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Preface

The outstanding feature of this CASC Workshop is that this is the tenth work-
shop in the series started in 1998. The general idea of this workshop was to bring
together people working in the areas of computer algebra systems(CASs), com-
puter algebra methods and algorithms, and various CA applications in natural
sciences and engineering.

The nine earlier CASC conferences, CASC 1998, CASC 1999, CASC 2000,
CASC 2001, CASC 2002, CASC 2003, CASC 2004, CASC 2005, and CASC
2006, were held, respectively, in St. Petersburg, Russia, in Munich, Germany,
in Samarkand, Uzbekistan, in Konstanz, Germany, in Crimea, Ukraine, in Pas-
sau, Germany, in St. Petersburg, Russia, in Kalamata, Greece, and in Chişinău,
Moldova, and they proved to be successful.

Since 1998, the topics of papers published in the CASC proceedings accounted
both for the development of new excellent computer algebra systems and for
expanding the scopes of application of CA methods and techniques. The present
volume of the proceedings of CASC 2007 continues this tradition. Among the
traditional topics, there are studies in polynomial and matrix algebra, quantifier
elimination, and Gröbner bases.

One of the fruitful areas of the application of CA methods and systems is the
derivation of new analytic solutions to differential equations, and several papers
deal with this topic.

The application of CASs to stability investigation of both differential equa-
tions and difference methods for them is also the subject of a number of papers.

Several papers are devoted to the application of computer algebra methods
and algorithms to the derivation of new mathematical models in biology and in
mathematical physics.

In addition to the accepted submissions, this volume also includes two invited
papers. The paper by F. Winkler and E. Shemyakova (RISC, Linz) addresses
the theme of extending the range of analytically solvable PDEs with the aid of
symbolic and algebraic methods. The key technique used here is the factorization
of a differential operator. The authors have introduced the notion of obstacle for
the factorization of a differential operator, i.e., conditions preventing a given
operator from being factorizable.

The other invited lecture, by S. Fritzsche (Max-Planck Institute for Nuclear
Physics, Heidelberg), is devoted to the problem of exploring decoherence and
entanglement phenomena in quantum information theory. The author presents
his Maple-based Feynman program, which was developed recently to support
the investigation of the above phenomena. One of the applications presented is
the atomic photoionization, where the author shows how the polarization can
be transferred from the incoming photons to the emitted photoelectrons, giving
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rise to a (spin-spin) entanglement between the photoelectron and the remaining
(photo-)ion.

All the papers contained in this volume were accepted by the Program Com-
mittee after a thorough reviewing process.

The CASC 2007 workshop was supported financially by a generous grant from
the Deutsche Forschungsgemeinschaft (DFG). Our particular thanks are due to
the members of the CASC 2007 Local Organizing Committee at the University
of Bonn: Andreas Weber (Computer Science Department) and Joachim von zur
Gathen (B-IT), who ably handled local arrangements in Bonn. We are grateful
to W. Meixner for his technical help in the preparation of the camera-ready
manuscript for this volume.

July 2007 V.G. Ganzha
E.W. Mayr

E.V. Vorozhtsov
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Analytic Solutions of Linear Difference

Equations, Formal Series, and Bottom
Summation

S.A. Abramov1,� and M. Petkovšek2,��

1 Russian Academy of Sciences, Dorodnicyn Computing Centre,
Vavilova 40, 119991, Moscow GSP-1, Russia

sabramov@ccas.ru
2 University of Ljubljana, Faculty of Mathematics and Physics,

Jadranska 19, SI-1000 Ljubljana, Slovenia
marko.petkovsek@uni-lj.si

Abstract. We consider summation of consecutive values ϕ(v), ϕ(v +1),
. . . , ϕ(w) of a meromorphic function ϕ(z) where v, w ∈ ZZ. We assume
that ϕ(z) satisfies a linear difference equation L(y) = 0 with polynomial
coefficients, and that a summing operator for L exists (such an operator
can be found – if it exists – by the Accurate Summation algorithm, or
alternatively, by Gosper’s algorithm when ord L = 1).

The notion of bottom summation which covers the case where ϕ(z)
has poles in ZZ is introduced.

1 Introduction

Similarly to [8,3,5,1], this paper is concerned with the problem of summing the
elements of a P -recursive sequence f(k), k ∈ ZZ, i.e., a sequence which satisfies
a linear difference equation with polynomial coefficients.

Let Ek be the shift operator such that Ek(f(k)) = f(k+1) for sequences f(k)
where k ∈ ZZ. Let

L = ad(k)Ed
k + · · · + a1(k)Ek + a0(k) ∈ C(k)[Ek]. (1)

We say that an operator R ∈ C(n)[Ek] is a summing operator for L if

(Ek − 1) ◦ R = 1 + M ◦ L (2)

for some M ∈ C(k)[Ek]. It is easy to see that if there exists a summing operator
for L, then there also exists one of order < d (simply replace R by its remainder
when divided by L from the right). Hence we can assume w.l.g. that ordR =
ordL − 1 = d − 1:

R = rd−1(k)Ed−1
k + · · · + r1(k)Ek + r0(k) ∈ C(k)[Ek]. (3)

� Partially supported by RFBR under grant 07-01-00482-a.
�� Partially supported by ARRS under grant P1-0294.

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 1–10, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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If a summing operator exists, then it can be constructed by the Accurate Sum-
mation algorithm [3] or, when d = 1, by Gosper’s algorithm [8]. In those cases
where R ∈ C[k, Ek] exists, equality (2) gives an opportunity to use the discrete
Newton-Leibniz formula

w−1∑

k=v

f(k) = g(w) − g(v) (4)

for all integers v < w, and for any sequence f such that L(f) = 0, taking
g = R(f).

However, it was shown in [5] that if R has rational-function coefficients which
have poles in ZZ, then this formula may give an incorrect result (see Example 5
of the present paper). This gives rise to defects in many implementations of
summation algorithms. In [5,1] a way was proposed to construct a basis for the
space WL,R of all solutions of L(y) = 0 for which (4) is valid for all integers
v < w. It was also proved that dimWL,R > 0 in the case d = 1.

In the present paper we give a new sufficient condition for the correctness
of definite summation by Gosper’s algorithm and by the Accurate Summation
algorithm.

In Section 3 below we prove that if a summing operator exists for L with
ordL = d, then dimWL,R > 0 regardless of the value of d.

In Section 4 we suppose that L acts on analytic functions:

L = ad(z)Ed
z + · · · + a1(z)Ez + a0(z) ∈ C(z)[Ez], (5)

where Ez(ϕ(z)) = ϕ(z +1) for analytic functions ϕ(z) where z ∈ C. We consider
the summing operator (if it exists) in the form

R = rd−1(z)Ed−1
z + · · · + r1(z)Ez + r0(z) ∈ C(z)[Ez].

Let ϕ(z) be a meromorphic solution of L(y) = 0. It turns out that if ϕ(z) has
no pole in ZZ, then R(ϕ)(z) has no pole in ZZ as well, and we can use (4) to
sum values ϕ(k) for k = v, v + 1, . . . , w. This follows from a stronger statement
also proved in Section 4. The fact is that even if ϕ(z) has some poles in ZZ, the
summation task can nevertheless be performed correctly. For any k ∈ ZZ the
function ϕ(z) can be represented as

ϕ(z) = ck,ρk
(z − k)ρk + ck,ρk+1(z − k)ρk+1 + . . .

with ρk ∈ ZZ and ck,ρk
�= 0. If L(ϕ) = 0, then there exists the minimal element

ρ in the set of all ρk, k ∈ ZZ. We associate with ϕ(z) the sequence f(k) such
that f(k) = ck,ρk

if ρk = ρ, and f(k) = 0 otherwise. Then the sequence f(k)
satisfies the equation L(y) = 0, if we use Ek instead of Ez in L. We associate a
sequence g(k) with R(ϕ) in a similar way, and the value of ρ for R(ϕ) will be
the same as for ϕ. Now formula (4) is correct. We call this type of summation
bottom summation.

Some important auxiliary statements (Section 2) on sequences of power series
are based on the idea of the ε-deformation of a difference operator which was
first used by M. van Hoeij in [7]; later this idea was used in [4] and in [2] as well.
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2 Series-Valued Sequences

We start with some notations and definitions. Let ε be a variable (rather than
a “small number”). As usual, C[[ε]] is the ring of formal power series in ε and
C((ε)) = C[[ε]][ε−1] is its quotient field (the field of formal Laurent series in ε).

If s ∈ C((ε)) \ {0} then we define the valuation of s in the following way:

ν(s) = − min {m | m ∈ ZZ, εms ∈ C[[ε]]},

in addition we set ν(0) = ∞. If s ∈ C((ε)), m ∈ ZZ then [εm]s is the coefficient of
εm in the series s, and [ε∞]0 = 0. It follows from the definition of the valuation
that if s, t ∈ C((ε)) then

ν(st) = ν(s) + ν(t), [εν(st)](st) = ([(εν(s)]s)([(εν(t)]t), (6)

and
ν(s + t) ≥ min{ν(s), ν(t)}. (7)

If K is a ring, then KZZ denotes the ring of all maps ZZ → K, i.e., the
ring of all two-sided K-valued sequences. Note that the operator Ek is a ring
automorphism of KZZ .

If S ∈ C((ε))ZZ , then ν(S) denotes the sequence in ZZZZ whose kth element is
ν(S(k)). If m ∈ ZZ, then [εm]S denotes the sequence in CZZ whose kth element
is [εm](S(k)). We say that S is of bounded depth if the sequence ν(S) is bounded
from below, i.e., there exists

m = min
k

ν(S(k)). (8)

If S is of bounded depth, then m in (8) is the depth of S. In this case the bottom
of S, which is a sequence in CZZ , is defined by

bott(S) = [εm]S.

An operator Λ ∈ C((ε))ZZ [Ek] of the form

Λ = SdE
d
k + · · · + S1Ek + S0, S0, S1, . . . , Sd ∈ C((ε))ZZ , (9)

defines a map C((ε))ZZ → C((ε))ZZ where (ΛS)(k) =
∑d

j=0 Sj(k)S(k + j). If
each sequence Sj has bounded depth mj for j = 0, 1, . . . , d, then we say that Λ
is of bounded depth m = min0≤j≤d mj . In this case the bottom of Λ is

bott(Λ) =
d∑

j=0

([εm]Sj)E
j
k ∈ CZZ [Ek].

Proposition 1. Let Λ be an operator of the form (9), of bounded depth. Let
S ∈ C((ε)) satisfy Λ(S) = 0. If for all but finitely many k ∈ ZZ we have

ν(S0(k)) = ν(Sd(k)) = min
0≤j≤d

ν(Sj(k)), (10)

then S is of bounded depth and Λ̃(bott(S)) = 0, where Λ̃ = bott(Λ).
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Proof. Fix k ∈ ZZ and i ∈ {0, 1, . . . , d}. From Λ(S) = 0 it follows that

ν(Si(k)S(k + i)) = ν

⎛

⎝−
∑

0≤j≤d, j �=i

Sj(k)S(k + j)

⎞

⎠ ,

so by (6) and (7) we have

ν(Si(k)) + ν(S(k + i)) ≥ min
0≤j≤d

j �=i

ν(Sj(k)) + min
0≤j≤d

j �=i

ν(S(k + j)). (11)

Assume that ν(Si(k)) = min0≤j≤d ν(Sj(k)). Then it follows from (11) that
ν(S(k + i)) ≥ min 0≤j≤d

j �=i
ν(S(k + j)). Specializing this to i = 0 and i = d and

using (10) we obtain that

ν(S(k)) ≥ min
1≤j≤d

ν(S(k + j))

and
ν(S(k + d)) ≥ min

0≤j≤d−1
ν(S(k + j))

for all but finitely many k ∈ ZZ. Therefore, S is of bounded depth. The equality
Λ̃(bott(S)) = 0 now follows from (6). �	

Example 1. Let

Λ = S1Ek + S0, S1(k) = k + 1 + ε, S0(k) = −k − ε

and

S(k) =
{− 1

ε , if k = 0,∑∞
i=0

(
− 1

k

)i+1
εi, otherwise.

Then S1(k)S(k + 1) = −S0(k)S(k) = −1 for all k, and Λ(S) = 0 as a conse-
quence. The depth of S is −1.

We see that

bott(S)(k) =
{

−1, if k = 0,
0, otherwise,

and bott(Λ) = (k + 1)Ek − k. It is easy to see that (k + 1)f(k + 1) − kf(k) = 0,
where f(k) = bott(S)(k); so Λ̃(bott(S)) = 0, where Λ̃ = bott(Λ).

3 When a Summing Operator Exists

If ϕ(z) ∈ C(z), then we write ϕ̂(k) for the sequence ϕ(k + ε), k ∈ ZZ, of rational
functions expanded into Laurent series about ε = 0. We associate with every
operator

N = bl(z)El
z + · · · + b1Ez + b0(z) ∈ C(z)[Ez]

the operator

N̂ = b̂l(k)El
k + · · · + b̂1(k)Ek + b̂0(k) ∈ C((ε))ZZ [Ek]

which acts on sequences from C((ε))ZZ .
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Proposition 2. Let L ∈ C[z, Ez]. Assume that R ∈ C(z)[Ez ] is a summing
operator for L. Let S ∈ C((ε))ZZ be such that L̂(S) = 0. Then

(Ek − 1)(R̂(S)) = S. (12)

Proof. By (2), there is an operator M ∈ C(z)[Ez ] such that

(Ez − 1) ◦ R = 1 + M ◦ L. (13)

The map N 
→ N̂ is a ring homomorphism from C(z)[Ez] to C((ε))ZZ [Ek]. There-
fore, (13) implies

(Ek − 1) ◦ R̂ = 1 + M̂ ◦ L̂.

Applying both sides of this equality to S, we obtain (12). �	

Proposition 3. Let L ∈ C[z, Ez], and let R ∈ C(z)[Ez ] be a summing operator
for L. Let S ∈ C((ε))ZZ be such that L̂(S) = 0. Then depth(R̂(S)) = depth(S),
and

(Ek − 1)(bott(R̂(S))) = bott(S). (14)

Proof. It follows from (12) that depth(R̂(S)) ≤ depth(S). To prove equality, we
distinguish two cases.

1. depth(R̂(S)) = ν(R̂(S)(k)) for all k ∈ ZZ.
Assume that depth(R̂(S)) < depth(S). Then bott(R̂(S)) is a non-zero
constant sequence. However, since R has rational coefficients, there exists
k0 ∈ ZZ such that for all k ≥ k0, the valuation of any coefficient of R̂ is
non-negative and, as a consequence,

ν(R̂(S)(k)) ≥ min
0≤i≤ord R

ν(S(k + i)) ≥ depth(S) > depth(R̂(S))

for all k ≥ k0. Then bott(R̂(S))(k) = 0 for all k ≥ k0. Hence bott(R̂(S))
is not a non-zero constant sequence. This contradiction implies that
depth(R̂(S)) = depth(S).

2. depth(R̂(S)) = ν(R̂(S)(k)) < ν(R̂(S)(k + 1)) or depth(R̂(S)) =
ν(R̂(S)(k)) > ν(R̂(S)(k − 1)), for some k ∈ ZZ.
By (12), also in this case depth(R̂(S)) = depth(S).

Now it follows from (12) that (14) is valid. �	

Theorem 1. Let L ∈ C[z, Ez], ordL = d, and let

R = rd−1(z)Ed−1
z + · · · + r1(z)Ez + r0(z) ∈ C(z)[Ez]

be a summing operator for L. Denote by V the set of all the poles of
r0(z), r1(z), . . . , rd−1(z). Then there exist non-zero f, g ∈ CZZ such that

(i) L(f(k)) = 0 for all k ∈ ZZ,
(ii) g(k) = rd−1(k)f(k+d−1)+· · ·+r1(k)f(k+1)+r0(k)f(k) for all k ∈ ZZ\V ,

and
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(iii) the discrete Newton–Leibniz formula

w−1∑

k=v

f(k) = g(w) − g(v)

is valid for all integer v < w.

Proof. Pick any non-zero U1, . . . , Ud ∈ C((ε)), and using L̂ find a sequence S ∈
C((ε))ZZ such that S(i) = Ui, i = 1, 2, . . . , d, and L̂(S) = 0. So there exists a non-
zero sequence S such that L̂(S) = 0. Write f = bott(S), g = bott(R̂(S)). Then
(iii) is valid by Proposition 3, and (i) is valid since L has polynomial coefficients.
Finally, for all k /∈ V we have g(k) = bott(R̂(S))(k) = R(bott(S))(k) = R(f)(k),
so (ii) is valid. �	

4 The Analytic Case

In the rest of this paper we assume that the sequences under consideration are
defined on an infinite interval I of integers, where either I = ZZ, or

I = ZZ≥l = {k ∈ ZZ | k ≥ l}, l ∈ ZZ.

It is easy to see that Propositions 1 – 3 remain valid if we consider sequences
defined on ZZ≥l, and define the operators ZZ and bott with respect to ZZ≥l

instead of with respect to ZZ.
Let U be an open subset of C containing I, such that z ∈ U ⇒ z + 1 ∈ U .

Denote by M(U) the set of functions which are meromorphic on U . We associate
with ϕ ∈ M(U) a sequence ϕ̂ ∈ C((ε))ZZ whose kth element, k ∈ I, is a (formal)
series obtained by expanding ϕ(ε + k) into Laurent series at ε = 0.

Proposition 4. Let L ∈ C[z, Ez], and let ϕ ∈ M(U) satisfy L(ϕ) = 0 on U .
Then L̂(ϕ̂) = 0 everywhere on ZZ, the sequence ϕ̂ ∈ C((ε))ZZ is of bounded depth,
and L̃(bott(ϕ̂)) = 0 everywhere on ZZ, where L̃ = bott(L̂).

Proof. This follows from the trivial fact that the Laurent series of the zero
function has only zero coefficients, and from Proposition 1. �	

Corollary 1. If a0, a1, . . . , ad ∈ C[z] then bott(L̂) = ad(k)Ed
k + · · ·+ a1(k)Ek +

a0(k). If in addition S ∈ C((ε))ZZ is such that L̂(S) = 0, then L(bott(S)) = 0. In
particular, if ϕ ∈ M(U) is such that L(ϕ) = 0 everywhere on U except possibly
on a set of isolated points, then L(bott(ϕ)) = 0 everywhere on ZZ.

Example 2. In Example 1 we used, in fact, L = (z+1)Ez−z, U = C, ϕ(z) = − 1
z ,

Λ = L̂, S = ϕ̂.
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Theorem 2. (On the bottom summation.) Let L ∈ C[z, Ez], and let R ∈
C(z)[Ez] be a summing operator for L. Let ϕ ∈ M(U) satisfy L(ϕ) = 0 on
U , and let ψ = R(ϕ). Then the bottom summation formula

w−1∑

k=v

bott(ϕ̂)(k) = bott(ψ̂)(w) − bott(ψ̂)(v) (15)

is valid for any v < w, v, w ∈ I. In particular, if ϕ has no pole in ZZ (i.e.,
depth(ϕ̂) = 0), then the function ψ = R(ϕ) ∈ M(U) has no pole in ZZ, and the
discrete Newton–Leibniz formula

w−1∑

k=v

ϕ(k) = ψ(w) − ψ(v) (16)

is valid for any v < w, v, w ∈ I.

Proof. The statement follows from Propositions 4 and 3. �	

Consider some known examples in the context of Theorem 2.

Example 3. The function ϕ(z) = zΓ (z+1) satisfies the equation L(y) = 0 where
L = zEz − (z +1)2. We have R = 1

z , ordR = 0, and ψ(z) = R(ϕ)(z) = Γ (z +1).
Evidently ϕ(z) has finite values when z = 0, 1, . . ., and has simple poles when
z = −1, −2, . . .. If we consider I = ZZ then depth(ϕ̂) = depth(ψ̂) = −1 and

bott(ϕ̂)(k) =

{
(−1)k+1k
(−k−1)! , if k < 0,

0, if k ≥ 0,

bott(ψ̂)(k) =

{
(−1)k+1

(−k−1)! , if k < 0,

0, if k ≥ 0.

As a consequence of (15) we have

w−1∑

k=v

(−1)kk

(−k − 1)!
=

(−1)w

(−w − 1)!
− (−1)v

(−v − 1)!

for any v < w ≤ 0, or equivalently

w−1∑

k=v

(−1)kk

(k − 1)!
=

(−1)w+1

(w − 2)!
− (−1)v+1

(v − 2)!

for any 1 ≤ v < w.
If I = ZZ≥0 then depth(ϕ̂) = depth(ψ̂) = 0, and by (16) we have∑w−1
k=v kΓ (k + 1) = Γ (w + 1) − Γ (v + 1) for any 0 ≤ v < w or, equivalently,∑w−1
k=v k · k! = w! − v!.
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Example 4. The rational function ϕ(z) = 1
z(z+1) satisfies the equation L(y) = 0

where L = (z + 2)Ez − z. We have R = −z − 1, and ψ(z) = R(ϕ)(z) = − 1
z . If

we consider I = ZZ then depth(ϕ̂) = depth(ψ̂) = −1 and

bott(ϕ̂)(k) = δ0,k − δ−1,k,

bott(ψ̂)(k) = −δ0,k,

where δ is the Kronecker delta. A simple direct check shows that (15) is valid.
If I = ZZ≥1 then depth(ϕ̂) = depth(ψ̂) = 0, and by (16) we have∑w−1
k=v

1
k(k+1) = − 1

w + 1
v for any 0 ≤ v < w.

The following example demonstrates a conflict between combinatorial and ana-
lytic definitions of the symbol

(
p
q

)
.

Example 5. Consider the hypergeometric sequence

t(k) =

(
2k−3

k

)

4k
(17)

which satisfies the equation 2(k + 1)(k − 2)t(k + 1) − (2k − 1)(k − 1) = 0. It
has been noticed in [5] that even though Gosper’s algorithm succeeds on this
sequence, producing R(k) = 2k(k+1)

k−2 , and t(k) is defined for all k ∈ ZZ, the
discrete Newton–Leibniz formula

w−1∑

k=0

t(k) = R(w)t(w) − R(0)t(0) =
2w(w + 1)

(
2w−3

w

)

(w − 2)4w
(18)

is not correct. If we assume that the value of
(
2k−3

k

)
is 1 when k = 0 and −1

when k = 1 (as is common practice in combinatorics) then the expression on the
right gives the true value of the sum only at w = 1. However, assume that the
value of

(
2k−3

k

)
is defined as

lim
z→k

Γ (2z − 2)
Γ (z + 1)Γ (z − 2)

. (19)

This limit exists for all k ∈ ZZ, but

lim
z→0

Γ (2z − 2)
Γ (z + 1)Γ (z − 2)

=
1
2

�= 1

and

lim
z→1

Γ (2z − 2)
Γ (z + 1)Γ (z − 2)

= −1
2

�= −1.

Set

ϕ(z) =
Γ (2z − 2)

Γ (z + 1)Γ (z − 2)4z
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and

ψ(z) =
2z(z + 1)

z − 2
ϕ(z).

Then formula (16) gives the correct result

w−1∑

k=0

Γ (2k − 2)
Γ (k + 1)Γ (k − 2)4k

=
2w(w + 1)Γ (2w − 2)

(w − 2)Γ (w + 1)Γ (w − 2)4w
(20)

for all w ≥ 1, provided that the values of the summand and of the right-hand
side are defined by taking appropriate limits.

Note that if αk0 + β is a non-positive integer, then we can often avoid a direct
computation of limits using the asymptotic equality

Γ (αz + β) ∼ (−1)αk0+β

(−αk0 − β)! · α · (z − k0)
, z → k0,

instead. If α �= 0 and − β
α is an integer γ, then Γ (αz + β) has integer poles at

γ, γ − 1, . . . if α > 0 and γ, γ + 1, . . . if α < 0.
The following example is related to the case ordL > 1.

Example 6. For the operator L = (z − 3)(z − 2)(z + 1)E2
z − (z − 3)(z2 − 2z −

1)Ez − (z − 2)2 there exists the summing operator

R = zEz +
1

z − 3

([5]). By [6] the equation L(y) = 0 has solutions holomorphic in the half-plane
Re z > 2. Denote by ϕ(z) an arbitrary solution of this kind. By Theorem 2,
formula (16) must be correct for the case I = ZZ≥3 in spite of the fact that one of
the coefficients of R has a pole at z = 3. This implies that ϕ(z) vanishes at z = 3.
This can be easily confirmed by the substitution of z = 3 into L(ϕ) = 0, which
results in −ϕ(3) = 0. The algorithm from [4] yields ϕ(z) = (ϕ(4) + 4ϕ(5))(z −
3) + O((z − 3)2), and formula (16) gives the correct result for 3 ≤ v < w.

5 Conclusion

Indiscriminate application of the discrete Newton–Leibniz formula to the out-
put of Gosper’s algorithm or of the Accurate Summation algorithm in order to
compute a definite sum can lead to incorrect results. This can be observed in
many implementations of these algorithms in computer algebra systems.

In the present paper it is shown, in particular, that such undesirable phenom-
ena cannot occur if the elements of the sequence under summation are the values
ϕ(k), k ∈ ZZ, of an analytic function ϕ(z), which satisfies (in the complex plane
C) the same difference equation with polynomial coefficients as does the original
sequence (at integer points).
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A practical consequence of this result is as follows. If the conditions formulated
above are satisfied, then a computer-algebra-system user can be sure that the
obtained sum was computed correctly.

On the more theoretical side, if ϕ(z) mentioned above has some poles at
integer points, then one can nevertheless find the sum of a sequence which,
however, is not the sequence of values of ϕ(k), k ∈ ZZ, but is associated with
ϕ(z) in a natural way. This can yield an interesting (and, probably, unexpected)
identity. We call this sequence associated with ϕ(z), the bottom of ϕ(z). If ϕ(z) is
defined for all z ∈ ZZ then its bottom coincides with the sequence ϕ(k), k ∈ ZZ.
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Abstract. This paper is a review of results on computational methods
of linear algebra over commutative domains. Methods for the following
problems are examined: solution of systems of linear equations, com-
putation of determinants, computation of adjoint and inverse matrices,
computation of the characteristic polynomial of a matrix.

1 Introduction

Let R be a commutative domain with identity, K the field of quotients of R.
This paper is devoted to the review of effective matrix methods in the domain
R for a solution of standard linear algebra problems. The problems are: solving
linear systems in K, computing the adjoint and inverse matrix, computing the
matrix determinant and computing the characteristic polynomial of a matrix.

The standard used to tackle these problems in commutative domain R consists
of the using the field of fractions K of this domain. The ring R may be canonically
immersed in the field K. To solve a problem in the commutative domain any
algorithm that is applicable over the field of fractions of this domain you can be
applied.

Unfortunately this way results in algorithms with suitable complexity only in
the case where the cost of operations in the field does not depend on the value
of the operands. As an example consider the finite fields. But in the general case
the cost of operations in the field depends on the value of the operands. More
over this cost, in general, grows very quickly. For example, Gauss’ method in the
ring of integer numbers results in an algorithm that has exponential growth of
complexity — instead of cubic.

So the main aim in commutative domains is to construct algorithms with
controlled intermediate results.

The algorithms presented here have two main features:

- The intermediate elements in the algorithms are minors of the initial matrix.
So the growth of these elements is bounded by the maximal value of the minors
of the initial matrix.
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- With the exception of the last algorithm, which requires O(n3) operations,
the number of operations in all other algorithms is the same as that of the
algorithm for matrix multiplication.

We denote by O(nβ) or by γnβ + o(nβ) the number of multiplication oper-
ations, necessary for the multiplication of square matrices of order n. For the
standard matrix multiplication algorithm we have β = 3 and γ = 1, whereas for
Strassen’s algorithm [21] the values are β = log2 7 and γ = 1, when the order of
the matrix is some power of 2. For the best algorithm today we have β < 2.376
and γ unknown [8].

In the second section we present methods for solving systems of linear equa-
tions and performing determinant computations. Included are: Dodgson’s
method [9], the method of Forward and Backward Direction [12], the One-pass
method [14], [15] and the Recursive Method [17],[18]. Corresponding methods
for determinant computations with some generalization are discussed in [16].

Methods for computing the adjoint and inverse matrices are presented in the
third section [20].

In the forth section a method for computing the characteristic polynomial of
a matrix is presented [19]. This method was developed in [5].

Finally, in the conclusion we present the best complexity bounds available
today (in commutative domains) for the methods presented above.

2 System of Linear Equations

Let R be a commutative domain, F be the field of fractions of R,
A ∈ Rn×m, c ∈ Rn, n ≤ m,A� = (A, c) = (aij) and,

Ax = c

be a system of linear equations over R.
Solving the above system with Cramer’s rule we obtain

xi = (δn
i,m+1 −

∑m
j=n+1 xjδ

n
ij)(δ

n)−1, i = 1 . . . n,

where xj , j = n+ 1, . . . ,m, are the free variables, and the determinant δn �= 0.
We denote by δk, k = 1, . . . , n the left upper corner minor of matrix A of order

k, and by δk
ij the corner minor of matrix A where columns i and j have been

interchanged. We assume that all corner minors δk, k = 1, . . . , n are different
from 0.

2.1 Dodgson’s Algorithm

The determinant identity

∣∣∣∣∣∣

a b c
d e f
g h k

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣
a b
d e

∣∣∣∣

∣∣∣∣
b c
e f

∣∣∣∣

∣∣∣∣
d e
g h

∣∣∣∣

∣∣∣∣
e f
h k

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

· e−1
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or in the more general form

âk+1
ij =

∣∣∣∣
âk

i−1,j−1 â
k
i−1,j

âk
i,j−1 âk

ij

∣∣∣∣ · (â
k−1
i−1,j−1)

−1

where

âk+1
ij = |Ai−k,...,i:(rows)

j−k,...,j:(columns)|

is an instance of Sylvester’s identity [2]. Dodgson [9] used it for the computation
(condensation) of determinants and the solution of systems of linear equations
computing a sequence of minors for

k = 2, . . . , n− 1, i = k + 1, . . . , n, j = k + 1, . . . ,m.

Historical Note: As can be seen from the identity above, Dodgson liked to take
the middle element e of the 4 corner minors as the leading minor (element). Later
(in their 1945 paper [23]) Waugh and Dwyer took the top-left-corner element, a11
as the ”middle ” element of the 4 minors that are surrounding this a11 element.

Subsequent authors [22] and [6] used the same method without references to
either Dodgson [9] or Waugh and Dwyer [23]. Other implementations of Dodg-
son’s method can be found in [1] Other implementations of Dodgson method
you can see in the book [1].

2.2 Method of Forward and Backward Direction

The forward direction part of this algorithm consists of computing the minors
with Dodgson’s method; the diagonal is the leading element in every step

ak+1
ij = (ak

kka
k
ij − ak

ika
k
kj)(a

k−1
k−1,k−1)

−1,

k = 2, . . . , n− 1, i = k + 1, . . . , n, j = k + 1, . . . ,m,

where
ak+1

ij = |A1,...,k,i:(rows)
1,...,k,j:(columns)|

On one hand, this formula is a determinant identity and on the other hand
it is the forward direction algorithm which is reminiscent of Gauss’ elimination
algorithm. (The only difference is that the leading element is one step behind.)
As a result of the forward direction algorithm the matrix of the system becomes

⎛

⎜⎜⎜⎜⎜⎝

a11,1 a
1
1,2 · · · a11,n−1 a11,n a11,n · · · a11,m+1

0 a22,2 · · · a22,n−1 a22,n a22,n+1 · · · a22,m+1
...

...
. . .

...
...

...
. . .

...
0 0 · · · an−1

n−1,n−1 a
n−1
n−1,n a

n−1
n−1,n+1 · · · an−1

n−1,m+1

0 0 · · · 0 an
n,n an

n,n+1 · · · an
n,m+1

⎞

⎟⎟⎟⎟⎟⎠

The leading elements ak
k,k, k = 1, . . . , n− 1 cannot be zero.
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The backward direction part of the algorithm consists of computing the minors
δn
ij . The minor δk

ij is the corner minor of order k of the matrix A after column i
has been interchanged with column j. The determinant identity of the backward
direction algorithm is:

δn
ij =

(
an

nna
i
ij −

n∑

k=i+1

ai
ikδ

n
kj

)
(ai

ii)
−1, i = n− 1, . . . 1, j = n+ 1, . . . ,m.

As a result of the backward direction algorithm the matrix of the system
becomes:

⎛

⎜⎜⎜⎜⎜⎝

an
n,n 0 · · · 0 0 δn

1,n · · · δn
1,m+1

0 an
n,n · · · 0 0 δn

2,n+1 · · · δn
2,m+1

...
...

. . .
...

...
...

. . .
...

0 0 · · · an
n,n 0 δn

n−1,n+1 · · · δn
n−1,m+1

0 0 · · · 0 an
n,n δn

n,n+1 · · · δn
n,m+1

⎞

⎟⎟⎟⎟⎟⎠

The number of operations, necessary for the procedure of forward and back-
ward direction, is

Nm = (9n2m− 5n3 − 3nm− 3n2 − 6m+ 8n)/6,
Nd = (3n2m− n3 − 3nm− 6n2 + 13n− 6)/6
Na = (6n2m− 4n3 − 6nm+ 3n2 + n)/6.

2.3 The One-Pass Method

Another way of computing the minors δk
ij is given by the following two determi-

nant identities:

δk+1
k+1,j = ak+1,k+1δ

k
kk −

k∑

p=1

ak+1,pδ
k
pj , j = k + 1 . . .m,

δk+1
ij = (δk+1

k+1,k+1δ
k
i,j − δk+1

k+1,jδ
k
i,k+1)/δ

k
k,k,

k = 1, . . . , n− 1, i = 1, . . . , k, j = k + 2, . . . ,m.

At the k-th step the coefficient matrix looks like
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak
k,k 0 · · · 0 δk

1,k+1 · · · δk
1,m+1

0 ak
k,k · · · 0 δk

2,k+1 · · · δk
2,m+1

...
...

. . .
...

...
. . .

...
0 0 · · · ak

k,k δk
k,k+1 · · · δk

k,m+1

ak+1,1 ak+1,2 · · · ak+1,k ak+1,k+1 · · · ak+1,m+1

...
...

. . .
...

...
. . .

...
an,1 an,2 · · · an,k an,k+1 · · · an,m+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The number of operations, necessary for the one-pass algorithm, is

Nm = (9n2m− 6n3 − 3nm− 6m+ 6n)/6,
Nd = (3n2m− 2n3 − 3nm− 6m+ 2n+ 12)/6
Na = (6n2m− 4n3 − 6nm+ 3n2 + n)/6.

When the number of equations and unknowns in the system is the same and
equal to n, the last two algorithms can be compared

Number of Operations
Method Multiplications Divisions Add./Substr.

FB (4n3+3n2−n−6)
6

(2n3−6n2+10n−6)
6

(2n3+3n2−5n)
6

OP (n3+2n2−n−2)
2

(n3−7n+6)
6

(2n3+3n2−5n)
6

2.4 The Recursive Method

The minors δk
ij and ak

ij are elements of the following matrices

A
r,l,(p)
k,c =

⎛

⎜⎜⎜⎝

ap
r+1,k+1 a

p
r+1,k+2 · · · a

p
r+1,c

ap
r+2,k+1 a

p
r+2,k+2 · · · a

p
r+2,c

...
...

. . .
...

ap
l,k+1 ap

l,k+2 · · · ap
l,c

⎞

⎟⎟⎟⎠ ,

G
r,l,(p)
k,c =

⎛

⎜⎜⎜⎝

δp
r+1,k+1 δ

p
r+1,k+2 · · · δ

p
r+1,c

δp
r+2,k+1 δ

p
r+2,k+2 · · · δ

p
r+2,c

...
...

. . .
...

δp
l,k+1 δp

l,k+2 · · · δp
l,c

⎞

⎟⎟⎟⎠ ,

G
r,l,(p)
k,c , A

r,l,(p)
k,c ∈ R(l−r)×(c−k), 0 ≤ k < n, k < c ≤ n, 0 ≤ r < m, r < l ≤ m,

1 ≤ p ≤ n.
We describe one recursive step reducing the matrix Ã = A

k,l,(k+1)
k,c to the

diagonal form

Ã→ (δlIl−k, Ĝ)

where

Ã = A
k,l,(k+1)
k,c , Ĝ = G

k,l,(l)
l,c

0 ≤ k < c ≤ m, k < l ≤ n, l < c. Note that if k = 0, l = n and c = m, then
we obtain the solution of the original system.

Description of One Step of the Recursive Method

Ã =
(
A1

A2

)
→1

(
δsIs−k G

1
2

A2
1 A2

2

)
→2

(
δsIs−k G

1
2

0 Â2
2

)
→3
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→3

(
δsIs−k G1

2′ G1
2′′

0 δlIl−s Ĝ
2
2′′

)
→4

(
δlIs−k 0 Ĝ1

2′′

0 δlIl−s Ĝ
2
2′′

)
=

(
δlIl−k Ĝ

)

We may choose arbitrary numbers s: k < s < l and write the matrix Ã as
follows:

Ã =
(
A1

A2

)
,

where A1 = A
k,s,(k+1)
k,c is the upper part of the matrix Ã consisting of s− k rows

and A2 = A
s,l,(k+1)
k,c is the lower part of the matrix Ã .

A1 → (δsIs−k, G
1
2), (I)

where A1 ∈ R(s−k)×(c−k), G1
2 = G

k,s,(s)
s,c .

Let A2 = (A2
1, A

2
2) where A2

1 = A
s,l,(k+1)
k,s and A2

2 = A
s,l,(k+1)
s,c consisting of

s − k and c − s columns respectively, δk �= 0. The matrix Â2
2 = A

s,l,(s+1)
s,c is

computed with the help of the matrix identity

Â2
2 = (δs ·A2

2 −A2
1 ·G1

2)(δ
k)−1. (II)

Â2
2 → (δlIl−s, Ĝ

2
2′′), (III)

where Â2
2 ∈ R(l−s)×(c−s) and Ĝ2

2′′ = G
s,l,(l)
l,c .

Let G1
2 = (G1

2′ , G1
2′′), where the blocks G1

2′ = G
k,s,(s)
s,l and G1

2′′ = G
k,s,(s)
l,c

contain l − s and c− l columns respectively, and δs �= 0.
The matrix Ĝ1

2′′ = G
k,s,(l)
l,c is computed with the help of the matrix identity

Ĝ1
2′′ = (δl ·G1

2′′ −G1
2′ · Ĝ2

2′′)(δs)−1. (IV )

In the result we obtain δl and

Ĝ =
(
Ĝ1
2′′

Ĝ2
2′′

)

Complexity of the Recursive Method is O(mnβ−1)

We can obtain an exact estimate. For n = 2N ,m = n + 1 and β = log2 7 the
number of multiplication operations is

7
15
nlog2 7 + n2(log2 n−

2
3
) + n(2 log2 n+

1
5
).

For n = 2N , β = 3 the number of multiplications and divisions is

Nm = (6n2m− 4n3 + (6nm− 3n2) log2 n− 6nm+ 4n)/6,
Nd = ((6nm− 3n2) log2 n− 6nm− n2 + 6m+ 3n− 2)/6.
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The number of multiplication operations for m = n + 1 is (1/3)n3 + O(n2).
The estimations for the previous two methods are, respectively, n3 +O(n2) and
(2/3)n3 + O(n2).

3 Adjoint Matrix

The best method for computing the matrix determinant and adjoint matrix in
the arbitrary commutative ring was suggested in the papers by Kaltofen [10]
and Kaltofen and Villard [11]. Its complexity is O(nβ+1/3 logn log logn); see
also [3].

Here we describe the best method for computing adjoint matrices in commu-

tative domains. Let A =
(
A C
B D

)
be an invertible matrix and A an invertible

block. Then

A−1 =
(
I −A−1C
0 I

)(
I 0
0 (D −BA−1C)−1

)(
I 0
−B I

)(
A−1 0
0 I

)

is the factorization of the inverse matrix. This requires two multiplication oper-
ations and two inversions of blocks. In case n = 2p it will take 2p−1 inversions
of 2 × 2 blocks and 2p−k multiplications of 2k × 2k blocks.

Overall, nlog7 − n/2 multiplication operations will be needed, if we use
Strassen’s multiplication algorithm. In general, if the complexity of matrix mul-
tiplication is O(nβ), then the computation of the factors of the inverse matrix
can be done in time O(nβ).

Let R be a commutative ring, and let A = (ai,j) be a square matrix of order
n over the ring R. Let

A(s)
t = (as

i,j)
i=s,...,t
j=s,...,t and G(t)

s = (δt(i,j))
i=s,...,t
j=t+1,...,n

Theorem 1. Let A be a square block matrix of order n over the ring R; that is,

A =
(
A C
B D

)
,

where A is a square block of order s, (1 < s < n), the determinant of which,
δs, is neither zero nor a zero divider in R. Then, the adjoint matrix A∗ can be
written as the product

A∗ =
(
δ−1
s δnI −δ−1

s FC
0 I

)(
I 0
0 G

)(
I 0
−B δsI

)(
F 0
0 I

)
, (∗)

where F = A∗, G = δ−n+s+1
s A(s+1)∗

n , I is the identity matrix and we have the
identity

A(s+1)
n = δsD −BFC.
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Theorem 2. Let A(s+1)
n be a square block matrix of order n−s, (s > 0, n−s >

2), over the ring R; that is,

A(s+1)
n =

(
A C
B D

)
,

where A is a square block of order t − s, (1 < s < t < n), and δs and δt are
neither zero nor zero dividers in R. Then, the matrix δ−n+s+1

s A(s+1)∗
n can be

written as the product
(
δ−1
t δnI −δ−1

t FC
0 I

)(
I 0
0 δ−1

s G

)(
I 0
−B δtI

)(
F 0
0 I

)
, (∗∗)

where F = δ−t+s+1
s A(s+1)∗

t , G = δ−n+t+1
t A(t+1)∗

n , I is the identity matrix and
we have the identity

A(t+1)
n = δ−1

s (δtD−BFC).

Remark 1. If n = s+2, then, A(s+1)∗
n =

(
as+1

n,n −as+1
n−1,n

−as+1
n,n−1 a

s+1
n−1,n−1

)
. And if n = s+1,

then A(s+1)∗
n = 1.

3.1 Dichotomic Process

The dimensions of the upper left block A (of the initial square block matrix A)
may be chosen arbitrarily. The case will be examined when the dimensions of
block A are powers of two.

Let n be the order of the matrix A, 2h < n ≤ 2h+1 and assume that all
minors δ2i, i = 1, 2, . . . are not zero or zero dividers of the ring R. According to
Theorems 1 and 2 we are going to sequentially compute adjoint matrices for the
upper left blocks of order 2, 4, 8, 16, . . . of matrix A.

1. For the block of order 2 we have:

A2
2,2 = (ai,j)i,j=1,2, δ2 = detA1

2,2,

A2∗
2,2 =

(
a2,2 −a1,2

−a2,1 a1,1

)
.

2. For the block of order 4 we have:

A4∗
4,4 =

(
δ−1
2 δ4I −δ−1

2 FC
0 I

)(
I 0
0 G

)(
I 0
−B δ2I

)(
F 0
0 I

)
,

F = A2∗
2,2, B = (ai,j)

i=3,4
j=1,2,

C = (ai,j)
i=1,2
j=3,3, D = (ai,j)i,j=3,4, A(3)

4 = δ2D − BFC = (a3i,j)i,j=3,4, G =

δ−1
2 A(3)∗

4 , δ4 = detG.
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3. For the block of order 8 we have:

A8∗
8,8 =

(
δ−1
4 δ8I −δ−1

4 FC
0 I

)(
I 0
0 G

)(
I 0
−B δ4I

)(
F 0
0 I

)
,

F = A4∗
4,4, B = (ai,j)

i=5,...,8
j=1,...,4, C = (ai,j)

i=1,...,4
j=5,...,8, D = (ai,j)i,j=5,...,8,

G =
(
δ−1
6 δ8I −δ−1

6 FC
0 I

)(
I 0
0 δ−1

4 G

)(
I 0
−B δ6I

)(
F 0
0 I

)
,

A(5)
8 = δ4D −BFC = (a5i,j)i,j=5,...,8, F = δ−3

4 A(5)∗
6 , δ6 = detF, B = (a5i,j)

i=7,8
j=5,6,

C = (a5i,j)
i=5,6
j=7,8, D = (a5i,j)i,j=7,8, A(7)

8 = δ−1
4 (δ6D − BFC) = (a7i,j)i,j=7,8,

G = δ−1
6 A(7)∗

8 , δ8 = detG.

Complexity Estimation

Let γnβ + o(nβ) be an asymptotic estimation of the number of operations for
multiplying two matrices of order n. Then the complexity of computing the
adjoint matrix of order n = 2p is

F (n) = 6γnβ 1 − (n/2)1−β

2β − 2
+ o(nβ)

4 Characteristic Polynomial

In the case of an arbitrary commutative ring, the best algorithms for comput-
ing the characteristic polynomial are Chistov’s algorithm [7] and the improved
Berkowitz algorithm [4]. The complexity of these methods is O(nβ+1 logn). We
present the best method to date — for computations in commutative domains
— which has complexity O(n3).

Let A = (aij) be an n× n matrix over the ring R. If all the diagonal minors
δk (k = 1, . . . , n− 1) of matrix A are not zero, then the following identity holds

Au = L̃A,

where Au is an upper triangular matrix and L̃ is a lower triangular matrix with
determinant different from zero, such that

L̃ = D−1
n−2L̃n−1 · · ·D−1

1 L̃2L̃1

L̃k = diag(Ik−1, L̃k), Dk = diag(Ik, Dk), where Ik is the identity matrix of order
k, Dk = δkIn−k,

Lk =
(
δk 0
vk In−k

)
, L̃k =

(
1 0

−vk δkIn−k

)

vk = (ak
k+1,k, . . . , a

k
n,k)T , Au = (a(n)i,j ) is an n × n matrix, and a

(n)
i,j = ai

i,j , for

i ≤ j, a(n)i,j = 0, for i > j.
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The proof is based on Sylvester’s identity

ak−1
k−1,k−1a

k+1
i,j = ak

k,ka
k
i,j − ak

i,ka
k
k,j .

The factorization of matrix A into upper and lower triangular matrices is the
result of the forward direction part — of the forward and backward direction
algorithm.

Let A(k)
u = (a(k)i,j ) be an n × n matrix, k = 1, . . . , n, with a

(k)
i,j = ai

i,j for

i ≤ j < k, a(k)i,j = ak
i,j , i ≥ k, j ≥ k, and the remaining elements zero. Then

Au = L̃A reduces to the identities

A(2)
u = L̃1A; A(k+1)

u = D−1
k−1L̃kA

(k)
u , k = 2, . . . , n− 1,

which subsequently enable the computation of matrices A(k)
u , k = 2, 3, . . . , n,

such that all the elements of the matrices Dk and L̃k are elements of the
matrix A(k)

u .
The requirement that the diagonal minors δk (k = 1, 2, . . . , n − 1) be dif-

ferent from zero may be weakened. If a diagonal minor δk of order k is equal
to zero, and in column vk there is a nonzero element ak

i,k, then rows i and k
must be interchanged; that is, multiply on the left the matrix of interchanges
Pk = P(i,k) = In +Eik + Eki −Ekk − Eii, where Eik denotes a matrix in which
all elements are zero except element (i, k), which is equal to one.

And if δk = 0 and vk = 0, then necessarily Pk = L̃k = Dk−1 = In, Dk =
Dk−1.

The factorization formula remains as before, only now

L̃k = diag(Ik−1, L̃k)Pk.

Note the following identities, which will be subsequently needed:

L̃kLk = Dk, L̃L = T,

where
L = L1L2 · · ·Ln−1,

Lk = P−1
k diag(Ik−1, Lk), T is a diagonal matrix defined by, T = S1S2, where

S1 = diag(1, S), and S2 = diag(S, 1), with S = diag(δ1, δ2, . . . , δn−1).
To indicate the matrix A from which a given triangular or diagonal matrix

was computed, we write L = L(A), T = T (A).

4.1 Computation of Similar p-Trianular Matrix

Let A =
(

a b
c d

)
be a matrix over R with blocks a of order p× p and d of order

n× n. We will call matrix A upper p-triangular, if the block (c,d) looks like an
upper triangular matrix.

We will denote with calligraphic letters block-diagonal matrices of order (n+
p)× (n+ p) of the type diag(Ip, G) = G, where G is a p× p matrix.
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Let G be some p× p matrix and let L̃ = L̃((c,d)G), and T = T (((c,d)G)). If
we take now G = L, L̃ = diag(Ip, L̃), L = diag(Ip, L), then the matrix

Au = L̃AL

will become an upper p-triangular matrix, and matrix T−1Au will be similar
to A.

The cofactors L and L̃ of the matrix can be computed sequentially. Since
((c,d)G) = (c,dL) and the first p of the columns of the matrix (c,dL) con-
stitute block c and are independent from L, then using them we can compute
sequentially the first p cofactors of the matrix L̃ : L̃1,D1, L̃2, . . . ,Dp−1, L̃p. From
these we can write the first p cofactors of matrix L , can compute p columns of
the matrix dL and after that the following p cofactors of matrix L̃, etc. For p = 1
we obtain a quasi-triangular matrix, that is a matrix with zero elements under
the second diagonal, which is obtained by the elements a2,1, a3,2, . . . , an,n−1.

Let us denote by Ak (1 ≤ k ≤ n) the corner minors of order k of the quasi-
triangular matrix A = (ai,j), ai,j = 0 for i ≥ 2, j ≤ i − 1, and assume A0 = 1.
Then its determinant can be computed as shown

det (An) = ann det (An−1) +
n−1∑

i=1

ai,n det (Ai−1)
n−1∏

j=i+1

(−aj,j−1).

The complexity of this method is 5
3n

3 +O(n2) — multiplicative operations.

5 Conclusion

For computations over commutative domains we have the following results:

– The complexity of the O(n3) methods (FB) and (OP) for solving systems of
linear equations of size n×m is

M(FB) = (1/2)(4n2m− 2n3 − 2nm− 3n2 − 2m+ 7n− 2),

M(OP ) = (1/6)(12n2m− 8n3 − 6nm− 9n2 − 12m+ 8n+ 12).

Suppose that the complexity of the given method for matrix multiplications
is γnβ + o(nβ), where γ and β are constants, and n is the order of the
matrix. Then, the complexity of the recursive methods for solving systems
of size n×m is

S(n,m) = γ
nβ

2β

[
(4
m

n
− 2)

1− n2−β

1 − 22−β
− 1 − n1−β

1 − 21−β

]
+ o(nβ−1m).

– The complexity of the method for the computation of the determinant of a
matrix of order n is S(n, n). The complexity of the method for the compu-
tation of the kernel of a linear operator is S(n,m).
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– The complexity of the method for the computation and the factorization of
the adjoint matrix is

F (n) = 6γnβ 1 − (n/2)1−β

2β − 2
+ o(nβ)

– Finally, the complexity of the best method we know today for the computa-
tion of the characteristic polynomial of a matrix of order n is 5

3n
3 +O(n2).
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Abstract. We present an implementation of the Continued Fractions
(CF) real root isolation method using a recently developed upper bound
on the positive values of the roots of polynomials. Empirical results
presented in this paper verify that this implementation makes the CF
method always faster than the Vincent-Collins-Akritas bisection
method1, or any of its variants.

1 Introduction

We begin by first reviewing some basic facts about the continued fractions
method for isolating the positive roots of polynomials. This method is based
on Vincent’s theorem of 1836, [Vincent 1836], which states:

Theorem 1. If in a polynomial, p(x), of degree n, with rational coefficients and
without multiple roots we perform sequentially replacements of the form

x← α1 + 1
x , x← α2 + 1

x , x← α3 + 1
x , . . .

where α1 ≥ 0 is a random non negative integer and α2, α3, . . . are random pos-
itive integers, αi > 0, i > 1, then the resulting polynomial either has no sign
variations or it has one sign variation. In the last case the equation has exactly
one positive root, which is represented by the continued fraction

α1 + 1
α2+

1
α3+ 1

...

whereas in the first case there are no positive roots.

1 Misleadingly referred to (by several authors) initially as “modified Uspensky’s
method” and recently as “Descartes’ method”.

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 24–30, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Note that if we represent by ax+b
cx+d the continued fraction that leads to a trans-

formed polynomial f(x) = (cx + d)np(ax+b
cx+d), with one sign variation, then the

single positive root of f(x)—in the interval (0,∞)—corresponds to that positive
root of p(x) which is located in the open interval with endpoints b

d and a
c . These

endpoints are not ordered and are obtained from ax+b
cx+d by replacing x with 0 and

∞, respectively. See the papers by Alesina & Galuzzi, [Alesina and Galuzzi 1998]
and Chapter 7 in [Akritas 1989] for a complete historical survey of the subject
and implementation details respectively2.

Cauchy’s method, for computing bounds on the positive roots of a polynomial,
was mainly used until now in the Continued Fraction (CF) real root isolation
method, [Akritas and Strzeboński 2005]. In the SYNAPS implementation of the
CF method, [Tsigaridas and Emiris 2006], Emiris and Tsigaridas used Kiouste-
lidis method, [Kioustelidis 1986] for computing such bounds and independently
verified the results obtained in [Akritas and Strzeboński 2005].

Both implementations of the CF method showed that its “Achilles heel”
was the case of a big number of very large rational roots. In this case the
CF method was up to 4 times slower than REL—the fastest implementation
of the Vincent-Collins-Akritas bisection method, [Collins and Akritas 1976], de-
veloped by Rouillier and Zimmermann, [Rouillier and Zimmermann 2004]. Ta-
ble 1 presented below, is an exact copy of the last table (Table 4), found in
[Akritas and Strzeboński 2005].

Table 1. Products of factors (x-randomly generated integer root). All computations
were done on a 850 MHz Athlon PC with 256 MB RAM; (s) stands for time in seconds
and (MB) for the amount of memory used, in MBytes.

Roots Degree No. of roots CF REL
(bit length) T (s)/M (MB) T (s)/M (MB)

10 100 100 0.8/1.82 0.61/1.92

10 200 200 2.45/2.07 10.1/2.64

10 500 500 33.9/3.34 878/8.4

1000 20 20 0.12/1.88 0.044/1.83

1000 50 50 16.7/3.18 4.27/2.86

1000 100 100 550/8.9 133/6.49

The last three lines of Table 1 demonstrate the weaker performance of CF in
the case of a big number of very large rational roots. However, we recently gener-
alized and extended a theorem by Ştefănescu, [Ştefănescu 2005], and developed
a new method for computing upper bounds on the positive roots of polynomi-
als, [Akritas, Strzeboński & Vigklas 2006]. As was verified, this method provides
even sharper upper bounds on the positive roots of polynomials. In this paper,
2 Alesina and Galuzzi point out in their work that Vincent’s theorem can be imple-

mented in various ways; the Vincent-Collins-Akritas bisection method is also one
such implementation.
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we incorporated into CF this new method for computing upper bounds for pos-
itive roots3. It turns out that with this modification, the CF algorithm is now
always faster than that of Vincent-Collins-Akritas, or any of its variants.

2 Algorithmic Background

In this section we present the CF algorithm (where we correct a misprint in
Step 5 that appeared in [Akritas and Strzeboński 2005] and explain where the
new bound on the positive roots is used.

2.1 Description of the Continued Fractions Algorithm CF

Using the notation of the paper [Akritas and Strzeboński 2005], let f ∈ Z[x] \
{0}. By sgc(f) we denote the number of sign changes in the sequence of nonzero
coefficients of f . For nonnegative integers a, b, c, and d, such that ad − bc �= 0,
we put

intrv(a, b, c, d) := Φa,b,c,d((0,∞))

where
Φa,b,c,d : (0,∞) � x −→ ax+ b

cx+ d
∈ (min(

a

c
,
b

d
),max(

a

c
,
b

d
))

and by interval data we denote a list

{a, b, c, d, p, s}

where p is a polynomial such that the roots of f in intrv(a, b, c, d) are images of
positive roots of p through Φa,b,c,d, and s = sgc(p).

The value of parameter α0 used in step 4 below needs to be chosen empirically.
In our implementation α0 = 16.

Algortihm Continued Fractions (CF)
Input: A squarefree polynomial f ∈ Z[x] \ {0}
Output: The list rootlist of positive roots of f .

1. Set rootlist to an empty list. Compute s ← sgc(f). If s = 0 return an
empty list. If s = 1 return {(0,∞)}. Put interval data {1, 0, 0, 1, f, s} on
intervalstack.

2. If intervalstack is empty, return rootlist, else take interval data {a, b, c, d, p, s}
off intervalstack.

3. Compute a lower bound α on the positive roots of p.
4. If α > α0 set p(x) ← p(αx), a← αa, c← αc, and α← 1.
5. If α ≥ 1, set p(x) ← p(x+ α), b← αa+ b, and d← αc+ d. If p(0) = 0, add

[b/d, b/d] to rootlist, and set p(x) ← p(x)/x. Compute s ← sgc(p). If s = 0
go to step 2. If s = 1 add intrv(a, b, c, d) to rootlist and go to step 2.

3 Note that the computed bounds are integers rather than powers of two.
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6. Compute p1(x) ← p(x+1), and set a1 ← a, b1 ← a+b, c1 ← c, d1 ← c+d, and
r ← 0. If p1(0) = 0, add [b1/d1, b1/d1] to rootlist, and set p1(x) ← p1(x)/x,
and r ← 1. Compute s1 ← sgc(p1), and set s2 ← s − s1 − r, a2 ← b,
b2 ← a+ b, c2 ← d, and d2 ← c+ d.

7. If s2 > 1, compute p2(x) ← (x + 1)mp( 1
x+1 ), where m is the degree of p. If

p2(0) = 0, set p2(x) ← p2(x)/x. Compute s2 ← sgc(p2).
8. If s1 < s2, swap {a1, b1, c1, d1, p1, s1} with {a2, b2, c2, d2, p2, s2}.
9. If s1 = 0 goto step 2. If s1 = 1 add intrv(a1, b1, c1, d1) to rootlist, else put

interval data {a1, b1, c1, d1, p1, s1} on intervalstack.
10. If s2 = 0 goto step 2. If s2 = 1 add intrv(a2, b2, c2, d2) to rootlist, else put

interval data {a2, b2, c2, d2, p2, s2}on intervalstack. Go to step 2.

Please note that the lower bound, α, on the positive roots of p(x) is computed
in Step 3, and used in Step 5.

To compute this bound we generalized Ştefănescu’s theorem, [Ştefănescu 2005],
in the sense that Theorem 2 (see below) applies to polynomials with any number
of sign variations; moreover we have introduced the concept of breaking up a
positive coefficient into several parts to be paired with negative coefficients (of
lower order terms).

Theorem 2. Let p(x)

p(x) = αnx
n + αn−1x

n−1 + . . .+ α0, (αn > 0) (1)

be a polynomial with real coefficients and let d(p) and t(p) denote the degree and
the number of its terms, respectively.

Moreover, assume that p(x) can be written as

p(x) = q1(x) − q2(x) + q3(x) − q4(x) + . . .+ q2m−1(x) − q2m(x) + g(x), (2)

where all the polynomials qi(x), i = 1, 2, . . . , 2m and g(x) have only positive
coefficients. In addition, assume that for i = 1, 2, . . . ,m we have

q2i−1(x) = c2i−1,1x
e2i−1,1 + . . .+ c2i−1,t(q2i−1)x

e2i−1,t(q2i−1 )

and

q2i(x) = b2i,1x
e2i,1 + . . .+ b2i,t(q2i)x

e2i,t(q2i ) ,

where e2i−1,1 = d(q2i−1) and e2i,1 = d(q2i) and the exponent of each term in
q2i−1(x) is greater than the exponent of each term in q2i(x). If for all indices
i = 1, 2, . . . ,m, we have

t(q2i−1) ≥ t(q2i),

then an upper bound of the values of the positive roots of p(x) is given by

ub= max
{i=1,2,...,m}

{(
b2i,1

c2i−1,1

) 1
e2i−1,1−e2i,1

, . . . ,

(
b2i,t(q2i)

c2i−1,t(q2i)

) 1
e2i−1,t(q2i)−e2i,t(q2i)

}
,
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for any permutation of the positive coefficients c2i−1,j, j = 1, 2, . . . , t(q2i−1).
Otherwise, for each of the indices i for which we have

t(q2i−1) < t(q2i),

we break up one of the coefficients of q2i−1(x) into t(q2i) − t(q2i−1) + 1 parts,
so that now t(q2i) = t(q2i−1) and apply the same formula (3) given above.

For a proof of this theorem and examples comparing its various implementations,
see [Akritas, Strzeboński & Vigklas 2006]. It turns out that all existing methods
(i.e. Cauchy’s, Lagrange-McLaurent, Kioustelidis’s, etc) for computing upper
bounds on the positive roots of a polynomial, are special cases of Theorem 2.

In this recent paper of ours, we also presented two new implementations of
Theorem 2, the combination of which yields the best upper bound on the positive
roots of a polynomial. These implementation are:

(a)“first–λ” implementation of Theorem 2. For a polynomial p(x), as
in (2), with λ negative coefficients we first take care of all cases for which
t(q2i) > t(q2i−1), by breaking up the last coefficient c2i−1,t(q2i), of q2i−1(x),
into t(q2i) − t(q2i−1) + 1 equal parts. We then pair each of the first λ posi-
tive coefficients of p(x), encountered as we move in non-increasing order of
exponents, with the first unmatched negative coefficient.

(b)“local-max” implementation of Theorem 2. For a polynomial p(x), as
in (1), the coefficient −αk of the term −αkx

k in p(x) —as given in Eq. (1)—
is paired with the coefficient αm

2t , of the term αmx
m, where αm is the largest

positive coefficient with n ≥ m > k and t indicates the number of times the
coefficient αm has been used.

As an upper bound on the positive roots of a polynomial we take the minimum
of the two bounds produced by implementations (a) & (b), mentioned above.
This minimum of the two bounds is first computed in Step 3 and then used in
Step 5 of CF.

3 Empirical Results

Below we recalculate the results of Table 1, comparing the timings in seconds
(s) for: (a) the CF using Cauchy’s rule (CF OLD), (b) the CF using the new
rule for computing upper bounds (CF NEW), and (c) REL.

Due to the different computational environment the times differ substantially,
but they confirm the fact that now the CF is always faster.

Again, of interest are the last three lines of Table 2, where as in Table 1 the
performance of CF OLD is worst than REL—at worst 3 times slower as the
last entry indicates. However, from these same lines of Table 2 we observe that
CF NEW is now always faster than REL—at best twice as fast, as seen in
the 5-th line.
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Table 2. Products of terms x − r with random integer r. The tests were run on a
laptop computer with 1.8 Ghz Pentium M processor, running a Linux virtual machine
with 1.78 GB of RAM.

Roots Deg CF OLD Time(s) CF NEW Time(s) REL Memory (MB)
(bit length) Average (Min/Max) Average (Min/Max) Average (Min/Max) CFO/CFN/REL

10 100 0.314 (0.248/0.392) 0.253 (0.228/0.280) 0.346 (0.308/0.384) 4.46/4.48/4.56
10 200 1.74 (1.42/2.33) 1.51 (1.34/1.66) 3.90 (3.72/4.05) 4.73/4.77/5.35
10 500 17.6 (16.9/18/7) 17.4 (16.3/18.1) 129 (122/140) 6.28/6.54/11.8
1000 20 0.066 (0.040/0.084) 0.031 (0.024/0.040) 0.038 (0.028/0.044) 4.57/4.62/4.51
1000 50 1.96 (1.45/2.44) 0.633 (0.512/0.840) 1.03 (0.916/1.27) 5.87/6.50/5.55
1000 100 52.3 (36.7/81.3) 12.7 (11.3/14.6) 17.2 (16.1/18.7) 10.4/11.7/9.17

4 Conclusions

In this paper we have examined the behavior of CF on the special class of
polynomials with very many, very large roots—a case where CF exhibited a
certain weakness. We have demonstrated that, using our recently developed rule
for computing upper bounds on the positive roots of polynomials, CF is speeded
up by a considerable factor and is now always faster than any other real root
isolation method.
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Abstract. In this paper we introduce an improved variant of the LLL
algorithm. Using the Gram matrix to avoid expensive correction steps
necessary in the Schnorr-Euchner algorithm and introducing the use of
buffered transformations allows us to obtain a major improvement in
reduction time. Unlike previous work, we are able to achieve the impro-
vement while obtaining a strong reduction result and maintaining the
stability of the reduction algorithm.

1 Introduction

Lattice theory is of great importance in cryptography. It not only provides effec-
tive tools for cryptanalysis, but it is also believed that lattice theory can bring
about new cryptographic primitives that exhibit strong security even in the pre-
sence of quantum computers. While many aspects of lattice theory are already
fairly well-understood, many practical aspects still require further investigation
and understanding. With respect to cryptography this is of particular import-
ance as a cryptographic primitive must be secure in both theory and practice.

The goal of lattice basis reduction is to find a basis representing the lattice
where the base vectors not only are as small as possible but also are as orthogonal
to each other as possible. While the LLL algorithm by Lenstra, Lenstra, and
Lovász [11] was the first to allow for the efficient computation of a well-reduced
lattice basis in theory, it was not until the introduction of the Schnorr-Euchner
variant of the LLL algorithm [19] that lattice basis reduction could efficiently
be used in practice (e.g., for cryptanalysis [19,16,17]). Since then, research has
focused on improving on the stability and performance of reduction algorithms
(e.g., [6,9,10,13,14]).

One can generally identify two main directions of recent work. The first line
of research (e.g., [10,14,15,30]) is based on the use of a weaker reduction condi-
tion than the original LLL condition. While this allows for an improvement in
efficiency it is important to note that it generally results in a less reduced lattice
basis. Consequently, this approach cannot be taken in contexts which rely on
the strong, proven bounds of the original LLL reduction (e.g., [4,2,5,12]).

In contrast, the second line of research focuses on improving on the stabi-
lity and performance of lattice basis reduction while maintaining the strong
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reduction conditions. It is in this context that this paper focuses on achieving
improvements in the reduction time. In particular, this paper introduces an
improved variant of the LLL algorithm which uses the Gram matrix to avoid
expensive correction steps that are necessary for the Schnorr-Euchner algorithm.
While the Gram matrix approach was already used previously [3,22,14,15], the
new algorithm provides a major improvement by introducing the use of buffered
transformations. This new approach allows us to improve the reduction time by
up to 40% in comparison to existing methods while obtaining a strong reducti-
on result and maintaining the stability of the reduction algorithm at the same
time. In contrast, previous work not only relies on a weaker reduction condition
[14,15,30] but also suffers from stability problems [30].

Outline: Section 2 provides the definitions and notations used in the remainder
of the paper. Then, Section 3 introduces the LLL reduction algorithm using
the Gram matrix representation and details ways to improve the running time.
Section 4 discusses and analyzes the experiments. The paper closes with some
directions for future work.

2 Preliminaries

A lattice L ⊂ Rn is an additive discrete subgroup of Rn such that L ={∑k
i=1 xibi|xi ∈ Z, 1 ≤ i ≤ k

}
with linear independent vectors b1, . . . , bk ∈ Rn

(k ≤ n). B = (b1, . . . , bk) ∈ Rn×k is the lattice basis of L with dimension k. The
basis of a lattice is not unique. However, different bases B and B′ for the same
lattice L can be transformed into each other by means of a unimodular trans-
formation, i.e., B′ = BU with U ∈ Zn×k and | detU | = 1. Typical unimodular
transformations are the exchange of two base vectors—referred to as swap—or
the adding of an integral multiple of one base vector to another one—generally
referred to as translation.

Unlike the lattice basis, the determinant of a lattice is an invariant, i.e., it is
independent of a particular basis: For a lattice L ∈ Rn with basis B ∈ Rn×k

the determinant det(L) is defined as det(L) = | det(BTB)| 12 . The Hadamard
inequality det(L) ≤

∏k
i=1 ‖bi‖ (where ‖.‖ denotes the Euclidean length of a

vector) gives an upper bound for the determinant of the lattice. Equality holds
if B is an orthogonal basis.

The orthogonalization B∗ = (b∗1, . . . , b
∗
k) of a lattice basis B = (b1, . . . , bk) ∈

Rn×k can be computed by the Gram-Schmidt method: b∗1 = b1, b
∗
i = bi −∑i−1

j=1 μi,jb
∗
j for 2 ≤ i ≤ k where μi,j =

〈bi,b
∗
j 〉

‖b∗
j ‖

for 1 ≤ j < i ≤ k where 〈., .〉
defines the scalar product of two vectors. It is important to note that for a lattice
L ⊂ Rn with basis B = (b1, . . . , bk) ∈ Rn×k a vector b∗i of the orthogonalization
B∗ = (b∗1, . . . , b

∗
k) ∈ Rn×k is not necessarily in L. Furthermore, computing the

orthogonalization B∗ of a lattice basis using the Gram-Schmidt method strongly
depends on the order of the basis vector of the lattice basis B.

The defect of a lattice basis B = (b1, . . . , bk) ∈ Rn×k defined as dft(B) =∏n
i=1 ‖bi‖
det(L) allows one to compare the quality of different bases. Obviously,
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dft(B) ≥ 1 and dft(B) = 1 for an orthogonal basis. The goal of lattice basis re-
duction is to determine a basis with smaller defect. That is, for a lattice L ⊂ Rn

with bases B and B′ ∈ Rn×k, B′ is better reduced than B if dft(B′) < dft(B).
The most well-known and most-widely used lattice basis reduction method is
the LLL reduction method [11]:

Definition 1. For a lattice L ⊆ Zn with basis B = (b1, . . . , bk) ∈ Zn×k, corre-
sponding Gram-Schmidt orthogonalization B∗ = (b∗1, . . . , b

∗
k) ∈ Zn×k and coeffi-

cients μi,j with 1 ≤ j < i ≤ k, the basis B is LLL-reduced if

|μi,j | ≤
1
2

for 1 ≤ j < i ≤ k and (1)

‖b∗i + μi,i−1b
∗
i−1‖2 ≥ y‖b∗i−1‖2 for 1 < i ≤ k. (2)

The reduction parameter y may arbitrarily be chosen in
(
1
4 , 1

)
. Condition (1)

is generally referred to as size-reduction [3,18]. The Schnorr-Euchner algorithm
[19,1] allows for an efficient computation of an LLL-reduced lattice basis in
practice.

Algorithm 1: SchnorrEuchnerLLL(B,y)

Input: Lattice basis B = (b1, . . . , bk) ∈ Z
n×k, y ∈ [ 12 , 1)

Output: LLL-reduced lattice basis

(1) APPROX BASIS(B′, B)
(2) B1 = ‖b′

1‖
2, i = 2, Fc = false, Fr = false

(3) while (i ≤ k) do
(4) μii = 1, Bi = ‖b′

i‖
2

(5) for (2 ≤ j < i) do

(6) if (|〈b′
i, b′

j〉| < 2
r
2 ‖b′

i‖‖b′
j‖) then /* correction step 1 */

(7) s = APPROX VALUE(〈bi, bj〉)
(8) else
(9) s = 〈b′

i, b′
j〉

(10) μij = (s −
∑ j−1

m=1 μjmμimBm)/Bj

(11) Bi = Bi − μ2
ijBj

(12) for (i > j ≥ 1) do /* size-reduction */
(13) if (|μij | > 1

2 ) then
(14) Fr = true

(15) if (|�μij�| > 2
r
2 ) then /* correction step 2 */

(16) Fc = true
(17) bi = bi − �μij�bj

(18) for (1 ≤ m ≤ j) do /* update μ matrix */
(19) μim = μim − �μij�μjm

(20) if (Fr = true) then
(21) APPROX VECTOR(b′

i, bi)
(22) Fr = false
(23) if (Fc = true) then
(24) i = max{i − 1, 2}
(25) Fc = false
(26) else
(27) if (Bi < (y − μ2

ii−1)Bi−1) then /* check LLL condition */
(28) SWAP(bi−1, bi)
(29) if (i = 2) then
(30) B1 = ‖b′

1‖
2

(31) i = max{i − 1, 2}
(32) else
(33) i = i + 1
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In order to make LLL reduction practical, the Schnorr-Euchner algorithm uses
floating-point approximations of vectors and the basis (APPROX BASIS and
APPROX VECTOR). For stability reasons, this requires employing suitable
correction steps (see [19] for details). These corrections include either the com-
putation of exact scalar products (see Line (7)) as part of the Gram-Schmidt
orthogonalization or a step-back (see Line (25)) due to a large μij used as part
of the the size-reduction (see Line (17)). In order to prevent the corruption of
the lattice, an exact data type is used to modify the actual lattice basis (see
Line (19)). (In the algorithm, r denotes the bit precision of the data type used
to approximate the lattice basis.)

3 LLL Reduction Using the Gram Matrix

The performance of the Schnorr-Euchner algorithm for a given approximation
data type strongly depends on the number of correction steps (computation of
exact scalar products and step-backs) needed in the reduction process. Experi-
ments show [28,22] that it is the sheer number of exact scalar products along
with their high computational costs that have a main impact on the reduction
time. In turn, the number of step-backs is negligible compared to the number of
exact scalar products and the total number of reduction steps. In order to speed
up the reduction process, the goal is to minimize the number of correction steps,
in particular the computation of exact scalar products.

In this context, in the NTL implementation [30] of the Schnorr-Euchner LLL
algorithm (LLL FP), the original measures for when to compute exact scalar
products or perform step-backs have been modified. LLL FP uses a lower bound
for the computation of exact scalar products and the step-backs have been repla-
ced by a heuristic that, if necessary, recomputes the Gram-Schmidt coefficients
using an approximation data type with extended precision. In addition, the first
condition for LLL-reduced bases (see Equation (1) in Definition 1) may be re-
laxed in order to avoid infinite loops. While these changes result in a major
speedup of the reduction, they also have a negative effect on the stability of the
reduction algorithm itself. For details see Figure 5 in Section 4.1.

Another approach to avoid the computation of exact scalar products is to
perform the LLL reduction based on the Gram matrix instead of the original
lattice basis [3,22]:

Definition 2. For a lattice L with basis B = (b1, . . . , bk) ∈ Rn×k, the corre-
sponding Gram matrix G is defined as G = BTB.

Obviously, the Gram matrix inherently provides the necessary scalar products
for the reduction process. Recently, Nguyen and Stehlé used the same approach
for their L2 algorithm [14,23]. In addition to using the Gram matrix, Nguyen
and Stehlé also used ideas introduced in the NTL code for their size-reduction
[14,15]. While they can prove that their algorithms yields an (δ, η)-LLL-reduced
basis with η > 0.5, it lacks the stronger size-reduction criterion thus yielding a
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lesser reduced basis than the original LLL algorithm (see Definition 1) which, in
contrast, yields an (δ, 0.5)-LLL-reduced basis with 0.5 ≤ δ < 1.

Our new algorithm—designed to address the challenges associated with exact
scalar products—is also based on the LLL for Gram matrices [3,22] and adapts
the computation of the Gram matrix and the LLL condition check of the L2

algorithm introduced in [14] (see Line (28) of Algorithm 2). In contrast to the L2

algorithm, we keep the stronger LLL condition and the second type of correction
step of the original Schnorr-Euchner algorithm (see Line (17) of Algorithm 1).
The challenge with using the Gram matrix instead of reducing the original basis
lies in the fact that most applications of lattice basis reduction require a reduced
lattice basis and not just a reduced Gram matrix. It therefore is necessary to
either apply all transformation to both the Gram matrix and the exact basis
(while basing all necessary decisions solely on the Gram matrix) or alternatively
collect all transformations in a transformation matrix which is then applied to
the original basis at the end of the reduction process. Both approaches have
drawbacks. In the first approach all transformations are performed twice (once
on the Gram matrix and once on the original basis). In the second method the
bit length of the entries of a transformation matrix increases and often surpasses
the size of the entries of the lattice basis. Our algorithm therefore introduces a
solution that achieves a major improvement by buffering transformations, thus
allowing the use of a transformation matrix with machine-type integers only (see
Section 3.1).

We now first introduce the basic outline of our new variant of the Schnorr-
Euchner LLL using the Gram matrix representation. In particular, we detail the
Gram matrix updates which are crucial for the algorithm. In Section 3.1 we will
then introduce the optimizations that in practice allow for a vast improvement
of the running time.

Algorithm 2: LLL GRAM(B)
Input: Lattice basis B = (b1, . . . , bk) ∈ Z

n×k

Output: LLL-reduced lattice basis B

(1) COMPUTE GRAM(A, B)
(2) APPROX BASIS GRAM(A′, A)
(3) R11 = A′

11, i = 2, Fc = false, Fr = false
(4) while (i ≤ k) do
(5) μii = 1, S1 = Rii /* orthogonalization */
(6) for (2 ≤ j < i) do

(7) Rij = A′
ji −

∑ j−1
m=1 Rimμim

(8) μij =
Rij
Rjj

(9) Rii = Rii − Rijμij

(10) Sj+1 = Rii

(11) for (i > j ≥ 1) do /* size-reduction */
(12) if (|μi,j | > 1

2 ) then
(13) Fr = true
(14) bi = bi − �μij�bj

(15) REDUCE GRAM(A, i, �μij�, j)

(16) if (|μij | > 2
r
2 ) then /* correction step 2 */

(17) Fc = true
(18) for (1 ≤ m ≤ j) do /* update μ matrix */
(19) μim = μim − �μij�μim

(20) if (Fr = true) then
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(21) APPROX VECTOR GRAM(A′,A, i)
(22) Fr = false
(23) if (Fc = true) then
(24) i = max(i − 1, 2)
(25) Fc = false
(26) else
(27) i′ = i
(28) while ((i > 1) ∧ (y · R(i−1)(i−1) > Si−1)) do /* check LLL condition */
(29) bi ↔ bi−1
(30) SWAP GRAM(A, i − 1, i)
(31) SWAP GRAM(A′, i − 1, i)
(32) i = i − 1
(33) if (i �= i′) then
(34) if (i = 1) then
(35) R11 = A′

11
(36) i = 2
(37) else
(38) i = i + 1

Unlike the Gram version of the LLL algorithm introduced in [3,22] we only use
the upper triangular (including the diagonal) of the Gram matrix. This allows
us to take advantage of the symmetric properties of the Gram matrix in order
to improve the running time of the reduction algorithm. Consequently, we define
the subroutines APPROX BASIS GRAM and APPROX VECTOR GRAM as
follows:

Algorithm 3:
APPROX BASIS GRAM(A’,A)

Input: Gram matrix A
Output: Approximate Gram matrix A′

(1) for (1 ≤ i ≤ k) do
(2) for (i ≤ j ≤ k) do
(3) A′

i,j = APPROX VALUE(Ai,j)

Algorithm 4:
APPROX VECTOR GRAM(A’,A, l)

Input: Gram matrix A, vector index l
Output: Approximate Gram matrix A′

(1) for (1 ≤ i < l) do
(2) A′

i,l = APPROX VALUE(Ai,l)
(3) for (l ≤ i ≤ k) do
(4) A′

l,i = APPROX VALUE(Al,i)

The size-reduction of the LLL GRAM described in [22] is slightly modified
to work with the upper triangular Gram matrix. The new size-reduction for
LLL GRAM (see Algorithm 5) is only slightly more expensive than the equiva-
lent step in the original Schnorr-Euchner algorithm.

Algorithm 5:
REDUCE GRAM(A, l, �μij�, j)

Input: Gram matrix A, indices l, j, �μij�
Output: Gram matrix A

(1) T = Al,l − 2 · �μij� · Aj,l − �μij�2 · Aj,j

(2) for (1 ≤ m < j) do
(3) Am,l = Am,l − �μij� · Am,j

(4) for (j ≤ m < l) do
(5) Am,l = Am,l − �μij� · Aj,m

(6) for (l + 1 ≤ m < k) do
(7) Al,m = Al,m − �μij� · Aj,m

(8) Al,l = T

Algorithm 6:
SWAP GRAM(A,i,j)

Input: Gram matrix A, indices i, j, i < j
Output: Gram matrix A

(1) for (1 ≤ m < j) do
(2) Am,i ↔ Am,j

(3) for (j ≤ m < j) do
(4) Am,i ↔ Aj,m

(5) for (j ≤ m < i) do
(6) Ai,m ↔ Aj,m

(7) Ai,i ↔ Ai,j

Swapping basis vectors in the Gram matrix representation is, in practice, more
expensive than in the original Schnorr-Euchner algorithm (see Algorithm 6). This
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is due to the fact that we now have to swap n elements (dimension of the lattice
basis vectors) for the Gram matrix representation, while for the original Schnorr-
Euchner algorithm we only have to swap the two pointers to the respective basis
vectors.

3.1 Optimizations

In this section we introduce techniques to optimize Algorithm 2. We concentra-
te on the operations with the exact data type (usually long integer arithmetic
like GMP [7,26]) and on the overhead for updating both the Gram matrix and
the lattice basis. The goal is to reduce the number of expensive operations,
such as multiplications or operations involving the long integer arithmetic. To
accomplish this goal, we either use the far more efficient machine-type integer
operations (assuming the respective values fit within the limits of machine-type
integers) or we make use of the specialized and more efficient functions for com-
bined operations like mpz addmul instead of a = a+ b · c [7].

Buffered Matrix Transformations. The basic idea of this new technique is
to reduce the overhead due to the amount of long integer operations by using
machine-type integers to buffer the lattice basis transformations until the limit
of the machine-type integer (typically 32 or 64 bit) is reached. The buffered
transformations are then applied to the lattice basis at once and the buffer
is flushed. This allows us to considerably reduce the number of long integer
operations and instead replace them by far more efficient machine-type integer
operations.

Implementing buffered matrix transformations requires replacing the update
of the lattice basis (see Line (16) in Algorithm 2) with a new subroutine called
BUFFERED TRANSFORM as well as adding a number of initializations and
update steps. In the following let m be the bit size of the machine-type integers.
T = (t1, . . . , tn) is used to buffer the matrix transformations, Tmax i for 1 ≤
i ≤ n contains an estimate for the maximum value in ti and is used to check
for possible overflows. posmin and posmax are used to indicate for which vectors
the transformations have occurred and consequently allow us to limit the matrix
multiplication to these vectors when flushing the transformation buffer.

In addition, the following modifications to Algorithm 2 have to be made.
Before the main while-loop in Line (5) of Algorithm 2 we have to initialize
T = In , Tmax = (1, . . . , 1)T , posmin = k and posmax = 1. In Lines (30) - (34)
we have to add the swap operations Tmaxi ↔ Tmaxi−1 and ti ↔ ti−1.

Algorithm 7: BUFFERED TRANSFORM(B, i, �μij�, j)
Input: Lattice Basis B = (b1, . . . , bk) ∈ Z

n×k, indices i, j, �μij�
Output: Lattice Basis B

(1) if ((Tmaxi + |�μij�| · Tmaxj) > 2m−1 − 1) then /* check for possible overflow */
(2) for (posmin ≤ x ≤ posmax ) do /* perform B′ = B · T */
(3) for (1 ≤ z ≤ n) do
(4) B′

xz = 0
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(5) for (posmin ≤ y ≤ posmax ) do
(6) for (1 ≤ z ≤ n) do
(7) B′

xz = B′
xz + Txy · Byz

(8) B ↔ B′

(9) T = In /* reset transformation buffer */

(10) Tmax = (1, . . . , 1)T

(11) posmax = i
(12) posmin = j

(13) if (|�μij�| > 2m−1 − 1) then
(14) bi = bi − �μij� · bj /* long integer computation */

(15) return
(16) ti = ti − �μij� · tj /* machine integer computation */

(17) Tmaxi = Tmaxi + |�μij�| · Tmaxj

(18) if (posmax < i) then /* update posmax */
(19) posmax = i
(20) if (posmin > j) then /* update posmin */
(21) posmin = j

The advantage of writing the partial matrix multiplication as shown above is
that for the loop in Lines (6) - (7) the factor Txy is constant in each iteration of
the inner loop. This allows us to use additional optimizations which we present
in the next section.

Further Optimizations. We can split the additional optimizations into two
categories. The first is to avoid unnecessary operations like a multiplication with
1 or addition with 0 within a loop. This kind of optimization has also been
used in Victor Shoup’s NTL code [30]. The second kind is to take advantage
of features of modern CPUs which include the support of certain multimedia
streaming extensions [8,25]. These can efficiently be used to speed up some of
the vector operations, like Line (19) in Algorithm 1.

As an example for the first category we show how to avoid unnecessary mul-
tiplications in Algorithm 7, Lines (6) - (7). (Algorithm 5 can be modified ac-
cordingly.) We can rewrite the loop as follows:

(7) if (Txy �= 0) then
(8) if (Txy = 1) then
(9) for (1 ≤ z ≤ n) do
(10) B′

xz = B′
xz + Byz

(11) else
(12) if (Txy = −1) then
(13) for (1 ≤ z ≤ n) do
(14) B′

xz = B′
xz − Byz

(15) else
(16) for (1 ≤ z ≤ n) do
(17) B′

xz = B′
xz + Txy · Byz

This technique is efficient only if Txy stays constant throughout the loop and
Txy = 0, Txy = 1 or Txj = −1 for a sufficient number of cases. Both conditions
are dependent on the context in which they are used. In case of the buffered
transformations, the majority of matrix entries is expected to be 0. For a suffi-
ciently large n (dimension of the lattice basis vector) this optimization has the
potential to reduce the running time even for the machine-type integers, e.g.,
Line (16) in Algorithm 7. In case the mantissa of the data type used for the ap-
proximation of the lattice basis fits into a machine-type integer then one can also
avoid an expensive arbitrary long integer multiplication by splitting the values
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of the data type used for the approximation into sign, mantissa, and exponent.
In case of a large μij in Line (16) of Algorithm 2 we can then replace the ex-
pensive multiplication of two long integer values with a cheaper multiplication
of a machine-type integer and a long integer value followed by a bit shift.

In order to allow for the second type of additional optimizations one can either
use a compiler like those from Intel or Sun which already provide built-in support
for auto-vectorization or, like in the case of the current version of GCC [20,24],
one needs to assist the compiler in order for it to be able to take advantage of
multimedia extensions. Vector operations on machine data types with limited
dependencies, for example Line (16) in Algorithm 7, are ideal candidates for
the use of multimedia streaming extensions. Using these streaming extensions
for loops where values of the current loop iteration are dependent on previous
iterations is far more difficult. For example, Line (16) in Algorithm 7 can be
rewritten as follows:

(16) for (1 ≤ l ≤ n; l+ = 4) do
(17) Ti,l = Ti,l − �μij� · Tj,l

(18) Ti,l+1 = Ti,l+1 − �μij� · Tj,l+1
(19) Ti,l+2 = Ti,l+2 − �μij� · Tj,l+2
(20) Ti,l+3 = Ti,l+3 − �μij� · Tj,l+3

The number of statements within the loop (here four statements) is dependent
on the processor used and the available multimedia extension and has to be de-
rived experimentally. The loop has to be adjusted accordingly in case the vector
dimension n is not a multiple of the number of statements within the loop.

4 Experiments

The experiments in this paper focus on unimodular lattices. For one, these latti-
ces are more difficult to reduce than knapsack or random lattices with the same
dimension and length of base vectors [1]. Furthermore the result of the reducti-
on can be easily verified since the reduced bases have a defect of 1. Unimodular
lattice bases can be easily generated by multiplying together lower and upper
triangular matrices with determinant 1. That is, entries in the diagonal are set to
1 while the lower (respectively upper part) of the matrix is selected at random.
Using lower triangular matrices Uj, upper triangular matrices Vj with 1 ≤ j ≤ 2
and permutation matrices Pi for 1 ≤ i ≤ 4, we considered the following three
variants of n× n dimensional unimodular lattice bases:

M1 : B = (U1 · V1)
M2 : B = (U1P1 · V1P2)
M3 : B = (U1P1 · V1P2) · (V2P3 · U2P4)

We generated 1000 unimodular bases for each type and dimension with n =
5, 10, 15, . . . , 100. In the following, we compare our new Gram variant of the
Schnorr-Euchner algorithm, called xLiDIA, with LLL FP from NTL 5.4 [30] and
the so-called proved variant in fpLLL 1.3 (with the default η = 0.51) [14,23].
Computer algebra systems like Magma [29] often use one or a combination of the
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aforementioned LLL algorithms [21]1. We did not consider the LLL reduction
algorithms introduced in [9,10,6] (implementation provided by [6]) which use
Householder reflections for the orthogonalization due to stability problems when
reducing unimodular lattice bases. The instability is caused by the fact that the
first correction step in the Schnorr-Euchner algorithm (see Algorithm 1) cannot
be adapted to Householder reflections or Givens rotations.

All experiments were performed on a Sun X4100 server with two dual core
AMD Opteron processors (2.2GHz) and 4GB of main memory using Sun Solaris
10 OS. We compiled all programs with GCC 4.1.1 [24] using the same optimiza-
tion flags. In the xLiDIA, NTL, and fpLLL implementation of the LLL algorithm
we used GMP 4.2.1 [26] with the AMD64 patch [27] as long integer arithmetic
and machine-type doubles for the approximation of the lattice basis. The followi-
ng figures show the average reduction time (with reduction parameter δ = 0.99)
of the 1000 unimodular bases per dimension.
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Fig. 2. Reduction times for basis type
M2 for NTL, fpLLL, and xLiDIA

Figures 1 – 3 show the reduction times for unimodular bases of types M1,
M2, and M3. One can easily see that the reduction times for M3-type bases
are higher than those for M2-type bases which are higher than those for M1-
type bases (for the same dimension n). That is M3-type bases are more difficult
to reduce than those bases of types M1 or M2. The relative improvement in
reduction time of the xLiDIA implementation in comparison to NTL and fpLLL
not only increases with the dimension of the lattice bases but also depends on
the difficulty in reducing a lattice basis. For example, for bases of dimension 100,
the reduction time with xLiDIA is 25% lower than that of fpLLL for M1-type
bases, 34% lower for M2-type bases and roughly 45% lower for M3-type bases.

While for smaller dimensions the reduction time of fpLLL is comparable to
xLiDIA, for higher dimensions fpLLL catches up with the slower NTL. In fact,

1 Magma is using η = 0.501 for the provable LLL variant (Proof:=true) which is
based upon fpLLL.
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Fig. 4. Reduction times for fpLLL and
xLiDIA using different η

at dimension 85 for M1, dimension 95 for M2, and dimension 85 for M3, the
reduction time of fpLLL even exceeds that of NTL. This behavior of fpLLL is
due to the overhead caused by updating two matrices (Gram matrix and lattice
basis) for each transformation in the reduction process. The newly-introduced
concept of buffered transformations as part of xLiDIA prevents this kind of
behavior.

It is important to recall that fpLLL uses a relaxed reduction condition with
η = 0.51 instead of η = 0.5 as in the original LLL algorithm and the xLiDIA
implementation used for Figures 1 – 3. In order to demonstrate the impact of
the relaxed reduction condition on the reduction time, we compare a modified
implementation of xLiDIA with η = 0.51 to fpLLL with η = 0.51 and the
original xLiDIA with η = 0.5. Figure 4 clearly shows that a relaxed reduction
condition, i.e., a larger η results in an additional decrease of the reduction time.
Furthermore, Figure 4 demonstrates that under the same reduction conditions
(i.e., when the relaxed reduction condition is used for both fpLLL and xLiDIA)
our newly-introduced variant xLiDIA outperforms fpLLL even further.

4.1 Stability

Aside from allowing for the analysis of the different algorithms based on their
reduction times, our experiments also show the effectiveness of the various heu-
ristics. In particular, it can be seen that the heuristics used in the NTL im-
plementation [30] of the LLL reduction algorithm do not work for all types of
bases. One can generally identify two serious and one minor problem. The se-
rious problems are the reduction process running into an infinite loop or not
providing a correctly reduced lattice basis. The minor problem identified is that
of using a relaxed reduction condition without providing any feedback of such
upon completion of the reduction.

Figure 5 shows the failure rates of the NTL implementation for the unimo-
dular bases of types M2 and M3. (For lattice bases of type M1 the NTL imple-
mentation did not exhibit any failures.) NTL-infinite loop accounts for those
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Fig. 5. NTL failure rates

cases in which the reduction process did not yield a reduction result within one
hour. In fact, in these cases NTL even issued a warning indicating that the al-
gorithm might have run into an infinite loop. NTL-wrong results accounts for
those cases in which the reduction algorithm did not compute a permutation of
the unit vectors ±ei for 1 ≤ i ≤ n as the reduced lattice basis. (The reducti-
on times for bases resulting in serious failure were not included in the timings
for Figures 1 – 3. In order to avoid infinite loops, NTL employs the heuristic of
relaxing the reduction condition 1 in Definition 1 for LLL reduced bases and
NTL-relaxed condition accounts for those cases where this heuristic was used.
Figure 5 clearly shows that the failure rates are increasing both with the dimen-
sion and the difficulty to reduce a lattice basis. Furthermore, it is obvious that
the infinite loop prevention heuristic does not work effectively.

In contrast to NTL, our xLiDIA implementation and the proved variant of
fpLLL did not exhibit any stability problems. However, testing the fast and
heuristic variants (also included in the fpLLL package) led to an infinite loop
on both algorithms even when reducing small unimodular lattice bases of di-
mension 10 with entries of maximum bit length of 100 bits.

5 Conclusion and Future Work

In this paper we introduced a new LLL variant using the Gram matrix represen-
tation which significantly outperforms the implementations of NTL and fpLLL.
In particular, with our new variant we have shown that it is possible to considera-
bly decrease the running time of LLL reduction without weakening its reduction
conditions nor sacrificing the stability of the reduction process. It is important
to note that the optimizations introduced in this paper could also be applied
to the proved variant of fpLLL without affecting its respective correctness
proof [14].

Future work includes further optimizing the reduction algorithms to take ad-
vantage of newly-introduced features in today’s computers such as dual or quad
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core CPUs. We are also striving to find ways to extend the use of machine-type
doubles for lattice bases with larger entries in higher dimensions.
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Abstract. Starting from a chain contraction (a special chain homotopy
equivalence) connecting a differential graded algebra A with a differen-
tial graded module M , the so-called homological perturbation technique
“tensor trick” [8] provides a family of maps, {mi}i≥1, describing an A∞-
algebra structure on M derived from the one of algebra on A. In this
paper, taking advantage of some annihilation properties of the compo-
nent morphisms of the chain contraction, we obtain a simplified version
of the existing formulas of the mentioned A∞-maps, reducing the com-
putational cost of computing mn from O(n!2) to O(n!).
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1 Introduction

At present, A∞-structures (or strong homotopy structures) find natural appli-
cations not only in Algebra, Topology and Geometry but also in Mathematical
Physics, related to topics such as string theory, homological mirror symmetry or
superpotentials [14,17,18]. Nevertheless, there are few methods for computing ex-
plicit A∞-structures, being the better known technique the tensor trick [8]. This
tool is used in the context of Homological Perturbation Theory. Starting from a
chain contraction c (a special chain homotopy equivalence, also called strong de-
formation retract) from a differential graded algebra A onto a differential graded
module M , the tensor trick technique gives explicit formulas for computing a
family of higher maps {mi}i≥1 that provides an A∞-algebra structure on M (de-
rived from the algebra structure on A). However, the associated computational
costs are extremely high (see [11,12,1]). In this paper, we are concerned about
finding a more cost-effective formulation of the family of maps transferred to
M . As it is shown in section 3, the use of annihilation properties of the com-
ponent morphisms of the chain contraction allows to reformulate the A∞–maps
on M (which depend on the mentioned component morphisms). Afterwards, in
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section 4 we carry out a theoretical study of the time and space invested in
computing mn, presenting the computational savings obtained, in comparison
with the original formulas defined by the Basic Perturbation Lemma.

The results can be extended to the case of A being an A∞-algebra (then,
another A∞-algebra structure is also induced on M). We remark that such a
transference can also be performed in the case of c being a general explicit chain
homotopy equivalence.

Of course, all the results given in this paper can be easily translated into the
context of coalgebras and A∞–coalgebras.

2 Notations and Preliminaries

We briefly recall here some basic definitions in Homological Algebra as well as
the notations used throughout the paper. See [3] or [16] for further explanations.

Take a commutative unital ring Λ. Let (M,d) be a DG-module, that is, a
Λ– module graded on the non-negative integers (M =

⊕
n≥0Mn) and endowed

with a differential d (of degree −1). An element x ∈ Mn has degree n, what
will be expressed by |x| = n. In the case that M0 = Λ, M is called connected
and if, besides, M1 = 0, then it is called simply connected. Given a connected
DG–module, M , the reduced module M is the one with Mn = Mn for n > 1 and
M0 = 0.

We will denote the module M⊗ n· · · ⊗M by M⊗n, with M⊗0 = Λ and the
morphism f⊗ n· · · ⊗f : M⊗n → N⊗n by f⊗n. We adhere to Koszul convention
for signs. More concretely, given f : M → M ′, h : M ′ → M ′′, g : N → N ′ and
k : N ′ → N ′′ DG–module morphisms, then

(h⊗ k)(f ⊗ g) = (−1)|k||f |(hf ⊗ kg).

On the other hand, if f : M⊗i → M is a DG–module morphism and n is a
non–negative integer, we will denote by f [n] : M⊗n →M⊗n−i+1 the morphism

f [n] =
n−i∑

j=0

1⊗j ⊗ f ⊗ 1⊗n−i−j

and the morphism f [ ] :
⊕

j≥i M
⊗j →

⊕
k≥1M

⊗k will be the one such that
f [ ]|M⊗n = f [n].

We will denote by ↑ and ↓ the suspension and desuspension operators, which
shift the degree by +1 and −1, respectively. A given morphism of graded modules
of degree k, f : M → N , induces another one between the suspended modules
sf : sM → sN , given by sf = (−1)k ↑ f ↓.

Given a DG-module (M,d), the tensor module ofM , T (M), is the DG–module

T (M) =
⊕

n≥0

T n(M) =
⊕

n≥0

M⊗n
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whose differential structure is provided by d[ ]M . Every morphism of DG-modules
f : M → N induces another one T (f) : T (M) → T (N), such that T (f)|M⊗n =
f⊗n.

A DG–algebra, (A, dA, μA), is a DG–module endowed with an associative prod-
uct, μA, compatible with the differential dA and which has a unit ηA : Λ → A,
that is, μA(ηA ⊗ 1) = μA(1⊗ ηA) = 1. If there is no confusion, subscripts will be
omitted. A DG–coalgebra (C, dC , ΔC) is a DG–module provided with a compat-
ible coproduct and counit ξC : C → Λ ( so, (ξC ⊗ 1)ΔC = (1 ⊗ ξC)ΔC = 1).

In the case of the tensor module T (M), a product, μ, and a coproduct, Δ,
can be naturally defined on an element a1 ⊗ · · · ⊗ an ∈ T n(M), as follows:

μ((a1 ⊗ · · · ⊗ an) ⊗ (an+1 ⊗ · · · ⊗ an+p)) = a1 ⊗ · · · ⊗ an+p;
Δ(a1 ⊗ · · · ⊗ an) =

∑n
i=0(a1 ⊗ · · · ⊗ ai) ⊗ (ai+1 ⊗ · · · ⊗ an).

Therefore, T (M) acquires both structures of DG–algebra (denoted by T a(M))
and DG–coalgebra (T c(M)), though they are not compatible to each other (that
is, (T (M), μ,Δ) is not a Hopf algebra).

We recall here two equivalent definitions of A∞–algebra (resp. A∞–coalgebra)
[13,19].

– An A∞-algebra (respectively, A∞-coalgebra), is a DG-module (M,m1) (resp.
(M,Δ1)) endowed with a family of maps

mi : M⊗i →M (resp., Δi : M →M⊗i)

of degree i− 2 such that, for n ≥ 1,

i∑

n=1

i−n∑

k=0

(−1)n+k+nkmi−n+1(1⊗k ⊗mn ⊗ 1⊗i−n−k) = 0, (1)

(resp.,
i∑

n=1

i−n∑

k=0

(−1)n+k+nk(1⊗i−n−k ⊗Δn ⊗ 1⊗k)Δi−n+1 = 0). (2)

– An A∞-algebra (resp., A∞–coalgebra) is a graded module M endowed with
a morphism of modules m : T (sM) → M (resp., Δ : M → T (s−1M)) such
that the morphism d = −(↑ mT (↓))[ ] (resp., d = −(T (↓)Δ ↑)[ ]) makes
T c(sM) (resp., T a(s−1M)) to be a DGA–coalgebra (resp., DGA-algebra).

The reduced bar construction of a connected DG–algebra A, B̄(A), is a DG–
coalgebra whose module structure is given by

T (sĀ) =
⊕

n≥0

(sĀ⊗ n times· · · ⊗sĀ).

The total differential dB̄ is given by the sum of the tensor differential, dt (which
is the natural one on the tensor product) and the simplicial differential, ds (that
depends on the product on A):

dt = −
∑n−1

i=0 1⊗i⊗ ↑ dA ↓ ⊗1⊗n−i−1; ds =
∑n−2

i=0 1⊗i⊗ ↑ μA ↓⊗2 ⊗1⊗n−i−2.
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The coproduct ΔB̄ : B̄(A) → B̄(A) ⊗ B̄(A) is the natural one on the tensor
module.

In the context of homological perturbation theory, the main input data are
contractions [4,9,15,7,10]: a contraction c : {N,M, f, g, φ} from a DG-module N
to a DG-module M , consists in a particular homotopy equivalence determined
by two DG-module morphisms, f : N� →M� and g : M� → N� and a homotopy
operator φ : N� → N�+1 such that fg = 1M , and φdN +dNφ+gf = 1N . Moreover,
these data are also required to satisfy the anihilation properties:

fφ = 0, φg = 0, φφ = 0.

Given a DG–module contraction c : {N, M, f, g, φ}, one can establish the
following ones [7,8]:

– The suspension contraction of c, s c, which consists of the suspended DG–
modules and the induced morphisms:

s c : {sN, sM, s f, s g, s φ},

being s f =↑ f ↓, s g =↑ g1 ↓ and s φ = − ↑ φ ↓, which are briefly expressed
by f , g and −φ.

– The tensor module contraction, T (c), between the tensor modules of M
and N :

T (c) : {T (N), T (M), T (f), T (g), T (φ)},

where

T (φ)|T n(N) = φ[⊗n] =
n−1∑

i=0

1⊗i ⊗ φ⊗ (g f)⊗n−i−1.

A morphism of graded modules f : N → N is called pointwise nilpotent
whenever for all x ∈ N , x �= 0, there exists a positive integer n such that
fn(x) = 0. A perturbation of a DG-module N consists in a morphism of graded
modules δ : N → N of degree −1, such that (dN +δ)2 = 0. A perturbation datum
of the contraction c : {N,M, f, g, φ} is a perturbation δ of the DG-module N
satisfying that the composition φδ is pointwise nilpotent.

The main tool when dealing with contractions is the Basic Perturbation
Lemma [2,5,15], which is an algorithm whose input is a contraction of DG–
modules c : {N,M, f, g, φ} and a perturbation datum δ of c and whose output
is a new contraction cδ : {(N, dN + δ), (M,dM + dδ), fδ, gδ, φδ} defined by the
formulas

dδ = f δ Σδ
c g; fδ = f (1 − δ Σδ

c φ); gδ = Σδ
c g; φδ = Σδ

c φ;

where Σδ
c =

∑
i≥0(−1)i (φδ)i .

The pointwise nilpotency of the composition φδ guarantees that the sums are
finite for each particular element.
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3 Transferring A∞–Algebras Via Homological
Perturbation Theory

A∞–algebras were first introduced by Stasheff in [20]. They are, roughly speak-
ing, algebras which are associative “up to homotopy” (also called strongly ho-
motopy associative algebras).

In the papers of Gugenheim, Stasheff and Lambe [6,9,8], they describe a tech-
nique called tensor trick by which, starting from a contraction between a DG–
algebra A and a DG–module M , an A∞–algebra structure is induced on M . This
transference also exists in the case that A is an A∞–algebra. Moreover, in the
case that a general homotopy equivalence is established between A and M , it is
also possible to derive a formulation for an A∞–algebra structure on M . We will
mainly focus our efforts on obtaining computational improvements in the first
case.

3.1 Transference Via Contractions

Let us consider the contraction

c : {A,M, f, g, φ},

where A is a connected DG–algebra and M a DG–module. The first step con-
sists in tensoring, in order to obtain the underlying graded module of the bar
construction of A,

T (sc) : {T c(sĀ), T c(sM̄), T f, T g, T (−φ)};

and then, considering the simplicial differential, ds, which is a perturbation da-
tum for this contraction, and using the Basic Perturbation Lemma, a new con-
traction is obtained,

{B̄(A), (T c(sM̄), d̃), f̃ , g̃, φ̃} ,

where (T c(sM̄), d̃) is called the tilde bar construction of M [20], denoted by
B̃(M). Then, the perturbed differential d̃ induces a family of maps mn : M⊗n →
M of degree n− 2 that provides an A∞–algebra structure on M .

The transference of an A∞–algebra structure was also studied by Kadeishvili
in [13] for the case M = H(A). Using this technique, in the following theorem, an
expression of a family of A∞–operations is given with regard to the component
morphisms of the initial contraction. Although this formulation is implicitly
derived from the mentioned papers [13] and [8], an explicit proof is given in [12].

Theorem 1. [13,8] Let (A, dA, μ) and (M, dM) be a connected DG–algebra and
a DG–module, respectively and c : {A,M, f, g, φ} a contraction between them.
Then the DG–module M is provided with an A∞–algebra structure given by the
operations
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m1 = −dM

mn = (−1)n+1f μ(1) φ[⊗2] μ(2) · · ·φ[⊗n−1] μ(n−1) g⊗n , n ≥ 2 (3)

where

μ(k) =
k−1∑

i=0

(−1)i+11⊗i ⊗ μA ⊗ 1⊗k−i−1 .

As far as the computation of these formulas is concerned, we can take advan-
tage of the annihilation properties of f , g and φ to deduce a more economical
formulation for mn.

Theorem 2. Any composition of the kind φ[⊗s]μ(s) (s = 2, . . . , n − 1) in the
formula (3), which is given by

⎛

⎝
s−1∑

j=0

1⊗j ⊗ φ⊗ (g f)⊗s−j−1

⎞

⎠ ◦
(

s−1∑

i=0

(−1)i+11⊗i ⊗ μA ⊗ 1⊗s−i−1

)
,

can be reduced to the following sum

s−1∑

i=0

(−1)i+11⊗i ⊗ φμA ⊗ 1⊗s−i−1 . (4)

Moreover, given a composition of the kind

(φ[⊗s−1]μ(s−1)) ◦ (φ[⊗s]μ(s)) s = 3, . . . , n− 2,

for every index i in the sum (4) of φ[⊗s]μ(s), the formula of φ[⊗s−1]μ(s−1) in such
a composition can be reduced to

s−2∑

j=i−1, j≥0

(−1)j+11⊗j ⊗ φμA ⊗ 1⊗s−j−2 . (5)

In other words, the whole composition (φ[⊗2] μ(2)) ◦ · · · ◦ (φ[⊗n−1] μ(n−1)) in the
formula of mn can be expressed by

n−2∑

in−1=0

⎛

⎝
n−3∑

in−2=in−1−1

(
· · ·

(
1∑

i2=i3−1

(φμ)(2,i2)

)
· · ·

)
(φμ)(n−2,in−2)

⎞

⎠ (φμ)(n−1,in−1),

where (φμ)(k,j) = (−1)j+11⊗j ⊗φμA ⊗1⊗k−j−1 and each addend exists whenever
the corresponding index ik ≥ 0.

Proof. Let us prove the formula 4 of φ[⊗s]μ(s) for any s = n− 1, n− 2, . . . , 2, by
induction over the number k = n − s of factors of the type φ[⊗∗]μ(∗) that are
composed, following the scheme
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mn = (−1)n+1f μ(1) φ[⊗2] μ(2) · · ·φ[⊗n−2] μ(n−2) φ[⊗n−1] μ(n−1) g⊗n

︸ ︷︷ ︸
k=1︸ ︷︷ ︸

k=2︸ ︷︷ ︸
k=n−2

(6)

At the same time, we will prove the major reduction of terms given by (5) for
s = n− 2, . . . , 2.

– k = 1 The composition of morphisms φ[⊗n−1] μ(n−1) g⊗n can be written as
⎛

⎝
n−2∑

j=0

1⊗j ⊗ φ⊗ (gf)⊗n−j−2

⎞

⎠ ◦
(

n−2∑

i=0

(−1)i+1g⊗i ⊗ μA g
⊗2 ⊗ g⊗n−i−2

)
.

Now, using the facts that fg = 1 and φg = 0, it is simple to see that the
only non null elements are those where φ is applied over μA, so the original
formula of φ[⊗n−1] μ(n−1) is simplified to

n−2∑

i=0

(−1)i+11⊗i ⊗ φμA ⊗ 1⊗n−i−2 .

– k = 2 In this case, taking into account the formula obtained for k = 1,

φ[⊗n−1] μ(n−1) g⊗n =
n−2∑

i=0

(−1)i+1g⊗i ⊗ φμAg
⊗2 ⊗ g⊗n−i−2 (7)

and that φ[⊗n−2]μ(n−2) is the composition
⎛

⎝
n−3∑

j=0

1⊗j ⊗ φ⊗ (gf)⊗n−j−3

⎞

⎠ ◦
(

n−3∑

i=0

(−1)i+11⊗i ⊗ μA ⊗ 1⊗n−i−3

)
,

we can use the anihilation properties φg = 0 and φ2 = 0, to conclude that
the factor φ in φ[⊗n−2] has to be applied over μA and hence,

φ[⊗n−2] μ(n−2) =
n−3∑

j=0

(−1)j+11⊗j ⊗ φμA ⊗ (gf)⊗n−j−3 . (8)

Now, considering the composition of the sum (7) with (8), one can observe
that, since fφ = 0, for each index i in the sum (7), the only addends of (8)
that have to be considered for the composition are those j ≥ i − 1. On the
other hand, fg = 1 is also satisfied, so

φ[⊗n−2] μ(n−2) =
n−3∑

j=i−1

(−1)j+11⊗j ⊗ φμA ⊗ 1⊗n−j−3 .
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– k = m Finally, let us assume that the proposition is true for φ[⊗n−k]μ(n−k)

for all k = 1, . . . ,m− 1. Now, considering, on one hand, φ[⊗n−m]μ(n−m),
⎛

⎝
n−m−1∑

j=0

1⊗j ⊗ φ⊗ (gf)⊗n−j−m−1

⎞

⎠
(

n−m−1∑

i=0

(−1)i+11⊗i ⊗ μA ⊗ 1⊗n−i−m−1

)

and that, on the other hand, the composition of morphisms

φ[⊗n−m+1] μ(n−m+1) · · ·φ[⊗n−1] μ(n−1) g⊗n

by induction hypothesis, is a sum of elements that are tensor product of
factors of the type φ(something) or g, using again the annihilation properties,
it follows that

φ[⊗n−m] μ(n−m) =
n−m−1∑

j=0

(−1)j+11⊗j ⊗ φμA ⊗ (gf)⊗n−j−m−1 .

Since, by induction hypothesis,

φ[⊗n−m+1] μ(n−m+1) =
n−m∑

i=0

(−1)i+11⊗i ⊗ φμA ⊗ 1⊗n−m−i,

taking into account that fg = 1 and the fact that fφ = 0, again we can
reduce the number of terms of φ[⊗n−m] μ(n−m) to

n−m−1∑

j=i−1

(−1)i+11⊗i ⊗ φμA ⊗ 1⊗n−m−i−1 ,

where i is the index corresponding to the term of the preceding sum that is
being composed with φ[⊗n−m] μ(n−m).

We can generalize the results showed above to the case that the “big” DG-
module of a given contraction is an A∞-algebra. The stability of the A∞-
structures with respect to the contractions follows from the paper [8]. In fact, it
is possible to extract the next theorem as an implicit consequence of the results
there.

Theorem 3. Given c : {A, M, f, g, φ} a contraction, where (A, m1,m2, . . .) is
a connected A∞-algebra and M is a DG-module, then M inherits an A∞-algebra
structure.

Proof. The proof follows the same scheme as in theorem 1 (and for that reason,
we will only sketch it slightly) , making use of the tensor trick and the Basic
Perturbation Lemma, with the difference that, now, the perturbation datum for
the contraction
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T (sc) : {T c(sĀ), T c(sM̄), T (f), T (g)T (−φ)}

is the one induced by the A∞–maps

dm|(sĀ)⊗n = −
n∑

k=2

n−k∑

i=0

1⊗i⊗ ↑ mk ↓⊗k ⊗1⊗n−k−i .

Since the family of maps {mi}i≥1 defines an A∞-algebra structure on A,
dB̃ = dt + dm is a differential on T c(sĀ) (in fact, (T c(sĀ), dB̃) is the tilde bar
construction of A). On the other hand, the pointwise nilpotency of T (−φ) dm

follows because dm reduces the simplicial dimension, while T (−φ) keeps it the
same.

Thanks to the Basic Perturbation Lemma, a new differential is obtained on
T c(sM̄), d̃, given by the formula:

d̃ = dt + T (f) dm

∑

i≥0

(−1)i(T (−φ) dm)i T (g) .

This way, d̃ induces a family of maps {mM

i }i≥1 on M , where mM
n , up to sign,

can be expressed by

f mn g
⊗n +

n−2∑

l=1

∑

2≤k1<...<kl≤n−1

±f mk1 (φ[⊗k1]m
(k1)
k2−k1+1) · · · (φ[⊗kl]m

(kl)
n−kl+1) g

⊗n

where m(k)
n−k+1 : A⊗n → A⊗k is given by

m
(k)
n−k+1 =

n−k+1∑

i=0

1⊗i ⊗mn−k+1 ⊗ 1⊗k−i−1 .

Notice that, since mi is a map of degree i− 2, mM
n has degree n− 2.

If we examine the formula above in low dimensions, we obtain, up to sign:

mM
2 = ±f m2 g

⊗2;
mM

3 = ±f m3 g
⊗3 ± f m2 φ

[⊗2]m
(2)
2 g⊗3;

mM
4 = ±f m4 g

⊗4 ± f m2 φ
[⊗2]m

(2)
3 g⊗4 ± f m3 φ

[⊗3]m
(3)
2 g⊗4

±f m2 φ
[⊗2]m

(2)
2 φ[⊗3]m

(3)
2 g⊗4.

Notice that only the last addend of each map is the one induced in the case
of A being an algebra, instead of the 2n−2 addends generated in these cases (the
number of subsets of a set of n− 2 elements). At each addend of each A∞–map,
one can obtain a reduction in number of terms, of the same nature than the one
showed in theorem 2.
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Theorem 4. Any composition of the kind φ[⊗s]m
(s)
r in the formula of mM

n ,
which is given by

⎛

⎝
s−1∑

j=0

1⊗j ⊗ φ⊗ (g f)⊗s−j−1

⎞

⎠ ◦
(

r∑

i=0

1⊗i ⊗mr ⊗ 1⊗s−i−1

)
,

can be reduced to the following sum
r∑

i=0

1⊗i ⊗ φmr ⊗ 1⊗s−i−1 .

Proof. This proof is completely dual to the one of theorem 2, so it is left to the
reader.

3.2 Transference Via Homotopy Equivalences

In [10], a general chain homotopy equivalence e between two DG-modules M and
M ′ is considered as a pair of chain contractions {M̂,M, f, g, φ} and {M̂,M ′, f ′,
g′, φ′}, where M̂ is a “big” DG-module obtained from e. Our interest here is
to compute the A∞-algebra structure on M ′ derived from that of M . Having
at hand the mentioned characterization of chain homotopy equivalence and the
results of the previous subsection, our task is then reduced to determine the
transferring of A∞-structures via chain contractions in the sense from-small-
to-big. In a more formal way, our main problem here is the transference of
the A∞-algebra structure from a “small” DG-module N to a “big” DG-module
M via the chain contraction c : {M,N, f, g, φ}. The following propositions are
straightforward and, in particular, allow to design an algorithmic method for
transferring A∞-structures via chain homotopy equivalences:

Proposition 1. Let c : {M,N, f, g, φ} be a chain contraction and let (N,μ) be
a DG-algebra with product μ. Then, M has a structure of DG-algebra, provided
by the product μM = g μ (f ⊗ f).

Proposition 2. Let c : {M,N, f, g, φ} be a chain contraction and let (N,μ) be
an A∞-algebra with higher maps (n1, n2, n3, . . .). Then, the DG-module M inher-
its a structure of A∞-algebra, given by the maps (g n1 f, g n2 f⊗2, g n3 f

⊗3, . . .).

4 Computational Advantages: Theoretical Study

In this section we are concerned about the theoretical study of the time and
space invested in computing the maps of an A∞–algebra structure induced by a
contraction c : {A,M, f, g, φ}. We will focus on the case of A being an algebra.
In particular, we will make a comparison between the original formulas defined
by the Basic Perturbation Lemma and the reduced formulas obtained in the
previous section.
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Regarding the original formulas of the A∞–algebra maps, we must say that
experimental results can be obtained with [1], a software developed in order
to perform low dimension computations. This software is based on the initial
formulation for the map mn : M⊗n →M given in theorem 1:

mn = (−1)n+1f μ(1) φ[⊗2] μ(2) · · ·φ[⊗n−1] μ(n−1) g⊗n , n ≥ 2 .

We will take n ≥ 3, since no improvement is obtained in the case n = 2.
As for complexity in space, let us consider the number of addends generated

in the sum above. Taking into account that

φ[⊗k] =
k−1∑

i=0

1⊗i ⊗ φ⊗ (g f)⊗k−i−1 and μ(k) =
k−1∑

i=0

(−1)i+11⊗i ⊗ μA ⊗ 1⊗k−i−1 ,

the result of applying mn to an element x1 ⊗ x2 ⊗ · · ·xn has (n− 1)!2 addends.
Concerning complexity in time, let us assume that each component morphism

of the initial contraction, f, g and φ, consumes a unit of time when applied (that
is, each one of these morphisms is considered a basic operation); we will also make
this assumption for the composition g f which is applied in different terms of
the morphisms φ[⊗k].

Notice that applying g⊗n is O(n) in time.
On the other hand, the number of operations of each addend of the form

1⊗i⊗φ⊗ (g f)⊗k−i−1 is k− i and the one of each addend 1⊗i⊗μA⊗1⊗k−i−1 is 1.
That is, the number of basic operations can be expressed by

n+ 2 (n− 1)!2 + (n− 1)!
∑

ki∈{1,2,...,i}
(k2 + 1 + k3 + 1 + · · ·+ kn−1 + 1) ,

where n comes from g⊗n, 2 (n− 1)!2 from the two operations f μ at the end of
each addend and the big sum corresponds to the operations on the composition

φ[⊗2] μ(2) · · ·φ[⊗n−1] μ(n−1).

Notice that the sum is multiplied by (n − 1)! because of all the possibilities
for taking an addend 1⊗i ⊗ μA ⊗ 1⊗k−i−1 of each μ(k). The sum above can be
expressed by

n+ n (n− 1)!2 +
(n+ 3)(n− 2)

4
(n− 1)!2.

Therefore, the complexity of the algorithm becomes O(n!2) in time.
Now, taking into account the first reduction of terms in the sums involved in

mn (theorem 2), any composition of morphisms of the form φ[⊗s]μ(s), which had
s2 addends, is reduced to a sum with s terms. So, the total number of addends
is now (n− 1)!.

As for the number of operations, now it is O(n) for each addend. Moreover,
the number of operations is, exactly,

n+ (n− 1)! (2n− 2) ,

and hence O(n!) in time.
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Finally, considering that the upla of indexes (i2, i3, . . . in−1) for the sums must
be taken so that ik ≥ ik+1 − 1, we eliminate (for n ≥ 4)

Sn =
n−3∑

k=1

k∑

i=1

i · k! =
n−3∑

k=1

k (k + 1)!
2

addends, so the number of addends becomes (n − 1)! − Sn. Now, taking into
account that (n− 1)! can be expressed by

(n− 1)! = 2 +
n−3∑

k=1

(k + 1)! +
n−3∑

k=1

k (k + 1)! ,

it is easy to see that

(n− 1)!
2

< (n− 1)!− Sn < (n− 1)! ,

so the algorithm is still O((n − 1)!) in space. However, the final number of
addends, (n−1)!−Sn, is much ”closer” to (n−1)!

2 than to (n−1)!, as it is shown
in the following comparative table.

n 5 10 50 100 1000
((n− 1)!− Sn)/(n− 1)! 0, 708333 0, 563704 0, 510421 0, 505103 0, 500050

Summing up, the order of complexity in time and space of the original formula
versus the new one is presented in the following table.

original formula new formula
time space time space

mn O(n!2) O((n − 1)!2) O(n!) O((n − 1)!)
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algèbre), Ph. D. Thesis, Université Paris VII (1984)
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Abstract. For graphs there exist highly elaborated drawing algorithms.
We concentrate here in an analogous way on visualizing relations repre-
sented as Boolean matrices as, e.g., in RelView. This means rearranging
the matrix appropriately, permuting rows and columns simultaneously
or independently as required. In this way, many complex situations may
successfully be handled in various application fields. We show how rela-
tion algebra and RelView can be combined to solve such tasks.

1 Introduction

Although graphs as well as relations are frequently used as modeling tools, the
theory of graphs is far more broadly known than the theory of relations. While
complexity considerations in graph theory, e.g., aim at asymptotic behaviour of
algorithms, graph drawing has its main impact for graphs of small or moderate
size. There exist specific application areas where people work with such graphs
to model practical situations using graph drawing as a supporting technique. A
lot of highly elaborated graph drawing algorithms and implemented tools help
getting an impression on how the graph in question is structured; cf. e.g., [9,16].

Since many years relation algebra is used as a means for problem solving in
mathematics, computer science, engineering, and some other disciplines. A lot
of practical applications can be found in [7,8]. As demonstrated in [18] for exam-
ple, graph theory and relation theory interact in many ways. But relations are
geared towards an algebraic treatment, ultimately leading to the structure of a
relation algebra in the sense of Tarski (see [21]) and, if required, its mechaniza-
tion via appropriate Computer Algebra systems. While one may draw relations
in a multitude of versions when interpreting them as graphs, we here aim at
depicting them as Boolean matrices. This is often very useful for visual editing
and for discovering structural properties that are not evident from a graph rep-
resentation. While this approach does not bring much additional visualization
in simple cases (i.e., for most of those presented here due to the page limit), it
helps when several algebraic conditions are supposed to hold. As an example,

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 58–72, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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we mention that for games a decomposition into loss, draw, and win positions
may be obtained, which means a block decomposition as follows:

⎛

⎝
0 0 ∗
0 total ∗

total ∗ ∗

⎞

⎠

The Boolean matrix can be rearranged appropriately by permuting rows and
columns simultaneously or independently as required, so as to have a more or
less immediate impression of what it stands for. Easily visible rectangular zones
of zeros or ones are helpful as well as arrangements along the diagonal. Here,
submatrices will be obtained that do not admit empty rows. But there remains
the question whether this is possible, whether it is justified algebraically, and
how the desired form can be obtained algorithmically.

The observation concerning relations occurring in practice is that they are
“not too big”; row or column numbers do often not exceed 40 or 50. Even if
an algorithm turns out to be rather inefficient when considered asymptotically,
it seems possible to handle that size with our actual computer equipment. A
competent overview on Multi-Criteria Decision Aid of this type is given in [6]
for example. It contains a considerable number of practical examples of tables
that are limited in size but lend themselves to be investigated with algebraic
methods with respect to several criteria. They resemble evaluations with patient
material or the multi-purpose transnational water system of, e.g., Lago Maggiore.

This is where our investigation started. Using some basic algorithms, we have
developed a tool set of relation- algebraic expressions describing rearrangements
of Boolean matrices / relations into specific forms. These could immediately be
translated into the programming language of the specific purpose Computer Al-
gebra system RelView [1,3,4]. While we have handled, among others, symmet-
ric idempotent relations, matching decompositions, independent and/or covering
pairs of sets, implication structure decompositions, equivalences, we restrict to
presenting here all the types of orderings traditionally used by decision makers.
Several pictures show how the system then can help in visualization.

2 A Motivating Example

As a rather trivial initial example consider the following relation on elements
1, 2, . . .7, represented with the RelView tool as a Boolean matrix.

A black square stands for the matrix entry 1 (or true) and a white square
stands for the entry 0 (or false). It is easy to check that the relationR represented
by the matrix is a pre-order relation, i.e., is reflexive (I ⊆ R) and transitive
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(RR ⊆ R). With a graph drawing algorithm one would obtain something as
shown in the following pictures. Again they are produced by RelView; the
picture on the left uses the hierarchical polyline drawing algorithm of [13] and
that on the right is the result of the spring-embedder algorithm of [15].

1

2

3

4

5 6

7

But these drawings do not give an appropriate impression of what the relation
R really expresses. More intuitive is the left one of the following two RelView-
matrices. It is given as an upper right triangle of rectangles of either 1’s or 0’s,
where the four rectangle-forming parts correspond to the four sets {2, 3}, {5},
{6, 7} and {1, 4} of indices of the original matrix.

Later we will show how such a rearrangement can be obtained from the original
matrix. The key of our procedure will be the relation-algebraic specification of
a permutation relation P ; for the above example it is represented by the Rel-

View-matrix on the right. Then the new version is obtained by multiplying R
with the transpose of P from the left and with P from the right. The former
rearranges the rows of R accordingly and the latter does so for the columns.

3 Relation Algebra

We write R : X↔Y if R is a relation with domain X and range Y , i.e., a subset
of the direct productX×Y . If the base sets X and Y of R’s type X↔Y are finite
and of size m and n, respectively, we may consider R as a Boolean m×n matrix.
This interpretation is well suited for many purposes. As it is also used by Rel-

View to depict relations, we will often use matrix terminology and notation, i.e.,
speak about rows and columns and write Rx,y instead of 〈x, y〉 ∈ R or xR y. We
assume the reader to be familiar with the basic operations on relations, viz. RT

(transposition), R (complement), R ∪ S (union), R ∩ S (intersection), and RS
(multiplication), the predicate R ⊆ S (inclusion), and the special relations O
(empty relation), L (universal relation), and I (identity relation).
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To model sets we will use vectors , which are relations v with v = vL. Since for
the relation modelling a set the range is irrelevant, we consider in the following
mostly vectors v : X↔1 with a specific singleton set 1 = {⊥} as range and omit
in such cases the subscript ⊥, i.e., write vx instead of vx,⊥. Such a vector can be
considered as a Boolean column vector, and represents the subset {x ∈ X | vx}
of X . A non-empty vector v is a point if vvT ⊆ I, i.e., it is injective. This means
that it represents a singleton subset of its domain or an element from it if we
identify a singleton set {x} with the element x. In the Boolean matrix model a
point v : X↔1 is a Boolean column vector in which exactly one entry is 1.

When dealing with orders, one typically investigates extremal elements. In
this paper we only need least(C, v) = v ∩ C ∪ I v . For a strict-order relation
C : X↔X i.e., an asymmetric (C ∩ CT = O) and transitive relation, and a
vector v : X↔1 this relational function yields either a point that represents the
least element of v wrt. C or an empty vector if no least element exists.

With R \S = RT S : Y ↔Z the right residual of R : X↔Y and S : X↔Z
is introduced. For S = R this means in particular that R \R has type Y ↔Y and
for all x, y ∈ Y the x-column of R is contained in the y-column of R iff (R \R)x,y

holds. Hence, R \R coincides with the is-contained relation on the columns of R.
The expression (RT \ST)T defines the left residual S /R : X↔Y of S : X↔Z
and R : Y ↔Z. Here the case S = R yields the transposed is-contained relation,
i.e., the contains relation S /S : X↔X on the rows of S.

4 A Short Look at the RelView Tool

RelView is a specific purpose Computer Algebra system for relation algebra.
All data it works on are represented as relations which the system visualizes
as directed graphs (via several sophisticated graph drawing algorithms) or as
Boolean matrices. RelView allows to compute with very large relations, as the
system uses a highly efficient implementation of relations via binary decision
diagrams (see [3,4]). The user can manipulate and analyse relations by pre-
defined operations and tests. Based on the operations and tests and certain
additional control structures relational functions and relational programs may
be defined. We exhibit three of them as examples, which we will need later.

The following unary RelView-function Hasse computes the Hasse-diagram
HC = C ∩ CC of a strict-order relation C.

Hasse(C) = C & -(C * C).

A relational program essentially is a while-program based on the main data-
type realized, namely relations. Such a RelView-program has many similarities
with a function procedure in programming languages like Pascal or Modula-2.
It starts with a head line containing the program’s name and the list of formal
parameters. Then the local declarations follow. The last part is the body, a
sequence of statements which are separated by semicolons and terminated by
the RETURN-clause. For an example, we recall E. Szpilrajn who proved in [20]
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that every partial order relation possesses a linear extension, where R is linear if
R∪RT = L. This theorem follows from Zorn’s lemma and the fact that, given a
partial order relation E : X↔X and an incomparable pair 〈a, b〉 ∈ X ×X , there
exists an extension R of E that contains 〈a, b〉. Using element-wise notation, we
can define R for all x, y ∈ X by Rx,y iff Ex,y or Ex,a and Eb,y. A relation-alge-
braic specification of R is R = E ∪EAE, where the relation A is a product pqT

of different points p, q : X↔1 representing the elements a and b, respectively.
In the finite case the extension may be iterated and this leads to the following
RelView-program Szpilrajn for computing a linear extension of E.

Szpilrajn(E)
DECL R, A
BEG R = E;

WHILE -empty(-(R | R^)) DO
A = atom(-(R | R^));
R = R | R*A*R OD

RETURN R
END.

The next example is the RelView-program Classes (formally developed in
[2]) that computes for an equivalence relation R : X↔X with set C of equiva-
lence classes the canonical epimorphism from X to C as a relation Φ : X↔C.

Classes(R)
DECL C, x, p
BEG C = R*point(Ln1(R));

x = -C;
WHILE -empty(x) DO
p = point(x);
C = (C^ + (R*p)^)^;
x = x & -(R*p) OD

RETURN C
END.

Since Φ is the relational version of the canonical epimorphism, we have for all
x ∈ X and equivalence classes c ∈ C that Φx,c iff x belongs to c. Hence, if
we consider the columns of the result C of the RelView-program Classes as
single vectors, then these vectors are pair-wise disjoint and precisely represent
the elements of the set C. In the literature this is also called a column-wise
representation of a set of sets, or the natural projection for the equivalence.

5 Some Simple Rearranging Algorithms

Our rearrangement algorithms are all based on pure relation algebra, supported
by one additional fact: Sets X between which the relations hold we work with
are necessarily finite; we assume them to be equipped with a linear strict-order
relation ΩX : X↔X, the base strict-order . In RelView this order is implicitly
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given by the internal enumeration of the base set X within the tool. Its Hasse-
diagram is succ : X↔X. To be more precise, if x1, x2, . . . , xn is the internal
enumeration of X within the tool, then we have succxi,xi+1 for all i, 1 ≤ i ≤ n−1,
and the base strict-order ΩX is obtained as the transitive closure succ+ of succ.

5.1 Linear Strict-Order Relations

In what follows, let C : X↔X be any linear strict-order relation on the set X
and let ΩX : X↔X be the base strict-order on X . Assuming ΩX to be depicted
as a full upper right triangle matrix as the Boolean matrix of the relation succ+ in
RelView, how can we permute the set X via a permutation relation P : X↔X
so as to see the linear strict-order relation C permuted accordingly as the full
upper right triangle? Of course, this is a rather trivial task – but tedious when
one has to actually execute it by hand. Subsequently, we show how it can be
mechanized and how the algorithm can be formulated in RelView.

In the first step, we compute the two Hasse-diagrams HC = C ∩ CC and
HΩX = ΩX ∩ ΩXΩX of the linear strict-order relations C and ΩX . Next, we
consider the least elements with respect to both these orders, represented by
vectors least(C, L) and least(ΩX , L), where L : X↔1. Since L represents the
entire base set X , the vectors represent the respective least element of the strict-
ordered sets (X,C) and (X,ΩX). The permutation relation P we are looking
for, now is defined iteratively. We start with the relation

P0 = least(C, L) least(ΩX , L)T

that precisely relates the least element of (X,C) with that of (X,ΩX). It is easy
to verify that the extension P0 ∪ HC

TP0HΩX of the relation P0 additionally
relates the second smallest element of (X,C) with the second smallest element of
(X,ΩX), and no further relationships are introduced. Based on this observation,
we successively apply the relational function

τ(R) = R ∪HC
TRHΩX

to P0. This leads to a finite chain P0 ⊂ τ(P0) ⊂ τ2(P0) ⊂ . . . ⊂ τ |X|−1(P0) and
the last relation of this chain obviously is the desired permutation relation P . A
RelView-implementation of this procedure looks as follows.

PermLSO(C)
DECL L, HC, HO, P, Q
BEG L = Ln1(C);

HC = Hasse(C);
HO = succ(L);
P = least(C,L)*least(trans(HO),L)^;
Q = P | HC^*P*HO;
WHILE -eq(P,Q) DO
P = Q;
Q = P | HC^*P*HO OD

RETURN P
END.
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Having a program at hand for computing this permutation relation P , the follow-
ing RelView-program for the transformation of C is an immediate consequence.

RearrLSO(C)
DECL P
BEG P = PermLSO(C)

RETURN P^*C*P
END.

The body of RearrLSO says that the desired form is obtained via PTCP since,
as already mentioned in Sect. 2, the expression PTC rearranges the rows of C
accordingly and a subsequent multiplication with P from the right does so for
the columns.

5.2 Pre-order Relations

As a second kind of orderings, we consider pre-order relations. They are de-
fined to be reflexive and transitive and appear quite frequently in optimization
problems. The name quasi-order relation is also common for pre-order relations.

Each pre-order relation Q : X↔X can be transformed into a form that
consists of an upper right triangle of rectangles of 1’s and 0’s and is shown in the
motivating example of Sect. 2. Again the decisive step is the computation of an
appropriate permutation relation P : X↔X on the base set X that rearranges
the rows and columns accordingly by multiplying Q with PT from the left and
with P from the right. The computation of P is rather straightforward. First,
we form the equivalence relation R = Q ∩ QT. In the second step, we remove
this relation from Q. It is easy to verify that this yields a strict-order relation
Q ∩ R and, hence, the reflexive closure (Q ∩ R ) ∪ I is a partial order relation
on the base set X . In the third step, we compute a linear extension E : X↔X
of this partial order relation. Since each permutation relation that transforms
the linear strict-order relation E ∩ I into a full upper right triangle obviously
transforms Q into an upper right triangle of rectangles, the last step consists in
the application of the procedure of Sect. 5.1. In the syntax of the RelView tool
the computation of the permutation relation P looks as follows.

PermPreO(Q)
DECL I, R, E
BEG I = I(Q);

R = Q & Q^;
E = Szpilrajn((Q & -R) | I)
RETURN PermLSO(E & -I)

END.

A formulation of a RelView-program RearrPreO for computing the product
PTQP is completely analogous to that of RearrLSO and, therefore, omitted. At
this place it should be mentioned that we have used PermPreO and RearrPreO
to generate the last two matrices of the motivating example in Sect. 2.
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5.3 Weak-Order Relations

A relation W : X↔X is said to be a weak-order relation if it is asymmetric
and negatively transitive, where the latter property is defined by the inclusion
W W ⊆ W to hold. Weak-order relations W are precisely those strict-order
relations in which the set of indifferent pairs (i.e., the set of pairs 〈x, y〉 ∈ X×X
such that neither Wx,y nor Wy,x) forms an equivalence relation R = W ∩ W

T

and the equivalence classes of R are linearly ordered by the order of the represen-
tatives via W . Informally this means that their Hasse-diagrams are composed by
a series of complete bipartite strict-orders, one above another. Due to this prop-
erty, weak-order relations are often used to model preferences with indifference,
for instance in mathematical psychology. See [10,17] for example.

Each weak-order relation W : X↔X can be transformed into an upper right
block triangle form. From the single blocks of this form the above mentioned
complete bipartite strict-orders and their rearrangement immediately becomes
apparent. To obtain a permutation relation on X that transforms W into an
upper right block triangle form is possible by performing three steps. First, W
is joined with the identity relation I : X↔X. The resulting reflexive closure
E = W ∪ I of W is a partial order relation on X . Next, a linear extension E′ of
E is determined. And, finally, a permutation relation P : X↔X is computed
that rearranges the linear strict-order relation E′ ∩ I into the full upper right
triangle PT(E′∩ I )P . A little reflection shows that the same permutation relation
also transforms the original weak-order relation W into the desired upper right
block triangle form PTWP . The following RelView-program PermWeakO is a
direct translation of the above steps into the programming language of the tool.

PermWeakO(W)
DECL I
BEG I = I(W)

RETURN PermLSO(Szpilrajn(W | I) & -I)
END.

5.4 Semi-order Relations

By definition, a semi-order relation S : X↔X is irreflexive (S ⊆ I ), semi-
transitive (SS S

T ⊆ S or, equivalently, S S ⊆ SS ), and possesses the Ferrers
property S S

T
S ⊆ S. The interest in this specific kind of orders mainly stems

from the following fact, known as Scott-Suppes-Theorem (see [19,11]): Let X be
a finite set. Then S : X↔X is a semi-order relation iff there exist a mapping
f : X → R and a positive ρ ∈ R such that the relationship Sx,y and the
estimation f(x) + ρ < f(y) are equivalent for all x, y ∈ X . The constant ρ can
be seen as some sort of threshold. It allows to model preferences with indifference
by defining x, y ∈ X as indifferent iff |f(x) − f(y)| ≤ ρ.

Irreflexive relations with the Ferrers property are called interval order re-
lations since they are strict-orders that have interval representations. We will
discuss this later in Sect. 6.2. In the case of semi-order relations the additional
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assumption of semi-transitivity allows a representation with all intervals of the
same positive length, e.g., of length 1.

Each semi-order relation S : X↔X can be rearranged into a threshold in
an upper right block triangle form. As in the cases of the transformations of
Sects. 5.1 to 5.3, the decisive step here again is the computation of a permutation
relation P : X↔X on the base set X that simultaneously transforms rows and
columns via PTSP . To obtain P , we start with W = S

T
S∪S S T

. It is not very
hard to verify relation-algebraically that W is a weak-order relation on X , which
in turn yields the strict-order property for W . A little reflection furthermore
shows that we can take as P any permutation relation that transforms W into an
upper right block triangle form. In the syntax of RelView the entire procedure
looks as follows:

PermSemiO(S)
DECL W
BEG W = -S^*S | S*-S^

RETURN PermWeakO(W)
END.

One may think that in an analogous manner also interval order relations J
may be handled by embedding them into some sort of a semi-order closure S,
where S = J ∪ JJ J T

, i.e., by adding whatever is missing for semi-transitivity.
The relation-algebraic proof that S is indeed a semi-order relation is too long
to be included here. But the result of the approach is not as expected. In the
following three pictures we see on the left an interval order relation J , in the
middle the semiorder relation S = J ∪ JJ J T

, and on the right a permutation
relation P that transforms S in an upper right block triangle form PTSP .

The next two pictures show the two rearranged relations, viz. the Boolean
matrix of PTJP on the left and that of PTSP on the right.

The transformed semi-order relation is in the desired form. However, for the
transformed interval order relation we have some objections, as the Ferrers prop-
erty is not yet visible. In the next section we will demonstrate that a visualization
of the latter is also possible, however, at the cost of permuting rows and columns
no longer simultaneously.
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6 More Complex Rearranging Algorithms

Having developed some simple algorithms which rearrange the matrix represen-
tation of specific order relations appropriately by permuting rows and columns
simultaneously, we now concentrate on two more complex cases. Here a trans-
formation into an appropriate form requires rows and columns to be permuted
independently. We will also show an example that once again exhibits the power
of RelView when dealing with the visualization of relations.

6.1 Ferrers Relations

In the theory of partitions of numbers (see e.g., [5]), a partition of a natural
number n into a sum n = a1 + a2 + . . . + ak, where a1 ≥ a2 ≥ . . . ≥ ak, is
frequently visualized by means of a Ferrers diagram. Such a diagram is drawn as
a rectangular array of squares1 in which the i’th row has the number of squares
equal to the number ai, 1 ≤ i ≤ k. All rows are right-justified (or left-justified)
and sorted by their lengths (i.e., the number of squares) in decreasing order from
the top to the bottom. As a small example, the pictorial representation of the
Ferrers diagram for the partition 19 = 7 + 4 + 4 + 2 + 2 of the number 19 as a
RelView-matrix looks as follows.

The black parts of the rows of this 5 × 7 Boolean matrix exactly correspond
to the 5 rows of the Ferrers diagram.

Ferrers diagrams motivated the definition of Ferrers relations by demanding
that the latter type of relations can be transformed into upper right staircase
block form – the form shown in the above RelView-matrix, but additionally
allowing empty columns to occur at the left or empty rows at the bottom –
by permuting rows and columns. To clarify that this rearrangement property is
equivalent to the simple relation-algebraic definition given in Sect. 5.4, a com-
bination of the predicate logic formulation of the inclusion RR

T
R ⊆ R and a

graph interpretation of R is very helpful; see [18] for details. Ferrers relations
have a lot of applications in mathematics and computer science. Here we only
want to mention their use in the theory of measurement (ranking via Guttmann
scaling) and in formal concept analysis; see [12] and [14] for example.

The following two remarks further exhibit that Ferrers relations enjoy impor-
tant properties: If R : X↔Y is a Ferrers relation, then so are RR

T
R, RR

T
as

well as R
T
R. For a finite Ferrers relation, there exists a natural number k ≥ 0

that gives rise to a strictly increasing exhaustion as follows:

O = (RR
T
)k ⊂ (RR

T
)k−1 ⊂ . . . ⊂ RR

T
RR

T ⊂ RR
T

1 Sometimes also boxes, dots or circles are used instead of squares.
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Another characterization says that R has the Ferrers property iff the contains
pre-order relation R/R on the rows (see Sect. 3) is linear. This applies for the
is-contained pre-order relation R \R on the columns, too. The relation-algebraic
proof of the first fact using the Schröder equivalences (see e.g., [18]) is simple:

RR
T
R ⊆ R⇔ RRTR ⊆ R ⇔ RR

T ⊆ RRT ⇔ R/R ⊆ (R/R)T

The latter inclusion means that R/R is indeed linear.
Now, let R : X↔Y be a Ferrers relation for which we intend to develop a

relation-algebraic specification of the row permutation relation Pr : X↔X as
well as the column permutation relation Pc : Y ↔Y such that Pr

TR rearranges
the rows of R in decreasing inclusion order from the top to the bottom, and
after that Pr

TRPc rearranges the columns of the intermediate relation Pr
TR in

increasing inclusion order from the left to the right. Obviously, one will choose the
pre-order relation rearrangement of Sect. 5.2 based on the contains relationR/R
for the rows and the is-contained relation R \R for the columns, respectively.
The corresponding RelView-functions look as follows:

PermRFerr(R) = PermPreO(R / R).
PermCFerr(R) = PermPreO(R \ R).

Finally, the procedure for the upper right staircase block form of R is described
by the following RelView-program:

RearrFerr(R)
DECL Pr, Pc
BEG Pr = PermRFerr(R);

Pc = PermCFerr(R)
RETURN Pr^*R*Pc

END.

6.2 Interval Order Relations

As already mentioned in Sect. 5.4, an interval order relation J : X↔X is an
irreflexive relation that possesses the Ferrers property. Hence, the relational pro-
grams for transforming Ferrers relations can also be applied to transform the re-
lation J into an upper right staircase block form by permuting rows and columns
independently. Since, however, interval order relations are also transitive (and,
consequently, specific strict-orders), the 1-blocks of the staircase block form are
completely contained in the upper right triangle. Hence, we obtain an upper
right block triangle form, as in the case of the relations of Sects. 5.3 and 5.4.

Here is the RelView-function for the permutation of the rows of an interval
order relation via a permutation relation Pr : X↔X on the base set X .

PermRIntervalO(J) = PermRFerr(J).

In exactly the same way we obtain two RelView-functions PermCIntervalO
and RearrIntervalO for the permutation relation Pc : X↔X that rearranges
the columns of J and for the desired upper right block triangle form Pr

TJPc.
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Each interval order relation can be represented by a set of intervals of a
linearly ordered set, ordered by strict left-to-right precedence. Formally we have
the following theorem (see [11]): J : X↔X is an interval order relation iff
there is a function f : X → 2P that assigns to each x ∈ X a closed interval
f(x) = [ax, bx] ⊆ P of a linearely ordered set (P. ≤) such that for all x, y ∈ X
we have Jx,y iff bx < ay. In case of (R,≤) as (P. ≤) one speaks of a real interval
representation. Interval representations of interval order relations J via the rows
of Boolean matrices may be specified by purely relation-algebraic expressions.
The RelView-program resulting from this specification looks as follows; because
of lack of space we cannot go into details.

IntervalRepr(J)
DECL fringe(R) = R & -(R*-R^*R);

coleq(R) = syq(R,R);
roweq(R) = syq(R^,R^);
SR, SC, M, C, I, Pc

BEG SR = Classes(roweq(J));
SC = Classes(coleq(J));
M = SR^*fringe(-J)*SC;
C = M^*SR^*J*SC;
I = I(C);
Pc = PermLSO(C)
RETURN SR*M*(C | I)^*Pc & SC*(C | I)*Pc

END.

6.3 An Example

Now, let us present a small application of the programs of Sect. 6.2. We consider
the following three 13× 13 RelView-matrices.

It can easily be checked that the three Boolean matrices represent the same
interval order relation R on a 13-element base set. The matrix on the left shows
the order’s original version, the matrix in the middle the version after sorting the
rows in decreasing inclusion order from the top to the bottom, and the matrix
on the right the final version, which is an upper right block triangle form. From
the latter Boolean matrix we immediately obtain a layered graph-representation
of R. The next picture shows the Hasse-diagram of R, drawn by RelView’s
implementation of the graph drawing algorithm of [13] and slightly prettified by
hand to enhance visibility of the minimal elements 5, 9 and 10.
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1

2

3

4

5

6

7

8

9 10

11

12

13

From the attached row and column numbers of the above matrices we directly
obtain the following permutation relations Pr for the rows (left matrix) and Pc

for the columns (right matrix). Of course, the real way of computation was the
other way around. We first computed the permutation relations Pr and Pc and
then labeled the rearranged Boolean matrices according to them.

The left one of the following two Boolean matrices is the result of the Rel-

View-program IntervalRepr applied to the interval order relation R, and the
matrix right aside is generated from it by sorting the rows according to the first
occurrence of the entry 1 via a small RelView-program.

If {y1, y2, y3, y4, y5, y6} is the base set of the columns of these Boolean matrices
and the linear base strict-order is given by the order of the element’s indices, then,
e.g., the interval [y4, y5] is assigned to the element 1 of the 13-element base set and
the singleton interval [y2, y2] is assigned to the element 2 of this set. To obtain a
real interval representation from the result of IntervalRepr, we first have to in-
terpret each black square as a unit interval on the real line, where the left border
of the matrix describes 0. This does not yet yield the desired result since it allows
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comparable intervals to be tangent, whereas the definition demands strict left-to-
right precedence. But it is very easy to transform it into a real interval represen-
tation. We only have to shorten each interval from the right by a small constant.
If, after that, each copy of a multiple interval is accordingly shortened from the
left to get different left end points, we even obtain a so-called distinguishing real
interval representation. Doing so, e.g., each of the two above matrices yields such
a representation f(i) = αi, where the intervals αi, 1 ≤ i ≤ 13, are given as follows:

α1 = [3, 4.9] α2 = [1, 1.9] α3 = [5, 5.9] α4 = [2, 4.9] α5 = [0, 3.9]
α6 = [1.1, 1.9] α7 = [2, 2.9] α8 = [5.1, 5.9] α9 = [0, 0.9] α10 = [0, 1.9]
α11 = [2, 4.9] α12 = [1, 3.9] α13 = [4, 5.9]

Here we have shortened each interval from the right by 0.1 and, in addition, two
intervals from the left by 0.1 to obtain uniqueness.

7 Conclusion

We have investigated how to visualize relations represented as Boolean matrices
using the specific purpose Computer Algebra system RelView. We were able to
rearrange Boolean matrices into specific forms which allow to discover structural
properties that are not evident in the first place. Such an approach may be useful
in various application fields. Starting with basic rearrangement algorithms, we
constructed algorithms also for non-trivial cases.

In addition to the types of relations treated in the present paper, we have
transformed several other simple types, like injective and univalent relations
and (partial) equivalence relations. Relations of the first type can be rearranged
into four blocks, where the left upper block looks like an identity relation and
the remaining three blocks are empty. Equivalence relations can be transformed
into block diagonal form with quadratic blocks of 1’s in the diagonal and 0’s
otherwise. From the latter form one immediately obtains the equivalence classes.
In the case of partial equivalence relations we additionally obtain a right lower
empty block in the diagonal. We could, due to limited space, not present how to
apply our technique to other complex examples. In particular, we have studied
the “maximum pair of independent sets rearrangements” of general relations R
based on a maximum matching λ contained in R. They are closely related to the
term rank of a relation. We have also developed algorithms where quotients are
taken according to some congruence relations on the base sets. An example for
such a problem is the rearrangement of a relation R according to its so-called
difunctional closure R(RTR)+ into block diagonal form, where the difunctional
closure has rectangular blocks of 1’s in the diagonal and 0’s otherwise.

A future aim is to use the efficiency and visualization power of RelView and
the conceptual simplicity of its programming language so as to enable one to
scan any given – even real-valued – matrix of moderate size for possibly hidden
interesting properties. In the real-valued case, one would use moving so-called
cuts at different levels to arrive at Boolean matrices similar to the cuts used in the
theory of fuzzy sets. Because of their close relationship to interval order relations
we are also interested in the relation-algebraic treatment of interval graphs, e.g.,
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the computation of interval representations or the matrix rearrangement based
on perfect elimination orderings.
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Abstract. We introduce the concept of comprehensive triangular decomposition
(CTD) for a parametric polynomial system F with coefficients in a field. In broad
words, this is a finite partition of the the parameter space into regions, so that
within each region the “geometry” (number of irreducible components together
with their dimensions and degrees) of the algebraic variety of the specialized
system F (u) is the same for all values u of the parameters.

We propose an algorithm for computing the CTD of F . It relies on a proce-
dure for solving the following set theoretical instance of the coprime factoriza-
tion problem. Given a family of constructible sets A1, . . . , As, compute a family
B1, . . . , Bt of pairwise disjoint constructible sets, such that for all 1 ≤ i ≤ s the
set Ai writes as a union of some of the B1, . . . , Bt.

We report on an implementation of our algorithm computing CTDs, based on
the RegularChains library in MAPLE. We provide comparative benchmarks
with MAPLE implementations of related methods for solving parametric polyno-
mial systems. Our results illustrate the good performances of our CTD code.

1 Introduction

Solving polynomial systems with parameters has become an increasing need in several
applied areas such as robotics, geometric modeling, stability analysis of dynamical sys-
tems and others. For a given parametric polynomial system F , the following problems
are of interest.

(P1) Compute the values of the parameters for which F has solutions, or has finitely
many solutions.

(P2) Compute the solutions of F as functions of the parameters.

These questions have been approached by various techniques including comprehensive
Gröbner bases (CGB) [22,23,14,13,17], cylindrical algebraic decomposition (CAD) [4]
and triangular decompositions [24,25,6,7,10,9,20,19,26,5]. Methods based on CGB, or
more generally Gröbner bases, are powerful tools for solving problems such as (P1),
that is, determining the values u of the parameters such that, the specialized system
F (u) satisfies a given property. Methods based on CAD or triangular decompositions
are naturally well designed for solving Problem (P2).

In this paper, we introduce the concept of comprehensive triangular decomposition
for a parametric polynomial system with coefficients in a field. This notion plays the
role for triangular decompositions that CGB does for Gröbner bases. With this concept
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c© Springer-Verlag Berlin Heidelberg 2007
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at hand, we show that Problems (P1) and (P2) can be completely answered by means of
triangular decompositions.

Let F be a finite set of polynomials with coefficients in a field K, parameters U =
U1, . . . , Ud, and unknownsX=X1, . . . , Xm, that is, F ⊂K[U1, . . . , Ud, X1, . . . , Xm].
Let K be the algebraic closure of K, and let V(F ) ⊂ K

d+m
be the zero set of F . Let

also ΠU be the projection from K
d+m

on the parameter space K
d
. For all u ∈ K

d
we

define V(F (u)) ⊆ K
m

the zero set defined by F after specializing U at u.
Our first contribution is to show how to compute a finite partition C of ΠU (V(F ))

and a family of triangular decompositions (TC , C ∈ C) in K[U,X ] such that for each
C ∈ C and for each parameter value u ∈ C the triangular decomposition TC special-
izes at u into a triangular decomposition TC(u) of V(F (u)) given by regular chains.
Moreover, each “cell” C ∈ C is a constructible set given by a family of regular systems
in K[U ]. We call the pair (TC , C ∈ C) a comprehensive triangular decomposition of
V(F ), see Section 5.

This is a natural definition inspired by that of a comprehensive Gröbner basis [22] in-
troduced by Weispfenning with the additional requirements proposed by Montes in [14].
From each pair (C, TC), we can read geometrical information, such as for which param-
eter values u ∈ C the set V(F (u)) is finite; we also obtain a “generic” equidimensional
decomposition of V(F (u)), for all u ∈ C. The notion of CTD is also related to the bor-
der polynomial of a polynomial system in [26] and the minimal discriminant variety of
V(F ) as defined in [12] for the case where K is the field of complex numbers.

Example 1. Let F = {vxy + ux2 + x, uy2 + x2} be a parametric polynomial sys-
tem with parameters u > v and unknowns x > y. Then a comprehensive triangular
decomposition of V(F ) is:

C1 = {u(u3 + v2) �= 0} : TC1 = {T3, T4}
C2 = {u = 0} : TC2 = {T2, T3}

C3 = {u3 + v2 = 0, v �= 0} : TC3 = {T1, T3}

where

T1 = {vxy + x− u2y2, 2vy + 1, u3 + v2}
T2 = {x, u}
T3 = {x, y}
T4 = {vxy + x− u2y2, u3y2 + v2y2 + 2vy + 1}

Here , C1, C2, C3 is a partition of ΠU (V(F )) and TCi is a triangular decomposition
of V(F ) above Ci, for i = 1, 2, 3. For different parameter values u, we can directly
read geometrical information, such as the dimension of V(F (u)).

By RegSer [19], V(F ) can be decomposed into a set of regular systems:

R1 =

⎧
⎨

⎩

ux+ vy + 1 = 0
(u3 + v2)y2 + 2vy + 1 = 0

u(u3 + v2) �= 0
, R2 =

⎧
⎨

⎩

x = 0
y = 0
u �= 0

,
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R3 =

⎧
⎪⎪⎨

⎪⎪⎩

x = 0
vy + 1 = 0

u = 0
v �= 0

, R4 =

⎧
⎪⎪⎨

⎪⎪⎩

2ux+ 1 = 0
2vy + 1 = 0
u3 + v2 = 0

v �= 0

, R5 =
{
x = 0
u = 0 .

For each regular system, one can directly read its dimension when parameters take cor-
responding values. However, the dimension of the input system could not be obtained
immediately, since there is not a partition of the parameter space.

By DISPGB [14], one can obtain all the cases over the parameters leading to different
reduced Gröbner bases with parameters:

u(u3 + v2) �= 0:{ux+(u3v+v3)y3+(−u3+v2)y2, (u3+v2)y4+2vy3+y2}
u(u3 + v2) = 0, u �= 0:{ux+ 2v2y2, 2vy3 + y2}

u = 0, v �= 0:{x2, vxy + x}
u = 0, v = 0:{x}

Here for each parameter value, the input system specializes into a Gröbner basis.
Since Gröbner bases do not necessarily have a triangular shape, the dimension may
not be read directly either. For example, when u = 0, v �= 0, {x2, vxy + x} is not a
triangular set.

In Section 5 we also propose an algorithm for computing the CTD of parametric
polynomial system. We rely on an algorithm for computing the difference of the zero
sets of two regular systems. Based on the procedures of the TRIADE algorithm [15]
and elementary set theoretical considerations, such an algorithm could be developed
straightforwardly. We actually tried this and our experimental results (not reported here)
shows that this naive approach is very inefficient comparing to the more advanced algo-
rithm presented in Section 3. Indeed, this latter algorithm heavily exploits the structure
and properties of regular chains, whereas the former is unable to do so.

This latter procedure, is used to solve the following problem. Given a family of
constructible sets, A1, . . . , As (each of them given by a regular system) compute a
family B1, . . . , Bt of pairwise disjoint constructible sets, such that for all 1 ≤ i ≤ s the
set Ai writes as a union of some the B1, . . . , Bt. A solution is presented in Section 4.
This can be seen as the set theoretical version of the coprime factorization problem,
see [2,8] for other variants of this problem.

Our second contribution is an implementation report of our algorithm computing
CTDs, based on the RegularChains library in MAPLE. We provide comparative
benchmarks with MAPLE implementations of related methods for solving parametric
polynomial systems, namely: decompositions into regular systems by Wang [19] and
discussing parametric Gröbner bases by Montes [14]. We use a large set of well-known
test-problems from the literature. Our implementation of the CTD algorithm can solve
all problems which can be solved by the other methods. In addition, our CTD code
can solve problems which are out of reach of the other two methods, generally due to
memory consumption.

2 Preliminaries

In this section we introduce notations and review fundamental results in the theory of
regular chains and regular systems [1,3,11,15,19,21].
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We shall use some notions from commutative algebra (such as the dimension of an
ideal) and refer for instance to [16] for this subject.

2.1 Basic Notations and Definitions

Let K[Y ] := K[Y1, . . . , Yn] be the polynomial ring over the field K in variables Y1 <
· · · < Yn. Let p ∈ K[Y ] be a non-constant polynomial. The leading coefficient and the
degree of p regarded as a univariate polynomial in Yi will be denoted by lc(p, Yi) and
deg(p, Yi) respectively. The greatest variable appearing in p is called the main variable
denoted by mvar(p). The degree, the leading coefficient, and the leading monomial of p
regarding as a univariate polynomial in mvar(p) are called the main degree, the initial,
and the rank of p; they are denoted by mdeg(p), init(p) and rank(p) respectively.

Let F ⊂ K[Y ] be a finite polynomial set. Denote by 〈F 〉 the ideal it generates in
K[Y ] and by

√
〈F 〉 the radical of 〈F 〉. Let h be a polynomial in K[Y ], the saturated

ideal 〈F 〉 : h∞ of 〈F 〉 w.r.t h, is the set

{q ∈ K[Y ] | ∃m ∈ N s.t. hmq ∈ 〈F 〉},

which is an ideal in K[Y ].
A polynomial p ∈ K[Y ] is a zerodivisor modulo 〈F 〉 if there exists a polynomial

q such that pq is zero modulo 〈F 〉, and q is not zero modulo 〈F 〉. The polynomial is
regular modulo 〈F 〉 if it is neither zero, nor a zerodivisor modulo 〈F 〉. Denote by V(F )
the zero set (or solution set, or algebraic variety) of F in K

n
. For a subset W ⊂ K

n
,

denote by W its closure in the Zariski topology, that is the intersection of all algebraic
varieties V(G) containing W for all G ⊂ K[Y ].

Let T ⊂ K[Y ] be a triangular set, that is a set of non-constant polynomials with
pairwise distinct main variables. Denote by mvar(T ) the set of main variables of t ∈ T .
A variable in Y is called algebraic w.r.t. T if it belongs to mvar(T ), otherwise it is
called free w.r.t. T . For a variable v ∈ Y we denote by T<v (resp. T>v) the subsets of
T consisting of the polynomials t with main variable less than (resp. greater than) v. If
v ∈ mvar(T ), we say Tv is defined. Moreover, we denote by Tv the polynomial in T
whose main variable is v, by T�v the set of polynomials in T with main variables less
than or equal to v and by T�v the set of polynomials in T with main variables greater
than or equal to v.

Definition 1. Let p, q ∈ K[Y ] be two nonconstant polynomials. We say rank(p) is
smaller than rank(q) w.r.t Ritt ordering and we write, rank(p) <r rank(q) if one of the
following assertions holds:

– mvar(p) < mvar(q),
– mvar(p) = mvar(q) and mdeg(p) < mdeg(q).

Note that the partial order <r is a well ordering. Let T ⊂ K[Y ] be a triangular set.
Denote by rank(T ) the set of rank(p) for all p ∈ T . Observe that any two ranks in
rank(T ) are comparable by<r. Given another triangular set S ⊂ K[Y ], with rank(S) �=
rank(T ), we write rank(T )<r rank(S) whenever the minimal element of the symmet-
ric difference (rank(T ) \ rank(S)) ∪ (rank(S) \ rank(T )) belongs to rank(T ). By
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rank(T ) �r rank(S), we mean either rank(T ) < rank(S) or rank(T ) = rank(S).
Note that any sequence of triangular sets, of which ranks strictly decrease w.r.t <r, is
finite.

Given a triangular set T ⊂ K[Y ], denote by hT be the product of the initials of T
(throughout the paper we use this convention and when T consists of a single element
g we write it in hg for short). The quasi-component W(T ) of T is V(T ) \ V(hT ), in
other words, the points of V(T ) which do not cancel any of the initials of T . We denote
by Sat(T ) the saturated ideal of T : if T is empty then Sat(T ) is defined as the trivial
ideal 〈0〉, otherwise it is the ideal 〈T 〉 : h∞T .

Let h ∈ K[Y ] be a polynomial and F ⊂ K[Y ] a set of polynomials, we write

Z(F, T, h) := (V(F ) ∩W(T )) \V(h).

When F consists of a single polynomial p, we use Z(p, T, h) instead of Z({p}, T, h);
when F is empty we just write Z(T, h). By Z(F, T ), we denote V(F ) ∩W(T ).

Given a family of pairs S = {[Ti, hi] | 1 ≤ i ≤ e}, where Ti ⊂ K[Y ] is a triangular
set and hi ∈ K[Y ] is a polynomial. We write

Z(S) :=
e⋃

i=1

Z(Ti, hi).

We conclude this section with some well known properties of ideals and triangular
sets. For a proper ideal I, we denote by dim(V(I)) the dimension of V(I).

Lemma 1. Let I be a proper ideal in K[Y ] and p ∈ K[Y ] be a polynomial regular w.r.t
I. Then, either V(I)∩V(p) is empty or we have: dim(V(I)∩V(p)) ≤ dim(V(I))−1.

Lemma 2. Let T be a triangular set in K[Y ]. Then, we have

W(T ) \V(hT ) = W(T ) and W(T ) \W(T ) = V(hT ) ∩ W(T ).

PROOF. Since W(T ) ⊆ W(T ), we have

W(T ) = W(T ) \V(hT ) ⊆ W(T ) \V(hT ).

On the other hand, W(T ) ⊆ V(T ) implies

W(T ) \V(hT ) ⊆ V(T ) \V(hT ) = W(T ).

This proves the first claim. Observe that we have:

W(T ) =
(
W(T ) \V(hT )

)
∪
(
W(T ) ∩V(hT )

)
.

We deduce the second one.

Lemma 3 ([1,3]). Let T be a triangular set in K[Y ]. Then, we have

V(Sat(T )) = W(T ).

Assume furthermore that W(T ) �= ∅ holds. Then V(Sat(T )) is a nonempty unmixed
algebraic set with dimension n− |T |. Moreover, if N is the free variables of T , then for
every prime ideal P associated with Sat(T ) we have

P ∩ K[N ] = 〈0〉.
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2.2 Regular Chain and Regular System

Definition 2 (Regular Chain). A triangular set T ⊂ K[Y ] is a regular chain if one of
the following conditions hold:

– either T is empty,
– or T \{Tmax} is a regular chain, where Tmax is the polynomial in T with maximum

rank, and the initial of Tmax is regular w.r.t. Sat(T \ {Tmax}).

It is useful to extend the notion of regular chain as follows.

Definition 3 (Regular System). A pair [T, h] is a regular system if T is a regular chain,
and h ∈ K[Y ] is regular w.r.t Sat(T ).

Remark 1. A regular system in a stronger sense was presented in [19]. For example,
consider the polynomial system [T, h] where T = [Y1Y4 − Y2] and h = Y2Y3. Then
[T, h] is still a regular system in our sense but not a regular system in Wang’s sense.
Also we do not restrict the main variables of polynomials in the inequality part. At
least our definition is more convenient for our purpose in dealing with zerodivisors
and conceptually clear as well. We also note that in the zerodimensional case (no free
variables exist) the notion of regular chain and that of a regular set in [19] are the
same, see [1,19] for details.

There are several equivalent characterizations of a regular chain, see [1]. In this paper,
we rely on the notion of iterated resultant in order to derive a characterization which
can be checked by solving a polynomial system.

Definition 4. Let p ∈ K[Y ] be a polynomial and T ⊂ K[Y ] be a triangular set. The
iterated resultant of p w.r.t. T , denoted by res(p, T ), is defined as follows:

– if p ∈ K or all variables in p are free w.r.t. T , then res(p, T ) = p,
– otherwise, if v is the largest variable of p which is algebraic w.r.t. T , then

res(p, T ) = res(r, T<v) where r is the resultant of p and the polynomial Tv.

Lemma 4. Let p ∈ K[Y ] be a polynomial and T ⊂ K[Y ] be a zerodimensional regular
chain. Then the following statements are equivalent:

(i) The iterated resultant res(p, T ) �= 0.
(ii) The polynomial p is regular modulo 〈T 〉.

(iii) The polynomial p is invertible modulo 〈T 〉.

PROOF. “(i) ⇒ (ii)” Let r := res(p, T ). Then there exist polynomials Ai ∈ K[Y ],
0 ≤ i ≤ n, such that r = A0p+

∑n
i=1AiTi. So r �= 0 implies p is invertible modulo

〈T 〉. Therefore, p is regular modulo 〈T 〉.
“(ii) ⇒ (iii)” If p is regular modulo 〈T 〉, then p is regular modulo

√
〈T 〉. Since

T is a zerodimensional regular chain, which implies Sat(T ) = 〈T 〉, we know that
K[Y ]/

√
〈T 〉 is a direct product of fields. Therefore p is invertible modulo

√
〈T 〉, which

implies p is invertible modulo 〈T 〉.
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“(iii) ⇒ (i)” Assume res(p, T ) = 0, then we claim that p and T have at least one
common solution, which is a contradiction to (iii).

We prove our claim by induction on |T |.
If |T | = 1, we have two cases

(1) If all variables in p are free w.r.t. T , then res(p, T ) = p = 0. The claim holds.
(2) Otherwise, we have res(p, T ) = res(p, T,mvar(T )) = 0. Since init(T ) �= 0, the

claim holds.

Now we assume that the claim holds for |T | = n − 1. If |T | = n, let v := Yn. We
have two cases

(1) If v does not appear in p, then res(p, T ) = res(p, T<v). By induction hypothesis,
there exist ξ1, ξ2, · · · , ξn−1 ∈ K, such that ξ′ = (ξ1, ξ2, · · · , ξn−1) is a common
solution of p and T<v. Since T is a zerodimensional regular chain, hTv is invertible
modulo 〈T 〉 (by “(ii) ⇒ (iii)” ). So hTv (ξ′) �= 0, which implies that there exists a
ξn ∈ K, such that ξ := (ξ1, ξ2, · · · , ξn−1, ξn) is a solution of Tv. Therefore ξ is a
common solution of p and T .

(2) If v appears in p, then res(p, T ) = res(res(p, Tv, v), T<v) = 0. Similarly to (1),
there exists ξ′ = (ξ1, ξ2, · · · , ξn−1), such that res(p, Tv, v)(ξ′) = T<v(ξ′) = 0 and
hTv (ξ′) �= 0. So by the specialization property of resultant, res(p(ξ′), Tv(ξ′), v) =
0, which implies that there exists a ξn ∈ K, such that ξ := (ξ1, ξ2, · · · , ξn−1, ξn)
is a common solution of p and Tv. Therefore ξ is a common solution of p and T .

Theorem 1. The triangular set T is a regular chain if and only if res(hT , T ) �= 0.

PROOF. We start by assuming that T is a zerodimensional regular chain, then the con-
clusion follows from Lemma 4.

We reduce the general case to the zerodimensional one. First, we introduce a new
total ordering <T on Y defined as follows: if Yi and Yj are both in mvar(T ) or both
in its complement then Yi <T Yj holds if and only if Yi < Yj holds, otherwise
Yi <T Yj holds if and only if Yj ∈ mvar(T ). Clearly T is also a triangular set w.r.t
<T . We observe that hT , and thus Sat(T ), are unchanged when replacing the variable
ordering < by <T . Similarly, it is easy to check that a polynomial p ∈ K[Y ] reduces
to zero by pseudo-division by T w.r.t. < if and only if it reduces to zero by pseudo-
division by T w.r.t. <T . Therefore, by applying Theorem 6.1 [1] we deduce that T is
a regular chain w.r.t. < if and only if it is a regular chain w.r.t. <T . Similarly, we have
res(hT , T ) �= 0 w.r.t. < if and only if res(hT , T ) �= 0 w.r.t. <T .

Now we assume that the variables are ordered according to <T . Let N be the set
of the variables of Y that do not belong to mvar(T ). The triangular set T is a regular
chain in K[Y ] if and only if it is a zerodimensional regular chain when regarded as
a triangular set in K(N)[Y \ N ] (where K(N) denotes the field of rational functions
with coefficients in K and variables in N ). This is Corollary 3.2 in [3]. Similarly, it
is easy to check that res(hT , T ) �= 0 holds when regarding T in K[Y ] if and only if
res(hT , T ) �= 0 holds when regarding T in K(N)[Y \N ].

Proposition 1. For every regular system [T, h] we have Z(T, h) �= ∅.
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PROOF. Since T is a regular chain, by Lemma 3 we have V(Sat(T )) �= ∅. By definition
of regular system, the polynomial hhT is regular w.r.t Sat(T ). Hence, by Lemma 1, the
set V(hhT ) ∩ V(Sat(T )) either is empty, or has lower dimension than V(Sat(T )).
Therefore, the set

V(Sat(T )) \V(hhT ) = V(Sat(T )) \ (V(hhT ) ∩V(Sat(T )))

is not empty. Finally, by Lemma 2, the set

Z(T, h) = W(T ) \V(h) = W(T ) \V(hhT ) = V(Sat(T )) \V(hhT )

is not empty.

Notation 1. For a regular system R = [T, h], we define rank(R) := rank(T ). For a set
R of regular systems, we define

rank(R) := max{rank(T ) | [T, h] ∈ R}.

For a pair of regular systems (L,R), we define rank((L,R)) := (rank(L), rank(R)).
For a pair of lists of regular systems, we define

rank((L,R)) = (rank(L), rank(R)).

For triangular sets T, T1, . . . , Te we write W(T ) D−→ (W(Ti), i = 1 . . . e) if one of
the following conditions holds:

– either e = 1 and T = T1,
– or e > 1, rank(Ti) < rank(T ) for all i = 1 . . . e and

W(T ) ⊆
e⋃

i=1

W(Ti) ⊆ W(T ).

2.3 Triangular Decompositions

Definition 5. Given a finite polynomial set F ⊂ K[Y ], a triangular decomposition of
V(F ) is a finite family T of regular chains of K[Y ] such that

V(F ) =
⋃

T∈T
W(T ).

For a finite polynomial set F ⊂ K[Y ], the TRIADE algorithm [15] computes a trian-
gular decomposition of V(F ). We list below the specifications of the operations from
TRIADE that we use in this paper.

Let p, p1, p2 be polynomials, and let T , C, E be regular chains such that C ∪ E is a
triangular set (but not necessarily a regular chain).

– Regularize(p, T ) returns regular chains T1, . . . , Te such that

• W(T ) D−→ (W(Ti), i = 1 . . . e),
• for all 1 ≤ i ≤ e the polynomial p is either 0 or regular modulo Sat(Ti).
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– For a set of polynomials F , Triangularize(F, T ) returns regular chains
T1, . . . , Te such that we have

V(F ) ∩W(T ) ⊆ W(T1) ∪ · · · ∪W(Te) ⊆ V(F ) ∩ W(T ).

and for 1 ≤ i ≤ e we have rank(Ti) < rank(T ).
– Extend(C ∪ E) returns a set of regular chains {Ci | i = 1 . . . e} such that we

have W(C ∪E) D−→ (W(Ci), i = 1 . . . e).
– Assume that p1 and p2 are two non-constant polynomials with the same main vari-

able v, which is larger than any variable appearing in T , and assume that the ini-
tials of p1 and p2 are both regular w.r.t. Sat(T ). Then, GCD(p1, p2, T ) returns a
sequence

([g1, C1], . . . , [gd, Cd], [∅, D1], . . . , [∅, De]),

where gi are polynomials and Ci, Di are regular chains such that the following
properties hold:
• W(T ) D−→ (W(C1), . . . ,W(Cd),W(D1), . . . ,W(De)),
• dimV(Sat(Ci)) = dimV(Sat(T )) and dim V(Sat(Dj)) < dimV(Sat(T )),

for all 1 � i � d and 1 � j � e,
• the leading coefficient of gi w.r.t. v is regular w.r.t. Sat(Ci),
• for all 1 � i � d there exist polynomials ui and vi such that we have gi =
uip1 + vip2 mod Sat(Ci),

• if gi is not constant and its main variable is v, then p1 and p2 belong to
Sat(Ci∪{gi}).

2.4 Constructible Sets

Definition 6 (Constructible set). A constructible subset of K
n

is any finite union

(A1 \B1) ∪ · · · ∪ (Ae \Be)

where A1, . . . , Ae, B1, . . . , Be are algebraic varieties in K
n

.

Lemma 5. Every constructible set can write as a union of zero sets of regular systems.

PROOF. By the definition of constructible set, we only need to prove that the differ-
ence of two algebraic varieties can write as a union of zero sets of regular systems.
Let V(F ),V(G), where F,G ⊂ K[Y ], be two algebraic varieties in K

n
. With the

Triangularize operation introduced in last subsection, we write V(F ) as a union of
the zero sets of some regular systems

V(F ) =
s⋃

i=1

W(Ti) =
s⋃

i=1

Z(Ti, 1).

Similarly, we can write V(G) as

V(G) =
t⋃

i=1

Z(Ci, 1).

Then the conclusion follows from the algorithm DifferenceLR introduced in next
section.
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3 The Difference Algorithms

In this section, we present an algorithm to compute the set theoretical difference of
two constructible sets given by regular systems. As mentioned in the Introduction, a
naive approach appears to be very inefficient in practice. Here we contribute a more
sophisticated algorithm, which heavily exploits the structure and properties of regular
chains.

Two procedures, Difference and DifferenceLR, are involved in order to achieve
this goal. Their specifications and pseudo-codes can be found below. The rest of this
section is dedicated to proving the correctness and termination of these algorithms.
For the pseudo-code, we use the MAPLE syntax. However, each of the two functions
below returns a sequence of values. Individual value or sub-sequences of the returned
sequence are thrown to the flow of output by means of an output statement. Hence an
output statement does not cause the termination of the function execution.

Algorithm 1 Difference([T, h], [T ′, h′])
Input [T, h], [T ′, h′] two regular systems.

Output Regular systems {[Ti, hi] | i = 1 . . . e} such that

Z(T, h) \ Z(T ′, h′) =
e⋃

i=1

Z(Ti, hi),

and rank(Ti) �r rank(T ).

Algorithm 2 DifferenceLR(L,R)
Input L := {[Li, fi] | i = 1 . . . r} and R := {[Rj, gj ] | j = 1 . . . s} two lists

of regular systems.
Output Regular systems S := {[Ti, hi] | i = 1 . . . e} such that

(
r⋃

i=1

Z(Li, fi)

)
\

⎛

⎝
s⋃

j=1

Z(Rj , gj)

⎞

⎠ =
e⋃

i=1

Z(Ti, hi),

with rank(S) �r rank(L).

To prove the termination and correctness of above two algorithms, we present a series
of technical lemmas.

Lemma 6. Let p and h be polynomials and T a regular chain. Assume that p /∈ Sat(T ).
Then there exists an operation Intersect(p, T, h) returning a set of regular chains
{T1, . . . , Te} such that

(i) h is regular w.r.t Sat(Ti) for all i;
(ii) rank(Ti) <r rank(T );

(iii) Z(p, T, h) ⊆ ∪e
i=1Z(Ti, h) ⊆ (V(p) ∩W(T )) \V(h);

(iv) Moreover, if the product of initials hT of T divides h then

Z(p, T, h) =
e⋃

i=1

Z(Ti, h).
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Algorithm 1. Difference([T, h], [T ′, h′])
1: if Sat(T ) = Sat(T ′) then
2: output Intersect(h′hT ′ , T, hhT )
3: else
4: Let v be the largest variable s.t. Sat(T<v) = Sat(T ′

<v)
5: if v ∈ mvar(T ′) and v /∈ mvar(T ) then
6: p′ ← T ′

v

7: output [T, hp′]
8: output DifferenceLR(Intersect(p′, T, hhT ), [T ′, h′])
9: else if v /∈ mvar(T ′) and v ∈ mvar(T ) then

10: p ← Tv

11: output DifferenceLR([T, h], Intersect(p, T ′, h′hT ′ ))
12: else
13: p ← Tv

14: G ← GCD(Tv, T ′
v, T<v)

15: if |G| = 1 then
16: Let (g,C) ∈ G
17: if g ∈ K then
18: output [T, h]
19: else if mvar(g) < v then
20: output [T, gh]
21: output DifferenceLR(Intersect(g, T, hhT ), [T ′, h′])
22: else if mvar(g) = v then
23: if mdeg(g) = mdeg(p) then
24: D′

p ← T ′
<v ∪ {p} ∪ T ′

>v

25: output Difference([T, h], [D′
p, h′hT ′ ])

26: else if mdeg(g) < mdeg(p) then
27: q ← pquo(p, g,C)
28: Dg ← C ∪ {g} ∪ T>v

29: Dq ← C ∪ {q} ∪ T>v

30: output Difference([Dg , hhT ], [T ′, h′])
31: output Difference([Dq , hhT ], [T ′, h′])
32: output DifferenceLR(Intersect(hg, T, hhT ), [T ′, h′])
33: end if
34: end if
35: else if |G| ≥ 2 then
36: for (g,C) ∈ G do
37: if |C| > |T<v| then
38: for E ∈ Extend(C, T�v) do
39: for D ∈ Regularize(hhT , E) do
40: if hhT /∈ Sat(D) then
41: output Difference([D, hhT ], [T ′, h′])
42: end if
43: end for
44: end for
45: else
46: output Difference([C ∪ T�v, hhT ], [T ′, h′])
47: end if
48: end for
49: end if
50: end if
51: end if
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Algorithm 2. DifferenceLR(L,R)
1: if L = ∅ then
2: output ∅
3: else if R = ∅ then
4: output L
5: else if |R| = 1 then
6: Let [T ′, h′] ∈ R
7: for [T, h] ∈ L do
8: output Difference([T, h], [T ′, h′])
9: end for

10: else
11: while R �= ∅ do
12: Let [T ′, h′] ∈ R, R ← R \ { [T ′, h′] }
13: S ← ∅
14: for [T, h] ∈ L do
15: S ← S ∪ Difference([T, h], [T ′, h′])
16: end for
17: L ← S
18: end while
19: output L
20: end if

PROOF. Let

S = Triangularize(p, T ),

R =
⋃

C∈S
Regularize(h,C).

We then have

V(p) ∩W(T ) ⊆
⋃

R∈R
⊆ V(p) ∩ W(T ).

This implies

Z(p, T, h) ⊆
⋃

R∈R, h/∈Sat(R)
Z(R, h) ⊆ (V(p) ∩W(T )) \V(h).

Rename the regular chains {R | R ∈ R, h /∈ Sat(R)} as {T1, . . . , Te}. By the specifi-
cation of Regularize we immediately conclude that (i), (iii) hold. Since p /∈ Sat(T ),
by the specification of Triangularize, (ii) holds. By Lemma 2, (iv) holds.

Lemma 7. Let [T, h] and [T ′, h′] be two regular systems. If Sat(T ) = Sat(T ′), then
h′hT ′ is regular w.r.t Sat(T ) and

Z(T, h) \ Z(T ′, h′) = Z(h′hT ′ , T, hhT ).
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PROOF. Since Sat(T ) = Sat(T ′) and h′hT ′ is regular w.r.t Sat(T ′), h′hT ′ is regular
w.r.t Sat(T ). By Lemma 2 and Lemma 3, we have

Z(T, hh′hT ′) = W(T ) \V(hh′hT ′)

= W(T ) \V(hh′hThT ′)

= W(T ′) \V(hh′hThT ′)
= W(T ′) \V(hh′hT )
= Z(T ′, hh′hT ).

Then, we can decompose Z(T, h) into the disjoint union

Z(T, h) = Z(T, hh′hT ′)
⊔

Z(h′hT ′ , T, hhT ).

Similarly, we have:

Z(T ′, h′) = Z(T ′, hh′hT )
⊔

Z(hhT , T
′, h′hT ′).

The conclusion follows from the fact that

Z(T, hh′hT ′) \ Z(T ′, hh′hT ) = ∅ and Z(h′hT ′ , T, hhT ) ∩ Z(T ′, h′) = ∅.

Lemma 8. Assume that Sat(T<v) = Sat(T ′
<v). We have

(i) If p′ := T ′
v is defined but not Tv, then p′ is regular w.r.t Sat(T ) and

Z(T, h) \ Z(T ′, h′) = Z(T, hp′)
⊔

(Z(p′, T, hhT ) \ Z(T ′, h′)) .

(ii) If p := Tv is defined but not T ′
v, then p is regular w.r.t Sat(T ′) and

Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(p, T ′, h′hT ′).

PROOF. (i) As init(p′) is regular w.r.t Sat(T ′
<v), it is also regular w.r.t Sat(T<v). Since

Tv is not defined, we know v /∈ mvar(T ). Therefore, p′ is also regular w.r.t Sat(T ). On
the other hand, we have a disjoint decomposition

Z(T, h) = Z(T, hp′)
⊔

Z(p′, T, hhT ).

By the definition of p′, Z(T ′, h′) ⊆ V(p′) which implies

Z(T, hp′)
⋂

Z(T ′, h′) = ∅.

The conclusion follows.
(ii) Similarly, we know p is regular w.r.t Sat(T ′). By the disjoint decomposition

Z(T ′, h′) = Z(T ′, h′p)
⊔

Z(p, T ′, h′hT ′),

and Z(T, h) ∩ Z(T ′, h′p) = ∅, we have

Z(T, h) \ Z(T ′, h′) = Z(T, h) \Z(p, T ′, h′hT ′),

from which the conclusion follows.
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Lemma 9. Assume that Sat(T<v) = Sat(T ′
<v) but Sat(T�v) �= Sat(T ′

�v) and that v is
algebraic w.r.t both T and T ′. Define

G = GCD(Tv, T
′
v, T<v);

E =
⋃

(g,C)∈G, |C|>|T<v|
Extend(C, T�v);

R =
⋃

E∈E
Regularize(hhT , E).

Then we have

(i)

Z(T, h)

=

⎛

⎜⎝
⋃

R∈R, hhT /∈Sat(R)
Z(R, hhT )

⎞

⎟⎠
⋃

⎛

⎝
⋃

(g,C)∈G, |C|=|T<v|
Z(C ∪ T�v, hhT )

⎞

⎠ .

(ii) rank(R) <r rank(T ), for all R ∈ R.
(iii) Assume that |C| = |T<v|. Then
(iii.a) C ∪ T�v is a regular chain and hhT is regular w.r.t it.
(iii.b) If |G| > 1, then rank(C ∪ T�v) <r rank(T ).

PROOF. By the specification of GCD we have

W(T<v) ⊆
⋃

(g,C)∈G
W(C) ⊆ W(T<v).

That is,
W(T<v)

D−→ (W(C), (g, C) ∈ G).

From the specification of Extend we have: for each (g, C) ∈ G such that |C| > |T<v|,

W(C ∪ T�v)
D−→ (W(E), E ∈ Extend(C ∪ T�v)).

From the specification of Regularize, we have for all (g, C) ∈ G such that |C| >
|T<v| and all E ∈ Extend(C ∪ T�v),

W(E) D−→ (W(R), R ∈ Regularize(hhT , E)) .

Therefore, by applying the Lifting Theorem [15] we have:

W(T ) = W(T<v ∪ T�v)

⊆
(

⋃

R∈R
W(R)

)
⋃

⎛

⎝
⋃

(g,C)∈G, |C|=|T<v|
W(C ∪ T�v)

⎞

⎠

⊆ W(T<v ∪ T�v)

= W(T ),
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which implies,

Z(T, h) = Z(T, hhT )

⊆

⎛

⎜⎝
⋃

R∈R, hhT /∈Sat(R)
Z(R, hhT )

⎞

⎟⎠
⋃

⎛

⎝
⋃

(g,C)∈G, |C|=|T<v|
Z(C ∪ T�v, hhT )

⎞

⎠

⊆ W(T ) \V(hhT ) = Z(T, h).

So (i) holds. When |G| > 1, by Notation 1, (ii) and (iii.b) hold.
If |C| = |T<v|, by Proposition 5 of [15], we conclude that (iii.a) holds.

Lemma 10. Assume that Sat(T<v) = Sat(T ′
<v) but Sat(T�v) �= Sat(T ′

�v) and that v
is algebraic w.r.t both T and T ′. Define p = Tv, p′ = T ′

v and

G = GCD(p, p′, T<v).

If |G| = 1, let G = {(g, C)}. Then the following properties hold

(i) C = T<v.
(ii) If g ∈ K, then

Z(T, h) \ Z(T ′, h′) = Z(T, h).

(iii) If g /∈ K and mvar(g) < v, then g is regular w.r.t Sat(T ) and

Z(T, h) \ Z(T ′, h′)

= Z(T, gh)
⊔

(Z(g, T, hhT ) \ Z(T ′, h′)) .

(iv) Assume that mvar(g) = v.
(iv.a) If mdeg(g) = mdeg(p), defining

q′ = pquo(p′, p, T ′
<v)

D′
p = T ′

<v ∪ {p} ∪ T ′
>v

D′
q′ = T ′

<v ∪ {q′} ∪ T ′
>v,

then we have

Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(D′
p, h

′hT ′),

rank(D′
p) < rank(T ′) and h′hT ′ is regular w.r.t Sat(D′

p).
(iv.b) If mdeg(g) < mdeg(p), defining

q = pquo(p, g, T<v)
Dg = T<v ∪ {g} ∪ T>v

Dq = T<v ∪ {q} ∪ T>v,

then we have: Dg and Dq are regular chains such that rank(Dg) < rank(T ),
rank(Dq) < rank(T ), hhT is regular w.r.t Sat(Dg) and Sat(Dq), and

Z(T, h) = Z(Dg, hhT )
⋃

Z(Dq, hhT )
⋃

Z(hg, T, hhT ).
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PROOF. Since |G| = 1, by the specification of the operation GCD and Notation 1, (i)
holds. Therefore we have

Sat(C) = Sat(T<v) = Sat(T ′
<v) (1)

There exist polynomialsA and B such that

g ≡ Ap+Bp′ mod Sat(C). (2)

From (2), we have

V(Sat(C)) ⊆ V(g −Ap−Bp′) (3)

Therefore, we deduce

W(T )
⋂

W(T ′)

= W(T<v ∪ p ∪ T�v)
⋂

W(T ′
<v ∪ p′ ∪ T ′

�v)

⊆ (W(T<v) ∩V(p))
⋂

(W(T ′
<v) ∩V(p′))

⊆ V(Sat(T<v))
⋂

V(p)
⋂

V(p′) by (1)

⊆ V(g −Ap−Bp′)
⋂

V(p)
⋂

V(p′) by (3)

⊆ V(g).

that is

W(T )
⋂

W(T ′) ⊆ V(g). (4)

Now we prove (ii). When g ∈ K, g �= 0, from (4) we deduce

W(T )
⋂

W(T ′) = ∅. (5)

Thus we have

Z(T, h) \ Z(T ′, h′)
= (W(T ) \V(h)) \ (W(T ′) \V(h′))
= (W(T ) \V(h)) by (5)

= Z(T, h).

Now we prove (iii). Since C = T<v and mvar(g) is smaller than or equal to v, by the
specification of GCD, g is regular w.r.t Sat(T ). We have following decompositions

Z(T, h) = Z(T, gh)
⊔

Z(g, T, hhT ),
Z(T ′, h′) = Z(T ′, gh′)

⊔
Z(g, T ′, h′hT ′).
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On the other hand,

Z(T, gh)
⋂

Z(T ′, gh′)

= (W(T ) ∩V(gh)c)
⋂

(W(T ′) ∩V(gh′)c)

⊆ (W(T ) ∩V(g)c)
⋂

(W(T ′) ∩V(g)c)

= (W(T ) ∩W(T ′))
⋂

V(g)c

= ∅ by (4).

Therefore,

Z(T, h) \ Z(T ′, h′)

= (Z(T, gh) \ Z(T ′, gh′))
⊔

(Z(g, T, hhT ) \ Z(T ′, h′))

= Z(T, gh)
⊔

(Z(g, T, hhT ) \ Z(T ′, h′)) .

Now we prove (iv.a). First, both h′ and h′T are regular w.r.t Sat(C) = Sat(T<v) =
Sat(T ′

<v). From the construction of D′
p, we have h′hT ′ is regular w.r.t Sat(D′

p).
Assume that mvar(g) = v and mdeg(g) = mdeg(p). We note that mdeg(p′) >

mdeg(p) holds. Otherwise we would have mdeg(g) = mdeg(p) = mdeg(p′) which
implies:

p ∈ Sat(T ′
�v) and p′ ∈ Sat(T�v). (6)

Thus

Sat(T�v) = 〈T�v〉 : h∞T�v
= 〈T<v ∪ p〉 : h∞T�v

⊆ Sat(T ′
�v) : h∞T�v

by (6)

= Sat(T ′
�v),

that is Sat(T�v) ⊆ Sat(T ′
�v). Similarly, Sat(T ′

�v) ⊆ Sat(T�v) holds. So we have
Sat(T ′

�v) = Sat(T�v), a contradiction.
Hence, mvar(q′) = v.
By Lemma 6 [15], we know that D′

p and D′
q′ are regular chains. Then with Theo-

rem 7 [15] and Lifting Theorem [15], we know

Z(T ′, h′) ⊆ Z(D′
p, h

′)
⋃

Z(D′
q′ , h′)

⋃
Z(hp, T

′, h′)

⊆ W(T ′) \V(h′).

By Lemma 2, we have

Z(T ′, h′) = Z(D′
p, h

′hT ′)
⋃

Z(D′
q′ , h′hT ′)

⋃
Z(hp, T

′, h′hT ′).

Since

Z(D′
q′ , h′hT ′) = Z(D′

q′ , hph
′hT ′)

⋃
Z(hp, D

′
q′ , h′h′T )

= Z(D′
q′ , phph

′hT ′)
⋃

Z(p,D′
q′ , hph

′h′T )
⋃

Z(hp, D
′
q′ , h′h′T )
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and

Z(p,D′
q′ , hph

′h′T ) ⊆ Z(D′
p, h

′hT ′)

Z(hp, D
′
q′ , h′h′T ) ⊆ Z(hp, T

′, h′hT ′),

we deduce

Z(T ′, h′) = Z(D′
p, h

′hT ′)
⊔

Z(D′
q′ , ph′hT ′)

⊔
Z(hp, T

′, h′hT ′).

Now observe that

Z(T, h)
⋂

Z(D′
q′ , ph′hT ′) = ∅, and

Z(T, h)
⋂

Z(hp, T
′, h′hT ′) = ∅.

We obtain

Z(T, h) \Z(T ′, h′) = Z(T, h) \ Z(D′
p, h

′hT ′).

Finally we prove (iv.b). We assume that mvar(g) = v and mdeg(g) < mdeg(p); this
implies mvar(q) = v. Applying Lemma 6 in [15] we know that Dg and Dq are regular
chains and satisfy the desired rank condition. Then by Theorem 7 [15] and Lifting
Theorem [15] we have

Z(T, h) = Z(Dg, hhT )
⋃

Z(Dq, hhT )
⋃

Z(hg, T, hhT ).

This completes the whole proof.

Definition 7. Given two pairs of ranks (rank(T1), rank(T ′
1)) and (rank(T2), rank(T ′

2)),
where T1, T2, T ′

1, T
′
2 are triangular sets. We define the product order <p of Ritt order

<r on them as follows

(rank(T2), rank(T ′
2)) <p (rank(T1), rank(T ′

1))

⇐⇒
{

rank(T2) <r rank(T1) or
rank(T2) = rank(T1), rank(T ′

2) <r rank(T ′
1).

In the following theorems, we prove the termination and correctness separately. Along
with the proof of Theorem 2, we show the rank conditions are satisfied which is part
of the correctness. The remained part, say zero set decomposition, will be proved in
Theorem 3.

Theorem 2. Algorithms Difference and DifferenceLR terminate and satisfy the
rank conditions in their specifications.

PROOF. The following two statements need to be proved

(i) Difference terminates with rank(Difference([T, h], [T ′, h′])) �r rank([T, h]),
(ii) DifferenceLR terminates with rank(DifferenceLR(L,R)) �r rank(L).
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We prove them by induction on the product order <p.

(1) Base case: there are no recursive calls to Difference or DifferenceLR. The
termination of both algorithms is clear. By line 2, 18 of the algorithm Difference,
rank(Difference([T, h], [T ′, h′])) �r rank([T, h]). By line 2, 4 of the algorithm
DifferenceLR, rank(DifferenceLR(L,R)) �r rank(L).

(2) Induction hypothesis: assume that both (i) and (ii) hold with inputs whose ranks
are smaller than the rank of ([T, h], [T ′, h′]) w.r.t. <p.

(3) By (1), if no recursive calls occur in one branch, then (i) and (ii) already hold. When
recursive calls occur, by line 8, 11, 21, 25, 30, 31, 32, 41, 46 and Lemma 6, 8, 9, 10,
we know the inputs of recursive calls to both Difference and DifferenceLR
have smaller ranks than rank(([T, h], [T ′, h′])) w.r.t <p. By induction hypothesis,
(i) holds. Finally, by line 8, 15 of algorithm DifferenceLR and (i), (ii) holds.

Theorem 3. Both Difference and DifferenceLR satisfy their specifications.

PROOF. By Theorem 2, Difference and DifferenceLR terminate and satisfy their
rank conditions. So it suffices to prove the correctness of Difference and
DifferenceLR, that is

(i) Z(T, h) \ Z(T ′, h′) = Z(Difference([T, h], [T ′, h′])),
(ii) Z(L) \ Z(R) = Z(DifferenceLR(L,R)).

We prove them by induction on the product order <p.

(1) Base case: no recursive calls to Difference and DifferenceLR occur. First, by
line 2, 18 of the algorithm Difference and Lemma 6, 7, 10, (i) holds. Second, by
line 2, 4 of the algorithm DifferenceLR, (ii) holds.

(2) Induction hypothesis: assume that both (i) and (ii) hold with inputs whose ranks
are smaller than the rank of ([T, h], [T ′, h′]) w.r.t. <p.

(3) By (1), if no recursive calls occur, (i) and (ii) already hold. When there are recur-
sive calls, we first show (i) holds. From the proof of Theorem 2, in Difference,
the inputs of recursive calls to Difference and DifferenceLR will have smaller
ranks w.r.t. the product order <p. Therefore, by (2), line 7, 8, 11, 20, 21, 25, 30,
31, 32, 41, 46 and Lemma 6, 8, 9, 10, (i) holds.
Finally, by (i) and line 5 − 18 of algorithm DifferenceLR, (ii) holds.

4 Decomposition into Pairwise Disjoint Constructible Sets

We assume that DifferenceLR(L,R) returns a list of regular systems sorted by
increasing rank.

Definition 8. Let S be a list of regular systems sorted by increasing rank. If S is empty
or consists of a single regular system [T, h], define MPD(S) = S. Otherwise, let
S = L+R, where |L| = |R| or |L| = |R|+ 1 (and + denotes concatenation of lists).
Define

MPD(S) = MPD(DifferenceLR(L,R)) + MPD(R).
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Definition 9. For a regular system S = [T, h], let Z0(S) denote the zero set of S
considered as a regular system in K̂[mvar(T )] := K(Y \ mvar(T ))[mvar(T )] .

Lemma 11. For every regular system S, Z0(S) is non-empty and finite.

PROOF. If the regular system S = [T, h] is considered in K̂[mvar(T )], it remains to be
a regular system and, moreover, T becomes a zero-dimensional regular chain. We have
therefore

Z0(S) = W
K̂
(T ) \V

K̂
(h) = V

K̂
(T ).

Definition 10. For a finite set of regular systems S = {[T1, h1], . . . , [Tk, hk]} such that
rank(T1) = · · · = rank(Tk), define

Z0(S) = Z0([T1, h1]) ∪ . . . ∪ Z0([Tk, hk]).

For an arbitrary finite set of regular systems S, let Srank(S) denote the subset of

regular systems of maximal rank. Define Z0(S) = Z0(Srank(S)).

Lemma 12. Let S be a list of regular systems sorted by increasing rank represented as
a concatenation of two non-empty sublists: S=L+R. Let C=DifferenceLR(L,R).
Then either rank(C) < rank(S), or |Z0(C)| < |Z0(S)|.

PROOF. If rank(L) < rank(S), then rank(C) < rank(S) by Theorem 2. Otherwise,
rank(L) = rank(S) and, since S is sorted by increasing rank, the rank of every system
in R equals rank(S). By Theorem 2, we have rank(C) ≤ rank(S). In case of strict
inequality we are done, so assume that rank(C) = rank(S).

Denote r = rank(L) = rank(C) = rank(R) = rank(S). We have:

⋃

C∈Cr

Z(C) ⊆
⋃

A∈Lr

Z(A) \
⋃

B∈R
Z(B),

which implies
Z0(C) ⊆ Z0(L) \

⋃

B∈R
Z0(B).

Since, by Lemma 11, Z0(S) = Z0(L) ∪ Z0(R) is finite and
⋃

B∈R Z(B) �= ∅, we
obtain the desired |Z0(C)| < |Z0(S)|.

Lemma 13. For any list S of regular systems, D = MPD(S) is well-defined.

PROOF. We define a well-order on the set of all sorted finite lists of regular systems
and prove the statement by induction on this well-order.

For a non-empty list S, let φ(S) = (rank(S),Z0(S), |S|). Let L ≺ R iff φ(L) <lex

φ(R). Since<lex is the lexicographic product of three well-orders,<lex is a well-order,
whence so is ≺. Define the empty list to be less than any non-empty list w.r.t. ≺.

For empty and singleton lists S, MPD(S) is well-defined. Let S be a non-singleton
and non-empty list. Assume that MPD(S′) is defined for all lists S′ such that S′ ≺ S.
Let, as in Definition 8, S = L + R, where |L| = |R| or |L| = |R| + 1. Then by
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Lemma 12, Difference(L,R) ≺ S. Also, rank(R) ≤ rank(S), Z0(R) ≤ Z0(S), and
|R| < |S|, whence R ≺ S. This implies that MPD(S) is well-defined according to
Definition 8.

Note that Definition 8 yields a recursive algorithm for computing MPD(S), which
terminates according to the previous lemma. The output of this algorithm is a decompo-
sition of the union of zero-sets of regular systems in S into a disjoint union of zero-sets
of regular systems:

Proposition 2. For all distinct regular systems R,S ∈ D = MPD(S), we have
Z(R) ∩ Z(S) = ∅, and ⋃

R∈S
Z(S) =

⋃

S∈D
Z(D).

PROOF. Follows immediately from the definition of MPD.

In the following section, to compute comprehensive triangular decompositions, we will
see that SMPD (strongly make pairwise disjoint) is really required. Given a set of reg-
ular systems A1, · · · , As, SMPD compute another set of regular systems B1, · · · , Bt

whose zero sets are pairwise disjoint, such that each Z(Ai) writes as a union of some
of the Z(B1), · · · ,Z(Bt).

Algorithm 3. SMPD(S)
1: if |S| ≤ 1 then
2: output S
3: end if
4: Let [T0, h0] ∈ S , S ← S \ {[T0, h0]}
5: S ← SMPD(S)
6: for [T, h] ∈ S do
7: A ← Difference([T, h], [T0, h0])
8: B ← DifferenceLR([T, h], A)
9: output MPD(A)

10: output MPD(B)
11: end for
12: C ← DifferenceLR([T0, h0], S)
13: output MPD(C)

Proposition 3. The Algorithm SMPD terminates and is correct.

PROOF. It follows directly from the termination and correctness of algorithms
Difference, DifferenceLR and MPD.

5 Comprehensive Triangular Decomposition

In this section we introduce the concept of comprehensive triangular decomposition of
an algebraic variety. We propose an algorithm for computing this decomposition and
apply it to compute the set of all parameter values at which a given parametric system
has an empty or an infinite set of solutions.
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Notation 2. From now on, we assume that n = m + d, the variables Y1, . . . , Yd are
renamed U1, . . . , Ud and viewed as parameters, whereas Yd+1, . . . , Yn are renamed
X1, . . . , Xm and regarded as unknowns.

If the polynomial set F ⊂ K[Y ] involves polynomials from K[U ] only, we denote by

VU (F ) its variety in K
d
. Similarly, if the regular chain T ⊂ K[Y ] involves polynomials

from K[U ] only, we denote by WU (T ) its quasi-component in K
d
.

Notation 3. Let p ∈ K[U ][X ] be a polynomial. We denote by VU (p) the variety of

K
d
, consisting of the common roots of the coefficients of p, when p is regarded as a

polynomial with variables in X and coefficients in K[U ]. Then, we define VU (F ) as
the intersection of all VU (p) for p ∈ F .

For u ∈ K
d
, we denote by p(u) the polynomial of K[X ] obtained by evaluating p at

U1 = u1, . . . , Ud = ud. Clearly, for all u ∈ K
d
, the polynomial p(u) is identically null

iff u ∈ VU (p). Then, we denote by F (u) the set of all non-zero p(u) for p ∈ F .

Definition 11. Let T ⊂ K[U,X ] be a regular chain. The defining set of T w.r.t. U ,

denoted by DU (T ), is the constructible set of K
d

given by

DU (T ) = WU (T ∩ K[U ]) \ VU (res(hT>Ud
, T>Ud

)).

Let u ∈ WU (T ∩ K[U ]). We say that the regular chain T specializes well at u if T (u)
is a regular chain in K[X ] such that rank(T (u)) = rank(T>Ud

).

Remark 2. Since DU (T ) is a constructible set, by Lemma 5, there exists an algorithm
to compute a set of regular systems RU (T ), such that DU (T ) = Z(RU (T )).

Lemma 14. Let T ⊂ K[U,X ] be a regular chain with mvar(T ) ⊆ X and let u ∈ K
d
.

We have

u �∈ VU (res(hT , T )) ⇐⇒ res(hT (u), T (u)) �= 0 and hT (u) �= 0.

PROOF. “ ⇐ ” If hT (u) �= 0 and res(hT (u), T (u)) �= 0, then

res(hT (u), T (u)) = res(hT (u), T (u)) �= 0,

which implies res(hT , T )(u) �= 0. So u �∈ VU (res(hT , T )).
“ ⇒ ” We prove this by induction on |T |.
If |T | = 1, then u �∈ VU (res(hT , T )) implies hT (u) �= 0 and therefore

res(hT (u), T (u)) = hT (u) = hT (u) �= 0.

Now we assume that the conclusion holds for |T | = n − 1. If |T | = n, let v be the
largest variable in mvar(T ). Since u �∈ VU (res(hT , T )), we have

res(hT , T )(u) = res(hT , T<v)(u) �= 0.

Therefore, res(hT<v , T<v)(u) �= 0. By induction hypothesis, we know hT<v (u) �=
0. By the specialization property of resultant, res(hT (u), T<v(u)) �= 0 and therefore
hT (u) �= 0. So res(hT , T )(u) �= 0 implies res(hT (u), T (u)) �= 0.
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Proposition 4. Let T ⊂ K[U,X ] be a regular chain and let u ∈ WU (T ∩ K[U ]). The

regular chain T specializes well at u ∈ K
d

if and only if u ∈ DU (T ).

PROOF. Assume that u ∈ DU (T ). We prove that T specializes well at u. From
Lemma 14 we have

res(hT>Ud
(u), T>Ud

(u)) �= 0 and hT>Ud
(u) �= 0.

With u ∈ WU (T ∩ K[U ]), which implies (T ∩ K[U ])(u) = {0}, we conclude that
rank(T (u)) = rank(T>Ud

). Moreover, by Theorem 1, T (u) is a regular chain. There-
fore, the regular chain T specializes well at u. The converse implication is proved
similarly.

Definition 12. Let T ⊂ K[U,X ] be a regular chain. The comprehensive
quasi-component of T w.r.t. U , denoted by WC(T ), is defined by

WC(T ) = W(T ) ∩Π−1
U (DU (T )).

Proposition 5. Let T ⊂ K[U,X ] be a regular chain. The following properties hold:

(1) We have: WC(T ) = W(T ) \ Π−1
U (VU (res(hT>Ud

, T>Ud
))).

(2) We have: ΠU (WC(T )) = DU (T ).

PROOF. It follows from Definition 11 and Lemma 14.

Definition 13. Let F ⊂ K[U,X ] be a finite polynomial set. A comprehensive triangular
decomposition of V(F ) is given by :

1. a finite partition C of ΠU (V(F )),
2. for each C ∈ C a set of regular chains TC of K[U,X ] such that for u ∈ C each of

the regular chains T ∈ TC specializes well at u and we have for all u ∈ C

V(F (u)) =
⋃

T∈TC

W(T (u)).

We will compute the above comprehensive triangular decomposition with the help of
the following auxiliary concept:

Definition 14. Let F ⊂ K[U,X ] be a finite polynomial set. A pre-comprehensive tri-
angular decomposition (PCTD) of V(F ) is a family of regular chains T satisfying the

following property: for each u ∈ K
d
, let Tu be the subfamily of all regular chains in T

that specialize well at u; then

V(F (u)) =
⋃

T∈Tu

W(T (u)).

Proposition 6. Let F ⊂ K[U,X ] be a finite polynomial set. A triangular decomposi-
tion T of V(F ) is a pre-comprehensive triangular decomposition if and only if

V(F ) =
⋃

T∈T
WC(T ).
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PROOF. It follows from the definition of WC(T ), Proposition 4 and the definition of
pre-comprehensive triangular decomposition.

Algorithm 4. PCTD(F )
Input: A finite set F ⊂ K[U, X].
Output: A PCTD of V(F ).
1: T ← Triangularize(F )
2: while T �= ∅ do
3: let T ∈ T , T ← T \ {T}
4: output T
5: G ← COEFFICIENTS(res(hT>Ud

, T>Ud), U )
6: T ← T ∪ Triangularize(G, T )
7: end while

Proposition 7. Algorithm 4 computes a pre-comprehensive triangular decomposition
of V(F ).

PROOF. The loop satisfies the following invariant: the union of all W(T ), where T
ranges over T , and of the W(T ′), where T ′ ranges over the current output, equals
V(F ). Indeed, the invariant holds at the beginning, when the output is empty; and for
the regular chain T taken from T at the current iteration, we have W(T ) \WC(T ) =
V(G) ∩ W(T ) by Proposition 5 (1). Then, correctness of the algorithm follows from
Proposition 6 and the fact that at the end T = ∅.

Since polynomials in G do not involve the main variables of T , by Lemma 3 they
are regular w.r.t Sat(T ). Then by Lemma 1, either the output of Triangularize(G, T )
is empty or the dimensions of the regular chains computed by Triangularize(G, T ) are
strictly less than that of T . Therefore, the algorithm terminates.

Proposition 8. Algorithm 5 computes a comprehensive triangular decomposition of
F ⊂ K[U,X ].

PROOF. Let T be the output of PCTD(F ). By Proposition 6 and Proposition 5 (2),
we have

ΠU (V(F )) =
⋃

T∈T
DU (T ).

Then the conclusion follows from the definition of comprehensive triangular decompo-
sition, Proposition 3, 7 and Remark 2.

Given a polynomial set F ⊂ K[U,X ], a natural question is to describe the points u

of K
d

for which the specialized system F (u) admits a finite and positive number of
solutions in K

m
. This question is formalized by the following definition.

Definition 15. The discriminant set of F is defined as the set of all points u ∈ K
d

for
which V(F (u)) is empty or infinite.
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Algorithm 5. CTD(F )
Input: A finite set F ⊂ K[U, X].
Output: A CTD of V(F ).
1: T ← PCTD(F )
2: S ← ∅
3: for T ∈ T do
4: S ← S ∪ RU (T )
5: end for
6: S ← SMPD(S)
7: while S �= ∅ do
8: let C ∈ S , S ← S \ C
9: TC ← regular chains in T associated to C

10: output (C,TC)
11: end while

Theorem 4. If T is a pre-comprehensive triangular decomposition of V(F ), then the
following is the discriminant set of F :

⎛

⎜⎜⎜⎝
⋃

T ∈ T
X �⊆ mvar(T )

DU (T )

⎞

⎟⎟⎟⎠ ∪

⎛

⎜⎜⎜⎝
⋂

T ∈ T
X ⊆ mvar(T )

K
d \DU (T )

⎞

⎟⎟⎟⎠ .

PROOF. By Proposition 4, for every parameter value u ∈ K
d
, the set {T (u) | T ∈

T and u ∈ DU (T )} is a triangular decomposition of V(F (u)) into regular chains. In
particular, if there exists no T ∈ T such that u ∈ DU (T ) holds, then V(F (u)) = ∅.

Therefore, u yields finitely many solutions (and at least one) if and only if the fol-
lowing conditions hold:

– u belongs to at least one DU (T ) such that X ⊆ mvar(T ), i.e., T (u) is a zero-
dimensional regular chain.

– u does not belong to any DU (T ) such that X �⊆ mvar(T ), i.e., T (u) is a positive-
dimensional regular chain.

Remark 3. By Theorem 4 and Proposition 8, we have completely answered the two
problems proposed in the introduction.

6 Implementation

We have implemented the algorithm for computing comprehensive triangular decom-
positions (CTD) based on RegularChains library in Maple 11. Our main function CTD
calls essentially three functions

– Triangularize, computing a triangular decomposition of the input system F ,
– PCTD, deducing a pre-comprehensive triangular decomposition of F ,
– SMPD, obtaining a comprehensive triangular decomposition of F .
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Table 1. Solving timings and number of cells of CTD

Sys Name Triangularize PCTD SMPD CTD #Cells
1 MontesS1 0.089 0.002 0.031 0.122 3
2 MontesS2 0.031 0.002 0 0.033 1
3 MontesS3 0.103 0.006 0.005 0.114 2
4 MontesS4 0.101 0.016 0 0.117 1
5 MontesS5 0.383 0.022 0.465 0.870 11
6 MontesS6 0.395 0.019 0.121 0.535 4
7 MontesS7 0.416 0.215 0.108 0.739 4
8 MontesS8 0.729 0.001 0.016 0.746 2
9 MontesS9 0.945 0.116 3.817 4.878 23
10 MontesS10 5.325 0.684 1.138 7.147 10
11 MontesS11 0.757 0.208 12.302 13.267 28
12 MontesS12 14.199 2.419 10.114 26.732 10
13 MontesS13 0.415 0.143 1.268 1.826 9
14 MontesS14 41.167 31.510 0.303 72.980 4
15 MontesS15 6.919 0.579 1.123 8.621 5
16 MontesS16 6.963 0.083 2.407 9.453 21
17 AlkashiSinus 0.716 0.191 0.574 1.481 6
18 Bronstein 2.526 0.017 0.548 3.091 6
19 Gerdt 3.863 0.006 0.733 4.602 5
20 Hereman-2 1.826 0.019 0.020 1.865 2
21 Lanconelli 2.056 0.336 3.430 5.822 14
22 genLinSyst-3-2 1.624 0.275 25.413 27.312 32
23 genLinSyst-3-3 9.571 1.824 1097.291 1108.686 116
24 Wang93 6.795 37.232 11.828 55.855 8
25 Maclane 12.955 0.403 54.197 67.555 21
26 Neural 15.279 19.313 0.530 35.122 4
27 Leykin-1 1261.751 86.460 27.180 1375.391 57
28 Lazard-ascm2001 60.698 2817.801 – – –
29 Pavelle – – – – –
30 Cheaters-homotopy – – – – –

We provide comparative benchmarks with MAPLE implementations of related meth-
ods for solving parametric polynomial systems, namely: decomposition into regular
systems by Wang [19] and discussing parametric Gröbner bases by Montes [14]. Cor-
responding MAPLE functions are RegSer and DISPGB, respectively.

Note that the specifications of these three methods are different. The outputs of CTD
and DISPGB depend on the choice of the parameter sets, whereas RegSer does not
require to specify parameters. RegSer decomposes the input system into pairwise dis-
joint constructible sets given by regular systems. CTD computes a comprehensive tri-
angular decomposition, and thus a family of triangular decompositions with a partition
of the parameter space. DISPGB computes a family of comprehensive Gröbner bases
with a partition of the parameter space.

We run CTD in Maple 11 using an Intel Pentium 4 processor (3.20GHz CPU, 2.0GB
total memory, and Red Hat 4.0.0-9); we set the time-out to 1 hour. Due to the current
availability of RegSer and DISPGB, the timings obtained by these two functions are
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Table 2. Solving timings and number of components/cells in three algorithms

DISPGB RegSer CTD
Sys Time (s) # Cells Time (s) # Components Time (s) # Cells
1 0.509 2 0.021 3 0.122 3
2 0.410 2 0.021 1 0.033 1
3 0.550 2 0.060 3 0.114 2
4 1.511 2 0.070 1 0.117 1
5 1.030 3 0.099 4 0.870 11
6 1.350 4 0.049 5 0.535 4
7 1.609 2 0.180 4 0.739 4
8 2.181 3 0.150 4 0.746 2
9 10.710 5 0.171 7 4.878 23
10 9.659 5 0.329 5 7.147 10
11 0.489 3 0.260 9 13.267 28
12 259.730 5 2.381 23 26.732 10
13 5.830 9 0.199 9 1.826 9
14 – – – – 72.980 4
15 30.470 7 0.640 10 8.621 5
16 61.831 7 6.060 22 9.453 21
17 4.619 6 0.150 5 1.481 6
18 8.791 5 0.319 6 3.091 6
19 20.739 5 3.019 10 4.602 5
20 101.251 2 0.371 7 1.865 2
21 43.441 4 0.330 7 5.822 14
22 – – 0.350 18 27.312 32
23 – – 2.031 61 1108.686 116
24 – – 4.040 6 55.855 8
25 83.210 11 – – 67.555 21
26 – – – – 35.122 4
27 – – – – 1375.391 57
28 – – – – – –
29 – – – – – –
30 – – – – – –

performed in Maple 8 on Intel Pentium 4 machines (1.60GHz CPU, 513MB memory
and Red Hat Linux 3.2.2-5); and the time-out is 2 hours. The 30 test-systems used in
our experimentation are chosen from [13,18,21].

As shown in the above two tables, our implementation of the CTD algorithm can
solve all problems which can be solved by the other methods. In addition, the CTD
can solve 4 test-systems which are out of reach of the other two methods, generally due
to memory consumption.

7 Conclusion

Comprehensive triangular decomposition is a powerful tool for the analysis of paramet-
ric polynomial systems: its purpose is to partition the parameter space into regions, so
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that within each region the “geometry” of the algebraic variety of the specialized system
is the same for all values of the parameters.

As the main technical tool, we proposed an algorithm that represents the difference
of two constructible sets as finite unions of regular systems. From there, we have de-
duced an algorithmic solution for a set theoretical instance of the coprime factorization
problem: refining a family of constructible sets into a family of pairwise disjoint con-
structible sets.

We have reported on an implementation of our algorithm computing CTDs, based on
the RegularChains library in MAPLE. Our comparative benchmarks, with MAPLE

implementations of related methods for solving parametric polynomial systems, illus-
trate the good performances of our CTD code.
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Abstract. We investigate the stability of the modified difference scheme
of Kim and Moin for numerical integration of two-dimensional incom-
pressible Navier–Stokes equations by the Fourier method and by the
method of discrete perturbations. The obtained analytic-form stability
condition gives the maximum time steps allowed by stability, which are
by factors from 2 to 58 higher than the steps obtained from previous em-
pirical stability conditions. The stability criteria derived with the aid of
CAS Mathematica are verified by numerical solution of two test problems
one of which has a closed-form analytic solution.

1 Introduction

It is well known (see, for example, [13]) that the influence of the compressibility
of a gas or a liquid may be neglected if the flow Mach number does not exceed
the value 0.3. In such cases, it is reasonable to use the Navier-Stokes equations
governing the viscous incompressible fluid flows. These equations are somewhat
simpler than the system of Navier-Stokes equations for compressible media. The
incompressible Navier-Stokes equations are widely used when investigating such
applied problems as the buoyancy-driven convection of air in rooms, the propa-
gation of pollutants in the atmosphere, the water flow around a moving ship or
submarine, etc.

The numerical solution of Navier-Stokes equations is simplified greatly if they
are discretized on a uniform rectangular spatial grid in Cartesian coordinates. It
is natural and convenient to use such grids at the solution of problems in regions
of rectangular shape. Many applied problems are, however, characterized by the
presence of curved boundaries. In such cases, other grid types are often used:
curvilinear grids, structured and unstructured triangular and polygonal grids.
Although such grids simplify the implementation of boundary conditions, their
use leads to new difficulties, such as the extra (metric) terms in equations, extra
interpolations, larger computational molecules, etc. [9].

During the last decade, a new method for numerical solution of the Navier-Sto-
kes equations in regions with complex geometry has enjoyed a powerful develop-
ment: the immersed boundary method (IBM). In this method, the computation

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 102–117, 2007.
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of gas motion is carried out on a rectangular grid, and the curved boundary is
interpreted as an interface. The grid cells lying outside the region occupied by
the fluid are classified as the ghost cells in which the Navier-Stokes equations are,
however, also solved numerically. A survey of different recent realizations of the
IBM may be found in [10,14,16]. The immersed boundary method has extended
significantly the scope of applicability of the rectangular Cartesian grids at the
numerical solution of applied problems of the incompressible fluid dynamics.

The difference scheme proposed in [8] is often used within the IBM framework.
The convective terms are approximated in this scheme with the aid of the explicit
three-level Adams–Bashforth second-order scheme, and the viscous terms are
approximated by the implicit second-order Crank–Nicolson scheme. Despite the
popularity of scheme [8], its stability was not investigated even in the case of
two spatial variables.

The purpose of the present work is the stability investigation of a modi-
fied scheme from [8]. This investigation is carried out at first by the Fourier
method. Since this analysis method is applicable only to linear difference schemes
with constant coefficients we employ one more method for stability analysis of
nonlinear difference equations approximating the Navier-Stokes equations. This
method was proposed in [11] and reduces to the investigation of the behaviour
of solution of difference equations in the case when the oscillating velocity pro-
files are specified on two lower time levels. The obtained stability conditions have
been verified by computations of two test problems one of which is the lid-driven
cavity problem.

2 Governing Equations and Difference Method

The Navier-Stokes equations governing two-dimensional unsteady flows of an
incompressible viscous fluid may be written in the vector form as follows:

divv = 0, (1)
∂v

∂t
+ (v∇)v +

1
ρ
∇p = νΔv, (2)

where v = (u, v)T is the velocity vector (the superscript T denotes the trans-
position operation), u and v are the vector components along the x, y axes of
Cartesian coordinates, p is the pressure, ρ is the density, ν = μ/ρ, μ is the
dynamic viscosity (ν = const > 0), Δ is the Laplace operator.

Following [8] we will discretize the momentum equation (2) in time by using
a hybrid second-order scheme:

v∗ − vn

τ
+

3
2
H(vn)− 1

2
H(vn−1) +

1
ρ
Gpn =

ν

2
[L(v∗) + L(vn)] . (3)

Here τ is the time step, H(vn) is the difference operator approximating the
operator (v∇)v, G is the discrete gradient, L is the discrete Laplace operator, n
is the time level. Thus, the convective terms in (3) are approximated explicitly
by the second-order Adams–Bashforth scheme, and the diffusion terms νΔv
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are treated implicitly using second-order Crank–Nicolson scheme. The implicit
approximation of viscous terms is applied according to [8] in order to eliminate
a restriction for time step τ dictated by the computational stability.

At the second fractional step, the field of intermediate velocities v∗ is corrected
to ensure the mass conservation:

(vn+1 − v∗)/τn = −Gp′, (4)

The pressure correction p′ is computed in such a way that a divergence-free
velocity field is obtained at the (n+1)th time step. To this end, let us apply the
divergence operator to the both sides of equation (4):

(Dvn+1 −Dv∗)/τn = −Lp′, (5)

where D is a discrete analog of the divergence operator. Since it is required that
Dvn+1 = 0, we obtain from (5) the Poisson equation for the pressure correction:

Lp′ = (1/τn)Dv∗. (6)

The correction p′ found as the solution of equation (6) is then used for the
correction of the velocity field according to (4): vn+1 = v∗ − τnGp

′ and of
the pressure field: pn+1 = pn + p′. The Poisson equation (6) was solved by
the BiCGSTAB method [15]. As was pointed out in [9], the pressure correction
method was found to be the fastest of the methods tested by Armfield and Street
[1] and is the method used here.

�

�

�× ×

vj,k− 1
2

vj,k+ 1
2

uj− 1
2 ,k uj+ 1

2 ,k
pj,k

Fig. 1. The staggered grid in two dimensions

Following [8] we will approximate all spatial derivatives by second-order cen-
tral differences on a staggered grid (see Fig. 1). The advantages of staggered grid
at the numerical integration of the Navier-Stokes equations for incompressible
fluid are discussed in detail in [8,9]. For example, the term ∂2v/∂y2 is approxi-
mated on the staggered grid as follows:

(
∂2v/∂y2

)
j,k+1/2

= (vj,k+3/2 − 2vj,k+1/2 + vj,k−1/2)/(h22),

where h1, h2 are the steps of uniform rectangular grid along the x- and y-axes,
respectively; the subscripts j, k refer to the cell center. To approximate the con-
vective terms H(vn) we use in (3) the difference formulas of the MAC-method
[6,12,8]. These formulas are applied to the divergence form of motion equations:
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∂u

∂t
+
∂(u2)
∂x

+
∂uv

∂y
+

1
ρ

∂p

∂x
= νΔu;

∂v

∂t
+
∂uv

∂x
+
∂(v2)
∂y

+
1
ρ

∂p

∂y
= νΔv.

For example, (∂u2/∂x)j+1/2,k = (u2j+1,k−u2j,k)/h1, where uj,k = (1/2)(uj−1/2,k+
uj+1/2,k).

We now mention several stability conditions, which were used previously at
the computation of time step τ entering the difference scheme (3). Roache [12]
discussed the stability of the Adams–Bashforth scheme at its application for
approximation of the one-dimensional advection-diffusion equation

∂ζ/∂t+ ∂(uζ)/∂x = ν∂2ζ/∂x2. (7)

This scheme proved to be unconditionally unstable, and it has a weak divergence
caused by the fact that the scheme amplification factorG obtained by the Fourier
method has the form G = 1 +O(τ2). It is, however, to be noted that the above
scheme from [12] for equation (7) is explicit, whereas there are in scheme (3)
also the implicit operators, which stabilize the numerical computation. It is to
be noted here that since ν = O(1/Re), where Re is the Reynolds number, then at
high Reynolds numbers, the stabilizing effect of the implicit term in (3) becomes
insignificant. The computation nevertheless remains stable at the solution of
practical problems by scheme (3) also for the value Re = 25 000, as this was
shown in [7]. It was proposed in [7] to compute the time step τ at the computation
by scheme (3) by using the formula

τ = min
j,k

[
τ−1
conv/Cconv + τ−1

diff/Cdiff

]−1

, (8)

where the items are computed in each (j, k) cell as follows:

τ−1
conv = |u|/h1 + |v|/h2, τ−1

diff = ν ·
(
1/h21 + 1/h22

)
.

For the diffusion component in (8) the Courant number Cdiff = 0.25 according
to [7], and for the convective component the values of Cconv were taken from 0.5
to 1. Note that formula (8) is similar to the one used in [2], but in [2], the common
Courant number Cconv = Cdiff = 0.25 was used. Owing to the application of
formula (8) with different values of Cconv and Cdiff the authors of [7] were able
to reduce the required CPU time at the computations of unsteady flows by a
factor of nearly four.

The stability analysis results were presented in [5] for the schemes of Runge–
Kutta type with the stage numbers three and five for the two-dimensional
advection-diffusion equation

∂f/∂t+ u∂f/∂x+ v∂f/∂y = ν(∂2f/∂x2 + ∂2f/∂y2).

It turned out that for the both studied schemes, the stability condition has the
form (

|κ1|+ |κ2|
a

)2

+
(
κ′3
b

)2

≤ 1, (9)
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where κ1 = uτ/h1, κ2 = vτ/h2, κ′3 = ντ(1/h21 + 1/h22) = κ3(1 + κ24), κ3 =
ντ/(h21), κ4 = h1/h2, a and b are certain constants depending on the specific
method of the Runge–Kutta type. Despite the fact that condition (9) as well
as the empirical stability condition (8) were obtained for different difference
schemes their structure is similar. Formula (8) can indeed be written in terms
of dimensionless quantities κ1, κ2 and κ′3 as

|κ1| + |κ2|
Cconv

+
κ′3

Cdiff
≤ 1.

3 Fourier Symbol

The stability analysis of difference schemes by the Fourier method is known to
be applicable only to linear schemes with constant coefficients. Difference scheme
(3) is nonlinear, therefore, prior to the Fourier method application it is necessary
to linearize the scheme. Linearization may be implemented in two different ways.
One of them consists of that the original differential equations (in our case these
are equations (2)) are at first linearized, and the difference scheme (3) is then
applied to linearized differential equations. Another technique reduces to a direct
linearization of difference equations (3). We use the first of the above techniques
because it involves a slightly shorter calculation.

Thus, let us assume that U(x, y, t), V (x, y, t), P (x, y, t) is an exact solution of
equation (2), where U and V are the components of the velocity vector along the
x- and y-axes, respectively, P is the pressure. According to difference equation
(3), only the velocity components are varied at a passage from the nth time level
to the (n+1)th time level. We can, therefore, present solution v of system (2) as

u = U + δu, v = V + δv, p = P, (10)

where δu and δv are the errors, which are small in their absolute values and which
are caused by the approximation error, machine roundoff errors, etc. Since the
“big” quantities U, V, P satisfy equation (2), as a result of substituting formulas
(10) in (2) and neglecting the second-order terms with respect to δu and δv we
obtain the following linear differential equations:

∂δu

∂t
+ U

∂δu

∂x
+ V

∂δu

∂y
= ν

(
∂2δu

∂x2
+
∂2δu

∂y2

)
;

∂δv

∂t
+ U

∂δv

∂x
+ V

∂δv

∂y
= ν

(
∂2δv

∂x2
+
∂2δv

∂y2

)
.

(11)

Let us now approximate system (11) by difference scheme (3) on a staggered grid.
Since this difference scheme is a three-level scheme we introduce two auxiliary
dependent variables δrn and δsn by formulas [4]: δrn = δun−1, δsn = δvn−1

before the investigation of its stability. Let V = (U, V )T , δvn = (δun, δvn)T ,
δrn = (δrn, δsn)T . We can then write difference scheme (3) as applied to system
(11) in the form:
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δv∗ − δvn

τ
+

3
2
(V n∇)δvn − 1

2
(V n−1∇)δrn =

ν

2
[L(δv∗) + L(δvn)] . (12)

Thus, (12) is a two-layer difference scheme. Upon “freezing” its coefficients V n,
V n−1 we can apply the von Neumann stability analysis [3,4] to obtain the neces-
sary stability condition. According to the procedure of this analysis we substitute
into the system of difference equations

δv∗ − δvn

τ
+

3
2
(vn∇)δvn − 1

2
(V n−1∇)δrn =

ν

2
[L(δv∗) + L(δvn)] ;

δrn+1 = δun;
δsn+1 = δvn

(13)

the solution of the form

δwn
j,k = δw0λ

n exp[i(jm1h1 + km2h2)], (14)

where δwn = (δun, δvn, δrn, δsn)T , δw0 is a constant vector, m1 and m2 are real
components of the wave vector, λ is a complex number, i =

√
−1. As a result

of the substitution of particular solution of the form (14) into system (13) we
obtain the system

Aδwn+1
j,k = Bδwn

j,k, (15)

where

A =

⎛

⎜⎜⎝

a 0 0 0
0 a 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ , B =

⎛

⎜⎜⎝

b 0 c 0
0 b 0 c
1 0 0 0
0 1 0 0

⎞

⎟⎟⎠ ,

a = 1 + κ3(1 − cos ξ) + κ4(1 − cos η), c = (1/2)i(κ1 sin ξ + κ2 sin η),
b = 1 − 3c− κ3(1 − cos ξ) − κ4(1 − cos η), (16)

κ1 =
Uτ

h1
, κ2 =

V τ

h2
, κ3 =

ντ

h21
, κ4 =

ντ

h22
, (17)

ξ = m1h1, η = m2h2. The quantities κ3 and κ4 are nonnegative by virtue of
their physical meaning, therefore, a ≥ 1, and, hence, matrix A is invertible.
Multiplying the both sides of equation (15) from the left by A−1 we obtain the
system

δwn+1
j,k = Gδwn

j,k, (18)

where matrix G = A−1B is called the amplification matrix of the difference
scheme with constant coefficients. But in our case, the coefficients depend on
x, y, and t with regard for (17). Therefore, we will consider in the following the
matrix G in (18) for fixed values of x, y, t and will term the corresponding matrix
G the Fourier symbol of the difference scheme.
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All analytic formulas presented in this section and in the next section were
obtained with the aid of the computer algebra system (CAS) Mathematica. In
particular,

G = A−1B =

⎛

⎜⎜⎝

b
a 0 c

a 0
0 b

a 0 c
a

1 0 0 0
0 1 0 0

⎞

⎟⎟⎠ . (19)

Denote by λ1, λ2, λ3, λ4 the eigenvalues of matrixG. The von Neumann necessary
stability conditions then have the form [3]

|λm| ≤ 1 +O(τ), m = 1, . . . , 4. (20)

Let κ=(κ1, κ2, κ3, κ4). We have found the expression for the characteristic poly-
nomial f(λ,κ, ξ, η)=Det(G−λI) of matrixG, where I is the identity matrix, with
the aid of the Mathematica command charpol= Det[G -λ*IdentityMatrix[4]]
Application of the Mathematica function Factor[charpol] yields

f(λ,κ, ξ, η) =
(aλ2 − bλ− c)2

a2
. (21)

This equation has two roots λ1, λ2, and the multiplicity of each of these roots
is equal to two:

λ1 =
b −

√
b2 + 4ac
2a

, λ2 =
b+

√
b2 + 4ac
2a

. (22)

4 Analytic Investigation of Eigenvalues

We first consider the particular case of creeping fluid flows when U ≈ 0, V ≈ 0.
Assuming then κ1 = κ2 = 0 we obtain the following expression for λ2: λ2 =
(1 − σ)/(1 + σ), where σ = 2[κ3 sin2(ξ/2) + κ4 sin2(η/2)] ≥ 0. It is easy to be
sure of the fact that |λ2| ≤ 1 for any κ3, κ4, ξ, η. That is there are no limitations
for κ3 and κ4. This is not surprising because for κ1 = κ2 = 0 scheme (3) is
implicit, therefore, it is absolutely stable [4].
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Fig. 2. The graphs of |λ1,2| vs. β
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We now consider the particular case when κ3 = κ4 = 0, κ1 ≥ 0, κ2 ≥ 0. It is
clear that the coefficient c in (16) reaches its maximum over ξ, η at ξ = η = π/2.
If κ1 < 0, κ2 < 0, then this maximum is reached at sin ξ = sgnκ1, sin η = sgnκ2.
Then in the general case it is obvious that maxξ,η |c| = (1/2)(|κ1| + |κ2|). The
graphs of the quantities |λ1|, |λ2| are shown in Fig. 2 as the functions of the
quantity β = |κ1| + |κ2|. It is seen that |λ2| exceeds unity by a small value in
the interval 0 ≤ β < 0.5. That is scheme (3) is weakly unstable in this interval.

It follows from the above consideration of particular cases that the necessary
stability condition of scheme (3) for values κ1, κ2, κ3, κ4 different from zero must
have the following form: |κ1| + |κ2| ≤ ϕ(κ3, κ4), where the function ϕ(κ3, κ4)
should satisfy the following properties:

• ϕ(0, 0) = 0;
• ϕ(κ3, κ4) > 0, |κ3|+ |κ4| > 0.

The property ϕ(0, 0) = 0 ensures the presence of the above revealed instability
of scheme (3) for κ3 = κ4 = 0.

In the case when κ1 �= 0, κ2 �= 0, κ3 �= 0, κ4 �= 0 the derivation of stability
condition in an analytic form from (22) is difficult because of the availability
of square roots of complex numbers. In this connection, we use in the following
the concept of the resultant, to which one can reduce the problem of determin-
ing the stability region boundary. The corresponding procedure was described
in [3], therefore, we present it only briefly here. Thus, let f(λ,κ, ξ, η) be the
characteristic polynomial of a difference scheme, and let its degree in λ be
equal to m (m ≥ 1). Following [3] let us perform the Möbius transformation
λ = (ω + 1)/(ω − 1). Then we obtain the polynomial

g(ω,κ, ξ, η) = (ω − 1)mf((ω + 1)/(ω − 1),κ, ξ, η).

Let ω1, . . . , ωm be the roots of polynomial g. The condition Reωj ≤ 0, j =
1, . . . ,m, corresponds to condition |λj | ≤ 1, j = 1, . . . ,m. Then at the boundary
Γ of the stability region the polynomial g must have at least one purely imaginary
zero. Set ω = iσ and consider the polynomial ψ(σ,κ, ξ, η) = g(iσ,κ, ξ, η). It is
clear that the boundary Γ is determined by those values of quantities κ, ξ, η, at
which the polynomial ψ has a real zero σ. Zeroes of polynomial ψ are determined
by the system of two equations with real coefficients Reψ = 0, Imψ = 0. This
system has the solution if and only if the resultant of equations Reψ = 0,
Imψ = 0 equals zero:

Res(Reψ, Imψ) = 0. (23)

We now present a fragment of the Mathematica program which enables us to
obtain the analytic expression for the resultant in (23) for the case of scheme (3).

A = {{a, 0, 0, 0}, {0, a, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};
B = {{b, 0, c, 0}, {0, b, 0, c}, {1, 0, 0, 0}, {0, 1, 0, 0}};
G = Inverse[A].B; charpol = Det[G - lam*IdentityMatrix[4]];
poly = Factor[charpol]; poly=PowerExpand[Sqrt[poly]];
poly2 = poly/.{b-> b1+I*b2,c-> I*c1};
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g = ComplexExpand[(w-1)^2*poly2/.{lam-> (w+1)/(w-1)}];
g1 = Expand[Simplify[g]]; g2 = g1/.{w->I*sig};
reg = ComplexExpand[Re[g2]]; img = ComplexExpand[Im[g2]];
resul = a^4*Resultant[reg,img,sig]/4;

As a result, we obtain the following formula for Res(Reψ, Imψ):

R(κ, ξ, η) = Res(Reψ, Imψ) = −a4 + a2b21 + a2b22 + 4ab1b2c1 + 2a2c21
+ b21c

2
1 + b22c

2
1 − c41, (24)

where in accordance with (16)

a = 1 + κ3(1 − cos ξ) + κ4(1 − cos η), b1 = 1 − κ3(1 − cos ξ) − κ4(1 − cos η),
b2 = −(3/2)(κ1 sin ξ + κ2 sin η), c1 = (1/2)(κ1 sin ξ + κ2 sin η). (25)

The substitution of expressions (25) in (24) leads to a bulky formula, which we
do not present here for the sake of brevity.

As we have shown above in this section, in the particular case when κ3 =
κ4 = 0 the most restrictive stability condition is obtained for sin ξ = sin η = 1.
In this connection, we will investigate in the following the case ξ = η in more
detail. We use the following Mathematica commands:

resul2 = Simplify[resul/.{ξ→ η}];
resz = resul2/.{κ1̂ 2 →z,κ1̂ 4 →ẑ 2};
As a result, we obtain a quadratic equation in z = κ21 to determine the roots of
equation R(κ, ξ, ξ) = 0. Using the Mathematica function Solve[...] we have
obtained the analytic expressions for the both roots. For the sake of brevity we
present only the second root z2. We introduce the notation κ5 = |κ1| + |κ2|,
κ6 = κ3 + κ4, z = κ25. Denote by κ∗5 the value of quantity κ5 at the stability
region boundary. Then

z2 = (κ∗25 )2 =
1
2
Csc4ξ

(
−10κ6 sin2 ξ − 12κ26 sin2 ξ + 10κ6 cos ξ sin2 ξ

+ 24κ26 cos ξ sin2 ξ − 12κ26 cos2 ξ sin2 ξ + 2
√
κ6

√
−1 + cos ξ ×

(−1 − 2κ6 + 2κ6 cos ξ)
√
−8 − 9κ6 + 9κ6 cos ξ sin2 ξ

)
. (26)

In particular, at ξ = η = π/2 we obtain the following expressions for the both
roots (κ∗5)1 and (κ∗5)2:

(κ∗5)1 = (−5κ6 − 6κ26 −
√
κ6(1 + 2κ6)

√
8 + 9κ6)1/2,

(κ∗5)2 = (−5κ6 − 6κ26 +
√
κ6(1 + 2κ6)

√
8 + 9κ6)1/2.

The radicand in formula for (κ∗5)1 is negative because it is the sum of negative
items. Therefore, it is worthwhile considering only the root z2 given by (26). In
order to be sure that the values ξ = η = π/2 yield the most restrictive stability
condition we have constructed twenty curves of the family (κ∗5)2(ξ, ξ) with the
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step Δξ = 0.045π. These curves are shown in Fig. 3, in which the curve for the
particular pair ξ = η = π/2 is shown as a thick line. We can see that this line
is the lowest one in Fig. 3. Thus, we have obtained an approximate form of the
necessary stability condition:

|κ1|+ |κ2| ≤ (−5κ6 − 6κ26 +
√
κ6(1 + 2κ6)

√
8 + 9κ6)1/2. (27)

For ξ = η = π/2, the expression for the resultant becomes especially simple:

R(κ, π/2, π/2) = (1/2)z2 − 4κ6 + 5zκ6 − 8κ26 + 6zκ26 − 4κ36. (28)

Substituting the expressions for κ1, κ2, κ3, κ4 from (17) into (28) we obtain a
fourth-degree polynomial equation for determining the time step τ . Its solution
is efficiently found with the aid of the Mathematica function Solve[...], and
it turns out that equation R = 0 has two real roots and two complex conjugate
roots. The real root τ = 0 is of no practical value. The other real root is as
follows:

τ = − 2(5ab− 4b3)
3(a2 + 12ab2)

−
(
21/3(−148a2b2 − 416ab4 − 64b6)

)
/(3(a2 + 12ab2) ×

(216a4b+ 1744a3b3 + 19776a2b5 + 9984ab7 + 1024b9

+ 24
√

3a3/2b
√

27a+ 4b2(a2 + 8ab2 − 48b4))1/3)

+
1

3 · 21/3(a2 + 12ab2)
(
(216a4b+ 1744a3b3 + 19776a2b5 + 9984ab7

+ 1024b9 + 24
√

3a3/2b
√

27a+ 4b2(a2 + 8ab2 − 48b4)
)1/3

, (29)

where

a =
(
|U |
h1

+
|V |
h2

)2

, b =
ν

h21
+

ν

h22
. (30)

Note that after the non-dimensionalization of the Navier-Stokes equations, the
value ν is usually replaced with ν = 1/Re.

We show in Fig. 4 the surface τ = τ(a, b). We can draw the following con-
clusions from this figure: (i) for sufficiently large values of |U | and |V |, such
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Fig. 4. The surface τ = τ (a, b)
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that a > 0.5, the time steps are smaller than for a < 0.5; (ii) for low Reynolds
numbers, when b is sufficiently high, the maximum time step becomes higher
and higher with increasing b for sufficiently low a. This may be explained by
the well-known fact that with decreasing Re, the dissipative effects become more
pronounced, and right these effects are known to stabilize the difference solution.

Let us consider the case when 0 < κ6 ( 1 (high Reynolds numbers). Using
the Mathematica command Series[τ,b,0,1}] we find:

τ =
2(a4)1/3b1/3

a2
− 10b

3a
+O(b4/3). (31)

If, for example, Re = 1/ν = 104, then τ = O(10−4/3). This consideration ex-
plains why the computations by scheme (3) are stable also for such high Reynolds
numbers.

Note that formula (29) for the maximum time step allowed by stability is
approximate because for ξ �= η one may expect, in principle, a somewhat more
restrictive stability condition. Therefore, it is advisable to compute the time
step τn in computer code implementing scheme (3) from the known difference
solution at the nth time level by formula

τn = θ · min
j,k

τ(aj,k, b), (32)

where τ is computed by (29) at each grid cell (j, k), and θ is the user-specified
safety factor, 0 < θ ≤ 1 (for example, θ = 0.98).

On the other hand, although the stability condition (29) is approximate, it has
a correct analytic form obtained from the von Neumann stability condition with
the aid of the algebra of resultants. This enables the obtaining of information
on the stability properties of a numerical method under the variation of such
important physical parameters as the Reynolds number and the gas velocity.

A shortcoming of symbolic-numerical methods for stability investigation con-
sists of the fact that although it is possible to obtain with their aid a finite set
of the stability region boundary points these methods do not give information
about the structure of the analytic form of the stability region boundary. Al-
though one can obtain the analytic approximation for the maximum time step τ
with the aid of the method of least squares the resulting analytic formulas have
a shortcoming that they specify this analytic form in a user-predefined class of
forms, which may be far from the true analytic dependence.

5 The Method of Discrete Perturbations

The method of discrete perturbations as a method for stability investigation of
difference schemes was previously described in [12,3] as applied to scalar linear
difference schemes. Minion [11] extended this method for the case of two grid
functions un and vn sought for. Another important peculiarity of the extension
of the method of discrete perturbations described in [11] is that this method was
applied to nonlinear difference equations.
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Following [11] we consider the following oscillatory velocity field at the nth
time level:

un
j+1/2,k = 1 − ε · (−1)j+k; vn

j,k+1/2 = 1 + ε · (h2/h1) · (−1)j+k, (33)

where 0 < ε( 1. Besides, we assume that the discrete pressure is constant. The
second-order approximation of equation (1) has the form

(un
j+1/2,k − un

j−1/2,k)/h1 + (vn
j,k+1/2 − vn

j,k−1/2)/h2 = 0. (34)

The substitution of formulas (33) in (34) shows that the velocity field (33) sat-
isfies equation (34).

The difference scheme (3) is a three-level scheme. This gives rise to the problem
of computing by the scheme for n = 0. This problem is usually solved by using
the explicit Euler method for n = 0:

v∗ − vn

τ
+H(vn) +

1
ρ
Gpn =

ν

2
[L(v∗) + L(vn)] . (35)

The substitution of the velocity distribution (33) in (35) for n = 0 was carried
out by us with the aid of symbolic computations in CAS Mathematica. To this
end, we have at first introduced the following two functions:

u[j_,k_]:= 1 - eps*(-1)^(j+k); v[j_,k_]:= 1+ eps*s*(-1)^(j+k);

where the first function corresponds to un
j+1/2,k in (33), and the second function

corresponds to vn
j,k+1/2.

We further assume following [11] that the quantities u∗ and v∗ obtained as
the solution of difference equation (35) for n = 0 have the form

u∗j+1/2,k = 1 − α ε · (−1)j+k; v∗j,k+1/2 = 1 + βε · (h2/h1) · (−1)j+k, (36)

where the real constants α and β are to be determined. Substituting formulas
(36) in (35), we have found with the aid of CAS Mathematica the following
expressions for α and β:

α =
s2 − 2(1 + s2)κ3
s2 + 2(1 + s2)κ3

, β =
1 − 2(1 + s2)κ4
1 + 2(1 + s2)κ4

, (37)

where s = h2/h1.
Now consider the case when n = 1 in (3). We can then implement the compu-

tations by three-level scheme (3) in order to find v∗. Let us specify the velocity
components u1 and v1 by the same formulas as u∗, v∗ in (36). Then we find from
(3) for n = 1:

u∗j+1/2,k = 1 − α2ε · (−1)j+k; v∗j,k+1/2 = 1 + β2ε · (h2/h1) · (−1)j+k. (38)

Formulas (37) and (38) imply the following positive property of the approxi-
mation of convective terms by the MAC method: it is insensitive to sawtooth
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perturbations of the form (33). In order for the oscillating part of the solution
(37), (38) to be damped, it it necessary that |α| < 1, |β| < 1. We first consider
the case when κ3 = κ4 = 0. Then α = β = 1, and there is no damping of
oscillations.

If κ3 > 0 and κ4 > 0 it is easy to be sure of the fact that 0 < |α| < 1,
0 < |β| < 1 for any κ1, κ2. That is there is the damping of oscillations (the
stability). This result agrees with the result obtained above within the framework
of the stability analysis by the Fourier method for the case of creeping flows when
u ≈ 0, v ≈ 0.

6 Verification of Stability Conditions

6.1 The Taylor–Green Vortex

The Taylor–Green vortex is one of few analytical solutions of the two-dimensional
Navier-Stokes equations. The solution, with ν = 1 and ρ = 1, is given by formu-
las [8]

u = −e−2t cosx sin y, v = e−2t sinx cos y, p = −e−4t(cos 2x+ cos 2y)/4. (39)

The flow is represented by periodic counter-rotating vortices that decay in time.
The computational domain is over π/2 ≤ x, y ≤ 5π/2, which corresponds to
homogeneous Dirichlet boundary conditions for the velocity component normal
to the boundary and homogeneous Neumann boundary condition for the ve-
locity component tangent to the boundary. The pressure boundary condition is
homogeneous Neumann everywhere.
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Fig. 5. The contours of u (a), v (b), and p (c) for n = 20 (t = 0.96157)

We have carried several computations of this test problem using formula (29)
for the time step τ . It turns out that this formula gives the τ values, which
are by factors from 2 to 6 higher than those obtained from formula (8). These
factors varied depending on the grid step sizes h1 and h2 and the number of
executed time steps, that is on the local values of the velocity components. The
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Fig. 6. The profile of u = u(x0, y), x0 = 3.45575 (≈ 1.1π); solid line is the exact
solution, dotted line is the numerical solution for n = 20 (t = 0.96157)

computation by the above described difference method nevertheless remained
stable when using (29) with safety factor θ = 0.5.

Since the amplitudes of the velocity components decay exponentially with time
in the given task, we present in Figures 5 and 6 the results for the case of using
formula (8) with Cconv = 0.5, Cdiff = 0 and the 30 × 30 grid to show that our
computer code works correctly also after executing several dozens of time steps.

6.2 Lid-Driven Cavity Problem

This problem is frequently used as a test of numerical methods for the incom-
pressible Navier-Stokes equations, although it has no known exact analytic so-
lution. In this problem the no-slip boundary conditions are imposed on the left,
bottom, and right walls of the cavity, and the x-component U0 of the velocity
is specified at the upper boundary (the moving “lid”). Let B be the horizontal
cavity size. Then the dimensional lengths are non-dimensionalized with respect
to B, and the Reynolds number Re has the form Re = U0Bρ/μ. The dimension-
less velocity component u = 1 at the lid. The pressure boundary condition is
homogeneous Neumann everywhere.

We have done numerous computations by the difference method of Section 2
for the purpose of elucidating the validity of formula (29) for the maximum time
step allowed by stability. We at first consider the case when the Reynolds number
Re = 1. It turns out that the computation remains stable even if the actual time
step exceeds the value given by (29) by a factor of three, that is θ = 3 in (32).
But, on the other hand, for θ > 1 the convergence to the stationary solution of
the lid-driven cavity problem slows down with increasing θ.

Another interesting fact revealed by our computations in the low Reynolds
number case is that the actual time step computed with the aid of (32) was by
factors from 33 to 58 higher than in the case of using the known empirical formula
(8), in which we specified the values Cconv = 0.5, Cdiff = 0. This result means
that in the case of numerical solution of more complex stationary flow problems
with low Reynolds numbers it is possible to have very significant savings in CPU
times (by a factor of up to 58).

And the final observation, which we have drawn from our numerical experi-
ments involving (29) is that it ensures the fastest convergence to the stationary
solution in the case of Re = 1 when the value on the right-hand side of (29) is
multiplied by a safety factor of about 0.6.
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Fig. 7. Streamlines in the lid-driven cavity problem: (a) Re = 1; (b) Re = 400

In the case of a higher Reynolds number, namely Re = 400, the computation
using (32) with θ = 1 proves to be unstable. In order to ensure the stability for
Re = 400, one must take the value θ < 0.1 in (32). But even in this case, the
actual “stable” time step exceeded the value given by (8) by a factor of about
five.

Although the computation using (32) may remain stable also for θ > 1, in the
case of large time steps one should ensure the needed accuracy of the results. For
this purpose, one can use the known test problems for which the exact analytic
solutions are available.

We show in Fig. 7 some numerical results obtained with the use of formula
(29), in which the right-hand side was multiplied by the safety factor θ = 0.6
in the case of Re = 1. One can verify that these two figures are very similar to
Figs. 4, (a) and (b) from [8]. Figure 7 was obtained on a mesh of 30 × 30 cells.
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Abstract. The boundary problem in cylindrical coordinates for the
Schrödinger equation describing a hydrogen-like atom in a strong homo-
geneous magnetic field is reduced to the problem for a set of the longitudi-
nal equations in the framework of the Kantorovich method. The effective
potentials of these equations are given by integrals over transversal vari-
able of a product of transverse basis functions depending on the longitudi-
nal variable as a parameter and their first derivatives with respect to the
parameter. A symbolic-numerical algorithm for evaluating the transverse
basis functions and corresponding eigenvalues which depend on the pa-
rameter, their derivatives with respect to the parameter and corresponded
effective potentials is presented. The efficiency and accuracy of the algo-
rithm and of the numerical scheme derived are confirmed by computations
of eigenenergies and eigenfunctions for the low-excited states of a hydro-
gen atom in the strong homogeneous magnetic field.

1 Introduction

To solve the problem of photoionization of low-lying excited states of a hydrogen
atom in a strong magnetic field [1,2] symbolic-numerical algorithms (SNA) and
the Finite Element Method (FEM) code have been elaborated [3,4,5,6]. Next
investigations are shown that to impose on boundary conditions for the scattering
problem in spherical coordinates (r, θ, ϕ), one needs to consider solution of this
problem in cylindrical coordinates (z, ρ, ϕ) and to construct an asymptotics of
solutions for both small and large values of the longitudinal variable [2,7].

With this end in view we consider a SNA for evaluating the transverse basis
functions and eigenvalues depending on a longitudinal parameter, |z|, for their
derivatives with respect to the |z| and for the effective potentials depended on
|z| of the 1-D problem for a set of second order differential equations in the
frame of the Kantorovich method (KM) [8]. For solving the above problems on
a grid of the longitudinal parameter, |z|, from a finite interval, we elaborate
the SNA to reduce a transverse eigenvalue problem for a second order ordinary

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 118–133, 2007.
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differential equation to algebraic one applied the FEM [9,10] or some expansions
of the solution over an appropriate basis such that corresponded integrals over
transversal variable will be calculated analytically [11,12]. A symbolic algorithm
for evaluating the asymptotic effective potentials with respect to the |z|, using a
series expansion in the Laguerre polynomials, is implemented in MAPLE and is
used to continue the calculated numerical values of effective potentials to large
values of |z|.

The main goal of this paper is to develop a symbolic algorithm for generation
of algebraic eigenvalue problem to calculate economically the transverse basis
on a grid points of finite interval of the longitudinal parameter, |z|, and its con-
tinuation from matching point to large |z|. The obtained asymptotic of effective
potentials at large values of the longitudinal variable are used as input file for an
auxiliary symbolic algorithm of evaluation in analytical form the asymptotics of
solutions of a set of the second order differential equations with respect to the
longitudinal variable, |z|, in the KM. The algorithms are explicitly presented and
implemented in MAPLE. The developed approach is applied to numerical calcu-
lation of effective potentials for the Schrödinger equation describing a hydrogen-
like atom in a strong magnetic field. A region of applicability versus a strength
of the magnetic field, efficiency and accuracy of the developed algorithms and
accompanying numerical schemes is confirmed by computation of eigenenergies
and eigenfunctions of a hydrogen atom in the strong homogeneous magnetic field.

The paper is organized as follows. In section 2 we briefly describe a reduction
of the 2D-eigenvalue problem to the 1D-eigenvalue problem for a set of the closed
longitudinal equations by means of the KM. In section 3 algorithm of generation
of an algebraic problem by means of the FEM. We examine the algorithm for
evaluating the transverse basis functions on a grid of the longitudinal parame-
ter from a finite interval. In section 4 the algorithm for asymptotic calculation
of matrix elements at large values of the longitudinal variable is presented. In
section 5 the auxiliary algorithm of evaluation the asymptotics of the longitude
solutions at large |z| in the KM. In section 6 the method is applied to calcu-
lating the low-lying states of a hydrogen atom in a strong magnetic field. The
convergence rate is explicitly demonstrated for typical examples. The obtained
results are compared with the known ones obtained in the spherical coordinates
to establish of an applicability range of the method. In section 7 the conclusions
are made, and the possible future applications of the method are discussed.

2 Statement of the Problem in Cylindrical Coordinates

The wave function Ψ̂(ρ, z, ϕ) = Ψ(ρ, z) exp(ımϕ)/
√

2π of a hydrogen atom in an
axially symmetric magnetic field B = (0, 0, B) in cylindrical coordinates (ρ, z, ϕ)
satisfies the 2D Schrödinger equation

− ∂2

∂z2
Ψ(ρ, z) + ÂcΨ(ρ, z) = εΨ(ρ, z), (1)

Âc = Â(0)
c − 2Z√

ρ2 + z2
, Â(0)

c = −1
ρ

∂

∂ρ
ρ
∂

∂ρ
+
m2

ρ2
+mγ +

γ2ρ2

4
,
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in the region Ωc: 0 < ρ < ∞ and −∞ < z < ∞. Here m = 0,±1, . . . is the
magnetic quantum number, γ = B/B0, B0

∼= 2.35 × 105 T is a dimensionless
parameter which determines the field strength B. We use the atomic units (a.u.)
h̄ = me = e = 1 and assume the mass of the nucleus to be infinite. In these
expressions ε = 2E, E is the energy (expressed in Rydbergs, 1Ry = (1/2) a.u.)
of the bound state |mσ〉 with fixed values of m and z-parity σ = ±1, and
Ψ(ρ, z) ≡ Ψmσ(ρ, z) = σΨmσ(ρ,−z) is the corresponding wave function. Bound-
ary conditions in each mσ subspace of the full Hilbert space have the form

lim
ρ→0

ρ
∂Ψ(ρ, z)
∂ρ

= 0, for m = 0, and Ψ(0, z) = 0, for m �= 0, (2)

lim
ρ→∞

Ψ(ρ, z) = 0. (3)

The wave function of the discrete spectrum obeys the asymptotic boundary
condition. Approximately this condition is replaced by the boundary condition
of the second and/or first type at small and large |z|, but finite |z| = zmax ) 1,

lim
z→0

∂Ψ(ρ, z)
∂z

= 0, σ = +1, Ψ(ρ, 0) = 0, σ = −1, (4)

lim
z→±∞

Ψ(ρ, z) = 0 → Ψ(ρ,±|zmax|) = 0. (5)

These functions satisfy the additional normalization condition
∫ zmax

−zmax

∫ ∞

0

|Ψ(ρ, z)|2ρdρdz = 2
∫ zmax

0

∫ ∞

0

|Ψ(ρ, z)|2ρdρdz = 1. (6)

2.1 Kantorovich Expansion

Consider a formal expansion of the partial solution ΨEmσ
i (ρ, z) of Eqs. (1)–

(3), corresponding to the eigenstate |mσi〉, expanded in the finite set of one-
dimensional basis functions {Φ̂m

j (ρ; z)}jmax
j=1

ΨEmσ
i (ρ, z) =

jmax∑

j=1

Φ̂m
j (ρ; z)χ̂(mσi)

j (E, z). (7)

In Eq. (7) the functions χ̂(i)(z)≡ χ̂(mσi)(E, z), (χ̂(i)(z))T =(χ̂(i)1 (z),. . . ,χ̂(i)jmax
(z))

are unknown, and the surface functions Φ̂(ρ; z) ≡ Φ̂
m

(ρ; z) = Φ̂
m

(ρ;−z),
(Φ̂(ρ; z))T = (Φ̂1(ρ; z), . . . , Φ̂jmax(ρ; z)) form an orthonormal basis for each value
of the variable z which is treated as a parameter.

In the KM the wave functions Φ̂j(ρ; z) and the potential curves Êj(z) (in Ry)
are determined as the solutions of the following eigenvalue problem

ÂcΦ̂j(ρ; z) = Êj(z)Φ̂j(ρ; z), (8)

with the boundary conditions

lim
ρ→0

ρ
∂Φ̂j(ρ; z)

∂ρ
= 0, for m = 0, and Φ̂j(0; z) = 0, for m �= 0, (9)

lim
ρ→∞

Φ̂j(ρ; z) = 0. (10)



A Symbolic-Numerical Algorithm for Solving the Eigenvalue Problem 121

Since the operator in the left-hand side of Eq. (8) is self-adjoint, its eigenfunctions
are orthonormal

〈
Φ̂i(ρ; z)

∣∣∣∣Φ̂j(ρ; z)
〉

ρ

=
∫ ∞

0

Φ̂i(ρ; z)Φ̂j(ρ; z)ρdρ = δij , (11)

where δij is the Kronecker symbol. Therefore we transform the solution of the
above problem into the solution of an eigenvalue problem for a set of jmax or-
dinary second-order differential equations that determines the energy ε and the
coefficients χ̂(i)(z) of the expansion (7)

(
−I

d2

dz2
+ Û(z) + Q̂(z)

d

dz
+
dQ̂(z)
dz

)
χ̂(i)(z) = εi Iχ̂(i)(z). (12)

Here I, Û(z) = Û(−z) and Q̂(z) = −Q̂(−z) are the jmax× jmax matrices whose
elements are expressed as

Ûij(z) =

(
Êi(z) + Êj(z)

2

)
δij + Ĥij(z), Iij = δij ,

Ĥij(z) = Ĥji(z) =
∫ ∞

0

∂Φ̂i(ρ; z)
∂z

∂Φ̂j(ρ; z)
∂z

ρdρ, (13)

Q̂ij(z) = −Q̂ji(z) = −
∫ ∞

0

Φ̂i(ρ; z)
∂Φ̂j(ρ; z)

∂z
ρdρ.

The discrete spectrum solutions obey the asymptotic boundary condition and
the orthonormality conditions

lim
z→0

(
d

dz
− Q̂(z)

)
χ̂(i)(z) = 0, σ = +1, χ̂(i)(0) = 0, σ = −1, (14)

lim
z→±∞

χ̂(i)(z) = 0 → χ̂(i)(±zmax) = 0, (15)
∫ zmax

−zmax

(
χ̂(i)(z)

)T

χ̂(j)(z)dz = 2
∫ zmax

0

(
χ̂(i)(z)

)T

χ̂(j)(z)dz = δij . (16)

3 Algorithm 1 of Generation of Parametric Algebraic
Problems by the Finite Element Method

To solve eigenvalue problem for equation (8) the boundary conditions (9), (10)
and the normalization condition (11) with respect to the space variable ρ on an
infinite interval are replaced with appropriate conditions (9), (11) and Φ̂(ρmax; z)
= 0 on a finite interval ρ ∈ [ρmin ≡ 0, ρmax].

We consider a discrete representation of solutions Φ̂(ρ; z) of the problem (8)
by means of the FEM on the grid, Ωp

h(ρ) = (ρ0=ρmin, ρj = ρj−1+hj , ρn̄ =ρmax),
in a finite sum in each z = zk of the grid Ωp

h(z)[zmin, zmax]:
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Φ̂(ρ; z) =
n̄p∑

μ=0

Φh
μ(z)Np

μ(ρ) =
n̄∑

r=0

p∑

j=1

Φh
r+p(j−1)(z)N

p
r+p(j−1)(ρ), (17)

where Np
μ(ρ) are local functions and Φh

μ(z) are node values of Φ̂(ρμ; z). The local
functions Np

μ(ρ) are piece-wise polynomial of the given order p equals one only
in the node ρμ and equals zero in all other nodes ρν �= ρμ of the grid Ωp

h(ρ), i.e.,
Np

ν (ρμ) = δνμ, μ, ν = 0, 1, . . . , n̄p. The coefficients Φν(z) are formally connected
with solution Φ̂(ρp

j,r; z) in a node ρν = ρp
j,r, r = 1, . . . , p, j = 0, . . . , n̄:

Φh
ν (z) = Φh

r+p(j−1)(z) ≈ Φ̂(ρp
j,r; z), ρp

j,r = ρj−1 +
hj

p
r.

The theoretical estimate for the H0 norm between the exact and numerical
solution has the order of

|Êh
m(z)− Êm(z)| ≤ c1|Êm(z)|h2p,

∥∥Φh
m(z) − Φm(z)

∥∥
0
≤ c2|Êm(z)|hp+1,

where h = max1<j<n̄ hj is maximum step of grid [9]. It has been shown that we
have a possibility to construct schemes with high order of accuracy comparable
with the computer one [14]. Let us consider the reduction of differential equations
(8) on the interval Δ : ρmin < ρ < ρmax with boundary conditions in points
ρmin and ρmax rewriting in the form

A(z)Φ̂(ρ; z) = Ê(z)B(z)Φ̂(ρ; z), (18)

where A and B are differential operators. Substituting expansion (17) to (18)
and integration with respect to ρ by parts in the interval Δ = ∪n̄

j=1Δj , we arrive
to a system of the linear algebraic equations

ap
μνΦ

h
μ(z) = Ê(z)bp

μνΦ
h
μ(z), (19)

in framework of the briefly described FEM. Using p-order Lagrange elements [9],
we present below an algorithm 1 for construction of algebraic problem (19) by
the FEM in the form of conventional pseudocode. It MAPLE realization allow
us show explicitly recalculation of indices μ, ν and test of correspondent modules
in FORTRAN code.

In order to solve the generalized eigenvalue problem (19), the subspace itera-
tion method [9,10] elaborated by Bathe [10] for the solution of large symmetric
banded matrix eigenvalue problems has been chosen. This method uses a sky-
line storage mode, which stores components of the matrix column vectors within
the banded region of the matrix, and is ideally suited for banded finite element
matrices. The procedure chooses a vector subspace of the full solution space and
iterates upon the successive solutions in the subspace (for details, see [10]). The
iterations continue until the desired set of solutions in the iteration subspace
converges to within the specified tolerance on the Rayleigh quotients for the
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eigenpairs. Generally, 10-16 iterations are required for the subspace iterations to
converge the subspace to within the prescribe tolerance. If matrix ap in Eq. (19)
is not positively defined, problem (19) is replaced by the following problem:

ãp Φh = Ěh bp Φh, ãp = ap − αbp. (20)

The number α (the shift of the energy spectrum) is chosen in such a way that
matrix ãp is positive. The eigenvector of problem (20) is the same, and Êh =
Ěh + α.

Algorithm 1

Input:
Δ = ∪n̄

j=1Δj = [ρmin, ρmax], is interval of changing of space variable ρ;
hj = ρj − ρj−1 is a grid step;
n̄ is a number of subintervals Δj = [ρj−1, ρj];
p is a order of finite elements;
A(z),B(z) are differential operators in Eq. (18);
Output:
Np

μ is a basis functions in (17);
ap

μν , bp
μν are matrix elements in system of algebraic equations (19);

Local:
ρp

j,r are nodes;
φp

j,r(ρ) are Lagrange elements;
μ, ν = 0, 1, . . . , n̄p ;

1: for j:=1 to n̄ do
for r:=0 to p do
ρp

j,r = ρj−1 + hj

p r
end for;

end for;
2: φp

j,r(ρ) =
∏

k �=r[(ρ− ρp
j,k)(ρp

j,r − ρp
j,k)−1]

3: Np
0 (ρ) := {φp

1,0(ρ), ρ ∈ Δ1; 0, ρ �∈ Δ1};
for j:=1 to n̄ do

for r:=1 to p− 1 do
Np

r+p(j−1)(ρ) := {φp
j,r(ρ), ρ ∈ Δj ; 0, ρ �∈ Δj , }

end for;
Np

jp(ρ) := {φp
j,p(ρ), ρ ∈ Δj ;φ

p
j+1,0(ρ), ρ ∈ Δj+1; 0, ρ �∈ Δj

⋃
Δj+1};

end for;
Np

n̄p(ρ) := {φp
n̄,p(ρ), ρ ∈ Δn̄; 0, ρ �∈ Δn̄};

4: for μ, ν:=0 to n̄p do
ap

μν :=
∫

Δ

Np
μ(ρ)A(z)Np

ν (ρ)ρdρ; bp
μν :=

∫

Δ

Np
μ(ρ)B(z)Np

ν (ρ)ρdρ;

end for;
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Remarks

1. For equation (8) matrix elements of the operator,

Âc = −1
ρ

∂

∂ρ
ρ
∂

∂ρ
+ V (ρ; z), V (ρ; z) = − 2Z√

ρ2 + z2
+
m2

ρ2
+mγ +

γ2ρ2

4
,

between local functions Nμ and Nν defined in same interval Δj calculated by
formula

(a(zk))q+p(j−1),r+p(j−1) =
+1∫
−1

{
4
h2

j
(φp

j,q)
′(φp

j,r)
′ + V (ρ; zk)φp

j,qφ
p
j,r

}
hj

2 ρdη,

(b(zk))q+p(j−1),r+p(j−1) =
+1∫
−1

φp
j,qφ

p
j,r

hj

2 ρdη.

2. If integrals do not calculated analytically, for example, like in [11,12], then
they have been calculated by numerical methods [9], by means of the Gauss
quadrature formulae of the order p+ 1.

3. For calculations matrix elements (19) and the corresponded derivatives of
eigenfunctions by z we used algorithm described in [3]. Starting from matching
point zm < zmax of the grid Ωp

h(z)[zmin, zmax] the calculation has been performed
using an asymptotic expansion from next section (zm ∼ 20, zmax ∼ 100).

4. The problem (8)–(10) has been solved using a grid Ωp
h(ρ)[ρmin, ρmax] =

0(500)4(500)30 (the number in parentheses denotes the number of finite elements
of order p = 4 in each interval). As an example, at m = −1 and γ = 10
the calculated the potential curves Êj(z), effective potentials Q̂ij(z), Ĥij(z) are
shown in Fig. 1.

4 Algorithm 2 of Evaluation the Asymptotics of Effective
Potentials at Large |z| in Kantorovich Method

Step 1. In (8) apply the transformation to a scaled variable x

x =
γρ2

2
, ρ =

√
x√
γ/2

, (21)

and put λ = Êj(z)/(2γ) = λ(0)+m/2−Z/(γ|z|)+ δλ. Eigenvalue problem reads
⎛

⎝− ∂

∂x
x
∂

∂x
+
m2

4x
+
x

4
+
m

2
− Z

γ
√

2x
γ + z2

− λ

⎞

⎠ Φ̂j(x; z) = 0, (22)

with a normalization condition

1
γ

∫ ∞

0

Φ̂j(x; z)2dx = 1. (23)
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Fig. 1. The behaviour of potential curves Êj(z), effective potentials Q̂ij(z) and Ĥij(z)
for γ = 10, m = −1

At Z = 0 Eq. (22) takes the form

L(n)Φ(0)
nm(x) = 0, L(n) = − ∂

∂x
x
∂

∂x
+
m2

4x
+
x

4
− λ(0), (24)

and has the regular and bounded solutions at

λ(0) = n+ (|m| + 1)/2, (25)

where transverse quantum number n ≡ Nρ = j − 1 = 0, 1, . . . determines the
number of nodes of the solution Φ(0)

nm(x) with respect to the variable x. Normal-
ized solutions of Eq. (24), take the form

Φ(0)
nm(x) = Cn|m|e

−x
2 x

|m|
2 L|m|

n (x), Cn|m| =
[
γ

n!
(n+ |m|)!

] 1
2

, (26)

1
γ

∫ ∞

0

Φ(0)
nm(x)Φ(0)

n′m(x)dx = δnn′ , (27)

where L|m|
n (x) are Laguerre polynomials [13].

Step 2. Substituting notation δλ = λ − λ(0) −m/2 + Z/(γ|z|) ≡ Êj(z)/(2γ)−
(n+ (m+ |m| + 1)/2) + Z/(γ|z|), and decomposition
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Z

γ|z| −
Z

γ
√

2x
γ + z2

=
jmax∑

k=1

V (k)

|z|k ,

V (k) =

{
−(−1)k′ (2k′−1)!!

k′ !
Zxk′

γk′+1 , k = 2k′ + 1, k′ = 1, 2, . . . ,
0, otherwise,

to Eq. (22) at Z �= 0, transform it in the following form

L(n)Φ̂j(x; z) +

(
jmax∑

k=1

V (k)

|z|k − δλ

)
Φ̂j(x; z) = 0. (28)

Step 3. Solution of equation (28) is found in the form of the perturbation series
by inverse powers of |z|

δλ =
kmax∑

k=0

|z|−kλ(k), Φj(x; z) =
kmax∑

k=0

|z|−kΦ(k)
n (x). (29)

Equating coefficients at the same powers of |z|, we arrive to the system of inho-
mogeneous differential equations with respect to corrections λ(k) and Φ(k)

L(n)Φ(0)(x) = 0 ≡ f (0),

L(n)Φ(k)(x) =
k−1∑

p=0

(λ(k−p) − V (k−p))Φ(p)(x) ≡ f (k), k ≥ 1. (30)

For solving the Eqs. (28) the unnormalized orthogonal basis

Φn+s(x) = Cn|m|e
−x

2 x
|m|
2 L

|m|
n+s(x) = Cn|m|C

−1
n+s|m|Φ

(0)
n+s,m(x), (31)

〈s|s′〉 =
∫ ∞

0

Φn+s(x)Φn+s′ (x)dx = δss′γ
n!

(n+ |m|)!
(n+ s+ |m|)!

(n+ s)!
,

has been applied. The operators L(n) and x on the functions Φn+s(x) are defined
by the relations without fractional powers of quantum numbers n and m

L(n)Φn+s(x) = sΦn+s(x), (32)
xΦn+s(x) = −(n+ s+ |m|)Φn+s−1(x) + (2(n+ s) + |m|+ 1)Φn+s(x)

−(n+ s+ 1)Φn+s+1(x).

Step 4. Applying relations (32), the right-hand side f (k) and solutions Φ(k)(x)
of the system (30) are expanded over basis states Φn+s(x)

Φ(k)
n (x) =

k∑

s=−k

b(k)s Φn+s(x), f (k) =
k∑

s=−k

f (k)s Φn+s(x). (33)

Then a recurrent set of linear algebraic equations for unknown coefficients b(k)s

and corrections λ(k) is obtained
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sb(k)s − f (k)s = 0, s = −k, . . . , k.

that is solved sequentially for k = 1, 2, . . . , kmax:

f
(k)
0 = 0 → λ(k); b(k)s = f (k)s /s, s = −k, . . . , k, s �= 0.

The initial conditions (25) and b
(0)
s = δs0 are followed from (24) and (27).

Step 5. To obtain the normalized wave function Φ̂j(x; z) up to the k-th order,
the coefficient b(k)0 are defined by the following relation:

b
(k)
0 = − 1

2γ

k−1∑

p=1

k−p∑

s′=p−k

p∑

s=−p

b(k−p)
s 〈s|s′〉b(p)s′ , b

(k=1,...,5)
0 = 0.

As an example of output file at steps 1–5, we display nonzero coefficients λ(k),
b
(k)
s of the inverse power series (29), (33) up to O(|z|−5):

λ(0) = n+ (|m| + 1)/2, λ(3) = Z(2n+ |m| + 1)/γ2,

b
(0)
0 = 1, b

(3)
−1 = −Z(n+ |m|)/γ2, b

(3)
1 = Z(n+ 1)/γ2. (34)

Step 6. In scaled variable x the relations of effective potentials Ĥij(z) = Ĥji(z)
and Q̂ij(z) = −Q̂ji(z) takes form

Ĥij(z)=
1
γ

∞∫

0

dx
∂Φ̂i(x; z)

∂z

∂̂Φj(x; z)
∂z

, Q̂ij(z)=− 1
γ

∞∫

0

dxΦ̂i(x; z)
∂Φ̂j(x; z)

∂z
. (35)

For their evaluation the decomposition of solution Eqs. (24) over the normalized
orthogonal basis Φ(0)

n+s with the normalized coefficients b(k)n;n+s,

Φ(k)
n (x) =

k∑

s=−k

b
(k)
n;n+sΦ

(0)
n+s, (36)

has been applied. The normalized coefficients b(k)n;n+s are calculated via b(k)s ,

b
(k)
n;n+s = b(k)s

√
n!

(n+ |m|)!
(n+ s+ |m|)!

(n+ s)!
(37)

as follows from (33), (36) and (31).

Step 7. In a result of substitution (29), (36) in (35), matrix elements takes form

Q̂jj+t(z) = −
kmax−1∑

k=0

|z|−k−1
k∑

k′=0

min(k,k−k′−t)∑

s=max(−k,k′−k−t)

(k − k′)b(k
′)

n;n+sb
(k−k′)
n+t;n+s,

Ĥjj+t(z) =
kmax−2∑

k=0

|z|−k−2
k∑

k′=0

min(k,k−k′−t)∑

s=max(−k,k′−k−t)

k′(k − k′)b(k
′)

n;n+sb
(k−k′)
n+t;n+s. (38)
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Collecting of coefficients of (38) at equal powers of |z|, algorithm leads to final
expansions of eigenvalues and effective potentials of output file

Êj(z) =
kmax∑

k=0

|z|−kE
(k)
j , Ĥij(z) =

kmax∑

k=8

|z|−kH
(k)
ij , Q̂ij(z) =

kmax∑

k=4

|z|−kQ
(k)
ij . (39)

The successful run of the above algorithm was occurs up to kmax = 16 (Run
time is 95s on Intel Pentuim IV, 2.40 GHz, 512 MB). The some first nonzero
coefficients takes form (j = n+ 1)

E
(0)
j = 2γ(n+ (m+ |m|+ 1)/2),

E
(1)
j = −2Z,

E
(3)
j = 2Z(2n+ |m|+ 1)/γ,

E
(5)
j = −3Z(2 + 3|m|+ 6n2 + |m|2 + 6n|m|+ 6n)/γ2,

E
(6)
j = −2Z2(2n+ |m| + 1)/γ3,

Q
(4)
jj+1 = 3Z

√
n+1

√
n+|m|+1/γ2,

Q
(6)
jj+1 = −15Z

√
n+1

√
n+|m|+1(2n+ |m|+ 2)/γ3,

Q
(6)
jj+2 = 15Z

√
n+1

√
n+2

√
n+|m|+1

√
n+|m|+2/(4γ3),

H
(8)
jj = 9Z2(2n2 + 2n|m|+ 2n+ |m|+ 1)/γ4,

H
(10)
jj = −90Z2(2n+ |m|+ 1)(2n2 + 2n|m|+ 2n+ |m| + 2)/γ5,

H
(10)
jj+1 = 45Z2

√
n+1

√
n+|m|+1(n2 + n|m| + 2n+ |m|+ 2)/(2γ5),

H
(8)
jj+2 = −9Z2

√
n+1

√
n+2

√
n+|m|+1

√
n+|m|+2/γ4,

H
(10)
jj+2 = 90Z2

√
n+1

√
n+2

√
n+|m|+1

√
n+|m|+2(2n+ |m|+ 3)/γ5,

H
(10)
jj+3 = −45Z2

√
n+1

√
n+2

√
n+3

√
n+|m|+1

√
n+|m|+2

√
n+|m|+3/(2γ5).

As an example, in Table 1 we show true convergence of partial sums of asymp-
totic expansions (39) of effective potentials Q̂ij(z) to the corresponding numer-
ical values calculated by algorithm 1, described in section 3.

5 Algorithm 3 of Evaluation the Asymptotics of Solutions
at Large |z| in Kantorovich Method

Step 1. We write the set of differential equations (12) at fixed values m, and ε in
the explicit form for χjio (z) ≡ χ̂

(io)
j (z) and j = 1, 2, . . . , jmax, io = 1, 2, . . . , No

−d
2χjio (z)
dz2

− 2Z
|z| χjio (z) −

(
ε− Êj(z)−

2Z
|z|

)
χjio (z) + Ĥjj(z)χjio (z)

=
jmax∑

j′=1,j′ �=j

(
−Q̂jj′(z)

d

dz
− Ĥjj′ (z) − dQ̂jj′ (z)

dz

)
χj′io(z), (40)
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Table 1. Values of the partial sums (39) depending on kmax for m = −1, Z = 1,
z = 10, γ = 10. The last row contains the corresponding numerical values (n.v.).

i, j Q̂12, 10
−6 Q̂23, 10

−6 Q̂34, 10
−5 Q̂13, 10

−8 Q̂24, 10
−8 Q̂14, 10

−11

z −4Q
( 4)
ij 4.24264069 7.34846923 1.03923048 0 0 0

+z −6Q
( 6)
ij 4.17900108 7.16475750 1.00285742 1.29903811 3.18198052 0

+z −7Q
( 7)
ij 4.17883137 7.16446356 1.00281585 1.29903811 3.18198052 0

+z −8Q
( 8)
ij 4.17972233 7.16857870 1.00394341 1.26266504 3.04833733 7.0000

+z −9Q
( 9)
ij 4.17972824 7.16859579 1.00394680 1.26260268 3.04818460 7.0000

+z−10Q
(10)
ij 4.17971489 7.16850321 1.00391243 1.26342108 3.05252800 6.6850

+z−11Q
(11)
ij 4.17971474 7.16850253 1.00391224 1.26342451 3.05254060 6.6846

+z−12Q
(12)
ij 4.17971496 7.16850469 1.00391330 1.26340651 3.05240830 6.6950

+z−13Q
(13)
ij 4.17971496 7.16850471 1.00391331 1.26340638 3.05240762 6.6950

+z−14Q
(14)
ij 4.17971496 7.16850466 1.00391328 1.26340679 3.05241163 6.6947

+z−15Q
(15)
ij 4.17971496 7.16850466 1.00391327 1.26340679 3.05241166 6.6947

+z−16Q
(16)
ij 4.17971496 7.16850466 1.00391328 1.26340678 3.05241154 6.6947

(n.v.) 4.17971496 7.16850466 1.00391328 1.26340678 3.05241154 6.6947

where matrix elements Q̂jj′ (z) and Ĥjj′ (z) have of the form (39).
Note, that at large z, E(2)

i =H
(2)
ii =0, i.e., the centrifugal terms are eliminated

and the longitudinal solution has the asymptotic form corresponding to zero
angular momentum solutions, or to the one-dimensional problem on a semi-axis:

χjio (z) =
exp(w(z))

√
pio

φjio (z), φjio (z) =
kmax∑

k=0

φ
(k)
jio

|z|−k, (41)

where w(z) = ıpio |z|+ ıζ ln(2pio |z|)+ ıδio, pio is the momentum in the channel, ζ
is the characteristic parameter, and δio is the phase shift. The components φ(k)jio

satisfy the system of ordinary differential equations

(p2io
− 2E + E

(0)
j )φ(k)jio

= f
(k)
jio

(φ(k
′=0,...,k−1)

j′io
, pio)

≡ −2(ζpio + ı(k − 1)pio − Z)φ(k−1)
jio

− (ζ + ı(k − 2))(ζ + ı(k − 1))φ(k−2)
jio

−
k∑

k′=3

(E(k′)
j +H

(k′)
jj )φ(k−k′)

jio
+

jmax∑

j′=1

k∑

k′=4

(−2ıQ(k′)
jj′ pio −H

(k′)
jj′ )φ(k−k′)

j′io

+
jmax∑

j′=1

k∑

k′=5

(2k − 1 − k′ − 2ıζ)Q(k′−1)
jj′ φ

(k−k′)
j′io

,

k = 0, 1, . . . , kmax, φ
(−1)
jio

≡ 0, φ
(−2)
jio

≡ 0, kmax ≤ jmax − io. (42)

Here index of summation, j′, takes integer values, except io and j, (j′ = 1, . . . ,
jmax, j′ �= io, j′ �= j).
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Step 2. From first two equations (k = 0, 1) of set (42) we have the leading
terms of eigenfunction φ

(0)
jio

, eigenvalue p2io
and characteristic parameter ζ, i.e

initial data for solving recurrence sequence,

φ
(0)
jio

= δjio , p2io
= 2E − E

(0)
io

→ pio =
√

2E − E
(0)
io
, ζ = Z/pio . (43)

Open channels have p2io
≥ 0, and close channels have p2io

< 0. Lets there are
No ≤ jmax open channels, i.e., p2io

≥ 0 for io = 1, . . .No and p2io
< 0 for io =

No + 1, . . . jmax.

Step 3. Substituting (43) in (42), we obtain the following recurrent set of alge-
braic equations for the unknown coefficients φjio (z) for k = 1, 2, . . . , kmax:

(E(0)
io

− E
(0)
j )φ(k)jio

= f
(k)
jio

(φ(k
′=0,...,k−1)

j′io
, pio) (44)

that is solved sequentially for k = 1, 2, . . . , kmax:

φ
(k)
jio

= f
(k)
jio

(φ(k
′=0,...,k−1)

j′io
, pio)/(E

(0)
io

−E(0)
j ), j �= io,

f
(k+1)
ioio

(φ(k
′=0,...,k)

j′io
, pio) = 0 → φ

(k)
ioio

. (45)

The successful run of the above algorithm was occurs up to kmax = 16 (Run
time is 167s on Intel Pentuim IV, 2.40 GHz, 512 MB). The some first nonzero
coefficients takes form (j = n+ 1)

φ
(0)
jio

= δjio ,

φ
(1)
jio

= δjio ıZ(Z+ıpio)/(2p
3
io

),

φ
(2)
jio

= δjio [ıE(3)
j /(4pio)−Z(Z+ıpio)

2(Z+2ıpio)/(8p
6
io

)],

φ
(3)
jio

= δjio [−E(3)
j (3Z2+7ıpioZ−6p2io

)/(24p4io
)

−ıZ(Z+ıpio)
2(Z+2ıpio)

2(Z+3ıpio)/(48p9io
)],

φ
(4)
jio

= δjio [ıE(5)
j /(8pio)−(E(3)

j )2/(32p2io
)

−ıE(3)
j (3Z4+20ıpioZ

3−53p2io
Z2−66ıp3io

Z+36p4io
))/(96p7io

)

+Z(Z+ıpio)
2(Z+2ıpio)

2(Z+3ıpio)
2(Z+4ıpio)/(384p12io

)]

+2ıpioQ
(4)
jio
/(E(0)

io
−E(0)

j ).

Remarks

1. Expansion (41) holds true for |zm|)max(Z2/(2p3io
), 2Z(2io+|m|−1)/(8γp2io

)).
The choice of a new value of zmax for the constructed expansions of the linearly
independent solutions for pio > 0 is controlled by the fulfillment of the Wronskian
condition with a long derivative Dz ≡ Id/dz −Q(z)

Wr(Q(z); χ∗(z),χ(z)) = (χ∗(z))T Dzχ(z)− (Dzχ
∗(z))T χ(z) = 2ıIoo

up to the prescribed accuracy. Here Ioo is the No-by-No identity matrix.
2. This algorithm can be applied also for evaluation asymptotics of solutions

in closed channels pio = ıκio , κio > 0.
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Table 2. Convergence of the method for the binding energy E = γ/2 − E (in a.u.) of
even wave functions m = −1, γ = 10 and γ = 5 versus the number jmax of coupled
equations (40)

jmax 2p−1 (γ = 10) 3p−1 (γ = 10) 2p−1 (γ = 5) 3p−1 (γ = 5)
1 1.123 532 554 (3) 0.182 190 992 (2) 0.857 495 336 (9) 0.165 082 403 (4)
2 1.125 069 513 (1) 0.182 282 868 (7) 0.859 374 058 (2) 0.165 234 428 (1)
3 1.125 280 781 (8) 0.182 294 472 (5) 0.859 641 357 (6) 0.165 253 152 (9)
4 1.125 343 075 (2) 0.182 297 825 (6) 0.859 721 942 (4) 0.165 258 606 (4)
6 1.125 381 347 (9) 0.182 299 867 (7) 0.859 772 441 (3) 0.165 261 973 (6)
8 1.125 392 776 (1) 0.182 300 474 (6) 0.859 787 833 (7) 0.165 262 991 (9)
10 1.125 397 502 (9) 0.182 300 725 (2) 0.859 794 289 (0) 0.165 263 418 (0)
12 1.125 399 854 (7) 0.182 300 849 (8) 0.859 797 533 (8) 0.165 263 631 (9)

[6] 1.125 422 341 (8) 0.182 301 494 (7) 0.859 832 622 (6) 0.165 264 273 (1)

6 Applications Algorithms for Solving the Eigenvalue
Problem

The efficiency and accuracy of the elaborated SNA and of the corresponded
numerical scheme derived are confirmed by computations of eigenenergies and
eigenfunctions for the low-excited states of a hydrogen atom in the strong ho-
mogeneous magnetic field. These algorithms are used to generate an input file of
effective potentials in the Gaussian points z = zk of the FEM grid Ωp

h(z)[zmin =
0, zmax] and asymptotic of solutions of a set of longitudinal equations (12)–(16)
for the KANTBP code [5]. In Table 2 we show convergence of the method for
the binding energy E = γ/2−E (in a.u.) of the even wave functions at m = −1,
γ = 10 and γ = 5 versus the number jmax of coupled equations (40). The cal-
culations was performed on a grid Ωp

h(z) = {0(200)2(600)150} (the number in
parentheses denotes the number of finite elements of order p = 4 in each interval).
Comparison with corresponding calculations given in spherical coordinates from
[1,6] is shown that elaborated method in cylindrical coordinates is applicable for
strength magnetic field γ > 5 and magnetic numberm of order of ∼ 10. The main
goal of the method consists in the fact that for states having preferably a cylin-
drical symmetry a convergence rate is increased at fixed m with growing values of
γ ) 1 or the high-|m| Rydberg states at |m| > 150 in laboratory magnetic fields
B = 6.10T (γ = 2.595·10−5 a.u.), such that several equations are provide a given
accuracy [7].

7 Conclusion

A new effective method of calculating wave functions of a hydrogen atom in
a strong magnetic field is developed. The method is based on the Kantorovich
approach to parametric eigenvalue problems in cylindrical coordinates. The rate
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of convergence is examined numerically and illustrated by a set of typical exam-
ples. The results are in a good agreement with calculations executed in spherical
coordinates at fixed m for γ > 5. The elaborated SNA for calculating effective
potentials and asymptotic solutions allows us to generate effective approxima-
tions for a finite set of longitudinal equations describing an open channel. The
developed approach yields a useful tool for calculation of threshold phenomena
in formation and ionization of (anti)hydrogen like atoms and ions in magnetic
traps [2,7] and channeling of ions in thin films [15].

This work was partly supported by the Russian Foundation for Basic Re-
search (grant No. 07-01-00660) and by Grant I-1402/2004-2007 of the Bulgarian
Foundation for Scientific Investigations.
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An Algorithm for Construction of Normal Forms
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Abstract. The normal form method is widely used in the theory of
nonlinear ordinary differential equations (ODEs). But in practice it is
impossible to evaluate the corresponding transformations without com-
puter algebra packages. Here we describe an algorithm for normalization
of nonlinear autonomous ODEs. Some implementations of these algo-
rithms are also discussed.

Keywords: resonant normal form, nonlinear ordinary differential equa-
tions, computer algebra.

1 Introduction

The normal form method is based on a transformation of an ODEs system to a
simpler set called the normal form. The importance of this method for analyzing
the ODEs near stationary point has been recognized for a long time. A resonant
normal form was introduced in the fundamental paper of H. Poincaré [1], where
he considered the linear case of the form. A polynomial case of this form was
discussed by H. Dulac [2] and the infinite case by A.D. Bruno [3]. We will call
the resonant form of this kind by the Poincaré–Dulac–Bruno (PDB) normal
form. For the history of this subject see, for instance, [4]. Definitions of normal
form and normalizing transformation can be formulated in different ways for
some special cases, such as Hamiltonian systems but we restrict ourselves in this
consideration by the general case only.

Since the system MAO [5] by which the Delaney’s theory of the Moon motion
was checked many algorithms (and their implementations) were developed for
creating normal forms and corresponding transformations.

In this paper we will use the algorithm based on the approach, which was
developed by A.D. Bruno [6,7,8,9] for the PDB normal form. The important ad-
vantage of this approach is a possibility of considering a wide class of autonomous
systems in a single, easily algorithmized frame.

Another advantage of the used approach is an algorithmic simplicity of the
creation of that normal form and the corresponding transformations. We have a
direct recurrence formula for this procedure. The usage does not demand keeping
� This research was supported by grant of President RF Sc.Sch. - 4476.06.02.

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 134–142, 2007.
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of some large intermediate results as it is in other algorithms. The approach is
free from a necessity to solve intermediate systems of equations and from any
restrictions on low resonance cases.

The discussed implementation was originally described in [10,11] for the RE-
DUCE system and in [12] for the MATHEMATICA system. Unfortunately the
implementation was not presented in detail there, so this paper closes this gap.
About other implementations see, for example, [13,14].

A normal form usage, in particular, provides a constructive way for obtaining
the approximations of local families of periodic and conditionally periodic solu-
tions in the form of power/Fourier series for real families and in the form of power
series in time dependent exponents for complex ones. It is especially important
that the problem of convergence of used transformations was considered in [6,7].
This circumstance allows us to hope that approximations of frequencies and cor-
responding periodic solutions families near stationary points by finite formulas
can be done with acceptable precision [15] – [20]. Except solutions themselves we
can find also approximations of initial conditions, which initiate such periodic
solutions. I.e., we can produce some elements of a phase analysis.

It is also possible to approximate by the proposed method the non-periodic
families of solutions (”crude” case). The results are close to the results of the
Carleman linearization method. For periodic and conditionally periodic cases,
the method [21] is a generalization of the Poincare–Lindstedt approach [22],
chapter 10. The approach was also used in the center-focus problem [23].

The normal form method is widely used for bifurcation analysis. About meth-
ods of such an investigation see, for example, [24,25]. You can see in these
books that the numerical bifurcation analysis is indeed based on the normal
form method. We can make from the lowest not vanishing coefficients of the
normal form the qualitative conclusions about the behavior of the original sys-
tem. It is sufficient to know only the lowest orders of the normal form for such
an analysis. Sometimes this job can be done by hand, but rather by computer
algebra systems [26,27,17].

By the normal form method it is possible to study the structure of the normal
form and the first integrals. By an example of the Euler–Poisson system of
equations describing the motion of a rigid body with a fixed point it was shown
that there is a sequence of necessary conditions of existence of an additional
formal first integral at different values of the parameter. Violation of any of
these conditions is enough for absence of a formal integrability of the system,
and so a local, and thus a global integrability [28,29,30,31].

Below we describe the creation of the resonant normal form and corresponding
transformations.

2 Problem Formulation

Consider the system of autonomous ordinary differential equations:

ẋ = Φ(x) , (1)
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where x = (x1, . . . , xn) is a vector function of time, ẋ def= dx/dt is the time
derivative, Φ = (Φ1, . . . , Φn) is a vector which is a function of x and probably of
some parameters. Such a type of equations originates from many scientific and
engineering problems where oscillations, vibrations or wave processes take place.
The main idea here is in replacing system (1) with some “model” system having
finite order polynomial right-hand sides and transforming them to the canonical
(normal) form.

The study of systems of type (1) in the neighborhood of stationary point x0,
where Φ(x0) = 0, typically includes three preliminary steps. Firstly x is shifted
by −x0 so that Φ(0) = 0, i.e. 0 is the stationary point to be studied. Each
stationary point of the system is considered separately.

The second step is a reduction of the system to a model form where the vector
Φ(x) is approximated by a vector of polynomials. If in some neighborhood of
the stationary point Φ is an analytic function of x then its power series can be
used to obtain a smooth approximation with desired precision. Often this step is
made simultaneously with a reduction of the system to its central manifold. In
any case, the right-hand sides of the model system will be polynomials without
constant terms.

The third step is the transformation of the linear parts matrix to Jordan’s
form by a complex linear change of x variables.

After these steps, system (1) has the form:

ẏi = λiyi + σiyi−1 + Φ̃i (y) , σ1 = 0 , i = 1, . . . , n , (2)

where Λ = (λ1, . . . , λn) is the vector of eigenvalues of the matrix of the linear
part of the system and Φ̃ = (Φ̃1, . . . , Φ̃n) is a vector of polynomials of finite
degree without constant and linear terms.

For this paper, we assume that system (2) satisfies the following assumptions:

• the system is autonomous and has polynomial nonlinearities;
• 0 is a stationary point, and the system will be studied near y = 0;
• the linear part of the right hand side is diagonal, and not all eigenvalues are

zero, i.e. Λ �= 0.

Remark that the last assumption is a restriction of a current implementation
rather the approach itself. But on the other hand it is assumed that neither the
system is Hamiltonian, nor that it preserves the phase volume nor that it has
any internal symmetry.

3 The Normal Form Method

Equations (2) can be written in the form:

ẏi = λiyi + yi

∑

q∈Ni

fi,qyq, i = 1, . . . , n , (3)
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where we use the multi-index notation:

yq =
n∏

j=1

yj
qj ,

with the power exponent vector q = (q1, . . . , qn)
and the sets:

Ni = {q ∈ Z
n

: qi ≥ −1 and qj ≥ 0 , if j �= i , j = 1, . . . , n} ,

because the factor yi has been moved out of the sum in (3).
The normalization is done with a near-identity transformation:

yi = zi + zi

∑

q∈Ni

hi,qzq, i = 1, . . . , n (4)

and then we will have system (3) in the normal form:

żi = ψi(z)
def= λizi + zi

∑

〈q,Λ〉 = 0
q ∈ Ni

gi,qzq, i = 1, . . . , n . (5)

The important difference between (3) and (5) is a restriction on the range of
the summation, which is defined by the equation:

〈q,Λ〉 def=
n∑

j=1

qjλj = 0 . (6)

The h and g coefficients in (4) and (5) are found by using the recurrence formula:

gi,q + 〈q,Λ〉 · hi,q = −
n∑

j=1

∑

p + r = q
p, r ∈

⋃
i Ni

q ∈ Ni

(pj + δij) · hi,p · gj,r + Φ̃i,q , (7)

where the second summation on the right-hand side is over all integer vectors
satisfying the constraint p + r = q, and Φ̃i,q is a coefficient of the factor zizq

in the polynomial Φ̃i in (2), arguments of which have been transformed by (4).
Here ||p|| and ||r|| < ||q||, where ||q|| def= q1 + . . . + qn. So (7) is a recurrence
formula.

The ambiguity in (7) is usually fixed by the conventions:

hi,q = 0, if 〈q,Λ〉 = 0,
gi,q = 0, if 〈q,Λ〉 �= 0,

(8)

and then the normalizing transformation is called a “basic” one.
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4 Main Algorithm

The algorithm of the calculation of g and h in (4), (5) is based on (7) and (8). It
is convenient to choose the representation of sets of coefficients gi,q and hi,q in
such a way that they would be combined in homogeneous subgroups where each
subgroup has the same order n, i.e. contains only terms with such vector-indexes
q = {qj} that ||q|| = n for each i. You can calculate the sets g and h of the next
order by using sets of g and h with smaller order only, i.e. (7) is a recurrence
formula.

The algorithm:
Let n be a dimension of the system. For its normalization till order m we are to
do:

(i). for i = 1, 2, . . . , n do:
Calculate all squared in y elements in the right-hand side nonlinearity Φ̃i(y)
in (2), i.e., calculate the subgroup of the first-order (||q|| = 1) elements of
the set fi,q in (3) and sort it into two subsets depending on the value of
scalar product (6). The first set where this product is zero will be the first
order subgroup of gi, and the second set after a division by the value of the
corresponding scalar product will be the first order subgroup of hi

(ii). for k = 2, 3, . . . ,m do:
(a) for i = 1, 2, . . . , n do:

calculate the subgroup of order k of the nonlinear terms Φ̃i(y) in (2) for
which the substitution y is evaluated by (4) till order k − 1 and define
coefficients at monomials zizq as fi,q;

(b) for i = 1, 2, . . . , n do:
Calculate the subgroups of gi and hi of order k by a subdivision of set
fi,q into two subsets as in step (i). After that you can supplement the
set gi till full order k and a part of the set hi without a contribution
from the first term of the right-hand side in (7).

(c) for i = 1, 2, . . . , n do:
for j = 1, 2, . . . , n do:
supplement the preliminary set of order k of hi with properly sorted
multiplications of all elements of such subgroups of hi,p and gj,r that
their total order, i.e. ||p + r|| = k. Not all these multiplications should
be really calculated because of the factor (pj +δi,j) is zero at some values
of j index. Before the supplement all elements above are to be divided
on the corresponding scalar products too.

A cost of the above algorithm is low in comparison with a cost of evaluation of
the right-hand side of the nonlinear system. Under such circumstances it is very
important to calculate the right-hand sides very economically, using so much as
possible the fact that we need to calculate at each step of (ii) the homogeneous
terms of Φ̃i of order k only, and all terms of lower orders are not changed during
the later operations. The problem of optimization of this evaluation is one of the
main limitations for an automation of generating codes for the right-hand side
calculation.
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5 Computer Algebra Implementation of the Normal
Form Method

The calculation of the coefficients of the normal form (5) and corresponding
transformation (4) with respect to (7) and (8) was implemented as the NORT
package. Earlier attempts of the author to compute sufficiently high orders of
the normal form using high level of the REDUCE language were not successful.
Because of this, the NORT package [10,11,15] was created. The NORT is written
in Standard LISP and contains about 2000 operators. The NORT is a package
of procedures to treat truncated multivariate formal power series in arbitrary di-
mensions. In addition to procedures for arithmetic operations with series, there
are special procedures for the creation of normal forms and procedures for sub-
stitutions, for calculations of some elementary functions (when it is possible),
for differentiating, for printing, and for inverting multivariate power series, etc.
It contains also special procedures for the calculation of Lyapunov’s values [23].
The NORT can be used as a separate program or as a REDUCE package.

Besides series, expressions in NORT can contain also non-negligible
variables (parameters). There is implemented multivariate series-polynomial
arithmetic. The complex-valued numerical coefficients of the truncated power
series-polynomials may be treated in three different arithmetics: rational, mod-
ular, floating point, and approximate rational. There are also several options
for the output form of these numbers, the output is in a REDUCE readable
form. The program uses an internal recurrence representation for its objects.
Remark that a garbage collection time for examples below was smaller than 3
% of evaluation time. This can characterize the NORT package as a program
with a good enough internal organization. Many important results described in
references were obtained by a computer with 1 Mbyte RAM only.

Unfortunately at this moment the NORT package has no friendly user inter-
face yet. So we create a package for usage with MATHEMATICA package [12].
This package works with truncated multivariate formal power series. The Poly-
nomialSeries package can be accessed at www.mathsource.com site. The existing
version is enough for a support of a normal form method. The comparison of
MATHEMATICA package with an earlier version of normal form package NORT
written in LISP demonstrates that the calculations within the MATHEMATICA
system are more flexible and convenient but are considerably slower than under
the LISP.

A key moment for a realization of the Main algorithm above and both imple-
mentations is an internal representation of formal power series. We group terms
of series in homogeneous sums in variable order, and we store the value of this
order with the corresponding sum. For example, if we have a truncated series:

y2 y3 + y1 y2 y3 + y22 y3 + y1 y
2
2 y3 + y2 y

2
3 + y1 y2 y

2
3 + y22 y

2
3 + y1 y

2
2 y

2
3 ,

then the internal representation of the above series with respect to y1, y2, y3 is

{{2, y2 y3}, {3, y1 y2 y3+y22 y3+y2 y23}, {4, y1 y22 y3+y1 y2 y23+y22 y23}, {5, y1 y22 y23}}
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It is obvious that this form is very convenient for summation. And objects in
this representation can very efficiently be multiplied in the sense of truncated
series – for excluding from results negligible for corresponding order of trunca-
tion terms, it is enough to eliminate from the multiplied groups the terms with
common orders which are over the negligible one. For example, if we wish to
calculate a square of the above series till the 5th order we need to square only
the sum of the first two homogeneous groups above (with 2 and 3 common or-
ders), no more. One more very important advantage of such representation is
that an implementation of formulae (7) is a realization of some kind of tensor
production as you can see from the main algorithm.

6 Conclusions

Here we can conclude that the obtaining of PDB normal forms of high order is
very useful for analysis of autonomous nonlinear ODEs.

The special choice of an internal representation allows us to build an efficient
algorithm for evaluation of the PDB normal form.
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Gauthier-Villars, Paris (1872–1879) Reprint: Dover, New York, 1957. National
Aeronautics and Space Administration, Washington (1967)

2. Dulac, H.: Solution d’une système d’équations différentielles dans le voisinage des
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Abstract. During the past decade, quantum information theory has at-
tracted a lot of interest because of its promise for solving problems that
are intractable otherwise. Despite of the recent advancements in under-
standing the basic principles of quantum information systems, however,
there are still a large number of difficulties to be resolved. One of the great
challenges concerns for instance the decoherence in quantum systems and
how entanglement is lost or transfered between the subsystems, if they
are coupled to their enviroment. — To overcome these difficulties, several
schemes for studying the decay of quantum states and their interaction
with an environment have been developed during recent years, including
a large variety of separability and entanglement measures, decoherence-
free subspaces as well as (quantum) error correction codes.

To support the investigation of entanglement and decoherence phe-
nomena in general N−qubit quantum systems, we recently developed
the Feynman program [1], a computer-algebraic approach within the
framework of Maple, which facilitates the symbolic and numerical ma-
nipulation of quantum registers and quantum transformations. This pro-
gram has been designed for studying the dynamics of quantum registers
owing to their interaction with external fields and perturbations. In a
recent addition to this program [2], moreover, we now implemented also
various noise models as well as a number of entanglement measures (and
related quantities). In this lecture, I shall display the interactive use of
the program by a number of simple but intuitive examples.

To make quantum information theory alive, an active (re-) search has
been initiated during the past decade to find and explore physical sys-
tems that are suitable to produce and control the entanglement in course
of their time evolution. In atomic photoionization, for instance, we have
shown how the polarization can be transfered from the incoming photons
to the emitted photoelectrons, giving rise to a (spin-spin) entanglement
between the photoelectron and the remaining (photo-) ion. Detailed com-
putations on the entanglement as function of the energy and polarization
of the incoming light have been carried out along various isoelectronic
sequences [3]. For the two-photon decay of atomic hydrogen, moreover,
we analyzed the geometrical control of the polarization entanglement of
the emitted photons.
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Abstract. The algorithmic methods of commutative algebra based on
the Gröbner bases technique are briefly sketched out in the context of an
application to the constrained finite dimensional polynomial Hamiltonian
systems. The effectiveness of the proposed algorithms and their imple-
mentation in Mathematica is demonstrated for the light-cone version of
the SU(3) Yang-Mills mechanics. The special homogeneous Gröbner ba-
sis is constructed that allow us to find and classify the complete set of
constraints the model possesses.

1 Introduction

The basic procedure, completion to involution [1,2,3,4,5,6], of systems of differ-
ential equations represents a highly nontrivial issue in view of its practical ap-
plication. Particularly, a manipulation with functions modulo a set of algebraic
relations requires an efficient algorithmization and implementation in a proper
computer algebra software. For the practical purposes of wide class of theories
and models of the contemporary theoretical and mathematical physics and es-
pecially of the degenerate Hamiltonian systems [7]-[9] the problem of completion
to involution being very topical became nowadays feasible due to the progress in
computer technologies. Our attempts to implement such an algorithmic descrip-
tion for the degenerate polynomial Hamiltonian mechanical models have been
summarized in the recent papers [10]-[14], where the method based on the most
universal algorithmic tool of commutative algebra, the well-known Gröbner bases
theory [15]-[17], has been elaborated. Since this technique provides an effective
algorithmic instrument to verify whether a polynomial vanishes on the manifold
defined by a set of other polynomials, the Gröbner bases plays the principal role
in algorithmic implementation of the basic operations of the Dirac constraint
formalism: computation and separation of constrains.
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Here we briefly sketch out this very central element of the Dirac-Bergmann-
Gröbner algorithmic procedure suggested in [10] to deal with the practically
important case of finite-dimensional degenerate polynomial Lagrangian system.
Afterwards we apply this algorithm to examine the mechanical system with a rich
set of constraints, the so-called light-cone SU(3) Yang-Mills mechanics, where
computation of constraints has not been done before.

The outline of the article is as follows. In section 2 the basic elements of
the Dirac-Bergmann-Gröbner algorithm to compute and classify the constraints
are given. Then the formulation of the mechanical model, the light-cone SU(3)
Yang-Mills mechanics is presented. In section 3 the results of computation of
the complete set of constraints are given. The section 4 is devoted to the discus-
sion of the specially constructed homogeneous Gröbner basis that provides our
calculations and categorization of the constraints.

2 Elements of the Dirac-Bergmann-Gröbner Algorithm

The Dirac method to determine and classify constraints for degenerate Hamil-
tonian systems is easy formulate but difficult to implement at practical level of
computation when the both, number of degrees of freedom as well as the number
of free parameters of the model are sufficiently large. Here we describe a pos-
sible way to make this procedure computationally effective. We start with the
discussion of the Dirac constraint formalism for a finite dimensional degenerate
Lagrangian system aiming its algorithmic reformulation.

Consider an n-dimensional mechanical system whose configuration space is
Rn and the Lagrangian L(q, q̇) is defined on a tangent space as a function of the
coordinates q := q1, q2, . . . , qn and velocities q̇ := q̇1, q̇2, . . . , q̇n .

The Lagrangian system is regular if the rank r := rank‖Hij‖ of the corre-
sponding Hessian function Hij := ∂2L/∂q̇i∂q̇j is maximal (r = n). In this case
the Euler-Lagrange equations

d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 , 1 ≤ i ≤ n (1)

rewritten explicitly as

Hij q̈j +
∂2L

∂qj∂q̇i
q̇j −

∂L

∂qi
= 0

can be resolved with respect to the accelerations (q̈) and there are no hidden
constraints. Otherwise, if r < n, the Euler-Lagrange equations (and, thus, the
Lagrangian system itself) are degenerate or singular. In this case not all differ-
ential equations (1) are of second order, namely there are n − r independent
equations, Lagrangian constraints, containing only coordinates and velocities.
Passing to the Hamiltonian description via a Legendre transformation

pi :=
∂L

∂q̇i
(2)
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the degeneracy of the Hessian results in the existence of n− r relations between
coordinates and momenta, the primary constraints

ϕ(1)a (p, q) = 0 , 1 ≤ a ≤ n− r . (3)

Equations (3) define the so-called primary constraints subset (manifold, if certain
regularity conditions assumed) Σ1.1 This definition is implicit and therefore it is
necessary to provide an effective algorithm to compute all primary constraints
describing the subset Σ1 .

From (3) the dynamics is constrained by the set Σ1 and by the Dirac pre-
scription is governed by the total Hamiltonian

HT := HC + Ua ϕ
(1)
a , (4)

which differs from the canonical Hamiltonian HC(p, q) = piq̇i − L by a linear
combination of the primary constraints with the Lagrange multipliers Ua.

The next step is to analyze the dynamical requirement that classical trajec-
tories remain in Σ1 during the evolution

ϕ̇(1)a = {HT , ϕ
(1)
a } Σ1= 0 . (5)

In (5) the evolutional changes are generated by the canonical Poisson brackets
with the total Hamiltonian (4) and the abbreviation Σ1= stands for a week equality,
i.e., the right-hand side of (5) vanishes modulo the primary constraints (3).

The consistency condition (5), unless it is satisfied identically, may lead either
to a contradiction or to a determination of the Lagrange multipliers Ua or to
new constraints. The former case indicates that the given Hamiltonian system
is inconsistent.

In the latter case when (5) is not satisfied identically and is independent of the
multipliers Ua the left-hand side of (5) defines the new constraints. Otherwise,
if the left-hand side depends on some Lagrange multipliers Ua the consistency
condition determines these multipliers, and, therefore, the constraints set is not
enlarged by new constraints. The subsequent iteration of this consistency check
ends up with the complete set of constraints and/or determination of some/or
all Lagrange multipliers.

The number of Lagrange multipliers Ua which can be found is determined by
the rank of the so-called Poisson bracket matrix

Mαβ :Σ= {φα, φβ} , (6)

where Σ denotes the subset of a phase space defined by the complete set of
constraints Φ := (φ1 , φ2 , . . . , φk )

1 Everywhere in this paper we suppose that all constraints satisfy the so-called regu-
larity conditions (see explanations in §1.1.2 of [9]).
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Σ : φα(p, q) = 0 , 1 ≤ α ≤ k . (7)

including all primary ϕ(1), secondary ϕ(2), ternary ϕ(3), etc., constraints,
If rank (M) = m, then s := k −m linear combinations of constraints φα

ψα(p, q) =
∑

β

cαβ(p, q)φβ , (8)

define the first-class constraints, whose Poisson brackets are weakly zero

{ψα(p, q), ψβ(p, q)} Σ= 0 1 ≤ α , β ≤ s . (9)

The remaining functionally independent constraints form the subset of second-
class constraints .

It is worth to note here that the described method to find constraints within
the Dirac formalism represent the reformulation of completion of the initial
Hamiltonian equations to involution in another words and constraints corre-
sponds to a set of the integrability conditions [18,19,20].

Now the algorithmic reformulation of the above stated scheme will be de-
scribed using the ideas and the terminology of the Gröbner bases theory. In
doing so, we restrict our consideration to an arbitrary dynamical system with
finitely many degrees of freedom whose Lagrangian is a polynomial in coordinates
and velocities with rational (possibly parametric) coefficients L(q, q̇) ∈ Q[q, q̇].
Thereafter we use the standard notions and definitions of commutative alge-
bra (see, e.g., [15,16,17]).

Algorithm to determine the primary constraints

The primary constraints (3) are consequences of the polynomial relations (2).
These relations generate the polynomial ideal in Q[p, q, q̇]

Ip,q,q̇ ≡ Id(∪n
i=1{pi − ∂L/∂q̇i}) ⊂ Q[p, q, q̇] . (10)

Thereby, primary constraints (3) belong to the radical
√
Ip,q of the elimination

ideal
Ip,q = Ip,q,q̇ ∩Q[p, q] .

Correspondingly, for an appropriate term ordering which eliminates q̇, a Gröbner
basis of Ip,q (denotation: GB(Ip,q)) is given by [15,16,17]

GB(Ip,q) = GB(Ip,q,q̇) ∩Q[p, q] .

This means that construction of the Gröbner basis for the ideal (10) with omit-
ting elements in the basis depending on velocities and then constructing of
GB(Ip,q) allows to compute the set of primary constraints. If GB(Ip,q) = ∅, then
the dynamical system is regular. Otherwise, the algebraically independent set Φ1

of (effective) primary constraints can be found as the subset Φ1 ⊂ GB(
√
Ip,q)

such that
∀φ(p, q) ∈ Φ1 : φ(p, q) �∈ Id(Φ1 \ {φ(p, q)}) . (11)
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Verification of (11) is algorithmically done by computing the following normal
form: NF (φ,GB(Id(Φ1 \ {φ})). In addition, the canonical Hamiltonian Hc(p, q)
is computed as NF (piq̇i − L,GB(Ip,q,q̇)). This form of Hc(p, q) is used in the
next steps of the Dirac-Bergman-Gröbner algorithm.

Algorithm to determine the higher constraints and to classify them

The dynamical consequences (5) of a primary constraint can also be algorithmi-
cally analyzed by computing the normal form of the Poisson brackets of the
primary constraint and the total Hamiltonian modulo

√
Ip,q). Here the La-

grange multipliers Ua in (4) are treated as time-dependent functions. If the
non-vanishing normal form does not contain Ua, then it is nothing else than
the secondary constraint. In this case the set of primary constraints is enlarged
by the secondary constraint obtained and the process is iterated. At the end
either the complete set Φ of constraints (7) is constructed or some inconsistency
is detected. The detection holds when the intermediate Gröbner basis, whose
computation is a part of the iterative procedure, becomes {1}.

In order to separate the set Φ = {φ1, . . . , φk} into subsets of the first and sec-
ond classes constraints the entries of Poisson brackets matrix M are evaluated as
normal forms of the Poisson brackets of the constraints modulo a Gröbner basis
of the ideal generated by set Φ. Afterwards if the basis E = {e(1), . . . , e(k−m)}
of the null space (kernel) of this matrix M is known the each basis vector
e(s) ∈ E , s = 1, . . . , k − m generates the first-class constraint of form e(s)α φα .
The second class constraints are build using the basis of the m-dimensional
orthogonal complement E⊥ , of subspace E . With the aid of these vectors
e(l)⊥ ∈ E⊥ , l = 1, . . . ,m the second-class constraint are constructed as e(l)⊥αφα .

Concluding we see that the constraints separation can be performed using the
linear algebra operations with the matrix M alone. Together with the Gröbner
bases technique this implies full algorithmisation for computing the complete set
of algebraically independent constraints and their classification.

Implementation

The above described algorithms were implemented first in Maple [10,14]. How-
ever, the Gröbner bases routines built-in Maple are not efficient enough to
perform computation needed for the light-cone SU(3) Yang-Mills mechanics
(Sect.3.2). We also tried recent extensions of the Maple Gröbner bases facilities
with the external packages Gb and Fgb created by J.C.Faugère [21]. Unfortu-
nately Gb runs for our problems even slower than the built-in package whereas
Fgb cannot deal with the parametric coefficients. By the last reason we cannot
use yet2 the Ginv [22] software that is a C++ module of Python and implements
the efficient involutive algorithms [6] for the construction of the involutive or/and
Gröbner bases.
2 The implementation in Ginv of multivariate GCD computation that is necessary for

computation of Gröbner bases with the parametric coefficients is in progress now in
collaboration with the RWTH, Aachen.
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It should be emphasized that manipulation with the parametric coefficients is
essential for the Dirac formalism due to the presence of physical parameters (e.g.
masses, coupling constants) in the initial Lagrangian, the Lagrange multipliers
in the total Hamiltonian (4). Having these needs in mind we implemented the
algorithms in Mathematica whose built-in routine GroebnerBasis as well as
Groebner in Maple allows to compute parametric Gröbner bases but performs
computations much faster.

3 Light-Cone Yang-Mills Mechanics

Here we apply the above described scheme to a mechanical model originated
from the Yang-Mills gauge field theory assuming a certain homogeneity of fields.
Namely, we consider the so-called light-cone Yang-Mills mechanics which differs
from the well-known instant form of Yang-Mills mechanics intensively studied
during the last twenty years for a variety of reasons, both in physics and in
mathematics (see e.g. [23]-[33]). The alternative light-cone Yang-Mills mechanics
is formulated as the light-front form version of the SU(n) Yang-Mills gauge
theory when the additional supposition of the gauge potentials dependence on
the light-cone time only is made.

The coordinate free representation of the SU(n) Yang-Mills fields action in
four-dimensional Minkowski space M4, endowed with a metric η reads

S :=
1
g20

∫

M4

trF ∧ ∗F , (12)

where g0 is a coupling constant and the su(n) algebra valued curvature two-form

F := dA+A ∧A

is constructed from the connection one-form A. The connection and curvature,
as Lie algebra valued quantities are expanded in some basis T a

A = Aa T a , F = F a T a . a = 1, 2, . . . , n2 − 1 .

The metric ηγδ enters the action through the dual field strength tensor ∗Fμν :=
1
2

√
− det η εμναβ F

αβ , with the totally antisymmetric tensor εμναβ .
To formulate the light-cone version of the SU(n) mechanics we expand the

one-form A in so-called light-cone basis

A := A+ dx+ +A− dx− +Ak dxk , k = 1, 2 , (13)

where the basic one-forms dx± in (13) are dual to the vectors e± := 1√
2

(e0 ± e3)
tangent to the light-cone. The corresponding coordinates, light-cone coordinates
xμ =

(
x+, x−, x⊥

)
are

x± :=
1√
2

(
x0 ± x3

)
, x⊥ := xk , k = 1, 2 ,

and non-zero components of the metric read η+− = η−+ = −η11 = −η22 = 1 .
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Now if the components of the connection one-form A in (13) are functions of
the light-cone “time variable” x+ only

A± = A±(x+) , Ak = Ak(x+) .

the classical action (12) reduces to the following form

SLC :=
V (3)

2g20

∫
dx+

(
F a
+− F

a
+− + 2F a

+k F
a
−k − F a

12 F
a
12

)
. (14)

This expression can be identified with the action of a finite dimensional model
named as light-cone Yang-Mills mechanics whose dynamics is governed by the
Lagrangian

L :=
1
2

(
F a
+− F

a
+− + 2F a

+k F
a
−k − F a

12 F
a
12

)
, (15)

Deriving (15) we fix the “renormalized” coupling constant g20/V (3) = 1 in (14) to
simplify formulaes and use the following expression for the light-cone components
of the field-strength tensor

F a
+− :=

∂Aa
−

∂x+
+ fabc Ab

+A
c
− ,

F a
+k :=

∂Aa
k

∂x+
+ fabc Ab

+ A
c
k ,

F a
−k := fabc Ab

−A
c
k ,

F a
ij := fabc Ab

i A
c
j , i, j, k = 1, 2 .

The Lagrangian (15) defines the SU(n) Yang-Mills light-cone mechanics with
4(n2 − 1)- degrees of freedom A± , Ak evolving with respect to the light-cone
time τ := x+.

However due to the gauge invariance of the initial Yang-Mills theory and
because in the light-cone dynamics the instant time states are given at the light-
cone characteristics the corresponding evolutionary equations degenerate (see
e.g. discussion in [8] ,[34]): not all of them are second order with respect to the
light-cone time. Some of the Euler-Lagrange equations that follow from (15)
represent the constraints on the variables from the extended configuration.

In the Hamiltonian description this can be seen as follows. The Legendre
transformation gives the momentum π−

a , canonically conjugated to Aa
−

π−
a :=

∂L

∂Ȧa
−

= Ȧa
− + fabc Ab

+A
c
− ,

while defining the momenta π+a and πk
a canonically conjugated to Aa

− and Aa
k

we find the set of the primary constraints

ϕ(1)a := π+a = 0 , (16)
χa

k := πk
a − fabc Ab

−A
c
k = 0 . (17)



152 V. Gerdt, A. Khvedelidze, and Y. Palii

The presence of primary constraints affects the dynamics of the degenerate
system. The generic evolution is governed now by the total Hamiltonian

HT := HC + Ua(τ)ϕ(1)a + V a
k (τ)χa

k ,

where the canonical Hamiltonian reads

HC =
1
2
π−

a π
−
a − fabc Ab

+

(
Ac

− π
−
a +Ac

k π
k
a

)
+

1
2
F a
12F

a
12 ,

and Ua(τ) and V a
k (τ) are the Lagrange multipliers.

Using the total Hamiltonian and the fundamental canonical Poisson brackets

{Aa
± , π

±
b } = δa

b , {Aa
k , π

l
b} = δl

kδ
a
b ,

the dynamical self-consistence of the primary constraints (16) should be checked
out. From the requirement of conservation of the primary constraints ϕ(1)a we
see that

0 = ϕ̇(1)a = {π+a , HT } = fabc
(
Ab

−π
−
c +Ab

kπ
k
c

)
, (18)

while the same procedure for the primary constraints χa
k gives the following

self-consistency conditions

0 = χ̇a
k = {χa

k , HC} − 2 fabc Ab
− V

c
k . (19)

It is straightforward to check that the consistency conditions (18) define the
n2 − 1 secondary constraints ϕ(2)a

ϕ(2)a := fabc

(
Ab

−π
−
c +Ab

kπ
k
c

)
= 0 (20)

which obey the su(n) algebra

{ϕ(2)a , ϕ
(2)
b } = fabc ϕ

(2)
c .

However, the further analysis of the consistency conditions (19) represents
not so easy tractable issue. First of all, the number of Lagrange multipliers that
can be determined from (19) depends on the rank of the structure group. This
can bee seen from the non-vanishing Poisson brackets between constraints χa

i

{χa
i , χ

b
j} = 2 fabcAc

−δij . (21)

The simplest case of the special unitary group of rank 1, the SU(2) group, has
been analyzed in our previous papers. The constraints analysis of the SU(2)
model including their separation into the first and second class can be found in
[11,12,13]. Below we only state these results and then discuss in more details the
model with the first non-trivial rank 2 structure group, the SU(3) Yang-Mills
light-cone mechanics.
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3.1 The SU(2) Structure Group

For the su(2) algebra we use the standard Pauli matrices σ1, σ2, σ3 providing the
structure constants as the totally antisymmetric three dimensional Levi-Civita
symbol: fabc := εabc , ε123 = 1 .

According to the equations (16) and (17), there are (22−1)+(22−1)×2 = 9
primary constraints ϕ(1)a and χa

k . From the consistency condition (19) for the
primary constraints χa

k the following picture stands out

• Apart from the easy recognizable abelian constraints π+a and non-abelian
first-class constraints ϕ(2)a , (20), there are two more constraints absent in
the instant form of SU(2) Yang-Mills mechanics

ψk := Aa
−χ

a
k .

Here Aa
− is the null vector of the Poisson brackets Cab = εabcA

c
− in (21).

• The remaining four “orthogonal” constraints

χa
k⊥ := χa

k −Aa
−
(
Ab

−χ
b
k

)
,

are the second-class and satisfy the relations

{χa
i⊥ , χ

b
j⊥} = 2 εabcAc

− δij ,

{ϕ(2)a , χb
k⊥} = εabc χc

k⊥ .

Further analysis shows that apart from the secondary Gauss law constraints
ϕ2a there are no new constraints. Indeed, the abelian constraints ψi do not create
new ones

{ψi, HT } = −Aa
i ϕ

(2)
a + π−

a χ
a
i + εabcA

a
iA

b
kχ

c
k

Σ= 0 . (22)

The consistency condition (19) for the “orthogonal” constraints χa
i ⊥ allows to

determine the corresponding four Lagrange multiplier V⊥(τ) and therefore sum-
marizing, the SU(2) light-cone Yang-Mills mechanics possesses 8 functionally
independent first-class constraints ϕ(1)a , ψk, ϕ

(2)
a and 4 second-class constraints

χa
k⊥.

3.2 The SU(3) Structure Group

The algebraic properties of the su(3) algebra are encoded in the two independent
set the skew-symmetric fabc and symmetric dabc structure constants. For the basis
usually used in physical applications–the Gell-Mann basis–they are listed in the
Appendix.

Since the rank of the su(3) algebra is two, the null space of the matrix Cab =
fabcA

c
− is 2-dimensional. It can be spanned by two null-vectors, one linear and

another one quadratic in the coordinates

e(1)a := Aa
− , e(2)a := dabc A

b
−A

c
− .
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Using vectors e(1,2)
a we decompose the set of 2×(32−1) = 16 primary constraints

χa
k as

χa
i = (χa

i⊥ , ψi , ςi) , (23)

where
ψi := e(1)a χa

i , ςi := e(2)a χa
i . (24)

The decomposition (23) turn to be very useful owing to the special Poisson
brackets relations for the decomposition components

{χa
k , ψi} = 0 , {χa

k , ςi} = 0 , {ψi , ςk} = 0 , {ψi , ψj} = 0 , {ςi , ςk} = 0 .

The consistency conditions (19) allow to find the corresponding Lagrange
multipliers V a

k ⊥ and to get the expressions modulo primary constraints

{ψi , HT } = −Aa
i ϕ

(2)
a + primary constraints , (25)

{ςi , HT } = dabcA
a
i F

b
−kF

c
−k − 2 dabcA

a
−A

b
iϕ

(2)
c + primary constraints .

According to the upper equalities (25), the constraints ψi do not give rise to new
secondary constraints. However, the second equation (26) states that there are
two more new secondary constraints

ζi = dabcA
a
i F

b
−kF

c
−k . (26)

The new constraints ζi obey the following relations:

{ζi , ζj} = 0 ,

{ψi, ζj} = δij dabcA
a
−
(
F b
−k χ

c
k −

1
2
Ab

−ϕ
(2)
c

)
,

{ςi, ζj} = −δij dabcdcpqA
a
−A

b
−F

p
−kF

q
−k . (27)

Evaluation of the right hand side in the last equations (27) by using the Gröbner
basis technique (details of the basis used are given in the subsequent Sect. 4)
modulo all known constraints shows that the further search for the ternary con-
straints terminates and from the consistency condition3

{ζi , HT }
Σ2= {ζi , HC} + {ζi , ςk}V ς

k (28)

one can fix two unknown functions V ς
k entering the decomposition for the La-

grange multipliers V a
k =

(
V a

k⊥ , V
ψ
k , V ς

k

)
.

Therefore we can now finally conclude with the statement about the complete
set of constraints for the light-cone SU(3) Yang-Mills mechanics. The complete
set of constraints consists of 34 constraints, and among them there are

• 8 + 8 + 2 = 18 first-class constraints: πa
+ , ϕ

(2)
a and ψk ,

• 2 × 6 + 2 + 2 = 16 second-class constraints: χa
k⊥ , ςk and ζk .

3 The Σ2 stands here for the constraint manifold defined by the primary and secondary
constraints.
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It is worth to note here that these results are based on the tedious calcula-
tion of the Poisson bracket relations and their subsequent evaluation modulo
the constraint functions using the specially constructed Gröbner basis. At the
present moment, to the best of our knowledge, there is no way to overpass these
straightforward calculations with a high computational complexity.

4 Computation of the Gröbner Basis

The goal of this section is to discuss certain properties of a Gröbner basis used
in the calculation of the light-cone SU(3) Yang-Mills mechanics and describe
some computational aspects of its construction.

The actual calculations were performed using the the computer algebra system
Mathematica (version 5.0) running on the machine 2xOpteron-242 (1.6 Ghz) with
6Gb of RAM. For the simplest nontrivial case of the SU(n) light-cone mechanics
having the structure group SU(2) we used the built-in-function GroebnerBasis
with monomial order DegreeReverseLexicographic. However, for the SU(3)
group due to substantial increase of the number of variables as well as the num-
ber of non-vanishing structure constants fabc and dabc the memory of the above
computer turns to be insufficient. To overcome this problem a special Mathemat-
ica program has been written in order to calculate the homogeneous Gröbner
bases ([15] §10.2) allowing to use step by step the partially constructed Gröbner
bases.

In doing so we built a homogeneous (grading compatible) Gröbner bases for
the SU(3) structure group using the grading Γ determined by the following
weights of the variables:

Γ (πa
μ) = 2 , for all momenta a = 1, 2, . . . , 8 , μ = − , 1, 2 ,

Γ (Aa
μ) = 1 , for all coordinates a = 1, 2, . . . , 8 , μ = − , 1, 2 .

As a monomial ordering we used a grading (degree) one with breaking ties by
the following pure lexicographical order on the variables.

The order on the variables with different spatial indices was chosen as

π−
a , π1b , π2c , Aa

− , Ab
1 , Ac

2 for all a, b, c = 1, 2, . . . , 8 ,

whereas for the variables the equal spatial indices our choice was

πk
a , πk

b , Aa
k , Ab

k if a < b for any a, b = 1, 2, . . . , 8 .

According to the introduced grading the Γ -degrees of the basic constraints (17),
(20), (26) are given by

Γ − degree Constraints
2 χa

k = πk
a − fabc Ab

−A
c
k ,

3 ϕ
(2)
a = fabc

(
Ab

−π
−
c +Ab

kπ
k
c

)
,

5 ζi = dabcA
a
i F

b
−kF

c
−k .
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With such a choice of grading the constraints χa
k and ϕ(2) are the lowest

degree homogeneous Gröbner basis elements G2 and G3 of the order 2 and 3,
respectively. Higher degree elements of the basis are constructed step by step by
doing the following manipulations:

(i) formation of all S−polynomials (Gi, Gj) ;
(ii) elimination of some superfluous S−polynomials according to the Buch-

berger’s criteria [15,16,17];
(iii) computation of the normal forms of S-polynomials modulo the lower order

elements with respect to the grading chosen.

The results of computation of the Gröbner basis elements of different orders n are
shown in the following table where we explicitly indicated only S−polynomials
with non-vanishing normal form.

Gn Polynomials # Constraints and S-polynomials
G2 16 χa

k

G3 8 ϕ
(2)
a

G4 15 (G3, G3)
G5 14 ζi, (ζi, Gj) j=2,3,4

(G2, G4), (G3, G4), (G4, G4)
(G3, G3)

G6 13 (G2, G5), (G3, G5), (G4, G5), (G5, G5)
(G3, G4), (G4, G4)

Our attempts to compute Gn for n > 6 were failed because of enormous
computational expenses. It should be noted that in comparison to the SU(3)
Gröbner computation, the case of the SU(2) structure group is computationally
much more simple. In this case the construction of the complete homogeneous
Gröbner basis of 64 elements takes about 60 seconds for the following lexico-
graphic order

{π11 , π21 , π12 , π22 , π13 , π23 , π−
1 , π

−
2 , π

−
3 , A

1
1, A

1
2, A

2
1, A

2
2, A

3
1, A

3
2, A

1
−, A

2
−, A

3
−} .

5 Concluding Remarks

By applying the Dirac-Bergmann-Gröbner algorithm to the light-cone SU(3)
Yang-Mills mechanics we found the complete set of constraints and identified
them in accordance with the Dirac classification as the first and the second class
constraints. This was achieved by means of the exploiting the special homoge-
neous Gröbner basis whose components Gn with n ≤ 6 where computed. Though
we were not able to determine the elements Gn (n > 6) of the Gröbner basis,
but the knowledge of these partial components computed suffices (Sect.3.2) to
deduce the complete set of constraints and categorize them.
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Performing the computation we observed that the timings in construction of
polynomials of a given order may considerably vary. For instance, the element
in G4 obtained from the S-polynomial (ϕ(2)2 , ϕ

(2)
3 ) depends on the coordinates

Aa
−, A

a
1 , A

a
2 only and contains 286 terms. Its reduction requires a large number

of monomial divisions at the elementary reduction steps. In contrast to that
polynomial, the other polynomials in G4 turn to be an irreducible.

Final remark, most of the total calculation time (about a month) was spend
performing useless zero reductions. This is in agreement with the well-known ex-
perimental facts in practical computation of Gröbner bases for large polynomial
systems [35].
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6 Appendix

The eight traceless 3 × 3 Hermitian Gell-Mann matrices λa :

λ1 =

⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ , λ2 =

⎛

⎝
0 −i 0
i 0 0
0 0 0

⎞

⎠ , λ3 =

⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ ,

λ4 =

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , λ5 =

⎛

⎝
0 0 −i
0 0 0
i 0 0

⎞

⎠ , λ6 =

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ ,

λ7 =

⎛

⎝
0 0 0
0 0 −i
0 i 0

⎞

⎠ , λ8 =
1√
3

⎛

⎝
1 0 0
0 1 0
0 0 −2

⎞

⎠ .

(29)

provide a basis for the su(3) algebra

[λa, λb] = 2i
8∑

c=1

fabc λc . (30)

The nonzero structure constants fabc , antisymmetric in all indices are listed
below:

f123 = 1, f147 = f246 = f257 = f345 = f516 = f637 = 1/2, f458 = f678 =
√

3/2 .

The matrices λa obey the product law

λa λb =
2
3
δab I +

8∑

c=1

(dabc + ı fabc) λc ,

with the following non-vanishing values of the symmetric constants dabc

d118 = d228 = d338 =
1√
3
, d146 = d157 = d256 = d344 = d355 =

1
2
,

d247= d366 = d377= −1
2
, d448= d558 = d668= d778 = − 1

2
√

3
, d888 = − 1√

3
.



On the Weight Spectra of Conway Matrices

Related to the Non-transitive
Head-or-Tail Game

Nikita Gogin and Aleksandr Mylläri

University of Turku, Finland

Abstract. Our paper is devoted to the computation of the weight spec-
tra of Conway matrices related to the non-transitive head-or-tail game.
We obtained explicit formulas for the spectra containing partial binomial
sums. These sums are rather hard to deal with when the methods of clas-
sical algebra and number theory are used; but when we used methods
of computer algebra, we were able to handle them quite efficiently and
could easily produce visualizations. We suggest a recurrence algorithm
for efficient calculation of the weight-spectrum matrices, including, as a
special case, integer matrices modulo m. The algorithm is implemented
with MATHEMATICA and visualizations for some interesting examples
are shown.

1 Introduction

The problem in question emerges from the old problem of binary string overlap-
ping in connection with the so-called ”non-transitive head-or-tail game”
(cf. [1,2]):

Two players, (1) and (2), agree on some integer n ≥ 2. Then both of them
select a binary n−word (“head”=0 , “tail”=1), say u and v, and begin flipping a
coin until either u or v appears as a block of n consecutive outcomes. Player (1)
wins if u appears before v does. The problem is to find the probability P (u, v)
that player (1) will win for the chosen u and v.

The solution of the problem is represented by Conway’s formula (cf. [1])

P (u, v) =
c(v, v) − c(v, u)

(c(u, u)− c(u, v)) + (c(v, v) − c(v, u))
(1)

where c(u, v) is the Conway number (or “correlation”) of two binary n−words u
and v.

Definition 1. Let Vn be the space of the binary n−words, i.e. the n−dimensional
vector space over the field Z2 = {0, 1} and k be an integer, 0 ≤ k ≤ n. We say that
binary vector u = (ε0, ε1, . . . , εn−1) k−overlaps vector v = (η0, η1, . . . , ηn−1), if
(εk, εk+1, . . . , εn−1) = (η0, η1, . . . , ηn−k−1), and write this as u =k= v.

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 160–168, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Definition 2. The Conway number of the pair (u, v) is defined as a sum

c(u, v) =
n−1∑

k=0

2n−1−k‖u =k= v‖, (2)

where ‖u =k= v‖ equals to 1 (respectively 0) if u =k= v is “true” (respectively
“false”).

For every n the set of all Conway numbers constitutes the 2n×2n Conway matrix
Cn = (c(u, v)) with the natural ordering of binary vectors as binary expansions
the indexes 0 , 1 , ... , 2n − 1.

In other words, we have an integer-valued function

Cn : Wn = Vn

⊕
Vn → {0, 1, . . . , 2n − 1} (3)

on the Abelian group Wn and our aim is to find the weight-spectrum (cf. [3]) of
this function, i.e. the (n+ 1) × (n+ 1) integer matrix S(Cn) = (Sp,q), where

Sp,q =
∑

wt(u)=p,wt(v)=q

c(v, u) (4)

and wt() stands for the Hamming weight.
To do this let us first consider the Fourier (called also in this case the Hadamard)

transform Ĉn of the functionCn defined by formula (2) on the finite Abelian group
Wn, i.e. we consider the matrix product

Ĉn = HnCnHn (5)

where Hn is the 2n × 2n Hadamard matrix defined by the well-known (cf. [3])
recurrent formula

Hn =
(
Hn−1 Hn−1

Hn−1 −Hn−1

)
, n ≥ 2, H1 =

(
1 1
1 −1

)
. (6)

The reason for this move from Cn to its Hadamard transform Ĉn is that it
has been shown [4] that the latter has the very simple matrix structure:

Theorem 1

(Ĉn)ij = 22n−1

{
n, if i = j = 0
1, for some k, 0 ≤ k ≤ n− 1 0 ≤ i, j ≤ 2n − 1. (7)

The Proof can be found in [4].

Example 1. For n = 3 it can be found straightforwardly by formulas (2) and (5)
that

C3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7 3 1 1 0 0 0 0
0 4 2 2 1 1 1 1
1 1 5 1 2 2 0 0
0 0 0 4 1 1 3 3
3 3 1 1 4 0 0 0
0 0 2 2 1 5 1 1
1 1 1 1 2 2 4 0
0 0 0 0 1 1 3 7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Ĉ3 = 22×3−1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)
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2 An Explicit Formula for the Weight-Spectrum Matrix
S(Cn)

Given the spectra S(Ĉn), we can easily find the spectrum S(Cn) by the
MacWilliams formula for the dual spectrums (cf. [3]) :

22nSk1,k2(Cn) =
n∑

m1,m2=0

Sm1,m2(Ĉn)Pk1 (m1)Pk2(m2), 0 ≤ k1, k2 ≤ n, (9)

where Pk(m) are the Krawtchouk polynomials (of order n) defined by the gen-
erating function

(1 + t)n−m(1 − t)m =
n∑

k=0

Pk(m)tk, (10)

Pk(m) =
k∑

l=0

(−1)l

(
n−m

k − l

)(
m

l

)
(11)

(cf. [3]).
So, our first step is to calculate the numbers Sm1,m2(Ĉn).

Lemma 1

Sm1,m2(Ĉn) = 22n−1 ·
{
n, m1 = m2 = 0(

n+1
m+1

)
· δm1,m2 , m1 +m2 �= 0 (12)

Proof. Identifying the binary expansions of the matrix indices with the binary
n−vectors and using formula (7), we easily find that, if m1 �= 0 or m2 �= 0 (or
both), the number Sm1,m2(Ĉn) is not equal to zero only when m1 = m2 = m in
which case

Sm1,m2(Ĉn) =
∑

wt(i)=m1,wt(j)=m2

(Ĉn)ij = 22n−1 ·
n∑

k=0

∑

u∈Vv−k,wt(u)=m

1

= 22n−1 ·
n∑

k=0

(
n− k

m

)
= 22n−1 ·

(
n+ 1
m+ 1

)
, (13)

so, again due to (7), we get the claimed result.

Theorem 2. For the elements of the weight-spectrum matrix S(Cn) we have

Sk1,k2(Cn) =
1
2

⎛

⎝
∑

p≤min(k1,k2)

(
n+ 1
p

)
·

∑

p>max(k1,k2)

(
n+ 1
p

)
−

(
n

k1

)(
n

k2

)⎞

⎠ .

(14)

Here we need the following lemma:
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Lemma 2. Let

β
(n)
k1,k2

= βk1,k2 =
n∑

m=0

(
n+ 1
m+ 1

)
Pk1(m)Pk2(m) (15)

(we write simply βk1,k2 , skipping the upper index n when there is no danger of
confusion.) Then

βk1,k2 = βk2,k1 =
∑

p≤min(k1,k2)

(
n+ 1
p

)
·

∑

p>max(k1,k2)

(
n+ 1
p

)
. (16)

Proof. To prove (16) we first write down formula (10) twice

(1 + y)n−m(1 − y)m =
n∑

k=0

Pk(m)yk, (1 + z)n−m(1 − z)m =
n∑

k=0

Pk(m)zk

and then consider the following sum:

n∑

m=0

(
n+ 1
m+ 1

)
(1+y)n−m(1−y)m(1+z)n−m(1−z)m =

n∑

k1,k2=0

βk1,k2y
k1zk2 . (17)

The left side of this equality can be easily found with the help of the elementary
formula

n∑

m=0

(
n+ 1
m+ 1

)
an−mbm =

{
(n+ 1)an, b = 0
(a+b)n+1−an+1

b , b �= 0

with a = (1 + y)(1 + z) = 1 + y+ z+ yz and b = (1− y)(1− z) = 1− y− z+ yz,
and so, formula (17) can be rewritten as follows:

2n+1(1+yz)n+1−(1+y)n+1(1+z)n+1 = (1−y−z+yz)·
n∑

k1,k2=0

βk1,k2y
k1zk2 . (18)

Denoting by γk1,k2 the coefficients at the terms yk1zk2 in the left side of (18)
and comparing corresponding coefficients in the left and right sides, we find that

γk1,k2 = 2n+1

(
n+ 1
k1

)
δk1,k2 −

(
n+ 1
k1

)(
n+ 1
k2

)
(19)

= βk1,k2 − βk1−1,k2 − βk1,k2−1 + βk1−1,k2−1

(understanding that βn+1,... = β...,n+1 = 0), and now it is not difficult to verify
that the numbers βk1,k2 can be expressed through the numbers γk1,k2 as follows:

βk1,k2 =
k1∑

p=0

k2∑

q=0

γp,q. (20)
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So, we have

βk1,k2 =
k1∑

p=0

k2∑

q=0

(
2n+1

(
n+ 1
p

)
δpq −

(
n+ 1
p

)(
n+ 1
q

))

= 2n+1

min(k1,k2)∑

p=0

(
n+ 1
p

)
−

k1∑

p=0

(
n+ 1
p

) k2∑

q=0

(
n+ 1
q

)

=
min(k1,k2)∑

p=0

(
n+ 1
p

)
·

⎛

⎝2n+1 −
max(k1,k2)∑

p=0

(
n+ 1
p

)⎞

⎠

=
∑

p≤min(k1,k2)

(
n+ 1
p

)
·

∑

p>>max(k1,k2)

(
n+ 1
p

)

and this completes the proof of Lemma 2.

Remark 1. For any integers m, m ≥ 0 and r, 0 ≤ r ≤ m let

bm(r) =
∑

x≤r

(
m

x

)
(21)

be the r−th partial sum of the binomial coefficients. Then formula (16) can be
written in a little more elegant form:

βk1,k2 = β
(n)
k1,k2

= β
(n)
k2,k1

= bn+1(min(k1, k2)) · bn+1(n−max(k1, k2)) (22)

because evidently
∑

x>r

(
m
x

)
= bm(m− r − 1).

Now we can easily complete the proof of Theorem 2:

Proof. According to the MacWilliams formula (9) we find that

22nSk1,k2(Cn) =
n∑

m1,m2=0

Sm1,m2(Ĉn)Pk1 (m1)Pk2 (m2)

= 22n−1 ·
(
n

(
n

k1

)(
n

k2

)
+

n∑

m=1

(
n+ 1
m+ 1

)
Pk1(m)Pk2 (m)

)

= 22n−1 ·
(
−
(
n

k1

)(
n

k2

)
+

n∑

m=0

(
n+ 1
m+ 1

)
Pk1(m)Pk2 (m)

)

and due to formula (16) this concludes the proof.

Let now

Bn = (βk1,k2)0≤k1,k2≤n, Yn =
(
n

s

)

0≤s≤n

. (23)
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Then formula (14) evidently can be written in a matrix form as follows:

S(Cn) =
1
2
(Bn − Yn

⊗
Y T

n ). (24)

Since Yn is a row of the binomial coefficients, everywhere in what follows, we shall
refer to the Kronecker product Yn

⊗
Y T

n as a “trivial term” of the matrix S(Cn)
and our attention will be mainly devoted to the matrix Bn (ignoring the mul-
tiplier 1

2 ) as a nontrivial number-theoretical, combinatorial and computational
object.

Example 2. For n = 3 the straightforward calculations with matrix C3 from
Example 1 give the result

S(C3) =

⎛

⎜⎜⎝

7 4 1 0
4 23 8 1
1 8 23 4
0 1 4 7

⎞

⎟⎟⎠ ,

whereas the straightforward calculations by formulas (16) and (23) show that

B3 =

⎛

⎜⎜⎝

15 11 5 1
11 55 25 5
5 25 55 11
1 5 11 15

⎞

⎟⎟⎠ , Y3
⊗

Y T
3 =

⎛

⎜⎜⎝

1 3 3 1
3 9 9 3
3 9 9 3
1 3 3 1

⎞

⎟⎟⎠ ,

so, the equality (24) S(C3) = 1
2 (B3 − Y3

⊗
Y T
3 ) is evidently true.

3 A Recurrent Formula and Fast Computational
Algorithm for Matrices Bn

In this section, we are going to obtain a recurrence relation between the ma-
trix elements of Bn+1 and Bn, using the well-known recurrent relations for the
binomial coefficients.

Lemma 3. For n ≥ 0 and for any r and s, 0 ≤ r, s ≤ n + 1, we have the
following recurrent relation:

β(n+1)
rs = β(n)r,s + β

(n)
r,s−1 + β

(n)
r−1,s + β

(n)
r−1,s−1. (25)

Proof. For r < s we have min(r, s) = r, max(r, s − 1) = s − 1, , so, we find
straightforwardly from formula (16) that

β(n+1)
rs =

∑

x≤r

(
n+ 1
x

)
·
∑

y>s

(
n+ 1
y

)
(26)

=
∑

x≤r

(
n

x

)
·
∑

y>s

(
n

y

)
+

∑

x≤r

(
n

x

)
·
∑

y>s

(
n

y − 1

)
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+
∑

x≤r

(
n

x− 1

)
·
∑

y>s

(
n

y

)
+

∑

x≤r

(
n

x− 1

)
·
∑

y>s

(
n

y − 1

)

= β(n)r,s +
∑

x≤r

(
n

x

)
·
∑

y>s−1

(
n

y

)

+
∑

x≤r−1

(
n

x

)
·
∑

y>s

(
n

y

)
+

∑

x≤r−1

(
n

x

)
·
∑

y>s−1

(
n

y

)

= β(n)r,s + β
(n)
r,s−1 + β

(n)
r−1,s + β

(n)
r−1,s−1.

For r = s we have min(r, s) = r, but max(r, s− 1) = r, so we need to change
the above calculations only in the single term:

∑

x≤r

(
n

x

)
·
∑

y>s

(
n

y − 1

)
=

∑

x≤r

(
n

x

)
·

∑

y>s−1

(
n

y

)
(27)

=
∑

x≤r

(
n

x

)
·

∑

y>r−1

(
n

y

)
=

(
2n −

∑

x>r

(
n

x

))
·

⎛

⎝2n −
∑

y≤r−1

(
n

y

)⎞

⎠

= 22n + β
(n)
r−1,r − 2n

(
2n −

(
n

r

))
= β

(n)
r−1,r + 2n

(
n

r

)

= β
(n)
r,r−1 + 2n

(
n

r

)
,

So, in this case we get

β(n+1)
r,r = β(n)r,r + β

(n)
r,r−1 + β

(n)
r−1,r + β

(n)
r−1,r−1 + 2n

(
n

r

)
(28)

and the general formula for any r and s coincides with (25).

In order to rewrite the recurrence relations (25) in matrix form we introduce the
following notations:

Let Δn+1 be the diagonal matrix: Δn+1 = 2n · diag
((

n
r

))
0≤r≤n

.

Furthermore, for any matrix A let |A stand for the zero-padding of A from its
left and upper sides and let the notations A|, |A and A| have analogous meaning.

Then it’s easy to see that the relations (25) can be written in matrix form as
follows:

Bn+1 = |Bn+Bn|+|Bn+Bn|+Δn+1, Δn+1 = 2·
(
|Δn +Δn|

)
, n ≥ 1 (29)

with initial values B0 = Δ0 = (1).
Formulae (29) provide us with a recursive construction of matrices Bn ”with-

out multiplications” (ignoring the multiplication by 2), so we refer to them as a
”fast algorithm” for Bn.
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Example 3

B1 =
(

0 0
0 1

)
+

(
0 0
1 0

)
+

(
0 1
0 0

)
+

(
1 0
0 0

)
+ 2

((
0 0
0 1

)
+

(
1 0
0 0

))
=

(
3 1
1 3

)
,

B2 =

⎛

⎝
0 0 0
0 3 1
0 1 3

⎞

⎠ +

⎛

⎝
0 0 0
3 1 0
1 3 0

⎞

⎠ +

⎛

⎝
0 3 1
0 1 3
0 0 0

⎞

⎠ +

⎛

⎝
3 1 0
1 3 0
0 0 0

⎞

⎠

+2

⎛

⎝

⎛

⎝
0 0 0
0 2 0
0 0 2

⎞

⎠ +

⎛

⎝
2 0 0
0 2 0
0 0 0

⎞

⎠

⎞

⎠ =

⎛

⎝
7 4 1
4 16 4
1 4 7

⎞

⎠

B3 =

⎛

⎜⎜⎝

0 0 0 0
0 7 4 1
0 4 16 4
0 1 4 7

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

0 0 0 0
7 4 1 0
4 16 4 0
1 4 7 0

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

0 7 4 1
0 4 16 4
0 1 4 7
0 0 0 0

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

7 4 1 0
4 16 4 0
1 4 7 0
0 0 0 0

⎞

⎟⎟⎠

+2

⎛

⎜⎜⎝

⎛

⎜⎜⎝

0 0 0 0
0 4 0 0
0 0 8 0
0 0 0 4

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

4 0 0 0
0 8 0 0
0 0 4 0
0 0 0 0

⎞

⎟⎟⎠+

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

15 11 5 1
11 55 25 5
5 25 55 11
1 5 11 15

⎞

⎟⎟⎠

and so on.

Formulae (29) show that in fact Bn is the sum of the results of the n−th steps
of two cellular automata, where Bn is a 2D cellular automata and its diagonal
Δn is one-dimensional.

We found most interesting the behavior of Bn modulo some integer m that we
observedwith the help ofWSCONW.nb, aMATHEMATICAprogram for visualiz-
ing formulae (29) thatwas written by the authors of this paper. The structure of the
resulting images reflects the difficulties related to studying these partial binomial
sums, difficulties which have been mentioned by many authors (see, e.g. [5,6]).

Fig. 1. WSCONW[18,3], WSCONW[18,7]
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Fig. 2. WSCONW[227,23], WSCONW[193,21]

Fig. 3. WSCONW[361,121], WSCONW[196,49]

Some examples of the visualizations of matrices are given below. Notice the
effect of the optical illusions of ”looking through the frosted glass” in the case
n = 361,m = 121 and askew deformations in the case n = 196,m = 49 on the
Figure 3.
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Abstract. We derived the quantitative estimates for geometrical pa-
rameters of the stability domains of the Lagrange triangle in the re-
stricted three-body problem. We have shown that these domains are
plane ellipse-similar figures, extended along a tangent to a circle, on
which the Lagrange triangular solutions are located. We have proposed
the heuristic algorithm for finding the maximal sizes of the stability
domains.

History of the restricted three-body problem has been starting since famous
works of Euler and Lagrange [1,2]. Remind that the problem is to study motion
of the body of infinitesimal mass in the Newtonian gravitational field gener-
ated by two bodies, having finite masses and moving in three-dimensional space
on Kepler orbits about their common center of mass. Many outstanding math-
ematicians and mechanicians investigated this problem in the 19th and 20th
centuries. One should mention such names as K. Gauss, K. Jacobi, G. Hill, H.
Poincaré, A. Liapunov, T. Levi–Civita, G. Birkhoff, E. Whittaker, J. Chazy,
N.D. Moiseev and many other scientists who studied analytical, qualitative, and
numerical properties of the restricted 3-body problem. A comprehensive review
of this problem was done in the famous book of V. Szebehely [3].

The Liapunov stability of the Lagrange triangle was investigated on the basis
of the KAM-theory [4,5,6], which was developed by A. Kolmogorov, V. Arnold,
and J. Moser. It is the metric theory of the existence of quasi-periodic solutions of
the Hamiltonian systems determined on many-dimensional toruses. Linearization
of Hamiltonian systems in the vicinity of stationary solutions (the equilibrium
solutions) always generates linear systems with symplectic matrix[7,8], i.e., any
equilibrium solutions of the Hamiltonian system can be linearly stable only in
such cases when all eigenvalues of the matrix of first approximation are purely
imaginary numbers. Therefore, the theorems of the Liapunov First Method [9]
cannot be applied. Just this situation stimulated development of the KAM-
theory. Also the book of A.P. Markeev [10] and article of A.G. Sokol’sky [11]
should be pointed out who investigated a problem of Liapunov stability of the
Lagrange solutions in the “resonant” case, when pure imaginary eigenvalues of
symplectic matrix of linear approximation are rationally commensurable.
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In this article we investigate geometrical form and dimensions of the Liapunov
stability zones of the Lagrange solutions in the restricted circular three-body
problem. As the analytical methods are unsuitable for this, we have made a
computing experiment with the system Mathematica [12].

X

Y

G

P0 P1

P2

a�

X

Y

GP0 P1

P2

b�

X

Y

GP0 P1

P2

c�

Fig. 1. Gxy is a rotating Cartesian coordinate system; a) equilateral Lagrange triangle
with masses m0 �= 0, m1 �= 0, m2 �= 0; b) equilateral Lagrange triangle, representing
the restricted 3-body problem (m2 = 0); c) perturbed Lagrange triangle

Let two particles P0 and P1 having non-zero masses m0 and m1, respectively,
and point P2 of “zero” mass be situated in the Cartesian coordinate plane (see
Fig. 1). Triangle P0P1P2 represents an elementary model of the Newton three-
body problem for which Lagrange showed that the differential equations of mo-
tion in the three-dimensional space have exact particular solution. This solution
is geometrically represented by the equilateral triangle rotating about the center
of mass of the system G. Obviously, in the case of m2 = 0 the center of mass G is
situated on the side P0P1 of the triangle that connects masses 1−μ, μ. Triangle
P0P1P2 rotates with constant angular velocity being equal to angular velocity
of gravitating masses rotating about the point G on circular orbits according to
Kepler’s laws [13].

Does such triangular configuration in the restricted three-body exist that is
stable in the first approximation and in Liapunov’s sense? This, apparently, sim-
ple problem has been solved completely only 200 years later after its formulation.

In 1875 Routh [14] found necessary conditions of linear stability of the La-
grange triangle in general case of planar three-body problem (m0 �= 0, m1 �= 0,
m2 �= 0, and a force of their mutual attraction is given by F∼ 1

rn , the case n =
2 corresponds to the force of Newton’s attraction) in the form

3
(
n+ 1
n− 3

)2

<
(m0 +m1 +m2)2

m0m1 +m0m2 +m1m2
, n < 3.

For n ≥ 3 and any m0, m1, m2 the Lagrange triangle is unstable. The case n = 2,
obviously, satisfies the Routh condition.

A.M. Liapunov studied the generalized spatial three-body problem [9] and
proved correctness of the Routh conditions in this case.
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Using notations m0 = 1−μ, m1 = μ, m2 = 0, n = 2, we can rewrite the Routh
inequality for the restricted circular three-body problem in a simpler form [13]:

27μ(1 − μ) < 1. (1)

Consequently, if condition (1) is satisfied, the Lagrange triangle in the re-
stricted circular three-body problem is stable in the first approximation. Inequal-
ity (1) takes place for any value of μ from an interval

0 < μ <
1
2

(
1 −

√
23
27

)
≈ 0.0385209. (2)

For the values μ satisfying the inequality

0.0385209 ≈ 1
2

(
1 −

√
23
27

)
< μ ≤ 1

2
,

the Lagrange triangle is unstable in the first approximation. We can write two
numbers playing a role of frequencies in linear model of this problem:

⎧
⎨

⎩
σ1 =

√
2
2

√
1 +

√
1 − 27μ(1 − μ),

σ2 =
√
2
2

√
1 −

√
1 − 27μ(1 − μ).

(3)

It is supposed, obviously, that parameter μ in (3) satisfies inequality (2).
Arnold – Moser theorem [10] contains “a condition of the absence of frequency

resonances”
k1σ1 + k2σ2 �= 0, (4)

where k1, k2 are integers satisfying the inequality 0 < |k1| + |k2| ≤ 4.
Here the following problem arises: find all values of the parameter μ from the

interval (2) for which the resonant equality is precisely satisfied. This problem
has two solutions [10]

{
μ1 = 45−

√
1833

90 ≈ 0.024294 < 0.0385209,
μ2 = 15−

√
213

30 ≈ 0.013516 < 0.0385209.
(5)

For them
⎧
⎨

⎩
σ
(1)
1 = 2√

5
, σ

(1)
2 = 1√

5
,

σ
(2)
1 = 3

2

√
2
5 , σ

(2)
1 = 1

2

√
2
5 .

(6)

One can readily see from (6) that frequencies σ1 and σ2 are irrational numbers
and, nevertheless, frequency resonances present, the first for k1 = 1, k2 = 2, the
second for k1 = 1, k2 = 3. In other words, for μ = μ1 we have a frequency
resonance σ(1)1 = 2σ(1)2 , and for μ = μ2 we have a resonance σ(2)1 = 3σ(2)2 . The
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resonance σ(1)1 = 2σ(1)2 refers to as the third order resonance, and the resonance
σ
(2)
1 = 3σ(2)2 is the 4th order resonance [10].
Except for condition (4), Arnold–Moser theorem contains also the inequality

c20σ
2
2 + c11σ1σ2 + c02σ

2
1 �= 0, (7)

where c20, c11, c02 are the coefficients in the fourth-order term in the expansion
of the Hamiltonian in the neighborhood of equilibrium points reduced to the
normal Birkhoff form [15].

Calculations of A.P. Markeev have shown that in interval (2) there is only one
value

μ3 ≈ 0.01091367, (8)

which transforms inequality (7) into equality.
Thus, all over again by means of the theorems of Arnold [5] and Deprit [15]

it has been proved that the Lagrange triangle is stable not only in the first ap-
proximation, but also in Liapunov’s sense at all values of μ from the interval (2),
except for three specified values μ1, μ2, and μ3. More precisely, A.M.Leontovich
in the article [16] based on Arnold theorem [5] proved stability in Liapunov’s
sense for all μ satisfying inequality (2), except for some set of a zero measure
theoretically generating frequency resonances.

At first A.M.Leontovich in article [16] based on the Arnold theorem [5] proved
stability in Liapunov sense for all μ satisfying inequality (2), except for some set
of a zero measure, theoretically generating frequency resonances. Afterwards A.
Deprit showed [15] that this set consists of only three values μ1, μ2, and μ3.

Research of stability of the Lagrange triangle in Liapunov sense for these three
values of μ was executed by A.P. Markeev [10]. He proved that the Lagrange
triangle for μ = μ1, μ = μ2 is unstable in Liapunov sense and stable for μ = μ3.

In our article we investigate properties of the stability domain of stationary
solutions of the restricted three-body problem using for this purpose the algo-
rithms and methods of the Computer Algebra System Mathematica [12].

The differential equations determining motion of the body P of mass m = 0
in the steadily revolving Cartesian coordinates P0xyz are [3,13]:

⎧
⎨

⎩

x′′ − 2y′ = ∂Ω
∂x ,

y′′ + 2x′ = ∂Ω
∂y ,

z′′ = ∂Ω
∂z ,

(9)

where
Ω = 1

2 (x2 + y2) + 1−μ
r1

+ μ
r2
,

μ = m2
m1+m2

,
(
0 < μ ≤ 1

2

)
,

r21 = (x + μ)2 + y2 + z2,
r22 = (x − 1 + μ)2 + y2 + z2.

The program written in the system “Mathematica” codes [12] supposes graphic
representation of equilibrium points in the restricted 3-body problem for different
values of parameter μ. It is simultaneously possible to obtain the coordinates of
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Fig. 2.

equilibrium points of the model under consideration. For example, for μ = 0.5 and
μ = 0.01, we have obtained the results presented in fig. 2.

Let us consider a specific “triangular” stationary point L4 (similar results are
obtained for the point L5) with coordinates:

L4 =

(
1 − 2μ

2
,

√
3

2
, 0

)
. (10)

Using the system ”Mathematica” [12], we solve system (9) for different values
of parameter μ and on large enough interval of time in the form of interpolation
functions.

Let us consider the plane restricted 3-body problem (z = 0), for example, for
μ = 0.01 when the Lagrange triangle is stable in the Liapunov sense.

Let x(0) = x1, y(0) = y1, x′(0) = 0, y′(0) = 0, where x1 = 1−2μ
2 , y1 =

√
3
2 .

Then solving equations (9) for 0 < t < 10000, for example, we obtain by means
of the following instruction (s11 and s22 are the right-hand sides of equations (9)):

r1=NDSolve[{ x”[t]-2y’[t]==s11,x[0]==x1 ,x’[0]==0,
y”[t]+2x’[t]==s22,y[0]==y1 ,y’[0]==0},{x,y},{t,0,10000}]

{{x→InterpolatingFunction[{{0.,10000.}},¡¿],
y→InterpolatingFunction[{{0.,10000.}},¡¿]}}

The graphs of the obtained functions have been constructed by means of the
following instruction:
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ParametricPlot[Evaluate[{x[t],y[t]}/.r1],{t,0,t1},
AxesLabel→{”x[t]”,”y[t]”},AxesOrigin→{x1,y1}],

where solutions are represented in the form of interpolation functions, which
can be presented graphically for different integration intervals by replacing t1
with specific values (coordinate axes go through the point L4). Figure 3 presents
the graphs for intervals : 0 < t < 250, 0 < t < 1000, 0 < t < 5000, and
0 < t < 10000.

Fig. 3.

Considering scales of the coordinate axes one can easily see from Fig. 3 that
the trajectory does not go far away from the initial point.

Let Δr(t) be the local distance of point on the trajectory from the stationary
point L4 for t. Figure 4 shows the behavior of function Δr(t) for intervals of t.

Let us now change initial conditions by perturbing a little bit the initial co-
ordinates. Let

x(0) = x1 + αCos[ϕ], y(0) = y1 + αSin[ϕ],
x′(0) = 0, y′(0) = 0. (11)

Then, as a result of numerical integration, we obtain, for example, for ϕ = π/4
and α = 0.014 that

r2=NDSolve[{x”[t]-2y’[t]==s11,x[0]==x1+αCos[ϕ] ,x’[0]==0,
y”[t]+2x’[t]==s22,y[0]==y1+αSin[ϕ] ,y’[0]==0},{x,y},{t,0,1000}]

{{x→InterpolatingFunction[{{0.,1000.}},¡¿],
y→InterpolatingFunction[{{0.,1000.}},¡¿]}}

The graphs of obtained functions for 0 < t < 250 and 0 < t < 1000 and
corresponding graphs of function Δr(t) are shown in Fig. 5.

Let now ϕ = π/4 and α = 0.015. Then, as a result of numerical integration,
we obtain
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Fig. 4.

r3=NDSolve[{x”[t]-2y’[t]==s11,x[0]==x1+αCos[ϕ] ,x’[0]==0,

y”[t]+2x’[t]==s22,y[0]==y1+αSin[ϕ] ,y’[0]==0},{x,y},{t,0,700}]

{{x→InterpolatingFunction[{{0.,700.}},¡¿],
y→InterpolatingFunction[{{0.,700.}},¡¿]}}

and the corresponding graphs for 0 < t < 100, 0 < t < 400, and 0 < t < 700 are
presented in Fig. 6.

Fig. 5.
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Fig. 6.

Let us compare the results presented in Figs. 4 and 5. We see that in the
first case the trajectory does not abandon the neighborhood of origin during
a sufficiently long period of time. In the second case, for values ϕ = π/4 and
α = 0.015, the trajectory quickly enough “leaves” the origin (Fig. 6).

Really, the value Δx for t ≥ 200 grows quickly enough, and the graphs dis-
posed at the left in Fig. 6, show that the value Δy also increases not only as
function of Δx, but also as function of time t.

The computing experiments presented in figures 2 - 5 show that on the pa-
rameter interval 0.014 < α < 0.015, there is some value ᾱ , that at α < ᾱ , the
trajectory “rotates” around the position of equilibrium L4.

It is possible to assert, on the basis of a big numerical experiment, that for
specific value, ϕ = π/4, changing initial conditions under formulas (11) up to
some value α, which is in the interval 0.014 < α < 0.015, (we shall designate it
through α max)), we obtain the trajectory, which “rotates” around the position
of equilibrium L4 and does not move “far” from point L4, and for α > αmax the
trajectory leaves from a point L4. The angle ϕ shows the direction of an initial
vector-position in local coordinate system.

In Table 1 intervals are presented in which there is a “critical” value αmax for
other ϕ values.
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Fig. 7.

These results allow us to present the domain of attraction (domain of stability)
of point L4 (Fig. 7). Calculations show that the “real” domain of stability of
point L4 for μ = 0.01 is the figure being similar to ellipse. It is prolate along a
trajectory of point L4 in a fixed barycentric coordinate system.

From Table 1 we see also that for α ∼= 0.013 we have stability, and the domain
of stability is a circle with such radius.

Table 1.

ϕ αmax

0 0.027 < αmax < 0.028

π/10 0.018 < αmax < 0.019

2π/10 0.015 < αmax < 0.016

3π/10 0.013 < αmax < 0.014

4π/10 0.014 < αmax < 0.015

5π/10 0.016 < αmax < 0.017

6π/10 0.020 < αmax < 0.021

7π/10, 0.033 < αmax < 0.034

8π/10 0.093 < αmax < 0.094

9π/10 0.11 < αmax < 0.12

π 0.033 < αmax < 0.034

11π/10 0.021 < αmax < 0.022

12π/10 0.017 < αmax < 0.018

13π/10 0.015 < αmax < 0.016

14π/10 0.015 < αmax < 0.016

15π/10 0.017 < αmax < 0.018

16π/10 0.022 < αmax < 0.023

17π/10 0.037 < αmax < 0.038

18π/10 0.28 < αmax < 0.29

19π/10 0.059 < αmax < 0.060

17π/20 0.22 < αmax < 0.23
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Table 2.

ϕ Δr(t)max ϕ Δr(t)max

0 0.234896 π/10 0.379857

2π/10 0.519831 3π/10 0.607559

4π/10 0.586242 5π/10 0.474076

6π/10 0.330625 7π/10 0.189032

8π/10 0.0525061 9π/10 0.0868816

π 0.216706 11π/10 0.33713

12π/10 0.435889 13π/10 0.506919

14π/10 0.497495 15π/10 0.420164

16π/10 0.306633 17π/10 0.179645

18π/10 0.0475908 19π/10 0.0942737

Let us denote by Δr(t) the local distance of a point on a trajectory from the
stationary point L4 for t. We shall calculate the maximal distance, on which
the trajectory for α = 0.013 and for different values of parameter ϕ escapes.
These results are presented in table 2. They are obtained for interval of time
0 < t < 1000.

We see from Table 2 that the maximal distance for ϕ ∈ (0, 2π), is Δr =
0.607559. It means that if we shall change initial conditions under formulas (11)
for α = 0.013, the trajectory will not leave essentially the considered position
of equilibrium L4, and the local distance of a point on a trajectory from the
stationary point L4 will not be more than 0.607559 (Fig. 8)

In case of μ3 ≈ 0.01091367, when the following equality takes place

c20σ
2
2 + c11σ1σ2 + c02σ

2
10 = 0,

Fig. 8.
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Fig. 9.

inverse to condition of Arnold–Moser (7), our results essentially do not differ
from results for value μ = 0.01.

Let us consider also the plane restricted 3-body problem for μ = 0.001.We shall
change initial conditions under formulas (11), for example, for ϕ = 0. Besides we
shall represent in figures the results of direct numerical integration of equations
(9). The following graphs are obtained for different values of parameter α.

it can be seen from Figure 9 that for α = 0.005 the trajectory “rotates” around
the position of equilibrium L4 and does not leave it essentially. For α = 0.01 and
α = 0.023, the trajectory “rotates” around the position of equilibrium L4 as well,
but together with the growth of α begins more and more to move away from it.

For α = 0.023, the trajectory “flees” from point L4.
Thus, the computing procedures implemented in system “Mathematica” allow

us to draw some qualitative conclusions on estimations of the sizes and forms of
domains of stability on large enough intervals of time (of the order of thousand
turns of the Lagrange triangle in a non-rotating Cartesian coordinate system).
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Abstract. The problem of studying the stability of equilibrium solution
of the second order non-autonomous Hamiltonian system, containing a
small parameter, is considered. The main steps in solving this problem
and application of the computer algebra systems for doing necessary
calculations are discussed. As an example, we analyze stability of some
equilibrium solutions in the elliptic restricted (2n + 1)-body problem.
The problem is solved in a strict nonlinear formulation. All calculations
are done with the computer algebra system Mathematica.

1 Introduction

The theory of stability of the Hamiltonian systems gives quite general methods
for solving many problems of motion stability [1]. But usually application of this
theory requires quite cumbersome analytical calculations and so the stability
problem can be totally solved only with a computer and modern software. Be-
sides, in every concrete case one needs both to adopt already known algorithms
of calculations and to develop some new ones.

A typical example is the restricted (n+1)-body problem [2] when a body Pn of
infinitesimal mass moves in the gravitational field generated by the system of n
massive bodies P0, . . . , Pn−1 whose motion is determined by some exact solution
of the corresponding n-body problem. Although differential equations of motion
of the body Pn can be written in the Hamiltonian form, they are essentially
nonlinear and are not integrable in general. But some equilibrium solutions of
these equations can be usually found and the problem is to investigate their
stability. It should be emphasized that this problem is very complicated and
can be solved only in a strict nonlinear formulation on the basis of the KAM-
theory [3,4,5]. Application of this theory implies construction of a sequence of
the Birkhoff canonical transformations reducing the Hamiltonian function to the
normal form. In the most cases this can be done only with some modern computer
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algebra system. The case of planar circular restricted four-body problem [6], for
example, when perturbed motion of the body P3 is described by the fourth order
autonomous Hamiltonian system, was analyzed in detail only owing to using the
system Mathematica [7].

If the system considered is non-autonomous the stability problem becomes
much more complicated, even in the simplest case of the second order Hamilto-
nian system. In the present paper we investigate stability of some equilibrium
solutions in the elliptic restricted (2n+1)-body problem. In section 2 we obtain
equations of the perturbed motion in the form of the Hamiltonian system of
two differential equations. Section 3 is devoted to studying the stability of equi-
librium solution in linear approximation. In sections 4 and 5 we construct the
canonical transformation reducing the Hamiltonian function to its normal form.
In section 6 we analyze the influence of the fourth order resonance on stability
of the equilibrium solution. And we conclude the paper in the last section. Note
that all symbolic and numerical calculations are done with the computer algebra
system Mathematica [7].

P1

P2

P3

P4

P5

P6

P0 x

y

Fig. 1. Geometrical configuration of the system for n = 3

2 Equations of the Perturbed Motion

Let us consider the system of 2n bodies moving in the Oxy plane of the barycen-
tric inertial frame on similar elliptic orbits about their common center of mass
(see Fig. 1). The bodies P1, . . . , Pn having equal masses m1 and Pn+1, . . . , P2n

having equal masses m2 at any instant of time form two regular concentric
polygons with n sides. The polygons P1P2 . . . Pn and Pn+1Pn+2 . . . P2n may be
homothetic when the bodies Pk, Pn+k are situated on the same half-line P0Pn+k

or polygon Pn+1Pn+2 . . . P2n is rotated with respect to P1P2 . . . Pn about Oz
axis at the angle π/n (this case is shown in Fig. 1 for n = 3). Existence of the
corresponding solutions in the 2n-body problem was proved in [8].



Studying the Stability of the Second Order 183

Using cylindrical coordinates (r, ϕ, z), we can write equations determining the
corresponding trajectories of the bodies in the form

rj =
p

1 + e cosν
, rn+j =

pR

1 + e cosν
,
dν

dt
= ω(1 + e cosν)2 ,

ϕj = ν +
2π
n
j , ϕn+j = ν +

2π
n
j + β , zj = zn+j = 0 , (j = 1, . . . , n) (1)

where p, pR, e are parameters and eccentricity of elliptic orbits of the bodies,
respectively, ν is a true anomaly, β = 0, π

n , and parameter ω is given by

ω2 =
Gm1

p3
(S1 + μf(R, n, β)) . (2)

Parameter μ in (2) gives a ratio of masses μ = m2/m1, G is a gravity constant,

S1 =
n−1∑

k=1

(
sin

(
πk

n

))−1

,

f(R, n, β) =
n∑

k=1

1 −R cos
(
2πk
n − β

)

(
1 +R2 − 2R cos

(
2πk
n − β

))3/2
,

and parameter R is determined as a root of the equation

1
4
S1(μ−R3) + f

(
1
R
, n, β

)
− μR3f(R, n, β) = 0 . (3)

Let us consider motion of the body P0 of infinitesimal mass in the gravitational
field generated by the bodies P1, . . . , P2n. Obviously, the origin is an equilibrium
point of the body P0 and under the appropriate initial conditions it will move
only along the Oz axis that is just an axis of symmetry of the system. Takin
into account (1) and using true anomaly ν as an independent variable, we can
write equations of motion in the Hamiltonian form

dz

dν
=
∂H

∂pz
,
dpz

dν
= −∂H

∂z
, (4)

where the Hamiltonian function H is given by

H =
p2z
2

+
1

1 + e cosν

(
e cosν

2
z2 − Gm1n

ω2p3

(
1√

1 + z2
+

μ√
R2 + z2

))
. (5)

One can readily verify that equations (4) have a solution z = pz = 0. The
Hamiltonian (5) is analytic function with respect to coordinate z and momentum
pz and in the neighborhood of the equilibrium solution it can be represented in
the form

H = H2 +H4 + . . . , (6)
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where Hk is the kth order homogeneous polynomial with respect to z and pz

and its coefficients are 2π-periodic functions of the independent variable ν. The
quadratic form H2 and the fourth order form H4 are given by

H2 =
p2z
2

+
a+ e cosν
1 + e cos ν

z2

2
, H4 = − 3bz4

8(1 + e cos ν)
, (7)

where
a =

Gm1n

ω2p3

(
1 +

μ

R3

)
, b =

Gm1n

ω2p3

(
1 +

μ

R5

)
. (8)

Thus, in order to investigate stability of the equilibrium solution we have to
normalize the terms H2, H4, . . . in (6) successively and to apply some general
theorems on stability of solutions of the Hamiltonian systems (see [1]).

3 Stability of the Linearized System

Stability analysis of any Hamiltonian system is started from studying the lin-
earized equations of the perturbed motion. They are obtained from (4) if only
quadratic part H2 of the Hamiltonian (6) is taken into account and can be
written in the form

dz

dν
= pz ,

dpz

dν
= −a+ e cos ν

1 + e cos ν
z . (9)

The system (9) is reduced to the Hill equation that was investigated in detail
in [9]. It was shown there that domains of instability of its equilibrium solution
exist only in the neighborhood of the points a = (2k−1)2/4 (k = 1, 2, . . .) in the
plane of parameters Oea. Note that equation (3), determining possible values of
R for any μ ≥ 0, n ≥ 2, can be solved only numerically. But using the system
Mathematica, we can find R with arbitrary precision. Taking into account (2),
(3), (8), we can easily visualize the function a = a(μ) for any n. In the case of
n = 3, β = π/3, for example, the corresponding dependence a = a(μ) is shown
in Fig. 2. As for small values of the parameter μ equation (3) has three roots,
three corresponding values of a exist.

Fig. 2 shows that there are only three values of the parameter μ for which the
condition a = (2k−1)2/4 (k = 5, 7, 9) is fulfilled. Note that boundaries a = a(e)

0.005 0.01 0.015 0.02 0.025
Μ

7.5
10

12.5
15

17.5
20

22.5

a

2 4 6 8
Μ

3.5

4

4.5

5

a

Fig. 2. Dependence a = a(μ) for n = 3, β = π/3
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of the corresponding domains of instability were found in [9] in the form of power
series in e. Using (2), (3), (8), we can find the corresponding curves μ = μ(e) in
the Oeμ plane. They are

μ = 0.0174023− 0.0242406e2− 0.0240934e4± 2.95904× 10−6e5 −
−0.0159875e6± 7.82116× 10−6e7 − 0.00894437e8± 1.09707× 10−5e9 , (10)

μ = 0.0187383 + 0.0141168e2 + 0.00408211e4− 0.000495739e6±
±1.34629× 10−8e7 − 0.002313e8± 2.50386× 10−8e9 , (11)

μ = 0.00107148 + 0.00585103e2 + 0.0109524e4 + 0.0078372e6 +
+0.00247988e8± 5.67624× 10−11e9 . (12)

Expressions (10), (11), (12) show that a bandwidth of the domain of instability
in the neighborhood of the point a = (2k − 1)2/4 (k = 5, 7, 9) is O(ek) and de-
creases very fast if the number k is growing up. As coefficients of the correspond-
ing terms ek in (10), (11), (12) are very small we can conclude that equilibrium
solution of equations (4) is stable in linear approximation for n = 3, β = π/3
for almost all values of the mass parameter μ. The same conclusion is true in
the case of n = 3, β = 0.

2 4 6 8 10 12
Μ

4
5
6
7
8
9

a

a�25�4

2 4 6 8 10 12 14
Μ

2.2
2.3
2.4
2.5
2.6
2.7

a

a�9�4

Fig. 3. Dependence a = a(μ) for n = 9, β = π/3

Note that parameter a decreases if the number n is growing up. For n = 9, β =
π/3, for example, possible values of a are shown in Fig. 3. Now in addition to the
domain of instability in the neighborhood of the point a = 25/4 two additional
domains arise in the neighborhood of the point a = 9/4, their boundaries are
given in (13)–(15). These domains are a little bit larger, their bandwidth is O(e3)
but it remains quite small because of smallness of the corresponding coefficients
of e3.

μ = 0.332199 + 0.385372e2 + 0.301524e4± 0.000047043e5 +
+0.27319e6± 0.00010444e7 + 0.25835e8± 0.00016834e9 , (13)

μ = 0.277417 + 0.679105e2± 0.028296e3 + 1.18549e4± 0.0992603e5 +
+2.47899e6± 0.309623e7 + 5.78482e8± 0.95982e9 , (14)
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μ = 3.60468− 8.82408e2 ∓ 0.36767e3 + 6.19711e4 ± 0.510322e5−
−9.63604e6∓ 1.17605e7 + 0.871407e8± 0.126048e9 , (15)

With further growth of the number n the interval of parameter a changing
decreases. Numerical analysis of the expressions (2), (3), (8) shows that for
900 < n < 50000 it belongs to the interval 1

4 < a < 9
4 and, hence, there are not

any domains of instability of the equilibrium solution, at least, if parameter e
is sufficiently small. This conclusion is true in both cases β = 0 and β = π/n.
Further we’ll consider only such values of parameters of the system for which
the equilibrium solution is linearly stable.

4 Normalization of the Quadratic Part of the Hamiltonian

It is well-known (see [1]) that equilibrium solution of the Hamiltonian system of
differential equations, being stable in linear approximation, may become unsta-
ble if nonlinear terms in the expansion (6) are taken into account. In order to
investigate its stability in a strict nonlinear formulation we must construct the
Birkhoff canonical transformation [10] reducing the Hamiltonian function (6) to
its normal form.

Let us start from normalizing the quadratic part H2 of the Hamiltonian. One
can readily see that H2 is an analytic function of parameter e in the domain
|e| < 1 and can be represented in the form

H2 =
1
2
(p2z + az2) +

z2

2
(a− 1)

∞∑

k=1

(−e cosν)k . (16)

Hence, for its normalization we can apply an algorithm developed in [11]. Do-
ing the corresponding symbolic calculations with the system Mathematica, we
construct the canonical transformation

z → Z11q + Z12p , pz → Z21q + Z22p , (17)

where the coefficients Z11, Z12, Z21, Z22 are represented in the form of power
series in e and are given by

Z11 =
1√
a

+
(a− 1)e cosν√

a(4a− 1)
+

√
ae2(10− 2a− 8a2 + (5 − 22a+ 8a2) cos(2ν))

8(4a− 1)2
+

+
√
a(a− 1)e3

16(4a− 1)3(4a− 9)
((−441 + 52a− 80a2 + 64a3) cos ν −

−(4a− 1)2(4a− 11) cos(3ν)) +
√
ae4

768(4a− 1)4(4a− 9)
(−11664 + 783a+

+37299a2 − 133968a3 + 148896a4 − 44544a5 + 768a6 − 8(804− 6563a+
+21067a2 − 36338a3 + 23816a4 − 5344a5 + 128a6) cos(2ν) +

+(4a− 1)3(114− 149a+ 31a2 + 4a3) cos(4ν)) ,
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Z12 = −2(a− 1)e sin ν
4a− 1

+
(a+ 2)e2 sin(2ν)

8(4a− 1)
− (a− 1)e3 sin ν

24(4a− 1)3(4a− 9)
(−234 +

+205a− 2580a2 + 1296a3 − 64a4 + (4a− 1)2(18 − 13a+ 4a2) cos(2ν)) −

− e4 sin ν
384(4a− 1)3(4a− 9)

((1656− 1493a+ 233a2 + 11796a3 − 6160a4 +

+448a5) cos ν + (4a− 1)2(72 − 157a+ 113a2 − 28a3) cos(3ν)) ,

Z21 =
(1 − 3a+ 2a2)e sin ν√

a(4a− 1)
+

√
a(5a− 8)e2 sin(2ν))

8(4a− 1)
+

+
√
a(a− 1)e3

48(4a− 1)3(4a− 9)
((189 + 3939a− 9348a2 + 3792a3 − 192a4) sin ν −

−(4a− 1)2(81− 23a− 4a2) sin(3ν)) +
√
ae4 sin(2ν)

384(4a− 1)3(4a− 9)
(−4992 +

+23192a− 60308a2 + 53460a3 − 15296a4 + 704a5 −
−(4a− 1)2(384− 439a+ 11a2 + 44a3) cos(2ν)) ,

Z22 = 1 − (a− 1)e cosν
4a− 1

+
e2

8(4a− 1)2
(2(a− 1)2(3 − 4a)− (4 − 19a+

+14a2 − 8a3) cos(2ν)) +
(a− 1)e3 cos ν

8(4a− 1)3(4a− 9)
(36 − 105a+ 860a2 − 640a3 +

+128a4 − 2(3 − 14a+ 8a2)2 cos(2ν)) +
e4

768(4a− 1)4(4a− 9)
(−4536 +

+24372a− 133245a2 + 361011a3− 456528a4 + 259488a5 − 53760a6 +
+768a7 + 8(396− 2983a+ 10738a2 − 27839a3 + 34386a4 − 22600a5 +

+5600a6 − 128a7) cos(2ν) − (4a− 1)3(288 − 742a+ 601a2 −
−143a3 − 4a3) cos(4ν)) . (18)

Note that transformation (17) exists only if the condition a �= (2k − 1)2/4
(k = 1, 2, . . .) is fulfilled. This just corresponds to the considered case of linearly
stable equilibrium solution. And normal form obtained for the quadratic part
H2 of the Hamiltonian is

H̃2 =
ω

2
(p2 + q2) , (19)

where

ω =
√
a

(
1 +

3(a− 1)e2

4(4a− 1)
− 3(14 − 69a+ 195a2 − 140a3)e4

64(4a− 1)3

)
. (20)
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5 Normalization of the Fourth Order Term

On substituting (17), (18) into (7) we can rewrite the fourth order term H4 in
the form

H̃4 =
4∑

j=0

h̃
(4)
j q4−jpj . (21)

Coefficients h̃(4)j in (21) are periodic functions of ν and are given by

h̃0 = − 3b
8a3/2

+
9be cosν

8a3/2(4a− 1)
− 3be2

32a3/2(4a− 1)2
(9 + 5a+ 20a2 − 16a3+

+2(3 + 5a− 16a2 + 8a3) cos(2ν))− 9be3

32a3/2(4a− 1)3(4a− 9)
(2(18 + 73a− 45a2+

+31a3 − 48a4 + 16a5) cos ν + (3 + 25a− 78a2 − 14a3 + 96a4 − 32a5) cos(3ν))+

+
be4

512a3/2(4a− 1)4(4a− 9)
(3(1026 + 7833a+ 7935a2 − 39517a3 + 90220a4−

−85296a5 + 28864a6− 2560a7) + 8(243 + 3276a− 8423a2 + 23056a3− 43112a4+

+35648a5− 11968a6 + 1280a7) cos(2ν) + a(666 + 1036a− 17189a2 + 28588a3−

−16048a4 + 9152a5 − 2560a6) cos(4ν)) ,

h̃1 =
3(a− 1)be sin ν
a(4a− 1)

+
9be2 sin(2ν)
16a(4a− 1)2

(6 − 5a− 4a2)+

+
be3 sin ν

16a(4a− 1)3(4a− 9)
(882− 1375a+ 4936a2 − 8592a3 + 4384a4−

−640a5 + (306 + 517a− 4252a2 + 5424a3 − 3040a4 + 640a5) cos(2ν))−

− 3be4 sin(2ν)
512a(4a− 1)4(4a− 9)

(96(75 + 15a+ 119a2 + 118a3 − 1134a4 + 832a5−

−160a6)+2(72+2293a−7627a2−7404a3+35216a4−31040a5+7680a6) cos(2ν)) ,

h̃2 = −9(a− 1)2be2 sin2 ν
(4a− 1)2

√
a

+
27(2− 3a− 3a2 + 4a3)be3 cos ν sin2 ν

4
√
a(4a− 1)3

−

− 3be4 sin2 ν
128

√
a(4a− 1)4(4a− 9)

(−7308 + 24772a− 86939a2 + 173620a3−

−149584a4 + 48320a5 − 4096a6 − (684 + 4060a− 29957a2 + 50860a3−

−39088a4 + 18752a5 − 4096a6) cos(2ν)) ,

h̃3 =
12(a− 1)3be3 sin3 ν

(4a− 1)3
+

9(a− 1)2be4 cos ν sin3 ν
2(4a− 1)4

(2 + a− 12a2) ,
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h̃4 = −6
√
a(a− 1)4be4 sin4 ν

(4a− 1)4
. (22)

The second step in normalization of the Hamiltonian is to find such canonical
transformation that reduces the fourth order term H4 to its the simplest form.
Following to Birkhoff [10], we seek the corresponding generating function in the
form of the fourth order polynomial

S(p̃, q, ν) = p̃q +
4∑

j=0

sj(ν)q4−j p̃j , (23)

where coefficients sj(ν) are 2π-periodic functions. Then new canonical variables
q̃, p̃ and old ones q, p are connected by the following relationships

q̃ =
∂S

∂p̃
= q+

4∑

j=1

jsj(ν)q4−j p̃j−1 , p =
∂S

∂q
= p̃+

3∑

j=0

(4− j)sj(ν)q3−j p̃j . (24)

Obviously, relationships (24) are just the equations with respect to old canon-
ical variables q, p which are analytic functions of new canonical variables q̃, p̃
in the neighborhood of the point q̃ = p̃ = 0. Solving (24), we obtain

q = q̃ −
4∑

j=1

jsj(ν)q̃4−j p̃j−1, p = p̃+
3∑

j=0

(4 − j)sj(ν)q̃3−j p̃j . (25)

Then new Hamiltonian function Ĥ(q̃, p̃, ν) is determined as

Ĥ(q̃, p̃, ν) = H(q, p, ν) +
∂S(p̃, q, ν)

∂ν
, (26)

where p, q in the right-hand side must be replaced by the corresponding expres-
sions (25). As a result, we obtain

Ĥ =
ω

2
(p̃2 + q̃2) +

(
ds0
dν

− ωs1 + h̃0

)
q̃4 +

(
ds1
dν

+ 4ωs0 − 2ωs2 + h̃1

)
q̃3p̃+

+
(
ds2
dν

+ 3ωs1 − 3ωs3 + h̃2

)
q̃2p̃2 +

(
ds3
dν

+ 2ωs2 − 4ωs4 + h̃3

)
q̃p̃3+

+
(
ds4
dν

+ ωs3 + h̃4

)
p̃4 +O((p̃2 + q̃2)5/2) . (27)

Remind that coefficients sj(ν) in (23) are 2π-periodic functions and they
should be chosen in such a way that the Hamiltonian (27) takes the simplest
form. Obviously, they can be represented as the following Fourier series

sj(ν) = b
(j)
0 +

∞∑

k=1

(
b
(j)
1k cos(kν) + b

(j)
2k sin(kν)

)
. (28)
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As coefficients of q̃4−j p̃j (j = 0, . . . , 4) in (27) are linear functions of sj(ν),
we can analyze each harmonic in the series (28) separately. First of all, one
can readily show that we can choose constant terms b(j)0 in such a way that
coefficients of q̃3p̃, q̃p̃3 become equal to zero while coefficients of q̃4, p̃4, q̃2p̃2 are
equal to c/4, c/4, c/2, respectively, where

c = − 9b
16a3/2

− 27(3 + 7a− 4a2)be2

64a3/2(4a− 1)2
−

− 27be4

1024a3/2(4a− 1)4
(38 + 479a− 27a2 + 472a3 − 368a4) . (29)

On substituting (28) into (27) and equating coefficients of cos(kν), sin(kν) to
zero, we obtain the following linear system of equations

kb
(0)
2k − ωb

(1)
1k + h

(0)
1k = 0 ,

−kb(0)1k − ωb
(1)
2k + h

(0)
2k = 0 ,

4ωb(0)1k − 2ωb(2)1k + kb
(1)
2k + h

(1)
1k = 0 ,

−kb(1)1k + 4ωb(0)2k − 2ωb(2)2k + h
(1)
2k = 0 ,

3ωb(1)1k − 3ωb(3)1k + kb
(2)
2k + h

(2)
1k = 0 ,

−kb(2)1k + 3ωb(1)2k − 3ωb(3)2k + h
(2)
2k = 0 ,

2ωb(2)1k − 4ωb(4)1k + kb
(3)
2k + h

(3)
1k = 0 ,

−kb(3)1k + 2ωb(2)2k − 4ωb(4)2k + h
(3)
2k = 0 ,

ωb
(3)
1k + kb

(4)
2k + h

(4)
1k = 0 ,

−kb(4)1k + ωb
(3)
2k + h

(4)
2k = 0 , (30)

where h
(j)
1k , h

(j)
2k are coefficients of cos(kν), sin(kν) which are obtained if we

rewrite (22) in the form

h̃
(4)
j = h

(j)
0 +

∞∑

k=1

(
h
(j)
1k cos(kν) + h

(j)
2k sin(kν)

)
.

The system (30) determines coefficients b(j)1k , b
(j)
2k of the expansion (28). Its

determinant is equal to

D = k2(k − 4ω)2(k − 2ω)2(k + 2ω)2(k + 4ω)2 . (31)

Obviously, determinant (31) is not equal to zero if the conditions

2ω �= N, 4ω �= N, (N = 1, 2, . . .) (32)

are fulfilled. In this case the system (30) has a unique solution and, hence,
the functions sj(ν) can be chosen in such a way that all coefficients in the
Hamiltonian (27), depending on ν, will be equal to zero and it will take a form

Ĥ =
ω

2
(p̃2 + q̃2) +

c

4
(p̃2 + q̃2)2 + O((p̃2 + q̃2)5/2)) . (33)
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Doing the last canonical transformation

q̃ =
√

2r sinϕ, p̃ =
√

2r cosϕ , (34)

where r, ϕ are new canonically conjugate variables of the ”action-angle” kind,
we can rewrite the Hamiltonian function (33) in the form

H∗ = ωr + cr2 +O(r5/2) . (35)

Coefficients ω and c in (35) are determined in (20), (29), respectively, and can
be calculated for any values of parameters n, β, μ and sufficiently small values of
e. If ω satisfies inequalities (32), which means the absence of the second and the
fourth order resonances in the system, and parameter c is not equal to zero then
we can apply Arnold-Moser’s theorem [4,12,5] and conclude that equilibrium
solution is stable in Liapunov sense.

6 The Case of the Fourth Order Resonance

Let us suppose that for some values of the system parameters the second order
resonances are absent but there is the fourth order resonance 4ω = N . Then
determinant (31) is equal to zero for k = N and the system (30) has not any
solutions. It means that terms being proportional to cos(Nν), sin(Nν) in the
Hamiltonian (27) can not be removed. Following to Markeev [13], we seek such
coefficients b(j)1N , b

(j)
2N for which the Hamiltonian (27) takes the form

Ĥ =
ω

2
(p̃2 + q̃2) +

c

4
(p̃2 + q̃2)2 + (K2 cos(Nν) −K3 sin(Nν))(p̃4 − 6p̃2q̃2 + q̃4)+

+ 4(K2 sin(Nν) +K3 cos(Nν))(q̃p̃3 − q̃3p̃) +O((p̃2 + q̃2)5/2)) , (36)

where K2,K3 are some unknown constant. Extracting coefficients of q̃4−j p̃j in
(27) and (36) for j = 0, 1, . . . , 4 and equating the corresponding coefficients of
cos(Nν), sin(Nν), we obtain the following system of equations

Nb
(0)
2N − N

4
b
(1)
1N + h

(0)
1N = K2 ,

−Nb(0)1N − N

4
b
(1)
2N + h

(0)
2N = −K3 ,

Nb
(0)
1k − N

2
b
(2)
1N +Nb

(1)
2N + h

(1)
1N = −4K3 ,

−Nb(1)1N +Nb
(0)
2N − N

2
b
(2)
2N + h

(1)
2N = −4K2 ,

3N
4
b
(1)
1N − 3N

4
b
(3)
1N +Nb

(2)
2N + h

(2)
1N = −6K2 ,

−Nb(2)1N +
3N
4
b
(1)
2N − 3N

4
b
(3)
2N + h

(2)
2N = 6K3 ,

N

2
b
(2)
1N −Nb

(4)
1N +Nb

(3)
2N + h

(3)
1N = 4K3 ,
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−Nb(3)1N +
N

2
b
(2)
2N −Nb

(4)
2N + h

(3)
2N = 4K2 ,

N

4
b
(3)
1N +Nb

(4)
2N + h

(4)
1N = K2 ,

−Nb(4)1N +
N

4
b
(3)
2N + h

(4)
2N = −K3 . (37)

One can readily see that extracting coefficients of b(j)1N , b
(j)
2N (j = 0, 1, 2, 3, 4)

in each equation of the system (37), we obtain the matrix coinciding with the
corresponding matrix of the system (30) in the case of 4ω = N . Hence, its
determinant is equal to zero and all coefficients b(j)1N , b

(j)
2N can not be found as

solution of the system (37). Nevertheless, the system (37) can be solved with
respect to b

(j)
1N , b

(j)
2N (j = 0, 1, 2, 3) and K2, K3 and the corresponding solution

contains coefficients b(4)1N , b
(4)
2N as parameters. Thus, the Hamiltonian is reduced

to the form (36) and coefficients K2, K3 are

K2 =
1
16

(h(0)1N − h
(2)
1N + h

(4)
1N − h

(1)
2N + h

(3)
2N ) ,

K3 = − 1
16

(h(1)1N − h
(3)
1N + h

(0)
2N − h

(2)
2N + h

(4)
2N ) . (38)

Now we can do the following canonical transformation

q̃ =
√

2r sin
(
Nν

4
+ ϕ− θ

)
, p̃ =

√
2r cos

(
Nν

4
+ ϕ− θ

)
, (39)

where r, ϕ are new canonical variables of the ”action-angle” kind and parameter
θ is determined from the conditions

cos(4θ) =
K2√

K2
2 +K2

3

, sin(4θ) =
K3√

K2
2 +K2

3

.

Then the Hamiltonian function (36) takes a form

H∗ = r2(c+ d cos(4ϕ)) +O(r5/2) , (40)

where
d = 4

√
K2

2 +K2
3 . (41)

Now the theorem of A.P. Markeev [13] can be applied which states that equi-
librium solution is stable in Liapunov sense for |c| > d and is unstable for |c| < d.
Thus, the stability problem in the case of the fourth order resonance is solved
by means of estimation and comparison of the parameters c and d.

7 Conclusion

In the present paper we have analyzed the problem of stability of the equilibrium
solution in the elliptic restricted (2n+1)-body problem. Perturbed motion of the
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system is described by the second order non-autonomous Hamiltonian system
of nonlinear differential equations. In such a case the stability problem is solved
in several steps and each step requires quite cumbersome calculations which can
be effectively done with modern computer algebra systems.

On the first step we investigate stability in linear approximation and deter-
mine domains of instability in the space of parameters of the system. As the
Hamiltonian function contains a small parameter e, the boundaries of these do-
mains can be found in the form of power series in e. Although coefficients of
these series are found only numerically, the calculations can be done with any
necessary precision.

Linearly stable equilibrium solutions may become unstable if nonlinear terms
in the equations of perturbed motion are taken into account. In order to study
the stability problem in a strict nonlinear formulation we have to normalize the
Hamiltonian function and to apply theorems of the KAM-theory. We have nor-
malized the quadratic form H2 and the fourth order form H4 in the Hamiltonian
expansion and described the algorithms of corresponding calculations in detail.
If the second and the fourth order resonance are absent in the system then the
Hamiltonian function can be reduced to the form (35) and Arnold-Moser’s the-
orem on stability of the equilibrium solution in general elliptic case is applied.
In the case of the fourth order resonance the Hamiltonian function is reduced
to the form (40) and the theorem of A.P. Markeev is applied. In both cases the
stability problem is totally solved. It should be noted that all necessary sym-
bolic and numeric calculations in this paper are done with the computer algebra
system Mathematica.
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Abstract. The paper discusses a technique for investigation of peculiar
properties of invariant manifolds of conservative systems. The technique
is based on constructing the envelope for the family of first integrals of
such systems. Routh–Lyapunov’s method [1] has been applied for ob-
taining the families of invariant manifolds.

With the use of the method of envelope we have analyzed some pecu-
liar properties of families of invariant manifolds in the problems related
to rigid body dynamics and vortex theory. For the purpose of solving
the computational problems arising in the process of investigations we
employed the computer algebra system (CAS) Mathematica. This pa-
per presents a development of our approach [2] to investigation of some
qualitative properties of conservative systems.

1 Introduction

It is well known that constructing envelopes for the families of ODE’s solutions
allows one to find peculiar solutions [3]. In the present paper, we use the envelope
for the family of first integrals of a conservative system to find out the pecu-
liar properties of families of invariant manifolds for the system. The invariant
manifolds, on which elements of the indicated family of first integrals assume
stationary value, are considered. We call such manifolds the invariant manifolds
of steady motions (IMSMs) [4]. In the capacity of peculiar invariant manifolds
we will understand the IMSMs on which the first integrals of several problem
assume a stationary value.

We have employed the method of envelope to analyze peculiar properties of
the families of IMSMs in problems related to motion of a rigid body having
one fixed point, a rigid body in fluid, and to vortex dynamics. Already in the
problems of rigid body dynamics, the computations, which are needed for imple-
mentation of the technique applied, become rather bulky, and there appears the
necessity of employment of special computational tools. We used CAS Mathe-
matica for performing computations: standard tools and packages developed by
the authors in the language Mathematica (see, e.g., [5]) for the purpose of de-
riving stationarity equations, investigation of stationary solutions and IMSMs
for stability, constructing the envelope integral, etc. These tools have given us
a possibility to analyze a number of dynamic systems on the basis of approach

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 195–210, 2007.
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proposed. Manual investigation of the systems would be problematic because of
bulky computations.

Let us demonstrate our approach to investigation of IMSMs on Brun’s problem
well-known in dynamics of a rigid body having one fixed point [6].

2 Brun’s Problem

Equations of motion of a rigid body in this case write:

Aṗ = (B − C)qr − μ(B − C)γ2γ3, γ̇1 = rγ2 − qγ3,

Bq̇ = (C −A)rp − μ(C −A)γ3γ1, γ̇2 = pγ3 − rγ1,

Cṙ = (A−B)rp − μ(A−B)γ1γ2, γ̇3 = qγ1 − pγ2. (1)

Here A,B, and C are the moments of body inertia; p, q, and r are projections
of the body angular rate onto the axes bound up with it; γ1, γ2, and γ3 are
directional cosines of angles between the vertical and the axes bound up with
the body.

System (1) possesses the family of first integrals:

2K = Ap2 +Bq2 + Cr2 + μ(Aγ21 +Bγ22 + Cγ23) − 2λ1(Apγ1 +Bqγ2 + Crγ3)
−λ2[A2p2 +B2q2 + C2r2 − μ(BCγ21 + CAγ22 +ABγ23)]
−λ3(γ21 + γ22 + γ23), (2)

which for

λ21 = μ[(1 −Aλ2)(1 −Bλ2)(1 − Cλ2)],
λ3 = μ[λ2(AB +BC + CA) − λ22ABC] (3)

assumes a stationary value on the family of invariant manifolds:

A′p− λ1γ1 = 0, B′q − λ1γ2 = 0, C′r − λ1γ3 = 0. (4)

Turning partial derivatives of the family of integrals K (2) with respect to vari-
ables of the problem on the IMSMs (4) to zero is obvious because conditions of
stationarity for K have the form:

∂K

∂p
= A(A′p− λ1γ1) = 0,

∂K

∂γ1
= [μ(A+ λ2BC) − λ3]γ1 − λ1Ap = 0,

∂K

∂q
= B(B′q − λ1γ2) = 0,

∂K

∂γ2
= [μ(B + λ2CA) − λ3]γ2 − λ1Bq = 0,

∂K

∂r
= C(C′q − λ1γ3) = 0,

∂K

∂γ3
= [μ(C + λ2AB) − λ3]γ3 − λ1Cr = 0. (5)

After substituting (3) into (5), the latter assume the form:

A′ ∂K

∂γ1
= Aλ1(λ1γ1 −A′p), B′ ∂K

∂γ2
= Bλ1(λ1γ2 −B′q),

C′ ∂K

∂γ3
= Cλ1(λ1γ3 − C′r).
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For the sake of brevity, we have introduced the notations: A′ = (1 − Aλ2),
B′ = (1 − Bλ2), and C′ = (1 − Cλ2). Henceforth we also intend to use the
following abbreviations: N = A+B + C,M = AB +BC + CA,L = ABC.

2.1 Finding Peculiar Properties of Invariant Manifolds

Consider the problem of finding peculiar properties of the family of invariant
manifolds (4) with the use of the envelope for the family of first integrals (2). To
this end, we employ a standard procedure of constructing the envelope for the
one-parameter family of integrals (2) (here λ2 is a parameter).

Compute the derivative of K with respect to parameter λ2 and equate it to
zero:

∂K

∂λ2
= −dλ1

dλ2
V1 −

1
2
V2 −

1
2
dλ3
dλ2

V3 = 0.

Here for the brevity, the multipliers of λ1, λ2, and λ3 in (2) are denoted by
V1, V2, V3, respectively.

Having considered expressions for λ1 and λ3 as functions of λ2 (3), after
obvious transformations, we obtain the following equation:

μ(1 − λ2N + λ22M − λ32L)[V 2
2 + μ2V 2

3 (M2 − 4λ2ML+ 4λ22L
2) + 2μV2V3(M

−2λ2L)]− μ2V 2
1 (N2 + 4λ22M

2 + 9λ42L
2 − 4λ2MN + 6λ22NL− 12λ32ML) = 0.

Having removed one multiplier μ and collecting the terms, which have the same
powers of λ2, we obtain:

−4λ52μ
2V 2

3 L
3 + λ42μL

2(8μMV3 + 4V2V 2
3 − 9V 2

1 ) + λ32L[−V 2
2 − μ2V 2

3 (5M2

+4LN)− 6μMV2V3 + 12μMV 2
1 ] + λ22[MV 2

2 + μ2V 2
3 (M3 + 4L2 + 4NML)

+2μV2V3(M2 + 2NL)− μV 2
1 (4M2 + 6NL)] + λ2[−NV 2

2

−μ2V 2
3 M(MN + 4L)− 2μV2V3(MN + 2L) + 4μNMV 2

1 ]
+(V 2

2 + μ2M2V 2
3 + 2μMV2V3 − μMV 2

1 ) = 0.

Here analysis of peculiar properties is practically reduced to investigation of
solutions of the equation obtained. Since it requires much space, we shall restrict
our consideration to the most characteristic peculiar properties of the family of
invariant manifolds (4). To this end, we transform the latter equation to the
form

4λ22μ
2V 2

3 L
2(−λ32L+ λ22M − λ2N + 1) + λ42μL

2[4V3(V2 + μMV3) − 9V 2
1 ] + λ32L

×[−(V2 + μMV3)2 − 4μMV3(V2 + μMV3) + 12μMV 2
1 ] + λ22[M(V2 + μMV3)2

+4μLNV3(V2 + μMV3)− 2μV 2
1 (2M2 + 3NL)] + λ2[−N(V2 + μMV3)2

−4μLV3(V2 + μMV3) + 4μNMV 2
1 ] + [(V2 + μMV3)2 − μV 2

1 N
2] = 0. (6)

The bracket (−λ32L + λ22M − λ2N + 1) represents a cubic polynomial having
coefficients, which are elementary symmetric functions of A, B, C. Therefore,
the following real solutions will be the roots of this polynomial: λ2 = A−1,
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λ2 = B−1, λ2 = C−1. It can easily be verified that the rest of the terms of
equation (6) vanish when V1 = 0, V3 = 1 and V2 = μM . Direct substitution of
the values of λ2 = A−1, λ2 = B−1, λ2 = C−1 into equations of IMSMs (4) gives
evidence that these values of λ2 correspond to the body pendular oscillations
about its main horizontal inertial axes. For example, when λ2 = A−1 such an
axis is x, and equations of the invariant manifold write:

q = 0, r = 0, γ1 = 0. (7)

Finally, having equated the free term of (6) to zero (then, for V3 = 1 the following
relation between the constants of the first integrals V2 and V1 : (V2 + μM)2 −
μN2V 2

1 = 0 takes place) we obtain the zero root of equation (6), i.e. λ2 = 0.
Equations of the family of IMSMs (4) will be reduced in this case to the following
ones:

p =
√
μγ1, q =

√
μγ2, r =

√
μγ3. (8)

Since no restriction has been imposed on the directional cosines γ1, γ2, and γ3
for the IMSM obtained, the family of IMSMs (8) will define permanent rotations
of the body about the vertical when the angular rate ω =

√
μ. Furthermore, the

axis of rotation in the body can have any fixed direction.
It is possible to apply Lyapunov’s second method to investigate stability of

peculiar IMSMs obtained by the technique applied. Here the first integral K (2)
will play the role of the Lyapunov function.

For example, in case of IMSM (7), which defines pendular oscillations of the
body about its main horizontal axis x, the 2nd variation of integral K has the
form

δ2K = μ
(A−B)(A− C)

A
η21 +B

(A−B)
A

ξ21 + C
(A− C)

A
ξ23 .

Here η1, ξ1, and ξ2 are deviations from undisturbed values of the variables q, r, γ1.
Since the latter quadratic form is sign-definite with respect to all its variables

for A > B, A > C, due to Zubov’s theorem [7], the IMSM (7) is stable. In other
words, pendular oscillations of the body about its main horizontal axis x are
stable when the moment of inertia of the body with respect to this axis is the
largest.

3 Euler’s Equations in Lie Algebras

Consider the dynamic system [8] in Lie algebra in the capacity of the second
problem. Differential equations of the system write:

ṡ1 = −α2r2r3 + αr1s2 − (βr3 − s2)(βr2 + s3),
ṡ2 = (α2 + β2)r1r3 − (αr1 + βr2)s1 + (αr3 − s1)s3,
ṡ3 = (βr1 − αr2)s3,
ṙ1 = r2(αr1 + βr2 + 2s3)− r3s2 − ((α2 + β2)r3s2 + βs23)x,
ṙ2 = r3s1 − r1(αr1 + βr2 + 2s3) + ((α2 + β2)r3s1 + αs23)x,
ṙ3 = r1s2 − r2s1 + (βs1 − αs2)s3x. (9)



On the Peculiar Properties of Families of Invariant Manifolds 199

Equations (9), besides quadratic first integrals,

2V0 = (s21 + s22 + 2s23) + 2(αr1 + βr2)s3 − (α2 + β2)r23 = 2h,
V1 = s1r1 + s2r2 + s3r3 = c1, V2 = x(s21 + s22 + s23) + r21 + r22 + r23 = c2, (10)

assume the 4th-order additional first integral

V3 = (r1s1 + r2s2)((α2 + β2)(r1s1 + r2s2) + 2(αs1 + βs2)s3) + s23(s
2
1 + s22

+(αr1 + βr2 + s3)2) + xs23(βs1 − αs2)2 = c3. (11)

Here si and ri are components of two three-dimensional vectors, α, β, and x are
arbitrary constants.

The cases when x > 0 and x < 0 correspond to Euler’s equations in Lie
algebras so(4) and so(3, 1), respectively. When x = 1, equations (9) coincide
with the Poincare–Zhukovsky equations, which describe the motion of a rigid
body having an ellipsoidal cavity filled with vortex incompressible fluid, and
when x = 0, the system under scrutiny corresponds to the integrable case in
Kirchhoff’s problem [9].

System (9)-(11) has been investigated in [10]–[12]. These equations describe
the bifurcation analysis of the given system in Lie algebra e(3) and so(4). We
will consider the problem of finding the families of IMSMs of equations (9) and
investigation of their peculiar properties.

3.1 Finding Invariant Manifolds

For the purpose of finding the families of IMSMs of equations (9) we shall use
Routh–Lyapunov’s method as it was said above. According to this method, some
combinations are formed from the problem first integrals – families of first in-
tegrals K. We will restrict here our consideration to linear combinations of first
integrals (to the end of complete analysis of the problem stated it is necessary
to use also nonlinear combinations of the integrals (see [13])):

K = λ0V0 − λ1V1 −
λ2
2
V2 −

λ3
2
V3 (λi = const). (12)

Here λ0, λ1, λ2, and λ3 are some constants, which may assume also zero values.
The conditions of stationarity of K with respect to variables s1, s2, s3, r1, r2,

and r3 write:

∂K/∂s1 = λ0s1 − λ1r1 − λ3[(α2 + β2)r1(r1s1 + r2s2) + s1s3(αr2 + βr1)
+s2s3(2αr1 + s3)] − x(λ3βs23(βs1 − αs2) + λ2s1) = 0,

∂K/∂s2 = λ0s2 − λ1r2 − λ3[(α2 + β2)r2(r1s1 + r2s2) + s1s3(αr2 + βr1)
+s2s3(2βr2 + s3)] − x(λ3αs23(αs2 − βs1) + λ2s2) = 0,

∂K/∂s3 = λ0(αr1 + βr2 + 2s3) − λ1r3 − λ3[(r1s21αs1 + βs2)(s1r1 + s2r2)
+s3(αr1 + βr2)2 + s3(s21 + s22 + 2s23) + 3s23(αr1 + βr2)]
−xs3(λ3(βs1 − αs2)2 + λ2) = 0,
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∂K/∂r1 = λ0αs3 − λ1s1 − λ2r1 − λ3[(α2 + β2)s1(r1s1 + r2s2) + αs23

×(βr2 + αr1) + αs3(s21 + s22) + βλ3s1s2s3] = 0,
∂K/∂r2 = −λ0βs3 + λ1s2 + λ2r2 + λ3[(α2 + β2)s2(s1r1 + r2s2) + s2s3

×(αs1 + βs2) + βs23(αr1 + βr2) + βs33] = 0,
∂K/∂r3 = −((α2 + β2)λ0 + λ2)r3 + λ1s3 = 0. (13)

Conditions of existence of IMSMs for equations (9) may be obtained by equating
the Jacobian of system (13) to zero. The solutions of system (13) obtained under
these conditions will, generally speaking, be the desired IMSMs. Unfortunately,
in this problem the expression of the Jacobian is rather bulky, so its complete
analysis is problematic even with the use of computer algebra tools. Some partic-
ular conditions of turning the Jacobian to zero, which have allowed us to obtain
IMSMs of equations (9), are considered below.

When λ1 = 0, λ2 = −(α2 + β2)λ0 the last equation of system (13) turns to
zero, i.e., the system undoubtedly becomes degenerate, and, consequently, the
system Jacobian is zero. Having substituted the above values for λ1 and λ2 into
(13), and using the method of Gröbner bases, we have found a series of families
of IMSMs. Some of these families are given below:

r1 =
1

a1a2(α2 + β2)λ3

(
a3αλ3s3 +

√
a1(x(α2 + β2) + 1)λ3 ((α2 + β2)

×
√
a1(α2 + β2)(λ0 − λ3s23)λ0λ3 s1 ∓ a1αβλ3s

2
3)
)
,

r2 = − 1
(α2 + β2)λ3

(
βλ3s3 ∓

√
a1(x(α2 + β2) + 1)λ3

)
,

s2 =
1

a2λ3

(
αβλ23s1s

2
3 ±

√
a1(α2 + β2)(λ0 − λ3s23)λ0λ3

)
. (14)

Here for the sake of brevity, we have used the following notations: a1 = (α2 +
β2)(λ0 − λ3s

2
1) − α2λ3s

2
3, a2 = α2λ3s

2
3 − (α2 + β2)λ0, a3 = (α2 + β2)2(λ0 −

λ3s
2
1)λ0 + α2(α2 + β2)(λ3s21 − 2λ0)λ3s23 + α4λ23s

4
3.

We have also analyzed the set of solutions of system (13) with the use of the
method of Gröbner bases. It has also enabled us to obtain additional families
of the IMSMs. For this purpose, we have constructed the Gröbner basis for
the equations (13) ( the variable r3 has been preliminarily removed from the
equations with the use of the system last equation). The basis obtained under
elimination monomial order writes:

(a139s1 + a138s2 + a141s3)(a135 + a136s
2
1 + a136s

2
2 + a106s1s3 + a105s2s3

+a132s23) = 0,
s3(a140s1 + a142s3)(a135 + a136s

2
1 + a136s

2
2 + a106s1s3 + a105s2s3 + a132s

2
3)=0,

s3(a133s21 + a133s
2
2 + a108s1s3 + a107s2s3 + a110s

2
3 + a128s

2
1s

2
3 + a72s1s2s

2
3

+a130s22s
2
3 + a79s1s

3
3 + a78s2s

3
3 + a127s

4
3) = 0,

a118s1 + a117s2 + a119s3 + a81s
2
1s3 + a39s1s2s3 + a80s

2
2s3 + a62s1s

2
3 + a124s

3
1s

2
3
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+a71s2s23 + a101s
2
1s2s

2
3 + a121s

3
3 + a125s

2
1s

3
3 + a34s1s2s

3
3 + a102s1s

4
3 + a77s2s

4
3

+a126s53 = 0,
a48s1 + a5s

3
1 + a63s

5
1 + a18s2 + a6s1s

2
2 + a63s

3
1s

2
2 + a25s3 + a86s

2
1s3 + a8s

4
1s3

+a4s1s2s3 + a7s
3
1s2s3 + a85s

2
2s3 + a111s1s

2
3 + a92s

3
1s

2
3 + a47s2s

2
3 + a84s

3
3

+a49s21s
3
3 + a2s1s2s

3
3 + a50s1s

4
3 + a3s2s

4
3 + a88s

5
3 = 0,

s3(a55s1 + a56s2 + a57s3 + a21s
2
1s3 + a37s1s2s3 + a38s

2
2s3+a120s1s

2
3+a123s

3
1s

2
3

+a33s2s23 + a98s
3
3 + a74s

2
1s

3
3 + a76s1s

4
3 + a104s

5
3) = 0,

a94s
2
1 + a27s1s2 + a54s

2
2 + a53s1s3 + a36s

3
1s3 + a42s2s3 + a35s

2
1s2s3 + a93s

2
3

+a95s21s
2
3 + a131s

4
1s

2
3 + a29s1s2s

2
3 + a99s

2
2s

2
3 + a28s1s

3
3 + a23s2s

3
3 + a97s

4
3

+a73s21s
4
3 + a75s1s

5
3 + a103s

6
3 = 0,

s3(a122 + a114s
2
1 + a114s

2
2 + a41s1s3 + a40s2s3 + a129s

2
3 + a22s

2
1s

2
3 + a15s1s2s

2
3

+a17s1s33 + a16s2s
3
3 + a51s

4
3 + a67s

2
1s

4
3 + a9s1s2s

4
3 + a10s1s

5
3 + a1s2s

5
3

+a32s63) = 0,
a69r2 + a43s1 + a30s

3
1 + a52s2 + a30s1s

2
2 + a44s3 + a109s

2
1s3 + a24s1s2s3

+a116s22s3 + a87s1s
2
3 + a68s

3
1s

2
3 + a113s2s

2
3 + a89s

3
3 + a96s

2
1s

3
3 + a11s1s2s

3
3

+a60s1s43 + a13s2s
4
3 + a46s

5
3 = 0,

a70r1 + a83s1 + a65s
3
1 + a19s2 + a65s1s

2
2 + a20s3 + a91s

2
1s3 + a45s1s2s3

+a82s22s3 + a112s1s
2
3 + a100s

3
1s

2
3 + a90s2s

2
3 + a26s

3
3 + a59s

2
1s

3
3 + a12s1s2s

3
3

+a58s1s43 + a14s2s
4
3 + a61s

5
3 = 0, (15)

where ai (i = 1, . . . , 142) are some polynomials in λi, α, β, and x. The timing for
constructing the basis, as measured on 1100 MHz Pentium with 256 MB RAM
running under Windows XP, is 5.71 minutes.

As obvious from (15), the given system of equations is factored, i.e., decom-
posed into a number of subsystems, which may be analyzed separately. A lexico-
graphic Gröbner basis has been constructed for each of the subsystems. Analysis
of these bases has given evidence that the system of equations (15) (and, con-
sequently, 13)) has an infinite set of solutions (variable s3 being free). We have
found some solutions of system (13), which contain the free variable. These rep-
resent the families of IMSMs for the system of differential equations (9). Some
of these solutions are given below:

{s1 = − αλ1s3
(α2 + β2)λ0

, s2 = − βλ1s3
(α2 + β2)λ0

, r1 =
λ0 − λ3s3(βr2 + s3)

αλ3s3
,

r3 = − λ1s3
(α2 + β2)λ0

} when λ2 = 0; (16)

{r1=
xαs3

√
xλ21 + aλ20√

xλ21 + aλ20 ∓ aλ0
, r2=

xβs3
√
xλ21 + aλ20√

xλ21 + aλ20 ∓ aλ0
, r3 = − xλ1s3

aλ0 ∓
√
xλ21 + aλ20

,

s1 = − xαλ1s3

aλ0 ∓
√
xλ21 + aλ20

, s2 = − xβλ1s3

aλ0 ∓
√
xλ21 + aλ20

},
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when λ2 =
λ0 ∓

√
xλ21 + aλ20
x

, λ3 = 0. (17)

Here a = (α2 + β2)x + 1. It can be seen that the solutions have been obtained
under some restrictions imposed on parameters λ2, λ3.

From the geometrical viewpoint, each of the elements of the family of IMSMs
(17) – for fixed values of parameters λ0, λ1, λ2, and λ3 – describes the straight
lines, which lie in R6 at the intersection of 5 hyperplanes. Furthermore, since
there is a vector field of form ṡ3 = 0 defined on each family of IMSMs (17),
each point of the given lines is a degenerate stationary solution of the initial
differential equations.

Similarly, each of the families of IMSMs (14), (16) (for fixed values of param-
eters λi) describes in R6 a surface of dimension of 3 or 2, respectively. In the
first case, the surface lies at the intersection of a hyperplane and two 4th-order
and 6th-order hypersurfaces; in the second case, – three hyperplanes and the
2nd-order surface.

3.2 Analysis of Peculiar Properties of Invariant Manifolds

Now we use the technique of enveloping integral to analyze peculiar properties
of IMSMs for the given problem. Consider one of the families of IMSMs (17), for
example:

{r1 =
xαs3

√
xλ21 + aλ20√

xλ21 + aλ20 + aλ0
, r2 =

xβs3
√
xλ21 + aλ20√

xλ21 + aλ20 + aλ0
,

r3 = − xλ1s3

aλ0 +
√
xλ21 + aλ20

,

s1 = − xαλ1s3

aλ0 +
√
xλ21 + aλ20

, s2 = − xβλ1s3

aλ0 +
√
xλ21 + aλ20

},

λ2 =
λ0 +

√
xλ21 + aλ20
x

, λ3 = 0. (18)

Substitute the values of λ2, λ3, which correspond to this family of IMSMs, into
the integral K (12). As a result, we obtain

K = λ0V0 − λ1V1 −
λ0 +

√
xλ21 + aλ20
2x

V2.

Compute the derivative of the latter expression with respect to λ1 and equate
it to zero:

∂K

∂λ1
= −V1 −

λ1

2
√
xλ21 + aλ20

V2 = 0.

After some obvious transformations and substitution of the respective expres-
sions for the integrals, the latter expression writes:

2
√
xλ21 + aλ20(s1r1 + s2r2 + s3r3) +λ1(x(s21 + s21 + s23) + r21 + r22 + r23) = 0. (19)
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Find the value of this expression on the family of IMSMs (18). For this purpose,
substitute values of the variables r1, r2, r3, s1, s2 from (18) into the latter equality.
As a result, the equality shall turn into an identity. This means that the family
of IMSMs (18) is peculiar. The latter is valid for all the values of the parameter
λ1 for which there exists the IMSMs under scrutiny.

Analysis of expansion of integral K (12) in the neighbourhood of IMSMs (18)
has revealed that elements of the family of IMSMs under scrutiny are stable in
the sense of Lyapunov. Their stability conditions write: λ0 > 0 ∧ λ1 �= 0 ∧ x > 0.

Similar results have been also obtained for the 2nd family of IMSMs (17).
As far as the families of IMSMs (14), (16) are concerned, the corresponding

families of first integrals will be linear with respect to parameters λi. In such
cases, the procedure of constructing the envelope for the family leads to the re-
quirement of turning the constant of one of the integrals Vi, which is contained
in K (12), to zero. If we add the equation of this integral to equations of the
IMSMs, then we obtain peculiar invariant manifolds. From the geometric view-
point, these manifolds represent sections of the hypersurface Vi = 0 with the
elements of the family of manifolds under scrutiny. If the family of IMSMs un-
der investigation is multiparametric (what takes place in our case) then finding
the peculiarities of one-parameter subfamilies of such IMSMs is of interest.

Consider, for example, the family of IMSMs (16).
Like in the previous cases, substitute into K (12) the values of λi (in the given

case λ2 = 0) corresponding to the family of IMSMs under investigation. As a
result, we have the family of first integrals:

K = λ0V0 − λ1V1 −
1
2
λ3V3.

Find a one-parameter subfamily of the family of IMSMs (16). To this end, we
consider λ0 and λ3 as functions of λ1. Compute the derivative of the latter
expression with respect to λ1 and equate it to zero:

∂K

dλ1
=
dλ0
dλ1

V0 − V1 −
1
2
dλ3
dλ1

V3 = 0. (20)

Having substituted the expressions of the integrals into (20) and having then
excluded variables with the use of equations (16), equality (20) assumes the
form:

2λ3(λ1)(λ1 + (α2 + β2)λ0(λ1)λ̇0(λ1)) − (λ21 + (α2 + β2)λ20(λ1))λ̇3(λ1)
2(α2 + β2)λ23(λ1)

= 0, (21)

where λ̇i = dλi/dλ1.
Integration of expression (21) gives the following relationship between the

parameters:
λ3(λ1) = C̄(λ21 + (α2 + β2)λ20(λ1)). (22)

Here C̄ is a constant of integration.
Obviously, equations of family (16), after excluding, for example, parameter

λ3 from them with the aid of relationship (22), define a subfamily of peculiar
IMSMs. A similar result has been obtained for the family of IMSMs (14).
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4 The Problem Related to Motion of a System of Vortices

Finally, let us consider the problem of motion of N parallel direct vortex lines
(having intensities αi) in an unbounded volume of an ideal fluid. The points
of intersection of vortex lines with the plane perpendicular to them have the
Cartesian coordinates (xi, yi). Motion of such a system is described by Kirch-
hoff’s equations [14]. Consider the case when N = 3. For N = 3 equations of
motion write:

ẋ1 = − α2(y1 − y2)
4π((x1 − x2)2 + (y1 − y2)2)

− α3(y1 − y3)
4π((x1 − x3)2 + (y1 − y3)2)

,

ẋ2 =
α1(y1 − y2)

4π((x1 − x2)2 + (y1 − y2)2)
− α3(y2 − y3)

4π((x2 − x3)2 + (y2 − y3)2)
,

ẋ3 =
α1(y1 − y3)

4π((x1 − x3)2 + (y1 − y3)2)
+

α2(y2 − y3)
4π((x2 − x3)2 + (y2 − y3)2)

,

ẏ1 =
α2(x1 − x2)

4π((x1 − x2)2 + (y1 − y2)2)
+

α3(x1 − x3)
4π((x1 − x3)2 + (y1 − y3)2)

,

ẏ2 = − α1(x1 − x2)
4π((x1 − x2)2 + (y1 − y2)2)

+
α3(x2 − x3)

4π((x2 − x3)2 + (y2 − y3)2)
,

ẏ3 = − α1(x1 − x3)
4π((x1 − x3)2 + (y1 − y3)2)

− α2(x2 − x3)
4π((x2 − x3)2 + (y2 − y3)2)

(23)

The differential equations (23) possess the following first integrals:

V0 = − 1
8π

(
α1α2 ln ((x1 − x2)2 + (y1 − y2)2)

+ α1α3 ln ((x1 − x3)2 + (y1 − y3)2)

+ α2α3 ln((x2 − x3)2 + (y2 − y3)2)
)

= h = const,

V1 = α1x1 + α2x2 + α3x3 = c1 = const,
V2 = α1y1 + α2y2 + α3y3 = c2 = const,
V3 = α1(x21 + y21) + α2(x22 + y22) + α3(x23 + y23) = c3 = const, (24)

As far as the given problem is concerned, the families of IMSMs and their peculiar
properties are – likewise in problems considered above – of interest for us.

4.1 Finding the Invariant Manifolds

To the end of finding the invariant manifolds for the system (23) we introduce
the function

K = 4λ0V0 −
1
2
λ1V

2
1 − 1

2
λ2V

2
2 − 1

2
λ3V3, (25)

where λ0, λ1, λ2, and λ3 are some constants.
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The conditions of stationarity of K with respect to variables x1, x2, x3, y1, y2,
and y3 write:

∂K/∂x1 = −α1λ0
( α2(x1 − x2)
π((x1 − x2)2 + (y1 − y2)2)

+
α3(x1 − x3)

π((x1 − x3)2 + (y1 − y3)2)

)

−α1λ1(α1x1 + α2x2 + α3x3) − α1λ3x1 = 0,

∂K/∂x2 = α2λ0

( α1(x1 − x2)
π((x1 − x2)2 + (y1 − y2)2)

− α3(x2 − x3)
π((x2 − x3)2 + (y2 − y3)2)

)

−α2λ1(α1x1 + α2x2 + α3x3) − α2λ3x2 = 0,

∂K/∂x3 = α3λ0

( α1(x1 − x3)
π((x1 − x3)2 + (y1 − y3)2)

+
α2(x2 − x3)

π((x2 − x3)2 + (y2 − y3)2)

)

−α3λ1(α1x1 + α2x2 + α3x3) − α3λ3x3 = 0,

∂K/∂y1 = −α1λ0
( α3(y1 − y3)
π((x1 − x3)2 + (y1 − y3)2)

+
α2(y1 − y2)

π((x1 − x2)2 + (y1 − y2)2)

)

−α1λ2(α1y1 + α2y2 + α3y3) − α1λ3y1 = 0,

∂K/∂y2 = α2λ0

( α1(y1 − y2)
π((x1 − x2)2 + (y1 − y2)2)

− α3(y2 − y3)
π((x2 − x3)2 + (y2 − y3)2)

)

−α2λ2(α1y1 + α2y2 + α3y3) − α2λ3y2 = 0,

∂K/∂y3 = α3λ0

( α1(y1 − y3)
π((x1 − x3)2 + (y1 − y3)2)

+
α2(y2 − y3)

π((x2 − x3)2 + (y2 − y3)2)

)

−α3λ2(α1y1 + α2y2 + α3y3) − α3λ3y3 = 0. (26)

Using not very complex linear transformations, it is possible to reduce equations
(26) to the form

α1λ0

( α2(x1 − x2)
π((x1 − x2)2 + (y1 − y2)2)

+
α3(x1 − x3)

π((x1 − x3)2 + (y1 − y3)2)

)
+ α1λ1(α1x1

+α2x2 + α3x3) + α1λ3x1 = 0,

α2λ0

( α1(x1 − x2)
π((x1 − x2)2 + (y1 − y2)2)

− α3(x2 − x3)
π((x2 − x3)2 + (y2 − y3)2)

)
− α2λ1(α1x1

+α2x2 + α3x3) − α2λ3x2 = 0,
(α1x1 + α2x2 + α3x3)((α1 + α2 + α3)λ1 + λ3) = 0,

α1λ0

( α3(y1 − y3)
π((x1 − x3)2 + (y1 − y3)2)

+
α2(y1 − y2)

π((x1 − x2)2 + (y1 − y2)2)

)
+ α1λ2(α1y1

+α2y2 + α3y3) + α1λ3y1 = 0,

α2λ0

( α1(y1 − y2)
π((x1 − x2)2 + (y1 − y2)2)

− α3(y2 − y3)
π((x2 − x3)2 + (y2 − y3)2)

)
− α2λ2(α1y1

+α2y2 + α3y3) − α2λ3y2 = 0,
(α1y1 + α2y2 + α3y3)((α1 + α2 + α3)λ2 + λ3) = 0. (27)
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As obvious from (27), the third and (or) the last of the equations turn to zero,
when one of the following conditions hold:

i) λ1 = − λ3
α1 + α2 + α3

, λ2 = − λ3
α1 + α2 + α3

; ii) λ1 = − λ3
α1 + α2 + α3

;

iii) λ2 = − λ3
α1 + α2 + α3

(28)

and hence the Jacobian of system (26) turns to zero. Conditions (28) will be con-
sidered in the capacity of necessary conditions of existence of invariant manifolds
for the system of differential equations (23).

After substituting one of the conditions (28) into equations (27), these equa-
tions (with the use of simple linear transformations) are reduced to a cubic
equation. Solutions of the equation are rather easy to obtain, while using the
tools of CAS Mathematica, but these will be rather bulky. We have obtained
solutions of the cubic equation under various restrictions imposed on the pa-
rameters αi. Consider below some of the families of solutions obtained. These
represent the families of IMSMs for the equations (23):

1
2
a1α

2
3(x1 − x2)2 − a0(y2 − y3)2 −

α1α
2
3λ0(a2α1 + α23)

πλ3
= 0,

(x3 − x2)2 − (y2 − y3)2 +
α1α

2
3(α3 +

√
4α21 − 3α23)λ0

πλ3(α1 − α3)a1
= 0,

2α3y1 + (a2 − α3)y2 − (a2 + α3)y3 = 0 when λ1 = λ2 = −λ3
α1
, α2 = −α3; (29)

α2(x1 − x2)2

2α2 + α3
+

2α2 + α3
5α2 + 4α3

y23 +
α22λ0

πλ3(α2 + α3)
= 0,

α22a4(x3 − x2)2

2α2 + α3
+
a3(2α2 + α3)(α2 + α3)2

5α2 + 4α3
y23 +

a3(α2 + α3)α22λ0
λ3π

= 0,

2α2
√

5α2 + 4α3y1 + a5y3 = 0, 2α2
√

5α2 + 4α3y2 + a4y3 = 0

when λ1 = − λ3
2α2 + α3

, α1 = α2; (30)

α23x
2
3 + α22(y1 − y2)2 +

α42α3(α2 − a6)λ0
πλ3a7

= 0,

α23a7x
2
3 +

α42((a6 + α2)α3 − 2α22)
α2 + α3

(y3 − y2)2 +
α42α3(α2 − a6)λ0

λ3π
= 0,

2α22x1 + ((a6 − α2)α3 − 2α22)x3 = 0, 2α32x2 + α2((a6 + α2)α3 − 2α22)x3 = 0

when λ2 = −λ3
α3
, α1 = −α2. (31)



On the Peculiar Properties of Families of Invariant Manifolds 207

The following notations are used here: a0 = (2α1a2+α23)(α
2
3−2α21)−α21α23, a1 =

2α1(
√

4α21 − 3α23 − α3) + α3(
√

4α21 − 3α23 + α3) − 4α21, a2 =
√

4α21 − 3α23 −
2α1, a3 = 3

√
α2 +

√
5α2 + 4α3, a4 = ((2α2 + α3)

√
α2 + α3

√
5α2 + 4α3), a5 =

α3
√

5α2 + 4α3− (2α2 +α3)
√
α2, a6 = 2α3 +

√
4α23 − 3α22, a7 = (α2− 3α3)(α22−

α3a6) + a6(α23 − α22).
As far as the family of IMSMs (29) is concerned, let us consider the problem

of existence of such motions as triangular configurations of vortices [15] to this
family.

In this connection, we shall compute the distances between the centers of the
vortices on the family of IMSMs under scrutiny, while assuming that centers of
the vortices are placed in the corners of the triangle. Substitute values of the
variables from (29) into the formulas, which describe the distances between the
corners of the triangle. As a result, we have:

(x1 − x3)2 + (y1 − y3)2 = − α1λ0
2πλ3(α1 − α3)

(α3 +
√

4α21 − 3α23),

(x1 − x2)2 + (y1 − y2)2 =
α1λ0

2πλ3(α1 + α3)
(α3 −

√
4α21 − 3α23),

(x2 − x3)2 + (y2 − y3)2 =
α1λ0

πλ3(α21 − α23)
(α23 − α1(2α1 +

√
4α21 − 3α23)).(32)

Right-hand sides of expressions (32) are positive, when

α1 > ∧
(
− 2α1√

3
≤ α3 < −α1 ∨ α1 < α3 ≤

2α1√
3

)
.

The latter is some restriction imposed on vortex intensities. When it holds, the
motions, which correspond to triangular configurations of the vortices, belong to
the family of IMSMs (29). Similar conditions may be obtained for the families
of IMSMs (30), (31).

4.2 Analysis of Peculiar Properties of Invariant Manifolds

Let us again try to employ our approach for the analysis of peculiar properties
of the families of IMSMs. Consider, for example, the family of IMSMs (29).

As above, we substitute into K (25) the values of parameters λ1 and λ2, which
correspond to the family of IMSMs under scrutiny. As a result, we have

2K̃ = −8λ0V0 +
λ3
α1
V 2
1 +

λ3
α1
V 2
2 − λ3V3.

The latter expression represents a combination of first integrals, which is lin-
ear with respect to the parameters. The partial derivative K̃ computed with
respect to λ3 (or λ0) does not contain the parameter needed for constructing the
enveloping integral:

2
∂K̃

∂λ3
=

1
α1

(V 2
1 + V 2

2 ) − V3 = 0. (33)
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Obviously, equality (33) itself defines the invariant manifold of initial differential
equations (23) (i.e. the surface of the level of the corresponding integral).

Substitute into (33) the corresponding expressions of first integrals. As a re-
sult, we obtain the equation of the invariant manifold in the explicit form:

(α1x1 − α3x2 + α3x3)2 + (α1y1 − α3y2 + α3y3)2 − α1(α1(x21 + y21)
−α3(x22 + y22) + α3(x23 + y23)) = 0.

The latter expression may be rewritten as follows:

α3((x2 − x3)2 + (y2 − y3)2) − α1((x2 − x3)(x1 − x2)
+(y2 − y3)(y1 − y2) + (x2 − x3)(x1 − x3) + (y2 − y3)(y1 − y3)) = 0. (34)

If the vectors, which connect the centers of vortices, are introduced

r1 = {(x1−x3), (y1−y3)}, r2 = {(x2−x3), (y2−y3)}, r3 = {(x1−x2), (y1−y2)},
then equality (34) in its vector form writes:

α3(r2, r2)− α1(r2, r3)− α1(r2, r1) = 0.

It demonstrates more explicitly the restrictions, which are imposed by the in-
variant manifold (34) on the character of motion of the vortices defined by the
family of IMSMs (29) when equation (34) is added to equations of this family.

Let us use the results of section 3.2 and find the relationship between the
parameters λ0, λ3, under which the subfamily of IMSMs (29) is peculiar.

As in the previous case, we consider the parameter λ3 as a function of λ0.
Having computed the partial derivative of K̃ with respect to λ0 we obtain the
expression

2
∂K̃

∂λ3
= −8V0 +

dλ3
α1dλ0

V 2
1 +

dλ3
α1dλ0

V 2
2 − dλ3

dλ0
V3 = 0. (35)

After substitution of the expressions for the integrals into (35) and elimination
of variables with the use of equations (29), the latter expression writes:

α23λ0λ̇3(λ0)
2πλ3(λ0)

− ln
(
2−α1α3/2ππ−α2

3/2π
(2α21 − α3(α3 +

√
4α21 − 3α23)

(α1 + α3)2
)α1α3/2π

×
(
− α1α

2
3λ0

(α23 − α1(2α1 −
√

4α21 − 3α23))λ3(λ0)

)α2
3/2π)

= 0. (36)

The expression (36) will be considered as a differential equation, where λ3 is
a desired function, λ0 is an independent variable, λ̇3 = dλ3/dλ0. We use the
Mathematica function “DSolve” to find a solution of the equation. The obtained
solution writes:

λ3(λ0) = − 1
π(α23 − α1(2α1 −

√
4α21 − 3α23)

(
e

1
α3λ0

eC[1]α3−1
α1α

2
3

×(α1 + α3)−2α1/α3

(
α21 −

1
2
α3(α3 +

√
4α21 − 3α23 )

)α1/α3

λ0

)
, (37)

where C[1] is a constant of integration.
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So, when the relationship (37) between the parameters λ0 and λ3 takes place,
the corresponding subfamily of the family of IMSMs (29) is peculiar. Similar
results have been obtained for the families of IMSMs (30), (31).

5 Conclusion

The paper has presented an approach to investigation of peculiar properties of
families of invariant manifolds for conservative systems. The approach is based
on application of the envelopes for the families of first integrals of such systems.
The Routh–Lyapunov’s method has been used for finding the families of IMSMs.
When solving the computational problems, we applied CAS Mathematica.

Analysis of peculiar properties of families of invariant manifolds in the prob-
lems related to motion of a rigid body having one fixed point (Brun’s problem)
and to motion of a system of 3 vortices, as well as an analysis of Euler’s equations
in Lie algebras have been conducted by the method of envelope.

For example, when solving Brun’s problem, we have found peculiar families
of IMSMs, which describe pendular oscillations of a body about the body main
horizontal inertial axes, and a special class of degenerate permanent rotations of
the body about the vertical. Analysis of stability in the sense of Lyapunov has
been conducted for the family of invariant manifolds, which defines the body
pendular oscillations.

In the process of investigating the Euler’s equations in Lie algebras the con-
ditions, under which the peculiar families of IMSMs exist, have been obtained.

Peculiar properties of the family of IMSMs have been revealed in the problem
of motion for a system of 3 vortices. The conditions, under which the motions
corresponding to triangular configurations of vortices belong to these invariant
manifolds, have been obtained.

Acknowledgements. The research presented in this paper was supported by the
grant 06-1000013-9019 from INTAS-SB RAS.
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Abstract. The expansion base algorithm, which was devised by Ab-
hyankar, Kuo and McCallum is very efficient for analytic factorization
of bivariate polynomials. The author had extended it to more than two
variables but it was only for polynomials with non-vanishing leading co-
efficient at the expansion point. In this paper, we improve it to be able to
apply to polynomials including the case of vanishing leading coefficient,
that is, singular leading coefficient, which comes to a specific problem
only for more than two variables1.

1 Introduction

Analytic factorization is a factorization over the ring of formal power series, by
fixing the expansion point, and is very important operation for local analysis of
algebraic curves and algebraic surfaces. For example, the bivariate polynomial
x2 − u2 − u3 is irreducible in the polynomial ring, but reducible in the formal
power series ring at the origin; x2 − u2 − u3 = (x + u + 1

2u
2 − 1

8u
3 + · · · )(x −

u − 1
2u

2 + 1
8u

3 − · · · ). As shown in Fig.1, the algebraic curve determined by
F1 = x2−u2−u3 = 0 is factorized into two irreducible factors at the origin, which
shows that the curve has two tangent lines at the origin, whereas F2 = x2−u3 = 0

F1 = x2 − u2 − u3 F2 = x2 − u3

= (x + u + 1
2u2 − 1

8u3 + · · · )
× (x− u − 1

2u2 + 1
8u3 − · · · ) irreducible

x = u + 1
2u2 − 1

8u3 + · · ·

x = −(u + 1
2u2 − 1

8u3 + · · · )

u u

x x

Fig. 1.
1 A part of this work was supported by JSPS. Grant-in-Aid for Scientific Research.
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is irreducible showing that the corresponding curve has only one tangent line at
the origin.

In the case of more than two variables, the analytic factorization corresponds
to the decomposition of (hyper)surface.

Let K be a number field of characteristic 0 and K be an algebraic closure of
K. Let K[u1, · · · , u�], K(u1, · · · , u�) and K{u1, · · · , u�} be the ring of polyno-
mials, the field of rational functions and the ring of formal power series, respec-
tively, over K in variables u1, · · · , u�. Let (s1, · · · , s�) ∈ K

�
, and we abbreviate

(u1, · · · , u�) and (s1, · · · , s�) to (u) and (s), respectively. Without loss of gener-
ality, we assume that the expansion point is (s) = (0).

Definition 1 (analytically (ir)reducible). A nonzero polynomial F (x,u) in
K[x,u] which is not a unit of K{x,u} is said to be analytically (ir)reducible
over K at the origin if F (x,u) is (ir)reducible in K{x,u}.

Definition 2 (analytic factorization). Factorizing F (x,u) into irreducible
factors in K{x,u} is called analytic factorization.

In the analytic factorization, owing to the Weierstrass preparation theorem, we
can regard factors as polynomials w.r.t. one variable, let it be x. Therefore,
in practice, we factorize a given polynomial F (x,u) into irreducible factors in
K{u}[x]. Then we call x the main variable, and u sub-variables.

As is well known in computer algebra, the generalized Hensel construction
allows us to decompose a multivariate polynomial into factors in K{u}[x] if
the polynomial satisfies some conditions. Hence, we have only to consider the
analytic factorization in the case that the Hensel construction breaks down. By
degx(F ), we denote the degree of F w.r.t. x. Let F (x,u) = fD(u)xD+· · ·+f0(u).
The generalized Hensel construction breaks down if A) F (x,0) = xD (D =
degx(F ) ≥ 2) or B) fD(0) = 0; the leading coefficient disappears. The Hensel
construction breaks down in the case A) because xD cannot be decomposed into
relatively prime factors.

Definition 3 (singular point, singular leading coefficient). For F (x,u) =
fD(u)xD + · · · + f0(u), we call the expansion point (s) a singular point for the
Hensel construction, or a singular point in short, if F (x, s) is not square free. If
fD(s) = 0 then we say the leading coefficient is singular at s.

Thus, in the analytic factorization, we have only to consider the case that F (x,u)
is singular or its leading coefficient is singular at the expansion point.

When the Hensel construction breaks down, i.e. the expansion point is at
the singular point, we use the extended Hensel construction; see [11] for A),
[10] for B). The procedure of the extended Hensel construction is as follows:
1) introduce the weighted total-degree variable t by ui → tωiui, 2) for each
nonzero term cxex tetu

eu1
1 · · ·ueu�

� , plot a dot at the point (ex, et), 3) determine
so-called “Newton’s polynomial FNew” by correcting terms on the lowest edge,
4) factorize FNew into relatively prime factors, and 5) perform a Hensel-like con-
struction by treating factors of FNew as initial factors. In this paper, we set ωi = 1
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(i = 1, · · · , "), and factorize FNew in K[x,u]. Then, problems arise when FNew
is not square-free. Consider F = (x2− u3)2− u7 for example; FNew = (x2− u3)2

cannot be factorized into relatively prime factors in K[x,u], but actually F is
factorized analytically as F = (x2 − u3 + xu2 + 1

2u
4 + 1

8xu
3 + 1

8u
5 + · · · )(x2 −

u3−xu2+ 1
2u

4− 1
8xu

3+ 1
8u

5−· · · ). In this case, how can we decide whether F is
analytically irreducible or not, and if F is reducible how can we decompose it?

Let F = gm + · · · , where g is irreducible in K[x,u], m ≥ 2 and FNew = gm.
In the bivariate case, there are two algorithms to solve the problem mentioned
above. One is the “expansion-base method”, which comes from ideas of Ab-
hyankar [1,2,3,4] for calculating approximate roots, applied by Kuo [8] to bi-
variate analytic factorization, and implemented by McCallum [9] as the more
complete algorithm. In this algorithm, we regard g as a new main variable (in
the above example, g = x2− u3 is the new main variable), and expand F w.r.t.
g. New variables G1 = g, G2, · · · , Gs are generated repeatedly so long as new
Newton’s polynomial is not square-free over K. The set G = {G−1(= u), G0(=
x), G1(= g), · · · , Gs} is called an expansion base. Another algorithm is devised
by Sasaki [12] and it utilizes the extended Hensel construction; we factorize g into
linear factors as g = xd̂ − cuδ̂ = Π d̂

i=1(x − c1/d̂e2iπi/d̂uδ̂/d̂), i =
√
−1, c ∈ K (in

the above example, we factorize as FNew = (x+ u3/2)2(x− u3/2)2), perform the
extended Hensel construction by treating (x − c1/d̂e2iπi/d̂uδ̂/d̂)m (i = 1, · · · , d̂),
as initial factors, and multiply the mutually conjugate extended Hensel factors.
Then algebraic functions disappear, and we can obtain analytically irreducible
factors.

In the multivariate case, there had been no solution to the above problem;
here, by multivariate case we mean that the number of variables is more than 2.
Then the author had extended the two methods mentioned above to multivari-
ate case. In the multivariate case, another problem arises; factors obtained by
the extended Hensel construction which we call extended Hensel factors, are
usually not in K{u}[x]. In general, the extended Hensel factors are series of ra-
tional functions in sub-variables, and they belong to a ring which is larger than
K{u}[x]; we denote it by K{(u)}[x].

Definition 4 (ring of the multivariate extended Hensel factors)
We define the ring of the extended Hensel factors in multivariate case as

K{(u)} def=
{ ∞∑

k=0

[
Nk(u)
Dk(u)

]
∣∣∣Nk(u) and Dk(u) are homogeneous polynomials
in u s.t. tdeg(Nk) − tdeg(Dk)=k (k=0, 1, 2, · · · )

}

Therefore, in the multivariate case, we perform the factorization in K{(u)}[x]
and we get irreducible factors in K{u}[x] by combining exteded Hensel factors
in K{(u)}[x] so as to cancel their denominators (their combinations are trivial
from the type of denominators).

We perform extended Hensel construction as a preprocessing and reduce the
problem. That is to say, let g1(x,u), · · · , gr(x,u), gr+1(x,u), · · · , gr+r′(x,u) be
irreducible in K[x,u], mr+1, · · · ,mr+r′ be natural number greater than 2, by
A ⇒ B we denote that an expression A before extended Hensel construction is
transformed to an expression B after the construction;
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FNew = fD(0) xn0 g1(x,u) · · · gr(x,u) gr+1(x,u)mr+1 · · · gr+r′(x,u)mr+r′

= fD(0) F
(0)
0 F

(0)
1 · · · F

(0)
r F

(0)
r+1 · · · F

(0)
r+r′

⇓
... ⇓ ⇓ ⇓ · · · ⇓ ⇓ · · · ⇓

F (x,u) = fD(u) F (∞)
0 F

(∞)
1 · · · F

(∞)
r F

(∞)
r+1 · · · F

(∞)
r+r′

If n0 = 1 then we may include xn0 in any of g1(x,u), · · · , gr(x,u), else if
n0 ≥ 2 then we perform extended Hensel construction to F

(∞)
0 recursively.

F
(∞)
1 , · · · , F (∞)

r are irreducible in K{(u)}[x]. Therefore problems are reduced
to factorization F

(∞)
r+1 , · · · , F

(∞)
r+r′ in K{(u)}[x], say, factorization of the form

F (x,u) = gm + · · · , where g is irreducible in K[x,u], m ≥ 2 and FNew = gm.
After all, we can say that the research for analytic factorization means how to
solve this problem.

For this problem, the author extended Sasaki’s method for bivariate case to
multivariate case in [5]. And then the author extended “the expansion base
method for bivariate case” to multivariate case in [6]. The fundamental idea
which is common to both algorithms is to regard multivariate polynomials as
bivariate polynomials w.r.t. x and the total-degree variable t.

The extension of Sasaki’s method is as follows. First, we decompose gm into
linear factors introducing algebraic functions as gm = Π d̃

i=1(x − tδ̂/d̂θi)m, and
then we perform the extended Hensel construction in K(θ1, · · · , θd̃){(u)}[x] by
regarding the linear factors as initial factors, multiply mutually conjugate ex-
tended Hensel factors, then algebraic functions disappear, and we can obtain
irreducible factorization in K{(u)}[x], and finally obtain factors in K{u}[x] by
combining the extended Hensel factors inK{(u)}[x] so as to cancel their denomi-
nators by focusing attention on their denominators. In section 2, we describe the
extension of the expansion base algorithm [6]. We regard g as a new main vari-
able, and expand F w.r.t. g. New variables are generated as G1(= g), G2, · · · , Gs

so long as new Newton’s polynomial is not square-free over K, recursively. Then
we obtain the expansion base G = {G−1(= t), G0(= x), G1(= g), · · · , Gs} over

bivariate · · · utilizing the extended Hensel construction expansion base
(by Sasaki)♣ (by Abhyankar,Kuo,McCallum)�

Extend them by regard F (x, tu) as bivariate w.r.t. x and t.
multivariate · · · by Iwami, [5] by Iwami, [6]

Factorization in K(θ1, · · · , θd̃){(u)}[x] ⇓
(θi: algebraic function) ⇓ Use �

Use ♣ ⇓ ⇓
Factorization in K{(u)}[x]

⇓ Combine factors

Factorization in K{u}[x]
vvv

K(θ1, · · · , θd̃){(u)}[x]

K{(u)}[x]

K{u}[x]

K[x,u]
×F

Fig. 2. Extension from Bivariate to Multivariate Case
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K{(u)}. The author also invented lifting techniques for the multivariate expan-
sion base algorithm which we can use in the bivariate case, too.

In [6], the author did not treat the case that the leading coefficient disappears
at the expansion point, say, the leading coefficient is singular. We modify [6] so
as to include the case that the leading coefficient is singular, which can be seen
in [7] as an extended abstract of the poster presentation of the 8th international
workshop on computer algebra in scientific computing in 2005. In this paper, the
theorems, proofs, algorithms and examples are given. See section 3. Note that
the problem of singular leading coefficient does not arise in the bivariate case
because we can factorize F as F = F1F2, where the leading coefficient of F1 is
not singular and F2 is a unit in K{(u)}[x].

As for the implementation of multivariate analytic factorization, the author
made a demonstration by Mathematica in the presentation of conference of Com-
puter Algebra – Design of Algorithms, Implementations and Applications at
RIMS in Kyoto in 2006.

These results also give us methods of factorization in the polynomial ring
especially Newton’s polynomial of F is not square-free.

2 Multivariate Expansion Base in the Case of
Nonsingular Leading Coefficient (fD(0) �= 0)

In this section, we review [6]. We extend the expansion base method [9] to the
multivariate case by regarding F as a bivariate polynomial w.r.t. x and total-
degree variable t. That is to say, for FNew = gm, we define G−1

def= t, G0
def=

x, G1
def= g. G

def= (G−1, G0, G1), we call G expansion base. We can obtain unique
expression as F = Σm

e1=0c(e−1,e0,e1)(u)Ge−1
−1 G

e0
0 G

e1
1 , c(e−1,e0,e1)(u) ∈ K{(u)}, by

dividing G1, G0, G−1 in this order, and we call this expression G−adic expansion
of F . By wi, we denote the weight of Gi. First, we define w−1 = 1, then w0

is determined by the absolute value of the slope of LNew. And plot terms of
F on the two-dimensional plane whose horizontal line represents the exponent
of G1 and the vertical line represents the weighted total-degree of G−1 and
G0, say (e1, w−1e−1 + w0e0). By LGiNew and FGiNew, we denote the Newton’s
line and Newton’s polynomial when horizontal line represents the exponent of
Gi, respectively. Then w1 is determined to be the absolute value of the slope of
LG1New. If FG1New is such a multiple form as FG1New = gm1

1 then we put G2 = g1
and append to G as G = (G−1, G0, G1, G2). And we perform G−adic expansion
as F = Σm1

e2=0c(e−1,e0,e1,e2)(u)Ge−1
−1 G

e0
0 G

e1
1 G

e2
2 , c(e−1,e0,e1,e2)(u) ∈ K{(u)} by

dividing G2, G1, G0, G−1 in this order and plot terms of F as (e2, w−1e−1 +
w0e0 + w1e1), and determine FG2New. We perform these steps and generate
elements of G as long as new Newton’s polynomial cannot be decomposed into
relatively prime factors overK{(u)} orms = 1 where FGsNew = gms

s . As a result,
if F is reducible overK{(u)}, Newton’s polynomial is decomposed into relatively
prime factors, and with a lifting technique, we can get irreducible factors in
K{(u)}][x]. Finally, we combine them so as to cancel their denominators and get
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analytically irreducible factors. Note that Gi ∈ G is also called an irreducible
curve germ in algebraic geometry.

Algorithm 1. [multivariate expansion base with nonsingular leading coefficient]
INPUT : F (x,u)∈K{(u)}[x] s.t. FNew=gm where m≥2 and g is irreducible

polynomial. D←degxF , G−1← t, G0← x, G1←g, w1←degtF/D,
Expansion Base G ← (G−1, G0, G1), Weight W ← (w−1(= 1), w0),
s← 1, D1 ← degxF/degxG1

OUTPUT : Irreducible factors in K{u}[x]

1. If Ds = 1 then Return F .
2. Perform G-adic expansion of F as F = Σc(u)e−1,e0,··· ,esG

e−1
−1 G

e0
0 · · ·Ges

s .
Plot (es,

∑s−1
i=−1 eiwi), determine FGsNew, pseudo form F ∗

GsNew
, satisfying

F ∗
GsNew

≡ FGsNew as follows and factorize it into irreducible factors over
K{(u)};
F ∗

GsNew
= Gr

s · ((Gd
s)

q + a1(Gd
s)

q−1Δs + · · ·+ aqΔ
q
s), Ds = dq + r

= Gr
s · h1(Gd

s , Δs) · · ·hR(Gd
s , Δs)hR+1(Gd

s , Δs)mR+1 · · ·
hR+R′(Gd

s , Δs)mR+R′

= H
(0)
0 ·H(0)

1 · · ·H(0)
R+R′ , Δ = G

h−1
−1 · · ·Ghs−1

s−1 , mi ≥ 2.

,

Append ws ←
∑s−1

i=−1 wihi/d to the last element of W.

If F ∗
GsNew

= h1(Gd
s , Δs) then Return F .

IfF ∗
GsNew

=h1(Gd
s , Δs)m1 , d=1, m1=q then Gs←Gs+a1Δs/q and goto 2.

else if F ∗
GsNew

= h1(Gd
s , Δs)m1

then Gs+1 ← h1(Gd
s , Δs), ws+1 ← Dsws/m1, append Gs+1 to G,

append ws+1 to W, Ds+1←degx(F )/degx(Gs+1), s←s+1 and goto 1.

else F ∗
GsNew

has more than 2 relatively prime factors hence goto 3.

3. Calculate Moses-Yun’s interpolation polynomials W (j)
i satisfying

W
(j)
0

F ∗
GsNew

H
(0)
0

+ · · · + W
(j)
R+R′

F ∗
GsNew

H
(0)
R+R′

= Gj
s, degGs

(W (j)
i ) < degGs

(H(0)
i )

(0 ≤ i ≤ R + R′, 0 ≤ j ≤ D − 1) Let the maximum degrees of Δs in
denominators of W (j)

0 , · · · ,W (j)
R+R′ be m̃j .

4. Calculate practical interpolation polynomials W̃ (j)
i (0 ≤ i ≤ R+R′, 0 ≤ j ≤

D − 1) s.t. W̃ (j)
i = Δ

m̃j
s W

(j)
i ∈ K(u)[Δs, Gs].

5. Perform lifting; Let the slope of FGsNew be −δ̂/d̂ (d̂ and δ̂ are positive
integers s.t. gcd(d̂, δ̂) = 1) and t̃ be a weighted total-degree variable as
Gi 
→ t̃wiGi (−1 ≤ i ≤ s− 1). For k = 1, 2, 3, · · · ,
ideal Sk

def= (Gs t̃
δ̂/d̂)Ds × (t̃1/d̂)k

=(GDs
s t̃(k+0)/d̂, GDs−1

s t̃(k+δ̂)/d̂, GDs−2
s t̃(k+2δ̂)/d̂, · · · , G0

s t̃
(k+Dsδ̂)/d̂).

f∗(k) ≡ F −H
(k−1)
0 · · ·H(k−1)

R+R′ (mod Sk+1)
= ΣDs−1

j=0 f
(k)
j t̃k/d̂ ·Δm̃jGj

s t̃
(Ds−j)δ̂/d̂

H
(k)
i = H

(k−1)
i +ΣDs−1

j=0 W̃
(j)
i f

(k)
j t̃k/d̂ (i = 0, · · · , R+R′)
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Then we get F = H
(∞)
0 · · ·H(∞)

R+R′ , H
(∞)
i ∈ K{(u)}[x].

We process each factor H(∞)
0 · · ·H(∞)

R+R′ as follows.

H
(∞)
0 : F ← H

(∞)
0 and perform this algorithm recursively.

H
(∞)
1 , · · · , H(∞)

R : They are analytically irreducible factors in K{(u)}[x],
because initial factors are such irreducible forms
as hi(Gd

s , Δs) (i = 1, · · · , R). Hence Return H
(∞)
i .

H
(∞)
R+1, · · · , H

(∞)
R+R′ : For each i, F ← H

(∞)
R+i (i = 1, · · · , R′) and perform this

algorithm recursively, because initial factors are such
multiple forms as hR+i(Gd

s , Δs)mR+i (mR+i ≥ 2).

Then we obtain irreducible factors in K{(u)}[x].
6. Combine irreducible factors in K{(u)}[x] so as to eliminate their denomina-

tors. Then we can obtain irreducible factors in K{u}[x].

#Example 1
F (x, u1, u2) = ((x2 − (u1 + u2)3)2 + (u1 + u2)7(u1 + 2u2)2)

× ((x2 − (u1 + u2)3)2 − (u1 + 2u2)8 − (u1 + 3u2)10) ∈ K[x, u1, u2]
FNew = (x2 − t3(u1 + u2)3)4 cannot be decomposed into relatively prime poly-
nomial factors. Therefore, we define G = (G−1, G0, G1) = (t, x, x2 − t3(u1 +
u2)3), W = (w−1, w0) = (1, 3/2) as the slope of LNew is 3/2. We perform G-
adic expansion and introduce weighted total-degree variable t̃ w.r.t. G−1, G0 as
G

e−1
−1 
→ t̃1G

e−1
−1 , G

e0
0 
→ t̃3/2Ge0

0 . And we plot (e1, 1 · e−1 + 3
2 · e0) for each term

of F = ΣD
e1=0c(e−1,e0,e1)(u)t̃1·e−1+

3
2 ·e0G

e−1
−1 G

e0
0 G

e1
1 , c(e−1,e0,e1)(u) ∈ K{(u)}.

Then we see the slope of LG1New is 4, hence we put w1 = 4. Now we have
W = (w−1, w0, w1) = (1, 3/2, 4)

LNew

slope : −3/2 (= −w0)
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�
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�
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�
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��

eG0

et

0

�

�

G0 = x

FG0New = (x2 − t3(u1 + u2)3)4,

0�

87

0�

65

�

�

�

�0

43

�

�

�

�0
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�0

�

�

�

�

�
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�
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�

�
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�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

LG1New

slope : −4 (= −w1)

eG1

et̃

G1 = x2 − t3(u1 + u2)3
0

�

�

FG1New = G2
1(G1 − t̃4(u1 + 2u2)4G4

−1)(G1 + t̃4(u1 + 2u2)4G4
−1)

�

�

1 2

�

�

�

3 4
�0

We decompose new Newton’s polynomial over K{(u)} as FG1New = G2
1(G1−

t̃4(u1 + 2u2)4Δ1)(G1 + t̃4(u1 + 2u2)4Δ1), Δ1 = G4
−1 and perform lifting as

H
(∞)
0 = G2

1 +(u1 + u2)7(u1 + 2u2)2G9
−1

H
(∞)
1 = G1 − (u1 + 2u2)4G4

−1 −
(u1+3u2)

10

2(u1+2u2)4
G6

−1 + (u1+3u2)
20

8(u1+2u2)12
G8

−1 − · · ·
H

(∞)
2 = G1 + (u1 + 2u2)4G4

−1 + (u1+3u2)
10

2(u1+2u2)4
G6

−1 −
(u1+3u2)

20

8(u1+2u2)12
G8

−1 + · · · .
Now H

(0)
0 = G2

1 is in multiple form, so we have to determine whether its irre-
ducible or not. (As for H(∞)

1 and H
(∞)
2 , we cannot decompose anymore because

degree w.r.t. G1 is 1.) We put H0
↼= H

(∞)
0 = G2

1 + (u1 + u2)7(u1 + 2u2)2G9
−1
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and apply the algorithm to H0 as we have done for F (x, u1, u2) in the previous
step, recursively. In this case, G = (G−1, G0, G1) = (t, x, x2− t3(u1 +u2)3), W =
(w−1, w0, w1) = (1, 3/2, 9/2). Now, H0 G1New = G2

1 + (u1 + u2)7(u1 + 2u2)2G9
−1.

As G1 = G2
0 − (u1 + u2)3G3

−1, we obtain G3
−1 = G2

0
(u1+u2)3

− G1
(u1+u2)3

. By this
substitution, we get initial pseudo form as follows.
H0 G1New = G2

1 + (u1 + u2)7(u1 + 2u2)2G9
−1

= G2
1 + (u1 + u2)4(u1 + 2u2)2G6

−1G
2
0 − (u1 + u2)4(u1 + 2u2)2G6

−1G1

( weights 9 9 10.5 )
≡ G2

1 + (u1 + u2)4(u1 + 2u2)2G6
−1G

2
0 (mod S1)

⇀= H∗
0G1New

As having the same weight 9, we can use (u1 + u2)4(u1 + 2u2)2G6
−1G

2
0 instead

of (u1 + u2)7(u1 + 2u2)2G9
−1, while −(u1 + u2)4(u1 + 2u2)2G6

−1G1 is put up to
the higher order i.e. 10.5. Therefore,
H∗

0G1New
= G2

1 + (u1 + u2)4(u1 + 2u2)2Δ2
H0
, ΔH0 = G3

−1G
1
0

= (G1 + i(u1 + u2)2(u1 + 2u2)ΔH0)(G1 − i(u1 + u2)2(u1 + 2u2)ΔH0)

We put H(0)
01 = (G1 + i(u1 + u2)2(u1 + 2u2)ΔH0) and H

(0)
02 = (G1 − i(u1 +

u2)2(u1 + 2u2)ΔH0) (Let i be an imaginary unit). Then Moses-Yun’s polynomi-
als W (j)

0i (i = 1, 2; j = 0, 1), satisfying W (j)
01 H

(0)
02 +W

(j)
02 H

(0)
01 = Gj

1, are as follows.
W

(0)
01 = i

2(u1+u2)2(u1+2u2)ΔH0
,W

(0)
02 = −i

2(u1+u2)2(u1+2u2)ΔH0
,W

(1)
01 = 1

2 ,W
(1)
02 = 1

2

Then practical interpolation polynomials W̃ (j)
0i (= Δ

m̃j

H0
W

(j)
i )∈ K(u)[ΔH0 ,

G1] where i = 1, 2, and j = 0, 1, and m̃j is the maximum degree of denom-
inators of W (j)

0i w.r.t. ΔH0 , satisfying W̃
(j)
01 H

(0)
02 + W̃

(j)
02 H

(0)
01 = Δ

m̃j

H0
Gj
1, are

W̃
(0)
0i = ΔH0W

(0)
0i , W̃

(1)
0i = W

(1)
0i . ( In this case, m̃j = 1− j and ΔH0 = G3

−1G0 )
ideal Sk = (G2

1 t̃
(k+9·0)/2, G1

1 t̃
(k+9·1)/2, G0

1 t̃
(k+9·2)/2).

By lifting, we obtain the factorization H0 = H
(∞)
01 H

(∞)
02 in K{(u)}[x] as

follows.
H

(∞)
01 = G1 + i(u1 + u2)2(u1 + 2u2)G3

−1G0 − 1
2 (u1 + u2)4(u1 + 2u2)2G6

−1 − · · ·
H

(∞)
02 = G1 − i(u1 + u2)2(u1 + 2u2)G3

−1G0 − 1
2 (u1 + u2)4(u1 + 2u2)2G6

−1 + · · ·
Therefore, we obtain factorization of F in K{(u)}[x] as F = H

(∞)
0 H

(∞)
1 H

(∞)
2 =

H
(∞)
01 H

(∞)
02 H

(∞)
1 H

(∞)
2 . By focusing attention on similarities of denominators, we

combine H(∞)
1 and H

(∞)
2 , we obtain irreducible factors in K{u}[x] as follows.

F = (x2 − (u1 + u2)3 + ix(u1 + u2)2(u1 + 2u2)− 1
2 (u1 + u2)4(u1 + 2u2)2− · · · )

× (x2 − (u1 + u2)3 − ix(u1 + u2)2(u1 + 2u2)− 1
2 (u1 + u2)4(u1 + 2u2)2+ · · · )

× ((x2 − (u1 + u2)3)2 − (u1 + 2u2)8 − (u1 + 3u2)10).

3 Multivariate Expansion Base Including the Case of
Singular Leading Coefficient (fD(0) = 0)

In the case of singular leading coefficient, the slope of Newton’s line becomes
positive, 0 or negative. To avoid the case that the lifting ideal contains con-
stant term during the lifting step, we transform Newton’s line to be horizontal
in a unified way, by identifying ”weight of expansion base” and ”slope of New-
ton’s line”. Without loss of generality, after performing the extended Hensel
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construction as a preprocessing, we may assume F (x,u) as in the assumption of
the following Theorem 1.

Theorem 1. We assume F (x, tu) s.t. FNew = fD(u)xD + · · ·+f0(u) = c(u)gm

(c(u) ∈ K[u],m ≥ 2 and g is irreducible in K[x,u]) and ordtfD(tu) def= ν �

0 (i.e. fD(0) = 0, the leading coeffient is singular). Let the slope of the Newton’s
line be λ̂. Let the expansion base of F be G = (G−1(= t), G0(= x), G1(= g)), and
weights be W =

(
w−1(= 1), w0(= −λ̂), w1

)
, F (G−1, G0, G1) be G-adic expansion

of F . If we plot terms of F̂ (G−1, G0, G1, t̃)
def= F (t̃w−1G−1, t̃

w0G0, t̃
w1G1)/t̃ν+Dw0

on the (eG1 , et̃)-plane (whose horizontal line represents the power of G1 and the
vertical line represents the power of t̃) then the lattice points on the Newton’s line
are shifted right down to be on the horizontal axis, and a point whose horizontal
component being maximal is (m, 0). Then we determine Newton’s polynomial
F̂G1New and ideal Îk as F̂G1New = F̂ (G−1, G0, G1, t̃ = 0), Îk =

〈
t̃k/m̂

〉
, k =

1, 2, 3, · · · , where |slope of Newton’s line LG1 | = n̂/m̂ (m̂ and n̂ are relatively
prime positive integers).

Proof. By the transformation F̂ (x,u, t)
def
= F (t−λ̂x, tu)/tν−Dλ̂ in [10], all dots

on the Newton’s line are shifted right down to be on the horizontal axis. Then
(D, ν) is shifted to (D, 0), and there is no dot whose horizontal component is
greater than D. Below, we extend this transformation to multivariate expan-
sion base method by defining weights of Gi as wi

def= (−1)×(slope of New-
ton’s line LGi). By assumpsion, Newton’s polynomial FNew = F̂ (x,u, t = 0) =
c(u)gm is multiple and cannot be decomposed into relatively prime nonunit
factors, therefore, we may set multivariate expansion base and weights as G =
(G−1, G0, G1) = (t, x, g) and W = (w−1, w0) = (1,−λ̂), respectively. We can ob-
tain the unique expression, G-adic expansion of F (x, tu), as F (G−1, G0, G1) =
Σm

e1=0c(e−1,e0,e1)(u)Ge−1
−1 G

e0
0 G

e1
1 , c(e−1,e0,e1)(u) ∈ K{(u)}, by dividing G1, G0,

G−1 in this order. Then plot each term of F (t̃w−1G−1, t̃
w0G0, G1) on (eG1 , et̃)-

plane, we can obtain new Newton’s polynomial FG1New, regarding G1 as a new
main variable and G−1, G0 as subvariables.

In the case of singular leading coefficient, we can transform the slope of LG1 to
be horizontal by F (t̃w−1G−1, t̃

w0G0, t̃
w1G1), where w1

def= (−1)×(slope of LG1),
and we can shift Newton’s line right down to be on the horizontal axis by dividing
t̃ν+Dw0 . Moreover, FNew = c(u)gm = c(u)Gm

1 and obtained Newton’s line is on
the horizontal axis, a point whose horizontal component being maximal is (m, 0).
If we substitute t̃ = 0 for F̂ (G−1, G0, G1, t̃) = F (t̃w−1G−1, t̃

w0G0, t̃
w1G1), then

we obtain sum of all terms corresponding to dots on the horizontal axis, i.e.
Newton’s polynomial FG1New. We may shift the Newton’s line by step 1/m̂ in
the et̃-direction successively, then the ideal is Îk =

〈
t̂k/m

〉
, k = 1, 2, 3, · · · .

Note that the leading coefficient of Newton’s polynomial substituting t̃ = 0, i.e.
F̂G1New = F̂ (G−1, G0, G1, t̃ = 0) does not disappear.The horizontal Newton’s
line is easy to deal with because we can obtain Newton’s polynomial just to
substitute t̃ = 0 and perfom lifting with simple ideal Î =

〈
t̃k/m̂

〉
, k = 1, 2, 3, · · · .
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Therefore, we produce a standardization of horizontal Newton’s line for multi-
variate expansion base G = (G−1, G0, G1, · · · , Gs) as follows.

Theorem 2. Let the multivariate expansion base of F be G = (G−1, G0, · · · , Gs)
and weights be W = (w−1, w0, · · · , ws), where wi

def= (−1)× (slope of LGiNew).
Let G-adic expansion of F be F (G−1, G0, G1, · · · , Gs). Then whether the lead-
ing coefficient is singular or not, we can obtain horizontal Newton’s line by the
transformation as follows.

F̂ (G−1, · · · , Gs, t̃)
def= F (t̃w−1G−1, · · · , t̃wsGs)/t̃α,

where α = ordt̃F (t̃w−1G−1, · · · , t̃wsGs). Moreover, if we substitute t̃ = 0 then
the leading coefficient does not disappear. Then Newton’s polynomial F̂GsNew

and ideal Îk for lifting are as follows.
F̂GsNew = F̂ (G−1, G0, · · · , Gs, t̃ = 0), Îk =

〈
t̃k/m̂

〉
, k = 1, 2, 3, · · · , where

|slope of Newton’s line LGs | = n̂/m̂ (m̂ and n̂ are relatively prime positive integers).

Proof. Generation of the multivariate expansion base causes the change of the
horizontal axis as eG0 → eG1 → · · · eGs . Hence step by step, the value of the verti-
cal axis, et̃, is accumulated as weighted sum of powers ofG−1, · · · , Gs−1. To make
LGs being horizontal, we substitute t̃wGsGs for Gs. And to shift all terms on LGs

right down to be on the horizontal axis, we divide by t̃ordt̃F (t̃w−1G−1,··· ,t̃wsGs).
We can also proof that the leading coefficient does not disappear when we

substitute t̃ = 0, and F̂GsNew = F̂ (G−1, G0, · · · , Gs, t̃ = 0), Îk =
〈
t̃k/m̂

〉
, k =

1, 2, 3, · · · , in a similar way as proof in Theorem 1.

Algorithm 2. [Factorization of F = gm + · · · in K{(u)}[x] utilizing the multi-
variate expansion base including the case of singular leading coefficient]
INPUT : F (x,u) ∈ K{(u)}[x] s.t. FNew = gm

where m ≥ 2 and g is irreducible in K[x,u].
OUTPUT : Irreducible factors in K{(u)}[x].

1. Calculate the expansion base G = (G−1(= t), G0(= x), G1(= g), · · · , Gs)
and weights W = (w−1(= 1), w0, · · · , ws), and peform G-adic expansion of
F as F (G−1, G0, · · · , Gs) = Σc(u)e−1,e0,··· ,esG

e−1
−1 G

e0
0 · · ·Ges

s .

2. Plot terms of F (t̃w−1G−1, t̃
w0G0, · · · , t̃ws−1Gs−1, Gs) on (eGs , et̃)-plane, and

define the weight of Gs as ws
def= (−1)× (slope of Newton′s line LGs)

3. Calculate F̂ (G−1,· · · , Gs,t̃)=F (̃tw−1G−1,· · · ,t̃wsGs)/t̃ord̃tF (t̃w−1G−1,··· ,t̃wsGs)

4. Factorize F̂GsNew = F̂ (G−1, · · · , Gs, 0) over K{(u)}.
(a) If F̂GsNew cannot be decomposed into relatively prime factors,

if multiplicity is one then irreducible in K{(u)}[x], else if muitiplicity is
greater or equal to two then set Gs+1 ← (the irreducible component),
and goto 1.(s← s+ 1).

(b) If F̂GsNew can be decomposed into relatively prime factors,
then regarding them as initial factors, perform lifting with ideal

〈
t̃k/m̂

〉
,

k = 1, 2, 3, · · · , and practical interpolation polynomials.

#
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Newton dots for F (t̃w−1G−1, · · · , t̃ws−1Gs−1, Gs)
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��������Slope −ws

=⇒ F (t̃w−1G−1, · · · , t̃ws−1Gs−1, t̃
wsGs)/t̃α

α = ordt̃F (t̃w−1G−1, · · · , t̃ws−1Gs−1, t̃
wsGs)

⇒
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�
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et̃

eGs

�
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�

�

�

�

�

�

Example 2
F (x, u1, u2)

def=
(

(u1 + 2u2)
(
u32 x

2 − (u1 + u2)
)2

− u71x
2 − u91

)((
u32 x

2−(u1 + u2)
)2

− (u1 + u2)3u2

)
.

For F (x, tu), we plot each term on (ex, et)-plane (See Fig.A-1). First, we per-
form the transformation F (t̃−1x, t̃u)/t̃5, corresponding dots on the (ex, et̃)-plane
become as in Fig.A-2. Then Newton’s polynomial FNew cannot be decomposed
into nonunit relatively prime irreducible polynomials over K as FNew = (u1 +

2u2)t
(
u32 t

3x2 − (u1 + u2)t
)4

, and leading coefficient disappears at u1 = u2 = 0.

We put the expansion base G = (G−1, G0, G1) = (t, x, u32t3x2− (u1+u2)t). The
slope of LNew is 1 then we put weights as W = (w−1, w0) = (1,−1). Perform
G-adic expansion of F as F (G−1, G0, G1) = Σm

e1=0c(e−1,e0,e1)(u)Ge−1
−1 G

e0
0 G

e1
1 ,

c(e−1,e0,e1)(u) ∈ K{(u)}, by dividing G1, G0, G−1 in this order, and plot terms
of F (t̃1G−1, t̃

−1G0, G1) on the (eG1 , et̃) plane, then the slope of LG1New is
−2 then we put w1 = 2 (See Fig B-1). Therefore, we perform translation as
F̂ (G−1, G0, G1, t̃)=F (t̃1G−1, t̃

−1G0, t̃
2G1)/t̃9 (See Fig B-2). Now we get

F̂G1New = F̂ (G−1, G0, G1, t̃ = 0) = (G2
1 − u2(u1 + u2)3G4

−1)((u1 + 2u2)G−1G
2
1 −

u7
1

u3
2
(u1 + u2)G5

−1).

As the definition ofG1 is (t̃w1G1) = u32(t̃
w−1G−1)3(t̃w0G0)2−(u1+u2)(t̃w−1G−1),

we obtain (u1 + u2)G−1 = u32G
3
−1G

2
0 − t̃G1. And the weights of each term are

(u1 + u2)G−1 = u32G
3
−1G

2
0 − t̃G1.

Weights 1 1 2

Therefore, we can modify F̂G1New to pseudo form F ∗ by replacing (u1+u2)G−1→
u32G

3
−1G

2
0 having the same weights 1 as follows.

F ∗=(G2
1 − u42(u1 + u2)2G6

−1G
2
0)

(
(u1 + 2u2)G−1G

2
1 − u71G

7
−1G

2
0

)

= (G1 + u22(u1 + u2)G3
−1G0)(G1 − u22(u1 + u2)G3

−1G0)
(
(u1 + 2u2)G−1G

2
1 − u71G

7
−1G

2
0

)

F (x, tu1, · · · , tu�)
Plot (ex, et)

slope 1 ⇒ w0 = −1

FNew

������������������

ex

et

Fig.A-1
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F (t̃−1x, t̃u1, · · · , t̃u�)/t̃5
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et̃
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F (t̃1G−1, t̃
−1G0, G1)

Plot (eG1, et̃)
slope −2 ⇒ w1 = 2

FNew
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et̃

Fig.B-1
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�
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F (t̃1G−1, t̃
−1G0, t̃

2G1)/t̃9

Plot (eG1, et̃)

FNew
eG1

et̃

Fig.B-2
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By lifting, we obtain required factors of F as follows.

u32 x
2 − (u1 + u2) + u22(u1 + u2)x+ 1

2u2(u1 + u2)2 + 1
8u

2
2(u1 + u2)3 + · · · ,

u32 x
2 − (u1 + u2) − u22(u1 + u2)x+ 1

2u2(u1 + u2)2 − 1
8u

2
2(u1 + u2)3 − · · · ,

(u1 + 2u2)
(
u32 x

2 − (u1 + u2)
)2 − u71x

2 − u91.

4 Conclusion

In this paper, the multivariate analytic factorization algorithm in the case that
the leading coefficient disappears at the expansion point was suggested. A trans-
formation in [10] which is for the extended Hensel construction is applied to mul-
tivariate expansion base method, and we found that the analytic factorization
with singular and non singular leading coefficients can be done in a unified way.
This breakthrough comes from the identification of “weight of expansion base”
and “slope of Newton’s line”. Note that weights of bivariate expansion base take
only positive values, whereas weights of multivariate one can be negative, 0 or
positive (slope of Newton’s line can be positive, 0 or negative, respectively). We
can say this unified method is a blend of techniques of “multivariate expansion
base” and “the extended Hensel construction”. As for factorization in K[x,u],
we can treat only when Newton’s polynomial is square-free in [10]. However,
using [5], [6] or one in this paper, we can do even when Newton’s polynomial is
not square-free. As K[x,u] ⊂ K{u}[x] ⊂ K{(u)}[x], we can obtain irreducible
factors in K[x,u] by multiplying analytically irreducible factors.
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Abstract. The algebraic Riccati equation, denoted by ’ARE’ in the pa-
per, is one of the most important equation in the post modern control
theory, playing important role for solving H2 and H∞ optimal control
problems. The solution of ARE is given in the form of a matrix, and a
typical procedure of computing the solution uses eigenvalues and eigen-
vectors of matrix H , where H is a matrix determined by a given system.
With the aid excellent numerical packages such as “LAPACK” for matrix
computations, the procedure is quite efficient for the numerical systems
(the systems without unknown parameters).

This paper considers a system with an unknown parameter k. In this
case, the numerical procedure cannot be applied without fixing param-
eter k to a constant value. Let us consider some symbolic method to
compute the solution of ARE which leaves parameter k symbolic. Let-
ting entries of the solution matrix be unknown variables, ARE can be
viewed as a set of m algebraic equations with m variables and parameter
k, where m is the number of entries of the unknown matrix. Computing
Groebner basis of the algebraic equations with lexicographic ordering,
we obtain a polynomial whose roots are the solution of ARE (i.e. the
defining polynomial of ARE). Although this method with Groebner ba-
sis gives us the defining polynomial of ARE, it is not practical. The
method easily collapses when the size of a given system is large because
of its heavy numerical complexities. This paper presents a practical algo-
rithm to compute the defining polynomial. The proposed algorithm uses
polynomial interpolations, and is easily parallelizable, implying that it
is advantageous under multi-CPU environments. Numerical experiments
indicate that even in the single CPU environments, the proposed algo-
rithm is much more practical than that with Groebner basis.

1 Introduction

Computer Algebra has received an increasing attention in recent years because
of the capacity to handle a parameter as an indeterminate. This is particularly
advantageous in controller designs with a parameter where it is difficult to apply
conventional numerical methods without substituting a numerical value into the
parameter.

Various Computer Algebra techniques have been proved to be quite effec-
tive in the design and analysis of control systems. Some of the most important
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results are produced using QE (Quantifier Elimination), a comparatively new
technique in Computer Algebra. In short, QE converts mathematical formulas
with quantifiers ∀, ∃ to an equivalent formula without a quantifier. For more on
the application of QE to control system design, refer to references [1]-[4].

Another application of Computer Algebra is presented in Reference [5], where
one of the authors of the paper describes an algorithm to compute the H∞ norm
of a system with a parameter under a restrictive condition (the system must be
one-input or one-output). The condition is removed in [6], which can be viewed
as a generalization of [5]. In [7], the same idea as the ones in [5] and [6] is used
to compute the H∞ norm of a system with a validated numerical calculation,
which guarantees the accuracy of the computation.

In this paper, we treat a ’parametric’ algebraic Riccati equation, which is
the algebraic Riccati equation containing an unknown parameter. The algebraic
Riccati equation, denote by ’ARE’ in the paper, is an equation of n× n matrix
P in the form of

PA+ATP − PWP +Q = 0, (1)

where A,W,Q (Q being positive semi definite and W being symmetric) are given
n× n matrices. It is used for solving H2 and H∞ optimal control problems, and
is one of the most important equations in control theory. This paper focuses
on the ARE derived from H2 optimal control problem, where W = BR−1BT

with R being a positive definite matrix. It is assumed that a given system is
controllable, i.e.

rank
([
B AB · · · An−1B

])
= n, (2)

which guarantees the existence of solutions of the ARE.
Typically, a solution P of the equation is computed by a numerical algorithm,

which utilizes the eigenvalues and eigenvectors of matrix H defined by

H
def=

[
A −BR−1BT

−Q −AT

]
. (3)

However, when matrices A,B,R,Q contain unknown parameters, the numerical
algorithm cannot be applied.

Letting entries of the solution matrix P be unknown variables, ARE can be
viewed as a set of m algebraic equations with m variables and parameter k,
where m is the number of entries of matrix P . Computing Groebner basis of the
algebraic equations with lexicographic ordering, we obtain a polynomial whose
roots are the solution of ARE (i.e. the defining polynomial of ARE).

Let us give a numerical example: Let matrices A,B,R,Q in (1) be

A =
[
k 1
1 −1

]
, B =

[
1 0
0 1

]
, R =

1
2
, Q =

[
1 0
0 1

]

and let the solution P be

P =
[
p1,1 p1,2

p1,2 p2,2

]
,
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where p1,1, p1,2, p2,2 are unknown variables. From (1,1),(1,2),(2,2)th entries of
(1), we obtain a set of algebraic equations

⎧
⎨

⎩

2kp1,1 + 2p21,1 + 2p1,2 − 2p21,2 + 1 = 0
p1,1 − p1,2 + kp1,2 − 2p1,1p1,2 + p2,2 − 2p1,2p2,2 = 0
2p1,2 − 2p21,2 − 2p2,2 − 2p22,2 + 1 = 0

.

Computing Groebner basis for the equations with the lexicographic term order-
ing p1,1 , p1,2 , p2,2 , k, we obtain

f4(k)p42,2 + f3(k)p32,2 + f2(k)p22,2 + f1(k)p2,2 + f0(k) = 0,

which is the defining polynomial of (2,2)th entry p22 of the solution P in (1),
where

f4(k) = 4k3 + 4k2 + 12k − 20, f3(k) = 8k3 + 8k2 + 24k − 40,
f2(k) = −4k2 + 8k − 4, f1(k) = −4k3 − 8k2 − 4k + 16,
f0(k) = k3 + 3k2 − 3k − 1.

The defining polynomials of other entries can also be computed in a similar
way. Although this procedure with Groebner basis computes any defining poly-
nomials of the entries of P theoretically, it is effective only for quite small size
problems in practice because of its heavy numerical complexities. This paper
presents a practical algorithm for computing the defining polynomial of the en-
tries. The algorithm uses polynomial interpolations, and is easily parallelizable.
In this paper, the following notations are used:

R: The set of real numbers.
C: The set of complex numbers.
Z: The set of integers.
N: The set of natural numbers.
Km,n: The set of matrices with entries in K.
K[x]: The set of polynomials with coefficients in K.
Resx(r1(x), r2(x)): Resultant of polynomials r1(x) and r2(x) with respect to x.
GCDx(r1(x), · · · , rn(x)): Polynomial GCD of r1(x),· · ·,rn(x) with respect to x.
degx(r(x)): The degree of r(x) with respect to x.
H |k=k0 : Matrix H when k = k0.

2 Solution of the Algebraic Riccati Equation

In this section, we discuss the solutions of ARE. First, we explain a conventional
numerical method of solving ARE. We then discuss the expression of the ARE
solution using matrix determinants.
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2.1 Numerical Method of Solving ARE

Given ARE (1), let matrix H be defined by (3). It is well-known that if λ is an
eigenvalue of H , then so is −λ. Thus, a set of the eigenvalues of H is given in
the form of {μ1,· · ·,μn,−μ1,· · ·,−μn} (μi ∈ C). Let λ1, · · · , λn be n eigenvalues
among 2n eigenvalues of H , and u1, · · · , un be corresponding eigenvectors to the
eigenvalues λ1, · · · , λn. Then a solution P of ARE is given by P = X2X

−1
1 , where

n× n matrices X1 and X2 are defined by
[
X1

X2

]
def=

[
u1 · · · un

]
. (4)

The above numerical method tells us that each choice of n eigenvalues among 2n
eigenvalues constitutes a solution of ARE, implying that there exist 2nCn = (2n)!

(n!)2

solutions of ARE. In the control theory, only symmetric solutions are of interests
in many cases, and our attention is only on the symmetric solutions. As we will
see later, among (2n)!

(n!)2 solutions, only 2n solutions are symmetric.

2.2 Expression of the Solution with Matrix Determinants

In this subsection, we first describe the algorithm presented in [6], which com-
putes solutions of ARE, leaving eigenvalues and parameter as symbol. The al-
gorithm computes eigenvectors of matrix H defined in (3), leaving eigenvalue λ
as indeterminates.

Algorithm 1 (Computation of v(λ))

〈1〉 Let x be x =
[
x1 · · · x2n

]T and compose 2n linear equations (H−λE)x = 0
(each entry of (H − λE)x = 0 is a linear equation), where λ is an indeter-
minate.

〈2〉 Select (2n − 1) linear equations from 2n equations in 〈1〉, and solve the
(2n− 1) linear equations with respect to variables x1,· · ·,x2n−1.

〈3〉 Substitute the solution of x1, · · · , x2n−1 into x and multiply an adequate
polynomial so that each entry of x is a polynomial in λ.

〈4〉 Let v(λ) ← x/x2n, and output v(λ).

Vector v(λ) computed using Algorithm 1 is the eigenvector of H corresponding
to eigenvalue λ. Now let us define n× n matrix Λ(y1, · · · , yn) ∈ Z[y1, · · · , yn]n,n

by
Λ(y1, · · · , yn) def= Γ2(y1, · · · , yn)Γ1(y1, · · · , yn)−1, (5)

where y1, · · · , yn are variables and n×n matrices Γ1(y1,· · · , yn) and Γ2(y1,· · · , yn)
are defined by [

Γ1(y1, · · · , yn)
Γ2(y1, · · · , yn)

]
def=

[
v(y1) · · · v(yn)

]
. (6)

Then, Λ(λ1, · · · , λn), which is a polynomial matrix, constitutes the solution of
ARE corresponding to eigenvalues λ1,· · ·,λn, and we have the following theorem:
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Theorem 1. Let P be the solution of ARE (1) corresponding to eigenvalues
λ1,· · ·,λn of H (i.e. P = Λ(λ1, · · · , λn)). Then (i, j)th entry pi,j of P is given by

pi,j =
|Γ̄i,j(λ1, · · · , λn)|
|Γ1(λ1, · · · , λn)| , (7)

where Γ̄i,j(λ1, · · · , λn) is the matrix defined by

Γ̄i,j(λ1, · · · , λn) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1(λ1) · · · v1(λn)
...

...
...

vj−1(λ1) · · · vj−1(λn)
vn+i(λ1) · · · vn+i(λn)
vj+1(λ1) · · · vj+1(λn)

...
...

...
vn(λ1) · · · vn(λn)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

(vi(y) in (8) denotes i-th entry of vector v(y) computed by Algorithm 1).

Proof
From P = Λ(λ1, · · · , λn), we have

P = Γ2(λ1, · · · , λn)Γ1(λ1, · · · , λn)−1.

Hence,
PΓ1(λ1, · · · , λn) = Γ2(λ1, · · · , λn).

Taking transpose of both sides, we obtain (note that P is a symmetric matrix)

Γ1(λ1, · · · , λn)TP = Γ2(λ1, · · · , λn)T .

Looking at the i-th column of both sides, we see that

Γ1(λ1, · · · , λn)TPi =
[
vn+i(λ1) · · · vn+i(λn)

]T
,

where Pi denotes i-th column of P . From the Cramer’s formula, we obtain that
j-th entry pi,j of Pi is given by

pi,j =
|Γ̄i,j(λ1, · · · , λn)T |
|Γ1(λ1, · · · , λn)T | =

|Γ̄i,j(λ1, · · · , λn)|
|Γ1(λ1, · · · , λn)| ,

which proves the theorem.

3 Basic Algorithm

3.1 Problem Setting

Let A ∈ Z[k]n,n, B ∈ Z[k]n,m, R ∈ Z[k]m,m, Q ∈ Z[k]n,n be polynomial
matrices in k, where R is positive definite and Q is positive semi-definite for any
value of k. We assume that a given system is controllable (i.e. (2)) except at
finite number of points of k. Let pi,j be (i, j)th entry of a symmetric solution P
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of (1), and let us compute the defining polynomial of pi,j . First, let us remark
the following lemma:

Lemma 1. Suppose that there exists numerical value k0 of k which satisfies the
two conditions:

(C1) All eigenvalues of H |k=k0 are distinct.
(C2) P (λ1, · · · , λn) is symmetric ⇒ ∀i, j (1 ≤ i, j ≤ n, i �= j) λi + λj �= 0
where λ1, · · · , λn are eigenvalues of H |k=k0 .

Then, except for finite number of points of k, ARE (1) has exactly 2n symmetric
solutions.

Proof
The fact that “Numerical ARE with k = k0 satisfying the above conditions (C1)
and (C2) has exactly 2n symmetric numerical solutions” is well-known (see, for
example, [9] for details), from which the lemma is deduced.

From Lemma 1, we obtain the following theorem:

Theorem 2. Suppose that the assumption of Lemma 1 holds and let pi,j be
(i, j)th entry of a symmetric solution P of (1). Then there exists a polynomial
fl(k) ∈ Z[k] (l = 0, · · · , 2n) that satisfies

GCDk(f0(k), · · · , f2n(k)) = 1, (9)
f2n(k)p2

n

i,j + · · · + f1(k)pi,j + f0(k) = 0. (10)

Proof
Let symmetric solution P of ARE (1) be

P =

⎡

⎢⎢⎢⎣

p1,1 p1,2 · · · p1,n

p1,2 p2,2 · · · p2,n

...
...

...
...

p1,n p2,n · · · pn,n

⎤

⎥⎥⎥⎦ .

Since matrix PA+ATP −PBR−1BTP +Q is symmetric, ARE (1) gives n(n+1)
2

algebraic equations with n(n+1)
2 unknowns p1,1, p1,2, · · · , pn,n and parameter k.

Computing Groebner basis of the equations with the lexicographic term ordering
pi,j , pĩ,j̃ (i �= ĩ, j �= j̃) , k, we obtain a polynomial in pi,j and k in the form of

fm(k)pm
i,j + · · ·+ f1(k)pi,j + f0(k). (11)

We can assume without loss of generality that the condition (9) is satisfied, since
if it is not, we can divide (11) by GCDk(f0(k), · · · , f2n(k)), not changing its roots
with respect to pi,j . From Lemma 1, the degree of the polynomial with respect
to pi,j is 2n, which proves the theorem.

From Theorem 2, we see that the defining polynomial of symmetric solutions
of ARE is given as a factor of left-hand side of (10). Hereafter, we discuss the
computation of polynomial (10).
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3.2 Algorithm with Polynomial Interpolations

Suppose that we have a polynomial φ(k) ∈ Z[k] that contains f2n(k) in (10) as
its factor, i.e.

φ(k) = f2n(k)f̄(k) (f̄(k), f2n(k) ∈ Z[k]). (12)

Then the polynomial in (10) can be computed as follows: Let kr be an inte-
ger and let αl(kr) (l = 1, · · · , 2n) denote 2n roots of (10) with k = kr. Since
αl(kr) (l = 1, · · · , 2n) are (i, j)th entries of 2n symmetric solutions of (1), they
can be computed numerically with a conventional numerical method after sub-
stitution k = kr. Thus, a polynomial

φ(kr) {(pi,j − α1(kr)) · · · (pi,j − α2n(kr))} ,

in pi,j can be computed (we have φ(k) in (12)), which can be written as

φ(kr) {(pi,j − α1(kr)) · · · (pi,j − α2n(kr))}
= f2n(kr)f̄(kr) {(pi,j − α1(kr)) · · · (pi,j − α2n(kr))}

= f̄(kr)
{
f2n(kr)p2

n

i,j + · · ·+ f1(kr)pi,j + f0(kr)
}

=
2n∑

l=0

f̄(kr)fl(kr)pl
i,j (∈ Z[pi,j ]). (13)

From the coefficients of (13), f̄(kr)fl(kr) ∈ Z can be calculated for any kr,
implying that a polynomial f̄(k)fl(k) ∈ Z[k] can be computed by polynomial
interpolations. With f̄(k)fl(k) obtained, fl(k) (l = 0, · · · , 2n) can be computed
by factoring

∑2n

l=0 f̄(k)fl(k)pl
i,j as follows:

2n∑

l=0

f̄(k)fl(k)pl
i,j = f̄(k)

{
f2n(k)p2

n

i,j + · · ·+ f1(k)pi,j + f0(k)
}
, (14)

from which, polynomial (10) is obtained. Thus, the algorithm to compute (10)
is as follows:

Algorithm 2 (Computation of (10))

〈1〉 Compute polynomial φ(k) in (12).
〈2〉 Let M be an initial guess of maxl

(
deg

(
f̄(k)fl(k)

))
.

〈3〉 From r = 1 to M , perform the following computation.
Let kr ∈ Z be adequate integer and compute 2n roots of (10), which are
symmetric solutions of (1). Then compute f̄(kr)fl(kr) ∈ Z in (13).

〈4〉 Compute f̄(k)fl(k) ∈ Z[k], using f̄(kr)fl(kr) ∈ Z (r = 1, · · · ,M) in 〈2〉 and
polynomial interpolations.

〈5〉 Validate the correctness of f̄(k)fl(k), with the following two check points:
– degk(f̄(k)fl(k)) < M , which should be true for a large enough M .
– Check f̄(k0)fl(k0)) is the same as the one obtained from (13), where k0

is a randomly generated integer.
If f̄(k)fl(k) is not validated, increase M and go to step 〈3〉.

〈6〉 Compute fl(k) (l = 0, 1, · · · , 2n) in (14) by factoring
∑2n

l=0 f̄(k)fl(k)pl
i,j .
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3.3 Computation of the Head Coefficient

Let a set of the eigenvalues of H in (3) be {λ1, · · · , λn,−λ1, · · · ,−λn}. From
Lemma 1, we see that 2n symmetric solutions of ARE (1) are the solutions
corresponding to eigenvalues s1λ1, · · · , snλn (s1, · · · , sn = ±1) of H . Thus, from
Theorem 1, (i, j)th entry of the 2n symmetric solutions are given by

|Γ̄i,j(s1λ1, · · · , snλn)|
|Γ1(s1λ1, · · · , snλn)| (sl = ±1, l = 1, · · · , n). (15)

Since |Γ1(s1λ1, · · · , snλn)| and |Γ̄i,j(s1λ1, · · · , snλn)| are both alternating poly-
nomials in s1λ1, · · · , snλn, they can be expressed in the form of

|Γ1(s1λ1, · · · , snλn)| = g(s1λ1, · · · , snλn)
∏

i<j

(siλi − sjλj), (16)

|Γ̄i,j(s1λ1, · · · , snλn)| = h(s1λ1, · · · , snλn)
∏

i<j

(siλi − sjλj), (17)

where g(s1λ1, · · · , snλn) and h(s1λ1, · · · , snλn) are symmetric polynomials in
s1λ1, · · · , snλn.

Theorem 3.
∏

sl=±1 g(s1λ1, · · · , snλn) can be expressed as a polynomial in k,
i.e. there exists ḡ(k) ∈ Z[k] such that

ḡ(k) =
∏

sl=±1

g(s1λ1, · · · , snλn), (18)

and f2n(k) divides ḡ(k).

Proof
First, we will prove former part of the theorem. Let {λ1,· · · , λn,−λ1,· · · ,−λn}
be a set of the eigenvalues of H . The characteristic polynomial of H can be
written as

H = (x− λ1) · · · (x− λn)(x + λ1) · · · (x + λn)
= (x2 − λ21) · · · (x2 − λ2n)
= x2n + g2(n−1)(k)x2(n−1) + · · · + g2(k)x2 + g0(k),

where g2i(k) (i = 0, · · · , n − 1) are polynomials in k. Thus, fundamental sym-
metric polynomials of λ21, · · · , λ2n can be written as polynomials in k, since they
are equal to g2i(k) (i = 0, · · · , n − 1). Hence,

∏
sl=±1 g(s1λ1, · · · , snλn) can be

expressed as a polynomial in k, if we prove that
∏

sl=±1 g(s1λ1, · · · , snλn) is a symmetric polynomial in λ21, · · · , λ2n. (19)

It is obvious that
∏

sl=±1 g(s1λ1, · · · , snλn) is a symmetric polynomial in
λ1, · · · , λn, since g(s1λ1, · · · , snλn) is symmetric polynomial in s1λ1, · · · , snλn.
Also note that

∏
sl=±1g(s1λ1, · · · , snλn) is an even function of λi, since its func-

tion value does not change even if we replace λi with −λi. Hence, the coefficients
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with odd power of λi are all zero, and
∏

sl=±1 g(s1λ1, · · · , snλn) is a polynomial
in λ21, · · · , λ2n. This proves (19), the former part of the theorem.

Next we will prove latter part of the theorem, i.e.

f2n(k) divides ḡ(k). (20)

From (7),(16) and (17), (i, j)th entry of 2n symmetric solutions of ARE is given
by

h(s1λ1, · · · , snλn)
g(s1λ1, · · · , snλn)

(s1, · · · , sn = ±1).

Therefore, right-hand side of (10) can be written as

f2n(k)
∏

sl=±1

(
pi,j −

h(s1λ1, · · · , snλn)
g(s1λ1, · · · , snλn)

)
.

Now, let us assume that
⎧
⎨

⎩

∏

sl=±1

{g(s1λ1, · · · , snλn)pi,j − h(s1λ1, · · · , snλn)}

can be express as a polynomial in k and pi,j .
(21)

Then there exists Ψ(pi,j , k) ∈ Z[pi,j , k] such that

Ψ(pi,j , k)
def=

∏

sl=±1

{g(s1λ1, · · · , snλn)pi,j − h(s1λ1, · · · , snλn)}

= ḡ(k)
∏

sl=±1

(
pi,j −

h(s1λ1, · · · , snλn)
g(s1λ1, · · · , snλn)

)

=
(

ḡ(k)
f2n(k)

)
f2n(k)

∏

sl=±1

(
pi,j −

h(s1λ1, · · · , snλn)
g(s1λ1, · · · , snλn)

)

=
ḡ(k)
f2n(k)

{
f2n(k)p2

n

i,j + · · ·+ f1(k)pi,j + f0(k)
}
. (22)

If ḡ(k)
f2n (k) is not a polynomial, i.e. if ḡ(k)

f2n (k) can be written as

r1(k)
r2(k)

(GCD(r1(k), r2(k)) = 1, degk(r2(k)) > 0),

then r2(k) is a common divisor of fi(k) (i = 0, · · · , 2n) (recall that Ψ(pi,j , k) is a
polynomial in pi,j and k), which contradicts (9). Therefore, ḡ(k)

f2n (k) is a polynomial
and ḡ(k) divides f2n(k). Thus, to prove (20), it is enough to prove (21). In a way
similar to the former part of the proof, (21) is shown, if we prove that

⎧
⎨

⎩

∏

sl=±1

{g(s1λ1, · · · , snλn)pi,j − h(s1λ1, · · · , snλn)}

is a symmetric polynomial in λ21, · · · , λ2n.
(23)
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Since both of g(s1λ1, · · · , snλn) and h(s1λ1, · · · , snλn) are symmetric polyno-
mials in s1λ1, · · · , snλn, it is obvious that (23) is a symmetric polynomial in
λ1, · · · , λn. Note also that (23) is an even function, since its function value does
not change even if we replace λi with −λi. Thus, the coefficients with odd power
of λi are all zero, and (23) is a function of λ21, · · · , λ2n. Thus, (23) is shown, and
so is (21). This completes the proof.

From Theorem 3, we see that ḡ(k) is a polynomial which has f2n(k) as its
factor. Thus, we can set φ(k) = ḡ(k) in 〈1〉 of Algorithm 2. Since ḡ(k) is a polyno-
mial in k, it can be computed with polynomial interpolations. More specifically,
ḡ(k) can be computed from ḡ(kl) ∈ Z, kl ∈ Z (l = 1, · · · , L), where L is an
integer satisfying L > degk(ḡ(k)).

Algorithm 3 (Computation of ḡ(k) (= φ(k)))

〈1〉 Let L be an initial guess of degk(ḡ(k)).
〈2〉 Let kl (l = 1, · · · , L) be adequate integers.
〈3〉 Let l← 1.
〈4〉 Compute a set of eigenvalues {λ1, · · · , λn,−λ1, · · · ,−λn} of H |k=kl

.
〈5〉 Compute ḡ(kl) by

ḡ(kl) =
∏

sl=±1

g(s1λ1, · · · , snλn), (24)

where

g(s1λ1, · · · , snλn) =
|Γ1(s1λ̄1, · · · , snλ̄n)|∏

i<j

(siλi − sjλj)
. (25)

〈6〉 If l < L, then let l ← l + 1 and go to 〈3〉. Otherwise compute ḡ(k) ∈ Z[k]
from ḡ(kl) (l = 1, · · · , L) by polynomial interpolations.

〈7〉 Validate the correctness of ḡ(k) with the following two check points:
– degk(ḡ(k)) < L, which should be true for a large enough L.
– Check ḡ(k0) is the same as the one obtained from (24), where k0 is a

randomly generated integer.
If ḡ(k) is not validated, increase L and go to step 〈2〉.

Remark: As we mentioned before, |Γ1(s1λ̄1, · · · , snλ̄n)| is an alternating poly-
nomial in s1λ̄1, · · · , snλ̄n, and contains factors (siλi−sjλj) (i �= j). It is possible
to pull out the factors symbolically by column operations of matrix Γ1(s1λ̄1, · · · ,
snλ̄n), and we need not to compute denominator of (25) explicitly.

4 Numerical Experiments

Let A ∈ Z[k]n,n, B ∈ Z1,n be the following matrices:

A = kĒ +Ωn,n, B = Ω1,n, (26)
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where matrix Ωn,n ∈ Zn,n is a randomly generated n× n matrix whose entries
are integers between −5 and 5, and Ē is a matrix whose (i, j)-th entry ēi,j is
defined by

ēi,j =
{
τ, when (i, j) = (1, 1)
0, otherwise , τ = random integer (�= 0) between −5 and 5.

For example, when n = 2, an example of A,B in (26) is

A =
[

2k − 3 3
−1 −2

]
, B =

[
0
1

]
.

Numerical experiments are performed as follows: Matrices Q and R are set to
the identity matrices, and we generate 5 set of A,B for each n = 2, · · · , 5. Then
the defining polynomial of symmetric solutions of ARE (1) is computed by the
following two methods:

(M1) The method using Groebner basis.
(M2) The method using Algorithm 2, where φ(k) is computed by Algorithm 3.

The experiments are performed with Maple 10 on the machine equipped with
Pentium M 2.0GHz and 1.5GByte memory. Table 1 shows the average of 5
computation times in seconds, where × denotes the failure of the computation
due to either memory exhaustion or too much (> 24 hours) computation time.

Table 1. Computation time (in seconds)

n 2 3 4 5

M1 0.8844 × × ×
M2 2.044 16.71 766.6 ×

From the table, we see that (M2) is more efficient than (M1), computing the
defining polynomial up to the system with n = 4. We also see that the method
using Groebner basis is not practical for n ≥ 3.

5 Conclusion

This paper presented the algorithm to compute the defining polynomial of sym-
metric solutions of ARE (1), where A,W (= BR−1BT ), Q contain an unknown
parameter. The algorithm uses polynomial interpolations, where its head coeffi-
cient is computed from Theorem 3 in Section 3.3. Numerical experiments showed
that for H2 optimal problem, the algorithm is practical for the system with n ≤ 4
(n denotes the size of matrices A,W,Q), where the method with Groebner basis
is practical only for the system with n ≤ 2. Since the algorithm is easily par-
allelizable, the computation time can be drastically reduced under multi-CPU
environments.
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Abstract. We consider discrete dynamical systems and lattice mod-
els in statistical mechanics from the point of view of their symmetry
groups. We describe a C program for symmetry analysis of discrete
systems. Among other features, the program constructs and investi-
gates phase portraits of discrete dynamical systems modulo groups of
their symmetries, searches dynamical systems possessing specific prop-
erties, e.g.,reversibility, computes microcanonical partition functions and
searches phase transitions in mesoscopic systems. Some computational
results and observations are presented. In particular, we explain forma-
tion of moving soliton-like structures similar to “spaceships” in cellular
automata.

1 Introduction

Symmetry analysis of continuous systems described by ordinary or partial dif-
ferential equations is well developed and fruitful discipline. But there is a sense
of incompleteness of the approach since the transformations used in the sym-
metry analysis of continuous systems — point and contact Lie, Bäcklund and
Lie–Bäcklund, some sporadic instances of so-called non-local transformations —
constitute negligible small part of all thinkable transformations. In this context
finite discrete systems look more attractive since we can study all possible their
symmetries.

Furthermore, there are many hints from quantum mechanics and quantum
gravity that discreteness is more suitable for describing physics at small distances
than continuity which arises only as a logical limit in considering large collections
of discrete structures.

Both differential equations and cellular atomata are based on the idea of lo-
cality — behavior of a system as a whole is determined by interections of its
closely situated parts. Recently [1,2] we showed that any collection of discrete
points taking values in finite sets possesses some kind of locality. More specif-
ically, let us consider collection of N “points”, symbolically δ = {x1, . . . , xN}.
We call δ domain. Each xi takes value in its own set of values Qi =

{
s1i , . . . , s

qi

i

}

or using the standard notation Qi = {0, . . . , qi − 1}. Adopting Qδ as symbolical
notation for the Cartesian product Q1 × · · · × QN , we define relation on δ as
an arbitrary subset Rδ ⊆ Qδ. Then we define consequence of relation Rδ as an

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 236–251, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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arbitrary superset Sδ ⊇ Rδ and proper consequence as a consequence which can
be represented in the form Pα × Qδ\α, where Pα is nontrivial (i.e., Pα �= Qα)
relation on the proper subset α ⊂ δ. We show that any relation Rδ allows a de-
composition in terms of its proper consequences. This decomposition naturally
imposes a structure of abstract simplicial complex — one of the mathematical
abstractions of locality. Thus we call collections of discrete finite-valued points
discrete relations on abstract simplicial complexes.

We demonstrated also that such relations in special cases correspond to sys-
tems of polynomial equations (if all points xi take values in the same set Q
and its cardinality is a power of a prime |Q| = pk) and to cellular automata
(if domain δ allows decomposition into congruent simplices with the same re-
lation on the simplices and this relation is functional). The notion of discrete
relations covers also discrete dynamical systems more general than cellular au-
tomata. The lattice models in statistical mechanics can also be included in this
framework by considering ensembles of discrete relations on abstract simplicial
complexes.

In this paper we study dependence of behavior of discrete dynamical sys-
tems on graphs — one-dimensional simplicial complexes — on symmetries of
the graphs. We describe our C program for discrete symmetry analysis and re-
sults of its application to cellular automata and mesoscopic lattice models.

2 Symmetries of Lattices and Functions on Lattices

Lattices. A space of discrete dynamical system is a lattice L represented as a
k-regular (k-valent) graph GL. By a ‘symmetry’ of lattice L we mean the auto-
morphism group Aut(GL) of the graph of L. In applications one often assumes
that the lattice L is embedded in some continuous space. In this case the notion
of ‘dimension’ of lattice makes sense. Note that the same graph can be embedded
regularly in different continuous spaces as it is clear from the example shown
in Fig. 1. That is why the group Aut(GL) is usually larger than the symmetry
group of lattice placed in a space.

a

b

−→

a

a

a

a

b

b

−→

Fig. 1. The same graph forms 4-gonal (6 tetragons) lattice in sphere S2 and 6-gonal (4
hexagons) lattice in torus T2
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The lattices we are concerned in this paper are shown in Fig. 2.

Tetrahedron Hexahedron Icosahedron Dodecahedron

BuckyballSquare 5×5Triangular 4×6Graphene 3×4

Fig. 2. Examples of lattices

Computing Automorphisms. The automorphism group of graph with n ver-
tices may have up to n! elements. However, McKay’s algorithm [4], based on
efficiently arranged search tree, determines the graph automorphisms by con-
structing compact set (not more than n− 1 elements, but usually much less) of
generators of the group.

Functions on Lattices. To study the symmetry properties of a system on a
lattice L we should consider action of the group Aut(GL) on the spaceΣ = QL of
Q-valued functions on L, where Q = {0, . . . , q − 1} is the set of values of lattice
vertices. We shall call the elements of Σ states or (later in Sect. 5) microstates.

The group Aut(GL) acts non-transitively on the space Σ splitting this space
into the disjoint orbits of different sizes

Σ =
Norbits⋃

i=1

Oi.

The action of Aut(GL) on Σ is defined by

(gϕ) (x) = ϕ
(
g−1x

)
,

where ϕ (x) ∈ Σ, g ∈ Aut (GL), x is a variable running over vertices of L.
Burnside’s lemma counts the total number of orbits in the state space Σ

Norbits =
1

|Aut(GL)|
∑

g∈Aut(GL)

qNg
cycles .

HereNg
cycles is the number of cycles (including unit ones) in the group element g.
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Large symmetry group allows to represent dynamics on the lattice in more
compact form. For example, the automorphism group of (graph of) icosahedron,
dodecahedron and buckyball is S51, and the information about behavior of any
dynamical system on these lattices can be compressed nearly in proportion to
|S5| = 120.

Illustrative Data. In Table 1 we collect some quantitive information about the
lattices from Fig.2 and their automorphism groups, namely, number of vertices
V (GL), size of automorphism group |Aut(GL)|, total number of states Ω =
|Σ| ≡ qV (GL) (assuming q = 2) and number of group orbits Norbits in the space
of states.

Table 1. Lattices, groups, orbits: numerical characteristics

Lattice V (GL) |Aut(GL)| Ω = qV (GL) Norbits

Tetrahedron 4 24 16 5

Hexahedron 8 48 256 22

Icosahedron 12 120 4096 82

Dodecahedron 20 120 1048576 9436

Graphene 3×4
Torus

24 48 16777216 355353

Graphene 3×4
Klein bottle

24 16 16777216 1054756

Triangular 4×6 24 96 16777216 180070

Square 5×5 25 200 33554432 172112

Buckyball 60 120
1152921504606846976

≈ 1018
9607679885269312

≈ 1016

Note that the lattices marked in Fig. 2 as “Graphene 3×4”, “Triangular 4×6”
and “Square 5×5” can be closed by identifications of opposite sides of rectangles in
several different ways. Most natural identifications form graphs embedded in the
torus and in the Klein bottle. Computation shows that the Klein bottle arrange-
ment (as well as others except for embeddings in the torus) leads to nonhomoge-
neous lattices. For example, the hexagonal lattice “Graphene 3×4” embedded in
the Klein bottle has 16-element symmetry group and this group splits the set of
vertices into two orbits of sizes 8 and 16. Since non-transitivity of points contra-
dicts to our usual notion of space, we shall not consider further such lattices.

3 Computer Program and Its Functionality

We have written a C program to study different properties of deterministic and
statistical lattice systems exploiting their symmetries. Input of the program con-
sists of the following elements:
1 Traditionally, the icosahedral group Ih = A5 is adopted as a symmetry group for

these polyhedra. A5 is 60-element discrete subgroup of SO(3). Adding reflections to
A5 we get twice larger (and hence more efficient for our purposes) group S5.
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– Graph of lattice GL = {N1, . . . , Nn}. Ni is neighborhood of ith vertex, i.e.,
the set of k vertices adjacent to ith vertex.

– Cellular automata branch:
Set of local rules R = {r1, . . . , rm}. ri is integer number representing bits

of ith rule. The set R includes the rules we are interested in. In particular,
this set may contain only one rule (for detailed study).

– Statistical models branch:
Hamiltonian of the model.

– Some control parameters.

The program computes the automorphism group Aut(GL) and

– in the case of cellular automata the program constructs phase portraits of
automata modulo Aut(GL) for all rules from R.
Manipulating the above mentioned control parameters we can
• select automata with specified properties, for example, reversibility, con-

servation of a given function on dynamical trajectories, etc.;
• search automata whose phase portraits contain specific structures, for

example, the limit cycles of a given length, “gardens of Eden” [5] or,
more generally, isolated cycles, “spaceships”, etc.

– in the case of statistical lattice model the program computes the partition
function and other characteristics of the system, searches phase transitions.

Example of timing
The full run of all 136 symmetric 3-valent binary cellular automata on the dodec-
ahedron (number of vertices = 20, order of automorphism group = 120, number
of states = 1048576, number of orbits = 9436) takes about 40 sec on a 1133MHz
Pentium III personal computer.

4 Deterministic Dynamical Systems

In this section we point out a general principle of evolution of any causal dynamical
system implied by its symmetry, explain formation of soliton-like structures, and
consider some results of computing with symmetric 3-valent cellular automata.

Universal Property of Deterministic Evolution Induced by Symme-
try. The splitting of the space Σ of functions on a lattice into the group orbits
of different sizes imposes universal restrictions on behavior of a deterministic
dynamical system for any law that governs evolution of the system. Namely,
dynamical trajectories can obviously go only in the direction of non-decreasing
sizes of orbits. In particular, periodic trajectories must lie within the orbits of the
same size. Conceptually this restriction is an analog of the second law of ther-
modynamics — any isolated system may only lose information in its evolution.

Formation of Soliton-like Structures. After some lapse of time the dynam-
ics of finite discrete system is governed by its symmetry group, that leads to
appearance of soliton-like structures. Let us clarify the matter. Obviously phase
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portraits of the systems under consideration consist of attractors being limit
cycles and/or isolated cycles (including limit and isolated fixed points regarded
as cycles of period one). Now let us consider the behavior of the system which
has come to a cycle, no matter whether the cycle is limit or isolated. The sys-
tem runs periodically over some sequence of equal size orbits. The same orbit
may occur in the cycle repeatedly. For example, the isolated cycle of period 6
in Fig. 5 — where a typical phase portrait modulo automorphisms is presented
— passes through the sequence of orbits numbered2 as 0, 2, 4, 0, 2, 4, i.e., each
orbit appears twice in the cycle.

Suppose a state ϕ(x) of the system running over a cycle belongs to ith orbit
at some moment t0: ϕ(x) ∈ Oi. At some other moment t the system appears
again in the same orbit with the state ϕt(x) = At0t (ϕ(x)) ∈ Oi. Clearly, the
evolution operator At0t can be replaced by the action of some group element
gt0t ∈ Aut(GL)

ϕt(x) = At0t (ϕ(x)) = ϕ
(
g−1

t0tx
)
. (1)

The element gt0t is determined uniquely modulo subgroup Aut (GL;ϕ(x)) ⊆
Aut(GL) fixing the state ϕ(x). Equation (1) means that the initial cofiguration
(shape) ϕ(x) is completely reproduced after some movement in the space L.
Such soliton-like structures are typical for cellular automata. They are usually
called “spaceships” in the cellular automata community.

Let us illustrate the group nature of such moving self-reproducing structures
by the example of “glider” — one of the simplest spaceships of Conway’s au-
tomaton “Life”. This configuration moves along the diagonal of square lattice
reproducing itself with one step diagonal shift after four steps in time. If one
considers only translations as a symmetry group of the lattice, then, as it is
clear from Fig. 3, the first configuration lying in the same orbit3 with ϕ1 is ϕ5,
i.e., for the translation group T2 glider is a cycle running over four orbits.

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

Fig. 3. Glider over translation group T2 is cycle in four group orbits

Our program constructs the maximum possible automorphism group for any
lattice. For an n × n square toric lattice the maximal group is the semidirect
product T2�D4. Here D4 is the dihedral group, which in its turn is the semidirect
product D4 = Z4 � Z2, where Z4 is generated by 90 degree rotations and Z2 are
2 The program numbers orbits in the order of decreasing of their sizes and at equal

sizes the lexicographic order of lexicograhically minimal orbit representatives is used.
3 In Figs. 3 and 4 the configurations belonging to the same orbit have identical colors.
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ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

Fig. 4. Glider over maximal symmetry group T2 � D4 is cycle in two group orbits

reflections. The size of maximal group is 8n2, whereas the size of translation
group4 is only n2. Now the glider is reproduced after two steps in time.

As one can see from Fig. 4, ϕ3 is obtained from ϕ1 and ϕ4 from ϕ2 by com-
binations of translations, 90 degree rotations and reflections. Thus, the glider in
torus (and in the discrete plane obtained from the torus as n → ∞) is a cycle
located in two orbits of maximal automorphism group.

Note also that similar behavior is rather typical for continuous systems too.
Many equations of mathematical physics have solutions in the form of running
wave ϕ (x− vt)

(
= ϕ

(
g−1

t x
)

for Galilei group
)
. One can see also an analogy

between “spaceships” of cellular automata and solitons of KdV type equations.
The solitons — like shape preserving moving structures in cellular automata —
are often arise for rather arbitrary initial data.

Cellular Automata with Symmetric Local Rules. As a specific class of
discrete dynamical systems, we consider ‘one-time-step’ cellular automata on k-
valent lattices with local rules symmetric with respect to all permutations of k
outer vertices of the neighborhood. This symmetry property is an immediate dis-
crete analog of general local diffeomorphism invariance of fundamental physical
theories based on continuum space. The diffeomorphism group Diff(M) of the
manifold M is very special subgroup of the infinite symmetric group Sym(M)
of the set M .

As we demonstrated in [3], in the binary case, i.e., if the number of vertex
values q = 2, the automata with symmetric local rules are completely equivalent
to generalized Conway’s “Game of Life” automata [5] and, hence, their rules can
be formulated in terms of “Birth”/“Survival” lists.

Adopting the convention that the outer points and the root point of the
neighborhood are denoted x1, . . . , xk and xk+1, respectively, we can write a local
rule determining one-time-step evolution of the root in the form

x′k+1 = f (x1, . . . , xk, xk+1) . (2)

The total number of rules (2) symmetric with respect to permutations of points
x1, . . . , xk is equal to q(

k+q−1
q−1 )q. For the case of our interest (k = 3, q = 2) this

number is 256.
4 Translation group for n × n discrete torus is the direct product of two cyclic groups

T2 = Zn × Zn.
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It should be noted that the rules obtained from each other by permutation of
q elements in the set Q are equivalent since such permutation means nothing but
renaming of values. Thus, we can reduce the number of rules to consider. The
reduced number can be counted via Burnside’s lemma as a number of orbits of
rules (2) under the action of the group Sq. The concrete expression depends on
the cyclic structure of elements of Sq. For the case q = 2 this gives the following
number of non-equivalent rules

Nrules = 22k+1 + 2k.

Thus, studying 3-valent binary case, we have to consider 136 different rules.

Example of Phase Portrait. Cellular Automaton 86. As an example
consider the rule 86 on hexahedron (cube). The number 86 is the “little endian”
representation of the bit string 01101010 taken from the last column of the rule
table with S3-symmetric combinations of values for x1, x2, x3

x1 x2 x3 x4 x
′
4

0 0 0 0 0
0 0 0 1 1
1 0 0 0 1
1 0 0 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0 .

The rule can also be represented in the “Birth”/“Survival” notation as B123/S0,
or as polynomial over the Galois field F2 (see [3])

x′4 = x4 + σ3 + σ2 + σ1,

where σ1 = x1 + x2 + x3, σ2 = x1x2 + x1x3 + x2x3, σ3 = x1x2x3 are symmet-
ric functions. In Fig. 5 the group orbits are represented by circles. The ordinal
numbers of orbits are placed within these circles. The numbers over orbits and
within cycles are sizes of the orbits (recall that all orbits included in one cycle
have the same size). The rational number p indicates the weight of the corre-
sponding element of phase portrait. In other words, p is a probability to be in an
isolated cycle or to be caught by an attractor at random choice of state: p = (size
of basin)/(total number of states). Here size of basin is sum of sizes of orbits
involved in the struture. The structures in Fig. 5 are placed in the decreasing
order of their weights.

Note that most of cycles in Fig. 5 (36 of 45 or 80%) are “spaceships”. Other
computed examples also confirm that soliton-like moving structures are typical
for cellular automata.

Of course, in the case of large lattices it is impractical to output full phase
portraits (the program easily computes tasks with up to hundreds thousands of
different structures). But it is not difficult to extract structures of interest, e.g.,
“spaceships” or “gardens of Eden”.
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p = 39
128 ≈ 0.30 Limit cycles6 16165

24

1

24

9

12

6

12

p = 9
32 ≈ 0.28 Isolated cycles24 0

24

0

2 4

p = 5
32 ≈ 0.16 Limit cycles8 14

10

12

11

13

8

p = 3
32 ≈ 0.09 Isolated cycles12 7

8

7

8

p = 3
32 ≈ 0.09 Isolated cycles24 33

p = 3
64 ≈ 0.05 Sink20

1

21

119

2

18

4 17

4

p = 3
128 ≈ 0.02 Isolated cycles6 1515

Fig. 5. Rule 86. Equivalence classes of trajectories on hexahedron. 36 of 45 cycles are
“spaceships”.

Search for Reversibility. The program is able to select automata with prop-
erties specified at input. One of such important properties is reversibility.

In this connection we would like to mention recent works of G. ’t Hooft. One of
the difficulties of Quantum Gravity is a conflict between irreversibility of Gravity
— information loss (dissipation) at the black hole horizon — with reversibility
and unitarity of the standard Quantum Mechanics. In several papers of recent
years (see, e.g., [6,7]) ’t Hooft developed the approach aiming to reconcile both
theories. The approach is based on the following assumptions

– physical systems have discrete degrees of freedom at tiny (Planck) distance
scales;

– the states of these degrees of freedom form primordial basis of Hilbert space
(with nonunitary evolution);

– primordial states form equivalence classes: two states are equivalent if they
evolve into the same state after some lapse of time;

– the equivalence classes by construction form basis of Hilbert space with uni-
tary evolution described by time-reversible Schrödinger equation.

In our terminology this corresponds to transition to limit cycles: in a finite time
of evolution the limit cycle becomes physically indistinguishable from reversible
isolated cycle — the system “forgets” its pre-cycle history. Fig. 6 illustrates
construction of unitary Hilbert space from primordial.

This irreversibility hardly can be observed experimentally (assuming, of course,
that considered models can be applied to physical reality). The system should
probably spend time of order the Planck one (≈ 10−44 sec) out of a cycle and po-
tentially infinite time on the cycle. Nowadays, the shortest experimentally fixed
time is about 10−18 sec or 1026 Planck units only.

Applying our program to all 136 symmetric 3-valent automata we have the
following. There are two rules trivially reversible on all lattices
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e2

e3

e1
e5

e7e6

e4

Primordial basis
e1, e2, e3, e4, e5, e6, e7

E2

E3

E1

Equivalence classes
E1 = {e1, e5, e6, e7}
E2 = {e2}
E3 = {e3, e4}
form unitary basis

Fig. 6. Transition from primordial to unitary basis

– 85 ∼ B0123/S ∼ x′4 = x4 + 1,
– 170 ∼ B/S0123 ∼ x′4 = x4.

Besides these uninteresting rules there are 6 reversible rules on tetrahedron

– 43 ∼ B0/S012 ∼ x′4 = x4 (σ2 + σ1) + σ3 + σ2 + σ1 + 1,
– 51 ∼ B02/S02 ∼ x′4 = σ1 + 1,
– 77 ∼ B013/S1 ∼ x′4 = x4 (σ2 + σ1 + 1) + σ3 + σ2 + 1,
– 178 ∼ B2/S023 ∼ x′4 = x4 (σ2 + σ1 + 1) + σ3 + σ2,
– 204 ∼ B13/S13 ∼ x′4 = σ1,
– 212 ∼ B123/S3 ∼ x′4 = x4 (σ2 + σ1) + σ3 + σ2 + σ1.

Note that all these reversible rules are symmetric with respect to permutation
of values Q = {0, 1}. Two of the above rules, namely 51 and 204, are reversible
on hexahedron too. There are no nontrivial reversible rules on all other lattices
from Fig. 2. Thus we may suppose that ’t Hooft’s picture is typical for discrete
dynamical systems.

5 Statistical Lattice Models and Mesoscopic Systems

Statistical Mechanics. The state of deterministic dynamical system at any
point of time is determined uniquely by previous states of the system. A Markov
chain — for which transition from any state to any other state is possible with
some probability — is a typical example of non-deterministic dynamical system.
In this section we apply symmetry approach to the lattice models in statistical
mechanics. These models can be regarded as special instances of Markov chains.
Stationary distributions of these Markov chains are studied by the methods of
statistical mechanics.

The main tool of conventional statistical mechanics is the Gibbs canonical
ensemble – imaginary collection of identical systems placed in a huge thermostat
with temperature T . The statistical properties of canonical ensemble are encoded
in the canonical partition function

Z =
∑

σ∈Σ

e−Eσ/kBT . (3)
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Here Σ is the set of microstates, Eσ is energy of microstate σ, kB is Boltzmann’s
constant. The canonical ensemble is essentially asymptotic concept: its formula-
tion is based on approximation called “thermodynamic limit”. For this reason,
the canonical ensemble approach is applicable only to large (strictly speaking,
infinite) homogeneous systems.

Mesoscopy. Nowadays much attention is paid to study systems which are too
large for a detailed microscopic description but too small for essential features
of their behavior to be expressed in terms of classical thermodynamics. This
discipline, often called mesoscopy, covers wide range of applications from nuclei,
atomic clusters, nanotechnological structures to multi-star systems [8,9,10]. To
study mesoscopic systems one should use more fundamental microcanonical en-
semble instead of canonical one. A microcanonical ensemble is a collection of
identical isolated systems at fixed energy. Its definition does not include any
approximating assumptions. In fact, the only key assumption of a microcanon-
ical ensemble is that all its microstates are equally probable. This leads to the
entropy formula

SE = kB lnΩE , (4)

or, equivalently, to the microcanonical partition function

ΩE = eSE/kB . (5)

Here ΩE is the number of microstates at fixed energy E. In what follows we
will omit Boltzmann’s constant assuming kB = 1. Note that in the thermody-
namic limit the microcanonical and canonical descriptions are equivalent and
the link between them is provided by the Laplace transform. On the other hand,
mesoscopic systems demonstrate observable experimentally and in computation
peculiarities of behavior like heat flows from cold to hot, negative specific heat
or “convex intruders” in the entropy versus energy diagram, etc. These anoma-
lous – from the point of view canonical thermostatistics – features have natural
explanation within microcanonical statistical mechanics [10].

Lattice Models. In this section we apply symmetry analysis to study meso-
scopic lattice models. Our approach is based on exact enumeration of group
orbits of microstates. Since statistical studies are based essentially on different
simplifying assumptions, it is important to control these assumptions by exact
computation, wherever possible. Moreover, we might hope to reveal with the help
of exact computation subtle details of behavior of system under consideration.

As an example, let us consider the Ising model. The model consists of spins
placed on a lattice. The set of vertex values is Q = {−1, 1} and the interaction
Hamiltonian is given by

H = −J
∑

(i,j)

sisj −B
∑

i

si, (6)

where si, sj ∈ Q; J is a coupling constant (J > 0 and J < 0 correspond to
ferromagnetic and antiferromagnetic cases, respectively); the first sum runs over
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all edges (i, j) of the lattice; B is an external “magnetic” field. The second sum
M =

∑
i

si is called the magnetization. To avoid unnecessary technical details we

will consider only the case J > 0 (assuming J = 1) and B = 0 in what follows.
Since Hamiltonian and magnetization are constants on the group orbits, we

can count numbers of microstates corresponding to particular values of these
functions – and hence compute all needed statistical characteristics – simply by
summation of sizes of appropriate orbits.

Fig. 7 shows microcanonical partition function for the Ising model on do-
decahedron. Here total number of microstates Ω = 1048576, number of lattice
vertices V (GL) = 20, energy E is value of Hamiltonian.

Of course, other characteristics of the system can be computed easily via
counting sizes of group orbits. For example, the magnetization is shown in
Fig. 8.

Phase Transitions. Needs of nanotechnological science and nuclear physics
attract special attention to phase transitions in finite systems. Unfortunately
classical thermodynamics and the rigorous theory of critical phenomena in ho-
mogeneous infinite systems fails at the mesoscopic level. Several approaches have
been proposed to identify phase transitions in mesoscopic systems. Most accepted
of them is search of “convex intruders” [11] in the entropy versus energy diagram.
In the standard thermodynamics there is a relation

∂2S

∂E2

∣∣∣∣
V

= − 1
T 2

1
CV

, (7)

where CV is the specific heat at constant volume. It follows from (7) that
∂2S/∂E2

∣∣
V
< 0 and hence the entropy versus energy diagram must be concave.

Nevertheless, in mesoscopic systems there might be intervals of energy where
∂2S/∂E2

∣∣
V
> 0. These intervals correspond to first-order phase transitions and

are called “convex intruders”. From the point of view of standard thermodynam-
ics one can say about phenomenon of negative heat capacity, of course, if one
accepts that it makes sense to define the variables T and CV as temperature and
the specific heat at these circumstances. In [12] it was demonstrated via compu-
tation with exactly solvable lattice models that the convex intruders flatten and
disappear in the models with local interactions as the lattice size grows, while
in the case of long-range interaction these peculiarities survive even in the limit
of an infinite system (both finite and long-range interacting infinite systems are
typical cases of systems called nonextensive in statistical mechanics).

A convex intruder can be found easily by computer for the discrete systems we
discuss here. Let us consider three adjacent values of energy Ei−1, Ei, Ei+1 and
corresponding numbers of microstates ΩEi−1 , ΩEi , ΩEi+1 . In our discrete case
the ratio (Ei+1 − Ei) / (Ei − Ei−1) is always rational number p/q and we can
write the convexity condition for entropy in terms of numbers of microstates as
easily computed inequality

Ωp+q
Ei

< Ωp
Ei−1

Ωq
Ei+1

. (8)
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Fig. 7. Microcanonical density of states ρ(e) = ΩE/Ω versus energy per vertex
e = E/V (GL) for the Ising model on dodecahedron
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Fig. 8. Specific magnetization m(e) = M(E)/V (GL) vs. energy per vertex e for the
Ising model on dodecahedron
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As a rule Ei+1 − Ei = Ei − Ei−1 and inequality (8) takes the form

Ω2
Ei
< ΩEi−1ΩEi+1 .

This form means that within convex intruder the number of states with the
energy Ei is less than geometric mean of numbers of states at the neighboring
energy levels.

Fig. 9 shows the entropy vs. energy diagram for the Ising model on do-
decahedron. The diagram has apparent convex intruder in the energy interval
[−24,−18]. Exact computation reveals also a subtle convex intruder in the in-
terval [−16,−12]. (In terms of specific energy, as in Fig. 9, these intervals are
[−1.2,−0.9] and [−0.8,−0.6], respectively.) It is well known that one-dimensional
Ising model has no phase transitions. To illustrate the difference between the di-
agrams for the cases with and without phase transitions, we place also in Fig. 9
the diagram for Ising model on the 1D circle lattice with 24 vertices.

In Fig. 10 we show the entropy-energy diagrams for lattices of different va-
lences, namely, for 3-, 4- and 6-valent tori. These lattices are marked in Fig. 2
as “Graphene 3×4”, “Square 5×5” and “Triangular 4×6”, respectively. The di-
agram for 3-valent torus is symmetric with respect to change sign of energy
and contains two pairs of adjacent convex intruders. One pair lies in the e-
interval [−1.25,−0.75] and another pair lies symmetrically in [0.75, 1.25]. The
4-valent torus diagram contains two intersecting convex intruders in the inter-
vals [−1.68,−1.36] and [−1.36,−1.04]. The 6-valent torus diagram contains a
whole cascade of 5 intersecting or adjacent intruders. Their common interval is
[−2.5,−0.5].

s(
e)

e

Dodecahedron

−1.5 −1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

s(
e)

e

Circle

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

Fig. 9. Specific microcanonical entropy s(e) = ln (ΩE) /V (GL) vs. energy per vertex
e for the Ising model on dodecahedron (left) and on circle of length 24 (right). Left
diagram contains distinct convex intruder in the interval −1.2 ≤ e ≤ −0.9 and subtle
one in the interval −0.8 ≤ e ≤ −0.6. Right diagram is fully concave: one-dimensional
Ising model has no phase transitions.
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s(
e)

e

Graphene 3×4
Square 5×5
Triangular 4×6

−3 −2 −1 0 1 2
0

0.2

0.4

0.6

0.8

Fig. 10. Specific microcanonical entropy for the Ising model on 3-valent (dot line, 24
vertices), 4-valent (dash line, 25 vertices) and 6-valent (solid line, 24 vertices) tori

6 Summary

– A C program for symmetry analysis of finite discrete dynamical systems has
been created.

– We pointed out that trajectories of any deterministic dynamical system go
always in the direction of nondecreasing sizes of group orbits. Cyclic orbits
run within orbits of the same size.

– After finite time evolution operators of dynamical system can be reduced to
group actions. This lead to formation of moving soliton-like structures —
“spaceships” in the case of cellular automata. Computer experiments show
that “spaceships” are typical for cellular automata.

– Computational results for cellular automata with symmetric local rules allow
to suppose that reversibility is rare property for discrete dynamical systems,
and reversible systems are trivial.

– We demonstrated capability of exact computing based on symmetries in
search of phase transitions for mesoscopic models in statistical mechanics.

Acknowledgments. I would like to thank Vladimir Gerdt whose comments
improved the presentation significantly. This work was supported in part by
the grants 07-01-00660 from the Russian Foundation for Basic Research and
5362.2006.2 from the Ministry of Education and Science of the Russian
Federation.



Symmetries and Dynamics of Discrete Systems 251

References

1. Kornyak, V.V.: On Compatibility of Discrete Relations. In: Ganzha, V.G., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 272–284. Springer,
Heidelberg (2005), http://arXiv.org/abs/math-ph/0504048

2. Kornyak, V.V.: Discrete Relations On Abstract Simplicial Complexes. Program-
ming and Computer Software 32(2), 84–89 (2006)

3. Kornyak, V.V.: Cellular Automata with Symmetric Local Rules. In: Ganzha, V.G.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 240–250.
Springer, Heidelberg (2006), http://arXiv.org/abs/math-ph/0605040

4. McKay, B.D.: Practical Graph Isomporphism. Congressus Numerantium 30, 45–87
(1981), http://cs.anu.edu.au/∼bdm/nauty/PGI

5. Gardner, M.: On Cellular Automata Self-reproduction, the Garden of Eden and
the Game of Life. Sci. Am. 224, 112–117 (1971)

6. Hooft, G.: Quantum Gravity as a Dissipative Deterministic System. SPIN-1999/07,
gr-qc/9903084; Class. Quant. Grav. 16, 3263 (1999); Also published in: Fundamen-
tal Interactions: from symmetries to black holes (Conference held on the occasion
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Exact Solutions of Completely Integrable

Systems and Linear ODE’s Having Elliptic
Function Coefficients

N.A. Kostov1 and Z.T. Kostova2

1 Institute of Electronics, Bulgarian Academy of Sciences,
Blvd. Tsarigradsko shosse 72, Sofia, 1784, Bulgaria

2 National High School ”Sofia”, Blvd. Montevideo 21
Sofia, Bulgaria

Abstract. We present an algorithm for finding closed form solutions
in elliptic functions of completely integrable systems. First we solve the
linear differential equations in spectral parameter of Hermite-Halphen
type. The integrability condition of the pair of equations of Hermite-
Halphen type gives the large family of completely integrable systems of
Lax-Novikov type. This algorithm is implemented on the basis of the
computer algebra system MAPLE. Many examples, such as vector non-
linear Schödinger equation, optical cascaded equations and restricted
three wave system are considered. New solutions for optical cascaded
equations are presented. The algorithm for linear ODE’s with elliptic
functions coefficients is generalized to 2 × 2 matrix equations with ellip-
tic coefficients.

1 Introduction

We consider a linear differential equation in spectral parameter λ

LΨ =

⎛

⎝p0
dm

dxm
+

m−1∑

j=1

pm−j(x)
dm−j

dxm−j

⎞

⎠Ψ = λΨ, (1)

where pj are expressed in terms of doubly periodic functions having the same
periods. We will also require that our coefficients are in fact elliptic functions.
New important development of algorithms for ODE’s with elliptic coefficients is
paper [BLH]. They are implemented in Maple 9 as DEsolve function. The geome-
try of ODE’s with elliptic function is considered in [GK] using Hermite-Halphen
algorithm. The aim of present paper is to present applications of algorithms
for ODE’s with elliptic coefficients to obtain periodic solutions of completely
integrable and near to completely integrable systems.

Let z(x) be a solution of

y′′′(x) − 4r(x)y′(x) − 2r′(x)y(x) = 0, (2)

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 252–264, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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and set

y1(x) =
√
z(x) exp

(
−C

2

∫
dx′

z(x′)

)
, (3)

and

y1(x) =
√
z(x) exp

(
C

2

∫
dx′

z(x′)

)
, (4)

where C is a constant given by

C2 = z′(x)2 − 2z(x)z′′(x) + 4r(x)z(x)2, (5)

if C �= 0, the y1(x), y2(x) are linearly independent and form a basis of

y′′(x) − r(x)y(x) = 0, (6)

If C = 0, the the basis for solution space of (6) is given by y1(x) and y2(x) =√
z(x)

∫
1

z(x)dx.
For proof see for example [BLH].
Introduce Hermite polynomial as solution of the following nonlinear differen-

tial equation

1
2
FFxx −

1
4
F 2

x − (u(x) + λ)F 2 +
1
4
R(λ) = 0, (7)

where r(x) = (u(x) + λ), C2 = R(λ), F (x) = z(x). In modern literature (see for
example references in [CEEK]) functions (3) and (4) are called Baker-Akhiezer
(BA) functions.

1.1 Vector Nonlinear Schrödinger Equation

We consider the system of coupled nonlinear Schrödinger equations

i
∂

∂t
Qj + s

∂2

∂x2
Qj + σ

(
n∑

k=1

|Qk|2
)
Qj = 0, j = 1, . . . , n, (8)

where s = ±1, σ = ±1. We seek solution of (8) in the following form [EEK])

Qj = qj(z) eiΘj , j = 1, . . . n, (9)

where z = x − ct, Θj = Θj(z, t), with qj , Θj real. Substituting (9) into (8) and
separating real and imaginary parts by supposing that the functions Θj , j =
1, . . . n behave as

Θj =
1
2
scx+ (aj −

1
4
sc2)t− s Cj

∫ z

0

dz′

qj(z′)2
+Θj0,
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we obtain the system (σ = s = ±1)

d2

dz2
qj +

(
n∑

k=1

σ

s
q2k −

aj

s

)
qj −

C2j
q3j

= 0, k, j = 1, . . . n, (10)

where Cj , j = 1, . . . n are free parameters and Θj0 are constants. These equa-
tions describe the integrable case of motion of a particle in a quartic potential
perturbed with inverse squared potential, which is separable in ellipsoidal coor-
dinates. The solutions of the system (10) are then given as

q2i (z) = 2
F(z, ai −Δ)∏n

k �=i(ai − ak)
, i = 1, . . . , n, (11)

where F(z, λ) is Hermite polynomial associated with Lamé potential and is de-
fined as solution of (7). The final formula for the solutions of the system (8) then
reads

Qi(x, t) =

√
2
F(z, ai −Δ)∏n

k �=i(ai − ak)
exp(Θi), (12)

where

Θj =

⎧
⎨

⎩
1
2
icx+ i(aj −

1
4
c2)t− 1

2
ν(aj −Δ)

z∫

0

dz′

F(z′, aj −Δ)

⎫
⎬

⎭ ,

and i = 1, . . . , n and we have made use of (11) and (9). To obtain the special
class of periodic solution of (10) we introduce the following ansatses

qi(ζ) =
√
Ai℘(ζ + ω′) +Bi, i = 1, 2, 3, or i = 1, . . . , 4. (13)

As a result we obtain:

m∑

k=1

Ak = −2, ai =
m∑

k=1

Bk −
Bi

Ai
, m = 3 or 4, (14)

−4C2i
A2

i

= (4λ3 − λg2 − g3)|λ=−Bi/Ai
, i = 1, . . . , 3 or 4 (15)

and using the well known relations
∫ z

0

dz′

℘(z′) − ℘(ãj)
=

1
℘′(ãj)

(
2zζ(ãj) + ln

σ(z − ãj)
σ(z + ãj)

)
, (16)

and

℘(z + ω′) − ℘(ãj) = −σ(z + ω′ + ãj)σ(z + ω′ − ãj)
σ(z + ω′)2σ(ãj)2

. (17)
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We derive the following result

Qj =
√
−Aj

σ(z + ω′ + ãj)
σ(z + ω′)σ(ãj)

×

exp
(
i

2
cx+ i(aj −

1
4
c2)t− (z + ω′)ζ(ãj)

)
, (18)

where
ε1∑

j=1

Aj = −2, aj =
ε1∑

k=1

Bk −
Bj

Aj
,

Cj

Aj
=

i

2

√
4λ3 − λg2 − g3|λ=−Bj

Aj

℘(ãj) = −Bj

Aj
= âj , j = 1 . . . ε1, ε1 = 3, 4 (19)

To obtain the class of periodic solutions of system (10) for n = 3, 4 we intro-
duce the following two ansatses in terms of the Weierstrass function ℘(ζ + ω′)

qi(ζ) =
√
Ai℘(ζ + ω′)3 +Bi℘(ζ + ω′)2 + Ci℘(ζ + ω′) +Di, (20)

where i = 1, . . . 3. Next for conciseness we denote ℘ = ℘(ζ+ω′), then the second
ansatz have the form

qi(ζ) =
√
Ai℘4 +Bi℘3 + Ci℘2 +Di℘+ Ei,

i = 1, . . . 4 (21)

with the constants Ai, Bi, Ci, Di, Ei defined from the compatibility condition of
the ansatz with the equations of motion (10). Inserting (20) and (21) into Eqs.
(10), using the basic equations for Weierstrass ℘ function [WW]

(
d

dζ
℘(ζ)

)2

= 4℘(ζ)3 − g2℘(ζ) − g3,
d2

dζ2
℘(ζ) = 6℘(ζ) − g2

2
, (22)

and equating to zero the coefficients at different powers of ℘ we obtain the fol-
lowing algebraic equations for the parameters of the solutions Ai, Bi, Ci, Di, i =
1, 2, 3 for n = 3

A1 +A2 +A3 = 0, B1 +B2 +B3 = 0, (23)

C1 + C2 + C3 = −12, Ci =
2
3
B2

i

Ai
− 1

4
Aig2, (24)

ai =
3∑

i=1

Di − 5
Bi

Ai
, Di =

5
9
B3

i

A2
i

− 1
3
Big2 −

1
4
Aig3. (25)

The analogical algebraic system for n = 4 is as follows

A1 +A2 +A3 +A4 = 0, B1 +B2 +B3 +B4 = 0, (26)
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C1 + C2 + C3 + C4 = 0, D1 +D2 +D3 +D4 = −20, (27)

Ci =
3
5
B2

i

Ai
− 3

10
Aig2, Di =

14
45
B3

i

A2
i

− 53
180

Big2 −
2
9
A1g3 (28)

Ei =
49
225

B4
i

A3
i

− 113
450

B2
i

Ai
g2 −

11
36
Big3 +

9
400

Aig
2
2 . (29)

ai =
4∑

i=1

Ei − 7
Bi

Ai
,

Another result from the algebraic systems is the expression for constants Ci

which parametrise our solutions. For them we obtain

C2i = − ν(ai −Δ)2∏
k �=i(ai − ak)

,

where i, k = 3 or 4 and parameters ν are defined by (for n = 3)

ν2 = λ7 − 63
2
g2λ

5 +
297
2
g3λ

4 +
4185
16

g22λ
3 −

18225
8

g2g3λ
2 +

91125
16

g23λ−
3375
16

g22λ, (30)

and (for n = 4)

ν2 = λ9 − 231
2
λ7g2 +

2145
2

g3λ
6 +

63129
16

λ5g22 −
518505

8
g2g3λ

4

+
(
−563227

16
g32 +

4549125
16

g23

)
λ3 +

991515
2

g3g
2
2λ

2 +
(

361179
4

g42 −
5273625

4
g2g

2
3

)
λ

−972405g3g32 − 1500625g33. (31)

Using the general formulae, we will consider below the physically important
cases of n = 3, 4 [EEK] which are associated with the three-gap 12℘(ζ+ω′), and
four-gap elliptic potentials 20℘(ζ + ω′).

The Hermite polynomial F(℘(x), λ) associated to the Lamé potential 12℘(ζ)
has the form

F(℘(ζ), λ) = λ3 − 6℘(ζ + ω′)λ2 − 3 · 5(−3℘(ζ + ω′)2 + g2)λ

−32 · 52
4

(4℘(ζ + ω′)3 − g2℘(ζ + ω′) − g3). (32)

The solution is real under the choice of the arbitrary constants ai, i = 1, . . . , n
in such way, that the constants ai − Δ, i = 1, . . . , n lie in different lacunae.
Comparing (20) and (32) and using (11) the solutions of polynomial equations
(23),(24),(25) can be given by

Ai =
2 · 52 · 32

∏3
k �=i(ai − ak)

, (33)
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Bi = −2 · 32 · 5(ai −Δ)∏n
k �=i(ai − ak)

, (34)

Δ =
2
5

3∑

i=1

ai. (35)

The Hermite polynomial F(℘(ζ), λ) associated to the Lamé potential 20℘(ζ) can
be written as

F(℘(ζ), λ) = 11025℘(ζ + ω′)4 − 1575℘(ζ + ω′)3λ+

(135λ2 − 6615
2

g2)℘(ζ + ω′)2 +

(−10λ3 +
1855

4
λg2 − 2450g3)℘(ζ + ω′) +

λ4 − 113
2
λ2g2 +

3969
16

g22 +
195
4
λg3. (36)

Comparing (21) and (36) and using (11) the solutions of polynomial equations
(26-29) can be given by

Ai =
11025 · 2∏

k �=i(ai − ak)
,

Bi = −1575 · 2(ai −Δ)∏
k �=i(ai − ak)

(37)

Δ =
2
7

4∑

i=1

ai.

Next solution of system (10,n = 3) we obtain using the following ansatz

qi(ζ) =
√
Ai℘(ζ + ω′)2 +Bi℘(ζ + ω′) + Ci, i = 1, 2, 3, (38)

then we have
3∑

i=1

Ai = 0,
3∑

i=1

Bi = −6, (39)

ai =
3∑

k=1

Ck − 3
Bi

Ai
, Ci =

B2
i

Ai
− 1

4
Aig2, (40)

C2i · 33 · 4
A2

i

= (4λ5 + 27λ2g3 + 27λg22 − 21λ3g2 − 81g2g3), (41)

where λ = −3Bi/Ai.

1.2 Optical Cascading Equations

Let us consider the system of two ordinary differential equations,

q1ξξ +A0q1 +B0q1q2 = 0, (42)
q2ξξ + C0q2 +D0q

2
2 = 0, (43)

where we have A0, B0, C0, D0 are constants.
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Introducing new variable

q21 =
4F
B0D0

, F = λ2 − 3℘λ+ 9℘2 − 9
4
g2 (44)

where F is Hermite polynomial [WW], g2, g3 are elliptic invariants defined in
[WW]. ℘ = ℘(ξ + ω′) is Weierstrass function shifted by half period ω′ is related
to sn Jacobian elliptic function with modulus k

℘(ξ + ω′; g2, g3) = α2k2sn2(αξ, k) − (1 + k2), (45)

where α =
√
e1 − e3 and ei, i = 1, 2, 3, e3 ≤ e2 ≤ e1 are the real roots of the

cubic equation
4λ3 − g2λ− g3 = 0. (46)

Using wave height α and modulus k =
√

(e2 − e3)/(e1 − e2) we have the follow-
ing relations

e1 =
1
3
(2 − k2)α2, e2 =

1
3
(2k2 − 1)α2, e3 = −1

3
(1 + k2)α2,

g2 = −4(e1e2 + e1e3 + e2e3) =
4
3
α2(1 − k2 + k4),

g3 = 4e1e2e3 =
4
27
α6(k2 + 1)(2 − k2)(1 − 2k2). (47)

Inserting this expression in (42) we have the following nonlinear differential equa-
tion with spectral parameter λ = −C0/2

1
2
FFξξ −

1
4
F 2

ξ − (u(ξ) + λ)F 2 +
1
4
R(λ) = 0, (48)

with eigenvalue equations

R(λ) = 4λ5 − 21λ3g2 + 27λg22 + 27λ2g3 − 81g2g3 = 0,
u(ξ) = −(B0q2 + λ+A0) = 6℘(ξ + ω′), (49)

or in factorized form

R(λ) = 4
∏

(λ− λi) = 0, λ1 = −
√

3g2, λ2 = 3e3

λ3 = 3e2, λ4 = 3e1, λ5 =
√

3g2. (50)

It is well known that equation (48) is reduced to linear periodic spectral problem
of one dimensional Schrödinger equation with two gap potential u(x) = 6℘(ξ+ω′)
and with five normalized eigenfunctions q(i)1 , (i) = 1, . . . 5:

d2q
(i)
1

d2ξ2
− u(ξ)q(i)1 = λiq

(i)
1 , (i) = 1, . . . , 5. (51)
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Under these conditions the second equation (43) is automatically satisfied. Sec-
ond equation can be considered as ”self-consistent” equation for potential u(ξ).
Finally the five spectral families of periodic solutions can be written in the fol-
lowing Table 1

Table 1. Five spectral families of periodic solutions

(I). q1 = 6√
B0D0

α2k2 E
(u−)
2 q2 = − 1

B0
(u(ξ) + 3g2

λ1
− 2λ1) (i)=1

(II) q1 = 6√
B0D0

α2k E
(cd)
2 q2 = − 1

B0
(u(ξ) + 3g2

λ2
− 2λ2) (i)=2

(III) q1 = 6√
B0D0

α2k E
(sd)
2 q2 = − 1

B0
(u(ξ) + 3g2

λ3
− 2λ3) (i)=3

(IV) q1 = 6√
B0D0

α2k2 E
(sc)
2 q2 = − 1

B0
(u(ξ) + 3g2

λ4
− 2λ4) (i)=4

(V) q1 = 6√
B0D0

α2k2 E
(u+)
2 q2 = − 1

B0
(u(ξ) + 3g2

λ5
− 2λ5) (i)=5

where

E(sc)
2 = sn(αξ, k)cn(αξ, k),

E(sd)
2 = sn(αξ, k)dn(αξ, k),

E(cd)
2 = cn(αξ, k)dn(αξ, k),

E(u±)
2 = sn2(αξ, k) − 1 + k2 ±

√
1 − k2 + k4

3k2
,

(52)

are normalized two-gap Lamé functions [WW], cn, dn are Jacobian elliptic func-
tions and potential u(ξ) have the form

u(ξ) = 6α2k2sn2(αξ, k) − 2(1 + k2)α2. (53)

2 2× 2 Matrix Spectral Problems and Integrable Systems

2.1 Baker-Akhiezer Function

Let us start with two linear systems

dΨ1j

dx
+ FΨ1j +GΨ2j = 0,

dΨ1j

dt
+ ÃΨ1j + B̃Ψ2j = 0, (54)

dΨ2j

dx
+HΨ1j − FΨ2j = 0,

dΨ2j

dt
+ C̃Ψ1j − ÃΨ2j = 0, (55)

which constitute [AKNS] scheme in particular case F = −iλ,G = iu(x, t), H =
±iu(x, t), where coefficients depend on an arbitrary spectral parameter λ. The
compatibility conditions Ψj,xt = Ψj,tx, j = 1, 2 yield to the following nonlinear
system of equations:

Ft − Ãx + C̃G− B̃H = 0,
Gt − B̃x + 2(B̃F − ÃG) = 0, (56)
Ht − C̃x + 2(ÃH − C̃F ) = 0.
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The general system (56) is equivalent also to zero curvature representation

Ut − Vx + [U, V ] = 0, (57)

where

U =
(
F G
H −F

)
, V =

(
A B
C −A

)
. (58)

The periodic solutions in elliptic functions are generated through special matrices
L whose representations are polynomials in the spectral parameter λ and L obey
the following set of equations:

Lx = [U,L], Lt = [V, L], LΨ = νΨ, (59)

where

V =
N∑

k=0

(
V 11

k V 12
k

V 21
k V 22

k

)
λN−k =

(
Ṽ 11 Ṽ 12

Ṽ 21 Ṽ 22

)
. (60)

or in explicit form

dA

dx
= −HB +GC, A(x, λ) =

n+1∑

j=0

An+1−j(x, t)λj , (61)

dB

dx
= 2FB − 2GA, B(x, λ) =

n∑

j=0

Bn−j(x, t)λj , (62)

dC

dx
= −2FC + 2HA, C(x, λ) =

n∑

j=0

Cn−j(x, t)λj , (63)

and for N = 1

dA

dt
= Ṽ 12C − Ṽ 12B, A(ξ, λ) =

n+1∑

j=0

An+1−j(x, t)λj , (64)

dB

dt
= 2Ṽ 11B − 2Ṽ 12A, B(ξ, λ) =

n∑

j=0

Bn−j(x, t)λj , (65)

dC

dt
= −2Ṽ 11C + 2Ṽ 21A, C(ξ, λ) =

n∑

j=0

Cn−j(x, t)λj . (66)

The equations (61),(62),(63) yield that

(A(x, λ)2 −B(x, λ)C(x, λ))x = 0 (67)

and hence

ν2 = A(x, λ)2 −B(x, λ)C(x, λ) = R2n+2(λ), (68)
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where the integration constant R2n+2 is a polynomial in λ of degree 2n+2. After
a chain of simple transformations we obtain

Ψ1,x =
1

2B
(Bx − 2R2n+2G)Ψ1, (69)

Ψ2,x =
1

2C
(Cx − 2R2n+2H)Ψ2. (70)

After integration as result we have

Ψ1 =
√
B exp

(
±
√
R2n+2

∫ x G

B
dx

)
, (71)

Ψ2 =
√
−C exp

(
±
√
R2n+2

∫ x H

C
dx

)
. (72)

2.2 Restricted Multiple Three Wave Interaction System

Let us consider coupled quadratic nonlinear oscillators

ı
dbj
dξ

+ ucj −
1
2
εjbj = 0, (73)

ı
dcj
dξ

+ u∗bj +
1
2
εjcj = 0, (74)

ı
du

dξ
+

n∑

j=1

bjc
∗
j = 0, (75)

where ξ is the evolution coordinate and εj are constants. The equations (73-75)
can be written as Lax representation

dL

dξ
= [M,L], (76)

of the following linear system:

dψ

dξ
= M(ξ, λ)ψ(ξ, λ) L(ξ, λ)ψ(ξ, λ) = 0, (77)

where L,M are 2 × 2 matrices and have the form

L(ξ, λ) =
(
A(ξ, λ) B(ξ, λ)
C(ξ, λ) D(ξ, λ)

)
, (78)

M(ξ, λ) =
(
−ıλ/2 iu
u∗ ıλ/2

)
. (79)

where

A(ξ, λ) = a(λ)

⎛

⎝−ıλ
2

+
ı

2

n∑

j=1

(
cjc

∗
j − bjb

∗
j

)

λ− εj

⎞

⎠ , (80)
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B(ξ, λ) = a(λ)

⎛

⎝ıu− ı

n∑

j=1

bjc
∗
j

λ− εj

⎞

⎠ , (81)

C(ξ, λ) = a(λ)

⎛

⎝ıu∗ − ı

n∑

j=1

cjb
∗
j

λ− εj

⎞

⎠ , (82)

where D(ξ, λ) = −A(ξ, λ) and a(λ) =
∏n

i=1(λ − εi). The Lax representation
yields the hyperelliptic curve K = (ν, λ)

det(L(λ) − 1
2
ν12) = 0, (83)

where 12 is the 2 × 2 unit matrix. The curve (83) can be written in canonical
form as

ν2 = 4
2n+2∏

j=1

(λ− λj) = R(λ), (84)

where λj �= λk are branching points. Next we develop a method which allows
to construct periodic solutions of system (73-75). The method is based on the
application of spectral theory for self-adjoint one dimensional Dirac equation
with periodic finite gap potential U = −u cf. Eqs. (73,74)

ı
dΨ1j

dξ
− UΨ2j − iλjΨ1j = 0, (85)

ı
dΨ2j

dξ
− U∗Ψ1j + iλjΨ1j = 0, (86)

with spectral parameter λ and eigenvalues λj = iεj/2. The equation (76) is
equivalently written as

dA

dξ
= iuC − iu∗B, A(ξ, λ) =

n+1∑

j=0

An+1−j(ξ)λj , (87)

dB

dξ
= −iλB − 2iuA, B(ξ, λ) =

n∑

j=0

Bn−j(ξ)λj , (88)

dC

dξ
= iλC + 2iu∗A, C(ξ, λ) =

n∑

j=0

Cn−j(ξ)λj , (89)

or in different form we have

Aj+1,ξ = iuCj − iu∗Bj , A0 = 1, A1 = c1, (90)
iBj+1 = −Bj,ξ − 2iuAj+1, B0 = −2u, (91)
iCj+1 = Cj,ξ − 2iu∗Aj+1 C0 = −2u∗, (92)
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where c1 is the constant of integration. Differenciating Eq. (87) and using (83)
we can obtain

BBξξ −
uξ

u
BBξ −

1
2
B2

ξ +
(
λ2

2
− iλ

uξ

u
+ |u|2

)
B2 = 2u2ν. (93)

Using (69) the eigenfunction Ψ1 for finite-gap potential U have the form

Ψ1(ξ, λ) =
[
U(ξ)
U(0)

B(ξ, λ)
B(0, λ)

]1/2

exp

{
−i

∫ ξ

0

√
R(λ)

B(ξ′, λ)
dξ′

}
.

Analogously we can write expression for Ψ2(ξ, λ) and finally elliptic solutions
of initial system of restricted three interaction system take the form

bj(ξ) = b0j Ψ1(ξ, λj), cj(ξ) = c0j Ψ2(ξ, λj), j = 1 . . . n, (94)

where b0j , c
0
j are constants fixed by initial conditions.

3 Implementation

In [GK] H-H (Hermite-Halphen) algorithm is presented and implemented in com-
puter algebra REDUCE. Geometric interpretation of solutions found in [GK] is
discussed in [EK]. Recently [BLH] Maple 9 [CGGMW] implementation of algo-
rithm for solving linear ODE’s having elliptic function coefficients is reported.
New algorithm is found. This implementation is very important for deriving
new solutions of integrable and nonintegrable dynamical systems with elliptic
solutions [EK, GR, GH, B]. Important problem in deriving elliptic solutions
is factorization of algebraic curves [CGHKW]. Algorithm for deriving elliptic
solutions presented above is implemented on computer algebra Maple 10. The
source code is available under request. Using this implementation new solutions
of Manakov system in external potential are derived in [KEGKS].
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Dynamics of Nonlinear Parabolic Equations with

Cosymmetry
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Rostov-na-Donu, Russia
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Abstract. Dynamics of a cosymmetric system of nonlinear parabolic
equations is studied to model of population kinetics. Computer algebra
system Maple is applied to perform some stages of analytical investiga-
tion and develop a finite-difference scheme which respects the cosym-
metry property. We present different scenarios of evolution for coexisted
nonstationary regimes and families of equilibria branched off of the state
of rest.

1 Population Kinetics Model

Cosymmetry [1,2] is an essentially nonlinear effect and a number of problems
in mathematical physics (Darsy convection of an incompressible fluid saturating
a porous medium, some models of anti-ferromagnetism, etc.) are cosymmetric
ones. The systems with cosymmetry property give the emergence of continu-
ous families of steady states and nontrivial dynamics. In contrast to symmetry
problems, equilibria belonging to the family have variable spectrum of stability.
The calculation of the cosymmetric families is a complicated problem due to
degeneration in the vicinity of the family.

Mathematical modeling for biological problems with spatial distribution grows
significantly last time [3]. Analysis of such systems has shown interesting scenario
of transitions, nontrivial dynamics and coexistence of the regimes. We model
kinetics of three populations which inhabit a common domain [4,5] and consider
one-dimensional in space problem. This system of parabolic equations admits
a cosymmetry and appearance of a family of stationary solutions with variable
spectrum of stability.

We consider an initial boundary value problem for a system of nonlinear
parabolic equations [5] for densities of species wi

ẇ = Kw′′ +Mw′ + F (w,w′) ≡ Φ(w) , (1)
w(x, 0) = w0(x) , x ∈ Ω. (2)
w(x, t) = 0 , x ∈ ∂Ω , (3)

here w = (w1, w2, w3)
�, the dot and prime mean differentiation with respect to

time t and space coordinate x ∈ Ω = [0, a], respectively.

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 265–274, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The right-hand side of (1) is composed of the diffusion term and transporta-
tion terms. The diffusion is given by second order derivatives and the diagonal
matrix of diffusive coefficients K = diag(k1, k2, k3). Matrix M (linear transport
coefficients) and the nonlinear interaction term F = (f1, f2, f3)τ are given as:

M =

⎛

⎝
0 ν −λ
ν 0 0
λ 0 0

⎞

⎠ , F =

⎛

⎝
ηk1(−3w′

1w1)
ηk2(w′

1w2 + 2w′
2w1)

ηk3(w′
1w3 + 2w′

3w1)

⎞

⎠ . (4)

We try to construct a system with usual properties of biological space–
distributed systems. Diffusive and linear transport terms are traditional ones.
We govern the nonlinear terms to provide an additional property namely cosym-
metry. We consider the linear cosymmetry Ψ(w) = BK−1Mw, where B =
diag(1,−1,−1). The choice of vector B was made by Maple to provide the
cosymmetry identity which is given here as orthogonality of Φ(w) to Ψ(w)

(Ψ, Φ)L2 =
∫

Ω

Ψ · Φ = 0. (5)

To realize it we need in simple integration by parts and usual simplification rules
as in [4]. The cosymmetry identity can be checked explicitly by multiplying Ψ(w)
on the right hand side of the system (1). Linear cosymmetry Ψ(w) means that
w∗ is noncosymmetrical equilibrium (Ψ(w∗) �= 0) and a family of steady states
(equilibria) occurs to which given equilibrium w∗ belongs [1,2].

The system of equations (1)–(4) is invariantwith respect to the transformations:

Rx : {λ, ν, w1, w2, w3} → {λ,−ν, w1,−w2, w3} (6)
Ry : {λ, ν, w1, w2, w3} → {−λ, ν, w1, w2,−w3}.

The main parameters of the problem are the transport parameters λ and ν,
the diffusivity coefficients kj and the growth parameter η.

Some properties of the nonlinear system (1)–(4) can be determine by analyt-
ically. Multipling each equation on the corresponding component of the concen-
tration vector, adding and integrating by Ω, we obtain

d

dt

∫

Ω

w1
2 + w2

2 + w3
2

2
dx = −

∫

Ω

(k1w′
1 + k2w

′
2 + k3w

′
3)

2dx+ (7)

λ

∫

Ω

(w′
1w3 − w′

3w1)dx+
∫

Ω

(f1w1 + f2w2 + f3w3)dx.

The last integral is disappeared due to special nonlinear terms (4) and boundary
conditions (3).

The system (1)–(4) subdivided into two systems when λ = 0: subsystem
with respect to w1, w2 and equation for w3. When ν = 0, the system (1)–(4) is
subdivided into subsystem with respect to w1 and w3 and equation for w2.
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Consider the case λ = 0, w3 = 0, then equation (7) is given by

d

dt

∫

Ω

w1
2 + w2

2

2
dx = −

∫

Ω

(k1w′
1 + k2w

′
2)

2dx. (8)

Because of right hand side of the system (8) is nonnegative, any equilibrium
of the system (1)–(4) is globally stable when λ = 0 and any ν.

In order to analyze stability of the zero equilibrium w = 0, we consider a
system after linearization

ẇ1 = k1w
′′
1 + νw′

2 − λw′
3, ẇ2 = k2w

′′
2 + νw′

1, ẇ3 = k2w
′′
3 + λw′

1, (9)

with boundary conditions

wk|x=0,a = 0, k = 1, 2, 3 . (10)

Substituting wk = exp(pt)vk to (9)–(10), we receive a spectral problem for
parameter p (decrement). The cases p = 0 and p = ±iw, w > 0 correspond
respectively to monotonic and oscillatory instability. So, we can find the neutral
curves on the plane (λ, ν) for these two cases of instability. Monotonic instability
of w = 0 implies branching off of the zero equilibria new steady state w∗ �= 0.
It means existence of the family of steady states to which the equilibrium w∗

belongs.
Let analyze the case of monotonic instability. Take ν = 0 and consider a

subsystem with respect to v1 and v3. After the change of variables

v1 = u1
√
k3λ , v3 = u3

√
k1λ , σ =

1
2

√
λ2

k1k3
, (11)

we obtain the system

0 = u′′1 + 2σu′3, 0 = u′′3 + 2σu′1,

By introducing the complex function U = u1 + iu3, we deduce the problem
for U :

0 = U ′′ − 2σiU ′, U |x=0,a = 0. (12)

Finally, we substitute U = Zexp(iσx) and obtain the spectral problem

0 = Z ′′ + σ2Z, Z|x=0,a = 0 , (13)

with eigenvalues σj = jπ/a, where j ∈ Z. Thus, for all values of the parameter
λ being greater than the critical value λcrit = 2π

√
k1k3/a the zero equilibrium

w = 0 is unstable.
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2 Solution Scheme

To study the given system we use the finite-difference approach [7]. The uniform
grid on Ω = [0, a] is considered

xj = jh, j = 0, . . . , n+ 1, h = a/(n+ 1). (14)

The notation wi,j is used for discrete values of wi, boundary conditions take the
following form

wi0 = win+1 = 0. (15)

We apply method of lines and transform (1) to the following system of ordinary
differential equations

ẇij = KD2
jwi +MD1

jwi + F̃ij ≡ Φ̃k, k = n(i− 1) + j, (16)
j = 1, . . . , n, i = 1, 2, 3 .

Here to keep cosymmetry of the system we use the centered difference operators
for first and second order derivatives

D1
j (u) =

uj+1 − uj−1

2h
, (17)

D2
j (u) =

uj+1 − 2uj + uj−1

h2
, (18)

and special form of second order operator dj [7] to approximate nonlinear terms

dj(u, v) =
2(uj+1 − uj−1)vj − uj(vj+1 − vj−1) + uj+1vj+1 − uj−1vj−1

6h
. (19)

Using dj we derive for F (see (4))

F̃1j = −3ηk1dj(w1, w1),

F̃2j = ηk2[dj(w1, w2) + 2dj(w2, w1)],

F̃2j = ηk3[dj(w1, w3) + 2dj(w3, w1)].

The system (16) can be rewriten as

Ẏ = (P + λQ+ νS)Y + F̃ (Y ) ≡ Φ̃, (20)

here Y = (w11, . . . , w1n, w21, . . . , w2n, w31, . . . , w3n), P is a positive-definite ma-
trix, Q and S is a skew-symmetric matrix, and F̃ (Y ) denotes a nonlinear term.

The discrete version of cosymmetry Ψ̃ = (Ψ̃1, . . . , Ψ̃3n) for the system (20) is
given by:

Ψ̃j =
ν

k1
w2j +

λ

k1
w3j , Ψ̃n+j =

ν

k1
w1j , Ψ̃2n+j = − λ

k1
w1j , j = 1, . . . , n.

(21)
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Cosymmetry property (5) transforms to the sum

3n∑

k=1

Ψ̃kΦ̃k = 0. (22)

Using Maple we checked that this equality holds for the system (16) and cosym-
metry Ψ̃ (21).

To compute the family of steady states we apply the method [6,7] based
on the Implicit Function Theorem [1]. When the zero equilibrium lost stability
monotonically, one-parameter family of stationary states branches off from it.
To calculate this family, we first find one equilibrium of the family by modified
Newton method. Guess to the next equilibrium is obtained by Adams method.
This procedure can be used for calculation both stable and unstable members
of the family and repeats till we receive a whole family.

3 Numerical Results

Due to invariance (6) of the system it is sufficient to consider only positive values
of transport parameters λ and ν. We fix k1 = k3 = 1, η = 10, a = 1 and find
boundary of the stability region for the zero equilibrium – neutral curve. Figure 1
shows the neutral curves of the zero equilibrium for several values of diffusion
coefficient k2. While parameter λ ≤ λcrit the zero equilibrium is stable. The
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Fig. 1. Neutral curves for several value of diffusion coefficient k2; k1 = k3 = 1
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letters m and o correspond respectively the cases of monotonic and oscillatory
instabilities. Let parameters λ and ν being such that corresponding point lies
above the part of curve marked m and o. Then zero equilibrium becomes unstable
and new regimes arise. In the case of monotonic instability (passing through the
curve m) we have found the emergence of the family of steady states. In the
case of oscillatory instability (parameters lie above curve marked o) we have
detected nonstationary regimes. One can see that critical values of parameter λ
grows when parameter ν increases. Boundaries of instability shift when diffusion
coefficient k2 becomes greater.
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Fig. 2. Pattern diagram for k2 = 0.3. Left: neutral curve (solid line), a region of stable
zero equilibrium (a), a region with families of equilibria (b), a region where families and
nonstationary regimes are coexist (c), a region of nonstationary regimes (d), a region
where limit cycles is progressed to the nonzero equilibrium (e). Right: regions of the
different limit cycles (1,2,3,6 ), a region of tori (4 ), a region of the chaotic regimes (5 ).

When control parameters λ and ν grow we observe transformation of the
family and evolution of nonstationary regimes. We have found that coexistence
of different nontrivial regimes is a typical situation for this system. The summary
of computer experiments at k3 = 0.3 are presented in figure 2.

The plane (λ, ν) may be divided on five regions (zones), see left part of figure 2.
The region a corresponds to the stability of the zero equilibrium. Above neutral
curve (solid line) we see the regions b and d where respectively the family of steady
states (equilibria) and nonstationary regimes occur. The narrow region c corre-
sponds the parameter values for whose the coexistence of the family of equilibria
and nonstationary regimes takes place. For large values of λ and ν we detect that
the family of equilibria shrinks to the isolated equilibrium (region e).

One can see that the region corresponding to existence of the family of equi-
libria (region b) is large comparing with the small arc of monotonic instabil-
ity (arc m on the neutral curve). Let fix ν and will increase λ after oscillatory
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instability arc on the neutral curve. We see that firstly the limit cycle is branched
off of the zero equilibrium. After that coexistence of the limit cycle and the fam-
ily of steady state takes place. Then this limit cycle lost its stability and only
the family of equilibria exists.

More detailed description of nonstationary regimes (region d) is presented at
the right part of the figure 2. Here we have the complicated picture of different
transitions: transformation of limit cycles, torus appearance, chaos. The regions
marked by 1,2,3 and 6 correspond to different limit cycles. The region 4 gives
the domain of parameters for whose the tori take place. Chaotic regimes are
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Fig. 5. Coexistence of the limit cycle and family of equilibrium

registered when the value λ and ν belong the region 5. Some typical examples
of the regimes for each region are displayed in figure 3.

In figure 4 we present the transformation of the limit cycle. One can see the
complex limit cycle (left part in figure 4) is decomposed to two limit cycles (one
of them is given in middle picture) and subsequent toring (right picture).

Chaotic regimes were observed in rather small domain which contacts with
the region 4 (see right part in figure 2), where tori exist. The region 6 is located
near the region 4 and 7.
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Fig. 6. Spectrum of steady states on the families for different ν; λ = 15
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Figure 5 illustrates coexistence of the family of equilibria and the limit cycle
(see the region c in figure 2) along the family. When ν = 6 and λ = 12.5,
the limit cycle is stable after braunching off of the zero equilibrium (marked by
star). Then, at λ = 13 the limit cycle and the family of equilibrium (dashed
line) coexists. Finally, at λ = 13.3 the limit cycle was shrunk to the equilibrium
(disc) belonging to the family. One can see in figure 6 that stability spectrum of
the members of the family changes.

4 Conclusion

In reality (biology, economics) we meet the situations (systems) characterized
by a number of practically identical steady states. Symmetry may lead to such a
behavior, another reason is cosymmetry. Dynamical cosymmetric systems may
have a family consisting of infinitely many steady states with variable spectrum
of stability. Even the cosymmetry property was destroyed under some perturba-
tions the dynamics is being very close to the vanished states [8]. So, it is very
important to investigate cosymmetric systems as some idealization that can help
us to understand the dynamics of real system.

We consider dynamics of a cosymmetric system of nonlinear parabolic equa-
tions to model the population kinetics with many possible stationary regimes.
Evolution of coexisted nonstationary regimes and families of equilibria was
found. Computer algebra system Maple was used both to do the analytical work
and to realize stability analysis for steady states. This technique may be useful
for the problems where infinitely many steady states take place.
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Abstract. We consider the integers using the language of ordered rings
extended by ternary symbols for congruence and incongruence. On the
logical side we extend first-order logic by bounded quantifiers. Within
this framework we describe a weak quantifier elimination procedure for
univariately nonlinear formulas. Weak quantifier elimination means that
the results possibly contain bounded quantifiers. For fixed choices of pa-
rameters these bounded quantifiers can be expanded into finite disjunc-
tions or conjunctions. In univariately nonlinear formulas all congruences
and incongruences are linear and their modulus must not contain any
quantified variable. All other atomic formulas are linear or contain only
one quantified variable, which then may occur there with an arbitrary
degree. Our methods are efficiently implemented and publicly available
within the computer logic system redlog, which is part of reduce.
Various application examples demonstrate the applicability of our new
method and its implementation.

1 Introduction

After the fundamental work of Presburger [1] there has been considerable re-
search on Presburger arithmetic, which is the additive theory of the integers
with ordering and congruences. The largest part of this research was concerned
with complexity issues and with decidability [2,3,4,5,6,7,8]. Weispfenning [9,10]
was the first one who was explicitly interested in quantifier elimination as such in
contrast to using it as a technique for decision. His quantifier elimination proce-
dures are triply exponential, which is known to be optimal [3]. He managed, how-
ever, to optionally decrease that complexity by one exponential step to doubly
exponential using the following technical trick: certain systematic disjunctions
occurring during the elimination process are not written down explicitly. Instead
one uses big

∨
(disjunction) and

∧
(conjunction) operators with an index vari-

able running over a finite range of integers. It is important to understand that at
any time these big operators could be expanded such that one obtains a regular
first-order formula at the price of considerably increasing the size of the repre-
sentation. Independently, Weispfenning and others have developed virtual sub-
stitution techniques for quantifier elimination in various theories starting with
the reals and including also valued fields and Boolean algebras [11,12,13,14,15].

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 275–294, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In a recent publication [16] the authors of the present paper combined the two
research areas by presenting integer quantifier elimination within the framework
of virtual substitution. Furthermore, they extended that framework in order to
cover a considerable generalization of Presburger arithmetic admitting as coeffi-
cients arbitrary polynomials in the parameters, i.e., the unquantified variables.
This extension is called the full linear theory of the integers. It perfectly corre-
sponds to what is referred to as linear quantifier elimination for the reals or for
valued fields [12,14]. Recall that in regular Presburger arithmetic, in contrast, all
coefficients must be numbers. The difference vanishes when considering decision
problems. It is well-known that the full linear theory of the integers does not
admit quantifier elimination in the traditional sense [10]. Instead one uses weak
quantifier elimination. This does not necessarily deliver quantifier-free equiva-
lents but formulas that possibly contain some bounded quantifiers. For this, one
extends the language of logic by two additional quantifiers

⊔
k:β and

�
k: β . Here

k is a variable, and β is a formula not containing any quantifier. The semantics
of the new quantifiers are defined as follows:

⊔

k: β

ϕ iff ∃k(β ∧ ϕ),
�

k: β

ϕ iff ∀k(β −→ ϕ). (1)

The quantifier
⊔

k: β is called an existential bounded quantifier if the solution
set of β wrt. k is finite for all interpretations of all other variables. Under the
same condition

�
k: β is called a universal bounded quantifier. Such formulas β

are called k-bounds. Formulas containing no quantifiers at all are called strictly
quantifier-free. Formulas containing exclusively bounded quantifiers are called
weakly quantifier-free. The choice of notation obviously resembles Weispfenning’s
big disjunction and conjunction operators. In general, however, bounded quanti-
fiers can be explicitly expanded only for fixed choices of all parameters occurring
therein.

In this paper, we introduce weak quantifier elimination for a subset of first-
order formulas, which considerably extends the full linear theory of the integers
discussed in [16]: Our language is

L = {0(0), 1(0),−(1),+(2), ·(2), �=(2),≤(2), >(2),≥(2), <(2),≡(3), �≡(3)}.

Consider a formula ϕ with parameters a1, . . . , ar. Let ϕ contain quantifiers Q1,
. . . , Qs with quantified variables x1, . . . , xs, where each occurrence of any of
our new quantifiers is in fact a bounded quantifier. Assume furthermore that
all right hand sides of equations, inequalities, congruences, and incongruences in
ϕ are 0, which can always be achieved by obvious equivalence transformations.
Then we are able to eliminate from ϕ all the regular quantifiers provided that ϕ
satisfies the following requirements:

(U1) None of the quantified variables x1, . . . , xs occurs within moduli of congru-
ences or incongruences. Note, however, that the moduli may be arbitrary
polynomials in a1, . . . , ar.
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(U2) Considering the left hand side terms of congruences and incongruences as
polynomials in x1, . . . , xs, over the coefficient ring Z[a1, . . . , ar] each such
term has a total degree less than or equal to 1.

(U3) Considering the left hand side terms of equations and inequalities as poly-
nomials in x1, . . . , xs, over the coefficient ring Z[a1, . . . , ar] each such term
is either a nonlinear univariate polynomial or has a total degree less than
or equal to 1.

We call formulas ϕ satisfying these three conditions univariately nonlinear. If
especially in (U3) every single left-hand side term matches the second case, then
ϕ is a linear formula, and we are in the situation discussed in [16]. Thus note that
according to our definition, every linear formula is also univariately nonlinear.

Accordingly, we refer to atomic subformulas of ϕ the left hand sides of which
match (U2) or the second case in (U3) as linear atomic formulas (wrt. x1,
. . . , xs). Those matching the first case in (U3) are called superlinear univari-
ate atomic formulas (wrt. x1, . . . , xs).

As an example, consider the following formula, which is univariately nonlinear:

∀y∃x(ax − y < 0 ∧ x2 + x+ a > 0). (2)

The atomic formula ax− y < 0 is linear, and the atomic formula x2 + x+ a > 0
is superlinear univariate.

As within the framework of [16], the elimination of regular quantifiers possibly
introduces several new bounded quantifiers. It is noteworthy that in contrast
to similar elimination procedures for higher degrees over the reals [13], we can
positively decide by inspection of the original input that we are able to eliminate
all present regular quantifiers.

The plan of the paper is as follows: Section 2 recalls some basic definitions
and results from [16] and generalizes these to our extended framework here. In
Section 3 we formulate and prove our elimination theorem. Section 4 gives an
overview of our implementation in redlog and discusses various computation
examples in order to give an idea about possible applications as well as the
practical efficiency and limitations of our method. In Section 5 we summarize
and evaluate our results and mention some ideas for future research.

2 Extended Virtual Substitution Framework

Our quantifier elimination procedure for univariately nonlinear formulas is going
to use distinct substitution procedures for test terms originating from superlinear
univariate atomic formulas on the one hand and from linear atomic formulas on
the other hand.

This gives rise to two extensions of the existing framework: First, with each
test point there must be stored in addition the respective substitution procedure.
Second, our new substitution for test terms from linear atomic formulas is going
to considerably extend the existing concept of virtual substitution. It is going to
be called constrained virtual substitution.
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2.1 Parametric Elimination Sets

Let ϕ be a weakly quantifier-free formula. We recall some definitions and results
from [16]. Originally, a parametric pre-elimination set for ∃xϕ had been defined
there as a finite set

E =
{

(γi, ti, Bi)
∣∣ 1 ≤ i ≤ n

}
, where Bi =

(
(kij , βij)

∣∣ 1 ≤ j ≤ mi

)
. (3)

The guards γi are strictly quantifier-free formulas, the test points ti are pseudo-
terms possibly involving division, the kij are variables, and the βij are kij -
bounds. Originally a parametric elimination set E for ∃xϕ is then a parametric
pre-elimination set such that for some virtual substitution procedure ν the set
E satisfies

∃xϕ←→
∨

(γi,ti,Bi)∈E

⊔

ki1:βi1

. . .
⊔

kimi
: βimi

(
γi ∧ ν(ϕ, ti, x)

)
. (4)

With this definition, there is one single virtual substitution procedure used for
all pseudo-terms in E. For the present paper we generalize this as follows: A
parametric pre-elimination set for ∃xϕ is a finite set

E =
{

(γi, ti, σi, Bi)
∣∣ 1 ≤ i ≤ n

}
, (5)

where the definitions of γi, ti and Bi are as before. Each σi is either the regular
substitution [·/·] of terms for variables or our new constrained virtual substi-
tution [·//·], which we are going to explain in detail in the next subsection. A
parametric elimination set E for ∃xϕ is a parametric pre-elimination set such
that

∃xϕ←→
∨

(γi,ti,σi,Bi)∈E

⊔

ki1:βi1

. . .
⊔

kimi
:βimi

(
γi ∧ σi(ϕ, ti, x)

)
. (6)

Assume that ϕ contains parameters a1, . . . , ar. Let E be a parametric pre-
elimination set for ∃xϕ. For z1, . . . , zr ∈ Z, strictly quantifier-free formulas ψ,
and pseudo-terms t we use for a moment the notational convention

ψ′ = ψ[z1/a1, . . . , zr/ar], t′ = t[z1/a1, . . . , zr/ar]. (7)

Furthermore, for formulas β′ in at most one variable k we denote the solution
set wrt. k by Sk

β′ = { z ∈ Z | β′(z) }. The projection Π(E, z1, . . . , zr) of E is
then defined as the finite set
{ (
γ′[y1/k1, . . . , ym/km], t′[y1/k1, . . . , ym/km], σ

) ∣∣ (γ, t, σ,B) ∈ E,

B = ((kj , βj) | 1 ≤ j ≤ m), y1 ∈ Sk1
β′
1
, . . . , ym ∈ Skm

β′
m[y1/k1,...,ym−1/km−1]

}
. (8)

Lemma 1. Let ϕ be a weakly quantifier-free formula with parameters a1, . . . , ar.
Let E be a parametric pre-elimination set for ∃xϕ with the following property:
For each interpretation z1,. . . , zr ∈ Z of the parameters a1, . . . , ar, we have

∃xϕ′ ←→
∨

(γ′,t′,σ)∈Π(E,z1,...,zr)

(
γ′ ∧ σ(ϕ′, t′, x)

)
,

where ϕ′ = ϕ[z1/a1, . . . , zr/ar]. Then E is a parametric elimination set for the
formula ∃xϕ. �	
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2.2 Constrained Virtual Substitution

The essential idea of a virtual substitution ν is to be able to substitute for a
variable x a parametric test point t that is formally not a term of the underlying
language. For instance, in our language t might be a fraction. The virtual sub-
stitution maps atomic formulas to strictly quantifier-free formulas in such a way
that whenever for some choice of values z1, . . . , zr ∈ Z for the parameters a1,
. . . , ar the test point evaluates to a number t(z1, . . . , zr) ∈ Z, then the following
equivalence holds:

ϕ[t(z1, . . . , zr)/x](z1, . . . , zr) ←→ ν(ϕ, t, x)(z1, . . . , zr). (9)

Here, [·/·] denotes regular substitution of terms for variables, where we allow
ourselves to identify integers with corresponding sums of 1 or −1 representing
them.

This notion of virtual substitution was sufficiently general for weak quanti-
fier elimination from linear formulas as discussed in [16]. For our generalized
setup here, however, we have to extend the concept of virtual substitution to
constrained virtual substitution. Before giving a formal definition for this, let us
return to our example in (2) in order to get a first idea about how our weak
quantifier elimination would proceed for the elimination of ∃x:

∀y∃x(ax − y < 0 ∧ x2 + x+ a > 0). (10)

From now on we allow ourselves to use absolute values within formulas as an ab-
breviated notation. Depending on the context they either stand for suitable case
distinctions or for corresponding approximations by squares. The following suit-
able parametric elimination set for our example contains one entry originating
from the first atomic formula and one entry from the second one:

E =
{(
a �= 0 ∧ y + k ≡a 0, y+k

a , [·//·], ((k, |k| ≤ |a|))
)
,

(
true, k, [·/·], ((k, |k| ≤ |a|+ 2))

)}
. (11)

The pseudo-term y+k
a in the first entry describes a finite set of points around the

solution of the equation ax−y = 0 corresponding to the first atomic formula. The
guard a �= 0 ∧ y + k ≡a 0 ensures that the pseudo-term evaluates to an integer.
The k-bound |k| ≤ |a| describes the range of an existential bounded quantifier to
be introduced for k. The substitution (ax− y < 0)[y+k

a //x] is defined as regular
substitution of terms for variables followed by multiplication with the square of
the denominator that comes into existence.

Assume for a moment that we define the substitution (x2+x+a > 0)[y+k
a //x]

in the same fashion: This would yield (y + k)2 + a(y + k) + a3 > 0. This is
neither linear nor superlinear univariate wrt. y and k. We thus make the following
alternative definition:

(x2 + x+ a > 0)[y+k
a //x] := |ay + ak| > |a|3 + 2a2. (12)

Notice that division of the right hand side of the definition by a2 yields |y+k
a | >

|a|+2, where |a|+2 is the Cauchy bound plus 1 of x2 +x+a. So the right hand
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side of (12) formulates that y+k
a satisfies x2 + x + a > 0 due to the fact that

it lies outside the Cauchy bounds of this parabola, which extends to +∞. For
the possible case that y+k

a lies in contrast within the Cauchy bounds but still
satisfies x2 + x+ a > 0 there is something left to do.

This turns us to the other entry in (11). Here |k| ≤ |a| + 2 is the bound of
a bounded quantifier that substituting k within its scope exactly covers every
single point within the Cauchy bounds expanded by 1 of x2 + x+ a. Recall that
the substitution [·/·] is the regular substitution of terms for variables.

The overall elimination result for our example is the following weakly
quantifier-free formula:

⊔

k: |k|≤|a|

(
a �= 0 ∧ y + k ≡a 0 ∧ k < 0 ∧ |ay + ak| > |a|3 + 2a2

)
∨

⊔

k: |k|≤|a|+2

(
ak − y < 0 ∧ k2 + k + a > 0

)
. (13)

For understanding why it is important to consider the Cauchy bounds ex-
panded by 1 in contrast to simply the Cauchy bounds themselves, consider the
example ∃x(x2 − 1 > 0 ∧ x = 1).

We now turn to formal definitions for the virtual substitution [·//·]. Substitu-
tion into linear atomic formulas works exactly as usual [13,16]:

(ax = b)
[

b′

a′ //x
]

:= (ab′ = a′b),

(ax ≤ b)
[

b′

a′ //x
]

:= (aa′b′ ≤ a′2b),

(ax ≡m b)
[

b′

a′ //x
]

:= (ab′ ≡ma′ a′b). (14)

One easily verifies that these substitutions satisfy Equivalence (9).
As already indicated by our example, we are going to use Cauchy bounds for

substitution into superlinear univariate atomic formulas. Consider a parametric
integer polynomial p = cnx

n + · · ·+ c0 ∈ Z[a1, . . . , ar][x]. We define the uniform
Cauchy bound of p as |cn−1| + · · ·+ |c0| + 1.

Lemma 2. For p = cnx
n + · · ·+ c0 ∈ Z[x] the following hold:

(i) For cn �= 0 the uniform Cauchy bound is always greater than or equal to
the regular Cauchy bound:

|cn−1|+ · · ·+ |c0|+ 1 ≥ max
(
1,
|cn−1| + · · ·+ |c0|

|cn|

)
.

(ii) Let ci �= 0 for at least one i ∈ {1, . . . , n}. If p(ξ) = 0 for some ξ ∈ R, then
|ξ| < |ξ| + 1 ≤ |cn−1| + · · ·+ |c0|+ 1.

Proof. To start with, note that |cn| ≥ 1. If in (i) the regular Cauchy bound
equals 1, then our claim is obvious. Else our claim follows from the following
observation by division by |cn|:

|cn| · (|cn−1| + · · ·+ |c0| + 1) ≥ |cn−1|+ · · · + |c0|+ 1 > |cn−1|+ · · · + |c0|.
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In (ii) we have, of course, |ξ| less than or equal to the regular Cauchy bound.
If |cn| ≤ |cn−1|+· · ·+|c0|, then we obtain |ξ| ≤ |cn|·|ξ| ≤ |cn−1|+· · ·+|c0|, which
implies |ξ|+1 ≤ |cn−1|+· · ·+|c0|+1. If, in contrast, |cn| > |cn−1|+· · ·+|c0|, then
|ξ| ≤ 1. In case |cn−1|+ · · ·+ |c0| > 0 we obtain |ξ|+1 ≤ 2 ≤ |cn−1|+ · · ·+ |c0|+1.
In case |cn−1| + · · · + |c0| = 0 we have p = cnx

n with cn �= 0, thus ξ = 0, and it
follows that |ξ| + 1 = 1 = |cn−1|+ · · ·+ |c0|+ 1. �	

We adopt from [16] the definition of an interval boundary. For a subset S ⊆ Z

a number z ∈ S is an interval boundary if z − 1 �∈ S or z + 1 �∈ S. In the former
case, z is called a lower interval boundary. In the latter case, z is called an upper
interval boundary. Let now α be an atomic formula in at most one variable x.
The characteristic points of α are the interval boundaries of the solution set
Sx

α = { z ∈ Z | α(z) } wrt. x of α.

Lemma 3. For c0, . . . , cn ∈ Z consider an atomic formula cnxn + · · ·+ c0 & 0
in at most one variable x, where & ∈ {=, �=,≤, <,>,≥}.

(i) For all characteristic points k of cnxn + · · ·+ c0 & 0 we have

|k| ≤ |cn−1|+ · · · + |c0|+ 1.

(ii) The atomic formula cnx
n + · · · + c0 & 0 has a constant truth value for

choices l of x with |cn−1|+ · · ·+ |c0|+ 1 < l. The same holds for choices l
of x with l < −(|cn−1|+ · · ·+ |c0|+ 1).

Proof. If we have in part (i) that c1 = · · · = cn = 0, then there are no
characteristic points at all, and the statement is trivial. Else let k ∈ Z be
a characteristic point of cnxn + · · · + c0 & 0. Using the definition above and
the intermediate value theorem it is easy to see that there is a real zero ξ of
cnx

n + · · · + c0 within the interval [k − 1, k + 1]. With Lemma 2(ii) it follows
that |k| ≤ |ξ| + 1 ≤ |cn−1|+ · · ·+ |c0|+ 1.

Part (ii) follows by induction from the observation that if an atomic formula
has different truth values at l and l+ 1, then either l or l+ 1 is a characteristic
point. �	

Let now p = cnx
n + · · ·+ c0 ∈ Z[a1, . . . , ar][x], and let & be any of the relations

in our language or equality. We define
(
p & 0

)[
b′

a′ //x
]

:=
(
a′b′ > a′2(|cn−1| + · · ·+ |c0| + 1) ∧ (p & 0)[∞//x]

)
∨

(
a′b′ < −a′2(|cn−1|+ · · · + |c0|+ 1) ∧ (p & 0)[−∞//x]

)
. (15)

For substituting the nonstandard numbers ±∞ into atomic formulas we follow
ideas by Weispfenning [13]. Substitution into equations and into negated equa-
tions is straightforward:

(p = 0)[±∞//x] :=
n∧

i=0

ci = 0, (p �= 0)[±∞//x] :=
n∨

i=0

ci �= 0. (16)
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For ordering inequalities ω the definition is recursive. Denote by q = cn−1x
n−1+

· · ·+ c0 the formal reductum of p, and let ωs := (ω � =) be the strict part of ω.
We first give the substitution for +∞:

(p ω 0)[∞//x] := cn ω
s 0 ∨

(
cn = 0 ∧ (q ω 0)[∞//x]

)
for n > 0,

(c0 ω 0)[∞//x] := c0 ω 0. (17)

For the substitution of −∞ one has to consider in addition the parities of the
degrees during recursion:

(p ω 0)[−∞//x] := (−1)ncn ω
s 0 ∨

(
cn = 0 ∧ (q ω 0)[−∞//x]

)
for n > 0,

(c0 ω 0)[−∞//x] := c0 ω 0. (18)

In contrast to our substitution (14) into linear atomic formulas our substitu-
tion (15) into superlinear univariate atomic formulas does not necessarily satisfy
Equivalence (9). As a counterexample consider ((x − 1)2(x − 2)2 > 0)[0//x].
It satisfies, however, a weaker condition, which is made precise in the follow-
ing lemma. It is one crucial technical observation of our paper that the weaker
condition can still be exploited to establish an elimination theorem.

Lemma 4 (Constrained Virtual Substitution). Consider a pseudo term
t = b′/a′ and a superlinear univariate atomic formula p & 0, where p = cnx

n +
· · ·+ c0 for n ≥ 2. Set

λ := |a′b′| > a′2(|cn−1|+ · · ·+ |c0| + 1).

Whenever for some choice z = (z1, . . . , zr) ∈ Zr of the parameters a1, . . . , ar

the test point t evaluates to a number t(z) ∈ Z, then the following holds:

λ(z) −→
(
(p & 0)[t(z)/x](z) ←→ (p & 0)[t//x](z)

)
.

Proof. To start with, it is noteworthy that the premise λ is equivalent to the
disjunction of the two inequalities on the right hand side of the definition in (15).
Furthermore, these inequalities exclude each other. Let z = (z1, . . . , zr) ∈ Zr

such that t(z) ∈ Z. Assume that λ(z) holds. Then w.l.o.g. the first inequality
(a′b′ > a′2(|cn−1|+ · · ·+ |c0|+1))(z) holds. This is equivalent to t(z) > (|cn−1|+
· · ·+ |c0| + 1)(z). By Lemma 3 we have

(p & 0)[t(z)/x](z) ←→ (p & 0)[l/x](z)

for all l ≥ t(z) > (|cn−1| + · · · + |c0| + 1)(z). The substitution of ∞ exactly
simulates such points l:

(p & 0)[t(z)/x](z) ←→ (p & 0)[∞//x](z).

Since we are already in a situation where (a′b′ > a′2(|cn−1| + · · ·+ |c0| + 1))(z)
holds, we finally obtain

(p & 0)[∞//x](z) ←→ (a′b′ > a′2(|cn−1| + · · ·+ |c0| + 1))(z) ∧ (p & 0)[∞//x](z)
←→ (p & 0)[t//x](z). �	
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For clarity, we refer to virtual substitution procedures satisfying only the weaker
condition described by the previous lemma as constrained virtual substitution
procedures. The idea behind this notion is that λ serves as a constraint under
which the virtual substitution behaves well. Note, however, that for substitution
into linear formulas we still have Equivalence (9) without any constraints.

3 Univariate Quantifier Elimination

In this section we present a quantifier elimination procedure for the set of uni-
variately nonlinear formulas.

3.1 Elimination of One Quantifier

The following representation lemma implies that characteristic points can gen-
erally be expressed by weakly quantifier-free formulas in terms of the coefficients
of the input formula.

Lemma 5 (Representation Lemma). Consider the superlinear univariate
atomic formula cnx

n + · · · + c0 & 0 wrt. x where c0, . . . , cn ∈ Z[a1, . . . , ar].
For a new variable k, we define the following strictly quantifier-free formula:

β := |k| ≤ |cn−1| + · · ·+ |c0| + 1.

Then β is linear in k. Furthermore β is a k-bound. Finally, for each interpreta-
tion z1, . . . , zr ∈ Z of the parameters a1, . . . , ar the solution set Sk

β(z1, . . . , zr)
contains all characteristic points of (cnxn + · · · + c0 & 0)(z1, . . . , zr).

Proof. The linearity of β and the finiteness of its solution set wrt. k are ob-
vious. Choose interpretations z1, . . . , zr ∈ Z of the parameters a1, . . . , ar. If
ci(z1, . . . , zr) = 0 for all i ∈ {1, . . . , n}, then there are no characteristic points at
all. Otherwise let i ∈ {1, . . . , n} be the largest index such that ci(z1, . . . , zr) �= 0,
and apply Lemma 3(i) to (cixi + · · ·+ c0 & 0)(z1, . . . , zr). �	

Lemma 6. Let σ be one of our substitutions [·/·], [·//·]. Let ϕ′ be a weakly
quantifier-free positive formula in one free variable x. Let t′ be a variable-free
pseudo-term that possibly contains division but describes an integer t∗ ∈ Z.
Assume that for all atomic subformulas α of ϕ′ and all interpretations y1,
. . . , yn ∈ Z of bound variables k1, . . . , kn occurring in α the following holds:

σ(α, t′, x)(y1, . . . , yn) −→ α[t∗/x](y1, . . . , yn).

Then σ(ϕ′, t′, x) −→ ϕ′[t∗/x].

Proof. We proceed by induction on the word length of the formula ϕ′. If ϕ′ is
an atomic formula, then it follows from the requirements of the lemma that
σ(ϕ′, t′, x)(y1, . . . , yn) −→ ϕ′[t∗/x](y1, . . . , yn) for all possible interpretations
y1, . . . , yn ∈ Z of the bound variables k1, . . . , kn occurring in ϕ′. Since both
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σ(ϕ′, t′, x) and ϕ′[t∗/x] do not contain any other variables besides k1, . . . , kn, it
follows that σ(ϕ′, t′, x) −→ ϕ′[t∗/x]. Consider now the case that ϕ′ not atomic.
Since ϕ′ is positive, it suffices to consider formulas of the form ϕ′ = ϕ′

1 ∨ ϕ′
2,

ϕ′ = ϕ′
1 ∧ ϕ′

2, ϕ
′ =

⊔
k: β ϕ

′
1, and ϕ′ =

�
k: β ϕ

′
1.

Consider the case ϕ′ = ϕ′
1 ∨ ϕ′

2. Assume that σ(ϕ′, t′, x) = σ(ϕ′
1 ∨ ϕ′

2, t
′, x)

holds. By our induction hypothesis we have both

σ(ϕ′
1, t

′, x) −→ ϕ′
1[t

∗/x] and σ(ϕ′
2, t

′, x) −→ ϕ′
2[t

∗/x].

Since both our substitutions are defined in terms of substitutions for atomic
formulas it follows that σ(ϕ′

1 ∨ϕ′
2, t

′, x) = σ(ϕ′
1, t

′, x)∨σ(ϕ′
2, t

′, x). Thus at least
one of σ(ϕ′

1, t
′, x), σ(ϕ′

2, t
′, x) holds and, accordingly, at least one of ϕ′

1[t∗/x],
ϕ′
2[t

∗/x] holds. Hence ϕ′
1[t

∗/x]∨ϕ′
2[t

∗/x] holds. The case ϕ′ = ϕ′
1∧ϕ′

2 is similar.
Next, consider the case ϕ′ =

⊔
k: β ϕ

′
1. Assume that the premise of our desired

implication holds:

σ(ϕ′, t′, x) = σ
(⊔

k: β

ϕ′
1, t

′, x
)

=
⊔

k: β

σ(ϕ′
1, t

′, x).

Then there is y ∈ Sk
β such that σ(ϕ′

1, t
′, x)[y/k] = σ(ϕ′

1[y/k], t′, x). By the
induction hypothesis it follows that ϕ′

1[y/k][t
∗/x] = ϕ′

1[t
∗/x][y/k] holds. Hence

by our choice of y we obtain that the conclusion of our implication holds:
⊔

k: β

(ϕ′
1[t

∗/x]) =
(⊔

k: β

ϕ′
1

)
[t∗/x].

The case of a bounded universal quantifier is similar. Notice that then the in-
duction hypothesis has to be applied several but finitely many times. �	

It is not hard to see that the previous lemma does not hold for non-positive
formulas ϕ′.

In [16] we have explicitly given a parametric elimination set for the subset of
linear formulas in the uniform Presburger arithmetic. We are going to use that
very set as a subset of our elimination set for the more general case discussed
here. Note that in the following lemma the elimination set E does not depend
on the logical structure of ϕ but only on the bounded quantifiers and the set of
atomic formulas contained therein.

Lemma 7 (Elimination of One Quantifier, Linear Case). Consider a lin-
ear formula ∃xϕ with parameters a1, . . . , ar, where ϕ is weakly quantifier-free,
positive, and in prenex normal form:

ϕ = Q1
k1:β1

. . . Qn
kn:βn

ψ.

Let the set of all atomic formulas of ψ that contain x be

{nix &i si + ri | i ∈ I1 ∪̇ I2 }.
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Here, the ni and ri are polynomials in the parameters a1, . . . , ar. The si are poly-
nomials in both the parameters a1, . . . , ar and the bound variables k1, . . . , kn.
For i ∈ I1, we have &i ∈ {=, �=, <,≤,≥, >}. For i ∈ I2, we have that &i is either
≡mi or �≡mi , where mi is a polynomial in a1, . . . , ar. Let k, k∗1 , . . . , k∗n denote
new variables. Define

β∗
1 = β1[k∗1/k1, . . . , k

∗
n/kn], . . . , β∗

n = βn[k∗1/k1, . . . , k
∗
n/kn].

Define m = lcm{m2
i + 1 | i ∈ I2 }. For i ∈ I1 ∪ I2 define

s∗i = si[k∗1/k1, . . . , k
∗
n/kn] and δi = −|ni|m ≤ k − s∗i ≤ |ni|m.

Then E = { (γi, ti, Bi) | i ∈ I1 ∪ I2 } ∪ {(true, 0,∅)}, where

γi = (ni �= 0 ∧ ri + k ≡ni 0), ti =
ri + k

ni
, Bi =

(
(k∗1 , β

∗
1), . . . , (k

∗
n, β

∗
n), (k, δi)

)
,

is a parametric elimination set for ∃xϕ. �	

Note that the definition of γi is such that whenever γi holds, then the corre-
sponding ti is defined and evaluates to an integer.

Lemma 8 (Elimination of One Quantifier). Consider a univariately non-
linear formula ∃xϕ with parameters a1, . . . , ar, where

ϕ = Q1
k1:β1

. . . Qn
kn:βn

ψ.

is weakly quantifier-free, positive, and in prenex normal form. Let E0 be the
(regular) parametric elimination set according to Lemma 7 for the subset of
linear atomic formulas in ψ and the bounded quantifiers occurring in ϕ. Let
{ pi &i 0 | i ∈ I } be the subset of superlinear univariate atomic formulas of ψ.
Let { tj &j 0 | j ∈ J } be the set of all congruences and incongruences occurring
in ϕ, i.e., &j is either ≡mj or �≡mj . Let m = lcm{m2

j + 1 | j ∈ J }. For i ∈ I,
denote by ui the uniform Cauchy bound of pi, and define for a new variable k
the following strictly quantifier-free formula:

δ :=
∨

i∈I

|k| ≤ ui +m.

Then the following is a parametric elimination set for ∃xϕ:

E = { (γ, t, [·//·], B) | (γ, t, B) ∈ E0 } ∪ {(true, k, [·/·], ((k, δ))}.

Proof. Fix an interpretation z1,. . . , zr of the parameters a1,. . . , ar. According
to Lemma 1 it is sufficient to show that the projection Π(E, z1, . . . , zr) satisfies
the following equivalence for ϕ′ := ϕ[z1/a1, . . . , zr/ar]:

∃xϕ′ ←→
∨

(γ′,t′,σ)∈Π(E,z1,...,zr)

(
γ′ ∧ σ(ϕ′, t′, x)

)
.
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We first prove the implication from the right to the left. In contrast to the
linear case and due to our constrained virtual substitution, this is not trivial.
Suppose that the right hand side holds. Then for at least one (γ′j , t

′
j , σj) ∈

Π(E, z1, . . . , zr) the corresponding γ′j ∧ σj(ϕ′, t′j , x) holds. Recall that t′j is a
pseudo-term possibly containing division. On the other hand, the validity of γ′j
guarantees that t′j corresponds to an integer. Denote that integer by t∗j . We are
now going to prove the following, which by Lemma 6 implies that our t∗j ∈ Z is
one possible choice for x, such that ∃xϕ′ holds: Let α be any atomic sub-formula
of ϕ′ with bound variables k1, . . . , kn. Let y1, . . . , yn ∈ Z be an interpretation of
k1, . . . , kn. Then

σj(α, t′j , x)(y1, . . . , yn) −→ α[t∗j/x](y1, . . . , yn).

If σj is the regular substitution [·/·], then the implication is trivial. Else σi

is our constrained virtual substitution [·//·]. If α is linear, then [·//·] satisfies
Equivalence 9, and our implication is just the direction from the right to the
left of that equivalence. If, in contrast, α is a superlinear univariate atomic
formula pi &i 0, where i ∈ I, then we make a case distinction on t∗j ∈ Z. If
|t∗j | > ui(z1, . . . , zr), i.e., it lies outside the uniform Cauchy bound of α, then
our implication follows from Lemma 4. Otherwise, one verifies by inspection of
Definition (15) that σi(α, t′j , x)(k1, . . . , kn) ←→ false such that the implication
holds trivially.

Assume vice versa that ∃xϕ′ holds. Consider first the degenerate case that
Sx

ϕ′ = Z. If I �= ∅, then we have (true, 0, [·/·]) ∈ Π(E, z1, . . . , zr). Otherwise,
we have inherited from Lemma 7 (true, 0, [·//·]) ∈ Π(E, z1, . . . , zr), and in the
absence of superlinear univariate formulas [0//x] = [0/x]. Let now ∅ � Sx

ϕ′ � Z.
If Sx

ϕ′∩Sk
δ �= ∅, say, z ∈ Sx

ϕ′∩Sk
δ , then there is (true, z, [·/·]) ∈ Π(E, z1, . . . , zr)

originating from the test point (true, k, [·/·], ((k, δ))).
Assume now that, in contrast, Sx

ϕ′ ∩ Sk
δ = ∅. Then we are in a situation,

where we can consider instead ϕ the formula ϕ̄ as follows: We replace in ϕ each
superlinear univariate atomic formula pi &i 0 by the following strictly quantifier-
free formula:

(
x < −ui ∧ (pi &i 0)[−∞//x]

)
∨
(
x > ui ∧ (pi &i 0)[∞//x]

)
.

Defining ϕ̄′ := ϕ̄[z1/a1, . . . , zr/ar] and on our assumption that Sx
ϕ′ ∩Sk

δ = ∅, we
have ϕ̄′ ←→ ϕ′, from which it follows that ∃xϕ̄′ holds. Since ∃xϕ̄ obtained this
way is a linear formula we know by Lemma 7 a regular parametric elimination
set for this:

E0 ∪
{

(true,−ui + k, ((k, |k| ≤ m))), (true, ui + k, ((k, |k| ≤ m)))
∣∣ i ∈ I

}
.

We adapt this set to our constrained virtual substitution framework by adding
to each test point the constrained virtual substitution:

Ē := { (γ, t, [·//·], B) | (γ, t, B) ∈ E0 } ∪{
(true,±ui + k, [·//·], ((k, |k| ≤ m)))

∣∣ i ∈ I
}
.
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Recall from the definition of our constrained virtual substitution [·//·] that for
linear formulas it equals the virtual substitution used in [16]. It thus follows that
Π(Ē, z1, . . . , zr) is an elimination set for ∃xϕ̄′. Consequently from the validity
of ∃xϕ̄′ it follows that the following formula holds:

∨

(γ′,t′,σ)∈Π(Ē,z1,...,zr)

(
γ′ ∧ σ(ϕ̄′, t′, x)

)
.

Let (γ′, t′, σ) ∈ Π(Ē, z1, . . . , zr) such that γ′ ∧ σ(ϕ̄′, t′, x). We make a case dis-
tinction on the origin of (γ′, t′, σ). If

(γ′, t′, σ) ∈ Π({ (γ, t, [·//·], B) | (γ, t, B) ∈ E0 }, z1, . . . , zr),

then it follows from { (γ, t, [·//·], B) | (γ, t, B) ∈ E0 } ⊆ E that (γ′, t′, σ) ∈
Π(E, z1, . . . , zr). In the other case, where

(γ′, t′, σ) ∈ Π({ (true,±ui + k, [·//·], ((k, |k| ≤ m)))
∣∣ i ∈ I }, z1, . . . , zr),

recall from the formulation of the present lemma the definition of m, and observe
that the following relation holds for all y with |y| ≤ m(z1, . . . , zr):

| ± ui(z1, . . . , zr) + y| ≤ (±ui +m)(z1, . . . , zr).

So there is a test point (γ′, t′, [·/·]) ∈ Π(E, z1, . . . , zr), which differs from our
considered point only by the substitution procedure. In both cases, we have found
a test point (γ′, t′, σ∗) ∈ Π(E, z1, . . . , zr), which differs from our considered point
at most by the substitution procedure. We are now going to show that

γ′ ∧ σ∗(ϕ′, t′, x).

Note that this is not trivial even in the first case where σ = σ∗ = [·//·], because
in ϕ′ there possibly occur superlinear univariate formulas. Recall that we are in
a situation where in particular γ′ holds, which implies that t′ ∈ Z. This allows
to apply Equivalence (9), and it follows that |t′| > ui(z1, . . . , zr) for all i ∈ I.
Hence, using Lemma 4 and Equivalence (9), σ∗(ϕ′, t′, x′) equivalently replaces
every single atomic formula in ϕ′ such that we obtain our desired observation
γ′ ∧ σ∗(ϕ′, t′, x). Hence

∨

(γ′,t′,σ)∈Π(E,z1,...,zr)

(
γ′ ∧ σ(ϕ′, t′, x)

)
,

which is what had to be shown. �	

3.2 Elimination Theorem

In order to possibly iterate weak quantifier elimination we next have to make
sure that the output of our elimination procedure is again univariately nonlinear;
in other words, it satisfies the defining conditions (U1)–(U3) in the introduction.
In contrast to the linear case, this observation is not trivial:
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Lemma 9. Let ϕ be weakly quantifier-free, positive and prenex. Assume that
∃xϕ occurs within a univariately nonlinear formula ϕ̂. Then replacing ∃xϕ in
ϕ̂ with the result of the application of the parametric elimination set E from
Lemma 8 is again univariately nonlinear.

Proof. Let x1, . . . , xs be the quantified variables occurring in ϕ̂. We have to
show, that the formula

ϕ′ =
∨

(γi,ti,σi,Bi)∈E

⊔

ki1:βi1

. . .
⊔

kimi
:βimi

(
γi ∧ σi(ϕ, ti, x)

)
. (19)

satisfies our conditions (U1)–(U3) wrt. x1, . . . , xs. The bounds of our newly
created bounded quantifiers obtained according to Lemma 5 do not contain any
of the variable x1, . . . , xs. Since each nontrivial guard originates from a regular
elimination set, all guards also satisfy the conditions (U1)–(U3). It is hence
sufficient to consider formulas of the form σi(α, ti, x) for each atomic formula α
occurring in ϕ. If α is a linear formula the statement is trivial. For the case α
is univariately nonlinear the statement is easily obtained by inspection of the
definition in (15). �	

Theorem 10 (Elimination Theorem). The ordered ring of the integers with
congruences admits weak quantifier elimination for univariately nonlinear
formulas.

Proof. Let ϕ̂ be a univariately nonlinear formula. We proceed by induction on
the number n of regular quantifiers in ϕ̂. If n = 0, then ϕ̂ is already weakly
quantifier-free. So there is nothing to do. Consider now the case n > 0. There
is then a subformula of ϕ̂ of one of the forms ∃xϕ or ∀xϕ, where ϕ is weakly
quantifier-free. The latter case can be reduced to the former one by means of
the equivalence ∀xϕ ←→ ¬∃x¬ϕ. We may w.l.o.g. assume that ϕ is in prenex
normal form and positive. By Lemma 8, there exists a parametric elimination
set E for ∃xϕ. That is, ∃xϕ is equivalent to

ϕ′ =
∨

(γi,ti,σi,Bi)∈E

⊔

ki1:βi1

. . .
⊔

kimi
:βimi

(
γi ∧ σi(ϕ, ti, x)

)
,

where Bi =
(
(kij , βij) | 1 ≤ j ≤ mi

)
. We obtain ϕ̂′ from ϕ̂ by equivalently

replacing ∃xϕ with ϕ′. Lemma 9 states that ϕ̂′ is again univariately nonlinear.
Hence we can eliminate the remaining quantifiers from ϕ̂′ by our induction hy-
pothesis. �	

Corollary 11 (Decidability of Sentences). In the ordered ring of the inte-
gers with congruences univariately nonlinear sentences are decidable.

Proof. Consider a univariately nonlinear sentence. Apply weak quantifier elimi-
nation. The result is an equivalent sentence containing only bounded quantifiers.
In the absence of parameters these can be expanded into disjunctions and con-
junctions. After this, all atomic formulas are variable-free such that we straight-
forwardly obtain either “true” or “false.” �	
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4 Implementation and Computation Examples

The procedure described in this paper has been implemented in redlog, which
stands for reduce logic system [17,18]. It provides an extension of the computer
algebra system reduce to a computer logic system implementing symbolic al-
gorithms on first-order formulas with respect to temporarily fixed first-order
languages and theories. Such a choice of language and theory is called a domain
or, alternatively, a context.

Before turning to the integer context relevant for our work here, we briefly
summarize the other existing domains together with short names and alternative
names, which are supported for backward compatibility:

boolean, B, ibalp. The class of Boolean algebras with two elements. These
algebras are uniquely determined up to isomorphisms. boolean comprises
quantified propositional calculus [15].

complex, C, acfsf. The class of algebraically closed fields such as the complex
numbers over the language of rings.

differential, dcfsf. A domain for computing over differentially closed fields.
There is no natural example for such a field, but in special cases the methods
can be used for obtaining relevant and interpretable results also for reason-
able differential fields [19].

padics, dvfsf. One prominent example for discretely valued fields are the p-
adic numbers for some prime p with abstract divisibility relations encoding
order between values. All padics algorithms are optionally uniform in p [14].

queues, qqe. A (two-sided) queue is a finite sequence of elements of some basic
type. There are two sorts of variables, one for the basic type and one for the
queue type. Accordingly, there is first-order quantification possible for both
sorts. So far, the implementation is restricted to the reals as basic type [20].

reals, R, ofsf. The class of real closed fields such as the real numbers with
ordering. This context was the original motivation for redlog. It is still the
most important and most comprehensive one [21].

terms, talp. Free Malcev-type term algebras. The available function symbols
and their arity can be freely chosen. [22].

The work discussed here has been integrated into another such domain:

integers, Z, pasf. The full linear theory of the integers.

This domain had been originally introduced for the methods described in [16].
It now naturally extends to univariately nonlinear formulas without loosing any
of its previous features.

The idea of redlog is to combine methods from computer algebra with first-
order logic thus extending the computer algebra system reduce to a computer
logic system. In this extended system both the algebraic side and the logic side
greatly benefit from each other in numerous ways. The current release red-

log 3.0 is an integral part of the computer algebra system reduce 3.8. The im-
plementation of our methods described here is part of the current development
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version of redlog. It is going to be distributed with reduce 3.9. Until then it
is freely available on the redlog homepage.1

We are now going to discuss various computations with our implementation.
The idea is to illustrate the possible application range but also the limits of
our method and of the current implementation. All our computations have been
performed on a 1.66 GHz Intel Core 2 Duo processor T5500 using only one core
and 128 MB RAM.

4.1 Optimization

We define a parametric linear optimization problem with univariately nonlinear
constraints as follows: Minimize a cost function γ1x1 + · · · + γnxn subject to

Ax ≥ b, p1 &1 0, . . . , pr &r 0.

As usual, A = (αij) is an m × n-matrix, and b = (β1, . . . , βm) is an m-vector.
For i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} we have αij , βi, γj ∈ Z[a1, . . . , ak], i.e.,
all these coefficients are possibly parametric. For each s ∈ {1, . . . , r} we have
ps ∈ Z[a1, . . . , ak][xj ] for some j ∈ {1, . . . , n}, i.e., the p1, . . . , pr are parametric
univariate polynomials. Each corresponding &s is one of =, �=, ≤, >, ≥, or <.

Using a new variable z for the minimum such a problem can be straightfor-
wardly translated to our framework as follows:

∃x1 . . . ∃xn

( n∑
j=1

γjxj ≤ z ∧
m∧

i=1

n∑
j=1

αijxj ≥ βi ∧
r∧

s=1
ps &s 0

)
.

Example 12. Minimize x+ y subject to the following constraints:

x ≥ 0, y ≥ 0, x+ y ≥ 0, and x2 + a < 0.

The formulation as a quantifier elimination problem reads as follows:

∃x∃y
(
x+ y ≤ z ∧ x ≥ 0 ∧ y ≥ 0 ∧ x+ y ≥ 0 ∧ x2 + a < 0

)
.

For this redlog computes within 20 ms a weakly quantifier-free equivalent con-
taining 103 atomic formulas. Setting then a = 10 and automatically simplifying
yields within 2190 ms the result z > 3, i.e., the minimum for x+y is 4. This final
simplification step includes in particular expansion of all present bounded quan-
tifiers. If we plug in a = 10 before the elimination, then we directly obtain z > 3
in only 330 ms. This amazing difference in time, we had already observed for
the full linear theory of the integers [16]. It can be explained as follows: In both
Lemma 7 and Lemma 8, we compute the least common multiple of the squares
of all moduli. For non-parametric moduli we optimize this by using instead the
absolute values of the moduli.

Generalizing our method discussed in the present paper to extended quantifier
elimination [23,13,24,15] would admit to obtain in addition a sample point for the
computed optimum. The optimization addressed above with the absolute value
instead of squares could be applied in the parametric case as well by adding to
the language a symbol for the absolute value.

1 www.redlog.eu
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4.2 Software Security

Information flow control is one important issue in software security [25,26]. The
question is whether it is possible to manipulate parameters in such a way that
sensitive information can become accessible outside of special code segments. We
are going to discuss a modification of an example from [16].

Example 13. For the following piece of code there is a security risk if there are
choices for a and b such that y is assigned the value of some A[n^2].

if (a < b) then
if (a+b mod 2 = 0) then

n := (a+b)/2
else

n := (a+b+1)/2
fi
A[n^2] := get_sensitive_data(x)
send_sensitive_data(trusted_receiver,A[n^2])

fi
y := A[abs(b-a)].

An attacker would be interested in a description of all values of a and b such
that this happens. This can be formulated as follows:

∃n
(
(a < b ∧ a+ b ≡2 0 ∧ 2n = a+ b ∧

((a < b ∧ b− a = n2) ∨ (a ≥ b ∧ a− b = n2))) ∨
(a < b ∧ a+ b �≡2 0 ∧ 2n = a+ b+ 1 ∧

((a < b ∧ b− a = n2) ∨ (a ≥ b ∧ a− b = n2)))
)
.

Our implementation computes in less than 10 ms the following weakly quantifier-
free description:

⊔

k: |k|≤(a−b)2+2

(a− b < 0 ∧ a− b+ k2 = 0 ∧ a+ b �≡2 0 ∧ a+ b− 2k + 1 = 0) ∨

⊔

k: |k|≤(a−b)2+2

(a− b < 0 ∧ a− b + k2 = 0 ∧ a+ b ≡2 0 ∧ a+ b− 2k = 0).

4.3 Integer Roots

Example 14. Consider the generic polynomial p = ax2 + bx + c. The question
whether p has an integer root can be expressed by a univariately nonlinear
formula as follows:

∃x(ax2 + bx+ c = 0).

Our elimination procedure yields after less than 10 ms the following weakly
quantifier-free equivalent:

⊔

k: |k|<|b|+|c|+2

ak2 + bk + c = 0.
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This result exactly substitutes all integers inside the uniform Cauchy bounds of p
expanded by 1. This expansion is the least common multiple of the (non-existing)
moduli in the input.

This result obviously does not provide much mathematical insight. A helpful
though imprecise intuition about our method is the following: Its intelligence
works mostly outside of the relevant Cauchy bounds. Anyway, a slight modifica-
tion of our previous example yields useful information:

Example 15. Given suitable n1, n2 ∈ Z and d1, d2 ∈ N � {0} we look for integer
zeros of p(x) = αx2 + βx + γ within the interval [n1/d1, n2/d2]. This can be
formulated as follows:

∃x
(
p = 0 ∧ d1x ≥ n1 ∧ d2x ≤ n2

)
.

Let us consider the polynomial p = x5 − 3x2 + 1. We want to know whether
there is a zero of p in [1/3, 3]. This yields the following input:

∃x(x5 − 3x2 + 1 = 0 ∧ 3x ≥ 1 ∧ x ≤ 3).

For this, our implementation computes “false” in less than 10 ms. In fact, our
chosen p has no integer zeros at all.

This last example illustrates the fact that our method combined with automatic
simplification yields a decision procedure for univariately nonlinear sentences. So
for sentences, we are able to obtain as a result either “true” or “false,” which
both do not contain any bounded quantifiers. Hence, concerning the decision of
sentences, we provide a considerable extension of the original Presburger frame-
work, where the user need not accept any additional syntactic constructs.

5 Conclusions

We have considered the integers using the language of ordered rings extended
by ternary symbols for congruence and incongruence. On this basis we have
given a weak quantifier elimination procedure for the set of univariately nonlin-
ear formulas. The notion of weak quantifier elimination refers to the fact that
the result possibly contains bounded quantifiers. For fixed choices of parameters
these bounded quantifiers can be expanded into disjunctions or conjunctions. For
decision problems they can be completely avoided. Our methods are efficiently
implemented and publicly available within the computer logic system redlog,
which is part of reduce. The applicability of our new method and its imple-
mentation has been demonstrated by means of various application examples.
For the future it is planned to provide also an extended quantifier elimination
procedure within the framework considered here. Furthermore, it appears to be
a promising idea to extend the language by a symbol for the absolute value.
This would allow to considerably reduce the ranges of the bounded quantifiers
coming into existence.
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metic. In: Küchlin, W.W. (ed.) ISSAC 97. Proceedings of the 1997 International
Symposium on Symbolic and Algebraic Computation, Maui, HI, pp. 48–53. ACM
Press, New York, NY (1997)

11. Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic
Computation 5(1&2), 3–27 (1988)

12. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer
Journal 36(5), 450–462 (1993) (special issue on computational quantifier elimina-
tion)

13. Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and
beyond. Applicable Algebra in Engineering Communication and Computing 8(2),
85–101 (1997)

14. Sturm, T.: Linear problems in valued fields. Journal of Symbolic Computa-
tion 30(2), 207–219 (2000)

15. Seidl, A.M., Sturm, T.: Boolean quantification in a first-order context. In: Ganzha,
V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Comput-
ing. Proceedings of the CASC 2003, Institut für Informatik, Technische Universität
München, München, Germany, pp. 329–345 (2003)

16. Lasaruk, A., Sturm, T.: Weak quantifier elimination for the full linear theory of
the integers. a uniform generalization of presburger arithmetic. Technical Report
MIP-0604, FMI, Universität Passau, D-94030 Passau, Germany (2006) (to appear
in the journal AAECC)

17. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM
SIGSAM Bulletin 31(2), 2–9 (1997)

18. Dolzmann, A., Sturm, T.: Redlog user manual. Technical Report MIP-9905, FMI,
Universität Passau, D-94030 Passau, Germany, Edition 2.0 for Version 2.0 (1999)



294 A. Lasaruk and T. Sturm

19. Dolzmann, A., Sturm, T.: Generalized constraint solving over differential alge-
bras. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra
in Scientific Computing. Proceedings of the CASC 2004, Institut für Informatik,
Technische Universität München, München, Germany, pp. 111–125 (2004)

20. Straßer, C.: Quantifier elimination for queues. In: Draisma, J., Kraft, H. (eds.)
Rhine Workshop on Computer Algebra. Proceedings of the RWCA 2006, pp. 239–
248. Universität Basel, Basel (2006)

21. Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice.
In: Matzat, B.H., Greuel, G.M., Hiss, G. (eds.) Algorithmic Algebra and Number
Theory, pp. 221–247. Springer, Berlin (1998)

22. Sturm, T., Weispfenning, V.: Quantifier elimination in term algebras. The case
of finite languages. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Com-
puter Algebra in Scientific Computing. Proceedings of the CASC 2002, Institut
für Informatik, Technische Universität München, München, Germany, pp. 285–300
(2002)

23. Weispfenning, V.: Simulation and optimization by quantifier elimination. Journal
of Symbolic Computation 24(2), 189–208 (1997) (special issue on applications of
quantifier elimination)

24. Dolzmann, A., Sturm, T.: P-adic constraint solving. In: Dooley, S. (ed.) ISSAC
99. Proceedings of the 1999 International Symposium on Symbolic and Algebraic
Computation, Vancouver, BC, pp. 151–158. ACM Press, New York, NY (1999)

25. Snelting, G.: Quantifier elimination and information flow control for software secu-
rity. In: Dolzmann, A., Seidl, A., Sturm, T. (eds.) Algorithmic Algebra and Logic.
Proceedings of the A3L 2005, BoD, Germany, Norderstedt, pp. 237–242 (2005)

26. Snelting, G., Robschink, T., Krinke, J.: Efficient path conditions in dependence
graphs for software safety analysis. ACM Transactions on Software Engineering
and Methodology 15(4), 410–457 (2006)



Polynomial Division Using Dynamic Arrays,

Heaps, and Packed Exponent Vectors�

Michael Monagan and Roman Pearce

Department of Mathematics, Simon Fraser University
Burnaby, B.C. V5A 1S6, Canada

mmonagan@cecm.sfu.ca, rpearcea@cecm.sfu.ca

Abstract. A common way of implementing multivariate polynomial
multiplication and division is to represent polynomials as linked lists
of terms sorted in a term ordering and to use repeated merging. This
results in poor performance on large sparse polynomials.

In this paper we use an auxiliary heap of pointers to reduce the number
of monomial comparisons in the worst case while keeping the overall
storage linear. We give two variations. In the first, the size of the heap is
bounded by the number of terms in the quotient(s). In the second, which
is new, the size is bounded by the number of terms in the divisor(s).

We use dynamic arrays of terms rather than linked lists to reduce
storage allocations and indirect memory references. We pack monomials
in the array to reduce storage and to speed up monomial comparisons.
We give a new packing for the graded reverse lexicographical ordering.

We have implemented the heap algorithms in C with an interface to
Maple. For comparison we have also implemented Yan’s “geobuckets”
data structure. Our timings demonstrate that heaps of pointers are com-
parable in speed with geobuckets but use significantly less storage.

1 Introduction

In this paper we present and compare algorithms and data structures for poly-
nomial division in the ring P = F [x1, x2, ..., xn] where F is a field. We are
interested in (i) exact division of f ∈ P by a single polynomial g ∈ P, that is
testing whether g|f and if so, computing the quotient q = f/g, (ii) exact divi-
sion of f ∈ P by a polynomial g ∈ P modulo a triangular set of polynomials in
F [xi, xi+1, ..., xn], and (iii) computing the remainder of f ∈ P divided by a set
of polynomials {g1, g2, ..., gs} ∈ P. Since many algorithms in computer algebra
use modular methods for efficiency, that is, they compute modulo primes, we
will want to divide over characteristic p as well as characteristic 0.

We consider distributed polynomial representations that sort the terms of the
polynomial with respect to a monomial ordering. See [3] or [4] for background
material on monomial orderings. The orderings that we are most interested in
are the pure lexicographical ordering (lex), the graded lexicographical ordering
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(grlex), and the graded reverse lexicographical ordering (grevlex). In the grlex
ordering one first sorts the terms by total degree and then by lexicographical
order. For example, the polynomial

−9x4 − 7x3yz + 6x2y3z + 8y2z3

when written with terms in descending grlex order with x > y > z is

6x2y3z − 7x3yz + 8y2z3 − 9x4.

The data structure used to represent polynomials will have a direct impact on
the efficiency of the division algorithm. The data structure used by the Axiom
system [7] for Gröbner basis computations is the SDMP (Sparse Distributed
Multivariate Polynomial) data structure. This is a linked list of terms where
each term is a pair (c, e), where c is a (pointer to) a coefficient and e is a pointer
to the exponent vector, which is an array of machine integers. Using 〈a, b, c, ...〉
to denote an array, [a, b, c, ...] to denote a linked list, and (c, e) to denote a pair
of pointers, the polynomial above would be represented as

[ (6, 〈2, 3, 1〉), (−7, 〈3, 1, 1〉), (8, 〈0, 2, 3〉), (−9, 〈4, 0, 0〉) ].

Recall the division algorithm. Following the notation of Cox, Little, and
O’Shea [3], we let LT (f), LM(f), and LC(f) denote the leading term, the
leading monomial, and the leading coefficient of a polynomial f , respectively.
These depend on the term ordering but satisfy LT (f) = LC(f)LM(f).

The Division Algorithm
Input: f, g1, g2, ..., gs ∈ F [x1, ..., xn], F a field.
Output: q1, q2, ..., qs, r ∈ F [x1, ...xn] satisfying f = q1g1+q2g2+ ...+qsgs +r.

1: Set (q1, q2, ..., qs) := (0, 0, ..., 0).
2: Set p := f .
3: While p �= 0 do

4: Find the first gi s.t. LM(gi)|LM(p).
5: If no such gi exists then set r := r + LT (p) and p := p− LT (p)
6: else set (qi, p) := (qi + t, p− t× gi) where t = LT (p)/LT (gi).

7: Output (q1, q2, ..., qs, r).

Remark: If one wishes to test if (g1, ..., gs)|f with 0 remainder then Step 5
should be modified to stop execution and output false.

If polynomials are represented as linked lists of terms sorted in descending order
in the term ordering then accessing the leading term LT (f) takes constant time,
the operation p−LT (p) (link to the remaining terms of p) is constant time and
r + LT (p) can be done in constant time by maintaining a pointer to the last
term of r. The most expensive step is the subtraction p − t × gi. This requires
a “merge” – one simultaneously walks down the linked list of terms in p and
the linked list of terms in gi comparing monomials. In the worst case the merge
must walk to the end of both p and gi.
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1.1 Storage Management and Non-local Memory References

We identify two sources of inefficiency in the division algorithm when the SDMP
data structure is used. The first is the many intermediate pieces of storage that
need to be allocated when we multiply t gi, for example, storage for new exponent
vectors in t gi. The second is the memory references that occur during the merge
when we walk down the linked lists and, for each term, link to the exponent
vectors to compare monomials. These memory references cause a loss in efficiency
when the polynomials are too large to fit inside the computer’s cache. On a 2.4
GHz AMD Opteron 150 with 400 MHz RAM we measured the loss of speed at
a factor of 6.

These two problems can be eliminated by representing polynomials as arrays
with the coefficients and exponents stored in place. For example, 6x2y3z−7x3yz+
8y2z3 − 9x4 could be stored as

〈 6, 2, 3, 1,−7, 3, 1, 1, 8, 0, 2, 3,−9, 4, 0, 0 〉.

The difference p − tgi can be computed efficiently by merging with two arrays:
one, p, that we are copying terms out of, and another, p′, that we are forming
the difference p− t× gi inside. When the merge is complete we interchange the
roles of p and p′ for the next iteration of the division algorithm. If p′ is too small
to store all of the terms of p and −t × gi we allocate a new p′ with 50% more
terms than are needed to reduce the chance of another allocation in the future.

But, there is a loss of efficiency; instead of copying pointers (one word)
we must now copy exponent vectors (n words). This loss can be reduced by
packing multiple exponents into each word. For example, Macaulay [5] uses dy-
namic arrays and packed exponent vectors. Macaulay identifies the monomials
1, z, y, x, z2, zy, y2, zx, yx, x2, ... with non-negative integers 0, 1, 2, 3, ... to encode
each monomial as an integer. The polynomial 6x2y3z − 7x3yz + 8y2z3 − 9x4

would be represented as an array of 8 words

〈 +6, 63,−7, 49,+8, 36,−9, 33 〉.

This encoding gives a very compact representation with fast monomial compar-
isons, but monomial multiplication and division are slow. In [1], Bachmann and
Schönemann compare different monomial packings including the Macaulay en-
coding. They show that packing exponent vectors produces a modest speedup
(a factor of 1.5 to 2) for Gröbner basis computations modulo a machine prime
with the SDMP data structure. They also show that simpler packing schemes
are more efficient overall than the Macaulay encoding.

1.2 The Problem of Too Many Monomial Comparisons

When using merging to subtract p− tgi, a serious inefficiency may occur when
#p, the number of terms in p, is much larger than #gi, the number of terms
in a divisor gi. Consider g = (x + 1), q = yn + ... + y2 + y and let p = gq =
xyn + ...+x+ yn + ...+ y. If we compute p by adding x q to q using merging, the



298 M. Monagan and R. Pearce

merge does n comparisons which is efficient. In dividing f by g the first quotient
is yn and we subtract yn g = xyn + yn from p = xyn + ...+xy+ yn + ...+ y. The
merge does n comparisons to find yn in p. The full division does n such merges
so the total number of comparisons is O(n2), much worse than multiplication.

One solution is to represent the polynomial p as a binary search tree. Then
LT(p) can be computed with O(log #p) monomial comparisons and the difference
p− tgi can be computed with O(#gi log #p) comparisons. However binary trees
suffer from the same cache performance problems as linked lists.

A very nice solution is the “geobucket” data structure of Yan [12], which is
used by the Singular [6] computer algebra system and others. Geobuckets are
described in detail in Section 2. In the geobucket data structure a polynomial
p with #p terms is represented by an array of O(log #p) “buckets” where the
i’th bucket pi is a linked list of at most 2i terms. To subtract t× gi from p one
subtracts t × gi from the i’th bucket of p where 2i−1 < #gi ≤ 2i. Subtraction
is done by merging two linked lists. The idea is that asymptotic efficiency is not
lost when we merge linked lists with a similar number of terms, e.g., their length
differs by at most a factor of two.

In this paper we use an auxiliary “heap of pointers” instead. When dividing p
by {g1, g2, ..., gs} we maintain a heap of pairs with quotient terms and pointers
back into the divisors {g1, g2, ..., gs}. The pointers indicate which terms have yet
to be multiplied and subtracted from p.

Suppose we are dividing f by g. Let f = gq + r where q is the quotient
and r the remainder. With geobuckets, division does O(#g#q(log #g+log #q))
comparisons [12]. If we use a heap, division does O(#g#q log #q) comparisons.
A second key advantage of using a heap is that it requires only O(#q) space,
and, if we need to compute the remainder, O(#r) space to write down the
remainder. By comparison, the simple merge and geobucket algorithms may
require O(#g#q + #r) space. The main disadvantage of using a heap is that
for dense polynomials the merge and geobucket algorithms are better; they do
only O(#g#q) comparisons. A third advantage of using a heap is that we delay
all coefficient arithmetic until we need to do it. This can result in significant
speedups when we want to test if g divides f but g does not divide f .

The idea of using a heap for sparse polynomial arithmetic was first investigated
by Johnson in 1974 [8]. Heaps were used in Altran [2], one of the earliest computer
algebra systems. We are not aware of any other computer algebra system that has
used heaps for polynomial arithmetic despite their good asymptotic performance.
Heaps were not considered by Stoutemyer in [11] which, as far as we are aware, is
the only systematic experiment ever done comparing different polynomial data
structures on a computer algebra system’s test suite.

1.3 Organization of the Paper

In Section 2 we describe how we encode and pack monomials for different term or-
derings. Our packing for graded reverse lexicographical order is new. In Section 3
we give the main algorithms that use heaps of pointers. Two algorithms are pre-
sented. The first algorithm bounds the size of the heap by the number of terms
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in the quotients {q1, q2, ...., qs}. In the second algorithm, the size of the heap is
bounded by the number of terms in the divisors {g1, g2, ..., gs}. This algorithm
is new, and it is particularly useful for polynomial GCD computations because
the gcd G of two polynomials A and B typically has fewer terms, often much
fewer, than the quotients A/G and B/G.

We have implemented the division algorithms in the C programming lan-
guage. We create polynomials in Maple and call our C code from Maple using
Maple’s foreign function interface (see Ch. 8 of [10]). For comparison we have
also implemented Yan’s geobucket data structure using dynamic arrays with
packed exponent vectors. Details of our geobucket implementation are given in
Section 2. In Section 4 we give some benchmarks comparing the simple merging
algorithm with Yan’s geobucket representation and our heap algorithms, using
packed and unpacked exponent vectors.

Our conclusions may be summarized as follows. Simple merging is not compet-
itive with either heaps or geobuckets on sparse problems. The heap algorithms
are as fast as geobuckets but use far less memory. Geobuckets do the fewest
monomial comparisons, but heaps tend to be faster on large problems because
they use cache more efficiently. For all algorithms, packing exponents signifi-
cantly improves performance, especially on 64-bit machines.

2 Dynamic Array Implementation

Consider the minimum amount of work that a sparse algorithm must do. As
noted by Johnson [8], a multiplication fg must construct all #f#g products
of terms because the monomials generated may be distinct. These terms are
merged to form the result. Similarly, to divide f by g we construct the quotient
q incrementally while subtracting qg from f , merging #f + #q(#g − 1) terms
to do the division. Note, it is #g − 1 and not #g because −q × LT (g) cancels
terms so only −q × (g − LT (g)) needs to be merged. Let r = f − qg. The
number of monomial divisions attempted is #q+#r. To divide f by {g1, ..., gs}
with quotients {q1, ..., qs} we merge #f +

∑s
i=1 #qi(#gi−1) terms and attempt∑s

i=1(#qi)i + (#r)s monomial divisions if for each term we loop through the
divisors in order.

Sorting the result imposes an additional cost in monomial comparisons if a
function is called to compare terms with respect to an ordering. The nm terms
of a product can be naively sorted using O(nm log(nm)) comparisons, but if the
polynomials are sorted we can exploit that fact to do only O(nm log(min(n,m)))
comparisons. In either case the logarithmic factor is significant – it means that
monomial comparisons dominate sparse polynomial computations when the cost
of coefficient arithmetic is low.

2.1 Packed Monomial Representations

After an initial experiment we decided to base our monomial representations
on Bachmann and Schönemann’s scheme [1], which is used in Singular. The
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defining feature of this scheme is that a monomial stores two components: a
(possibly weighted) total degree and a vector of exponents. An inline function
compares the degree and the exponent vector in lexicographic order, and two
global variables invert the results of these comparisons separately. To compare
in reverse lexicographic order we reverse the variables and invert all the com-
parisons. Figure 1 shows the unpacked representations of x2y3z4 with respect
to four common orders with x > y > z. Shading is used to indicate where the
results of comparisons are inverted.

reverse lexicographic order graded reverse lexicographic order

graded lexicographic orderlexicographic order

deg

deg zyxx y z
32 4

234

29

9 4 3 2

4

z

3

y x xyz

Fig. 1. Unpacked x2y3z4 with x > y > z
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deg
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2
zyx
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2 3 4
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2

y
3

z
4

weighted reverse lexicographic order

weight xyz
234w

32
yxweight

w

x+y

graded reverse lexicographic order

lexicographic order

43

Fig. 2. Packed x2y3z4 with x > y > z

To pack monomials we use bitwise or and shift operations on machine words so
that byte order is automatically taken into account. Our diagrams use big-endian
format. We reserve the most significant bit of each exponent as a guard bit for
monomial division. This operation subtracts machine words and uses a bit-mask
to detect if an exponent is negative. The mask also stores the length of the
monomials which is needed by every routine. Weighted orders use the entire first
word for the weighted degree since this can be large. We restrict the weights to
non-negative integers so that the weighted degree is also a non-negative integer.

For graded orders we use the same number of bits for the total degree as for
each exponent so that all monomials up to the maximum degree are encoded
efficiently. Note that it is especially easy to determine an optimal packing for
these orders using bounds on the total degree. If the polynomials are already
sorted with respect to the order then we can examine their leading terms and
repack the polynomials in linear time.

Figure 2 shows the packed representations of x2y3z4 for five monomial or-
ders with two exponents per machine word. Notice how monomial comparisons
are reduced to lexicographic and reverse lexicographic comparisons of machine
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words. The encodings should all be straightforward except for graded reverse
lexicographic order. In that case recall that the total degree only requires as
many bits as a single packed exponent. The first word of the monomial, which
must be compared lexicographically unlike the rest, would contain relatively
little information if it only stored the total degree.

Our first idea was to pack more information into the first word to decide
monomial comparisons. Observe that the matrices A and B in Figure 3 both de-
scribe graded reverse lexicographic order in four variables. Let V be an exponent
vector. Then AV is encoded in the first |V | words of the unpacked representa-
tion. The matrix B is obtained from A by adding the previous rows of A to each
row of A, eliminating all negative entries. Thus BV contains only non-negative
integers that are compared lexicographically. We pack as much of BV as possible
into the first word of the monomial.

A =

⎡

⎢⎢⎣

1 1 1 1
0 0 0 −1
0 0 −1 0
0 −1 0 0

⎤

⎥⎥⎦ B =

⎡

⎢⎢⎣

1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 0

⎤

⎥⎥⎦

Fig. 3. Matrix representations of graded reverse lexicographic (grevlex) order
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Fig. 4. Packed representations of x1y2z3t4u5v6w7 in grevlex order with 4 exponents
per word. The exponents for w, v, u, and x are redundant. In the second representation,
all monomial comparisons can be decided on the basis of the first seven exponents, after
looking at only two words.

However, this does not actually fix the problem since now the second word
of the monomial contains information that can be derived from the first. Refer
to the top of Figure 4, where w = 7, v = 6 and u = 5 are known from 28 − 21,
21−15, and 15−10. Thus the second word now provides only one exponent with
new information, but we can easily fix this by moving all but the last exponent of
the second word to the end of the monomial, as in the bottom of Figure 4. Then
for n variables the first n exponents encode all of the information necessary to
decide monomial comparisons in grevlex order.

One might wonder why we do not simply encode the vector BV . The reason is
that for monomial division one must unpack and decode quotients to check that
they are valid. An example is given below. In fact, we tried this representation
initially and found that while it was quite compact for grevlex order, weighted
orders were inefficient and reverse lexicographic order could not be implemented.
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Eventually we decided to store all of the exponents explicitly, and Bachmann
and Schönemann’s scheme was the obvious choice.

Example 1. Consider x2 and y3 in graded reverse lexicographic order with x >
y > z. The exponent vectors are U = [ 3, 0, 0 ] and V = [ 0, 2, 0 ] respectively,
and the matrix B is shown below. The difference BU −BV is non-negative even
though U − V = [ 3,−2, 0 ].

B =

⎡

⎣
1 1 1
1 1 0
1 0 0

⎤

⎦ BU =

⎡

⎣
3
3
3

⎤

⎦ BV =

⎡

⎣
2
2
0

⎤

⎦ BU − BV =

⎡

⎣
1
1
3

⎤

⎦

2.2 Iterated Merging with Dynamic Arrays

The classical approach to polynomial arithmetic is an iterated merge. To multiply
f by g we compute

∑#f
i=1 fig by adding each fig to the previous partial sum using

a merge. Similarly, to divide f by g we compute terms of the quotient q while
subtracting each qig from an intermediate polynomial p, which is initially f .

Our first goal was to implement these algorithms while avoiding memory al-
location. We use two global arrays or “merge buffers” p and p′ which grow
dynamically, and all merging takes place from p into p′. If p′ does not have suf-
ficient storage to hold the objects being merged then it is enlarged. To amortize
this cost we allocate a new p′ with 50% more storage than required. To further
amortize the cost of memory allocation we reuse p and p′ in the next call to an
algorithm rather than free them each time.

2

1

2−3
buffer p’

y22y divisor g

quotient q7y

x y25x435x22 3 y11

5x22 4x3 2 yx5

buffer p

remainder r

7y 13

y

Fig. 5. Division using two dynamic arrays. The fourth term of p produced the quotient
term y, and we are beginning to merge the rest of p (two terms) with −y times the rest
of g (two terms). The buffer p′ is large enough to store the result. Otherwise we would
enlarge it to six terms.

We describe our implementation of the division algorithm. To divide f by g,
we copy f into p and increment along the terms of p until we reach the end
or we find a term pi that is divisible by LT (g). We copy the previous terms of
p to the remainder and if a reducible term was found, say pi = qjLT (g), we
merge the rest of p with −qj(g−LT (g)) into p′, as shown in Figure 5. The terms
of −qj(g − LT (g)) are constructed during the merge. Finally we interchange p
and p′ by swapping pointers so that p′ becomes p for the next iteration of the
algorithm and the storage for p is recycled.



Polynomial Division 303

The complexity of this approach was analyzed by Johnson [8]. He observed
that for a multiplication fg where f has n terms, g has m terms, and fg has nm
terms, adding each fig to the partial sum can require up to im−1 monomial com-
parisons, making the total number of comparisons

∑n
i=2 im− n+ 1 ∈ O(n2m).

A similar result holds for division when the quotient has n terms, the divisor has
m terms, and the dividend has nm terms. Thus iterated merging can be very
bad when the quotient is large.

It is interesting to note that O(n2m) comparisons may be required even if the
product or dividend does not have O(nm) terms, if terms introduced by the first
n/2 summands are canceled by the last n/2 summands. We call this an inter-
mediate blowup in the number of terms. One unfortunate feature of algorithms
that add each fig or qig to a partial sum is that they allocate storage for all of
these terms even when the end result is zero, as it will be for exact division. In
Section 3 we will see that the heap algorithms avoid this problem by merging all
of the partial products simultaneously.

For sparse polynomials an iterated merge uses about 2nm terms of storage
where nm is the size of the largest intermediate sum. If we always enlarge the
buffers by 50% then we will use storage for about 3nm terms on average. Quo-
tient(s) and the remainder require additional storage if they are needed.

2.3 Divide and Conquer Merging – Geobuckets

A well-known alternative to iterated merging is divide-and-conquer merging,
which is often used for polynomial multiplication. Let f have n terms and let
g have m terms. If we compute

∑n
i=1 fig by summing the first n/2 and the

last n/2 summands recursively and adding their sums, then at most C(n) ≤
2C(n/2) + nm − 1 ∈ O(nm log n) monomial comparisons are required. The
method is efficient because it merges polynomials of similar size.

But how much memory is required? If each recursive call allocates memory
for its own result then we can solve the same recurrence to find that O(nm log n)
memory is needed. This is an order of magnitude larger than any possible
result. Instead we could reuse a set of geometrically increasing buckets with
{2m, 4m, . . . , nm/2} terms for polynomials that we are waiting to merge, plus
two arrays with nm and nm/2 terms for polynomials that we are currently
merging. This simple “geobucket” algorithm is described below.

Geobucket Multiplication
Input: f = f1 + · · ·+ fn, g = g1 + · · ·+ gm.
Output: fg.
1: Allocate buckets with {2m, 4m, . . . , 2�log2(n)�−1m} terms.
2: Allocate dynamic arrays p and p′.
3: For i := 1 while i ≤ n do

4: Compute fig and store it in p.
5: If i < n merge p and fi+1g into p′ and swap p and p′.
6: Set i := i+ 2.
7: For j := 1 while bucket[j] �= 0 do
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8: Merge p and bucket[j] into p′ and swap p and p′.
9: Set bucket[j] := 0 and j := j + 1.

10: If i ≤ n set bucket[j] := p and p := 0.
11: For j := 1 to 2�log2(n)�−1 do

12: If bucket[j] �= 0 merge p and bucket[j] into p′ and swap p and p′.
13: Output p.

Thus f1g and f2g are merged and their sum is stored in bucket 1, then f3g and
f4g are merged and their sum is merged with f1g + f2g and stored in bucket 2,
then f5g and f6g are merged and their sum is stored in bucket 1, and so on,
continuing in the manner of a depth-first search. If n = 2k it is easy to see
that O(nm) storage is used. The buckets contain (n−2)m terms, the array that
stores the result will need nm terms, but the other array can have nm/2 terms.
The total amount of storage required is 2.5nm terms – only 50% more than for
an iterated merge. If we always grow the arrays by an extra 50% then we can
expect to allocate storage for about 3.25nm terms in total.

Geobuckets were proposed by Yan [12] with three significant improvements.
First, Yan’s buckets have a small base and ratio that are independent of any
problem to ensure good performance when objects of varying sizes are added to
the geobucket. In the algorithm above the base is 2m and the ratio is 2, so objects
with fewer than m terms could be added more efficiently with a smaller bucket.
Second, Yan always tries to store p + bucket[j] in bucket[j] if possible to avoid
creating bucket[j + 1]. This decreases the amount of memory and increases the
likelihood of combining terms on dense problems, resulting in fewer monomial
comparisons. Finally, Yan describes a reasonably efficient scheme for coalescing
the leading terms of the buckets to compute the leading term of the polynomial.
This allows us to run the division algorithm with the intermediate polynomial p
stored as a geobucket. We state Yan’s algorithm below for completeness.

Geobucket Leading Term
Input: polynomial f stored in bucket[1 . . . k].
Output: LT (f) or FAIL when f = 0, set bucket[1 . . . k] := f − LT (f).
1: Set j := 0, the bucket containing the leading term.
2: For i := 1 while i ≤ k do

3: If bucket[i] �= 0 and (j = 0 or LM(bucket[i]) > LM(bucket[j]))
4: Set j := i

5: else if bucket[i] �= 0 and LM(bucket[i]) = LM(bucket[j])
6: Set LC(bucket[j]) := LC(bucket[j]) + LC(bucket[i]).
7: Remove LT (bucket[i]) from bucket[i].

8: Set i := i+ 1.
9: If j = 0 then f = 0 so output FAIL.
10: If LC(bucket[j]) = 0 remove this term from bucket[j] and goto step 1.
11: Set t := LT (bucket[j]).
12: Remove LT (bucket[j]) from bucket[j].
13: Output t.
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We implemented Yan’s geobuckets using a single dynamic array so that its
storage could be reused in subsequent calls. We chose a ratio of two because
that is optimal for merging and our smallest bucket (the base) has four terms.
We found that geobuckets performed very well, often using fewer monomial
comparisons than expected.

For a sparse multiplication producing nm terms geobuckets do O(nm log n)
comparisons and store about 3.6nm terms. This number can be derived as fol-
lows. The arrays (merge buffers) require nm and nm/2 terms, but we will al-
locate an extra 50% for each. The buckets have nm terms, but the base (two)
is independent of m so we expect each bucket to be 75% full. The total is
4nm/3 + (3/2)(nm+ nm/2) = (43/12)nm terms.

We can make a similar estimate for exact division when the dividend has nm
terms, however the complexity is O(nm log(nm)) because of how leading terms
are computed. The dividend is placed into the largest bucket, which we expect to
be 75% full, so the storage for buckets is 2(4nm/3) = 8nm/3. Nothing is merged
with the largest bucket since

∑#q
i=1 qig fits entirely in the smaller buckets, so the

largest merge that we expect to do is to construct
∑#q/2

i=1 qig which has nm/2
terms. This requires arrays with nm/2 and nm/4 terms, plus the extra 50% that
we allocate, bringing the total number of terms to 8nm/3 + (3/2)(3nm/4) =
(91/24)nm.

The actual amount of memory that geobuckets need for exact division tends
to vary. It can be lower if the leading term computations frequently cancel terms
in the buckets, reducing the size of the polynomials that are merged. For random
sparse divisions we found that approximately 3.6nm terms were used – about
the same as for multiplication. The dynamic arrays were often the same size,
about 3nm/5 terms each.

3 Heap Algorithms for Polynomial Arithmetic

The heap algorithms are based on the following idea: rather than merge polyno-
mials one by one into an intermediate object, we do a simultaneous n-ary merge
using a heap. Consider the multiplication fg where we merge fig for 1 ≤ i ≤ #f .
If we maintain a heap of #f pointers into g, sorted by the monomial of figj , we
can repeatedly extract the largest figj from the heap, merge it onto the end of
the result, and insert its successor figj+1 into the heap if j < #g. We illustrate
this process in Figure 6 below.

The monomial of figj is computed and stored in the heap when the term is
inserted. It is used to determine the maximum element of the heap. This storage
is reused for figj+1 so only O(#f) storage is required, in addition to storage for
the result.

To divide f by g we merge the dividend f with −qig for each term qi of the
quotient. The heap maintains a pointer into f and we add a pointer into −qig
when qi is constructed. The algorithm extracts the largest term from the heap
and continues to extract terms with an equal monomial, adding their coefficients
to produce the next term of f−

∑i
j=1 qjg. If this term is not zero we divide it by
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Fig. 6. Multiplication of f = 2x4 + 3x3 + 4x and g = x5 + 5x3 + 7 using a heap. The
products f1g1 and f2g1 have been extracted and replaced by f1g2 and f2g2. We are now
extracting f1g2 = 10x7 and writing it to the result. Its successor f1g3 = 14x4 will be
inserted into the heap, and we will extract f2g2 and f3g1 to obtain 15x6 + 4x6 = 19x6,
the fourth term of the result.

LT (g) to obtain either a new term of the quotient qi+1, or the next term of the
remainder. When a quotient term is found we insert the second term of −qi+1g
into the heap, increasing the size of the heap by one, along with the successors
of the other terms that were extracted. There is no intermediate blowup in the
number of terms that are stored – the maximum number of terms in the heap
is #q + 1. We call this a “quotient heap” division.

The heap algorithms above were analyzed by Johnson [8] and used in Altran,
one of the first computer algebra systems. For a binary heap of size n, inserting
and extracting each term does O(log n) monomial comparisons. A multiplication
that passes nm terms through a heap of size n does O(nm log n) comparisons –
the same as divide-and-conquer. Exact division f ÷ g with #f = nm, #g = m,
and the quotient #q = n, passes 2nm − n terms through a heap of size n + 1,
which is also O(nm log n) comparisons.

One problem with the heap algorithms is that they do O(nm log n) compar-
isons even when the polynomials are dense, whereas the simple merge and the
divide-and-conquer algorithms do only O(nm) comparisons. In Section 3.2 we
show how to modify the heap to make the heap algorithms efficient in the dense
case as well.

Our main contribution is to modify the heap division algorithm to increment
along the quotient(s) instead of the divisor(s). The resulting “divisor heap” algo-
rithm does O(nm logm) comparisons and uses O(m) storage, where m is the size
of the divisor(s). Our incentive comes from the gcd problem, where we compute
G = gcd(A,B) and divide A/G and B/G to recover the cofactors. The divisor
G is typically small and the quotients (cofactors) are often big. The algorithm
is also useful for computing over small towers of algebraic extensions, where the
number of reductions usually exceeds the size of the extensions.

The modification is easy to do. The algorithm merges f with −giq for 2 ≤
i ≤ #g using a heap of size #g, however we may merge giqj−1 before qj is
computed, in which case we can not insert the next term giqj into the heap
because we can not compute its monomial. However, since LT (g)qj > giqj for
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all i > 1, we can safely wait for qj to be computed to insert the terms giqj with
i > 1 into the heap. We exploit the fact that the term giqj is greater than the
term gi+kqj for k > 0, so if #q = j − 1 we encounter the strictly descending
sequence g2qj > g3qj > g4qj > ... in order. For each divisor g we store an index
s of the largest gsqj that is missing from the heap because qj is unknown. When
a new term of the quotient is computed (#q = j) we compute all of the missing
terms {g2qj , . . . gsqj} and insert them into the heap. Here we give the algorithm
for one divisor.

Divisor Heap Division
Input: f, g ∈ F [x1, ..., xn], F a field, g �= 0.
Output: q, r ∈ F [x1, ...xn] with f = qg + r.

1: If f = 0 then output (0, f).
2: Initialize (q, r, s) := (0, 0,#g).
3: Create an empty heap H of size #g and insert (−1)f1 into H .
4: While the heap H is not empty do

6: Set t := 0.
7: Repeat

8: Extract x := Hmax from the heap and set t := t− x.
9: Case x = (−1)fi and i < #f : Insert (−1)fi+1 into H .
10: Case x = giqj and j < #q : Insert giqj+1 into H .
11: Case x = giqj and j = #q : Set s := s+ 1 (s = i).

12: Until H is empty or LM(t) �= LM(Hmax).
13: If t �= 0 and LT (g)|t then

14: Copy t/LT (g) onto the end of q.
15: For i = 2, 3, ..., s compute gi × (t/LT (g)) and insert it into H.
16: Set s := 1.

17: Else if t �= 0 copy t onto the end of r.
18: Output (q, r).

Theorem 1. The divisor heap algorithm divides f by g producing the quotient q
and remainder r using O((#f+#q#g)log#g) monomial comparisons and using
storage for O(#g + #q + #r) terms.

Proof. We show that at Step 4, |H | + s − 1 = #g if some (−1)fi ∈ H or
|H | + s = #g otherwise. The first time Step 4 is executed, |H | = 1, s = #g,
and (−1)f1 is in the heap, so the loop invariant holds. Steps 7-11 extract a term
from H and either replace it or increment s, unless it was the last term of f .
Step 15 inserts s− 1 terms into H and sets s := 1, maintaining the invariant.

Then |H | ≤ #g since s ≥ 1. Therefore the storage required is at most #g terms
in the heap plus the terms of q and r. It should be clear that the algorithm adds
terms of f , subtracts terms of each giq, and uses LT (g) to cancel terms if possible,
otherwise moving them to r, so that f = qg+ r. Since we pass #f +#q(#g− 1)
terms through a heap of size |H | ≤ #g, the number of monomial comparisons is
O((#f + #q#g) log #g).
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3.1 Heap Optimizations

We present two optimizations that are necessary to reproduce our results. The
first is to implement the heap carefully. Many people are only aware of a bad
algorithm for extracting the largest element from a heap, so we present a classical
algorithm that is roughly twice as fast on average. As LaMarca and Ladner [9]
observe, about 90% of the time is spent extracting elements from the heap so
the resulting speedup is almost a factor of two.

We store the heap in a global dynamic arrayH , with the convention that H [0]
is the largest element and the children of H [i] are H [2i+ 1] and H [2i+ 2].

inline heap_elem heap_extract_max(heap_elem *H, int *n)
{ int i, j, s = --(*n);

heap_elem x = H[0];
/* H[0] now empty - promote largest child */
for (i=0, j=1; j < s; i=j, j=2*j+1) {

j = (H[j] > H[j+1]) ? j : j+1;
H[i] = H[j];

}
/* H[i] now empty - insert last element into H[i] */
for (j=(i-1)/2; i>0 && H[s]>H[j]; H[i]=H[j], i=j, j=(j-1)/2);
H[i] = H[s];
return x;

}

The extraction algorithm promotes the largest child into the empty space at a
cost of one comparison per level of the heapH . Then it inserts the last element of
the heap into the empty slot on the lowest level. However, since the last element
was already a leaf, we do not expect it to travel very far up the heap. The number
of comparisons required is log2(n) + O(1) on average.

Compare this with the more commonly known algorithm for shrinking a heap,
which moves the last element to the top and, at a cost of two comparisons per
level (to find the maximum child and compare with it), sifts it down the heap.
Since the last element was already a leaf it is likely to go all the way back down
to the bottom, requiring 2 log2(n) comparisons on average.

Our second optimization improves performance when multiple terms are ex-
tracted from the heap. It is also necessary to obtain O(nm) comparisons in the
totally dense case. We insert and extract batches of terms instead of extracting
a term and immediately inserting its successor. This requires a queue to store
the extracted terms, however we can partition the heap to store this queue in
place, as in heapsort. At the end of each iteration, we insert the successors of all
of the extracted terms at once. As LaMarca notes [9], this strategy also produces
favorable caching effects.

3.2 Chaining Terms with Equal Monomials

Our next improvement chains heap elements with equal monomials to reduce the
number of comparisons. Johnson [8] also experimented with this idea, however
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our scheme is simpler and we will show that multiplication and division of dense
polynomials does O(nm) comparisons.

We chain elements only as they are inserted into the heap, using an additional
pointer in the structure that points to fi and gj. In our implementation the
pointers to fi and gj are not stored in the heap, but in a secondary structure
that is accessed only when terms are inserted or extracted. Heap elements store
a pointer to this structure and a pointer to the monomial product used for
comparisons. The overhead of chaining elements in this way is negligible. The
algorithms must be modified to check for chains and to extract all the elements
of a chain without doing any monomial comparisons.

One final optimization is needed for multiplication. When multiplying fg, we
must start with f1g1 in the heap and insert each fig1 only after fi−1g1 has been
extracted from the heap. This leads to the following results.

Lemma 1. Let f and g be dense univariate polynomials with n and m terms,
respectively. A heap multiplication fg with chaining does nm− n−m+ 1 com-
parisons.

Proof. We prove a loop invariant: at the beginning of each iteration the heap
contains exactly one element or chain. This is true initially since the only element
is f1g1. Each iteration removes the chain without doing a comparison, producing
an empty heap. When we insert the successor terms into the heap all of the
monomials are equal because the problem is dense, so all of the terms are chained
together at the top of the heap. There are nm terms and n + m − 1 unique
monomials. The first term with each monomial is inserted for free while the
rest use one comparison each to chain. The total number of comparisons is thus
nm− n−m+ 1.

Lemma 2. Let q and g be dense univariate polynomials with n and m terms
and let f = qg. Then a quotient heap division f ÷ g with chaining does nm− n
comparisons.

Proof. We use the same loop invariant: the heap contains exactly one element or
chain, which is initially f1. Each iteration extracts the terms of this chain, adding
their coefficients without a comparison, producing an empty heap. If the term
is not zero, a new term of the quotient qi is computed and the monomial of qig1
equal to the monomial of the extracted terms. When we insert its successor qig2
and the successors of all the other terms their monomials are all equal because
the problem is dense, and all of the terms are chained together at the top of
the heap. If each of the n+m− 1 monomials of f is inserted first without any
comparisons, the remaining n(m − 1) terms of −q(g − LT (g)) will be chained
using one comparison each.

Remark: The divisor heap algorithm can also be modified to do nm comparisons
in the dense univariate case. Each term qj of the quotient should insert only
g2qj if it is not in the heap, and each gi+1qj should be inserted only after giqj is
extracted from the heap. We have not yet implemented this modification.
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4 Benchmarks

4.1 The Number of Monomial Comparisons

Our first benchmark (see Table 1 and Table 2) is due to Johnson [8]. We multiply
and divide sparse univariate polynomials and report the number of comparisons
divided by the total number of terms that are merged. Recall that for a sparse
multiplication fg this is (#f)(#g) and for a sparse division f = qg this is
#f + #q(#g − 1). A “structure parameter” S is used to randomly generate
polynomials f = a0 + a1x

e1 + a2x
e2 + · · · + akx

ek with the difference between
the exponents satisfying 1 ≤ ei+1 − ei ≤ S.

For each problem we generate f and g with n and m terms respectively,
multiply p = fg and divide p/g. For multiplication we test both chained and
unchained heaps, and for division we test the “quotient heap” and the “divisor
heap” algorithms.

Table 1. Multiplication fg and the number of comparisons divided by (#f)(#g)

S #(fg) #f,#g unchained heap chained heap geobuckets direct merge

1 199 100 6.138 .980 1.114 1.475
1999 1000 9.329 .998 1.027 1.497

10 1025 100 8.339 5.970 2.905 7.239
10747 1000 11.717 8.478 3.065 8.025

100 5728 100 8.671 8.282 4.690 32.893
97051 1000 11.879 11.334 5.798 69.191

1000 9364 100 8.805 8.748 5.274 48.073
566984 1000 11.925 11.852 7.511 324.135

Table 2. Division fg÷g and the number of comparisons divided by #(fg)+#f(#g−1)

S #(fg) #f #g quotient heap divisor heap geobuckets direct merge

1 199 100 100 .980 2.627 .980 .980
1099 100 1000 .989 7.622 .989 .989
1099 1000 100 .989 1.155 .989 .999
1999 1000 1000 .998 4.170 .998 .998

10 1025 100 100 5.692 6.480 2.647 4.300
5856 100 1000 6.493 8.244 2.738 4.872
5949 1000 100 6.503 7.825 2.748 4.934
11162 1000 1000 8.646 9.124 2.916 5.473

100 5725 100 100 7.106 7.580 3.945 14.502
44725 100 1000 7.884 10.594 3.954 19.381
45358 1000 100 7.696 7.938 4.405 18.231
96443 1000 1000 10.898 11.438 5.471 42.262

1000 9403 100 100 7.116 7.522 3.992 17.307
90884 100 1000 7.682 10.608 4.253 23.978
91141 1000 100 7.658 7.747 4.596 22.736
571388 1000 1000 10.563 11.056 6.574 142.095

We make a couple of remarks concerning tables 1 and 2. First it should be clear
that our implementation of the divisor heap algorithm is not fully optimized. As
discussed at the end of Section 3 we should delay inserting products giqj into
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the heap until after the previous product gi−1qj is extracted from the heap. This
is needed to obtain O(nm) comparisons in the dense case (S = 1).

Second, it is interesting to see that geobuckets do roughly half the num-
ber of comparisons as the heap algorithms in the sparse case, and this ratio
improves as the problems become more dense. We tried some improvements
to the heap algorithms such as chaining elements while shrinking the heap,
however these changes tended to decrease the real world performance of the
algorithms.

4.2 7 Variable Cofactor Problem

Our next benchmark (see Table 3) simulates a GCD problem. A large sparse
polynomial is divided by one of its factors (the GCD) to compute the cofactor.
To generate this example we constructed four polynomials {f1, f2, f3, f4} and
divided their product p = f1f2f3f4 by f1, f1f2, and f1f2f3 over Z32003 using
graded lexicographic order. The polynomials have #fi = 50 and deg(fi) = 10.

Table 3. Sparse multiplications and divisions in 7 variables over Z32003 using graded lex
order with {1, 2, 4, 8} exponents packed into each 64-bit word. #fi = 50, deg(fi) = 10,
#(f1f2) = 2492, #(f3f4) = 2491, #(f1f2f3) = 121903, #(f1f2f3f4) = 4523085.

(f1f2)× (f3f4)

expon/wd size of result chained heap geobuckets direct merge

1 310.57 MB 2.630 s (0.38 MB) 7.720 s (994 MB) 332.230 s (371 MB)
2 172.54 MB 1.860 s (0.31 MB) 4.230 s (552 MB) 185.780 s (206 MB)
4 103.52 MB 1.450 s (0.27 MB) 2.550 s (331 MB) 111.960 s (124 MB)
8 69.01 MB 1.240 s (0.25 MB) 1.760 s (221 MB) 75.560 s (83 MB)

f1 × (f2f3f4)

expon/wd size of result chained heap geobuckets direct merge

1 310.57 MB 1.700 s (0.07 MB) 4.770 s (1143 MB) 8.070 s (483 MB)
2 172.54 MB 1.240 s (0.06 MB) 2.660 s (635 MB) 4.500 s (216 MB)
4 103.52 MB 0.980 s (0.06 MB) 1.690 s (381 MB) 2.800 s (161 MB)
8 69.01 MB 0.880 s (0.06 MB) 1.230 s (254 MB) 1.910 s (107 MB)

(f1f2f3f4)/(f1f2f3)

x quotient heap divisor heap geobuckets direct merge

1 2.000 s (0.13 MB) 8.820 s (18.6 MB) 5.190 s (1793 MB) 7.530 s (944 MB)
2 1.450 s (0.13 MB) 6.570 s (14.9 MB) 2.960 s (996 MB) 4.250 s (524 MB)
4 1.250 s (0.10 MB) 5.270 s (13.0 MB) 1.950 s (598 MB) 2.610 s (315 MB)
8 1.060 s (0.10 MB) 4.530 s (12.1 MB) 1.500 s (398 MB) 1.770 s (210 MB)

(f1f2f3f4)/(f1f2)

x quotient heap divisor heap geobuckets direct merge

1 3.270 s (0.72 MB) 3.380 s (0.30 MB) 8.020 s (1461 MB) 330.730 s (932 MB)
2 2.290 s (0.65 MB) 2.430 s (0.31 MB) 4.460 s (812 MB) 183.060 s (518 MB)
4 1.840 s (0.62 MB) 1.930 s (0.27 MB) 2.760 s (487 MB) 110.290 s (311 MB)
8 1.520 s (0.60 MB) 1.620 s (0.25 MB) 2.040 s (321 MB) 74.540 s (207 MB)

(f1f2f3f4)/f1

x quotient heap divisor heap geobuckets direct merge

1 8.010 s (28.46 MB) 1.990 s (0.07 MB) 8.320 s (1371 MB) –
2 5.900 s (25.69 MB) 1.480 s (0.06 MB) 4.640 s (762 MB) –
4 4.750 s (24.29 MB) 1.240 s (0.06 MB) 2.890 s (457 MB) –
8 3.970 s (23.60 MB) 1.080 s (0.06 MB) 2.210 s (305 MB) 3526.750 s (207 MB)
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The computations were performed on an AMD Opteron 254 2.8 GHz with
8GB of 400MHz RAM and 1 MB of L2 cache running 64-bit Red Hat Enterprise
Linux 5 with a 2.6.18 kernel.

We report times and memory for {1, 2, 4, 8} exponents per 64-bit word. For
multiplications we subtracted the size of the product from the memory totals
for the geobucket and merge algorithms, and for divisions we did not include
memory for the quotient. For heap algorithms we report the size of the heap and
products. Thus we report the memory overhead of the algorithms, not the total
memory used. For divisions the largest quotient (f2f3f4) is at most 8.3 MB.

The heap algorithms performed very well on this example despite their higher
cost in monomial comparisons. We attribute this to the fact that their working
memory (the heap of pointers and the monomial products) fits in the L2 cache,
whereas geobuckets and direct merging work mostly in RAM, which is 7 times
slower than the processor.

Also note the effect of packing exponents. The performance of merging and
geobuckets is practically linear in the size of the terms, which is 9, 5, 3, or 2
words with the coefficient. The heap algorithms do not benefit as much, but the
improvement is worthwhile. Going from 64-bit (1 exponent per word) to 16-bit
(4 exponents per word) exponents places only modest restrictions on the total
degree and improves performance by 40%.

4.3 The Effect of Faster RAM and a Larger L2 Cache

In the previous benchmark the performance of geobuckets was constrained by
the speed of the RAM and the size of the L2 cache. We thought that geobuckets
should outperform the heap algorithms under different conditions, because they
typically do fewer monomial comparisons.

Table 4. Sparse multiplications and divisions in 4 variables over Z32003. Lexicographic
order was used with 32-bit words. Each fi has degree 30 in each variable. #f1 = 96,
#f2 = 93, #f3 = 93, #(f1f2) = 8922, #(f2f3) = 8639, #(f1f2f3) = 795357.

f1 × (f2f3)

expon/word size of result chained heap geobuckets direct merge

1 15.17 MB 0.200 s (0.03 MB) 0.210 s (55.74 MB) 0.650 s (23.21 MB)
2 9.10 MB 0.150 s (0.03 MB) 0.140 s (33.44 MB) 0.470 s (13.92 MB)
4 6.07 MB 0.120 s (0.03 MB) 0.110 s (22.30 MB) 0.360 s (9.28 MB)

(f1f2f3)/(f1f2)

x/w quotient heap divisor heap geobuckets direct merge

1 0.260 s (0.06 MB) 0.460 s (0.55 MB) 0.280 s (70.91 MB) 0.600 s (38.38 MB)
2 0.210 s (0.05 MB) 0.370 s (0.48 MB) 0.220 s (37.38 MB) 0.440 s (27.46 MB)
4 0.170 s (0.05 MB) 0.300 s (0.45 MB) 0.180 s (22.36 MB) 0.350 s (18.30 MB)

(f1f2f3)/f1

x/w quotient heap divisor heap geobuckets direct merge

1 0.430 s (0.53 MB) 0.280 s (0.03 MB) 0.390 s (55.90 MB) 44.000 s (45.52 MB)
2 0.350 s (0.47 MB) 0.230 s (0.03 MB) 0.300 s (33.54 MB) 28.790 s (27.30 MB)
4 0.280 s (0.43 MB) 0.190 s (0.03 MB) 0.260 s (22.36 MB) 22.150 s (18.20 MB)
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Our third benchmark (see Table 4) is a smaller problem similar to the previous
one. We created three random polynomials {f1, f2, f3} and divided their product
by f1 and f2f3. This test was run on a 2.4 GHz Intel E6600 Core 2 Duo with
2 GB of 666 MHz RAM, 4 MB of L2 cache, and 32-bit words running Fedora
Core 6. Thus RAM is now only 3.6 times slower than the CPU and the number
of words in the L2 cache has increased by a factor of eight.

Table 4 shows that geobuckets are competitive with heap algorithms if they
work in the L2 cache. The times include memory allocation, so in practice if the
geobucket is reused it may be faster than a quotient heap on sparse problems,
with an additional advantage on dense problems (see tables 1 and 2). However
when the quotient is large, the divisor heap’s lower complexity easily wins.

4.4 Algebraic Extensions

Our final benchmark (see Table 5) is a large division with algebraic extensions.
We constructed four random polynomials {f1, f2, f3, f4} in Z32003[x, y, z, α, β, s, t]
with deg(fi) = 10 and LT (fi) = x10. We used lexicographic order with x > y >
z > α > β > s > t with the extensions α2 − 3 = 0 and β2 + st − 1 = 0.
Thus we are effectively computing with polynomials in {x, y, z} with coefficients
in Z32003[α, β, s, t]/〈α2 − 3, β2 + st− 1〉.

We report the times to multiply (f1f2)× (f3f4) and f4× (f1f2f3) and reduce
the product mod {α2 − 3, β2 + st− 1}. Next we divide the reduced product by
f1, (f1f2), and (f1f2f3) mod {α2 − 3, β2 + st − 1} and reduce the quotients
mod {α2 − 3, β2 + st − 1}. The divisors in each case are already reduced mod
{α2 − 3, β2 + st− 1}.

We performed the test on a 3 GHz Intel Xeon 5160 with 16 GB of 666 MHz
RAM and 4 MB of L2 cache running 64-bit Red Hat Enterprise Linux 5. Mem-
ory numbers are reported differently since the heap algorithms must store the
quotients of {α2 − 3, β2 + st− 1} which are large, whereas geobuckets discards

Table 5. Sparse multiplications and divisions with algebraic extensions. Lexicographic
order was used with 7 exponents per 64-bit word. We include the times, the number
of monomial comparisons (upper right), and the total memory allocated. #f1 = 106,
#f2 = 96, #f3 = 105, #f4 = 98, #(f1f2) = 8934, #(f3f4) = 8982, #(f1f2f3) =
256685, #(f1f2f3f4) = 1663235.

quotient heap divisor heap geobuckets

p = (f1f2)(f3f4) 11.080 s 9.713× 108 11.100 s 9.267× 108 8.510 s 4.218 × 108

reduce product 0.700 s 458.75 MB 0.300 s 166.73 MB 0.610 s 646.54 MB

p = f4(f1f2f3) 1.690 s 1.966× 108 1.680 s 1.546× 108 2.130 s 8.184 × 107

reduce product 0.670 s 446.07 MB 0.300 s 163.12 MB 0.560 s 642.30 MB

p/(f1f2f3) 3.060 s 2.862× 108 11.910 s 6.949× 108 3.360 s 1.218 × 108

reduce quotient 0.000 s 208.02 MB 0.000 s 64.34 MB 0.000 s 479.98 MB

p/(f1f2) 51.430 s 4.097× 109 35.040 s 2.860× 109 35.520 s 1.732 × 109

reduce quotient 0.010 s 733.72 MB 0.010 s 81.45 MB 0.010 s 1205.19 MB

p/f1 49.790 s 2.005× 109 5.980 s 4.616× 108 13.140 s 9.100 × 108

reduce quotient 0.190 s 752.61 MB 0.080 s 113.25 MB 0.180 s 1038.96 MB
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them. We report the total memory allocated by each routine, including reallo-
cations to enlarge the geobucket and speculative allocations of quotients by the
heap algorithms. We pack all seven exponents into one 64-bit word. The results
with less packing are consistent with our previous benchmarks.

The divisor heap algorithm performs well on this example (and the quotient
heap algorithm poorly) because {α2−3, β2+st−1} are small divisors with large
quotients, i.e., they are frequently used to reduce terms during the division. The
time and space requirements of the divisor heap algorithm scale linearly with
the total number of reduction steps, so we expect it to be especially useful for
divisions in the presence of algebraic extensions.

Geobuckets also perform well on this benchmark. Their overall memory usage
is low because they do not need to store all of the quotients and the number
of monomial comparisons they do is very competitive. However, performance is
not dictated entirely by monomial comparisons. Consider the fourth benchmark
p/(f1f2), where geobuckets do half the number of monomial comparisons as a
divisor heap only to finish in the same amount of time.

The performance of geobuckets suffers because they access a large amount
of memory randomly, and this decreases the effectiveness of the cache. Imagine
what happens when β2 + st − 1 is used to reduce one million terms in a row.
Geobuckets will merge multiples of this polynomial into the smallest bucket 106

times, interspersed with 500,000 merges into the second bucket, 250,000 merges
into the third, and so on. When a large bucket is merged the smaller buckets are
evicted from the cache, producing cache misses the next time those buckets are
accessed. If the problem is sufficiently large or the L2 cache is small, this will
happen frequently.

By contrast, the divisor heap algorithm will do two simultaneous passes over
the quotient of β2 + st−1 while randomly accessing a heap with three elements,
two monomial products, and the terms of the divisor. This is a tiny amount of
memory, so almost all of the cache is used to load terms from the quotient, and
very few cache misses will occur.

5 Conclusions and Future Work

We have shown how a heap of pointers can be very efficient for sparse polynomial
division and multiplication. This performance is primarily due to the very low
memory requirements of the algorithms and their cache-friendly design. We have
also presented a new division algorithm that scales linearly with the size of the
quotient(s) by using a heap the size of the divisor(s). This algorithm should have
many applications for polynomial computations with algebraic extensions.

In the future we plan to combine the quotient and divisor heap algorithms to
produce a division algorithm which is O(nm log(min(n,m))), which we believe
is optimal. We also plan to implement versions of the heap algorithms that use
GMP for large integer arithmetic, and we are experimentally trying to parallelize
the heap algorithms as well.
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Abstract. Ruppert and Sylvester matrices are very common for com-
puting irreducible factors of bivariate polynomials and computing poly-
nomial greatest common divisors, respectively. Since Ruppert matrix
comes from Ruppert criterion for bivariate polynomial irreducibility test-
ing and Sylvester matrix comes from the usual subresultant mapping,
they are used for different purposes and their relations have not been
focused yet. In this paper, we show some relations between Ruppert
and Sylvester matrices as the usual subresultant mapping for computing
(exact/approximate) polynomial GCDs, using Ruppert matrices.

1 Introduction

Computing irreducible factors and greatest common divisors is the most popular
arithmetic for symbolic algebraic computations. In fact, there are lots of studies
for exact factorization ([1],[2],[3],[4] and more), approximate factorization ([5], [6]
and more), polynomial GCD ([7], [8], [9] and more) and approximate GCD ([10],
[11], [12] and more). For computing GCDs, the Sylvester matrix or its variants
play important roles in most of the algorithms. The structure, properties and
useful lemmas related to Sylvester matrix are widely known and well published.
For computing irreducible factors, there are several approaches but their basic
ideas have the common idea: converting the problem to linear equations. Such
linear systems form Berlekamp, Niederreiter and Ruppert matrices for example.
Hence, such structured matrices are very important for symbolic computations
and studying those matrices is one of interesting topics: Lee and Vanstone [13]
show Berlekamp and Niederreiter subspaces and their relation, the structure of
Ruppert matrix is given by Nagasaka [14] and the displacement structure of
Sylvester matrix for computing approximate GCD is studied by Zhi [15].

In this paper, we show some relations between Ruppert and Sylvester ma-
trices as the usual subresultant mapping for computing (exact/approximate)
polynomial GCDs via Ruppert matrix.

1.1 Notations and Sylvester Matrix

In this paper, P (f) denotes the Newton polytope of the support of polynomial
f . Pk denotes the set of polynomials of degree k. Φk1,k2 (k1 ≤ k2) is the natu-
ral injection from Ck1×1 to Ck2×1 such that Φk1,k2(a) = t(b1 · · · bk2−k1a1 · · · ak1)
where b = t(bi) is the (k2 − k1)-dimensional zero vector and a = t(ai). For

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 316–327, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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polynomial f(x, y1, . . . , ym), we abbreviate it to f(x,y). The range of matrix
A = (a1 · · ·am) where ais are k-dimensional column vectors, is defined as
range(A) = {Ab | b ∈ Ck×1}. We consider about polynomial GCDs of the
following polynomials f0(x), f1(x), · · ·, fk(x).

f0(x) = f0,n0x
n0 + · · ·+ f0,1x+ f0,0,

f1(x) = f1,n1x
n1 + · · ·+ f1,1x+ f1,0,

...
fk(x) = fk,nk

xnk + · · ·+ fk,1x+ fk,0.

(1.1)

We assume that ni ≥ ni+1 and fi,ni �= 0.
Ck(p) denotes the following convolution matrix of polynomial p(x), of size

(n+ k) × k.

Ck(p) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pn 0 · · · 0 0

pn−1 pn
. . .

...
...

... pn−1
. . . 0

...

p0
...

. . . pn 0

0 p0
. . . pn−1 pn

... 0
. . .

... pn−1

...
...

. . . p0
...

0 0 · · · 0 p0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where p(x) = pnx
n + · · · + p1x+ p0.

Let Sr be the following subresultant mapping.

Sr :
{
Pn1−r−1 × Pn0−r−1 → Pn0+n1−r−1,

(u0, u1) 
→ u1f0 + u0f1,
(1.2)

where Pk denotes the set of univariate polynomials of degree k. This mapping
can be expressed by the following Sylvester subresultant matrix Sr(f0, f1).

Sr(f0, f1) =
(
Cn0−r(f1) Cn1−r(f0)

)
.

We note a well known fact: if r is the largest integer that Sr is not injective,
we can compute the greatest common divisor of f0(x) and f1(x) from the right
null vector of Sr(f0, f1) (see the proof in Rupprecht [16] and so on). Moreover,
the greatest common divisor also can be computed by QR-decomposition of
S0(f0, f1) (see the proof in [8,9] and so on): the last non-zero row vector of the
upper triangular matrix is the coefficient vector of the polynomial GCD of f0
and f1. S0(f0, f1) also has another useful property that the dimension of the null
space is the degree of the polynomial GCD.

1.2 Ruppert Matrix

Ruppert matrix is the coefficient matrix of the corresponding linear equation
of the following absolute irreducibility criterion due to Ruppert [17] (Gao and
Rodrigues [18] studied the sparse polynomial version of this criterion).
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f
∂g

∂y
− g

∂f

∂y
+ h

∂f

∂x
− f

∂h

∂x
= 0, g, h ∈ C[x, y], (1.3)

degx g ≤ degx f − 1, degy g ≤ degy f,
degx h ≤ degx f, degy h ≤ degy f − 2.

The criterion is that f(x, y) is absolutely irreducible if and only if this differen-
tial equation does not have any non-trivial solutions. The matrix is useful for
computing irreducible factors [6,1] and the irreducibility radius [19,14,20]. Since
Ruppert matrix is the set of coefficient vectors w.r.t. unknowns of g and h, ma-
trices by different term orders are not the same. For the Ruppert matrix of f ,
we use the lexicographic order of x, y and x, y1, . . . , ym, as in Nagasaka [14,20],
and by R(f) we denote the Ruppert matrix of polynomial f .

For multivariate polynomials, May [21] studied the generalized version of the
Ruppert criterion, with the following differential equation and degree constraints.

f
∂g

∂yi
− g

∂f

∂yi
+ hi

∂f

∂x
− f

∂hi

∂x
= 0, g, h ∈ C[x, y1, · · · , ym], (1.4)

degx g ≤ degx f − 2, degyi
g ≤ degyi

f,

degx hi ≤ degx f, degyj
hi ≤

{
degyj

f i �= j

degyj
f − 1 i = j

May [21] also studied the generalized Ruppert criterion with degree bounds via
Newton polytopes as follows.

P (xg) ⊆ P (f) and P (yihi) ⊆ P (f). (1.5)

The generalized two criteria have the same argument that the given polynomial
f(x,y) is absolutely irreducible if and only if this differential equation does
not have any non-trivial solutions. For these criteria, we can also construct the
coefficient matrix of the corresponding linear system, with the lexicographic
order of x, y1, . . . , ym.

2 GCD of Two Polynomials

In this section, we consider the subresultant mapping of two polynomials via
Ruppert matrix. We define the following polynomial f(x, y).

f(x, y) = f0(x) + f1(x)y. (2.1)

It is obvious that f(x, y) is reducible if and only if f0(x) and f1(x) have a non-
trivial GCD. This means that we can check whether f0(x) and f1(x) have a non-
trivial GCD or not via the differential equation (1.3) of the Ruppert criterion,
with f(x, y) = f0(x)+f1(x)y. We note that f1(x)+f0(x)y can be used instead of
f0(x)+ f1(x)y for our purpose, since the degree constraints of Ruppert criterion
are given by each variables separately.
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2.1 Case 1-1: Simple Result

Substituting degrees of f(x, y) for that of f in (1.3), we have

f
∂g

∂y
− g

∂f

∂y
= 0, g ∈ C[x, y], degx g ≤ n0 − 1, degy g ≤ 1. (2.2)

Let g(x, y) be the following polynomial satisfying (2.2).

g(x, y) = g0(x) + g1(x)y.

Substituting g(x, y) for g in (2.2), we have

(f0(x) + f1(x)y)g1(x) − (g0(x) + g1(x)y)f1(x) = 0.

Collecting terms with respect to y, we have

g1(x)f0(x) − g0(x)f1(x) = 0. (2.3)

This equations can be represented as a linear equation w.r.t. coefficients of poly-
nomials g(x, y). The coefficient matrix is the Ruppert matrix of f(x, y) and
its structure is given by Nagasaka [14]. Moreover, the structure of this matrix
is the Sylvester matrix S0(f0,−f1) since the degree constraints of ui(x) and
gi(x) are the same if n0 = n1. For n0 > n1, the Ruppert matrix has extra
column vectors that are not included in the Sylvester matrix, hence we have
Φn0+n1,2n0(range(S0(f0, f1))) ⊂ range(R(f)). By comparing between the both
sides of (2.3), degrees of deg(g1f0) and deg(g0f1) must be the same. Therefore,
we have the following lemma.

Lemma 1. For any polynomials f0(x) and f1(x), the Sylvester matrix and the
Ruppert matrix of f0(x) and f1(x) have the same information for computing
their GCD, with the Ruppert’s original differential equation and constraints. #

2.2 Case 1-2: Alternative Result

The degree bounds of the differential equation (1.3) are not the same as the
following general version of the Ruppert criterion by John May [21] for bivariate
polynomials , though the difference is only the roles of variables and not essential.

f
∂g

∂y
− g

∂f

∂y
+ h

∂f

∂x
− f

∂h

∂x
= 0, g, h ∈ C[x, y], (2.4)

degx g ≤ degx f − 2, degy g ≤ degy f,
degx h ≤ degx f, degy h ≤ degy f − 1. (2.5)

We have the following corollary (see [21] or [6]).

Corollary 1. For a given f(x, y) ∈ C[x, y] that is square-free over C(y), the
dimension (over C) of the null space of R(f) is equal to “ ( the number of
absolutely irreducible factors of f over C )− 1 ”.
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Substituting degrees of f(x, y) for that of f in (2.4), we have

f
∂g

∂y
− g

∂f

∂y
+ h

∂f

∂x
− f

∂h

∂x
= 0, g, h ∈ C[x, y], (2.6)

degx g ≤ n0 − 2, degy g ≤ 1, degx h ≤ n0, degy h ≤ 0.

Let g(x, y) and h(x, y) be the following polynomials satisfying (2.6).

g(x, y) = g0(x) + g1(x)y, h(x, y) = h0(x).

Substituting g(x, y) and h(x, y) for g and h, respectively, in (2.6), we have

(f0(x) + f1(x)y)g1(x) − (g0(x) + g1(x)y)f1(x)
+h0(x)(

∂f0(x)
∂x + ∂f1(x)

∂x y)− (f0(x) + f1(x)y)
∂h0(x)

∂x = 0.

Collecting terms with respect to y, we have

g1(x)f0(x) − g0(x)f1(x) + h0(x)
∂f0(x)
∂x

− f0(x)
∂h0(x)
∂x

= 0, (2.7)

h0(x)
∂f1(x)
∂x

− f1(x)
∂h0(x)
∂x

= 0. (2.8)

This is not as same as the subresultant mapping in the previous subsection and
is not reduces to the usual subresultant mapping (2.3).

Lemma 2. For any polynomials u1(x) ∈ Pn1−1 and u0(x) ∈ Pn0−1 satisfying
deg(u1f0 + u0f1) < n0 + n1 − 1, there exist polynomials g0(x), g1(x) and h0(x)
satisfying their degree constraints, the equation (2.8) and g1f0 − g0f1 − f0

∂h0
∂x +

h0
∂f0
∂x = u1f0 + u0f1. #

Proof. If deg(u1) ≤ n1 − 2 ≤ n0 − 2 and deg(u0) ≤ n0 − 2, the lemma follows
from (2.7) and (2.8), with g0(x) = −u0(x), g1(x) = u1(x) and h0(x) = 0.
We suppose that deg(u1) = n1 − 1 and deg(u0) = n0 − 1 since the leading
coefficients of u1f0 and u0f1 must be canceled. We put u0(x) =

∑n0−1
i=0 u0,ix

i

and u1(x) =
∑n1−1

i=0 u1,ix
i, and transform u1f0 + u0f1 as follows.

u1f0 + u0f1 = (u1 − u1,n0−1x
n0−1)f0 − (−u0 + u0,n0−1x

n0−1)f1
+u1,n0−1x

n0−1f0 + u0,n0−1x
n0−1f1

= (u1 − u1,n0−1x
n0−1 + u0,n0−1

n0f0,n0
(f1 − f1,n0x

n0)′)f0
−(−u0 + u0,n0−1x

n0−1 + u0,n0−1

n0f0,n0
(f0 − f0,n0x

n0)′)f1
+u1,n0−1x

n0−1f0 + u0,n0−1x
n0−1f1

−u0,n0−1

n0f0,n0
(f1 − f1,n0x

n0)′f0 + u0,n0−1

n0f0,n0
(f0 − f0,n0x

n0)′f1
= (u1 − u1,n0−1x

n0−1 + u0,n0−1

n0f0,n0
(f1 − f1,n0x

n0)′)f0
−(−u0 + u0,n0−1x

n0−1 + u0,n0−1

n0f0,n0
(f0 − f0,n0x

n0)′)f1
−u0,n0−1

n0f0,n0
f ′
1f0 + u0,n0−1

n0f0,n0
f ′
0f1 + (u1,n0−1 + u0,n0−1

f1,n0
f0,n0

)xn0−1f0,
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where f ′ = ∂f
∂x . If n0 = n1, we have u1,n0−1 + u0,n0−1

f1,n0
f0,n0

= 0 since the leading
coefficients of u1f0+u0f1 must be canceled. For n0 > n1, we also have u1,n0−1+
u0,n0−1

f1,n0
f0,n0

= 0 since u1,n0−1 = f1,n0 = 0. Therefore, the following g0(x), g1(x)
and h0(x) prove the lemma.

g0(x) = −(u0(x) − u0,n0−1x
n0−1) + u0,n0−1

n0f0,n0
(f0 − f0,n0x

n0)′

g1(x) = (u1(x) − u1,n0−1x
n0−1) + u0,n0−1

n0f0,n0
(f1 − f1,n0x

n0)′

h0(x) = u0,n0−1

n0f0,n0
f1.

Lemma 3. For any polynomials g0(x), g1(x) and h0(x) satisfying their degree
constraints and the equations (2.7) and (2.8), there exist polynomials u1(x) ∈
Pn1−1 and u0(x) ∈ Pn0−1 satisfying u1f0 + u0f1 = g1f0− g0f1− f0

∂h0
∂x +h0

∂f0
∂x ,

if f(x, y) = f0(x) + f1(x)y is square-free over C(y). #

Proof. Let g0(x), g1(x) and h0(x) be a solution of (2.7) and (2.8) with f(x, y) =
f0(x) + f1(x)y. By the lemma 3.1 in John May [21] (or see [6]), we have

h0(x) = λf1(x) with λ ∈ C.

If n1 ≤ deg(g1) ≤ n0− 2, we have deg(g1f0) ≤ n0 +n1− 1 since max{deg(g0f1),
deg(f0f ′

1), deg(f1f ′
0)} = n0+n1−1. However, deg(g1f0) ≤ n0+n1−1 contradicts

n1 ≤ deg(g1). Hence, we have deg(g1) ≤ n1 − 1 and the following polynomials
u0(x) and u1(x) prove the lemma.

u0(x) = −g0(x) + λ
∂f0(x)
∂x

, u1(x) = g1(x) − λ
∂f1(x)
∂x

.

The following theorem follows from the above lemmas, directly.

Theorem 1. The polynomial GCD of f0(x) and f1(x) can be computed by Sin-
gular Value Decomposition (SVD) of Ruppert matrix of f(x, y) = f0(x)+ f1(x)y
in (2.4), if f(x, y) is square-free over C(y). #

For computing polynomial GCDs, one of well known methods is computing the
QR decomposition of the Sylvester matrix of f0(x) and f1(x) as in [8], [9] and
so on. In the below, we show that we can compute polynomial GCDs by the QR
decomposition of the Ruppert matrix of f(x, y) = f0(x) + f1(x)y. The figure 1
illustrates the structure of the Ruppert matrix of f(x, y) = f0(x)+ f1(x)y, as in
Nagasaka [14]. The size of this matrix is (4n0) × (3n0 − 1).

Lemma 4. The range (and the span of column vectors) of the Ruppert matrix
of f(x, y) includes the descending coefficient vector (its constant term is the last
element) of n0(f0,n0f1(x) − f1,n0f0(x))xn0−1. #
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R(f) =

(
R1,1 0
R2,1 R2,2

)
, R2,2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−f0,n0 0 f1,n0 0

−f0,n0−1
. . . f1,n0−1

. . .
...

. . . −f0,n0

...
. . . f1,n0

...
. . . −f0,n0−1

...
. . . f1,n0−1

...
. . .

...
...

. . .
...

−f0,1
. . .

... f1,1
. . .

...

−f0,0
. . .

... f1,0
. . .

...

. . . −f0,1
. . . f1,1

0 −f0,0 0 f1,0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R1,1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0 0

f1,n0−1 −f1,n0

. . .
...

... 0

2f1,n0−2 0
. . . 0

...
...

... f1,n0−2
. . . (2 − n0) f1,n0 0

...
...

...
. . .

... (1 − n0) f1,n0 0

n0 f1,0
...

. . .
...

... −n0 f1,n0

0 (n0 − 1) f1,0
. . . 0

...
...

... 0
. . . f1,1 −f1,2

...

0
...

. . . 2f1,0 0 −2f1,2

0 0 · · · 0 f1,0 −f1,1

0 0 · · · 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R2,1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0,n0−1 −f0,n0

. . .
...

... 0

2f0,n0−2 0
. . . 0

...
...

... f0,n0−2
. . . (2 − n0) f0,n0 0

...
...

...
. . .

... (1 − n0) f0,n0 0

n0 f0,0
...

. . .
...

... −n0 f0,n0

0 (n0 − 1) f0,0
. . . 0

...
...

... 0
. . . f0,1 −f0,2

...

0
...

. . . 2f0,0 0 −2f0,2

0 0 · · · 0 f0,0 −f0,1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1. Ruppert matrix R(f) = R(f0(x) + f1(x)y)
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Proof. Put R(f) = (r1, · · · , r3n0−1) where ri is 4n0 dimensional column vector.
We note that lower 2n0 − 1 rows of (rn0+2, · · · , r3n0−1) is the usual Sylvester
subresultant matrix S1(f1,−f0). If we apply fraction-free column reductions to
the first column r1 by r2, · · ·, rn0+1, then the first column becomes

r̄1 =
n0∑

i=0

f1,n0−iri+1.

Let r̂ be the following column vector.

r̂ = r̄1 +
n0−2∑

i=0

(n0 − 1− i)f1,n0−1−irn0+2+i +
n0−2∑

i=0

(n0 − 1 − i)f0,n0−1−ir2n0+1.

r̂ is the descending coefficient vector (its constant term is the last element) of
n0(f0,n0f1(x) − f1,n0f0(x))xn0−1.

Theorem 2. The polynomial GCD of f0(x) and f1(x) can be computed by ap-
plying the QR decomposition to the transpose of the last 3n0 rows of their Ruppert
matrix R(f) = R(f0(x)+f1(x)y). The last non-zero row vector of the triangular
matrix is the coefficient vector of their polynomial GCD. #

Proof. Let R̄ be the transpose of the last 3n0 rows of their Ruppert matrix R(f).
As in the proof [8], the last non-zero row vector of the triangular matrix of the
QR decomposition is the coefficient vector of the lowest degree non-constant
polynomial of linear combinations of polynomials whose coefficient vectors are
row vectors of R̄. Hence, we show that the lowest degree non-constant polynomial
is the polynomial GCD of f0(x) and f1(x).

The rank of the upper (n0 + 1)× 3n0 submatrix is n0 at least since its upper
left n0 × n0 submatrix is a triangular matrix and its diagonal elements are non-
zero elements: n0f1,0, . . . , 2f1,0, f1,0. If the linear combination includes some of
the first n0 row vectors, the degree of the combination is larger than 2n0. Since
R̄ has row vectors whose corresponding degrees are less than or equal to 2n0,
the lowest degree non-constant polynomial does not include the first n0 rows.

However, as in the proof of the lemma 4, another row vector generated from
the first n0 rows, can be included in the linear combination for the lowest degree
non-constant polynomial. Hence, we only have to prove that the lowest degree
non-constant polynomial of linear combinations of polynomials whose coefficient
vectors are row vectors of the following matrix R̂ is the polynomial GCD of f0(x)
and f1(x).

R̂ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 the coefficient vector of n0(f0,n0f1(x) − f1,n0f0(x))xn0−1

0 −f0,n0 −f0,n0−1 · · · · · · · · · −f0,1 −f0,0 0
...

. . . . . . . . . . . . . . . . . . . . . . . .
0 · · · 0 −f0,n0 −f0,n0−1 · · · · · · · · · −f0,1 −f0,0

0 f1,n0 f1,n0−1 · · · · · · · · · f1,1 f1,0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · 0 f1,n0 f1,n0−1 · · · · · · · · · f1,1 f1,0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The last 2n0 − 2 rows form the usual Sylvester subresultant matrix S1(f1,−f0)
whose range is the set of coefficient vectors of u1f0 + u0f1 where u0 and u1 are
polynomials of degree n0− 2 at most, and this is enough to compute non-trivial
GCDs of f0 and f1. Moreover, the first row of R̂ is the (n1 + 1)-th row reduced
by the first row, of S0(f1,−f0). Therefore, the last non-zero row vector of the
triangular matrix of the QR decomposition of R̂ is that of S0(f1,−f0).

We note that for practical computations of polynomial GCDs, we do not have to
use the Ruppert or Sylvester matrices because the usual Sylvester subresultant
matrix which is smaller, is enough for GCDs, especially for approximate GCDs.

3 GCD of Several Polynomials

In this section, we show brief overview of relations between Sylvester matrix and
Ruppert matrix for several polynomials f0(x), . . . , fk(x). Basically, the relations
are natural extensions of the results in the previous section.

3.1 Generalized Sylvester Matrix for Several Polynomials

Let Sr be the following generalized subresultant mapping.

Sr :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∏k
i=0 Pni−r−1 →

∏k
i=1 Pn0−ni−r−1,⎛

⎜⎝
u0
...
uk

⎞

⎟⎠ 
→

⎛

⎜⎝
u1f0 + u0f1

...
ukf0 + u0fk

⎞

⎟⎠ .
(3.1)

This mapping can be expressed by the following Sylvester subresultant matrix
Sr(f0, . . . , fk).

Sr(f0, . . . , fk) =

⎛

⎜⎜⎜⎝

Cn0−r(f1) Cn1−r(f0) 0 · · · 0
Cn0−r(f2) 0 Cn2−r(f0) · · · 0

...
. . .

...
Cn0−r(fk) 0 · · · 0 Cnk−r(f0)

⎞

⎟⎟⎟⎠ .

We note a well known fact: if r is the largest integer that Sr is not injective, we
can compute the greatest common divisor of f0(x), . . ., fk(x) from the right null
vector of Sr(f0, . . . , fk) (see [16]).

3.2 Extension for Several Polynomials

Let f(x,y) be the following polynomial.

f(x,y) = f0(x) + f1(x)y1 + · · ·+ fk(x)yk. (3.2)

This polynomial is irreducible if and only if the polynomials f0(x), f1(x), . . .,
fk−1(x) and fk(x) do not have any non-trivial GCD. As in the previous
section, we can check whether fi(x) have a non-trivial GCD or not by the
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differential equation (1.4) of the generalized Ruppert criterion, with f(x,y) =
f0(x) +

∑k
j=1 fj(x)yj . The degree constraints of (1.4) with f(x,y) of (3.2),

becomes
degx g ≤ n0 − 2, degyi

g ≤ 1,

degx h
(i) ≤ n0, degyj

h(i) ≤
{

1 i �= j
0 i = j

In the previous section, we define g(x,y) and h(k)(x,y) satisfying the following
differential equation. However, the degree constraints are not by total-degrees so
the number of possible terms increases exponentially.

f
∂g

∂yi
− g

∂f

∂yi
+ hi

∂f

∂x
− f

∂hi

∂x
= 0. (3.3)

Hence, we limit the solution polynomials g(x,y) and h(i)(x,y) as follows.

g(x,y) = g0(x) +
k∑

j=1

gj(x)yj , h(1)(x,y) = h
(1)
0 (x), . . . , h(k)(x,y) = h

(k)
0 (x).

We note that this limitation may be harmless since by the lemma 3.1 in John
May [21] (or see [6]), we have

h
(i)
0 (x) = λifi(x) with λi ∈ C.

Substituting the above g(x,y) and h(i)(x,y) for g and hi, respectively, in (3.3),
we have

f(x,y)gi(x) − g(x,y)fi(x) + h
(i)
0 (x)

∂f(x,y)
∂x

− f(x,y)
∂h

(i)
0 (x)
∂x

= 0.

Collecting terms with respect to y and substituting λifi(x), we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f0gi − g0fi + λi(fif0
′ − f0fi

′) = 0,
f1gi − g1fi + λi(fif1

′ − f1fi
′) = 0,

...
fkgi − gkfi + λi(fifk

′ − fkfi
′) = 0.

This system of equations is the system of equation (2.7) for all the combina-
tions of f0, . . . , fk since the equation (2.8) with f0, . . . , fk is always satisfied by
h
(i)
0 (x) = λifi(x). As in the proof of lemma 3, for the solution of the above

system, there exist polynomials ui(x) ∈ Pni−1 (i = 0, . . . , k):
{
u0(x) = g0(x) − λ0f0

′,
ui(x) = −gi(x) + λ0fi

′ (i = 1, . . . , k).

For the other lemma and theorem for two polynomials, the author thinks that
the same relations are hold for several polynomials since the ranks of null spaces
of Ruppert matrix and generalized Sylvester subresultant matrix are the same.
However, these problems are postponed as a future work.
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4 Conclusion

In this paper, we show some relations on Ruppert matrix and Sylvester matrix
from the point of computing the greatest common divisors of two polynomials.
Though no algorithm is present in this paper and does not compete with the
finest recent algorithms for computing approximate GCDs, the author hopes
that factoring polynomials and computing polynomial GCDs are the basics of
symbolic computations, and revealing their relations will make some progress in
the future.
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4. Chèze, G.: Absolute polynomial factorization in two variables and the knapsack
problem. In: ISSAC 2004, pp. 87–94. ACM, New York (2004)

5. Sasaki, T.: Approximate multivariate polynomial factorization based on zero-sum
relations. In: ISSAC 2001. Proceedings of the 2001 International Symposium on
Symbolic and Algebraic Computation, pp. 284–291 (2001)

6. Gao, S., Kaltofen, E., May, J., Yang, Z., Zhi, L.: Approximate factorization of
multivariate polynomials via differential equations. In: ISSAC 2004. Proceedings
of the 2004 International Symposium on Symbolic and Algebraic Computation,
pp. 167–174 (2004)

7. Cheng, H., Labahn, G.: On computing polynomial gcds in alternate bases. In:
ISSAC ’06. Proceedings of the 2006 international symposium on Symbolic and
algebraic computation, pp. 47–54. ACM Press, New York, NY, USA (2006)

8. Laidacker, M.A.: Another theorem relating Sylvester’s matrix and the greatest
common divisor. Math. Mag. 42, 126–128 (1969)

9. Corless, R.M., Watt, S.M., Zhi, L.: QR factoring to compute the GCD of univariate
approximate polynomials. IEEE Trans. Signal Process 52, 3394–3402 (2004)

10. Zeng, Z., Dayton, B.H.: The approximate GCD of inexact polynomials. II. A mul-
tivariate algorithm. In: ISSAC 2004, pp. 320–327. ACM, New York (2004)

11. Kaltofen, E., Yang, Z., Zhi, L.: Approximate greatest common divisors of several
polynomials with linearly constrained coefficients and singular polynomials. In:
ISSAC ’06. Proceedings of the 2006 international symposium on Symbolic and
algebraic computation, pp. 169–176. ACM Press, New York, NY, USA (2006)

12. Pan, V.Y.: Computation of approximate polynomial GCDs and an extension. In-
form. and Comput. 167, 71–85 (2001)

13. Lee, T.C.Y., Vanstone, S.A.: Subspaces and polynomial factorizations over finite
fields. Appl. Algebra Engrg. Comm. Comput. 6, 147–157 (1995)

14. Nagasaka, K.: Towards more accurate separation bounds of empirical polynomials.
SIGSAM/CCA 38, 119–129 (2004)

15. Zhi, L.: Displacement structure in computing approximate GCD of univariate poly-
nomials. In: Computer mathematics. Lecture Notes Ser. Comput., vol. 10, pp. 288–
298. World Sci. Publ., River Edge, NJ (2003)



Ruppert Matrix as Subresultant Mapping 327

16. Rupprecht, D.: An algorithm for computing certified approximate GCD of n uni-
variate polynomials. J. Pure Appl. Algebra 139, 255–284 (1999)

17. Ruppert, W.M.: Reducibility of polynomials f(x, y) modulo p. J. Number The-
ory 77, 62–70 (1999)

18. Gao, S., Rodrigues, V.M.: Irreducibility of polynomials modulo p via newton poly-
topes. J. Number Theory 101, 32–47 (2003)

19. Kaltofen, E., May, J.: On approximate irreducibility of polynomials in several vari-
ables. In: ISSAC 2003. Proceedings of the 2003 International Symposium on Sym-
bolic and Algebraic Computation, pp. 161–168 (2003)

20. Nagasaka, K.: Towards more accurate separation bounds of empirical polynomials
II. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS,
vol. 3718, pp. 318–329. Springer, Heidelberg (2005)

21. May, J.P.: Approximate Factorization of Polynomials in Many Variables and Other
Problems in Approximate Algebra via Singular Value Decomposition Methods.
PhD thesis, North Carolina State Univ., Raleigh, North Carolina (2005)



Construction of Computer System

for Microobjects Recognition Based on Neural
Networks

Ulugbek Kh. Narzullaev, Akmal R. Akhatov, and Olim I. Jumanov

Samarkand Branch of Tashkent University of Information Technologies,
Samarkand State University Named after Alisher Navoyi,

Samarkand, Uzbekistan
ulug1956@hotmail.com, akmalar@rambler.ru

Abstract. We propose a new and efficient approach for solving the tasks
of the microobjects recognition based on using the neural network (NN)
and work out a computer system of image visualization, recognition, and
classification of the microobjects on the samples of the pollen grains.
The technology is developed for a preliminary processing of images of
the microobjects on the basis of the “Snake” model. The principle of
teaching of formal neuron and mathematical model of teaching multilayer
perceptron for recognition of the microobjects is proposed. An algorithm
is developed for teaching the NN of the returning distribution, subject
domain, and methods of classes of computer system.

1 Introduction

Solution of problems of the computer processing of visual information, in par-
ticular, tasks of computer tomography, recognition of the finger prints, texts of
natural languages as well as recognition of the microobjects, for example, pollen
grains is related to the elaboration and using of algorithms of teaching of neural
networks (NN). Urgency of researches related to the recognition of microobjects
consists of the fact that the microobjects differ from each other by their ex-
ternal structure, and while processing their pictures it is required to identify
the variety of microobjects quickly and exactly, which belong to some class on
the basis of their geometrical forms and other specific characteristics. Besides,
it is required to supply the large efficiency of account of the images, classifica-
tion, and recognition of the objects for formation and ordering of data of the
research processes. It will, in turn, free the experts from tiresome counting of the
objects and reconsideration of huge encyclopedias classifying the microobjects.
Therefore, realization of researches and practical elaboration with the purpose of
creation of the software system of visuality of images, recognition and classifica-
tion as well as the systematization of microobjects are of considerable practical
interest, but despite a big topicality and practical importance the solution of
this scientific problem is still at its initial stages.
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2 Creation of the Technology of Microobjects
Classification

The construction of the technology of classification of the microobjects, in par-
ticular, pollen is carried out in four stages. The first stage is the preparation
of samples. Various ways can be applied here: preparation of slides, coloring,
etc. The second stage is the transitional stage. The pollen sample is counted
under microscope. Then the scanning by the computer is performed. Particles
are getting localized and then getting split into sub-samples consisting of pollen
and not pollen. Besides, for the realization of the high-grade analysis, every
pollen sub-sample is represented in a three-dimensional form, for which the re-
construction of pollen grains is made. The third stage is the identification stage.
Identification of the microobjects is carried out on the basis of comparison with
the reference database. Estimation of oriented invariant features of microobject
is essential here. For the estimation of invariant features of pollen, the schemes
of optimal and textural features are applied, frequency characteristics, pollen
exit area, disputes, reticule, etc. are used for textural analysis [1].

Two kinds of extraction of textural characteristics are used: Haralick’s mea-
surement and measurement of Law Mask [2]. These elaborations of valuables
reflect the degree of display features of images such as contrast, entropy, waves,
etc. The fourth stage is the final stage. Pollen is subdivided into groups on
various textures. Two different classification techniques are applied, which can
correct each other subsequently. The first method uses the standard static qual-
ifier constructed on the basis of Fisher Liner’s discriminant function [3], and the
second is based on Rumelhart’s neural network [4].

The allocation of these stages serves important making part of the construc-
tion of computer system for visuality of images, recognition, and classification.

3 Initial Processing of Pollen Image on the Basis of
“Snake” Model

In a general view, computer system for visualization of images, recognition,
classification, and stock-taking of the microobjects represents a difficult software-
technological complex, which is carrying out the functions of the initial process-
ing of images, analog and discrete transformation at input of the microobjects,
coding and decoding, compression, visualization, recognition, classification, cal-
culation, formation of the database, and information output. The initial process-
ing of images consists of filtration of the pollen from noise and in splitting of
image into many sets of components of the original image of the slide. At the so-
lution of this task, the principal part is searching “for double borders” in type of
pollen, for identification of which the “Snake” model [5] is required. Functioning
of the “Snake” model is based on many kinds of pollen that have thin endings
or double borders (exines) which can be noticed under the microscope, and a
number of types of these borders are the main tools in separating the pollen
grains from the dust.
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The “Snake” model reveals “internal reality” of the sub-sample and makes
such actions as “splayn fine plate” or membrane. “Splayn fine plate” serves for
identification of parts of the pollen grains. Grain must be clear with the first
or the second order of breakup. In order to connect parts of the pollen grains
and mark the necessary point the “external links” of the model are used. The
model allows one to calculate the passing of the object through any double
borders on the image by filtration way. The identification of the double borders
is determined by using, basically, the round nature of pollen. Therefore, it is
necessary to accomplish simple transformation from Cartesian space into the
(r,Q)-space. As a result, borders of pollen will be approximated by a straight line
of dimensionality Q. The transformation is realized by Saborov’s determinant,
which connects the width of the borders and orientation in the Q-section. The
oriented determinant is used with double borders and can be analyzed as follows.
The filter f(l, g) is used

f(l, g) =

⎡

⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0
1 1 1 . . . 1

⎤

⎥⎥⎥⎥⎥⎦

The filter defines double lines, where lines are divided by g-pixels, and l is the
pixel length. Using the filter takes out the hindrances from isolated pairs of
g-pixels and brings to the change of the width of the double borders. Therefore,
the result of the transformation of the pollen and not pollen object in (r,Q)-space
is the recognizer of the double borders.

4 Principles of the Training of the Formal Neuron

Important forming part of the software system of the recognition and classifica-
tion of the microobjects is using algorithms for NN training, which are recogniz-
ing perceptron model, and which allow one to classify objects for their similarity
with given specification and specific characteristics keeping as standard. It is
necessary to notice that the methods of the recognition and classification of the
pollen based on NN create fixed classes of the data for training. If there is a
need to enter the new type of pollen, these methods require that a full set of
data both as old images and new ones were for retraining of the classifier. More-
over, the adaptation of the processes of the retraining is executed by the active
participation of experts in the processing of the images of the microobjects.

Let us consider the mathematical principles underlying the training of the
neural network. The main element of artificial neural network is a formal neuron,
which represents a multi-output nonlinear converter with adaptive weighting of
input signal. All neurons of the network are connected with each other by synapse
links in definite architecture. We show in Fig. 1 the McCalloh–Pitts’ model of
the formal neuron. The following notation is used in the model: x1, x2, ..., xn

are the input signals; Wj1,Wj2, ....,Wjn are the adjusted synapse weights of jth
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neuron of the network; θj is a displacing signal; δ(·) is a sigmoid function of
activations; γj is a parameter assigning “steepness” of function of activation; Γj

is the coefficient of consolidation defining the maximum and minimum values of
outgoing signal.

The outgoing signal of such a neuron may be written as follows:

yj = Γjσ(γjW
T
j x) (1)

where wj = (ϑj , wj1, wj2, . . . , wjn)T .
It was proved in [6] that the NN with one hidden layer formed with such neu-

ron can approximate any function with any accuracy given in advance. Therefore,
the outgoing signal of the network consisting of N neurons has the form:

y =
n∑

j=1

Γjσ(γjW
T
j x)

and approximates the continuous function f(x) providing the condition |y −
f(x)| < ε for all possible entries of h belonging to some hypercube.

Fig. 1. The model of the formal neuron

Note that approximating properties of the specific neuron heavily depend on
the choice of the form of the function δ(·). As such a function we can propose
the sigmoid function

0 < σ(γy) = (1 + e−γu)−1 < 1, (2)

determined on the set of all real numbers and taking only positive values. Curved
hyperbolic tangent turned out to be the most suitable

−1 < tanh(γu) =
1 − e−2γu

1 + e−2γu
< 1,
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which is connected with the sigmoid function by the relation

σ(γu) =
1
2

(
tanh

(γu
2

)
+ 1

)
.

Assigning the restrictions on the square −1 ≤ uj ≤ 1, −1 < γj < 1 as possible
functions of activation of neuron (1) the following is mostly used:

σ1(γu) = tanh(γu) =
1− e−2γu

1 + e−2γu
, Γ <

1
tanh γ

(3)

σ2(γu) =
γu√

1 + γ2u2
, Γ 2 <

√
1 + γ2

γ
(4)

σ3(γu) = sin
(π

2
γu

)
, Γ 3 <

1
sin

(
π
2 γ

) (5)

σ4(γu) =
2
π

arctan(γu), Γ 4 <
π

2 arctanγ
(6)

σ5(γu) = γu− y3

3
u3, Γ 5 <

3
3γ − γ3

(7)

As an example, we show in Fig. 2 the graphs of the dependencies of data for func-
tions (3)–(7). As can be seen from the graphs, the specific type of the activation
function depends on parameter γj .

Their identity can be achieved by the corresponding choice. The curves in
Fig. 2 correspond to the following functions: σ1(γu) for γ = 3.5; σ2(γu) for
γ = 4; σ3(γu) for γ = 1; σ4(γu) for γ = 6; σ5(γu) for γ = 1.

Fig. 2. Graphs of activation functions
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It is determined that presented activation functions allow one not only to
simplify the process of training but also to enter unified scheme of the training
of the formal neuron.

5 Mathematical Model and Algorithms of Training of
Multilayer NN for the Recognition of Microobjects

Software system of recognition and classification can be built on the basis of
different algorithms of training NN, for example, Hopfield’s and Hemming’s al-
gorithms, training of RpRop with teacher and without teacher, on the basis of
bidirectional associative memory, etc. [7].

As a rule, for training of multilayer perceptron (MLP) problems of recognition
of microimages, for example, five different incoming classes (by types of objects)
it is necessary to compose a network with five neurons at the outgoing layer. In
such a network, every outgoing neuron corresponds to some class of objects and
neurons with the greatest outgoing value, it is used for determination for what
class the network carries the given output. Quantity of neurons in incoming
layer is usually equal to the quantity of properties allocated from the image
at early stages of processing. During training the NN, the studying example is
represented to the input of the network, and the resulting output is calculated.
It is compared with the desirable answer, and errors are calculated. These errors
are then used for changing the weights of neurons so that when this sample
will be given next time, the output would be closer to the desirable result. The
training set is presented to the network repeatedly so long till the network will
learn to identify examples effectively. The various obtained weights of the multi-
layer perceptron must be settled. Any attempt to train the network to the new
data will lead to the result that it will forget the old data. As an example, let
us consider the algorithm of training the return distribution, which concerns
the algorithms of training with teacher. Perceptron consists of several layers of
neurons, in which every neuron of the layer i is connected with every neuron of
layer i+ 1. In general, such problem, with the limited set of input data, has an
infinite set of solutions. For the restriction of space of search at training, the task
of minimizing the target function of the NN error is defined, which is decided by
the method of the least squares:

E(w) =
1
2

p∑

j=1

(yi − dj)2, (8)

where yj is the value of the jth output of neural network; dj is a target value of
the jth output; p is the number of neurons at the outgoing layer. Training of the
neural network is made by the gradient descent method, in particular, at every
iteration changing the weight is represented by the formula:

Δwij = −η · ∂E

∂wij
, (9)

where η is a parameter determining the speed of training.
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Using the known relations of gradient descent method formula (9) may be
rewritten in the open form

Δwij = −η · δ(n)j · xn
i , (10)

where xn
i is the value of the ith input of neuron of the nth layer; δ(n)i is the auxil-

iary variable of the nth layer for finding the targeted vector, in particular, vector
of those values, which must give out NN in such a given set of input values.

General algorithm of training the NN may be presented as follows:

1. Submit to NN’s input one of the required images and identify the values of
output of the neurons of neuron network.

2. Calculate δ(n) for the output layer of NN and calculate the changes of the
weights Δw(N)

ij of output layer of N by formula (10).

3. Calculate (N) and Δw
(N)
ij for the rest of layers of NN, n = N − 1...1.

4. Correct all weights of NN by formula

w
(n)
ij (t) = w

(n)
ij (t− 1) +Δw

(n)
ij (t) (11)

5. If the error is too large then move to step 1.

It is important to note that the simplest method of gradient descent considered
above is inefficient in case when the derivatives with respect to various weights
strongly differ. It corresponds to the situation when the value of the function S
for several neurons is close to 1 in its absolute value or when some weights are
much higher than 1 [8] in their absolute values.

Therefore, we will propose the simplest method of improvement of the gradient
descent by introduction of the moment μ, when influence of the gradient on the
changes of weights varies with the time. Then formula (11) takes the following
form:

Δw
(n)
ij (t) = −η · δ(n)j · xn

i + μ ·Δw(n)
ij (t− 1).

An additional advantage from the introduction of the moment is the ability
of the algorithm to overcome fine local minima.

6 The Model of Functioning of the Software System for
Recognition and Classification of Microobjects

Let us state the conceptual model of functioning of the software system for the
recognition and classification constructed on the basis of the developed models
and algorithms of NN. The hierarchy of classes has the following structure: neural
network (object of the CNetH class) aggregates the set of layers of neurons (the
file objects of the base class of CBaseLayer); every layer aggregates the set of
neurons (the file objects of the base class CBaseNeuron). After beginning of work,
the programs automatically load the previous adjustments of network (the size
of the images to be processed by network; the number of the images-originals,
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etc.), and the NN is created after which it is training by itself, which takes place
on the basis of the images-originals stored in database (the weights of synapses of
all neuron networks are established). Recognizing images with microsamples, the
network sends the array of points into the first layer (to the entrance of neurons
of the first layer), which, after a certain processing of these signals, sends the
array of signals-results of the processing to the second layer, etc. As a result, at
the output of the network, the number of images-originals are composed, which
are situated in the base of the originals, which is most similar to the image
elaborated by the network, in particular, classification of the initial object takes
place. Therefore, because of every microsample-original, which “is remembered”
by the network, can be put in correspondence to any line (for example, the
name of microobject) or number, then the index of the sample-original received
at the output of a network can be used for transformation of any image into
the textual or digital form in machine representation, in particular, to carry out
recognition of the initial of arbitrary object. In case of changing the parameters
of network, for instance, when changing the number of images-originals on which
the network is training (changing of the base of images-originals) or changing the
sizes of samples, which network works with, the old network is destroyed, and
instead of it a new network with new characteristics is composed. The diagram
of NN class will be represented in accordance with the described hierarchy of
classes. The details of the names of classes, used variables, and their types are
given in the diagram, the methods of objects in the class are specified.

CBaseLayer
pNeurons: CBaseNeuron*
nInputs: int
nNeurons: int
pInputs: float*
pSynapses: float*
pAxons: float*
+ CBaseLayer ()
+ CBaseLayer ()
+ GetInputs(): float*
+ GetAxons(): float*
+ Create(int nInps,int nNrns,float* pInpts,float* pSyns): float*
+ CalcLayer(): CHRESULT

↓

CBaseNeuron State: float
pAxon: float*
nInputs: int
pInputs: float*
pSynapses: float*
SigmoidType: uns
signed char
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SigmoidAlfa: float
+ CBaseNeuron()
+ CBaseNeuron()
( Sigmoid(): float
+ Create(int nInps,float* pInps, float* pSyns, float* pAxn,
unsigned char ST = ST−NONE, float SA = 0., float fRes = 0., int iRes = 0):

int
+ Randomize(float MaxRange=1.): void
+ CalcState(): float
+ Enter(): float

↓

CFirstLayerH + CFirstLayerH()
+ CFirstLayerH()
+ Create(int nInps,int nNrns,float* pInpts,float* pSyns): float*

↓

CSecondLayerH
+ CSecondLayerH ()
+ CSecondLayerH ()
+ Create(int nInps,int nNrns,float* pInpts,float* pSyns): float*
- IsConverged(): int
+ CalcLayer(): CHRESULT

↓

CFirstLayerHNeuron
+ CFirstLayerHNeuron ()
+ CFirstLayerHNeuron ()
+ Create(int nInps,float* pInps, float* pSyns, float* pAxn,
unsigned char ST = ST−NONE, float SA = 0., float fRes = 0., int iRes = 0):

int

↓

CSecondLayerHNeuron
+ CSecondLayerHNeuron ()
+ CSecondLayerHNeuron ()
+ Create(int nInps,float* pInps, float* pSyns, float* pAxn,
unsigned char ST = ST−NONE, float SA = 0., float fRes = 0., int iRes = 0):

int
For simplicity of presentation of the working the methods of classes, let us

submit the names and functions for some of them.
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Methods of Class CBaseLayer

GetInputs (): float* returns pointer on array input layer.
GetAxons (): float* returns pointer on array axon layer.
Create (int nInps, int nNrns, float* pInpts, float* pSyns): float* is initial-

ization of a layer. It dynamically creates an array neuron and the array axons
(outputs) of neuron for the given layer; and also initializes statistical variables,
for example, number of neurons or number of inputs in the given layer.

CalcLayer (): CHRESULT is the method expecting the given layer, i.e. starts
all neurons of layer for processing of input signal of layer.

Methods of Class CBaseNeuron

Sigmoid (): float forms output values of neuron (value of axon) on the basis
of the current condition of neuron with the help of the activation function used
at the given moment of time.

Create (int nInps, float* pInps, float* pSyns, float* pAxn, unsigned char ST =
ST−NONE, float SA = 0., float fRes = 0., int iRes = 0): int is initialization of
neuron.

Randomize (float MaxRange = 1.): void establishes any values on synapse of
neuron. The method is intended for debugging.

CalcState (): float forms a condition of neuron on the basis of signals on inputs
of neuron and synapse weights.

Enter (): float makes complete account of neuron and returns result-value of
its axon.

Thus, in the present work, an effective and new solving approach is proposed
for recognition of the microobjects by the construction of computer system on the
basis of models of preliminary processing of the images and using of NN, common
principles and models of creating the system of recognition of microobjects is
elaborated, methods of training and calculation of weight coefficients of synapses
of the stage of initialization of the network as well as the algorithms and software-
realizing models of functioning of the network are proposed.
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Abstract. A rheological linear model for a certain generalized Bingham
fluid with rheological memory, which flows in a movable tube is proposed
and analytically solved. The model is a system of two linear and cou-
pled partial differential equations with integral memory. We apply the
Laplace transform method making the inverse transform by means of the
Bromwich integral and the theorem of residues and the analytical solu-
tion are obtained using computer algebra. We deduce the explicit forms
of the velocity and stress profiles for the generalized Bingham fluid in
terms of Bessel and Struve functions. Various limit cases are obtained
and the standard Hagen-Poiseuille and Buckingham-Reiner equations are
recovered from more general equations. This works shows the powerful
of Maple to solve complex rheological problems in an analytical form as
it is presented here by the first time.

1 Introduction

Mathematical Rheology is a permanent source of very interesting computational
problems. In consequence it is possible to speak about the Computational Rhe-
ology [1],[2],[3] as a separate and well defined discipline within the domain of
Rheology. Inside the Computational Rheology it is possible to realize the exis-
tence of two different but linked trends. The first trend is named here Numeric
Computational Rheology (NCR) [1,2,3] and the second trend is called here Sym-
bolic Computational Rheology (SCR) [4]. As its name indicates, the NCR is
concerned with the numerical solution of non-linear rheological equations, using
software for numerical computation, such as Matlab. From the other side, the
SCR is dedicated to calculation of analytical solutions for linear or linearized
rheological equations, using computer algebra software [5], like Maple [6], which
is able to make symbolic or algebraic computations. Given that Rheology is a
highly non-linear science is natural that the dominant trend be actually justly
the NCR [1,2,3]. But the SCR is a very interesting and practically unexplored
� This work is supported by EAFIT University.
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land [4]. The present authors think that is worthwhile to make an exploration
of SCR and this work intends to bring the reader some of the flavor of SCR.
A source of inspiration for this work is the wonderful paper [7]. The example
that was chosen here, was the Bingham fluid given such fluid has a linear rhe-
ological equation [8]. Specifically we consider here the case of transient flow for
a Bingham fluid in a movable tube, when the fluid starts from the rest com-
pletely relaxed. The transport equation for such transient flow is linear and it
can be solved analytically. More over in this work we introduced the extra com-
plications that derive of the introduction of memory effects in the rheological
equation of the Bingham fluid. In this case we are concerned with a generalized
Bingham fluid with rheological memory [4]. The resultant transport equation for
the transient flow of such generalized Bingham fluid in a movable tube, is again
a linear equation and it can be solved analytically as it will be showed here. Our
method of solution is the Laplace transform technique with Bromwich integral
and residue theorem [4], [9]. The final analytical solutions will be given in terms
of the special functions of Mathematical Physics such as Bessel functions [10] and
Struve functions [11]. Given that the linear transport equations for our general-
ized Binghman fluid, are very large and the mathematical procedure of solution
is very hard as for to be implemented by hand using only pen and paper, we use
Computer Algebra Software (CAS) to make all symbolic computations. We find
that CAS is a very valuable tool for the engineer that works with non-newtonian
fluids when analytical solutions are demanded.

2 Mathematical Problem

We consider here the transient flow in a movable tube for a certain generalized
Bingham fluid. Within such fluid we find two different kinds of fields, to know:
the velocity field and the stresses field. The rheological relation for a generalized
Bingham fluid with memory, which links the velocity field and the stresses field
is the constitutive equation which reads

σr,z (r, t) + μ
∂

∂r
v (r, t) − τ0 + χ

∫ t

0

e−ε (t−τ)σr,z (r, τ) dτ +

μ1

∫ t

0

e−ε1(t−τ) ∂

∂r
v (r, τ) dτ = 0, (1)

where v(r, t) is the velocity field within the fluid, σr,z(r, t) is the stresses field,
μ denotes the Bingham plasticity, χ is the amplitude of the memory effect on
the stresses field, being ε the attenuation factor for such memory; μ1 is the
amplitude of the memory effect on the velocity field, being ε1 the corresponding
attenuation factor; and τ0 is the yield stress. The reader can note that when
χ = 0 , ε→∞, μ1 = 0 and ε1 → ∞, the equation (1) is reduced to the standard
Bingham rheological equation [8]. The equation (1) is for flow in a circular and
infinitely long tube, being r the distance from the axis of the tube with radius
a. For the transient flow in a tube we have at general two unknowns: v(r, t) and
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σr,z(r, t). We need other equation which complements to (1). Such equation is
the general equation of the movement of continuum media in a circular and very
long tube, when a fully development laminar flow is established, namely [8]

ρ
∂

∂t
v (r, t) +

d

dz
P (z) +

σr,z (r, t) + r ∂
∂rσr,z (r, t)

r
= 0 (2)

where r is the density of the fluid assumed incompressible and dP (z)/dz is the
pressure gradient. The initial condition that we use here, is that the fluid at
t = 0 starts from the rest completely relaxed, it is to say

v(r, 0) = 0, (3)

σr,z(r, 0) = 0. (4)

From the other side, the boundary condition that we consider here is the
corresponding to a movable tube. At particular we use the following boundary
condition

v(a, t) = νe−δt, (5)

where ν is the initial velocity and δ is the attenuation factor for such velocity.
Then, the mathematical problem that is proposed in this section consists in

to obtain the analytical solution of the system (1)-(2) with the initial conditions
(3)-(4) and with boundary condition (5) jointly with a natural finitude condition
for solutions. As we can observe the problem (1)-(5) is a linear problem but it is
a formidable linear problem given that the analytical solution exists by general
mathematical theorems but the explicit computation of the solutions is very
difficult.

3 Method of Solution

The mathematical problem given by (1)-(5) is a linear problem but it can not be
solved directly using the standard method of separation of variables due to the
inhomogeneous boundary condition (5). The most effective method of solution
is the Laplace transform technique enriched with the Bromwich integral and
residue theorem [4],[9]. Such method can be implemented by CAS and the details
are as follows [4]: Taken the Laplace transform of (1) we have

Σ (r) + μ
d

dr
V (r) − τ0

s
+
χΣ (r)
s+ ε

+
μ1

d
drV (r)
s+ ε1

= 0, (6)

where V (r) and Σ(r) are the Laplace transforms of v(r, t) and σr,z(r, t) respec-
tively. Solving (6) with respect to Σ(r) gives

Σ (r) = A (s)
d

dr
V (r) +B (s) , (7)
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where

A (s) = − (μ s+ μ ε1 + μ1) (s+ ε)
(s+ ε1) (s+ ε+ χ)

, (8)

B (s) = τ0s
−1

(
1 +

χ

s+ ε

)−1

. (9)

Now, taking the Laplace transform of (2) and using (3) and (7) the following
differential equation is obtained

ρ sV (r) +
A (s) d

drV (r)
r

+A (s)
d2

dr2
V (r) +

(
d
dzP (z)

)
r + sB (s)
sr

= 0. (10)

The general solution of (10) such as computed by Maple [6] is

V (r) = J0

(√
ρ s

A (s)
r

)
C2 + Y0

(√
ρ s

A (s)
r

)
C1 +

1
2ρs2

(
−2

d

dz
P (z)− π sB (s)

√
ρ s

A (s)
H0

(√
ρ s

A (s)
r

))
, (11)

where J0(x) and Y0(x) are the Bessel functions of zero order of the first class [10]
and H0(x) is the Struve function of zero order [11]. Given that Y0(x) is singular
at x = 0 [10], we chose that C1 = 0 to avoid the singularities in the velocity
profile. For hence V (r) turns:

V (r) = J0

(√
ρ s

A (s)
r

)
C2 +

1
2ρs2

(
−2

d

dz
P (z)− π sB (s)

√
ρ s

A (s)
H0

(√
ρ s

A (s)
r

))
. (12)

To determine the constant C2, we use the boundary condition (5) which is
Laplace-transformed to:

V (a) =
ν

s+ δ
, (13)

and the constant C2 is computed with Maple [6] and the result is

C2 =
(2 s+ 2 δ) d

dzP (z) + sπ B (s)
√

ρ s
A(s) (s+ δ)H0

(√
ρ s

A(s)a
)

+ 2 ν ρ s2

2 s2J0
(√

ρ s
A(s)a

)
ρ (s+ δ)

.

(14)
Now, with the substitution of (14), (8) and (9) in (12) we obtain the Laplace-
transformed velocity profile which is given by

V (r) =
NV (r)
DV (r)

, (15)
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where

NV (r) = 2 J0

(√
ρ s

A (s)
r

)(
d

dz
P (z)

)
s2 + 2 J0

(√
ρ s

A (s)
r

)(
d

dz
P (z)

)
sε+

2 J0

(√
ρ s

A (s)
r

)(
d

dz
P (z)

)
sχ+ 2 J0

(√
ρ s

A (s)
r

)(
d

dz
P (z)

)
δ s+

2 J0

(√
ρ s

A (s)
r

)(
d

dz
P (z)

)
δ ε+ 2 J0

(√
ρ s

A (s)
r

)(
d

dz
P (z)

)
δ χ+

J0

(√
ρ s

A (s)
r

)
π s2τ0

√
ρ s

A (s)
H0

(√
ρ s

A (s)
a

)
+

J0

(√
ρ s

A (s)
r

)
π sτ0

√
ρ s

A (s)
H0

(√
ρ s

A (s)
a

)
ε+

J0

(√
ρ s

A (s)
r

)
π τ0

√
ρ s

A (s)
H0

(√
ρ s

A (s)
a

)
δ s+

J0

(√
ρ s

A(s)
r

)
πτ0

√
ρ s

A(s)
H0

(√
ρ s

A (s)
a

)
δ ε+ 2 J0

(√
ρ s

A (s)
r

)
ν ρ s3 +

2 J0

(√
ρ s

A (s)
r

)
ν ρ s2ε+ 2 J0

(√
ρ s

A (s)
r

)
ν ρ s2χ−

2 J0

(√
ρ s

A (s)
a

)(
d

dz
P (z)

)
s2 − 2 J0

(√
ρ s

A (s)
a

)(
d

dz
P (z)

)
δ s−

2 J0

(√
ρ s

A (s)
a

)(
d

dz
P (z)

)
sε− 2 J0

(√
ρ s

A (s)
a

)(
d

dz
P (z)

)
δ ε−

2 J0

(√
ρ s

A (s)
a

)(
d

dz
P (z)

)
sχ− 2 J0

(√
ρ s

A (s)
a

)(
d

dz
P (z)

)
δ χ−

J0

(√
ρ s

A (s)
a

)
π τ0

√
ρ s

A (s)
H0

(√
ρ s

A (s)
r

)
s2 −

J0

(√
ρ s

A (s)
a

)
π τ0

√
ρ s

A (s)
H0

(√
ρ s

A (s)
r

)
sδ −

J0

(√
ρ s

A (s)
a

)
π τ0

√
ρ s

A (s)
H0

(√
ρ s

A (s)
r

)
ε s−

J0

(√
ρ s

A (s)
a

)
π τ0

√
ρ s

A (s)
H0

(√
ρ s

A (s)
r

)
ε δ (16)

and

DV (r) = 2 (s+ ε+ χ) s2J0

(√
ρ s

A (s)
a

)
ρ (s+ δ) . (17)

As we can observe in (15), (16) and (17) the Laplace-transformed velocity
profile is a super very large equation which is very difficult and maybe impossible
to be obtained using only pen and paper with calculations by hand. Immediately
we appreciate the invaluable useful of CAS and particularly Maple. Now the
question is to obtain the inverse Laplace transform of the transformed profile
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V (r) which is given by (15), (16) and (17). Unfortunately the actual CAS are not
able to make the transformation automatically and in consequence it is necessary
to introduce within the Maple environment both the Bromwich integral and the
residue theorem [4], [9]. The reader can note that the poles of V (r) according
with (15) and (17), are the roots of the following equations respect to the Laplace
parameter s:

s2 = 0, (18)

s+ δ = 0, (19)

J0

(√

− ρ s (s+ ε1) (s+ ε+ χ)
(μ s+ μ ε1 + μ1) (s+ ε)

a

)
= 0, (20)

s+ ε+ χ = 0. (21)

The equation (18) indicates the presence of a pole of second order at s = 0.
Similarly (19) shows that a pole exists at s = −δ. Now (20) gives a infinite set
of poles as the roots of the infinite set of equations of the form

√

− ρ s (s+ ε1) (s+ ε+ χ)
(μ s+ μ ε1 + μ1) (s+ ε)

a = αn, (22)

where αn are the zeroes of J0, it is to say the roots of the equation J0(x) = 0,
with n = 1..∞ [10]. Finally the equation (21) says that there is a pole at s =
−ε− χ. With all these poles, the inverse Laplace of V (r) in the Figure 1 can be
calculated as the summation of residues for all poles defined by (18)-(21). Such
computations of residues can be implemented by Maple.

4 Results

The explicit formula for the velocity profile v(r, t) which derives from V (r) given
in (15), (16) and (17), via the inverse Laplace transformation is:

v(r, t) =
1
4

(
ε r2 − ε a2 + r2χ− χa2

)
ε1

d
dzP (z)

ε (μ1 + μ ε1)
+

(−a+ r) ε1τ0
μ1 + μ ε1

+

J0

(√
ρ δ (ε1−δ)(ε+χ−δ)

(−μ δ+μ1+μ ε1)(−δ+ε)r
)
ν e−δ t

J0

(√
ρ δ (ε1−δ)(ε+χ−δ)

(−μ δ+μ1+μ ε1)(−δ+ε)a
) +

3∑

i=1

∞∑

n=1

J0
(

αnr
a

)
Fn,ie

Si,ntαn (μSi,n + μ ε1 + μ1)
2 (Si,n + ε)2

a3Si,n
2ρ2 (Si,n + ε+ χ) (Si,n + δ)J1 (αn)Gn,i

, (23)



Analytical Solution for Transient Flow of a Generalized Bingham Fluid 345

where

Fn,i = 2
(
d

dz
P (z)

)
Si,n

2a+ 2
(
d

dz
P (z)

)
Si,nε a+ 2

(
d

dz
P (z)

)
Si,nχa+

2
(
d

dz
P (z)

)
δ Si,na+ 2

(
d

dz
P (z)

)
δ ε a+ 2

(
d

dz
P (z)

)
δ χ a+

π Si,n
2τ0αnH0 (αn) + π Si,nτ0αnH0 (αn) ε+ π τ0αnH0 (αn) δ Si,n +

π τ0αnH0 (αn) δ ε+ 2 ν Si,n
3ρ a+ 2 ν Si,n

2ρ ε a+ 2 ν Si,n
2ρχ a (24)

and

Gn,i =ε1χ ε μ1+ ε1
2χε μ+ 2Si,nε

2με1 + 4Si,n
2μ ε1ε+ Si,n

2χμ ε+ 2Si,nχμ1ε+
2 ε12Si,nμ ε+ 2 ε1Si,nμ1ε+ 2Si,n

3μ1 + Si,n
4μ+ 2Si,nχμ ε1ε+ ε1ε

2μ1 +
ε1

2ε2μ+ 2Si,n
3μ ε1 + Si,n

2ε2μ+ 2Si,nε
2μ1 + Si,n

2χμ1 + ε1
2Si,n

2μ+
ε1Si,n

2μ1 + 2Si,n
3μ ε+ 4Si,n

2μ1ε, (25)

and being Si,n, with i = 1..3, n = 1..∞ the roots of the equation (22) rewritten
here as:

ρ s3a2 +
(
ρ a2χ+ ρ a2ε+ ρ a2ε1 + αn

2μ
)
s2 +

(
αn

2μ ε+ αn
2μ1 + ρ a2χ ε1 + ρ a2ε ε1 + αn

2μ ε1
)
s+

αn
2μ ε ε1 + αn

2μ1ε = 0. (26)

In (23), the transient velocity profile v(r, t) is the summation of three residues.
The first line in (23) derives from the residue at s = 0, and it is independent of
time and corresponds to the stationary or permanent fully development laminar
Bingham flow. The second line in (23) results from the residue at s = −δ and
represents a transitory flow at consonance with the transitory movement of the
tube itself. And the third line in (23) results of the summation of the infinitely
many residues for the infinitely many poles at s = Si,n according with (26), and
correspond with the transient flow determined by the rheological properties of
the fluid. The corroboration that the third term is a transient term is reached
using stability analysis according with the Routh-Hurwitz theorem (RHT) [12].
The application of RHT to (26) shows that the flow is always stable, it is to
say all the Si,n have negative real parts and for hence we have an authentic
transient flow that it turns to a permanent flow when a very large time had
passed. The equation (23) gives the transient velocity profile for the fluid portion
of the Bingham fluid, which corresponds to the region between r0(t) and a. The
solid portion of the Bingham fluid corresponds to the region between r = 0
and r = r0(t), being r0(t) the variable radius of the solid portion. The initial
condition for r0(t) is r0(0) = a and the asymptotic radius of the solid portion
is denoted r0(∞) which corresponds to the radius of solid portion of fluid for
the case of a fully development laminar flow in a tube. Concretely the transient
velocity profile for the solid portion is obtained as

v (t) = v (r0 (t) , t) , (27)
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where v(t) is the velocity of solid portion and v(r, t) is the velocity profile for
the fluid portion, given by (23). For hence the total transient discharge in the
tube for this transient flow is given by:

Q(t) = π r0
2v (t) + 2 π

∫ a

r0(t)

v (r, t) rdr. (28)

To determine the equation that gives r0(t) it is necessary to compute the explicit
form of the stress field σr,z(r, t). The substitution of V (r) given by (15), (16) and
(17), jointly with (8) and (9) on (7), and doing the inverse Laplace transform by
residues, generates the stress field which is given by

σr,z(r, t) = −1
2

(
d

dz
P (z)

)
r +

J1

(√
ρ δ (ε1−δ)(ε+χ−δ)

(−μ δ+μ1+μ ε1)(−δ+ε)r
)√

ρ δ (ε1−δ)(ε+χ−δ)
(−μ δ+μ1+μ ε1)

ν (μ δ − μ1 − μ ε1)

J0

(√
ρ δ (ε1−δ)(ε+χ−δ)
(−μ δ+μ1+με1)

a
)
eδ t (−ε1 + δ) (ε+ χ− δ) (−δ + ε)−1

+

3∑

i=1

∞∑

n=1

−J1
(

αnr
a

)
(Si,n + ε)3Hn,ie

Si,ntαn (μSi,n + μ ε1 + μ1)
2

a3Si,n
2ρ2 (Si,n + ε1) (Si,n + ε+ χ) (Si,n + δ)J1 (αn)Ei,n

,

(29)

where

Hn,i = ρ Si,nπ τ0H0 (αn) δ ε1a+ ρ Si,n
2π τ0H0 (αn) ε1a+ ρ Si,n

3π τ0H0 (αn) a+
ρ Si,n

2π τ0H0 (αn) δ a− 2αnν Si,n
2ρ μ1 − 2αnν Si,n

2ρ μ ε1 −

2αnν Si,n
3ρ μ− 2αn

(
d

dz
P (z)

)
Si,nμ ε1 − 2αn

(
d

dz
P (z)

)
Si,nμ1 −

2αn

(
d

dz
P (z)

)
δ μ1 − 2αn

(
d

dz
P (z)

)
δ μ ε1 −

2αn

(
d

dz
P (z)

)
δ Si,nμ− 2αn

(
d

dz
P (z)

)
Si,n

2μ (30)

and

En,i = ε1χ ε μ1 + ε1
2χ ε μ+ 2Si,nε

2μ ε1 + 4Si,n
2μ ε1ε+ Si,n

2χμ ε+
2Si,nχμ1ε+ 2 ε12Si,nμ ε+ 2 ε1Si,nμ1ε+ 2Si,n

3μ1 + Si,n
4μ+

2Si,nχμ ε1ε+ ε1ε
2μ1 + ε1

2ε2μ+ 2Si,n
3μ ε1 + Si,n

2ε2μ+
2Si,nε

2μ1 + Si,n
2χμ1 + ε1

2Si,n
2μ+ ε1Si,n

2μ1 + 2Si,n
3μ ε+

4Si,n
2μ1ε. (31)

From the result that the equations (29), (30) and (31) display, the equation
that determines r0(t) is

σr,z (r0 (t) , t) = τ0. (32)
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In consequence the explicit form of the velocity for the solid portion is obtained
when τ0 given by (32) is substituted in (27). The resultant expression is very
large and heavy as for to be presented here but it can be hosted and exploited
in a computer with CAS. Also using (28) it is possible to compute the discharge
Q(t) but again the result is very long and it can not be presented here but it
can to processed by computer with CAS.

5 Analysis of Results

From (29) we observe that σr,z(0, t) = 0 for all t, as must be; and for all r the
stress grows with the time until the stationary value is reached, namely

σr,z (r,∞) = −1
2

(
d

dz
P (z)

)
r, (33)

as must be too.
Now, from the equations (23) and (29) , many limit cases can be derived.

For example when the tube is fixed, the boundary condition (5) is applied with
ν = 0 and then the resultant profiles are obtained (compare with [4]).

The particular case when the memory effects are ignored, it is to say with
χ = 0 , μ1 = 0, ε→∞ and ε1 →∞ leads to the following results:

v (r, t) =
1
4

(−4 a+ 4 r) τ0
μ

+
1
4

(
r2 − a2

)
d
dzP (z)

μ
+

∞∑

n=1

J0
(

αnr
a

) (
2
(

d
dzP (z)

)
a+ π τ0αnH0 (αn)

)
e
−αn

2μ t

ρ a2 a

μJ1 (αn)αn
3

, (34)

σr,z (r, t) = −1
2

(
d

dz
P (z)

)
r +

∞∑

n=1

J1
(

αnr
a

) (
2
(

d
dzP (z)

)
a+ π τ0αnH0 (αn)

)
e
−αn

2μ t

ρ a2

αn
2J1 (αn)

. (35)

From (34) and (35) we obtain immediately the asymptotic profiles which
correspond to the fully developed laminar flow and using (27)-(33) with t→∞
we obtain the Buckingham-Reiner equation [8], being Q(∞) = Q:

Q = − 1
8μ

(
d

dz
P (z)

)
π a4

(
1 − 4

3
τ0
τa

+
1
3
τ0

4

τa4

)
, (36)

where τa = σr,z(a,∞) , according with (33). We note that from (36) we recover
the Hagen-Poiseuille equation for Newtonian flow in a tube, namely [8]

lim
τ0→0

Q = −1
8

(
d
dzP (z)

)
π a4

μ
. (37)



348 J. Ospina and M. Velez

Finally when the memory effects are considered, the asymptotic profiles which
result from the equations (23) and (29) are:

v (r,∞) = −1
4

(
−ε r2 + ε a2 − r2χ+ χa2

)
ε1

d
dzP (z)

ε (μ1 + (μ) ε1)
− (a− r) ε1τ0
μ1 + (μ) ε1

, (38)

v (∞) = −1
4
ε1

(
d
dzP (z)

) (
ε r0

2 + ε a2 − r0
2χ+ χa2 − 2 r0ε a

)

ε (μ1 + (μ) ε1)
, (39)

where (38) gives the velocity profile for the fluid portion of Bingham fluid, and
(39) gives the velocity of the solid portion. Here the asymptotic radius of the
solid portion, r0(∞) is written as r0. Now using (38) and (39) in (28) we obtain
the formula of the total discharge in the tube:

Q =
1

192
ε1π a

3
(
16 ε τ04 − 48χ τ04 + 48 ε τa4 + 48χ τa4 − 64 τ0ε τa3

)

τa3ε (μ1 + μ ε1)
. (40)

We note that when the memory effects are neglected in (40), then we recover
the Buckingham-Reiner equation (36). From other side, the equation (40) with
τ0 = 0, provides a generalization of the Newtonian Hagen-Poiseuille equation,
namely

Q = −1
8
ε1π a

4
(

d
dzP (z)

)
(ε+ χ)

ε (μ1 + μ ε1)
. (41)

The contrast between (41) and (37) shows that (41) has the same form of (37)
but with an effective viscosity which incorporates the memory effects.

6 Conclusions

This work was an intent to convey the reader some notions about Symbolic
Computational Rheology. The central problem was the transient laminar flow
in a movable tube, for a certain generalized Bigham fluid with rheological mem-
ory. The object was to obtain the analytical solution for such linear rheological
problem. The method that was used was the Laplace transform technique with
Bromwich integral and residue theorem. All the mathematical procedure was im-
plemented via Computer Algebra Software. The analytical solutions were given
in terms of the Bessel functions and the Struve functions. The problem solved
here is a linear problem with analytical solution but such solution is very dif-
ficult to obtain using only pen and paper. It is very remarkable that a system
like Maple can be used to solve such problem in a very efficient way. We think
that the present paper can be useful to engineers that work on rheological prob-
lems for which is possible and necessary to have an analytical solution. This
work shows the powerful of Maple to solve a relatively complex rheological lin-
ear problem. From the results that were derived here, it is possible to design
an experimental procedure that permits to observe the transient flow and then
to measure some rheological magnitudes such as the Bingham plasticity or the
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memory parameters. Also, from our results is possible to establish contact with
the Numerical Computational Rheology and to make animations that simulate
the transient flow and the establishment of the fully development laminar flow.
Another line for future research is the case of transient flow with Bingham plas-
ticity with spatial variations. Finally we think that the Symbolic Computational
Rheology is a very important branch of the Mathematical Rheology and deserves
more investigation. We expect to have the opportunity both to continue the ex-
ploration of the wonderful land of the Symbolic Computational Rheology and
to bring the reader the results.
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Abstract. New elimination methods are applied to compute polynomial
relations for the coefficients of the characteristic polynomial of certain
families of matrices such as tensor squares.

1 Introduction

The problems treated here concern polynomial relations between the coefficients
of characteristic polynomials of certain naturally defined varieties of matrices
such as tensor squares of matrices. These questions originated from the recog-
nition problem of finite matrix groups, cf. [L-GO’B 97] and [PlR], where the
general question is addressed. The reason why we take up the problem here
with different examples is that these problems provide good challenges for test-
ing elimination techniques. They arise in sequences parametrized by n, and two
quantities reflect their difficulty very well, the first being the Krull dimension
and the second the number of variables. The Krull dimension grows linearly with
n, the number of variables quadratically in n. We treat examples of Krull di-
mensions between 2 and 5 here and suggest that new elimination methods could
be evaluated using these series of problems.

The methods we apply are developed in [PlR]. In particular, elimination by
“degree steering” is the preferred strategy here. Janet bases of the same ideal are
computed repeatedly for different gradings of the polynomial ring. The degrees
of the variables to be eliminated are increased in each step until a Janet basis
for the elimination ideal can be read off (cf. Section 3.1). Other techniques which
come up in the course of [PlR] still wait for implementation.

All results were obtained by using implementations of the involutive basis
algorithm by V. P. Gerdt and Y. A. Blinkov [Ger 05], [GBY 01]. More precisely,
all Janet bases have been computed by the new open source software package
ginv [ginv] in connection with its Maple interface to the Involutive package
[BCG 03], which provides direct access to combinatorial tools like Hilbert series
[PlR 05].

The results of the examples treated here are either short and listed or are
lengthy and available on the web: http://wwwb.math.rwth-aachen.de/
elimination.
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2 The Problems

The problems posed in this section and treated in the next section can be sum-
marized as follows.

Problem 1. Given a classical group G defined over a field K of characteristic zero
and any finite dimensional representation ρ of G, find a generating set of the
polynomial relations for the coefficients of the characteristic polynomial χρ(g)(t)
of ρ(g), g ∈ G.

In [PlR] the case G = GL(n,K) × GL(m,K) for a field K of arbitrary charac-
teristic is treated with ρ : G→ GL(nm,K) : (a, b) 
→ a⊗ b.

Remark 1. Problem 1 is an elimination problem for an ideal in a commutative
polynomial ring and is therefore tackled by constructive methods from commu-
tative algebra. Let ν : G → GL(n,K) be the natural representation of G. We
define the polynomial ring R := K[a1, . . . , an, c1, . . . , cr] over K with the co-
efficients ai of χν(g)(t) and cj of χρ(g)(t) as indeterminates. By expressing the
coefficients cj in terms of the coefficients ai we obtain generators for an ideal I
of R. The polynomial relations for the cj as required by Problem1 are given by
the elimination ideal J := I ∩ K[c1, . . . , cr]. It is well known that the limits of
computational feasibility are reached rather quickly for such elimination prob-
lems. New promising methods are developed in [PlR] and we apply here some of
these methods to the more specific problems described below.

Remark 2. Very often there is a natural way to assign non-standard degrees to
the variables ai and cj such that the polynomial relations in I become homoge-
neous with respect to this grading.

Remark 3. For the present problems the Krull dimension dimK[c1, . . . , cr]/J
and the number r of variables c1, . . . , cr are useful parameters which estimate
how hard the given problem is. Although these parameters provide only a very
rough description of the problem, we want to point out that problems up to
Krull dimension 3 can be dealt with using our particular elimination methods
quite well and sometimes cases with dimK[c1, . . . , cr]/J = 4 can be solved.

Remark 4. If a concrete instance of Problem 1 turns out to be too difficult
to approach directly, the following strategy often allows to come much closer
to the final elimination result if not even solving it. One factors the problem
into two steps. First treat the problem for matrices of determinant 1. Depend-
ing on the kind of problem, one usually gets rid of the variable cr and two
or three variables ai. Often this means a considerable reduction in complexity.
The result for matrices of general determinant is then obtained from the re-
sult for matrices of determinant 1 by homogenizing the polynomials with the
variable cr.

In this paper we deal with the following more specific problems.
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Problem 2. 1. Tensor square of GL(n,K) and SL(n,K)
G = GL(n,K) or G = SL(n,K), ρ : G → GL(n2,K) : g 
→ g ⊗ g, i.e. each
matrix g is mapped to the Kronecker product of g with itself.

In case G = GL(n,K) we have dimK[c1, . . . , cr]/J = n, in case G =
SL(n,K) the Krull dimension as defined above is n− 1.

2. Compound representation of GL(n,K) and SL(n,K)
G = GL(n,K) or G = SL(n,K), ρ : G → GL(

(
n
k

)
,K) : g 
→ Λkg, i.e. each

matrix g is mapped to the matrix of its (k×k)-minors, where k = 2, . . . , n−1.
These representations are obtained as the actions of G on the exterior powers
ΛkV of the natural KG-module V .

In this case the resulting Krull dimension of K[c1, . . . , cr]/J is n resp.
n− 1.

As already mentioned in Remark 4, for difficult cases of G = GL(n,K)
an intermediate step treating the compound representation of SL(n,K) is
often very helpful.

3. Exterior and symmetric square of SO(n,K)
G = SO(n,K), ρ : G → GL(

(
n
2

)
,K) resp. ρ : G → GL(

(
n+1
2

)
,K) represent-

ing the action of G on the exterior square Λ2V resp. the symmetric square
S2V of the natural KG-module V .

The Krull dimension of K[c1, . . . , cr]/J is 2n
2 �.

3 Results

3.1 Tensor Square of GL(n, K)

We start with Problem2 1. Let G = GL(n,K), whereK is a field of characteristic
zero, ν the natural representation of G, and ρ : G → GL(n2,K) : g 
→ g ⊗ g.
We are going to compute the polynomial relations for the coefficients cj of the
characteristic polynomial

χρ(g)(t) = tm − c1t
m−1 + . . .+ (−1)mcm

of ρ(g), g ∈ G, where m = n2. Equating the cj with the corresponding polyno-
mials in the coefficients ai of

χν(g)(t) = tn − a1t
n−1 + . . .+ (−1)nan

defines the ideal I of the polynomial ring K[a1, . . . , an, c1, . . . , cn2 ]. Hence, our
ultimate goal is to compute J := I ∩K[c1, . . . , cn2 ].

The ideal I consists of homogeneous polynomials w.r.t. the grading defined by
assigning degree i to the variable ai and degree 2j to the variable cj . We refer to
this grading as the natural grading. For the resulting ideal J the grading defined
by deg cj = j can be chosen afterwards. Since we assumeK to be of characteristic
zero, all computations will be done over the field of rational numbers.

n = 2: The ideal I is generated by:

[−a12 + c1, −2 a22 + 2 a12a2 − c2, −a12a22 + c3, a2
4 − c4 ]
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This case can still be dealt with simply by computing a Janet basis for I w.r.t.
the block ordering on the monomials in a1, a2, c1, c2, c3, c4 which eliminates the
variables a1, a2.

The Janet basis for J = I ∩K[c1, c2, c3, c4] is obtained very quickly:

[ c12c4−c32, c22c3−4 c1c32 + 4 c1c2c4 + 4 c3c4, c1c22 − 4 c12c3 + 4 c2c3 + 4 c1c4,
c1

2c2c4 − c2c3
2, c2

3c3 − 4 c1c2c32 + 16 c33 − 12 c2c3c4 − 16 c1c42,
c2

4−16 c12c32+ 32 c2c32− 8 c22c4+ 16 c42, c12c22− 4 c13c3+ 4 c1c2c3+ 4 c32 ]

n = 3: The ideal I is generated by:

[−a12 + c1, −2 a22 + 2 a12a2 − c2, −3 a32 + 6 a2a3a1 − 2 a13a3 − a1
2a2

2 + c3,

−4 a22a3a1 − a1
2a3

2 + 2 a13a2a3 + a2
4 − c4,

a2
2a3

2 + 4 a32a2a12 − 2 a3a23a1 − a3
2a1

4 + c5,

−6 a2a33a1 + a3
2a2

2a1
2 + 2 a32a23 + 3 a34 − c6,

2 a12a34 − 2 a33a22a1 + c7, a2
2a3

4 − c8, −a36 + c9 ]

As a first step we compute a Janet basis for I without intending to eliminate
any variable. Of course, we chose the grading of K[a1, a2, a3, c1, . . . , c9] which
makes the relations homogeneous, i.e. the natural grading. In the computations
which are described next, Janet bases are constructed with respect to the degree-
reverse lexicographic ordering. In the present example we fix that ordering by
choosing

c9 > c8 > . . . > c1 > a3 > a2 > a1,

which turns out to be computationally beneficial.
Our strategy is to eliminate one variable at a time by computing a Janet basis

of I repeatedly (using the result of the previous run as input) and increasing the
degree of the variable to be eliminated in each step until we can extract a Janet
basis of J from the Janet basis of I by intersecting it with K[c1, . . . , c9]. This
stage is reached as soon as the following criterion is satisfied.

Lemma 1 ([PlR]). Let J ⊆ K[X1, . . . , Xn, Y1, . . . , Ym] be a Janet basis with
respect to some term ordering. For any 0 �= p ∈ K[X1, . . . , Xn, Y1, . . . Ym] let
λ(p) be the leading monomial. If

R := { p ∈ J | p ∈ K[X1, . . . , Xn, Y1, . . . , Ym] −K[Y1, . . . , Ym]
and λ(p) ∈ K[Y1, . . . , Ym] }

is empty, then J ∩K[Y1, . . . , Ym] generates 〈J〉 ∩K[Y1, . . . , Ym].

Proof. The case J ∩K[Y1, . . . , Ym] = {0} is trivial. Let q ∈ 〈J〉 ∩K[Y1, . . . , Ym]
be non-zero. Since there is no Xi involved in q, it can be reduced by some element
p ∈ J with λ(p) not divisible by any Xi. By hypothesis p ∈ K[Y1, . . . , Ym], so
that the first step of involutive reduction replaces q by an element in 〈J〉 again
without Xi’s and with smaller leading monomial w.r.t. the given term ordering.
So induction yields the result.
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We refer to this elimination technique as “elimination by degree steering”. For
more information we refer to [PlR].

Coming back to the concrete problem, Lemma 1 shows that for eliminating
a1 it is enough to increase the degree of a1 to 2. In the second step degree 3 for
a2 is already sufficient, and a3 is eliminated by choosing degree 4 for a3, again
assured by Lemma 1. This yields a Janet basis of J consisting of 31 elements.
The Hilbert series (with respect to the natural grading) of K[c1, . . . , c9]/J is

1 + t4 + t5 + t6 + t7 + 2 t8 + 2 t9 + t10 − 4 t11 − 4 t12 − 2 t13 + 2 t14 + 2 t15

(1 − t) (1 − t2) (1 − t3)
.

The case n = 4 is much harder than n = 3. It is partially treated in the next
section.

3.2 Tensor Square of SL(n, K)

We give only one example of Problem2 1. for G = SL(n,K). Since the Krull
dimension and the number of variables is less in comparison to the previous case
G = GL(n,K), these problems are easier to deal with.

n = 4: The generating set for the ideal I is obtained from the generating set
for the case G = GL(4,K) by setting a4 = 1, c16 = 1. Hence, I is an ideal of
K[a1, a2, a3, c1, . . . , c15]. Starting with the natural grading and the degree-reverse
lexicographic ordering defined by

c15 > c14 > . . . > c1 > a3 > a2 > a1,

degree steering (cf. Lemma 1) produces a Janet basis of the elimination ideal
consisting of 96 elements. The degrees for a1, a2, and a3 had to be increased
up to 10, 15 resp. 16. The elements of the resulting Janet basis have (natural)
degrees between 12 and 22 and are all irreducible.

As explained in Remark4, we could compute a generating set for J in case
G = GL(4,K) by homogenizing the previous result with the variable c16, but
computing a Janet basis for J (of relations for general determinant) is actually
a difficult task.

3.3 Compound Representation of GL(n, K)

In this section we deal with Problem2 2. Let G = GL(n,K), k ∈ {2, . . . , n− 1},
and ρ : G→ GL(

(
n
k

)
,K) be the representation mapping each g ∈ G to the matrix

of its (k×k)-minors. We set m =
(
n
k

)
. As in the previous section, the polynomials

in the ideal I of K[a1, . . . , an, c1, . . . , cm] are homogeneous with respect to the
grading defined by assigning degree i to ai and degree 2j to cj .

We restrict to the case k = 2 here.

n = 4: The ideal I of K[a1, . . . , a4, c1, . . . , c6] is generated by:

[−a2 + c1, a1a3 − a4 − c2, 2 a2a4 − a3
2 − a1

2a4 + c3, −a42 + a3a1a4 − c4,

−a2a42 + c5, a4
3 − c6 ]
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In this case a block ordering on the monomials of K[a1, . . . , a4, c1, . . . , c6] which
eliminates a1, . . . , a4 gives a Janet basis of J very quickly. A second run of
Janet’s algorithm on the result which takes the natural grading into account
yields the final answer:

[ c22c5 − c1c4
2, c4c5 − c1c2c6, c2c5

2 − c1
2c4c6, c4

3 − c2
3c6, c5

2c4 − c6c5c2c1,

c5
3 − c1

3c6
2 ]

The Hilbert series (w.r.t. the natural grading) of K[c1, . . . , c6]/J is

1 + t4 + t5 + t8 − t9 + t10 − t12

(1 − t) (1 − t2) (1 − t3) (1 − t6)
.

n = 5: The ideal I of K[a1, . . . , a5, c1, . . . , c10] is generated by:

[−a2 + c1, a1a3 − a4 − c2, 2 a2a4 − a3
2 − a1

2a4 + a1a5 + c3,

a5a3 − a4
2 − 3 a2a1a5 + a3a1a4 + a1

3a5 − c4, −2 a52 + 2 a5a1a4 + 2 a2a5a3
−a3a12a5 − a2a4

2 + c5, −3 a4a5a3 + a2a5a1a4 − a5
2a1

2 + a4
3 + a2a5

2 − c6,

−a42a5a1 − a2
2a5

2 + 2 a3a52a1 + a4a5
2 + c7, a4a5

2a2 − a1a5
3 − c8,

−a53a3 + c9, a5
4 − c10 ]

We eliminate a1, . . . , a5 (in this order) by degree steering (cf. Lemma 1) and
start, of course, with the natural grading ofK[a1, . . . , a5, c1, . . . , c10]. The degree-
reverse lexicographic ordering which is defined by

c10 > c9 > . . . > c1 > a5 > . . . > a1

is used. In order to eliminate variable ai, assigning degree i+ 1 to ai is already
sufficient. The main computational difficulty lies in the elimination of a4 and
a5. By applying finally to the result Janet’s algorithm which takes the grading
defined by deg ci = i into account, we obtain a Janet basis of J consisting of
254 irreducible polynomials of (natural) degrees between 24 and 38. The Hilbert
series (w.r.t. the natural grading) of K[a1, . . . , a5, c1, . . . , c10]/J is:

(1 + t2 + t4 + t6 + t7 + 2 t8 + 2 t9 + 3 t10 + 2 t11 + 3 t12 + 2 t13 + 4 t14 + 3 t15

+6 t16 + 5 t17 + 8 t18 + 6 t19 + 9 t20 + 7 t21 + 10 t22 + 9 t23 + 12 t24 + 8 t25

+3 t26 − 26 t27 − 54 t28 − 70 t29 − 65 t30 − 31 t31 + 2 t32 + 65 t33 + 79 t34

+85 t35 + 47 t36 + 14 t37 − 33 t38 − 45 t39 − 38 t40 − 27 t41 − 2 t42 + 5 t43

+16 t44 − t45 − 2 t46 − t47 + 2 t48 + 2 t49 + 2 t50) /
((1 − t)(1 − t3)(1 − t4)(1 − t5)(1 − t6)).

3.4 Exterior Square of SO(n, K)

We turn to Problem2 4. Let G = SO(n,K), ν the natural representation of G,
and ρ : G → GL(

(
n
2

)
,K) the representation of G on the exterior square Λ2V of
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the naturalKG-module V . For each root ω of the characteristic polynomial χν(t)
the negative root −ω is also a root. Moreover, all g ∈ G have determinant 1.
Therefore χν(t) has the form

χν(t) = tn − a1t
n−1 + a2t

n−2 − . . .+ (−1)n−2a2t
2 + (−1)n−1a1t+ (−1)n.

The exterior square of V has K-dimension r =
(
n
2

)
. The coefficients cj of

χρ(t) = tr − c1t
r−1 + c2t

r−2 − . . .+ (−1)r−2c2t
2 + (−1)r−1c1t+ (−1)r

are equated with the corresponding polynomials in a1, . . . , am occurring as
coefficients of the polynomial in (1), where m = 2n

2 �.
n = 5: The ideal I of K[a1, a2, c1, . . . , c5] is generated by:

[−a2 + c1, a1a2 − a1 − c2, 2 a1a2 − a2
2 − a1

3 + a1 + c3,

a2 − a1
2 − 3 a1a2 + a1

2a2 + a1
3 − c4, −2 + 2 a12 + 2 a22 − 2 a12a2 + c5 ]

Here a block ordering on the monomials of K[a1, a2, c1, . . . , c5] which eliminates
a1, a2 gives a Janet basis of J immediately. We obtain a Janet basis consisting
of 5 irreducible polynomials of (standard) degree up to 4. Exactly one of these
polynomials is linear:

2 c1 − 2 c2 + 2 c3 − 2 c4 + c5 − 2.

The Hilbert series (w.r.t. the standard grading) of K[a1, a2, c1, . . . , c5]/J is:

1 + 4 t+ 10 t2 + 17 t3 + t4

(
17

(1 − t)
+

7

(1 − t)2

)
.

n = 6: Now we deal with the ideal I in K[a1, a2, a3, c1, . . . , c7] generated by the
following polynomials:

[−a2 + c1, a2 − a1a3 + c2, 2 a22 − a3
2 − a1

2a2 − 1 + a1
2 + c3,

−2 a2 + a1
2 − a1a3 + a2

2 + 3 a12a2 − a3a2a1 − a1
4 + c4,

2 a2 − 2 a12 − 3 a1a3 + 6 a12a2 − 2 a22 + 2 a3a2a1 − a3a1
3 − a1

4 − a2
3 + c5,

−2 + 3 a32 + 3 a12 − 6 a3a2a1 − a1
4 + a3a1

3 + a2
2a1

2 + a2
3 − c6,

−a12 − 3 a1a3 − a2
2 + a3a2a1 + a1

4 + 2 a3a13 − 3 a22a12 + 2 a23 + c7 ]

We eliminate a1, a2, a3 (in this order) by degree steering (cf. Lemma 1). Al-
though we cannot use a grading of the polynomial ring with respect to which
the input is homogeneous, it turns out that assigning degree i to ai and degree
2j to cj is again very helpful. In the present case this only results in a filtration
of K[a1, a2, a3, c1, . . . , c7]. We choose the degree reverse lexicographic ordering
defined by

c1 > c2 > . . . > c7 > a3 > a2 > a1.
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The degrees of a1, a2, a3 need to be increased up to 6, 3 resp. 6 in order to
obtain a Janet basis of J consisting of 61 elements of (standard) degrees up to
10. There is exactly one linear relation:

c7 − 3 c6 + 5 c5 − 7 c4 + 9 c3 − 11 c2 + 13 c1 − 15.

The Hilbert series is:

1 + t+ t2 + t3 + t4 + 2 t5 + 3 t6 + 3 t7 + t8 − 3 t10 − 2 t11 − t12 + t13 + t14

(1 − t2) (1 − t3) (1 − t4)
.

3.5 Reduced Symmetric Square of SO(n, K)

In this final section we deal with the symmetric square defined in Problem2 4.
Let G = SO(n,K), ν the natural representation of G, and ρ : G→ GL(

(
n+1
2

)
,K)

the representation of G on the symmetric square S2V of the natural KG-module
V . As in the previous section, χν(t) has the form

χν(t) = tn − a1t
n−1 + a2t

n−2 − . . .+ (−1)n−2a2t
2 + (−1)n−1a1t+ (−1)n.

The symmetric square of V always has the trivial KG-module as a constituent.
Therefore, we consider here the reduced symmetric square, which is the comple-
ment of the trivial KG-module in S2V . It has K-dimension r = n2 −

(
n
2

)
− 1.

From the characteristic polynomials χ⊗2
ν (t), χS2

ν (t), and χ1(t) of the represen-
tation of G acting on the tensor square of V , the symmetric square resp. the
trivial representation of degree 1 we obtain χρ(t) as

χρ(t) =
χ⊗2

ν (t)
χS2

ν (t) · χ1(t)
. (1)

The coefficients cj of

χρ(t) = tr − c1t
r−1 + c2t

r−2 − . . .+ (−1)r−2c2t
2 + (−1)r−1c1t+ (−1)r

are equated with the corresponding polynomials in a1, . . . , am occurring as
coefficients of the polynomial in (1), where m = 2n

2 �.

n = 5: Here the degrees of χ⊗2
ν (t), χS2

ν (t), and χρ(t) in t are 25, 10 resp. 14. As
generators for the ideal I of K[a1, a2, c1, . . . , c7] we obtain:

[ 1 + a2 − a1
2 + c1, a2a1

2 − a2
2 + a1 + 1 − a1a2 − a1

2 + a2 − c2,

a2a1
2 − a1a2 − a2a1

3 − a1
2 + 1 + 4 a22a1 + a2 − a2

3 − 3 a22 + c3,

5 a22a1 − a2
2a1

2 + 6 a2a12 − 5 a2a13 + a2
3a1 − 3 a22 − 3 a12 + a1

5 + 1 − 2 a23

−c4, −a22a12 + a2a1
4 − a2

2a1
3 − 2 a2a12 − a2

2a1 + 4 a23a1 + 3 a12 − a1
4

−2 + 3 a22 − 2 a23 − a2
4 + c5, −3 a23a1 − a2

2a1
3 + 5 a2a13 − 4 a22a1 − a2a1

4

+2 a22a12 − 5 a2a12 + a2
3a1

2 + 3 a22 − 2 a13 − 2 + a1
4 + 2 a12 + a1a2 + 3 a23

−2 a2 − c6, −4 a23a1 + 4 a22a13 + 2 a2a13 − 8 a22a1 − 2 a2a12 − 2 a23a12

+2 a1a2 − 2 a15 − 2 + 2 a22 + 2 a24 + 2 a12 + 4 a13 − 2 a1 + 4 a23 − 2 a2 + c7 ]
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We eliminate a1, a2 (in this order) by degree steering (cf. Lemma 1) and start
with degree 1 for every variable. Note that the polynomial relations are not
homogeneous with respect to this grading. In this case it turns out that the
degree-reverse lexicographic ordering defined by

a1 > a2 > c1 > . . . > c7

is superior to the reversed order. The first Janet basis of I has 83 elements. Then
three steps of “degree steering” are sufficient to eliminate a1. Two further steps
are enough to produce the final result consisting of 95 polynomials. The Hilbert
series (with respect to the standard grading) of K[c1, . . . , c7]/J is

1 + 6 t+ 21 t2 + 56 t3 + 96 t4 + 112 t5 + 134 t6 + 156 t7 + 179 t8 + 202 t9 + 225 t10

+t11
(

225
(1 − t)

+
23

(1 − t)2

)
.

There is exactly one linear relation in the Janet basis of J :

2 c1 − 2 c2 + 2 c3 − 2 c4 + 2 c5 − 2 c6 + c7 − 2.

All other elements have (standard) degrees 4 to 11.

n = 6: Here we have an ideal I in the polynomial ring K[a1, a2, a3, c1, . . . , c10].
It again turns out to be advantageous to assign degree i to ai and degree 2j
to cj , although the generating polynomials are not homogeneous. Hence, similar
to Section 3.4 we only work with a filtration of the polynomial ring. Degree
steering (cf. Lemma 1) accomplishes the elimination of a1, a2, a3. It is necessary
to increase the degree of a1 up to 2, the degree of a2 up to 15 and the degree of
a3 up to 7. We obtain a Janet basis of J = I ∩K[c1, . . . , c10] consisting of more
than 1500 elements. The Hilbert series is:

(1 + t4 + t5 + t6 + t7 + 2 t8 + 2 t9 + 2 t10 + 2 t11 − t12 − 16 t13 − 12 t14 + 9 t15

+16 t16 + 5 t17 − 10 t18)/((1 − t)(1 − t2)(1 − t3)).
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Abstract. We find a full system of invariants with respect to gauge
transformations L → g−1Lg for third-order hyperbolic linear partial dif-
ferential operators on the plane. The operators are considered in a nor-
malized form, in which they have the symbol SymL = (pX + qY )XY
for some non-zero bivariate functions p and q. For this normalized form,
explicit formulae are given. The paper generalizes a previous result for
the special, but important, case p = q = 1.

Keywords: Linear Partial Differential Operators, Invariants, Gauge
transformations.

1 Introduction

For a second-order hyperbolic Linear Partial Differential Operators (LPDOs) on
the plane in the normalized form

L = Dx ◦Dy + aDx + bDy + c, (1)

where a = a(x, y), b = b(x, y), c = c(x, y), it has been known for several centuries
that the quantities

h = c− ax − ab, k = c− by − ab (2)

are its invariants with respect to the gauge transformations L → g−1Lg. These
two invariants were proved [2] to form together a full system of invariants for
operators of the form (1). Thus, if two operators of the form (1) are known to
have the same invariants h and k, then one may conclude that the operators
are equivalent with respect to such transformations. Any other invariant of the
operator, as well as all of its invariant properties, can be expressed in terms of
h and k.

The case of operators of order two has been actively investigated. For exam-
ple, we can note the classical Laplace hyperbolic second-order LPDOs, scalar

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 360–369, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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hyperbolic non-linear LPDOs, and so on (sample references include [1,3,5]). For
the case of hyperbolic operators of high orders, however, not much is known. A
method for obtaining some invariants for a hyperbolic operator of arbitrary or-
der was mentioned in [8]. In the paper [4] a method to compute some invariants
for operators of order three was suggested.

Although the determination of some particular invariants is already impor-
tant, there is an enormous area of applications for a full system of invariants.
Whenever we have a full system of invariants for a certain class of LPDOs, we
have an easy way to judge whether two operators of the class are equivalent, and
it is possible to classify some of the corresponding partial differential equations
in terms of their invariants. Thus, for example, classification has an immediate
application to the integration of PDEs. Indeed, most integration methods work
with operators given in some normalized form. Also a full system of invariants
for a certain class of operators can be used for the description of all the invariant
properties of the operators in terms of the invariants of the full system.

For third-order operators of the form

L = (Dx +Dy)DxDy + a20D
2
x + a11Dxy + a02D

2
y + a10Dx + a01Dy + a00, (3)

where all the coefficients are functions in x and y, a full system of invariants
was obtained in [6]. This is a special case — albeit an important one — of a
general normalized form for a third-order hyperbolic bivariate LPDO. Indeed,
the symbol of the normalized form of such operators has the form (X+ qY )XY ,
where q = q(x, y) is not zero.

Full systems of invariants have important applications, such as classification,
integration algorithms, etc. So one needs them for as general a class of LPDOs
as possible. In the present paper we establish a full system of invariants for
operators of the form

L = (pDx + qDy)DxDy + a20D
2
x + a11Dxy + a02D

2
y + a10Dx + a01Dy + a00, (4)

where p = p(x, y) and q = q(x, y) are not zero (Theorem 4).

2 Preliminaries

We consider a field K with a set Δ = {∂1, . . . , ∂n} of commuting derivations
acting on it, and work with the ring of linear differential operators K[D] =
K[D1, . . . , Dn], where D1, . . . , Dn correspond to the derivations ∂1, . . . , ∂n, re-
spectively.

Any operator L ∈ K[D] is of the form

L =
∑

|J|≤d

aJD
J , (5)

where aJ ∈ K, J ∈ INn and |J | is the sum of the components of J . Then we say
that the polynomial

SymL =
∑

|J|=d

aJX
J
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is the symbol of L. Let K∗ denotes the set of invertible elements in K. Then for
L ∈ K[D] and every g ∈ K∗ there is a gauge transformation

L→ g−1Lg.

We also can say that this is the operation of conjugation. Then an algebraic
differential expression I in the coefficients appearing in L is invariant under
the gauge transformations if it is unaltered under these transformations. Trivial
examples of an invariant are coefficients of the symbol of the operator.

An operator L ∈ K[D] is said to be hyperbolic if its symbol is completely
factorable (all factors are of first order) and each factor has multiplicity one.

3 Obstacles to Factorizations and Their Invariance

In this section we briefly recapitulate a few results from [7], because they are
essential to the next sections.

Definition 1. Let L ∈ K[D] and suppose that its symbol has a decomposition
SymL = S1 . . . Sk. Then we say that the factorization

L = F1 ◦ . . . ◦ Fk, where SymFi
= Si , ∀i ∈ {1, . . . , k}, (6)

is of the factorization type (S1)(S2) . . . (Sk).

Definition 2. Let L ∈ K[D], SymL = S1 . . . Sk. An operator R ∈ K[D] is
called a common obstacle to factorization of the type (S1)(S2) . . . (Sk) if there
exists a factorization of this type for the operator L − R and R has minimal
possible order.

Remark 1. In general a common obstacle to factorizations of some factorization
type is not unique.

Example 1. Consider a hyperbolic operator

L = Dxy − aDx − bDy − c,

where a, b, c ∈ K. An operator P1 (in this particular case it is an operator of
multiplication by a function) is a common obstacle to factorizations of the type
(X)(Y ) if there exist g0, h0 ∈ K such that

L− P1 = (Dx − g0) ◦ (Dy − h0).

Comparing the terms on the two sides of the equation, one gets g0 = b, h0 = a,
and

P1 = ax − ab− c.

Analogously, we get a common obstacle to factorization of the type (Y )(X):

P2 = by − ab− c,

and the corresponding factorization for (L− P2): L− P2 = (Dx − a) ◦ (Dy − b).
Thus, the obtained common obstacles P1 and P2 are the Laplace invariants [2].
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Theorem 1. Consider a separable operator L ∈ K[Dx, Dy] of order d, and the
factorizations of L into first-order factors. Then

1. the order of common obstacles is less than or equal to d− 2;
2. a common obstacle is unique for each factorization type;
3. there are d! common obstacles;
4. if d = 2, then the common obstacles of order 0 are the Laplace invariants;
5. the symbol of a common obstacle is an invariant.

Corollary 1. For an LPDO of the form

L = (pDx + qDy)DxDy + a20D
2
x + a11Dxy + a02D

2
y + a10Dx + a01Dy + a00, (7)

where all the coefficients belong to K, and p, q are not zero, consider its factor-
izations into first-order factors. Then

1. the order of common obstacles is zero or one;
2. a common obstacle is unique for each factorization type, and therefore, the

corresponding obstacles consist of just one element;
3. there are 6 common obstacles to factorizations into exactly three factors;
4. the symbol of a common obstacle is an invariant with respect to the gauge

transformations L→ g−1Lg.

4 Computing of Invariants

Consider the operator (7). Since the symbol of an LPDO does not change un-
der the gauge transformations L → g−1Lg, then the symbol, and therefore the
coefficients of the symbol, are invariants with respect to these transformations.
Thus, p and q are invariants.

Now we use Corollary 1 to compute a number of invariants for the operator
L. Suppose for a while that

p = 1.

Denote the factors of the symbol SymL = (X + qY )XY of L by

S1 = X, S2 = Y, S3 = X + qY.

Denote the common obstacle to factorizations of the type (Si)(Sj)(Sk) by
Obstijk.

Then the coefficient of Y in the symbol of the common obstacle Obst123 is

(a01q2 + a202 − (3qx + a11q)a02 + qxqa11 − ∂x(a11)q2 + q∂x(a02) + 2q2x − qxx)/q2.

By Theorem 1, this expression is invariant with respect to gauge transforma-
tions L → g−1Lg. Since the term (2q2x − qxx)/q2 and multiplication by q2 does
not influence the invariance property (because q is an invariant), the following
expression is invariant also:

I4 = a01q
2 + a202 − (3qx + a11q)a02 + qxqa11 − ∂x(a11)q2 + q∂x(a02).
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The coefficient of Y in the symbol of the common obstacle Obst213 is

(I4− (∂x(a20)q2− ∂y(a02)q+ a02qy)q+ a02qy)q− qxqyq+ qxyq
2 + 2q2x− qxxq)/q2.

Again the expressions in q can be omitted, while I4 is itself an invariant.
Therefore,

I2 = ∂x(a20)q2 − ∂y(a02)q + a02qy

is an invariant.
Similarly, we obtain the invariants

I1 = 2a20q2 − a11q + 2a02,
I3 = a10 + a20(qa20 − a11) + ∂y(a20)q − ∂y(a11) + 2a20qy.

Generally speaking, by Corollary 1, there are six different obstacles to factor-
izations into exactly three factors. In fact, all the coefficients of the symbols of
the common obstacles can be expressed in terms of four invariants

I1, I2, I3, I4.

Denote the symbol of the common obstacle Obstijk by Symijk. Direct compu-
tations justify the following theorem:

Theorem 2

q2Sym123 = (q2I3 + I2 − qxyq + qyyq
2 + qxqy)Dx + (I4 + 2q2x − qxx)Dy,

q2Sym132 = (i2 + I2)Dx + (I4 + 2q2x − qxx)Dy,
q2Sym213 = (q2I3 + q2qyy)Dx + i3Dy,
q2Sym231 = (q2I3 + q2qyy)Dx + i1Dy,
q2Sym312 = (i2 + I2)Dx + (i1 + I2q)Dy,
q2Sym321 = i2Dx + i1Dy,

where

i1 = I4 − 2∂x(I1)q + 4qxI1 − 2I2q,
i2 = q2I3 − 2∂y(I1)q + 2I1qy + I2,

i3 = I4 − I2q − qxqyq + qxyq
2 + 2q2x − qxxq.

Note that neither of the obtained invariants I1, I2, I3, I4 depends on the “free”
coefficient a00 of the operator L, and, therefore, we need at least one more
invariant.

We guess the form of the fifth invariant by analyzing the structure of invariant

I5=a00−a01a20−a10a02+a02a20a11+(2a02−a11+2a20)∂x(a20)+∂xy(a20−a11+a02)

of the case p = 1, q = 1, considered in [6], and then perform some elimination.
One of the difficulties here lies in the handling of large expressions, which appear
during such manipulations. Naturally, a computer algebra system is needed, and



A Full System of Invariants for Third-Order LPDOs 365

we used Maple running our own package for linear partial differential operators
with parametric coefficients. Thus, we get several candidates to be the fifth
invariant. The most convenient of them has the form

I5 = a00 −
1
2
∂xy(a11) + qx∂y(a20) + qxya20 +

(
2qa20 +

2
q
a02 − a11 + qy

)
∂x(a20) −

1
q
a02a10 − a01a20 +

1
q
a20a11a02.

5 A Full System of Invariants for Third Order LPDOs

Here we prove that the obtained five invariants together form a full system of
invariants for the case of operators with the symbol (X + qY )XY , and then, as
the consequence, obtain a full system of invariants for operators with the symbol
(pX + qY )XY .

One can prove that invariants I1, I2, I3, I4, I5 form a full system in a similar
way to that which was done for invariants of operators with the symbol (X +
Y )XY [6]. Below we suggest a simplification of such a way of proving, even
though we consider a more general case.

Theorem 3. For some non-zero q ∈ K, consider the operators of the form

L = (Dx + qDy)DxDy + a20D
2
x + a11Dxy + a02D

2
y + a10Dx + a01Dy + a00, (8)

where the coefficients belong to K. Then the following is a full system of invari-
ants of such an operator with respect to the gauge transformations L→ g−1Lg:

I1 = 2a20q2 − a11q + 2a02,
I2 = ∂x(a20)q2 − ∂y(a02)q + a02qy,

I3 = a10 + a20(qa20 − a11) + ∂y(a20)q − ∂y(a11) + 2a20qy,
I4 = a01q

2 + a202 − (3qx + a11q)a02 + qxqa11 − ∂x(a11)q2 + q∂x(a02),

I5 = a00 −
1
2
∂xy(a11) + qx∂y(a20) + qxya20 +

(
2qa20 +

2
q
a02 − a11 + qy

)
∂x(a20) −

1
q
a02a10 − a01a20 +

1
q
a20a11a02.

Thus, an operator L′ ∈ K[D]

L′ = (Dx + qDy)DxDy + b20D
2
x + b11DxDy + b02D

2
y + b10Dx + b01Dy + b00 (9)

is equivalent to L (with respect to the gauge transformations L→ g−1Lg) if and
only if their corresponding invariants I1, I2, I3, I4, I5 are equal.

Remark 2. Since the symbol of an LPDO L does not alter under the gauge
transformations L→ g−1Lg, we consider the operators with the same symbol.
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Proof. 1. The direct computations show that the five expressions from the state-
ment of the theorem are invariants with respect to the gauge transformations
L → g−1Lg. One just has to check that these expressions do not depend on g,
when calculate them for the operator g−1Lg. Basically, we have to check the
fifth expression I5 only, since the others are invariants by construction.

2. Prove that these five invariants form a complete set of invariants, in other
words, the operators L and L′ are equivalent (with respect to the gauge trans-
formations L→ g−1Lg) if and only if their corresponding invariants are equal.

The direction “⇒” is implied from 1. Prove the direction “⇐”. Let

I ′1, I
′
2, I

′
3, I

′
4, I

′
5

be the invariants computed from the coefficients of the operator L′ by the for-
mulas from the statement of the theorem, and

Ii = I ′i, i = 1, 2, 3, 4, 5. (10)

Look for a function g = ef , f, g ∈ K, such that

g−1Lg = L′. (11)

Equate the coefficients of Dxx, Dyy on both sides of (11), and get

∂y(f) = b20 − a20, (12)
∂x(f) = (b02 − a02)/q. (13)

In addition, the assumption I2 = I ′2 implies

(b20 − a20)x = ((b02 − a02)/q)y.

Therefore, there is only one (up to a multiplicative constant) function f , which
satisfies the conditions (12) and (13).

Consider such a function f . Then substitute the expressions

b20 = a20 + fy, (14)
b02 = a02 + qfx. (15)

for b20, b02 in (11), and prove that it holds for g = ef .
Subtracting the coefficients of Dxy in g−1Lg from that in L′ we get

b11 − a11 − 2fx − 2qfy,

which equals
2q(I1 − I ′1),

which is zero by the assumption (10). Now we can substitute

b11 = a11 + 2fx + 2qfy.
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Analogously, subtracting the coefficients of Dx,Dy in g−1Lg from those in L′,
correspondingly, we get

b10 − a10 − 2a20fx − a11fy − 2fxy − 2fxfy − qfyy − qf2y =
I ′3 − I3 = 0,

b01 − a01 − 2a02fy − a11fx − 2qfxy − 2qfxfy − fxx − f2x =
I ′4 − I4 = 0.

Now we can express b10 and b01. Now, subtracting the “free” coefficient of g−1Lg
from that of L′, we get

b00 − a00 − a10fx − a01fy − a20(fxx + f2x) − a11(fxy + fxfy) − a02(fyy + f2y )−
fxxy − 2fxyfx − fyfxx − fyf

2
x − qfxfyy − qfxf

2
y − qfxyy − 2qfyfxy =

I ′5 − I5 = 0.

Thus, we proved that for the chosen function f , the equality (11) holds, and
therefore, the operators L and L′ are equivalent.

Remark 3. The Theorem 3 is a generalization of the result of [6], where the case
q = 1 is considered.

Thus, a full system of invariants for the case p = 1 has been found. Now we give
the formulae for the general case.

Theorem 4. For some non-zero p, q ∈ K consider the operators of the form

L = (pDx +qDy)DxDy +a20D
2
x +a11Dxy +a02D

2
y +a10Dx +a01Dy +a00, (16)

where the coefficients belong to K. Then the following is a full system of invari-
ants of such an operator with respect to the gauge transformations L→ g−1Lg:

I1 = 2a20q2 − a11pq + 2a02p2,
I2 = ∂x(a20)pq2 − ∂y(a02)p2q + a02p

2qy − a20q
2px,

I3 = a10p
2−a11a20p+2a20qyp−3a20qpy+a220q−∂y(a11)p2 + a11pyp+ ∂y(a20)pq,

I4 = a01q
2−a11a02q+2a02qpx−3a02pqx+a202p−∂x(a11)q2 + a11qxq + ∂x(a02)pq,

I5 = a00p
3q − p3a02a10 − p2qa20a01 +

(pI1 − pq2py + qp2qy)a20x + (qqxp2 − q2pxp)a20y

+(4q2pxpy − 2qpxqyp+ qqxyp
2 − q2pxyp− 2qqxppy)a20

+(
1
2
pxyp

2q − pxpypq)a11 −
1
2
p3qa11xy +

1
2
a11xpyp

2q +
1
2
a11ypxp

2q

+p2a02a20a11 + pqpxa20a11 − 2pxq
2a220 − 2p2pxa20a02.

Proof. Since p �= 0 we can multiply (16) by p−1 on the right, and get some new
operator

L1 = (Dx +
q

p
Dy)DxDy +

a20
p
D2

x +
a11
p
Dxy +

a02
p
D2

y +
a10
p
Dx +

a01
p
Dy +

a00
p
.
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The invariants of the operator L and L1 are the same. We compute the invariants
of the operator L1 by the formulae of Theorem 3, and get the invariants of the
statement of the current theorem up to multiplication by integers and p, q.

Example 2. For some p, q, c ∈ K consider the simple operator

L = (pDx + qDy)DxDy + c. (17)

Compute the system of invariants of Theorem 4 for L:

0 = I1 = I2 = I3 = I4,

I5 = p3qc.

Thus, every LPDO in K[Dx, Dy] with the symbol XY (pX + qY ) that has the
same set of invariants is equivalent to the simple operator (17). In fact, LPDOs
that are equivalent to the operator (17) are not always trivial looking. Such
operators have the form

L = (pDx + qDy)DxDy + pfyD
2
x + (2pfx + 2qfy)Dxy + qfxD

2
y +

(2pfxy + 2pfxfy+qfyy+qfyfy)Dx + (pfxx + pfxfx + 2qfxy + 2qfxfy)Dy +
c+pfxxy+2pfxyfx + pfyfxx + pfyf

2
x + qfxfyy + qfxf

2
y + qfxyy + 2qfyfxy,

for some f ∈ K.

6 Conclusion

For operators of the form

L = (pDx +qDy)DxDy +a20D
2
x +a11Dxy +a02D

2
y +a10Dx +a01Dy +a00, (18)

where all the coefficients belong to K, we have found five invariants with respect
to the gauge transformations L→ g−1Lg and proved that together they form a
full system of operators.

In fact, Theorem 1 provides a way to find a number of invariants for hyperbolic
bivariate LPDOs of arbitrary order, rather than just for those of order three. One
of the difficulty lies in very large expressions, which appear already for third-
order operators. Moreover, even if one manages to compute them, in general
one gets a number of very large expressions. Then a challenge is to extract
some nice looking invariants out of those large ones, so that these nice looking
invariants generate the obtained ones. Thus, for the case of third-order LPDOs,
we extracted four invariants out of twelve ones.

Another problem is that for applications one rather needs a full system of
invariants. Thus, for the considered operators (18) we had to find a fifth invariant.
However, even in this case it was not easy. Also for operators of high order, one
needs to find more than one invariants so that they together with the obtained
from obstacles ones form a full system.
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Abstract. An efficient CAS helps the user to develop different Symbolic
calculus problems, a clear example of this aid consist in the solution of the
diffusion equation with and without memories, and its stability analysis
working with Maple software package; the software gives the symbolic
solution to this problem, but to do it, some basic definitions had to be
implemented in the software, the stability analysis was not made auto-
matically by the software, and when the problem was solved the necessity
of an automatic solver were found.

1 Introduction

The CAS (computer algebra system) allows obtaining analytical solutions to
mathematical problems with long expressions; proof of this is the analysis de-
velopment of the diffusion equation, using Maple Software. An ideal solution
algorithm to the diffusion equation will be presented, with an automatic Routh-
Hurwitz theorem, it will be evaluated the advantages of the actually used CAS.

Also an stability analysis of the diffusion equation will be presented in this
paper, with the stability analysis, the need of an intelligent CAS can be showed,
not only for the results of the equation also with the mathematical theory that
software should have in memory, and recommend to the user for the solution of
the problem.

Despite this advantage the software interface demands some algorithmic
knowledge to solve the problems; with the implementation of an intelligent CAS,
the software user will be able to have an accurate interaction with the package,
he does not have to be worried about his lack of mathematical knowledge, the
software must be able to provide this aid. The ideal algorithm will be a proposal
of new friendlier interfaces with user.

2 Model

The diffusion equation describes the behavior of a substance, in an autocatalytic
reaction inside a circular reactor; it shows the relation between the creation, and
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the diffusion of the substance that catalyze the reacting material [2]. With the
stability analysis the critic radius will be estimated, employing some mathemat-
ical theorems and the Maple Software package.

The diffusion equation is a six terms equation, describes the concentration,
reaction an diffusion behavior of the substance inside the reactor, it is also take
in to account the memories in time for each considered variation [2]:

∂

∂t
u (r, t) +

∫ t

0

m1 (t− τ)
∂

∂τ
u (r, τ) dτ −

η
(

∂
∂ru (r, t) + r ∂2

∂r2u (r, t)
)

r
−

ku (r, t) −
∫ t

0

χ
(

∂
∂ru (r, τ) + r ∂2

∂r2u (r, τ)
)
m2 (t− τ)

r
dτ −

q

∫ t

0

m3 (t− τ) u (r, τ) dτ = 0, (1)

where the first couple of terms are the concentration and the concentration vari-
ation in time, the diffusion and reaction and each set of memories respectively;
to solve this equation the initial condition take into account was U(r,0)=0, and a
boundary condition U (a, t) = μb, besides the function must be finite. Applying
the Laplace Transform taking into account the initial condition, and renaming the
transforms of corresponding memory functions of the equation; is a solving step
to change the partial differential equation into an ordinary differential equation

Table 1. Symbol descriptions

Name Symbol

Diffusivity η
Deactivity k
Amplitude
coefficient of
diffusion memory χ
Amplitude
coefficient of
the reaction memory q

The ordinary differential equation was solved taking into account the bound-
ary and finitude conditions. Using the solver of differential equation in Maple
software was obtained:

U (r) =
μbJ0 (f (s) r)
J0 (f (s) a) s

. (2)

The inverse Laplace transform was obtained using the Bromwich integral which
was solved using the residue theorem [4,1]

U (r, t) =
1

2πi

∫
μbJ0 (f (s) r) est

J0 (f (s) a) s
ds, (3)
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Table 2. Program code

> restart;
> with(V ectorCalculus) :
> with(inttrans, laplace);
> eq := diff(u(r, t), t) + int(m[1](t − tau) ∗ diff(u(r, tau), tau), tau = 0..t)
−eta ∗ Laplacian(u(r, t), polar[r, theta]) − k ∗ u(r, t)−
int(chi ∗ Laplacian(u(r, tau), polar[r, theta]) ∗ m[2](t − tau), tau = 0..t)−
q ∗ int(m[3](t − tau) ∗ u(r, tau), tau = 0..t) = 0;
> eq1 := laplace(eq, t, s);
> eq2 := subs([laplace(u(r, t), t, s) = U(r), u(r, 0) = 0, laplace(m[1](t), t, s) =
M [1](s), laplace(m[2](t), t, s) = M [2](s), laplace(m[3](t), t, s) =
M [3](s)], eq1);
> eq3 := dsolve(eq2, U(r));
> eq4 := subs(C2 = 0, eq3);
>C 1 := solve((subs(r = a, rhs(eq4)) = laplace(mu[b], t, s)),C 1);
> eq4;
> eq5A := expand(eq4);
> eq5B := subs([(−1/(chi ∗ M [2](s) + eta) ∗ s − 1/(chi ∗ M [2](s) + eta)∗
M [1](s) ∗ s + 1/(chi ∗ M [2](s) + eta) ∗ q ∗ M [3](s) + 1/(chi ∗ M [2](s) + eta) ∗ k)(1/2) =
f(s)], eq5A);
> eq5BP := subs([BesselJ(0, f(s) ∗ r) = J [0](f(s) ∗ r), BesselJ(0, f(s) ∗ a)
= J [0](f(s) ∗ a)], eq5B);
> eq5e := U(r, t) = (1/(2 ∗ pi ∗ i)) ∗ Int(rhs(eq5BP ) ∗ exp(s ∗ t), s);
> U(r, t) = residue(rhs(eq5B), s = 0) + Sum((exp(s ∗ t) ∗ (numer(rhs(eq5B)))/s)/
(diff((denom((rhs(eq5B)))/s), s)), n = 1..infinity);
> eq6 := C[r] = numer(simplify(((−1/(chi ∗ M [2](s) + eta) ∗ s − 1/(chi∗
M [2](s) + eta) ∗ M [1](s) ∗ s + 1/(chi ∗ M [2](s) + eta) ∗ q ∗ M [3](s)+

1/(chi ∗ M [2](s) + eta) ∗ k)(1/2))2 − (alpha[n]/a)2));
> eq6A := subs(s = 0, rhs(eq6)) = 0;
> eq7 := U(r, t) = subs([s = s[ni], BesselJ(0, f(s) ∗ r) =
J [0](alpha[n]/a ∗ r), BesselJ(1, f(s) ∗ a) = J [1](alpha[n]), BesselJ(0, f(0) ∗ r) =
J [0](f(0) ∗ r), BesselJ(0, f(0) ∗ a) = J [0](f(0) ∗ a)],
residue(rhs(eq5B), s = 0) + Sum(Sum((exp(s ∗ t) ∗ (numer(rhs(eq5B)))/s)/
(diff((denom((rhs(eq5B)))/s), s)), i = 1..degree ∗ C[r]), n = 1..infinity));
> f(s)2 − (alpha[n]/a)2 = 0;
> eq8 := coeff(lhs(eq6A), s, 0) = 0;
> eq9 := (solve(eq6A, a));
> a[c, n] = eq9[1];

> a[c, 1] = (((chi ∗ M [2](0) + eta)/(q ∗ M [3](0) + k))(1/2)) ∗ 2.405;

after the residue theorem was applied, the following expression was obtained [4]:

U (r, t) =
μbJ0 (f (0) r)
J0 (f (0) a)

+

∞∑

n=1

⎛

⎝
(deg)Cr∑

i=1

−esni tμbJ0

(αnr

a

)
sni

−1 (J1 (αn))−1

(
d

dsni
f (sni)

)−1

a−1

⎞

⎠ ,(4)

where Cr is the function defined as follows, and the maximum s variable degree
it is the summation upper limit:
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Cr = −sa2 −M1 (s) sa2 + qM3 (s) a2 + ka2 − αn
2χM2 (s) − αn

2η, (5)

and M1, M2 and M3 are the Laplace transform of the function into diffusion
equation memories. Then the Routh-Hurwitz theorem was applied to find the
critical radius into reactor [3],

ac,n =

√
χM2 (0) + η

qM3 (0) + k
αn. (6)

2.1 Program Code

The code use in general case [Table 2] was implemented in Maple Software,
where the first three lines are the used packages of the software, the next line is
the input, in this case the diffusion equation; then the Laplace transform of the
equation was obtained, and the initial, finitude and boundary condition were set.
Solving the differential equation was obtained the U(r) function, then using the
Bromwich Integral the inverse Laplace Transform was obtained, and at the end
of the code lines the residue theorem was applied, and with the Routh-Hurwitz
theorem the stability analysis was did.

3 Solution Method

To solve the diffusion equation according to the model, was employed the Maple
Software package in order to obtain step by step each result that was presented in
the model, but some of the procedures, as the right employment of the theorems
were manual, the idea is develop an intelligent CAS to solve this kind of problems
without the usage of any other reference.

3.1 Diffusion Equation

The diffusion equation describes the concentration change of a reacting substance
in a reactor, besides the concentration change, the substance can move inside
the reactor; and react creating another substance, the equation (1) also describes
these conditions.

∂

∂t
u (r, t)−

η
(

∂
∂ru (r, t) + r ∂2

∂r2u (r, t)
)

r
− ku (r, t) = 0. (7)

To solve this equation was applied the Bromwich integral

U (r, t) =
1

2πi

∫
μbJ0 (f (s) r) est

J0 (f (s) a) s
ds, (8)

in this case the residue theorem is define as:

U (r, t) =
μbJ0 (f (0) r)
J0 (f (0)a)

+

∞∑

n=1

−esntμbJ0

(αnr

a

)
sn

−1 (J1 (αn))−1

(
d

dsn
f (sn)

)−1

a−1, (9)
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where f(s) is the function:

f (s) =

√
−s+ k

η
. (10)

Applying the Routh-Hurwitz theorem to the f(s) function and taking into ac-
count the definition of the critical radius was obtained:

sn =
ka2 − αn

2η

a2
, (11)

ac,n =
√
η

k
αn, (12)

ac,1 = 2.405
√
η

k
. (13)

3.2 Diffusion Equation with Exponential Memory

Now the diffusion equation will be analyzed taking into account all the memory
terms, and the functions m1(t − τ), m2(t − τ) and m3(t − τ), displayed in the
model will be exponential functions, as follows:

∂

∂t
u (r, t) +

∫ t

0

e−β (t−τ) ∂

∂τ
u (r, τ) dτ −

η
(

∂
∂ru (r, t) + r ∂2

∂r2u (r, t)
)

r
−

ku (r, t) −
∫ t

0

χ
(

∂
∂ru (r, τ) + r ∂2

∂r2u (r, τ)
)
e−α (t−τ)

r
dτ −

q

∫ t

0

e−δ (t−τ)u (r, τ) dτ = 0. (14)

To solve this equation we applied the Bromwich integral

U (r, t) =
1

2πi

∫
μbJ0 (f (s) r) est

J0 (f (s) a) s
ds, (15)

in this case the residue theorem is defined as:

U (r, t) =
μbJ0 (f (0) r)
J0 (f (0) a)

+

∞∑

n=1

(
4∑

i=1

−esni tμbJ0

(αnr

a

)
sni

−1 (J1 (αn))−1

(
d

dsni
f (sni )

)−1

a−1

)
, (16)

where f(s) is the function:

−a2s4 +
(
−αn

2η − a2δ − a2β − a2α− a2 + a2k
)
s3 +Bs2 +Ws+

a2qβ α+ a2kβ δ α− αn
2β δ η α− αn

2β δ χ = f (s) , (17)
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B = −a2α+ a2q − αn
2δ η + a2kα− a2δ − αn

2β η − a2δ α+ a2kδ −
αn

2η α− a2β α− a2β δ − αn
2χ+ a2kβ, (18)

W = a2qβ − αn
2β η α− a2β δ α− αn

2δ η α+ a2kβ α− αn
2β χ−

αn
2β δ η + a2kδ α− αn

2δ χ+ a2kβ δ + a2qα− a2δ α. (19)

Applying the Routh-Hurwitz theorem to the f(s) function and taking into
account the definition of the critical radius was obtained:

a2qβ α+ a2kβ δ α− αn
2β δ η α− αn

2β δ χ = 0, (20)

ac,n =

√
δ (χ+ η α)
α (kδ + q)

αn, (21)

ac,1 = 2.405

√
δ (χ+ η α)
α (kδ + q)

. (22)

3.3 Diffusion Equation with a Power Function Memory

In this case the functions m1(t − τ), m2(t − τ) and m3(t − τ) in the diffusion
equation, displayed in the model will be power functions, as follows:

∂

∂t
u (r, t) +

∫ t

0

(t− τ)n e−β (t−τ) ∂

∂τ
u (r, τ) dτ −

η
(

∂
∂ru (r, t) + r ∂2

∂r2u (r, t)
)

r
−

ku (r, t) −
∫ t

0

(t− τ)n
χ

(
∂
∂ru (r, τ) + r ∂2

∂r2u (r, τ)
)
e−α (t−τ)

r
dτ −

q

∫ t

0

(t− τ)n
e−δ (t−τ)u (r, τ) dτ = 0. (23)

To solve this equation ise applied the Bromwich integral

U (r, t) =
1

2πi

∫ μbJ0

(√
λ (s)r

)
est

J0

(√
λ (s)a

)
s

ds (24)

where λ(s) in this case is the function defined as follows, and one more time its
s maximum degree is the summation upper limit:

λ (s) = −
(s+ α)G

(
η (s+ α)2n

s+ Γ (n)χn (s+ α)n + η α (s+ α)2n
)

(s+ β) (s+ δ) (η (s+ α)n
s+ η (s+ α)n

α+ χΓ (n)n)2
, (25)

G = s3 + s2Γ (k + 1) (s+ β)−n − s2k + s2δ + β s2 − sΓ (k + 1) (s+ δ)−n
q −

skβ + β δ s− skδ + sΓ (k + 1) (s+ β)−n
δ − kβ δ − Γ (k + 1) (s+ δ)−n

qβ.(26)

Applying the Routh-Hurwitz theorem to the λ(s) function and taking into ac-
count the definition of the critical radius was obtained:
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−2Γ (n)αn
2η αnαχnβ δ − αn

2χ2 (Γ (n))2 n2β δ − αn
2η2α2nα2β δ +

a2α2kη α2nβ δ + Γ (n) a2αkχnαnβ δ +
Γ (k + 1)a2α δ−nqβ Γ (n)χnαn + Γ (k + 1)a2δ−nqβ η α2α2n = 0, (27)

ac,n = αnδ

√
η α2 + χ

kδ2 + q
α−1, (28)

ac,1 = 2.405

√
η α2 + χ

kδ2 + q
δα−1. (29)

4 Advantages of Intelligent CAS

The actual developed CAS are useful solving most of the symbolic calculus prob-
lems, but the user of the software has to interfere in some mechanical process
that should be solved automatically by software; some theorems must be imple-
mented by the user to solve a symbolic calculus problem, in order to obtain an
answer. All this aid that user has to provide to software should be none.

In order to solve this problem in actual CAS is a real automatic solver, with a
friendlier interface to the user, that provide help to the user and suggest solution
ways.

5 Conclusions

The diffusion equation with memories is a good example to evaluate the advan-
tages and disadvantages of the existing CAS, besides the solution of this problem
proofs the utility that provides the software solving long term expressions. In
order to find a solution to the problem the implemented algorithm was accurate
to solve the problem but there was a lot theoretical interference that software
should has.

The CAS is a powerful tool, but it has to be refined, in order to be friendlier
with user, also more accurate, because it will be easier to the user to handle it,
and in some cases this advantage could lead to automatic problem solution.
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Abstract. We obtain new inequalities on the real roots of a univariate
polynomial with real coefficients. Then we derive estimates for the largest
positive root, which is a key step for real root isolation. We discuss the
case of classic orthogonal polynomials. We also compute upper bounds for
the roots of orthogonal polynomials using new inequalities derived from
the differential equations satisfied by these polynomials. Our results are
compared with those obtained by other methods.

1 Bounds for Real Polynomial Roots

The computation of the real roots of univariate polynomials with real coefficients
is based on their isolation. To isolate the real positive roots, it is sufficient to
estimate the smallest positive root (cf. [2] and [21]). This can be achieved if we
are able to compute accurate estimates for the largest positive root.

1.1 Computation of the Largest Positive Root

Several bounds exist for the absolute values of the roots of a univariate poly-
nomial with complex coefficients (see, for example, [15]). These bounds are ex-
pressed as functions of the degree and of the coefficients, and naturally they can
be used also for the roots (real or complex) of polynomials with real coefficients.
However, for the real roots of polynomials with real coefficients there also ex-
ist some specific bounds. In particular, some bounds for the positive roots are
known, the first of which were obtained by Lagrange [11] and Cauchy [5]. We
briefly survey here the most often used bounds for positive roots and discuss
their efficiency in particular cases, emphasizing the classes of orthogonal poly-
nomials. We then obtain extensions of a bound of Lagrange, and derive a result
also valid for positive roots smaller than 1.

A Bound of Lagrange

Theorem 1 (Lagrange). Let P (X) = a0X
d+· · ·+amX

d−m−am+1X
d−m−1±

· · · ± ad ∈ R[X ] , with all ai ≥ 0, a0, am+1 > 0 . Let

A = max
{
ai ; coeff (Xd−i) < 0

}
.
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The number

1 +
(
A

a0

)1/(m+1)

is an upper bound for the positive roots of P .

The bound from Theorem 1 is one of the most popular (cf. H. Hong [8]), however
it gives only bounds larger than one. For polynomials with subunitary real roots,
it is recommended to use the bounds of Kioustelidis [9] or Ştefănescu [18]. A
discussion on the efficiency of these results can be found in Akritas–Strzeboñski–
Vigklas [2] and Akritas–Vigklas [3].

Extensions of the Bound of Lagrange. We give a result that extends the
bound L1(P ) of Lagrange.

Theorem 2. Let P (X) = a0X
d + · · · + amX

d−m − am+1X
d−m−1 ± · · · ± ad ∈

R[X ] , with all ai ≥ 0, a0, am+1 > 0 . Let

A = max
{
ai ; coeff (Xd−i) < 0

}
.

The number
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + max

{(
pA

a0 + · · ·+ as

)1/(m−s+1)

,

(
qA

sa0 + · · ·+ 2as−2 + as−1

)1/(m−s+2)

,

(
2rA

s(s− 1)a0 + (s− 1)(s− 2)a1 + · · ·+ 2as−2

)1/(m−s+3)

.

(1)

is an upper bound for the positive roots of P for any s ∈ {2, 3, . . . ,m} and
p ≥ 0 , q ≥ 0 , r ≥ 0 such that p+ q + r = 1 .

The proof of Theorem 2 is similar to that of our Theorem 1 in [19].

Particular Cases of Theorem 2.

1. For p = 1, q = r = 0, we obtain the bound

1 +
(

A

a0 + · · ·+ as

)1/(m−s+1)

.

This bound is also valid for s = 0 and s = 1. For s = 0, it reduces to the bound
L1(P ) of Lagrange.

2. For p = q = r = 1/3 , we obtain Theorem 1 from [19].

3. For p = q = 1/4, r = 1/2, we obtain
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1 + max

{(
A

4(a0 + · · ·+ as)

)1/(m−s+1)

,

(
A

4(sa0 + · · ·+ 2as−2 + as−1)

)1/(m−s+2)

,

(
A

s(s− 1)a0 + (s− 1)(s− 2)a1 + · · ·+ 2as−2

)1/(m−s+3)

.

4. For p = q =
1
2

, r = 0, we obtain

1 + max

{(
A

2(a0 + · · · + as)

)1/(m−s+1)

,

(
A

2(sa0 + · · ·+ 2as−2 + as−1)

)1/(m−s+2)
}
,

which is Theorem 3 from [18]. This bound is also valid for s = 0.

Example 1. Let

P1(X) = X17 +X13 +X12 +X9 + 3X8 + 2X7 +X6 − 5X4 +X3 − 4X2 − 6 ,

P2(X) = X13 +X12 +X9 + 3X8 + 2X7 +X6 − 6X4 +X3 − 4X2 − 7 .

We denote by B(P ) = B(m, s, p, q, r) the bound given by Theorem 1, by L1(P )
that of Lagrange (Theorem 1) and by LPR the largest positive root. For P1 we
have A = 6 and m = 11, and for P2 we have A = 7 and m = 6. We obtain:

P s p q r B(P ) L1(P ) LPR
P1 8 0.5 0.5 0 13.89 2.161 1.53
P1 2 0.5 0.5 0 3.15 2.161 1.53
P1 1 0.5 0.5 0 2.00 2.161 1.53
P1 8 0.4 0.3 0.3 64.78 2.161 1.53
P1 2 0.2 0.6 0.2 3.25 2.161 1.53
P2 7 0.5 0.5 0 8.25 2.232 1.075
P2 3 0.4 0.6 0 7.18 2.232 1.075
P2 3 0.5 0.5 0 6.85 2.232 1.075
P2 1 0.4 0.6 0 3.07 2.232 1.075
P2 5 0.4 0.3 0.3 26.2 2.232 1.075
P2 2 0.4 0.3 0.3 4.02 2.232 1.075
P2 2 0.6 0.2 0.2 3.84 2.232 1.075
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Comparison with the Bound of Lagrange. We compare the bound given
by Theorem 2 with that of Lagrange

L1(P ) = 1 +
(
A

a0

)1/(m+1)

.

We consider p = q = 0.25 , r = 0.5 and s = 2 in Theorem 2. With the previous
notation we have

B(P ) = 1+max

{(
A

4(a0 + a1 + a2)

)1/(m−1)

,

(
A

4(2a0 + a1)

)1/m

,

(
A

2a0

)1/(m+1)
}
.

We can see which of the bounds B(P ) and L1(P ) is better by looking to the size
of A with respect to a0, a1, a2 and m. We obtain

B(P )<L1(P ) if A<min

⎧
⎪⎨

⎪⎩

(
4(a0 + a1 + a2)

)(m+1)/2

a
(m−1)/2
0

,
4m+1(2a0 + a1)m+1

am
0

⎫
⎪⎬

⎪⎭

and

B(P )>L1(P ) if A>max

⎧
⎪⎨

⎪⎩

(
4(a0 + a1 + a2)

)(m+1)/2

a
(m−1)/2
0

,
4m+1(2a0 + a1)m+1

am
0

⎫
⎪⎬

⎪⎭
.

Example 2. We consider

P (X) = P (X, d,A)
= Xd + 3Xd−1 +Xd−2 + 0.001Xd−3 + 0.0003Xd−4

−AX4 −AX3 −AX − A+ 1 ,

with A > 0 .

We obtain the values in the following table:

d A L1(P ) B(P ) LPR
10 3 2.201 2.069 1.146
11 3 2.201 2.069 1.126
8 4 2.256 2.122 1.287
9 4 2.256 2.122 1.230
10 4 2.256 2.122 1.193
10 206 20.999 43.294 19.687
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1.2 Other Bounds for Positive Roots

Note that the bound L1(P ) of Lagrange and its extensions give only numbers
greater than one, so they cannot be used for some classes of polynomials. For
example, the roots of Legendre orthogonal polynomials are subunitary.

J. B. Kioustelidis [9] gives the following upper bound for the positive real
roots:

Theorem 3 (Kioustelidis). Let P (X) = Xd − b1X
d−m1 − · · · − bkX

d−mk +
g(X), with g(X) having positive coefficients and b1 > 0, . . . , bk > 0 . The number

K(P ) = 2 · max{b1/m1
1 , . . . , b

1/mk

k }

is an upper bound for the positive roots of P .

For polynomials with an even number of variations of sign, we proposed in [18]
another bound. Our method can be applied also to polynomials having at least
a sign variation. For this it is sufficient to make use of the following

Lemma 1. Any polynomial P (X) ∈ R[X ] having at least one sign variation can
be represented as

P (X) = c1X
d1 − b1X

m1 + c2X
d2 − b2X

m2 + · · ·+ ckX
dk − bkX

mk + g(X) ,

with g(X) ∈ R+[X ], ci > 0, bi > 0, di > mi for all i .

Proof. If P has an even number of sign variations there is nothing to prove.
Otherwise, suppose that

P (X) = cXd1 +
k−t∑

i=2

ciX
di −

k∑

i=1

biX
mi + h(X) ,

with h(X) ∈ R+[X ], c > 0, ci > 0, bi > 0, di > mi for all i ≤ k − t and
t ≥ 1 . Then we put c = c1 + ck−t+1 + . . . + ck with c1 > 0, cj > 0 for any
j ∈ {k − t+ 1, . . . , k} . �	

Then we have the following estimation for positive roots:

Theorem 4. Let P (X) ∈ R[X ] and suppose that P has at least one sign varia-
tion. If

P (X) = c1X
d1 − b1X

m1 + c2X
d2 − b2X

m2 + · · ·+ ckX
dk − bkX

mk + g(X) ,

with g(X) ∈ R+[X ], ci > 0, bi > 0, di > mi for all i, the number

S(P ) = max

{(
b1
c1

)1/(d1−m1)

, . . . ,

(
bk
ck

)1/(dk−mk)
}

is an upper bound for the positive roots of P .



382 D. Ştefănescu

Proof. It is sufficient to observe that for x > 0, x > S(P ), we have

ci x
di − bi x

mi > 0 for all i ,

so P (x) > 0 . �	

Remark 1. We obtained in [18], Theorem 2, another version of Theorem 4, under
the additional assumption that the polynomial has an even number of sign vari-
ations and that di > mi > di+1 for all i. Afterwards, Akritas et al. presented in
[2] a result based on Theorem 2 from [18]. Their approach to adapt our theorem
to any polynomial with sign variations uses a representation

P (X) =
m∑

i=1

(q2i−1(X)− q2i(X)) + g(X), (2)

where all polynomials qj and g have positive coefficients, and some supple-
mentary inequalities among the degrees of the monomials of the successive
polynomials q2i−1 and q2i are satisfied. However, the proof of their result is
a variation of ours from [18] and their upper bound is similar. There is no
evidence that the consideration of the additional polynomials qj is a gain from
a computational point of view. Our statement of Theorem 4 is also more
concise.

At the same time, the splitting of a positive coefficient in Lemma 1, respec-
tively the decomposition (2) in [2], if needed, are not unique. We also note that
Theorem 2 from [18] and the extensions of Akritas et al. were implemented in
[2] and [3].

Remark 2. If a polynomial P ∈ R[X ] has all real positive roots in the interval
(0, 1), using the transformation x → 1/x we obtain a polynomial — called the
reciprocal polynomial — with positive roots greater than one. If we compute
an bound ub for the positive roots of the reciprocal polynomial, the number
lb = 1/ub will be a lower bound for the positive roots of the initial polynomial P .
This process can be applied to any real polynomial with positive roots, and
is a key step in the Continued Fraction real root isolation algorithm (see [2]
and [21]).

Note that in some special cases the following other bound of Lagrange can be
useful:

Theorem 5. Let F be a nonconstant monic polynomial of degree n over R and
let {aj ; j ∈ J} be the set of its negative coefficients. Then an upper bound for
the positive real roots of F is given by the sum of the largest and the second
largest numbers in the set {

j

√
|aj | ; j ∈ J

}
.

Theorem 5 can be extended to absolute values of polynomials with complex
coefficients (see [14]).
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Notation. The bounds of Lagrange from Theorems 1 and 5 will be denoted by
L1(P ), respectively L2(P ) .

Example 3. We consider P (X) = 2X7 − 3X4 − X3 − 2X + 1 ∈ R[X ] . The
polynomial P does not fulfill the assumption di > mi > di+1 for all i from
Theorem 2 in [18]. However, after the decomposition of the leading coefficient in
a sum of positive numbers, as in Lemma 1, Theorem 4 can be applied. We use
the following two representations:

P (X) = P1(X) = (X7 − 3X4) + (0.5X7 −X3) + (0.5X7 − 2X) + 1 ,

P (X) = P2(X) = (1.1X7 − 3X4) + (0.4X7 −X3) + (0.5X7 − 2X) + 1.

We denote Sj(P ) = S(Pj) for j = 1, 2 , and obtain the bounds

S1(P ) = 1.442 , S2(P ) = 1.397 .

On the other hand the largest positive root of P is 1.295. Other bounds give

K(P ) = 2.289 , L1(P ) = 2.404 , L2(P ) = 2.214 .

Both S1(P ) and S2(P ) are smaller than L1(P ), L2(P ) and K(P ).

2 Bounds for Roots of Orthogonal Polynomials

Classical orthogonal polynomials have real coefficients and all their zeros are
real, distinct, simple and located in the interval of orthogonality.

We first evaluate the largest positive roots of classical orthogonal polynomials
using the results in Section 1 and a bound considered by van der Sluis in [17]. We
also obtain new bounds using properties of of the differential equations which
they satisfy. These new bounds will be compared with known bounds.

Proposition 1. Let Pn, Ln, Tn and Un be the orthogonal polynomials of degree
n of Legendre, respectively Laguerre and Chebyshev of first and second kind. We
have

i. The number S(Pn) =

√
n(n− 1)
2(2n− 1)

is an upper bound for the roots of Pn .

ii. The number S(Ln) = n2 is an upper bound for the roots of Ln .

iii. The number S(Tn) =
√
n

2
is an upper bound for the roots of Tn .

iv. The number S(Un) =
√
n− 1
2

is an upper bound for the roots of Un .
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Proof. We use the representations

Pn(X) =
�n/2�∑

k=0

(−1)k (2n− 2k)!
k!(n− k)!(n− 2k)!

Xn−2k,

Ln(X) =
n∑

k=0

(
n

n− k

)
(−1)k

k!
Xk,

Tn(X) =
n

2

�n/2�∑

k=0

(−1)k 2n−2k

n− k

(
n− k

k

)
Xn−2k,

Un(X) =
�n/2�∑

k=0

(−1)k 2n−2k

(
n− k

k

)
Xn−2k ,

and Theorem 4 or Theorem 2 of [18].
For example, in the case of Legendre polynomials, Theorem 4 gives

max
{

(n− 2k + 1)(n− 2k + 2)
k(2n− 2k + 1)

; 1 ≤ k ≤ 2n/2�
}
,

and we obtain the bound S(Pn) =

√
n(n− 1)
2(2n− 1)

. �	

Because orthogonal polynomials are hyperbolic polynomials — i. e. all their
roots are real numbers — for the estimation of their largest positive root we can
also use the bounds given by van der Sluis [17]. He considers monic univariate
polynomials

P (X) = Xn + a1X
n−1 + a2X

n−2 + · · · + an ∈ R[X ]

and mentions the following upper bound for the roots in the hyperbolic case:

Nw(P ) =
√
a21 − 2a2 .

For orthogonal polynomials Newton’s bound gives

Proposition 2. Let Pn, Ln, Tn and Un be the orthogonal polynomials of degree
n of Legendre, respectively Laguerre and Chebyshev of first and second kind. We
have

i. The number Nw(Pn) =

√
2(2n− 2)!

(n− 1)!(n− 2)!
is an upper bound for the roots

of Pn .

ii. The number Nw(Ln) =
√
n4 − n2(n− 1)2 is an upper bound for the roots

of Ln .
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iii. The number Nw(Tn) = 2(n−1)/2 is an upper bound for the roots of Tn .

iv. The number Nw(Un)=
√

(n− 1)2n−1 is an upper bound for the roots of Un.

Comparisons on Orthogonal Polynomials. In the following tables we de-
note by L1 the bound of Lagrange from Theorem 1, by K the bound of Kiouste-
lidis, by S our bound from [18], by Nw the bound of Newton and by LPR the
largest positive root of the polynomial P . We used the gp-pari package for
computing the entries in the tables.

I. Bounds for Zeros of Legendre Polynomials

n L1(P ) K(P) S(P) Nw LPR
5 2.05 2.10 1.054 141.98 0.901
8 2.367 2.73 1.366 157822.9 0.960
15 2.95 3.80 1.902 2.08× 1014 0.987
50 47.043 7.035 3.517 1.96× 1076 0.9988
120 26868.98 10.931.97 5.465 1.091× 10231 0.9998

II. Bounds for Zeros of Laguerre Polynomials

n L1(P ) K(P) S(P) Nw(P) LPR
5 600 25 25 15.0 12.61
8 376321.0 64 25 30.983 22.86
15 7.44× 1013 225 225 80.777 48.026
50 6.027× 1068 2500 2500 497.49 180.698
120 1.94× 10206 14400 14400 1855.15 487.696

III. Bounds for Zeros of Chebyshev Polynomials of First Kind

n L1(P ) K(P) S(P) Nw LPR
5 2.118 2.236 1.118 4.0 0.951
8 2.41 2.83 1.41 11.313 0.994
15 3.072 3.872 1.936 128.0 0.994
50 48.822 7.416 3.708 2.37× 107 0.9995
120 27917.33 10.00 5.00 8.1517 0.99991

IV. Bounds for Zeros of Chebyshev Polynomials of Second Kind

n L1(P ) K(P) S(P) Nw(P) LPR
5 2.00 2.00 1.00 8.0 0.87
8 2.322 2.83 1.41 29.933 0.994
15 2.87 3.74 1.87 478.932 0.98
50 45.348 9.96 4.98 1.66× 108 0.9981
120 25864.44 9.96 4.98 8.89× 1018 0.9996
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Note that for Legendre and Chebyshev polynomials we have K(P ) = 2S(P ).
Other comparisons on roots of orthogonal polynomials were obtained by Akri-

tas et al. in [3]. They consider the bounds of Cauchy and Lagrange, and also
cite their result derived from our result in [18]. Obviously, in the case of classical
orthogonal polynomials there exist an even number of sign variations, and thus
Akritas et al. apply, in fact, our theorem.

We note that Newton bound gives the best results for Laguerre polynomials.
Better estimates can be derived using the Hessian of Laguerre.

Bounds Derived Through the Hessian of Laguerre

Another approach for estimating the largest positive root of an orthogonal poly-
nomial is the study of inequalities derived from the positivity of the Hessian
associated to an orthogonal polynomial. They will allow us to obtain better
bounds than known estimations.

If we consider

f(X) =
n∑

j=1

aj X
j ,

a univariate polynomial with real coefficients, its Hessian is

H(f) = (n− 1)2 f ′2 − n(n− 1) ff ′ ≥ 0 .

The Hessian was introduced by Laguerre [12], who proved that H (f) ≥ 0 .
Let now f ∈ R[X ] be a polynomial of degree n ≥ 2 that satisfies the second–

order differential equation

p(x) y′′ + q(x) y′ + r(x) y = 0 , (3)

with p, q and r univariate polynomials with real coefficients, p(x) �= 0. We recall
the following

Theorem 6 (Laguerre). If all the roots of f are simple and real, we have

4(n− 1)
(
p(α)r(α) + p(α)q′(α) − p′(α)q(α)

)
− (n+ 2)q(α)2 ≥ 0 (4)

for any root α of f .

The inequality (4) can be applied successfully for finding upper bounds for the
roots of orthogonal polynomials.

Example 4. Consider the Legendre polynomial Pn, which satisfies the differential
equation

(1 − x2)y′′ − 2xy′ + n(n+ 1)y = 0 .

From (3) it follows that La(n) = (n − 1)

√
n+ 2

n(n2 + 2)
is a bound for the roots

of Pn . We have thus the following bounds for the largest zeros of Legendre
polynomials:
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n La(P) LPR
5 0.91084 0.90617
8 0.96334 0.96028
11 0.98021 0.97822
15 0.98922 0.98799
55 0.99917 0.99906
100 0.99975 0.99971

Example 5. Consider the Hermite polynomial Hn, which satisfies the differential
equation

y′′ − 2xy′ + 2ny = 0 .

From (3) it follows that He(n) = (n − 1)

√
2

n+ 2
is a bound for the roots of

Hn . We have the following bounds for the largest zeros of Hermite polynomials:

n He(P) LPR
3 1.264 1.224
8 3.130 2.930
12 4.156 3.889
20 5.728 5.387
50 9.609 9.182

For Hermite polynomials we obtain better estimates using the following

Theorem 7. Let f ∈ R[X ] be a polynomial of degree n ≥ 2 that satisfies the
second order differential equation

p(x) y′′ + q(x) y′ + r(x) y = 0 , (5)

with p, q and r univariate polynomials with real coefficients, p(x) �= 0.
If all the roots of f are simple and real we have

8(n− 3)q2(α)2 + 9(n− 2)q(α)q3(α) ≥ 0 ,

where
q2 = q2 + p′q − pq′ − pr ,

q3 = (2p′ + q)
(
−q2 − p′q + pq′ − pr

)
− pq (p′′ + 2q′ + r) − p2 (q′′ + 2r′) .

for any root α of f .

Proof. Let α be a root of the polynomial f(X) and consider the polynomial

g(X) =
f(X)
X − α

.

We observe that

f (k)(α) = kg(k−1)(α) for all k ≥ 1 .
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From the differential equation (5) we obtain

g′(α) = − q(α)
2p(α)

· g(α). (6)

We take derivatives in (5) twice and obtain

p(x)y′′′ + (p′(x) + q(x)) y′′ + (q′(x) + r(x)) y′ + r′(x)y = 0 , (7)

respectively

p(x)y(iv) + (2p′(x) + q(x)) y′′′

+ (p′′(x) + 2q′(x) + r(x)) y′′ + (q′′(x) + 2r′(x)) y′ + r′′(x)y = 0 . (8)

From the previous equations we get

3p(α)g′′(α) + 2 (p′(α) + q(α)) g′(α) + q′(α)g(α) = 0 ,

therefore

g′′(α) =
q2(α)
3p(α)2

· g(α) (9)

where
q2 = q2 + p′q − pq′ − pr .

Similarly, from (8) we obtain

4p(α)g′′′(α) + 3 (2p′(α) + q(α)) g′′(α) + 2 (p′′(α) + 2q′(α) + r(α)) g′(α)

+ (q′′(α) + 2r′(α)) g(α) = 0 ,

hence

g′′′(α) =
q3(α)
4p(α)3

· g(α) , (10)

where
q3 = − (2p′ + q) q2 + pq (p′′ + 2q′ + r) − p2 (q′′ + 2r′) .

From the positivity of the Hessian

H (g′) = (n− 3)2g′′2 − (n− 2)(n− 3)g′g′′′

and the fact that g(α) �= 0, we obtain

8(n− 3)q2(α)2 + 9(n− 2)q(α)q3(α) ≥ 0 . (11)

�	
Remark 3. If the polynomials p, q, and r satisfy the conditions deg(p) ≤ 2,
deg(q) ≤ 1, deg(r) = 0, we have

q3 = (2p′ + q)
(
−q2 − p′q + pq′ − pr

)
+ pq (p′′ + 2q′ + r)

= −(2p′ + q)q2 + pq(p′′ + 2q′ + r) .

These hypotheses are satisfied if the solutions of the differential equation (3) are
classical orthogonal polynomials (v. G. Szegö [20]).
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Other Upper Bounds for Zeros of Hermite Polynomials

Proposition 3. The number
√

2n2 + n+ 6 +
√

(2n2 + n+ 6 + 32(n+ 6)(n3 − 5n2 + 7n− 3)
4(n+ 6)

is an upper bound for the positive roots of Hn .

Proof. We assume that α ∈ R is a root of the nth Hermite polynomial Hn . By
Theorem 7 it follows that D(α) ≥ 0 , where

D(X) = (−2n− 12)X4 + (2n2 + n+ 6)X2 + 4n3 − 20n2 + 28n− 12 .

The largest positive root of D(X) is
√
β , with

β =
2n2 + n+ 6 +

√
(2n2 + n+ 6 + 32(n+ 6)(n3 − 5n2 + 7n− 3)

4(n+ 6)
,

so

α0 =

√
2n2 + n+ 6 +

√
(2n2 + n+ 6 + 32(n+ 6)(n3 − 5n2 + 7n− 3)

4(n+ 6)

is an upper bound for the positive roots of Hn . �	

We consider

He(Hn) = (n− 1)

√
2

n+ 2
,

Se(Hn) =

√
2n2 + n+ 6 +

√
(2n2 + n+ 6 + 32(n+ 6)(n3 − 5n2 + 7n− 3)

4(n+ 6)

and obtain

n He(Hn) Se(Hn) LPR
3 1.264 1.224 1.224
8 3.130 2.995 2.930
12 4.156 4.005 3.889
16 4.999 4.844 4.688
20 5.728 5.574 5.387
25 6.531 6.382 6.164
50 9.609 9.484 9.182
60 10.596 10.478 10.159
100 13.862 13.765 13.406
120 15.236 15.146 14.776
150 17.091 17.009 16.629
200 19.801 19.729 19.339
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Comparisons with Other Bounds. We remind some known bounds for the
largest positive roots of Hermite polynomials:

Bott(Hn) =

√

2n− 2 3

√
n

3
O. Bottema [4]

V enn(Hn) =
√

2(n+ 1)− 2(5/4)2/3(n+ 1)1/3 S. C. Van Venn [22]

Kras(Hn) =
√

2n− 2 I. Krasikov [10]

FoKr(Hn) =

√
4n− 3n1/3 − 1

2
W. H. Foster–I. Krasikov [7]

Comparing them with our results we obtain

n Bott Venn Kras FoKr He Se LPR
4 2.408 2.455 2.449 2.262 1.732 1.659 1.650
16 5.339 5.294 5.477 5.265 4.999 4.844 4.688
24 6.633 6.573 6.782 6.570 6.379 6.228 6.015
64 11.065 10.984 11.224 11.022 10.966 10.851 10.526
100 13.912 13.827 14.071 13.875 13.862 13.765 13.406
120 15.269 15.182 15.422 15.234 15.236 15.146 14.776

The bound Se(Hn) gives the best estimates.

Acknowledgements. I would like to thanks the referees for their comments
and suggestions and especially for the appropriate reference to the paper of A.
van der Sluis [17].
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18. Ştefănescu, D.: New bounds for the positive roots of polynomials. J. Univ. Comp.
Sc. 11, 2125–2131 (2005)
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20. Szegö, G.: Orthogonal Polynomials. Proc. Amer. Math. Soc. Colloq. Publ., Provi-
dence, RI 23 (2003)

21. Tsigaridas, E.P., Emiris, I.Z.: Univariate polynomial real root isolation: Continued
fractions revisited. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168,
pp. 817–828. Springer, Heidelberg (2006)

22. Van Veen, S.C.: Asymptotische Entwicklung un Nullstellenabschätzung der Her-
mitische Funktionen. Nederl. Akad. Wetensch. Proc. 34, 257–267 (1931)

23. Yap, C.K.: Fundamental problems of algorithmic algebra. Oxford University Press
(2000)



Distance Computation from an Ellipsoid to a

Linear or a Quadric Surface in IRn

Alexei Yu. Uteshev and Marina V. Yashina

Faculty of Applied Mathematics, St. Petersburg State University
Universitetskij pr. 35, Petrodvorets, St.Petersburg, Russia

Alexei.Uteshev@pobox.spbu.ru

Abstract. Given the equations of the surfaces, our goal is to construct
a univariate polynomial one of the zeroes of which coincides with the
square of the distance between these surfaces. To achieve this goal we
employ the Elimination Theory methods.

1 Problem Statement

Find the distance d from the ellipsoid

XT A1X + 2BT
1 X − 1 = 0 (1)

a) to linear surface given by the system of equations

CT
1 X = 0, . . . , CT

k X = 0 (2)

b) to quadric
XTA2X + 2BT

2 X − 1 = 0. (3)

Here X = [x1, . . . , xn]T is the column of variables, {B1, B2, C1, . . . , Ck} ⊂ IRn

are the given columns, and C1, . . . , Ck (k ≤ n) are assumed to be linearly inde-
pendent, A1 and A2 are the given symmetric matrices, and A1 is sign-definite.

Such problem arises in Computational Geometry [1,2], for instance, in the pat-
tern recognition problem where one has to estimate the closeness of the objects
given in n-dimensional parametric space.

The stated problem, being a problem of constrained optimization:

min(X − Y )T (X − Y ) subject to
{
X ∈ (1), Y ∈ (2) in the case of a),
X ∈ (1), Y ∈ (3) in the case of b),

can be reduced, via the conventional application of Lagrange multipliers method,
to a problem of solving a system of algebraic equations. Thus, for instance, in
the case of b)

⎧
⎨

⎩

z − (X − Y )T (X − Y ) = 0
X − Y − λ1(A1X +B1) = O, −X + Y − λ2(A2Y +B2) = O
XTA1X + 2BT

1 X = 1, Y T A2Y + 2BT
2 Y = 1.

(4)

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 392–401, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The main objective of this paper is to eliminate all the variables from this system
except for z, i.e., to construct an algebraic equation F(z) = 0 one of the zeros of
which coincides with the square of the distance [3]. On evaluation of the latter,
one can generically express the coordinates of the nearest points on the given
surfaces as rational functions of this value.

2 Elimination Theory

The constructive realization of the declared procedure can be performed either
via the Gröbner basis construction or with the aid of the classical Elimination
Theory toolkit. From the latter the most suitable tool for solving our problem
turns out to be the discriminant. For the (uni- or multivariate) polynomial
g(X) ∈ IR[X ] its discriminant is formally and up to a multiple defined as

DX(g)
def
=

N∏

j=1

g(Λj),

where {Λ1, . . . , ΛN} is a set of zeros (counted in accordance with their multi-
plicities) of the system

∂g

∂x1
= 0, . . . ,

∂g

∂xn
= 0.

Discriminant can be expressed as a rational function of the coefficients of g(X)
with the aid of several determinantal representations. For instance, by the Bézout
method [4,5]

DX(g) = det [b�j]
N−1
�,j=0 . (5)

Here, for the univariate case and for deg g(X) = N + 1, the element b�j stands
for the coefficient of the remainder obtained on dividing X�g(X) by g′(X):

X�g(X) ≡ b�0 + b�1X + . . .+ b�,N−1X
N−1 + q�(X)g′(X), " ∈ {0, . . . , N − 1}.

As for the bivariate case, the element b�j of the matrix (5) is the coefficient of
the reduction of the polynomial M�(X)g(X) modulo ∂g/∂x1 and ∂g/∂x2:

M�(X)g(X) ≡ b�0M0(X) + . . .+ b�,N−1MN−1(X) +
+ q�1(X)∂g/∂x1 + q�2(X)∂g/∂x2.

Here {q�1(X), q�2(X)} ⊂ IR[X ], while {M�(X)}N−1
�=0 ⊂ IR[X ] is a set of the

appropriately chosen power products in X . For the particular case of the poly-
nomial standing as an argument for the discriminant function in Theorem 3, one
should take N = (n+ 1)2 and

{M�(X)}N−1
�=0 =

{
xj1
1 x

j2
2

∣∣0 ≤ j1 < n+ 1, 0 ≤ j2 ≤ 2(n− j1)
}
. (6)

The constructive reduction algorithm with respect to such a set was presented
in [5].
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If DX(g) = 0 then g(X) possesses a multiple zero; if the latter is unique then
it can be expressed rationally via the coefficients of the polynomial. This can be
constructively performed with the aid of the minors of the determinant (5). For
the univariate case this zero is given by

X = BN2/BN1 (7)

where BNj are the cofactors of the elements of the last row of the determinant
(5). As for the bivariate polynomial from Theorem 3, let us reorder the power
products of the set (6) in such a manner that M0 = 1, M1 = x1, M2 = x2 and
denote by BNj the cofactors of the elements of the last row of the corresponding
determinant (5). Then the components of the multiple zero can be expressed as

x1 = BN2/BN1, x2 = BN3/BN1. (8)

3 Distance to a Linear Surface

Theorem 1. Construct the matrices C
def
= [C1, . . . , Ck] and G

def
= CT C (i.e.

G is the Gram matrix for the columns C1, . . . , Ck). The condition

0 ≤

∣∣∣∣∣∣

A1 B1 C
BT
1 −1 O

CT O O

∣∣∣∣∣∣
×

{
(−1)k−1 if A1 is positive definite
(−1)n if A1 is negative definite (9)

is the necessary and sufficient one for the linear surface (2) to intersect the
ellipsoid (1); in this case one has d = 0. If this intersection condition does not
satisfied then the value d2 coincides with the minimal positive zero of the equation

F(z)
def
= Dμ

⎛

⎜⎝μk

∣∣∣∣∣∣∣

A1 B1 C
BT
1 −1 + μz O

CT O
1
μ
G

∣∣∣∣∣∣∣

⎞

⎟⎠ = 0 (10)

provided that this zero is not a multiple one.

Proof. I. Finding the intersection condition. Let us find first the critical
value of1 V (X) = XTAX + 2BTX − 1 in the surface CTX = O. The critical
point of the Lagrange function

L = XT AX + 2BTX − 1 − ν1C
T
1 X − . . .− νkC

T
k X

satisfies the system of equations

2AX + 2B −C [ν1, . . . , νk]T = O, CTX = O.

Therefrom
X = −A−1B +

1
2
A−1C [ν1, . . . , νk]T (11)

1 To simplify the notation we will type matrices A and B without their subscript.
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with
[ν1, . . . , νk]T = 2

(
CT A−1C

)−1
CT A−1B. (12)

Substitution of (12) into (11) yields

Xe = −A−1B + A−1C
(
CT A−1C

)−1
CT A−1B

and the corresponding critical value of V (X) subject to CTX = O equals

V (Xe) = −(BT A−1B + 1 −BT A−1C(CT A−1C)−1CT A−1B).

With the aid of the Schur complement formula [6]:

det
(

U V
S T

)
= detUdet

(
T− SU−1V

)
(13)

(here U and T are square matrices and U is non-singular) one can transform
the last expression into

V (Xe) =
−

∣∣∣∣
CT A−1C CT A−1B
BT A−1C BT A−1B + 1

∣∣∣∣
det(CT A−1C)

=

(−1)k

∣∣∣∣∣∣

A B C
BT −1 O
CT O O

∣∣∣∣∣∣
det(A)det(CT A−1C)

. (14)

If V (Xe) = 0 then the linear surface (2) is tangent to the ellipsoid (1) atX = Xe.
Otherwise let us compare the sign of V (Xe) with the sign of V (X) at infinity.
These signs will be distinct iff the considered surfaces intersect. If A is positive
definite then V∞ > 0, det(A) > 0 and det(CT A−1C) > 0. Therefore, V (Xe) < 0
iff the numerator in (14) is negative. This confirms (9). The case of negative
definite matrix A is treated similarly.

II. Distance evaluation. Using the Lagrange multipliers method we reduce the
constrained optimization problem to the following system of algebraic equations

X − Y − λAX − λB = O (15)

X − Y +
1
2
C[λ1, . . . , λk]T = O (16)

XT AX + 2BTX − 1 = 0 (17)
CTY = O. (18)

We introduce also a new variable responsible for the critical values of the distance
function:

z − (X − Y )T (X − Y ) = 0. (19)

Our aim is to eliminate all the variables from the system (15)–(19) except for
z. We express first X and Y from (15) and (16) (hereinafter I stands for the
identity matrix of an appropriate order):

X = −A−1B − 1
2λ

A−1C[λ1, . . . , λk]T (20)

Y = −A−1B − 1
2λ

(A−1 − λI)C[λ1, . . . , λk]T . (21)
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Then we substitute (21) into (18) with the aim to express λ1, . . . , λk via λ. This
can be performed with the aid of the following matrix

M
def
=

1
λ
CT A−1C−CT C = μCT A−1C−G, (22)

where G is the Gram matrix of the columns C1, . . . , Ck and μ
def
= 1/λ. Indeed,

one has
M[λ1, . . . , λk]T = −2CTA−1B (23)

and, provided that M is non-singular,

[λ1, . . . , λk]T = −2M−1CT A−1B. (24)

Now substitute (24) into (16) and then the obtained result into (19):

z −BT A−1CM−1GM−1CT A−1B = 0. (25)

Equation (25) is a rational one with respect to the variables μ and z.
To find an extra equation for these variables, let us transform (17) using (20)

and (24)

0 = XT AX + 2BTX − 1 = −BT A−1B − 1 +
+ μBT A−1CM−1(μCT A−1C−G + G)M−1CT A−1B.

Using (22) and (25), the last equation takes the form

Ψ(μ, z)
def
= −1 + μz −BT A−1B + μBT A−1CM−1CT A−1B = 0. (26)

Therefore, the system (15)–(19) is reduced to (25)–(26). It can be verified that
the left-hand side of (25) is just the derivative of that of (26) with respect to μ
and, thus, it remains to eliminate μ from the system

Ψ(μ, z) = 0, Ψ ′
μ(μ, z) = 0.

This can be done with the help of discriminant – and that is the reason of its
appearence in the statement of the theorem.

The Schur complement formula (13) helps once again in representing Ψ(μ, z)
in the determinantal form:

Ψ(μ, z) ≡

∣∣∣∣∣∣∣

A B C
BT −1 + μz O

CT O
1
μ
G

∣∣∣∣∣∣∣
∣∣∣∣∣∣

A C

CT 1
μ
G

∣∣∣∣∣∣

=

μk

∣∣∣∣∣∣∣

A B C
BT −1 + μz O

CT O
1
μ
G

∣∣∣∣∣∣∣

det(A)det(M)
. (27)
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III. Finding the nearest points on the surfaces. Once the real zero z = z�

of (10) is evaluated, one can reverse the elimination scheme from part II of the
proof in order to find the corresponding points X� and Y� on the surfaces.

For z = z�, the polynomial in μ standing in the numerator of (27) has a mul-
tiple zero μ = μ�. Provided that the multiple zero is unique, it can be expressed
rationally in terms of the coefficients of this polynomial (and in z�) with the aid
of (7). We substitute this value into (22) then resolve the linear system (23) with
respect to λ1, . . . , λk and, finally, substitute the obtained numbers into (20) and
(21).

However, this algorithm fails if for μ = μ� the matrix M becomes singular. For
explanation of the geometrical reason, one may recall that the distance between
the surfaces may be attained not in a unique pair of points.

We avoid this case by imposing the simplicity restriction for the minimal zero
of F(z) in the statement of the theorem. As a matter of fact, we are referring
here to the empirical hypothesis that the conditions

Dx1(Dx2(g(x1, x2))) �= 0 and Dx2(Dx1(g(x1, x2))) �= 0

are equivalent for the generic polynomial g(x1, x2). For our particular case, the
derivative of the determinant in the numerator of (27) with respect to z coincides
with the denominator. �	

Corollary 1. If the system of columns C1, . . . , Ck is an orthonormal one then,
by transforming the determinant in (10), one can diminish its order: the expres-
sion under discriminant can be reduced into

∣∣∣∣
A1 − μCCT B1

BT
1 −1 + μz

∣∣∣∣ . (28)

Example 1. Find the distance to the x1-axis from the ellipsoid

7 x21 + 6 x22 + 5 x23 − 4 x1x2 − 4 x2x3 − 37 x1 − 12 x2 + 3 x3 + 54 = 0.

Solution. One can choose here C1 = [0, 1, 0]T , C2 = [0, 0, 1]T , then the determi-
nant (28) takes the form

∣∣∣∣∣∣∣∣

−7/54 1/27 0 37/108
1/27 −1/9− μ 1/27 1/9

0 1/27 −5/54− μ −1/36
37/108 1/9 −1/36 −1 + μz

∣∣∣∣∣∣∣∣
.

Equation (10)

F(z) = 516019098077413632 z4− 15034745857812486912 z3 +
+ 95300876926947983328 z2− 421036780846089455856 z+
+ 237447832908365535785 = 0

has two real zeros: z1 = 0.05712805 and z2 = 22.54560673. Hence, the distance
equals

√
z1 ≈ 0.23901475.
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Corollary 2. The square of the distance from the origin X = O to the ellipsoid
(1) coincides with the minimal positive zero of the equation

F(z)
def
= Dμ

(
f(μ)(μz − 1)−BT

1 q(A1, μ)B1

)
= 0 (29)

provided that this zero is not a multiple one. Here f(μ)
def
= det(A1 − μI) is

the characteristic polynomial of the matrix A1 whereas q(A1, μ) stands for the
adjoint matrix to the matrix A1 − μI.

Remark 1. For large n, one can compute f(μ) and q(A1, μ) simultaneously with
the aid of the Leverrier–Faddeev method [7].

Remark 2. For the case B1 = O, one gets F(z) ≡ D(f) [znf(1/z)]2. This corre-
sponds to the well-known result that the distance to the ellipsoid XT A1X = 1
from its center coincides with the square root of the reciprocal of the largest
eigenvalue of the matrix A1.

We exploit the result of the last corollary to elucidate the importance of the sim-
plicity restriction imposed on the minimal positive zero for F(z); this assumption
will also appear in the foregoing results.

Example 2. Find the distance from the origin to the ellipse

5/4 x21 + 5/4 x22 − 3/2 x1x2 − αx1 − αx2 + α2 − 1 = 0.

Here α > 0 stands for parameter.

Solution. One can see that the given ellipse is obtained from the one centered
at the origin by translation along its principal axis by the vector [α, α]T . Let us
investigate the dependence of the distance on α.

Polynomial (10)

F(z) =
1
16

(z − 2α2 + 4α− 2) (z − 2α2 − 4α− 2) (6 z + 4α2 − 3)2

(α− 1)6 (α+ 1)6

possesses the zeros z1 = 2α2 + 4α+ 2, z2 = 2α2− 4α+ 2, z3 = −2/3α2 + 1/2,
and, for any specialization of the parameter, the value d2 will be among these
values.

Furthermore, z3 = min{z1, z2, z3} for α ∈]0,
√

3/2]. Nevertheless, for α ∈
]3/4,

√
3/2] the square of the distance is calculated by the formula d2 = z2.

Explanation for this phenomenon is as follows: the multiple zero z3 corre-
sponds to the pair of points [x1, x2]T on ellipse. These points are real for α ≤ 3/4
and imaginary (complex-conjugate) for α > 3/4.

4 Distance to a Quadric

Consider first the case of surfaces centered at the origin: B1 = O, B2 = O.
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Theorem 2. The surfaces XT A1X = 1 and XT A2X = 1 intersect iff the
matrix A1 − A2 is not sign-definite. If this condition is not satisfied then the
value d2 coincides with the minimal positive zero of the equation

F(z)
def
= Dλ(det(λA1 + (z − λ)A2 − λ(z − λ)A1A2)) = 0 (30)

provided that this zero is not a multiple one.

Remark 3. We failed to establish the authors of the intersection condition from
the above theorem. However, this condition should be treated as “well-known”
since it is contained as an exercise in the problem book [8]. The other assertion
of Theorem 2 follows from

Theorem 3. The surfaces (1) and (3) intersect iff among the real zeros of the
equation

Φ(z)
def
= Dλ

(
det

([
A2 B2

BT
2 −1 − Z

]
− λ

[
A1 B1

BT
1 −1

]))
= 0

there are the values of different signs or 0. If this condition is not satisfied then
the value d2 coincides with the minimal positive zero of the equation

F(z)
def
= (31)

def
= Dμ1,μ2

(
det

(
μ1

[
A1 B1

BT
1 −1

]
+ μ2

[
A2 B2

BT
2 −1

]
−

[
A2A1 A2B1

BT
2 A1 B

T
2 B1 − μ1μ2z

]))
= 0

provided that this zero is not a multiple one.

Proof. is sketched as it is similar to that of Theorem 1. Intersection condition
is a result of the following considerations. Extrema of the function XTA2X +
2BT

2 X − 1 on the ellipsoid (1) are all of the similar sign iff the surfaces (1)
and (3) do not intersect. We state the problem of finding the extremal values of
XTA2X+2BT

2 X−1 subject to (1), then apply the Lagrange multipliers method
and finally eliminate all the variables except for z from the obtained algebraic
system coupled with the equation XTA2X + 2BT

2 X − 1 − z = 0.
To prove the second part of the theorem denote

M
def
= I− 1

λ1
A−1

1 − 1
λ2

A−1
2 , Q

def
= −A−1

1 B1 + A−1
2 B2

and transform the equations of the system (4) into

X = −A−1
1 B1 +

1
λ1

A−1
1 M−1Q, Y = −A−1

2 B2 −
1
λ2

A−1
2 M−1Q (32)

−BT
j A−1

j Bj +
1
λ2j
QTM−1A−1

j M−1Q− 1 = 0 for j ∈ {1, 2} (33)

z −QT M−2Q = 0. (34)



400 A.Yu. Uteshev and M.V. Yashina

On multiplying equations (33) by λj and using (34), we get

− λ1B
T
1 A−1

1 B1 − λ2B
T
2 A−1

2 B2 −QTM−1Q− λ1 − λ2 + z = 0. (35)

It can be verified that the derivative of the left-hand side of (35) with respect
to λj coincides with that one of (33). Substitution μ1 = 1/λ2, μ2 = 1/λ1 and
the use of the Schur complement formula (13) enable one to reduce (35) to the
determinantal representation from (31). �	

Example 3. Find the distance between the ellipsoids

7 x21 + 6 x22 + 5 x23 − 4 x1x2 − 4 x2x3 − 37 x1 − 12 x2 + 3 x3 + 54 = 0

and 189 x21 + x22 + 189 x23 + 2 x1x3 − x2x3 − 27 = 0

and establish the coordinates of their nearest points.

Solution. Intersection condition from Theorem 3 is not satisfied: the sixth-order
polynomial Φ(z) has all its real zeros positive. To compute the discriminant
(31) we represent it as the determinant (5) of the order N = 16. The twenty-
fourth-order polynomial F(z), with integer coefficients of the orders up to 10188,
has eight positive zeros z1 ≈ 1.35377, . . . , z8 ≈ 111.74803. Thus, the distance
between the given ellipsoids equals

√
z1 ≈ 1.16351.

For the obtained value of z1, the polynomial in μ1 and μ2 from (31) possesses
a multiple zero which can be expressed rationally in terms of z1 with the aid
of the minors of the determinant (5) by (8). Substitution of the obtained values
λ1 ≈ 5.75593, λ2 ≈ −0.45858 into (32) yields the coordinates of the nearest
points on the given ellipsoids:

X ≈ [1.52039, 1.50986, 0.12623]T , Y ≈ [0.36100, 1.48490, 0.03152]T .

Remark 4. It turns out that generically the degree of the polynomial F(z) is
given by the following table

Formula (10) (29) (30) (31)
degF(z) 2k 2n n(n+ 1) 2n(n+ 1)

Formulas from the third and the fourth column are valid on excluding the extra-
neous factor from F(z) (in the case of the fourth column the mentioned factor
is responsible for the equivalence of the transfer from the representation (35) to
that one of (31)).

5 Conclusions

We have treated the problem of distance evaluation between algebraic surfaces
in IRn via inversion of the traditional approach:

nearest points → distance.
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This has been performed via introduction of an extra variable responsible for the
critical values of distance function and application of the Elimination Theory
methods. It happens that the discriminant is fully responsible for everything:
with its help it is not only possible to deduce a univariate polynomial equation
for the square of the distance but also to express (Theorem 3) the necessary and
sufficient condition for the intersection of the surfaces.

The proposed approach might be especially useful for the optimization prob-
lems connected with the parameter dependent surfaces, for instance, for finding
an ellipsoid approximating a set of points in IRn.
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Abstract. The study of linear ordinary differential equations (ODEs)
with parametric coefficients is an important topic in robust control the-
ory. A central problem is to determine parameter ranges that guarantee
certain stability properties of the solution functions. We present a logical
framework for the formulation and solution of problems of this type in
great generality. The function domain for both parametric functions and
solutions is the differential ring D of complex exponential polynomials.
The main result is a quantifier elimination algorithm for the first-order
theory T of D in a language suitable for global and local stability ques-
tions, and a resulting decision procedure for T. For existential formulas
the algorithm yields also parametric sample solution functions. Examples
illustrate the expressive power and algorithmic strengh of this approach
concerning parametric stability problems. A contrasting negative theo-
rem on undecidability shows the boundaries of extensions of the method.

1 Introduction

The theory of systems of linear ordinary differential equations (ODEs) with
constant coefficients is a long established classical field of mathematics. If the
right hand sides of these equations are natural combinations of polynomials and
exponential functions (exponential polynomials), then all solutions of such
systems will also be functions of this type ([3]), and these solutions can be
obtained by algebraic manipulations on the coefficients and the right hand sides
of the equations. In this paper we investigate the question of uniformity in
this theory: Suppose the coefficients of the system are given as abstract complex
number parameters and the right hand sides as abstract function parameters
ranging over exponential polynomials. Is it possible to describe the solution
uniformly in these parameters?

Having in addition the aspects of robust control theory ([1]) in mind, we
extend the question as follows: Is it in addition possible to describe the local
and asymptotic behaviour of solution functions uniformly in these parameters.
A very special case of this question is answered by the famous theorems of
Routh-Hurwitz and of Lienard-Chipart [1] that give an explicit description
of the set of number parameters that guarantee stability or asymptotic stability
of solutions functions of homogeneous first-order linear systems of ODEs with
constant coefficients.

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 402–422, 2007.
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In this paper we give a positive answer to a much more general form
of this question: We admit arbitrary boolean combinations of homogeneous
and inhomogeneous linear ODEs of arbitrary order and ask not only for solvabil-
ity and stability of solutions - coded by existential quantification over function
variables - , but admit both existential and universal quantification over func-
tion variables. Moreover we admit quantifications over complex number variables
and side conditions on these number variables and their real and imaginary parts
consisting of non-linear polynomial equations and inequalities. The present pa-
per results from a question of A. Weber at CASC 2005, asking whether it is
possible to include stability conditions in the framework presented there [16].
The main results of this paper were announced at the ACA-conference in Varna,
2006 (see http://www.math.bas.bg/artint/mspirid/ACA2006/). On this occa-
sion, Vladimir Gerdt was highly interested in the results and provided valuable
additional information on possible extensions of the method.

Of course this ambitious undertaking requires some additional information
on the function parameters as the properties of solution function will obviously
depend on them: Recall that all function parameters will range over the domain
D complex exponential polynomials, i. e. complex polynomials in the inde-
pendent real variable x and in exp(λx) for arbitrary complex values of λ. They
have a unique representation in the form

f :=
∑

α∈S

pα(x) exp(αx)

with non-zero complex polynomials pα(x) and S a finite - possibly empty - set
of complex numbers. We call S the spectrum spec(f) of f, |S| the specsize
specsize(f) and the maximal degree of all pα(x) the degree deg(f) of f. In view
of the uniqueness of this representation every f ∈ D is uniquely determined by
a finite set of complex numerical data, namely the elements of spec(f) and the
coefficients of all polynomials pα(x) for α ∈ spec(f).

We enlarge our formal language for the problem description by predicates
bounding the specsize of f, i. e. the size of the spectrum of f i.e. the num-
ber of summands in this sum, and the degree of f, i. e. the maximal degree
of all polynomials pα(x). In addition we introduce function-symbols extracting
from a function variable f formal expressions for the elements α ∈ S and the
coefficients of all polynomials pα(x). These informations are then sufficient in
order to complete our task: On the one hand the language allows to formulate
the required stability conditions. On the other hand we obtain an algorithmic
quantifier elimination procedure in this framework. It provides to every
parametric question expressible in our framework quantifier-free necessary and
sufficient conditions on the number and function parameters in the question for
a positive answer.

The only restriction in this procedure is that all quantified function vari-
ables and all function parameters have bounded specsize and bounded degree.
We express this restriction by saying that we have a constrained quantifier
elimination procedure for D.
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For purely existential formulasour quantifier elimination procedureworks alter-
natively also for unconstrained quantified function variables and constrained func-
tionparameters. In fact this is also true for thewider class ofF -existential formulas,
where additional arbitrary number quantifiers may occur. In this case the classical
theory of linearODEs provides corresponding resulting bounds on the specsize and
degree of quantified function variables. This result canbe construed as a strong gen-
eralization of the classical criteria by Routh-Hurwitz and Lienard-Chipart in
terms of the positivity of certain coefficients and determinants concerning the sta-
bility of solutions of parametric homogeneous first-order systems of ODEs [1].

The proof idea of this constrained quantifier elimination procedure is a cod-
ing a quantifier referring to a constrained function variable by a block of quanti-
fiers referring to complex numbers, i. e. the corresponding numerical data of the
function. Due to constraints on the function variable and the function parame-
ters the number of this numerical data, and hence the size of this quantifier block
is explicitly bounded. At this point a suitable extension of an arbitrary quantifier
elimination for the ordered fields of reals to the field of complex numbers with
real and imaginary parts completes the quantifier elimination.

A reduction of certain stability problems for systems of linear constant coef-
ficient ODEs and PDEs to problems of real quantifier elimination has already
been performed successfully in [10,11]. Other application of real quantifier elimi-
nation methods to control theory are treated in [9,2]. While the present paper is
concerned only with ODEs, the framework considered is much larger by allow-
ing arbitrary boolean combinations of parametric ODEs, both existential and
universal quantification and additonal predicates and functions on the structure
of exponential polynomials.

An immediate consequence of the quantifier elimination procedure is a de-
cision procedure for the domain D and constrained closed formulas in this
language. A detailled analysis of the quantifier elimination procedure for F -
existential formulas yields in addition explicit parametric solutions to exis-
tential questions. In other words we have a constrained quantifier elimina-
tion procedure with answers in the sense of [15,8].

The exact formulation of these results appears in Theorems 2,4,6 and their
corollaries. Applications to various types of stability problems are described in
section 3. In section 4 we illustrate the results by two classical examples, the
harmonic oscillator with external force and a parametric linear first-order system.
Section 5 is concerned with the proofs of Theorems 2 and 4. Section 6 is devoted
to the computation of solutions to parametric existential problems uniformly
in the parameters. Finally we show in section 7 that even seemingly simply
problems on ODEs with parametric non-constant coefficients turn out to be
algorithmically undecidable in the domain of holomorphic functions. The last
section draws some conclusions and specifies some open problems.

2 The Formal Framework

We begin by reviewing some properties of our function domain D of exponential
polynomials. Every f ∈ D is a complex polynomial in the independent real
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variable x and in exp(λx) for arbitrary complex values of λ. Thus D forms ring
of complex-valued functions under pointwise operations. Since the derivative f ′

of an f ∈ D is again in D, D forms in fact a differential ring. Clearly each such
f has a representation in the form

f :=
∑

α∈S

pα(x) exp(αx)

with non-zero complex polynomials pα(x) and S a finite (possibly empty) set of
complex numbers. The empty sum represents the zero exponential polynomial.
This representation is unique if the summands are ordered by increasing α ∈ R2

wrt. the lexicographical order.
To prove uniqueness it suffices to show that for a non-empty sum as above

f :=
∑

α∈S

pα(x) exp(αx) �= 0.

In fact the zero-set of f as holomorphic function is countable and has no finite
accumulation point in C.

Let ∅ �= S = {α1, . . . , αn} with α1 <lex . . . <lex αn, and let pαi(x) =∑d
k=0 ai,jx

j with ai,j ∈ C not all zero. Recall that the power-series expansion
of exp(αix) is

∑∞
k=0(α

k
i /k!)x

k. Setting all coefficients of the resulting power-
series expansion of f to zero leads to an infinite system of homogeneous linear
equations for the coefficients ai,j regarded as a column vector

a1,0, . . . , an,0, a1,1, . . . , an,1, . . . , a1,d, . . . , an,d

of length n(d+ 1). The ∞× n(d+ 1)- matrix of this system has the rows

(1, . . . , 1, 0, . . . , 0)

(α1, . . . , αn, 1, . . . , 1, 0, . . . , 0)

(α21/2!, . . . , α2n/2!, α1, . . . , αn, 1, . . . , 1, 0, . . . , 0)

(α31/3!, . . . , α3n/3!, α21/2!, . . . , α2n/2!, α1, . . . , αn, 1, . . . , 1, 0, . . . , 0)

. . .

. . .

Here each group of similar symbols except the group of zeros has length n.
After multiplying the i-th row of this matrix (1 ≤ i ≤ n) by i!, we see that the

first n columns - restricted to their first n rows - form a Vandermonde-matrix;
hence the first n columns are linearly independent. Similarly we may multiply
the i-th row of this matrix (2 ≤ i ≤ n + 1) by (i − 1)!; then the second n
columns - restricted to row 2 to n + 1 - again form a Vandermonde-matrix; so
also the second n columns are linearly independent. Continuing in this way in
groups of n columns, until the d-th group, we see that each group of columns is
linearly independent. By the upper triangular block structure of the zeros in this
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matrix, this implies that the set of all columns is in fact linearly independent.
Thus the linear system (even restricted to the first n+d rows) has only the trivial
solution, contradicting our hypothesis that not all ai,j are zero. This proves the
uniqueness.

It will be convenient for us to slightly modify this representation of functions
f ∈ D : We call the representation

f :=
∑

α∈S′

pα(x) exp(αx)

with complex polynomials pα(x) and S′ a finite set of complex numbers the
normal form of f, if 0 ∈ S′ and all polynomials except possibly p0(x) are non-
zero. Notice that the uniqueness result above carries over to the normal form
representation: Indeed if 0 is in the spectrum of f, then both representations are
identical, and otherwise p0(x) = 0. We call S′ the extended spectrum of f.
This extended spectrum is then stable under the formation of derivatives.

The operations −,+, · on normal forms work similar as for polynomials by
collecting polynomial coefficients of identical expressions exp(αx). The derivative
of f has normal form

f ′ :=
∑

α∈S′

(αpα(x) + p′α(x))(exp(αx).

Similarly higher derivatives f (j) of f have normal form

f (j) :=
∑

α∈S′

pα,j(x) exp((αx),

where

pα,j(x) := (
j∑

i=0

(
j

i

)
αj−ip(i)α )(x)

So the kth-coefficient of pα,j(x) is
∑j

i=0

(
j
i

)
αj−ik(k − 1) · · · (k − i+ 1)aα,k+i,

where aα,k is the k-th coefficient of pα.
We call S := {α ∈ S′ | pα �= 0} the spectrum spec(f) of f, and |S| the

specsize specsize(f) and the maximal degree of all pα(x) the degree deg(f)
of f.

The logical framework for (C, D) as a two-sorted structure for a first-order
language L is as follows:

We have two sorts of variables, the F -variables ranging over D and the
N -variables ranging over C. In the N -sort we have constants for all rational
numbers and for I :=

√
−1, the ring operations +,−, ·, the operations 3 and 4

(for real and imaginary parts), and the order relation (restricted to R). In the
F -sort we have the constant 1 and the operations +,−,′ and for every natural
number b the unary predicates Specsizeb(y) and Degb(y). In addition we have
mixed function symbols for scalar multiplication of an N -term with an F -term,
and for all natural numbers i, j unary function-symbols speci(y) and speci,j(y)
mapping F -terms into N -terms.
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Semantics: Specsizeb(y) holds iff the number of elements in the spectrum of
y is at most b; Degb(y) holds iff the maximal degree of all polynomials pα with
α in the spectrum of y is at most b. speci(y) denotes the i-th element of the
spectrum of y in the lexicographical order. speci,j(y) denotes the j-th coefficient
of the polynomial pα(x) belonging to α = speci(y) in the unique representation
of y. In the exceptional case i > specsize(y) we put both values to zero. The
order relation applied to complex numbers holds if and only if both arguments
are real and satisfy the natural order relation as reals.

Pure N-Terms are expressions obtained from N -variables and N -constants
by superposition of the operations +,−, ·,3,4. Since they represent complex
numbers, they can be rewritten modulo semantic equality as multivariate poly-
nomials with Gaussian rational coefficients in N-variables and their real parts
and imaginary parts.
F -Terms are expressions of the form

∑

(i,j)∈M

ti,j · y(j)i + t0 · 1

where ti,j and t0 are pure N -terms and y
(j)
i are F -variables and their iterated

derivatives. We refer to the number |M | as the additive length of this term.
“Linear combinations” of F -terms and their iterated derivatives of the form

t =
∑n

m=1 sm · tjm
m with pure N -terms sm and F -terms tm are written in the ob-

vious way as an F -term by collecting coefficients of identical variable-derivatives
y
(j)
i . In particular spech(t) and spech,k(t) can be expressed as terms in spech(y(j)i )

and spech,k(y(j)i ). A similar remark applies to the predicates Specsizeq(t) and
Degq(t) : Under the hypothesis that the formula

∧n
m=1 Specsizeb(tm) ∧Degb(tm)

holds for a fixed natural number b, one can express for every natural number q
Specsizeq(t) and Degq(t) by an equivalent quantifier-free formula. In particular
for q > b, Degq(t) is equivalent to “false” and for q > bn, Specsizeq(t) is equiv-
alent to “false”.

Arbitrary N-Terms are obtained from pure N -Terms and expressions of the
form speci(s) and speci,j(s) with F -terms s by superposition of the N -operations
+,−, ·,3,4.

Atomic formulas are equations s = t between two F -terms s, t, (F -
equations) or equations s = t or inequalities s < t between two N -terms
s, t, (N -equations and N -inequalities) or finally predicates Specsizes(t) and
Degd(t) for an F -term t.

The first type represents parametric inhomogeneous implicit linear
ODEs, the second type complex polynomial equations of inequalities and
the third type restraints on function parameters. We refer to F -equations
and predicates of the form Specsizes(t) and Degd(t) as atomic F -formulas and
to N -equations and N -inequalities as atomic N -formulas. We call an atomic
N -formula pure if both terms occurring in it are pure N -terms.

Quantifier-free formulas are arbitrary combinations of atomic formulas
by ∧ (and), ∨ (or), ¬ (not). In the formation of arbitrary formulas we al-
low in addition quantification ∃y, ∀y over F -variables and over N -variables ∃ξ,
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∀ξ - provided ξ does not occur in any atomic formula of the F -sort. Con-
strained formulas are formulas in which each F -quantifier is constrained by
two explicit natural numbers s and d in the following way:

An existential F -quantifier occurs only in the form

∃y(Specsizes(y) ∧ Degd(y) ∧ ϕ)

and a universal F -quantifier occurs only in the form

∀y((Specsizes(y) ∧ Degd(y)) =⇒ ϕ),

where ϕ is a formula. We will also use the short-hand notation

∃s,dy(ϕ)

and
∀s,dy(ϕ),

respectively, for these formulas.
Pure N-formulas are formulas containing as atomic subformulas only equa-

tions and inequalities between pure N -terms.
We will need the following fact that is a straightforward extension of real

quantifier elimination (QE):

Theorem 1. There is an algorithm assigning to every pure N -formula an equiv-
alent quantifier-free pure N -formula.

Proof. Let ϕ be a pure N -formula. We replace every occurence of a N -variable ξ
in ϕ by ξ1 + I · ξ2, with two new variables ξ1and ξ2. If a corresponding quantifier
Qξ occurs in ϕ we replace it by two new corresponding quantifiers Qξ1Qξ2.
Here we consider ξ1 and ξ2 as variables ranging over the real numbers. Next
we split every equation and inequality occuring as subformula of the resulting
formula ϕ1 into its real and imaginary part; thus we obtain a new formula ϕ2 in
the language of the ordered field of real numbers. Applying any real quantifier
elimination algorithm (see e.g. [4,7,6] ) to ϕ2 we obtain an equivalent quantifier-
free formula ϕ3 in the language of the ordered field of real numbers. Replacing in
ϕ3 every occurence of ξ1 by 3(ξ) and every occurence of ξ2 by 4(ξ), we obtain a
quantifier-free pure N -formula ϕ4 equivalent to ϕ in the complex numbers. �	
Using this algorithm as a tool we will obtain our first main theorem:

Theorem 2. There is an algorithmic QE-procedure for (C, D) in this language
for constrained input formulas, provided all function-parameters in the input for-
mula are constrained. So for a constrained formula ϕ(η1, . . . , ηm, u1, . . . un) and
natural numbers s, d one can compute a quantifier-free formula
ϕ′

s,d(η1, . . . , ηm, u1, . . . un) such that the following holds:

n∧

i=1

(Specsizes(ui) ∧ Degd(ui)) −→

(ϕ(η1, . . . , ηm, u1, . . . un) ←→ ϕ′
s,d(η1, . . . , ηm, u1, . . . un))
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The constrained elementary theory of (C, D) consists of all constrained
formulas without parameters that are true in (C, D).

Corollary 1. The constrained elementary theory of (C, D) in this language is
decidable.

Proof. In order to decide the validity of a constrained sentence (i. e. a con-
strained formula without parameters) in (C, D) one first applies the algorithmic
QE-procedure for (C, D). This reduces the decision problem to quantifier-free
sentences. Since the only function constants we have are constant functions with
integer values, the decision of atomic sentences in (C, D) is simple arithmetic.

�	
Notice that the corollary remains valid, if we include an F -constant X for the
independent variable in our language.

An F -existential formula is a formula of the form

∃y1 . . . ∃yk(ϕ(η1, . . . , ηm, y1, . . . , yk, u1, . . . un),

where ϕ contains no F -quantifiers, but may contain arbitrary N -quantifiers.
Notice that here the F -quantifiers are unconstrained.

Then the classical theory of ODEs with constant coefficients provides as a
consequence of our first main theorem the following second main theorem:

Theorem 3. There is an algorithmic QE-procedure for (C, D) and F -existential
input formulas in this language, provided all function-parameters in the input for-
mula are constrained. So for a given F -existential formula ϕ(η1, . . . , ηm, u1, . . . un)
and natural numbers s, d one can compute a quantifier-free formula
ϕ′

s,d(η1, . . . , ηm, u1, . . . un) such that the following holds:

n∧

i=1

(Specsizes(ui) ∧ Degd(ui)) −→

(ϕ(η1, . . . , ηm, u1, . . . un) ←→ ϕ′
s,d(η1, . . . , ηm, u1, . . . un))

The F -existential theory of (C, D) consists of all F -existential formulas with-
out parameters that are true in (C, D). Then as above we have a corresponding
corollary:

Corollary 2. The F -existential theory theory of (C, D) in this language is
decidable.

3 Expressive Power of the Framework

What kind of properties of exponential polynomials can be expressed in the given
language?

We begin by considering the expressive power of pure N-formulas: Since
the absolute value satisfies |x|2 = 3(x)2 + 4(x)2 and conjugation is given
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by x = 3(x) − 4(x), both operations are definable by quantifier-free pure N -
formulas. Hence their use can be coded by pure N -formulas.

Next, we illustrate the expressive power of formulas in general:
A straightforward instance are initial value conditions on F -variables y :

and their higher derivatives y(j) :
Under the hypothesis specsizes(y) the term

∑s
i=1 speci,0(y) describes the

initial value y(0). The terms
∑b

i=1 speci,1(y) and
∑b

i=1 2speci,2(y) describe the
initial values y′(0) and y′′(0), respectively. Similarly for higher derivatives.

The most important properties expressible in our framework are global and
local stability properties:

The (global) asymptotic stability of an F -variable y constrained by num-
bers s, d (with repect to the zero function as equilibrium) can be expressed by
the following quantifier-free formula:

Asympstabs,d(y) : Specsizes(y) ∧ Degd(y) ∧

s∧

i=1

3(speci(y)) < 0

Similarly the (global) stability of an F -variable y constrained by numbers
s, d (with repect to the zero function as equilibrium) can be expressed by the
quantifier-free formula:

Stabs,d(y) : Specsizes(y) ∧ Degs(y) ∧

s∧

i=1

(3(speci(y)) < 0 ∨ (3(speci(y)) = 0 ∧
d∧

j=1

speci,j(y) = 0))

When one considers global stability of solutions of inhomogeneous linear ODEs
one wants to express stability of a solution y w.r.t. the given right-hand side
function z by a quantifier-free formula. This can be done as follows:

Asympstabs,d(y, z) : Specsizes(y) ∧ Degd(y) ∧ Specsizes(z) ∧ Degd(z) ∧

s∧

i=1

(3(speci(y)) ≥ 0 −→

s∨

j=1

speci(y) = specj(z) ∧
d∧

k=1

(speci,k(z) = 0 =⇒ speci,k(y) = 0)

Stabs,d(y, z) : Specsizes(y) ∧ Degd(y) ∧ Specsizes(z) ∧ Degd(z) ∧

s∧

i=1

(3(speci(y)) > 0 −→
s∨

j=1

speci(y) = specj(z) ∧
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s∧

i=1

(3(speci(y)) = 0 −→ (
d∧

k=1

speci,k(y) = 0 ∨

s∨

j=1

(speci(y) = specj(z) ∧
d∧

k=1

(speci,k(z) = 0 =⇒ speci,k(y) = 0)

Global stability and asymptotic stability - coded by the formulas above -
refer to the long time behaviour of a function. In practice - even if a function
is asymptotically stable - it may still have very large values (e. g. amplitudes
in case of a damped oscillator) for small positive argument values. This can be
technically undesirable or even dangerous. So it is desirable to have in addition
formulas that express local stability on a compact or right semiinfinite interval:
Next we show how parametric bounds on function values within a parametric
interval can be expressed in the given framework:

Let F be a constrained set of functions in D and assume we have fixed s, d ∈ N

with specsize(f) ≤ s and deg(f) ≤ d for all f ∈ F.
Notice that for an interval [a, b] in R and for x ∈ [a, b], α ∈ C the function

values |exp(αx)| are bounded by max(exp(±|3(α)a|, exp(±|3(α)b|).
Hence for an exponential polynomial f ∈ F in normal form

f :=
∑

α∈S

pα(x) exp(αx)

with |S| ≤ s, and deg(pα) ≤ s for all α ∈ S, we obtain for [a, b] in R and for
x ∈ [a, b], the bound

|f(x)| ≤
∑

α∈S

max(|pα(x)| |x ∈ [a, b]) ·max(exp(±|3(α)a|, exp(±|3(α)b|).

For real variables a, b, c and a function variable f constrained by s, d we can
now indeed find for arbitrary fixed n ∈ N a formula βs,d,n(a, b, c, f) of our frame-
work that implies the fact that |f(x)| is bounded by the real parameter c on the
parametric interval [a, b].

For this purpose we use the following well-known upper and lower bounds for
exp(r) for arbitrary fixed n ∈ N and arbitrary real value of r:

(1 +
r

n
)n < exp(r) < (1 +

−r
n

)−n.

Using these bounds instead of the value of exp(r) above and by expressing
max(|pα(x)| |x ∈ [a, b]) by universal quantification over a real variable rang-
ing in [a, b], it is now easy to find such a formula βs,d,n(a, b, c, f) explicitly. In
a similar manner one can find a corresponding formula βs,d,n(a,∞, c, f) for the
case of an upper unbounded parametric interval [a,∞).

Notice that for fixed s, d and increasing values of n ∈ N the formulas
βs,d,n(a, b, c, f) and βs,d,n(a,∞, c, f) get weaker and weaker, since the approxi-
mation of the exponential function used therein gets better and better. For all
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values of s, d and n these formulas underestimate the true range of the parameter
c that bound the function values of y on the interval [a, b] or [a,∞). In other
words, whenever these formulas hold for given parameter values and a given
function y, then y has the respective local stability behaviour.

In summary this section shows that all the properties of exponential poly-
nomials mentioned above can be expressed by quantifier-free formulas in our
language. Hence these properties - in arbitrary boolean combinations - can be
required of some or all constrained quantified function variables in an input
formula ϕ of the QE procedure. Then for every specialization of the number
parameters η1, . . . , ηm and the function parameters u1, . . . , un of ϕ to concrete
values, the corresponding quantifier-free formula ϕ′ can be easily evaluated to
’true’ or ’false’. Thus we have an answer to problems expressed by ϕ that is
uniform in the parameters.

4 Examples

As a first example we consider the differential equation of an harmonic oscil-
lator with external force f(x) [3], section 2.6. It is modelled by the equation

my′′ + cy′ + ky = f(x),

where m denotes the mass of the oscillating body, c is the damping constant,
and k is the spring constant.

We assume that the external force is of the form γ exp(ωx). So we can model
f(x) by a function variable u with the constraint Specsize1(u) ∧ Deg0(u).
Moreover for solutions y we fix constraining number s = 2, d = 1. Then we can
model the question of the existence of stable or asymptotically stable solutions,
respectively, by the following two formulas:

∃y(my′′ + cy′ + ky = u ∧ y �= 0 ∧ Stab2,1(y))

∃y(my′′ + cy′ + ky = u ∧ y �= 0 ∧ Asympstab2,1(y))

Following the proof of Theorem 1, we replace the function quantifier ∃y by
a block of number quantifiers, taking into account the fact that one add con-
junctively the constraints Specsize2(y) and Deg1(y). This is achieved by the
“Ansatz”

u = γ exp(ωx)

with ω = spec1(u), γ = spec1,0(u),

y = (ξ0 + ξ1x) exp(αx) + (η0 + η1x) exp(βx).

By computing y′ and y′′ in this “Ansatz” and by comparing “coefficients” in the
resulting equation between exponential polynomials, we obtain the equivalent
quantifier-free formula ϕ′ in the unknown N -variables ξ0, ξ1, η0.η1, α, β and the
N -parameters m, c, k, γ, ω. The elimination of the N -quantifiers in the formula

∃(ξ0, ξ1, η0.η1, α, β)(ϕ′)

yields then the desired quantifier-free formula ϕ′′(m, c, k, γ, ω).
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Our second example concerns a homogeneous linear 2× 2 system of ODEs
with one number parameter d:

y′1 = −3y1 − 4y2, y′2 = 2y1 + dy2

For simplicity we delete the case of identical eigenvalues. Accordingly we put

ϕ : y′1 = −3y1− 4y2 ∧ y′2 = 2y1 + dy2 ∧ d2 + 6d− 23 �= 0 ∧Asympstab2,0(y2)

and we let

∃2,0y2∃2,0y1(ϕ)

be our input formula.
Then the innermost quantifier is eliminated by transforming the formula

∃2,0y1(ϕ) into

∃(ξ1, ξ2, η1,0η2,0((ξ1 �= spec1(y2), spec2(y2) ∧ ξ2 �= spec1(y2), spec2(y2) ∧

η1,0ξ1 = −3η1,0 ∧ η2,0ξ2 = −3η2,0 ∧ spec1,0(y2) = 0 ∧ spec2,0(y2) = 0) ∨

(ξ2 = spec1(y2) ∧ η1,0ξ1 = −3η1,0 ∧ η2,0ξ2 = −3η2,0(y2) − 4spec1,0(y2) ∧

spec2(y2) = 0) ∨ (ξ1 = spec2(y2) ∧

η2,0ξ2 = −3η2,0 ∧ η1,0ξ1 = −3η1,0 − 4spec2,0(y2) ∧ spec1(y2) = 0) ∨

(ξ1 = spec1(y2) ∧ ξ2 �= spec2(y2) ∧ η1,0ξ1 = −3η1,0 − 4spec1,0(y2) ∧

η2,0ξ2 = −3η2,0 ∧ spec2(y2) = 0) ∨ (ξ2 = spec2(y2) ∧ ξ1 �= spec1(y2) ∧

η2,0ξ2 = −3η2,0(y2) − 4spec2,0(y2) ∧ η1,0ξ1 = −3η1,0 ∧ spec1(y2) = 0) ∨

(ξ1 = spec1(y2) ∧ ξ2 = spec2(y2) ∧ η1,0ξ1 = −3η1,0 − 4spec1,0(y2) ∧

η2,0ξ2 = −3η2,0 − 4spec2,0(y2)).

At this point the N -quantifier block ∃(ξ1, ξ2, η1,0η2,0) can be eliminated by
Theorem 1 yielding a quantifier-free formula ϕ′(y2, d, spec1(y2), spec2(y2),
spec1,0(y2), spec2,0(y2))

The remaining F -quantifier elimination in the formula ∃2,0y2(ϕ′) is now per-
formed in a similar way. The output is then a quantifier-free formula ϕ′′(d). By
the classical theory this formula will be equivalent to the Routh-Hurwitz condi-
tion on the polynomial X2 + (3 − d)X + (8 − 3d).
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5 Proof of the Two Main Theorems

For the proof of Theorem 2 we have to exhibit a quantifier elimination algorithm
for D in the given language. For this purpose it suffices to show how to eliminate
a single existential quantifier ∃ in front of a N -variable ξ (a number-quantifier)
and a single constrained existential quantifier ∃s,d in front of an F -variable y (a
constrained function-quantifier).

For the case of a number-quantifier consider a formula ∃ξ(ϕ), where ϕ
is quantifier-free. By our definition of atomic formulas, the bound variable ξ
does not occur in ϕ in an F -equation. We replace temporarily each subterm
of the form speci(t) or speci,j(t) with an F -term t in each non-pure atomic
N -subformula of ϕ by a new N -variable ηt,i and ηt,i,j , respectively. Then the
resulting formula ∃ξ(ϕ1) is a pure N -formula. By theorem 1 there is a quantifier
elimination algorithm assigning to this formula a quantifier-free pure N -formula
ϕ2 that is equivalent to the given formula in D. Back-substituting the original
terms speci(t) for ηt,i and speci,j(t) for ηt,i,j , respectively, we obtain a quantifier-
free formula ϕ3 equivalent to ∃ξ(ϕ) in d.

The case of a constrained function-quantifier is considerably more sub-
tle: Consider a formula ∃s,dy(ϕ), where ϕ is a quantifier-free formula. containing
at most the free F -variables (function-parameters) z1, . . . , zm.

We are going to exhibit an equivalent F -quantifier-free formula where the con-
strained functionquantifier∃s,dy hasbeen replacedbyablockof existential number
quantifiers preceeding a quantifier-free formulaϕ′.At this pointwe use the elimina-
tion of number quantifers described in Theorem 1 in order to obtain an equivalent
quantifier-free formula. The number of new number quantifiers introduced in this
way depends on s, d and on the maximal order of the derivatives of y occuring in ϕ.
The new number-variables will semantically represent elements of the spectrum of
a “solution function” y and coefficients of the polynomials occuring in the normal
form of y, i. e, the numerical data determining the function y.

We may assume that each F -equation occuring in ϕ has been normalized wrt.
the quantified F -variable y to the form t = u, where t is an F-term containing
no F -variable except y and u is an F-term not containing the F -variable y (but
possibly other variables). Let n be an upper bound on the additive length of
the F -terms u. In view of our hypothesis on the function parameters and the
remarks on F -terms we can assume that for all these F -terms u holds Degd(u)
and Specsizens(u). Let m be an upper bound on the order of y in all terms t,
i.e. assume j ≤ m for all derivatives y(j) occuring in some t.

By our remarks on F -terms we may assume that an occurrence of the F -
variable y in a subterm of the form speci(t) or speci,j(t) happens only if t = y.
Similarly we may assume that an occurrence of the F -variable y in a subformula
of the form Specsizeq(t) or Degq(t) for a natural number q and an F -term t
happens only if t = y.Moreover in view of the constraint Specsizes(y) ∧ Degd(y)
on y, we may in addition assume that all indices i, j, q occurring in speci(y),
speci,j(y), Specsizeq(y), Degq(y) are natural numbers smaller or equal to s, and
that all indices occurring in speci,j(y), Degq(y) are natural numbers smaller or
equal to d.
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Next we introduce s+ s(d+ 1) many new N -variables ξi, ηi,j , where 1 ≤ i ≤
c, 0 ≤ j ≤ d. Then we write the given formula equivalently in the form

∃ξ1 . . . ∃ξc∃η1,0 . . . ∃ηc,d∃y(Specsizes(y) ∧ Degd(y) ∧

s∧

i=1

(speci(y) = ξi ∧
d∧

j=0

speci,j(y) = ηi,j ∧ ϕ)

Next notice that by our hypothesis and the remarks on F -terms we have
Specsizes(t) and Degd(t) for every term t on the left hand side of an F -equation
t = u in ϕ. Hence we can rewrite each F -equation t = u with t =

∑m
h=0 th ·

y(h) + t0 · 1, where all th all pure N -terms, in the formula above equivalently by
“matching the numerical data of both sides” in the following formula:

∨

1≤s1<...<sns

(
ns∧

r=1

(ξsr = specr(u) ∧

d∧

k=0

(
m∑

h=0

h∑

i=0

thξ
h−i
sr

(
h

i

)
k(k − 1) · · · (k − i+ 1) · ηsr ,k+i = specr,k(u)

)
∧

(
∧

1≤q≤c,q �=s1,...,sns

d∧

k=0

ηq,k = 0)

Notice that the variables ξi can occur non-linearly in this formula.
Next we consider occurences of the variable y in predicates of the form

Specsizeq(t + u) and Degq(t + u), where the F -terms t and u are as above.
Then for q ≥ (n+ 1)s the first formula can clearly be replaced by ‘true’, and for
q ≥ d the second formula can be replaced by ‘true’. For smaller values of s the
remarks in section 2 show that these formulas can be equivalently replaced by
quantifier-free formulas involving in addition the variables ξi, ηi,j , but not the
variable y.

Finally we consider occurences of the variable y in an N -equation or an N -
inequality ψ. Here such occurences can only be inside subterms of the form
speci(t) and speci,j(t) for f -terms t. By the remarks in section 2 ψ can then be
rewritten equivalently as a quantifier-free formula not containing y but instead
the n-variables ξi and ηi,j .

We are now in a position to rewrite the given formula equivalently in the form

∃ξ1 . . . ∃ξc∃η1,0 . . . ∃ηc,d∃s,dy(Specsizec(y) ∧ Degd(y) ∧

s∧

i=1

(speci(y) = ξi ∧
d∧

j=0

speci,j(y) = ηi,j ∧ ϕ′),

where ϕ′ is a quantifier-free formula containing no occurence of the variable
y. The range of the quantifier ∃s,dy can now be restricted to that part of the
formula that may contain occurences of the variable y, namely the formula
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∃y(Specsizes(y) ∧ Degd(y) ∧
s∧

i=1

(speci(y) = ξi ∧
d∧

j=0

speci,j(y) = ηi,j)

But this formula is obviously equivalent to ’true.’ In this way we have now
completely eliminated the quantifier ∃s,dy in favour of new number quantifiers

∃ξ1 . . .∃ξs∃η1,0 . . .∃ηs,d

By the elimination method for number quantifiers in Theorem 1, these can now
be eliminated, yielding a final quantifier-free formula equivalent to the given one.

Proof of Theorem 4

Let an F -existential formula of the form

∃y1 . . . ∃yk(ϕ(η1, . . . , ηm, y1, . . . , yk, u1, . . . un),

be given, where ϕ contains no F -quantifiers, but may contain arbitrary N -
quantifiers. Then by applying Theorem 1 to the formula ϕ we may assume
without restriction that ϕ is already quantifier-free.

We claim that under the given constraints s, d on the F -parameters ui the F -
quantifiers ∃yi can be equivalently replaced by constrained F -quantifiers ∃s′,d′yi

for suitably computed bounds s′, d′. In other words: Any k-tuple of solution
functions fi of ϕ(y) can be replaced by a tuple of solution function gi with
Specsize(gi) ≤ s′ and Deg(gi) ≤ d′. Let p be a bound on the order j of deriva-
tives y[j]h occuring in ϕ. Let q be the highest index of a predicate Specsizei(yh)
or Degi(yh) or a function expression of type speci(yh) or speci,j(yh) occurring
in ϕ and let r be the maximum of q, s, d.

Then we claim specifically that we can take

s′ := pk + nr, d′ := pk + r

If the claim holds, then we are back in the situation of Theorem 2 and can
apply the quantifer elimination algorithm described there.

It remains to prove the claim: For this purpose we may assume - by passing
to a disjunctive normal form - that ϕ is actually a conjunction of atomic for-
mulas and negated atomic formulas involving the variables yh. By the remarks
in section 2 we may assume that the atomic subformulas of ϕ are of the form
t = u with F -terms t, u as above or Specsizeq(yh) or Degr(yh) or N -equations
or N -inequalities in which the variables yh occur in the forms speci(yh) and/or
speci,k(yh). Fix values in D for all F -parameters occuring in ϕ and fix values
in C for all N -parameters occuring in ϕ. Assume moreover that for some fixed
values of yh in D ϕ holds in D. Then if Specsizes′(yh) ∧ Degd′(yh) holds in
D there is nothing to prove.
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Notice that every atomic subformulas of ϕ of the form t = u with F -terms t, u
such that u contains no y(j)h now represents a linear ordinary differential equation
with constant complex coefficients in the unknown functions yh. Moreover if this
equation does actually contain some higher derivative of the variable yh with
non-vanishing coefficient then the order of yh in this equation is bounded by
ord(yh, t) and hence by p.

The totality of all such equations that occur unnegated in the conjunction
ϕ forms a system of linear ODES with constant coefficients for the unknown
functions y1, . . . , yk. This system may be underdetermined or determined or
overdetermined. In the latter two cases the classical theory of linear ODEs [3]
entails that specsize(yh) ≤ pk + ns and deg(yh) ≤ pk + d. So we have actually
satisfied all the constraint quantifiers ∃s′,d′yh. If the system is underdetermined
we may have to replace the solution functions yh by others of smaller specsize
and/or degree. For this purpose we replace the undetermined functions yh by
functions of smallest possible specsize and degree in view of the side conditions
expressed by the negated predicates occuring in the conjunction and possible
conditions on speci(yh) and speci,j(yh). The remaining functions yi can now be
determined by the classical theory and the resulting solution functions will be
constrained by s′ and d′ as required. So again we have satisfied the constrained
quantifiers ∃s′,d′yh �	

6 Computing Parametric Solutions

The quantifier elimination for F -existential formulas described in Theorem 4
provides in particular for purely existential formulas of the form

∃ξ1 . . . ∃ξr∃y1 . . . ∃yr(ϕ)

with a quantifier-free formula ϕ a necessary and sufficient test in the (con-
strained) parameters in ϕ for the existence of solutions ξ1, . . . , ξr, y1, . . . , ys for
ϕ. In practice one is, however, also interested in computing explicit sample so-
lutions. In view of the presence of parameters such solution can only be de-
scribed by formal expressions in the parameters. The problem of finding a finite
quantifier-free cases distinction on the parameters and corresponding formal ex-
pressions in the parameters that describe a solution in each case is known as
extended quantifier elimination or quantifier elimination with answers
[15,8].

Based on the structure of the proofs of Theorem 1 and Theorem 4 we are going
to describe such an extended quantifier elimination procedure in our setting. The
result is as follows:

Theorem 4. For every existential input formula

∃ξ1 . . .∃ξr∃y1 . . .∃ys(ϕ)

with number parameters η1, . . . , ηm and function parameters u1, . . . , un and all
natural numbers c, d, one can compute a finite system of tuples consisting of a
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quantifier-free formulas ψi in the parameters, formal number expressions γ,ji in
these parameters and formal function expressions ti,j in these parameters (i ∈ I)
such that in (C, D) the following holds:

n∧

i=1

(Specsizec(ui) ∧ Degd(ui)) −→

(
∨

i∈I

ψi ∧
∧

i∈I

(∃ξ1 . . .∃ξr∃y1 . . . ∃ys(ϕ) ∧ ψi) −→

ϕ[γi,1/ξ1, . . . , γi,r/ξr, ti,1/y1, . . . , ti,s/ys])

In short, we have an algorithm for constrained extended quantifier elimination
for existential formulas in D.

As a consequence we get the equivalence

∃ξ1 . . . ∃ξr∃y1 . . . ∃ys(ϕ) ←→
∨

i∈I

(ψi ∧ ϕ[γi,1/ξ1, . . . , γi,r/ξr, ti,1/y1, . . . , ti,s/ys]).

It remains to describe the formal number-expressions γi,j and the formal-function
expressions ti,j above in greater detail.

By splitting complex variables in their real and imaginary parts, we may as-
sume that the number quantifiers refer actually to real variables. These can be
eliminated by an extended real quantifier elimination based on cylindrical alge-
braic decomposition as described in [12,13]. This conforms with the description
above, where the N -expressions γi,j are nested occurences of expressions de-
scribing some real zero in increasing order of a univariate real polynomial with
parametric coefficients. These expressions can also occur in arithmetic means
and combined with addition or subtraction of 1.

The F -expressions are then of a form corresponding to normal forms of ele-
ments of D, i.e. of the form

∑

α∈S

pα(x) exp(αx),

where S is a finite set of N -expressions as above and for each α ∈ S pα(x) is
a univariate polynomial expression in x with coefficients that are N -expressions
as above.

Notice that for both theN -expressions γi,j and the F -expressions ti,j a natural
substitution of these expressions for N -variables and F -variables, respectively,
in a quantifier-free formula will again yield in a natural way a quantifier-free
formula.

The proof of the theorem proceeds by induction on the number s of function-
quantifiers in the given existential formula.

If s = 0 then all quantified N -variables occur only in N -equations and N -
inequalities. By “splitting complex number variables in real and imaginary parts”
(as in the proof of Theorem 1) we may assume that these N -variables are already
real variables. At this point the extended real quantifier elimination based on
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cylindrical algebraic decomposition as described in [12] provides the required N -
expressions for the newly introduced real variables. Combining these as real
and imaginary parts then yields the required N -expressions for the original
N -variables satisfying the given formula ϕ. Notice that these expressions may
involve the F -parameters occuring in ϕ in the form of N -terms speci(t) and
speci,j(t).

In the case s = 1 we have a single F -quantifier ∃y. Removing this quantifier, we
may assume by the induction assumption that extended quantifier elimination
has already been performed for the remaining existential number quantifiers.
Next we consider each quantifier-free formula ψi and ϕ[γ1/ξ1, . . . , γr/ξr] occuring
in the output separately. Then the given input formula

∃ξ1 . . . ∃ξr∃y(ϕ)

is by induction assumption under the constraint hypothesis equivalent to
∨

i∈I

∃y(ψi ∧ ϕ[γi,1/ξ1, . . . , γi,r/ξr]).

By the proof of the main theorem, the F -quantifier ∃y can be equivalently
replaced by a block of new existential quantifiers wrt. new N -variables rep-
resenting the objects speci(y) and speci,j(y). By the previous case extended
quantifier elimination can be performed eliminating these quantifiers by a finite
system of case distinctions and corresponding N -expressions. By combining the
N -expressions for all these variables into an F -expression of the form

t :=
∑

α∈S

pα(x) exp(αx)

with the specified values α corresponding to the N -expressions for speci(t) and
the coefficients of the polynomials pα(x) corresponding to the N -expressions
for speci,j(t), we obtain the desired extended quantifier elimination of the F -
quantifier ∃y.

Finally the case s > 1 of several F -quantifiers is handled by a simple induction
on s, using the case s = 1 in the induction step.

This completes the proof.

7 Warning About Variants

It is tempting to conjecture that the present method can be extended to a logical
framework inculding linear differential equations with parametric coefficients
that are not necessarily differential constants. This is indeed possible in
domains of germs of meromorphic functions as shown in [16], when no stability
conditions are present. In fact the present study results from a question of
A. Weber at CASC 2005, asking whether it is possible to include stability
conditions in that framework.
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If, however, the present framework for the domain (C, D) even without stabil-
ity conditions is extended to include a function constant for the independent
variable X then we arrive at an algorithmically undecidable situation.
In particular no algorithmic quantifier elimination is possible in that extended
framework.

This is not only the case for the present semantic domain (C, D) of exponential
polynomials, but in fact for any reasonable differential subring of the ring of
complex formal power series:

Theorem 5. Let K be a subfield of C and let R be a differential subring of
K[[X ]] in the language L := {0, 1, X,+,−, ·,′ } of linear homogeneous ODEs and
of polynomial equations over K. Here X is a language constant for the indepen-
dent variable. Then the existential theory of R is undecidable. In particular there
cannot be an algorithmic quantifier elimination for existential L-formulas in R.

Proof. The linear differential equation X · y′ = ξ · y with number parameter ξ
has a non-trivial solution y in R iff ξ ∈ N0 : Indeed if such a solution y is given
by a power series

∑∞
n=0 anX

n, with derivative
∑∞

n=0 nan+1X
n, then the given

differential equation implies by coefficient comparison

ξa0 = 0, ξa1 = a1, ξa2 = 2a2, ξa3 = 3a3, . . .

Under the hypothesis that for some i ∈ N0 ai �= 0 this implies that ξ = i ∈ N0

and that the solution y = aiX
i.

Hence the non-trivial solvability of the given parametric linear differential
equation given by the existential formula

ϕ(ξ) := ∃y(y �= 0 ∧ X · y′ = ξ · y ∧ ξ′ = 0)

codes the semiring N0 of natural numbers inside the ring R. As a consequence
every existential sentence about N0 can be coded into an existential formula
about R of the form

∃ξ1 . . . ∃ξk(
k∧

i=1

ϕ(ξi) ∧ ψ),

where ψ is a quantifier-free formula aboutR. By the negative solution of Hilbert’s
tenth problem the existential theory of N0 is undecidable; by the coding above,
this proves the theorem. �	

It appears that weaker versions of this theorem have been known to some al-
gebraic model theorists (A. Macintyre, personal communication). Whether the
theorem holds also in a language without the constant X is an open problem.
The use of this constant can at any rate be avoided, when R is regarded as a
differential valuation ring with the natural valuation v, since X is the only solu-
tion of the condition x′ = 1 ∧ v(x) > 0. Alternatively, X can be defined in our
given language of the domain (C, D) by the formula

Specsize1(x) ∧ Deg1(x) ∧ spec1(x) = 0 ∧ spec1,0(x) = 0 ∧ spec1,1(x) = 1.
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So if we allow in the language of (C, D) also function terms as coefficients of
F -variables and their derivatives, then the existential theory of (C, D) becomes
undecidable and algorithmic quantifier elimination becomes impossible.

8 Conclusions and Open Problems

We have presented an algorithmic constrained quantifier elimination algorithm
and a decision algorithm for the domain (C, D) of complex exponential polyno-
mials in a language including arbitrary polynomial relations for complex number
variables, linear ODEs with complex number parameters for function variables
and additional predicates specifying the properties of a function variable as ex-
ponential polynomial. Moreover the quantifier elimination algorithm can also
be extended to produce solutions for existential parametric problems uniformly
in the number and function parameters. The chosen language allows the for-
mulation of global and local stability properties of function terms, as well as
evaluation at point zero. Hence it appears to be well suited to the solution of
parametric stability problems in robust control theory [1]. Examples demon-
strate the scope of the method. A negative theorem on undecidability shows a
limitation for extensions of this approach.

An implementation of the methods is in principle possible e. g. in REDLOG
[7], where a differential algebra context is already present. In order to be of
practical relevance the basic algorithms presented here have to be optimized in
several more or less obvious ways. The question of the asymptotic complexity
of the QE algorithm also remains open. Since it is based on real QE, it must
be at least doubly exponential in the worst case [14,5]. It is also rather obvious
that an upper complexity bound will depend on the constraint bound b on the
function parameters. For fixed value of b, I conjecture that the algorithms are
elementary recursive, i. e. bounded in complexity by a fixed number of iterated
exponential functions. The number of these interations may well depend on b.
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Abstract. The solution of Partial Differential Equations (PDEs) is one
of the most important problems of mathematics, and has an enormous
area of applications. One of the methods for extending the range of an-
alytically solvable PDEs consists in transformations of PDEs and the
corresponding transformations of their solutions. Thus, based on the fact
that a second-order equation can be solved if one of its factorizations is
known, the famous method of Laplace Transformations suggests a cer-
tain sequence of transformations of a given equation. Then, if at a certain
step in this transformation process an equation becomes factorizable, an
analytical solution of this transformed equation — and then of the initial
one — can be found.

The aim of this talk is a description of some old and new develop-
ments and generalizations of analytical approaches to the solution of
PDEs and the corresponding algebraic theory of differential operators.
Recently we have introduced the notion of obstacle for the factorization of
a differential operator, i.e. conditions preventing a given operator from
being factorizable. These obstacles give rise to a ring of obstacles and
furthermore to a classification of operators w.r.t. to their factorization
properties. From obstacles we can also get (Laplace) invariants of opera-
tors w.r.t. to certain (gauge) transformations. We have shown how such
systems of invariants can be extended to full systems of invariants for
certain low order operators. Another related problem is the description
of the structure of families of factorizations. For operators of order 3 it
has been shown that a family of factorizations depends on at most 3 or
2 parameters, each of these parameters being a function on one variable.
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Abstract. One of the most important features of authentication is the
non-repudiation property, implemented by digital signatures. This useful
feature of authentication may, however, not be necessary in some cases,
such as e-voting, and should indeed be avoided. In this paper, by a com-
bined use of public-key encryption, digital signatures, coding, quadratic
residues, and randomness, a new scheme for deniable/repudiable authen-
tication is proposed and analyzed, and a complete example of the scheme
is given. The security of the scheme is based on the intractability of the
quadratic residuosity problem.

Keywords: Deniable/repudiable authentication, intractability, quad-
ratic residuosity problem.

1 Introduction

One of the most important features of authentication is the non-repudiation
property, implemented by digital signatures. According to Hellman [4], a true
digital signature must be a number (so it can be sent in electronic form) that is
easily recognized by the receiver as validating the particular message received,
and which could only have been generated by the sender. Remarkably enough,
this important feature of digital signatures is in fact the main motivation for
Hellman and his colleagues to develop the public-key cryptography (see [2], [3]
and [4]) since the main application of public-key cryptography is for digital sig-
natures and authentication rather than for encryption. Notice however that the
requirement for digital signature to be easily recognized by the receiver may not
be necessary in privacy-preserved authentication systems, such as e-voting sys-
tems. Traditionally, once the signer, say e.g. Alice, signs a document, she cannot
deny her signature later, since the signature was generated only by using her
private key. This marvellous feature of authentication is, however, not necessary
and should be avoided whenever possible in some e-systems. For example, in an
e-voting system, suppose Alice votes Bob but not John. As the voting is confiden-
tial, Alice does not want to disclose her voting to anyone regardless of whether or
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not she actually votes Bob or not. By a combined use of public-key encryption,
digital signatures, coding and randomness, this paper proposes a new scheme
for deniable/repudiable authentication suitable for e-voting, in which the author
of a vote can deny the authorship of the vote even if she actually did the vote.
Of course, if needed and if she wishes, Alice can at any time show a restricted
number of individuals, whilst still keeping the information from others, that she
is the author of the vote. The security of the scheme is based on the quadratic
residuosity problem, which is believed to be intractable. In the next sections,
the intractability of the quadratic residuosity problem will be introduced, then
the deniable/repudiable authentication scheme will be proposed and discussed,
followed by an illustrative example. The security analysis and the related work
will also be addressed.

2 The Deniable Scheme

A positive integer a > 1 is a quadratic residue modulo N , denoted by a ∈ QN , if
gcd(a,N) = 1 and if there exists a solution x to the congruence x2 ≡ a ( mod N);
otherwise, it is a quadratic non-residue modulo N , denoted by a ∈ QN . The
quadratic residuosity problem (QRP) is to decide whether a is a quadratic residue
or quadratic non-residue modulo N . That is, to decide whether a is a square or
pseudo-square modulo N . If N = p is an odd prime, by Euler’s criterion [9] a is a
quadratic residue modulo p if and only if a(p−1)/2 ≡ 1 (mod p), which is in fact
easy to decide. However, if N is an odd composite, then one needs to know the
prime factorization of N which, as it is well known, is intractable. Consequently
it is hard to decide whether or not a ∈ QN when N is a large odd composite,
since obviously, a is a quadratic residue modulo N if and only if it is quadratic
residue modulo every prime dividing N [7]. Define the Legendre symbol, (a

p )
with p odd prime, as follows:

(
a

p

)
=

{
1, a ∈ QN

−1, a ∈ QN

Also define the Jacobi symbol, ( a
N ) with N odd composite, as follows:

( a

N

)
=

(
a

p1

)α1 ( a

p2

)α2

· · ·
(
a

pk

)αk

when N = pα1
1 pα2

2 · · · pαk

k . Obviously, if ( a
N ) = −1, then ( a

pi
) = −1 for some i,

and a is a quadratic non-residue modulo N . However, it may well be possible
that a is a quadratic non-residue modulo N even if ( a

N ) = 1, since

a ∈ QN =⇒
( a

N

)
= 1,

a ∈ QN
?⇐=

( a

N

)
= 1,

a ∈ QN ⇐=
( a

N

)
= −1.
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Let JN = {a ∈ Z∗
N : ( a

N ) = 1}. Then Q̃N = JN −QN . Thus Q̃N is the set of all
pseudosquares modulo N ; it contains those elements of JN that do not belong
to QN . Thus QRP may be stated as follows. Given an odd composite N and an
integer a ∈ JN , decide whether or not a ∈ QN .

Example 1. Let N = 21, then

Z∗
21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20},

J21 = {1, 4, 5, 16, 17, 20}= Q21 ∪ Q̃21,

Q21 = Z∗
21 − J21 = {2, 8, 10, 11, 13, 19}.

Now, both Q21 and Q̃21 are mixed in J21. To distinguish Q̃21 from Q21, the
only method is to factor 21 = 3 × 7 and find Q3 and Q7, and compute Q21 =
Q3∩Q7. From Page 150 of [9], we know that Q3 = {1, 4, 10, 13, 16, 19} and Q7 =
{1, 2, 4, 8, 11, 16}. Thus Q21 = Q3 ∩ Q7 = {1, 4, 16}. Hence, Q̃21 = {5, 17, 20}.
That is,Q̃21 has been successfully distinguished from Q21. This process will be,
however, very difficult to perform if N is large since N needs to be factored first.

As indicated in Example 1, to decide the quadratic residuosity, the only method
we know is to factor N , which is intractable for large N ; the fastest factoring
method, the Number Field Sieve (NFS), runs in time

O(exp(c(logN)1/3(log logN)2/3)),

where c = (64/9)1/3 ≈ 1.92 if a general version of NFS is used or c = (32/9)1/3 ≈
1.53 if a special version of NFS is used.

In our deniable/repudiable authentication scheme, we first generate a conven-
tional non-deniable/non-repudiable digital signature S using a standard digital
signature system. Then we convert S into a deniable/repudiable signature S′:

S =⇒ S′

⇑ ⇑
Non-deniable signature Deniable signature

On receiving the deniable signature, the receiver obviously knows there is a
signature attached to the document, say a vote, but he cannot verify who is the
author of the vote, as the vote is privacy-preserved by the deniable signature,
which cannot be verified directly by the sender’s public-key. There are several
nontrivial ways to implement the deniable/repudiable authentication scheme;
one of the ways was developed by Aumann and Rabin [1] and based on the
intractability of the Modular Square Root Problem. Our method, however, is
based on the intractability of the Quadratic Residuosity Problem, which may be
described as follows:

Algorithm 1. A new deniable/repudiable authentication scheme based on a com-
bined use of public-key encryption, digital signatures, coding, quadratic residues,
and randomness, suitable for e-voting environment.
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[1] Generate the non-deniable signature S = {s1, s2, · · · }. The voter, say, e.g.,
Bob, uses his private key d to generate his digital signature S on his vote M :
S = Md (mod N), where N is a product of two large prime numbers. This
signature can be verified by using Bob’s public-key e: M = Se (mod N),
where ed ≡ 1 (mod φ(N)).

[2] S =⇒ (S′, B): Obtain the deniable signature S′ by adding randomness to S.
[2-1] S =⇒ S′: Randomize the signature. Randomly add some extra digits

(noise) to the digital signature S to get a corresponding randomized
digital signature S′ = {s′1, s′2, · · · } .

[2-2] S′ =⇒ B: Generate a bit string B = {b1, b2, · · · } for the randomized
signature S′. Generate a binary string B, with each bit in B correspond-
ing to a digit in S′, assign 1 to the bit if the corresponding digit appears
in both S and S′, otherwise, assign 0 to the bit.

[2-3] B =⇒ X: Generate a random mixed string X of squares and pseudo-
squares. Generate a string of integers X = {x1, x2, · · · } which are the
mixed squares and pseudo-squares, based on the quadratic residuosity
problem [9] (it can also even be based on the kth power residuosity
problem (kPRP) [8]).

To get the X string, we choose N = pq with p, q prime. Find a pseudo
random square y ∈ Z∗

N such that y ∈ QN and ( y
N ) = 1. That is, y ∈ Q̃N .

(N, y) can be made public, but p, q must be kept as a secret. Choose at
random the number ri and compute

xi ≡
{
r2i mod N if bi = 0 (random square)

yr2i mod N if bi = 1 (pseudo random square)

[2-4] Send {(S′, X), E} to the Election Centre, where (S′, X) is the repudia-
ble digital signature and E the e-vote. The author of the e-vote can deny
his authorship of the vote, since S′ is a random string of digits which is
different from S and from which it is not easy to get back to S unless
the quadratic residuosity problem can be solved in polynomial-time.

[2-5] S′ =⇒ B: To verify the signature if needed only the author of the
vote, who knows the trap-door information (i.e., the prime factors p and
q of the composite modulus N), can recover B from X .

To get the string B = b1, b2, · · · from the string X = x1, x2, · · · , one
may perform the following operations:

bi ≡
{

0, if ep
i = eq

i = 1

1, otherwise

where

ep
i =

(
xi

p

)
, eq

i =
(
xi

q

)
.

[2-6] {B,S′} =⇒ S: Remove the noise from S′ to get S according to B.

Example 2. We demonstrate the above idea in Algorithm 1 in this example for
an e-voting system.
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[1] Generate the non-repudiable signature. The voter, say, e.g., Bob, uses his
private key to generate his digital signature S for his vote:

Bob Newman =⇒ 0215020014052313013 =⇒ 42527067843532368
⇑ ⇑ ⇑

Name for Signature Numerical Form (M) Digital Signature (S)

This digital signature was generated and verified by

S ≡M e ≡ 2150200140523130137

≡ 42527067843532368 (mod 1832970702926065247)

M ≡ Sd ≡ 42527067843532368785558871522137263

≡ 215020014052313013 (mod 1832970702926065247)

with

ed ≡ 1 (mod φ(1832970702926065247)).

[2] S =⇒ (S′, B): Add repudiable feature to the non-repudiable signature.

[2-1] S =⇒ S′: Randomize the signature. Randomly add some extra dig-
its into the digital signature S to get a corresponding pseudo digital
signature S′.
S 4 2 5 2 7 0 6 7 8 4 3 5 3 2 3 6 8

6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

S’ 7 9 1 4 8 5 2 1 4 5 3 2 2 8 9 1 7 0 6 3 7 8 9 4 3 5 9 1 3 2 3 2 1 7 3 6 6 8

[2-2] S′ =⇒ B: Generate a bit string B = {b1, b2, · · · } for the randomized
signature S′. Generate a binary stringB with each bit inB corresponding
to a digit in S′, assign 1 to the bit if the corresponding digit appears in
both S and S′, otherwise, assign 0 to the bit.
S’ 7 9 1 4 8 5 2 1 4 5 3 2 2 8 9 1 7 0 6 3 7 8 9 4 3 5 9 1 3 2 3 2 1 7 3 6 6 8

6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

B 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1

[2-3] B =⇒ X : Generate a random mixed string X of squares and pseudo-
squares: Generate a string of integers X = {x1, x2, · · · } which are the
mixed squares and pseudo squares. based on the quadratic residuosity
problem.

Choose a random pseudo square y = 1234567 ∈ Z∗
N such that y ∈ QN

and ( y
N ) = 1. That is, y ∈ Q̃N . (N, y) can be made public, but p, q must

be kept as a secret.
We just calculate the values for x3 and x4; all the rest can be calcu-

lated in exactly the same way.
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Choose at random the number r3= 8194920765 and r4= 1740298374,
and compute (note that b3 = 0, b4 = 1):

x3 ≡ r23 ≡ 81949207652

≡ 1169781039289836333 (mod 1832970702926065247)

x4 ≡ yr24 ≡ 1234567 · 17402983742

≡ 287064024006224109 (mod 1832970702926065247)

[2-4] Send {(S′, X), E} to the Election Centre, where (S′, X) is the deni-
able/repudiable digital signature and E the e-vote. The author of the
e-vote can deny his authorship of the vote, since S′ is a random string
of digits which is different from S.

[2-5] S′ =⇒ B: To verify the signature if needed, only the author of the
vote who knows the trap-door information (the composite modulus N)
can show the Election Centre that he is the author of the vote, anyone
else should not be able to verify the authorship of the vote.

We just show how to recover S′
3 and S′

4 by computing b3 and b4 from
x3 and x4 as follows (all the rest are performed in exactly the same way):
Since

ep
3 =

(
x3
p

)
=

(
1169781039289836333

1353874987

)
= 1,

eq
3 =

(
x3
q

)
=

(
1169781039289836333

1353869981

)
= 1,

ep
4 =

(
x4
p

)
=

(
287064024006224109

1353874987

)
= −1,

eq
4 =

(
x4
q

)
=

(
287064024006224109

1353869981

)
= −1,

then

b3 = 0, as ep
3 = eq

3 = 1,

b4 = 1, as ep
4 = eq

4 = −1.

On the other hand, for the cryptanalyst who does not know the factor-
ization of N = pq, then the following two pieces of computation must be
performed

eN
3 =

(x3
N

)
=

(
1169781039289836333
1832970702926065247

)
= 1,

eN
4 =

(x4
N

)
=

(
287064024006224109
1832970702926065247

)
= 1,

So, he cannot distinguish squares from pseudo squares. Thus, he cannot
remove the noise correctly, as indicated in the next step.
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Table 1. The Complete List of Computation Results in Example 2

i Si S′
i Bi ri xi ep

i eq
i eN

i Bi S′
i Si

1 7 0 5984746251 990744333263315308 1 1 1 0 7

2 9 0 8321764556 1431849317233462997 1 1 1 0 9

3 1 0 8194920765 1169781039289836333 1 1 1 0 1

4 4 4 1 1740298374 287064024006224109 −1 −1 1 1 4 4

5 8 0 9827365106 1262628374470998392 1 1 1 0 8

6 5 0 1029837512 1060565301122350144 1 1 1 0 5

7 2 2 1 6473682901 150184231223858133 −1 −1 1 1 2 2

8 1 0 8376453217 512081785399169703 1 1 1 0 1

9 4 0 2274645280 1508069743974147906 1 1 1 0 4

10 5 5 1 427419669081 370940926090515520 −1 −1 1 1 5 5

11 3 0 321110693270 143409937148888162 1 1 1 0 3

12 2 0 746753830538 272413385043405128 1 1 1 0 2

13 2 2 1 474256143563 1334682782008751010 −1 −1 1 1 2 2

14 8 0 32062222085 1522491389265208905 1 1 1 0 8

15 9 0 604305613921 688901773803769184 1 1 1 0 9

16 1 0 558458718976 660632574793168744 1 1 1 0 1

17 7 7 1 722974121768 26578238445673413 −1 −1 1 1 7 7

18 0 0 1 845473509473 1162153979472023243 −1 −1 1 1 0 0

19 6 6 1 343633073697 1723201744301369246 −1 −1 1 1 6 6

20 3 0 676470788342 593670337217803932 1 1 1 0 3

21 7 7 1 155590763466 1760530014633994358 −1 −1 1 1 7 7

22 8 8 1 429392673709 1131678843033095552 −1 −1 1 1 8 8

23 9 0 525428510973 404751391738164577 1 1 1 0 9

24 4 4 1 272600608981 1312583620580057586 −1 −1 1 1 4 4

25 3 3 1 219760099374 401697423373942699 −1 −1 1 1 3 3

26 5 5 1 675982933766 466825511754271815 −1 −1 1 1 5 5

27 9 0 146486307198 1483148054306829822 1 1 1 0 9

28 1 0 920624947349 1137384662786502224 1 1 1 0 1

29 3 0 644031395307 829658753701141607 1 1 1 0 3

30 2 0 453747019461 1589404976685991740 1 1 1 0 2

31 3 3 1 812920457916 640910416677721889 −1 −1 1 1 3 3

32 2 2 1 960498834085 796508529907034044 −1 −1 1 1 2 2

33 1 0 88430571674 512987907856818574 1 1 1 0 1

34 7 0 39169594160 60628309989493861 1 1 1 0 7

35 3 3 1 797179490457 573155683439910649 −1 −1 1 1 3 3

36 6 6 1 310075487163 284578868772975450 −1 −1 1 1 6 6

37 6 0 259811952655 1271636448682763003 1 1 1 0 6

38 8 8 1 745580037409 1355861018555287891 −1 −1 1 1 8 8
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[2-6] {B,S′} =⇒ S: Remove the noise from S′ to get S. Since b3 = 0, its corre-
sponding digit 1 in S′

3 is noise and should be removed from S′. However, as
b4 = 1, its corresponding digit 4 should remain in S′. Clearly, after removing
all the noise from S′, S′ will eventually become S, the true digital signature.
A complete list of computation results in this example is given in table 1.

Clearly, anyone who can solve the quadratic residuosity problem (or the kth
power residuosity problem) can distinguish the pseudo squares from square (or
the pseudo kth powers from the kth powers), and hence can verify the digital
signature and the authorship of the e-vote. But as everybody knows, solving
QRP/kPRP is intractable, thus the author can deny his authorship of an e-vote,
regardless of whether or not he actually did vote.

3 Conclusions

In this paper, a new scheme, based on a combined use of public-key encryp-
tion, digital signatures, coding, quadratic residues and randomness, of deni-
able/repudiable authentication/authorization is proposed and discussed. The
scheme is well suited for such e-systems as e-voting where the privacy of the
signature needs to be preserved. The security of the scheme is based on the in-
tractability of the quadratic residuosity problem (QSP). With some extension,
it can also be based on the kth power residuosity problem (kPSP) [8]. It is inter-
esting to note that the quadratic residuosity problem has been used for proba-
bilistic encryption (see [5] and [6]) since 1984, but to best of our knowledge, it is
the first time to be used for authentication/authorization, particularly for deni-
able/repudiable authentication/authorization. Similar scheme was developed by
Aumann and Rabin [1], but based on a different intractable number-theoretic
problem, the modular square root problem.

Acknowledgements. The authors would like to thank the three anonymous
referees for their helpful comments, suggestions and corrections over the earlier
draft paper.
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Abstract. We propose a novel algorithm to select a model that is consistent with
the time series of observed data. In the first step, the kinetics for describing a bio-
logical phenomenon is expressed by a system of di�erential equations, assuming
that the relationships between the variables are linear. Simultaneously, the time
series of the data are numerically fitted as a series of exponentials. In the next
step, both the system of di�erential equations with the kinetic parameters and the
series of exponentials fitted to the observed data are transformed into the corre-
sponding system of algebraic equations, by the Laplace transformation. Finally,
the two systems of algebraic equations are compared by an algebraic approach.
The present method estimates the model’s consistency with the observed data and
the determined kinetic parameters. One of the merits of the present method is that
it allows a kinetic model with cyclic relationships between variables that cannot
be handled by the usual approaches. The plausibility of the present method is il-
lustrated by the actual relationships between specific leaf area, leaf nitrogen and
leaf gas exchange with the corresponding simulated data.

1 Introduction

The knowledge-based approach to constructing a biological network model is recog-
nized as one of the most promising approaches [4]. In this approach, the causal rela-
tions between biological molecules are described as a directed graph, based on the gene
interaction information collected from a large number of previous reports. Since each
relation identified by experimental studies is regarded as strong evidence for the exis-
tence of edges in the network model, biological network models have been constructed
for various biological phenomena by a knowledge-based approach. On the other hand,
it is well-known that the relationships between the molecules in a living cell change
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V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 433–447, 2007.
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dynamically, depending on the cellular environment. Thus, the molecular relationships
in the literature represent the responses to the di�erent conditions in the experimental
studies, and in the network model generated from the biological knowledge, the consis-
tency of the model with the data observed by experimental studies must be considered
carefully. Actually, several distinctive models of the relationship between molecules for
a biological phenomenon can be obtained from the large amount of information in the
literature [2, 5]. In these cases, a model that is consistent with the data observed under
particular conditions should be selected from the candidate models.

The consistency of a model with the observed data first reminds us of the identifia-
bility problem in the compartmental models for tracer kinetics [1, 5, 6]. In the compart-
mental models, the unknown parameters are estimated from tracer data in the accessible
pools. The identifiability problem addresses the issue of whether the unknown param-
eters can be determined uniquely or non-uniquely from the tracer data. This issue has
usually been solved through the transformation of di�erential equations into algebraic
equations, by the Laplace transformation. Although a systematic algorithm for the iden-
tifiability problem was proposed [3], its application is limited to the unrealistic context
of an error–free model structure and noise–free tracer data. Thus, it still seems to be
diÆcult to solve the identifiability problem for actually observed data, in spite of the
mathematical studies.

The issue of the consistency of a model with the observed data is also well known in
statistics, as the test for causal hypotheses by using the observed data. The origin of the
test for causal hypotheses is attributed to path analysis [12]. Unfortunately, the impor-
tance of this cornerstone research has been ignored for a long time, but the natural ex-
tension of the path analysis has been established as the well-known structural equation
model (SEM) [8]. Indeed, the SEM has been utilized recently in various fields, in ac-
cordance with increased computer performance. However, the SEM without any latent
variables, which is the natural form for applying the SEM to the biological networks,
frequently faces diÆculty in the numerical calculation of the maximum likelihood for
the observed data. To overcome the diÆculty of this calculation, the d-sep test [11] has
been developed, based on the concept of d-separation in a directed acyclic graph [10].
Notice that the graph consistency with the data in the d-sep test can consider only the
directed acyclic graph (DAG), without any cyclic relationships.

In this study, we propose a new method for selecting models, by estimating the
consistency of a kinetic model with the time series of observed data. Our method is
described in the following section. First, the kinetics for describing a biological phe-
nomenon is expressed by a system of di�erential equations, assumed that the rela-
tionships between the variables are linear. Simultaneously, the time series of the data
are numerically fitted as a series of exponentials. Next, the di�erential equations with
the kinetic parameters and the series of exponentials fitted to the observed data are
both transformed into the corresponding system of algebraic equations, by the Laplace
transformation. Finally, the two systems of algebraic equations are compared by an
algebraic approach. Thus, the present method estimates the model’s consistency with
the observed data and the determined kinetic parameters. In �3, the plausibility of the
present method is illustrated by the actual relationships between specific leaf area, leaf
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f1 f2
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f4
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f7

k1

k2

k3

k4
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k6

k7 ��
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d�dt f1(t) � �(k1 � k4) f1(t)
d�dt f2(t) � k1 f1(t) � (k2 � k3) f2(t)
d�dt f3(t) � k3 f2(t)
d�dt f4(t) � k4 f1(t) � (k5 � k6 � k7) f4(t)
d�dt f5(t) � k5 f4(t)
d�dt f6(t) � k6 f4(t)
d�dt f7(t) � k7 f4(t)

Fig. 1. Correspondence between a network and a system of di�erential equations. By assuming a
linear relation between the variables, the kinetics of chemicals f1� f2� � � � in the left graph can be
described by the system of di�erential equations on the right side.

nitrogen and leaf gas exchange [9], with the corresponding data generated by the di�er-
ential equations for the relationships. Furthermore, the merits and pitfalls of the present
method are discussed. In particular, one of the merits of the present method is that it al-
lows a kinetic model with cyclic relationships between variables that cannot be handled
by the usual approaches.

2 Methods

The aim of this paper is to select the model most consistent with the given sampling
data. In this section, we propose a method to perform this selection, where the model
is described as a network. The network addressed in this paper designates the kinetics
of chemicals, which can be described by a system of di�erential equations, as seen in
Fig. 1.

First, we will show the overview of our method by a schematic illustration. We will
then provide an explanation for the Laplace transformations of model formulae and
sampling data over the time domain, as preparation for the model selection over the
Laplace domain. Lastly, we describe a procedure to estimate the model consistency
with the definition of consistency measure.

2.1 Overview

The overview of our method is schematically illustrated in Fig. 2. The point is that we
perform the model selection over the Laplace domain. Therefore, both the model formu-
lae and sampling data must be transformed into functions over the Laplace domain. Sup-
pose that the model formulae are �d�dt h(t) � �k1h(t)� d�dt f (t) � k1h(t) � k2 f (t)� and
the sampling data are fitted to ho(t) � �0 exp(��0t)� fo(t) � �1 exp(��1t)��2 exp(��2t).
The Laplace-transformed formulae of the model formula: L[ f (t)](s) and the fitted func-
tion: L[ f o(t)](s) are rational functions in s, as seen in the middle row of Fig. 2. Let comp
denote the set of polynomials obtained by matching the coeÆcients in s of L[ f (t)](s)
and L[ f o(t)](s) over the Laplace domain, in which every element is equal to zero when
L[ f (t)](s) is exactly identical to L[ f o(t)](s) in s. Then we have adopted the smallest
sum-square value of the elements in comp as a consistency measure between the model
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Model Formula
d/dt h(t) = −k1h(t)
d/dt f(t) = k1h(t) − k2f(t)

Sampling Data Fitting
ho(t) = β0 exp(−α0t)
fo(t) = β1 exp(−α1t) + β2 exp(−α2t)

Laplace Transformed
Model Formula

L[h(t)](s) =
h(0)

s + k1

L[f(t)](s) =
f(0)s + k1(f(0) + h(0))
s2 + (k1 + k2)s + k1k2

Laplace Transformed
Sampling Data Fitting

L[ho(t)](s) =
β0

s + α0

L[fo(t)](s) =
(β1 + β2)s + (α1β2 + α2β1)

s2 + (α1 + α2)s + α1α2

Model Consistency Estimation
comp = {h(0)− β0, k1 − α0, f(0)− (β1 + β2), k1(f(0) + h(0)) − (α1β2 + α2β1),

(k1 + k2) − (α1 + α2), k1k2 − α1α2}

match

Laplace TransformLaplace Transform

Fig. 2. Overview of our method. The top row designates the model formulae and the sampling
data over the time domain, and the middle row designates their Laplace transformations. comp de-
notes the set of polynomials derived by matching the coeÆcients in s of L[ f (t)](s) and L[ f o(t)](s)
over the Laplace domain, which is zero when the model and sampling data are completely con-
sistent with each other.

and the sampling data, because this value is zero in the case of L[ f (t)](s) � L[ f o(t)](s).
We shall mention the formal procedure and definitions concretely in the following sub-
sections.

2.2 Preparations: Transformation into Laplace Domain

Model Formula. Suppose that the model formulae are described over the time domain
as the following system of di�erential equations:

d fi(t)
dt

� Fi(
�

f �
�

k )� (2.1)

where
�

f � � f1� f2� � � � � fn� and
�

k � �k1� k2� � � � � km�. Fi(
�

f �
�

k ) can be determined in

accordance with the network representing the model, and
�

k denotes the kinetic con-
stants between the chemicals. We transform this system of di�erential equations into
the system of algebraic equations over the Laplace domain, and solve the equations in
L[ fi(t)](s) (i � 1� 2� � � � � n). Notice that in this paper, we deal only with an autonomous
system of di�erential equations, but in the framework of the Laplace transformation, we
can deal with di�erential equations containing external forces or ‘convolutions’ of com-
plex functions, as long as the Laplace-transformed algebraic equations can explicitly be
solved in L[ fi(t)](s) (i � 1� 2� � � � � n).
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Sampling Data Fitting. In this paper, we need the Laplace transformation of the sam-
pling data, because we perform the model selection over the Laplace domain. Let f oi(t)
denote the sampling data corresponding to fi(t) derived theoretically. By using non-
linear regression (via Maple 10 Global Optimization toolbox, c�MapleSoft), f oi(t) is
expressed in terms of a series of exponentials, according to [6], as follows:

f oi(t) � �0 �

k�

i�1

�i exp(��it)� (2.2)

where k is the number of distinct exponentials determined by fi(t), and �0 is zero in the
case of the non-existence of a constant term within fi(t). f oi(t) thus fitted is changed
into the Laplace-transformed data as follows:

L[ f oi(t)](s) �
�0

s
�

k�

i�1

�i

s � �i
� (2.3)

where L denotes the Laplace transformation.

2.3 Estimation of Model Consistency

Consistency Measure. To evaluate the consistency of the model with the sampling
data, here we define two consistency measures. If the model is completely consistent
with the sampling data and the data lack noise and inaccuracies, then L[ fi(t)](s) �

L[ f oi(t)](s) (i � 1� 2� � � � � n) holds. This fact has led us to the following definitions of
consistency measure:

Let comp denote the set of polynomials obtained by matching the coeÆcients of
L[ f (t)](s) and L[ f o(t)](s) over the Laplace domain, in which every element is zero in
the case of L[ fi(t)](s) � L[ f oi(t)](s) (i � 1� 2� � � � � n); that is, when Formula L[ fi(t)](s) �
L[ f oi(t)](s) is an identity in s.

The first consistency measure (in short, CM1) of the model is defined as the smallest
sum-square value of the elements in comp under the following constraint:

k1 � 0� k2 � 0� � � � � km � 0� (2.4)

In order to obtain the smallest value, we have utilized the least squares method using
the following equations:

�

�k1
g(
�

k ) � 0�
�

�k2
g(
�

k ) � 0� � � � �
�

�km
g(
�

k ) � 0� (2.5)

where g(
�

k ) is the sum-square value of the elements in comp. It should be noted that
in this paper we deal only with the case that the ideal associated with the set of poly-
nomials in (2.5) is zero-dimensional. Then, we survey all of the possible candidates
of the minimum by calculating all of the real positive roots of the system of algebraic
equations (2.5). Several methods and tools exist to calculate all real roots of algebraic
equations adjoined by a zero-dimensional ideal. Here we employed ‘NSolve’ in Math-
ematica 5.2 (Wolfram Research Inc.), which computes the desired roots eÆciently.
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Remark 1. If comp is a positive dimensional, then we can always perturb the set of
polynomials in comp in order to obtain a zero-dimensional variety. Although here we
cannot discuss the stability and convergency issues related to such perturbations, it is
an important research issue on its own light (see [7] for an example).

In this paper, we have calculated the other consistency measure (in short, CM2) as the

smallest g(
�

k ) under the following constraint:

k1 � 0� k2 � 0� � � � � km � 0� (2.6)

The di�erence between Constraints: (2.4) and (2.6) is that one takes account of the zero

value of the kinetic constants
�

k , corresponding to the non-existence of edges in the
network. This account yields a finer model selection where all of the subnetworks of
the presupposed network are also considered. We can calculate the smallest value of

g(
�

k ) under Constraint (2.6), using the following recursive definition:

Let MinimumValue(q(
�

l )) denote the minimum value of function q with variables:
�

l � �l1� l2� � � � � lm� by the following procedure:

1. If the cardinality of
�

l , namely m, is zero, then the minimum value is infinity.
2. Otherwise, let v0 denote the minimum value of q under Constraint (2.4) via

‘NSolve.’ Furthermore, let vi (i � 1� 2� � � � �m) denote the value calculated by

MinimumValue(q(
�

li )), where
�

li is the vector: �l1� l2� � � � � li�1� 0� li�1� � � � � lm�.
3. The minimum value is the smallest value among v0� v1� � � � � vm.

Model Selection. Using the consistency measure defined in �2.3, we performed a
model selection. We, first, calculated the consistency measures among all of the com-
binations of the presupposed models with the sampling data. Next, we arranged the
combinations of the models with the data in ascending order by the consistency mea-
sure. Last, we estimated the most consistent model having the first element (the smallest
value).

3 Results and Discussion

3.1 Preparations: Transformation into Laplace Domain

Model Formula. We analyzed the models for a relationship between specific leaf area,
leaf nitrogen, and leaf gas exchange in botany [9]. In the original paper, six models for
the kinetics of four biomolecules are listed, and the consistency of the models with the
observed data, which are composed of various properties of the molecules, rather than
time series data, are tested by the d-sep test. In this paper, four of the six original models
(models A, B, C, and D) and one model (model E) modified from the original one are
considered, to show how cyclic relationships can be handled. The models considered
in this paper are shown in Fig. 3. Each model expressed the relationship between four
biomolecules, S LA, N, A, and G. According to the definition in �2.2, each relationship
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Model A: Model B:

SLA N A G
kSN kNA kAG

SLA N A G
kSN kNA kAG

kSA

Model C: Model D:

SLA N A G
kSN kNA kAG

kSA

kNG
SLA

N

A G

kSN

kAGkSA

Model E:

SLA N A G
kSN kNA kAG

kSS

Fig. 3. Models analyzed in the present study. In the above models, the causal relationships be-
tween molecules are denoted by arrows. The molecules corresponding to the variables, denoted
within the circles, are S LA, N, A, and G, and the kinetic parameters, denoted over the arrows, are
kS N , kNA, kAG , kS A, kNG , and kS S .

between the variables is assumed to be linear, and then the di�erential equations for the
five models can be formulated as follows:

Model A: �
�������
�������

d�dt S LA(t) � �kS N S LA(t)�
d�dt N(t) � kS N S LA(t)� kNA N(t)�
d�dt A(t) � kNA N(t) � kAG A(t)�
d�dt G(t) � kAG A(t)�

(3.1)

Model B: �
�������
�������

d�dt S LA(t) � �(kS N � kS A) S LA(t)�
d�dt N(t) � kS N S LA(t) � kNA N(t)�
d�dt A(t) � kS A S LA(t) � kNA N(t) � kAG A(t)�
d�dt G(t) � kAG A(t)�

(3.2)

Model C: �
�������
�������

d�dt S LA(t) � �(kS N � kS A) S LA(t)�
d�dt N(t) � kS N S LA(t) � (kNA � kNG) N(t)�
d�dt A(t) � kS A S LA(t) � kNA N(t) � kAG A(t)�
d�dt G(t) � kAG A(t) � kNG N(t)�

(3.3)

Model D: �
�������
�������

d�dt S LA(t) � �(kS N � kS A) S LA(t)�
d�dt N(t) � kS N S LA(t)�
d�dt A(t) � kS A S LA(t) � kAG A(t)�
d�dt G(t) � kAG A(t)�

(3.4)

Model E: �
�������
�������

d�dt S LA(t) � (kS S � kS N ) S LA(t)�
d�dt N(t) � kS N S LA(t)� kNA N(t)�
d�dt A(t) � kNA N(t) � kAG A(t)�
d�dt G(t) � kAG A(t)�

(3.5)
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In the above equations, kS N , kNA, kAG, kS A, kNG, and kS S are the kinetic parameters be-
tween the molecules. Notice that the relationships between the molecules in the actual
kinetics cannot be expressed by the above equations. In the actual case, some rela-
tionships are non-linear, such as the well-known Michaelis–Menten kinetics in enzyme
reactions. In the present study, we have adopted the relationships between molecules as
typical ones, but do not consider the details of the kinetics between molecules.

According to the definitions in �2.2, we transform the above systems of di�erential
equations of (3.1)–(3.5) into the system of algebraic equations over the Laplace domain,
and solve the equations for the five models. For instance, the solution to the system of
di�erential equations for Model A is expressed over the Laplace domain, as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L[SLA(t)](s) =
SLA(0)
s + kSN

,

L[N(t)](s) =
N(0) s + N(0) kSN + kSN SLA(0)

s2 + (kSN + kNA) s + kNA kSN
,

L[A(t)](s) = (A(0) s2 + (kNA N(0) + A(0) kSN + A(0) kNA) s + kNA N(0) kSN

+ kNA kSN SLA(0) + A(0) kNA kSN)/(s3 + (kAG + kSN + kNA) s2 + (kAG kSN

+kAG kNA + kNA kSN) s + kAG kNA kSN),
L[G(t)](s) = (G(0) s3 + (G(0) kAG + G(0) kNA + kAG A(0) + G(0) kSN) s2

+(G(0) kAG kNA + kAG kNA N(0) + G(0) kAG kSN + kAG A(0) kNA

+ kAG A(0) kSN + G(0) kNA kSN)s + kAG kNA N(0) kSN + kAG kNA kSN SLA(0)
+G(0) kAG kNA kSN + kAG A(0) kNA kSN)/(s4 + (kAG + kSN + kNA) s3

+(kAG kSN + kAG kNA + kNA kSN) s2 + s kAG kNA kSN).
(3.6)

In the above equations, the initial values for each molecule are denoted by S LA(0),
N(0), A(0), and G(0).

Sampling Data Fitting. To estimate the consistency of the above equations derived
from the models with the data, we should presuppose the equations for the sampling
data. For this purpose, first, a series of exponentials with parameters are set. For in-
stance, the equations for fitting to the data in Model A are expressed as follows:

���������������

S LAO(t) � �S LA�1 exp(��S LA�1t)�
NO(t) � �N�1 exp(��N�1t) � �N�2 exp(��N�2t)�
AO(t) � �A�1 exp(��A�1t) � �A�2 exp(��A�2t) � �A�3 exp(��A�3t)�
GO(t) � �G�1 exp(��G�1t) � �G�2 exp(��G�2t) � �G�3 exp(��G�3t) � �G�4�

(3.7)

Then, the corresponding algebraic equations are obtained by the Laplace transforma-
tion. The corresponding algebraic equations in Model A are as follows:

���������������������������������

L[S LAO(t)](s) �
�S LA�1

s � �S LA�1
�

L[NO(t)](s) �
�N�1

s � �N�1
�

�N�2

s � �N�2
�

L[AO(t)](s) �
�A�1

s � �A�1
�

�A�2

s � �A�2
�

�A�3

s � �A�3
�

L[GO(t)](s) �
�G�1

s � �G�1
�

�G�2

s � �G�2
�

�G�3

s � �G�3
�

�G�4

s
�

(3.8)
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Notice that the parameters in the above equations are estimated by numerically fitting
them to the data.

3.2 Estimation of Model Consistency

Data Generation for Simulation. In the present study, we have no actual data for the
molecules in the models, and thus we need to generate the time series of data for the
constituent molecules for the simulation study, before the model consistency estima-
tion. Notice that, if the data for the constituent molecules in the models are actually
observed, then this process is not necessary. First, the system of di�erential equations
of (3.1)–(3.5) is solved over the time domain. For instance, the solution of the Model A
is expressed as follows:
�����������������������������������������������������������������������

S LA(t) � S LA(0) exp(�kS N t)�

N(t) � (N(0) �
S LA(0) kS N

kNA � kS N
) exp (�kNA t) �

S LA(0) kS N

kNA � kS N
exp (�kS N t)�

A(t) �
kNA (kS N S LA(0) � kNA N(0) � N(0) kS N)

(kNA � kS N) (kNA � kAG)
exp (�kNA t)

�
kNA kS N S LA(0)

(kAG � kS N) (kNA � kS N)
exp (�kS N t)

� (A(0) �
kNA (�kS N S LA(0) � kAG N(0) � N(0) kS N)

(kAG � kS N) (kNA � kAG)
) exp (�kAG t)�

G(t) �
kAG (�kS N S LA(0) � kNA N(0) � N(0) kS N)

(kNA � kAG) (kNA � kS N)
exp (�kNA t)

�
kAG (�kNA � kAG) S LA(0) kNA

(kNA � kAG) (kAG � kS N) (kNA � kS N)
exp (�kS N t)

� (�A(0) �
(kS N S LA(0) � kAG N(0) � N(0) kS N) kNA

(kNA � kAG) (kAG � kS N)
) exp (�kAG t)

� S LA(0) � N(0) � A(0) �G(0)�
(3.9)

In the above equations, we have no information about the actual values of the kinetic
parameters and their initial values. Thus, we set them as follows: kS N � 1� kNA �

0�1� kAG � 0�5� kNG � 0�2� kS A � 0�4, and kS S � 0�7 for the kinetic parameters, and
S LA(0) � 10� N(0) � 7� A(0) � 3, and G(0) � 1 for the initial values. By using the
above values, the di�erential equations of (3.9) are simulated from t � 0 to 100 with
intervals of 1. Then, we obtain the time series of data for each molecule at 101 sample
points. We then numerically estimate the parameters by fitting the equations of (3.7)
over the time domain to the above-generated data by the Maple 10 Global Optimization
tool ( c�MapleSoft). In Fig. 4, the sampling data at 101 points and the corresponding
equations (fitted curve) are plotted in Model A, together with the given and estimated
parameters. Notice that, besides the estimation, all of the parameters in (3.7) can be
exactly obtained from the given values for the kinetic parameters and the initial values
in (3.9). In the present case, it is natural that the estimated values of the parameters are
quite consistent with the given values of the parameters for generating the data.

Consistency Measure. As the first step for the model consistency estimation, we con-
struct a set of polynomials, comp, from the algebraic equations of (3.6) for the



442 H. Yoshida et al.

models and those of (3.8) for the sampling data. The following equations are comp for
Model A:
comp = { kSN − αSLA, 1,

kNA kSN − αN, 1 αN, 2,
kSN + kNA − αN, 2 − αN, 1,
N(0) kSN + kSN S LA(0) − βN, 1 αN, 2 − βN, 2 αN, 1,
kAG + kSN + kNA − αA, 1 − αA, 3 − αA, 2,
kAG kSN + kAG kNA + kNA kSN − αA, 1 αA, 3 − αA, 1 αA, 2 − αA, 2 αA, 3,
kNA N(0) + A(0) kSN + A(0) kNA − βA, 1 αA, 3 − βA, 1 αA, 2 − βA, 2 αA, 3 − βA, 2 αA, 1

−βA, 3 αA, 2 − βA, 3 αA, 1,
kNA N(0) kSN + kNA kSN S LA(0) + A(0) kNA kSN − βA, 1 αA, 2 αA, 3 − βA, 2 αA, 1 αA, 3

−βA, 3 αA, 1 αA, 2,
kAG + kSN + kNA − αG, 2 − αG, 1 − αG, 3,
kAG kNA kSN − αA, 1 αA, 2 αA, 3, kAG kNA kSN − αG, 1 αG, 2 αG, 3,
kAG kSN + kAG kNA + kNA kSN − αG, 1 αG, 2 − αG, 2 αG, 3 − αG, 1 αG, 3,
kAG kNA N(0) kSN + kAG kNA kSN S LA(0) +G(0) kAG kNA kSN + kAG A(0) kNA kSN

−βG, 4 αG, 1 αG, 2 αG, 3,
G(0) kAG kNA + kAG kNA N(0) +G(0) kAG kSN + kAG A(0) kNA + kAG A(0) kSN

+G(0) kNA kSN − βG, 3 αG, 1 αG, 2 − βG, 1 αG, 2 αG, 3 − βG, 2 αG, 1 αG, 3

−βG, 4 αG, 1 αG, 3 − βG, 4 αG, 2 αG, 3 − βG, 4 αG, 1 αG, 2,
G(0) kAG +G(0) kNA + kAG A(0) +G(0) kSN − βG, 2 αG, 1 − βG, 2 αG, 3 − βG, 3 αG, 1

−βG, 3 αG, 2 − βG, 1 αG, 3 − βG, 4 αG, 1 − βG, 4 αG, 2 − βG, 4 αG, 3 − βG, 1 αG, 2}.
In the comp, the parameters and the initial values can be expressed as numerical values
by the sample data fitting. Thus, only the set of kinetic parameters in the model remains
as the unknown parameters in the comp. In the following section, we will estimate the
kinetic parameters under the constraints in equations (2.4) and (2.6), and will select the

model by considering the smallest value of g(
�

k ), the sum-square value of the elements
in comp.

Model Selection. The model selections by estimating the consistency of the models
with the simulated data under the two constraints of equations (2.4) and (2.6) are shown
in Table 1. In the first column, the query models, from which the simulated data are
generated, are listed, and the models with consistencies that are estimated for the query
model are listed in the second column. In the following column, the smallest values of
the consistency measure are sorted in ascending order, and the corresponding kinetic
measures are listed. As easily seen in this table, the present method has successfully
identified the query models. Indeed, all of the models and four of the five models under
the two constraints of (2.4) and (2.6) are correctly selected in Table 1, respectively. In
addition to the successful selection, the characteristic features for the model selection
are observed in the selections by the two constraints. The details of the features are as
follows.

As for the selection under the constraint of (2.4), all of the models are clearly se-
lected. By each query model, the corresponding models show the smallest consistency
measure (CM1) in the constraint of (2.4). For example, when the query model is Model
A, the corresponding value for the model consistency for Model A is 1.34�10�11, which
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(a) (b)

(c) (d)

Fig. 4. Sample data for numerical fitting (circles), together with fitted curves (solid lines). The
data were generated by numerical calculation from the di�erential equations (3.9), and the curves
were fitted by commercial software (see details in the text). The given and estimated parameters
are as follows: �S LA�1, 1 (given) and 1.00 (estimated); �S LA�1, 10 and 10.0; �N�1, 1�10 and 0.100;
�N�2, 1 and 1.00; �N�1, 163�9 and 18.1; �N�2, 100�9 and 11.1; �A�1, 1�10 and 0.100; �A�2, 1�2 and
0.500; �A�3, 1 and 1.00; �A�1, 163�36 and 4.53; �A�2, �15�4 and �3�75; �A�3, 20�9 and 2.22; �G�1,
1�10 and 0.100; �G�2, 1�2 and 0.500; �G�3, 1 and 1.00; �G�1, �815�36 and �22�6; �G�2, 15�4 and
3.75; �G�3, �10�9 and �1�11; �G�4, 21 and 21.0. Each figure corresponds to the four variables
(molecules) in the model: (a) S LA, (b) N, (c) A, (d) G.

is the smallest among the values of the five models. The magnitude is slightly smaller
than 1.36�10�11 for Model E. Interestingly, the parameter value for kS S in Model E
is estimated to be nearly zero, 1.40�10�6, and when kS S is zero, Model E is identical
to Model A. In the remaining models, the parameters cannot be estimated under the
constraint of (2.4). In the other query models, the model corresponding to the query
model shows the smallest values for the model consistency, and the remaining models
show relatively large values or no values, due to the constraint of (2.4). In particular,
Model E, in which a cyclic relationship is included, is successfully selected from the
other models, especially Model A, which di�ers from Model E, only in the cyclic part.
Furthermore, in all cases, the values of the kinetic parameters are estimated to be equal
to the values that are set for the data generation. Thus, the model selection by using the
constraint of (2.4) has completely succeeded in all of the models.
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Four of the five models are successfully selected under the constraint of (2.6). In
the model selection for Model A, Model C is selected. However, Models C, A, E, and
B show small values for the consistency measure (CM2). Furthermore, three models,
Models C, D, and B, become the same form as Model A, by considering the values
of the kinetic parameters. Indeed, kNG and kS A in Model C and kS A in Model B are
estimated to be exactly zero values, and kS S in Model E is estimated to be a very small
value, 1.40�10�6. A similar situation is also found when the query model is Model B.
In this case, while the model showing the smallest value is Model B, a similar value
is also found in Model C. However, the value of kNG is estimated to be exactly zero,
and this indicates that Model C, with the estimated values for kinetic parameters, is
the same form as Model B. Thus, the constraint of (2.6) e�ectively excludes the false
relationship between the molecules by estimating the values of the kinetic parameters.
As for the model selection for Model E, the small value appears only in the query model,
and the relatively large values appear in the other models. In the models with the large
values, the CM2 values in Models A, B, and C are relatively smaller than the CM2
value in Model D. Interestingly, the former models share common chain relationships
between S LA, N, A, and G with Model E, as seen in Fig 3, while the latter model is a
distinctive form from Model E. Even in the inconsistent models, CM2 may reflect the
similarity of the model form between the query and the estimated models. At any rate,
the model selection under the constraint of (2.6) also has succeeded in all of the models.

In summary, the present model selection algorithm shows high performance under
the constraints of both (2.4) and (2.6). The constraint of (2.4) focuses on only the se-
lection of a model consistent with the data by a simple algorithm, and the constraint of
(2.6) focuses on finer model selection, with the exclusion of false relationships, by a
slightly and complicated algorithm. Thus, the algorithm with the constraint of (2.4) is
useful to select a model consistent with the data among many candidate models, and that
with the constraint of (2.6) is e�ective to select a model among the candidate models
including similar forms.

3.3 Discussion

We have proposed a method for selecting a model that is the most consistent with the
data in the present study. In small but distinctive networks, our algorithm has success-
fully selected the query model, from which the sampling data are generated. The present
study partly exploits the previous studies of Cobelli et al. [5, 6] about the relationship
between observational parameters and model parameters over the Laplace domain. In
these studies, they dealt with the case of di�erential equations adjoined by a higher di-
mensional ideal to survey whether the model parameters themselves can be determined
uniquely or non-uniquely. In our work, the combination of the transformation of equa-
tions over the Laplace domain with the numerical fitting to the observed data enables
us to estimate the model’s consistency with the data as well as with the values of the
kinetic parameters. Although the robustness for data including noise should be further
tested, our algorithm is expected to be feasible for actual biological issues regarding the
selection of a kinetics model.

The scalability of the present algorithm also remains to be tested. Actually, the
present model selection algorithm required several hours for one model. In addition,



An Algebraic-Numeric Algorithm for the Model Selection in Kinetic Networks 445

Ta
bl

e
1.

M
od

el
se

le
ct

io
ns

.T
he

fiv
e

m
od

el
s

in
F

ig
.3

w
er

e
ex

am
in

ed
fo

rt
he

m
od

el
se

le
ct

io
n

an
d

th
e

de
te

rm
in

at
io

n
of

ki
ne

ti
c

pa
ra

m
et

er
s

w
it

h
th

e
si

m
ul

at
ed

da
ta

by
th

e
tw

o
co

ns
tr

ai
nt

s
(s

ee
th

e
de

ta
il

s
in

th
e

te
xt

).
T

he
‘q

ue
ry

’
an

d
‘e

st
im

at
ed

’
in

di
ca

te
th

e
m

od
el

fr
om

w
hi

ch
th

e
si

m
ul

at
ed

da
ta

ar
e

ge
ne

ra
te

d,
an

d
th

e
m

od
el

th
e

co
ns

is
te

nc
y

of
w

hi
ch

is
es

ti
m

at
ed

by
th

e
co

rr
es

po
nd

in
g

qu
er

y
m

od
el

,r
es

pe
ct

iv
el

y.

Q
ue

ry
C

M
1,

un
de

r
th

e
co

ns
tr

ai
nt

(2
.4

)
C

M
2,

un
de

r
th

e
co

ns
tr

ai
nt

(2
.6

)
es

tim
at

ed
sm

al
le

st
k S

N
k N

A
k A

G
k N

G
k S

A
k S

S
es

tim
at

ed
sm

al
le

st
k S

N
k N

A
k A

G
k N

G
k S

A
k S

S

A
1.

34
×1

0−
11

1.
00

0.
10

0
0.

50
0

-
-

-
C

7.
66
×1

0−
12

1.
00

0.
10

0
0.

50
0

0∗
0∗

-
E

1.
36
×1

0−
11

1.
00

0.
10

0
0.

50
0

-
-

1.
40
×1

0−
6

A
1.

34
×1

0−
11

1.
00

0.
10

0
0.

50
0

-
-

-
A

D
×

×
-

×
-

×
-

E
1.

36
×1

0−
11

1.
00

0.
10

0
0.

50
0

-
-

1.
40
×1

0−
6

B
×

×
×

×
-

×
-

B
1.

35
×1

0−
10

1.
00

0.
10

0
0.

50
0

-
0∗

-
C

×
×

×
×

×
×

-
D

1.
68

0∗
-

0.
43

5
-

0.
04

39
-

B
4.

20
×1

0−
11

1.
00

0.
10

0
0.

50
0

-
0.

40
0

-
B

4.
20
×1

0−
11

1.
00

0.
10

0
0.

50
0

-
0.

40
0

-
A

20
.1

1.
19

0.
16

7
0.

63
7

-
-

-
C

6.
44
×1

0−
11

1.
00

0.
10

0
0.

50
0

0∗
0.

40
0

-
B

D
×

×
-

×
-

×
-

E
20

.1
1.

19
0.

16
7

0.
63

7
-

-
0∗

E
×

×
×

×
-

-
×

A
20

.1
1.

19
0.

16
7

0.
63

7
-

-
-

C
×

×
×

×
×

×
-

D
10

50
0∗

-
0.

03
51

-
1.

97
-

C
2.

78
×1

0−
9

1.
00

0.
10

0
0.

50
0

0.
20

0
0.

40
0

-
C

2.
78
×1

0−
9

1.
00

0.
10

0
0.

50
0

0.
20

0
0.

40
0

-
B

0.
55

8
0.

99
4

0.
16

0
0.

91
3

-
0.

40
8

-
B

0.
55

8
0.

99
4

0.
16

0
0.

91
3

-
0.

40
8

-
C

A
28

.0
1.

19
0.

21
3

1.
17

-
-

-
D

23
.9

0∗
-

1.
22

-
0.

41
8

-
D

×
×

-
×

-
×

-
E

28
.0

1.
19

0.
21

3
1.

17
-

-
0∗

E
×

×
×

×
-

-
×

A
28

.0
1.

19
0.

21
3

1.
17

-
-

-
D

1.
83
×1

0−
14

1.
00

-
0.

50
0

-
0.

40
0

-
D

1.
83
×1

0−
14

1.
00

-
0.

50
0

-
0.

40
0

-
A

57
6

1.
02

3.
98

0.
62

3
-

-
-

E
35

8.
1.

13
3.

63
0.

28
5

-
-

0∗

D
E

×
×

×
×

-
-

×
B

39
9.

1.
10

3.
74

0.
39

5
-

0∗
-

B
×

×
×

×
-

×
-

C
43

4.
1.

18
3.

43
0.

45
4

0.
52

8
0∗

-
C

×
×

×
×

×
×

-
A

57
6.

1.
02

3.
98

0.
62

3
-

-
-

E
9.

26
×1

0−
11

1.
00

0.
10

0
0.

50
0

-
-

0.
70

0
E

9.
26
×1

0−
11

1.
00

0.
10

0
0.

50
0

-
-

0.
70

0
A

1.
46

0.
70

2
0.

05
64

0.
36

7
-

-
-

C
1.

46
0.

70
2

0.
05

64
0.

36
7

0∗
0∗

-
E

D
×

×
-

×
-

×
-

A
1.

46
0.

70
2

0.
05

64
0.

36
7

-
-

-
B

×
×

×
×

-
×

-
B

1.
46

0.
70

2
0.

05
64

0.
36

7
-

0∗
-

C
×

×
×

×
×

×
-

D
2.

57
0∗

-
0.

25
8

-
0.

02
84

-
0∗

:e
xa

ct
ze

ro
va

lu
e.

−:
no

co
rr

es
po

nd
in

g
pa

ra
m

et
er

s.
×:

no
re

al
po

si
tiv

e
so

lu
tio

ns
.



446 H. Yoshida et al.

the limit of the nodes and edges in the tested network approximately ranged within 10
edges between 10 nodes. However, the present algorithm over the Laplace domain may
overcome the issue of scalability. In a local network within a large-scale network, the
relationships of the molecules in the local network with those outside of it are regarded
as inputs from the outside, and the variables corresponding to the inputs may easily be
eliminated, if the relationships are treated over the Laplace domain. Indeed, we have
successfully eliminated the unnecessary variables to estimate the parameter values in
complex compartmental models for Parkinson’s disease by PET measurements [13].
If the unnecessary variables in the local network can be eliminated, then the present
algorithm can be applied to estimate the model’s consistency. Thus, the iteration of
the elimination and the consistency estimation may be applicable for the consistency
estimation, even in a large-scale network model. Further examinations of the present
algorithm for a large-scale network and for noisy data will appear in the near future.

4 Conclusion

In the present model selection, an algebraic manipulation of the di�erential equations
over the Laplace domain, formulated based on the assumption of linear relationships
between the variables, is combined with the numerical fitting of the sampling data. The
performance of our approach is illustrated with simulated data, in the distinctive forms
of models, one of which includes a cyclic relationship hitherto unavailable in previ-
ous methods. Although some further examinations of the present method are necessary,
especially of the analyzed data and its robustness with noise, the extension of our ap-
proach to a large-scale network is promising.
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On the Representation of the Differential

Operator in Bases of Periodic Coiflets and It’s
Application

Anna Deytseva

Grodno State University, Grodno, Belarus

Abstract. In the present paper multiresolutional representation of diffe-
rential operator in basis of periodized coiflets was constructed. The prop-
erties of differential operator coefficients have been investigated. Taking
into consideration the behavior of Coifman scaling function, in consid-
ered multiresolutional representation of differential operator, coefficients
of wavelet-approximation are substituted by evaluations of the function
at dyadic points. For sufficiently smooth function the convergence rate
of the considered approximations to derivative is stated. For 1-periodic
function the formula of numeric differentiation is obtained, and also the
error estimate is stated. The application of multiresolution representa-
tion of differential operator for numerical solution of ordinary differential
equation with periodic boundary conditions is considered.

1 Introduction

The theory of wavelet analysis has grown explosively in the last two decades.
The terminology ”wavelet” was first introduced in 1984 by A. Grossmann and
J. Morlet. Families of functions

ψj,k(x) = 2j/2ψ
(
2jx− k

)
,

j, k ∈ ZZ, derived from a single function ψ(x) by dilation and translation, which
form a basis for L2(IR), are called wavelets.

In 1988, I. Daubechies made an important contribution in wavelet theory.
She introduced a class of compactly supported orthonormal wavelet systems
with vanishing moments for the wavelet function. Her work has stimulated fur-
ther study of wavelets and it’s applications, and, in particular, application of
wavelets in calculus of approximations theory. Thus, in work of G. Beylkin,
R. Coifman and V. Rokhlin the fast algorithms of estimating some operators
(including differentiatial operator) application on arbitrary function were ob-
tained [1]. At that, matrix representation of the operator and vector representa-
tion of function in wavelet basis were used. In the consequent work G. Beylkin
has considered in detail the task of building matrix representation of operators
in Daubechies wavelet basis [2]. Unlike Daubechies wavelets, Coifman wavelet
system have vanishing moments not only for the wavelet functions, but also for

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 448–457, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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the scaling functions [3,4]. The investigation of the approximation of differential
operator in Coifman wavelet basis was conducted in [5]. But for the study of pe-
riodic functions use of periodic wavelets is quite natural. The goal of this article
is to research the approximation of differential operator in basis of periodized
coiflets, and it’s application for numerical solution of differantial equation.

2 Periodized Wavelets

In [4] it was shown that on the basis of scaling function ϕ and corresponding
wavelet ψ, generating multiresolution analysis on space L2(IR), multiresolutional
representation for the space L2 ([0, 1]) can be obtained.

Multiresolution analysis on the space L2 ([0, 1]) is a chain of closed subspaces

V per
0 ⊂ V per

1 ⊂ . . . ⊂ L2 ([0, 1]) ,

such that

L2 ([0, 1]) =
⋃

j∈IN0

V per
j ,

IN0 = {0, 1, 2, . . .}.
By defining W per

j as an orthogonal complement of V per
j in V per

j+1 :

V per
j+1 = V per

j ⊕W per
j ,

the space L2 ([0, 1]) is represented as a direct sum

L2 ([0, 1]) = V per
J

+∞
⊕

j=J
W per

j ,

J ∈ IN0.
At this orthonormal basis of the scaling space V per

j is formed by the system

of functions
{
ϕper

j,k

}2j−1

k=0

ϕper
j,k (x) =

∑

l∈ZZ

ϕj,k(x + l), (1)

ϕj,k = 2j/2ϕ
(
2jx− k

)
. (2)

Orthonormal basis of the detailing space W per
j is formed by the system of

functions
{
ψper

j,k

}2j−1

k=0

ψper
j,k (x) =

∑

l∈ZZ

ψj,k(x+ l),

ψj,k = 2j/2ψ
(
2jx− k

)
.
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3 Operator of Differentiation for Periodic Functions

Let
{
V per

j

}
j∈IN0

– multiresolution analysis on L2 ([0, 1]) , generated by Coifman
scaling function ϕ ∈ L2(IR) of the order L = 2K, K ∈ IN, ψ ∈ L2(IR) – corre-
sponding coiflet. Functions ϕ and ψ – are of real value, have compact supports
and following features [3,4]:

ϕ(x) =
√

2
2L−1∑

k=−L

hkϕ(2x− k), (3)

∫

IR

ϕ(x) dx = 1,

∫

IR

xlϕ(x) dx = 0, (4)

l = 1, L− 1;
∫

IR

xlψ(x) dx = 0,

l = 0, L− 1.
Let us make a general observation about the representation of differential

operator T = dn

dxn in wavelet bases. In accordance with conception of multireso-
lution analysis the arbitrary function f ∈ L2 ([0, 1]) can be represented as limit
of successive approximations P per

j f ∈ V per
j , when j → +∞, defined as following:

P per
j f(x) =

2j−1∑

k=0

αj,kϕ
per
j,k (x), (5)

where

αj,k =
〈
f, ϕper

j,k

〉
=

1∫

0

f(x)ϕper
j,k (x) dx =

∫

IR

f(x)ϕj,k(x) dx, (6)

ϕper
j,k and ϕj,k are given by (1) and (2) correspondingly. Then

TP per
j f(x) =

2j−1∑

k=0

αj,kTϕ
per
j,k (x)

and finding projection on the scaling space V per
j we’ll obtain

T per
j f(x) = P per

j TP per
j f(x) =

2j−1∑

k=0

αj,k

2j−1∑

k′=0

〈
Tϕper

j,k (x), ϕper
j,k′ (x)

〉
ϕper

j,k′(x) =
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=
2j−1∑

k′=0

⎛

⎝
2j−1∑

k=0

〈
Tϕper

j,k (x), ϕper
j,k′ (x)

〉
αj,k

⎞

⎠ϕper
j,k′(x),

x ∈ [0, 1].
Further on it will be shown that for sufficiently smooth 1-periodic function f

the following convergence takes place

T per
j f → Tf, when j → +∞.

In other word, for sufficiently great j ∈ IN the action of the differential op-
erator T on the function f is translated into the action of the matrix AT =
{〈

Tϕper
j,k (x), ϕper

j,k′ (x)
〉}2j−1

k,k′=0
on the sequence {αj,k}2

j−1
k=0 .

Let consider the coefficients of the matrix AT

〈
Tϕper

j,k (x), ϕper
j,k′ (x)

〉
=

1∫

0

Tϕper
j,k (x)ϕper

j,k′ (x) dx =

1∫

0

dn

dxn

(
ϕper

j,k (x)
)
ϕper

j,k′(x) dx =

=

1∫

0

dn

dxn

⎛

⎝
∑

l∈ZZ

ϕj,k(x+ l)

⎞

⎠
∑

l′∈ZZ

ϕj,k′(x + l′)dx =

=

1∫

0

dn

dxn

⎛

⎝2j/2
∑

l∈ZZ

ϕ
(
2jx+ 2j l − k

)
⎞

⎠ 2j/2
∑

l′∈ZZ

ϕ
(
2jx+ 2jl′ − k′

)
dx =

=

1∫

0

2jn2j
∑

l∈ZZ

ϕ(n)
(
2jx+ 2j l− k

) ∑

l′∈ZZ

ϕ
(
2jx+ 2jl′ − k′

)
dx.

Further on we will consequently use argument substitution y = x+ l, suppose
l′ − l = m and make substitution 2jy − k = z

∑

l∈ZZ

∑

l′∈ZZ

2jn2j

l+1∫

l

ϕ(n)
(
2jy − k

)
ϕ
(
2jy + 2j(l′ − l)− k′

)
dy =

= 2jn
∑

m∈ZZ

2j
∑

l∈ZZ

l+1∫

l

ϕ(n)
(
2jy − k

)
ϕ
(
2jy + 2jm− k′

)
dy =

= 2jn
∑

m∈ZZ

2j

∫

IR

ϕ(n)
(
2jy − k

)
ϕ
(
2jy + 2jm− k′

)
dy =
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= 2jn
∑

m∈ZZ

∫

IR

ϕ(n)(z)ϕ
(
z + 2jm− k′ + k

)
dz = 2jn

∑

m∈ZZ

r
(n)
k′−k−2jm,

where

r(n)m =
〈
ϕ(x−m), ϕ(n)(x)

〉
=

∫

IR

ϕ(x−m)ϕ(n)(x) dx, (7)

k, k′ = 0, 2j − 1, m ∈ ZZ, j ∈ IN0.
Thus, for arbitrary function f ∈ L2 ([0, 1]) operator T per

j f is defined by
relation

T per
j f(x) = 2jn

2j−1∑

k′=0

2j−1∑

k=0

αj,kr
(n),per
k′−k ϕper

j,k′ (x), (8)

r
(n),per
l =

∑

m∈Z

r
(n)
l−2jm, (9)

l = −2j + 1, 2j − 1, j ∈ IN0, x ∈ [0, 1], coefficients of wavelet-approximation
αj,k calculated via formulas (6).

As Coifman scaling function has no analytical definition, direct calculation
of the differential operator coefficients via formulas (7) is not possible. In [5] it
was proved that coefficients r(n)m can be obtained via solving system of linear
algebraic equations.

Theorem 1. [5] Let ϕ – scaling Coifman function of the order L = 2K, K ∈ IN,
L ≥ n and the right hand member integral (7) exists, then coefficients r

(n)
m ,

defined by expression (7), satisfy the following set of linear algebraic equations

r(n)m = 2n

(
r
(n)
2m +

1
2

3K∑

l=1

a2l−1

(
r
(n)
2m+2l−1 + r

(n)
2m−2l+1

))
,

m ∈ ZZ, where coefficients al are calculated via formulas

al =
2L−1−l∑

k=−L

hkhk+l,

l = 1, 3L− 1, coefficients hk, k = −L, 2L− 1 satisfy the refinement equation
(3).

Coefficients r(n)m satisfy the following conditions

r(n)m = 0, |m| > 3L− 2;

∑

m∈ZZ

mlr(n)m = (−1)nn!δl,n,
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δl,n =
{

0, l �= n;
1, l = n,

l = 0, L− 1.

If ϕ′, . . . , ϕ(n) ∈ L1(IR), then

r(n)m = (−1)nr
(n)
−m,

m = 1, 3L− 2, n ∈ IN.

Coefficients r(n) for Coiflets with 6 vanishing moments for the first and second
derivate are given in Table 1. They were calculated using standard functions
of MATHEMATICA system, along with functions of package Wavelet Explorer.
Table 1 displays only the coefficients {rn

m}16m=0 since rn
m = (−1)nrn

−m.

Table 1. Coefficients r(1) and r(2) for Coiflets with 6 vanishing moments

m Coefficients r
(1)
m Coefficients r

(2)
m

0 0 -3.6498559820
1 -0.85870133045 2.2864769185
2 0.27014190725 -0.6265697317
3 -0.08137436347 0.2138072082
4 0.01908146761 -0.0585392225
5 -0.00312072218 0.0109121919
6 0.00033051564 -0.1256216893E-2
7 -0.00002564437 0.1075566274E-3
8 1.76453581106E-6 -1.0658859563E-5
9 7.68664190049E-8 -5.0136014077E-8
10 -3.72285469962E-9 -8.7968664067E-9
11 -6.52539388499E-10 4.3680701748E-9
12 -7.26069305181E-12 5.7729729291E-11
13 2.42680606269E-14 -8.1065865439E-14
14 -1.71449741989E-16 2.2943344187E-15
15 6.37055338073E-21 -4.2560564669E-20
16 1.67232995005E-27 -8.8992880760E-25

4 Formula of Numerical Differentiation for Periodic
Function

In this section, using multiresolution representation of the differential operator,
we obtain the formula of numeric differentiation for 1-periodic function. For the
first we will state the convergence rate of the approximations (8) to the n-th
derivative of the function f.

Theorem 2. Let ϕ, ψ – Coifman scaling function and coiflet of the order L =
2K,K ∈ IN correspondingly, and right hand member integral (7) exists. Let
f ∈ Cn+L(IR) – 1-periodic function. Then sequence

{
T per

j f
}

j∈IN0
, defined by

(8), convergence to f (n) and for every x ∈ [0, 1] the following inequality is valid
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∣∣∣f (n)(x) − T per
j f(x)

∣∣∣ ≤ 2−j(L−n)
(
C1 + C2 · 2−jn

)
,

where constants C1 and C2 do not depend on j; n < L, n ∈ IN.

As Coifman scaling function has vanishing moments, coefficients αj,k may be
approximated by evaluations of the function f(x) at dyadic points:

αj,k ≈ 2−j/2f

(
k

2j

)
, (10)

k = 0, 2j − 1, j ∈ IN0.
Taking this fact into consideration, we’ll substitute the approximating coef-

ficients αj,k with the corresponding approximations (10) in defining operator
T per

j f and shall define operator T per,s
j f : L2 ([0, 1]) → V per

j as following

T per,s
j f(x) = 2jn

2j−1∑

k′=0

2j−1∑

k=0

sj,kr
(n),per
k′−k ϕper

j,k′(x), (11)

where

sj,k = 2−j/2f

(
k

2j

)
,

coefficients r(n),per
k−k′ are given by (9), j ∈ IN0, x ∈ [0, 1].

Corollary 1. Let the conditions of the theorem 2 to be satisfied. Then for every
x ∈ [0, 1] the following inequality is valid

∣∣∣f (n)(x) − T per,s
j f(x)

∣∣∣ ≤ 2−j(L−n)
(
C3 + C4 · 2−jn

)
,

where operator T per,s
j f is defined by relation (11), j ∈ IN0; constants C3 and C4

do not depend on j; n < L, n ∈ IN.

We have to mention, that n-th derivative of the function f can also be represented
as limit of successive approximations P per

j f when j → +∞, defined by

P per
j f (n)(x) =

2j−1∑

k′=0

α
(n)
j,k′ϕ

per
j,k (x), (12)

α
(n)
j,k′ =

1∫

0

f (n)(x)ϕper
j,k′ (x) dx

at this for sufficiently smooth function f the coefficients α(n)j,k′ may be approxi-
mated by evaluations of the function f (n)(x) at dyadic points:

α
(n)
j,k ≈ 2−j/2f (n)

(
k

2j

)
.
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Thus, comparing the approximations (11) and (12) we obtain the following
formula of numerical differentiation for 1-periodic function f :

f (n)
(
k′

2j

)
≈ 2jn

2j−1∑

k=0

f

(
k

2j

)
r
(n),per
k′−k , (13)

coefficients r(n),per
k−k′ are given by (9), k, k′ = 0, 2j − 1, j ∈ IN0.

The error estimate of this approximation is defined with the following
corollary.

Corollary 2. Let the conditions of the theorem 2 to be satisfied, then the fol-
lowing inequality is valid

∣∣∣∣∣∣
f (n)

(
k′

2j

)
−2jn

2j−1∑

k=0

f

(
k

2j

)
r
(n),per
k′−k

∣∣∣∣∣∣
≤ 2−j(L−n−1)

(
C5+2−jC6+C72−j(n+1)

)
,

k′ = 0, 2j − 1, j ∈ IN0, coefficients r(n),per
k−k′ are given by (9) constants C5, C6 and

C7 do not depend on j; n+ 1 < L, n ∈ IN.

Remark 1. Formula of the numerical differentiation (13) one can rewrite in ma-
trix form

F (n) = D(n)F, (14)

where

F = col [f(x0), f(x1), . . . , f(x2j−1)] ,

F (n) = col
[
f (n)(x0), f (n)(x1), . . . , f (n)(x2j−1)

]
,

xk =
k

2j
, k = 0, 2j − 1, j ∈ IN0,

D(n) =
[
d
(n)
k,l

]2j−1

k,l=0
, d

(n)
k,l = r

(n),per
k−l . (15)

5 Example

In this section we present the results of numerical experiments in which we
compute, using periodic coifelts, solution of the equation

y′′(x) + p(x)y′(x) + q(x)y(x) = r(x),

x ∈ [0, 1], where y(x) - unknown 1-periodic function.
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Fig. 1. Relative error of the multiscale solution for the example problem with J = 3, 4, 5

Discretizing this problem on a staggered grid using the formula of the numer-
ical differentiation, we obtain the following system of linear algebraic equations

BY = R,

where
B = D(2) + PD(1) +QE,

Y = col [y(x0), y(x1), . . . , y(x2J−1)] ,

R = col [r(x0), r(x1), . . . , r(x2J−1)] ,

PD(1) =
[
p(xk) d(1)k,l

]2J−1

k,l=0
, QE = [q(xk) δk,l]

2J−1
k,l=0 ,

δk,l =
{

0, k �= l;
1, k = l,

xk =
k

2J
,

matrix D(2) and coefficients d(1)k,l are given by the formulas (15). Here J ∈ IN0 is
a fixed scale of the resolution.

We illustrate the accuracy of such a computation by the following example.
Let

p(x) = x+ 1, q(x) = ex,

r(x) =
(
−4π2 sin 2πx+ 4π2 cos2 2πx+ 2π(x+ 1) cos 2πx+ ex

)
esin 2πx.

The periodic solution of such equation is

y(x) = esin 2πx.
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The relative error of the approximate solutions, obtained using Coiflets with 6
vanishing moments, for various scales of the resolution J is shown in Figure 1.

Thus, by numerical experiments we provide results which corroborate the
theory.
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