large gains achieved
for sequential time. The speedup for expand and divide is now much closer
to our C library, and the speedup for factor, while modest, is respectable for a
sequential algorithm.
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Table 9 Parallel speedup (1 core)/(4 cores) in Maple 17 versus Maple 16

Maple 17 Maple 16

expand 3.41 3.41 3.95 4.36 1.00 2.49 2.10 1.97 3.04 3.36 4.13 1.23

divide 2.80 2.80 3.51 3.81 4.34 2.26 1.97 1.97 2.85 3.06 3.92 1.23

factor 1.21 1.16 1.57 1.91 1.78 1.31 1.05 1.05 1.18 1.28 1.63 1.06

Table 10 Observed speedup (Maple 17)/(Maple 16) on 4 cores versus 1 core

4 cores 1 core

expand 2.50 2.66 1.67 1.56 2.49 7.65 1.53 1.53 1.29 1.20 10.38 3.78

divide 2.20 2.20 1.57 1.52 1.25 6.60 1.54 1.54 1.27 1.22 1.13 3.57

factor 4.09 3.61 3.20 3.62 2.37 7.71 3.53 3.27 2.41 2.42 2.18 6.32

Table10 shows the speedup ofMaple 17 overMaple 16, on 4 cores versus 1.Notice
how the gain is larger in parallel. This is just a pleasant consequence of Amdahl’s
Law when you reduce sequential overhead in parallel algorithms. The sole exception
(Problem 5 expand) uses a sequential dense method in Maple 17.

With the POLY dag in Maple 17, the time for factorization on one core has been
reduced by more than 50%, but the parallel speedups are even greater:

The savings are entirely sequential time, as can be seen by subtracting the parallel
times from the sequential times. The reduction in overhead improves parallel speedup
significantly, from 1.28x to 1.91x in the case of factoring p4.

To see where the improvements in the factorization have come from we have
profiled the main parts of the factorization code. The profile (see Table11) shows the
%age of the time in the main parts of the factorization algorithm for Maple 16 and
Maple 17. The data under improved coeftayl includes a further algorithmic improve-
ment. The data shows we have eliminated 0.599−0.377 = 0.222 s of overhead from
the polynomial multiplications (see row expand) or 37%. The biggest speedup is
division (see row divide). This is because the divisions are mostly trial divisions
which fail quickly. In such cases almost all the time is in conversion which is wasted.

The biggest absolute gain is for the routine coeftayl(f,x-a,k)which com-
putes the coefficient of f in (x − a)k . This computation is not done by expanding f
as a Taylor series about x = a, but instead, by using the formula g(x = a)/k! where
g = d f

dk x
, the kth derivative of f . Referring back toTable2,we can see that the speedup

is due to the improvement of differentiation and polynomial evaluation.We also tried

the following formula to compute the coefficient:
∑degx f

i=k coeff( f, xi )ai
(i

k

)
. We

can see that this is 3x faster again (see improved coeftayl). The total real time is
reduced from 2.59 s to 1.07 s to 0.790s.
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Table 11 Profile for factor(p1); (1 core)

function Maple 16 Maple 17 Improved coeftayl

Time (s) Time (%) Time (s) Time (%) Time (s) Time (%)

coeftayl 1.086 41.06 0.310 28.21 0.095 12.03

expand 0.506 19.13 0.263 23.93 0.255 32.28

diophant 0.424 16.03 0.403 34.94 0.299 37.85

divide 0.256 9.68 0.034 3.09 0.035 4.43

factor 0.201 7.60 0.011 1.00 0.010 1.27

factor/hensel 0.127 4.80 0.064 5.82 0.063 7.97

factor/unifactor 0.045 1.70 0.033 3.00 0.033 4.18

Total: 2.645 100.00 1.099 100.00 0.790 100.00

5 Conclusion

Maple, Mathematica, Magma and Singular all use a distributed representation for
multivariate polynomials. Maple’s sum-of-products data structure and Singular’s
linked list data structure are illustrated in Figs. 1 and 2 in the introduction.We ask the
the reader take another good look at them. Mathematica’s data structure is similar to
Maple’s and Magma’s data structure is similar to Singular’s. These data structures,
which were designed in the 1980s when memory access was constant time, will
not yield high-performance on todays computers because memory access is not
sequential.

One way to speed up polynomial multiplication, division, or factorization would
be to convert the input to a more suitable data structure, compute the result, then
convert back. This is what we did in [1] for Maple 14 for polynomial multiplication
and division. Singular 3-1-4 does this for polynomial division and factorization. It
switches to using a recursive representation for division and factorization. However,
conversion overhead will limit parallel speedup. Amdahl’s law states that if the
sequential proportion of a task is S then parallel speedup on N cores is limited to

speedup ≤ 1

S + (1 − S)/N
.

When S is large (50% or more say), then we cannot get good parallel speedup.
What we have done in this work for Maple is to make our POLY data struc-

ture the default data structure in Maple. The POLY data structure is used when all
monomials in a polynomial can be packed into a single word. This enabled us to
eliminate conversion overhead in multiplication and division. The data in Table6
shows improved parallel speedup for polynomial multiplication and division. We
also implemented highly efficient algorithms for many Maple kernel operations for
POLY. The data in Table7 shows a speedup of a factor of 50 over Maple 16 for a
routine polynomial determinant computation. The data in Table8 shows speedups of
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factors of between 2 and 3 for large multivariate polynomial factorizations which is
a huge gain. Although not reported here, we also find speedups of a factor of 2 for
large multivariate polynomial gcd computations.

The cost incurred is mainly in code complexity. We must manage two data struc-
tures for polynomials, one where the coefficients are integers and the monomials
can be packed into a single machine word, and one, Maple’s sum-of-products data
structure, which does not have these restrictions. A substantial programming effort
was required to support the new data structure in theMaple kernel. The gains suggest
this is worthwhile.

In closing, the reader may have wondered why we only use one word of memory
to encode monomials, and not two, or more? For if we use two words, we could
encode polynomials in twice as many variables or of much higher degree. With 128
bits, one will cover almost all applications. We would like to see how far 64-bits
takes us before considering such an extension. For supporting two word exponents
potentially doubles the amount of code. Another desirable extension is to allow the
coefficients in the POLY dag to be fractions or floating point numbers as well as
integers.

Appendix A

Maple code (no pivoting) for the Bareiss algorithm.

ffge := proc(A,n) local d,i,j,k,t;

d := 1;

for k to n-1 do

for i from k+1 to n do

for j from k+1 to n do

t := expand(A[k,k]*A[i,j]-A[i,k]*A[k,j]);

divide(t, d, evaln(A[i,j]));

od;

A[i,k] := 0;

od;

d := A[k,k];

od:

A[n,n];

end;

n := 8;

T := linalg[toeplitz]([seq(x[i],i=1..n)]);

A := array(1..n,1..n):

for i to n do for j to n do A[i,j] := T[i,j] od od:

det := CodeTools[Usage]( ffge(A,n) ):
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Magma code for the Bareiss algorithm.

Z := IntegerRing();

P<x,y,z,u,v,w,p,q,r,s,t,a> := PolynomialRing(Z,12);

X := [x,y,z,u,v,w,p,q,r,s,t,a];

n := 8;

A := Matrix(P,n,n,[0 : i in [1..nˆ2]]);

for i in [1..n] do

for j in [1..n] do

A[i,j] := X[AbsoluteValue(j-i)+1];

end for;

end for;

d := 1;

time for k in [1..n-1] do

for i in [k+1..n] do

for j in [k+1..n] do

t := A[k,k]*A[i,j]-A[i,k]*A[k,j];

A[i,j] := ExactQuotient(t,d);

end for;

end for;

d := A[k,k];

end for;

det := A[n,n];

Appendix B

Maple code for timing benchmarks.

f := expand( (1+x+y+z)ˆ20 )+1:

p := CodeTools[Usage]( expand( f*(f+1) ) ):

CodeTools[Usage]( divide(p,f,’q’) );

CodeTools[Usage]( factor(p) ):

Magma code for timing benchmarks.

Z := IntegerRing();

P<x,y,z> := PolynomialRing(Z,3);

f := (1+x+y+z)ˆ20+1;

g := f+1;

time h := f*g;

time q := ExactQuotient(h,f);

time ff := Factorization(h);
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Mathematica code for timing benchmarks. Note, for the fifth benchmark, we used
Cancel[p/f] which was much faster than PolynomialQuotient.

f = Expand[(1+x+y+z)ˆ20]+1;

AbsoluteTiming[p = Expand[f*(f+1)];]

AbsoluteTiming[q = PolynomialQuotient[p,f,x];]

AbsoluteTiming[h = Factor[p];]

Maxima code for timing benchmarks.

showtime : true;

f : rat( (1+x+y+z)ˆ20 ) +1 $

h : f*(f+1)$

qr : divide( h, f )$

f : factor( h )$

Sage code for timing benchmarks

Q = RationalField()

P.<x,y,z> = PolynomialRing(Q,3,order=’deglex’)

f = (1+x+y+z)ˆ20+1

%time p = f*(f+1)

%time q,r = p.quo_rem(f)

%time h = factor(p)

Singular code for timing benchmarks.

ring R=0,(x,y,z),lp;

poly f = (1+x+y+z)ˆ20+1;

poly g = f+1;

int TIMER;

TIMER = timer; poly p = f*g; timer-TIMER;

TIMER = timer; poly q = p/f; timer-TIMER;

TIMER = timer; list L = factorize(p); timer-TIMER;

Trip code for timing benchmarks. POLYV means recursive sparse, POLPV means
recursive dense.

reset; _cpu=8$ _mode=POLYV$ _modenum=NUMDBL$

f=(1+x+y+z)ˆ20+1$ g=f+1$ p = 0$

time_s; p = f*g$ time_t(usertime, realtime); realtime;

time_s$ div(p,f,q,r)$ time_t(ctime,rtime)$ rtime;
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Degree and Dimension Estimates for Invariant
Ideals of P-Solvable Recurrences

Marc Moreno Maza and Rong Xiao

Abstract Motivated by the generation of polynomial loop invariants of computer
programs, we study P-solvable recurrences. While these recurrences may contain
non-linear terms, we show that the solutions of any such relation can be obtained by
solving a system of linear recurrences. We also study invariant ideals of P-solvable
recurrences (or equivalently of while loops with no branches). We establish sharp
degree and dimension estimates of those invariant ideals.

1 Introduction

In many applications, such as program verification, non-linear recurrence relations,
like the following one, may arise:

{
x(n + 1) = x(n) + 1
y(n + 1) = y(n) + x(n)2 + 1

, with
x(0) = 1
y(0) = 1.

In these recurrences, some variables may appear non-linearly, but not in a com-
pletely arbitrary way. A fundamental case is that of the so-called P-solvable recur-
rences. This paper focuses on P-solvable recurrences with rational coefficients, that
we define formally below.

Definition 1 (P-solvable recurrence) Let n1, . . . , nk be positive integers and define
s := n1 + · · · + nk . Let M be a square matrix over Q and with order s. We assume
that M is block-diagonal with the following shape:
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M :=

⎛
⎜⎜⎜⎝

Mn1×n1
Mn2×n2

. . .

Mnk×nk

⎞
⎟⎟⎟⎠ .

Consider an s-variable recurrence relation R in the variables x1, x2, . . . , xs and with
the following form:

⎛
⎜⎜⎜⎝

x1(n + 1)
x2(n + 1)

...

xs(n + 1)

⎞
⎟⎟⎟⎠ = M ×

⎛
⎜⎜⎜⎝

x1(n)

x2(n)
...

xs(n)

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

f1
f2
...

fk

⎞
⎟⎟⎟⎠ ,

where f1 is a vector of length n1 with coordinates inQ andwhere fi is a tuple of length
ni with coordinates in the polynomial ringQ[x1, . . . , xn1+···+ni−1], for i = 2, . . . , k.
Then, the recurrence relation R is called P-solvable over Q and the matrix M is
called the coefficient matrix of R.

Example 6 in Sect. 4 illustrates the above definition with a 2-block matrix and
non-linear terms, while Example 1 below is a simpler case with a 1-block matrix.
Our study of P-solvable recurrences originates in a previous work [7] dedicated to
the computation of loop invariants of while-loops of the following shape:

while cond do
X := A(X);

end do

where the recurrence X (n + 1) = A (X (n)) induced by the assignments in the loop
body is a P-solvable recurrence. We call P -solvable such while-loops.

Example 1 Consider the following code segment:

a, b := 0, 1 ;
while true do

a, b := b, a + b;
end do

At each iteration, the variables a, b hold two consecutive elements in the Fibonacci
sequence. To be more precise, let us associate a counter variable n to the variables
a, b. Let us initialize n to 0 before entering the loop and let us increase n by 1 after
each loop iteration. Then we have
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{
a(n + 1) := b(n)

b(n + 1) := a(n) + b(n)
, with

a(0) := 0
b(0) := 1

.

which is clearly a P-solvable recurrence.

There are several variants of the notion of a P-solvable recurrence, see the concept
of solvable mapping in [12] or that of solvable loop in [6].

For a recurrence X (n + 1) = A (X (n)), or equivalently for a P-solvable while
loop, an invariant is a condition on the recurrence variables which holds for all values
of n. In this paper, we are mainly interested by invariants which are polynomial
equations, as defined formally below.

Definition 2 Given an s-variable P-solvable recurrence R with recurrence variables
x1, x2, . . . , xs , a polynomial p in Q[x1, x2, . . . , xs] is called a polynomial invariant
of R if for all n, we have p(x1(n), x2(n), . . . , xs(n)) = 0. All polynomial invariants
of R form an ideal of the polynomial ring Q[x1, x2, . . . , xs]; this ideal is called the
(polynomial) invariant ideal of R.

It is known that, for instance in [12], that P-solvable recurrences have poly-
geometrical expressions (which are defined formally in Definition 3) as closed form
solutions. However, solving P-solvable recurrences, even linear ones, is a computa-
tionally hard problem, since many algebraic numbers could be involved.

Returning to the question of computing polynomial invariants of P-solvable recur-
rences, there are approaches based on solving those recurrences explicitly. See the
work ofKauers andZimmermann in [5] and that ofKovács in [6]. In contrast, our goal
in [7] as that of Kapur and Rodriguez–Carbonell in [4], is to compute polynomial
invariants of P-solvable recurrences without explicitly solving those recurrences.
In [7], we proposed a method, based on interpolating polynomials at finitely many
points on the trajectory (i.e. point sequence) of the recurrence under study. This inter-
polation process yields “candidate invariants” which are then checked by a criterion
performing a polynomial ideal membership test.

The objective of the present paper is to provide degree and dimension estimates
for invariant ideals. These results are clearly needed by the interpolation method
of [7] and can benefit any methods for computing polynomial invariants that require
a degree bound as input, such as themethod byKapur andRodriguez–Carbonell [11].

Our paper proposes the following original results.We show that P-solvable recur-
rences and linear recurrences are equivalent in the sense that every P-solvable recur-
rence can be obtained by solving a system of linear recurrences (Theorem 1). We
also supply a sharp degree bound (Theorems 2 and 3) for invariant ideals as well as
a dimension analysis (Theorem 4) of those ideals. In addition, Corollary 2 states a
sufficient condition for a given invariant ideal to be trivial.

The paper is organized as follows. In Sect. 2, we review some results on symbolic
summation; those results are related to the properties of closed form solutions of
P-solvable recurrences. We also include a brief review on the notion of a degree of
a polynomial ideal. In Sect. 3, we show how solving P-solvable recurrence reduces
to solving linear recurrences; thus we refer to that process as “linearizing” a P-
solvable recurrence. Finally, in Sect. 4, we exhibit degree and dimension estimates



352 M. Moreno Maza and R. Xiao

for invariant ideals of P-solvable recurrences. We conclude this introduction with
an example illustrating the notion of an invariant ideal together with our results on
dimension and degree of invariant ideals.

Example 2 Consider the following P-solvable recurrence relationwith x, y as recur-
rence variables:

x(n + 1) = y(n), y(n + 1) = x(n) + y(n), with x(0) = 0, y(0) = 1.

Closed form formulas for x(n) and y(n) are easily obtained:

x(n) = (
√
5+1
2 )n
√
5

− ( −√
5+1
2 )n
√
5

,

y(n) =
√
5+1
2

(
√
5+1
2 )n
√
5

− −√
5+1
2

( −√
5+1
2 )n
√
5

.

Let a, u, v be 3 variables. Replace (
√
5+1
2 )n (resp. (−√

5+1
2 )n) by u (resp. by v) and

replace
√
5 by a. Taking into account the dependencies u2 v2 = 1, a2 = 5, one can

check that the invariant ideal is given by:

〈x − au

5
+ av

5
, y − a

a + 1

2

u

5
+ a

−a + 1

2

v

5
, a2 − 5, u2v2 − 1〉 ∩ Q[x, y],

which turns out to be 〈1− y4 + 2xy3 + x2y2 − 2x3y − x4〉. Observe that this ideal
has dimension 1 and degree 4.

Now, we use Theorem 3 to estimate the degree of this invariant ideal. Denote by

A := −√
5+1
2 ,

√
5+1
2 , the eigenvalues of the coefficient matrix of the input P-solvable

recurrence. One can easily check that the set A is weakly multiplicatively indepen-
dent, see Definition 6 for this notion. Note that the multiplicative relation ideal, See
Definition 5, of A associated with the variables u, v is generated by u2v2 − 1 and
thus has degree 4 and dimension 1 in Q[u, v]. Therefore, by Theorem 3, the degree
of the invariant ideal is bounded by 4. This implies that the degree bound given by
Theorem 3 is sharp. Meanwhile, Theorem 4 estimates the dimension as 1, which is
also sharp.

2 Preliminaries

LetQ be the algebraic closure ofQ. LetQ∗ (resp.Q∗
) denote the non zero elements

in Q (resp. Q) .
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2.1 Poly-Geometric Summation

In this subsection, we recall several well-known notions together with related results
around the topic of P-solvable recurrences. Those notions and results are adapted to
our needs and could be stated in a more general context. For instance, the notion of
multiplicative relation can be defined among elements of an arbitrary Abelian group,
whereas we define it for a multiplicative group of algebraic numbers.

Definition 3 Let α1, . . . ,αk be k pairwise distinct elements of Q
∗ \ {1}. Let n

be a variable taking non-negative integer values. We regard n,αn
1, . . . ,α

n
k as inde-

pendent variables and we call αn
1, . . . ,α

n
k n-exponential variables. Any polyno-

mial of Q[n,αn
1, . . . ,α

n
k ] is called a poly-geometrical expression in n over Q w.r.t.

α1, . . . ,αk .
Let f, g be two poly-geometrical expressions n overQ w.r.t. α1, . . . ,αk . Given a

non-negative integer number i , we denote by f |n=i the evaluation of f at i , which
is obtained by substituting all occurrences of n by i in f . We say that f and g are
equal whenever f |n=i = g|n=i holds for all non-negative integer i .

We say that f (n) is in canonical form if there exist

(i) finitely many numbers c1, . . . , cm ∈ Q
∗
, and

(ii) finitelymany pairwise different couples (β1, e1), . . . , (βm, em) all in (Q
∗\{1})×

Z≥0, and
(iii) a polynomial c0(n) ∈ Q[n],
such that each β1, . . . ,βm is a product of some of the α1, . . . ,αk and such that the
poly-geometrical expressions f (n) and

∑m
i=1 ci βn

i nei + c0(n) are equal. When
this holds, the polynomial c0(n) is called the exponential-free part of f (n).

Remark 1 Note that sometime when referring to poly-geometrical expressions, for
simplicity, we allow n-exponential terms with base 0 or 1, that is, terms with 0n or
1n as factors. Such terms will always be evaluated to 0 or 1 respectively.

Proving the following result is routine.

Lemma 1 With the notations of Definition 3, let f a poly-geometrical expression in
n over Q w.r.t. α1, . . . ,αk . There exists a unique poly-geometrical expression c in n
over Q w.r.t. α1, . . . ,αk such that c is in canonical form and such that f and c are
equal. We call c the canonical form of f .

Example 3 The closed form f := (n+1)2 n2

4 of
∑n

i=0 i3 is a poly-geometrical
expression in n over Q without n-exponential variables. The expression g :=
n2 2(n+1) − n 2n 3

n
2 is a poly-geometrical in n over Q w.r.t. 2, 3. Some evaluations

are: f |(n=0) = 0, f |n=1 = 1, g|n=0 = 0, g|n=2 = 8.

Notation 1 Let x be an arithmetic expression and let k ∈ N. Following [13], we call
k -th falling factorial of x and denote by xk the product
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x (x − 1) · · · (x − k + 1).

For i = 1, . . . , k, we denote by
{k

i

}
the number of ways to partition k into i non-zero

summands, that is, the Stirling number of the second kind also denoted by S(n, k).
We define

{k
0

} := 0.

Example 4 Consider a fixed non-negative integer k. The sum
∑n−1

i=1 i k has n − 1
terms while its closed form [13] below

k∑
i=1

{
k

i

}
ni+1

i + 1

has a fixed number of terms and thus is poly-geometrical in n over Q.

The following result is well-known and one can find a proof in [13].

Lemma 2 Let x be an arithmetic expression and let k ∈ N. Then we have

xk =
k∑

i=1

{
k

i

}
xi .

Notation 2 Let r ∈ Q and let k ∈ N.We denote by H(r, k, n) the following symbolic
summation

H(r, k, n) :=
n−1∑
i=0

r i i k .

Let’s denote by H(r, 0, n) the symbolic summation
∑n−1

i=0 r i . One can easily
check that H(r, 0, n) = rn−1

r−1 holds for r 	= 1. Moreover, we have the following
result.

Lemma 3 Assume r 	= 0. Then, we have

(r − 1) H(r, k, n) = (n − 1)k rn − r k H(r, k − 1, n − 1). (1)

In addition, we have

(i) if r = 1, then H(r, k, n) equals to nk+1

k+1 , which is a polynomial in n over Q of
degree k + 1.

(ii) if r 	= 1, then H(r, k, n) has a closed form like rn f (n) + c, where f (n) is a
polynomial in n over Q of degree k and c is a constant in Q.

Proof We can verify Relation (1) by expanding H(r, k, n) and H(r, k − 1, n − 1).
Now let us show the rest of the conclusion. First, assume r = 1. With Relation (1),
we have
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k H(r, k − 1, n − 1) = (n − 1)k .

Therefore, we deduce

H(r, k, n) = nk+1

k + 1
.

One can easily check that nk+1

k+1 is a polynomial in n over Q and the degree of n is
k + 1.

From now on assume r 	= 1. We proceed by induction on k. When k = 0, we
have H(r, 0, n) = rn−1

r−1 . We rewrite rn−1
r−1 as

rn 1

r − 1
− 1

r − 1
,

which is such a closed form. Assume there exists a closed form rn−1 fk−1(n − 1) +
ck−1 for H(r, k − 1, n − 1), where fk−1(n − 1) is a polynomial in n − 1 over Q of
degree k −1. Substitute H(r, k −1, n−1) by rn−1 fk−1(n−1)+ck−1 in Relation (1)
and solve H(r, k, n), we have

H(r, k, n) = (n − 1)k rn − r k (rn−1 fk−1(n − 1) + ck−1)

r − 1
.

We rewrite the right hand side of the above equation as

rn (n − 1)k − k fk−1(n − 1)

r − 1
− r k ck−1

r − 1
,

fromwhich one can easily check it satisfies the requirements of (i i) in the conclusion.
This completes the proof. 
�
Lemma 4 Let k ∈ N and let λ be a non zero algebraic number over Q. Consider
the symbolic summation

S :=
n∑

i=1

i k λi .

1. if λ = 1, then there exists a closed form s(n) for S, where s is a polynomial in
n over Q of degree k + 1.

2. if λ 	= 1, then there exists a closed form λn s(n) + c for S, where s is a polynomial
in n over Q of degree k and c ∈ Q is a constant.

Proof By Lemma 2, we deduce
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n∑
i=1

i k λi =
n∑

i=1

(
k∑

j=1

{k
j

}
i j

)
λi

=
k∑

j=1

({k
j

} n∑
i=1

i j λi
)

=
k∑

j=1

({k
j

}
H(λ, j, n)

)

Then, the conclusions on each case follow from the corresponding results inLemma3.

�

The following definition is a specialization of the general definition of multiplica-
tive relation to the case of non-zero algebraic numbers.

Definition 4 (Multiplicative relation) Let k be a positive integer. Let
A := (α1, . . . ,αk) be a sequence of k non-zero algebraic numbers over Q and
e := (e1, . . . , ek) be a sequence of k integers. We say that e is a multiplicative rela-
tion on A if

∏k
i=1 αei

i = 1 holds. Such a multiplicative relation is said non-trivial if
there exists i ∈ {1, . . . , n} such that ei 	= 0 holds. If there exists a non-trivial multi-
plicative relation on A, then we say that A is multiplicatively dependent; otherwise,
we say that A is multiplicatively independent.

All multiplicative relations of A form a lattice, called the multiplicative relation
lattice on A, which can effectively be computed, for instance with the algorithm
proposed by Ge in his Ph.D. thesis [2].

For simplicity, we need the following generalized notion of multiplicative relation
ideal, which is defined for a sequence of algebraic numbers that may contain 0 and
repeated elements.

Definition 5 Let A := (α1, . . . ,αk) be a sequence of k algebraic numbers over Q.
Assume w.l.o.g. that there exists an index �, with 1 ≤ � ≤ k, such that α1, . . . ,α�

are non-zero and α�+1, . . . ,αk are all zero. We associate each αi with a variable
yi , where y1, . . . , yk are pairwise distinct. We call the multiplicative relation ideal
of A associated with variables y1, . . . , yk , the binomial ideal of Q[y1, y2, . . . , yk]
generated by

⎧⎨
⎩

∏
j∈{1,...,�}, v j >0

y
v j
j −

∏
i∈{1,...,�}, vi <0

y−vi
i | (v1, . . . , v�) ∈ Z

⎫⎬
⎭

and {y�+1, . . . , yk}, denoted by MRI(A; y1, . . . , yk), where Z is the multiplicative
relation lattice on (α1, . . . ,α�). When no confusion is possible, we shall not specify
the associated variables y1, . . . , yk .

Lemma 5 Let α1, . . . ,αk be k multiplicatively independent elements of Q and let
n be a non-negative integer variable. Let f (n) be a poly-geometrical expression in
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n w.r.t. α1, . . . ,αk . Assume that f |(n=i) = 0 holds for all i ∈ N. Then, f is the zero
polynomial of Q[n,αn

1, . . . ,α
n
k ].

The following definition will be convenient in later statements.

Definition 6 (Weak multiplicative independence) Let A := (α1, . . . ,αk) be a
sequence of k non-zero algebraic numbers over Q and let β ∈ Q. We say that β
is weakly multiplicatively independent w.r.t. A, if there exist no non-negative inte-
gers e1, e2, . . . , ek such that β = ∏k

i=1 αei
1 holds. Furthermore, we say that A is

weakly multiplicatively independent if

(i) α1 	= 1 holds, and
(ii) αi is weakly multiplicatively independent w.r.t.

{α1, . . . ,αi−1, 1}, for all i = 2, . . . , s.

Lemma 7 is a structural result for the closed form solutions of single-variable
linear recurrences involving poly-geometrical expressions. For the proof, we need
Lemma 6, which is easy to check, see for instance [10].

Lemma 6 Let n a variable holding non-negative integer values. Let a and b be
two sequences in Q indexed by n. Consider the following recurrence equation of
variable x:

x(n) = a(n − 1) x(n − 1) + b(n − 1).

Then we have

x(n) =
n−1∏
i=0

a(i)

⎛
⎝x(0) +

n−1∑
j=0

b( j)∏ j
s=0 a(s)

⎞
⎠ .

Lemma 7 Let α1, . . . ,αk be k elements in Q
∗ \ {1}. Let λ ∈ Q

∗
. Let h(n) be a

poly-geometrical expression in n over Q w.r.t. α1, . . . ,αk . Consider the following
single-variable recurrence relation R:

x(n + 1) = λx(n) + h(n).

Then, there exists a poly-geometrical expression s(n) in n over Q w.r.t. α1, . . . ,αk

such that we have

deg(s(n),αn
i ) ≤ deg(h(n),αn

i ) and deg(s(n), n) ≤ deg(h(n), n) + 1,

and such that

• if λ = 1 holds, then s(n) solves R,
• if λ 	= 1 holds, then there exists a constant c depending on x(0) (that is, the initial

value of x) such that c λn + s(n) solves R.

Moreover, in both cases, if the exponential-free part of the canonical form of ( 1λ )n h(n)

is 0, then we can further require that deg(s(n), n) ≤ deg(h(n), n) holds.
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Proof By Lemma 6, we have

x(n) = λn

⎛
⎝x(0) +

n−1∑
j=0

h( j)

λ j+1

⎞
⎠ . (2)

Denote by terms(h) all the terms of the canonical form of h(n). Assume each
t ∈ terms(h) is of form

ct nqt βn
t ,

where ct is a constant inQ, qt is a non-negative integer and βt is a product of finitely
many elements (with possible repetitions) from {α1, . . . ,αk}. Define g(n) := h(n)

λn+1 .

Then g(n) is a poly-geometrical expression in n w.r.t. {βt }t∈terms(h),
1
λ . Clearly we

have

g(n) =
∑

t∈terms(h(n))

ct

λ
nqt

(
βt

λ

)n

.

Therefore, we have

n−1∑
j=0

h( j)

λ j+1 =
∑

t∈terms(h)

n−1∑
j=0

ct

λ
jqt

(
βt

λ

) j

. (3)

According to Lemma 4, for each t ∈ terms(h), we can find a poly-geometrical
expression

st :=
(

βt

λ

)n

ft (n) + at

in n over Q w.r.t. βt
λ satisfying

1. st = ∑n−1
j=0

ct
λ jqt (

βt
λ ) j ;

2. ft is a polynomial in n overQ of degree qt ( if βt 	= λ) or qt +1 (if βt = λ), and at

is a constant inQ; note in the later case, ct nqt (
βt
λ )n is a summand of the constant

term of the canonical form of ( 1λ )n h(n) is 0 when viewed as a polynomial of the
n-exponential variables.

Therefore, using st , for t ∈ terms(h), we can simplify the right hand side of Eq. (2)
to ⎛

⎝x(0) +
∑

t∈terms(h)

at

⎞
⎠ λn +

∑
t∈terms(h)

ft (n)βn
t . (4)

Assume that, for each t ∈ terms(h), we have βt = α
et,1
1 α

et,2
1 · · · α

et,k
1 . Define

βt (n) := (αn
1)

et,1 (αn
1)

et,2 · · · (αn
1)

et,k ,
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c := x(0) +
∑

t∈terms(h)

at and s(n) :=
∑

t∈terms(h)

ft (n)βt (n).

We easily deduce deg(s(n),αn
i ) = maxt∈terms(h)(deg(βt (n),αn

i ) ≤ deg(h(n),αn
i ).

Finally, one can easily verify that c and s(n) satisfy the requirements of the conclu-
sion. 
�
Remark 2 In Lemma7, ifλ is weaklymultiplicatively independentw.r.t.α1, . . . ,αk ,
then we know that the exponential-free part of the canonical form of ( 1λ )n h(n) is 0,
without computing the canonical form explicitly.

2.2 Degree of a Polynomial Ideal

In this subsection, we review some notions and results on the degree of a polynomial
ideal. Up to our knowledge, Proposition 1 is a new result which provides a degree
estimate for an ideal of a special shape and which can be applied to estimate the
degree of invariant ideals of P-solvable recurrences. Throughout this section, K is
an algebraically closed field. Let F be a set of polynomials ofK[x1, x2, . . . , xs]. We
denote by VKs (F) (or simply by V (F) when no confusion is possible) the zero set
of the ideal generated by F ⊂ K[x1, x2, . . . , xs] in Ks .

Definition 7 Let V ⊂ K
s be an r -dimensional equidimensional algebraic variety.

The number of points of intersection of V with an (s − r)-dimensional generic
linear subspace L ⊂ K

s is called the degree of V [1], denoted by deg(V ). The
degree of a non-equidimensional variety is defined to be the sum of the degrees of
its equidimensional components. The degree of an ideal I ⊆ K[x1, x2, . . . , xs] is
defined to be the degree of the variety of I in Ks .

We first recall a few well-known results. Note that, for a zero-dimensional alge-
braic variety, the degree is just the number of points in that variety.

Lemma 8 Let V ⊂ K
s be an r-dimensional equidimensional algebraic variety of

degree δ. Let L be an (s − r)-dimensional linear subspace. Then, the intersection of
L and V is either of positive dimension or consists of no more than δ points.

Lemma 9 Let V ⊂ K
s be an algebraic variety. Let L be a linear map from K

s to
K

k , for some integer k > 0. Then, we have deg(L(V )) ≤ deg(V ).

Lemma 10 ([3]) Let I ⊂ Q[x1, x2, . . . , xs] be a radical ideal of degree δ. Then
there exist finitely many polynomials in Q[x1, x2, . . . , xs] generating I and such that
each of these polynomials has total degree less than or equal to δ.

The following Lemma is a generalized form of Bézout’s Theorem.
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Lemma 11 Let V, W, V1, V2, . . . , Ve be algebraic varieties inKs such that we have
V = W ∩ ∩e

i=1 Vi Define r := dim(W ). Then, we have

deg(V ) ≤ deg(W ) max({deg(Vi ) | i = 1 · · · e})r .

Proposition 1 Let X = x1, x2, . . . , xs and Y = y1, y2, . . . , yt be pairwise different
s + t variables. Let M be an ideal in Q[Y ] of degree dM and dimension r . Let
f1, f2, . . . , fs be s polynomials inQ[Y ], each with maximum total degree d f . Denote
by I the ideal 〈x1− f1, x2 − f2, . . . , xs − fs〉. Then the ideal J := I + M has degree
upper bounded by dM d f

r .

Proof We assume first that M is equidimensional. Let L := l1, l2, . . . , lr be r linear
forms in X, Y such that the intersection of the corresponding r hyperplanes and V (J )

consists of finitely many points, i.e. HL := J + 〈L〉 is zero-dimensional. By virtue
of Lemma 8, the degree of J equals the maximum degree of HL among all possible
choices of linear forms l1, l2, . . . , lr satisfying the above conditions.

Let L∗ := l∗1 , l∗2 , . . . , l∗r , where each l∗j ( j = 1 · · · r ) is the polynomial obtained
by substituting xi with fi , for i = 1 · · · s, in the polynomial l j . Consider the ideal
L∗ + M in Q[Y ]. It is easy to show that the canonical projection map ΠY onto the
space of Y coordinates is a one-one-map between VCt (M +L∗) andΠY (VCt+s (HL)).
Therefore, VCt (M + L∗) is zero-dimensional and deg(M + L∗) = deg(HL). Hence,
viewing VCt (M + L∗) as

VCt (M)

r⋂
j=1

VCt (l∗j )

and thanks to Lemma 11, we have deg(VCt (M + L∗)) ≤ dM dr
f . Therefore, we

deduce that deg(J ) = maxL deg(M + L∗) ≤ dM dr
f holds, by Lemma 8.

Assume now that VCt (M) is not necessarily equidimensional. Let V1, V2, . . . , Vk

be an irredundant equidimensional decomposition of VCt (M), with corresponding
radical ideals P1, P2, . . . , Pk . Then, applying the result proved in the first part of the
proof to each I + Pi (i = 1, . . . , k), we deduce

deg(J ) =
k∑

i=1
deg(I + Pi )

≤
k∑

i=1
deg(Pi ) dri

f

≤
k∑

i=1
deg(Pi ) dr

f

= dM dr
f ,

where ri is the dimension of Pi in Q[Y ]. This completes the proof. 
�
Remark 3 For J in Proposition 1, a less tight degree bound, namely

dM dr+s
f ,
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can easily be deduced from a generalized form of Bezout’s bound, since VCt+s (M)

has degree dM and is of dimension r + s in Ct+s .

Example 5 Consider M := 〈n2−m3〉, g1 := x −n2−n −m, g2 := y −n3−3n +1,
and the ideal J := M + 〈g1, g2〉. The ideal M has degree 3, and is of dimension 1 in
Q[n, m]. The degree of J is 9, which can be obtained by computing the dimension
of

Q(a, b, c, d, e)[x, y, m, n]/(J + 〈a x + b y + c n + d m + e〉),

where a, b, c, d, e are indeterminates. The degree bound estimated by Proposition 1
is 3 × 3, which agrees with the actual degree.

3 Linearization of P-Solvable Recurrences

In this section, we show that every P-solvable recurrence can be “linearized”, that
is, given an s-variable P-solvable recurrence R, there exists an affine recurrence
L , such that the first s components of the solution to L solves R. In other words,
although non-linear terms are allowed in P-solvable recurrences, these recurrences
are essentially linear ones.

We will first show that, every poly-geometrical expression is a component of the
solution of some affine recurrence.

Lemma 12 Given a positive integer k, there exists a k-variable affine recurrence A
with rational coefficients such that (n, n2, . . . , nk−1, nk) is the solution to A.

Proof We proceed by induction on k. The case k = 1 is easy: n solves the recur-
rence x(n) = x(n − 1) + 1. Now assume that there exists a (k − 1)-variable affine
recurrence B of variables x1, x2, . . . , xk−1 with rational coefficients, whose solution
is (n, n2, . . . , nk−1). Let xk(n) = nk and consider xk(n) − xk(n − 1), which is a
polynomial in n of degree k − 1. Therefore, xk(n) − xk(n − 1) can be written as a
linear form with basis 1, n − 1, (n − 1)2, . . . , (n − 1)k−1 (say by Taylor expansion)
with coefficients c0, c1, . . . , ck−1. We deduce that:

xk(n) = c0 + xk(n − 1) +
k−1∑
i=1

ci xi (n − 1) (5)

Let A be the affine recurrence of recurrence variables x1, x2, . . . , xk defined by the
recurrence equations from B and Eq. (5). Clearly (n, n2, . . . , nk) is the solution to
the k-variable affine recurrence A, which coefficients are all rational. 
�

Similarly, for hyper-geometrical terms in n, we have the following result.

Lemma 13 Given a non-negative integer k and an algebraic number λ (λ 	= 1),
there exists an (k + 1)-variable affine recurrence A such that (λn, n λn, . . . , nk λn)

is the solution of A.
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Proof We proceed by induction on k as well. The case of k = 0 is trivial:
the recurrence x(n) = λ x(n − 1) has the properties specified in the conclu-
sion. Now assume there exists a k-variable affine recurrence B with recurrence
variables x0, x1, . . . , xk−1, whose solution is (λn, n λn, n2, . . . , nk−1 λn). Consider
xk(n) = nkλn , which can be rewritten as (nkλ)λn−1. Now consider nk λ, which
can be rewritten as a linear combination c0 + c1 (n − 1) + · · · + ck(n − 1)k where
c0, c1, . . . , ck are constants. Therefore, we have:

xk(n) =
k∑

i=0

ci xi (n − 1) (6)

Let A be the affine recurrence with recurrence variables x0, x1, . . . , xk defined by
the recurrence equations from B and Eq. (6). Clearly (λn, n λn, . . . , nk λn) is the
solution to the (k + 1)-variable affine recurrence A. 
�

Next, as a consequence, we shall show that every poly-geometrical expression is
a component of the solution of some affine recurrence.

Proposition 2 Given a poly-geometrical expression h in n, there exists an affine
recurrence A such that h equals the first component of the solution to A.

Proof Assume w.l.o.g. that h is in canonical form and has m terms, say h =∑m
i=1 ci ti (n). We know that each term ti (n) of h is either of the form nk or the

form nk λn . According to Lemmas 12 and 13, we can substitute each term ti (n) by a
recurrence variable xi from some affine recurrence, say Ai . We can assume w.l.o.g
the variables in those recurrences are all pairwise different.

Then, we can form a new affine recurrence A by putting together x0(n) =∑m
t=0 ci xi (n) and the equations in A j , for j = 1, . . . , m, yielding a system where

h will be the first component of the solution to A. 
�
Since the solutions to P-solvable recurrences consist of poly-geometrical expres-

sions, Proposition 2 implies that there exists a “linearization” procedure for
P-solvable recurrences. Next, we show that we can “linearize” P-solvable recur-
rences without knowing their solutions. More precisely, Theorem 1 states that if one
has a P-solvable recurrence R with rational coefficients, we can always find an affine
recurrence A with rational coefficients such that each component of a solution of R
is a component of a solution of A. One of the key point is the construction made in
Lemma 14.

Lemma 14 Given any two recurrence variables x1 and x2 from an affine recur-
rence A with rational coefficients, there exists an affine recurrence A∗ with rational
coefficients such that x1(n) x2(n) is a component of the solution to A∗.

Proof Let x1, x2, . . . , xs be all the recurrence variables in A. For each pair (i, j),
with 1 ≤ i ≤ j ≤ s, we define a new recurrence variable yi, j = xi x j . It is easy
to check that yi, j (n) can be represented as a linear combination of yk,�(n − 1) with
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rational coefficients, for 1 ≤ k, � ≤ s. Indeed, each xi (n), i = 1, . . . , s, is a linear
combination of x j (n − 1), for j = 1, . . . , s. 
�
Theorem 1 Given a P-solvable recurrence R with rational coefficients, we can find
an affine recurrence A∗ with rational coefficients, without solving the recurrence R,
such that each component of the solution of R is a component of the solution of A∗.

Proof Assume R has k blocks. If k = 1, then R is an affine recurrence and nothing
needs to be done for this case.

From now on, we assume k > 1. Aswe shall see, however, treating the case of two
blocks is sufficient to raise the key argument in the construction. Thus, for clarity,
we assume that the coefficient matrix M of R is 2-block diagonal.

Let xi1(n − 1)xi2(n − 1), . . . , xi j (n − 1) be a non-linear term occuring in the
second block. Note that xi1 , xi2 , . . . , xi j are actually variables of the affine recurrence
induced by the first block. According in Lemma 14, there exists an affine recurrence
A with rational coefficients, such that xi1 xi2 is solution to some variable y of A.
Substitute in R each occurrence of xi1(n − 1)xi2(n − 1) by y(n − 1) we obtain
recurrence equations Ay . Let A1 be the recurrence defined by the equations in Ay

and R. Note that

(1) A1 is a P-solvable recurrence with rational coefficients and allows a 2 block
coefficient matrix;

(2) each component of the solution of R is a component of the solution of A1.

If A1 still has non-linear terms, we apply again the above trick to A1, yielding a
recurrence A2. It is easy to check, that this “linearization” process will be completed
in a finite number of steps. Finally, we obtain an affine recurrence A∗ with rational
coefficients, such that each component of the solution of R is a component of the
solution of A∗. 
�

Actually, the proof of Theorem 1 implies an algorithm for “linearizing” any
P-solvable recurrence. However, the resulting affine recurrence by this an algo-
rithm will have exponentially many (roughly

(n+d+1
d

)
variables, which is hardly of

practical use). An interesting problem would be to find an “optimal linearization”,
with a minimum number of recurrence variables.

4 Invariant Ideal of P-Solvable Recurrences

We will first formalize the notion of a P-solvable recurrence. Then in the rest of this
section, we will investigate the shape of the closed form solutions of a P-solvable
recurrence equation, for studying the degree and the dimension of invariant ideal.We
will provide degree estimates for the invariant ideal, which is useful for all invariant
generation methods which need a degree bound, like the proposed polynomial inter-
polation based method and those in [4, 8, 9]. Last but not least, we will investigate
the dimension of the invariant ideal. So that we can get a sufficient for non-trivial
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polynomial invariants of a given P-solvable recurrence to exist. Note that in our
invariant generation method, we do not need (thus never compute) the closed form
solutions explicitly.

It is known that the solutions to P-solvable recurrences are poly-geometrical
expressions in n w.r.t. the eigenvalues of the matrix M , see for example [12]. How-
ever, we need to estimate the “shape”, e.g. the degree of those poly-geometrical
expression solutions,with the final goal of estimating the “shape” (e.g. degree, height,
dimension) of the invariant ideal. In this paper, we focus on degree and dimension
estimates.

We first generalize the result of Lemma 7 to the multi-variable case.

Proposition 3 Let α1, . . . ,αm ∈ Q
∗ \ {1}. Let λ ∈ Q and M ∈ Q

s×s
be a matrix

in the following Jordan form

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ 0 0 · · · 0 0
1 λ 0 · · · 0 0
0 1 λ 0 0 0

0
. . .

. . .
. . .

. . . 0
0 0 0 · · · λ 0
0 0 0 · · · 1 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Consider an s-variable recurrence R defined as follows:

X (n + 1)s×1 = Ms×s X (n)s×1 + F(n)s×1, where

(a) X := x1, x2, . . . , xs are the recurrence variables;
(b) F := ( f1, f2, . . . , fs) is a list of poly-geometrical expression in n w.r.t. α1, . . . ,

αm, with maximal total degree d.

Then we have:

1. if λ = 0, then ( f1, f1 + f2, . . . , f1 + f2 + · · · + fs) solves R.
2. if λ = 1, then there exist s poly-geometric expressions (g1, g2, . . . , gs) in

α1, . . . ,αm such that for each i ∈ 1, . . . , s, gi is a poly-geometrical expression
in n w.r.t. α1, . . . ,αm with total degree less or equal than d + i .

3. if λ 	∈ {0, 1}, then there exists a solution of R, say (y1, y2, . . . , ys), such that for
each i = 1, . . . , s we have

yi := ciλ
n
i + gi , where (7)

for each i ∈ 1, . . . , s: (a) ci is a constant depending only on the initial value
of the recurrence; and (b) gi is like in the case of λ = 1. Moreover, assume
furthermore that the following conditions hold:

(i) λ is weakly multiplicatively independent w.r.t. α1, . . . ,αm;
(ii) deg( f j , n) = 0 holds for all j ∈ {1, 2, . . . , s}.
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Then, for all i = 1, . . . , s, we can further choose gi such that deg(gi , n) = 0
holds and the total degree of gi is less or equal than max(d, 1).

Proof We observe that the recurrence variables of R can be solved one after the
other, from x1 to xs . When λ = 0, the conclusion is easy to verify. The case λ 	= 0
is easy to prove by induction on s with Lemma 7. 
�
Proposition 4 Let λ1, . . . ,λs,α1, . . . ,αm ∈ Q

∗ \ {1}. Let M ∈ Q
s×s

be a matrix
in the following Jordan form

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 0 · · · 0 0
ε2,1 λ2 0 · · · 0 0
0 ε3,2 λ3 0 0 0

0
. . .

. . .
. . .

. . . 0
0 0 0 · · · λs−1 0
0 0 0 · · · εs,s−1 λs

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where for i = 2, . . . , s, εi,i−1 is either 0 or 1. Consider an s-variable recurrence R
defined as follows:

X (n + 1)s×1 = Ms×s X (n)s×1 + F(n)s×1,

where

1. X := x1, x2, . . . , xs are the recurrence variables;
2. F := ( f1, f2, . . . , fs) is a list of poly-geometrical expression in n w.r.t. α1, . . . ,

αm, with maximal total degree d.

Then there exists a solution of R, say (y1, y2, . . . , ys), such that for each i = 1, . . . , s
we have

yi := ciλ
n
i + gi , (8)

where

(a) ci is a constant depending only on the initial value of the recurrence and
(b) gi is a poly-geometrical expression in n w.r.t. λ1, . . . ,λi−1, α1, . . . ,αm, with

total degree less or equal than d + i .

Assume furthermore that the following conditions hold:

(i) the sequence consisting ofλ1,λ2, . . . ,λs is weakly multiplicatively independent;
(ii) deg( f j , n) = 0 holds for all j ∈ {1, 2, . . . , s}.
Then, for all i = 1, . . . , s, we can further choose yi such that deg(gi , n) = 0 holds
and the total degree of gi is less or equal than max(d, 1).

Proof Weobserve that the recurrence variables of R can be solved one after the other,
from x1 to xs . We proceed by induction on s. The case s = 1 follows directly from
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Lemma 7. Assume from now on that s > 1 holds and that we have found solutions
(y1, y2, . . . , ys−1) for the first s − 1 variables satisfying the requirements, that is,
Relation (8) with (a) and (b). We define

f̃ (n) = fs(n) − εs,s−1 ys−1(n + 1). (9)

Note that f̃ (n) is a poly-geometrical expression in n w.r.t. λ1, . . . ,λs−1,α1, . . . ,αm

with total degree less than or equal to d + s −1. Moreover, for v ∈ {n,λn
1, . . . ,λ

n
s−1,

αn
1, . . . ,α

n
m} we have

deg( f̃ (n), v) ≤ max (deg( fs(n), v), deg(ys−1(n), v)) . (10)

It remains to solve xs from

xs(n + 1) = λs xs(n) + f̃ (n) (11)

in order to solve all the variables x1, . . . , xs . Again, by Lemma 7, there exists a
poly-geometrical expression

ys := cs λn
s + gs(n),

where gs(n) is poly-geometrical expression in n w.r.t. λ1, . . . ,λs−1,α1, . . . ,αm , of
total degree upper bounded by d + s. This completes the proof of the properties (a)

and (b) for ys .
Now we assume that (i), (i i) hold and we prove the second half of the conclu-

sion. Observe that we have deg(gs(n), n) = deg( f̃ (n), n), which is 0, according to
Relation (10) and the fact that we can choose ys−1 such that deg(ys−1(n), n) = 0
holds. Next, we observe that for each

v ∈ {n,λn
1, . . . ,λ

n
s−1,α

n
1, . . . ,α

n
m},

we have deg(gs(n), v) = deg( f̃ (n), v), which is less or equal to deg(ys−1(n), v) by
Relation (10). Therefore, the total degree of gs is less or equal than the total degree
of ys−1, which is less or equal than max(d, 1) by our induction hypothesis. This
completes the proof. 
�
Theorem 2 Let R be a P-solvable recurrence relation. Using the same notations
M, k, s, F, n1, n2, . . . , nk as in Definition 1. Assume M is in a Jordan form. Assume
the eigenvalues λ1, . . . ,λs of M (counted with multiplicities) are different from 0, 1,
with λi being the i-th diagonal element of M. Assume for each block j the total
degree of any polynomial in f j (for i = 2, . . . , k) is upper bounded by d j . For each
i , we denote by b(i) the block number of the index i , that is,
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b(i)−1∑
j=1

n j < i ≤
b(i)∑
j=1

n j . (12)

Let D1 := n1 and for all j ∈ {2, . . . , k} let D j := d j D j−1 + n j . Then, there exists
a solution (y1, y2, . . . , ys) for R of the following form:

yi := ciλ
n
i + gi , (13)

for all i ∈ 1, . . . , s, where

(a) ci is a constant depending only on the initial value of the recurrence;
(b) gi is a poly-geometrical expression in n w.r.t. λ1, . . . ,λi−1, and with total degree

less or equal than Db(i).

Moreover, if the sequence consisting {λ1, . . . ,λs} is weakly multiplicatively indepen-
dent, then, for all i = 1, . . . , k, we can further choose yi such that deg(gi , n) = 0
holds and the total degree of gi is less or equal than

∏
2≤t≤b(i) max(dt , 1).

Proof We proceed by induction on the number of blocks, that is, k. The case k = 1
follows immediately from Proposition 4. Assume from now on that the conclusion
holds for a value k = �, with � ≥ 1 and let us prove that it also holds for k = �+1.We
apply the induction hypothesis to solve the first � blocks of variables, and suppose that
y� is a solution satisfying the properties in the conclusion. For solving the variables in
the (� + 1)th block, we substitute y� to f�+1 and obtain a tuple of poly-geometrical
expressions in n w.r.t the eigenvalues of the first � blocks and with total degree
bounded by d� D�. Therefore, applying again Proposition 4, we can find solutions
for the variables in the (� + 1)th block satisfying the properties required in the
conclusion. This completes the proof. 
�

Note that the degree estimate in Theorem 2 depends on how the block structure
of the recurrence is exploited, for example, a 2 × 2 diagonal matrix can be viewed
as a matrix with a single block or a matrix with two 1 × 1 diagonal blocks.

In practice, one might want to decouple the recurrence first, and then study the
recurrence variable one by one (after a linear coordinate change) to get better degree
estimates for the poly-geometrical expression solutions, regarded as polynomials of
n-exponential terms as the eigenvalues of the coefficient matrix. We will just use a
simple example to illustrate this idea.

Example 6 Consider the recurrence:

⎛
⎝ x(n + 1)

y(n + 1)
z(n + 1)

⎞
⎠ :=

⎛
⎝ 2 0 0
0 3 0
0 0 3

⎞
⎠ ×

⎛
⎝ x(n)

y(n)

z(n)

⎞
⎠ +

⎛
⎝ 0

x(n)2

x(n)3

⎞
⎠

Viewing the recurrence as two blocks corresponding to variables (x) and (y, z)
respectively, the degree estimate according to Theorem 2 would be bounded by
5 = 3 × 1 + 2.
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If we decouple the (y, z) block to the following two recurrences

y(n + 1) = 3 y(n) + x(n)2 and z(n + 1) = 3 z(n) + x(n)3,

then we can easily deduce that the degree of the poly-geometrical expression for y
and z are upper bounded by 2 and 3 respectively, again according to Theorem 2.

It is easy to generalize the previous results to the case of a matrix M which is not
in Jordan form. Let Q be a non-singular matrix such that J := Q M Q−1 is a Jordan
form of M . Let the original recurrence R be

X (n + 1) = M X (n) + F.

Consider the following recurrence RQ

Y (n + 1) = J Y (n) + QF.

It is easy to check that if
(y1(n), y2(n), . . . , ys(n))

solves RQ , then
Q−1 (y1(n), y2(n), . . . , ys(n))

solves R. Note that an invertible matrix over Q maps a tuple of poly-geometrical
expressions to another tuple of poly-geometrical expressions; moreover it preserves
the highest degree among the expressions in the tuple.

We turn now our attention to the question of estimating the degree of the invariant
ideal of a P-solvable recurrence relation.

Proposition 5 Let R be an s-variable P-solvable recurrence relation, with recur-
rence variables (x1, x2, . . . , xs). Let I ⊂ Q[x1, x2, . . . , xs] be the invariant ideal of
R. Denote by Ie the extension of I in Q[x1, x2, . . . , xs]. Let A = α1,α2, . . . , αs be
the eigenvalues (counted with multiplicities) of the coefficient matrix of R. Let M
be the multiplicative relation ideal of A associated with variables y1, . . . , ys . Then,
there exists a sequence of s poly-geometrical expressions in n w.r.t. α1,α2, . . . ,αs ,
say

f1(n,αn
1, . . . ,α

n
k ), . . . , fs(n,αn

1, . . . ,α
n
k ),

which solves R. Moreover, we have

Ie = (S + M) ∩ Q[x1, x2, . . . , xs],

whereS is the ideal generated by 〈x1− f1(n, y1, . . . , ys), . . . , xs − fs(n, y1, . . . , ys)

in Q[x1, x2, . . . , xs, n, y1, . . . , ys].
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Proof The existence of f1, f2, . . . , fs follows by Theorem 2 and the fact that lin-
ear combination of poly-geometrical expressions w.r.t. n are still poly-geometrical
expressions. The conclusion follows from Lemma 5. 
�

The following lemma is not hard to prove and one can find a proof in [5].

Lemma 15 Let R be a P-solvable recurrence relation defining s sequences in Q
s ,

with recurrence variables (x1, x2, . . . , xs). Let I be the invariant ideal of R in
Q[x1, x2, . . . , xs]; let I be the invariant ideal of R in Q[x1, x2, . . . , xs]. Then I
equals to Ie, the extension of I in Q[x1, x2, . . . , xs].

With Propositions 5 and 1, we are able to estimate the degree of polynomials in a
generating system of the invariant ideals. Nowwe are able to estimate the total degree
of closed form solutions of a P-solvable recurrence without solving the recurrence
explicitly.

Theorem 3 Let R be a P-solvable recurrence relation defining s sequences in
Q

s , with recurrence variables (x1, x2, . . . , xs). Let I ⊂ Q[x1, x2, . . . , xs] be the
invariant ideal of R. Let A = α1,α2, . . . ,αs be the eigenvalues (counted with
multiplicities) of the coefficient matrix of R. Let M be the multiplicative relation
ideal of A associated with variables y1, . . . , yk . Let r be the dimension of M.
Let f1(n,αn

1, . . . ,α
n
k ), . . . , fs(n,αn

1, . . . ,α
n
k ) be a sequence of s poly-geometrical

expressions in n w.r.t. α1,α2, . . . ,αs that solves R. Suppose R has a k block config-
uration as (n1, 1), (n2, d2), . . . , (nk, dk). Let D1 := n1; and for all j ∈ {2, . . . , k},
let D j := d j D j−1 + n j . Then we have

deg(I) ≤ deg(M) Dr+1
k .

Moreover, if the degrees of n in fi (i = 1 · · · s) are 0, then we have

deg(I) ≤ deg(M) Dr
k .

Proof Denoting by Π the standard projection from Q
s+1+s

to Q
s
:

(x1, x2, . . . , xs, n, y1, . . . , ys) �→ (x1, x2, . . . , xs),

we deduce by Proposition 5 that

V (I) = Π(V (S + M)), (14)

where S is the ideal generated by 〈x1− f1(n, y1, . . . , ys), . . . , xs − fs(n, y1, . . . , ys)

in Q[x1, x2, . . . , xs, n, y1, . . . , ys]. Thus, by Lemma 9, we have

deg(I) ≤ deg(S + M).
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It follows from Proposition 1 that

deg(S + M) ≤ deg(M) Dr+1
k ,

since the total degree of fi of R is bounded by Dk according to Theorem 2 and the
dimension of M is r + 1 is in Q[n, y1, . . . , ys].

With similar arguments, the second part of the conclusion follows from the fact
that S + M can be viewed as an ideal in in Q[x1, x2, . . . , xs, n, y1, . . . , ys], where
M has dimension r . 
�

Indeed, the degree bound in Theorem 3 is “sharp” in the sense that it is reached
by many of the examples (Example 2) we have considered.

In the rest of this section, we are going to investigate the dimension of the invariant
ideal of a P-solvable recurrence. This can help checking whether or not the invariant
ideal of a P-solvable recurrence over Q is the trivial ideal of Q[x1, . . . , xs]. Note
that it is obvious that the invariant ideal is not the whole polynomial ring.

Theorem 4 Using the same notations as in Definition 1. Let λ1,λ2, . . . ,λs be the
eigenvalues of M counted with multiplicities. Let M be the multiplicative relation
ideal of λ1,λ2, . . . ,λs . Let r be the dimension of M. Let I be the invariant ideal of
R. Then I is of dimension at most r + 1. Moreover, for generic initial values,

1. the dimension of I is at least r;
2. if 0 is not an eigenvalue of M and the sequence consisting of λ1,λ2, . . . ,λs is

weakly multiplicatively independent, then I has dimension r .

Proof Assume without loss of genericity that M is in Jordan form. By Theorem 2,
we deduce that R has a solution ( f1, f2, . . . , fs) as follows

(
c1 λn

1 + h1(n), c2 λn
2 + h2(n), . . . , cs λn

s + hs(n)
)
,

where for each i ∈ 1, . . . , s, ci is a constant inQ depending only on the initial value
of R, and hi is a poly-geometrical expression in n w.r.t. λ1, . . . ,λi−1. Moreover, we
have

1. for generic initial values, none of c1, c2, . . . , cs is 0;
2. if the eigenvalues of M can be ordered in λ1,λ2, . . . ,λs s.t. λ1 	= 1 and for each

i ∈ 2, . . . , s, λi is weakly multiplicatively independent w.r.t. λ1,λ2, . . . ,λi−1,
then we can require that, for all i ∈ 1, . . . , s, we have deg( fi , n) = 0.

Viewing n, λn
i (for i = 1, . . . , s) as indeterminates, let us associate coordinate

variable u0 to n, ui to λn
i (for i = 1, . . . , s). Denote by V the variety of I inQ

s
(with

coordinates x1, x2, . . . , xs). Note that we have

dim(V ) = dim(I).

Denote by W1, W2 respectively the variety of M in Q
s
(with coordinates

u1, u2, . . . , us) and inQ
s+1

(with coordinates u0, u1, u2, . . . , us). Note that we have
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dim(W1) = r and dim(W2) = r + 1.

Consider first the map F0 defined below:

F0 : Qs+1 �→ Q
s+1

(u0, u1, . . . , us) → (c1 u1 + f1, . . . , cs us + fs).

By Theorem 3, we have V = F0(W2). Therefore, we have we have dim(I) =
dim(V ) ≤ dim(W2) = r + 1.

Now assume the initial value of R is generic, thus we have ci 	= 0, for all i ∈
1, . . . , s. Let us consider the map F1 defined below:

F1 : Qs+1 �→ Q
s+1

(u0, u1, . . . , us) → (u0, c1 u1 + f1, . . . , cs us + fs).

Let us denote by V2 the variety F1(W2). By virtue of Theorem 3, we have dim(V2) =
dim(W2) = r + 1. Denote by Π the standard projection map that forgets the first
coordinate, that is, u0. We observe that V = Π(V2). Therefore, we have dim(V ) ≥
dim(Π(V2)) − 1 = r .

Now we further assume λ1 	= 1 and for each i ∈ 2, . . . , s, λi is weakly multi-
plicatively independent w.r.t. λ1,λ2, . . . ,λi−1 the invariant ideal of R. In this case,
we have that for all i ∈ 1, . . . , s, deg( fi , n) = 0. Let us consider the map F2 defined
below:

F2 : Qs �→ Q
s

(u1, . . . , us) → (c1 u1 + f1, c2 u2 + f2, . . . , cs us + fs).

By Theorem 3, we have V = F2(W1). Therefore, we have dim(I) = dim(V ) =
dim(W1) = r . This completes the proof. 
�

The following result, which is a direct consequence of Theorem 4, can serve as
a sufficient condition for the invariant ideal to be non-trivial. This condition is often
satisfied when there are eigenvalues with multiplicities or when 0 and 1 are among
the eigenvalues.

Corollary 1 Using the same notations as in Theorem 4. If r + 1 < s holds, then I
is not the zero ideal in Q[x1, x2, . . . , xs].

The following corollary indicates that, the fact that the invariant ideal of a given
P-solvable recurrence is trivial could be determined by just investigating the multi-
plicative relation among the eigenvalues of the underlying recurrence.

Corollary 2 Using the same notations as in Theorem 4, consider an s variable
P-solvable recurrence R with initial value x1(0) := a1, . . . , xs(0) := as, where
a1, . . . , as are indeterminates. If the eigenvalues of R are multiplicatively indepen-
dent, then the invariant ideal of R is 〈0〉 in Q(a1, . . . , as)[x1, x2, . . . , xs].
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Proof The assumption implies that the multiplicative relation ideal of the eigen-
values is of dimension s. By Theorem 4, the dimension of the invariant ideal of R
must be at least s, thus the invariant ideal of R must be zero ideal in Q(a1, . . . , as)

[x1, . . . , xs]. 
�
Example 7 Consider the recurrence:

(x(n + 1), y(n + 1)) := (3 x(n) + y(n), 2 y(n)) with x(0) = a, y(0) = b.

The two eigenvalues f the coefficient matrix are 2 and 3 which are multiplicatively
independent. Therefore, by Corollary 2, the invariant ideal of the recurrence is trivial.

Note in Theorem 4, if we drop the “generic” assumption on the initial values,
then the conclusion might not hold. The following example illustrate this for the
case when all the eigenvalues are different and multiplicatively independent, but the
invariant ideal is not trivial.

Example 8 Consider the linear recurrence x(n + 1) = 3 x(n) − y(n), y(n + 1) =
2 y(n) with (x(0), y(0)) = (a, b). The eigenvalues of the coefficient matrix are
2, 3, which are multiplicatively independent. One can check that, when a = b, the
invariant ideal is generated by x − y. However, generically, that is when a 	= b holds,
the invariant ideal is the zero ideal.

5 Concluding Remarks

In this article, we study the equivalence between P-solvable recurrences and linear
recurrences, and supply sharp estimate on the degree and dimension of invariant
ideals of P-solvable recurrences. As future work, we would be interested on finding
simple linearizations of P-solvable recurrences, which could help obtaining more
precise estimates on the degree of the invariant ideal.
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Real Root Isolation of Polynomial Equations
Based on Hybrid Computation

Fei Shen, Wenyuan Wu and Bican Xia

Abstract A new algorithm for real root isolation of zero-dimensional nonsingular
square polynomial systems based on hybrid computation is presented in this paper.
First, approximate the (complex) roots of the given polynomial equations via homo-
topy continuation method. Then, for each approximate root, an initial box relying on
the Kantorovich theorem is constructed, which contains the corresponding accurate
root. Finally, the Krawczyk interval iteration with interval arithmetic is applied to the
initial boxes so as to check whether or not the corresponding approximate roots are
real and to obtain the real root isolation boxes.Moreover, an empirical construction of
initial box is provided for speeding-up the computation in practice. Our experiments
on many benchmarks show that the new hybrid method is very efficient. The method
can find all real roots of any given zero-dimensional nonsingular square polynomial
systems provided that the homotopy continuation method can find all complex roots
of the equations.

1 Introduction

TheReal Root Isolation of polynomial equations is a procedure that produces disjoint
regions to isolate all the distinct real roots of polynomial equations, with only one
root in each region. Formally speaking, let F = ( f1, f2, . . . , fn)T be polynomial
equations defined on Rn , i.e. fi ∈ R[x1, x2, . . . , xn]. Suppose F(x) = 0 has only
finite many real roots, say ξ (1), ξ (2), . . . , ξ (m). The target of real root isolation is
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to compute a family of regions S1, S2, . . . , Sm, S j ⊂ Rn(1 ≤ j ≤ m), such that
ξ ( j) ∈ S j and Si ∩ S j = ∅ (1 ≤ i, j ≤ m). Usually, we use rectangular boxes
to denote the regions above. So we often call these isolated boxes intervals in this
paper. Theoretically, the width of intervals for some special problems can be very
small. Hence, we assume that the accuracy of numerical computation in this paper
can be arbitrarily high. However, it is also important to point out that such case rarely
happens in nearly 50 examples we computed and double-precision is usually enough
to obtain very small intervals.

Real root isolation is an important problem in symbolic computation. It is an
algorithm for solving equations accurately since no root formula is available in
general situation. It is also a critical part of some other important algorithms, such
as CAD and real root classification for semi-algebraic systems, etc. Improvement on
real root isolation will benefit all of these algorithms.

We impose some hypothesis on the problem discussed here. The first is that the
system is square, i.e., the number of equations is the same as that of variables. Then
we only handle the systems with finitely many complex roots. Positive dimensional
complex solution is beyond the scope of this paper. Moreover, we suppose that the
Jacobian matrix of F is nonsingular at each root of F(x) = 0. So we only deal with
the simple root cases. For the singular situation, the deflation method [12, 16, 17,
32] can be applied, which is one of our ongoing work.

Most of the previous real root isolation algorithms are based on symbolic com-
putations. For instance, the Collins–Akritas algorithm [10, 11] based on Descartes’
rule of signs is for polynomials in one variable. In multi-variable scenario, there
are many work using different theories and techniques with focuses on complexity
and/or solving benchmarks, see for example [6–9, 13, 15, 21, 24, 29, 34, 35].

An advantage of those symbolicmethods is that exact results can be obtained since
they use symbolic computation and some of them can be extended to semi-algebraic
systems. However, there are also some disadvantages. Some of these methods could
only handle the isolation of complex roots. And some of them need to triangularize
the system first, which is very time-consuming in computation when the scale (such
as the number of variables or the degrees of polynomials) of the system is big. While
some methods that do not use triangularization have to give a huge initial interval to
include all the real roots [37, 38], which is extremely inefficient.

In order to avoid these problems and design a new algorithm that could efficiently
solve more complicated systems and provide accurate interval results, we employ
hybrid computation to take the advantages of both symbolic and numerical methods.

The basic idea of this paper is to use a numerical method to obtain all the approx-
imate roots of polynomial systems, including possible nonreal ones. With these
approximations, small initial intervals which contains the corresponding real roots
are constructed. Then, we apply a symbolic method to these initial intervals to verify
whether there is a real root in it or not. The main method we use during numer-
ical computation is homotopy continuation, and for symbolic process we use the
Krawczyk iteration.

Most of the work in this paper comes from [27]. In Sect. 2, we will introduce
some preliminaries, including homotopy continuation and interval arithmetic. A new
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real root isolation algorithm is discussed in Sect. 3. To test our new method, our
experimental results on benchmarks together with comparison and analysis will be
presented in Sect. 4. Finally, there is a summary in Sect. 5 and some future work will
also be discussed.

2 Preliminary

We introduce in this section the basic theory and tools that would be used in our
algorithm.

2.1 Homotopy Continuation Method

Homotopy continuation method is an important numerical computation method,
which is used in various fields. We only treat it as an “algorithm black box” here,
where the input is a polynomial system, and the output is its approximate roots.
Please find the details about the theory in [18, 28].

Ourmethod to find all real roots of any given zero-dimensional nonsingular square
polynomial equations relies on the homotopy continuation methods which theoreti-
cally obtain all complex roots of the equations. For the real homotopies, we refer to
the work by Li and Wang [20]. For the certified numerical homotopy tracking and
its complexity, we first refer to the work by M. Shub and S. Smale on complexity of
Bezout’s theorem [5] and the readers can also find the recent results on this topic by
Beltran and Leykin in [1–3].

For our purpose, it is convenient to utilize some existing software, such as
Hom4ps-2.0 [19], PHCpack [30] and HomLab [31].

In our implementation, we use Hom4ps-2.0, which could return all the approx-
imate complex roots of a given polynomial system efficiently, along with residues
and condition numbers.

2.2 Interval Arithmetic

Interval arithmetic plays an important role in real root isolation algorithms [34, 37,
38]. The two main differences between our new algorithm and the traditional ones
in [37, 38] are: (1) Verification only carry out on the localized “small” intervals; (2)
symbolic computation is replaced with floating point numerical computation.

Most of the interval operations in this paper’s algorithms are based on Rump’s
floating point verification work [26] and accomplished by using the Matlab package
Intlab [25], including interval arithmetic operations and Jacobian matrix, Hessian
matrix calculations.1

1 See reference [26], Sect. 11, Automatic differentiation.
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2.2.1 Basic Concepts

We introduce some basic interval arithmetic theory in this section. See reference [22]
for more details.

For given numbers x, x ∈ R, if x ≤ x , we call

X = [x, x] = {x ∈ R|x ≤ x ≤ x}

a bounded closed interval, or interval for short. Denote by I (R) the set of all the
bounded close intervals on R, and I (A) = {X ∈ I (R)|X ⊆ A} all the intervals on
A ⊆ R. Especially, if x = x , we call X a point interval.

For intervals, there are some common quantities:

midpoint mid(X) = (x + x)/2
width W(X) = x − x
radius rad(X) = 1

2W(X)

low end point inf(X) = x
high end point sup(X) = x

Obviouslywe have X = [mid(X)−rad(X),mid(X)+rad(X)]. An interval is usually
expressed by its midpoint and radius. For example, if m = mid(X), r = rad(X),
then we can write the formula above as X = midrad(m, r).

We can also define the arithmetic operations over intervals. Let X = [x, x], Y =
[y, y] ∈ I (R),

• X + Y = [x + y, x + y]
• X − Y = [x − y, x − y]
• X · Y = [min(x y, x y, x y, x y),max(x y, x y, x y, x y)]
• X/Y = [x, x] · [1/y, 1/y], 0 �∈ Y

A vector is called an interval vector if all its components are intervals. Interval
matrix can be similarly defined. For interval vectors and interval matrices, the con-
cepts such as midpoint, width, radius, etc., and the arithmetic operations are defined
in components.

Let f : Rn → R be a function, if there exists an interval map

F : I (Rn) → I (R)

such that for all xi ∈ Xi (i = 1, 2, . . . , n),

F([x1, x1], [x2, x2], . . . , [xn, xn]) = f (x1, x2, . . . , xn)

holds, then we call F an interval expansion of f .
We call F : I (Rn) → I (R) an interval map with inclusive monotonicity ifX ⊆ Y

implies F(X) ⊆ F(Y) for any given intervals X and Y. The definitions above can
all be extended to the situations in I (Rn) → I (Rn). And it is easy to prove that all
the polynomial operations satisfy the inclusive monotonicity.
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2.2.2 Krawczyk Operator

The Krawczyk operator plays a key role in the real root verification of interval
arithmetic. Themain accomplishment comes from thework ofKrawczyk andMoore.
We only list some important results here. Complete proofs can be found in [22].

Suppose f : D ⊆ Rn → Rn is continuous differentiable on D. Consider the
equation

f(x) = 0. (1)

Let f ′ be the Jacobi matrix of f , F and F′ be the interval expansion of f and f ′
with inclusive monotonicity, respectively. For X ∈ I (D) and any y ∈ X, define the
Krawczyk operator as:

K (y, X) = y − Y f(y) + (I − Y F′(X))(X − y) (2)

where I is the n × n unit matrix and Y is any n × n nonsingular matrix.
Especially, we assign y = mid(X), so Formula (2) becomes

K (X) = mid(X) − Y f(mid(X)) + (I − Y F′(X))rad(X)[−1, 1]. (3)

Formula (3) is often used in practice.
The reason why the Krawczyk operator is so important is that it has some nice

properties.

Proposition 1 Suppose K (y, X) is defined as Formula (2), then

1. If x∗ ∈ X is a root of Eq. (1), then for any y ∈ X, we have x∗ ∈ K (y, X);
2. For any y ∈ X, if X ∩ K (y, X) = ∅ holds, then there is no roots in X;
3. For any y ∈ X and any nonsingular matrix Y , if K (y, X) ⊆ X holds, then Eq. (1)

has a solution in X;
4. Moreover, for any y ∈ X and any nonsingular matrix Y , if K (y, X) is strict

inclusive in X, then Eq. (1) has only one root in X.

With the properties above, we can easily develop a real root verification method
which will be explained later in this paper.

Meanwhile, with the hypothesis we set in introduction, all the systems considered
here are nonsingular ones with only simple roots. So the Jacobian matrix at the roots
are all invertible. Thus, we often set Y = (mid F′(X))−1 and the Krawczyk operator
becomes

K (X) = mid(X) − (mid F′(X))−1f(mid(X))

+ (I − (mid F′(X))−1F′(X))rad(X)[−1, 1]. (4)

This is also called the Moore form of the Krawczyk operator.
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3 Real Root Isolation Algorithm

In this section, we will present our new algorithm for real root isolation based on
hybrid computation. As mentioned before, we first construct initial intervals for
the approximate roots obtained by homotopy continuation, and then find out those
intervals containing real roots via the Krawczyk interval iteration.

3.1 Construction of Initial Intervals

To apply the Krawczyk interval iteration, obviously the construction of initial inter-
vals is a key procedure. We should guarantee both the correctness and efficiency,
that is, make sure the initial box contains the corresponding accurate real root, and
meanwhile keep the interval radius as small as possible so as to shorten the iteration
time.

Thus a valid error estimate for the initial approximate roots should be established.
And we discuss this issue in both theoretical and practical aspects here.

3.1.1 Error Estimate Theory

The core problem of the construction of initial box is the choice of interval radius,
which is essentially an error estimate for the approximate root. There are many work
on error analysis, from classical results to modern ones. For example, in [5], Smale
et al. gave a systemic method which is now often called alpha theory.

Here we employ the Kantorovich Theorem to give our error estimate.

Theorem 2 (Kantorovich) Let X and Y be Banach spaces and F : D ⊆ X → Y
be an operator, which is Fréchet differentiable on an open convex set D0 ⊆ D. For
equation F(x) = 0, if the given approximate root x0 ∈ D0 meets the following three
conditions:

1. F ′(x0)−1 exists, and there are real numbers B and η such that

‖F ′(x0)
−1‖ ≤ B, ‖F ′(x0)

−1F(x0)‖ ≤ η,

2. F ′ satisfies the Lipschitz condition on D0:

‖F ′(x) − F ′(y)‖ ≤ K‖x − y‖, ∀x, y ∈ D0,

3. h = BKη ≤ 1
2 , O(x0,

1−√
1−2h
h η) ⊂ D0,

then we claim that:

1. F(x) = 0 has a root x∗ in O(x0,
1−√

1−2h
h η) ⊂ D0, and the sequence {xk :

xk+1 = xk − F ′(xk)
−1F(xk)} of Newton method converges to x∗;

2. For the convergence of x∗, we have:
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‖x∗ − xk+1‖ ≤ θ2
k+1

(1 − θ2)

θ(1 − θ2
k+1

)
η (5)

where θ = 1−√
1−2h

1+√
1−2h

;

3. The root x∗ is unique in D0 ∩ O(x0,
1+√

1−2h
h η).

In the theorem, O(x, r) denotes the ball neighborhood whose center is x and radius
is r , and O(x, r) refers to the closure of the ball neighborhood. The proof can be
found in [14].

Since the approximation x0 is already the result of a homotopy process, what we
care about is the initial interval w.r.t. x0, i.e. the proper upper bound for ‖x∗ − x0‖.
So we have the following proposition, which is a direct corollary of the Kantorovich
Theorem.

Proposition 3 Let F = ( f1, . . . , fn)T be a polynomial system, where fi ∈ R
[x1, . . . , xn]. Denote by J the Jacobian matrix of F. For an approximation x0 ∈ Cn,
if the following conditions hold:

1. J−1(x0) exists, and there are real numbers B and η such that

‖J−1(x0)‖ ≤ B, ‖J−1(x0)F(x0)‖ ≤ η,

2. There exists a ball neighborhood O(x0, ω) such that J(x) satisfies the Lipschitz
condition on it:

‖J(x) − J(y)‖ ≤ K‖x − y‖, ∀x, y ∈ O(x0, ω)

3. Let h = BKη,

h ≤ 1

2
, and ω ≥ 1 − √

1 − 2h

h
η,

then F(x) = 0 has only one root x∗ in O(x0, ω) ∩ O(x0,
1+√

1−2h
h η).

Proof We consider F as an operator on Cn → Cn , obviously it is Fréchet differen-
tiable, and from

F(x + h) = F(x) + J(x)h + o(h)

we can get

lim
h→0

‖F(x + h) − F(x) − J(x)h‖
‖h‖ = 0.

Thus the first order Fréchet derivative of F is just the Jacobian matrix J, i.e.
F′(x) = J(x). So by Theorem 2, the proof is completed immediately after checking
the situation of ‖x∗ − x0‖.
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It is easy to know that 1−√
1−2h
h ≤ 2. So we can just assign ω = 2η. Then we

need to check whether BKη ≤ 1
2 in the neighborhood O(x0, 2η). Even though the

initial x0 does not satisfy the conditions, we can still find a proper xk after several
Newton iterations, since B and K are bounded and η will approach zero. And we
only need to find an upper bound for the Lipschitz constant K .

3.1.2 Constructive Algorithm

Now we will give a constructive procedure for the Lipschitz constant K .
Let Ji j = ∂ fi/∂x j , apply mean value inequality [23] to each element of J on

O(x0, ω) to get

‖Ji j (y) − Ji j (x)‖ ≤ sup
κi j ∈line(x,y)

‖∇ Ji j (κi j )‖ · ‖y − x‖, ∀x, y ∈ O(x0, ω) (6)

where∇ = (∂/∂x1, ∂/∂x2, . . . , ∂/∂xn) is the gradient operator and line(x, y) refers
to the line connecting x with y. Since∇ J is continous, we can find a ζi j ∈ line(x, y)

such that ‖∇ Ji j (ζi j )‖ = supκi j ∈line(x,y) ‖∇ Ji j (κi j )‖. So we get

‖Ji j (y) − Ji j (x)‖ ≤ ‖∇ Ji j (ζi j )‖ · ‖y − x‖, ∀x, y ∈ O(x0, ω) (7)

Setting
(‖∇ Ji j (ζi j )‖ · ‖y − x‖)n×n = �J, then ‖J (y) − J (x)‖ ≤ ‖�J‖. And for

�J we have

‖�J‖∞ = ‖(‖∇ Ji j (ζi j )‖∞‖y − x‖∞
)

n×n‖∞
≤ ‖(‖∇ Ji j (ζi j )‖∞

)
n×n‖∞ · ‖y − x‖∞

= max
1≤i≤n

n∑
j=1

‖∇ Ji j (ζi j )‖∞ · ‖y − x‖∞ (8)

Note that ∇ Ji j (ζi j ) is a vector, so if we use | · |max to denote the maximum module
component of a vector, then we have

‖�J‖∞ ≤ max
1≤i≤n

n∑
j=1

|∇ Ji j (ζi j )|max · ‖y − x‖∞. (9)

Let Hi = (
∂2 fi

∂x j ∂xk
)n × n be the Hessian matrix of fi , and let Hi = (h(i)

1 , . . . , h(i)
n ),

where h(i)
j are the column vectors. Then we have

‖�J‖∞ ≤ max
1≤i≤n

n∑
j=1

|h(i)
j (ζi j )|max · ‖y − x‖∞. (10)
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For convenience, we construct X0 = midrad(x0, ω)with x0 as centre and ω = 2η
as radius.

Now we have |h(i)
j (ζi j )|max ≤ |h(i)

j (X0)|max. So

‖�J‖∞ ≤ max
1≤i≤n

n∑
j=1

|h(i)
j (X0)|max · ‖y − x‖∞. (11)

Therefore

K = max
1≤i≤n

n∑
j=1

|h(i)
j (X0)|max (12)

is the Lipschitz constant w.r.t. J.
Now we give an algorithm for computing initial intervals in Algorithm 1.

Algorithm 1 init_width
Input: Equation F ; Approximation x0; Number of variables n
Output: Initial interval’s radius r
1: repeat
2: x0 = x0 − J−1(x0)F(x0);
3: B = ‖J−1(x0)‖∞; η = ‖J−1(x0)F(x0)‖∞;
4: ω = 2η;
5: X0 = midrad(x0, ω);
6: K = 0;
7: for i = 1 to n do
8: Compute the Hessian matrix Hi = (h(i)

1 , h(i)
2 , . . . , h(i)

n ) of F on X0;

9: if
∑n

j=1 |h(i)
j (X0)|max > K then

10: K = ∑n
j=1 |h(i)

j (X0)|max;
11: end if
12: end for
13: h = BKη;
14: until h ≤ 1/2

15: return r = 1−√
1−2h
h η

3.2 Empirical Estimate

As so far, we have established a rigorous method to construct initial intervals. This
method takes a complex approximate root as input to obtain an initial box. But in
practice we often find many approximations with “large” imaginary parts which
strongly indicate that they are nonreal. A natural question is

Can we detect these nonreal roots without using interval arithmetic?

Let z be an approximation of the real root ξ . Because
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‖Re(z) − ξ‖ ≤ ‖z − ξ‖,

then we can see the real partRe(z) is also an approximation of this root and is even
closer. So we can simply replace x0 byRe(x0) in Algorithm 1 to construct the initial
box.

The other consideration is the efficiency of numerical computation. When we use
Proposition 3, lots of interval matrix operations would be executed, which cost much
more time than the point operations. So if we can find an empirical estimate radius,
which can be computed much faster, but is still valid for most of the equations, then
that will be a good choice in practice.

We now give one such empirical estimate.
For F = 0, let x∗ be an accurate root and x0 be its approximation. Although the

mean value theorem is not valid in complex space, the Taylor expansion is still valid.
And the polynomial systems considered here are all continuous, so we suppose the
equation satisfies the mean value theorem approximately:

0 = F(x∗) ≈ F(x0) + J(ξ)(x∗ − x0) (13)

where ξ is between x∗ and x0. So we have

x∗ − x0 ≈ −J−1(ξ)F(x0).

Let J(ξ) = J(x0) + �J, then

J(ξ) = J(x0)(I + J−1(x0)�J),

J−1(ξ) = (I + J−1(x0)�J)−1J−1(x0). (14)

For �J, we can get an estimate similar to Formula (10):

‖�J‖∞ ≤ max
1≤i≤n

n∑
j=1

|h(i)
j (ζi j )|max · ‖x∗ − x0‖∞. (15)

From our hypothesis, x∗ and x0 are very close, so are ζi j and x0. Thus, we
approximate x0 with ζi j . Meanwhile, from x0, after a Newton iteration, we get
x1 = x0 − J−1(x0)F(x0). Thus we may consider that the distance between x∗ and
x0 is more or less the same with that of x0 and x1, so we replace ‖x∗ − x0‖ with
‖x1 − x0‖ = ‖J−1(x0)F(x0)‖ for approximation.

So we get

‖�J‖∞ ≤ max
1≤i≤n

n∑
j=1

|h(i)
j (x0)|max · ‖J−1(x0)F(x0)‖∞. (16)

Let λ = max1≤i≤n
∑n

j=1 |h(i)
j (x0)|max, then
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‖J−1(x0)�J‖∞ ≤ λ‖J−1(x0)‖2∞‖F(x0)‖∞.

Because ‖F(x0)‖∞ � 1, the last formula is also much less than 1. So substitute that
into Formula (14) we can get

‖J−1(ξ)‖∞ ≤ ‖J−1(x0)‖∞
1 − λ‖J−1(x0)‖2∞‖F(x0)‖∞

. (17)

Finally we obtain the empirical estimate

‖x∗ − x0‖∞ ≈ ‖J−1(ξ)F(x0)‖∞

≤ ‖J−1(x0)‖∞‖F(x0)‖∞
1 − λ‖J−1(x0)‖2∞‖F(x0)‖∞

. (18)

The inequality (18) is only an empirical estimate. As stated at the beginning of this
subsection, an empirical estimate is only a way expected to speed-up computation in
some cases and may not be valid for all examples. We test this empirical estimate by
many numerical experiments and report the results in Sect. 4, which show that this
empirical estimate performs very well on all those examples. An algorithm based on
inequality (18) is described as Algorithm 2.

Algorithm 2 IsComplex
Input: Equation F ; Approximation z;
Output: true or false
1: Compute Formula (18), denote the result by r ′;
2: if any( I (z) > r ′ ) then
3: return true; // not a real root
4: else
5: return false; // may be a real root
6: end if

In Algorithm 2, any() is a default function in Matlab, which returns true if there
is nonzero component in a vector.

3.3 Krawczyk–Moore Interval Iteration

We now discuss about the real root verification with a given interval. In Sect. 2.2.2,
we have introduced the Krawczyk operator. With the properties in Proposition 1,
we can determine whether an interval contains a real root by the relationship of the
original interval and the one after the Krawczyk iteration.

However, in practice, we cannot expect the intervals to be entire inclusion or
disjoint after just one iteration. Partly intersection is the most common cases that we
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encounter. Since the real root is still in the interval after the Krawczyk iteration, a
normal method is to let X ∩ K (X) be the new iteration interval. So suppose X(0)

is the initial interval, the iteration rule is X(k+1) = X(k) ∩ K (X(k)), where K (X(k))

is defined by Formula (4). This update rule can make sure that the size of X(k) is
nonincreasing. But a problem is once we encounter K (X(k)) ∩ X(k) == X(k), the
iteration will be trapped into endless loop. So we have to divideX(k) if this happened.

Thus, we introduce a bisection function divide(). To speedup the convergence
of our algorithm, we divide the longest dimension of an interval vector. This strategy
may not be the optimal choice when the system’s dimension is high. Greedy method
or optimization algorithm will be studied in the future.

We now give a formal description of divide function in Algorithm 3 and the
Krawczyk–Moore iteration process in Algorithm 4.

Algorithm 3 divide
Input: Interval vector X
Output: X(1) and X(2), a decomposition of X
1: Let Xi be the coordinate with the largest width in X
2: X(1) = X; X(2) = X;
3: X(1)

i = [inf(Xi ),mid(Xi )];
4: X(2)

i = [mid(Xi ), sup(Xi )];
5: return X(1), X(2)

Algorithm 4 Krawczyk
Input: F ; initial box X; isolation boxes real_roots; number of real roots nreal
Output: symbol of whether there is a real root f lag; real_roots; nreal
1: Y = mid(F′(X))−1; Xt = K (X), where K (X) is define by Formula (4);
2: if Xt ∩ X == ∅ then
3: return f lag = false;
4: end if
5: while not(Xt ⊆ X) do
6: if Xt ∩ X == X then
7: [X(1), X(2)] = divide(X);
8: [ f 1, real_roots, nreal] = Krawczyk(F, X(1), real_roots, nreal);
9: if f 1 == false then
10: [ f 2, real_roots, nreal] = Krawczyk(F, X(2), real_roots, nreal);
11: end if
12: return f 1 or f 2;
13: end if
14: X = Xt ∩ X;
15: Y = (midF′(X))−1.
16: Xt = K (X);
17: if Xt ∩ X == ∅ then
18: return flag = false;
19: end if
20: end while
21: nreal = nreal + 1;
22: real_roots[nreal] = Xt
23: return f lag = true, real_roots, nreal;
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3.4 Verification and Refinement

After the Krawczyk iteration, we already have all the real root isolation intervals, but
these are not the final results. Since we require an isolation of disjoint intervals, we
have to check for possible overlaps.

On the other hand, some intervals may not be as small as required by users, so we
can narrow them via bisection method until they match the requirement.

We discuss these details in this subsection.

3.4.1 Remove the Overlaps

There is a basic hypothesis: for nonsingular systems, each root has an approximation,
and from this approximation, the iteration will end up in its corresponding accurate
root, not any other root. So we only have to remove the overlaps, and the number of
real roots will not change.

However, wewant to expand our algorithm intomulti-roots cases. And in that situ-
ation, it is possible that two isolated intervals contain the same real root. So whether
or not the overlap part contains a real root, our algorithm has its corresponding
processes. See Algorithm 5 for details.

Algorithm 5 disjoint_process
Input: Isolated intervals real_roots; number of real roots nreal; F
Output: Checked isolated intervals real_roots; nreal
1: k = 0;
2: for i = 1 to nreal do
3: X = real_roots[i] ; new_root = true;
4: for j = 1 to k do
5: Y = real_roots[ j];
6: Z = X ∩ Y;
7: if Z == ∅ then
8: continue;
9: end if
10: f lag = Krawczyk(F ,Z);
11: if f lag == true then
12: new_root = false ; break;
13: else
14: X = X \ Z;
15: real_roots[ j] = real_roots[ j] \ Z;
16: end if
17: end for
18: if new_root == true then
19: k = k + 1 ; real_roots[k] = X
20: end if
21: end for
22: return real_roots ,nreal = k;
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The function Krawczyk() in Algorithm 5 is a little bit different from that
in the Krawczyk–Moore iteration. In the Krawczyk–Moore iteration, we have to
store the information of isolated real root intervals, so the real_roots and nreal are
in the function arguments. However, we only need to know whether there is a real
root here, so only the symbol variable f lag is returned. The situation is the same in
Algorithm 6.

3.4.2 Narrow the Width of Intervals

The user may require that the width of isolation intervals be less than or equal to a
prescribed number. Different from symbolic algorithms which can get any precision
they want in theory, our floating point number calculation cannot beat the machine
precision. In fact, in the Matlab environment that we implement our algorithm, the
width cannot be smaller than the system zero threshold.1

Algorithm 6 narrowing
Input: Isolated intervals real_roots; Number of real roots nreal; F ; Threshold τ

Output: real_roots after bisection
1: for i = 1 to nreal do
2: X = real_roots[i];
3: while any(rad(X) > τ ) do
4: [Y(1), Y(2)] = divide(X);
5: f lag = Krawczyk(F, Y(1));
6: if f lag == true then
7: X = Y(1);
8: else
9: X = Y(2)

10: end if
11: end while
12: real_roots[i] = X;
13: end for
14: return real_roots

We also use bisection to do the narrowing job. Since there is only one root in the
interval, we only have to continue dividing and checking the half that contains that
root. Formal description of this procedure is in Algorithm 6.

3.5 Algorithm Description

Up to now, we have discussed all the parts of real root isolation algorithm in detail.
We give the final main program in Algorithm 7.

1 In Matlab2008b that we do the experiments, the zero threshold is 2.2204e−016.
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Algorithm 7 real_root_isolate
Input: Equation F(x); number of variables n; Threshold τ ;
Output: Isolated intervals of F(x) = 0 and number of real roots nreal
1: [complex_roots, ncomplex] = hom4ps(F,n);
2: Initialize real_roots to be empty; nreal = 0;
3: for i = 1 to ncomplex do
4: z = complex_roots[i];
5: if IsComplex(F, z) then
6: continue;
7: end if
8: r = init_width[F ,z,n];
9: X0 = midrad(R(z), r);
10: [ f lag, real_roots, nreal] = Krawczyk(F, X0, real_roots, nreal);
11: end for
12: [real_roots, nreal] = disjoint_process(real_roots, nreal, F);
13: real_roots = narrowing(real_roots, nreal, F, τ );
14: return real_roots, nreal;

4 Experiments

Nowwe apply our newmethod to some polynomial systems and do some comparison
with some former algorithms.

All the experiments are undertaken inMatlab2008b, with Intlab [25] of Version 6.
For arbitrarily high accuracy,we can callMatlab’s vpa (variable precision arithmetic),
but in fact all the real roots of the examples below are isolated by using Matlab’s
default double-precision floating point. We use Hom4ps-2.0 [19] as our homotopy
continuation tool to obtain initial approximate roots.

4.1 Demo Example

We begin our illustration with a simple example.

Example 4 Consider the real root isolation of the system below.

⎧⎨
⎩

x3y2 + x + 3 = 0
4yz5 + 8x2y4z4 − 1 = 0

x + y + z − 1 = 0

The homotopy program tells us this system has 28 complex roots in total. And we
get the following results after calling our real_root_isolate program.
intval =

[ - 0.94561016957416, - 0.94561016957415]

[ 1.55873837303161, 1.55873837303162]

[ 0.38687179654254, 0.38687179654255]
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intval =

[ - 1.18134319868123, - 1.18134319868122]

[ - 1.05029487815439, - 1.05029487815438]

[ 3.23163807683560, 3.23163807683561]

intval =

[ - 2.99999838968782, - 2.99999838968781]

[ 0.00024421565895, 0.00024421565896]

[ 3.99975417402886, 3.99975417402887]

intval =

[ - 0.79151164911096, - 0.79151164911095]

[ 2.11038450699949, 2.11038450699950]

[ - 0.31887285788855, - 0.31887285788854]

The order of variables:

’x’

’y’

’z’

The number of real roots: 4

We verify the answers above with the DISCOVERER [33] package under Maple,
which also return 4 isolated real roots. Here we show its output in floating point
number format, i.e.
[[−2.999998391,−2.999998389], [0.0002442132, 0.0002442180], [3.999754090, 3.999754249]],

[[−1.181343199,−1.181343199], [−1.050294975,−1.050294818],[3.231637836, 3.231638372]],

[[−.9456101805, −.9456101656], [1.558738033, 1.558738728], [.3868716359, .3868719935]],

[[−.7915116549,−.7915116400], [2.110384024, 2.110385000], [−.3188729882,−.3188727498]].

And we can see the answers perfectly match the ones of our program.
We list some information during the calculation of our algorithm here for refer-

ence. Only the 4 real ones are given, and the other nonreal ones are all detected by our
empirical estimate method. Wemention that all the imaginary parts of complex roots
are significant larger than the initial radius of our algorithm in order of magnitude in
this example.

We give some remarks on Table1. In the first row, root1 to root4 are refer to the 4
real roots mentioned above respectively. And B, K , η, h are exactly the same as they

Table 1 Key quantities comparison

Root1 Root2 Root3 Root4

B 1.060227 1.192159 2.000864 0.874354

K 14.941946 7.198937e+003 4.095991e+003 16.988990

η 4.260422e−016 4.20807e−016 8.882333e−016 5.764449e−016

h 2.024791e−014 1.083446e−011 2.183861e−011 2.568823e−014

Estimate-rad 4.274976e−016 4.208067e−016 8.882344e−016 5.779921e−016

Empirical-rad 1.015249e−015 1.29164e−012 2.156138e−015 1.559270e−015
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are defined in Algorithm 1. The estimate-rad are the radius obtained via Algorithm
1, while the empirical-rad are refer to the ones calculated by Formula (18).

We say a little more words about the empirical-rad. Firstly, although the empirical
ones are basically larger than the rigorous error radius, they are still small enough,
which hardly have any influence on the efficiency of interval iteration. We will see
this in the comparison experiments later. But avoiding of interval matrix computation
is very helpful to the algorithm. Secondly, the radius obtained from Algorithm 1 are
so small that they are even comparable to the zero threshold of Matlab system.2 And
this could bring some uncertainty of floating point operation to our algorithm, such
as misjudgement of interval inclusion in Intlab, etc. So we intend to use empirical
estimate bound in next experiments.

For system cyclic6, the classic symbolic algorithm can do nothing due to the
difficulty of triangularization. Meanwhile, we can easily get the 24 isolated real
roots intervals with our real_root_isolate program.

4.2 Comparison Experiment

Many benchmarks have been checked with our real_root_isolate program.
Since no results on the time complexity of ourmethod have been obtained, wemainly
focus on the isolation results and the program execution time.

We investigate over 130 benchmarks provided byHom4ps [4], amongwhich about
40 equations are nonsingular systems. Due to space limitation, we only list 11 of
them in Tables2, 4 and 5. Comparison to the symbolic tool DISCOVERER on the

Table 2 Comparison to symbolic method

Problem Total roots Real roots DISCOVERER Complex roots detected

barry 20 2 2 18

cyclic5 70 10 10 60

cyclic6 156 24 N/A 132

des18_3 46 6 N/A 40

eco7 32 8 8 24

eco8 64 8 N/A 56

geneig 10 10 N/A 0

kinema 40 8 N/A 32

reimer4 36 8 8 28

reimer5 144 24 N/A 120

virasoro 256 224 N/A 32

2 As mentioned before, the zero threshold in Matlab2008b is 2.2204e−016, which is almost the
same order of magnitude of those radiuses.
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Table 3 Comparison to a hybrid method

Verifyrealroot0(M) Verifyrealroot0(H) Real_root_isolate

Problem Time Sol Width Time Sol Width Time Sol Width

comb3000 1.56 1 2.0e−20 1.38 4 2.7e−20 1.11 4 5.3e−10

d1 52.3 2 1.7e−14 6.24 16 1.8e−14 6.19 16 7.3e−13

boon 27.6 1 5.1e−15 1.98 8 2.9e−15 1.14 8 1.8e−14

des22_24 1.79 1 2.5e−14 1.73 10 1.2e−08 4.46 10 1.5e−01

geneig 6.53 2 6.7e−15 4.63 10 2.7e−13 4.21 10 3.6e−13

heart 24.9 2 5.3e−15 1.40 2 4.9e−15 1.54 2 8.5e−15

kin1 52.3 2 1.8e−14 5.91 16 1.8e−14 6.44 16 1.2e−12

ku10 37.8 1 4.7e−14 0.96 2 6.7e−14 0.41 2 6.8e−13

noon3 1.88 1 1.6e−16 11.7 8 1.6e−15 0.94 7 2.6e−15

noon4 9.70 1 3.6e−15 30.2 22 3.9e−15 2.96 15 1.0e−05

puma 5.85 2 2.9e−14 3.99 16 1.8e−13 2.27 16 1.8e−13

quadfor2 1.48 2 5.6e−16 0.71 2 2.2e−16 1.11 2 1.2e−15

rbpl 5.59 1 2.6e−15 23.2 4 8.4e−14 7.78 4 4.1e−12

redeco5 0.95 1 8.3e−17 1.07 4 1.3e−15 0.48 4 1.0e−05

reimer5 26.7 3 8.4e−14 5.83 24 3.2e−13 10.5 24 7.8e−13

11 systems in Table2 just tries to verify the results and to show the advantage of our
hybrid method. Comparison to another hybrid tool in [36] on 15 zero-dimensional
nonsingular systems is listed in Table3.

The 11 systems in Table2were computed on a computer with OS:WindowsVista,
CPU: Inter®Core 2 Duo T6500 2.10GHz, Memory: 2G. The column real roots in
Table2 tells the number of intervals that our program isolated. Compared with the
results of DISCOVERER, the new algorithm indeed works out all equations that are
beyond the capability of classic symbolic algorithm.Moreover, the last column show
that our empirical estimate method detects all the nonreal roots successfully.

The 15 problems in Table3 are all from Table1 of [36]. There are 20 problems in
Table1 of [36], of which 5 are either positive dimensional (e.g., cohn2) or singular
(e.g., katsura5). They are beyond the scope of this paper and thus have not been
listed here. The data of Columns 2–7 in Table3 is copied from [36], which was
obtained with Matlab(2011R) on a computer with Intel(R) Core(TM) at 2.6GHz
underWindows. The data ofreal_root_isolate (Columns 8–10)was obtained
with Matlab(2008b) on a computer with intel(R) core(TM)i3 at 2.27GHz under
Windows 7.

From Table3, one could see that our program is faster on most of the examples.
The widths of the output intervals of our program are usually much larger than those
of verifyrealroot0(H) and verifyrealroot0(M). It should be pointed out that our results
on systems “noon3” and “noon4” are different from that of verifyrealroot0(H).On the
other hand, verifyrealroot0 is a tool applicable also to positive dimensional systems
but our tool is only effective on zero-dimensional nonsingular systems.
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Table 4 Execution time comparison, unit:s

Problem Total time Homotopy time Interval time

barry 0.421203 0.093601 0.327602

cyclic5 2.948419 0.218401 2.652017

cyclic6 9.984064 0.639604 9.063658

des18_3 4.180827 0.702004 3.385222

eco7 2.371215 0.265202 2.012413

eco8 3.946825 0.499203 3.354022

geneig 4.243227 0.249602 3.868825

kinema 3.946825 1.014006 2.808018

reimer4 2.480416 0.374402 2.059213

reimer5 12.963683 3.073220 9.578461

virasoro 137.124879 4.570829 109.996305

Table4 shows that interval iterations consume more time than homotopy contin-
uation. The reason is complicated and we enumerate some here:

1. The homotopy continuation focuses only on floating-point number, while the
Krawczyk iteration cares about intervals;

2. Hom4ps-2.0 is a software complied from language C, which is much more effi-
cient than the tool that we use to implement our algorithm, say Matlab.

3. The interval iteration time increases as roots number grows since we examine the
approximate roots one by one. So the parallel computation of homotopy is much
faster.

We believe that with efficient language such as C/C++, and parallel computation,
the implementation of our algorithm will be much faster.

In order to verify our idea and see whether parallelization could help, we go into
every approximate root’s iteration process. Some critical data are recorded in Table5.
The avg. rad. of ans is the average radius of the final isolated intervals, while the avg.
rad. of init. indicates the average radius of the initial intervals. The average time of
each root’s interval iteration is shown in column avg. time of iteration along with the
max interval iteration time in max time of iter. We think the consumption for each
root’s process is acceptable.

From Table5 we can see that the initial interval radii are extremely small, which
leads to a nice process time for each iteration. We point out that almost all real root
checks are done by just oneKrawczyk iteration, and hardly any overlap is found after
all the Krawczyk iteration processes due to the small initial intervals that we give.
All of these save a great deal of executing time of our program.
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Table 5 Detail data for each iteration, unit:s

Problem avg. rad. of ans. avg. rad. of init. avg. time of iter. max time of iter.

barry 3.552714e−015 1.377800e−014 0.054600 0.062400

cyclic5 1.614703e−009 7.142857e−007 0.113881 0.140401

cyclic6 4.440892e−016 2.137195e−015 0.183951 0.234002

des18_3 3.768247e−007 9.737288e−007 0.241802 0.296402

eco7 1.998401e−015 1.483754e−013 0.122851 0.156001

eco8 2.109424e−015 3.283379e−013 0.183301 0.218401

geneig 2.664535e−016 5.721530e−014 0.315122 0.436803

kinema 1.998401e−015 6.784427e−011 0.157951 0.218401

reimer4 1.110223e−016 1.258465e−014 0.122851 0.156001

reimer5 1.110223e−016 4.754080e−014 0.195001 0.421203

virasoro 9.472120e−009 2.265625e−006 0.387844 0.624004

5 Conclusion

In this paper, a new algorithm based on hybrid computation is provided for real root
isolation of zero-dimensional nonsingular square polynomial systems. The algorithm
first applies homotopy continuation to obtain all the approximate roots of the sys-
tem. For each approximate root, an initial interval which contains the corresponding
accurate root is constructed. Then the Krawczyk operator is called to verify all the
initial intervals so as to get all the real root isolation boxes. Some necessary check
and refinement work are done after that to ensure the boxes are pairwise disjoint and
meet width requirement.

In the construction of initial intervals, we give a rigorous radius error bound
based on a corollary of the Kantorovich theorem. Some constructive algorithms are
presented for both real and complex approximate roots. Meanwhile, we introduce an
empirical estimate radius, which has a nice performance in numerical experiments.

In themodification and implementation of theKrawczyk iteration algorithm, some
problems of interval arithmetic are also discussed in this paper.

At last we utilize some existing tools to implement our algorithm under Mat-
lab environment. Many benchmarks have been checked along with comparison and
analysis.

We also mention some possible future work here. The construction of initial
intervals is still too complicated and further optimization should be studied. Also
the empirical estimate with more efficiency and accuracy is a considerable question.
The strategy for dividing intervals in the Krawczyk iteration could also be improved,
which may be helpful in the high dimension cases. It is important to study the cases
that the systems are positive dimensional or singular.

In the aspect of implementation, replacing theMatlab implementationwithC/C++
codes may improve the performance of our method. Parallel computation can be
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another technique to speed-up the computation since the verification of all initial
intervals can be obviously parallelled.
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Overview of the Mathemagix Type System

Joris van der Hoeven

Abstract The goal of the Mathemagix project is to develop a new and free
software for computer algebra and computer analysis, based on a strongly typed
and compiled language. In this paper, we focus on the underlying type system of this
language, which allows for heavy overloading, including parameterized overload-
ing with parameters in so called “categories.” The exposition is informal and aims
at giving the reader an overview of the main concepts, ideas and differences with
existing languages. In a forthcoming paper, we intend to describe the formal seman-
tics of the type system in more detail.

Keywords Mathemagix · Type system ·Overloading · Parametric polymorphism ·
Language design · Computer algebra

1 Introduction

1.1 Motivation for a New Language

Until the mid-1990s, the development of computer algebra systems tended to exploit
advances in the area of programming languages, and sometimes even influenced
the design of new languages. The Formac system [2] was developed shortly after
the introduction of Fortran. Symbolic algebra was an important branch of the
artificial intelligence project atMit during the 1960s. During a while, theMacsyma
system [26, 29, 35] was the largest program written in Lisp, and motivated the
development of better Lisp compilers.

The Scratchpad system [15, 21] was at the origin of yet another interesting
family of computer algebra systems, especially after the introduction of
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domains and categories as function values and dependent types in Modlisp and
Scratchpad II [20, 22, 33]. These developments were at the forefront of language
design and type theory [12, 27, 28]. Scratchpad later evolved into the Axiom
system [19, 34]. In the A# project [38, 39], later renamed into Aldor, the language
and compiler were redesigned from scratch and further purified.

After this initial period, computer algebra systems have been less keen on exploit-
ing new ideas in language design. One important reason is that a good language for
computer algebra is more important for developers than for end users. Indeed, typi-
cal end users tend to use computer algebra systems as enhanced pocket calculators,
and rarely write programs of substantial complexity themselves. Another reason is
specific to the family of systems that grew out of Scratchpad: after IBM’s decision
to no longer support the development, there has been a long period of uncertainty for
developers and users on how the system would evolve. This has discouraged many
of the programmers who did care about the novel programming language concepts
in these systems.

In our opinion, this has lead to an unpleasant current situation in computer algebra:
there is a dramatic lack of a modern, sound and fast general purpose programming
language. The major systems Mathematica [40] and Maple [11] are both inter-
preted, weakly typed (even the classical concept of a closure has been introduced
only recently in Maple!), besides being proprietary and very expensive. The Sage
system [31] relies on Python and merely contents itself to glue together various
existing libraries and other software components.

The absence of modern languages for computer algebra is even more critical
whenever performance is required. Nowadays, many important computer algebra
libraries (such asGmp [13],Mpfr [16], Flint [17], FGb [7], etc.) are directly written
in C or C++. Performance issues are also important whenever computer algebra is
used in combination with numerical algorithms. We would like to emphasize that
high level ideas can be important even for traditionally low level applications. For
instance, in a suitable high level language it should be easy to operate on SIMD
vectors of, say, 256 bit floating point numbers. Unfortunately, Mpfr would have to
be completely redesigned in order to make such a thing possible.

For these reasons,we have started the design of a new software,Mathemagix [36,
37], based on a compiled and strongly typed language, featuring signatures, depen-
dent types, and overloading.Mathemagix is intended as a general purpose language,
which supports both functional and imperative programming styles. Although the
design has greatly been influenced by Scratchpad II and its successors Axiom
and Aldor, there are several important differences, as we will see.Mathemagix is
also a free software, which can be downloaded from www.mathemagix.org.

In this paper, we will focus on the underlying type system. We present an infor-
mal overview of this system and highlight in which respect it differs from existing
systems. We plan to provide a more detailed formal description of the type system
in a future paper.

http://www.mathemagix.org
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1.2 Main Philosophy Behind the Type System

The central idea behind the design of theMathemagix language is that the declara-
tion of a function is analogous to the statement of a mathematical theorem, whereas
the implementation of the function is analogous to giving a proof. Of course, this
idea is also central in the area of automated proof assistants, such as Coq [3, 4]
or Isabelle/Hol [30]. However,Mathemagix is intended to be a general purpose
programming language rather than an automated theorem prover. Therefore, we only
insist on very detailed declarations, whereas the actual implementations do not need
to be formally proven.

One consequence of this design philosophy is that program interfaces admit very
detailed specifications: although the actual implementations are not formally proven,
the combination of various components is sound as long as each of the components
fulfills its specification. By contrast,Maple,Mathematica or Sage functions can
only be specified in quite vague manners, thereby introducing a big risk of errors
when combining several libraries.

Another consequence of the Mathemagix design is that it allows for massively
overloaded notations. This point is crucial for computer algebra and also the main
reason why mainstream strongly typed functional programming languages, such as
Haskell [18, 23] or OCaml [25], are not fully suitable for our applications. To go
short, we insist on very detailed and unambiguous function declarations, but provide
a lot of flexibility at the level of function applications. On the contrary, languages
such as Ocaml require unambiguous function applications, but excel at assigning
types to function declarations in which no types are specified for the arguments.

TheMathemagix type system also allows for a very flat design of large libraries:
every function comes with the hypotheses under which it is correct, and can almost
be regarded as a module on its own. This is a major difference with respect toAxiom
and Aldor, where functionality is usually part of a class or a module. In such more
hierarchical systems, it is not always clear where to put a given function. For instance,
should a converter between lists and vectors be part of the list or the vector class?

1.3 Overview of this Paper

In order to make the above discussion about the main design philosophy more con-
crete, we will consider the very simple example of computing the square of an
element x in a monoid. In Sect. 2, we will show how such a function would typically
be written in various existing languages, and compare with what we would do in
Mathemagix. For a somewhat older, but more detailed comparison from a similar
perspective, we refer to [10].
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In Sect. 3, we will continue with a more complete description of the primitives of
the type systemwhich have currently been implemented in the compiler.Wewill also
discuss various difficulties that we have encountered and some plans for extensions.

As stated before, we have chosen to remain quite informal in this paper. Never-
theless, in Sect. 4, we will outline the formal semantics of the type system. The main
difficulty is to carefully explain what are the possible meanings of expressions based
on heavily overloaded notations, and to design a compiler which can determine these
meanings automatically.

Given the declarative power of the language, it should be noticed that the compiler
will not always be able to find all possible meanings of a program. However, this is
not necessarily a problem as long as the compiler never assigns a wrong meaning to
an expression. Indeed, given an expression whose meanings are particularly hard to
detect, it is not absurd to raise an error, or even to loop forever. Indeed, in such cases,
it will always be possible tomake the expression easier to understand by adding some
explicit casts. Fortunately, most natural mathematical notations also have a semantics
which is usually easy to determine: otherwise, mathematicians would have a hard
job to understand each other at the first place!

2 Comparison on an Example

We will consider a very simple example in order to illustrate the most essential
differences between Mathemagix and various existing programming languages:
the computation of the square of an element x of a monoid. Here we recall that a
monoid is simply a set M together with an associative multiplication · : M2 → M .
Although our example may seem trivial, we will see that the programming languages
that we have investigated fail to treat this example in a completely satisfactory way
from our perspective.

2.1 Mathemagix

InMathemagix, we would start by a formal declaration of the concept of a monoid.
As in the case of Aldor, this is done by introducing the monoid category:

category Monoid == {

infix *: (This, This) -> This;

}

The built-in type This stands for the carrier of the monoid. In other words, it will
be possible to regard any type T with a function infix *: (T, T) -> T as a
monoid. We may now define the square of an element x of a monoid by
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forall (M: Monoid)

square (x: M): M == x * x;

Given an instance x of any type T with a multiplication infix *: (T, T) ->
T, we may thus compute the square of x using square x. For instance, after
inclusion of the standard library file integer.mmx, the literal constant 111 has
type Integer and a multiplication infix *: (Integer, Integer) ->
Integer is provided. Hence, square 111 will yield the square of the integer
111.

In our definition of a monoid, we notice that we did not specify the multiplication
to be associative. For instance,wemight consider an extension of the current language
with a keyword assert, which would allow us to define

category Monoid == {

infix *: (This, This) -> This;

assert (forall (x: This, y: This, z: This) x*(y*z) =

(x*y)*z);

}

Nevertheless, nothing withholds the user from replacing the definition by

category Monoid == {

infix *: (This, This) -> This;

associative: This -> Void;

}

At least, this allows the user to indicate that the multiplication on a type T is asso-
ciative, by implementing the “dummy” function associative for T.

Of course, one might consider adding an assert primitive to Mathemagix
which would really behave as an annotation similar to the associative function.
However, if we want to take advantage of the mathematical semantics of associa-
tivity, then we should also be able to automatically prove associativity during type
conversions. We regard this as an issue for automatic theorem provers which is be-
yond the current design goals of Mathemagix. Notice nevertheless that it would be
quite natural to extend the language in this direction in the further future.

2.2 Aldor

As stated in the introduction, a lot of the inspiration for Mathemagix comes from
the Aldor system and its predecessors. In Aldor, the category Monoid would be
defined using
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define Monoid : Category == with {

*: (%, %) -> %;

}

However, the forall primitive insideMathemagix for the definition of templates
does not have an analogue inside Aldor. In Aldor, one would rather define a
parameterized class which exports the template. For instance:

Squarer (M: Monoid): with {

square: M -> M;

} == add {

square (x: M): M == x * x;

}

In order to use the template for a particular class, say Integer, one has to explicitly
import the instantiation of the template for that particular class:

import from Squarer (Integer);

The necessity to encapsulate templates inside classes makes the class hierarchy in
Aldor rather rigid. It also forces the user to think more than necessary about where
to put various functions and templates. This is in particular the case for routines
which involve various types in a natural way. For instance, where should we put a
converter from vectors to lists? Together with other routines on vectors? With other
routines on lists? Or in an entirely separate module?

2.3 C++

The C++ language [32] does provide support for the definition of templates:

template<typename M>

square (const M& x) {

return x * x;

}

However, as we see on this example, the current language does not provide a means
for requiringM to be amonoid, at least in theweak sense fromSect. 2.1 that there exists
a multiplication M operator * (const M&, const M&). Several C++
extensions with “signatures” [1] or “concepts” [5] have been proposed in order to
add such requirements. C++ also imposes a lot of restrictions on how templates
can be used. Most importantly, the template arguments should be known statically,
at compile time. Also, instances of user defined types (such as an explicit matrix)
cannot be used as template arguments.
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In the abovepiece of code,we also notice that the argumentx is of typeconst M&
instead of M. This kind of interference of low level details with the type system is at
the source of many problems when writing large computer algebras libraries in C++.
Although Mathemagix also gives access to various low level details, we decided
to follow a quite different strategy in order to achieve this goal. However, these
considerations fall outside the main scope of this paper.

2.4 Ocaml

Mainstream strongly typed functional programming languages, such as Ocaml and
Haskell, do not provide direct support for operator overloading. Let us first examine
the consequences of this point of our view in the case of Ocaml. In order to make
the types which are associated to expressions by the compiler explicit, the examples
in this section will be presented in the form of an interactive session.

First of all, multiplication does not carry the same name for different numeric
types. For instance:

# let square x = x * x;;

val square: int -> int = <fun>

# let float_square x = x *. x;;

val float_square: float -> float = <fun>

At any rate, thismeans thatwe somehowhave to specify themonoid inwhichwewant
to take a square when applying the square function of our example. Nevertheless,
modulo acceptance of this additional disambiguation constraint, it is possible to
define the analogue of the Monoid category and the routine square:

# module type Monoid =

sig

type t

val mul : t -> t -> t

end;;

# module Squarer =

functor (El: Monoid) ->

struct

let square x = El.mul x x

end;;
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As in the case of Aldor, we need to encapsulate the square function in a special
module Squarer. Moreover, additional efforts are required in order to instantiate
this module for a specific type, such as int:

# module Int_Monoid =

struct

type t = int

let mul x y = x * y

end;;

# module Int_Squarer = Squarer (Int_Monoid);;

# Int_Squarer.square 11111;;

- : int = 123454321

In our definition of Int_Monoid, it should be noticed that we need to specify the
multiplication on int explicitly. On the one hand, this gives a greater flexibility: for
instance, it is straightforward to construct another integer monoid where the addition
is used as the monoid multiplication. However, we think that this kind flexibility is
rarely useful in the area of computer algebra. In fact, mathematicians rather tend to
use a unique notation for multiplication, so mathematical programming languages
should rather focus on transposing this habit directly into the language. If one really
wants to use addition as a multiplication, then it is not hard to define a wrapper class
which does precisely this.

2.5 Haskell

In many regards, Haskell is similar in spirit to Ocaml, but Haskell type classes
come closer to overloading than Ocaml modules. For instance, the square function
can be defined in a quite compact way as follows:

class Monoid a where

(*) :: a -> a -> a

square x = x * x

In order to enable the square function for a particular type, one has to create an
instance of the monoid for this particular type. For instance, wemay endow String
with the structure of a monoid by using concatenation as our multiplication:

instance Monoid [Char] where

x * y = x ++ y
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After this instantiation, we may square the string "hello" using square
"hello" (in practice, the example needs to be slightly tweeked since the oper-
ator * is already reserved for standard multiplication of numbers; one also has to
use the -XFlexibleInstances compilation option in order to allow for the
instantiation of the string type).

The nice thing of the above mechanism is that we may instantiate other types
as monoids as well and share the name * of the multiplication operator among all
these instantiations. Haskell style polymorphism thereby features several of the
advantages of operator overloading. However, there are some important differences.
First of all, it is not allowed to use the same name * inside another type class,
such as Ring, except when the other type class is explicitly derived from Monoid.
Secondly, the user still has to explicitly instantiate the type classes for specific types:
in Mathemagix, the type String can automatically be regarded as a Monoid as
soon as the operator * is defined on strings.

2.6 Discussion

Essentially, the difference betweenMathemagix and classical strongly typed func-
tional languages such as Ocaml and Haskell is explained by the following obser-
vation: if we want to be able to declare the square function simply by writing

square x = x * x

and without specifying the type of x, then the symbol * should not be too heavily
overloaded in order to allow the type system to determine the type of square. In
other words, no sound strongly typed system can be designed which allows both for
highly ambiguous function declarations and highly ambiguous function applications.

Whether the user prefers a type systemwhich allows for more freedom at the level
of function declarations or function applications is amatter of personal taste.Wemay
regard Ocaml and Haskell as prominent members of the family of strongly typed
languages which accomodate a large amount of flexibility at the declaration side.
But if we are rather looking for high expressiveness at the function application side,
and insist on the possibility to heavily overload notations, then we hope that the
Mathemagix type system will be a convenient choice.

We finally notice that signatures are now implemented under various names in a
variety of languages. For instance, in Java, one may use the concept of an interface.
Nevertheless, to the best of our knowledge, the current section describes the main
lines along which signatures are conceived in current languages.
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3 Overview of the Language

3.1 Ordinary Variables and Functions

There are three main kinds of objects inside theMathemagix type system: ordinary
variables (including functions), classes and categories. Ordinary variables are defined
using the following syntax:

test?: Boolean == pred? x; // constant

flag?: Boolean := false; // mutable

In this example, test? is a constant, whereas flag? is a mutable variable which
can be given new values using the assignment operator :=. The actual type of the
mutable variable flag? is Alias Boolean. Functions can be declared using a
similar syntax:

foo (x: Int): Int == x * x;

Mathemagix is a fully functional language, so that functions can both be used as
arguments and as return values:

shift (x: Int) (y: Int): Int == x + y;

iterate (foo: Int -> Int, n: Int)

(x: Int): Int ==

if n = 0 then x

else iterate (foo, n-1) (foo x);

The return type and the types of part of the function arguments are allowed to depend
on the arguments themselves. For instance:

square (x: M, M: Monoid): M == x * x;

Mathemagix does not allow for mutually dependent arguments, but dependent
arguments can be specified in an arbitrary order. For instance, in the above example,
we were allowed to introduce M: Monoid after the declaration x: M. However,
the following declaration with mutually dependent arguments is incorrect:

nonsense (x: Foo y, y: Bar x): Void == {}
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3.2 Classes

New classes are defined using the class primitive, as in the following example:

class Point == {

mutable {

x: Double;

y: Double;

}

constructor point (x2: Int, y2: Int) == {

x == x2;

y == y2;

}

}

We usually use similar names for constructors as for the class itself, but the user is
free to pick other names. The mutable keyword specifies that we have both read
and read-write accessors postfix .x and postfix .y for the fields x and y.
Contrary to C++, new accessors can be defined outside the class itself:

postfix .length (p: Point): Double ==

sqrt (p.x * p.x + p.y * p.y);

As in the case of functions, classes are allowed to depend on parameters, which
may be either type parameters or ordinary values. Again, there may be dependencies
among the parameters. One simple example of a class definition with parameters is:

class Num_Vec (n: Int) == {

mutable v: Vector Double;

constructor num_vec (c: Double) == {

v == [ c | i: Int in 0..n ];

}

}

3.3 Categories

Categories are the central concept for achieving genericity. We have already seen
an example of the definition of a category in Sect. 2.1. Again, categories may take
parameters, with possible dependencies among them. For instance:
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category Module (R: Ring) == {

This: Abelian_Group;

infix *: (R, This) -> This;

}

The This type can occur in the category fields in many ways. In the above example,
the lineThis: Abelian_Groupmeans thatModule R in particular includes all
fields ofAbelian_Group. More generally,This can be part of function argument
types, of return types, or part of the declaration of an ordinary variable. For instance,
the category To T below formalizes the concept of a type with an implicit converter
to T.

category Type == {}

category To (T: Type) == {

convert: This -> T;

}

Given an ordinary type T, we write x: T if x is an instance of T. In the case of a
category Cat, we write T:Cat if a type T satisfies the category, that is, if all category
fields are defined in the current context, when replacing This by T. Contrary to
Ocaml or Haskell, it follows that Mathemagix is very name sensitive: if we
want a type T to be a monoid, then we need a multiplication on T with the exact
name infix *. Of course, wrappers can easily be defined if we want different
names, but one of the design goals of Mathemagix is that it should be particularly
easy to consistently use standard names.

The natural analogues of categories in Ocaml and Haskell are modules and
type classes. In the case of Mathemagix, there is only one carrier This, but the
above examples show that it easy to mimick multiple carriers (or “multi-sorted sig-
natures”) using parameterized categories. Apart from this difference,Mathemagix
categories, Ocamlmodules and and Haskell type classes provide a similar degree
of expressivity.

3.4 Discrete Overloading

Themain strength of theMathemagix type system is that it allows for heavy though
fully type safe overloading. Similarly as in C++ or Aldor, discrete overloading of
a symbol is achieved by declaring it several times with different types:
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infix * (c: Double, p: Point): Point ==

point (c * p.x, c * p.y);

infix * (p: Point, c: Double): Point ==

point (p.x * c, p.y * c);

Contrary to C++, non function variables and return values of functions can also be
overloaded:

bar: Int == 11111;

bar: String == "Hello";

mmout << bar * bar << lf;

mmout << bar >< " John!" << lf;

Internally, theMathemagix type system associates a special intersection type And
(Int, String) to the overloaded variable bar. During function applications,
Mathemagix consistently takes into account all possiblemeanings of the arguments
and returns a possibly overloaded value which corresponds to all possible meanings
of the function application. For instance, consider the overloaded function

foo (x: Int): Int == x + x;

foo (s: String): String == reverse s;

Then the expression foo bar will be assigned the type And (Int, String).
An example of a truly ambiguous expression would be bar = bar, since it is
unclear whether we want to compare the integers 11111 or the strings "Hello".
True ambiguities will provoke compile time errors.

3.5 Parametric Overloading

The second kind of parametric overloading relies on the forall keyword. The
syntax is similar to template declarations inC++, with the difference that all template
parameters should be rigourously typed:

forall (M: Monoid)

fourth_power (x: M): M == x * x * x * x;

Internally, the Mathemagix type system associates a special universally
quantified type Forall (M: Monoid, M -> M) to the overloaded function
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fourth_power. In a similar way, values themselves can be parametrically over-
loaded. The main challenge for theMathemagix type system is to compute consis-
tently with intersection types and universally quantified types. For instance, we may
define the notation [ 1, 2, 3 ] for vectors using

forall (T: Type)

operator [] (t: Tuple T): Vector T == vector t;

This notation in particular defines the empty vector [] which admits the universally
quantified type Forall (T: Type, Vector T). In particular, and contrary
to what would have been the case in C++, it is not necessary to make the type of []
explicit as soon as we perform the template instantiation. Thus, writing

v: Vector Int == [];

w: Vector Int == [] >< []; // concatenation

would typically be all right. On the other hand, the expression #[] (size of the empty
vector) is an example of a genuine and parametric ambiguity.

In comparison with C++, it should be noticed in addition that parametric over-
loading is fully dynamic and that there are no restrictions on the use of ordinary vari-
ables as template parameters. Again, there may be dependencies between template
arguments.Mathemagix also implements the mechanism of partial specialization.
For instance, if we have a fast routine square for double precision numbers, then
we may define

fourth_power (x: Double): Double ==

square square x;

Contrary to C++, partial specialization of a function takes into account both the
argument types and the return type. This make it more natural to use the partial
specialization mechanism for functions for which not all template parameters occur
in the argument types:

forall (R: Number_Type) pi (): R == ...;

pi (): Double == ...;

3.6 Implicit Conversions

Onemajor difference betweenAldor andAxiom is thatAldor does not contain any
mechanism for implicit conversions. Indeed, in Axiom, the mechanism of implicit
conversions [33] partially depends on heuristics, which makes its behaviour quite
unpredictable in non trivial situations.We have done a lot of experimentationwith the
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introduction of implicit conversions in theMathemagix type system, and decided to
ban them from the core language. Indeed, systematic implicit conversions introduce
too many kinds of ambiguities, which are sometimes of a very subtle nature.

Nevertheless, the parametric overloading facilitymakes it easy to emulate implicit
conversions, with the additional benefit that it can be made precise when exactly
implicit conversions are permitted. Indeed, we have already introduced the To T
category, defined by

category To (T: Type) == {

convert: This -> T;

}

Hereconvert is the standard operator for type conversions inMathemagix. Using
this category, we may define scalar multiplication for vectors by

forall (M: Monoid, C: To M)

infix * (c: C, v: Vector M): Vector M ==

[ (c :> M) * x | x: M in v ];

Here c :> M stands for the application of convert to c and retaining only the
results of type M (recall that cmight have several meanings due to overloading). This
kind of emulated “implicit” conversions are so common that Mathemagix defines
a special notation for them:

forall (M: Monoid)

infix * (c :> M, v: Vector M): Vector M ==

[ c * x | x: M in v ];

In particular, this mechanism can be used in order to define converters with various
kinds of transitivity:

convert (x :> Integer): Rational == x / 1;

convert (cp: Colored_Point) :> Point == cp.p;

The first example is also called an upgrader and provides a simple way for the
construction of instances of more complex types from instances of simpler types.
The second example is called a downgrader and can be used in order to customize
type inheritance, in a way which is unrelated to the actual representation types in
memory.

The elimination of genuine implicit converters also allows for several optimiza-
tions in the compiler. Indeed, certain operations such as multiplication can be over-
loaded hundreds of times in non trivial applications. In the above example of scalar
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multiplication, the Mathemagix compiler takes advantage of the fact that at least
one of the two arguments must really be a vector. This is done using a special table
lookup mechanism for retaining only those few overloaded values which really have
a chance of succeeding when applying a function to concrete arguments.

3.7 Union Types, Structures and Symbolic Expressions

In Ocaml and Haskell, the type and data keywords allow for the definition of
unions and more general data types whose instances are freely built up from a finite
number of explicitly given constructors. These languages also provide a powerful
system of pattern matching in order to efficiently process instances of such types. In
Mathemagix, structures offer a similar functionality. For instance, we may define
lists using

structure List (T: Type) == {

null ();

cons (head: T, tail: List T);

}

This declaration automatically introduces corresponding predicates null? and
cons?, as well as accessors .head and .tail. For instance, the length of a list
can be computing using

forall (T: Type)

prefix # (l: List T): Int ==

if null? l then 0 else #l.tail + 1;

Alternatively, one may use pattern matching as in Ocaml:

forall (T: Type)

prefix # (l: List T): Int ==

match l with {

case null () do return 0;

case cons (_, t: List T) do return #t + 1;

}

The fact that this code is slightly more verbose than its Ocaml analogue stems from
the fact that, in accordance with the general design of Mathemagix, all implicit
declarations occurring in the patterns (such as t: List T) should be explicitly
typed by the user.Mathemagix also supports the followingHaskell style of pattern
matching:
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forall (T: Type) {

prefix # (l: List T): Int := 0;

prefix # (cons (_, t: List T)): Int := #t + 1;

}

Mathemagix structures are in particular very useful for the definition of symbolic
expressions. Indeed, such expressions are typically finite unions of special types
of expressions, such as literal names, compound expressions, scalar expressions
(integers, rationals, etc.), sums, products, polynomials, matrices, etc. For this reason,
Mathemagixprovides a fewuseful extensions of the abovemechanismswith respect
to Ocaml and Haskell:

1. The possibility to define open structures, whose set of basic constructors can be
extended a posteriori. This typically allows the user to enrich the Symbolic
type with a user defined kind of “symbolic skew polynomials”.

2. The possibility to add new user defined patterns, besides the patterns which di-
rectly correspond to the constructors of the structure.

3. Some syntactic sugar for efficient dispatching of routines based on the kind of
structure we are dealing with (e.g. there are two kinds of lists: null lists and
cons lists).

We plan to give a full description of these features and how to exploit them in another
paper.

3.8 Syntactic Sugar

Functions with several arguments use a classical tuple notation. It would have been
possible to follow theOcaml andHaskell conventions, which rely on currying, and
rather regard a binary function f : T 2 → T as a function of type T → (T → T ).
Although this convention is more systematic and eases the implementation of a com-
piler, it is also non standard in mainstream mathematics; in Mathemagix, we have
chosen to keep syntax as close as possible to classical mathematics. Furthermore,
currying may be a source of ambiguities in combination with overloading. For in-
stance, the expression - 1 might be interpreted as the unary negation applied to 1,
or as the operator x �→ 1 − x .

In order to accomodate for functions with an arbitrary number of arguments and
lazy streams of arguments, Mathemagix uses a limited amount of syntactic sugar.
Given a type T, the type Tuple T stands for an arbitrary tuple of arguments of
type T, and Generator T stands for a lazy stream of arguments of type T. For
instance,(1, 2)would be a typical tuple of typeTuple Int and0..10 a typical
generator of typeGenerator Int. For instance, the prototype of a functionwhich
evaluates a multivariate polynomial at a tuple of points might be
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forall (R: Ring)

eval (P: MVPol R, p: Tuple R): R == ...;

Given a polynomial P: MVPol Int, this would allow us to write eval (p,
1, 2, 3). If we had used vectors or lists instead of tuples, then eval would
always take exactly two arguments, and we would be forced to write eval (p,
cons (1, cons (2, cons (3, null ())))). The syntactic sugar takes
care of the necessary conversions between tuples and generators. For instance, given
a polynomial P: MVPol Int, the following would be valid evaluations:

eval (P, 1, 2..8, (9, 10), 11..20);

eval (P, (iˆ2 | i: Int in 0..100));

Notice that the notation of function application (or evaluation) can be overloaded
itself:

postfix .() (fs: Vector (Int -> Int),

x: Int): Vector Int ==

[ f x | f: Int -> Int in fs ];

3.9 Future Extensions

There are various natural and planned extensions of the current type system.
One of the most annoying problems that we are currently working on concerns

literal integers: the expression 1 can naturally be interpreted as a machine Int or
as a long Integer. Consequently, it is natural to consider 1 to be of type And
(Int, Integer). For efficiency reasons, it is also natural to implement each of
the following operations:

infix =: (Int, Int) -> Boolean;

infix =: (Integer, Integer) -> Boolean;

infix =: (Int, Integer) -> Boolean;

infix =: (Integer, Int) -> Boolean;

Thismakes an expression such as1 = 1highly ambiguous.Our current solutionper-
mits the user to prefer certain operations or types over others. For instance, we would
typically prefer the type Integer over Int, since Int arithmetic might over-
flow. However, we still might prefer infix =: (Int, Int) -> Boolean
overinfix =: (Int, Integer) -> Boolean. Indeed, giveni: Int,we
would like the test i = 0 to be executed fast.

One rather straightforward extension of the type system is to consider other “logi-
cal types”. Logical implication is already implemented using the assume primitive:
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forall (R: Ring) {

...

assume (R: Ordered)

sign (P: Polynomial R): Int ==

if P = 0 then 0 else sign P[deg P];

...

}

Equivalently, we might have used a quantification forall (R: Ordered
_Ring) for the declaration of sign, where Ordered_Ring is the “join” of the
categories Ring and Ordered.

Similarly, the implementation of existentially quantified types will allow us to
write routines such as

forall (K: Field)

exists (L: Algebraic_Extension K)

roots (p: Polynomial K): Vector L == ...;

Internally, an instance x of a type of the form exists (C: Cat) F(C) would
be represented by a pair (C: Cat, x: F(C)).

We also plan to extend the syntactic sugar. For instance, given two aliases i,
j: Alias Int, we would like to be able to write (i, j) := (j, i) or (i,
j) += (1, 1). A macro facility should also be included, comparable to the one
that can be found in Scheme. Some further syntactic features might be added for
specific areas. For instance, in the Macaulay2 system [6, 14], one may use the
declaration

R = ZZ[x,y]

for the simultaneous introduction of the polynomial ring Z[x, y] and the two coor-
dinate functions x, y : Z[x, y].

In the longer future, we would like to be able to formally describe mathematical
properties of categories and algorithms, and provide suitable language constructs for
supplying partial or complete correctness proofs.

4 Semantics and Compilation

In this sectionwewill briefly sketch the semantics of theMathemagix language. For
this purpose it is convenient to schematize the language constructs from the previous
section by remaining as close as possible to more conventional typed λ-calculus,
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but with special notations for categories and overloading. Actually, Mathemagix
involves two main typed languages:

1. The source language contains constructs for building ambiguous expressions and
their types. Such overloaded source programs always carry explicit types.

2. The target language extends the source language with notations for the explicit
disambiguation of overloaded expressions. All valid target programs are unam-
biguous.

The job of the compiler is to transform source programs into target programs.
The programs in the target language can be interpreted quite naturally in the
language of untyped λ-calculus. Hence, in order to describe the semantics of
Mathemagix, it suffices to specify how the compiler transforms source program
into target programs, and how target programs should be interpreted in classical
untyped λ-calculus.

We will use a few notational conventions. For the sake of brevity, we will now
use superscripts for specifying types. For instance, λx Integer · (x × x)Integer denotes
the function x ∈ Z �→ x2. For the sake of readability, we will also denote types
T , Int, etc. using capitalized identifiers and categories C , Ring, etc. using bold
capitalized identifiers. Similarly, we will use the terms “type expressions” and
“category expressions” whenever an expression should be considered as a type or
category. Notice however that this terminology is not formally enforced by the
language itself.

4.1 Source Language

The source language contains three main components:

4.1.1 Typed Lambda Expressions

The first component consists of ordinary typed λ-expressions, and notations for their
types:

1. Given expressions f and x , we denote function application by f (x), ( f )x , or f x .
2. Given a variable x , an expression y and type expressions T and U , we denote by

λxT .yU the lambda expression which sends x of type T to y of type U .
3. We will denote by T → U the type of the above λ-expression. In the case when

U depends on x , we will rather write T → Ux for this type.

Hence, all lambda expressions are typed and there are no syntactic constraints on
the types T and U . However, “badly typed” expressions such as λx Int · xBoolean will
have no correct interpretation in the section below.
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4.1.2 Declarations

The second part of the language concerns declarations of recursive functions, classes
and categories.

1. Given variables x1, . . . , xn , type expressions T1, . . . , Tn and expressions y1, . . . ,

yn, z, we may form the expression
(

xT1
1 ≡ y1, . . . , xTn

n ≡ yn

)
.z. The infor-

mal meaning is: the expression z, with mutually recursive bindings xT1
1 ≡

y1, . . . , xTn
n ≡ yn .

2. Given variables x1, . . . , xn and type expressions T1, . . . , Tn , wemay form the data

type class
〈
xT1
1 , . . . , xTn

n

〉
. For instance, a list of integers might be declared using(

List ≡ class
〈
nilList, consInt→List→List

〉)
.z. We also introduce a special variable

Class which will be the type of class
〈
xT1
1 , . . . , xTn

n

〉
.

3. Given variables x1, . . . , xn, y and type expressions T1, . . . , Tn,U , we may form

the category yU
〈
xT1
1 , . . . , xTn

n

〉
. For instance, we might introduce the Monoid

category using
(
Monoid ≡ ThisClass 〈×This→This→This

〉)
.z.

4.1.3 Overloaded Expressions

The last part of the language includes explicit constructs for overloaded expressions
and their types:

1. Given two expressions x and y, we may form the overloaded expression x ∧ y.
2. Given type expressions T and U , we may form the intersection type T ∩ U .
3. Given a variable x , a type expression T and an expression y, we may form the

parametrically overloaded expression
∧

xT y.
4. Given a variable x , a type expression T and a type expression U , we may form

the universally quantified type expression
∧

xT U .

In the last two cases, the variable x is often (but not necessarily) a type variable A
and its type T a category C .

4.2 Target Language

The source language allows us to define an overloaded function such as

fooInt→Int∩String→String

≡
(
λx Int · (x × x)Int

)
∧

(
λxString · (x �� x)String

)
(1)



418 J. van der Hoeven

In a context where 1 is of type Int, it is the job of the compiler to recognize that foo
should be interpreted as a function of type Int → Int in the expression foo(1).

In order to do so, we first extend the source language with a few additional
constructs in order to disambiguate overloaded expressions. The extended language
will be called the target language. In a given context C, we next specify when a
source expression x can be interpreted as a non ambiguous expression x̂ in the target
language. In that case, we will write C � x � x̂ and the expression x̂ will always
admit a unique type.

For instance, for foo as above, we introduce operators π1 and π2 for accessing the
two possible meanings, so that

{
fooInt→Int∩String→String, 1Int

}
� foo(1) � π1 (foo) (1).

For increased clarity, we will freely annotate target expressions by their types when
appropriate. For instance, we might have written π1 (foo)Int→Int (1Int)Int instead of
π1 (foo) (1).

4.2.1 Disambiguation Operators

In the target language, the following notations will be used for disambiguating over-
loaded expressions:

1. Given an expression x , we may form the expressions π1(x) and π2(x).
2. Given expressions x and y, we may form the expression x[y]. Here x should be

regarded as a template and x[y] as its specialization at y.

There are many rules for specifying how to interpret expressions. We list a few of
them:

C � x � x̂ T ∩U

C � x � π1(x̂)T

(C � x � x̂ T
) ∧ (C � y � ŷU

)
C � (x ∧ y) � (x̂ ∧ ŷ)T ∩U

(
C � x � x̂

⋂
yT U

)
∧ (C � z � ẑT

)
C � x � x̂[ẑ]U [ẑ/y]

(C � T � T̂
) ∧ (C ∪ {x T̂ } � y � ŷ) ∧ (C � U � Û

)
C �

(
λxT · yU

)
� (λx T̂ · ŷÛ )T̂ →Ûx

Here U [ẑ/y] stands for the substitution of ẑ for y in U . For instance, given an
ambiguous expression x which may be interpreted as x̂ T ∩U in the context C, the first
rule specifies that we may disambiguate and interpret it as π1(x̂)T as well (the other
disambiguazation being π2

(
x̂U

)
. For example,
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{
fooInt→Int∩String→String, 1Int

}
� foo � π1 (foo)

Int→Int .

4.2.2 Category Matching

The second kind of extensions in the target language concern notations for specifying
how types match categories:

1. Given expressions T , f1, . . . , fn and C, we may form the expression T 〈 f1, . . . ,
fn〉 ⇑ C. The informal meaning of this expression is “the type T considered as
an instance of C, through specification of the structure f1, . . . , fn”.

2. Given an expression T , we may form T ⇓, meaning “forget the category of T ”.
3. Given expressions x and T , we may form the expression x ↑ T , which allows us

to cast to a type T of the form T = U 〈 f1, . . . , fn〉 ⇑ C.
4. Given an expression x , we may form x ↓.
In order to cast a given type T B to a given category C = ThisB

〈
x X1
1 , . . . , x Xn

n

〉
, all

fields of the category should admit an interpretation in the current context:

∀i,
(C � Xi [T/This] � X̂i

) ∧ (C � xi � x̂ X̂i
i )

C � T � T 〈x̂1, . . . , x̂n〉 ⇑ C
.

Assuming in addition that C � y � ŷT , we also have C � y � ŷ ↑(
T 〈x̂1, . . . , x̂n〉 ⇑ C

)
. There are further rules for casting down.

4.3 Compilation

4.3.1 Schematic Behaviour

A target expression xT is said to be reduced if its type T is not of the form U ∩ V ,⋂
yY U , or U ⇑ C or U ⇓. The task of the compiler is to recursively determine

all reduced interpretations of all subexpressions of a source program. Since each
subexpression x may have several interpretations, we systematically try to represent
the set of all possible reduced interpretations by a conjunction x̃ of universally quan-
tified expressions. In case of success, this target expression x̃ will be the result of the
compilation in the relevant context C, and we will write C � x �∗ x̃ .

Let us illustrate this idea on two examples. With f oo as in (1) and cString∩ Int,
there are two reduced interpretations of foo (c):

{
fooInt→Int∩String→String, cString∩ Int

}

� foo (c) � π1 (foo) (π2 (c))
Int ,
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{
fooInt→Int∩String→String, cString∩ Int

}

� foo (c) � π2 (foo) (π1 (c))
String .

Hence, the result of the compilation of foo (c) is given by

{
fooInt→Int∩String→String, cString∩ Int

}

� foo (c) �∗ (π1 (foo) (π2 (c)) ∧ π2 (foo) (π1 (c)))
Int∩String .

In a similar way, the result of compilation may be a parametrically overloaded
expression:

{bar
⋂

T C Int→List T , 1Int} � bar(1) �∗ ∧
T C

bar [T ] (1)List T .

4.3.2 Resolution of Ambiguities

Sometimes, the result x̃ of the compilation of x is a conjunction which contains
at least two expressions of the same type. In that case, x is truly ambiguous, so
the compiler should return an error message, unless we can somehow resolve the
ambiguity. In order to do this, the idea is to define a partial preference relation � on
target expressions and to keep only those expressions in the conjunction x̃ which are
maximal for this relation.

For instance, assume thatwe have a function square of type (
⋂

MMonoid M → M)∩
Int → Int and the constant 2012 of type Int. In Sect. 3.5, we have seen that Math-
emagix supports partial specialization. Now π2 (square) is a partial specialization of
π1 (square), but not the inverse. Consequently, we should strictly prefer π2 (square)
over π1 (square), and π2 (square) (2012) over π2 (square) [I ] (2012 ↑ I ) ↓, where
I = Int

〈×Int→Int→Int
〉 ⇑ Monoid.

As indicated in Sect. 3.9, we are currently investigating further extensions of the
preference relation � via user provided preference rules.

4.3.3 Implementation Issues

In absence of universal quantification, the search process for all reduced interpre-
tations can in principle be designed to be finite and complete. The most important
implementation challenge forMathemagix compilers therefore concerns universal
quantification.

The main idea behind the current implementation is that all pattern matching is
done in two stages: at the first stage, we propose possible matches for free variables
introduced during unification of quantified expressions. At a second stage, we verify
that the proposed matches satisfy the necessary categorical constraints, and we rerun
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the pattern matching routines for the actual matches. When proceeding this way, it
is guaranteed that casts of a type to a category never involve free variables.

Let us illustrate the idea on the simple example of computing a square. So as-
sume that we have the function square of type

⋂
MMonoid M → M in our con-

text, as well as a multiplication × : Int → Int → Int. In order to compile the
expression square

(
2012Int

)
, the algorithm will attempt to match Int → F1 with⋂

MMonoid M → M for some free variableF1. At a first stage, we introduce a new free
variableFMonoid

2 andmatchFMonoid
2 → FMonoid

2 against Int → F1. This check suc-
ceeds with the bindings FMonoid

2 := Int and F1 := Int, but without performing any
type checking for these bindings. At a second stage, we have to resolve the innermost
binding FMonoid

2 := Int and cast Int to Monoid. This results in the correct proposal
FMonoid
2 := I for the free variable, where I ≡ Int

〈×Int→Int→Int
〉 ⇑ Monoid. We

finally rematch I → I with Int → F1 and find the return type F1 := I .
In practice the above idea works very well. Apart from more pathological theo-

retical problems that will be discussed below, the only practically important problem
that we do not treat currently, is finding a “smallest common supertype” with respect
to type conversions (see also [33]).

For instance, let f be a function of type
⋂

RClass〈〉
⋂

T IntoR T → T → R. What

should be the type of f xy, where x XClass〈〉
and yY Class〈〉

are such that X and Y are
different? Theoretically speaking, this should be the type

⋂
RC R, where C is the

category T Class〈convertX→T , convertY→T 〉. However, the current pattern matching
mechanism in the Mathemagix compiler will not find this type.

4.3.4 Theoretical Problems

It is easy to write programs which make the compiler fail or loop forever. For in-
stance, given a context with the category In (T ) ≡ ThisClass 〈

convertThis→T
〉
and

functions convert and f of types
⋂

T Class F (T ) → T and
⋂

T In(Int) T → T , the com-
pilation of f

(
xString

)
will loop. Indeed, the compiler will successively search for

converters String → Int, F (String) → Int, F (F (String)) → Int, etc. Currently,
some safeguards have been integrated which will make the compiler abort with an
error message when entering this kind of loops.

The expressiveness of the type system actually makes it possible to encode any
first order theory directly in the system. For instance, given a binary predicate P
and function symbols f, g, the statement ∀x, P( f (x), g(x)) ⇒ P(g(g(x)), f (x))
might be encodedby the declaration of a function P̄ of type

⋂
x̄ C ḡ(ḡ(x̄)) → f̄ (x̄) →

Boolean, where C = T Class〈P̄ f̄ (T )→ḡ(T )→Boolean〉.
These negative remarks are counterbalanced by the fact that the type system is not

intended to prove mathematical theorems, but rather to make sense out of commonly
used overloaded mathematical notations. It relies upon the shoulders of the user
to use the type system in order to define such common notations and not misuse it
in order to prove general first order statements. Since notations are intended to be
easily understandable at the first place, they can usually be given a sense by following
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simple formal procedures. We believe that our type system is powerful enough to
cover most standard notations in this sense.

The above discussion shows that we do not aim completeness for the Math-
emagix system. So what about soundness? The rules for interpretation are designed
in such a way that all interpretations are necessarily correct. The only possible prob-
lems which can therefore occur are that the compiler loops forever or that it is not
powerful enough to automatically find certain non trivial interpretations.

We also notice that failure of the compiler to find the intended meaning does
not necessarily mean that we will get an error message or that the compiler does
not terminate. Indeed, theoretically speaking, we might obtain a correct interpreta-
tion, even though the intended interpretation should be preferred. In particular, it is
important to use the overloading facility in such away that all possible interpretations
are always correct, even though some of them may be preferred.

Finally, an interesting research question is to investigate which sublanguages of
Mathemagix do admit a complete type system. For instance, if we exclude paramet-
ric overloading, then the type system becomes complete. Similarly, if parameteric
overloading is subject to additional constraints, then the type system might still be
complete. For instance, what if the category only contains functions of the type
T1 → · · · → Tn → U , where at least one of the types Ti involves This, and
where each of the types T1, . . . , Tn,U is either equal to This or free from T his?
Another natural kind of requirement in the case of upgraders would be to insist on
always upgrading “simpler” types (such as R) into more “complex” types (such as
Polynomial (R)), and never the other way around. Similarly, downgraders should
always downgrade more complex types into simpler types.

4.4 Execution

Given an expression x on which the compilation process succeeds, we finally have
to show what it means to evaluate x . So let x̃ with ∅ � x �∗ x̃ be the expression
in the target language which is produced by the compiler. The target language has
the property that it is quite easy to “downgrade” x̃ into an expression of classical
untyped λ-calculus. This reduces the evaluation semantics of Mathemagix to the
one of this calculus.

Some of the most prominent rules for rewriting x̃ into a term of classical untyped
λ-calculus are the following:

1. Overloaded expressions x ∧ y are rewritten as pairs λ f · f xy.
2. The projections π1 and π2 are simply true : λx .λy · x and false : λx · λy · y.
3. Template expressions

∧
xT y are rewritten as λ-expressions λx · y.

4. Template instantiation x[y] is rewritten into function application x(y).

5. Instances T
〈
xU1
1 , . . . , xUn

n

〉
⇑ C of categories are implemented as n-tuples

λ f · T x1 · · · xn .
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For instance, consider the template
∧

MMonoid λx M · (x × x)M . After compilation,
this template is transformed into the expression λM · λx .

(
π1
1M

)
xx , where πn

i =
λx1. . . . .λxn · xi .

One of the aims of the actual Mathemagix compiler is to be compatible with
existing C libraries and C++ template libraries. For this reason, the backend
of Mathematics really transforms expressions in the target language into C++
programs instead of terms of untyped λ-calculus.

5 Ongoing Work and Perspectives

The current Mathemagix compiler available from www.mathemagix.org
implements the type systemdescribed in this paper. In addition, the language contains
features for using C++ template libraries in a generic way. Until recently, we only
relied on C++ for the development of our libraries, so the Mathemagix system
provides a range of C++ template libraries for mathematical computations [24, 37].

Now thatwehave completed the implementation of a basic version of the compiler,
our first major challenge is to rewrite the most important C++ template libraries
directly inMathemagix. This processwill involve further finetuning of the language
and various extensions which will control how to optimize things. As soon as we
have gained more practical experience, we plan to give a more detailed account on
the advantages of the Mathemagix language for the implementation of computer
algebra libraries.

Concerning efficiency and code optimization, we aim to give the user access
to very low level details, such as SIMD instructions or the layout of long integers
in memory, while providing powerful mechanisms for abstraction. The language
will also provide fine grained control over when a template will be instantiated for
particular parameters and when to execute the generic code. One of our aims is that
the compiler will be able to generate code of a quality comparable to the “codelets”
in FFTW3 [8, 9], but for a wide range of problems, and without the need to switch
between various languages (we recall that FFTW3 is a C library which relies on
Ocaml for the generation of codelets).

Plans for the longer future include support for various types of parallellism and
interoperability with other general purpose languages and computer algebra systems.
We also hope to interfaceMathemagixwith one ormore automatic theoremprovers,
which would allow us to specify the semantics of programs in an even more detailed
way.
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Resultant-Free Computation of Indefinite
Hyperexponential Integrals

Xiaoli Wu

Abstract In this note, we describe a special structure of differential Gosper forms
of rational functions, which allows us to design a new and simple algorithm for con-
structing differentialGosper formswithout the resultant computation and integer-root
finding.Moreover, we present an algorithm for computing a universal denominator of
the first-order linear differential equation which the Almkvist–Zeilberger algorithm
solves.

1 Introduction

The Gosper algorithm [1] and its continuous analogue [2] have played an important
role in symbolic integration and summation. Zeilberger developed his fast algo-
rithms [2, 3] for creative telescoping based on the parametrization of the Gosper
algorithm and its continuous analogue. These algorithms allow us to verify many
combinatorial identities in a systematic way [4].

In this note, we focus on the discussion of the Almkvist–Zeilberger algorithm [2],
which is a differential analogue of the Gosper algorithm. Throughout, we let k be a
field of characteristic zero, k[x] be the ring of polynomials in x over k, and k(x) be
the field of rational functions in x over k. Let ′ denote the usual derivation d/dx on
the field k(x). For a polynomial p ∈ k[x], let lc(p) denote the leading coefficient
of p. A field E is called a differential extension of k(x) if it contains k(x) and
′ extends as a derivation on E .
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Definition 1 Let E be a differential extension of k(x). A nonzero element h ∈ E is
said to be hyperexponential over k(x) if the logarithmic derivative h′/h is in k(x).
The rational quotient h′/h is called the certificate of h.

A hyperexponential function h over k(x) is said to be hyperexponential integrable
if there exists another hyperexponential function g such that g′ = h. The Almkvist–
Zeilberger algorithm decides whether a given hyperexponential function is hyperex-
ponential integrable or not. The crucial step is the computation of differential Gosper
forms of rational functions. After this, the integrability problem is reduced to find-
ing polynomial solutions of a first-order linear differential equation with polynomial
coefficients. The first result of this note is a special property of differential Gosper
forms, which leads to a new way to compute differential Gosper forms by combining
an idea in [5, Sect. 3] such that the computation of resultants and integer-root finding
are avoided.

Instead of the Almkvist–Zeilberger algorithm, one can solve the integrability
problem for hyperexponential functions using Abramov’s algorithm [6]. To decide
whether h is hyperexponential integrable or not is equivalent to find rational solutions
of the equation

y′ + f y = 1, (1)

where f is the certificate of h. Abramov’s algorithm first computes a polynomial d ∈
k[x] such that the denominator of any rational solution divides d. This polynomial is
called a universal denominator for Eq. (1). With universal denominators, we reduce
the problem to finding polynomial solutions of a related first-order linear differential
equation. The second result of this note is to give a special way to find a universal
denominator for Eq. (1).

2 The Almkvist–Zeilberger Algorithm

Leth be anonzero hyperexponential functionover k(x) and let f ∈ k(x)be the certifi-
cate of h. If h is hyperexponential integrable, i.e., h = g′ for some hyperexponential
function g over k(x), then g = ah for some a ∈ k(x), since g′/g ∈ k(x). Moveover,
the rational function a is a rational solution of Eq. (1). The Almkvist–Zeilberger
algorithm is a special method for solving this first-order differential equation.

Definition 2 For a rational function f ∈ k(x), we call the triple (p, q, r) ∈ k[x]3 a
differential Gosper form of f if

f = p′

p
+ q

r
, where gcd(r, q − ir ′) = 1 for all integer i ≥ 0. (2)

We first recall the algorithm for computing differential Gosper forms in [2, Sect. 5].
The algorithm relies on the following lemma.
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Lemma 1 Let f = u/v ∈ k(x) be such that u, v ∈ k[x] and gcd(u, v) = 1
and let j ∈ N. If w := gcd(v, u − jv′) is a polynomial of positive degree, then the
pair (ū, v̄) ∈ k[x]2 with v̄ = v/w and ū = (u− jw′v̄)/w satisfies gcd(v̄, ū− j v̄′) = 1.

Proof First, we show thatw | (u− jw′v̄). It is easy to see that j �= 0 because gcd(u, v)
is 1. Since v = wv̄, we have u − jv′ = u − jw′v̄ − jwv̄′. Therefore w|(u − jv′)
implies that w|(u − jw′v̄). By definition of w, we have gcd(v/w, (u − jv′)/w) = 1.
A direct calculation yields that

ū − j v̄′ = u − jw′v̄
w

− j v̄′ = u − jw′v̄ − jwv̄′

w
= u − jv′

w
.

So we get gcd(v̄, ū − j v̄′) = 1. �

To decide whether there exists a nonnegative integer j such that gcd(v, u − jv′)
is of positive degree, one way is to compute the nonnegative integer roots of the
resultant R := resultantx (v, u − zv′) ∈ k[z]. The process of computing differential
Gosper forms is starting from p := 1, q := u and r := v. If w := gcd(v, u − jv′) is
of positive degree for some nonnegative integer j , then we update

p ← pw j , r ← r/w, q ← q − jw′(r/w)

w
.

This process is repeated until gcd(r, q−ir ′) = 1 for all i ∈ N. The proposition below
shows that any irreducible factor of p computed by the process above is a factor of v
with multiplicity one, which is a special case of Fact 8.31 in [7]. For completeness,
we provide a more direct proof of this fact.

Proposition 1 Let u, v ∈ k[x] be such that gcd(u, v) = 1 and let v = v1v22 · · · vm
m

be the squarefree factorization of v. Let w be an irreducible polynomial in k[x].
If w| gcd(v, u − jv′) for some j ∈ N, then w|v1.

Proof Suppose that w|vi for some i ∈ {2, . . . , m}. Then w|v′ since gcd(v, v′) =
v2v23 · · · vm−1

m . Since w|(u − jv′), we have w|u, which implies that w| gcd(u, v). This
is a contradiction with the assumption that gcd(u, v) = 1. �

Remark 1 The polynomial v1 in Proposition 1 can be computed as follows:
(i). Compute ṽ = gcd(v, v′) and v∗ = v/ṽ. (ii). Compute v̄ = gcd(ṽ, ṽ′) and v∗∗ =
ṽ/v̄. (iii). v1 = v∗/v∗∗.

Combining Proposition 1 with an idea in [5, Sect. 3], we can compute differential
Gosper forms of the polynomial p without resultant calculation and integer-root
finding.

Algorithm 1 Input: A rational function f = u/v ∈ k(x)

Output: A differential Gosper form (p, q, r) of f .

1. Compute the product v1 of multiplicity-one factors of v as in Remark 1;
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2. Factor v1 = p1 · · · pn into irreducible factors.
3. Set p := 1. For i from 1 to n, test whether there exists λi ∈ N such that

pi | (u − λi p′
i (v/pi )). (3)

If such a nonnegative integer λi exists, then update p := pλi
i p.

4. Set q/r := f − p′/p, and return (p, q, r).

In Step 3, we can observe that there is either no such λi or a unique one, and there
cannot be more than one such number.

Remark 2 For an irreducible polynomial pi , the test in Eq. (3) is very simple. It
suffices to decide whether the ratio rem(u, pi )/rem(p′

i (v/pi ), pi ) is a nonnegative
integer or not. As noted in [5, Sect. 3], the algorithm above, even though involving
the irreducible factorization in Step 2, is less time-consuming than that of resultant
calculation and integer-root finding in practice.

After obtaining a differential Gosper form (p, q, r) of f , the problem of finding
rational solutions of y′ + f y = 1 is reduced to finding polynomial solutions of the
equation

r z′ + (q + r ′)z = p.

If this equation has a polynomial solution s ∈ k[x], then h is hyperexponential
integrable with g = srh/p. One can observe that the computation of differential
Gosper forms not only predicts the denominator of the rational solutions but also
computes part of the numerator of the rational solutions. This advantage allows the
Almkvist–Zeilberger algorithm to outperform other methods in practice.

It is easy to see that a rational function f ∈ k(x) is hyperexponential integrable
if and only if f = g′ for some g ∈ k(x). For rational functions, there are many
classical methods that solve the integrability problem [8–10]. For this special class
of inputs, we present a necessary condition on the integrability, which is used to show
the irrationality of certain integrals of rational functions.

Lemma 2 Let f = s/t ∈ k(x) with s, t ∈ k[x] and gcd(s, t) = 1. Let t =
t1t22 · · · tm

m be the squarefree factorization of t over k. If f = g′ for some g ∈ k(x),
then t1 ∈ k.

Proof Suppose that f = g′ for some g ∈ k(x). Write g = a/b with a, b ∈ k[x]
and gcd(a, b) = 1. The equality f = g′ implies that

sb2 = t (a′b − ab′). (4)

Suppose that p ∈ k[x] is an irreducible factor of t but p2 � t . Then t = pt̄ with p � t̄ .
Substituting this into Eq. (4) yields

sb2 = pt̄(a′b − ab′). (5)
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Since p | sb2 and p � s, we have p | b. Write b = pnb̄ with p � b̄, where n ∈ N.
Then

sp2nb̄2 = pt̄(a′ pnb̄ − anp′ pn−1b̄ − apnb̄′).

Note that the left hand-side is divisible by pn+1. Thus we get p | nap′ t̄ b̄, which is a
contradiction. So the polynomial t has no multiplicity-one factor, i.e., t1 ∈ k. �

Example 1 By Lemma 2, the rational function 1/x �= r ′(x) for any rational func-
tion r ∈ k(x), which is equivalent to that

∫
1/x dx = log(x) is not a rational function.

3 Universal Denominators

Abramov’s algorithm [6] is used to find rational solutions of linear differential equa-
tions with polynomial coefficients of any order. We can specialize Abramov’s algo-
rithm to find rational solutions of the equation

y′ + f y = 1. (6)

The following proposition shows the structure of the universal denominators of
Eq. (6).

Proposition 2 Let f = u/v ∈ k(x) be such that gcd(u, v) = 1 and let y =
a/b ∈ k(x) with gcd(a, b) = 1 be a rational solution of Eq. (6). Let v1 be the
product of multiplicity-one factors of v. If p ∈ k[x] is an irreducible factor of b with
multiplicity λ, then p | v1 and λ = rem(u, p)/rem(p′v/p, p) ∈ N.

Proof Substituting f = u/v and y = a/b into Eq. (6) yields

(a′v + ua)b − avb′ = b2v. (7)

Assume that p is an irreducible factor of b with multiplicity λ. Write b = pλb̄
with p � b̄. Replacing b by pλb̄ in Eq. (7), we get

(a′v + ua)pλb̄ − av(λp′ pλ−1b̄ + pλb̄′) = p2λb̄2v. (8)

The right side of Eq. (8) is divisible by pλ, so is the left one. Thence we obtain p |
λav p′b̄. Since p is coprime to a, p′, and b̄, we have p | v. Write v = pv̄. Substituting
this into Eq. (8) and dividing both sides by pλ yield

ab̄(u − λv̄ p′) + pv̄(a′b̄ − ab̄′) = pλ+1b̄2v̄. (9)

The right side of Eq. (9) is divisible by p, so is the left one. Hence p | (u − λv̄ p′).
Since both u and p′ are not divisible by p, so v̄ is not divisible by p, which implies
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that p | v1. Moreover, the divisibility p | (u−λv̄ p′) implies that λ = rem(u, p)/rem
(p′v̄, p) ∈ N. �

Remark 3 A more systematic way to show results as Proposition 2 is via order
estimates (c.f. see [11, Chap.4]). The Proposition above can be shown by observing
that the order of the derivative of f at some pole of f differs from the order of f at
this pole by exactly one. Nevertheless, we elaborate those ideas in the proof above.

We present an algorithm for computing a universal denominator of Eq. (6) by
using Proposition 2.

Algorithm 2 Input: A rational function f = u/v ∈ k(x)

Output: A polynomial b ∈ k[x] such that b is a universal denominator of Eq. (6).

1. Compute the product v1 of multiplicity-one factors of v as in Remark 1;
2. Factor v1 = p1 · · · pn into irreducible factors.
3. Set b := 1. For i from 1 to n, test whether there exists λi ∈ N such that

pi | (u − λi p′
i (v/pi )). (10)

If such a nonnegative integer λi exists, then update b := pλi
i b.

4. Return b.

Remark 4 One can see that the process above is almost the same as that in Algo-
rithm1. It is quite amysterious step in theAlmkvist–Zeilberger algorithm that passing
from rational solutions to polynomial solutions via differential Gosper forms. How-
ever, we give a more direct way via Proposition 2. A similar result in the discrete
case for hypergeometric terms was shown by Chen et al. in [12].

All that remains is to look for a polynomial a ∈ k[x] satisfying Eq. (7). To do
this, we need an upper bound μ on the degree of a. The degree bound estimation
will proceed in three cases.

Case 1. Assume that deg(u) > deg(v) − 1. Then the highest degree of all terms on
the left hand-side of Eq. (7) is deg(u) + deg(b) + deg(a), which leads to

μ := deg(v) + deg(b) − deg(u).

Case 2. Assume that deg(u) = deg(v) − 1. Let

u = lc(u)xdeg(v)−1 + lower terms and v = lc(v)xdeg(v) + lower terms.

2.1. The following equation has no nonnegative integer solution for μ

μlc(v) − deg(b)lc(v) + lc(u) = 0. (11)

Equating degrees on both sides of Eq. (7) leads to
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μ := deg(b) + 1.

2.2. Equation (11) has a nonnegative integer solution μ0 for μ. Then

μ = max{μ0, deg(b) + 1}.

Case 3. Assume that deg(u) < deg(v)−1. In this case,μ0 = deg(b) is a nonnegative
integer solution of

μ − deg(b) = 0,

which is derived from computing the leading coefficient of ba′ − ab′. So
we can take

μ = max{μ0, deg(b) + 1} = deg(b) + 1.

Remark 5 In Case 2.2, we claim that Eq. (7) has no polynomial solution if μ0 =
deg(b) + 1. Suppose there exists a polynomial solution a ∈ k[x]. Note that the
leading coefficient of the left hand-side of Eq. (7) is

lc(a)lc(b)(deg(a)lc(v) − deg(b)lc(v) + lc(u)).

Suppose that deg(a) �= μ0. Then the degree of the left hand-side of Eq. (7) is not
equal to 2 deg(b) + deg(v), a contradiction. Suppose that deg(a) = μ0. Then the
degree of the left hand-side of Eq. (7) is less than 2 deg(b) + deg(v), since μ0 is a
root of

μlc(b)(deg(a)lc(v) − deg(b)lc(v) + lc(u)).

This also leads to a contradiction. So the claim holds.

The procedure on bound estimation is similar to the one in [2]. However, in
Remark 5, we give a necessary condition that can decide whether there exists a
polynomial solution or not quickly. In a nutshell, the degree bound is essential to the
coding of our algorithm. Now our algorithm is summarized as follows.

Algorithm 3 Input: A hyperexponential function h with certificate f ∈ k(x).
Output: A hyperexponential function g such that g′ = h if h is hyperexponential
integrable. Otherwise, return NULL.

1. Write f = u/v with u, v ∈ k[x] and gcd(u, v) = 1;
2. Apply Algorithm 2 to compute a universal denominator b of Eq. (6);
3. Compute a polynomial solution a of Eq. (7);
4. Return g = ah/b if Step 3 finds a polynomial solution. Otherwise, return NULL.

We illustrate our algorithm with an example.
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Example 2 Given a hyperexponential function h = (1 + 2x) exp(x)/(2
√

x). First,

h′

h
= 4x2 + 4x − 1

2x(2x + 1)
,

which gives u = 4x2 + 4x − 1 and v = 2x(2x + 1). Secondly, we will consider the
irreducible factors of v1 = v, which are x and 2x + 1. Then

rem(4x2 + 4x − 1 − 4λx, 2x + 1) = 0

yields λ = 1 while

rem(4x2 + 4x − 1 − 2λ(2x + 1), x) = 0

yields λ = 1/2. So the universal denominator b is 2x + 1. Finally, we try to find a
polynomial solution of the equation

(4x2 − 1)a + 2(2x2 + x)a′ = 2x(4x2 + 4x + 1),

and the upper bound on the degree of polynomial solutions is deg(v) + deg(b) −
deg(u) = 1 because deg(u) = 2 > deg(v) − 1 = 1. Using the method of
undetermined coefficients we get a = 2x . Hence h is hyperexponential integrable
and g = √

x exp(x).

4 Conclusion

We have implemented our algorithms in Maple 13. According to the experiments,
we find that the Almkvist-Zeilberger algorithm together with our improvements
outperforms the method in Sect. 3. The reason is that the previous method predicts
part of the numerator of rational solutions via differential Gosper forms. By this
prediction, the linear system solved for polynomial solutions is much smaller than
that in the second method. This motivates the question for future work whether one
can refineAbramov’s algorithm to predict part of the numeratorwhen finding rational
solutions of a linear differential equation with polynomial coefficients of any order.

Acknowledgments The author would like to thank the anonymous referees for their constructive
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ImUp: A Maple Package for
Uniformity-Improved Reparameterization
of Plane Curves

Jing Yang, Dongming Wang and Hoon Hong

Abstract We present a software package for computing piecewise rational repa-
rameterizations of parametric plane curves, which have improved uniformities of
angular speed. The package ImUp is implemented in Maple on the basis of some
recently developed algorithms of reparameterization using piecewise Möbius trans-
formations. We discuss some implementation issues and illustrate the capability and
performance of the public functions of ImUp with examples and experiments. It is
shown that the quality of plots of plane curves may be effectively improved bymeans
of reparameterization using ImUp.

Keywords Parametric plane curve · Angular speed uniformity · Möbius transfor-
mation · ImUp package · Piecewise reparameterization

1 Introduction

This paper presents the main functions of a Maple package for computing repa-
rameterizations of given rational parametric plane curves with improved uniformi-
ties. Each computed reparameterization may be composed of one or several C0

or C1 continuous pieces of rational parameterizations and its uniformity is either
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optimal or close to a given value. The package named ImUp (standing for Improving
Uniformities of parameterizations and pronounced as “I’m Up”) is implemented on
the basis of the algorithms described in the three papers by the authors [1–3].

Parameterizations of curves and surfaces are commonly used for plotting (e.g., in
computer-aided geometric design) and their uniformities directly affect the quality
of the plots. For example, a parameterization of a plane curve will generate plotting
pointswith a natural distribution (i.e., themore the curve bends, the bigger the density
of points is, and vice versa) if the angular speed of the parameterization is uniform.
It is thus necessary to compute reparameterizations with desired uniformities from
given parameterizations. This computational problem has been studied by a number
of researchers using various techniques (see [1–8] and references therein). However,
we are not aware of any software tools or packages, which are publicly available for
the problem of uniform reparameterization of curves and/or surfaces.

Given a parameterization p of a rational plane curvewith angular speed uniformity
u, the ImUp package is capable of computing a piecewise rational reparameterization
p∗ with angular speed uniformity u∗ satisfying two kinds of requirements: (1) p∗
has a given number of pieces with C0 continuity and u∗ is optimal; (2) p∗ is C1

continuous and u∗ is close to a given objective uniformity as much as possible. The
reparameterization is standard if it is composed of only one piece. The underlying
algorithms used for computing the reparameterization, based on standard,C0 andC1

piecewise Möbius transformations and some (constrained) optimization techniques,
are rather efficient and can improve the uniformity considerably in most cases. The
package also contains functions for computing the angular speed, uniformity and
optimal Möbius transformation of any parameterization of a rational plane curve and
for plotting the curve using the (piecewise) parameterization.

The rest of the paper is structured as follows. Section2 provides a brief review of
themethods and techniques of reparameterization implemented in the package ImUp.
We discuss some implementation issues in Sect. 3 and illustrate the usage of ImUp’s
public functions in Sect. 4. Examples and experimental results are provided in Sect. 5
to show the improvement of uniformity and quality of plots by reparameterization.

2 Problems and Methods

In this section,we formulate themain problems of uniformity-improved reparameter-
ization which the package ImUp is developed to address and explain themethods and
techniques implemented in the package. We start with some concepts and notations.

2.1 Terminology and Problems

For any rational parametric curve

p = (x(t), y(t)), t ∈ [0, 1],
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we recall its angle, angular speed, average angular speed, and uniformity of angular
speed defined respectively as follows:

θp = arctan
y′

x ′ , ωp = |θ ′
p|, μp =

1∫
0

ωp dt, u p = μ2
p

μ2
p +

1∫
0
(ωp − μp)2 dt

.

The uniformity u p ranges over (0, 1]. When u p = 1, p is called an arc-angle
parameterization.

For a proper parameter transformation r(s), p ◦ r is a reparameterization of p
with angular speed

ωp◦r = (ωp ◦ r)(s) · r ′(s) (1)

and uniformity

u p◦r = μ2
p

/ 1∫
0

ω2
p

(r−1)′
(t) dt,

where r−1 is the inverse function of r . Through a proper parameter transformation
rp satisfying

(rp)
−1 =

t∫
0

ωp(γ ) dγ
/

μp,

one can convert p into an arc-angle parameterization. Except in the case when p is
a straight line, rp is always irrational. Therefore, the problem of finding a rational
reparameterization of p via parameter transformation is essentially to look for a
rational approximation of rp.

The method proposed in [1–3] allows us to compute an approximation of rp using
(piecewise) Möbius transformations. A piecewise Möbius transformation is defined
as a map m of the following form

m(s) =

⎧⎪⎪⎨
⎪⎪⎩

...

mi (s), if s ∈ [si , si+1];
...

(2)

where

mi (s) = ti + �ti
(1 − αi )s̃i

(1 − αi )s̃i + (1 − s̃i )αi
,

s̃i = (s − si )/�si , �ti = ti+1 − ti , �si = si+1 − si , 0 ≤ i ≤ N − 1;
0 = t0 < · · · < tN = 1, 0 = s0 < · · · < sN = 1, 0 < α0, . . . , αN−1 < 1.

(3)
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The piecewise Möbius transformation m defined above is C0 continuous. When
N = 1, it degenerates to an α-Möbius transformation [3]. If m satisfies

m′
i (si+1) = m′

i+1(si+1)

for 0 ≤ i ≤ N − 2, it becomes a C1 piecewise Möbius transformation.
The problems which the ImUp package can solve may be formulated as follows.

(1) Given a rational parameterization p of a plane curve and a positive integer N ,
compute an optimal C0 piecewise reparameterization of p with N pieces.

(2) Given a rational parameterization p of a plane curve and an objective uniformity
ū, compute a C1 piecewise reparameterization of p whose uniformity is close
to ū.

In the following subsections, we shall explain how to solve these two prob-
lems using the reparameterization methods by piecewise Möbius transformations
described in [1, 2]. The methods work for N > 1 under the condition that ωp is
nonzero on [0, 1], so this condition is assumed.

2.2 Optimal C0 Piecewise Reparameterization with Fixed
Number of Pieces

For any given p and integer N ≥ 1 as before, the method presented in [1] can
compute a locally optimal partition T = (t0, . . . , tN ) and globally optimal S =
(s0, . . . , sN ) and α = (α0, . . . , αN−1) for constructing an optimal C0 piecewise
Möbius transformation m (which has 3 N − 2 free parameters). The computed triple
(T, S, α) has to maximize u p◦m .

As μp is a constant, maximizing u p◦m is equivalent to minimizing

ηp,m =
1∫

0

ω2
p

(m−1)′
(t) dt

over (T, S, α). It is shown in [1] that if T is arbitrary but fixed, then there is a
unique critical point (T, ST , αT ) at which ηp,m reaches its global minimum ηp,mT ;
in this case, ST and αT are optimal and can be expressed in terms of T , and so can
ηp,mT . Therefore, the problem of finding an optimal triple (T, S, α) can be reduced
to that of optimizing ηp,mT over T . The latter is a problem of optimization under
linear inequality constraints and can thus be solved by using Zoutendijk’s method of
feasible directions [9].

An optimal C0 piecewise Möbius transformation can be easily constructed from
the computed optimal (T, S, α) according to (2) and (3).
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2.3 C1 Piecewise Reparameterization with Objective Uniformity

It is difficult to find an exact optimal solution to the problem of minimizing ηp,m over
(T, S, α) for C1 piecewise reparameterization because the reformulated objective
function has a highly nonlinear dependency on the involved variables. A method is
proposed in [2] for computing a triple (T, S, α) which provides an optimal solution
for the problem that is not exact, but is close to the exact one. This method consists
of two main steps.

1. Construct a C1 piecewise Möbius transformation as follows.

1.1. Compute a partition T of the unit interval [0, 1] by solving ω′
p(t) = 0 for t

over (0, 1).

1.2. Choose si = ∫ ti
0 ωp dt

/
μp (1 ≤ i ≤ N − 1) to obtain S (then T and S are

almost optimal).
1.3. Compute the exact optimal α using T and S.
1.4. Construct a C1 piecewise Möbius transformation from (T, S, α).

2. Use step 1 to construct a C1 piecewise Möbius transformation m1 for p, then m2
for p ◦ m1, and so on. This process leads to a series m1, . . . , mn of C1 piecewise
Möbius transformations such that

pn = pn−1 ◦ mn = p ◦ m1 ◦ · · · ◦ mn

has its uniformity close to the given objective uniformity.

The method explained above involves computations with floating-point numbers,
so the results of computation are not always guaranteed to be complete. To avoid using
floating-point numbers for some computations, an alternative approach is proposed in
[2] to refine the partitionT through an iteration process. The iteration terminateswhen
the objective uniformity is reached, or only minor improvement on the uniformity
can be made. From (T, S, α) computed with the refined partition, a C1 piecewise
reparameterization of p whose uniformity is close to the objective uniformity can be
easily constructed as well according to step 1.

3 Implementation

The package ImUp has been implemented in the computer algebra system Maple1

(and it could also be done in other popular systems like Mathematica2 and Matlab3).
In this section, we discuss some of the implementation issues.

1 http://www.maplesoft.com/products/maple/.
2 http://www.wolfram.com/mathematica/.
3 http://www.mathworks.com/products/matlab/.

http://www.maplesoft.com/products/maple/
http://www.wolfram.com/mathematica/
http://www.mathworks.com/products/matlab/
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C0 C1

C1

C1

C0

C0

Fig. 1 ImUp structure

Fig. 2 Module of Möbius transformation

3.1 Architecture of ImUp

Figure1 shows the block-diagram structure of the package ImUp which consists
of four modules: basic functions, Möbius transformation, reparameterization, and
plotting (of which the Möbius transformation module is essential).

There are four basic functions which compute the composition p ◦ m, ωp/ωp◦m ,
u p/u p◦m , and the discontinuity of p ◦ m when m is piecewise, for any given para-
meterization p and Möbius transformation m. The Möbius transformation module
allows one to compute piecewise Möbius transformations in different ways (see
Fig. 2). Once a piecewise Möbius transformation is computed, one can construct a
reparameterization of p using the reparameterization module. The plotting module
may be used to plot the curve using its reparameterization.
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3.2 Data Structure

In the programming, we have used the following simple data structure

[[t0, . . . , tN ], [s0, . . . , tN ], [α0, . . . , αN−1]],

instead of a piecewise linear fractional function, to represent a piecewise Möbius
transformationm. This is because the parameters in the transformation are frequently
used during the computation and directly providing these parameters (instead of
extracting them from the fractional-function representation of m) may help reduce
computing time; whereas the fractional-function representation of m, as well as the
reparameterization using m, can be easily constructed from these parameters.

3.3 Technical Considerations

We implemented the reparameterization algorithms initially in a straightforward and
naive manner, but the resulting program did not perform well. We then examined the
program, with attention to efficiency and reliability, and enhanced its performance
after having resolved a few causes identified. Inwhat follows,we discuss these causes
and their resolution.

3.3.1 Angular Speed

As defined before, ωp = |θ ′
p|. Since ωp �= 0 over [0, 1], ωp = θ ′

p if θ ′
p > 0, or

ωp = −θ ′
p if θ ′

p < 0. Hence, for integration and computing the average angular
speed, ωp may be replaced by θ ′

p because the terms in the integrands are ω2
p and

μp =
∣∣∣∣∣∣

1∫
0

θ ′
p dt

∣∣∣∣∣∣ =
1∫

0

|θ ′
p| dt.

Therefore, θ ′
p can be used instead of |θ ′

p|. By getting rid of the absolute value symbol
in this way, one can avoid solving nonpolynomial equations during the refinement
of interval partition for the C1 piecewise reparameterization.

3.3.2 Zoutendijk’s Method

For theC0 piecewise reparameterization, themain computational problem is to search
for the locally optimal partition of [0, 1] using the Zoutendijk’s method of feasible
directions. This optimization problem may be stated precisely as follows.
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Given φ = ∑N−1
k=0

√
�tk(2

√
AkCk + Bk),

where

Ak =
tk+1∫
tk

ω2
p · (1 − t̃)2 dt, Bk =

tk+1∫
tk

ω2
p · 2 t · (1 − t̃) dt,

Ck =
tk+1∫
tk

ω2
p · t̃2 dt and t̃ = (t − tk)/�tk,

find T ∗ = (t∗0 , . . . , t∗N ) such that φ is locally optimal with respect to the sequence
T ∗, subject to the linear constraints 0 = t0 < t1 < · · · < tN−1 < tN = 1.

The constraints in the above problem are different from those in typical optimiza-
tion problems which Zoutendijk’s method is used to solve: the feasible region is an
open set for our problem, while it is closed for others. The openness of the feasible set
may cause computational overflow when the objective function φ is evaluated on the
boundary of the feasible set. This issue can be resolved by modifying Zoutendijk’s
method in the following way.

One main step in Zoutendijk’s algorithm is to find λ∗ such that

min
0≤λ≤λmax

φ(T (k) + λT (k)
d )

is reached at λ = λ∗, where T (k) is the initial T , T (k)
d is the feasible direction Td

at the kth iteration and λmax is the maximum admissible step length. Due to the
openness of the feasible set, λmax cannot be reached, so λ ranges over [0, λmax).
The one-dimensional search we introduced can always find an almost optimal step
length λ. It is different from the one-dimensional search used in Zoutendijk’s method
and may be described as follows. First divide [0, λmax) into Nλ equidistant partitions
with list of nodes

[i λmax/Nλ : 1 ≤ i ≤ Nλ − 1]

and then evaluate the objective function φ at each node. Once T (k) + λT (k)
d goes out

of the feasible set, the evaluation process terminates. The optimal φ and λ can be
chosen from the values of φ at the partition nodes. If λ = λmax/Nλ (the smallest
node) cannot keep T (k) + λT (k)

d in the feasible set, then increase Nλ to reduce the
step length until the step length becomes admissible.

Linear inequality constraints may be expressed as AT ≥ b. Another main step
in Zoutendijk’s method is to decompose the matrix A and the vector b for the
corresponding constraints into [A1, A2] and [b1, b2] such that A1T (k) = b1 and
A2T (k) > b2, where T (k) is the initial T at the kth iteration. This step may be
skipped for our problem because the feasible set is open and AT (k) > b is always
guaranteed in the iteration. It is easy to see that A1 is null and its nullity can also be
used to simplify the constraints
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A1Td ≥ 0, −1 ≤ T 〈i〉
d ≤ 1, 1 ≤ i ≤ N − 1

for min�φ(T (k))T Td in the next step, where T 〈i〉
d denotes the i th element of Td .

Using a modified version of Zoutendijk’s method, we may compute a locally
optimal T and calculate the globally optimal S and α in the C0 piecewise reparame-
terization.

3.3.3 Discontinuity of Angular Speed

For any piecewise function f (x) over [0, 1] with partition nodes xi , 0 = x0 < · · · <

xN = 1, we define the local discontinuity of f (x) at x = xi (1 ≤ i ≤ N − 1) to be

Di ( f ) = 2
| f (x+

i ) − f (x−
i )|

| f (x+
i )| + | f (x−

i )|

and the (global) discontinuity of f (x) over [0, 1] to be

D( f ) =
N−1∑
i=1

Di ( f )
/
(N − 1).

Let p, m and ti , si be as before. As ωp is assumed to be nonzero, ωp◦m is also
nonzero over [0, 1]. By (1) and the relation ωp(t

+
i ) = ωp(t

−
i ) = ωp(ti ), the local

discontinuity for the angular speed of q = p ◦ m at s = si is

Di (ωq) = 2

∣∣ωq(s+
i ) − ωq(s−

i )
∣∣

ωq(s+
i ) + ωq(s−

i )
= 2

∣∣ωp(t
+
i )m′(s+

i ) − ωp(t
−
i )m′(s−

i )
∣∣

ωp(t
+
i )m′(s+

i ) + ωp(t
−
i )m′(s−

i )

= 2

∣∣m′(s+
i ) − m′(s−

i )
∣∣

m′(s+
i ) + m′(s−

i )
= Di (m

′).

Therefore,

D(ωq) =
N−1∑
i=1

Di (ωq)
/
(N − 1) =

N−1∑
i=1

Di (m
′)
/
(N − 1) = D(m′).

This shows that the discontinuity of ωq is equal to that of m′, so computing D(ωq)

may be reduced to computing D(m′) (the latter is more efficient).
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4 Public Interface

This section presents the public functions of the ImUp package and their usage.
It serves as a quick reference manual for the users of the package. For simplicity,
we use N-piecewise to indicate that the number of pieces in the piecewise Möbius
transformation or reparameterization is N . In what follows, p is a given rational
parameterization of a plane curve.

4.1 AngularSpeed

The calling sequence is

AngularSpeed(p, m)

where the second argument is optional. It computes the angular speed of p or a
reparameterization p ◦ m, where m is a piecewise Möbius transformation.

4.2 Uniformity

The calling sequence is

Uniformity(p, m)

where the second argument is optional. It computes the uniformity of the angular
speed of p or a reparameterization p ◦ m, where m is a piecewise Möbius transfor-
mation.

4.3 MoebiusTransformation

The calling sequence is

MoebiusTransformation(p, opt, N |ū)

where the second argument is 0 or 1 for C0 or C1 piecewise Möbius transformation
respectively. The third argument depends on the second: it is N when opt = 0, or ū
when opt = 1. It computes an optimal C0 N -piecewise Möbius transformation, or a
C1 piecewiseMöbius transformation fromwhich the constructed reparameterization
of p has uniformity close (as much as possible) to the objective uniformity ū.
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4.4 ReparameterizationN

The calling sequence is

ReparameterizationN(p, N ).

It computes an optimal C0 N -piecewise reparameterization of p.

4.5 ReparameterizationU

The calling sequence is

ReparameterizationU(p, ū).

It computes a C1 piecewise reparameterization of p whose uniformity is close (as
much as possible) to the objective uniformity ū.

4.6 ImUpPlotN

The calling sequence is

ImUpPlotN(p, N , Npt).

It plots the curve p using an optimal C0 N -piecewise reparameterization of p with
Npt points.

4.7 ImUpPlotU

The calling sequence is

ImUpPlotU(p, ū, Npt).

It plots the curve p using a C1 piecewise reparameterization of p whose uniformity
is close (as much as possible) to the objective uniformity ū with Npt points.

The ImUp package will be available as http://DongmingWang.org/ImUp.zip for
download.

http://DongmingWang.org/ImUp.zip
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Fig. 3 Example session for the usage of ImUp functions

5 Examples and Experiments

In this section, we illustrate the usage of ImUp functions by means of example
sessions and provide some experimental results to show the performance of the
package.

5.1 Examples

Figure3 is aMaple session which shows the usage of some ImUp functions. Figure4
displays three plots of a curve segment using three plotting functions and with the
same number of plotting points. The plot generated by ImUpPlotU is the best and the
one generated by ImUpPlotN looks better than the one generated byMaple’s built-in
function. The uniformity of the piecewise reparameterization, which is composed of
six pieces and computed by ReparameterizationU and whose plot is shown on the
right-hand side, is 0.992, while the uniformity of the piecewise reparameterization,
which has only two pieces and is computed by ReparameterizationN and whose plot
is shown in the middle, is 0.737.
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Fig. 4 Plots of a curve segment using Maple’s built-in function plot (left), ImUpPlotN (middle)
and ImUpPlotU (right). Note that “numpoints” in the function plot is not the exact number of points
generated for the plot. It specifies the minimum number of points to be generated and the plotting
function often generates more points. For this example with numpoints = 2, the number of points
generated for the plot is 53

5.2 Experiments

We have tested our implementation in Maple 16 on a PC Intel(R) Core(TM)2 Duo
CPU P8400 @2.26GHz with 2G of RAM using a number of plane curves. Some
experimental results for the functions ReparameterizationN and Reparameteriza-
tionU with 10 curves are given in Table1, where the curves 1–5 are taken from [10]
with specialized values of parameters and the curves 6–10 are randomly generated
by Maple with fixed degree.

From Table1, it may be seen that both of the reparameterization functions can
improve the uniformity of angular speed to a certain extent and the numbers of pieces
are also acceptable. These two functions can deal with curves of degree as high as
100. They should be able to meet the need of applications.
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Table 1 Experimental data with ReparameterizationN and ReparameterizationU

Curve d Original u Reparameterization Reparameterization Reparameterization

N(p, 1) N(p, 3) U(p, 0.9)

u T u T u N T

C1 8 0.808 0.808 0.047 0.886 0.625 0.991 6 0.265

C2 12 0.960 0.960 0.016 1.000 0.203 0.960 1 0.016

C3 6 0.906 0.919 0.031 1.000 0.219 0.906 1 0.016

C4 6 0.796 0.796 0.031 0.911 0.437 0.996 8 0.250

C5 6 0.879 0.879 0.015 0.961 0.328 0.997 4 0.110

C6 50 0.647 0.706 1.422 0.973 8.203 0.971 5 10.578

C7 70 0.181 0.418 3.157 0.550 20.204 0.960 6 31.390

C8 100 0.184 0.184 6.188 0.989 119.141 0.970 2 95.828

C9 120 0.682 0.683 9.109 0.999 66.813 0.994 2 37.188

C10 150 0.253 0.479 29.765 – >3000 – – >3000

In the table, d is degree, u uniformity, N number of pieces, and T time (seconds)

6 Conclusion

We have presented a software package ImUp implemented in Maple for computing
piecewise rational reparameterizations of plane curves. The ImUp public functions
are described, their usage is illustrated by examples and some implementation issues
are discussed. Plots generated by ImUp functions appear better than their correspond-
ingplots generatedbyMaple’s built-in function in termsof smoothness. Experimental
results show that the reparameterization functions in ImUp have good performance.
The package is being extended by implementing the general framework developed
in [11] on angular speed for rational parameterizations of space curves.
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1 Introduction

Lattice basis reduction plays an important role in the detection of wireless multiple-
input multiple-output (MIMO) systems. For detection problems of lattice type, the
optimal maximum-likelihood (ML) decoding can be modeled as the closest vector
problem (CVP) [1, 16], which has been proved to be NP-hard [2]. Although many
algorithms, like the sphere decoding algorithm [5, 14], can solve CVP exactly, the
complexity of these algorithms increases exponentially with the number of transmit
antennas [1, 5, 6]. Thus, such optimal solvers are infeasible for real-time systems,
where timing is critical. To satisfy the time constraint, many suboptimal solvers with
polynomial complexity, like the successive interference cancelation (SIC) decoding,
have been proposed [3, 12]. However, the suboptimal detectors may suffer from
heavy performance loss at a low signal-to-noise ratio (SNR). It has been found
that lattice reduction, used as an efficient preprocessor, has the potential to achieve
high performance for suboptimal decoding algorithms. Recently, many reduction
algorithms, such as the Lenstra-Lenstra-Lovász (LLL) algorithm [7], effective LLL
algorithm [10], partial LLL algorithm [11, 17], and diagonal reduction algorithm
[19], have been proposed for SIC decoding. It is proved in [9, 18] that SIC decoding
aided by the above reduction notions can achieve the same receive diversity order as
the infinite lattice decoding (ILD).

Of all the aforementioned lattice reduction algorithms, the diagonal reduction
algorithm is the most efficient one. From our observation [19], the total computation
of the diagonal reduction is dominated by the computation of the Givens rotations.
Thus, in this paper, we propose to improve the efficiency of the diagonal reduction by
replacing the Givens rotation with the more efficient and mathematically equivalent
fast Givens transformation [4, p. 218]. The improvement is achieved by substantially
reducing the number of multiplication operations required, because two entries of the
2-by-2 fast Givens matrix equal 1. Moreover, the fast Givens technique is general in
that it can be incorporated into all the LLL-type lattice reduction methods to enhance
performance.

Also, we investigate the basis reduction for dual lattices. In [9], the LLL and
effective LLL algorithms for dual lattices are presented. In this paper, we investigate
the diagonal reduction for dual lattices and prove that the dual basis of a diagonal
reduced basis is also diagonal reduced. In addition, we derive an upper bound for the
proximity factors of a family of dual LLL-type reduction aided SIC decoding. Our
upper bound not only extends an existing bound for LLL reduction in [9] to a family
of reduction methods, but also improves the existing one.

The rest of the paper is organized as follows. In Sect. 2, we briefly introduce
the systems model and review the diagonal reduction algorithm. The new algorithm
using the fast Givens is given in Sect. 3. Section4 presents the diagonal reduction
for dual lattices and our new upper bound for the proximity factors. In Sect. 5, we
demonstrate our simulation results.
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Notations: BT, B†, and det(B) denote the transpose, the Moore-Penrose inverse,
and the determinant of a matrix B respectively, �(z) and �(z) the real and imaginary
parts of a complex number z, �a� the integer nearest to a real number a.

2 Lattice Basis Reduction

2.1 System Model

Consider a MIMO system consisting of nT transmit antennas and mT receive anten-
nas. The relationship between the nT × 1 transmitted signal vector x and themT × 1
received signal vector y is given by

y = Hx + n, (1)

where H, y, n represent the channel matrix, the received and additive noise signals,
respectively. In general, the entries of both H and n are assumed to be complex-
valued independently and identically distributed (i.i.d.) Gaussian variables. Treating
the real and imaginary parts of (1) separately, an equivalent real-valued system of
doubled size can be obtained:

y = Bx + n, (2)

where

y =
[�(y)

�(y)

]
, n =

[�(n)

�(n)

]
, B =

[�(H) −�(H)

�(H) �(H)

]
.

Given a MIMO system modeled as (2), the optimum ML decoding is equivalent
to the following CVP:

min
x∈A

‖y − Bx‖2. (3)

where the constellation A is of lattice type. Unfortunately, CVP has been proved
to be NP-hard [2], and all existing algorithms for solving (3) have an exponential
complexity with the lattice dimension n [5, 6]. Recently, lattice-reduction-aided
SIC decoding turned out to be extremely promising, since its bit-error-rate (BER)
performance can effectively approximate theML decodingwith a complexity of only
O(n3) operations [9, 15].

2.2 Diagonal Reduction Algorithm

In this section, we first introduce some concepts of lattices and the SIC decoding,
then we describe the diagonal reduction method [19].
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Given a matrix B ∈ R
m × n (n ≤ m) of full column rank, then a lattice generated

by B is defined by L(B) = {Bz : z ∈ Z
n}. The columns of B form a basis for the

lattice L(B). An integer matrix Z ∈ Z
n × n is called unimodular if | det(Z)| = 1.

The columns of a matrix B′ can form a basis for L(B) if and only if there exists
a unimodular matrix Z such that B′ = BZ. The volume of L(B) is defined as
vol(L(B)) = √

det(BTB), which is independent of the choice of basis. Let λ(L)

be the Euclidean length of the shortest nonzero vector in a lattice L , then it is well
known that λ(L)/vol(L)1/n is upper bounded over all n-dimension lattices L , and
the Hermite’s constant γn is defined as the supremum of λ(L)2/vol(L)2/n over all
n-dimension lattices. Finding the exact value of γn is very difficult. The exact value
of γn is only known for 1 ≤ n ≤ 8 and n = 24 [13, p. 33]. For an arbitrary dimension
n, an upper bound of the Hermite’s constant is given in [13, p. 35]:

γn ≤ 1 + n

4
, for all n ≥ 1. (4)

A lattice reduction algorithm finds a unimodular matrix Z for a given B such that the
columns of BZ are reasonably short. Lattice reduction has now become a powerful
tool for enhancing the performance of suboptimal MIMO detectors, since it can
significantly improve the orthogonality of the channel matrix.

Given a lattice generator matrix B ∈ R
m × n and its QR decomposition B = QR,

where Q ∈ R
m × n has orthonormal columns and R ∈ R

n × n is upper triangular.
From [8, 17], the efficiency of sphere decoding and the performance of SIC decod-
ing is determined by the arrangement of the diagonal elements of R. Based on this
fact, various reduction notions, such as the LLL reduction [7], effective LLL reduc-
tion [10], partial LLL reduction [11, 17], and diagonal reduction [19], have been
proposed. Among all the aforementioned reduction notions, the diagonal reduction
is the weakest, consequently, the least computationally demanding.

Definition 1 (Diagonal reduction [19]) A basis matrix B ∈ R
m × n is said to be

diagonal reduced with the parameter ω (1/4 < ω < 1), if the entries ri, j of the upper
triangular factor R in its QR decomposition B = QR satisfy

(rk−1,k − μkrk−1,k−1)
2 + r2k,k ≥ ωr2k−1,k−1, (5)

for all 1 < k ≤ n, where μk = �rk−1,k/rk−1,k−1�.
From the above definition, diagonal reduction only imposes one simple constraint

on the diagonal entries of R. However, it is proved in [19] that diagonal-reduction-
aidedSICdecoding has identical performance asLLL-reduction-aidedSICdecoding.
A generic implementation of diagonal reduction can be found in Fig. 1.
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Fig. 1 Diagonal reduction algorithm (DR) [19]

3 Diagonal Reduction Using Fast Givens

From Fig. 1, the computational cost of the diagonal reduction algorithm includes
two parts: the size-reduction (lines 7–8) and the Givens rotation (lines 11–13). The
simulation results in [19] indicate that the overall complexity of the algorithm is
dominated by the Givens rotations as the lattice dimension n increases. Thus, we
propose the use of the fast Givens transformation in place of the Givens rotations to
speed up the diagonal reduction algorithm.

Like theGivens rotation, the fast Given can be used to introduce zeros into selected
positions. Specifically, given a lattice generator matrix B, the fast Givens transfor-
mation is based on the following decomposition:

B = FD−1R, (6)

where D = diag(di ) is a positive diagonal matrix, FD−1/2 represents the orthogonal
factor in the QR decomposition of B, and D−1/2R represents the upper triangular
factor.

How can the fast Givens introduce zeros? In the 2-by-2 case, given x = [x1, x2]T
and the corresponding diagonal elements d1, d2 > 0, we first compute

α = −x1/x2, β = −αd2/d1, and γ = −αβ.

When γ ≤ 1, we have the type 1 fast Givens:
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F =
[

β 1
1 α

]
(7)

and update d1 and d2:

d̂1 ← (1 + γ )d2 and d̂2 ← (1 + γ )d1. (8)

When γ > 1, setting

α ← 1/α, β ← 1/β, and γ ← 1/γ,

we have the type 2 fast Givens:

F =
[
1 β

α 1

]
(9)

and update d1 and d2:

d̂1 ← (1 + γ )d1 and d̂2 ← (1 + γ )d2. (10)

Then it can be verified that

F
[

x1
x2

]
=

[×
0

]

and

[
d̂1 0
0 d̂2

]−1/2

F
[

d1 0
0 d2

]1/2

is orthogonal.
In our fast Givens-based diagonal reduction algorithm, all the transformations are

based on the decomposition (6). In the beginning, we compute theQR decomposition
B = QR and set F = Q and D = In . Thus, in this case, the size-reduction in each
iteration is the same as lines 7–8 of Fig. 1. But the diagonal reduction condition (5)
becomes

d−1
k−1(rk−1,k − μkrk−1,k−1)

2 + d−1
k r2k,k ≥ ωd−1

k−1r2k−1,k−1, (11)

for 1 < k ≤ n. The diagonal reduction algorithm using fast Givens (DRFG) is
summarized in Fig. 2.

In comparison with the original diagonal reduction algorithm, DRFG saves a
substantial number of multiplication operations, since two entries of the 2-by-2 fast
Givens matrix are equal to 1. However, DRFG introduces overhead, such as the
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Fig. 2 Diagonal reduction algorithm using fast givens (DRFG)

computations in line 14 and line 20. Our simulation results presented in Sect. 5 show
that overall DRFG is more efficient than DR.

4 Dual Diagonal Reduction

In this section, after a brief introduction to dual basis, we first investigate diagonal
reduction of dual basis and prove that if a primal basis is diagonal reduced, then its
dual basis is also diagonal reduced. Then we derive an upper bound of proximity
factor of SIC decoding, which not only improves an existing bound for the dual LLL
reduction in [9], but also extends it to a family of dual LLL-type reductions.

4.1 Dual Lattice Reduction

Let L be an n-dimensional lattice in R
m , then the dual lattice L∗ of L is defined as

the set

L∗ = {u | 〈u, v〉 ∈ Z, for all v ∈ L}, (12)
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where 〈u, v〉 is the inner product of u and v. Suppose that B is a primal basis matrix
of L , then it is obvious that the columns of B†T form a basis for its dual lattice L∗.
In this paper, we adopt the definition of the dual basis B∗ � B†TJ [9], where

J �

⎡
⎢⎢⎢⎣
0 · · · 0 1
0 · · · 1 0
... · · · ...

...

1 · · · 0 0

⎤
⎥⎥⎥⎦

A dual lattice is closely related to its corresponding primal lattice. For instance, we
have L∗∗ = L and det(L∗) = 1/ det(L).

Given a primal basis matrix B, then the dual basis reduction is to perform a lattice
reduction algorithm on its dual basis B∗. Like the primal basis reduction, dual basis
reduction can also return a well reduced basis of the primal lattice. Suppose that
Z∗ is the unimodular matrix that reduces the dual basis B∗, then the corresponding
reduced primal basis is given by

B′ = (B†TJZ∗)†TJ = BJ(Z∗)†TJ,

where J(Z∗)†TJ is the unimodular matrix associated with the primal lattice.
To study the reduction properties of diagonal reduction on dual lattices, the fol-

lowing result is essential.

Lemma 1 Let B = QR and B∗ = Q∗R∗ be the QR decompositions of the primal
basis B and its dual basis B∗, respectively. Then

Q∗ = QJ, R∗ = JR−TJ. (13)

Proof It is easy to verify that B† = R−1QT. Thus, we have

B∗ = B†TJ = (R−1QT)TJ = QR−TJ

= (QJ) · (JR−TJ). (14)

Obviously, QJ has orthonormal columns and JR−TJ is an upper triangular matrix,
thus the proof is completed.

Based on the above lemma, we can obtain the following result.

Proposition 1 If the lattice basis matrix B is diagonal reduced, then its dual basis
B∗ is also diagonal reduced.

Proof LetR = [ri, j ] andR∗ be the upper triangular factors ofB andB∗, respectively.
Then from Lemma 1,
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R∗ = JR−TJ

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
rn,n

− rn−1,n
rn−1,n−1rn,n

× ×
1

rn−1,n−1
− rn−2,n−1

rn−2,n−2rn−1,n−1
×

1
rn−2,n−2

. . .
...

. . . − r1,2
r1,1r2,2
1

r1,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

Since B is diagonal reduced, we then have

(
rk−1,k −

⌊
rk−1,k

rk−1,k−1

⌉
· rk−1,k−1

)2

+ r2k,k ≥ ωr2k−1,k−1, (16)

for all 1 < k ≤ n. Multiplying the both sides of (16) with 1
(rk−1,k−1rk,k )

2 , we obtain

(
rk−1,k

rk−1,k−1rk,k
−

⌊
rk−1,k

rk−1,k−1

⌉
· 1

rk,k

)2

+
(

1

rk−1,k−1

)2

≥ ω

(
1

rk,k

)2

,

which implies that R∗ is also diagonal reduced.

4.2 Proximity Factor

To characterize the performance gap between suboptimal decoding and ILD, a prox-
imity factor was defined in [8] and further discussed in [9, 18]. Given a lattice
generator matrix B = [b1, ..., bn], denote φi the acute angle between bi and the
linear space spanned by the previous i − 1 basis vectors, then the proximity factor
of SIC decoding is defined as:

ρi � sup
B∈BRed

λ2(L(B))

‖bi‖22 sin2 φi
, (17)

where the supremum is taken over the setBRed of bases satisfying a certain reduction
notion for any n-dim lattice L .We further defineρ � maxi {ρi }. From [9], the average
error probability of SIC decoding can be bounded by

Pe,SIC(SNR) ≤
n∑

i=1

Pe,ILD

(
SNR

ρi

)
≤ n Pe,ILD

(
SNR

ρ

)

for arbitrary SNR.
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Denote ρLLL, ρDLLL, ρDR, and ρDDR the proximity factors of SIC decoding aided
by LLL reduction, dual LLL reduction, diagonal reduction, and dual diagonal reduc-
tion, respectively. An upper bound of ρLLL is given in [18]:

ρLLL ≤ γn · β
n−1
2 ≤

(
1 + n

4

)
β

n−1
2 , (18)

where β = 1/(ω − 1/4) ≥ 4/3. Following the argument in [19], it is easy to prove
that

ρi,DR = ρi,LLL ≤ γi · β
i−1
2 . (19)

Thus,

ρDR = ρn,DR ≤ γn · β
n−1
2 . (20)

For dual reduction, an upper bound of ρDLLL is given in [9]:

ρDLLL ≤ βn−1. (21)

In the following, we improve the upper bound (21). From (19) and Proposition 1, we
can obtain that

ρi,DDR = sup
B∗∈BDR

λ2(L(B))

r2i,i
= sup

B∈BDR

λ2(L(B))

r2i,i
≤ γi · β

i−1
2 . (22)

Thus,

ρDDR = ρn,DDR ≤ γn · β
n−1
2 . (23)

Following the above argument, it is easy to prove that the proximity factors of SIC
decoding aided by all dual LLL-type reduction notions, such as dual LLL reduction,
dual effective LLL reduction, and dual partial LLL reduction, can be upper bounded
by the right-hand side of (23). Comparing (23) with (20), SIC decoding aided by
primal and dual diagonal reductions are expected to have the same performance. This
shall be confirmed by the simulation results presented in Sect. 5.

5 Simulation Results

In this section, we present our simulation results on comparing the efficiency of the
proposed algorithm DRFG with the original algorithm DR. All experiments were
performed on matrices with random entries, drawn from an i.i.d. zero-mean, unit
variance Gaussian distribution. Without loss of generality, all testing matrices were
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set to square matrices. For each size, we generated 1,000 random matrices and took
an average. The parameter ω in the reduction algorithms was set to 0.99.

Although the new algorithm DRFG is expected to be faster than the original algo-
rithm DR, the computations in line 14 and line 20 of Fig. 2 introduce overhead.
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To compare the overall complexity of the algorithms, we experimented on the
floating-point operations (flops)1 carried out by the algorithms. Figure3 depicts our
results on the average numbers of flops performed by the reduction algorithms. The
figure shows that in both cases of primal and dual lattice reduction, DRFG is more
efficient than DR, and the performance gap between them widens quickly as the
dimension increases. This indicates that the overhead introduced by the fast Givens
is insignificant. Also note that the DR (DRFG) algorithm is slightly faster than its
dual counter part dual DR (dual DRFG) algorithm. This is due to the additional
computation, for instance, the calculation of B†, required by the dual reduction.

We also investigated the reduction quality of different reduction algorithms mea-
sured by the BER performance of the SIC decoding. Specifically, using a 64-QAM
constellation, Fig. 4 depicts the simulated BER curves of lattice-reduction-aided SIC
over an 8 × 8 uncoded MIMO fading channel. We have found that the SIC aided by
the four diagonal reduction algorithms have identical BER performance to that aided
by the LLL algorithm. This is consistent with the theoretical analysis presented in
Sect. 4.2.
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Constructing Generalized Bent Functions
from Trace Forms of Galois Rings

Xiaoming Zhang, Baofeng Wu, Qingfang Jin and Zhuojun Liu

Abstract Quaternary constant-amplitude codes (codes over Z4) of length 2m exist
for every positive integer m, and every codeword of such a code corresponds to a
function from the binarym-tuples toZ4 having the bent property, called a generalized
bent function. In this chapter, we extend previous constructions and propose a general
approach which can lead to more generalized bent functions.

1 Introduction

Multicode code-division multiple access (MC-CDMA) is a simple scheme to
implement rate adaption in CDMA systems. The principal drawback of this tech-
nique is that the transmitted signals can have a high peak-to-average power ratio
(PAPR). Paterson showed codewords with low PAPR were exactly those which were
far from the first-order Reed–Muller code [6]. The code consisting of codewords with
PAPR = 1 is called constant-amplitude code. But binary constant-amplitude codes
cannot exist for lengths 2m when m is odd. Schmidt studied quaternary constant-
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amplitude codes (codes over Z4) of length 2m and these codes exist for every posi-
tive integer m [7]. He reduced the problem of constructing constant-amplitude codes
to the construction of generalized bent function and presented one construction of
quaternary generalized bent function by exploiting the connection with algebraic
codes overZ4, in particular quaternaryReed–Muller, Kerdock andDelsarte-Goethals
codes. For more details, we refer to [6, 7, 9].

The remainder of this chapter is organized as follows. In Sect. 2, some notations
and basic facts are introduced which will be used several times in the following
content. In Sect. 3, we construct a family of generalized bent functions which gen-
eralize Schmidt’s construction. In Sect. 4, we consider a more general case which
can lead to generalized bent functions and we also consider how to construct those
generalized bent functions using algorithms and their complexity over finite fields
or skew-polynomial rings.

2 Preliminary

A generalized Boolean function is defined as a mapping

f : Zm
2 −→ Z2h ,

where h is a positive integer. Every f can be written uniquely in 2-adic expansion

f (x0, . . . , xm−1) =
h−1∑
j=0

f j (x0, . . . , xm−1)2
j ,

where each f j is a mapping from Zm
2 to Z2 for j = 0, 1, . . . , h − 1.

The Fourier transform of f : Zm
2 −→ Z2h is given by f̂ : Zm

2 −→ C with

f̂ (u) =
∑

x∈Zm
2

ω f (x)(−1)x ·u

where “·” denotes the scalar product in Zm
2 and ω is a primitive 2h-th root of unity

in C.
Definition 2.1 A function f : Zm

2 −→ Z2h is called a generalized bent function if
| f̂ (u)| = 2m/2 for all u ∈ Zm

2 .
Now we briefly provide some facts about Galois rings and associated fields, for

details we refer to [5, 7]. In this chapter, we consider Galois rings with characteristic
equal to a power of 2.

Define μ : Z2h −→ F2 to be the map:
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μ : Z2h −→ F2,
h−1∑
i=0

ai2i �−→ a0

This map can be extended to act on polynomials:

μ : Z2h [x] −→ F2[x]
m∑

i=0
ai xi �−→

m∑
i=0

μ(ai )xi

A polynomial p(x) ∈ Z2h [x] is called monic basic irreducible if p(x) is monic
and μ(p(x)) is irreducible over F2. The Galois ring Rh,m is defined by Rh,m ∼=
Z2h [x]/(p(x)), where p(x) is amonic basic irreducible polynomial overF2 of degree
m.

Let ξ ∈ Rh,m be a root of a monic basic primitive polynomial p(x) with degree
m, then ξ generates a cyclic group T ∗

h,m of order 2m − 1. The set

Th,m := {0} ∪ T ∗
h,m

is called the Teichmüller set of Rh,m . Every element z ∈ Rh,m can be uniquely
written as

z =
m−1∑
i=0

ziξ
i , zi ∈ Z2h

which is called the additive representationof z.Moreover, z canbeuniquely expressed
in the form

z =
h−1∑
i=0

zi2
i , zi ∈ Th,m

called the 2-adic representation of z.

Lemma 1 (see [7]) Let z ∈ Rh,m, we define the map η : Rh,m −→ Th,m by

η(z) = z2
m(h−1)

. For any x, y ∈ Th,m, we define the operation ⊕ as

x ⊕ y = η(x + y).

Then < Th,m,⊕ > is an abelian group. Hence,< Th,m,⊕, · >∼=< F2m ,+, · >.

Let z ∈ Rh,m have 2-adic expansion

z =
h−1∑
i=0

zi2
i , zi ∈ Th,m,
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then the map σ : Rh,m −→ Rh,m defined by

σ(z) =
h−1∑
i=0

z2i 2
i

is the Frobenius automorphism on Rh,m with respect to the ground ring Z2h .

The absolute trace function Trm : Rh,m −→ Z2h is then defined to be

Trm(z) =
m−1∑
i=0

σ i (z).

From now on, we consider operations in R2,m and use tr to denote the trace
function of finite fields, and use Tr to denote the trace function of Galois rings. Note
that 2Tr(r) = 2tr(μ(r)) for any r ∈ R2,m .

3 Construction of Generalized Bent Function

Schmidt constructed generalized bent functions as follows:

Theorem 1 (see [7]) Suppose m ≥ 3 and let f : T2,m −→ Z4 be given by

f (x) = ε + Tr(ax + 2bx3), ε ∈ Z4, a ∈ R2,m, b ∈ T ∗
2,m .

Then f (x) is a generalized bent function if either μ(a) = 0 and the equation x3 +
1

μ(b)
= 0 has no solution in F2m , or μ(a) 
= 0 and x3 + x + μ(b)2

μ(a)6
= 0 has no

solution in F2m . Here, μ is the modulo-2 reduction map.

In this section, we extend the construction in Theorem1, replacing 3 by 1 + 2k ,
where k is a positive integer. We consider the following functions:

f (x) = ε + Tr(ax + 2bx1+2k
), ε ∈ Z4, a ∈ R2,m, b ∈ T ∗

2,m .

Next we give the conditions under which f (x) is a generalized bent function, and
these conditions can be described more precisely.

Theorem 2 Suppose m ≥ 5 and let f (x) = ε + Tr(ax + 2bx1+2k
), where ε ∈

Z4, a ∈ R2,m, b ∈ T ∗
2,m. Then f (x) is a generalized bent function if:

(i) μ(a) = 0 and the equation x2
2k−1 + 1

μ(b)2
k−1

= 0 has no solution in F2m ; or

(ii) μ(a) 
= 0 and the equation μ(b)2
k
x2

2k−1 + μ(a)2
k+1

x2
k−1 + μ(b) = 0 has no

solution in F2m .
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Proof Consider the exponential sum

ρ(a, b) =
∑

x∈T2,m

ωTr(ax+2bx2
k+1).

We have

ρ2(a, b) =
∑

x,y∈T2,m

ωTr[a(x+y)+2b(x1+2k +y1+2k
)].

Setting
z = x ⊕ y,

with the definition of the operation ⊕ in Sect. 2, we have

z = (x + y)2
m = [(x + y)2]2m−1

= [(x2 + y2 + 2xy)2]2m−2

= · · ·
= x2

m + y2
m + 2(xy)2

m−1

which together with y = x + z(mod 2) implies

x + y = z + 2
√

xy = z + 2x + 2
√

xz.

Next we compute Tr(a[x + y]) and 2Tr(b[x1+2k + y1+2k
)]).

Tr(a[x + y]) = Tr(a[z + 2x + 2
√

xz])
= Tr(az) + 2Tr(a2k

x2
k
) + 2Tr(a2k+1

x2
k
z2

k
),

2Tr[b(x1+2k + y1+2k
)] = 2Tr[b(x1+2k + (x + z + 2

√
xz)1+2k

)]
= 2Tr[b(x2

k
z + xz2

k + z1+2k
)]

= 2Tr(bz1+2k
) + 2Tr(bzx2

k
) + 2Tr(b2

k
x2

k
z2

2k
)

= 2Tr(bz1+2k
) + 2Tr[x2k

(bz + b2
k
z2

2k
)].

Since 〈T2,m,
⊕〉 is an abelian group, z takes on every value in T2,m when x is fixed

and y ranges over T2,m . Hence we have
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ρ2(a, b) =
∑

z∈T2,m

ωTr(az+2bz1+2k
)

∑
x∈T2,m

ω2Tr(x2
k

h(z))

where
h(z) = b2

k
z2

2k + a2k+1
z2

k + bz + a2k
.

The inner sum

∑
x∈T2,m

ω2Tr(x2
k

h(z)) =
∑

x∈T2,m

(−1)tr(μ(x2
k

h(z)))

=
∑

x∈T2,m

(−1)tr(μ(x 2k√
h(z)))

=
∑

x∈T2,m

(−1)tr(μ(x)
2k√

h̃(z))

where h̃(z) = μ(h(z)). By the property of the trace function,

∑
x∈T2,m

ω2Tr(x2
k

h(z)) =
{
0, if h̃(z) 
= 0,

2m, if h̃(z) = 0.

Therefore, if h̃(z) has exactly one root, the absolute value of the Fourier transform
of f

f̂ (u) = ωε
∑

z∈T2,m

ωTr([a+2u]z+2bz1+2k
)

is 2
m
2 for each u ∈ T2,m , and f is a generalized bent function.

Now we aim at characterizing the cases where h̃(z) has exactly one root. Write
α = μ(a) and β = μ(b). There are two cases, depending on whether α = μ(a) = 0
or not.

Case 1: When α = 0, h̃(z) = β2k
z2

2k + βz = z(β2k
z2

2k−1 + β). If
β2k

z2
2k−1 + β = 0 has no solution in F2m , f (x) is a generalized bent function,

which corresponds (i).
Case 2: When α 
= 0 and the equation β2k

x2
2k−1 + α2k+1

x2
k−1 + β = 0 has no

solution in F2m , then h̃(z) = 0 has one solution in F2m and f (x) is generalized bent
function.

Remark For any positive k ∈ Z, there always exist a ∈ R2,m and b ∈ T ∗
2,m such

that the function we construct is a generalized bent function.

Proof Let γ be a primitive element of F2m , and let α = μ(a), β = μ(b).

Condition (i) in the theorem is equivalent to α = 0 and β 
∈ 〈γ 2(2k,m)−1
2(k,m)−1 〉;
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Suppose (α, β) ∈ F∗
2m × F∗

2m and β2k
x2

2k−1 + α2k+1
x2

k−1 + β = 0 has a root in

F2m . Let y = x2
k−1 and since y = 0 is not a root, we have

β2k
y2

k + β

y
= α2k+1

Then (α, β) ∈ F∗
2m × F∗

2m satisfies

α = Gβ(y)

where Gβ(y) = (β2k
y2

k + β
y )

1
2k+1 . Thus condition (ii) in the theorem is equivalent to

⋃
β∈F∗

2m

G
(〈γ 2k−1〉) × {β} � F∗

2m × F∗
2m =

⋃
β∈F∗

2m

F∗
2m × {β}.

This holds since Gβ(y) will never be a permutation polynomial over F2m [3]. So in
both cases, there always exist a ∈ R2,m and b ∈ T ∗

2,m such that f (x) = ε+Tr(ax +
2bx1+2k

) is a generalized bent function.

4 General Construction of Generalized Bent Function

In Sect. 3, both constructions use the quadratic forms over finite fields. In fact, we
can consider a more general case in this section.

Theorem 3 Suppose m ≥ 5 and f (x) = ε + Tr(ax + 2bx L(x)), where L(x) =∑m−1
i=0 ai x2

i ∈ T2,m[x], ε ∈ Z4, a ∈ R2,m and b ∈ T ∗
2,m. Let α = μ(a), β =

μ(b), αi = μ(ai ). Then f (x) is a generalized bent function if

m−1∑
i=0

(βαi z
2i + (βαi )

2m−i
z2

m−i
) + α2z

is a linearized permutation polynomial over F2m .

Proof Denote

ρ(a, b) =
∑

x∈T2,m

ωTr(ax+2bx L(x))

We consider the following sum:

ρ2(a, b) =
∑

x,y∈T2,m

ωTr(a[x+y]+2b[x L(x)+yL(y)])
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We have

Tr(a[x + y]) = Tr(a[z + 2x + 2
√

xz]) = Tr(az) + 2Tr(ax) + 2Tr(a2xz);

2Tr(b[x L(x) + yL(y)]) = 2Tr(b[x L(x) + (z + x + 2
√

xz)L(z + x + 2
√

xz)])
= 2Tr(b[x L(x) + x L(x) + x L(z) + zL(x) + zL(z)])
= 2Tr(b[x L(z) + zL(x)]) + 2Tr(bzL(z))

= 2tr(x Lb(z) + x L̃b(z)) + 2Tr(zL(z)),

where Lb(z) = ∑m−1
i=0 βαi z2

i
and L̃b(z) = ∑m−1

i=0 (βαi )
2m−i

z2
m−i

.
Then

ρ2(a, b) =
∑

x,y∈T2,m

ωTr(a[x+y]+2b[x L(x)+yL(y)])

=
∑

x,z∈T2,m

ωTr(az+2zL(z))+2tr(x[Lb(z)+L̃b(z)+α2z+α])

=
∑

z∈T2,m

ωTr(az+2zL(z))
∑

x∈F2m

(−1)tr(xh(z))

where

h(z) = Lb(z) + L̃b(z) + α2z + α

=
m−1∑
i=0

(βαi z
2i + (βαi )

2m−i
z2

m−i
) + α2z + α.

If
∑m−1

i=0 (βαi z2
i + (βαi )

2m−i
z2

m−i
) + α2z is a permutation polynomial over F2m ,

then h(z) = 0 has one solution in F2m and |ρ2(a, b)| = 2m , which implies f (x) is a
generalized bent function.

Nowwe talk about how to test whether it will promise a generalized bent function
for L(x) = ∑m−1

i=0 ai x2
i ∈ R2,m[x] from an algorithmic aspect. When discussing

algorithmic problems of the finite fieldFqm , we always assume a basis {θi }m−1
i=0 for the

field extension overFq is given and all conjugates of the basis elements, i.e., θq j

i , 0 ≤
i, j ≤ m − 1 are precomputed. By the complexity of an algorithm, we mean the
number of operations needed to be done in ground field Fq . Generally speaking, for
an operation in Fqm , the complexity is O(M(m)), where M(m) = mlogmloglogm.
For convenience, we use the notation Õ(h) = O(h(logh)k) for some constant k.

Recall that f (x) = ε + Tr(ax + 2bx L(x)) is a generalized bent function if
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h(z) = Lb(z) + L̃b(z) + α2z + α

=
m−1∑
i=0

(βαi z
2i + (βαi )

2m−i
z2

m−i
) + α2z ∈ F2m [x]

is a permutation polynomial. Generally, to test whether a given polynomial over a
finite field is a permutation polynomial is very hard: for f (x) ∈ Fq [x] of degree m,
the complexity is Õ(mlogq) by von zur Gathen’s random polynomial time algorithm

[1], and Õ((mq)
6
7 ) by Shparlinski’s deterministic polynomial time algorithm [8]. But

for a linearized polynomial, it is not necessary to adapt these algorithms due to its
special form.

Let B(x) = ∑m−1
i=0 bi xqi ∈ Fqm [x], the following result in [4] is well known:

Theorem 4 (see [4]) B(x) is a permutation polynomial if and only if matrix

D(B) =

⎛
⎜⎜⎝

b0 b1 · · · bm−1

bq
m−1 bq

0 · · · bq
m−2· · · · · · · · · · · ·

bqm−1

1 bqm−1

2 · · · bqm−1

0

⎞
⎟⎟⎠

is nonsingular.

Now we assume

h(x) =
m−1∑
i=0

(βαi z
2i + (βαi )

2m−i
z2

m−i
) + α2z

=
m−1∑
i=0

hi x2
i ∈ F2m [x],

then f (x) is a generalized bent function if the matrix D(h) is nonsingular over F2m .
To get D(h), we need to compute h2 j

i , 0 ≤ i, j ≤ m − 1, where h0 = α2 and

hi = βαi +βα2i

m−i for 1 ≤ i ≤ m −1. The total complexity isO(m2)M(m)logm =
O(m3). To test singularity of D(h), there still needs O(m3) operations on F2m by
Gaussian elimination, so the complexity is at least O(m3M(m)) = Õ(m4).

Another method to test whether h(x) is a permutation polynomial is to compute
greatest common right divisors (GCRD) of polynomials in F2m [x; σ ]. Here σ is the
Frobenius automorphism of F2m over F2 and F2m [x; σ ] is the skew-polynomial ring
over F2m , which consists of ordinary polynomials over F2m but with a noncommuta-
tive multiplication x ·a = σ(a)x for any a ∈ F2m . A well-known result of Ore shows
that F2m [x; σ ] ∼= Lm , whereLm is the ring consisting of all linearized polynomials
over F2m with ordinary addition and polynomial composition as the ring operations.

Theorem 5 (see [10]) h(x) = ∑m−1
i=0 hi xi ∈ F2m [x; σ ] is a linearized permutation

polynomial if and only if GCRD(
∑m−1

i=0 hi xi , xm − 1) = 1.
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Due to this result, the problem of testing whether f (x) is a generalized bent function
can be reduced to computing GCRD(

∑m−1
i=0 hi xi , xm − 1) in F2m [x; σ ]. The com-

plexity of the GCRD algotithm in F2m [x; σ ] is Õ(m4) according to [2], which is the
same as former method. Fortunately, when h(x) ∈ F2[x], the GCRD of h(x) and
xm − 1 degenerates to the greatest common divisor of h(x) and xm − 1 in F2[x], the
complexity of which is O(m3) using Euclidean algorithm or O(m2logm) using fast
Euclidean algorithm [1].

Suppose L(x) = μ(L(x)) ∈ F2[x] , a = b = 1. In this case, we can replace
above conditions by computing greatest common divisor of two polynomials over
finite fields, which can be completed efficiently in polynomial time using Euclidean
algorithm. More precisely,

Corollary 1 Let f (x) = ε + Tr(x + 2x L(x)), where ε ∈ Z4, x ∈ T2,m, L(x) =∑m−1
i=0 ai x2

i ∈ T2,m[x] and αi = μ(ai ) ∈ F2 for i = 0, 1, . . . , m − 1. Then f (x)

is a generalized bent function if gcd(
∑m−1

i=0 βi x i , xm − 1) = 1 where β0 = 1, βi =
αi + α2i

m−i for i = 0, 1, . . . , m − 1.

Proof Using Theorem 3, we have

ρ2(1, 1) =
∑
z∈T

ωTr(z+2zL(z))
∑
x∈T

ω2tr[x(L(z)+L̃(z)+z+1)]

=
∑
z∈T

ωTr(z+2zL(z))
∑

x∈F2m

(−1)tr(xh(z))

where L(z) = α0z + ∑m−1
i=1 α2m−i

i z2
m−i

, h(z) = L(z) + L̃(z) + z + 1.
Denote

L1(z) = h(z) − 1 =
m−1∑
i=0

βi z
2i

where β0 = 1 and βi = αi + α2i

m−1 for i = 0, 1, . . . , m − 1 . Since L1(z) ∈
F2[z] is a linearized polynomial, L1(z) is a permutation polynomial if and only if
gcd(

∑m−1
i=0 βi x i , xm − 1) = 1. In this case, h(z) = L1(z) + 1 = 0 has only one

solution in F2m and |ρ(1, 1)|2 = 2m , so f (x) is a generalized bent function.

5 Conclusion

In this chapter, we extend Schmidt’s construction of generalized bent functions.
Using the tools of quadratic forms and linearized polynomials over finite fields, we
also consider a general case of generalized bent functions with the similar form.
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When L(x) = μ(L(x)) ∈ F2[x] , a = b = 1, we can construct a family of gen-
eralized bent functions by computing greatest common divisor of two polynomials
over finite fields, which can be completed in polynomial time using Euclidean al-
gorithm. All above generalized bent functions can be used to construct quaternary
constant-amplitude codes.
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Matrix Formulae of Differential Resultant
for First Order Generic Ordinary
Differential Polynomials

Zhi-Yong Zhang, Chun-Ming Yuan and Xiao-Shan Gao

Abstract In this paper, a matrix representation for the differential resultant of two
generic ordinary differential polynomials f1 and f2 in the differential indetermi-
nate y with order one and arbitrary degree is given. That is, a nonsingular matrix is
constructed such that its determinant contains the differential resultant as a factor.
Furthermore, the algebraic sparse resultant of f1, f2, δ f1 and δ f2 treated as polyno-
mials in y, y′, y′′ is shown to be a nonzero multiple of the differential resultant of f1
and f2. Although very special, this seems to be the first matrix representation for a
class of nonlinear generic differential polynomials.

Keywords Matrix formula · Differential resultant · Sparse resultant · Macaulay
resultant

1 Introduction

Multivariate resultant, which gives a necessary condition for a set of n + 1 polyno-
mials in n variables to have common solutions, is an important tool in elimination
theory. One of the major issues in the resultant theory is to give a matrix representa-
tion for the resultant, which allows fast computation of the resultant using existing
methods of determinant computation. By a matrix representation of the resultant, we
mean a nonsingular square matrix whose determinant contains the resultant as a fac-
tor. There exist stronger forms of matrix representations. For instance, in the case of
two univariate polynomials in one variable, there exist matrix formulae named after
Sylvester and Bézout, whose determinants equal the resultant. Unfortunately, such
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determinant formulae do not generally exist for multivariate resultants. Macaulay
showed that the multivariate resultant can be represented as a ratio of two determi-
nants of certain Macaulay matrixes [16]. D’Andrea established a similar result for
the multivariate sparse resultant [8] based on the pioneering work on sparse resultant
[2, 3, 11, 20]. This paper will study matrix representations for differential resultants.

Using the analog between ordinary differential operators and univariate polyno-
mials, the differential resultant for two linear ordinary differential operators was
studied by Berkovich and Tsirulik [1] using Sylvester style matrices. The subresul-
tant theory was first studied by Chardin [6] for two differential operators and then
by Li [15] and Hong [12] for the more general Ore polynomials.

For nonlinear differential polynomials, the differential resultant ismore difficult to
define and study. The differential resultant for two nonlinear differential polynomials
in one variable was defined by Ritt in [17, p. 47]. In [23, p. 46], Zwillinger proposed
to define the differential resultant of two differential polynomials as the determinant
of a matrix following the idea of algebraic multivariate resultant, but did not give
details. General differential resultants were defined by Carrà Ferro usingMacaulay’s
definition of algebraic resultants [5]. But, the treatment in [5] is not complete, as will
be shown in Sect. 2.2 of this paper. In [22], Yang et al. used the idea of algebraicDixon
resultant to compute the differential resultant. Although very efficient, this approach
is not complete and does not provide a matrix representation for the differential
resultant. Differential resultants for linear ordinary differential polynomials were
studied by Rueda-Sendra [18]. In [19], Rueda gave a matrix representation for a
generic sparse linear system. In [9], the first rigorous definition for the differential
resultant of n + 1 differential polynomials in n differential indeterminates was given
and its propertieswere proved. In [13, 14], the sparse resultant for differential Laurent
polynomials was defined and a single exponential time algorithm to compute the
sparse resultant was given. Note that an ideal approach is used in [9, 13, 14], and
whether the multivariate differential resultant admits a matrix representation is left
as an open issue.

In this paper, based on the idea of algebraic sparse resultants and Macaulay resul-
tants, a matrix representation for the differential resultant of two generic ordinary
differential polynomials f1, f2 in the differential indeterminate y with order one
and arbitrary degree is given. The constructed square matrix has entries equal to the
coefficients of f1, f2, their derivatives, or zero, whose determinant is a nonzero mul-
tiple of the differential resultant. Furthermore, we prove that the sparse resultant of
f1, f2, δ f1 and δ f2 treated as polynomials in y, y′, y′′ is not zero and contains the dif-
ferential resultant of f1 and f2 as a factor. Although very special, this seems to be the
first matrix representation for a class of nonlinear generic differential polynomials.

The rest of the paper is organized as follows. In Sect. 2, the method of Carrà Ferro
is briefly introduced and the differential resultant is defined following [9]. In Sect. 3,
a matrix representation for the differential resultant of two differential polynomials
with order one and arbitrary degree is given. In Sect. 4, it is shown that the differential
resultant can be computed as a factor of a special algebraic sparse resultant. In Sect. 5,
the conclusion is presented and a conjecture is proposed.
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2 Preliminaries

Tomotivate what we do, we first briefly recall Carrà Ferro’s definition for differential
resultant and then give a counter example to show the incompleteness ofCarrà Ferro’s
method when dealing with nonlinear generic differential polynomials. Finally,
definition for differential resultant given in [9] is introduced.

2.1 A Sketch of Carrà Ferro’s Definition

Let K be an ordinary differential field of characteristic zero with δ as a derivation
operator. K {y} = K [δn y, n ∈ N] is the differential ring of the differential polyno-
mials in the differential indeterminate y with coefficients in K . Let p1 (respectively
p2) be a differential polynomial of order m and degree d1 (respectively of order n
and degree d2 ) in K {y}. According to Carrà Ferro [5], the differential resultant of p1
and p2, denoted by δR(p1, p2), is defined to be the Macaulay’s algebraic resultant
of m + n + 2 differential polynomials

P(p1, p2) = {δn p1, δ
n−1 p1, . . . , p1, δ

m p2, δ
m−1 p2, . . . , p2}

in the polynomial ring Sm+n = K [y, δy, . . . , δ
m+n y] in m + n + 1 variables.

Specifically, let

D = 1 + (n + 1)(d1 − 1) + (m + 1)(d2 − 1), L =
(

m + n + 1 + D

m + n + 1

)
.

Let yi = δ
i y for all i = 0, 1, . . . , m + n. For each a = (a0, . . . , am+n) ∈ N

m+n+1,
Y a = ya0

0 · · · yam+n
m+n is a power product in Sm+n . M D

m+n+1 stands for the set of all
power products in Sm+n of degree less than or equal to D. Obviously, the cardinality
of M D

m+n+1 equals L . In a similar way it is possible to define M D−d1
m+n+1 which has

L1 = (m+n+1+D−d1
m+n+1

)
monomials, and M D−d2

m+n+1 which has L2 = (m+n+1+D−d2
m+n+1

)
monomials. The monomials in M D

m+n+1, M D−d1
m+n+1 and M D−d2

m+n+1 are totally ordered
using first the degree and then the lexicographic order derived from y0 < y1 < · · · <

ym+n .

Definition 1 The (((n + 1)L1 + (m + 1)L2) × L)-matrix

M(δ, n, m) = M(δ
n p1, . . . , δp1, p1, δ

m p2, . . . , δp2, p2),

is defined in the following way: for each i such that ( j − 1)L1 < i ≤ j L1 the
coefficients of the polynomial Y a

δ
n+1− j p1 are the entries of the i th row for each

Y a ∈ M D−d1
m+n+1 and each j = 1, . . . , n + 1, while for each i such that

(n + 1)L1 + ( j − n − 2)L2 < i ≤ (n + 1)L1 + ( j − n − 1)L2
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the coefficients of the polynomial Y a
δ

m+n+2− j p2 are the entries of the i th row for
each Y a ∈ M D−d2

m+n+1 and each j = n +2, . . . , m +n +2, that are written with respect
to the power products in M D

m+n+1 in decreasing order.

Definition 2 The differential resultant of p1 and p2 is defined to be

gcd(det(P) : P is an (L × L)-submatrix of M(δ, n, m)).

2.2 A Counter Example and Definition of Differential Resultant

In this subsection, we useCarrà Ferro’smethod [5] to constructmatrix formula of two
nonlinear generic ordinary differential polynomials with order one and degree two,

g1 = a0y21 + a1y1y + a2y2 + a3y1 + a4y + a5,

g2 = b0y21 + b1y1y + b2y2 + b3y1 + b4y + b5,
(1)

where, hereinafter, y1 = δy and ai , bi with i = 0, . . . , 5 are generic differential
indeterminates.

For differential polynomials in (1), we have d1 = d2 = 2, m = n = 1, D =
5, L = 56, and L1 = L2 = 20. The set of column monomials is

M5
3 = {y52 , y42 B1

3 , y32 B2
3 , y22 B3

3 , y2B4
3 , B5

3 },

where, and throughout the paper, B = {1, y, y1, y2} and B j
i denotes all monomials

of total degree less than or equal to j in the first i elements of B. For example,
B2
2 = {1, y, y2} and B2

3 = {1, y, y1, y2, yy1, y21 }. Note that the monomials of M3
3

are M3
3 = {y32 , y22 B1

3 , y2B2
3 , B3

3 } = B3
4 .

According to Definition 1, M(δ, 1, 1) is an 80 × 56 matrix

y52 y42 y1 . . . y32 . . . y 1⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 d1a0 . . . δa5 . . . 0 0
. . . . . .

0 0 . . . 0 . . . δa4 δ a5
0 0 . . . a0 . . . 0 0

. . . . . .

0 0 . . . 0 . . . a4 a5
0 d2b0 . . . δb5 . . . 0 0

. . . . . .

0 0 . . . 0 . . . δb4 δ b5
0 0 . . . b0 . . . 0 0

. . . . . .

0 0 . . . 0 . . . b4 b5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

}
B3
3δg1

}
B3
3g1

}
B3
3δg2

}
B3
3g2
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Obviously, the entries of the first column are all zero in M(δ, 1, 1), since the
monomial y52 never appears in any row polynomial Y ∗ f , where the monomial
Y ∈ M3

3 and f ∈ {δg1, g1, δg2, g2}. Consequently, the differential resultant of g1
and g2 is identically zero according to this definition.

Actually, the differential resultant is defined using an ideal approach for two
generic differential polynomials in one differential indeterminate in [17] and n + 1
generic differential polynomials in n differential indeterminates in [9]. f is said to
be a generic differential polynomial in differential indeterminates Y = {y1, . . . , yn}
with order s and degree m if f contains all the monomials of degree up to m in
y1, . . . , yn and their derivatives up to order s. Furthermore, the coefficients of f
are also differential indeterminates. For instance, g1 and g2 in (1) are two generic
differential polynomials.

Theorem 3 [9] Let p0, p1, . . . , pn be generic differential polynomials with order
si and coefficient sets ui respectively. Then [p0, p1, . . . , pn] is a prime differential
ideal in Q{Y, u0, . . . , un}. And

[p0, p1, . . . , pn] ∩ Q{u0, . . . , un} = sat(R(u0, . . . , un)) (2)

is a prime differential ideal of codimension one, where R is defined to be the differ-
ential sparse resultant of p0, p1, . . . , pn, which has the following properties

(a) R(u0, u1, . . . , un) is an irreducible polynomial and differentially homogeneous
in each ui .

(b) R(u0, u1, . . . , un) is of order hi = s − si in ui (i = 0, . . . , n) with s = ∑n
l=0 sl .

(c) The differential resultant can be written as a linear combination of pi and the
derivatives of pi up to the order s − si . Precisely, we have

R(u0, u1, . . . , un) =
n∑

i=0

s−si∑
j=0

hi j p( j)
i

where hi j ∈ Q[Y,Y(1) . . . ,Y(s), u(s−s0)
0 , . . . , u(s−sn)

n ].

3 Matrix Formula for Differential Polynomials

In this section, we will give a matrix representation for the following generic differ-
ential polynomials in y

f1 = a
y

d1
1

yd1
1 + a

y
d1−1
1 y

yd1−1
1 y + · · · + a0,

(3)
f2 = b

y
d2
1

yd2
1 + b

y
d2−1
1 y

yd2−1
1 y + · · · + b0,
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where y1 = δy, 1 ≤ d1 ≤ d2, and a
y

d1
1

, . . . , a0, b
y

d2
1

, . . . , b0 are differential

indeterminates.

3.1 Matrix Construction

In this subsection, we show that when choosing a proper column monomial set, a
square matrix can be constructed following Macaulay’s idea [16].

By (c) of Theorem 3, the differential resultant for f1, f2 can be written as a linear
combination of f1, f2, δ f1 and δ f2 which are treated as polynomials in variables
y, y1, y2 = δy1. So,wewill try to construct amatrix representation for the differential
resultant of f1 and f2 from these four polynomials.

From Sect. 2, it is easy to see that the main problem in Carrà Ferro’s definition is
that thematrix M(δ, n, m) contains toomany columns.Or equivalently, themonomial
set M D

m+n+1 used to represent the columns is too large.
Consider the monomial set

E = B D
3 ∪ y2B D−1

3 (4)

with D = 2d1 + 2d2 − 3. We will show that if using E as the column monomial set,
a nonsingular square matrix can be constructed.

Define the main monomial of polynomials p1 = δ f1, p2 = δ f2, p3 = f1, p4 =
f2 to be

mm(p1) = y2 yd1−1
1 , mm(p2) = yd2

1 , mm(p3) = yd1 , mm(p4) = 1. (5)

Then, we can divide E into four mutually disjoint sets E = S1 ∪ S2 ∪ S3 ∪ S4,
where

S1 = {Y α ∈ E : mm(p1) divides Y α},
S2 = {Y α ∈ E : mm(p1) does not divide Y α but mm(p2) does}, (6)

S3 = {Y α ∈ E : mm(p1),mm(p2) do not divide Y α but mm(p3) does},
S4 = {Y α ∈ E : mm(p1),mm(p2),mm(p3) do not divide Y α}.

As a consequence, we can write down a system of equations:

Y α/mm(p1) ∗ p1 = 0, for Y α ∈ S1,

Y α/mm(p2) ∗ p2 = 0, for Y α ∈ S2,

Y α/mm(p3) ∗ p3 = 0, for Y α ∈ S3, (7)

Y α/mm(p4) ∗ p4 = 0, for Y α ∈ S4.

Observe that the total number of equations is the number of elements in E and
denoted by N = (D + 1)2.
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Regarding the monomials in (7) as unknowns, we obtain a system of N linear
equations in these monomial unknowns. Denote the coefficient matrix of the system
of linear equations (7) by Dd1,d2 whose entries are zero or the coefficients of fi and
δ fi , i = 1, 2.

Note that the main monomials of the polynomials are not the maximal monomials
in the sense of Macaulay [16], so the monomials on the left hand side of (7) may not
be contained in E . Next, we prove that this does not occur for our main monomials.

Lemma 1 The coefficient matrix Dd1,d2 of system (7) is square.

Proof The coefficient matrix of system (7) has N = |E | rows. In order to prove
the lemma, it suffices to demonstrate that, for each Y α ∈ Si , i = 1, . . . , 4, all
monomials in [Y α/mm(pi )]∗ pi are contained in E . Recall that E = B D

3 ∪ y2B D−1
3 .

Then by (6), one has

S1 = B D−d1
3 ∗ mm(p1) = B D−d1

3 ∗ mm(δ f1),

S2 = B D−d2
3 ∗ mm(p2) = B D−d2

3 ∗ mm(δ f2),

S3 = T1 ∗ mm(p3) = T1 ∗ mm( f1), (8)

S4 = T2 ∗ mm(p4) = T2 ∗ mm( f2),

where

T1 =
{( d2−1⋃

i=0

yi
1B D−d1−i

2

)⋃(
y2

d1−2⋃
i=0

yi
1B D−d1−1−i

2

)}
,

T2 =
{( d2−1⋃

i=0

yi
1Bd1−1

2

)⋃(
y2

d1−2⋃
i=0

yi
1Bd1−1

2

)}
. (9)

Note that the representation of S2 in (8) is obtained with the help of the condition
d1 ≤ d2.

Hence, Eq. (7) become

B D−d1
3 ∗ δ f1 = 0,

B D−d2
3 ∗ δ f2 = 0, (10)

T1 ∗ f1 = 0,

T2 ∗ f2 = 0.

Since themonomial set of δ f1 is Bd1
3 ∪y2∗Bd1−1

3 , themonomial set of B D−d1
3 ∗δ f1

is B D−d1
3 ∗ (Bd1

3 ∪ y2 ∗ Bd1−1
3 ) = B D

3 ∪ y2B D−1
3 = E . So monomials in the first set

of equations in (10) are in E . Since the monomial set of f1 is Bd1
3 = ∪d1

l=0yl
1Bd1−l

2 ,

the monomial set of T1 ∗ f1 is T11 ∪ y2T12, where T11 = ⋃d1+d2−1
k=0 yk

1 B D−k
2 and

T12 = ⋃2d1−2
k=0 yk

1 B D−k−1
2 . Since d1 ≥ 1 and d2 ≥ 1, we have d1 + d2 − 1 ≤
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D = 2d1 + 2d2 − 3 and hence T11 ⊂ B D
3 . Since d1 ≥ 1 and d2 ≥ 1, we have

2d1 − 2 ≤ D − 1 = 2d1 + 2d2 − 4 and hence T12 ⊂ B D−1
3 . As a consequence,

T11 ∪ y2T12 ⊂ E and the monomials in the third set of equations in (10) are in E .
Other cases can be proved similarly. Thus all monomials in the left hand side of (10)
are in E . This proves the lemma. �

It is worthy to say that, due to the decrease of the number of monomials in E
compared with the method by Carrà Ferro, the size of the matrix Dd1,d2 decreases
significantly. Precisely, when we choose m = n = 1, the size of the matrix Dd1,d2 is
(D +1)2 × (D +1)2 and one can see that the size of the matrix given by Carrà Ferro
is 2

(3+D−d2
3

) + 2
(3+D−d1

3

) × (3+D
3

)
where D = 2d1 + 2d2 − 3. One can show that

2
(3+D−d2

3

) + 2
(3+D−d1

3

) ≥ (3+D
3

) ≥ (D + 1)2 for d1, d2 ≥ 1 and the last equality
holds only for d1 = d2 = 1.

3.2 Matrix Representation for Differential Resultant

In this section, we show that det(Dd1,d2) is not identically equal to zero and contains
the differential resultant as a factor.

Lemma 2 det(Dd1,d2) is not identically equal to zero.

Proof It suffices to show that there exists a unique monomial in the sense that it is
different from all other monomials in the expansion of det(Dd1,d2).

The coefficients of the main monomials in δ f1, δ f2, f1 and f2 are respectively

δ f1 : a
y

d1
1

the coefficient of mm(δ f1) = y2yd1−1
1 ,

δ f2 : δ b
y

d2
1

+ b
y

d2−1
1 y

the coefficient of mm(δ f2) = yd2
1 ,

f1 : ayd1 the coefficient of mm( f1) = yd1 ,

f2 : b0 the coefficient of mm( f2) = 1.

(11)

We will show that the monomial (a
y

d1
1

)n1(δb
y

d2
1

)n2(ayd1 )
n3(b0)n4 is a unique one

by the following four steps, where ni is the number of elements in Si with i =
1, . . . , 4. From (10), n1 = |B D−d1

3 |, n2 = |B D−d2
3 |, n3 = |T1|, n4 = |T2|.

Step 1. Observe that, in δ f1, ayd1 only occurs in the coefficient of y1yd1−1 with
the form ayd1 + δay1yd1−1 . Furthermore, δay1yd1−1 only occurs in this term given by
δ f1 and no other places of Dd1,d2 . So using the transformation

δay1yd1−1 = cy1yd1−1 − d1ayd1 , with other coefficients unchanged, (12)

where cy1yd1−1 is a new differential indeterminate, Dd1,d2 is transformed to a new
matrix which is singular if and only if the original one is singular. Still denote the
matrix by Dd1,d2 .
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From (10), for a monomial M ∈ T1, ayd1 is the coefficient of the monomial Myd1

in each polynomial T1∗ f1 and hence in each corresponding row of Dd1,d2 . Then ayd1

is in different rows and columns of Dd1,d2 , and this gives the factor (ayd1 )
n3 . Delete

those rows and columns of Dd1,d2 containing ayd1 and denote the remaining matrix

by D(1)
d1,d2

. From (10), the columns deleted are represented by monomials yd1T1. So,

D(1)
d1,d2

is still a square matrix.

Step 2. Let M ∈ B D−d1
3 . The term a

y
d1
1

occurs in M ∗ δ f1 as the coefficient

of the monomial y2yd1−1
1 M , or equivalently it occurs in the columns represented

by y2yd1−1
1 M . This gives the factor (a

y
d1
1

)n1 . It is easy to check that a
y

d1
1

does

not occur in other places of D(1)
d1,d2

. From the definition for T1 (9), the columns
deleted in case 1 correspond those columns represented by monomials of the form
yk2
2 yk1

1 yd1 where either k2 = 0 and k1 < d2 or k2 = 1 and k1 < d1 − 1. Then

{yd1T1} ∩ {y2yd1−1
1 B D−d1

3 } = ∅, or equivalently those columns of Dd1,d2 con-

taining a
y

d1
1

are still in D(1)
d1,d2

. Similar to case 1, one can delete those rows and

columns of D(1)
d1,d2

containing a
y

d1
1

and denote the remaining matrix by D(2)
d1,d2

which

is still a square matrix. From (10), the columns deleted are represented bymonomials
y2yd1−1

1 B D−d1
3 .

Step 3. At the moment, D(2)
d1,d2

only contains coefficients of f2 and δ f2. Observe
that b0 only occurs in the rows corresponding to T2 ∗ f2, where T2 is defined
in (9). Note that δb0 instead of b0 occurs in δ f2. Since {yd1T1} ∩ T2 = ∅ and
{y2yd1−1

1 B D−d1
3 } ∩ T2 = ∅, the columns of Dd1,d2 containing b0, represented by T2,

are not deleted in case 1 and case 2. Then, we have the factor (b0)n4 . Similarly, delete
those rows and columns of D(2)

d1,d2
containing b0 and denote the remaining matrix by

D(3)
d1,d2

which is still a square matrix. From (10), the columns deleted are represented
by monomials T2.

Step 4. From (10), the rows of D(3)
d1,d2

are from coefficients of B D−d2
3 ∗ δ f2. The

term δb
y

d2
1

is in the coefficient of the monomial M ∗ yd2
1 in M ∗ δ f2 for M ∈ B D−d2

3 ,

and δb
y

d2
1

does not occur in other places of M ∗ δ f2. Furthermore, since {yd1T1} ∩
{yd2

1 B D−d2
3 } = ∅, {y2yd1−1

1 B D−d1
3 } ∩ {yd2

1 B D−d2
3 } = ∅, and T2 ∩ {yd2

1 B D−d2
3 }} = ∅,

the columns containing the term δb
y

d2
1

are not deleted in the first three cases. Then,

we have the factor (δb
y

d2
1

)n2 .

Following the above procedures step by step, the coefficients of choosing main
monomials of the polynomials f1, f2, δ f1 and δ f2 occur in each row and each column
of Dd1,d2 and only once, and the monomial

(
a

y
d1
1

)n1(
δb

y
d2
1

)n2(ayd1

)n3(b0)n4 is a

unique one in the expansion of the determinant of Dd1,d2 . So the lemma follows. �

Note that the selection of main monomials in above algorithm is not unique, thus
there may exist other ways to construct matrix formula for system (3).
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Corollary 4 Following the above notations, for any Y α ∈ Si , if all monomials of
[Y α/mm(p j )] ∗ p j are contained in E ( j �= i), then the rearranged matrix, which is
obtained by replacing the row polynomials [Y α/mm(pi )]∗ pi by [Y α/mm(p j )]∗ p j ,
is not identically equal to zero.

Corollary 4 follows from the fact that the proof of Lemma 2 is independent of the
number of elements in Si as long as the main monomials are the same.

The relation between det(Dd1,d2) and differential resultant of f1 and f2, denoted
by R, is stated as the following theorem.

Theorem 5 det(Dd1,d2) is a nonzero multiple of R.

Proof From Lemma 2, det(Dd1,d2) is nonzero. In the matrix Dd1,d2 , multiply a
column monomial M �= 1 in E to the corresponding column and add the result
to the constant column corresponding to the monomial 1. Then the constant col-
umn becomes Y α ∗ pi with p1 = δ f1, p2 = δ f2, p3 = f1, p4 = f2 and
Y α ∈ Si/mm(pi ), i = 1, . . . , 4. Since a determinant is multilinear on the columns,
expanding the matrix by the constant column, we obtain

det(Dd1,d2) = h1 f1 + h2 δ f1 + h3 f2 + h4 δ f2, (13)

where h j are differential polynomials. From (2), det(Dd1,d2) ∈ sat(R). On the other
hand, from Theorem 3, R is irreducible and the order of R about the coefficients of
f1, f2 is one. Therefore, R must divide det(Dd1,d2). �

From Theorem 5, we can easily deduce a degree bound N = 4(d1 + d2 − 1)2 for
the differential resultant of f1 and f2. Themain advantage to represent the differential
resultant as a factor of the determinant of a matrix is that we can use fast algorithms
of matrix computation to compute the differential resultant as did in the algebraic
case [4].

Suppose that det(Dd1,d2) is expanded as a polynomial. Then the differential
resultant can be found by the following result.

Corollary 6 Suppose det(Dd1,d2) = ∏s
i=1Pei

i is an irreducible factorization of
det(Dd1,d2) in Q[C f1 , C f2 ], where C fi , i = 1, 2 are the sets of coefficients of fi .
Then there exists a unique factor, say P1, which is in [ f1, f2] and is the differential
resultant of f1 and f2.

Proof From (c) of Theorems 3 and 5, R ∈ [ f1, f2] and is an irreducible
factor of det(Dd1,d2). Suppose det(Dd1,d2) contains another factor, say P2, which
is also in [ f1, f2]. Then P2 ∈ sat(R) by (2). Since R is irreducible with order one
and P2 is of order no more than one, P2 must equal R, which contradicts to the
hypothesis. �
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3.3 Example (1) Revisited

In this section,we apply themethod just proposed to construct amatrix representation
for the differential resultant of the system (1).

Following the method given in the proceeding section, for system (1), we have
D = 2d1 + 2d2 − 3 = 5 and select the main monomials of δg1, δg2, g1, g2 are
y2y1, y21 , y2, 1, respectively. Then E = y2B4

3 ∪ B5
3 is divided into the following four

disjoint sets

S1 = y2y1B3
3 ,

S2 = y21 B3
3 ,

S3 = y2
[

B3
2 ∪ y1B2

2 ∪ y2B2
2

]
, (14)

S4 = B1
2 ∪ y1B1

2 ∪ y2B1
2 .

Using (7) and regarding the monomials in E as variables, we obtain the matrix
D2,2, which is a 36 × 36 square matrix in the following form.

y2y41 y2y31 y . . . y2y21 y2 . . . y 1⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2a0 a1 . . . 0 . . . 0 0
. . . . . .

0 0 . . . 0 . . . δa4 δ a5
0 0 . . . a0 . . . 0 0

. . . . . .

0 0 . . . 0 . . . a4 a5
2b0 b1 . . . 0 . . . 0 0

. . . . . .

0 0 . . . 0 . . . δb4 δ b5
0 0 . . . b0 . . . 0 0

. . . . . .

0 0 . . . 0 . . . b4 b5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

}
B3
3δg1

}
(B3

2 ∪ y1B2
2 ∪ y2B2

2 )g1

}
B3
3δg2

}
(B1

2 ∪ y1B1
2 ∪ y2B1

2 )g2

As shown in the proof of Lemma 2, (a0)10(a2)10(b5)6(δb0)10 is a unique mono-
mial in the expansion of the determinant of D2,2. Hence, the differential resultant of
g1 and g2 is a factor of det(D2,2). Note that in Carrà Ferro’s construction for g1, g2,
M(δ, 1, 1) is an 80 × 56 matrix, which is larger than D2,2.

In particular, suppose a0 = b0 = 1 and ai , bi are differential constants, i.e.,
δai = δ bi = 0, i = 1, . . . , 5. Then D2,2 can be expanded as a polynomial and
the differential resultant of g1 and g2 can be found with Corollary 6, which is a
polynomial of degree 12 and contains 3,210 terms. This is the same as the result
obtained in [22].
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4 Differential Resultant as the Algebraic Sparse Resultant

In this section, we show that differential resultant of f1 and f2 is a factor of the
algebraic sparse resultant of the system { f1, f2, δ f1 and δ f2}.

4.1 Results About Algebraic Sparse Resultant

In this subsection, notions of algebraic sparse resultants are introduced. Details can
be found in [4, 7, 11, 20].

A set S in �n is said to be convex if it contains the line segment connecting any
two points in S. If a set is not itself convex, its convex hull is the smallest convex set
containing it and denoted by Conv(S). A set V = {a1, . . . , am} is called a vertex set
of a convex set Q if each point q ∈ Q can be expressed as:

q =
m∑

j=1

λ j a j , with
m∑

j=1

λ j = 1 and λ j ≥ 0,

and each a j is called a vertex of Q.
Consider n + 1 generic sparse polynomials in the algebraic indeterminates

x1, . . . , xn :

pi = ui0 + ui1Mi1 + · · · + uili Mili , i = 1, . . . , n + 1,

where ui j are indeterminates and Mik = ∏n
s=1 xeiks

s are monomials inQ[x1, . . . , xn]
with exponent vectors aik = (eik1 , . . . , eikn ) ∈ �

n . Note that we assume each
pi contains a constant term ui0. For a = (e1, . . . , en) ∈ �

n , the corresponding
monomial is denoted as M(a) = ∏n

s=1 xes

s .
The finite set Ai ⊂ �

n of all monomial exponents appearing in pi is called the
support of pi , denoted by supp(pi ). Its cardinality is li = |Ai |. The Newton polytope
Qi ⊂ �

n of pi is the convex hull of Ai , denoted by Qi = Conv(Ai ). Since Qi is
the convex hull for a finite set of points, it must have a vertex set. For simplicity,
we assume that each Ai is of dimension n as did in [11, p. 252]. Let u be the set of
coefficients of pi , i = 0, . . . , n. Then, the ideal

(p1, p2, . . . , pn+1) ∩ Q[u] = (R(u)) (15)

is principal and the generatorR is defined to be the sparse resultant of p1, . . . , pn+1
[11, p. 252]. When the coefficients u of pi are specialized to certain values v, the
sparse resultant for the specialized polynomials is defined to be R(v). The matrix
representation of R is associated with the decomposition of the Minkowski sum of
the Newton polytopes Qi .
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The Minkowski sum of the convex polytopes Qi

Q = Q1 + · · · + Qn+1 = {q1 + · · · + qn+1|qi ∈ Qi }.

is still convex and of dimension n.
Choose sufficiently small numbers δi > 0 and let δ = (δ1, . . . , δn) ∈ �n be a

perturbed vector. Then the points which lie in the interior of the perturbed district
E = Z

n ∩ (Q + δ) are chosen as the column monomial set [4] to construct the matrix
for the sparse resultant.

Choose n + 1 sufficiently generic linear lifting functions l1, . . . , ln+1 ∈ Z

[x1, . . . , xn] and define the lifted Newton polytopes Q̂i = {̂qi = (qi , li (qi )) : qi ∈
Qi } ⊂ R

n+1. Let

Q̂ =
n+1∑
i=1

Q̂i ⊂ R
n+1

which is an (n + 1)-dimensional convex polytope. The lower envelope of Q̂ with
respect to vector (0, . . . , 0, 1) ∈ R

n+1 is the union of all the n-dimensional faces of
Q̂, whose inner normal vector has positive last component.

Letπ : (q1, . . . , qn+1) �→ (q1, . . . , qn) be the projection to the first n coordinates
from R

n+1 to Rn . Then π is a one to one map between the lower envelope of Q̂ and
Q [4]. The genericity requirements on li assure that every point q̂ on the lower
envelope can be uniquely expressed as q̂ = q̂1 + · · · + q̂n+1 with q̂i ∈ Q̂i , such
that the sum of the projections under π of these points leads to a unique sum of
q = q1 + · · · + qn+1 ∈ Q ⊂ R

n with qi ∈ Qi , which is called the optimal
(Minkowski) sum of q. For Fi ⊂ Qi , R = ∑n+1

i=1 Fi is called an optimal sum, if
each element of R can be written as a unique optimal sum

∑n
i=0 pi for pi ∈ Fi .

A polyhedral subdivision of an n-dimensional polytope Q consists of finitely
many n-dimensional polytopes R1, . . . , Rs , called the cells of the subdivision, such
that Q = R1 ∪ · · · ∪ Rs and for i �= j and Ri ∩ R j is either empty or a face
of both Ri and R j . A polyhedral subdivision is called a mixed subdivision if each
cell Rl can be written as an optimal sum Rl = ∑n+1

i=1 Fi , where each Fi is a
face of Qi and n = ∑n+1

i=1 dim(Fi ). Furthermore, if R j = ∑n+1
i=1 F ′

i is another

cell in the subdivision, then Rl ∩ R j = ∑n+1
i=1 (Fi ∩ F ′

i ). A cell Rl = ∑n+1
i=1 Fi

is called mixed if dim(Fi ) ≤ 1 for all i ; otherwise, it is a nonmixed cell. As a
result of n = ∑n+1

i=1 dim(Fi ), a mixed cell has one unique vertex, which satisfies
dim(Fi0) = 0, while a nonmixed cell has at least two vertices.

Recall δ = (δ1, δ2, . . . , δn), where 0 < δi < 1. If Q = R1 ∪ · · · ∪ Rs is a
subdivision of Q, then δ + Q = (δ +R1) ∪ · · · ∪ (δ + Rs) is a subdivision of δ + Q.

Let q ∈ Z
n ∩ (Q + δ) lie in the interior of a cell δ + F1 + · · · + Fn+1 of a

mixed subdivision for Q + δ, where Fi is a face of Qi . The row content function
of q is defined as the largest integer such that Fi is a vertex. In fact, all the vertices
in the optimal sum of p can be selected as the row content functions. Hence, we
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define generalized row content functions (GRC for brief) as one of the integers, not
necessary largest, such thatFi is a vertex.

Suppose that we have a mixed subdivision of Q. With a fixed GRC, a sparse
resultant matrix can be constructed as follows. For each i = 1, . . . , n + 1, define the
subset Si of E as follows:

Si = {q ∈ E |GRC(q) = (i, j0)}, (16)

where j0 ∈ {1, . . . , mi }, mi is the number of vertexes of Qi , and we obtain a disjoint
union for E :

E = S1 ∪ · · · ∪ Sn+1. (17)

For q ∈ Si , let q = q1 + · · · + qn+1 ∈ Q be an optimal sum of q. Then, qi is a
vertex of Qi and the corresponding monomial M(qi ) is called the main monomial
of pi and denoted by mm(pi ), similar to what we did in Sect. 3. Main monomials
have the following important property [7, p. 350].

Lemma 3 If q ∈ Si , then the monomials in (M(q)/mm(pi ))pi are contained in E .

Now consider the following equation systems

(M(q)/mm(pi ))pi , q ∈ Si , i = 1, . . . , n + 1. (18)

Treating the monomials in E as variables, by Lemma 3, the coefficient matrix for the
equations in (18) is an |E | × |E | square matrix, called the sparse resultant matrix.
The sparse resultant of pi , i = 1, . . . , n + 1 is a factor of the determinant of this
matrix.

In [3, 4], Canny and Emiris used linear programming algorithms to find the row
content functions and to construct Si . We briefly describe this procedure below.

Now assume Qi has the vertex set Vi = {ai1, . . . , ai mi }. A point q ∈ Z
n ∩(Q+δ)

implies that q ∈ σ + δ with a cell σ ∈ Q. In order to obtain the generalized row
content functions of q, we wish to find the optimal sum of q − δ in terms of the
vertexes in Vi . Introducing variables λi j , i = 1, . . . , n + 1, j = 1, . . . , mi , one has

q − δ =
n+1∑
i=1

qi =
n+1∑
i=1

mi∑
j=1

λi j ai j , with
mi∑
j=1

λi j = 1 and λi j ≥ 0. (19)

On the other hand, in order to make the lifted points lie on the lower envelope of Q̂,
one must force the “height” of the listed points minimal, thus requiring to find λi j

such that

n+1∑
i=1

mi∑
j=1

λi j li (ai j ) to be minimized (20)
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under the linear constraint conditions (19), where li (ai j ) is a random linear function
in ai j .

For q ∈ E , let λ∗
i j be an optimal solution for the linear programming problem

(20). Then q − δ = ∑n+1
i=1 q∗

i where q∗
i = ∑mi

j=1 λ∗
i j li (ai j ). a∗

i j0
is a vertex of Qi

if and only if there exists a j0 such that λ∗
i j0

= 1 and λ∗
i j = 0 for j �= j0. In this

case, the generalized row content function of q is (i, j0) and mm(pi ) is M(a∗
i j0

). It
is shown that when the lift functions li are general enough, all Si can be computed
in the above way [4].

In order to study the linear programming problem (20), we need to recall a lemma
about the optimality criterion for the general linear programming problem

min
x

z = cT x

subject to Ax = b, with l ≤ x ≤ u, (21)

where A is an m × n rectangular matrix, b is a column vector of dimension m, c
and x are column vectors of dimension n, and the superscript T stands for transpose.
In order for the linear programming problem to be meaningful, the row rank of
A must be less than the column rank of A. We thus can assume A to be row full
rank. Let n1, . . . , nm be linear independent columns of A. Then the corresponding
xn1 , . . . , xnm are called basic variables of x. Let B be the matrix consisting of the
n1, . . . , nm columns of A. Then B is an m × m invertible matrix. Lemma 4 below
gives an optimality criterion for the linear programming problem (21).

Lemma 4 [10] Let xB be a basic variables set of x, where B is the corresponding
coefficient matrix of xB. If the corresponding basic feasible solution xB = B−1b ≥ 0
and the conditions cB B−1A − c ≤ 0 hold, where cB is the row vector obtained by
listing the coefficients of xB in the object function, then an optimal solution for the
linear programming problem (21) can be given as xB = B−1b and all other xi equals
zero, which is called the optimal solution determined by the basic variables xB.

4.2 Algebraic Sparse Resultant Matrix

In this subsection, we show that the sparse resultant for f1, f2, δ f1 and δ f2 is nonzero
and contains the differential resultant of f1 and f2 as a factor.

For the differential polynomials f1 and f2 given in (3), consider the p1 =
δ f1, p2 = δ f2, p3 = f1, p4 = f2 as algebraic polynomials in y, y1, y2. The mono-
mial sets of δ f1, δ f2, f1 and f2 are Bd1

3 ∪ y2 ∗ Bd1−1
3 , Bd2

3 ∪ y2 ∗ Bd2−1
3 , Bd1

3 , and

Bd2
3 respectively. For convenience, we will not distinguish a monomial M and its

exponential vector when there exists no confusion. Then the Newton polytopes for
δ f1, δ f2, f1 and f2 are respectively,
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Q1 = Conv(sup(δ f1)) = Conv(Bd1
3 ∪ y2 ∗ Bd1−1

3 ) ⊂ �
3,

Q2 = Conv(sup(δ f2)) = Conv(Bd2
3 ∪ y2 ∗ Bd2−1

3 ) ⊂ �
3,

Q3 = Conv(sup( f1)) = Conv(Bd1
3 ) ⊂ �

3, (22)

Q4 = Conv(sup( f2)) = Conv(Bd2
3 ) ⊂ �

3,

The Newton polytopes Q1 and Q3 are shown in Fig. 1 (for d1 = 5) while Q2 and
Q4 have similar polytopes as Q1 and Q3 but with different sizes respectively.

Let theMinkowski sum Q = Q1+Q2+Q3+Q4. In order to compute the column
monomial set, we choose a perturbed vector δ = (δ1, δ2, δ3) with 0 < δi < 1 with
i = 1, 2, 3. Then the points in Z

3 ∩ (Q + δ) is easily shown to be yy1y2E where E
is given in (4). Note that using E or yy1y2E as the column monomial set will lead
to the same matrix.

Fig. 1 The Newton
polytopes Q1 and Q3

0

2

4

y

0

2

4

y1

0.0

0.5

1.0

y2

0

2

4
y

0

2

4

y1

1.0
0.5
0.0
0.5
1.0

y2



Matrix Formulae of Differential Resultant ... 495

The vertex sets of Qi , denoted by Vi , are respectively

V1 := {(0, 0, 0), (0, 0, 1), (0, d1 − 1, 1), (0, d1, 0), (d1 − 1, 0, 1), (d1, 0, 0)},
V2 := {(0, 0, 0), (0, 0, 1), (0, d2 − 1, 1), (0, d2, 0), (d2 − 1, 0, 1), (d2, 0, 0)},
V3 := {(0, 0, 0), (0, d1, 0), (d1, 0, 0)},
V4 := {(0, 0, 0), (0, d2, 0), (d2, 0, 0)}.

Let the lifting functions be li = (Li1, Li2, Li3), i = 1, . . . , 4, where Li j are parame-
ters to be determined later. From (20), the object function of the linear programming
problem to be solved is

min
λi j

(λ12L13 + λ13[L12(d1 − 1) + L13] + λ14L12d1 + λ15[L11(d1 − 1) + L13]
+λ16L11d1 + λ22L23 + λ23[L22(d2 − 1) + L23] + λ24L22d2
+λ25[L21(d2 − 1) + L23] + λ26L21d2 + λ32L32d1 + λ33L31d1 (23)

+λ42L42d2 + λ43L41d2)

under the constraints

A1 = λ15(d1 − 1) + λ16d1 + λ25(d2 − 1) + λ26d2 + λ33d1 + λ43d2,

A2 = λ13(d1 − 1) + λ14d1 + λ23(d2 − 1) + λ24d2 + λ32d1 + λ42d2,

A3 = λ12 + λ13 + λ15 + λ22 + λ23 + λ25,
mi∑
j=1

λi j = 1, i = 1, . . . , 4, (24)

λi j ≥ 0, i = 1, . . . , 4, j = 1, . . . , mi with m1 = m2 = 6, m3 = m4 = 3,

where A1 = ε1 − δ1, A2 = ε2 − δ2, A3 = ε3 − δ3 with (ε1, ε2, ε3) ∈ Z
3 ∩

(Q + δ). According to the procedure given in Sect. 4.1, we need to solve the linear
programming problem (23) for each (ε1, ε2, ε3) ∈ Z

n ∩ (Q + δ). Note that Li j are
parameters. What we need to do is to show that there exist Li j such that the solutions
of (23) make the corresponding main monomials to be the ones selected by us in
(5). More precisely, we need to determine Li j such that for each q ∈ Z

n ∩ (Q + δ),
the optimal solution for the linear programming problem (23) consists one of the
following cases:

λ13 = 1 implies GRC(q) = (1, 3), the vertex is (0, d1 − 1, 1), and mm(δ f1) = y2yd1−1
1 ,

λ24 = 1 implies GRC(q) = (2, 4), the vertex is (0, d2, 0), and mm(δ f2) = yd2
1 ,

λ33 = 1 implies GRC(q) = (3, 3), the vertex is (d1, 0, 0), and mm( f1) = yd1 ,

λ41 = 1 implies GRC(q) = (4, 1), the vertex is (0, 0, 0), and mm( f2) = 1.
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The following lemma proves that the above statement is valid.

Lemma 5 There exist Li j such that the optimal solution of the corresponding lin-
ear programming problem (23) can be chosen such that the corresponding main
monomials for f1, f2, δ f1 and δ f2 are mm( f1) = yd1 , mm( f2) = 1, mm(δ f1) =
y2yd1−1

1 , mm(δ f2) = yd2
1 respectively and E can be written as a disjoint union

E = S1 ∪ S2 ∪ S3 ∪ S4, where Si is defined in (16).

Proof Wewrite the linear programming problem as the standard form (21). It is easy
to see

c = (0, L13, (d1 − 1)L12 + L13, d1L12, (d1 − 1)L11 + L13, d1L11,

0, L23, (d2 − 1)L22 + L23, d2L22, (d2 − 1)L21 + L23, d2L21,

0, d1L32, d1L31, 0, d2L42, d2L41).

Let δ = (δ1, δ2, δ3) be a sufficiently small vector in sufficiently generic position.
Then

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 d̃1 d1 0 0 0 0 d̃2 d2 0 0 d1 0 0 d2
0 0 d̃1 d1 0 0 0 0 d̃2 d2 0 0 0 d1 0 0 d2 0
0 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where d̃1 = d1−1, d̃2 = d2−1, which is a 7×18 matrix and b = (A1, A2, A3, 1, 1,
1, 1). It is easy to see that the rank of A is 7, since d1 ≥ 1.

From (4), we have E = Z
3 ∩ (Q + δ) = yy1y2(B D

3 ∪ y2B D−1
3 ), where

D = 2d1+2d2−3.Wewill construct a disjoint union E = S1∪S2∪S3∪S4 like (17)
such that the corresponding main monomials are respectively mm(δ f1) = y2yd1−1

1 ,

mm(δ f2) = yd1
1 , mm( f1) = yd1 , mm( f2) = 1.

Four cases will be considered.
Case 1. We will give the conditions about Li j under which mm(δ f1) = y2yd1−1

1 ,
or equivalently, the linear programming problem (23) has an optimal solution where
λ13 = 1. As a consequence, S1 will also be constructed.

As shown by Lemma 4, an optimal solution for a linear programming problem can
be uniquely determined by a set of basic variables. We will construct the required
optimal solutions by choosing different sets of basic variables. Four subcases are
considered.

1.1. Selecting basic variables as vet11 = {λ13, λ23, λ24, λ32, λ33, λ41, λ43} while
other variables are nonbasic variables and equal to zero. Due the constraint λ11 +
λ12 + · · · + λ16 = 1, we have λ13 = 1. Then for any such an optimal solu-
tion of the linear programming problem (23), in the optimal sum of any element
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q = q1 + q2 + q3 + q4, q1 = (0, d1−1, 1) is a vertex of Q1, mm(δ f1) = y2yd1−1
1 ,

and the corresponding q belongs to S1 as defined in (16).
We claim that the basic feasible solutions in vet11 must be nondegenerate mean-

ing that all basic variables are positive, that is, xB = B−1b > 0. A mixed
cell R = ∑4

i=1Fi , where Fi is a face of Qi , must satisfy the dimension con-
straint

∑4
i=1 dim(Fi ) = 3. In the cell corresponding to the basic variables vet11,

F1 = (0, d1 − 1, 1) is a vertex of Q1, F4 is a one dimensional face of Q4 of the
form λ41V41 + λ43V43, where V41 = (0, 0, 0), V43 = (d2, 0, 0), and λ41 + λ43 = 1.
F2 and F3 are one dimensional faces of Q2 and Q3 respectively. In order for the
dimension constraint

∑4
i=1 dim(Fi ) = 3 to be valid, the claim must be true. For

otherwise, one of the variables in vet11 must be zero, say λ41 = 0. Then λ43 = 1
and F4 becomes a vertex, which implies

∑4
i=1 dim(Fi ) < 3, a contradiction.

From Lemma 4, the coefficient matrix of basic variables in (24) is

B11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 d1 0 d2
d1 − 1 d2 − 1 d2 d1 0 0 0

1 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with rank(B11) = 7. For all (A1, A2, A3) and b = (A1, A2, A3, 1, 1, 1, 1), the
requirement B−1

11 b > 0 in Lemma 4 gives

1 < A3 < 2, d1 + d2 < A2 + A3 < 2d1 + d2,

2d1 + d2 < A1 + A2 + A3 < 2d1 + 2d2.

Substituting A1 = ε1 − δ1, A2 = ε2 − δ2, A3 = ε3 − δ3 into the above inequalities
and considering that (ε1, ε2, ε3) are integer points, we have

ε3 = 2, ε2 = d1 + d2 − 1, . . . , 2d1 + d2 − 2, (25)

ε1 + ε2 = 2d1 + d2 − 1, . . . , 2d1 + 2d2 − 2.

On the other hand, cB11
= ((d1−1)L12+L13, (d2−1)L22+L23, d2L22, d1L32, d1

L31, 0, d2L41). After simplification and rearrangement, the condition cB11
B−1

11
A −

c ≤ 0 in Lemma 4 becomes

{L12 − L11 + L31 − L32, L12 + L31 − L32 − L41,

L13 − L12 + L22 − L23, L22 − L21 + L31 − L32, (26)

L22 + L31 − L32 − L41, L31 − L41, L32 − L31 + L41 − L42} ≤ 0

where, hereinafter, {w1, . . . , ws} ≤ 0 means wi ≤ 0 for i = 1, . . . , s.
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By Lemma 4, if (25) and (26) are valid, we obtain an optimal solution of the linear
programming problem (23) which is determined by the basic variables vet11. Hence,
if (26) is valid, the corresponding q = (ε1, ε2, ε3) in and (25) are in S1, since in the
optimal decomposition of q = q1 + q2 + q3 + q4, q1 = (0, d1 − 1, 1) is a vertex.

1.2. Similarly, choosing the basic variables as vet12 = {λ13, λ23, λ24, λ31, λ32,
λ33, λ41}, which generates a new basic matrix B12, and from B−1

12 b > 0, we obtain

0 < A1, d1 + d2 < A2 + A3, 1 < A3 < 2, A1 + A2 + A3 < 2d1 + d2,

which in turn lead to the following values for ε1, ε2, ε3

ε3 = 2, ε1 = 1, . . . , ε2 = d1 + d2 − 1, . . . (27)

ε1 + ε2 = d1 + d2, . . . , 2d1 + d2 − 2.

The condition cB12 B−1
12 A − c ≤ 0 leads to the following constraints on Li j ,

i = 1, . . . , 4, j = 1, 2, 3,

{L12 − L11 + L31 − L32, L12 − L32,

L13 − L12 + L22 − L23, L22 − L32, (28)

L22 − L21 + L31 − L32, L31 − L41, L32 − L42} ≤ 0.

1.3. Similarly, the basic variables vet13 = {λ13, λ23, λ24, λ32, λ33, λ41, λ42}
lead to

ε3 = 2, ε1 = 1, . . . , d1, (29)

ε1 + ε2 = 2d1 + d2 − 1, . . . , 2d1 + 2d2 − 2,

and

{L12 − L42, L12 − L11 + L31 − L32,

L13 − L12 + L22 − L23, L22 − L21 + L31 − L32, (30)

L22 − L42, L31 − L32 − L41 + L42, L32 − L42} ≤ 0.

1.4. Similarly, the basic variables vet14 = {λ13, λ23, λ24, λ33, λ41, λ42, λ43}
lead to

ε3 = 2, ε1 = d1 + 1, . . . , ε2 = d1 + d2 − 1, . . .

ε1 + ε2 = 2d1 + d2, . . . , 2d1 + 2d2 − 2. (31)
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and

{L12 − L11 + L41 − L42, L12 − L42,

L13 − L12 + L22 − L23, L22 − L21 + L41 − L42, (32)

L22 − L42, L31 − L41, L31 − L32 − L41 + L42} ≤ 0.

Let S1 be the set (ε1, ε2, ε3) defined in (25), (27), (29), and (31). Then for η ∈ S1
and an optimal sum of η = q1 + q2 + q3 + q4, since λ13 = 1, q1 must be the vertex
(0, d1 − 1, 1) of Q1. Therefore, mm(δ f1) = y2yd1−1

1 . Of course, in order for this
statement to be valid, Li j must satisfy constraints (26), (28), (30), and (32). We will
show later that these constraints indeed have common solutions.

The following three cases can be treated similarly, and we only list the conditions
for ε1, ε2, ε3 while the concrete requirements for Li j are listed at the end of the proof.

Case 2. In order for mm(δ f2) = yd1
1 , we choose the basic variables

vet21 = {λ13, λ14, λ24, λ31, λ32, λ33, λ41},
vet22 = {λ13, λ14, λ24, λ33, λ41, λ42, λ43},
vet23 = {λ13, λ14, λ24, λ32, λ33, λ41, λ43},
vet24 = {λ13, λ14, λ24, λ32, λ33, λ41, λ42},
vet25 = {λ11, λ12, λ13, λ24, λ31, λ33, λ41},
vet26 = {λ13, λ14, λ15, λ24, λ33, λ41, λ43},
vet27 = {λ12, λ13, λ14, λ15, λ24, λ33, λ41},

which lead to the following elements of S2

ε3 = 1, 0 < ε1, d1 + d2 − 1 < ε2, ε1 + ε2 = d1 + d2 + 1, . . . , 2d1 + d2 − 1;
ε3 = 1, d1 < ε1, d1 + d2 − 1 < ε2, ε1 + ε2 = 2d1 + d2 + 1, . . . , 2d1 + 2d2 − 1;
ε3 = 1, ε2 = d1 + d2, . . . , 2d1 + d2 − 1, ε1 + ε2 = 2d1 + d2, . . . , 2d1 + 2d2 − 1;
ε3 = 1, ε1 = 1, . . . , d1, ε1 + ε2 = 2d1 + d2, . . . , 2d1 + 2d2 − 1;
ε3 = 1, ε1 = 1, . . . , d1, ε2 = d2 + 1, . . . , d1 + d2 − 1;
ε3 = 1, ε2 = d2 + 1, . . . , d1 + d2 − 1, ε2 = 2d1 + d2, . . . , 2d1 + 2d2 − 1;
ε3 = 1, ε1 = d1 + 1, . . . , ε2 = d2 + 1, . . . , ε1 + ε2 = d1 + d2 + 2, . . . , 2d1 + d2 − 1.

Case 3. In order for mm( f1) = yd1
1 , we choose the basic variables

vet31 = {λ15, λ16, λ24, λ26, λ33, λ41, λ43},
vet32 = {λ13, λ15, λ23, λ24, λ33, λ41, λ43},
vet33 = {λ15, λ23, λ24, λ25, λ33, λ41, λ43},
vet34 = {λ12, λ13, λ15, λ23, λ24, λ33, λ41},
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which lead to the following results about ε1, ε2, ε3 in S3

ε3 = 1, ε2 = 1, . . . , d2, ε1 + ε2 = 2d1 + d2, . . . , 2d1 + 2d2 − 1;
ε3 = 2, ε2 = d2, . . . , d1 + d2 − 2, ε1 + ε2 = 2d1 + d2 − 1, . . . , 2d1 + 2d2 − 2; (33)

ε3 = 2, ε2 = 1, . . . , d2 − 1, ε1 + ε2 = 2d1 + d2 − 1, . . . , 2d1 + 2d2 − 2;
ε3 = 2, ε1 = d1 + 1, . . . , ε2 = d2, . . . , ε1 + ε2 = d1 + d2 + 1, . . . , 2d1 + d2 − 2.

Case 4. In order for mm( f2) = 1, we choose the following basic variables

vet41 = {λ11, λ12, λ21, λ24, λ26, λ31, λ41},
vet42 = {λ11, λ12, λ24, λ26, λ31, λ33, λ41},
vet43 = {λ11, λ12, λ15, λ24, λ26, λ33, λ41},
vet44 = {λ12, λ13, λ23, λ24, λ31, λ33, λ41},
vet45 = {λ12, λ23, λ24, λ25, λ31, λ33, λ41},
vet46 = {λ12, λ21, λ22, λ23, λ25, λ31, λ41},
vet47 = {λ12, λ15, λ23, λ25, λ26, λ33, λ41},

which correspond to the elements in S4

ε3 = 1, 0 < ε1, 0 < ε2, ε1 + ε2 = 2, . . . , d2;
ε3 = 1, ε2 = 1, . . . , d2, ε1 + ε2 = d2 + 1, . . . , d1 + d2;
ε3 = 1, ε2 = 1, . . . , d2, ε1 + ε2 = d1 + d2 + 1, . . . , 2d1 + d2 − 1;
ε3 = 2, ε1 = 1, . . . , d1, ε2 = d2, . . . , d1 + d2 − 2;
ε3 = 2, ε2 = 1, . . . , d2 − 1, ε1 + ε2 = d2, . . . , d1 + d2 − 1;
ε3 = 2, ε1 = 1, . . . , ε2 = 1, . . . , d2 − 2, ε1 + ε2 = 2, . . . , d2 − 1;
ε3 = 1, ε2 = 1, . . . , d2 − 1, ε1 + ε2 = d1 + d2 − 1, . . . , 2d1 + d2 − 2.

Merge all the constraints for Li j , we obtain

L11 − L12 − L21 + L22 ≤ 0,

L13 ≤ L23, L21 ≤ L31 ≤ L11 ≤ L41, (34)

L22 ≤ L12 ≤ L32 ≤ L42, L31 = L32 + L41 − L42.

The solution set for system (34) is nonempty. For example, l1 = (7,−4,−5),
l2 = (5,−9, 5), l3 = (6, 2, 1), l4 = (8, 4, 7), which will be used for example (1),
satisfy the conditions in (34).

We can also check that E = S1∪ S2∪ S3∪ S4 is a disjoint union for E . The lemma
is proved. �
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We now have the main result of this section.

Theorem 7 The sparse resultant of f1, f2, δ f1, δ f2 as polynomials in y, y1, y2 is
not identically zero and contains the differential resultant of f1 and f2 as a factor.

Proof Note that a0, b0, δa0, δb0, which are the zero degree terms of f1, f2, δ f1, δ f2
respectively, are algebraic indeterminates. As a consequence,

J1 = ( f1, f2, δ f1, δ f2)

is a prime ideal in Q[u, y, y1, y2], where u is the set of the coefficients of f1, f2 are
their first order derivatives. Let

J2 = J1 ∩ Q[u].

Then J2 is also a prime ideal. We claim that

J2 = (R) (35)

where R is the differential resultant of f1 and f2. From (c) of Theorem 3, R ∈ J2.
Let T ∈ J2. Then T ∈ J1 ⊂ [ f1, f2]. From (2), the pseudo remainder of T with
respect to R is zero. Also note that the order of T in ai , bi is less than or equal to 1.
From (a) and (b) of Theorem 3, R must be a factor of T , which proves (35).

From Lemma 5, the main monomials for f1, f2, δ f1, δ f2 are the same as those
used to construct S1,S2,S3,S4 in (5). As a consequence, we have S1 ⊂ S1.
For q ∈ S1 \ S1, q must be in some Si , say q ∈ S2. Then from Lemma 5, the
monomials in (M(q)/mm(δ f2))δ f2 are contained in E . By Corollary 4, the sparse
resultant matrix of f1, f2, δ f1, δ f2 obtained after move q from S2 to S1 is still non-
singular. Doing such movements repeatedly will lead to S1 = S1,S2 = S2,S3 =
S3,S4 = S4. As a consequence, the sparse resultant is not identically zero.

From (15), we have R ∈ J1 which implies R ∈ J2. Since R is irreducible, R
must be a factor ofR. �

4.3 Example (1) Revisited

We show how to construct a nonsingular algebraic sparse resultant matrix of the
system {g1, g2, δg1, δg2}, where g1, g2 are from (1).

Using the algorithm for sparse resultant in [3, 4], we choose perturbed vector
δ = (0.01, 0.01, 0.01) and the lifting functions l1 = (7,−4,−5), l2 = (5,−9, 5),
l3 = (6, 2, 1), l4 = (8, 4, 7), where li corresponds to Qi defined in (22) with
d1 = d2 = 2. These lift functions satisfy the conditions (34).

By Lemma 5, the main monomials for g1, g2, δg1, δg2 are identical with those
given in Sect. 3.3. Let S1, S2, S3, S4 be those constructed as in the proof of Lemma 5.
After the following changes
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move {y2y1y3, y2y1y2} in S3 to S1,

move {y2y2, y1y2, y3, y2} in S4 to S3,

move {y2y1y, y2y1} in S4 to S1,

we have Si = Si , i = 1, . . . , 4. Then by Corollary 4, the sparse resultant matrix
constructedwith theoriginal S1, S2, S3, S4 is nonsingular and contains thedifferential
resultant as a factor.

5 Conclusion and Discussion

In this paper, a matrix representation for two first order nonlinear generic ordinary
differential polynomials f1, f2 is given. That is, a nonsingular matrix is constructed
such that its determinant contains the differential resultant as a factor. The constructed
matrix is further shown to be an algebraic sparse matrix of f1, f2, δ f1 and δ f2 when
certain special lift functions are used. Combining the two results, we show that
the sparse resultant of f1, f2, δ f1 and δ f2 is not zero and conatins the differential
resultant of f1 and f2 as a factor.

It can be seen that to give a matrix representation for n + 1 generic polynomials
in n variables is far from solved, even in the case of n = 1. Based on what is proved
in this paper, we propose the following conjecture.

ConjectureLetP = { f1, f2, . . . , fn+1}ben+1generic differential polynomials
in n indeterminates, ord( fi ) = si , and s = ∑n

i=0 si .
Then the sparse resultant of the algebraic polynomial system

f1, δ f1, . . . δ
s−s0 f1, . . . , fn+1, δ fn+1, . . . δ

s−sn fn+1 (36)

is not zero and contains the differential resultant of P as a factor.
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