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Preface

The outstanding feature of this CASC Workshop is that this is the tenth work-
shop in the series started in 1998. The general idea of this workshop was to bring
together people working in the areas of computer algebra systems(CASs), com-
puter algebra methods and algorithms, and various CA applications in natural
sciences and engineering.

The nine earlier CASC conferences, CASC 1998, CASC 1999, CASC 2000,
CASC 2001, CASC 2002, CASC 2003, CASC 2004, CASC 2005, and CASC
2006, were held, respectively, in St. Petersburg, Russia, in Munich, Germany,
in Samarkand, Uzbekistan, in Konstanz, Germany, in Crimea, Ukraine, in Pas-
sau, Germany, in St. Petersburg, Russia, in Kalamata, Greece, and in Chisginau,
Moldova, and they proved to be successful.

Since 1998, the topics of papers published in the CASC proceedings accounted
both for the development of new excellent computer algebra systems and for
expanding the scopes of application of CA methods and techniques. The present
volume of the proceedings of CASC 2007 continues this tradition. Among the
traditional topics, there are studies in polynomial and matrix algebra, quantifier
elimination, and Grébner bases.

One of the fruitful areas of the application of CA methods and systems is the
derivation of new analytic solutions to differential equations, and several papers
deal with this topic.

The application of CASs to stability investigation of both differential equa-
tions and difference methods for them is also the subject of a number of papers.

Several papers are devoted to the application of computer algebra methods
and algorithms to the derivation of new mathematical models in biology and in
mathematical physics.

In addition to the accepted submissions, this volume also includes two invited
papers. The paper by F. Winkler and E. Shemyakova (RISC, Linz) addresses
the theme of extending the range of analytically solvable PDEs with the aid of
symbolic and algebraic methods. The key technique used here is the factorization
of a differential operator. The authors have introduced the notion of obstacle for
the factorization of a differential operator, i.e., conditions preventing a given
operator from being factorizable.

The other invited lecture, by S. Fritzsche (Max-Planck Institute for Nuclear
Physics, Heidelberg), is devoted to the problem of exploring decoherence and
entanglement phenomena in quantum information theory. The author presents
his Maple-based FEYNMAN program, which was developed recently to support
the investigation of the above phenomena. One of the applications presented is
the atomic photoionization, where the author shows how the polarization can
be transferred from the incoming photons to the emitted photoelectrons, giving
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rise to a (spin-spin) entanglement between the photoelectron and the remaining
(photo-)ion.

All the papers contained in this volume were accepted by the Program Com-
mittee after a thorough reviewing process.

The CASC 2007 workshop was supported financially by a generous grant from
the Deutsche Forschungsgemeinschaft (DFG). Our particular thanks are due to
the members of the CASC 2007 Local Organizing Committee at the University
of Bonn: Andreas Weber (Computer Science Department) and Joachim von zur
Gathen (B-IT), who ably handled local arrangements in Bonn. We are grateful
to W. Meixner for his technical help in the preparation of the camera-ready
manuscript for this volume.

July 2007 V.G. Ganzha
E.W. Mayr
E.V. Vorozhtsov
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Analytic Solutions of Linear Difference
Equations, Formal Series, and Bottom
Summation

S.A. Abramov!?* and M. Petkovsek?**

! Russian Academy of Sciences, Dorodnicyn Computing Centre,
Vavilova 40, 119991, Moscow GSP-1, Russia
sabramov@ccas.ru
2 University of Ljubljana, Faculty of Mathematics and Physics,
Jadranska 19, SI-1000 Ljubljana, Slovenia
marko.petkovsekQuni-1j.si

Abstract. We consider summation of consecutive values ¢(v), p(v+1),
.., p(w) of a meromorphic function ¢(z) where v,w € ZZ. We assume
that ¢(z) satisfies a linear difference equation L(y) = 0 with polynomial
coefficients, and that a summing operator for L exists (such an operator
can be found — if it exists — by the Accurate Summation algorithm, or
alternatively, by Gosper’s algorithm when ord L = 1).
The notion of bottom summation which covers the case where ¢(z)
has poles in ZZ is introduced.

1 Introduction

Similarly to [RI3U5UT], this paper is concerned with the problem of summing the
elements of a P-recursive sequence f(k), k € ZZ, i.e., a sequence which satisfies
a linear difference equation with polynomial coefficients.

Let Ej be the shift operator such that E(f(k)) = f(k+1) for sequences f(k)
where k € ZZ. Let

L = aa(R)EL + -+ ay (k) By + ao(k) € O(k)[F. 1)
We say that an operator R € C(n)[E}y] is a summing operator for L if
(Ex —1)oR=1+MoL (2)

for some M € C(k)[Ex]. It is easy to see that if there exists a summing operator
for L, then there also exists one of order < d (simply replace R by its remainder
when divided by L from the right). Hence we can assume w.l.g. that ord R =
ordL—-1=d-1:

R=rq1(K)ES + -+ r1(k)Ey + ro(k) € C(k)[Eg). (3)

* Partially supported by RFBR under grant 07-01-00482-a.
** Partially supported by ARRS under grant P1-0294.

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 1f10] 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 S.A. Abramov and M. Petkovsek

If a summing operator exists, then it can be constructed by the Accurate Sum-
mation algorithm [3] or, when d = 1, by Gosper’s algorithm [§]. In those cases
where R € Clk, Ei] exists, equality (2 gives an opportunity to use the discrete
Newton-Leibniz formula

> flk) = g(w) = g(v) (4)

for all integers v < w, and for any sequence f such that L(f) = 0, taking
9 = R(f).

However, it was shown in [5] that if R has rational-function coefficients which
have poles in ZZ, then this formula may give an incorrect result (see Example
of the present paper). This gives rise to defects in many implementations of
summation algorithms. In [5T] a way was proposed to construct a basis for the
space Wi, g of all solutions of L(y) = 0 for which @) is valid for all integers
v < w. It was also proved that dim Wy, g > 0 in the case d = 1.

In the present paper we give a new sufficient condition for the correctness
of definite summation by Gosper’s algorithm and by the Accurate Summation
algorithm.

In Section [ below we prove that if a summing operator exists for L with
ord L = d, then dim Wy, gr > 0 regardless of the value of d.

In Section @l we suppose that L acts on analytic functions:

L=ua4(2)E+ - 4 a1(2)E. + ao(z) € C(2)[E.], (5)

where E,(¢(2)) = ¢(z+1) for analytic functions ¢(z) where z € C. We consider
the summing operator (if it exists) in the form

R=r4 1(2)E 4. 471 (2)E, +10(2) € C(2)[E.].

Let (%) be a meromorphic solution of L(y) = 0. It turns out that if ¢(z) has
no pole in ZZ, then R(¢)(z) has no pole in ZZ as well, and we can use (@) to
sum values (k) for k = v,v + 1,...,w. This follows from a stronger statement
also proved in Section Fl The fact is that even if ¢(z) has some poles in ZZ, the
summation task can nevertheless be performed correctly. For any k € Z the
function ¢(z) can be represented as

QO(Z) = Ck,py, (Z - k)pk + Ck,pk.-t,-l(z - k)karl +..

with py € Z and ¢, # 0. If L(p) = 0, then there exists the minimal element
p in the set of all pi, k € ZZ. We associate with ¢(z) the sequence f(k) such
that f(k) = ck,p, if pr = p, and f(k) = 0 otherwise. Then the sequence f(k)
satisfies the equation L(y) = 0, if we use Ej, instead of E, in L. We associate a
sequence g(k) with R(¢) in a similar way, and the value of p for R(p) will be
the same as for ¢. Now formula () is correct. We call this type of summation
bottom summation.

Some important auxiliary statements (Section [2) on sequences of power series
are based on the idea of the e-deformation of a difference operator which was
first used by M. van Hoeij in [7]; later this idea was used in [4] and in [2] as well.
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2 Series-Valued Sequences

We start with some notations and definitions. Let € be a variable (rather than

a “small number”). As usual, C[[¢]] is the ring of formal power series in ¢ and

C((e)) = CJ[e]][e 1] is its quotient field (the field of formal Laurent series in ).
If s € C((¢)) \ {0} then we define the wvaluation of s in the following way:

v(s) =—min{m|me Z, ™s € C[[¢]]},

in addition we set v(0) = co. If s € C((¢)), m € Z then [¢™]s is the coefficient of
€™ in the series s, and [°°]0 = 0. It follows from the definition of the valuation
that if s,¢ € C((g)) then

v(st) = v(s) +v(t),  [7CD)(st) = ([ ]s)([(e"V]0), (6)
and
v(s+t) > min{v(s),v(t)}. (7)

If K is a ring, then K% denotes the ring of all maps Z — K, i.e., the
ring of all two-sided K-valued sequences. Note that the operator Fj is a ring
automorphism of K% .

If S € C((¢))%, then v(S) denotes the sequence in Z* whose kth element is
v(S(k)). If m € Z, then [¢™]S denotes the sequence in C* whose kth element
is [e™](S(k)). We say that S is of bounded depth if the sequence v(S) is bounded
from below, i.e., there exists

m= mkin v(S(k)). (8)
If S is of bounded depth, then m in (§]) is the depth of S. In this case the bottom
of S, which is a sequence in C# | is defined by
bott(S) = [™]S.
An operator A € C((g))#|Ej] of the form
A=SaEl + - 4+ S1E; + So,  S0,51,...,54 € C((e)) 7, 9)

defines a map C((¢))Z — C((¢))# where (AS)(k) = Z;‘i:o S;i(k)S(k + 7). If
each sequence S; has bounded depth m; for j = 0,1,...,d, then we say that A
is of bounded depth m = ming<;<qm;. In this case the bottom of A is

d
bott(A) =Y "([e"]S;)E] € CZ[Ey].
7=0

Proposition 1. Let A be an operator of the form (), of bounded depth. Let
S € C((e)) satisfy A(S) = 0. If for all but finitely many k € ZZ we have

v(So(k)) = v(Sa(k)) = min v(S;(k)), (10)

<j<

then S is of bounded depth and A(bott(S)) = 0, where A = bott(A).
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Proof. Fix k € Z and ¢ € {0,1,...,d}. From A(S) = 0 it follows that

v(Si(k)S(k +1)) = v (— > SRSk +j)) :

0<j<d,j#i
so by (@) and () we have
v(Si(k)) +v(S(k + 1)) > min v(S;(k) + min v(S(k+7). (1)

0<j<d <
JFi JFi

Assume that v(S;(k)) = ming<j<qv(S;(k)). Then it follows from (Il that
v(S(k+1)) > minog_;gd v(S(k + j)). Specializing this to ¢ = 0 and ¢ = d and

using ([I0) we obtain that
v(S(k)) > min v(S(k+ 7))

T 1<5<d
and
- . .
v(S(k+d)) > o min v(S(k+ 7))
for all but finitely many k € ZZ. Therefore, S is of bounded depth. The equality
A(bott(S)) = 0 now follows from (). O

Ezxample 1. Let
A= S1Ex+ 8o, S1(k) =k+1+4¢, So(k) =—k—¢

and ) ;
itk=0
k) = e itl '
S(k) {Zio (—4) gl otherwise.
Then Si(k)S(k + 1) = —Sp(k)S(k) = —1 for all k, and A(S) = 0 as a conse-
quence. The depth of S is —1.

We see that f
—1,if k=0,
bott(S)(k) = {0 otherwise

and bott(A) = (k + 1) Ej, — k. It is easy to see that (k+1)f(k+1) —kf(k) =0,
where f(k) = bott(S)(k); so A(bott(S)) = 0, where A = bott(A).

3 When a Summing Operator Exists

If o(z) € C(z), then we write @(k) for the sequence p(k+¢), k € ZZ, of rational
functions expanded into Laurent series about ¢ = 0. We associate with every

operator
N =b(2)EL +---+bE, +bo(z) € C(2)[E.]

the operator
N =by(k)Ef + -+ bi(k)Ep + bo(k) € C((e))Z[Eq]

which acts on sequences from C((¢))#.
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Proposition 2. Let L € C[z, E.]. Assume that R € C(2)[E.] is a summing
operator for L. Let S € C((€))Z be such that L(S) = 0. Then
(

B, — 1)(R(S)) = S. (12)
Proof. By (@), there is an operator M € C(z)[FE,] such that
(E.—~1)oR=1+MolL. (13)

The map N — N is a ring homomorphism from C(z)[E.] to C((¢))% [Ex]. There-
fore, (I3) implies R o

(B —1)oR=1+ Mo L.
Applying both sides of this equality to .S, we obtain ([IZ]). O

Proposition 3. Let L € C[z, E.], and let R € C(z)[E.] be a summing operator
for L. Let S € C(())# be such that L(S) = 0. Then depth(R(S)) = depth(S),
and

(Ex — 1)(bott(R(S))) = bott(S). (14)

Proof. Tt follows from () that depth(R(S)) < depth(S). To prove equality, we
distinguish two cases.

1. depth(R(S)) = v(R(S)(k)) for all k € ZZ. A
Assume that depth(R(S)) < depth(S). Then bott(R(S)) is a non-zero
constant sequence. However, since R has rational coefficients, there exists
ko € Z such that for all & > kg, the valuation of any coefficient of R is
non-negative and, as a consequence,

v(R(S) (k) > OggrrldRy(S(k+i)) > depth(S) > depth(R(S))

for all k > ko. Then bott(R(S))(k) = 0 for all & > k. Hence bott(R(S))
is not a non-zero constant sequence. This contradiction implies that
depth(R(S)) = depth(S).

2. depth(R(S)) = v(R(S)(k)) < wv(R(S)(k + 1)) or depth(R(S)) =
v(R(S)(k)) > v(R(S)(k — 1)), for some k € Z.
By (2, also in this case depth(R(S)) = depth(S).

Now it follows from (2] that (I4) is valid. O

Theorem 1. Let L € C[z, E,], ord L = d, and let
R=r4 1(2)E" - 471 (2)E. +70(2) € C(2)[E.]

be a summing operator for L. Denote by V the set of all the poles of
ro(2),71(2),...,ra—1(2). Then there exist non-zero f,g € C# such that

(i) L(f(k)) =0 forall k € ZZ,

(1) g(k) =ra_1(k)f(k+d—1)+--+ri(k)f(k+1)+ro(k)f(k) for allk € Z\V,
and
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(iii) the discrete Newton—Leibniz formula

w—1
> f(k) = g(w) — g(v)
k=v

is valid for all integer v < w.

Proof. Pick any non-zero Uy, ..., Uy € C((€)), and using L find a sequence S €
C((e))# such that S(i) = Uy, i =1,2,...,d, and L(S) = 0. So there exists a non-
zero sequence S such that L(S) = 0. Write f = bott(S), g = bott(R(S)). Then
(iii) is valid by Proposition[3, and (i) is valid since L has polynomial coefficients.
Finally, for all k ¢ V we have g(k) = bott(R(S))(k) = R(bott(S))(k) = R(f)(k),
so (ii) is valid. O

4 The Analytic Case

In the rest of this paper we assume that the sequences under consideration are
defined on an infinite interval I of integers, where either I = ZZ, or

I=Zs ={keZ|k>1}, e Z.

Tt is easy to see that Propositions [l - Bl remain valid if we consider sequences
defined on ZZ>;, and define the operators % and bott with respect to ZZ >
instead of with respect to ZZ.

Let U be an open subset of C containing I, such that z € U = 2+ 1 € U.
Denote by M(U) the set of functions which are meromorphic on U. We associate
with ¢ € M(U) a sequence ¢ € C((¢))# whose kth element, k € I, is a (formal)
series obtained by expanding (e + k) into Laurent series at ¢ = 0.

Proposition 4. Let L € Clz, E.|, and let ¢ € M(U) satisfy L(p) = 0 on U.
Then L($) = 0 everywhere on Z, the sequence ¢ € C((€))# is of bounded depth,

and L(bott(¢)) = 0 everywhere on ZZ, where L = bott(L).

Proof. This follows from the trivial fact that the Laurent series of the zero
function has only zero coefficients, and from Proposition [l O

Corollary 1. If ag,ay,...,aq € C[z] then bott(L) = ag(k)E{ + - -+ ay (k) Ey, +
ao(k). If in addition S € C((¢))# is such that L(S) = 0, then L(bott(S)) = 0. In
particular, if o € M(U) is such that L(p) = 0 everywhere on U except possibly
on a set of isolated points, then L(bott(v)) =0 everywhere on ZZ.

Ezample 2. In Example[Mlwe used, in fact, L = (z4+1)E,—2, U = C, p(2) = —i,
A=1L, S =¢p.
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Theorem 2. (On the bottom summation.) Let L € Clz, E.], and let R €
C(2)[E.] be a summing operator for L. Let ¢ € M(U) satisfy L(¢) = 0 on
U, and let v = R(p). Then the bottom summation formula

w—1

S bott () (k) = bott (i) (w) — bott (1) (v) (15)

k=v

is valid for any v < w, v,w € I. In particular, if ¢ has no pole in Z (i.e.,
depth(¢) = 0), then the function ¢ = R(p) € M(U) has no pole in Z, and the
discrete Newton—Leibniz formula

S (k) = 9w) — () (16)
k=v

is valid for any v < w, v,w € I.
Proof. The statement follows from Propositions @ and O

Consider some known examples in the context of Theorem

Ezample 3. The function ¢(z) = zI'(2+1) satisfies the equation L(y) = 0 where
L=zE.—(2+1)>. Wehave R= !, ord R = 0, and ¥(z) = R(¢)(2) = I'(2+1).
Evidently ¢(z) has finite values when z = 0,1, ..., and has simple poles when

z=—1,-2,....If we consider I = Z then depth($) = depth(v)) = —1 and

GOk k<0
bott () (k) = & (—k—1)1 2} ’
(2)(k) {0, if k>0,

- D" i k<0
bott() (k) = { (~k=1>! ’
W)(k) {0, if k> 0.

As a consequence of ([IH) we have

= (=D (-1 (-1)”
kz:; (k=10 (—w—=1) (—v—1)

for any v < w < 0, or equivalently

uif (—l)kk (_1)w+1 (_1)v+1

k-1 (w-2) (v -2)!

for any 1 <wv < w. .
If I = Z>¢ then depth(¢) = depth(¢p) = 0, and by ([{8) we have
ZU;} El'k+1) =T'(w+1)—I'(v+1) for any 0 < v < w or, equivalently,
ol kK = w! — ol
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Ezample 4. The rational function ¢(z) = z(zlJrl) satisfies the equation L(y) =0
where L = (z + 2)E. — z. We have R = —z — 1, and 9(z) = R(p)(2) = —!. If

we consider I = ZZ then depth(¢) = depth(y)) = —1 and

bott(®)(k) = do.x — 6—1.k,

bott(y) (k) = —bo,x,
where 6 is the Kronecker delta. A simple direct check shows that (&) is valid.

If I = Z>, then depth(¢) = depth(¢)) = 0, and by [B) we have
wol k(klﬂ) =—1 4+ forany 0 <v<w.
The following example demonstrates a conflict between combinatorial and ana-
lytic definitions of the symbol ().

Example 5. Consider the hypergeometric sequence

(2k—3)

t(k) = ﬁ (17)
which satisfies the equation 2(k + 1)(k — 2)t(k +1) — 2k — 1)(k — 1) = 0. It
has been noticed in [5] that even though Gosper’s algorithm succeeds on this

sequence, producing R(k) = 2%}31)7 and t(k) is defined for all k € ZZ, the

discrete Newton—Leibniz formula

w—1 wlw 2w—3
1) = R - royo) = 20Dy
k=0

is not correct. If we assume that the value of (2k1;3) is 1 when £ = 0 and —1
when k =1 (as is common practice in combinatorics) then the expression on the
right gives the true value of the sum only at w = 1. However, assume that the

value of (2]“,; 3) is defined as

I'2z-2)

I e —2) (19)

This limit exists for all k € ZZ, but

r(2z-2) 1

M G rz—2) = 2 71
and r2s—2) |
.
I =—_#-1.
M ey nre—2~ 27
Set

. r(2z-2)
P& = pa (e < 2040
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and 22 0
z(z +

Then formula (IG]) gives the correct result

o(2).

2k —2)  2w(w+ DI 2w —2) 2
Fk+1)I(k—2)4c  (w—2)T(w+1)(w—2)4w (20)

M

k=0

for all w > 1, provided that the values of the summand and of the right-hand
side are defined by taking appropriate limits.

Note that if akg + [ is a non-positive integer, then we can often avoid a direct
computation of limits using the asymptotic equality

(_1)ako+ﬁ

I'laz+B) ~ (—ako — B)-a- (2 — ko)’

Z_)k(b

instead. If o # 0 and —5 is an integer v, then I'(cz + 3) has integer poles at
v,y—1,...ifa>0and v,y+1,...if a <O0.
The following example is related to the case ord L > 1.

Ezample 6. For the operator L = (z — 3)(2 — 2)(2 + 1)E? — (2 — 3)(2? — 22 —
1)E, — (2 — 2)? there exists the summing operator

(B]). By [6] the equation L(y) = 0 has solutions holomorphic in the half-plane
Rez > 2. Denote by ¢(z) an arbitrary solution of this kind. By Theorem [2]
formula ([I6]) must be correct for the case I = ZZ>3 in spite of the fact that one of
the coefficients of R has a pole at z = 3. This implies that ¢(z) vanishes at z = 3.
This can be easily confirmed by the substitution of z = 3 into L(p) = 0, which
results in —¢(3) = 0. The algorithm from [ yields ¢(z) = (¢(4) + 4¢(5))(z —
3) + O((z — 3)?), and formula (8] gives the correct result for 3 < v < w.

5 Conclusion

Indiscriminate application of the discrete Newton—Leibniz formula to the out-
put of Gosper’s algorithm or of the Accurate Summation algorithm in order to
compute a definite sum can lead to incorrect results. This can be observed in
many implementations of these algorithms in computer algebra systems.

In the present paper it is shown, in particular, that such undesirable phenom-
ena cannot occur if the elements of the sequence under summation are the values
p(k), k € ZZ, of an analytic function ¢(z), which satisfies (in the complex plane
C) the same difference equation with polynomial coefficients as does the original
sequence (at integer points).
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A practical consequence of this result is as follows. If the conditions formulated
above are satisfied, then a computer-algebra-system user can be sure that the
obtained sum was computed correctly.

On the more theoretical side, if ¢(z) mentioned above has some poles at
integer points, then one can nevertheless find the sum of a sequence which,
however, is not the sequence of values of ¢(k), k € ZZ, but is associated with
©(2) in a natural way. This can yield an interesting (and, probably, unexpected)
identity. We call this sequence associated with ¢(z), the bottom of p(z). If p(z) is
defined for all z € ZZ then its bottom coincides with the sequence ¢(k), k € ZZ.
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Abstract. This paper is a review of results on computational methods
of linear algebra over commutative domains. Methods for the following
problems are examined: solution of systems of linear equations, com-
putation of determinants, computation of adjoint and inverse matrices,
computation of the characteristic polynomial of a matrix.

1 Introduction

Let R be a commutative domain with identity, K the field of quotients of R.
This paper is devoted to the review of effective matrix methods in the domain
R for a solution of standard linear algebra problems. The problems are: solving
linear systems in K, computing the adjoint and inverse matrix, computing the
matrix determinant and computing the characteristic polynomial of a matrix.

The standard used to tackle these problems in commutative domain R consists
of the using the field of fractions K of this domain. The ring R may be canonically
immersed in the field K. To solve a problem in the commutative domain any
algorithm that is applicable over the field of fractions of this domain you can be
applied.

Unfortunately this way results in algorithms with suitable complexity only in
the case where the cost of operations in the field does not depend on the value
of the operands. As an example consider the finite fields. But in the general case
the cost of operations in the field depends on the value of the operands. More
over this cost, in general, grows very quickly. For example, Gauss’ method in the
ring of integer numbers results in an algorithm that has exponential growth of
complexity — instead of cubic.

So the main aim in commutative domains is to construct algorithms with
controlled intermediate results.

The algorithms presented here have two main features:

- The intermediate elements in the algorithms are minors of the initial matrix.
So the growth of these elements is bounded by the maximal value of the minors
of the initial matrix.
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- With the exception of the last algorithm, which requires O(n?) operations,
the number of operations in all other algorithms is the same as that of the
algorithm for matrix multiplication.

We denote by O(n?) or by yn” + o(n?) the number of multiplication oper-
ations, necessary for the multiplication of square matrices of order n. For the
standard matrix multiplication algorithm we have § = 3 and v = 1, whereas for
Strassen’s algorithm [2I] the values are § = log, 7 and v = 1, when the order of
the matrix is some power of 2. For the best algorithm today we have 5 < 2.376
and v unknown [§].

In the second section we present methods for solving systems of linear equa-
tions and performing determinant computations. Included are: Dodgson’s
method [J], the method of Forward and Backward Direction [12], the One-pass
method [14], [I5] and the Recursive Method [I17],[I8]. Corresponding methods
for determinant computations with some generalization are discussed in [16].

Methods for computing the adjoint and inverse matrices are presented in the
third section [20].

In the forth section a method for computing the characteristic polynomial of
a matrix is presented [I9]. This method was developed in [5].

Finally, in the conclusion we present the best complexity bounds available
today (in commutative domains) for the methods presented above.

2 System of Linear Equations
Let R be a commutative domain, F be the field of fractions of R,
Ae RV ce R",n<m,A" = (A,c) = (a;;) and,

Az =c

be a system of linear equations over R.
Solving the above system with Cramer’s rule we obtain

r; = (6] i1 — Z;n:n_H axjéfj)(é‘”)*l, 1=1...n,

where z;,j =n+1,...,m, are the free variables, and the determinant 6™ # 0.

We denote by 6%, k = 1,...,n the left upper corner minor of matrix A of order
k, and by 65 the corner minor of matrix A where columns ¢ and j have been
interchanged. We assume that all corner minors 6*,k = 1,...,n are different
from 0.

2.1 Dodgson’s Algorithm
The determinant identity

ab| |bec
abc de| e f
de f|= el
ghk de|le f

‘gh hk
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or in the more general form

k+1 1,j—1 ak 1,5 k—1 1
A —1,j—1 %i—1,j ak— -
a;; =1 U Tk (a )
% i—1,9—1
J a1 Qg J
where
Ak+1 ‘A NS rows ‘

..,j:(columnys)

is an instance of Sylvester’s identity [2] Dodgson [9] used it for the computation
(condensation) of determinants and the solution of systems of linear equations
computing a sequence of minors for

k=2,....n—1,i=k+1,...;n, j=k+1,...,m

Historical Note: As can be seen from the identity above, Dodgson liked to take
the middle element e of the 4 corner minors as the leading minor (element). Later
(in their 1945 paper [23]) Waugh and Dwyer took the top-left-corner element, a11
as the "middle ” element of the 4 minors that are surrounding this a1; element.

Subsequent authors [22] and [6] used the same method without references to
either Dodgson [9] or Waugh and Dwyer [23]. Other implementations of Dodg-
son’s method can be found in [I] Other implementations of Dodgson method
you can see in the book [IJ.

2.2 Method of Forward and Backward Direction

The forward direction part of this algorithm consists of computing the minors
with Dodgson’s method; the diagonal is the leading element in every step

k k— -
a”+1 (aika’“ afkakj)(ak ik 1) 17

k=2,....n—=1,i=k+1,....n, j=k+1,...,m,

where

ak+1 o 1,...,k,i:(rows) |

iy | 1,...,k,j:(columns)

On one hand, this formula is a determinant identity and on the other hand
it is the forward direction algorithm which is reminiscent of Gauss’ elimination
algorithm. (The only difference is that the leading element is one step behind.)
As a result of the forward direction algorithm the matrix of the system becomes

1 1 1 1 1 1
aj 1 a%,z T a%,n—l a%,n gl,n e a%,m+1
0 A9 " Q31 A3, A3 p41 "0 A4
n—1 n—1 n—1 n—1
0 0 : a’nfl,nfl anfl,n anfl,nJrl a‘nfl,erl
n n n
0 0 0 an,n an,nJrl an,erl

The leading elements a’,zyk, k=1,...,n—1 cannot be zero.
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The backward direction part of the algorithm consists of computing the minors
65 The minor 65 is the corner minor of order k of the matrix A after column ¢
has been interchanged with column j. The determinant identity of the backward
direction algorithm is:

n
, . S ,
61 = (apnai; — g apbp)(a) ™, i=n—1,...1, j=n+1,...,m.
k=i+1

As a result of the backward direction algorithm the matrix of the system
becomes:

n
Anon 0 - 0 0 ’ﬁn e 6?,m+1
0 az,n 0 0 6g,n+1 e 6S,m+1
0 0o -- aZ,n 0 62—1,71.—&-1 6:;—1,m+1
n
0 o - 0 Ay on Z,n+1 T 6:;,m+1

The number of operations, necessary for the procedure of forward and back-
ward direction, is

N™ = (9n?m — 5n3 — 3nm — 3n? — 6m + 8n)/6,

N = (3n*m — n® — 3nm — 6n% + 13n — 6)/6

N = (6n*m — 4n® — 6nm + 3n* + n) /6.

2.3 The One-Pass Method

Another way of computing the minors 61% is given by the following two determi-
nant identities:

k

k+1 k E o
(‘5,6110 = Qpt1,k+100, — Zak+1’p6pj7j =k+1...m,
p=1
k+1 _ /ck+1 k k+1 ok k
52’;‘ - (5k+1,k+15i,j - 5k+1,j5i,k+1)/5k,ka
k=1,....n—=1,i=1,....k, j=k+2,...,m.

At the k-th step the coefficient matrix looks like

k k k
ag p 1(3 0 5%“1 5}€)m+1
0 agr -0 52,k+1 w05
k k k
0 o .- Ay i 6k,k+1 T 6k,m+1
k41,1 Ok+1,2 * " Ak4+1,k Qk4+1,k+1 °°° Ak4+1,m+1

Qn,1 an2 - Onk Ank+1 " Anom+1
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The number of operations, necessary for the one-pass algorithm, is

N™ = (9n?m — 6n3 — 3nm — 6m + 6n)/6,

N = (3n*m — 2n3 — 3nm — 6m + 2n + 12)/6

N = (6n*m — 4n® — 6nm + 3n* + n) /6.

When the number of equations and unknowns in the system is the same and
equal to n, the last two algorithms can be compared

Number of Operations

Method Multiplications ~ Divisions ~ Add./Substr.
FB (4n®43n%—n—6) (2n°—6n2+10n—6) (2n>+3n2—5n)

6 6 6
oP (n®42n?—n—2) (n®—Tn+6) (2n34-3n%—5n)
2 6 6

2.4 The Recursive Method

The minors 62’-3 and afj are elements of the following matrices
P P P
At 1k+1 Yrp1k+2 7 Gt
aPl a oo qP
Ar’l’(p) r+2,k+1 “r+2,k4+2 r+2,c
ke T : : . : ’
p p p
AGrr1 k2 0 A
V4 V4 P
6r+1,k+1 6r+1,k+2 6r+1,c
§P y4 L8P
r,l,(p) r+2,k+1 “r42,k4+2 r+2,c
Gk,c = . . . ’
v 7 P
6l,k+1 6l,k+2 e 61,0

G;’lej(p),AZ’lc’(p) eRUI*(R 0<k<n k<c<n 0<r<m,r<l<m,
1<p<n.
We describe one recursive step reducing the matrix A = AZ:?(HI) to the
diagonal form
A— ((5l]l,;c, G)

where

A= AP G =t

0<k<c<m,k<l<n,l<c Notethatif k =0,1=n and ¢ = m, then
we obtain the solution of the original system.

Description of One Step of the Recursive Method

Ao (AN L (FL Gy | (0LkGEY
A2 ) TH A2 A3) TP o0 Az) B
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& I_ Gi Gi, Sy 0 GLY .
_)3( o sn,cz) 0 e, ed,) T (001G

We may choose arbitrary numbers s: k < s < [ and write the matrix A as

follows:
_rAl
i= (),

where A! = AZ:‘Z’(HI) is the upper part of the matrix A consisting of s — k rows
and A% = A‘;’lc’(k“) is the lower part of the matrix A .

AL — (6" Ls-k, Gy), ()
where A! € R(s=F)x ), G = G 5(3)
Let A% = (A%,AQ) Where A2 = A9 i(kH) and A3 = As’l’(k+1) consisting of
s —k and ¢ — s columns respectively, §¥ # 0. The matrix A2 = A/ LD
computed with the help of the matrix identity
A2 = (6°- A2 — A2.Gh(6") L. (IT)
A2 = (6'1_,,G2), (IT1)

where A3 € R(=9)%(=%) and G3, = G0

Let G} = (G1,,G},), where the blocks G}, = G’k () and Gl = G
contain [ — s and ¢ — [ columns respectively, and 6° 75 0
The matrix G, = Gif’(l is computed with the help of the matrix identity

GA%// - (61 . G%// G2/ Gz//)((ss)il. (IV)

In the result we obtain &' and

. Gl
G _ ,\2”
(G%/>
Complexity of the Recursive Method is O(mn”~!)

We can obtain an exact estimate. For n = 2V, m = n + 1 and 3 = log, 7 the
number of multiplication operations is

1
15 5 )

For n = 2V, 3 = 3 the number of multiplications and divisions is

N™ = (6n?m — 4n3 + (6nm — 3n?)logy n — 6nm + 4n)/6,

N = ((6nm — 3n?)logyn — 6nm — n% + 6m + 3n — 2)/6.

2
nto827 4 n2(logyn — 3) + n(2logyn +
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The number of multiplication operations for m = n + 1 is (1/3)n3 + O(n?).
The estimations for the previous two methods are, respectively, n® + O(n?) and
(2/3)n® + O(n?).

3 Adjoint Matrix

The best method for computing the matrix determinant and adjoint matrix in
the arbitrary commutative ring was suggested in the papers by Kaltofen [I0]
and Kaltofen and Villard [IT]. Its complexity is O(nﬁﬂ/?’ lognloglogn); see
also [3].

Here we describe the best method for computing adjoint matrices in commu-

AC

tative domains. Let A = ( be an invertible matrix and A an invertible

B D
block. Then

A =(07 ) Cw-sae) (B1) (5 7)

is the factorization of the inverse matrix. This requires two multiplication oper-
ations and two inversions of blocks. In case n = 2P it will take 2P~! inversions
of 2 x 2 blocks and 2P~* multiplications of 2¥ x 2% blocks.

Overall, n'°97 — n/2 multiplication operations will be needed, if we use
Strassen’s multiplication algorithm. In general, if the complexity of matrix mul-
tiplication is O(n?), then the computation of the factors of the inverse matrix
can be done in time O(n?).

Let R be a commutative ring, and let A = (a; ;) be a square matrix of order
n over the ring R. Let

AES) _ (as )i:s,...,t and ggt) _ (6t(i,j))j‘zi¥1‘:t

ij)j=s,...,t o

Theorem 1. Let A be a square block matrix of order n over the ring R; that is,
AC
A=(55)
where A is a square block of order s, (1 < s < n), the determinant of which,

bs, is neither zero nor a zero divider in R. Then, the adjoint matriz A* can be
written as the product

e — (856uL 671 FC (10 I 0 FO ")
- 0 I og)\-Bés,g)\or1) *

where F = A*, G = 6;"““./45{9“)*, I is the identity matriz and we have the
identity
ABHD — §.D — BFC.
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Theorem 2. Let ASH) be a square block matriz of order n—s, (s >0, n—s >
2), over the ring R; that is,
AC
(s+1) _
4= (55)

where A is a square block of order t — s, (1 < s <t < n), and 65 and 6; are

neither zero nor zero dividers in R. Then, the matriz 6;"+S+1A$LS+1)* can be
written as the product

66,1 —67'FC\ (I 0 I 0 FO (+)
0 I 06;'G)\-B&1)\or1)°

where B = 67101 AT G = 57041 AT s the identity matriz and
we have the identity
A+ — 5-1(5,D — BFC).

(54+1)% ast1 _a5+1
Remark 1. If n = s+2, then, A, = < it JO ) Andifn = s+1,
TGy -1 11

then A%SH)* =1.

3.1 Dichotomic Process

The dimensions of the upper left block A (of the initial square block matrix .A)
may be chosen arbitrarily. The case will be examined when the dimensions of
block A are powers of two.

Let n be the order of the matrix A, 2" < n < 2"+l and assume that all
minors 62, 1 = 1,2, ... are not zero or zero dividers of the ring R. According to
Theorems 1 and 2 we are going to sequentially compute adjoint matrices for the
upper left blocks of order 2,4, 8,16, ... of matrix A.

1. For the block of order 2 we have:
A3 5 = (aij)i =12, 02 = det A ,,
AQ* _ a22 —aiz2 ]
2,2 (—062,1 ain
2. For the block of order 4 we have:

A4 651040 —6;'FC (10 I 0 FO
447 0 I 0G)\~-BéI)\01I)"

F = A3, B=(ai;)i_15
C = (ai;)}25% D = (aiy)ijmsa, A = 6D = BFC = (a3))i =31, G =
57 AP* 84 = det G.
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3. For the block of order 8 we have:

A S tesI =6, FCY (10 I 0 Fo
88— 0 I 0G)\-Bé&I)\or1)’

F =AYy, B=(a:;);2075 C = (ai;);=5 "% D= (ai;)ij=5,..8
G 65 10l —65'FC\ (I 0 I 0 FoO
0 I 06,'G)\-Bé&I)\01)’
AP = 64D — BFC = (af )i j=s,..5, F = 672 AP, 8 = det F, B = (a?;)'=1%,
C=(a z]); 57?37 D = (ais,j)i,j:ﬂ& -As = 64 (56D — BFC) = (%7,]) 4,J=17,85
G =6;"A7", 85 = det G.

Complexity Estimation

Let yn® + o(n?) be an asymptotic estimation of the number of operations for
multiplying two matrices of order n. Then the complexity of computing the
adjoint matrix of order n = 2P is

_ (n/2)1-8
) =6y 0D o)

4 Characteristic Polynomial

In the case of an arbitrary commutative ring, the best algorithms for comput-
ing the characteristic polynomial are Chistov’s algorithm [7] and the improved
Berkowitz algorithm [4]. The complexity of these methods is O(n”*!logn). We
present the best method to date — for computations in commutative domains
— which has complexity O(n?).

Let A = (ai;) be an n X n matrix over the ring R. If all the diagonal minors
o (k=1,...,n—1) of matrix A are not zero, then the following identity holds

A, = LA,

where A, is an upper triangular matrix and L is a lower triangular matrix with
determinant different from zero, such that

L=D 'L, - -D;'LyL,

L, = diag(Ix—1, I~/k), Dy = diag(I, Di), where I, is the identity matrix of order

kv Dk = 619[717]@7
(85 0N (1 0
be = <Uk Ink:) L= (—Uk 6chnk>

v = (a’,§+1k7...7a’; D Ay = (a EJ)) is an n x n matrix, and a( A

(

i for

i<j,a;;=0,fori>j.
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The proof is based on Sylvester’s identity

k—1 k+1 _ k k k  k
A1 k-1 = Ok k@5 — Qi A ;-
The factorization of matrix A into upper and lower triangular matrices is the
result of the forward direction part — of the forward and backward direction
algorithm.

Let A = (agz)) be an n x n matrix, k = 1,...,n, with az(-)kj) = aﬁ’j for
1 < j <k, agfcj) = afw 1 >k, 7 > k, and the remaining elements zero. Then

A, = LA reduces to the identities

AP =1,4; AFD =D AP k=2,...,n—1,

which subsequently enable the computation of matrices A&k), k=23,....,n,
such that all the elements of the matrices D and Ly are elements of the
matrix A&k).

The requirement that the diagonal minors é6; (kK = 1,2,...,n — 1) be dif-
ferent from zero may be weakened. If a diagonal minor & of order k is equal
to zero, and in column vy there is a nonzero element aﬁk, then rows ¢ and k
must be interchanged; that is, multiply on the left the matrix of interchanges
P, = P(i,k) =1, + Fi + Er; — B — E;;, where Ej, denotes a matrix in which
all elements are zero except element (i, k), which is equal to one.

And if 6 = 0 and vy = 0, then necessarily P, = L, =Dy = I,, Dy =
Dy_1.

The factorization formula remains as before, only now

f;k = diag([k_l, [Nzk)Pk.
Note the following identities, which will be subsequently needed:
LiyL, =D, LL=T,

where
L=LiLy---Ly,_q,

L, = P,;ldiag(lk,l,Lk), T is a diagonal matrix defined by, T' = 5152, where
Sy = diag(1,S), and So = diag(S, 1), with S = diag(é1, 2, ..., 6n—1).

To indicate the matrix A from which a given triangular or diagonal matrix
was computed, we write L = L(A), T =T(A).

4.1 Computation of Similar p-Trianular Matrix

Let A= <2 3) be a matrix over R with blocks a of order p x p and d of order
n x n. We will call matrix A upper p-triangular, if the block (¢, d) looks like an
upper triangular matrix.

We will denote with calligraphic letters block-diagonal matrices of order (n +

p) X (n + p) of the type diag(l,,G) = G, where G is a p X p matrix.
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Let G be some p x p matrix and let L=L((c,d)G), and T = T(((c,d)G)). If
we take now G = L, £ = diag(I,, L), £ = diag(Ip, L), then the matrix

w=LAL

will become an upper p-triangular matrix, and matrix T 'A4, will be similar
to A.

The cofactors L and L of the matrix can be computed sequentially. Since
((e,d)G) = (c,dL) and the first p of the columns of the matrix (c,dL) con-
stitute block ¢ and are independent from L, then using them we can compute
sequentially the first p cofactors of the matrix L : Li;,Dy,Lo,... ,Dp—1, L From
these we can write the first p cofactors of matrix L , can compute p columns of
the matrix dL and after that the following p cofactors of matrix L, etc. For p = 1
we obtain a quasi-triangular matrix, that is a matrix with zero elements under
the second diagonal, which is obtained by the elements ag 1,632, ..., 0nn-1-

Let us denote by Ay (1 < k <n) the corner minors of order k of the quasi-
triangular matrix A = (a;,;),a;,; = 0 for > 2,j <i—1, and assume Ay = 1.
Then its determinant can be computed as shown

n—1

det (A )—amdet Z amdet i— 1) H (—am_l).

j=it+1

The complexity of this method is §n® + O(n?) — multiplicative operations.

5 Conclusion

For computations over commutative domains we have the following results:

— The complexity of the O(n?®) methods (FB) and (OP) for solving systems of
linear equations of size n x m is

Mppy = (1/2)(4n*m — 2n® — 2nm — 3n® — 2m + Tn — 2),

Mopy = (1/6)(12n*m — 8n® — 6nm — 9n? — 12m + 8n + 12).

Suppose that the complexity of the given method for matrix multiplications
is yn® + o(n”), where v and 3 are constants, and n is the order of the
matrix. Then, the complexity of the recursive methods for solving systems
of size n x m is

nf . m 1-n27F 1-nip

S(n,m) =798 (47 —2)

p-1
R ) Rt )

— The complexity of the method for the computation of the determinant of a
matrix of order n is S(n,n). The complexity of the method for the compu-
tation of the kernel of a linear operator is S(n,m).
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— The complexity of the method for the computation and the factorization of

the adjoint matrix is

(n/2)!77

1—
F(n) = 6yn” 98 _ 9

+o(n”)

— Finally, the complexity of the best method we know today for the computa-

tion of the characteristic polynomial of a matrix of order n is jn® + O(n?).
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Abstract. We present an implementation of the Continued Fractions
(CF) real root isolation method using a recently developed upper bound
on the positive values of the roots of polynomials. Empirical results
presented in this paper verify that this implementation makes the CF
method always faster than the Vincent-Collins-Akritas bisection
metho, or any of its variants.

1 Introduction

We begin by first reviewing some basic facts about the continued fractions
method for isolating the positive roots of polynomials. This method is based
on Vincent’s theorem of 1836, [Vincent 1836], which states:

Theorem 1. If in a polynomial, p(x), of degree n, with rational coefficients and
without multiple roots we perform sequentially replacements of the form

1 1 1
x<—a1+w7m<—a2+$,x<—a3+w7...

where a; > 0 is a random non negative integer and oo, as, ... are random pos-
itive integers, a; > 0, © > 1, then the resulting polynomial either has no sign
variations or it has one sign variation. In the last case the equation has eractly
one positive root, which is represented by the continued fraction

1
a1 + 1
a2+a3+ 1

whereas in the first case there are no positive roots.

! Misleadingly referred to (by several authors) initially as “modified Uspensky’s
method” and recently as “Descartes’ method”.

V.G. Ganzha, E.-W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 24 2007.
© Springer-Verlag Berlin Heidelberg 2007
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““’ the continued fraction that leads to a trans-

formed polynomial f(z) = (czx + d) (g:_tg), with one sign variation, then the

single positive root of f(z)—in the interval (0, co)—corresponds to that positive
root of p(x) which is located in the open interval with endpoints Z and . These
endpoints are not ordered and are obtained from “‘"”er 2 by replacmg z w1th 0 and
00, respectively. See the papers by Alesina & Galuzz1 [Al n luzzi 1998]
and Chapter 7 in for a complete historical survey of the subject
and implementation details respectivel

Cauchy’s method, for computing bounds on the positive roots of a polynomial,
was mainly used until now in the Continued Fraction (CF) real root isolation
method, [Akritas and Strzebonski 2005]. In the SYNAPS implementation of the
CF method, [Tsigaridas and Emiris 2006], Emiris and Tsigaridas used Kiouste-
lidis method, |Kioustelidis 1986] for computing such bounds and independently
verified the results obtained in [Akritas and Strzebonski 2005].

Both implementations of the CF method showed that its “Achilles heel”
was the case of a big number of very large rational roots. In this case the
CF method was up to 4 times slower than REL—the fastest implementation
of the Vincent-Collins-Akritas bisection method, [Collins and Akritas 1976], de-
veloped by Rouillier and Zimmermann, |[Rouillier and Zimmermann 2004]. Ta-
ble 1 presented below, is an exact copy of the last table (Table 4), found in

Note that if we represent by &

Table 1. Products of factors (x-randomly generated integer root). All computations
were done on a 850 MHz Athlon PC with 256 MB RAM; (s) stands for time in seconds
and (MB) for the amount of memory used, in MBytes.

Roots  Degree No. of roots CF REL
(bit length) T (s)/M (MB) T (s)/M (MB)

10 100 100 0.8/1.82 0.61/1.92
10 200 200 2.45/2.07 10.1/2.64
10 500 500 33.9/3.34 878/8.4

1000 20 20 0.12/1.88 0.044/1.83

1000 50 50 16.7/3.18 4.27/2.86

1000 100 100 550/8.9 133/6.49

The last three lines of Table 1 demonstrate the weaker performance of CF in
the case of a big number of very large rational roots. However, we recently gener-
alized and extended a theorem by Stefanescu, [Stefanescu 2005|, and developed
a new method for computing upper bounds on the positive roots of polynomi-
als, [Akritas, Strzebonski & Vigklas 2006]. As was verified, this method provides
even sharper upper bounds on the positive roots of polynomials. In this paper,

2 Alesina and Galuzzi point out in their work that Vincent’s theorem can be imple-
mented in various ways; the Vincent-Collins-Akritas bisection method is also one
such implementation.
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we incorporated into CF this new method for computing upper bounds for pos-
itive rootd. It turns out that with this modification, the CF algorithm is now
always faster than that of Vincent-Collins-Akritas, or any of its variants.

2 Algorithmic Background

In this section we present the CF algorithm (where we correct a misprint in
Step 5 that appeared in [Akritas and Strzebonski 2005] and explain where the
new bound on the positive roots is used.

2.1 Description of the Continued Fractions Algorithm CF

Using the notation of the paper [Akritas and Strzebonski 2005, let f € Z[z] \
{0}. By sgc(f) we denote the number of sign changes in the sequence of nonzero
coefficients of f. For nonnegative integers a, b, ¢, and d, such that ad — bc # 0,
we put

intrv(a, b, c,d) := g pc.a((0,00))
where

ar +b oa b a b
e i, man(”, )

and by interval data we denote a list

{CL, b7 & dap7 S}

dsa,b,c,d : (07 OO) S>5r —

where p is a polynomial such that the roots of f in intrv(a,b, ¢, d) are images of
positive roots of p through @, ¢ a4, and s = sgc(p).

The value of parameter a used in step 4 below needs to be chosen empirically.
In our implementation ag = 16.

Algortihm Continued Fractions (CF)
Input: A squarefree polynomial f € Z[z]\ {0}
Output: The list rootlist of positive roots of f.

1. Set rootlist to an empty list. Compute s «— sgc(f). If s = 0 return an
empty list. If s = 1 return {(0,00)}. Put interval data {1,0,0,1, f, s} on
intervalstack.

2. Ifintervalstack is empty, return rootlist, else take interval data {a, b, ¢, d, p, s}
off intervalstack.

3. Compute a lower bound « on the positive roots of p.

If a > ag set p(x) «— p(az), a — aa, ¢ — ac, and a « 1.

5. If a > 1, set p(z) < p(z+ &), b — aa+ b, and d — ac+d. If p(0) =0, add
[b/d,b/d] to rootlist, and set p(x) < p(z)/x. Compute s — sgc(p). If s =0
go to step 2. If s = 1 add intrv(a, b, ¢, d) to rootlist and go to step 2.

~

3 Note that the computed bounds are integers rather than powers of two.
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6. Compute p1(z) « p(x+1), and set a1 < a, by < a+b, ¢1 < ¢, dy «— c+d, and
r— 0.If p1(0) =0, add [b1/d1,b1/d1] to rootlist, and set pi(x) — p1(x)/z,
and r «— 1. Compute s; « sgc(p1), and set sg «— s — s1 — r, ag < b,
by «—a+b, co — d, and dy — c+d.

7. If s9 > 1, compute pa(z) «— (x + 1)mp(xj_1), where m is the degree of p. If
p2(0) = 0, set pa(x) « pa(z)/x. Compute sg «— sgc(pz).

8. If S1 < S92, swap {al, bl, Ci, dl,pl, 81} with {az, bg, Ca, d2,p2, 82}.

9. If s = 0 goto step 2. If s; = 1 add intrv(ay, b1, c1,dr) to rootlist, else put
interval data {aj,b1,c1,d1, p1, $1} on intervalstack.

10. If so = 0 goto step 2. If so = 1 add intrv(as, be, ¢, d2) to rootlist, else put
interval data {ag, ba, ¢z, da, p2, $2}on intervalstack. Go to step 2.

Please note that the lower bound, «, on the positive roots of p(x) is computed
in Step 3, and used in Step 5.

To compute this bound we generalized Stefinescu’s theorem, [Stefanescu 2005],
in the sense that Theorem 2 (see below) applies to polynomials with any number
of sign variations; moreover we have introduced the concept of breaking up a
positive coefficient into several parts to be paired with negative coefficients (of
lower order terms).

Theorem 2. Let p(z)
p(z) = anz™ +ap_ 12" M+ g, (> 0) (1)

be a polynomial with real coefficients and let d(p) and t(p) denote the degree and
the number of its terms, respectively.
Moreover, assume that p(x) can be written as

p(@) = q1(x) — q2(2) + g3(2) — qa(2) + ... + g2m-1(2) — qam(2) + 9(z), (2)

where all the polynomials q;(x), i = 1,2,...,2m and g(x) have only positive
coefficients. In addition, assume that for i =1,2,...,m we have

€0 _ €21t o
q2i-1(2) = €211 71 L o p(gesq)T T DRI
and
€2 €25 t(qgos
q2i(T) = bos 1270 4oL A b g(go,) T2,

where ez;—11 = d(gei—1) and ez;1 = d(g2;) and the exponent of each term in
qoi—1(x) is greater than the exponent of each term in qoi(x). If for all indices
1=1,2,...,m, we have

t(q2i—1) > t(q2i),

then an upper bound of the values of the positive roots of p(x) is given by

1 1
b N ( b2i,1 ) e2;—1,1—€2i,1 ( b2i,t(q2i) ) €2i—1,t(qa;) ~©2i,t(qa;)
ub=  max s ,
{i=1,2,...,m} C2i—1,1 C2i—1,t(q27¢)



28 A.G. Akritas, A.W. Strzeboriski, and P.S. Vigklas

for any permutation of the positive coefficients cai—1;, 7 = 1,2,...,t(g2i—1).
Otherwise, for each of the indices i for which we have

t(q2i—1) < t(q2i),

we break up one of the coefficients of qa;—1(x) into t(g2;) — t(g2i—1) + 1 parts,
so that now t(qe;) = t(g2i—1) and apply the same formula (3) given above.

For a proof of this theorem and examples comparing its various implementations,
see [Akritas, Strzeboniski & Vigklas 2006]. It turns out that all existing methods
(i.e. Cauchy’s, Lagrange-McLaurent, Kioustelidis’s, etc) for computing upper
bounds on the positive roots of a polynomial, are special cases of Theorem 2.

In this recent paper of ours, we also presented two new implementations of
Theorem 2, the combination of which yields the best upper bound on the positive
roots of a polynomial. These implementation are:

(a) “first-\” implementation of Theorem [2l For a polynomial p(z), as
in @), with A negative coefficients we first take care of all cases for which
t(q2i) > t(g2i—1), by breaking up the last coefficient co;_1,4(q,,), Of g2i—1(z),
into t(g2;) — t(g2i—1) + 1 equal parts. We then pair each of the first A posi-
tive coefficients of p(x), encountered as we move in non-increasing order of
exponents, with the first unmatched negative coefficient.

(b) “local-maz” implementation of Theorem [2l For a polynomial p(z), as
in (), the coefficient —ay, of the term —axz* in p(z) —as given in Eq. [I)—
is paired with the coefficient OéT , of the term «,, ™, where a,, is the largest
positive coefficient with n > m > k and t indicates the number of times the
coefficient «,,, has been used.

As an upper bound on the positive roots of a polynomial we take the minimum
of the two bounds produced by implementations (a) & (b), mentioned above.
This minimum of the two bounds is first computed in Step 3 and then used in
Step 5 of CF.

3 Empirical Results

Below we recalculate the results of Table 1, comparing the timings in seconds
(s) for: (a) the CF using Cauchy’s rule (CF OLD), (b) the CF using the new
rule for computing upper bounds (CF NEW), and (¢) REL.

Due to the different computational environment the times differ substantially,
but they confirm the fact that now the CF is always faster.

Again, of interest are the last three lines of Table 2, where as in Table 1 the
performance of CF OLD is worst than REL—at worst 3 times slower as the
last entry indicates. However, from these same lines of Table 2 we observe that
CF NEW is now always faster than REL—at best twice as fast, as seen in
the 5-th line.
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Table 2. Products of terms x — r with random integer r. The tests were run on a
laptop computer with 1.8 Ghz Pentium M processor, running a Linux virtual machine
with 1.78 GB of RAM.

Roots  Deg CF OLD Time(s) CF NEW Time(s) REL Memory (MB)
(bit length) Average (Min/Max) Average (Min/Max) Average (Min/Max) CFO/CFN/REL
10 100 0.314 (0.248/0.392) 0.253 (0.228/0.280) 0.346 (0.308/0.384) 4.46/4.48/4.56

10 200 1.74 (1.42/2.33) 1.51 (1.34/1.66)  3.90 (3.72/4.05)  4.73/4.77/5.35

10 500 17.6 (16.9/18/7)  17.4 (16.3/18.1) 129 (122/140)  6.28/6.54/11.8

1000 20 0.066 (0.040/0.084) 0.031 (0.024/0.040) 0.038 (0.028/0.044) 4.57/4.62/4.51
1000 50  1.96 (1.45/2.44)  0.633 (0.512/0.840) 1.03 (0.916/1.27)  5.87/6.50/5.55
1000 100 52.3 (36.7/81.3) 12.7 (11.3/14.6) 17.2 (16.1/18.7)  10.4/11.7/9.17

4 Conclusions

In this paper we have examined the behavior of CF on the special class of
polynomials with very many, very large roots—a case where CF exhibited a
certain weakness. We have demonstrated that, using our recently developed rule
for computing upper bounds on the positive roots of polynomials, CF is speeded
up by a considerable factor and is now always faster than any other real root
isolation method.
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Abstract. In this paper we introduce an improved variant of the LLL
algorithm. Using the Gram matrix to avoid expensive correction steps
necessary in the Schnorr-Euchner algorithm and introducing the use of
buffered transformations allows us to obtain a major improvement in
reduction time. Unlike previous work, we are able to achieve the impro-
vement while obtaining a strong reduction result and maintaining the
stability of the reduction algorithm.

1 Introduction

Lattice theory is of great importance in cryptography. It not only provides effec-
tive tools for cryptanalysis, but it is also believed that lattice theory can bring
about new cryptographic primitives that exhibit strong security even in the pre-
sence of quantum computers. While many aspects of lattice theory are already
fairly well-understood, many practical aspects still require further investigation
and understanding. With respect to cryptography this is of particular import-
ance as a cryptographic primitive must be secure in both theory and practice.

The goal of lattice basis reduction is to find a basis representing the lattice
where the base vectors not only are as small as possible but also are as orthogonal
to each other as possible. While the LLL algorithm by Lenstra, Lenstra, and
Lovész [I1] was the first to allow for the efficient computation of a well-reduced
lattice basis in theory, it was not until the introduction of the Schnorr-Euchner
variant of the LLL algorithm [T9] that lattice basis reduction could efficiently
be used in practice (e.g., for cryptanalysis [T9/T6JI7]). Since then, research has
focused on improving on the stability and performance of reduction algorithms
(e.g., [BLOUTOMT3IIA]).

One can generally identify two main directions of recent work. The first line
of research (e.g., [TOJT4IT530]) is based on the use of a weaker reduction condi-
tion than the original LLL condition. While this allows for an improvement in
efficiency it is important to note that it generally results in a less reduced lattice
basis. Consequently, this approach cannot be taken in contexts which rely on
the strong, proven bounds of the original LLL reduction (e.g., [A2I512]).

In contrast, the second line of research focuses on improving on the stabi-
lity and performance of lattice basis reduction while maintaining the strong
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reduction conditions. It is in this context that this paper focuses on achieving
improvements in the reduction time. In particular, this paper introduces an
improved variant of the LLL algorithm which uses the Gram matrix to avoid
expensive correction steps that are necessary for the Schnorr-Euchner algorithm.
While the Gram matrix approach was already used previously [322T4IT5], the
new algorithm provides a major improvement by introducing the use of buffered
transformations. This new approach allows us to improve the reduction time by
up to 40% in comparison to existing methods while obtaining a strong reducti-
on result and maintaining the stability of the reduction algorithm at the same
time. In contrast, previous work not only relies on a weaker reduction condition
[T4UT5)30] but also suffers from stability problems [30].

Outline: Section 2 provides the definitions and notations used in the remainder
of the paper. Then, Section [ introduces the LLL reduction algorithm using
the Gram matrix representation and details ways to improve the running time.
Section Ml discusses and analyzes the experiments. The paper closes with some
directions for future work.

2 Preliminaries

A lattice L C R™ is an additive discrete subgroup of R™ such that L =
{Zf:l xib;lr, € 2,1 <i < k} with linear independent vectors by,...,b, € R”

(k <n). B=(by,...,b,) € R"¥F is the lattice basis of L with dimension k. The
basis of a lattice is not unique. However, different bases B and B’ for the same
lattice L can be transformed into each other by means of a unimodular trans-
formation, i.e., B' = BU with U € Z"** and |det U| = 1. Typical unimodular
transformations are the exchange of two base vectors—referred to as swap—or
the adding of an integral multiple of one base vector to another one—generally
referred to as translation.

Unlike the lattice basis, the determinant of a lattice is an invariant, i.e., it is
independent of a particular basis: For a lattice L € R™ with basis B € R"**
the determinant det(L) is defined as det(L) = |det(BTB)|2. The Hadamard
inequality det(L) < Hle Ib;]| (where ||.|| denotes the Euclidean length of a
vector) gives an upper bound for the determinant of the lattice. Equality holds
if B is an orthogonal basis.

The orthogonalization B* = (by,...,by,) of a lattice basis B = (by,...,b;) €
R™** can be computed by the Gram-Schmidt method: b} = by, b} = b; —
Z;;ll uiyjbj for 2 < i < k where p;; = <l|)‘b*b|7‘> for 1 < j < i <k where (.,.)

defines the scalar product of two vectors. It is important to note that for a lattice
L C R™ with basis B = (b, ...,b;) € R"** a vector b; of the orthogonalization
B* = (b],...,b;) € R™¥ is not necessarily in L. Furthermore, computing the
orthogonalization B* of a lattice basis using the Gram-Schmidt method strongly
depends on the order of the basis vector of the lattice basis B.

The defect of a lattice basis B = (by,...,b,) € R™*¥ defined as dft(B) =

ngtl(%iﬂ allows one to compare the quality of different bases. Obviously,
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dft(B) > 1 and dft(B) = 1 for an orthogonal basis. The goal of lattice basis re-
duction is to determine a basis with smaller defect. That is, for a lattice L C R™
with bases B and B’ € R"** B’ is better reduced than B if dft(B’) < dft(B).
The most well-known and most-widely used lattice basis reduction method is
the LLL reduction method [I1]:

Definition 1. For a lattice L C 7™ with basis B = (by,...,b;) € Z"*F corre-
sponding Gram-Schmidt orthogonalization B* = (b3,...,b}) € Z"** and coeffi-
cients p; ; with 1 < j < i <k, the basis B is LLL-reduced if

1
gl < fori<j<i<kand (1)
167 + paioabl |12 = yllbr |2 for1<i<k. (2)

The reduction parameter y may arbitrarily be chosen in (}1, 1). Condition ()
is generally referred to as size-reduction [3[18]. The Schnorr-Euchner algorithm
[19/1] allows for an efficient computation of an LLL-reduced lattice basis in
practice.

Algorithm 1: SchnorrEuchnerLLL(B,y)

INPUT: Lattice basis B = (by,...,b,) € Z"%* y € 3.1)
OUTPUT: LLL-reduced lattice basis

(1) APPROX BASIS(B', B)

(2) By =|b)|1?, i =2, F. = false, F, = false
(3) while (i < k) do

(4)  wi=1, Bi = ||b7)|?

(5) for (2 <j <i)do

(6) if (|(b], b;>| <22 Hb;HHb;H) then /* correction step 1 */
) s = APPROX VALUE((b,,b,))
(8) else
) s = (b}, b))
(10) wij = (s — ZZZW_:ll Wjm tim Bm)/ B
(11) B; = B; — ;B
(12) for (i >j > 1) Z:io /* size-reduction */
(13)  if (jjuiy| > }) then
(14) F, = true
(15) if (|Tpaj]| > 25) then /* correction step 2 */
(16) F. = true
17) b, = b, — [1i;]b;
(18) for (1 <m < j)]do /* update p matrix */
(19) Him = Him — [HijJHjnL
(20) if (F, = true) then
(21) APPROX VECTOR(b/, b,)
(22) F, = false
(23) if (F. = true) then
(24) i = max{i — 1,2}
(25) F. = false
(26) else
(27) if (B; < (y — p2,_,)Bi—1) then /* check LLL condition */
(28) SWAP(b,_4,b;)
(29) if (¢ = 2) then
(30) By = [|b}||?
(31) ¢ = max{i — 1,2}
(32) else
(

33) i=i+1
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In order to make LLL reduction practical, the Schnorr-Euchner algorithm uses
floating-point approximations of vectors and the basis (APPROX BASIS and
APPROX VECTOR). For stability reasons, this requires employing suitable
correction steps (see [19] for details). These corrections include either the com-
putation of exact scalar products (see Line (7)) as part of the Gram-Schmidt
orthogonalization or a step-back (see Line (25)) due to a large p1;; used as part
of the the size-reduction (see Line (17)). In order to prevent the corruption of
the lattice, an exact data type is used to modify the actual lattice basis (see
Line (19)). (In the algorithm, r denotes the bit precision of the data type used
to approximate the lattice basis.)

3 LLL Reduction Using the Gram Matrix

The performance of the Schnorr-Euchner algorithm for a given approximation
data type strongly depends on the number of correction steps (computation of
exact scalar products and step-backs) needed in the reduction process. Experi-
ments show [28/22] that it is the sheer number of exact scalar products along
with their high computational costs that have a main impact on the reduction
time. In turn, the number of step-backs is negligible compared to the number of
exact scalar products and the total number of reduction steps. In order to speed
up the reduction process, the goal is to minimize the number of correction steps,
in particular the computation of exact scalar products.

In this context, in the NTL implementation [30] of the Schnorr-Euchner LLL
algorithm (LLL FP), the original measures for when to compute exact scalar
products or perform step-backs have been modified. LLL FP uses a lower bound
for the computation of exact scalar products and the step-backs have been repla-
ced by a heuristic that, if necessary, recomputes the Gram-Schmidt coefficients
using an approximation data type with extended precision. In addition, the first
condition for LLL-reduced bases (see Equation (D) in Definition [I) may be re-
laxed in order to avoid infinite loops. While these changes result in a major
speedup of the reduction, they also have a negative effect on the stability of the
reduction algorithm itself. For details see Figure Bl in Section [£11

Another approach to avoid the computation of exact scalar products is to
perform the LLL reduction based on the Gram matrix instead of the original
lattice basis [3I22]:

Definition 2. For a lattice L with basis B = (by,...,b,) € R"*¥_ the corre-
sponding Gram matriz G is defined as G = BT B.

Obviously, the Gram matrix inherently provides the necessary scalar products
for the reduction process. Recently, Nguyen and Stehlé used the same approach
for their L? algorithm [I423]. In addition to using the Gram matrix, Nguyen
and Stehlé also used ideas introduced in the NTL code for their size-reduction
[14/15]). While they can prove that their algorithms yields an (8, n)-LLL-reduced
basis with 1 > 0.5, it lacks the stronger size-reduction criterion thus yielding a
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lesser reduced basis than the original LLL algorithm (see Definition [Il) which, in
contrast, yields an (8, 0.5)-LLL-reduced basis with 0.5 < § < 1.

Our new algorithm—designed to address the challenges associated with exact
scalar products—is also based on the LLL for Gram matrices [3/22] and adapts
the computation of the Gram matrix and the LLL condition check of the L?
algorithm introduced in [14] (see Line (28) of Algorithm 2). In contrast to the L?
algorithm, we keep the stronger LLL condition and the second type of correction
step of the original Schnorr-Euchner algorithm (see Line (17) of Algorithm 1).
The challenge with using the Gram matrix instead of reducing the original basis
lies in the fact that most applications of lattice basis reduction require a reduced
lattice basis and not just a reduced Gram matrix. It therefore is necessary to
either apply all transformation to both the Gram matrix and the exact basis
(while basing all necessary decisions solely on the Gram matrix) or alternatively
collect all transformations in a transformation matrix which is then applied to
the original basis at the end of the reduction process. Both approaches have
drawbacks. In the first approach all transformations are performed twice (once
on the Gram matrix and once on the original basis). In the second method the
bit length of the entries of a transformation matrix increases and often surpasses
the size of the entries of the lattice basis. Our algorithm therefore introduces a
solution that achieves a major improvement by buffering transformations, thus
allowing the use of a transformation matrix with machine-type integers only (see
Section B.1]).

We now first introduce the basic outline of our new variant of the Schnorr-
Euchner LLL using the Gram matrix representation. In particular, we detail the
Gram matrix updates which are crucial for the algorithm. In Section [B1] we will
then introduce the optimizations that in practice allow for a vast improvement
of the running time.

Algorithm 2: LLL GRAM(B)

INPUT: Lattice basis B = (b,,...,b,) € A
OUTPUT: LLL-reduced lattice basis B

(1) COMPUTE GRAM(A, B)

(2) APPROX BASIS GRAM(A’, A)

(3) Ri1 = Al,,i=2, F. = false, F, = false
(4) while (i < k) do

(5) pii =1, 51 = Ry; /* orthogonalization */
(6) for (2 <j<1i)do

(7) Rij = A;,L — 3717:11 Rimim

(8) Hij = R;]]

(9) Rii = Ri; — Rijpij

(10) Sj+1 = Ris

(11) for (¢ >j > 1) do /* size-reduction */
(12) if (|pi ;] > é) then

(13) F, = true

(14) by =bi — [pij]b;

(15) REDUCE GRAM(A, 4, [1i; ], )

(16) if (Jpiz| > 25) then /* correction step 2 */
(17) F. = true

(18) for (1 <m < j) do /* update p matrix */
(19) Him = Him — [}LijJHim

(20) if (F,. = true) then
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(21) APPROX VECTOR GRAM(A/, A, i)
(22) F, = false

(23) if (F. = true) then

(24) i = max(i — 1, 2)

(25) F, = false

(26) else

(27) i’ =1

(28) while (( > 1) A (y - R;—1)(i—1) > Si—1)) do /* check LLL condition */
(29) b; < b;i_1

(30) SWAP GRAM(A, i — 1, 1)

(31) SWAP GRAM(A’,i — 1,4)

(32) i=i—1

(33) if (i #4') then

(34) if (¢ = 1) then

(35) Riy = Al

(36) i=2

(37) else

(38) i=i+1

Unlike the Gram version of the LLL algorithm introduced in [322] we only use
the upper triangular (including the diagonal) of the Gram matrix. This allows
us to take advantage of the symmetric properties of the Gram matrix in order
to improve the running time of the reduction algorithm. Consequently, we define
the subroutines APPROX BASIS GRAM and APPROX VECTOR GRAM as
follows:

Algorithm 3: Algorithm 4:

APPROX BASIS GRAM(A’,A) APPROX VECTOR GRAM(A’A, 1)
INPUT: Gram matrix A INPUT: Gram matrix A, vector index [
OUTPUT: Approximate Gram matrix A’ OUTPUT: Approximate Gram matrix A’
(1) for (1 <i<k)do (1) for (1 <i<l)do
(2) for (1<j<k) do (2) A, = APPROX VALUE(A4,,)

(3) Ag,j = APPROX VALUE(A4; ;) (8) for (I <i<k)do

(4)  Aj, = APPROX VALUE(A, )

The size-reduction of the LLL GRAM described in [22] is slightly modified
to work with the upper triangular Gram matrix. The new size-reduction for
LLL GRAM (see Algorithm 5) is only slightly more expensive than the equiva-
lent step in the original Schnorr-Euchner algorithm.

Algorithm 5: Algorithm 6:
REDUCE GRAM(A, 1, [1i;],7) SWAP GRAM(Ai,j)
INPUT: Gram matrix A, indices [, j, [ ] INPUT: Gram matrix A, indices i, j, i < j
OUTPUT: Gram matrix A OUTPUT: Gram matrix A
(1) T=Ar—2 [piy)-Ajn—wigl® - Ay (1) for (1 <m <j)do
(2) for (1 <m < j)do (2 Ami o Amg
(3) A7n,l = Anz,l - |—,“'7',jJ . Am,j (3) for (] <m< ]) do
(4) for (j <m < l) do (4) A7n,i «— Aj,nz
(5) Ami =Am — (i) - Ajom (5) for (j <m < i) do
(6) for (I+1<m < k)do (6)  Aim o Ajm
(7) Al,nz = Al,7n - |—,“'7',jJ . Aj‘m (7) A17 he Ai,j
8) A =T

Swapping basis vectors in the Gram matrix representation is, in practice, more
expensive than in the original Schnorr-Euchner algorithm (see Algorithm 6). This
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is due to the fact that we now have to swap n elements (dimension of the lattice
basis vectors) for the Gram matrix representation, while for the original Schnorr-
Euchner algorithm we only have to swap the two pointers to the respective basis
vectors.

3.1 Optimizations

In this section we introduce techniques to optimize Algorithm 2. We concentra-
te on the operations with the exact data type (usually long integer arithmetic
like GMP [7I26]) and on the overhead for updating both the Gram matrix and
the lattice basis. The goal is to reduce the number of expensive operations,
such as multiplications or operations involving the long integer arithmetic. To
accomplish this goal, we either use the far more efficient machine-type integer
operations (assuming the respective values fit within the limits of machine-type
integers) or we make use of the specialized and more efficient functions for com-
bined operations like mpz addmul instead of a =a+b- ¢ [1].

Buffered Matrix Transformations. The basic idea of this new technique is
to reduce the overhead due to the amount of long integer operations by using
machine-type integers to buffer the lattice basis transformations until the limit
of the machine-type integer (typically 32 or 64 bit) is reached. The buffered
transformations are then applied to the lattice basis at once and the buffer
is flushed. This allows us to considerably reduce the number of long integer
operations and instead replace them by far more efficient machine-type integer
operations.

Implementing buffered matrix transformations requires replacing the update
of the lattice basis (see Line (16) in Algorithm 2) with a new subroutine called
BUFFERED TRANSFORM as well as adding a number of initializations and
update steps. In the following let m be the bit size of the machine-type integers.
T = (t4,...,t,) is used to buffer the matrix transformations, Tmaz; for 1 <
i < n contains an estimate for the maximum value in ¢, and is used to check
for possible overflows. posin and posm,q.. are used to indicate for which vectors
the transformations have occurred and consequently allow us to limit the matrix
multiplication to these vectors when flushing the transformation buffer.

In addition, the following modifications to Algorithm 2 have to be made.
Before the main while-loop in Line (5) of Algorithm 2 we have to initialize
T = I,, Tmaz = (1,...,1)T, posymin = k and pos,ee = 1. In Lines (30) - (34)
we have to add the swap operations Tmaz; < Tmaz;—; and t;, < t,_;.

Algorithm 7: BUFFERED TRANSFORM(B, i, [11;], /)

INPUT: Lattice Basis B = (b, ...,b,) € Z"** indices i, j, [i;]
OUTPUT: Lattice Basis B

(1) if ((Tmaz; + |[pij]] - Tmaz;) > 2™~ — 1) then /* check for possible overflow */
(2) for (posmin < ¢ < POSmaz) do /* perform B’ = B-T */

(3) for (1 <z <n)do

) BL.=0
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(5) for (posmin <y < POSmaz) do

(6) for (1 <z <n)do

gg B B’ :/nz = B.’nz + Toy - By=

Aad

9) T=1I, /* reset transformation buffer */
(10) Tmaz = (1,...,1)7
(11) POSmaz = 1
(12) DPOSmin = J
(13) if (|[pij]l > 2™ ! — 1) then
(14) b, =b; — [wij] - b; /* long integer computation */
(15) return ’
(16) t, =t — [pij] -, /* machine integer computation */
(17)  Tmaz; = Tmaz; + |[pij]] - Tmaz;
(18) if (poSmar < i) then /* update posmazr */
(19) POSmazr = 1t
(20) if (posmin > j) then /* update posmin */
(21) POSmin = J

The advantage of writing the partial matrix multiplication as shown above is
that for the loop in Lines (6) - (7) the factor T}, is constant in each iteration of
the inner loop. This allows us to use additional optimizations which we present
in the next section.

Further Optimizations. We can split the additional optimizations into two
categories. The first is to avoid unnecessary operations like a multiplication with
1 or addition with 0 within a loop. This kind of optimization has also been
used in Victor Shoup’s NTL code [30]. The second kind is to take advantage
of features of modern CPUs which include the support of certain multimedia
streaming extensions [8I25]. These can efficiently be used to speed up some of
the vector operations, like Line (19) in Algorithm 1.

As an example for the first category we show how to avoid unnecessary mul-
tiplications in Algorithm 7, Lines (6) - (7). (Algorithm 5 can be modified ac-
cordingly.) We can rewrite the loop as follows:

(7) if (Ty # 0) then

(8) if (Tyy = 1) then

9) for (1 <z <n)do
(10) B,. = BL. + B,
(11) else
(12) if (Tzy = —1) then
(13) for (1 <z <n)do
(14) B:’nz = B:’nz — By
(15) else
(16) for (1 <z <n)do
17) B,.=DB,. +Tey By:

This technique is efficient only if T}, stays constant throughout the loop and
Tyy =0, Tyy =1or T;; = —1 for a sufficient number of cases. Both conditions
are dependent on the context in which they are used. In case of the buffered
transformations, the majority of matrix entries is expected to be 0. For a suffi-
ciently large n (dimension of the lattice basis vector) this optimization has the
potential to reduce the running time even for the machine-type integers, e.g.,
Line (16) in Algorithm 7. In case the mantissa of the data type used for the ap-
proximation of the lattice basis fits into a machine-type integer then one can also
avoid an expensive arbitrary long integer multiplication by splitting the values
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of the data type used for the approximation into sign, mantissa, and exponent.
In case of a large p;; in Line (16) of Algorithm 2 we can then replace the ex-
pensive multiplication of two long integer values with a cheaper multiplication
of a machine-type integer and a long integer value followed by a bit shift.

In order to allow for the second type of additional optimizations one can either
use a compiler like those from Intel or Sun which already provide built-in support
for auto-vectorization or, like in the case of the current version of GCC [20124],
one needs to assist the compiler in order for it to be able to take advantage of
multimedia extensions. Vector operations on machine data types with limited
dependencies, for example Line (16) in Algorithm 7, are ideal candidates for
the use of multimedia streaming extensions. Using these streaming extensions
for loops where values of the current loop iteration are dependent on previous
iterations is far more difficult. For example, Line (16) in Algorithm 7 can be
rewritten as follows:

(16) for (1 <! < n;l+ =4) do
(17) Tig =T — [pig] - Tha
(18) Tiiv1 = Tigg1 — [pig) - Tjie
(19) Tiiq2 = Tiiqe — [pig) - Tjiqe
(20) Tings = Tiays — [pij] - Tiags

The number of statements within the loop (here four statements) is dependent
on the processor used and the available multimedia extension and has to be de-
rived experimentally. The loop has to be adjusted accordingly in case the vector
dimension n is not a multiple of the number of statements within the loop.

4 Experiments

The experiments in this paper focus on unimodular lattices. For one, these latti-
ces are more difficult to reduce than knapsack or random lattices with the same
dimension and length of base vectors [I]. Furthermore the result of the reducti-
on can be easily verified since the reduced bases have a defect of 1. Unimodular
lattice bases can be easily generated by multiplying together lower and upper
triangular matrices with determinant 1. That is, entries in the diagonal are set to
1 while the lower (respectively upper part) of the matrix is selected at random.
Using lower triangular matrices Uj, upper triangular matrices V; with 1 < j <2
and permutation matrices P; for 1 < ¢ < 4, we considered the following three
variants of n X n dimensional unimodular lattice bases:

M1 :B:(Ul'Vl)
M2 :B:(U1P1~‘/1P2)
M3IB:(U1P1-V1P2)-(‘/2P3'U2P4)

We generated 1000 unimodular bases for each type and dimension with n =
5,10,15,...,100. In the following, we compare our new Gram variant of the
Schnorr-Euchner algorithm, called xLiDIA, with LLL FP from NTL 5.4 [30] and
the so-called proved variant in fpLLL 1.3 (with the default n = 0.51) [14123].
Computer algebra systems like Magma [29] often use one or a combination of the
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aforementioned LLL algorithms [ZI[]. We did not consider the LLL reduction
algorithms introduced in [QII0J6] (implementation provided by [6]) which use
Householder reflections for the orthogonalization due to stability problems when
reducing unimodular lattice bases. The instability is caused by the fact that the
first correction step in the Schnorr-Euchner algorithm (see Algorithm 1) cannot
be adapted to Householder reflections or Givens rotations.

All experiments were performed on a Sun X4100 server with two dual core
AMD Opteron processors (2.2GHz) and 4GB of main memory using Sun Solaris
10 OS. We compiled all programs with GCC 4.1.1 [24] using the same optimiza-
tion flags. In the xLiDIA, NTL, and fpLLL implementation of the LLL algorithm
we used GMP 4.2.1 [26] with the AMDG64 patch [27] as long integer arithmetic
and machine-type doubles for the approximation of the lattice basis. The followi-
ng figures show the average reduction time (with reduction parameter § = 0.99)
of the 1000 unimodular bases per dimension.

M, - xLiDIA M, - xLiDIA
100 M, - NTL B 4 200 M, - NTL B 1

-==" -=="

M, - fpLLL -1 =0.51 M, - fpLLL -1 = 0.51 !
Y e i 1gof| = = M T PLL B

runtime (in sec)
runtime (in sec)

L I L L L L L L T L L L L
0 10 20 30 40 50 60 70 80 920 100 0 10 20 30 40 50 60 70 80 920 100
dimension dimension

Fig. 1. Reduction times for basis type Fig. 2. Reduction times for basis type
M, for NTL, fpLLL, and xLiDIA M> for NTL, fpLLL, and xLiDIA

Figures [[l — [3 show the reduction times for unimodular bases of types Mj,
Ms, and Ms. One can easily see that the reduction times for Ms-type bases
are higher than those for Ms-type bases which are higher than those for M;-
type bases (for the same dimension n). That is Ms-type bases are more difficult
to reduce than those bases of types M; or Ms. The relative improvement in
reduction time of the xLiDIA implementation in comparison to NTL and fpLLL
not only increases with the dimension of the lattice bases but also depends on
the difficulty in reducing a lattice basis. For example, for bases of dimension 100,
the reduction time with xLiDIA is 25% lower than that of fpLLL for M;i-type
bases, 34% lower for Ms-type bases and roughly 45% lower for Mj3-type bases.

While for smaller dimensions the reduction time of fpLLL is comparable to
xLiDTA, for higher dimensions fpLLL catches up with the slower NTL. In fact,

! Magma is using n = 0.501 for the provable LLL variant (Proof :=true) which is
based upon fpLLL.
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at dimension 85 for M;, dimension 95 for M, and dimension 85 for Ms, the
reduction time of fpLLL even exceeds that of NTL. This behavior of fpLLL is
due to the overhead caused by updating two matrices (Gram matrix and lattice
basis) for each transformation in the reduction process. The newly-introduced
concept of buffered transformations as part of xLiDIA prevents this kind of
behavior.

It is important to recall that fpLLL uses a relaxed reduction condition with
1n = 0.51 instead of n = 0.5 as in the original LLL algorithm and the xLiDIA
implementation used for Figures [l - [Bl In order to demonstrate the impact of
the relaxed reduction condition on the reduction time, we compare a modified
implementation of xLiDIA with n = 0.51 to fpLLL with n = 0.51 and the
original xLiDIA with n = 0.5. Figure (] clearly shows that a relaxed reduction
condition, i.e., a larger n results in an additional decrease of the reduction time.
Furthermore, Figure @] demonstrates that under the same reduction conditions
(i.e., when the relaxed reduction condition is used for both fpLLL and xLiDIA)
our newly-introduced variant xLiDIA outperforms fpLLL even further.

4.1 Stability

Aside from allowing for the analysis of the different algorithms based on their
reduction times, our experiments also show the effectiveness of the various heu-
ristics. In particular, it can be seen that the heuristics used in the NTL im-
plementation [30] of the LLL reduction algorithm do not work for all types of
bases. One can generally identify two serious and one minor problem. The se-
rious problems are the reduction process running into an infinite loop or not
providing a correctly reduced lattice basis. The minor problem identified is that
of using a relaxed reduction condition without providing any feedback of such
upon completion of the reduction.

Figure [0 shows the failure rates of the NTL implementation for the unimo-
dular bases of types My and Mjs. (For lattice bases of type M1 the NTL imple-
mentation did not exhibit any failures.) NTL-infinite loop accounts for those
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Fig.5. NTL failure rates

cases in which the reduction process did not yield a reduction result within one
hour. In fact, in these cases NTL even issued a warning indicating that the al-
gorithm might have run into an infinite loop. NTL-wrong results accounts for
those cases in which the reduction algorithm did not compute a permutation of
the unit vectors te; for 1 < ¢ < n as the reduced lattice basis. (The reducti-
on times for bases resulting in serious failure were not included in the timings
for Figures [1—[Bl In order to avoid infinite loops, NTL employs the heuristic of
relaxing the reduction condition [ in Definition [0 for LLL reduced bases and
NTL-relaxed condition accounts for those cases where this heuristic was used.
Figure [l clearly shows that the failure rates are increasing both with the dimen-
sion and the difficulty to reduce a lattice basis. Furthermore, it is obvious that
the infinite loop prevention heuristic does not work effectively.

In contrast to NTL, our xLiDIA implementation and the proved variant of
fpLLL did not exhibit any stability problems. However, testing the fast and
heuristic variants (also included in the fpLLL package) led to an infinite loop
on both algorithms even when reducing small unimodular lattice bases of di-
mension 10 with entries of maximum bit length of 100 bits.

5 Conclusion and Future Work

In this paper we introduced a new LLL variant using the Gram matrix represen-
tation which significantly outperforms the implementations of NTL and fpLLL.
In particular, with our new variant we have shown that it is possible to considera-
bly decrease the running time of LLL reduction without weakening its reduction
conditions nor sacrificing the stability of the reduction process. It is important
to note that the optimizations introduced in this paper could also be applied
to the proved variant of fpLLL without affecting its respective correctness
proof [14].

Future work includes further optimizing the reduction algorithms to take ad-
vantage of newly-introduced features in today’s computers such as dual or quad
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core CPUs. We are also striving to find ways to extend the use of machine-type
doubles for lattice bases with larger entries in higher dimensions.
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Abstract. Starting from a chain contraction (a special chain homotopy
equivalence) connecting a differential graded algebra A with a differen-
tial graded module M, the so-called homological perturbation technique
“tensor trick” [8] provides a family of maps, {m;};>1, describing an A-
algebra structure on M derived from the one of algebra on A. In this
paper, taking advantage of some annihilation properties of the compo-
nent morphisms of the chain contraction, we obtain a simplified version
of the existing formulas of the mentioned Aso-maps, reducing the com-
putational cost of computing m, from O(n!?) to O(n!).

Keywords: As-algebra, contraction, Basic Perturbation Lemma,
transference, computation.

1 Introduction

At present, Aso-structures (or strong homotopy structures) find natural appli-
cations not only in Algebra, Topology and Geometry but also in Mathematical
Physics, related to topics such as string theory, homological mirror symmetry or
superpotentials [TAT7IT8]. Nevertheless, there are few methods for computing ex-
plicit Aso-structures, being the better known technique the tensor trick [§]. This
tool is used in the context of Homological Perturbation Theory. Starting from a
chain contraction ¢ (a special chain homotopy equivalence, also called strong de-
formation retract) from a differential graded algebra A onto a differential graded
module M, the tensor trick technique gives explicit formulas for computing a
family of higher maps {m;};>1 that provides an A..-algebra structure on M (de-
rived from the algebra structure on A). However, the associated computational
costs are extremely high (see [IIIT2JI]). In this paper, we are concerned about
finding a more cost-effective formulation of the family of maps transferred to
M. As it is shown in section [3 the use of annihilation properties of the com-
ponent morphisms of the chain contraction allows to reformulate the A,,—maps
on M (which depend on the mentioned component morphisms). Afterwards, in

* Partially supported by the PAICYT research project FQM-296 and by a project of
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section ] we carry out a theoretical study of the time and space invested in
computing m,,, presenting the computational savings obtained, in comparison
with the original formulas defined by the Basic Perturbation Lemma.

The results can be extended to the case of A being an A..-algebra (then,
another A.c-algebra structure is also induced on M). We remark that such a
transference can also be performed in the case of ¢ being a general explicit chain
homotopy equivalence.

Of course, all the results given in this paper can be easily translated into the
context of coalgebras and A.,—coalgebras.

2 Notations and Preliminaries

We briefly recall here some basic definitions in Homological Algebra as well as
the notations used throughout the paper. See [3] or [16] for further explanations.

Take a commutative unital ring A. Let (M,d) be a DG-module, that is, a
A~ module graded on the non-negative integers (M = @, -, M) and endowed
with a differential d (of degree —1). An element = € M, has degree n, what
will be expressed by |z| = n. In the case that My = A, M is called connected
and if, besides, M7 = 0, then it is called simply connected. Given a connected
DG-module, M, the reduced module M is the one with M,, = M,, for n > 1 and
Mg = 0.

We will denote the module M® -“- @M by M®", with M® = A and the
morphism f® -*- @f : M® — N by f& We adhere to Koszul convention
for signs. More concretely, given f: M — M', h: M' — M", g: N — N’ and
k: N’ — N” DG-module morphisms, then

(h@k)(f®g)=(1)*(hfkg).

On the other hand, if f : M®" — M is a DG-module morphism and n is a
non-negative integer, we will denote by fl" : M®" — M®7—i+1 the morphism

f[n] _ Z 1®j ® f ® 1®n7i7j
=0

and the morphism fU : @, M® — @, M®* will be the one such that
f[]\M@m = flol,

We will denote by T and | the suspension and desuspension operators, which
shift the degree by +1 and —1, respectively. A given morphism of graded modules
of degree k, f : M — N, induces another one between the suspended modules
sf:sM — sN, given by sf = (=1)* T f |.

Given a DG-module (M, d), the tensor module of M, T (M), is the DG-module

T(M)=@1"(M) =P M*"

n>0 n>0
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whose differential structure is provided by d&l Every morphism of DG-modules
f: M — N induces another one T'(f) : T(M) — T(N), such that T(f)|aren =
fen.

A DG-algebra, (A,d 4, 1), is a DG-module endowed with an associative prod-
uct, p4, compatible with the differential d, and which has a unit n, : 4 — A,
that is, pa(na ® 1) = pu4(1 ®n,4) = 1. If there is no confusion, subscripts will be
omitted. A DG-coalgebra (C,dq, Ac) is a DG-module provided with a compat-
ible coproduct and counit £ : C' — A (so, (§c @ 1)Ac = (1 Q&) A = 1).

In the case of the tensor module T'(M), a product, i, and a coproduct, A,
can be naturally defined on an element a; @ --- ® a, € T"(M), as follows:

p(ar ® - ®an) @ (A1 @+ @ Angp)) = a1 @ -+ @ Angp;
Alay @+ ®an) =21 (a1 ®- ®a;) @ (aip1 @ - @ an).

Therefore, T (M) acquires both structures of DG-algebra (denoted by T*(M))
and DG-coalgebra (T¢(M)), though they are not compatible to each other (that
is, (T (M), u, Q) is not a Hopf algebra).
We recall here two equivalent definitions of A,,—algebra (resp. Ao,—coalgebra)
[3019).
— An A-algebra (respectively, As.-coalgebra), is a DG-module (M, mq) (resp.
(M, Aq)) endowed with a family of maps

mi s M®" — M (resp., A; - M — M%)
of degree i — 2 such that, for n > 1,

Z Z(_l)n+k+nkmiin+1(1®k Q@ my ® 1®ifn7k) =0, (1)
n=1k=0
(resp., Y Y (=1)"TRRQETTE @ AL @ 19F)A; iy =0). (2)
n=1k=0

— An A.-algebra (resp., Aso—coalgebra) is a graded module M endowed with
a morphism of modules m : T(sM) — M (resp., A : M — T(s~1M)) such
that the morphism d = —(T mT(I)!] (resp., d = —(T(1)A T)!!) makes

T<¢(sM) (resp., T*(s~*M)) to be a DGA—coalgebra (resp., DGA-algebra).

The reduced bar construction of a connected DG-algebra A, B(A), is a DG~
coalgebra whose module structure is given by

T(sA) = PlsAe " @sA).
n>0

The total differential d5 is given by the sum of the tensor differential, d; (which
is the natural one on the tensor product) and the simplicial differential, ds (that
depends on the product on A):

dy ==Y 1%0 1 dy L @1e T dg = SRR 1, 192 @102,
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The coproduct Az : B(A) — B(A) ® B(A) is the natural one on the tensor
module.

In the context of homological perturbation theory, the main input data are
contractions [AQITHTIT0]: a contraction ¢ : {N, M, f, g, ¢} from a DG-module N
to a DG-module M, consists in a particular homotopy equivalence determined
by two DG-module morphisms, f : N, — M, and g : M, — N, and a homotopy
operator ¢ : N, — N,41 such that fg = 1,,, and ¢dy +dyodp+gf = 15. Moreover,
these data are also required to satisfy the anihilation properties:

Given a DG-module contraction ¢ : {N, M, f, g, ¢}, one can establish the
following ones [7U8]:

— The suspension contraction of ¢, sc, which consists of the suspended DG—
modules and the induced morphisms:

sc:{sN, sM, sf, sg, s¢},

being sf =7 f],sg=1¢1] and s¢ = — T ¢ |, which are briefly expressed
by f, g and —¢.

— The tensor module contraction, T(c), between the tensor modules of M
and N:

T(c) : {T(N), T(M), T(f),T(9), T(¢)},

where
n—1

T(dj)‘T"(N) = ¢[®n] — Z 1®i ® ¢® (g f)®n7i71_

=0

A morphism of graded modules f : N — N is called pointwise nilpotent
whenever for all x € N, x # 0, there exists a positive integer n such that
f™(x) = 0. A perturbation of a DG-module N consists in a morphism of graded
modules § : N — N of degree —1, such that (dy +6§)%? = 0. A perturbation datum
of the contraction ¢ : {N, M, f, g, ¢} is a perturbation § of the DG-module N
satisfying that the composition ¢ is pointwise nilpotent.

The main tool when dealing with contractions is the Basic Perturbation
Lemma [2[5T5], which is an algorithm whose input is a contraction of DG—
modules ¢ : {N, M, f,g,¢} and a perturbation datum é of ¢ and whose output
is a new contraction c¢s : {(N,dy + 6),(M,dy + ds), fs, gs, ¢s} defined by the
formulas

ds=f6X0g;  fs=f(1-6X00); gs=2X0g;  ¢s=20¢;
where X¢ = Zizo(—l)i (p6)" .

The pointwise nilpotency of the composition ¢pd guarantees that the sums are
finite for each particular element.
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3 Transferring A..—Algebras Via Homological
Perturbation Theory

Ao —algebras were first introduced by Stasheff in [20]. They are, roughly speak-
ing, algebras which are associative “up to homotopy” (also called strongly ho-
motopy associative algebras).

In the papers of Gugenheim, Stasheff and Lambe [6l9I]], they describe a tech-
nique called tensor trick by which, starting from a contraction between a DG—
algebra A and a DG—module M, an A —algebra structure is induced on M. This
transference also exists in the case that A is an A.,—algebra. Moreover, in the
case that a general homotopy equivalence is established between A and M, it is
also possible to derive a formulation for an A, —algebra structure on M. We will
mainly focus our efforts on obtaining computational improvements in the first
case.

3.1 Transference Via Contractions

Let us consider the contraction

c: {A7M7f7g7¢}7

where A is a connected DG—algebra and M a DG—module. The first step con-
sists in tensoring, in order to obtain the underlying graded module of the bar
construction of A,

T(sc) : {T*(sA), T°(sM),Tf,Tg, T(~¢)};

and then, considering the simplicial differential, ds, which is a perturbation da-
tum for this contraction, and using the Basic Perturbation Lemma, a new con-
traction is obtained,

{B(A),(T*(sM),d), f,§. 6} ,

where (T¢(sM),d) is called the tilde bar construction of M [20], denoted by
E(M) Then, the perturbed differential d induces a family of maps m,, : M®" —
M of degree n — 2 that provides an A.,—algebra structure on M.

The transference of an A, —algebra structure was also studied by Kadeishvili
in [I3] for the case M = H(A). Using this technique, in the following theorem, an
expression of a family of A,,—operations is given with regard to the component
morphisms of the initial contraction. Although this formulation is implicitly
derived from the mentioned papers [I3] and [8], an explicit proof is given in [12].

Theorem 1. [13]8] Let (A, d,, p) and (M, dy,) be a connected DG-algebra and
a DG-module, respectively and ¢ : {A, M, f,g,$} a contraction between them.
Then the DG—module M is provided with an A —algebra structure given by the
operations
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mi = —dM
My, = (_1)n+1f’u(1) ¢[®2] ’u(2) - ¢[®“*1] ’u(nfl) go", n>2 (3)
where
k71 . . .
N(k) _ Z(_l)z—i-ll@z ® [ia ® 1®k—z—1 )
1=0

As far as the computation of these formulas is concerned, we can take advan-
tage of the annihilation properties of f, g and ¢ to deduce a more economical
formulation for m.,.

Theorem 2. Any composition of the kind ¢! u®) (s = 2,....n—1) in the
formula ([3), which is given by

s—1 s—1
Z 197 QPR (g f)®57j71 o (Z(_l)i+11®i ® pa ® 1®si1> ’

=0 i=0

can be reduced to the following sum

s—1

S DT @ g @19 ()
=0

Moreover, given a composition of the kind
(ples= U=y o (plesl () s =3, n—2,
for every index i in the sum (f) of 1S | the formula of L~ Hu=1 in such
a composition can be reduced to

s—2

Z (=111 @ pu, @ 1957972 (5)

j=i—1,7>0

In other words, the whole composition (¢®2 ) o ... o (plon=H p(=1) in the
formula of m,, can be expressed by

n—2 n—3 1
> > << > (¢u)(2’i2)>--~> () "= 2in=2) | ()= Loinr)

in—1=0 \in_2=tn_1—1 io=13—1

where (pu) B9 = (=1)1111%7 @ pp, @ 195731 and each addend exists whenever
the corresponding index i, > 0.

Proof. Let us prove the formula @ of ¢[®*1u(®) for any s =n—1,n—2,...,2, by
induction over the number k = n — s of factors of the type ¢[®*(*) that are
composed, following the scheme
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mp = (1)L p) gled [, (2. plon=2] u(n—2)?[®n—1] pn=h gen (6)

~ -
k=1
~ ~ -
k=2
~ ~ -

k=n—2

At the same time, we will prove the major reduction of terms given by (&) for
s=n—2,...,2.

— k=1 The composition of morphisms ¢[®*=1 4, ("=1) g®" can be written as

n—2 n—2
Z 19960 (gf)®" 772 o (Z(_l)i+1g®i ® pa g2 ®g®n—i—2> _

=0 i=0

Now, using the facts that fg = 1 and ¢g = 0, it is simple to see that the
only non null elements are those where ¢ is applied over 4, so the original
formula of ¢l®"—1] ("=1) i simplified to

n—2

Z(_l)i+11®i ® (b,U'A ® 1®n—i—2 )
=0

— k=2 In this case, taking into account the formula obtained for k =1,

n—2

d)[@n—l] u(n—l) g®n — Z(_l)i+1g®i ® ¢/J'Ag®2 ® g®n—i—2 (7)
=0

and that ¢[®"~2;("=2) i the composition

n—3 n—3
Z 193 RP® (gf)®n—j—3 o (Z(_l)i+1l®i ® fia ® 1®n—i—3> 7

=0 i=0

we can use the anihilation properties ¢g = 0 and ¢? = 0, to conclude that
the factor ¢ in ¢!®”~2 has to be applied over p, and hence,

n—3

g2 =2 =N (1T @ g @ (9f) 0 )
=0

Now, considering the composition of the sum (7)) with (8), one can observe
that, since f¢ = 0, for each index 4 in the sum (), the only addends of (8]
that have to be considered for the composition are those j > ¢ — 1. On the
other hand, fg =1 is also satisfied, so

n—3
¢[®n72] ’u(n—2) _ Z (_1)j+1 187 s ® 18n—Jj=3

j=i—1
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— k =m Finally, let us assume that the proposition is true for &=l (n—F)
for all k = 1,...,m — 1. Now, considering, on one hand, ¢l®n—ml;n=m)
n—m-—1 n—m-—1
Z 187 RO (gf)®n—3—m—1 ( Z(_l)z+1l®z ® fha ® 1®n—z—m—1>
§=0 i=0

and that, on the other hand, the composition of morphisms

glon—mt1] (n=mt1)  glon—] (n=1) gen

by induction hypothesis, is a sum of elements that are tensor product of
factors of the type ¢(something) or g, using again the annihilation properties,
it follows that

n—m-—1

G ) = (1 @ g @ (gf) I
=0

Since, by induction hypothesis,

¢[®n7m+1] N(n7m+1) _ Z (_1)i+11®i ® (b;qu ® 1®n7m7i’
=0

7=

taking into account that fg = 1 and the fact that f¢ = 0, again we can
reduce the number of terms of ¢l [ (n=m) o

n—m—1
Z (_1)i+11®i ® (b,U'A ® 1en—m=—i=1
j=i—1
where 7 is the index corresponding to the term of the preceding sum that is
being composed with glen—d y(n=m),

We can generalize the results showed above to the case that the “big” DG-
module of a given contraction is an A..-algebra. The stability of the A..-
structures with respect to the contractions follows from the paper []]. In fact, it
is possible to extract the next theorem as an implicit consequence of the results
there.

Theorem 3. Given c: {A, M, f, g, &} a contraction, where (A, my,ma,...) is
a connected Ax-algebra and M is a DG-module, then M inherits an Ay -algebra
structure.

Proof. The proof follows the same scheme as in theorem [ (and for that reason,
we will only sketch it slightly) , making use of the tensor trick and the Basic
Perturbation Lemma, with the difference that, now, the perturbation datum for
the contraction
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T(sc) : {T°(sA), T°(sM), T(f), T(9) T(~9)}
is the one induced by the A,,—maps

n n—k

dm‘(sA)‘@” = - Z Z ]_®i® T mi l@k ®1®n—k;7i )
k=2 i=0

Since the family of maps {m;};>1 defines an A.-algebra structure on A,
dg = di + dy, is a differential on T¢(sA) (in fact, (T°(sA),dp) is the tilde bar
construction of A). On the other hand, the pointwise nilpotency of T'(—¢) d,,
follows because d,,, reduces the simplicial dimension, while 7'(—¢) keeps it the
same.

Thanks to the Basic Perturbation Lemma, a new differential is obtained on
T¢(sM), d, given by the formula:

d=di +T(f)dm Y (~1)"(T(=¢)dm) T(g).

i>0
This way, d induces a family of maps {m};>1 on M, where m2, up to sign,
can be expressed by
n—2
n k k n
Fmag® 4> D0 @m0 m ) 6®

=1 2<k1<...<k;<n-1

where m™® | A®T — A%k s given by

n—k-+
n—k+1
(k) _ i k—i—1
My gy = E 1% @My g1 @ 197770
i=0

Notice that, since m; is a map of degree i — 2, m)' has degree n — 2.

If we examine the formula above in low dimensions, we obtain, up to sign:

mj' = £ fms g®%

my =+ fmy g% £ fmo 952 m 9=

mi =4 fmy g®4 + fmo ¢[®2] mz(f) g®4 + fms ¢[®3] m§3) g®4
:tf ma ¢[®2] mgQ) ¢[®3] mé?)) g®4.

Notice that only the last addend of each map is the one induced in the case
of A being an algebra, instead of the 2”2 addends generated in these cases (the
number of subsets of a set of n — 2 elements). At each addend of each A,,—map,
one can obtain a reduction in number of terms, of the same nature than the one
showed in theorem



54 A. Berciano, M.J. Jiménez, and P. Real

Theorem 4. Any composition of the kind ¢®*] m&s)

which is given by

in the formula of m)',

s—1 T
Zl®j ®¢®(gf)®s—j—1 ° (Z 1®i®mr®1®s—i—1> ’

j=0 i=0

can be reduced to the following sum

T

Z 19 @ ¢pm, @ 19571,
1=0

Proof. This proof is completely dual to the one of theorem [2 so it is left to the
reader.

3.2 Transference Via Homotopy Equivalences

In [I0], a general chain homotopy equivalence e between two DG-modules M and
M’ is considered as a pair of chain contractions {M, M, f, g, ¢} and {M, M, f’,
g, ¢'}, where M is a “big” DG-module obtained from e. Our interest here is
to compute the A.,-algebra structure on M’ derived from that of M. Having
at hand the mentioned characterization of chain homotopy equivalence and the
results of the previous subsection, our task is then reduced to determine the
transferring of As-structures via chain contractions in the sense from-small-
to-big. In a more formal way, our main problem here is the transference of
the Ao-algebra structure from a “small” DG-module N to a “big” DG-module
M via the chain contraction ¢ : {M, N, f,g,¢}. The following propositions are
straightforward and, in particular, allow to design an algorithmic method for
transferring A,o-structures via chain homotopy equivalences:

Proposition 1. Let ¢: {M, N, f, g, ¢} be a chain contraction and let (N, ) be
a DG-algebra with product . Then, M has a structure of DG-algebra, provided

by the product uy = gup(f ® f).

Proposition 2. Let c¢: {M, N, f,g,$} be a chain contraction and let (N, ) be
an As-algebra with higher maps (n1,na,ns,...). Then, the DG-module M inher-
its a structure of As-algebra, given by the maps (gni f,gna f%,gns f€3,...).

4 Computational Advantages: Theoretical Study

In this section we are concerned about the theoretical study of the time and
space invested in computing the maps of an A ,—algebra structure induced by a
contraction ¢ : {4, M, f, g, $}. We will focus on the case of A being an algebra.
In particular, we will make a comparison between the original formulas defined
by the Basic Perturbation Lemma and the reduced formulas obtained in the
previous section.
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Regarding the original formulas of the A, —algebra maps, we must say that
experimental results can be obtained with [I], a software developed in order
to perform low dimension computations. This software is based on the initial
formulation for the map m,, : M®" — M given in theorem [T}

mp = (—1)"Hf M ple2 [, (20 glen=1] y(n=1) gon =y > 9

We will take n > 3, since no improvement is obtained in the case n = 2.
As for complexity in space, let us consider the number of addends generated
in the sum above. Taking into account that

k—1 k—1
¢[®k] — Z 1®i ® ¢ ® (g f)@k*ifl and /J,(k) — Z(_l)i+11®i ® Lia ® 1®k7i71 ,
=0 =0

the result of applying m,, to an element 71 ® 2o ® - - - z,, has (n — 1)!? addends.

Concerning complexity in time, let us assume that each component morphism
of the initial contraction, f, g and ¢, consumes a unit of time when applied (that
is, each one of these morphisms is considered a basic operation); we will also make
this assumption for the composition g f which is applied in different terms of
the morphisms @l®*!.

Notice that applying ¢g®™ is O(n) in time.

On the other hand, the number of operations of each addend of the form
19°®¢® (g f)®*~*~!is k—i and the one of each addend 1¥* @y, ® 19¥7* =1 is 1.
That is, the number of basic operations can be expressed by

nt2n-1)P+m-1)! > (ke+lt+ks+14-Fky1+1),
ki€{1,2,...i}

where n comes from g®", 2 (n — 1)!2 from the two operations f u at the end of
each addend and the big sum corresponds to the operations on the composition

#1921 @) . glen—1] (n=1),

Notice that the sum is multiplied by (n — 1)! because of all the possibilities

for taking an addend 1% @ pu, ® 19511 of each u(®). The sum above can be

expressed by

(n+3)(n—2)
4

Therefore, the complexity of the algorithm becomes O(n!?) in time.

Now, taking into account the first reduction of terms in the sums involved in
m,, (theorem [2), any composition of morphisms of the form ¢!®%4(*) which had
52 addends, is reduced to a sum with s terms. So, the total number of addends
is now (n — 1)l

As for the number of operations, now it is O(n) for each addend. Moreover,
the number of operations is, exactly,

n+n(n—1)2%+ (n—1)12

n+(n—1)12n-2),

and hence O(n!) in time.
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Finally, considering that the upla of indexes (iz, 3, .. .i,—1) for the sums must
be taken so that iy > ix41 — 1, we eliminate (for n > 4)

n—3 n—3

= Zz k! =

11:=1 k=1

k(k+1)!

(]

~
Il

addends, so the number of addends becomes (n — 1)! — S,,. Now, taking into
account that (n — 1)! can be expressed by

n—3 n—3
(n—1'=2+4> (k+1!+ > k(k+1)!,
k=1 k=1

it is easy to see that

(n—1)!

9 <(n-D'-8,<(n-1,

so the algorithm is still O((n — 1)!) in space. However, the final number of
addends, (n—1)! — S, is much ”closer” to (";1)! than to (n—1)!, as it is shown
in the following comparative table.

n 5 10 50 100 1000
((n—1)! = S,)/(n—1)! 0,708333 0,563704 0,510421 0,505103 0, 500050

Summing up, the order of complexity in time and space of the original formula
versus the new one is presented in the following table.

original formula new formula
time space time space

m, O®?) O((n—1)"12) O(!) O((n-1))
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Abstract. For graphs there exist highly elaborated drawing algorithms.
We concentrate here in an analogous way on visualizing relations repre-
sented as Boolean matrices as, e.g., in RELVIEW. This means rearranging
the matrix appropriately, permuting rows and columns simultaneously
or independently as required. In this way, many complex situations may
successfully be handled in various application fields. We show how rela-
tion algebra and RELVIEW can be combined to solve such tasks.

1 Introduction

Although graphs as well as relations are frequently used as modeling tools, the
theory of graphs is far more broadly known than the theory of relations. While
complexity considerations in graph theory, e.g., aim at asymptotic behaviour of
algorithms, graph drawing has its main impact for graphs of small or moderate
size. There exist specific application areas where people work with such graphs
to model practical situations using graph drawing as a supporting technique. A
lot of highly elaborated graph drawing algorithms and implemented tools help
getting an impression on how the graph in question is structured; cf. e.g., [9/T6].

Since many years relation algebra is used as a means for problem solving in
mathematics, computer science, engineering, and some other disciplines. A lot
of practical applications can be found in [7I8]. As demonstrated in [I§] for exam-
ple, graph theory and relation theory interact in many ways. But relations are
geared towards an algebraic treatment, ultimately leading to the structure of a
relation algebra in the sense of Tarski (see [21]) and, if required, its mechaniza-
tion via appropriate Computer Algebra systems. While one may draw relations
in a multitude of versions when interpreting them as graphs, we here aim at
depicting them as Boolean matrices. This is often very useful for visual editing
and for discovering structural properties that are not evident from a graph rep-
resentation. While this approach does not bring much additional visualization
in simple cases (i.e., for most of those presented here due to the page limit), it
helps when several algebraic conditions are supposed to hold. As an example,

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 58, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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we mention that for games a decomposition into loss, draw, and win positions
may be obtained, which means a block decomposition as follows:

0 0 *
0 total *
total * *

The Boolean matrix can be rearranged appropriately by permuting rows and
columns simultaneously or independently as required, so as to have a more or
less immediate impression of what it stands for. Easily visible rectangular zones
of zeros or ones are helpful as well as arrangements along the diagonal. Here,
submatrices will be obtained that do not admit empty rows. But there remains
the question whether this is possible, whether it is justified algebraically, and
how the desired form can be obtained algorithmically.

The observation concerning relations occurring in practice is that they are
“not too big”; row or column numbers do often not exceed 40 or 50. Even if
an algorithm turns out to be rather inefficient when considered asymptotically,
it seems possible to handle that size with our actual computer equipment. A
competent overview on Multi-Criteria Decision Aid of this type is given in [6]
for example. It contains a considerable number of practical examples of tables
that are limited in size but lend themselves to be investigated with algebraic
methods with respect to several criteria. They resemble evaluations with patient
material or the multi-purpose transnational water system of, e.g., Lago Maggiore.

This is where our investigation started. Using some basic algorithms, we have
developed a tool set of relation- algebraic expressions describing rearrangements
of Boolean matrices / relations into specific forms. These could immediately be
translated into the programming language of the specific purpose Computer Al-
gebra system RELVIEW [1I3/4]. While we have handled, among others, symmet-
ric idempotent relations, matching decompositions, independent and/or covering
pairs of sets, implication structure decompositions, equivalences, we restrict to
presenting here all the types of orderings traditionally used by decision makers.
Several pictures show how the system then can help in visualization.

2 A Motivating Example

As a rather trivial initial example consider the following relation on elements
1,2,...7, represented with the RELVIEW tool as a Boolean matrix.

— Ol o0t O I~

N O B LB =

A black square stands for the matrix entry 1 (or true) and a white square
stands for the entry 0 (or false). It is easy to check that the relation R represented
by the matrix is a pre-order relation, i.e., is reflexive (I C R) and transitive
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(RR C R). With a graph drawing algorithm one would obtain something as
shown in the following pictures. Again they are produced by RELVIEW; the
picture on the left uses the hierarchical polyline drawing algorithm of [I3] and
that on the right is the result of the spring-embedder algorithm of [I5].

But these drawings do not give an appropriate impression of what the relation
R really expresses. More intuitive is the left one of the following two RELVIEW-
matrices. It is given as an upper right triangle of rectangles of either 1’s or 0’s,
where the four rectangle-forming parts correspond to the four sets {2,3}, {5},
{6,7} and {1,4} of indices of the original matrix.

AN O~ — < — QO

A= O W N
N R W —

Later we will show how such a rearrangement can be obtained from the original
matrix. The key of our procedure will be the relation-algebraic specification of
a permutation relation P; for the above example it is represented by the REL-
VIEW-matrix on the right. Then the new version is obtained by multiplying R
with the transpose of P from the left and with P from the right. The former
rearranges the rows of R accordingly and the latter does so for the columns.

3 Relation Algebra

We write R : X < Y if R is a relation with domain X and range Y, i.e., a subset
of the direct product X xY. If the base sets X and Y of R’s type X < Y are finite
and of size m and n, respectively, we may consider R as a Boolean m X n matrix.
This interpretation is well suited for many purposes. As it is also used by REL-
VIEW to depict relations, we will often use matrix terminology and notation, i.e.,
speak about rows and columns and write R, , instead of (z,y) € Ror z Ry. We
assume the reader to be familiar with the basic operations on relations, viz. R"
(transposition), R (complement), R U S (union), R NS (intersection), and RS
(multiplication), the predicate R C S (inclusion), and the special relations O
(empty relation), L (universal relation), and | (identity relation).
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To model sets we will use vectors, which are relations v with v = wL. Since for
the relation modelling a set the range is irrelevant, we consider in the following
mostly vectors v : X <> 1 with a specific singleton set 1 = {_L} as range and omit
in such cases the subscript L, i.e., write v, instead of v, | . Such a vector can be
considered as a Boolean column vector, and represents the subset {z € X | v, }
of X. A non-empty vector v is a point if voT C |, i.e., it is injective. This means
that it represents a singleton subset of its domain or an element from it if we
identify a singleton set {z} with the element z. In the Boolean matrix model a
point v : X <> 1 is a Boolean column vector in which exactly one entry is 1.

When dealing with orders, one typically investigates extremal elements. In
this paper we only need least(C,v) = v N CUlv. For a strict-order relation
C : X« X ie., an asymmetric (C N CT = O) and transitive relation, and a
vector v : X <1 this relational function yields either a point that represents the
least element of v wrt. C' or an empty vector if no least element exists.

With R\ S = RTS :Y < Z the right residual of R: X <Y and S : X < Z
is introduced. For S = R this means in particular that R\ R has type Y <Y and
for all 2,y € Y the z-column of R is contained in the y-column of R iff (R\ R),,
holds. Hence, R\ R coincides with the is-contained relation on the columns of R.
The expression (RT\ ST)" defines the left residual S/R: X <Y of S: X < Z
and R : Y < Z. Here the case S = R yields the transposed is-contained relation,
i.e., the contains relation S /S : X < X on the rows of S.

4 A Short Look at the RELVIEwW Tool

RELVIEW is a specific purpose Computer Algebra system for relation algebra.
All data it works on are represented as relations which the system visualizes
as directed graphs (via several sophisticated graph drawing algorithms) or as
Boolean matrices. RELVIEW allows to compute with very large relations, as the
system uses a highly efficient implementation of relations via binary decision
diagrams (see [3/4]). The user can manipulate and analyse relations by pre-
defined operations and tests. Based on the operations and tests and certain
additional control structures relational functions and relational programs may
be defined. We exhibit three of them as examples, which we will need later.

The following unary RELVIEW-function Hasse computes the Hasse-diagram
He =Cn CC of a strict-order relation C'.

Hasse(C) = C & -(C * C).

A relational program essentially is a while-program based on the main data-
type realized, namely relations. Such a RELVIEW-program has many similarities
with a function procedure in programming languages like Pascal or Modula-2.
It starts with a head line containing the program’s name and the list of formal
parameters. Then the local declarations follow. The last part is the body, a
sequence of statements which are separated by semicolons and terminated by
the RETURN-clause. For an example, we recall E. Szpilrajn who proved in [20]
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that every partial order relation possesses a linear extension, where R is linear if
RURT = L. This theorem follows from Zorn’s lemma and the fact that, given a
partial order relation E : X < X and an incomparable pair (a,b) € X x X, there
exists an extension R of E that contains (a,b). Using element-wise notation, we
can define R for all z,y € X by R, , iff £, , or E, 4 and E} . A relation-alge-
braic specification of R is R = EU EAE, where the relation A is a product pg"
of different points p,q : X < 1 representing the elements a and b, respectively.
In the finite case the extension may be iterated and this leads to the following
RELVIEW-program Szpilrajn for computing a linear extension of E.

Szpilrajn(E)
DECL R, A
BEG R = E;
WHILE -empty(-(R | R7)) DO
A = atom(-(R | R™));
R =R | RxAxR OD
RETURN R
END.

The next example is the RELVIEW-program Classes (formally developed in
[2]) that computes for an equivalence relation R : X < X with set € of equiva-
lence classes the canonical epimorphism from X to € as a relation @ : X « €.

Classes(R)
DECL C, x, p
BEG C = Rxpoint(Lni(R));
x = -C;

WHILE -empty(x) DO
p = point(x);
C=(C" + (R¥p)")";
x = x & -(Rxp) 0D
RETURN C
END.

Since @ is the relational version of the canonical epimorphism, we have for all
x € X and equivalence classes ¢ € € that &, . iff  belongs to c. Hence, if
we consider the columns of the result C' of the RELVIEW-program Classes as
single vectors, then these vectors are pair-wise disjoint and precisely represent
the elements of the set €. In the literature this is also called a column-wise
representation of a set of sets, or the natural projection for the equivalence.

5 Some Simple Rearranging Algorithms

Our rearrangement algorithms are all based on pure relation algebra, supported
by one additional fact: Sets X between which the relations hold we work with
are necessarily finite; we assume them to be equipped with a linear strict-order
relation 2x : X < X, the base strict-order. In RELVIEW this order is implicitly
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given by the internal enumeration of the base set X within the tool. Its Hasse-
diagram is succ : X < X. To be more precise, if x1,29,...,z, is the internal
enumeration of X within the tool, then we have succy, o, , foralli, 1 <i <n-—1,
and the base strict-order 2x is obtained as the transitive closure succt of succ.

5.1 Linear Strict-Order Relations

In what follows, let C': X <+ X be any linear strict-order relation on the set X
and let 2x : X <> X be the base strict-order on X. Assuming {2x to be depicted
as a full upper right triangle matrix as the Boolean matrix of the relation succ™ in
RELVIEW, how can we permute the set X via a permutation relation P : X < X
so as to see the linear strict-order relation C permuted accordingly as the full
upper right triangle? Of course, this is a rather trivial task — but tedious when
one has to actually execute it by hand. Subsequently, we show how it can be
mechanized and how the algorithm can be formulated in RELVIEW.

In the first step, we compute the two Hasse-diagrams Ho = C' N CC and
Hq, = 2x N 2x2x of the linear strict-order relations C' and §2x. Next, we
consider the least elements with respect to both these orders, represented by
vectors least(C,L) and least(2x,L), where L : X «»1. Since L represents the
entire base set X, the vectors represent the respective least element of the strict-
ordered sets (X,C) and (X, {2x). The permutation relation P we are looking
for, now is defined iteratively. We start with the relation

Py = least(C, L) least(2x,L)"

that precisely relates the least element of (X, C') with that of (X, 2x). It is easy
to verify that the extension Py U Ho"PyH ny of the relation P, additionally
relates the second smallest element of (X, C') with the second smallest element of
(X, 2x), and no further relationships are introduced. Based on this observation,
we successively apply the relational function

7(R) = RUHc"RHg,

to Py. This leads to a finite chain Py C 7(Py) C 72(Py) C ... C 7IXI71(Py) and
the last relation of this chain obviously is the desired permutation relation P. A
RELVIEW-implementation of this procedure looks as follows.

PermLS0(C)

DECL L, HC, HO, P, Q

BEG L = Lni(C);
HC = Hasse(C);
HO = succ(L);
P = least(C,L)*least(trans(HO),L)";
Q = P | HC"*PxHO;
WHILE -eq(P,Q) DO

P =Q;
Q = P | HC"xP*HO OD
RETURN P

END.
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Having a program at hand for computing this permutation relation P, the follow-
ing RELVIEW-program for the transformation of C' is an immediate consequence.

RearrLS0(C)
DECL P
BEG P = PermLS0(C)
RETURN P~ *C*P
END.

The body of RearrLsS0 says that the desired form is obtained via PTCP since,
as already mentioned in Sect. Bl the expression PTC rearranges the rows of C
accordingly and a subsequent multiplication with P from the right does so for
the columns.

5.2 Pre-order Relations

As a second kind of orderings, we consider pre-order relations. They are de-
fined to be reflexive and transitive and appear quite frequently in optimization
problems. The name quasi-order relation is also common for pre-order relations.

Each pre-order relation Q : X < X can be transformed into a form that
consists of an upper right triangle of rectangles of 1’s and 0’s and is shown in the
motivating example of Sect.[2l Again the decisive step is the computation of an
appropriate permutation relation P : X <» X on the base set X that rearranges
the rows and columns accordingly by multiplying @ with PT from the left and
with P from the right. The computation of P is rather straightforward. First,
we form the equivalence relation R = Q N Q7. In the second step, we remove
this relation from @. It is easy to verify that this yields a strict-order relation
@ N R and, hence, the reflexive closure (@ N R) U is a partial order relation
on the base set X. In the third step, we compute a linear extension F : X < X
of this partial order relation. Since each permutation relation that transforms
the linear strict-order relation £ N | into a full upper right triangle obviously
transforms ) into an upper right triangle of rectangles, the last step consists in
the application of the procedure of Sect. 5.1l In the syntax of the RELVIEW tool
the computation of the permutation relation P looks as follows.

PermPre0(Q)
DECL I, R, E
BEG I I(Q);
R=Q&Q;
E = Szpilrajn((Q & -R) | I)
RETURN PermLSO(E & -I)

END.

A formulation of a RELVIEW-program RearrPre0 for computing the product
PTQP is completely analogous to that of RearrLS0 and, therefore, omitted. At
this place it should be mentioned that we have used PermPre0 and RearrPre0
to generate the last two matrices of the motivating example in Sect. 2l
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5.3 Weak-Order Relations

A relation W : X « X is said to be a weak-order relation if it is asymmetric
and negatively transitive, where the latter property is defined by the inclusion
W W C W to hold. Weak-order relations W are precisely those strict-order
relations in which the set of indifferent pairs (i.e., the set of pairs (x,y) € X x X

such that neither W, , nor W, ;) forms an equivalence relation R = W N W
and the equivalence classes of R are linearly ordered by the order of the represen-
tatives via W. Informally this means that their Hasse-diagrams are composed by
a series of complete bipartite strict-orders, one above another. Due to this prop-
erty, weak-order relations are often used to model preferences with indifference,
for instance in mathematical psychology. See [L0J17] for example.

Each weak-order relation W : X < X can be transformed into an upper right
block triangle form. From the single blocks of this form the above mentioned
complete bipartite strict-orders and their rearrangement immediately becomes
apparent. To obtain a permutation relation on X that transforms W into an
upper right block triangle form is possible by performing three steps. First, W
is joined with the identity relation | : X <> X. The resulting reflexive closure
E =W Ul of W is a partial order relation on X. Next, a linear extension E’ of
FE is determined. And, finally, a permutation relation P : X < X is computed
that rearranges the linear strict-order relation E’ N | into the full upper right
triangle PT(E'N1)P. A little reflection shows that the same permutation relation
also transforms the original weak-order relation W into the desired upper right
block triangle form PTW P. The following RELVIEW-program PermWeak0 is a
direct translation of the above steps into the programming language of the tool.

PermWeak0 (W)
DECL I
BEG I = I(W)
RETURN PermLS0(Szpilrajn(W | I) & -I)
END.

5.4 Semi-order Relations

By definition, a semi-order relation S : X < X is irreflexive (S C 1), semi-
o T .
transitive (SSS  C S or, equivalently, S S C SS), and possesses the Ferrers

property S s's C S. The interest in this specific kind of orders mainly stems
from the following fact, known as Scott-Suppes-Theorem (see [T9UTT]): Let X be
a finite set. Then S : X <> X is a semi-order relation iff there exist a mapping
f + X — R and a positive p € R such that the relationship S,, and the
estimation f(z) + p < f(y) are equivalent for all z,y € X. The constant p can
be seen as some sort of threshold. It allows to model preferences with indifference
by defining =,y € X as indifferent iff |f(x) — f(y)| < p.

Irreflexive relations with the Ferrers property are called interval order re-
lations since they are strict-orders that have interval representations. We will
discuss this later in Sect. In the case of semi-order relations the additional
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assumption of semi-transitivity allows a representation with all intervals of the
same positive length, e.g., of length 1.

Each semi-order relation S : X <+ X can be rearranged into a threshold in
an upper right block triangle form. As in the cases of the transformations of
Sects. BIlto[B.3] the decisive step here again is the computation of a permutation
relation P : X < X on the base set X that simultaneously transforms rows and

columns via PTSP. To obtain P, we start with W = STSUSS T 1t is not very
hard to verify relation-algebraically that W is a weak-order relation on X, which
in turn yields the strict-order property for W. A little reflection furthermore
shows that we can take as P any permutation relation that transforms W into an
upper right block triangle form. In the syntax of RELVIEW the entire procedure
looks as follows:

PermSemi0(S)
DECL W
BEG W = -S°%S | S%-8~
RETURN PermWeakO (W)
END.

One may think that in an analogous manner also interval order relations J
may be handled by embedding them into some sort of a semi-order closure S,
where S = JU JJJ | ie., by adding whatever is missing for semi-transitivity.
The relation-algebraic proof that S is indeed a semi-order relation is too long
to be included here. But the result of the approach is not as expected. In the
following three pictures we see on the left an interval order relation J, in the

. . . T . .
middle the semiorder relation S = J U JJ J , and on the right a permutation
relation P that transforms S in an upper right block triangle form PTSP.

— O o <\ \O [~ 00 — O o <\ \O [~ 00 — O o0 <t v \O [~ oC
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8

The next two pictures show the two rearranged relations, viz. the Boolean
matrix of PTJP on the left and that of PTSP on the right.

D~ 00 1 <F — Ol o0 \C D~ 00\ < — Ol o0 \C

DN N — A 00
DN N — A 00

The transformed semi-order relation is in the desired form. However, for the
transformed interval order relation we have some objections, as the Ferrers prop-
erty is not yet visible. In the next section we will demonstrate that a visualization
of the latter is also possible, however, at the cost of permuting rows and columns
no longer simultaneously.
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6 More Complex Rearranging Algorithms

Having developed some simple algorithms which rearrange the matrix represen-
tation of specific order relations appropriately by permuting rows and columns
simultaneously, we now concentrate on two more complex cases. Here a trans-
formation into an appropriate form requires rows and columns to be permuted
independently. We will also show an example that once again exhibits the power
of RELVIEW when dealing with the visualization of relations.

6.1 Ferrers Relations

In the theory of partitions of numbers (see e.g., [5]), a partition of a natural
number n into a sum n = a; + as + ... + ag, where a1 > as > ... > ag, is
frequently visualized by means of a Ferrers diagram. Such a diagram is drawn as
a rectangular array of square in which the ¢’th row has the number of squares
equal to the number a;, 1 <14 < k. All rows are right-justified (or left-justified)
and sorted by their lengths (i.e., the number of squares) in decreasing order from
the top to the bottom. As a small example, the pictorial representation of the
Ferrers diagram for the partition 19 = 7+ 4 4+ 4 4+ 2 + 2 of the number 19 as a
RELVIEW-matrix looks as follows.

— N <t O D~

DB R —

The black parts of the rows of this 5 x 7 Boolean matrix exactly correspond
to the 5 rows of the Ferrers diagram.

Ferrers diagrams motivated the definition of Ferrers relations by demanding
that the latter type of relations can be transformed into upper right staircase
block form — the form shown in the above RELVIEW-matrix, but additionally
allowing empty columns to occur at the left or empty rows at the bottom —
by permuting rows and columns. To clarify that this rearrangement property is
equivalent to the simple relation-algebraic definition given in Sect. 5.4l a com-
bination of the predicate logic formulation of the inclusion RR'R C R and a
graph interpretation of R is very helpful; see [I8] for details. Ferrers relations
have a lot of applications in mathematics and computer science. Here we only
want to mention their use in the theory of measurement (ranking via Guttmann
scaling) and in formal concept analysis; see [12] and [I4] for example.

The following two remarks further exhibit that Ferrers relations enjoy impor-

. . . T T
tant properties: If R : X <Y is a Ferrers relation, then so are RR R, RR as

T . . .
well as R R. For a finite Ferrers relation, there exists a natural number k > 0
that gives rise to a strictly increasing exhaustion as follows:

O=(RR')"c(RR')"'c...cRR' RR' CRR'

1 Sometimes also boxes, dots or circles are used instead of squares.
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Another characterization says that R has the Ferrers property iff the contains
pre-order relation R/ R on the rows (see Sect. [J) is linear. This applies for the
is-contained pre-order relation R\ R on the columns, too. The relation-algebraic
proof of the first fact using the Schroder equivalences (see e.g., [I8]) is simple:

RR'RCRe RRTRCR&RR'C RR" & R/RC(R/R)"

The latter inclusion means that R/ R is indeed linear.

Now, let R : X <Y be a Ferrers relation for which we intend to develop a
relation-algebraic specification of the row permutation relation P. : X < X as
well as the column permutation relation P, : Y <Y such that P." R rearranges
the rows of R in decreasing inclusion order from the top to the bottom, and
after that P,ATRPC rearranges the columns of the intermediate relation PTTR in
increasing inclusion order from the left to the right. Obviously, one will choose the
pre-order relation rearrangement of Sect. 5.2l based on the contains relation R/ R
for the rows and the is-contained relation R\ R for the columns, respectively.
The corresponding RELVIEW-functions look as follows:

PermRFerr(R) = PermPre0O(R / R).
PermCFerr (R) PermPre0O(R \ R).

Finally, the procedure for the upper right staircase block form of R is described
by the following RELVIEW-program:

RearrFerr(R)
DECL Pr, Pc
BEG Pr = PermRFerr(R);
Pc = PermCFerr (R)
RETURN Pr~*Rx*xPc
END.

6.2 Interval Order Relations

As already mentioned in Sect. 5.4 an interval order relation J : X < X is an
irreflexive relation that possesses the Ferrers property. Hence, the relational pro-
grams for transforming Ferrers relations can also be applied to transform the re-
lation J into an upper right staircase block form by permuting rows and columns
independently. Since, however, interval order relations are also transitive (and,
consequently, specific strict-orders), the 1-blocks of the staircase block form are
completely contained in the upper right triangle. Hence, we obtain an upper
right block triangle form, as in the case of the relations of Sects. 53] and (4]

Here is the RELVIEW-function for the permutation of the rows of an interval
order relation via a permutation relation P, : X <+ X on the base set X.

PermRInterval0(J) = PermRFerr(J).

In exactly the same way we obtain two RELVIEW-functions PermCInterval0
and RearrIntervalO for the permutation relation P. : X < X that rearranges
the columns of J and for the desired upper right block triangle form P,T.JP,.
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Each interval order relation can be represented by a set of intervals of a
linearly ordered set, ordered by strict left-to-right precedence. Formally we have
the following theorem (see [11]): J : X < X is an interval order relation iff
there is a function f : X — 2% that assigns to each z € X a closed interval
f(z) = [ag, by] C P of a linearely ordered set (P. <) such that for all z,y € X
we have J, 4 iff by < ay. In case of (R, <) as (P. <) one speaks of a real interval
representation. Interval representations of interval order relations J via the rows
of Boolean matrices may be specified by purely relation-algebraic expressions.
The RELVIEW-program resulting from this specification looks as follows; because
of lack of space we cannot go into details.

IntervalRepr (J)

DECL fringe(R) = R & -(R*-R"*R);
coleq(R) = syq(R,R);
roweq(R) = syq(R",R");

SR, SC, M, C, I, Pc
BEG SR = Classes(roweq(J));
SC = Classes(coleq(J));
M = SR™*fringe(-J)*SC;
C = M"*SR"*J*3C;
I=1I(C);
Pc = PermLS0(C)
RETURN SR*Mx(C | I)“*Pc & SC*(C | I)*Pc
END.

6.3 An Example

Now, let us present a small application of the programs of Sect. We consider
the following three 13 x 13 RELVIEW-matrices.

—aetinommo o= D B R Ny — e i v 2ao S8+ ZC
1 9 9
2 2 2
3 6 6
4 10 10
5 7 7
6 5 5
7 12 12
8 1 1
9 4 4
10 11 1L
11 3 3
12 8 8
13 13 13

It can easily be checked that the three Boolean matrices represent the same
interval order relation R on a 13-element base set. The matrix on the left shows
the order’s original version, the matrix in the middle the version after sorting the
rows in decreasing inclusion order from the top to the bottom, and the matrix
on the right the final version, which is an upper right block triangle form. From
the latter Boolean matrix we immediately obtain a layered graph-representation
of R. The next picture shows the Hasse-diagram of R, drawn by RELVIEW’s
implementation of the graph drawing algorithm of [13] and slightly prettified by
hand to enhance visibility of the minimal elements 5, 9 and 10.
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© O) ®

From the attached row and column numbers of the above matrices we directly
obtain the following permutation relations P, for the rows (left matrix) and P,
for the columns (right matrix). Of course, the real way of computation was the
other way around. We first computed the permutation relations P, and P, and
then labeled the rearranged Boolean matrices according to them.

O = O =

— ANt VN O >0 — ANt WO 0

O 00 NN B W —
O 00 NN B W —

10 10
11 11
12 12
13 13

The left one of the following two Boolean matrices is the result of the REL-
VIEW-program IntervalRepr applied to the interval order relation R, and the
matrix right aside is generated from it by sorting the rows according to the first
occurrence of the entry 1 via a small RELVIEW-program.

1 5
2 9
3 10
4 2
5 6
6 12
7 4
8 7
9 11
10 1
11 13
12 3
13 8

If {y1,v2, Y3, Y4, s, s } is the base set of the columns of these Boolean matrices
and the linear base strict-order is given by the order of the element’s indices, then,
e.g., the interval [y4, y5] is assigned to the element 1 of the 13-element base set and
the singleton interval [y, y2] is assigned to the element 2 of this set. To obtain a
real interval representation from the result of IntervalRepr, we first have to in-
terpret each black square as a unit interval on the real line, where the left border
of the matrix describes 0. This does not yet yield the desired result since it allows
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comparable intervals to be tangent, whereas the definition demands strict left-to-
right precedence. But it is very easy to transform it into a real interval represen-
tation. We only have to shorten each interval from the right by a small constant.
If, after that, each copy of a multiple interval is accordingly shortened from the
left to get different left end points, we even obtain a so-called distinguishing real
interval representation. Doing so, e.g., each of the two above matrices yields such
arepresentation f(i) = «;, where the intervals «;, 1 <4 < 13, are given as follows:

a1 = [3,49] Qg = [1, 19] a3 = [5, 59] gy = [2,49] a5 = [0, 39]
as=[1.1,1.9] a7 =1[2,29] as=[51,59 ag=1[0,0.9] ay=][0,1.9]
a1 = [2,49] 1o = [].7 39] Q13 = [47 59]

Here we have shortened each interval from the right by 0.1 and, in addition, two
intervals from the left by 0.1 to obtain uniqueness.

7 Conclusion

We have investigated how to visualize relations represented as Boolean matrices
using the specific purpose Computer Algebra system RELVIEW. We were able to
rearrange Boolean matrices into specific forms which allow to discover structural
properties that are not evident in the first place. Such an approach may be useful
in various application fields. Starting with basic rearrangement algorithms, we
constructed algorithms also for non-trivial cases.

In addition to the types of relations treated in the present paper, we have
transformed several other simple types, like injective and univalent relations
and (partial) equivalence relations. Relations of the first type can be rearranged
into four blocks, where the left upper block looks like an identity relation and
the remaining three blocks are empty. Equivalence relations can be transformed
into block diagonal form with quadratic blocks of 1’s in the diagonal and 0’s
otherwise. From the latter form one immediately obtains the equivalence classes.
In the case of partial equivalence relations we additionally obtain a right lower
empty block in the diagonal. We could, due to limited space, not present how to
apply our technique to other complex examples. In particular, we have studied
the “maximum pair of independent sets rearrangements” of general relations R
based on a maximum matching A contained in R. They are closely related to the
term rank of a relation. We have also developed algorithms where quotients are
taken according to some congruence relations on the base sets. An example for
such a problem is the rearrangement of a relation R according to its so-called
difunctional closure R(RTR)* into block diagonal form, where the difunctional
closure has rectangular blocks of 1’s in the diagonal and 0’s otherwise.

A future aim is to use the efficiency and visualization power of RELVIEW and
the conceptual simplicity of its programming language so as to enable one to
scan any given — even real-valued — matrix of moderate size for possibly hidden
interesting properties. In the real-valued case, one would use moving so-called
cuts at different levels to arrive at Boolean matrices similar to the cuts used in the
theory of fuzzy sets. Because of their close relationship to interval order relations
we are also interested in the relation-algebraic treatment of interval graphs, e.g.,
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the computation of interval representations or the matrix rearrangement based
on perfect elimination orderings.
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Abstract. We introduce the concept of comprehensive triangular decomposition
(CTD) for a parametric polynomial system F' with coefficients in a field. In broad
words, this is a finite partition of the the parameter space into regions, so that
within each region the “geometry” (number of irreducible components together
with their dimensions and degrees) of the algebraic variety of the specialized
system F'(u) is the same for all values u of the parameters.

We propose an algorithm for computing the CTD of F. It relies on a proce-
dure for solving the following set theoretical instance of the coprime factoriza-

tion problem. Given a family of constructible sets A1, ..., A, compute a family
B, ..., B of pairwise disjoint constructible sets, such that for all 1 <4 < s the
set A; writes as a union of some of the By, ..., B:.

We report on an implementation of our algorithm computing CTDs, based on
the RegularChains library in MAPLE. We provide comparative benchmarks
with MAPLE implementations of related methods for solving parametric polyno-
mial systems. Our results illustrate the good performances of our CTD code.

1 Introduction

Solving polynomial systems with parameters has become an increasing need in several
applied areas such as robotics, geometric modeling, stability analysis of dynamical sys-
tems and others. For a given parametric polynomial system F’, the following problems
are of interest.

(P1) Compute the values of the parameters for which F' has solutions, or has finitely
many solutions.
(P2) Compute the solutions of F' as functions of the parameters.

These questions have been approached by various techniques including comprehensive
Grobner bases (CGB) [22123014413117]], cylindrical algebraic decomposition (CAD) [4]
and triangular decompositions [2412516/7/10/9120119126l5]]. Methods based on CGB, or
more generally Grobner bases, are powerful tools for solving problems such as (P1),
that is, determining the values u of the parameters such that, the specialized system
F(u) satisfies a given property. Methods based on CAD or triangular decompositions
are naturally well designed for solving Problem (P2).

In this paper, we introduce the concept of comprehensive triangular decomposition
for a parametric polynomial system with coefficients in a field. This notion plays the
role for triangular decompositions that CGB does for Grobner bases. With this concept

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 73-101, 2007.
(© Springer-Verlag Berlin Heidelberg 2007
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at hand, we show that Problems (P1) and (P2) can be completely answered by means of
triangular decompositions.

Let I be a finite set of polynomials with coefficients in a field K, parameters U =
Ui,...,Uq, and unknowns X = X1, ..., X, thatis, F CK[Uy,...,Uq, X1, ..., Xl
Let K be the algebraic closure of K, and let V(F') C K be the zero set of F' . Let

also Iy be the projection from Kd+m on the parameter space Kd. For all u € Kd we
define V(F(u)) C K™ the zero set defined by F after specializing U at u.

Our first contribution is to show how to compute a finite partition C of Iy (V(F))
and a family of triangular decompositions (Z¢, C' € C) in K[U, X] such that for each
C € C and for each parameter value u € C' the triangular decomposition 7¢ special-
izes at w into a triangular decomposition 7¢(u) of V(F'(u)) given by regular chains.
Moreover, each “cell” C' € C is a constructible set given by a family of regular systems
in K[U]. We call the pair (7¢,C € C) a comprehensive triangular decomposition of
V(F), see Section[3

This is a natural definition inspired by that of a comprehensive Grobner basis [22] in-
troduced by Weispfenning with the additional requirements proposed by Montes in [14].
From each pair (C, 7¢), we can read geometrical information, such as for which param-
eter values u € C' the set V(F(u)) is finite; we also obtain a “generic” equidimensional
decomposition of V(F'(u)), for all u € C. The notion of CTD is also related to the bor-
der polynomial of a polynomial system in [26] and the minimal discriminant variety of
V/(F) as defined in [12] for the case where K is the field of complex numbers.

Example 1. Let F = {vzy + ux® + z,uy?® + 2%} be a parametric polynomial sys-
tem with parameters © > v and unknowns = > y. Then a comprehensive triangular
decomposition of V(F) is:

Cr = {u(u®+0v?) #£0}: To, = {T3,Ty}
CQ = {u = 0} : TCQ = {TQ,Tg}
ng{u3+02:07v7é0}: TCSZ{Tl,Tg}

where

Ty = {vzy + = — u?y?, 20y + 1, 4> + v*}

Ty = {z,u}

T5 = {z,y}

Ty = {vey + z — uy?, uy? +v*y% + 20y + 1}

Here , C'y, Cs, C3 is a partition of II;(V(F')) and Z¢, is a triangular decomposition
of V(F) above C;, for i = 1,2, 3. For different parameter values u, we can directly
read geometrical information, such as the dimension of V(F'(u)).

By RegSer [19], V(F') can be decomposed into a set of regular systems:

ur+ovy+1=0 z=0
Ri={ (w+v)y?+20y+1=0, Ro=¢ y=0,
uw(u® +v%) #0 u#0
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z=0 2ur+1=0
_Juy+1=0 ) 2vy+1=0 _Jz=0
s = uzO’R4_ u3—|—v2=0’R5_ u=0"
v#0 v#0

For each regular system, one can directly read its dimension when parameters take cor-
responding values. However, the dimension of the input system could not be obtained
immediately, since there is not a partition of the parameter space.

By DISPGB [[14], one can obtain all the cases over the parameters leading to different
reduced Grobner bases with parameters:

w(u® +0?) # 0:{ur+(uv+0°)y° + (—ud+0?)y?, (u® +0?)y* + 20y +y%}
w(ud +v?) = 0,u # 0: {uz + 2v%y?, 2vy3 + y?}
u=0,v#0:{2% vzy + 7}
u=0,v=0:{x}

Here for each parameter value, the input system specializes into a Grobner basis.
Since Grobner bases do not necessarily have a triangular shape, the dimension may
not be read directly either. For example, when u = 0,v # 0, {22, vzy + x} is not a
triangular set.

In Section [5] we also propose an algorithm for computing the CTD of parametric
polynomial system. We rely on an algorithm for computing the difference of the zero
sets of two regular systems. Based on the procedures of the TRIADE algorithm [15]
and elementary set theoretical considerations, such an algorithm could be developed
straightforwardly. We actually tried this and our experimental results (not reported here)
shows that this naive approach is very inefficient comparing to the more advanced algo-
rithm presented in Section[3l Indeed, this latter algorithm heavily exploits the structure
and properties of regular chains, whereas the former is unable to do so.

This latter procedure, is used to solve the following problem. Given a family of
constructible sets, Aq,..., A, (each of them given by a regular system) compute a
family By, ..., B; of pairwise disjoint constructible sets, such that forall 1 < ¢ < s the
set A; writes as a union of some the By, ..., B;. A solution is presented in Section [4]
This can be seen as the set theoretical version of the coprime factorization problem,
see [2U8] for other variants of this problem.

Our second contribution is an implementation report of our algorithm computing
CTDs, based on the RegularChains library in MAPLE. We provide comparative
benchmarks with MAPLE implementations of related methods for solving parametric
polynomial systems, namely: decompositions into regular systems by Wang [19] and
discussing parametric Grobner bases by Montes [14]. We use a large set of well-known
test-problems from the literature. Our implementation of the CTD algorithm can solve
all problems which can be solved by the other methods. In addition, our CTD code
can solve problems which are out of reach of the other two methods, generally due to
memory consumption.

2 Preliminaries

In this section we introduce notations and review fundamental results in the theory of
regular chains and regular systems [1I{3/11015419021].
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We shall use some notions from commutative algebra (such as the dimension of an
ideal) and refer for instance to [[16]] for this subject.

2.1 Basic Notations and Definitions

Let K[Y] := K[Y3,...,Y,] be the polynomial ring over the field K in variables Y7 <
-+ < Y,.Let p € K[Y] be a non-constant polynomial. The leading coefficient and the
degree of p regarded as a univariate polynomial in Y; will be denoted by Ic(p, Y;) and
deg(p, Y;) respectively. The greatest variable appearing in p is called the main variable
denoted by mvar(p). The degree, the leading coefficient, and the leading monomial of p
regarding as a univariate polynomial in mvar(p) are called the main degree, the initial,
and the rank of p; they are denoted by mdeg(p), init(p) and rank(p) respectively.

Let F' C KJ[Y] be a finite polynomial set. Denote by (F) the ideal it generates in
K[Y] and by \/(F) the radical of (F). Let h be a polynomial in K[Y7], the saturated
ideal (F') : h* of (F) w.r.t h, is the set

{¢ €K[Y]| Im € Ns.t. g € (F)},

which is an ideal in K[Y].

A polynomial p € K[Y] is a zerodivisor modulo (F) if there exists a polynomial
¢ such that pq is zero modulo (F'), and ¢ is not zero modulo (F'). The polynomial is
regular modulo (F) if it is neither zero, nor a zerodivisor modulo (F). Denote by V (F')
the zero set (or solution set, or algebraic variety) of F' in K". For a subset W C Kn,
denote by W its closure in the Zariski topology, that is the intersection of all algebraic
varieties V(G) containing W for all G C K[Y].

Let ' C K[Y] be a triangular set, that is a set of non-constant polynomials with
pairwise distinct main variables. Denote by mvar(T") the set of main variables of ¢ € T'.
A variable in Y is called algebraic w.r.t. T if it belongs to mvar(7T'), otherwise it is
called free w.r.t. T'. For a variable v € Y we denote by T, (resp. T-,) the subsets of
T consisting of the polynomials ¢ with main variable less than (resp. greater than) v. If
v € mvar(T'), we say T, is defined. Moreover, we denote by 7, the polynomial in T’
whose main variable is v, by T, the set of polynomials in 7" with main variables less
than or equal to v and by 7%, the set of polynomials in 7" with main variables greater
than or equal to v.

Definition 1. Let p, g € K[Y] be two nonconstant polynomials. We say rank(p) is
smaller than rank(q) w.r.t Ritt ordering and we write, rank(p) <, rank(q) if one of the
following assertions holds:

- mvar(p) < mvar(q),
— mvar(p) = mvar(q) and mdeg(p) < mdeg(q).

Note that the partial order <, is a well ordering. Let 7' C KJ[Y] be a triangular set.
Denote by rank(T") the set of rank(p) for all p € T. Observe that any two ranks in
rank(7") are comparable by <,.. Given another triangular set S C K[Y], with rank(S) #
rank(7T"), we write rank(7") <, rank(S) whenever the minimal element of the symmet-
ric difference (rank(7") \ rank(S)) U (rank(S) \ rank(7")) belongs to rank(T"). By
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rank(7) <, rank(S), we mean either rank(7") < rank(S) or rank(7) = rank(9).
Note that any sequence of triangular sets, of which ranks strictly decrease w.r.t <,, is
finite.

Given a triangular set 7' C K[Y], denote by hr be the product of the initials of T’
(throughout the paper we use this convention and when 7" consists of a single element
g we write it in hy for short). The quasi-component W (T') of T'is V(T') \ V(hr), in
other words, the points of V(T") which do not cancel any of the initials of 7. We denote
by Sat(T) the saturated ideal of T: if T is empty then Sat(7T’) is defined as the trivial
ideal (0), otherwise it is the ideal (T') : h3°.

Let h € K[Y] be a polynomial and F' C K[Y] a set of polynomials, we write

Z(F,T,h) = (V(F)N'W(T))\ V(h).

When F consists of a single polynomial p, we use Z(p, T\ h) instead of Z({p}, T, h);
when F' is empty we just write Z(T', h). By Z(F,T'), we denote V(F') N W(T).

Given a family of pairs S = {[T}, h;] |1 < i < e}, where T; C K[Y] is a triangular
set and h; € K[Y] is a polynomial. We write

Z(S) = | J Z(T;, hy).
i=1
We conclude this section with some well known properties of ideals and triangular
sets. For a proper ideal Z, we denote by dim(V (Z)) the dimension of V(Z).

Lemma 1. Let Z be a proper ideal in K[Y] and p € K[Y] be a polynomial regular w.r.t
Z. Then, either V(I)NV (p) is empty or we have: dim(V (Z)NV (p)) < dim(V(Z))—1.

Lemma 2. Let T be a triangular set in K[Y]. Then, we have
W(T)\ V(hr) =W(T) and W(T)\ W(T) =V(hr) N W(T).

PROOF. Since W(T') C W(T'), we have

W(T) = W(T)\ Vi(hr) C W(T)\ V().
On the other hand, W (T") C V(T') implies

W(T)\ V(hr) € V(T)\ V(hr) = W(T),
This proves the first claim. Observe that we have:

W(T) = (W(T) \ V(hT)) U (W(T) mV(hT)) .
We deduce the second one.
Lemma 3 ([113]). Let T be a triangular set in K[Y']. Then, we have
V(Sat(T)) = W(T).

Assume furthermore that W (T') # (0 holds. Then V (Sat(T)) is a nonempty unmixed
algebraic set with dimensionn — |T'|. Moreover, if N is the free variables of T, then for
every prime ideal P associated with Sat(T') we have

P N K[N] = (0).
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2.2 Regular Chain and Regular System

Definition 2 (Regular Chain). A triangular set T C K[Y'] is a regular chain if one of
the following conditions hold:

— either T is empty,
— or T\{Tnax} is a regular chain, where Ty,.y is the polynomial in T with maximum
rank, and the initial of Tynax is regular w.r.t. Sat(T \ {Tmax })-

It is useful to extend the notion of regular chain as follows.

Definition 3 (Regular System). A pair [T, h] is a regular system if T is a regular chain,
and h € K[Y] is regular w.r.t Sat(T).

Remark 1. A regular system in a stronger sense was presented in [[19]. For example,
consider the polynomial system [T, h] where T = [Y1Yy — Y3] and h = Y5Y3. Then
[T, h] is still a regular system in our sense but not a regular system in Wang’s sense.
Also we do not restrict the main variables of polynomials in the inequality part. At
least our definition is more convenient for our purpose in dealing with zerodivisors
and conceptually clear as well. We also note that in the zerodimensional case (no free
variables exist) the notion of regular chain and that of a regular set in [19] are the
same, see [1119] for details.

There are several equivalent characterizations of a regular chain, see [1]. In this paper,
we rely on the notion of iferated resultant in order to derive a characterization which
can be checked by solving a polynomial system.

Definition 4. Let p € K[Y] be a polynomial and T C K[Y| be a triangular set. The
iterated resultant of p w.r.t. T, denoted by res(p,T), is defined as follows:

— if p € Korall variables in p are free w.r.t. T, then res(p, T) = p,
— otherwise, if v is the largest variable of p which is algebraic w.rt. T, then
res(p, T) = res(r, T<,,) where r is the resultant of p and the polynomial T,.

Lemma 4. Let p € K[Y] be a polynomial and T C K[Y] be a zerodimensional regular
chain. Then the following statements are equivalent:

(i) The iterated resultant res(p, T') # 0.
(#i) The polynomial p is regular modulo (T').
(#i%) The polynomial p is invertible modulo (T).

PROOF. “(i) = (it)” Let r := res(p,T'). Then there exist polynomials 4; € K[Y],
0 < i < n,suchthat r = Agp + Z?:l A;T;. So r # 0 implies p is invertible modulo
(T). Therefore, p is regular modulo (7).

“(i1) = (443)" If p is regular modulo (T'), then p is regular modulo /(T'). Since
T is a zerodimensional regular chain, which implies Sat(7") = (T), we know that
K[Y]/+/(T) is a direct product of fields. Therefore p is invertible modulo +/(T"), which
implies p is invertible modulo (T').
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“(i1i) = ()" Assume res(p,T") = 0, then we claim that p and T have at least one
common solution, which is a contradiction to (7%).

We prove our claim by induction on |T'|.
If |T'| = 1, we have two cases

(1) If all variables in p are free w.r.t. T', then res(p, T') = p = 0. The claim holds.
(2) Otherwise, we have res(p,T) = res(p, T, mvar(T")) = 0. Since init(T") # 0, the
claim holds.

Now we assume that the claim holds for |T'| =n — 1. If |T| = n, letv := Y,,. We
have two cases

(1) If v does not appear in p, then res(p, T') = res(p, T<,). By induction hypothesis,
there exist 1,82, -+ ,&n—1 € K, such that & = (&,&,- -+ ,&,—1) is a common
solution of p and T',,. Since 7' is a zerodimensional regular chain, hr, is invertible
modulo (T') (by “(ii) = (4i4)” ). So hr, (§") # 0, which implies that there exists a
&n € K, such that € := (&1,&, -+ ,&u—1,&,) is a solution of T;,. Therefore £ is a
common solution of p and T'.

(2) If v appears in p, then res(p, T) = res(res(p, Ty, v), T<,) = 0. Similarly to (1),
there exists &’ = (£1,&2, -+ ,&n—1), such that res(p, Ty, v)(§') = T, (§') = 0 and
hr, (&) # 0. So by the specialization property of resultant, res(p(§’), T, (&), v) =
0, which implies that there exists a &, € K, such that £ := (&1,&2,- - ,&n—1,&n)
is a common solution of p and T,,. Therefore £ is a common solution of p and 7.

Theorem 1. The triangular set T is a regular chain if and only if res(hr,T) # 0.

PROOF. We start by assuming that 7" is a zerodimensional regular chain, then the con-
clusion follows from Lemma 4]

We reduce the general case to the zerodimensional one. First, we introduce a new
total ordering <7 on Y defined as follows: if Y; and Y} are both in mvar(7T") or both
in its complement then Y; <7 Y; holds if and only if Y¥; < Y; holds, otherwise
Y; <r Y; holds if and only if Y; € mvar(T'). Clearly T is also a triangular set w.r.t
<7. We observe that hp, and thus Sat(T"), are unchanged when replacing the variable
ordering < by <7. Similarly, it is easy to check that a polynomial p € K[Y] reduces
to zero by pseudo-division by T" w.r.t. < if and only if it reduces to zero by pseudo-
division by T" w.r.t. <7. Therefore, by applying Theorem 6.1 [1]] we deduce that T is
a regular chain w.r.t. < if and only if it is a regular chain w.r.t. <7. Similarly, we have
res(hr,T) # 0 w.rt. < if and only if res(hp,T) # 0 w.r.t. <p.

Now we assume that the variables are ordered according to <7. Let N be the set
of the variables of Y that do not belong to mvar(T"). The triangular set 7" is a regular
chain in K[Y7] if and only if it is a zerodimensional regular chain when regarded as
a triangular set in K(N)[Y \ N] (where K(NN) denotes the field of rational functions
with coefficients in K and variables in N). This is Corollary 3.2 in [3]. Similarly, it
is easy to check that res(hr,T) # 0 holds when regarding T in K[Y] if and only if
res(hr, T') # 0 holds when regarding 7" in K(V)[Y" \ N].

Proposition 1. For every regular system [T, h] we have Z(T, h) # 0.



80 C. Chen et al.

PROOF. Since T is a regular chain, by Lemma[3we have V (Sat(7')) # 0. By definition
of regular system, the polynomial hhr is regular w.r.t Sat(7T"). Hence, by Lemmal[ll the
set V(hhy) N V(Sat(T)) either is empty, or has lower dimension than V(Sat(T)).
Therefore, the set

V(Sat(T)) \ V(hhr) = V(Sat(T)) \ (V(hhr) N V(Sal(T)))
is not empty. Finally, by LemmaP] the set
Z(T, h) = W(T) \ V(h) = W(T) \ V(hhr) = V(Sat(T)) \ V(hhr)
is not empty.

Notation 1. For a regular system R = [T, h], we define rank(R) := rank(T"). For a set
R of regular systems, we define

rank(R) := max{rank(7T") | [T, h] € R}.

For a pair of regular systems (L, R), we define rank((L, R)) := (rank(L), rank(R)).
For a pair of lists of regular systems, we define

rank((£,R)) = (rank(L),rank(R)).
For triangular sets T, T, ..., T. we write W (T') 2, (W(T;),i = 1...€) if one of
the following conditions holds:

— eithere =1andT =Ty,
- ore> 1, rank(T;) < rank(T") foralli =1...e and

W(T) C U W(T;) C W(T).

i=1
2.3 Triangular Decompositions

Definition 5. Given a finite polynomial set F C K[Y], a triangular decomposition of
V(F) is a finite family T of regular chains of K[Y] such that

V(F) = UTGT W(T).

For a finite polynomial set /' C K[Y], the TRIADE algorithm [13] computes a trian-
gular decomposition of V(F). We list below the specifications of the operations from
TRIADE that we use in this paper.

Let p, p1, p2 be polynomials, and let 7', C', E be regular chains such that C' U F is a
triangular set (but not necessarily a regular chain).

- Regularize(p, T') returns regular chains 77, . . ., T, such that

o« W(T) 2 (W(Ty),i=1...¢),

e forall 1 <1 < e the polynomial p is either 0 or regular modulo Sat(7T3).
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— For a set of polynomials F, Triangularize(F,T) returns regular chains
Ty, ..., T such that we have

V(F) "W(T) € W(T}) U --- UW(T,) C V(F) NW(T).

and for 1 < ¢ < e we have rank(7;) < rank(T).

- Extend(C U E) returns a set of regular chains {C; | ¢ = 1...e} such that we
have W(C U E) = (W(C;),i=1...e).

— Assume that p; and ps are two non-constant polynomials with the same main vari-
able v, which is larger than any variable appearing in 7, and assume that the ini-
tials of p; and po are both regular w.r.t. Sat(T"). Then, GCD(p1,p2, T') returns a
sequence

([glﬂ Cl]? R [gd7 Cd]7 [07 Dl]a sty [wa DED7

where ¢; are polynomials and C;, D; are regular chains such that the following
properties hold:
o« W(T) 2 (W(CY),...,W(Cq),W(Dy),...,W(D,)),
e dim V(Sat(C;)) = dim V(Sat(7T")) and dim V(Sat(D;)) < dim V(Sat(T)),
foralll <i<dand1<j<e,
e the leading coefficient of g; w.r.t. v is regular w.r.t. Sat(C;),
e forall 1 < ¢ < d there exist polynomials u; and v; such that we have g; =
u;p1 + vip2 mod Sat(C;),
e if g; is not constant and its main variable is v, then p; and p» belong to

Sat(C;U{g:}).

2.4 Constructible Sets

Definition 6 (Constructible set). A constructible subset of K" is any finite union
(A1 \ B1)U -+ U (Ac\ Be)

where Ay, ..., A, B1,..., Be are algebraic varieties in K".

Lemma 5. Every constructible set can write as a union of zero sets of regular systems.

PROOF. By the definition of constructible set, we only need to prove that the differ-
ence of two algebraic varieties can write as a union of zero sets of regular systems.
Let V(F), V(G), where F,G C K[Y], be two algebraic varieties in K. With the
Triangularize operation introduced in last subsection, we write V(F') as a union of
the zero sets of some regular systems

S S

V(F) = W@ =]z, 1),
=1

i=1
Similarly, we can write V(G) as

t

V(@) =] z(C;,1).

i=1
Then the conclusion follows from the algorithm DifferenceLR introduced in next
section.
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3 The Difference Algorithms

In this section, we present an algorithm to compute the set theoretical difference of
two constructible sets given by regular systems. As mentioned in the Introduction, a
naive approach appears to be very inefficient in practice. Here we contribute a more
sophisticated algorithm, which heavily exploits the structure and properties of regular
chains.

Two procedures, Difference and DifferenceLR, are involved in order to achieve
this goal. Their specifications and pseudo-codes can be found below. The rest of this
section is dedicated to proving the correctness and termination of these algorithms.
For the pseudo-code, we use the MAPLE syntax. However, each of the two functions
below returns a sequence of values. Individual value or sub-sequences of the returned
sequence are thrown to the flow of output by means of an output statement. Hence an
output statement does not cause the termination of the function execution.

Algorithm 1 Difference([T, h],[T", h'])
Input [T, h], [T’, k'] two regular systems.
Output Regular systems {[T;, h;] | i = 1...e} such that

e

Z(T,h) \ Z(T',1') = | Z(T3, ha),

i=1
and rank(7;) <, rank(T).
Algorithm 2 DifferenceLR(L,R)
Imput £ :={[L;,fi]|i=1...r}and R := {[Rj,g;] | j = 1...s} two lists

of regular systems.
Output Regular systems S := {[T;, h;] | ¢ = 1...e} such that

(U Z@ufi)) \ U R;, g5) U Z(T;, hy),

i=1 j=1
with rank(S) <, rank(L).

To prove the termination and correctness of above two algorithms, we present a series
of technical lemmas.

Lemma 6. Let p and h be polynomials and T a regular chain. Assume thatp ¢ Sat(T).
Then there exists an operation Intersect(p, T, h) returning a set of regular chains
{T1,...,T.} such that

(1) his regular w.r.t Sat(T;) for all i;

(#) rank(T;) <, rank(T');
(iii) Z(p,T,h) C Ui Z(T3, h) € (V(p) "W(T)) \ V(h);

(iv) Moreover, tfthe product of initials ht of T divides h then

e

Z(p, T, h) = | J Z(T;, ).

i=1
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Algorithm 1. Difference([T, h], [T’, 1'])

1:
2
3
4
5:
6.
7
8

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34.
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:

if Sat(T") = Sat(7”) then
output Intersect(h'hy, T, hhr)

. else

Let v be the largest variable s.t. Sat(T<,) = Sat(T%,)
if v € mvar(7") and v ¢ mvar(7T") then
p =T,
output [T, hp']
output DifferenceLR (Intersect(p’, T, hhr), [T', h'])
else if v ¢ mvar(7”) and v € mvar(T') then
p—T,
output DifferenceLR([T, h], Intersect(p, 7', h' hy))
else
p—Ty
G «— GCD(T,, Ty, T<y)
if |G| = 1 then
Let (9,C) € G
if g € K then
output [T, h)
else if mvar(g) < v then
output [T, gh]
output DifferenceLR(Intersect(g, T, hhr), [T", h'])
else if mvar(g) = v then
if mdeg(g) = mdeg(p) then
D) T., U {p} UTY,
output Difference([T, hl, [D,,, h'hr])
else if mdeg(g) < mdeg(p) then
q < pquo(p, g,C)
Dy — CU{g}UTs,
Dy — CU{q}UTs,
output Difference([D,, hhr], [T', h'])
output Difference([Dy, hhr], [T", h'])
output DifferenceLR(Intersect(hgy, T, hhr), [T', h'])
end if
end if
else if |G| > 2 then
for (9,C) € Gdo
if |C| > |T<.| then
for E € Extend(C,T>,) do
for D € Regularize(hhr, E) do
if hhr ¢ Sat(D) then
output Difference([D, hhr], [T", h'])
end if
end for
end for
else
output Difference([C UT%,, hhr], [T', 1'])
end if
end for
end if
end if
end if

83



84 C. Chen et al.

Algorithm 2. DifferenceLR/(L, R)

1: if L = () then
2:  output ()
3: else if R = () then
4:  output L
5: elseif |R| = 1 then
6: Let[T',h]€R
7:  for [T,h] € Ldo
8: output Difference([T, ], [T',1'])
9:  end for
10: else
11:  while R # () do
12: Let[T',h'] € R,R— R\ {[T",h]}
13: S0
14: for [T, h] € L do
15: S « S U Difference([T, hl, [T", h'])
16: end for
17: LS
18:  end while
19:  output L
20: end if
PROOF. Let

S = Triangularize(p, T),

R = U Regularize(h, C).
ces

We then have

This implies

Z(p,T,h) C U Z(R,h) € (V(p) "W(T)) \ V(h).
ReR, h¢Sat(R)
Rename the regular chains {R | R € R, h ¢ Sat(R)} as {T1, ..., T.}. By the specifi-
cation of Regularize we immediately conclude that (7), (éi7) hold. Since p ¢ Sat(T),

by the specification of Triangularize, (i) holds. By Lemmal2] (iv) holds.

Lemma 7. Let [T, h] and [T', 1] be two regular systems. If Sat(T) = Sat(T"), then
h'hr is regular w.r.t Sat(T) and

Z(T,h) \ Z(T', ') = Z(h'hys, T, hhr).
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PROOF. Since Sat(T') = Sat(7”) and h'hy is regular w.r.t Sat(T"), h'hp- is regular
w.r.t Sat(T"). By LemmaP]and Lemma[3] we have
)\ V(hh'hr)
)\ V(hh'hrhy)
T')\ V(hh'hrhy!)
T"Y\ V(hh hr)

Then, we can decompose Z(T, h) into the disjoint union
Z(T,h) = Z(T, hh'he) | | Z(W' e, T, hhr).
Similarly, we have:
Z(T',h') = Z(T',hb'hr) || Z(hhr, T', 1 ).
The conclusion follows from the fact that
Z(T,hh'hy )\ Z(T',hh'hy) =0 and  Z(h'hg:, T, hhy) N Z(T', h') = 0.
Lemma 8. Assume that Sat(T<,) = Sat(T7,). We have
(i) Ifp’ := T) is defined but not T,,, then p' is regular w.r.t Sat(T) and

Z(T,h)\ Z(T',h") = Z(T, hp') |_| (Z(p', T,hhr) \ Z(T', 1)) .
(i1) If p :=T, is defined but not T, then p is regular w.r.t Sat(T") and
Z(T,h) \ Z(T", 1') = Z(T,h) \ Z(p, T', h' ).

PROOF. (i) As init(p’) is regular w.r.t Sat(T.,,), it is also regular w.r.t Sat(T, ). Since
T, is not defined, we know v ¢ mvar(T'). Therefore, p’ is also regular w.r.t Sat(T). On
the other hand, we have a disjoint decomposition

Z(T,h) = Z(T,hp)| | Z(p', T, hhr).
By the definition of p’, Z(T’, ") C V(p’) which implies
Z(T,.hy') () Z(T', 1) = 0.

The conclusion follows.
(#4) Similarly, we know p is regular w.r.t Sat(T"). By the disjoint decomposition

Z(T', W) = Z(T', W'p)| |Z(p, T, W hr),
and Z(T, h) N Z(T', h'p) = B, we have
Z(Tv h) \ Z(T/7 h/) = Z(Tv h) \ Z(p7 Tlv h/hT/)u

from which the conclusion follows.
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Lemma 9. Assume that Sat(T<,) = Sat(TZ,) but Sat(T,) # Sat(T,) and that v is
algebraic w.r.t both T and T'. Define

g - GCD(TvazlnT<'u);

&= U Extend(C, T>,);
(9,C)€G, |C|>|T<w|

R= U Regularize(hhr, E).

EcE
Then we have
(2)
Z(T,h)
= U Z(R,hhr) | | U Z(C U Ts,, hhr)
ReR, hhrgSat(R) (9:0)€G, |C|=IT<0|

(11) rank(R) <, rank(T), forall R € R.
(791) Assume that |C| = |T<,|. Then

(#it.a) C'UTs, is a regular chain and hhr is regular w.rt it.
(491.b) If |G| > 1, then rank(C' U T,,) <, rank(T).

PROOF. By the specification of GCD we have
W(T,) S |J W) CW(T<,).
(9:0)€g

That is,
W(T.,) 2= (W(C), (9,0) € G).

From the specification of Extend we have: for each (g, C') € G such that |C| > |T<,|,
W(CUTs,) 2 (W(E),E € Extend(C U T.)).

From the specification of Regularize, we have for all (¢, C') € G such that |C| >
|T<,| and all B € Extend(C UT>,),

W(E) 2 (W(R), R € Regularize(hhr,E)).

Therefore, by applying the Lifting Theorem [15]] we have:
W(T)=W(T., UT>,)

(Uwmlu[ U wieur,
(

RER 9:C)€G, |C|=|T<]
c W(T<v U TZv)
= W(T)v
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which implies,

Z(T, h) = Z(T, hhy)

C U Z(R,hhr) | | U Z(C U Ts,, hhy)
ReR, hhr¢Sat(R) (9:C)€G, |CI=|T<|

C W(T)\ V(hhr) = Z(T, h).

So (i) holds. When |G| > 1, by Notation[I] (i7) and (74i.b) hold.
If |C| = |T<4|, by Proposition 5 of [13], we conclude that (#7i.a) holds.

Lemma 10. Assume that Sat(T<,) = Sat(TZ,) but Sat(T<,) # Sat(T.,,) and that v
is algebraic w.r.t both T and T'. Define p = T, p' = T, and

g = GCD(pvplv T<v)’
If|Gl =1, let G = {(g,C)}. Then the following properties hold

(Z) C =T
(#) If g € K then
Z(T,h)\ Z(T', W) = Z(T\, h).

(731) If g ¢ K and mvar(g) < v, then g is regular w.r.t Sat(T") and
Z(T,h)\ Z(T'", 1)
=Z(T,gh)| |(Z(9,T, hhr) \ Z(T", 1))

(iv) Assume that mvar(g) = v.
(tv.a) If mdeg(g) = mdeg(p), defining

¢ = pquo(p/,p, TL,)
D, =T.,U{p}UTL,
Dy, =T.,U{q'}UTL,,
then we have
Z(T7 h‘) \ Z(T/7 h/) = Z(Ta h) \ Z(D;ﬂ h/hT')7

rank(D})) < rank(T") and h'hr: is regular w.r.t Sat(Dy,).
(iv.b) If mdeg(g) < mdeg(p), defining
q= pquo(p7 9, T<v)
Dy =T, U{gtUTs,
Dq = T<v U {Q} U T>va

then we have: D4 and D, are regular chains such that rank(Dg,) < rank(T'),
rank(D,) < rank(T'), hhr is regular w.r.t Sat(Dy) and Sat(Dy), and

Z(T,h) = Z(Dgy, hhr)| ) Z(Dy, hhr)| ) Z(hg, T, hhr).
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PROOF. Since |G| = 1, by the specification of the operation GCD and Notation 1, (7)
holds. Therefore we have

Sat(C) = Sat(T<,) = Sat(TZ,) (D)

There exist polynomials A and B such that

g=Ap+ Bp' mod Sat(C). (2
From (), we have
V(Sat(C)) € V(g — Ap — Byp') 3)
Therefore, we deduce
(T)(\W(T")

=W({T<, UpUTs,) mW LU UT>'U)
C (W(T<,) NV (p) [ | (W(TL,) N V()

C V(Sat(T<,)) (V) [ V) by (@)
CV(g—Ap—Bp) [\ V) [ VE) by @
C V(g).
that is
(T)(YW(T") € V(9). )

Now we prove (i7). When g € K, g # 0, from @) we deduce

T)(YW(T") = 0. 5)
Thus we have
Z(T,h)\ Z(T',h")
= (W(D)\ V(h) \ (W(T")\ V("))
= (W(T)\V(h)) by
=Z(T,h).

Now we prove (ii4). Since C' = T, and mvar(g) is smaller than or equal to v, by the
specification of GCD, g is regular w.r.t Sat(T"). We have following decompositions

Z(T', h’)— Z(T',gh")| | Z(g,T', W h1).
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On the other hand,
Z(T, gh) () Z(T", gh")
= (W(T) N V(gh)*) (V(W(T') NV (gh'))
C(W(T)NV(9)*) [ | (W(T") N V(g))
= (W(T)nW(T") (| V(9)
=0 by @.
Therefore,

Z(T,h)\ Z(T', 1)
= (Z(T, gh) \ Z(T', g")) | |(Z(g, T, hhr) \ Z(T', 1))
=Z(T,gh)| |(Z(9, T, hhr) \ Z(T", 1))

Now we prove (iv.a). First, both &' and h/. are regular w.r.t Sat(C') = Sat(T<,) =
Sat(TZ,). From the construction of Dj,, we have h’hr is regular w.r.t Sat(D),).

Assume that mvar(g) = v and mdeg(g) = mdeg(p). We note that mdeg(p’) >
mdeg(p) holds. Otherwise we would have mdeg(g) = mdeg(p) = mdeg(p’) which
implies:

p € Sat(T%,,) and p" € Sat(T>,). (6)
Thus
Sat(T@) = <T<U> : h%;v = <T<U Up> : h%;v

a(Tg,) : hi, by (6

that is Sat(T'<,) C Sat(T.,). Similarly, Sat(7¢,) C Sat(T<,) holds. So we have
Sat(TZ,) = Sat(Ty), a contradiction.

Hence, mvar(q') = v.

By Lemma 6 [15], we know that D;, and Dfl, are regular chains. Then with Theo-
rem 7 [[15)] and Lifting Theorem [[15]], we know

Z(T',1') C Z(D,, 1) | JZ(Dly, )| Z(hy, T', 1)
CW(T") \ V(h).
By Lemma[2, we have
Z(T', 1) = Z(D,,, h'hy) | Z(Dly, ' hr) | ) Z(hy, T, B hp).
Since
Z(D}y, W' hy) = Z(D}y, hyh'hr) | ) Z(hy, DYy 1 by
= Z(D,,,phph’hr:) | ) Z(p, D)y, hph Wip) | ) Z(hyp, Dl B i)
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and
Z(p, Dy, hph'hip) C Z(D,,, h'hr)
Z(hy, Dy, h'hy) € Z(hy, T', R b ),
we deduce
Z(T', W) = Z(D}, h'hy:)| | Z(D)y . ph'h) | | Z(hy, T, B hp).
Now observe that
Z(T, h) ﬂ Z(D,,,ph'hr) =0, and
Z(T,h) () Z(hp, T’ h'hpr) = 0.,
We obtain
Z(T,h)\ Z(T',1') = Z(T, h) \ Z(D,,, h'h1").

Finally we prove (iv.b). We assume that mvar(g) = v and mdeg(g) < mdeg(p); this
implies mvar(g) = v. Applying Lemma 6 in [15] we know that D, and D, are regular
chains and satisfy the desired rank condition. Then by Theorem 7 [15] and Lifting
Theorem [15]] we have

Z(T.h) = Z(Dg, hhr)| JZ(Dy, hhr)| ) Z(hg, T, hhr).
This completes the whole proof.

Definition 7. Given two pairs of ranks (rank (T} ), rank(77)) and (rank (7% ), rank (7)),
where Ty, T», T{, Ty are triangular sets. We define the product order <,, of Ritt order
<, on them as follows

(rank(7%), rank(Ty)) <, (rank(T%),rank(77))
rank(T%) <, rank(T) or
rank(7%) = rank(71), rank(73) <, rank(77).

In the following theorems, we prove the termination and correctness separately. Along
with the proof of Theorem 2] we show the rank conditions are satisfied which is part
of the correctness. The remained part, say zero set decomposition, will be proved in
Theorem[3}

Theorem 2. Algorithms Difference and DifferenceLR terminate and satisfy the
rank conditions in their specifications.

PROOF. The following two statements need to be proved

(i) Difference terminates with rank(Difference([T), k], [T”, '])) <, rank([T', h]),
(73) DifferenceLR terminates with rank(DifferenceLR(L, R)) <, rank(L).
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We prove them by induction on the product order <.

(1) Base case: there are no recursive calls to Difference or DifferenceLR. The
termination of both algorithms is clear. By line 2, 18 of the algorithm Difference,
rank(Difference([T, h], [T’, h'])) <, rank([T, h]). By line 2, 4 of the algorithm
DifferenceLR, rank(DifferenceLR (L, R)) <, rank(L).

(2) Induction hypothesis: assume that both (i) and (4¢) hold with inputs whose ranks
are smaller than the rank of ([T, hl, [T, b']) w.r.t. <,.

(3) By (1), if norecursive calls occur in one branch, then (%) and (z4) already hold. When
recursive calls occur, by line 8, 11, 21, 25, 30, 31, 32, 41, 46 and Lemmal6], [8] O] [T,
we know the inputs of recursive calls to both Difference and DifferenceLR
have smaller ranks than rank(([T’, k], [T”, h'])) w.r.t <,. By induction hypothesis,
(¢) holds. Finally, by line 8, 15 of algorithm DifferenceLR and (), (¢) holds.

Theorem 3. Both Difference and DifferenceLR satisfy their specifications.

PROOF. By Theorem ] Difference and DifferenceLR terminate and satisfy their
rank conditions. So it suffices to prove the correctness of Difference and
DifferenceLR, that is

(1) Z(T,h) \ Z(T',1’) = Z(Difference([T, b, [T', h'])),
(75) Z(L)\ Z(R) = Z(DifferenceLR(L, R)).

We prove them by induction on the product order <.

(1) Base case: no recursive calls to Difference and DifferenceLR occur. First, by
line 2, 18 of the algorithm Difference and Lemmal6] [7] (7) holds. Second, by
line 2, 4 of the algorithm DifferenceLR, (i:) holds.

(2) Induction hypothesis: assume that both (i) and (i¢) hold with inputs whose ranks
are smaller than the rank of ([T, k], [T”, h']) w.r.t. <,.

(3) By (1), if no recursive calls occur, (7) and (i7) already hold. When there are recur-
sive calls, we first show () holds. From the proof of Theorem[2] in Difference,
the inputs of recursive calls to Difference and DifferenceLR will have smaller
ranks w.r.t. the product order <,. Therefore, by (2), line 7, 8, 11, 20, 21, 25, 30,
31, 32, 41, 46 and Lemmal[6l [BL 0L [0 () holds.

Finally, by (¢) and line 5 — 18 of algorithm DifferenceLR, (i) holds.

4 Decomposition into Pairwise Disjoint Constructible Sets

We assume that DifferenceLR(L, R) returns a list of regular systems sorted by
increasing rank.

Definition 8. Let S be a list of regular systems sorted by increasing rank. If S is empty
or consists of a single regular system [T, h|, define MPD(S) = S. Otherwise, let
S =L+ R, where |L| = |R| or |L| = |R| + 1 (and + denotes concatenation of lists).
Define

MPD(S) = MPD(DifferenceLR (L, R)) + MPD(R).



92 C. Chen et al.

Definition 9. For a regular system S = [T, h], let Zy(S) denote the zero set of S
considered as a regular system in K[mvar(T')] := K(Y \ mvar(T"))[mvar(T)] .

Lemma 11. For every regular system S, Zo(S) is non-empty and finite.

PROOF. If the regular system S = [T, h] is considered in K[mvar(T')], it remains to be
a regular system and, moreover, T' becomes a zero-dimensional regular chain. We have
therefore

Zo(S) = Wg(T)\ Vg (h) = Vg (T).

Definition 10. For a finite set of regular systems S = {[I1, h1], ..., [Tk, hi]} such that
rank(7y) = - - - = rank(7T},), define

Z()(S) = Z()([Tl, h1D U...u Zo([T}67 hk])

For an arbitrary finite set of regular systems S, let Srank( S) denote the subset of

regular systems of maximal rank. Define Zy(S) = ZO(Srank( S) ).

Lemma 12. Let S be a list of regular systems sorted by increasing rank represented as
a concatenation of two non-empty sublists: S= L+ R. Let C =DifferenceLR(L, R).
Then either rank(C) < rank(S), or |Zo(C)| < |Zo(S)|.

PROOF. If rank(£) < rank(S), then rank(C) < rank(S) by Theorem 2l Otherwise,
rank(£) = rank(S) and, since S is sorted by increasing rank, the rank of every system
in R equals rank(S). By Theorem 2] we have rank(C) < rank(S). In case of strict
inequality we are done, so assume that rank(C) = rank(S).

Denote r = rank(£) = rank(C) = rank(R) = rank(S). We have:

Uz c | z\ | zm),

cecC, AeL, BeER

which implies
Zo(C) C Zo(L)\ U Zy(B).
BER
Since, by Lemma[I1l Zo(S) = Zo(L) U Zo(R) is finite and | J . Z(B) # @, we
obtain the desired |Zo(C)| < |Zo(S)|.

Lemma 13. For any list S of regular systems, D = MPD(S) is well-defined.

PROOF. We define a well-order on the set of all sorted finite lists of regular systems
and prove the statement by induction on this well-order.

For a non-empty list S, let ¢(S) = (rank(S), Zo(S), |S|). Let L < R iff ¢(L) <jex
@(R). Since <ey is the lexicographic product of three well-orders, <jox is a well-order,
whence so is <. Define the empty list to be less than any non-empty list w.r.t. <.

For empty and singleton lists S, MPD(S) is well-defined. Let S be a non-singleton
and non-empty list. Assume that MPD(S’) is defined for all lists S’ such that S’ < S.
Let, as in DefinitionBl S = £ + R, where |£| = |R| or |£| = |R| + 1. Then by
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Lemma[l2] Difference(L£,R) < S. Also, rank(R) < rank(S), Zo(R) < Zo(S), and
|R| < |S]|, whence R < S. This implies that MPD(S) is well-defined according to
Definition

Note that Definition 8l yields a recursive algorithm for computing MPD(S), which
terminates according to the previous lemma. The output of this algorithm is a decompo-
sition of the union of zero-sets of regular systems in S into a disjoint union of zero-sets
of regular systems:

Proposition 2. For all distinct regular systems R,S € D = MPD(S), we have

Z(R)NZ(S) =2, and
U z(s) = | z(D).
ReS SeD

PROOF. Follows immediately from the definition of MPD.

In the following section, to compute comprehensive triangular decompositions, we will
see that SMPD (strongly make pairwise disjoint) is really required. Given a set of reg-
ular systems Ay, -+, A5, SMPD compute another set of regular systems By, --- , By
whose zero sets are pairwise disjoint, such that each Z(A;) writes as a union of some
of the Z(B1), -+ , Z(By).

Algorithm 3. SMPD(S)
1: if |S]| < 1 then
2:  output S
end if
Let [Tg,ho] €S8,8§—S \ {[To,ho}}
S « SMPD(S)
for [T, h] € S do
A — Difference([T, h|, [To, ho])
B — DifferenceLR([T, k], .A)
9:  output MPD(A)
10:  output MPD(B)
11: end for
12: C «+ DifferenceLR([Ty, ho], S)
13: output MPD(C)

PN AW

Proposition 3. The Algorithm SMPD terminates and is correct.

PrROOF. It follows directly from the termination and correctness of algorithms
Difference, DifferenceLR and MPD.

5 Comprehensive Triangular Decomposition

In this section we introduce the concept of comprehensive triangular decomposition of
an algebraic variety. We propose an algorithm for computing this decomposition and
apply it to compute the set of all parameter values at which a given parametric system
has an empty or an infinite set of solutions.
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Notation 2. From now on, we assume that n = m + d, the variables Y1, ...,Yy are
renamed Uy, ...,Uy and viewed as parameters, whereas Yi11,...,Y, are renamed
X1,..., Xy and regarded as unknowns.

If the polynomial set F C K[Y] involves polynomials from K[U] only, we denote by
VUY(F) its variety in K. Similarly, if the regular chain T C K[Y] involves polynomials
from K[U] only, we denote by WY (T) its quasi-component in Kd.

Notation 3. Let p € K[U][X] be a polynomial. We denote by VY (p) the variety of

d
K", consisting of the common roots of the coefficients of p, when p is regarded as a
polynomial with variables in X and coefficients in K[U]. Then, we define VY (F) as
the intersection of all VY (p) forp € F.

Foru € Kd, we denote by p(u) the polynomial of K[ X] obtained by evaluating p at

Uy =u1,...,U; = uq. Clearly, for all u € Kd, the polynomial p(u) is identically null
iff u € VY(p). Then, we denote by F(u) the set of all non-zero p(u) for p € F.

Definition 11. Let T C K[U, X| be a regular chain. The defining set of T w.r.t. U,
denoted by DY (T), is the constructible set ode given by

DY(T) = W(T n K[U]) \ VY(res(hr.,, . T>0,)).

Let u € WY(T NK[U]). We say that the regular chain T specializes well at u if T'(u)
is a regular chain in K[X] such that rank(T (u)) = rank(T>.y, ).

Remark 2. Since DY (T) is a constructible set, by Lemma[3l there exists an algorithm
to compute a set of regular systems RY (T), such that DY (T) = Z(RY(T)).

Lemma 14. Let T C K[U, X] be a regular chain with mvar(T') C X and let u € K.
We have

u g VY (res(hy,T)) = res(hp(uy, T'(u)) # 0 and hy(u) # 0.
PROOF. “ <= " If hr(u) # 0 and res(hp(y), T'(u)) # 0, then
res(hru), T'(u)) = res(he (u), T'(u)) # 0,

which implies res(hr, T)(u) # 0. Sou & VY (res(hr, T)).
“ =" We prove this by induction on |T'|.
If [T| = 1, then u &€ VY (res(hr, T)) implies hr(u) # 0 and therefore

res(hy(u), T'(u)) = by = hr(u) # 0.

Now we assume that the conclusion holds for |T'| = n — 1. If |T'| = n, let v be the
largest variable in mvar(T"). Since u ¢ VY (res(hz,T')), we have

res(hp, T)(u) = res(hp, T<y)(u) # 0.

Therefore, res(hr_,, T<,)(u) # 0. By induction hypothesis, we know hr_, (u) #
0. By the specialization property of resultant, res(hr(u), T'<,(u)) # 0 and therefore
hr(u) # 0. Sores(hr, T)(u) # 0 implies res(hp(y), T'(u)) # 0.
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Proposition 4. Let T C K[U, X| be a regular chain and let w € WY (T NK[U]). The
regular chain T specializes well at u € Kd if and only if u € DY(T).

PROOF. Assume that . € DY (T). We prove that T' specializes well at u. From
Lemma[14] we have

res(hT>Ud(u), Tsy,(u)) # 0 and hT>Ud (u) #0.

With v € WY (T N K[U]), which implies (T N K[U])(u) = {0}, we conclude that
rank(7T'(u)) = rank(7T~y,). Moreover, by Theorem[I] T'(u) is a regular chain. There-
fore, the regular chain T specializes well at u. The converse implication is proved
similarly.

Definition 12. Let T C K[U,X] be a regular chain. The comprehensive
quasi-component of T' w.r.t. U, denoted by W ¢(T'), is defined by

We(T) = W(T)n I (DY(T)).
Proposition 5. Let T C K[U, X] be a regular chain. The following properties hold.:
(1) We have: W (T) = W(T) \ II;" (VY (res(hrsv,, Tsu,)))-
(2) We have: ITy;(Wc(T)) = DY(T).
PROOF. It follows from Definition[[1] and Lemma[I4]

Definition 13. Let F' C K[U, X| be a finite polynomial set. A comprehensive triangular
decomposition of V(F) is given by :
1. a finite partition C of Iy (V(F)),
2. for each C € C a set of regular chains Tc of K[U, X| such that for u € C each of
the regular chains T € I¢ specializes well at w and we have for all uw € C

TeTc

We will compute the above comprehensive triangular decomposition with the help of
the following auxiliary concept:

Definition 14. Let F' C K[U, X| be a finite polynomial set. A pre-comprehensive tri-
angular decomposition (PCTD) of V(F) is a family of regular chains T satisfying the

following property: for each u € Kd, let T, be the subfamily of all regular chains in T
that specialize well at u; then

V(EwW) = |J W(T ().

TeT,

Proposition 6. Let ' C K[U, X] be a finite polynomial set. A triangular decomposi-
tion T of V(F) is a pre-comprehensive triangular decomposition if and only if

V(F) = | We(D).
TeT
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PROOF. It follows from the definition of W (T'), Proposition ] and the definition of
pre-comprehensive triangular decomposition.

Algorithm 4. PCTD(F')
Input: A finite set ' C K[U, X].
Output: A PCTD of V(F).

1: 7 « Triangularize(F)

2: while 7 # 0 do

33 letT € T, T «— T\{T}

4 output 7'

5. G« COEFFICIENTS(res(hT>Ud,T>Ud), U)
6: 7 «— T U Triangularize(G, T)

7: end while

Proposition 7. Algorithm 4 computes a pre-comprehensive triangular decomposition

of V(F).

PROOF. The loop satisfies the following invariant: the union of all W (T'), where T'
ranges over 7, and of the W(T"), where T’ ranges over the current output, equals
V/(F). Indeed, the invariant holds at the beginning, when the output is empty; and for
the regular chain 7" taken from 7 at the current iteration, we have W (T') \ W¢(T) =
V(G) N'W(T) by Proposition[3] (1). Then, correctness of the algorithm follows from
Proposition[f] and the fact that at the end 7 = @.

Since polynomials in G do not involve the main variables of T, by Lemma [3 they
are regular w.r.t Sat(7"). Then by Lemmal[Il either the output of Triangularize(G,T)
is empty or the dimensions of the regular chains computed by Triangularize(G, T') are
strictly less than that of T'. Therefore, the algorithm terminates.

Proposition 8. Algorithm [3 computes a comprehensive triangular decomposition of
F c K[U, X].

PROOF. Let T be the output of PCTD(F'). By Proposition [] and Proposition [3 (2),
we have

Iy (V(F)) = |J DY(D).
TET

Then the conclusion follows from the definition of comprehensive triangular decompo-
sition, Proposition 3l [7 and Remark 2l
Given a polynomial set F' C K[U, X], a natural question is to describe the points u

of K* for which the specialized system F'(u) admits a finite and positive number of
solutions in K" . This question is formalized by the following definition.

Definition 15. The discriminant set of F' is defined as the set of all points u € Kd for
which V (F(u)) is empty or infinite.
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Algorithm 5. CTD(F)

Input: A finite set I’ C K[U, X].

Output ACTDof V(F).

: T — PCTD(F)

S0

forT € T do
S —SURY(T)

end for

S — SMPD(S)

while S # () do
letCeS,S§—S\C
Tc «+ regular chains in 7 associated to C'
output (C,7¢)

: end while

SOV XN R LD 7

—_—

Theorem 4. If T is a pre-comprehensive triangular decomposition of V (F'), then the
following is the discriminant set of F':

U D1 u N K \DY(T)
TeT TeT
X ¢ mvar(T) X C mvar(T)

PROOF. By Proposition @] for every parameter value u € K”, the set {T(w) | T €
T and u € DY(T)} is a triangular decomposition of V(F(u)) into regular chains. In
particular, if there exists no T € 7 such that u € DY(T') holds, then V (F(u)) = ().

Therefore, u yields finitely many solutions (and at least one) if and only if the fol-
lowing conditions hold:

— u belongs to at least one DY(T') such that X C mvar(T), i.e., T'(u) is a zero-
dimensional regular chain.

— u does not belong to any DY (T") such that X ¢ mvar(T), i.e., T'(u) is a positive-
dimensional regular chain.

Remark 3. By Theorem 4| and Proposition |8l we have completely answered the two
problems proposed in the introduction.

6 Implementation

We have implemented the algorithm for computing comprehensive triangular decom-
positions (CTD) based on RegularChains library in Maple 11. Our main function CTD
calls essentially three functions

- Triangularize, computing a triangular decomposition of the input system F/,
— PCTD, deducing a pre-comprehensive triangular decomposition of F’,
— SMPD, obtaining a comprehensive triangular decomposition of F'.



98 C. Chen et al.

Table 1. Solving timings and number of cells of CTD

Sys Name Triangularize PCTD  SMPD CTD  #Cells
1 MontesS1 0.089 0.002 0.031 0.122 3
2 MontesS2 0.031 0.002 0 0.033 1
3 MontesS3 0.103 0.006 0.005 0.114 2
4 MontesS4 0.101 0.016 0 0.117 1
5 MontesS5 0.383 0.022 0.465 0.870 11
6 MontesS6 0.395 0.019 0.121 0.535 4
7 MontesS7 0.416 0.215 0.108 0.739 4
8 MontesS8 0.729 0.001 0.016 0.746 2
9 MontesS9 0.945 0.116 3.817 4.878 23
10 MontesS10 5.325 0.684 1.138 7.147 10
11 MontesS11 0.757 0.208 12.302  13.267 28
12 MontesS12 14.199 2419 10.114 26.732 10
13 MontesS13 0.415 0.143 1.268 1.826 9
14 MontesS14 41.167 31.510 0.303  72.980 4
15 MontesS15 6.919 0.579 1.123 8.621 5
16 MontesS16 6.963 0.083 2.407 9.453 21
17 AlkashiSinus 0.716 0.191 0.574 1.481 6
18 Bronstein 2.526 0.017 0.548 3.091 6
19 Gerdt 3.863 0.006 0.733 4.602 5
20 Hereman-2 1.826 0.019 0.020 1.865 2
21 Lanconelli 2.056 0.336 3.430 5.822 14
22 genLinSyst-3-2 1.624 0.275 25413 27.312 32
23 genLinSyst-3-3 9.571 1.824 1097.291 1108.686 116
24 Wang93 6.795 37.232  11.828 55.855 8
25 Maclane 12.955 0.403  54.197 67.555 21
26 Neural 15.279 19.313  0.530 35.122 4
27 Leykin-1 1261.751 86.460 27.180 1375.391 57
28 Lazard-ascm2001 60.698 2817.801 - - -
29 Pavelle - - - - -

30 Cheaters-homotopy - - - - _

We provide comparative benchmarks with MAPLE implementations of related meth-
ods for solving parametric polynomial systems, namely: decomposition into regular
systems by Wang [19]] and discussing parametric Grobner bases by Montes [[14]. Cor-
responding MAPLE functions are RegSer and DISPGB, respectively.

Note that the specifications of these three methods are different. The outputs of CTD
and DISPGB depend on the choice of the parameter sets, whereas RegSer does not
require to specify parameters. RegSer decomposes the input system into pairwise dis-
joint constructible sets given by regular systems. CTD computes a comprehensive tri-
angular decomposition, and thus a family of triangular decompositions with a partition
of the parameter space. DISPGB computes a family of comprehensive Grobner bases
with a partition of the parameter space.

We run CTD in Maple 11 using an Intel Pentium 4 processor (3.20GHz CPU, 2.0GB
total memory, and Red Hat 4.0.0-9); we set the time-out to 1 hour. Due to the current
availability of RegSer and DISPGB, the timings obtained by these two functions are



Table 2. Solving timings and number of components/cells in three algorithms

0NN B W~

]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

DISPGB RegSer
Sys Time (s) # Cells Time (s) # Components Time (s) # Cells
0.509 2 0.021 3 0.122
0.410 2 0.021 1 0.033
0.550 2 0.060 3 0.114
1.511 2 0.070 1 0.117
1.030 3 0.099 4 0.870
1.350 4 0.049 5 0.535
1.609 2 0.180 4 0.739
2.181 3 0.150 4 0.746
10.710 5 0.171 7 4.878
9.659 5 0.329 5 7.147
0.489 3 0.260 9 13.267
259.730 5 2.381 23 26.732
5.830 9 0.199 9 1.826
- - - - 72.980
30.470 7 0.640 10 8.621
61.831 7 6.060 22 9.453
4.619 6 0.150 5 1.481
8.791 5 0.319 6 3.091
20.739 5 3.019 10 4.602
101.251 2 0.371 7 1.865
43.441 4 0.330 7 5.822
- - 0.350 18 27.312
- - 2.031 61 1108.686
- - 4.040 6 55.855
83.210 11 - - 67.555
- - - - 35.122
- - - - 1375.391

Comprehensive Triangular Decomposition

CTD

3
1
2
1

11

N

4
2
23
10
28
10

BEvuaaaRuro

116
8
21

99

performed in Maple 8 on Intel Pentium 4 machines (1.60GHz CPU, 513MB memory
and Red Hat Linux 3.2.2-5); and the time-out is 2 hours. The 30 test-systems used in
our experimentation are chosen from [[13018/21]].

As shown in the above two tables, our implementation of the CTD algorithm can
solve all problems which can be solved by the other methods. In addition, the CTD
can solve 4 test-systems which are out of reach of the other two methods, generally due
to memory consumption.

7 Conclusion

Comprehensive triangular decomposition is a powerful tool for the analysis of paramet-
ric polynomial systems: its purpose is to partition the parameter space into regions, so
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that within each region the “geometry” of the algebraic variety of the specialized system
is the same for all values of the parameters.

As the main technical tool, we proposed an algorithm that represents the difference
of two constructible sets as finite unions of regular systems. From there, we have de-
duced an algorithmic solution for a set theoretical instance of the coprime factorization
problem: refining a family of constructible sets into a family of pairwise disjoint con-
structible sets.

We have reported on an implementation of our algorithm computing CTDs, based on
the RegularChains library in MAPLE. Our comparative benchmarks, with MAPLE
implementations of related methods for solving parametric polynomial systems, illus-
trate the good performances of our CTD code.
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Abstract. We investigate the stability of the modified difference scheme
of Kim and Moin for numerical integration of two-dimensional incom-
pressible Navier—Stokes equations by the Fourier method and by the
method of discrete perturbations. The obtained analytic-form stability
condition gives the maximum time steps allowed by stability, which are
by factors from 2 to 58 higher than the steps obtained from previous em-
pirical stability conditions. The stability criteria derived with the aid of
CAS Mathematica are verified by numerical solution of two test problems
one of which has a closed-form analytic solution.

1 Introduction

It is well known (see, for example, [13]) that the influence of the compressibility
of a gas or a liquid may be neglected if the flow Mach number does not exceed
the value 0.3. In such cases, it is reasonable to use the Navier-Stokes equations
governing the viscous incompressible fluid flows. These equations are somewhat
simpler than the system of Navier-Stokes equations for compressible media. The
incompressible Navier-Stokes equations are widely used when investigating such
applied problems as the buoyancy-driven convection of air in rooms, the propa-
gation of pollutants in the atmosphere, the water flow around a moving ship or
submarine, etc.

The numerical solution of Navier-Stokes equations is simplified greatly if they
are discretized on a uniform rectangular spatial grid in Cartesian coordinates. It
is natural and convenient to use such grids at the solution of problems in regions
of rectangular shape. Many applied problems are, however, characterized by the
presence of curved boundaries. In such cases, other grid types are often used:
curvilinear grids, structured and unstructured triangular and polygonal grids.
Although such grids simplify the implementation of boundary conditions, their
use leads to new difficulties, such as the extra (metric) terms in equations, extra
interpolations, larger computational molecules, etc. [9].

During the last decade, a new method for numerical solution of the Navier-Sto-
kes equations in regions with complex geometry has enjoyed a powerful develop-
ment: the immersed boundary method (IBM). In this method, the computation

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 102 2007.
© Springer-Verlag Berlin Heidelberg 2007
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of gas motion is carried out on a rectangular grid, and the curved boundary is
interpreted as an interface. The grid cells lying outside the region occupied by
the fluid are classified as the ghost cells in which the Navier-Stokes equations are,
however, also solved numerically. A survey of different recent realizations of the
IBM may be found in [T0IT4/T6]. The immersed boundary method has extended
significantly the scope of applicability of the rectangular Cartesian grids at the
numerical solution of applied problems of the incompressible fluid dynamics.

The difference scheme proposed in [§] is often used within the IBM framework.
The convective terms are approximated in this scheme with the aid of the explicit
three-level Adams—Bashforth second-order scheme, and the viscous terms are
approximated by the implicit second-order Crank—Nicolson scheme. Despite the
popularity of scheme [8], its stability was not investigated even in the case of
two spatial variables.

The purpose of the present work is the stability investigation of a modi-
fied scheme from [8]. This investigation is carried out at first by the Fourier
method. Since this analysis method is applicable only to linear difference schemes
with constant coefficients we employ one more method for stability analysis of
nonlinear difference equations approximating the Navier-Stokes equations. This
method was proposed in [I1] and reduces to the investigation of the behaviour
of solution of difference equations in the case when the oscillating velocity pro-
files are specified on two lower time levels. The obtained stability conditions have
been verified by computations of two test problems one of which is the lid-driven
cavity problem.

2 Governing Equations and Difference Method

The Navier-Stokes equations governing two-dimensional unsteady flows of an
incompressible viscous fluid may be written in the vector form as follows:

dive =0, (1)
P L wv)e+ vp = vaw 2)
Py , VP = vaY,

where v = (u,v)T is the velocity vector (the superscript T denotes the trans-
position operation), u and v are the vector components along the x,y axes of
Cartesian coordinates, p is the pressure, p is the density, v = u/p, p is the
dynamic viscosity (v = const > 0), A is the Laplace operator.

Following [§] we will discretize the momentum equation (@) in time by using
a hybrid second-order scheme:
-v" 3 1

+DHEM -,

R S L)+ L. ()

1
H n—1 Gn:
(v )+p =,

Here 7 is the time step, H(v") is the difference operator approximating the
operator (vV)wv, G is the discrete gradient, L is the discrete Laplace operator, n
is the time level. Thus, the convective terms in ([B]) are approximated explicitly
by the second-order Adams—Bashforth scheme, and the diffusion terms vAwv
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are treated implicitly using second-order Crank—Nicolson scheme. The implicit
approximation of viscous terms is applied according to [§] in order to eliminate
a restriction for time step 7 dictated by the computational stability.

At the second fractional step, the field of intermediate velocities v* is corrected
to ensure the mass conservation:

(V" =) [T = ~GY, (4)

The pressure correction p’ is computed in such a way that a divergence-free
velocity field is obtained at the (n+ 1)th time step. To this end, let us apply the
divergence operator to the both sides of equation (H):

(Dv" ™ — Dv*) /7, = —Lp/, (5)

where D is a discrete analog of the divergence operator. Since it is required that
Dov"*t1 = 0, we obtain from () the Poisson equation for the pressure correction:

Ly’ = (1/7,)Dv*. (6)

The correction p’ found as the solution of equation (@) is then used for the
correction of the velocity field according to @): v"*! = v* — 7,Gp’ and of
the pressure field: p"*! = p® + p’. The Poisson equation () was solved by
the BICGSTAB method [15]. As was pointed out in [9], the pressure correction
method was found to be the fastest of the methods tested by Armfield and Street
[1] and is the method used here.

i1k x ° X Wi+ d .k
Pjk
[ )
Yjk—1

Fig. 1. The staggered grid in two dimensions

Following [§] we will approximate all spatial derivatives by second-order cen-
tral differences on a staggered grid (see Fig.[I). The advantages of staggered grid
at the numerical integration of the Navier-Stokes equations for incompressible
fluid are discussed in detail in [89]. For example, the term 92?v/dy? is approxi-
mated on the staggered grid as follows:

(82v/8y2)j7k+1/2 = (Vj jt3/2 — 20j k1172 + Vjk—1/2)/ (B3),

where hq, ho are the steps of uniform rectangular grid along the x- and y-axes,
respectively; the subscripts j, k refer to the cell center. To approximate the con-
vective terms H(v™) we use in [B]) the difference formulas of the MAC-method
[6T218]. These formulas are applied to the divergence form of motion equations:
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2 2
ou  O(u?) 8uv+18p ~ Ov | Owv 8(U)+18p_VAv.

8t+ ox + oy  pox 8t+8x+ dy pOy

For example, (8u2/8m)j+1/27k = (“;2'+1,k _uik)/hlu where uj, = (1/2)(uj—1/2,x+
Ujt1/2,k)-

We now mention several stability conditions, which were used previously at
the computation of time step 7 entering the difference scheme (B]). Roache [12]
discussed the stability of the Adams—Bashforth scheme at its application for
approximation of the one-dimensional advection-diffusion equation

A¢/ot + 0(uC) )0z = vd*C/dx>. (7)

This scheme proved to be unconditionally unstable, and it has a weak divergence
caused by the fact that the scheme amplification factor G obtained by the Fourier
method has the form G =1+ O(72). It is, however, to be noted that the above
scheme from [12] for equation (@) is explicit, whereas there are in scheme (B)
also the implicit operators, which stabilize the numerical computation. It is to
be noted here that since v = O(1/Re), where Re is the Reynolds number, then at
high Reynolds numbers, the stabilizing effect of the implicit term in (B]) becomes
insignificant. The computation nevertheless remains stable at the solution of
practical problems by scheme (B]) also for the value Re = 25 000, as this was
shown in [7]. It was proposed in [7] to compute the time step 7 at the computation
by scheme (@) by using the formula

—1
r = min [rioh,/Ceons + 7ot/ Cats] (®)
where the items are computed in each (j, k) cell as follows:

Teonw = [ul/h1 +|0l/he, T, =v- (1/h3 +1/h3).

For the diffusion component in (8) the Courant number Cy;rs = 0.25 according
to [7], and for the convective component the values of Ceop, were taken from 0.5
to 1. Note that formula (8)) is similar to the one used in [2], but in [2], the common
Courant number Ciony = Cairs = 0.25 was used. Owing to the application of
formula (8) with different values of Ceony and Cg; sy the authors of [7] were able
to reduce the required CPU time at the computations of unsteady flows by a
factor of nearly four.

The stability analysis results were presented in [5] for the schemes of Runge—
Kutta type with the stage numbers three and five for the two-dimensional
advection-diffusion equation

Of Ot +udf |0z + vdf [0y = v(0? f|0x* + O*f | 0y?).

It turned out that for the both studied schemes, the stability condition has the

form ) )
!/
('“”Z'“ﬂ) + (’23) <1, (9)
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where k1 = ut/h1, ko = v7/ha, ks = vT(1/h3 + 1/h3) = k3(1 + K3), k3 =
vr/(h?), ks = h1/ha, a and b are certain constants depending on the specific
method of the Runge-Kutta type. Despite the fact that condition ([@) as well
as the empirical stability condition (8) were obtained for different difference
schemes their structure is similar. Formula (§) can indeed be written in terms
of dimensionless quantities k1, k2 and k% as

k1] + K2l

Ccon'u Cdiff

3 Fourier Symbol

The stability analysis of difference schemes by the Fourier method is known to
be applicable only to linear schemes with constant coefficients. Difference scheme
@B)) is nonlinear, therefore, prior to the Fourier method application it is necessary
to linearize the scheme. Linearization may be implemented in two different ways.
One of them consists of that the original differential equations (in our case these
are equations () are at first linearized, and the difference scheme (3) is then
applied to linearized differential equations. Another technique reduces to a direct
linearization of difference equations ([3)). We use the first of the above techniques
because it involves a slightly shorter calculation.

Thus, let us assume that U(z,y,t), V(x,y,t), P(x,y,t) is an exact solution of
equation (), where U and V are the components of the velocity vector along the
x- and y-axes, respectively, P is the pressure. According to difference equation
[@B)), only the velocity components are varied at a passage from the nth time level
to the (n+ 1)th time level. We can, therefore, present solution v of system (2) as

u=U+déu, v=V+dév, p=RP, (10)

where 6u and dv are the errors, which are small in their absolute values and which
are caused by the approximation error, machine roundoff errors, etc. Since the
“big” quantities U, V, P satisfy equation (2]), as a result of substituting formulas
(@) in @) and neglecting the second-order terms with respect to éu and dév we
obtain the following linear differential equations:

obu n U@(‘iu n V@(‘iu _ 02%6u . 0%6u
ot Oz oy Oz Oy?

o0év n U@(‘iv n V@(‘iv _, 9%6v n 926w
ot Ox oy Ox? oy? )’

3

(11)

Let us now approximate system ([[1l) by difference scheme (@) on a staggered grid.
Since this difference scheme is a three-level scheme we introduce two auxiliary
dependent variables 67" and 6s™ by formulas []: 67" = su"~1, §s" = svn!
before the investigation of its stability. Let V = (U, V)T, o™ = (6u™, sv™)T,
o™ = (7™, 65™)T. We can then write difference scheme (B]) as applied to system
() in the form:
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bv* —sv™ 3 1
vTov (VIS — (VIIV)er = ; [L(6v*) + L(sv™)].  (12)
-
Thus, ([I2)) is a two-layer difference scheme. Upon “freezing” its coefficients V",
V=1 we can apply the von Neumann stability analysis [3/4] to obtain the neces-
sary stability condition. According to the procedure of this analysis we substitute
into the system of difference equations

dv* — o 1
vt ovt ;’(v“vwv“ VIt = Y [L(50") + L)
-
Srtl = Sum; (13)
6™t = v
the solution of the form
bwi ) = dwoA" expli(jmihi + kmaha)], (14)

where dw™ = (6u™, §v™, 6r™, 6s™) T, Swy is a constant vector, m; and my are real
components of the wave vector, A is a complex number, i = v/—1. As a result
of the substitution of particular solution of the form (I into system (I3]) we
obtain the system

Abw! it = Béw}y, (15)
where

a000 b0cO

0a00 0b0c

A= 0010 ]’ B= 1000 |’

0001 0100
a=14r3(1—cos)+ ra(l —cosn), c=(1/2)i(k1sin&+ kasinn), (16)
b=1-3c— k3(1 —cos€) — ka(l — cosn),

Ur Vr vT VT
= s = s = 5 = 5 ].7
K1 hy Ko ho K3 h% R4 h% ( )

& = mih1, 7 = mohs. The quantities k3 and k4 are nonnegative by virtue of
their physical meaning, therefore, a > 1, and, hence, matrix A is invertible.
Multiplying the both sides of equation (I5]) from the left by A~! we obtain the
system

swi it = G éw}y, (18)

where matrix G = A~'B is called the amplification matrix of the difference
scheme with constant coefficients. But in our case, the coefficients depend on
x,y, and ¢ with regard for (I7)). Therefore, we will consider in the following the
matrix G in ([I8) for fixed values of z, y, t and will term the corresponding matrix
G the Fourier symbol of the difference scheme.
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All analytic formulas presented in this section and in the next section were
obtained with the aid of the computer algebra system (CAS) Mathematica. In
particular,

2050
b c

— A lp ana

G=A"B=| a8 (19)
0100

Denote by A1, A2, A3, A4 the eigenvalues of matrix G. The von Neumann necessary
stability conditions then have the form [3]

A <14+0(r), m=1,...,4. (20)

Let k= (K1, k2, K3, k4). We have found the expression for the characteristic poly-
nomial f(\, k,&,n)=Det(G— M) of matrix G, where I is the identity matrix, with
the aid of the Mathematica command charpol=Det [G-A*IdentityMatrix [4]]
Application of the Mathematica function Factor [charpol] yields

(aX? — b\ — ¢)?
) .

fOA K& m) = (21)

a
This equation has two roots A1, A2, and the multiplicity of each of these roots
is equal to two:

b — /b2 + dac N b+ Vb2 + dac
= 5 2: .

A
! 2a 2a

(22)

4 Analytic Investigation of Eigenvalues

We first consider the particular case of creeping fluid flows when U = 0, V & 0.
Assuming then k1 = ko = 0 we obtain the following expression for Ao: Ay =
(1 —0)/(1 + o), where o = 2[r3sin?(£/2) + rysin?(n/2)] > 0. It is easy to be
sure of the fact that |[Aa| < 1 for any ks, k4, &, n. That is there are no limitations
for k3 and k4. This is not surprising because for k1 = kg = 0 scheme @) is
implicit, therefore, it is absolutely stable [4].

120 Ks*
1.4
< 3
08 N \wxzw )
04l MNC 1
02 __---7~
= B ! K6
02 04 06 08 1 02 04 06 08 1

Fig. 2. The graphs of [A12| vs. 3 Fig. 8. The graphs of the root (k3 )2
vs. ke for different &
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We now consider the particular case when k3 = k4 =0, k1 > 0, kg > 0. It is
clear that the coefficient ¢ in ([I6]) reaches its maximum over £, at £ =n = 7/2.
If k1 < 0, k2 < 0, then this maximum is reached at sin § = sgn k1, sinn = sgn Ks.
Then in the general case it is obvious that maxg , |¢| = (1/2)(|k1] + |k2]). The
graphs of the quantities |\1], |A2| are shown in Fig. 2] as the functions of the
quantity 8 = |k1| + |k2|. Tt is seen that || exceeds unity by a small value in
the interval 0 < 8 < 0.5. That is scheme (@) is weakly unstable in this interval.

It follows from the above consideration of particular cases that the necessary
stability condition of scheme (B]) for values k1, k2, K3, k4 different from zero must
have the following form: |k1| + |k2| < (K3, k4), where the function ¢(ks, kq)
should satisfy the following properties:

b @(070) = 0;
° (p(fig, KZ4) > 0, |I€3| + |I€4| > 0.

The property ©(0,0) = 0 ensures the presence of the above revealed instability
of scheme (@) for k3 = k4 = 0.

In the case when k1 # 0,k2 # 0,k3 # 0,k4 # 0 the derivation of stability
condition in an analytic form from ([22) is difficult because of the availability
of square roots of complex numbers. In this connection, we use in the following
the concept of the resultant, to which one can reduce the problem of determin-
ing the stability region boundary. The corresponding procedure was described
in [3], therefore, we present it only briefly here. Thus, let f(\, &,&,n) be the
characteristic polynomial of a difference scheme, and let its degree in A be
equal to m (m > 1). Following [3] let us perform the Mobius transformation
A= (w+1)/(w—1). Then we obtain the polynomial

9w, k,&n) = (w = D" f((w+ 1D/ (w=1),k,&n).

Let wy,...,wn be the roots of polynomial g. The condition Rew; < 0, j =
1,...,m, corresponds to condition |A;| <1, j =1,...,m. Then at the boundary
I of the stability region the polynomial g must have at least one purely imaginary
zero. Set w = i and consider the polynomial ¥ (o, K, &, ) = g(io, Kk, &,n). Tt is
clear that the boundary I is determined by those values of quantities k, £, 7, at
which the polynomial ¥ has a real zero o. Zeroes of polynomial ¢ are determined
by the system of two equations with real coefficients Rety = 0, Imy = 0. This
system has the solution if and only if the resultant of equations Rev = 0,
Im ) = 0 equals zero:

Res(Rev,Im) = 0. (23)

We now present a fragment of the Mathematica program which enables us to
obtain the analytic expression for the resultant in (23]) for the case of scheme (3]).

A = {{a, 0, 0, 0}, {0, a, 0, 0}, {0, O, 1, 0}, {0, O, O, 1}};
B = {{b, 0, ¢, 0}, {0, b, 0, ¢}, {1, 0, 0, 0}, {0, 1, O, O}};
G Inverse[A] .B; charpol = Det[G - lam*IdentityMatrix[4]];
poly = Factor([charpol]; poly=PowerExpand[Sqrt[polyl];

poly2 = poly/.{b-> bl+I*b2,c-> I*cl};
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g = ComplexExpand[(w-1) "2*poly2/.{lam-> (w+1)/(w-1)}];

gl = Expand[Simplify[gl]; g2 = gi/.{w->Ixsig};

reg = ComplexExpand[Re[g2]]; img = ComplexExpand[Im[g2]];
resul = a”"4*Resultant[reg,img,sigl/4;

As a result, we obtain the following formula for Res(Re ), Im)):

R(k,&,m) = Res(Re ), Im 1)) = —a* + a?b? + a?b3 + dabybacy + 2a%c3
+ b%cl + bQCl Zil (24)
where in accordance with (I8])

a=14r3(l —cos) + ka(l —cosn), by =1 — k3(1 —cos§) — ka(l — cosn),
be = —(3/2)(k1sing + kasiny), ¢ = (1/2)(k1sin + ko sinn). (25)

The substitution of expressions (28) in (24) leads to a bulky formula, which we
do not present here for the sake of brevity.

As we have shown above in this section, in the particular case when k3 =
k4 = 0 the most restrictive stability condition is obtained for sin{ = sinn = 1.
In this connection, we will investigate in the following the case £ = 1 in more
detail. We use the following Mathematica commands:

resul2 = Simplify[resul/.{{— n}1;

resz = resul2/.{k1"2 —z,k1"4 —z"2};

As a result, we obtain a quadratic equation in z = x% to determine the roots of
equation R(k,&,£) = 0. Using the Mathematica function Solvel[...] we have
obtained the analytic expressions for the both roots. For the sake of brevity we
present only the second root ze. We introduce the notation x5 = |k1| + |kal,

K6 = K3 + K4, 2 = k2. Denote by k% the value of quantity ks at the stability
region boundary. Then

1
29 = (Ki%)g = 2Csc4§ (—10k¢ sin® € — 12x¢ sin® € + 10k cos € sin® €
+ 24r2 cos € sin® € — 122 cos? £ sin? € + 2y/kg\/—1 + cos € x
(=1 — 2k + 2k cos £)/—8 — 9k + Ik cos £ sin’ §> . (26)

In particular, at £ = n = 7/2 we obtain the following expressions for the both
roots (k&)1 and (k%)2:

(K2)1 = (=5kg — 6k2 — /rie(1 + 2k6)V/8 + 9r6) /2,

(K%)2 = (=Bkg — 6k2 + /re(1 + 2k6)V/8 + Ik ) /2.
The radicand in formula for (xf); is negative because it is the sum of negative
items. Therefore, it is worthwhile considering only the root ze given by (26)). In

order to be sure that the values £ = n = 7/2 yield the most restrictive stability
condition we have constructed twenty curves of the family (kf)2(€, &) with the
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step A = 0.0457. These curves are shown in Fig. Bl in which the curve for the
particular pair £ = n = 7/2 is shown as a thick line. We can see that this line
is the lowest one in Fig. [3l Thus, we have obtained an approximate form of the
necessary stability condition:

k1| + k2| < (=5ke — 682 + vk (1 + 2#6)v/8 + 9rg) /2. (27)
For £ =n = 7/2, the expression for the resultant becomes especially simple:
R(k,m/2,7/2) = (1/2)2% — 4k + 5zke — 8kg + 62k7 — 4K}, (28)

Substituting the expressions for ki, k2, k3, k4 from (7)) into [@8) we obtain a
fourth-degree polynomial equation for determining the time step 7. Its solution
is efficiently found with the aid of the Mathematica function Solvel[...], and
it turns out that equation R = 0 has two real roots and two complex conjugate
roots. The real root 7 = 0 is of no practical value. The other real root is as
follows:
2(5ab — 4b3) 1
S — (2V/4(~1484%* — 416ab* — 640°) ) /(3(a? + 1201
i 3(a? 4 12ab?) ( ( “ “ )) /(3(a” + 12ab7) x
(216a*b + 174400 4 19776a°b° + 9984ab” + 1024b°

+ 24V/30%/2b7/27a + 4b2(a2 + 8ab? — 48b%))1/3)
1

216a*b + 1744433 + 1 2p5 dab”
3. 9U3(q2 1 12qp2) (21600 + 1744a%" + 197760%° + 9984ab
1/3
+ 10248° + 24V/3a3/2b\/27a + 462 (a? + Sab? — 48b4)> : (29)
where ,
Ul v v v
= b= : 30
¢ <h1+h2 ’ h§+h§ (30)

Note that after the non-dimensionalization of the Navier-Stokes equations, the
value v is usually replaced with v = 1/Re.

We show in Fig. @l the surface 7 = 7(a,b). We can draw the following con-
clusions from this figure: (i) for sufficiently large values of |U| and |V|, such

Fig. 4. The surface 7 = 7(a, b)
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that a > 0.5, the time steps are smaller than for a < 0.5; (ii) for low Reynolds
numbers, when b is sufficiently high, the maximum time step becomes higher
and higher with increasing b for sufficiently low a. This may be explained by
the well-known fact that with decreasing Re, the dissipative effects become more
pronounced, and right these effects are known to stabilize the difference solution.

Let us consider the case when 0 < kg < 1 (high Reynolds numbers). Using
the Mathematica command Series[7,b,0,1}] we find:

_2(a)V/3Y3 106 43
T= 2 34 + O(b*?). (31)
If, for example, Re = 1/v = 10%, then 7 = O(10~%?3). This consideration ex-
plains why the computations by scheme (3] are stable also for such high Reynolds
numbers.

Note that formula (23]) for the maximum time step allowed by stability is
approximate because for £ # n one may expect, in principle, a somewhat more
restrictive stability condition. Therefore, it is advisable to compute the time
step 7, in computer code implementing scheme (B from the known difference
solution at the nth time level by formula

Tn =0 rgukn T(aj,k,b), (32)
where 7 is computed by (29) at each grid cell (j, k), and 6 is the user-specified
safety factor, 0 < 6 <1 (for example, 6 = 0.98).

On the other hand, although the stability condition (29]) is approximate, it has
a correct analytic form obtained from the von Neumann stability condition with
the aid of the algebra of resultants. This enables the obtaining of information
on the stability properties of a numerical method under the variation of such
important physical parameters as the Reynolds number and the gas velocity.

A shortcoming of symbolic-numerical methods for stability investigation con-
sists of the fact that although it is possible to obtain with their aid a finite set
of the stability region boundary points these methods do not give information
about the structure of the analytic form of the stability region boundary. Al-
though one can obtain the analytic approximation for the maximum time step 7
with the aid of the method of least squares the resulting analytic formulas have
a shortcoming that they specify this analytic form in a user-predefined class of
forms, which may be far from the true analytic dependence.

5 The Method of Discrete Perturbations

The method of discrete perturbations as a method for stability investigation of
difference schemes was previously described in [I12J3] as applied to scalar linear
difference schemes. Minion [I1] extended this method for the case of two grid
functions ™ and v™ sought for. Another important peculiarity of the extension
of the method of discrete perturbations described in [I1] is that this method was
applied to nonlinear difference equations.
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Following [11] we consider the following oscillatory velocity field at the nth
time level:

Wihajop =1 —e- ()7 00 =14 (ha/h) - (1), (33)

where 0 < ¢ < 1. Besides, we assume that the discrete pressure is constant. The
second-order approximation of equation ({I]) has the form

(Wiir /om0 — wi—1/2,0)/ 1 + (V] 4 q1y2 = VF k1/2)/h2 = 0. (34)

The substitution of formulas ([B3)) in ([B4]) shows that the velocity field ([B3) sat-
isfies equation (34)).

The difference scheme (@) is a three-level scheme. This gives rise to the problem
of computing by the scheme for n = 0. This problem is usually solved by using
the explicit Euler method for n = 0:

vt —v" 1 v

+H@w")+ Gp" = [L(v")+ L(v")]. (35)

T p 2

The substitution of the velocity distribution (33) in (B3] for n = 0 was carried

out by us with the aid of symbolic computations in CAS Mathematica. To this
end, we have at first introduced the following two functions:

ulj_,k_J:=1 - eps*(-1)"(j+k); v[j_,k_]:= 1+ eps*sx(-1)"(j+k);

where the first function corresponds to u}, , , , in ([B3), and the second function
corresponds to v] k172
We further assume following [11] that the quantities u* and v* obtained as

the solution of difference equation ([B5]) for n = 0 have the form

Uji1pp=1—ae- (—1)7HH; U py1/2 = L+ B (ha/ha) - (-1 17, (36)

where the real constants a and ( are to be determined. Substituting formulas
@B6) in (B5), we have found with the aid of CAS Mathematica the following
expressions for « and G:

2_21 2
a:s ( +8)K3’ 0=
s24+2(1+ s?)ks

1—2(1+ s%)ky

142(1+ s2)ky’ (37)

where s = ha/hy.

Now consider the case when n = 1 in ([3)). We can then implement the compu-
tations by three-level scheme (@) in order to find v*. Let us specify the velocity
components u! and v! by the same formulas as u*, v* in (38]). Then we find from

@) for n = 1:
Wiiajag = 1=l (Z)7 0 = 14 2 (ho/ha) - (—1)HE 0 (38)

Formulas (7)) and (B8) imply the following positive property of the approxi-
mation of convective terms by the MAC method: it is insensitive to sawtooth
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perturbations of the form (B3)). In order for the oscillating part of the solution
BD), B) to be damped, it it necessary that |a| < 1, |5] < 1. We first consider
the case when k3 = k4 = 0. Then @« = g = 1, and there is no damping of
oscillations.

If k3 > 0 and k4 > 0 it is easy to be sure of the fact that 0 < |a| < 1,
0 < |B] < 1 for any k1, k2. That is there is the damping of oscillations (the
stability). This result agrees with the result obtained above within the framework
of the stability analysis by the Fourier method for the case of creeping flows when
u=0,v=0.

6 Verification of Stability Conditions

6.1 The Taylor—Green Vortex

The Taylor—Green vortex is one of few analytical solutions of the two-dimensional
Navier-Stokes equations. The solution, with ¥ = 1 and p = 1, is given by formu-
las [§]

u=—e *coswsiny, v=e Hsinzcosy, p=—e “(cos2zx + cos2y)/4. (39)

The flow is represented by periodic counter-rotating vortices that decay in time.
The computational domain is over 7/2 < z,y < 57/2, which corresponds to
homogeneous Dirichlet boundary conditions for the velocity component normal
to the boundary and homogeneous Neumann boundary condition for the ve-
locity component tangent to the boundary. The pressure boundary condition is
homogeneous Neumann everywhere.

ul
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Fig. 5. The contours of u (a), v (b), and p (c) for n = 20 (¢t = 0.96157)
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We have carried several computations of this test problem using formula (29)
for the time step 7. It turns out that this formula gives the 7 values, which
are by factors from 2 to 6 higher than those obtained from formula (&). These
factors varied depending on the grid step sizes h; and ho and the number of
executed time steps, that is on the local values of the velocity components. The
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u
0.1
0.05\
005 3547 7
~0.1

Fig. 6. The profile of u = u(zo,y), zo = 3.45575 (=~ 1.1m); solid line is the exact
solution, dotted line is the numerical solution for n = 20 (¢ = 0.96157)

computation by the above described difference method nevertheless remained
stable when using (29) with safety factor 6 = 0.5.

Since the amplitudes of the velocity components decay exponentially with time
in the given task, we present in Figures [0l and [f] the results for the case of using
formula () with Ceony = 0.5, Cgiry = 0 and the 30 x 30 grid to show that our
computer code works correctly also after executing several dozens of time steps.

6.2 Lid-Driven Cavity Problem

This problem is frequently used as a test of numerical methods for the incom-
pressible Navier-Stokes equations, although it has no known exact analytic so-
lution. In this problem the no-slip boundary conditions are imposed on the left,
bottom, and right walls of the cavity, and the z-component Uy of the velocity
is specified at the upper boundary (the moving “lid”). Let B be the horizontal
cavity size. Then the dimensional lengths are non-dimensionalized with respect
to B, and the Reynolds number Re has the form Re = UyBp/u. The dimension-
less velocity component u = 1 at the lid. The pressure boundary condition is
homogeneous Neumann everywhere.

We have done numerous computations by the difference method of Section 2
for the purpose of elucidating the validity of formula ([29) for the maximum time
step allowed by stability. We at first consider the case when the Reynolds number
Re = 1. It turns out that the computation remains stable even if the actual time
step exceeds the value given by ([29) by a factor of three, that is § = 3 in ([B2).
But, on the other hand, for # > 1 the convergence to the stationary solution of
the lid-driven cavity problem slows down with increasing 6.

Another interesting fact revealed by our computations in the low Reynolds
number case is that the actual time step computed with the aid of ([32) was by
factors from 33 to 58 higher than in the case of using the known empirical formula
@), in which we specified the values Ceony = 0.5, Cqi¢r = 0. This result means
that in the case of numerical solution of more complex stationary flow problems
with low Reynolds numbers it is possible to have very significant savings in CPU
times (by a factor of up to 58).

And the final observation, which we have drawn from our numerical experi-
ments involving (2Z9) is that it ensures the fastest convergence to the stationary
solution in the case of Re = 1 when the value on the right-hand side of 29) is
multiplied by a safety factor of about 0.6.
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Fig. 7. Streamlines in the lid-driven cavity problem: (a) Re = 1; (b) Re = 400

In the case of a higher Reynolds number, namely Re = 400, the computation
using ([32]) with § = 1 proves to be unstable. In order to ensure the stability for
Re = 400, one must take the value § < 0.1 in ([B2). But even in this case, the
actual “stable” time step exceeded the value given by () by a factor of about
five.

Although the computation using ([82)) may remain stable also for § > 1, in the
case of large time steps one should ensure the needed accuracy of the results. For
this purpose, one can use the known test problems for which the exact analytic
solutions are available.

We show in Fig. [l some numerical results obtained with the use of formula
29), in which the right-hand side was multiplied by the safety factor § = 0.6
in the case of Re = 1. One can verify that these two figures are very similar to
Figs. 4, (a) and (b) from [§]. Figure [{l was obtained on a mesh of 30 x 30 cells.
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Abstract. The boundary problem in cylindrical coordinates for the
Schrodinger equation describing a hydrogen-like atom in a strong homo-
geneous magnetic field is reduced to the problem for a set of the longitudi-
nal equations in the framework of the Kantorovich method. The effective
potentials of these equations are given by integrals over transversal vari-
able of a product of transverse basis functions depending on the longitudi-
nal variable as a parameter and their first derivatives with respect to the
parameter. A symbolic-numerical algorithm for evaluating the transverse
basis functions and corresponding eigenvalues which depend on the pa-
rameter, their derivatives with respect to the parameter and corresponded
effective potentials is presented. The efficiency and accuracy of the algo-
rithm and of the numerical scheme derived are confirmed by computations
of eigenenergies and eigenfunctions for the low-excited states of a hydro-
gen atom in the strong homogeneous magnetic field.

1 Introduction

To solve the problem of photoionization of low-lying excited states of a hydrogen
atom in a strong magnetic field [1J2] symbolic-numerical algorithms (SNA) and
the Finite Element Method (FEM) code have been elaborated [Bl4J5/6]. Next
investigations are shown that to impose on boundary conditions for the scattering
problem in spherical coordinates (r, 6, ¢), one needs to consider solution of this
problem in cylindrical coordinates (z, p,¢) and to construct an asymptotics of
solutions for both small and large values of the longitudinal variable [2J7].
With this end in view we consider a SNA for evaluating the transverse basis
functions and eigenvalues depending on a longitudinal parameter, |z|, for their
derivatives with respect to the |z| and for the effective potentials depended on
|z| of the 1-D problem for a set of second order differential equations in the
frame of the Kantorovich method (KM) [8]. For solving the above problems on
a grid of the longitudinal parameter, |z|, from a finite interval, we elaborate
the SNA to reduce a transverse eigenvalue problem for a second order ordinary

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 118 2007.
© Springer-Verlag Berlin Heidelberg 2007
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differential equation to algebraic one applied the FEM [9I10] or some expansions
of the solution over an appropriate basis such that corresponded integrals over
transversal variable will be calculated analytically [TTJI2]. A symbolic algorithm
for evaluating the asymptotic effective potentials with respect to the |z|, using a
series expansion in the Laguerre polynomials, is implemented in MAPLE and is
used to continue the calculated numerical values of effective potentials to large
values of |z|.

The main goal of this paper is to develop a symbolic algorithm for generation
of algebraic eigenvalue problem to calculate economically the transverse basis
on a grid points of finite interval of the longitudinal parameter, |z|, and its con-
tinuation from matching point to large |z|. The obtained asymptotic of effective
potentials at large values of the longitudinal variable are used as input file for an
auxiliary symbolic algorithm of evaluation in analytical form the asymptotics of
solutions of a set of the second order differential equations with respect to the
longitudinal variable, |z|, in the KM. The algorithms are explicitly presented and
implemented in MAPLE. The developed approach is applied to numerical calcu-
lation of effective potentials for the Schrodinger equation describing a hydrogen-
like atom in a strong magnetic field. A region of applicability versus a strength
of the magnetic field, efficiency and accuracy of the developed algorithms and
accompanying numerical schemes is confirmed by computation of eigenenergies
and eigenfunctions of a hydrogen atom in the strong homogeneous magnetic field.

The paper is organized as follows. In section 2 we briefly describe a reduction
of the 2D-eigenvalue problem to the 1D-eigenvalue problem for a set of the closed
longitudinal equations by means of the KM. In section 3 algorithm of generation
of an algebraic problem by means of the FEM. We examine the algorithm for
evaluating the transverse basis functions on a grid of the longitudinal parame-
ter from a finite interval. In section 4 the algorithm for asymptotic calculation
of matrix elements at large values of the longitudinal variable is presented. In
section 5 the auxiliary algorithm of evaluation the asymptotics of the longitude
solutions at large |z| in the KM. In section 6 the method is applied to calcu-
lating the low-lying states of a hydrogen atom in a strong magnetic field. The
convergence rate is explicitly demonstrated for typical examples. The obtained
results are compared with the known ones obtained in the spherical coordinates
to establish of an applicability range of the method. In section 7 the conclusions
are made, and the possible future applications of the method are discussed.

2 Statement of the Problem in Cylindrical Coordinates

The wave function ¥ (p, z, @) = ¥(p, z) exp(umep)/v/27 of a hydrogen atom in an
axially symmetric magnetic field B = (0,0, B) in cylindrical coordinates (p, z, @)
satisfies the 2D Schrédinger equation
02 -
—aZQW(p,Z)‘FAcW(p,Z) :€lp(p72’)7 (1)
A(, _ A(O) _ 27 A(O) _ _1 6 o 6 2 2p2
R = A pdp~ Op



120 O. Chuluunbaatar et al.

in the region (2.: 0 < p < 0o and —oo0 < z < oco. Here m = 0,%1,... is the
magnetic quantum number, v = B/By, By = 2.35 x 1057 is a dimensionless
parameter which determines the field strength B. We use the atomic units (a.u.)
h = m. = e = 1 and assume the mass of the nucleus to be infinite. In these
expressions € = 2F, E is the energy (expressed in Rydbergs, 1 Ry = (1/2) a.u.)
of the bound state |mo) with fixed values of m and z-parity o = +1, and
U(p,z) =0™(p,z) = cW™(p,—2z) is the corresponding wave function. Bound-

ary conditions in each mo subspace of the full Hilbert space have the form

W
im p?Y P Z0 for m=0, and 9(0,2)=0, for m#£0, (2)
p—0 op
lim ¥(p,z) =0. (3)
p—00

The wave function of the discrete spectrum obeys the asymptotic boundary
condition. Approximately this condition is replaced by the boundary condition
of the second and/or first type at small and large |z|, but finite |z| = zmax > 1,

o (p,z)

lim =0, o=+1, ¥(p,0)=0, o=-1, (4)
z—0 82
hrf U(p,2) =0 —  ¥(p,%[2max|) = 0. (5)

These functions satisfy the additional normalization condition

/ / (p; 2 \pdpdz—2/ / 2)|*pdpdz = 1. (6)

Zmax

2.1 Kantorovich Expansion

Consider a formal expansion of the partial solution W™ (p,z) of Eqs. (@)~
([B), corresponding to the eigenstate |moi), expanded in the finite set of one-

dimensional basis functions {@m(p, 2) ?“:”1"

Jmax

wEm (p, Z 1 (p; )" (E, 2). (7)

In Eq. (@) the functions % (z) = >z<"“”> (B,2), (%7 (2)7 = ({17 (2)-- XL ()
are unknown, and the surface functions (p;z) = & (p;z) = & (p;—2),
(D (p; 2))T = (D1(p; 2), .- -, éjmx(p; z)) form an orthonormal basis for each value
of the variable z which is treated as a parameter.

In the KM the wave functions @;(p; 2) and the potential curves E;(z) (in Ry)
are determined as the solutions of the following eigenvalue problem

Acdj(p; 2) = Ej(2)®;(p; 2), (8)
with the boundary conditions
SP N
lim 2% %% 0 for m—0, and $;(0;2) =0, for m#0, (9)
p—0 op
lim &;(p;2) =0 (10)
p—
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Since the operator in the left-hand side of Eq. () is self-adjoint, its eigenfunctions
are orthonormal

<9§i(p; z)

where 6;; is the Kronecker symbol. Therefore we transform the solution of the
above problem into the solution of an eigenvalue problem for a set of jyax or-
dinary second-order differential equations that determines the energy e and the
coefficients X (2) of the expansion ()

5 (p; Z)> = /OOO b;(p; 2)0;(p; 2)pdp = 635, (11)

? o A dQ( )\ o o (i
(—Idzz 1O+ a6 L+ U ) 300 =16, (2)
Here I, U(z) = U(—2) and Q(z) = —Q(—2) are the jmax X jmax matrices whose
elements are expressed as

() = o) = [P OB (13)

Qij(2) = —Qji(z) = — /ODO @, (p; Z)aqué(zp; Z)pdp.

The discrete spectrum solutions obey the asymptotic boundary condition and
the orthonormality conditions

lim< -Q(z )) £P(z) =0, o=+1, xP0)=0, o=-1, (14)

im xP(z)=0 — X (Lzmax) =0, (15)

/ 2)" 59 =2 /O (x9@) 2 (2)dz =8, (16)

—Zmax

3 Algorithm 1 of Generation of Parametric Algebraic
Problems by the Finite Element Method

To solve eigenvalue problem for equation () the boundary conditions (@), ()
and the normalization condition (] with respect to the space variable p on an
infinite interval are replaced with appropriate conditions (@), (I1) and é(pmax; 2)
=0 on a finite interval p € [pmin = 0, Pmax]-

We consider a discrete representation of solutions &(p; z) of the problem (&)
by means of the FEM on the grid, (Zh(p (Po=Pmin, Pj = Pj—1+1j, Pr=Pmax),

in a finite sum in each z = zj of the grid Qh(z) [Zmin,s Zmax):
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= Z@Z(Z)Nﬁ(p) = ZZ r+p(i—1) r+p(J 1)(p) (17)

pn=0

where N?(p) are local functions and &:(z) are node values of ®(p,; 2). The local
functions Nf(p) are piece-wise polynomial of the given order p equals one only
in the node p,, and equals zero in all other nodes p, # p, of the grid QZ(p)’ ie
N2(pu) = bup, ,v =0,1,...,7p. The coefficients @, (z) are formally connected
with solution @(pir;z) inamnode p, =pf,,r=1,....p,j=0,...,n

A h:
@,}j(z) = @7}%4»;0(]’71)(2) ~ QS(P;T;Z), P;’,r =pj-1+t p]ﬁ

The theoretical estimate for the H? norm between the exact and numerical
solution has the order of

|ED (2) = En(2)] < c1|Em(2)| h?, || 08 (2) — Pra(2)]|, < c2lEm(2)|RPT,
where h = maxi<j<p h; is maximum step of grid [9]. It has been shown that we
have a possibility to construct schemes with high order of accuracy comparable
with the computer one [I4]. Let us consider the reduction of differential equations
@) on the interval A : ppin < p < pPmax With boundary conditions in points
Pmin and Pmax rewriting in the form

A(2)(p; z) = E(2)B(2)(p; 2), (18)

where A and B are differential operators. Substituting expansion () to (IS)
and integration with respect to p by parts in the interval A = U?:lAj, we arrive
to a system of the linear algebraic equations

al, o) (z) = E(2)bl, #),(2), (19)
in framework of the briefly described FEM. Using p-order Lagrange elements [9],
we present below an algorithm 1 for construction of algebraic problem ([IJ) by
the FEM in the form of conventional pseudocode. It MAPLE realization allow
us show explicitly recalculation of indices p, v and test of correspondent modules
in FORTRAN code.

In order to solve the generalized eigenvalue problem (Id), the subspace itera-
tion method [9/I0] elaborated by Bathe [10] for the solution of large symmetric
banded matrix eigenvalue problems has been chosen. This method uses a sky-
line storage mode, which stores components of the matrix column vectors within
the banded region of the matrix, and is ideally suited for banded finite element
matrices. The procedure chooses a vector subspace of the full solution space and
iterates upon the successive solutions in the subspace (for details, see [10]). The
iterations continue until the desired set of solutions in the iteration subspace
converges to within the specified tolerance on the Rayleigh quotients for the
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eigenpairs. Generally, 10-16 iterations are required for the subspace iterations to
converge the subspace to within the prescribe tolerance. If matrix a? in Eq. (I9)
is not positively defined, problem (I3]) is replaced by the following problem:

aP? ®" = E"bP &", aP = aP — ab?. (20)

The number « (the shift of the energy spectrum) is chosen in such a way that
matrix &P is positive. The eigenvector of problem (20) is the same, and E"* =
E" + a.

Algorithm 1

Input:

A =U"_1Aj = [pmin, Pmax], i interval of changing of space variable p;
hj = p; — pj—1 is a grid step;

7 is a number of subintervals A; = [p;_1, p;];

p is a order of finite elements;

A(z),B(z) are differential operators in Eq. (I8));

Output:

NP is a basis functions in (I7);

al,, bl are matrix elements in system of algebraic equations (I9);
Local:

P, are nodes;

¢; .(p) are Lagrange elements;

w,v=0,1....np;

1: for j:=1 to n do
for r:=0 to p doh
Pir=Pi—1+ )T
end for;
end for;
2: 8% () = i llo = 05 )05 = 05 1) 7]
3: Ng(p) = {1 o(p),p € A1;0,p & Ar};
for j:=1to n do
for m=1top—1do
Nerp(jfl)(p) = {(b;‘),r(p)a p € Aﬁ Ovp € Aja}
end for;
N]pp(P) = {¢§,p(0)a p € Aj; ¢§+1,0(P)7P € Aj4150,p € AjUAj11
end for;
N’FIZp(p) = {(bgz,p(p)vp € Aﬁ;oap € Aﬁ}a
4: for p,v:=0 to np do
ab, = [ NE(p)A(2)NE(p)pdp; bk, := [ NE(p)B(2)NE(p)pdp;
A A

end for;
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Remarks

1. For equation () matrix elements of the operator,

~ 10 0 2Z m? v2p?

A +V(p,Z>, V(paz):_\/p2+22+ p2 +my + 4
between local functions N, and NN, defined in same interval A; calculated by
formula

“T T pop’op

+1
h:
(a(zk))q+p(j—1)7r+p(j_1) :_fl {%( §,q)/( §7T)/+V(p;zk) iq ;’m} 5 pdn,
+1 b o b
(0(24)) g4 p(-1),r4p-1) = f;%qd’j,r 5 pdi)-

2. If integrals do not calculated analytically, for example, like in [TTJT2], then
they have been calculated by numerical methods [9], by means of the Gauss
quadrature formulae of the order p + 1.

3. For calculations matrix elements ([9) and the corresponded derivatives of
eigenfunctions by z we used algorithm described in [3]. Starting from matching
point z,, < Zmax of the grid QZ(Z) [2min; Zmax] the calculation has been performed
using an asymptotic expansion from next section (2, ~ 20, zmax ~ 100).

4. The problem ®)-(I0) has been solved using a grid -QZ(p) [Pmin, Pmax] =
0(500)4(500)30 (the number in parentheses denotes the number of finite elements
of order p = 4 in each interval). As an example, at m = —1 and v = 10
the calculated the potential curves Ej(z), effective potentials Q;;(z), H;j(z) are
shown in Fig. [l

4 Algorithm 2 of Evaluation the Asymptotics of Effective

Potentials at Large |z| in Kantorovich Method

Step 1. In () apply the transformation to a scaled variable x

oo Ve
277 e 2y

and put A = E;(2)/(27) = A® +m/2 — Z/(v]2|) + 6\. Eigenvalue problem reads

Tr =

g 0 m2 x m Z .

- - 0| Bi(as2) = 22

8xm8x+4ax+4+ 2 \/2z+zg i(752) =0, (22)
TV v

with a normalization condition

1/ Di(w;2)%dz = 1. (23)
7 Jo
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Fig. 1. The behaviour of potential curves E;(z), effective potentials Q;;(z) and Hi;(z)
for y =10, m = —1

At Z =0 Eq. [22) takes the form

2

LoO@) =0, L) =—, o, +' 4]

and has the regular and bounded solutions at
A =n 4 (Im| +1)/2, (25)

where transverse quantum number n = N, = j —1 = 0,1,... determines the

number of nodes of the solution &0y (z) with respect to the variable z. Normal-
ized solutions of Eq. (24]), take the form

@

_a dml n! 2

1/ B0, ()8 (2)dx = S, (27)
Y Jo

where LI"(z) are Laguerre polynomials [I3)].

Step 2. Substituting notation A = X\ — A —m/2 4+ Z/(~|2|) = E;(2)/(27) —
(n+ (m+|m|+1)/2) + Z/(~|#]), and decomposition
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~|z| 7\/295_’_22 Pt Z|k7
V(k) — _< )k, (Qk;c/'l)”j:,Jer k:2k/+17 k= 1,2,...
0, otherwise,

to Eq. 22)) at Z # 0, transform it in the following form

L(n) (ixuk ><;z>:o. (28)

Step 3. Solution of equation (28)) is found in the form of the perturbation series
by inverse powers of |z|

Kmax Kmax

6\ = Z|z| FAR) @ (a Z\z\ Ep k) (g (29)

Equating coefficients at the same powers of |z|, we arrive to the system of inho-
mogeneous differential equations with respect to corrections A\*) and ¢*)
L(n)e® (z) = 0= f1,
k—1
Ln)@® (z) =Y (AEP —vEhel)(z) = fB | > 1. (30)

p=0

For solving the Eqgs. (28)) the unnormalized orthogonal basis
_o Iml m - 0
¢n+s($) = C’n|m|e 2r 2 Lln—l-ls(x) Cn|m|cn+5|m| 51.-‘,)-9 m(‘f) (31)
* b (n+s+[m)!
! = an s @ ’ d - 699/ n
)= [ Pr@t e =y S T

)

has been applied. The operators L(n) and x on the functions ®,,4 () are defined
by the relations without fractional powers of quantum numbers n and m

L(n)Ppis(z) = sPps(z), (32)
2nis(x) = —(n+ 5+ [m))Pnis—1(x) + 2(n + 5) + |m| + 1)y s(2)
—(n+s+1)Pnisia(z).

Step 4. Applying relations (32), the right-hand side f*) and solutions ®(*) (z)
of the system (B0) are expanded over basis states &, s(x)

Z b( n+s Z f n+s (33)

s=—k s=—k

Then a recurrent set of linear algebraic equations for unknown coefficients bgk)

and corrections A*) is obtained
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sb®) — ) —0 5= —k ... k.
that is solved sequentially for kK =1,2,..., knax:
L A ) T S " )
The initial conditions (23] and b\ = 5,y are followed from @4)) and 210).

Step 5. To obtain the normalized wave function éj(x; z) up to the k-th order,
the coefficient bék) are defined by the following relation:

E

—1

P
k _ 1 B (|5 P, pR=Le?)
by =9, § “P)(s|s"\bF, by =0.

T
iS]

p=1s'=p—k s=—p

As an example of output file at steps 1-5, we display nonzero coefficients (%),
b of the inverse power series @9), @) up to O(|z|~?):

A =4 (jm|+1)/2, A® =Z@2n+ |m|+1)/~%

b)) =1, b = —Zn+m))/¥% b =Zm+1)/A (34)
Step 6. In scaled variable z the relations of effective potentials Hi;(z) = Hji(2)
and Qy;(2) = —Qji(2) takes form

o0 ~

- 1 T b, (x5 2) 0D; (x; A 1 . 0P (z;
()= [T O Q=] fantiein ®T) . @)
0 0

For their evaluation the decomposition of solution Egs. (I?ZI) over the normalized

orthogonal basis @51_?_9 with the normalized coefficients bgl s

k

o (@)= Y WPl (36)
s=—k
has been applied. The normalized coefficients bn nis are calculated via bgk),
! (n+ s+ |m|)!
p® k) " 37
mrts s\ (4 m)! (n+s)! (37)

as follows from ([B3), (36) and BTI).
Step 7. In a result of substitution (Z9), [B4) in ([B5), matrix elements takes form

Emax— min(k,k—k' —t)

ij+t(2’) Z ‘Z‘ ot Z Z (k k)bn n+9b£L}:-7ticn)-&-sa

=0 s=max(—k,k' —k—t)
Kmax — min(k,k—k’—t)

Hjjii(2) = Z 2| 7= 22 > K (k= k)bl o) L (38)

k=0 =0 s=max(—k,k’ —k—t)
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Collecting of coefficients of (B8] at equal powers of |z|, algorithm leads to final
expansions of eigenvalues and effective potentials of output file

Kmax Kmax Kmax

Z\z\ kEW, Z|z| FHE, Qij(2) Z|z| QW (39)

The successful run of the above algorithm was occurs up to kmax = 16 (Run
time is 95s on Intel Pentuim IV, 2.40 GHz, 512 MB). The some first nonzero
coefficients takes form (j =n 4+ 1)

B = 29(n + (m + |m| +1)/2),
B = 27,
E® =2Z(2n + |m| + 1)/,
EY) = —37(2+ 3|m| + 6n° + [m|> + 6n|m| + 6n) /72,
B = —22°(n+ |m| + 1)/7",
Q1 =3ZVn+1y/nt|m|+1/42,
Q)| = —15ZVn+1/n+|m|+1(2n + |m| +2) /2,
Q\%, = 152Vn+1vn+2y/nt m|+1y/n+|m|+2/ (4°),
H® = 922202 + 2njm| + 2n + |m| + 1) /9%,
HUY = —902%(2n + |m| + 1)(2n° + 2n|m| 4 2n + |m| + 2) /7
HGY = 452°Vn+1y/nt [m|+1(n® + n|m| + 20 + |m| + 2)/(27°),
HY,, = ~92°Vn+1Vn+2y/ntm|+1y/nt m|+2/7%,
HY, = 9022/n+1vn+2v/n+ [m|+1y/n+|m|+2(2n + [m| + 3) /7%,
HGYy = —4522Vn+1v/n+2Vn+3v/n+m|+1y/n+ [m|+2v/n+|m|+3/(27°).

As an example, in Table 1 we show true convergence of partial sums of asymp-
totic expansions (39) of effective potentials Q;;(z) to the corresponding numer-
ical values calculated by algorithm 1, described in section 3.

5 Algorithm 3 of Evaluation the Asymptotics of Solutions
at Large |z| in Kantorovich Method

Step 1. We write the set of differential equations (I2)) at fixed values m, and € in
the explicit form for x;;, (2) = )Z;Z")(z) and 7 =1,2,..., Jmax, to = 1,2,..., N,

_d fi];;(Z) - zjﬁo (Z) - (6 - E](Z) - QZZ) Xjio (Z) + Hjj (Z)ino (Z)

- Z <_ij'(z)jz — Hjje(z) - inlj;(Z)> Xitio (%), (40

J'=13"#j



A Symbolic-Numerical Algorithm for Solving the Eigenvalue Problem 129

Table 1. Values of the partial sums ([B9) depending on kmax for m = =1, Z = 1,
z =10, v = 10. The last row contains the corresponding numerical values (n.v.).

ij Q12,107%  023,107%  Q34,107°  Q15,107% Q24,107 Q4,107
2 TAQLY 4.24264069 7.34846923 1.03923048 0 0 0

+2 70Q,” 4.17900108 7.16475750 1.00285742 1.20903811 3.18198052 0

+2 7TQY,” 4.17883137 7.16446356 1.00281585 1.20903811 3.18198052 0

+z 78QY 4.17972233 7.16857870 1.00394341 1.26266504 3.04833733 7.0000
+2 7°QY,” 4.17972824 7.16859579 1.00394680 1.26260268 3.04818460 7.0000
+2710Q4"Y 417971489 7.16850321 1.00391243 1.26342108 3.05252800 6.6850
+27 QYUY 417971474 7.16850253 1.00391224 1.26342451 3.05254060 6.6846
+2712Q4 Y 417971496 7.16850469 1.00391330 1.26340651 3.05240830 6.6950
+27 QLY 417971496 7.16850471 1.00391331 1.26340638 3.05240762 6.6950
+271QLY 417971496 7.16850466 1.00391328 1.26340679 3.05241163 6.6947
+2715Q4Y 417971496 7.16850466 1.00391327 1.26340679 3.05241166 6.6947
+2710Q4"Y 4.17971496 7.16850466 1.00391328 1.26340678 3.05241154 6.6947
(n.v.) 417971496 7.16850466 1.00391328 1.26340678 3.05241154 6.6947

where matrix elements Q;;(2) and H;; (2) have of the form (B3).

(2)

Note, that at large z, Ei(Z) =H,’ =0, i.e., the centrifugal terms are eliminated

and the longitudinal solution has the asymptotic form corresponding to zero
angular momentum solutions, or to the one-dimensional problem on a semi-axis:

xji(,(z):exl)jjfz”@io(z), e f%\ I, (41)

where w(z) = wp;, |2| +1CIn(2p;, |2|) +16;,, pi, is the momentum in the channel, ¢
is the characteristic parameter, and §;, is the phase shift. The components ¢>§Z)
satisfy the system of ordinary differential equations

(02, — 2B+ B\ = 1 (6570 py,)
= —2(Cpi, +o(k — V)pi, — zwﬁ;” — (CH+alk = 2)(C + 1k — 1))l

k Jmax

(k") (K k ") (k") (k)N (k—FK")
- (B +HJ‘ Pji, '+ > Z —2Qj5 Pi, — Hjji")bj0i,

k'=3 ji=1k'=
]max
'—1) (k—FK')
+ Z Z 2k —1-k - C)Q]] )¢(
j'=1k'=5
k= 07 ]-7 LR kmaxv ¢§101) =0 9 ¢§;,2) = 07 kmax S jmax - Z.o~ (42)

Here index of summation, j’, takes integer values, except i, and j, (' = 1,...,
Jmaxs J' # G0, §' # J)
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Step 2. From first two equations (k = 0,1) of set [@2) we have the leading

. 2 . . .
terms of eigenfunction qbﬂ , eigenvalue p; and characteristic parameter ¢, i.e
initial data for solving recurrence sequence,

80 =65, 2 =2B—E® —p, = \2E-E®, (=Z/pi,. (43)
Open channels have pl > 0, and close channels have p?o < 0. Lets there are
N, < jmax open channels, i.e. p2 >0 for i, =1,...N, and p?o < 0 for i, =

N + ]' Jmax
Step 3. Substituting @3] in [@2), we obtain the following recurrent set of alge-

braic equations for the unknown coefficients ¢;;, () for k =1,2,..., kmax:
(0) 0)y (k) _ p(k)  (K'=0,.. k=1)
(Eio - Ej )¢jio = fjio (¢j'io s Di,) (44)

that is solved sequentially for kK =1,2,..., knax:
k k), (K'=0,....k— S,
O = L1 (@ “,p%>/<E»<0>—E§O>>, i # o,
FED @0 i) = 0 o)
The successful run of the above algorithm was occurs up to kmax = 16 (Run

time is 167s on Intel Pentuim IV, 2.40 GHz, 512 MB). The some first nonzero
coefficients takes form (j =n 4+ 1)

¢§?) = bji,»

%) = 6;i,0Z(Z+wi,)/ (203,

%) = 654, [zE<3>/<4pia>—Z<Z+zpio>2<Z+2zpia>/<8p?0)],

0% = 851, FE (322 +Tup;, Z—6p? )/ (24p1)
~LZ<Z+zpio> 2(Z+2p;, ) (Z+3ps,) (485,

%) = 853, hES) ) (8pi,) — (BSV)? ) (32p3)
B (32 420up;, 2° —53p?, 22 —661p? Z+36p! ))/(96pT )
+Z(Z4p;, ) (Z+2up;, ) (Z+ 3w, )2 (Z +4ap;, ) / (384p;2)]

+2ip;, Q%) /(B —E)).

(45)

lolo"

Remarks

1. Expansion ({I]) holds true for |z, |>max(Z?/(2p; ),2Z(2i,+|m|-1)/(8vp}.)).
The choice of a new value of zy,.x for the constructed expansions of the linearly
independent solutions for p;, > 0 is controlled by the fulfillment of the Wronskian
condition with a long derivative D, = Id/dz — Q(z)

Wr(Q(2); X" (2), x(2) = (x(2))" Dax(2) = (Dax"(2))" x(2) = 21T

up to the prescribed accuracy. Here 1,, is the N,-by-N, identity matrix.
2. This algorithm can be applied also for evaluation asymptotics of solutions
in closed channels p;, = 1x;,, ki, > 0.
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Table 2. Convergence of the method for the binding energy £ = v/2 — E (in a.u.) of
even wave functions m = —1, v = 10 and «v = 5 versus the number jmax of coupled

equations (@Q)

Jmax 2p—1 (y=10)  3p_1 (y=10) 2p_1 (y=35) 3p-1 (y=25)
1 1.123 532554 (3) 0.182 190 992 (2) 0.857 495 336 (9) 0.165 082 403 (4)
2 1.125 069 513 (1) 0.182 282 868 (7) 0.859 374 058 (2) 0.165 234 428 (1)
3 1.125 280 781 (8) 0.182 294 472 (5) 0.859 641 357 (6) 0.165 253 152 (9)
4 1.125 343 075 (2) 0.182 297 825 (6) 0.859 721 942 (4) 0.165 258 606 (4)
6 1.125 381 347 (9) 0.182 299 867 (7) 0.859 772 441 (3) 0.165 261 973 (6)
8 1.125392 776 (1) 0.182 300 474 (6) 0.859 787 833 (7) 0.165 262 991 (9)
10 1.125 397 502 (9) 0.182 300 725 (2) 0.859 794 289 (0) 0.165 263 418 (0)
12 1.125 399 854 (7) 0.182 300 849 (8) 0.859 797 533 (8) 0.165 263 631 (9)
[6] 1.125 422 341 (8) 0.182 301 494 (7) 0.859 832 622 (6) 0.165 264 273 (1)

6 Applications Algorithms for Solving the Eigenvalue
Problem

The efficiency and accuracy of the elaborated SNA and of the corresponded
numerical scheme derived are confirmed by computations of eigenenergies and
eigenfunctions for the low-excited states of a hydrogen atom in the strong ho-
mogeneous magnetic field. These algorithms are used to generate an input file of
effective potentials in the Gaussian points z = z; of the FEM grid QZ(z)[Zmiﬂ =
0, zmax] and asymptotic of solutions of a set of longitudinal equations (I2)—(I8)
for the KANTBP code [5]. In Table 2] we show convergence of the method for
the binding energy £ = /2 — F (in a.u.) of the even wave functions at m = —1,
v = 10 and v = 5 versus the number jm,ax of coupled equations ([0). The cal-
culations was performed on a grid QZ(Z) = {0(200)2(600)150} (the number in
parentheses denotes the number of finite elements of order p = 4 in each interval).
Comparison with corresponding calculations given in spherical coordinates from
[16] is shown that elaborated method in cylindrical coordinates is applicable for
strength magnetic field v > 5 and magnetic number m of order of ~ 10. The main
goal of the method consists in the fact that for states having preferably a cylin-
drical symmetry a convergence rate is increased at fixed m with growing values of
v > 1 or the high-|m| Rydberg states at [m| > 150 in laboratory magnetic fields
B =6.10T (v = 2.595-107% a.u.), such that several equations are provide a given
accuracy [7].

7 Conclusion

A new effective method of calculating wave functions of a hydrogen atom in
a strong magnetic field is developed. The method is based on the Kantorovich
approach to parametric eigenvalue problems in cylindrical coordinates. The rate
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of convergence is examined numerically and illustrated by a set of typical exam-
ples. The results are in a good agreement with calculations executed in spherical
coordinates at fixed m for v > 5. The elaborated SNA for calculating effective
potentials and asymptotic solutions allows us to generate effective approxima-
tions for a finite set of longitudinal equations describing an open channel. The
developed approach yields a useful tool for calculation of threshold phenomena
in formation and ionization of (anti)hydrogen like atoms and ions in magnetic
traps [2I7] and channeling of ions in thin films [I5].

This work was partly supported by the Russian Foundation for Basic Re-
search (grant No. 07-01-00660) and by Grant 1-1402/2004-2007 of the Bulgarian
Foundation for Scientific Investigations.
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Abstract. The normal form method is widely used in the theory of
nonlinear ordinary differential equations (ODEs). But in practice it is
impossible to evaluate the corresponding transformations without com-
puter algebra packages. Here we describe an algorithm for normalization
of nonlinear autonomous ODEs. Some implementations of these algo-
rithms are also discussed.

Keywords: resonant normal form, nonlinear ordinary differential equa-
tions, computer algebra.

1 Introduction

The normal form method is based on a transformation of an ODEs system to a
simpler set called the normal form. The importance of this method for analyzing
the ODEs near stationary point has been recognized for a long time. A resonant
normal form was introduced in the fundamental paper of H. Poincaré [I], where
he considered the linear case of the form. A polynomial case of this form was
discussed by H. Dulac [2] and the infinite case by A.D. Bruno [3]. We will call
the resonant form of this kind by the Poincaré-Dulac-Bruno (PDB) normal
form. For the history of this subject see, for instance, [4]. Definitions of normal
form and normalizing transformation can be formulated in different ways for
some special cases, such as Hamiltonian systems but we restrict ourselves in this
consideration by the general case only.

Since the system MAO [5] by which the Delaney’s theory of the Moon motion
was checked many algorithms (and their implementations) were developed for
creating normal forms and corresponding transformations.

In this paper we will use the algorithm based on the approach, which was
developed by A.D. Bruno [6I7I8/9] for the PDB normal form. The important ad-
vantage of this approach is a possibility of considering a wide class of autonomous
systems in a single, easily algorithmized frame.

Another advantage of the used approach is an algorithmic simplicity of the
creation of that normal form and the corresponding transformations. We have a
direct recurrence formula for this procedure. The usage does not demand keeping
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of some large intermediate results as it is in other algorithms. The approach is
free from a necessity to solve intermediate systems of equations and from any
restrictions on low resonance cases.

The discussed implementation was originally described in [I0/T1] for the RE-
DUCE system and in [12] for the MATHEMATICA system. Unfortunately the
implementation was not presented in detail there, so this paper closes this gap.
About other implementations see, for example, [T3|14].

A normal form usage, in particular, provides a constructive way for obtaining
the approximations of local families of periodic and conditionally periodic solu-
tions in the form of power /Fourier series for real families and in the form of power
series in time dependent exponents for complex ones. It is especially important
that the problem of convergence of used transformations was considered in [67].
This circumstance allows us to hope that approximations of frequencies and cor-
responding periodic solutions families near stationary points by finite formulas
can be done with acceptable precision [I5] — [20]. Except solutions themselves we
can find also approximations of initial conditions, which initiate such periodic
solutions. I.e., we can produce some elements of a phase analysis.

It is also possible to approximate by the proposed method the non-periodic
families of solutions (”crude” case). The results are close to the results of the
Carleman linearization method. For periodic and conditionally periodic cases,
the method [21I] is a generalization of the Poincare-Lindstedt approach [22],
chapter 10. The approach was also used in the center-focus problem [23].

The normal form method is widely used for bifurcation analysis. About meth-
ods of such an investigation see, for example, [24I25]. You can see in these
books that the numerical bifurcation analysis is indeed based on the normal
form method. We can make from the lowest not vanishing coefficients of the
normal form the qualitative conclusions about the behavior of the original sys-
tem. It is sufficient to know only the lowest orders of the normal form for such
an analysis. Sometimes this job can be done by hand, but rather by computer
algebra systems [26l27/17].

By the normal form method it is possible to study the structure of the normal
form and the first integrals. By an example of the Euler—Poisson system of
equations describing the motion of a rigid body with a fixed point it was shown
that there is a sequence of necessary conditions of existence of an additional
formal first integral at different values of the parameter. Violation of any of
these conditions is enough for absence of a formal integrability of the system,
and so a local, and thus a global integrability [28/29J30131].

Below we describe the creation of the resonant normal form and corresponding
transformations.

2 Problem Formulation

Consider the system of autonomous ordinary differential equations:

x=®(x), (1)
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where x = (x1,...,z,) is a vector function of time, x def dx/dt is the time

derivative, ® = ($1,...,P,,) is a vector which is a function of x and probably of
some parameters. Such a type of equations originates from many scientific and
engineering problems where oscillations, vibrations or wave processes take place.
The main idea here is in replacing system (Il) with some “model” system having
finite order polynomial right-hand sides and transforming them to the canonical
(normal) form.

The study of systems of type () in the neighborhood of stationary point x°,
where ®(x") = 0, typically includes three preliminary steps. Firstly x is shifted
by —x° so that ®(0) = 0, i.e. 0 is the stationary point to be studied. Each
stationary point of the system is considered separately.

The second step is a reduction of the system to a model form where the vector
®(x) is approximated by a vector of polynomials. If in some neighborhood of
the stationary point ® is an analytic function of x then its power series can be
used to obtain a smooth approximation with desired precision. Often this step is
made simultaneously with a reduction of the system to its central manifold. In
any case, the right-hand sides of the model system will be polynomials without
constant terms.

The third step is the transformation of the linear parts matrix to Jordan’s
form by a complex linear change of x variables.

After these steps, system () has the form:

yi:Aiyi'FUz’yifl'Féi(Y); o1 =0, 1=1,...,n, (2)
where A = (A1,..., ) is the vector of eigenvalues of the matrix of the linear
part of the system and ® = (&q,...,®,) is a vector of polynomials of finite

degree without constant and linear terms.
For this paper, we assume that system (2] satisfies the following assumptions:

e the system is autonomous and has polynomial nonlinearities;
e 0 is a stationary point, and the system will be studied near y = O;

e the linear part of the right hand side is diagonal, and not all eigenvalues are
zero, i.e. A # 0.

Remark that the last assumption is a restriction of a current implementation
rather the approach itself. But on the other hand it is assumed that neither the
system is Hamiltonian, nor that it preserves the phase volume nor that it has
any internal symmetry.

3 The Normal Form Method
Equations (@) can be written in the form:

yi: >\1y1+yz Z fi,qu7 i:]-u"'vnu (3)
qEN;
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where we use the multi-index notation:
n
= H y] qj
j=1
with the power exponent vector q = (q1,. .., Gqn)
and the sets:
n . . . .
Ni:{qEZ tgi>—landg; >0,ifj#4, j=1,...,n},

because the factor y; has been moved out of the sum in (@]).
The normalization is done with a near-identity transformation:

yi = zi+ 2 Z hiqz%, i=1,...,n (4)
qEN;

and then we will have system (@) in the normal form:

Zlfii()(iifAzz—FzzZ giqzd, i1=1,...,n. (5)
qeN;

The important difference between (B and (&) is a restriction on the range of
the summation, which is defined by the equation:

A) =N g = 0. (6)
j=1

The h and g coefficients in {#]) and (@) are found by using the recurrence formula:

Yiq +(q, A) - Z Y. i +6y) hip-gix+Pig,  (7)
=l p+r=gq

p,relJ; N;
qeN;

where the second summation on the right-hand side is over all integer vectors
satisfying the constraint p +r = q, and @, 4 is a coeflicient of the factor z;z4
in the polynomial @; in (), arguments of which have been transformed by ().
Here ||p|| and ||r|]| < [|g]|, where HqH q1 + ...+ gn. So (@) is a recurrence
formula.

The ambiguity in (@) is usually fixed by the conventions:
hiq=0, if (q,A) =0,

)

9iq =0, if (q,A)#0,

and then the normalizing transformation is called a “basic” one.
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4 Main Algorithm

The algorithm of the calculation of g and h in [ ), (@) is based on (@) and (8]). It
is convenient to choose the representation of sets of coefficients g; 4 and h; q in
such a way that they would be combined in homogeneous subgroups where each
subgroup has the same order n, i.e. contains only terms with such vector-indexes
q = {¢;} that ||q|| = n for each 7. You can calculate the sets g and h of the next
order by using sets of g and h with smaller order only, i.e. (@) is a recurrence
formula.

The algorithm:
Let n be a dimension of the system. For its normalization till order m we are to
do:

(i). fori=1,2,...,n do:
Calculate all squared in y elements in the right-hand side nonlinearity @Z(y)
in (@), i.e., calculate the subgroup of the first-order (||q|| = 1) elements of
the set fiq in (@) and sort it into two subsets depending on the value of
scalar product (). The first set where this product is zero will be the first
order subgroup of g;, and the second set after a division by the value of the
corresponding scalar product will be the first order subgroup of h;
(ii). for k=2,3,...,m do:
(a) fori=1,2,...,n do:
calculate the subgroup of order k of the nonlinear terms @;(y) in (@) for
which the substitution y is evaluated by (@) till order k¥ — 1 and define
coefficients at monomials z;z9 as f; o;
(b) fori=1,2,...,n do:
Calculate the subgroups of g; and h; of order k by a subdivision of set
fi.q into two subsets as in step (i). After that you can supplement the
set g; till full order k and a part of the set h; without a contribution
from the first term of the right-hand side in (7).
(c) fori=1,2,...,n do:
for j=1,2,...,n do:
supplement the preliminary set of order k of h; with properly sorted
multiplications of all elements of such subgroups of h;, and g;, that
their total order, i.e. ||p + r|| = k. Not all these multiplications should
be really calculated because of the factor (p;+6; ;) is zero at some values
of j index. Before the supplement all elements above are to be divided
on the corresponding scalar products too.

A cost of the above algorithm is low in comparison with a cost of evaluation of
the right-hand side of the nonlinear system. Under such circumstances it is very
important to calculate the right-hand sides very economically, using so much as
possible the fact that we need to calculate at each step of (ii) the homogeneous
terms of @; of order k only, and all terms of lower orders are not changed during
the later operations. The problem of optimization of this evaluation is one of the
main limitations for an automation of generating codes for the right-hand side
calculation.
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5 Computer Algebra Implementation of the Normal
Form Method

The calculation of the coefficients of the normal form (@) and corresponding
transformation (@) with respect to (@) and () was implemented as the NORT
package. Earlier attempts of the author to compute sufficiently high orders of
the normal form using high level of the REDUCE language were not successful.
Because of this, the NORT package [TO/TTITH] was created. The NORT is written
in Standard LISP and contains about 2000 operators. The NORT is a package
of procedures to treat truncated multivariate formal power series in arbitrary di-
mensions. In addition to procedures for arithmetic operations with series, there
are special procedures for the creation of normal forms and procedures for sub-
stitutions, for calculations of some elementary functions (when it is possible),
for differentiating, for printing, and for inverting multivariate power series, etc.
It contains also special procedures for the calculation of Lyapunov’s values [23].
The NORT can be used as a separate program or as a REDUCE package.

Besides series, expressions in NORT can contain also non-negligible
variables (parameters). There is implemented multivariate series-polynomial
arithmetic. The complex-valued numerical coefficients of the truncated power
series-polynomials may be treated in three different arithmetics: rational, mod-
ular, floating point, and approximate rational. There are also several options
for the output form of these numbers, the output is in a REDUCE readable
form. The program uses an internal recurrence representation for its objects.
Remark that a garbage collection time for examples below was smaller than 3
% of evaluation time. This can characterize the NORT package as a program
with a good enough internal organization. Many important results described in
references were obtained by a computer with 1 Mbyte RAM only.

Unfortunately at this moment the NORT package has no friendly user inter-
face yet. So we create a package for usage with MATHEMATICA package [12].
This package works with truncated multivariate formal power series. The Poly-
nomialSeries package can be accessed at www.mathsource.com site. The existing
version is enough for a support of a normal form method. The comparison of
MATHEMATICA package with an earlier version of normal form package NORT
written in LISP demonstrates that the calculations within the MATHEMATICA
system are more flexible and convenient but are considerably slower than under
the LISP.

A key moment for a realization of the Main algorithm above and both imple-
mentations is an internal representation of formal power series. We group terms
of series in homogeneous sums in variable order, and we store the value of this
order with the corresponding sum. For example, if we have a truncated series:

Yo ys + U1 Y2 Y3+ S s+ y1 Y2 ys + Y2 U2+ yo v+ 2 yE 4y y2 y2,

then the internal representation of the above series with respect to yi,yo, y3 is

{2, 2 y3}, {3, y1 v2 ys+3 ys+v2 ¥3 1. {4, 1 ¥3 ys+uyr v2 y3+y3 v3 b (5. v v3 3 1)
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It is obvious that this form is very convenient for summation. And objects in
this representation can very efficiently be multiplied in the sense of truncated
series — for excluding from results negligible for corresponding order of trunca-
tion terms, it is enough to eliminate from the multiplied groups the terms with
common orders which are over the negligible one. For example, if we wish to
calculate a square of the above series till the 5" order we need to square only
the sum of the first two homogeneous groups above (with 2 and 3 common or-
ders), no more. One more very important advantage of such representation is
that an implementation of formulae (7)) is a realization of some kind of tensor
production as you can see from the main algorithm.

6 Conclusions

Here we can conclude that the obtaining of PDB normal forms of high order is
very useful for analysis of autonomous nonlinear ODEs.

The special choice of an internal representation allows us to build an efficient
algorithm for evaluation of the PDB normal form.
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Abstract. During the past decade, quantum information theory has at-
tracted a lot of interest because of its promise for solving problems that
are intractable otherwise. Despite of the recent advancements in under-
standing the basic principles of quantum information systems, however,
there are still a large number of difficulties to be resolved. One of the great
challenges concerns for instance the decoherence in quantum systems and
how entanglement is lost or transfered between the subsystems, if they
are coupled to their enviroment. — To overcome these difficulties, several
schemes for studying the decay of quantum states and their interaction
with an environment have been developed during recent years, including
a large variety of separability and entanglement measures, decoherence-
free subspaces as well as (quantum) error correction codes.

To support the investigation of entanglement and decoherence phe-
nomena in general N—qubit quantum systems, we recently developed
the FEYNMAN program [I], a computer-algebraic approach within the
framework of MAPLE, which facilitates the symbolic and numerical ma-
nipulation of quantum registers and quantum transformations. This pro-
gram has been designed for studying the dynamics of quantum registers
owing to their interaction with external fields and perturbations. In a
recent addition to this program [2], moreover, we now implemented also
various noise models as well as a number of entanglement measures (and
related quantities). In this lecture, I shall display the interactive use of
the program by a number of simple but intuitive examples.

To make quantum information theory alive, an active (re-) search has
been initiated during the past decade to find and explore physical sys-
tems that are suitable to produce and control the entanglement in course
of their time evolution. In atomic photoionization, for instance, we have
shown how the polarization can be transfered from the incoming photons
to the emitted photoelectrons, giving rise to a (spin-spin) entanglement
between the photoelectron and the remaining (photo-) ion. Detailed com-
putations on the entanglement as function of the energy and polarization
of the incoming light have been carried out along various isoelectronic
sequences [3]. For the two-photon decay of atomic hydrogen, moreover,
we analyzed the geometrical control of the polarization entanglement of
the emitted photons.

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 143 2007.
© Springer-Verlag Berlin Heidelberg 2007



144 S. Fritzsche

References

1. Radtke, T., Fritzsche, S.: Comput. Phys. Commun. 173, 91 (2006), ibid. 175, 145
(2005)

2. Radtke, T., Fritzsche, S.: Comput. Phys. Commun. 176, 617 (2007)

3. Radtke, T., Fritzsche, S., Surzhykov, A.: Phys. Lett. A347, 73 (2005), Phys. Rev.
AT4, 032709 (2005)



Deducing the Constraints in the Light-Cone
SU (3) Yang-Mills Mechanics Via Grobner Bases

Vladimir Gerdt!, Arsen Khvedelidze':2, and Yuri Palii'+3

! Laboratory of Information Technologies, Joint Institute for Nuclear Research,

Dubna, Moscow Region, 141980, Russia

gerdt@jinr.ru
2 Department of Theoretical Physics, A.Razmadze Mathematical Institute,
Thilisi, GE-0193, Georgia
akhved@jinr.ru
3 Institute of Applied Physics, Moldova Academy of Sciences,

Chisinau, MD-2028, Republic of Moldova

palii@jinr.ru

Abstract. The algorithmic methods of commutative algebra based on
the Grébner bases technique are briefly sketched out in the context of an
application to the constrained finite dimensional polynomial Hamiltonian
systems. The effectiveness of the proposed algorithms and their imple-
mentation in Mathematica is demonstrated for the light-cone version of
the SU(3) Yang-Mills mechanics. The special homogeneous Grébner ba-
sis is constructed that allow us to find and classify the complete set of
constraints the model possesses.

1 Introduction

The basic procedure, completion to involution [II2BIAI5IE], of systems of differ-
ential equations represents a highly nontrivial issue in view of its practical ap-
plication. Particularly, a manipulation with functions modulo a set of algebraic
relations requires an efficient algorithmization and implementation in a proper
computer algebra software. For the practical purposes of wide class of theories
and models of the contemporary theoretical and mathematical physics and es-
pecially of the degenerate Hamiltonian systems [7]-[9] the problem of completion
to involution being very topical became nowadays feasible due to the progress in
computer technologies. Our attempts to implement such an algorithmic descrip-
tion for the degenerate polynomial Hamiltonian mechanical models have been
summarized in the recent papers [10]-[14], where the method based on the most
universal algorithmic tool of commutative algebra, the well-known Gréobner bases
theory [15]-[I7], has been elaborated. Since this technique provides an effective
algorithmic instrument to verify whether a polynomial vanishes on the manifold
defined by a set of other polynomials, the Grébner bases plays the principal role
in algorithmic implementation of the basic operations of the Dirac constraint
formalism: computation and separation of constrains.
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Here we briefly sketch out this very central element of the Dirac-Bergmann-
Grobner algorithmic procedure suggested in [I0] to deal with the practically
important case of finite-dimensional degenerate polynomial Lagrangian system.
Afterwards we apply this algorithm to examine the mechanical system with a rich
set of constraints, the so-called light-cone SU(3) Yang-Mills mechanics, where
computation of constraints has not been done before.

The outline of the article is as follows. In section 2 the basic elements of
the Dirac-Bergmann-Grobner algorithm to compute and classify the constraints
are given. Then the formulation of the mechanical model, the light-cone SU(3)
Yang-Mills mechanics is presented. In section 3 the results of computation of
the complete set of constraints are given. The section 4 is devoted to the discus-
sion of the specially constructed homogeneous Grobner basis that provides our
calculations and categorization of the constraints.

2 Elements of the Dirac-Bergmann-Grobner Algorithm

The Dirac method to determine and classify constraints for degenerate Hamil-
tonian systems is easy formulate but difficult to implement at practical level of
computation when the both, number of degrees of freedom as well as the number
of free parameters of the model are sufficiently large. Here we describe a pos-
sible way to make this procedure computationally effective. We start with the
discussion of the Dirac constraint formalism for a finite dimensional degenerate
Lagrangian system aiming its algorithmic reformulation.

Consider an n-dimensional mechanical system whose configuration space is
R"™ and the Lagrangian L(q, ¢) is defined on a tangent space as a function of the
coordinates q := q1, g2, - - -, ¢» and velocities ¢ := ¢1, G2, ..., Gn -

The Lagrangian system is regular if the rank r := rank||H;;|| of the corre-
sponding Hessian function H;; := 9?L/0¢;0q; is maximal (r = n). In this case
the Euler-Lagrange equations

d /0L oL
— =0 1<i< 1
dt (8%) dq; ’ =r=n (1)
rewritten explicitly as
0*L oL
Hi;q; + =, =0
TV 8q;0¢ 7 Oqi

can be resolved with respect to the accelerations (§) and there are no hidden
constraints. Otherwise, if r < n, the Euler-Lagrange equations (and, thus, the
Lagrangian system itself) are degenerate or singular. In this case not all differ-
ential equations () are of second order, namely there are n — r independent
equations, Lagrangian constraints, containing only coordinates and velocities.
Passing to the Hamiltonian description via a Legendre transformation

oL
pi = 9 (2)



Deducing the Constraints in the Light-Cone SU(3) Yang-Mills Mechanics 147

the degeneracy of the Hessian results in the existence of n — r relations between
coordinates and momenta, the primary constraints

Pp,g)=0, 1<a<n-—r. (3)

Equations (3] define the so-called primary constraints subset (manifold, if certain
regularity conditions assumed) 21E| This definition is implicit and therefore it is
necessary to provide an effective algorithm to compute all primary constraints
describing the subset Xy .

From (@) the dynamics is constrained by the set X; and by the Dirac pre-
scription is governed by the total Hamiltonian

Hr:=Hc+ U, oV, (4)

which differs from the canonical Hamiltonian Heo(p,q) = pi¢; — L by a linear
combination of the primary constraints with the Lagrange multipliers U,.

The next step is to analyze the dynamical requirement that classical trajec-
tories remain in Xy during the evolution

. X
G = {Hr, oM} 2 0. (5)

In @) the evolutional changes are generated by the canonical Poisson brackets

with the total Hamiltonian (] and the abbreviation 21 stands for a week equality,
i.e., the right-hand side of (B]) vanishes modulo the primary constraints (3]).

The consistency condition (B), unless it is satisfied identically, may lead either
to a contradiction or to a determination of the Lagrange multipliers U, or to
new constraints. The former case indicates that the given Hamiltonian system
is inconsistent.

In the latter case when (B) is not satisfied identically and is independent of the
multipliers U, the left-hand side of (@) defines the new constraints. Otherwise,
if the left-hand side depends on some Lagrange multipliers U, the consistency
condition determines these multipliers, and, therefore, the constraints set is not
enlarged by new constraints. The subsequent iteration of this consistency check
ends up with the complete set of constraints and/or determination of some/or
all Lagrange multipliers.

The number of Lagrange multipliers U, which can be found is determined by
the rank of the so-called Poisson bracket matriz

Maﬁ :£ {¢aa ¢,3} , (6)

where Y denotes the subset of a phase space defined by the complete set of
constraints @ := (¢1,¢2,... ,dk)

! Everywhere in this paper we suppose that all constraints satisfy the so-called regu-
larity conditions (see explanations in §1.1.2 of [9]).
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2 ¢alpg)=0, 1<a<k. (7)

including all primary ¢, secondary ¢®), ternary ¢®), etc., constraints,
If rank (M) = m, then s := k —m linear combinations of constraints ¢,

Ya(p:0) = cap(p,q) 03, (8)
5

define the first-class constraints, whose Poisson brackets are weakly zero

{Ya(p, @), ¥s(p. @)} 20 1<a,B<s. 9)

The remaining functionally independent constraints form the subset of second-
class constraints .

It is worth to note here that the described method to find constraints within
the Dirac formalism represent the reformulation of completion of the initial
Hamiltonian equations to involution in another words and constraints corre-
sponds to a set of the integrability conditions [I8[T9)20].

Now the algorithmic reformulation of the above stated scheme will be de-
scribed using the ideas and the terminology of the Grobner bases theory. In
doing so, we restrict our consideration to an arbitrary dynamical system with
finitely many degrees of freedom whose Lagrangian is a polynomial in coordinates
and velocities with rational (possibly parametric) coefficients L(g, ¢) € Qlg, ¢].
Thereafter we use the standard notions and definitions of commutative alge-
bra (see, e.g., [IHITO/IT]).

Algorithm to determine the primary constraints

The primary constraints () are consequences of the polynomial relations (2)).
These relations generate the polynomial ideal in Q[p, g, ¢]

Ipqq =1d(Uiz i {pi — 0L/04i}) C Qlp,q. 4] (10)

Thereby, primary constraints ([B]) belong to the radical \/Ipyq of the elimination
ideal

Ipq=1IpgqN Qlp, ql.

Correspondingly, for an appropriate term ordering which eliminates ¢, a Grobner
basis of I, ; (denotation: GB(Ip 4)) is given by [I5/I6/17]

GB(IIMZ) = GB(Ip,q,q') N Q[p, Q] .

This means that construction of the Grobner basis for the ideal (I0) with omit-
ting elements in the basis depending on velocities and then constructing of
GB(1p,q) allows to compute the set of primary constraints. If GB(I, 4) = 0, then
the dynamical system is regular. Otherwise, the algebraically independent set ®;
of (effective) primary constraints can be found as the subset &1 C GB( /I,4)
such that

Vo(p,q) € 21+ d(p,q) 1A(P1\ {o(p,q)}) - (11)
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Verification of () is algorithmically done by computing the following normal
form: NF(¢,GB(Id(21 \ {¢})). In addition, the canonical Hamiltonian H.(p, q)
is computed as NF(p;¢; — L, GB(Ip,q4.4)). This form of H.(p,q) is used in the
next steps of the Dirac-Bergman-Grébner algorithm.

Algorithm to determine the higher constraints and to classify them

The dynamical consequences (B) of a primary constraint can also be algorithmi-
cally analyzed by computing the normal form of the Poisson brackets of the
primary constraint and the total Hamiltonian modulo /I, ). Here the La-
grange multipliers U, in (@) are treated as time-dependent functions. If the
non-vanishing normal form does not contain U,, then it is nothing else than
the secondary constraint. In this case the set of primary constraints is enlarged
by the secondary constraint obtained and the process is iterated. At the end
either the complete set @ of constraints () is constructed or some inconsistency
is detected. The detection holds when the intermediate Grébner basis, whose
computation is a part of the iterative procedure, becomes {1}.

In order to separate the set & = {¢1, ..., P} into subsets of the first and sec-
ond classes constraints the entries of Poisson brackets matrix M are evaluated as
normal forms of the Poisson brackets of the constraints modulo a Grobner basis
of the ideal generated by set @. Afterwards if the basis E = {e),... eF=™)}
of the null space (kernel) of this matrix M is known the each basis vector

e®) € E,s =1,...,k —m generates the first-class constraint of form egf)¢a .
The second class constraints are build using the basis of the m-dimensional
orthogonal complement F | , of subspace E. With the aid of these vectors
e(i) € E, ,l=1,...,m the second-class constraint are constructed as e(ll)a¢a .

Concluding we see that the constraints separation can be performed using the
linear algebra operations with the matrix M alone. Together with the Grébner
bases technique this implies full algorithmisation for computing the complete set
of algebraically independent constraints and their classification.

Implementation

The above described algorithms were implemented first in Maple [T0/14]. How-
ever, the Grobner bases routines built-in Maple are not efficient enough to
perform computation needed for the light-cone SU(3) Yang-Mills mechanics
(Sect.3.2). We also tried recent extensions of the Maple Grobner bases facilities
with the external packages Gb and Fgb created by J.C.Faugere [21]. Unfortu-
nately Gb runs for our problems even slower than the built-in package whereas
Fgb cannot deal with the parametric coefficients. By the last reason we cannot
use yetﬁ the Ginv [22] software that is a C++ module of Python and implements
the efficient involutive algorithms [6] for the construction of the involutive or/and
Grobner bases.

2 The implementation in Ginv of multivariate GCD computation that is necessary for
computation of Grobner bases with the parametric coefficients is in progress now in
collaboration with the RWTH, Aachen.
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It should be emphasized that manipulation with the parametric coefficients is
essential for the Dirac formalism due to the presence of physical parameters (e.g.
masses, coupling constants) in the initial Lagrangian, the Lagrange multipliers
in the total Hamiltonian (). Having these needs in mind we implemented the
algorithms in Mathematica whose built-in routine GroebnerBasis as well as
Groebner in Maple allows to compute parametric Grobner bases but performs
computations much faster.

3 Light-Cone Yang-Mills Mechanics

Here we apply the above described scheme to a mechanical model originated
from the Yang-Mills gauge field theory assuming a certain homogeneity of fields.
Namely, we consider the so-called light-cone Yang-Mills mechanics which differs
from the well-known instant form of Yang-Mills mechanics intensively studied
during the last twenty years for a variety of reasons, both in physics and in
mathematics (see e.g. [23]-[33]). The alternative light-cone Yang-Mills mechanics
is formulated as the light-front form version of the SU(n) Yang-Mills gauge
theory when the additional supposition of the gauge potentials dependence on
the light-cone time only is made.

The coordinate free representation of the SU(n) Yang-Mills fields action in
four-dimensional Minkowski space My, endowed with a metric n reads

1
S = 2/ tr F'AxF (12)
gO My

where go is a coupling constant and the su(n) algebra valued curvature two-form
F:=dA+ANA

is constructed from the connection one-form A. The connection and curvature,
as Lie algebra valued quantities are expanded in some basis T%

A=A"T, F=FT%. a=1,2,...,n°—1.

The metric 7,5 enters the action through the dual field strength tensor *F),, :=
é V—detn €uap FoB  with the totally antisymmetric tensor €uvaf-

To formulate the light-cone version of the SU(n) mechanics we expand the
one-form A in so-called light-cone basis

A=A, dat +A_dz™ + Apda®, k=1,2, (13)

where the basic one-forms dz* in ([3)) are dual to the vectors e4 := \}2 (eo £ e3)

tangent to the light-cone. The corresponding coordinates, light-cone coordinates
ot = (zF, 27, at) are

£._ 1
V2

and non-zero components of the metric read 94— =n_4 = —n11 = —1Mo2 = 1.

x (mO:I:x?’), axl‘:zxk, k=1,2,
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Now if the components of the connection one-form A in ([I3]) are functions of
the light-cone “time variable” z7 only

Ai :Ai(x+), Ak :Ak($+).

the classical action ([I2)) reduces to the following form
(3)

SLc =
292

/daﬂr (F¢_F{_+2F} F* — F4 Ffy) . (14)
This expression can be identified with the action of a finite dimensional model
named as light-cone Yang-Mills mechanics whose dynamics is governed by the
Lagrangian
1 a a a a a a

L:= 9 (F{_F{_ +2F} F — FLF) , (15)
Deriving (5] we fix the “renormalized” coupling constant gZ/V®) = 1 in ([d) to
simplify formulaes and use the following expression for the light-cone components
of the field-strength tensor

a 6A£i abc Ab c
F+7:: 8m++f A+A7,
o . OA%

abc Ab c
+k ax++f A+ k>
a ._ rabc b c
Fa,_ .= fobe Ab Ac

Fi=f"AVAS, i, k=1,2.

The Lagrangian (I3)) defines the SU(n) Yang-Mills light-cone mechanics with
4(n? — 1)- degrees of freedom A , Ay evolving with respect to the light-cone
time 7 := ™.

However due to the gauge invariance of the initial Yang-Mills theory and
because in the light-cone dynamics the instant time states are given at the light-
cone characteristics the corresponding evolutionary equations degenerate (see
e.g. discussion in [§],[34]): not all of them are second order with respect to the
light-cone time. Some of the Euler-Lagrange equations that follow from (T3]
represent the constraints on the variables from the extended configuration.

In the Hamiltonian description this can be seen as follows. The Legendre
transformation gives the momentum 7, canonically conjugated to A%

oL .
—im Ob L fa pabe g ge
o *= g 4o +

while defining the momenta 7 and 7% canonically conjugated to A% and A
we find the set of the primary constraints

oM =gt =0, (16)
a._ _k abc Ab pc __
Xk .—7Ta—f A7 k—O (].7)
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The presence of primary constraints affects the dynamics of the degenerate
system. The generic evolution is governed now by the total Hamiltonian

Hr = He + Ua (1)) + Vi (T)xi
where the canonical Hamiltonian reads
1 - = abc Ab c — c _k 1 a a
He = o MaTa — feoe A% (A;Tra —|—A,;7ra) + 2F12F127

and U, (1) and VZ(7) are the Lagrange multipliers.
Using the total Hamiltonian and the fundamental canonical Poisson brackets

{A?t’ﬂ-bi}:(sgv {szﬂll)}:(sfcél?’

the dynamical self-consistence of the primary constraints (I6]) should be checked

out. From the requirement of conservation of the primary constraints 90((11) we
see that

0= = {x}, Hy} = £ (AP m, + Ahmh) (18)

while the same procedure for the primary constraints xj gives the following
self-consistency conditions

0=x%={x}%, He}—2fbcA® ye. (19)

It is straightforward to check that the consistency conditions (I8) define the

n? — 1 secondary constraints @5

<p((12) = fope (Ab_wg + AZWf) =0 (20)
which obey the su(n) algebra

(2)}

(¢, 0, @

- fabc P
However, the further analysis of the consistency conditions (9] represents
not so easy tractable issue. First of all, the number of Lagrange multipliers that
can be determined from (I9) depends on the rank of the structure group. This
can bee seen from the non-vanishing Poisson brackets between constraints x{

{xi x5} = 248 (21)

The simplest case of the special unitary group of rank 1, the SU(2) group, has
been analyzed in our previous papers. The constraints analysis of the SU(2)
model including their separation into the first and second class can be found in
[TTUT2UT3]. Below we only state these results and then discuss in more details the
model with the first non-trivial rank 2 structure group, the SU(3) Yang-Mills
light-cone mechanics.
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3.1 The SU(2) Structure Group

For the su(2) algebra we use the standard Pauli matrices o1, 09, 03 providing the
structure constants as the totally antisymmetric three dimensional Levi-Civita
symbol: fabc — 6abc7 6123 —1.

According to the equations ([6) and (I7), there are (22 —1)+ (22 —-1)x2 =9
primary constraints 9053) and x§%. From the consistency condition (IJ)) for the
primary constraints x¢ the following picture stands out

e Apart from the easy recognizable abelian constraints 7w} and non-abelian

first-class constraints 90512) , (20), there are two more constraints absent in

the instant form of SU(2) Yang-Mills mechanics
Ui = ALXG

Here A® is the null vector of the Poisson brackets Cyp = €apcA¢ in 21I).
e The remaining four “orthogonal” constraints

X5, = xp — A% (Ab_XZ) )
are the second-class and satisfy the relations

b b
{xi 7XjJ_} =2 A% by,
b be e
{<Pg2) XLt =€ XL -
Further analysis shows that apart from the secondary Gauss law constraints
2 there are no new constraints. Indeed, the abelian constraints ¥; do not create
new ones

(i, Hr} = —A8e® 4710 x¢ + eanc AT ALYG = 0. (22)

The consistency condition (I9) for the “orthogonal” constraints x¢ , allows to
determine the corresponding four Lagrange multiplier V| (7) and therefore sum-
marizing, the SU(2) light-cone Yang-Mills mechanics possesses 8 functionally
independent first-class constraints cpgl)7z/)k7 90((12) and 4 second-class constraints
XL

3.2 The SU(3) Structure Group

The algebraic properties of the su(3) algebra are encoded in the two independent
set the skew-symmetric f . and symmetric dgpe structure constants. For the basis
usually used in physical applications—the Gell-Mann basis—they are listed in the
Appendix.

Since the rank of the su(3) algebra is two, the null space of the matrix Cyp =
fapcAC is 2-dimensional. It can be spanned by two null-vectors, one linear and
another one quadratic in the coordinates

eV =42 e® :=dy. A% A .
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Using vectors ei? we decompose the set of 2 x (32—1) = 16 primary constraints

X as
Xi = (XiL%issi) s (23)

where
dii=eIxg, a=elIx (24)

The decomposition ([Z3) turn to be very useful owing to the special Poisson
brackets relations for the decomposition components

{Xzawi}:()v {Xz7§i}:0a {wiagk}zoa {wlawj}zoa {QL‘,QC}:O.

The consistency conditions ([I9) allow to find the corresponding Lagrange
multipliers Vi | and to get the expressions modulo primary constraints

{4, Hp} = —A%(? + primary constraints, (25)
{si, Hr} = dabcA?FEkak -2 dabcA‘iAé’cpg) + primary constraints.

According to the upper equalities (28), the constraints 1; do not give rise to new
secondary constraints. However, the second equation (20]) states that there are
two more new secondary constraints

Ci = dabcA?FEkak . (26)

The new constraints (; obey the following relations:

{C’L 5 Cj} = Oa
1
{3, &} = 6ij dapeA” (FP ) x5 — 9 AP o))
{§i7 Cj} = _61']' dabcdcquciAb_kang . (27)

Evaluation of the right hand side in the last equations (27 by using the Grobner
basis technique (details of the basis used are given in the subsequent Sect. H])
modulo all known constraints shows that the further search for the ternary con-
straints terminates and from the consistency condition

(G, Hry Z {6, Ho} +{G ) Vs (28)

one can fix two unknown functions V, entering the decomposition for the La-
grange multipliers V¢ = (Vk‘l 7ka Ve ) .

Therefore we can now finally conclude with the statement about the complete
set of constraints for the light-cone SU(3) Yang-Mills mechanics. The complete
set of constraints consists of 34 constraints, and among them there are

e 8+ 842 =18 first-class constraints: 74, 90512) and v ,
® 2X6+242=16 second-class constraints: x¢, ,sx and (x .

3 The X stands here for the constraint manifold defined by the primary and secondary
constraints.
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It is worth to note here that these results are based on the tedious calcula-
tion of the Poisson bracket relations and their subsequent evaluation modulo
the constraint functions using the specially constructed Grobner basis. At the
present moment, to the best of our knowledge, there is no way to overpass these
straightforward calculations with a high computational complexity.

4 Computation of the Grobner Basis

The goal of this section is to discuss certain properties of a Grobner basis used
in the calculation of the light-cone SU(3) Yang-Mills mechanics and describe
some computational aspects of its construction.

The actual calculations were performed using the the computer algebra system
Mathematica (version 5.0) running on the machine 2xOpteron-242 (1.6 Ghz) with
6Gb of RAM. For the simplest nontrivial case of the SU(n) light-cone mechanics
having the structure group SU(2) we used the built-in-function GroebnerBasis
with monomial order DegreeReverseLexicographic. However, for the SU(3)
group due to substantial increase