

Lecture Notes in Computer Science 7442
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Vladimir P. Gerdt Wolfram Koepf
Ernst W. Mayr Evgenii V. Vorozhtsov (Eds.)

Computer Algebra
in Scientific
Computing

14th International Workshop, CASC 2012
Maribor, Slovenia, September 3-6, 2012
Proceedings

13

Volume Editors

Vladimir P. Gerdt
Joint Institute for Nuclear Research (JINR)
Laboratory of Information Technologies (LIT)
141980 Dubna, Russia
E-mail: gerdt@jinr.ru

Wolfram Koepf
Universität Kassel
Institut für Mathematik
Heinrich-Plett-Straße 40, 34132 Kassel, Germany
E-mail: koepf@mathematik.uni-kassel.de

Ernst W. Mayr
Technische Universität München
Institut für Informatik
Lehrstuhl für Effiziente Algorithmen
Boltzmannstraße 3, 85748 Garching, Germany
E-mail: mayr@in.tum.de

Evgenii V. Vorozhtsov
Russian Academy of Sciences
Institute of Theoretical and Applied Mechanics
630090 Novosibirsk, Russia
E-mail: vorozh@itam.nsc.ru

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-32972-2 e-ISBN 978-3-642-32973-9
DOI 10.1007/978-3-642-32973-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012944896

CR Subject Classification (1998): F.2, G.2, E.1, I.1, I.3.5, G.1, F.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

One of the directions of research at the Center of Applied Mathematics and
Theoretical Physics, University of Maribor (CAMTP), is the application of
methods and algorithms of computer algebra to studying some long-standing
problems of the theory of differential equations, such as the Poincaré center
problem and Hilbert’s 16th problem. In the work of the group, led by Valery
Romanovski, efficient computational approaches to studying the center problem
and the closely related isochronicity problem have been developed. It allowed
the group to completely solve the problems for many classes of polynomial sys-
tems of ODEs. In recent work (with V. Levandovskyy, D.S. Shafer, and others),
they also developed a powerful algorithmic method to obtain some bounds on
the number of small limit cycles bifurcating from elementary singular points of
polynomial systems of ODEs, i.e., to evaluate algorithmically the cyclicity of the
elementary center and focus. Research on applications of computer algebra to
differential equations and dynamical systems at CAMTP is carried out in col-
laboration with colleagues worldwide working in similar directions; among them
we can mention X. Chen, M. Han, W. Huang, Y.-R. Liu and W. Zhang (China),
V. Edneral (Russia), J. Giné (Spain), and A. Mahdi and D.S. Shafer (USA).
Some goals and features of the approaches mentioned above are described in a
recent book [V.G. Romanovski, D.S. Shafer. The center and cyclicity problems: a
computational algebra approach. Boston, Basel–Berlin: Birkhäuser, 2009; ISBN
978-0-8176-4726-1].

In 2010, CAMTP, in collaboration with the Institute of Mathematics, Physics,
and Mechanics (IMFM), the Faculty of Natural Science and Mathematics of the
University of Maribor, and with the support of the Slovenian Research Agency,
organized the conference “Symbolic Computation and Its Applications” (SCA).
The concept of this meeting was to bring together researchers from various areas
of natural sciences, who employ and/or develop symbolic techniques, and to
provide a platform for discussions and exchange of ideas. Following the success
of the meeting, a second conference was organized in May 2012 at RWTH Aachen
University, thus turning SCA into a series of conferences.

In connection with the above, it was decided to hold the 14th CASC Work-
shop in Maribor. The 13 earlier CASC conferences, CASC 1998, CASC 1999,
CASC 2000, CASC 2001, CASC 2002, CASC 2003, CASC 2004, CASC 2005,
CASC 2006, CASC 2007, CASC 2009, CASC 2010, and CASC 2011 were held,
respectively, in St. Petersburg (Russia), in Munich (Germany), in Samarkand
(Uzbekistan), in Konstanz (Germany), in Yalta (Ukraine), in Passau (Germany),
in St. Petersburg (Russia), in Kalamata (Greece), in Chişinău (Moldova), in
Bonn (Germany), in Kobe (Japan), in Tsakhkadzor (Armenia), and in Kassel
(Germany), and they all proved to be very successful.

VI Preface

This volume contains 28 full papers submitted to the workshop by the
participants and accepted by the Program Committee after a thorough reviewing
process. Additionally, the volume includes two abstracts of invited talks.

One of the main themes of the CASC workshop series, namely, polynomial al-
gebra, is represented by contributions devoted to new algorithms for computing
comprehensive Gröbner and involutive systems, parallelization of the Gröbner
bases computation, the study of quasi-stable polynomial ideals, new algorithms
to compute the Jacobson form of a matrix of Ore polynomials, a recursive Lev-
errier algorithm for inversion of dense matrices whose entries are monic polyno-
mials, root isolation of zero-dimensional triangular polynomial systems, optimal
computation of the third power of a long integer, investigation of the complexity
of solving systems with few independent monomials, the study of ill-conditioned
polynomial systems, a method for polynomial root-finding via eigen-solving and
randomization, an algorithm for fast dense polynomial multiplication with Java
using the new opaque typed method, and sparse polynomial powering using
heaps.

The invited talk by K. Yokoyama deals with the usage of modular techniques
for efficient computation of ideal operations. The following applications of mod-
ular techniques are considered: Gröbner bases computation and computation of
minimal polynomials. The methods for recovering the true result from the results
of modular computations are also discussed.

Several papers are devoted to using computer algebra for the investigation
of various mathematical and applied topics related to ordinary differential equa-
tions (ODEs): algebraic methods for investigating the qualitative behavior of
bio-chemical reaction networks, algorithms for detecting the Hopf bifurcation in
high-dimensional chemical reaction networks, the solution of linear ODEs with
rational coefficients, also known as D-finite (or holonomic) series, the calculation
of normal forms and the first integrals of the Euler–Poisson equations, conditions
for the first integral of the cubic Lotka–Volterra system in a neighborhood of
the origin, and the analysis of the asymptotic stabilizability of planar switched
linear ODE systems.

Two papers deal with applications of symbolic computation in mechanics: the
investigation of stability of equilibrium positions in the spatial circular restricted
four-body problem of celestial mechanics, and the investigation of stability of a
gyroscopic system with four degrees of freedom and with three parameters.

New symbolic-numeric algorithms presented in this volume deal with the
solution of the boundary-value problem for the Schrödinger equation in cylin-
drical coordinates and the solution of the Navier–Stokes equations for the three-
dimensional viscous incompressible fluid flows.

Other applications of computer algebra systems presented in this volume
include the investigation of the questions of existence of polynomial solutions for
linear partial differential equations and (q-)difference equations, new algorithms
for rational reparameterization of any plane curve, Maple-based algorithms for
determining the intersection multiplicity of two plane curves, and the reduction

Preface VII

of the solution of the combinatorial problem of rainbow connectivity to the
solution of a certain system of polynomial equations.

The invariant theory, which is at the crossroads of several mathematical dis-
ciplines, is surveyed in the invited talk by G. Kemper. Some examples are given,
in which invariant theory is applied to graph theory, computer vision, and cod-
ing theory. The talk also gives an overview of the state of the art of algorithmic
invariant theory.

The CASC 2012 workshop was supported financially by the Slovenian Re-
search Agency and CAMTP. Our particular thanks are due to the members
of the CASC 2012 local Organizing Committee in Slovenia: M. Robnik and
V. Romanovski (CAMTP, Maribor) and M. Petkovšek (University of Ljubl-
jana), who ably handled local arrangements in Maribor. Furthermore, we want
to thank the Program Committee for their thorough work. Finally, we are grate-
ful to W. Meixner for his technical help in the preparation of the camera-ready
manuscript for this volume.

July 2012 V.P. Gerdt
W. Koepf

E.W. Mayr
E.V. Vorozhtsov

Organization

CASC 2012 has been organized jointly by the Department of Informatics at the
Technische Universität München, Germany, and the Center for Applied Mathe-
matics and Theoretical Physics at the University of Maribor, Slovenia.

Workshop General Chairs

Vladimir P. Gerdt (JINR, Dubna) Ernst W. Mayr (TU München)

Program Committee Chairs

Wolfram Koepf (Kassel) Evgenii V. Vorozhtsov (Novosibirsk)

Program Committee

Sergei Abramov (Moscow)
François Boulier (Lille)
Hans-Joachim Bungartz (Munich)
Victor F. Edneral (Moscow)
Ioannis Z. Emiris (Athens)
Jaime Gutierrez (Santander)
Victor Levandovskyy (Aachen)
Marc Moreno Maza (London, CAN)
Alexander Prokopenya (Warsaw)
Eugenio Roanes-Lozano (Madrid)

Valery Romanovski (Maribor)
Markus Rosenkranz (Canterbury)
Mohab Safey El Din (Paris)
Yosuke Sato (Tokyo)
Werner M. Seiler (Kassel)
Doru Stefanescu (Bucharest)
Thomas Sturm (Saarbrücken)
Agnes Szanto (Raleigh)
Stephen M. Watt (W. Ontario, CAN)
Andreas Weber (Bonn)

Local Organization

Valery Romanovski (Maribor) Marko Petkovšek (Ljubljana)
Marko Robnik (Maribor)

Website

http://wwwmayr.in.tum.de/CASC2012/

Table of Contents

On Polynomial Solutions of Linear Partial Differential and (q-)Difference
Equations . 1

S.A. Abramov and M. Petkovšek

An Algebraic Characterization of Rainbow Connectivity 12
Prabhanjan Ananth and Ambedkar Dukkipati

Application of the Method of Asymptotic Solution to One
Multi-Parameter Problem . 22

Alexander Batkhin

A New Algorithm for Long Integer Cube Computation with Some
Insight into Higher Powers . 34

Marco Bodrato and Alberto Zanoni

Lightweight Abstraction for Mathematical Computation in Java 47
Pavel Bourdykine and Stephen M. Watt

Calculation of Normal Forms of the Euler–Poisson Equations 60
Alexander D. Bruno and Victor F. Edneral

Stability of Equilibrium Positions in the Spatial Circular Restricted
Four-Body Problem . 72

Dzmitry A. Budzko and Alexander N. Prokopenya

Computing Hopf Bifurcations in Chemical Reaction Networks Using
Reaction Coordinates . 84

Hassan Errami, Werner M. Seiler, Markus Eiswirth, and
Andreas Weber

Comprehensive Involutive Systems . 98
Vladimir Gerdt and Amir Hashemi

A Polynomial-Time Algorithm for the Jacobson Form of a Matrix
of Ore Polynomials . 117

Mark Giesbrecht and Albert Heinle

The Resonant Center Problem for a 2:-3 Resonant Cubic Lotka–Volterra
System . 129

Jaume Giné, Colin Christopher, Mateja Prešern,
Valery G. Romanovski, and Natalie L. Shcheglova

XII Table of Contents

Complexity of Solving Systems with Few Independent Monomials
and Applications to Mass-Action Kinetics . 143

Dima Grigoriev and Andreas Weber

Symbolic-Numerical Calculations of High-|m| Rydberg States and
Decay Rates in Strong Magnetic Fields . 155

Alexander Gusev, Sergue Vinitsky, Ochbadrakh Chuluunbaatar,
Vladimir Gerdt, Luong Le Hai, and Vitaly Rostovtsev

Quasi-stability versus Genericity . 172
Amir Hashemi, Michael Schweinfurter, and Werner M. Seiler

Invariant Theory: Applications and Computations
(Abstract of Invited Talk) . 185

Gregor Kemper

Local Generic Position for Root Isolation of Zero-Dimensional
Triangular Polynomial Systems . 186

Jia Li, Jin-San Cheng, and Elias P. Tsigaridas

On Fulton’s Algorithm for Computing Intersection Multiplicities 198
Steffen Marcus, Marc Moreno Maza, and Paul Vrbik

A Note on the Space Complexity of Fast D-Finite Function
Evaluation . 212

Marc Mezzarobba

Inversion Modulo Zero-Dimensional Regular Chains 224
Marc Moreno Maza, Éric Schost, and Paul Vrbik

Sparse Polynomial Powering Using Heaps . 236
Michael Monagan and Roman Pearce

Stability Conditions of Monomial Bases and Comprehensive Gröbner
Systems . 248

Katsusuke Nabeshima

Parallel Reduction of Matrices in Gröbner Bases Computations 260
Severin Neumann

Real and Complex Polynomial Root-Finding by Means
of Eigen-Solving . 271

Victor Y. Pan, Guoliang Qian, and Ai-Long Zheng

Root-Refining for a Polynomial Equation . 283
Victor Y. Pan

PoCaB: A Software Infrastructure to Explore Algebraic Methods
for Bio-chemical Reaction Networks . 294

Satya Swarup Samal, Hassan Errami, and Andreas Weber

Table of Contents XIII

Approximately Singular Systems and Ill-Conditioned Polynomial
Systems . 308

Tateaki Sasaki and Daiju Inaba

Symbolic-Numeric Implementation of the Method of Collocations
and Least Squares for 3D Navier–Stokes Equations 321

Vasily P. Shapeev and Evgenii V. Vorozhtsov

Verifiable Conditions on Asymptotic Stabilisability for a Class
of Planar Switched Linear Systems . 334

Zhikun She and Haoyang Li

Improving Angular Speed Uniformity by Optimal C0 Piecewise
Reparameterization . 349

Jing Yang, Dongming Wang, and Hoon Hong

Usage of Modular Techniques for Efficient Computation of Ideal
Operations (Abstract of Invited Talk) . 361

Kazuhiro Yokoyama

Author Index . 363

On Polynomial Solutions of Linear Partial

Differential and (q-)Difference Equations

S.A. Abramov1,�, M. Petkovšek2,��

1 Computing Centre of the Russian Academy of Sciences, Vavilova,
40, Moscow 119333, Russia
sergeyabramov@mail.ru

2 University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19,
SI-1000, Ljubljana, Slovenia

Marko.Petkovsek@fmf.uni-lj.si

Abstract. We prove that the question of whether a given linear par-
tial differential or difference equation with polynomial coefficients has
non-zero polynomial solutions is algorithmically undecidable. However,
for equations with constant coefficients this question can be decided very
easily since such an equation has a non-zero polynomial solution iff its
constant term is zero. We give a simple combinatorial proof of the fact
that in this case the equation has polynomial solutions of all degrees.
For linear partial q-difference equations with polynomial coefficients, the
question of decidability of existence of non-zero polynomial solutions re-
mains open. Nevertheless, for such equations with constant coefficients
we show that the space of polynomial solutions can be described algorith-
mically. We present examples which demonstrate that, in contrast with
the differential and difference cases where the dimension of this space is
either infinite or zero, in the q-difference case it can also be finite and
non-zero.

1 Introduction

Polynomial solutions of linear differential and (q-)difference equations often serve
as a building block in algorithms for finding other types of closed-form solutions.
Computer algebra algorithms for finding polynomial (see, for example, [4]) and
rational (see [1,2,7,10,8] etc.) solutions of linear ordinary differential and dif-
ference equations with polynomial coefficients are well known. Note, however,
that relatively few results about rational solutions of partial linear differential
and (q-)difference equations can be found in the literature. Only recently, M.
Kauers and C. Schneider [11,12] have started work on the algorithmic aspects
of finding universal denominators for rational solutions in the difference case.
Once such a denominator is obtained, one needs to find polynomial solutions of
the equation satisfied by the numerators of the rational solutions of the original
equation. This is our motivation for considering polynomial solutions of linear

� Supported by RFBR grant 10-01-00249-a.
�� Supported by MVZT RS grant P1-0294.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 1–11, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 S.A. Abramov and M. Petkovšek

partial differential and (q-)difference equations with polynomial coefficients in
the present paper.

LetK be a field of characteristic 0, and let x1, . . . , xm be independent variables
wherem ≥ 2. In Section 2, using an argument similar to the one given in [9, Thm.
4.11], we show that there is no algorithm which, for an arbitrary linear differential
or difference operator L with coefficients fromK[x1, . . . , xm], determines whether
or not there is a non-zero polynomial y ∈ K[x1, . . . , xm] such that L(y) = 0
(Theorem 1). The proof is based on the Davis-Matiyasevich–Putnam–Robinson
theorem (DMPR) which states that the problem of solvability of Diophantine
equations is algorithmically undecidable, i.e., that there is no algorithm which,
for an arbitrary polynomial P (t1, . . . , tm) with integral coefficients, determines
whether or not the equation P (t1, . . . , tm) = 0 has an integral solution [14,17].
In fact, we use the equivalent form which states that existence of non-negative
integral solutions of P (t1, . . . , tm) = 0 is undecidable as well.

Of course, by limiting the class of operators considered, the corresponding prob-
lem may become decidable. For example, it is well known that a partial linear dif-
ferential or difference operator L with coefficients in K (a.k.a. an operator with
constant coefficients) has a non-zero polynomial solution iff L(1) = 0 (see, for
example, [20, Lemma 2.3]). In addition, in Section 3 we show that in this case,
the equation L(y) = 0 has polynomial solutions of degree d for all d ∈ N (The-
orem 2). This is contrasted with the univariate case m = 1, where the degree of
a polynomial solution cannot exceed ordL (but note that, when a univariate L is
considered to be m-variate with m ≥ 2, and L(1) = 0, equation L(y) = 0 does
have solutions of all degrees). In the differential case, when the affine algebraic
variety defined by σ(L) = 0 (where σ : K[∂/∂x1, . . . , ∂/∂xn] → K[x1, . . . , xn] is
the ring homomorphism given by σ|K = idK , σ(∂/∂xj) = xj) is not singular at 0,
and for d large enough, Theorem 2 follows from [20, Prop. 3.3(e)]. Here we present
a short direct proof based on a simple counting argument. For a given d ∈ N, all
solutions of degree d of such an equation can be found, e.g., by the method of un-
determined coefficients. Of course, there exist more efficient ways to do that: in
[19], the application of Janet bases to the computation of (formal) power series
and polynomial solutions is considered; in [19, Ex. 4.6], the command PolySol

for computing polynomial solutions from the Janet Maple package is illustrated.
Computing polynomial solutions using Gröbner bases is described in [21, Sect.
10.3, 10.4] and [19, Sect. 10.8]. Themore general problem of finding polynomial so-
lutions of holonomic systems with polynomial coefficients (if they exist) is treated
in [16,22], and the resulting algorithms are implemented in Macaulay2 [13].

Our attention was drawn to these problems by M. Kauers. In a letter to the
first author he presented a proof of undecidability of existence of non-zero poly-
nomial solutions of partial differential equations with polynomial coefficients, and
attributed it to mathematical folklore. In our paper, a simple common proof for
the differential and difference cases is proposed. The situation when coefficients
are constant is clarified as well.

In Section 4 we consider the q-difference case, assuming that K = k(q) where
k is a subfield of K and q is transcendental over k (q-calculus, as well as the

On Polynomial Solutions of Linear Partial Differential Equations 3

theory and algorithms for q-difference equations, are of interest in combinatorics,
especially in the theory of partitions [5, Sect. 8.4], [6]). The question of decid-
ability of existence of non-zero polynomial solutions of an arbitrary q-difference
equation with polynomial coefficients is still open. As for the equations with
constant coefficients, we formulate and prove a necessary condition for existence
of a non-zero polynomial solution: if L(1) = p(q) ∈ K[q], then p(1) = 0, or, more
succinctly: (L(1))(1) = 0. We also show that the dimension of the space of poly-
nomial solutions of a linear q-difference equation with constant coefficients can
be, in contrast with the differential and difference cases, not only zero or infinite,
but also finite positive. An explicit description of this space can be obtained al-
gorithmically. We consider this as one of the first steps in the program to find
wider classes of closed-form solutions of multivariate q-difference equations.

Terminology and notation. We write x = (x1, . . . , xm) for the variables,
D = (D1, . . . , Dm) for partial derivatives (Di = ∂

∂xi
), and Δ = (Δ1, . . . , Δm)

for partial differences (Δi = Ei − 1 where Eif(x) = f(x1, . . . , xi + 1, . . . , xm)).
Multiindices fromNm

(where N = {0, 1, 2, . . .}) are denoted by lower-case Greek
letters, so that a partial linear operator of order at most r with polynomial
coefficients is written as

L =
∑
|μ|≤r

aμ(x)D
μ (1)

in the differential case, and

L =
∑
|μ|≤r

aμ(x)Δ
μ (2)

in the difference case, with aμ(x) ∈ K[x1, . . . , xm] in both cases. We denote the
dot product of multiindices μ, α ∈ Nm

by μ · α = μ1α1 + · · ·+ μmαm.
We call y(x) ∈ K[x1, . . . , xm] a solution of L if L(y) = 0.
Let c ∈ K \ {0}. As usual, we define

degxi
(cxn1

1 · · ·xnm
m) = ni

for i = 1, . . . ,m, and

deg(cxn1
1 · · ·xnm

m) = n1 + · · ·+ nm.

For p(x) ∈ K[x1, . . . , xm] \ {0} we set degxi
p(x) for i = 1, . . . ,m to be equal to

maxdegxi
t, and deg p(x) to be equal to maxdeg t where the maximum is taken

over all the terms t of the polynomial p(x). We define degxi
0 = deg 0 = −∞ for

i = 1, . . . ,m.
We denote the rising factorial by

an =
n−1∏
i=0

(a+ i).

4 S.A. Abramov and M. Petkovšek

2 Equations with Polynomial Coefficients

Theorem 1. There is no algorithm to decide whether an arbitrary linear partial
differential resp. difference operator L with polynomial coefficients in an arbitrary
number m of variables, of the form (1) resp. (2), has a non-zero polynomial
solution.

Proof. Let P (t1, . . . , tm) ∈ Z[t1, . . . , tm] be arbitrary. For i = 1, . . . ,m write
θi = xiDi and σi = xiΔi. Then

θi(x
n1
1 · · ·xnm

m) = nix
n1
1 · · ·xnm

m (3)

and

σi(x
n1
1 · · ·xnm

m) = nix
n1
1 · · ·xnm

m , (4)

for i = 1, . . . ,m. Define an operator L of the form (1) resp. (2) by setting L =
P (θ1, . . . , θm) in the differential case, and L = P (σ1, . . . , σm) in the difference
case. Let f(x1, . . . , xm) ∈ K[x1, . . . , xm] be a polynomial over K. From (3) and
(4) it follows that L annihilates f iff it annihilates each term of f separately, so
L has a non-zero polynomial solution iff it has a monomial solution (where in
the difference case we assume that the polynomial f is expanded in terms of the
rising factorial basis). But we have

L(xn1
1 · · ·xnm

m) = P (n1, . . . , nm)xn1
1 · · ·xnm

m

in the differential case, and

L(xn1
1 · · ·xnm

m) = P (n1, . . . , nm)xn1
1 · · ·xnm

m

in the difference case. So L has a monomial solution iff there exist n1, . . . , nm ∈ N
such that P (n1, . . . , nm) = 0. Hence an algorithm for deciding existence of non-
zero polynomial solutions of linear partial differential or difference operators with
polynomial coefficients would give rise to an algorithm for deciding existence of
non-negative integral solutions of polynomial equations with integral coefficients,
in contradiction to the DMPR theorem.

Remark 1. In [9, Thm. 4.11], it is shown that there is no algorithm for de-
ciding existence of formal power series solutions of an inhomogeneous partial
differential equations with polynomial coefficients and right-hand side equal to 1
(see also Problem 13 in [15, p. 62] and Problem 3 in [18, p. 27]). Even though
the same polynomial P in θi is used in the proof of Theorem 1 as in the proof of
[9, Thm. 4.11], it is not at all clear whether the former follows from the latter.

Remark 2. Since the DMPR theorem holds for any fixed number m ≥ 9 of
variables as well (cf. [17]), the same is true of Theorem 1.

On Polynomial Solutions of Linear Partial Differential Equations 5

3 Equations with Constant Coefficients

In this section we assume that L is an operator of the form (1), (2) with coeffi-
cients aμ ∈ K.

For i = 1, . . . ,m, let

δi =

{
Di, in the differential case,
Δi, in the difference case.

Lemma 1. Let L ∈ K[δ1, . . . , δm] and let the equation

L(y) = 0 (5)

have a polynomial solution of degree k ≥ 0. Then this equation has a polynomial
solution of degree j for j = 0, 1, . . . , k.

Proof. By induction on j from k down to 0.

j = k: This holds by assumption.

0 ≤ j ≤ k−1: By inductive hypothesis, equation (5) has a polynomial solution
y(x) = p(x1, . . . , xm) of degree j + 1. Let t = cxn1

1 · · ·xnm
m be a term of the

polynomial p such that deg t = j + 1, and let i ∈ {1, . . . ,m} be such that
degxi

t > 0. Then δi(p) has the desired properties. Indeed, deg δi(p) = deg p−1 =
j and, since operators with constant coefficients commute, L(δi(p)) = δi(L(p)) =
δi(0) = 0.

Theorem 2. Let m ≥ 2, and let L ∈ K[δ1, . . . , δm] be a linear partial differential
or difference operator with constant coefficients. The following assertions are
equivalent:

(a) For each k ∈ N, L has a polynomial solution of degree k.
(b) L has a non-zero polynomial solution.
(c) L(1) = 0.

Proof. (a) ⇒ (b): Obvious.
(b) ⇒ (c): Assume that L has a non-zero polynomial solution p(x). Then

deg p ≥ 0, and by Lemma 1, L has a solution of degree 0. Hence L(1) = 0 as
well.

(c) ⇒ (a): It is well known that, in m variables, the number of monomials of
degree d is

(
d+m−1
m−1

)
, and the number of monomials of degree at most d is

(
d+m
m

)
.

Set

d =

(
k + 1

2

)
and denote byM the set of all monomials in the variables x1, . . ., xm of degrees
k, k + 1, . . ., d. Then

|M| =

(
d+m

m

)
−
(
k − 1 +m

m

)
.

6 S.A. Abramov and M. Petkovšek

Let P = L(M). From (c) it follows that the free term c0 of L is equal to 0, hence
degL(t) < deg t for any t ∈ M, and so the degrees of polynomials in P do not
exceed d− 1.

IfM contains two distinct monomials m1 and m2 such that L(m1) = L(m2)
then p = m1 −m2 is a non-zero polynomial solution of L of degree at least k.

Otherwise, L is injective onM, and so |P| = |M|. From d+ 1 > k(k + 1)/2,
d ≥ k and m ≥ 2 it follows that

(d+ 1)m − dm = m(d+ 1)m−1

= m(d+ 1) (d+ 2)m−2

> m
k(k + 1)

2
(k + 2)m−2

≥ km,

hence (d+ 1)m − km > dm. Dividing this by m! we see that

|P| = |M| =
(
d+m

m

)
−
(
k − 1 +m

m

)
>

(
d− 1 +m

m

)
.

Since the dimension of the space of polynomials of degrees at most d − 1 is(
d−1+m

m

)
, it follows that the set P is linearly dependent. Hence there is a non-

trivial linear combination p of the monomials inM such that L(p) = 0. Clearly,
p is a non-zero polynomial solution of L of degree at least k.

In either case (if L is injective on M or not) we have obtained a non-zero
polynomial solution of L of degree at least k. By Lemma 1 it follows that L has
a non-zero polynomial solution of degree k.

4 q-Difference Equations with Constant Coefficients

The question of decidability of the existence of non-zero polynomial solutions
of an arbitrary q-difference equation with polynomial coefficients is still open.
In this section we consider equations with coefficients from K, assuming that
K = k(q) where k is a subfield of K and q is transcendental over k.

We write Q = (Q1, . . . , Qm) for partial q-shift operators where

Qif(x) = f(x1, . . . , qxi, . . . , xm),

so that a partial linear q-difference operator with constant coefficients of order
at most r is written as

L =
∑
|μ|≤r

aμQ
μ (6)

with aμ ∈ K. Clearly, for multiindices μ and α,

On Polynomial Solutions of Linear Partial Differential Equations 7

Qμxα = Qμ1

1 · · ·Qμm
m xα1

1 · · ·xαm
m

= Qμ1

1 xα1
1 · · ·Qμm

m xαm
m

= (qμ1x1)
α1 · · · (qμmxm)αm

= qμ1α1+···+μmαmxα1

1 · · ·xαm
m

= qμ·αxα. (7)

Lemma 2. An operator L of the form (6) has a nonzero polynomial solution iff
it has a monomial solution.

Proof. If L has a monomial solution xα, then xα is also a non-zero polynomial
solution of L.

Conversely, assume that p(x) ∈ K[x] is a non-zero polynomial solution of L.
Write

p(x) =
∑
α

cαx
α

where only finitely many cα are non-zero, and define its support by

supp p = {α ∈ Nm
; cα �= 0}.

Then

L(p) =
∑
μ

aμ
∑
α

cαQ
μxα

=
∑
μ

aμ
∑
α

cαq
μ·αxα (by (7))

=
∑
α

cα

(∑
μ

aμq
μ·α
)
xα,

hence from L(p) = 0 it follows that∑
μ

aμq
μ·α = 0

whenever cα �= 0. Therefore, by (7),

L(xα) =
∑
μ

aμQ
μxα =

∑
μ

aμq
μ·αxα = 0

for all such α, so xα is a monomial solution of L for each α ∈ supp p.

By clearing denominators in the equation L(y) = 0, we can assume that the
coefficients of L are in k[q], hence we can rewrite

L =
∑
μ

∑
i

aμ,iq
iQμ (8)

8 S.A. Abramov and M. Petkovšek

where only finitely many aμ,i ∈ k are non-zero. Define

suppL = {(μ, i) ∈ Nm+1
; aμ,i �= 0}.

Let P be a partition of suppL. We call such a partition balanced if∑
(μ,i)∈B

aμ,i = 0

for every block B ∈ P . To any α ∈ Nm
we assign the partition PL,α of suppL

induced by the equivalence relation

(μ, i) ∼ (ν, j) iff μ · α+ i = ν · α+ j.

Lemma 3. L(xα) = 0 iff PL,α is balanced.

Proof.

L(xα) =
∑

(μ,i)∈suppL

aμ,iq
iQμxα

=
∑

(μ,i)∈suppL

aμ,iq
μ·α+ixα,

hence L(xα) = 0 iff
∑

(μ,i)∈suppL aμ,iq
μ·α+i = 0. Since q is transcendental over

k, the latter equality holds iff
∑

(μ,i)∈B aμ,i = 0 for every block B ∈ PL,α, i.e.,
iff PL,α is balanced.

Corollary 1. L in (8) has a non-zero polynomial solution iff there is an α ∈ Nm

such that PL,α is balanced.

Proof. This follows from Lemmas 2 and 3.

Corollary 2. If L in (8) has a non-zero polynomial solution then
∑

μ aμ = 0.

Proof. This follows from Corollary 1 since if PL,α is balanced then
∑

μ aμ = 0.

¿From Corollary 1 we obtain the following algorithm for deciding existence of
non-zero polynomial solutions of L in (8):

for each balanced partition P of suppL do
let S be the system of |suppL| linear equations

μ · α+ i = vB, (μ, i) ∈ B ∈ P

for the unknown vectors α and v = (vB)B∈P

if S has a solution (α, v) with α ∈ Nm
then

return “yes” and stop
return “no”.

On Polynomial Solutions of Linear Partial Differential Equations 9

Corollary 3. The problem of existence of non-zero polynomial solutions of par-
tial linear q-difference operators with constant coefficients is decidable.

Note that one can convert the above decision algorithm into a procedure for
providing a finite description of a (possibly infinite) basis for the space of all
polynomial solutions of equation L(y) = 0.

The following simple examples demonstrate that, in contrast with the differ-
ential and difference cases, there are partial linear q-difference equations with
constant coefficients such that the dimension of their space of polynomial solu-
tions is: a) infinite, b) finite positive, c) zero.

Example 1. Let L1 = Q2
1Q2 + qQ1Q

2
2 − 2q2Q3

2. Then

L1(x
α1
1 xα2

2) = (q2α1+α2 + qα1+2α2+1 − 2q3α2+2)xα1
1 xα2

2

and suppL1 = {(2, 1, 0), (1, 2, 1), (0, 3, 2)}. The only balanced partition of this set
is the single-block partition P = {suppL1}, and we obtain the system of linear
equations

2α1 + α2 = α1 + 2α2 + 1 = 3α2 + 2

for α1 and α2. This system has infinitely many non-negative integer solutions of
the form α1 = t+ 1, α2 = t where t ∈ N. Therefore, every non-zero linear com-
bination of monomials of the form xt+1

1 xt2 where t ∈ N, is a non-zero polynomial
solution of the operator L1.

Example 2. Let L2 = Q4
1Q2 +Q2

1Q
3
2 − 2q2Q3

1. Then

L2(x
α1
1 xα2

2) = (q4α1+α2 + q2α1+3α2 − 2q3α1+2)xα1
1 xα2

2

and suppL2 = {(4, 1, 0), (2, 3, 0), (3, 0, 2)}. Again the only balanced partition of
this set is the single-block partition, and we obtain the system of linear equations

4α1 + α2 = 2α1 + 3α2 = 3α1 + 2

for α1 and α2. The only solution of this system is α1 = α2 = 1, so the operator
L2 has a 1-dimensional space of polynomial solutions spanned by x1x2.

Example 3. Let L3 = Q2
1Q2 +Q1Q

2
2 − 2qQ3

2. Then

L3(x
α1
1 xα2

2) = (q2α1+α2 + qα1+2α2 − 2q3α2+1)xα1
1 xα2

2

and suppL3 = {(2, 1, 0), (1, 2, 0), (0, 3, 1)}. Once again the only balanced parti-
tion of this set is the single-block partition, and we obtain the system of linear
equations

2α1 + α2 = α1 + 2α2 = 3α2 + 1

for α1 and α2. Since this system has no solution, the operator L3 has no non-zero
polynomial solution.

10 S.A. Abramov and M. Petkovšek

5 Conclusion

In this paper, we have investigated the computational problem of existence of
non-zero polynomial solutions of linear partial differential and difference equa-
tions with polynomial coefficients. We have shown that the problem is algo-
rithmically undecidable. This means that there is no hope of having a general
algorithm for deciding existence of such solutions in a computer algebra system
now or ever in the future.

However, we have shown that the existence problem is decidable in the case of
partial linear differential or difference equations with constant coefficients: such
an equation L(y) = 0 has non-zero polynomial solutions iff L(1) = 0. Moreover,
when the latter condition is satisfied, this equation has polynomial solutions
of any desired degree. A number of methods exist to search for such solutions
efficiently (see, e.g., [19,21]).

For partial equations with constant coefficients in the q-difference case which is
of interest in combinatorics, we have formulated and proved a necessary condition
for existence of non-zero polynomial solutions: (L(1))(1) = 0 (note that L(1) is a
polynomial in q). We have also shown that when the latter condition is satisfied,
the dimension of the space of polynomial solutions in some particular cases can
be finite and even zero (then no non-zero polynomial solutions exist). An explicit
description of this space can be obtained algorithmically, and the corresponding
algorithm is straightforward to implement in any computer algebra system.

The following interesting problems remain open:

1. (Un)decidability of existence of non-zero polynomial solutions of a given
linear partial differential or difference equation with polynomial coefficients when
the number of variables m is between 2 and 8.

2. (Un)decidability of existence of non-zero polynomial solutions of a given
linear partial q-difference equation with polynomial coefficients (both the general
problem when the number m of variables is arbitrary, and the problems related
to particular numbers of variables).

Problem 1 seems to be very hard since the problem of solvability of Diophantine
equations in m variables with m between 2 and 8 is still open (cf. [17]). Con-
cerning Problem 2, note that in the ordinary case (m = 1), certain existence
problems in the q-difference case are decidable although the analogous problems
in the differential and difference cases are not (see, e.g., [3]). An example of
an open problem which might be easier than Problems 1 or 2 is the existence
problem of non-zero polynomial solutions for q-differential equations.

We will continue to pursue this line of inquiry.

Acknowledgements. The authors are grateful to M. Kauers for kindly pro-
viding a version of the proof of Theorem 1 in the differential case (as mentioned
in the Introduction), to S. P. Tsarev for interesting and helpful discussions, and
to several anonymous referees for their valuable remarks and references to the
literature.

On Polynomial Solutions of Linear Partial Differential Equations 11

References

1. Abramov, S.A.: Rational solutions of linear difference and differential equations
with polynomial coefficients. U.S.S.R. Comput. Math. and Math. Phys. 29(6), 7–
12 (1989)

2. Abramov, S.A.: Rational solutions of linear difference and q-difference equations
with polynomial coefficients. Programming and Comput. Software 21(6), 273–278
(1995)

3. Abramov, S.A.: On some decidable and undecidable problems related to q-
difference equations with parameters. In: Proc. ISSAC 2010, pp. 311–317 (2010)

4. Abramov, S.A., Bronstein, M., Petkovšek, M.: On polynomial solutions of linear
operator equations. In: Proc. ISSAC 1995, pp. 290–296 (1995)

5. Andrews, G.E.: The Theory of Partitions. Encyclopedia of Mathematics and its
Applications. Addison-Wesley, Reading Mass. (1976)

6. Andrews, G.E.: q-Series: Their Development and Application in Analysis, Number
Theory, Combinatorics, Physics, and Computer Algebra. CBMS Regional Confer-
ence Series, vol. 66. AMS, Providence (1986)

7. Barkatou, M.A.: A fast algorithm to compute the rational solutions of systems of
linear differential equations. RR 973–M– Mars 1997, IMAG–LMC, Grenoble (1997)

8. Barkatou, M.A.: Rational solutions of systems of linear difference equations. J.
Symbolic Comput. 28(4-5), 547–567 (1999)

9. Denef, J., Lipshitz, L.: Power series solutions of algebraic differential equations.
Math. Ann. 267(2), 213–238 (1984)

10. van Hoeij, M.: Rational solutions of linear difference equations. In: Proc. ISSAC
1998, pp. 120–123 (1998)

11. Kauers, M., Schneider, C.: Partial denominator bounds for partial linear difference
equations. In: Proc. ISSAC 2010, pp. 211–218 (2010)

12. Kauers, M., Schneider, C.: A refined denominator bounding algorithm for multi-
variate linear difference equations. In: Proc. ISSAC 2011, pp. 201–208 (2011)

13. Leykin, A.: D-modules for Macaulay 2. In: Mathematical Software, Beijing, pp.
169–179. World Sci. Publ., River Edge (2002)

14. Matiyasevich, Y.V.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)
15. Matiyasevich, Y.V.: OnHilbert’s tenth problem. PIMSDistinguished Chair Lectures

(2000), http://www.mathtube.org/lecture/notes/hilberts-tenth-problem
16. Oaku, T., Takayama, N., Tsai, H.: Polynomial and rational solutions of holonomic

systems. J. Pure Appl. Algebra 164(1-2), 199–220 (2001)
17. Pheidas, T., Zahidi, K.: Undecidability of existential theories of rings and fields:

A survey. In: Hilbert’s Tenth Problem: Relations with Arithmetic and Algebraic
Geometry. Contemp. Math., vol. 270, pp. 49–105 (2000)

18. Sadovnikov, A.: Undecidable problems about polynomials: Around Hilbert’s
10th problem. Lecture notes (2007), http://www14.informatik.tu-muenchen.de/
konferenzen/Jass07/courses/1/Sadovnikov/Sadovnikov Paper.pdf

19. Seiler, W.M.: Involution. The formal theory of differential equations and its ap-
plications in computer algebra. In: Algorithms and Computation in Mathematics,
vol. 24. Springer, Berlin (2010)

20. Smith, S.P.: Polynomial solutions to constant coefficient differential equations.
Trans. Amer. Math. Soc. 329(2), 551–569 (1992)

21. Sturmfels, B.: Solving Systems of Polynomial Equations. CBMS Regional Confer-
ences Series, vol. 97. Amer. Math. Soc., Providence (2002)

22. Tsai, H., Walther, U.: Computing homomorphisms between holonomic D-modules.
J. Symbolic Comput. 32(6), 597–617 (2001)

http://www.mathtube.org/lecture/notes/hilberts-tenth-problem
http://www14.informatik.tu-muenchen.de/konferenzen/Jass07/courses/1/Sadovnikov/Sadovnikov_Paper.pdf
http://www14.informatik.tu-muenchen.de/konferenzen/Jass07/courses/1/Sadovnikov/Sadovnikov_Paper.pdf

An Algebraic Characterization

of Rainbow Connectivity

Prabhanjan Ananth and Ambedkar Dukkipati

Department of Computer Science and Automation
Indian Institute of Science, Bangalore 560012, India

{prabhanjan,ambedkar}@csa.iisc.ernet.in

Abstract. The use of algebraic techniques to solve combinatorial prob-
lems is studied in this paper. We formulate the rainbow connectivity
problem as a system of polynomial equations. We first consider the case
of two colors for which the problem is known to be hard and we then
extend the approach to the general case. We also present a formulation
of the rainbow connectivity problem as an ideal membership problem.

Keywords: Graphs, NulLA alogirithm, ideal membership.

1 Introduction

The use of algebraic concepts to solve combinatorial optimization problems has
been a fascinating field of study explored by many researchers in theoretical
computer science. The combinatorial method introduced by Noga Alon [1] offered
a new direction in obtaining structural results in graph theory. Lovász [2], De
Loera [3] and others formulated popular graph problems like vertex coloring,
independent set as a system of polynomial equations in such a way that solving
the system of equations is equivalent to solving the combinatorial problem. This
formulation ensured the fact that the system has a solution if and only if the
corresponding instance has a “yes” answer.

Solving system of polynomial equations is a well studied problem with a wealth
of literature on this topic. It is well known that solving system of equations is
a notoriously hard problem. De Loera et al. [4] proposed the NulLA approach
(Nullstellensatz Linear Algebra) which used Hilbert’s Nullstellensatz to deter-
mine the feasibility among a system of equations. This approach was further
used to characterize some classes of graphs based on degrees of the Nullstellen-
satz certificate.

In this work, we study the algebraic characterization of a relatively new con-
cept in graph theory termed as rainbow connectivity. We first show how to model
the rainbow connectivity problem as an ideal membership problem and then us-
ing a result from [3], we propose an algorithm to solve the rainbow connectivity
problem. We then show how to encode the k-rainbow connectivity problem as a
system of polynomial equations for the case when k = 2. We then show how to
extend this for any constant k.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 12–21, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Algebraic Characterization of Rainbow Connectivity 13

In Section 2, we review the basics of encoding of combinatorial problems as
systems of polynomial equations. Further, we describe NulLA along with the
preliminaries of rainbow connectivity. In Section 3, we propose a formulation
of the rainbow connectivity problem as an ideal membership problem. We then
present encodings of the rainbow connectivity problem as a system of polynomial
equations in Section 4.

2 Background and Preliminaries

The encoding of well known combinatorial problems as system of polynomial
equations is described in this section. The encoding schemes of the vertex col-
oring and the independent set problem is presented. Encoding schemes of well
known problems like Hamiltonian cycle problem, MAXCUT, SAT and others
can be found in [5]. The term encoding is formally defined as follows:

Definition 1. Given a language L, if there exists a polynomial-time algorithm
A that takes an input string I, and produces as output a system of polynomial
equations such that the system has a solution if and only if I ∈ L, then we say
that the system of polynomial equations encodes I.

It is a necessity that the algorithm that transforms an instance into a system of
polynomial equations has a polynomial running time in the size of the instance I.
Else, the problem can be solved by brute force and trivial equations 0 = 0 (“yes”
instance) or 1 = 0 (“no” instance) can be output. Further since the algorithm
runs in polynomial time, the size of the output system of polynomial equations is
bounded above by a polynomial in the size of I. The encodings of vertex coloring
and stable set problems are presented next.

We use the following notation throughout this paper. Unless otherwise men-
tioned all the graphs G = (V,E) have the vertex set V = {v1, . . . , vn} and the
edge set E = {e1, . . . , em}. The notation vi1 − vi2 − · · · − vis is used to denote a
path P in G, where ei1 = (vi1 , vi2), . . . , eis−1 = (vis−1 , vis) ∈ E. The path P is
also denoted by vi1 − ei1 − · · · − eis−1 − vis and vi1 − P − vis .

2.1 k-Vertex Coloring and Stable Set Problem

The vertex coloring problem is one of the most popular problems in graph theory.
The minimum number of colors required to color the vertices of the graph such
that no two adjacent vertices get the same color is termed as the vertex coloring
problem. We consider the decision version of the vertex coloring problem. The
k-vertex coloring problem is defined as follows: Given a graph G, does there exist
a vertex coloring of G with k colors such that no two adjacent vertices get the
same color. There are a quite a few encodings known for the k-vertex colorability
problem. We present one such encoding given by Bayer [6]. The polynomial ring
under consideration is k[x1, . . . , xn].

14 P. Ananth and A. Dukkipati

Theorem 1. A graph G = (V,E) is k-colorable if and only if the following
zero-dimensional system of equations has a solution:

xki − 1 = 0, ∀vi ∈ V,
k−1∑
d=0

xk−1−d
i xdj = 0, ∀(vi, vj) ∈ E.

Proof Idea. If the graph G is k-colorable, then there exists a proper k-coloring
of graph G. Denote these set of k colors by kth roots of unity. Consider a point
p ∈ kn such that ith co-ordinate of p (denoted by p(i)) is the same as the color
assigned to the vertex xi. The equations corresponding to each vertex (of the
form xki − 1 = 0) are satisfied at point p. The equations corresponding to the
edges can be rewritten as

xki − xkj
xi − xj

= 0.

Since xki = xkj = 1 and xi �= xj , even the edge equation is satisfied at p.
Assume that the system of equations have a solution p. It can be seen that p

cannot have more than k distinct co-ordinates. We color the vertices of the graph
G as follows: color the vertex vi with the value p(i). It can be shown that if the
system is satisfied then in the edge equations, xi and xj need to take different
values. In other words, if (vi, vj) is an edge then p(i) and p(j) are different. Hence,
the vertex coloring of G is a proper coloring. ��

A stable set (independent set) in a graph is a subset of vertices such that no
two vertices in the subset are adjacent. The stable set problem is defined as
the problem of finding the maximum stable set in the graph. The cardinality
of the largest stable set in the graph is termed as the independence number of
G. The encoding of the decision version of the stable set problem is presented.
The decision version of the stable set problem deals with determining whether
a graph G has a stable set of size at least k. The following result is due to
Lovász [2].

Lemma 1. A graph G = (V,E) has an independent set of size ≥ k if and only
if the following zero-dimensional system of equations has a solution

x2i − xi = 0, ∀i ∈ V,
xixj = 0, ∀{i, j} ∈ E,

n∑
i=1

xi − k = 0 .

The number of solutions equals the number of distinct independent sets of
size k.

The proof of the above result can be found in [5].

An Algebraic Characterization of Rainbow Connectivity 15

2.2 NulLA Algorithm

De Loera et al. [4] proposed the Nullstellensatz Linear Algebra Algorithm
(NulLA) which is an approach to ascertain whether the polynomial system has a
solution or not. Their method relies on the one of the most important theorems
in algebraic geometry, namely the Hilbert Nullstellensatz. The Hilbert Nullstel-
lensatz theorem states that the variety of an ideal is empty over an algebraically
closed field iff the element 1 belongs to the ideal. More formally,

Theorem 2. [7] Let a be a proper ideal of k[x1, . . . , xn]. If k is algebraically
closed, then there exists (a1, . . . , an) ∈ kn such that f(a1, . . . , an) = 0 for all
f ∈ a.

Thus, to determine whether a system of equations f1 = 0, . . . , fs = 0 has a solu-
tion or not is the same as determining whether there exists polynomials hi where
i ∈ {1, . . . , s} such that

∑s
i=1 hifi = 1. Denote the quantity max1≤i≤s(deg(fi))

by d. A result by Kollár [8] shows that the degree of the coefficient polynomials
hi can be bounded above by {max(3, d)}n where n is the number of indeter-
minates. Hence, each hi can be expressed as a sum of monomials of degree
at most {max(3, d)}n, with unknown coefficients. By expanding the summation∑s

i=1 hifi, a system of linear equations is obtained with the unknown coefficients
being the variables. Solving this system of linear equations will yield us the poly-
nomials hi such that

∑s
i=1 hifi = 1. The equation

∑s
i=1 hifi = 1 is known as

Nullstellensatz certificate and is said to be of degree d if max1≤i≤s{deg(hi)} = d.
There have been efforts to determine the bounds on the degree of the Nullstel-
lensatz certificate which in turn has an impact on the running time of NulLA
algorithm. The description of the NulLA algorithm can be found in [5]. The run-
ning time of the algorithm depends on the degree bounds on the polynomials in
the Nullstellensatz certificate. It was shown in [9] that if f1 = 0, . . . , fs = 0 is an
infeasible system of equations then there exists polynomials h1, . . . , hs such that∑s

i=1 hifi = 1 and deg(hi) ≤ n(d− 1) where d = max{deg(fi)}. Thus with this
bound, the running time of the above algorithm in the worst case is exponential
in n(d − 1). Even though this is still far being practical, for some special cases
of polynomial systems this approach seems to be promising. More specifically
this proved to be beneficial for the system of polynomial equations arising from
combinatorial optimization problems [5]. Also using NulLA, polynomial-time
procedures were designed to solve the combinatorial problems for some special
class of graphs [10].

2.3 Rainbow Connectivity

The concept of rainbow connectivity was introduced by Chartrand et. al. [11]
as a measure of strengthening connectivity. Consider an edge colored graph G.
A rainbow path is a path consisting of distinctly colored edges. The graph G is
said to be rainbow connected if between every two vertices there exists a rainbow
path. The least number of colors required to edge color the graph G such that
G is rainbow connected is called the rainbow connection number of the graph,

16 P. Ananth and A. Dukkipati

denoted by rc(G). The problem of determining rc(G) for a graph G is termed as
the rainbow connectivity problem. The corresponding decision version, termed
as the k-rainbow connectivity problem is defined as follows: Given a graph G,
decide whether rc(G) ≤ k. The k-rainbow connectivity problem is NP-complete
even for the case k = 2.

3 Rainbow Connectivity as an Ideal Membership
Problem

Combinatorial optimization problems like vertex coloring [3,12] were formulated
as a membership problem in polynomial ideals. The general approach is to as-
sociate a polynomial to each graph and then consider an ideal which contains
all and only those graph polynomials that have some property (for example,
chromatic number of the corresponding graph is less than or equal to k). To test
whether the graph has a required property, we just need to check whether the
corresponding graph polynomial belongs to the ideal. In this section, we describe
a procedure of solving the k-rainbow connectivity problem by formulating it as
an ideal membership problem. By this, we mean that a solution to the ideal
membership problem yields a solution to the k-rainbow connectivity problem.
We restrict our attention to the case when k = 2.

In order to formulate the 2-rainbow connectivity problem as a membership
problem, we first consider an ideal Im,3 ⊂ Q[xe1 , . . . , xem]. Then the problem of
deciding whether the given graph G can be rainbow connected with 2 colors or
not is reduced to the problem of deciding whether a polynomial fG belongs to the
ideal Im,3 or not. The ideal Im,3 is defined as the ideal vanishing on Vm,3, where
Vm,3 is defined as the set of all points which have at most 2 distinct coordinates.
The following theorem was proved by De Loera [3]:

Theorem 3. The set of polynomials

Gm,3 = {
∏

1≤r<s≤3

(xeir − xeis) | 1 ≤ i1 < i2 < i3 ≤ m}

is a universal Gröbner basis1 for the ideal Im,3.

We now associate a polynomial fG to each graph G such that fG belongs to the
ideal Im,3 if and only if the rainbow connection number of the graph G is at least
3. Assume that the diameter of G is at most 2, because if not we have rc(G) ≥ 3.
We first define the path polynomials for every pair of vertices (vi, vj) ∈ V × V
as follows: If vi and vj are adjacent then Pi,j = 1, else

Pi,j =
∑

ea,eb∈E: vi−ea−eb−vj∈G

(xea − xeb)
2 .

1 A set of generators of an ideal is said to be a universal Gröbner basis if it is a Gröbner
basis with respect to every term order.

An Algebraic Characterization of Rainbow Connectivity 17

The polynomial fG is nothing but the product of path polynomials between any
pair of vertices. Formally, fG is defined as follows:

fG =
∏

vi,vj∈V ; i<j

Pi,j .

Note that fG can be computed in polynomial time.

Theorem 4. The polynomial fG ∈ Im,3 if and only if rc(G) ≥ 3.

Proof. To prove the theorem, it is enough to show that ∀p ∈ Vm,3, fG(p) = 0
if and only if rainbow connection number of G is at least 3. Assume that the
rainbow connection number of G is at most 2. This means that there exists an
edge coloring of the graph with two colors such that the graph is 2-rainbow
connected. We can visualize this coloring of edges as a tuple (c1, . . . , cm) where
ci ∈ Q and the edge ei is given the color ci. It can be seen that the point
p = (c1, . . . , cm) belongs to Vm,3. We claim that fG(p) �= 0. For that, we show
that Pi,j(p) �= 0 for all (vi, vj) ∈ V ×V . Assume that vi and vj are not adjacent
(this is because Pi,j(p) �= 0 for adjacent pair of vertices (vi, vj)). Since G is
rainbow connected, there is a rainbow path from vi to vj and let ea, eb be the
two edges in this path. Correspondingly, (ca−cb) is non-zero and hence (ca−cb)2
is positive. This implies that Pi,j(p) �= 0 for every pair of vertices (vi, vj). Hence,
fG(p) is non-zero.
Assume that fG(p) �= 0 for some p = (c1, . . . , cm) ∈ Vm,3. First, we consider the
case when p has no distinct coordinates. In this case, it can be seen that Pi,j has
to be 1 for every i < j and i, j ∈ {1, . . . , n}. This further means that the graph
is a complete graph in which case a single color suffices to rainbow connect the
graph. Henceforth, we restrict our attention to the case when p has exactly two
distinct coordinates. Using p, we color the edges of the graph G with two colors
such that G is rainbow connected. Assume without loss of generality that b and
r are the only two values taken by the entries in p. Color the edges of G as
follows: If ci = b then color the edge ei with blue else color the edge ei with red.
Since, fG(p) �= 0 we have Pi,j(p) �= 0 for all i, j ∈ {1, . . . , n}. Consider a non
adjacent pair of vertices (vi, vj). This implies that there exists a and b such that
(xea −xeb)2 is in the support of Pi,j and (ca− cb)2 is non-zero. Correspondingly,
the path from vi to vj containing the edges ea and eb is a rainbow path since ea
and eb are colored distinctly. Thus, G is rainbow connected which implies that
rc(G) ≤ 2. ��

The above characterization gives us a computational algebraic procedure to de-
cide whether the rainbow connection of a graph is at most 2 or not.

1. Given a graph G, find its corresponding polynomial fG.

2. Divide fG by Gm,3.

3. If the division algorithm gives a non-zero remainder then the rainbow con-
nection number of the graph is at most 2 else rc(G) ≥ 3 .

18 P. Ananth and A. Dukkipati

4 Encoding of Rainbow Connectivity

Consider the polynomial ring F2[xe1 , . . . , xem]. As before, assume that the di-
ameter of G is at most 2. We present an encoding of the 2-rainbow connectivity
problem as a system of polynomial equations S defined as follows:∏
ea,eb∈E:vi−ea−eb−vj∈G

(xea + xeb + 1) = 0; ∀i, j ∈ {1, . . . , n}, i < j, (vi, vj) /∈ E

If all pairs of vertices are adjacent (as in the case of clique), we have the trivial
system 0 = 0.

Proposition 1. The rainbow connection number of G is at most 2 if and only
if S has a solution in Fm

2 .

Proof. Let p = (c1, . . . , cm) ∈ Fm
2 be a solution to S. Consider the edge coloring

χ : E → {blue, red} defined as follows: χ(ei) = blue if ci = 1 else χ(ei) = red.
Now, consider a pair of vertices (vi, vj) /∈ E. Since the equation corresponding
to (i, j) is satisfied at p, there exists a and b such that ea and eb are edges in
the path from vi to vj and ca + cb + 1 = 0. This implies that ca and cb have
different values and hence the edges ea and eb are colored differently. In other
words there is a rainbow path between vi and vj . Since, this is true for any pair
of vertices, the graph G is rainbow connected.
Assume that rc(G) ≤ 2. Then, let χ : E → {blue,red} be an edge coloring of G
such that G is rainbow connected. Let p = (c1, . . . , cm) be a point in Fm

2 such
that ci = 1 if χ(ei) =blue else ci = 0. The claim is that p is a solution for
the system of polynomial equations S. Consider a pair of non adjacent vertices
(vi, vj) in G. Since G is rainbow connected there exists a rainbow path from vi to
vj . Let ea and eb be the edges on this path. Since these two edges have distinct
colors, correspondingly the expression ca + cb + 1 has the value zero. In other
words, the point p satisfies the equation corresponding to i, j. Since this is true
for any pair of vertices the point p satisfies S. ��
Example. Consider a graph Gn = (V,E) such that V = {a, v1, . . . , vn} and
E = {(a, vi) | i ∈ {1, . . . , n}}. We denote the edge (a, vi) by ei. It can be easily
seen that the rainbow connection number of the graph Gn, for n ≥ 3, is at least
3. We show this by using the system of equations denoted by S as follows. The
system of equations S for Gn, for n ≥ 3, is given by:

xei + xej + 1 = 0, ∀i, j ∈ {1, . . . , n}, i < j .

Since (xe1 + xe2 + 1) + (xe2 + xe3 + 1) + (xe1 + xe3 + 1) = 1, we have the fact
that 1 belongs to the ideal a = 〈xei + xej + 1 : ∀i, j ∈ {1, . . . , n}, i < j〉. This
means that the solution set of a is empty which further implies that the system
of equations S defined for Gn, for n ≥ 3, has no solution. From the above propo-
sition, we have the result that the rainbow connection number of Gn is at least 3.

An Algebraic Characterization of Rainbow Connectivity 19

We now generalize the encoding for the 2-rainbow connectivity problem to the
k-rainbow connectivity problem. We will only consider graphs of diameter at
most k. This encoding is similar to the one described for the k-vertex coloring
problem. The polynomial ring under consideration is C[xe1 , . . . , xem].

Theorem 5. The rainbow connection number of a graph G = (V,E) is ≤ k if
and only if the following zero-dimensional system of equations has a solution:

xkei − 1 = 0, ∀ei ∈ E∏
vi−P−vj

⎛⎝ ∑
ea,eb∈P

(
k−1∑
d=0

xk−1−d
ea xdeb

)k
⎞⎠ = 0, ∀(vi, vj) /∈ E

Proof. Assume that the system of polynomial equations has a solution p. We
color the edges of the graph as follows: Color the edge ei with p

(i) (ith coordinate
of p). Consider a pair of non adjacent vertices (vi, vj) ∈ V ×V . Corresponding to
this pair, there is an equation in the system which is satisfied at p. This implies
that for some path P between vi and vj , the polynomial

∑
ea,eb∈P

(
k−1∑
d=0

xk−1−d
ea xdeb

)k

vanishes to zero at point p. This further implies that(
k−1∑
d=0

xk−1−d
ea xdeb

)k

is zero for any pair of edges ea, eb on the path P . This can happen only when
p(a) is different from p(b). Correspondingly any two edges ea and eb on the path
P are assigned different colors. Thus the path P between vertices vi and vj is a
rainbow path. This is true for all pairs of vertices and hence the graph is rainbow
connected. Since the point p has at most k distinct coordinates (this is because
p satisfies equations of the form xkei − 1 = 0), we have the rainbow connection
number of G to be at most k.

Let the rainbow connection number of graph G be at most k. We find a point
p belonging to the solution set of the given system of polynomial equations. As
in the case of proof of Theorem 1, denote the k colors by kth roots of unity.
Let p ∈ Cm such that the entry p(i) of p is equal to the color assigned to the
edge ei. The set of equations xkei − 1 = 0 are satisfied at p. Consider a pair of
vertices (vi, vj) /∈ E in graph G. Since graph G is k-rainbow connected, there is a
rainbow path P between vi and vj . Consider any two edges ea and eb on the path
P . Since ea and eb are colored differently, the indeterminates xea and xeb are

given different values. This further implies that the expression
∑k−1

d=0 x
k−1−d
ea xdeb

is zero. Thus, for a rainbow path P between vi and vj , the summation

∑
ea,eb∈P

(
k−1∑
d=0

xk−1−d
ea xdeb

)k

20 P. Ananth and A. Dukkipati

is zero and hence, the equation corresponding to the pair of vertices (vi, vj) is
satisfied at point p. Since this is true for any pair of vertices, the point p satisfies
the given system of polynomial equations. ��
The above given formulation of the k-rainbow connectivity problem, for any k,
as a system of polynomial equations is not a valid encoding since the encoding
procedure does not run in time polynomial in n. However, if k is a constant then
we have a polynomial time algorithm to exhaust all the paths of length at most
k between every pair of vertices. Using this, we can transform the graph instance
into a system of polynomial equations in time polynomial in n. Hence if k is a
constant, Theorem 5 gives a valid polynomial time encoding of the k-rainbow
connectivity problem.

5 Conclusion

In this paper, we reviewed methods to solve graph theoretic problems alge-
braically. One of the most popular being formulation of the combinatorial prob-
lems as a system of polynomial equations. Using this formulation, an approach
to determine the infeasibility of the system of polynomial equations, namely
NulLA, is described. We solve the rainbow connectivity problem in two ways.
We formulate the problem as a system of polynomial equations and using NulLA
this will give a solution to our original problem. We also formulate the problem
as an ideal membership problem such that determination of whether the graph
can be colored with some number of colors is equivalent to determining whether
a specific polynomial belongs to a given ideal or not.

An interesting future direction might be to analyze the special cases for which
the rainbow connectivity problem is tractable using the above characterization
(the rainbow connectivity problem is NP-hard for the general case). In order
to achieve this, it would be interesting to get some bounds on the degree of
the Nullstellensatz certificate for the polynomial system corresponding to the
rainbow connectivity problem.

References

1. Alon, N.: Combinatorial Nullstellensatz. Combinatorics, Probability and Comput-
ing 8(1&2), 7–29 (1999)

2. Lovász, L.: Stable sets and polynomials. Discrete Mathematics 124(1-3), 137–153
(1994)

3. De Loera, J.: Gröbner bases and graph colorings. Beiträge Algebra Geom. 36(1),
89–96 (1995)

4. De Loera, J., Lee, J., Malkin, P., Margulies, S.: Hilbert’s Nullstellensatz and an al-
gorithm for proving combinatorial infeasibility. In: ISSAC 2008: Proceedings of the
Twenty-first International Symposium on Symbolic and Algebraic Computation,
pp. 197–206. ACM (2008)

5. Margulies, S.: Computer algebra, combinatorics, and complexity: Hilberts Nullstel-
lensatz and NP-complete problems. PhD thesis, University of California (2008)

An Algebraic Characterization of Rainbow Connectivity 21

6. Bayer, D.: The division algorithm and the Hilbert scheme. PhD thesis, Harvard
University (1982)

7. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Un-
dergraduate Texts in Mathematics. Springer (2007)

8. Kollár, J.: Sharp effective Nullstellensatz. American Mathematical Society 1(4)
(1988)

9. Brownawell, W.: Bounds for the degrees in the Nullstellensatz. The Annals of
Mathematics 126(3), 577–591 (1987)

10. Loera, J., Lee, J., Margulies, S., Onn, S.: Expressing combinatorial problems by
systems of polynomial equations and hilberts nullstellensatz. Combinatorics, Prob-
ability and Computing 18(04), 551–582 (2009)

11. Chartrand, G., Johns, G., McKeon, K., Zhang, P.: Rainbow connection in graphs.
Math. Bohem 133(1), 85–98 (2008)

12. Alon, N., Tarsi, M.: A note on graph colorings and graph polynomials. Journal of
Combinatorial Theory Series B 70, 197–201 (1997)

Application of the Method of Asymptotic

Solution to One Multi-Parameter Problem�

Alexander Batkhin

Keldysh Institute of Applied Mathematics,
Miusskaya sq. 4, Moscow, 125047, Russia

Abstract. We propose software implementation of the method of com-
putation of asymptotic expansions (see [1,2]) of branches of the set of
zeros of a polynomial in three variables near a singular point at which
this polynomial is annulled with its partial derivatives. We apply this
method for investigation of the set of stability of some gyroscopic sys-
tem with 4 degrees of freedom and with 3 parameters. It is also possible
to compute the set of stability with the help of this method for more
general system with 5 parameters.

1 Introduction

We consider a mechanical system in gravitational field which consists of a massive
thin disk rigidly connected with vertically positioned rotor of an engine with the
help of two massless bars. These bars are pivotally connected with each other
and with the uniformly rotating rotor by elastic Hooke joints. Each Hooke joint
provides 3 degrees of freedom. Such a system is statically unstable and is shown
in Fig. 1.

The equations of motion of such a system in linear approximation can be
reduced to linear Hamiltonian system with 4 degrees of freedom of the form

Ẋ = JA(P)X, X = (Y, Z)T, Y, Z ∈ IR4, (1)

where J is simplectic unit matrix, P is the vector of parameters, and A is sym-
metric constant matrix.

We investigate the set of stability of stationary point X = 0.

Definition 1. The set of stability Σ for the system (1) is the set of parameters
P from the parameters space Π = IRn for which the stationary solution X = 0
to system (1) is Lyapunov stable.

For special case K = 2, k = 1 (see Fig. 1), the set of stability was analyti-
cally described in [3]. The general case was investigated by the author in [4]
by elimination theory methods. The goal of this work is to show how to solve
the problem of computing the set of stability by methods of Power Geometry
applied to computing the exact solutions of an algebraic equation.

� This work was supported by RFBR, Grant No. 11-01-00023.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 22–33, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Application of the Method of Asymptotic Solution 23

Fig. 1.

The vector of parameters P becomes three-dimensional in special case and is
denoted by Q = (x, y, z). The symmetric matrix A(Q) is

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 0 a13 0 0 −1 0 0

0 a11 0 a13 1 0 0 0

a13 0 a33 0 0 −1/2 0 0

0 a13 0 a33 1/2 0 0 0

0 1 0 1/2 1/2 0 −1/2 0

−1 0 −1/2 0 0 1/2 0 −1/2
0 0 0 0 −1/2 0 1 0

0 0 0 0 0 −1/2 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where a11 = x+ y − 2z + 4, a33 = y − z + 1, a13 = 2− y.

The characteristic polynomial of the matrix JA(Q) includes only even powers
of λ, i. e. it is a polynomial in μ = λ2 and further it is called semi-characteristic:

f(μ) =

m∑
k=0

fk(Q)μk, fm = 1. (2)

The conditions of stationary point stability are stated by the following

24 A. Batkhin

Theorem 1 ([5]). The stationary point X = 0 of the linear Hamiltonian sys-
tem (1) is stable if and only if all nonzero roots μ1, . . . , μm of the semi-characte-
ristic polynomial (2) are real and negative, and all elementary divisors of matrix
JA for multiple roots are simple.

As was shown in [3], the boundary of the set of stability Σ is part of the set G =
{Q : g(Q) = 0}, where g(Q) is a factor of the discriminant of the polynomial (2):

g(Q) = 512z6 − 4352z5y − 768z5x+ 14848z4y2 + 5376z4yx+ 512z4x2−
− 25408z3y3 − 14656z3y2x− 2752z3yx2 − 192z3x3+

+ 21800z2y4 + 19168z2y3x+ 5360z2y2x2 + 736z2yx3 + 40z2x4−
− 7500zy5 − 11700zy4x− 4376zy3x2 − 904zy2x3 − 92zyx4 − 4zx5+

+ 2500y5x+ 1200y4x2 + 344y3x3 + 48y2x4 + 4yx5−
− 256z5 + 2880z4y + 1344z4x− 14976z3y2 − 6720z3yx−
− 1344z3x2 + 37928z2y3 + 13816z2y2x+ 5144z2yx2 + 456z2x3−
− 45120zy4 − 14464zy3x− 6784zy2x2 − 1152zyx3 − 64zx4+

+ 20250y5 + 6490y4x+ 3156y3x2 + 740y2x3 + 82yx4 + 2x5+

+ 1872z4 + 2016z3y − 5088z3x− 35496z2y2 + 15888z2yx+

+ 2200z2x2 + 67608zy3− 12936zy2x− 5176zyx2 − 344zx3−
− 37827y4 + 828y3x+ 2782y2x2 + 412yx3 + 13x4−
− 13824z3 + 62208z2y + 6912z2x− 93312zy2− 20736zyx−
− 1152zx2 + 46656y3 + 15552y2x+ 1728yx2 + 64x3. (3)

The structure of the set G was computed in [3] with the help of Gröbner basis.
Here we show how to compute the set G using Power Geometry algorithms given
in [2].

The main step in investigation of the set G is to provide the significant simpli-
fication of the polynomial g(Q). In order to do that we find the singular points
of the set G.
Definition 2. Let ϕ(P) be a polynomial. Point P = P0 of the set ϕ(P) = 0 is
called a singular point of the order k if the polynomial ϕ(P) and all its partial
derivatives up to the order k vanish at this point but at least one derivative of
order k + 1 does not vanish.

We have one a priori singular point of the set G at infinity. Below we apply the
algorithm of asymptotic solution of equation (3) described in [2]. The definition
of used objects of Power Geometry can be found ibidem.

2 Asymptotic Analysis of Set G at Infinity

The Newton polyhedron Γ (g) of polynomial (3) is shown in Fig. 2 from the side
of large power exponents. It has only one two-dimensional face with positive

Application of the Method of Asymptotic Solution 25

outward normal. This is the pentagonal face Γ
(2)
01 with the normalN01 = (1, 1, 1).

It is associated with the truncated polynomial

ĝ
(2)
01 (Q) = 4

(
2z2 − zx+ xy − 3zy

) (
x2 + 6xy + 25y2 − 4zx− 28zy+ 8z2

)2
. (4)

The truncations corresponding to the edges of the face Γ
(2)
01 have no multiple

roots.

Fig. 2. Fig. 3.

The zero of the first form in (4) defines a conic surface C0 with the center at
the origin. This surface approximates (in the first approximation) behavior of
the two-dimensional component of the set G at infinity.

Roots of the second quadratic form in (4) form the real straight line B = {x =
y, z = 2y} with the directing vector τB = (1, 1, 2) lying in the intersection of the
two complex planes on which this quadratic form vanishes. This line B, in the
first approximation, specifies asymptotic direction of branches of the set G. In
order to find a parametric expansion of these branches, we use the procedure
described in [2]. New variables of the kth cycle will have index k. This index
will be the first index in the notation of other objects: faces, their normals,
corresponding truncated polynomials, normal cones, and cones of the problem.

Let us find the next approximation of the set G near this line B. To this end,
we go to the local coordinates along the straight line B:

x = x1 + y1, y = y1, z = z1 + 2y1. (5)

In this change of variables, y1 is the line parameter, and x1 and z1 are local
coordinates.

The Newton polyhedron Γ (g1(Q1)) of the transformed polynomial g(Q) is
shown in Fig. 3 in the variables Q1 = (x1, y1, z1). In accordance with formula
(1.9) from [2], the cone of the problem is

26 A. Batkhin

K1 = {S = μ1N01 + λ1(−1, 0, 0) + λ2(0, 0,−1)} ,
where μ1 � 0 and λ1,2 > 0. In the coordinate representation, the components
of vector S from the cone of the problem K1 are written as s1 = μ1 − λ1,
s2 = μ1, and s3 = μ1− λ2. Following Remark (f) in [2], we obtain the system of
inequalities

μ1 = s2 � 0, λ1 = s2 − s1 > 0, λ2 = s2 − s3 > 0, (6)

which efficiently selects vectors from K1. The outward normals to the faces of
the polyhedron Γ (g(Q1)) are given by

N11 = (1, 1, 1), N12 = (1, 2, 1), N13 = (0,−1, 0), N14 = −(1, 1, 1),
N15 = (−1, 0, 0), N16 = (1, 0, 0), N17 = (0, 0,−1).

According to (6), only normal N12 falls into the cone of the problem K1. To this

normal, face Γ
(2)
12 (Fig. 3) and the truncated polynomial

ĝ
(2)
12 = 4y21

(
64z41−64z31x1+32z21x

2
1−8z1x31+x41+64z1y1x1−16y1x21+64y21

)
, (7)

correspond. The three edges Γ
(1)
11 , Γ

(1)
12 , and Γ

(1)
13 of the face Γ

(2)
12 are associated

with the truncated polynomials

ĝ
(1)
11 = 4y21

(
x21 − 4x1z1 + 8z21

)2
, (8)

ĝ
(1)
12 = 4y21

(
x21 − 8y1

)2
, (9)

ĝ
(1)
13 = 4y21(64z

4
1 + 64y21). (10)

The discriminant of the parenthesized polynomial in (8) is negative; i. e., this
polynomial has no nonzero real roots. The parenthesized polynomial in (10) also
has no nonzero real roots (since it is a sum of squares). The roots of polynomial
(9) are y1 = x21/2 and z1 = 0; they fall into case (a) of step 4 in [2] and will be
studied later as case (2).

The discriminant of the second multiplier of polynomial (7) with respect to
variable y1 is equal to −4z21(x1 − 2z1)

2. Since the degree of polynomial (7) in y1
is even, it can have real roots only in the following two cases:

(1) if x1 − 2z1 = 0, then y1 = −z21/2;
(2) if z1 = 0, then y1 = x21/8 is a root of polynomial (9).

Consider cases (1) and (2) separately.

2.1 Expansion of the Family P1 of Singular Points

In case (1), we make the change of variables

x1 = x2 + 2z2, y1 = y2 − z22/2, z1 = z2, (11)

Application of the Method of Asymptotic Solution 27

Fig. 4. Fig. 5.

making thus x2 and y2 to be local variables. The Newton polyhedron of the
polynomial g2(Q2) is shown in Fig. 4 in the variables Q2 = (x2, y2, z2).

The new cone of the problem is

K2 = {S = μ1N12 + λ1(−1, 0, 0) + λ2(0,−1, 0)} , (12)

where μ1 � 0, and λ1,2 > 0. Then, the components of vector S falling into the
cone of the problem (12) must satisfy the following inequalities:

s3 = μ1 � 0, s3 − s1 = λ1 > 0, 2s3 − s2 = λ2 > 0. (13)

The faces of the Newton polyhedron Γ (g2(Q2)) has the following outward
normals:

N21 = (1, 2, 1), N22 = (0, 1, 1), N23 = (0,−1, 0), N24 = −(1, 1, 1),
N25 = (−1, 0, 0), N26 = (1, 0, 0), N27 = (0, 0,−1), N28 = (2, 2, 1).

According to (13), only normal N22 falls into the cone of the problem (12), and

the truncated polynomial corresponding to the face Γ
(2)
22 is ĝ

(2)
22 = 16z62x

2
2 +

64z42
(
2z2 + y2

)2
. All its roots lie on the straight line x2 = 0, 2z2 + y2 = 0 and

are roots of the truncation ĝ
(1)
21 corresponding to the edge Γ

(1)
21 of the face Γ

(2)
22 ,

which defines the following change of variables:

x2 = x3, y2 = y3 − 2z3, z2 = z3. (14)

The truncations corresponding to the other edges of the face Γ
(2)
22 are not mean-

ingful according to Remark (d) in [2]. The edge Γ
(1)
21 is a common edge of the

faces Γ
(2)
22 and Γ

(2)
25 ; hence, the new problem cone is

28 A. Batkhin

K3 = {S = μ1N22 + μ2N25 + λ1(0,−1, 0)} , (15)

where μ1,2 � 0, μ1 + μ2 > 0, and λ1 > 0. Only those vectors S belong to this
cone whose components satisfy the inequalities

s3 = μ1 � 0, s3 − s1 = μ1 + μ2 > 0, s1 = −μ2 � 0, s3 − s2 = λ1 > 0. (16)

The Newton polyhedron Γ (g3(Q3)) has the following outward normals:

N31 = (1, 2, 1), N32 = −(1, 1, 0), N33 = (0,−1, 0), N34 = −(2, 2, 1),
N35 = (−1, 0, 0), N36 = (1, 0, 0), N37 = (0, 0,−1), N28 = (2, 2, 1).

According to (16), only normal N32 falls into the problem cone (15). Since this

face Γ
(2)
32 is parallel to the OZ axis (Fig. 5), we got a “hole” in the polyhedron;

i. e., according to Remark (e) in [2], the expansion has been terminated.
Collecting substitutions (5), (11), and (14) together, we obtain the resulting

expansion
x = −z23/2, y = −2z3 − z23/2, z = −3z3 − z23 , (17)

which defines the one-parameter family P1 of singular points of order 1 of the
set G. Moreover, the polynomial f(μ) has the root of multiplicity 3 along the
family P1. Direct computations show that there are two singular points of order
2 Q0 = (0, 0, 0) and Q1 = (−2, 2, 2) in the family P1. At the point Q1, the
polynomial f(μ) has the root of multiplicity 4.

2.2 Expansion of the Family P2 of Singular Points

In case (2), we make the substitution

x1 = x4, y1 = y4 + x24/8, z1 = z4. (18)

The faces adjacent to the edge Γ
(1)
12 , corresponding to polynomial (9), have nor-

mals N12 = (1, 2, 1) and N17 = (0, 0,−1). The new cone of the problem is given
by

K4 = {S = μ1N12 + μ2N17 + λ1(0,−1, 0)} , (19)

where μ1,2 � 0, μ1 + μ2 > 0, and λ1 > 0. Only those vectors S belong to this
cone whose components satisfy the following system of inequalities:

s1 = μ1 � 0, 2s1 − s3 = μ1 + μ2 > 0, s1 − s3 = μ2 � 0, λ1 = 2s1 − s2 > 0. (20)

The Newton polyhedron Γ (g4(Q4)) is shown in Fig. 6.
It has the following outward normals:

N41 = (1, 2, 1), N42 = (1, 1, 0), N43 = (0,−1, 0), N44 = −(1, 1, 1),
N45 = (−1, 0, 0), N46 = (1, 2, 2), N47 = (0, 0,−1).

Application of the Method of Asymptotic Solution 29

Fig. 6. Fig. 7.

According to (20), only normal N42 falls into the cone of the problem (19). The

truncation of the original polynomial corresponding to the face Γ
(2)
42 is ĝ

(2)
42 =

2x44
(
z24x

2
4+2z4y4x4+2y24− 2y4x4+x24

)
. The factor in the parentheses is written

in the form of sum of two squares as (z4x4 + y4)
2 + (y4 − x4)

2, which vanishes
only under the condition z4 = −1, x4 = y4, which defines the following change
of variables:

x4 = x5 + y5, y4 = y5, z4 = −1 + z5. (21)

The new cone of the problem is given by

K5 = {S = μ1N42 + λ1(−1, 0, 0) + λ2(0, 0,−1)} , (22)

where μ1 � 0 and λ1,2 > 0. Appropriate vectors S should satisfy the system of
inequalities s2 = μ1 � 0, s2 − s1 = λ1 > 0, s3 = −λ2 < 0. The new Newton
polyhedron Γ (g5(Q5)) shown in Fig. 7 has the following outward normals:

N51 = (1, 1, 0), N52 = (0, 1,−1), N53 = (0,−1, 0), N54 = (1, 1, 1),

N55 = (−1, 0, 0), N46 = (1, 1, 2), N57 = (0, 0,−1),
and only the normal N52 falls into the problem cone (22).

The truncation of the polynomial g5(Q5) corresponding to this face is the

polynomial ĝ
(2)
52 = y25

(
z5y5(z5y5 − 2x5 − 7) + (2x5 + 7)2

)
, which vanishes when

x5 = −7/2 and z5 = 0. After substitution x5 = x6 − 7/2, y5 = y6, z5 = z6, we

obtain the face Γ
(2)
61 with the normal vector N61 = (−1, 0,−1) (Fig. 8) parallel

to the OY axis, i. e., a “hole” in the polyhedron. According to Remark (e) in
[2], the expansion has been terminated.

Collecting substitutions (5), (18), and (21) together, we obtain the following
expansion

x = (−63+36y5+4y25)/32, y = (49+4y5+4y25)/32, z = (33+4y5+4y25)/16, (23)

30 A. Batkhin

Fig. 8.

which gives the second family P2 of singular points of order 1 of the set G.
Along this family, the polynomial f(μ) has pair of roots of multiplicity 2. There
are two singular points of order 2 laying in the family P2: Q2 = (7/2, 7/2, 6),
Q3 = (−5/2, 3/2, 2).

3 Structure of the Set of Stability G
We form new basis in the parameter space Π which consists of the following

vectors:
−−−→
Q0Q1/2,

−−−→
Q2Q3/2,

−−−→
Q4Q5/2, where Q4 = (−1/2, 3/2, 2) andQ5 = (0, 2, 3)

are vertices of parabolas (17) and (23), respectively.

In new coordinates Q̃ = (U, V,W), the polynomial g takes the simplest form

g(Q̃) =64U6 + 192U4V 2 − 4U4W 2 + 192U2V 4 − 8U2V 2W 2 + 64V 6−
− 4V 4W 2 + 72U4W − 4U2W 3 − 72V 4W + 4V 2W 3 + 60U4−
− 312U2V 2 + 20U2W 2 + 60V 4 + 20V 2W 2 −W 4 + 36U2W−
− 36V 2W + 12U2 + 12V 2 + 2W 2 − 1. (24)

It can easily be shown that the set G consists of two one-dimensional components
which are the families P1 and P2 and ruled surface G̃ with parametrization

U = u sinϕ, V = (u+ 1) cosϕ, W = 4u+ 2 cos2 ϕ+ 1. (25)

The surface G̃ has two parabolic segments of self-intersection, namely the seg-
ment of parabola P1 between points Q0 and Q1 and the segment of parabola P2

between points Q2 and Q3. The boundary of the set of stability Σ together with
other objects are shown in Fig. 9.

Application of the Method of Asymptotic Solution 31

Fig. 9.

4 Software Implementation

Implementation of the algorithms described in [2] required the use of several
software tools. All calculations related to polynomials and plane algebraic curves
were carried out with the help of the computer algebra system Maple. For this
system, the library of procedures PGeomlib was written, which implements spa-
tial Power Geometry algorithms. To work with plane algebraic curves, package
algcurves was used. By means of this package, the kind of the curve was deter-
mined (function genus), and rational parameterization of curves of kind 0 was
calculated (function parametrization). It also provided procedures for work
with elliptic and hyperelliptic curves. To calculate singular points of the set G, it
is required to solve systems of algebraic equations, which were solved by means
of the Groebner package.

Basic objects of spatial Power Geometry were calculated with the use of pro-
gram qconvex from freely distributed software package Qhull. Given a support

32 A. Batkhin

S(g) in the form of a list of point coordinates, this program computes the New-
ton polyhedron, its two-dimensional faces, and normals to them. The objects
obtained are transferred to the Maple environment, where all other computa-
tions are performed. Currently, the data exchange interface between the com-
puter algebra system Maple and program qconvex from the Qhull package is
implemented on the file level. Note that the procedures of library PGeomlib are
implemented in such a way that it is possible to work with polynomials in three
variables the coefficients of which are rational functions of other parameters.

Below is a description of the procedures from library PGeomlib, which can be
divided into two – basic and auxiliary – groups. The names of all objects stored
in the library begin with the capital letters PG.

The library PGeomlib was tested for different versions of CAS Maple for
operating systems Win32/64 and MacOSX, and it is available for download at
https://www.dropbox.com/sh/epanm7gzz5xyqt7/uyqCztx9Lk.

4.1 Basic Procedures of Library PGeomlib

PGsave computes and stores in a text file the support S(g) of a polynomial
g(Q) for subsequent processing by program qconvex. The procedure has
two obligatory input parameters: polynomial g(Q) and a name of the file for
storing coordinates of the carrier points in the format of program qconvex.
An optional parameter is a list of names of variables for which it is required
to construct the support of the polynomial. The procedure uses auxiliary
procedure PGsupp.

PGgetnormals gets information on the Newton polyhedron, its faces, and nor-
mals to them and converts it into a list of normal vectors with integer coeffi-
cients. The procedure has one obligatory parameter – a name of the file with
results of operation of program qconvex – and returns list of support planes
of the Newton polyhedron determined by the normal vector and shift. The
procedure uses auxiliary procedure PGnormpriv.

PGtruncface, PGtruncedge, and PGtruncfwe are three variants of the proce-
dure calculating truncated polynomials corresponding to a face, an edge,
or a face and all adjacent edges. In the second variant, the edge is given
by two adjacent faces. The procedure uses auxiliary procedures PGsupp and
PGgetneighbours.

PGfitnormal selects normals from the list of normals of the Newton polyhedron
that fall into the problem cone K given by a list of linear inequalities.

PGplot is a procedure for the visualization of the Newton polyhedron Γ (g) and
support S(g) of a polynomial g(Q).

4.2 Auxiliary Procedures of Library PGeomlib

PGsupp returns the support S(g) of a polynomial g(Q) in the form of a list of
vector power exponents of monomials.

PGnormpriv converts a list of vectors with commensurable floating-point coordi-
nates into a list of collinear vectors with integer coordinates. This procedure

Application of the Method of Asymptotic Solution 33

is required because program qconvex stores normals to faces of the Newton
polyhedron in the floating-point format, whereas all operations on vector
power exponents are to be performed in integer arithmetic.

PGneighbours for each vertex of the Newton polyhedron, calculates the numbers
of faces adjacent to it.

4.3 Scheme of Using Library PGeomlib

Let us describe schematically the order of work with library PGeomlib.
For a polynomial g(Q), by means of procedure PGsave, support S(g) is calcu-

lated and stored for subsequent processing by program qconvex, which computes
the Newton polyhedron Γ (g) and its support faces. These objects are obtained
by means of procedure PGgetnormals. Then, the cone of problem K is specified
in the form of a list of inequalities, and appropriate faces are selected by means
of procedure PGfitnormals. For them, the truncated polynomials are calculated
by means of one of the procedures PGtruncface, PGtruncedge, or PGtruncfwe.

All computations in the previous example were carried out in accordance with
the above-specified scheme.

References

1. Bruno, A.D., Batkhin, A.B.: Asymptotic solution of an algebraic equation. Doklady
Mathematics 84(2), 634–639 (2011)

2. Bruno, A.D., Batkhin, A.B.: Resolution of an algebraic singularity by power geom-
etry algorithms. Programming and Computer Software 38(2), 57–72 (2012)

3. Batkhin, A.B., Bruno, A.D., Varin, V.P.: Sets of stability of Mmulti-parameter
Hamiltonian problems. J. Appl. Math. and Mech. 76(1), 56–92 (2012)

4. Batkhin, A.B.: Stability of Certain Multiparameter Hamiltonian System. Preprint
No. 69, Keldysh Inst. Appl. Math., Moscow (2011) (in Russian)

5. Malkin, I.G.: Theory of Stability of Motion. U.S. Atomic Energy Commission, Office
of Technical Information, Oak Bridge (1958)

A New Algorithm

for Long Integer Cube Computation
with Some Insight into Higher Powers

Marco Bodrato1 and Alberto Zanoni2

1 mambaSoft
Via S.Marino, 118 – 10137 Torino, Italy

bodrato@mail.dm.unipi.it
2 Dipartimento di Scienze Statistiche

Università “Sapienza”, P.le Aldo Moro 5 – 00185 Roma, Italy
zanoni@volterra.uniroma2.it

Abstract. A new approach for the computation of long integer cube
(third power) based on a splitting-in-two divide et impera approach and
on a modified Toom-Cook-3 unbalanced method is presented, showing
that the “classical” square-and-multiply algorithm is not (always) opti-
mal. The new algorithm is used as a new basic tool to improve long in-
teger exponentiation: different techniques combining binary and ternary
exponent expansion are shown. Effective implementations by using the
GMP library are tested, and performance comparisons are presented.

AMS Subject Classification: 11N64, 11A25, 13B25

Keywords and phrases: Toom-Cook, cube, third power, long integers.

1 Introduction

Fast long integer arithmetic is at the very core of many computer algebra sys-
tems. Starting with the works of Karatsuba [1], Toom [2] and Cook [3], who
found methods to lower asymptotic complexity for multiplication and squaring
from O(n2) to O(ne), with 1 < e � log2 3, many efforts have been done to find
optimized implementations in arithmetic software packages.

The family of Toom-Cook (Toom, for short) methods is an infinite set of
polynomial algorithms (Toom-3, Toom-4, etc. – Karatsuba may be identified
with Toom-2). The original family was generalized by Bodrato and Zanoni in
[4] considering unbalanced operands – polynomials with different degrees – with
the so-called Toom-(k + 1/2) methods (Toom-2.5, Toom-3.5, etc.) and with the
unbalanced use of classic methods as well.

Each of them may be viewed as solving a polynomial interpolation problem,
with base points not specified a priori, from which a matrix to be inverted arises.
In a software implementation, a set of basic operations (typically additions,
subtractions, bit shiftings, multiplications and divisions by small numbers, etc.)

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 34–46, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A New Algorithm for Long Integer Cube Computation 35

is given. Practically, this is a set of very efficiently implemented basic functions,
and the idea is to use them to evaluate factors in the base points, invert the
resulting matrix step by step and recompose data to obtain the final result.

Asymptotically speaking, the best theoretical result is Fürer’s [5], but it has
not been used in practice yet. The actual competitors with Toom methods are
Schönhage-Strassen and FFT-based methods [6], eventually faster for very large
numbers, but there is a wide range where Toom beats any other algorithm.

To the best of our knowledge, although long integer product, squaring and
generic power raising have been extensively studied, the particular problem of
computing the third power u3 has not been deeply treated. Usually, a generic
power is obtained by a clever sequence of squarings and multiplications, and
cube is simply treated as a particular instance of this general procedure.

In this paper a new perspective for cube computation based on unbalanced
Toom-3 method is presented in full details, showing that a non trivial algorithm
exists, faster (in a certain range) than computing first U = u2 and then the
product U ·u. A practical performance comparison with respect to GMP library
[7] is reported as well, beside some empirical studies on extending the saving to
larger exponents by using cube in addition to squarings and products.

2 Mathematical Setting

For simplicity, we study only positive long integers. Consider base expansion
representation: for 0 < u ∈ N, we fix a base 1 < B ∈ N and consider the
polynomial determined by the representation of u in base B with degree d =
�logB(u)� and having as coefficients the digits of u, each smaller than B. In
computer science, common choices are B = 2, 28, 216, 232, 264: in particular, GMP
library digits are named limbs. Following the divide et impera approach, we set
n = �(d+ 1)/2�, t = d+ 1− n ∈ {n− 1, n} and x = yn, so that one has

u =

�logB(u)�∑
i=0

âiBi =⇒ â(y) =

d∑
i=0

âiy
i =

(
d∑

i=n

âiy
i−n

)
x+

(
n−1∑
i=0

âiy
i

)
= a1x+ a0 = a(x)

(1)

Let f(x) = a(x)3: we can compute u3 as f(x)|x=Bn . The core idea of the new
cube algorithm is based on considering not directly f(x), but another polynomial
(called “master” of f), differing only in the constant coefficient by a small – but
making the difference – multiple.

This permits a new approach to cube computation, proving in practice

Theorem 1. The cube computation formula u3= u2· u is not (always) optimal.

3 Split and Cube: Long Integer Case

To explain the main idea, we’ll use both long integer polynomial representation,
as explained above, and a schematic one as well. If u is a long integer, we may

36 M. Bodrato and A. Zanoni

highlight its high and low half – coefficients a1 and a0 in equation (1).

u = a1x+ a0
∣∣
x=Bn

≡ a1 a0
t n

The idea is that a multiplication (with nonlinear complexity) will be avoided at
the lower price of some scalar (linear complexity) operations instead.

To focus on higher (“main”) terms in complexity expressions, we consider only
nonlinear operations for multiplications, squarings and cubings. Let Mn,m (Mn

if n = m) be the nonlinear complexity of the multiplication of two numbers with
n � m digits in base B, respectively; with Sn the squaring complexity of one of
them and with Cn the cubing complexity. We must compute (in the schematic
representation, piling means adding)

u3 = f(Bn) = (a1Bn + a0)
3 =

3∑
i=0

ciBni = a31x
3 + 3a21a0x

2 + 3a1a
2
0x+ a30

∣∣
x=Bn

3t 3n

a31 a30

3a1a
2
0

3a21a0 ↖ 2n + t (+1)

2t + n (+1)

With the classical “algorithm” u3 = u2·u
the complexity is C2n = S2n + M4n,2n.
Computing u2 with Karatsuba method
(in a range where it’s more effective
than schoolbook method), we have that
C2n = 3Sn +M4n,2n.

Consider now the following easily factorizable polynomial g′(x), master of f(x):

g′(x) = a31x
3+ 3a21a0x

2+ 3a1a
2
0x+ 9a30 = (a21x

2 + 3a20)(a1x+ 3a0) = g1(x)·g2(x)

From the polynomial point of view, g′(x) coefficients computation is similar
to f(x)’s, as they differ only by a 9 in the constant term: there is nothing
particularly appealing in it.

On the contrary, from the long integer point of view, things are not as easy,
but more interesting. Compute A = a21 and B = a20 (nonlinear complexity: 2Sn)
and focus on the product g′(Bn) = (a21x

2 + 3a20)(a1x + 3a0)|x=Bn (nonlinear
complexity: M4n,2n).

g′(Bn) ≡ A = a21 3B = 3a20 · a1 3a0

Even if this is not really what we want to compute, note that the total nonlinear
complexity is now smaller than before: one squaring less gives C′

2n = 2Sn +
M4n,2n. Anyway, there are some points to consider to recover u3 from g′(Bn):

(i) Multiplication by 3 can generate carries – and therefore memory manage-
ment issues – to be taken care of.

(ii) Recomposition (set x = Bn) unfortunately mixes things up the wrong way
if unbalanced Toom-3 is used.

A New Algorithm for Long Integer Cube Computation 37

Although (i) is not complicated to manage, as regards (ii), it happens that
unbalanced Toom-3 method computing g′(Bn) splits the longest factor in four
parts (a number possibly differing by 1 or 2 from n is below indicated with ∼n).

A1 A0 3B1 3B0

∼n n ∼n n

· a1 3a0
n ∼n

so that the final division by 9, needed to have u3 = f(Bn), is incompatible with
the recomposition. In fact, as g′(Bn) is

g′(Bn) =
4∑

i=0

c′ix
i
∣∣∣∣
x=Bn

= (A1a1)x
4 + (A0a1 + 3A1a0)x

3 + 3(A0a0 +B1a1)x
2+

(3B0a1 + 9B1a0)x+ 9B0a0
∣∣
x=Bn

we have a problem: 9a30 = 9B1a0x+9B0a0|x=Bn cannot be obtained by a linear
combination of c′i coefficients. It “appears” only after recomposition, but to
obtain a30 we should divide by 9 both c′0 = 9B0a0 (this is not a problem, it is
explicitly computed) and only the second addend 9B1a0 (that was not explicitly
computed) summing to c′1. One must therefore proceed in a slightly different
way, considering instead the following g(x)-product.

g(x)=(A1x
3+A0x

2+3B1x+27B0)(a1x+3a0) ≡ A1 A0 3B1 27B0 · a1 3a0

This time we obtain a more appropriate result.

g(Bn) =
4∑

i=0

c′′i x
i
∣∣∣∣
x=Bn

= (A1a1)x
4 + (A0a1 + 3A1a0)x

3+ 3(A0a0 +B1a1)x
2+

(27B0a1 + 9B1a0)x+ 81B0a0
∣∣
x=Bn

Note that c′′i = ci for i = 2, 3, 4. Now we can appropriately divide c′′1 by 9 and c′′0
by 81 (O(n) operations), correctly obtaining c1 and c0, and therefore u3 = f(Bn).

g(Bn) ≡
A1a1 3B1a1 81B0a0

A0a1 27B0a1 ↑
c′′03A1a0 9B1a0
↖3A0a0 c′′1

⇓

u3= f(Bn) ≡
A1a1 3B1a1 B0a0

A0a1 3B0a1 ↑
c03A1a0 B1a0
↖3A0a0 c1

38 M. Bodrato and A. Zanoni

Fig. 1. New cube algorithm versus GMP-5.0.1 relative timings

We point out that it is possible in practice to avoid the final explicit di-
vision by 81, by slightly modifying Toom-3 unbalanced method: compute B0b
instead of 81B0b, and in the matrix inversion phase – we consider the inversion
sequence presented in [4] – just substitute a subtraction with a multiply-by-81-
and-subtract operation. A contains a high-level implementation of the algorithm
in PARI/GP [8], which the reader is invited to refer to.

As (unbalanced) Toom-3 computes 5 products, the new nonlinear complexity
is C′

2n = 2Sn + 5Mn < 3Sn + 5Mn = C2n. A very rough analysis, counting only
the number of nonlinear operations and forgetting about their nature and linear
operations as well, tells that just 7 instead of 8 operations are needed, so that the
relative gain cannot exceed 1/ 8 = 12.5%. In Fig. 1 a relative percentage timing
comparison of our C language implementation using GMP library operations
versus GMP library itself (release 5.0.1) is shown1. The software was compiled
with gcc 4.3.2 on an Intel Core 2 Duo (3 GHz) processor machine. As the graph
shows, the more consistent gain is obtained when u is from 30 to 230 limbs long,
while smaller gains are possible elsewhere, till around 5000 limbs.

4 Split and Cube: Polynomial Case

For what concern the generic polynomial case (d > 1), with the classical cube
algorithm the coefficients of p(x)2 must be computed first: this can be done
with a Toom approach requiring 2d + 1 squarings of linear combinations of
ai coefficients (we suppose that the computation of linear combinations has a
negligible complexity with respect to coefficients squaring/multiplication).

Whatever splitting of f(x) for the new algorithm works: if d0 + d1 = d− 1 we
may write

1 The C code is freely available on request.

A New Algorithm for Long Integer Cube Computation 39

p(x) =

(
d∑

i=d0+1

aix
i−1

)
x+

(
d0∑
i=0

aix
i

)
= p1(x)x + p0(x)

so that the master polynomial to be computed is the following one. Note that if
deg(p0) > 0, more than one coefficient must be divided by 9.

p′(x) =
(
p21(x)x

2 + 3p0(x)
2

)(
p1(x)x + 3p0(x)

)
To compute its first factor with Toom approach as well, (2d1 + 1)+ (2d0 +1) =
2(d0+d1+1) = 2(d−1+1) = 2d squarings are now needed, one less than before.
This was expected, of course, and shows that this gain is actually constant; it
depends neither on the degree of p(x) nor on its splitting.

It is reasonable to suppose the existence of a threshold for the degree of p(x)
beyond which the new cube algorithm is no more worth while, depending on
the nature of elements and the operations complexity in A, on the method used
for squaring (for example, if A = Z – but also in other cases – FFT could be
used instead of Toom, and comparisons become more tricky), on implementation
details, etc. In practice, the candidate polynomial case with the best relative gain
(if any) is the quadratic (d = 2) one.

5 Generic Long Integer Exponentiation

For 1 < e ∈ N, generic exponentiation U = ue is usually performed by a binary
algorithm – in the following box, consider the representation (1, ek, . . . , e0) of the
exponent e in base 2 (with ei ∈ {0, 1}) and let e(2) = (2, ek, 2, ek−1, . . . , 2, e0) its
(redundant) expansion, codifying power computation.

Binary exponentiation algorithm

let U = u
for i = k to 0 step −1 do

U ← U2

if ei = 1 then U ← U · u
return U

With the help of the new cube algo-
rithm, it is possible to conceive other
exponentiation methods. Anyway, al-
ways keep in mind that the new cube
algorithm is effective only in a cer-
tain interval, and therefore thresh-
olds should always be taken care of.

We present different possibilities mixing cube and square exponents expan-
sion, obtaining in some case a nice speedup, despite the new cubing algorithm.

5.1 Exponentiation: Ternary Expansion

The first considered possibility was ternary exponent expansion and the cor-
responding power algorithm obtained by e(3), defined similarly as e(2), but the

40 M. Bodrato and A. Zanoni

comparison with GMP – see [9] – showed that it is effective only for some very
specific exponent. We therefore tried other ways to exploit binary and ternary
expansions mixing.

5.2 Exponentiation: Mixed Binary and Ternary Expansion

The use of a mixed binary-ternary exponent expansion seems to pay more. Let
e > 3 and n1(e) =

#{ i | ei = 1}. The idea is to interlace the cubing with binary
expansion at the “more promising” points. To localize these points we reason on
n1(ε�) and n1(�ε�/3�) for exponents ε� defined as follows.

Let 0 � � � k: consider all binaries sub-expansions (1, ek, . . . , e�) of (1, ek, . . . ,
e0), corresponding to exponent ε�. Consider now the index i = max

�=0,...,k
{� | 0 �

n1(ε�) − n1(�ε�/3�) − (ε� mod 3) is maximum} or i = −1 if the maximum is
negative. Once i is defined, we consider the algorithm synthesized by the sequence
produced by the below recursive E1 exponentiation function, whose behavior on
basic cases (e = 1, 2, 3) is trivially defined; in all other cases it is

E1(e) =

{
(E1(�e/2i�), 3, ei−1, 2, . . . , 2, e0) if i � 0

e(2) if i =−1

Another scenario is obtained if i = min
�=0,...,k

{� | 0<n1(ε�)−n1(�ε�/3�)−(ε�mod 3)

is maximum}, giving the E2 function, defined similarly as above.

Example 1. E1(42) = (3, 0, 2, 1, 3, 0, 2, 0). The corresponding power raising com-
putation sequence is u→ u3 → u6 → u7 → u21 → u42. E2(42) coincides instead
with binary decomposition.

As a comparison, we show in table 5.3 the different decompositions of exponents
up to 100 given by the E1(·) and E2(·) functions, only when they differ. For
brevity, we omit all zero entries. We observe that E1 tends to use cubes more
often and possibly earlier (with smaller operands), while E2 uses fewer cubes,
and later (larger operands).

5.3 Exponentiation: First Ternary and Then Binary Expansion

Always trying to apply the new cubing algorithm as soon as possible, the ternary-
binary expansion considers the most 4 significant bits of the binary expansion
of e > 7, looking for one/two possible uses of the new cube algorithm, as
the following function suggests, continuing the exponentiation with the binary
algorithm.

E3(e) =

⎧⎪⎨⎪⎩
(3, 0, 3, 0, 2, ek−3, . . .) if ekek−1ek−2 = 001

(2, 0, 2, 1, 3, 0, 2, ek−3, . . .) if ekek−1ek−2 = 111

(3, 0, 2, ek−1, . . .) if ek = 1 and ek−1ek−2 �= 01, 11

A New Algorithm for Long Integer Cube Computation 41

Table 1. Comparison: E1 and E2 exponents expansions

e E1(e) E2(e) e E1(e) E2(e)

6 [3,2] [2,3] 54 [3,3,3,2] [2,2,2,1,2,3]
7 [3,2,1] [2,3,1] 55 [3,3,3,2,1] [2,2,2,1,2,3,1]
9 [3,3] [2,2,2,1] 56 [3,2,1,2,2,2] [2,3,1,2,2,2]

12 [3,2,2] [2,2,3] 57 [3,2,1,2,2,2,1] [2,2,2,1,2,1,3]
13 [3,2,2,1] [2,2,3,1] 58 [3,2,1,2,2,1,2] [2,3,1,2,2,1,2]
14 [3,2,1,2] [2,3,1,2] 59 [3,2,1,2,2,1,2,1] [2,3,1,2,2,1,2,1]
18 [3,3,2] [2,2,2,1,2] 60 [2,2,1,3,2,2] [2,2,1,2,2,3]
19 [3,3,2,1] [2,2,2,1,2,1] 61 [2,2,1,3,2,2,1] [2,2,1,2,2,3,1]
21 [3,2,1,3] [2,2,1,2,2,1] 62 [2,2,1,3,2,1,2] [2,2,1,2,3,1,2]
24 [3,2,2,2] [2,2,2,3] 63 [3,2,1,3,3] [2,2,1,2,2,1,3]
25 [3,2,2,2,1] [2,2,2,3,1] 72 [3,3,2,2,2] [2,2,2,1,2,2,2]
26 [3,2,2,1,2] [2,2,3,1,2] 73 [3,3,2,2,2,1] [2,2,2,1,2,2,2,1]
27 [3,3,3] [2,2,2,1,3] 74 [3,3,2,2,1,2] [2,2,2,1,2,2,1,2]
28 [3,2,1,2,2] [2,3,1,2,2] 75 [3,2,2,2,1,3] [2,2,2,3,1,3]
29 [3,2,1,2,2,1] [2,3,1,2,2,1] 76 [3,3,2,1,2,2] [2,2,2,1,2,1,2,2]
30 [2,2,1,3,2] [2,2,1,2,3] 77 [3,3,2,1,2,2,1] [2,2,2,1,2,1,2,2,1]
31 [2,2,1,3,2,1] [2,2,1,2,3,1] 78 [3,2,2,1,3,2] [2,2,3,1,2,3]
36 [3,3,2,2] [2,2,2,1,2,2] 79 [3,2,2,1,3,2,1] [2,2,3,1,2,3,1]
37 [3,3,2,2,1] [2,2,2,1,2,2,1] 84 [3,2,1,3,2,2] [2,2,1,2,2,1,2,2]
38 [3,3,2,1,2] [2,2,2,1,2,1,2] 85 [3,2,1,3,2,2,1] [2,2,1,2,2,1,2,2,1]
39 [3,2,2,1,3] [2,2,3,1,3] 86 [3,2,1,3,2,1,2] [2,2,1,2,2,1,2,1,2]
42 [3,2,1,3,2] [2,2,1,2,2,1,2] 87 [3,2,1,2,2,1,3] [2,3,1,2,2,1,3]
43 [3,2,1,3,2,1] [2,2,1,2,2,1,2,1] 90 [2,2,1,3,3,2] [2,2,1,2,1,2,2,1,2]
45 [2,2,1,3,3] [2,2,1,2,1,2,2,1] 91 [2,2,1,3,3,2,1] [2,2,1,2,1,2,2,1,2,1]
48 [3,2,2,2,2] [2,2,2,2,3] 93 [2,2,1,3,2,1,3] [2,2,1,2,1,2,1,2,2,1]
49 [3,2,2,2,2,1] [2,2,2,2,3,1] 96 [3,2,2,2,2,2] [2,2,2,2,2,3]
50 [3,2,2,2,1,2] [2,2,2,3,1,2] 97 [3,2,2,2,2,2,1] [2,2,2,2,2,3,1]
52 [3,2,2,1,2,2] [2,2,3,1,2,2] 98 [3,2,2,2,2,1,2] [2,2,2,2,3,1,2]
53 [3,2,2,1,2,2,1] [2,2,3,1,2,2,1] 100 [3,2,2,2,1,2,2] [2,2,2,3,1,2,2]

5.4 Results

We observed that the cube operation is, anyway, very important per se. In fact,
by mixing binary and ternary exponentiation we obtained quite large savings,
even outside the interval in which the new cube algorithm is effective.

Some examples are shown in Fig. 2 and 3, while Fig. 4 shows our results for
limbs from 1 to 1200 (abscissas) and exponents from 3 to 63 (ordinates), showing
the fastest exponentiation algorithm for each case. Red points correspond to
GMP winning, black ones to E1, blue to E2, green to E3, while white lines refer
to exponents for which all methods fall back to binary exponentiation, so that
they’re all essentially equivalent.

42 M. Bodrato and A. Zanoni

Fig. 2. E1, E2 and E3 versus GMP-5.0.1 exponentiation relative timings for exponents
9, 21.

A New Algorithm for Long Integer Cube Computation 43

Fig. 3. E1, E2 and E3 versus GMP-5.0.1 exponentiation relative timings for exponents
27, 39.

44 M. Bodrato and A. Zanoni

Fig. 4. Best exponentiation method: x-axis : limbs (1-1200), y-axis : exponents (3-63)

6 Conclusions

In this work the classical algorithm to compute the third power of a long integer
was proved not to be (always) optimal. A new algorithm using a combination
of Karatsuba and unbalanced Toom-3 methods paying some linear operations
more for a nonlinear operation less was proposed.

Used as a new basic tool for generic long integer power raising computation,
it contributed to obtain new, faster generic exponentiation procedures. Cubing
proved to be effective in practice: comparison with GMP library showed that
the obtained saving can reach 25 %.

Acknowledgments. The second author was partially funded by project “Ro-
bustezza e tolleranza ai guasti in reti e grafi”, Sapienza University of Rome,
Italy.

A Code Implementation

We report here a PARI/GP high-level implementation of the new algorithm
for cube computation, valid for both polynomials (balanced splitting is chosen:
d0 = �(d− 1)/2�, d1 = �(d− 1)/2�) and long integers.

cube_long(a = 2) = {

local(d,a0,a1,A0,A1,A00,A01,A10,A11,A00orig,H,tmp);

\\ Compute a0 and a1.

d = poldegree(a);

if (d==0, H = 2^(ceil(log(a)/log(2)+1)>>1); \\ Long integer case

, H = x^ceil((d+1)/2); \\ Polynomial case

);

tmp = divrem(a,H); a1 = tmp[1]; a0 = tmp[2];

\\ Identify high and low parts of a1^2 and a0^2.

A1 = a1^2; A0 = a0^2; \\ 2S(n)

tmp = divrem(A0,H); A01 = tmp[1]; A00orig = tmp[2];

tmp = divrem(A1,H); A11 = tmp[1]; A10 = tmp[2];

A New Algorithm for Long Integer Cube Computation 45

A01 *= 3; A00 = 27*A00orig;

\\ Unbalanced Toom-3 (toom42) for AA = A11*x^3 + A10*x^2 + A01*x + A00;

\\ Evaluation BB = a1*x + 3*a0;

\\ in (oo,2,1,-1,0)

\\ AA BB

W2 = A10 + A00;

Wm1 = A11 + A01;

W0 = W2 + Wm1;

W2 = W2 - Wm1; Wm1 = 3*a0;

Winf = Wm1 + a1;

W1 = W0*Winf; \\ Evaluation in 1 M(n)

Winf = Winf + a1;

W0 = Wm1 - a1;

Wm1 = W0*W2; \\ Evaluation in -1 M(n)

W0 = A11<<1 + A10;

W0 = W0<<1 + A01;

W0 = W0<<1 + A00;

W2 = W0*Winf; \\ Evaluation in 2 M(n)

Winf = A11*a1; \\ Evaluation in oo M(n)

W0 = A00orig*a0; \\ Evaluation in 0 (/81) M(n)

\\ Interpolation:

W2 = W2 - Wm1; \\ [15 9 3 3 0]

W2 /= 3; \\ [5 3 1 1 0]

Wm1 = (W1 - Wm1)>>1; \\ [0 1 0 1 0]

W1 = W1 - 81*W0; \\ [1 1 1 1 0]

W2 = (W2 - W1)>>1; \\ [2 1 0 0 0]

W1 = W1 - Wm1; \\ [1 0 1 0 0]

W2 = W2 - Winf<<1; \\ [0 1 0 0 0]

W1 = W1 - Winf; \\ [0 0 1 0 0]

Wm1 = Wm1 - W2; \\ [0 0 0 1 0]

Wm1 /= 9; \\ Extra division.

\\ Recomposition:

return ((((Winf*H + W2)*H + W1)*H + Wm1)*H + W0);

}

References

1. Karatsuba, A.A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Soviet Physics Doklady 7(7), 595–596 (1963)

2. Toom, A.L.: The complexity of a scheme of functional elements realizing the multi-
plication of integers. Soviet Mathematics Doklady 3, 714–716 (1963)

3. Cook, S.A.: On the minimum computation time of functions. PhD thesis, Depart-
ment of Mathematics, Harvard University (1966)

4. Bodrato, M., Zanoni, A.: Integer and polynomial multiplication: towards optimal
Toom-Cook matrices. In: Brown, C. (ed.) ISSAC 2007: Proceedings of the 2007 In-
ternational Symposium on Symbolic and Algebraic Computation, pp. 17–24. ACM,
New York (2007)

46 M. Bodrato and A. Zanoni

5. Fürer, M.: Faster integer multiplication. In: Johnson, D.S., Feige, U. (eds.) STOC,
pp. 57–66. ACM (2007)

6. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7(3-
4), 281–292 (1971)

7. Granlund, T., et al.: The GNU multiple precision (GMP) library (2010),
http://gmplib.org/

8. PARI/GP: PARI/GP, version 2.5.0. The PARI Group, Bordeaux (2012),
http://pari.math.u-bordeaux.fr/

9. Zanoni, A.: Another sugar cube, please! or sweetening third powers computation.
Technical Report 632, Centro ”Vito Volterra”, Università di Roma ”Tor Vergata”
(January 2010)

http://gmplib.org/
http://pari.math.u-bordeaux.fr/

Lightweight Abstraction

for Mathematical Computation in Java

Pavel Bourdykine and Stephen M. Watt

Department of Computer Science,
University of Western Ontario,

London, Canada
pbourdyk@csd.uwo.ca, Stephen.Watt@uwo.ca

Abstract. Many object-oriented programming languages provide type
safety by allowing programmers to introduce distinct object types. In
the case of Java, having objects as the sole abstraction mechanism also
introduces a considerable or even prohibitive cost, especially when deal-
ing with small objects over primitive types. Consequently, Java library
implementations frequently avoid abstraction and are not type safe in
practice. Many applications, including computer algebra, use values log-
ically belonging to many different non-interchangable types. Languages
such as Java are then either unsafe or inefficient to use in these applica-
tions. We present a solution allowing type safety in Java with little per-
formance penalty. We do this by introducing a specialzed kind of object
that provides distinct types for type checking, but which can always be
removed entirely at compile time. In our implementation, programs are
compiled twice, first with objects to verify type safety, and then with the
objects removed for efficiency. This gives significant performance gains
across a range of tests, including the generic SciGMark tests.

1 Introduction

A large part of the art of programming language design lies in how one assembles
a multitude of ideas that are in principle distinct into a few simple constructs
that work well together. When this is done well, it can be beautiful. When this is
done badly, it can make programs inefficient and error-prone. This paper argues
that this is what has happened in languages such as Java, where objects are the
sole data abstraction mechanism, and we present a solution.

A simple example of separate considerations that can be nicely combined is
given by the modern return statement. In principle, setting the value of a func-
tion and the transfer of control back to the caller are completely separate ideas.
Indeed, in older programming languages these were done separately. One might
easily want to perform some clean up actions, such as closing files, returning
resources or updating global state, after the return value is determined. How-
ever, in these cases, using a temporary variable with modern return is neither
costly nor dangerous. At first sight, using objects as the sole data abstraction
mechanism would seem to be a similar happy combination. Abstract data types

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 47–59, 2012.
� Springer-Verlag Berlin Heidelberg 2012

48 P. Bourdykine and S.M. Watt

typically have several fields in a hidden representation and provide operations on
the abstract values, just as with classes in an object-oriented world. But there
are several problems with this:

Abstraction is not just hiding record fields. Providing data abstraction only
via objects forces all thinking about abstraction into the model of field visibil-
ity in composite structures. Quite often, one wishes to consider simple values
as elements of a distinct type. For example, even though window IDs may be
represented as integers, it would enhance program safety if they were treated as
a distinct type. Likewise for values in different prime fields should be of different
types from the integers and from each other. Additionally, composite data is
often not represented as fields in an object. For example, it is not uncommon to
represent colors as 32-bit integers with bit fields representing component values.
Abstraction can help ensure that only integers intended to be color information
are used as such.

Abstraction does not always need dynamic allocation, inheritance, synchro-
nization, or other heavy-weight mechanisms. Sometimes we want abstraction
only to ensure that programs do not depend on details that may later change
and to enhance safety by ensuring values are not used inappropriately. It may
be known from the outset that these values will not ever be used in any fancy
ways. For example, we may know that there will never be any derived types
from colors, there will be no subtle multiprocessing on single color values, etc.
Requiring all of these features to be supported on abstract values first has a
cost, and second reduces flexibility to have these abstract values treated in other
interesting ways.

Abstraction is not used if it is too inefficient or onerous. When data ab-
straction carries a significant efficiency penalty and thought on the part of the
programmer, then it is not used.

In languages such as C++, where objects and primitive types are on a similar
footing, the extra cost need not be large. Nevertheless, even here, mechanisms
have been proposed for opaque type definitions in C++ [1]. In languages such
as Java, where there is a strong distinction between primitive types and object
types, the cost to use objects is many times that of using primitive types. Pro-
grams are inefficient, programmers circumvent the type system or both. This has
many obvious problems. If Java were not such a widely adopted language, we
could reject it as being ill suited in these circumstances. As it is, some solution
is needed.

The contribution of this paper is to show how light weight abstraction may be
provided in Java. This provides type safety without introducing any significant
inefficiencies. It is therefore suitable for creating light-weight abstract types for
computationally intensive, efficiency-critical tasks such as computer algebra and
scientific computing. Section 2 shows how this may be achieved by introducing
object types with sufficient restrictions that they are guaranteed to be removed
at compile time. While these ideas are presented for Java, the same ideas could
equally well be applied in other settings. Section 3 then describes a tool that
implements this mechanism that can be used in conjunction with standard Java

Lightweight Abstraction for Mathematical Computation in Java 49

compilers. Section 4 presents performance results, comparing the usual use of
objects, the present light-weight abstraction mechanism and raw primitive types.
These comparisons are made using the SciGMark test suite and details are shown
for polynomial and matrix multiplication. Finally Section 5 concludes the paper.

2 Opaque Types in Java

To deal with the problems outlined, we introduce the notion of opaque types in
the Java programming language. These types allow development of Java code
that is reusable, elegant, and efficient. Opaque types are meant to be used as
regular object types that can be represented internally by any other Java type
with a focus on representation via primitive built-in Java types. The new types
are required to behave and act like regular object types in the way they interact
with the Java class hierarchy and the static type-checker. An example of this
kind of application may be an object that has a small finite number of different
states that can be intuitively represented by a set of bit patterns. Although this
can be implemented similarly to something written in assembly language, by
using int types, resulting in code that is quite efficient, the code’s extensibility
would suffer. Moreover, like assembly, this type of code is difficult to maintain,
and debug[2,3]. This may lead to errors that could have been easily avoided if
object types were used.

This approach encompasses a core notion of opacity. High level Java objects
do not necessarily have to be represented or compiled as such. Objects simply
serve as identification handles for static type-checking prior to compilation. The
underlying type of these objects may be anything suitable for internally repre-
senting the construction. In this fashion, an alternative String object may be
represented by a character array allowing for operations very similar to those on
strings implemented in C or C++. In turn, a more complex object may be rep-
resented by such an alternative String thus creating an artificial class hierarchy
that remains consistent and type-safe. In this work, however, we are concerned
mostly with objects that may be represented by primitive types in order to boost
performance.

Along with the optimized version of the opaque type the regular unchanged
version of the class is kept for reference and debugging purposes. Leaving the
user code unchanged after compilation allows for more straight forward top-level
design where good Object Oriented Design practices may be followed. The user
may also choose to compile the opaque-typed code and run it as is, without
conversion, in order to ensure correctness. Keeping both versions of the class
demonstrates the type safety of opaque Java types as either version of the project
will produce identical execution results.

In order to implement Java opaque types, we introduce a set of type rules
that have to be followed in order to use such objects safely and efficiently. These
rules may be used by a preprocessor to transform the user’s regular objects into
those for which the generated code will use the underlying primitive types. We
now give a more detailed description of these rules.

50 P. Bourdykine and S.M. Watt

2.1 Opaque Type Rules

We use a Java code annotation (called Opaque) to identify classes as opaque
types. Java annotations allow embedding of meta-data directly into Java source
code. “Annotations do not directly affect program semantics, but they do affect
the way programs are treated by tools and libraries, which can in turn affect
the semantics of the running program.”[4] The annotation has a single String
type field that denotes the primitive representation type of the opaque object.
For example, the annotation @Opaque("int") indicates that the object is opaque
and that its primitive representation is of type int. Currently, the annotation field
serves as a way to quickly identify the underlying type and speed up opaque type
file analysis but could be left out in later versions of the solution. The single
annotation dictates all the required information to the preprocessor. The next
restrictions/rules must be followed in order to guarantee successful conversion
consistent with the Java language standard:

– Rule 1 object must have a single protected field of the underlying type
unless it is a subclass of an opaque type

– Rule 2 object constructor(s) must be declared private

– Rule 3 all methods accessing or modifying the underlying type field repre-
sentation must be declared static (or final static if no subclasses over-
ride the methods)

Rule 1 enforces opaque type representation and assures that it matches with the
type specified by the annotation. The field (from here on in referred to as rep)
takes place of the opaque object whenever it appears in translated user code. It
is important that its uses are properly implemented and ensures there are no
compilation issues post-conversion. The approach to having a single field for the
representation is similar to that used in Aldor [5].

If the new opaque object extends an opaque type (the inheritance property
detected by the preprocessing utility), the new object must not include a rep

field in its declaration. The rep field is instead inherited from the superclass and
bares the same primitive type. This ensures consistency in method inheritance
and conversion.

Rule 2 follows the Java convention that only object types require a construc-
tor. Since the new opaque object is to be converted to its underlying primitive
type representation wherever it is used, its constructor must remain private.
Creating new instances of the opaque object is still possible through the use of
the static method “New”. This method should be implemented by the user as
a means of converting from the underlying primitive type to the object type pri-
marily for testing purposes and initial implementation of code that uses opaque
types. The typical implementation is outlined in Figure 1(a).

Rule 3 places a restriction on the other methods possibly acting on the object
representation. Default visibility static methods allow inheritance and class
access to regularly used operations within the new object. At first glance this
may seem limiting for using the object; however, since object instances are all
converted to the underlying primitive type, only class methods remain as valid

Lightweight Abstraction for Mathematical Computation in Java 51

// a. Opaque object,
// typical "New" implementation
@Opaque("short")
public class MyOpaqueObject {

protected short rep;
private MyOpaqueObject(short r) {

rep = r;
}
...
public static MyOpaqueObject
New(short r) {

return new MyOpaqueObject(r);
}

}

// b. Opaque object before conversion
@Opaque("int")
public class BaseClass {

protected int rep;
private BaseClass(short r) {

rep = (int) r;
}
public static void
operator(BaseClass bc, short modifier){

...
}
...

}

// c. Opaque object after conversion
public class BaseClass {

protected int rep;
private BaseClass(short r){rep = (int) r;}

public static void
operator(int bc, short modifier) {

...
}
...

}
// d. Regular main class
@Opaque("user")
public class TopLevel {

public static void main(String[] args){
OpaqueType var = OpaqueType.New(param);
...

}
}
// e. Opaque array initialization
@Opaque("user")
public class TopLevel {

public static void main(String[] args){
OpaqueType[] ots =

new OpaqueType[DATA_SIZE];
for(int i=0; i < DATA_SIZE; i++)

ots[i] = OpaqueType.New(param);
...

}
}

Fig. 1. Opaque object creation and use

operations that can act upon the object’s actual implementation, i.e., its rep

field. This method declaration simplifies the preprocessor task of handling ex-
tension quickly and efficiently and assures the opaque object is not inflated by
non-static behaviors.

The approach takes advantage of the way Java class hierarchy works by allow-
ing subclasses to preserve the “is a” relationship and properly inherit methods
with default visibility. Properties of method overloading are also preserved due
to use of default visibility and the requirement of using the class name whenever
a method is called.

2.2 Converted Classes

The style for new object creation is modified slightly when attempting to make
use of opaque types. It is useful to illustrate exactly what changes in the type dec-
laration following invocation of the code conversion utility. Figures 1(b) and 1(c)
show the original version of a simple class and its converted result respectively.

In Figure 1(b), object BaseClass is a Java opaque type represented by the
built-in Java int type. The important details to notice regarding this class are
its protected int rep field, private constructor and static void operator

method. These three points are required by the semantic rules outlined in Sec-
tion 2.1 and allow BaseClass to be converted and compiled as its underlying
built-in type (int).

52 P. Bourdykine and S.M. Watt

The converted BaseClass can be seen in Figure 1(c). In the new version of the
class, the @Opaque(“int”) annotation has been removed, and the staticmethod
operator has been modified to use only arguments of the proper underlying
types. The class retains its “high level” handle - BaseClass. Hence the user
code that makes use of the class only needs minor typing modifications.

2.3 Opaque User Classes

Java classes that declare or make use of opaque objects are also annotated with
the @Opaque annotation. Instead of an underlying rep type, the user classes
contain the keyword “user” as the single parameter to the annotation. A user
class may look as simple as in Figure 1(d).

Classes declaring objects of opaque type that are not opaque themselves (an-
notated as @Opaque(“user”)) undergo only minor changes during the conversion
step. Opaque types are constructed in a way such that their declaration, initial-
ization and usage do not require any object-exclusive syntax aside from declaring
data structures whose elements are opaquely typed. The most common and prim-
itive of these data structures is an array. Declaration of Java arrays containing
opaque typed members is syntactically identical to any other array declaration
(for any number of dimensions). Initialization, however, is dictated by the na-
ture of the opaque members themselves - each opaque object is initialized via the
New method as opposed to using the Java new keyword. This simple yet notable
concept is summarized in Figure 1(e).

2.4 Annotation Processing Example

The structure that opaque annotations impose on Java source code is non-
hierarchical despite playing a role in the hierarchical class structure of Java. The
traversal through this construction of annotated source files is straight forward
for the most part and the conversions applied to the code are often influenced
directly by information contained in the same processing step. Figure 2 illus-
trates some subtleties during the conversion step that arise when analyzing a
deep class hierarchy for opaque objects.

The analysis of such a hierarchy takes place as follows. The Opaque-annoted
classes are identified among the source files and a list of them is stored along with
their representation (taken from the String-type annotation argument). In Fig-
ure 2 this list would consist of pairs BaseClass & int, ChildClassOne & int,
ChildClassTwo & int, ChildClassThree & int. The annotations make the
suggested representation clear, but we still have to check that the class does not
attempt to use a differently typed field. As you can tell, the underlying repre-
sentation property is inherited, in this case all the way down the hierarchy from
BaseClass. Method inheritance is taken care of by standard Java, for example,
the operatormethod of ChildClassThree is overwritten for only that class and
the overloadedmethod works as expected. The goal of our approach is to make the
preserved object properties as intuitive as possible (i.e., make them work as the
programmer would expect) during application of the opaque types mechanism.

Lightweight Abstraction for Mathematical Computation in Java 53

@Opaque("int")
public class BaseClass {

protected int rep;
private BaseClass(short r){

rep = (int) r;
}
public static void operator

(BaseClass bc,
short modifier)

{ ... }
...

}

@Opaque("int")
public class ChildClassOne

extends BaseClass
{

private ChildClassOne(short r){
rep = (int) r;

}
...

}

@Opaque("int")
public class ChildClassTwo

extends BaseClass
{

private ChildClassTwo(long r){
rep = (int) r;

}
...

}

@Opaque("int")
public class ChildClassThree

extends ChildClassTwo
{

private ChildClassThree(int r){
rep = r;

}
public static ChildClassThree operator

(ChildClassTwo modifier, short cc){
...

}
...

}

Fig. 2. Inheritance during conversion

3 Java Implementation

Implementing opaque Java types requires careful considerations in order to abide
by the set restrictions and still make the new data declaration forms useful. For
performance, ideally, the underlying representation of a particular type could
be determined during the compilation process and the underlying type used for
code generation. This kind of automated optimization would mean a seamless
implementation of a significant performance gain. However, allowing the pro-
grammer to specify the underlying type of the opaque object allows for greater
flexibility for accomplishing a certain task, even if at the cost of some efficiency.

A sophisticated mechanism to determine the underlying object representation
on the fly could be an area of significant research, however, at this time we have
elected to make the choice explicit. Hence the steps to build projects containing
opaque types are quite straight forward.

Code conversion utility. In order to realize the potential of Java opaque types we
need to develop a dual view of the annotated objects to the compiler. The first is
the object view – necessary to take advantage of Java’s inherent ability to handle
a rich type hierarchy. The second is the underlying representation view, the one
to be used during optimization and code generation phases of compilation. This
dual representation is achieved using a code conversionutility written in Java itself
making use of Pattern and Matcher classes from the java.util.regex package.

These classes provide a convenient way to identify where and how opaque
types are used and apply conversions directly to Java source code. This allows
the utility to finish its tasks in a timely manner without complicating the process
of going from regular-looking objects (opaque types) to the immediate underlying
representation.

54 P. Bourdykine and S.M. Watt

The utility performs the following steps:

1. identify all recently modified Java source files in target project
2. sort source files into regular, opaque typed, and opaque user classes
3. build record of all opaque types and their underlying representations
4. convert all opaque sources

Automating the building process. Utilizing a pre-processor-like code conversion
application prior to compilation complicates the building process by adding a
necessary intermediate step to the routine mechanism. However, Java is a flexible
language with a relatively long standing industry and research history. By this
virtue a number of tools have been developed that augment various features of
the language in particular when it comes to its compilation and building process.
One of such tools is the Ant scripting language[6]. We use an Ant build script
to perform the following tasks:

1. back up original source files
2. invoke converter on files modified since last invocation
3. compile newly converted files

Eclipse IDE. Integration into a main-stream development environment may
seem like an extraneous task; however, this discussion follows naturally due to
the Eclipse’s ability to use Ant build scripts instead of the default compiler or
build-chain. Implementing the build script directly into the Eclipse IDE allows
the user to seamlessly develop code utilizing opaque types in the IDE.

Further details of the implementation are described in the first author’s master
thesis [7].

4 Performance Results

If regular Java objects performed as well as built-in types, there would be no
need to invent a new mechanism for abstraction. This, however, is not the case.
Primitive types in Java perform far better than objects.

We consider the overall application performance for synthetic tests by the
time it takes the program to execute, and the memory consumed during its ex-
ecution. Computational benchmark performance is compared using the number
of floating operations per second performed by various implemented algorithms.
We compare performance of Java code using regular objects, code which has
been converted to use opaque objects, and code implemented with the use of
primitive types only (dubbed “specialized”). For the purposes of measuring per-
formance in such a way we have devised several synthetic tests that demonstrate
opaque type advantages using brief implementations and included two modi-
fied benchmarks from the SciMark[8] and SciGMark[9] performance benchmark
suites. The measurements for testing performance that could be adjusted to
utilize opaque types most naturally have been included in this report. The par-
ticular benchmarks chosen from SciMark 2.0 and SciGMark 1.0 suites are dense

Lightweight Abstraction for Mathematical Computation in Java 55

polynomial multiplication with integer field coefficients originally developed for
SciMark benchmark and modified by SciGMark and sparse matrix multiplication
with real coefficient values.

The modified applications accomplish identical tasks and have minimal im-
plementation differences aside from the use of opaque types and corresponding
annotations. Along with the borrowed benchmarks, the synthetic tests that range
from simple classes implementing only a few methods with shallow class hier-
archy to classes with a large internal representation (e.g. a large integer array),
several constructors, and a large number of methods are used to measure “bare
bone” performance. All tests were executed 10 times in order to compensate
for varying CPU and memory loads on different platforms. The averaged results
were recorded and are shown next. The computationally intensive benchmarks
were executed on large data sets in order to maximize the effect of data alloca-
tion and access on performance when dealing with objects versus more primitive
structures in large quantities. This in turn increased result accuracy due to float-
ing point operations being used as the measurement units. The simple tests were
chosen to reflect varying uses and applications developers may encounter when
writing Java code for a typical project.

Benchmark implementations were tested on several different platforms in or-
der to demonstrate opaque types’ independence of environment when increasing
computational performance. The platforms used for testing were as follows:

– Intel C2Q Q6600 @ 2.4GHz, 4GB RAM, Windows 7 x86 64, JRE 1.7 (lambda)
– Intel I7-870@2.93GHz,16GB RAM, Ubuntu Server 10.04 x86 64, JRE 1.6(tedium)
– Intel Xeon E5620 @ 2.4GHz, 24GB RAM, Ubuntu 10.04 x86 64, JRE 1.6 (z600)
– Intel I5-660 @ 3.33GHz, 4GB RAM, Ubuntu 10.04 x86 64, JRE 1.6 (PCA-45)
– Intel C2D E4600@2.4GHz, 2GB RAM, Ubuntu 10.04 x86 64, JRE 1.6 (orccapc02,

orccapc03, orccapc04)

Running of experiments on different platforms has also given us an opportunity
to look at the variance in underlying software that affects the performance of Java
applications using opaque types. The results were not significantly impacted by
execution on different platforms, and even the JVM versions used did not incur
a great deal of variance on the results.

Execution time and memory use were measured using built-in Java tools for
determining system time (method currentTimeMillis() in java.lang.System),
and tools for determining how memory is currently used by the Java Virtual
Machine - Runtimemethods called totalMemory() and freeMemory(). All tests
measuring memory use were carefully designed to avoid involuntary garbage col-
lection and execution time tests were averaged to account for varying CPU load
during the experiments and were generally run at the highest CPU affinity.

Complex internal representations. Similarly to the opaque types used through
this work, it is possible to represent object types by a single primitively typed
array fields of fixed size. For example, an opaque type object may be represented
by 256 bits, or an array of size 4 of type long[]. The next set of tests deals
with objects represented by different sized arrays of primitively typed variables.

56 P. Bourdykine and S.M. Watt

@Opaque("long[]")
public class MyOpaqueObject {

protected long[] rep;
private OpaqueObject(long[] arg){

rep = new long[arg.length];
for (int i = 0; i < arg.length; i++)

rep[i] = arg[i];
}
public static OpaqueObject
New(long[] arg) {

return new OpaqueObject(arg);
}
public static OpaqueObject
setBit(OpaqueObject o, int i) {

long mask = (long) (1 << (i % 64));
o.rep[i / 64] |= mask;
return o;

}
...

}

public class RegObject {
private long[] rep;
public RegObject(long[] arg){

rep = new long[arg.length];
for (int i = 0; i < arg.length; i++)

rep[i] = arg[i];
}
public void setBit(int i){

long mask = (long) (1 << (i % 64));
rep[i / 64] |= mask;

}
...

}

Fig. 3. Regular and opaque objects with array typed fields

The tests use the same, previously shown, metrics to measure execution speed
and memory use. The implementation of the actual accomplished operation is
kept as identical as possible to avoid performance differences due to algorithmic
discrepancies. This assures that we compare directly the speed and size of regular
objects versus opaque objects without introducing unnecessary bias.

Figure 3 illustrates an OpaqueObject represented by the long[] type and
a RegObject that has a field of type long[]. Both objects have the similarly
implemented method called setBit. Method setBit takes an argument of type
int that corresponds to the bit number that must be turned on in the internal
representation of the OpaqueObject or the field of the RegObject with 0 being the
least significant bit. Imagine arranging either the internal long[] representation
of OpaqueObject or the field of RegObject as sets of back-to-back 64 bit sets (each
set represented by a long type value) where significance of the bits increases with
the array index of the respective field. Thus operation setBit is potentially able
to turn on a single bit in a bit set of size over 2,000,000,000. For the test, however,
we limit the size of the long array to 4.

Table 1. Matrix Multiplication

Code Improvement
PC Generic Specialized Opaque Opaque vs. Opaque vs.

(mflops) (mflops) (mflops) Generic Specialized
lambda 131.84 475.22 383.64 2.91 0.81
tedium 194.64 1199.08 968.4 4.98 0.81
z600 175.16 1044.22 833.06 4.76 0.80

PCA-45 158.82 1077.7 845.84 5.33 0.78
orccapc04 57.20 363.5 303.68 5.31 0.84
orccapc03 62.34 371.1 299.45 4.80 0.81
orccapc02 60.94 368.4 301.94 4.95 0.82
sodium 54.82 311.26 248.48 4.53 0.80

Overall average improvement: 4.70 0.81

Lightweight Abstraction for Mathematical Computation in Java 57

Table 2. Polynomial Multiplication

Code Improvement
PC Generic Specialized Opaque Opaque vs. Opaque vs.

(mflops) (mflops) (mflops) Generic Specialized
lambda 75.54 279.56 223.86 2.96 0.80
tedium 147.02 900.44 729.06 4.96 0.81
z600 131.32 800.68 639.42 4.87 0.80

PCA-45 136.54 910.64 723.38 5.30 0.79
orccapc04 56.29 355.15 285.91 5.08 0.81
orccapc03 54.98 350.90 288.3 5.24 0.82
orccapc02 57.84 355.32 287.92 4.98 0.81
sodium 38.90 223.68 179.52 4.61 0.80

Overall average improvement: 4.75 0.81

Putting it together. The next set of performance comparison tests consists of
two standard benchmarks taken from the SciMark and SciGMark suites. In or-
der to implement polynomial multiplication and sparse matrix multiplication
benchmarks we build on the conventions established previously and reuse some
implementations from the synthetic benchmarks.

The first test performed is sparse matrix multiplication with double preci-
sion floating point coefficients taken randomly from the complex number set.
This is one of the most natural performance indicators for a language feature
or a hardware benchmark. In this case, the test’s aim is to demonstrate that
it is possible to significantly increase the raw number of floating point calcula-
tors (measured here in millions of floating point operations per second) without
losing correctness by reducing abstraction (or removing it altogether) in the
implementation. Unfortunately, fully disposing of abstraction, as SciGMark im-
plementation shows, highly obscures the code. Use of primitive types yields high
performance and optimized execution, however, the code becomes more com-
plex and is difficult to modify. The matrix sizes used for measurement are N by
N matrices with N = 10, 000 averaging 100, 000 non-zero coefficients per matrix.

The purpose of the implementation using opaque types is to preserve ab-
straction introduced by the generic object implementation utilized by SciGMark
while pushing performance figures towards that of the specialized code. Fig-
ures 4(a), 4(b), 4(c) show snippets of the code implementing the underlying
complex data and algorithms used in this benchmark. The included code shows
implementation of the type creation, summing, and multiplication.

Performance results using these varying implementations of the complex data
types are summarized in Table 1. Analyzing the data it’s easy to conclude that
without loss of much generality, the opaque implementation is on average 4.7
times faster than the general object implementation and is only about 20%
slower than the specialized implementation from Figure 4(b).

The second benchmark used in our final set of tests is polynomial multipli-
cation with dense polynomials of degree ≤ 40. The polynomial coefficients are
once again taken from the complex set and are implemented in three different
ways according to each multiplication algorithm (generic objects, specialized,

58 P. Bourdykine and S.M. Watt

// a. Generic object implementation
public class Complex <R extends IRing<R>> {

private R re;
private R im;
public Complex<R> create(R re, R im) { return new Complex<R>(re, im); }
public Complex<R> s(Complex<R> o) { return new Complex<R>(re.s(o.re()),im.s(o.im())); }
public Complex<R> m(Complex<R> o) {

return new Complex<R>(re.m(o.re()).s(im.m(o.im())), re.m(o.im()).a(im.m(o.re())));
}

}
// b. Specialized implementation
public class Complex {

private double re;
private double im;
public Complex create(double re, double im) { return new Complex(re, im); }
public Complex s(Complex o) { return new Complex(re + o.getRe(), im + o.getIm()); }
public Complex m(Complex o) {

return new Complex(re*o.getRe() + im*o.getIm(), re*o.getIm() + im*o.getRe());
}

}
// c. Opaque object implementation
@Opaque("double[]")
public class Complex {

protected double[] rep;
public static Complex create(double re, double im) { return Complex.New(re, im); }
public static Complex s(Complex o) {

return Complex.New(s.rep[0]+o.rep[0], s.rep[1]+o.rep[1]); }
public Complex m(Complex o) {

return new Complex(s.rep[0]*o.rep[0]+s.rep[1]*o.rep[1],
s.rep[0]*o.rep[1]+s.rep[1]*o.rep[0]);

}
}

Fig. 4. Multiplication: generic, specialized and opaque object implementation

opaque). Table 2 summarizes obtained results measured in millions of floating
point instructions per second with similar conclusions being drawn from this set
of data as the sparse matrix multiplication.

Implementing dense polynomial multiplication using the proposed opaque
typed method allows for an average of 4.75 times the number of operations
per second while accomplishing the same task. The opaque implementation loses
out to specialized code by an average of only 19%. This is an expected and im-
pressive result considering how much abstraction is preserved through the use
of opaque types.

5 Conclusions and Further Directions

We have observed that Java programmers and library designers have been forced
to work around the language’s abstraction mechanisms for performance-sensitive
code. In practice, programs have used primitive types, such as int, when an
abstraction should be used. The recent addition of Enumerations to the language
help in some settings, but is of no help when the values are used in mathematical
computations.

We have shown how type-safe, but very efficient programs may be obtained
with the concept of an opaque type in Java. An opaque type is distinct and
incompatible with its underlying representation type, which may be a primitive

Lightweight Abstraction for Mathematical Computation in Java 59

type or an object type. We have shown how opaque types may be provided via
classes with only static methods, and annotated for handling with a software
tool in a standard Java environment. Opaque types are type checked as though
they were object types, but compiled as the actual representation values. This
allows opaque values to benefit from all the optimizations on primitive types
without relying on sophisticated data structure elimination optimizations.

At the moment, our software tool operates by compiling the code twice, but
of course this could easily be integrated into any compiler. While we focus on
Java for practical reasons, we expect the same observations and techniques to
be directly applicable in other similar settings.

References

1. Brown, W.E.: Progress toward Opaque Typedefs for C++0X (2005)
2. Johnston, B.: Java programming today. Pearson Prentice Hall, Upper Saddle River

(2004)
3. Koffman, E.B.: Objects, abstraction, data structures and design using Java. John

Wiley and Sons (2005)
4. Sun Microsystems, Inc. Annotations (2004),

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html

5. Watt, S.M.: Aldor. In: Grabmeier, J., Kaltofen, E., Weispfenning, V. (eds.) Hand-
book of Computer Algebra, pp. 265–270. Springer, Heidelberg (2003)

6. The Apache Ant Project (2010), http://ant.apache.org
7. Bourdykine, P.: Type Safety without Objects in Java, MSc. Thesis, U. Western

Ontario (2009)
8. Miller, B., Pozo, R.: SciMark 2.0 Java Benchmark. National Institute of Standards

and Technology (2004)
9. Dragan, L., Watt, S.M.: Performance Analysis of Generics for Scientific Computing.

In: Proc. SYNASC 2005, pp. 93–100. IEEE Press (2005)

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://ant.apache.org

Calculation of Normal Forms

of the Euler–Poisson Equations�

Alexander D. Bruno1 and Victor F. Edneral2

1 Keldysh Institute for Applied Mathematics of RAS,
Miusskaya Sq. 4, Moscow, 125047, Russia

abruno@keldysh.ru
2 Skobeltsyn Institute of Nuclear Physics,

Lomonosov Moscow State University,
Leninskie Gory 1, Moscow, 119991, Russia

edneral@theory.sinp.msu.ru

Abstract. In the paper [1], the special case of the Euler–Poisson equa-
tions describing movements of a heavy rigid body with a fixed point is
considered. Among stationary points of the system, two of one-parameter
families were chosen. These families correspond to the resonance of eigen-
values (0, 0, λ,−λ, 2λ,−2λ) of the matrix of the linear part of the system,
also in [1] it was conjectured the absence of the additional first integral
(with respect to well-known 3 integrals (2)) near these families, except
of classical cases of global integrability. In this paper, the supposition is
proved by calculations of coefficients of the normal form.

Keywords: Euler–Poisson equations, resonant normal form, computer
algebra.

1 Introduction

The Euler–Poisson system consists of six equations and describes the motion of
a rigid body with a fixed point [2]

Aṗ+ (C −B)qr = Mg(z0γ2 − y0γ3) ,
Bq̇ + (A− C)pr = Mg(x0γ3 − z0γ1) ,
Cṙ + (B −A)pq = Mg(y0γ1 − x0γ2) ,
γ̇1 = rγ2 − qγ3 ,
γ̇2 = pγ3 − rγ1 ,
γ̇3 = qγ1 − pγ2

(1)

where A,B,C,M, x0, y0, z0 are real constants. A,B,C are the principal moments
of inertia, and variables γ1, γ2, γ3 are the Euler angles.

� The authors are supported by the Russian Foundation for Basic Research Grant No.
11-01-00023-a.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 60–71, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Calculation of Normal Forms of the Euler–Poisson Equations 61

The system (1) has three first integrals

F1
def
= Ap2 +Bq2 + Cr2 + 2Mg(x0γ1 + y0γ2 + z0γ3) = const ,

F2
def
= Apγ1 +Bqγ2 + Crγ3 = const ,

F3
def
= γ21 + γ22 + γ23 = const = 1 .

(2)

System (1) has also the linear automorphism

t, p, q, r, γ1, γ2, γ3 → −it, ip, iq, ir,−γ1,−γ2,−γ3 . (3)

For the special case

A = B, C/B = c, M g x0/B = −1, y0 = z0 = 0 ,

system (1) is
ṗ = (1 − c)qr ,
q̇ = (c− 1)pr − γ3 ,
ṙ = γ2/c ,
γ̇1 = rγ2 − qγ3 ,
γ̇2 = pγ3 − rγ1 ,
γ̇3 = qγ1 − pγ2

(4)

where c is a single parameter c ∈ IR (0, 2]. If c = 1 or c = 1/2 then system (4) has
an additional (the fourth with respect to (20)) first integral. These are classical
cases of integrability by Lagrange and Sofia Kovalevskaya.

The system (4) has a two-parameter (c, p0) family of stationary points

p = p0 = const, q = q0 = 0, r = r0 = 0 ,
γ1 = γ01 = 1, γ2 = γ02 = 0, γ3 = γ03 = 0 .

(5)

The resonance (0, 0, λ,−λ, 2λ,−2λ) takes place at two one-parameter subfamilies
which are defined by

p20 =
17− 33c+ 5δ

√
9− 34c+ 41c2

8c

def
= p20(δ, c) , (6)

where δ = ±1. We denote families (6) as F±.
However, at the point

c̃ = (−1 +√5)/2 ≈ 0.618034
and

p20(c̃, δ = −1) = −(3 +
√
5)/2 ≈ −2.61803

(7)

all eigenvalues are zero, i.e., in (9) λi = 0, thus, the point (7) should be excluded
from the family F−.

In this paper, the conjecture of the absence of an additional first integral
near these families, except classical cases of global integrability, is proved by
calculations of coefficients of the normal form. All calculations were performed
using the MATHEMATICA package [4,5].

62 A.D. Bruno and V.F. Edneral

In the second Section of this paper, we study a common normal form structure
at the resonance. In the third Section, we discuss the form of the formal first
integrals of the normal form and prove Theorem 1 about necessary conditions
of existence of an additional first integral, and in the fourth Section, we briefly
describe the calculations which allow to apply that theorem in the studied case.

2 A Normal Form Structure at the Resonance

Here we will study the structure of the normal form of system (4) near stationary
points of families F±. This description is similar to Section 10, Chapter V of the
book [3]. Let its normal form be

żi = zigi(Z), i = 1, 2, 3, 4, 5, 6, (8)

where the vector Λ of eigenvalues λi is

Λ = (0, 0, λ3,−λ3, λ5,−λ5), r̃λ5 = s̃λ3, 1 ≤ r̃ < s̃ . (9)

We introduce resonant variables

ρ1 = z3z4, ρ2 = z5z6, w = zs̃3 z
r̃
6 , w̃ = zs̃4 z

r̃
5 . (10)

Thus ww̃ = ρs̃1ρ
r̃
2 .

Lemma 1. At the resonance s̃λ3 = r̃λ5 the normal form (8) is

żi = zi
∞∑
k=1

fik(w
k − w̃k), i = 1, 2,

ρ̇i = ρi
∞∑
k=1

Fik(w
k − w̃k), i = 1, 2,

ẇ = w

[
G0 +

∞∑
k=1

F3kw
k +

∞∑
k=1

H3kw̃
k

]
,

˙̃w = −w̃
[
G0 +

∞∑
k=1

F3kw̃
k +

∞∑
k=1

H3kw
k

]
,

(11)

where fik, Fik, G0, H3k are power series in z1, z2, ρ1, ρ2.

If r̃ + s̃ is odd in decomposition (11) index k accepts only even values 2l.

3 The First Integrals

According to [6] the first integral of normal form (8)

A =
∑

aQZ
Q

contains only resonant terms for which

〈Q,Λ〉 = 0 .

Therefore, the first integral can be written down in the form of a power series
in the resonant variables

Calculation of Normal Forms of the Euler–Poisson Equations 63

A = a0 +

∞∑
m=1

amw
m +

∞∑
m=1

bmw̃
m ,

where a0, am and bm are power series in z
def
= (z1, z2), ρ

def
= (ρ1, ρ2). As a sequence

of the automorphism (3)

t, z1, z2, ρ1, ρ2, w, w̃ → −t, z1, z2, ρ1, ρ2, w̃, w

we have am = bm, i.e., the integral looks like

A = a0 +

∞∑
m=1

am(wm + w̃m) . (12)

If r̃ + s̃ is odd then from the automorphism (3)

t, z1, z2, ρ1, ρ2, w, w̃ → t, z1, z2, ρ1, ρ2,−w,−w̃

it is easy to see that the expansion contains only even indexes m = 2n, i.e.

A = a0 +
∞∑
n=1

a2n(w
2n + w̃2n) . (13)

For the first integral (12), its derivative in view of (11) should be identically
equal to zero. Hence,

0 ≡ ∂A

∂z1
z1g1 +

∂A

∂z2
z2g2 +

∂A

∂ρ1
ρ1(g3 + g4) +

∂A

∂ρ2
ρ2(g5 + g6)

+
∂A

∂w
b5(z, ρ, w, w̃)− ∂A

∂w̃
b5(z, ρ, w̃, w)

=

∞∑
k=1

(
∂a0
∂z1

z1f1k +
∂a0
∂z2

z2f2k +
∂a0
∂ρ1

ρ1F1k +
∂a0
∂ρ2

ρ2F2k

)
(wk − w̃k)

+

∞∑
m=1

∞∑
k=1

(
∂am
∂z1

z1f1k +
∂am
∂z2

z2f2k +
∂am
∂ρ1

ρ1F1k +
∂am
∂ρ2

ρ2F2k

)
×(wk − w̃k)(wm + w̃m) +

∞∑
m=1

mam [G0(w
m − w̃m)

+

∞∑
k=1

F3k(w
k+m − w̃k+m) +

∞∑
k=1

H3k(w
mw̃k − wkw̃m)

]
.

(14)

Let r̃ + s̃ be odd. Then in the equation (14), indexes k and m are even: k = 2l
and m = 2n. Therefore, writing out this equation up to terms of the total order
in z3, z4, z5, z6 smaller than 4(s̃+ r̃), we obtain

∂a0
∂z1

z1f12 +
∂a0
∂z2

z2f22 +
∂a0
∂ρ1

ρ1F12 +
∂a0
∂ρ2

ρ2F22 + 2a2G0 = 0 , (15)

64 A.D. Bruno and V.F. Edneral

where in each member there are terms with orders smaller than 2(r̃ + s̃) only.
For odd r̃ + s̃, its least possible value is equal to 3 (r̃ = 1, s̃ = 2). Equality (15)
should be satisfied at least for the z, ρ free terms and for the terms linear in each
of z, ρ. Let

zifi2
def
= ξi + ηi1z1 + ηi2z2 + ηi3ρ1 + ηi4ρ2 + . . . ,

ρjFj2
def
= ξj+2 + ηj+2,1z1 + ηj+2,2z2 + ηj+2,3ρ1 + ηj+2,4ρ2 + . . . ,

G0
def
= ζ1z1 + ζ2z2 + ζ3ρ1 + ζ4ρ2 + . . . ,

a0
def
= const + α1z1 + α2z2 + α3ρ1 + α4ρ2 + . . . ,

a2
def
= β + . . . , i, j = 1, 2 .

(16)

Equation (15) for the free term on the left-hand side gives the equality

α1ξ1 + α2ξ2 + α3ξ3 + α4ξ4 = 0 . (17)

If the vector Ξ
def
= (ξ1, ξ2, ξ3, ξ4) �= 0 then equation (17) has three-dimensional

set of solutions α = (α1, α2, α3, α4). If Ξ = 0 then equality (15) for linear in the
z, ρ terms implies four equalities

4∑
i=1

ηijαi + 2ζjβ = 0, j = 1, 2, 3, 4 . (18)

The dimension of solutions (α, β) of the system (18) is equal (5−rankM), where
M is a 4×5 matrix which consists of 4 vectors

(η1j , η2j , η3j , η4j , ζj), j = 1, 2, 3, 4 . (19)

As the initial system (4) has the three first integrals (2)

F1 = p2 + q2 + cr2 − 2γ1 = const ,
F2 = pγ1 + qγ2 + crγ3 = const ,
F3 = γ21 + γ22 + γ23 = const = 1 ,

(20)

its normal form (8) also has three corresponding first integrals of form (12), (16)

with vectors α(j) = (α
(j)
1 , α

(j)
2 , α

(j)
3 , α

(j)
4) and constants β(j) (j = 1, 2, 3).

We form a 3×4 matrix ᾱ = (α
(j)
i), where i = 1, 2, 3, 4; j = 1, 2, 3. The addi-

tional first integral is locally independent from known three. It is possible only
in two cases:

1. the vector Ξ �= 0 and rank ᾱ < 3 ;
2. the vector Ξ = 0 and rankM = 1 .

Let the vector V = (v1, v2, v3, v4) be the external product of vectors α(1), α(2),
and α(3). For its calculation it is necessary to write the vector U = (u1, u2, u3, u4)
over the matrix ᾱ and to calculate a determinant of this resulting square matrix.

Then we calculate det =
4∑

i=1

viui, where vi are the components of the external

Calculation of Normal Forms of the Euler–Poisson Equations 65

product. We will say that the formal integral (12) is locally independent from
known integrals, if its linear approximation in z, ρ, w is linearly independent
on the first approximations of the known integrals. Thus, we have proved the
following theorem:

Theorem 1. For existence of the additional formal integral at a point of families
F± it is necessary the satisfaction at this point of one of two conditions:

1. Ξ �= 0 and V = 0 ;
2. Ξ = 0 and rankM < 2 .

4 The Case of r̃ = 1, s̃ = 2

In this case, r̃ + s̃ = 3, i.e., it is odd, resonant variables (10) are

w = z23z6, w̃ = z24z5 .

The first integrals look like (13). Let the normal form be calculated

żj = zjgj
def
= zj

∑
gjQZ

Q, j = 1, . . . , 6 . (21)

We specify a connection of coefficients in the equation (17) and in the system
(18) with coefficients in (21). Let

G1
def
= g3 + g4

def
=
∑

G1QZ
Q ,

G2
def
= g5 + g6

def
=
∑

G2QZ
Q ,

G3
def
= 2g3 + g6

def
=
∑

G3QZ
Q .

(22)

Then
ξ1 = g1(−1,0,4,0,0,2), ξ2 = g2(0,−1,4,0,0,2) ,
ξ3 = G1(0,0,3,−1,0,2), ξ4 = G2(0,0,4,0,−1,1) ,
η11 = g1(0,0,4,0,0,2), η12 = g1(−1,1,4,0,0,2) ,
η13 = g1(−1,0,5,1,0,2), η14 = g1(−1,0,4,0,1,3) ,
η21 = g2(1,−1,4,0,0,2), η22 = g2(0,0,4,0,0,2) ,
η23 = g2(0,−1,5,1,0,2), η24 = g2(0,−1,4,0,1,3) ,
η31 = G1(1,0,3,−1,0,2), η32 = G1(0,1,3,−1,0,2) ,
η33 = G1(0,0,4,0,0,2), η34 = G1(0,0,3,−1,1,3) ,
η41 = G2(1,0,4,0,−1,1), η42 = G2(0,1,4,0,−1,1) ,
η43 = G2(0,0,5,1,−1,1), η44 = G2(0,0,4,0,0,2) ,
ζ1 = G3(1,0,0,0,0,0), ζ2 = G3(0,1,0,0,0,0) ,
ζ3 = G3(0,0,1,1,0,0), ζ4 = G3(0,0,0,0,1,1) .

(23)

For the integral

A =
∑

aQZ
Q (24)

in the notations (13) and (16) we get

α1 = a(1,0,0,0,0,0), α2 = a(0,1,0,0,0,0) ,
α3 = a(0,0,1,1,0,0), α4 = a(0,0,0,0,1,1) ,
β = a(0,0,4,0,0,2) .

(25)

66 A.D. Bruno and V.F. Edneral

Let us notice that for a calculation of the vector V , i.e., α
(j)
i , it is necessary to

calculate normal form and integrals (20) up to the 2nd order, for the vector Ξ
— up to the 4th, and the matrix M , i.e. ηij , — up to the 7th order.

4.1 Calculation of Known Integrals at the Resonance 1:2

Along curves F+ and F−, the normal forms of system (4) up to terms of the
first order (i.e., up to the terms which are square free in variables of the system)
were analytically calculated. Thus, we calculated also the three first integrals
(20) in coordinates of the normal form. In particular, coefficients α1, α2, α3, α4

for each of these three integrals in (16) were obtained as functions in δ = ±1
and c ∈ IR(0, 2].

α(j) = (α
(j)
1 , α

(j)
2 , α

(j)
3 , α

(j)
4) are the vectors of coefficients of the integrals

Fj , j = 1, 2, 3 in (20). According to the text before the statement of Theorem
1 we form from the vectors α(1), α(2), and α(3) their external product V =
(v1, v2, v3, v4). It has appeared that the vector V along the curves F+ and F−
can be calculated analytically as follows. Firstly we make the uniformization

c =
18h

80 + 34h− h2
, (26)

i.e., we replace the parameter c by the parameter h. This uniformization has
two branches. We choose the single-valued branch where c ∈ IR unambiguously
corresponds to h ∈ IR and which is defined by the interval

− 2.20937 ≈ 17− 3
√
41 < h < 17 + 3

√
41 ≈ 36.2094 , (27)

which ends are roots of a denominator in (26). At δ = 1, i.e., on F+, it turns out

p0 =
1

6

√
−4 + 640

h
− h

2
. (28)

Components vi of the external product V are

v1 =
−(320+(40−h)h)2(80+h2)

1296h3 ,

v2 =
−(320+(40−h)h)2

7776h4
√

2(32−h)(40+h)/h ×

×(−102400+h(−41600−h(5040+(40−h)h))) ,
v3 =

−(320+(40−h)h)2
18h(40+h)

,

v4 =
(320+(40−h)h)2

9(32−h)h2 .

The equation V = 0, i.e., the system of four equations

vi = 0, i = 1, 2, 3, 4 , (29)

has only two solutions

Calculation of Normal Forms of the Euler–Poisson Equations 67

h1 = 4(5− 3
√
5) ≈ −6.83282 ,

h2 = 4(5 + 3
√
5) ≈ 46.83282 .

(30)

Both these solutions lay outside the interval (27). Hence, at δ = 1, external
product V �= 0.

Similarly, at δ = −1 we have

p0 =
1

3

√
−1 + 10

h
− 2h , (31)

v1 =
−(20+(10−h)h)2(80+h2)

81h3
,

v2 =

√
−1+(10/h)−2h(20+(10−h)h)2

243h3(h−2)(2h+5) ×
×(−800+h(−400+h(630+h(−65+2h)))) ,

v3 =
16(20+(10−h)h)2

9h2(h−2) ,

v4 =
(20+(10−h)h)2

9h(2h+5) .

The system of equations (29) has thus only two solutions

h3 = 5− 3
√
5 ≈ −1.7082 ,

h4 = 5 + 3
√
5 ≈ 11.7082 .

(32)

Both of them lay in the interval (27). With respect to (26) that solutions corre-
spond to values c

c(h3) = −(
√
5 + 1)/2 ≈ −1.618034 ,

c(h4) = (
√
5− 1)/2 ≈ 0.618034 .

Only the last value of c lays in semi-interval IR (0, 2], and along the curve F− it
corresponds to the exclusive point (7). At the exclusive point, the matrix of the
linear part has not simple elementary divisors and the developed theory does
not work. Hence along the curve F− the external product V �= 0.

Thus, at the resonance 1:2 the external product V anywhere in the mechan-
ical area does not equal to zero, i.e., the first condition of Theorem 1 is not
satisfied. Below we examine the second series of the conditions of existence of
the additional formal integral.

4.2 The Case Ξ = 0

According to (16) and (23), from coefficients of the normal form it is possible to

calculate the vector (ξ1, ξ2, ξ3, ξ4)
def
= Ξ as a functions in δ = ±1 and c ∈ IR (0, 2].

In papers [7,8], the normal forms up to the terms of the 4th order have been

68 A.D. Bruno and V.F. Edneral

calculated, and from these normal forms, the values ξ3, ξ4 were calculated as
well. These calculations used the uniformization (34) allowing to get rid of dou-
ble radicals at diagonalization of the linear part of system (4) and were made
on some grid of rational values of h. It was not possible to calculate the normal
form up to the 4th order completely in analytical form in view of the neces-
sity to treat extremely complicated results containing expressions with square
roots of polynomials in parameter h which do not allow any uniformization. The
calculation, however, was performed completely in the rational arithmetic with
deduction of all roots from rational numbers, i.e., without any rounding off.

It has appeared that the values ξ3 and ξ4 are equal to zero only simultaneously
and only at

c1 = 1, c2 = 1/2, c3 ≈ 0.2527783, for δ = 1 ;
c1 = 1, c2 = 1/2, c4 ≈ 0.0452287, c5 ≈ 0.1893723 ,
c6 ≈ 0.51292, for δ = −1 .

(33)

The approximate values for points c3, c4, c5, and c6 here mean that intervals in
which there is a change of a sign of ξ3 and ξ4 are known to us, and we bring
values of the centers of these intervals. Below, in Subsection 4.3, boundaries of
intervals are specified.

The additional calculations carried out after the publication of papers [7,8]
have shown that at the points (33), values ξ1 and ξ2 are equal to zero also
according to (23) and (16). Therefore, there Ξ = 0, and for checking Theorem 1
it is necessary to calculate at points (33) the rank of the matrix M with respect
to (19), (16) and (23).

4.3 Calculation of the Rank of the Matrix M at Points (33)

To calculate the entries of the matrix M , the coefficients of the normal form
were calculated up to the 7th order. As rational points c1 = 1 and c2 = 1/2
are known precisely, exact values of coefficients of the normal form are obtained
there, i.e., we know exact expressions for the matrix M . At c = 1 for δ = ±1
it has appeared that rank M = 0, i.e., all entries of this matrix are zero. At
c = 1/2, the matrix M is

M =

⎛⎜⎜⎝
0 −111i/(16√2) 117i/28 −7i/32 −i/2
0 111i/16 −117i/(64√2) 7i/(16

√
2) i/

√
2

0 111i/(2
√
2) −117i/16 7i/4 4i

0 −333i/(32√2) 351i/256 −21i/64 −3i/4

⎞⎟⎟⎠ for δ = 1 ,

M =

⎛⎜⎜⎝
0 −24/√7 −85i/4 0 −7i/2
0 −96i/7 85/

√
7 0 2

√
7

0 576/(49
√
7) 510i/49 0 12i/7

0 219/(7
√
7) 6205i/224 0 73i/16

⎞⎟⎟⎠ for δ = −1 .

In the both values of δ rank M = 1. It agrees with the theory above.

Calculation of Normal Forms of the Euler–Poisson Equations 69

At other points (33) where Ξ = 0, the c values can be calculated only ap-
proximately, that complicates the calculation of the rank of the matrix M there.
To overcome this difficulty, for each point ci (i = 3, 4, 5, 6) three numbers

c
(1)
i < c

(2)
i < c

(3)
i were chosen in such a way that c

(1)
i and c

(3)
i laid at borders

of the interval which contained the point c
(2)
i . At these three points, the corre-

sponding minors of the third and second order of the matrix M were calculated,
and the matrixes ResM3 and ResM2 were formed from them accordingly. These
matrixes were constructed so: a) a check was made for each of minors that all
of its elements are pure real or pure imaginary. In the last case, the imaginary
unit was eliminated. After that each minor should be pure real; b) monotony
of the sequence of values of the minor at three specified above values of ci of
the parameter c was checked. If these three values behaved monotonously then:
if signs of the first and the last values of the minor were opposite, the element
of the matrix ResM3 or ResM2 was assigned to zero, otherwise the element
was replaced with a string from these three values of the minor that allows to

analyze, whether vanishing the minor inside of the interval (c
(1)
i , c

(3)
i) is possible.

The value c
(2)
i at an internal point of the interval allows to clear an opportunity

of zeroing the minor in a parabolic way.
All minors were calculated in exact arithmetic, and results presented below

are the approximated values obtained from exact calculations of corresponding
analytical values of the minors by floating-point arithmetic with internal accu-
racy of 24 digits.

Here it was used different from (26) uniformization

c =
18h

h2 + 34h− 80
(34)

with
− 17 + 3

√
41 ≈ 2.20937 < h <∞ , (35)

that define the unique correspondence of h ∈ IR with values of c ∈ IR.

Let us describe results for the point c3. For it, c
(1)
3 is

c = 2759625/10917334≈ 0.2527746 ,
h = 4906/125 ≈ 39.248 > 2.20937 ,

p0 =
√
23684086/12265/15 ,

here

Ξ = (−0.0030096i,−0.0173395i, 0.000254485i,−0.000350348i) ,
c
(2)
3 is

c = 78494000/310525001≈ 0.2527784 ,
h = 39247/1000≈ 39.247 ,

p0 = (3/10)
√
18712389/196235 ,

here

Ξ = (−0.0013087i,−0.00753993i, 0.000110666i,−0.00015235i) ,

70 A.D. Bruno and V.F. Edneral

c
(3)
3 is

c = 176607000/698653129≈ 0.252782 ,
h = 19623/500 ≈ 39.246 ,

p0 =
√
378906379/196230/15 ,

here

Ξ = (0.000391896i, 0.00225786i,−0.0000331409i, 0.0000456228i) .

It is easy to see that a change of a sign of elements of the vector Ξ occurs in the

interval (c
(2)
3 , c

(3)
3).

It has appeared that the matrix ResM3 consists only of zeroes. The first
string of the matrix ResM2 consists of zeroes also but all the others consist of

elements — strings of the kind (a(c
(1)
3), a(c

(2)
3), a(c

(3)
3)), and they are numbers

of the same sign closed among themselves, and some of them are large numbers
which have an order near 104. Hence, at the point c3 we have

rankM = 2 . (36)

The situations with the rank M at the points c4, c5, c6 are the same, and values
of h4, h5, h6 > 2.20937 satisfy inequality (35). Therefore, we omit the detailed
descriptions of them.

So, at points c3, c4, c5, c6 equality (36) takes place, i.e., the second of conditions
of Theorem 1 is not satisfied. According to this theorem at the points above, the
system (4) has no additional formal integral, i.e., it is not integrable.

5 Conclusion

The considered system (4) has no additional first integral which would be in-
dependent of classical ones (20). So the system is integrable at the parameter
values c = 1 and c = 1/2 only.

References

1. Bruno, A.D.: Theory of Normal Forms of the Euler–Poisson Equations. Preprint
No. 100, Keldysh Institute for Applied Mathematics of RAS, Moscow (2005),
http://library.keldysh.ru/preprint.asp?lg=e&id=2005-100 (abstract),
http://dl.dropbox.com/u/59058738/Preprint100.pdf (full text in Russian)

2. Golubev, V.V.: Lectures on the Integration of the Equation of Motion of a Rigid
Body about of Fixed Point. Gostehizdat, Moscow (1953) (in Russian); NSF Israel
Program for Scientific Translations, Washington (1960) (in English)

3. Bruno, A.D.: Power Geometry in Algebraic and Differential Equations. Nauka,
Moscow (1998); Elsevier, Amsterdam (2000)

4. Edneral, V.F., Khanin, R.: Application of the resonant normal form to high or-
der nonlinear ODEs using MATHEMATICA. Nuclear Instruments and Methods in
Physics Research A 502(2-3), 643–645 (2003)

http://library.keldysh.ru/preprint.asp?lg=e&id=2005-100
http://dl.dropbox.com/u/59058738/Preprint100.pdf

Calculation of Normal Forms of the Euler–Poisson Equations 71

5. Edneral, V.F.: An Algorithm for Construction of Normal Forms. In: Ganzha, V.G.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 134–142.
Springer, Heidelberg (2007)

6. Bruno, A.D., Sadov, S.Y.: Formal integral of a divergentless system. Matem. Zametki
57(6), 803–813 (1995); Mathematical Notes 57(6), 565–572 (1995)

7. Bruno, A.D., Edneral, V.F.: Normal Forms and Integrability of ODE Systems. In:
Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718,
pp. 65–74. Springer, Heidelberg (2005)

8. Bruno, A.D., Edneral, V.F.: Normal form and integrability of ODE systems. Pro-
grammirovanie 32(3), 22–29 (2006); Programming and Computer Software 32(3),
1–6 (2006)

Stability of Equilibrium Positions in the Spatial

Circular Restricted Four-Body Problem

Dzmitry A. Budzko1 and Alexander N. Prokopenya2,3

1 Brest State University,
Kosmonavtov bul. 21, 224016, Brest, Belarus

master booblik@tut.by
2 Warsaw University of Live Sciences

Nowoursynowska str. 159, 02-787 Warsaw, Poland
3 Collegium Mazovia Innovative University in Siedlce ,

ul. Sokolowska 161, 08-110, Siedlce, Poland
alexander prokopenya@sggw.pl

Abstract. We study stability of equilibrium positions in the spatial cir-
cular restricted four-body problem formulated on the basis of Lagrange’s
triangular solution of the three-body problem. Using the computer alge-
bra system Mathematica, we have constructed Birkhoff’s type canonical
transformation, reducing the Hamiltonian function to the normal form
up to the fourth order in perturbations. Applying Arnold’s and Mar-
keev’s theorems, we have proved stability of three equilibrium positions
for the majority of initial conditions in case of mass parameters of the
system belonging to the domain of the solutions linear stability, except
for the points in the parameter plane for which the third and fourth order
resonance conditions are fulfilled.

1 Introduction

The theory of stability of the Hamiltonian systems is developed quite well, and a
number of problems of motion stability have been solved (see, for example, [1]).
A classical example is a problem of libration points stability in the restricted
three-body problem [2,3] that was introduced first by Euler in connection with
his lunar theory. This problem is highly interesting for applications, and so it
has been a major topic in celestial mechanics during the past two hundred years.
Finally some general methods for studying the stability of Hamiltonian systems
have been developed [3,4,5]. However, application of these methods involves very
bulky symbolic calculations which can be reasonably done only with computer
and modern software such as the computer algebra system Mathematica [6], for
example. Besides, stability analysis of more complicated dynamical systems re-
quires improvement of available computing technique and designing new efficient
algorithms of calculation, and this stimulates further investigations in this field.

In our previous paper [7], we have considered the circular restricted four-body
problem formulated on the basis of Lagrange’s triangular solution of the three-
body problem. Remind that within the framework of this problem, three point

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 72–83, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Stability of Equilibrium Positions 73

particles P0, P1, P2 having masses m0, m1, m2, respectively, move uniformly
on circular Keplerian orbits around their common center of mass and form an
equilateral triangle at any instant of time. We are interested in the motion of
the fourth particle P3 of negligible mass that moves in the gravitational field of
P0, P1, and P2. It has been shown that for small values of the system parameters,
the problem has eight equilibrium solutions of which only three may be stable.
We have studied the stability of equilibrium solutions in the planar case (see [7])
when the particle P3 is constrained to move in the xOy plane. The present work
is a generalization of [7] and is devoted to the stability analysis of equilibrium
solutions in the spatial circular restricted four-body problem when the system
has three degrees of freedom.

In Section 2, we describe equilibrium solutions and analyze their linear sta-
bility. In Section 3, we discuss the algorithm for normalization of the third-order
term in the Hamiltonian expansion and analyze the stability of the equilibrium
solutions under the third-order resonance. In Section 4, we normalize the fourth-
order term of the Hamiltonian and apply theorems of Arnold and Markeev.
Finally, we conclude in Section 5.

2 Linear Stability of Equilibrium Solutions

In the rotating frame of reference, where the particles P0, P1, P2 are fixed in
the xOy plane at points (0, 0), (1, 0), (1/2,

√
3/2), respectively, the Hamiltonian

function of the system can be written in the form

H =
1

2

(
p2x + p2y + p2z

)− xpy + ypx +
1

1 + μ1 + μ2

((
μ1 +

μ2

2

)
x+

μ2

√
3

2
y −

− 1√
x2 + y2 + z2

− μ1√
(x− 1)2 + y2 + z2

− 2μ2√
(2x−1)2 + (2y−√3)2 + z2

⎞⎠(1)

where x, px, y, py, and z, pz are three pairs of canonically conjugate coordinate
and momentum. Two mass parameters are defined as

μ1 = m1/m0 , μ2 = m2/m0 .

Using the Hamiltonian (1), one can easily write the equations of motion of the
particle P3 and show that its equilibrium positions lie only in the xOy plane (z =
0). The corresponding equilibrium coordinates are determined as the solutions
of the following algebraic system

(y − x
√
3)

(
1

(x2+y2)3/2
− 1

)
= μ1(y+

√
3(x−1))

(
1

((x−1)2 + y2)3/2
− 1

)
,

y

(
1

(x2+y2)3/2
−1
)
=μ2(y+

√
3(x−1))

⎛⎜⎜⎜⎝1− 1((
x− 1

2

)2
+
(
y−

√
3
2

)2) 3
2

⎞⎟⎟⎟⎠ .(2)

74 D.A. Budzko and A.N. Prokopenya

Each equation of the system (2) determines a curve in the xOy plane, which
can be easily visualized with the Mathematica built-in function ContourP lot, for
example. So geometrically any equilibrium position of the particle P3 corresponds
to an intersection point of two curves (Fig. 1).

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x

y

P0 P1

P2

S1

S2

S3

S4

S5

S6

S7

S8

L1 L2L3

L4

L5

Fig. 1. Eight equilibrium positions S1, . . . , S8 for μ1 = 0.2, μ2 = 0.15

Note that for any given μ1 > 0 the solid line in Fig. 1, determined by the first
equation of system (2), is fixed, and it always passes through the points P0, P1,
P2, and (1/2,−√3/2). In case of μ2 = 0, the thick dashed line, determined by
the second equation of system (2), degenerates into the line y = 0 and the circle
x2 + y2 = 1. Hence, system (2) has three roots at the Ox axis and two roots
at points (1/2,±√3/2), and these five roots correspond to the libration points
L1, L2, L3, and L4, L5 in the three-body problem (see [2], [3]). Increasing the
value of μ2, one can observe that the three equilibrium points located on the
Ox axis when μ2 = 0, as well as the equilibrium point (1/2,−√3/2), gradually
move in the xOy plane along the solid line (the points S5 – S8 in Fig. 1). The
point x = 1/2, y =

√
3/2 generates four new equilibrium positions (the points

S1 – S4 in Fig. 1), one by each branch of the solid line outgoing the point P2.
Thus, graphical analysis indicates that there are eight roots of system (2) for
small values of parameters μ1, μ2.

The problem of solving system (2) has been analyzed in detail in [8]. So we
assume here that all equilibrium positions (x0, y0) of the particle P3 can be found
in the xOy plane for any values of parameters μ1, μ2. We can then expand the
Hamiltonian (1) into Taylor series in the neighborhood of some equilibrium point
and represent it in the form

H = H2 +H3 +H4 + . . . , (3)

whereHk is the kth order homogeneous polynomial with respect to the canonical
variables x, y, z, px, py, pz. Note that zero-order term H0 in (3) has been omitted
as a constant, which doesn’t influence the equations of motion, and the first-order

Stability of Equilibrium Positions 75

term H1 is equal to zero owing to equations determining equilibrium positions.
Therefore, the first non-zero term in the expansion (3) is a quadratic one that is

H2 =
1

2

(
p2x + p2y + p2z

)− pyx+ pxy + h20x
2 + h11xy + h02y

2 + h2zz
2 , (4)

where

h20 =
1

2(1 + μ1 + μ2)

(
y20 − 2x20

(x20 + y20)
5/2

+ μ1
y20 − 2(x0 − 1)2

((x0 − 1)2 + y20)
5/2

+

+μ2
(y0 −

√
3/2)2 − 2(x0 − 1/2)2

((x0 − 1/2)2 + (y0 −
√
3/2)2)5/2

)
,

h11 = − 3

1 + μ1 + μ2

(
x0y0

(x20 + y20)
5/2

+ μ1
(x0 − 1)y0

((x0 − 1)2 + y20)
5/2

+

+μ2
(x0 − 1/2)(y0 −

√
3/2)

((x0 − 1/2)2 + (y0 −
√
3/2)2)5/2

)
,

h02 =
1

2(1 + μ1 + μ2)

(
x20 − 2y20

(x20 + y20)
5/2

+ μ1
(x0 − 1)2 − 2y20

((x0 − 1)2 + y20)
5/2

+

+μ2
(x0 − 1/2)2 − 2(y0 −

√
3/2)2

((x0 − 1/2)2 + (y0 −
√
3/2)2)5/2

)
,

h2z =
1

2(1 + μ1 + μ2)

(
1

(x20 + y20)
3/2

+
μ1

((x0 − 1)2 + y20)
3/2

+

+
μ2

((x0 − 1/2)2 + (y0 −
√
3/2)2)3/2

)
.

One can readily check that the linearized equations of motion determined by
the quadratic part H2 of the Hamiltonian (3) form a sixth-order linear sys-
tem of differential equations with constant coefficients. Characteristic exponents
λ1, . . . , λ6 for such a system can be easily found and are represented in the form

λ1,2 = ±iσ1 , λ3,4 = ±iσ2 , λ5,6 = ±iσ3 , (5)

where i is the imaginary unit, and the frequencies σ1, σ2, σ3 are given by

σ1,2 =

(
1 + h20 + h02 ±

√
h220 + h202 + h211 − 2h20h02 + 4h20 + 4h02

)1/2

, (6)

σ3 =
√
2h2z . (7)

One can readily deduce from (4) and (7) that σ3 is a real number for all possible val-
ues of the mass parameters μ1, μ2. Analysis of the frequencies (6) for all eight equi-
librium positions (see Fig. 1) has shown [7] that for the points S2, S3, S5, S6, S8

at least one frequency has an imaginary part for any values of parameters μ1, μ2.

76 D.A. Budzko and A.N. Prokopenya

Therefore, these five equilibrium positions are unstable. Equilibrium points S1, S4

andS7 are stable in linear approximation if parametersμ1,μ2 are smaller than their
values on the stability boundaries which are determined by the condition σ1 = σ2.
The corresponding curve for the equilibrium point S7 is shown in the μ1Oμ2 plane
in Fig. 2 together with some resonance curves.

0.01 0.02 0.03 0.04
Μ1

0.005

0.010

0.015

0.020

Μ2

Σ1� Σ2

2Σ2� Σ3

Σ1� 2Σ2

Σ1� 3Σ2

2Σ1� Σ2�Σ3

3Σ2� Σ3

Fig. 2. Stability domain and resonance curves for equilibrium position S7

3 Normalization of the Third-Order Term H3

As in the planar case [7], the problem of equilibrium positions S1, S4, S7 stabil-
ity can be solved only in a strict nonlinear formulation based on Arnold’s and
Markeev’s theorems. It becomes clear as soon as we normalize the quadratic part
H2 in the Hamiltonian expansion (3). An algorithm for constructing the corre-
sponding canonical transformation is described in detail in [10]. Doing necessary
symbolic calculations, we obtain the second order term H2 in the form

H2 =
1

2

(
σ1(p

2
1 + q21)− σ2(p

2
2 + q22) + σ3(p

2
3 + q23)

)
, (8)

where p1, q1, p2, q2, and p3, q3 are three pairs of new canonically conjugated
variables.

It is obvious that the quadratic form (8) is neither positive nor negative defined
function and, hence, we cannot conclude on stability or instability of equilibrium
solutions, using the principle of linearized stability [11]. Therefore, the stability
problem can be solved only in a strict nonlinear formulation. As stability analysis
of the equilibrium positions S1, S4, S7 is done in a similar way we’ll analyze only
stability of the point S7 in detail.

To normalize the third order term H3 in the Hamiltonian (4) we use the
method of constructing the Birkhoff’s type real-valued canonical transformation
described in [12]. It should be noted that, in contrast to [12], the system under
consideration has two parameters μ1 and μ2 and three degrees of freedom, and
due to this reason the calculations are much more bulky and difficult (see [7]).

Stability of Equilibrium Positions 77

After realization of the first canonical transformation, normalizing the quadratic
part H2, the third order term H3 becomes

H3 =
∑

i+j+k+l+m+n=3

h
(3)
ijklmnq

i
1q

j
2q

k
2p

l
1p

m
2 p

n
3 . (9)

Due to their bulk we do not provide here the corresponding expressions for

h
(3)
ijklmn. And we’d like to find such canonical transformation that the third-

order term H3 in the expansion (3) was eliminated. Generating function for
such transformation can be sought in the form of third-degree polynomial

S(p̃1, p̃2, p̃3, q1, q2, q3) = q1p̃1+q2p̃3+q3p̃2+
∑

i+j+k+l+m+n=3

s
(3)
ijklmnq

i
1q

j
2q

k
3 p̃

l
1p̃

m
2 p̃

n
3 ,

(10)

where coefficients s
(3)
ijklmn are to be found. Then new momenta p̃1, p̃2, p̃3 and

coordinates q̃1, q̃2, q̃3 are determined by the following relationships

q̃k =
∂S

∂p̃k
, pk =

∂S

∂qk
, k = 1, 2, 3 . (11)

Note that these relationships are equations with respect to the former canonical
variables q1, q2, q3, p1, p2, p3. On substituting (10) into (11) and solving these
equations, we find q1, q2, q3, p1, p2, p3 in the form of second-degree polynomials
in the new canonical variables q̃1, q̃2, q̃3, p̃1, p̃2, p̃3. Then we substitute the
corresponding expressions into (8), (9) and expand the HamiltonianH = H2+H3

into Taylor series in powers of q̃1, q̃2, q̃3, p̃1, p̃2, p̃3. The expression obtained is
again represented as a sum of homogeneous polynomials H̃k (k = 2, 3, ...) with
respect to canonical variables q̃1, q̃2, q̃3, p̃1, p̃2, p̃3. One can readily check that
the second-order term H̃2 preserves the form (8), while the third-order term H̃3

is a sum of 56 terms of the form

h̃
(3)
ijklmn q̃

i
1q̃

j
2q̃

k
3 p̃

l
1p̃

m
2 p̃

n
3 (i+ j + k + l +m+ n = 3) (12)

with new coefficients h̃
(3)
ijklmn which are expressed as linear functions of old coeffi-

cients h
(3)
ijklmn and unknown coefficients s

(3)
ijklmn of the generating function (10).

Obviously, the third-order term H̃3 would be eliminated if all the coefficients

h̃
(3)
ijklmn in (12) were equal to zero. Therefore, we can try to solve the system of

fifty six equations of the form h̃
(3)
ijklmn = 0 and to find the coefficients s

(3)
ijklmn of

the corresponding canonical transformation (11).

Analysis of the coefficients h̃
(3)
ijklmn shows that in fact we have several indepen-

dent subsystems for determination of unknown coefficients s
(3)
ijklmn . As all these

subsystems are solved similarly, we consider only two of them to demonstrate
the most important peculiarities of their solving. The first subsystem is formed
by three coefficients of p̃1p̃

2
2, p̃1q̃

2
2 , q̃1q̃2p̃2 in the expression for H̃3. It determines

the coefficients s
(3)
010110, s

(3)
100020, s

(3)
120000 and is given by

h̃
(3)
000120 = h

(3)
000120 + s

(3)
100020σ1 − s

(3)
010110σ2 ,

78 D.A. Budzko and A.N. Prokopenya

h̃
(3)
020100 = h

(3)
020100 + s

(3)
120000σ1 + s

(3)
010110σ2 ,

h̃
(3)
110010 = h

(3)
110010 − s

(3)
010110σ1 + 2s

(3)
100020σ2 − 2s

(3)
120000σ2 . (13)

Note that coefficients s
(3)
010110, s

(3)
100020, s

(3)
120000 appear only in the expressions for

h̃
(3)
ijklmn given in (13) and so they are completely determined by this system. It

has a unique solution for any values of h̃
(3)
ijklmn if its determinant being equal to

σ1(4σ
2
2 −σ2

1) is not zero. In such a case we can set h̃
(3)
000120 = h̃

(3)
020100 = h̃

(3)
110010 =

0 and find the corresponding coefficients s
(3)
010110, s

(3)
100020, s

(3)
120000. Therefore, if

σ1 �= 0 and the conditions
σ1 ± 2σ2 �= 0 (14)

are fulfilled the three terms (12) with coefficients h̃
(3)
000120, h̃

(3)
020100, h̃

(3)
110010 are

eliminated in H̃3 by means of the canonical transformation (11).

The second subsystem determines the coefficients s
(3)
001020, s

(3)
010011, s

(3)
021000 and

is given by

h̃
(3)
000021 = −s(3)010011σ2 + s

(3)
001020σ3 ,

h̃
(3)
011010 = 2s

(3)
001020σ2 − 2s

(3)
021000σ2 − s

(3)
010011σ3 ,

h̃
(3)
020001 = s

(3)
010011σ2 + s

(3)
021000σ3 . (15)

Determinant of its matrix is equal to σ3(4σ
2
2 − σ2

3) and, hence, it has a unique

solution for any values of h̃
(3)
ijklmn if σ3 �= 0 and 2σ2 ± σ3 �= 0. However, one

can readily see that in case of h̃
(3)
000021 = h̃

(3)
011010 = h̃

(3)
020001 = 0 subsystem

(15) has a trivial solution s
(3)
001020 = s

(3)
010011 = s

(3)
021000 = 0 even if σ3 = 0 or

2σ2 ± σ3 = 0. Therefore, the corresponding three terms (12) are eliminated in
H̃3 by means of the canonical transformation (11) and third-order resonance of
the form 2σ2 ± σ3 = 0 has no influence on stability of equilibrium solutions.

Inspection of the remaining 50 coefficients h̃
(3)
ijklmn shows that if σ1 �= 0,

σ2 �= 0, σ3 �= 0 and the conditions

2σ1 ± σ2 �= 0 , σ1 ± 2σ3 �= 0 , σ2 ± 2σ3 �= 0 (16)

are fulfilled, in addition to (14), all the coefficients s
(3)
ijklmn of the canonical

transformation (11) are found in a unique way. In this case, we can set h̃
(3)
ijklmn =

0 and find the canonical transformation such that the third-order term H̃3 in the
Hamiltonian (3) vanishes. Note that conditions (14) and (16) imply an absence
of third-order resonances in the system (see [1]).

Analyzing frequencies (6) and (7), we obtain that for the linearly stable equi-
librium point S7 there exist values of parameters μ1, μ2, for which the condition
of third-order resonance σ1−2σ2 = 0 is fulfilled (see Fig. 2). Thus, for the points
(μ1, μ2) in the μ1Oμ2 plane located on the corresponding resonance curve, con-
dition (14) is not fulfilled and, hence, the system (13) does not have a solution in

case of h̃
(3)
ijklmn = 0. For the same reason the coefficients h̃

(3)
100020, h̃

(3)
120000, h̃

(3)
010110

Stability of Equilibrium Positions 79

can not be eliminated under the third-order resonance, as well. It means that
the corresponding six resonance terms in H̃3 cannot be eliminated.

Nevertheless, we can require the following conditions to be fulfilled

h̃
(3)
000120 =

B1

2
√
2
, h̃

(3)
020100 = − B1

2
√
2
, h̃

(3)
110010 = −B1√

2
, (17)

h̃
(3)
010110 =

B2√
2
, h̃

(3)
100020 =

B2

2
√
2
, h̃

(3)
120000 = − B2

2
√
2
, (18)

where B1, B2 are constants. Solving the systems of equations (17), (18), we

obtain the corresponding coefficients s
(3)
ijklmn of the canonical transformation

(11) and find the constants B1, B2 as

B1 =
1√
2
(h

(3)
000120 − h

(3)
020100 − h

(3)
110010) ,

B2 =
1√
2
(h

(3)
010110 + h

(3)
100020 − h

(3)
120000) . (19)

Then the Hamiltonian (3) takes the form

H̃ =
1

2
σ1
(
q̃21 + p̃21

)− 1

2
σ2
(
q̃22 + p̃22

)
+

B1

2
√
2

(
p̃1p̃

2
2 − p̃1q̃

2
2 − 2q̃1q̃2p̃2

)
+

+
B2

2
√
2

(
q̃1p̃

2
2 − q̃1q̃

2
2 + 2q̃2p̃1p̃2

)
+ H̃4 + (20)

Using the standard canonical transformation

q̃1 =
√
2τ1 sin(ϕ1 + α) , p̃1 =

√
2τ1 cos(ϕ1 + α) ,

q̃2 =
√
2τ2 sinϕ2 , p̃2 =

√
2τ2 cosϕ2 , (21)

where parameter α is determined by the relationships

cosα =
B1

B
, sinα =

B2

B
, B =

√
B2

1 +B2
2 ,

we rewrite the Hamiltonian (20) as

H̃ = σ1τ1 − σ2τ2 +Bτ2
√
τ1 cos(ϕ1 + 2ϕ2) + H̃4(ϕ1, ϕ2, τ1, τ2) + (22)

We have done numerical analysis of parameter B for the equilibrium point S7

under third-order resonance and shown that it is not equal to zero for all points
(μ1, μ2) belonging to the resonance curve (see Fig. 3). Therefore, applying Mar-
keev’s theorem [1], we can conclude that equilibrium point S7 in the circular
restricted four-body problem, formulated on the basis of Lagrange’s triangular
solutions, is unstable under third-order resonance of the form σ1 = 2σ2.

80 D.A. Budzko and A.N. Prokopenya

0.005 0.010 0.015 0.020 0.025
1

2

4

6

8

10

B

Fig. 3. Parameter B as function of μ1 in the case of resonance σ1 = 2σ2 for S7

4 Normalization of the Fourth-Order Term H4

Let us assume that the condition σ1 �= 2σ2 is fulfilled and that there is no reso-
nance in the system up to the third order inclusively. Then after normalization
of the second and third order terms we obtain the Hamiltonian (3) in the form

H̃ = H̃2 + H̃4 + . . . , (23)

where the second order term H̃2 preserves the normal form (8). The third-order
term H̃3 is absent, and the fourth-order term H̃4 may be written as

H̃4 =
∑

i+j+k+l+m+n=4

h̃
(4)
ijklmn q̃

i
1q̃

j
2q̃

k
3 p̃

l
1p̃

m
2 p̃

n
3 . (24)

The sum (24) contains 86 terms but coefficients h̃
(4)
ijklmn are very cumbersome,

and we do not write them here. Again we look for the function

S(p∗1, p
∗
2, p

∗
3, q̃1, q̃2, q̃3) = q̃1p

∗
1+q̃2p

∗
2+q̃3p

∗
3+

∑
i+j+k+l+m+n=4

s
(4)
ijklmn q̃

i
1q̃

j
2q̃

k
3p

∗l
1 p

∗m
2 p∗n3 ,

(25)
generating the canonical transformation reducing the fourth-order term H̃4 to
the simplest form. New momenta p∗1, p

∗
2, p

∗
3 and coordinates q∗1 , q

∗
2 , q

∗
3 are deter-

mined by the relationships

q∗k =
∂S

∂p∗k
, p̃k =

∂S

∂q̃k
, (k = 1, 2, 3) . (26)

Resolving (26) with respect to the old canonical variables in the neighborhood
of the point q∗1 = q∗2 = q∗3 = p∗1 = p∗2 = p∗3 = 0 and substituting the solution into
(23), we expand the Hamiltonian H̃ into the Taylor series in q∗1 , q

∗
2 , q

∗
3 , p

∗
1, p

∗
2,

p∗3. Obviously, the second order term H∗
2 in this expansion again has the normal

form (8). The third-order term H∗
3 is absent, and the fourth-order term H∗

4 is a
sum of 126 terms of the form

h
∗(4)
ijklmnq

∗i
1 q

∗j
2 q∗j3 p∗k1 p∗l2 p

∗l
3 (i + j + k + l +m+ n = 4) ,

Stability of Equilibrium Positions 81

where new coefficients h
∗(4)
ijklmn are linear functions of unknown coefficients s

(4)
ijklmn

determining the generating function (25).

Analysis of the coefficients h
∗(4)
ijklmn shows that they are again divided into sev-

eral independent groups and each group forms a system of equations determining

some coefficients s
(4)
ijklmn. If the following conditions

σ1 �= 0, σ2 �= 0, σ3 �= 0, σ1 ± σ2 �= 0, σ1 ± σ3 �= 0, σ2 ± σ3 �= 0 ,

σ1 ± 3σ2 �= 0, σ1 ± 3σ3 �= 0, 3σ1 ± σ2 �= 0 ,

σ2 ± 3σ3 �= 0, σ1 ± σ2 ± 2σ3 �= 0 , (27)

are fulfilled we can solve the equations h
∗(4)
ijklmn = 0 and find the coefficients

s
(4)
ijklmn of the canonical transformation (26) that eliminates the corresponding
terms in (24). However, there are 21 terms in the expansion (24) which can not
be eliminated. They can be only simplified in such a way that the fourth-order
term H̃4 takes the form

H∗
4 =

1

4

(
c11(p

∗2
1 + q∗21)2 + c22(p

∗2
2 + q∗22)2 + c33(p

∗2
3 + q∗23)2+

+c12(p
∗2
1 + q∗21)(p∗22 + q∗22) + c13(p

∗2
1 + q∗21)(p∗23 + q∗23)+

+ c23(p
∗2
2 + q∗22)(p∗23 + q∗23)

)
.

Then, using the standard canonical transformation

q∗k =
√
2τk sinϕk , p∗k =

√
2τk cosϕk , (k = 1, 2, 3) , (28)

we rewrite the Hamiltonian (23) as

H∗ = H(0) +H∗
5 (ϕ1, τ1, ϕ2, τ2, ϕ3, τ3) + . . . , (29)

where

H(0) = σ1τ1−σ2τ2+σ3τ3+c11τ21+c22τ22+c33τ23+c12τ1τ2+c13τ1τ3+c23τ2τ3 , (30)

and H∗
5 (ϕ1, τ1, ϕ2, τ2, ϕ3, τ3) is the fifth-order term in the expansion (23).

Now we can apply the classical Arnold theorem [4] which states that in the
case of absence of resonances up to the fourth order (included) an equilibrium
solution of the Hamiltonian system is stable for the majority of initial conditions
if the following condition is fulfilled

D3 = det

(
∂2H(0)

∂τi∂τj

)
�= 0 (31)

for τ1 = τ2 = τ3 = 0.

82 D.A. Budzko and A.N. Prokopenya

Numerical analysis of the determinant (31) shows that D3 �= 0 in the domain
of linear stability of equilibrium position S7 which is bounded by the curve σ1 =
σ2 in the μ1Oμ2 plane (see Fig. 2). Cross section of the surface D3 = D3(μ1, μ2)
by the plane μ1 = 0.0160642 shown in Fig. 4 demonstrates dependence of D3 on
parameters μ1, μ2. Note that the point of singularity of D3 corresponds to the
case of third-order resonance σ1 = 2σ2.

0.005 0.010 0.015 0.020
2

20000

10000

10000

20000

30000

D3

Fig. 4. Determinant D3 as function of μ2 for the point S7, μ1 = 0.0160642

Analysis of the frequencies (6) and (7) shows that there exist such points in
the domain of linear stability of equilibrium position S7 in the μ1Oμ2 plane
(see Fig. 2) for which fourth-order resonance conditions of the form σ1 = 3σ2,
3σ2 = σ3, 2σ1 = σ2 + σ3 are fulfilled. It should be noted that the last two
resonances do not influence on stability of equilibrium position S7 because the
corresponding resonance terms in the expansion of the Hamiltonian (24) are
eliminated by the normalizing canonical transformation. The case of resonance
σ1 = 3σ2 was studied in detail in [7] where it was shown that this resonance
produces instability of the equilibrium solution S1. In the spatial case considered,
under fourth-order resonance σ1 = 3σ2, the equilibrium point S7 is unstable too.

5 Conclusion

We have studied the stability of the equilibrium point S7 in the spatial circular
restricted four-body problem formulated on the basis of the Lagrange triangular
solution of the three-body problem. We proved that this equilibrium point is
stable almost for all initial conditions for any values of parameters μ1, μ2 from
the domain of its linear stability in the μ1Oμ2 plane but for the resonance
curves σ1 = 2σ2 and σ1 = 3σ2 shown in Fig. 2. The equilibrium point S7 is
unstable under these two resonances while the resonances 2σ2 = σ3, 3σ2 = σ3
and 2σ1 = σ2 + σ3 do not influence its stability.

Note that all numerical and symbolic computations and visualization of the
obtained results have been done with the computer algebra system Mathematica.
And all the calculations can be easily repeated for other equilibrium points.

Stability of Equilibrium Positions 83

References

1. Markeev, A.P.: Stability of the Hamiltonian systems. In: Matrosov, V.M.,
Rumyantsev, V.V., Karapetyan, A.V. (eds.) Nonlinear Mechanics, pp. 114–130.
Fizmatlit, Moscow (2001) (in Russian)

2. Szebehely, V.: Theory of Orbits. The Restricted Problem of Three Bodies. Aca-
demic Press, New York (1967)

3. Markeev, A.P.: Libration Points in Celestial Mechanics and Cosmodynamics.
Nauka, Moscow (1978) (in Russian)

4. Arnold, V.I.: Small denominators and problems of stability of motion in classical
and celestial mechanics. Uspekhi Math. Nauk 18(6), 91–192 (1963) (in Russian)

5. Moser, J.: Lectures on the Hamiltonian Systems. Mir, Moscow (1973) (in Russian)
6. Wolfram, S.: The Mathematica Book, 4th edn. Wolfram Media/Cambridge Uni-

versity Press (1999)
7. Budzko, D.A., Prokopenya, A.N.: On the Stability of Equilibrium Positions in

the Circular Restricted Four-Body Problem. In: Gerdt, V.P., Koepf, W., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 88–100. Springer,
Heidelberg (2011)

8. Budzko, D.A., Prokopenya, A.N.: Symbolic-numerical analysis of equilibrium so-
lutions in a restricted four-body problem. Programming and Computer Soft-
ware 36(2), 68–74 (2010)

9. Birkhoff, G.D.: Dynamical Systems. GITTL, Moscow (1941) (in Russian)
10. Budzko, D.A., Prokopenya, A.N., Weil, J.A.: Quadratic normalization of the Hamil-

tonian in restricted four-body problem. Vestnik BrSTU. Physics, Mathematics,
Informatics (5), 82–85 (2009) (in Russian)

11. Liapunov, A.M.: General Problem about the Stability of Motion. Gostekhizdat,
Moscow (1950) (in Russian)

12. Gadomski, L., Grebenikov, E.A., Prokopenya, A.N.: Studying the stability of equi-
librium solutions in the planar circular restricted four-body problem. Nonlinear
Oscillations 10(1), 66–82 (2007)

Computing Hopf Bifurcations in Chemical

Reaction Networks Using Reaction Coordinates

Hassan Errami1, Werner M. Seiler1, Markus Eiswirth2, and Andreas Weber3

1 Institut für Mathematik, Universität Kassel, Kassel, Germany
errami@uni-kassel.de, seiler@mathematik.uni-kassel.de

2 Fritz-Haber Institut der Max-Planck-Gesellschaft, Berlin, Germany and Ertl Center
for Electrochemisty and Catalysis, Gwangju Institute of Science and Technology

(GIST), South Korea
eiswirth@fhi-berlin.mpg.de

3 Institut für Informatik II, Universität Bonn, Bonn, Germany
weber@cs.uni-bonn.de

Abstract. The analysis of dynamic of chemical reaction networks by
computing Hopf bifurcation is a method to understand the qualitative
behavior of the network due to its relation to the existence of oscil-
lations. For low dimensional reaction systems without additional con-
straints Hopf bifurcation can be computed by reducing the question of
its occurrence to quantifier elimination problems on real closed fields.
However deciding its occurrence in high dimensional system has proven
to be difficult in practice. In this paper we present a fully algorithmic
technique to compute Hopf bifurcation fixed point for reaction systems
with linear conservation laws using reaction coordinates instead of con-
centration coordinates, a technique that extends the range of networks,
which can be analyzed in practice, considerably.

1 Introduction

In chemical and biochemical systems, reactions networks can be represented as
a set of reactions. If it is assumed they follow mass action kinetics then the dy-
namics of these reactions can be represented by ordinary differential equations
(ODE) for systems without additional constraints or differential algebraic equa-
tions (DAE) for systems with constraints. Particularly, in complex systems it is
sometimes difficult to estimate the values of the parameters of these equations,
hence the simulation studies involving the kinetics is a daunting task. Neverthe-
less, quite a few things about the dynamics can be concluded from the structure
of the reaction network itself. In this context there has been a surge of algebraic
methods, which are based on the structure of network and the associated stoi-
chiometry of the chemical species. These methods provide a way to understand
the qualitative behaviour (e.g. steady states, stability, bifurcations, oscillations,
etc) of the network. The analysis of chemical reaction networks by detecting of
the occurrence of Hopf bifurcation attracts especially more and more interests
in chemical and biological field due to its linkage to oscillatory behaviour.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 84–97, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Computing Hopf Bifurcations in Chemical Reaction Networks 85

A fully algebraic method for the computation of Hopf bifurcation fixed points
for systems with polynomial vector field has already been introduced by El
Kahoui and Weber [1] using the powerful technique of quantifier elimination on
real closed fields [2]. This technique has already been applied to mass action
kinetics of small dimension [3]. Although the method is complete in theory it
fails for systems of higher dimensions in practice.

However the detection of Hopf bifurcation in high dimensional systems and
in systems with constraints as is the case in chemical and biochemical systems
has proven to be difficult. A central method to overcome this difficulty is called
stoichiometric network analysis (SNA). This method has been introduced by
Clark in 1980 [4] and based on the analysis of the system dynamic in the flux
space instead in the concentration space and expand the steady states into a
combination of subnetworks using convex geometry. For the steady state loci
new coordinates that are called reaction coordinates can be introduced. These
methods have been used in several “hand computations” in a semi-algorithmic
way for parametric systems, the most elaborate being described in [5].

Our algorithmic method presented in this paper uses and combines the ideas
of these methods and extends them to a new approach for computing Hopf
bifurcation in complex systems using reaction coordinates also allowing systems
with linear constraints.

2 Chemical Reaction Networks

A chemical reaction occurs when two or more chemical species react to become
new chemical species. This process is usually presented by an equation where
the reactants are given on the left hand side of an arrow and the products on the
right hand side, the numbers next to the species called stoichiometric coefficients
present the amount to which a chemical species participates in a reaction and
the parameter on the arrow called rate constant stands for an experimental con-
stant influencing the reaction velocity. A chemical reaction is called irreversible,
if it proceeds only in one direction, and is called reversible, if it proceeds in ei-
ther directions. An example of a chemical reaction, as it usually appears in the
literature, is the following:

A+B
k−→ 3A+ C

In this reaction, one unit of chemical species A and one of B react (at reaction
rate k) to form three units of A and one of C. The concentrations of these three
species, denoted by xa,xb and xc, will change in time as the reaction occurs.
Under the assumption of mass-action kinetics, species A and B react at a rate
proportional to the product of their concentrations, where the proportionality
constant is the rate constant k. Noting that the reaction yields a net change
of two units in the amount of A [6,7,5], we obtain the following corresponding
differential equations:

86 H. Errami et al.

ẋa = 2kxaxb

ẋb = −kxaxb
ẋc = kxaxb (1)

A chemical reaction network is a finite set of chemical reactions. It can be pre-
sented as a finite directed graph whose vertices are labeled by complexes and
whose edges are labeled by parameters(reaction rate constants). Specifically, the
digraph is denoted G = (V,E), with vertex set V = {1, 2, ...,m} and edge set
E ⊆ {(i, j) ∈ V ×V : i �= j}. A network is reversible if the graph G is undirected,
in which case each undirected edge has two labels kij and kji [7,6].

2.1 Flux Cone and Reaction Coordinates

Clarke [4] has introduced a method called stoichiometric network analysis (SNA)
to analyze the stability of chemical reaction networks. The idea of SNA is to
observe the dynamics of the system in the reaction space instead of concentration
space. This leads to expand the steady state into a combination of subnetworks
that form a convex cone in the flux-space called flux cone [8]. In section 6.2 we
discuss the computation of the flux cone in and for detailed description of the
concepts of SNA we refer to the seminal work of Clarke [4].

2.2 Constraints in Chemical Reaction Networks

The differential equations in chemical reaction networks usually are constrained
reflecting various physical conservation laws. The situation found in chemical
reaction networks can easily be generalized, and we will provide an analysis
for the situation for the case of pseudolinear ordinary differential equations in
general, which will contain all cases of constraints for chemical reaction systems
discussed in this paper, as an instance.

3 Pseudolinear Ordinary Differential Equations

The following material represents a slight generalisation of results already well-
known for systems appearing in reaction kinetics (see e. g. [22] and references
therein). The basic underlying property of the considered differential equations
is captured by the following definition.

Definition 1. We call an autonomous system of ordinary differential equations
ẋ = φ(x) for an unknown function x : � → �

n pseudolinear, if its right hand
side can be written in the form φ(x) = Nψ(x) with a constant matrix N ∈ �n×m

and some vector valued function ψ : �n → �
m.

Obviously, any polynomially nonlinear system can be written in such a form,
if we take for ψ(x) the vector of all terms appearing on the right hand side of
the system. As one can see from the following two lemmata, the pseudolinear

Computing Hopf Bifurcations in Chemical Reaction Networks 87

structure is of interest only in the case that the matrix N does not possess full
row rank and hence the range of N is not the full space �n. In the sequel, we
will always assume that the function ψ satisfies m ≥ n, as this is usually the
case in applications like reaction kinetics.

Lemma 1. For a pseudolinear system ẋ = Nψ(x) any affine subspace of the
form Ay = y + imN ⊆ �n for an arbitrary constant vector y ∈ �n defines an
invariant manifold.

Proof. Obviously, we have ẋ(t) ∈ imN for all times t and TxAy = imN for all
points x ∈ Ay by definition of an affine space. Thus, if x(0) ∈ Ay, then the
whole trajectory will stay in Ay. ��
Remark 1. For the application in reaction kinetics, the following minor strength-
ening of Lemma 1 is of interest. Assume that the function ψ satisfies additionally
ψ(x) ∈ �m

≥0 for all x ∈ �n
≥0 which is for example trivially the case when each

component of ψ is a polynomial with positive coefficients. If we solve our differ-
ential equation for non-negative initial data x(0) = x0 ∈ �n

≥0, then the solution

always stays in the convex polyhedral cone x0 +
{∑m

i=1 λini | ∀ i : λi ≥ 0
}

where the vectors ni are the columns of the matrix N . Indeed, in this case the
tangent vector ẋ(t) along the trajectory is trivially always a non-negative linear
combination of the columns of N .

Lemma 2. Let vT ·x = Const for some vector v ∈ �n be a linear conservation
law of a pseudolinear system ẋ = Nψ(x) such that imψ is not contained in
a hyperplane. Then v ∈ kerNT . Conversely, any vector v ∈ kerNT induces a
linear conservation law.

Proof. Let us first assume that v ∈ kerNT . Then

d

dt

(
vT · x) = vTNψ(x) =

(
NTv

)T
ψ(x) = 0 .

If vT ·x = Const is a conservation law, then differentiation with respect to time

yields
(
NTv

)T
ψ(x) = 0. Because of our assumption on the function ψ, this

implies that NTv = 0. ��
By a classical result in linear algebra (the four “fundamental spaces” of a ma-
trix), we have the direct sum decomposition �n = imN ⊕ kerNT which is even
an orthogonal decomposition with respect to the standard scalar product. Hence
we may consider Lemma 1 as a corollary to Lemma 2, as the above described in-
variant manifolds are simply defined by all the linear conservation laws produced
by Lemma 2.1

Remark 2. Gatermann and Huber [22] speak of a conservation law only in the
case that vi ≥ 0 for all components vi of the vector v. In mathematics, we are
not aware of such a restriction and cannot see any physical reasons to impose it.

1 Note that in the special case most relevant for us, namely that each component of
ψ is a different monomial, the assumption made in Lemma 2 is always satisfied.

88 H. Errami et al.

4 Reduction to Invariant Manifolds

If a dynamical system admits invariant manifolds, we may consider a system
of lower dimension by reducing to such a manifold. However, in general it may
not be possible to derive explicitly the reduced system. Nevertheless, for many
purposes like stability or bifurcation analysis one can easily reduce to smaller
matrices. The following result describes such a reduction process in the linear
case. It represents an elementary exercise in basic linear algebra. In order to
avoid the inversion of matrices, we consider here �n as a Euclidean space with
respect to the standard scalar product.

Lemma 3. Let A be the matrix of a linear mapping �n → �
n for the standard

basis and U ⊆ �n a k-dimensional A-invariant subspace. If the columns of the
matrix W ∈ �n×k define an orthonormal basis of U , then the restriction of the
mapping to the subspace U with respect to the basis defined by W is given by the
matrix WTAW ∈ �k×k.

Proof. Considered as a linear map �k → U ⊆ �
n, the matrix W defines a

parametrisation of U with inverse WT : U → �
k. Indeed, WTW = �k, since

the columns of W are orthonormal. If v ∈ U , then v = Ww for some vector
w ∈ �k and thus WTv = (WTW)w = w implying that (WWT)v = Ww = v,
i. e. the matrix WWT ∈ �n×n describes idU . By standard linear algebra, the
matrix WTAW describes therefore the restriction of A to U . ��
As a simple application, we note that in the case of a pseudolinear system ẋ =
Nψ(x) the stability properties of an equilibrium xe of the pseudolinear system
ẋ = Nψ(x) are determined by the eigenstructure of the reduced Jacobian

J = WTNJac
(
ψ(xe)

)
W ∈ �k×k

where the columns of W form an orthonormal basis of imN . If parameters are
present, then also for a bifurcation analysis the eigenstructure of this matrix and
not of the full Jacobian (which is an n-dimensional matrix) are relevant.

5 Stability and Bifurcations for Semi-Explicit DAEs

The considerations indicated in the last section can be easily extended to more
general situations, as they appear in the theory of DAEs. For simplicity (and as
it suffices for our purposes), we assume that we are dealing with an autonomous
system in the semi-explicit form

ẋ = f(x) , 0 = g(x) (2)

where f : �n → �
n and g : �n → �

n−k. Furthermore, we assume that the
above system of ordinary differential equations is involutive,2 i. e. that it con-
tains already all its integrability conditions. This assumption is equivalent to the
existence of a matrix valued function M(x) such that

Jac
(
g(x)
) · f(x) = M(x) · g(x) . (3)

2 See [23] for an introduction into the theory of involutive systems.

Computing Hopf Bifurcations in Chemical Reaction Networks 89

Thus one may say that the components of g are weak conservation laws, as their
time derivatives vanish modulo the constraint equations g(x) = 0.

Let xe be an equilibrium of (2), i. e. we have f(xe) = 0 and g(xe) = 0. We
introduce the real matrices

A = Jac
(
f(xe)

) ∈ �n×n , B = Jac
(
g(xe)

) ∈ �(n−k)×n .

For simplicity, we assume in the sequel that the matrix B has full rank (or,
in other words, that our algebraic constraints are independent) and thus that
kerB is a k-dimensional subspace. The proof of the next result demonstrates
clearly why the assumption that the system (2) is involutive is important, as the
relation (3) is crucial for it.

Lemma 4. The subspace kerB is A-invariant.

Proof. Set M̄ = M(xe). Differentiating (3) and evaluating the result at x = xe

yields the relation BA = M̄B. Hence, if v ∈ kerB, then also Av ∈ kerB since
B(Av) = M̄(Bv) = 0. ��
Remark 3. In the case that (2) is a linear system, i. e. by assuming that xe = 0
we may write f(x) = Ax and g(x) = Bx, we can easily revert the argument in
the proof of Lemma 4 and thus conclude that now (2) is involutive, if and only
if kerB is A-invariant.

Proposition 1. Let the columns of the matrix W ∈ �n×k define an orthonor-
mal basis of kerB. The linear stability of the equilibrium xe is then decided by
the eigenstructure of the matrix WTAW .

Proof. Linearisation around the equilibrium xe yields the associated variational
system ż = Az, Bz = 0. We complete W to an orthogonal matrix Ŵ by adding
some further columns and perform the coordinate transformation z = Ŵy. This
yields the system ẏ = ŴTAŴy, BŴy = 0. Since by construction the columns
of W span kerB, the second equation implies that only the upper k components
of y may be different of zero. Furthermore, Lemma 4 implies that the matrix
ŴTAŴy is in block triangular form with the left upper k × k block given by
WTAW . If we denote the upper part of y by ỹ, we obtain thus the equivalent
reduced system ˙̃y = WTAW ỹ which implies our claim. ��
Remark 4. Let v ∈ �

k be a (generalised) eigenvector of the reduced matrix
WTAW , i. e. we have (WTAW − λ�k)

�v = 0 for some � > 0 and λ ∈ �. Since
WTW = �k and WWT defines the identity map on kerB (see the proof of
Lemma 3), we obtain WT (A − λ�n)

�Wv = 0 implying that Wv ∈ �
n is a

(generalised) eigenvector of A for the same eigenvalue λ, since the matrix WT

defines an injective map. Thus every eigenvalue of the reduced matrix WTAW
is also an eigenvalue of A.

Remark 5. It is also not difficult to interpret the remaining (generalised) eigen-
vectors of A. By construction, they are transversal to the constraint manifold

90 H. Errami et al.

defined by g(x) = 0 and they describe whether this manifold is attractive or
repellent for the flow of the unconstrained system ẋ = f(x). While this is for
example of considerable importance for the numerical integration of (2), as it
describes the drift off the constraint manifold due to rounding and discretisation
errors, it has no influence on the stability of the exact flow of (2).

The irrelevance of the remaining (generalised) eigenvectors of A becomes also
apparent from the following argument. Recall that the differential part of (2)
defines what is often called an underlying differential equation for the DAE, i. e.
an unconstrained differential equation which possesses for initial data satisfying
the constraints the same solution as the DAE. Consider now the modified system
obtained by adding to the right hand side of the differential part an arbitrary
linear combination of the algebraic part. It is easy to see that the arising DAE
(which simply has a different underlying equation)

ẋ = f(x) + L(x)g(x) , 0 = g(x) ,

where L(x) is a matrix valued function of appropriate dimensions, possesses
exactly the same solutions as (2); in particular xe is still an equilibrium. If we
proceed as above with the linear stability analysis of xe, the matrix B remains
unchanged, whereas A is transformed into the modified matrix Ã = A + L̄B
with L̄ = L(xe). Obviously, kerB is also Ã-invariant and furthermoreWT ÃW =
WTAW , if the columns of W form a basis of kerB as in Proposition 1.

Thus all (generalised) eigenvectors lying in kerB are equal for A and Ã and
thus the stability of xe is not affected by this transformation. However, the
remaining (generalised) eigenvectors may change arbitrarily. One can for example
show that by a suitable choice of the matrix L one may always achieve that the
constraint manifold becomes attractive.

6 Algorithms for Computing Hopf Bifurcations
in Chemical Reaction Networks Using Reaction
Coordinates

In this section we present an algorithmic approach for computing the Hopf bi-
furcation in chemical systems. Our approach is mainly based on three methods
already presented in this paper: stoichiometric network analysis, method for re-
duction of manifold for systems with conservation laws, and techniques of quan-
tifier elimination on real closed field. The pseudo code given in Fig. 1 and outline
the main steps of our algorithm, which are detailed in the following subsections.

6.1 Pre-processing: Step 1

For starting the analysis of a chemical network we need two significant pieces
of information to describe all reaction laws. The first information describes the
occurrence of the species in each reaction. This can be presented by a stoichio-
metric matrix S, where the species build the rows and the reactions build the

Computing Hopf Bifurcations in Chemical Reaction Networks 91

Input: a chemical reaction network N with dim(N) = n.
Output: statement about the existence of Hopf-bifurcation.

1: Generate the stoichiometric matrix S and kinetic matrix K from the reaction net-
work.

2: Compute the minimal set E of the vectors generating the flux cone.
3: For d = 1 . . . n: Compute all d-faces and of the flux cone (subsystems).

For each subsystem Ni do
4: Compute the transformed Jacobian Jaci of Ni using K, S and flux cone coor-

dinates ji´s
5: If Jaci is singular compute the reduced manifold of Jaci calling the result also

Jaci
6: Compute the characteristic polynomial of Jaci
7: Compute the Hurwitz determinant of Jaci
8: Compute the Hopf-existence condition for Ni

9: Generate the first-order existentially quantified formula Fi expressing Hopf-
existence condition, the constraints on concentrations and the constraints on
the cone coordinates

10: Reduce and simplify the generated formulae
Output: The disjunction of Fi yields a criterion for the existence of a Hopf bifurcation

fixed point, It can be computed lazily for increasing d and the subsystems.

Fig. 1. Algorithms for Computing Hopf Bifurcations in Chemical Reaction Networks
Using Flux Coordinates

columns. Each entry of the matrix presents the difference of the number of pro-
duced and consumed molecules of the corresponding species in the corresponding
reaction. The second information describes the velocities of the reactions. This
can be presented by flux vector v(x, k) or by kinetic matrix K. The entries of
this matrix present the information whether species is a reactant(entry = sto-
ichiometric coefficient of species) and affects consequently the velocity of the
reaction or not (entry = 0). To enable the computational analysis of a chemical
networks the reactions should be presented in a format that enables its accurate
representation and allows the computational extraction of needed data. For our
computations we use the XML based and in biological research widely used for-
mat SBML [20]. As pre-processing step we parse the SBML file presenting the
chemical network using Java library JSBML [19] to generate the stoichiometric
matrix and kinetic matrix.

6.2 Geometrical Computations: Step 2 and 3

To analyse a chemical systemone is interested in the stationary reaction behaviour,
which is observable in experiments, i.e one investigates the solution set of

Sv(x, k) = 0. (4)

92 H. Errami et al.

The set of stationary solutions is usually considered in the concentration space
�

n
+ , i.e in the variables x. Instead of the variables x ∈ �n

+ we will consider the
variables z representing v(x, k) which are called reaction coordinates or reaction
rate coordinates and thus we consider the set of stationary solutions in the
space of reaction rates �l

+. A first advantage is that the Jacobian in the space
of reaction rates is of the following form, cf. [5]:

Jac(x) = Ĵac(z)diag(1/x1, ..., 1/xm). (5)

As long as we split each reversible reaction into two irreversible reactions (for-
ward and backward directions) the flux through this reactions must be greater
than or equal to zero, i.e

v(x, k) ≥ 0 (6)

The set of all possible stationary solutions over the network N that fulfil the
equation (4) and the constraint (6) defines the convex polyhedral cone flux cone
[4,18] and determine a minimal set of generating vectors E , which are called
extreme rays or extreme currents . Each vector z can then as linear combination
of the vector set E with nonnegative coefficients ji´s called convex parameters .

To compute the extreme currents we need to integrate algorithms that allow
to deal with polyhedral computations. In our current implementation we use
polymake in the step 2 of our algorithm to compute the extreme currents E
for a generating stoichiometric matrix S. polymake is an open source software
tool written in Perl and C++ and designed for the algorithmic treatment of
polytopes and polyhedra [9].

Computing extreme currents E is the basis for simplifying the analysis of
chemical networks by its decomposing into minimal steady-state generating sub-
networks. The influence of a subnetwork on the full network dynamics (i.e., how
much the given subnetwork plays a part in creating a certain steady state) de-
pends on the convex parameters ji [4,21]. From a chemical perspective the Hopf
bifurcation occurrs mostly in the spaces formed by two or three adjacent extreme
currents, i.e detecting the Hopf bifurcation in subsystems can be restricted on
subsystems combined by two faces or three faces of the flux cone. As step 3
of our algorithms we compute all subsystems generated by the 2- and 3-faces
using also polymake. Our algorithm can also handle d-faces for d > 3 yielding
a complete method in theory, but the restriction to d = 2, 3 will be of greatest
practical interest.

6.3 Transformation of the Jacobian: Step 4

Gatermann et al. [5] proved that the Jacobian of reaction coordinates z can be
transformed into the follwing form:

Ĵac(z) = Sdiag(z)Kt (7)

If x is a steady state we transform into convex coordinate ji with z =
∑d

i jiEi
with d being the dimensionality of the face. When we replace Ĵac(z) in the
equation 7 we obtain the new Jacobian Jacd in reactions space:

Computing Hopf Bifurcations in Chemical Reaction Networks 93

Jacd(x) = Sdiag(
d∑
i

jiEi)Ktdiag(1/x1, ..., 1/xm) (8)

.

6.4 Jacobian of Reduced Manifold: Step 5

Chemical reaction networks with conservation laws give rise to singularity of
the Jacobian of the entire polynomial system presenting the network and also
of some Jacobian matrices of the computed subsystems. To compute the Hopf
condition the Jacobian matrices should be transformed to nonsingular matrices.
Therefore we reduce them in step 5 of our algorithm by computing the Jacobian
Jaci of reduced manifolds using the method presented in sect. 3.

6.5 Generating and Reducing Quantified Formulae: Steps 6–10

Our aim in the last steps is obtaining a simple formula that gives a clear state-
ment if a Hopf bifurcation occur in the system. We firstly give a semi-algebraic
description of Hopf bifurcation by use of the Hurwitz determinants, and pro-
duces a first-order formula which is transformed into a quantifier-free formula.
Using the positivity conditions on all parameters we can use positive quantifier
elimination [10,3] implemented in redlog [11,12], which had been originally
driven by the efficient implementation of quantifier elimination based on vir-
tual substitution methods [13,14,15]. For formula simplification and as “fallback
method” we use Qepcad b [16].

7 Computation Examples

7.1 Example1: Phosphofructokinase Reaction

As a first example we consider the main example used in the hand computation
in [5]—the phosphofructokinase reaction.

It yields the following system of ordinary differential equations:

ẋ1 = k21x
2
1x2 + k46 − k64x1 − k34x1 + k43x3

ẋ2 = −k21x21x2 + k56 − k65x2

ẋ3 = k34x1 − k43x3 (9)

This problem has already been investigated using its formulation in reaction
coordinates in [3]. Using currently available quantifier elimination packages the
problem could not be solved in its parametric form. Only when using the existen-
tial closure on the parameters it could be shown by successful quantifier elimina-
tions performed in redlog that there exist positive parameters for which there
exists a Hopf bifurcations fixed point in the positive orthant. When redoing the
experiments we found that the situation described in [3] still applies.

94 H. Errami et al.

The results on the subsystems involving 2-faces and 3-faces are summarized
in Table 1. A Hopf bifurcation can be found using the two-face involving two
extreme currents {E3,E4} in less than one second of computation time. The 3-
faces {E1,E3,E4} and {E2,E3,E4} extending this two-face require some seconds
of computation time to find a Hopf bifurcation fixed point. All other faces do
not contain a Hopf bifurcation fixed point.

Table 1. Computation of Hopf bifurcation in the phosphofructokinase reaction using
reaction coordinates

Subsystem Result Time (ms)

{E1} false 12

{E2} false 12

{E3} false 12

{E4} false 10

{E1,E2} false 12

{E1,E3} false 10

{E1,E4} false 14

{E2,E3} false 11

{E2,E4} false 11

{E3,E4} true 207

{E1,E2,E3} false 9

{E1,E2,E4} false 10

{E1,E3,E4} true 8146

{E2,E3,E4} true 1621

7.2 Example 2: Enzymatic Transfer of Calcium Ions

Our second example is also investigated in [5]—the enzymatic transfer of calcium
ions, Ca++, across the cellmembranes.

It yields the following system:

ẋ1 = −k12x1 + k21 + k43x1x2 + k56x4 − k65x1x3

ẋ2 = −k43x1x2 + k76x4

ẋ3 = k56x4 − k65x1x3 + k76x4

ẋ4 = −k56x4 + k65x1x3 − k76x4 (10)

For this system the Jacobian matrix is singular—hence in the classical sense there
are no Hopf bifurcations. But in the in reduced system we find that there are
Hopf bifurcations—and we can compute them in concentration space as well as
using reaction coordinates. The results and computation times are summarized
in Table 2.

7.3 Example 3: Model of Calcium Oscillations

The following model of calcium oscillations contains a fractional exponent ε. It
is discussed in [17].

Computing Hopf Bifurcations in Chemical Reaction Networks 95

Table 2. Enzymatic transfer of calcium ions: Computation of Hopf bifurcation in
reaction space and concentration space after reduction of manifold

System result time(ms)

{E1} false 9

{E2} false 8

{E3} false 10

{E1,E2} true 111

{E1,E3} false 8

{E2,E3} false 7

{E1,E2,E3} true 13972

Polynomial system in CS true 94

ẋ = k1 − k5xz

ẏ = k2x− 4k3y
2 + 4k4z − k6y

ε

ż = k3y
2 − k4z (11)

S =

⎛⎝1 0 0 0 −1 0
0 1 −4 4 0 −1
0 0 1 −1 0 0

⎞⎠
K =

⎛⎝0 1 0 0 1 0
0 0 2 0 0 ε
0 0 0 1 1 0

⎞⎠
In concentration space the solution of a quantifier elimination problem works
only for integer values of the parameter ε—as it occurs in the exponent, and the
techniques of quantifier elimination over the ordered field of the reals is restricted
to polynomials (or rational functions).

However, in the formulation in reaction coordinates the parameter ε occurs
as a variable with values in the real closed field used in the computations.

Hence for a given subsystem we cannot only ask the decision question whether
there exists a Hopf bifurcation fixed point, but we can ask the question with a
free parameter ε.

The answer—a quantifier free formula involving ε—gives the condition for ε,
for which a Hopf bifurcation occurs for the subsystem. When using subsystems
resulting from 2-faces we did not find Hopf bifurcations, but for the parame-
teric question on 3-faces we obtained the following answer in less than 10sec of
computation time using the combination of redlog and Qepcad b:

ε+ 2 > 0 ∧ 4ε− 1 < 0

Hence for ε ∈ (−2, 0.25) we have shown that Hopf bifurcation fixed points exist
(for suitable reaction constants). Using numerical simulations for this model
Reidl et al. [17] could not find Hopf bifurcations for values of the parameter ε
bigger than about 0.05.

96 H. Errami et al.

Acknowledgement. This research was supported in part by Deutsche
Forschungsgemeinschaft within SPP 1489.

References

1. El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination
in a software-component architecture. Journal of Symbolic Computation 30(2),
161–179 (2000)

2. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn.
University of California Press, Berkeley (1951)

3. Sturm, T., Weber, A., Abdel-Rahman, E., El Kahoui, M.: Investigating algebraic
and logical algorithms to solve Hopf bifurcation problems in algebraic biology.
Mathematics in Computer Science 2(3) (2009), Special Issue on Symbolic Compu-
tation in Biology

4. Clarke, B.L.: Stability of Complex Reaction Networks. Advances in Chemical
Physics, vol. XLIII. Wiley Online Library (1980)

5. Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze
Hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6),
1361–1382 (2005)

6. Shiu, A.J.: Algebraic methods for biochemical reaction network theory. Phd thesis,
University of California, Berkeley (2010)

7. Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems
with toric steady states. Bulletin of Mathematical Biology, 1–29 (October 2011)

8. Wagner, C., Urbanczik, R.: The geometry of the flux cone of a metabolic network.
Biophysical Journal 89(6), 3837–3845 (2005)

9. Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes.
In: Kalai, G., Ziegler, G.M. (eds.) Polytopes—Combinatorics and Computation.
Oberwolfach Seminars, vol. 29, pp. 43–73. Birkhäuser, Basel (2000), 10.1007/978-
3-0348-8438-9 2

10. Sturm, T.F., Weber, A.: Investigating Generic Methods to Solve Hopf Bifurcation
Problems in Algebraic Biology. In: Horimoto, K., Regensburger, G., Rosenkranz,
M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 200–215. Springer, Heidelberg
(2008)

11. Dolzmann, A., Sturm, T.: REDLOG: Computer algebra meets computer logic.
ACM SIGSAM Bulletin 31(2), 2–9 (1997)

12. Sturm, T.: Redlog online resources for applied quantifier elimination. Acta
Academiae Aboensis, Ser. B 67(2), 177–191 (2007)

13. Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic
Computation 5(1&2), 3–27 (1988)

14. Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and
beyond. Applicable Algebra in Engineering Communication and Computing 8(2),
85–101 (1997)

15. Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered
fields. Journal of Symbolic Computation 24(2), 209–231 (1997)

16. Brown, C.W.: QEPCAD B: A system for computing with semi-algebraic sets via
cylindrical algebraic decomposition. ACM SIGSAM Bulletin 38(1), 23–24 (2004)

17. Reidl, J., Borowski, P., Sensse, A., Starke, J., Zapotocky, M., Eiswirth, M.: Model
of calcium oscillations due to negative feedback in olfactory cilia. Biophysical Jour-
nal 90(4), 1147–1155 (2006)

Computing Hopf Bifurcations in Chemical Reaction Networks 97

18. Larhlimi, A.: New Concepts and Tools in Constraint-based Analysis of Metabolic
Networks. Dissertation, University Berlin, Germany

19. Dräger, A., Rodriguez, N., Dumousseau, M., Dörr, A., Wrzodek, C., Keller, R.,
Fröhlich, S., Novère, N.L., Zell, A., Hucka, M.: JSBML: a flexible and entirely
Java-based library for working with SBML. Bioinformatics 4 (2011)

20. Hucka, M., Smith, L., Wilkinson, D., Bergmann, F., Hoops, S., Keating, S., Sahle,
S., Schaff, J.: The Systems Biology Markup Language (SBML): Language Specifi-
cation for Level 3 Version 1 Core. In: Nature Precedings (October 2010)

21. Domijan, A., Kirkilionis, M.: Bistability and oscillations in chemical reaction net-
works. Journal of Mathematical Biology 59(4), 467–501 (2009)

22. Gatermann, K., Huber, B.: A family of sparse polynomial systems arising in chem-
ical reaction systems. J. Symb. Comp. 33, 275–305 (2002)

23. Seiler, W.: Involution — The Formal Theory of Differential Equations and its
Applications in Computer Algebra. Algorithms and Computation in Mathematics,
vol. 24. Springer, Heidelberg (2009)

Comprehensive Involutive Systems

Vladimir Gerdt1 and Amir Hashemi2

1 Laboratory of Information Technologies, Joint Institute for Nuclear Research
141980 Dubna, Russia

gerdt@jinr.ru
2 Department of Mathematical Sciences, Isfahan University of Technology

Isfahan, 84156-83111, Iran
Amir.Hashemi@cc.iut.ac.ir

Abstract. In this paper we consider parametric ideals and introduce a
notion of comprehensive involutive system. This notion plays the same
role in theory of involutive bases as the notion of comprehensive Gröbner
system in theory of Gröbner bases. Given a parametric ideal, the space
of parameters is decomposed into a finite set of cells. Each cell yields
the corresponding involutive basis of the ideal for the values of parame-
ters in that cell. Using the Gerdt–Blinkov algorithm described in [6] for
computing involutive bases and also the Montes DisPGB algorithm for
computing comprehensive Gröbner systems [13], we present an algorithm
for construction of comprehensive involutive systems. The proposed al-
gorithm has been implemented in Maple, and we provide an illustrative
example showing the step-by-step construction of comprehensive involu-
tive system by our algorithm.

1 Introduction

One of the most important algorithmic objects in computational algebraic geome-
try isGröbner basis. The notion of Gröbner basis was introduced and an algorithm
for its constructionwas designed in 1965 byBuchberger inhisPh.D. thesis [3]. Later
on, he discovered [4] two criteria for detecting some useless reductions that made
the Gröbner basesmethod a practical tool to solve a wide class of problems in poly-
nomial ideal theory and inmany other research areas of science and engineering [5].
We refer to the monograph [2] for details on the theory of Gröbner bases.

The concept of comprehensive Gröbner bases can be considered as an exten-
sion of these bases for polynomials over fields to polynomials with parametric
coefficients. This extension plays an important role in application to construc-
tive algebraic geometry, robotics, electrical network, automatic theorem proving
and so on (see, for example, [11,12,13,14]). Comprehensive Gröbner bases and
equivalent to them comprehensive Gröbner systems were introduced in 1992 by
Weispfenning [22]. He proved that any parametric polynomial ideal has a com-
prehensive Gröbner basis and described an algorithm to compute it. In 2002,
Montes [13] proposed a more efficient algorithm (DisPGB) for computing com-
prehensive Gröbner systems. A year later Weispfenning in [21] proved the ex-
istence of a canonical comprehensive Gröbner basis. In 2003, Sato and Suzuki

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 98–116, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Comprehensive Involutive Systems 99

[17] introduced the concept of alternative comprehensive Gröbner bases. Then
in 2006, Manubens and Montes in [11] by using discriminant ideal improved
DisPGB, and in [12] they introduced an algorithm for computing minimal
canonical Gröbner systems. Also in 2006, Sato and Suzuki [18] (see also [19])
suggested an important computational improvement for comprehensive Gröbner
bases by constructing the reduced Gröbner bases in polynomial rings over ground
fields. In 2010, Kapur, Sun and Wang [10], by combining Weispfenning’s algo-
rithm [22] with Suzuki and Sato’s algorithm [18], proposed a new algorithm for
computing comprehensive Gröbner systems. More recently, in 2010, Montes and
Wibmer in [15] presented the GröbnerCover algorithm (its implementation in
Singular is available at http://www-ma2.upc.edu/∼montes/) which computes
a finite partition of the parameter space into locally closed subsets together with
polynomial data and such that the reduced Gröbner basis for given values of
parameters can immediately be determined from the partition.

Involutive bases form an important class of Gröbner bases. The theory of
involutive bases goes back to the seminal works of French mathematician Janet.
In the 20s of the last century, he developed [9] a constructive approach to analysis
of certain systems of partial differential equations based on their completion
to involution (cf. [20]). Inspired by the involution methods described in the
book by Pommaret [16], Zharkov and Blinkov [23] introduced the concept of
involutive polynomial bases in commutative algebra in the full analogy with the
concept of involutive systems of homogeneous linear partial differential equations
with constant coefficients and in one dependent variable. Besides, Zharkov and
Blinkov designed the first algorithm for construction of involutive polynomial
bases. The particular form of an involutive basis they used is nowadays called
Pommaret basis [20].

Gerdt and Blinkov [7] proposed a more general concept of involutive bases for
polynomial ideals and designed efficient algorithmic methods to construct such
bases. The underlying idea of the involutive approach is to translate the methods
originating from Janet’s approach into the polynomial ideals theory in order to
provide a method for construction of involutive bases by combining algorithmic
ideas in the theory of Gröbner bases with constructive ideas in the theory of
involutive differential systems. In doing so, Gerdt and Blinkov [7] introduced
the concept of involutive division. Moreover, they derived the involutive form of
Buchberger’s criteria. This led to a strong computational tool which is a serious
alternative to the conventional Buchberger algorithm. We refer to Seiler’s book
[20] for a comprehensive study and application of involution to commutative
algebra and geometric theory of partial differential equations.

In this paper, we introduce a notion of comprehensive involutive systems. For
a parametric ideal, we decompose the space of parameters into a finite set of
cells, and for each cell we yield the corresponding involutive basis of the ideal.
Thereby, for each values of parameters, we find first a cell containing these
values. Then, by substituting these values into the corresponding basis, we get
the involutive basis of the given ideal. Based on the Gerdt–Blinkov involutive
(abbreviated below by GBI) algorithm as described in [6] and also the Montes

100 V. Gerdt and A. Hashemi

DisPGB algorithm [13], we present an algorithm for constructing comprehensive
involutive systems. The proposed algorithm has been implemented in Maple,
and we provide an illustrative example showing the step-by-step results of the
algorithm.

The paper is structured as follows. Section 2 contains the basic definitions and
notations related to comprehensive Gröbner systems, and a short description of
the DisPGB algorithm. The basic definitions and notations from the theory of
involutive bases are given in Section 3. In Section 4, the notion of comprehen-
sive involutive system is introduced, and an algorithm for construction of such
systems is described. In Section 5, we give an example illustrating in detail the
performance of the algorithm of Section 4.

2 Comprehensive Gröbner Systems

In this section, we recall the basic definitions and notations in theory of com-
prehensive Gröbner systems and briefly describe the DisPGB algorithm.

Let R = K[x] be a polynomial ring, where x = x1, . . . , xn is a sequence of
variables and K is an arbitrary field. Below, we denote a monomial xα1

1 · · ·xαn
n ∈

R by xα where α = (α1, . . . , αn) ∈ Nn is a sequence of non-negative integers.
We shall use the notations degi(x

α) := αi, deg(x
α) :=

∑n
i=1 αi. An admissible

monomial ordering on R is a total order ≺ on the set of all monomials such that
for any α, β, γ ∈ Nn the following holds:

xα � xβ =⇒ xα+γ � xβ+γ , xα �= 1 =⇒ xα � 1 .

A typical example of admissible monomial ordering is the lexicographical or-
dering, denoted by ≺lex. If x

α,xβ ∈ R are two monomials, then xα ≺lex xβ

if the leftmost nonzero entry of β − α is positive. Another typical example is
the degree-reverse-lexicographical ordering denoted by ≺degrevlex and defined as
xα ≺degrevlex xβ if deg(xα) > deg(xβ) or deg(xα) = deg(xβ) and the rightmost
nonzero entry of β − α is negative.

We shall write I = 〈f1, . . . , fk〉 for the ideal I in R generated by the poly-
nomials f1, . . . , fk ∈ R. Let f ∈ R and ≺ be a monomial ordering on R. The
leading monomial of f is the largest monomial (with respect to ≺) occurring
in f , and we denote it by LM(f). If F ⊂ R is a set of polynomials, then we
denote by LM(F) the set {LM(f) | f ∈ F} of its leading monomials. The lead-
ing coefficient of f , denoted by LC(f), is the coefficient of LM(f). The leading
term of f is LT(f) = LC(f)LM(f). The leading term ideal of I is defined as
LT(I) = 〈LT(f) | f ∈ I〉.
A finite set G = {g1, . . . , gk} ⊂ I is called a Gröbner basis of I if LT(I) =
〈LT(g1), . . . ,LT(gk)〉. For more details and definitions related to Gröbner bases
we refer to [2].

Now consider F = {f1, . . . , fk} ⊂ S := K[a,x] where a = a1, . . . , am is
a sequence of parameters. Let ≺x (resp. ≺a) be a monomial ordering for the
power products of xi’s (resp. ai’s). We also need a compatible elimination product
ordering ≺x,a. It is defined as follows: For all α, γ ∈ Zn

≥0 and β, δ ∈ Zm
≥0

Comprehensive Involutive Systems 101

xγaδ ≺x,a xαaβ ⇐⇒ xγ ≺x xα or xγ = xα and aδ ≺a aβ .

Now, we recall the definition of a comprehensive Gröbner system for a parametric
ideal.

Definition 1. ([22]) A triple set {(Gi, Ni,Wi)}�i=1 is called a comprehensive
Gröbner system for 〈F 〉 w.r.t ≺x,a if for any i and any homomorphism σ :
K[a]→ K ′ (where K ′ is a field extension of K) satisfying

(i) (∀p ∈ Ni ⊂ K[a]) [σ(p) = 0], (ii) (∀q ∈ Wi ⊂ K[a]) [σ(q) �= 0]

we have σ(Gi) is a Gröbner basis for σ(〈F 〉) ⊂ K ′[x] w.r.t. ≺x.

For simplification, we shall use the abbreviation CGS to refer to a comprehensive
Gröbner system, and CGSs in the plural case. For each i, the set Ni (resp.Wi) is
called a (resp. non-) null conditions set. The pair (Ni,Wi) is called a specification
of the homomorphism σ if both conditions in the above definition are satisfied.

Example 1. Let F = {ax2y − y3, bx + y2} ⊂ K[a, b, x, y] where a = a, b and
x = x, y. Let us consider the lexicographical monomial ordering b ≺lex a on the
parameters and on the variables y ≺lex x as well. Using the DisPGB algorithm
we can compute a CGS for 〈F 〉 which is equal to

{−b2y3 + ay5, bx+ y2} { } {a, b}
{x2y, y2} {b} {a}
{y3, bx+ y2} {a} {b}
{y2} {a, b} { } .

For instance, if a = 0, b = 2, then the third element of this system corresponds
to this specialization. Therefore, {y3, 2x + y2} is a Gröbner basis for the ideal
〈F 〉|a=0,b=2 = 〈−y3, 2x+ y2〉.
Remark that, by the above definition, a CGS is not unique for a given para-
metric ideal, and one can find other partitions for the space of parameters, and,
therefore, other CGSs for the parametric ideal.

Now, we briefly describe the Montes DisPGB algorithm to compute CGSs
for parametric ideals (see [13,11]). The main idea of DisPGB is based on dis-
cussing the nullity or not w.r.t. a given specification (N,W) for the leading
coefficients of the polynomials appearing at each step (this process is performed
by the NewCond subalgorithm). Let us consider a set F ⊂ S of parametric
polynomials. Given a polynomial f ∈ F and a specification (N,W), NewCond

is called. Three cases are possible: If LC(f) specializes to zero w.r.t. (N,W), we
replace f by f − LT(f), and then start again. If LC(f) specializes to a nonzero
element we continue with the next polynomial in F . Otherwise (if LC(f) is not
decidable, i.e. we can’t decide whether or not it is null w.r.t. (N,W)), the sub-
algorithm Branch is called to create two complementary cases by assuming
LC(f) = 0 and LC(f) �= 0. Therefore, two new disjoint branches with the spec-
ifications (N ∪ {LC(f)},W) and (N,W ∪ {LC(f)}) are made. This procedure
is continued until every polynomial in F has a nonnull leading coefficient w.r.t.

102 V. Gerdt and A. Hashemi

the current specification. Then, we proceed with CondPGB: This algorithm
receives, as an input, a set of parametric polynomials and a specification (N,W)
and, by applying Buchberger’s algorithm, creates new polynomials. When a new
polynomial is generated, NewCond verifies whether its leading coefficient leads
to a new condition or not. If a new condition is found, then the subalgorithm
stops, and Branch is called to make two new disjoint branches. Otherwise, the
process is continued and computes a Gröbner basis for 〈F 〉, according to the cur-
rent specification. The collection of these bases, together with the corresponding
specifications yields a CGS for 〈F 〉.

3 Involutive Bases

Now we recall the basic definitions and notations concerning involutive bases
and present below the general definition of involutive bases. First of all, we
describe the cornerstone notion of involutive division [7] as a restricted monomial
division [6] which, together with a monomial ordering, determines properties of
an involutive basis. This makes the main difference between involutive bases and
Gröbner bases. The idea behind involutive division is to partition the variables
into two subsets of multiplicative and nonmultiplicative variables, and only the
multiplicative variables can be used in the divisibility relation.

Definition 2. [7,6] An involutive division L on the set of monomials of R is
given, if for any finite set U of monomials and any u ∈ U , the set of vari-
ables is partitioned into subsets ML(u, U) of multiplicative and NML(u, U) of
nonmultiplicative variables such that

1. u, v ∈ U, uL(u, U) ∩ vL(v, U) �= ∅ =⇒ u ∈ vL(v, U) or v ∈ uL(u, U),
2. v ∈ U, v ∈ uL(u, U) =⇒ L(v, U) ⊂ L(u, U),
3. u ∈ V and V ⊂ U =⇒ L(u, U) ⊂ L(u, V),

where L(u, U) denotes the set of all monomials in the variables in ML(u, U). If
v ∈ uL(u, U), then we call u an L−(involutive) divisor of v, and we write u|Lv.
If v has no involutive divisor in a set U , then it is L−irreducible modulo U .

In this paper, we are concerned with the wide class [8] of involutive divisions de-
termined by a permutation ρ on the indices of variables and by a total monomial
ordering � which is either admissible or the inverse of an admissible ordering.
This class is defined by

(∀u ∈ U) [NM�(u, U) =
⋃

v∈U\{u}
NM�(u, {u, v})] (1)

where

NM�(u, {u, v}) :=
{

if u � v or (u � v ∧ v | u) then ∅
else {xρ(i)}, i = min{j | degρ(j)(u) < degρ(j)(v)} .

(2)

Comprehensive Involutive Systems 103

Remark 1. The involutive Janet division introduced and studied in [7] is gener-
ated by formulae (1)–(2) if � is the lexicographic monomial ordering �lex and ρ
is the identical permutation. The partition of variables used by Janet himself [9]
(see also [20]) is generated by �lex as well with the permutation which is inverse
to the identical one:

ρ =

(
1 2 . . . n
n n− 1 . . . 1

)
.

Throughout this paper L is assumed to be a division of the class (1)–(2). Now,
we define an involutive basis.

Definition 3. Let I ⊂ R be an ideal, ≺ be a monomial ordering on R and L
be an involutive division. A finite set G ⊂ I is an involutive basis of I if for
all f ∈ I there exists g ∈ G such that LM(g)|LLM(f). An involutive basis G
is minimal if for any other involutive basis G̃ the inclusion LM(G) ⊆ LM(G̃)
holds.

From this definition and from that for Gröbner basis [3,2] it follows that an
involutive basis of an ideal is its Gröbner basis, but the converse is not always
true.

Remark 2. By using an involutive division in the division algorithm for polyno-
mial rings, we obtain an involutive division algorithm. If G is an involutive basis
for an involutive division L, we use NFL(f,G) to denote L−normal form of f
modulo G, i.e. the remainder of f on the involutive division by G. A polynomial
set F is L−autoreduced if f = NFL(f, F \ {f}) for every f ∈ F .

The following theorem provides an algorithmic characterization of involutive
bases which is an involutive analogue of the Buchberger characterization of
Gröbner bases.

Theorem 1. ([7,8]) Given an ideal I ⊂ R, an admissible monomial ordering
≺ on R and an involutive division L, a finite subset G ⊂ I is an involutive
basis of I if for each f ∈ G and each x ∈ NML(LM(f),LM(G)) the equality
NFL(xf,G) = 0 holds. An involutive basis exists for any I, L and ≺. A monic
and L-autoreduced involutive basis is uniquely defined by I and ≺.

4 Comprehensive Involutive Systems

In this section, like the concept of comprehensive Gröbner systems, we define
the new notion of comprehensive involutive system for a parametric ideal. Then,
based on the GBI algorithm [6] and the Montes DisPGB algorithm [13], we
propose an algorithm for computing comprehensive involutive systems.

Definition 4. Consider a finite set of parametric polynomials F ⊂ S = K[a,x]
where K is a field, x = x1, . . . , xn is a sequence of variables and a = a1, . . . , am
is a sequence of parameters, ≺x (resp. ≺a) is a monomial ordering involv-
ing the xi’s (resp. ai’s), and L is an involutive division on K[x]. Let M =

104 V. Gerdt and A. Hashemi

{(Gi, Ni,Wi)}�i=1 be a finite triple set where sets Ni,Wi ⊂ K[a] and Gi ⊂ S
are finite. The set M is called an (L−)comprehensive involutive system for 〈F 〉
w.r.t ≺x,a if for each i and for each homomorphism σ : K[a] → K ′ (where K ′

is a field extension of K) satisfying

(i) (∀p ∈ Ni) [σ(p) = 0], (ii) (∀q ∈Wi) [σ(q) �= 0]

σ(Gi) is an (L−)involutive basis for σ(〈F 〉) ⊂ K ′[x]. We use the abbreviation
CIS (resp. CISs) to stand for comprehensive involutive system (resp. systems).
M is called minimal, if for each i, the set σ(Gi) is a minimal involutive basis.

Given a CGS, one can straightforwardly compute a CIS by using the following
proposition.

Proposition 1. Let G = {g1, . . . , gk} be a minimal Gröbner basis of an ideal
I ⊂ K[x1, . . . , xn] for a monomial ordering ≺. Let hi = maxg∈G{degi(LM(g))}.
Then the set of products

{mg | g ∈ G, m is a monomial s.t. (∀i) [degi(m) ≤ hi − degi(LM(g))]} (3)

is an L-involutive basis of I.

Proof. Denote LM(G) by U . From (1)–(2) it follows

(∀u ∈ U) (∀xi ∈ NML(u, U))) [degi(u) < hi] . (4)

It is also clear that if we enlarge G with a (not necessarily nonmultiplicative)
prolongation gxj of its element g ∈ G such that degj(LM(g)) < hj , then (4) holds
for the enlarged leading monomial set U := U ∪ {LM(g)xj} as well. Consider
completion Ḡ of the polynomial set G with all possible prolongations of its
elements satisfying (3) and denote the monomial set LM(Ḡ) by Ū . Then

(∀u ∈ Ū) (∀x ∈ NML(u, U)) (∃v ∈ Ū) [v |L ux] .

This means, by Theorem 1, that the monomial set Ū is an involutive basis of
〈LM(G)〉. Now, since G is a Gröbner basis of I we have LT(I) = 〈LM(G)〉, and
hence LT(I) = 〈LM(Ḡ)〉. Therefore, Ḡ is an involutive basis of I by
Definition 3. �
Example 2. Let F = {ax2, by2} ⊂ K[a,x] where a = a, b and x = x, y. Let
also b ≺lex a and y ≺lex x. Then, F is a CGS for any sets of null and nonnull
conditions. Using Proposition 1, we can construct the following Janet basis of
〈F 〉 which is a GIS for any sets of null and nonnull conditions:

{ax2, by2, ayx2, ay2x2, bxy2, bx2y2} .
On the other hand, the algorithm that we present below computes the following
minimal Janet CIS for 〈F 〉:

{ax2, by2, bxy2} { } {a, b}
{ax2} {b} {a}
{by2} {a} {b}
{0} {a, b} { }.

Comprehensive Involutive Systems 105

Remark 3. Using Proposition 1, we cannot directly compute a minimal CIS from
a given CGS. Indeed, to do this, we must examine the leading coefficients of each
Gröbner basis in the CGS, and this may lead to further partitions of the space
of parameters. Moreover, the CIS computed by this way may be too large, since
many prolongations constructed by means of (3) may be useless. That is why,
based on the GBI algorithm [6] and on the Montes DisPGB algorithm [13], we
propose a more efficient algorithm for computing minimal CISs.

Now we describe the structure of polynomials that is used in our new algo-
rithm. To avoid unnecessary reductions (during the computation of involutive
bases) by applying the involutive form of Buchberger’s criteria (see [6]), we need
to supply polynomials with additional structural information.

Definition 5. [6] An ancestor of a polynomial f ∈ F ⊂ R \ {0}, denoted by
anc(f), is a polynomial g ∈ F of the smallest deg(LM(g)) among those satisfying
LM(f) = uLM(g) where u is either the unit monomial or a power product of
nonmultiplicative variables for LM(g) and such that NFL(f − ug, F \ {f}) = 0
if f �= ug.

Algorithm ComInvSys

Input: F , a set of polynomials; L, an involutive division; ≺x, a monomial
ordering on the variables; ≺a, a monomial ordering on the parameters

Output: a minimal CIS for 〈F 〉
1: global: List, ind;
2: List:=Null;
3: ind:=1;
4: B := {[F [i], F [i], ∅] | i = 1, . . . , |F |};
5: G := {Branch([F [1], F [1], ∅], B, { }, { }, { })};
6: for i from 2 to |F | do
7: ind:=ind+1;
8: G := {Branch([F [i], F [i], ∅], A[2], A[3], A[4], A[5]) | A ∈ G};
9: od

10: Return (List)

Below we show how to use the concept in Definition 5 to apply the involutive
form of Buchberger’s criteria. In what follows, we store each polynomial f as
the p = [f, g, V] where f = poly(p) is the polynomial part of p, g = anc(p) is
the ancestor of f and V = NM(p) is the list of nonmultiplicative variables of f
have been already used to construct prolongations of f (see the for-loop 20-23
in the subalgorithm GBI). If P is a set of triples, we denote by poly(P) the set
{poly(p) | p ∈ P}. If no confusion arises, we may refer to a triple p instead of
poly(p), and vice versa.

We consider now the main algorithm ComInvSys which computes a minimal
CIS for a given ideal. It should be noted that we use the subalgorithms New-

Cond and CanSpec (resp. TailNormalForm) as they have (resp. it has) been

106 V. Gerdt and A. Hashemi

presented in [13] (resp. [6]), and recall them for the sake of completeness. Also,
we use the subalgorithm Branch (resp. GBI , HeadReduce and HeadNor-

malForm) from [13] (resp. [6]) with some appropriate modifications.

Subalgorithm Branch

Input: p, a triple; B, a specializing basis; N , a set of null conditions; W , a set
of nonnull conditions; P , a set of non-examined triples

Output: It stores the refined (B′, N ′,W ′, P ′), and creates two new vertices
when necessary or marks the vertex as terminal

1: p = [f, g, V];
2: (test,N,W):=CanSpec(N,W);
3: if test=false then
4: Return STOP (incompatible specification has been detected)
5: fi
6: (cd, f ′, N ′,W ′) :=NewCond(f,N,W);

7: p := [f ′, gN
′
, V] (gN

′
denotes the remainder of the division of g by N ′);

8: if ind < |F | and cd �= { } then
9: Branch(p,B,N ′,W ′ ∪ cd, P); Branch(p,B,N ′ ∪ cd,W ′, P);

10: fi
11: if ind < |F | and cd = { } then
12: Return (p,B

N ′
, N ′,W ′, P)

13: fi
14: if cd = { } then
15: (test, p′, B′, N ′,W ′, P ′) :=GBI (B,N ′,W ′, P);
16: if test then
17: List:=List,(B′, N ′,W ′);
18: else
19: Branch(p′, B′, N ′,W ′, P ′);
20: fi
21: else
22: Branch(p,B,N ′,W ′ ∪ cd, P); Branch(p,B,N ′ ∪ cd,W ′, P);
23: fi

In the main algorithm, List is a global variable to which we add any com-
puted involutive basis together with its corresponding specification to form the
final CIS. That is why, at the beginning of computation we must set it to the
empty list (see Branch). Note that here and in Branch, we use |F | to denote
the number of polynomials in the input set F . The variable ind is also a global
variable, and we use it to examine all the leading coefficients of the elements
in F (see Branch). Once we are sure about the non-nullity of these coeffi-
cients, then we start the involutive basis computation. Indeed, Branch inputs
a triple p = [f, g, V], a set B of examined and processed polynomials, a set N
of null conditions, a set W of nonnull conditions and a set P of non-processed

Comprehensive Involutive Systems 107

polynomials. Then, it analyses the leading coefficient of f w.r.t. N and W . Now,
two cases are possible:

– ind< |F |: If LC(f) is not decidable by N and W then we create two com-
plementary cases by assuming LC(f) = 0 and LC(f) �= 0. Then we pass to
the next polynomial in F .

– ind= |F |: We are now sure that we have examined all the leading coefficients
of the elements in F (except possibly the very last one which is to be f). If
LC(f) is not decidable by N andW then we again create two complementary
cases with LC(f) = 0 and LC(f) �= 0. Otherwise, we continue to process the
polynomials in P by using the GBI algorithm. If P = ∅ this means that B is
an involutive basis consistent with the conditions in N and W , and we add
(B,N,W) to List.

Subalgorithm CanSpec

Input: N , a set of null conditions; W , a set of nonnull conditions
Output: true if N and W are compatible and false otherwise; (N ′,W ′), a

quasi-canonical representation of (N,W)
1: W ′ :=FacVar({qN : q ∈W}); test:=true; N ′ := N ; h :=

∏
q∈W q;

2: if h ∈√〈N ′〉 then
3: test:=false; N ′ := {1};
4: Return (test,N ′,W ′);
5: fi
6: flag:=true;
7: while flag do
8: flag:=false;
9: N ′′:= Remove any factor of a polynomial in N ′ that belongs to W ′;

10: if N ′′ �= N ′ then
11: flag:=true;
12: N ′:= a Gröbner basis of 〈N ′′〉 w.r.t. ≺a;

13: W ′ :=FacVar({qN
′
: q ∈W ′});

14: fi
15: od
16: Return (test,N ′,W ′)

It is worth noting that if the input specification of Branch is incompatible,
then it stops the process only for the corresponding branch, and continues the
construction of other branches. Moreover, using the above notations, if ind< |F |
and no new condition is detected, then Branch returns an element of the form

(p,B
N ′
, N ′,W ′, P) where p is a triple, N ′,W ′ are two sets of conditions, B

N ′
is

the normal form of a specializing basis B and P is a set of non-examined triples.
Otherwise, it calls itself to create the new branches. Finally, if ind= |F |, then
the algorithm does not return anything and completes the global variable List.

108 V. Gerdt and A. Hashemi

The subalgorithm CanSpec produces a quasi-canonical representation for a
given specification. Its subalgorithm FacVar invoked in lines 1 and 13 returns
the set of factors of its input polynomial.

Definition 6. ([13]) A specification (N,W) is called quasi-canonical if

– N is the reduced Gröbner basis w.r.t. ≺a of the ideal containing all polyno-
mials that specialize to zero in K[a].

– The polynomials in W specializing to non-zero are reduced modulo N and
irreducible over K[a]

–
∏

q∈W q /∈√〈N〉.
– The polynomials in N are square-free over K[a].
– If some p ∈ N is factorized, then no factor of p belongs to W .

Subalgorithm NewCond

Input: f , a parametric polynomial; N , a set of null conditions; W , a set of
nonnull conditions

Output: cd, a new condition; f ′, a parametric polynomial; N ′, a set of null
conditions; W ′, a set of nonnull conditions

1: f ′ := f ; test:=true; N ′ := N ; cd:={ };
2: while test do
3: if LC(f ′) ∈√〈N ′〉 then
4: N ′ := a Gröbner basis for 〈N ′,LC(f ′)〉 w.r.t. ≺a;
5: f ′ := f ′ − LT(f);
6: else
7: test:=false;
8: fi
9: od

10: f ′ := f ′N
′
;

11: W ′ := {wN ′ | w ∈ W};
12: cd := cd ∪FacVar(LC(f ′)) \W ′;
13: Return(cd, f ′, N ′,W ′)

We describe now the NewCond subalgorithm. When it is invoked in line 6
of Branch with the input data (f,N,W), one of the two following cases may
occur:

1. If LC(f) is decidable w.r.t. the specification (N,W), then the subalgorithm
returns:
(i) NewCond(f −LT(f), N,W) in the case when LC(f) specializes to zero

w.r.t. (N,W).
(ii) (∅, f,N,W) in the case when LC(f) does not specialize to zero w.r.t.

(N,W).
2. If LC(f) is not decidable w.r.t (N,W), then NewCond returns (cd, f,N,W)

where set cd contains one of the non-decidable factors (w.r.t (N,W)) of
LC(f).

Comprehensive Involutive Systems 109

It should be emphasized that FacVar(LC(f ′)) \W ′ in line 12 returns only one
factor of LC(f ′).

Subalgorithm GBI

Input: B, a specializing basis; N , a set of null conditions; W , set of nonnull
conditions; P , set of non-examined triples

Output: If test=true, a minimal involutive basis for 〈B〉 w.r.t. L and ≺x,a;
otherwise, it returns a triple so that we must discuss the leading coefficient
of its polynomial part

1: if P = ∅ then
2: Select p ∈ B with no proper divisor of LM(poly(p)) in LM(poly(B))
3: T := {p}; Q := B \ {p};
4: else
5: T := B; Q := P ;
6: fi
7: while Q �= ∅ do
8: (test, p, T,N,W,Q′) :=HeadReduce(T,N,W,Q);
9: if test =false then

10: Return (false, p, T,N,W,Q′)
11: fi
12: Q := Q′;
13: Select and remove p ∈ Q with no proper divisor of LM(poly(p)) in

LM(poly(Q));
14: if poly(p) = anc(p) then
15: for q ∈ T whose LM(poly(q)) is a proper multiple of LM(poly(p)) do
16: Q := Q ∪ {q}; T := T \ {q};
17: od
18: fi
19: h :=TailNormalForm(p, T); T := T ∪ {{h, anc(p), NM(p)}};
20: for q ∈ T and x ∈ NML(LM(poly(q)),LM(poly(T))) \NM(q) do
21: Q := Q ∪ {{x poly(q), anc(q), ∅}};
22: NM(q) := NM(q) ∩NML(LM(poly(q)),LM(poly(T))) ∪ {x};
23: od
24: od
25: Return (true, 0, T,N,W, { })

The subalgorithm GBI, is an extension of the algorithm InvolutiveBasis II

described in [6]. The latter algorithm computes involutive bases and applies the
involutive form of Buchberger’s criteria to avoid some unnecessary reductions [7]
(see also [1,6]). The criteria are applied in the subalgorithmHeadNormalForm

(see line 7) that is invoked in line 5 of GBI.

Proposition 2. ([7,6]) Let I ⊂ R be an ideal and G ⊂ I be a finite set. Let also
≺ be a monomial ordering on R and L be an involutive division. Then G is an
L−involutive basis of I if for all f ∈ G and for all x ∈ NML(LM(f),LM(G))
one of the two conditions holds:

110 V. Gerdt and A. Hashemi

1. NFL(xf,G) = 0 .

2. There exists g ∈ G with LM(g)|LLM(xf) satisfying one of the following
conditions:

(C1) LM(anc(f))LM(anc(g)) = LM(xf) ,

(C2) lcm(LM(anc(f)),LM(anc(g))) is a proper divisor of LM(xf) .

The subalgorithm GBI invokes three its own subalgorithms HeadReduce,
TailNormalForm andHeadNormalForm. The subalgorithmHeadReduce

performs the involutive head reduction of polynomials in the input set of triples
modulo the input specializing basis. The subalgorithmTailNormalForm (resp.
HeadNormalForm) invoked in line 19 ofGBI (resp. in line 4 ofHeadReduce)
computes the involutive tail normal form (resp. the involutive head normal form)
of the polynomial in the input triple modulo the input specializing basis.

Subalgorithm HeadReduce

Input: B, a specializing basis; N , a set of null conditions; W , a set of nonnull
conditions; P a set of non-examined triples

Output: If test=true, the L-head reduced form of P modulo B; otherwise,
it returns a triple such that we must examine the leading coefficient of its
polynomial part

1: S := P ; Q := ∅;
2: while S �= ∅ do
3: Select and remove p ∈ S;
4: (test, h,B,N,W) :=HeadNormalForm(p,B,N,W);
5: if test=false then
6: Return (false, p, B,N,W, S ∪Q)
7: fi
8: if h �= 0 then
9: if LM(poly(p)) �= LM(h) then

10: Q := Q ∪ {{h, h, ∅}};
11: else
12: Q := Q ∪ {p};
13: fi
14: else
15: if LM(poly(p)) = LM(anc(p)) then
16: S := S \ {q ∈ S | anc(q) = poly(p)};
17: fi
18: fi
19: od
20: Return (true, 0, B,N,W,Q)

In HeadNormalForm, the Boolean expression Criteria(p, g) is true if at leat
one of the conditions (C1) or (C2) in Proposition 2 are satisfied for p and g, false
otherwise. We refer to [6] for more details on GBI and on its subalgorithms.

Comprehensive Involutive Systems 111

Subalgorithm TailNormalForm

Input: p, a triple; B, a set of triples
Output: L-normal form of poly(p) modulo poly(B)
1: h := poly(p);
2: G := poly(B);
3: while h has a term t which is L−reducible modulo G do
4: Select g ∈ G with LM(g)|Lt;
5: h := h− g t

LT(g) ;

6: od
7: Return (h)

Subalgorithm HeadNormalForm

Input: p, a triple; B, a specializing basis; N , a set of null conditions; W , set
of nonnull conditions

Output: If test=true, the L-head normal form of poly(p) modulo B; other-
wise, a polynomial whose leading coefficient must be examined

1: h := poly(p); G := poly(B);
2: if LM(h) is L-irreducible modulo G then
3: Return (true, h, B,N,W)
4: else
5: Select g ∈ G with LM(poly(g))|LLM(h);
6: if LM(h) �= LM(anc(p)) then
7: if Criteria(p, g) then
8: Return (true, 0, B,N,W)
9: fi

10: else
11: while h �= 0 and LM(h) is L-reducible modulo G do
12: Select g ∈ G with LM(g)|LLM(h);

13: h := h− g LT(h)
LT(g) ;

14: (cd, h′, N ′,W ′) :=NewCond(h,N,W);
15: if cd �= ∅ then
16: Return (false, h′, B,N ′,W ′)
17: fi
18: od
19: fi
20: fi
21: Return (true, h, B,N,W)

Theorem 2. Algorithm ComInvSys terminates in finitely many steps, and
computes a minimal CIS for its input ideal.

Proof. Let I = 〈F 〉 where F = {f1, . . . , fk} ⊂ K[a,x] is a parametric set, x =
x1, . . . , xn (resp. a = a1, . . . , am) is a sequence of variables (resp. parameters).

112 V. Gerdt and A. Hashemi

Let ≺x (resp. ≺a) be a monomial ordering involving the xi’s (resp. ai’s), and L
be an involutive division on K[x].

Suppose that ComInvSys receives F as an input. To prove the termination,
we use the fact that K[a] is a Noetherian ring. When Branch is called, the
leading coefficient of some polynomial f ∈ I is analyzed. For this purpose, the
subalgorithm NewCond determines whether LC(f) is decidable or not w.r.t.
the given specification (N,W). Two alternative cases can take place:

– LC(f) is decidable and we check the global variable ind. Now if ind< k,
then we study the next polynomial in F . Otherwise, GBI is called. If all the
leading coefficients of the examined polynomials (to compute a minimal in-
volutive basis) are decidable, then the output, say G, is a minimal involutive
basis of I w.r.t. (N,W), and we add (G,N,W) to List. Otherwise, two new
branches are created by calling Branch (cf. the second case given below).
In doing so, the minimality of G and the termination of its computation is
provided by the structure of GBI algorithm (see [6]).

– LC(f) is not decidable and we create two branches with (N,W ∪ cd) and
(N ∪ cd,W), where cd is the one-element set containing the new condition
derived from LC(f).

Thus, in the second case, the branch for which N (resp.W) is assumed, increases
the ideal 〈N〉 ⊂ K[a] (resp. 〈W 〉 ⊂ K[a]). Note that we replace N by a Gröbner
basis of its ideal (see line 4 in NewCond). Since the ascending chains of ideals
stabilize, the algorithm terminates. This argument was inspired by the proof in
[13], Theorem 16.

To prove the correctness, assume that M = {(Gi, Ni,Wi)}�i=1 is the output of
ComInvSys for the input is F (note that we have used the fact the this algorithm
terminates in finitely many steps). Consider integer 1 ≤ i ≤ � homomorphism
σ : K[a]→ K ′ where (Ni,Wi) is a specification of σ and K ′ is a field extension
of K.

We have to show that for each f ∈ Gi and x ∈ NML(LM(σ(f)),LM(σ(Gi))),
in accordance with Theorem 1, the equality NFL(σ(xf), σ(Gi)) = 0 holds. By
using ‘reductio ad absurdum’, suppose g = NFL(σ(xf), σ(Gi)) and g �= 0. Since
(Gi, Ni,Wi) has been added to List in Branch, the leading coefficients of the
polynomials in the subalgorithm GBI, examined at computation of a minimal
involutive basis for F , are decidable w.r.t. (Ni,Wi). Furthermore, f ∈ Gi implies
that in the course of GBI xf is added to Q, the set of all nonmultiplicative
prolongations that must be examined (see the notations used in GBI). Then,
HeadReduce is called to perform the L-head reduction of the elements of Q
modulo the last computed basis T ⊂ Gi. The computed L-head normal form of
xf is further reduced by invoking TailNormalForm which performs the L-tail
reduction. By the above notations, g is the result of this step. Thus, g should be
added to T ⊂ Gi. It follows that NFL(σ(xf), σ(Gi)) = 0, a contradiction, and
this completes the proof. �

Comprehensive Involutive Systems 113

5 Example

Now we give an example to illustrate the step by step construction of a mini-
mal CIS by the algorithm ComInvSys proposed and described in the previous
section1.

For the input F = {ax2, by2} ⊂ K[a, b, x, y] from Example 2, Janet division
and the lexicographic monomial ordering with b ≺lex a and y ≺lex x the algo-
rithm performs as follows:

→ComInvSys(F,L,≺lex,≺lex)

List := Null; ind := 1; k := 2;

B := {[ax2, ax2, ∅], [by2, by2, ∅]}
→Branch([ax2, ax2, ∅], B, { }, { }, { })

→NewCond(ax2, { }, { }) = ({a}, { }, { })
→Branch([ax2, ax2, ∅], B, { }, {a}, { })

→NewCond(ax2, { }, {a}) = ({ }, { }, {a})
G := {([ax2, ax2, ∅], B, { }, {a}, { })}

→Branch([ax2, ax2, ∅], B, {a}, { }, { })
→NewCond(ax2, {a}, { }) = ({ }, {a}, { })

G :=
{(

[ax2, ax2, ∅], B, { }, {a}, { }), ([ax2, ax2, ∅], {[0, 0, ∅], [by2, by2, ∅]}, {a}, { }, { })}

ind := 2;

A =
(
[ax2, ax2, ∅], B, { }, {a}, { })

→Branch([by2, by2, ∅], B, { }, {a}, { })
→NewCond(by2, { }, {a}) = ({b}, { }, { })
→Branch([by2, by2, ∅], B, { }, {a, b}, { })
(* further Branch([by2, by2, ∅], B, {b}, {a}, { }) is executed*)
→NewCond(by2, { }, {a, b}) = ({ }, { }, {a, b})
ind ≥ k = 2

cd = { }
→GBI (B, { }, {a, b}, { })

T := {[by2, by2, ∅]}
Q := {[ax2, ax2, ∅]}
→HeadReduce(T,{ }, {a, b}, Q)

→HeadNormalForm([ax2, ax2, ∅], T, {}, {a, b}) = (true, ax2, T, {},{a, b})
HeadReduce returns (true, 0, T, { }, {a, b}, Q)

p := [ax2, ax2, ∅]
Q = { }
→TailNormalForm(p, T) = ax2

T := {[by2, by2, ∅], [ax2, ax2, ∅]}
Q := {[bxy2, by2, ∅]}

1 The Maple code of our implementation of the algorithm ComInvSys for
the Janet division is available at the Web pages http://invo.jinr.ru and
http://amirhashemi.iut.ac.ir/software.html

114 V. Gerdt and A. Hashemi

→HeadReduce(T,{ }, {a, b}, Q) = (true, 0, T, { }, {a, b}, Q)

p := [bxy2, by2, ∅]
Q = { }

→TailNormalForm(p, T) = bxy2

T := {[by2, by2, ∅], [ax2, ax2, ∅], [bxy2, by2, ∅]}
Q := {[bx2y2, by2, ∅]}
→HeadReduce(T,{ }, {a, b}, Q) = (true, 0, T, { }, {a, b}, { })
Q := { }

→GBI returns (true, 0, {by2, ax2, bxy2}, { }, {a, b})
List := ({by2, ax2, bxy2}, { }, {a, b})

B = {[ax2, ax2, ∅], [0, 0, ∅]}
→Branch([by2, by2, ∅], B, {b}, {a}, { })

→NewCond(by2, {b}, {a}) = ({ }, {b}, {a})
ind ≥ k = 2

cd = { }
→GBI (B, {b}, {a}, { }) = (true, 0, {ax2}, {b}, {a})
List := ({by2, ax2, bxy2}, { }, {a, b}), ({ax2}, {b}, {a})
(* Return back to ComInvSys *)

A =
(
[ax2, ax2, ∅], {[0, 0, ∅], [by2, by2, ∅]}, {a}, { }, { })

B = {[0, 0, ∅], [by2, by2, ∅]}
→Branch([by2, by2, ∅], B, { }, {a}, { })

→NewCond(by2, {a}, { }) = ({b}, { }, { })
→Branch([by2, by2, ∅], B, {a}, {b}, { })
(* further Branch([by2, by2, ∅], B, {a, b}, { }, { }) is executed *)

→NewCond(by2, {a}, {b}) = ({ }, {a}, {b})
ind ≥ k = 2

cd = { }
→GBI (B, {a}, {b}, { }) = (true, 0, {by2}, {a}, {b})
List := ({by2, ax2, bxy2}, { }, {a, b}), ({ax2}, {b}, {a}), ({by2}, {a}, {b})

B = {[0, 0, ∅], [0, 0, ∅]}
→Branch([by2, by2, ∅], B, {a, b}, { }, { })

→NewCond(by2, {a, b}, { }) = ({ }, {a, b}, { })
ind ≥ k = 2

cd = { }
→GBI (B, {a, b}, { }, { }) = (true, 0, {0}, {a, b}, { })

List := ({by2, ax2, bxy2}, { }, {a, b}), ({ax2}, {b}, {a}), ({by2}, {a}, {b}), ({0}, {a, b}, {})

Acknowledgements. The main part of research presented in the paper was
done during the stay of the second author (A.H.) at the Joint Institute for Nu-
clear Research in Dubna, Russia. He would like to thank the first author (V.G.)
for the invitation, hospitality, and support. The contribution of the first author

Comprehensive Involutive Systems 115

was partially supported by grants 01-01-00200, 12-07-00294 from the Russian
Foundation for Basic Research and by grant 3802.2012.2 from the Ministry of
Education and Science of the Russian Federation.

References

1. Apel, J., Hemmecke, R.: Detecting unnecessary reductions in an involutive basis
computation. J. Symbolic Computation 40, 1131–1149 (2005)

2. Becker, T., Weispfenning, T.: Gröbner Bases: a Computational Approach to Com-
mutative Algebra. Graduate Texts in Mathematics, vol. 141. Springer, New York
(1993)

3. Buchberger, B.: Ein Algorithms zum Auffinden der Basiselemente des Restklassen-
rings nach einem nuildimensionalen Polynomideal. PhD thesis, Universität Inns-
bruck (1965)

4. Buchberger, B.: A Criterion for Detecting Unnecessary Reductions in the
Cconstruction of Gröbner Bases. In: Ng, K.W. (ed.) EUROSAM 1979. LNCS,
vol. 72, pp. 3–21. Springer, Heidelberg (1979)

5. Buchberger, B., Winkler, F. (eds.): Gröbner Bases and Applications. London Math-
ematical Society Lecture Note Series, vol. 251. Cambridge University Press, Cam-
bridge (1998)

6. Gerdt, V.P.: Involutive algorithms for computing Gröbner bases. In: Cojocaru,
S., Pfister, G., Ufnarovski, V. (eds.) Computational Commutative and Non-
Commutative Algebraic Geometry, pp. 199–225. IOS Press, Amstrerdam (2005)
(arXiv:math/0501111)

7. Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Mathematics and
Computers in Simulation 45, 519–542 (1998)

8. Gerdt, V.P., Blinkov, Y.A.: Involutive Division Generated by an Antigraded Mono-
mial Ordering. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2011. LNCS, vol. 6885, pp. 158–174. Springer, Heidelberg (2011)

9. Janet, M.: Les Systèmes d’Équations aux Dérivées Partielles. Journal de
Mathématique 3, 65–151 (1920)

10. Kapur, D., Sun, Y., Wand, D.: A new algorithm for computing comprehensive
Gröbner systems. In: Watt, S.M. (ed.) Proc. ISSAC 2010, pp. 29–36. ACM Press,
New York (2010)

11. Manubens, M., Montes, A.: Improving DisPGB algorithm using the discriminant
ideal. J. Symbolic Computation 41, 1245–1263 (2006)

12. Manubens, M., Montes, A.: Minimal canonical comprehensive Gröbner systems. J.
Symbolic Computation 44, 463–478 (2009)

13. Montes, A.: A new algorithm for discussing Gröbner bases with parameters. J.
Symbolic Computation 33, 183–208 (2002)

14. Montes, A.: Solving the load flow problem using Gröbner bases. SIGSAM Bul-
letin 29, 1–13 (1995)

15. Montes, A., Wibmer, M.: Gröbner bases for polynomial systems with parameters.
J. Symbolic Computation 45, 1391–1425 (2010)

16. Pommaret, J.-F.: Systems of Partial Differential Equations and Lie Pseudogroups.
Mathematics and its Applications, vol. 14. Gordon & Breach Science Publishers,
New York (1978)

17. Sato, Y., Suzuki, A.: An alternative approach to comprehensive Gröbner bases. J.
Symbolic Computation 36, 649–667 (2003)

116 V. Gerdt and A. Hashemi

18. Sato, Y., Suzuki, A.: A simple algorithm to compute comprehensive Gröbner bases
using Gröbner bases. In: Trager, B.M. (ed.) Proc. ISSAC 2006, pp. 326–331. ACM
Press, New York (2006)

19. Suzuki, A.: Computation of Full Comprehensive Gröbner Bases. In: Ganzha, V.G.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 431–444.
Springer, Heidelberg (2005)

20. Seiler, W.M.: Involution - The Formal Theory of Differential Equations and its
Applications in Computer Algebra. Algorithms and Computation in Mathematics,
vol. 24. Springer, Berlin (2010)

21. Weispfenning, V.: Cannonical comprehensive Gröbner bases. J. Symbolic Compu-
tation 36, 669–683 (2003)

22. Weispfenning, V.: Comprehensive Gröbner bases. J. Symbolic Computation 14,
1–29 (1992)

23. Zharkov, A.Y., Blinkov, Y.A.: Involutive approach to investigating polynomial sys-
tems. Mathematics and Computers in Simulation 42, 323–332 (1996)

A Polynomial-Time Algorithm for the Jacobson

Form of a Matrix of Ore Polynomials

Mark Giesbrecht1 and Albert Heinle2

1 Cheriton School of Computer Science, University of Waterloo, Canada
2 Lehrstuhl D für Mathematik, RWTH Aachen University, Aachen, Germany

Abstract. We present a new algorithm to compute the Jacobson form
of a matrix A of polynomials over the Ore domain F(z)[x;σ, δ]n×n, for
a field F. The algorithm produces unimodular U , V and the diagonal
Jacobson form J such that UAV = J . It requires time polynomial in
degx(A), degz(A) and n. We also present tight bounds on the degrees of
entries in U , V and J . The algorithm is probabilistic of the Las Vegas
type: we assume we are able to generate random elements of F at unit
cost, and will always produces correct output within the expected time.
The main idea is that a randomized, unimodular, preconditioning of A
will have a Hermite form whose diagonal is equal to that of the Jacobson
form. From this the reduction to the Jacobson form is easy. Polynomial-
time algorithms for the Hermite form have already been established.

1 Introduction

The Jacobson normal form is a fundamental invariant of matrices over a ring of
Ore polynomials. Much like the Smith normal form over a commutative principal
ideal domain, it captures important information about the structure of the solu-
tion space of a matrix over the ring, and many important geometric properties
of its system of shift or differential equations.

In this paper we consider the problem of computing canonical forms of ma-
trices of Ore polynomials over a function field F(z). Let σ : F(z) → F(z) be an
automorphism of F(z) and δ : F(z) → F(z) be a σ-derivation. That is, for any
a, b ∈ F(z), δ(a+ b) = δ(a) + δ(b) and δ(ab) = σ(a)δ(b) + δ(a)b. We then define
F(z)[x;σ, δ] as the set of polynomials in F(z)[x] under the usual addition, but
with multiplication defined by xa = σ(a)x+ δ(a), for any a ∈ F(z). This is well-
known to be a left (and right) principal ideal domain, with a straightforward
euclidean algorithm (see Ore (1933)).

Cohn (1985), Proposition 8.3.1 shows that we may assume that we are in
either the pure differential case (with σ(a) = a), or the pure difference case,
with δ(a) = 0. In this paper, we will constrain ourselves still further to the
shift polynomials and the differential polynomials over F(z), where F is a field
of characteristic 0.

(1) σ(z) = S(z) = z + 1 is the so-called shift automorphism of F(z), and δ
identically zero on F. Then F(z)[x;S, 0] is generally referred to as the ring
of shift polynomials. We write F(z)[∂;S] for this ring.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 117–128, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

118 M. Giesbrecht and A. Heinle

(2) δ(z) = 1 and σ(z) = z, so δ(h(z)) = h′(z) for any h ∈ F(z) with h′ its usual
derivative. Then F(z)[x;σ, δ] is called the ring of differential polynomials. We
write F(z)[x; ′] for this ring.

More general Ore polynomials (in particular, in fields of finite characteristic) will
be treated in the journal version of this paper.

Let a, b ∈ F(z)[x;σ, δ]. Following Jacobson (1943), Chapter 3, we say that a is a
total divisor of b �= 0 if there exists a two-sided ideal I such that aF(z)[x;σ, δ] ⊇
I ⊇ bF(z)[x;σ, δ]. We say that two elements a, b ∈ F(z)[x;σ, δ] are similar if
there exists a u ∈ F(z)[x;σ, δ] \ {0} such that b = lclm(a, u)u−1. A matrix U ∈
F[∂;σ, δ]

n×n
is said to be unimodular if there exists a matrix V ∈ F[∂;σ, δ]

n×n

such that UV = I (i.e., the inverse is also a matrix over F[∂;σ, δ]).
Let A ∈ F[∂;σ, δ]

n×n
. Jacobson (1943), Theorem 3.16, shows that there exist

unimodular matrices U, V ∈ F[∂;σ, δ]
n×n

such that

J = UAV = diag(s1, . . . , sr, 0, ..., 0),

where si is a total divisor of si+1 for 1 ≤ i < r. We call J the Jacobson form of
A, and the diagonal entries of J are unique up to the notion of similarity given
above. For the rings F(z)[∂;S] and F(z)[∂; ′] we establish stronger statements
about the shape of the Jacobson form. In particular, we show that if for shift
polynomials R = F(z)[x;S], there exist unimodular U, V ∈ Rn×n such that

J = UAV = diag(1, . . . , 1, x, . . . , x, x2, . . . , x2, . . . , xk, . . . , xk, ϕxk, 0, . . . , 0),

where ϕ ∈ R is monic. For differential polynomials R = F(z)[x;′], it is well-known
that there exists unimodular U, V ∈ Rn×n such that

J = UAV = diag(1, . . . , 1, ϕ, 0 . . . , 0),

where ϕ ∈ R is monic.
Finding normal forms of matrices is as old as the term matrix itself in math-

ematics. A primary aim is to obtain a diagonal matrix after a finite number
of reversible matrix operations. For matrices with entries in a commutative ring
there has been impressive progress in computing the Smith normal form, and the
improvements in complexity have resulted directly in the best implementations.
The Jacobson form is the natural generalization of the Smith form in a noncom-
mutative (left) principal ideal domain. Commutative techniques do not directly
generalize (for one thing there is no straightforward determinant), but our goal
is to transfer some of this algorithmic technology to the non-commutative case.

Over the past few years, a number of algorithms and implementations have
been developed for computing the Jacobson form. The initial definition of the
Jacobson form (Jacobson, 1943) was essentially algorithmic, reducing the prob-
lem to computing diagonalizations of 2× 2 matrices, which can be done directly
using GCRDs and LCLMs. Unfortunately, this approach lacks not only efficiency
in terms of ring operations, but also results in extreme coefficient growth.

Recent methods of Levandovskyy and Schindelar (2012) have developed a al-
gorithm based on Gröbner basis theory. An implementation of it is available in

Polynomial-Time Jacobson Form 119

the computer algebra system Singular. A second approach by Robertz et al.
implementing the algorithm described in Cohn (1985) can be found in the Janet
library for Maple.. Another approach is proposed by Middeke (2008) for differ-
ential polynomials, making use of a cyclic vector computation. This algorithm
requires time polynomial in the system dimension and order, but coefficient
growth is not accounted for. Finally, the dissertation of Middeke (2011) consid-
ers an FGLM-like approach to converting a matrix of differential polynomials
from the Popov to Jacobson form.

Our goal in this paper is to establish rigorous polynomial-time bounds on
the cost of computing the Jacobson form, in terms of the dimension, degree
and coefficient bound on the input. We tried to avoid Gröbner bases and cyclic
vectors, because we do not have sufficiently strong statements about their size
or complexity. Our primary tool in this work is the polynomial-time algorithm
for computing the Hermite form of a matrix of Ore polynomials, introduced at
the CASC 2009 conference by Giesbrecht and Kim (2009, 2012).

Definition 1.1. Let R = F(z)[x;σ, δ] be an Ore polynomial ring and A ∈ Rn×n

with full row rank. There exists a unimodular matrix Q ∈ Rn×n, such that H =
QA is an upper triangular matrix with the property that

• The diagonal entries Hii of are monic;
• Each superdiagonal entry is of degree (in x) lower than the diagonal in its
column (i.e., degxHji < degxHii for 1 ≤ j < i ≤ n)

The Hermite form (with monic diagonals) is unique.

Giesbrecht and Kim (2009, 2012) establishes the following (polynomial-time)
cost and degree bounds for computing the Hermite form:

Fact 1.2. Let A ∈ F[z][x;σ, δ] have full row rank with entries of degree at most
d in x, and of degree at most e in z. Let H ∈ F(z)[x;σ, δ]n×n be the Hermite
form of A and U ∈ F(z)[x;σ, δ]n×n such that UA = H. Then

(a) We can compute the Hermite form H ∈ F(z)[x;σ, δ]n×n of A, and U ∈
F(z)[x;σ, δ]n×n such that UA = H with a deterministic algorithm that re-
quires O(n9d3e) operations in F;

(b) degxHij ≤ nd, degzHij ∈ O(n2de) and degzUij ∈ O(n2de) for 1 ≤ i, j ≤ n.

Our approach to computing the Jacobson form follows the method of
Kaltofen et al. (1990) for computing the Smith normal form of a polynomial
matrix. This algorithm randomly preconditions the input matrix by multiplying
by random unimodular matrices on the left and the right, and then computes
a left and right echelon/Hermite form. The resulting matrix is shown to be in
diagonal Smith form with high probability.

Our algorithm follows a similar path, but the unimodular preconditioner must
be somewhat more powerful to attain the desired Jacobson form. In this current
paper we will only pursue our algorithm for differential polynomials, though the
method should work well for shift polynomials as well.

120 M. Giesbrecht and A. Heinle

The remainder of this paper is as follows. In Section 2 we establish stronger
versions of the Jacobson form for differential and shift polynomials. In Section
3 we show the reduction from computing the Jacobson form to computing the
Hermite form, while in Section 4 we demonstrate degree bounds and complexity
for our algorithms. Finally, we offer some conclusions and future directions in
Section 5.

2 Strong Jacobson Form

In this section we establish the existence of the strong Jacobson form for poly-
nomials over the shift and differential rings.

Theorem 2.1. Let R = F(z)[x;S] be the ring of shift polynomials, and A ∈
Rn×n. Then there exist unimodular matrices U, V ∈ Rn×n such that

J = UAV = diag(1, . . . , 1, x, . . . , x, . . . , xk, . . . , xk, ϕxk, 0, . . . , 0), (2.1)

where ϕ ∈ R.

Proof. We may assume that A is in Jacobson form,

A = diag(f1, . . . , fr, 0, . . . , 0) ∈ Rn×n,

with fi a total divisor of fi+1 for 1 ≤ i < r, though perhaps not with the nice
shape of (2.1). We work though the 2×2 diagonal submatrices of A in sequence.
Let diag(f, g) be such a submatrix, where f divides g from both sides. This
means there exists w, w̃ ∈ R, such that g = wf = fw̃. If f is 1 or a power of x
already, we can continue with the next submatrix. Without loss of generality f
has the form (xi+ai−1x

i−1+ . . .+a0)x
μ, where aj ∈ F(z) for 0 ≤ j < i, μ ∈ Z≥0

and at least one aj is not equal to zero. Now perform the following unimodular
transformation on the given submatrix:[
f 0
0 wf

]
�
[

1 0

−Si+μ+deg(w)(z)w 1

] [
f 0
0 wf

] [
1 0
z 1

]
=

[
f 0

wfz−Si+μ+deg(w)(z)wf wf

]
.

The term wfz − Si+μ+deg(w)(z)wf is constructed such that it has degree in x
strictly lower than that of wf .

We claim that f is not a right divisor of wfz − Si+μ+deg(w)(z)wf . Suppose
conversely that it is still a right divisor. Then

wfz − Si+μ+deg(w)(z)wf = hf

for some h ∈ R. Since clearly Si+μ+deg(w)(z)wf is divisible by f from the right,
wfz must also be divisible by f from the right. But this means that fz is equal
to (az + b)f for some a, b ∈ F. This is only possible if f is either 1 or a power
of x. This is a contradiction to our choice of f . Thus, if we perform a GCRD
computation on these two polynomials, we will get a polynomial of a strictly
smaller degree. This action can be performed, until just xμ is left. Continuing
similarly with the next 2× 2 submatrix, the shape (2.1) is established. ��

Polynomial-Time Jacobson Form 121

The following characterization of the matrix of differential polynomials is well-
known. It follows immediately from the fact that F(z)[x; ′] is a simple ring.

Theorem 2.2. Let R = F(z)[x; ′] be the ring of differential polynomials, and
A ∈ Rn×n. Then there exist unimodular matrices U, V ∈ Rn×n such that

J = UAV = diag(1, . . . , 1, ϕ, 0 . . . , 0),

for some ϕ ∈ R.

3 Reducing Computing Jacobson Form to Hermite Form

In this section we present our technique for computing the Jacobson form of a
matrix of Ore polynomials. Ultimately, it is a simple reduction to computing the
Hermite form of a preconditioned matrix. We present it only for the ring R =
F(z)[x; ′]. An analogous method should work for the ring of shift polynomials,
and will be developed in a later paper. We begin with some preparatory work.

3.1 On Divisibility

We first demonstrate that right multiplication by an element of F[z], i.e., by a
unit in R, transforms a polynomial to be relatively prime to the original.

Lemma 3.1. Given h ∈ R, nontrivial in x, there exists a w∈F[z] with degz(w)≤
degx(h), such that GCRD(h, hw) = 1.

Proof. Without loss of generality assume h is normalized to be monic and has
the form xn + hn−1x

n−1 + . . .+ h1x+ h0.
Case 1: h is irreducible.

The only monic right divisor of h of positive degree is h itself. Thus, brought
into normal form (i.e., with leading coefficient one), h and hw should be the
same polynomial. We have lc(h) = 1, lc(hw) = w, tc(h) = h0, and tc(hw) =
h0w+h1δ(w)+ . . .+hnδ

n(w), where lc : R→ F(z) and tc : R→ F(z) extract the
leading and tailing coefficients respectively. The choice of w, such that the tail
coefficients are different, is always possible. If you normalize both polynomials
from the left and subtract them, then you get a polynomial of strict lower degree
in x and not equal 0. This is due to the fact that the tail coefficient of hw after
normalizing has the form

h0 +
h1δ(w) + . . .+ hnδ

n(w)

w
, (3.1)

and you can choose w such that the fraction above does not equal 0. Since h was
assumed to be irreducible, we can reduce these polynomial further to 1 with a
linear combination of h and hw (otherwise we would get a nontrivial GCRD of
two irreducible polynomials).

122 M. Giesbrecht and A. Heinle

Case 2: h = h1 · · ·hm, with hi irreducible for 1 ≤ i ≤ m.
In this case the proof is complicated by non-commutativity. Multiplication

with w will affect the rightmost factor. If there is just one factorization we can
again use the argument from case 1, and we are done.

If we have more than one factorization, things become interesting. We first
show that a multiplication by w for the rightmost factor hm in one factorization
h1 · · ·hm cannot be equal to h̃m for the rightmost factor h̃m of an arbitrary other
factorization h̃1 · · · h̃m. Suppose this equality holds. Then

h1 · · ·hm−1hmw = h̃1 · · · h̃m−1hmw,

where we can directly see, that then

h1 · · ·hm−1 = h̃1 · · · h̃m−1,

which means, that we already dealt with the same factorization, a contradiction.
Thus, we cannot get the same rightmost factor via multiplication by a unit from
the right. Now we can use the same argument as in case 1 and see that the
GCRD of the rightmost factors will be 1. ��
Remark 3.2. The condition on the tailing coefficient (3.1) in the proof shows us,
that we can also always find for f �= g ∈ R a w ∈ F[z] such that GCRD(f, fw) = 1
GCRD(g, gw) = 1.

In the second case of the proof above it was not necessary that we were just
looking at h, because we can look at any left multiple of h and get the same
result. Thus, we can guarantee that we will obtain, with high probability, coprime
elements by premultiplication by a suitable random element.

Corollary 3.3. For any f, g ∈ R, there exists a w ∈ F[z] of degree at most
max{deg(f), deg(g)} such that GCRD(fw, g) = 1.

Lemma 3.4. Let f, g ∈ R have degx f = n and degx g = m, and assume f
and g have degree at most e in z. Let w ∈ F[z] be chosen randomly of degree
d = max{m,n}, with coefficients chosen from a subset of F of size at least
n(n+m)(n+ e). Then

Prob{GCRD(f, gw) = 1} ≥ 1− 1

n
.

Proof. Assume the coefficients of w are independent indeterminates commuting
with x. Consider the condition that GCRD(f, gw) = 1. We can reformulate this
as a skew-Sylvester resultant condition in the coefficients of f and gw over F(z).
That is, there exists a matrix Syl(f, gw) ∈ F(z)(n+m)×(n+m) such that D =
det Syl(f, gw) ∈ F(z) is nonzero if and only if GCRD(f, gw) = 1. By Corollary
3.3 we knowD is not identically zero. It is easily derived from the Leibniz formula

Polynomial-Time Jacobson Form 123

for the determinant that degz D ≤ (n+m)(n+ e). The probability stated then
follows immediately from the Schwarz-Zippel Lemma (Schwartz, 1980). ��

We now use these basic results to construct a generic preconditioning matrix for
A. First consider the case of a 2× 2 matrix A ∈ R2×2, with Hermite form

H =

(
f g
0 h

)
= UA

for some unimodular U ∈ R2×2. We then precondition A by multiplying it by

Q =

(
1 0
w 1

)
,

where w ∈ F[z] is chosen randomly of degree max{deg(f), deg(g), deg(h)}, so

UAQ =

(
f + gw g
hw h

)
.

Our goal is to have the Hermite form of AQ have a 1 in the (1, 1) position. This
is achieved exactly when GCRD(f +gw, hw) = 1. The following lemma will thus
be useful.

Lemma 3.5. Given f, g, h ∈ R. Then there exists a w ∈ F [z] with deg(w) ≤
max {degx(f), degx(g), degx(h)} such that GCRD(f + gw, hw) = 1.

Proof. We consider two different cases.
Case 1: GCRD(g, h) = 1. This implies GCRD(gw, hw) = 1 for all possible w.
Then there exist e, l ∈ R such that egw + lhw = 1. Therefore – because we are
aiming to obtain 1 as the GCRD – we would proceed by computing the GCRD
of ef + 1 and hw. Lemma 3.1 shows the existence of appropriate w, such that
GCRD(ef + 1, hw) = 1.

Case 2: GCRD(g, h) �= 1. Without loss of generality, let g be the GCRD of h and
g (using the euclidean algorithm we can transform GCRD(f+gw, hw) into such a
system, and f will just get an additional left factor). Since we can choose w, such
that GCRD(f, hw) = 1, we have e, l ∈ R, such that ef+lhw = 1. This means that
we just have to compute the GCRD of hw and 1+egw. Let h̃ be such that h̃g = h.
If we choose the left factors e2, l2, such that e2egw+ l2h̃gw = gw, we know that
h and e2 have no common right divisor. Our GCRD problem is equivalent to
GCRD(e2 + gw, h̃gw), which can be further transformed to GCRD(h̃e2, h̃gw)
(since we have h̃(e2 + gw) − h̃gw = h̃e2). As we have seen in Remark 3.2,
We can adjust our choice of w to fulfill the conditions GCRD(f, hw) = 1 and
GCRD(h̃e2, h̃gw) = 1. ��

A similar resultant argument to Lemma 3.4 now demonstrates that for a random
choice of w we obtain our co-primality condition. We leave the proof to the
reader.

124 M. Giesbrecht and A. Heinle

Lemma 3.6. Given f, g, h ∈ R, with d = max{degx(f), degx(g), degx(h)}, and
e = max{degz(f), degz(g), degz(h)}. Let w ∈ R have degree d, and suppose its
coefficients are chosen from a subset of F of size at least n(n+ d)(n+ e). Then

Prob {GCRD(f + gw, hw) = 1} ≥ 1− 1

n
.

This implies that for any matrix A ∈ R2×2 and a randomly selected w ∈ F[z] of
appropriate degree we obtain with high probability

A

[
1 0
w 1

]
= U

[
1 ∗
0 h

]
= U

[
1 0
0 h

]
V,

where h ∈ R and U, V ∈ R2×2 are unimodular matrices. Hence A has the Jacob-
son form diag(1, h). This is accomplished with one Hermite form computation
on a matrix of the same degree in x, and not too much higher degree in z, than
that of A.

Remark 3.7. With that we obtain an extra property for our resulting Hermite
form: Since we can find such a w ∈ F[z], such that GCRD(f+gw, hw) = 1, there
exist e, l, k,m, such that[

e l
k m

] [
f + gw g
hw h

]
=

[
1 eg + lh
0 kg +mh

]
. (3.2)

Now, we know, that the following equalities do hold:

ef + egw + lhw = 1 ⇐⇒ egw + lhw = 1− ef ⇐⇒ eg + lh = w−1 − efw−1,

and similarly we get

kf + kgw +mhw = 0 ⇐⇒ kgw +mhw = −kf ⇐⇒ kg +mh = −kfw−1.

This means that, on the right hand side of our equation (3.2), we have[
1 w−1 − efw−1

0 −kfw−1

]
.

Therefore, for our next computation (i.e., if we just considered the 2×2 submatrix
with this and computed the new Hermite form), we would deal with that same
f as right factor multiplied by a unit from the right in the upper left corner of
the next 2× 2 submatrix and will be able to perform our computations there.

We now generalize this technique to n× n matrices over R.

Theorem 3.8. Let A ∈ Rn×n have full row rank. Let Q be a lower triangular,
banded, unimodular matrix of the form⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
w1 1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 wn−1 1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ Rn×n,

Polynomial-Time Jacobson Form 125

where wi ∈ F[z] for i ∈ {1, . . . , n− 1}, deg(wi) = i · n · d and d is the maximum
degree of the entries in A. Then with high probability the diagonal of the Hermite
form of B = AQ is diag(1, 1, ..., 1,m), where m ∈ F(z)[x;′].

Proof. Let H be the Hermite form of A and have the form⎡⎢⎢⎢⎢⎢⎢⎣

f1 h1 ∗ . . . ∗
0 f2 h2 . . . ∗
0

. . .
. . .

. . .
...

...
. . .

. . .
. . . hn−1

0 . . . 0 0 fn

⎤⎥⎥⎥⎥⎥⎥⎦ ,

By Giesbrecht and Kim (2012), Theorem 3.6, we know that the sum of the de-
grees of the diagonal entries of the Hermite form of A equals n · d. Thus we can
regard nd as an upper bound for the degrees of the fi. If we now multiply the
matrix ⎡⎣ 1 0 0 . . . 0

w1 1 0 . . . 0
0n−2×1 0n−2×1 In−2

⎤⎦
from the right, we obtain the following in the upper left 2× 2 submatrix:[

f1 + h1w1 h1
f2w1 f2

]
.

As we have seen in the remark above, after calculation of the Hermite form of
this resulting matrix, we get with high probability⎡⎢⎢⎢⎢⎢⎢⎣

1 ∗ ∗ . . . ∗
0 kf1w

−1
1 ∗ . . . ∗

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . hn−1

0 . . . 0 0 fn

⎤⎥⎥⎥⎥⎥⎥⎦ .

The entry kf1w
−1
1 has degree at most 2 ·n ·d, where we see, why we have chosen

the degree 2 · n · d for w2. After n− 1 such steps we obtain a Hermite form with
1s on the diagonal, and an entry in F(z)[x; δ] ��

This leads us to the following simple algorithm to compute the Jacobson form
by just calculating the Hermite Form after preconditioning.

126 M. Giesbrecht and A. Heinle

Algorithm 1. JacobsonViaHermite: Compute the Jacobson normal form of a
matrix over the differential polynomials

Input: A ∈ F(z)[x; ′]n×n, n ∈ N,

Output: The Jacobson normal form of A

Preconditions:

– Existence of an algorithm HERMITE to calculate the Hermite normal form of a
given matrix over F(z)[x; ′]

– Existence of an algorithm RANDPOLY which computes a random polynomial of
specified degree with coefficients chosen from a specified set.

1: d ← max{deg(Ai,j) | i, j ∈ {1, . . . , n}}
2: for i from 1 to n− 1 do
3: wi ← RANDPOLY(degree = i · n · d)
4: end for
5: Construct a matrix W , such that

Wij ←

⎧⎪⎨
⎪⎩

1 if i = j

wi if i = j + 1

0 otherwise

6: result ← HERMITE(A ·W)
7: if resultii �= 1 for any i ∈ {1, . . . , n− 1} then
8: FAIL {With low probability this happens}
9: end if
10: Eliminate the off diagonal entries in result by simple column operations
11: return result

3.2 Experimental Implementation and Results

We have written an experimental implementation inMaple as a proof of concept
of our algorithm.

Since there are no other implementations of the calculation of the Hermite
form available for Ore rings, we used the standard way of calculating the Hermite
form, i.e. by repeated GCRD computations. Since the Hermite form of a matrix
is unique, the choice of algorithm is just a matter of calculation speed.

One problem with the preconditioning approach is that the diagonal entries
become “ugly” (recall that they are only unique up to the equivalence described
in the introduction). We illustrate this with an example as follows.

Example 3.9. Consider matrix A:[
1 + zx z2 + zx

z + (z + 1)x 5 + 10x

]
.

Its Jacobson form, calculated by Singular, has as its nontrivial entry:

(45z − 10− 11z2 − z4 +2z5) + (2z5 +3z4 − 12z3 +10z+2z2)x+(2z4 − 19z3 +9z2)x2.

Polynomial-Time Jacobson Form 127

Calculating the Jacobson form with the approach of calculating a lot of GCRDs
or GCLDs respectively results in the polynomial:

(−3z3+z5−4z2+3z+10)+(−8z3+z2+z5+z4+13z+19)x+(−10z3+8z2+z4+9z)x2.

If we precondition the matrix in the described way, the output of Singular stays
the same, but the output of the straightforward approach is the polynomial:

88360z9 − 384554z8 + 243285z7 + 1104036z6 − 4428356z5 + 2474570z4 + 3533537z3

− 3915039z2 + 1431017z − 150930

+ (88360z9 − 31114z8 − 948071z7 + 5093247z6 − 7538458z5 + 5740077z4−1935190z3

− 20353z2 + 154797z + 10621)x

+ (−739659z3 + 137249z2 + 5031z + 1769774z4 − 2553232 + z5 + 2133343z6

− 1003074z7 + 88360z8)x2.

The calculation time was as expected similar to just calculating a Hermite form.
Both answers are “correct”, but the Groebner-based approach has the effect of
reducing coefficient size and degree. An important future task could be to find
a normal form for a polynomial in this notion of weak similarity. This normal
form should have as simple coefficients as possible.

The demonstration here is simply that the algorithm works, not that we would
beat previous heuristic algorithms in practice. The primary goal of this work is to
demonstrate a polynomial-time algorithm, which we hope will ultimately lead to
faster methods for computing and a better understanding of the Jacobson form.

4 Degree Bounds and Complexity

The cost of the algorithm described for the Jacobson normal form is just the cost
of a single preconditioning step (a matrix multiplication), plus the cost of com-
puting a Hermite form (for which we use the algorithm of Giesbrecht and Kim
(2009)). The growth in the degree of the input matrix after the precondition is an
additive factor of O(n2d), which is largely dominated by the cost of computing
the Hermite form. We thus obtain the following theorem.

Theorem 4.1. Let A ∈ F(z)[x;′]n×n have full row rank, with degx(Aij) ≤ d for
1 ≤ i, j ≤ n, and degz(Aij) ≤ e.

(a) We can compute the Jacobson form J of A, and unimodular matrices U, V
such that J = UAV , with an expected number of O(n9d3e) operations in F.
The algorithm is probabilistic of the Las Vegas type, and always returns the
correct solution.

(b) If J = diag(1, . . . , 1, sn), then degx(sn) ≤ nd, and degx Uij , degx Vij ≤ nd.
(c) degzHij ∈ O(n2de) and degzUij ∈ O(n2de) for 1 ≤ i, j ≤ n.

Proof. Part (a) follows directly from the algorithm and the preceding analysis.
Part (b) and (c) follow from the degree bounds over on the Hermite form over
Ore polynomial rings in Giesbrecht and Kim (2009, 2012).

128 M. Giesbrecht and A. Heinle

Of course a faster algorithm for computing the Hermite form would directly yield
a faster algorithm for computing the Jacobson form of an input matrix.

5 Conclusion and Future Work

In this paper, we have developed a probabilistic algorithm for computing the Ja-
cobson form of a square matrix with entries in the ring of differential polynomials
which can also easily be generalized to the non-sqare case. The complexity of our
algorithm depends on the complexity of calculating the Hermite form of a matrix
with entries in F(z)[x; ′]. Using the algorithm of Giesbrecht and Kim (2009) we
establish a polynomial-time algorithm for the Jacobson form of a matrix of dif-
ferential polynomials. We also establish polynomial bounds on the entries in the
Jacobson form and on the transformation matrices. While we do not necessarily
anticipate that this will ultimately be the most practical method to compute
the Jacobson form, we hope that the techniques presented will be helpful in de-
veloping effective implementations. Future work will involve a generalization to
more general Ore polynomial rings (in particular shift-polynomials), as well as
asymptotically faster algorithms.

Acknowledgements. The authors thank Viktor Levandovskyy for his helpful
ideas and encouragement, and the anonymous referees for their comments.

References

Cohn, P.: Free Rings and their Relations. Academic Press, London (1985)
Giesbrecht, M., Kim, M.S.: On Computing the Hermite Form of a Matrix of Differential

Polynomials. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009.
LNCS, vol. 5743, pp. 118–129. Springer, Heidelberg (2009), doi: 10.1007/978-3-642-
04103-7 12

Giesbrecht, M., Kim, M.: Computing the Hermite form of a matrix of Ore polynomials,
(submitted for publication, 2012), ArXiv: 0906.4121

Jacobson, N.: The Theory of Rings. American Math. Soc., New York (1943)
Kaltofen, E., Krishnamoorthy, M.S., Saunders, B.D.: Parallel algorithms for matrix

normal forms. Linear Algebra and its Applications 136, 189–208 (1990)
Levandovskyy, V., Schindelar, K.: Computing diagonal form and Jacobson normal form

of a matrix using Gröbner bases. Journal of Symbolic Computation (in press, 2012)
Middeke, J.: A polynomial-time algorithm for the Jacobson form for matrices of differ-

ential operators. Technical Report 08-13, Research Institute for Symbolic Computa-
tion (RISC), Linz, Austria (2008)

Middeke, J.: A computational view on normal forms of matrices of Ore polynomials.
PhD thesis, Research Institute for Symbolic Computation, Johannes Kepler Univer-
sity, Linz, Austria (2011)

Ore, O.: Theory of non-commutative polynomials. Annals of Math 34, 480–508 (1933)
Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities.

J. Assoc. Computing Machinery 27, 701–717 (1980)

The Resonant Center Problem for a 2:-3

Resonant Cubic Lotka–Volterra System

Jaume Giné1, Colin Christopher2, Mateja Prešern3,
Valery G. Romanovski4,5, and Natalie L. Shcheglova6

1 Departament de Matemàtica, Universitat de Lleida,
Av. Jaume II, 69, 25001 Lleida, Spain

gine@matematica.udl.cat
2 School of Computing and Mathematics, Plymouth University,

Plymouth PL4 8AA, UK
C.Christopher@plymouth.ac.uk

3 Department of Mathematics and Statistics, University of Strathclyde,
26 Richmond street, Glasgow G1 1XH, United Kingdom

mateja.presern@strath.ac.uk
4 CAMTP - Center for Applied Mathematics and Theoretical Physics,

University of Maribor, Krekova 2, Maribor SI-2000, Slovenia
5 Faculty of Natural Science and Mathematics, University of Maribor,

Koroška cesta 160, SI-2000 Maribor, Slovenia
valery.romanovsky@uni-mb.si

6 Faculty of Mechanics and Mathematics, Belarusian State University,
4, Nezavisimosti avenue, 220030, Minsk, Belarus

shcheglova@tut.by

Abstract. Using tools of computer algebra we derive the conditions
for the cubic Lotka–Volterra system ẋ = x(2 − a20x

2 − a11xy − a02y
2),

ẏ = y(−3+ b20x
2 + b11xy+ b02y

2) to be linearizable and to admit a first
integral of the form Φ(x, y) = x3y2+ · · · in a neighborhood of the origin,
in which case the origin is called a 2 : −3 resonant center.

Keywords: resonant center problem, polynomial systems of differential
equations, first integral.

1991 Mathematics Subject classification: Primary 34C14; Secondary
34A26, 37C27, 34C25.

1 Introduction

In this paper we consider a polynomial vector field in C2 with a p : −q resonant
elementary singular point, i.e.,

ẋ = p x+ P (x, y), ẏ = −q y +Q(x, y), (1)

where p, q ∈ Z with p, q > 0 and P and Q are polynomials. The interest in these
elementary singular points arises from the fact that there is a resonant center
defined for this type of singular points. A resonant center is a generalization of the

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 129–142, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

130 J. Giné et al.

concept of a real center to systems of ordinary differential equations in C2 of the
form (1), see [8,22,24]. The classical real center problem goes back to Poincaré
and Lyapunov, see [18,20], and has been studied extensively in hundreds of
works, see for instance [6,12,13,22] and references therein. We have the following
definition of a resonant center or focus, coming from Dulac [10] (see also [24]).

Definition 1. A p : −q resonant elementary singular point of an analytic sys-
tem is a center if there exists a local meromorphic first integral Φ = xpyq+h.o.t.

Without loss of generality we can write system (1) in the form

ẋ = px−
∑

(i,j)∈S

aijx
i+1yj,

ẏ = −qy +
∑

(i,j)∈S

bjix
jyi+1,

(2)

where p, q ∈ N, GCD(p, q) = 1, and where S is the set

S = {(uk, vk) : uk + vk ≥ 1, k = 1, . . . , �} ⊂ N−1 × N0,

where N denotes the set of natural numbers and for a non-negative integer n,
N−n = {−n, . . . ,−1, 0} ∪ N. The notation (2) simply emphasizes that we take
into account only non-zero coefficients of the polynomials of interest. This will
simplify formulas which occur later.

The condition that a function

Ψ(x, y) = xqyp +
∑

i+j>p+q
i,j∈N0

vi−q,j−px
iyj (3)

be a first integral of (1) (the indexing has been chosen so as to be in agreement
with algorithm of [21, Appendix]) is the identity

D(Ψ)
def
=

∂Ψ

∂x
(px+ P (x, y)) +

∂Ψ

∂y
(−qy +Q(x, y)) ≡ 0 , (4)

which yields(
qxq−1yp +

∑
i+j>p+q

ivi−q,j−px
i−1yj

)(
px−

∑
(m,n)∈S

amnx
m+1yn

)

+

(
pxqyp−1 +

∑
i+j>p+q

jvi−q,j−px
iyj−1

)(
−qy +

∑
(m,n)∈S

bnmx
nym+1

)
≡ 0 .

(5)

We augment the set of coefficients in (3) with the collection J = {v−q+s,q−s : s =
0, . . . , p+ q}, where, in agreement with formula (3), we set v00 = 1 and vmn = 0
for all other elements of J , so that elements of J are coefficients of terms of
degree p+ q in Ψ(x, y). We also set amn = bnm = 0 for (m,n) �∈ S. With these

The Resonant Center Problem 131

conventions, for (k1, k2) ∈ N−q ×N−p, the coefficient gk1,k2 of xk1+qyk2+p in (5)
is zero for k1 + k2 ≤ 0 and

gk1,k2 = (pk1 − qk2)vk1,k2

−
k1+k2−1∑
s1+s2=0

s1≥−q, s2≥−p

[(s1 + q)ak1−s1,k2−s2 − (s2 + p)bk1−s1,k2−s2] vs1,s2 . (6)

for k1 + k2 ≥ 1.
This formula can be used recursively to construct a formal first integral Ψ

for system (2): at the first stage finding all vk1,k2 for which k1 + k2 = 1, at the
second all vk1,k2 for which k1 + k2 = 2, and so on. For any pair k1 and k2, if
qk1 �= pk2 and if all coefficients v�1,�2 are already known for �1 + �2 < k1 + k2,
then vk1,k2 is uniquely determined by (6) and the condition that gk1,k2 be zero.
But at each of the stages k1 + k2 = k(p + q), k ∈ N (and only at these stages,
since GCD(p, q) = 1) there occurs the one “resonance” pair (k1, k2) = (kq, kp)
for which qk1 = pk2. Hence, for this pair, (6) becomes

gkq,kp = −
kq+kp−1∑
s1+s2=0

s1≥−q,s2≥−p

[(s1 + q)ak1−s1,k2−s2 − (s2 + p)bk1−s1,k2−s2] vs1,s2 , (7)

so that the process of constructing a first integral Ψ only succeeds at this step
if the expression on the right-hand side of (7) is zero. In this case, the value of
vk1,k2 = vkq,kp is not determined by equation (6) and may be assigned arbitrarily.

It is evident from (6) that for all pairs of indices (k1, k2) ∈ N−q ×N−p, vk1,k2

is a polynomial function of the coefficients of (2), that is, it is an element of the
polynomial ring C[a, b] (where (a, b) is the 2�-tuple of the coefficients of system
(2)), hence by (7) so are the expressions gkq,kp for all k. The polynomial gkq,kp,
which can be regarded as the k-th “obstruction” to the existence of the integral
(3), is called the k-th focus quantity of system (2). Thus, the set of all systems
inside the family (2), which admit a first integral of the form (3), is the zero set
(the variety) of the ideal B = 〈gq,p, g2q,2p, . . .〉, called the Bautin ideal of (2). To
find this variety in practice, one can compute focus quantities until the step k0 at
which the chain of ideals

√B1 ⊂
√B2 ⊂

√B3 ⊂ . . . stabilizes, which can be easily
verified using the radical membership test1 (here Bk = 〈gq,p, . . . , gkq,kp〉 and

√Bk
denotes the radical of the ideal Bk). Then, using an appropriate computer algebra
system (routines of Singular [16] are usually very efficient to perform this task),
one computes the irreducible decomposition of the variety of Bk0 and then for
each component of the decomposition proves that corresponding systems indeed
admit first integrals of the form (3).

For the 1 : −2 resonant singular point and when P and Q in (1) are quadratic
polynomials, the integrability problem is completely solved in [11,24] where nec-
essary and sufficient conditions (20 cases) are given. Moreover, in [8], necessary

1 The test says that given a polynomial f ∈ C[x1, . . . , xn] and an ideal J =
〈f1, . . . , fs〉 ⊂ C[x1, . . . , xn], f vanishes on the variety of the ideal J if and only
if the reduced Groebner basis of 〈f1, . . . , fs, 1− wf〉 ⊂ C[w, x1, . . . , xn] is {1}.

132 J. Giné et al.

and sufficient conditions (15 cases) for linearizability of the system are given.
In [24], some sufficient center conditions for the p : −q resonant singular point
of a quadratic system are given. The most studied case is the quadratic Lotka–
Volterra system, i.e.,

ẋ = x+ ax2 + bxy, ẏ = −λy + cxy + dy2, (λ > 0). (8)

The necessary and sufficient conditions for integrability and linearizability of
system (8) are already known for λ ∈ N [8,24]; that is, the 1 : −n resonant cases.
In [15], some sufficient conditions are given for a general choice of λ. In particular,
when λ = p/2 or λ = 2/p with p ∈ N+, the necessary and sufficient conditions
for integrability and linearizability are given. In [19], authors continue the study
of the quadratic Lotka–Volterra system (8) and present sufficient conditions for
integrability of Lotka–Volterra systems with 3 : −q resonance. In particular
cases of 3 : −5 and 3 : −4 resonances, necessary and sufficient conditions for
integrability of the systems are also given.

The 1 : −3 resonant centers on C2 with homogeneous cubic nonlinearities were
studied in [17]. This case corresponds to system (1) with p = 1, q = 3, where
P and Q are homogeneous cubic polynomials. In [5], the necessary conditions
and distinct sufficient conditions are derived for 1 : −q resonant centers of the
homogeneous cubic Lotka–Volterra system.

Note that all studied cases involve rather laborious calculations related to
decompositions of affine varieties defined by focus quantities. The complexity of
calculations for different pairs p and q is difficult to estimate in advance, however
it appears it depends on the structure of focus quantities as described in Section
3 of [21].

In this paper we focus our attention on the homogeneous cubic 2 : −3 resonant
Lotka–Volterra system, i.e., systems of the form

ẋ = x(2− a20x
2 − a11xy − a02y

2),
ẏ = y(−3 + b20x

2 + b11xy + b02y
2).

(9)

The main aim is to give conditions for integrability and linearizability of sys-
tem (9).

2 Conditions for Integrability and Linearizability

In order to obtain conditions for linearizability and integrability of system (9)
we first recall a result obtained in [5] for q ∈ N, which can be generalized directly
for q ∈ Q+ with q > 1. The result follows.

Theorem 1. The system

ẋ = x(1− a20x
2 − a11xy − a02y

2),
ẏ = y(−q + b20x

2 + b11xy + b02y
2)

(10)

has a resonant center at the origin if one of the following conditions holds:

The Resonant Center Problem 133

(1) a11 = b20 = b11 = 0;
(2) a11 = (q − 2)a20 − b20 = 0;
(3) qa20a11 + a11b20 + (q − 2)a20b11 − b20b11 = 0,

qa20a02 + (q − 1)a20b02 − b20b02 = 0,
qa11a02 − qa02b11 + (2q − 1)a11b02 − b11b02 = 0.

Indeed, from the proofs presented in [5], case (2) of Theorem 1 is valid for any
q ∈ R with q > 1 and cases (1) and (3) are valid for any q ∈ R with q > 0.

The following theorem gives some sufficient conditions for linearizability of
system (9).

Theorem 2. System (9) has a linearizable resonant center at the origin if one
of the following conditions holds:

(α) a11 = b11 = 1,
(1) a20 − b20 = 27a202b

2
20 − 9a02b

2
20b02 + 144a02b20 − 28b20b02 + 48 = 0;

(2) b20 = a20 = 0;
(β) a11 = 1, b11 = 0,

(1) a20 − b20 = 27a202b
2
20 − 9a02b

2
20b02 + 396a02b20 − 52b20b02 + 360 = 0;

(2) b20 = a20 = 0;
(γ) a11 = 0, b11 = 1,

(1) 3a02b20 − b20b02 + 6 = a20 − b20 = 0;
(2) a02 = a20 − b20 = 0;

Proof. We are going to prove that under conditions described in Theorem 2,
system (9) is linearizable. We did not find the complete set of linearizability
conditions, but those presented are obtained using the method developed in [8].
To this end, we make substitutions v = xy and w = y2. In these new coordinates,
system (9) takes the form

v̇ = v
(−w + (b20 − a20)v

2 + (b11 − a11)vw + (b02 − a02)w
2
)
,

ẇ = 2w
(−3w + b20v

2 + b11vw + b02w
2
)
.

(11)

We now set a20 = b20, and (11) becomes the quadratic system

v̇ = −v + (b11 − a11)v
2 + (b02 − a02)vw,

ẇ = −6w + 2b20v
2 + 2b11vw + 2b02w

2,
(12)

which has a resonant node at the origin. By the Poincaré–Lyapunov normal form
theory (see e.g. [1,2]), an analytic system

u̇ = −u+
∑

j+k=2

Ujku
jvk, v̇ = −nv +

∞∑
j+k=2

Vjku
jvk,

can by a convergent transformation

ξ = u+

∞∑
j+k=2

αjku
jvk, η = v +

∞∑
j+k=2

βjku
jvk, (13)

134 J. Giné et al.

be brought to the normal form

ξ̇ = −ξ, η̇ = −nη + aξn. (14)

Hence, system (12) is linearizable if and only if the resonant monomial (aξ6

in the normal form of the second equation) is zero. Alternatively, we seek an
analytic separatrix w =

∑
i>0 aiv

i (and the only obstruction is in the terms of
order 6). Computing this separatrix for system (12) we find that the coefficient
a6 is

b20(360a
4
11 − 516a311b11 + 240a211b

2
11 − 36a11b

3
11 + 396a02a

2
11b20 − 52a211b02b20

−306a02a11b11b20 + 24a11b02b11b20 + 54a02b
2
11b20 + 27a202b

2
20 − 9a02b02b

2
20)/36.

(15)
Setting a11 = b11 = 1 in condition (15) then gives

b20(48 + 144a02b20 − 28b02b20 + 27a202b
2
20 − 9a02b02b

2
20)/36,

which yields subcases (1) and (2) of (α).
Setting a11 = 1, b11 = 0 in condition (15) gives

b20(360 + 396a02b20 − 52b02b20 + 27a202b
2
20 − 9a02b02b

2
20)/36,

which yields subcases (1) and (2) of (β).
Finally, by setting a11 = 0, b11 = 1, condition (15) becomes a02b

2
20(6+ 3a02b20−

b02b20)/4, which yields subcases (1) and (2) of (γ).

For all cases of Theorem 2 there exists an analytic change of coordinates

v1 = v(1+O(v, w)) = xy(1+O(x, y)), w1 = w(1+O(v, w)) = y2(1+O(x, y)),

which brings the node to the linear system. The linear system has a first integral
v61/w1 which pulls back to a first integral of the form y4x6(1+O(x, y)). Extracting
the root of this first integral we obtain a first integral of the form y2x3(1+O(x, y))
for all cases of Theorem 2.

We recall that the Darboux factor of system (1) is a polynomial f(x, y), such
that

∂f

∂x
(px+ P) +

∂f

∂y
(−qy +Q) = Kf,

where K(x, y) is a polynomial called the cofactor. A simple computation shows
that if there are Darboux factors f1, f2, . . . , fk with the cofactorsK1,K2, . . . ,Kk

satisfying
∑k

i=1 αiKi = 0, then H = fα1
1 · · · fαk

k is a first integral of (2), and if

k∑
i=1

αiKi + P ′
x +Q′

y = 0,

then the equation admits the integrating factor μ = fα1
1 · · · fαk

k , see for instance
[3,4]. If system (2) has an integrating factor of this form then it usually admits
also a first integral of the form (3) and, therefore, has center at the origin (see
e.g. [8,22]).

The Resonant Center Problem 135

The following theorem is the main result of this paper.

Theorem 3. System (9) has a resonant center at the origin if one of the fol-
lowing conditions holds:

(α) a11 = b11 = 1,

(1) a20 − b20 = 27a202b
2
20 − 9a02b

2
20b02 + 144a02b20 − 28b20b02 + 48 = 0;

(2) b20 = a20 = 0;
(3) b02 = a20 = 0;

(β) a11 = 1, b11 = 0,

(1) a20 − b20 = 27a202b
2
20 − 9a02b

2
20b02 + 396a02b20 − 52b20b02 + 360 = 0;

(2) b20 = a20 = 0;
(3) a20b02 + 6 = b20 = a02 − b02 = 0;
(4) a20b02 − 6 = b20 = 3a02 + 4b02 = 0;
(5) b20b02 + 18 = 3a02 + 4b02 = a20 + 3b20 = 0;
(6) 3a02 + 4b02 = 3a20 + 2b20 = 0;

(γ) a11 = 0, b11 = 1,

(1) b02 = a02 = 0;
(2) 3a02b20 − b20b02 + 6 = a20 − b20 = 0;
(3) a02 = a20 − b20 = 0;
(4) a20 + 2b20 = 0;

(δ) a11 = b11 = 0,

(1) 3a20a02 + a20b02 − 2b20b02 = 0;
(2) a02 = 0;
(3) b20 = 0;
(4) a20 + 2b20 = 0.

Proof. Computing the conditions. To compute focus quantities of system (9) we
use the algorithm in [21], which is derived from formulae (6) and (7).

Following the algorithm and using a straightforward modification of the com-
puter code in [22, Figure 6.1], we compute 12 focus quantities g3,2 , . . . , g36,24 ,
where gq(2k+1),p(2k+1) = 0 for k = 0, . . . , 5, g6,4 = (1512a411a20 +216a02a

2
11a

2
20 +

36a211a
2
20b02−1764a311a20b11−288a02a11a

2
20b11−72a11a

2
20b02b11+672a211a20b

2
11+

72a02a
2
20b

2
11 + 20a220b02b

2
11 − 84a11a20b

3
11 + 1008a411b20 + 2196a02a

2
11a20b20 +

63 a202 a
2
20 b20 + 576 a211 a20 b02 b20 + 21 a02 a

2
20 b02 b20 − 1848 a311 b11 b20 −

1386a02a11a20b11b20 − 272a11a20b02b11b20 + 1008a211b
2
11b20 + 198a02a20b

2
11b20 +

20a20b02b
2
11b20 − 168a11b

3
11b20 + 360a02a

2
11b

2
20 + 126a202a20b

2
20 − 976a211b02b

2
20 −

468a02a11b11b
2
20+512a11b02b11b

2
20+108a02b

2
11b

2
20−40b02b211b220−84a02b02b320)/504,

and the rest of the polynomials are too long to be presented here. Next, we need
to find the decomposition of the variety of the ideal B12 = 〈g6,4, g12,8, . . . , g36,24〉
(the ideal is defined by 6 nonzero polynomials). We expected it could be done
using the routine minAssGTZ of SINGULAR (in [9]) which computes minimal
associate primes of the polynomial ideal using the method of [14]. However, this
turned out to be a very difficult computational task, and we were unable to
complete the computation – neither working over the field of rational numbers
nor in the field of characteristic 32003. Note that, using a rescaling x → αx,

136 J. Giné et al.

y → βy, one can set any nonzero pair of coefficients (akj , bmn) to (1, 1), except
the pair (a11, b11). In the pair (a11, b11) by a rescaling we can set only one of
coefficients a11, b11 equal to one, but the other one remains arbitrary. We tried
to find the decomposition of the variety of the ideal B12 = 〈g6,4, g12,8, . . . , g36,24〉
with a11 set to one (and the other coefficients being arbitrary) and with b11 set
to one (and the other coefficients being arbitrary). In both cases, we were unable
to complete computations at our facilities working in the field of characteristic
32003.

We, therefore, limit our consideration to the cases when either one or both
coefficients a11, b11 in system (9) are equal to zero, or both coefficients are equal
to 1. That is we consider the following 4 cases: (α) a11 = b11 = 1, (β) a11 =
1, b11 = 0, (γ) a11 = 0, b11 = 1 and (δ) a11 = b11 = 0.

In case (δ), computing in the field of characteristic zero, we obtain conditions
(δ) of the theorem.

In case (β), computations with minAssGTZ in the field of characteristic 32003
yield the list L presented in line 2 of Figure 1. Using the code from Figure
1 (which is based on the rational reconstruction algorithm of [23]) we obtain
conditions (β) of the theorem. A simple check shows that each of conditions
(β) yields vanishing of all polynomials of the ideal B12. However, since modular
computations are enforced, some components of the irreducible decomposition of
the variety V(B12) of the ideal B12 can be lost. To check that the decomposition
is correct, we use the function intersect of SINGULAR to compute J = ∩6k=1Jk,
where Jk are ideals defined by conditions (1)–(6) of case (β) in Theorem 3. Then,
using the radical membership test, we verify that each polynomial of J vanishes
at V(B12). This means that (1)–(6) of (β) give the correct decomposition of the
variety of the ideal B12 with a11 = 1, b11 = 0. Thus, we have obtained necessary
conditions of integrability for this case.

Similarly, we obtain necessary conditions for cases a11 = b11 = 1 and a11 =
0, b11 = 1 (conditions (α) and (γ), respectively, of the theorem).

Proof of sufficiency. Cases (3) of (α), (6) of (β) and (1) of (γ) satisfy condition
(3) of Theorem 1; cases (4) of (γ) and (4) of (δ) satisfy condition (2) of Theorem
1; case (3) of (δ) satisfies condition (1) of Theorem 1. Thus, they are sufficient
conditions for system (9) to have a resonant center at the origin.

Furthermore, cases (1) and (2) of (α) in Theorem 3 correspond to cases (1)
and (2) of (α) of Theorem 2. However, we present another proof for case (2) of
(α). The corresponding system is

ẋ = 2x− x2y − a02xy
2, ẏ = −3y + xy2 + b02y

2, (16)

and it has two algebraic invariant curves: l1 = x and l2 = y. In this case, we
do not find enough invariant curves to construct a Darboux first integral or an
integrating factor. Although we are not able to find a closed form for a first
integral of system (16), we are going to prove that such analytic first integral
exists. We look for a formal first integral of the form

φ(x, y) =

∞∑
k=2

hk(x)y
k. (17)

The Resonant Center Problem 137

For each k = 0, 1, 2, . . . , functions hk(x) should satisfy the first-order linear
differential equation

(k − 2)b02hk−2(x) + (k − 1)xhk−1(x) − a02xh
′
k−2(x)

−x2h′k−1(x) − 3khk(x) + 2xh′k(x) = 0. (18)

Solving this equation, we obtain h2(x) = x3, h3 = −x4, h4 = −x3(3a02− 2b02−
3x2)/6, taking the integration constants equal to zero. Using induction on k we
wish to show that

hk(x) = pk(x) for k ≥ 2,

where pk(x) are polynomials of degree k + 1. Hence, we assume that for k =
2, . . . ,m−1, there exist polynomials hk satisfying (18), such that deg(hk) = k+1.
We then solve the linear differential equation (18) for k = m and obtain

hm(x) = Cx3m/2 +
1

2
x3m/2

∫
x−1−(3m)/2gm(x)dx, (19)

where gm(x) = (2−m)b02hm−2(x)+(1−m)xhm−1(x)+x
2h′m−1(x)+a02xh

′
m−2(x)

and C is a constant of integration. Taking into account that, by hypothesis,
deg(hm−1(x)) = m and deg(hm−2(x)) = m − 1, we find that the degree of
gm(x) is at most m+ 1. Now, we must study whether the integral can give any
logarithmic terms. Therefore, we must prove that terms involving x−1 do not
appear in the integrand in (19). The exponents that can appear in the integrand
are of the form

−1− (3m)/2 +m+ 1− s, where s = 0, 1, . . . ,m+ 1.

We want to know if this exponent, which, when simplified, is equal to −m/2−s,
can equal −1. This would imply that m = 2 − 2s as m ∈ N, thus, s = 0, 1 and
m = 0, 1. However, since m ≥ 2, there can be no logarithmic terms. Moreover,
we can see that taking the constant of integration C equal to zero, hm(x) has
degree at most m+ 1. Hence, we proved that system (16) admits a formal first
integral of the form (17). Consequently it has an analytic first integral around
the origin.

Case (1) of (β) corresponds to the case (1) of (β) of Theorem 2.

Case (2) of (β) corresponds to the case (2) of (β) of Theorem 2. However, in
this case there also exists a Darboux integrating factor. Indeed, the correspond-
ing system is

ẋ = 2x− x2y − a02xy
2, ẏ = −3y + b02y

2.

It has four algebraic invariant curves: l1 = x, l2 = y and l3,4 = 1±
√
b02y√
3

, and

it is possible to compute an integrating factor of the form

μ = x−2y−
5
3

(
1− b02y

2

3

)− 2
3−

a02
2b02

.

138 J. Giné et al.

By [8, Theorem 4.13], this means that the system also admits an analytic first
integral (3).

Case (3) of (β). In this case, system (9) takes the form

ẋ = 2x+
6

b02
x3 − x2y − b02xy

2, ẏ = −3y + b02y
2.

This system has five algebraic invariant curves: l1 = x, l2 = y, l3,4 = 1±
√
b02y√
3

and l5 = 1 +
3x2

b02
− 2xy, which allow to construct a Darboux integrating factor

of the form μ = l
− 5

2
1 l−2

2 l
3
4
3 l

3
4
4 l

− 1
4

5 . Again, by [8, Theorem 4.13], there exists an
analytic integral (3).

Case (4) of (β). Here, the corresponding system is

ẋ = 2x− 6

b02
x3 − x2y +

4b02
3

xy2, ẏ = −3y + b02y
2,

and it has six algebraic invariant curves: l1 = x, l2 = y, l3,4 = 1 ±
√
b02y√
3

and

l5,6 = 1±
(√

3x√
b02

+

√
b02y√
3

)
, yielding the integrating factor

μ = l
− 5

2
1 l−2

2 (l3l4)
− 5

4 (l5l6)
− 1

4 .

and, therefore, a first integral (3).

Case (5) of (β). The system of this case is written as

ẋ = 2x− 54

b02
x3 − x2y +

4

3
b02xy

2, ẏ = −3y − 18

b02
x2y + b02y

2.

If we take b02 = 3 by a scaling we find that the substitution

X =
4x2

(−1 + 3xy + y2)2
, Y =

8x3y(3x+ y − 1)(1 + 3x+ y)

(−1 + 3xy + y2)4

blows down the origin of the system

ẋ = 2x− 18x3 − x2y + 4xy2, ẏ = −3y − 6x2y + 3y3

to a node (after scaling time by a factor 1− 3xy − y2)

Ẋ = 4X − 2Y − 9X2, Ẏ = 3Y (1 − 8X)

The first integral of the node is in the form Φ̃ = Y 4/(X + kY + O(2))3, which
pulls back to a first integral of the form

Φ = x6y4(k +O(1)), (k > 0 is a constant).

The Resonant Center Problem 139

We can then take square roots to obtain the first integral of our original system.
If b02 is negative (so choose b02 = −3), then we get a similar transformation

with x replaced by ix and y by y/i, this transformation is still real if we multiply
out the brackets corresponding to (3x+ y− 1)(1+ 3x+ y) in the transformation
above.

Case (1) of (γ) follows from case (2) of (β) by swapping a11 with b11, and
a20, b20 with a02, b02, respectively.

Case (2) of (γ) corresponds to the case (1) of (γ) of Theorem 2.

Case (3) of (γ) corresponds to the case (2) of (γ) of Theorem 2. Another proof
of integrability for this case can be obtained in a similar manner as the proof
given above for case (2) of (α).

Case (2) of (δ). The corresponding system is

ẋ = 2x− a20x
3, ẏ = −3y + b20x

2y + b02y
2.

It has four algebraic invariant curves: l1 = x, l2 = y and l3,4 = 1±
√
a20x√
2

, and

it is possible to compute an integrating factor of the form

μ = x−4y−3

(
1− a20x

2

2

)− 1
2−

b20
a20

.

Integration yields the first integral

Ψ =
3x3y2

3
(
1− a20x2

2

) 3
2−

b20
a20 − b02y2 2F1

(
− 3

2 ,
b20
a20
− 1

2 ;− 1
2 ;

a20x2

2

) .

3 Concluding Remarks

We have obtained the necessary and sufficient conditions for integrability of
system (9) with a11 = b11 equal to 0 or 1, or one of the coefficients a11, b11 equal
to zero.

To obtain the necessary and sufficient conditions of integrability of general
system (9) we need to compute the irreducible decomposition of the variety of
the ideal B12 where only one of coefficients a11, b11 is set to 1, but the calculations
cannot be completed at our computational facilities because of computational
complexity of the problem.

Acknowledgments. The first author is partially supported by a
MICINN/FEDER grant number MTM2011-22877 and by a Generalitat de
Catalunya grant number 2009SGR 381. The fourth author acknowledges the
support of the Slovenian Research Agency.

140 J. Giné et al.

Appendix

In Figure 1 we present a code in Mathematica to perform the rational recon-
struction based on the algorithm in [23]. For the input, the code takes the ideal
returned by minAssGTZ of Singular in the case a11 = 1, b11 = 0. The output
are the conditions (β) of the Theorem 3.

In[1]:= $PreRead � ReplaceAll��, �"�" � "�", "�" � "�"�� &;

In[2]:= L�1� � ideal
�a20 � b20, a02^2�b20^2 � 10668�a02�b20^2�b02 � 10653�a02�b20 � 8299�b20�b02 � 10681�;

L�2� � ideal��b20, a20�;
L�3� � ideal��a02 � 10669�b02, a20 � 10667�b20�;
L�4� � ideal��a02 � 10669�b02, a20 � 3�b20, b20�b02 � 18�;
L�5� � ideal��b20, a02 � 10669�b02, a20�b02 � 6�;
L�6� � ideal��b20, a02 � b02, a20�b02 � 6�;

In[8]:= $PreRead �.

In[9]:= Sing2Math�L	Symbol� :� Table�DownValues�L��i, 2	, �i, 1, Length�DownValues�L����
. �ideal
 1�

In[10]:= RATCONVERT�c	, m	� :� Block��u � �1, 0, m�, v � �0, 1, c�, r�,

While��

����
m

2
� v�3	, r � u � Quotient�u�3	, v�3	� v; u � v; v � r�; If�Abs�v�2	�
�

����

m

2
, err, ������������

v�3	

v�2	
��

In[11]:= CenterCond�L	� :� Table� Factor�

Replace�Sing2Math�L�, �n	Integer � Times�n	Integer, x		�� � If�n
 0, RATCONVERT�n, 32003��x,
�RATCONVERT��n, 32003��x�, �3���i	�, �i, 1, Length�DownValues�L����

In[12]:= CenterCond�L�

 MatrixForm

Out[12]//MatrixForm=

�

�

������������������������������������

�a20 � b20, �����1
27

�360 � 396 a02 b20 � 52 b02 b20 � 27 a022 b202 � 9 a02 b02 b202��

	b20, a20

� ���1
3

�3 a02 � 4 b02�, ���1
3

�3 a20 � 2 b20��

� ���1
3

�3 a02 � 4 b02�, a20 � 3 b20, 18 � b02 b20�

�b20, ���1
3

�3 a02 � 4 b02�, �6 � a20 b02�

	b20, a02 � b02, 6 � a20 b02

�

������������������������������������

Fig. 1. Mathematica code for rational reconstruction

In the code PreRead, there is a global variable the value of which, if set,
is applied to the text or box form of every input expression before it is fed
to Mathematica. The function Sing2Math transforms the output L of the
type list of Singular to a list of Mathematica, the RATCONVERT performs
the rational reconstruction of a given number using the algorithm of [23], and
applying CenterCond we obtain the rational reconstruction for the whole list L.

The Resonant Center Problem 141

References

1. Bibikov, Y.N.: Local theory of nonlinear analytic ordinary differential equations.
Lecture Notes in Mathematics, vol. 702. Springer, Heidelberg (1979)

2. Bruno, A.D.: A Local Method of Nonlinear Analysis for Differential Equations.
Nauka, Moscow (1979) (in Russian); Local Methods in Nonlinear Differential Equa-
tions. Springer, Berlin (1989) (translated from Russian)

3. Chavarriga, J., Giacomini, H., Giné, J., Llibre, J.: On the integrability of two-
dimensional flows. J. Differential Equations 157, 163–182 (1999)

4. Chavarriga, J., Giacomini, H., Giné, J., Llibre, J.: Darboux integrability and the
inverse integrating factor. J. Differential Equations 194, 116–139 (2003)

5. Chen, X., Giné, J., Romanovski, V.G., Shafer, D.S.: The 1: − q resonant cen-
ter problem for certain cubic Lotka–Volterra systems. Appl. Math. Comput. (to
appear)

6. Christopher, C., Li, C.: Limit Cycles of Differential Equations. Birkhäuser, Basel
(2007)

7. Christopher, C., Rousseau, C.: Nondegenerate linearizable centres of complex pla-
nar quadratic and symmetric cubic systems in C2. Publ. Mat. 45, 95–123 (2001)

8. Christopher, C., Mardešic, P., Rousseau, C.: Normalizable, integrable and lineariz-
able saddle points for complex quadratic systems in C2. J. Dyn. Control Syst. 9,
311–363 (2003)

9. Decker, W., Pfister, G., Schönemann, H.A.: Singular 2.0 library for computing the
primary decomposition and radical of ideals primdec.lib (2001)

10. Dulac, H.: Détermination et intégration d’une certaine classe d’équations
différentielles ayant pour point singulier un centre. Bull. Sci. Math. 32, 230–252
(1908)

11. Fronville, A., Sadovski, A.P., Żo�la̧dek, H.: Solution of the 1 : −2 resonant center
problem in the quadratic case. Fund. Math. 157, 191–207 (1998)

12. Giné, J.: On the number of algebraically independent Poincaré-Liapunov constants.
Appl. Math. Comput. 188, 1870–1877 (2007)

13. Giné, J., Mallol, J.: Minimum number of ideal generators for a linear center per-
turbed by homogeneous polynomials. Nonlinear Anal. 71, e132–e137 (2009)

14. Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition
of polynomials. J. Symbolic Comput. 6, 146–167 (1988)

15. Gravel, S., Thibault, P.: Integrability and linearizability of the Lotka–Volterra Sys-
tem with a saddle point with rational hyperbolicity ratio. J. Differential Equa-
tions 184, 20–47 (2002)

16. Greuel, G.M., Pfister, G., Schönemann, H.: Singular 3.0. A Computer Algebra
System for Polynomial Computations. Centre for Computer Algebra, University of
Kaiserslautern (2005), http://www.singular.uni-kl.de

17. Hu, Z., Romanovski, V.G., Shafer, D.S.: 1 : −3 resonant centers on C2 with homo-
geneous cubic nonlinearities. Comput. Math. Appl. 56, 1927–1940 (2008)

18. Liapunov, M.A.: Problème général de la stabilité du mouvement. Ann. of Math.
Stud. 17. Pricenton University Press, Princeton (1947)

19. Liu, C., Chen, G., Li, C.: Integrability and linearizability of the Lotka–Volterra
systems. J. Differential Equations 198, 301–320 (2004)

20. Poincaré, H.: Mémoire sur les courbes définies par les équations différentielles.
Journal de Mathématiques 37, 375–422 (1881); 8, 251–296 (1882), Oeuvres de Henri
Poincaré, vol. I, pp. 3–84. Gauthier–Villars, Paris (1951)

http://www.singular.uni-kl.de

142 J. Giné et al.

21. Romanovski, V.G., Shafer, D.S.: On the center problem for p : −q resonant poly-
nomial vector fields, Bull. Belg. Math. Soc. Simon Stevin 15, 871–887 (2008)

22. Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: A Computa-
tional Algebra Approach. Birkhäuser, Boston (2009)

23. Wang, P.S., Guy, M.J.T., Davenport, J.H.: P-adic reconstruction of rational num-
bers. SIGSAM Bull. 16, 2–3 (1982)

24. Żo�la̧dek, H.: The problem of center for resonant singular points of polynomial
vector fields. J. Differential Equations 137, 94–118 (1997)

Complexity of Solving Systems with Few

Independent Monomials and Applications
to Mass-Action Kinetics

Dima Grigoriev1 and Andreas Weber2

1 CNRS, Mathématiques, Université de Lille, Villeneuve d’Ascq, 59655, France,
Dmitry.Grigoryev@math.univ-lille1.fr

2 Institut für Informatik II, Universität Bonn, Friedrich-Ebert-Allee 144,
53113 Bonn, Germany,
weber@cs.uni-bonn.de

Abstract. We design an algorithm for finding solutions with nonzero
coordinates of systems of polynomial equations which has a better com-
plexity bound than for known algorithms when a system contains a few
linearly independent monomials. For parametric binomial systems we
construct an algorithm of polynomial complexity. We discuss the appli-
cations of these algorithms in the context of chemical reaction systems.

Keywords: Complexity of solving systems of polynomial equations,
Smith form, toric systems, mass-action kinetics, chemical reaction net-
works.

1 Introduction

We study systems of polynomial equations with a few linearly independent mono-
mials. To find solutions with nonzero coordinates of such systems we design in
Sect. 2 an algorithm which makes use of a combination of the multiplicative
structure on the monomials with the additive structure emerging from the lin-
ear equations on monomials called Gale duality and which was used in [1] for
improving Khovanskii’s bound on the number of real solutions of systems of
fewnomials. This combination allows one to diminish the number of variables,
being crucial since the latter brings the greatest contribution into the complex-
ity of solving systems of polynomial equations. Moreover, the designed algorithm
allows one to look for positive real solutions that is important in the applications
to mass-action kinetics [2–7].

Note that the designed algorithm has a better complexity bound than the one
just employing the known general methods for solving systems of polynomial
equations [8, 9] or inequalities [10]. So more, it has better complexity bounds
than the methods relying on Gröbner bases [11] or involutive divisions [12] which
have double-exponential complexity upper and lower bound [13].

In Sect. 3, we expose an algorithm finding solutions of parametrical binomial
systems with nonzero coordinates and parameters within polynomial complexity

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 143–154, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

144 D. Grigoriev and A. Weber

which invokes computing the Smith canonical form of an integer matrix. Such
systems also emerge in mass-action kinetics. Similar to Sect. 2 the algorithm
allows one to look for positive real solutions. The polynomial complexity cannot
be achieved using the general methods for solving systems of polynomial equa-
tions or, respectively, inequalities (as well as the Gröbner or involutive bases
because the example of generators of an ideal from [13] with double-exponential
complexity consists just of binomials).

In [14] a polynomial complexity algorithm is designed to test whether a bi-
nomial system has a finite number of affine solutions (including ones with zero
coordinates). On the other hand, it is proved in [14] that the problem of counting
the number of affine solutions of a binomial system is #P -complete. We observe
also that the problem of testing whether a system of binomial equations ex-
tended by linear equations (being customary in biochemical reactions networks)
has a positive solution, is NP-hard. Indeed, adding to a system of binomials
xi · yi = 1, 1 ≤ i ≤ n in 2 · n variables linear equations xi + yi = 5/2, 1 ≤ i ≤ n
and a single linear equation in the variables x1, . . . , xn, we arrive to the knapsack
problem.

Potential applications of these algorithms in the context of chemical reaction
networks are discussed in Sect. 4. We also expose a computational example there.

As a related work we mention also [15] where an algorithm for solving systems
of quadratic inequalities is designed with the complexity bound being good when
the number of inequalities is rather small.

2 Polynomial Systems with a Few Linearly Independent
Monomials

Any system of polynomial equations can be represented in a form

A · Y = 0 (1)

where A = (ak,j), 1 ≤ k ≤ l, 1 ≤ j ≤ m is a matrix, and Y = (Yj), 1 ≤ j ≤ m
is a vector of monomials Yj = X

yj,1

1 · · ·Xyj,n
n in the variables X1, . . . , Xn. An al-

gorithm designed in this Section searches for solutions of (1) with non-vanishing
coordinates x1, . . . , xn ∈ (Q)∗ := Q \ {0}. The condition of non-vanishing co-
ordinates is not too restrictive for the purposes of mass-action kinetics since in
the latter one looks usually for solutions with positive real coordinates. Assume
that yj,i ≤ d, 1 ≤ j ≤ m, 1 ≤ i ≤ n, and that the entries ak,j ∈ Z are integers,
therein |ak,j | ≤ M . The assumption on ak,j to be integers is adopted just for
the sake of simplifying complexity bounds, one could consider by the same token
algebraic entries ak,j ∈ Q.

The considered form of systems of polynomial equations appears, in particular,
in the study of stationary solutions of the dynamical equations of the mass-action
kinetics [2–4, 6, 7].

In general, the algorithm solving systems (1) (with or without imposing
the condition of non-vanishing coordinates of solutions) has complexity bound

Complexity of Solving Systems with Few Independent Monomials 145

polynomial in l, dn
2

, logM [8, 9]. In this paper, we suggest an algorithm for solv-
ing systems with the complexity being better than in general when the difference
r := m− rk(A) is small enough.

The solutions of system (1) depend on r parameters Z1, . . . , Zr. One can thus
express monomials Yj =

∑
1≤k≤r uj,k · Zk, 1 ≤ j ≤ m with suitable rationals

uj,k ∈ Q.
One can bring the matrix y := (yj,i) to the Smith canonical form. Namely,

one can find integer square matrices B = (bα,β) of size m ×m and C = (cγ,δ)
of the size n × n such that det(B) = det(C) = 1, and the matrix V = (vj,i) :=
ByC, 1 ≤ j ≤ m, 1 ≤ i ≤ n has the following form. The only non-vanishing
entries vj,i are on the diagonal vj,j �= 0, 1 ≤ j ≤ p where p := rk(y). More-
over, v1,1|v2,2| · · · |vp,p, although we will not make use of this extra property
on divisibility. The complexity of constructing matrices B, C is polynomial in
n, m, log d [16]; moreover, one can make its parallel complexity poly-logarithmic
[17]. In particular, |bα,β|, |cγ,δ| ≤ (d ·min{n,m})O(min{n,m}).

Consider polynomials fs =
∏

1≤j≤m Y
bs,j
j ∈ Q[Z1, . . . , Zr], 1 ≤ s ≤ m. Then

deg(fs) ≤ m·(d·min{n,m})O(min{n,m}). The input system (1) has a solution over
(Q)∗ iff the system of equations fp+1 = · · · = fm = 1 and inequation f1 · · · fp �= 0
has a solution in Z1, . . . , Zr over Q. In particular, among fp+1, . . . , fm the poly-
nomial fq = Yq, p < q ≤ m occurs, when the monomial Yq equals 1 identically
(provided that the monomial 1 is among the monomials Y1, . . . , Ym). The latter
yields an equation (fq =)

∑
1≤k≤r uq,k · Zk = 1. One can find the irreducible

components of the constructible set of solutions of the latter system using [8, 9].
Any solution (z1, . . . , zr) of the latter system provides a solution of the input
system as follows.

Denote the monomials Wt :=
∏

1≤i≤nX
ct,i
i , 1 ≤ t ≤ n. Then the equa-

tions W
vt,t
t = ft, 1 ≤ t ≤ p impose the conditions on Wt, 1 ≤ t ≤ p, while

Wp+1, . . . ,Wn can be chosen as arbitrary non-zeros. Finally, havingW1, . . . ,Wn,
one can come back to X1, . . . , Xn by means of the matrix C−1.

Sometimes, in the applications to chemistry one looks for positive real solu-
tions X1 > 0, . . . , Xn > 0 of the input system (1) [3, 4, 6, 7]. The latter is equiv-
alent to W1 > 0, . . . ,Wn > 0. This imposes the condition ft > 0, 1 ≤ t ≤ p and
one can solve the system of inequalities ft > 0, 1 ≤ t ≤ p, fp+1 = · · · = fm = 1
over the reals with the help of [10]. After that Wt, 1 ≤ t ≤ p are obtained
uniquely from the equations W

vt,t
t = ft, 1 ≤ t ≤ p, while Wp+1 > 0, . . . ,Wn > 0

can be chosen in an arbitrary way. Finally, we can summarize the results.

Proposition 1. One can design an algorithm which finds the irreducible com-
ponents of the constructible set of solutions with non-vanishing coordinates
x1, . . . , xn of a system of polynomial equations (1) within complexity polyno-

mial in l, n, m, (d · min{n,m})O(min{n,m})·r2 , logM . Moreover, the algorithm
can find positive real solutions of (1) also within the same complexity bound.

Note that this complexity bound is better than the bound polynomial in
l, dn

2

, logM from [8–10] when r is significantly smaller than n. As usually, the
practical complexity bounds are apparently better than the established a priori

146 D. Grigoriev and A. Weber

bounds, especially when the complexity of bringing to the Smith form being
small.

Remark 1. Using indeterminates Z1, . . . , Zr in a similar way to our proposal has
been done by several authors, see e.g. [2, 3] and references therein. Also using
the Smith normal form has been proposed in [2] as well as [3] (in addition to
using logarithms or the Hermite normal form), but for computations the Hermite
normal form or Gröbner basis methods have been used in these papers. Hence
although several parts of our proposed algorithms have been around for the
special case of chemical reaction networks for several years, but nevertheless in
addition to the complexity analysis also our proposed algorithm seems to be new
in its full form.

3 Parametric Binomial Systems

Now suppose that a matrix A at each of its rows contains at most two non-
vanishing entries, and moreover every entry is a monomial of the form β ·KE :=
β ·Ke1

1 · · ·Keq
q . Herein β ∈ Q and K1, . . . ,Kq play the role of parameters. Such

parametric systems appear in the applications to mass-action kinetics [3, 4, 6,
7, 18]. In other words, each equation of (1) can be viewed as a binomial in
the variables X1, . . . , Xn, K1, . . . ,Kq. We pose a question, for which non-zero
values of K1, . . . ,Kq the system (1) has a solution in non-vanishing x1, . . . , xn?
Alternatively, for which positive real values of K1, . . . ,Kq the system (1) has a
positive real solution?

Rewrite now the system (1) of l binomials in the form

XGj = βj ·KHj , 1 ≤ j ≤ l (2)

where XGj := X
gj,1
1 · · ·Xgj,n

n , KHj := K
hj,1

1 · · ·Khj,q
q . The algorithm brings the

matrix G := (gj,i), 1 ≤ j ≤ l, 1 ≤ i ≤ n to the Smith canonical form. Thus, the
algorithm yields integer unimodular matrices B′, C′ such that B′ · G · C′ is in
the Smith canonical form. Let s := rk(G) and the only non-vanishing entries of
B′ · G · C′ be its first s diagonal entries g′1,1, . . . , g

′
s,s. Denote B′ =: (b′j,α), 1 ≤

j, α ≤ l and γj ·KH′
j :=

∏
1≤α≤l(βα ·KHα)b

′
j,α .

The system (2) for given non-zero K1, . . . ,Kq has a solution in non-zero
X1, . . . , Xn iff

γj ·KH′
j = 1, s+ 1 ≤ j ≤ l. (3)

In its turn, solvability of (2) in positive real solutions X1, . . . , Xn for positive
real K1, . . . ,Kq imposes extra conditions β1 > 0, . . . , βl > 0.

For non-zero values of parametersK1, . . . ,Kq satisfying (3) one can find mono-

mials
∏

1≤i≤nX
c′μ,i

i , 1 ≤ μ ≤ s, where the matrix C′ =: (c′μ,i), 1 ≤ μ, i ≤ n, from

the equations (
∏

1≤i≤nX
c′μ,i

i)g
′
μ,μ = γμ · KH′

μ , 1 ≤ μ ≤ s, while the non-zero

values of the monomials
∏

1≤i≤nX
c′μ,i

i , s + 1 ≤ μ ≤ n are chosen in an arbi-
trary way. Then the algorithm uniquely finds X1, . . . , Xn from the monomials

Complexity of Solving Systems with Few Independent Monomials 147

∏
1≤i≤nX

c′μ,i

i , 1 ≤ μ ≤ n with the help of the matrix (C′)−1. Respectively, for
positive real K1, . . . ,Kq to get positive real X1, . . . , Xn one chooses the positive

values of the monomials
∏

1≤i≤nX
c′μ,i

i , s+ 1 ≤ μ ≤ n in an arbitrary way.
To describe the conditions on non-zero K1, . . . ,Kq satisfying (3), the algo-

rithm brings (l − s) × q matrix H ′ := (h′j,α), s + 1 ≤ j ≤ l, 1 ≤ α ≤ q, where
the vector H ′

j =: (h′j,α), 1 ≤ α ≤ q, to the Smith canonical form. Thus, the
algorithm yields integer unimodular matrices B′′ = (b′′j,δ), s+1 ≤ j, δ ≤ l, C′′ =
(c′′μ,α), 1 ≤ μ, α ≤ q such that the only non-vanishing entries of the matrix
B′′ ·H ′ · C′′ are its first t diagonal entries h′′1,1, . . . , h′′t,t, where t = rk(H ′).

Denote εj :=
∏

s+1≤δ≤l γ
−b′′j,δ
δ , s + 1 ≤ j ≤ l. Then (3) has a solution in

non-zero k1, . . . , kq iff

εj = 1, s+ t+ 1 ≤ j ≤ l. (4)

If (4) holds one can find the values of the monomials
∏

1≤α≤q K
c′′μ,α
α , 1 ≤ μ ≤ t

from the equalities (
∏

1≤α≤q K
c′′μ,α
α)h

′′
μ,μ = εs+μ, 1 ≤ μ ≤ t, while the non-zero

values of the monomials
∏

1≤α≤q K
c′′μ,α
α , t+1 ≤ μ ≤ q are chosen in an arbitrary

way. Respectively, the latter values are taken as arbitrary positive reals when one
is looking for positive reals K1, . . . ,Kq. After that, the algorithm finds uniquely

K1, . . . ,Kq from the values of the monomials
∏

1≤α≤q K
c′′μ,α
α , 1 ≤ μ ≤ q with the

help of the matrix (C′′)−1.
Thus, the described algorithm applies twice the subroutine for construct-

ing the Smith canonical form (and does not need to involve algorithms for
solving systems of polynomial equations). Observe that solvability of (2) for
non-zero x1, . . . , xn, k1, . . . , kq is equivalent to solvability of (4). Each εj =∏

1≤α≤l β
λj,α
α , s+ 1 ≤ j ≤ l for appropriate integers λj,α ∈ Z such that

|λj,α| ≤ (d ·min{l, n})O(min{l,n}) · (d ·min{l, q})O(min{l,q})

assuming that all the exponents in (2) satisfy inequalities |gj,i|, |hj,l| ≤ d (due
to [16, 17]).

To verify (4) the algorithm constructs a relative factorization of β1, . . . , βl (for
the sake of simplifying notations assume that all β1, . . . , βl are positive integers;
for rational numbers one has to consider the absolute values of their numerators
and denominators). Namely, the algorithm constructs by recursion nonnegative
integers η1, . . . , ηr pairwise relatively prime such that βμ = η

κμ,1

1 · · · ηκμ,r
r , 1 ≤

μ ≤ l for suitable nonnegative integers κμ,i. As a base of recursion the algorithm
starts with β1, . . . , βl. Assume that at some step the algorithm has constructed
β′
1, . . . , β

′
l′ such that (β′

1 · · ·β′
l′)|(β1 · · ·βl). Take any pair β′

i, β
′
j , 1 ≤ i �= j ≤

l′ for which θ := GCD(β′
i, β

′
j) �= 1 and replace the pair β′

i, β
′
j by the triple

θ, β′
i/θ, β

′
j/θ. If there is no such a pair the algorithm halts.

The product of the modified (l′ + 1)-tuple is a strict divisor of the prod-
uct (β′

1 · · ·β′
l′) at the previous step of the algorithm. Hence after at most of

log2(β1 · · ·βl) ≤ l · log2M steps the algorithm constructs the relative factoriza-
tion η1, . . . , ηr. One can easily show that the latter is unique, although we don’t

148 D. Grigoriev and A. Weber

make use of its uniqueness. The complexity of constructing η1, . . . , ηr is bounded
by a polynomial in l, logM . In particular,

∑
1≤μ≤l, 1≤i≤r κμ,i is also bounded by

a polynomial in l, logM .
Now the algorithm is able to verify equalities (4) representing each εj =∏
1≤i≤r η

νj,i
i , s+t+1 ≤ j ≤ l as a product of powers of η1, . . . , ηr for appropriate

integers νj,i (perhaps, nonnegative). Then εj = 1 iff νj,i = 0, 1 ≤ i ≤ r. The
complexity of computing all νj,i, s+ t+ 1 ≤ j ≤ l, 1 ≤ i ≤ r does not exceed a
polynomial in n, l, q, log(d ·M). Finally, we can summarize the results obtained
in this section.

Proposition 2. One can solve a parametric binomial system (2) with non-zero
values of both parameters k1, . . . , kq and variables x1, . . . , xn within polynomial
complexity, i.e., within a polynomial in the size n, l, q, log(d ·M) of the input.
Within the same complexity bound one can find positive real solutions of (2).

Remark 2. In the proof of [19, Theorem 4.1] a similar application of the Smith
normal form is used for the special case of binomial systems arising for so called
“deficiency zero systems” of chemical reaction networks (see [2] for a definition
or Sect. 4 below; please notice that [2] as the final journal version of [19] un-
fortunately no longer contains the cited algorithmic application of the Smith
normal form). However, for general parametric binomial systems our algorithm
applying twice the subroutine for constructing the Smith canonical form seems
to be new—in addition to providing a complexity analysis.

4 Applications to Chemical Reaction Networks

There is a vast literature for chemical reaction networks with mass action kinet-
ics. We refer to [2] and the cited literature therein for definitions relevant in our
context.

In these systems the matrix A in (1) can be factored as

A = Ỹ · Ia · Ik, (5)

where Ia = (ik,j), 1 ≤ k ≤ h, 1 ≤ j ≤ m is an integer matrix with entries

0, 1,−1, Ỹ is an l × h-integer matrix with non-negative entries, and Ik is a
matrix ku,v of reaction rates, which in general are seen as parameters for the
system. The occurring dimensions can be interpreted as follows: n is the number
of participating molecular species, l is the number of reactions, and m is the
number of complexes.

Following [2] the deficiency of a chemical reaction network with an associated
polynomial system of the form

Ỹ · Ia · Ik · Y
can be defined as

rk Ia − rk Ỹ · Ia.
Hence it is a non-negative integer.

Complexity of Solving Systems with Few Independent Monomials 149

4.1 Chemical Reaction Networks with Toric Steady States

Remarkably, many chemical reaction systems have the property that the steady
state ideal of the corresponding polynomial system is a binomial ideal [18]. Using
the terminology of [18] these systems are ones having toric steady states.

For a given chemical reaction network the property of having toric steady
states is dependent on the parameters in general. A simple instance is given in
[18, Example 2.3].

For chemical reaction networks with toric steady states for all admissible
parameters Péres Millán et al. [18] establish criteria for the existence of positive
equilibria, and also for so called multi-stationarity, which are basically linear
algebra criteria.

However, in cases for which multi-stationarity is established, the criteria in
[18] give no detailed information about the structure of the equilibria of the
system, whereas our algorithm computes in polynomial time all equilibria hence
allowing a detailed analysis of them.

On the other hand, in the algorithm presented in Sect. 3 we presume that
already the input system is in the form of a parametric binomial system, whereas
in [18] it is not necessary that the input system is of this form, but the main
result in [18] gives sufficient conditions for a chemical reaction system to have
toric steady states.

For a given chemical reaction network, which potentially has toric steady
states, there are several possibilities to come up with a parametric binomial
system that in turn can be solved by the algorithm presented in Sect. 3:

– Use the construction for a binomial system given in [6]. As this construction
uses an enumeration of spanning trees of underlying graphs, its worst time
complexity is exponential.

– As a sufficient condition one can check [18, Condition 3.1]. Then [18, The-
orem 3.3] gives an easy construction for a binomial system generating the
steady state ideal. A check of [18, Condition 3.1] for a given basis of kerA
is easily doable. However, enumerating all possible bases of kerA yields ex-
ponential complexity. So one has to hope for suitable heuristics to come up
with good test candidates among all bases of kerA.

– Compute Gröbner bases (any monomial ordering would be sufficient). As
already mentioned the worst time complexity is doubly-exponential, but the
practical complexity could be much better for many relevant examples (as
also there is freedom to use a suitable monomial ordering).

Although for all of these constructions the worst case complexity is (at least)
exponential, it might nevertheless be interesting to explore their behavior for
actual chemical reaction systems.

Moreover, the factorization A = Ỹ · Ia · Ik—or other factorizations of the
matrix A—might yield much simpler problems. For instance, for deficiency zero
systems the fact that rk Ia = rk Ỹ ·Ia implies that only Ia ·Ik has to be considered
instead of Ỹ · Ia · Ik.

150 D. Grigoriev and A. Weber

Although the worst-case complexity of these methods all are worse than the
one of the general algorithm given in Sect. 3, one can employ all of them and the
latter algorithm using simple coarse grained competitive parallelism, which can
be realized in many software infrastructure—e.g. the one already used a decade
ago and described in [20].

Remark 3. Of course solving systems gives significantly more information than
counting the number of solutions only. Also other forms of solution testing can be
applied. One of these criteria is whether the projection onto one coordinate of all
positive steady states of a system is unique. This property directly corresponds
to the “absolute concentration robustness” [21], for which a special criterion for
systems having deficiency of 1 is proven in [22].

4.2 Examples from the BioModels Database

We use examples stored in the BioModels database [23] in the following to discuss
the practical relevance of the assumptions made above. Of course, for other
example classes the situation might be different.

For most of the examples for which r being significantly smaller than n, the
deficiency of the network is 0. Hence the Deficiency-zero-theorem already gives
significant information about the uniqueness [2, 24] of equilibria for these cases
and also the algorithm given in the proof of [19, Theorem 4.1] could compute
these unique equilibria for a fixed set of parameter, i.e., a unique solution to
the polynomial system. However, we are not aware of an implementation of this
method, and our algorithm given in Sect. 3 is as efficient as the more restricted
method of [19, Theorem 4.1].

However, there are also several example of networks having deficiency 1 or
even higher deficiencies – for which no such general theorems are known, for
which r being significantly smaller than n.

Example BIOMOD188. As an example we consider the model with the num-
ber 188 in the BioModels database, which was originally described in [25]. The
network induces a stoichiometric matrix of size 20 × 20 and has a deficiency of
4. The dimension of the nullspace of the stoichiometric matrix A is 6. The rank
of the exponent matrix Y is 11.

The polynomial system is as follows (with two instances of the 0-polynomial
due to the automated construction of the system from the SBML description):

k2 · x4 − k6 · x1 + k8 · x3 − k9 · x2 · x1 + k10 · x3 − k16 · x1 · x6 + k17 · x9,
k7 · x5 − k9 · x2 · x1 + k10 · x3 − k14 · x2 · x6 + k15 · x8,
−k8 · x3 + k9 · x2 · x1 − k10 · x3, k3 · x2 + k4 · x8 − k5 · x4, k0 · x12 − k1 · x5,
k13 · x10 · x7 − k19 · x6,−k13 · x10 · x7 + k19 · x6,
k14 · x2 · x6 − k15 · x8, k16 · x1 · x6 − k17 · x9 − k18 · x9,
k11 − k12 · x10, k1 · x5 + k5 · x4 + k6 · x1 + k12 · x10 + k18 · x9,
−k0 · x12, k8 · x3, k7 · x5, k6 · x1 + k18 · x9, k2 · x4, k5 · x4, k3 · x2 + k4 · x8, 0, 0

Complexity of Solving Systems with Few Independent Monomials 151

Notice that the polynomial system no longer contains all of the variables in
the set {x1, x2, . . . , x20}, but only the subset of cardinality 11 consisting of
{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x12}.

Now if we consider the factorization of the polynomial system into

Ỹ · Ia · Ik · Y
with a diagonal matrix Ik one can consider the groupings according to the law
of associativity:

(Ỹ · Ia · Ik) · Y (6)

(Ỹ · Ia) · (Ik · Y). (7)

If we consider the view expressed in (6) one has to perform the linear algebra over
the field Q(k1, . . . , km) but having only the x1, . . . , xn as variables in subsequent
steps. When considering the k1, . . . , km as part of the monomials, i.e., taking the
view expressed in (7) the linear algebra is over Q but the k1, . . . , km have to be
counted as variables in addition to the x1, . . . , xn. Notice that the latter view is
used by Clarke [26].

Using both approaches we find that some of the Fi (1 ≤ i ≤ 20) are zero, and
hence the system does not have a solution with all non-zero entries.

When inspecting more closely which entries are zero, we find that—taking
k1, . . . , k20 as parameters— the Y3, Y4, Y5, Y10, Y11, Y12, Y13, Y16 are zero when
expressed as linear combinations of the Zj . When viewing the reaction constants
as part of the monomials we obtain that Y3, Y4, Y5, Y10, Y11, Y13, Y19 are zero.
When resolving these conditions in terms of the xi (and ki) we obtain in the
k-as-parameter-case the logical condition

x3 = 0 ∧ x4 = 0 ∧ x5 = 0 ∧ x10 = 0 ∧ x12 = 0 ∧ 1 = 0 (8)

and in the k-in-monomial-case

k8 · x3 = 0 ∧ k5 · x4 = 0 ∧ k1 · x5 = 0 ∧ k12 · x10 = 0 ∧ k0 · x12 = 0 ∧
k7 · x5 = 0 ∧ k2 · x4 = 0 ∧ k11 = 0. (9)

Hence there are no solutions unless k11 = 0, which is a condition leading to
the inconsistency 1 = 0 in (8)—without any further information in the k-as-
parameter-case. When going back to the original description using the software
infrastructure described in [27] we obtain the information that associated with
constant k11 there is a creation of −→ damDNA from “the environment”; more-
over, associated with k12 there is a reaction denoted damDNA −→ Sink. So
there are some quasi-steady states involved in the SBML representation of the
reaction system. Dealing rigorously with quasi-steady state approximations is
an important line of research in algebraic biology (see e.g. [28]).

When considering solutions of polynomial systems we can apply the substitu-
tions k11 = 0, x3 = 0, x4 = 0, x5 = 0, x10 = 0, x12 = 0 and consider the resulting
system.

152 D. Grigoriev and A. Weber

Example BIOMOD053. As another example we take the model #53 from
the BIOMOD database.

The chemical reaction network involves 6 species and has deficiency 2. The
resulting polynomial system is as follows:

−k1x1x2 + k2x3 − k5x1,−k1x1x2 + k2x3 − k7x2x5 + k10,
k1x1x2 − k2x3 − k3x3 + k4x4 − k9x3 − k12x3, k3x3 − k4x4 − k6x4,
k5x1 − k7x2x5 − k8x5 + k11, k6x4 + k7x2x5 + k9x3.

Our simple prototype implementation of our algorithms using the computational
infrastructure of Maple can easily determine that the system has a solution with
all-non-zero entries. Our algorithm can come up with a explicit representation of
the solution after some minutes of computation time. The string representation
of the output is big (about 1 MB). However, the big output size is mainly due
to rather lengthy polynomial expressions in the parameters occurring in the
solutions. The structure of the solutions in the symbols representing a “can be
chosen arbitrarily” in the methods presented above (cf. Sect. 2) is much simpler.

5 Conclusion and Future Work

Although several related ideas have been around in the literature on algebraic
methods for chemical reaction systems the full algorithmic development given
above seems to be new—in addition to providing the complexity analysis.

In contrast to the known theorems developed in the context of chemical reac-
tion network theory—which only work in special cases but give results entirely
independent of the parameters—our algorithms are universally applicable.

It will be the topic of future research to systematically apply careful implemen-
tations of the algorithms given in this paper to the networks given in databases
such as BioModels database and others. For this purpose we will integrate the
implementation of the algorithms described in this paper into the general infras-
tructure described in [27]. By these tests, we will not only explore the practical
limits of the methods but we also might get insight into the question whether
some of the properties that hold for deficiency-zero and deficiency-one systems
(such as unique positive steady states for a chemical compatibility class, or the
absolute concentration robustness property for a certain subclass) also hold for
systems of deficiency bigger than one—at least parametrically for relevant ranges
of parameters.

Acknowledgements. The first author is grateful to the Max-Planck Institut
für Mathematik, Bonn for its hospitality during writing this paper. We are grate-
ful to M. Eiswirth for useful discussions initiating this research. The help of Satya
Swarup Samal and Hassan Errami in generating the algebraic input for our com-
putational examples out of the SBML descriptions is greatly appreciated by us.
Also the authors are grateful to the anonymous referees for valuable remarks.

Complexity of Solving Systems with Few Independent Monomials 153

References

1. Bihan, F., Sottile, F.: Fewnomial bounds for completely mixed polynomial systems.
Advances in Geometry 11(3), 541–556 (2011)

2. Gatermann, K., Huber, B.: A family of sparse polynomial systems arising in chem-
ical reaction systems. Journal of Symbolic Computation 33(3), 275–305 (2002)

3. Gatermann, K., Wolfrum, M.: Bernstein’s second theorem and Viro’s method for
sparse polynomial systems in chemistry. Advances in Applied Mathematics 34(2),
252–294 (2005)

4. Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze
Hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6),
1361–1382 (2005)

5. Domijan, M., Kirkilionis, M.: Bistability and oscillations in chemical reaction net-
works. Journal of Mathematical Biology 59(4), 467–501 (2009)

6. Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems.
Journal of Symbolic Computation 44(11), 1551–1565 (2009)

7. Sturm, T., Weber, A., Abdel-Rahman, E.O., El Kahoui, M.: Investigating algebraic
and logical algorithms to solve Hopf bifurcation problems in algebraic biology.
Mathematics in Computer Science 2(3), 493–515 (2009)

8. Chistov, A.L.: Algorithm of polynomial complexity for factoring polynomials and
finding the components of varieties in subexponential time. Journal of Soviet Math-
ematics 34(4), 1838–1882 (1986)

9. Grigoriev, D.: Factorization of polynomials over a finite field and the solution of
systems of algebraic equations. Journal of Soviet Mathematics 34(4), 1762–1803
(1986)

10. Grigoriev, D., Vorobjov, N.N.: Solving systems of polynomial inequalities in subex-
ponential time. Journal of Symbolic Computation 5(1-2), 37–64 (1988)

11. Sturmfels, B.: Grobner bases and convex polytopes. University Lecture Series,
vol. 8. American Mathematical Society, Providence (1996)

12. Gerdt, V.: Involutive methods applied to algebraic and differential systems. Con-
structive algebra and systems theory. Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad.
Wet., R. Neth. Acad. Arts Sci. 53, 245–250 (2006)

13. Mayr, E., Meyer, A.: The complexity of the word problems for commutative semi-
groups and polynomial ideals. Adv. in Math 46, 305–329 (1982)

14. Cattani, E., Dickenstein, A.: Counting solutions to binomial complete intersections.
Journal of Complexity, 1–25 (2007)

15. Grigoriev, D., Pasechnik, D.V.: Polynomial-time computing over quadratic maps.
I. sampling in real algebraic sets. Comput. Complexity 14, 20–52 (2005)

16. Frumkin, M.: An application of modular arithmetic to the construction of algo-
rithms for solving systems of linear equations. Soviet Math. Dokl 229, 1067–1070
(1976)

17. Dumas, J.G., Saunders, B.D.: On efficient sparse integer matrix Smith normal form
computations. Journal of Symbolic Computation 32, 71–99 (2001)

18. Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems
with toric steady states. Bulletin of Mathematical Biology, 1–29 (October 2011)

19. Gatermann, K., Huber, B.: A family of sparse polynomial systems arising in chem-
ical reaction systems. Technical Report Preprint SC 99-27, Konrad-Zuse-Zentrum
für Informationstechnik Berlin (1999)

20. El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination
in a software-component architecture. Journal of Symbolic Computation 30(2),
161–179 (2000)

154 D. Grigoriev and A. Weber

21. Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction
networks. Science 327(5971), 1389–1391 (2010)

22. Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction
networks. supporting online material. Science 327(5971), 1389–1391 (2010)

23. Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L.,
He, E., Henry, A., Stefan, M.I., Snoep, J.L., Hucka, M., Le Novère, N., Laibe, C.:
BioModels database: An enhanced, curated and annotated resource for published
quantitative kinetic models. BMC Systems Biology 4, 92 (2010)

24. Feinberg, M.: Stability of complex isothermal reactors–I. the deficiency zero and
deficiency one theorems. Chemical Engineering Science 42(10), 2229–2268 (1987)

25. Proctor, C.: Explaining oscillations and variability in the p53-Mdm2 system. BMC
Systems Biology 2, 75 (2008)

26. Clarke, B.L.: Complete set of steady states for the general stoichiometric dynamical
system. The Journal of Chemical Physics 75(10), 4970–4979 (1981)

27. Samal, S.S., Errami, H., Weber, A.: A Software Infrastructure to Explore Alge-
braic Methods for Bio-Chemical Reaction Networks. In: Gerdt, V.P., et al. (eds.)
CASC 2012, LNCS, vol. 7442, pp. 294–307. Springer, Heidelberg (2012)

28. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E.: Applying a Rigorous Quasi-
Steady State Approximation Method for Proving the Absence of Oscillations in
Models of Genetic Circuits. In: Horimoto, K., Regensburger, G., Rosenkranz, M.,
Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 56–64. Springer, Heidelberg
(2008)

Symbolic-Numerical Calculations of High-|m|
Rydberg States and Decay Rates

in Strong Magnetic Fields�

Alexander Gusev, Sergue Vinitsky, Ochbadrakh Chuluunbaatar,
Vladimir Gerdt, Luong Le Hai, and Vitaly Rostovtsev ��

Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
gooseff@jinr.ru, vinitsky@theor.jinr.ru

Abstract. Symbolic-numeric solving of the boundary value problem for
the Schrödinger equation in cylindrical coordinates is given. This prob-
lem describes the impurity states of a quantum wire or a hydrogen-like
atom in a strong homogeneous magnetic field. It is solved by apply-
ing the Kantorovich method that reduces the problem to the boundary-
value problem for a set of ordinary differential equations with respect
to the longitudinal variables. The effective potentials of these equations
are given by integrals over the transverse variable. The integrands are
products of the transverse basis functions depending on the longitudinal
variable as a parameter and their first derivatives. To solve the prob-
lem at high magnetic quantum numbers |m| and study its solutions we
present an algorithm implemented in Maple that allows to obtain ana-
lytic expressions for the effective potentials and for the transverse dipole
moment matrix elements. The efficiency and accuracy of the derived al-
gorithm and that of Kantorovich numerical scheme are confirmed by
calculating eigenenergies and eigenfunctions, dipole moments and decay
rates of low-excited Rydberg states at high |m| ∼ 200 of a hydrogen atom
in the laboratory homogeneous magnetic field γ ∼ 2.35×10−5(B ∼ 6T).

1 Introduction

In earlier papers, we considered the application of the Kantorovich method for
solving the discrete- and continuous-spectrum boundary-value problems (BVP)
[1] for hydrogen-like atoms in magnetic field and the ion axial channelling prob-
lem in a crystal. The approach implies the use of a parametric basis of oblate
spheroidal angular functions in spherical coordinates where the radial variable
runs a semi-axis [2,3,4,5]. The method has been further developed in connection
with calculations of spectral and optical characteristics of model semiconductor
nanostructures, namely, quantum dots(QD), quantum wells(QW) and quantum

� This work was partially supported by the RFBR Grants Nos. 10-02-00200 and
11-01-00523.

�� The coauthors (AG, SV, OC, VG, and LH) congratulate Vitaly Rostovtsev on
turning 20 for the fourth time.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 155–171, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

156 A. Gusev et al.

wires(QWr) [6,7,8,9]. For this purpose we used different parametric basis func-
tions in appropriate coordinate systems. The functions were calculated by solving
parametric eigenvalue problems by means of the program ODPEVP [10].

Taking into account the growing interest in problems possessing axial symme-
try, like impurity states of QWr’s or high-angular-momentumRydberg states and
quasi-stationary states imbedded in continuum of a hydrogen atom in magneto-
optical traps [11,12,13], it is imperative to implement the Kantorovich scheme for
solving the BVP for the longitudinal variable running the whole axis of a cylin-
drical coordinate system[8,9]. This would allow direct calculation of the main
characteristics of a multichannel scattering problem, such as reflection and trans-
mission coefficients matrices, recombination rates and ionization cross-sections
for Rydberg states, and decay rates of the lowest bound states of manifolds with
high values of the magnetic quantum number |m| [11,12,13].

For the Schrödinger equation describing a hydrogen-like atom in a strong
homogeneous magnetic field, the boundary-value problem (BVP) in cylindrical
coordinates is reduced to solving a set of the longitudinal equations in the frame-
work of the Kantorovich method. The effective potentials of these equations are
given by integrals over the transverse variable, the integrands being products
of transverse basis functions, depending on the longitudinal variable as a pa-
rameter, and their first derivatives with respect to the parameter. One can say
that at high |m|, the discrete-spectrum problem is described by a system of two
coupled 2D- and 1D-oscillators corresponding to the transverse ρ and longitu-
dinal z variables, with the frequencies ωρ and ωz, respectively. To analyze the
low-excited Rydberg states of such system it is useful to have the solution in
an analytic form. Indeed, for high |m| we can consider the Coulomb potential
as a perturbation with respect to the transversal centrifugal potential and the
oscillator potential with the frequency ωρ = γ/2. For the laboratory magnetic
field B = B0γ ∼ 6T , i.e., γ ∼ 2.35×10−5, this is true at the adiabatic parameter
values m̃ ∼ 5.89, where m̃ is defined as m̃ = (ωρ/ωz)

4/3 = |m|γ1/3. Under the
condition |m| ≥ 6γ−1/3 we can approximate the Coulomb potential by a Taylor
expansion in powers of the auxiliary transverse variable with respect to a spe-
cially chosen point with given accuracy in the region of its convergence. Then we
can find the approximate transversal eigenvalues and eigenfunctions depending
parametrically on the longitudinal variable, in the framework of a perturbation
scheme and by using the eigenvalues and eigenfunctions of the 2D oscillator
as unperturbed ones. To express analytically the transverse basis functions and
eigenvalues, the corresponding effective potentials, and the transverse dipole mo-
ment matrix elements as well as perturbation solution of the BVP, we elaborate a
symbolic-numerical algorithm (SNA) implemented in Maple. The efficiency and
accuracy of the algorithm and that of the derived Kantorovich numerical scheme
are confirmed by computation of eigenenergies and eigenfunctions, dipole mo-
ments and decay rates for the manifolds of high-|m| low-excited Rydberg states
of a hydrogen atom in the laboratory homogeneous magnetic field, and by com-
parison with the results obtained by other methods.

Symbolic-Numerical Calculations of High-|m| Rydberg States 157

The paper is organized as follows. In Section 2, we briefly describe the reduc-
tion by the KM of the 3D eigenvalue problem at fixed values |m| of magnetic
quantum number to the 1D eigenvalue problem for a set of close-coupled longi-
tudinal equations. In Sections 3 and 4, the algorithm for calculating the effective
potentials and the transverse dipole moment matrix elements in the analytic
form at large values of |m| is presented. The algorithm has been implemented
in Maple. To find the validity range of the method, in Section 5 we compare our
results with the known ones obtained in the cylindrical coordinates. Decay rates
of the lowest bound states of manifolds with high magnetic quantum number |m|
are also presented here. In Section 6, we conclude and discuss possible future
applications of the described method.

2 Problem Statement in Cylindrical Coordinates

The component Ψ(ρ, z) of the wave function Ψ(ρ, z, ϕ) = Ψ(ρ, z) exp(ımϕ)/
√
2π

of a hydrogen atom in an axially symmetric magnetic field B = (0, 0, B) in
the cylindrical coordinates (ρ, z, ϕ) satisfies the 2D Schrödinger equation in the
region Ωc = {0 < ρ <∞ and −∞ < z <∞}:

− ∂2

∂z2
Ψ(ρ, z) +AcΨ(ρ, z) = εΨ(ρ, z), Ac = −1

ρ

∂

∂ρ
ρ
∂

∂ρ
+mγ + U(ρ, z), (1)

U(ρ, z) =
m2

ρ2
+
γ2ρ2

4
+ Vc(ρ, z), Vc(ρ, z) = − 2q√

ρ2 + z2
. (2)

Here m = 0,±1, . . . is the magnetic quantum number, γ = B/B0 = h̄ωc/(2Ry),
B0
∼= 2.35 × 105 T is a dimensionless parameter which determines the field

strength B, ωc = eB/(mec) = eB0γ/(mec) is the cyclotron frequency, and
U(ρ, z) is the potential energy (see Fig. 1a), q is Coulomb charge of nucleus.
We use the atomic units (a.u.) h̄ = me = e = 1 and assume the mass of the
nucleus to be infinite. In these expressions, ε = 2E, E is the energy (expressed
in Rydbergs, 1Ry = (1/2) a.u.) of the bound state |mσ〉 with fixed values of m
and z-parity σ = ±1, and Ψ(ρ, z) ≡ Ψmσ(ρ, z) = σΨmσ(ρ,−z) is the correspond-
ing wave function. The boundary conditions in each mσ subspace L2(Ω) of the
complete Hilbert space have the form

lim
ρ→0

ρ
∂Ψ(ρ, z)

∂ρ
= 0, for m = 0, and Ψ(0, z) = 0, for m �= 0, (3)

lim
ρ→∞Ψ(ρ, z) = 0. (4)

The eigenfunction Ψ(ρ, z) ≡ Ψt(ρ, z) ∈ L2(Ω) of the discrete real-valued spec-
trum ε : ε1 < ε2 < · · · εt < · · · < γ obeys the asymptotic boundary condition.
Approximately this condition is replaced by the boundary condition of the sec-
ond and/or first type at small and large |z|, but finite |z| = zmax ' 1,

lim
z→0

∂Ψ(ρ, z)

∂z
= 0, σ = +1, Ψ(ρ, 0) = 0, σ = −1, (5)

lim
z→±∞Ψ(ρ, z) = 0 → Ψ(ρ,±|zmax|) = 0. (6)

158 A. Gusev et al.

In numerical calculation of the eigenvalues and eigenfunctions with given accu-
racy by programs KANTBP2 and ODPEVP realizing the finite element method,
we used computational schemes derived from the Rayleigh–Ritz variational func-
tional [1,10]

R(Ψt, εt) =

(zmax∫
−zmax

dz

∞∫
0

ρdρ
∂Ψt(ρ, z)

∂z

∂Ψt(ρ, z)

∂z
+
∂Ψt(ρ, z)

∂ρ

∂Ψt(ρ, z)

∂ρ
(7)

+Ψt(ρ, z)(mγ + U(ρ, z))Ψt(ρ, z)

)
/

∫ zmax

−zmax

dz

∫ ∞

0

ρdρΨt(ρ, z)Ψt′(ρ, z)

with the additional normalization and orthogonality conditions

〈t|t′〉=
∫ zmax

−zmax

dz

∫ ∞

0

ρdρΨt(ρ, z)Ψt′(ρ, z)=2

∫ zmax

0

dz

∫ ∞

0

ρdρΨt(ρ, z)Ψt′(ρ, z)=δtt′ . (8)

For m �= 0 eigenfunctions Ψt(ρ, z) ∼ ρ|m|/2 at small ρ. So, in numerical calcula-
tions, a reduced interval [0 < ρmin, ρmax ' 1] is conventionally used [8].

2.1 Kantorovich Reduction

Consider a formal expansion of the partial solution Ψmσ
t (ρ, z) of Eqs. (1)–(4) cor-

responding to the eigenstate |mσt〉 expanded in the finite set of one-dimensional
basis functions {Bm

j (ρ; z)}jmax

j=1

Ψmσ
t (ρ, z) =

jmax∑
j=1

Bm
j (ρ; z)χ

(mσt)
j (z). (9)

In Eq. (9), the functions χ(t)(z)≡χ(mσt)(z), (χ(t)(z))T =(χ
(t)
1 (z),. . . ,χ

(t)
jmax

(z))

are unknown, and the surface functions B(ρ; z) = Bm(ρ;−z), (B(ρ; z))T =
(B1(ρ; z), . . . , Bjmax(ρ; z)) form an orthonormal basis for each value of the vari-
able z ∈ R which is treated as a parameter.

In KM, the wave functions Bj(ρ; z) (see Fig. 2) and the potential curves Ej(z)
(in Ry) are determined as solutions of the following eigenvalue problem

AcBj(ρ; z) = Ej(z)Bj(ρ; z), (10)

with the operator Ac from (1)–(2) and the boundary conditions (3), (4) at each
fixed z ∈ R. Since the operator in the left-hand side of Eq. (10) is self-adjoint,
its eigenfunctions are orthonormal〈

Bi(ρ; z)

∣∣∣∣Bj(ρ; z)

〉
ρ

=

∫ ∞

0

Bi(ρ; z)Bj(ρ; z)ρdρ = δij , (11)

where δij is the Kronecker symbol. Therefore, we transform the solution of the
above problem into the solution of an eigenvalue problem for a set of jmax

Symbolic-Numerical Calculations of High-|m| Rydberg States 159

U
Osc

 C
Coul

 1
 3

 5

79

2
8 6 4

 1

 9

Fig. 1. Left panel: the profile of potential energy U(ρ, z) = m2/ρ2 + γ2ρ2/4+ Vc(ρ, z)
(U) in the plane z = 0 and its components, namely, the centrifugal (C), oscillator (Osc),
and Coulomb (Coul) potentials. Right panel: the approximation errors δU (jmax)(ρ, z) ≡∑jmax

i=1 U (i)(ρ, z) − U(ρ, z) (jmax = 1, ..., 9) of the potential energy U(ρ, z = 0). Here
q = −1, m = −200, γ = 2.553191 · 10−5 (B = 6T, m̃ ≈ 5.89)

ordinary second-order differential equations that determines the energy ε and
the coefficients χ(i)(z) of the expansion (9)(

−I d
2

dz2
+U(z) +Q(z)

d

dz
+
dQ(z)

dz

)
χ(t)(z) = εtIχ

(t)(z). (12)

Here I, U(z) = U(−z), and Q(z) = −Q(−z) are the jmax×jmax matrices whose
elements are expressed as

Uij(z) = Ei(z)δij +Hij(z), Hij(z) =

∫ ∞

0

∂Bi(ρ; z)

∂z

∂Bj(ρ; z)

∂z
ρdρ, (13)

Iij(z) = δij , Qij(z) = −Qji(z) = −
∫ ∞

0

Bi(ρ; z)
∂Bj(ρ; z)

∂z
ρdρ.

The discrete spectrum solutions ε : ε1 < ε2 < · · · εt < · · · < γ at fixed m and
parity σ = ±1 obey the asymptotic boundary condition and are orthonormal

lim
z→0

(
d

dz
−Q(z)

)
χ(t)(z) = 0, σ = +1, χ(t)(0) = 0, σ = −1, (14)

lim
z→±∞χ(t)(z) = 0 → χ(t)(±zmax) = 0, (15)∫ zmax

−zmax

(
χ(t)(z)

)T
χ(t′)(z)dz = 2

∫ zmax

0

(
χ(t)(z)

)T
χ(t′)(z)dz = δtt′ . (16)

Remark 1. In diagonal adiabatic approximation(
− d2

dz2
+ Ujj(z)

)
χ
(v)
j (z) = εjvχ

(v)
j (z) (17)

discrete spectrum ε : εj1 < εj2 < · · · εjv < · · · < γ numerated by number v that

determines the number v − 1 of nodes of the solution χ
(v)
j (z) at fixed value j.

160 A. Gusev et al.

Fig. 2. The basis functions B1 and B2 for m = −200, q = 1, γ = 2.553191 · 10−5

3 Solving the Parametric Eigenvalue Problem at
Large |m|

Step 1. In (10), (11) apply the transformation to a scaled variable x

x =
γρ2

2
, ρ =

√
x√
γ/2

, (18)

and put λj(z) = Ej(z)/(2γ) = λ
(0)
j +m/2+δλj(z), where λ

(0)
j = n+(|m|+1)/2.

The eigenvalue problem reads⎛⎝− ∂

∂x
x
∂

∂x
+
m2

4x
+
x

4
+
m

2
− q

γ
√

2x
γ + z2

− λj

⎞⎠Bj(x; z) = 0, (19)

with a normalization condition

1

γ

∫ ∞

0

Bj(x; z)
2dx = 1. (20)

At q = 0, Eq. (19) without m/2 takes the form

L(n)B
(0)
j (x) = 0, L(n) = − ∂

∂x
x
∂

∂x
+
m2

4x
+
x

4
− λ

(0)
j , (21)

and has the regular and bounded solutions at

λ
(0)
j = n+ (|m|+ 1)/2, (22)

where the transverse quantum number n ≡ Nρ = j− 1 = 0, 1, . . . determines the

number of nodes of the solution B
(0)
j (x) ≡ B

(0)
nm(x) with respect to the variable

x. The normalized solutions of Eq. (21) take the form

Symbolic-Numerical Calculations of High-|m| Rydberg States 161

B
(0)
j (x) = Cn|m|e−

x
2 x

|m|
2 L|m|

n (x), Cn|m| =
[
γ

n!

(n+ |m|)!
] 1

2

, (23)

1

γ

∫ ∞

0

B(0)
nm(x)B

(0)
n′m(x)dx = δnn′ , (24)

where L
|m|
n (x) are Laguerre polynomials [14].

Step 2. Substituting the notation δλj(z) = λj(z)− λ
(0)
j −m/2 ≡ Ej(z)/(2γ)−

(n + (m + |m| + 1)/2), and the Taylor expansion in the vicinity of the point
x0 = xsγ:

Vc(x, z) = − q

γ
√

2x
γ +z2

= −
jmax∑
k=1

V (k)(x, z)εk = − εq

γ(z2+2xs)1/2
(25)

+
εq(x−xsγ)

γ2(z2+2xs)3/2
− 3ε2q(x−xsγ)2
2γ3(z2+2xs)5/2

+
5ε3q(x−xsγ)3
2γ4(z2+2xs)7/2

+O

(
ε4

(z2+2xs)9/2

)
,

into Eq. (19) at q �= 0, transform it to the following form

L(n)Bj(x; z) +

(
jmax∑
k=1

V (k)(z)εk − δλj(z)

)
Bj(x; z) = 0. (26)

Here ε is a formal parameter that will be put to be 1 in the final expression.
The parameters xs = ρ2s/2 and ρs approximately correspond to the minimum
of the potential energy (2). In so doing, the Coulomb term is neglected. In
the calculations we choose ρs =

√
2|m|/γ under assumption that the condition

γ2ρ2/4 + m2/ρ2 ' 2|q|/ρ is valid. The approximation errors δU (jmax)(ρ, z) at
jmax = 1, ..., 9 are illustrated in Fig. 1b. One can see that in the localization
interval ρ ∈ [3000, 5000] of the eigenfunction (19), the errors decrease with in-
creasing order jmax (see Fig. 2). Performing Taylor expansion at |z|/ρs ' 1, we
arrive at the inverse power series that gives the same results as the perturbation
theory in powers of 1/|z| [8].
Step 3. The solution of Eq. (26) is found in the form of perturbation expansion
in powers of ε

δλj(z) =

kmax∑
k=1

εkλ(k)n (z), Bj(x; z) = B(0)
n (x) +

kmax∑
k=0

εkB(k)
n (x, z). (27)

Equating coefficients at the same powers of ε, we arrive at the system of inhomo-

geneous differential equations with respect to corrections λ
(k)
n (z) and B

(k)
n (x, z):

L(n)B(0)
n (x) = 0 ≡ f (0)

n (z), (28)

L(n)B(k)
n (x, z) = (λ(k)n (z)− V (k)(z))B(0)

n (x)

+
k−1∑
p=1

(λ(k−p)(z)− V (k−p)(z))B(p)
n (x, z) ≡ f (k)

n (z), k ≥ 1.

162 A. Gusev et al.

1

7E

E
H

H66

11

1

23 1

2

Fig. 3. The eigenvalues Ej(z) and the effective potentials Hjj(z), Hjj′(z) (curves
Hjj−1(z), j = 2, ..., 6, are marked by number 1, curves Hjj−2(z), j = 3, ...6, are
marked by number 2 and curves Hjj−3(z), j = 4, ..., 6, are marked by number 3) and
Qjj′(z) (curves Qjj−1(z), j = 2, ..., 6, are marked by number 1, and curves Qjj−2(z),
j = 3, ..., 6, are marked by number 2) for m = −200, q = 1, γ = 2.553191 · 10−5

To solve Eqs. (26) we used the nonnormalized orthogonal basis

Bn+s(x) = Cn|m|e−
x
2 x

|m|
2 L

|m|
n+s(x) = Cn|m|C

−1
n+s|m|B

(0)
n+s,m(x), (29)

〈s|s′〉 =
∫ ∞

0

Bn+s(x)Bn+s′ (x)dx = δss′γ
n!

(n+ |m|)!
(n+ s+ |m|)!

(n+ s)!
.

The action of the operators L(n) and x on the functions Bn+s(x) is defined by
the relations

L(n)Bn+s(x) = sBn+s(x), (30)

xBn+s(x) = −(n+ s+ |m|)Bn+s−1(x) + (2(n+ s) + |m|+ 1)Bn+s(x)

−(n+ s+ 1)Bn+s+1(x)

that involve no fractional powers of quantum numbers n and m.

Step 4. Applying Eqs. (30), the right-hand side f
(k)
n (z) and the solutions

B
(k)
n (x, z) of the system (28) are expanded over the nonnormalized basis states

Bn+s(x)

B(k)
n (x, z) =

smax∑
s=−smax

b(k)n;s(z)Bn+s(x), f (k)
n (z) =

smax∑
s=−smax

f (k)
n;s (z)Bn+s(x).(31)

Then the recurrent set of linear algebraic equations for unknown nonnormalized

coefficients b
(k)
n;s(z) and corrections λ

(k)
n (z) is obtained

sb(k)n;s(z)− f (k)
n;s (z) = 0, s = −smax, . . . , smax,

Symbolic-Numerical Calculations of High-|m| Rydberg States 163

which is solved sequentially for k = 1, 2, . . . , kmax:

f
(k)
n;0(z) = 0 → λ(k)n (z); b(k)n;s(z) = f (k)

n;s (z)/s, s = −smax, . . . , smax, s �= 0.

The initial conditions (22) and b
(0)
n;s(z) = δs0 follow from Eqs. (21) and (24).

Step 5. To obtain the normalized wave function Bj(x; z) up to the kth order,

the coefficient b
(k)
0 are defined by the following relation:

b
(k)
n;0(z) = −

1

2γ

k−1∑
p=1

smax∑
s′=−smax

smax∑
s=−smax

b(k−p)
n;s (z)〈s|s′〉b(p)n;s′(z), b

(k=1)
n;0 (z) = 0.

As an example of the output file at steps 1–5, we display nonzero coefficients

λ
(k)
n (z), b

(k)
n;s(z) of the expansions (27), (31) over the nonnormalized basis func-

tions (29) up to O(ε2):

λ(0)n = n+(|m|+1)/2,

λ(1)n (z) =− q

γ
√
z2+2xs

+
q(2n+|m|+1)

γ2(z2+2xs)3/2
− xsq

γ(z2+2xs)3/2
,

λ(2)n (z) =−q2(2n+|m|+1)/(γ4(z2+2xs)
3)−3q[|m|2+2+6n|m|

+6n2+6n+3|m|−2γ(2n+|m|+1)xs+x2sγ
2]/(2γ3(z2+2xs)

5/2),

b
(0)
n;0(z) = 1, (32)

b
(1)
n;−1(z) =−q(n+|m|)/(γ2(z2+2xs)

3/2), b
(1)
n;1(z) = q(n+1)/(γ2(z2+2xs)

3/2),

b
(2)
n;−2(z) = q(n+|m|)(n+|m|−1)(2q−3γ

√
(z2+2xs))/(4γ

4(z2+2xs)
3),

b
(2)
n;−1(z) = q(n+|m|)(2q+3γ(2n+|m|−γxs)

√
(z2+2xs))/(γ

4(z2+2xs)
3),

b
(2)
n;0(z) = q2(2n2+2n+2n|m|+|m|+1)/(2γ4(z2+2xs)

3),

b
(2)
n;1(z) =−q(n+1)(2q+3γ(2n+|m|+2−γxs)

√
(z2+2xs))/(γ

4(z2+2xs)
3),

b
(2)
n;2(z) = q(n+1)(n+2)(2q+3γ

√
(z2+2xs))/(4γ

4(z2+2xs)
3).

These expansions involve parameters xs = ρ2s/2 and ρs that approximately cor-
responded to the minimum of the potential energy (2) and determined the point
x0 = γxs of expansion of (25) of Coulomb potential Vc(x, z).

Step 6. In terms of the scaled variable x, the expressions of the effective poten-
tials Hij(z) = Hji(z) and Qij(z) = −Qji(z) take the form

Hij(z)=
1

γ

∞∫
0

dx
∂Bi(x; z)

∂z

∂Bj(x; z)

∂z
, Qij(z)=− 1

γ

∞∫
0

dxBi(x; z)
∂Bj(x; z)

∂z
. (33)

To calculate them we expand the solution (26) over the normalized orthogonal

basis B
(0)
n+s;m(x) with the normalized coefficients b

(k)
n;n+s;m(z),

Bj(x; z) ≡ Bm
j (x; z) =

kmax∑
k=0

εk
smax∑

s=−smax

b
(k)
n;n+s;m(z)B

(0)
n+s;m(x). (34)

164 A. Gusev et al.

The normalized coefficients b
(k)
n;n+s;m(z) are expressed via b

(k)
n;s(z),

b
(k)
n;n+s;m(z) = b(k)n;s(z)

√
n!

(n+ |m|)!
(n+ s+ |m|)!

(n+ s)!
(35)

as follows from Eqs. (31), (34), and (29).

Step 7. As a result of substituting Eqs. (34) into Eq. (33), the matrix elements
take the form

Qjj+t(z) = −
kmax∑
k=0

εk
k∑

k′=0

min(smax,smax+t)∑
s=max(−smax,−smax+t)

b
(k′)
n;n+s;m(z)

db
(k−k′)
n+t;n+s;m(z)

dz
,

Hjj+t(z) =

kmax∑
k=0

εk
k∑

k′=0

min(smax,smax+t)∑
s=max(−smax,−smax+t)

db
(k′)
n;n+s;m(z)

dz

db
(k−k′)
n+t;n+s;m(z)

dz
.(36)

By collecting the coefficients at similar powers of ε in Eq. (36) the algorithm
yields the final expansions of eigenvalues and effective potentials available in the
output file

Ej(z) =

kmax∑
k=0

E
(k)
j (z), Hij(z) =

kmax∑
k=2

H
(k)
ij (z), Qij(z) =

kmax∑
k=1

Q
(k)
ij (z). (37)

Successful runs of the Maple implementation of the algorithm were performed
up to kmax = 6 (the run time 30 s using Intel Core i5, 3.36 GHz, 4 GB). Below we
present a few first nonzero coefficients derived in the analytic form (j = n+ 1):

E
(0)
j = 2γ(n+ (m+ |m|+ 1)/2),

E
(1)
j (z) = − 2q√

z2+ρ2s
+

2q(2n+|m|+1)

γ(z2+ρ2s)
3/2

− ρ2sq

(z2+ρ2s)
3/2

,

E
(2)
j (z) = −2q2(2n+|m|+1)

γ3(z2 + ρ2s)
3

−3q[|m|
2+2+6n|m|+6n2+6n+3|m|−γ(2n+|m|+1)ρ2s+ρ4sγ

2/4]

γ2(z2+ρ2s)
5/2

,

Q
(1)
jj−1(z) = −

√
n
√
n+|m| 3zq

γ2(z2 + ρ2s)
5/2

,

Q
(2)
jj−1(z) = −

√
n
√
n+|m|

[
15zq(2|m|+ 4n− ρ2sγ)

2γ3(z2 + ρ2s)
7/2

+
12zq2

γ4(z2 + ρ2s)
4

]
,

Q
(2)
jj−2(z) = −

√
n
√
n−1
√
n+|m|

√
n+|m|−1 15qz

4γ3(z2 + ρ2s)
7/2

,

H
(2)
jj (z) = 9q2(2n2 + 2n|m|+ 2n+ |m|+ 1)

[
1

γ4(z2 + ρ2s)
4
− ρ2s
γ4(z2 + ρ2s)

5

]
,

H
(2)
jj−2(z) = −9q2

√
n
√
n−1
√
n+|m|

√
n+|m|−1

[
1

γ4(z2+ρ2s)
4
+

ρ2s
γ4(z2+ρ2s)

5

]
.

Symbolic-Numerical Calculations of High-|m| Rydberg States 165

11

77
P

P

jj

P

P

12

67

j-1
j

P

P

21

76

jj-
1

P

P

31

75

jj-
2

Fig. 4. Transverse dipole matrix elements P
|m||m|−1
nn′ (subscripts n, n′ run

0, 1, 2, 3, 4, 5, 6) for m = −200, q = 1, γ = 2.553191 · 10−5

As an example, Fig. 3 shows the eigenvalues and effective potentials (37), which
agree with those calculated numerically using ODPEVP [10] with the accuracy
of the order of 10−10. We used finite element grid on the interval ρ ∈ [ρmin =
2000, ρmax = 6000] with the Lagrange elements of fourth order. Expanding (37)
into the Taylor series at |z|/ρs ' 1, we arrive at perturbation expansion in
powers of 1/z [8].

4 Calculations of the Transversal Dipole Matrix Elements

Using the scaled variable x defined by Eq. (18) one can express the trans-

verse dipole matrix elements P
|m|,|m|∓1
ij (z) =

〈
|m|, n

∣∣∣ρe±ıϕ
∣∣∣|m| ∓ 1, n′

〉
and

P
−|m|,−|m|±1
ij (z) =

〈
−|m|, n

∣∣∣ρe∓ıϕ
∣∣∣−|m| ± 1, n′

〉
possessing the property〈

|m|, n
∣∣∣ρ exp(±ıϕ)∣∣∣|m| ∓ 1, n′

〉∗
=
〈
|m| ∓ 1, n′

∣∣∣ρ exp(∓ıϕ)∣∣∣|m|, n〉,
where i = n+ 1 and j = n′ + 1, in the following form

P
−|m|,−|m|±1
ij (z) = P

|m|,|m|∓1
ij (z) =

√
2

γ3

∞∫
0

dxB
|m|
i (x; z)

√
xB

|m|∓1
j (x; z).(38)

According to Eqs. (22.7.12), (33.7.30), and (22.7.31) of [14], the dipole mo-
ment matrix elements calculated with normalized basis functions ||m|, n〉 =

B
(0)
n|m|(x)e

ı|m|ϕ/
√
2π by means of Eq. (23) are expressed as

P
(0);|m||m|∓1
ij =

√
2

γ3

〈
|m|, n

∣∣∣√xe±ıϕ
∣∣∣|m| ∓ 1, n′

〉

166 A. Gusev et al.

-5,0

-4,5

-4,0

-3,5

-3,0

-2,5

-2,0

1 2 3 4 5 6 7
<j>=j

2E

s,1
0-4

R
y

1926

1 2 3 4 5 6 7
-5,0

-4,5

-4,0

-3,5

-3,0

-2,5

-2,0

2E
s,1

0-4
R

y

<j>

70 71

Fig. 5. Energy eigenvalues 2Es for even (σ = +1) lower eigenstates vs the state number
〈j〉 calculated in the diagonal adiabatic approximation (left) and in the Kantorovich
approximation at jmax = 6 with given accuracy (right). Here m = −200, γ = 2.553191 ·
10−5, q = 1, σ = +1. The quantity 〈j〉 =

∑
j

∫
jχj,s(z)

2dz is the averaged quantum
number, s is the eigenvalue number in the ascending energy sequence E1 < E2 < ... <
Es < ... < γ/2, corresponding to the number v of the eigenvalue Ej1 < Ej2 < ... <
Ejv < ... < γ/2 counted at each 〈j〉 = j in diagonal approximation (17) of Eqs. (12)

=

√
2

γ3
1

2π

∫ 2π

0

dϕ

∫ ∞

0

e−ı|m|ϕB(0)
i,|m|(x)e

±ıϕ√xeı(|m|∓1)ϕB
(0)
i,|m|∓1(x)dx

=

√
2

γ

[
δnn′
√
n+ |m|+ 1/2∓ 1/2− δn∓1,n′

√
n+ 1/2∓ 1/2

]
. (39)

As a result of substituting Eqs. (34) and (39) into Eq. (38), the matrix elements
take the following analytic form (j = n+ 1)

P
|m|,|m|−1
jj+t (z) =

kmax∑
k=0

P
(k);|m||m|−1
jj+t (z),

P
(k);|m||m|−1
jj+t (z) =

√
2

γ

k∑
k′=0

min(k,k−k′−t)∑
s=max(−k,k′−k−t)

[
b
(k′)
n;n+s;|m|(z)b

(k−k′)
n+t;n+s;|m|−1(z)

×
√
n+ s+ |m|+ 1− b

(k′)
n;n+s;|m|(z)b

(k−k′)
n+t;n+s+1;|m|−1(z)

√
n+ s+ 1

]
. (40)

Successful run of the Maple-implemented algorithm was performed up to kmax =
6 (run time 90 s with Intel Core i5, 3.36 GHz, 4 GB). A few first nonzero
coefficients derived in the analytic form are presented below (j = n+ 1):

P
(0);|m||m|−1
jj (z) = +

√
2
√
n+ |m|+ 1√

γ
, P

(1);|m||m|−1
jj (z) = −

√
2
√
n+ |m|q

γ5/2(ρ2s + z2)3/2
,

P
(0);|m||m|−1
j−1j (z) = −

√
n
√
2√

γ
, (41)

P
(1);|m||m|−1
j−1j (z) = −

√
n
√
2
√
n+ |m|(√n+ |m| − 1−√n+ |m|+ 1)q

(ρ2s + z2)3/2γ5/2
,

Symbolic-Numerical Calculations of High-|m| Rydberg States 167

0 2000 4000 6000 8000
-0,02

-0,01

0,00

0,01

0,02

χ3 χ2

χ1

χ j,7
0

z

m=-200, σ=+1, γ=2.553191 10-5

0 2000 4000 6000 8000
-0,02

-0,01

0,00

0,01

0,02 χ3 χ2

m=-200, σ=+1, γ=2.553191 10-5

χ j,7
1

z

χ1

Fig. 6. Upper panels: the first three components of the eigenfunctions χj,70 and χj,71

(j = 1, 2, 3). The dominant components are j = 1 (〈j〉 = 1.43) with v − 1 = 25
nodes and j = 2 (〈j〉 = 1.56) with v − 1 = 18 nodes, respectively. Lower panels:
the profile of the wave function Ψm=−200,σ=+1

s=70 (ρ, z) and Ψm=−200,σ=+1
s=71 (ρ, z) of the

resonance states in the zx plane with the energies 2Em=−200,σ=+1
s=70 = −2.151832 ·

10−4Ry and 2Em=−200,σ=+1
s=71 = −2.150977 · 10−4Ry pointed by arrows in the right

panel of Fig. 5

P
(1);|m||m|−1
jj−1 (z) =

√
n
√
2(
√
n+ |m| − 1

√
n+ |m|+ 1− n− |m|)q

(ρ2s + z2)3/2γ5/2
.

The comparison of our analytical numerical results with those obtained numeri-
cally using the programODPEVP [10] shows the convergence of the perturbation
series expansion up to kmax = 6 with four significant digits. Expanding (40) into
a Taylor series at |z|/ρs ' 1, we arrive at the inverse power series for the dipole
matrix elements. To obtain the leading terms at |z| → ∞ it is sufficiently to put
ρs = 0 in (41).

5 Calculations of Rydberg States and Decay Rates

In Fig. 5 we present an example of the lower part of discrete spectrum calculated
in the diagonal adiabatic and Kantorovich approximations with the effective
potentials (37) by means of the programKANTBP2 [1]. In numerical calculations
at q = −1, γ = 2.553191 · 10−5 for |m| ∼ 200, we use finite element grid on the
interval z ∈ [0, zmax = 11000] with the Lagrange elements of fourth order. In

168 A. Gusev et al.

Fig. 6, we show an example of resonance states formed by coupling of the quasi-
degenerate states with the energies 2Em=−200,σ=+1

j=1,v=26 = −2.151260 · 10−4Ry and

2Em=−200,σ=+1
j=2,v=19 = −2.151202 · 10−4Ry in the diagonal adiabatic approximation

(17) pointed by arrows in the left panel of Fig. 5.
The partial transition decay rates Γs̃→s̃′ are calculated as

Γs̃→s̃′ =
4

3

e2ω3
s̃s̃′

4πε0h̄c3
|〈s̃′|r̄|s̃〉|2, ωs̃s̃′ = (Ēs̃′ − Ēs̃)/h̄. (42)

In the above expressions, ε0 = 8.854187817 · 10−12 F/m is the dielectric con-
stant, the energy Ēs̃′ = Es̃′EB and the dipole moment 〈s̃′|r̄|s̃〉 = aB〈s̃′|r|s̃〉
are expressed in the atomic units EB = 2Ry = 4.35974434 · 10−18 J, aB =
0.52917721092 · 10−10 m, i.e.

Γs̃→s̃′ = 2.142 · 1010(Es̃′ − Es̃)
3|〈s̃′|r|s̃〉|2 × s−1. (43)

Here |〈s̃′|r|s̃〉|2 defined by the expression

|〈s̃′|r|s̃〉|2 = (1/2)|〈s̃′|ρe−ıϕ|s̃〉|2 + |〈s̃′|z|s̃〉|2 + (1/2)|〈s̃′|ρe+ıϕ|s̃〉|2, (44)

where 〈s̃′|z|s̃〉 and 〈s̃′|ρe±ıϕ|s̃〉 are the longitudinal and transverse dipole mo-
ment, respectively. As follows from Eq. (40),

〈s̃′|z|s̃〉 = δm′mδ−σ′σ

jmax∑
i,j=1

∫ zmax

zmin

dzχmσ′
is̃′ (z)zχmσ

js̃ (z), (45)

〈s̃′|ρe±ıϕ|s̃〉 = δm′m∓1δσ′σ

jmax∑
i,j=1

∫ zmax

zmin

dzχm′σ
is̃′ (z)Pm′,m

ij (z)χmσ
js̃ (z). (46)

In Table 1 we show our present results for partial decay rates (43) and dipole
moments (45) and (46). The results were obtained numerically by means of the
program KANTBP 2.0 [1] using the analytically derived effective potentials (37)
and matrix elements of transversal dipole moments (40), i.e., Ms̃′s̃=〈s̃′|ρe−ıϕ|s̃〉
for cyclotron decay (C) (q → q′ = q, where q = j − m is magnetron quantum
number, m→m′=m− 1, σ→σ′=σ, j→ j′= j − 1, v→ v′= v); Ms̃′s̃= 〈s̃′|z|s̃〉
for the bounce decay (B) (q→ q′= q, m→m′ =m, σ→σ′ =−σ, j→ j′= j, v→
v′=v − 1), and Ms̃′ s̃=〈s̃′|ρe+ıϕ|s̃〉 for the magnetron decay (M) (q→q′=q − 1,
m→m′ =m + 1, σ→σ′ =σ, j→ j′ = j, v→ v′ = v). The results agree with the
numerical ones from [12] within the required accuracy.

In Table 1 we also show the energy values 2E|s̃〉 calculated in the Kantorovich
approximation (K) at jmax = 6, and obtained by the aid of the diagonal approx-
imation (17) in the analytical form

2E|s̃〉 ≈ 2Em,σ
i,v = U

(0)
ii + E(0)i;v +

∑κmax

κ=2
E(κ−1)
i;v , (47)

E(0)i;v = ωz,i(2v + 1), E(1)i;v =
3U

(4)
i (2v2 + 2v + 1)

4ω2
z,i

,

E(2)i;v = − (2v + 1)(17v2 + 17v + 21)(U
(4)
i)2

16ω5
z,i

+
5(2v + 1)(2v2 + 2v + 3)U

(6)
i

8ω3
z,i

.

Symbolic-Numerical Calculations of High-|m| Rydberg States 169

Table 1. The partial transition decay rates Γs̃→s̃′ evaluated using Eq. (43) from the
state |s̃〉= |j,v,σ,m〉 to |s̃′〉= |j′,v′,σ′,m′〉 with energies 2E|s̃〉 and 2E|s̃′〉 calculated using
the Kantorovich approximation (K) at jmax = 6 and the corresponding dipole moments
Ms̃′ s̃. In square brackets, numerical results of [12] are given. The energies calculated
in analytical form using the crude diagonal approximation with the Taylor series of
Uii(z) = Ei(z) up to harmonic (H) and anharmonic (A) terms of order of z2 and z10,
respectively. The corresponding energies in the diagonal approximation with Taylor
series of Uii(z)=Ei(z)+Hii(z) differing only in two last digits, are shown in parentheses.

s̃ s̃′ |j, v, σ,m〉 |j′, v′, σ′,m′〉 Γs̃→s̃′ , Ms̃′s̃, 2Es̃, 2Es̃′ ,
s−1 aB 10−4Ry 10−4Ry

C 5 1 |2, 1,+1,−200〉 |1, 1,+1,−201〉 13.1 276.4 K −4.29933 −4.80384
[13.7] [283] H −4.29978(76) −4.80384(83)

A −4.30019(18) −4.80424(23)

C 13 5 |3, 1,+1,−200〉 |2, 1,+1,−201〉 26.3 390.9 K −3.78171 −4.28632
[27.5] [401] H −3.78299(95) −4.28688(86)

A −3.78342(38) −4.28729(27)

B 1 1 |1, 2,−1,−200〉 |1, 1,+1,−200〉 0.180 349.4 K −4.73499 −4.81688
[0.178] [350] H −4.73329(27) −4.81683(83)

A −4.73531(29) −4.81724(23)

B 2 1 |1, 3,+1,−200〉 |1, 2,−1,−200〉 0.345 499.0 K −4.65469 −4.73499
[0.342] [500] H −4.64974(71) −4.73329(27)

A −4.65497(94) −4.73531(29)

M 1 1 |1, 1,+1,−200〉 |1, 1,+1,−199〉 0.045 3870 K −4.81688 −4.83003
[0.044] [3872] H −4.81683(83) −4.82993(93)

A −4.81724(23) −4.83034(33)

The latter was obtained using SNA like in Section 3, but for a perturbed 1D
oscillator with adiabatic frequency ωz,i. It was accomplished with the help of
a Taylor expansion up to z2κmax of effective potentials Uii(z) = Ei(z) +Hii(z)
from Eq. (37) for the harmonic (H) and anharmonic (A) terms, i.e., 2κmax = 2
and 2κmax = 10, respectively,

Uii(z) = Uii(0) + ω2
z,iz

2 +
∑κmax

κ=2
U

(2κ)
i z2κ. (48)

Moreover, in Table 1 we present also the results for the energies (47) in the
crude and adiabatic approximations obtained without and with the diagonal
potential Hii, respectively. One can see that the energies in crude adiabatic
and adiabatic approximations differ only in two last significant figures, i.e., are
the same within the accuracy of ∼ 10−8. One can see from Table 1 that the
adiabatic harmonic (H) diagonal approximation and the crude anharmonic (A)
one provide the upper and lower estimations of the energy values of low-excited
Rydberg states with j = 1, respectively.

Remark 2. In the expansions (47) and (48), the coefficients are calculated using

U
(0)
ii = Uii(0), ω

2
z,i = (d2Uii(z)/dz

2)z=0/2, U
(2κ)
i = (d2κUii(z)/dz

2κ)z=0/((2κ)!).

170 A. Gusev et al.

In the harmonic approximation ω2
z,i =

∑kmax

k=1 ω
(k)
z,i,E+

∑kmax

k=2 ω
(k)
z,i,H , where ω

(k)
z,i,E =

(d2E
(k)
i (z)/dz2)z=0/2 and ω

(k)
z,i,H = (d2H

(k)
ii (z)/dz2)z=0/2, the leading terms are:

ω
(1)
z,i,E =

5q

2ρ3s
− 3q(2n+ |m|+ 1)

γρ5s
, ω

(2)
z,i,H =

9q2(2n2 + 2n|m|+ 2n+ |m|+1)

ρ10s γ4
,

ω
(2)
z,i,E =

15q

8ρ3s
− 15q(2n+ |m|+ 1)

2γρ5s
+

15q(6n2 + 6n|m|+ 6n+m2 + 3|m|+ 2)

2γ2ρ7s

+
6q2(2n+ |m|+ 1)

γ3ρ8s
.

The substitution of ρs =
√
2|m|/γ into the leading term ω2

z,i ≈ ω
(1)
z,i,E at n = 0

yields ω2
z,i ≈ (q

√
γγ(2|m| − 3))/(4m2

√
2|m|). At q = 1 we obtain the adiabatic

parameter (ωρ/ωz,i=1)
4/3 = |m|γ1/3, where ωρ = γ/2, in agreement with [13].

6 Conclusions

A new efficient method to calculate wave functions and decay rates of high-|m|
Rydberg states of a hydrogen atom in a magnetic field is developed. It is based
on the KM application to parametric eigenvalue problems in cylindrical coor-
dinates. The results are in a good agreement with the calculations executed in
spherical coordinates at fixed |m| > 140 for γ ∼ 2.553·10−5. The elaborated SNA
for calculation of the effective potentials, dipole moment matrix elements, and
the perturbation solutions in analytic form allows us to generate effective ap-
proximations for a finite set of longitudinal equations. This provides benchmark
calculations for the new version KANTBP3 of our earlier program KANTBP2 [1]
announced in [9]. The developed approach is a useful tool for calculating the
threshold phenomena in formation, decay, and ionization of (anti)hydrogen-like
atoms and ions in magneto-optical traps [11,12,13], and channelling of ions in
thin films [4].

The authors thank Prof. V.L. Derbov for valuable discussions.

References

1. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP
2.0: New version of a program for computing energy levels, reaction matrix and
radial wave functions in the coupled-channel hyperspherical adiabatic approach.
Phys. Commun. 179, 685–693 (2008)

2. Gusev, A., Gerdt, V., Kaschiev, M., Rostovtsev, V., Samoylov, V., Tupikova, T.,
Vinitsky, S.: A Symbolic-Numerical Algorithm for Solving the Eigenvalue Problem
for a Hydrogen Atom in Magnetic Field. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov,
E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 205–218. Springer, Heidelberg (2006)

3. Chuluunbaatar, O., Gusev, A.A., Derbov, V.L., Kaschiev, M.S., Melnikov, L.A.,
Serov, V.V., Vinitsky, S.I.: Calculation of a hydrogen atom photoionization in a
strong magnetic field by using the angular oblate spheroidal functions. J. Phys.
A 40, 11485–11524 (2007)

Symbolic-Numerical Calculations of High-|m| Rydberg States 171

4. Gusev, A.A., Derbov, V.L., Krassovitskiy, P.M., Vinitsky, S.I.: Channeling problem
for charged particles produced by confining environment. Phys. At. Nucl. 72, 768–
778 (2009)

5. Chuluunbaatar, O., Gusev, A.A., Gerdt, V.P., Rostovtsev, V.A., Vinitsky, S.I.,
Abrashkevich, A.G., Kaschiev, M.S., Serov, V.V.: POTHMF: A program for com-
puting potential curves and matrix elements of the coupled adiabatic radial equa-
tions for a hydrogen-like atom in a homogeneous magnetic field. Comput. Phys.
Commun. 178, 301–330 (2008)

6. Gusev, A.A., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A., Vinitsky, S.I.,
Derbov, V.L., Serov, V.V.: Symbolic-Numeric Algorithms for Computer Analysis
of Spheroidal Quantum Dot Models. In: Gerdt, V.P., Koepf, W., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 106–122. Springer,
Heidelberg (2010); arXiv:1104.2292

7. Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Gusev, A.A., Rostovtsev, V.A.:
Symbolic-Numerical Algorithms for Solving Parabolic QuantumWell Problem with
Hydrogen-Like Impurity. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2009. LNCS, vol. 5743, pp. 334–349. Springer, Heidelberg (2009)

8. Chuluunbaatar, O., Gusev, A., Gerdt, V., Kaschiev, M., Rostovtsev, V., Samoylov,
V., Tupikova, T., Vinitsky, S.: A Symbolic-Numerical Algorithm for Solving the
Eigenvalue Problem for a Hydrogen Atom in the Magnetic Field: Cylindrical Co-
ordinates. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007.
LNCS, vol. 4770, pp. 118–133. Springer, Heidelberg (2007)

9. Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A.:
Symbolic-Numerical Algorithms to Solve the Quantum Tunneling Problem for a
Coupled Pair of Ions. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V.
(eds.) CASC 2011. LNCS, vol. 6885, pp. 175–191. Springer, Heidelberg (2011)

10. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: ODPEVP:
A program for computing eigenvalues and eigenfunctions and their first deriva-
tives with respect to the parameter of the parametric self-adjoined Sturm-Liouville
problem. Comput. Phys. Commun. 180, 1358–1375 (2009)

11. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Derbov, V.L., Melnikov, L.A.,
Serov, V.V.: Photoionization and recombination of a hydrogen atom in a magnetic
field. Phys. Rev. A 77, 034702–1–034702–4 (2008)

12. Guest, J.R., Choi, J.-H., Raithel, G.: Decay rates of high-|m| Rydberg states in
strong magnetic fields. Phys. Rev. A 68, 022509–1–022509–9 (2003)

13. Guest, J.R., Raithel, G.: High-|m| Rydberg states in strong magnetic fields. Phys.
Rev. A 68, 052502–1–052502–9 (2003)

14. Abramovits, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New
York (1972)

Quasi-stability versus Genericity

Amir Hashemi1, Michael Schweinfurter2, and Werner M. Seiler2

1 Department of Mathematical Sciences, Isfahan University of Technology,
Isfahan, 84156-83111, Iran

Amir.Hashemi@cc.iut.ac.ir
2 Institut für Mathematik, Universität Kassel

Heinrich-Plett-Straße 40, 34132 Kassel, Germany
{michael.schweinfurter,seiler}@mathematik.uni-kassel.de

Abstract. Quasi-stable ideals appear as leading ideals in the theory of
Pommaret bases. We show that quasi-stable leading ideals share many of
the properties of the generic initial ideal. In contrast to genericity, quasi-
stability is a characteristic independent property that can be effectively
verified. We also relate Pommaret bases to some invariants associated
with local cohomology, exhibit the existence of linear quotients in Pom-
maret bases and prove some results on componentwise linear ideals.

1 Introduction

The generic initial ideal of a polynomial ideal 0 �= I �P = �[X] = �[x1, . . . , xn]
was defined by Galligo [10] for the reverse lexicographic order and char� = 0;
the extension to arbitrary term orders and characteristics is due to Bayer and
Stillman [5]. Extensive discussions can be found in [9, Sect. 15.9], [17, Chapt. 4]
and [13]. A characteristic feature of the generic initial ideal is that it is Borel-
fixed, a property depending on the characteristics of �.

Quasi-stable ideals are known under many different names like ideals of nested
type [6], ideals of Borel type [19] or weakly stable ideals [7]. They appear nat-
urally as leading ideals in the theory of Pommaret bases [25], a special class of
Gröbner bases with additional combinatorial properties. The notion of quasi-
stability is characteristic independent.

The generic initial ideal has found quite some interest, as many invariants
take the same value for I and gin I, whereas arbitrary leading ideals generally
lead to larger values. However, there are several problems with ginI: it depends
on char�; there is no effective test known to decide whether a given leading
ideal is gin I and thus one must rely on expensive random transformations for
its construction. The main point of the present work is to show that quasi-stable
leading ideals enjoy many of the properties of ginI and can nevertheless be
effectively detected and deterministically constructed.

Throughout this article, P = �[X] denotes a polynomial ring in the variables
X = {x1, . . . , xn} over an infinite field � of arbitrary characteristic and 0 �=
I 	P a proper homogeneous ideal. When considering bases of I, we will always
assume that these are homogeneous, too. m = 〈X 〉 	 P is the homogeneous

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 172–184, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Quasi-stability versus Genericity 173

maximal ideal. In order to be consistent with [24,25], we will use a non-standard
convention for the reverse lexicographic order: given two arbitrary terms xμ, xν

of the same degree, xμ ≺revlex xν if the first non-vanishing entry of μ − ν is
positive. Compared with the usual convention, this corresponds to a reversion
of the numbering of the variables X .

2 Pommaret Bases

Pommaret bases are a special case of involutive bases ; see [24] for a general
survey. The algebraic theory of Pommaret bases was developed in [25] (see
also [26, Chpts. 3-5]). Given an exponent vector μ = [μ1, . . . , μn] �= 0 (or the
term xμ or a polynomial f ∈ P with lt f = xμ for some fixed term order),
we call min {i | μi �= 0} the class of μ (or xμ or f), denoted by clsμ (or cls xμ

or cls f). Then the multiplicative variables of xμ or f are XP (x
μ) = XP (f) =

{x1, . . . , xclsμ}. We say that xμ is an involutive divisor of another term xν , if
xμ | xν and xν−μ ∈ �[x1, . . . , xclsμ]. Given a finite set F ⊂ P , we write degF
for the maximal degree and clsF for the minimal class of an element of F .
Definition 1. Assume first that the finite set H ⊂ P consists only of terms. H
is a Pommaret basis of the monomial ideal I = 〈H〉, if as a �-linear space⊕

h∈H
�[XP (h)] · h = I (1)

(in this case each term xν ∈ I has a unique involutive divisor xμ ∈ H). A finite
polynomial set H is a Pommaret basis of the polynomial ideal I for the term
order ≺, if all elements of H possess distinct leading terms and these terms form
a Pommaret basis of the leading ideal lt I.
Pommaret bases can be characterised similarly to Gröbner bases. However, invo-
lutive standard representations are unique. Furthermore, the existence of a Pom-
maret basis implies a number of properties that usually hold only generically.

Proposition 2 ([24, Thm. 5.4]). The finite set H ⊂ I is a Pommaret basis of
the ideal I 	 P for the term order ≺, if and only if every polynomial 0 �= f ∈ I
possesses a unique involutive standard representation f =

∑
h∈H Phh where each

non-zero coefficient Ph ∈ �[XP (h)] satisfies lt (Phh)) lt (f).

Proposition 3 ([24, Cor. 7.3]). Let H be a finite set of polynomials and ≺ a
term order such that no leading term in ltH is an involutive divisor of another
one. The set H is a Pommaret basis of the ideal 〈H〉 with respect to ≺, if and
only if for every h ∈ H and every non-multiplicative index clsh < j ≤ n the
product xjh possesses an involutive standard representation with respect to H.
Theorem 4 ([25, Cor. 3.18, Prop. 3.19, Prop. 4.1]). Let H be a Pommaret
basis of the ideal I 	 P for an order ≺.
(i) If D = dim (P/I), then {x1, . . . , xD} is the unique maximal strongly inde-

pendent set modulo I (and thus lt I ∩ �[x1, . . . , xD] = {0}).

174 A. Hashemi, M. Schweinfurter, and W.M. Seiler

(ii) The restriction of the canonical map P → P/I to the subring �[x1, . . . , xD]
defines a Noether normalisation.

(iii) If d = minh∈H clsh is the minimal class of a generator in H and ≺ is
the reverse lexicographic order, then x1, . . . , xd−1 is a maximal P/I-regular
sequence and thus depthP/I = d− 1.

The involutive standard representations of the non-multiplicative products xjh
appearing in Proposition 3 induce a basis of the first syzygy module. This ob-
servation leads to a stronger version of Hilbert’s syzygy theorem.

Theorem 5 ([25, Thm. 6.1]). Let H be a Pommaret basis of the ideal I ⊆ P.
If we denote by β

(k)
0 the number of generators h ∈ H with cls lth = k and set

d = clsH, then I possesses a finite free resolution

0 −→ Prn−d −→ · · · −→ Pr1 −→ Pr0 −→ I −→ 0 (2)

of length n− d where the ranks of the free modules are given by

ri =

n−i∑
k=d

(
n− k

i

)
β
(k)
0 . (3)

We denote by reg I the Castelnuovo-Mumford regularity of I (considered as a
graded module) and by pd I its projective dimension. The satiety sat I is the
lowest degree from which on the ideal I and its saturation Isat = I : m∞

coincide. These objects can be easily read off from a Pommaret basis for ≺revlex.

Theorem 6 ([25, Thm. 8.11,Thm. 9.2, Prop. 10.1, Cor. 10.2]). Let H
be a Pommaret basis of the ideal I 	 P for the order ≺revlex. We denote by
H1 = {h ∈ H | clsh = 1} the subset of generators of class 1.

(i) reg I = degH.
(ii) pd I = n− clsH.
(iii) Let H̃1 = {h/xdegx1

lth

1 | h ∈ H1}. Then the set H̄ = (H \ H1) ∪ H̃1 is a
weak Pommaret basis1 of the saturation Isat. Thus Isat = I : x∞1 and the
ideal I is saturated, if and only if H1 = ∅.

(iv) satI = degH1.

Remark 7. Bayer et al. [3] call a non-vanishing Betti number βij extremal, if
βk� = 0 for all k ≥ i and � > j. In [25, Rem. 9.7] it is shown how the positions
and the values of all extremal Betti numbers can be obtained from the Pommaret
basis H for ≺revlex. Let hγ1 ∈ H be of minimal class among all generators of
maximal degree in H and set i1 = n − clshγ1 and q1 = deg hγ1 . Then βi1,q1+i1

is an extremal Betti number and its value is given by the number of generators
of degree q1 and class n− i1. If clshγ1 = depth I, it is the only one. Otherwise
let hγ2 be of minimal class among all generators of maximal degree in {h ∈ H |
clsh < clshγ1}. Defining i2, q2 analogous to above, βi2,q2+i2 is a further extremal
Betti number and its value is given by the number of generators of degree q2
and class n− i2 and so on.

1 Thus elimination of redundant generators yields a Pommaret basis [24, Prop. 5.7].

Quasi-stability versus Genericity 175

3 δ-Regularity and Quasi-stable Ideals

Not every ideal I	P possesses a finite Pommaret basis. One can show that this
is solely a problem of the chosen variables X ; after a suitable linear change of
variables X̃ = AX with a non-singular matrix A ∈ �n×n the transformed ideal
Ĩ 	 P̃ = �[X̃] has a finite Pommaret basis (for the same term order which we
consider as being defined on exponent vectors) [25, Sect. 2].

Definition 8. The variables X are δ-regular for I 	 P and the order ≺, if I
has a finite Pommaret basis for ≺.
In [25, Sect. 2] a method is presented to detect effectively whether given variables
are δ-singular and, if this is the case, to produce deterministically δ-regular
variables. Furthermore, it is proven there that generic variables are δ-regular so
that one can also employ probabilistic approaches although these are usually
computationally disadvantageous.

It seems to be rather unknown that Serre implicitly presented already in 1964
a version of δ-regularity. In a letter appended to [14], he introduced the notion of
a quasi-regular sequence and related it to Koszul homology.2 Let V be a finite-
dimensional vector space, SV the symmetric algebra over V and M a finitely
generated graded SV-module. A vector v ∈ V is called quasi-regular at degree q
for M, if vm = 0 for an m ∈ M implies m ∈ M<q. A sequence (v1, . . . , vk) of
vectors vi ∈ V is quasi-regular at degree q forM, if each vi is quasi-regular at
degree q forM/〈v1, . . . , vi−1〉M.

Given a basis X of V , we can identify SV with the polynomial ring P = �[X].
Then it is shown in [15, Thm. 5.4] that the variables X are δ-regular for a
homogeneous ideal I	P and the reverse lexicographic order, if and only if they
form a quasi-regular sequence for the module P/I at degree reg I.

Our first result describes the degrees appearing in the Pommaret basis for the
reverse lexicographic order in an intrinsic manner and generalises [29, Lemma 2.3]
where only Borel-fixed monomial ideals for char� = 0 are considered.

Proposition 9. Let the variables X be δ-regular for the ideal I and the reverse
lexicographic order. If H denotes the corresponding Pommaret basis and Hi ⊆ H
the subset of generators of class i, then the integer

qi = max
{
q ∈ �0 | (〈I, x1, . . . , xi−1〉 : xi)q �= 〈I, x1, . . . , xi−1〉q

}
(4)

satisfies qi = degHi − 1 (with the convention that deg ∅ = max ∅ = −∞).

Proof. Set P̃ = �[xi, . . . , xn] and Ĩ = I|x1=···=xi−1=0 	 P̃ . Then it is easy to

see that qi = max {q | (Ĩ : xi)q �= Ĩq}. Furthermore, the variables xi, . . . , xn are

δ-regular for Ĩ and the reverse lexicographic order—the Pommaret basis of Ĩ is
given by H̃ =

⋃
k≥i H̃k with H̃k = Hk|x1=···=xi−1=0 (cf. [27, Lemma 3.1]).

Assume first that H̃i = ∅. In this case xif ∈ Ĩ implies f ∈ Ĩ, as one can
immediately see from the involutive standard representation of xif with respect

2 Quasi-regular sequences were rediscovered by Schenzel et al. [23] under the name
filter-regular sequences and by Aramova and Herzog [1] as almost regular sequences.

176 A. Hashemi, M. Schweinfurter, and W.M. Seiler

to H̃ (all coefficients must lie in 〈xi〉). If H̃i �= ∅, then we choose a generator
h̃max ∈ H̃i of maximal degree. By the properties of ≺revlex, we find h̃max ∈ 〈xi〉
and hence may write h̃max = xig̃. By definition of a Pommaret basis, g̃ /∈ Ĩ and
thus qi ≥ deg g̃ = degHi − 1.

Assume now that qi > degHi − 1. Then there exists a polynomial f̃ ∈ P̃ \ Ĩ
with deg f̃ = qi and xif̃ ∈ Ĩ. Consider the involutive standard representation
xif̃ =

∑
h̃∈H̃ Ph̃h̃ with respect to H̃. If cls h̃ > i, then we must have Ph̃ ∈ 〈xi〉.

If cls h̃ = i, then by definition Ph̃ ∈ �[xi]. Since deg (xif̃) > deg H̃i, any non-
vanishing coefficient Ph̃ must be of positive degree in this case. Thus we can
conclude that all non-vanishing coefficients Ph̃ lie in 〈xi〉. But then we may di-

vide the involutive standard representation of xif̃ by xi and obtain an involutive
standard representation of f̃ itself so that f̃ ∈ Ĩ in contradiction to the assump-
tions we made. ��
Consider the following invariants related to the local cohomology of P/I (with
respect to the maximal graded ideal m = 〈x1, . . . , xn〉):

ai(P/I) = max {q | Hi
m(P/I)q �= 0} , 0 ≤ i ≤ dim (P/I) ,

regt (P/I) = max {ai(P/I) + i | 0 ≤ i ≤ t} , 0 ≤ t ≤ dim (P/I) ,
a∗t (P/I) = max {ai(P/I) | 0 ≤ i ≤ t} , 0 ≤ t ≤ dim (P/I) .

Trung [29, Thm. 2.4] related them for monomial Borel-fixed ideals and char� = 0
to the degrees of the minimal generators. We can now generalise this result to
arbitrary homogeneous polynomial ideals.

Corollary 10. Let the variables X be δ-regular for the ideal I 	 P and the
reverse lexicographic order. Denote again by Hi the subset of the Pommaret
basis H of I consisting of the generators of class i and set qi = degHi−1. Then

regt (P/I) = max {q1, q2, . . . , qt+1} , 0 ≤ t ≤ dim (P/I) ,
a∗t (P/I) = max {q1, q2 − 1, . . . , qt+1 − t} , 0 ≤ t ≤ dim (P/I) .

Proof. This follows immediately from [29, Thm. 1.1] and Proposition 9. ��
For monomial ideals it is in general useless to transform to δ-regular variables, as
the transformed ideal is no longer monomial. Hence it is a special property of a
monomial ideal to possess a finite Pommaret basis: such an ideal is called quasi-
stable. The following theorem provides several purely algebraic characterisations
of quasi-stability independent of Pommaret bases. It combines ideas and results
from [4, Def. 1.5], [6, Prop. 3.2/3.6], [19, Prop. 2.2] and [25, Prop. 4.4].

Theorem 11. Let I 	 P be a monomial ideal and D = dim (P/I). Then the
following statements are equivalent.

(i) I is quasi-stable.
(ii) The variable x1 is not a zero divisor for P/Isat and for all 1 ≤ k < D the

variable xk+1 is not a zero divisor for P/〈I, x1, . . . , xk〉sat.

Quasi-stability versus Genericity 177

(iii) We have I : x∞1 ⊆ I : x∞2 ⊆ · · · ⊆ I : x∞D and for all D < k ≤ n an
exponent ek ≥ 1 exists such that xekk ∈ I.

(iv) For all 1 ≤ k ≤ n the equality I : x∞k = I : 〈xk, . . . , xn〉∞ holds.
(v) For every associated prime ideal p ∈ Ass(P/I) an integer 1 ≤ j ≤ n exists

such that p = 〈xj , . . . , xn〉.
(vi) If xμ ∈ I and μi > 0 for some 1 ≤ i < n, then for each 0 < r ≤ μi and

i < j ≤ n an integer s ≥ 0 exists such that xsjx
μ/xri ∈ I.

The terminology “quasi-stable” stems from a result of Mall. The minimality
assumption is essential here, as the simple example 〈x2, y2〉	 �[x, y] shows.
Lemma 12 ([21, Lemma 2.13], [26, Prop. 5.5.6]). A monomial ideal is
stable,3 if and only if its minimal basis is a Pommaret basis.

Thus already in the monomial case Pommaret bases are generally not minimal.
The following result of Mall characterises those polynomial ideals for which the
reduced Gröbner basis is simultaneously a Pommaret basis. We provide here a
much simpler proof due to a more suitable definition of Pommaret bases.

Theorem 13 ([21, Thm. 2.15]). The reduced Gröbner basis of the ideal I	P
is simultaneously a Pommaret basis, if and only if lt I is stable.

Proof. By definition, the leading terms ltG of a reduced Gröbner basis G form
the minimal basis of lt I. The assertion is now a trivial corollary to Lemma 12
and the definition of a Pommaret basis. ��

4 The Generic Initial Ideal

If we fix an order ≺ and perform a linear change of variables X̃ = AX with a
non-singular matrix A ∈ �n×n, then, according to Galligo’s Theorem [10,5], for
almost all matrices A the transformed ideal Ĩ 	 P̃ = �[X̃] has the same leading
ideal, the generic initial ideal gin I for the used order. By a further result of
Galligo [11,5], gin I is Borel fixed, i. e. invariant under the natural action of the
Borel group. For char� = 0, the Borel fixed ideals are precisely the stable ones;
in positive characteristics the property of being Borel fixed has no longer such a
simple combinatorial interpretation.

We will show in this section that many properties of the generic initial ideal
ginI also hold for the ordinary leading ideal lt I—provided the used variables
are δ-regular. This observation has a number of consequences. While there does
not exist an effective criterion for deciding whether a given leading ideal is ac-
tually gin I, δ-regularity is simply proven by the existence of a finite Pommaret
basis. Furthermore, ginI can essentially be computed only by applying a ran-
dom change of variables which has many disadvantages from a computational
point of view. By contrast, [25, Sect. 2] presents a deterministic approach for the

3 In our “reverse” conventions, a monomial ideal I is called stable, if for every term
t ∈ I and every index k = cls t < i ≤ n also xit/xk ∈ I.

178 A. Hashemi, M. Schweinfurter, and W.M. Seiler

construction of δ-regular variables which in many case will lead to fairly sparse
transformations.

From a theoretical point of view, the following trivial lemma which already
appeared in [5,10] implies that proving a statement about quasi-stable leading
ideals immediately entails the analogous statement about gin I.
Lemma 14. The generic initial ideal gin I is quasi-stable.

Proof. For char� = 0, the assertion is trivial, since then ginI is even stable,
as mentioned above. For arbitrary char�, it follows simply from the fact that
generic variables4 are δ-regular and thus yield a quasi-stable leading ideal. ��
The next corollary is a classical result [13, Cor. 1.33] for which we provide here
a simple alternative proof. The subsequent theorem extends many well-known
statements about gin I to the leading ideal in δ-regular variables (for ≺revlex);
they are all trivial consequences of the properties of a Pommaret basis.

Corollary 15. Let I 	 P be an ideal and char� = 0. Then all bigraded Betti
numbers satisfy the inequality βi,j(P/I) ≤ βi,j(P/ ginI).
Proof. We choose variables X such that lt I = ginI. By Lemma 14, these vari-
ables are δ-regular for the given ideal I. As char� = 0, the generic initial ideal
is stable and hence the bigraded version of (3) applied to lt I yields the bigraded
Betti number βi,j(P/ ginI). Now the claim follows immediately from analysing
the resolution (2) degree by degree. ��
Theorem 16. Let the variables X be δ-regular for the ideal I	P and the reverse
lexicographic order ≺revlex.

(i) pd I = pd lt I.
(ii) satI = sat lt I.
(iii) reg I = reg lt I.
(iv) regt I = regt lt I for all 0 ≤ t ≤ dim (P/I).
(v) a∗t (I) = a∗t (lt I) for all 0 ≤ t ≤ dim (P/I).
(vi) The extremal Betti numbers of I and lt I occur at the same positions and

have the same values.
(vii) depth I = depth lt I.
(viii) P/I is Cohen-Macaulay, if and only if P/ lt I is Cohen-Macaulay.

Proof. The assertions (i-v) are trivial corollaries of Theorem 6 and Corollary 10,
respectively, where it is shown for all considered quantities that they depend only
on the leading terms of the Pommaret basis of I. Assertion (vi) is a consequence
of Remark 7 and the assertions (vii) and (viii) follow from Theorem 4. ��
Remark 17. In view of Part (viii), one may wonder whether a similar statement
holds for Gorenstein rings. In [27, Ex. 5.5] the ideal I = 〈z2−xy, yz, y2, xz, x2〉	
4 Recall that we assume throughout that � is an infinite field, although a sufficiently
large finite field would also suffice [26, Rem. 4.3.19].

Quasi-stability versus Genericity 179

�[x, y, z] is studied. The used coordinates are δ-regular for≺revlex, as a Pommaret
basis is obtained by adding the generator x2y. It follows from [27, Thm. 5.4]
that P/I is Gorenstein, but P/ lt I not. A computation with CoCoA [8] gives
here gin I = 〈z2, yz, y2, xz, xy, x3〉 (assuming char� = 0) and again one may
conclude with [27, Thm. 5.4] that P/ ginI is not Gorenstein.

5 Componentwise Linear Ideals

Given an ideal I	P , we denote by I〈d〉 = 〈Id〉 the ideal generated by the homo-
geneous component Id of degree d. Herzog and Hibi [16] called I componentwise
linear, if for every degree d ≥ 0 the ideal I〈d〉 = 〈Id〉 has a linear resolution. For
a connection with Pommaret bases, we need a refinement of δ-regularity.

Definition 18. The variables X are componentwise δ-regular for the ideal I
and the order ≺, if all ideals I〈d〉 for d ≥ 0 have finite Pommaret bases for ≺.
It follows from the proof of [25, Thm. 9.12] that for the definition of component-
wise δ-regularity it suffices to consider the finitely many degrees d ≤ reg I. Thus
trivial modificiations of any method for the construction of δ-regular variables
allow to determine effectively componentwise δ-regular variables.

Theorem 19 ([25, Thm. 8.2, Thm. 9.12]). Let the variables X be compo-
nentwise δ-regular for the ideal I	P and the reverse lexicographic order. If I is
componentwise linear, then the free resolution (2) of I induced by the Pommaret
basis H is minimal and the Betti numbers of I are given by (3). Conversely, if
the resolution (2) is minimal, then the ideal I is componentwise linear.

The following corollary generalises the analogous result for stable ideals to com-
ponentwise linear ideals (Aramova et al. [2, Thm. 1.2(a)] noted a version for
ginI). It is an immediate consequence of the linear construction of the resolu-
tion (2) in [25, Thm. 6.1] and its minimality for componentwise linear ideals.

Corollary 20. Let I	P be componentwise linear. If the Betti number βi,j does
not vanish, then also all Betti numbers βi′,j with i′ < i do not vanish.

As a further corollary, we obtain a simple proof of an estimate given by Aramova
et al. [2, Cor. 1.5] (based on [18, Thm. 2]).

Corollary 21. Let I 	 P be a componentwise linear ideal with pd I = p. Then
the Betti numbers satisfy βi ≥

(
p+1
i+1

)
.

Proof. Let H be the Pommaret basis of I for ≺revlex in componentwise δ-regular
variables and d = clsH. By Theorem 19, (2) is the minimal resolution of I and
hence (3) gives us βi. By Theorem 4, p = n− d. We also note that δ-regularity

implies that β
(k)
0 > 0 for all d ≤ k ≤ n. Now we compute

βi =

n−i∑
k=d

(
n− k

i

)
β
(k)
0 =

p∑
�=i

(
�

i

)
β
(n−�)
0 ≥

p∑
�=i

(
�

i

)
=

(
p+ 1

i+ 1

)
by a well-known identity for binomial coefficients. ��

180 A. Hashemi, M. Schweinfurter, and W.M. Seiler

Example 22. The estimate in Corollary 21 is sharp. It is realised by any com-

ponentwise linear ideal whose Pommaret basis satisfies β
(i)
0 = 0 for i < d and

β
(i)
0 = 1 for i ≥ d. As a simple monomial example consider the ideal I generated

by the d terms h1 = xαn+1
n , h2 = xαn

n x
αn−1+1
n−1 ,. . . , hd = xαn

n · · ·xαd+1

d+1 xαd+1
d for

arbitrary exponents αi ≥ 0. One easily verifies that H = {h1, . . . , hd} is indeed
simultaneously the Pommaret and the minimal basis of I.
Recently, Nagel and Römer [22, Thm. 2.5] provided some criteria for componen-
twise linearity based on gin I (see also [2, Thm 1.1] where the case char� = 0
is treated). We will now show that again ginI may be replaced by lt I, if one
uses componentwise δ-regular variables. Furthermore, our proof is considerably
simpler than the one by Nagel and Römer.

Theorem 23. Let the variables X be componentwise δ-regular for the ideal I	P
and the reverse lexicographic order. Then the following statements are equivalent:

(i) I is componentwise linear.
(ii) lt I is stable and all bigraded Betti numbers βij of I and lt I coincide.
(iii) lt I is stable and all total Betti numbers βi of I and lt I coincide.
(iv) lt I is stable and β0(I) = β0(lt I).
Proof. The implication “(i)⇒ (ii)” is a simple consequence of Theorem 19. Since
our variables are componentwise δ-regular, the resolution (2) is minimal. This
implies immediately that lt I is stable. Applying Theorem 5 to the Pommaret
basis ltH of lt I yields the minimal resolution of lt I. In both cases, the lead-
ing terms of all syzygies are determined by ltH and hence the bigraded Betti
numbers of I and lt I coincide.

The implications “(ii)⇒ (iii)” and “(iii)⇒ (iv)” are trivial. Thus there only
remains to prove “(iv) ⇒ (i)”. Let H be the Pommaret basis of I. Since lt I is
stable by assumption, ltH is its minimal basis by Lemma 12 and β0(lt I) equals
the number of elements of H. The assumption β0(I) = β0(lt I) implies that H is
a minimal generating system of I. Hence, none of the syzygies obtained from the
involutive standard representations of the non-multiplicative products yh with
h ∈ H and y ∈ XP (h) may contain a non-vanishing constant coefficients. By
[25, Lemma 8.1], this observation implies that the resolution (2) induced by H
is minimal and hence the ideal I is componentwise linear by Theorem 19. ��

6 Linear Quotients

Linear quotients were introduced by Herzog and Takayama [20] in the context
of constructing iteratively a free resolution via mapping cones. As a special case,
they considered monomial ideals where certain colon ideals defined by an ordered
minimal basis are generated by variables. Their definition was generalised by
Sharifan and Varabaro [28] to arbitrary ideals.

Definition 24. Let I 	 P be an ideal and F = {f1, . . . , fr} an ordered basis of
it. Then I has linear quotients with respect to F , if for each 1 < k ≤ r the ideal
〈f1, . . . , fk−1〉 : fk is generated by a subset Xk ⊆ X of variables.

Quasi-stability versus Genericity 181

We show first that in the monomial case this concept captures the essence of
a Pommaret basis. For this purpose, we “invert” some notions introduced in
[25]. We associate with a monomial Pommaret basis H a directed graph, its
P -graph. Its vertices are the elements of H. Given a non-multiplicative variable
xj ∈ XP (h) for a generator h ∈ H, there exists a unique involutive divisor h̄ ∈ H
of xjh and we include a directed edge from h to h̄.

An ordering of the elements of H is called an inverse P -ordering, if α > β
whenever the P -graph contains a path from hα to hβ . It is straightforward
to describe explicitly an inverse P -ordering: we set α > β, if clshα < clshβ
or if clshα = clshβ and hα ≺lex hβ, i. e. we sort the generators hα first by
their class and then within each class lexicographically (according to our reverse
conventions!). One easily verifies that this defines an inverse P -ordering.

Example 25. Consider the monomial
ideal I ⊂ �[x, y, z] generated by the
six terms h1 = z2, h2 = yz, h3 = y2,
h4 = xz, h5 = xy and h6 = x2. One
easily verifies that these terms form a
Pommaret basis of I. The P -graph in
(5) shows that the generators are al-
ready inversely P -ordered, namely ac-
cording to the description above.

h6

h5���������

h3��

h2
��

h1
��

h2
���

��
��

��

h4
���

��
��

��
h2���������
h1��

(5)

Proposition 26. Let H = {h1, . . . , hr} be an inversely P -ordered monomial
Pommaret basis of the quasi-stable monomial ideal I 	 P. Then the ideal I
possesses linear quotients with respect to the basis H and

〈h1, . . . , hk−1〉 : hk = 〈X P (hk)〉 k = 1, . . . r . (6)

Conversely, assume that H = {h1, . . . , hr} is a monomial generating set of the
monomial ideal I 	 P such that (6) is satisfied. Then I is quasi-stable and H
its Pommaret basis.

Proof. Let y ∈ XP (hk) be a non-multiplicative variable for hk ∈ H. Since H is
a Pommaret basis, the product yhk possesses an involutive divisor hi ∈ H and,
by definition, the P -graph of H contains an edge from k to i. Thus i < k for an
inverse P -ordering, which proves the inclusion “⊇”.

The following argument shows that the inclusion cannot be strict. Consider a
term t ∈ �[XP (hk)] consisting entirely of multiplicative variables and assume that
thk ∈ 〈h1, . . . , hk−1〉, i. e. thk = s1hi1 for some term s1 ∈ �[X] and some in-
dex i1 < k. By definition of a Pommaret basis, s1 must contain at least one non-
multiplicative variable y1 ofhi1 . But nowwemay rewrite y1hi1 = s2hi2 with i2 < i1
and s2 ∈ �[XP (hi2)]. Since this implies clsh2 ≥ clsh1, we findXP (hi1) ⊆ XP (hi2).
Hence after a finite number of iterations we arrive at a representation thk = shi
where s ∈ �[XP (hi)] which is, however, not possible for a Pommaret basis.

For the converse, we show by a finite induction over k that every non-multi-
plicative product yhk with y ∈ X P (hk) possesses an involutive divisor hi with
i < k which implies our assertion by Proposition 3. For k = 1 nothing is to be

182 A. Hashemi, M. Schweinfurter, and W.M. Seiler

shown, since (6) implies in this case that all variables are multiplicative for h1
(and thus this generator is of the form h1 = x�n for some � > 0), and k = 2 is
trivial. Assume that our claim was true for h1, h2, . . . , hk−1. Because of (6), we
may write yhk = t1hi1 for some i1 < k. If t1 ∈ �[XP (hi1)], we set i = i1 and are
done. Otherwise, t1 contains a non-multiplicative variable y1 ∈ XP (hi1). By our
induction assumption, y1hi1 has an involutive divisor hi2 with i2 < i1 leading to
an alternative representation yhk = t2hi2 . Now we iterate and find after finitely
many steps an involutive divisor hi of yhk, since the sequence i1 > i2 > · · · is
strictly decreasing and h1 has no non-multiplicative variables. ��
Remark 27. As we are here exclusively concerned with Pommaret bases, we for-
mulated and proved the above result only for this special case. However, Propo-
sition 26 remains valid for any involutive basis with respect to a continuous
involutive division L (and thus for all divisions of practical interest). The conti-
nuity of L is needed here for two reasons. Firstly, it guarantees the existence of an
L-ordering, as for such divisions the L-graph is always acyclic [25, Lemma 5.5].
Secondly, the above argument that finitely many iterations lead to a representa-
tion thk = shi where s contains only multiplicative variables for hi is specific for
the Pommaret division and cannot be generalised. However, the very definition
of continuity [12, Def. 4.9] ensures that for continuous divisions such a rewriting
cannot be done infinitely often.

In general, we cannot expect that the second part of Proposition 26 remains
true, when we consider arbitrary polynomial ideals. However, for the first part
we find the following variation of [28, Thm. 2.3].

Proposition 28. Let H be a Pommaret basis of the polynomial ideal I 	P for
the term order ≺ and h′ ∈ P a polynomial with lth′ /∈ ltH. If I : h′ = 〈X P (h

′)〉,
then H′ = H ∪ {h′} is a Pommaret basis of J = I + 〈h′〉. If furthermore I is
componentwise linear, the variables X are componentwise δ-regular and H′ is a
minimal basis of J , then J is componentwise linear, too.

Proof. If I : h′ = 〈X P (h
′)〉, then all products of h′ with one of its non-

multiplicative variables lie in I and hence possess an involutive standard repre-
sentation with respect to H. This immediately implies the first assertion.

In componentwise δ-regular variables all syzygies obtained from the involutive
standard representations of products yh with h ∈ H and y ∈ XP (h) are free of
constant coefficients, if I is componentwise linear. If H′ is a minimal basis of J ,
the same is true for all syzygies obtained from products yh′ with y ∈ X P (h

′).
Hence we can again conclude with [25, Lemma 8.1] that the resolution of J
induced by H′ is minimal and J componentwise linear by Theorem 19. ��

References

1. Aramova, A., Herzog, J.: Almost regular sequences and Betti numbers. Amer. J.
Math. 122, 689–719 (2000)

2. Aramova, A., Herzog, J., Hibi, T.: Ideals with stable Betti numbers. Adv.
Math. 152, 72–77 (2000)

Quasi-stability versus Genericity 183

3. Bayer, D., Charalambous, H., Popescu, S.: Extremal Betti numbers and applica-
tions to monomial ideals. J. Alg. 221, 497–512 (1999)

4. Bayer, D., Stillman, M.: A criterion for detecting m-regularity. Invent. Math. 87,
1–11 (1987)

5. Bayer, D., Stillman, M.: A theorem on refining division orders by the reverse lexi-
cographic orders. Duke J. Math. 55, 321–328 (1987)

6. Bermejo, I., Gimenez, P.: Saturation and Castelnuovo-Mumford regularity. J.
Alg. 303, 592–617 (2006)

7. Caviglia, G., Sbarra, E.: Characteristic-free bounds for the Castelnuovo-Mumford
regularity. Compos. Math. 141, 1365–1373 (2005)

8. CoCoATeam: CoCoA: a system for doing Computations in Commutative Algebra,
http://cocoa.dima.unige.it

9. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry.
Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)

10. Galligo, A.: A propos du théorème de préparation de Weierstrass. In: Norguet, F.
(ed.) Fonctions de Plusieurs Variables Complexes. Lecture Notes in Mathematics,
vol. 409, pp. 543–579. Springer, Berlin (1974)

11. Galligo, A.: Théorème de division et stabilité en géometrie analytique locale. Ann.
Inst. Fourier 29(2), 107–184 (1979)

12. Gerdt, V., Blinkov, Y.: Involutive bases of polynomial ideals. Math. Comp.
Simul. 45, 519–542 (1998)

13. Green, M.: Generic initial ideals. In: Elias, J., Giral, J., Miró-Roig, R., Zarzuela, S.
(eds.) Six Lectures on Commutative Algebra. Progress in Mathematics, vol. 166,
pp. 119–186. Birkhäuser, Basel (1998)

14. Guillemin, V., Sternberg, S.: An algebraic model of transitive differential geometry.
Bull. Amer. Math. Soc. 70, 16–47 (1964), (With a letter of Serre as appendix)

15. Hausdorf, M., Sahbi, M., Seiler, W.: δ- and quasi-regularity for polynomial ideals.
In: Calmet, J., Seiler, W., Tucker, R. (eds.) Global Integrability of Field Theories,
pp. 179–200. Universitätsverlag Karlsruhe, Karlsruhe (2006)

16. Herzog, J., Hibi, T.: Componentwise linear ideals. Nagoya Math. J. 153, 141–153
(1999)

17. Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics, vol. 260.
Springer, London (2011)

18. Herzog, J., Kühl, M.: On the Bettinumbers of finite pure and linear resolutions.
Comm. Alg. 12, 1627–1646 (1984)

19. Herzog, J., Popescu, D., Vladoiu, M.: On the Ext-modules of ideals of Borel type.
In: Commutative Algebra. Contemp. Math, vol. 331, pp. 171–186. Amer. Math.
Soc., Providence (2003)

20. Herzog, J., Takayama, Y.: Resolutions by mapping cones. Homol. Homot. Appl. 4,
277–294 (2002)

21. Mall, D.: On the relation between Gröbner and Pommaret bases. Appl. Alg. Eng.
Comm. Comp. 9, 117–123 (1998)

22. Nagel, U., Römer, T.: Criteria for componentwise linearity. Preprint
arXiv:1108.3921 (2011)

23. Schenzel, P., Trung, N., Cuong, N.: Verallgemeinerte Cohen-Macaulay-Moduln.
Math. Nachr. 85, 57–73 (1978)

24. Seiler, W.: A combinatorial approach to involution and δ-regularity I: Involutive
bases in polynomial algebras of solvable type. Appl. Alg. Eng. Comm. Comp. 20,
207–259 (2009)

http://cocoa.dima.unige.it

184 A. Hashemi, M. Schweinfurter, and W.M. Seiler

25. Seiler, W.: A combinatorial approach to involution and δ-regularity II: Structure
analysis of polynomial modules with Pommaret bases. Appl. Alg. Eng. Comm.
Comp. 20, 261–338 (2009)

26. Seiler, W.: Involution — The Formal Theory of Differential Equations and its
Applications in Computer Algebra. Algorithms and Computation in Mathematics,
vol. 24. Springer, Berlin (2009)

27. Seiler, W.: Effective genericity, δ-regularity and strong Noether position. Comm.
Alg. (to appear)

28. Sharifan, L., Varbaro, M.: Graded Betti numbers of ideals with linear quotients.
Matematiche 63, 257–265 (2008)

29. Trung, N.: Gröbner bases, local cohomology and reduction number. Proc. Amer.
Math. Soc. 129, 9–18 (2001)

Invariant Theory:

Applications and Computations

(Invited Talk)

Gregor Kemper

Zentrum Mathematik M11,
Technische Universität München

Boltzmannstr. 3, 85748 Garching, Germany
Kemper@ma.tum.de

Abstract. Being at the crossroads of several mathematical disciplines,
invariant theory has a wide range of applications. Many of these depend
on computing generating or at least separating subsets of rings of invari-
ants. This talk gives some examples in which invariant theory is applied
to graph theory, computer vision, and coding theory. We also give an
overview of the state of the art of algorithmic invariant theory.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, p. 185, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Local Generic Position for Root Isolation

of Zero-Dimensional Triangular
Polynomial Systems

Jia Li1, Jin-San Cheng2, and Elias P. Tsigaridas3

1 Beijing Electronic Science and Technology Institute
2 KLMM, AMSS, Chinese Academy of Sciences

3 POLSYS project, INRIA, LIP6/CNRS
jcheng@amss.ac.cn, lijia@besti.edu.cn, elias@polsys.lip6.fr

Abstract. We present an algorithm to isolate the real roots, and com-
pute their multiplicities, of a zero-dimensional triangular polynomial
system, based on the local generic position method. We also present-
experiments that demonstrate the efficiency of the method.

1 Introduction

Solving polynomial systems is a basic problem in the fields of computational
sciences, engineering, etc. A usual technique is to transform the input polynomial
system to a triangular one using well known algebraic elimination methods, such
as Gröbner bases, characteristic sets, CAD, and resultants. In most of the cases
we have to deal with zero-dimensional systems. For example, for computing the
topology of a real algebraic curve or surface with CAD based methods [2,6,13]
we need to isolate the real roots of a zero-dimensional triangular system and also
know their multiplities.

A (zero-dimensional) triangular system has the formΣn = {f1, . . . , fn}, where
fi ∈ Q[x1, . . . , xi] (i = 1, . . . , n), and Q is the field of rational numbers. Our aim
is to isolate the zeros ξn = (ξ1, . . . , ξn) ∈ Cn(or Rn) of Σn, where C,R are the
fields of complex and real numbers, respectively.

The local generic position method (shortly LGP) was introduced in [4]. It was
used to solve bivariate polynomial systems and the experiments show that it is
competitive in practice. The method has been extended to solve general zero-
dimensional systems using Gröbner basis computations and linear univariate rep-
resentation [5]. In this paper, we extend LGP to solve general zero-dimensional
triangular systems using only resultant computations.

We will explain how to isolate the roots of a zero-dimensional polynomial
system as Σ = {f(x), g(x, y), h(x, y, z)}. The case with more variables are sim-
ilar. At first, we isolate the roots of f(x) = 0 and compute the root separation
bound as r1. Then we compute the root bound of g(x, y) = f(x) = 0 on y
and denote as R2. Choose a rational number s1 such that 0 < s1 < r1/R2.
The roots of f(x − s1 y) = g(x − s1 y, y) = 0 are in a generic position. Let
h1 = Resy(f(x− s1 y), g(x− s1 y, y)). And the roots of f = g = 0 corresponding

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 186–197, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Local Generic Position and Triangular Systems 187

to α, where f(α) = 0, are uniquely projected to the neighborhood of α with
radius r1 by h1 = 0, say βi. Thus we can recover the y-coordinate of these roots
from y = (βi − α)/s1. Thus we get the roots of f = g = 0. And we get a root
separation bound for these y roots for a fixed α, choose the smallest one from
all roots of f = 0 as r2. Similarly, compute a root bound R3 for z coordinates
of the roots of f = g = h = 0. Choose a rational s2 as 0 < s2 < r2/R3.
Let g1 = Resz(g(x, y − s2 z), h(x, y − s2 z, z)). Isolate the roots of f = g1 = 0
as for isolating the roots of f = g = 0 (We can use the same s1). For each
root P = (α, β) of f = g = 0, we can recover z-coordinates of the roots of
f = g = h = 0 from the roots Pi = (α, γi) of f = g1 = 0 in P ’s neighborhood
with radius r2 by z = (γi − β)/s2. Thus we get all the roots of f = g = h = 0.
And we also get an algebraic representation of the zeros of the system Σ: each
coordinate of each zero is a linear combination of roots of several univariate
polynomials. Using this representation we can compute the zeros of the system
up to any desired precision. Our method is complete in the sense that Σn can
be any zero-dimensional triangular system.

There is an extensive bibliography for isolating the roots of zero-dimensional
triangular polynomial systems. However, most of the methods can not apply
to triangular systems with multiple zeros directly [8,9,15,3,19]. Usually, they
decompose the system into triangular systems without multiple zeros and then
isolate the real zeros. Cheng et al [7] provided a direct method which does not
compute an algebraic representation of the real zeros and can not compute their
multiplicities. In [22] a method for computing the multiplicities is presented in
the case where the zeros have already been computed. Concerning the algebraic
representation of the roots of a polynomial system, let us mention Rouillier [17]
that used the rational univariate representation, and Gao and Chou [12] that
presented a representation for the zeros of a radical characteristic set. Using
Gröbner basis computations, [1] presented a representation of the zeros of a
system that depends on the multiplicities.

The rest of the paper is structured as follows: In Section 2 we present the
theory of isolating the roots of a zero-dimensional triangular polynomial system.
In Section 3, we give the algorithm, present an example, and compare our method
with other methods. We conclude in Section 4.

2 Zero-Dimensional Triangular System Solving

Let Σi = {f1(x1), f2(x1, x2), . . . , fi(x1, x2, . . . , xi)} ∈ Q[x1, x2, . . . , xi](i = 1, . . .,
n) be a general zero-dimensional triangular system. ξi = (ξ1, . . . , ξi) ∈ Zero(Σi),
where Zero(t) represents the zero set of t = 0. And t can be a polynomial or a
polynomial system.

Let f ∈ C[x]. Then the separation bound sep(f) and root bound rb(f) of
f are defined as follows: sep(f) := min{Δ(α, β)|∀α, β ∈ C s.t.f(α) = f(β) =
0, α �= β}, where Δ(α, β) := max{|Re(α−β)|, |Im(α−β)|}, Re(α−β), Im(α−β)
are the real part and imaginary part of α − β respectively. We also need the
definition of the root bound: rb(f) := max{|α||∀α ∈ C s.t.f(α) = 0}.

188 J. Li, J.-S. Cheng, and E.P. Tsigaridas

Assume that we have solved the system Σi(1 ≤ i ≤ n − 1). The assumption
is reasonable since we can solve Σ1 directly with many existing tools, such as
[18,21]. And we can get a separation bound r1 of f1(x1). Based on the roots of
f1 = 0, we can estimate the root bound R2.

Let rj(1 ≤ j ≤ i) be a positive rational number, such that

rj ≤ 1

2
min

ξj−1∈Zero(Σj−1)
sep(fj(ξ

j−1, xj)). (1)

We can compute rj after we get the roots of fj(ξ
j−1, xj) = 0.

Based on the zeros of Σj, we can estimate the root bound on xj+1 (we will
show how to estimate the bound later) to get a positive rational number Rj+1,
such that

Rj+1 ≥ max
ξj∈Zero(Σj)

rb(fj+1(ξ
j , xj+1)). (2)

We usually add a previously estimated value, say r′j+1, for rj+1 to the above root
bound to ensure that after shearing and projection, the fixed neighborhoods of
the zeros of Ti,i(Xi,i) (see definition below) are disjoint. Then when we compute
rj+1, we choose the one no larger than r′j+1.

We say two plane curves defined by f, g ∈ C[x, y] s.t. gcd(f, g) = 1 are in a
generic position w.r.t. y if (1) The leading coefficients of f and g w.r.t. y have
no common factors, and (2) If h is the resultant of f and g w.r.t. y, then any
α ∈ C such that h(α) = 0, f(α, y), g(α, y) have only one common zero in C.

Now we introduce local generic position [4,5]. Given f, g ∈ Q[x, y], not
necessarily in generic position, we consider the the mapping φ : (x, y) → (x +
s y, y), s ∈ Q, with the following properties: (i) φ(f), φ(g) are in a generic position
w.r.t. y, and (ii) Let h̄, h be the resultants of φ(f), φ(g) and f, g w.r.t. y, respec-
tively. Each root α of h(x) = 0 has a neighbor interval Hα such thatHα∩Hβ = ∅
for roots β �= α of h = 0. And any root (γ, η) of f = g = 0 which has a same
x-coordinate γ, is mapped to γ′ = γ+s η ∈ Hγ , where h(γ) = 0, h̄(γ′) = 0. Thus

we can recover η = γ′−γ
s .

2.1 Basic Theory and Method

For each ξi = (ξ1, . . . , ξi) ∈ Zero(Σi), the roots of fi+1(ξ
i, xi+1) = 0 are bounded

by Ri+1. We can take a shear mapping on fi+1(x1, . . . , xi+1) such that when
projected to i-D space, all the roots of fi+1(ξ

i, xi+1) = 0 are projected into the
fixed neighborhood of ξi (centered at ξi and radius bounded by ri). This can be
achieved by take the following shear mapping on (xi, xi+1).

X2,i+1 = xi +
ri

Ri+1
xi+1, X1,i+1 = xi+1. (3)

Applying (3) to the system Σi+1, we derive a new system Σ′
i+1 = {f1(x1), . . . ,

fi−1(x1, . . . , xi−1), fi(x1, . . . , xi−1, X2,i+1 − ri
Ri+1

X1,i+1), fi+1(x1, . . . , xi−1,

Local Generic Position and Triangular Systems 189

i

 Xi+1

X

ri ri

R i+1

Ri+1

Fig. 1. Local generic position

X2,i+1 − ri
Ri+1

X1,i+1, X1,i+1)}. Let
T2,i+1(x1, . . . , xi−1, X2,i+1) = ResX1,i+1(fi(x1, . . . , xi−1, X2,i+1 −
ri

Ri+1
X1,i+1), fi+1(x1, . . . , xi−1, X2,i+1 − ri

Ri+1
X1,i+1, X1,i+1)),

where Rest(f, g) is the resultant of f and g w.r.t. t. There is only one root
of fi+1(ξ1, . . . , ξi−1, θ2− ri

Ri+1
X1,i+1, X1,i+1) = 0 corresponding to each i-D root

(ξ1, . . . , ξi−1, θ2) ∈ Zero(Σ∗
i), where Σ

∗ = Σi−1∪{T2,i+1}. As is shown in Figure
1, θ2 is some dot point on xi-axis. Corresponding to each dot point, there is only
one box point. Each box point corresponds to one triangle point. We will further
study the relationship between the zeros of Σi+1 and Σi−1 ∪ {T2,i+1} below.
Considering the multiplicities of the zeros, we give the following lemma.

Lemma 1. For each zero ξi of Σi−1, there exists a one to one correspondence
between the roots of {fi(ξ1, . . . , ξi−1, xi), fi+1(ξ1, . . . , ξi−1, xi, xi+1)} = 0 and the
roots of T2,i+1(ξ1, . . . , ξi−1, X2,i+1) = 0, and the multiplicities of corresponding
zeros in their equation(s) are the same.

Proof. Note that we derive the system Θ2 := {fi(ξ1, . . . , ξi−1, X2,i+1 −
ri

Ri+1
X1,i+1), fi+1(ξ1, . . . , ξi−1, X2,i+1 − ri

Ri+1
X1,i+1, X1,i+1)} from the system

Θ1 := {fi(ξ1, . . . , ξi−1, xi), fi+1(ξ1, . . . , ξi−1, xi, xi+1)} by coordinate system
transformation. So there exists a one to one correspondence between their zeros,
including the multiplicities of the zeros by the properties of local generic position.
And the coordinate system transformation ensures that for any zero (ξi, ξi+1),
when projected to xi-axis by LGP method, the zero is in the fixed neighbor-
hood of ξi (centered at ξi and radius bounded by ri). This ensures that all the
zeros of Θ2, when projected to xi-axis, do not overlap, which means any root
of T2,i+1(ξ1, . . . , ξi−1, X2,i+1) = 0 corresponds to one zero of Θ2. So there exists
a one to one correspondence between roots of T2,i+1(ξ1, . . . , ξi−1, X2,i+1) = 0
and the zeros of Θ1. It is not difficult to find that the degree of the polynomial
fi(ξ1, . . . , ξi−1, X2,i+1− ri

Ri+1
X1,i+1) w.r.t.X1,i+1 is equal to its total degree. And

T2,i+1(ξ1, . . . , ξi−1, X2,i+1) is the resultant of the two polynomials in Θ2 w.r.t.
X1,i+1. Based on the theory in Section 1.6 in [11], we can conclude that the mul-
tiplicities of the roots in T2,i+1(ξ1, . . . , ξi−1, X2,i+1) = 0 equals the multiplicities
of the corresponding zeros of Θ2, and then Θ1. So the lemma is true.

190 J. Li, J.-S. Cheng, and E.P. Tsigaridas

Lemma 2. There exists a one to one correspondence between the zeros of tri-
angular systems Σi+1 and Σi−1 ∪ {T2,i+1(x1, . . . , xi−1, X2,i+1)}. And the corre-
sponding zeros have the same multiplicities in their system.

Proof. Since both the systems have a same sub-system Σi−1, we can derive that
the lemma is correct by Lemma 1.

Lemma 3. For (ξ1, . . . , ξi) ∈ Zero(Σi), the roots of fi+1(ξ1, . . . , ξi, xi+1) are:

xi+1 =
Ri+1

ri
(ζ2 − ξi), where |ζ2 − ξi| < ri, T2,i+1(ξ1, . . . , ξi−1, ζ2) = 0. (4)

Proof. The first formula is directly derived from (3). Since the first formula just
holds for ζ2, corresponding zeros having ξi as coordinate, the inequality holds.

The above lemma tells us how to derive the roots of fi+1(ξ1, . . . , ξi, xi+1) = 0
from the roots of T2,i+1(ξ1, . . . , ξi−1, X2,i+1) = 0. From (1) and (2), the corollary
below is obvious.

Corollary 1. All the roots of T2,i+1(ξ1, . . . , ξi−1, X2,i+1) = 0 are inside the
fixed neighborhood of 0 (centered at 0 bounded by Ri) for all (ξ1, . . . , ξi−1) ∈
Zero(Σi−1).

We apply the previous procedure on the triangular system Σi−1 ∪ {T2,i+1} with
the mapping

X3,i+1 = xi−1 +
ri−1

Ri
X2,i+1, X2,i+1 = X2,i+1, (5)

T3,i+1(x1, . . . , xi−2, X3,i+1) = ResX2,i+1(fi−2(x1, . . . , xi−3, X3,i+1 −
ri−1

Ri
X2,i+1), T2,i+1(x1, . . . , xi−3, X3,i+1 − ri−1

Ri
X2,i+1, X2,i+1)).

So, we have a triangular system Σi−2 ∪ {T3,i+1}. Since Corollary 1 holds, the
results in Lemma 2 still hold on Σi−1 ∪ {T2,i+1} and Σi−2 ∪ {T3,i+1}. By (5),
and similarly as (4), we derive

ζ2 = Ri

ri−1
(ζ3 − ξi−1), |ζ3 − ξi−1| < ri−1, T3,i+1(ξ1, . . . , ξi−2, ζ3) = 0. (6)

Then we have xi+1 = Ri+1

ri
(Ri

ri−1
(ζ3 − ξi−1) − ξi), where |ζ3 − ξi−1| < ri−1,

| Ri

ri−1
(ζ3 − ξi−1)− ξi| < ri, T3,i+1(ξ1, . . . , ξi−2, ζ3) = 0.

The above formula means that we can get the roots of fi+1(ξ1, . . . , ξi, xi+1) =
0 by solving T3,i+1(ξ1, . . . , ξi−2, X3,i+1) = 0 directly.

Step by step, we can derive a univariate polynomial Ti+1,i+1(Xi+1,i+1). It
holds ζi =

R2

r1
(ζi+1−ξ1) and |ζi+1−ξ1| < r1. Now we can represent Zero(fi+1(ξ1,

. . . , ξi, xi+1)) by ξ1, . . . , ξi and the roots of Ti+1,i+1(Xi+1,i+1), where (ξ1, . . ., ξi)∈
Zero(Σi).

Lemma 4. For any zero (ξ1, . . . , ξi) ∈ Zero(Σi), each root ξi+1 of fi+1(ξ1, . . . ,
ξi, xi+1) = 0 is mapped to a root of Ti+1,i+1(Xi+1,i+1) = 0. And we can derive
ξi+1 by Ti+1,i+1(Xi+1,i+1) = 0 as follows.

ξi+1 =
Ri+1

ri
(ζ2−ξi), ζ2 =

Ri

ri−1
(ζ3−ξi−1), . . . , ζi=

R2

r1
(ζi+1−ξ1), Ti+1,i+1(Xi+1,i+1)=0,

where |ζ2 − ξi| < ri, |ζ3 − ξi−1| < ri−1, . . . , |ζi+1 − ξ1| < r1.

Local Generic Position and Triangular Systems 191

Proof. Using Lemma 3 recursively, we can derive the above formula.

Lemma 5. For any (ξ1, . . . , ξi) ∈ Zero(Σi), each distinct root ξi+1 of
fi+1(ξ1, . . . , ξi, xi+1) = 0 is mapped to a root of Ti+1,i+1(Xi+1,i+1) = 0. And
we can derive:

ξi+1 = (
i∏

j=1

Rj+1

rj
)(ηi+1 − ηi), (7)

where ηi+1 ∈ Zero(Ti+1,i+1), ηi ∈ Zero(Ti,i), and |ηi+1 − ηi| < (
∏i−1

j=1
rj

Rj+1
)ri.

Proof. According to Lemma 4, we know

ξi =
Ri

ri−1
(ζ2 − ξi−1) = . . . = (

∏i−1
j=1

Rj+1

rj
)ηi −∑i−1

k=1((
∏i−1

j=k

Rj+1

rj
)ξk).

Note that here ζi = ηi. Similarly, we have

ξi+1 = (
∏i

j=1

Rj+1

rj
)ηi+1 −∑i

k=1[(
∏i

j=k

Rj+1

rj
)ξk]

= (
∏i

j=1

Rj+1

rj
)ηi+1 −∑i−1

k=1[(
∏i

j=k

Rj+1

rj
)ξk]− Ri+1

ri
ξi

= (
∏i

j=1

Rj+1

rj
)ηi+1 − Ri+1

ri

∑i−1
k=1[(

∏i−1
j=k

Rj+1

rj
)ξk]− Ri+1

ri
ξi

= (
∏i

j=1

Rj+1

rj
)ηi+1 − Ri+1

ri

∑i−1
k=1[(

∏i−1
j=k

Rj+1

rj
)ξk]

−Ri+1

ri
((
∏i−1

j=1

Rj+1

rj
)ηi −∑i−1

k=1[(
∏i−1

j=k

Rj+1

rj
)ξk])

= (
∏i

j=1

Rj+1

rj
)(ηi+1 − ηi).

|ηi+1 − ηi| =
∏i

j=1
rj

Rj+1
|ξi+1| <

∏i
j=1

rj
Rj+1

Ri+1 = (
∏i−1

j=1
rj

Rj+1
)ri.

The lemma has been proved.

Lemma 6. The multiplicity of the zero (ξ1, . . . , ξi, ξi+1) of Σi+1 is equal to the
multiplicity of the corresponding root in Ti+1,i+1(Xi+1,i+1) = 0.

Proof. Using Lemma 2 recursively, we can derive the lemma.

Theorem 1. With the notations above, we have the following representation for
a general zero-dimensional triangular system Σn:{{T1,1, . . ., Tn,n},{r1, . . ., rn−1},
{R2, . . ., Rn}}, such that the zeros of Σn can be derived as follows.

ξ1 = η1, η1 ∈ Zero(T1,1),
ξ2 = R2

r1
(η2 − η1), η2 ∈ Zero(T2,2), |η2 − η1| < r1,

. . .

ξi = (
∏i−1

j=1
Rj+1

rj
)(ηi − ηi−1), ηi ∈ Zero(Ti,i), |ηi+1 − ηi| < (

∏i−1
j=1

rj
Rj+1

)ri,

. . .

ξn = (
∏n−1

j=1
Rj+1

rj
)(ηn − ηn−1), ηn ∈ Zero(Tn,n), |ηn−ηn−1| < (

∏n−2
j=1

rj
Rj+1

)rn−1,

where Tj,j(j = 1, . . . , n) are univariate polynomials, T1,1 = f1. For each zero
(ξ1, . . . , ξi) (1 ≤ i ≤ n) of the system Σi, the multiplicity of the zero in the system
is the multiplicity of the corresponding zero ηi in the univariate polynomial Ti,i.

Remark: From the second part of the theorem, we can compute the multiplic-
ities of the roots of fi+1(ξ1, . . . , ξi, xi+1) = 0, it is the multiplicity of the zero
(ξ1, . . . , ξi+1) in Σi+1 dividing the multiplicity of the zero (ξ1, . . . , ξi) in Σi.

192 J. Li, J.-S. Cheng, and E.P. Tsigaridas

2.2 Estimation of Bounds ri, Ri+1

To estimate the bounds ri, Ri+1, we can directly derive the bound by the method
in [10]. But the derived bounds ri is tiny and Ri+1 is huge. We prefer to use
direct methods to get the bounds.

The methods to estimate the bound for ri, Ri+1 can be used both for complex
and real roots isolation. We focus on real roots isolation in this paper.

For Ri+1, we have two methods to estmate it. One of them is computing

S(xi+1) = Resx1(Resx2(· · ·Resxi(fi+1, fi), · · · , f2), f1) (8)

first, estimating Ri+1 by estimating the root bound of S(xi+1).
Now, we introduce the second method. we at first estimate the root bound

on fi+1(ξ1, . . . , ξi, xi+1) = 0 for a fixed zero (ξ1, . . . , ξi). Doing so, we need to
use the definition of sleeve (see [7,14,15] for details). Given g ∈ Q[x1, . . . , xn],
we decompose it uniquely as g = g+ − g−, where g+, g− ∈ Q[x1, . . . , xn] each
has only positive coefficients and with minimal number of monomials. Given an
isolating box �ξi = [a1, b1] × · · · × [ai, bi] for ξi = (ξ1, . . . , ξi), we assume that
aj , bj, ξj ≥ 0, 1 ≤ j ≤ i since we can take a coordinate system transformation to
satisfy the condition when ξj < 0. Then we define

fu(x) = fu
i+1(�ξ

i;x) = f+
i+1(bi, x)− f−

i+1(ai, x),

fd(x) = fd
i+1(�ξ

i;x) = f+
i+1(ai, x)− f−

i+1(bi, x), (9)

where ai=(a1, . . . , ai), bi=(b1, . . . , bi). Then (fu, fd) is a sleeve of fi+1(ξ
i, xi+1).

When considering x ≥ 0, we have (see [7]): fd(x) ≤ fi+1(ξ
i, x) ≤ fu(x).

If the leading coefficients of fu and fd have the same signs, then we can find
that the root bound of fi+1(ξ

i, x) is bounded by the root bounds of fu and fd.

Lemma 7. [20] Let a polynomial of degree d be f(x) = adx
d+ad−1x

d−1+ . . .+
a0 ∈ R[x], ad �= 0. Let R = 1+max0≤k≤d−1 |ak

ad
|, then all zeros of f(x) lie inside

the circle of radius R about the origin.

If the considered triangular system is not regular, the leading coefficients of
fu and fd always have different signs. But the absolute value of the leading
coefficients are very close to zero. So usually, the root bound of fi+1(ξ

i, x) is
also bounded by the larger of the root bound of fu and fd. Then we can get
Ri+1 by the lemma above.

For ri, we can directly compute the bound on the zeros of Σi using (1). It is
for complex roots. Since we focus on real roots, we compute ri after we get the
real roots of Σi = 0 with the following formula.

sep(f) := min{|α− β||∀α, β ∈ R s.t.f(α) = f(β) = 0, α �= β}. (10)

If we use (1) to compute ri, the roots of the system are in a local generic position
after a shear mapping. When we use (10) to compute ri, though all the real roots
of the system have some local property, the complex roots may not in a generic
position. Since a random shear mapping usually puts the system into a generic
position, we can get the real roots of the given system.

Local Generic Position and Triangular Systems 193

2.3 Precision Control

When we compute the approximating zeros of a given zero-dimensional triangu-
lar system with the method we provided, the errors of the zeros will cumulate.
So we need to control the error under a wanted precision. This is what we want
to discuss in this subsection.

Consider the coordinate ξi of the zero ξn = (ξ1, . . . , ξn) of the triangular
system Σn in Theorem 1. Assume that we derive the coordinate ξj under the
precision ρj(> 0), and we isolate the roots of Tj,j(Xj,j) = 0 under the precision
εj(> 0), Note that ρ1 = ε1.

From (7), the following lemma is clear.

Lemma 8. With the symbol above, we can derive that the root precision ρi for
ξi is defined as follows: ρi = (

∏i−1
j=1

Rj+1

rj
)(εi + εi−1).

From Lemma 8, we can compute the zeros of Σn under any given precision by
controlling the precisions εi(1 ≤ i ≤ n). For example, we can set them as follows
if we require the precision of the output zeros to be ε.

εi = Πi
j=1

rj
Rj+1

ε

2
(1 ≤ i ≤ n− 1), εn = Πn−1

j=1

rj
Rj+1

ε

2
. (11)

In order to avoid refining the roots when we want to control the precision under
a given ε, we can assume Ri+1

ri
to be less than a number previously, such as 10, 23,

before we solve the system. This help us to previously estimate the precisions
that should be used to get the roots of Ti,i(Xi,i) = 0(1 ≤ i ≤ n).

For root isolation, we require not only the roots satisfying the given precision,
but the isolating boxes being disjoint for distinct roots. We will show how to
ensure that the isolating boxes are disjoint. For real numbers α and β, α < β in
R, if we use intervals [a, b] and [c, d] to represent them respectively. Denote

|α| = |b− a|,Dis(α, β) =

{
c− b, b < c,
0, b ≥ c.

Let ξi = (ξi1, . . . , ξ
i
n) ∈ [ai1, b

i
1]× . . .× [ain, b

i
n] ⊂ Rn, i = 1, 2. Denote

|ξi| = max
j=1,...,n

{bij − aij},Dis(ξ1, ξ2) = min
j=1,...,n

{Dis(ξ1j , ξ
2
j)}.

If Dis(ξ1, ξ2) > 0, we say ξ1 and ξ2 are disjoint.

Theorem 2. Use the notations above. We use intervals to represent real num-
bers and use boxes to represent real points, if for any ηji ∈ Zero(Ti,i), ηi−1 ∈
Zero(Ti−1,i−1), |ηji − ηi−1| < (

∏i−2
j=1

rj
Rj+1

)ri, i = 2, . . . , n; j = 1, 2,

Dis(η1i , η
2
i) > |ηi−1|, (12)

then any two real zeros ξ1 = (ξ11 , . . . , ξ
1
n) and ξ2 = (ξ21 , . . . , ξ

2
n) of Σn are disjoint.

194 J. Li, J.-S. Cheng, and E.P. Tsigaridas

Proof. We need only to consider the case η1i , η
2
i are in the neighborhood of ηi−1.

Otherwise, they are obviously disjoint. According to (7), for any i = 2, . . . , n,

ξ1i = (
∏i−1

j=1
Rj+1

rj
)(η1i − ηi−1), ξ

2
i = (

∏i−1
j=1

Rj+1

rj
)(η2i − ηi−1).

Dis(ξ1i , ξ
2
i) = (

i−1∏

j=1

Rj+1

rj
)Dis(η1

i − ηi−1, η
2
i − ηi−1) ≥ (

i−1∏

j=1

Rj+1

rj
)(Dis(η1

i , η
2
i) − |ηi−1|) > 0 (13)

if (12) is satisfied. Thus Dis(ξ1, ξ2) > 0.

3 The Algorithm and Experiments

Algorithm 3. Isolate the real roots of a 0-dim. triangular system.
Input: A zero-dimensional triangular system Σn, a precision ε.
Output: The solutions of the system in isolating interval representation.

1. Isolate the real roots of f1(x1) = 0 under the precision ρ = ε
20 . Let T1,1 = f1.

2. For i from 2 to n,
(a) Estimate ri−1 with method in Section 2.2.
(b) Estimate Ri with method in Section 2.2.
(c) Compute Ti,i(Xi,i) with method in Section 2.1.
(d) Isolate the real roots of Ti,i(Xi,i) = 0 with precision Πi−1

j=1
rj

Rj+1

ε
20 (if

i = n, take Πn−1
j=1

rj
Rj+1

ε
2). Compute the multiplicities of the roots if

needed when i = n.
(e) If (12) is not satisfied, then refine the real roots of T i−1

i−1 (X
i−1
i−1) = 0 until

(12) is satisfied.
(f) Recover the real zeros of Σi from Ti,i(Xi,i) and Σi−1 by Theorem 1.

3. Get the solutions:{{T1,1(X1,1), . . . , Tn,n(Xn,n)}, {r1, . . . , rn−1}, {R2, . . . , Rn}},
or numeric solutions and their corresponding multiplicities.

Example 4. Consider the system {x2 − 6, 5 x2 + 10 xy + 6 y2 − 5, x2 + 2 xy +
2 y2+4 yz+5 z2−1}. We derive a symbolic representation of the roots, as well as
a floating point approximation up to precision 1

103 . We isolate the roots of f1 = 0
using precision 1

2·104 and we derive the zero set: H = {ξ11 = −2.449490070, ξ21 =
2.449490070}. Let r1 = 2. Consider ξ1 ≈ −2.449490070 ∈ [−2.45,−2.44]. We
can use −2.45, −2.44 to construct fu(y), fd(y) for f2(ξ1, y). We compute a root
bound for fu(y), fd(y). For both it is ≤ 6. Similarly, we compute a root bound
for the other root in H. we notice that all the root bounds are less than 6. We
have computed r2 = 2, so we set R2 = 6 + 2 = 23. By considering a coordinate
system transformation, we derive a system Σ′

2 as follows
{X2,2

2 − 1
2 X2,2X2,1 +

1
16 X2,1

2 − 6, 5X2,2
2 + 15

2 X2,2X2,1 +
61
16 X2,1

2 − 5}.
Hence we can compute T2,2 = 36X2,2

4− 1083
4 X2,2

2+ 130321
256 . Solve T2,2(X2,2) = 0

under the precision 1
8·104 , we have its real roots and multiplicities (the number

in each bracket is the multiplicity of the root in the system):
G = {η12 = −1.939178944 [2], η22 = 1.939178944 [2]}.

For each root η2 in G, if it satisfies |η2 − ξ1| < r1 = 2, then it corresponds to
ξ1, where ξ1 is a root in H. And the multiplicity of (ξ1, η2) in the given system

Local Generic Position and Triangular Systems 195

is the corresponding multiplicity of η2 in T 2
2 = 0. In this way, we can get the

approximating roots of the subsystem Σ2:
{[−2.449490070 [1], 2.041244504 [2]], [2.449490070 [1],−2.041244504 [2]]}.

With the method of Section 2.2, we estimate r3 = 2, and we derive that 3 is a
bound for the z coordinate. Let R3 = 2+2 = 4 and r2 = 2 and consider a coordi-
nate system transformation as mentioned above. By computing the resultant, we
can get T3,3 = 810000 x8−13500000 x6+84375000 x4−234375000 x2+244140625.

Then, we get the solution of the given triangular system as follows.
{{X1,1

2 − 6, 36X2,2
4 − 1083

4 X2,2
2 + 130321

256 , 810000 x8 − 13500000 x6

+ 84375000 x4− 234375000 x2 + 244140625}, {2, 2}, {8, 4}}.
We solve T3,3 using precision 1

16·104 , and derive its roots and multiplicities:
J = {η13 = −2.041241452 [4], η23 = 2.041241452 [4]}.

For each root η3 in J , if it satisfies |η3 − η2| < r1
R2
r2 = 1

2 , then it corresponds
to the same (ξ1, ξ2) with η2, where (ξ1, ξ2) is a root in Σ2. And the multiplicity
of (ξ1, ξ2, η3) in the given system is the corresponding multiplicity of η3. In this
way, we can get the approximating roots of the system:

{[−2.449490070 [1], 2.041244504 [2],−0.816497800 [4]], [2.449490070 [1],
−2.041244504 [2], 0.816497800 [4]]}.

Using Lemma 8, the precision of roots is 4(1
8·104 + 1

16·104) <
1

103 .

In the below, we illustrate the function of our algorithm by some examples. The
timings are collected on a computer running Maple 15 with 2.29GHz CPU, 2G
memory and Windows XP by using the time command in Maple.

We compare our method with Discoverer, Isolate, EVB and Vincent-Collins-
Akritas algorithm. Discoverer is a tool for solving problems about polynomial
equations and inequalities [19]. Isolate is a tool to solve general equation systems
based on Realsolving C library by Rouillier. EVB is developed by Cheng et
al in [7]. Vincent-Collins-Akritas(VCA) algorithm which isolates real roots for
univariate polynomials uses techniques which are very close to the ones used by
Rioboo in [16]. Sqf is the method in [7] for zero-dimensional triangular system
without multiple roots. All the required precision are 0.001.

Table 1. Timing of Real Root Isolation of System without Multiple Roots (Seconds)

Degree(k) Vars LGP Dis Iso VCA EVB Sqf

1-11 2 0.104 0.228 0.187 0.861 0.577 0.014
12-30 2 23.790 17.269 175.684 28.362 210.295 0.140
1-4 3 25.614 19.290 202.681 29.727 246.102 0.156
5-9 3 55.579 41.769 453.217 62.407 512.930 0.223
1-3 4 11.947 8.748 87.936 14.612 105.436 0.077
4-5 4 40.597 30.529 327.949 46.067 379.516 0.190

In Table 1, we compare different methods by computing some zero-dimen-
sional triangular polynomial systems without multiple roots. All the tested sys-
tems are generated randomly and dense. They have the form (f1, f2, . . . , fn)
in which deg(f1) = deg(f2) = . . . = deg(fn) = k are the total degrees of the

196 J. Li, J.-S. Cheng, and E.P. Tsigaridas

Table 2. Timing of Real Root Isolate of surfaces(Seconds)

Example Degree LGP Iso EVB

f1 6 84.000 394.344 118.922
f2 4 0.031 0.078 0.078
f3 4 0.250 0.375 0.453
f4 4 0.218 0.578 0.86

polynomials and their coefficients are random integers from -9 to 9. For each
i = 1, 2, . . . , 30;n = 2, 3, 4, we compute five systems. After all, we divide those
systems into serval groups by degree and the number of variables, and take
average timings for different group.

In Table 2, we find four famous surfaces. We generate the systems as follow.
Let f be the defining polynomial of a surface in R3. We compute the resultant
of f and ∂f

∂z with respect to z. Denote its squarefree part as g. Then we compute

the resultant of g and ∂g
∂y with respect to y and denote the squarefree part as h.

Thus we get a triangular polynomial system {h, g, f}. We decompose them into
sub-system. This kind of system is usually zero-dimensional and have multiple
roots. The total timing for each surface are collected in table 2 for the methods
which can deal with multiple roots directly. They are Isolate, EVB and LGP.
f1 is Barth’s sextic surface with 65 singularities. f2 is A squared off sphere.

f3 is a deformation of quartics. f4 is a Kummer surface with 16 singular points.

f1 = 4(2.618x2 − y2)(2.618y2 − z2)(2.618z2 − x2)− 4.236(x2 + y2 + z2 − 1)2;

f2 = x4 + y4 + z4 − 1; f3 = (x2 − 1)2 + (y2 − 1)2 + (z2 − 1)2 − s, s = 1;

f4 = x4 + y4 + z4 − (0.5x + 1)2(x2 + y2 + z2)− (x2y2 + x2z2 + y2z2) + (0.5x+ 1)4.

From the data, we can find that LGP works well for system with multiple roots
comparing to the existing direct method. For the systems without multiple roots,
Sqf is the most efficient method. LGP works well for system with fewer roots. For
the systemswith higher degrees ormore variables, that is, systemswithmore roots,
LGP will slow down comparing to other methods. The reason is that

∏i−1
j=1

rj
Rj+1

becomes small, thus the resultant computations take much more time.

4 Conclusion and Future Work

We present an algorithm to isolate the real roots and to count the multiplicities
of a zero-dimensional triangular system directly. It is effective and efficient, es-
pecially comparing to other direct methods. We will analyze the complexity of
the algorithm in our full version.

Acknowledgement. The authors would like to thank the anonymous refer-
ees for their valuable suggestions. The work is partially supported by NKBRPC
(2011CB302400), NSFC Grants (11001258, 60821002, 91118001), and China-
France project EXACTA (60911130369) and the French National Research
Agency (ANR-09-BLAN-0371-01).

Local Generic Position and Triangular Systems 197

References

1. Alonso, M.-E., Becker, E., Roy, M.-F., Wörmann, T.: Multiplicities and idem-
potents for zero dimensional systems. In: Algorithms in algebraic Geometry and
Applications. Progress in Mathematics, vol. 143, pp. 1–20. Birkhäuser (1996)

2. Berberich, E., Kerber, M., Sagraloff, M.: Exact Geometric-Topological Analysis
of Algebraic Surfaces. In: Teillaud, M. (ed.) Proc. of the 24th ACM Symp. on
Computational Geometry (SoCG), pp. 164–173. ACM Press (2008)

3. Boulier, F., Chen, C., Lemaire, F., Moreno Maza, M.: Real Root Isolation of Reg-
ular Chains. In: ASCM 2009, pp. 1–15 (2009)

4. Cheng, J.S., Gao, X.S., Li, J.: Root isolation for bivariate polynomial systems with
local generic position method. In: ISSAC 2009, pp. 103–110 (2009)

5. Cheng, J.S., Gao, X.S., Guo, L.: Root isolation of zero-dimensional polynomial
systems with linear univariate representation. J. of Symbolic Computation (2011)

6. Cheng, J.S., Gao, X.S., Li, M.: Determining the Topology of Real Algebraic Sur-
faces. In: Martin, R., Bez, H.E., Sabin, M.A. (eds.) IMA 2005. LNCS, vol. 3604,
pp. 121–146. Springer, Heidelberg (2005)

7. Cheng, J.S., Gao, X.S., Yap, C.K.: Complete Numerical Isolation of Real Roots in
0-dimensional Triangular Systems. JSC 44(7), 768–785 (2009)

8. Collins, G.E., Johnson, J.R., Krandick, W.: Interval arithmetic in cylindrical alge-
braic decomposition. Journal of Symbolic Computation 34, 145–157 (2002)

9. Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.:
A Descartes Algorithm for Polynomials with Bit-Stream Coefficients. In: Ganzha,
V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 138–
149. Springer, Heidelberg (2005)

10. Emiris, I.Z., Mourrain, B., Tsigaridas, E.P.: The DMM bound: Multivariate (ag-
gregate) separation bounds. In: ISSAC 2010, pp. 243–250. ACM, Germany (2010)

11. Fulton, W.: Introduction to intersection theory in algebraic geometry. CBMS Re-
gional Conference Series in Mathematics, vol. 54. Conference Board of the Math-
ematical Sciences, Washington, DC (1984)

12. Gao, X.S., Chou, S.C.: On the theory of resolvents and its applications. Mathe-
matics and Systems Science (1997)

13. Hong, H.: An Efficient Method for Analyzing the Topology of Plane Real Algebraic
Curves. Mathematics and Computers in Simulation 42, 571–582 (1996)

14. Hong, H., Stahl, V.: Safe start region by fixed points and tightening. Comput-
ing 53(3-4), 323–335 (1994)

15. Lu, Z., He, B., Luo, Y., Pan, L.: An Algorithm of Real Root Isolation for Polynomial
Systems. In: SNC 2005 (2005)

16. Rioboo, R.: Computation of the real closure of an ordered field. In: ISSAC 1992.
Academic Press, San Francisco (1992)

17. Rouillier, F.: Solving zero-dimensional systems through the rational univariate rep-
resentation. AAECC 9, 433–461 (1999)

18. Sagraloff, M.: When Newton meets Descartes: A Simple and Fast Algorithm to
Isolate the Real Roots of a Polynomial. CoRR abs/1109.6279 (2011)

19. Xia, B., Zhang, T.: Real Solution Isolation Using Interval Arithmetic. Computers
and Mathematics with Applications 52, 853–860 (2006)

20. Yap, C.: Fundamental Problems of Algorithmic Algebra. Oxford University Press,
New York (2000)

21. Yap, C., Sagraloff, M.: A simple but exact and efficient algorithm for complex root
isolation. In: ISSAC 2011, pp. 353–360 (2011)

22. Zhang, Z.H., Fang, T., Xia, B.C.: Real solution isolation with multiplicity of 0-
dimensional triangular systems. Science China: Information Sciences 54(1), 60–69
(2011)

On Fulton’s Algorithm for Computing
Intersection Multiplicities

Steffen Marcus1, Marc Moreno Maza2, and Paul Vrbik2

1 Department of Mathematics, University of Utah
2 Department of Computer Science, University of Western Ontario

Abstract. As pointed out by Fulton in his Intersection Theory, the in-
tersection multiplicities of two plane curves V (f) and V (g) satisfy a series
of 7 properties which uniquely define I(p; f, g) at each point p ∈ V (f, g).
Moreover, the proof of this remarkable fact is constructive, which leads
to an algorithm, that we call Fulton’s Algorithm. This construction, how-
ever, does not generalize to n polynomials f1, . . . , fn. Another practical
limitation, when targeting a computer implementation, is the fact that
the coordinates of the point p must be in the field of the coefficients of
f1, . . . , fn. In this paper, we adapt Fulton’s Algorithm such that it can
work at any point of V (f, g), rational or not. In addition, we propose
algorithmic criteria for reducing the case of n variables to the bivariate
one. Experimental results are also reported.

1 Introduction

Intuitively, the intersection multiplicity of two plane curves counts the number of
times these curves intersect. There are more formal ways to define this number.
The following one is commonly used, see for instance [9,11,12,6,18]. Given an
arbitrary field k and two bivariate polynomials f, g ∈ k[x, y], consider the affine
algebraic curves C := V (f) and D := V (g) in A2 = k

2
, where k is the algebraic

closure of k. Let p be a point in the intersection. The intersection multiplicity of
p in V (f, g) is defined to be

I(p; f, g) := dimk(OA2,p/ 〈f, g〉)

where OA2,p and dimk(OA2,p/ 〈f, g〉) are the local ring at p and the dimension of
the vector space OA2,p/ 〈f, g〉. The intersection multiplicity of two plane curves
at a point admits many properties. Among them are the seven below, which are
proved in [9, Section 3-3] as well as in [11,12].

(2-1) I(p; f, g) is a non-negative integer for any C, D, and p such that C and D
have no common component at p. We set I(p; f, g) =∞ if C and D have
a common component at p.

(2-2) I(p; f, g) = 0 if and only if p /∈ C ∩D.
(2-3) I(p; f, g) is invariant under affine change of coordinates on A2.
(2-4) I(p; f, g) = I(p; g, f).

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 198–211, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On Fulton’s Algorithm for Computing Intersection Multiplicities 199

(2-5) I(p; f, g) is greater or equal to the product of the multiplicity (see [9, §3.1])
of p in f and g, with equality occurring if and only if C and D have no
tangent lines in common at p.

(2-6) I(p; f, gh) = I(p; f, g) + I(p; f, h) for all h ∈ k[x, y].
(2-7) I(p; f, g) = I(p; f, g + hf) for all h ∈ k[x, y].

Remarkably, Properties (2-1) through (2-7) uniquely determine I(p; f, g). This
observation is made by Fulton in [9, Section 3-3] where he exhibits an algorithm
for computing I(p; f, g) using (2-1) through (2-7) as rewrite rules.

In order to obtain a practical implementation of this algorithm, a main ob-
stacle must be overcome. To understand it, let us first recall that computer
algebra systems efficiently manipulate multivariate polynomials whenever their
coefficients are in the field of rational numbers or in a prime field. In particu-
lar, popular algorithms for decomposing the algebraic variety V (f1, . . . , fn) with
f1, . . . , fn ∈ k[x1, . . . , xn] rely only on operations in the field k, thus avoiding
to manipulate non-rational numbers, that is, elements of k \ k. For instance,
algorithms such as those of [4] represent the variety V (f1, . . . , fn) (which is a
subset of k

n
) with finitely many regular chains T1, . . . , Te of k[x1, . . . , xn] such

that we have
V (f1, . . . , fn) = V (T1) ∪ · · · ∪ V (Te). (1)

Now, observe that the intersection multiplicity I(p; f1, . . . , fn) of f1, . . . , fn at a
point p is truly a local notion, while each of the V (Ti) may consist of more than
one point, even if Ti generates a maximal ideal of k[x1, . . . , xn]. Therefore, in
order to use regular chains for computing intersection multiplicities, one needs
to be able to compute “simultaneously” all the I(p; f1, . . . , fn) for p ∈ V (Ti)

In Section 5 we propose an algorithm achieving the following task in the
bivariate case: given M ⊂ k[x, y] a maximal ideal, compute the common value
of all I(p; f, g) for p ∈ V (M). In Section 6, we relax the assumption ofM being
maximal and require only that a zero-dimensional regular chain T ⊂ k[x, y]
generates M. However, in this case, the values of I(p; f, g) for p ∈ V (T) may
not be all the same. This situation is handled via splitting techniques as in [4].

Thus, for n = 2, we obtain a procedure TriangularizeWithMultiplicity(f1, . . . , fn)
which returns finitely many pairs (T1, m1), . . . , (Te, me) where T1, . . . , Te ⊂ k[x1,
. . . , xn] are regular chains and m1, . . . , me are non-negative integers satisfying
Equation (1) and for each i = 1, . . . , e, we have

(∀p ∈ V (Ti)) I(p; f1, . . . , fn) = mi. (2)
We are also interested in generalizing Fulton’s Algorithm to n multivariate poly-
nomials in n variables—our ultimate goal being an algorithm that realizes the
above specification for n ≥ 2.

We denote by An the n-dimensional affine space over k. Let f1, . . . , fn ∈ k[x1,
. . . , xn] be n polynomials generating a zero-dimensional ideal with (necessarily
finite) zero set V (f1, . . . , fn) ⊂ An. Let p be a point in the intersection V (f1) ∩
· · ·∩V (fn), that is, V (f1, . . . , fn). The intersection multiplicity of p in V (f1, . . . ,
fn) is the generalization of the 2-variable case (as in [6,18])

I(p; f1, . . . , fn) := dimk (OAn,p/ 〈f1, . . . , fn〉) ,

200 S. Marcus, M.M. Maza, and P. Vrbik

where OAn,p and dimk(OAn,p/ 〈f1, . . . , fn〉) are (respectively) the local ring at
the point p and the dimension of the vector space OAn,p/ 〈f1, . . . , fn〉.

Among the key points in the proof of Fulton’s algorithmic construction is that
k[x1] is a principal ideal domain. Fulton uses Property (2-7) in an elimination
process similar to that of the Euclidean Algorithm. Since k[x1, . . . , xn−1] is no
longer a PID for n ≥ 3, there is no natural generalization of (2-1) through (2-7)
to the n-variate setting (up to our knowledge) that would lead to an algorithm
for computing I(p; f1, . . . , fn).

To overcome this obstacle, at least for some practical examples, we propose an
algorithmic criterion to reduce the n-variate case to that of n−1 variables. This
reduction requires two hypotheses: V (fn) is non-singular at p, and the tangent
cone of V (f1, . . . , fn−1) at p and the tangent hyperplane of V (fn) at p meet
only at the point p. The second hypothesis ensures that each component of the
curve V (f1, . . . , fn−1) meets the hypersurface V (fn) without tangency at p. This
transversality assumption yields a reduction from n to n − 1 variables proved
with Theorem 1.

In Section 7, we discuss this reduction in detail. In particular, we propose
a technique which, in some cases, replaces f1, . . . , fn by polynomials g1, . . . , gn

generating the same ideal and for which the hypotheses of the reduction hold.
Finally, in Section 8 we give details on implementing the algorithms herein and
in Section 9 we report on our experimentation for both the bivariate case and
the techniques of Section 7.

We conclude this introduction with a brief review of related works. In [5],
the Authors report on an algorithm with the same specification as the above
TriangularizeWithMultiplicity(f1, . . . , fn). Their algorithm requires, however, that
the number of input polynomials is 2. In [17], the Authors outline an algorithm
with similar specifications as ours. However, this algorithm is not complete,
even in the bivariate case, in the sense that it may not compute the intersection
multiplicities of all regular chains in a triangular decomposition of V (f1, . . . , fn).

In addition, our approach is novel thanks to an important feature which makes
it more attractive in terms of performance. We first compute a triangular de-
composition of V (f1, . . . , fn) (by any available method) thus without trying to
“preserve” any multiplicity information. Then, once V (f1, . . . , fn) is decomposed
we work “locally” at each regular chain. This enables us to quickly discover points
p of intersection multiplicity one by checking whether the Jacobian matrix of f1,
. . . , fn is invertible at p. We have observed experimentally that this strategy
leads to massive speedup.

2 Regular Chains

In this section, we recall the notions of a regular chain. From now on we assume
that the variables of the polynomial ring k[x1, . . . , xn] are ordered as xn > · · · >
x1. For a non-constant f ∈ k[x1, . . . , xn], the main variable of f is the largest
variable appearing in f , while the initial of f is the leading coefficient of f
w.r.t. the main variable of f . Let T ⊂ k[x1, . . . , xn] be a set of n non constant

On Fulton’s Algorithm for Computing Intersection Multiplicities 201

polynomials. We say that T is triangular if the main variables of the elements
of T are pairwise different. Let ti be the polynomial of T with main variable xi.
We say that T is a (zero-dimensional) regular chain if, for i = 2, . . . , n the initial
of ti is invertible modulo the ideal 〈t1, . . . , ti−1〉. Regular chains are also defined
in positive dimension, see [1,15].

For any maximal ideal M of k[x1, . . . ,xn] there exists a regular chain T
generatingM, see [14]. Therefore, for any zero-dimensional ideal I of k[x1, . . . ,
xn] there exist finitely many regular chains T1, . . . , Te ⊂ k[x1, . . . , xn] such
that we have V (I) = V (T1) ∪ · · · ∪ V (Te). Various algorithms, among them
those published in [20,10,14,19,4], compute such decompositions. The Triangu-
larize command of the RegularChains library [16] in Maple implements the de-
composition algorithm of [4]. This library also implements another algorithm
of [4] that we will use in this paper and which is specified hereafter. For a
regular chain T ⊂ k[x1, . . . , xn] and a polynomial p ∈ k[x1, . . . , xn], the opera-
tion Regularize(p, T) returns regular chains T1, . . . , Te ⊂ k[x1, . . . , xn] such that
we have V (T) = V (T1) ∪ · · · ∪ V (Te) and for all i = 1, . . . , e we have either
V (p) ∩ V (Ti) = ∅ or V (T) ⊂ V (p). We will make use of the following result
which can easily be derived from [4]: if Regularize(p, T) returns T1, . . . , Te, then
we have

(∀p ∈ V (Ti)) Regularize(p, Ti) = Ti. (3)

3 Intersection Multiplicity

As above, let f1, . . . , fn ∈ k[x1, . . . , xn] be n polynomials in n variables such that
the ideal 〈f1, . . . , fn〉 they generate is zero-dimensional. Let p ∈ V (f1, . . . , fn)
and denote the maximal ideal at p byMp. When needed, denote the coordinates
of p by (α1, . . . , αn), so that we haveMp = 〈x1 − α1, . . . , xn − αn〉.
Definition 1. The intersection multiplicity of p in V (f1, . . . , fn) is given by
the length of OAn,p/ 〈f1, . . . , fn〉 as an OAn,p-module.

Since we consider An as defined over the algebraically closed field k, we know (see,
for instance, [8]) that the length of this module is equal to its dimension as a k
vector space, which is precisely the definition of Section 1. Our algorithm depends
on the fact that the intersection multiplicity satisfies a generalized collection of
properties similar to (2-1) through (2-7) for the bi-variate case. They are the
following:

(n-1) I(p; f1, . . . , fn) is a non-negative integer.
(n-2) I(p; f1, . . . , fn) = 0 if and only if p /∈ V (f1, . . . , fn).
(n-3) I(p; f1, . . . , fn) is invariant under affine change of coordinates on An.
(n-4) I(p; f1, . . . , fn) = I(p; fσ(1), . . . , fσ(n)) for any σ ∈ Sn.
(n-5) I(p; (x1−α1)

m1 , . . . , (xn−αn)mn) = m1 · · ·mn, for all non-negative inte-
gers m1, . . . , mn.

(n-6) If g, h ∈ k[x1, . . . , xn] make f1, . . . , fn−1, gh a zero-dimensional, then I(p;
f1, . . . , fn−1, gh) = I(p; f1, . . . , fn−1, g) + I(p; f1, . . . , fn−1, h) holds.

(n-7) I(p; f1, . . . , fn−1, g) = I(p; f1, . . . , fn−1, g + h) for all h ∈ 〈f1, . . . , fn−1〉.

202 S. Marcus, M.M. Maza, and P. Vrbik

In order to reduce the case of n variables (and n polynomials) to that of n− 1
variables (see Section 7) we require an additional property when n > 2. Of course,
the assumptions necessary for this property may not hold for every polynomial
system. However, we discuss in Section 7 a technique that can overcome this
limitation for some practical examples.

(n-8) Assume the hypersurface hn = V (fn) is non-singular at p. Let vn be its
tangent hyperplane at p. Assume furthermore that hn meets each compo-
nent of the curve C = V (f1, . . . , fn−1) transversely, that is, the tangent
cone TCp(C) intersects vn only at the point p. Let h ∈ k[x1, . . . , xn] be
the degree 1 polynomial defining vn. Then, we have

I(p; f1, . . . , fn) = I(p; f1, . . . , fn−1, hn).

Recall that the tangent cone TCp(C) can be thought of as the set of tangents
given by limiting the secants to C passing through p. If g1, . . . , gs ∈ k[x1, . . . , xn]
are polynomials generating the radical of the ideal 〈f1, . . . , fn−1〉, then TCp(C)
is also given by TCp(C) = 〈in(g1), . . . , in(gs)〉 where in(gi), for i = 1, . . . , s, is
the initial form of gi, that is, the homogeneous component of gi of the lowest
degree.

Theorem 1. I(p; f1, . . . , fn) satisfies the properties (n-1) through (n-8).

Proof. For the first seven properties, adapting the proofs of [9,12] is routine,
except for (n-6), and we omit them for space consideration. For (n-6) and (n-8),
as well as the others, the reader is refered to our technical report with the same
title and available in the Computing Research Repository (CoRR).

4 Expansion of a Polynomial Family about at an
Algebraic Set

The tools introduced herein help build an algorithm for computing the intersec-
tion multiplicity of f1, . . . , fn at any point of V (f1, . . . , fn), whenever the ideal
〈f1, . . . , fn〉 is zero-dimensional and when, for n > 2, certain hypothesis are met.

Let y1, . . . , yn be n new variables with ordering yn > · · · > y1. Let F 1, . . . ,
Fn ∈ k[x1, . . . , xn, y1, . . . , yn] be polynomials in x1, . . . , xn, y1, . . . , yn with coef-
ficients in k. We order the monomials in y1, . . . , yn (resp. x1, . . . , xn) with the
lexicographical term order induced by yn > · · · > y1 (resp. xn > · · · > x1). We
denote by SF 1 , . . . , SF n the respective monomial supports (i.e. the set of mono-
mials with non-zero coefficients) of F 1, . . . , Fn, regarded as polynomials in the
variables y1, . . . , yn and with coefficients in k[x1, . . . , xn]. Let i be any integer
index in 1, . . . , n. Write

F i =
∑

μ∈SF i

F i
μμ, (4)

On Fulton’s Algorithm for Computing Intersection Multiplicities 203

where all F i
μ are polynomials of k[x1, . . . , xn]. In particular, the F i

1 represent F i
μ

when μ = y0
1 · · · y0

n = 1. Denote by F i
<yn

the polynomial of k[x1, . . . , xn][y1, . . . ,
yn−1] defined by

F i
<yn

=
∑

μ ∈ Si
F

deg(μ, yn) = 0

F i
μμ.

Let I be a (proper) ideal of k[x1, . . . , xn]. We denote by NF(f, I) the normal
form of f w.r.t. the reduced lexicographical Gröbner basis of I for xn > · · · > x1.

Let p ∈ An with coordinates α = (α1, . . . , αn). For a monomial μ = ye1
1 · · · yen

n ,
we denote by shift(μ, α) the polynomial of k[x1, . . . , xn] defined by

shift(μ, α) = (x1 − α1)
e1 · · · (xn − αn)en .

We denote byMα the maximal ideal of k[x1, . . . , xn] generated by x1 − α1, . . . ,
xn − αn. When no confusion is possible, we simply write F and f instead of F i

and fi. We denote by eval(F, α) the polynomial

eval(F, α) =
∑

μ∈SF

NF(Fμ,Mα) shift(μ, α) (5)

in k[x1, . . . , xn]. We call this the specialization of F at α. Let W ⊂ An be an
algebraic set over k, that is, the zero set V (P) in An of some P ⊂ k[x1, . . . , xn].
Finally, consider a family (fα, α ∈ W) of polynomials of k[x1, . . . , xn].

We say that F is an expansion of f about W if for every point α of W we
have f = eval(F, α). More generally, we say that F is an expansion of the
polynomial family (fα, α ∈ W) about W if for every point α of W we have
fα = eval(F, α). We conclude this section with a fundamental example of
the concepts introduced below. For μ = ye1 · · · yen , we denote by c(f, μ) the
polynomial of k[x1, . . . , xn] defined by c(f, μ) = 1

e1!···en!
∂e1+···+enf
∂x

e1
1 ···∂xen

n
. (One should

recognize these as the coefficients in a Taylor expansion.) Let SC(f) be the set
of the ye1 · · · yen monomials such that ei ≤ deg(f, xi) holds for all i = 1, . . . , e.
Then, the polynomial C(f) =

∑
μ∈SC(f) c(f, μ)μ is an expansion of f about W .

5 Computing Intersection Multiplicities of Bivariate
Systems: Irreducible Case

We follow the notations introduced in Section 4. Let F 1, . . . , Fn be the expan-
sions of f1, . . . , fn about an algebraic set W ⊂ An. In this section, we assume
W = V (M) holds for a maximal idealM of k[x1, . . . , xn] and that n = 2 holds.

Theorem 2. The intersection multiplicity of f1, f2 is the same at any point
of V (M); we denote it by I(M; f1, f2). Moreover, Algorithm 1 computes this
multiplicity from F 1, F 2 by performing arithmetic operations in k[x1, x2] only.

This first claim in Theorem 2 should not surprise the expert reader. The length of
the module OAn,p/ 〈f1, . . . , fn〉 over a non-algebraically closed field is not neces-
sarily equal to the dimension as a k vector space, though length equals dimension

204 S. Marcus, M.M. Maza, and P. Vrbik

Algorithm 1. IM2(M; F 1, F 2)

Input: F 1, F 2 ∈ k[x1, x2, y1, y2] andM⊂ k[x1, x2] maximal such that F 1, F 2

are expansions of f1, f2 ∈ k[x1, x2] about V (M) and 〈f1, f2〉 is a
zero-dimensional ideal.

Output: I(M; f1, f2).

1 if NF(F 1
1 ,M) �= 0 then

2 return 0;

3 if NF(F 2
1 ,M) �= 0 then

4 return 0;

5 r := deg(F 1
<y2

mod M, y1);
6 s := deg(F 2

<y2
mod M, y1);

7 if r = 0 then

8 return tdeg(F 2
<y2

modM, y1) + IM2(M;
F1−F1

<y2
y2

, F 2);

9 if s = 0 then

10 return tdeg(F 1
<y2

modM, y1) + IM2(M;F 1,
F2−F2

<y2
y2

);

11 a1 := lc(F 1
<y2

mod M, y1);
12 a2 := lc(F 2

<y2
mod M, y1);

13 if r ≤ s then
14 let b1 ∈ k[x1, x2] such that a1 b1 ≡ 1 mod M;
15 H := F 2 − a2b1y

s−r
1 F 1;

16 return IM2(M; F 1, H);

17 let b2 ∈ k[x1, x2] such that a2 b2 ≡ 1 mod M;
18 H := F 1 − a1b2y

r−s
1 F 2;

19 return IM2(M; H,F 2);

when the field is algebraically closed. The dimension, however, remains the same
over both k and k.

Proof. We show that IM2(M; F 1, F 2), as returned by Algorithm 1, computes
I(p; f1, f2) uniformly for all p ∈ V (M) and performs operations in k[x1, xn]
only. Algorithm correctness and termination follows from three claims.

Claim 1: If I(p; f1, f2) = 0 holds for some p ∈ V (M), then IM2(M; F 1, F 2)
correctly returns 0.

Claim 2: If I(p; f1, f2) > 0 holds for all p ∈ V (M), and if either deg(F 1
<y2

modM, y1) = 0 or deg(F 2
<y2

mod M, y1) = 0 holds, then IM2(M; F 1, F 2)

correctly invokes IM2(M; G1, G2) where each Gi ∈ k[x1, x2, y1, y2] is an expan-
sion of a polynomial family about V (M) such that min(deg(G1, y2), deg(G2,
y2)) < min(deg(F 1, y2), deg(F 2, y2)).

Claim 3: If I(p; f1, f2) > 0 holds for all point p ∈ V (M), and if
deg(F 1

<y2
mod M, y1) > 0 and deg(F 2

<y2
mod M, y1) > 0 both hold, then

the call IM2(M; F 1, F 2) correctly invokes IM2(M; G1, G2) where each Gi ∈

On Fulton’s Algorithm for Computing Intersection Multiplicities 205

k[x1, x2, y1, y2] is an expansions of a polynomial family about V (M) such
that min(deg(G1

<y2
, y1), deg(G2

<y2
, y1) is strictly less than min(deg(F 1

<y2
, y1),

deg(F 2
<y2

, y1).

Proof (of Claim 1). Assume that there is p ∈ V (M) such that I(p; f1, f2) = 0
holds. From (2-2), this implies that we have p
∈ V (f1, f2). SinceM is maximal,
we deduce that W ∩ V (f) = ∅ holds. Thus, the intersection multiplicity of f1, f2

is null at any point of V (M). Moreover, deciding whether this latter fact holds
amounts to testing whether one of NF(F 1

1 ,M), NF(F 2
1 ,M) is zero or not, which

can be computed in k[x1, x2] with a regular chain generatingM.

Remark 1. From now on, we assume that I(p; f1, f2) > 0 holds for all p ∈ V (M).
Since M is maximal, this implies that W ⊆ V (F 1

1) and W ⊆ V (F 2
1) both hold.

Besides, the idealM is one of the associated primes of 〈f1, f2〉 ⊂ k[x1, x2].

Proof (of Claim 2). Assume that either

deg
(
F 1

<y2
modM, y1

)
= 0 or deg

(
F 2

<y2
mod M, y1

)
= 0

holds. Since the role of f1 and f2 can be exchanged, using (2-4), we assume that
deg(F 1

<y2
mod M, y1) = 0 holds. Consider any point α = (α1, α2) of V (M).

Since F 1
1 is null moduloM, the relation deg(F 1

<y2
modM, y1) = 0 implies that

the whole polynomial F 1
<y2

is actually null moduloM. Thus, the specialization
eval(F 1, α) can be divided by x2 − α2. Applying (2-6), we have

I(p; f1, f2) = I(p; x2 − α2, f2) + I(p; f1

x2−α2
, f2), (6)

where I(p; x2 − α2, f2) is the trailing degree of f2 evaluated at x2 = α2 (via
(2-5)). Since F 1, F 2 are expansions of f1, f2 about V (M), Equation (6) yields

IM2(M; F 1, F 2) = tdeg(F 2
<y2

mod M, y1) + IM2(M;
F 1−F 1

<y2

y2
, F 2) (7)

where tdeg(F 1
<y2

mod M, y1) is the trailing degree of F 1
<y2

regarded as a poly-
nomial in y1 with coefficients in the field k[x1, x2]/M.

Proof (of Claim 3). We assume that

deg(F 1
<y2

mod M, y1) > 0 and deg(F 2
<y2

mod M, y1) > 0

both hold. Since the role of f1 and f2 can be exchanged, using (2-4),

deg(F 1
<y2

mod M, y1) ≤ deg(F 2
<y2

mod M, y1)

is assumed to hold. Let a1, a2 ∈ k[x1, x2] be polynomials and r ≤ s be positive
integers such that a1y

r
1 and a2y

s
1 are the leading terms of F 1

<y2
and F 2

<y2
regarded

as polynomials in y1 with coefficients in k[x1, x2]/M. Since W ∩ V (a1) = ∅ holds
there exists a polynomial b1 ∈ k[x1, x2] such that we have a1 b1 ≡ 1 mod M.
Define H := F 2−a2b1y

s−r
1 F 1. Clearly, this an expansion of a polynomial family

(hα, α ∈ V (M)) about V (M) such that we have eval(H, α) = hα where

hα := f2 − a2(α)b1(α)(x1 − α1)
s−rf1. (8)

Using (2-7), we have I(p; f1, f2) = I(p; f1, hα), for all p ∈ V (M), yielding

IM2(M; F 1, F 2) = IM2(M; F 1, H). (9)

206 S. Marcus, M.M. Maza, and P. Vrbik

6 Computing Intersection Multiplicities of Bivariate
Systems: Zero-Dimensional Case

The generalization from irreducible zero-dimensional algebraic sets V (M) to
arbitrary ones relies on standard techniques for computing triangular decompo-
sition of polynomial systems (see for instance [20,10,14,19,4]).

Algorithm 2 is the adaptation of Algorithm 1 for n = 2 variables. In this
algorithm we use two yet unmentioned methods: LT and Tdeg, and one yet
unmentioned language construct: output. Similar to Regularize, the call LT(F i,
T), or leading term of F i modulo 〈T 〉, returns a list of pairs, (C, aF i), where
C ⊂ k[x1, x2] is a regular chain and aF i is the lexicographical leading term of
F i when viewed as a polynomial in y1 < y2 with coefficients in k[x1, x2]/〈C〉;
moreover the union of V (C)’s form a partition of V (T). The specification for
TDeg “trailing degree” is analogue. Finally, as we are returning a sequence we
use the language construct output(x, y) to indicate that (x, y) has been added
to the sequence that will ultimately be returned.

Theorem 3. Algorithm 2 terminates and works correctly.

Proof. We distinguish two cases: Algorithm 2 does not split the computations
and does split the computations. In this proof, C1, . . . , Ce ⊂ designate regular
chains of k[x1, . . . , xn] such that V (T) is the disjoint union of V (C1),. . . ,V (Ce).
Non-splitting case: Assume that IM2(T ; F 1, F 2) computed by Algorithm 2 does
not split the computation, thus returning a single pair (T, m). Using Relation (3),
one can check that IM2(Ci; F

1, F 2) returns (Ci, m), for each i = 1, . . . , e. Assume
that C1, . . . , Ce generate maximal ideals. One can check that, when it does not
split, Algorithm 2 performs the same computation as Algorithm 1. By virtue
of Theorem 2, Algorithm 1 works correctly with input maximal ideals, thus
each call IM2(Ci; F

1, F 2) correctly returns (Ci, m). Consequently, IM2(T ; F 1, F 2)
correctly returns (T, m) also, since is the disjoint union of V (C1),. . . ,V (Ce).

Splitting case: From now on, assume now that the call IM2(T ; F 1, F 2) com-
puted by Algorithm 2 splits and returns pairs (C1, m1), . . . , (Ce, me), where
we no longer assume that C1, . . . , Ce generate maximal ideals. From the non-
splitting case and Relation (3), we know that each call IM2(Ci; F

1, F 2) correctly
returns (Ci, m). We conclude again with the fact that V (T)

7 Reduction to the Bivariate Case

We return to the n-variate case, using the same notations as in Sections 3. We
discuss how this n-variate case can be reduced to the bivariate one, for which
Algorithm 2 computes the intersection multiplicity of two plane curves (without
common components) at any point of their intersection.

We start by considering Property (n-8) of Section 3. Let p ∈ V (f1, . . . , fn).
Assume the hypersurface hn = V (fn) is non-singular at p. Let vn be its tangent
hyperplane at p. Assume furthermore that the tangent cone TCp(C) intersects

On Fulton’s Algorithm for Computing Intersection Multiplicities 207

Algorithm 2. IM2(T ; F 1, F 2)

Input: F 1 and F 2 as given in Algorithm 1
Output: Finitely many pairs (Ti, mi) where Ti ⊂ k[x1, . . . , xn] are regular

chains and mi ∈ Z+ such that Equation (1) holds and for all
p ∈ V (T i) we have I(p; f1, . . . , fn) = mi.

1 for T ∈ Regularize
(
F 1

1 , T
)

do
2 if F 1

1 �∈ 〈T 〉 then
3 output(T, 0);

4 else
5 for T ∈ Regularize

(
F 2

1 , T
)

do
6 if F 2

1 �∈ 〈T 〉 then
7 output(T, 0);

8 else
9 for (T, aF1) ∈ LT

(
F 1

<y2
, T
)

do
10 for (T, aF2) ∈ LT

(
F 2

<y2
, T
)

do
/* Wlog deg(F 1

<y2
) ≤ deg(F 2

<y2
) */

11 if aF1 ∈ 〈T 〉 then
12 for (T, d) ∈ TDeg

(
F 2

<y2
, T
)

do

13 for (T, i) ∈ IM2(T,
F1−F1

<y2
y2

, F 2) do
14 output(T, (d + i));

15 else
16 H ← F 2 − aF2 · Inverse

(
a1

F , T
) · F 1;

17 output
(
IM2(T, F 1, H)

)
;

vn only at the point p. Let h ∈ k[x1, . . . , xn] be the degree 1 polynomial defining
vn. Finally, recall (Theorem 1) that I(p; f1, . . . , fn) = I(p; f1, . . . , fn−1, h) holds.

Up to re-numbering the variables, we can assume that the coefficient of xn

in h is non-zero, thus h = xn − h′, where h′ ∈ k[x1, . . . , xn−1]. Hence, we can
rewrite the ideal 〈f1, . . . , fn−1, h〉 as 〈g1, . . . , gn−1, h〉 where gi is obtained from
fi by substituting xn with h′. If instead of a point p, we have a zero-dimensional
regular chain T ⊂ k[x1, . . . , xn], we use the techniques developed in Sections 5
and 6 to reduce to the case of a point. Assuming x1 < · · · < xn, this leads to
I(p; f1, . . . , fn) = I(T ∩ k[x1, . . . , xn−1]; g1, . . . , gn−1).

In practice, this reduction from n to n − 1 variables does not always apply.
For instance, this is the case for Ojika 2 ⊆ k[x, y, z]:

x2 + y + z − 1 = x + y2 + z − 1 = x + y + z2 − 1 = 0. (10)

However, using the equation x2 + y + z − 1 = 0 to eliminate z from the other
two, we obtain two bivariate polynomials f, g ∈ k[x, y]. At any point of p ∈ V (h,
f, g) the tangent cone of the curve V (f, g) is independent of z; in some sense it is

208 S. Marcus, M.M. Maza, and P. Vrbik

“vertical”. Moreover, at any point of p ∈ V (h, f, g) the tangent space of V (h) is
not vertical. Thus, the reduction applies without computing any tangent cones.

We conclude this section by explaining how the tangent cone TCp(C) is com-
puted when the above trick does not apply. For simplicity, assume k = C and
assume that none of the V (fi) are singular at p. For each component G through
p of C = V (f1, . . . , fn−1), we proceed as follows: There exists a neighborhood B
of p such that V (fi) is not singular at all q ∈ (B ∩ G) \ {p}, for i = 1, . . . , n− 1.
Let vi(q) be the tangent hyperplane of V (fi) at q. Regard v1(q) ∩ · · · ∩ vn−1(q)
as a parametric variety with the coordinates of q as parameters. Then, we have
TCp(G) = v1(q) ∩ · · · ∩ vn−1(q) when q approaches p, which we compute by a
variable elimination process. Finally, TCp(C) is the union of all the TCp(G). This
approach avoids standard basis computation and extends easily for working with
the zero set V (T) of a zero-dimensional regular chain T instead of a point p.

8 Implementation

We have done an implementation in Maple that depends heavily on the Regular-
Chains library. As this implementation is sufficiently different from the theoretical
algorithm it is meaningful to discuss how we realized it.

These differences can be traced back to a common origin: the data struc-
ture simulating the expansions F i defined in Section 4 for the purpose of the
algorithms of Sections 5 and 6. Recall that the expansions F 1, . . . , Fn belong
to k[x1, . . . , xn, y1, . . . , yn] where x1, . . . , xn are the variables of the input poly-
nomials f1, . . . , fn and where y1, . . . , yn are essentially “placeholders”. But our
algorithms fundamentally treat F 1, . . . , Fn as vectors, performing only additions
and subtractions on them.

While these expansions F 1, . . . , Fn are a nice trick to manipulate “simultane-
ously” Taylor expansions at several points of a variety, a naïve implementation
could suffer from performance bottleneck (hardly surprisingly when doubling the
number of variables). In particular, we observe that during the execution of the
algorithms, all the partial derivatives of f1, . . . , fn may not be needed. Therefore,
one may wish to take advantage of lazy or delayed evaluation.

A structure utilizing delayed computation is well suited for this. To demon-
strate why, suppose that F i is a data structure implementing F i such that F i(a1,
. . . , an) = F i

μ for μ = ya1
1 · · · yan

n . To determine F i(a1, . . . , an + 1) one must

only compute 1
an+1

∂Fi(ai,...,an)
∂xn

. Combining this rule with F i (a1, . . . , an−1, 0) =

F i (a1, . . . , an−1) and F i(0) = fi gives a recursive function whose output matches
our specification. We call these “lazy Taylor expansions” (LTEs).

Moreover these LTEs have a very useful property: F i (a1, . . . , an−1) ≡ F i
<yn

.
They are also surprisingly straightforward to implement in Maple.

Notice that the “data structure” for the LTEs are in fact procedures. There-
fore any method processing LTEs, like Subtract for instance, will take as input
procedures and return a procedure. This notion may be unusual but requires
very little overhead (practically undetectable in our experiments). We outline
the remaining important methods for our algorithms:

On Fulton’s Algorithm for Computing Intersection Multiplicities 209

Division by yn:
F i(a1, . . . , an)

yn
= F i(a1, . . . , an + 1)

Multiplication by μ: Let F i(a1, . . . , an) = 0 if there is i for which ai < 0, then

F i(a1, . . . , an) ·
(
yb1
1 · · · ybn

n

)
= F i(a1 − b1, . . . , an − bn)

Substitute yn = h1y1 + · · · + hn−1yn−1. For every b1, . . . , bn with bn > 0,
F(b1, . . . , bn)← 0 and

F(a1 + k1, . . . , an−1 + kn−1)← F(a1, . . . , an−1)+∑
k1+···+kn−1=bn

(
bn

k1, . . . , kn−1

)
hk1

1 · · ·hkn−1

n−1 .

Using these LTEs along with careful, and repeated, invocations of the Regular-
Chains[Regularize] command, our algorithms can be realized.

9 Experiments

We have fully implemented the bivariate case, that is, Algorithm 2, on top of the
RegularChains library in Maple. As this is the base case for the n-variate algo-
rithm it is of paramount importance that it runs fast and correctly. The n-variate
implementation is a work in progress and there is large room for improvements.

We choose to study systems taken from [2] and [13]—a suite of examples used
for benchmarking and testing bivariate system solvers. All timings are given in
seconds and the base field has characteristic 962592769 in all cases. It should be
noted that, despite 962592769 being a so-called FFT-prime, we are not using the
FastArithmeticTools package of the RegularChains library. This is because our
current implementation is only generic and works in any characteristic. However,
some of the systems in [13] are too challenging for being directly solved in char-
acteristic zero without using an approach based on modular, or other advanced,
techniques. Results are in Table 1.

We are happy with the results of these experiments for two reasons. First,
we could not find an instance where Triangularize produced regular chains for
which our algorithm IM2 could not correctly and expeditiously determine the
intersection multiplicities. Secondly, applying Property (2-5) from Section 1 to
our bivariate code admits a speedup factor in the hundreds. Indeed this property
enables us to determine if the intersection multiplicity is one simply by checking
the invertibility of the Jacobian of f1, f2 modulo the current regular chain.

Our n-variate implementation is based on the techniques discussed in Sec-
tion 7. As with the bivariate case, our experiments are done in characteristic
962592769. We have taken examples from [7] (a paper on intersection multiplic-
ity) and from [3] (a test suite for benchmarking homotopy solvers). Observe that
the reduction techniques of Section 7 apply successfully for 3 examples and par-
tially for 2 examples. We also note that tangent cone computations are currently
a bottleneck. A new algorithm for this task is work in progress.

210 S. Marcus, M.M. Maza, and P. Vrbik

Table 1. (LEFT) Input Polynomials (after specialization to bivariate). (RIGHT)
Experimental results for the bivariate case. Dimension is calculated by Maple’s
PolynomialIdeals:-NumberOfSolutions command which gives the number of solutions
counted with multiplicity. Time(
ize) is time required by RegularChains:-Triangularize
to decompose the system into N=#rc’s many regular chains and Time(rc_im) =
Time(rc_im(rc1)) + · · ·+ Time(rc_im(rcN)): the total time for rc_im, our imple-
mentation of Algorithm 3, to determine intersection multiplicities of an entire system.

Label Name terms degree

1 hard_one 30 37
2 L6_circles 4 24
3 spiral29_24 63 52
4 tryme 38 59
5 challenge_12 49 30
6 challenge_12_1 64 40
7 compact_surf 52 18
8 degree_6_surf 467 42
9 mignotte_xy 81 64
10 SA_4_4_eps 63 33
11 spider 292 36

System Dim Time(
ize) #rc’s Time(rc_im)

〈1, 3〉 888 9.7 20 19.2
〈1, 4〉 1456 226.0 8 9.023
〈1, 5〉 1595 169.4 8 25.4
〈3, 5〉 1413 22.5 27 28.6
〈4, 5〉 1781 218.4 9 13.9
〈5, 1〉 1759 113.0 10 15.8
〈6, 8〉 1680 99.7 12 37.6
〈6, 9〉 2560 299.3 10 22.9
〈6, 10〉 1320 131.9 7 8.4
〈6, 11〉 1440 59.8 17 27.5
〈7, 8〉 1152 32.8 12 16.2
〈7, 9〉 756 18.5 16 11.2
〈8, 9〉 1984 374.5 10 11.3
〈8, 10〉 1362 232.5 7 9.3
〈8, 11〉 1256 49.6 17 45.7
〈9, 11〉 1792 115.1 16 17.2
〈10, 11〉 1180 40.9 17 21.3

Table 2. Experimental results for the n-variate case. Dimension is again the dimen-
sion of the vector space k[x1, . . . , xn]/〈f1, . . . , fn〉 and Points is the degree of the variety
V (f1, . . . , fn).
ize and rc_im are the same as in Table 1. Cones and COV give (re-
spectively) the time to calculate the tangent cones or to do a change of variables of
the system. Finally, Total is the sum of the previous three columns and Success is
the number of points (counted with multiplicity) for which the bivariate reduction was
success full over the dimension of of the vector space k[x1, . . . , xn]/〈f1, . . . , fn〉.

Name Dim Points
ize Cones COV rc_im Total Success

Nbody5 99 49 1.60 0.00 0.06 1.90 2.00 51/99
mth191 27 18 0.56 5400.00 0.04 0.01 5400.00 23/27

ojika2 8 5 0.20 8.20 0.13 0.47 8.80 8/8
E-Arnold1 45 30 0.89 1100.00 0.01 1800.00 2900.00 45/45

ShiftedCubes 27 25 0.66 0.00 0.00 0.52 0.52 27/27

On Fulton’s Algorithm for Computing Intersection Multiplicities 211

Acknowledgements. This project has benefited from useful conversations with
Dr. Roi Docampo and Dr. Noah Giansiracusa, and was funded, in part, by grants
from Maplesoft, MITACS and NSERC of Canada.

References

1. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J.
Symb. Comp. 28(1-2), 105–124 (1999)

2. Berberich, E., Emeliyanenko, P., Sagraloff, M.: An elimination method for solv-
ing bivariate polynomial systems: Eliminating the usual drawbacks. CoRR,
abs/1010.1386 (2010)

3. Bini, D., Mourrain, B.: Polynomial test suite,
http://www-sop.inria.fr/saga/POL/ (accessed: April 1, 2012)

4. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decompositions
of polynomial systems. In: Proc. ISSAC 2011, pp. 83–90. ACM (2011)

5. Cheng, J.-S., Gao, X.-S.: Multiplicity preserving triangular set decomposition of
two polynomials. CoRR, abs/1101.3603 (2011)

6. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Text in Math-
ematics, vol. 185. Springer, New York (1998)

7. Dayton, B.H., Zeng, Z.: Computing the multiplicity structure in solving polynomial
systems. In: Proceedings of ISSAC 2005, pp. 116–123. ACM (2005)

8. Fulton, W.: Introduction to intersection theory in algebraic geometry. CBMS Re-
gional Conference Series in Mathematics, vol. 54. Conference Board of the Math-
ematical Sciences, Washington, DC (1984)

9. Fulton, W.: Algebraic curves. Advanced Book Classics. Addison-Wesley (1989)
10. Kalkbrener, M.: A generalized euclidean algorithm for computing triangular rep-

resentations of algebraic varieties. J. Symb. Comp. 15, 143–167 (1993)
11. Kirwan, F.: Complex algebraic curves. London Mathematical Society Student

Texts, vol. 23. Cambridge University Press, Cambridge (1992)
12. Knapp, A.W.: Cornerstones. In: Advanced algebra. Birkhäuser Boston Inc., Boston

(2007), Along with a companion volume ıt Basic algebra
13. Labs, O.: A list of challenges for real algebraic plane curve visualization software. In:

Emiris, I.Z., Sottile, F., Theobald, T. (eds.) Nonlinear Computational Geometry,
pp. 137–164. Springer, New York (2010)

14. Lazard, D.: Solving zero-dimensional algebraic systems. J. Symb. Comp. 15, 117–
132 (1992)

15. Lemaire, F., Moreno Maza, M., Pan, W., Xie, Y.: When does (T) equal Sat(T)?
In: Proc. ISSAC 2008, pp. 207–214. ACM Press (2008)

16. Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library. In: Ilias, S.
(ed.) Maple Conference 2005, pp. 355–368 (2005)

17. Li, Y.L., Xia, B., Zhang, Z.: Zero decomposition with multiplicity of zero-
dimensional polynomial systems. CoRR, abs/1011.1634 (2010)

18. Shafarevich, I.R.: Basic algebraic geometry 1, 2nd edn. Springer, Berlin (1994)
19. Wang, D.M.: Elimination Methods. Springer (2000)
20. Wu, W.T.: A zero structure theorem for polynomial equations solving. MM Re-

search Preprints 1, 2–12 (1987)

http://www-sop.inria.fr/saga/POL/

A Note on the Space Complexity
of Fast D-Finite Function Evaluation

Marc Mezzarobba

Inria, AriC, LIP (UMR 5668 CNRS-ENS Lyon-Inria-UCBL)
marc@mezzarobba.net

Abstract. We state and analyze a generalization of the “truncation
trick” suggested by Gourdon and Sebah to improve the performance of
power series evaluation by binary splitting. It follows from our analysis
that the values of D-finite functions (i.e., functions described as solutions
of linear differential equations with polynomial coefficients) may be com-
puted with error bounded by 2−p in time O(p(lg p)3+o(1)) and space O(p).
The standard fast algorithm for this task, due to Chudnovsky and Chud-
novsky, achieves the same time complexity bound but requires Θ(p lg p)
bits of memory.

1 Introduction

Binary splitting is a well-known and widely applicable technique for the fast
multiple precision numerical evaluation of rational series. For any series

∑
n sn

with lim supn |sn|1/n
< 1 whose terms sn obey a linear recurrence relation with

polynomial coefficients, e.g.,

ln 2 =

∞∑
n=0

sn, sn =
1

(n + 1)2n+1
, 2(n + 2)sn+1 − (n + 1)sn = 0,

the binary splitting algorithm allows one to compute the partial sum
∑N−1

n=0 sn

in O(M(N(lg N)2)) bit operations [5,3]. Here M(n) stands for the complexity of
multiple precision integer multiplication, and lg denotes the binary logarithm.
As N = O(p) terms of the series are enough to make the approximation error
less than 2−p, the complexity of the algorithm is softly linear in the precision p,
assuming M(n) = O(n(lg n)O(1)).

Methods based on binary splitting tend to be favored in practice even in
cases when asymptotically faster algorithms (typically AGM iterations [2]) would
apply. One high-profile example is the computation of billions of digits of clas-
sical constants such as π, ζ(3) or γ. Basically all record computation in recent
years were achieved by evaluating suitable series using variants of binary split-
ting [9,28].

A drawback of the classical binary splitting algorithm, both from the com-
plexity point of view and in practice, is its comparatively large memory usage.
Indeed, the algorithm amounts to the computation of a product tree of matri-
ces derived from the recurrence—see Sect. 3 below for details. The intermediate

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 212–223, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Note on the Space Complexity of Fast D-Finite Function Evaluation 213

results are matrices of rational numbers whose bit sizes roughly double from
one level to the next. Near the root, their sizes can (and in general do) reach
Θ(p lg p), even though the output has size Θ(p).

However, the space complexity can be lowered to O(p) using a slight variation
of the classical algorithm. The basic idea is to truncate the intermediate results
to a precision O(p) when they start taking up more space than the final result.
Of course, these truncations introduce errors. To make the trick into a genuine
algorithm, we need to analyze the errors, add a suitable number of “guard digits”
at each step and check that the space and time complexity of the resulting
process stay within the expected bounds.

The opportunity to improve the practical behavior of binary splitting using
truncations has been noticed by authors of implementations on several occasions
over the last decade or so. Gourdon and Sebah [10] describe truncation as a
“crucial” optimization. Besides the expected drop of memory usage, they report
running time improvements by an “appreciable” constant factor. Cheng et al. [4]
compare truncation with alternative (less widely applicable but sometimes more
efficient) approaches. Most recently, Kreckel [14] explicitly asks how to make
sure that the new roundoff errors do not affect the correctness of the result.

Indeed, the above-mentioned error analysis did not appear in the literature
until very recently. An article by Yakhontov [26,27] now provides the required
bounds in the case of the generalized hypergeometric series pFq, which covers all
examples where the truncation trick had been used before. But the applicability
of the method is actually much wider.

The purpose of this note is to present a more general and arguably simpler
analysis. Our version is more general in two main respects. First, besides hyper-
geometric series, it applies to the solutions of linear ordinary differential equa-
tions with rational coefficients, also known as D-finite (or holonomic) series [21].
D-finite series are exactly those whose coefficients obey a linear recurrence re-
lation with rational coefficients, while hypergeometric series correspond to re-
currences of the first order. Second, we take into account the coefficient size of
the recurrence that generates the series to be computed. Allowing the size of
the coefficients to vary with the target precision p makes it possible to use the
modified binary splitting procedure as part of the “bit burst” algorithm [5] to
handle evaluations at general real or complex points approximated by rationals
of size Θ(p).

Additionally, our analysis readily adapts to other applications of binary split-
ting. The simplicity and generality of the proof are direct consequences of viewing
the algorithm primarily as the computation of a product tree. See Gosper [8] and
Bernstein [1, §12–16] for further comments on this point of view.

The remainder of this note is organized as follows. Section 2 contains some nota-
tions and assumptions. In Sect. 3, we recall the standardbinary splitting algorithm,
which will serve as a subroutine in the linear-space version. Then, in Sect. 4, we
state and analyze the “truncated” variant that achieves the linear space complex-
ity for general D-finite functions. Finally, Sect. 5 offers a few comments on other
variants of the binary splitting method and possible extensions of the analysis.

214 M. Mezzarobba

2 Setting

The performance of the binary splitting algorithm crucially depends on that of
integer multiplication. Following common usage, we denote by M(n) a bound
on the time needed to multiply two integers of at most n bits. Currently the
best theoretical bound [7] is M(n) = O(n(lg n) exp O(lg∗ n)), where lg∗ n =
min{k lg◦k n � 1}. In practice, implementations such as GMP [11] use variants
of the Schönhage-Strassen algorithm of complexity O(n(lg n)(lg lg n)). We make
the usual assumption [25] that the function n �→ M(n)/n is nondecreasing. It fol-
lows that M(n)+M(m) � M(n+m). We also assume that the space complexity
of integer multiplication is linear, which is true for the standard algorithms.

Write � = �(i), and define the bit size of a number (x + iy)/w ∈ � (where
w, x, y ∈ �) as �lg w�+ �lg x�+ �lg y�+1. Consider a linear differential equation
with coefficients in �(z). It will prove convenient to clear all denominators (both
polynomial and integer) and multiply the equation by a power of z to write
it as(

ar(z)
(
z

d

dz

)r

+ · · ·+ a1(z)z
d

dz
+ a0(z)

)
· y(z) = 0, ak ∈ �[i][z]. (1)

Let s = maxk deg ak, and let h1 denote the maximum bit size of the coefficients
of the ak. Although our complexity estimates depend on r and h1, we do not
consider more general dependencies on the equation. Thus, the ak are assumed
to vary only in ways that can be described in terms of these two parameters.
Specifically, we assume that s = O(1) and that the coefficients of ak(z)/ar(0)
are all restricted to some bounded domain.

We also assume that 0 is an ordinary (i.e. nonsingular) point of (1). This
implies that ar(0)
= 0 and s � r. The case of regular singular points (those
for which we still have ar(0)
= 0 but possibly s < r [13, Chap. 9]) is actually
similar [23,17]; we focus on ordinary points to avoid cumbersome notations.

Let ρ = min{|z| : ar(z) = 0} ∈ (0,∞]. Then any formal series solution
y(z) =

∑
n�0 ynzn of (1) converges on the disk |z| < ρ. We select a particular so-

lution (say, by specifying initial values y(0), . . . , y(r−1)(0) in some fixed, bounded
domain), and an evaluation point ζ ∈ � with |ζ| < ρ. Let h2 denote the bit size
of ζ, and let h = h1 +h2. Again, h2 is allowed to grow to infinity, but we assume
that |ζ| is bounded away from ρ.

Given p � 0, our goal is to compute a complex number ω ∈ � such that
|ω − y(ζ)| � 2−p. By a classical argument, which can be reconstructed by substi-
tuting a series with indeterminate coefficients into (1), the sequence (yn) obeys
a recurrence relation of the form

b0(n)yn+r + b1(n)yn+r−1 + · · ·+ bs(n)yn+r−s = 0, bj ∈ � [n] . (2)

Writing ak(z) = ak,0 + ak,1z + · · ·+ ak,sz
s, the bj are given explicitly by

bj(n) =

r∑
k=0

ak,j(n + r − j)k. (3)

A Note on the Space Complexity of Fast D-Finite Function Evaluation 215

Based on the matrix form of the recurrence (2), set

B(n) =

(
ζC(n) 0

R 1

)
∈ �(n)(s+1)×(s+1) (4)

where

C(n) =

⎛⎜⎜⎜⎝
1

. . .
1

− bs(n)
b0(n) · · · · · · − b1(n)

b0(n)

⎞⎟⎟⎟⎠ , R =
(

0 . . . 0︸ ︷︷ ︸
s−r zeroes

1 0 . . . 0︸ ︷︷ ︸
r−1 zeroes

)
.

Let P (a, b) = B(b − 1) · · ·B(a + 1)B(a) for all a � b. (In particular, P (a, a) is
the identity matrix.)

One may check that b0(n)
= 0 for n � 0, due to the fact that 0 is an ordinary
point of (1). Thus the computation of a partial sum SN =

∑N−1
n=0 ynζn reduces

to that of the matrix product P (0, N). Indeed, we have

(yn+r−sζ
n, . . . , yn+r−1ζ

n, Sn)T = P (0, n) (yr−s, . . . , yr−1, 0)T

where yr−s = 0, . . . , y−1 = 0, y0, . . . , yr−1 are easily determined from the initial
values of the differential equation.

3 Review of the Classical Binary Splitting Algorithm

Since the entries of the matrix B(n) are rational functions of n, the bit size of
P (a, b) grows as O((b− a) lg b) when b, (b− a)→∞. This bound is sharp in the
sense that it is reached for some (in fact, most) differential equations. Computing
P (a, b) as B(b − 1) · [B(b− 2) · [· · ·B(a)]] then takes time at least quadratic in
b − a, as can be seen from the combined size of the intermediate results. The
term “binary splitting” refers to the technique of reorganizing the product into a
balanced tree of subproducts, using the relation P (a, b) = P (m, b) ·P (a, m) with
m = � 12 (a + b)�, and so on recursively.

A slight complication stems from the fact that removing common divisors
between the numerators and denominators of the fractions appearing in the
intermediate P (a, b) ∈ �r×r would in general be too expensive. Multiplying the
numerators and denominators separately and doing a single final division yields
better complexity bounds. Let

B̂(n) = b0(n)ζ̌B(n) ∈ �[i][n](s+1)×(s+1), ζ = ζ̂/ζ̌ (ζ̂ ∈ � [i] , ζ̌ ∈ �). (5)

The entries of B̂(n) are polynomials of degree at most r and bit size O(h). To
compute P (a, b) by binary splitting, we multiply the B̂(n) for a � n < b using
Algorithm 1, and then divide the resulting matrix by its bottom right entry.
The general algorithm considered here was first published by Chudnovsky and
Chudnovsky [5], with (up to minor details) the analysis summarized in Prop. 1.
The idea of binary splitting was known long before [8,1].

216 M. Mezzarobba

Algorithm 1. BinSplit(a, b)
1 If b− a � (some threshold)

2 Return B̂(b− 1) · · · B̂(a) where B̂ is defined by (5)
3 else

4 Return BinSplit(�a+b
2
�, b) · BinSplit(a, �a+b

2
�)

Proposition 1. [5] As b, N = b− a, h, r→∞ with r = O(N), Algorithm 1 com-
putes an unreduced fraction equal to P (a, b) in O(M

(
N(h+r lg b)

)
lg N) operations,

using O
(
N(h + r lg b)

)
bits of memory. Assuming M(n) = n(lg n)(lg lg n)O(1),

both bounds are sharp.

Proof (sketch). The bit sizes of the matrices that get multiplied together at any
given depth 0 � δ < �lg N� in the recursive calls are at most C2−δN(h + d lg b)
for some C. Since there are at most 2δ such products and the multiplication
function M(·) was assumed to be subadditive, the contribution of each level is
bounded by M(C(b−a)(h+d lg b)), whence the total time complexity. See [5,17]
for details. The intermediate results stored or multiplied together at any stage of
the computation are disjoint subproducts of B(b − 1) · · ·B(a), and we assumed
the space complexity of n-bit integer multiplication to be O(n), so the space
required by the algorithm is linear in the combined size of the B(n). Finally,
it is not hard to construct examples of differential equations that reach these
bounds.

Remark 1. The link between our setting and the more common description of
the algorithm for hypergeometric series is as follows. In the notation of Haible
and Pananikolaou [12] also used in Yakhontov’s article, the partial sums of the
hypergeometric series are related to its defining parameters a, b, p, q by(

s̃(i + 1)

S(i)

)
=

(
p(i)
q(i) 0

a(i)
b(i)

p(i)
q(i) b(i)q(i)

)(
s̃(i)

S(i− 1)

)
, s̃(i) =

b(i)

a(i)
s(i).

This equation becomes
(B(i)

T (0,i)

)
=
(b(i)p(i) 0

a(i)p(i) b(i)q(i)

)(B(i−1)P (i−1)
T (0,i−1)

)
upon clear-

ing denominators. The standard recursive algorithm for hypergeometric se-
ries may be seen an “inlined” computation of the associated product tree.
Each recursive step is equivalent to the computation of the matrix product(

BrPr 0
Tr BrQr

)(
BlPl 0

Tl BlQl

)
.

We return to the evaluation of a D-finite power series within its disk of conver-
gence. From the differential equation (1), suitable initial conditions, the evalua-
tion point ζ and a target precision p, one can compute [18] a truncation order N
such that |SN − y(ζ)| � 2−p and{

N ∼ Kp =
(
lg(|ζ| /ρ)

)−1
p, if ρ <∞

N = Θ(p/ lg p), if ρ =∞.
(6)

Combined with these estimates, Proposition 1 implies the following.

A Note on the Space Complexity of Fast D-Finite Function Evaluation 217

Corollary 1. Write
 = h+ r lg p. Under the assumptions of Proposition 1, one
can compute y(ζ) in O(M(
p lg p)) bit operations, using O(
p) bits of memory.
The complexity goes down to O(M(
p)) operations and O(
p/ lg p) bits of memory
when ar(z) is a constant.

This result is the basis of more general evaluation algorithms for D-finite func-
tions [5]. Indeed, binary splitting can be used to compute the required series sums
at each step when solving a differential equation of the form (1) by the so-called
method of Taylor series [15]. Corollary 1 thus extends to the evaluation of y out-
side the disk |z| < ρ. Chudnovsky and Chudnovsky further showed how to reduce
the cost of evaluation from Ω(hp) = Ω(p2) to softly linear in p when h = Θ(p).
This last situation is very natural since it covers the case where the point ζ is
itself a O(p)-digits approximation resulting from a previous computation. The
method, known as the bit burst algorithm, consists in solving the differential
equation along a path made of approximations of ζ of exponentially increasing
precision. Its time complexity is O(M(p(lg p)2)) [16]. The improvements from
the next section apply to all these settings. See also [24] for an overview of more
sophisticated applications.

4 “Truncated” Binary Splitting

The superiority of binary splitting over alternatives like summing the series in
floating-point arithmetic results from the controlled growth of intermediate re-
sults. Indeed, in the product tree computed by Algorithm 1, the exact represen-
tations of most subproducts P (a, b) are much more compact than Θ(p)-digits
approximations would be. However, as already mentioned, the bit sizes of the
P (a, b) also grow larger than p near the root of the tree. The size of a subprod-
uct appearing at depth δ is roughly 2−δN(h+ r lg N). Assuming N = Θ(p), this
means that the intermediate results get significantly larger than the output in
the top Θ(lg lg p) levels of the tree.

A natural remedy is to use a hybrid of binary splitting and naive summation.
More precisely, we split the full product P (0, N) into Δ = Θ(lnN) subprod-
ucts of O(p) bits each, which are computed by binary splitting. The results are
accumulated by successive multiplications at precision O(p).

We make use of the following notations to state and analyze the algorithm.
In Equations (7) to (11) below, the coefficients of a general matrix A ∈ �k×k

are denoted ap,q = xp,q + iyp,q (1 � p, q � k) with xp,q, yp,q ∈ �. Let ‖·‖ be a
submultiplicative norm on �k×k, and let βk > 0 be such that

‖A‖ � βkN (A), N (A) = max{|xi,j | , |yi,j |}1�i,j�k. (7)

For definiteness, assume for now that ‖·‖ = ‖·‖1 is the matrix norm induced by
the vector 1-norm. (We will discuss this choice later.) Then it holds that

N (A) � ‖A‖1 =
k

max
j=1

k∑
i=1

|ai,j | �
√

2kN (A) (8)

218 M. Mezzarobba

Algorithm 2. TruncBinSplit(p)
The notation X(q), q = 0, 1, . . . refers to a single memory location X at different points q
of the computation.
1 Set ε = 2−p

2 Compute N such that |SN − y(ζ)| � ε [22,18]
3 Set Δ =
N

p
(h + r lg N)�, where h and r are given following Eq. (1)

4 Compute M such that maxΔ−1
q=0 ‖P (� q

Δ
N�, � q+1

Δ
N�)‖ + ε � M � CN/Δ, where C

does not depend on p, h, r [say, by approximating the right-hand side of (9) from
above with O(lg p) bits of precision]

5 Initialize P̃ (0) := id ∈ �(s+1)×(s+1)

6 For q = 0, 1, . . . , Δ− 1
7 Q̂ = (Q̂i,j) := BinSplit(

⌊
q
Δ

N
⌋
,
⌊

q+1
Δ

N
⌋
) (Algorithm 1)

8 Q̃(q) := Trunc(Q̂−1
s+1,s+1 · Q̂, 1

2Δ
M−Δ+1ε)

9 P̃ (q+1) := Trunc(Q̃(q) · P̃ (q), 1
2Δ

M−Δ+q+1ε)

10 Return P̃ (Δ)

and

‖P (a, b)‖ �
b−1∏
n=a

‖B(n)‖ �
b−1∏
n=a

(
1 + |ζ|+ |ζ| s

max
k=1

∣∣∣∣bk(n)

b0(n)

∣∣∣∣) . (9)

Observe that, since 1 is an eigenvalue of B(n) and the norm ‖·‖ is assumed to
be submultiplicative, we have ‖B(n)‖ � 1 for all n. Besides, it is clear from (3)
that ‖B(n)‖ is bounded.

Given a ∈ � and ε < 1, let

Trunc(a, ε) = sgn(a) �2e |a|� 2−e, e =
⌈
lg ε−1

⌉
. (10)

We have |Trunc(a, ε)− a| � ε; the size of Trunc(a, ε) is O(lg ε−1) for bounded a;
and Trunc(a, ε) may be computed in O(M(h + e)) bit operations where h is the
bit size of a. We extend the definition to matrices A ∈ �k×k by

Trunc(A, ε) =
(
Trunc(xp,q, β

−1
k ε) + i Trunc(yp,q, β

−1
k ε)
)
1�p,q�k

, (11)

so that again ‖Trunc(A, ε)−A‖ � ε. Note that we often write expressions of
the form Trunc(a � b, ε) for some operator �. Though this does not affect our
complexity bounds, it is usually better to compute the approximate value of
a � b directly instead of starting with an exact computation and truncating the
result. See Brent and Zimmermann [3] for some relevant algorithms.

The complete binary splitting algorithm with truncations is stated as Algo-
rithm 2. Its key properties are summarized in the following propositions.

Proposition 2. The output P̃ = TruncBinSplit(p) of Algorithm 2 is such that
‖P̃ − P (0, N)‖ � 2−p.

Proof. Set P (q) = P (0, � q
ΔN�) and Q(q) = P (� q

ΔN�, � q+1
Δ N�). Then, for 0 �

q � Δ, it holds that
‖P̃ (q) − P (q)‖ � q

Δ

ε

MΔ−q
. (12)

A Note on the Space Complexity of Fast D-Finite Function Evaluation 219

Indeed, this is true for q = 0. After Step 8 of each loop iteration, we have the
bound ‖Q̃(q) − Q(q)‖ � 1

2ΔM−Δ+1ε � ε since ‖B(n)‖ � 1 for all n. Using (12)
and the inequality ‖Q̃(q)‖ � M from Step 3, it follows that

‖Q̃(q)P̃ (q) −Q(q)P (q)‖�‖Q̃(q) −Q(q)‖‖P (q)‖+ ‖Q̃(q)‖‖P̃ (q) − P (q)‖
�2q + 1

2Δ

ε

MΔ−q−1
.

After taking into account the truncation error from Step 9, we obtain

‖P̃ (q+1) − P (q+1)‖ = ‖P̃ (q+1) −Q(q)P (q)‖ � q + 1

Δ

ε

MΔ−q−1

which concludes the induction.

Proposition 3. Not counting the cost of Step 2, Algorithm 2 runs in time{
O
(
M(p)(h + r lg p) lg p

)
, if ρ <∞,

O
(
M(p)(h + r lg p)

)
, if ρ =∞,

(13)

as p, h, r →∞ with r = O(lg p) and h = O(p). In both cases, it uses O(p) bits of
memory (where the hidden constant is independent of h and r, under the same
growth assumptions).

We neglect the cost of finding N to avoid a lengthy discussion of the complexity
of the corresponding bound computation algorithms. It could actually be checked
to be polynomial in r and lg p.

Proof. Computing the bound M using Equation (9) as suggested is more than
enough to ensure that lg M = O(N/Δ). It requires O(N) arithmetic operations
on O(lg p)-bit numbers, that is, o(N(lg N)2) bit operations.

By Proposition 1, each of the Δ calls to BinSplit requires

O
(
M(N

Δ (h + r lg N)) lg N
)

= O
(
M(p) lg p

)
bit operations. The resulting matrices Q(p) all have size O(p), hence the divisions
from Step 8 can be done in O(M(p)) operations using Newton’s method [25,
Chap. 9]. The truncations in Steps 8 and 9 ensure that the bit sizes of P̃ and Q̃
are always at most

lg ε−1 + Δ lg M + lg Δ + O(1) = O(p). (14)

It follows that the matrix multiplications from Step 9 take O(M(p)) operations
each. Summing up, each iteration of the loop from Step 6 can be performed in
O(M(p) lg p) operations, for a total of O(ΔM(p) lg p). Equation (13) follows upon
setting N = O(p) or N = O(p/ lg p) according to (6).

The required memory comprises space for the current values of P̃ (q) and Q(q),
any temporary storage used by the operations from Steps 7 to 9, and an ad-
ditional O(lg p) bits to manipulate auxiliary variables such as M and q. We

220 M. Mezzarobba

Table 1. Complexity of some D-finite function evaluation algorithms based on binary
splitting. The rows labeled “BinSplit” summarize the cost of computing a single sum
by binary splitting, with or without truncations. Those labeled “BitBurst” refer to
the computation of y(ζ) by the “bit burst” method, using either of Algorithm 1 and
Algorithm 2 at each step. All entries are asymptotic bounds as p, h → ∞ with h =
O(p). In the “BinSplit” case, we also let r tend to infinity under the assumption that
r = O(lg p). The whole point of the “bit burst” method is to get rid the dependency
on h.

Time Space (classical) Space (trunc.)

ρ <∞ BinSplit O(M(p(h + r lg p) lg p)) O(p(h + r lg p)) O(p)
BitBurst O(M(p(lg p)2)) O(p lg p) O(p)

ρ =∞ BinSplit O(M(p(h + r lg p))) O(p(r + h/ lg p)) O(p)
BitBurst O(M(p(lg p)2)) O(p) O(p)

have seen that P̃ (q) and Q(q) have bit size O(p). Besides, our assumption that
fast integer multiplication could be performed in linear space implies the same
property for division by Newton’s method. Thus, Steps 8 and 9 use O(p) bits of
auxiliary storage. Finally, again by Proposition 1, the calls to Algorithm 1 use
O((N/Δ)(h + r lg p)) = O(p) bits of memory.

Plugging Algorithm 2 into the numerical evaluation algorithms mentioned at the
end of Sect. 3 yields corresponding improvements for the evaluation of D-finite
functions at more general points. Table 1 summarizes the complexity bounds we
obtain. The omitted proofs are direct adaptations of those that apply without
truncations [5,22,17]. There would be much to say on the hidden constant factors.
The main result may be stated more precisely as follows.

Theorem 1. Let U ⊂ � be a simply connected domain such that 0 ∈ U and
ar(z)
= 0 for all z ∈ U . Fix
0, . . . ,
r−1 ∈ � and ζ ∈ U . Assume that 0 is an
ordinary point of (1), and let y be the unique solution of (1) defined on U and
such that y(k)(0) =
k, 0 � k < r. Then, the value y(ζ) may be computed with
error bounded by 2−p in time O(M(p)(lg p)2) and space O(p), not counting the
resources needed to approximate the
k or ζ to precision O(p) or to find suitable
truncation orders for the Taylor series involved.

Finally, some comments are in order regarding the “working precision”, that is,
the size p′ of the entries of P̃ and Q̃ in Algorithm 2. Equation (14) suggests a
number of “guard digits” p′ − p = Θ(p). Moreover, if the bound M is computed
using (9), the hidden constant depends on the choice of ‖·‖.

Let B∞ = limn→∞ B(n). For the norm ‖·‖opt given by Lemma 1 below, we
have

lg ‖P (a, b)‖opt �
b−1∑
n=a

lg
(‖B∞‖opt + O(n−1)

)
= O
(
lg(b − a)

)
,

and hence lg ‖P (a, b)‖ = O(lg(b− a)) for any norm ‖·‖.

A Note on the Space Complexity of Fast D-Finite Function Evaluation 221

Lemma 1. There exists a matrix norm ‖·‖opt such that ‖B∞‖opt = 1.

Proof. We mimic the classical proof of Householder’s theorem [20, Sect. 4.2].
By (3), the limit C∞ = limn→∞ C(n) is the companion matrix of the polynomial
zsar(1/z). The eigenvalues of ζC∞ are strictly smaller than 1 in absolute value
since |ζ| < ρ. Let Γ be such that Γ−1C∞Γ is in (lower) Jordan normal form.
Let λ > 0, and set Π = diag(1, λ, . . . , λs) · diag(Γ, 1). Then Π−1B∞Π is lower
triangular, with off-diagonal entries tending to zero as λ → 0. Hence we have
‖Π−1B∞Π‖1 = 1 for λ small enough. We choose such a λ (e.g., λ = 1−|ζ|/ρ

2 max(1,|ζ|))
and set ‖A‖opt = ‖Π−1AΠ‖1.
One way to eliminate the overestimation in the algorithm is to compute approxi-
mations of the matrices P (� q

ΔN�, � q+1
Δ N�) with O(lg p) digits of precision before

doing the computation at full precision. One then uses the norms of these ap-
proximate products instead of those of the individual B(n) to determine M . We
can also explicitly construct an approximation Π̃ of the matrix Π from the proof
of Lemma 1 precise enough that ‖Π̃−1B∞Π̃‖1 = 1, and use the corresponding
norm instead of ‖·‖1 in (9). (Compare [22, Algorithm B].) Other options in-
clude computing symbolic bounds on the coefficients of P (a, b) as a function of
a and b [18] or finding an explicit integer n0 such that n � n0 ⇒ ‖B(n)‖opt = 1
based on the symbolic expression of n. Which variant to use in practice depends
on the features of the implementation platform.

In any case, replacing the O(·) in the space complexity bound by an explicit
constant would also require more specific assumptions on the memory representa-
tion of the objects we work with, as well as finer control on the space complexity
of integer multiplication and division (see, e.g., Roche [19]).

5 Final Remarks

What we lose and what we retain. The price we pay for the reduced memory
usage is the ability to easily extend the computation to higher precision. Indeed,
the classical algorithm computes the exact value of the matrix P (0, N), from
which we can deduce P (0, N ′) for any N ′ > N in time roughly proportional to
N ′ − N . This is no longer true with the linear-space variant. In some “lucky”
cases where P (0, N) can be represented exactly in linear space, it is possible to
get the memory usage down to O(N) while preserving restartability: see Cheng
et al. [4] and the references therein. Additionally, the resulting running time is
reportedly lower than using truncations, probably owing to the fact that the
size of the subproducts in the lg(N/Δ) lower levels of the tree is reduced as well.
Unfortunately, the applicability of the technique is limited to very special cases.

Two other traditional selling points of the binary splitting method are its easy
parallelization and good memory locality. Nothing is lost in this respect, except
that the memory bound grows to Θ(t · p) when using t = o(lg N) parallel tasks
in the approximate part of the computation.

222 M. Mezzarobba

Generalizations. The idea of binary splitting “with truncations” and the outline
of its analysis adapt to various settings not covered here. For instance, we may
consider systems of linear differential equations instead of scalar equations [5].
Product trees of matrices over number fields �′ = �(α) other than �(i) or
over rings of truncated power series �′ [[ε]] /

〈
εk
〉

are also useful, respectively, to
evaluate limits of D-finite functions at regular singular points of their defining
equations, and to make the analytic continuation process more efficient for equa-
tions of large order [22,17]. It is not essential either that the coefficients of the
recurrence relation satisfied by the yn are rational functions of n: all we really
ask is that they have suitable growth properties and can be computed fast.

Implementation. We are working on an implementation of the algorithm from
Sect. 4 in an experimental branch of the software package NumGfun [16]. The
current state of the code is available from
http://marc.mezzarobba.net/supporting-material/trunc-CASC2012/.
A comparison (updated periodically) with the implementation of binary split-
ting without truncations used in previous releases of NumGfun is also included.

Acknowledgments. I would like to thank Nicolas Brisebarre and Bruno Salvy
for encouraging me to write this note and offering useful comments, and Anne
Vaugon for proofreading parts of it.

References

1. Bernstein, D.J.: Fast multiplication and its applications. In: Buhler, J., Steven-
hagen, P. (eds.) Algorithmic Number Theory, pp. 325–384. Cambridge University
Press (2008), http://www.msri.org/communications/books/Book44/

2. Borwein, J.M., Borwein, P.B.: Pi and the AGM. Wiley (1987)
3. Brent, R.P., Zimmermann, P.: Modern Computer Arithmetic. Cambridge Univer-

sity Press (2010), http://www.loria.fr/~zimmerma/mca/mca-cup-0.5.7.pdf
4. Cheng, H., Hanrot, G., Thomé, E., Zima, E., Zimmermann, P.: Time- and space-

efficient evaluation of some hypergeometric constants. In: Wang, D. (ed.) ISSAC
2007, pp. 85–91. ACM (2007),
http://www.cs.uleth.ca/~cheng/papers/issac2007.pdf

5. Chudnovsky, D.V., Chudnovsky, G.V.: Computer algebra in the service of mathe-
matical physics and number theory. In: Chudnovsky and Jenks [6], pp. 109–232

6. Chudnovsky, D.V., Jenks, R.D. (eds.): Computers in Mathematics, Stanford Uni-
versity. Lecture Notes in Pure and Applied Mathematics, vol. 125 (1986), Dekker
(1990)

7. Fürer, M.: Faster integer multiplication. SIAM Journal on Computing 39(3), 979–
1005 (2009), http://www.cse.psu.edu/~furer/Papers/mult.pdf

8. Gosper, W.: Strip mining in the abandoned orefields of nineteenth century mathe-
matics. In Chudnovsky and Jenks [6], pp 261–284

9. Gourdon, X., Sebah, P.: Constants and records of computation. Updated August
12 (2010), http://numbers.computation.free.fr/Constants/constants.html

10. Gourdon, X., Sebah, P.: Binary splitting method (2001),
http://numbers.computation.free.fr/Constants/Algorithms/splitting.ps

http://marc.mezzarobba.net/supporting-material/trunc-CASC2012/
http://www.msri.org/communications/books/Book44/
http://www.loria.fr/~zimmerma/mca/mca-cup-0.5.7.pdf
http://www.cs.uleth.ca/~cheng/papers/issac2007.pdf
http://www.cse.psu.edu/~furer/Papers/mult.pdf
http://numbers.computation.free.fr/Constants/constants.html
http://numbers.computation.free.fr/Constants/Algorithms/splitting.ps

A Note on the Space Complexity of Fast D-Finite Function Evaluation 223

11. Granlund, T., et al.: GNU Multiple Precision Arithmetic Library,
http://gmplib.org/

12. Haible, B., Papanikolaou, T.: Fast multiprecision evaluation of series of rational
numbers (1997), http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/
papanik/ps/TI-97-7.ps.gz

13. Hille, E.: Ordinary differential equations in the complex domain. Wiley (1976),
Dover reprint (1997)

14. Kreckel, R.B.: decimal(γ) =∼ "0.57721566[0-9]{1001262760}39288477" (2008),
http://www.ginac.de/~kreckel/news.html#EulerConstantOneBillionDigits

15. Mathews, J.H.: Bibliography for Taylor series method for D.E.’s (2003),
http://math.fullerton.edu/mathews/n2003/taylorde/TaylorDEBib/Links/
TaylorDEBib_lnk_3.html

16. Mezzarobba, M.: NumGfun: a package for numerical and analytic computation
with D-finite functions. In: Koepf, W. (ed.) ISSAC 2010, pp. 139–146. ACM (2010),
http://arxiv.org/abs/1002.3077, doi:10.1145/1837934.1837965

17. Mezzarobba, M.: Autour de l’évaluation numérique des fonctions D-finies. Thèse
de doctorat, École polytechnique (November 2011),
http://tel.archives-ouvertes.fr/pastel-00663017/

18. Mezzarobba, M., Salvy, B.: Effective bounds for P-recursive sequences. Journal of
Symbolic Computation 45(10), 1075–1096 (2010),
http://arxiv.org/abs/0904.2452, doi:10.1016/j.jsc.2010.06.024

19. Roche, D.S.: Efficient Computation with Sparse and Dense Polynomials. PhD the-
sis, University of Waterloo (2011),
http://uwspace.uwaterloo.ca/handle/10012/5869

20. Serre, D.: Matrices. Graduate Texts in Mathematics, vol. 216. Springer (2002)
21. Stanley, R.P.: Differentiably finite power series. European Journal of Combina-

torics 1(2), 175–188 (1980)
22. van der Hoeven, J.: Fast evaluation of holonomic functions. Theoretical Computer

Science 210(1), 199–216 (1999),
http://www.texmacs.org/joris/hol/hol-abs.html

23. van der Hoeven, J.: Fast evaluation of holonomic functions near and in regular
singularities. Journal of Symbolic Computation 31(6), 717–743 (2001),
http://www.texmacs.org/joris/singhol/singhol-abs.html

24. van der Hoeven, J.: Transséries et analyse complexe effective. Habilitation à diriger
des recherches, Université Paris-Sud, Orsay, France (2007),
http://www.texmacs.org/joris/hab/hab-abs.html

25. von Zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge
University Press (2003)

26. Yakhontov, S.V.: Calculation of hypergeometric series with quasi-linear time and
linear space complexity. Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo
Universiteta. Seriya: Fiziko-Matematicheskie Nauki 24, 149–156 (2011)

27. Yakhontov, S.V.: A simple algorithm for the evaluation of the hypergeometric series
using quasi-linear time and linear space. Preprint 1106.2301v1, arXiv (June 2011),
English version of [26], http://arxiv.org/abs/1106.2301

28. Yee, A.J.: Mathematical constants – billions of digits. Updated March 7 (2011),
http://www.numberworld.org/digits/

http://gmplib.org/
http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/papanik/ps/TI-97-7.ps.gz
http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/papanik/ps/TI-97-7.ps.gz
http://www.ginac.de/~kreckel/news.html#EulerConstantOneBillionDigits
http://math.fullerton.edu/mathews/n2003/taylorde/TaylorDEBib/Links/TaylorDEBib_lnk_3.html
http://math.fullerton.edu/mathews/n2003/taylorde/TaylorDEBib/Links/TaylorDEBib_lnk_3.html
http://arxiv.org/abs/1002.3077
http://tel.archives-ouvertes.fr/pastel-00663017/
http://arxiv.org/abs/0904.2452
http://uwspace.uwaterloo.ca/handle/10012/5869
http://www.texmacs.org/joris/hol/hol-abs.html
http://www.texmacs.org/joris/singhol/singhol-abs.html
http://www.texmacs.org/joris/hab/hab-abs.html
http://arxiv.org/abs/1106.2301
http://www.numberworld.org/digits/

Inversion Modulo Zero-Dimensional

Regular Chains

Marc Moreno Maza, Éric Schost, and Paul Vrbik

Department of Computer Science, Western University
{moreno,eschost,pvrbik}@csd.uwo.ca

Abstract. We consider the questions of inversion modulo a regular
chain in dimension zero and of matrix inversion modulo such a regu-
lar chain. We show that a well-known idea, Leverrier’s algorithm, yields
new results for these questions.

1 Introduction

Triangular sets, and more generally regular chains, constitute a useful data struc-
ture for encoding the solutions of algebraic systems. Among the fundamental
operations used by these objects, one finds a few low-level operations, such as
multiplication and division in dimension zero. Higher-level algorithms can then
be built upon these subroutines: for instance, the authors of [8] outline a proba-
bilistic and modular algorithm for solving zero-dimensional polynomial systems
with rational coefficients. Their algorithm requires matrix inversion modulo reg-
ular chains.

Despite a growing body of work, the complexity of several basic questions
remains imperfectly understood. In this article, we consider the question of in-
version modulo a triangular set in dimension zero, and by extension, matrix
inversion modulo such a triangular set. We show that a well-known idea, Lever-
rier’s algorithm, surprisingly admits new results for these questions.

Triangular sets. We adopt the following convention: a triangular set is a family
of polynomials T = (T1, . . . , Tn) in k[X1, . . . , Xn], where k is a field. We require
that for all i, Ti ∈ k[X1, . . . , Xi] is monic in Xi and reduced with respect to 〈T1,
. . . , Ti−1〉. Note that the slightly more general notion of a regular chain allows
for non necessarily monic Ti; in that case, the requirement is that the leading
coefficient of Ti be invertible modulo 〈T1, . . . , Ti−1〉. These regular chains may
be called “zero-dimensional”, since they encode finitely many points. Note that
we do not require that the ideal 〈T〉 be radical.

Multiplication modulo triangular sets. In the context of triangular sets, the
first non-trivial algorithmic question is modular multiplication. For this, and
for the question of inversion in the following paragraph, the input and output
are polynomials reduced modulo 〈T〉. We thus denote by RT the residue class
ring k[X1, . . . , Xn]/〈T1, . . . , Tn〉. For all i ≤ n, let us write di = deg(Ti, Xi); the
n-tuple (d1, . . . , dn) is the multi-degree of T. Then, the set of monomials

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 224–235, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Inversion Modulo Zero-Dimensional Regular Chains 225

MT =
{
Xe1

1 · · ·Xen
n | 0 ≤ ei < di for all i

}
is the canonical basis of the k-vector space RT; its cardinality is the integer
δT = d1 · · · dn, which we call the degree of T. In all our algorithms, elements of
RT are represented on this basis.

As of now, the best known algorithm for modular multiplication features the
following running time [15]. For x ≥ 1, write lg(x) = log(max(x, 2)). Then, there
exists a universal constant K such that given A,B in RT, one can compute
AB ∈ RT using at most K4nδT lg(δT) lg lg(δT) operations in k.

Inversion modulo triangular sets. For inversion, several questions can be posed.
In this paper we consider the problem: given A ∈ RT, decide whether A is invert-
ible, and if so, compute its inverse. We are also interested in its the generalization
to matrices over RT: given a (d × d) matrix A ∈Md(RT), decide whether it is
invertible, and if so, compute its inverse. We simply call this the problem of
invertibility test / inversion in RT (or in Md(RT)).

This question should be contrasted with the following one: given A ∈ RT,
decompose the ideal 〈T〉 into a product of pairwise coprime ideals of the form
〈T1〉 ∩ · · · ∩ 〈Tr〉, all Ti being triangular sets, such that for all i ≤ r, A is
either a unit modulo 〈Ti〉, or zero modulo 〈Ti〉; we also compute the inverse
of A modulo all 〈Ti〉 that are among the first category. A similar, albeit more
complex, question could be raised for matrices over RT. To distinguish it from
the previous problem, we call this question the quasi-inverse computation.

When the ideal 〈T〉 is maximal, so RT is a field, the two questions are the
same. Without this assumption the question of computing quasi-inverses is more
complex than the inversion problem: when A is a zero-divisor modulo 〈T〉, the
first approach would just return “not invertible”; the second approach would
actually require us to do some extra work.

As of now, most known algorithms naturally handle the second, more gen-
eral problem. Indeed, the natural approach is the following: to compute an in-
verse in the residue class ring RT = k[X1, . . . , Xn]/〈T1, . . . , Tn〉, we see it as
RT′ [Xn]/〈Tn〉, where T′ is the triangular set (T1, . . . , Tn−1) in k[X1, . . . , Xn−1].
Then, testing if A ∈ RT is invertible, and inverting it when possible, is usually
done by computing its extended GCD with Tn in RT′ [Xn], see [12,18,7,15]. This
approach requires several quasi-inverse computations in RT′ (namely those of
all leading terms that arise during the extended GCD algorithm). Even if A is
invertible in RT′ , some of these leading terms may be zero-divisors, thus we may
have to decompose T.

Main results. Our two main results concern the inversion problem, first for
elements of RT, then for matrices over RT.

In what follows, in addition to δT, let sT = max(d1, . . . , dn). Our theorems
also involve the quantity ω, which denotes the exponent of matrix multiplica-
tion [4, Ch. 15]: explicitly, this means that ω is such that over any ring A, matrices
of size d can be multiplied in dω operations (+,×) in A. We take 2 < ω ≤ 3, the
best known value being ω ≤ 2.3727 [24].

226 M. Moreno Maza, É. Schost, and P. Vrbik

Theorem 1. There exists a constant C such that: If 1, . . . , sT are units in k,
then one can perform an invertibility test / inversion in RT using

C4nn δT s
(ω−1)/2
T lg(δT) lg lg(δT)

operations in k.

Dropping logarithmic factors, we see that the cost of inversion modulo 〈T〉 grows
like 4nδT s

(ω−1)/2
T , whereas the cost of multiplication modulo 〈T〉 grows like

4nδT. In other words, the overhead for inversion grows like s
(ω−1)/2
T , which is

between s
1/2
T and sT, depending on ω.

The second theorem describes the cost of matrix invertibility test and
inversion.

Theorem 2. There exists a constant C such that: If 1, . . . , sT are units in k,
then one can perform an invertibility test / inversion in Md(RT) using

C4nδT

(
dω+1/2 + ns

(ω−1)/2
T

)
lg(δT) lg lg(δT)

operations in k.

Previous work. As stated above, most previous works on the invertibility ques-
tion in RT actually give algorithms for quasi-inverses, using dynamic evaluation
techniques [9]. Unfortunately, managing the decompositions induced in quasi-
inverse computations in an efficient manner leads to very complex algorithms:
as of now, the fastest algorithm for quasi-inverse follows from [7,6], and features
a running time of the form λn

∏
i≤n di lg(di)

4 lg lg(di), for some non-explicit con-
stant λ (conservative estimates give λ ≥ 60).

Dynamic evaluation techniques carry over to matrix inversion, and make it
possible to implement Gaussian elimination with coefficients in RT, handling de-
compositions of T when zero-divisors are met. The complexity of such a process
seems quite complex to analyze; to our knowledge, this has not been done yet.

The algorithms from [7,6] apply half-GCD techniques in a recursive man-
ner, together with fast Chinese remaindering techniques to handle splitting. We
mention here another approach from [16]: using evaluation / interpolation tech-
niques, the Authors extend it in [17] to an algorithm with cost growing like
2n
∑n

i=1

(
i2d1 · · · didi+1

i

)
.

The main ingredient in our theorems is Leverrier’s algorithm [13], a method
for computing the characteristic polynomial of a matrix by means of the compu-
tation of the traces of its powers. Once the characteristic polynomial is known,
it can be used to express the inverse of a matrix A as a polynomial in A —
we still refer to this extension to inverse computation as Leverrier’s algorithm,
somewhat inappropriately.

This algorithm has been rediscovered, extended and improved in work by
(among others) Souriau [23], Faddeev [10], Csanky [5], and Preparata and
Sarwate [19]. The latter reference introduces the “baby steps / giant steps”

Inversion Modulo Zero-Dimensional Regular Chains 227

techniques that are used herein; note on the other hand that the focus in these
references is on the parallel complexity of characteristic polynomial or the in-
verse, which is not our main interest here.

Similar “baby steps / giant steps” techniques have been discovered in other
contexts (algorithms on polynomials and power series) by Brent and Kung [3] and
Shoup [21,22]. In these references, though, no mention was made of applications
to modular inversion.

2 Leverrier’s Algorithm

In this paper, we are interested in inversion algorithms which:

1. invert dense (d× d) matrices with entries in a ring A;
2. invert elements in the A-algebra A[X]/〈T 〉, for some degree d monic polyno-

mial T in A[X].

When we use these results, we take A of the form RT, for some triangular set T.
Our goal is to perform as little invertibility tests / inversions in A as possible:
we thus rely on Leverrier’s algorithm, which only does one. With A of the form
RT, this allows us to avoid unnecessary splittings of T.

Since both scenarios share many similarities, we strive to give a unified pre-
sentation, at the cost of a slight increase in notational burden.

2.1 Setup and Main Result

The following setup enables us to handle both cases above at once. Let A be
our base ring and let Md(A) be the free A-algebra of (d × d) matrices over A.
We consider an A-algebra B that is free of rank e as an A-module, and which
admits an A-algebra embedding φ : B → Md(A); we assume d ≤ e. The two
above scenarios fit into this description:

1. In the first case, B is the whole A-algebra Md(A) and φ is the identity; here,
e = d2;

2. In the second case, B is the A-algebra A[X]/〈T 〉. It can be identified to a sub-
algebra of Md(A) by means of the mapping φ that maps A ∈ B = A[X]/〈T 〉
to the (d × d) matrix of multiplication by A. In this case, the rank of B is
e = d.

To any element A ∈ B, we associate its trace tr(A) ∈ A, defined as the trace of the
matrix φ(A) ∈Md(A), and its characteristic polynomial χA ∈ A[X], defined as
the characteristic polynomial of the matrix φ(A); the latter is a monic polynomial
of degree d in A[X]. Finally, the determinant det(A) of A is defined similarly, as
the determinant of φ(A).

For our computations, we suppose that a basis B of the A-module B is known.
In both cases above, we have a canonical choice: matrices with a single non-zero
entry, equal to one, in the first case, and the monomial basis 1, X, . . . , Xd−1 in
the second case.

228 M. Moreno Maza, É. Schost, and P. Vrbik

An addition in B then takes e operations (+,×) in A. For multiplication,
things are less straightforward: we let M(B) be such that one multiplication in
B can be done using M(B) operations (+,×) in A. The other black-box we need
is for determining the trace: we let T(B) be such that the traces of all basis
elements of B can be computed in T(B) operations (+,×) in A. We give details
below on M(B) and T(B) for our two main cases of interest.

Then, Leverrier’s algorithm, combined with baby steps / giant steps tech-
niques, yields the following result.

Proposition 1. Suppose that 1, . . . , d are units in A. Given A ∈ B, one can
decide whether A is invertible, and if so compute its inverse, using

T(B) +O
(√

dM(B) + d(ω−1)/2e
)

operations (+,×) in A, and one invertibility test / inversion in A.

We will prove this result explicitly. Still, although this result may not have ap-
peared before in this exact form, its specializations to our two cases of interest are
not exactly new. As we said in the introduction, when B = Md(A), this approach
is essentially Preparata and Sarwate’s algorithm [19]. When B = A[X]/〈T 〉, this
is in essence a combination of results of Brent and Kung [3] and Shoup [21,22],
although these references do not explicitly discuss inverse computation, but re-
spectively modular composition and minimal polynomial computation.

Our first case of interest is B = Md(A), with rank e = d2. In this case,
computing the traces of all basis elements is straightforward, so T(B) takes linear
time O(e) = O(d2). Matrix multiplication takes time M(B) = dω, so that we end
up with a total of

O
(
dω+1/2

)
operations (+,×) in A, as is well-known.

Our second case of interest is B = A[X]/〈T 〉, with rank e = d. In this case,
computing the traces of all basis elements requires some work (namely, com-
puting the Taylor series expansion of a rational function), and can be done in
O(M(d)) operations (+,×) in A, see [20] — here, and in what follows, M(d) is a
multiplication time function, such that we can multiply degree d polynomials in
M(d) base ring operations [11, Ch. 9]. Multiplication in B takes time O(M(d))
as well, so we end up with a total of

O
(√

dM(d) + d(ω+1)/2
)
= O

(
d(ω+1)/2

)
operations (+,×) in A.

Other cases could be considered along these lines, such as taking B of the
form A[X1, X2]/〈T1, T2〉, with 〈T1, T2〉 a triangular set of degree d, but we do
not need this here.

Inversion Modulo Zero-Dimensional Regular Chains 229

2.2 Outline of the Algorithm

In essence, Leverrier’s algorithm relies on two facts: for A in B, (i) the traces of
the powers of A are the Newton sums of χA (A’s characteristic polynomial) and
(ii) Cayley-Hamilton’s theorem, which says that A cancels χA.

Fact (i) above is made explicit in the following folklore lemma; see e.g. [1] for
essentially the same arguments, in the case where B = Md(A).

Lemma 1. Let rev(χA) = XdχA(1/X) be the reverse polynomial of χA. Then
the following holds in A[[X]]:

rev(χA)
′

rev(χA)
= −

∑
i≥0

tr(Ai+1)X i. (1)

Proof. This equality is well-known when A is a field and when B = Md(A). We
use this fact to prove the lemma in our slightly more general setting.
Let μ1,1, . . . , μd,d be d2 indeterminates over Z, and let μ be the (d × d) matrix
with entries (μi,j). It is sufficient to prove we have

rev(χμ)
′

rev(χμ)
= −

∑
i≥0

tr(μi+1)X i, (2)

where tr(μ), χμ and rev(χμ) are defined as previously. Indeed, starting from the
equality for μ, we can deduce it for A ∈ B by applying the evaluation morphism
μi,j *→ φ(A)i,j , where φ(A)i,j is the (i, j)-th entry of the matrix φ(A) ∈Md(A).

To prove our equality for μ, we can see the variables μi,j over Q, so that
we are left to prove (2) over the field L = Q(μ1,1, . . . , μd,d). Since L is a field,
it is sensible to introduce the roots γ1, . . . , γd of χμ in L, which are thus the
eigenvalues of μ. Then, (2) is a well-known restatement of the Newton-Girard
identities (see for instance Lemma 2 in [2]). �

Let us write
χA = Xd − a1X

d−1 − · · · − ad.

Then, extracting coefficients in (1) shows that knowing the values sk = tr(Ak),
for k = 1, . . . , d, enables us to obtain the coefficients ak in a successive manner
using the formula

ak =
1

k

(
sk −

k−1∑
i=1

sk−iai

)
. (3)

(Note our assumption that 1, . . . , d are units in A makes this identity well-
defined.) Computing all ak in this manner takes a quadratic number of opera-
tions in A. Using Newton iteration to solve the differential equation (1), which
essentially boils down to computing a power series exponential, one can compute
a1, . . . , ad from s1, . . . , sd in O(M(d)) operations (+,×) in A [3,20].

Thus, we now assume we know the characteristic polynomial χA of A. Fact
(ii) above then amounts to the following. Cayley-Hamilton’s theorem implies
that χA(φ(A)) = 0 in Md(A), and thus that χA(A) = 0 in B; in other words,

230 M. Moreno Maza, É. Schost, and P. Vrbik

Ad − a1A
d−1 − · · · − ad−1A− ad = 0.

This can be rewritten as

A(Ad−1 − a1A
d−2 − · · · − ad−1) = ad.

Thus, if ad = det(A) is invertible in A, A is invertible in B, with inverse

A−1 = a−1
d (Ad−1 − a1A

d−2 − · · · − ad−1); (4)

conversely, if A is invertible in B, φ(A) is invertible in Md(A), and thus ad is
invertible in A.

To summarize this outline, Leverrier’s algorithm can decide if A is invertible
(and if so compute its inverse) by means of the following steps:

1. compute the traces s1, . . . , sd of the powers of A
2. deduce χA using (1), using O(M(d)) operations (+,×) in A
3. A is invertible in B if and only if ad is invertible in A; if so, we deduce A−1

by means of (4).

2.3 Baby-Steps / Giant Steps Techniques

The direct implementation of Step 1 of Leverrier’s algorithm consists of com-
puting the powers A1, . . . , Ad, then taking their traces; this requires O(d) mul-
tiplications in B. Similarly, the direct approach to Step 3 by means of Horner’s
scheme requires O(d) multiplications in B. As is well-known, the baby steps /
giant steps techniques allows for the reduction of the number of multiplications
for both steps, from O(d) to O(

√
d). We review this idea here, and analyze it in

our general setup.

The dual of B. As a preliminary, we say a few words about linear forms over B.
Let B∗ = HomA(B,A) be the dual of B, that is, the set of A-linear forms B→ A.
For instance, the trace tr : B→ A is in B∗.

Since we assume we have an A-basis B of B, it is natural to represent elements
of B∗ by means of their values on the basis B. Since we assume that B has rank
e, its elements can be seen as column-vectors of size e, and the elements of B∗

as row-vectors of size e. Then, applying a linear form to an element takes O(e)
operations (+,×) in A.

There exists a useful operation on B∗, the transposed product. The A-module
B∗ can be turned into a B-module: to any A ∈ B, and to any λ ∈ B∗, we can
associate the linear form A◦λ : B→ A defined by (A◦λ)(B) = λ(AB). A general
algorithmic theorem, the transposition principle [4, Th. 13.20], states that given
A and λ, one can compute the linear form A ◦ λ using M(B) operations in A
(that is, for the same cost as multiplication in B).

Step 1. Using transposed products, we now explain how to implement the first
step of Leverrier’s algorithm. As a preliminary, we “compute the trace”, that

Inversion Modulo Zero-Dimensional Regular Chains 231

is, its values on the basis B. As per our convention, this takes T(B) operations
(+,×) in A.
Let m = �√d� and m′ = �(d + 1)/m�, so that both m and m′ are O(

√
d). The

baby steps / giant steps version of Step 1 first computes the sequence of “baby
steps”

M0,M1,M2, . . . ,Mm = A0, A1, A2, . . . , Am,

by means of repeated multiplications by A. Then, by repeated transposed mul-
tiplications by Mm, we compute the “giant steps” (which are here linear forms)

λ0, λ1, λ2, . . . , λm′ = tr, Mm ◦ tr, M2
m ◦ tr, . . . , Mm′

m ◦ tr.
Computing all Mi and λj takes O(

√
d) multiplications and transposed multipli-

cations in B, for a total of O(
√
dM(B)) operations (+,×) in A.

Knowing the Mi and λj , we can compute the required traces as λj(Mi), for
0 ≤ i < m and 0 ≤ j < m′, since they are given by

λj(Mi) = tr(MiM
j
m) = tr(AiAmj) = tr(Ai+mj),

and the exponent i+mj cover all of 0, . . . , d. As we saw above, computing each
λj(Mi) amounts to doing a dot-product in size e, so a direct approach would
give a cost of O(de) operations in A.

Better can be done, though. Consider the (e ×m) matrix Γ whose columns
give the coefficients of M0, . . . ,Mm−1 on the basis B, and the (m′× e) matrix Λ
whose rows give the coefficients of λ0, . . . , λm′−1 on the dual basis of B. Then,
the (j, i)-th entry of ΛΓ is precisely the value λj(Mi). Since m and m′ are both
equivalent to

√
d, a naive matrix multiplication algorithm computes the product

ΛΓ in O(de) operations in A, as above. However, by doing a block product, with
O(e/

√
d) blocks of size O(

√
d), we obtain ΛΓ using O(d(ω−1)/2e) operations

(+,×) in A.

Step 3. In order to perform Step 3, we have to evaluate Ad−1 − a1A
d−2 −

· · · − ad−1I, then divide by ad if possible. Let us write a0 = −1, and define
αi = −ad−1−i for i = 0, . . . , d− 1; then, the quantity to compute is

p(A) =

d−1∑
i=0

αiA
i.

We extend the sum, by adding dummy coefficients αi set to zero, to write

p(A) =

mm′−1∑
i=0

αiA
i;

this is valid, since by construction mm′ − 1 ≥ d. For k ≥ 0, let us then define

σk =

(k+1)m−1∑
i=km

αiMi−km =

m−1∑
i=0

αi+kmMi;

232 M. Moreno Maza, É. Schost, and P. Vrbik

then, we see that we have

p(A) = (· · · (σm′−1Mm + σm′−2)Mm + · · ·)Mm + σ0. (5)

Using this formula, the algorithm to compute p(A) first requires the computation
of all Mi, for i = 0, . . . ,m, using O(

√
dM(B)) operations (+,×) in A.

Next, we have to compute σ0, . . . , σm′−1. As for Step 1, let Γ denote the (e×m)
matrix whose columns give the coefficients of A0 = M0, . . . , A

m−1 = Mm. Then,
σk is obtained by right-multiplying the matrix Γ by the size m column vector
[αkm · · ·α(k+1)m−1]

t. Joining all these column vectors in a (m × m′) matrix
Δ, we obtain all σk by computing the product ΓΔ. As for Step 1, the cost is
O(d(ω−1)/2e) operations (+,×) in A.

Finally, once all σk are known, we obtain p(A) by means of m′ products and
additions in B; the cost is O(

√
dM(B)) operations (+,×) in A. Putting all costs

seen before together, we obtain the cost announced in Proposition 1.

3 Proof of the Main Theorems

Using Proposition 1, it becomes straightforward to prove Theorems 1 and 2. Let
T = (T1, . . . , Tn) be a triangular set of multidegree (d1, . . . , dn) in k[X1, . . . ,
Xn]. First, we deal with invertibility test and inversion in RT, assuming that all
integers from 1 to sT = max(d1, . . . , dn) are units in k.

Let A be inRT. As in the introduction, we viewRT asRT′ [Xn]/〈Tn〉, whereT′

is the triangular set (T1, . . . , Tn−1) in k[X1, . . . , Xn−1]. Applying Proposition 1,
and referring to the discussion just after it, we see that we can decide whether
A is invertible in RT, and if so compute its inverse, using

1. O
(
d
(ω+1)/2
n

)
operations (+,×) in RT′ ; and

2. one invertibility test / inversion in RT′ .

As recalled in the introduction, multiplications in RT′ can be done for the cost
of K4n−1δT′ lg(δT′) lg lg(δT′) operations in k, for some constant K. The same
holds for additions in RT′ , since additions can be done in optimal time δT′ .
Let K ′ be a constant such that the big-Oh estimate in the first item above is

bounded by K ′d(ω+1)/2
n .

Notice δT′ = d1 · · · dn−1, and that it admits the obvious upper bound: δT′ ≤
δT. Then, the total running time I(d1, . . . , dn) of the invertibility test / inversion
algorithm follows the recurrence

I(d1, . . . , dn) ≤ KK ′4n−1d1 · · · dn−1d
(ω+1)/2
n lg(δT) lg lg(δT) + I(d1, . . . , dn−1),

which can be simplified as

I(d1, . . . , dn) ≤ C4nδTd
(ω−1)/2
n lg(δT) lg lg(δT) + I(d1, . . . , dn−1),

with C = KK ′/4. Unrolling the recurrence, we obtain

I(d1, . . . , dn) ≤ C4nδT

(
d
(ω−1)/2
1 + · · ·+ d(ω−1)/2

n

)
lg(δT) lg lg(δT).

Inversion Modulo Zero-Dimensional Regular Chains 233

With sT = max(d1, · · · , dn), this admits the upper bound

I(d1, . . . , dn) ≤ C4nn δT s
(ω−1)/2
T lg(δT) lg lg(δT),

which proves Theorem 1.

Table 1. Experimental results (in seconds)

Leverrier MatrixInverse

n d δT m Traces CharPoly Inverse Horner Total Time

1 2 2 3 0.03 0.00 0.00 0.01 0.04 0.2

1 2 2 6 0.03 0.00 0.00 0.02 0.05 0.07

1 2 2 9 0.07 0.00 0.00 0.06 0.13 0.15

1 2 2 12 0.19 0.00 0.00 0.12 0.31 0.34

1 2 2 15 0.26 0.00 0.00 0.23 0.49 0.54

1 2 2 18 0.47 0.00 0.00 0.45 0.92 0.72

1 10 10 3 0.02 0.00 0.00 0.01 0.03 0.12

1 10 10 6 0.10 0.01 0.00 0.09 0.20 0.39

1 10 10 9 0.43 0.01 0.00 0.21 0.65 1.09

1 10 10 12 0.96 0.01 0.00 0.63 1.60 2.26

1 10 10 15 1.67 0.02 0.00 1.29 2.98 4.09

1 10 10 18 3.17 0.02 0.00 2.09 5.28 6.67

1 18 18 3 0.02 0.01 0.00 0.03 0.06 0.22

1 18 18 6 0.33 0.01 0.00 0.20 0.54 0.87

1 18 18 9 0.93 0.02 0.00 0.50 1.45 2.28

1 18 18 12 2.30 0.02 0.00 1.51 3.83 4.60

1 18 18 15 4.22 0.03 0.00 3.36 7.61 8.02

1 18 18 18 8.07 0.05 0.00 5.43 13.56 13.14

3 3 27 3 0.14 0.02 0.08 0.22 0.46 7.7

3 3 27 6 1.75 0.07 0.07 1.46 3.35 10.4

3 3 27 9 5.68 0.11 0.08 3.58 9.45 15.5

3 3 27 12 13.47 0.16 0.07 9.18 22.8 24

3 3 27 15 22.9 0.27 0.08 19.4 42.8 35.7

3 3 27 18 42.67 0.27 0.07 30 73 52.2

3 4 64 3 0.88 0.22 0.58 1.6 3.28 54.5

3 4 64 6 10.6 0.43 0.63 9.80 21.4 100

3 4 64 9 32.8 0.77 0.62 22.5 56.7 184

3 4 64 12 74.9 1.07 0.63 55.1 132 324

3 4 64 15 121 1.38 0.65 111 233 524

3 4 64 18 213 1.67 0.58 163 379 840

3 5 125 3 0.75 0.08 0.63 0.74 2.20 159

3 5 125 6 7.07 0.22 0.63 5.07 14 299

3 5 125 9 22.5 0.38 0.55 12.6 36.0 548

3 5 125 12 53.7 0.65 0.54 33.2 88.1 960

3 5 125 15 94.1 0.84 0.54 72.1 167 1582

3 5 125 18 175.08 1.08 0.57 112 288 2462

234 M. Moreno Maza, É. Schost, and P. Vrbik

Theorem 2 then follows from the combination of Proposition 1 and Theorem 1.
To invert a (d× d) matrix A with entries in RT, we apply Leverrier’s algorithm
in Proposition 1, over the ring A = RT. As explained after Proposition 1, the
cost is O(dω+1/2) operations (+,×) in RT, followed by the invertibility test /
inversion of the determinant of A in RT. The cost reported in Theorem 2 then
follows easily from the bounds on the cost of multiplication and invertibility test
in RT.

4 Experimental Results

In this section, we compare Maple implementations of two approaches: our own
recursive Leverrier algorithm and the existing (Gauss-Bareiss based) method
from the RegularChainsMaple library [14]. Our implementation uses the Regu-
larChains library for normal forms, multiplication, etc, so we believe that this
is a fair comparison.

Letting p = 962592769, we choose a random dense regular chain T in Fp[X1,
. . . , Xn], with varying n, with and multidegree (d, . . . , d) for some varying d. We
invert a random (and thus invertible)m×mmatrix A with random entries in RT.
We compare our results to the MatrixInverse function from RegularChains.

Table 1 gives the results of our experiments on a AMD Athlon running Linux,
using Maple 15. For our algorithm, we detail the timings for trace computation
(Step 1 of the algorithm), reconstituting the characteristic polynomial χA (Step
2), the inverse of the determinant of A, and the computation of the inverse of A
itself (Step 3). As was to be expected, Step 1 and Step 3 take comparable times.
For n = 1, our algorithm behaves very similarly to the built-in MatrixInverse.
Already for n = 3, our implementation usually gives better results.

Acknowledgments. We acknowledge the support of the Canada Research
Chairs Program and of NSERC.

References

1. Abdeljaoued, J., Lombardi, H.: Méthodes matricielles: introduction à la complexité
algébrique. Mathématiques & Applications, vol. 42. Springer (2004)

2. Bostan, A., Flajolet, P., Salvy, B., Schost, É.: Fast computation of special resul-
tants. J. Symb. Comp. 41(1), 1–29 (2006)

3. Brent, R.P., Kung, H.T.: Fast algorithms for manipulating formal power series.
Journal of the ACM 25(4), 581–595 (1978)

4. Bürgisser, P., Clausen, M., Shokrollahi, A.: Algebraic Complexity Theory. Springer
(1997)

5. Csanky, L.: Fast parallel matrix inversion algorithms. SIAM J. Comput. 5(4), 618–
623 (1976)

6. Dahan, X., Jin, X., Moreno Maza, M., Schost, É.: Change of ordering for regular
chains in positive dimension. Theoretical Computer Science 392(1-3), 37–65 (2008)

7. Dahan, X., Moreno Maza, M., Schost, É., Xie, Y.: On the complexity of the D5
principle. Transgressive Computing, 149–168 (2006)

Inversion Modulo Zero-Dimensional Regular Chains 235

8. Dahan, X., Moreno Maza, M., Schost, É., Wu, W., Xie, Y.: Lifting techniques for
triangular decompositions. In: ISSAC 2005, pp. 108–115. ACM Press (2005)

9. Della Dora, J., Discrescenzo, C., Duval, D.: About a New Method for Computing
in Algebraic Number Fields. In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS,
vol. 204, pp. 289–290. Springer, Heidelberg (1985)

10. Faddeev, D., Sominskii, I.: Collected problems in higher algebra. Freeman (1949)
11. von Zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University

Press (1999)
12. Langemyr, L.: Algorithms for a multiple algebraic extension. In: Effective Methods

in Algebraic Geometry. Progr. Math, vol. 94, pp. 235–248. Birkhäuser (1991)
13. Le Verrier, U.J.J.: Sur les variations séculaires des éléments elliptiques des sept

planètes principales : Mercure, Venus, La Terre, Mars, Jupiter, Saturne et Uranus.
J. Math. Pures Appli. 4, 220–254 (1840)

14. Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library. In: Kotsireas,
I.S. (ed.) Maple Conference 2005, pp. 355–368 (2005)

15. Li, X., Moreno Maza, M., Schost, É.: Fast arithmetic for triangular sets: from
theory to practice. Journal of Symbolic Computation 44(7), 891–907 (2009)

16. Li, X., Maza, M.M., Pan, W.: Computations modulo regular chains. In: ISSAC
2009, pp. 239–246. ACM Press (2009)

17. Li, X., Moreno Maza, M., Pan, W.: Gcd computations modulo regular chains.
Technical report, Univ. Western Ontario, 30 pages (2009) (submitted)

18. Moreno Maza, M., Rioboo, R.: Polynomial GCD Computations over Towers of
Algebraic Extensions. In: Giusti, M., Cohen, G., Mora, T. (eds.) AAECC 1995.
LNCS, vol. 948, pp. 365–382. Springer, Heidelberg (1995)

19. Preparata, F.P., Sarwate, D.V.: An improved parallel processor bound in fast ma-
trix inversion. Information Processing Letters 7(2), 148–150 (1978)

20. Schönhage, A.: The fundamental theorem of algebra in terms of computational
complexity. Technical report, Univ. Tübingen, 73 pages (1982)

21. Shoup, V.: Fast construction of irreducible polynomials over finite fields. Journal
of Symbolic Computation 17(5), 371–391 (1994)

22. Shoup, V.: Efficient computation of minimal polynomials in algebraic extensions
of finite fields. In: ISSAC 1999, pp. 53–58. ACM Press (1999)

23. Souriau, J.-M.: Une méthode pour la décomposition spectrale et l’inversion des
matrices. Comptes rendus des Séances de l’Académie des Sciences 227, 1010–1011
(1948)

24. Vassilevska Williams, V.: Breaking the Coppersmith-Winograd barrier (2011)

Sparse Polynomial Powering Using Heaps

Michael Monagan and Roman Pearce

Department of Mathematics, Simon Fraser University, Burnaby, B.C., Canada
{mmonagan,rpearcea}@cecm.sfu.ca

Abstract. We modify an old algorithm for expanding powers of dense
polynomials to make it work for sparse polynomials, by using a heap to
sort monomials. It has better complexity and lower space requirements
than other sparse powering algorithms for dense polynomials. We show
how to parallelize the method, and compare its performance on a series
of benchmark problems to other methods and the Magma, Maple and
Singular computer algebra systems.

Keywords: Sparse Polynomials, Powers, Heaps, Parallel Algorithms.

1 Introduction

Expanding powers of sparse polynomials is an elementary function of computer
algebra systems. Despite receiving a lot of attention in the 1970’s, a fragmented
situation exists today where the fastest sparse methods make time and memory
tradeoffs that improve one case at the expense of others. Thus, programmers of
computer algebra systems must implement multiple routines and carefully select
among them to obtain good performance.

For an introduction to this problem and current methods it is hard improve on
the papers by Richard Fateman [1,2]. He characterizes the relative performance
of the algorithms by counting coefficient operations. We briefly discuss these
results. Let f be a polynomial with t terms to be raised to a power k > 1. We
use fi to refer to the ith term of f and #f to refer to the number of terms of f .
We consider two cases: sparse and dense.

In the sparse case, the terms of f interact as if they were algebraically inde-
pendent, e.g. as in f = x1 + x2 + · · ·+ xt. Expanding f

k creates
(
k+t−1

k

)
terms,

the most possible. In the dense case the terms of f combine as much as possible,
e.g. as in f = 1+ x+ x2 + · · ·+ xt−1. If there are no cancellations, fk will have
k(t− 1) + 1 terms.

We want a sparse algorithm to have good performance in the dense case, to
allow for a smooth transition to dense methods inside a general purpose routine.
The literature suggested that current sparse methods do an order of magnitude
too much work in the dense case, so we developed new methods to address this.
This in turn forced us to reassess sparse and dense algorithms for powering, as
the consensus heavily favors dense algorithms.

Our contribution is two methods for powering sparse polynomials. The first,
Sparse SUMS, has the best performance in the dense case. The second method,
which we call FPS, is a modification to improve performance in the sparse case.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 236–247, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Sparse Polynomial Powering Using Heaps 237

The methods in the literature are as follows.

RMUL computes f i = f · f i−1 for i = 2 . . . k. The memory taken by f i−2 may
be reused to hold f i so that total storage is at most twice the result.

RSQR computes f i = (f i/2)2 for i = 2 . . . �log2 k�, with extra multiplication by
f at each 1 in the binary expansion of k. E.g. f13 = f11012 = (((f)2 · f)2)2 · f .

Gentleman and Heindel note in [4,5] that RSQR is vastly inferior to RMUL
in the sparse case. RSQR also requires asymptotically fast dense multiplication
to improve on RMUL in the dense case. Therefore, RSQR is a dense algorithm.
The best feature of RMUL is that it aggressively combines like terms. This can
be of great importance on large problems which “fill-in”. Its weakness is sparse
problems and high powers.

BINA selects f1 ∈ f and expands g = (f1 + 1)k using the binomial theorem. It

expands (f − f1)i for i = 2...k using RMUL and merges fk =
∑k

i=0 gi · (f − f1)i.
BINB is similar to BINA except that f is split into equal-sized parts f = g+h.
It expands and merges fk =

∑k
i=0

(
k
i

) · gi · hk−i.

Binomial methods originate with Fateman in [1], who shows that BINB is
nearly optimal in the sparse case. Alagar and Probst [11] improve on this using
recursion, and Rowan [16] expands the set of powers {gi} more efficiently, both
for the sparse case only. For the dense case, Fateman in [2] shows that BINA is
comparable to RMUL and much faster than BINB. The tradeoff made in BINB
assumes that few like terms combine. This makes it unsuitable for our purpose.
In BINA, we avoid unbalanced merging by storing all (f − f1)

i and performing
a simultaneous n-ary merge that multiplies by each gi inline. This makes BINA
extremely fast in most cases, at the cost of extra memory.

MNE generates all combinations of terms with multinomial coefficients, see [6].
This quickly becomes infeasible in the dense case.

FFT performs fast multipoint evaluation at roots of unity modulo primes, uses
modular exponentiation on the values, then performs fast interpolation. Over Z
it uses multiple primes and Chinese remaindering.

As noted by Ponder in [10], the FFT can be competitive in practice because
high powers of sparse polynomials tend to fill in. For multivariate polynomials,
one can use the Kronecker substitution as suggested by Moenck [9], however this
separates the variables with very high degrees and thus limits gains from fill-in.
A weakness of the FFT is that small polynomials raised to high powers over Z
require many large FFTs. For that case the following classical method is faster,
a crucial fact which was brought to our attention by Greg Fee.

SUMS is a dense method. Let f =
∑d

i=0 fix
i. To compute g = fk =

∑kd
i=0 gix

i

we compute g0 = fk
0 and use the formula gi =

1
if0

∑min(d,i)
j=1 ((k + 1)j − i)fjgi−j

for i = 1 . . . kd.

The SUMS algorithm is originally due to Euler and is used to exponentiate
power series, see [2,3,8]. The algorithm is extremely fast for small polynomials
raised to large powers, as it is linear in k and quadratic in d.

238 M. Monagan and R. Pearce

Two features of the SUMS formula recall the sparse multiplication algorithm
of Johnson [7]. First, it computes each new term of the result in order. Second,
it merges pairwise products fjgi−j of equal degree, but scaled by ((k + 1)j − i).
Our starting point was to make a sparse method by skipping over products that
a sparse representation omits, that is, where fj or gi−j equals zero.

What methods do computer algebra systems presently use for this problem?
Singular 3.1 uses RMUL. Magma 2.17 uses RSQR. Maple 16 selects among our
implementations of RMUL, BINA, and RSQR. For univariate powering, Maple
estimates when RSQR will beat BINA. For multivariate powers, Maple bounds
the extra memory needed for BINA and uses RMUL when this is too large.

For the underlying multiplications, Magma and Maple use dense algorithms
for univariate polynomials over Z. Magma uses the Schönhage-Strassen method

with a single modulus of the form 22
k

+ 1. Maple evaluates at a large integer of
the form 264i to leverage the FFT from integer multiplication. For multivariate
multiplications, Maple, Magma, and Singular all use classical sparse algorithms
and distributed polynomial representations. Maple uses our codes from [12,14].

Our paper is organized as follows. Section 2 develops the Sparse SUMS and
FPS algorithms and describes our implementation. The complexity of powering
is discussed in Section 2.1. Section 2.2 describes our approach to parallelization
which we also used successfully for sparse polynomial division in [15]. Section 3
compares the performance of the algorithms on benchmark problems.

2 Sparse Sums

For completeness we briefly derive SUMS. Let f =
∑d

i=0 fix
i ∈ Q[x] and g = fk.

Then g′ = k fk−1 · f ′ and f · g′ = k g · f ′. Equating terms of degree i− 1 in

(f0 + f1x+ · · ·)(g1 + 2g2x+ · · ·) = k(g0 + g1x+ · · ·)(f1 + 2f2x+ · · ·)
we obtain min(d,i)∑

j=0

fjx
j · (gi−jx

i−j)′ =
min(d,i)∑

j=1

kgi−jx
i−j · (fjxj)′

from which we isolate gi to obtain the formula for i > 0. ��

Algorithm Dense SUMS (descending order).

Input: dense polynomial f = f0 + f1x+ · · ·+ fdx
d, fd �= 0 stored as an

array [f0, f1, . . . , fd] indexed from zero, and a positive integer k.
Output: dense polynomial g = fk.
1 g := an array with kd+ 1 elements indexed from zero
2 gkd := fk

d

3 for i from kd− 1 to 0 by −1 do
4 e := kd− i

5 c :=
∑min(d,e)

j=1 ((k + 1)j − e) · fd−j · gi+j

6 gi := c/(e · fd)
7 return g

Sparse Polynomial Powering Using Heaps 239

Our first task is to modify SUMS to produce the terms in descending order,
dividing by the leading coefficient of f rather than the constant term f0. This
leads into the sparse version and solves the problem of what to do when f0 = 0.

In algorithm Dense SUMS we identify i as the degree of the next term being
computed for g. To compute gi, we merge products of degree i + d, scaling by
((k + 1)j − e). To make our sparse algorithm, we express this scale factor using
the terms’ degrees. To merge fαx

α × gβx
β where α + β = i + d, we scale by

((k + 1)j − e) = β − kα.
The sparse version of SUMS is presented below. It uses a heap of pointers

into f and g to combine only non-zero products. The heap is used to merge the
set of all pairwise term products fi× gj in descending order. We exploit the fact
that the term fi × gj is strictly greater than fi × gj+1 and fi+1 × gj to reduce
the size of the heap. In lines 12 and 13, we avoid having multiple fi in the heap
with the same gj . Also note, because the coefficients of g are much larger than
those of f , there is an advantage to multiplying (β − kα) · cof(fi) first.

Algorithm Sparse SUMS.
Input: sparse univariate polynomial f = f1 + f2 + · · ·+ ft ∈ Z[x]

with terms descending in degree, and a positive integer k.

Output: sparse polynomial g = fk.
1 H := an empty heap ordered by degree with maximum element H1

2 g := fk
1

3 insert f2 × g1 = (2, 1, deg(f2) + deg(g1)) into H
4 while |H | > 0 and deg(H1) ≥ deg(f) do
5 M := deg(H1); C := 0; Q := {};
6 while |H | > 0 and deg(H1) = M do
7 (i, j,M) := extract max(H)
8 (α, β) := (degree(fi), degree(gj))
9 C := C + (β − kα) · cof(fi) · cof(gj)
10 Q := Q ∪ {(i, j)}
11 for all (i, j) ∈ Q do
12 if j < #g and (i = 1 or fi−1 × gj+1 was merged) insert fi × gj+1 into H
13 if i < #f and fi+1 × g not in H then insert fi+1 × gj into H
14 if C �= 0 then
15 C := C/((deg(g1)−M) · cof(f1))
16 g := g +C xM−deg(f1)

17 if f2 × g has no term in H then insert f2 × g#g into H
18 return g

In computer memory, the heap is an array of size O(#f) with pointers into
a second array for the products fi × gj . For most inputs (1000 terms or fewer)
these structures fit inside the L1 cache. For each fi ∈ f , we maintain a pointer
to the next term gj ∈ g for which we have yet to merge fi × gj . This makes the
test for whether fi−1× gj has been merged easy. We simply check if the pointer
for fi−1 has advanced beyond gj . We set a bit to indicate whether each product
fi× gj is in the heap or not. For dense polynomials, we also use an optimization
called chaining to combine products with equal monomials, see [13,14].

240 M. Monagan and R. Pearce

2.1 Complexity and Optimizations

Theorem 1. Sparse sums expands g = fk ∈ Z[x] using (2#f − 1)#g + 2 log k
coefficient multiplications, #g divisions, and O(#f#g log#f) comparisons. It
stores g and uses O(#f) additional memory.

Proof. Binary powering g1 = fk
1 does at most 2 log k multiplications. We merge

the set of all products {fi×gj} for 2 ≤ i ≤ #f and 1 ≤ j ≤ #g with the heap. Each
product requires two multiplications in line 9 and O(log#f) comparisons for the
heap in lines 7, 10 and 13. We do not count the exponent multiplication in β− kα.
To construct each term of g, we perform one multiplication and one division in line
15. The objects stored other than g are the heap H and set Q which have at most
#f entries. ��
For multivariate polynomials we use the Kronecker substitution to treat the prob-
lem as univariate. In general, one can use any invertible map of monomials to in-
tegers so long as monomial multiplications correspond to integer additions. The
mapping has two caveats that do not occur in the other sparse algorithms. Because
we multiply by the exponents, any padding in the map that increases the univari-
ate degrees can also increase the cost of coefficient arithmetic in Sparse SUMS.
And, because we divide by the exponents, we cannot run the algorithm mod p if
the degree of g under the mapping is greater than or equal to p.

Our benchmarks revealed one case where Sparse SUMS is inefficient. When
sparse polynomials, e.g. those arising from a Kronecker substitution, are raised
to a low power, typically #fk ' #f (k−1). The cost of RMUL will be mostly in
the final step which does #f ·#f (k−1) multiplications. But Sparse SUMS does
O(#f ×#fk) coefficient operations, which could be far more in total.

We note that Sparse SUMS could construct fk+1 almost for free, because it
already multiplies every term of fk by every term of f except for f1. To exploit
this we created a variant that we call FPS. It uses the Sparse SUMS algorithm
to compute fk−1 and outputs fk as a side effect.

We present FPS at the end of this section by adding lines to our description
of Sparse SUMS. To reduce the number of coefficient operations, lines 9 and 11
should reuse cof(fi) · cof(gj), and lines 17 and 18 should update C and S with
C := C/(deg(g1)−M); S := S + C; C := C/cof(f1).

Table 1 counts coefficient multiplications to compare the cost of the sparse
algorithms. The sparse result has (k + t − 1)!/(k!(t − 1)!) terms, so BINB is
nearly optimal. RMUL is more expensive by a factor of k, slowing it down on
high powers, and BINA by a factor of kt/(k+t−1), which balances contributions
from k and t. Sparse SUMS adds a factor of (2t− 1) and FPS adds a factor of
(2t− 1)k/(k+ t− 1). Those methods also do many divisions in the sparse case,
however their cost does not dominate.

The FFT is inefficient for sparse problems. One may assume these problems
have distinct variables, e.g. (1 + x + y + z)50, and Kronecker substitution must
separate variables in the result. For t terms to the power k, we must replace the
ith term by at least x(k+1)i−2

for i > 2, so the degree of fk is d = k (k + 1)t−2.
An FFT does about 1

2n log2 n multiplications, where n is the first power of 2
greater than d. For example, (1 + x + y + z)50 will have d = 50 · 512 = 130050

Sparse Polynomial Powering Using Heaps 241

Table 1. Coefficient multiplications to power (t terms)k

sparse case dense case

RMUL
(k + t− 1)!

(t− 1)!(k − 1)!
− t t(k − 1)(kt− k + 2)/2 ∈ O(k2t2)

BINA
t · (k + t− 2)!

(t− 1)!(k − 1)!
+ 2k t(k − 1)(kt− 2k + 4)/2 + 2 ∈ O(k2t2)

BINB
(k + t− 1)!

k!(t− 1)!
+ · · · k2(k − 1)(t− 2)2/24 + · · · ∈ O(k3t2)

SUMS
(2t− 1)(k + t− 1)!

k!(t− 1)!
(2t− 1)((t− 1)k + 1) ∈ O(kt2)

FPS
(2t− 1)(k + t− 2)!

(k − 1)!(t− 1)!
(2t− 1)((t− 1)(k − 1) + 1) ∈ O(kt2)

and n = 214. The two FFT calls do about n log2 n = 2.29 × 106 multiplications,
but SUMS and FPS compute the result in 1.64× 105 and 1.55× 105 operations.
In the dense case, SUMS and FPS areO(kt2) and the other sparse algorithms are
O(k2t2). The FFT isO(d log d) where d = ((t−1)k+1) is now the size of the result,
however, SUMS can still win if log d > 2t, that is, SUMS is the best method for
raising small dense polynomials to high powers.

Algorithm FPS.
Input: sparse univariate polynomial f = f1 + f2 + · · ·+ ft ∈ Z[x]

with terms descending in degree, and a positive integer k.

Output: sparse polynomial h = fk.
1 H := an empty heap ordered by degree with maximum element H1

2 g := fk−1
1 ; h := fk

1

3 insert f2 × g1 = (2, 1, deg(f2) + deg(g1)) into H
4 while |H | > 0 do
5 M := deg(H1); C := 0; S := 0; Q := {};
6 while |H | > 0 and deg(H1) = M do
7 (i, j,M) := extract max(H)
8 (α, β) := (degree(fi), degree(gj))
9 S := S + cof(fi) · cof(gj)
10 if M ≥ deg(f1) and β �= (k − 1)α
11 then C := C + (β − (k − 1)α) · cof(fi) · cof(gj)
12 Q := Q ∪ {(i, j)}
13 for all (i, j) ∈ Q do
14 if j < #g and (i = 1 or fi−1 × gj+1 was merged) insert fi × gj+1 into H
15 if i < #f and fi+1 × g not in H then insert fi+1 × gj into H
16 if C �= 0 then
17 C := C/((deg(g1)−M) · cof(f1))
18 S := S + C · cof(f1)
19 g := g +C xM−deg(f1)

20 if f2 × g has no term in H then insert f2 × g#g into H
21 if S �= 0 then h := h+ S xM

22 return h

242 M. Monagan and R. Pearce

2.2 Parallelization

Our design for the parallel algorithm follows the approach used for polynomial
division in [15]. Both problems have a tight data-dependency among the terms
in the result. That is, each new term of g can depend on any subset of previous
terms with no predictable pattern. To create parallelism we split the work into
dynamically interacting pieces and exploit structure to hide latencies.

Global

Threads
j

s

j+1g = f ^k g g

f

1

3

2

4

Fig. 1. Threads multiply strips of f by all of g. A global function merges the results
from the threads and the first strip, while computing new terms of g.

Figure 1 shows features common to all our parallel algorithms. The work of
merging products fi × gj is divided into strips along the terms of f , so threads
are given subsets of f to multiply by g. A global function combines their results
and computes new terms of g. This function is protected by a lock and may be
called by any thread, which allows them to cooperatively balance the load [12].

Another feature from our earlier work on division [15] is used to resolve the
data-dependency. The first strip of f is assigned to the global function, so that
as new terms gj are computed there is no delay in merging f2 × gj. Recall that
this term must be compared to all others immediately as it could be used next.

The global strip is also used to resolve the nasty problem of blocked threads.
Threads block when they merge fi × gj and go to insert fi × gj+1 in their heap
only to find that gj+1 does not exist. The reason could be a delay, but perhaps
fi × gj was merged by the global function and no new term of g was computed.
In that case, the global function now needs fi+1 × gj to progress. Our solution
is for the global function to steal rows from the threads when this happens.

To implement stealing, we have two shared variables that are read by all of
the threads. The first variable t is the number of terms computed in the result.
The variable s is the number of rows stolen by the global function. To ensure a
valid state, threads must read s before t, and the global function must update t
before incrementing s. We enforce this with memory barriers.

Incrementing t means that a new term of g was computed, and alongside its
monomial and coefficient the global function stores the current value of s. This
tells the threads what products involving gt are stolen and must not be merged.
When threads block waiting for t to be incremented, they attempt to enter the

Sparse Polynomial Powering Using Heaps 243

Table 2. Timings for completely sparse (t terms)k

input result C code Magma Singular
t k terms degree bits SUMS FPS RMUL BINA FFT RSQR RMUL
3 100 5151 10100 152 0.001 0.001 0.026 0.001 0.01 0.25 0.05
3 250 31626 62750 388 0.007 0.013 0.484 0.011 0.45 12.84 1.04
3 500 125751 250500 784 0.035 0.069 4.560 0.055 3.48 278.13 12.75
3 1000 501501 1001000 1575 0.208 0.414 45.664 0.333 31.38 – 125.29
3 2500 3128751 6252500 3951 2.328 4.770 – 5.667 (*) – –
4 50 23426 130050 92 0.005 0.007 0.033 0.005 0.12 1.34 0.18
4 100 176851 1020100 191 0.040 0.073 0.763 0.055 3.10 98.71 2.49
4 200 1373701 8080200 389 0.373 0.714 13.151 0.521 74.36 – 44.61
4 400 10827401 64320400 788 3.636 7.405 247.743 5.144 – – 889.79
6 20 53130 3.89 · 106 42 0.008 0.008 0.021 0.006 3.25 0.77 0.07
6 30 324632 2.77 · 107 67 0.056 0.057 0.173 0.039 63.27 26.00 1.17
6 40 1221759 1.13 · 108 91 0.332 0.531 1.471 0.222 – 460.42 6.67
6 50 3478761 3.38 · 108 117 1.000 1.682 6.547 0.838 – – 26.89
6 70 17259390 1.78 · 109 167 5.123 9.256 49.476 5.029 – – 176.80
8 15 170544 2.51 · 108 34 0.031 0.027 0.052 0.023 (*) 0.95 0.10
8 20 888030 1.71 · 109 47 0.179 0.162 0.337 0.117 – 36.20 1.84
8 25 3365856 7.72 · 109 62 0.677 0.649 1.504 0.452 – 284.64 10.70
8 30 10295472 2.66·1010 76 2.838 3.135 6.143 1.546 – – 42.92
8 35 26978328 7.62·1010 90 9.042 13.828 28.342 5.927 – – 148.97
12 10 352716 2.59·1011 22 0.088 0.055 0.074 0.050 – 1.61 0.18
12 12 1352078 1.65·1012 29 0.364 0.231 0.330 0.199 – 11.84 0.89
12 14 4457400 8.07·1012 35 1.222 0.864 1.220 0.672 – 78.81 4.06
12 16 13037895 3.22·1013 41 3.538 2.631 3.970 1.982 – 500.20 21.99
12 18 34597290 1.10·1014 47 9.339 7.166 11.468 5.402 – – (*)
12 20 84672315 2.15·1014 54 22.537 18.071 29.922 13.360 – – –

– Not attempted. (*) Ran out of memory.

global function and then they update their local copies of s and t. The global
function can steal rows with impunity. We do this whenever it is blocked.

3 Benchmarks

Our benchmarks were performed on a 2.66 GHz Intel Core i7 920 with 6 GB of
RAM running Linux. This is a 64 bit 4 core processor. Timings are the median
time in seconds of 3 runs. Magma timings are for version 2.17. Singular timings
are for version 3.10. Timings for SUMS, FPS, RMUL, and BINA are real times
from our C library. For Magma and Singular we report CPU timings, which we
found to be less precise.

3.1 Sparse Problems

To create polynomials with t terms whose powers up to k are completely sparse,
we used Kronecker’s substitution on F = 1 + x1 + x2 + · · ·+ xt−1 to construct

f = 1 + x+ x(k+1) + x(k+1)2 + · · ·+ x(k+1)t−2

.

244 M. Monagan and R. Pearce

This polynomial to the power k generates the largest possible number of terms.
That is what is meant by sparse. Notice how we can not have too many terms t
before the integer exponents become massive. This suggests that most practical
problems (whose result can be stored) have t, k, so the extra factor of 2t− 1
in the cost of SUMS is not as disadvantageous as it may first appear.

Table 2 compares SUMS, FPS, RMUL and BINA. The polynomials are too
short to run our parallel algorithms. For Magma we give two times; FFT is the
RSQR algorithm with Schönhage-Strassen multiplication. We also tried writing
the problem as multivariate, which uses RSQR and sparse arithmetic. Singular
uses sparse arithmetic and RMUL which is a sensible choice.

The timings show that SUMS is consistently faster than RMUL, and is the
fastest method for higher powers in fewer variables. The FPS method becomes
slower relative to SUMS as k increases but faster as t increases. BINA is highly
competitive in all cases, and is the fastest method tested for 6 or more terms.

3.2 Dense Problems

Table 3 shows timings for expanding powers of the polynomial

f = 1 + x+ x2 + · · ·+ xt−1.

Dense problems are a strong case for SUMS. RMUL and BINA are competitive
only for low powers of large polynomials, where the FFT is the fastest method.
This implies SUMS is the best sparse method to complement the FFT. Higher
powers benefit SUMS versus the FFT. For 500 terms, SUMS goes from 21 times
slower at k = 10 down to 1.5 times slower at k = 320, breaking even at k = 640.
Our parallel speedup appears to be limited to 3.8. The timings for FPS do not
fit in the table, but they are slower than SUMS by a factor of 3. We think this
ratio will improve with optimization.

Table 4 reports the time to power two dense multivariate polynomials. The
data shows that conventional sparse methods (RMUL and BINA) beat the FFT
as the number of variables increases. Because it has better complexity on dense

Table 3. Timings for completely dense (t terms)k

t k SUMS RMUL BINA FFT t k SUMS (4 cores) RMUL FFT
10 200 0.001 0.085 0.098 0.006 500 10 0.084 0.026 0.151 0.004
10 500 0.005 0.752 1.078 0.095 500 20 0.198 0.058 1.343 0.014
10 1000 0.015 4.474 8.178 0.501 500 40 0.476 0.131 6.944 0.057
10 1500 0.032 13.386 29.630 0.510 500 80 1.200 0.322 34.933 0.247
10 2000 0.055 29.808 – 2.640 500 160 3.351 0.921 192.162 1.352
10 2500 0.082 55.433 – 2.670 500 320 10.616 2.808 – 6.890
100 50 0.023 0.415 0.428 0.017 1000 3 0.045 0.015 0.034 0.001
100 100 0.057 2.087 2.165 0.056 1000 5 0.078 0.026 0.115 0.003
100 200 0.159 11.091 11.728 0.262 1000 10 0.361 0.102 0.797 0.013
100 400 0.497 66.643 71.487 1.360 1000 20 0.824 0.228 5.714 0.030
100 800 1.730 446.477 – 6.990 1000 40 1.951 0.525 29.393 0.130
100 1600 6.087 – – 36.310 1000 80 5.035 1.325 149.326 0.570

Sparse Polynomial Powering Using Heaps 245

Table 4. Timings for dense multivariate fk

f = (1 + x+ y)15 t = 136 Magma Singular
k #g SUMS 4 cores FPS RMUL 4 cores BINA FFT RMUL
20 45451 0.536 0.149 0.685 1.514 0.429 1.553 0.49 12.33
40 180901 3.157 0.846 4.181 15.833 4.406 16.375 5.49 134.59
60 406351 9.263 2.478 12.552 65.276 17.927 66.790 27.27 522.59
80 721801 20.439 5.402 28.110 182.717 49.830 187.178 56.42 –
120 1622701 64.117 16.618 88.688 – – – 325.60 –

f = (1 + w + x+ y + z)4 t = 70 Magma Singular
k #g SUMS 2 cores FPS RMUL 2 cores BINA FFT RMUL
4 4845 0.005 0.005 0.003 0.003 0.003 0.003 0.30 0.01
8 58905 0.068 0.062 0.048 0.071 0.047 0.072 1.24 1.01

12 270725 0.711 0.440 1.021 0.955 0.589 0.995 10.84 10.40
16 814385 2.311 1.297 3.784 5.238 3.120 5.443 65.50 46.49
20 1929501 5.852 4.755 10.337 17.164 10.065 17.790 218.14 166.02
24 3921225 12.313 11.350 22.643 44.008 25.513 45.489 391.42 394.08
28 7160245 23.430 22.754 45.458 97.179 56.745 100.277 (*) –

problems, SUMS has a much easier time beating the FFT. It gains more as the
power k or the number of variables is increased.

The only case where SUMS loses to RMUL or BINA is k = 4 in the second
problem. In that case, and also for k = 8, the FPS algorithm does much better.
The parallel speedup for SUMS is good on the first problem but it deteriorates
on the second problem as k increases. We suspect the routine is struggling with
data dependencies because parallel division of fk by f shows the same issue.

3.3 Real Examples

We were first motivated to investigate sparse powering by a post to the Sage
development newsgroup by Tom Coates. He wanted to raise the polynomial

f = xy3z2 + x2y2z + xy3z + xy2z2 + y3z2 + y3z

+ 2y2z2 + 2xyz + y2z + yz2 + y2 + 2yz + z

to high powers, but no computer algebra system could do it in reasonable time.
This can now be done quickly. Table 5 shows that SUMS is the fastest method.
Note, in order to get Magma to use the FFT, we explicitly converted f(x, y, z)
into a univariate polynomial using Kronecker’s substitution. Otherwise Magma
will use sparse RSQR, which takes 134.49 seconds for k = 40.

In [17], Zeilberger writes (in 1994):

“In my research on constant term conjectures, I often need to expand
powers of polynomials Pm where m is very large and P is (usually) a
polynomial of several variables. I was frustrated by the slowness of all
the commercial computer algebra packages. For example, in Maple, it
takes several days to expand (1 + 3x+ 2x2)3000.”

246 M. Monagan and R. Pearce

Table 5. Timings (in CPU seconds) to power fk

result C code Magma Maple Singular
k #g SUMS RMUL BINA FFT RMUL RMUL
40 243581 0.159 0.968 0.941 1.47 1.36 5.50
70 1284816 0.941 10.833 10.624 28.26 13.97 62.85
100 3721951 3.026 48.932 51.670 93.64 59.37 316.11
150 12499176 10.880 276.320 – (*) 324.00 –
250 57636126 68.626 – – – – –

– Not attempted. (*) Ran out of memory.

Zeilberger coded dense SUMS in Maple and noted that it was theoretically faster
than the FFT, although his analysis does not account for the coefficients which
exceed 2300 decimal digits. At the time Maple was using BINA, which is a poor
choice on this problem as it needs over 2 GB of memory to store all the expanded
powers of (3x+ 1)i for i up to 3000.

Table 6 shows that SUMS is by far the fastest method on this example. The
digits column shows the length in decimal digits of the largest coefficient in the
result. By default, Maple 16 uses RSQR and performs univariate multiplication
by evaluating at a suitable power of 2 and leveraging the FFT from fast integer
multiplication. This takes 1 second on our Intel Core i7 2.66 GHz machine. But
SUMS takes under 9 milliseconds! It does fewer than 2t2k = 2 · 9 · 3000 = 54000
coefficient multiplications; and because the coefficients of f are small, at most
half of those are multiprecision.

Table 6. Timings (in CPU seconds) to power (2x2 + 3x+ 1)k

C code Magma Maple 16 Singular
k digits SUMS RMUL BINA FFT RSQR RMUL

1000 777 0.00130 0.302 0.591 0.02 0.088 0.76
2000 1555 0.00418 1.858 6.562 0.08 0.419 4.62
3000 2333 0.00884 5.461 28.847 0.25 1.03 15.04
4000 3111 0.01540 12.202 83.870 0.41 2.13 35.57
5000 3889 0.02318 23.008 (*) 1.31 3.48 70.32

(*) BINA ran out of space; it exceeded the 6 gigabytes available.

4 Conclusion

We adapted a classical method for powering dense series to make a new method
for powering sparse polynomials. SUMS has better complexity than other sparse
algorithms in the dense case, which is important for general problems. It has
reasonable performance in the completely sparse case.

In comparing SUMS with RMUL, the larger the power and the smaller the
polynomial, the better. We also compared it to the FFT and explained why
the FFT struggles to power multivariate polynomials. It is due to the very high
degrees that are needed in Kronecker substitution when powering. We conclude
that SUMS has a wide range of applicability. It performed extremely well on a
benchmark problem coming from a real application.

Sparse Polynomial Powering Using Heaps 247

Our effort to parallelize Sparse SUMS was largely successful. For inputs with
a large number of terms, 500 or more, we often obtained good parallel speedup.
A problem with this approach is that it requires the input to have a lot of terms,
at least 50, to conceal communication latencies.

One improvement that we can make is to generate the terms of the output
g = g1 + g2 + · · ·+ gm from both directions in parallel and meet in the middle.

Our next task is to optimize and parallelize the FPS variant presented here.
That algorithm should offer better performance in the cases where SUMS loses
to RMUL or BINA, while retaining the best qualities of SUMS.

Acknowledgment. We thank the referees for their suggestions which have
improved this paper.

References

1. Fateman, R.: On the computation of powers of sparse polynomials. Studies in Appl.
Math. 53, 145–155 (1974)

2. Fateman, R.: Polynomial multiplication, powers, and asymptotic analysis: some
comments. SIAM J. Comput. 3(3), 196–213 (1974)

3. Fettis, H.: Algorithm 158. Communications of the ACM 6, 104 (1963)
4. Gentleman, M.: Optimal multiplication chains for computing a power of a symbolic

polynomial. Math Comp. 26(120), 935–939 (1972)
5. Heindel, L.: Computation of powers of multivariate polynomials over the integers.

J. Comput. Syst. Sci. 6(1), 1–8 (1972)
6. Horowitz, E., Sahni, S.: The computation of powers of symbolic polynomials. SIAM

J. Comput. 4(2), 201–208 (1975)
7. Johnson, S.C.: Sparse polynomial arithmetic. ACM SIGSAM Bulletin 8(3), 63–71

(1974)
8. Knuth, D.: The Art of Computer Programming, Seminumerical Algorithms, vol. 2.

Addison-Wesley (1998)
9. Moenck, R.: Another Polynomial Homomorphism. Acta Informatica 6, 153–169

(1976)
10. Ponder, C.: Parallel multiplication and powering of polynomials. J. Symbolic.

Comp. 11(4), 307–320 (1991)
11. Probst, D., Alagar, V.: A Family of Algorithms for Powering Sparse Polynomials.

SIAM J. Comput. 8(4), 626–644 (1979)
12. Monagan, M., Pearce, R.: Parallel Sparse Polynomial Multiplication Using Heaps.

In: Proc. of ISSAC 2009, pp. 295–315. ACM Press (2009)
13. Monagan, M., Pearce, R.: Polynomial Division Using Dynamic Arrays, Heaps, and

Packed Exponent Vectors. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2007. LNCS, vol. 4770, pp. 295–315. Springer, Heidelberg (2007)

14. Monagan, M., Pearce, R.: Sparse Polynomial Division Using a Heap. J. Symbolic.
Comp. 46(7), 807–922 (2011)

15. Monagan, M., Pearce, R.: Parallel Sparse Polynomial Division Using Heaps. In:
Proc. of PASCO 2010, pp. 105–111. ACM Press (2010)

16. Rowan, W.: Efficient Polynomial Substitutions of a Sparse Argument. ACM Sigsam
Bulletin 15(3), 17–23 (1981)

17. Zeilberger, D.: The J.C.P. Miller recurrence for exponentiating a polynomial, and
its q-analog. J. Difference Eqns and Appls 1(1), 57–60 (1995),
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/power.pdf

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/power.pdf

Stability Conditions of Monomial Bases

and Comprehensive Gröbner Systems

Katsusuke Nabeshima

Institute of Socio-Arts and Sciences,
University of Tokushima,

1-1 Minamijosanjima, Tokushima, 770-8502, Japan
nabeshima@tokushima-u.ac.jp

Abstract. A new stability condition of monomial bases is introduced.
This stability condition is stronger than Kapur-Sun-Wang’s one. More-
over, a new algorithm for computing comprehensive Gröbner systems, is
also introduced by using the new stability condition. A number of seg-
ments generated by the new algorithm is smaller than that of segments
of in Kapur-Sun-Wang’s algorithm.

1 Introduction

First, in this paper, we introduce a new stability condition of monomial bases
which is enhanced and stronger than the previous results. Second, we construct
an algorithm for computing comprehensive Gröbner systems by using the new
stability condition.

Comprehensive Gröbner systems for parametric ideals were introduced, con-
structed, and studied by Weispfenning [16] in 1992. After Weispfenning’s paper
was published, Kapur introduced an algorithm [8] for parametric Gröbner bases
and Dolzman-Sturm implemented and published the software [3]. There was,
however, no big development about comprehensive Gröbner systems (or bases)
for ten years. Last ten years, the big developments were made by Kapur-Sun-
Wang, Montes, Nabeshima, Sato, Suzuki, andWeispfenning [9,10,11,12,14,15,17].

Some of algorithms for computing comprehensive Gröbner systems are based
on stability of Gröbner bases of ideals under specializations (Kalkbrener’s results
[7]). Each algorithm of them has a different “stability condition” of monomial
bases. In 2010, Kapur-Sun-Wang discovered a wonderful stability condition [9]
and constructed an algorithm for computing comprehensive Gröbner systems by
using the stability condition. As Kapur-Sun-Wang’s stability condition is stronger
than Suzuki-Sato’s [15] and Nabeshima’s [12] ones, Kapur-Sun-Wang’s algorithm
works more efficient than them.

In this paper, we improve Kapur-Sun-Wang’s algorithm by using the new
strong stability condition. The main advantage of the new algorithm is that,
it generates fewer segments compared to Kapur-Sun-Wang’s algorithm [9].

The paper is organized as follows. Section 2 gives notations and definitions
that will be used in this paper. Section 3 reviews Kapur-Sun-Wang’s stability

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 248–259, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Stability Conditions and CGS 249

condition and gives the new stability condition which is the main result. Section
4 describes an algorithm for computing comprehensive Gröbner systems by using
the new stability condition and compares the new algorithm with Kapur-Sun-
Wang’s one.

2 Preliminary

We use the notation X as the abbreviation of n variables X1, . . . , Xn and the
notation A as the abbreviation ofm variables A1, . . . , Am. Let K and K̄ be fields
such that K̄ is an algebraic closure field of K. pp(X), pp(A) and pp(A,X) are
the sets of power products of X , A and A∪X , respectively. ≺A,X is an admissible
block order on pp(A,X) such that A , X . ≺X and ≺A are the restriction of
≺A,X on pp(X) and pp(A), respectively.

For a polynomial f ∈ K[A][X] (polynomial ring over K[A] in the variables
X), the leading power product, leading coefficient and leading monomial of f
w.r.t. the order ≺X are denoted by lppX(f), lcX(f) and lmX(f), respectively.
Since f can be regarded as an element ofK[A,X], in this case, the leading power
product, leading coefficient and leading monomial of f w.r.t. the order ≺A,X are
denoted by lppA,X , lcA,X and lmA,X , respectively. Let F be a subset ofK[A][X].
We define lcX(F) := {lcX(f)|f ∈ F} and lppX(F) := {lppX(f)|f ∈ F}.

Q and C are the field of rational numbers and the field of complex numbers, re-
spectively. Angle brackets 〈 · 〉 are defined as follows: let f1, . . . , fl ∈ R where R is
a commutative ring with identity. Then, 〈f1, . . . , fl〉 := {

∑s
i=1 hifi|h1, . . . , hs ∈

R}.
For every ā ∈ K̄m, we can define the canonical specialization homomorphism

σā : K[A]→ K̄ induce by ā, and we can naturally extend it to σā : K[A][X]→
K̄[X]. The image under σ of an ideal I ∈ K[A][X] generates the extension
σ(I) := {σ(f)|f ∈ I} ⊆ K̄[X].

For example, let f = abx2y + xy + ax + by + 2 ∈ Q[a, b][x, y] and (a, b) =
(−2, 3), (0, 13) ∈ Q2. Then, σ(−2,3)(f) = −6x2y+xy−2x+3y+2 and σ(0, 13)

(f) =
1
3y + 2. That is, we can regard σā as substituting ā into m variables A.

For f1, . . . , fk ∈ K[A], V(f1, . . . , fk) ⊆ K̄m denotes the affine variety of
f1, . . . , fk, i.e.,V(f1, . . . , fk) = {ā ∈ K̄m| f1(ā) = · · · = fk(ā) = 0} and V(0) :=
K̄m. In this paper, we use an algebraically constructible set that has a form
V(f1, . . . , fk)\V(g1, . . . , gl) ⊆ K̄m where f1, . . . , fk, g1, . . . , gl ∈ K[A].

Definition 1. We call an ideal I ⊆ K[A][X] stable under the ring homomor-
phism σ and a term order ≺X if it satisfies

σ(lmX(I)) = lmX(σ(I))

where σ(lmX(I)) := {σ(lmX(f)) |f ∈ I} and lmX(σ(I)) := {lmX(f)|f ∈ σ(I)}.

In several papers [1,5,4,6,7], the stability of Gröbner bases under specializa-
tion was studied. Stability conditions of this paper are based on the following
theorem.

250 K. Nabeshima

Theorem 1 (Kalkbrener [7]). Let σ be a ring homomorphism from K[A] to
K̄, I an ideal in K[A][X] and G = {g1, . . . , gs} a Gröbner basis of I w.r.t. a term
order ≺X . We assume that the gi’s are ordered in such a way that there exists
an r ∈ {1, . . . , s} with σ(lcX(gi)) �= 0 for i ∈ {1, . . . , r} and σ(lcX(gi)) = 0 for
i ∈ {r + 1, . . . , s}. Then, the following three conditions are equivalent.
(1) I is stable under σ and ≺X .
(2) {σ(g1), . . . , σ(gr)} is a Gröbner basis of σ(I) w.r.t. the term order ≺X .
(3) For every i ∈ {r+1, . . . , s}, σ(gi) is reducible to 0 modulo {σ(g1), . . . , σ(gr)}
in K̄[X].

Definition 2. Let I be an ideal in K[A][X]. If a monomial set M = {m1, . . . ,
ml} ⊂ pp(X) satisfies the next two properties:
(1) there exists ā ∈ K̄m such that lmX(σā(I)) = 〈m1, . . . ,ml〉, and
(2) for all i, j ∈ {1, . . . , l} (i �= j), mi � mj ,
then M is called “a specialized minimal leading monomial basis of I”.

Let I = 〈ax2 + x, by + 1〉 be an ideal in C[a, b][x, y]. In case a = b = 1, then
σ{a=1,b=1}(I) = 〈x2 + x, y + 1〉. Thus, {x2, y} is a specialized minimal leading
monomial basis of I. Moreover, for a = 0 and b �= 0 but not for a �= 0 or for
b = 0, {x, y} is a specialized minimal leading monomial basis of I.

Definition 3 (stability conditions). Let I be an ideal in K[A][X], M ⊂
pp(X) be a specialized leading monomial basis of I. Moreover, let A ⊆ K̄ be
an algebraically constructible set. If for all ā ∈ A, the canonical specialization
homomorphism σā satisfies σā(lmX(I)) = lmX(σā(I)) = 〈M〉, then we call A a
stability condition of M .

Let I = 〈ax2+x, by+1〉 be an ideal in C[a, b][x, y]. Then, C2\V(ab) is a stability
condition of {x2, y}. In general, a stability condition of a monomial basis is not
unique.

3 Stability Conditions of Monomial Bases

Here, we describe stability conditions of monomial bases. Let us fix the term
order≺X inK[A][X], and let I be an ideal inK[A][X]. Then, we have a question.

When Does a Specialization Homomorphism σ Make I Stable?
Some of answers were given by Kapur-Sun-Wang, Nabeshima and Suzuki-
Sato [9,12,15]. As Kapur-Sun-Wang’s one is stronger than Suzuki-Sato’s and
Nabeshima’s, we review Kapur-Sun-Wang’s stability condition, first. Second, we
give a new stability condition which is stronger than Kapur-Sun-Wang’s one.

3.1 Kapur-Sun-Wang’s Stability Condition

Definition 4 (Kapur-Sun-Wang [9]). Given a set G of polynomials which
are a subset of K[A,X] and ≺A,X , let Noncomparable(G) be a subset, called F ,
of G such that (i) every polynomial g ∈ G is such that lppX(g) is a multiple of
lppX(f) for some f ∈ F , and further (ii) for any two distinct f1, f2 ∈ F , neither
lppX(f1) is a multiple of lppX(f2) nor lppX(f2) is a multiple of lppX(f2).

Stability Conditions and CGS 251

It is easy to see that 〈lppX(Noncomparable(G)〉 = 〈lppX(G)〉 and a set
Noncomparable(G) may NOT be unique. Kapur-Sun-Wang have introduced
the following theorem.

Theorem 2 (Kapur-Sun-Wang [9]). Let G be a Gröbner basis of an ideal
I ⊂ K[A,X] w.r.t. ≺A,X . Let Gr = G∩K[A] and Gm = Noncomparable(G\Gr).
Assume Gm = {g1, . . . , gs}. Then, for all ā ∈ V(Gr)\ (V(lcX(g1)) ∪ V(lcX(g2))
∪ · · · ∪ V(lcX(gs))), σā(Gm) is a Gröbner basis of σā(I) w.r.t. ≺X in K̄[X].
(Remark that V(lcX(g1)) ∪ · · · ∪ V(lcX(gs)) = V(lcX(g1) · · · lcX(gs)).)

By Theorem 1 and Theorem 2, we can easily obtain the following corollary.

Corollary 1. With the same notations in Theorem 2, then, a stability con-
dition of lpp(Noncomparable(G\Gr)) is V(Gr)\ (V(lcX(g1)) ∪ V(lcX(g2)) ∪ · · ·
∪V(lcX(gs))). (Clearly, in K[A][X], lpp(Noncomparable(G\Gr)) is a specialized
minimal leading monomial basis of I.)

3.2 A New Stability Condition

Here, we give a new stability condition of monomial bases. In order to introduce
the new condition, we need the following definition.

Definition 5. Given a set F ⊂ K[A,X] and ≺A,X , the minimal basis of
lppX(F) is denoted by MBlpp(F), i.e., MBlpp(F) :={lppX(f)| lppX(g) � lppX(f),
for any g ∈ F such that lppX(g) �= lppX(f)}. (MBlpp(F) is also the reduced
Gröbner basis of 〈lppX(F)〉 w.r.t. ≺X and a specialized minimal leading mono-
mial basis of 〈F 〉 in K[A][X].)

It is obvious that MBlpp(F) is unique and 〈MBlppX(F)〉 = 〈lppX(F)〉 =
〈lppX(Noncomparable(F)〉. We give a simple example.

Let F = {ax2 − y, ay2− 1, ax− 1, (a+1)x− y, (a+1)y− 1} ⊂ Q[a, x, y] with
the lexicographic order such that x � y ' a. Then, F1 = {ax− 1, (a+ 1)y − a}
and F2 = {(a + 1)x − y, (a + 1)y − a} are both Noncomparable(F). {x, y} is
MBlpp(F). It is easy to verify that 〈lppX(F)〉 = 〈lppX(F1)〉 = 〈lppX(F2)〉 =
〈MBlpp(F)〉 = 〈x, y〉.

Now, we are ready to introduce a new stability condition. The following the-
orem is the main result of this paper.

Theorem 3. Let G be a Gröbner basis of an ideal I ⊂ K[A,X] w.r.t. ≺A,X .
Let Gr = G ∩K[A] and MBlpp(G\Gr) = {p1, p2, . . . , ps}. Assume Gpi = {f ∈
G| lppX(f) = pi} for each i = 1, . . . , s. Then, for all ā ∈ V(Gr)\ (V(lcX(Gp1)
∪V(lcX(Gp2) ∪ · · · ∪V(lcX(Gps)), σā(Gp1 ∪Gp2 ∪ · · · ∪Gps) is a Gröbner basis
of σā(I) w.r.t. ≺X in K̄[X]. (Remark that, for V := V(f1, . . . , fs) and W :=
V(g1, . . . , gt), V ∪W = V(figj : 1 ≤ i ≤ s, 1 ≤ j ≤ t).)

Proof. Since ā is from V(Gr)\ (V(lcX(Gp1) ∪ · · · ∪ V(lcX(Gps)), there exists
hj ∈ Gpj such that σā(lmX(hj)) �= 0 for each j = 1, . . . , s. Set G = {g1, . . . , gl}
and H = {h1, . . . , hs}. Then, H ⊆ G and MBlpp(H) = MBlpp(G\Gr) =
{p1, . . . , ps}. First, we proof the following claim.

252 K. Nabeshima

Claim 1
“For all ā ∈ V(Gr)\ (V(lcX(Gp1) ∪ · · · ∪ V(lcX(Gps)), I is stable under σā and
≺X . That is, σā(lmX(I)) = lmX(σā(I)).”

Proof of the claim: It is obvious that σā(lmX(I)) ⊂ lmX(σā(I)). We show
the reverse inclusion. As G is a Gröbner basis of I w.r.t. ≺X in K[A][X], it is
enough to show that 〈σā(lmX(g1)), . . . , σā(lmX(gl))〉 ⊃ lmX(σā(I)). Let f ∈ I
with σā(f) �= 0. It suffices to show

“there exists gi such that lmX(gi) divides lmX(σā(f)) and σā(lcX(gi)) �= 0,
where 1 ≤ i ≤ l.” (∗)

We do the proof by induction on ≺X .
(Induction basis:) Let lppX(f) be the smallest element in lppX(I)
w.r.t. ≺X . If σā(lcX(f)) �= 0, then lcX(σā(f)) = σā(lcX(f)) is ob-
vious. Thus, lppX(σā(f)) = lppX(f) is divisible by some elements of
{lppX(g1), . . . , lppX(gl)}. We assume that σā(lcX(f)) = 0. Since f ∈ I, there
exists h ∈ H such that lppX(h)| lppX(f) and σā(lcX(h)) �= 0. Then, for the h,
defining

f ′ = lcX(h)f − lcX(f) · lppX(f)

lppX(h)
h,

we obtain lppX(f ′) ≺X lppX(f), f ′ ∈ I and lppX(σā(f
′)) = lppX(σā(f)). As

lppX(f) is the smallest element in lppX(I), f ′ must be 0. Since σā(lcX(h)) �= 0,
thus σā(f) = 0. This is a contradiction. Therefore, if σā(f) �= 0, then we have
always σā(lcX(f)) �= 0.
(Induction step:) We assume that (∗) holds for polynomials whose leading
power products are smaller than lppX(f) w.r.t. ≺X . If σā(lcX(f)) �= 0, then
lcX(σā(f)) = σā(lcX(f)) is obvious. Thus, lppX(σā(f)) = lppX(f) is divisible
by some elements of {lppX(g1), . . . , lppX(gl)}. We assume that σā(lcX(f)) = 0.
Since f ∈ I, there exists h ∈ H such that lppX(h)| lppX(f) and σā(lcX(h)) �= 0.
Then, for the h, defining

f ′ = lcX(h)f − lcX(f) · lppX(f)

lppX(h)
h,

we obtain lppX(σā(f
′)) = lppX(σā(f)) and lppX(f ′) ≺X lppX(f). Hence,

by the induction hypothesis, lppX(σā(f
′)) is divisible by some elements of

{lppX(g1), . . ., lppX(gl)}. That is, lppX(σā(f)) is also divisible by them.
Therefore, (∗) holds. ��

By Claim 1 and Theorem 1, σā(H) is a Gröbner basis of σā(I) w.r.t. ≺X in
K̄[X]. Assume that U = {u ∈ Gp1 ∪ · · · ∪ Gps |σā(lmX(u)) �= 0}. Then, clearly
H ⊆ U ⊂ I and 〈lmX(σā(H))〉 = 〈lmX(σā(U))〉. By Theorem 1 (3), for all
f ∈ (Gp1 ∪ · · · ∪Gps)\U , σā(f) is reducible to 0 module σā(H). Thus, σā(Gp1 ∪
· · · ∪Gps) is also a Gröbner basis of σā(I) w.r.t. ≺X in K̄[X]. ��

By Theorem 1 and Theorem 3, it is easy to see the following corollary.

Corollary 2. With the same notations in Theorem 3, a stability condition of
MBlpp(G\Gr) is V(Gr) \ (V(lcX(Gp1) ∪ · · · ∪V(lcX(Gps)).

Stability Conditions and CGS 253

Let compare Corollary 1 with Corollary 2. It is clear that MBlpp(G\Gr) =
lpp(Noncomparable(G\Gr)). The stability condition of Corollary 1 is V :=
V(Gr) \ (V(lcX(g1)) ∪ · · · ∪ V(lcX(gs))), and the stability condition of Corol-
lary 2 is W := V(Gr)\ (V(lcX(Gp1) ∪ · · · ∪ V(lcX(Gps)). As obviously lcX(gi) ⊆
lcX(Gpi) for each 1 ≤ i ≤ s, we have V(lcX(Gpi)) ⊆ V(lcX(gi)). Therefore,
V ⊆W . This means that the stability condition of Corollary 2, is stronger than
the condition of Corollary 1. The algebraically constructible set W is the new
stability condition.

4 Comprehensive Gröbner Systems

In this section, we introduce an algorithm for computing comprehensive Gröbner
systems. It is well-known that some of algorithm are based on stability conditions
of monomial bases. So that an application of stability conditions is to compute
comprehensive Gröbner systems.

Definition 6. Let F be a subset ofK[A][X], A1, ..,Al algebraically constructible
subsets of K̄m and G1, . . . , Gl subsets of K[A][X]. Let S be a subset of K̄m such
that S ⊆ A1 ∪ · · · ∪Al. A finite set G = {(A1, G1), . . . , (Al, Gl)} of pairs is called
a comprehensive Gröbner system on S for F if σā(Gi) is a Gröbner basis
of the ideal 〈σā(F)〉 in K̄[X] for each i = 1, . . . , l and ā ∈ Ai. Each (Ai,Gi) is
called a segment of G. We simply say G is a comprehensive Gröbner system for
F if S = K̄m.

In [9], an algorithm for computing comprehensive Gröbner systems is constructed
by using the stability condition of Corollary 1. Now, Corollary 2 allows us to
design a new algorithm for computing comprehensive Gröbner systems.

Algorithm CGSsmall
Input: (E,N, F): E,N , finite subsets of K[A]; F, a finite subset of K[A,X].
Output: a finite set of 3-tuples (Ei, Ni, Gi) such that ((V(Ei) \V(Ni)), Gi) con-
stitute a comprehensive Gröbner system of F on V(E)\V(N).
BEGIN
1: if V(E)\V(N) = ∅ then return {}; end-if;
2: G← ReducedGröbnerBasis(〈F ∪ E〉, ≺A,X);
3: if 1 ∈ G then return {(E,N, {1})}; end-if;
4: Gr ← G ∩K[A];
5: if (V(E)\V(Gr))\V(N) = ∅ then
6: PGB ← {}; else PGB ← {(E,Gr ∧N, {1})};
7: end-if;
8: if V(Gr)\V(N) = ∅ then return PGB; else
9: {p1, . . . , ps} ← MBlpp(G\Gr);
10: for j = 1 to s do
11: Gpj ← {g ∈ G| lppX(g) = pj}; j ← j + 1;
12: end-for;
13: if (V(Gr)\V(N))\ (V(lcX(Gp1)) ∪ · · · ∪V(lcX(Gps))) �= ∅ then

254 K. Nabeshima

14: PGB ← PGB ∪ {(E,N ∧ lcX(Gp1) ∧ · · · ∧ lcX(Gps), Gp1 ∪ · · · ∪Gps)};
15: end-if;
16: PGB ← PGB ∪ CGSsmall(E ∪ lcX(Gp1), N,G\Gr)∪
17: CGSsmall(E ∪ lcX(Gp2), N ∧ lcX(Gp1), G\Gr)∪
18: CGSsmall(E ∪ lcX(Gp3), N ∧ lcX(Gp1) ∧ lcX(Gp2), G\Gr)∪
19: · · · · · ·
20: ∪CGSsmall(E ∪ lcX(Gps), N ∧ lcX(Gp1) ∧ · · · ∧ lcX(Gps−1), G\Gr);
21: return PGB;
22: end-if;
END
(Note that A ∧B = {fg|f ∈ A, g ∈ B}.)

The proof of the correctness of this algorithm, follows Theorem 3 and Kapur-
Sun-Wang’s algorithm [9]. The proof of the termination is the same as the proof
of Suzuki-Sato’s algorithm [15]. In this algorithm, we have deliberately avoided
tricks and optimizations. These techniques are applicable to obtain small and
nice outputs of a comprehensive Gröbner system. (See [9,14,15].)

Example 1. Let F = {ax2−xy+y2, bxy+y, ax2−y, (b+1)xy2+ax} ⊂ C[a, b][x, y],
where a, b, x, y variables. Fix the block order ≺{a,b},{x,y} such that pp(a, b) ,
pp(x, y), y ≺lex x and a ≺tdr b where ≺lex is the lexicographic order and ≺tdr is
the total degree reverse lexicographic order. A new algorithm works as follows.

The reduced Gröbner basis of 〈F 〉 w.r.t. ≺{a,b},{x,y} is G = {(a+b2+b)y, ((b−
2)a+ 1)y, (a2 + 6a− b− 3)y,−y2 + (a+ 2b+ 1)y, ax+ by, xy+ (−a− 2b− 2)y}.

(1) Since MBlpp(G) = {x, y}, we obtain Gx = {ax + by} and Gy = {(a +
b2 + b)y, ((b − 2)a + 1)y, (a2 + 6a − b − 3)y}. Thus, lc{x,y}(Gx) = {a} and
lc{x,y}(Gy) = {a + b2 + b, (b − 2)a + 1, a2 + 6a − b − 3}. By Theorem 3,

(C2\ (V(a) ∪ V(a+ b2 + b, (b− 2)a+ 1, a2 + 6a− b − 3)
)
, Gx ∪Gy) is a seg-

ment. In order to compute the comprehensive Gröbner system, next we con-
sider two cases [a = 0] and [a+ b2+ b = 0, (b− 2)a+1 = 0, a2+6a− b− 3 =
0, a �= 0].

(2) Let consider the case [a = 0] (i.e., vanish all elements of lm{x,y}(Gx)). The
reduced Gröbner basis of 〈lc{x,y}(Gx) ∪G〉 w.r.t. ≺{a,b},{x,y}, is G1 = {a, y}.
Then, G11 := G1\ (G1 ∩C[a, b]) = {y} and V(lc{x,y}(G11)) = V(1) = ∅. By
Theorem 3, for all α ∈ V(a), σα(G11) is a Gröbner basis of 〈σα(F)〉. Since
V(lc{x,y}(G11)) = ∅, this branch does not have any sub-branches.

(3) Next, we consider the case [a+ b2 + b = 0, (b− 2)a+1 = 0, a2+6a− b− 3 =
0, a �= 0] (i.e., vanish all elements of lm{x,y}(Gy)). The reduced Gröbner basis
of 〈G ∪ lc{x,y}(Gy)〉 w.r.t. ≺{a,b},{x,y}, is G2 = {a+ b2 + b, (b− 2)a+ 1, a2 +
6a−b−3, y2−(a+2b+1)y, x+(a+3b)y}. Then, G22 := G2\ (G2 ∩C[a, b]) =
{y2 − (a + 2b + 1)y, x + (a + 3b)y} and V(lc{x,y}(G22)) = V(1, 1) = ∅. By
Theorem 3, we obtain a segment (V(a+b2+b, (b−2)a+1, a2+6a−b−3), G22)
of a comprehensive Gröbner system of F . Since V(lc{x,y}(G22)) = ∅, this
branch does not have any sub-branches.

Stability Conditions and CGS 255

Thus, a comprehensive Gröbner system of F is :

{(C2\ (V(a) ∪ V(a+ b2 + b, (b− 2)a+ 1, a2 + 6a− b− 3)
)
, Gx ∪Gy}),

(V(a), G11), (V(a+ b2 + b, (b− 2)a+ 1, a2 + 6a− b− 3), G22)}.
This output has three segments.

Input: F

(1)

(2) (3)

�

�
�
�
�
�
�
��

a+ b2 + b = 0,

(b− 2)a+ 1 = 0,

a2 + 6a− b− 3 = 0

�
�

�
�

�
�
��

a = 0

Fig. 1.

One of nice points of the new algorithm is to vanish all elements of lmX(Gpi),
if V(lcX(Gpi)) �= ∅. When the algorithm generates a new branch (see Figure 1
(1) → (3)), by vanishing all elements of lmX(Gpi), a polynomial whose leading
power product is pi, does not appear in the next reduced Gröbner basis, in
many cases. Therefore, a number of reduced Gröbner basis computations (line
2) becomes small and a number of segments also becomes small.

In the algorithm, there are two main computation steps: one is Gröbner basis
computation (line 2) and the other is checking consistency of parametric con-
straints V(E)\V(N) (line 1,5,8,13).

Let N = {f1, . . . , fs}. Then, 〈N〉 ⊆
√〈E〉 if and only if f1, . . . , fs ∈

√〈E〉
where

√〈E〉 is a radical ideal of 〈E〉. If 〈N〉 ⊆√〈E〉, then V(N) ⊇ V(E). This
means that V(E)\V(N) is an emptyset. By this fact, the next algorithm returns
empty, if V(N) ⊇ V(E), otherwise, returns nonempty.

(Checking consistency)� �

Input:(E,N): E ⊂ K[A], N = {f1, . . . , fs} ⊂ K[A],
Output: empty or nonempty.
for each i = 1, . . . , s do
if fi /∈

√〈E〉 then return nonempty; end-if;
end-for;
return empty;

� �
In [9], Kapur-Sun-Wang gave great algorithms for checking “f is in the ideal
generated by

√〈E〉”. One can adapt these algorithms to check fi /∈
√〈E〉.

In the new algorithm CGSsmall, checking consistency is costly in particular.
This is because in many cases, the inputN of CGSsmall has more than one polyno-
mials. That is, in an algebraically constructible set V(E)\V(N), V(N) is

256 K. Nabeshima

defined by more than one polynomials. In Kapur-Sun-Wang’s one, N has always
one polynomial, essentially. (See [9].) Thus, in checking consistency of paramet-
ric constraints, Kapur-Sun-Wang’s algorithm is more efficient than CGSsmall. Spe-
cially, line 13 of CGSsmall is quite costly. However, even if we remove line 13 and
line 15 of CGSsmall (costly computation), then the algorithm still outputs a com-
prehensive Gröbner system. Note that this output probably has segments whose
algebraically constructible sets are empty. This is one of techniques to obtain a
comprehensive Gröbner system, quickly.

In order to avoid costly computation (for computation performance), we can
also change line 13-15 of the algorithm CGSsmall as follows:

(Rough check)� �

Flag← 1;
for each i = 1, . . . , s do
if V(Gr)\(V(N) ∪ V(lcX(Gpi))) = ∅ then Flag← 0; break; end-if;
end-for;
if Flag=1 then
PGB ← PGB ∪ {(Gr, N ∧ lcX(Gp1) ∧ · · · ∧ lcX(Gps), Gp1 ∪ · · · ∪Gps)};
end-if;

� �
When we change line 13-15 of CGSsmall as the above, then we call the algo-
rithm CGSsmall R. The algorithm CGSsmall R obviously outputs a comprehen-
sive Gröbner system. Note that the outputs probably have segments whose al-
gebraically constructible sets are empty. However, in fact, this “Rough check”
works quite well. See Table 1 and Table 2.

Thus, in order to avoid costly computation, line 13-15 of CGSsmall can be
changed into the following procedure. The following procedure outputs segments
whose algebraically constructible sets are not empty.

(A new procedure in line 13-15)� �

Flag← 1;
for each i = 1, . . . , s do
if V(Gr)\(V(N) ∪ V(lcX(Gpi))) = ∅ then Flag← 0; break; end-if;
end-for;
if Flag=1 then
if (V(Gr)\V(N))\ (V(lcX(Gp1)) ∪ · · · ∪ V(lcX(Gps))) �= ∅ then
PGB ← PGB ∪ {(Gr, N ∧ lcX(Gp1) ∧ · · · ∧ lcX(Gps), Gp1 ∪ · · · ∪Gps)};
end-if;
end-if;

� �
When we change line 13-15 of CGSsmall as the above, then we call the algorithm
CGSsmall, again. We adopt this algorithm CGSsmall for implementing.

The new algorithms CGSsmall and CGSsmall R have been implemented in the
computer algebra system Risa/Asir[13] by the author.

Table 1 shows a comparison of time of checking consistency on “line 13-15”.
This statistical data shows that how “Rough check” works well.

Stability Conditions and CGS 257

Table 2 shows a comparison of our implementation on Risa/Asir with Kapur-
Sun-Wang’s implementation on Singular[2]. (One of [9]’s authors gave the sin-
gular implementation to the author.) Problems in Table 1 and Table 2, are
picked from [9]. A list of problems is in the appendix.

A PC [CPU: Intel i7-2600 3.4 GHZ 3.4GHZ, Memory 4 GB RAM, OS: Win-
dows 7 (64 bit)] was used. The time was given in second. The version of Risa/Asir
and singular are 20110721 and 3-1-1, respectively.

Table 1. Time of checking consistency on line 13-15 (cpu sec.)

Problem F6 F8 E4 E5 S1 S2 S3 S4 S5 P3P
with rough check 0 0 0 0.015 0 0.015 5.179 0 13.119 0.405

without rough check 0 5.226 0 0.015 0 0.015 17.674 0.062 23.774 32499.8

Table 2.

Problem CA system Algorithm No. of segments time (cpu sec.)
Singular Kapur-Sun-Wang 7 0.187

F6 Risa/Asir CGSsamll 4 0.015
Risa/Asir CGSsamll R 4 0.015
Singular Kapur-Sun-Wang 18 0.312

F8 Risa/Asir CGSsmall 17 0.187
Risa/Asir CGSsmall R 17 0.187
Singular Kapur-Sun-Wang 8 0.078

E4 Risa/Asir CGSsmall 7 0.015
Risa/Asir CGSsmall R 7 0.015
Singular Kapur-Sun-Wang 12 0.468

E5 Risa/Asir CGSsmall 3 0.062
Risa/Asir CGSsmall R 3 0.047
Singular Kapur-Sun-Wang 7 0.078

S1 Risa/Asir CGSsmall 6 0.016
Risa/Asir CGSsmall R 6 0.015
Singular Kapur-Sun-Wang 24 4.181

S2 Risa/Asir CGSsmall 7 73.96
Risa/Asir CGSsmall R 7 71.12
Singular Kapur-Sun-Wang 26 2.901

S3 Risa/Asir CGSsmall 12 9.173
Risa/Asir CGSsmall R 12 3.495
Singular Kapur-Sun-Wang 32 2.153

S4 Risa/Asir CGSsmall 15 0.546
Risa/Asir CGSsmall R 16 0.484
Singular Kapur-Sun-Wang 36 50.248

S5 Risa/Asir CGSsmall 21 28.69
Risa/Asir CGSsmall R 21 17.58
Singular Kapur-Sun-Wang 36 2.418

P3P Risa/Asir CGSsmall 12 4.337
Risa/Asir CGSsmall R 12 4.119

258 K. Nabeshima

As is evident from Table 2, the main advantage of the new algorithm is that,
it generates fewer segments compared to Kapur-Sun-Wang’s algorithm.

A set MBlpp(G\Gi) in algorithm CGSsmall, has a lot of information of 〈F 〉.
For instance, when we compute dimensions of a parametric ideal, we directly
need MBlpp(Gi) in each parametric constraint.

Remark that the new algorithm does not output minimal comprehensive
Gröbner systems. (The definition of minimal comprehensive Gröbner systems
is in [9].) After obtaining a comprehensive Gröbner system from the algorithm
CGSsmall, it is possible to transform the comprehensive Gröbner system into a
minimal comprehensive Gröbner system by applying the same idea of Kapur-Sun-
Wang’s algorithm. In this transformation, we do not need to compute a reduced
Gröbner basis. We only need to compute reductions. Here, we do not describe
the detail because of page restriction. The detail will appear elsewhere.

5 Concluding Remarks

A new stability condition of monomial bases was given. Moreover, a new algo-
rithm for computing comprehensive Gröbner system was introduced.

If we adapt the “strong” stability condition (Corollary 2) to construct an algo-
rithm for computing comprehensiveGröbner systems, then checking consistency of
parametric constraints becomes costly. However, the number of reduced Gröbner
bases computation become small. That is, the number of segments of a comprehen-
siveGröbner system is small. The new algorithmCGSsmall has these properties. In
contrast, if we adapt Corollary 1 to construct the algorithm, then, checking consis-
tency of parametric constraints is not costlier than the new algorithm CGSsmall.
However, the number of reduced Gröbner bases computation, is bigger than the
new algorithm. That is, the number of segments of a comprehensive Gröbner sys-
tem is bigger than the new algorithm. This is Kapur-Sun-Wang’s algorithm.

Acknowledgments. A part of this work has been supported by Grant-in-Aid
for Young Scientists (B) (No. 22740065).

References

1. Becker, T.: On Gröbner bases under specialization. Applicable Algebra in Engi-
neering, Communication and Computing 5, 1–8 (1994)

2. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-3, A com-
puter algebra system for polynomial computations (2011)

3. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM
SIGSAM Bulletin 31(2), 2–9 (1997)

4. Fortuna, E., Gianni, P., Trager, B.: Degree reduction under specialization. Journal
of Pure and Applied Algebra 164(1), 153–163 (2001)

5. Gianni, P.: Properties of Gröbner bases under specializations. In: Davenport, J.
(ed.) EUROCAL 1987, pp. 293–297. ACM Press (1987)

6. Kalkbrener, M.: Solving Systems of Algebraic Equations Using Gröbner Base.
In: Davenport, J. (ed.) EUROCAL 1987. LNCS, vol. 378, pp. 293–297. Springer,
Heidelberg (1987)

Stability Conditions and CGS 259

7. Kalkbrener, M.: On the stability of Gröbner bases under specializations. Journal
of Symbolic Computation 24, 51–58 (1997)

8. Kapur, D.: An approach for solving systems of parametric polynomial equations.
In: Saraswat, V., Hentenryck, P. (eds.) Principles and Practice of Constraint Pro-
gramming, pp. 217–244. MIT Press (1995)

9. Kapur, D., Sun, Y., Wang, D.: A new algorithm for computing comprehensive
Gröbner systems. In: Watt, S. (ed.) International Symposium on Symbolic and
Algebraic Computation, pp. 29–36. ACM Press (2010)

10. Montes, A.: A new algorithm for discussing Gröbner basis with parameters. Journal
of Symbolic Computation 33(1-2), 183–208 (2002)

11. Montes, A., Wibmer, M.: Gröbner bases for polynomial systems with parameters.
Journal of Symbolic Computation 45(12), 1391–1425 (2010)

12. Nabeshima, K.: A speed-up of the algorithm for computing comprehensive Gröbner
systems. In: Brown, C. (ed.) International Symposium on Symbolic and Algebraic
Computation, pp. 299–306. ACM Press (2007)

13. Noro, M., Takeshima, T.: Risa/Asir- A computer algebra system. In: Wang, P. (ed.)
International Symposium on Symbolic and Algebraic Computation, pp. 387–396.
ACM Press (1992)

14. Suzuki, A., Sato, Y.: An alternative approach to comprehensive Gröbner bases.
Journal of Symbolic Computation 36(3-4), 649–667 (2003)

15. Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases
using Gröbner bases. In: Dumas, J.-G. (ed.) International Symposium on Symbolic
and Algebraic Computation, pp. 326–331. ACM Press (2006)

16. Weispfenning, V.: Comprehensive Gröbner bases. Journal of Symbolic Computa-
tion 14(1), 1–29 (1992)

17. Weispfenning, V.: Canonical comprehensive Gröbner bases. Journal of Symbolic
Computation 36(3-4), 669–683 (2003)

Appendix

In the following sets of polynomials, x, y, z, w are main variables and a, b, c, d, e, f,
p, q, r are variables in coefficient rings. The term order is the total degree reverse
lexicographic order such that w ≺ z ≺ y ≺ x. (Theses are from [9].)

• F6 = {x4 + ax3 + bx2 + cx+ d, 4x3 + 3ax2 + 2bx+ c}.
• F8 = {ax2 + by, cw2 + z, (x− z)2 + (y − w)2, 2dxw − 2by}.
• E4 = {(a− 1)z − b(x− 1), (a− 1)(x+ 1)+ bz, (a+ 1)w− b(y+ 1), (a+ 1)(y−
1) + bw, (y − a)2 + w2 − (x− a)2 − z2}.
• E5 = {(x − a)2 + (y − 1)2 − a2 − 1, (z + b)2 + (w − 1)2 − b2 − 1, a(x − a) +
(y − 1) + (a2 + 1)d,−b(z + b) + (w − 1) + (1 + b2)f, a(y − 1)− (x − a) + (a2 +
1)c,−b(w− 1)− (z + b) + (b2 +1)e, xw− 2x− zy+ 2z, d2 + c2 − 1, f2 + e2 − 1}.
• S1 = {ax4 + cx2 + y, bx3 + x2 + 2, cx2 + dx+ y}.
• S2 = {ax3y + cxy2 + bx+ y, x4y + 3dy, cx2 + bxy, x2y2 + ax2, x5 + y5}.
• S3 = {ax2y + bx2 + y3, ax2y + bxy + cy2, ay3 + bx2y + cxy}.
• S4 = {x4 + ax3 + bx2 + cxy + d, 4x3 + 3ax2y + 2bx+ c+ y}.
• S5 = {ax2 + byz + czw, cw2 + by + z, (x− z)2 + (y − w)2, 2dxw − 2byz}.
• P3P = {(1− a)y2 − ax2 − py + arxy + 1, (1− b)x2 − by2 − qx+ brxy + 1}.

Parallel Reduction of Matrices

in Gröbner Bases Computations

Severin Neumann

Fakultät für Mathematik und Informatik
Universität Passau, D-94030 Passau, Germany

neumans@fim.uni-passau.de

Abstract. In this paper we provide an parallelization for the reduction
of matrices for Gröbner basis computations advancing the ideas of using
the special structure of the reduction matrix [4]. First we decompose the
matrix reduction in three steps allowing us to get a high parallelization
for the reduction of the bigger part of the polynomials. In detail we do
not need an analysis of the matrix to identify pivot columns, since they
are obvious by construction and we give a rule set for the order of the
reduction steps which optimizes the matrix transformation with respect
to the parallelization. Finally we provide benchmarks for an implemen-
tation of our algorithm. This implementation is available as open source.

1 Introduction

Computing Gröbner bases is one of the major tasks of a computer algebra system,
because they are required for several questions and tasks which one might like to
solve. Since the complexity of computing Gröbner bases is double-exponential [8],
there has been a lot of research on finding optimizations for Buchberger’s algo-
rithm and there are new algorithms like F4 [2], F5 [3] or GVW [5] being faster
and more efficient. Another possibility of speeding up computations is paralleliza-
tion meaning that many processor operations are carried out simultaneously. A
sequential algorithm can be transformed into a parallel algorithm only if it is
composed of independent steps and can be done in any order. In principle it is
possible to write a parallel version of Buchberger’s algorithm, but it has been
shown that it is not speeding up in a suitable manner [11]. However Faugère’s
algorithm F4 is using matrix transformations which are known for being well par-
allelizable. Furthermore the special structures of the matrices occurring during
reduction can be used to bring in even more parallelization [4]. Following we will
present a method to compute an almost reduced row-echelon form of the matrix
in parallel using this knowledge. Lastly we will show benchmarks of an implemen-
tation of our algorithm, available at https://github.com/svrnm/parallelGBC
as open source.

2 Preliminaries

Without going into detail, computing Gröbner bases can be split up in three
parts being called until all critical pairs are processed:

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 260–270, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Parallel Reduction of Matrices in Gröbner Bases Computations 261

1. Creating and updating the critical pairs of all elements of the basis using
certain criteria. Usually the UPDATE function of Gebauer’s and Möller’s in-
stallation [6] does this best. Important for us is the property that there are
no two critical pairs having the same least common multiple.

2. Selecting a subset of the critical pairs using a certain strategy. For this we
prefer using the sugar cube strategy [7] allowing us the skip the SIMPLIFY

heuristic of F4 and gain an equal or better performance [10].

3. Reducing the S-polynomials of the critical pairs until they are zero or top-
irreducible. This means, none of the yet found elements of the Gröbner basis
can reduce the leading term of the current S-polynomial. In the following we
will only concentrate on this step.

So we assume that for a given input set {g1, . . . , gm} ⊆ P := K[x1, . . . , xn],
where K is a field, and a term ordering σ there is a set of critical pairs B ⊆
{(i, j) | i, j ∈ {1, . . . ,m}} and a subset B′ ⊆ B being selected by the chosen
strategy. In particular there is a set of polynomials F := {f1, . . . , fs} ⊆ P ,
where s is a multiple of 2, with the following properties:

P1: Each two polynomials fk, fk+1 ∈ F and k ∈ {1, 3, . . . , s−1} are the minuend
and subtrahend of the S-polynomial

Si,j = ti,j · gi − tj,i · gj = fk − fk+1, with

ti,j =
LTσ(gj)

LCσ(gj) · gcd(LTσ(gi),LTσ(gj))

tj,i =
LTσ(gi)

LCσ(gi) · gcd(LTσ(gi),LTσ(gj))

P2: Only those polynomials fk, fk+1 have the same leading term with respect to
the term ordering σ. As mentioned this is guaranteed by the UPDATE function.

P3: Each polynomial f ∈ F has leading coefficient LCσ(f) = 1. This is ensured
by the division by the leading coefficients.

P4: Additionally we need reduction polynomials R := {r1, . . . , ru} ⊆ P having
the property that for each term t ∈ Support(F) \ LTσ(F) there is exactly
one polynomial r ∈ R with LTσ(r) = t. Thereby is ensured that by applying
the reduction polynomials on F the resulting polynomials are zero or top-
irreducible.

By writing the leading coefficients of each polynomial h ∈ F ′ = F ∪R in a row
in which each term is equivalent to a column, we obtain a reduction matrix.
By transforming this matrix into row echelon form we reduce the S-polynomials
of the current step into elements of the Gröbner basis – or zero. This is true,
since the calculation of the S-polynomials fk, fk+1 is done by subtracting the
row k from the row k + 1 and a reduction polynomial r is applied if LTσ(r) ∈
Support(h). This is equivalent to subtracting the row r from h. From now on we
consider the following matrix M , where {t1, . . . , tv} := Support(F ′) and cp,q is
the coefficient of tq in the polynomial fp or rp−s:

262 S. Neumann

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 t2 . . . tv

f1 c1,1 c1,2 . . . c1,v
f2 c2,1 c2,2 . . . c2,v
...

...
...

. . .
...

fs cs,1 cs,2 . . . cs,v
r1 cs+1,1 cs+1,2 . . . cs+1,v

r2 cs+2,1 cs+2,2 . . . cs+2,v

...
...

...
. . .

...
ru cs+u,1 cs+u,2 . . . cs+u,v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The following example demonstrates, how we can transform a set of polynomials
into a reduction matrix.

Example 1. Let K := IF32003 be the field with 32003 elements. It is chosen
since our implementation of the parallelization is for finite fields and IF32003

is also used for the benchmarks. Let P := K[x1, x2, x3] be a polynomial ring
with three indeterminants over K. Let the three polynomials g1 = x21 + x22,
g2 = x1 · x2 + x22 + x2 · x3 and g3 = x22 + x23 + x3 form the Ideal I := 〈g1, g2, g3〉
for which a Gröbner basis with respect to the reverse degree lexicographic term-
ordering (DegRevLex) should be computed. Using UPDATEwe get the critical pairs
(2, 3) and (1, 2) having the same sugar degree sugar(g2, g3) = 3 = sugar(g1, g2),
so we reduce the following polynomials in the first reduction:

f1,2 =(x21 + x22) · x2 = x21 · x2 + x32

f2,1 =(x1 · x2 + x22 + x2 · x3) · x1 = x21 · x2 + x1 · x22 + x1 · x2 · x3
f2,3 =(x1 · x2 + x22 + x2 · x3) · x2 = x1 · x22 + x32 + x22 · x3
f3,2 =(x22 + x23 + x3) · x1 = x1 · x22 + x1 · x23 + x1 · x3

and as set of reduction polynomials we obtain:

r1 =g2 · x3 = x1 · x2 · x3 + x22 · x3 + x2 · x23
r2 =g3 · x2 = x32 + x2 · x23 + x2 · x3
r3 =g3 · x3 = x22 · x3 + x33 + x23

Finally we get the following matrix M :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x21x2 x1x
2
2 x32 x1x2x3 x22x3 x1x

2
3 x2x

2
3 x33 x1x3 x2x3 x23

f1,2 1 0 1 0 0 0 0 0 0 0 0
f2,1 1 1 0 1 0 0 0 0 0 0 0
f2,3 0 1 1 0 1 0 0 0 0 0 0
f3,2 0 1 0 0 0 1 0 0 1 0 0
r1 0 0 0 1 1 0 1 0 0 0 0
r2 0 0 1 0 0 0 1 0 0 1 0
r3 0 0 0 0 1 0 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Parallel Reduction of Matrices in Gröbner Bases Computations 263

This matrix can be transformed into reduced row-echelon form and we receive
the following matrix M̃ :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 2 0 1 2
0 1 0 0 0 0 0 1 0 1 1
0 0 1 0 0 0 0 −2 0 −1 −2
0 0 0 1 0 0 0 −3 0 −2 −3
0 0 0 0 1 0 0 1 0 0 1

g4 = 0 0 0 0 0 1 0 −1 1 −1 −1
g5 = 0 0 0 0 0 0 1 2 0 2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
The last rows of this matrix are elements of the Gröbner basis, since their leading
terms are not contained in the leading term ideal of g1, g2, g3. We set g4 =
x1 · x23 − x33 + x1 · x3 − x2 · x3 − x23 and g5 = x2 · x23 + 2 · x33 + 2 · x2 · x3 + 2 · x23.
In the following step we have to reduce the S-polynomials of the critical pairs
(1, 4), (2, 4), (3, 5) and after computing the reduction polynomials we obtain the
following new matrix M , which will be reduced in example 2 and 3 using the
parallel method:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 −1 0 0 1 −1 0 −1 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 1 −1 0 −1 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 2 0 0 0 2 0 2 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 −1 0 0 0 1 −1 −1 0 0 0
0 0 0 0 1 2 0 0 0 0 2 2 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 −1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 1 2 0 2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3 Matrix Decomposition

As in [4] we take a detailed look on the special structure of the matrix M , before
we will reduce the matrix in parallel. Reconsider property P2 and P4. If we look
on one half of our S-polynomials, e.g. the minuends with odd index and on all
reduction polynomials, we know that every polynomial of this selection has a
distinct leading term. This means in the context of the matrix M that each row
representing these polynomials has a distinct pivot column. After reordering the
rows representing those polynomials f1, f3, ..., fs−1 and r1, . . . , ru with respect to
our term ordering σ we obtain an upper triangular sub-matrix A. In addition all
entries have by property P3 in the pivot columns value 1. Putting the remaining

264 S. Neumann

rows of the S-polynomials in another sub-matrix B gives us the following matrix
M ′, where 1 is the pivot of the column and ∗ a wild-card for any number:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A 1 ∗ . . . ∗ ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗
0 0 . . . 0 1 ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗
0 0 . . . 0 0 0 . . . 0 1 . . . ∗ ∗ . . . ∗
...

...
. . . 0

...
...

. . .
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 0 . . . 0 0 . . . 0 1 . . . ∗
B ∗ ∗ . . . ∗ ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗

...
...

. . .
. . .

...
...

. . . ∗ ...
. . .

...
...

. . .
...

∗ ∗ . . . ∗ ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In the following section we will see, that this special structure of the matrix allows
us to divide the reduction into separate steps which can be processed with more
parallelism than with any parallel implementation of Gaussian elimination or
other algorithm for generic matrices.

4 Parallel Reduction in Three Steps

The parallel reduction of the matrix can be split up in three steps. First we
transform matrix A into reduced row echelon form. Reconsider that A is upper
triangular. For this reason we do not need an analysis of the matrix to identify
pivot columns, since they are obvious through the construction of A. Since this
matrix contains one half of the polynomials F and all reduction polynomials R,
this step processes the bigger part of the matrix and we will concentrate on the
parallelization of this step. Secondly we will reduce the matrix B by the matrix
A. Finally we will use a parallel version of the Gaussian elimination to bring
the matrix B in reduced row echelon form. Those rows of B being not equal to
zero and thus are irreducible with respect to the rows of A and the other rows
of B are elements of the Gröbner basis. Remind that we use the sugar cube
strategy and therefore we skip the SIMPLIFY step. This allows us to leave out an
additional step which requires us to apply the reduced rows of B on the rows of
A to obtain a reduced row echelon form of the whole reduction matrix M .

4.1 Step 1 – Reduction of the Upper Triangular Matrix

Reducing the matrix A can be done by the following sequential algorithm:

1. Set i := nA, where nA is index of the lowest row.
2. Set j := i− 1
3. If row j has an entry aj,i �= 0 in the pivot column of i, subtract row i aj,i

times from row j.
4. Set j := j − 1 and if j > 0 go back to 3, if not go on.
5. Set i := i− 1 and if i > 1 go back to 2, if not return the reduced matrix Ã.

Parallel Reduction of Matrices in Gröbner Bases Computations 265

Step 3 ensures that after processing this algorithm there is no entry in the pivot
column of every row in Ã and so this matrix is in reduced row-echelon form.

For an implementation we will need the entries of all columns having a pivot
only as an operation with the information that a row j has an entry aj,i in
column i, which has to be reduced. Therefore these rows of our matrices A and
B are stored in coordinate list format meaning that an entry is represented by
a tuple (j, i, aj,i).

The inner loop of this algorithm can be computed in parallel, since each j is
distinct and j �= i in every step. We say all operations (jp, i, ajp,i) with k �= i
can be applied in parallel, after all operations (jq, i− 1, ajq,i) have been applied.
We can rewrite the sequential algorithm to:

1. Set i := nA, where nA is index of the lowest row.
2. For all j ∈ 1, . . . , i− 1, if row j has an entry aj,i �= 0 in the pivot column of

i, subtract row i aj,i times from row j.

3. Set i := i− 1 and if i > 1 go back to 2, if not return the reduced matrix Ã.

If no entry above the diagonal is zero, every step of the outer loop has nA − i
parallel steps. Mostly the matrix is not dense, so the number of parallel opera-
tions is clearly smaller. However the given set of rules can be modified by the
following: two operations (j, i − 1, aj,i−1) and (k, i, ak,i) can be applied in par-
allel, if there is no operation (i, i− 1, ai,i−1). This allows to apply an operation
(j, i, aj,i) just at the time the row i is reduced.

By this the ordering of all operations is not certain before runtime. Therefore
an analysis of the matrix is required. This can be done during generation. The
following example will show the difference between the two sets of rules.

Example 2. A part of matrixM of example 1 will be transformed in the following
matrix A on which the explained step will be applied. Thereby the pivot columns
are highlighted:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 −1 0 0 1 −1 0 −1 0 0 0 0 0
0 1 0 0 −1 0 0 1 −1 0 −1 0 0 0 0
0 0 1 0 2 0 0 0 2 0 2 0 0 0 0
0 0 0 1 0 −1 0 0 0 1 −1 −1 0 0 0
0 0 0 0 1 2 0 0 0 0 2 2 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 −1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 1 2 0 2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
To reduce this matrix into row-echelon form the following operations have to be
applied, if the unmodified set of rules is used:

266 S. Neumann

(2, 10,−1) || (3, 10, 2) || (4, 10,−1) || (5, 10, 2)
(1, 9,−1) || (4, 9, 1)
(2, 8,−1) || (3, 8, 2) || (6, 8, 1) || (7, 8, 1)
(1, 7,−1) || (2, 7, 1)
(1, 6, 1)

(2, 5,−1) || (3, 5, 2)
(1, 4,−1)

In doing so each line stands for a list of operations which can be applied in
parallel. If we use the modification, the following order will be used:

(1, 9,−1) || (2, 10,−1) || (3, 10, 2) || (4, 10,−1) || (5, 10, 2) || (6, 8, 1) || (7, 8, 1)
(1, 7,−1) || (2, 8,−1) || (3, 8, 2) || (4, 9, 1)
(1, 6, 1) || (2, 7, 1)
(1, 4,−1) || (2, 5,−1) || (3, 5, 2)

The maximal count of parallel operations is raised from four to seven and all
operations are completed after four steps instead of seven. Afterwards we obtain
the following reduced matrix Ã:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0
0 1 0 0 0 2 0 0 0 0 0 4 0 0 2
0 0 1 0 0 −4 0 0 0 0 0 −2 0 4 2
0 0 0 1 0 −1 0 0 0 0 0 2 −1 3 3
0 0 0 0 1 2 0 0 0 0 0 −2 0 −4 −4
0 0 0 0 0 0 1 0 0 0 0 −1 0 0 −1
0 0 0 0 0 0 0 1 0 0 0 −3 0 −2 −3
0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 −1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 1 2 0 2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
4.2 Step 2 – Apply Ã on B

At this point we have to reduce the matrix B by the matrix Ã. Because the rows
of Ã are independent, the reduction of matrix B can be done in parallel for all
nB rows of B:

1. For all j ∈ 1, . . . , nB, if row j of B has an entry bj,i in the pivot the column
of row i of A, subtract row i from j bj,i times.

2. Return the reduced matrix B̃

Later we will show that we can combine the previous and this step. We split
them up to be more comprehensible.

Parallel Reduction of Matrices in Gröbner Bases Computations 267

4.3 Step 3 – Parallel Gaussian Elimination of B̃

At this point matrix A can be discarded, because every row has a pivot column
being equivalent to a leading term which is already contained in the leading
term ideal of the Gröbner basis. So the reduction of B remains. Because this
matrix has no specific structure, a parallel Gaussian elimination [12] computes
the reductions. Finally the rows not equal to zero in all columns are elements of
the Gröbner basis.

Example 3. At example 2 we finished with reducing matrix A to Ã. This matrix
can now be applied to the remaining rows of B:⎛⎝1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 1 0 0 0

⎞⎠
The following operations are applied. The numbers 1 to 10 are representing the
rows in Ã and 11 to 13 the rows in B:

(11, 1, 1) || (12, 2, 1) || (13, 3, 1)
(11, 3, 1) || (12, 3, 1)
(12, 5, 1)

Now we obtain the following matrix B′:⎛⎝0 0 0 0 0 5 0 0 0 0 3 0 0 −4 −2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 5 0 0 0 0 3 0 0 −4 −2

⎞⎠
By using (parallel) Gaussian elimination the third row gets removed and the
first row gets normalized. So finally the new element of the Gröbner basis is
g6 = x43− 6400 ·x33− 12802 ·x2 ·x3− 6401 ·x23. After one step more the algorithm
does not find any further element and terminates.

4.4 Merging Step 1 and 2

As mentioned before step 1 and step 2 can be merged. It is not required to
transform the whole matrix A, before step 2 can be processed, because a single
row of A can already be applied on the matrix B if there are no further operations
on it. Thus the algorithm does not need synchronization between step 1 and 2.

5 Benchmarks

The presented algorithm has been implemented using C++ as programming
language and the application interface OpenMP as well as “Streaming SIMD

268 S. Neumann

Extensions” (SSE) were used for parallelization. The latter can be used since
the non-pivot columns of each row are stored in a continuous vector. The code
is available as open source at https://github.com/svrnm/parallelGBC.

This project also includes all input files of the following tests. This gives
everyone the possibility to reproduce the tests on a different platform and to
compare the presented algorithm with other implementations. The tests were
computed on a system with 48 AMD OpteronTM 6172 processors and 64 gigabyte
of main memory.

To compare our implementation with existing implementations of Gröbner ba-
sis algorithms we used the open source computer algebra systems Singular 3-1-3
and CoCoALib 0.9949.

As examples we took the commonly used polynomial systems Katsura-12,
Katsura-13 [9], Cyclic-8 and Cyclic-9 [1] over the field with 32003 elements
(IF32003) and the degree reverse lexicographic term ordering (DegRevLex).

Table 1. Computation time of the given input system in seconds

Input CoCoALib Singular Our implementation
of processors 1 1 1 2 4 8 16 32

Katsura-12 12401 1543 345 199 125 89 69 62
Katsura-13 202620 crashed 2468 1478 861 552 394 324
Cyclic-8 611 81 52 39 31 26 23 22
Cyclic-9 182888 23162 10663 5990 3437 2092 1410 1116

Table 1 shows that our implementation is a lot faster than existing comparable
implementations of Gröbner basis algorithms in the sequential case. Beyond that

Fig. 1. Decreasing speedup of Cyclic-9 and Katsura-13 with many processors

Parallel Reduction of Matrices in Gröbner Bases Computations 269

the parallelization speeds up the computations of the examples by a factor of
two to nine if 32 processors are used. Especially the harder problems can be
solved a lot faster. This is due to the fact that in these cases the reduction takes
up a larger part of the computation time.

Figure 1 illustrates that for each input there is a maximum amount of pro-
cessors increasing the speedup in a measurable way. While Cyclic-9 can be com-
puted still faster using 16 processors, the limit for Katsura-13 is reached with
eight processors. One reason for that is that there are still the two other steps
of the algorithm left which are consuming a relatively larger amount of com-
putation time. Another reason is that to a certain amount the possibility of
parallelization is exhausted. To speed up even more, further optimizations for
all steps of the algorithm must be found.

6 Conclusion

We presented an parallel implementation of an Gröbner basis algorithm which is
freely available for use. We compass to use it to solve further difficult problems.
For this purpose we intend to further optimize the speedup and to decrease
particularly the memory consumption which currently is the reason why we are
unable to compute for example the Gröbner basis of Cyclic-10.

References

1. Björck, G., Haagerup, U.: All cyclic p-roots of index 3, found by symmetry-
preserving calculations (2008)

2. Faugére, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Jour-
nal of Pure and Applied Algebra 139(1-3), 61–88 (1999)

3. Faugére, J.-C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation, ISSAC 2002, New York, NY, USA, pp. 75–
83 (2002)

4. Faugére, J.-C., Lachartre, S.: Parallel Gaussian Elimination for Gröbner bases com-
putations in finite fields. In: Proceedings of the 4th International Workshop on
Parallel and Symbolic Computation, PASCO 2010, New York, USA, pp. 89–97
(July 2010)

5. Gao, S., Volny IV, F., Wang, M.: A New Algorithm for Computing Gröbner Bases
(2010)

6. Gebauer, R., Michael Möller, H.: On an installation of Buchberger’s algorithm.
Journal of Symbolic Computation 6, 275–286 (1988)

7. Giovini, A., Mora, T., Niesi, G., Robbiano, L., Traverso, C.: One sugar cube, please
or selection strategies in the Buchberger algorithm. In: Proceedings of the 1991
International Symposium on Symbolic and Algebraic Computation, ISAAC 1991,
New York, USA, pp. 49–54 (1991)

8. Huynh, D.T.: A superexponential lower bound for Gröbner bases and Church-
Rosser Commutative Thue systems. Inf. Control 68, 196–206 (1986)

9. Katsura, S., Fukuda, W., Inawashiro, S., Fujiki, N., Gebauer, R.: Distribution of
effective field in the ising spin glass of the ±J model at T = 0. Cell Biochemistry
and Biophysics 11, 309–319 (1987)

270 S. Neumann

10. McKay, C.E.: An analysis of improvements to Buchberger’s algorithm for Gröbner
basis computation. Master thesis, University of Maryland, USA (2004)

11. Ponder, C.G.: Evaluation of “performance enhancements” in algebraic manipula-
tion systems. PhD thesis. University of California, USA (1988)

12. Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill
Education Group (September 2003)

Real and Complex Polynomial Root-Finding

by Means of Eigen-Solving

Victor Y. Pan1,2,�, Guoliang Qian2, and Ai-Long Zheng2

1 Department of Mathematics and Computer Science
Lehman College of the City University of New York

Bronx, NY 10468 USA
victor.pan@lehman.cuny.edu,

http://comet.lehman.cuny.edu/vpan/
2 Ph.D. Programs in Mathematics and Computer Science
The Graduate Center of the City University of New York

New York, NY 10036 USA
gqian@gc.cuny.edu, azheng-1999@yahoo.com

Abstract. Our new numerical algorithms approximate real and com-
plex roots of a univariate polynomial lying near a selected point of the
complex plane, all its real roots, and all its roots lying in a fixed half-
plane or in a fixed rectangular region. The algorithms seek the roots of a
polynomial as the eigenvalues of the associated companion matrix. Our
analysis and experiments show their efficiency. We employ some advanced
machinery available for matrix eigen-solving, exploit the structure of the
companion matrix, and apply randomized matrix algorithms, repeated
squaring, matrix sign iteration and subdivision of the complex plane.
Some of our techniques can be of independent interest.

Keywords: Root-finding, Eigen-solving, Randomization, Matrix sign
function.

1 Introduction

Univariate polynomial root-finding is a classical problem of mathematics and
computational mathematics, having important applications to modern comput-
ing. It is a fundamental problem of computer algebra. New effective solution
algorithms, in particular, numerical iterations are welcome by users.

Frequently only the real roots of a polynomial are required, being much less
numerous than all its roots, but the best numerical subroutines (such as MP-
Solve) approximate all real roots about as fast (and as slow) as all complex roots.
The preceding work on numerical real polynomial root-finding, however, seems
to be limited to [10] and two sections of [11], whose techniques are not used in
our present paper.

A number of recent successful root-finders for a polynomial p = p(x) of a
degree n rely on the reduction of the root-finding task to eigen-solving for the

� Supported by NSF Grant CCF-1116736 and PSC CUNY Award 64512–0042.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 271–282, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://comet.lehman.cuny.edu/vpan/

272 V.Y. Pan, G. Qian, and A.-L. Zheng

associated n×n companion matrix Cp. This enriches root-finding methods with
the highly developed numerical techniques for matrix eigen-solving. E.g., the
modified Rayleigh Quotient iterations of [11] quadratically converge to an eigen-
pair made up of a simple eigenvalue λ of Cp and the associated eigenvector
provided the ratios |λ(0) − λ|/|λ(0) − μ| are substantially less than one for an
initial approximation λ(0) to λ and for all other eigenvalues μ of Cp.

Hereafter we use the acronym RQ for Rayleigh Quotient.
In fact the RQ iteration can be extended to the case where an eigenvalue λ of

Cp has multiplicity r > 1 or belongs to an isolated cluster of r simple eigenvalues
of Cp. E.g., the Inverse Orthogonal iterations [5, page 339] (resp. Orthogonal
iterations) quadratically converge to the eigenspace defined by the m absolutely
smallest (resp. largest) eigenvalues of a nonsingular matrix Cp provided that
the other eigenvalues dominate (resp. are dominated), that is have substantially
larger (resp. smaller) absolute values. If the domination is strong enough, close
approximations to these eigenvalues are obtained already in single iteration. In
Section 3 we detail some of such general eigen-solving techniques and specify
them for the companion matrix Cp.

These techniques simplify eigen-solving and root-finding where we know that
the matrix Cp has a small number r of dominant or dominated eigenvalues, or
even if some polynomial or well defined rational matrix function F = F (Cp)
has this property. In the latter case we can approximate the r eigenvalues of the
matrix F and the associated eigenspace of dimension r. This eigenspace is shared
by the matrices F and Cp, and we can use its basis to compute a r× r auxiliary
matrix that shares its r eigenvalues with Cp. The reduction of the problem size
is dramatic where the ratio n/r is large.

If required one can approximate the remaining eigenvalues by using deflation
or by reapplying the same techniques to the shifted matrices Cp − sI and their
inverses for proper scalars s and the identity matrix I.

Paper [11] proposes an algorithm that maps the real line onto the unit circle
centered at the origin, then isolates this circle from the images of nonreal roots
of p(x), approximates the images of real roots by applying the RQ iterations or
their amendment, and finally recovers the real eigenvalues of the input matrix.

As an immediate application of the above extension of the RQ iteration, we
can simplify the last stage of the latter real root-finder of [11]. Instead of at least
r invocations of RQ iterations used in [11] for computing the r real roots of p(x),
we can just once apply the eigen-solver to a single auxiliary r×r matrix. Besides
observing this, we propose three alternatives to the algorithms of [11].

1. Apply repeated squaring of Cp instead of RQ iterations (see Remark 3 in

Section 3). High powers C2h

p tend to have small sets of dominant eigenvalues, and

so we can first compute the respective eigenspace shared by the matrices C2h

p for
all h and then compute the associated eigenvalues of C. For repeated squaring we
apply the algorithm of [9], extending the one of [3], but we simplify the recovery
of the eigenvalues from the eigenspace by using the above recipe. Every RQ
iteration uses O(n) ops for an n×n companion matrix Cp (ops is our abbreviation
for arithmetic operations), versus O(n log n) ops per each squaring, but the RQ

Real and Complex Polynomial Root-Finding by Means of Eigen-Solving 273

process outputs a single eigenvalue versus r eigenvalues of repeated squaring,
and unlike the RQ iterations, repeated squaring needs no initial approximations
to eigenvalues. By applying this approach to the inverse matrices (Cp−sI)−1 we
extend it to the approximation of the eigenvalues of Cp lying near the selected
shift values s.

2. Like papers [3] and [2], we employ the matrix sign classical iterations [6] to
polynomial root-finding by using O(n log n) ops per iteration, but unlike [3] and
[2], we avoid numerical stability problems by combining the iterations with the
subdivision techniques (see the end of Section 4).

3. As our another novelty, we enforce domination of the images of the real roots
of Cp over all other images of the roots of p(x). In this approach we use random
shifts of the matrix Cp to avoid singularities.

Some of our techniques can be of independent interest, e.g., our extension of the
matrix sign iteration to real eigen-solving. As our another technical novelty, we
simplify the computation of the bases of dominant eigenspaces by applying ran-
domization (see Remark 4 in Section 3)). This application is supported by our
general estimates of [12] for the condition numbers of randomized matrix prod-
ucts. Our generic randomized computation of such a basis involves O(rn log n)
ops versus order of rn2 in standard algorithms. Furthermore in a heuristic vari-
ation supported empirically we use O(n log n) ops.

Our analysis and experiments show effectiveness of the proposed real and
complex polynomial root-finders.

Our root-finders are numerical; they allow rounding errors. The respective
error and perturbation analysis is quite involved but also well developed [5],
[13]. We can substantially simplify the analysis of our algorithms where we
deal with a small set of dominant or dominated eigenvalues (see Remark 2 in
Section 3).

In the presence of rounding errors our real numerical root-finders treat to-
gether real and nearly real roots xj such that |.(xj)/xj | ≤ ε (for a fixed tol-
erance ε and .(x) denoting the real part of a complex number x). Indeed we
cannot distingush between these two classes of roots in the presence of rounding
errors. So we approximate all of them and at the end readily select the real roots
among them. Our resulting real root-finders are effective as long as both real
and nearly real roots together are less numerous than the other roots.

Further advance may rely on more intricate maps of the complex plane and on
the combination with other polynomial root-finders, e.g., the Rayleigh Quotient
iteration [5], [11], Newton’s iteration (both can be concurrently applied at dis-
tinct initial points where no communication between the processors is required),
and nonnumerical real polynomial root-finders, namely, subdivision and contin-
ued fraction methods (see [4], [14], and the bibliography therein). These success-
ful algorithms can supply auxiliary information for our computations (e.g., the
number of real roots and their bounds) and can handle the inputs that are hard
for our numerical treatment.

274 V.Y. Pan, G. Qian, and A.-L. Zheng

We organize our paper as follows. We recall some definitions and auxiliary
results in the next section. In Section 3, we cover some methods for the approx-
imation of dominant and dominated eigenvalues as well as the eigenvalues lying
near a selected real or complex point. We discuss these methods for both general
and companion matrices and comment on some numerical issues and randomiza-
tion techniques. We also comment on repeated squaring for obtaining the desired
domination of the eigenvalues of a companion matrix. In Section 4, we recall and
slightly extend the classical definition of the matrix sign function. We use this
concept to enable the computation of some selected sets of the eigenvalues of the
companion matrix Cp by means of the techniques of Section 3. We stabilize these
computations numerically by means of subdivision techniques. Section 5 covers
some effective iterations for computing matrix sign function for the matrix Cp

and specifies the application to real eigen-solving. Section 6 is the contribution
of the second and the third authors; it is devoted to numerical tests.

2 Definitions and Preliminaries

Hereafter “op” stands for “arithmetic operation”. We assume computations in
the fields of complex and real numbers C and R, respectively. .(z) and /(z) are
real and imaginary parts of a complex number z = .(z) + /(z)√−1.
Matrix computations: fundamentals [5]. (Bj)

s
j=1 = (B1 | . . . | Bs) is the

1 × s block matrix with blocks B1, . . . , Bs. diag(Bj)
s
j=1 = diag(B1, . . . , Bs) is

the s × s block diagonal matrix with diagonal blocks B1, . . . , Bs. I = In =
(e1 | . . . | en) is the n × n identity matrix with columns e1, . . . , en. J = Jn =
(en | . . . | e1) is the n×n reflection matrix, J2 = I. Ok,l is the k× l matrix filled
with zeros. MT is the transpose of a matrix M . R(M) is its range. N (M) =
{v : Mv = 0} is its null space, rank(M) = dim(R(M)). A matrix of full column
rank is a matrix basis of its range. M+ is the Moore–Penrose pseudo inverse of
M . An n×m matrix X = M (I) is a left (resp. right) inverse of an m×n matrix
M if XM = In (resp. if MY = Im). M+ is an M (I) for a matrix M of full rank;
M (I) is unique iff the matrix M is nonsingular, and then M (I) = M−1. We use
the matrix norms || · ||h for h = 1, 2,∞, write || · || = || · ||2, and recall that
||A||2 ≤ ||A||1||A||∞ for any matrix A. A matrix U is unitary and orthogonal if
UTU = I.

Theorem 1. [5, Theorem 5.2.2]. A matrix M of full column rank has unique
QR factorization M = QR where Q = Q(M) is a unitary matrix and R = R(M)
is a square upper triangular matrix with positive diagonal entries.

Matrix computations: eigenspaces [5], [13]. S ⊆ Cn×n is an invariant sub-
space or eigenspace of a matrix M ∈ Cn×n if Mv ∈ S for all v ∈ S.

Theorem 2. [13, Theorem 4.1.2]. For all matrix bases U ∈ Cn×r of an eigen-
space U of M ∈ Cn×n we have MU = UL for unique matrix L = U (I)MU .

Real and Complex Polynomial Root-Finding by Means of Eigen-Solving 275

The pairs {L,U} and {L,U} for L, U and U above are eigenpairs of a matrix
M , L is its eigenblock and U is the associated eigenspace of L [13]. If L = λIn,
then {λ,U} and {L,U} are also called eigenpairs of a matrix M . In this case
det(λI−M) = 0 and N (M−λI) is the eigenspace associated with the eigenvalue
λ and made up of its eigenvectors. Λ(M) is the set of all eigenvalues of M , called
its spectrum. ρ(M) = maxλ∈Λ(M) |λ| is the spectral radius of M . Theorem 2
implies that Λ(L) ⊆ Λ(M). For an eigenpair {λ,U} write ψ = min |λ/μ| over λ ∈
Λ(L) and μ ∈ Λ(M)−Λ(L); call the eigenspace U dominant if ψ > 1, dominated
if ψ < 1, strongly dominant if 1/ψ ≈ 0, and strongly dominated if ψ ≈ 0. Here and
hereafter the notation ≈, , and ' (meaning “approximately equals”, “is much
less” and “is much greater”, respectively) and the concepts “strong”, “large”,
“small”, “near”, “close” etc. are defined in context, as is customary in the field
of numerical computations with rounding errors.
A scalar λ is nearly real (within ε > 0) if |/(λ)| ≤ ε|λ|.

An n × n matrix M is called diagonalizable or nondefective if SMS−1 is
a diagonal matrix for some matrix S, e.g., if M has n distinct eigenvalues.
A random real or complex perturbation makes the matrix diagonalizable with
probability 1. In all our algorithms, we assume diagonalizable input matrices.

Theorem 3. [6, Theorem 1.13]. Λ(F (M)) = F (Λ(M)) for a square matrix M
and a function F (x) bounded on its spectrum and being either a rational function
or a limit of such functions. Furthermore (F (λ),U) is an eigenpair of F (M) if
M is diagonalizable and has an eigenpair (λ,U).
Corollary 1. 1/(λ− s) is an eigenvalue of (M − sI)−1 if λ is an eigenvalue of
M and if the matrix M − sI is nonsingular.

Toeplitz and companion matrices. T = (ti−j)
n
i,j=1 is an n × n Toeplitz

matrix. Its every entry is invariant in the shifts along its diagonal. On matrices
having structure of Toeplitz type, see [8, Chs. 2 and 4]. Z is the n×n downshift
matrix: Zv = (vi)

n−1
i=0 for v = (vi)

n
i=1 and v0 = 0.

Cp = Z − 1
pn

eTnp for p = (pj)
n−1
j=0 and Cprev = JCpJ denote the n × n

companion matrices of the polynomial p(x) = det(xI − Cp) =
∑n

i=0 pix
i =

pn
∏n

j=1(x−λj) and its reverse polynomial prev(x) = det(xI−Cprev) = xnp(1x) =∑n
i=0 pix

n−i = pn
∏n

j=1(1 − xλj), respectively.

Theorem 4. [3], [9]. A companion matrix Cp ∈ Cn×n of a polynomial p(x)
generates an algebra A of matrices having structure of Toeplitz type. One needs
O(n) ops to add in A, O(n logn) ops to multiply in A, O(n log2 n) ops to invert
in A, and O(n log n) ops to multiply a matrix from A by a square Toeplitz matrix.

3 Basic Eigen-Solving Steps

Theorem 5. Suppose F is an n × n diagonalizable matrix, Λr and Λ(n−r) are
the sets of its r dominant and n − r dominated eigenvalues associated with the
eigenspaces U and W, respectively. Let k → ∞. Then the matrices F k/||F k||

276 V.Y. Pan, G. Qian, and A.-L. Zheng

and F−k/||F−k|| (if defined) converge to the matrices U of rank r and W of
rank n− r, respectively, such that R(U) ≈ U , whereas R(W) ≈ W.

Proof. Represent every vector as v = u + w where u ∈ U and w ∈ W . Then
F kv = F ku+F kw and F−kv = F−ku+F−kw, and clearly ||F ku|| ' ||F kw||,
whereas ||F−ku|| , ||F−kw|| for all sufficiently large integers k.

On the extension to non-diagonaizable matrices F see [13, Section 6.1.1].
To implement the computation of the high powers F k for k = 2h we can

repeatedly square the matrix F0 = F and orthogonalize the outputs,

Fi = Q(F 2
i−1), i = 1, 2, . . . , h. (1)

Given a matrix Fh lying close to a matrix that has an unknown rank r, we can
obtain r and a nearby matrix F̃ of rank r by computing rank revealing QR or
LU factorization of the matrix Fh (cf. [7]).

Now assume that an n×n matrix F has r dominant eigenvalues and approx-
imate them by applying the following procedure.

Procedure 1. Computing dominant eigenvalues.
1. Compute the matrix Fh of (1) for a sufficiently large integer h.
2. Compute an n×r nearby matrix F̃ of full rank r. (It approximates a matrix

basis U for the eigenspace associated with the r dominant eigenvalues of Fh.)
3. Compute the r × r matrix L̃ = F̃ (I)FF̃ (cf. Theorem 2).
4. Compute and output the spectrum Λ(L̃), that approximates the set of the r

dominant eigenvalues of F .
5. Refine these approximate eigenvalues of F by applying the RQ iteration.

REMARKS.
1. Extension to the approximation of dominated eigenvalues and the eigen-

values near a selected point. Having completed the procedure, one can deflate
the matrix F (cf. [5], [13]) and reapply the same algorithm to the resulting
(n− r)× (n− r) matrix or to its shifted inverse that has dominant eigenvalues.
Furthermore we can apply the procedure to the matrix (F −sI)−1 (provided the
matrix F − sI is nonsingular) to approximate the eigenvalues of F lying near
the real or complex point s. For a fixed or random small positive s (where F is
singular) or for s = 0, these are precisely the dominated eigenvalues of F .

2. Some numerical issues. In numerical implementation one should take into
account rounding errors and estimate their impact on the output, in particular
to decide when we should stop our repeated squaring. This delicate subject is
well developed but quite involved [13, Section 6.1.1]. If the ratio r/n is small,
however, then Stages 3 and 4 of the proceedure are dramatically simplified, and
we can readily compute the relative residual norm ||FF̃ − F̃ L̃||/||F̃ L̃|| to stop
where it is small enough (cf. Theorem 2).

3. Repeated squaring with no orthogonalization. Squaring preserves the struc-
ture of a companion matrix F = Cp and the shifted matrices F = Cp−sI as well
as of any their positive or negative integer power and only requires O(n log n)

Real and Complex Polynomial Root-Finding by Means of Eigen-Solving 277

ops (cf. [3] or [9]), but orthogonalization and pivoting at Stages 1 and 2 of the
procedure destroy this structure. One does not need orthogonalization for a few
initial squarings, and even a single squaring is sufficient where the domination
of the eigenvalues of F is already strong enough. Furthermore for a fixed or ran-
dom real or complex shift s, we can write F = Cp − sI or F = (Cp − sI)−1 and
repeatedly square F with no orthogonalization,

Fh+1 = ahF
2
h , ah ≈ 1/||Fh||2 for h = 0, 1, . . . (2)

to approximate a single real or complex eigenvalue or a pair of complex conjugate
eigenvalues of Cp. Quite typically the matrix (Cp − sI)−1 has such a dominant
eigenvalue or a pair of eigenvalues, both in the presence of rounding errors and
without them.

4. Stage 2 for small subset of the spectrum, randomized compression, and the
case of companion matrix F . We can simplify Stage 2 if we have a sufficiently
small upper bound r+ on the number r of dominant eigenvalues. In this case we
can replace the matrix Fk by FkG for n× r+ standard Gaussian random matrix
G. Decompose every column Gej for j = 1, . . . , r+ of the matrix G into the sum
uj + wj where uj ∈ U and wj ∈ W as in the proof of Theorem 5. It follows
that for sufficiently large integers k the ratio ||Fkwj ||/||Fkuj || is close to 0 with
probability close to 1, that is the U term of every column Fkej dominates its W
term. Suppose that theW terms have been dominated and deleted for all j. Then
the resulting matrix has rank at most r and lies in U near FkG. Furthermore,
with probability close to 1, the matrix FkG cannot lie near a matrix of rank
less than r by virtue of [12, Corollary 5.2]. Consequently, with probability near
1, rank revealing LU and QR factorization of the matrix FkG defines an n × r
matrix lying near a matrix basis of U . Overall the cost of the computations at
Stage 2 is dominated by the order r+n logn ops applied for multiplication of
Fk by G. The cost decreases to O(n log n) where G is a Toeplitz matrix. [12,
Corollary 5.2] does not hold in the case where the multiplier G is a standard
Gaussian random Toeplitz matrix, but the respective extension of this corollary
is in good accordance with test results in [12].

4 Matrix Sign Function and Eigen-Solving

Definition 1. sign(x+y
√−1) (for real x and y) is 1 if x > 0 and is −1 if x < 0.

Fix any r × r real diagonal matrix Dr, e.g., Dr = Or,r, and let A = ZJZ−1 be
a Jordan canonical decomposition of a matrix A ∈ Cn×n, J = diag(J−, J0, J+),
J− ∈ Cp×p, J0 ∈ Cr×r, J+ ∈ Cq×q, .(d−) < 0, .(d0) = 0, .(d+) > 0 for
all diagonal entries d−, d0 and d+ of the matrices J−, J0, and J+, respectively,
n = p+ q+ r. Then define a generalized matrix sign function sign(A) by writing
sign(A) = Z diag(−Ip, Dr

√−1, Iq)Z−1.

For r = 0 this is the classical matrix sign function [6], equivalently defined as
sign(A) = A(A2)−1/2 or sign(A) = 2

πA
∫∞
0 (t2In +A2)−1dt.

278 V.Y. Pan, G. Qian, and A.-L. Zheng

Theorem 6. Assume the generalized matrix sign function sign(A) for an n×n
matrix A = ZJZ−1. Then for some real r × r diagonal matrix Dr we have

In − sign(A) = Z−1 diag(2Ip, Ir −Dr

√−1, Oq,q)Z,

In + sign(A) = Z−1 diag(Op,p, Ir +Dr

√−1, 2Iq)Z,
In − sign(A)2 = Z−1 diag(Op,p, Ir +D2

r , Oq,q)Z.

Corollary 2. Under the assumptions of Theorem 6 the matrix In − sign(A)2

has dominant eigenspace of dimension r associated with the eigenvalues λ of
the matrix A such that .(λ) = 0, whereas the matrices In − sign(A) (resp.
In + sign(A)) have dominant eigenspaces associated with the eigenvalues λ of A
such that .(λ) ≤ 0 (resp. .(λ) ≤ 0).

Given the matrix F (A) = In − sign(A)2, Procedure 1 approximates the eigen-
values of A lying on the imaginary axis {λ : .(λ) = 0}. Likewise, having the
matrices A and F (A) = In − sign(A) (resp. F (A) = In + sign(A)) available, we
can apply Procedure 1 to approximate all eigenvalues λ of A such that .(λ) ≤ 0
(resp. .(λ) ≤ 0). In these cases, the square matrices L in Procedure 1 have
dimensions p+ and q+, respectively, where p ≤ p+ ≤ p+ r and q ≤ q+ ≤ q + r.
For M = Cp and a pair of large integers p+ and n − p+ or q+ and n − q+, we
split the polynomial p(x) into two high degree factors, whose coefficients can
grow dramatically versus the ones of p(x), e.g., where p(x) = xn+1 = u(x)v(x),

v(x) =
∏n/2

j=1(x − λj), .(λj) > 0 for all j. The subdivision techniques based on
the following simple fact give us a universal remedy, however.

Theorem 7. Suppose U and V are two eigenspaces of A and Λ(U) and Λ(V)
are the sets of the associated eigenvalues. Then Λ(U) ∩ Λ(V) is the set of the
eigenvalues of A associated with the eigenspace U ∩ V.
By computing the matrix sign function of the matrices αA − σI for various
selected pairs of complex scalars α and σ, we can define the eigenspace of A
associated with the eigenvalues lying in a selected region on the complex plane
bounded by straight lines, e.g., in any fixed rectangle. By including matrix in-
versions into this game, we define the eigenvalue regions bounded by straight
lines, their segments, circles and their arcs.

5 Iterative Algorithms for the Matrix Sign Computation

[6, equations (6.17)–(6.20)] define effective iterative algorithms for the square
root function B1/2, and one can readily extend them to sign(A) = A(A2)−1/2.
We, however, employ two popular alternatives: Newton’s iteration based on the
Möbius transform x→ (x+ 1/x)/2 and the [2/0] Padé iteration [6, Chapter 5],

Real and Complex Polynomial Root-Finding by Means of Eigen-Solving 279

N0 = A, Ni+1 = (Ni +N−1
i)/2, i = 0, 1, . . . , (3)

N0 = A, Ni+1 = (15In − 10N2
i + 3N4

i)Ni/8, i = 0, 1, . . . (4)

Theorem 3 implies the following simple corollary.

Corollary 3. Assume iterations (3) and (4) where neither of the matrices Ni

is singular. Let λ = λ(0) denote an eigenvalue of the matrix N0 and define

λ(i+1) = (λ(i) + (λ(i))−1)/2, i = 0, 1, . . . , (5)

λ(i+1) = λ(i)(15− 10(λ(i))2 + 3(λ(i))4)/8, i = 0, 1, . . . (6)

Then λ(i) ∈ Λ(Ni) for i = 1, 2, . . . provided the pairs {Ni, λ
(i)} are defined by

the pairs of equations (3) and (5) or (4) and (6).

Corollary 4. In iterations (5) and (6) the images λ(i) of an eigenvalue λ of the
matrix N0 for all i lie on the imaginary axis {λ : .(λ) = 0} if so does λ.

By virtue of the following theorems the sequences {λ(0), λ(1), . . . }, defined by (5)
and (6) converge to ±1 exponentially fast, right from the start.

Theorem 8. (See [6], [2, page 500].) Write λ = λ(0), δ = sign(λ) and γ =

|λ−δ
λ+δ |. Assume (5) and .(λ) �= 0. Then |λ(i) − δ| ≤ 2γ2i

γ2i+δ
for i = 0, 1,

Theorem 9. [2, Proposition 4.1]. Write δi = sign(λ(i)) and γi = |λ(i) − δi| for
i = 0, 1, Assume (6) and γ0 ≤ 1/2. Then γi ≤ 32

113 (
113
128)

3i for i = 1, 2, . . .

Substitute N0 = M in lieu of N0 = A into the matrix sign iterations (3) and (4)
and equivalently rewrite them to avoid involving nonreal values,

Ni+1 = 0.5(Ni −N−1
i) for i = 0, 1, . . . , (7)

Ni+1 = −(3N5
i + 10N3

i + 15Ni)/8 for i = 0, 1, (8)

Now the matrices Ni and the images λ(i) of every real eigenvalue λ of M are
real for all i, whereas the results of Theorems 8 and 9 are immediately extended.
The images of every nonreal λ converge to sign(/(λ))√−1 quadratically under
(7) if .(λ) �= 0 and cubically under (8) if |λ− (sign(/(λ))√−1)| ≤ 1/2.

Under the maps M → In +N2
i for Ni in the above iterations, the images 1+

(λ(i))2 of nonreal eigenvalues λ ofM lying in the respective basins of convergence
converge to 0, whereas for real λ the images are real and are at least 1 for all i.
Thus for sufficiently large integers i we yield strong domination of the eigenspace
of Ni associated with the images of real eigenvalues of M .

280 V.Y. Pan, G. Qian, and A.-L. Zheng

Iteration (7) fails where for some i the matrix Ni is singular or nearly singular,
that is has eigenvalue 0 or near 0, but then we can approximate it by applying
the Rayleigh Quotient Iteration [5, Section 8.2.3], [1] or the Inverse Orthogonal
Iteration [5, page 339]. If we seek other real eigenvalues as well, we can deflate
the matrix M and apply Procedure 1 to the resulting matrix of a smaller size.
Alternatively we can apply it to the matrix Ni+ ρiIn for a random real shift ρi;
with |ρi| small enough for all i, the images of all nonreal eigenvalues of M would
still rapidly converge to a small neighborhood of the points ±√−1, ensuring
their isolation from the images of real eigenvalues.

6 Numerical Tests

We tested our algorithms for the approximation of the eigenvalues of n × n
companion matrix Cp and of the matrix Cp − sIn for polynomials p(x) with

Table 1. Repeated Squaring

n dimension/squarings min max mean std

64 dimension 1 10 5.31 2.79

128 dimension 1 10 3.69 2.51

256 dimension 1 10 4.25 2.67

64 squarings 6 10 7.33 0.83

128 squarings 5 10 7.37 1.16

256 squarings 5 11 7.13 1.17

Table 2. Newton’s iteration (7)

n min max mean std

64 7 11 8.25 0.89

128 8 11 9.30 0.98

256 9 13 10.22 0.88

Table 3. 5 N-steps (7) + P-steps (8)

n P-steps or % min max mean std

64 P-steps 1 4 2.17 0.67

128 P-steps 1 4 2.05 0.63

256 P-steps 1 3 1.99 0.58

64 % w/o RQ steps 0 100 64 28

128 % w/o RQ steps 0 100 39 24

256 % w/o RQ steps 0 100 35 20

64 % w/RQ steps 0 100 89 19

128 % w/RQ steps 0 100 74 26

256 % w/RQ steps 0 100 75 24

Real and Complex Polynomial Root-Finding by Means of Eigen-Solving 281

random real coefficients for n = 64, 128, 256 and for random real s. For each
class of matrices, each input size and each iterative algorithm we generated 100
input instances and run 100 tests. Our tables show the minimum, maximum,
and average (mean) numbers of iteration loops in these runs (until convergence)
as well as the standard deviations in the columns marked by “min”, “max”,
“mean”, and “std”, respectively.

We applied repeated squaring of equation (2) to the matrix Cp− sI for shifts
s �= 0 because polynomials p(x) with random real coefficients tend to have all
roots near the unit circle {λ : |λ| = 1}, and for such inputs repeated squaring
for Cp advances very slowly.

We first applied iteration (7) to approximate the matrix sign function for the
matrix Cp and then Procedure 1 to approximate real eigenvalues.

In both groups of tests above we output roots with at least four correct dec-
imals. In our next group of tests we output roots with at least three correct
decimals. In these tests we applied real version (8) of Padé iteration without
stabilization to the matrices produced by five Newton’s steps (7).

Table 1 displays the results of testing repeated squaring of equation (2). The
first three lines show the dimension of the output subspace and the matrix L.
The next three lines show the number of squarings performed until convergence.
Table 2 displays the number of Newton’s steps (7) performed until convergrence.

Table 3 covers the tests where we first performed five Newton’s steps (7)
followed by Padé steps, counted in the first three lines of the table. The next
three lines display the percent of the real roots of the polynomials p(x) which
the algorithm computed with at least three correct decimals (compared to the
overall number of the real eigenvalues of L). The next three lines show the
increased percent of computed roots when Rayleigh Quotient iteration refined
the crude approximations. The iteration rapidly converged from all these initial
approximations but in many cases to the same roots from distinct initial points.

Acknowledgement.We are very grateful to the reviewers for helpful comments.

References

1. Bini, D.A., Gemignani, L., Pan, V.Y.: Inverse power and Durand/Kerner iter-
ation for univariate polynomial root-finding. Computers and Math (with Ap-
plics.) 47(2/3), 447–459 (2004)

2. Bini, D., Pan, V.Y.: Graeffe’s, Chebyshev, and Cardinal’s processes for splitting a
polynomial into factors. J. Complexity 12, 492–511 (1996)

3. Cardinal, J.P.: On two iterative methods for approximating the roots of a polyno-
mial. Lectures in Applied Math 32, 165–188 (1996)

4. Emiris, I.Z., Mourrain, B., Tsigaridas, E.P.: Real Algebraic Numbers: Complex-
ity Analysis and Experimentation. In: Hertling, P., Hoffmann, C.M., Luther, W.,
Revol, N. (eds.) Real Number Algorithms. LNCS, vol. 5045, pp. 57–82. Springer,
Heidelberg (2008)

5. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Uni-
versity Press, Baltimore (1996)

282 V.Y. Pan, G. Qian, and A.-L. Zheng

6. Higham, N.J.: Functions of Matrices: Theory and Computations. SIAM (2008)
7. Pan, C.–T.: On the existence and computation of Rrank-revealing LU factorization.

Linear Algebra and Its Applications 316, 199–222 (2000)
8. Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms.

Birkhäuser, Boston, and Springer, NY (2001)
9. Pan, V.Y.: Amended DSeSC power method for polynomial root-finding. Computers

and Math (with Applics.) 49(9-10), 1515–1524 (2005)
10. Pan, V.Y., Qian, G., Murphy, B., Rosholt, R.E., Tang, Y.: Real root-finding. In:

Vershelde, J., Stephen Watt, S. (eds.) Proc. Third Int. Workshop on Symbolic–
Numeric Computation (SNC 2007), London, Ontario, Canada, pp. 161–169. ACM
Press, New York (2007)

11. Pan, V.Y., Zheng, A.: New progress in real and complex polynomial root-finding.
Computers and Math (Also in Proc. ISSAC 2010) 61, 1305–1334 (2010)

12. Pan, V.Y., Qian, G., Zheng, A.: Randomized Matrix Computations II. Tech. Report
TR2012006,Ph.D.Program inComputerScience,GraduateCenter, theCityUniver-
sity ofNewYork (2012),http://www.cs.gc.cuny.edu/tr/techreport.php?id=433

13. Stewart, G.W.: Matrix Algorithms, Vol II: Eigensystems, 2nd edn. SIAM, Philadel-
phia (2001)

14. Yap, C., Sagraloff, M.: A simple but exact and efficient algorithm for complex root
isolation. In: Proc. ISSAC 2011, pp. 353–360 (2011)

http://www.cs.gc.cuny.edu/tr/techreport.php?id=433

Root-Refining for a Polynomial Equation

Victor Y. Pan

Department of Mathematics and Computer Science
Lehman College and the Graduate Center of the City University of New York

Bronx, NY 10468 USA
victor.pan@lehman.cuny.edu,

http://comet.lehman.cuny.edu/vpan/

Abstract. Polynomial root-finding usually consists of two stages. At
first a crude approximation to a root is slowly computed; then it is much
faster refined by means of the same or distinct iterations. The efficiency
of computing an initial approximation resists formal study, and the users
employ empirical data. In contrast, the efficiency of refinement is formally
measured by the classical concept q1/α where q is the convergence order
and α is the number of function evaluations per iteration. To cover itera-
tions not reduced to function evaluations alone, e.g., ones simultaneously
refining n approximations to all n roots of a degree n polynomial, we let
d denote the number of arithmetic operations involved in an iteration
divided by 2n because we can evaluate such a polynomial at a point by
using 2n operations. For this task we employ recursive polynomial fac-

torization to yield refinement with the efficiency 2cn/ log2 n for a positive
constant c. For large n this is a dramatic increase versus the record ef-
ficiency 2 of refining an approximation to a single root of a polynomial.
The advance could motivate practical use of the proposed root-refiners.

Keywords: Root-refining, Efficiency, Polynomial factorization.

1 Introduction

1.1 Two Stages of Iterative Polynomial Root-Finding

The classical problem of polynomial root-finding is still a subject of intensive
study because of its important applications to geometric modelling, financial
mathematics, signal processing, control, and in particular to computer algebra,
for which this is a fundamental task. We refer the reader to Bell (1940), Boyer
(1968), and Pan (1997 and 1998) on the rich history of this subject and to
McNamee (2002 and 2007) and McNamee and Pan (2012) on numerous old and
new polynomial root-finders.

A typical iterative polynomial root-finder consists of two stages. At first sub-
stantial effort is invested into computing an initial point that lies much closer to
one of the roots than to any other of them. Then the same or another iterative
algorithm refines this approximation. Here is a formal support for this approach.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 283–293, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://comet.lehman.cuny.edu/vpan/

284 V.Y. Pan

Theorem 1. (Corollary 4.5 from Renegar (1987).) Assume a polynomial

p(x) =

n∑
i=0

pix
i = pn(x− z1) · · · (x− zn), pn �= 0, (1)

and Newton’s iterations

xi+1 = xi − p(xi)/p
′(xi), i = 0, 1, . . . (2)

where 5n2|x0 − z1| ≤ minj>1 |x0 − zj|. Then |xi − z1| ≤ 23−2i |x0 − z1|, that is
the iterations converge quadratically from the initial point x0.

On preceding works, variations and extensions, which cover Newton’s processes
in Banach spaces and other iterative root-finders, see Kantorovich and Akilov
(1982), Theorem V.4.3; Kim (1985), Smale (1986), Renegar (1987), Curry (1989),
Petkovic and Herceg (2001), and the bibliography therein.

1.2 Divide-and-Conquer Factorization

The issue of the computational complexity of polynomial root-finding has been
raised in Smale (1981) and Schönhage (1982). The algorithms supporting the
record upper estimates rely on recursive factorization of the polynomial p(x).
Schönhage (1982), Neff and Reif (1994), and Pan (1995, 1996 and 2002) numer-
ically factorize a polynomial p(x) =

∑n
i=0 pix

i into the product of two noncon-
stant factors and continue this splitting process recursively until factorization
(1) of p(x) into the product of n linear factors is closely approximated. Then
the n approximate roots zj are readily recovered such that |xj − zj | ≤ 1/2b for

a sufficiently large b and j = 1, . . . , n. This process in Pan (1995) uses Õ(n) ops
with the precision O(bn), translated into Õ(n2b) Boolean (that is bitwise) opera-
tions. Here and hereafter ”ops” stand for ”arithmetic operations” and Õ(f(b, n))
for O(f(b, n)) up to polylog factors in b+ n. The estimated complexity of root-
finding for the worst case input polynomial is smaller than Schönhage’s by a
factor n and is still record low, but Pan (2002) decreases the Boolean cost and
precision bounds by a factor n where one just seeks x1, . . . , xn such that

||p(x)− pn(x− x1) · · · (x− xn)||1 ≤ 2b||p(x)||1, ||
∑
i

uix
i||1 =

∑
i

|ui|. (3)

Computing such a polynomial factorization is important in its own right because
of the applications to time series analysis, Weiner filtering, noise variance esti-
mation, covariance matrix computation, the study of multi-channel systems (see
Wilson (1969), Box and Jenkins (1976), Barnett (1983), Demeure and Mullis
(1990), and Van Dooren (1994)), and the isolation of the roots of a polynomial
p(x) with n distinct roots and with integer coefficients, each of length at most l.
(Isolation means computation of n disjoint discs, each containing a single root of
p(x).) For b = �(2n+1)(l+1+ log(n+1))� the extension is proved in Section 20
of Schönhage (1982) based on the gap theorem of Mahler (1964). Combination
with the estimates of Pan (2002) yields the following result.

Root-Refining for a Polynomial Equation 285

Theorem 2. Let polynomial p(x) of (1) have n distinct simple zeros and integer
coefficients in the range [−2τ , 2τ]. Then one can isolate the n zeros of p(x) from
each other by using Õ(n2τ) Boolean operations.

The cited arithmetic and Boolean cost estimates from Pan (1995, 1996 and 2002)
are optimal up to polylogarithmic factors, but the users prefer to employ func-
tional iterative root-finders such as the Weierstrass–Durand–Kerner (hereafter
WDK) and Ehrlich–Aberth algorithms (see Weierstrass (1903), Durand (1960),
Kerner (1966), Ehrlich (1967), and Aberth (1973)). The known upper estimates
for the complexity of these algorithms is no match to the ones of Pan (2002), but
the gap disappears if we estimate the complexity of these functional iterations
based on informal empirical data confirming their excellent global convergence,
that is convergence right from the start (cf. the Appendix). Our next sections
show, however, that just for the refinement of approximate roots even these
highly recognized algorithms remain by far inferior to the recursive factorization
algorithm. Thus the latter algorithm is definitely worth further study and may
eventually become the method of choice for root-refining.

1.3 Efficiency of Refinement

Assume d function evaluations per iteration that refines an initial approximation
and converges with order q. Since Ostrowski (1966), it is customary to measure
the efficiency of the refinement by

eff = q1/α (4)

or by log10 eff = (1/α) log10 q (cf. McNamee and Pan (2012)). For example, we
have q = α = 2 and eff =

√
2 for Newton’s iterations xi+1 = xi − p(xi)/p

′(xi),
i = 0, 1, . . . , whereas α = 1 and q = eff ≈ 1.839 for the root-refiner of Muller
(1956). More generally, we write α = 0.5f/n provided the iteration uses f ops
and the input polynomial has degree n and therefore can be evaluated at a
point in 2n ops. The record efficiency of the known root-refiners for a single root
of a polynomial is 2 (see McNamee and Pan (2012)); e.g., one can yield it by
combining a linearly convergent root-refiner with the convergence acceleration
by extrapolation of Aitken (1926), also called Δ2 convergence acceleration. In
the next sections, however, we refine all n roots of p(x) with the much greater
efficiency

eff = 2cn/ log2 n for a positive constant c. (5)

The supporting algorithms are numerically stable, their precision is controlled,
and their Boolean cost stays nearly optimal. In particular, we avoid using poly-
nomial evaluation at n points in O(n log2 n) ops, which would have saved ops
but is numerically unstable and has inferior Boolean complexity.

1.4 Some Technicalities

We employ the well developed techniques for polynomial root-finding based
on recursive factorization, but show its dramatic simplification for the more

286 V.Y. Pan

restricted but still highly important task of root-refining. In particular, this sim-
plification is quantified in our Theorem 3, based on divide-and-conquer process.
In this process we incorporate the techniques from Schönhage (1982), Neff and
Reif (1994), Pan (1995, 1996 and 2002), and Kirrinnis (1998) and accentuate
their power by employing sufficiently close initial approximations to the roots,
which we assume available for refinement. Our formal support for simplified re-
finement boils down to devising a fast algorithm that computes a reasonably wide
root-free annulus on the complex plane that separates from one another two sets
of the roots of p(x), consisting of βn and (1−β)n roots, respectively, where β is
independent of n and 0 < β < 1. The techniques for computing such an annulus
in Neff and Reif (1994) and Pan (1995, 1996 and 2002) are quite involved and
are the bottleneck of the efficient implementation of the resulting root-finders,
but based on our Procedure 1 and Theorem 5 we dramaticaly simplify them for
root-refining. The resulting algorithms support our record efficiency estimate for
root-refining and promise to be practically valuable.

1.5 Organization of the Paper

Our exposition incorporates many well known techniques developed for polyno-
mial root-finding, and readily adjustable to root-refining. We recall them briefly,
referring the reader to the original papers for details. In particular in the next
section we first briefly recall the recursive divide-and-conquer factorization ap-
proach to polynomial root-finding and its specific version of Kirrinnis (1998)
and then prove our main Theorem 3 subject to providing sufficiently wide root-
free annuli that would separate the root sets of the factors in each factorization
step, to support balanced recursive factorization. In Section 3 we cover comput-
ing such annuli. We briefly comment on some implementation issues in Section 4
and devote the Appendix to a conjecture on convergence of functional iterations.

2 Root-Refining Via Recursive Divide-And-Conquer
Factorization and Kirrinnis’ Algorithm

Suppose we are given the coefficients of a polynomial p(x) of (1) and approxi-
mations z1, . . . , zn to its n simple roots x1 . . . , xn. This defines an approximate
factorization

p = p(x) ≈ f(x) = pn(x − z1) · · · (x− zn) (6)

(cf. (3)). Schönhage (1982) has extended Ostrowski (1940 and 1966) to bound the
approximation errors |xj − zj| for |zj | ≤ 1 and | 1xj

− 1
zj
| for |zj| ≥ 1, j = 1, . . . , n

in terms of the norm ||p(x)−f(x)||1. Newton’s multivariate iterations for refining
(6) turn into the WDK algorithm (cf. Pan and Zheng (2011b)).

Now suppose we are given an initial approximate factorization of the polyno-
mial p into the product of two factors of comparable degrees,

p ≈ f = f1f2, (7)

Root-Refining for a Polynomial Equation 287

deg f1 < c′ deg f2 < c′′ deg f1 (8)

for two positive constants c′ and c′′. Furthermore assume that the two root sets of
these two factors are separated by a root-free annulus A(z, r+, r−) = {x : r− ≤
|x − z| ≤ r+} bounded by two circles with a center z and radii r− and r+,
respectively, such that r+/r− > 1 + c/nd for two constants c > 0 and d. We call
the ratio r+/r− the relative width of the annulus and call A(z, r−, r+) a (c, d)
annulus. We call it a (c, d) separating annulus if (8) holds.

One can recursively refine the factors f1 and f2 by computing the polynomials
fnew
1 = f1 + t1 and fnew

2 = f2 + t2 as well as Newton’s correction polynomials t1
and t2 that satisfy

r

f
=

t1
f1

+
t2
f2

(9)

where r = p − f , f = f1f2, deg t1 < deg f1 and deg t2 < deg f2 (cf. Schönhage
(1982)). The well known algorithms compute such a partial fraction decompo-
sition (hereafter referred to as PFD) by using O(n log2 n) ops (cf. Bini and Pan
(1994), Problem 4.2c (PART·FRAC), pages 30–31). The computation is prone
to numerical stability problems, but the modification in the next section avoids
them. Schönhage (1982) has ignored the numerical stability issue and instead
directed his work to decreasing upper bounds on the Boolean complexity of
polynomial root-finding (although, as we said, they are inferior to the ones of
Pan (1995, 1996 and 2002) by a factor n). Kirrinnis (1998), however, has devised
numerically stable quadratically convergent factorization algorithm of Newton
type, provided sufficiently wide root-free (c, d) annulus (for c > 0) separating
the roots of the factors f1 and f2 has been supplied (see the next section).

As soon as we closely approximate the factors f1 and f2, we recursively fac-
torize both of them in the same fashion until we arrive at a refined sufficiently
close complete approximate factorization (6) such that z1, . . . , zn approximate
the n roots x1, . . . , xn with a desired accuracy.

Actually Kirrinnis (1998) has extended the above techniques to the refinement
of an initial factorization p ≈ f = f1 · · · fs into the product of s nonconstant
factors for any integer s from 2 to n, that is he assumed 1 < s ≤ n, deg fj > 0
for all j, and deg f1 + · · · + deg fs = n. Furthermore, he has proved quadratic
convergence of the iterations as well as of its variant in which he improved the
efficiency and numerical stability of the refinement. In this variant he confined the
most expensive and numerically unstable stage of the PFD computation to the
first iteration. At all subsequent iterations he updated the corrections tj and new
factors fj as follows (we decrypt his formulas a little):

f = f1 · · · fs, (10)

tnewj = (2− tjf/fj)tj mod fj , j = 1, . . . , s, (11)

fnew
j = fj + (tnewj p mod fj), j = 1, . . . , s. (12)

288 V.Y. Pan

In the above variations polynomial multiplications replace the computation of
PFDs; this improves numerical stability and decreases the number of ops per re-
finement iteration to O(n log n). Kirrinnis (1998) has also estimated the precision
and the Boolean cost of these computations. Next assume s = 2 and balancing
(8), extend splitting recursively, and arrive at bound (5).

Theorem 3. Assume n close initial approximations to n distinct roots of a
polynomial p(x) of (1) and refine them by recursively applying equations (10)–
(12) for s = 2. Further assume that (c, d) separating annuli for c > 0, e.g., for
c = d = 1, are available throughout recursive factorization. Then the refinement
has efficiency (5).

Proof. Represent the above recursive refinement process by a binary tree whose
root p has two children f1 and f2, each of them in turn has at most two children
such that f1 ≈ f11f12 and f2 ≈ f21f22, and so on. At every level of the tree
its nodes represent polynomials whose degrees sum to n− l where l denotes the
number of linear factors output at the previous levels. The tree has O(log n)
levels because of recursive balancing (8). It follows that computing Newton’s
corrections for all factor polynomials at each level takes O(n logn) ops per it-

eration. This is translated into α = O(log n
n) per level, α = O(log

2 n
n) for all the

O(log n) levels, and thus into (5) because q = 2 for Newton’s iterations.

3 Computation of (1, 1) Separating Annuli

Next we complete the refinement algorithms by computing (1, 1) separating an-
nuli; the first annulus defines the factors f1 and f2 satisfying (8), and the next
annuli define recursive splittings of the polynomials f1, f2, and their factors.

We can compute the desired annuli by employing the techniques of Schönhage
(1982), Neff and Reif (1994) and Pan (1995, 1996 and 2002), but we only partly
reuse these rather complicated and expensive techniques. In particular, we avoid
expensive computation of the roots of the higher order derivatives p(h)(x). We
proceed more efficiently because we use approximate roots of p(x), but technical
challenge persists. Even if we had all these roots available with no error, still
computing the (1, 1) separating annuli would not be trivial. Next we supply the
required details. We begin with recalling the following result.

Theorem 4. (Cf. Schönhage (1982), Theorem 14.2.) Given polynomial p(x) of
(1), two real constants c > 0 and d, and a complex value v0, we need O(n log2 n)
ops to approximate within relative errors of 1 + c/nd the distances |v0 − xj |
between v0 and all roots xj of p(x) for j = 1, . . . , n.

By applying the theorem at a complex point v0, one can find a desired separating
(1, 1) annulus unless most of the roots lie in a narrow annulus about a fixed circle
{x : |v0 − x| = R} for some positive R. In the latter case we can reapply the
theorem twice, for v0 replaced by v0 +2R and v0 +2R

√−1. Then in these three
applications we obtain either a desired (1, 1) separating annulus or three narrow

Root-Refining for a Polynomial Equation 289

annuli, each containing almost all roots of p(x). In the latter case the intersection
of the three annuli is a small region with a large collection of roots. Namely we
have the following corollary (cf. Neff and Reif (1994)).

Corollary 1. Given a polynomial p(x) of (1) with n distinct roots, a fixed real
u > 1 and a complex v0, we need O(n log2 n) ops to compute either (i) a required
wide separating annulus for p(x) or (ii) a disc D(v1, ρ1) = {x : |x − v1| ≤ ρ1}
containing at least n/12 roots of p(x) where |v0 − v1| ≥ uρ1.

In our current application, we decrease the estimates of the theorem and conse-
quently of the corollary by a factor log2 n because approximate roots x1, . . . , xn
are assumed to be available. It remains to extend computations from case (ii) to
arrive at case (i).

Apply the amended corollary for v1 replacing v0 to yield the desired case (i)
or to obtain a disc D(v2, ρ2) = {x : |x − v2| ≤ ρ2} with at least n/12 roots of
p(x) and such that |v2 − v0|/ρ2 has order u2 (cf. Pan (1995, 1996 and 2002)).

We reapply the corollary t = O(log n) times, by using O(n logn) ops overall,
to ensure either the desired case (i) or the bound |vt − v0|/ρt ≥ s = cnd for any
fixed real c > 0 and d. It remains to treat the latter case where it is sufficient
for us to choose c and d such that s = cnd > 6 and thus

|vt − v0|/ρt > 6. (13)

Let ns denote the number of the roots of p(x) in the disc D(vk, sρk) = {x : |x−
vk| ≤ sρk}. By assumption (ii) we have ns ≥ n/12 for s ≥ 1. Consider ns for
s = sh = (1 + 1/n)h for h = 0, 1, If nsh = nsh−1

, then A(vk, sh−1ρk, shρk) is
a root-free annulus with relative width 1+ 1/n, that is a (1, 1) annulus. Clearly,
nsh > nsh−1

for at most n − n/12 integers h because at most n − n/12 roots
lie outside the disc D(vt, ρt). Therefore we have a (1, 1) separating annulus
A(vt, sh−1ρt, shρt) for h ≤ n− n/12. It supports approximate factorization (7).
Note that

sh ≤ (1 + 1/n)h ≤ (1 + 1/n)n < 3 for s ≤ n. (14)

Now it remains to ensure the degree bound (8). We achieve this by applying the
above construction to a proper complex v0. In its computation we keep assuming
that sufficiently close approximations zj to the n distinct roots xj of p(x) are
available for j = 1, . . . , n. Furthermore assume that the n roots are distinct,
n = 4k is divisible by 4, .(zj) ≤ .(z2k) < .(zl) for j < 2k and l > 2k,
/(zj) ≤ /(zk) < /(zl) for j < k and k < l ≤ 2k, and /(zj) ≤ /(z3k) < /(zl)
for 2k < j < 3k and 3k < l. We yield these bounds by properly enumerating
the n roots having 2n distinct projections on the real and imaginary axes. The
latter property holds with probability 1 under random rotation of the complex
plane.

Now we proceed as follows.

290 V.Y. Pan

Procedure 1. Computing a center v0 in the search for (1, 1) annulus.

Computations:

1. Compute the half-sum a = 0.5(.(z2k) + .(z2k+1)).
2. Compute the three half-sums a1 = 0.5(/(zk) + /(zk+1)),

a2 = 0.5(/(z3k) + /(z3k+1)) and b = 0.5(a1 + a2).

OUTPUT v0 = a+ b
√−1.

Theorem 5. Suppose that Procedure 1 has output a complex v0 and that t re-
cursive applications of Corollary 1 have produced a complex value vt and positive
ρt such that the disc D(vt, ρt) contains at least n/12 roots of p(x), whereas its
6-dilation D(vt, 6ρt) does not contain the point v0 (cf. (13)). Then at least n/4
roots of p(x) lie at the distance at least 2ρt from the disc D(vt, ρt).

Proof. Partition the complex plane into the four domains D1, D2, D3, and D4

bounded by the straight line L = {x : .(x) = a} and two half-lines R1 =
{x : .(x) ≤ a and /(x) = a1} and R2 = {x : .(x) ≥ a and /(x) = a2}, both
orthogonal to the line L. Let us show that the disc D(vt, ρt) cannot lie at the
distances less than 2ρt from all these domains simultaneously.

Indeed otherwise its 3-dilation D(vt, 3ρt) would have intersected all four do-
mains. Then the diameter 6ρt of this dilation would have exceeded the distance
|a2 − a1| between the points a1 and a2. Moreover, being convex, the dilation
would have also intersected both half-lines R1 and R2, and consequently (in-
voke convexity again) the line interval {y : /(a2) ≤ y/

√−1 ≤ /(a1)} as well.
Therefore, the distance of v0 from this 3-dilation D(vt, 3ρt) would have been less
than |a1 − a2|/2 ≤ 3ρt. It would have followed that the 6-dilation D(vt, 6ρt) of
the disc D(vt, ρt) contained v0. This would have contradicted the assumption of
the theorem, and therefore, the distance of D(vt, ρt) to at least one of the four
domains D1, D2, D3, and D4 is at least 2ρt. The theorem follows because by
definition each of the four domains contains exactly k = n/4 roots of p(x).

Recall that the disc D(vt, ρt) contains at least n/12 roots of p(x), combine the
latter theorem, Corollary 1 and the argument that we used for deducing (14),
and obtain a desired (1, 1) separating annulus A(v0, ρt, r+) for r+ < 3ρt.

Remark 1. The paper McNamee and Pan (2012) has estimated the efficiency of
great many known root-refiners. It also has pointed out that bound (5) can rely
on recursive factorization, but has omitted the issue of computing (c, d) annuli
for recursive splitting and relied on numerically unstable computation of PFDs
described in our Section 2.

4 Some Implementation Issues

A polynomial root-finder based on factorization was implemented by X. Gourdon
in the PARI Functions and was superseded by the subroutines of MPSolve (based
on Ehrlich–Aberth’s algorithm) and Eigensolve (based on combining the WDK
and Rayleigh Quotient iterations). The prospects for factorization-based root-
refining are much brighter because the hardest stage of initialization is skipped

Root-Refining for a Polynomial Equation 291

and our refinement algorithms achieve faster progress by balancing the degrees
of the factors and dramatically simplifying the computation of the wide root-free
separating annuli. For a large class of input polynomials, heuristic computation
of these annuli can be further simplified. One can frequently find them already
in a single, double or triple application of Theorem 4 without using Corollary 1
and can try other promising heuristic recipes. E.g., examine various regions on
the complex plane between pairs of lines orthogonal to the real axis and passing
through the consecutive values in the set {.(x1), . . . ,.(xn)} of the projections
of the given approximate roots onto this axis. Then transform the complex plane
onto itself to move these lines into circles and examine the annuli between them.

Our root-refiners are amenable to parallel acceleration, but in that respect
they can be superseded by the iterations directed to a single root such as New-
ton’s root-finder or Rayleigh Quotient Iterations for eigenvalues of the compan-
ion matrix of the polynomial p(x) (cf. Pan and Zheng (2011a)). Namely, assume
that we concurrently apply such iterations at h crude but sufficiently close ini-
tial approximations to h distinct roots for 1 < h ≤ n (see Pan and Zheng
(2011b)). Part of the processes can diverge or can converge to the same root of
p(x), although by using sufficiently many distinct initial points one can ensure
convergence of Newton’s root-finder to all n roots (cf. Bollobàs, Lackmann, and
Schleicher (2012)). As their very attractive but apparently yet unexploited fea-
ture, this particular parallel processing requires no data exchange among the h
processors, thus allowing acceleration of the refinement by a factor h.

Appendix

A On Expanding the Set of Constraints and Variables

Pan and Zheng (2011b) suggest that the reduction of root-finding for a uni-
variate polynomial of a degree n to the multivariate polynomial system of n
Viète’s (Vieta’s) polynomial equations with n unknowns can explain the empir-
ical strength of global convergence of the WDK and Ehrlich–Aberth iterations,
based on such a system. The authors argue that multiple additional constraints
keep the iterative process on its course to convergence stronger than the sin-
gle polynomial equation can do. If true, this suggests a more general recipe of
properly expanding an original system of constraints to support more reliable
convergence of its iterative solution. Empirical global convergence of iterative so-
lution of a polynomial equation is also quite strong for some companion matrix
algorithms (see Pan and Zheng (2011a)). Then again the algorithms compute
the solution to n constraints defining n unknowns: namely, an eigenvalue and an
eigenvector of dimension n (defined up to scaling), versus the single constraint
defined by a univariate polynomial equation. Yet another example is the known
effect of using the duality in linear and nonlinear programming and in the so-
lution of a multivariate system of polynomial equations (see Mourrain and Pan
(2000) and Faugère (2002)). Should these examples motivate further attempts
of improving global convergence of iterative solution to a system of constraints
(in particular a system of multivariate polynomial equations) by means of their

292 V.Y. Pan

proper expansion with additional constraints and variables? The idea has strong
support from many proverbs such as “One’s as good as none”, “There’s strength
in numbers”, “One man does not make a team” (see more in Pan and Zheng
(2011b)), but does not seem to be yet explicitly proposed in sciences.

Acknowledgement. Our work has been supported by NSF Grant CCF-1116736
and PSC CUNY Award 64512-0042. We are also very grateful to the reviewers
for helpful comments.

References

1. Aberth, O.: Iteration Methods For Finding All Zeros of a Polynomial Simultane-
ously. Mathematics of Computation 27(122), 339–344 (1973)

2. Aitken, A.C.: On Bernoulli’s numerical solution of algebraic equations. Proc. Roy.
Soc. Edin. 46, 289–305 (1926)

3. Barnett, S.: Polynomial and Linear Control Systems. Marcel Dekker, NY (1983)
4. Bell, E.T.: The Development of Mathematics. McGraw-Hill, New York (1940)
5. Bini, D., Pan, V.Y.: Polynomial and Matrix Computations, Fundamental Algo-

rithms, vol. 1. Birkhäuser, Boston (1994)
6. Bollobàs, B., Lackmann, M., Schleicher, D.: A small probabilistic universal set

of starting points for finding roots of complex polynomials by Newton’s method.
Math. of Computation (in press, 2012), arXiv:1009.1843

7. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control.
Holden-Day, San Francisco (1976)

8. Boyer, C.A.: A History of Mathematics. Wiley, New York (1968)
9. Curry, J.H.: On zero finding methods of higher order from data at one point. J. of

Complexity 5, 219–237 (1989)
10. Durand, E.: Equations du type F(x) = 0: Racines d’un polynome, In Solutions

numérique équation algébrique, Masson, Paris, vol. 1 (1960)
11. Demeure, C.J., Mullis, C.T.: A Newton–Raphson method for moving-average spec-

tral factorization using the Euclid algorithm. IEEE Trans. Acoust., Speech, Signal
Processing 38, 1697–1709 (1990)

12. Ehrlich, L.W.: A modified Newton method for polynomials. Comm. of ACM 10,
107–108 (1967)

13. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proc. ISSAC 2002, pp. 75–83. ACM Press, NY (2002)

14. Householder, A.S.: Dandelin, Lobachevskii, or Graeffe. American Mathematical
Monthly 66, 464–466 (1959)

15. Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press (1982)
16. Kerner, I.O.: Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Poly-

nomen. Numerische Mathematik 8, 290–294 (1966)
17. Kim, M.-H.: Computational complexity of the Euler type algorithms for the roots

of complex polynomials. PhD Thesis, City University of New York (1985)
18. Kirrinnis, P.: Polynomial factorization and partial fraction decomposition by si-

multaneous Newton’s iteration. J. of Complexity 14, 378–444 (1998)
19. Mahler, K.: An Inequality for the Discriminant of a Polynomial. Michigan Math.

Journal 11, 257–262 (1964)
20. McNamee, J.M.: A 2002 update of the supplementary bibliography on root of

polynomials. J. Comput. Appl. Math. 142, 433–434 (2002)

Root-Refining for a Polynomial Equation 293

21. McNamee, J.M.: Numerical Methods for Roots of Polynomials (Part 1). Elsevier,
Amsterdam (2007)

22. McNamee, J.M., Pan, V.Y.: Efficient polynomial root-refiners: survey and new
record estimates. Computers and Math. with Applics. 63, 239–254 (2012)

23. Mourrain, B., Pan, V.Y.: Multivariate polynomials, duality and structured matri-
ces. J. of Complexity 16(1), 110–180 (2000)

24. Muller, D.E.: A method for solving algebraic equations using an automatic com-
puter. Math. Tables Aids Comput. 10, 208–215 (1956)

25. Neff, C.A., Reif, J.H.: An o(n1+ε) algorithm for the complex root problem. In:
Proc. STOC 1994, pp. 540–547. IEEE Computer Society Press (1994)

26. Ostrowski, A.M.: Recherches sur la méthode de Graeffe et les zéros des polynomes
et des sèries de Laurent. Acta Math 72, 99–257 (1940)

27. Ostrowski, A.M.: Solution of Equations and Systems of Equations, 2nd edn. Aca-
demic Press, New York (1966)

28. Pan, V.Y.: Optimal (up to polylog factors) sequential and parallel algorithms for
approximating complex polynomial zeros. In: Proc. 27th Ann. ACM Symp. on
Theory of Computing, pp. 741–750. ACM Press, New York (1995)

29. Pan, V.Y.: Optimal and nearly optimal algorithms for approximating polynomial
zeros. Computers and Math. with Applications 31(12), 97–138 (1996)

30. Pan, V.Y.: Solving a polynomial equation: some history and recent progress. SIAM
Review 39(2), 187–220 (1997)

31. Pan, V.Y.: Solving polynomials with computers. American Scientist 86 (January-
February 1998)

32. Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for factorization and
rootfinding. J. Symbolic Computation 33(5), 701–733 (2002)

33. Pan, V.Y.: Amended DSeSC Power Method for polynomial root-finding. Comput-
ers and Math (with Applications) 49(9-10), 1515–1524 (2005)

34. Pan, V.Y., Zheng, A.–L.: New progress in real and complex polynomial root-
finding. Computers and Mathematics with Applications 61, 1305–1334 (2011a)

35. Pan, V.Y., Zheng, A.–L.: Root-finding by expansion with independent constraints.
Computers and Mathematics with Applications 62, 3164–3182 (2011b)

36. Petkovic, M.S., Herceg, D.: Point estimation of simultaneous methods for solving
polynomial equations: a survey. Computers Math. with Applics. 136, 183–207 (2001)

37. Renegar, J.: On the worst-case arithmetic complexity of approximating zeros of
polynomials. J. of Complexity 3, 90–113 (1987)

38. Schönhage, A.: The fundamental theorem of algebra in terms of computational
complexity. Department of Math., University of Tübingen, Germany (1982)

39. Smale, S.: The fundamental theorem of algebra and complexity theory. Bulletin of
the American Mathematical Society 4, 1–36 (1981)

40. Smale, S.: Newton’s method estimates from data at one point. In: Ewing, R.E.,
Cross, K.I., Martin, C.F. (eds.) The Merging Disciplines: New Directions in Pure,
Applied and Computational Math., pp. 185–196. Springer (1986)

41. Van Dooren, P.M.: Some numerical challenges in control theory. Linear Algebra
for Control Theory IMA Vol. Math. Appl (1994)

42. Weierstrass, K.: Neuer Beweis des Fundamentalsatzes der Algebra. Mathematische
Werke, Band III, Mayer und Müller, Berlin, 251–269 (1903)

43. Wilson, G.T.: Factorization of the covariance generating function of a pure moving-
average process. SIAM J. on Numerical Analysis 6, 1–7 (1969)

PoCaB: A Software Infrastructure to Explore

Algebraic Methods for Bio-chemical Reaction
Networks

Satya Swarup Samal1, Hassan Errami2, and Andreas Weber3

1 Bonn-Aachen International Center for Information Technology, Universität Bonn,
Dahlmannstraße 2, D-53113, Bonn, Germany

samal@cs.uni-bonn.de
2 Institut für Mathematik, Universität Kassel, Heinrich-Plett-Straße 40,

34132 Kassel, Germany
errami@cs.uni-bonn.de

3 Institut für Informatik II, Universität Bonn, Friedrich-Ebert-Allee 144,
53113 Bonn, Germany

weber@cs.uni-bonn.de

Abstract. Given a bio-chemical reaction network, we discuss the dif-
ferent algebraic entities e.g. stoichiometric matrix, polynomial system,
deficiency and flux cones which are prerequisite for the application of
various algebraic methods to qualitatively analyse them. We compute
these entities on the examples obtained from two publicly available bio-
databases called Biomodels and KEGG. The computations involve the
use of computer algebra tools (e.g. polco, polymake). The results consist-
ing of mostly matrices are arranged in form of a derived database called
PoCaB (Platform of Chemical and Biological data). We also present a
visualization program to visualize the extreme currents of the flux cone.
We hope this will aid in the development of methods relevant for com-
putational systems biology involving computer algebra. The database is
publicly available at http://pocab.cg.cs.uni-bonn.de/

1 Introduction

In Systems Biology, the biological functions emerge from the interaction of sev-
eral chemical species. So, it is desirable to study the set of components, which
give rise to a discrete biological function. This leads to the formulation of func-
tional modules. The interplay between these modules represent the diversity and
richness of living systems [1]. To understand this, the first step is to analyse dif-
ferent networks responsible for biological functions. For this, there exists several
publicly available databases which provide a diverse set of pathways and biolog-
ical models e.g. Biomodels [2], KEGG [3], MetaCyc [4], etc. The data in such
databases can be browsed using different biological functions, diseases, molec-
ular complexes, etc. Moreover, the reactions and the chemical species can be
downloaded in XML (Extensible Markup Language) [5], which is both computer
readable and human legible.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 294–307, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://pocab.cg.cs.uni-bonn.de/

PoCaB: A Software Infrastructure to Explore Algebraic Methods 295

In chemical systems and systems biology, reactions networks can be repre-
sented as a set of reactions. If it is assumed that they follow mass action kinet-
ics [6], then the dynamics of these reactions can be represented by differential
equations. Particularly, in complex systems it is difficult to estimate the val-
ues of the parameters of these equations, hence the simulation studies involving
the kinetics is a daunting task. Nevertheless, quite a few things about the dy-
namics can be concluded from the structure of the reaction network itself. In
this context there has been a surge of algebraic methods, which are based on
the structure of the network and the associated stoichiometry of the chemical
species. These methods provide a way to understand the qualitative behaviour
(e.g. steady states, multistability, oscillations, stability) of the network. So, for a
reaction network, one of the initial tasks is its mathematical representation and
the subsequent tasks involve application of algebraic methods to gain insight
into its qualitative behaviour. In this paper we describe a general framework
for such an analysis on different biological models obtained from two publicly
available databases. The purpose of this framework is twofold:

– It can serve as a manual for chemists and biologists to apply these algebraic
methods in a systematic manner and interpret the results. It will also help us
to formulate subsequent computational questions on the applicability, pros
and cons of such methods for large and diverse datasets.

– By providing tools to extract relevant algebraic entities out of the network de-
scription such as stoichiometric matrices and their factorizations, flux cones,
polynomial systems, deficiencies and differential equations, we generate a
large derived database of examples that can be used by people working in
computer algebra to benchmark their algorithms.

The main steps are as follows:

1. Firstly, we parse the reaction networks in public databases to generate a
graph theoretic representation of reaction networks.

2. Secondly, we concentrate on the computation of extreme currents [7] and
deficiency of the network [8].

3. Thirdly, as these extreme currents can be understood in terms of relevant
pathway in a biological network so, one of the ways to interpret it is to
visualize it, so we describe a Java based program to visualize the extreme
currents.

2 The Building Blocks for the System

2.1 Data Source

Biomodels: We selected 275 biochemical reaction networks from Biomodels
database in System Biology Markup Language (SBML). These models can be
browsed by name of the disease, biological process and molecular complex.

KEGG: The KEGG database is another repository of biological path-
ways. The KEGG pathways can be downloaded in KGML format. For

296 S.S. Samal, H. Errami, and A. Weber

our analysis we downloaded a precompiled list of KEGG files in SBML
format from http://www.systems-biology.org/resources/model-
repositories/000275.html (Last accessed 22th March 2012) with specifi-
cations SBML Level-2 Ver-1 (without CellDesigner tag). We selected 103 models
with organism code hsa (Homo sapiens). In addition, if downloaded in KGML
format the files can be converted to SBML using KEGG translator [9].

However, our framework is not restricted to these databases but can be used
for all sources that provide data in SBML form.

2.2 Representation of Reaction Networks in Databases

As discussed above, the reactions present in the biodatabases are present in
XML based format. For the current analysis, we obtained data in SBML for-
mat [10] which is a XML based format to communicate biochemical reaction
network consisting of metabolic pathways, signalling pathways, gene regulation
pathways, etc and is also software independent. Further details about the various
specifications and components can be found in the SBML tutorial [11].

2.3 Graph-Theoretic Representation of the Reaction Systems

Based on the notion that reaction networks can be modelled using differential
equations, the rate of change of every chemical species (x) in such a network is
denoted by ẋ and can be represented as

ẋ = Y IaIKΨ(x) (1)

This representation has 3 matrices namely Y ,Ia,IK and one vector Ψ(x). Let the
reaction network has l reactions and m species. Here we follow the notation and
terminology used in [12,13,14]. The above differential equation system can be
represented by the use of two graphs, a weighted directed graph and a bipartite
undirected graph. In addition to this, both sides of a reaction (i.e. products and
reactants) are arranged in form of complexes (the complex may consist of a single
species or a combination of species) as shown in Eq. 2.

C =

m∑
i=1

yix(i) (2)

where yi are numbers denoting the stoichiometry of the species x(i). . .x(m). Let
the network has n complexes. In the directed graph, there exists a directed edge
between the two complexes describing a reaction. The edge weight is the rate
constant of the reaction. From this graph two incidence matrices are defined Ia
and IK . The Ia is a n-by-l matrix and has the information whether the complex
is present as a reactant (entry −1) or product (entry 1) vertex of the graph. The
IK is a l -by-n matrix that has non zero entries only for reactant vertices where
the entry is the weight of the edge which is the rate constant of the reaction.
The bipartite graph contains the set of complexes and the set of chemical species

http://www.systems-biology.org/resources/model-repositories/000275.html
http://www.systems-biology.org/resources/model-repositories/000275.html

PoCaB: A Software Infrastructure to Explore Algebraic Methods 297

as vertices. If the complex contains a species then there exists an edge between
them with the edge weight equals to the stoichiometry of the chemical species.
The adjacency matrix of this graph is denoted by Y matrix (m-by-n). As per
mass action kinetics every reaction has a certain velocity called the reaction rate,
which is a monomial. These monomials can be obtained by the columns yj of Y ,
assigning to each complex a monomial. This results in the mapping Ψj(x) = xyj

, j = 1 . . . n. These things are illustrated with an example (Eq. 4, 5, 6, 7). The
product of IKΨ(x) denotes the vector of monomials describing the flux of the
reactions and the product Y Ia denotes the stoichiometric matrix.

The matrix Y is an integer matrix with non-negative entries, Ia is an in-
teger integer matrix with entries in the set {−1, 0, 1}, IK a matrix consisting
of symbolic parameters kij ranging over non-negative real values. The polyno-
mial system is hence one over the fraction field of the polynomials in variables
x1, . . . , xm and parameters k0, . . . , kl−1 over the field of real algebraic numbers.
Moreover, all variables and parameters are restricted to non-negative values. The
Eq. 1 can be also represented as:

ẋ = Sv (3)

where S = Y Ia and v = IKΨ(x). In addition another matrix of interest is
the kinetic order matrix [15] or YL matrix (m-by-l) (Eq. 8), which describes
the exponents of monomials in IKΨ(x). To illustrate further, a biochemical re-
action from [16] representing fructose-2,6- bisphosphate cycle is presented in
Fig. 1(a), 1(b), 1(c). Here S1 is fructose-6-phosphate and S2 is fructose- 2,6-
bisphosphate and x1, x2 denote their respective concentrations.

Ia =

⎡⎢⎣−1 1 −1 −1 1

1 −1 1 0 0

0 0 0 1 −1

⎤⎥⎦ (4)

(a) (b) (c)

Fig. 1. Graph-theoretic representation (a) Chemical reaction system (b) Weighted di-
rected graph (c) Bipartite undirected graph

298 S.S. Samal, H. Errami, and A. Weber

IK =

⎡⎢⎢⎢⎢⎢⎣
k0 0 0

0 k1 0

k2 0 0

k3 0 0

0 0 k4

⎤⎥⎥⎥⎥⎥⎦ (5)

Y =

[
1 0 0

0 0 1

]
(6)

Ψ(x) =

⎡⎣x1

1
x2

⎤⎦ (7)

YL =

[
1 0 1 1 0

0 0 0 0 1

]
(8)

The corresponding differential equations are:

ẋ1 = −1 · k0 · x1
1 + 1 · k1 − 1 · k2 · x1

1 − 1 · k3 · x1
1 + 1 · k4 · x1

2

ẋ2 = 1 · k3 · x1
1 − 1 · k4 · x1

2

Additionally, the number of linkage classes, which will be utilized in Sect. 2.4,
can be found from the weighted directed graph, i.e. it is the set of connected
complexes. So, in this case there is one linkage class. Further details concerning
complexes and linkage classes can be found in [8]. The graph-theoretic approach
leads to solutions having a graph theoretic meaning [13] and also helpful for
stability analysis [14].

2.4 Deficiency Value of the Reaction Network

Deficiency is a non negative integer for a reaction network which is an invariant
of the network. In this context, two well known theorems are available which are
Deficiency Zero and Deficiency One theorems respectively [8]. The first step in
this direction is the computation of this deficiency value which is given by the
following formula:

δ = n− t− s (9)

where n is the number of complexes (cf. Sect. 2.3 for complexes) in the network,
t is number of linkage classes, s is the rank of network. Alternatively and equiv-
alently the deficiency can also be defined using the following formula using the
graph theoretic representation [12]:

δ = rank(Ia)− rank(Y Ia) (10)

For the example in Fig. 1(a) the deficiency value is 0. This deficiency value
enables to classify the reaction networks into the kind of dynamics they can
possibly exhibit. The exact application of the deficiency zero and one theorems
require some additional information which is mentioned in Sect. 3.

PoCaB: A Software Infrastructure to Explore Algebraic Methods 299

2.5 Extreme Currents of the Flux Cone

In steady state condition i.e. ẋ = 0, the Eq. 3 reduces to a system of homoge-
nous linear equations (with unknown being v i.e. the flux of the reactions). The
solution set of this system can be described as a polyhedron(or flux cone), given
by the following formalism:

P = {v ∈ R
n : Sv = 0, Dv ≥ 0} (11)

where D is a l × l diagonal matrix. Di,i = 1 if the flux for ith reaction is irre-
versible, and 0 otherwise. Two types of constraints are considered while defining
the cone. The first one is the steady state or equality constraint (Y Ia = 0) and
the other one is irreversibility or inequality constraint (IKΨ(x) ≥ 0). As shown
above, the flux cone will be present in non-negative orthant of the vector space
spanned by fluxes and in order to achieve this, reversible reactions are split into
forward and backward reactions. So, the irreversibility constraint is maintained.
The edges of this flux cone are called as extreme currents. This is represented
by a f -by-l matrix, where f denotes the number of extreme currents. This is
also unique for a network, except for permutation of rows and arbitrary scaling
factor to each row. Any possible steady state of the system is a non negative
combination of these extreme currents. Mathematically this means any steady
state of the network can be denoted by v = Ej, where E is the extreme current
matrix and the j is the positive weighting. For the example in Fig. 1(a) the
extreme current matrix is the following:

E =

⎡⎢⎣1 1 0 0 0

0 0 0 1 1

0 1 1 0 0

⎤⎥⎦ (12)

In such a matrix, the first row is the first extreme current and the non-zero
entry implies the reactions that carry the flux (active ones). This co-ordinate
transformation of network to the flux cone can be also used for stability analysis
[14].

The reversibility of reactions in the network can be tackled by different ways.
In extreme currents mentioned above the reversible reactions are split but in
elementary flux modes [17] they are not split and in extreme pathways [18] some
may be split. The different ways to split the reactions affects the construction
of stoichiometric matrix and hence different methods describe the cone in dif-
ferent vector spaces due to presence of reversible reactions[19,20]. It also affects
the construction of cone, for extreme currents computation the cone is always
pointed whereas for elementary flux modes and extreme pathways it may neither
be pointed nor remain in non-negative orthant [20].

3 Software Workflow and Components

Pre-processing Step: From the data source (as described in Sect. 2.1) the net-
works were downloaded. Although the models in these databases are annotated

300 S.S. Samal, H. Errami, and A. Weber

and curated, still as a part of general framework we have a possibility to balance
the reactions. This removes stoichiometric inconsistencies present in the model
but works only when the annotation of model is correct and the chemical for-
mula of species can be found. This works on the principle of mixed integer linear
programming (MILP) and was done automatically using the Subliminal toolbox
[21]. We present the results of this analysis only for Biomodels database. How-
ever, this step is optional and we report the results with and without balancing.

Main Steps:

1. The files were parsed by a Java based program to generate the Y , Ia , stoi-
chiometric (Y Ia) and YL matrices along with the basic information about the
model concerning the number of species, reactions, complexes, rank of sto-
ichiometric matrix and nullity of stoichiometric matrix respectively. While
computing the various matrices the reversible reactions were split into for-
ward and backward reactions and it increased the dimension of the stoi-
chiometric matrix by one for every reversible reaction. To parse the SBML
program using Java, the JSBML library was used [22]. The graph theoretic
representation of the network(cf. Sect. 2.3) was done using the JGraphT
Java Library [23].

2. The deficiencies of the networks were computed using the ERNEST library
[24], which is a Matlab based program. This program also tests whether the
Deficiency zero or one theorems are applicable and presents the result. We
report only the deficiency value and for additional conditions for deficiency
theorems, this tool can be used e.g. for computation of weak reversibility,
linkage classes. We also computed the deficiency from Eq. 10 and it was
equivalent to ERNEST.

3. The stoichiometric matrix acts as an input to Java based polco program avail-
able at http://www.csb.ethz.ch/tools/polco implementing double
description algorithm [25] to compute the extreme currents. Apart from
polco, there exists a matlab based library called metatool [26] to compute
these entities. These two programs mainly concern to biochemical systems. In
computational geometry these problems are solved with the help of libraries
like polymake[27]. In polymake there are three different algorithms to com-
pute the convex hull. We tried to solve all the examples of our database
using all these four different approaches and summarize the results in Ta-
ble 1. The different running times are reported. It can be seen the current
implementation (i.e. polco) outperformed the other three approaches but we
found five examples for which neither our current implementation nor the
other three approaches succeeded. So, wherever polco failed none of the other
approaches succeeded. Here failed means either there is out of memory ex-
ception or the computation time exceeded 1800 seconds and was forcefully
terminated. These five models were not included in our final database.

4. The reaction network, can be also represented by inequalities and equa-
tions. One benefit of this representation is that different constraints can be
put on individual reactions. In biology, the networks operate under differ-
ent constraints[28], one important constraint is the effect of gene regulation

http://www.csb.ethz.ch/tools/polco

PoCaB: A Software Infrastructure to Explore Algebraic Methods 301

in which some genes are differentially expressed [29]. The changes in gene
expression levels affect the reaction rates as the reactions are governed by en-
zymes which are gene products. One of the ways to model this phenomenon is
to use inequalities [30]. The following formalism illustrates the above points:

Y IaIKΨ(x) = 0 (13)

IKΨ(x) ≥ 0 (14)

IKΨ(x) ≤ βi (i = 0, 1, . . . , l − 1) (15)

where l denotes the number of reactions. Eq. (15) denotes the constraint
on the flux of a reaction and hence is optional. In the current analysis we
have not accounted for any constraints, so in a way the flux cone computed
is maximal where all reactions occur at their maximal rate. We systemat-
ically generated this type of file for all the examples (also a part of our
derived database)and was used for the computation of extreme currents us-
ing polymake. Apart from extreme current computation polymake offers to
deduce different properties of the flux cone. Further details can be found at
http://www.polymake.org/doku.php. One of the advantages of using
this tool is the different choice of algorithms for convex hull computation.
Further theoretical exploration into different properties of polyhedron can
be found in [31].

5. The extreme currents are analogous to the pathways in reaction networks,
so it is often desirable to visualize them with respect to their position in the
network. This will enable some visual analytics to discover the distribution
of extreme currents. We implemented a Java based program to dynamically
visualize these extreme currents. We used JUNG Java library for this purpose
[32], which offers different layout algorithms for visualization (Fig. 3). This
results in a Java applet with pan and zoom functionality.

Fig. 2. Flowchart outlining the main steps. * denotes either SBML file directly from
database or SBML file after balancing (cf. Sect. 3).

http://www.polymake.org/doku.php

302 S.S. Samal, H. Errami, and A. Weber

Fig. 3. Output from visualization program with FRLayout showing reaction network as
a directed graph. One extreme current is shown at one time and it can be changed using
the button at top left corner denoted by EC. The square nodes denote the reactions.
The dark coloured square nodes show the active reactions (or carrying flux) in the
current extreme current, while the other nodes are inactive reactions. The species are
the oval shaped nodes and dark coloured. The directed edge’s head points to product(s)
while the tail to reactant(s) of the corresponding reaction.

4 Results

4.1 Database of Algebraic Entities

1. All the matrices including the extreme current matrix along with the poly-
nomial system and the differential equation files are stored as text files using
a delimiter (,).

2. In the above files mainly in the IK , IKΨ(x), polynomial system and differ-
ential equation files, the species name are mapped to certain variable. The
rate constants are also mapped to corresponding reactions where they occur.
This mapping information is present as a Mapping file. This file also contains
the information about the reactions and the species involved in the network.

3. The statistical summary for Biomodels and KEGG is represented in Table 2.
4. A summary of the computations involving the number of species, reactions,

complexes, dimensions, nullity and rank of stoichiometric matrix, nullity of Y
and deficiency information is presented as a spreadsheet inside the database.

5 Discussions

We constructed a database having algebraic entities derived from biological reac-
tion networks and using it computed two properties i.e. deficiency and extreme
currents. From the results it can be seen that the number of extreme currents
does not always correspond to the size of the network as seen in Biomod-
els database. Also the size of network doesn’t relate to the deficiency also pointed

PoCaB: A Software Infrastructure to Explore Algebraic Methods 303

Table 1. Extreme current computations

Biomodels (UnBalanced)
(Time in seconds)

Number of Models 275
Average time with lrs(polymake)* 0.635
Average time with cdd(polymake)* 0.408
Average time with beneath beyond(polymake)* 0.433
Average time with polco 0.055
Average time with metatool 0.203
Models failed with lrs(polymake)* 12
Models failed with cdd(polymake)* 5
Models failed with beneath beyond(polymake)* 5
Models failed with polco(polymake)* 5
Models failed with metatool(polymake)* 28
Models failed for all the approaches BIOMOD(019,183,255,256,268)

*denotes the convex hull computation algorithms in polymake. The average time
reported are calculated based on those examples where all the four algorithms were

successful (in this case 247 out of 275 models).

Table 2. Summary of results in Biomodels and KEGG database

UnBalanced Balanced
Biomodels KEGG Biomodels

Number of Models 270 103 236
Maximum number of reactions* in a model 194 132 194
Maximum number of species in a model 120 139 120
Number of models with reactions upto 10 94 48 117
Number of models with reactions upto 50 237 97 213
Maximum number of EC* in a model 5130 282 5130
Dimension of SM* with maximum EC 17× 48 139× 132 19× 48
Models with deficiency = 0 159 (58.8%) 80 (77.6%) 154 (65.2%)
Models with deficiency = 1 33 (12.2%) 11 (10.6%) 28 (11.8%)
Highest Deficiency 63 24 63
SM with highest deficiency 36× 94 139× 132 39× 94
Maximum rank of SM 94 67 94
Maximum nullity of SM 100 65 100
Number of models with zero EC 24 (8.88%) 38 (36.8%) 50 (21.1%)

*The reactions here refer to columns of SM. SM = Stoichiometric matrix.
EC=Extreme Currents.

out in [8]. But there are also some models displaying high deficiency with large
dimensions and there is a need of improved algorithms or new approaches to
address such systems. It can be seen around 71.1% (unbalanced) and 77.1 %
(balanced) models in Biomodels correspond to deficiency one or zero. Similarly
88 % (unbalanced) of KEGG models correspond to this criteria, this implies
the existing deficiency theorems are applicable to a large extent. The effect of
balancing the reactions can also be seen in Table 2, there may be changes in

304 S.S. Samal, H. Errami, and A. Weber

the number of species and reactions during the balancing and this affects the
number of extreme currents and deficiency computation. As our derived database
contain diverse examples, it provides a corpus to test and benchmark different
algebraic methods and designate the methods working for a particular class of
examples. This will eventually lead to partitioning the database into classes
which may be suitable for some methods and unsuitable for others. A natural
partitioning occurs for examples with deficiency zero or one and there exists
theorems to apply on such examples. Additional type of partitioning can be
based on the dimension of various matrices, number of extreme currents and one
such possibility is presented in Table 2 which is based on the number of reactions
up to 10 and 50. There also exist tools e.g. CellDesigner [33] with graphical
interface to encode reaction networks and export them to SBML format.

6 Conclusion and Future Work

Using the automation pipeline and the different conversion and computation
tools described in this paper novel algebraic algorithms can be used to compute
various structural information of reaction networks. For single examples one can
perform algebraic algorithms without the need of a database. However, storing
the information in a database we also have benchmarking collections for algebraic
algorithms. Especially, we can extract benchmarks obeying certain biological and
algebraic properties, e.g. retrieving all models of metabolic networks of humans
that have deficiency higher than 1, with rank of stoichiometric matrix bigger than
say 50 but with dimension of the nullspace of the stoichiometric matrix being
small. Without storing such information in a database, one had to compute the
relevant entities for all examples first, instead of being able to query them using
standard relational database techniques.

Another aspect in the use of a database is to store information that might
have required considerable computation time to come up with. Some examples
of those are the following:

– Is the network one with toric steady states [34]? Not all reaction networks
have toric steady states, but many it has been shown that many non-trivial
examples have this property. Unfortunately, up to now only algorithms with
at least exponential complexity are known to test for this property (see e.g.
[35]), so storing the information once it has been obtained yields a significant
benefit over recomputing it again and again.

– Similarly, more detailed information about the number of equilibria per set
of reaction constants should be stored. General theorems about their unique-
ness are only available in the context of deficiency zero and deficiency one
theorems, but this property presumably holds for much larger classes (as
was already conjectured by Clarke in 1981 [36]).

– There are some theorems with respect to the stability of the fixed points of
the flow [15,37], but storing it in the database for any example, for which it
can be computed (by which method it be) gives not only information with

PoCaB: A Software Infrastructure to Explore Algebraic Methods 305

respect to the biological applications, but might also help to establish new
mathematical theorems by means of experimental mathematics.

– All of the above statements also apply to more complex questions on the
dynamics of the reaction network, such as existence of Hopf bifurcation fixed
points [14,38,39] or even globally the question for existence or absence of
oscillations [40,41,42].

Our database structure is open to include these information and will be extended
by it for any example once it has been computed.

Acknowledgement. This research was supported in part by Deutsche
Forschungsgemeinschaft within SPP 1489.

References

1. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to mod-
ular cell biology. Nature 402(6761 suppl.), C47–C52 (1999)

2. Bornstein, B., Broicher, A., Nove, N.L., Donizelli, M., Dharuri, H., Li, L., Sauro,
H., Schilstra, M., Shapiro, B., Snoep, J.L., Hucka, M.: BioModels Database: a
free, centralized database of curated, published, quantitative kinetic models of
biochemical and cellular systems. Database 34, 689–691 (2006)

3. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M.: KEGG for integra-
tion and interpretation of large-scale molecular data sets. Nucleic Acids Research
40(Database issue), D109–D114 (January 2012)

4. Caspi, R., Altman, T., Dreher, K., Fulcher, C.A., Subhraveti, P., Keseler, I.M.,
Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L.A., Ong, Q., Paley,
S., Pujar, A., Shearer, A.G., Travers, M., Weerasinghe, D., Zhang, P., Karp,
P.D.: The MetaCyc database of metabolic pathways and enzymes and the BioCyc
collection of pathway/genome databases. Nucleic Acids Research 40(Database
issue), D742–D753 (2012)

5. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
markup language (xml) 1.0 (fifth edition). Language (2008)

6. Horn, F., Jackson, R.: General mass action kinetics. Archive for Rational Me-
chanics and Analysis 47, 81–116 (1972), 10.1007/BF00251225

7. Clarke, B.: Stoichiometric network analysis. Cell Biochemistry and Biophysics 12,
237–253 (1988), 10.1007/BF02918360

8. Feinberg, M.: Review Article Number 25 Stability of Complex Isothermal
Reactors–I. Chemical Engineering 42(10), 2229–2268 (1987)

9. Wrzodek, C., Dräger, A., Zell, A.: KEGGtranslator: visualizing and converting
the KEGG PATHWAY database to various formats. Bioinformatics (Oxford, Eng-
land) 27(16), 2314–2315 (2011)

10. Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H.: The rest
of the SBML Forum: Arkin, A.P., Bornstein, B.J., Bray, D., Cornish-Bowden, A.,
Cuellar, A.A., Dronov, S., Gilles, E.D., Ginkel, M., Gor, V., Goryanin, I.I., Hedley,
W.J., Hodgman, T.C., Hofmeyr, J.H., Hunter, P.J., Juty, N.S., Kasberger, J.L.,
Kremling, A., Kummer, U., Le Novère, N., Loew, L.M., Lucio, D., Mendes, P.,
Minch, E., Mjolsness, E.D., Nakayama, Y., Nelson, M.R., Nielsen, P.F., Sakurada,
T., Schaff, J.C., Shapiro, B.E., Shimizu, T.S., Spence, H.D., Stelling, J., Taka-
hashi, K., Tomita, M., Wagner, J., Wang, J.: The systems biology markup lan-
guage (SBML): a medium for representation and exchange of biochemical network
models. Bioinformatics 19(4), 524–531 (2003), doi:10.1093/bioinformatics/btg015

306 S.S. Samal, H. Errami, and A. Weber

11. Hucka, M., Smith, L., Wilkinson, D., Bergmann, F., Hoops, S., Keating, S., Sahle,
S., Schaff, J.: The Systems Biology Markup Language (SBML): Language Speci-
fication for Level 3 Version 1 Core. Nature Precedings (October 2010)

12. Gatermann, K.: Counting stable solutions of sparse polynomial systems in chem-
istry. In: Green, E., et al. (eds.) Symbolic Computation: Solving Equations in
Algebra, Geometry and Engineering, vol. 286, pp. 53–69. American Mathemati-
cal Society, Providence (2001)

13. Gatermann, K., Huber, B.: A family of sparse polynomial systems arising in chem-
ical reaction systems. Journal of Symbolic Computation 33(3), 275–305 (2002)

14. Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze
Hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6),
1361–1382 (2005)

15. Clarke, B.L.: Stability of complex reaction networks. Advances In Chemical
Physics, vol. 43 (1980)

16. Schuster, S., Dandekar, T., Fell, D.A.: Detection of elementary flux modes in
biochemical networks: a promising tool for pathway analysis and metabolic engi-
neering. Trends in Biotechnology 17(2), 53–60 (1999)

17. Schuster, S., Hlgetag, C.: On elementary flux modes in biochemical reaction sys-
tems at steady state. Journal of Biological Systems 2(2), 165–182 (1994)

18. Schilling, C.H., Letscher, D., Palsson, B.O.: Theory for the systemic definition
of metabolic pathways and their use in interpreting metabolic function from a
pathway-oriented perspective. Journal of Theoretical Biology 203(3), 229–248
(2000)

19. Wagner, C., Urbanczik, R.: The geometry of the flux cone of a metabolic network.
Biophysical Journal 89(6), 3837–3845 (2005)

20. Llaneras, F., Picó, J.: Which metabolic pathways generate and characterize the
flux space? A comparison among elementary modes, extreme pathways and min-
imal generators. Journal of Biomedicine & Biotechnology 2010, 753904 (2010)

21. Swainston, N., Smallbone, K., Mendes, P., Kell, D., Paton, N.: The SuBliMinaL
Toolbox: automating steps in the reconstruction of metabolic networks. Journal
of Integrative Bioinformatics 8(2), 186 (2011)

22. Dräger, A., Rodriguez, N., Dumousseau, M., Dörr, A., Wrzodek, C., Novère, N.L.,
Zell, A., Hucka, M.: JSBML: a flexible and entirely Java-based library for working
with SBML. Bioinformatics 27(15), 2167–2168 (2011), doi: 10.1093/bioinformat-
ics/btr361

23. JGraphT: A free Java graph library (2009),
http://jgrapht.sourceforge.net

24. Soranzo, N., Altafini, C.: Ernest: a toolbox for chemical reaction network theory.
Bioinformatics 25(21), 2853–2854 (2009)

25. Terzer, M.: Large Scale Methods to Enumerate Extreme Rays and Elementary
Modes (18538) (2009)

26. Kamp, A.V., Schuster, S.: Metatool 5.0: fast and flexible elementary modes anal-
ysis. Bioinformatics 22(15), 1930–1931 (2006)

27. Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex
polytopes. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes—Combinatorics and
Computation. DMV Seminars, vol. 29, pp. 43–73. Birkhäuser, Basel (2000),
10.1007/978-3-0348-8438-9 2

28. Palsson, B.O.: The challenges of in silico biology Moving from a reductionist
paradigm to one that views cells as systems will necessitate. Nature Biotechnol-
ogy 18, 1147–1150 (2000)

http://jgrapht.sourceforge.net
http://link.springer.com/chapter/10.1007%2F978-3-0348-8438-9_2

PoCaB: A Software Infrastructure to Explore Algebraic Methods 307

29. Covert, M.W., Schilling, C.H., Palsson, B.O.: Regulation of gene expression in flux
balance models of metabolism. Journal of Theoretical Biology 213(1), 73–88 (2001)

30. Urbanczik, R.: Enumerating constrained elementary flux vectors of metabolic net-
works. IET Systems Biology 1(5), 274–279 (2007)

31. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152.
Springer (July 2001)

32. O’Madadhain, J., Fisher, D., White, S., Boey, Y.: The JUNG (Java Universal
Network/Graph) Framework. Technical report, UCI-ICS (October 2003)

33. Funahashi, A., Morohashi, M., Kitano, H., Tanimura, N.: Celldesigner: a process
diagram editor for gene-regulatory and biochemical networks. BIOSILICO 1(5),
159–162 (2003)

34. Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction sys-
tems with toric steady states. Bulletin of Mathematical Biology, 1–29 (October
2011)

35. Grigoriev, D., Weber, A.: Complexity of Solving Systems with Few Independent
Monomials and Applications to Mass-Action Kinetics. In: Gerdt, V.P., Koepf, W.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 143–154.
Springer, Heidelberg (2012)

36. Clarke, B.L.: Complete set of steady states for the general stoichiometric dynam-
ical system. The Journal of Chemical Physics 75(10), 4970–4979 (1981)

37. Anderson, D.: A proof of the global attractor conjecture in the single linkage class
case (2011)

38. Domijan, M., Kirkilionis, M.: Bistability and oscillations in chemical reaction
networks. Journal of Mathematical Biology 59(4), 467–501 (2009)

39. Errami, H., Seiler, W.M., Eiswirth, M., Weber, A.: Computing Hopf Bifurcations
in Chemical Reaction Networks Using Reaction Coordinates. In: Gerdt, V.P.,
Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442,
pp. 84–97. Springer, Heidelberg (2012)

40. Weber, A., Sturm, T., Abdel-Rahman, E.O.: Algorithmic global criteria for ex-
cluding oscillations. Bulletin of Mathematical Biology 73(4), 899–917 (2011)

41. Weber, A., Sturm, T., Seiler, W.M., Abdel-Rahman, E.O.: Parametric Quali-
tative Analysis of Ordinary Differential Equations: Computer Algebra Methods
for Excluding Oscillations (Extended Abstract) (Invited Talk). In: Gerdt, V.P.,
Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244,
pp. 267–279. Springer, Heidelberg (2010)

42. Errami, H., Seiler, W.M., Sturm, T., Weber, A.: On Muldowney’s Criteria for
Polynomial Vector Fields with Constraints. In: Gerdt, V.P., Koepf, W., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 135–143.
Springer, Heidelberg (2011)

Approximately Singular Systems

and Ill-Conditioned Polynomial Systems�

Tateaki Sasaki1 and Daiju Inaba2

1 Professor emeritus, University of Tsukuba,
Tsukuba-city, Ibaraki 305-8571, Japan

sasaki@math.tsukuba.ac.jp
2 Japanese Association of Mathematics Certification,

Ueno 5-1-1, Tokyo 110-0005, Japan
d.inaba@su-gaku.net

Abstract. By “approximately singular system” we mean a system of
multivariate polynomials the dimension of whose variety is increased by
small amounts of perturbations. First, we give a necessary condition that
the given system is approximately singular. Then, we classify polyno-
mial systems which seems ill-conditioned to solve numerically into four
types. Among these, the third one is approximately singular type. We
give a simple well-conditioning method for the third type. We test the
third type and its well-conditioned systems by various examples, from
viewpoints of “global convergence”, “local convergence” and detail of
individual computation. The results of experiments show that our well-
conditioning method improves the global convergence largely.

Keywords: approximate ideal, approximately linear-dependent relation,
approximately singular system, ill-conditioned polynomial system, multi-
variate Newton’s method, well-conditioning.

1 Introduction

In [8], one of the authors (T.S), collaborated with Ochi and Noda, investigated
solving multivariate polynomial systems having approximate GCD, showed that
such systems are ill-conditioned for Newton’s method, and presented a method
of well-conditioning. The method is to transform the given system algebraically.
Since then, he considered to generalize the method of [8]. He thought that an
approximate Gröbner basis is a key for the generalization, but even the concept
of approximate Gröbner basis has been unclear until recently. In [9], he has
succeeded in constructing a theory of approximate Gröbner bases, and this is
the first paper which follows [9].

The key concept in [9] is the “approximate ideal”. Let F be a set of fixed-
precision floating-oint numbers, to be abbreviated to floats. If a float f contains
an error which begins at the (k+1)-st bit then we say the accuracy of f is 2−k

and express as acc(f) = 2−k. The accuracy of the polynomial is the minimum of

� Work supported by Japan Society for the Promotion of Science under Grants
23500003 and 08039686.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 308–320, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Approximately Singular Systems and Ill-Conditioned Polynomial Systems 309

accuracies of its coefficients. Let (x) = (x1, · · · , xn) be a set of variables, and let
F1, · · · , Fm be given polynomials in F[x], with initial accuracy εinit. Consider the
set {F = a1F1+· · ·+amFm | ∀ai ∈ C[x]}. This set seems to be an ideal, however,
we may have the case that big cancellations occur in the sum a1F1+ · · ·+amFm

and the coefficients of F become fully erroneous. Therefore, we must modify
the concept of ideal in F[x]. In [9], the approximate ideal of tolerance εinit was
defined to be the set of only polynomials of the form F , that contain significant
terms of accuracies < 1. If F is such that (for ‖ · ‖, see Sect. 2)

‖F‖ = εmax{‖a1F1‖, · · · , ‖amFm‖}, ε, 1,

then we call F approximately linear-dependent relation, to be abbreviated to
appLD-rel, of tolerance ε. (We define appLD-rel more carefully in Sect. 2.) The
existence of appLD-rel(s) makes the approximate ideal characteristic; if there
exists no appLD-rel of tolerance which is significantly smaller than 1 then the
approximate ideal is not much different from the exact ideal.

For the sake of later use, we explain the algorithm of computing approximate
Gröbner basis of tolerance εapp, εinit ≤ εapp , 1, proposed in [9]. The algo-
rithm is based essentially on two points: 1) introduce an “accuracy-guarding
reduction” and use it instead of the conventional term-reduction, 2) employ
Buchberger’s procedure basically but discard polynomials whose accuracies are
lost by amounts ≥ 1/εapp due to the appLD-rels. Therefore, the appLD-rels play
a crucial role not only in theory but also for algorithm. The appLD-rels lead us
naturally to a concept of “approximately singular system”.

In Sect. 2, we define approximately singular system and prove a necessary
condition that the given system is approximately singular. In Sect. 3, we clas-
sify the ill-conditioned multivariate polynomial systems into four types. The
reader will see that small deviations of input coefficients cause infinite changes
of some solutions in one type. Another type is such that the deviations increase
the number of solutions to infinite; we call this approximately singular type. In
Sect. 4, we propose a simple method of transforming ill-conditioned systems of
approximately singular type to well-conditioned ones. In Sect. 5, we test our
well-conditioning method by multivariate Newton’s method which has a fault in
that some solutions are quite difficult to obtain in many cases (poor global con-
vergence). Experiments show that our well-conditioning method improves the
global convergence largely.

2 Approximately Singular Polynomial Systems

In this paper, we use symbols F and G for multivariate polynomials in variables
x = x1, . . . , xn, n ≥ 2. By ‖F‖ we denote the norm of F ; in this paper we employ
the infinity norm, i.e., the maximum of absolute values of the numerical coeffi-
cients of F . By lt(F) we denote the leading term (monomial) of F , with respect
to a given term order �. Let Φ = {F1, · · · , Fm} be a given set of polynomials.
By LT(Φ) we denote leading-term set of Φ, i.e., LT(Φ) = {lt(F1), · · · , lt(Fm)}.
By Var(Φ) we denote the variety of Φ, the set of all the solutions of coupled
equations F1=0, · · · , Fm=0.

310 T. Sasaki and D. Inaba

In this section, we consider the case that the number of solutions is either
finite or infinite, and we are interested in the dimension of variety, dim(variety).
We can compute dim(Var(Φ)) over C practically, as follows: compute a Gröbner
basis Γ of Φ, with respect to the total-degree order, then the dimension is given
by dim(Var(LT(Γ))); see Sect. 9 of [2]. We assume that the given polynomials
are normalized as ‖F1‖ = · · · = ‖Fm‖ = 1, and express an appLD-rel of tolerance
ε, among F1, . . . , Fm as follows.

δF = A1F1 + · · ·+AmFm, ‖δF‖ = ε max{‖A1F1‖, · · · , ‖AmFm‖}. (2.1)

Speaking rigorously, the syzygy (A1, · · · , Am) must satisfy two conditions. 1)
There is no “nearby” syzygy (A′

1, · · · , A′
m) such that A′

i 1 Ai (i = 1, . . . ,m)
and satisfies A′

1F1 + · · · + A′
mFm = 0. 2) The syzygy must be minimal, that

is, it does not include (a1, · · · , am) which satisfies a1F1 + · · ·+ amFm = 0. For
more details of and how to compute appLD-rels, see [10].

Definition 1 (approximately singular system). Let δF 1, . . . , δFm be poly-
nomials in F[x], of small norms, satisfying Fi � δF i (i = 1, . . . ,m). Let

Φε = {F1 + δF 1, · · · , Fm + δFm}, max{‖δF 1‖, · · · , ‖δFm‖} = ε, 1, (2.2)

be an ε-perturbed system. If dim(Var(Φε)) > dim(Var(Φ)) for some δF 1, . . . , δFm

then Φ is called an approximately singular system of tolerance ε. �

Given an approximately singular system Φ, we consider in this section an im-
portant problem: find a condition for that Φ is approximately singular.

Lemma 1. Let Φ′ = {F2, · · · , Fm}. If we have a non-trivial linear-dependent
relation A1F1 +A2F2 + · · ·+AmFm = 0, with A1 �= 0, then we have

Var(Φ) = Var(Φ′) \Var({A1, F2, · · · , Fm}). (2.3)

Proof. Since Var(Φ′) = Var({A1F1 + · · ·+AmFm, F2, · · · , Fm}) = Var({A1F1,
F2, · · · , Fm}) = Var({A1, F2, · · · , Fm}) ∪ Var(Φ), we obtain (2.3). �

This lemma tells that the existence of an exactly linear-dependent relation among
F1, . . . , Fm is, roughly speaking, equivalent to deleting a polynomial from Φ.
Deleting a polynomial from Φ increases usually the dimension of the variety.

Theorem 1. Assume that, in the computation of approximate Gröbner basis of
tolerance ε, of Φ w.r.t. the total-degree order, the leading terms of polynomials
appearing in the computation do not vanish by the perturbations of norms ≤ ε,
except that some polynomials vanish due to accuracy loss of amounts > 1/ε.
Then, existence of appLD-rel(s) of tolerance > ε among F1, . . . , Fm is a neces-
sary condition for that Φ is an approximately singular system of tolerance O(ε).

Proof. Let Γ and Γε be approximate Gröbner bases of Φ and Φε, respectively, of
tolerance ε, w.r.t. the total-degree order, hence intermediate polynomials whose
accuracies are lost by more than 1/ε are discarded. Due to the assumption

Approximately Singular Systems and Ill-Conditioned Polynomial Systems 311

on the leading terms, if there is no appLD-rel of tolerance ≥ ε, then we have
LT(Γε) = LT(Γ), which means that dim(Var(Φε)) = dim(Var(Φ)). The theorem
is the contraposition of this. �
Note that the existence of appLD-rel(s) is not a sufficient condition. In [10], a
simple example is given to show this.

3 Classification of Ill-Conditioned Polynomial Systems

In this section, we assume that m = n and dim(Var(Φ)) = 0, that is, the n
coupled equations in n variables have a finite number of solutions.

Let Φε be an ε-perturbed system of Φ, ε , 1. Assume that both Φ and Φε

have n solutions {s1, . . . , sn} and {s′1, . . . , s′n}, respectively, such that s′i → si
(i=1, . . . , n) as ε→ 0. Put δ = max{|s′1−s1|, · · · , |s′n−sn|}. If δ/ε is extremely
larger than 1 then Φ is called ill-conditioned (w.r.t. solution finding).

In the univariate case, roughly speaking, we have two types of ill-conditioned
polynomials. Close-root type: polynomials having close roots (the multiple roots
in C become close roots in F). Wilkinson type: polynomials which oscillate very
largely if one traces them from a root to its neighboring one. As for close-root
type polynomials, Sasaki and Noda [11] proposed to separate the factors having
close roots as approximately multiple factors by the approximate squarefree
decomposition and compute the close roots by the scale transformation. As for
Wilkinson type polynomials, Fortune [4] presented a wonderful method which
converts such polynomials to fully well-conditioned ones.

We classify the ill-conditioned multivariate systems from viewpoints of para-
metric and approximate Gröbner bases, as follows.

Close-solution type: The Var(Φ) contains close solutions.
Tiny leading-term type: A tiny change of some input coefficients makes some

leading terms vanish in the computation of Gröbner basis w.r.t. the lexico-
graphic order and causes large changes of some solutions.

Approximately singular type: The input system is approximately singular, where
any tiny change of input coefficients does not make any leading term vanish
in the computation of Gröbner basis w.r.t. the total-degree order.

Other types: The types which we have not clearly recognized so far, such as
“multivariate Wilkinson-type polynomials”, i.e., rapidly oscillating polyno-
mials with huge coefficients.

The system of the second type seems similar to univariate Wilkinson polynomial,
but the origin of the solution change is completely different.

Example 1. (ill-conditioned system of tiny leading-term type) Consider

Φ′ :
{
F ′
1 = x2y + 101/100xy+ 101x+ 200,

F ′
2 = xy2 + 100/100y2 + 100y − 201.

(3.1)

Φ :

{
F1 = x2y + 100/100xy+ 101x+ 201,
F2 = xy2 + 100/100y2 + 101y − 201.

(3.2)

Φ′′ :
{
F ′′
1 = x2y + 100/100xy+ 100x+ 201,

F ′′
2 = xy2 + 101/100y2 + 101y − 200.

(3.3)

312 T. Sasaki and D. Inaba

Although systems Φ′, Φ and Φ′′ are different only a little in their coefficients,
their Gröbner bases w.r.t. lexicographic order are very different, as follows; we
show only polynomials in variable y:

Γ ′ : G′
1 = y4 − 19800y3 + 29899y2 + 1989900y − 4040100,

Γ : G1 = y3 − y2 − 101y + 201,

Γ ′′: G′′
1 = y4 + 2030200/101y3 − 1030000/101y2 − 204000000/101y + 400000000/101.

Some roots of G′
1, G1 and G′′

1 are also very different, as follows:

G′
1 : [2.0530 · · · , 9.7043 · · · , −10.242 · · · , 19798.4 · · ·],

G1 : [2.0323 · · · , 9.4421 · · · , −10.474 · · ·],
G′′

1 : [2.0224 · · · , 9.1390 · · · , −10.659 · · · , −20101.4 · · ·].
The fourth roots go to ∞ and −∞, respectively, as Φ′ → Φ← Φ′′. �

This example shows clearly that, in some cases, polynomial structure of the
Gröbner basis is changed largely by a tiny change of coefficients. The comprehen-
sive Gröbner basis (i.e. Gröbner basis of the system with parametric coefficients)
by Weispfenning [12] tells us in which case the Gröbner basis changes: polynomial
structure of the resulting Gröbner basis changes only in the case where, during
the execution of Buchberger’s procedure, at least one leading term of polynomial
vanishes by the substitution of suitable set of numbers to the parameters. The
following theorem is obvious, so we omit the proof.

Theorem 2. Appearance of tiny leading term(s) in computing a Gröbner basis
of Φ w.r.t. the lexicographic order is a necessary condition that Φ is an ill-
conditioned system of tiny leading-term type. �

Even if the resulting Gröbner basis is changed largely, one will often obtain the
variety which is perturbed only a little. We can confirm this by changing the
coefficients of y of F1 and F2 in Example 1 variously.

We explain the close-solution type briefly, which will help the reader to under-
stand the third type deeply. Assume that x is close to a solution s = (s1, . . . , sn).
Put si = xi + δi, |δi| = O(δ) (i=1, . . . , n), where δ is a small positive number.
Expanding Fi(x+δ) into Taylor series at x, we obtain

Fi(s) = 0 = Fi(x+ δ) = Fi(x) + ∂Fi/∂x1δ1 + · · ·+ ∂Fi/∂xnδn +O(δ2).

Solving Fi(x+ δ) = 0 (i=1, . . . , n) w.r.t. δ1, . . . , δn by neglecting O(δ2) terms,
we obtain⎛⎜⎝δ1...

δn

⎞⎟⎠ ≈ −J−1(x)

⎛⎜⎝F1(x)
...

Fn(x)

⎞⎟⎠ , where J(x) =

⎛⎜⎝ ∂F1/∂x1 · · · ∂F1/∂xn
...

. . .
...

∂Fn/∂x1 · · · ∂Fn/∂xn

⎞⎟⎠ .

(3.4)
Let s be a multiple solution, hence Fi(x) = fi (s1−δ1)μ1 · · · (sn−δn)μn +O(δ2)
for some i ∈ {1, · · · , n}, where fi ∈ C and at least one of μ1, . . . , μn is greater
than 1. Then, the i-th row of J(x) becomes very small near s. The same is true

Approximately Singular Systems and Ill-Conditioned Polynomial Systems 313

if s is a close solution. Therefore, we may set a criterion of ill-conditionedness
to be that the Jacobian becomes quite small near some solution(s).

We next consider the systems of approximately singular type. If Φ = {F1, F2}
then the existence of appLD-rel A1F1+A2F2 = δF means that F1 and F2 have
an approximate GCD. Hence, in this case, the systems of the third type are
nothing but the systems treated in [8]. However, if Φ contains three or more
polynomials, the systems we are treating are more general than those treated in
[8]; for example, no pair (Fi, Fj) with i �= j may have approximate GCD.

We will show that, for systems of approximately singular type, J(x) becomes
approximately singular at points on a curve or even a surface. Let Φ be approx-
imately singular. Then, by Theorem 1, there exists an appLD-rel and a nearby
singular system Φε = {F1+δF 1, · · · , Fn+δFn}, satisfying

A1(F1+δF 1) + · · ·+An(Fn+δFn) = 0. (3.5)

If a solution s of Φ is close to continuous solutions of Φε then we say s is critical.

Theorem 3. Let Φ be of approximately singular type. Then, we have |J(x)| =
O(ε) or less on or near continuous zero-points of the singular system Φε.

Proof. By (3.5), we have the following relation for each i ∈ {1, · · · , n}.

A1
∂F1

∂xi
+ · · ·+An

∂Fn

∂xi
= −
(
F1

∂A1

∂xi
+ · · ·+Fn

∂An

∂xi

)
− ∂(A1δF 1 + · · ·+AnδFn)

∂xi
.

Consider this relation on z ∈ Var(Φε) (or z
′ which is close to z). Since Fi(z) +

δF i(z) = 0 for each i ∈ {1, · · · , n}, we have |Fi(z)| = O(ε), hence

A1(z)∂F1(z)/∂xi + · · ·+An(z)∂Fn(z)/∂xi = O(ε) for any i.

This means that n rows of J(z) are approximately linear-dependent. �

Remark 1. The Gröbner basis computation w.r.t. the total-degree order is used
for defining systems of approximately singular type, while the computation w.r.t.
the lexicographic order is used for tiny leading-term type. Therefore, these two
types are not exclusive to each other. �

4 Well-Conditioning of Systems of Approximately
Singular Type

So far, many researchers have investigated ill-conditioned systems of close- so-
lution type; see, for example, [1,3,5,6,13]. On the other hand, ill-conditioned
systems of other types were scarcely investigated so far; as far as the authors
know, only [8] (see also [7]) treated a special case of systems of the third type.
Probably, the existence itself of ill-conditioned systems of types other than close-
solution type will be not well recognized by researchers. For the systems of tiny
leading-term type, we need to compute Gröbner bases carefully by checking the
accuracies of the leading coefficients, and we must treat some coefficients to be 0

314 T. Sasaki and D. Inaba

if their accuracies are lost fully. In this subsection, we consider well-conditioning
of only the systems of approximately singular type.

We assume that the given system Φ is approximately singular, hence we have
appLD-rels as in (2.1). We can compute such relations either by approximate
Gröbner basis algorithm [9] or better by eliminating a matrix the rows of which
are coefficient vectors of SjFi (i=1, . . . , n; j=1, 2, . . .), where Sj is a monomial
bounded suitably; see [10] for details.

In approximately singular system Φ, the δF prevents Var(Φ) from being an
infinite set. Therefore, if we convert Φ to another system Φ′ in which the δF is
a main player, then Φ′ will be well-conditioned. Following this idea, we convert
the input system as follows, where we assume that Ai �= 0 in (2.1).

Φ = {F1, · · · , Fi, · · · , Fn} =⇒ Φ′ = {F1, · · · , δF , · · · , Fn}. (4.1)

Theorem 4. We have Var(Φ) ⊆ Var(Φ′).

Proof. We have Var(Φ′) = Var({F1, · · · , A1F1 + · · ·+AnFn, · · · , Fn}) =
Var({F1, · · · , AiFi, · · · , Fn}) = Var(Φ)∪Var({F1, · · · , Ai, · · · , Fn}). By this, we
obtain the theorem at once. �

Remark 2. The Φ′ may not always be well-conditioned. Such a case occurs if,
for example, we have another appLD-rel A′

1F1 + · · · + A′
nFn = δF ′, A′

j �= 0

(j �= i). In this case, we replace Fi and Fj by δF and δF ′, respectively. �

5 Numerical Experiments

We have tested various approximately singular systems and their well-conditioned
ones by multivariate Newton’s method which is an iterative method based on
(3.4); let s(k) be the k-th approximate solution, then the (k+1)-st one s(k+1) is
determined as

s(k+1) = s(k) + δ, δ = −J−1(s(k)) · (F1(s
(k)), · · · , Fn(s

(k)))t. (5.1)

We have implemented the above method with no sophistication. For easiness
of data processing, we have restricted ourselves to treat only real solutions of
systems in three variables, having 5 ∼ 12 real solutions.

In our experiments, we observed the performance of Newton’s method from
three viewpoints: global convergence, local convergence and detail of individual
computation. That is, we performed the following three different computations.

Global convergence: Generate Ntry points (s
(0)
z , s

(0)
y , s

(0)
x)’s randomly on a real

sphere of radius R, located at the origin, and apply Newton’s method for

each initial value (s
(0)
z , s

(0)
y , s

(0)
x). We count the percentages of convergence to

each solution, with the stopping condition max{|δz|, |δy|, |δx|} < 10−3. (In
Examples A and B below, we also generate 8000 initial values distributed
uniformly in the cube [−R′, R′]3; the corresponding percentages are given in
the grid-row.) The computation is forced to stop when the iteration reaches
at 100. Percentages of convergence to non-solutions and non-convergence are
given in the columns nonS and nonC, respectively.

Approximately Singular Systems and Ill-Conditioned Polynomial Systems 315

Local convergence: Specify an approximate solution S (if Si1 , . . . , Sik are sim-
ilar to each other, we choose only several of them). Generate Ntry points

(s
(0)
z , s

(0)
y , s

(0)
x)’s randomly on a real sphere of radius r (we set r = 0.01), lo-

cated at S, and apply Newton’s method for each initial value (s
(0)
z , s

(0)
y , s

(0)
x).

We count the average number of iterations Itavr by which the computa-
tion converges to S or another solution S′, with the stopping condition
max{|δz|, |δy|, |δx|} < ε (we set ε = 10−10). In Tables, Φi(j) means that
the system Φi is solved with initial points around Solj.

Detail of computation: Choosing several events which show typical or slow local
convergence, we check the following quantities: the number of iterationsNitr

and values of the Jacobian, the initial one Jini, the maximum one Jmx and
the final one Jfin. If the computation converges to the specified solution S
then toS? is YES, if converges to another solution S′ then we write S′.

We show three examples and evaluate the experimental results.

Example A. (approximate-GCD type). We consider the following system Φ; we
show some of its real solutions (Sols) and apparent appLD-rels (apR).

Φ :=

⎧⎨⎩F1 = (z2+2y+z) ∗ (y2+x2−y+x−3)− (y−z)/1000,
F2 = (z2+2x+z) ∗ (y2+x2−y+x−3)− (z−x)/1000,
F3 = (z2+2y−x) ∗ (y2+x2−y+x−3)− (x+y)/1000.

(5.2)

Sols :

⎧⎪⎪⎨⎪⎪⎩
Sol0 = (0, 0, 0), Sol0+ = (0, 2.30291 · · · , 0),
Sol1 = (1.12415 · · · ,−1.26820 · · · ,−1.12415 · · ·),

...
...

...
Sol5 = (0.99802 · · · ,−0.99605 · · · ,−0.99802 · · ·).

(5.3)

apR :

{
G12 = 1000 ∗ ((z2+2x+z) ∗ F1 − (z2+2y+z) ∗ F2),
G23 = 1000 ∗ ((z2+2y−x) ∗ F2 − (z2+2x+z) ∗ F3),
G31 = 1000 ∗ ((z2+2y+z) ∗ F3 − (z2+2y−x) ∗ F1).

(5.4)

Let Φε be the singularized system in which the last terms (y−z)/1000 etc. in (5.2)
are removed, then we have dim(Var(Φε)) = 2. Among the 8 solutions, only Sol0,
Sol1 and Sol5 are not close to y2+x2−y+x−3 = 0, hence they are non-critical.
In addition to Φ, we investigate the following systems; note that Var(Φ2) and
Var(Φ3) are of dimension 0 but dim(Var(Φ1)) = 1. As we mentioned above, the
grid-row shows the global convergence by initial points on grid.{

Φ1 = {G23, F2, F3}, Φ2 = {F1, G23, F3}, Φ3 = {F1, F2, G23},
Φ4 = {F1, G12, G31}, Φ5 = {G12, F2, G23}, Φ6 = {G31, G23, F3}. (5.5)

Tables A1, A2 and A3 show the global convergence, the local convergence, and
the detail of individual computation, respectively. In Table A1, Ntry = 10000 for
Φ and 200 for others. In Table A2, Ntry = 200 for each system.

316 T. Sasaki and D. Inaba

Table A1. Global convergence (R = 5, R′ = 2, ε = 10−3)

(0) Sol0+ Sol0− Sol1 Sol2 Sol3 Sol4 Sol5 nonS nonC

Φ 42.6 13.2 40.7 2.2 0.5 .01 0.8
grid 6.6 32.7 20.9 31.7 2.1 0.2 4.9 0.1 0.6

Φ4 2.0 38.5 10.5 4.5 2.5 1.0 2.5 0.5 37.5 0.5
Φ5 23.0 3.5 11.5 36.0 1.5 5.5 0.5 17.5 1.0
Φ6 1.0 43.0 8.5 2.0 2.0 8.0 8.5 1.0 25.0 1.0

Table A2. Local convergence (r = 0.01, ε = 10−10)

Φ(1) Φ(2) Φ(3) Φ(4) Φ(5) Φ4(1) Φ4(2) Φ4(3) Φ4(4) Φ4(5)

Itavr 5.7 7.2 13.5 9.6 4.0 4.1 4.6 4.1 4.0 4.0
toS 100 99.0 82.5 81.5 100 100 100 100 100 100

nonS 1.0 17.5 18.5
nonC

Table A3. Detail of computation (r = 0.01, ε = 10−10)

Φ(3) Φ(3) Φ(3) Φ4(3) Φ5(3) Φ6(3) Φ3(3) Φ3(3)

Nitr 10 19 35 4 4 4 29 96
Jini 3.7e-2 7.9e-2 3.1e-2 7.27 56.7 18.0 1.11 5.5e-1
Jmx

′′ 97.8 1.3e+7 ′′ ′′ 19.3 9.9e+5 3.e+13
Jfin 1.4e-5 1.9e-6 6.2e-5 6.26 56.3 19.3 8100 0.100
toS? YES Sol2 Sol0+ YES YES YES nonS Sol1

Table A1 shows that some solutions of Φ are very hard to obtain, but all
the solutions can be obtained by the well-conditioning. We note that some well-
conditioned system is good for some solutions and another system is good for
some other solutions. Table A2 shows that well-conditioning improves the local
convergence, too. The nonS events there show that the local convergence is bad
for critical solutions. The most drastic improvement is the value of Jacobian,
shown in Table A3, where two columns for Φ(3) show that the iterative compu-
tation jumps from Sol3 to another solution. The last two columns there show
that the convergence is very poor if “unsuitable system” is chosen. �

Example B. ({F,G, aF +bG}-type) We consider the following system Φ; we
show its real solutions and an apparent appLD-rel.

Φ :=

⎧⎨⎩F1 = (x + 1001/1000) ∗ (z2 + 1001/1000x2− 3) + 2/1000,
F2 = (x − 999/1000) ∗ (y2 − 999/1000x2 − 3) − 1/1000,
F3 = (x + 1) ∗ (x− 1) ∗ ((z2 + x2 − 3) + (y2 − x2 − 3)).

(5.6)

Sols :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Sol1 = (1.41350 · · · , 2.23584 · · · , 1.00000 · · ·),
Sol5 = (1.19942 · · · , 2.13573 · · · , 1.24856 · · ·),
SolA = (0.96391 · · · , 2.25185 · · · ,−1.43991 · · ·),

...
...

... .

(5.7)

apR : G = 1000 ∗ (F3 − (x− 1) ∗ F1 − (x+ 1) ∗ F2). (5.8)

Approximately Singular Systems and Ill-Conditioned Polynomial Systems 317

Let Sol1 = (a, b, c) then Sol2 = (−a, b, c), Sol3 = (a,−b, c) and Sol4 = (−a,−b, c).
The same is true for Sol5 ∼ 8 and SolA ∼ D. In addition to Φ, we investigate
the following systems.

Φ1 = {G,F2, F3}, Φ2 = {F1, G, F3}, Φ3 = {F1, F2, G}. (5.9)

Tables B1, B2 and B3 show the global convergence, the local convergence, and
the detail of individual computation, respectively. In Table B1, Ntry = 10000 for
Φ,Φ3 and 100 for others. In Table B2, Ntry = 100 for each system.

Table B1. Global convergence (R = 5, R′ = 3, ε = 10−3)

Sol1, 2 Sol3, 4 Sol5, 6 Sol7, 8 SolA SolB SolC SolD nonS nonC

Φ 0.4 0.4 1.2 1.1 1.3 1.3 1.4 1.5 91.4
grid 1.2 1.2 2.2 2.2 2.8 2.8 2.8 2.8 82.0

Φ3 6.9 5.9 21.0 20.8 10.9 10.8 10.5 11.6 1.3
Φ1 1.0 1.0 23.0 20.0 12.0 11.0 5.0 13.0 12.0 2.0
Φ2 17.0 10.0 12.0 10.0 14.0 12.0 10.0 14.0 1.0

Table B2. Local convergence (r = 0.01, ε = 10−10)

Φ(1) Φ(5) Φ(A) Φ(D) Φ3(1) Φ3(5) Φ3(A) Φ3(D)

Itavr 4.9 5.8 4.9 4.9 4.0 4.0 4.0 4.0
toS 100 93 100 100 100 100 100 100
nonS 1
nonC 6

Table B3. Detail of computation (r = 0.01, ε = 10−10)

Φ(1) Φ(5) Φ(5) Φ(A) Φ3(1) Φ3(5) Φ3(5) Φ3(A)

Nitr 5 5 100 5 4 4 4 4
Jini 6.0e-2 0.248 9.2e-4 0.191 53.5 60.9 69.6 166
Jmx

′′ ′′ 6.3e+6 ′′ ′′ 66.6 ′′ ′′

Jfin 5.0e-2 6.6e-2 2.4e+4 0.159 50.4 66.4 66.4 159
toS? YES YES nonC YES YES YES YES YES

Table B1 shows that the convergence to every solution of Φ is quite bad, and
the reason is “sub-system trapping” which we will explain at the end of this
section. The non-convergent event Φ(5) in Table B3 is also due to sub-system
trapping. We again see from Tables B1∼B3 that the global convergence and the
value of Jacobian are improved largely by well-conditioning. �

318 T. Sasaki and D. Inaba

Example C. ({AB,BC,ABC}-type) We consider the following system Φ; we
show its real solutions and an apparent appLD-rel.

Φ :=

⎧⎨⎩
F1 = (x− y − 1) ∗ (y − z + 2)− 1/100000(x− 1),
F2 = (y − z + 2) ∗ (z − x− 1)− 2/100000(y− 1),
F3 = (x− y − 1) ∗ (y − z + 2) ∗ (z − x− 1) + 3/200000(z2− 1).

(5.10)

Sols :

⎧⎪⎪⎨⎪⎪⎩
Sol1 = (0.99812 · · · ,−0.99481 · · · , 0.00377 · · ·),
Sol2 = (1.00189 · · · ,−1.00518 · · · ,−0.00377 · · ·),

...
...

...
Sol6 = (5.58652 · · · , 3.58652 · · · ,−4.17306 · · ·).

(5.11)

apR : G = 100000 ∗ ((z − x− 1) ∗ F1 + (x− y − 1) ∗ F2 − 2 ∗ F3). (5.12)

We note that Sol1 and Sol2 are rather close (not so close) to each other, and
Sol3 and Sol4 are also so. In addition to Φ, we investigate the following systems.

Φ1 = {G,F2, F3}, Φ2 = {F1, G, F3}, Φ3 = {F1, F2, G}. (5.13)

Tables C1, C2 and C3 show the global convergence, the local convergence, and
the detail of individual computation, respectively. In Table C1, Ntry = 1000 for
Φ,Φ3, and 100 for others. In Table C2, Ntry = 100 for each system.

Table C1. Global convergence (R = 10, ε = 10−3)

Sol1 Sol2 Sol3 Sol4 Sol5 Sol6 nonS nonC

Φ 0.2 0.2 31.7 12.4 20.3 22.0 13.2

Φ3 19.8 33.7 39.3 7.1 0.1
Φ1 8.0 15.0 10.0 17.0 5.0 12.0 33.0
Φ2 6.0 14.0 6.0 6.0 14.0 15.0 39.0

Table C2. Local convergence (r = 0.01, ε = 10−10)

Φ(1) Φ(2) Φ(5) Φ(6) Φ3(1) Φ3(2) Φ3(5) Φ3(6)

Itavr 6.2 6.1 9.0 15.6 5.8 5.8 6.3 8.6
toS 72 69 94 40 79 70 34 32
nonS 23 27 2 3 21 30 64 50
nonC 5 4 4 57 2 18

Table C3. Detail of computation (r = 0.01, ε = 10−10)

Φ(1) Φ(2) Φ(5) Φ(6) Φ3(1) Φ3(2) Φ3(5) Φ3(6)

Nitr 6 13 10 12 6 7 6 9
Jini 1.4e-8 1.1e-10 1.1e-6 1.9e-5 2.8e-3 2.4e-5 1.3e-3 5.1e-4
Jmx

′′ 1.3e-5 ′′ ′′ ′′ 4.0e-3 ′′ 0.138
Jfin 3.0e-9 6.5e-9 3.4e-9 3.4e-9 6.0e-4 6.0e-4 6.0e-4 1.3e-3
toS? YES Sol3 YES Sol5 YES Sol1 Sol1 Sol3

Approximately Singular Systems and Ill-Conditioned Polynomial Systems 319

Table C1 shows that Sol1 and Sol2 of Φ are not easy to obtain but are easy
after the well-conditioning. The nonC events for Φ in Tables C1 and C2 are due
to accuracy losing. In Table C2, nonS events for Φ(6) and Φ3(6) are jumping to
other solutions. �

We explain the sub-system trapping. Suppose, w.l.o.g., that F1(x) does not
contain variable x1, as F1 and F2 in Example B, and that s′ = (s2, · · · , sn) is an
approximate solution of sub-system {F1(x)=0} (which may contain two or more
polynomials). Then, (1, 1)-element of J(x) is 0. We further assume that (n, 1)-
element of J(s) is not zero. Then, using the n-th row, we can eliminate (2, 1)-, . . . ,
(n−1, 1)-elements of J(s), and let the matrix eliminated be J ′(s). This transforms
the system into J ′(s) (δ1, δ2, · · · , δn)t = −(F1(s), F

′
2(s), · · · , Fn(s))

t, where the
first column of J ′(x) is (0, · · · , 0, ∂Fn/∂x1)

t, and F ′
i (s) = Fi(s)−(Ji1/Jn1)Fn(s)

(2 ≤ i ≤ n−1). This means that δ2, . . . , δn−1 are determined by only the first
to (n−1)-st transformed equations, and δ1 is determined by the n-th equation
and δ2, · · · , δn. Although F ′

2(x), . . . , F
′
n−1(x) change from iteration to iteration,

the n−1 equations for δ2, . . . , δn are of the same form as Newton’s formula.
Hence s′′ = (s2 + δ2, · · · , sn + δn) will be an approximate solution of {F1(x)=
0, F ′

2(x)=0, · · · , F ′
n−1(x)=0}, showing that s′′ is trapped to F1(x)=0.

6 Concluding Remarks

Before performing the numerical experiments described in Sect. 5, the authors
thought that the local convergence is damaged much by approximate singu-
larness of the system. After the experiments, we were surprised at that our
well-conditioning improved the global convergence largely. We, furthermore, got
an impression that algebraic varieties determined by ill-conditioned polynomial
systems are very interesting. For example, drawing the graphs of F1, F2 etc. in
Example 1, we found that the graphs show complicated but very interesting
behaviors, and such behaviors can be understood easily from the viewpoints of
approximately singular systems and approximate Gröbner bases.

We should investigate the approximately singular systems variously. In [10],
we have performed such a study from the viewpoint of “singularization”, i.e., to
perturb the given system so that the variety of the perturbed system is of higher
dimension.

References

1. Corless, R.M., Gianni, P.M., Trager, B.M.: A reordered Schur factorization method
for zero-dimensional polynomial systems with multiple roots. In: Proceedings of
ISSAC 1997 (Intn’l Symposium on Symbolic and Algebraic Computation), pp.
133–140. ACM Press (1997)

2. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, New
York (1997)

3. Dayton, B.H., Zeng, Z.: Computing the multiplicity structure in solving polynomial
systems. In: Proceedings of ISSAC 2005, pp. 116–123. ACM Press (2005)

320 T. Sasaki and D. Inaba

4. Fortune, S.: Polynomial root finding using iterated eigenvalue computation. In:
Proceedings of ISSAC 2001, pp. 121–128. ACM Press (2001)

5. Janovitz-Freireich, I., Rónyai, L., Szánto, A.: Approximate radical of ideals with
clusters of roots. In: Proceedings of ISSAC 1997, pp. 146–153. ACM Press (2006)

6. Mantzaflaris, A., Mourrain, B.: Deflation and certified isolation of singular zeros
of polynomial systems. In: Proceedings of ISSAC 2011, pp. 249–256. ACM Press
(2011)

7. Noda, M.-T., Sasaki, T.: Approximate GCD and its application to ill-conditioned
algebraic equations. J. Comput. App. Math. 38, 335–351 (1991)

8. Ochi, M., Noda, M.-T., Sasaki, T.: Approximate GCD of multivariate polynomials
and application to ill-conditioned system of algebraic equations. J. Inf. Proces. 14,
292–300 (1991)

9. Sasaki, T.: A theory and an algorithm of approximate Gröbner bases. In: Proceed-
ings of SYNASC 2011 (Symbolic and Numeric Algorithms for Scientific Comput-
ing), pp. 23–30. IEEE Computer Society Press (2012)

10. Sasaki, T.: Proposal of singularization of approximately singular systems. Preprint
of Univ. Tsukuba, 14 pages (May 2012)

11. Sasaki, T., Noda, M.-T.: Approximate square-free decomposition and root-finding
of ill-conditioned algebraic equations. J. Inf. Proces. 12, 159–168 (1989)

12. Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comp. 14, 1–29 (1992)
13. Wu, X., Zhi, L.: Determining singular solutions of polynomial systems via symbolic-

numeric reduction to geometric involutive forms. J. Symb. Comput. 47, 227–238
(2012)

Symbolic-Numeric Implementation

of the Method of Collocations and Least Squares
for 3D Navier–Stokes Equations

Vasily P. Shapeev and Evgenii V. Vorozhtsov

Khristianovich Institute of Theoretical and Applied Mechanics,
Russian Academy of Sciences, Novosibirsk 630090, Russia

{shapeev,vorozh}@itam.nsc.ru

Abstract. The method of collocations and least squares, which was
previously proposed for the numerical solution of the two-dimensional
Navier–Stokes equations governing steady incompressible viscous flows,
is extended here for the three-dimensional case. The derivation of the
collocation and matching conditions is carried out in symbolic form us-
ing the CAS Mathematica. The numerical stages are implemented in a
Fortran code, into which the left-hand sides of the collocation and match-
ing equations have been imported from the Mathematica program. The
results of numerical tests confirm the second order of convergence of the
presented method.

1 Introduction

It is well known (see, for example, [19]) that the influence of the compressibility
of a gas or a liquid may be neglected if the flow Mach number does not exceed
the value of 0.3. In such cases, it is reasonable to use the Navier–Stokes equations
governing the viscous incompressible fluid flows. These equations are somewhat
simpler than the system of Navier–Stokes equations for compressible media.

The numerical solution of Navier–Stokes equations is simplified greatly if they
are discretized on a uniform rectangular spatial grid in Cartesian coordinates. It
is natural and convenient to use such grids at the solution of problems in regions
of rectangular shape. Many applied problems are, however, characterized by the
presence of curved boundaries. In such cases, other grid types are often used:
curvilinear grids, structured and unstructured triangular and polygonal grids.
Although such grids simplify the implementation of boundary conditions, their
use leads to new difficulties, such as the extra (metric) terms in equations, extra
interpolations, larger computational molecules, etc. [13].

During the last decade, a new method for numerical solution of the Navier-Sto-
kes equations in regions with complex geometry has enjoyed a powerful develop-
ment: the immersed boundary method (IBM). In this method, the computation
of gas motion is carried out on a rectangular grid, and the curved boundary
is interpreted as an interface. A survey of different recent realizations of the
IBM may be found in [15,24,17]. The immersed boundary method has extended

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 321–333, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

322 V.P. Shapeev and E.V. Vorozhtsov

significantly the scope of applicability of the rectangular Cartesian grids at the
numerical solution of applied problems of the incompressible fluid dynamics.

The projection finite difference methods [12,27,4] have gained widespread ac-
ceptance at the numerical solution of the incompressible Navier–Stokes equa-
tions. A recurring difficulty in these methods is the proper choice of boundary
conditions for the auxiliary variables in order to obtain at least second order ac-
curacy in the computed solution. A further issue is the formula for the pressure
correction at each time step [3].

In the method of artificial compressibility (AC) [6], there is no need in the
solution of the Poisson equation for the pressure correction because the time
derivative of pressure is introduced in the left-hand side of the continuity equa-
tion. As a result, the entire system of the Navier–Stokes equations acquires the
evolutionary character, and one can then apply for its numerical integration the
methods, which were developed for the equations of compressible gas dynam-
ics. The AC method has a significant drawback in the difficulty of choosing the
AC parameter, improper choice of which leads either to slow convergence or
divergence [14,16].

The use of computer algebra systems (CASs) is very useful at the development
and investigation of new numerical methods. The approaches to the application
of CASs for constructing and investigating the numerical methods of solving the
boundary-value problems for partial differential equations (PDEs) may be found
in [25,7]. The method of collocation and least squares (CLS) for the PDE systems
was first implemented in [21] at the solution of the boundary-value problems
for Stokes equations. The CLS method was extended in [20] for the numerical
solution of the 2D incompressible Navier–Stokes equations. The advantage of
the CLS method over the fractional-step difference methods and the artificial
compressibility methods is that it does not require the numerical solution of the
continuity equation because this equation is satisfied identically at any spatial
point at the expense of an appropriate choice of the basis functions. As was
mentioned in [20], the approximation order of the CLS method can be increased
just by adding several further basis functions. But huge analytic work is needed
when constructing the formulas of the CLS method for Navier–Stokes equations.
This work was done in [20] with the aid of CASs REDUCE and Maple. The
speed of numerical computations by the CLS method was optimized in [20] by
optimizing the sequence of arithmetic computations at first in the CAS, and
then by inputting the optimized formulas of the CLS method to the program
written in the C programming language.

The application of CASs for the construction of difference schemes for the
Navier–Stokes equations was considered in the works [22,9].

The CLS method was implemented in [20] for the 2D Navier–Stokes equations
in the case of square cells of a spatial computational grid. In the works [10,11],
the CLS method was extended for the case of rectangular grid cells in the plane
of two spatial variables. The variants of the CLS method were developed in [11],
which had the accuracy orders from 2 to 8. The authors of [11] were able to
obtain with their CLS method the chain of the Moffatt vortices in the lower

The Method of Collocations and Least Squares for 3D Navier–Stokes 323

corners of the square cavity in the 2D lid-driven cavity flow problem for the
Reynolds number Re = 1000 and to solve the given benchmark problem with
the accuracy, which is still at the level of the best accuracies. In the works
[10,11], a detailed comparison of the results of the numerical solution of the two-
dimensional lid-driven cavity problem was carried out, and it was shown that the
obtained results are among the most accurate ones obtained by other researchers
(see [2,23,8,5]) with the aid of different high-accuracy numerical algorithms.

At present, the numerical solutions of the 3D lid-driven cavity problem are
very scarce. Some comparison was done with [8], which showed that the results
obtained by the CLS method and by the method of [8] are very close to one
another in terms of the accuracy. This comparison is, however, omitted in the
text of the present paper because of the shortage of the place and also in view
of the fact that the main objective of the present paper is to show the efficiency
of the application of symbolic computations at the development of new methods
for solving the partial differential equations, in particular, the Navier–Stokes
equations.

In the present work, we extend the CLS method of [20] for the case of three
spatial variables. All symbolic computations needed for the derivation of the
collocation and matching conditions were implemented with Mathematica.

We show the usefulness and efficiency of using the CASs for the construction,
analysis, and numerical implementation of new complex numerical algorithms by
the example of constructing the work formulas and their realization for solving
the boundary-value problems for the 3D Navier–Stokes equations. In view of the
specifics of the CASC Workshops themes, we discuss here to a lesser extent the
numerical results; this discussion has been presented in sufficient detail in the
foregoing publications of one of the authors [10,11]. In comparison with the 2D
case [10,11], the amount of symbolic computations needed for the construction,
analysis, and transfer of the work formulas to the code (written in Fortran,C,
Pascal, etc.) for the numerical computation increases considerably in the 3D
case. Therefore, the application of computer algebra systems becomes much more
useful in the 3D case than in the 2D case.

The numerical computations needed for obtaining the final numerical solution
in each cell were implemented by us in a Fortran code.

2 Description of the CLS Method

2.1 Problem Statement

Consider a boundary-value problem for the system of stationary Navier–Stokes
equations

(V · ∇)V +∇p =
1

Re
ΔV − f , (1)

divV = 0, (x1, x2, x3) ∈ Ω, (2)

which govern the flows of a viscous, non-heat-conducting, incompressible fluid
in the cube

Ω = {(x1, x2, x3), 0 ≤ xi ≤ X, i = 1, 2, 3} (3)

324 V.P. Shapeev and E.V. Vorozhtsov

with the boundary ∂Ω, where X > 0 is the user-specified length of the rib
of the cubic region Ω, and x1, x2, x3 are the Cartesian spatial coordinates. In
equations(1) and (2), V = V(x1, x2, x3) is the velocity vector having the compo-
nents v1(x1, x2, x3), v2(x1, x2, x3), and v3(x1, x2, x3) along the axes x1, x2, and
x3, respectively; p = p(x1, x2, x3) is the pressure, f = (f1, f2, f3) is a given vector

function. The positive constant Re is the Reynolds number, Δ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3
,

(V · ∇) = v1
∂

∂x1
+ v2

∂
∂x2

+ v3
∂

∂x3
.

The system of four equations (1) and (2) is solved under the Dirichlet bound-
ary condition V

∣∣
∂Ω

= g, where g = g(x1, x2, x3) = (g1, g2, g3) is a given vector
function.

2.2 Local Coordinates and Basis Functions

In the CLS method, the spatial computational region (3) is discretized by a grid
with cubic cells Ωi,j,k. We search for the solution in the form of a piecewise
smooth function on this grid. To write the formulas of the CLS method it is
convenient to introduce the local coordinates y1, y2, y3 in each cell Ωi,j,k. The
dependence of local coordinates on the global spatial variables x1, x2, x3 is de-
termined by the relations ym = (xm − xm,i,j,k)/h, m = 1, 2, 3, where xm,i,j,k

is the value of the coordinate xm at the geometric center of the cell Ωi,j,k,
and h is the halved length of the rib of the cubic cell Ωi,j,k. The local coor-
dinates then belong to the interval ym ∈ [−1, 1]. We now introduce the nota-
tions u(y1, y2, y3) = V(hy1 + x1,i,j,k, hy2 + x2,i,j,k, hy3 + x3,i,j,k), p(y1, y2, y3) =
p(hy1 + x1,i,j,k, hy2 + x2,i,j,k, hy3 + x3,i,j,k). After the above change of variables
the Navier–Stokes equations take the following form:

Δum
Reh

−
(
u1

∂um
∂y1

+ u2
∂um
∂y2

+ u3
∂um
∂y3

+
∂p

∂ym

)
= hfm, m = 1, 2, 3; (4)

1

h

(
∂u1
∂y1

+
∂u2
∂y2

+
∂u3
∂y3

)
= 0, (5)

where Δ = ∂2

∂y2
1
+ ∂2

∂y2
2
+ ∂2

∂y2
3
.

The basic idea of the method is to use the collocation method in combina-
tion with the least-squares method to obtain numerical solution. We call such a
combined method the “collocation and least-squares” (CLS) method. One of the
reasons for using this combination was that the application of the least-squares
method often improves the properties of a numerical method. In turn, the collo-
cation method is simple in implementation and gives good results when solving
boundary-value problems for ODEs, both linear and nonlinear [1].

Following [20] we now linearize the Navier–Stokes equations(4). To this end,
we present the desired improved solution in the form: um = Um + ūm (m =
1, 2, 3), p = P + p̄, where (U1, U2, U3, P) is some known approximate solution,
and ūm, p̄ are the corrections to the solution, they are to be found. Substituting
this representation in equations (4) and neglecting the terms of the second order

The Method of Collocations and Least Squares for 3D Navier–Stokes 325

of smallness ūlūm,yl
, m, l = 1, 2, 3, we obtain the linearized equations:

Δūm/(Re · h)− (U1ūm,y1 + U2ūm,y2 + U3ūm,y3 + ū1Um,y1 + ū2Um,y2+

ū3Um,y3 + p̄ym)− Fm/(Re · h) = 0, m = 1, 2, 3, (6)

where Fm = Re
[
h2fm + h (U1Um,y1 + U2Um,y2 + U3Um,y3 + Pym)

]−ΔUm,

ūm,yl
= ∂ūm/∂yl, Um,yl

= ∂Um/∂yl, p̄ym = ∂p̄/∂ym, l,m = 1, 2, 3.

We now present the approximate solution in each cell Ωi,j,k as a linear combi-
nation of the basis vector functions ϕl⎛⎜⎜⎝

U1

U2

U3

P

⎞⎟⎟⎠ =
∑
l

ai,j,k,lϕl,

⎛⎜⎜⎝
ū1
ū2
ū3
p̄

⎞⎟⎟⎠ =
∑
l

bi,j,k,lϕl. (7)

The basis functions ϕl are presented in Table 1. To approximate the velocity
components we use the second-order polynomials in variables y1, y2, y3, and the
first-order polynomials are used for the approximation of the pressure. The basis
functions for the velocity components are solenoidal, that is divϕl = 0. This
enables the identical satisfaction of the continuity equation in each cell.

Table 1. The form of basis functions ϕl

l 1 2 3 4 5 6 7 8 9 10

1 0 0 y1 0 0 y2 0 0 y3
ϕl 0 1 0 −y2 y1 0 0 y2 0 0

0 0 1 0 0 y1 0 −y3 y2 0
0 0 0 0 0 0 0 0 0 0

l 11 12 13 14 15 16 17 18 19 20

0 y2
1 0 0 −2y1y2 0 −2y1y3 0 y2

1 y2
2

ϕl y3 −2y1y2 y2
1 0 y2

2 0 0 y1y3 0 0
0 0 0 y2

1 0 y1y2 y2
3 0 −2y1y3 0

0 0 0 0 0 0 0 0 0 0

l 21 22 23 24 25 26 27 28 29 30

0 0 y2y3 0 y2
3 0 0 0 0 0

ϕl y2
2 0 0 −2y2y3 0 y2

3 0 0 0 0
−2y2y3 y2

2 0 y2
3 0 0 0 0 0 0

0 0 0 0 0 0 1 y1 y2 y3

The use of the solenoidal basis reduces here the number of the unknowns
in a cell from 34 to 30. Such a reduction of the number of unknowns enables
significant savings in the CPU time.

326 V.P. Shapeev and E.V. Vorozhtsov

2.3 Derivation of the Overdetermined System
from Collocation and Matching Conditions

Let us take the cell Ωi,j,k and specify the collocation points inside it. Let ω be
a user-specified value in the interval 0 < ω < 1, for example, ω = 1/2. Let us
specify eight collocation points in each cell as the points with local coordinates
(±ω,±ω,±ω). Substituting these coordinates in the left-hand sides of equations
(6) we obtain 24 equations of collocations.

Let us now proceed to the derivation of the equations following from the
matching conditions. Similarly to [20] we use on the cell faces the matching
conditions ensuring the only piecewise polynomial solution. These conditions of
the solution continuity are the linear combinations of the form

∂(u+)n

∂n
+ η(u+)n =

∂(u−)n

∂n
+ η(u−)n;

∂(u+)τ1

∂n
+ η(u+)τ1 =

∂(u−)τ1

∂n
+ η(u−)τ1 ; (8)

∂(u+)τ2

∂n
+ η(u+)τ2 =

∂(u−)τ2

∂n
+ η(u−)τ2 ,

p+ = p−.

Here n is the external normal to the cell face, (·)n, (·)τ1 , and (·)τ2 are the normal
and tangential components of the velocity vector with respect to the face between
the cells, u+ and u− are the limits of the function u at its tending to the cell
face from within and from outside the cell; η is a positive parameter, which can
affect the conditionality of the obtained system of linear algebraic equations and
the convergence rate. The points at which equations (8) are written are called
the matching points. Let us exemplify the way, in which the coordinates of these
points are specified, by the example of the faces y1 = ±1. On the face y1 = 1,
two matching points are specified as (1, ζ, ζ) and (1,−ζ,−ζ), and on the face
y1 = −1, two matching points are specified as (−1,−ζ, ζ) and (−1, ζ,−ζ), where
0 ≤ ζ ≤ 1, and ζ is specified by the user, for example, ζ = 1/2.

Thus, we specify two matching points for the velocity components on each
of the six faces of the cell. As a result, we obtain 12 matching points. We then
substitute the coordinates of these points in each of the first three matching
conditions in (8) and obtain 36 matching conditions for velocity components.
The matching conditions for the pressure are specified at six points (±1, 0, 0),
(0,±1, 0), (0, 0,±1).

If the cell face coincides with the boundary of region Ω, then we use the
boundary conditions instead of the matching conditions: um = gm, m = 1, 2, 3.

To identify the unique solution we specified the pressure at the coordinate
origin. Let Ω1,1,1 be the cell one of the vertices of which coincides with the
coordinate origin (0,0,0). The local coordinates y1 = y2 = y3 = −1 correspond
to this point. We have set p(−1,−1,−1) = p0, where p0 is an arbitrary constant;
it was specified from the numerical solution of the test problem below in Section
3.1. And in the computations of the lid-driven cavity flow, we used the value
p0 = 1 following [18].

The Method of Collocations and Least Squares for 3D Navier–Stokes 327

Thus, the set of 24 collocation equations, 36 equations of matching conditions
for velocity components, and six matching conditions for the pressure give, in the
total, the overdetermined system containing 66 or 67 equations. These equations
involve 30 unknowns bi,j,k,l, l = 1, 2, . . . , 30. All these equations were derived on
computer in Fortran form by using symbolic computations with Mathematica.

At the obtaining of the final form of the formulas for the coefficients of the
equations, it is useful to perform the simplifications of the arithmetic expressions
of polynomial form to reduce the number of the arithmetic operations needed for
their numerical computation. To this end, we employed standard functions of the
Mathematica system, such as Simplify and FullSimplify for the simplification
of complex symbolic expressions arising at the symbolic stages of the construc-
tion of the formulae of the method. Their application enabled a two-three-fold
reduction of the length of polynomial expressions.

Let us denote the obtained collocation equations by

COL(s) = 0, s = 1, . . . , 24, (9)

and let us denote the equations obtained from the matching conditions by

MATCH(s) = 0, s = 1, . . . , 42. (10)

It would be impossible to present all these equations here in view of their very
bulky form.

The system of equations (9) and (10) is overdetermined. It was solved numer-
ically by the method of rotations with column pivoting [26].

Let us assume that the length of the resulting computer code in Fortran 90
language, which is measured in the number of lines of the code text, is equal
to 100 %. Then the collocation equations take 26 %, and the matching con-
ditions take 33 % of the entire code so that 59 % of the entire Fortran code
were generated with Mathematica. It should be noted that the corresponding
Fortran subroutines are of crucial importance for the implementation of the 3D
CLS method under consideration because they enable the user the obtaining
of the complete set of the equations of the overdetermined algebraic system
(9), (10). Furthermore, the CAS Mathematica enables various check-ups of new
methods directly at the stage of their development, including the convergence
of the method. It is very important that the CAS performs the job on the de-
velopment of new formulas, which need much attention and many efforts of the
mathematician and saves him from many possible errors.

The remaining 41 % of the Fortran code implement the method of rotations,
the iterations in nonlinearity, and the export of the final converged solution
to the external files in the form of the Mathematica lists for the subsequent
graphical plotting and analysis of the results with the aid of the corresponding
Mathematica program.

3 Numerical Results

This section presents the results of computations of two problems to assess the
capabilities of the proposed method. The first problem is a test problem with the

328 V.P. Shapeev and E.V. Vorozhtsov

known exact analytic solution, which has enabled us to obtain the exact error
of the approximate solution and, consequently, to obtain the information about
the convergence order of the numerical solution.

The second problem is the viscous flow in a lid-driven cavity, for which there
is no exact solution. In this case, one can judge about the correctness of obtained
results from the numerical experiments on a sequence of grids and comparisons
with experimental and numerical results obtained by other researchers.

3.1 Test with Exact Analytic Solution

Let us consider the following exact solution of the Navier–Stokes equations (1)
and (2) in the cubic region (3):

u1 = − cos(x1) sin(x2) sin(x3), u2 = 0.5 sin(x1) cos(x2) sin(x3),

u3 = 0.5 sin(x1) sin(x2) cos(x3), (11)

p = cos(x1) + cos(x2) + cos(x3)− (3/X) sin(X).

It is to be noted here that the solution (11) satisfies the continuity equation (2).
We now write down the right-hand sides f1, f2, f3 of equations (1):

f1 = (3 cos(x1) sin(x2) sin(x3) + Re sin(x1)(1 + cos(x1)(0.5 cos
2(x3) sin

2(x2)

+ (0.5 cos2(x2) + sin2(x2)) sin
2(x3))))/Re,

f2 = (−1.5 cos(x2) sin(x1) sin(x3) + Re sin(x2)(1 + cos(x2)×
(−0.25 cos2(x3) sin2(x1) + (0.5 cos2(x1) + 0.25 sin2(x1)) sin

2(x3))))/Re,

f3 = (Re sin(x3) + cos(x3)(−1.5 sin(x1) sin(x2) + 0.5Re cos2(x1) sin
2(x2) sin(x3)

+ Re sin2(x1)(−0.25 cos2(x2) + 0.25 sin2(x2)) sin(x3)))/Re.

The test solution (11) has no singularities, therefore, one can observe the con-
vergence order of the numerical solution already on rough grids. The region (3)
was discretized by a uniform grid of cubic cells. The half-size h of the cell rib
was equal to h = X/(2M), where M is the number of cells along each coordinate
direction. Let us assign the indices i, j, k of a cell to the geometric center of the
cell, where i, j, k vary along the axes x1, x2, and x3, respectively.

Since the present method uses the linearization of the Navier–Stokes equa-
tions, the iterations in nonlinearity are necessary. The zero initial guess for the
quantities Ui and P was used.

The numerical results presented below in Table 2 were obtained by using the
value ω = 1/2 at the specification of collocation points.

To determine the absolute numerical errors of the method on a specific uniform
grid with half-step h we have computed the following root mean square errors:

δu(h) =

⎡⎣ 1

3M3

M∑
i=1

M∑
j=1

M∑
k=1

3∑
ν=1

(uν,i,j,k − uexν,i,j,k)
2

⎤⎦0.5 ,
δp(h) =

⎡⎣ 1

M3

M∑
i=1

M∑
j=1

M∑
k=1

(pi,j,k − pexi,j,k)
2

⎤⎦0.5 ,

The Method of Collocations and Least Squares for 3D Navier–Stokes 329

where uex
i,j,k and pexi,j,k are the velocity vector and the pressure calculated in ac-

cordance with the exact solution (11). The quantities ui,j,k and pi,j,k denote the
numerical solution obtained by the method described in the foregoing sections.
Let us denote by νu and νp the convergence orders calculated from the numerical
solutions for the velocity vector U and for the pressure p. The quantities νu and
νp were calculated by the following well-known formulas:

νu =
log[δu(hm−1)]− log[δu(hm)]

log(hm−1)− log(hm)
, νp =

log[δp(hm−1)]− log[δp(hm)]

log(hm−1)− log(hm)
, (12)

where hm, m = 2, 3, . . . are some values of the step h such that hm−1 �= hm. Let
us denote the value of the coefficient bi,j,k,l in (7) at the nth iteration by bni,j,k,l,
n = 0, 1, The following condition was used for termination of the iterations
in nonlinearity: δbn+1 < ε, where

δbn+1 = max
i,j,k

(
max

1≤l≤30

∣∣∣bn+1
i,j,k,l − bni,j,k,l

∣∣∣) (13)

and ε is a small positive user-specified number, ε ≤ h2. We will term the quantity
(13) the pseudo-error in the following.

The graphs of the errors δbn, δu and δp as the functions of the number n of
the iterations in nonlinearity were plotted. We do not present these graphs for
the sake of brevity.

Table 2. The errors δu, δp and the convergence orders νu, νp on a sequence of grids,
Re = 100

η M ×M ×M δu δp νu νp

2.0 10× 10× 10 1.01 · 10−2 7.27 · 10−3

4.45 20× 20× 20 2.13 · 10−3 2.53 · 10−3 2.25 1.52

3.0 30× 30× 30 7.74 · 10−4 1.47 · 10−3 2.50 1.34

The values of the parameter η, which are nearly optimal for each specific
grid, were determined as follows: twenty iterations were done on a specific grid
for some chosen value of η. Then the value of η was deviated arbitrarily from the
initial guess η = 1, which was used in [11]. If the pseudo-error after 20 iterations
was smaller than in the foregoing variant, then the variation of η was continued in
the same direction of the decrease or increase in η. Usually six or seven such runs
were done to find a nearly optimal value of η. Similar investigations concerning
the choice of η were done previously in [20,10,11] in the two-dimensional case.

It is to be noted that the specific size of the errors δu and δp also depends
on the value of the collocation parameter ω so that one can reduce these errors
in comparison with the case of ω = 0.5. This value of ω was used as the initial
guess similarly to [20,10,11]. It was found by numerical experiments similar to the
above ones used for determining a quasi optimal value of η that the values ω = 0.6

330 V.P. Shapeev and E.V. Vorozhtsov

and ζ = 0.6 were generally better in terms of accelerating the convergence of the
iterative procedure than the values ω = 0.5 and ζ = 0.5.

It can be seen from Table 2 that in the case of the Reynolds number Re =
100, the convergence order νu lies in the interval 2.25 ≤ νu ≤ 2.50, that is it is
somewhat higher than the second order.

The fact that the numerical solution converges to the exact solution with the
expected (second) order is the additional evidence of correctness of formulas de-
rived with the aid of Mathematica. It can be seen from Table 2 that the absolute
errors in the velocity are less than the absolute errors in the pressure. This is
explained by the fact that the first-degree polynomials are used in the cells to
approximate the pressure, whereas the velocity components are approximated
by the second-degree polynomials, see Table 1. The use of the quadratic approx-
imation for the pressure was presented in [20,11] in the two-dimensional case,
and it showed an increase in the accuracy of the pressure calculation in compari-
son with the linear approximation. The quadratic approximation of the pressure
can, of course, be extended for the 3D case, but it will involve an increase in
the CPU time expenses because of the appearance of several further expansion
coefficients bi,j,k,l in the local representation of the pressure.

It is to be noted that at the application of the method of least squares for
solving any problems, it is important that the equations in the overdetermined
system, which play the equal role in the approximate solution, have equal weight
coefficients. For example, in the given case, the solution accuracy can deteriorate
if some equations of collocations are included in the system with the weight
coefficients different from the weight coefficients of other equations.

3.2 Flow in the Lid-Driven Cavity

Consider the flow of a viscous incompressible fluid in a three-dimensional cavity
whose lid moves in the given direction at a constant speed. The computational
region is the cube (3). The coordinate origin lies in one of the cube corners, and
the Ox3 axis is directed upwards. The cube upper face moves in dimensionless
coordinates at the unit velocity in the positive direction of the Ox1 axis. The
remaining faces of cube (3) are at rest. The no-slip conditions are specified on
all cube faces: v1 = 1, v2 = v3 = 0, if x3 = X , and vm = 0, m = 1, 2, 3, at the
remaining boundary faces.

The lid-driven cavity flow has singularities in the corners of the region for
which x3 = X , which manifest themselves more strongly with the increasing
Reynolds number. Therefore, the increase of Re needs the application of fine
grids in the neighborhood of singularities to obtain a more accurate solution. In
the present work, we have used only uniform grids whose size did not exceed
40× 40× 40 cells. And, as a result, an increase in the Reynolds number resulted
in an error increase.

Some results of the numerical computations of the viscous incompressible flow
in a cubic lid-driven cavity are presented in Fig. 1 for the Reynolds number Re
= 100. The arrows indicate the local directions of the motion of fluid particles.
One can see the following features of the flow under consideration: there is a line

The Method of Collocations and Least Squares for 3D Navier–Stokes 331

(a) (b)

(c)

Fig. 1. Streamlines in different sections of the cubic cavity at Re = 100: (a) section
x2 = 0.5; (b) section x1 = 0.5; (c) section x3 = 0.5

of flow divergence in section x3 = 0.5 (see Fig. 1, (c)); the equation of this line
has the form x2 = 0.5. Near the wall x1 = 0, the fluid particles move at x2 < 0.5
in the direction of the wall x2 = 0, and at x2 > 0.5, they move in the direction
of the wall x2 = 1. In section x1 = 0.5 (Fig. 1, (b)), the flow is symmetric
with respect to the line x2 = 0.5. In section x2 = 0.5 (Fig. 1, (a)), a vortex is
observed, which is similar to the one obtained at the flow computation in the
two-dimensional cavity [20]. Figures 1, (b) and (c) show that in the region of
the fluid flow, there arise new types of singularities, which are different from the
two-dimensional case. For example, the points of the bifurcation of streamlines
are observed, and the corresponding flow patterns differ substantially from the
flow pattern in the two-dimensional case.

4 Conclusions

A new symbolic-numeric method of collocations and least squares has been pre-
sented for the numerical solution of three-dimensional stationary Navier–Stokes

332 V.P. Shapeev and E.V. Vorozhtsov

equations. The method has been verified on a test problem having the exact
analytic solution. The application of the method is given for the flow in a 3D
lid-driven cavity.

The presented method can be generalized for the case of unsteady flow prob-
lems. The application of symbolic computations for the construction of the
method for unsteady governing equations will be very useful also for deriving the
basic formulae of the method for the unsteady case. Furthermore, the authors
have an experience of implementing the method of collocations and least squares
with the use of symbolic computations for a simpler scalar unsteady equation,
namely, the one-dimensional heat equation.

It is also to be noted that the numerical stage of the presented symbolic-
numeric method suits very well for parallelization because the computations in
each cell of the spatial grid can be carried out at each iteration independently
of other cells. The computational region may be partitioned into any number of
subregions, which is equal to the number of available processors, in such a way
that the computations in each subregion are carried out independently of each
other, and their interaction with one another is realized by the refinement of the
matching conditions between them after each iteration.

References

1. Ascher, U., Christiansen, J., Russell, R.D.: A collocation solver for mixed order
systems of boundary value problems. Math. Comput. 33, 659–679 (1979)

2. Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow.
Comput. Fluids 27, 421–433 (1998)

3. Brown, D.L., Cortez, R., Minion, M.L.: Accurate projection methods for the in-
compressible Navier–Stokes equations. J. Comp. Phys. 168, 464–499 (2001)

4. Chibisov, D., Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V.: Stability Investigation
of a Difference Scheme for Incompressible Navier-Stokes Equations. In: Ganzha,
V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 102–
117. Springer, Heidelberg (2007)

5. Erturk, E., Gokcol, C.: Fourth order compact formulation of Navier–Stokes equa-
tions and driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods
Fluids 50, 421–436 (2006)

6. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics, 3rd edn.
Springer, Heidelberg (2002)

7. Ganzha, V.G., Mazurik, S.I., Shapeev, V.P.: Symbolic Manipulations on a Com-
puter and their Application to Generation and Investigation of Difference Schemes.
In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS, vol. 204, pp. 335–347. Springer,
Heidelberg (1985)

8. Garanzha, V.A., Kon’shin, V.N.: Numerical algorithms for viscous fluid flows
based on high-order accurate conservative compact schemes. Comput. Math. Math.
Phys. 39, 1321–1334 (1999)

9. Gerdt, V.P., Blinkov, Y.A.: Involution and Difference Schemes for the Navier–
Stokes Equations. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2009. LNCS, vol. 5743, pp. 94–105. Springer, Heidelberg (2009)

10. Isaev, V.I., Shapeev, V.P.: Development of the collocations and least squares
method. Proc. Inst. Math. Mech. 261(suppl. 1), 87–106 (2008)

The Method of Collocations and Least Squares for 3D Navier–Stokes 333

11. Isaev, V.I., Shapeev, V.P.: High-accuracy versions of the collocations and least
squares method for the numerical solution of the Navier–Stokes equations. Com-
putat. Math. and Math. Phys. 50, 1758–1770 (2010)

12. Kim, J., Moin, P.: Application of a fractional-step method to incompressible
Navier–Stokes equations. J. Comp. Phys. 59, 308–323 (1985)

13. Kirkpatrick, M.P., Armfield, S.W., Kent, J.H.: A representation of curved bound-
aries for the solution of the Navier–Stokes equations on a staggered three-
dimensional Cartesian grid. J. Comp. Phys. 184, 1–36 (2003)

14. Malan, A.G., Lewis, R.W., Nithiarasu, P.: An improved unsteady, unstructured
artificial compressibility, finite volume scheme for viscous incompressible flows:
Part I. Theory and implementation. Int. J. Numer. Meth. Engng. 54, 695–714
(2002)

15. Marella, S., Krishnan, S., Liu, H., Udaykumar, H.S.: Sharp interface Cartesian grid
method I: An easily implemented technique for 3D moving boundary computations.
J. Comp. Phys. 210, 1–31 (2005)

16. Muldoon, F., Acharya, S.: A modification of the artificial compressibility algorithm
with improved convergence characteristics, Int. J. Numer. Meth. Fluids 55, 307–345
(2007)

17. Pinelli, A., Naqavi, I.Z., Piomelli, U., Favier, J.: Immersed-boundary methods
for general finite-difference and finite-volume Navier–Stokes solvers. J. Comp.
Phys. 229, 9073–9091 (2010)

18. Roache, P.J.: Computational Fluid Dynamics, Hermosa, Albuquerque, N.M (1976)
19. Schlichting, H., Truckenbrodt, E.: Aerodynamics of the Airplane. McGraw-Hill,

New York (1979)
20. Semin, L., Shapeev, V.: Constructing the Numerical Method for Navier – Stokes

Equations Using Computer Algebra System. In: Ganzha, V.G., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 367–378. Springer,
Heidelberg (2005)

21. Semin, L.G., Sleptsov, A.G., Shapeev, V.P.: Collocation and least -squares method
for Stokes equations. Computational Technologies 1(2), 90–98 (1996) (in Russian)

22. Shapeev, A.V.: Application of computer algebra systems to construct high-order
difference schemes. In: 6th IMACS Int. IMACS Conf. on Applications of Computer
Algebra, June, 25-28, pp. 92–93. Univ. of St. Petersburg, St. Petersburg (2000)

23. Shapeev, A.V., Lin, P.: An asymptotic fitting finite element method with exponen-
tial mesh refinement for accurate computation of corner eddies in viscous flows.
SIAM J. Sci. Comput. 31, 1874–1900 (2009)

24. Uhlmann, M.: An immersed boundary method with direct forcing for the simulation
of particulate flows. J. Comp. Phys. 209, 448–476 (2005)

25. Valiullin, A.N., Ganzha, V.G., Meleshko, S.V., Murzin, F.A., Shapeev, V.P., Ya-
nenko, N.N.: Application of Symbolic Manipulations on a Computer for Generation
and Analysis of Difference Schemes. Preprint Inst. Theor. Appl. Mech. Siberian
Branch of the USSR Acad. Sci., Novosibirsk (7) (1981)

26. Voevodin, V.V.: Computational Foundations of Linear Algebra. Nauka, Moscow
(1977) (in Russian)

27. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Heidelberg
(2001)

Verifiable Conditions on Asymptotic Stabilisability
for a Class of Planar Switched Linear Systems�

Zhikun She and Haoyang Li

SKLSDE, LMIB and School of Mathematics and Systems Science
Beihang University, Beijing, China
zhikun.she@buaa.edu.cn

Abstract. In this paper, we propose a computer algebra based approach for an-
alyzing asymptotic stabilisability of a class of planar switched linear systems,
where subsystems are assumed to be alternatively active. We start with an alge-
braizable sufficient condition on the existence of stabilizing switching lines and
a multiple Lyapunov function. Then, we apply a real root classification based
method to under-approximate this condition such that the under-approximation
only involves the parametric coefficients. Afterward, we additionally use quanti-
fier elimination to eliminate parameters in the multiple Lyapunov function, arriv-
ing at a quantifier-free formula over parameters in the switching lines. According
to our intermediate under-approximation as well as our final quantifier-free for-
mula, we can easily design explicit stabilizing switching laws. Moreover, based
on a prototypical implementation, we use an illustrating example to show the ap-
plicability of our approach. Finally, the advantages of our approach are demon-
strated by the comparisons with some related works in the literature.

1 Introduction

A switched system [24,13] is a hybrid system which comprises a collection of dynamic
systems and a switching law that specifies switching instances between two dynamic
systems. Many real-world processes and systems, for example, gyroscopic systems,
power systems and biological systems, can be modeled as switched systems. Among
the various research topics on switched systems, stability and stabilisability of switched
systems have attracted most of the attention [18,32,12,29,8,33,19,20]. For more refer-
ences, the reader may refer to the survey papers [15,17] and the books [14,13].

On the analysis, design and synthesis of stable switched systems, there are two cate-
gories of stabilization strategies. One is the feedback stabilization, where state or output
feedback control laws are designed based on a given class of switching laws. Usually,
the following switching laws are considered: arbitrary switching [7], slow switching [6]
and restricted switching induced by partitions of the state space [23], etc.

The other one is the switching stabilization, where the critical problem is the design
of stabilizing switching laws by time domain restrictions [12,28] and state space re-
strictions [10,1,20,16,11]. For this critical problem, one challenge is to derive sufficient
and necessary conditions for the existence of stabilizing switching laws. Some neces-
sary and sufficient conditions have been derived for certain classes of switched systems,

� This work was partly supported by NSFC-61003021 and SKLSDE-2011ZX-16.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 334–348, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Verifiable Conditions on Asymptotic Stabilisability 335

for instances, continuous-time linear switched systems in static state feedback [16] and
generic switched linear systems with a pair of planar subsystems [11], etc. But, few
results on general switched systems have been obtained. Thus, it has been becoming
more practical to only find sufficient conditions [10,12,21,20]. However, in the litera-
ture, most of these found sufficient conditions are not easily verified [12,21,20]. More-
over, they are often used to prove the existence of stabilizing switching laws [10,12,16]
instead of explicitly providing them.

It is well known that one sufficient stabilisability condition is the existence of a com-
mon Lyapunov function (CLF) or a multiple Lyapunov function (MLF) [3,20]. Thus,
following our earlier work on computing quadratic MLFs [26], we will in this paper pro-
vide an easily verifiable condition on stabilizing switching laws to guarantee asymptotic
stabilisability of a class of planar switched linear systems (PSLS), where subsystems are
assumed to be alternatively active.

We first construct an algebraizable sufficient condition for the existence of stabi-
lizing switching lines and a multiple Lyapunov function in quadratic form. Then, in
order to make computation efficient, we reduce the number of parameters and classify
our discussion on its asymptotic stabilisability into eight cases. For each case, we ap-
ply a real root classification (RRC) based method to under-approximate this sufficient
condition such that each under-approximation only involves the coefficients of the pre-
assumed quadratic Lyapunov functions and pre-assumed stabilizing switching lines.
Furthermore, we additionally formulate each under-approximation as an existentially
quantified constraint and use quantifier elimination (QE) to eliminate the coefficients of
the pre-assumed Lyapunov functions, arriving at a quantifier-free formula over parame-
ters appearing in the switching lines. Easily, we can design explicit stabilizing switching
laws by using sample points satisfying our intermediate under-approximation as well as
our final quantifier-free formula. Finally, based on a prototypical implementation, we
use an illustrating example to show the verifiability and applicability of our approach.

Moreover, we compare our current approach with some related works in the litera-
ture [33,11]. Especially, we use a simple example to show that we can design stabilizing
switching laws that do not satisfy the collinear condition in [11].

To our knowledge, this is the first time to apply computer algebra to provide explicit
stabilizing switching laws for analyzing asymptotic stabilisability.

Distinguishingly different from [27], this paper aims to design stabilizing switch-
ing laws while [27] aims to calculate a MLF with given switching laws. Therefore,
the switching lines as well as the state space of each subsystem are undetermined pa-
rameters in our sufficient condition and thus we additionally require QE to generate
stabilizing conditions. Moreover, since the system is planar, our current conditions are
simpler than the corresponding ones in [27] and thus their under-approximations or
equivalences can be flexibly computed due to the classification.

2 Preliminaries and Problem Definitions

A switched system is a system that consists of a finite number of subsystems of form
ẋ = fi(x) and a switching law S, where i ∈ M,M = {1, · · · ,N} is the set of discrete

336 Z. She and H. Li

modes, x ∈ Xi, Xi ⊂ Rn is the continuous state space of mode i, fi(x) is a vector
field describing the dynamics of mode i, and S determines switches between different
modes (i.e., switches between different subsystems). Moreover, we assume that the time
interval between two successive switching instances must be positive.

A trajectory of a switched system is a finite or an infinite sequence r0(t), r1(t),
· · · , rp(t), · · · of flows with a sequence T0, T1, · · · , Tp, · · · , such that for all
t ∈ [Tp, Tp+1], the system is active in a certain mode i and evolves according to ṙp(t) =
fi(rp(t)). For simplicity, we denote a trajectory r0(t), r1(t), . . . , rp(t), . . . by x(t)
satisfying

1. x(0) = r0(0) and for all p ≥ 0, x(
∑p

i=0 Ti) = rp(Tp) = rp+1(0);

2. for all t ∈ (
∑p−1

i=0 Ti,
∑p

i=0 Ti), x(t) = rp(t −∑p−1
i=0 Ti).

Definition 1. (Asymptotically Stable) A switched system is called stable if

∀ε > 0∃δ > 0∀t > 0 [‖x(0)‖ < δ⇒ ‖x(t)‖ < ε] ,
and attractive if for all trajectories x(t), limt→+∞ x(t) = 0, where 0 is its equilibrium
point. A switched system is called asymptotically stable if it is both stable and attractive.

Due to the existence of the switching law, the asymptotic stability of every subsystems
is neither necessary nor sufficient for the asymptotic stability of the switched system,
which can be seen from the following example.

Example 1. [27] Consider a pair of planar linear subsystems of form ẋ = Aix, where

A1 =

(−1 −10
100 −1

)

and A2 =

(−1 −100
10 −1

)

.

Clearly, each subsystem ẋ = Ai x is globally asymptotically stable. However, the
switched system using A1x in the second and fourth quadrants and A2x in the first
and third quadrants is unstable and the switched system using A1x in the first and third
quadrants and A2x in the second and fourth quadrants is asymptotically stable, which
can be easily seen from Fig. 1 and Fig. 2, respectively.

Fig. 1. An unstable switched system Fig. 2. A stable switched system

Verifiable Conditions on Asymptotic Stabilisability 337

Thus, we need to concern about such a question: what restriction should we consider
for the switching law in order to guarantee asymptotic stability of a switched system.
This question is connected with asymptotic stabilisability defined as follows.

Definition 2. (Asymptotic stabilisability) A switched system is called asymptotically
stabilisable if there exists a switching law such that it is asymptotically stable.

In general, stability analysis of switched systems is undecidable [2] and finding a switch-
ing law for guaranteeing stability is at least NP-hard [1]. Thus, in this paper, we will
focus on a class of planar switched linear systems of form ẋ = Aix, where i = 1, 2,
x ∈ R2 and subsystems must be alternatively active. In addition, we assume that

1. each subsystem evolves anti-clockwisely, i.e., by letting Ai =

(
ai,11 ai,12

ai,21 ai,22

)

, Ai should

satisfy ai,12 < 0 < ai,21 and (ai,22 − ai,11)2 + 4ai,12ai,21 < 0, and
2. switches must occur at two different candidate lines L1 and L2 through the origin.

We denote such a switched system as PSLS.
Therefore, given a switched system PSLS, we in this paper attempt to generate easily

verifiable conditions on L1 and L2 such that switching laws can be directly derived to
guarantee asymptotic stability, which will be discussed in Section 3 by using real root
classification (RRC) [5,26,27] and quantifier elimination (QE) [4,9].

Remark 1. Our approach proposed in Section 3 can also be adapted to linear systems
with subsystems in any form (e.g., a subsystem has a proper node or a saddle). Such an
adaption to more general switched linear systems will be our future work. Moreover,
our approach can also be adapted to systems where L1 and L2 are the same.

3 RRC and QE Based Approach for Generating Switching Laws

In this section, based on the algebraization of the existence condition on multiple Lya-
punov functions, we will use real root classification (RRC) and quantifier elimination
(QE) to generate switching laws for a given system PSLS such that PSLS using these
switching laws is asymptotically stable.

3.1 Algebraic Analysis on Asymptotic Stabilisability

In this subsection, we will construct an algebraizable sufficient condition for asymptotic
stability analysis of a given PSLS. To start with, we will introduce a classical theorem
on multiple Lyapunov functions for a switched system as follows.

Theorem 1. [13,27] For a given switched system, if there exist a neighborhood U of
the origin and continuously differentiable functions Vi(x) : Xi → R, i ∈ M, such that

1. for each i ∈ M, Vi(0) = 0 and d
dt Vi(0) = (∇Vi(0))T · fi(0) = 0;

2. for each i ∈ M and each x ∈ Xi ∩ U, if x � 0, then Vi(x) > 0;
3. for each i ∈ M and each x ∈ Xi ∩U, if x � 0, then d

dt Vi(x) = (∇Vi(x))T · fi(x) < 0;

338 Z. She and H. Li

4. for all i, j ∈ M, if x ∈ {x ∈ U : φi, j(x)}, then Vi(x) ≥ V j(x), where φi, j(x) is
a constraint describing that if φi, j(x) holds, a switching instance from mode i to
mode j at the state x must occur,

then the system is asymptotically stable. Here, the family {Vi(x) : i ∈ M} is called as a
multiple Lyapunov function.

Moreover, in order to apply the above MLF theorem for a given PSLS, we can without
loss of generality provide some assumptions and notations as follows.

1. The candidate switching conditions (i.e., the two candidate lines) can be written as

gi
T x = 0, where i ∈ {1, 2}, x =

(
x1

x2

)

, gi =

(
ki1

ki2

)

, ki2 ≥ 0 and ki1, ki2 are parameters;

2. A switch from mode 1 to mode 2 occurs at the state x if x satisfies g1
T x = 0 and a

switch from mode 2 to mode 1 occurs at the state x if x satisfies g2
T x = 0;

3. X1 is the region defined by an anti-clockwise rotation around the origin from the
line g2

T x = 0 to g1
T x = 0 and X2 is the region defined by an anti-clockwise

rotation around the origin from the line g1
T x = 0 to g2

T x = 0. Thus, for each i,
Xi = Xi1∪Xi2, where for each j ∈ {1, 2},Xi j = {x : Ei jx ≥ 0}, Ei j ∈ R2×2 is defined
directly after classification in Subsection 3.2, and for two vectors a = (a1, a2) and
b = (b1, b2), a ≥ b means a1 ≥ b1 and a2 ≥ b2;

4. For each i ∈ {1, 2}, let Vi(x) = xT Pix, where Pi =

(
ai

bi
2

bi
2 ci

)

∈ R2×2 is a symmetric

matrix and ai, bi, ci are real parameters.

Thus, based on above assumptions and notations, we can construct an algebraizable
sufficient condition for analyzing asymptotic stabilisability of a given PSLS as follows.

Theorem 2. For a given system PSLS, if there exist functions Vi(x) = xT Pi x and two
different switching lines defined by gi

T x = 0, where i ∈ {1, 2}, such that:

1. for each i, j ∈ {1, 2},
(1a) ∀x[x ∈ Xi j ∧ x � 0⇒ Vi(x) � 0], and
(1b) ∃xi j,1[Ei jxi j,1 > 0 ∧ Vi(xi j,1) > 0];

2. for each i, j ∈ {1, 2},
(2a) ∀x[x ∈ Xi ∧ x � 0⇒ V̇i(x) � 0], and
(2b) ∃xi j,2[Ei jxi j,2 > 0 ∧ V̇i(xi j,2) < 0];

3. ∀x
[[

g1
T x = 0⇒ V2(x) ≤ V1(x)

]
∧
[
g2

T x = 0⇒ V1(x) ≤ V2(x)
]]

,

where V̇i(x) = (∇Vi(x))T · fi(x), then the PSLS is asymptotically stabilisable.

Proof. For each i ∈ {1, 2}, since Vi(x) = xT Pix, it is clear that Vi(0) = 0 and V̇i(0) = 0.
Due to the condition (1a), for each i ∈ {1, 2}, 0 is the unique solution of Vi(x) = 0 in

Xi. We want to prove that for each i ∈ {1, 2} and each x ∈ Xi, if x � 0, then Vi(x) > 0.
Suppose that for each i ∈ {1, 2}, there is a point x′i ∈ Xi such that x′i � 0 and

Vi(x′i) < 0. Clearly, either x′i ∈ Xi1 or x′i ∈ Xi2.

1. If x′i ∈ Xi1, according to the convexity of the set {x : Ei1x > 0} and the continuity
of Vi(x), there exists a point x′′i j,1 ∈ Xi1 such that x′′i j,1 � 0 and Vi(x′′i j,1) = 0,
contradicting the condition (1a).

Verifiable Conditions on Asymptotic Stabilisability 339

2. If x′i ∈ Xi2, we can similarly derive a contradiction.

Thus, for all x ∈ {x ∈ Xi|x � 0}, Vi(x) > 0.
Similarly, according to the condition (2a) and (2b), we can prove that for all x ∈ {x ∈

Xi|x � 0}, V̇i(x) < 0.
Due to Theorem 1, for the system PSLS, where the switching law is determined by

φ12(x) = [g1
T x = 0] and φ21(x) = [g2

T x = 0], the family {Vi(x), i = 1, 2} is a multiple
Lyapunov function, implying that the PSLS is asymptotically stabilisable. ��
Remark 2. Different from Theorem 3 in [27], Theorem 2 in this paper additionally con-
siders the parameters ki1 and ki2 (i = 1, 2) in our sufficient condition for guaranteeing
the asymptotic stabilisability of a given PSLS. Moreover, for each Xi j, we only require
one interior point instead of two non-collinear points, which makes the conditions (1b)
and (2b) in Theorem 2 simpler than the corresponding ones in [27]. This simpleness
results from the definition of Ei, js, which are all matrices of rank 2.

3.2 RRC and QE Based Approach for Guaranteeing Asymptotic Stabilisability

In this subsection, we will propose a RRC and QE based approach for analyzing asymp-
totic stabilisability of a given PSLS. That is, we will

1. apply a real root classification based approach to under-approximate the constraints
in Theorem 2 respectively in the sense that every solution of the under-approxima-
tion is also a solution of the original constraint;

2. make use of these under-approximations to formulate an existentially quantified
constraint, where the existential quantifiers are the parametric coefficients of the
pre-assumed MLF;

3. solve this constraint by quantifier elimination, arriving at a quantifier-free formula
over ki1 and ki2, i = 1, 2, which provides switching laws for guaranteeing asymp-
totic stabilisability.

First, in order to reduce the number of parameters and make computation efficient, we
assume that V1(x) = V2(x) = x2

1 + bx1x2 + cx2
2. Due to this assumption, the conditions

(1a) and (1b) in Theorem 2 can simply be replaced by b2 − 4c < 0 and the condition (3)
is always true. So, we only need to under-approximate the conditions (2a) and (2b).

Remark 3. If we use Vi(x) = aix2
1 +bix1 x2 + ci x2

2 for computation, the condition (1) can
be under-approximated in a similar way. Moreover, we can directly get an equivalent
formula for the condition (3) since switches in our planar systems occur at lines.

Second, for under-approximating the conditions (2a) and (2b), we will classify the dis-
cussion on its asymptotic stabilisability into the following two cases.

(1) One of the two candidate lines is the x2-axis. Thus, we have two subcases: (1a)
k11 = k1, k12 = 1, k21 = 1 and k22 = 0; (1b) k11 = 1, k12 = 0, k21 = k1 and k22 = 1.

(2) Both of the two candidate lines are not the x2-axis. Then, by introducing k1 and k2,
we can let k11 = k1, k12 = 1, k21 = k2, and k22 = 1. Thus, we have the following six
subcases: (2a) k1 ≤ 0 and k2 > 0; (2b) k2 ≤ 0 and k1 > 0; (2c) k1 < k2 ≤ 0; (2d)
k2 < k1 ≤ 0; (2e) k1 > k2 ≤ 0; (2f) k2 > k1 ≤ 0.

340 Z. She and H. Li

Due to the above classification, we can fix some notations as follows: for the subcases

(1a) and (1b), E11 =

(−k1 −1
1 0

)

, E12 =

(
k1 1
−1 0

)

, E21 =

(
k1 1
1 0

)

, E22 =

(−k1 −1
−1 0

)

; for the

other subcases, E11 =

(−k1 −1
k2 1

)

, E12 =

(
k1 1
−k2 −1

)

, E21 =

(
k1 1
k2 1

)

, E22 =

(−k1 −1
−k2 −1

)

.

Without loss of generality, we mainly analyze the subcases (1a), (2a), (2c) and (2e)
for Theorem 2 and the other subcases can be discussed in a similar way.

3.2.1 k11 = k1, k12 = 1, k21 = 1 and k22 = 0. We observe that X11 and X12

(X21 and X22) are symmetric with respect to the origin. Moreover, in Theorem 2, by
denoting V̇i(x) as L̇i(x, b, c) for i = 1, 2, we also observe that L̇i(x, b, c) is a symmetric
function with respect to the origin. So, it is sufficient to only consider the condition (2)
for i ∈ {1, 2} and j = 1.

In details, we will under-approximatively solve the corresponding condition (2) in a
conservative way such that every solution of the under-approximations is also a solution
of the original conditions as follow.

For each i ∈ {1, 2} and j = 1, we first equivalently transform the condition (2a) to
∧2

l=1φi,1,l(k1, b, c), where φi,1,1(k1, b, c) = [∀x[Ei1x ≥ 0 ∧ x1 � 0 ⇒ L̇i(x, b, c) � 0]] and
φi,1,2(k1, b, c) = [∀x[Ei1x ≥ 0 ∧ x2 � 0⇒ L̇i((0, x2), b, c) � 0]].

1. For φi,1,2(k1, b, c), we can easily obtain its equivalent constraint Λ2a,i,1,2(k1, b, c).
2. For solving φi,1,1(k1, b, c), we first use real root classification to get the sufficient

and necessary condition δi,1,1 over k1, b, c, x1, denoted as rrc(L̇i(x, b, c) = 0, Ei1x ≥
0, x1 � 0) or

∨
s
∧

l gs,l(k1, b, c, x1)Δ0, where Δ ∈ {=, >,≥,�}, such that the semi-
algebraic system {L̇i(x, b, c) = 0, Ei1x ≥ 0, x1 � 0} has no solution about x2. Sec-
ond, we can use Algorithm 1 to under-approximate∀x1[x1 > 0⇒ δi,1,1(k1, b, c, x1)],
whose correctness can be assured by Lemma 2 in [27]. Denote these obtained
under-approximations as Λ2a,i,1,1(k1, b, c), i ∈ {1, 2}. Then, according to Lemma
4 in [27], Λ2a,i,1,1(k1, b, c) is also an under-approximation for φi,1,1(k1, b, c).

Algorithm 1. Computing an under-approximation
Input: ∀x1 ∈ R[[ax1 ≥ 0 ∧ x1 � 0] ⇒ ∨m

s=1
∧ns

l=1 gs,l(k1, b, c, x1)Δ0], where each gs,l is of form
∑ds,l

d=0 gs,l,d(k1, b, c)xd
1.

Output: an under-approximative constraint for the input.
1: for s = 1 : 1 : m do
2: for l = 1 : 1 : ns do
3: if ds,l = 0 then let δs,l = [gs,l(k1, b, c)Δ0];
4: else if Δ in gs,lΔ0 is “=” then let δs,l = [∧ds,l

d=0gs,l,d (k1, b, c) = 0];
5: else if Δ is “�” then let δs,l = rrc(gs,l(k1, b, c, x1) = 0, ax1 ≥ 0, x1 � 0);
6: else if a � 0 then let δs,l = rrc(ax1 > 0, gs,l = 0) ∧ gs,l(k1, b, c, sgn(a)) > 0;
7: else let δs,l = rrc(x1 � 0, gs,l = 0)∧ gs,l(k1, b, c, 1) > 0∧ gs,l(k1, b, c,−1) > 0;
8: end for
9: end for

10: return
∨m

s=1
∧ns

l=1 δs,l .

Verifiable Conditions on Asymptotic Stabilisability 341

Thus, Λ2a,i,1,1(k1, b, c)
∧
Λ2a,i,1,2(k1, b, c) is an under-approximation for the condition

(2a), denoted as Λ2a,i,1(k1, b, c). Let Λ2a(k1, b, c) = ∧2
i=1Λ2a,i,1(k1, b, c).

For solving the condition (1b), for each i ∈ {1, 2}, taking x11,1 = (1,−k1 − 1)
and x21,1 = (1,−k1 + 1), we can simply replace the condition (1b) by the constraint
[L̇(xi1,1, b, c) < 0], denoted as Λ2b,i,1(k1, b, c). Such a simple replacement will not lose
any information, which can be proven as follows: letting Ω1

i1 = {(k1, b, c) : ∀x[Ei1x ≥
0 ∧ x � 0 ⇒ L̇i(x, b, c) � 0]}, Ω2

i1 = {(k1, b, c) : ∃x[Ei1x > 0 ∧ L̇i(x, b, c) < 0]},
Ω3

i1 = {(k1, b, c) : (k, b, c) ∈ Ω1 ∧ (k, b, c) ∈ Ω2} and Ω4
i1 = {(k1, b, c) : (k, b, c) ∈

Ω1 ∧ L̇i(xi1,1, b, c) < 0}, we have the following proposition.

Proposition 1. Ω3
i1 = Ω

4
i1.

Proof. From the proof of Theorem 2,if (k1, b, c) ∈ Ω3
i1, then ∀x[x � 0 ∧ Ei1 x > 0 ⇒

L̇(x, b, c) < 0], implying that L̇(xi1,1, b, c) < 0. Thus (k1, b, c) ∈ Ω4
i1 and then Ω3

i1 ⊂ Ω4
i1.

Similarly, if (k1, b, c) ∈ Ω4, then ∀x[x � 0 ∧ Ei1x > 0 ⇒ L̇(x, b, c) < 0], implying
that (k1, b, c) ∈ Ω2

i1 and then Ω4
i1 ⊂ Ω3

i1. Thus, Ω3
i1 = Ω

4
i1. ��

Let Λ2b(k1, b, c) = ∧2
i=1Λ2b,i,1(k1, b, c) and CASE1a(k1, b, c) = [b2−4c < 0

∧
Λ2a
∧
Λ2b].

Combining above discussions, it is straightforward to have:

Proposition 2. If (k10, b0, c0) makes CASE1a(k1, b, c) hold, then g1 = (k10, 1), g2 = (1, 0)
and V1(x) = V2(x) = V(x, b, c) satisfy the conditions of Theorem 2. Thus, PSLS is
asymptoticallly stabilisable if its switching condition from mode 1 to mode 2 is k10x1 +

x2 = 0 and its switching condition from mode 2 to mode 1 is x1 = 0.

In addition, in order to generate conditions only involving switching laws, we can apply
QE to the constraint: ∃b∃c [CASE1a(k1, b, c)], arriving at an equivalent quantifier-free
formula over k1, denoted as QE1a(k1).

Thus, it is also straightforward to have:

Proposition 3. If k10 makes QE1a(k1) hold, then PSLS is asymptotically stabilisable if its
switching condition from mode 1 to mode 2 is k10x1+ x2 = 0 and its switching condition
from mode 2 to mode 1 is x1 = 0.

Remark 4. For convenience, we can first manually optimize CASE1a(k1, b, c) and then
formulate it as a disjunction of conjunctions. Thus, QE1a(k1) can be alternatively ob-
tained by applying QE to each conjunction.

Remark 5. According to Propositions 2 and 3, stabilizing switching laws can be de-
signed by sample points satisfying CASE1a(k1, b, c) (or, QE1a(k1)), which can be found
by an adaptive CAD based solver [25]. Moreover, for a given k10 (i.e., a given switching
law), we can verify whether PSLS is asymptotically stable by checking whether there
exist b and c such that CASE1a(k10, b, c) holds (or, directly checking whether QE1a(k10)
holds).

3.2.2 k1 ≤ 0 and k2 > 0
Similarly, for under-approximatively solving the condition (2), it is also sufficient to
only consider the condition (2) for i ∈ {1, 2} and j = 1.

342 Z. She and H. Li

In details, for each i ∈ {1, 2} and j = 1, we first equivalently transform the condi-
tion (2a) to ∧2

l=1φi,1,l(k1, k2, b, c), where φi,1,1(k1, k2, b, c) = [∀x[Ei1x ≥ 0 ∧ x1 � 0 ⇒
L̇i(x, b, c) � 0]] and φi,1,2(k1, k2, b, c) = [∀x[Ei1x ≥ 0 ∧ x2 � 0⇒ L̇i((0, x2), b, c) � 0]].

1. For φi,1,2(k1, b, c), we can easily obtain its equivalent constraint Λ2a,i,1,2(k1, b, c).
2. For solving φ1,1,1(k1, k2, b, c), we first use real root classification to get the suffi-

cient and necessary condition δ1,1,1 over k1, k2, b, c, x1, such that the semi-algebraic
system {L̇i(x, b, c) = 0, E11x ≥ 0, x1 � 0} has no solution about x2; for solving
φ2,1,1(pi), we first use real root classification to get the sufficient and necessary con-
dition δ2,1,1 over k1, k2, b, c, x2, such that the semi-algebraic system {L̇i(x, b, c) =
0, E21x ≥ 0, x1 � 0} has no solution about x1. Then, we similarly use Algorithm 1
to under-approximate ∀x1[x1 > 0 ⇒ δ1,1,1(k1, k2, b, c, x1)] and ∀x2[x2 > 0 ⇒
δ2,1,1(k1, k2, b, c, x2)], respectively. Denote these obtained under-approximations as
Λ2a,i,1,1(k1, k2, b, c), i ∈ {1, 2}.

Thus, Λ2a,i,1,1(k1, k2, b, c)
∧
Λ2a,i,1,2(k1, k2, b, c) is an under-approximation for the

condition (2a), denoted asΛ2a,i,1(k1, k2, b, c). LetΛ2a(k1, k2, b, c)=∧2
i=1Λ2a,i,1(k1, k2, b, c).

For solving the condition (2b), for each i ∈ {1, 2}, taking x11,1 = (1,− k1+k2
2) and

x21,1 = (− k1+k2
2 , 1), we can simply replace the condition (2b) by its equivalent constraint

[L̇(xi1,1, b, c) < 0], denoted as Λ2b,i,1(k1, k2, b, c).
Let Λ2b(k1, k2, b, c) = ∧2

i=1Λ2b,i,1(k1, k2, b, c) and CASE2a(k1, k2, b, c) = [b2 − 4c <
0
∧
Λ2a
∧
Λ2b]. Similarly, we can apply QE to the constraint ∃b∃c [CASE2a(k1, k2, b, c)]

and obtain an equivalent quantifier-free formula over k1, denoted as QE2a(k1, k2).

3.2.3 k1 < k2 ≤ 0
Similarly, for under-approximatively solving condition (2), it is also sufficient to only
consider the condition (2) for i ∈ {1, 2} and j = 1.

In details, for each i ∈ {1, 2} and j = 1, we first equivalently transform the condi-
tion (2a) to ∧2

l=1φi,1,l(k1, k2, b, c), where φi,1,1(k1, k2, b, c) = [∀x[Ei1x ≥ 0 ∧ x1 � 0 ⇒
L̇i(x, b, c) � 0]] and φi,1,2(k1, k2, b, c) = [∀x[Ei1x ≥ 0 ∧ x2 � 0⇒ L̇i((0, x2), b, c) � 0]].

1. For φi,1,2(k1, b, c), we can easily obtain its equivalent constraint Λ2a,i,1,2(k1, b, c).
2. For solving φi,1,1(k1, k2, b, c), we first use real root classification to get the suffi-

cient and necessary condition δi,1,1 over k1, k2, b, c, x1, such that the semi-algebraic
system {L̇i(x, b, c) = 0, Ei1x ≥ 0, x1 � 0} has no solution about x2. Then, we sim-
ilarly use Algorithm 1 to under-approximate ∀x1[x1 > 0 ⇒ δ1,1,1(k1, k2, b, c, x1)],
and ∀x1[x1 � 0⇒ δ2,1,1(k1, k2, b, c, x1)], respectively. Denote these obtained under-
approximations as Λ2a,i,1,1(k1, k2, b, c), i ∈ {1, 2}.

Thus, Λ2a,i,1,1(k1, k2, b, c)
∧
Λ2a,i,1,2(k1, k2, b, c) is an under-approximation for the

condition (2a), denoted asΛ2a,i,1(k1, k2, b, c). LetΛ2a(k1, k2, b, c)=∧2
i=1Λ2a,i,1(k1, k2, b, c).

For solving the condition (2b), for each i ∈ {1, 2}, taking x11,1 = (1,− k1+k2
2) and

x21,1 = (0, 1), we can simply replace the condition (2b) by its equivalent constraint
[L̇(xi1,1, b, c) < 0], denoted as Λ2b,i,1(k1, k2, b, c).

Let Λ2b(k1, k2, b, c) = ∧2
i=1Λ2b,i,1(k1, k2, b, c) and CASE2c(k1, k2, b, c) = [b2 − 4c <

0
∧
Λ2a
∧
Λ2b]. Similarly, we can apply QE to the constraint ∃b∃c [CASE2c(k1, k2, b, c)]

and obtain an equivalent quantifier-free formula over k1, denoted as QE2c(k1, k2).

Verifiable Conditions on Asymptotic Stabilisability 343

3.2.4 k1 > k2 ≥ 0
Similarly, for under-approximatively solving the condition (2), it is also sufficient to
only consider the condition (2) i ∈ {1, 2} and j = 1.

In details, for each i ∈ {1, 2} and j = 1, we first equivalently transform the condi-
tion (2a) to ∧2

l=1φi,1,l(k1, k2, b, c), where φi,1,1(k1, k2, b, c) = [∀x[Ei1x ≥ 0 ∧ x1 � 0 ⇒
L̇i(x, b, c) � 0]] and φi,1,2(k1, k2, b, c) = [∀x[Ei1x ≥ 0 ∧ x2 � 0⇒ L̇i((0, x2), b, c) � 0]].

1. For φi,1,2(k1, b, c), we can easily obtain its equivalent constraint Λ2a,i,1,2(k1, b, c).
2. For solving φi,1,1(k1, k2, b, c), we first use real root classification to get the suffi-

cient and necessary condition δi,1,1 over k1, k2, b, c, x1, such that the semi-algebraic
system {L̇i(x, b, c) = 0, Ei1x ≥ 0, x1 � 0} has no solution about x2. Second, we sim-
ilarly use Algorithm 1 to under-approximate ∀x1[x1 < 0 ⇒ δ1,1,1(k1, k2, b, c, x1)]
and ∀x1[x1 � 0⇒ δ2,1,1(k1, k2, b, c, x1)], respectively. Denote these obtained under-
approximations as Λ2a,i,1,1(k1, k2, b, c), i ∈ {1, 2}.

Thus, Λ2a,i,1,1(k1, k2, b, c)
∧
Λ2a,i,1,2(k1, k2, b, c) is an under-approximation for the

condition (2a), denoted asΛ2a,i,1(k1, k2, b, c). LetΛ2a(k1, k2, b, c)=∧2
i=1Λ2a,i,1(k1, k2, b, c).

For solving the condition (2b), for each i ∈ {1, 2}, taking x11,1 = (0,−1) and x21,1 =

(1,− k1+k2
2), we can simply replace the condition (2b) by its equivalent constraint

[L̇(xi1,1, b, c) < 0], denoted as Λ2b,i,1(k1, k2, b, c).
Let Λ2b(k1, k2, b, c) = ∧2

i=1Λ2b,i,1(k1, k2, b, c) and CASE2e(k1, k2, b, c) = [b2 − 4c <
0
∧
Λ2a
∧
Λ2b]. Similarly, we can apply QE to the constraint ∃b∃c [CASE2e(k1, k2, b, c)]

and obtain an equivalent quantifier-free formula over k1, denoted as QE2e(k1, k2).

3.2.5 Summary
Similarly, for the subcase (1b), we have CASE1b(k1, b, c) and QE1b(k1); for the sub-
cases (2b), (2d) and (2f), we have CASE2b(k1, k2, b, c), QE2b(k1, k2), CASE2d(k1, k2, b, c),
QE2d(k1, k2), CASE2 f (k1, k2, b, c) and QE2 f (k1, k2), respectively.

Thus, it is straightforward to have:

Theorem 3. If CASE1a(k10, b0, c0) (CASE1b(k10, b0, c0)) or QE1a(k10) (QE1b(k10)) holds,
then PSLS is asymptotically stable if its switching condition from mode 1 to mode 2 is
k10x1 + x2 = 0 (x1 = 0) and its switching condition from mode 2 to mode 1 is x1 = 0
(k10x1 + x2 = 0); If [k10 ≤ 0 ∧ k20 > 0 ∧ CASE2a(k10, k20, b0, c0)] ∨ [k10 < k20 ≤
0∧ CASE2c(k10, k20, b0, c0)]∨ [k10 > k20 ≥ 0∧ CASE2e(k10, k20, b0, c0)]∨ [k20 ≤ 0∧ k10 >
0 ∧ CASE2b(k10, k20, b0, c0)] ∨ [k20 < k10 ≤ 0 ∧ CASE2d(k10, k20, b0, c0)] ∨ [k20 > k10 ≥
0 ∧ CASE2 f (k10, k20, b0, c0)] or [k10 ≤ 0 ∧ k20 > 0 ∧ QE2a(k10, k20)] ∨ [k10 < k20 ≤
0∧QE2c(k10, k20)]∨ [k10 > k20 ≥ 0∧QE2e(k10, k20]∨ [k20 ≤ 0∧k10 > 0∧QE2b(k10, k20)]∨
[k20 < k10 ≤ 0∧QE2d(k10, k20)]∨ [k20 > k10 ≥ 0∧QE2 f (k10, k20)] holds, then the PSLS is
asymptotically stable if its switching condition from mode 1 to mode 2 is k10x1 + x2 = 0
and its switching condition from mode 2 to mode 1 is k20x1 + x2 = 0.

Remark 6. For under-approximating the condition (2a), we orderly eliminate x2 and x1

in [27] while in this paper, due to the definition of Ei j, we for certain subcases first
eliminate x1, e.g., the subcase (2a).

344 Z. She and H. Li

3.3 Real Root Classification

A semi-algebraic system (or short, sas) is a system of form

{p1(x, u) = 0, · · · , ps(x, u) = 0, g1(x, u) ≥ 0, · · · , gr(x, u) ≥ 0,

gr+1(x, u) > 0, · · · , gt(x, u) > 0, h1(x, u) � 0, · · · , hm(x, u) � 0},
where variable x ranges in Rn, parameter u ranges in Rd, and pi, g j, hk are polynomials
in Q[x, u]. We can write the system as [P,G1,G2,H], where P, G1 ,G2 and H stand for
[p1, · · · , ps], [g1, · · · , gr], [gr+1, · · · , gt] and [h1, · · · , hm], respectively.

An sas is called a constant semi-algebraic system if it contains no parameters, i.e.,
d = 0; otherwise, a parametric semi-algebraic system.

For a parametric sas S , one problem is to determine the sufficient and necessary con-
dition on the parameters such that S has N distinct real solutions. The Maple package
RegularChains [5] has the features for providing such a condition. To use these features,
one may first type in the following commands orderly:

> with(RegularChains):

> with(ParametricSystemTools):

> with(SemiAlgebraicSetTools):

> infolevel[RegularChains]:=1:

Then, for a parametric sas S of form [P,G1,G2,H] and a given non-negative integer
N, to determine the necessary and sufficient conditions on u such that the number of
distinct real solutions of S equals N, one can orderly type in

> R := PolynomialRing([x, u]);
> rrc := RealRootClassification(P, G1, G2, H, d, N, R);

where R is a list of variables and parameters, and d indicates the last d elements of R
are parameters. The output of RealRootClassification is a quantifier-free formula
Φ in parameters and a border polynomial BP(u) which mean that, provided BP(u) � 0,
the necessary and sufficient condition for S to have exactly N distinct real solutions is
Φ holds. Then, letting P′ = [p1, ..., ps,BP], one can call
> rrc1 := RealRootClassification(P’, G1, G2, H, d, N, R);

to find conditions on u when the parameters are on the “border” BP(u) = 0.

4 An Illustrating Example

In this section, we continue to consider Example 1, where each subsystem is globally
asymptotically stable. In details, by using a prototypical implementation, we first have:

Λ2a,1,1(k1, b, c) =[5b + c > 0 ∧ 1001b2 + 10000c2 − 2004c + 100 < 0]

∨[5b + c > 0 ∧ 1001b2 + 10000c2 − 2004c + 100 > 0

∧ 10bk1 + 2ck1 − b + 100c − 10 ≥ 0

∧ 5bk2
1 + ck2

1 − bk1 + 100ck1 − 50b − 10k1 + 1 > 0]

∨[5b + c > 0 ∧ 1001b2 + 10000c2 − 2004c + 100 = 0

∧ 10bk1 + 2ck1 − b + 100c − 10 > 0];

Verifiable Conditions on Asymptotic Stabilisability 345

Λ2a,2,1(k1, b, c) =[50b + c > 0 ∧ 1001b2 + 100c2 − 2004c + 10000 < 0]

∨[50b + c > 0 ∧ 1001b2 + 100c2 − 2004c + 10000 > 0

∧ 100bk1 + 2ck1 − b + 10c − 100 ≤ 0

∧ 50bk2
1 + ck2

1 − bk1 + 10ck1 − 5b − 100k1 + 1 > 0]

∨[50b + c > 0 ∧ 1001b2 + 100c2 − 2004c + 10000 = 0

∧ 100bk1 + 2ck1 − b + 10c − 100 < 0];

Λ2b,1,1(k1, b, c) =[(5b + c)(k1 + 1)2 + (10 + b − 100c)(−k1 − 1) + (1 − 50b) > 0];

Λ2b,2,1(k1, b, c) =[(50b + c)(k1 − 1)2 + (100 + b − 10c)(−k1 + 1) + (1 − 5b) > 0].

Then, CASE1a = [b2−4c < 0∧Λ2a,1,1∧Λ2a,2,1∧Λ2b,1,1∧Λ2b,2,1]. And we can in a similar
way get CASE1b, CASE2a, CASE2b, CASE2c, CASE2d, CASE2e and CASE2 f , respectively. Due
to the space limit, we omit the corresponding computation results here.

We have also reformulated CASE1a as a disjunction of conjunctions and applied both
REDLOG [9] and QEPCAD [4] to each conjunction. However, the corresponding results
are very large. So we also omit the corresponding computation results here.

Moreover, although certain conjunctions of CASE1a do not hold, we can still find
lots of sample points (e.g., (k1, b, c) = (− 10

9 ,
1

1024 ,
7
64)) in semi-algebraic sets defined by

other conjunctions, implying that there are explicit stabilizing switching laws and thus
this planar system is asymptotically stabilisable, which can be seen from Fig. 3.

Fig. 3. A stable switched system

Further, since there exist sample points b and c satisfying CASE1a(0, b, c) (e.g., (1
64 , 9)),

we certify that the switched system using A1x in the first and third quadrants and A2x
in the second and fourth quadrants is asymptotically stable.

5 Related Works with Comparisons

In the Subsection 3.1 of [33], the authors discussed the stabilization of two planar
subsystems with unstable foci. They first defined several regions for providing a fixed
switching law. Then, in their Theorem 1, by using this switching law, the asymptotic
stability is assured if and only if ‖x∗‖ < ‖x0‖, where x0 � 0 is an initial point in the
switching line and x∗ is the point obtained by following the trajectory of the switched

346 Z. She and H. Li

system from x0 around the origin for 2π. However, the inequality ‖x∗‖ < ‖x0‖ is not eas-
ily checked since in order to obtain x∗, one needs to solve both exponential functions
and trigonometric functions, which is still a difficult problem.

In [11], the authors investigated the regional stabilization of two planar subsystems
that are not asymptotically stable. They derived an verifiable, necessary and sufficient
condition for regional stabilisability of the switched system. The advantage is that the
existence of two independent vectors, along which the trajectories of the two subsys-
tems are collinear, is a necessary condition for the switched system to be stabilisable.
However, it is still hard to check the satisfiability of this sufficient condition when the
spiralling case is considered, since for such a case, one still needs to follow the trajec-
tory of the switched system around the origin for π and thus needs to solve trigonometric
and matrix exponential functions and integrate rational trigonometric functions.

In this current paper, we analyze the global asymptotic stabilisability of planar lin-
ear switched systems, where each subsystem has a stable or unstable focus and the two
subsystems are assumed to be alternatively active. Simply speaking, after regarding the
switching lines to be parametric, we use a multiple Lyapunov functions based approach
to produce a verifiable and sufficient condition. Especially, by using RRC and QE, we
not only can avoid integrating rational trigonometric functions and solving trigonomet-
ric functions and matrix exponential functions, but also can provide an explicit set of
stabilizing switching laws due to the theory of real-closed fields [31].

Consider a simple system ẋ = Aix, where A1 =

(
0.1

√
5

−√5 0.1

)

and A2 =

(
0.1

√
5/5

−5
√

5 0.1

)

.

Although each subsystem evolves clockwisely, we can similarly apply our RRC and
QE based approach and obtain a set of constant semi-algebraic systems over the slopes.
Especially, the switched system using A1x in the second and fourth quadrants and A2x
in the first and third quadrants is asymptotically stable, which can be seen from Fig. 4.
Clearly, v = (1, 0)T and w = (0, 1)T do not satisfy the collinear condition in [11].

Fig. 4. A stable switched system

Thus, in addition to the verifiability, an advantage of our approach over [33,11]
is that our condition can provide more selectable stabilizing switching laws that do
not satisfy the collinear condition although the trajectory of the system using these
stabilizing switching laws will converge to the origin with lower speeds.

Verifiable Conditions on Asymptotic Stabilisability 347

6 Conclusion

In this paper, we use a RRC and QE based algebraic approach to analyze asymptotic
stabilisability of a class of planar switched linear systems, where subsystems are as-
sumed to be alternatively active, arriving at an intermediate under-approximation over
all parameters and a final quantifier-free formula over the switching lines. Based on our
intermediate under-approximation as well as our final formula, we can easily design
explicit stabilizing switching laws. Moreover, we use an illustrating example to show
the applicability of our approach.

Our short-term goal is to simplify our classification on stabilizing switching lines and
make our analysis fully automatic. Our long-term goal is to analyze the stabilisability
of more general switched systems [13], e.g., planar linear switched systems in any form
and planar nonlinear switched systems. Moreover, we would also like to analyze the
practical stabilisability [34] by computing multiple Lyapunov-like functions [22].

References

1. Blondel, V.D., Bournez, O., Koiran, P., Tsitsiklis, J.N.: NP-hardness of Some Linear Control
Design Problems. SIAM J. Control and Optimization 35(8), 2118–2127 (1997)

2. Blondel, V.D., Tsitsiklis, J.N.: The Stability of Saturated Linear Dynamical Systems is Un-
decidable. Journal of Computer and System Sciences 62(3), 442–462 (2001)

3. Branicky, M.S.: Multiple Lyapunov Functions and other Analysis Tools for Switched and
Hybrid Systems. IEEE Transactions on Automatic Control 43(4), 751–760 (1998)

4. Brown, C.W.: QEPCAD B: A System for Computing with Semi-algebraic Sets via Cylindri-
cal Algebraic Decomposition. SIGSAM Bull 38(1), 23–24 (2004)

5. Chen, C., Lemaire, F., Li, L., Maza, M.M., Pan, W., Xie, Y.: The ConstructibleSetTools and
ParametricSystemsTools Modules of the RegularChains library in Maple. In: Proc. of the
International Conf. on Computational Science and Its Applications, pp. 342–352 (2008)

6. Cheng, D., Guo, L., Lin, Y., Wang, Y.: Stabilization of Switched Linear Systems. IEEE Trans-
actions on Automatic Control 50(5), 661–666 (2005)

7. Daafouz, J., Riedinger, R., Iung, C.: Stability Analysis and Control Synthesis for Switched
Systems: A Switched Lyapunov Function Approach. IEEE Transactions on Automatic Con-
trol 47, 1883–1887 (2002)

8. Decarlo, R.A., Braanicky, M.S., Pettersson, S., Lennartson, B.: Perspectives and Results on
the Stability and Stabilisability of Hybrid Systems. Proceedings of the IEEE 88(7), 1069–
1082 (2000)

9. Dolzmann, A., Sturm, T.: REDLOG: Computer Algebra Meets Computer Logic. SIGSAM
Bull 31(2), 2–9 (1997)

10. Feron, E., Apkarian, P., Gahinet, P.: Analysis and Synthesis of Robust Control Systems via
Parameter-dependent Lyapunov Functions. IEEE Transactions on Automatic Control 41(7),
1041–1046 (1996)

11. Huang, Z.H., Xiang, C., Lin, H., Lee, T.H.: Necessary and Sufficient Conditions for Re-
gional Stabilisability of Generic Switched Linear Systems with a Pair of Planar Subsystems.
International Journal of Control 83(4), 694–715 (2010)

12. Hespanha, J.P., Morse, A.S.: Stability of Switched Systems with Average Dwell-time. In:
Proceedings of the 38th Conference on Decision and Control, pp. 2655–2660 (1999)

13. Lunze, J., Lamnabhi-Lagarrigue, F.: Handbook of Hybrid Systems Control: Theory, Tools,
Applications. Cambridge University Press (2009)

348 Z. She and H. Li

14. Liberzon, D.: Switching in Systems and Control. Birkhauser, Boston (2003)
15. Liberzon, D., Morse, A.S.: Basic Problems in Stability and Design of Switched Systems.

IEEE Control Systems Magazine 19(5), 59–70 (1999)
16. Lin, H., Antasklis, P.J.: Switching Stabilisability for Continuous-time Uncertain Switched

Linear Systems. IEEE Transactions on Automatic Control 52(4), 633–646 (2007)
17. Lin, H., Antasklis, P.J.: Stability and Stabilizability of Switched Linear Systems: A Survey

of Recent Results. IEEE Transactions on Automatic Control 52(2), 308–322 (2009)
18. Narendra, K.S., Balakrishnan, J.: Adaptive Control using Multiple Models and Switching.

IEEE Transactions on Automatic Control 42(2), 171–187 (1997)
19. Narendra, K.S., Xiang, C.: Adaptive Control of Discrete-time Systems using Multiple Mod-

els. IEEE Transactions on Automatic Control 45, 1669–1686 (2000)
20. Pettersson, S.: Synthesis of Switched Linear Systems. In: Proceedings of the 42nd Confer-

ence on Decision and Control, pp. 5283–5288 (2003)
21. Pettersson, S., Lennartson, B.: Stabilization of Hybrid Systems Using a Min-Projection Stat-

egy. In: Proceedings of the American Control Conference, pp. 223–288 (2001)
22. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polynomial sys-

tems by computation of Lyapunov-like functions. SIAM Journal on Control and Optimiza-
tion 48(7), 4377–4394 (2010)

23. Rodrigues, L., Hassibi, A., How, J.P.: Observer-based Control of Piecewise-affine Systems.
International Journal of Control 76, 459–477 (2003)

24. van der Schaft, A., Schumacher, H.: An Introduction to Hybrid Dynamical Systems. Springer,
London (2000)

25. She, Z., Xia, B., Xiao, R., Zheng, Z.: A semi-algebraic approach for asymptotic stability
analysis. Nonlinear Analysis: Hybrid System 3(4), 588–596 (2009)

26. She, Z., Xue, B., Zheng, Z.: Algebraic Analysis on Asymptotic Stability of Continuous Dy-
namical Systems. In: Proceedings of the 36th International Symposium on Symbolic and
Algebraic Computation, pp. 313–320 (2011)

27. She, Z., Xue, B.: Algebraic Analysis on Asymptotic Stability of Switched Hybrid Systems.
In: Proceedings of the 15th International Conference on Hybrid Systems: Computation and
Control, pp. 197–196 (2012)

28. She, Z., Yu, J., Xue, B.: Controllable Laws for Stability Analysis of Switched Linear Sys-
tems. In: Proceedings of the 3rd IEEE International Conference on Computer and Network
Technology, vol. 13, pp. 127–131 (2011)

29. Shorten, R.N., Narendra, K.S.: Necessary and Sufficient Conditions for the Existence of a
Common Quadratic Lyapunov Function for Two Stable Second Order Linear Time-invariant
Systems. In: Proceedings of the American Control Conference, pp. 1410–1414 (1999)

30. Skafidas, E., Evans, R.J., Savkin, A.V., Petersen, I.R.: Stability Results for Switched Con-
troller Systems. IEEE Transactions on Automatic Control 35(4), 553–564 (1999)

31. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. Univ. of California
Press (1951)

32. Wicks, M.A., Peleties, P., DeCarlo, R.A.: Switched Controller Design for the Quadratic Sta-
bilization of a Pair of Unstable Systems. European J. of Control 4(2), 140–147 (1998)

33. Xu, X., Antasklis, P.J.: Switching Stabilisability for Continuous-time Uncertain Switched
Linear Systems. International Journal of Control 73(14), 1261–1279 (2000)

34. Xu, X., Zhai, G.: On Practical Stability and Stabilization of Hybrid and Switched Systems.
In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 615–630. Springer, Hei-
delberg (2004)

Improving Angular Speed Uniformity

by Optimal C0 Piecewise Reparameterization

Jing Yang1, Dongming Wang2, and Hoon Hong3

1 LMIB – School of Mathematics and Systems Science, Beihang University,
Beijing 100191, China

yangjing@smss.buaa.edu.cn
2 Laboratoire d’Informatique de Paris 6, CNRS – Université Pierre et Marie Curie,

4 place Jussieu – BP 169, 75252 Paris cedex 05, France
Dongming.Wang@lip6.fr

3 Department of Mathematics, North Carolina State University,
Box 8205, Raleigh, NC 27695, USA

hong@ncsu.edu

Abstract. We adapt the C0 piecewise Möbius transformation to com-
pute a C0 piecewise-rational reparameterization of any plane curve that
approximates to the arc-angle parameterization of the curve. The method
proposed on the basis of this transformation can achieve highly accurate
approximation to the arc-angle parameterization. A mechanism is devel-
oped to optimize the transformation using locally optimal partitioning
of the unit interval. Experimental results are provided to show the effec-
tiveness and efficiency of the reparameterization method.

Keywords: Parametric plane curve, angular speed uniformity, optimal
piecewise Möbius transformation, locally optimal partition.

1 Introduction

There are two kinds of representations, implicit and parametric, which are used
for curves and surfaces in computer aided geometric design and related areas.
Representations of each kind have their own advantages in applications. In this
paper, we are concerned with rational parametric plane curves and their repa-
rameterization.

A parametric curve may have infinitely many different parameterizations. One
may need to choose a suitable one out of them for a concrete application. For
example, when the speed of a point moving along the curve has to be con-
trolled (e.g., for plotting and numerical control machining), one typically wishes
to choose an arc-length parameterization [2,4,5,6,7,10] or an arc-angle parame-
terization [8,12]. Our investigations will be focused on the latter, which was first
proposed by Patterson and Bajaj [8] as curvature parameterization.

The problem of arc-angle parameterization has been studied by the authors
in [12], where an optimality criterion is introduced as a quality measure for
parameterizations of plane curves and a method is proposed to compute arc-angle

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 349–360, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

350 J. Yang, D. Wang, and H. Hong

reparameterizations of given parametric curves. We proved that among all the
rational curves, only straight lines have rational arc-angle parameterizations. For
any curve other than lines, a rational reparameterization that has the maximum
uniformity among all the parameterizations of the same degree may be found
by using the Möbius transformation. Since there is only one parameter in the
Möbius transformation, the possibility of finding an admissible transformation
with special parametric value is limited and sometimes one cannot obtain a
sufficiently accurate approximation to the arc-angle parameterization.

In this paper, we extend our study of the Möbius transformation by exploring
the C0 piecewise Möbius transformation suggested by Costantini and others [3],
aiming at finding C0 piecewise-rational reparameterizations whose uniformities
are close to 1. We also apply Zoutendijk’s method of feasible directions [13] from
optimization theory to optimize the partitioning of the unit interval, resulting
in highly accurate approximations to arc-angle parameterizations. To overcome
the difficulty of computing partial derivatives in each iteration step, we propose
to do so using an explicit formula.

The paper is organized as follows. In Section 2, we recall the measure of an-
gular speed uniformity for the quality of parameterizations of plane curves. In
Section 3, we derive formulas for the optimal C0 piecewise Möbius transforma-
tion for any given or undetermined partition of the unit interval. In Section 4, an
optimization mechanism is developed for computing locally optimal partitions of
the unit interval. We summarize the results into an algorithm in Section 5. Ex-
perimental results are provided and the performance of the method is analyzed
in Section 6.

2 Review of Angular Speed Uniformity

Let
p = (x(t), y(t)) : [0, 1]→ R2

be a regular parameterization of a plane curve and

θp = arctan
y′

x′
, ωp =

∣∣θ′p∣∣ , μp =

∫ 1

0

ωp(t) dt, σ2
p =

∫ 1

0

(ωp(t)− μp)
2 dt.

Definition 1 (Angular Speed Uniformity). The angular speed uniformity
up of p is defined as

up =
1

1 + σ2
p/μ

2
p

when μp �= 0. Otherwise, up = 1.

The value of up ranges over (0, 1]. The more uniform the angular speed ωp is,
the closer to 1 up is. When the angular speed is uniform, up = 1.

Let r be a proper parameter transformation which maps [0, 1] onto itself
with r(0) = 0 and r(1) = 1. It is shown in [12] that the uniformity of the
reparameterization p ◦ r is

Improving Angular Speed Uniformity 351

up◦r =
μ2
p

ηp,r
, where ηp,r =

∫ 1

0

ω2
p

(r−1)′
(t) dt (1)

and r−1 is the inverse function of r. It is easy to show that p ◦ r has a uniform
angular speed when

r−1 =

∫ t

0

ωp(s) ds/μp.

We call such r a uniformizing transformation. The uniformizing transformation
is an irrational function in most cases. One natural question is how to compute
a rational function which is close enough to the uniformizing transformation.
There are two typical approaches: one is to use polynomials of higher degree
(e.g., the Weierstrass approximation approach) and the other is to use piecewise
functions with each piece having a low degree. Between the two approaches, the
latter is preferable in applications. In the following sections, we will show how
to use the C0 piecewise Möbius transformation to approximate the uniformizing
transformation.

3 Optimal C0 Piecewise Möbius Transformation

We begin by recalling the standard definition of a C0 piecewise Möbius trans-
formation. Let

α = (α0, . . . , αN−1), T = (t0, . . . , tN), S = (s0 . . . , sN)

be three sequences such that 0 ≤ α0, . . . , αN−1 ≤ 1, 0 = t0 < · · · < tN = 1, and
0 = s0 < · · · < sN = 1.

Definition 2 (C0 Piecewise Möbius Transformation). A map m is called
a C0 piecewise Möbius transformation if it has the following form

m(s) =

⎧⎪⎪⎨⎪⎪⎩
...

mi(s), if s ∈ [si, si+1];
...

where

mi(s) = ti +Δti
(1− αi)s̃

(1− αi)s̃+ (1− s̃)αi

and Δti = ti+1 − ti, Δsi = si+1 − si, s̃ = (s− si)/Δsi.

It is easy to verify that m(si) = ti. With different choices of the three sequences
α, T , and S, one may get different C0 piecewise Möbius transformations.

Let p be a regular rational parameterization of a plane curve. From now on,
we assume that the curve is not a straight line and that the angular speed of p
is nonzero over [0, 1]. Let the sequence T be arbitrary but fixed. We would like
to find the two sequences α and S that maximize the uniformity up◦m of the
reparameterization of p by m.

352 J. Yang, D. Wang, and H. Hong

Theorem 1 (Optimal Transformation). The uniformity up◦m is maximum
if and only if

αi = α∗
i =

1

1 +
√
Ci/Ai

and si = s∗i =

∑i−1
k=0

√
Mk∑N−1

k=0

√
Mk

, (2)

where

Ai =

∫ ti+1

ti

ω2
p(t) · (1 − t̃)2 dt, Bi =

∫ ti+1

ti

ω2
p(t) · 2 t̃(1 − t̃) dt, (3)

Ci =

∫ ti+1

ti

ω2
p(t) · t̃2 dt, Mk = Δtk

(
2
√
AkCk +Bk

)
,

t̃ = (t− ti)/Δti.

Proof. Recall (1). Since μp is a constant, the problem of maximizing up◦m is
equivalent to that of minimizing

ηp,m =

∫ 1

0

ω2
p

(m−1)′
(t) dt =

N−1∑
i=0

∫ ti+1

ti

ω2
p(t)

(m−1
i)′(t)

dt.

First we rewrite the above integrals as simply as possible. Note that

1

(m−1
i)′(t)

= m′
i(s) =

Δti
Δsi
· αi(1− αi)

[(1 − αi)s̃+ (1− s̃)αi]2
. (4)

By solving the equation t = mi(s) for s̃, we get

s̃ =
αit̃

αi t̃+ (1 − αi)(1 − t̃)
. (5)

Substitution of (5) into (4) yields

1

(m−1
i)′(t)

=
Δti
Δsi
· [(1− αi)(1 − t̃) + αi t̃]

2

(1− αi)αi
.

Thus

ηp,m=

N−1∑
i=0

Δti
Δsi

(
Ai

1− αi

αi
+Bi + Ci

αi

1− αi

)
(6)

using the notation (3). Clearly ηp,m ≥ 0. When (α0, . . . , αN−1, s1, . . . , sN−1)
approaches the boundary of the admissible set, the value of ηp,m goes to +∞.
Therefore, the global minimum of ηp,m is reached at an internal critical point,
satisfying the equations

∂ηp,m
∂αi

= 0,
∂ηp,m
∂si

= 0.

Improving Angular Speed Uniformity 353

The above equations can be written explicitly as

−Ai

α2
i

+
Ci

(1− αi)2
= 0, (7)

Δti
Δs2i

(
Ai

1− αi

αi
+Bi + Ci

αi

1− αi

)
− Δti−1

Δs2i−1

(
Ai−1

1− αi−1

αi−1
+Bi−1 + Ci−1

αi−1

1− αi−1

)
= 0, (8)

Solving the system of equations (7) for αi, we obtain the optimal value

α∗
i = 1

/(
1±
√
Ci/Ai

)
.

Observing that

1
/(

1 +
√
Ci/Ai

) ∈ (0, 1), 1
/(

1−
√
Ci/Ai

) �∈ (0, 1),

we choose α∗
i = 1

/(
1 +
√
Ci/Ai

)
. Substituting αi = α∗

i into (8) and solving the
resulting equations for Δsi, we obtain the optimal value

Δs∗i = Δs∗0
√
Mi/M0

using the notation (3). Noting that
∑N−1

i=0 Δs∗i = 1, we have

Δs∗0 =

(N−1∑
k=0

√
Mk

M0

)−1

.

Thus

s∗i =

i−1∑
k=0

Δs∗k =

∑i−1
k=0

√
Mk/M0∑N−1

k=0

√
Mk/M0

=

∑i−1
k=0

√
Mk∑N−1

k=0

√
Mk

.

Recall that only α0, . . . , αN−1 and s1, . . . , sN−1 are the free parameters. Thus
there is only one critical point and that critical point must be the unique point
for the global minimum of ηp,m, and equivalently for the global maximum of
up◦m. ��
From now on, let m∗ denote the optimal transformation obtained by Theorem 1.
Note that it depends on the choice of the sequence T . The following theorem
ensures that m∗ converges, as expected, to the uniformizing transformation as
Δti approaches zero.

Theorem 2 (Convergence). If the sequence T satisfies

max
0≤i≤N−1

Δti ≤ ε < 1,

then
up◦m∗ ≥ 1−O(ε4).

354 J. Yang, D. Wang, and H. Hong

Proof. It is easy to show that

ηp,m = σ2
p◦m + μ2

p◦m ≥ μ2
p◦m = μ2

p.

Hence ηp,m∗ ≥ μ2
p. Substituting (2) into (6) and simplifying the result, we have

ηp,m∗ =
(N−1∑

i=0

√
Mi

)2
. (9)

Carrying out Taylor expansion of
√
Mi at ti+1 = ti with Lagrange remainder [1]

(and ti+1 regarded as variable) using Maple, we obtain

√
Mi =

4∑
k=1

ω
(k−1)
p (ti)

k!
(Δti)

k+
Fi(t

∗
i)

120
(Δti)

5,

where Fi(ti+1) is the fifth derivative of
√
Mi with respect to ti+1 and t∗ ∈

[ti, ti+1]. One can verify that Fi(ti) < +∞ and see easily that Fi(t) is finite for
any t ∈ (ti, ti+1]. Similarly,∫ ti+1

ti

ωp(t) dt =

4∑
k=1

ω
(k−1)
p (ti)

k!
(Δti)

k +
ω
(4)
p (t�i)

120
(Δti)

5,

where t�i ∈ [ti, ti+1] and ω
(4)
p (t) is also finite for t ∈ [ti, ti+1]. Hence there is a

positive constant ci such that
∣∣Fi(t

∗
i)− ω

(4)
p (t�i)

∣∣/120 ≤ ci. It follows that

∣∣∣√Mi −
∫ ti+1

ti

ωp(t) dt
∣∣∣ = ∣∣Fi(t

∗
i)− ω

(4)
p (t�i)

∣∣
120

(Δti)
5 ≤ ci(Δti)

5.

Thus

∣∣√ηp,m∗ − μp

∣∣ = ∣∣∣∣N−1∑
i=0

√
Mi −

N−1∑
i=0

∫ ti+1

ti

ωp(t) dt

∣∣∣∣
≤

N∑
i=1

∣∣∣√Mi −
∫ ti+1

ti

ωp(t) dt
∣∣∣ ≤ N−1∑

i=0

ci(Δti)
5

≤ max(c0, . . . , cN−1) · max
0≤i≤N−1

(Δti)
4 ·

∑
0≤i≤N−1

Δti

= max(c0, . . . , cN−1) · max
0≤i≤N−1

(Δti)
4 ≤ O(ε4).

This implies that

ηp,m∗ ≤ (μp +O(ε4))2 = μ2
p +O(ε4).

Therefore we can conclude that up◦m∗ ≥ 1−O(ε4). ��

Improving Angular Speed Uniformity 355

4 Locally Optimal Partition of [0, 1]

We want to find an optimal partition of [0, 1], that is, a sequence T that maxi-
mizes up◦m∗ . Referring to (1) and (9), this problem is equivalent to minimizing
ηp,m∗ and, therefore, equivalent to minimizing

φ =
√
ηp,m∗ , (10)

which can be solved by using Zoutendijk’s method of feasible directions (linear
constraints) [13] from optimization theory. Zoutendijk’s optimization method is
well known and we will not reproduce its steps here. We only note that this
method involves the calculation of ∂φ/∂ti, which can be very daunting because
φ has a highly nonlinear dependence on ti. We provide the following theorem in
the hope to alleviate the pain.

Theorem 3 (Partial Derivatives). For 1 ≤ i ≤ N − 1,

∂φ

∂ti
=

Bi−1Ci−1+Ai−1ω
2
p(ti)Δti−1√

Ai−1Ci−1

+ 2Ci−1

2
√
Δti−1

(
2
√
Ai−1Ci−1 +Bi−1

) −
AiBi+Ciω

2
p(ti)Δti√

AiCi
+ 2Ai

2
√
Δti
(
2
√
AiCi +Bi

) .
Proof. For each i, only Mi and Mi−1 contribute to ∂φ/∂ti, so

∂φ

∂ti
=

∂Mi−1/∂ti

2
√
Mi−1

+
∂Mi/∂ti

2
√
Mi

=

(
Δti−1

(
2
√
Ai−1Ci−1 +Bi−1

))′
2
√
Mi−1

+

(
Δti
(
2
√
AiCi +Bi

))′
2
√
Mi

=

Δti−1

(
A′

i−1Ci−1+Ai−1C
′
i−1√

Ai−1Ci−1

+B′
i−1

)
+
(
2
√
Ai−1Ci−1 +Bi−1

)
2
√
Mi−1

+

Δti

(
A′

iCi+AiC
′
i√

AiCi
+B′

i

)
− (2√AiCi +Bi

)
2
√
Mi

, (11)

where all the derivatives are with respect to ti. We want to compute A′
i−1, B

′
i−1,

C′
i−1 and A′

i, B
′
i, C

′
i. First,

Ai−1 =

∫ ti

ti−1

ω2
p(t)(1 − t̃)2 dt =

∫ ti

ti−1

ω2
p(t)
(ti − t

ti − ti−1

)2
dt

=
1

Δt2i−1

[
t2i

∫ ti

ti−1

ω2
p(t) dt− 2 ti

∫ ti

ti−1

ω2
p(t)t dt+

∫ ti

ti−1

ω2
p(t)t

2 dt

]
.

Thus

A′
i−1 = − 2

Δti−1
Ai−1 +

1

Δt2i−1

[
2 ti

∫ ti

ti−1

ω2
p(t) dt− 2

∫ ti

ti−1

ω2
p(t)t dt

]
= − 2

Δti−1
Ai−1 +

1

Δti−1
(2Ai−1 +Bi−1) =

Bi−1

Δti−1
. (12)

356 J. Yang, D. Wang, and H. Hong

Similarly, we have

B′
i−1 =

2Ci−1 −Bi−1

Δti−1
, C′

i−1 = ω2
p(ti)−

2Ci−1

Δti−1
, (13)

A′
i = −ω2

p(ti) +
2Ai

Δti
, B′

i =
Bi − 2Ai

Δti
, C′

i = −
Bi

Δti
. (14)

Substituting (12)–(14) into (11), we arrive at the conclusion. ��

5 Algorithm

We summarize the results from the previous two sections into an algorithm.

Input: p, a rational parameterization of a plane curve;
N , a number of pieces.

Output: p∗, a more uniform reparameterization via a C0 piecewise Möbius trans-
formation (which is locally optimal with respect to the sequence T and
globally optimal with respect to the sequences α and S).

1. Construct the expression φ in terms of t1, . . . , tN−1 using (10), (9), and (3).

2. Compute the value of T which locally minimizes φ using Zoutendijk’s method
with an initial value (1

N , . . . , N−1
N), where the derivatives of φ with respect to

ti are calculated according to Theorem 3.

3. Compute the values of the sequences α and S which globally maximize up◦m,
using Theorem 1.

4. Construct the piecewise map m using the three computed sequences T , α,
and S, according to Definition 2.

5. Return p∗ = p ◦m.

The following example illustrates this algorithm.

Example 1. Consider the parameterization

p =
(t3 − 6 t2 + 9 t− 2

2 t4 − 16 t3 + 40 t2 − 32 t+ 9
,

t2 − 4 t+ 4

2 t4 − 16 t3 + 40 t2 − 32 t+ 9

)
.

For N = 2, after steps 1 and 2, we get a locally optimal partition of [0, 1] which
is [0, 0.5869], [0.5869, 1]. Under this partition, we calculate

α∗
0 ≈ 0.1398, α∗

1 ≈ 0.8505, s∗1 ≈ 0.5726,

m(s) ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.8817 s

1.2580 s+ 0.1398
, s ∈ [0, 0.5726];

0.8184 s− 0.9679

1.6405 s− 1.7899
, s ∈ [0.5726, 1].

Then p∗ = p ◦m is a reparameterization satisfying the conditions in the output
of the above algorithm. It may be verified that

up ≈ 0.4029 and up∗ ≈ 0.9727.

Improving Angular Speed Uniformity 357

The curve of Example 1 with parameterization p, together with its optimal
reparameterizations and their corresponding angular speeds using locally opti-
mal partitions for N = 2, 5, 10, is plotted in Figure 1. In practice, the plotting is
satisfactory when the uniformity of the curve parameterization is greater than
0.99. This uniformity can often be achieved by a locally optimal partition for
N = 5. For two parameterizations of the same curve with uniformity greater
than 0.99 (as in Figure 1), their plots look almost the same.

Fig. 1. Curve p and its reparameterizations using the C0 piecewise Möbius transforma-
tion under locally optimal N-partitions: the first row shows the test curve and its dot
plotting using p, the second row shows the dot plottings of the curve for N = 2, 5, 10,
and the third row displays the angular speeds (where the dot ones are the original
angular speed)

6 Experimental Results and Performance Analysis

In this section, we present some experimental results with a preliminary imple-
mentation of the proposed method in Maple. The experiments were performed

358 J. Yang, D. Wang, and H. Hong

on a PC Intel(R) Core(TM)2 Quad CPU Q9500 @2.83GHz with 3G of RAM.
Five parametric curves1 C1–C5 are selected from [9,11] for our experiments. For
curves C1–C3, application of the α-Möbius transformation does not improve the
uniformity significantly. By reparameterization using the C0 piecewise Möbius
transformation, the uniformities for C1–C3 can be improved dramatically and
those for C4 and C5 may become very close to 1.

Table 1. Experimental results with locally optimal N-partitions of [0, 1]

Curve Original
N = 1 N = 2 N = 5 N = 10

Optimal Time Optimal Time Optimal Time Optimal Time
u u (sec) u (sec) u (sec) u (sec)

C1 0.5518 0.5575 0.063 0.9914 0.670 0.9993 0.459 0.9999 1.240

C2 0.4034 0.6427 0.140 0.9380 1.281 0.9909 1.029 0.9996 1.218

C3 0.4029 0.4121 0.141 0.9727 1.052 0.9938 1.253 0.9996 1.469

C4 0.9259 0.9725 0.078 0.9987 0.292 0.9999 0.450 1.0000 0.378

C5 0.9607 0.9757 3.265 0.9983 11.422 0.9999 6.932 1.0000 9.391

Table 1 shows the uniformities of C0 piecewise-rational reparameterizations
of the five curves using locally optimal partitions and the times consumed for
computing such partitions. When N = 1, the C0 piecewise Möbius transforma-
tion becomes the α-Möbius transformation studied in [12]. From this table, one
sees that reparameterizations with uniformity very close to 1 may be obtained
by using locally optimal partitions even with a very small N (e.g., the uniformity
is greater than 0.9 when N = 2 and greater than 0.99 when N = 5). For curves
C1, C2, and C5, computation of the locally optimal partitions takes more time
for N = 2 than for N = 5. This is because for N = 2, more iterations are needed
for the optimization method to achieve the optimal partition.

Note that one may use a given (uniform) partition of the unit interval instead
of computing a locally optimal partition. In this case, the reparameterization is
not optimized with respect to the sequence T , so its uniformity may be not so
close to 1, but some computing time can be saved.

Table 2 shows the uniformities of C0 piecewise-rational reparameterizations of
the five curves obtained under locally and quasi-globally optimal partitions of the
interval [0, 1], where quasi-globally (or q-globally for short) optimal partitions2

are carried out as follows: first divide [0, 1] into 20 equidistant subintervals; then
choose optimal ti (1 ≤ i ≤ N − 1) by direct enumeration under the constraints
0 < ti < ti+1 < 1 (1 ≤ i ≤ N − 2) and ti ∈ {k/20 : k = 1, . . . , 19}. Under the q-
globally optimal partition the uniformity of the obtained reparameterization may
be smaller than that under a locally optimal partition (e.g., for C1–C4 with N =
2, 3, when the locally optimal partition is very likely to be q-globally optimal).

1 The parametric equations for these curves are available from the authors upon re-
quest.

2 A q-globally optimal partition is not necessarily globally optimal, but it is likely
closer to the globally optimal partition than a locally optimal one is.

Improving Angular Speed Uniformity 359

Table 2. Comparison of optimal u with locally optimal partitions and q-globally op-
timal partitions

Curve
N = 2 N = 3 N = 6

u (locally u (q-globally u (locally u (q-globally u (locally u (q-globally
optimal) optimal) optimal) optimal) optimal) optimal)

C1 0.9914 0.9906 0.9977 0.9969 0.9989 0.9997

C2 0.9380 0.9362 0.9905 0.9793 0.9986 0.9991

C3 0.9727 0.9683 0.9916 0.9826 0.9991 0.9987

C4 0.9987 0.9987 0.9998 0.9998 1.0000 1.0000

C5 0.9983 0.9990 0.9996 0.9998 1.0000 1.0000

In some cases (e.g., C5 with N = 2, 3) when the locally optimal partition is not
globally optimal, the q-globally optimal partition leads to better uniformity. For
C5 with N = 3 the q-globally optimal partition is approximately [0, 0.15, 0.65, 1],
whereas the locally optimal partition (with initial value [0, 1/3, 2/3, 1]) ends at
[0, 0.317, 0.650, 1].

7 Conclusion

We have adapted the C0 piecewise Möbius transformation to compute C0 piece-
wise-rational reparameterizations of plane curves with high uniformity. Using
partitions of the unit interval with moderate or even small numbers, we can pro-
duce reparameterizations which closely approximate to the uniform ones. The
reparameterization method based on the C0 piecewise Möbius transformation,
even with given interval partitions, is practically more powerful than that based
on the α-Möbius transformation. We have further enhanced the power of the
method by developing an optimization mechanism for locally optimal partition-
ing of the unit interval. This mechanism is based on Zoutendijk’s method of
feasible directions and a formula we have derived for the calculation of deriva-
tives of a certain type of functions dependent nonlinearly on their variables.
Experimental results have shown the applicability and high efficiency of our new
method, in particular with locally optimal interval partitioning.

The piecewise Möbius transformation and piecewise-rational reparameteri-
zations studied in this paper are only C0 continuous with respect to the new
parameter. Optimal C1 piecewise reparameterization is clearly an interesting
problem that remains for further investigation.

Acknowledgements. Part of this work has been supported by the ANR-NSFC
Project ANR-09-BLAN-0371-01/60911130369 (EXACTA) and the Open Fund
SKLSDE-2011KF-02.

References

1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables (10th printing). United States Gov-
ernment Printing, Washington, D.C (1972)

360 J. Yang, D. Wang, and H. Hong

2. Cattiaux-Huillard, I., Albrecht, G., Hernández-Mederos, V.: Optimal parameter-
ization of rational quadratic curves. Computer Aided Geometric Design 26(7),
725–732 (2009)

3. Costantini, P., Farouki, R., Manni, C., Sestini, A.: Computation of optimal com-
posite re-parameterizations. Computer Aided Geometric Design 18(9), 875–897
(2001)

4. Farouki, R.: Optimal parameterizations. Computer Aided Geometric Design 14(2),
153–168 (1997)

5. Farouki, R., Sakkalis, T.: Real rational curves are not unit speed. Computer Aided
Geometric Design 8(2), 151–157 (1991)

6. Gil, J., Keren, D.: New approach to the arc length parameterization problem.
In: Straßer, W. (ed.) Prodeedings of the 13th Spring Conference on Computer
Graphics, Budmerice, Slovakia, June 5–8, pp. 27–34. Comenius University, Slovakia
(1997)

7. Jüttler, B.: A vegetarian approach to optimal parameterizations. Computer Aided
Geometric Design 14(9), 887–890 (1997)

8. Patterson, R., Bajaj, C.: Curvature adjusted parameterization of curves. Computer
Science Technical Report CSD-TR-907, Paper 773, Purdue University, USA (1989)

9. Sendra, J.R., Winkler, F., Pérez-Dı́az, S.: Rational Algebraic Curves: A Computer
Algebra Approach. Algorithms and Computation in Mathematics, vol. 22. Springer,
Heidelberg (2008)

10. Walter, M., Fournier, A.: Approximate arc length parameterization. In: Velho, L.,
Albuquerque, A., Lotufo, R. (eds.) Prodeedings of the 9th Brazilian Symposiun
on Computer Graphics and Image Processing, Fortaleza-CE, Brazil, October 29-
November 1, pp. 143–150. Caxambu, SBC/UFMG (1996)

11. Wang, D. (ed.): Selected Lectures in Symbolic Computation. Tsinghua University
Press, Beijing (2003) (in Chinese)

12. Yang, J., Wang, D., Hong, H.: Improving angular speed uniformity by reparame-
terization (preprint, submitted for publication, January 2012)

13. Zoutendijk, G.: Methods of Feasible Directions: A Study in Linear and Nonlinear
Programming. Elsevier Publishing Company, Amsterdam (1960)

Usage of Modular Techniques for Efficient

Computation of Ideal Operations

(Invited Talk)

Kazuhiro Yokoyama

Department of Mathematics, Rikkyo University
3-34-1 Nishi Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan

kazuhiro@rikkyo.ac.jp

Modular techniques are widely applied to various algebraic computations. (See
[5] for basic modular techniques applied to polynomial computations.) In this
talk, we discuss how modular techniques are efficiently applied to computation of
various ideal operations such as Gröbner base computation and ideal decomposi-
tions. Here, by modular techniques we mean techniques using certain projections
for improving the efficiency of the total computation, and by modular compu-
tations, we mean corresponding computations applied to projected images. The
usage of modular techniques for computation of ideal operations might be very
roughly classified into the following:

(1) For the computation of the target ideal operation, we use its corresponding
modular computations. In this computation, we need methods for recovering
the true result from its modular images (the results of modular computa-
tions).

(2) We use modular computations partly. For example, for some part of the
computation of the target ideal operation, we apply modular techniques. Also
we make good use of certain information derived from modular computations
for improving the total efficiency.

Here we give several examples: Concerning (1), modular techniques for Gröb-
ner bases computation have been proposed by several authors ([15,13,11,6,9,1]),
where projections Z to Fp are mainly considered and Chinese remainder algo-
rithm or Hensel lifting are applied to recovering the true results. As for triangular
set, modular techniques for triangular decomposition of 0-dimensional case are
proposed in [3] based on theoretical estimations on coefficient bound [4] and
techniques based on interpolation, where a projection from a polynomial ring to
its coefficient field is considered, are used for theoretical estimations on coeffi-
cient bound for positive dimensional case in [2]. In [12,8] practical combination
of two different modular techniques, interpolation by modular zeros and Chinese
remainder algorithm on integers, is proposed with help of the Galois group of
target algebraic structure. As to (2), modular techniques are applied to compu-
tation of minimal polynomials, which are important objects for ideal decomposi-
tions, in [9,10,7]. Using useful informations derived from modular computations
can be seen in [14], where they are used for avoiding unnecessary polynomial

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 361–362, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

362 K. Yokoyama

reductions among Gröbner basis computation. Also, for the problem of prime
(radical) decomposition, quick tests for primality (square-freeness) can be pro-
vided by modular techniques. (See [9,7].)

The most important points in (1) are to provide recovering methods from
modular images and to guarantee the correctness of the computed results. To
this end, notions on luckiness or goodness of projections have been introduced
by several authors. Here we explain techniques for guaranteeing the correctness,
which are mainly based on ideal inclusion or theoretical estimation on the num-
ber of unlucky projections. Also, we refer effective combination between modu-
lar techniques and informations derived from the mathematical structure of the
target object such as the action of the Galois group or a Gröbner basis with
respect to another ordering. Moreover, concerning (2), we give some discussion
on efficiently computable quick tests, which have good effects on decomposition
algorithms in practice.

References

1. Arnold, E.: Modular algorithms for computing Gröbner bases. J. Symb. Comp. 35,
403–419 (2003)

2. Dahan, X., Kadri, A., Schost, É.: Bit-size estimates for triangular sets in positive
dimension. J. Complexity 28, 109–135 (2012)

3. Dahan, X., Moreno Maza, M., Schost, É., Wu, W., Xie, Y.: Lifting techniques for
triangular decompositions. In: Proc. ISSAC 2005, pp. 108–115. ACM Press, New
York (2005)

4. Dahan, X., Schost, É.: Sharp estimates for triangular sets. In: Proc. ISSAC 2004,
pp. 103–110. ACM Press, New York (2004)

5. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, Cambridge (1999)

6. Gräbe, H.: On lucky primes. J. Symb. Comp. 15, 199–209 (1993)
7. Idrees, N., Pfister, G., Steidel, S.: Parallelization of modular algorithms. J. Symb.

Comp. 46, 672–684 (2011)
8. Orange, S., Renault, G., Yokoyama, K.: Efficient arithmetic in successive algebraic

extension fields using symmetries. Math. Comput. Sci. (to appear)
9. Noro, M., Yokoyama, K.: A modular method to compute the rational univariate

representation of zero-dimensional ideals. J. Symb. Comp. 28, 243–263 (1999)
10. Noro, M., Yokoyama, K.: Implementation of prime decomposition of polynomial

ideals over small finite fields. J. Symb. Comp. 38, 1227–1246 (2004)
11. Pauer, F.: On lucky ideals for Gröbner bases computations. J. Symb. Comp. 14,

471–482 (1992)
12. Renault, G., Yokoyama, K.: Multi-modular algorithm for computing the splitting

field of a polynomial. In: Proceedings of ISSAC 2008, pp. 247–254. ACM Press,
New York (2008)

13. Sasaki, T., Takeshima, T.: A modular method for Gröbner-bases construction over
Q and solving system of algebraic equations. J. Inform. Process. 12, 371–379 (1989)

14. Traverso, C.: Gröbner Trace Algorithms. In: Gianni, P. (ed.) ISSAC 1988. LNCS,
vol. 358, pp. 125–138. Springer, Heidelberg (1989)

15. Winkler, F.: A p-adic approach to the computation of Gröbner bases. J. Symb.
Comp. 6, 287–304 (1988)

Author Index

Abramov, S.A. 1
Ananth, Prabhanjan 12

Batkhin, Alexander 22
Bodrato, Marco 34
Bourdykine, Pavel 47
Bruno, Alexander D. 60
Budzko, Dzmitry A. 72

Cheng, Jin-San 186
Christopher, Colin 129
Chuluunbaatar, Ochbadrakh 155

Dukkipati, Ambedkar 12

Edneral, Victor F. 60
Eiswirth, Markus 84
Errami, Hassan 84, 294

Gerdt, Vladimir 98, 155
Giesbrecht, Mark 117
Giné, Jaume 129
Grigoriev, Dima 143
Gusev, Alexander 155

Hai, Luong Le 155
Hashemi, Amir 98, 172
Heinle, Albert 117
Hong, Hoon 349

Inaba, Daiju 308

Kemper, Gregor 185

Li, Haoyang 334
Li, Jia 186

Marcus, Steffen 198
Mezzarobba, Marc 212

Monagan, Michael 236
Moreno Maza, Marc 198, 224

Nabeshima, Katsusuke 248
Neumann, Severin 260

Pan, Victor Y. 271, 283
Pearce, Roman 236
Petkovšek, M. 1
Prešern, Mateja 129
Prokopenya, Alexander N. 72

Qian, Guoliang 271

Romanovski, Valery G. 129
Rostovtsev, Vitaly 155

Samal, Satya Swarup 294
Sasaki, Tateaki 308
Schost, Éric 224
Schweinfurter, Michael 172
Seiler, Werner M. 84, 172
Shapeev, Vasily P. 321
Shcheglova, Natalie L. 129
She, Zhikun 334

Tsigaridas, Elias P. 186

Vinitsky, Sergue 155
Vorozhtsov, Evgenii V. 321
Vrbik, Paul 198, 224

Wang, Dongming 349
Watt, Stephen M. 47
Weber, Andreas 84, 143, 294

Yang, Jing 349
Yokoyama, Kazuhiro 361

Zanoni, Alberto 34
Zheng, Ai-Long 271

	Title

	Preface
	Organization
	Table of Contents
	On Polynomial Solutions of Linear Partial
Differential and (q-)Difference Equations
	Introduction
	Equations with Polynomial Coefficients
	Equations with Constant Coefficients
	 q-Difference Equations with Constant Coefficients
	Conclusion
	References

	An Algebraic Characterization
of Rainbow Connectivity
	Introduction
	Background and Preliminaries
	k-Vertex Coloring and Stable Set Problem
	NulLA Algorithm
	Rainbow Connectivity

	Rainbow Connectivity as an Ideal Membership Problem
	Encoding of Rainbow Connectivity
	Conclusion
	References

	Application of the Method of Asymptotic
Solution to One Multi-Parameter Problem
	Introduction
	Asymptotic Analysis of Set G at Infinity
	Expansion of the Family P1 of Singular Points
	Expansion of the Family P2 of Singular Points

	Structure of the Set of Stability G
	Software Implementation
	Basic Procedures of Library PGeomlib
	Auxiliary Procedures of Library PGeomlib
	Scheme of Using Library PGeomlib

	References

	A New Algorithm
for Long Integer Cube Computation with Some Insight into Higher Powers
	Introduction
	Mathematical Setting
	Split and Cube: Long Integer Case
	Split and Cube: Polynomial Case
	Generic Long Integer Exponentiation
	Exponentiation: Ternary Expansion
	Exponentiation: Mixed Binary and Ternary Expansion
	Exponentiation: First Ternary and Then Binary Expansion
	Results

	Conclusions
	References

	Lightweight Abstraction
for Mathematical Computation in Java
	Introduction
	Opaque Types in Java
	Opaque Type Rules
	Converted Classes
	Opaque User Classes
	Annotation Processing Example

	Java Implementation
	Performance Results
	Conclusions and Further Directions
	References

	Calculation of Normal Forms
of the Euler–Poisson Equations
	Introduction
	A Normal Form Structure at the Resonance
	The First Integrals
	The Case of "707Er=1, "707Es=2
	Calculation of Known Integrals at the Resonance 1:2
	The Case =0
	Calculation of the Rank of the Matrix M at Points (33)

	Conclusion
	References

	Stability of Equilibrium Positions in the Spatial
Circular Restricted Four-Body Problem
	Introduction
	Linear Stability of Equilibrium Solutions
	Normalization of the Third-Order Term H3
	Normalization of the Fourth-Order Term H4
	Conclusion
	References

	Computing Hopf Bifurcations in Chemical
Reaction Networks Using Reaction Coordinates
	Introduction
	Chemical Reaction Networks
	Flux Cone and Reaction Coordinates
	Constraints in Chemical Reaction Networks

	Pseudolinear Ordinary Differential Equations
	Reduction to Invariant Manifolds
	Stability and Bifurcations for Semi-Explicit DAEs
	Algorithms for Computing Hopf Bifurcations in Chemical Reaction Networks Using Reaction Coordinates
	Pre-processing: Step 1
	Geometrical Computations: Step 2 and 3
	Transformation of the Jacobian: Step 4
	Jacobian of Reduced Manifold: Step 5
	Generating and Reducing Quantified Formulae: Steps 6–10

	Computation Examples
	Example1: Phosphofructokinase Reaction
	Example 2: Enzymatic Transfer of Calcium Ions
	Example 3: Model of Calcium Oscillations

	References

	Comprehensive Involutive Systems

	Introduction
	Comprehensive Gröbner Systems
	Involutive Bases
	Comprehensive Involutive Systems
	Example
	References

	A Polynomial-Time Algorithm for the Jacobson
Form of a Matrix of Ore Polynomials
	Introduction
	Strong Jacobson Form
	Reducing Computing Jacobson Form to Hermite Form
	On Divisibility
	Experimental Implementation and Results

	Degree Bounds and Complexity
	Conclusion and Future Work
	References

	The Resonant Center Problem for a 2:-3
Resonant Cubic Lotka–Volterra System
	Introduction
	Conditions for Integrability and Linearizability
	Concluding Remarks
	References

	Complexity of Solving Systems with Few
Independent Monomials and Applications to Mass-Action Kinetics
	Introduction
	Polynomial Systems with a Few Linearly Independent Monomials
	Parametric Binomial Systems
	Applications to Chemical Reaction Networks
	Chemical Reaction Networks with Toric Steady States
	Examples from the BioModels Database

	Conclusion and Future Work
	References

	Symbolic-Numerical Calculations of High-|m| Rydberg States and Decay Rates
in Strong Magnetic Fields
	Introduction
	Problem Statement in Cylindrical Coordinates
	Kantorovich Reduction

	Solving the Parametric Eigenvalue Problem at Large |m|
	Calculations of the Transversal Dipole Matrix Elements
	Calculations of Rydberg States and Decay Rates
	Conclusions
	References

	Quasi-stability versus Genericity

	Introduction
	Pommaret Bases
	-Regularity and Quasi-stable Ideals
	The Generic Initial Ideal
	Componentwise Linear Ideals
	Linear Quotients
	References

	Invariant Theory:
Applications and Computations
	Local Generic Position for Root Isolation of Zero-Dimensional Triangular
Polynomial Systems
	Introduction
	Zero-Dimensional Triangular System Solving
	Basic Theory and Method
	Estimation of Bounds ri, Ri+1
	Precision Control

	The Algorithm and Experiments
	Conclusion and Future Work
	References

	On Fulton’s Algorithm for Computing
Intersection Multiplicities
	Introduction
	Regular Chains
	Intersection Multiplicity
	Expansion of a Polynomial Family about at an Algebraic Set
	Computing Intersection Multiplicities of Bivariate Systems: Irreducible Case
	Computing Intersection Multiplicities of Bivariate Systems: Zero-Dimensional Case
	Reduction to the Bivariate Case
	Implementation
	Experiments
	References

	A Note on the Space Complexity
of Fast D-Finite Function Evaluation
	Introduction
	Setting
	Review of the Classical Binary Splitting Algorithm
	“Truncated” Binary Splitting
	Final
Remarks
	References

	Inversion Modulo Zero-Dimensional
Regular Chains
	Introduction
	Leverrier's Algorithm
	Setup and Main Result
	Outline of the Algorithm
	Baby-Steps / Giant Steps Techniques

	Proof of the Main Theorems
	Experimental Results
	References

	Sparse Polynomial Powering Using Heaps
	Introduction
	Sparse Sums
	Complexity and Optimizations
	Parallelization

	Benchmarks
	Sparse Problems
	Dense Problems
	Real Examples

	Conclusion
	References

	Stability Conditions of Monomial Bases
and Comprehensive Gr¨obner Systems
	Introduction
	Preliminary
	Stability Conditions of Monomial Bases
	Kapur-Sun-Wang's Stability Condition
	A New Stability Condition

	Comprehensive Gröbner Systems
	Concluding Remarks
	References

	Parallel Reduction of Matrices
in Grobner Bases Computations
	Introduction
	Preliminaries
	Matrix Decomposition
	Parallel Reduction in Three Steps
	Step 1 – Reduction of the Upper Triangular Matrix
	Step 2 – Apply on B
	Step 3 – Parallel Gaussian Elimination of
	Merging Step 1 and 2

	Benchmarks
	Conclusion
	References

	Real and Complex Polynomial Root-Finding
by Means of Eigen-Solving
	Introduction
	Definitions and Preliminaries
	Basic Eigen-Solving Steps
	Matrix Sign Function and Eigen-Solving
	Iterative Algorithms for the Matrix Sign Computation
	Numerical Tests
	References

	Root-Refining for a Polynomial Equation

	Introduction
	Two Stages of Iterative Polynomial Root-Finding
	Divide-and-Conquer Factorization
	Efficiency of Refinement
	Some Technicalities
	Organization of the Paper

	Root-Refining Via Recursive Divide-And-Conquer Factorization and Kirrinnis' Algorithm
	Computation of (1,1) Separating Annuli
	Some Implementation Issues
	References

	PoCaB: A Software Infrastructure to Explore Algebraic Methods for Bio-chemical Reaction Networks
	Introduction
	The Building Blocks for the System
	Data Source
	Representation of Reaction Networks in Databases
	Graph-Theoretic Representation of the Reaction Systems
	Deficiency Value of the Reaction Network
	Extreme Currents of the Flux Cone

	Software Workflow and Components
	Results
	Database of Algebraic Entities

	Discussions
	Conclusion and Future Work
	References

	Approximately Singular Systems
and Ill-Conditioned Polynomial Systems
	Introduction
	Approximately Singular Polynomial Systems
	Classification of Ill-Conditioned Polynomial Systems
	Well-Conditioning of Systems of Approximately Singular Type
	Numerical Experiments
	Concluding Remarks
	References

	Symbolic-Numeric Implementation of the Method of Collocations and Least Squares
for 3D Navier–Stokes Equations
	Introduction
	Description of the CLS Method
	Problem Statement
	Local Coordinates and Basis Functions
	Derivation of the Overdetermined System from Collocation and Matching Conditions

	Numerical Results
	Test with Exact Analytic Solution
	Flow in the Lid-Driven Cavity

	Conclusions
	References

	Verifiable Conditions on Asymptotic Stabilisability
for a Class of Planar Switched Linear Systems
	Introduction
	Preliminaries and Problem Definitions
	RRC and QE Based Approach for Generating Switching Laws
	Algebraic Analysis on Asymptotic Stabilisability
	RRC and QE Based Approach for Guaranteeing Asymptotic Stabilisability
	k11=k1, k12=1, k21=1 and k22=0.
	k10 and k2>0
	k1<k20
	k1>k20
	Summary

	Real Root Classification

	An Illustrating Example
	Related Works with Comparisons
	Conclusion
	References

	Improving Angular Speed Uniformity
by Optimal C0 Piecewise Reparameterization
	Introduction
	Review of Angular Speed Uniformity
	Optimal C0 Piecewise Möbius Transformation
	Locally Optimal Partition of [0,1]
	Algorithm
	Experimental Results and Performance Analysis
	Conclusion
	References

	Usage of Modular Techniques for Efficient
Computation of Ideal Operations
	References

	Author Index

