Vladimir P. Gerdt

Wolfram Koepf

Ernst W. Mayr

Evgenii V. Vorozhtsov (Eds.)

Computer Algebra
in Scientific
Computing

14th International Workshop, CASC 2012
Maribor, Slovenia, September 2012
Proceedings

LNCS 7442

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

7442

Vladimir P. Gerdt Wolfram Koepf
Ernst W. Mayr Evgenii V. Vorozhtsov (Eds.)

Computer Algebra
1n Scientific
Computing

14th International Workshop, CASC 2012
Maribor, Slovenia, September 3-6, 2012
Proceedings

@ Springer

Volume Editors

Vladimir P. Gerdt

Joint Institute for Nuclear Research (JINR)
Laboratory of Information Technologies (LIT)
141980 Dubna, Russia

E-mail: gerdt@jinr.ru

Wolfram Koepf

Universitit Kassel

Institut fiir Mathematik

Heinrich-Plett-Strae 40, 34132 Kassel, Germany
E-mail: koepf @mathematik.uni-kassel.de

Ernst W. Mayr

Technische Universitidt Miinchen

Institut fiir Informatik

Lehrstuhl fiir Effiziente Algorithmen
BoltzmannstraBe 3, 85748 Garching, Germany
E-mail: mayr@in.tum.de

Evgenii V. Vorozhtsov

Russian Academy of Sciences

Institute of Theoretical and Applied Mechanics
630090 Novosibirsk, Russia

E-mail: vorozh@itam.nsc.ru

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-32972-2 e-ISBN 978-3-642-32973-9
DOI 10.1007/978-3-642-32973-9

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012944896

CR Subject Classification (1998): F2, G.2,E.1,1.1,1.3.5, G.1,F.1

LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable

to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws

and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

One of the directions of research at the Center of Applied Mathematics and
Theoretical Physics, University of Maribor (CAMTP), is the application of
methods and algorithms of computer algebra to studying some long-standing
problems of the theory of differential equations, such as the Poincaré center
problem and Hilbert’s 16th problem. In the work of the group, led by Valery
Romanovski, efficient computational approaches to studying the center problem
and the closely related isochronicity problem have been developed. It allowed
the group to completely solve the problems for many classes of polynomial sys-
tems of ODEs. In recent work (with V. Levandovskyy, D.S. Shafer, and others),
they also developed a powerful algorithmic method to obtain some bounds on
the number of small limit cycles bifurcating from elementary singular points of
polynomial systems of ODEs, i.e., to evaluate algorithmically the cyclicity of the
elementary center and focus. Research on applications of computer algebra to
differential equations and dynamical systems at CAMTP is carried out in col-
laboration with colleagues worldwide working in similar directions; among them
we can mention X. Chen, M. Han, W. Huang, Y.-R. Liu and W. Zhang (China),
V. Edneral (Russia), J. Giné (Spain), and A. Mahdi and D.S. Shafer (USA).
Some goals and features of the approaches mentioned above are described in a
recent book [V.G. Romanovski, D.S. Shafer. The center and cyclicity problems: a
computational algebra approach. Boston, Basel-Berlin: Birkhauser, 2009; ISBN
978-0-8176-4726-1].

In 2010, CAMTP, in collaboration with the Institute of Mathematics, Physics,
and Mechanics (IMFM), the Faculty of Natural Science and Mathematics of the
University of Maribor, and with the support of the Slovenian Research Agency,
organized the conference “Symbolic Computation and Its Applications” (SCA).
The concept of this meeting was to bring together researchers from various areas
of natural sciences, who employ and/or develop symbolic techniques, and to
provide a platform for discussions and exchange of ideas. Following the success
of the meeting, a second conference was organized in May 2012 at RWTH Aachen
University, thus turning SCA into a series of conferences.

In connection with the above, it was decided to hold the 14th CASC Work-
shop in Maribor. The 13 earlier CASC conferences, CASC 1998, CASC 1999,
CASC 2000, CASC 2001, CASC 2002, CASC 2003, CASC 2004, CASC 2005,
CASC 2006, CASC 2007, CASC 2009, CASC 2010, and CASC 2011 were held,
respectively, in St. Petersburg (Russia), in Munich (Germany), in Samarkand
(Uzbekistan), in Konstanz (Germany), in Yalta (Ukraine), in Passau (Germany),
in St. Petersburg (Russia), in Kalamata (Greece), in Chigindu (Moldova), in
Bonn (Germany), in Kobe (Japan), in Tsakhkadzor (Armenia), and in Kassel
(Germany), and they all proved to be very successful.

VI Preface

This volume contains 28 full papers submitted to the workshop by the
participants and accepted by the Program Committee after a thorough reviewing
process. Additionally, the volume includes two abstracts of invited talks.

One of the main themes of the CASC workshop series, namely, polynomial al-
gebra, is represented by contributions devoted to new algorithms for computing
comprehensive Grobner and involutive systems, parallelization of the Grobner
bases computation, the study of quasi-stable polynomial ideals, new algorithms
to compute the Jacobson form of a matrix of Ore polynomials, a recursive Lev-
errier algorithm for inversion of dense matrices whose entries are monic polyno-
mials, root isolation of zero-dimensional triangular polynomial systems, optimal
computation of the third power of a long integer, investigation of the complexity
of solving systems with few independent monomials, the study of ill-conditioned
polynomial systems, a method for polynomial root-finding via eigen-solving and
randomization, an algorithm for fast dense polynomial multiplication with Java
using the new opaque typed method, and sparse polynomial powering using
heaps.

The invited talk by K. Yokoyama deals with the usage of modular techniques
for efficient computation of ideal operations. The following applications of mod-
ular techniques are considered: Grébner bases computation and computation of
minimal polynomials. The methods for recovering the true result from the results
of modular computations are also discussed.

Several papers are devoted to using computer algebra for the investigation
of various mathematical and applied topics related to ordinary differential equa-
tions (ODEs): algebraic methods for investigating the qualitative behavior of
bio-chemical reaction networks, algorithms for detecting the Hopf bifurcation in
high-dimensional chemical reaction networks, the solution of linear ODEs with
rational coefficients, also known as D-finite (or holonomic) series, the calculation
of normal forms and the first integrals of the Euler—Poisson equations, conditions
for the first integral of the cubic Lotka—Volterra system in a neighborhood of
the origin, and the analysis of the asymptotic stabilizability of planar switched
linear ODE systems.

Two papers deal with applications of symbolic computation in mechanics: the
investigation of stability of equilibrium positions in the spatial circular restricted
four-body problem of celestial mechanics, and the investigation of stability of a
gyroscopic system with four degrees of freedom and with three parameters.

New symbolic-numeric algorithms presented in this volume deal with the
solution of the boundary-value problem for the Schrédinger equation in cylin-
drical coordinates and the solution of the Navier—Stokes equations for the three-
dimensional viscous incompressible fluid flows.

Other applications of computer algebra systems presented in this volume
include the investigation of the questions of existence of polynomial solutions for
linear partial differential equations and (g-)difference equations, new algorithms
for rational reparameterization of any plane curve, Maple-based algorithms for
determining the intersection multiplicity of two plane curves, and the reduction

Preface VII

of the solution of the combinatorial problem of rainbow connectivity to the
solution of a certain system of polynomial equations.

The invariant theory, which is at the crossroads of several mathematical dis-
ciplines, is surveyed in the invited talk by G. Kemper. Some examples are given,
in which invariant theory is applied to graph theory, computer vision, and cod-
ing theory. The talk also gives an overview of the state of the art of algorithmic
invariant theory.

The CASC 2012 workshop was supported financially by the Slovenian Re-
search Agency and CAMTP. Our particular thanks are due to the members
of the CASC 2012 local Organizing Committee in Slovenia: M. Robnik and
V. Romanovski (CAMTP, Maribor) and M. Petkovsek (University of Ljubl-
jana), who ably handled local arrangements in Maribor. Furthermore, we want
to thank the Program Committee for their thorough work. Finally, we are grate-
ful to W. Meixner for his technical help in the preparation of the camera-ready
manuscript for this volume.

July 2012 V.P. Gerdt
W. Koepf

E.W. Mayr

E.V. Vorozhtsov

Organization

CASC 2012 has been organized jointly by the Department of Informatics at the
Technische Universitdt Miinchen, Germany, and the Center for Applied Mathe-
matics and Theoretical Physics at the University of Maribor, Slovenia.

Workshop General Chairs

Vladimir P. Gerdt (JINR, Dubna)

Program Committee Chairs

Wolfram Koepf (Kassel)

Program Committee

Sergei Abramov (Moscow)

Frangois Boulier (Lille)
Hans-Joachim Bungartz (Munich)
Victor F. Edneral (Moscow)
Toannis Z. Emiris (Athens)

Jaime Gutierrez (Santander)

Victor Levandovskyy (Aachen)
Marc Moreno Maza (London, CAN)
Alexander Prokopenya (Warsaw)
Eugenio Roanes-Lozano (Madrid)

Local Organization

Valery Romanovski (Maribor)
Marko Robnik (Maribor)

Website

Ernst W. Mayr (TU Miinchen)

Evgenii V. Vorozhtsov (Novosibirsk)

Valery Romanovski (Maribor)
Markus Rosenkranz (Canterbury)
Mohab Safey El Din (Paris)

Yosuke Sato (Tokyo)

Werner M. Seiler (Kassel)

Doru Stefanescu (Bucharest)

Thomas Sturm (Saarbriicken)

Agnes Szanto (Raleigh)

Stephen M. Watt (W. Ontario, CAN)
Andreas Weber (Bonn)

Marko Petkovsek (Ljubljana)

http://wwwmayr.in.tum.de/CASC2012/

Table of Contents

On Polynomial Solutions of Linear Partial Differential and (g-)Difference

Equations e
S.A. Abramov and M. Petkovsek

An Algebraic Characterization of Rainbow Connectivity
Prabhanjan Ananth and Ambedkar Dukkipati

Application of the Method of Asymptotic Solution to One
Multi-Parameter Problem
Alexander Batkhin

A New Algorithm for Long Integer Cube Computation with Some
Insight into Higher Powers
Marco Bodrato and Alberto Zanoni

Lightweight Abstraction for Mathematical Computation in Java
Pavel Bourdykine and Stephen M. Wait

Calculation of Normal Forms of the Euler—Poisson Equations
Alexander D. Bruno and Victor F. Edneral

Stability of Equilibrium Positions in the Spatial Circular Restricted
Four-Body Problem
Dzmitry A. Budzko and Alexander N. Prokopenya

Computing Hopf Bifurcations in Chemical Reaction Networks Using
Reaction Coordinates.t
Hassan Errami, Werner M. Seiler, Markus FEiswirth, and

Andreas Weber

Comprehensive Involutive Systems o ..
Viadimir Gerdt and Amir Hashemi

A Polynomial-Time Algorithm for the Jacobson Form of a Matrix
of Ore Polynomials i
Mark Giesbrecht and Albert Heinle

The Resonant Center Problem for a 2:-3 Resonant Cubic Lotka—Volterra
SYSEEIM .o
Jaume Giné, Colin Christopher, Mateja PreSern,
Valery G. Romanovski, and Natalie L. Shcheglova

12

22

34

47

60

72

84

98

XII Table of Contents

Complexity of Solving Systems with Few Independent Monomials
and Applications to Mass-Action Kinetics 143
Dima Grigoriev and Andreas Weber

Symbolic-Numerical Calculations of High-|m| Rydberg States and

Decay Rates in Strong Magnetic Fields 155
Alezander Gusev, Sergue Vinitsky, Ochbadrakh Chuluunbaatar,
Viadimir Gerdt, Luong Le Hai, and Vitaly Rostovtsev

Quasi-stability versus Genericity i i 172
Amir Hashemi, Michael Schweinfurter, and Werner M. Seiler

Invariant Theory: Applications and Computations
(Abstract of Invited Talk).......... . 185
Gregor Kemper

Local Generic Position for Root Isolation of Zero-Dimensional
Triangular Polynomial Systems 186
Jia Li, Jin-San Cheng, and FElias P. Tsigaridas

On Fulton’s Algorithm for Computing Intersection Multiplicities 198
Steffen Marcus, Marc Moreno Maza, and Paul Vrbik

A Note on the Space Complexity of Fast D-Finite Function
Evaluation 212
Marc Mezzarobba

Inversion Modulo Zero-Dimensional Regular Chains 224
Marc Moreno Maza, Eric Schost, and Paul Vrbik

Sparse Polynomial Powering Using Heaps 236
Michael Monagan and Roman Pearce

Stability Conditions of Monomial Bases and Comprehensive Grébner
SYSEEINS .« .ttt 248
Katsusuke Nabeshima

Parallel Reduction of Matrices in Grébner Bases Computations 260
Severin Neumann

Real and Complex Polynomial Root-Finding by Means
of Eigen-Solvingo 271
Victor Y. Pan, Guoliang Qian, and Ai-Long Zheng

Root-Refining for a Polynomial Equation 283
Victor Y. Pan

PoCaB: A Software Infrastructure to Explore Algebraic Methods
for Bio-chemical Reaction Networks 294
Satya Swarup Samal, Hassan Errami, and Andreas Weber

Table of Contents XIII

Approximately Singular Systems and Ill-Conditioned Polynomial
SYSEEINS .« . ot 308
Tateaki Sasaki and Daiju Inaba

Symbolic-Numeric Implementation of the Method of Collocations
and Least Squares for 3D Navier—Stokes Equations 321
Vasily P. Shapeev and Evgenii V. Vorozhtsov

Verifiable Conditions on Asymptotic Stabilisability for a Class
of Planar Switched Linear Systems 334
Zhikun She and Haoyang Li

Improving Angular Speed Uniformity by Optimal C° Piecewise
Reparameterization e 349
Jing Yang, Dongming Wang, and Hoon Hong

Usage of Modular Techniques for Efficient Computation of Ideal
Operations (Abstract of Invited Talk) 361
Kazuhiro Yokoyama

Author Index 363

On Polynomial Solutions of Linear Partial
Differential and (g-)Difference Equations

S.A. Abramov!*, M. Petkovgek?**

! Computing Centre of the Russian Academy of Sciences, Vavilova,
40, Moscow 119333, Russia
sergeyabramov@mail.ru
2 University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19,
SI-1000, Ljubljana, Slovenia
Marko.Petkovsek@fmf.uni-1j.si

Abstract. We prove that the question of whether a given linear par-
tial differential or difference equation with polynomial coefficients has
non-zero polynomial solutions is algorithmically undecidable. However,
for equations with constant coefficients this question can be decided very
easily since such an equation has a non-zero polynomial solution iff its
constant term is zero. We give a simple combinatorial proof of the fact
that in this case the equation has polynomial solutions of all degrees.
For linear partial g-difference equations with polynomial coefficients, the
question of decidability of existence of non-zero polynomial solutions re-
mains open. Nevertheless, for such equations with constant coefficients
we show that the space of polynomial solutions can be described algorith-
mically. We present examples which demonstrate that, in contrast with
the differential and difference cases where the dimension of this space is
either infinite or zero, in the g-difference case it can also be finite and
non-zero.

1 Introduction

Polynomial solutions of linear differential and (g-)difference equations often serve
as a building block in algorithms for finding other types of closed-form solutions.
Computer algebra algorithms for finding polynomial (see, for example, [4]) and
rational (see [T2I7JI0I8] etc.) solutions of linear ordinary differential and dif-
ference equations with polynomial coefficients are well known. Note, however,
that relatively few results about rational solutions of partial linear differential
and (g-)difference equations can be found in the literature. Only recently, M.
Kauers and C. Schneider [ITJI2] have started work on the algorithmic aspects
of finding universal denominators for rational solutions in the difference case.
Once such a denominator is obtained, one needs to find polynomial solutions of
the equation satisfied by the numerators of the rational solutions of the original
equation. This is our motivation for considering polynomial solutions of linear

* Supported by RFBR grant 10-01-00249-a.
** Supported by MVZT RS grant P1-0294.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 1-[I] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

2 S.A. Abramov and M. Petkovsek

partial differential and (g-)difference equations with polynomial coefficients in
the present paper.

Let K be a field of characteristic 0, and let x1, ..., x,, be independent variables
where m > 2. In Section 2, using an argument similar to the one given in [9, Thm.
4.11], we show that there is no algorithm which, for an arbitrary linear differential
or difference operator L with coefficients from K{[z1, ..., z,,], determines whether
or not there is a non-zero polynomial y € K[z1,..., 2] such that L(y) = 0
(Theorem [I]). The proof is based on the Davis-Matiyasevich-Putnam-Robinson
theorem (DMPR) which states that the problem of solvability of Diophantine
equations is algorithmically undecidable, i.e., that there is no algorithm which,
for an arbitrary polynomial P(¢y,...,t,,) with integral coefficients, determines
whether or not the equation P(t1,...,t,) = 0 has an integral solution [T4JI7].
In fact, we use the equivalent form which states that existence of non-negative
integral solutions of P(t1,...,t,) = 0 is undecidable as well.

Of course, by limiting the class of operators considered, the corresponding prob-
lem may become decidable. For example, it is well known that a partial linear dif-
ferential or difference operator L with coefficients in K (a.k.a. an operator with
constant coefficients) has a non-zero polynomial solution iff L(1) = 0 (see, for
example, [20, Lemma 2.3]). In addition, in Section 3 we show that in this case,
the equation L(y) = 0 has polynomial solutions of degree d for all d € N (The-
orem [2]). This is contrasted with the univariate case m = 1, where the degree of
a polynomial solution cannot exceed ord L (but note that, when a univariate L is
considered to be m-variate with m > 2, and L(1) = 0, equation L(y) = 0 does
have solutions of all degrees). In the differential case, when the affine algebraic
variety defined by o(L) = 0 (where o : K[0/0x1,...,0/0x,] = Klx1,...,2,] is
the ring homomorphism given by o|x = idk, 0(9/0x;) = x;) is not singular at 0,
and for d large enough, Theorem [2lfollows from [20} Prop. 3.3(e)]. Here we present
a short direct proof based on a simple counting argument. For a given d € N all
solutions of degree d of such an equation can be found, e.g., by the method of un-
determined coefficients. Of course, there exist more efficient ways to do that: in
[19], the application of Janet bases to the computation of (formal) power series
and polynomial solutions is considered; in [19, Ex. 4.6], the command PolySol
for computing polynomial solutions from the Janet Maple package is illustrated.
Computing polynomial solutions using Grébner bases is described in [21 Sect.
10.3,10.4] and [19, Sect. 10.8]. The more general problem of finding polynomial so-
lutions of holonomic systems with polynomial coefficients (if they exist) is treated
in [16/22], and the resulting algorithms are implemented in Macaulay?2 [13].

Our attention was drawn to these problems by M. Kauers. In a letter to the
first author he presented a proof of undecidability of existence of non-zero poly-
nomial solutions of partial differential equations with polynomial coefficients, and
attributed it to mathematical folklore. In our paper, a simple common proof for
the differential and difference cases is proposed. The situation when coefficients
are constant is clarified as well.

In Section [we consider the g-difference case, assuming that K = k(q) where
k is a subfield of K and ¢ is transcendental over k (g-calculus, as well as the

On Polynomial Solutions of Linear Partial Differential Equations 3

theory and algorithms for ¢-difference equations, are of interest in combinatorics,
especially in the theory of partitions [5l, Sect. 8.4], [6]). The question of decid-
ability of existence of non-zero polynomial solutions of an arbitrary ¢-difference
equation with polynomial coefficients is still open. As for the equations with
constant coefficients, we formulate and prove a necessary condition for existence
of a non-zero polynomial solution: if L(1) = p(q) € K[q], then p(1) = 0, or, more
succinetly: (L(1))(1) = 0. We also show that the dimension of the space of poly-
nomial solutions of a linear g-difference equation with constant coefficients can
be, in contrast with the differential and difference cases, not only zero or infinite,
but also finite positive. An explicit description of this space can be obtained al-
gorithmically. We consider this as one of the first steps in the program to find
wider classes of closed-form solutions of multivariate g-difference equations.

Terminology and notation. We write © = (z1,...,,,) for the variables,
D = (Dy,...,Dy,) for partial derivatives (D; = azi)’ and A = (Aq,...,4,)
for partial differences (A; = E; — 1 where E; f(z) = f(x1, ..., 2+ 1,...,2m)).
Multiindices from N™ (where N = {0,1,2,...}) are denoted by lower-case Greek
letters, so that a partial linear operator of order at most r with polynomial
coefficients is written as

L= a()D" &
|p| <

in the differential case, and

L =) aux)a* (2)

<

in the difference case, with a,(z) € K[z1,..., 2] in both cases. We denote the
dot product of multiindices u, « € N™ by p-a=pioag + -+ mQm.

We call y(z) € K[z1,...,2m] a solution of L if L(y) = 0.

Let ¢ € K\ {0}. As usual, we define

mn1 n _ 3
deg,. (cat'---xpm) = ny
fori=1,...,m, and
n 9
deg(cx11~-~xﬁ;") = N1+ -+ Ny

For p(x) € K|[x1,...,2m] \ {0} we set deg, p(x) for i =1,...,m to be equal to
max deg, t, and deg p(x) to be equal to maxdegt where the maximum is taken
over all the terms ¢ of the polynomial p(x). We define deg, 0 = deg0 = —oo for
t=1,...,m.

We denote the rising factorial by

4 S.A. Abramov and M. Petkovsek

2 Equations with Polynomial Coefficients

Theorem 1. There is no algorithm to decide whether an arbitrary linear partial
differential resp. difference operator L with polynomial coefficients in an arbitrary
number m of variables, of the form () resp. (@), has a non-zero polynomial
solution.

Proof. Let P(t1,...,ty) € Z[t1,...,tm] be arbitrary. For i = 1,...,m write
0; = z;D; and o; = 2;4;. Then

(e} o) = maa 3)
and
oi(al) = maat ol (4)

for i = 1,...,m. Define an operator L of the form () resp. (&) by setting L =
P(04,...,0,,) in the differential case, and L = P(o1,...,0,,) in the difference
case. Let f(z1,...,2m) € K[x1,...,2mn] be a polynomial over K. From (@) and
@ it follows that L annihilates f iff it annihilates each term of f separately, so
L has a non-zero polynomial solution iff it has a monomial solution (where in
the difference case we assume that the polynomial f is expanded in terms of the
rising factorial basis). But we have

Lz - zpm) =P Ny, ... ,ny) zft - -apm

in the differential case, and

L(z]* - apm) = PNy, ... np) xit - anm
in the difference case. So L has a monomial solution iff there exist n,...,n, € N
such that P (ni,...,nm,) = 0. Hence an algorithm for deciding existence of non-

zero polynomial solutions of linear partial differential or difference operators with
polynomial coefficients would give rise to an algorithm for deciding existence of
non-negative integral solutions of polynomial equations with integral coefficients,
in contradiction to the DMPR, theorem.

Remark 1. In [9, Thm. 4.11], it is shown that there is no algorithm for de-
ciding existence of formal power series solutions of an inhomogeneous partial
differential equations with polynomial coefficients and right-hand side equal to 1
(see also Problem 13 in [15, p. 62] and Problem 3 in [18, p. 27]). Even though
the same polynomial P in 0; is used in the proof of Theorem [as in the proof of
[9, Thm. 4.11], it is not at all clear whether the former follows from the latter.

Remark 2. Since the DMPR theorem holds for any fixred number m > 9 of
variables as well (cf. [T7]), the same is true of Theorem [l

On Polynomial Solutions of Linear Partial Differential Equations 5
3 Equations with Constant Coefficients

In this section we assume that L is an operator of the form (), [2) with coeffi-
cients a, € K.
Fori=1,...,m, let

5 — D;, in the differential case,
Y 7] A, in the difference case.

Lemma 1. Let L € K[b1,...,0n] and let the equation

L(y) =0 (®)

have a polynomial solution of degree k > 0. Then this equation has a polynomial
solution of degree j for j =0,1,... k.

Proof. By induction on j from k down to 0.
j = k: This holds by assumption.

0 < j < k—1: By inductive hypothesis, equation (B has a polynomial solution
y(x) = p(x1,...,2m) of degree j + 1. Let t = cay'---a be a term of the
polynomial p such that degt = j + 1, and let ¢ € {1,...,m} be such that
deg, .t > 0. Then §;(p) has the desired properties. Indeed, deg J;(p) = degp—1 =
Jj and, since operators with constant coefficients commute, L(J;(p)) = §;(L(p)) =

Theorem 2. Letm > 2, andlet L € K[01,...,0m] be a linear partial differential
or difference operator with constant coefficients. The following assertions are
equivalent:

(a) For each k € N, L has a polynomial solution of degree k.
(b) L has a non-zero polynomial solution.

(¢c) L(1) = 0.

Proof. (a) = (b): Obvious.

(b) = (c): Assume that L has a non-zero polynomial solution p(z). Then
degp > 0, and by Lemma [Il L has a solution of degree 0. Hence L(1) = 0 as
well.

(¢) = (a): It is well known that, in m variables, the number of monomials of

degree d is (djnrle), and the number of monomials of degree at most d is (d;m)

Set "
d = (+1>
2

and denote by M the set of all monomials in the variables x4, ..., z,, of degrees

k,k+1,...,d Then
d+m k—1+m
= (1) -(70)

6 S.A. Abramov and M. Petkovsek

Let P = L(M). From (c) it follows that the free term ¢y of L is equal to 0, hence
deg L(t) < degt for any t € M, and so the degrees of polynomials in P do not
exceed d — 1.
If M contains two distinct monomials my and mgy such that L(mq) = L(mg)
then p = m; — my is a non-zero polynomial solution of L of degree at least k.
Otherwise, L is injective on M, and so |P| = |M|. From d+ 1 > k(k +1)/2,
d >k and m > 2 it follows that

(d4+1)™ —d™ = m(d+ 1)™!
=m(d+1) (d+2)"?
m k(k+1) (k+2)m2

> k™

-)

hence (d + 1)™ — k™ > d™. Dividing this by m! we see that

- v (12) (1)
()

Since the dimension of the space of polynomials of degrees at most d — 1 is
(djl:m), it follows that the set P is linearly dependent. Hence there is a non-
trivial linear combination p of the monomials in M such that L(p) = 0. Clearly,
p is a non-zero polynomial solution of L of degree at least k.

In either case (if L is injective on M or not) we have obtained a non-zero
polynomial solution of L of degree at least k. By Lemma [l it follows that L has

a non-zero polynomial solution of degree k.

4 g-Difference Equations with Constant Coefficients

The question of decidability of the existence of non-zero polynomial solutions
of an arbitrary g-difference equation with polynomial coefficients is still open.
In this section we consider equations with coefficients from K, assuming that
K = k(q) where k is a subfield of K and ¢ is transcendental over k.

We write Q = (Q1, ..., Q) for partial g-shift operators where

Qif(x) = f(x1,...,qTiy. .., Tm),

so that a partial linear g-difference operator with constant coefficients of order
at most r is written as

L= a0 (6)

<

with a, € K. Clearly, for multiindices y and a,

On Polynomial Solutions of Linear Partial Differential Equations 7

Q“‘xa frnd Q'Lfl “ e Q’runm 1'(111 e x’?nm

— M1, yu (o7
= Ql Ly Qmmxmm

4 «) @
= (¢" @)™ - (g)
— qu10¢1+"'+ltmam‘r?1 . x%’"

= g, (7)

Lemma 2. An operator L of the form (@) has a nonzero polynomial solution iff
it has a monomial solution.

Proof. If L has a monomial solution z¢, then z% is also a non-zero polynomial
solution of L.
Conversely, assume that p(z) € K|xz] is a non-zero polynomial solution of L.

Write
p(x) = Z Cox®
(03
where only finitely many ¢, are non-zero, and define its support by

suppp = {a € N ¢q # 0}

Then
L(p) = Z a, Z Cca Q¥
I «a
=>4, > cag™z* (by @)
I «a

a I
hence from L(p) = 0 it follows that
Zaqu-a =0
o
whenever ¢, # 0. Therefore, by (),
L) = o0t = Yo = 0
I p

for all such «, so x® is a monomial solution of L for each a € supp p.

By clearing denominators in the equation L(y) = 0, we can assume that the
coefficients of L are in k[g], hence we can rewrite

L = Zzau,iquu (8)
W 7

8 S.A. Abramov and M. Petkovsek

where only finitely many a,; € k are non-zero. Define

. 1
suppL = {(n,i) e N"™; a,, #0}.

Let P be a partition of supp L. We call such a partition balanced if

Z au,i =0

(p,3)€B

for every block B € P. To any o € N we assign the partition Pp o of supp L
induced by the equivalence relation

(i) ~ (v,j) it pati=v-a+j

Lemma 3. L(z®) = 0 iff Pr, o is balanced.

Proof.

L(xa) = Z au,iquﬂxa

(p,3)Esupp L

_ i, o
= E au,iqt T e,

(w,i)€Esupp L

hence L(z®) = 0 i#f 3, »cquppr a,,ig" " = 0. Since ¢ is transcendental over
k, the latter equality holds iff Z(u nep Gui =0 for every block B € Py, 4, i.e.,
iff Pr . is balanced.

Corollary 1. L in (8) has a non-zero polynomial solution iff there is an o € N™
such that Pr, o is balanced.

Proof. This follows from Lemmas Pl and Bl
Corollary 2. If L in (8) has a non-zero polynomial solution then Zu a, = 0.
Proof. This follows from Corollary [l since if Py, is balanced then Zu a, = 0.

JFrom Corollary [Il we obtain the following algorithm for deciding existence of
non-zero polynomial solutions of L in (8):

for each balanced partition P of supp L do
let S be the system of |supp L| linear equations

p-a+i = vp, (u,i)eBEeP

for the unknown vectors o and v = (vg)Bep
if S has a solution (,v) with o € N™* then
return “yes” and stop
return “no”.

On Polynomial Solutions of Linear Partial Differential Equations 9

Corollary 3. The problem of existence of non-zero polynomial solutions of par-
tial linear q-difference operators with constant coefficients is decidable.

Note that one can convert the above decision algorithm into a procedure for
providing a finite description of a (possibly infinite) basis for the space of all
polynomial solutions of equation L(y) = 0.

The following simple examples demonstrate that, in contrast with the differ-
ential and difference cases, there are partial linear g-difference equations with
constant coefficients such that the dimension of their space of polynomial solu-
tions is: a) infinite, b) finite positive, ¢) zero.

Example 1. Let L1 = Q2Q2 + qQ1Q3 — 2¢°Q3. Then
Ll(x?1x32) —_ (q2a1+a2 4 qa1+2a2+1 o 2q3a2+2)x(111x32

and supp L1 = {(2,1,0),(1,2,1), (0, 3,2)}. The only balanced partition of this set
is the single-block partition P = {supp L1}, and we obtain the system of linear
equations

2000 + o = a1 +2a5+1 = 3as+ 2

for aq and as. This system has infinitely many non-negative integer solutions of
the form aq =t 41, ap =t where t € N. Therefore, every non-zero linear com-
bination of monomials of the form xt1+1x§ where t € N, is a non-zero polynomial
solution of the operator L.

Example 2. Let Ly = Q1Q2 + Q3Q3 — 2¢°Q3. Then

4 201+3 30142
Lo(atay?) = (girToe 4 g?etooe —ggPat2)ppgge

and supp Ly = {(4,1,0),(2,3,0),(3,0,2)}. Again the only balanced partition of
this set is the single-block partition, and we obtain the system of linear equations

da1 +as = 201 +3as = 3a; + 2

for ay and as. The only solution of this system is a; = ag = 1, so the operator
Lo has a 1-dimensional space of polynomial solutions spanned by x1xs.

Example 3. Let Lz = Q2Q2 + Q1Q3 — 2qQ3. Then
L3(.’I/‘?1.’L‘g2) — (q2041+0¢2 + qa1+20¢2 _ 2q3042+1)x11341x32

and supp L3 = {(2,1,0),(1,2,0),(0,3,1)}. Once again the only balanced parti-
tion of this set is the single-block partition, and we obtain the system of linear
equations

200 + o = a1 +2as = 3as+1

for a1 and . Since this system has no solution, the operator Ls has no non-zero
polynomial solution.

10 S.A. Abramov and M. Petkovsek

5 Conclusion

In this paper, we have investigated the computational problem of existence of
non-zero polynomial solutions of linear partial differential and difference equa-
tions with polynomial coefficients. We have shown that the problem is algo-
rithmically undecidable. This means that there is no hope of having a general
algorithm for deciding existence of such solutions in a computer algebra system
now or ever in the future.

However, we have shown that the existence problem is decidable in the case of
partial linear differential or difference equations with constant coefficients: such
an equation L(y) = 0 has non-zero polynomial solutions iff L(1) = 0. Moreover,
when the latter condition is satisfied, this equation has polynomial solutions
of any desired degree. A number of methods exist to search for such solutions
efficiently (see, e.g., [T9/21]).

For partial equations with constant coefficients in the ¢g-difference case which is
of interest in combinatorics, we have formulated and proved a necessary condition
for existence of non-zero polynomial solutions: (L(1))(1) = 0 (note that L(1) isa
polynomial in ¢). We have also shown that when the latter condition is satisfied,
the dimension of the space of polynomial solutions in some particular cases can
be finite and even zero (then no non-zero polynomial solutions exist). An explicit
description of this space can be obtained algorithmically, and the corresponding
algorithm is straightforward to implement in any computer algebra system.

The following interesting problems remain open:

1. (Un)decidability of existence of non-zero polynomial solutions of a given
linear partial differential or difference equation with polynomial coefficients when
the number of variables m is between 2 and 8.

2. (Un)decidability of existence of non-zero polynomial solutions of a given
linear partial ¢g-difference equation with polynomial coefficients (both the general
problem when the number m of variables is arbitrary, and the problems related
to particular numbers of variables).

Problem 1 seems to be very hard since the problem of solvability of Diophantine
equations in m variables with m between 2 and 8 is still open (cf. [I7]). Con-
cerning Problem 2, note that in the ordinary case (m = 1), certain existence
problems in the g-difference case are decidable although the analogous problems
in the differential and difference cases are not (see, e.g., [3]). An example of
an open problem which might be easier than Problems 1 or 2 is the existence
problem of non-zero polynomial solutions for ¢-differential equations.
We will continue to pursue this line of inquiry.

Acknowledgements. The authors are grateful to M. Kauers for kindly pro-
viding a version of the proof of Theorem [l in the differential case (as mentioned
in the Introduction), to S. P. Tsarev for interesting and helpful discussions, and
to several anonymous referees for their valuable remarks and references to the
literature.

On Polynomial Solutions of Linear Partial Differential Equations 11

References

1.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

Abramov, S.A.: Rational solutions of linear difference and differential equations
with polynomial coefficients. U.S.S.R. Comput. Math. and Math. Phys. 29(6), 7—
12 (1989)

Abramov, S.A.: Rational solutions of linear difference and g¢-difference equations
with polynomial coefficients. Programming and Comput. Software 21(6), 273-278
(1995)

Abramov, S.A.: On some decidable and undecidable problems related to g¢-
difference equations with parameters. In: Proc. ISSAC 2010, pp. 311-317 (2010)
Abramov, S.A., Bronstein, M., Petkovsek, M.: On polynomial solutions of linear
operator equations. In: Proc. ISSAC 1995, pp. 290-296 (1995)

Andrews, G.E.: The Theory of Partitions. Encyclopedia of Mathematics and its
Applications. Addison-Wesley, Reading Mass. (1976)

Andrews, G.E.: g-Series: Their Development and Application in Analysis, Number
Theory, Combinatorics, Physics, and Computer Algebra. CBMS Regional Confer-
ence Series, vol. 66. AMS, Providence (1986)

Barkatou, M.A.: A fast algorithm to compute the rational solutions of systems of
linear differential equations. RR 973-M- Mars 1997, IMAG-LMC, Grenoble (1997)
Barkatou, M.A.: Rational solutions of systems of linear difference equations. J.
Symbolic Comput. 28(4-5), 547-567 (1999)

Denef, J., Lipshitz, L.: Power series solutions of algebraic differential equations.
Math. Ann. 267(2), 213-238 (1984)

van Hoeij, M.: Rational solutions of linear difference equations. In: Proc. ISSAC
1998, pp. 120-123 (1998)

Kauers, M., Schneider, C.: Partial denominator bounds for partial linear difference
equations. In: Proc. ISSAC 2010, pp. 211-218 (2010)

Kauers, M., Schneider, C.: A refined denominator bounding algorithm for multi-
variate linear difference equations. In: Proc. ISSAC 2011, pp. 201-208 (2011)
Leykin, A.: D-modules for Macaulay 2. In: Mathematical Software, Beijing, pp.
169-179. World Sci. Publ., River Edge (2002)

Matiyasevich, Y.V.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)
Matiyasevich, Y.V.: On Hilbert’s tenth problem. PIMS Distinguished Chair Lectures
(2000), http://www.mathtube.org/lecture/notes/hilberts-tenth-problem
Oaku, T., Takayama, N., Tsai, H.: Polynomial and rational solutions of holonomic
systems. J. Pure Appl. Algebra 164(1-2), 199-220 (2001)

Pheidas, T., Zahidi, K.: Undecidability of existential theories of rings and fields:
A survey. In: Hilbert’s Tenth Problem: Relations with Arithmetic and Algebraic
Geometry. Contemp. Math., vol. 270, pp. 49-105 (2000)

Sadovnikov, A.: Undecidable problems about polynomials: Around Hilbert’s
10th problem. Lecture notes (2007), http://wwwl4.informatik.tu-muenchen.de/
konferenzen/Jass07/courses/1/Sadovnikov/Sadovnikov Paper.pdf

Seiler, W.M.: Involution. The formal theory of differential equations and its ap-
plications in computer algebra. In: Algorithms and Computation in Mathematics,
vol. 24. Springer, Berlin (2010)

Smith, S.P.: Polynomial solutions to constant coefficient differential equations.
Trans. Amer. Math. Soc. 329(2), 551-569 (1992)

Sturmfels, B.: Solving Systems of Polynomial Equations. CBMS Regional Confer-
ences Series, vol. 97. Amer. Math. Soc., Providence (2002)

Tsai, H., Walther, U.: Computing homomorphisms between holonomic D-modules.
J. Symbolic Comput. 32(6), 597-617 (2001)

http://www.mathtube.org/lecture/notes/hilberts-tenth-problem
http://www14.informatik.tu-muenchen.de/konferenzen/Jass07/courses/1/Sadovnikov/Sadovnikov_Paper.pdf
http://www14.informatik.tu-muenchen.de/konferenzen/Jass07/courses/1/Sadovnikov/Sadovnikov_Paper.pdf

An Algebraic Characterization
of Rainbow Connectivity

Prabhanjan Ananth and Ambedkar Dukkipati

Department of Computer Science and Automation
Indian Institute of Science, Bangalore 560012, India
{prabhanjan,ambedkar}@csa.iisc.ernet.in

Abstract. The use of algebraic techniques to solve combinatorial prob-
lems is studied in this paper. We formulate the rainbow connectivity
problem as a system of polynomial equations. We first consider the case
of two colors for which the problem is known to be hard and we then
extend the approach to the general case. We also present a formulation
of the rainbow connectivity problem as an ideal membership problem.

Keywords: Graphs, NulLA alogirithm, ideal membership.

1 Introduction

The use of algebraic concepts to solve combinatorial optimization problems has
been a fascinating field of study explored by many researchers in theoretical
computer science. The combinatorial method introduced by Noga Alon [I] offered
a new direction in obtaining structural results in graph theory. Lovész [2], De
Loera [3] and others formulated popular graph problems like vertex coloring,
independent set as a system of polynomial equations in such a way that solving
the system of equations is equivalent to solving the combinatorial problem. This
formulation ensured the fact that the system has a solution if and only if the
corresponding instance has a “yes” answer.

Solving system of polynomial equations is a well studied problem with a wealth
of literature on this topic. It is well known that solving system of equations is
a notoriously hard problem. De Loera et al. [4] proposed the NulLA approach
(Nullstellensatz Linear Algebra) which used Hilbert’s Nullstellensatz to deter-
mine the feasibility among a system of equations. This approach was further
used to characterize some classes of graphs based on degrees of the Nullstellen-
satz certificate.

In this work, we study the algebraic characterization of a relatively new con-
cept in graph theory termed as rainbow connectivity. We first show how to model
the rainbow connectivity problem as an ideal membership problem and then us-
ing a result from [3], we propose an algorithm to solve the rainbow connectivity
problem. We then show how to encode the k-rainbow connectivity problem as a
system of polynomial equations for the case when k = 2. We then show how to
extend this for any constant k.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 12-T] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

An Algebraic Characterization of Rainbow Connectivity 13

In Section], we review the basics of encoding of combinatorial problems as
systems of polynomial equations. Further, we describe NulLA along with the
preliminaries of rainbow connectivity. In Section Bl we propose a formulation
of the rainbow connectivity problem as an ideal membership problem. We then
present encodings of the rainbow connectivity problem as a system of polynomial
equations in Section [l

2 Background and Preliminaries

The encoding of well known combinatorial problems as system of polynomial
equations is described in this section. The encoding schemes of the vertex col-
oring and the independent set problem is presented. Encoding schemes of well
known problems like Hamiltonian cycle problem, MAXCUT, SAT and others
can be found in [5]. The term encoding is formally defined as follows:

Definition 1. Given a language L, if there exists a polynomial-time algorithm
A that takes an input string I, and produces as output a system of polynomial
equations such that the system has a solution if and only if I € L, then we say
that the system of polynomial equations encodes I.

It is a necessity that the algorithm that transforms an instance into a system of
polynomial equations has a polynomial running time in the size of the instance I.
Else, the problem can be solved by brute force and trivial equations 0 = 0 (“yes”
instance) or 1 = 0 (“no” instance) can be output. Further since the algorithm
runs in polynomial time, the size of the output system of polynomial equations is
bounded above by a polynomial in the size of I. The encodings of vertex coloring
and stable set problems are presented next.

We use the following notation throughout this paper. Unless otherwise men-
tioned all the graphs G = (V, E) have the vertex set V = {vy,...,v,} and the

edge set E = {ey,...,en}. The notation v;;, —v;, — -+ — v;, is used to denote a
path P in G, where e;;, = (viy,Viy)s .- €i,_, = (Vi._,,vi,) € E. The path P is
also denoted by v;;, —e;; — -+ —e;, , —v;, and v;; — P —v;,.

2.1 k-Vertex Coloring and Stable Set Problem

The vertex coloring problem is one of the most popular problems in graph theory.
The minimum number of colors required to color the vertices of the graph such
that no two adjacent vertices get the same color is termed as the vertex coloring
problem. We consider the decision version of the vertex coloring problem. The
k-vertex coloring problem is defined as follows: Given a graph G, does there exist
a vertex coloring of G with k colors such that no two adjacent vertices get the
same color. There are a quite a few encodings known for the k-vertex colorability
problem. We present one such encoding given by Bayer [6]. The polynomial ring
under consideration is k[z1,...,zy].

14 P. Ananth and A. Dukkipati

Theorem 1. A graph G = (V, E) is k-colorable if and only if the following
zero-dimensional system of equations has a solution:

¥ —1=0, Yo €V,

k—1
foflfdx? =0, Y(v;,v;) € E.
d=0

Proof Idea. If the graph G is k-colorable, then there exists a proper k-coloring
of graph G. Denote these set of k colors by k** roots of unity. Consider a point
p € k™ such that i’ co-ordinate of p (denoted by p(i)) is the same as the color
assigned to the vertex x;. The equations corresponding to each vertex (of the
form xf — 1 = 0) are satisfied at point p. The equations corresponding to the
edges can be rewritten as

k_ .k
oy —zj 0
T — Ty
Since zf = xf =1 and z; # z;, even the edge equation is satisfied at p.

Assume that the system of equations have a solution p. It can be seen that p
cannot have more than k distinct co-ordinates. We color the vertices of the graph
G as follows: color the vertex v; with the value p(®. It can be shown that if the
system is satisfied then in the edge equations, x; and x; need to take different
values. In other words, if (v;, v;) is an edge then p(D and pU) are different. Hence,
the vertex coloring of G is a proper coloring. O

A stable set (independent set) in a graph is a subset of vertices such that no
two vertices in the subset are adjacent. The stable set problem is defined as
the problem of finding the maximum stable set in the graph. The cardinality
of the largest stable set in the graph is termed as the independence number of
G. The encoding of the decision version of the stable set problem is presented.
The decision version of the stable set problem deals with determining whether
a graph G has a stable set of size at least k. The following result is due to
Lovész [2].

Lemma 1. A graph G = (V, E) has an independent set of size > k if and only
if the following zero-dimensional system of equations has a solution

x?—xi:O, VieV,
z;xj =0, V{Z,j} SN

i=1

The number of solutions equals the number of distinct independent sets of
size k.

The proof of the above result can be found in [5].

An Algebraic Characterization of Rainbow Connectivity 15

2.2 NulLA Algorithm

De Loera et al. [4] proposed the Nullstellensatz Linear Algebra Algorithm
(NulLA) which is an approach to ascertain whether the polynomial system has a
solution or not. Their method relies on the one of the most important theorems
in algebraic geometry, namely the Hilbert Nullstellensatz. The Hilbert Nullstel-
lensatz theorem states that the variety of an ideal is empty over an algebraically
closed field iff the element 1 belongs to the ideal. More formally,

Theorem 2. [7] Let a be a proper ideal of k[x1,...,x,]. If k is algebraically
closed, then there exists (ai,...,an) € kK™ such that f(a1,...,a,) = 0 for all
fe€a.

Thus, to determine whether a system of equations f; =0, ..., fs = 0 has a solu-
tion or not is the same as determining whether there exists polynomials h; where
i€{1,...,s} such that) ;_, h;f; = 1. Denote the quantity max;<;<s(deg(f;))
by d. A result by Kolldr [8] shows that the degree of the coefficient polynomials
h; can be bounded above by {max(3,d)}"™ where n is the number of indeter-
minates. Hence, each h; can be expressed as a sum of monomials of degree
at most {max(3,d)}", with unknown coefficients. By expanding the summation
>-i_1 hifi, asystem of linear equations is obtained with the unknown coefficients
being the variables. Solving this system of linear equations will yield us the poly-
nomials h; such that .7 , h;f; = 1. The equation >_;_, h;f; = 1 is known as
Nullstellensatz certificate and is said to be of degree d if max;<;<s{deg(h;)} = d.
There have been efforts to determine the bounds on the degree of the Nullstel-
lensatz certificate which in turn has an impact on the running time of NulLA
algorithm. The description of the NulLA algorithm can be found in [5]. The run-
ning time of the algorithm depends on the degree bounds on the polynomials in
the Nullstellensatz certificate. It was shown in [9] that if f; =0,..., fs =0is an
infeasible system of equations then there exists polynomials hq, ..., hs such that
>0y hifi =1 and deg(h;) < n(d — 1) where d = max{deg(f;)}. Thus with this
bound, the running time of the above algorithm in the worst case is exponential
in n(d — 1). Even though this is still far being practical, for some special cases
of polynomial systems this approach seems to be promising. More specifically
this proved to be beneficial for the system of polynomial equations arising from
combinatorial optimization problems [5]. Also using NulLA, polynomial-time
procedures were designed to solve the combinatorial problems for some special
class of graphs [10].

2.3 Rainbow Connectivity

The concept of rainbow connectivity was introduced by Chartrand et. al. [I1]
as a measure of strengthening connectivity. Consider an edge colored graph G.
A rainbow path is a path consisting of distinctly colored edges. The graph G is
said to be rainbow connected if between every two vertices there exists a rainbow
path. The least number of colors required to edge color the graph G such that
@ is rainbow connected is called the rainbow connection number of the graph,

16 P. Ananth and A. Dukkipati

denoted by r¢(G). The problem of determining r¢(G) for a graph G is termed as
the rainbow connectivity problem. The corresponding decision version, termed
as the k-rainbow connectivity problem is defined as follows: Given a graph G,
decide whether r¢(G) < k. The k-rainbow connectivity problem is NP-complete
even for the case k = 2.

3 Rainbow Connectivity as an Ideal Membership
Problem

Combinatorial optimization problems like vertex coloring [3l[12] were formulated
as a membership problem in polynomial ideals. The general approach is to as-
sociate a polynomial to each graph and then consider an ideal which contains
all and only those graph polynomials that have some property (for example,
chromatic number of the corresponding graph is less than or equal to k). To test
whether the graph has a required property, we just need to check whether the
corresponding graph polynomial belongs to the ideal. In this section, we describe
a procedure of solving the k-rainbow connectivity problem by formulating it as
an ideal membership problem. By this, we mean that a solution to the ideal
membership problem yields a solution to the k-rainbow connectivity problem.
We restrict our attention to the case when k = 2.

In order to formulate the 2-rainbow connectivity problem as a membership
problem, we first consider an ideal I, 3 C Q[xe,,- - ., T, |- Then the problem of
deciding whether the given graph G can be rainbow connected with 2 colors or
not is reduced to the problem of deciding whether a polynomial f& belongs to the
ideal I, 3 or not. The ideal I, 3 is defined as the ideal vanishing on V;,, 3, where
Vin,3 is defined as the set of all points which have at most 2 distinct coordinates.
The following theorem was proved by De Loera [3]:

Theorem 3. The set of polynomials

Oms3 =1 H (e, — e,) | 1 <iig < <iz <m}
1<r<s<3

1 a universal Gréobner basz' for the ideal I, 3.

We now associate a polynomial fg to each graph G such that fo belongs to the
ideal I,y 3 if and only if the rainbow connection number of the graph G is at least
3. Assume that the diameter of G is at most 2, because if not we have r¢(G) > 3.
We first define the path polynomials for every pair of vertices (v;,v;) € V x V
as follows: If v; and v; are adjacent then P; ; = 1, else

2
Pij= > (Tew — Te,)” -
€a,ep€EE: vi—eqa—ep—v;EG

1 A set of generators of an ideal is said to be a universal Grébner basis if it is a Grébner
basis with respect to every term order.

An Algebraic Characterization of Rainbow Connectivity 17

The polynomial fs is nothing but the product of path polynomials between any
pair of vertices. Formally, fgs is defined as follows:

fa= H Pij .

v;,v; €V i<
Note that fo can be computed in polynomial time.

Theorem 4. The polynomial fa € I, 3 if and only if re(G) > 3.

Proof. To prove the theorem, it is enough to show that Vp € V,, 3, fa(p) =0
if and only if rainbow connection number of G is at least 3. Assume that the
rainbow connection number of G is at most 2. This means that there exists an
edge coloring of the graph with two colors such that the graph is 2-rainbow
connected. We can visualize this coloring of edges as a tuple (cy, ..., ¢y) where
¢; € Q and the edge e; is given the color ¢;. It can be seen that the point
p = (c1,...,¢m) belongs to Vp, 3. We claim that fo(p) # 0. For that, we show
that P; j(p) # 0 for all (v;,v;) € V x V. Assume that v; and v; are not adjacent
(this is because P; ;(p) # 0 for adjacent pair of vertices (v;,v;)). Since G is
rainbow connected, there is a rainbow path from v; to v; and let eq, ep be the
two edges in this path. Correspondingly, (¢, —¢p) is non-zero and hence (c, —cp)?
is positive. This implies that P; ;(p) # 0 for every pair of vertices (v;, v;). Hence,
fa(p) is non-zero.

Assume that fg(p) # 0 for some p = (c1,...,¢m) € Vi 3. First, we consider the
case when p has no distinct coordinates. In this case, it can be seen that P; ; has
to be 1 for every ¢ < j and ¢,j € {1,...,n}. This further means that the graph
is a complete graph in which case a single color suffices to rainbow connect the
graph. Henceforth, we restrict our attention to the case when p has exactly two
distinct coordinates. Using p, we color the edges of the graph G with two colors
such that G is rainbow connected. Assume without loss of generality that b and
r are the only two values taken by the entries in p. Color the edges of G as
follows: If ¢; = b then color the edge e; with blue else color the edge e; with red.
Since, fa(p) # 0 we have P, j(p) # 0 for all 7,5 € {1,...,n}. Consider a non
adjacent pair of vertices (v;, v;). This implies that there exists a and b such that
(Te, — e,)? is in the support of P; ; and (¢, — cp)? is non-zero. Correspondingly,
the path from v; to v; containing the edges e, and e; is a rainbow path since e,
and ey are colored distinctly. Thus, G is rainbow connected which implies that
re(G) < 2. O

The above characterization gives us a computational algebraic procedure to de-
cide whether the rainbow connection of a graph is at most 2 or not.

1. Given a graph G, find its corresponding polynomial fq.

2. Divide fg by Gm 3.

3. If the division algorithm gives a non-zero remainder then the rainbow con-
nection number of the graph is at most 2 else r¢(G) > 3 .

18 P. Ananth and A. Dukkipati
4 Encoding of Rainbow Connectivity

Consider the polynomial ring Fa[z,,, ..., %,]. As before, assume that the di-
ameter of GG is at most 2. We present an encoding of the 2-rainbow connectivity
problem as a system of polynomial equations S defined as follows:

11 (Te, +Te, +1) = 0; Vi,j€{1,...,n},i<j, (vi,v;) ¢ E

€a,epEEv;—eq—ep—v;EG

If all pairs of vertices are adjacent (as in the case of clique), we have the trivial
system 0 = 0.

Proposition 1. The rainbow connection number of G is at most 2 if and only
if S has a solution in Fg".

Proof. Let p=(c1,...,cm) € FS* be a solution to S. Consider the edge coloring
X : E — {blue,red} defined as follows: x(e;) = blue if ¢; = 1 else x(e;) = red.
Now, consider a pair of vertices (v;,v;) ¢ E. Since the equation corresponding
to (i,7) is satisfied at p, there exists a and b such that e, and e, are edges in
the path from v; to v; and ¢, + ¢, + 1 = 0. This implies that ¢, and ¢, have
different values and hence the edges e, and e; are colored differently. In other
words there is a rainbow path between v; and v;. Since, this is true for any pair
of vertices, the graph G is rainbow connected.

Assume that r¢(G) < 2. Then, let x : E — {blue,red} be an edge coloring of G
such that G is rainbow connected. Let p = (c1,..., ¢y) be a point in F5* such
that ¢; = 1 if x(e;) =blue else ¢; = 0. The claim is that p is a solution for
the system of polynomial equations S. Consider a pair of non adjacent vertices
(vi,v5) in G. Since G is rainbow connected there exists a rainbow path from v; to
v;. Let e, and e be the edges on this path. Since these two edges have distinct
colors, correspondingly the expression ¢, + ¢p + 1 has the value zero. In other
words, the point p satisfies the equation corresponding to i, j. Since this is true
for any pair of vertices the point p satisfies S. O

Ezample. Consider a graph G,, = (V,E) such that V = {a,v1,...,v,} and
E ={(a,v) | i €{1,...,n}}. We denote the edge (a,v;) by e;. It can be easily
seen that the rainbow connection number of the graph G, for n > 3, is at least
3. We show this by using the system of equations denoted by S as follows. The
system of equations S for G,,, for n > 3, is given by:

Te, +2o; +1=0, Vi,je{l,...,n}i<j.

Since (Ze; + Tey + 1) + (ey + Teg + 1) + (e, + Ty + 1) = 1, we have the fact
that 1 belongs to the ideal a = (z, +x; +1 : Vi,j € {1,...,n},i < j). This
means that the solution set of a is empty which further implies that the system
of equations S defined for G,,, for n > 3, has no solution. From the above propo-
sition, we have the result that the rainbow connection number of G,, is at least 3.

An Algebraic Characterization of Rainbow Connectivity 19

We now generalize the encoding for the 2-rainbow connectivity problem to the
k-rainbow connectivity problem. We will only consider graphs of diameter at
most k. This encoding is similar to the one described for the k-vertex coloring
problem. The polynomial ring under consideration is Clz.,, ..., Z.,,]-

Theorem 5. The rainbow connection number of a graph G = (V,E) is < k if
and only if the following zero-dimensional system of equations has a solution:

xfiflz(), Ve, € &

k
I { > (Zw) — 0, V(vi,0;) ¢ E

vi—P—v; \ea,epEP \d=0

Proof. Assume that the system of polynomial equations has a solution p. We
color the edges of the graph as follows: Color the edge e; with p(®) (i'" coordinate
of p). Consider a pair of non adjacent vertices (v;,v;) € V x V. Corresponding to
this pair, there is an equation in the system which is satisfied at p. This implies
that for some path P between v; and v;, the polynomial

> (L)

eq,ep€EP \d=0

vanishes to zero at point p. This further implies that

)

is zero for any pair of edges €q,€p on the path P. This can happen only when
p@ is different from p(®). Correspondingly any two edges e, and e, on the path
P are assigned different colors. Thus the path P between vertices v; and v; is a
rainbow path. This is true for all pairs of vertices and hence the graph is rainbow
connected. Since the point p has at most k distinct coordinates (this is because
p satisfies equations of the form x}e“l — 1 =0), we have the rainbow connection
number of G to be at most k.
Let the rainbow connection number of graph G be at most k. We find a point
p belonging to the solution set of the given system of polynomial equations. As
in the case of proof of Theorem [denote the k colors by k*" roots of unity.
Let p € C™ such that the entry) of p is equal to the color assigned to the
edge e;. The set of equations zF — 1 = 0 are satisfied at p. Consider a pair of
vertices (v;,vj) ¢ E in graph G. Slnce graph G is k-rainbow connected, there is a
rainbow path P between v; and v;. Consider any two edges e, and e; on the path
P. Since e, and e are colored differently, the indeterminates xe and Ze, are
given different values. This further implies that the expression Z e 0 ah=tmdgd
is zero. Thus, for a rainbow path P between v; and v;, the summatlon

s (g

eq,ep€P \d=0

k

20 P. Ananth and A. Dukkipati

is zero and hence, the equation corresponding to the pair of vertices (v;,v;) is
satisfied at point p. Since this is true for any pair of vertices, the point p satisfies
the given system of polynomial equations. O

The above given formulation of the k-rainbow connectivity problem, for any k,
as a system of polynomial equations is not a valid encoding since the encoding
procedure does not run in time polynomial in n. However, if k is a constant then
we have a polynomial time algorithm to exhaust all the paths of length at most
k between every pair of vertices. Using this, we can transform the graph instance
into a system of polynomial equations in time polynomial in n. Hence if & is a
constant, Theorem [gives a valid polynomial time encoding of the k-rainbow
connectivity problem.

5 Conclusion

In this paper, we reviewed methods to solve graph theoretic problems alge-
braically. One of the most popular being formulation of the combinatorial prob-
lems as a system of polynomial equations. Using this formulation, an approach
to determine the infeasibility of the system of polynomial equations, namely
NulLA, is described. We solve the rainbow connectivity problem in two ways.
We formulate the problem as a system of polynomial equations and using NulLA
this will give a solution to our original problem. We also formulate the problem
as an ideal membership problem such that determination of whether the graph
can be colored with some number of colors is equivalent to determining whether
a specific polynomial belongs to a given ideal or not.

An interesting future direction might be to analyze the special cases for which
the rainbow connectivity problem is tractable using the above characterization
(the rainbow connectivity problem is NP-hard for the general case). In order
to achieve this, it would be interesting to get some bounds on the degree of
the Nullstellensatz certificate for the polynomial system corresponding to the
rainbow connectivity problem.

References

1. Alon, N.: Combinatorial Nullstellensatz. Combinatorics, Probability and Comput-
ing 8(1&2), 7-29 (1999)

2. Lovész, L.: Stable sets and polynomials. Discrete Mathematics 124(1-3), 137-153
(1994)

3. De Loera, J.: Grobner bases and graph colorings. Beitrige Algebra Geom. 36(1),
89-96 (1995)

4. De Loera, J., Lee, J., Malkin, P., Margulies, S.: Hilbert’s Nullstellensatz and an al-
gorithm for proving combinatorial infeasibility. In: ISSAC 2008: Proceedings of the
Twenty-first International Symposium on Symbolic and Algebraic Computation,
pp. 197-206. ACM (2008)

5. Margulies, S.: Computer algebra, combinatorics, and complexity: Hilberts Nullstel-
lensatz and NP-complete problems. PhD thesis, University of California (2008)

10.

11.

12.

An Algebraic Characterization of Rainbow Connectivity 21

Bayer, D.: The division algorithm and the Hilbert scheme. PhD thesis, Harvard
University (1982)

Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Un-
dergraduate Texts in Mathematics. Springer (2007)

Kolldr, J.: Sharp effective Nullstellensatz. American Mathematical Society 1(4)
(1988)

Brownawell, W.: Bounds for the degrees in the Nullstellensatz. The Annals of
Mathematics 126(3), 577-591 (1987)

Loera, J., Lee, J., Margulies, S., Onn, S.: Expressing combinatorial problems by
systems of polynomial equations and hilberts nullstellensatz. Combinatorics, Prob-
ability and Computing 18(04), 551-582 (2009)

Chartrand, G., Johns, G., McKeon, K., Zhang, P.: Rainbow connection in graphs.
Math. Bohem 133(1), 85-98 (2008)

Alon, N., Tarsi, M.: A note on graph colorings and graph polynomials. Journal of
Combinatorial Theory Series B 70, 197-201 (1997)

Application of the Method of Asymptotic

Solution to One Multi-Parameter Problem*

Alexander Batkhin

Keldysh Institute of Applied Mathematics,
Miusskaya sq. 4, Moscow, 125047, Russia

Abstract. We propose software implementation of the method of com-
putation of asymptotic expansions (see [II2]) of branches of the set of
zeros of a polynomial in three variables near a singular point at which
this polynomial is annulled with its partial derivatives. We apply this
method for investigation of the set of stability of some gyroscopic sys-
tem with 4 degrees of freedom and with 3 parameters. It is also possible
to compute the set of stability with the help of this method for more
general system with 5 parameters.

1 Introduction

We consider a mechanical system in gravitational field which consists of a massive
thin disk rigidly connected with vertically positioned rotor of an engine with the
help of two massless bars. These bars are pivotally connected with each other
and with the uniformly rotating rotor by elastic Hooke joints. Each Hooke joint
provides 3 degrees of freedom. Such a system is statically unstable and is shown
in Fig. @

The equations of motion of such a system in linear approximation can be
reduced to linear Hamiltonian system with 4 degrees of freedom of the form

X =JAP)X, X=,2)", Y, ZeR* (1)

where J is simplectic unit matrix, P is the vector of parameters, and A is sym-
metric constant matrix.
We investigate the set of stability of stationary point X = 0.

Definition 1. The set of stability X for the system () is the set of parameters
P from the parameters space I = IR" for which the stationary solution X = 0
to system () is Lyapunov stable.

For special case K = 2, k = 1 (see Fig. [I]), the set of stability was analyti-
cally described in [3]. The general case was investigated by the author in [4]
by elimination theory methods. The goal of this work is to show how to solve
the problem of computing the set of stability by methods of Power Geometry
applied to computing the exact solutions of an algebraic equation.

* This work was supported by RFBR, Grant No. 11-01-00023.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 22-B3] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Application of the Method of Asymptotic Solution 23

Fig. 1.

The vector of parameters P becomes three-dimensional in special case and is
denoted by @ = (z,y, z). The symmetric matrix A(Q) is

a1 0 a3 0 O -1 0
0 a1 0 a3 1 0 0
a3 0 azz 0 0 —-1/2 0
0 a;3 0 ag3 1/2 0 0 0
01 0 1/21/2 0 -1/2 0
10 -1/20 0 1/2 0 -1/2
00 0 0-12 0 1 0
00 0 0 0 -1/2 0 1

o o o

where ay1 =z +y—224+4,a33=y—2+1,a13=2—1y.
The characteristic polynomial of the matrix JA(Q) includes only even powers
of A, i. e. it is a polynomial in = A? and further it is called semi-characteristic:

F) = f@uF, fm =1, (2)
k=0

The conditions of stationary point stability are stated by the following

24 A. Batkhin

Theorem 1 ([5]). The stationary point X = 0 of the linear Hamiltonian sys-
tem () is stable if and only if all nonzero roots i, ..., jim of the semi-characte-
ristic polynomial ([2) are real and negative, and all elementary divisors of matriz
JA for multiple roots are simple.

As was shown in [3], the boundary of the set of stability X' is part of the set G =
{Q : 9(Q) = 0}, where g(Q) is a factor of the discriminant of the polynomial (2)):
9(Q) = 51225 — 435225y — 76825z + 148482%y? + 53762 yx + 5122%2% —

— 2540823y — 1465623y%x — 275223yx? — 1922323+

+218002%y* + 191682%y3x + 53602%y%x? + 73622yx> + 40222 —

— 75002y° — 117002y x — 437629322 — 90421223 — 92zya* — 4za°+

+ 2500y°z + 120022 + 344y + 48y%a* + dya®—

— 2562° + 28802y + 13442%2 — 1497623y% — 672023y —

— 13442322 4 3792822y + 138162%y%x + 51442%ya? + 4562%2° —

— 451202y — 14464293 — 67842y 2? — 1152zya> — 6422 +

+ 2025095 + 6490y z + 3156y°22 + 7402 + 82yat + 22°+

+18722% + 201623y — 508823z — 3549622y% + 158882 2yx+

+ 22002222 + 676082y> — 1293621z — 51762yx? — 344225 —

— 37827y* + 828y3x + 2782y2x? 4 412ya> + 132* —

— 1382423 4 6220822y + 691222 — 93312212 — 207362y —

— 1152222 4 46656y + 15552y2x + 1728yx? + 6423 (3)
The structure of the set G was computed in [3] with the help of Grébner basis.
Here we show how to compute the set G using Power Geometry algorithms given
" r%ﬂle main step in investigation of the set G is to provide the significant simpli-

fication of the polynomial ¢(@). In order to do that we find the singular points
of the set G.

Definition 2. Let ¢(P) be a polynomial. Point P = Py of the set o(P) =0 is
called a singular point of the order k if the polynomial @(P) and all its partial
derivatives up to the order k vanish at this point but at least one derivative of
order k + 1 does not vanish.

We have one a priori singular point of the set G at infinity. Below we apply the
algorithm of asymptotic solution of equation (B]) described in [2]. The definition
of used objects of Power Geometry can be found ibidem.

2 Asymptotic Analysis of Set G at Infinity

The Newton polyhedron I'(g) of polynomial (8] is shown in Fig. 2lfrom the side
of large power exponents. It has only one two-dimensional face with positive

Application of the Method of Asymptotic Solution 25
outward normal. This is the pentagonal face I 0(12) with the normal No1 = (1,1,1).
It is associated with the truncated polynomial

g((ﬁ)(Q) =4 (2 2 _rtay— 3zy) (x2 + 6y + 25y% — dzx — 282y + 822)2. (4)

The truncations corresponding to the edges of the face I 0(12) have no multiple
roots.

Fig. 2.

The zero of the first form in (@) defines a conic surface Cy with the center at
the origin. This surface approximates (in the first approximation) behavior of
the two-dimensional component of the set G at infinity.

Roots of the second quadratic form in (@) form the real straight line B = {x =
Y, z = 2y} with the directing vector 75 = (1, 1,2) lying in the intersection of the
two complex planes on which this quadratic form vanishes. This line B, in the
first approximation, specifies asymptotic direction of branches of the set G. In
order to find a parametric expansion of these branches, we use the procedure
described in [2]. New variables of the kth cycle will have index k. This index
will be the first index in the notation of other objects: faces, their normals,
corresponding truncated polynomials, normal cones, and cones of the problem.

Let us find the next approximation of the set G near this line 5. To this end,
we go to the local coordinates along the straight line B:

r=x1+Y, Y=y, 2z=21+2y. (5)

In this change of variables, y; is the line parameter, and z; and z; are local
coordinates.

The Newton polyhedron I'(¢g1(Q1)) of the transformed polynomial ¢(Q) is
shown in Fig. Blin the variables Q1 = (z1,y1,21). In accordance with formula
(1.9) from [2], the cone of the problem is

26 A. Batkhin

K, = {S = p1 No1 +)\1(*1, 0,0) +)\2(0,0, 71)},

where 1 > 0 and A; 2 > 0. In the coordinate representation, the components
of vector S from the cone of the problem K; are written as s;1 = pu; — Aq,
$2 = p1, and s3 = p1 — Ag. Following Remark (f) in [2], we obtain the system of
inequalities

1 =82 =20, =82 —51 >0, 3 =82 — 53 >0, (6)
which efficiently selects vectors from K;. The outward normals to the faces of
the polyhedron I'(g(Q1)) are given by

Nll = (13]-a]-)a N12 - (1a2a1)a N13 = (0,*1,0),N14 = 7(13]-a]-)a
Ni5 =(—1,0,0), Nig = (1,0,0), N7 = (0,0,—1).

According to (@), only normal Ni5 falls into the cone of the problem Kj. To this
normal, face FS) (Fig. B) and the truncated polynomial

gg) = 4y? (6421l — 6425w, +322%0% — 82125 + o1 +642 Y121 — 16,22 —|—64y%) , (7)

correspond. The three edges I} 1(11), I’ 1(21), and I 1(31) of the face I 1(5) are associated
with the truncated polynomials

N 2

gﬁ) = 4y% (xf — 4121 + 82%) , (8)
~(1 2

3y =4y (a3 - 8y1)”, 9)
~(1

915 = 4y} (6421 + 6497). (10)

The discriminant of the parenthesized polynomial in (8) is negative; i. e., this
polynomial has no nonzero real roots. The parenthesized polynomial in ([I0) also
has no nonzero real roots (since it is a sum of squares). The roots of polynomial
@) are y; = 22/2 and 2; = 0; they fall into case (a) of step 4 in [2] and will be
studied later as case (2).

The discriminant of the second multiplier of polynomial () with respect to
variable y; is equal to —427(z; — 221)2. Since the degree of polynomial () in 3,
is even, it can have real roots only in the following two cases:

(1) if 21 — 221 = 0, then y; = —27/2;
(2) if 21 = 0, then y; = 22 /8 is a root of polynomial ().

Consider cases (1) and (2) separately.

2.1 Expansion of the Family P; of Singular Points

In case (1), we make the change of variables

T1 =22+ 222, Y1 =1Y2— Z%/l Z1 = 22, (11)

Application of the Method of Asymptotic Solution 27

Fig. 4. Fig. 5.

making thus zs and y» to be local variables. The Newton polyhedron of the
polynomial g2(Q2) is shown in Fig. @ in the variables Qg = (22, y2, 22).
The new cone of the problem is

Ky ={S5 = p1Ni2+ A1(—1,0,0) + A2(0,—1,0)}, (12)

where 11 > 0, and A; 2 > 0. Then, the components of vector S falling into the
cone of the problem (I2) must satisfy the following inequalities:

83:/,1,120,83—81:)\1>0,283—82:>\2>0. (13)

The faces of the Newton polyhedron I'(g2(Q2)) has the following outward
normals:

N21 - (132,1)3 N22 - (0,13]-), N23 = (0,71,0), N24 = 7(13]-,]-)a
Nos = (*1,0,0), Nog = (1,0,0), Ny = (0’0,71), Nog = (2,2’ 1)

According to ([3)), only normal Nag falls into the cone of the problem (I2]), and
the truncated polynomial corresponding to the face I 2(5) is gg? = 162523 +
64z§1 (2z2 + yg)g. All its roots lie on the straight line zo = 0, 229 + y» = 0 and
are roots of the truncation gé}) corresponding to the edge I 2(11) of the face I 2(5),

which defines the following change of variables:
T =3, Y2 =Y3— 223, 22 =2z3. (14)

The truncations corresponding to the other edges of the face Fz(g) are not mean-
ingful according to Remark (d) in [2]. The edge I 2(11) is a common edge of the
faces Fz(g) and I’Q(g); hence, the new problem cone is

28 A. Batkhin

K3 = {S = M1N22 + ,U/2N25 +)\1(07 _170)}a (15)

where p12 2 0, g1 + p2 > 0, and A; > 0. Only those vectors S belong to this
cone whose components satisfy the inequalities

s3=p1 20,83 =51 =p1+p2 > 0,51 =—p2 <0,83 —s20=XA; > 0. (16)
The Newton polyhedron I'(g3(Qs)) has the following outward normals:

N31 = (1’27 1)a N32 = _(1a 170)a N33 = (Oa _150)7 N34 - _(2a27 1)a
Nys = (—1,0,0), Nag = (1,0,0), Naz = (0,0, —1), Nag = (2,2, 1).

According to ([I6l), only normal N3o falls into the problem cone ([I&]). Since this

face I 3(3) is parallel to the OZ axis (Fig. [l), we got a “hole” in the polyhedron;

i. e., according to Remark (e) in [2], the expansion has been terminated.
Collecting substitutions (@), (IIl), and (I4) together, we obtain the resulting
expansion
r=—22/2,y =223 —25/2,2 = —323 — 22, (17)

which defines the one-parameter family P; of singular points of order 1 of the
set G. Moreover, the polynomial f(u) has the root of multiplicity 3 along the
family P;. Direct computations show that there are two singular points of order
2 Qo = (0,0,0) and Q1 = (—2,2,2) in the family P;. At the point Q1, the
polynomial f(u) has the root of multiplicity 4.

2.2 Expansion of the Family P, of Singular Points

In case (2), we make the substitution
@ =xa, 1=yt ai/8, 2=z (18)

The faces adjacent to the edge F1(21), corresponding to polynomial (@), have nor-
mals N1z = (1,2,1) and N17 = (0,0, —1). The new cone of the problem is given
by

Ky = {S = p1 N1z + p2N17 + A1(0,-1,0)}, (19)
where 112 > 0, 1 + p2 > 0, and A\ > 0. Only those vectors S belong to this
cone whose components satisfy the following system of inequalities:

81:/,1,120,281—83:/,61—1-”2>0781—S3:/},220,)\1:281—82>0. (20)

The Newton polyhedron I'(g4(Q4)) is shown in Fig. [l
It has the following outward normals:
N41 = (1a27 1)a N42 = (17 1a0)7 N43 = (07 _170)a N44 - _(15 17 1)a
N45 == (71,030% N46 - (1>2a2)a N47 - (ana *1)

Application of the Method of Asymptotic Solution 29

Fig. 6. Fig. 7.

According to ([20), only normal Ny, falls into the cone of the problem ([I9). The
truncation of the original polynomial corresponding to the face I 4(;) is gg) =
21‘3 (zzxi + 224ysTq + 2yi —2yaq + xi) The factor in the parentheses is written
in the form of sum of two squares as (2424 + y4)? + (ya — 74)?, which vanishes
only under the condition z4 = —1, x4 = y4, which defines the following change

of variables:

Ta=25+Ys, Ya=1Yys, 24=—1+2zs. (21)

The new cone of the problem is given by
K5 ={S = pu1Ng2 + A1(—1,0,0) + X2(0,0, 1)}, (22)

where p1 > 0 and A 2 > 0. Appropriate vectors S should satisfy the system of
inequalities so = p3 > 0, s9 —s3 = A1 > 0, s3 = —Ay < 0. The new Newton
polyhedron I'(g5(Qs)) shown in Fig. [[has the following outward normals:

N51 = (1’ 170)a N52 = (07 1a _1)a N53 = (Oa _150)7 N54 - (17 1a 1)7
N55 == (71,030% N46 - (]-a]-a2)a N57 - (ana *1)3

and only the normal Nso falls into the problem cone ([22]).

The truncation of the polynomial g5(Qs) corresponding to this face is the
polynomial géé) = y2(25y5(25y5 — 205 — 7) + (225 + 7)?), which vanishes when
x5 = —7/2 and z5; = 0. After substitution x5 = 26 — 7/2, ys = ye, 25 = 26, We
obtain the face Féf) with the normal vector Ng1 = (—1,0,—1) (Fig. B)) parallel
to the OY axis, i. e., a “hole” in the polyhedron. According to Remark (e) in
[2], the expansion has been terminated.

Collecting substitutions (&), ({IR)), and (2] together, we obtain the following
expansion

x = (—63+36ys+4y2)/32, y = (49+4ys+4y?2) /32, 2 = (33+4ys+4y2)/16, (23)

30 A. Batkhin

Fig. 8.

which gives the second family P, of singular points of order 1 of the set G.
Along this family, the polynomial f(u) has pair of roots of multiplicity 2. There
are two singular points of order 2 laying in the family Pa: Q2 = (7/2,7/2,6),
Qs = (_5/27 3/2’ 2)'

3 Structure of the Set of Stability G

We form new basis in the parameter space II which consists of the following
vectors: QoQ1/2, Q2Q3/2, Q1Q5/2, where Q4 = (—1/2,3/2,2) and Q5 = (0,2, 3)
are vertices of parabolas (7)) and (23]), respectively.

In new coordinates @ = (U,V, W), the polynomial g takes the simplest form

9(Q) =64US +192U*V? — AU*W? +192UV* — 8UV2W? + 64 VO —
—AVAWZ 4+ T2UW —AUW? — 2VAW +4V2W3 460 U*—
—312U2V2 +20U%W?2 +60V* + 20 V2W?2 — W* + 36 U W —
—36 VAW + 120 +12V? +2W? — 1. (24)

It can easily be shown that the set G consists of two one-dimensional components
which are the families P; and P, and ruled surface G with parametrization

U=using, V= (u+1)cosp, W =4u+2cos®p+1. (25)

The surface G has two parabolic segments of self-intersection, namely the seg-
ment of parabola P; between points Qg and @)1 and the segment of parabola P,
between points Q2 and Q3. The boundary of the set of stability X' together with
other objects are shown in Fig. [

Application of the Method of Asymptotic Solution 31

"y

P1

Fig. 9.

4 Software Implementation

Implementation of the algorithms described in [2] required the use of several
software tools. All calculations related to polynomials and plane algebraic curves
were carried out with the help of the computer algebra system Maple. For this
system, the library of procedures PGeomlib was written, which implements spa-
tial Power Geometry algorithms. To work with plane algebraic curves, package
algcurves was used. By means of this package, the kind of the curve was deter-
mined (function genus), and rational parameterization of curves of kind 0 was
calculated (function parametrizationm). It also provided procedures for work
with elliptic and hyperelliptic curves. To calculate singular points of the set G, it
is required to solve systems of algebraic equations, which were solved by means
of the Groebner package.

Basic objects of spatial Power Geometry were calculated with the use of pro-
gram qconvex from freely distributed software package Qhull. Given a support

32 A. Batkhin

S(g) in the form of a list of point coordinates, this program computes the New-
ton polyhedron, its two-dimensional faces, and normals to them. The objects
obtained are transferred to the Maple environment, where all other computa-
tions are performed. Currently, the data exchange interface between the com-
puter algebra system Maple and program qconvex from the Qhull package is
implemented on the file level. Note that the procedures of library PGeomlib are
implemented in such a way that it is possible to work with polynomials in three
variables the coefficients of which are rational functions of other parameters.

Below is a description of the procedures from library PGeomlib, which can be
divided into two — basic and auxiliary — groups. The names of all objects stored
in the library begin with the capital letters PG.

The library PGeomlib was tested for different versions of CAS Maple for
operating systems Win32/64 and MacOSX, and it is available for download at
https://www.dropbox.com/sh/epanm7gzz5xyqt7/uyqCztx9Lk.

4.1 Basic Procedures of Library PGeomlib

PGsave computes and stores in a text file the support S(g) of a polynomial
g(Q) for subsequent processing by program qconvex. The procedure has
two obligatory input parameters: polynomial g(Q) and a name of the file for
storing coordinates of the carrier points in the format of program qconvex.
An optional parameter is a list of names of variables for which it is required
to construct the support of the polynomial. The procedure uses auxiliary
procedure PGsupp.

PGgetnormals gets information on the Newton polyhedron, its faces, and nor-
mals to them and converts it into a list of normal vectors with integer coeffi-
cients. The procedure has one obligatory parameter — a name of the file with
results of operation of program qconvex — and returns list of support planes
of the Newton polyhedron determined by the normal vector and shift. The
procedure uses auxiliary procedure PGnormpriv.

PGtruncface, PGtruncedge, and PGtruncfwe are three variants of the proce-
dure calculating truncated polynomials corresponding to a face, an edge,
or a face and all adjacent edges. In the second variant, the edge is given
by two adjacent faces. The procedure uses auxiliary procedures PGsupp and
PGgetneighbours.

PGfitnormal selects normals from the list of normals of the Newton polyhedron
that fall into the problem cone K given by a list of linear inequalities.

PGplot is a procedure for the visualization of the Newton polyhedron I'(g) and
support S(g) of a polynomial g(@).

4.2 Auxiliary Procedures of Library PGeomlib

PGsupp returns the support S(g) of a polynomial g(@) in the form of a list of
vector power exponents of monomials.

PGnormpriv converts a list of vectors with commensurable floating-point coordi-
nates into a list of collinear vectors with integer coordinates. This procedure

Application of the Method of Asymptotic Solution 33

is required because program gconvex stores normals to faces of the Newton
polyhedron in the floating-point format, whereas all operations on vector
power exponents are to be performed in integer arithmetic.

PGneighbours for each vertex of the Newton polyhedron, calculates the numbers
of faces adjacent to it.

4.3 Scheme of Using Library PGeomlib

Let us describe schematically the order of work with library PGeomlib.

For a polynomial g(Q), by means of procedure PGsave, support S(g) is calcu-
lated and stored for subsequent processing by program qconvex, which computes
the Newton polyhedron I'(g) and its support faces. These objects are obtained
by means of procedure PGgetnormals. Then, the cone of problem K is specified
in the form of a list of inequalities, and appropriate faces are selected by means
of procedure PGfitnormals. For them, the truncated polynomials are calculated
by means of one of the procedures PGtruncface, PGtruncedge, or PGtruncfwe.

All computations in the previous example were carried out in accordance with
the above-specified scheme.

References

1. Bruno, A.D., Batkhin, A.B.: Asymptotic solution of an algebraic equation. Doklady
Mathematics 84(2), 634-639 (2011)

2. Bruno, A.D., Batkhin, A.B.: Resolution of an algebraic singularity by power geom-
etry algorithms. Programming and Computer Software 38(2), 57-72 (2012)

3. Batkhin, A.B., Bruno, A.D., Varin, V.P.: Sets of stability of Mmulti-parameter
Hamiltonian problems. J. Appl. Math. and Mech. 76(1), 56-92 (2012)

4. Batkhin, A.B.: Stability of Certain Multiparameter Hamiltonian System. Preprint
No. 69, Keldysh Inst. Appl. Math., Moscow (2011) (in Russian)

5. Malkin, I.G.: Theory of Stability of Motion. U.S. Atomic Energy Commission, Office
of Technical Information, Oak Bridge (1958)

A New Algorithm
for Long Integer Cube Computation
with Some Insight into Higher Powers

Marco Bodrato! and Alberto Zanoni?

1 mambaSoft

Via S.Marino, 118 — 10137 Torino, Italy
bodrato@mail.dm.unipi.it
2 Dipartimento di Scienze Statistiche
Universita “Sapienza”, P.le Aldo Moro 5 — 00185 Roma, Italy
zanoni@volterra.uniroma2.it

Abstract. A new approach for the computation of long integer cube
(third power) based on a splitting-in-two divide et impera approach and
on a modified Toom-Cook-3 unbalanced method is presented, showing
that the “classical” square-and-multiply algorithm is not (always) opti-
mal. The new algorithm is used as a new basic tool to improve long in-
teger exponentiation: different techniques combining binary and ternary
exponent expansion are shown. Effective implementations by using the
GMP library are tested, and performance comparisons are presented.

AMS Subject Classification: 11N64, 11A25, 13B25

Keywords and phrases: Toom-Cook, cube, third power, long integers.

1 Introduction

Fast long integer arithmetic is at the very core of many computer algebra sys-
tems. Starting with the works of Karatsuba [I], Toom [2] and Cook [3], who
found methods to lower asymptotic complexity for multiplication and squaring
from O(n?) to O(n®), with 1 < e < log, 3, many efforts have been done to find
optimized implementations in arithmetic software packages.

The family of Toom-Cook (Toom, for short) methods is an infinite set of
polynomial algorithms (Toom-3, Toom-4, etc. — Karatsuba may be identified
with Toom-2). The original family was generalized by Bodrato and Zanoni in
[4] considering unbalanced operands — polynomials with different degrees — with
the so-called Toom-(k + 1/2) methods (Toom-2.5, Toom-3.5, etc.) and with the
unbalanced use of classic methods as well.

Each of them may be viewed as solving a polynomial interpolation problem,
with base points not specified a priori, from which a matrix to be inverted arises.
In a software implementation, a set of basic operations (typically additions,
subtractions, bit shiftings, multiplications and divisions by small numbers, etc.)

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 34-[6] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

A New Algorithm for Long Integer Cube Computation 35

is given. Practically, this is a set of very efficiently implemented basic functions,
and the idea is to use them to evaluate factors in the base points, invert the
resulting matrix step by step and recompose data to obtain the final result.

Asymptotically speaking, the best theoretical result is Fiirer’s [5], but it has
not been used in practice yet. The actual competitors with Toom methods are
Schonhage-Strassen and FFT-based methods [6], eventually faster for very large
numbers, but there is a wide range where Toom beats any other algorithm.

To the best of our knowledge, although long integer product, squaring and
generic power raising have been extensively studied, the particular problem of
computing the third power u? has not been deeply treated. Usually, a generic
power is obtained by a clever sequence of squarings and multiplications, and
cube is simply treated as a particular instance of this general procedure.

In this paper a new perspective for cube computation based on unbalanced
Toom-3 method is presented in full details, showing that a non trivial algorithm
exists, faster (in a certain range) than computing first U = u? and then the
product U-u. A practical performance comparison with respect to GMP library
[7] is reported as well, beside some empirical studies on extending the saving to
larger exponents by using cube in addition to squarings and products.

2 Mathematical Setting

For simplicity, we study only positive long integers. Consider base expansion
representation: for 0 < v € N, we fix a base 1 < B € N and consider the
polynomial determined by the representation of u in base B with degree d =
|logg(u)] and having as coefficients the digits of w, each smaller than B. In
computer science, common choices are B = 2,28, 216,232 964. iy particular, GMP
library digits are named limbs. Following the divide et impera approach, we set
n=[(d+1)/2],t=d+1—n¢€{n—1,n} and z = y™, so that one has

[log(u)] ' d ‘ d _ n—1 _
u= Z aB = a(y) = Zdiyl = (Z dz’yzn>96 + (Z &iyz> (1)
i=0 i=0 i=n =0

= a1z + ap = a(z)
Let f(z) = a(z)3: we can compute u® as f(z)|,_z.. The core idea of the new
cube algorithm is based on considering not directly f(z), but another polynomial
(called “master” of f), differing only in the constant coefficient by a small — but
making the difference — multiple.
This permits a new approach to cube computation, proving in practice

2

Theorem 1. The cube computation formula u®= u?-u is not (always) optimal.

3 Split and Cube: Long Integer Case

To explain the main idea, we’ll use both long integer polynomial representation,
as explained above, and a schematic one as well. If u is a long integer, we may

36 M. Bodrato and A. Zanoni

highlight its high and low half — coefficients a; and ag in equation ().

u:aliraO’ . = a1 ag
r—=Bn

t n

The idea is that a multiplication (with nonlinear complexity) will be avoided at
the lower price of some scalar (linear complexity) operations instead.

To focus on higher (“main”) terms in complexity expressions, we consider only
nonlinear operations for multiplications, squarings and cubings. Let M, ,, (M,
if n = m) be the nonlinear complexity of the multiplication of two numbers with
n > m digits in base B, respectively; with S,, the squaring complexity of one of
them and with C,, the cubing complexity. We must compute (in the schematic
representation, piling means adding)

3
ud = f(B") = (a1 B" +ap)® = ZciB”i = a3 + 3atapx® + 3aradx + ag’
i=0 *

—Bn

3t 3n With the classical “algorithm” u? = u?u

ai” a% the complexity is Cop, = Son, + Muay 2n.

3a1a2 Computing u? with Karatsuba method

) (in a range where it’s more effective

3atag N 2n +t (+1) than schoolbook method), we have that
2t+n (+1) CZn = 3Sn, + M4n,2n-

Consider now the following easily factorizable polynomial ¢’(x), master of f(x):
g (z) = a3a®+ 3a2apr® + 3aradx+ 9a3 = (a3x? + 3ai)(a12+ 3ag) = g1(x)-ga(x)

From the polynomial point of view, ¢'(z) coefficients computation is similar
to f(z)’s, as they differ only by a 9 in the constant term: there is nothing
particularly appealing in it.

On the contrary, from the long integer point of view, things are not as easy,
but more interesting. Compute A = a3 and B = a3 (nonlinear complexity: 25,,)
and focus on the product ¢’(B") = (afz? + 3a3)(a1z + 3ap)|z=p» (nonlinear
complexity: Mup 2n)-

g(B")= A=a? 3B=3a- a1 3ao

Even if this is not really what we want to compute, note that the total nonlinear
complexity is now smaller than before: one squaring less gives C},, = 25, +
M4y, 2, Anyway, there are some points to consider to recover u® from ¢'(B™):

(¢) Multiplication by 3 can generate carries — and therefore memory manage-
ment issues — to be taken care of.

(it) Recomposition (set z = B") unfortunately mixes things up the wrong way
if unbalanced Toom-3 is used.

A New Algorithm for Long Integer Cube Computation 37

Although (¢) is not complicated to manage, as regards (i7), it happens that
unbalanced Toom-3 method computing ¢'(B™) splits the longest factor in four
parts (a number possibly differing by 1 or 2 from n is below indicated with ~n).

A1 AO 331 3Bo . a1 3&0

~n n ~n n n ~n

so that the final division by 9, needed to have u® = f(B"), is incompatible with
the recomposition. In fact, as ¢’(B") is

4
g (B") = chxz = (Aa1)z* + (Agar + 3A1a0)z> + 3(Agao + Biay)z’+
=0 r=B"
(3Boa1 + 9B1a0)1’ + 9B0a0’ _gn

we have a problem: 9a8 = 9Bjapx + 9Bpag|,—p» cannot be obtained by a linear
combination of ¢ coefficients. It “appears” only after recomposition, but to
obtain a3 we should divide by 9 both ¢, = 9Bgao (this is not a problem, it is
explicitly computed) and only the second addend 9Bjag (that was not explicitly
computed) summing to ¢j. One must therefore proceed in a slightly different
way, considering instead the following ¢(z)-product.

g(m):(A1x3+AOx2+Sle+27BO)(a1$+3a0)E A1 Ay 3B1 27By - a1 3ag

This time we obtain a more appropriate result.

4
g(B") = Z clat = (Ajay)z* + (Aoay + 3A1a0)x3+ 3(Agag + Bray)z +
1=0 r=RB"
(2730(11 + 9B1ao)x + 8130(10’ _gn

Note that ¢ = ¢; for i = 2,3,4. Now we can appropriately divide ¢} by 9 and ¢
by 81 (O(n) operations), correctly obtaining ¢; and cg, and therefore u® = f(B").

A1a1 3B1a1 8].Boa0

g(B") = Aoay 27Boa; 1
1"

3A1a9 9B ag €

3A0(10 \Clll
\

A1(11 331(11 Boao

w=f(B") = Apar 3Boar 1
3A1a0 Blao €o

3A0a0 \Cl

38 M. Bodrato and A. Zanoni

15 -

GMP 5.0.1 ===
New cube ——

10

1000 2000 3000 4000 5000 6000
Limbs

Fig. 1. New cube algorithm versus GMP-5.0.1 relative timings

We point out that it is possible in practice to avoid the final explicit di-
vision by 81, by slightly modifying Toom-3 unbalanced method: compute Byb
instead of 81 Byb, and in the matrix inversion phase — we consider the inversion
sequence presented in [4] — just substitute a subtraction with a multiply-by-81-
and-subtract operation. [A] contains a high-level implementation of the algorithm
in PARI/GP [g§], which the reader is invited to refer to.

As (unbalanced) Toom-3 computes 5 products, the new nonlinear complexity
is C%,, = 25, + 5M,, < 3S,, + 5M,, = Ca,,. A very rough analysis, counting only
the number of nonlinear operations and forgetting about their nature and linear
operations as well, tells that just 7 instead of 8 operations are needed, so that the
relative gain cannot exceed 1/8 = 12.5%. In Fig. [[l a relative percentage timing
comparison of our C language implementation using GMP library operations
versus GMP library itself (release 5.0.1) is shownl]. The software was compiled
with gcc 4.3.2 on an Intel Core 2 Duo (3 GHz) processor machine. As the graph
shows, the more consistent gain is obtained when w is from 30 to 230 limbs long,
while smaller gains are possible elsewhere, till around 5000 limbs.

4 Split and Cube: Polynomial Case

For what concern the generic polynomial case (d > 1), with the classical cube
algorithm the coefficients of p(z)? must be computed first: this can be done
with a Toom approach requiring 2d + 1 squarings of linear combinations of
a; coefficients (we suppose that the computation of linear combinations has a
negligible complexity with respect to coeflicients squaring/multiplication).

Whatever splitting of f(x) for the new algorithm works: if dg +d; = d—1 we
may write

! The C code is freely available on request.

A New Algorithm for Long Integer Cube Computation 39

d do
p(x) = (Z aixi_1> T+ (Z aixi> = p1(z)x + po(x)
i=do+1 =0

so that the master polynomial to be computed is the following one. Note that if
deg(po) > 0, more than one coefficient must be divided by 9.

@) = (s + 3m(0)?) (me)e + 3)

To compute its first factor with Toom approach as well, (2d; + 1) + (2do + 1) =
2(do+dy+1) = 2(d—1+1) = 2d squarings are now needed, one less than before.
This was expected, of course, and shows that this gain is actually constant; it
depends neither on the degree of p(z) nor on its splitting.

It is reasonable to suppose the existence of a threshold for the degree of p(x)
beyond which the new cube algorithm is no more worth while, depending on
the nature of elements and the operations complexity in A, on the method used
for squaring (for example, if A = Z — but also in other cases — FFT could be
used instead of Toom, and comparisons become more tricky), on implementation
details, etc. In practice, the candidate polynomial case with the best relative gain
(if any) is the quadratic (d = 2) one.

5 Generic Long Integer Exponentiation

For 1 < e € N, generic exponentiation U = u€ is usually performed by a binary
algorithm — in the following box, consider the representation (1, eg, ..., eg) of the
exponent e in base 2 (with e; € {0,1}) and let e2) = (2,ex,2,ex-1,...,2,¢e0) its
(redundant) expansion, codifying power computation.

Binary exponentiation algorithm With the help of the new cube algo-
rithm, it is possible to conceive other

let U=u exponentiation methods. Anyway, al-
for t=k to 0 step —1 do ways keep in mind that the new cube
U+ U? algorithm is effective only in a cer-
if e, =1then U<+ U-u tain interval, and therefore thresh-
return U olds should always be taken care of.

We present different possibilities mixing cube and square exponents expan-
sion, obtaining in some case a nice speedup, despite the new cubing algorithm.

5.1 Exponentiation: Ternary Expansion

The first considered possibility was ternary exponent expansion and the cor-
responding power algorithm obtained by e(3), defined similarly as e(y), but the

40 M. Bodrato and A. Zanoni

comparison with GMP — see [9] — showed that it is effective only for some very
specific exponent. We therefore tried other ways to exploit binary and ternary
expansions mixing.

5.2 Exponentiation: Mixed Binary and Ternary Expansion

The use of a mixed binary-ternary exponent expansion seems to pay more. Let
e >3 and ni(e) =7{i | ¢; = 1}. The idea is to interlace the cubing with binary
expansion at the “more promising” points. To localize these points we reason on
n1(e¢) and nq(|eg/3]) for exponents e, defined as follows.

Let 0 < ¢ < k: consider all binaries sub-expansions (1, eg,...,es) of (1, ek, ...,
eo), corresponding to exponent ey. Consider now the index ¢ = ,Inax k{@ | 0 <

ni(ee) — n1(lee/3]) — (¢ mod 3) is maximum} or ¢ = —1 if the maximum is
negative. Once i is defined, we consider the algorithm synthesized by the sequence
produced by the below recursive F exponentiation function, whose behavior on
basic cases (e = 1,2, 3) is trivially defined; in all other cases it is

Fie) = (E1(le/2%)),3,ei-1,2,...,2,e9) ifi>0
T e ifi=—1

Another scenario is obtained if ¢ :L]_Iglin k{@ |0<ni(e)—n1(lee/3])— (e, mod 3)

is maximum}, giving the Es function, defined similarly as above.

Ezample 1. E1(42) = (3,0,2,1,3,0,2,0). The corresponding power raising com-
putation sequence is u — u® — u% — u7 — u?! — u*2. E,(42) coincides instead
with binary decomposition.

As a comparison, we show in table (.3 the different decompositions of exponents
up to 100 given by the F;(-) and FEs(-) functions, only when they differ. For
brevity, we omit all zero entries. We observe that F; tends to use cubes more
often and possibly earlier (with smaller operands), while Es uses fewer cubes,
and later (larger operands).

5.3 Exponentiation: First Ternary and Then Binary Expansion

Always trying to apply the new cubing algorithm as soon as possible, the ternary-
binary expansion considers the most 4 significant bits of the binary expansion
of e > 7, looking for one/two possible uses of the new cube algorithm, as
the following function suggests, continuing the exponentiation with the binary
algorithm.

(3,0,3,0,2,€k_3,...) if CLCL_1€k—2 — 001
E3(€) = (2,0,2,1,3,0,2,6}6,3,...) if eperp_1€ep—o = 111
(3,0,2,6}671,...) if ek:]. and Cr_1€k—2 7501,11

A New Algorithm for Long Integer Cube Computation

Table 1. Comparison: E; and E» exponents expansions

3[3,2,2,1]
41[3,2,1,2]

8 [3,3,2]

9 [3,3,2,1]
1[3,2,1,3]
4[3,2,2,2]
5(3,2,2,2,1]
6[3,2,2,1,2]
713,3,3]

8 [3,2,1,2,2]
9[3,2,1,2,2,1]
0[2,2,1,3,2]
1[2,2,1,3,2,1]
6 [3,3,2,2]
713,3,2,2,1]
8 [3,3,2,1,2]
9 [3,2,2,1,3]
2 [3,2,1,3,2]
3[3,2,1,3,2,1]
52,2,1,3,3]
8 [3,2,2,2,2]
9[3,2,2,2,2,1]
0[3,2,2,2,1,2]
23,2,2,1,2,2]

5.4 Results

Es(e)
2,3]
2,3,1]
2,2,2,1]
2,2,3]
2,2,3,1]
2,3,1,2]
2,2,2,1,2]
2,2,2,1,2,1]
2,2,1,2,2,1]
2,2,2,3]
2,2,2,3,1]
2,2,3,1,2]
2,2,2,1,3]
2,3,1,2,2]
2,3,1,2,2,1]
2,2,1,2,3]
[2,2,1,2,3,1]
2,2,2,1,2,2]
2,2,2,1,2,2,1]
2,2,2,1,2,1,2]
2,2,3,1,3]
2,2,1,2,2,1,2]
2,2,1,2,2,1,2,1]
2,2,1,2,1,2,2,1]
2,2,2,2,3]
2,2,2,2,3,1]
2,2,2,3,1,2]
2,2,3,1,2,2]
[

31[3,2,2,1,2,2,1] [2,2,3,1,2,2,1]

Ei(e) Es(e)
[3 3,3,2} [2,2,2,1,2,3}
[3 3,3,2,1] [2,2,2,1,2,3,1]
[3 2,1,2,2,2} [2,3,1,2,2,2}
[3 2,1,2,2,2,1] [2,2,2,1,2,1,3]
[3 2,1,2,2,1,2] [2,3,1,2,2,1,2]
[3 2,1,2,2,1,2,1} [2,3,1,2,2,1,2,1}
[2 2,1,3,2,2} [2,2,1,2,2,3]
[2 2,1,3,2,2,1] [2,2,1,2,2,3,1]
[2 2,1,3,2,1,2] [2,2,1,2,3,1,2]
[3 2,1,3,3] [2,2,1,2,2,1,3]
[3 3,2,2,2] [2,2,2,1,2,2,2]
[3 3,2,2,2,1} [2,2,2,1,2,2,2,1}
[3 3,2,2,1,2} [2,2,2,1,2,2,1,2}
[3 2,2,2,1,3} [2,2,2,3,1,3]
[3 3,2,1,2,2} [2,2,2,1,2,1,2,2}
[3 3,2,1,2,2,1] [2,2,2,1,2,1,2,2,1]
[3 2,2,1,3,2} [2,2,3,1,2,3]
[3 2,2,1,3,2,1] [2,2,3,1,2,3,1]
[3 2,1,3,2,2} [2,2,1,2,2,1,2,2}
[3 2,1,3,2,2,1] [2,2,1,2,2,1,2,2,1]
[3 2,1,3,2,1,2] [2,2,1,2,2,1,2,1,2}
[3 2,1,2,2,1,3] [2,3,1,2,2,1,3]
[2 2,1,3,3,2} [2,2,1,2,1,2,2,1,2]
[2 2,1,3,3,2,1] [2,2,1,2,1,2,2,1,2,1]
[2 2,1,3,2,1,3] [2,2,1,2,1,2,1,2,2,1]
[3 2,2,2,2,2} [2,2,2,2,2,3]

97 [3,2,2,2,2.21] [2.2,2:2,2,3,1]
98 [3,2,2,2,2,1,2] [2,2,2,2,3,1,2]
[2,2,2,3,1,2,2]

100 [3,2,2,2,1,2,2]

41

We observed that the cube operation is, anyway, very important per se. In fact,
by mixing binary and ternary exponentiation we obtained quite large savings,
even outside the interval in which the new cube algorithm is effective.

Some examples are shown in Fig. Pl and Bl while Fig. [shows our results for

limbs from 1 to 1200 (abscissas) and exponents from 3 to 63 (ordinates), showing

the fastest exponentiation algorithm for each case. Red points correspond to
GMP winning, black ones to Ey, blue to Es, green to F3, while white lines refer
to exponents for which all methods fall back to binary exponentiation, so that

they’re all essentially equivalent.

42

105

100

95

90

85

80

110

105

100

95

90

85

80

I

. Bodrato and A. Zanoni

Exponent 9

VL0010)l O oy mnm|\I'wwmwuwwuun.mm

i '
/- I |
.. !
| il Au
| il
L ‘ ‘\ ‘ U !
J“ ‘ !
‘,| \|‘ |
I l
|
£ |
1 —
E2 _— l
= — [
GMP501 ==mmees
1 1 1 1 1 1 1 1 J
1000 2000 3000 4000 5000 6000 7000 8000 9000
Limbs
Exponent 21
i TN PRI hw At Sl bbbl b i
i s M~y ”,Py) w”‘ o S
-oE -
Ey N
= —_
GMP 501 ==mmeee
1 1 1 1 1 1 1 1 1 J
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Limbs

Fig. 2. E1, F> and F3 versus GMP-5.0.1 exponentiation relative timings for exponents

9, 21.

A New Algorithm for Long Integer Cube Computation 43

Exponent 27
105

100 g - " iy | \‘WM‘\

95

85 | M,‘ \ “

80 - wl‘ I '“Uw * '! u I\RIM&

Eq —_— \
70 | Ep -

E N

GMP501 =====es
65 1 1 1 1 1 1 1 1 1 J

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Limbs
Exponent 39

110

105

A ol MW%‘W A ! W i

95 -

85

80 -

70 1 1 1 1 1 1 1 1 1 J
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Limbs

Fig. 3. F1, E2 and E3 versus GMP-5.0.1 exponentiation relative timings for exponents
27, 39.

e~

4 M. Bodrato and A. Zanoni

Fig. 4. Best exponentiation method: x-axis : limbs (1-1200), y-axis : exponents (3-63)

6 Conclusions

In this work the classical algorithm to compute the third power of a long integer
was proved not to be (always) optimal. A new algorithm using a combination
of Karatsuba and unbalanced Toom-3 methods paying some linear operations
more for a nonlinear operation less was proposed.

Used as a new basic tool for generic long integer power raising computation,
it contributed to obtain new, faster generic exponentiation procedures. Cubing
proved to be effective in practice: comparison with GMP library showed that
the obtained saving can reach 25 %.

Acknowledgments. The second author was partially funded by project “Ro-
bustezza e tolleranza ai guasti in reti e grafi”, Sapienza University of Rome,
Ttaly.

A Code Implementation

We report here a PARI/GP high-level implementation of the new algorithm
for cube computation, valid for both polynomials (balanced splitting is chosen:
do=T1(d—1)/2],d1 = |(d —1)/2]) and long integers.

cube_long(a = 2) = {
local(d,a0,al,A0,A1,A00,A01,A10,A11,A000Orig,H,tmp);

\\ Compute a0 and al.
d = poldegree(a);
if (d==0, H = 2~ (ceil(log(a)/log(2)+1)>>1); \\ Long integer case
, H=x"ceil((d+1)/2); \\ Polynomial case
);
tmp = divrem(a,H); al = tmp[1]; a0 = tmp[2];

\\ Identify high and low parts of al"2 and a0"2.

Al = al"2; A0 = a072; \\ 25(n)

tmp = divrem(AO,H); AO1 = tmp[1]; AOOorig = tmp[2];
tmp = divrem(Al,H); A1l = tmp[1]; A10 = tmp[2];

A New Algorithm for Long Integer Cube Computation 45

AO01 *= 3; A0O = 27*A0Oorig;

\\ Unbalanced Toom-3 (toom42) for AA = A11*xx~3 + A10*x"2 + AO1*x + AOQO;

\\ Evaluation BB = al*x + 3*a0;
\\ in (00,2,1,-1,0)
\\ AA BB
w2 = A10 + A0O;
Wml = A11 + AO1;
wo = W2 + Wml;
w2 = W2 - Wmi; Wml = 3x*a0;
Winf = Wml + ail;
W1l = WOxWinf; \\ Evaluation in 1 M(n)
Winf = Winf + al;
WO = Wml - ail;
Wml = WOxW2; \\ Evaluation in -1 M(n)
\[0] = A11<<1 + A10;
\[0] = WO<<1 + AO1;
wo = WO<<1 + AOO;
W2 = WO*Winf; \\ Evaluation in 2 M(n)
Winf = Allxal; \\ Evaluation in oo M(n)
WO = AOOorig+a0; \\ Evaluation in 0 (/81) M(n)

\\ Interpolation:

W2 = W2 - Wmil; \\ [15 9330]
w2 /= 3; M\ [53110]
Wml = (W1 - Wwm1)>>1; \\ [01010]
Wi =Wl - 81x%W0; N\N[11110]
W2 = W2 -wi>>1; \\N[21000]
Wi =Wl - Wmil; M\ [10100]
W2 =W2 - Winf<<l; \\ [01000]
Wi =Wl - Winf; N\N[00100]
Wml = Wml - W2; NN [00010]
Wml /= 9; \\ Extra division.

\\ Recomposition:
return ((((WinfxH + W2)*H + W1)*H + Wml)*H + WO);

References

1. Karatsuba, A.A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Soviet Physics Doklady 7(7), 595-596 (1963)

2. Toom, A.L.: The complexity of a scheme of functional elements realizing the multi-
plication of integers. Soviet Mathematics Doklady 3, 714-716 (1963)

3. Cook, S.A.: On the minimum computation time of functions. PhD thesis, Depart-
ment of Mathematics, Harvard University (1966)

4. Bodrato, M., Zanoni, A.: Integer and polynomial multiplication: towards optimal
Toom-Cook matrices. In: Brown, C. (ed.) ISSAC 2007: Proceedings of the 2007 In-
ternational Symposium on Symbolic and Algebraic Computation, pp. 17-24. ACM,
New York (2007)

46 M. Bodrato and A. Zanoni

5. Furer, M.: Faster integer multiplication. In: Johnson, D.S., Feige, U. (eds.) STOC,
pp. 57-66. ACM (2007)

6. Schonhage, A., Strassen, V.: Schnelle Multiplikation grofier Zahlen. Computing 7(3-
4), 281-292 (1971)

7. Granlund, T., et al.: The GNU multiple precision (GMP) library (2010),
http://gmplib.org/

8. PARI/GP: PARI/GP, version 2.5.0. The PARI Group, Bordeaux (2012),
http://pari.math.u-bordeaux.fr/

9. Zanoni, A.: Another sugar cube, please! or sweetening third powers computation.
Technical Report 632, Centro ”Vito Volterra”, Universita di Roma ”Tor Vergata”
(January 2010)

http://gmplib.org/
http://pari.math.u-bordeaux.fr/

Lightweight Abstraction
for Mathematical Computation in Java

Pavel Bourdykine and Stephen M. Watt

Department of Computer Science,
University of Western Ontario,
London, Canada
pbourdyk@csd.uwo.ca, Stephen.Watt@uwo.ca

Abstract. Many object-oriented programming languages provide type
safety by allowing programmers to introduce distinct object types. In
the case of Java, having objects as the sole abstraction mechanism also
introduces a considerable or even prohibitive cost, especially when deal-
ing with small objects over primitive types. Consequently, Java library
implementations frequently avoid abstraction and are not type safe in
practice. Many applications, including computer algebra, use values log-
ically belonging to many different non-interchangable types. Languages
such as Java are then either unsafe or inefficient to use in these applica-
tions. We present a solution allowing type safety in Java with little per-
formance penalty. We do this by introducing a specialzed kind of object
that provides distinct types for type checking, but which can always be
removed entirely at compile time. In our implementation, programs are
compiled twice, first with objects to verify type safety, and then with the
objects removed for efficiency. This gives significant performance gains
across a range of tests, including the generic SciGMark tests.

1 Introduction

A large part of the art of programming language design lies in how one assembles
a multitude of ideas that are in principle distinct into a few simple constructs
that work well together. When this is done well, it can be beautiful. When this is
done badly, it can make programs inefficient and error-prone. This paper argues
that this is what has happened in languages such as Java, where objects are the
sole data abstraction mechanism, and we present a solution.

A simple example of separate considerations that can be nicely combined is
given by the modern return statement. In principle, setting the value of a func-
tion and the transfer of control back to the caller are completely separate ideas.
Indeed, in older programming languages these were done separately. One might
easily want to perform some clean up actions, such as closing files, returning
resources or updating global state, after the return value is determined. How-
ever, in these cases, using a temporary variable with modern return is neither
costly nor dangerous. At first sight, using objects as the sole data abstraction
mechanism would seem to be a similar happy combination. Abstract data types

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 47-p9] 2012.
© Springer-Verlag Berlin Heidelberg 2012

48 P. Bourdykine and S.M. Watt

typically have several fields in a hidden representation and provide operations on
the abstract values, just as with classes in an object-oriented world. But there
are several problems with this:

Abstraction is not just hiding record fields. Providing data abstraction only
via objects forces all thinking about abstraction into the model of field visibil-
ity in composite structures. Quite often, one wishes to consider simple values
as elements of a distinct type. For example, even though window IDs may be
represented as integers, it would enhance program safety if they were treated as
a distinct type. Likewise for values in different prime fields should be of different
types from the integers and from each other. Additionally, composite data is
often not represented as fields in an object. For example, it is not uncommon to
represent colors as 32-bit integers with bit fields representing component values.
Abstraction can help ensure that only integers intended to be color information
are used as such.

Abstraction does not always need dynamic allocation, inheritance, synchro-
nization, or other heavy-weight mechanisms. Sometimes we want abstraction
only to ensure that programs do not depend on details that may later change
and to enhance safety by ensuring values are not used inappropriately. It may
be known from the outset that these values will not ever be used in any fancy
ways. For example, we may know that there will never be any derived types
from colors, there will be no subtle multiprocessing on single color values, etc.
Requiring all of these features to be supported on abstract values first has a
cost, and second reduces flexibility to have these abstract values treated in other
interesting ways.

Abstraction is not used if it is too inefficient or onerous. When data ab-
straction carries a significant efficiency penalty and thought on the part of the
programmer, then it is not used.

In languages such as C++, where objects and primitive types are on a similar
footing, the extra cost need not be large. Nevertheless, even here, mechanisms
have been proposed for opaque type definitions in C++ [I]. In languages such
as Java, where there is a strong distinction between primitive types and object
types, the cost to use objects is many times that of using primitive types. Pro-
grams are inefficient, programmers circumvent the type system or both. This has
many obvious problems. If Java were not such a widely adopted language, we
could reject it as being ill suited in these circumstances. As it is, some solution
is needed.

The contribution of this paper is to show how light weight abstraction may be
provided in Java. This provides type safety without introducing any significant
inefficiencies. It is therefore suitable for creating light-weight abstract types for
computationally intensive, efficiency-critical tasks such as computer algebra and
scientific computing. Section 2l shows how this may be achieved by introducing
object types with sufficient restrictions that they are guaranteed to be removed
at compile time. While these ideas are presented for Java, the same ideas could
equally well be applied in other settings. Section [then describes a tool that
implements this mechanism that can be used in conjunction with standard Java

Lightweight Abstraction for Mathematical Computation in Java 49

compilers. Section [] presents performance results, comparing the usual use of
objects, the present light-weight abstraction mechanism and raw primitive types.
These comparisons are made using the SciGMark test suite and details are shown
for polynomial and matrix multiplication. Finally Section [l concludes the paper.

2 Opaque Types in Java

To deal with the problems outlined, we introduce the notion of opaque types in
the Java programming language. These types allow development of Java code
that is reusable, elegant, and efficient. Opaque types are meant to be used as
regular object types that can be represented internally by any other Java type
with a focus on representation via primitive built-in Java types. The new types
are required to behave and act like regular object types in the way they interact
with the Java class hierarchy and the static type-checker. An example of this
kind of application may be an object that has a small finite number of different
states that can be intuitively represented by a set of bit patterns. Although this
can be implemented similarly to something written in assembly language, by
using int types, resulting in code that is quite efficient, the code’s extensibility
would suffer. Moreover, like assembly, this type of code is difficult to maintain,
and debug[2l3]. This may lead to errors that could have been easily avoided if
object types were used.

This approach encompasses a core notion of opacity. High level Java objects
do not necessarily have to be represented or compiled as such. Objects simply
serve as identification handles for static type-checking prior to compilation. The
underlying type of these objects may be anything suitable for internally repre-
senting the construction. In this fashion, an alternative String object may be
represented by a character array allowing for operations very similar to those on
strings implemented in C or C++. In turn, a more complex object may be rep-
resented by such an alternative String thus creating an artificial class hierarchy
that remains consistent and type-safe. In this work, however, we are concerned
mostly with objects that may be represented by primitive types in order to boost
performance.

Along with the optimized version of the opaque type the regular unchanged
version of the class is kept for reference and debugging purposes. Leaving the
user code unchanged after compilation allows for more straight forward top-level
design where good Object Oriented Design practices may be followed. The user
may also choose to compile the opaque-typed code and run it as is, without
conversion, in order to ensure correctness. Keeping both versions of the class
demonstrates the type safety of opaque Java types as either version of the project
will produce identical execution results.

In order to implement Java opaque types, we introduce a set of type rules
that have to be followed in order to use such objects safely and efficiently. These
rules may be used by a preprocessor to transform the user’s regular objects into
those for which the generated code will use the underlying primitive types. We
now give a more detailed description of these rules.

50 P. Bourdykine and S.M. Watt

2.1 Opaque Type Rules

We use a Java code annotation (called Opaque) to identify classes as opaque
types. Java annotations allow embedding of meta-data directly into Java source
code. “Annotations do not directly affect program semantics, but they do affect
the way programs are treated by tools and libraries, which can in turn affect
the semantics of the running program.” [4] The annotation has a single String
type field that denotes the primitive representation type of the opaque object.
For example, the annotation @0paque ("int") indicates that the object is opaque
and that its primitive representation is of type int. Currently, the annotation field
serves as a way to quickly identify the underlying type and speed up opaque type
file analysis but could be left out in later versions of the solution. The single
annotation dictates all the required information to the preprocessor. The next
restrictions/rules must be followed in order to guarantee successful conversion
consistent with the Java language standard:

— Rule 1 object must have a single protected field of the underlying type
unless it is a subclass of an opaque type

— Rule 2 object constructor(s) must be declared private

— Rule 3 all methods accessing or modifying the underlying type field repre-
sentation must be declared static (or final static if no subclasses over-
ride the methods)

Rule 1 enforces opaque type representation and assures that it matches with the
type specified by the annotation. The field (from here on in referred to as rep)
takes place of the opaque object whenever it appears in translated user code. It
is important that its uses are properly implemented and ensures there are no
compilation issues post-conversion. The approach to having a single field for the
representation is similar to that used in Aldor [5].

If the new opaque object extends an opaque type (the inheritance property
detected by the preprocessing utility), the new object must not include a rep
field in its declaration. The rep field is instead inherited from the superclass and
bares the same primitive type. This ensures consistency in method inheritance
and conversion.

Rule 2 follows the Java convention that only object types require a construc-
tor. Since the new opaque object is to be converted to its underlying primitive
type representation wherever it is used, its constructor must remain private.
Creating new instances of the opaque object is still possible through the use of
the static method “New”. This method should be implemented by the user as
a means of converting from the underlying primitive type to the object type pri-
marily for testing purposes and initial implementation of code that uses opaque
types. The typical implementation is outlined in Figure [I(a).

Rule 3 places a restriction on the other methods possibly acting on the object
representation. Default visibility static methods allow inheritance and class
access to regularly used operations within the new object. At first glance this
may seem limiting for using the object; however, since object instances are all
converted to the underlying primitive type, only class methods remain as valid

Lightweight Abstraction for Mathematical Computation in Java 51

// a. Opaque object, // c. Opaque object after conversion
// typical "New" implementation public class BaseClass {
@Opaque ("short") protected int rep;
public class MyOpaqueObject { private BaseClass(short r){rep = (int) r;}
protected short rep;
private MyOpaqueObject(short r) { public static void
rep = r; operator(int bc, short modifier) {
}
o }
public static MyOpaqueObject .o
New(short r) { }
return new MyOpaqueObject(r); // d. Regular main class
} @0Opaque ("user")
} public class TopLevel {
public static void main(String[] args){
// b. Opaque object before conversion OpaqueType var = OpaqueType.New(param) ;
@Opaque ("int") .
public class BaseClass { ¥
protected int rep; }
private BaseClass(short r) { // e. Opaque array initialization
rep = (int) r; @Opaque ("user")
¥ public class TopLevel {
public static void public static void main(String[] args){
operator (BaseClass bc, short modifier){ OpaqueType[] ots =
c.. new OpaqueType [DATA_SIZE];
¥ for(int i=0; i < DATA_SIZE; i++)
ots[i] = OpaqueType.New(param) ;
}
}
}

Fig. 1. Opaque object creation and use

operations that can act upon the object’s actual implementation, i.e., its rep
field. This method declaration simplifies the preprocessor task of handling ex-
tension quickly and efficiently and assures the opaque object is not inflated by
non-static behaviors.

The approach takes advantage of the way Java class hierarchy works by allow-
ing subclasses to preserve the “is a” relationship and properly inherit methods
with default visibility. Properties of method overloading are also preserved due
to use of default visibility and the requirement of using the class name whenever
a method is called.

2.2 Converted Classes

The style for new object creation is modified slightly when attempting to make
use of opaque types. It is useful to illustrate exactly what changes in the type dec-
laration following invocation of the code conversion utility. Figures[i(b) and [Ii(c)
show the original version of a simple class and its converted result respectively.

In Figure [(b), object BaseClass is a Java opaque type represented by the
built-in Java int type. The important details to notice regarding this class are
its protected int rep field, private constructor and static void operator
method. These three points are required by the semantic rules outlined in Sec-
tion 2J] and allow BaseClass to be converted and compiled as its underlying
built-in type (int).

52 P. Bourdykine and S.M. Watt

The converted BaseClass can be seen in Figure[I[c). In the new version of the
class, the @Opaque(“int”) annotation has been removed, and the static method
operator has been modified to use only arguments of the proper underlying
types. The class retains its “high level” handle - BaseClass. Hence the user
code that makes use of the class only needs minor typing modifications.

2.3 Opaque User Classes

Java classes that declare or make use of opaque objects are also annotated with
the @Opaque annotation. Instead of an underlying rep type, the user classes
contain the keyword “user” as the single parameter to the annotation. A user
class may look as simple as in Figure [Ii(d).

Classes declaring objects of opaque type that are not opaque themselves (an-
notated as @Opaque(“user”)) undergo only minor changes during the conversion
step. Opaque types are constructed in a way such that their declaration, initial-
ization and usage do not require any object-exclusive syntax aside from declaring
data structures whose elements are opaquely typed. The most common and prim-
itive of these data structures is an array. Declaration of Java arrays containing
opaque typed members is syntactically identical to any other array declaration
(for any number of dimensions). Initialization, however, is dictated by the na-
ture of the opaque members themselves - each opaque object is initialized via the
New method as opposed to using the Java new keyword. This simple yet notable
concept is summarized in Figure [i(e).

2.4 Annotation Processing Example

The structure that opaque annotations impose on Java source code is non-
hierarchical despite playing a role in the hierarchical class structure of Java. The
traversal through this construction of annotated source files is straight forward
for the most part and the conversions applied to the code are often influenced
directly by information contained in the same processing step. Figure [2 illus-
trates some subtleties during the conversion step that arise when analyzing a
deep class hierarchy for opaque objects.

The analysis of such a hierarchy takes place as follows. The Opaque-annoted
classes are identified among the source files and a list of them is stored along with
their representation (taken from the String-type annotation argument). In Fig-
ure [2] this list would consist of pairs BaseClass & int, ChildClassOne & int,
ChildClassTwo & int, ChildClassThree & int. The annotations make the
suggested representation clear, but we still have to check that the class does not
attempt to use a differently typed field. As you can tell, the underlying repre-
sentation property is inherited, in this case all the way down the hierarchy from
BaseClass. Method inheritance is taken care of by standard Java, for example,
the operator method of ChildClassThree is overwritten for only that class and
the overloaded method works as expected. The goal of our approach is to make the
preserved object properties as intuitive as possible (i.e., make them work as the
programmer would expect) during application of the opague types mechanism.

Lightweight Abstraction for Mathematical Computation in Java 53

@Opaque ("int") @Opaque ("int")
public class BaseClass { public class ChildClassTwo
protected int rep; extends BaseClass
private BaseClass(short r){ {
rep = (int) r; private ChildClassTwo(long r){
} rep = (int) r;
public static void operator ¥
(BaseClass bc,
short modifier) ¥
{...}

e @Opaque ("int")
¥ public class ChildClassThree
extends ChildClassTwo

@Opaque ("int") {
public class ChildClassOne private ChildClassThree(int r){
extends BaseClass rep = r;
{ }
private ChildClassOne(short r){ public static ChildClassThree operator
rep = (int) r; (ChildClassTwo modifier, short cc){
} ..
R ¥
¥ .
}

Fig. 2. Inheritance during conversion
3 Java Implementation

Implementing opaque Java types requires careful considerations in order to abide
by the set restrictions and still make the new data declaration forms useful. For
performance, ideally, the underlying representation of a particular type could
be determined during the compilation process and the underlying type used for
code generation. This kind of automated optimization would mean a seamless
implementation of a significant performance gain. However, allowing the pro-
grammer to specify the underlying type of the opaque object allows for greater
flexibility for accomplishing a certain task, even if at the cost of some efficiency.

A sophisticated mechanism to determine the underlying object representation
on the fly could be an area of significant research, however, at this time we have
elected to make the choice explicit. Hence the steps to build projects containing
opaque types are quite straight forward.

Code conversion utility. In order to realize the potential of Java opague types we
need to develop a dual view of the annotated objects to the compiler. The first is
the object view — necessary to take advantage of Java’s inherent ability to handle
a rich type hierarchy. The second is the underlying representation view, the one
to be used during optimization and code generation phases of compilation. This
dual representation is achieved using a code conversion utility written in Java itself
making use of Pattern and Matcher classes from the java.util.regex package.

These classes provide a convenient way to identify where and how opaque
types are used and apply conversions directly to Java source code. This allows
the utility to finish its tasks in a timely manner without complicating the process
of going from regular-looking objects (opague types) to the immediate underlying
representation.

54 P. Bourdykine and S.M. Watt

The utility performs the following steps:

1. identify all recently modified Java source files in target project

2. sort source files into regular, opaque typed, and opaque user classes
3. build record of all opaque types and their underlying representations
4. convert all opaque sources

Automating the building process. Utilizing a pre-processor-like code conversion
application prior to compilation complicates the building process by adding a
necessary intermediate step to the routine mechanism. However, Java is a flexible
language with a relatively long standing industry and research history. By this
virtue a number of tools have been developed that augment various features of
the language in particular when it comes to its compilation and building process.
One of such tools is the Ant scripting language[6]. We use an Ant build script
to perform the following tasks:

1. back up original source files
2. invoke converter on files modified since last invocation
3. compile newly converted files

Eclipse IDE. Integration into a main-stream development environment may
seem like an extraneous task; however, this discussion follows naturally due to
the Eclipse’s ability to use Ant build scripts instead of the default compiler or
build-chain. Implementing the build script directly into the Eclipse IDE allows
the user to seamlessly develop code utilizing opaque types in the IDE.

Further details of the implementation are described in the first author’s master
thesis [7].

4 Performance Results

If regular Java objects performed as well as built-in types, there would be no
need to invent a new mechanism for abstraction. This, however, is not the case.
Primitive types in Java perform far better than objects.

We consider the overall application performance for synthetic tests by the
time it takes the program to execute, and the memory consumed during its ex-
ecution. Computational benchmark performance is compared using the number
of floating operations per second performed by various implemented algorithms.
We compare performance of Java code using regular objects, code which has
been converted to use opaque objects, and code implemented with the use of
primitive types only (dubbed “specialized”). For the purposes of measuring per-
formance in such a way we have devised several synthetic tests that demonstrate
opaque type advantages using brief implementations and included two modi-
fied benchmarks from the SciMark[8] and SciGMark[9] performance benchmark
suites. The measurements for testing performance that could be adjusted to
utilize opaque types most naturally have been included in this report. The par-
ticular benchmarks chosen from SciMark 2.0 and SciGMark 1.0 suites are dense

Lightweight Abstraction for Mathematical Computation in Java 55

polynomial multiplication with integer field coefficients originally developed for
SciMark benchmark and modified by SciGMark and sparse matrix multiplication
with real coefficient values.

The modified applications accomplish identical tasks and have minimal im-
plementation differences aside from the use of opaque types and corresponding
annotations. Along with the borrowed benchmarks, the synthetic tests that range
from simple classes implementing only a few methods with shallow class hier-
archy to classes with a large internal representation (e.g. a large integer array),
several constructors, and a large number of methods are used to measure “bare
bone” performance. All tests were executed 10 times in order to compensate
for varying CPU and memory loads on different platforms. The averaged results
were recorded and are shown next. The computationally intensive benchmarks
were executed on large data sets in order to maximize the effect of data alloca-
tion and access on performance when dealing with objects versus more primitive
structures in large quantities. This in turn increased result accuracy due to float-
ing point operations being used as the measurement units. The simple tests were
chosen to reflect varying uses and applications developers may encounter when
writing Java code for a typical project.

Benchmark implementations were tested on several different platforms in or-
der to demonstrate opaque types’ independence of environment when increasing
computational performance. The platforms used for testing were as follows:

— Intel C2Q Q6600 @ 2.4GHz, 4GB RAM, Windows 7 x86 64, JRE 1.7 (lambda)

— Intel 17-870@2.93GHz,16GB RAM, Ubuntu Server 10.04 x86 64, JRE 1.6(tedium)

— Intel Xeon E5620 @Q 2.4GHz, 24GB RAM, Ubuntu 10.04 x86 64, JRE 1.6 (z600)

— Intel 15-660 @ 3.33GHz, 4GB RAM, Ubuntu 10.04 x86 64, JRE 1.6 (PCA-45)

— Intel C2D E4600@2.4GHz, 2GB RAM, Ubuntu 10.04 x86 64, JRE 1.6 (orccapc02,
orccapc03, orccapc04)

Running of experiments on different platforms has also given us an opportunity
to look at the variance in underlying software that affects the performance of Java
applications using opaque types. The results were not significantly impacted by
execution on different platforms, and even the JVM versions used did not incur
a great deal of variance on the results.

Execution time and memory use were measured using built-in Java tools for
determining system time (method currentTimeMillis() in java.lang.System),
and tools for determining how memory is currently used by the Java Virtual
Machine - Runtime methods called totalMemory () and freeMemory (). All tests
measuring memory use were carefully designed to avoid involuntary garbage col-
lection and execution time tests were averaged to account for varying CPU load
during the experiments and were generally run at the highest CPU affinity.

Complez internal representations. Similarly to the opaque types used through
this work, it is possible to represent object types by a single primitively typed
array fields of fixed size. For example, an opaque type object may be represented
by 256 bits, or an array of size 4 of type long[]. The next set of tests deals
with objects represented by different sized arrays of primitively typed variables.

56 P. Bourdykine and S.M. Watt

@0Opaque ("long[]") public class RegObject {
public class MyOpaqueObject { private longl[] rep;
protected longl[] rep; public RegObject(longl[] arg){
private OpaqueObject(longl] arg){ rep = new longl[arg.lengthl];
rep = new longlarg.length]; for (int i = 0; i < arg.length; i++)
for (int i = 0; i < arg.length; i++) repl[il = argl[il;
rep[i] = arglil; ¥
} public void setBit(int i){
public static OpaqueObject long mask = (long) (1 << (i % 64));
New(long[] arg) { rep[i / 64] |= mask;
return new OpaqueObject(arg); }
}
public static OpaqueObject }

setBit (OpaqueObject o, int i) {
long mask = (long) (1 << (i % 64));
o.rep[i / 64] |= mask;
return o;

Fig. 3. Regular and opaque objects with array typed fields

The tests use the same, previously shown, metrics to measure execution speed
and memory use. The implementation of the actual accomplished operation is
kept as identical as possible to avoid performance differences due to algorithmic
discrepancies. This assures that we compare directly the speed and size of regular
objects versus opaque objects without introducing unnecessary bias.

Figure Bl illustrates an OpaqueObject represented by the long[] type and
a RegObject that has a field of type long[]. Both objects have the similarly
implemented method called setBit. Method setBit takes an argument of type
int that corresponds to the bit number that must be turned on in the internal
representation of the OpaqueObject or the field of the RegObject with 0 being the
least significant bit. Imagine arranging either the internal long[] representation
of OpagqueObject or the field of RegObject as sets of back-to-back 64 bit sets (each
set represented by a long type value) where significance of the bits increases with
the array index of the respective field. Thus operation setBit is potentially able
to turn on a single bit in a bit set of size over 2,000,000,000. For the test, however,
we limit the size of the long array to 4.

Table 1. Matrix Multiplication
Code Improvement

PC Generic Specialized Opaque Opaque vs. Opaque vs.
(mflops) (mflops) (mflops) Generic Specialized

lambda 131.84 475.22 383.64 2.91 0.81
tedium 194.64 1199.08 968.4 4.98 0.81
7600 175.16 1044.22 833.06 4.76 0.80
PCA-45 158.82 1077.7 845.84 5.33 0.78
orccapc04 57.20 363.5 303.68 5.31 0.84
orccapc03 62.34 371.1 299.45 4.80 0.81
orccapc02 60.94 368.4 301.94 4.95 0.82
sodium 54.82 311.26 248.48 4.53 0.80

Overall average improvement: 4.70 0.81

Lightweight Abstraction for Mathematical Computation in Java 57

Table 2. Polynomial Multiplication

Code Improvement
PC Generic Specialized Opaque Opaque vs. Opaque vs.
(mflops) (mflops) (mflops) Generic Specialized

lambda 75.54 279.56 223.86 2.96 0.80
tedium 147.02 900.44 729.06 4.96 0.81
7600 131.32 800.68 639.42 4.87 0.80
PCA-45 136.54 910.64 723.38 5.30 0.79
orccapc04 56.29 355.15 285.91 5.08 0.81
orccapc03 54.98 350.90 288.3 5.24 0.82
orccapc02 57.84 355.32 287.92 4.98 0.81
sodium 38.90 223.68 179.52 4.61 0.80
Overall average improvement: 4.75 0.81

Putting it together. The next set of performance comparison tests consists of
two standard benchmarks taken from the SciMark and SciGMark suites. In or-
der to implement polynomial multiplication and sparse matrix multiplication
benchmarks we build on the conventions established previously and reuse some
implementations from the synthetic benchmarks.

The first test performed is sparse matrix multiplication with double preci-
sion floating point coefficients taken randomly from the complex number set.
This is one of the most natural performance indicators for a language feature
or a hardware benchmark. In this case, the test’s aim is to demonstrate that
it is possible to significantly increase the raw number of floating point calcula-
tors (measured here in millions of floating point operations per second) without
losing correctness by reducing abstraction (or removing it altogether) in the
implementation. Unfortunately, fully disposing of abstraction, as SciGMark im-
plementation shows, highly obscures the code. Use of primitive types yields high
performance and optimized execution, however, the code becomes more com-
plex and is difficult to modify. The matrix sizes used for measurement are N by
N matrices with N = 10, 000 averaging 100, 000 non-zero coefficients per matrix.

The purpose of the implementation using opaque types is to preserve ab-
straction introduced by the generic object implementation utilized by SciGMark
while pushing performance figures towards that of the specialized code. Fig-
ures @l(a), F(b), E(c) show snippets of the code implementing the underlying
complex data and algorithms used in this benchmark. The included code shows
implementation of the type creation, summing, and multiplication.

Performance results using these varying implementations of the complex data
types are summarized in Table[[l Analyzing the data it’s easy to conclude that
without loss of much generality, the opaque implementation is on average 4.7
times faster than the general object implementation and is only about 20%
slower than the specialized implementation from Figure {(b).

The second benchmark used in our final set of tests is polynomial multipli-
cation with dense polynomials of degree < 40. The polynomial coefficients are
once again taken from the complex set and are implemented in three different
ways according to each multiplication algorithm (generic objects, specialized,

58 P. Bourdykine and S.M. Watt

// a. Generic object implementation
public class Complex <R extends IRing<R>> {
private R re;
private R im;
public Complex<R> create(R re, R im) { return new Complex<R>(re, im); }
public Complex<R> s(Complex<R> o) { return new Complex<R>(re.s(o.re()),im.s(o.im())); }
public Complex<R> m(Complex<R> o) {
return new Complex<R>(re.m(o.re()).s(im.m(o.im())), re.m(o.im()).a(im.m(o.re())));
¥
}
// b. Specialized implementation
public class Complex {
private double re;
private double im;
public Complex create(double re, double im) { return new Complex(re, im); }
public Complex s(Complex o) { return new Complex(re + o.getRe(), im + o.getIm()); }
public Complex m(Complex o) {
return new Complex(re*o.getRe() + im¥o.getIm(), rexo.getIm() + im*o.getRe());
}
}
// c. Opaque object implementation
@0paque ("double[]")
public class Complex {
protected double[] rep;
public static Complex create(double re, double im) { return Complex.New(re, im); }
public static Complex s(Complex o) {
return Complex.New(s.rep[0]+o.rep[0], s.rep[1]+o.rep[1]); }
public Complex m(Complex o) {
return new Complex(s.rep[0]*o.rep[0]+s.rep[1]*o.rep[1],
s.rep[0]*o.rep[1]+s.rep[1]*0.rep[0]);

Fig. 4. Multiplication: generic, specialized and opaque object implementation

opaque). Table [2 summarizes obtained results measured in millions of floating
point instructions per second with similar conclusions being drawn from this set
of data as the sparse matrix multiplication.

Implementing dense polynomial multiplication using the proposed opaque
typed method allows for an average of 4.75 times the number of operations
per second while accomplishing the same task. The opaque implementation loses
out to specialized code by an average of only 19%. This is an expected and im-
pressive result considering how much abstraction is preserved through the use
of opaque types.

5 Conclusions and Further Directions

We have observed that Java programmers and library designers have been forced
to work around the language’s abstraction mechanisms for performance-sensitive
code. In practice, programs have used primitive types, such as int, when an
abstraction should be used. The recent addition of Enumerations to the language
help in some settings, but is of no help when the values are used in mathematical
computations.

We have shown how type-safe, but very efficient programs may be obtained
with the concept of an opague type in Java. An opaque type is distinct and
incompatible with its underlying representation type, which may be a primitive

Lightweight Abstraction for Mathematical Computation in Java 59

type or an object type. We have shown how opaque types may be provided via
classes with only static methods, and annotated for handling with a software
tool in a standard Java environment. Opaque types are type checked as though
they were object types, but compiled as the actual representation values. This
allows opaque values to benefit from all the optimizations on primitive types
without relying on sophisticated data structure elimination optimizations.

At the moment, our software tool operates by compiling the code twice, but
of course this could easily be integrated into any compiler. While we focus on
Java for practical reasons, we expect the same observations and techniques to
be directly applicable in other similar settings.

References

1. Brown, W.E.: Progress toward Opaque Typedefs for C++0X (2005)

2. Johnston, B.: Java programming today. Pearson Prentice Hall, Upper Saddle River
(2004)

3. Koffman, E.B.: Objects, abstraction, data structures and design using Java. John
Wiley and Sons (2005)

4. Sun Microsystems, Inc. Annotations (2004),
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html

5. Watt, S.M.: Aldor. In: Grabmeier, J., Kaltofen, E., Weispfenning, V. (eds.) Hand-
book of Computer Algebra, pp. 265-270. Springer, Heidelberg (2003)

6. The Apache Ant Project (2010), http://ant.apache.org

7. Bourdykine, P.: Type Safety without Objects in Java, MSc. Thesis, U. Western
Ontario (2009)

8. Miller, B., Pozo, R.: SciMark 2.0 Java Benchmark. National Institute of Standards
and Technology (2004)

9. Dragan, L., Watt, S.M.: Performance Analysis of Generics for Scientific Computing.
In: Proc. SYNASC 2005, pp. 93-100. IEEE Press (2005)

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://ant.apache.org

Calculation of Normal Forms
of the Euler—Poisson Equations*

Alexander D. Bruno! and Victor F. Edneral?

! Keldysh Institute for Applied Mathematics of RAS,
Miusskaya Sq. 4, Moscow, 125047, Russia
abruno@keldysh.ru
2 Skobeltsyn Institute of Nuclear Physics,
Lomonosov Moscow State University,
Leninskie Gory 1, Moscow, 119991, Russia
edneral@theory.sinp.msu.ru

Abstract. In the paper [I], the special case of the Euler—Poisson equa-
tions describing movements of a heavy rigid body with a fixed point is
considered. Among stationary points of the system, two of one-parameter
families were chosen. These families correspond to the resonance of eigen-
values (0,0, A\, =X, 2\, —2) of the matrix of the linear part of the system,
also in [I] it was conjectured the absence of the additional first integral
(with respect to well-known 3 integrals (2])) near these families, except
of classical cases of global integrability. In this paper, the supposition is
proved by calculations of coefficients of the normal form.

Keywords: Euler—Poisson equations, resonant normal form, computer
algebra.

1 Introduction

The Euler—Poisson system consists of six equations and describes the motion of
a rigid body with a fixed point [2]

Ap+ (C — B)qr = Mg(z0v2 — Y073) »
Bg+ (A—C)pr = Mg(xoys — 20m1)
Cr + (B — A)pg = Mg(yoy1 — o2) »

N =Ty —qV3 ,
Y2 =pPY3—TN ,
Y3 = qy1 — P2

where A, B, C, M, xq, yo, 2o are real constants. A, B, C' are the principal moments
of inertia, and variables 1, y2,v3 are the Euler angles.

* The authors are supported by the Russian Foundation for Basic Research Grant No.
11-01-00023-a.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 60-[T] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Calculation of Normal Forms of the Euler—Poisson Equations 61

The system (I)) has three first integrals

Fy ' Ap? + Bg® + Cr® + 2Mg(woy1 + yor2 + 2073) = const
Fy = Apy1 + Bqya + Crys = const @)
Fs ‘1§f712+7§+7§ =const =1 .

System () has also the linear automorphism
t7p7 q;7, 71,72, 73 — _Zt7 7'p7 ZQa ’i’l", -1, =72, —73 - (3)
For the special case

A=B,C/B=c, Mgao/B=~-1, yo=2=0,

system () is
p=(1-c)r,
g=(c—1pr—rs,
77 *_’72/0 ; (4)
Y1 =7TY2 — 473 ,
Yo =py3—T71
Y3 =qy1 — D2

where c is a single parameter ¢ € IR (0,2]. If ¢ = 1 or ¢ = 1/2 then system (@) has
an additional (the fourth with respect to ([20)) first integral. These are classical
cases of integrability by Lagrange and Sofia Kovalevskaya.

The system (@) has a two-parameter (¢, pg) family of stationary points

p:pO:COHSt, q:lZOZOa T:TOZOa

5
Nn=n=1 12=9%=0 13=9=0. (5)

The resonance (0,0, A, — X, 2\, —2)) takes place at two one-parameter subfamilies
which are defined by

17 — 33¢ 4 56v/9 — 34c + 41¢? gef
== ; p2(5, C)) (6)

8c 0

where § = +1. We denote families (B) as F.
However, at the point

%

¢=(—1++5)/2~0.618034
and (7)
p2(e,6 =—1)=—(3++5)/2 ~ —2.61803

all eigenvalues are zero, i.e., in (@) A; = 0, thus, the point (7)) should be excluded
from the family F_.

In this paper, the conjecture of the absence of an additional first integral
near these families, except classical cases of global integrability, is proved by
calculations of coefficients of the normal form. All calculations were performed
using the MATHEMATICA package [45].

62 A.D. Bruno and V.F. Edneral

In the second Section of this paper, we study a common normal form structure
at the resonance. In the third Section, we discuss the form of the formal first
integrals of the normal form and prove Theorem [about necessary conditions
of existence of an additional first integral, and in the fourth Section, we briefly
describe the calculations which allow to apply that theorem in the studied case.

2 A Normal Form Structure at the Resonance

Here we will study the structure of the normal form of system () near stationary
points of families F4. This description is similar to Section 10, Chapter V of the
book [3]. Let its normal form be

si=29i(Z), i=1,2,3,4,5,6, (8)
where the vector A of eigenvalues); is
A=1(0,0,A3,— A3, A5, —A5), TAs =8A3, 1 <7 <35 . (9)
We introduce resonant variables
Pl = 2324, P2 = 2526, W = zgzg, w = zfz? . (10)
Thus ww = p‘lgpg.
Lemma 1. At the resonance A3 = 7 A5 the normal form () is
5=z kf fa(wh —ak), i=1,2,
=1

pZ:pz ZFZk(wk_wk)a Z:1a27
L o (11)
W =w {Go + Y Fypwb 4+ Y H3kﬂ7k])
k=1 k=1

.))
W= —w {Go + 3 Fyuf 4+ Y HSk'wk] ;
h=1 h=1

where fir, Fir, Go, H3, are power series in z1, z2, p1, p2-

If 7 + 3 is odd in decomposition () index k accepts only even values 21.
3 The First Integrals
According to [6] the first integral of normal form (&)

A= Z(IQZQ

contains only resonant terms for which
(Q,A)=0.

Therefore, the first integral can be written down in the form of a power series
in the resonant variables

Calculation of Normal Forms of the Euler—Poisson Equations 63

o0 o0
A=ag+ Zamwm+ med)m ,
m=1 m=1

. . def def
where ag, a, and by, are power seriesin z = (z1,22),p = (p1, p2). As a sequence
of the automorphism (3])

tazlszaplvaawaw — _tvzlszaplvaawvw

we have a,, = by,, i.e., the integral looks like
(oo}
A=ao+ Y am™ +0™) . (12)
m=1

If 7 + § is odd then from the automorphism (B])

taZ17227p1ap2awaw — taZ17227p1ap27 —w, —-w

it is easy to see that the expansion contains only even indexes m = 2n, i.e.
oo
A=ao+) ag(w™ +o™) . (13)
n=1

For the first integral (I2), its derivative in view of ([[IJ) should be identically
equal to zero. Hence,

g 0A_ oA 04 (03 +)+8A (05 + 06)
—azlzlgl 022Z292 3p1p1 g3 T g4 8p2p2 g5 T ge

0A 0
+ b5(Z7p7w7u~)) -

aw a’lZ)b5(Z’ P, ’LU,U))
> 8a0 8a0 6(10 8a0 k ~k
) F F -
2 (821 21 fie + 92 2o for + Iy p1Fie + s P2 Qk) (w® — ")
= - Oam Oam Oam Oam (14)
F; F:
+ E E (821 z1fik + D2 22 for, + o p1E + 9ps p2 Zk)

(W — ¥) (w™ +B™) + Y map, [Go(w™ — ™)

X

m=1

oo o
+ ZF3k(wk+m _ warm) + ZH3k(U)m1IJk _ wkwm)]
k=1 k=1

Let 7 + 3 be odd. Then in the equation ([I4]), indexes k and m are even: k = 21
and m = 2n. Therefore, writing out this equation up to terms of the total order
in zs3, 24, 25, 26 smaller than 4(5 + 7), we obtain

0 0
a021f12 + ¢

0 Oag dag
F F: 2a2Go =0 15
021 P zafo2 + Iy p1F12 + 9o p2Fas + 2a2Go , (15)

64 A.D. Bruno and V.F. Edneral

where in each member there are terms with orders smaller than 2(7 + §) only.
For odd 7 + 8, its least possible value is equal to 3 (7 = 1, § = 2). Equality (I3)
should be satisfied at least for the z, p free terms and for the terms linear in each
of z, p. Let

zi fi2 def & +minzr + Mioz2 +Mizpr + Naap2 + ...
piEj2 = Ejv2 +Njy2,121 +Njr2222 +Nj123P1 + Njy24ap2 + ...,
Go ¥ i+ o+ Gapr+ Gapr + - (16)
ao dg const + a121 + aozo + aspr +aupa + ...,

a0 i=1,2.

Equation (3] for the free term on the left-hand side gives the equality

a181 + aoba + a3z + gy =0 . (17)
If the vector = % (&1,€2,&3,&4) # 0 then equation ([IT7) has three-dimensional
set of solutions a = (a1, a2, a3, o). If = = 0 then equality ([IT) for linear in the
z, p terms implies four equalities

4
> mijai +268=0, j=1,2,3,4 . (18)

=1

The dimension of solutions («,) of the system (8] is equal (5 —rank M), where
M is a 4x5 matrix which consists of 4 vectors

(7713‘,7723',7733',7743',@‘), j:132,3a4 . (19)
As the initial system (@) has the three first integrals (2I)

Fy =p? 4+ ¢* +cr? — 27, = const
Fy =py1 + qy2 + crys = const (20)
Fy =3 +13+13 = const =1 .

its normal form (&) also has three corresponding first integrals of form (I2), (8]
with vectors a9 = (ag]),agj),aéj),‘ aff)) and constants) (j =1,2,3).

We form a 3x4 matrix a = (ozgj))7 where ¢ = 1,2,3,4; j = 1,2,3. The addi-
tional first integral is locally independent from known three. It is possible only
in two cases:

1. the vector = # 0 and ranka < 3 ;
2. the vector = =0 and rank M =1 .

Let the vector V = (v1,v2,v3,v4) be the external product of vectors aM a@),
and a®). For its calculation it is necessary to write the vector U = (u1, us, us, Ug)

over the matrix & and to calculate a determinant of this resulting square matrix.
4
Then we calculate det = > v;u;, where v; are the components of the external
i=1

Calculation of Normal Forms of the Euler—Poisson Equations 65

product. We will say that the formal integral [I2)) is locally independent from
known integrals, if its linear approximation in z,p,w is linearly independent
on the first approximations of the known integrals. Thus, we have proved the
following theorem:

Theorem 1. For existence of the additional formal integral at a point of families

Fi it is necessary the satisfaction at this point of one of two conditions:

1. Z#0andV =0 ;
2. =0 and rank M < 2 .

[t

4 The Case of r =1,58 =2

In this case, 7 + § = 3, i.e., it is odd, resonant variables (0] are
w = zgzﬁ, w = zZzs .

The first integrals look like (I3]). Let the normal form be calculated

. def .
zj:zjgj:szngZQ, j=1,...,6 . (21)

We specify a connection of coefficients in the equation (7)) and in the system
([I8) with coefficients in (2I]). Let
def def
Gi = g5+ = ZG1QZQ)
def def
Go = gs+96 = > GagZ9 | (22)
def def
Gs Z 293 +96 = Y. G029 .

Then
&1 = 91(-1,0,4,0,0,2)> & = 92(0,-1,4,0,0,2) >
& = G1(0,03,-1,0,2) §4 = G2(0,0,4,0,—1,1) »
M1 = 91(0,0,4,0,0,2)s 7112 = 91(-1,1,4,0,0,2) >
ms = 91(-1,0,5,1,0,2)> 714 = 91(-1,0,4,0,1,3) >
21 = 92(1,-1,4,0,0,2)» 7122 = 92(0,0,4,0,0,2) >
723 = 92(0,—1,5,1,0,2)> 724 = 92(0,—1,4,0,1,3) > (23)
n31 = G1(1,0,3,-1,0,2)» M32 = G1(0,1,3,-1,0,2) »
n33 = G1(0,0,4,0,0,2)s M4 = G1(0,0,3,-1,1,3) >
a1 = G2(1,0,4,0,—1,1) M2 = G2(0,1,4,0,—1,1) »
M3 = G2(0,0,5,1,—1,1) M4 = G2(0,0,4,0,0,2) »
G =G3(1,000005 62 = G30,1,0,0,0,0) »
G =G300,0,1,1,005 64 = G3(0,000,1,1) -
For the integral
A=Y agz? (24)

in the notations (I3)) and ([{8) we get
@1 = 0(1,0,0,0,0,0), @2 = @(0,1,0,0,0,0) >

Q3 = 0(0,0,1,1,0,0)) X4 = 4(0,0,0,0,1,1) » (25)
B = @(0,0,4,0,0,2) -

66 A.D. Bruno and V.F. Edneral
Let us notice that for a calculation of the vector V, i.e., agj), it is necessary to

calculate normal form and integrals ([20)) up to the 2nd order, for the vector =
— up to the 4th, and the matrix M, i.e. n;;, — up to the 7th order.

4.1 Calculation of Known Integrals at the Resonance 1:2

Along curves F; and F_, the normal forms of system () up to terms of the
first order (i.e., up to the terms which are square free in variables of the system)
were analytically calculated. Thus, we calculated also the three first integrals
@0) in coordinates of the normal form. In particular, coefficients a1, ag, ag, ay
for each of these three integrals in (6l were obtained as functions in § = +1
and ¢ € IR(0, 2].

ald) = (agj),aéj),aéj),ag)) are the vectors of coefficients of the integrals
F;, j=1,2,31in @20). According to the text before the statement of Theorem
@ we form from the vectors a(®),a®, and a(® their external product V =
(v1,v2,v3,v4). It has appeared that the vector V along the curves F, and F_
can be calculated analytically as follows. Firstly we make the uniformization

18h
CcC =
80+ 34h — h2 "’
i.e., we replace the parameter ¢ by the parameter h. This uniformization has

two branches. We choose the single-valued branch where ¢ € IR unambiguously
corresponds to h € IR and which is defined by the interval

(26)

— 220937 ~ 17 — 3V/41 < h < 17+ 3v/41 ~ 36.2094 |, (27)

which ends are roots of a denominator in [26). At 6 = 1, i.e., on Fy, it turns out

1 640 h
— 74 — . 2
Po 6\/ T T (28)

Components v; of the external product V are

(3204 (40—h)h)2(80+h?)
o 1296h3)
(3204 (40— h)h)?

- TT76h4/2(32—h)(40+h) /h
% (—102400-+h(—41600—h(5040+(40—h)h))) ,
(320 (40—h)h)?

(%)

U3= " 18h(40+h)
(3204+(40—h)h)?
V4= 9(32-n)h2

The equation V = 0, i.e., the system of four equations
v, =0, 1=1,2,3,4, (29)

has only two solutions

Calculation of Normal Forms of the Euler—Poisson Equations 67

hi = 4(5 — 3V5)
hy = 4(5 + 3v/5)
Both these solutions lay outside the interval (27)). Hence, at § = 1, external

product V' # 0.
Similarly, at 6 = —1 we have

1 10
Po 3\/ +, —2h, (31)

—6.83282 |
46.83282 .

~
~
~
~

(30)

_ —(20+(10—h)h)?(80+h?)

81h3)
/—14(10/h)~2h(20+(10—h)h)?
V2= 243h3(h—2)(2h+5) X

X (—800+h(—400+h(630+h(—65+2h))))
16(20+(10—h)h)?

U3= " on2(h-2) ;
_(204(10—h)h)?
V4= " 9p(2n+5)

The system of equations (29) has thus only two solutions

hs =5 —3v5~ —1.7082 ,
(32)
hy=5+3V5~ 11.7082 .

Both of them lay in the interval [27)). With respect to (28] that solutions corre-
spond to values ¢

c(hs) = —(vV5+1)/2 ~ —1.618034 ,
chy)= (V5-1)/2~ 0.618034 .

Only the last value of ¢ lays in semi-interval IR (0, 2], and along the curve F_ it
corresponds to the exclusive point (7). At the exclusive point, the matrix of the
linear part has not simple elementary divisors and the developed theory does
not work. Hence along the curve F_ the external product V # 0.

Thus, at the resonance 1:2 the external product V' anywhere in the mechan-
ical area does not equal to zero, i.e., the first condition of Theorem [II is not
satisfied. Below we examine the second series of the conditions of existence of
the additional formal integral.

4.2 The Case =5 =0

According to (I8 and (23]), from coefficients of the normal form it is possible to

calculate the vector (£1,&2,&3,&4) 4f = asafunctions in § = +1 and c € R (0,2].
In papers [7J8], the normal forms up to the terms of the 4th order have been

68 A.D. Bruno and V.F. Edneral

calculated, and from these normal forms, the values &3, &4 were calculated as
well. These calculations used the uniformization ([B4]) allowing to get rid of dou-
ble radicals at diagonalization of the linear part of system (@) and were made
on some grid of rational values of h. It was not possible to calculate the normal
form up to the 4th order completely in analytical form in view of the neces-
sity to treat extremely complicated results containing expressions with square
roots of polynomials in parameter h which do not allow any uniformization. The
calculation, however, was performed completely in the rational arithmetic with
deduction of all roots from rational numbers, i.e., without any rounding off.

It has appeared that the values £5 and &4 are equal to zero only simultaneously
and only at

ca=1, c2=1/2, ¢3~0.2527783, for =1 ;
c1=1, c=1/2, ¢4~ 0.0452287, 5~ 0.1893723 (33)
cg ~ 0.51292, for 6= -1 .

The approximate values for points cs, ¢4, ¢5, and cg here mean that intervals in
which there is a change of a sign of {5 and &, are known to us, and we bring
values of the centers of these intervals. Below, in Subsection [£3] boundaries of
intervals are specified.

The additional calculations carried out after the publication of papers [7U8]
have shown that at the points ([B3]), values & and & are equal to zero also
according to (23) and ([I6). Therefore, there = = 0, and for checking Theorem[I]
it is necessary to calculate at points (B3] the rank of the matrix M with respect

to (M), (@) and @3).

4.3 Calculation of the Rank of the Matrix M at Points (33

To calculate the entries of the matrix M, the coefficients of the normal form
were calculated up to the 7th order. As rational points ¢; = 1 and co = 1/2
are known precisely, exact values of coefficients of the normal form are obtained
there, i.e., we know exact expressions for the matrix M. At ¢ = 1 for § = £1
it has appeared that rank M = 0, i.e., all entries of this matrix are zero. At
¢ =1/2, the matrix M is

0 —1113/(16v/2) 117i/28 ~7i/32 —i/2
10 111i/16 —117i/(64v2) Ti/(16V2) i/\/2 B
M=1, 111i/(2v/2) —117i/16 7i/4 4i for 6=1,

0-333i/(32v2) 351i/256 —21i/64 —3i/4

0 —24/\/7 —85i/4 0 —Ti/2
o —96i/7 85/V7T 0 2V7 o
M= 576/ (a9v/7) 510149 0 12ij7 | 7 0=-1-

0 219/(7+/7) 6205i/224 0 73i/16
In the both values of § rank M = 1. It agrees with the theory above.

Calculation of Normal Forms of the Euler—Poisson Equations 69

At other points [B3]) where = = 0, the ¢ values can be calculated only ap-
proximately, that complicates the calculation of the rank of the matrix M there.
To overcome this difficulty, for each point ¢; (i = 3,4,5,6) three numbers
D < o <
of the interval which contained the point 052). At these three points, the corre-
sponding minors of the third and second order of the matrix M were calculated,
and the matrixes ResM3 and ResM 2 were formed from them accordingly. These
matrixes were constructed so: a) a check was made for each of minors that all
of its elements are pure real or pure imaginary. In the last case, the imaginary
unit was eliminated. After that each minor should be pure real; b) monotony
of the sequence of values of the minor at three specified above values of ¢; of
the parameter ¢ was checked. If these three values behaved monotonously then:
if signs of the first and the last values of the minor were opposite, the element
of the matrix ResM3 or ResM2 was assigned to zero, otherwise the element

was replaced with a string from these three values of the minor that allows to
(3)
, G

were chosen in such a way that cl(»l) and 62(3) laid at borders

analyze, whether vanishing the minor inside of the interval (cgl)
The value c§2) at an internal point of the interval allows to clear an opportunity
of zeroing the minor in a parabolic way.

All minors were calculated in exact arithmetic, and results presented below
are the approximated values obtained from exact calculations of corresponding
analytical values of the minors by floating-point arithmetic with internal accu-
racy of 24 digits.

Here it was used different from (26) uniformization

) is possible.

18h
= 4
“T h2 4 34h 80 (34)
with
— 174 3V41 ~ 2.20937 < h < 00 , (35)

that define the unique correspondence of h € IR with values of ¢ € IR.
Let us describe results for the point c3. For it, cél) is

¢ = 2759625/10917334 ~ 0.2527746 |,
h = 4906/125 ~ 39.248 > 2.20937 ,
po = 1/23684086/12265/15

here
= = (—0.0030096%, —0.0173395¢, 0.000254485¢, —0.0003503483) ,
c:(f) is
¢ = 78494000/310525001 =~ 0.2527784 ,
h =39247/1000 ~ 39.247 |
po = (3/10)\/18712389/196235 ,
here

Z = (—0.00130874, —0.00753993:, 0.000110666¢, —0.000152357) ,

70 A.D. Bruno and V.F. Edneral

ch) is
¢ = 176607000/698653129 = 0.252782 |
h =19623/500 ~ 39.246 |,
Po = \/378906379/196230/15 ,

here

Z = (0.0003918961, 0.00225786i, —0.0000331409:, 0.00004562283) .

It is easy to see that a change of a sign of elements of the vector = occurs in the
interval (cgz), ch)).

It has appeared that the matrix ResM3 consists only of zeroes. The first
string of the matrix ResM?2 consists of zeroes also but all the others consist of
elements — strings of the kind (a(cgl)), a(céz)),a(cgg))), and they are numbers
of the same sign closed among themselves, and some of them are large numbers

which have an order near 10%. Hence, at the point c3 we have
rank M =2 . (36)

The situations with the rank M at the points ¢4, c5, cg are the same, and values
of hy, hs, hg > 2.20937 satisfy inequality (B5]). Therefore, we omit the detailed
descriptions of them.

So, at points c3, ¢4, 5, cg equality ([Ba]) takes place, i.e., the second of conditions
of Theorem [Ilis not satisfied. According to this theorem at the points above, the
system () has no additional formal integral, i.e., it is not integrable.

5 Conclusion

The considered system () has no additional first integral which would be in-
dependent of classical ones (20)). So the system is integrable at the parameter
values ¢ = 1 and ¢ = 1/2 only.

References

1. Bruno, A.D.: Theory of Normal Forms of the Euler-Poisson Equations. Preprint
No. 100, Keldysh Institute for Applied Mathematics of RAS, Moscow (2005),
http://library.keldysh.ru/preprint.asp?lg=e&id=2005-100| (abstract),
http://d1l.dropbox.com/u/59058738/Preprint100.pdf| (full text in Russian)

2. Golubev, V.V.: Lectures on the Integration of the Equation of Motion of a Rigid
Body about of Fixed Point. Gostehizdat, Moscow (1953) (in Russian); NSF Israel
Program for Scientific Translations, Washington (1960) (in English)

3. Bruno, A.D.: Power Geometry in Algebraic and Differential Equations. Nauka,
Moscow (1998); Elsevier, Amsterdam (2000)

4. Edneral, V.F., Khanin, R.: Application of the resonant normal form to high or-
der nonlinear ODEs using MATHEMATICA. Nuclear Instruments and Methods in
Physics Research A 502(2-3), 643-645 (2003)

http://library.keldysh.ru/preprint.asp?lg=e&id=2005-100
http://dl.dropbox.com/u/59058738/Preprint100.pdf

Calculation of Normal Forms of the Euler—Poisson Equations 71

. Edneral, V.F.: An Algorithm for Construction of Normal Forms. In: Ganzha, V.G.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 134-142.
Springer, Heidelberg (2007)

. Bruno, A.D., Sadov, S.Y.: Formal integral of a divergentless system. Matem. Zametki
57(6), 803-813 (1995); Mathematical Notes 57(6), 565-572 (1995)

. Bruno, A.D., Edneral, V.F.: Normal Forms and Integrability of ODE Systems. In:
Ganzha, V.G., Mayr, E.-W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718,
pp. 65-74. Springer, Heidelberg (2005)

. Bruno, A.D., Edneral, V.F.: Normal form and integrability of ODE systems. Pro-
grammirovanie 32(3), 22-29 (2006); Programming and Computer Software 32(3),
1-6 (2006)

Stability of Equilibrium Positions in the Spatial
Circular Restricted Four-Body Problem

Dzmitry A. Budzko' and Alexander N. Prokopenya??

! Brest State University,

Kosmonavtov bul. 21, 224016, Brest, Belarus
master booblik@tut.by

2 Warsaw University of Live Sciences
Nowoursynowska str. 159, 02-787 Warsaw, Poland
3 Collegium Mazovia Innovative University in Siedlce ,
ul. Sokolowska 161, 08-110, Siedlce, Poland
alexander prokopenya@sggw.pl

Abstract. We study stability of equilibrium positions in the spatial cir-
cular restricted four-body problem formulated on the basis of Lagrange’s
triangular solution of the three-body problem. Using the computer alge-
bra system Mathematica, we have constructed Birkhoff’s type canonical
transformation, reducing the Hamiltonian function to the normal form
up to the fourth order in perturbations. Applying Arnold’s and Mar-
keev’s theorems, we have proved stability of three equilibrium positions
for the majority of initial conditions in case of mass parameters of the
system belonging to the domain of the solutions linear stability, except
for the points in the parameter plane for which the third and fourth order
resonance conditions are fulfilled.

1 Introduction

The theory of stability of the Hamiltonian systems is developed quite well, and a
number of problems of motion stability have been solved (see, for example, [I]).
A classical example is a problem of libration points stability in the restricted
three-body problem [2J3] that was introduced first by Euler in connection with
his lunar theory. This problem is highly interesting for applications, and so it
has been a major topic in celestial mechanics during the past two hundred years.
Finally some general methods for studying the stability of Hamiltonian systems
have been developed [3l45]. However, application of these methods involves very
bulky symbolic calculations which can be reasonably done only with computer
and modern software such as the computer algebra system Mathematica [6], for
example. Besides, stability analysis of more complicated dynamical systems re-
quires improvement of available computing technique and designing new efficient
algorithms of calculation, and this stimulates further investigations in this field.

In our previous paper [7], we have considered the circular restricted four-body
problem formulated on the basis of Lagrange’s triangular solution of the three-
body problem. Remind that within the framework of this problem, three point

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 72-B3] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Stability of Equilibrium Positions 73

particles Py, P, P> having masses mg, mi, me, respectively, move uniformly
on circular Keplerian orbits around their common center of mass and form an
equilateral triangle at any instant of time. We are interested in the motion of
the fourth particle P3 of negligible mass that moves in the gravitational field of
Py, P, and P». It has been shown that for small values of the system parameters,
the problem has eight equilibrium solutions of which only three may be stable.
We have studied the stability of equilibrium solutions in the planar case (see [7])
when the particle P is constrained to move in the xOy plane. The present work
is a generalization of [7] and is devoted to the stability analysis of equilibrium
solutions in the spatial circular restricted four-body problem when the system
has three degrees of freedom.

In Section 2, we describe equilibrium solutions and analyze their linear sta-
bility. In Section 3, we discuss the algorithm for normalization of the third-order
term in the Hamiltonian expansion and analyze the stability of the equilibrium
solutions under the third-order resonance. In Section 4, we normalize the fourth-
order term of the Hamiltonian and apply theorems of Arnold and Markeev.
Finally, we conclude in Section 5.

2 Linear Stability of Equilibrium Solutions

In the rotating frame of reference, where the particles Py, P;, P» are fixed in
the 20y plane at points (0,0), (1,0), (1/2,/3/2), respectively, the Hamiltonian
function of the system can be written in the form

I VRN S 1 (m) 123
H—Q(px—l—py—&—pz) xpy+ypx+1+M1+M2 ,u1+2 T+ 9 Y

1 B 1 B 2412 ()

Va2 (12 2422 \/(Qx—1)2+(2y—\/3)2+22

where z,p;, ¥, Dy, and z,p. are three pairs of canonically conjugate coordinate
and momentum. Two mass parameters are defined as

p1=mi/mo, pe =mo/mg .

Using the Hamiltonian (), one can easily write the equations of motion of the
particle P and show that its equilibrium positions lie only in the 2Oy plane (z =
0). The corresponding equilibrium coordinates are determined as the solutions
of the following algebraic system

V9 (g =) OV (o 1)

1
Yy <(x2+y2)3/2 1> =po(y+V3(z—-1)) | 1— e

74 D.A. Budzko and A.N. Prokopenya

Each equation of the system (2)) determines a curve in the xOy plane, which
can be easily visualized with the Mathematica built-in function Contour Plot, for
example. So geometrically any equilibrium position of the particle P5 corresponds
to an intersection point of two curves (Fig. [I).

-15 -10 -05 0.0 0.5 1.0 1.5 2.0

Fig.1. Eight equilibrium positions St, ..., Ss for u1 = 0.2, u2 = 0.15

Note that for any given p1 > 0 the solid line in Fig. [l determined by the first
equation of system (2)), is fixed, and it always passes through the points Py, P,
Py, and (1/2,—+/3/2). In case of us = 0, the thick dashed line, determined by
the second equation of system (), degenerates into the line y = 0 and the circle
22 + y? = 1. Hence, system (@) has three roots at the Ox axis and two roots
at points (1/2,++/3/2), and these five roots correspond to the libration points
Ly, Lo, L3, and Ly, L5 in the three-body problem (see [2], [3]). Increasing the
value of usz, one can observe that the three equilibrium points located on the
O axis when pz = 0, as well as the equilibrium point (1/2, —v/3/2), gradually
move in the 2Oy plane along the solid line (the points S5 — Ss in Fig. [I). The
point = 1/2, y = v/3/2 generates four new equilibrium positions (the points
S1 — Sy in Fig. [I), one by each branch of the solid line outgoing the point Ps.
Thus, graphical analysis indicates that there are eight roots of system (2]) for
small values of parameters p1, po.

The problem of solving system (2)) has been analyzed in detail in [§]. So we
assume here that all equilibrium positions (zg, yo) of the particle Ps can be found
in the xOy plane for any values of parameters p1, pe. We can then expand the
Hamiltonian () into Taylor series in the neighborhood of some equilibrium point
and represent it in the form

H=Hy+Hs+Hy+..., (3)

where Hy, is the kth order homogeneous polynomial with respect to the canonical
variables x,y, 2, pz, py, p-. Note that zero-order term Hy in (3]) has been omitted
as a constant, which doesn’t influence the equations of motion, and the first-order

Stability of Equilibrium Positions 75

term H; is equal to zero owing to equations determining equilibrium positions.
Therefore, the first non-zero term in the expansion [B)) is a quadratic one that is

1
Hy= _ (02 + D +D2) — Py + pay + haoa® + huiwy + hooy” + haz2? . (4)

2
where
=gy (B b
201+ g1 + p2) \ (22 + y2)5/2 ((xo — 1) +y3)>/2
iz (yo — v/3/2)? = 2(zo — 1/2)?
((xo — 1/2)2 + (yo — V/3/2)2)5/2)’
3 ZoYo (zo — 1)yo
h = — +
1 1+ 1+ o ((x3+y3)5/2 'ul((ﬂﬁo—1)2‘1'93)5/2
g (zo —1/2)(yo — V3/2)
((xo — 1/2)2 + (yo — V/3/2)2)5/2)’
o = 1 < x3 — 243 (rg — 1)% — 292
2T 21t pz) \ (@ 53072 T (w0 — 1)2 4 4R)502

12 (g — 1722 4 (yo — /3/2)2)5/2

I 1 (1 . " .
T2) \(@ 932 (w0 —1)% + 93)%>

(w0 — 1/2)2 — 2(yo — V/3/2)?)

+ H2 >
((zo —1/2)? + (yo — V/3/2)?)3/2
One can readily check that the linearized equations of motion determined by
the quadratic part Hy of the Hamiltonian (B]) form a sixth-order linear sys-
tem of differential equations with constant coefficients. Characteristic exponents
A1,...,Ag for such a system can be easily found and are represented in the form

)\172 = iial 5)\374 = iiO’Q 5)\5,6 = iiUg 5 (5)

where 7 is the imaginary unit, and the frequencies o1, 02, 03 are given by
1/2
o120 = (1 + hog + ho2 = \/h%O + h(2)2 + h%l — 2haoho2 + 4hogo + 4h02) , (6)

g3 = \/2h22 . (7)

One can readily deduce from () and (@) that o3 is a real number for all possible val-
ues of the mass parameters p1, po. Analysis of the frequencies () for all eight equi-
librium positions (see Fig.[Il) has shown [7] that for the points Ss, S3, S5, Se, Ss
at least one frequency has an imaginary part for any values of parameters p1, po.

76 D.A. Budzko and A.N. Prokopenya

Therefore, these five equilibrium positions are unstable. Equilibrium points .57, Sy
and S7 are stable in linear approximation if parameters ji1, p2 are smaller than their
values on the stability boundaries which are determined by the condition o1 = o5.
The corresponding curve for the equilibrium point S7 is shown in the p; Opo plane
in Fig.Pltogether with some resonance curves.

0.01 0.02 0.03 0.04 1

Fig. 2. Stability domain and resonance curves for equilibrium position S7

3 Normalization of the Third-Order Term Hj

As in the planar case [7], the problem of equilibrium positions Sy, Sy, S7 stabil-
ity can be solved only in a strict nonlinear formulation based on Arnold’s and
Markeev’s theorems. It becomes clear as soon as we normalize the quadratic part
Hj in the Hamiltonian expansion [B)). An algorithm for constructing the corre-
sponding canonical transformation is described in detail in [I0]. Doing necessary
symbolic calculations, we obtain the second order term Hs in the form

1
Hy =, (01(pT + 1) = 0205 + 63) + 03(05 + 43)) (8)

where pi1,q1, p2,q2, and p3, g3 are three pairs of new canonically conjugated
variables.

It is obvious that the quadratic form (R is neither positive nor negative defined
function and, hence, we cannot conclude on stability or instability of equilibrium
solutions, using the principle of linearized stability [I1]. Therefore, the stability
problem can be solved only in a strict nonlinear formulation. As stability analysis
of the equilibrium positions S1, Sy, S7 is done in a similar way we’ll analyze only
stability of the point S7 in detail.

To normalize the third order term Hs in the Hamiltonian () we use the
method of constructing the Birkhoff’s type real-valued canonical transformation
described in [12]. It should be noted that, in contrast to [I2], the system under
consideration has two parameters p; and pse and three degrees of freedom, and
due to this reason the calculations are much more bulky and difficult (see [7]).

Stability of Equilibrium Positions 7

After realization of the first canonical transformation, normalizing the quadratic
part Hs, the third order term Hs becomes

Hy = > i L BAPPEDE 9)
i+j+k+l+m+n=3
Due to their bulk we do not provide here the corresponding expressions for
hz(j’,)elmn And we’d like to find such canonical transformation that the third-
order term Hj in the expansion (B was eliminated. Generating function for
such transformation can be sought in the form of third-degree polynomial
S(p1,D2,P3, 41,92, q3) = q1P1+q2P3+q3pa+ Z sS,l,,,aniq%qé“ﬁiﬁ;”ﬁQ)
i+j+k+l+m+n=3
(10)
where coefficients SS)I)clmn are to be found. Then new momenta pi,ps,p3 and
coordinates ¢1, G2, 3 are determined by the following relationships
- as oS
qk P Pk D k=1,23. (11)
Note that these relationships are equations with respect to the former canonical
variables q1, g2, g3, p1, p2, p3. On substituting (I0) into (1) and solving these
equations, we find ¢1, ¢2, ¢3, p1, P2, p3 in the form of second-degree polynomials
in the new canonical variables i, G2, G3, P1, P2, P3.- Then we substitute the
corresponding expressions into (8), (@) and expand the Hamiltonian H = Ho+ Hj
into Taylor series in powers of 1, G2, G3, P1, D2, P3- The expression obtained is
again represented as a sum of homogeneous polynomials Hj, (k =2,3,...) with
respect to canonical variables §1, G2, §s, p1, P2, P3- One can readily check that
the second-order term H, preserves the form @), while the third-order term Hy
is a sum of 56 terms of the form

3) i~j ksl < O
B G BBFETE; 0+ 5+ b+ 1+ m+n=3) (12)
which are expressed as linear functions of old coeffi-

(3

ijklmn

(3)
with new coefficients hZ ikimn

cients h'%) and unknown coefficients s of the generating function (I0).

ijklmn "
Obviously, the third-order term Hj3 would be eliminated if all the coefficients
A8

tiktmn 1 ([@2) were equal to zero. Therefore, we can try to solve the system of

— 0 and to find the coefficients s'>) of

ijklmn

fifty six equations of the form B3

ijklmn
the corresponding canonical transformation @@.

Analysis of the coeflicients e shows that in fact we have several indepen-

ij klmn
dent subsystems for determination of unknown coefficients 35 j,)dmn As all these
subsystems are solved similarly, we consider only two of them to demonstrate
the most important peculiarities of their solving. The first subsystem is formed

by three coefficients of p1p3, p1Gs, G1G2p2 in the expression for Hj. Tt determines
(3) (3) (3)
the coefficients s410110, 51000201 Si20000 @0d is given by

7(3) _ 13 (3) (3)
hooo120 = Pooo120 + 510002091 — S01011002

78 D.A. Budzko and A.N. Prokopenya

= (3 3 3 3
hE)Q)owo = h(()z)owo + 552)0000‘71 + 551)0110‘72)
= (3 3 3 3 3
hgl)OOlO = 51)0010 - 5(()1)011001 + 2350)00200'2 - 2352)000002 . (13)

Note that coefficients s(()gi)mw, 35?6)0020, 3532)0000 appear only in the expressions for

7@

{iklmn 81VEN in (@3) and so they are completely determined by this system. It

0

has a unique solution for any values of iLZ ikimn if its determinant being equal to

o1(403 — o) is not zero. In such a case we can set ﬁé%%)mo = B(()?;)OIOO = ;Lﬁ)oom =
0 and find the corresponding coefficients 58?0110a 3%)0020, Sg)oooo- Therefore, if
01 # 0 and the conditions

01i2027£0 (14)

are fulfilled the three terms ([2) with coefficients iL(()%)OmO, B(():;)ow()a iLﬁ)oow are
climinated in H3 by means of the canonical transformation (IT)).

The second subsystem determines the coefficients 3(()?6)1020a 58)0011, 55:;)1000 and
is given by

7(3) _ .3 (3)
hgoo021 = —S01001192 + 00102003
7(3) _ 9.3 (3) (3)
ho11010 = 2800102002 — 2502100092 — S01001173
7(3) N) (3)
hos0001 = 501001192 + $02100073 - (15)

Determinant of its matrix is equal to o3(405 — 03) and, hence, it has a unique
®3)

ijkimn 1f 03 # 0 and 203 £ 03 # 0. However, one

can readily see that in case of flé%)oogl = ilgi)l(no = B(()?é)oom = 0 subsystem
(@@ has a trivial solution 5(()%)1020 = 3(()?)0011 = 3832)1000 = 0 even if o3 = 0 or
209 + 03 = 0. Therefore, the corresponding three terms (I2)) are eliminated in
Hs by means of the canonical transformation (II)) and third-order resonance of

the form 205 + 03 = 0 has no influence on stability of equilibrium solutions.

solution for any values of h

Inspection of the remaining 50 coefficients iLS}dmn shows that if o1 # 0,
o9 # 0, 03 # 0 and the conditions
20’1i0’27’é0, 0'1i20’37é0, 02i2037é0 (16)

of the canonical
(3) _

ijklmn

are fulfilled, in addition to (Id), all the coefficients s

ijklmn

transformation (1) are found in a unique way. In this case, we can set h

0 and find the canonical transformation such that the third-order term Hg in the
Hamiltonian (3)) vanishes. Note that conditions ([[4) and (I6]) imply an absence
of third-order resonances in the system (see [I]).

Analyzing frequencies (Bl) and (7)), we obtain that for the linearly stable equi-
librium point S7 there exist values of parameters p1, 2, for which the condition
of third-order resonance o1 — 209 = 0 is fulfilled (see Fig.[2)). Thus, for the points
(1, p2) in the p1Ope plane located on the corresponding resonance curve, con-
dition ([I4) is not fulfilled and, hence, the system (I3]) does not have a solution in

case of iLS’,)dmn = 0. For the same reason the coefficients Bg:(s))oozm iLg)OOOO, iL((ﬁ)OHO

Stability of Equilibrium Positions 79

can not be eliminated under the third-order resonance, as well. It means that
the corresponding six resonance terms in Hs cannot be eliminated.
Nevertheless, we can require the following conditions to be fulfilled

- (: B 53 Br 5 B
h(d) — , h(= — , h = — s 17
000120 22 020100 2/2 110010 V2 (17)
= (3 By -3 By -3 By

h((n)ono = \/27 hgo)oozo = 2\/27 hg;oooo = _2\/27 (18)

where Bj, By are constants. Solving the systems of equations (7)), ([I8]), we

obtain the corresponding coefficients s of the canonical transformation

ijklmn
() and find the constants By, Bs as

1 . 3 3
By = \/2 (h(()O)O12O - h(()z)(noo - hg1)0010) s

1

3 3 3
By = NG (hh10 + h{Zhozo — h{3booo) - (19)

Then the Hamiltonian (@]) takes the form

1 1 o By o
H= o (@ +p7) — 502 (@ +p3) + 2\/12 (P15 — P15 — 2G1Gp2) +
By

|
24/2

Using the standard canonical transformation

(@193 — @135 + 2G2p1p2) + Ha+ (20)

q1 = V27 sin(p1 + @) , pr = V271 cos(pr + @) ,

G2 = V27 singy , P2 = V27 cos¢2 (21)

where parameter « is determined by the relationships
B B
cosa:Bl, sina:BQ, B:\/B%+B§,

we rewrite the Hamiltonian (20) as

H = 0171 — 0272 + Bray/m1 cos(p1 + 2¢2) + Ha(1, 02,71, 72) + (22)

We have done numerical analysis of parameter B for the equilibrium point S7
under third-order resonance and shown that it is not equal to zero for all points
(111, 2) belonging to the resonance curve (see Fig. B]). Therefore, applying Mar-
keev’s theorem [I], we can conclude that equilibrium point S7 in the circular
restricted four-body problem, formulated on the basis of Lagrange’s triangular
solutions, is unstable under third-order resonance of the form o; = 205.

80 D.A. Budzko and A.N. Prokopenya

0.005 0.010 0.015 0.020 0.025’“

Fig. 3. Parameter B as function of u1 in the case of resonance o1 = 202 for S7

4 Normalization of the Fourth-Order Term H,

Let us assume that the condition o1 # 205 is fulfilled and that there is no reso-
nance in the system up to the third order inclusively. Then after normalization
of the second and third order terms we obtain the Hamiltonian (3)) in the form

H:I:I2+H4+..., (23)

where _fche second order term H. o preserves the rgormal form (B)). The third-order
term Hj is absent, and the fourth-order term H,; may be written as

- -4 e
H4 - Z hgjl)elmnqlq2qdp1p72np3 . (24)
i+j+k+l+m+n=4

The sum (24) contains 86 terms but coefficients hl iklmn 8T€ very cumbersome,
and we do not write them here. Again we look for the function

S(0%. 05, 0% @1, G2 43) = DT+ RPIFEBSY D S G BEDT PP
i+j+k+l+m4n=4
(25)
generating the canonical transformation reducing the fourth-order term Hy to
the simplest form. New momenta p7, p5,p5 and coordinates ¢, ¢, g5 are deter-
mined by the relationships

oS 08
o 7 o

*

g = , (k=1,2,3). (26)
Resolving (26]) with respect to the old canonical variables in the neighborhood
of the point ¢i = ¢5 = g5 = p; = p5 = p5 = 0 and substituting the solution into
[23), we expand the Hamiltonian H into the Taylor series in a5, 45, ¢35, D1, D,
p5. Obviously, the second order term HJ in this expansion again has the normal
form (). The third-order term Hj is absent, and the fourth-order term Hj is a
sum of 126 terms of the form

4 * * *] % . .
B €05 65 DY DY G+ kL +m A =4)

Stability of Equilibrium Positions 81

. *(4 . . . 4
where new coefficients h*®) are linear functions of unknown coefficients s'*)

ijklmn ijklmn
determining the generating function (25)).
Analysis of the coefficients h:j(:l)mn shows that they are again divided into sev-

eral independent groups and each group forms a system of equations determining
(4)

some coefficients s; ;... If the following conditions

o1#0, 02#0, 03#0, o1£02#0, 01£0o3#0, oaxto3#0,

O'1i30’27é0, 0’1i30’37’é07 30’1i0’27é0,

o9+ 303 #0, 01 t09+2035#0, (27)
are fulfilled we can solve the equations h:j(,?l)mn = 0 and find the coefficients

sgﬁlmn of the canonical transformation (20 that eliminates the corresponding

terms in (24]). However, there are 21 terms in the expansion (24 which can not
be eliminated. They can be only simplified in such a way that the fourth-order
term H, takes the form

1
Hy=, (c11 (P + a1?)? + c22(p3” + 657)° + ca3(ps” + 437)*+

e + 6) (03 + a3%) + s +) (037 + ¢57)+
+ea3(p3” + a3 (057 + ¢3%))
Then, using the standard canonical transformation
qr =21k sinpy , pj =271k cosg , (k=1,2,3), (28)
we rewrite the Hamiltonian ([23) as
H*:H(O)+H§(901,71,<p2,72,g03,7'3)+... , (29)
where
HO = 017'1—027'2+037'3+C117'12+6227'22+033T32+C127'17'2+C13T17'3+0237'27'3 , (30)

and H (e1, 71, @2, T2, p3, 73) is the fifth-order term in the expansion (23)).

Now we can apply the classical Arnold theorem [4] which states that in the
case of absence of resonances up to the fourth order (included) an equilibrium
solution of the Hamiltonian system is stable for the majority of initial conditions
if the following condition is fulfilled

952 H ()
D3 = det (6Ti8Tj) #0 (31)

for | = =1 =0.

82 D.A. Budzko and A.N. Prokopenya

Numerical analysis of the determinant (BII) shows that D3 # 0 in the domain
of linear stability of equilibrium position S7 which is bounded by the curve o1 =
o9 in the 1 Opg plane (see Fig. B2l). Cross section of the surface D3 = Ds(p1, f12)
by the plane 1 = 0.0160642 shown in Fig. @l demonstrates dependence of D3 on
parameters py, po. Note that the point of singularity of D3 corresponds to the
case of third-order resonance o1 = 205.

Dy
30000+

20000+

10000

0.0 0.3010 0.015 0.020 He

-10000

-20000r

Fig. 4. Determinant D3 as function of ps for the point S7, p1 = 0.0160642

Analysis of the frequencies (B) and (7)) shows that there exist such points in
the domain of linear stability of equilibrium position S7 in the pu;Ops plane
(see Fig.) for which fourth-order resonance conditions of the form o1 = 309,
309 = 03, 207 = 09 + o3 are fulfilled. It should be noted that the last two
resonances do not influence on stability of equilibrium position S7 because the
corresponding resonance terms in the expansion of the Hamiltonian (24) are
eliminated by the normalizing canonical transformation. The case of resonance
o1 = 302 was studied in detail in [7] where it was shown that this resonance
produces instability of the equilibrium solution Sy . In the spatial case considered,
under fourth-order resonance o1 = 302, the equilibrium point S7 is unstable too.

5 Conclusion

We have studied the stability of the equilibrium point S7 in the spatial circular
restricted four-body problem formulated on the basis of the Lagrange triangular
solution of the three-body problem. We proved that this equilibrium point is
stable almost for all initial conditions for any values of parameters pu1, po from
the domain of its linear stability in the p1Opo plane but for the resonance
curves o1 = 209 and o7 = 302 shown in Fig. Bl The equilibrium point S; is
unstable under these two resonances while the resonances 205 = 03, 3092 = 03
and 201 = 02 + 03 do not influence its stability.

Note that all numerical and symbolic computations and visualization of the
obtained results have been done with the computer algebra system Mathematica.
And all the calculations can be easily repeated for other equilibrium points.

Stability of Equilibrium Positions 83

References

11.

12.

Markeev, A.P.: Stability of the Hamiltonian systems. In: Matrosov, V.M.,
Rumyantsev, V.V., Karapetyan, A.V. (eds.) Nonlinear Mechanics, pp. 114-130.
Fizmatlit, Moscow (2001) (in Russian)

Szebehely, V.: Theory of Orbits. The Restricted Problem of Three Bodies. Aca-
demic Press, New York (1967)

Markeev, A.P.: Libration Points in Celestial Mechanics and Cosmodynamics.
Nauka, Moscow (1978) (in Russian)

Arnold, V.I.: Small denominators and problems of stability of motion in classical
and celestial mechanics. Uspekhi Math. Nauk 18(6), 91-192 (1963) (in Russian)
Moser, J.: Lectures on the Hamiltonian Systems. Mir, Moscow (1973) (in Russian)
Wolfram, S.: The Mathematica Book, 4th edn. Wolfram Media/Cambridge Uni-
versity Press (1999)

Budzko, D.A., Prokopenya, A.N.: On the Stability of Equilibrium Positions in
the Circular Restricted Four-Body Problem. In: Gerdt, V.P., Koepf, W., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 88-100. Springer,
Heidelberg (2011)

Budzko, D.A., Prokopenya, A.N.: Symbolic-numerical analysis of equilibrium so-
lutions in a restricted four-body problem. Programming and Computer Soft-
ware 36(2), 68-74 (2010)

Birkhoff, G.D.: Dynamical Systems. GITTL, Moscow (1941) (in Russian)

. Budzko, D.A., Prokopenya, A.N., Weil, J.A.: Quadratic normalization of the Hamil-

tonian in restricted four-body problem. Vestnik BrSTU. Physics, Mathematics,
Informatics (5), 82-85 (2009) (in Russian)

Liapunov, A.M.: General Problem about the Stability of Motion. Gostekhizdat,
Moscow (1950) (in Russian)

Gadomski, L., Grebenikov, E.A., Prokopenya, A.N.: Studying the stability of equi-
librium solutions in the planar circular restricted four-body problem. Nonlinear
Oscillations 10(1), 66-82 (2007)

Computing Hopf Bifurcations in Chemical
Reaction Networks Using Reaction Coordinates

Hassan Errami', Werner M. Seiler!, Markus Eiswirth?, and Andreas Weber?

! Institut fiir Mathematik, Universitit Kassel, Kassel, Germany
errami@uni-kassel.de, seiler@mathematik.uni-kassel.de
2 Fritz-Haber Institut der Max-Planck-Gesellschaft, Berlin, Germany and Ertl Center
for Electrochemisty and Catalysis, Gwangju Institute of Science and Technology
(GIST), South Korea
eiswirth@fhi-berlin.mpg.de
3 Institut fiir Informatik IT, Universitéit Bonn, Bonn, Germany
weber@cs.uni-bonn.de

Abstract. The analysis of dynamic of chemical reaction networks by
computing Hopf bifurcation is a method to understand the qualitative
behavior of the network due to its relation to the existence of oscil-
lations. For low dimensional reaction systems without additional con-
straints Hopf bifurcation can be computed by reducing the question of
its occurrence to quantifier elimination problems on real closed fields.
However deciding its occurrence in high dimensional system has proven
to be difficult in practice. In this paper we present a fully algorithmic
technique to compute Hopf bifurcation fixed point for reaction systems
with linear conservation laws using reaction coordinates instead of con-
centration coordinates, a technique that extends the range of networks,
which can be analyzed in practice, considerably.

1 Introduction

In chemical and biochemical systems, reactions networks can be represented as
a set of reactions. If it is assumed they follow mass action kinetics then the dy-
namics of these reactions can be represented by ordinary differential equations
(ODE) for systems without additional constraints or differential algebraic equa-
tions (DAE) for systems with constraints. Particularly, in complex systems it is
sometimes difficult to estimate the values of the parameters of these equations,
hence the simulation studies involving the kinetics is a daunting task. Neverthe-
less, quite a few things about the dynamics can be concluded from the structure
of the reaction network itself. In this context there has been a surge of algebraic
methods, which are based on the structure of network and the associated stoi-
chiometry of the chemical species. These methods provide a way to understand
the qualitative behaviour (e.g. steady states, stability, bifurcations, oscillations,
etc) of the network. The analysis of chemical reaction networks by detecting of
the occurrence of Hopf bifurcation attracts especially more and more interests
in chemical and biological field due to its linkage to oscillatory behaviour.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 84-P7] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Computing Hopf Bifurcations in Chemical Reaction Networks 85

A fully algebraic method for the computation of Hopf bifurcation fixed points
for systems with polynomial vector field has already been introduced by El
Kahoui and Weber [1] using the powerful technique of quantifier elimination on
real closed fields [2]. This technique has already been applied to mass action
kinetics of small dimension [3]. Although the method is complete in theory it
fails for systems of higher dimensions in practice.

However the detection of Hopf bifurcation in high dimensional systems and
in systems with constraints as is the case in chemical and biochemical systems
has proven to be difficult. A central method to overcome this difficulty is called
stoichiometric network analysis (SNA). This method has been introduced by
Clark in 1980 [4] and based on the analysis of the system dynamic in the flux
space instead in the concentration space and expand the steady states into a
combination of subnetworks using convex geometry. For the steady state loci
new coordinates that are called reaction coordinates can be introduced. These
methods have been used in several “hand computations” in a semi-algorithmic
way for parametric systems, the most elaborate being described in [5].

Our algorithmic method presented in this paper uses and combines the ideas
of these methods and extends them to a new approach for computing Hopf
bifurcation in complex systems using reaction coordinates also allowing systems
with linear constraints.

2 Chemical Reaction Networks

A chemical reaction occurs when two or more chemical species react to become
new chemical species. This process is usually presented by an equation where
the reactants are given on the left hand side of an arrow and the products on the
right hand side, the numbers next to the species called stoichiometric coefficients
present the amount to which a chemical species participates in a reaction and
the parameter on the arrow called rate constant stands for an experimental con-
stant influencing the reaction velocity. A chemical reaction is called irreversible,
if it proceeds only in one direction, and is called reversible, if it proceeds in ei-
ther directions. An example of a chemical reaction, as it usually appears in the
literature, is the following:

A+BE3Aa+C

In this reaction, one unit of chemical species A and one of B react (at reaction
rate k) to form three units of A and one of C. The concentrations of these three
species, denoted by x,,r;, and x., will change in time as the reaction occurs.
Under the assumption of mass-action kinetics, species A and B react at a rate
proportional to the product of their concentrations, where the proportionality
constant is the rate constant k. Noting that the reaction yields a net change
of two units in the amount of A [6/7)5], we obtain the following corresponding
differential equations:

86 H. Errami et al.

T, = 2kx,1p
l;b = —k)l‘a.’L‘b

T, = kxg,xp (1)

A chemical reaction network is a finite set of chemical reactions. It can be pre-
sented as a finite directed graph whose vertices are labeled by complexes and
whose edges are labeled by parameters(reaction rate constants). Specifically, the
digraph is denoted G = (V, E), with vertex set V = {1,2,...,m} and edge set
E C{(i,j) € VXV :i# j}. A network is reversible if the graph G is undirected,
in which case each undirected edge has two labels k;; and k;; [706].

2.1 Flux Cone and Reaction Coordinates

Clarke [4] has introduced a method called stoichiometric network analysis (SNA)
to analyze the stability of chemical reaction networks. The idea of SNA is to
observe the dynamics of the system in the reaction space instead of concentration
space. This leads to expand the steady state into a combination of subnetworks
that form a convex cone in the flux-space called fluz cone [§]. In section we
discuss the computation of the flux cone in and for detailed description of the
concepts of SNA we refer to the seminal work of Clarke [4].

2.2 Constraints in Chemical Reaction Networks

The differential equations in chemical reaction networks usually are constrained
reflecting various physical conservation laws. The situation found in chemical
reaction networks can easily be generalized, and we will provide an analysis
for the situation for the case of pseudolinear ordinary differential equations in
general, which will contain all cases of constraints for chemical reaction systems
discussed in this paper, as an instance.

3 Pseudolinear Ordinary Differential Equations

The following material represents a slight generalisation of results already well-
known for systems appearing in reaction kinetics (see e.g. [22] and references
therein). The basic underlying property of the considered differential equations
is captured by the following definition.

Definition 1. We call an autonomous system of ordinary differential equations
x = ¢(x) for an unknown function x : R — R™ pseudolinear, if its right hand
side can be written in the form ¢(x) = N1p(x) with a constant matrizc N € R"*™
and some vector valued function ¥ : R™ — R™.

Obviously, any polynomially nonlinear system can be written in such a form,
if we take for ¥(x) the vector of all terms appearing on the right hand side of
the system. As one can see from the following two lemmata, the pseudolinear

Computing Hopf Bifurcations in Chemical Reaction Networks 87

structure is of interest only in the case that the matrix N does not possess full
row rank and hence the range of N is not the full space R"™. In the sequel, we
will always assume that the function 1 satisfies m > n, as this is usually the
case in applications like reaction kinetics.

Lemma 1. For a pseudolinear system x = N(x) any affine subspace of the
form Ay =y +im N C R"™ for an arbitrary constant vector y € R™ defines an
invariant manifold.

Proof. Obviously, we have %(¢) € im N for all times ¢ and TxA, = im N for all
points x € Ay by definition of an affine space. Thus, if x(0) € Ay, then the
whole trajectory will stay in A,. O

Remark 1. For the application in reaction kinetics, the following minor strength-
ening of Lemma/[Ilis of interest. Assume that the function 4 satisfies additionally
P (x) € RY, for all x € RZ, which is for example trivially the case when each
component of v is a polynomial with positive coefficients. If we solve our differ-
ential equation for non-negative initial data x(0) = xo € R%, then the solution
always stays in the convex polyhedral cone xg + {2111 A | Vi A > O}
where the vectors n; are the columns of the matrix N. Indeed, in this case the
tangent vector x(t) along the trajectory is trivially always a non-negative linear
combination of the columns of V.

Lemma 2. Let v -x = Const for some vector v.e R™ be a linear conservation
law of a pseudolinear system X = Np(x) such that im) is not contained in
a hyperplane. Then v € ker NT'. Conversely, any vector v € ker N” induces a
linear conservation law.

Proof. Let us first assume that v € ker N”. Then

d

di (VT .x) :VTNQZJ(X) _ (NTv) QZJ(X) —0.

If v .x = Const is a conservation law, then differentiation with respect to time

yields (N TV)T'tp(x) = 0. Because of our assumption on the function 1, this
implies that N7v = 0.]

By a classical result in linear algebra (the four “fundamental spaces” of a ma-
trix), we have the direct sum decomposition R™ = im N @ ker N7 which is even
an orthogonal decomposition with respect to the standard scalar product. Hence
we may consider Lemma [Ilas a corollary to Lemma] as the above described in-
variant manifolds are simply defined by all the linear conservation laws produced
by Lemma

Remark 2. Gatermann and Huber [22] speak of a conservation law only in the
case that v; > 0 for all components v; of the vector v. In mathematics, we are
not aware of such a restriction and cannot see any physical reasons to impose it.

! Note that in the special case most relevant for us, namely that each component of
1) is a different monomial, the assumption made in Lemma] is always satisfied.

88 H. Errami et al.

4 Reduction to Invariant Manifolds

If a dynamical system admits invariant manifolds, we may consider a system
of lower dimension by reducing to such a manifold. However, in general it may
not be possible to derive explicitly the reduced system. Nevertheless, for many
purposes like stability or bifurcation analysis one can easily reduce to smaller
matrices. The following result describes such a reduction process in the linear
case. It represents an elementary exercise in basic linear algebra. In order to
avoid the inversion of matrices, we consider here R" as a Euclidean space with
respect to the standard scalar product.

Lemma 3. Let A be the matriz of a linear mapping R™ — R™ for the standard
basis and U C R™ a k-dimensional A-invariant subspace. If the columns of the
matriz W € R™™* define an orthonormal basis of U, then the restriction of the
mapping to the subspace U with respect to the basis defined by W is given by the
matriz WT AW € RFXF,

Proof. Considered as a linear map R* — U C R™, the matrix W defines a
parametrisation of U with inverse W7 : ¢f — RF. Indeed, WTW = 1, since
the columns of W are orthonormal. If v € U, then v = Ww for some vector
w € R¥ and thus WTv = (WTW)w = w implying that (WWT)v = Ww = v,
i.e. the matrix WIW7T € R™ " describes idy. By standard linear algebra, the
matrix WT AW describes therefore the restriction of A to U. a

As a simple application, we note that in the case of a pseudolinear system x =
N1(x) the stability properties of an equilibrium x, of the pseudolinear system
% = N (x) are determined by the eigenstructure of the reduced Jacobian

J =WTNJac(¢(x.))W € R**F

where the columns of W form an orthonormal basis of im N. If parameters are
present, then also for a bifurcation analysis the eigenstructure of this matrix and
not of the full Jacobian (which is an n-dimensional matrix) are relevant.

5 Stability and Bifurcations for Semi-Explicit DAEs

The considerations indicated in the last section can be easily extended to more
general situations, as they appear in the theory of DAEs. For simplicity (and as
it suffices for our purposes), we assume that we are dealing with an autonomous
system in the semi-explicit form

x=f(x), 0=gx) (2)

where f : R* — R” and g : R® — R"*. Furthermore, we assume that the
above system of ordinary differential equations is involutiveE i.e. that it con-
tains already all its integrability conditions. This assumption is equivalent to the
existence of a matrix valued function M (x) such that

Jac(g(x)) - f(x) = M(x) - g(x).- 3)

2 See [23] for an introduction into the theory of involutive systems.

Computing Hopf Bifurcations in Chemical Reaction Networks 89

Thus one may say that the components of g are weak conservation laws, as their
time derivatives vanish modulo the constraint equations g(x) = 0.

Let x. be an equilibrium of (@), i.e. we have f(x.) = 0 and g(x.) = 0. We
introduce the real matrices

A= Jac(f(xe)) c IR"X”’ B = Jac(g(xe)) c R(n—k)xn)

For simplicity, we assume in the sequel that the matrix B has full rank (or,
in other words, that our algebraic constraints are independent) and thus that
ker B is a k-dimensional subspace. The proof of the next result demonstrates
clearly why the assumption that the system (2)) is involutive is important, as the
relation (@) is crucial for it.

Lemma 4. The subspace ker B is A-invariant.

Proof. Set M = M (x.). Differentiating (B) and evaluating the result at x = x.
yields the relation BA = M B. Hence, if v € ker B, then also Av € ker B since

B(Av) = M(Bv) = 0. O

Remark 3. In the case that (2) is a linear system, i.e. by assuming that x. =0
we may write f(x) = Ax and g(x) = Bx, we can easily revert the argument in
the proof of Lemma [] and thus conclude that now (@) is involutive, if and only
if ker B is A-invariant.

Proposition 1. Let the columns of the matriz W € R™** define an orthonor-
mal basis of ker B. The linear stability of the equilibrium X. is then decided by
the eigenstructure of the matrizc WT AW .

Proof. Linearisation around the equilibrium x, yields the associated variational
system z = Az, Bz = 0. We complete W to an orthogonal matrix W by adding
some further columns and perform the coordinate transformation z = Wy. This
yields the system y = WT AWy, BWy = 0. Since by construction the columns
of W span ker B, the second equation implies that only the upper k components
of y may be different of zero. Furthermore, Lemma @] implies that the matrix
WTAWYy is in block triangular form with the left upper k x k block given by
WT AW . If we denote the upper part of y by ¥, we obtain thus the equivalent
reduced system y = W7 AWy which implies our claim. O

Remark 4. Let v € RF be a (generalised) eigenvector of the reduced matrix
WTAW | i.e. we have (WTAW — A1)V = 0 for some £ > 0 and A € R. Since
WIW = 1, and WWT defines the identity map on ker B (see the proof of
Lemma []), we obtain W7 (A — A1) Wv = 0 implying that Wv € R" is a
(generalised) eigenvector of A for the same eigenvalue A, since the matrix W7
defines an injective map. Thus every eigenvalue of the reduced matrix W7 AW
is also an eigenvalue of A.

Remark 5. Tt is also not difficult to interpret the remaining (generalised) eigen-
vectors of A. By construction, they are transversal to the constraint manifold

90 H. Errami et al.

defined by g(x) = 0 and they describe whether this manifold is attractive or
repellent for the flow of the unconstrained system x = f(x). While this is for
example of considerable importance for the numerical integration of [2l), as it
describes the drift off the constraint manifold due to rounding and discretisation
errors, it has no influence on the stability of the exact flow of (2.

The irrelevance of the remaining (generalised) eigenvectors of A becomes also
apparent from the following argument. Recall that the differential part of (2))
defines what is often called an underlying differential equation for the DAE, i.e.
an unconstrained differential equation which possesses for initial data satisfying
the constraints the same solution as the DAE. Consider now the modified system
obtained by adding to the right hand side of the differential part an arbitrary
linear combination of the algebraic part. It is easy to see that the arising DAE
(which simply has a different underlying equation)

x=f(x)+L(x)gx), 0=gx),

where L(x) is a matrix valued function of appropriate dimensions, possesses
exactly the same solutions as ([@); in particular x. is still an equilibrium. If we
proceed as above with the linear stability analysis of x., the matrix B remains
unchanged, whereas A is transformed into the modified matrix A = A + LB
with I = L(x.). Obviously, ker B is also A-invariant and furthermore W7 AW =
WT AW , if the columns of W form a basis of ker B as in Proposition [Il

Thus all (generalised) eigenvectors lying in ker B are equal for A and A and
thus the stability of x. is not affected by this transformation. However, the
remaining (generalised) eigenvectors may change arbitrarily. One can for example
show that by a suitable choice of the matrix L one may always achieve that the
constraint manifold becomes attractive.

6 Algorithms for Computing Hopf Bifurcations
in Chemical Reaction Networks Using Reaction
Coordinates

In this section we present an algorithmic approach for computing the Hopf bi-
furcation in chemical systems. Our approach is mainly based on three methods
already presented in this paper: stoichiometric network analysis, method for re-
duction of manifold for systems with conservation laws, and techniques of quan-
tifier elimination on real closed field. The pseudo code given in Fig.[Iland outline
the main steps of our algorithm, which are detailed in the following subsections.

6.1 Pre-processing: Step 1

For starting the analysis of a chemical network we need two significant pieces
of information to describe all reaction laws. The first information describes the
occurrence of the species in each reaction. This can be presented by a stoichio-
metric matrix S, where the species build the rows and the reactions build the

Computing Hopf Bifurcations in Chemical Reaction Networks 91

Input: a chemical reaction network A with dim(N) = n.
Output: statement about the existence of Hopf-bifurcation.

1: Generate the stoichiometric matrix S and kinetic matrix K from the reaction net-

work.
2: Compute the minimal set £ of the vectors generating the flux cone.
3: For d =1...n: Compute all d-faces and of the flux cone (subsystems).

For each subsystem N; do

4: Compute the transformed Jacobian Jac; of A; using K, S and flux cone coor-
dinates j; s
If Jac; is singular compute the reduced manifold of Jac; calling the result also
Jac;
Compute the characteristic polynomial of Jac;
Compute the Hurwitz determinant of Jac;
Compute the Hopf-existence condition for N;
Generate the first-order existentially quantified formula F; expressing Hopf-
existence condition, the constraints on concentrations and the constraints on
the cone coordinates
10: Reduce and simplify the generated formulae

Output: The disjunction of F; yields a criterion for the existence of a Hopf bifurcation

fixed point, It can be computed lazily for increasing d and the subsystems.

ot

Fig. 1. Algorithms for Computing Hopf Bifurcations in Chemical Reaction Networks
Using Flux Coordinates

columns. Each entry of the matrix presents the difference of the number of pro-
duced and consumed molecules of the corresponding species in the corresponding
reaction. The second information describes the velocities of the reactions. This
can be presented by flux vector v(z, k) or by kinetic matrix IC. The entries of
this matrix present the information whether species is a reactant(entry = sto-
ichiometric coeflicient of species) and affects consequently the velocity of the
reaction or not (entry = 0). To enable the computational analysis of a chemical
networks the reactions should be presented in a format that enables its accurate
representation and allows the computational extraction of needed data. For our
computations we use the XML based and in biological research widely used for-
mat SBML [20]. As pre-processing step we parse the SBML file presenting the
chemical network using Java library JSBML [19] to generate the stoichiometric
matrix and kinetic matrix.

6.2 Geometrical Computations: Step 2 and 3

To analyse a chemical system one is interested in the stationary reaction behaviour,
which is observable in experiments, i.e one investigates the solution set of

Sv(z, k) = 0. (4)

92 H. Errami et al.

The set of stationary solutions is usually considered in the concentration space
R% , i.e in the variables z. Instead of the variables z € R} we will consider the
variables z representing v(x, k) which are called reaction coordinates or reaction
rate coordinates and thus we consider the set of stationary solutions in the
space of reaction rates]Rl+. A first advantage is that the Jacobian in the space
of reaction rates is of the following form, cf. [5]:

Jac(z) = Jac(z)diag(1/x1, ..., 1/&m). (5)

As long as we split each reversible reaction into two irreversible reactions (for-
ward and backward directions) the flux through this reactions must be greater
than or equal to zero, i.e

v(z, k) >0 (6)

The set of all possible stationary solutions over the network N that fulfil the
equation [@)) and the constraint (@) defines the convex polyhedral cone fluz cone
[418] and determine a minimal set of generating vectors £, which are called
extreme rays or extreme currents. Each vector z can then as linear combination
of the vector set £ with nonnegative coefficients j; s called convex parameters .

To compute the extreme currents we need to integrate algorithms that allow
to deal with polyhedral computations. In our current implementation we use
POLYMAKE in the step 2 of our algorithm to compute the extreme currents £
for a generating stoichiometric matrix S. POLYMAKE is an open source software
tool written in Perl and C++ and designed for the algorithmic treatment of
polytopes and polyhedra [9].

Computing extreme currents £ is the basis for simplifying the analysis of
chemical networks by its decomposing into minimal steady-state generating sub-
networks. The influence of a subnetwork on the full network dynamics (i.e., how
much the given subnetwork plays a part in creating a certain steady state) de-
pends on the convex parameters j; [4U21]. From a chemical perspective the Hopf
bifurcation occurrs mostly in the spaces formed by two or three adjacent extreme
currents, i.e detecting the Hopf bifurcation in subsystems can be restricted on
subsystems combined by two faces or three faces of the flux cone. As step 3
of our algorithms we compute all subsystems generated by the 2- and 3-faces
using also POLYMAKE. Our algorithm can also handle d-faces for d > 3 yielding
a complete method in theory, but the restriction to d = 2,3 will be of greatest
practical interest.

6.3 Transformation of the Jacobian: Step 4

Gatermann et al. [5] proved that the Jacobian of reaction coordinates z can be
transformed into the follwing form:

jz-l\c(z) = Sdiag(2)K" (7)

If = is a steady state we transform into convex coordinate j; with z = Zfl Ji&i

with d being the dimensionality of the face. When we replace ja\c(z) in the
equation [1 we obtain the new Jacobian Jac, in reactions space:

Computing Hopf Bifurcations in Chemical Reaction Networks 93

d
Jacy(z) = Sdiag(ZjiEi)thiag(l/xl, ey 1/) (8)

(3

6.4 Jacobian of Reduced Manifold: Step 5

Chemical reaction networks with conservation laws give rise to singularity of
the Jacobian of the entire polynomial system presenting the network and also
of some Jacobian matrices of the computed subsystems. To compute the Hopf
condition the Jacobian matrices should be transformed to nonsingular matrices.
Therefore we reduce them in step 5 of our algorithm by computing the Jacobian
Jac; of reduced manifolds using the method presented in sect. Bl

6.5 Generating and Reducing Quantified Formulae: Steps 6—-10

Our aim in the last steps is obtaining a simple formula that gives a clear state-
ment if a Hopf bifurcation occur in the system. We firstly give a semi-algebraic
description of Hopf bifurcation by use of the Hurwitz determinants, and pro-
duces a first-order formula which is transformed into a quantifier-free formula.
Using the positivity conditions on all parameters we can use positive quantifier
elimination [L0J3] implemented in REDLOG [IIII2], which had been originally
driven by the efficient implementation of quantifier elimination based on vir-
tual substitution methods [I3T4/T5]. For formula simplification and as “fallback
method” we use QEPCAD B [16].

7 Computation Examples

7.1 Examplel: Phosphofructokinase Reaction

As a first example we consider the main example used in the hand computation
in [5]—the phosphofructokinase reaction.
It yields the following system of ordinary differential equations:

: 2
1 = ko127 + kas — keat1 — kzax1 + kazxs

. 2
ZTo = —ko12772 + ks — kes22

T3 = k341 — kazws 9)
This problem has already been investigated using its formulation in reaction
coordinates in [3]. Using currently available quantifier elimination packages the
problem could not be solved in its parametric form. Only when using the existen-
tial closure on the parameters it could be shown by successful quantifier elimina-
tions performed in REDLOG that there exist positive parameters for which there
exists a Hopf bifurcations fixed point in the positive orthant. When redoing the
experiments we found that the situation described in [3] still applies.

94 H. Errami et al.

The results on the subsystems involving 2-faces and 3-faces are summarized
in Table [l A Hopf bifurcation can be found using the two-face involving two
extreme currents {E3,E4} in less than one second of computation time. The 3-
faces {E1,E3,E4} and {E2,E3,E4} extending this two-face require some seconds
of computation time to find a Hopf bifurcation fixed point. All other faces do
not contain a Hopf bifurcation fixed point.

Table 1. Computation of Hopf bifurcation in the phosphofructokinase reaction using
reaction coordinates

Subsystem Result Time (ms)

{E1} false 12
{E2} false 12
{E3} false 12
{E4} false 10
{E1,E2} false 12
{E1,E3} false 10
{E1,E4} false 14
{E2,E3} false 11
{E2,E4} false 11
{E3,E4} true 207
{E1,E2,E3} false 9
{E1,E2,E4} false 10
{E1,E3,E4} true 8146
{E2,E3,E4} true 1621

7.2 Example 2: Enzymatic Transfer of Calcium Ions

Our second example is also investigated in [5]—the enzymatic transfer of calcium
ions, Cat™, across the cellmembranes.
It yields the following system:

1 = —ki12x1 + ko1 + kazz122 + ksexs — kesz123

To = —kazx1T2 + k7624

¥3 = ksews — kesT173 + k764

Xy = —ks6Ta + kesr123 — k7674 (10)
For this system the Jacobian matrix is singular—hence in the classical sense there
are no Hopf bifurcations. But in the in reduced system we find that there are
Hopf bifurcations—and we can compute them in concentration space as well as

using reaction coordinates. The results and computation times are summarized

in Table Pl

7.3 Example 3: Model of Calcium Oscillations

The following model of calcium oscillations contains a fractional exponent e. It
is discussed in [17].

Computing Hopf Bifurcations in Chemical Reaction Networks 95

Table 2. Enzymatic transfer of calcium ions: Computation of Hopf bifurcation in
reaction space and concentration space after reduction of manifold

System result time(ms)
{E1} false 9
{E2} false 8
{E3} false 10
{E1,E2} true 111
{E1,E3} false 8
{E2,E3} false 7
{E1,E2,E3} true 13972
Polynomial system in CS true 94

T = /{21 — /{25.%‘2
Y = kox — 4k3y2 +4kyz — k6y8
5= k3y? — kyz (11)

100 0 —-10
S=(01-44 0 -1
001 -10 O

010010
K=100200¢
000110

In concentration space the solution of a quantifier elimination problem works
only for integer values of the parameter e—as it occurs in the exponent, and the
techniques of quantifier elimination over the ordered field of the reals is restricted
to polynomials (or rational functions).

However, in the formulation in reaction coordinates the parameter € occurs
as a variable with values in the real closed field used in the computations.

Hence for a given subsystem we cannot only ask the decision question whether
there exists a Hopf bifurcation fixed point, but we can ask the question with a
free parameter ¢.

The answer—a quantifier free formula involving e—gives the condition for ¢,
for which a Hopf bifurcation occurs for the subsystem. When using subsystems
resulting from 2-faces we did not find Hopf bifurcations, but for the parame-
teric question on 3-faces we obtained the following answer in less than 10sec of
computation time using the combination of REDLOG and QEPCAD B:

E+2>0AN4—-1<0

Hence for € € (—2,0.25) we have shown that Hopf bifurcation fixed points exist
(for suitable reaction constants). Using numerical simulations for this model
Reidl et al. [17] could not find Hopf bifurcations for values of the parameter ¢
bigger than about 0.05.

96

H. Errami et al.

Acknowledgement. This research was supported in part by Deutsche
Forschungsgemeinschaft within SPP 1489.

References

10.

11.

12.

13.

14.

15.

16.

17.

. El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination

in a software-component architecture. Journal of Symbolic Computation 30(2),
161-179 (2000)

Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn.
University of California Press, Berkeley (1951)

Sturm, T., Weber, A., Abdel-Rahman, E., El Kahoui, M.: Investigating algebraic
and logical algorithms to solve Hopf bifurcation problems in algebraic biology.
Mathematics in Computer Science 2(3) (2009), Special Issue on Symbolic Compu-
tation in Biology

Clarke, B.L.: Stability of Complex Reaction Networks. Advances in Chemical
Physics, vol. XLIII. Wiley Online Library (1980)

Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze
Hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6),
1361-1382 (2005)

Shiu, A.J.: Algebraic methods for biochemical reaction network theory. Phd thesis,
University of California, Berkeley (2010)

Pérez Millan, M., Dickenstein, A.; Shiu, A., Conradi, C.: Chemical reaction systems
with toric steady states. Bulletin of Mathematical Biology, 1-29 (October 2011)
Wagner, C., Urbanczik, R.: The geometry of the flux cone of a metabolic network.
Biophysical Journal 89(6), 3837-3845 (2005)

Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes.
In: Kalai, G., Ziegler, G.M. (eds.) Polytopes—Combinatorics and Computation.
Oberwolfach Seminars, vol. 29, pp. 43-73. Birkh&user, Basel (2000), 10.1007/978-
3-0348-8438-9 2

Sturm, T.F., Weber, A.: Investigating Generic Methods to Solve Hopf Bifurcation
Problems in Algebraic Biology. In: Horimoto, K., Regensburger, G., Rosenkranz,
M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 200-215. Springer, Heidelberg
(2008)

Dolzmann, A., Sturm, T.: REDLOG: Computer algebra meets computer logic.
ACM SIGSAM Bulletin 31(2), 2-9 (1997)

Sturm, T.: Redlog online resources for applied quantifier elimination. Acta
Academiae Aboensis, Ser. B 67(2), 177-191 (2007)

Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic
Computation 5(1&2), 3-27 (1988)

Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and
beyond. Applicable Algebra in Engineering Communication and Computing 8(2),
85-101 (1997)

Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered
fields. Journal of Symbolic Computation 24(2), 209-231 (1997)

Brown, C.W.: QEPCAD B: A system for computing with semi-algebraic sets via
cylindrical algebraic decomposition. ACM SIGSAM Bulletin 38(1), 23-24 (2004)
Reidl, J., Borowski, P., Sensse, A., Starke, J., Zapotocky, M., Eiswirth, M.: Model
of calcium oscillations due to negative feedback in olfactory cilia. Biophysical Jour-
nal 90(4), 1147-1155 (2006)

18.

19.

20.

21.

22.

23.

Computing Hopf Bifurcations in Chemical Reaction Networks 97

Larhlimi, A.: New Concepts and Tools in Constraint-based Analysis of Metabolic
Networks. Dissertation, University Berlin, Germany

Dréger, A., Rodriguez, N., Dumousseau, M., Dorr, A., Wrzodek, C., Keller, R.,
Frohlich, S., Novere, N.L., Zell, A., Hucka, M.: JSBML: a flexible and entirely
Java-based library for working with SBML. Bioinformatics 4 (2011)

Hucka, M., Smith, L., Wilkinson, D., Bergmann, F., Hoops, S., Keating, S., Sahle,
S., Schaff, J.: The Systems Biology Markup Language (SBML): Language Specifi-
cation for Level 3 Version 1 Core. In: Nature Precedings (October 2010)
Domijan, A., Kirkilionis, M.: Bistability and oscillations in chemical reaction net-
works. Journal of Mathematical Biology 59(4), 467-501 (2009)

Gatermann, K., Huber, B.: A family of sparse polynomial systems arising in chem-
ical reaction systems. J. Symb. Comp. 33, 275-305 (2002)

Seiler, W.: Involution — The Formal Theory of Differential Equations and its
Applications in Computer Algebra. Algorithms and Computation in Mathematics,
vol. 24. Springer, Heidelberg (2009)

Comprehensive Involutive Systems

Vladimir Gerdt! and Amir Hashemi?

! Laboratory of Information Technologies, Joint Institute for Nuclear Research
141980 Dubna, Russia
gerdt@jinr.ru
2 Department of Mathematical Sciences, Isfahan University of Technology
Isfahan, 84156-83111, Iran

Amir.Hashemi@cc.iut.ac.ir

Abstract. In this paper we consider parametric ideals and introduce a
notion of comprehensive involutive system. This notion plays the same
role in theory of involutive bases as the notion of comprehensive Grobner
system in theory of Grobner bases. Given a parametric ideal, the space
of parameters is decomposed into a finite set of cells. Each cell yields
the corresponding involutive basis of the ideal for the values of parame-
ters in that cell. Using the Gerdt—Blinkov algorithm described in [6] for
computing involutive bases and also the Montes DISPGB algorithm for
computing comprehensive Grébner systems [13], we present an algorithm
for construction of comprehensive involutive systems. The proposed al-
gorithm has been implemented in Maple, and we provide an illustrative
example showing the step-by-step construction of comprehensive involu-
tive system by our algorithm.

1 Introduction

One of the most important algorithmic objects in computational algebraic geome-
try is Grobner basis. The notion of Grébner basis was introduced and an algorithm
for its construction was designed in 1965 by Buchberger in his Ph.D. thesis [3]. Later
on, he discovered [4] two criteria for detecting some useless reductions that made
the Grobner bases method a practical tool to solve a wide class of problems in poly-
nomial ideal theory and in many other research areas of science and engineering [5].
We refer to the monograph [2] for details on the theory of Grébner bases.

The concept of comprehensive Grébner bases can be considered as an exten-
sion of these bases for polynomials over fields to polynomials with parametric
coefficients. This extension plays an important role in application to construc-
tive algebraic geometry, robotics, electrical network, automatic theorem proving
and so on (see, for example, [TIT2IT3I14]). Comprehensive Grébner bases and
equivalent to them comprehensive Grobner systems were introduced in 1992 by
Weispfenning [22]. He proved that any parametric polynomial ideal has a com-
prehensive Grobner basis and described an algorithm to compute it. In 2002,
Montes [I3] proposed a more efficient algorithm (DisSPGB) for computing com-
prehensive Grobner systems. A year later Weispfenning in [21] proved the ex-
istence of a canonical comprehensive Grébner basis. In 2003, Sato and Suzuki

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 98-[[16] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Comprehensive Involutive Systems 99

[1I7] introduced the concept of alternative comprehensive Grobner bases. Then
in 2006, Manubens and Montes in [I1] by using discriminant ideal improved
DisPGB, and in [12] they introduced an algorithm for computing minimal
canonical Grobner systems. Also in 2006, Sato and Suzuki [I8] (see also [19])
suggested an important computational improvement for comprehensive Grébner
bases by constructing the reduced Grobner bases in polynomial rings over ground
fields. In 2010, Kapur, Sun and Wang [I0], by combining Weispfenning’s algo-
rithm [22] with Suzuki and Sato’s algorithm [I8], proposed a new algorithm for
computing comprehensive Grobner systems. More recently, in 2010, Montes and
Wibmer in [I5] presented the GROBNERCOVER algorithm (its implementation in
Singular is available at http://www-ma2.upc.edu/~montes/) which computes
a finite partition of the parameter space into locally closed subsets together with
polynomial data and such that the reduced Grébner basis for given values of
parameters can immediately be determined from the partition.

Involutive bases form an important class of Grébner bases. The theory of
involutive bases goes back to the seminal works of French mathematician Janet.
In the 20s of the last century, he developed [9] a constructive approach to analysis
of certain systems of partial differential equations based on their completion
to involution (cf. [20]). Inspired by the involution methods described in the
book by Pommaret [16], Zharkov and Blinkov [23] introduced the concept of
inwvolutive polynomial bases in commutative algebra in the full analogy with the
concept of involutive systems of homogeneous linear partial differential equations
with constant coefficients and in one dependent variable. Besides, Zharkov and
Blinkov designed the first algorithm for construction of involutive polynomial
bases. The particular form of an involutive basis they used is nowadays called
Pommaret basis [20].

Gerdt and Blinkov [7] proposed a more general concept of involutive bases for
polynomial ideals and designed efficient algorithmic methods to construct such
bases. The underlying idea of the involutive approach is to translate the methods
originating from Janet’s approach into the polynomial ideals theory in order to
provide a method for construction of involutive bases by combining algorithmic
ideas in the theory of Grébner bases with constructive ideas in the theory of
involutive differential systems. In doing so, Gerdt and Blinkov [7] introduced
the concept of involutive division. Moreover, they derived the involutive form of
Buchberger’s criteria. This led to a strong computational tool which is a serious
alternative to the conventional Buchberger algorithm. We refer to Seiler’s book
[20] for a comprehensive study and application of involution to commutative
algebra and geometric theory of partial differential equations.

In this paper, we introduce a notion of comprehensive involutive systems. For
a parametric ideal, we decompose the space of parameters into a finite set of
cells, and for each cell we yield the corresponding involutive basis of the ideal.
Thereby, for each values of parameters, we find first a cell containing these
values. Then, by substituting these values into the corresponding basis, we get
the involutive basis of the given ideal. Based on the Gerdt—Blinkov involutive
(abbreviated below by GBI) algorithm as described in [6] and also the Montes

100 V. Gerdt and A. Hashemi

D1sPGB algorithm [I3], we present an algorithm for constructing comprehensive
involutive systems. The proposed algorithm has been implemented in Maple,
and we provide an illustrative example showing the step-by-step results of the
algorithm.

The paper is structured as follows. Section 2] contains the basic definitions and
notations related to comprehensive Grobner systems, and a short description of
the DISPGB algorithm. The basic definitions and notations from the theory of
involutive bases are given in Section [Bl In Section Ml the notion of comprehen-
sive involutive system is introduced, and an algorithm for construction of such
systems is described. In Section Bl we give an example illustrating in detail the
performance of the algorithm of Section [

2 Comprehensive Grobner Systems

In this section, we recall the basic definitions and notations in theory of com-
prehensive Grobner systems and briefly describe the DiISPGB algorithm.

Let R = K|[x] be a polynomial ring, where x = x1,...,2, is a sequence of
variables and K is an arbitrary field. Below, we denote a monomial 2{* - - - 2% €
R by x* where a = (aq,...,a,) € N is a sequence of non-negative integers.
We shall use the notations deg;(x*) := a;, deg(x®) := > 1 | a;. An admissible
monomial ordering on R is a total order < on the set of all monomials such that
for any «, 8,7 € N™ the following holds:

X = xP = x7 - xPHY, x*#1=x%>1.

A typical example of admissible monomial ordering is the lexicographical or-
dering, denoted by <jex. If x“,xﬁ € R are two monomials, then X% <ex xP
if the leftmost nonzero entry of 8 — « is positive. Another typical example is
the degree-reverse-lexicographical ordering denoted by <gegreviex and defined as
X <degreviex X” if deg(x®) > deg(x”) or deg(x®) = deg(x”) and the rightmost
nonzero entry of 5 — a is negative.

We shall write I = (fi,..., fi) for the ideal I in R generated by the poly-
nomials f1,..., fr € R. Let f € R and < be a monomial ordering on R. The
leading monomial of f is the largest monomial (with respect to <) occurring
in f, and we denote it by LM(f). If F' C R is a set of polynomials, then we
denote by LM(F) the set {LM(f) | f € F} of its leading monomials. The lead-
ing coefficient of f, denoted by LC(f), is the coefficient of LM(f). The leading
term of f is LT(f) = LC(f)LM(f). The leading term ideal of I is defined as
LT(1) = (LT(f) | f€I).

A finite set G = {g1,...,9x} C I is called a Grébner basis of I it LT(I) =
(LT(g1),--.,LT(gr)). For more details and definitions related to Grébner bases
we refer to [2].

Now consider F' = {f1,...,fx} € S := Kla,x| where a = ay,...,ay, i8
a sequence of parameters. Let <x (resp. <a) be a monomial ordering for the
power products of z;’s (resp. a;’s). We also need a compatible elimination product

m

ordering <x,a. It is defined as follows: For all o,y € Z%, and 8,6 € ZZ,

Comprehensive Involutive Systems 101

x7a’ ~x,a x%a? = x7 <, x* or x” = x® and a° <, a”.

Now, we recall the definition of a comprehensive Grobner system for a parametric
ideal.

Definition 1. ([22]) A triple set {(G;, N;,W;)}_, is called a comprehensive
Grobner system for (F) w.r.t <xa if for any i and any homomorphism o :
Kla] — K' (where K' is a field extension of K) satisfying

(i) (Vp € Ni C K[a]) [o(p) =0], (i) (Vg € Wi C KTa]) [0(q) # 0]
we have o(G;) is a Grébner basis for o((F)) C K'[x] w.r.t. <x.

For simplification, we shall use the abbreviation CGS to refer to a comprehensive
Grobner system, and CGSs in the plural case. For each 4, the set N; (resp. W;) is
called a (resp. non-) null conditions set. The pair (IV;, W;) is called a specification
of the homomorphism ¢ if both conditions in the above definition are satisfied.

Example 1. Let F = {ax®y — 3?,bx + y?} C Kla,b,7,y] where a = a,b and
x = x,y. Let us consider the lexicographical monomial ordering b <jex @ on the
parameters and on the variables y <)ox « as well. Using the DISPGB algorithm
we can compute a CGS for (F) which is equal to

{=0*® +ay’ bz +y*} {} {a}

{22y, v})y {a}

{v°, bx +y*} {a} {0}

{v*} {a,0} {}.
For instance, if a = 0,b = 2, then the third element of this system corresponds
to this specialization. Therefore, {y3,2x + y?} is a Grébner basis for the ideal
(F)la=0p=2 = (=9%, 22 + y?).

Remark that, by the above definition, a CGS is not unique for a given para-
metric ideal, and one can find other partitions for the space of parameters, and,
therefore, other CGSs for the parametric ideal.

Now, we briefly describe the Montes DISPGB algorithm to compute CGSs
for parametric ideals (see [13/11]). The main idea of DISPGB is based on dis-
cussing the nullity or not w.r.t. a given specification (N, W) for the leading
coefficients of the polynomials appearing at each step (this process is performed
by the NEWCOND subalgorithm). Let us consider a set F' C S of parametric
polynomials. Given a polynomial f € F and a specification (N, W), NEWCOND
is called. Three cases are possible: If LC(f) specializes to zero w.r.t. (N, W), we
replace f by f — LT(f), and then start again. If LC(f) specializes to a nonzero
element we continue with the next polynomial in F. Otherwise (if LC(f) is not
decidable, i.e. we can’t decide whether or not it is null w.r.t. (N, W)), the sub-
algorithm BRANCH is called to create two complementary cases by assuming
LC(f) =0 and LC(f) # 0. Therefore, two new disjoint branches with the spec-
ifications (N U {LC(f)}, W) and (N, W U{LC(f)}) are made. This procedure
is continued until every polynomial in F' has a nonnull leading coefficient w.r.t.

102 V. Gerdt and A. Hashemi

the current specification. Then, we proceed with CONDPGB: This algorithm
receives, as an input, a set of parametric polynomials and a specification (N, W)
and, by applying Buchberger’s algorithm, creates new polynomials. When a new
polynomial is generated, NEWCOND verifies whether its leading coefficient leads
to a new condition or not. If a new condition is found, then the subalgorithm
stops, and BRANCH is called to make two new disjoint branches. Otherwise, the
process is continued and computes a Grébner basis for (F'), according to the cur-
rent specification. The collection of these bases, together with the corresponding
specifications yields a CGS for (F').

3 Involutive Bases

Now we recall the basic definitions and notations concerning involutive bases
and present below the general definition of involutive bases. First of all, we
describe the cornerstone notion of involutive division [7] as a restricted monomial
division [6] which, together with a monomial ordering, determines properties of
an involutive basis. This makes the main difference between involutive bases and
Grobner bases. The idea behind involutive division is to partition the variables
into two subsets of multiplicative and nonmultiplicative variables, and only the
multiplicative variables can be used in the divisibility relation.

Definition 2. [7l6] An involutive division £ on the set of monomials of R is
gwen, if for any finite set U of monomials and any w € U, the set of vari-
ables is partitioned into subsets M (u,U) of multiplicative and NMg(u,U) of
nonmultiplicative variables such that

1. v €U, ul(u,U)NvL(v,U) # 0 = u € vL(v,U) orv € ul(u,U),
2.velU, veul(uU)= L(v,U) C L(u,U),
3 ueVandV cU = L(u,U) C L(u,V),

where L(u,U) denotes the set of all monomials in the variables in Mg (u,U). If
v € ul(u,U), then we call uw an L—(involutive) divisor of v, and we write u|,v.
If v has no involutive divisor in a set U, then it is L—irreducible modulo U .

In this paper, we are concerned with the wide class [§] of involutive divisions de-
termined by a permutation p on the indices of variables and by a total monomial
ordering JJ which is either admissible or the inverse of an admissible ordering.
This class is defined by

(VueU) [NMsw,U)=) NMs(u,{u,v})] (1)
veU\{u}

where

ifuJvor (uZvAwv|u) then 0

. . 2
else {z,(;)}, @ = min{j | deg ;) (u) < deg ;) (v)}. 2)

NM+(u, {u,v}) := {

Comprehensive Involutive Systems 103

Remark 1. The involutive Janet division introduced and studied in [7] is gener-
ated by formulae ([Il)-(2)) if 3 is the lexicographic monomial ordering >jex and p
is the identical permutation. The partition of variables used by Janet himself [9]
(see also [20]) is generated by >iex as well with the permutation which is inverse

to the identical one:
(1 2 ...n
P=\nn-1...1)"

Throughout this paper L is assumed to be a division of the class ({dl)-(3). Now,
we define an involutive basis.

Definition 3. Let I C R be an ideal, < be a monomial ordering on R and L
be an involutive division. A finite set G C I is an involutive basis of I if for
all f € I there exists g € G such that LM(g)|cLM(f). An involutive basis G

is minimal if for any other involutive basis G the inclusion LM(G) C LM(G)
holds.

From this definition and from that for Grébner basis [3I2] it follows that an
involutive basis of an ideal is its Grobner basis, but the converse is not always
true.

Remark 2. By using an involutive division in the division algorithm for polyno-
mial rings, we obtain an involutive division algorithm. If G is an involutive basis
for an involutive division £, we use NF.(f,G) to denote L—normal form of f
modulo G, i.e. the remainder of f on the involutive division by G. A polynomial
set F'is L—autoreduced if f = NF,(f, F\ {f}) for every f € F.

The following theorem provides an algorithmic characterization of involutive
bases which is an involutive analogue of the Buchberger characterization of
Grébner bases.

Theorem 1. ([7I8]) Given an ideal I C R, an admissible monomial ordering
< on R and an involutive division L, a finite subset G C I is an involutive
basis of I if for each f € G and each x € NM/(LM(f),LM(G)) the equality
NF.(xzf,G) = 0 holds. An involutive basis exists for any I, L and <. A monic
and L-autoreduced involutive basis is uniquely defined by I and <.

4 Comprehensive Involutive Systems

In this section, like the concept of comprehensive Grobner systems, we define
the new notion of comprehensive involutive system for a parametric ideal. Then,
based on the GBI algorithm [6] and the Montes DISPGB algorithm [13], we
propose an algorithm for computing comprehensive involutive systems.

Definition 4. Consider a finite set of parametric polynomials F C S = K|[a, x]
where K is a field, x = x1,...,2y, is a sequence of variables and a = ay,...,anm
is a sequence of parameters, <x (resp. <a) is a monomial ordering involv-
ing the x;’s (resp. a;’s), and L is an involutive division on K[x|. Let M =

104 V. Gerdt and A. Hashemi

{(Gi, Ny Wi)Ye_, be a finite triple set where sets N;,W; C K[a] and G; C S
are finite. The set M is called an (L—)comprehensive involutive system for (F)
w.r.t <x.a if for each i and for each homomorphism o : Kla] - K’ (where K’
is a field extension of K) salisfying

(1) (Vpe Ni) [o(p) = 0], (it) (Vg€ Wi) [o(g) # 0]

o(G;) is an (L—)involutive basis for o((F)) C K'[x]. We use the abbreviation
CIS (resp. CISs) to stand for comprehensive involutive system (resp. systems).
M is called minimal, if for each i, the set o(G;) is a minimal involutive basis.

Given a CGS, one can straightforwardly compute a CIS by using the following
proposition.

Proposition 1. Let G = {g1,...,9k} be a minimal Grébner basis of an ideal
I C K[z1,...,zs] for a monomial ordering <. Let h; = maxgzec{deg;(LM(g))}.
Then the set of products

{mg| g€ G, mis amonomial s.t. (Vi) [deg;(m) < h; —deg;(LM(g))]} (3)
is an L-involutive basis of I.
Proof. Denote LM(G) by U. From ([I)—() it follows
(VueU) (Va; € NMp(u,U))) [deg;(u) < h;]. (4)

It is also clear that if we enlarge G with a (not necessarily nonmultiplicative)
prolongation gz; of its element g € G such that deg;(LM(g)) < h;, then (@) holds
for the enlarged leading monomial set U := U U {LM(g)z;} as well. Consider
completion G of the polynomial set G' with all possible prolongations of its
elements satisfying (3] and denote the monomial set LM(G) by U. Then

(YVueU) (Vo € NMz(u,U)) (v eU) [v]| uz].

This means, by Theorem [T that the monomial set U is an involutive basis of
(LM(G)). Now, since G is a Grobner basis of I we have LT(I) = (LM(G)), and

hence LT(I) = (LM(G)). Therefore, G is an involutive basis of I by
Definition Bl O

Example 2. Let F = {az? by?} C K[a,x] where a = a,b and x = x,y. Let
also b <jer a and y <jex . Then, F' is a CGS for any sets of null and nonnull
conditions. Using Proposition [[I we can construct the following Janet basis of
(F) which is a GIS for any sets of null and nonnull conditions:

{az? by?, aya?®, ay’a®, bay®, ba’y°} .

On the other hand, the algorithm that we present below computes the following
minimal Janet CIS for (F):

{a2® by bay?} {} {a,b}

{az} {0} {a}

{by*} {a} {0}

{0} {a,0} {}.

Comprehensive Involutive Systems 105

Remark 3. Using Proposition[I] we cannot directly compute a minimal CIS from
a given CGS. Indeed, to do this, we must examine the leading coefficients of each
Grobner basis in the CGS, and this may lead to further partitions of the space
of parameters. Moreover, the CIS computed by this way may be too large, since
many prolongations constructed by means of ([B) may be useless. That is why,
based on the GBI algorithm [6] and on the Montes DISPGB algorithm [13], we
propose a more efficient algorithm for computing minimal CISs.

Now we describe the structure of polynomials that is used in our new algo-
rithm. To avoid unnecessary reductions (during the computation of involutive
bases) by applying the involutive form of Buchberger’s criteria (see [6]), we need
to supply polynomials with additional structural information.

Definition 5. [6] An ancestor of a polynomial f € F C R\ {0}, denoted by
anc(f), is a polynomial g € F of the smallest deg(LM(g)) among those satisfying
LM(f) = uLM(g) where u is either the unit monomial or a power product of
nonmultiplicative variables for LM(g) and such that NF.(f —ug, F\ {f}) =0

if [# ug.
Algorithm ComINVSYS

Input: F, a set of polynomials; £, an involutive division; <x, a monomial
ordering on the variables; <,, a monomial ordering on the parameters
Output: a minimal CIS for ()
: global: List, ind;
List:=Null;
ind:=1;
B ={[Fi], F[i]),0] | i=1,...,|F|}
G = {Brancr([F[1, FI1,01, B,{ },{ }.{ D}
for i from 2 to |F| do
ind:=ind+1;
G := {BRrRANCH([F[z], F'[:], 0], A[2], A[3], A[4], A[5]) | A € G};
od
Return (List)

._.
e

Below we show how to use the concept in Definition [l to apply the involutive
form of Buchberger’s criteria. In what follows, we store each polynomial f as
the p = [f,g,V] where f = poly(p) is the polynomial part of p, ¢ = anc(p) is
the ancestor of f and V = NM (p) is the list of nonmultiplicative variables of f
have been already used to construct prolongations of f (see the for-loop 20-23
in the subalgorithm GBI). If P is a set of triples, we denote by poly(P) the set
{poly(p) | p € P}. If no confusion arises, we may refer to a triple p instead of
poly(p), and vice versa.

We consider now the main algorithm CoMINVSYS which computes a minimal
CIS for a given ideal. It should be noted that we use the subalgorithms NEw-
CoND and CANSPEC (resp. TAILNORMALFORM) as they have (resp. it has) been

106 V. Gerdt and A. Hashemi

presented in [13] (resp. [0]), and recall them for the sake of completeness. Also,
we use the subalgorithm BRANCH (resp. GBI , HEADREDUCE and HEADNOR-
MALFORM) from [13] (resp. [6]) with some appropriate modifications.

Subalgorithm BrRANCH

Input: p, a triple; B, a specializing basis; N, a set of null conditions; W, a set
of nonnull conditions; P, a set of non-examined triples
Output: It stores the refined (B', N, W’ P’), and creates two new vertices
when necessary or marks the vertex as terminal
p=1f,9,V}]
(test, N,W):=CANSPEC(N, W);
if test=false then
Return STOP (incompatible specification has been detected)
fi
(cd, f', N',W') :=NEWCOND(f, N, W);
p= [f’,gN/, V] (gN/ denotes the remainder of the division of g by N');
if ind < |F| and cd # { } then
BRANCH(p, B, N', W’ Ucd, P); BRANCH(p, B, N’ Ucd, W', P);
fi
: if ind < |F| and ¢d = { } then

Return (p, BY , N, W' P)

— =
= O

._.
N

- fi
if cd = { } then
(test,p’, B', N', W' P") :=GBI (B, N', W', P);
if test then
List:=List,(B’,N',W');
else
BraNcH(p', B/, N', W' P');
fi
: else
BRANCH(p, B, N',W' U cd, P); BRANCH(p, B, N'Ucd, W', P);

NN DN D o~ = =
B S I B A A e

: fi

In the main algorithm, List is a global variable to which we add any com-
puted involutive basis together with its corresponding specification to form the
final CIS. That is why, at the beginning of computation we must set it to the
empty list (see BRANCH). Note that here and in BRANCH, we use |F| to denote
the number of polynomials in the input set F'. The variable ind is also a global
variable, and we use it to examine all the leading coefficients of the elements
in F (see BRANCH). Once we are sure about the non-nullity of these coeffi-
cients, then we start the involutive basis computation. Indeed, BRANCH inputs
a triple p = [f, g, V], a set B of examined and processed polynomials, a set N
of null conditions, a set W of nonnull conditions and a set P of non-processed

Comprehensive Involutive Systems 107

polynomials. Then, it analyses the leading coefficient of f w.r.t. N and W. Now,
two cases are possible:

— ind< |F|: If LC(f) is not decidable by N and W then we create two com-
plementary cases by assuming LC(f) = 0 and LC(f) # 0. Then we pass to
the next polynomial in F'.

— ind= |F|: We are now sure that we have examined all the leading coefficients
of the elements in F' (except possibly the very last one which is to be f). If
LC(f) is not decidable by N and W then we again create two complementary
cases with LC(f) = 0 and LC(f) # 0. Otherwise, we continue to process the
polynomials in P by using the GBI algorithm. If P = () this means that B is
an involutive basis consistent with the conditions in N and W, and we add
(B,N,W) to List.

Subalgorithm CANSPEC

Input: N, a set of null conditions; W, a set of nonnull conditions
Output: true if N and W are compatible and false otherwise; (N',W'), a
quasi-canonical representation of (N, W)
: W :=FacVAR({q¢" : ¢ € W}); test:=true; N’:=N; h:= [yew @
if h € \/(N') then
test:=false; N’ :={1};
Return (test, N', W');
fi
flag:=true;
while flag do
flag:=false;
N":= Remove any factor of a polynomial in N’ that belongs to W’;
if N” #£ N’ then
flag:=true;
N'’:= a Grobner basis of (N} w.r.t. <a;
W' :=FacVArR({¢" :q € W'});
fi
: od
: Return (test, N',W')

e e e el e
S A Syl =

It is worth noting that if the input specification of BRANCH is incompatible,
then it stops the process only for the corresponding branch, and continues the
construction of other branches. Moreover, using the above notations, if ind< |F|
and no new condition is detected, then BRANCH returns an element of the folrm
(p, BY , N, W' P) where p is a triple, N', W' are two sets of conditions, BY is
the normal form of a specializing basis B and P is a set of non-examined triples.
Otherwise, it calls itself to create the new branches. Finally, if ind= |F|, then
the algorithm does not return anything and completes the global variable List.

108 V. Gerdt and A. Hashemi

The subalgorithm CANSPEC produces a quasi-canonical representation for a
given specification. Its subalgorithm FACVAR invoked in lines 1 and 13 returns
the set of factors of its input polynomial.

Definition 6. ([13]) A specification (N, W) is called quasi-canonical if

— N s the reduced Grébner basis w.r.t. <5 of the ideal containing all polyno-
mials that specialize to zero in K|[a].

— The polynomials in W specializing to non-zero are reduced modulo N and
irreducible over K|a]

- quwq ¢ \/<N>

— The polynomials in N are square-free over K|a].

— If some p € N is factorized, then no factor of p belongs to W.

Subalgorithm NEwCOND

Input: f, a parametric polynomial; N, a set of null conditions; W, a set of
nonnull conditions
Output: cd, a new condition; f/, a parametric polynomial; N, a set of null
conditions; W', a set of nonnull conditions
fli=1f; test:=true; N':=N; cd:={};
while test do
if LC(f") € /(') then
N’ := a Grobner basis for (N',LC(f’)) w.r.t. <a;
= = LT();
else
test:=false;
fi
od ,
=
W= {wN/ | we W}
i cd = cd UFACVAR(LC(f")) \ W';
: Return(cd, f/, N', W)

[o S =
W RO

We describe now the NEWCOND subalgorithm. When it is invoked in line 6
of BRANCH with the input data (f, N, W), one of the two following cases may
oceur:

1. If LC(f) is decidable w.r.t. the specification (N, W), then the subalgorithm

returns:

(i) NEwWCoOND(f —LT(f), N, W) in the case when LC(f) specializes to zero
w.r.t. (N, W).

(ii) (@, f, N,W) in the case when LC(f) does not specialize to zero w.r.t.
(N, W).

2. IfLC(f) is not decidable w.r.t (N, W), then NEWCOND returns (cd, f, N, W)
where set cd contains one of the non-decidable factors (w.r.t (N,W)) of

LC(/).

Comprehensive Involutive Systems 109

It should be emphasized that FACVAR(LC(f’)) \ W’ in line 12 returns only one
factor of LC(f").

Subalgorithm GBI

Input: B, a specializing basis; IV, a set of null conditions; W, set of nonnull

conditions; P, set of non-examined triples

Output: If test=true, a minimal involutive basis for (B) w.r.t. £ and <x a;

otherwise, it returns a triple so that we must discuss the leading coefficient
of its polynomial part

1: if P =() then
2: Select p € B with no proper divisor of LM(poly(p)) in LM(poly(B))
3 T:={p}; Q:=DB\{p}h
4: else
5. T:=B; Q:=P;
6:
7: while Q # 0 do
8 (test,p, T,N,W,Q") :=HEADREDUCE(T, N, W, Q);
9: if test =false then
10: Return (false,p, T, N, W, Q")
11: fi
12: Q:=Q;
13: Select and remove p € @ with no proper divisor of LM(poly(p)) in
LM(poly(Q));
14: if poly(p) = anc(p) then
15: for ¢ € T whose LM(poly(q)) is a proper multiple of LM(poly(p)) do
16: Q:=QU{gh T:=T\{gk
17: od
18: fi
19: h :=TAILNORMALFORM(p,T); T :=T U {{h,anc(p), NM(p)}};
20: for g € T and z € NM(LM(poly(q)), LM(poly(T"))) \ NM(q) do
21: Q:= QU {{z poly(q),anc(q),0}};
22: NM(q) := NM(q) N NM(LM(poly(q)), LM(poly(T))) U {z};
23: od
24: od

25: Return (true,0,7, N,W,{ })

The subalgorithm GBI, is an extension of the algorithm INVOLUTIVEBASIS 11
described in [6]. The latter algorithm computes involutive bases and applies the
involutive form of Buchberger’s criteria to avoid some unnecessary reductions [7]
(see also [16]). The criteria are applied in the subalgorithm HEADNORMALFORM
(see line 7) that is invoked in line 5 of GBI.

Proposition 2. ([7l6]) Let I C R be an ideal and G C I be a finite set. Let also
< be a monomial ordering on R and L be an involutive division. Then G is an
L—involutive basis of I if for all f € G and for all x € NMs(LM(f),LM(Q))
one of the two conditions holds:

110 V. Gerdt and A. Hashemi

1. NF.(zf,G) =0.

2. There exists g € G with LM(g)|cLM(zf) satisfying one of the following
conditions:
(C1) LM(anc(f))LM(anc(g)) = LM(zf),
(C3) lem(LM(anc(f)),LM(anc(g))) is a proper divisor of LM(zf) .

The subalgorithm GBI invokes three its own subalgorithms HEADREDUCE,
TAILNORMALFORM and HEADNORMALFORM. The subalgorithm HEADREDUCE
performs the involutive head reduction of polynomials in the input set of triples
modulo the input specializing basis. The subalgorithm TAILNORMALFORM (resp.
HEADNORMALFORM) invoked in line 19 of GBI (resp. in line 4 of HEADREDUCE)
computes the involutive tail normal form (resp. the involutive head normal form)
of the polynomial in the input triple modulo the input specializing basis.

Subalgorithm HEADREDUCE

Input: B, a specializing basis; N, a set of null conditions; W, a set of nonnull
conditions; P a set of non-examined triples
Output: If test=true, the L-head reduced form of P modulo B; otherwise,
it returns a triple such that we must examine the leading coefficient of its
polynomial part
1: S:=P; Q:=0;
2: while S # 0 do

3: Select and remove p € S,

4: (test,h, B, N,W):=HEADNORMALFORM(p, B, N, W);
5. if test=false then

6: Return (false,p, B, N,W,SUQ)

7 fi

8: if h # 0 then

9: if LM(poly(p)) # LM(h) then
10: Q:=QU{{h,h,0}};
11: else
12: Q:=QU{p}
13: fi
14: else
15: if LM(poly(p)) = LM(anc(p)) then
16: S:=85\{q € S|anc(q) = poly(p)};
17: fi

18: fi

19: od

20: Return (true,0, B, N, W, Q)

In HEADNORMALFORM, the Boolean expression Criteria(p, g) is true if at leat
one of the conditions (C1) or (C2) in Proposition 2] are satisfied for p and g, false
otherwise. We refer to [6] for more details on GBI and on its subalgorithms.

Comprehensive Involutive Systems 111

Subalgorithm TAILNORMALFORM

Input: p, a triple; B, a set of triples

Output: L-normal form of poly(p) modulo poly(B)

: h = poly(p);

: G := poly(B);

while A has a term ¢ which is £L—reducible modulo G do
Select g € G with LM(g)|t;
h:=h-— gLTt(

od

: Return (h)

9)’

RN S

Subalgorithm HEADNORMALFORM

Input: p, a triple; B, a specializing basis; N, a set of null conditions; W, set
of nonnull conditions
Output: If test=true, the £-head normal form of poly(p) modulo B; other-
wise, a polynomial whose leading coefficient must be examined
1: h:=poly(p); G :=poly(B);
2: if LM(h) is L-irreducible modulo G then
3: Return (true, h, B, N, W)
4: else
5: Select g € G with LM(poly(g))|zLM(h);
6: if LM(h) # LM(anc(p)) then
T if Criteria(p, g) then
8: Return (true, 0, B, N,W)
9

: fi
10: else
11: while 2 # 0 and LM(h) is £-reducible modulo G do
12: Select g € G with LM(g)|LM(h);
13: h:=h-— gﬂﬂgzg;
14: (cd, ', N',W") :=NEWCOND(h, N, W);
15: if cd # () then
16: Return (false, ', B, N', W)
17: fi
18: od
19: fi
20: fi

21: Return (true, h, B, N,W)

Theorem 2. Algorithm COMINVSYS terminates in finitely many steps, and
computes a minimal CIS for its input ideal.

Proof. Let I = (F) where F = {f1,..., fr} C K[a,x] is a parametric set, x =
Z1,...,Zy (r€Sp. & = ay,..., ;) is a sequence of variables (resp. parameters).

112 V. Gerdt and A. Hashemi

Let <x (resp. <a) be a monomial ordering involving the z;’s (resp. a;’s), and L
be an involutive division on K[x].

Suppose that COMINVSYS receives F' as an input. To prove the termination,
we use the fact that KJa] is a Noetherian ring. When BRANCH is called, the
leading coefficient of some polynomial f € I is analyzed. For this purpose, the
subalgorithm NEWCOND determines whether LC(f) is decidable or not w.r.t.
the given specification (N, W). Two alternative cases can take place:

— LC(f) is decidable and we check the global variable ind. Now if ind< k,
then we study the next polynomial in F'. Otherwise, GBI is called. If all the
leading coefficients of the examined polynomials (to compute a minimal in-
volutive basis) are decidable, then the output, say G, is a minimal involutive
basis of I w.r.t. (N, W), and we add (G, N, W) to List. Otherwise, two new
branches are created by calling BRANCH (cf. the second case given below).
In doing so, the minimality of G and the termination of its computation is
provided by the structure of GBI algorithm (see [6]).

— LC(f) is not decidable and we create two branches with (N, W U cd) and
(N Uecd, W), where cd is the one-element set containing the new condition
derived from LC(f).

Thus, in the second case, the branch for which N (resp. W) is assumed, increases
the ideal (N) C KJa] (resp. (W) C K]a]). Note that we replace N by a Grébner
basis of its ideal (see line 4 in NEWCOND). Since the ascending chains of ideals
stabilize, the algorithm terminates. This argument was inspired by the proof in
[13], Theorem 16.

To prove the correctness, assume that M = {(G;, N;, W;)}¢_, is the output of
CoMINVSYs for the input is F' (note that we have used the fact the this algorithm
terminates in finitely many steps). Consider integer 1 < ¢ < ¢ homomorphism
o : K[a] —» K’ where (N;,W;) is a specification of o and K’ is a field extension
of K.

We have to show that for each f € G; and x € NM(LM(o(f)),LM(0(G;))),
in accordance with Theorem [I] the equality NF.(o(zf),o(G;)) = 0 holds. By
using ‘reductio ad absurdum’, suppose g = NFz(o(zf),0(G;)) and g # 0. Since
(G, N;, W;) has been added to List in BRANCH, the leading coefficients of the
polynomials in the subalgorithm GBI, examined at computation of a minimal
involutive basis for F', are decidable w.r.t. (IV;, W;). Furthermore, f € G; implies
that in the course of GBI zf is added to @, the set of all nonmultiplicative
prolongations that must be examined (see the notations used in GBI). Then,
HEADREDUCE is called to perform the £-head reduction of the elements of Q
modulo the last computed basis T C G;. The computed £-head normal form of
x f is further reduced by invoking TAILNORMALFORM which performs the £-tail
reduction. By the above notations, g is the result of this step. Thus, ¢g should be
added to T' C G;. It follows that NF.(o(xf),0(G;)) = 0, a contradiction, and
this completes the proof. O

Comprehensive Involutive Systems 113
5 Example

Now we give an example to illustrate the step by step construction of a mini-
mal CIS by the algorithm COMINVSYS proposed and described in the previous
section].

For the input F = {ax?,by?} C K[a,b,z,y] from Example 2 Janet division
and the lexicographic monomial ordering with b <jox a and y <jex « the algo-
rithm performs as follows:

—COMINVSYS(F, £, <iex, <iex)
List := Null; ind :=1; k :=2;
B := {[az?, az?, 0], [by?, by?, 0]}
—>BRANCH([aac2, ax?, 0,B,{H{H{}D

—NewConp(az?, { },{}) = ({a}, { },{})
—BraNcH([az?, az?, 0], B, {}, {a},{})

—NEwConD(az?, {},{a}) = ({},{}. {a})
G :={(laz? az®,0], B,{ },{a},{ 1)}

—BrancH([az?, az?, 0], B, {a},{},{})
—NewConb(az?, {a},{}) = ({ },{a},{})
G i= { (las® az® 0], B, { }, {a}, { }), ([aa® aw? 0], {[0, 0,0], [by? by 0]}, {a}, { }, {})}
ind := 2;
A= ([a‘xzv ax2,(/]], B? { }v {a}v { })
—BraNcH([by?, by?, 0], B, { },{a},{})
—NewConp(by?, { }, {a}) = ({o}, { },{})
—BrancH([by?, by*, 0], B,{ }, {a, b}, {})
(* further BrancH([by?, by?, 0], B, {b}, {a}, {}) is executed*)
—>NEWCOND(by2, {}Aa0h) =({}{} {a,0})
ind > k=2
cd={}
—GBI (B, {},{a,0},{})
T = {[by* by*, 0]}
Q = {[ax?, az?, 0]}
—HEADREDUCE(T, { }, {a, b}, Q)
—HeADNORMALFORM([az? ax? (], T, {}, {a,b}) = (true,ax? T, {},{a,b})
HEADREDUCE returns (true, 0,7, { },{a, b}, Q)
p = [az?, az?, 0]
Q=A}
—TAILNORMALFORM(p, T') = ax
T = {[by?, by?, 0], [ax?, ax?, 0]}
Q = {[bwy?®, by*, 0]}
! The Maple code of our implementation of the algorithm ComINVSYS for

the Janet division is available at the Web pages http://invo.jinr.ru and
http://amirhashemi.iut.ac.ir/software.html

2

114 V. Gerdt and A. Hashemi

—HEADREDUCE(T,{ }, {a, b}, Q) = (true,0,T,{},{a,b},Q)
p = [by®, by?, 0]
Q={}
—TAILNORMALFORM(p, T') = bxy?
T = {[by?, by>, 0], [ax?, ax?, 0], [bzy?, by?, 0]}
Q = {[b="y*, by*, 0]}
—HEADREDUCE(T,{ },{a, b}, Q) = (true,0,T,{},{a,b},{})
Q:=1{}
—GBI returns (true, 0, {by?, az?, bxy?}, { }, {a, b})
List := ({by?, ax? bay?}, {}, {a,b})
B = {[az?, ax?,0],[0,0,0]}
—BrancH([by?, by?, 0], B, {b}, {a},{})
—NEWCoND(by?, {b}, {a}) = ({}, {0}, {a})
ind > k=2
cd={}
—GBI (B, {b},{a},{}) = (true,0, {az?}, {b}, {a})
List := ({by®, az®, by®}, { }, {a, b}), ({az?}, {b}, {a})
(* Return back to COMINVSYS *)
A= ([amQ, ax27@]7 {[07 0, @]7 [by276y27@1}7 {a}7 { }7 { })
B = {[0,0,0], [by27692»@]}
—BrancH([by?, by?, 0], B, { },{a},{})
—NeEwConD(by?, {a}, {}) = ({0}, {}.{})
—Brancu([by?, by?, 0], B, {a}, {b},{})
(* further BrancH([by?, by?, 0], B, {a,b},{},{}) is executed *)
—NEWCoND(by?, {a}, {b}) = ({}, {a}, {b})
ind>k=2
ed={}
—GBI (B, {a}, {b}, {}) = (true, 0, {by*}, {a}, {b})
List := ({by*, az®, bxy®}, {}, {a, b}), ({az?}, {b}, {a}), ({by*}, {a}, {b})
B ={]0,0,0],0,0,0]}
—Brancu([by?, by?, 0], B, {a,b},{ },{})
—NEWCoND(by?, {a,b}, {}) = ({}, {a,b},{})
ind>k=2
ed={}
—GBI (B,{a,b},{}.{}) = (true,0,{0}, {a,b},{})
List := ({bQQ: aJJQ, bx?ﬁ}: {}{a,b}), ({amQ}, {b},{a}), ({by2}7 {a},{b}), ({0}, {a,b},{})

Acknowledgements. The main part of research presented in the paper was
done during the stay of the second author (A.H.) at the Joint Institute for Nu-
clear Research in Dubna, Russia. He would like to thank the first author (V.G.)
for the invitation, hospitality, and support. The contribution of the first author

Comprehensive Involutive Systems 115

was partially supported by grants 01-01-00200, 12-07-00294 from the Russian
Foundation for Basic Research and by grant 3802.2012.2 from the Ministry of
Education and Science of the Russian Federation.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Apel, J., Hemmecke, R.: Detecting unnecessary reductions in an involutive basis

computation. J. Symbolic Computation 40, 1131-1149 (2005)

Becker, T., Weispfenning, T.: Grobner Bases: a Computational Approach to Com-
mutative Algebra. Graduate Texts in Mathematics, vol. 141. Springer, New York
(1993)

Buchberger, B.: Ein Algorithms zum Auffinden der Basiselemente des Restklassen-
rings nach einem nuildimensionalen Polynomideal. PhD thesis, Universitdt Inns-
bruck (1965)

Buchberger, B.: A Criterion for Detecting Unnecessary Reductions in the
Cconstruction of Grobner Bases. In: Ng, K.W. (ed.) EUROSAM 1979. LNCS,
vol. 72, pp. 3-21. Springer, Heidelberg (1979)

Buchberger, B., Winkler, F. (eds.): Grobner Bases and Applications. London Math-
ematical Society Lecture Note Series, vol. 251. Cambridge University Press, Cam-
bridge (1998)

Gerdt, V.P.: Involutive algorithms for computing Grébner bases. In: Cojocaru,
S., Pfister, G., Ufnarovski, V. (eds.) Computational Commutative and Non-
Commutative Algebraic Geometry, pp. 199-225. I0S Press, Amstrerdam (2005)
(arXiv:math/0501111)

Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Mathematics and
Computers in Simulation 45, 519-542 (1998)

Gerdt, V.P., Blinkov, Y.A.: Involutive Division Generated by an Antigraded Mono-
mial Ordering. In: Gerdt, V.P., Koepf, W., Mayr, E:W., Vorozhtsov, E.V. (eds.)
CASC 2011. LNCS, vol. 6885, pp. 158-174. Springer, Heidelberg (2011)

Janet, M.: Les Systémes d’Equations aux Dérivées Partielles. Journal de
Mathématique 3, 65-151 (1920)

Kapur, D., Sun, Y., Wand, D.: A new algorithm for computing comprehensive
Grobner systems. In: Watt, S.M. (ed.) Proc. ISSAC 2010, pp. 29-36. ACM Press,
New York (2010)

Manubens, M., Montes, A.: Improving DISPGB algorithm using the discriminant
ideal. J. Symbolic Computation 41, 1245-1263 (2006)

Manubens, M., Montes, A.: Minimal canonical comprehensive Grébner systems. J.
Symbolic Computation 44, 463-478 (2009)

Montes, A.: A new algorithm for discussing Grobner bases with parameters. J.
Symbolic Computation 33, 183-208 (2002)

Montes, A.: Solving the load flow problem using Grébner bases. SIGSAM Bul-
letin 29, 1-13 (1995)

Montes, A., Wibmer, M.: Grébner bases for polynomial systems with parameters.
J. Symbolic Computation 45, 1391-1425 (2010)

Pommaret, J.-F.: Systems of Partial Differential Equations and Lie Pseudogroups.
Mathematics and its Applications, vol. 14. Gordon & Breach Science Publishers,
New York (1978)

Sato, Y., Suzuki, A.: An alternative approach to comprehensive Grobner bases. J.
Symbolic Computation 36, 649-667 (2003)

116

18.

19.

20.

21.

22.

23.

V. Gerdt and A. Hashemi

Sato, Y., Suzuki, A.: A simple algorithm to compute comprehensive Grobner bases
using Grobner bases. In: Trager, B.M. (ed.) Proc. ISSAC 2006, pp. 326-331. ACM
Press, New York (2006)

Suzuki, A.: Computation of Full Comprehensive Grobner Bases. In: Ganzha, V.G.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 431-444.
Springer, Heidelberg (2005)

Seiler, W.M.: Involution - The Formal Theory of Differential Equations and its
Applications in Computer Algebra. Algorithms and Computation in Mathematics,
vol. 24. Springer, Berlin (2010)

Weispfenning, V.: Cannonical comprehensive Grobner bases. J. Symbolic Compu-
tation 36, 669-683 (2003)

Weispfenning, V.: Comprehensive Grobner bases. J. Symbolic Computation 14,
1-29 (1992)

Zharkov, A.Y ., Blinkov, Y.A.: Involutive approach to investigating polynomial sys-
tems. Mathematics and Computers in Simulation 42, 323-332 (1996)

A Polynomial-Time Algorithm for the Jacobson
Form of a Matrix of Ore Polynomials

Mark Giesbrecht! and Albert Heinle?

1 Cheriton School of Computer Science, University of Waterloo, Canada,
2 Lehrstuhl D fiir Mathematik, RWTH Aachen University, Aachen, Germany

Abstract. We present a new algorithm to compute the Jacobson form
of a matrix A of polynomials over the Ore domain F(z)[x;a,d]"*", for
a field F. The algorithm produces unimodular U, V and the diagonal
Jacobson form J such that UAV = J. It requires time polynomial in
deg,(A), deg,(A) and n. We also present tight bounds on the degrees of
entries in U, V and J. The algorithm is probabilistic of the Las Vegas
type: we assume we are able to generate random elements of F at unit
cost, and will always produces correct output within the expected time.
The main idea is that a randomized, unimodular, preconditioning of A
will have a Hermite form whose diagonal is equal to that of the Jacobson
form. From this the reduction to the Jacobson form is easy. Polynomial-
time algorithms for the Hermite form have already been established.

1 Introduction

The Jacobson normal form is a fundamental invariant of matrices over a ring of
Ore polynomials. Much like the Smith normal form over a commutative principal
ideal domain, it captures important information about the structure of the solu-
tion space of a matrix over the ring, and many important geometric properties
of its system of shift or differential equations.

In this paper we consider the problem of computing canonical forms of ma-
trices of Ore polynomials over a function field F(z). Let o : F(z) — F(z) be an
automorphism of F(z) and 0 : F(z) — F(z) be a o-derivation. That is, for any
a,b € F(2), 0(a+b) =d(a) + (b) and 6(ab) = o(a)d(b) + 6(a)b. We then define
F(z)[z; 0,06] as the set of polynomials in F(z)[z] under the usual addition, but
with multiplication defined by xa = o(a)x + d(a), for any a € F(z). This is well-
known to be a left (and right) principal ideal domain, with a straightforward
euclidean algorithm (see|Ore (1933)).

Cohn (1985), Proposition 8.3.1 shows that we may assume that we are in
either the pure differential case (with o(a) = a), or the pure difference case,
with d(a) = 0. In this paper, we will constrain ourselves still further to the
shift polynomials and the differential polynomials over F(z), where F is a field
of characteristic 0.

(1) o(2) = S(2) = z + 1 is the so-called shift automorphism of F(z), and ¢
identically zero on F. Then F(z)[z;S,0] is generally referred to as the ring
of shift polynomials. We write F(z)[0; S| for this ring.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 117-[28] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

118 M. Giesbrecht and A. Heinle

(2) 0(z) =1 and o(z) = 2z, so §(h(z)) = h'(z) for any h € F(z) with A its usual
derivative. Then F(z)[z; 0, d] is called the ring of differential polynomials. We
write F(z)[z;/] for this ring.

More general Ore polynomials (in particular, in fields of finite characteristic) will
be treated in the journal version of this paper.

Let a,b € F(z)[x; 0, 0]. Following|Jacobson (1943), Chapter 3, we say that a is a
total divisor of b # 0 if there exists a two-sided ideal Z such that aF(z)[x; 0, 0] 2
T D bF(z)[x;0,0]. We say that two elements a,b € F(z)[x;0,0] are similar if
there exists a u € F(z)[z;0,d] \ {0} such that b = lclm(a, u)u~!. A matrix U €
F[0;0,6]" ™ is said to be unimodular if there exists a matrix V € F[9;0,8]" "
such that UV =TI (i.e., the inverse is also a matrix over F[0; g, d]).

Let A € F[9;0,6]""". Jacobson (1943), Theorem 3.16, shows that there exist
unimodular matrices U,V € F[9;0,]" " such that

J =UAV = diag(s1, ..., 5,0,...,0),

where s; is a total divisor of s;41 for 1 < i < r. We call J the Jacobson form of
A, and the diagonal entries of J are unique up to the notion of similarity given
above. For the rings F(2)[0;S] and F(z)[0;/] we establish stronger statements
about the shape of the Jacobson form. In particular, we show that if for shift
polynomials R = F(z)[z; S], there exist unimodular U,V € R"*™ such that

J=UAV =diag(1,..., 1,2, ..., z,2%, ..., 2%, . ..,2% ... 2% oz*,0,...,0),

where ¢ € R is monic. For differential polynomials R = F(z)[z;’], it is well-known
that there exists unimodular U, V € R™*™ such that

J =UAV =diag(l,...,1,¢,0...,0),

where ¢ € R is monic.

Finding normal forms of matrices is as old as the term matrix itself in math-
ematics. A primary aim is to obtain a diagonal matrix after a finite number
of reversible matrix operations. For matrices with entries in a commutative ring
there has been impressive progress in computing the Smith normal form, and the
improvements in complexity have resulted directly in the best implementations.
The Jacobson form is the natural generalization of the Smith form in a noncom-
mutative (left) principal ideal domain. Commutative techniques do not directly
generalize (for one thing there is no straightforward determinant), but our goal
is to transfer some of this algorithmic technology to the non-commutative case.

Over the past few years, a number of algorithms and implementations have
been developed for computing the Jacobson form. The initial definition of the
Jacobson form (Jacobson, 1943) was essentially algorithmic, reducing the prob-
lem to computing diagonalizations of 2 x 2 matrices, which can be done directly
using GCRDs and LCLMs. Unfortunately, this approach lacks not only efficiency
in terms of ring operations, but also results in extreme coefficient growth.

Recent methods of [Levandovskyy and Schindelar (2012) have developed a al-
gorithm based on Grobner basis theory. An implementation of it is available in

Polynomial-Time Jacobson Form 119

the computer algebra system SINGULAR. A second approach by Robertz et al.
implementing the algorithm described in|Cohn (1985) can be found in the Janet
library for MAPLE.. Another approach is proposed by [Middeke (2008) for differ-
ential polynomials, making use of a cyclic vector computation. This algorithm
requires time polynomial in the system dimension and order, but coefficient
growth is not accounted for. Finally, the dissertation of [Middeke (2011) consid-
ers an FGLM-like approach to converting a matrix of differential polynomials
from the Popov to Jacobson form.

Our goal in this paper is to establish rigorous polynomial-time bounds on
the cost of computing the Jacobson form, in terms of the dimension, degree
and coefficient bound on the input. We tried to avoid Grébner bases and cyclic
vectors, because we do not have sufficiently strong statements about their size
or complexity. Our primary tool in this work is the polynomial-time algorithm
for computing the Hermite form of a matrix of Ore polynomials, introduced at
the CASC 2009 conference by |Giesbrecht and Kiml (2009, 2012).

Definition 1.1. Let R = F(2)[z;0,d] be an Ore polynomial ring and A € R™*"
with full row rank. There exists a unimodular matriz Q € R™*"™, such that H =
QA is an upper triangular matriz with the property that
e The diagonal entries H;; of are monic;
e Fach superdiagonal entry is of degree (in x) lower than the diagonal in its
column (i.e., deg, Hj; < deg, Hy; for1 <j<i<mn)
The Hermite form (with monic diagonals) is unique.

Giesbrecht and Kiml (2009, 2012) establishes the following (polynomial-time)
cost and degree bounds for computing the Hermite form:

Fact 1.2. Let A € F[z][z; 0,0] have full row rank with entries of degree at most
d in x, and of degree at most e in z. Let H € F(2)[x;0,0]"™ be the Hermite
form of A and U € F(z)[x;0,0])™ "™ such that UA = H. Then

(a) We can compute the Hermite form H € F(z)[x;0,8]™*™ of A, and U €
F(2)[z;0,0]"*™ such that UA = H with a deterministic algorithm that re-
quires O(n°d>e) operations in F;

(b) deg, H;j < nd, deg.H;; € O(n?de) and deg.U;; € O(n2de) for 1 <i,j <n.

Our approach to computing the Jacobson form follows the method of
Kaltofen et all (1990) for computing the Smith normal form of a polynomial
matrix. This algorithm randomly preconditions the input matrix by multiplying
by random unimodular matrices on the left and the right, and then computes
a left and right echelon/Hermite form. The resulting matrix is shown to be in
diagonal Smith form with high probability.

Our algorithm follows a similar path, but the unimodular preconditioner must
be somewhat more powerful to attain the desired Jacobson form. In this current
paper we will only pursue our algorithm for differential polynomials, though the
method should work well for shift polynomials as well.

120 M. Giesbrecht and A. Heinle

The remainder of this paper is as follows. In Section 2] we establish stronger
versions of the Jacobson form for differential and shift polynomials. In Section
we show the reduction from computing the Jacobson form to computing the
Hermite form, while in Section [d] we demonstrate degree bounds and complexity
for our algorithms. Finally, we offer some conclusions and future directions in
Section

2 Strong Jacobson Form

In this section we establish the existence of the strong Jacobson form for poly-
nomials over the shift and differential rings.

Theorem 2.1. Let R = F(z)[z;S] be the ring of shift polynomials, and A €
R™*™. Then there exist unimodular matrices U,V € R™*™ such that

J=UAV =diag(1,...,1,z,...,x,...,z% .. aF oz* 0,...,0), (2.1)
where ¢ € R.

Proof. We may assume that A is in Jacobson form,
A= diag(fl, ey fr,O, - 70) < Rnxn’

with f; a total divisor of f;11 for 1 < ¢ < r, though perhaps not with the nice
shape of (Z1]). We work though the 2 x 2 diagonal submatrices of A in sequence.
Let diag(f,g) be such a submatrix, where f divides g from both sides. This
means there exists w,w € R, such that g = wf = fw. If f is 1 or a power of x
already, we can continue with the next submatrix. Without loss of generality f
has the form (2% +a;— 12"~ +.. . +ag)z”, where a; € F(z) for 0 < j < i, u € Z>o
and at least one a; is not equal to zero. Now perform the following unimodular
transformation on the given submatrix:

[o 1 [0 _ f 0
0wf e —Sitptdeg(w) (N 1| [0 wf]| |2 1] |wfz—SHtdes@) (Hwf wf|

The term wfz — STH+des() (2w f is constructed such that it has degree in =
strictly lower than that of wf.

We claim that f is not a right divisor of wfz — S*H#+des(w) () f. Suppose
conversely that it is still a right divisor. Then

wfz = SHHIE) f = hf

for some h € R. Since clearly S**r+dea(w)(2)w f is divisible by f from the right,
w fz must also be divisible by f from the right. But this means that fz is equal
o (az + b)f for some a,b € F. This is only possible if f is either 1 or a power
of z. This is a contradiction to our choice of f. Thus, if we perform a GCRD
computation on these two polynomials, we will get a polynomial of a strictly
smaller degree. This action can be performed, until just z* is left. Continuing
similarly with the next 2 x 2 submatrix, the shape ([2.]]) is established. O

Polynomial-Time Jacobson Form 121

The following characterization of the matrix of differential polynomials is well-
known. It follows immediately from the fact that F(z)[z;/] is a simple ring.

Theorem 2.2. Let R = F(z)[x;/] be the ring of differential polynomials, and
A € R™™™, Then there exist unimodular matrices U,V € R™*™ such that

J =UAV = diag(l,...,1,¢,0...,0),

for some v € R.

3 Reducing Computing Jacobson Form to Hermite Form

In this section we present our technique for computing the Jacobson form of a
matrix of Ore polynomials. Ultimately, it is a simple reduction to computing the
Hermite form of a preconditioned matrix. We present it only for the ring R =
F(z)[z;’]. An analogous method should work for the ring of shift polynomials,
and will be developed in a later paper. We begin with some preparatory work.

3.1 On Divisibility

We first demonstrate that right multiplication by an element of F[z], i.e., by a
unit in R, transforms a polynomial to be relatively prime to the original.

Lemma 3.1. Given h € R, nontrivial in x, there exists a w € F[z] with deg, (w) <
deg.(h), such that GCRD(h, hw) = 1.

Proof. Without loss of generality assume h is normalized to be monic and has
the form " + hp_12™ ' 4+ ... + hiz + ho.
Case 1: h is irreducible.

The only monic right divisor of h of positive degree is h itself. Thus, brought
into normal form (i.e., with leading coefficient one), h and hw should be the
same polynomial. We have lc(h) = 1, le(hw) = w, tc(h) = hg, and tc(hw) =
how+hid(w)+ ...+ h, 0™ (w), where Ic : R = F(z) and tc : R — F(z) extract the
leading and tailing coefficients respectively. The choice of w, such that the tail
coefficients are different, is always possible. If you normalize both polynomials
from the left and subtract them, then you get a polynomial of strict lower degree
in and not equal 0. This is due to the fact that the tail coefficient of hw after
normalizing has the form

ho + M100W) F o had" (W) (3.1)
w
and you can choose w such that the fraction above does not equal 0. Since h was
assumed to be irreducible, we can reduce these polynomial further to 1 with a
linear combination of h and hw (otherwise we would get a nontrivial GCRD of
two irreducible polynomials).

122 M. Giesbrecht and A. Heinle

Case 2: h = hy - - - hy,, with h; irreducible for 1 <7 < m.

In this case the proof is complicated by non-commutativity. Multiplication
with w will affect the rightmost factor. If there is just one factorization we can
again use the argument from case 1, and we are done.

If we have more than one factorization, things become interesting. We first
show that a multiplication by w for the rightmost factor h,, in one factorization
hi- - hm cannot be~equal to h,y, for the rightmost factor h,, of an arbitrary other
factorization hq - - - hy,. Suppose this equality holds. Then

I Bt hw = oy - By B,
where we can directly see, that then
hi-hme1=hi - hp_1,

which means, that we already dealt with the same factorization, a contradiction.
Thus, we cannot get the same rightmost factor via multiplication by a unit from
the right. Now we can use the same argument as in case 1 and see that the
GCRD of the rightmost factors will be 1. O

Remark 3.2. The condition on the tailing coefficient ([3.I)) in the proof shows us,
that we can also always find for f # g € Raw € F[z] such that GCRD(f, fw) =1
GCRD(g, gw) = 1.

In the second case of the proof above it was not necessary that we were just
looking at h, because we can look at any left multiple of h and get the same
result. Thus, we can guarantee that we will obtain, with high probability, coprime
elements by premultiplication by a suitable random element.

Corollary 3.3. For any f,g € R, there exists a w € F[z] of degree at most
max{deg(f),deg(g)} such that GCRD(fw,g) = 1.

Lemma 3.4. Let f,g € R have deg, f = n and deg, g = m, and assume f
and g have degree at most e in z. Let w € F[z] be chosen randomly of degree
d = max{m,n}, with coefficients chosen from a subset of F of size at least
n(n+m)(n+e). Then
Prob { GCRD(f, gw) = 1} > 1 — 711

Proof. Assume the coefficients of w are independent indeterminates commuting
with 2. Counsider the condition that GCRD(f, gw) = 1. We can reformulate this
as a skew-Sylvester resultant condition in the coefficients of f and gw over F(z).
That is, there exists a matrix Syl(f,gw) € F(z)"+m)x(+m) guch that D =
det Syl(f, gw) € F(2) is nonzero if and only if GCRD(f, gw) = 1. By Corollary
B3 we know D is not identically zero. It is easily derived from the Leibniz formula

Polynomial-Time Jacobson Form 123

for the determinant that deg, D < (n + m)(n + e). The probability stated then
follows immediately from the Schwarz-Zippel Lemma (Schwartz, 1980). O

We now use these basic results to construct a generic preconditioning matrix for
A. First consider the case of a 2 x 2 matrix A € R?*2, with Hermite form

_(fa) _
n=(19)-va

for some unimodular U € R?*2. We then precondition A by multiplying it by

10
a=(11):

where w € F[z] is chosen randomly of degree max{deg(f), deg(g),deg(h)}, so
_(ftgwyg
UAQ = < hw b

Our goal is to have the Hermite form of AQ have a 1 in the (1, 1) position. This
is achieved exactly when GCRD(f 4+ gw, hw) = 1. The following lemma will thus
be useful.

Lemma 3.5. Given f,g,h € R. Then there exists a w € F[z] with deg(w) <
max {deg,(f),deg,(g),deg,(h)} such that GCRD(f + gw, hw) = 1.

Proof. We consider two different cases.

Case 1: GCRD(g,h) = 1. This implies GCRD(gw, hw) = 1 for all possible w.
Then there exist e, € R such that egw + [hw = 1. Therefore — because we are
aiming to obtain 1 as the GCRD — we would proceed by computing the GCRD
of ef + 1 and hw. Lemma [3.]] shows the existence of appropriate w, such that
GCRD(ef + 1, hw) = 1.

Case 2: GCRD(g, h) # 1. Without loss of generality, let g be the GCRD of h and
g (using the euclidean algorithm we can transform GCRD(f 4+ gw, hw) into such a
system, and f will just get an additional left factor). Since we can choose w, such
that GCRD(f, hw) = 1, we have e, [€ R, such that ef+lhw = 1. This means that
we just have to compute the GCRD of hw and 14+egw. Let h be such that hg = h.
If we choose the left factors es, lo, such that esegw + lohgw = gw, we know that
h and ez have no common right divisor. Our GCRD problem is equivalent to
GCRD(ez + gw,ﬁgw)7 which can be further transformed to GCRD(hes, hgw)
(since we have h(es + gw) — hgw = hes). As we have seen in Remark B.2]
We can adjust our choice of w to fulfill the conditions GCRD(f, hw) = 1 and
GCRD(hey, hgw) = 1. O

A similar resultant argument to Lemma 3.4l now demonstrates that for a random
choice of w we obtain our co-primality condition. We leave the proof to the
reader.

124 M. Giesbrecht and A. Heinle

Lemma 3.6. Given f,g,h € R, with d = max{deg,(f),deg,(g),deg,(h)}, and
e = max{deg,(f),deg.(g),deg,(h)}. Let w € R have degree d, and suppose its
coefficients are chosen from a subset of F of size at least n(n + d)(n +e). Then
1

Prob {GCRD(f + gw,hw) =1} > 1 — o

This implies that for any matrix A € R?*? and a randomly selected w € F[z] of
appropriate degree we obtain with high probability

10 1% 10
i) =vlil ol
where h € R and U,V € R?*? are unimodular matrices. Hence A has the Jacob-
son form diag(1, k). This is accomplished with one Hermite form computation

on a matrix of the same degree in x, and not too much higher degree in z, than
that of A.

Remark 3.7. With that we obtain an extra property for our resulting Hermite
form: Since we can find such a w € F[z], such that GCRD(f + gw, hw) = 1, there
exist e, l, k, m, such that

el||f+gwg| |1 eg+Ih
{k mH hw h] = [o kg+mh]' (32)

Now, we know, that the following equalities do hold:
ef+equt+lhw=1 < eqw+lhw=1—ef < eg+lh=w"'—efw !,
and similarly we get
kf + kgw +mhw =0 <= kgw +mhw = —kf <= kg+mh = —kfw " .
This means that, on the right hand side of our equation (3.2]), we have
[1 w! — efwl]
0 —kfw! '

Therefore, for our next computation (i.e., if we just considered the 2x2 submatrix
with this and computed the new Hermite form), we would deal with that same
f as right factor multiplied by a unit from the right in the upper left corner of
the next 2 x 2 submatrix and will be able to perform our computations there.

We now generalize this technique to n x n matrices over R.

Theorem 3.8. Let A € R™*™ have full row rank. Let Q be a lower triangular,
banded, unimodular matriz of the form

1 0 0 ... 0

wp 1 0 ... 0

0 ERnxn
0

0 ... 0 w11

Polynomial-Time Jacobson Form 125

where w; € F[z] fori e {1,...,n— 1}, deg(w;) =4 -n-d and d is the mazimum
degree of the entries in A. Then with high probability the diagonal of the Hermite
form of B = AQ is diag(1,1,...,1,m), where m € F(z)[x;].

Proof. Let H be the Hermite form of A and have the form

f1 h1 * .. *
0 fg hg *
s R
0...0 0 fn

By |Giesbrecht and Kiml (2012), Theorem 3.6, we know that the sum of the de-
grees of the diagonal entries of the Hermite form of A equals n - d. Thus we can
regard nd as an upper bound for the degrees of the f;. If we now multiply the
matrix

1 0 0 ... 0
w1 1 0 ... 0
0n72><1 0n72><1 In72

from the right, we obtain the following in the upper left 2 x 2 submatrix:

|:f1 + hiw h1:|
fowr fal’

As we have seen in the remark above, after calculation of the Hermite form of
this resulting matrix, we get with high probability

1 * * ...k
0kfrwyt * ...

0 .

N T '..'hnfl
0o ... 0 0 fn

The entry kfiw; * has degree at most 2-n - d, where we see, why we have chosen
the degree 2 -n - d for wo. After n — 1 such steps we obtain a Hermite form with
1s on the diagonal, and an entry in F(z)[z;] O

This leads us to the following simple algorithm to compute the Jacobson form
by just calculating the Hermite Form after preconditioning.

126 M. Giesbrecht and A. Heinle

Algorithm 1. JacobsonViaHermite: Compute the Jacobson normal form of a
matrix over the differential polynomials
Input: A € F(2)[z;/]"*", n €N,
Output: The Jacobson normal form of A
Preconditions:
— Existence of an algorithm HERMITE to calculate the Hermite normal form of a
given matrix over F(z)[z;/]
— Existence of an algorithm RANDPOLY which computes a random polynomial of
specified degree with coefficients chosen from a specified set.

d < max{deg(A;;) | i,5 € {1,...,n}}
for i from 1 ton — 1 do
w; + RANDPOLY (degree =i -n - d)
end for
Construct a matrix W, such that
1 ifi=j
Wij(— W; if’i:j—l—l
0 otherwise
: result <~ HERMITE(A - W)
: if result;; # 1 for any ¢ € {1,...,n — 1} then
FAIL {With low probability this happens}
end if
: Eliminate the off diagonal entries in result by simple column operations
: return result

—_ =

3.2 Experimental Implementation and Results

We have written an experimental implementation in MAPLE as a proof of concept
of our algorithm.

Since there are no other implementations of the calculation of the Hermite
form available for Ore rings, we used the standard way of calculating the Hermite
form, i.e. by repeated GCRD computations. Since the Hermite form of a matrix
is unique, the choice of algorithm is just a matter of calculation speed.

One problem with the preconditioning approach is that the diagonal entries
become “ugly” (recall that they are only unique up to the equivalence described
in the introduction). We illustrate this with an example as follows.

Ezample 3.9. Consider matrix A:

1+ zz 22+ 2z
z4+ (z+1)x 5+ 10x| "

Its Jacobson form, calculated by SINGULAR, has as its nontrivial entry:

(452 —10 — 112° — 2" + 22°) + (22° + 32" — 122° + 102 + 22%)z + (22" — 192° + 92%)2>.

Polynomial-Time Jacobson Form 127

Calculating the Jacobson form with the approach of calculating a lot of GCRDs
or GCLDs respectively results in the polynomial:

(—32°+2° —42° 4 32410) + (=82 + 22+ 2° + 2" +1324+19)x 4 (—102° + 82 + 2" +-92)2>.

If we precondition the matrix in the described way, the output of SINGULAR stays
the same, but the output of the straightforward approach is the polynomial:

883602° — 3845542° + 24328527 + 11040362° — 44283562° + 24745702" + 35335372°
— 39150392 + 1431017z — 150930

+ (8836027 — 311142% — 94807127 + 50932472° — 75384582° + 57400772" —19351902>
—203532% + 154797z + 10621)

+ (—7396592° + 1372492° + 5031z + 17697742" — 2553232 + 2° + 21333432°
—10030742" + 883602%)z>.

The calculation time was as expected similar to just calculating a Hermite form.
Both answers are “correct”, but the Groebner-based approach has the effect of
reducing coeflicient size and degree. An important future task could be to find
a normal form for a polynomial in this notion of weak similarity. This normal
form should have as simple coeflicients as possible.

The demonstration here is simply that the algorithm works, not that we would
beat previous heuristic algorithms in practice. The primary goal of this work is to
demonstrate a polynomial-time algorithm, which we hope will ultimately lead to
faster methods for computing and a better understanding of the Jacobson form.

4 Degree Bounds and Complexity

The cost of the algorithm described for the Jacobson normal form is just the cost
of a single preconditioning step (a matrix multiplication), plus the cost of com-
puting a Hermite form (for which we use the algorithm of |Giesbrecht and Kim
(2009)). The growth in the degree of the input matrix after the precondition is an
additive factor of O(n?d), which is largely dominated by the cost of computing
the Hermite form. We thus obtain the following theorem.

Theorem 4.1. Let A € F(z)[z;' ™™™ have full row rank, with deg,(A;;) < d for
1<4,j<n, and deg,(A;;) <e.

(a) We can compute the Jacobson form J of A, and unimodular matrices U,V
such that J = UAV , with an expected number of O(n°d3e) operations in F.
The algorithm is probabilistic of the Las Vegas type, and always returns the
correct solution.

(b) If J =diag(1,...,1,sy), then deg,(s,) < nd, and deg, U;;,deg, Vi; < nd.

(c) deg,H;; € O(n*de) and deg,U;; € O(n?de) for 1 <i,j <n.

Proof. Part (a) follows directly from the algorithm and the preceding analysis.
Part (b) and (c) follow from the degree bounds over on the Hermite form over
Ore polynomial rings in |Giesbrecht and Kind (2009, 2012).

128 M. Giesbrecht and A. Heinle

Of course a faster algorithm for computing the Hermite form would directly yield
a faster algorithm for computing the Jacobson form of an input matrix.

5 Conclusion and Future Work

In this paper, we have developed a probabilistic algorithm for computing the Ja-
cobson form of a square matrix with entries in the ring of differential polynomials
which can also easily be generalized to the non-sqare case. The complexity of our
algorithm depends on the complexity of calculating the Hermite form of a matrix
with entries in F(z)[z;/]. Using the algorithm of |Giesbrecht and Kim (2009) we
establish a polynomial-time algorithm for the Jacobson form of a matrix of dif-
ferential polynomials. We also establish polynomial bounds on the entries in the
Jacobson form and on the transformation matrices. While we do not necessarily
anticipate that this will ultimately be the most practical method to compute
the Jacobson form, we hope that the techniques presented will be helpful in de-
veloping effective implementations. Future work will involve a generalization to
more general Ore polynomial rings (in particular shift-polynomials), as well as
asymptotically faster algorithms.

Acknowledgements. The authors thank Viktor Levandovskyy for his helpful
ideas and encouragement, and the anonymous referees for their comments.

References

Cohn, P.: Free Rings and their Relations. Academic Press, London (1985)

Giesbrecht, M., Kim, M.S.: On Computing the Hermite Form of a Matrix of Differential
Polynomials. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009.
LNCS, vol. 5743, pp. 118-129. Springer, Heidelberg (2009), doi: 10.1007/978-3-642-
04103-7 12

Giesbrecht, M., Kim, M.: Computing the Hermite form of a matrix of Ore polynomials,
(submitted for publication, 2012), ArXiv: 0906.4121

Jacobson, N.: The Theory of Rings. American Math. Soc., New York (1943)

Kaltofen, E., Krishnamoorthy, M.S., Saunders, B.D.: Parallel algorithms for matrix
normal forms. Linear Algebra and its Applications 136, 189-208 (1990)

Levandovskyy, V., Schindelar, K.: Computing diagonal form and Jacobson normal form
of a matrix using Grobner bases. Journal of Symbolic Computation (in press, 2012)

Middeke, J.: A polynomial-time algorithm for the Jacobson form for matrices of differ-
ential operators. Technical Report 08-13, Research Institute for Symbolic Computa-
tion (RISC), Linz, Austria (2008)

Middeke, J.: A computational view on normal forms of matrices of Ore polynomials.
PhD thesis, Research Institute for Symbolic Computation, Johannes Kepler Univer-
sity, Linz, Austria (2011)

Ore, O.: Theory of non-commutative polynomials. Annals of Math 34, 480-508 (1933)

Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities.
J. Assoc. Computing Machinery 27, 701-717 (1980)

The Resonant Center Problem for a 2:-3
Resonant Cubic Lotka—Volterra System

Jaume Giné!, Colin Christopher?, Mateja Pregern?,
Valery G. Romanovski*®, and Natalie L. Shcheglova®

! Departament de Matematica, Universitat de Lleida,
Av. Jaume II, 69, 25001 Lleida, Spain
gine@matematica.udl.cat
2 School of Computing and Mathematics, Plymouth University,
Plymouth PL4 8AA, UK
C.Christopher@plymouth.ac.uk
3 Department of Mathematics and Statistics, University of Strathclyde,
26 Richmond street, Glasgow G1 1XH, United Kingdom
mateja.presern@strath.ac.uk
4 CAMTP - Center for Applied Mathematics and Theoretical Physics,
University of Maribor, Krekova 2, Maribor SI-2000, Slovenia
® Faculty of Natural Science and Mathematics, University of Maribor,
Korogka cesta 160, SI-2000 Maribor, Slovenia
valery.romanovsky@uni-mb.si
5 Faculty of Mechanics and Mathematics, Belarusian State University,
4, Nezavisimosti avenue, 220030, Minsk, Belarus
shcheglova@tut.by

Abstract. Using tools of computer algebra we derive the conditions
for the cubic Lotka—Volterra system & = z(2 — azz? — anzy — a02y2),
¥ = y(—3 + baox? + bi1xy + bo2y?) to be linearizable and to admit a first
integral of the form &(z,y) = x3y* 4 - - - in a neighborhood of the origin,
in which case the origin is called a 2 : —3 resonant center.

Keywords: resonant center problem, polynomial systems of differential
equations, first integral.

1991 Mathematics Subject classification: Primary 34C14; Secondary
34A26, 37C27, 34C25.

1 Introduction

In this paper we consider a polynomial vector field in C? with a p : —¢ resonant
elementary singular point, i.e.,

:'r:prrP(x,y), y':fqy+Q(1',y)’ (1)

where p,q € Z with p,q > 0 and P and @ are polynomials. The interest in these
elementary singular points arises from the fact that there is a resonant center
defined for this type of singular points. A resonant center is a generalization of the

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 129-[[22] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

130 J. Giné et al.

concept of a real center to systems of ordinary differential equations in C2? of the
form (), see [RBI22124]. The classical real center problem goes back to Poincaré
and Lyapunov, see [I820], and has been studied extensively in hundreds of
works, see for instance [BII2IT322] and references therein. We have the following
definition of a resonant center or focus, coming from Dulac [10] (see also [24]).

Definition 1. A p: —q resonant elementary singular point of an analytic sys-
tem is a center if there exists a local meromorphic first integral ® = xPy?+ h.o.t.

Without loss of generality we can write system () in the form

= pr-— Z aija Tyl
(i,5)es

J=—qy+ > baly ™
(i,5)es

where p,q € N, GCD(p,q) =1, and where S is the set
S ={(ug,vk) rur+vrp > 1, k=1,...,£} C N_; x Ny,

where N denotes the set of natural numbers and for a non-negative integer n,
N_, = {-n,...,—1,0} UN. The notation (2) simply emphasizes that we take
into account only non-zero coefficients of the polynomials of interest. This will
simplify formulas which occur later.

The condition that a function

U(z,y) =29+ Y viegjpr'y’ (3)
i+j>p+q
1,J€Ng

be a first integral of (I]) (the indexing has been chosen so as to be in agreement
with algorithm of [2I, Appendix]) is the identity

def ov

@) = % (g4 Play)) +)

8y(qy+Q(z,y)) =0, (4)

which yields

(quIy;ﬂ+ Z ’L‘Uz;q,jfp.’ﬂ)(px Z - ol n>

i+j>p+q (m,n)esS

+<pqup_1 + Z j”iq,jpziyj_l) <qy + Z bnmfnym—H) =0.

i+j>p+q (m,n)eS

()

We augment the set of coefficients in ([B]) with the collection J = {v_g454-5: 5 =
0,...,p+q}, where, in agreement with formula []), we set voo = 1 and v,,,, =0
for all other elements of J, so that elements of J are coefficients of terms of
degree p+ ¢ in ¥(z,y). We also set amn = by = 0 for (m,n) € S. With these

The Resonant Center Problem 131

conventions, for (ki, k2) € N_, x N_,,, the coefficient g, x, of %1 T9y*2+P in ()
is zero for k1 + ko < 0 and

Gk1 ks = (Pk1 — qk2) vk, ,
k1+ka—1
- Z [(81 + q)ak1*51,k2*82 - (82 +p)bl€1*81,’€2*52 Vsy,s2+ (6)
s1+s52=0
$12—q, s22—p
for k‘l + k‘g Z 1.

This formula can be used recursively to construct a formal first integral ¥
for system (2)): at the first stage finding all vy, , for which k1 + k2 = 1, at the
second all vy, x, for which ki + k3 = 2, and so on. For any pair k; and kg, if
gk1 # pko and if all coeflicients vy, ¢, are already known for ¢; + ¢y < ki + ko,
then vk, g, is uniquely determined by (@) and the condition that gi, x, be zero.
But at each of the stages k1 + k2 = k(p + ¢), k¥ € N (and only at these stages,
since GCD(p,q) = 1) there occurs the one “resonance” pair (ki, k2) = (kq, kp)
for which gk; = pko. Hence, for this pair, (6) becomes

kq+kp—1
Jkq,kp = — Z [(81 + q)ak1*51’k2*82 - (82 +p)bl€1*51,’€2*82} Vs1,s2 5 (7)
s1+52=0
$12—¢,522>—p

so that the process of constructing a first integral ¥ only succeeds at this step
if the expression on the right-hand side of (@) is zero. In this case, the value of
Uky ks = Ukq,kp 1S N0t determined by equation (@) and may be assigned arbitrarily.

It is evident from (@) that for all pairs of indices (k1,k2) € N_g X N_p, vp, 1,
is a polynomial function of the coefficients of (@), that is, it is an element of the
polynomial ring C[a, b] (where (a, b) is the 2¢-tuple of the coefficients of system
@), hence by (@) so are the expressions giq kp for all k. The polynomial grg kp,
which can be regarded as the k-th “obstruction” to the existence of the integral
@), is called the k-th focus quantity of system (2)). Thus, the set of all systems
inside the family (), which admit a first integral of the form (&]), is the zero set
(the variety) of the ideal B = (gq,p, 92q,2p; - - -), called the Bautin ideal of (). To
find this variety in practice, one can compute focus quantities until the step kg at
which the chain of ideals /By C v/Ba C /B3 C ... stabilizes, which can be easily
verified using the radical membership test] (here Bi = (gqps - - - » Ghq.kp) and /By,
denotes the radical of the ideal By). Then, using an appropriate computer algebra
system (routines of SINGULAR [I6] are usually very efficient to perform this task),
one computes the irreducible decomposition of the variety of By, and then for
each component of the decomposition proves that corresponding systems indeed
admit first integrals of the form (3.

For the 1 : —2 resonant singular point and when P and @ in () are quadratic
polynomials, the integrability problem is completely solved in [11I24] where nec-
essary and sufficient conditions (20 cases) are given. Moreover, in [§], necessary

! The test says that given a polynomial f € Clx1,...,z,] and an ideal J =
(fi,..-, fs) C Clz1,...,2s], f vanishes on the variety of the ideal J if and only
if the reduced Groebner basis of (f1,..., fs,1 —wf) C Clw,z1,...,z.] is {1}.

132 J. Giné et al.

and sufficient conditions (15 cases) for linearizability of the system are given.
In [24], some sufficient center conditions for the p : —g resonant singular point
of a quadratic system are given. The most studied case is the quadratic Lotka—
Volterra system, i.e.,

i=x+4ax®+bry, §=—\y+cxy+dy (A >0). (8)

The necessary and sufficient conditions for integrability and linearizability of
system () are already known for A € N [824]; that is, the 1 : —n resonant cases.
In [15], some sufficient conditions are given for a general choice of A. In particular,
when A\ = p/2 or A = 2/p with p € Nt the necessary and sufficient conditions
for integrability and linearizability are given. In [I9], authors continue the study
of the quadratic Lotka—Volterra system (B)) and present sufficient conditions for
integrability of Lotka—Volterra systems with 3 : —g resonance. In particular
cases of 3 : —5 and 3 : —4 resonances, necessary and sufficient conditions for
integrability of the systems are also given.

The 1 : —3 resonant centers on C? with homogeneous cubic nonlinearities were
studied in [I7]. This case corresponds to system ([Il) with p = 1, ¢ = 3, where
P and @ are homogeneous cubic polynomials. In [5], the necessary conditions
and distinct sufficient conditions are derived for 1 : —g resonant centers of the
homogeneous cubic Lotka—Volterra system.

Note that all studied cases involve rather laborious calculations related to
decompositions of affine varieties defined by focus quantities. The complexity of
calculations for different pairs p and ¢ is difficult to estimate in advance, however
it appears it depends on the structure of focus quantities as described in Section
3 of [21].

In this paper we focus our attention on the homogeneous cubic 2 : —3 resonant

Lotka—Volterra system, i.e., systems of the form
i = 2(2 — agr® — a112y — ag2y?), ©)
§ = y(—=3+ bzox? + br1wy + boay?).

The main aim is to give conditions for integrability and linearizability of sys-

tem (@).

2 Conditions for Integrability and Linearizability

In order to obtain conditions for linearizability and integrability of system ()
we first recall a result obtained in [5] for ¢ € N, which can be generalized directly
for ¢ € QT with ¢ > 1. The result follows.

Theorem 1. The system

. 2 2
&= z(l — agex® — a1y — ap2y”)
2

. 1
Y= y(—q + b201‘2 + b1y + bo2y (O)

)

has a resonant center at the origin if one of the following conditions holds:

The Resonant Center Problem 133

(1) a11 =bgo = b11 = 0;

(2) a11 = (g — 2)age — bo = 0;

(3) gagoair + aiibag + (g — 2)azebi1 — baobir = 0,
qazoanz + (¢ — 1)a20bo2 — bagbo2 = 0,
qai1ao2 — qao2bi1 + (2¢ — 1)a11bo2 — bi1boz = 0.

Indeed, from the proofs presented in [5], case (2) of Theorem [is valid for any
g € R with ¢ > 1 and cases (1) and (3) are valid for any ¢ € R with ¢ > 0.

The following theorem gives some sufficient conditions for linearizability of
system (@).

Theorem 2. System (@) has a linearizable resonant center at the origin if one
of the following conditions holds:

(a) a1 = b1 =1,
(1) asg — bag = 27(1(2)2b%0 — 9&02()%01)02 + 144ag2b29 — 28bogbge + 48 = 0;
(2) b20 = a0 = 0,‘

(8) a1 =1, b1y =0,
(1) a0 — b20 = 27(1%2b30 — 9&02[)30[)02 + 396(102b20 — 52b20b02 + 360 = 0,‘
(2) b20 = a0 = 0,‘

(v) a1 =0, by1 =1,
(1) 3agabag — baoboz + 6 = azg — bag = 0;
(2) a2 = az0 — bop =0;

Proof. We are going to prove that under conditions described in Theorem [2]
system (@) is linearizable. We did not find the complete set of linearizability
conditions, but those presented are obtained using the method developed in [§].
To this end, we make substitutions v = 2y and w = y2. In these new coordinates,
system (@) takes the form

U = (—U} + (bg() — ag())’l)2 + (bll — au)vw + (b()g — aog)wz) R
w = 2w (7311) + bygv? + byivw + b02w2) .

(11)
We now set azg = bag, and ([[I]) becomes the quadratic system

= —v+ (b1 — a11)v? + (boz2 — ap2)vw,

y (12
w = —6w + 2b2()’l)2 + 2b11vw + 2b02w2,

which has a resonant node at the origin. By the Poincaré-Lyapunov normal form
theory (see e.g. [1I2]), an analytic system

o0
U =—u-+ E Ujkujvk, U =—nv+ E V}-kujvk,
k=2 j+k=2
can by a convergent transformation

oo (o)
E=u+ Z i, p=v+ Z Bjrulv®, (13)
j+k=2 J+k=2

134 J. Giné et al.

be brought to the normal form

£=—¢ n=-—nn+al" (14)

Hence, system ([2) is linearizable if and only if the resonant monomial (a&®
in the normal form of the second equation) is zero. Alternatively, we seek an
analytic separatrix w =), a;v* (and the only obstruction is in the terms of
order 6). Computing this separatrix for system (I2]) we find that the coeflicient
ag 1is

boo (360@%1 — 516&‘%11711 + 240&%#)%1 — 36&115)?1 + 396@02&%11)20 - 52@%1b02b20
—306ag2a11b11b20 + 24a11bgab11b20 + 54a02b%1b20 + 27a32b§0 — 9a02b02b30)/36.
(15)
Setting a1; = b11 = 1 in condition (&) then gives
b20(48 + 144@02b20 — 28b02b20 + 27a(2)2b§0 — 9a02b02b30)/36,

which yields subcases (1) and (2) of ().
Setting a11 = 1,b11 = 0 in condition (IT) gives

boo (360 + 396ag2bag — 52bgabogy + 27(1(2)2()%0 — 9&02()02()30)/36,

which yields subcases (1) and (2) of (8).
Finally, by setting a1; = 0,b1; = 1, condition (I5)) becomes ag2b3(6 + 3agabao —
bo2bag) /4, which yields subcases (1) and (2) of (7).

For all cases of Theorem [2] there exists an analytic change of coordinates
v = v(1+0(v,w)) = zy(L+0(z,y)), wi =w(l+O0(v,w))=y*(1+0(z,y)),

which brings the node to the linear system. The linear system has a first integral
v§ /wy which pulls back to a first integral of the form y*z®(1+O(x, y)). Extracting
the root of this first integral we obtain a first integral of the form %23 (1+O0(z, y))
for all cases of Theorem

We recall that the Darboux factor of system () is a polynomial f(z,y), such

that of of
P — =K
5 PT T)+6y(ay+Q) =K/,
where K(z,y) is a polynomial called the cofactor. A simple computation shows
that if there are Darboux factors f1, fo, ..., fr with the cofactors K1, Ko, ..., Ky

satisfying Zle a; K; =0, then H = f{ --- f* is a first integral of ([2)), and if

k
> K+ P+ Q, =0,

i=1

then the equation admits the integrating factor p = f{** - -- f'*, see for instance
[34]. If system (@) has an integrating factor of this form then it usually admits
also a first integral of the form (B]) and, therefore, has center at the origin (see
e.g. [822]).

The Resonant Center Problem 135

The following theorem is the main result of this paper.

Theorem 3. System (@) has a resonant center at the origin if one of the fol-
lowing conditions holds:

(a) a1 = b1 =1,
(1) asg — by = 27(1%2b30 — 9&02()301)02 + 144ag2b29 — 28bogbge + 48 = 0;
(2) bao = a2 =0;
(3) boz = a0 =0;
(8) a1 =1, b1y =0,
(1) asg — by = 270,(2)2b%0 - gaogbgoboz + 396a02b29 — 52b2gbg2 + 360 = 0;
(2) b20 = a0 = 0,‘
(3) a20bo2 + 6 = bag = agz — boz = 0;
(4) azoboz — 6 = bao = 3apz + 4bpz = 0;
(5) bagboz + 18 = 3aga + 4bo2 = azo + 3b2o = 0;
6) 3agz + 4boz = 3ago + 2b2 = 0;
(v) a1 =0, by =1,
(1) bog = ap2 = 0,‘
(2) 3apzbao — baoboz + 6 = azg — bap = 0;
(3) ao2 = azp — bag = 0;
(4) ago + 2b2p = 0;
(6) a1 =bi1 =0,
(1) 3azoaoz + azoboz — 2babo2 = 0;

(2) a2 =0;
(3) b20 = 0,’
(4) aso + 2byg = 0.

Proof. Computing the conditions. To compute focus quantities of system (@) we
use the algorithm in [21], which is derived from formulae (@) and ().
Following the algorithm and using a straightforward modification of the com-
puter code in [22] Figure 6.1], we compute 12 focus quantities g3 2, ..., g36,24 ;
where g,2r+1),p2k+1) =0 for k=0,...,5, gea = (1512af, azo + 216ag2a3, a3, +
36a%1a50b02 — 1764a§1a20b11 — 2880,02@110,%0[711 — 72@1 1G%Ob02b11 + 672a%1a20b%1 +
72@02@%057%1 + 20@%05702{)%1 - 84@11@2()&?1 + 1008@11115)20 + 21960,020,%10,201720 +
63 0%2 a%o bag + 576 a?l ag0bo2 bog + 21 age a%o boa bog — 1848 a:fl b11 b2 —
1386ag2a11a20b11b20 — 272a11a20bg2b11b20 + 1008@%117%1()20 + 198&02(12(){)%1{)20 +
20(120()02()?11)20 — 168@11()‘;’1()20 + 360&02&%11)30 + 126a%2a20b50 — 976(1%11)02()30 —
468(102&11b11b%o—|—512(111b02b11b50+108a02b%1b%0—40()02()%1()%0—84&02()02()%0)/504,
and the rest of the polynomials are too long to be presented here. Next, we need
to find the decomposition of the variety of the ideal Biz = (g6 4, g12.8; - - -, g36,24)
(the ideal is defined by 6 nonzero polynomials). We expected it could be done
using the routine minAdssGTZ of SINGULAR (in [9]) which computes minimal
associate primes of the polynomial ideal using the method of [I4]. However, this
turned out to be a very difficult computational task, and we were unable to
complete the computation — neither working over the field of rational numbers
nor in the field of characteristic 32003. Note that, using a rescaling x — ax,

136 J. Giné et al.

y — By, one can set any nonzero pair of coefficients (ag;, bmn) to (1,1), except
the pair (a1, b11). In the pair (a11,b11) by a rescaling we can set only one of
coefficients a1, b11 equal to one, but the other one remains arbitrary. We tried
to find the decomposition of the variety of the ideal Biz = (g6 4, g12.8; - - -, g36,24)
with a1 set to one (and the other coeflicients being arbitrary) and with b1 set
to one (and the other coefficients being arbitrary). In both cases, we were unable
to complete computations at our facilities working in the field of characteristic
32003.

We, therefore, limit our consideration to the cases when either one or both
coefficients a11, b1 in system (@) are equal to zero, or both coefficients are equal
to 1. That is we consider the following 4 cases: () a;1 = b11 = 1, (B) a11 =
1, b11 = 0, (’}/) ail = 07 b11 =1 and ((5) ail = b11 =0.

In case (), computing in the field of characteristic zero, we obtain conditions
(&) of the theorem.

In case (8), computations with minAssGTZ in the field of characteristic 32003
yield the list L presented in line 2 of Figure 1. Using the code from Figure
1 (which is based on the rational reconstruction algorithm of [23]) we obtain
conditions (8) of the theorem. A simple check shows that each of conditions
(8) yields vanishing of all polynomials of the ideal B12. However, since modular
computations are enforced, some components of the irreducible decomposition of
the variety V(Bi2) of the ideal Bi2 can be lost. To check that the decomposition
is correct, we use the function intersect of SINGULAR to compute J = N$_, Jx,
where Jj, are ideals defined by conditions (1)—(6) of case (3) in Theorem [Then,
using the radical membership test, we verify that each polynomial of J vanishes
at V(Bi2). This means that (1)—(6) of (8) give the correct decomposition of the
variety of the ideal B1s with a1; = 1, b1 = 0. Thus, we have obtained necessary
conditions of integrability for this case.

Similarly, we obtain necessary conditions for cases a1; = b1; = 1 and a7 =

0, b11 =1 (conditions («) and (7), respectively, of the theorem).
Proof of sufficiency. Cases (3) of (a), (6) of () and (1) of (v) satisfy condition
(3) of Theorem [T} cases (4) of () and (4) of (§) satisfy condition (2) of Theorem
[0} case (3) of (§) satisfies condition (1) of Theorem [Il Thus, they are sufficient
conditions for system ([@) to have a resonant center at the origin.

Furthermore, cases (1) and (2) of («) in Theorem Bl correspond to cases (1)
and (2) of («) of Theorem 2l However, we present another proof for case (2) of
(). The corresponding system is

& =2z — 2%y — agezy?, Y= —3y+ zy® + boay?, (16)

and it has two algebraic invariant curves: I; = x and ls = y. In this case, we
do not find enough invariant curves to construct a Darboux first integral or an
integrating factor. Although we are not able to find a closed form for a first
integral of system (IGl), we are going to prove that such analytic first integral
exists. We look for a formal first integral of the form

d(x,y) = Y hi(x)y". (17)
k=2

The Resonant Center Problem 137

For each k = 0,1,2,..., functions hg(z) should satisfy the first-order linear
differential equation

(k — 2)b02hk,2($) + (k? — 1)$hk,1(1’) — a()gl'h;c_g(.’b)
—2?h)_, () — 3khy(x) + 2xh) (x) = 0. (18)
Solving this equation, we obtain he(z) = 22, hg = —a*, hy = —23(3ag2 — 2bo2 —
322)/6, taking the integration constants equal to zero. Using induction on k we
wish to show that
hi(z) = pr(x) for k>2,

where py(z) are polynomials of degree k + 1. Hence, we assume that for k =
2,...,m—1, there exist polynomials hy, satisfying (I8)), such that deg(hx) = k+1.
We then solve the linear differential equation (I8) for £ = m and obtain

1
hm(l’) _ C$3m/2 + 2x3m/2/x—l—(Sm)/ng(x)dx’ (19)

where g, (z) = (2—m)bo2hm—2(2)+(1—m)xhy,—1 (z)+22h., 1 (x)+acezh!, o(z)
and C is a constant of integration. Taking into account that, by hypothesis,
deg(hm—1(z)) = m and deg(hm,—2(x)) = m — 1, we find that the degree of
gm/(x) is at most m + 1. Now, we must study whether the integral can give any
logarithmic terms. Therefore, we must prove that terms involving = do not
appear in the integrand in (I9]). The exponents that can appear in the integrand
are of the form

—-1-Bm)/24+m+1—s, where s=0,1,...,m+ 1.

We want to know if this exponent, which, when simplified, is equal to —m /2 — s,
can equal —1. This would imply that m = 2 — 2s as m € N, thus, s = 0,1 and
m = 0,1. However, since m > 2, there can be no logarithmic terms. Moreover,
we can see that taking the constant of integration C' equal to zero, h,,(z) has
degree at most m + 1. Hence, we proved that system () admits a formal first
integral of the form (7). Consequently it has an analytic first integral around
the origin.

Case (1) of (8) corresponds to the case (1) of () of Theorem 2
Case (2) of (8) corresponds to the case (2) of () of Theorem 21 However, in
this case there also exists a Darboux integrating factor. Indeed, the correspond-
ing system is
& =2 — 2’y — anexy®, Y = —3y + boay’.

\/bozy

J3 and

It has four algebraic invariant curves: [; =z, Iy =y and lz34 =1=£

it is possible to compute an integrating factor of the form

2 ap2
L
3

138 J. Giné et al.

By [8, Theorem 4.13], this means that the system also admits an analytic first
integral (B)).
Case (3) of (8). In this case, system (@) takes the form

. 6 .
T =2+ b 3 — 2%y — bosxy®, U = —3y + boay?.
02
Vbo2y
2 V3
3
and I5 =1+ bx — 2zy, which allow to construct a Darboux integrating factor
02
_5 3 3 _1
of the form p = 15 2152141315 *. Again, by [8, Theorem 4.13], there exists an
analytic integral (3)).

This system has five algebraic invariant curves: [y =z, lo =y, l3a =1+

Case (4) of (B). Here, the corresponding system is

_ 6 4b .
T =2r — z° —w2y+ 02xy2, Y= —3y+bo2y2,
bo2 3
b
and it has six algebraic invariant curves: [y =z, lo =y, l34 = 1+ Vboay and

V3
3 b
lbe=1+ <\/ * + v 02y>’ yielding the integrating factor

Vboz V3

=17 2152 (1sls) " 3 (Islg) 5.

and, therefore, a first integral ([B)).
Case (5) of (8). The system of this case is written as

. 54 4 . 18
#=2w— w2ty d by’ §=-3y—, 2%y +boy’.

02 boz
If we take bgo = 3 by a scaling we find that the substitution

42 v 823y(3x +y — 1)(1 + 3z + y)
-1+3 2)2” o ~1+3 24
(=1 + 32y +y?) (=1 + 32y +y?)

blows down the origin of the system
@ =20 —182° — 2y + dwy?, §=—3y— 62y + 3y
to a node (after scaling time by a factor 1 — 3zy — y?)
X =4X —2Y —9X?%, Y =3Y(1 - 8X)

The first integral of the node is in the form @ = Y4/(X + kY + O(2))3, which
pulls back to a first integral of the form

& = 2%*(k +0(1)), (k> 0isa constant).

The Resonant Center Problem 139

We can then take square roots to obtain the first integral of our original system.

If boz is negative (so choose bpz = —3), then we get a similar transformation
with z replaced by ix and y by y/4, this transformation is still real if we multiply
out the brackets corresponding to (3z +y —1)(1+ 3z +y) in the transformation
above.

Case (1) of () follows from case (2) of (8) by swapping ai; with by1, and
a20, bog with ags, bp2, respectively.

Case (2) of () corresponds to the case (1) of () of Theorem [21

Case (3) of () corresponds to the case (2) of () of Theorem[2l Another proof
of integrability for this case can be obtained in a similar manner as the proof
given above for case (2) of («).

Case (2) of (d). The corresponding system is
L 3 2 2
T =2x —agx’, Y= —3y+ baox”y+ boay”.

\/?/22096 , and

It has four algebraic invariant curves: I} =2, lp =y andlz34 =1+

it is possible to compute an integrating factor of the form

1_ b2

2\ "2 7 a
asnx 20

Integration yields the first integral

v 3.’133]]2

3 _ b2

azow?) 2" 420 2 3 by _ 1._ 1. axa?
3(1_ 2) —bo2y 21 (=55 g — 23723

3 Concluding Remarks

We have obtained the necessary and sufficient conditions for integrability of
system (@) with a1; = b11 equal to 0 or 1, or one of the coefficients a11,b11 equal
to zero.

To obtain the necessary and sufficient conditions of integrability of general
system (@) we need to compute the irreducible decomposition of the variety of
the ideal B15 where only one of coefficients a1, b1 is set to 1, but the calculations
cannot be completed at our computational facilities because of computational
complexity of the problem.

Acknowledgments. The first author is partially supported by a
MICINN/FEDER grant number MTM2011-22877 and by a Generalitat de
Catalunya grant number 2009SGR 381. The fourth author acknowledges the
support of the Slovenian Research Agency.

140 J. Giné et al.

Appendix

In Figure 1 we present a code in MATHEMATICA to perform the rational recon-
struction based on the algorithm in [23]. For the input, the code takes the ideal
returned by minAssGTZ of SINGULAR in the case a;; = 1,b11 = 0. The output
are the conditions (3) of the Theorem [3

In[1= $PreRead = ReplaceAll[#, {" ("= "{", ")" > "}"}] &;

In2)= L[1] = ideal
(a20 - b20, 20242 %xb2042-10668 xa02*b2042xb02 - 10653 *a02 *b20 - 8299 xb20 xb02 + 10681) ;
L[2] = ideal (b20, a20);
L[3] = ideal (a02+ 10669 *b02, a20 - 10667 xb20) ;
L[4] = ideal (a02 + 10669 *b02, a20 + 3 *xb20, b20 +b02 + 18) ;
L[5] = ideal (b20, a02 + 10669 *xb02, a20 *b02 - 6) ;
L[6] = ideal (b20, a02 -b02, a20*b02 +6) ;

In[8l= $PreRead=.

In[9]= Sing2Math[L_Symbol] := Table[DownValues[L][i, 2], {i, 1, Length[DownValues[L]]}] /. {ideal » 1}

{10}~ RATCONVERT[c_, m_] := Blcck[(u {1, 0, m}, v={0, 1, e}, r},

m m v[3]
while[‘, — <v[3], r = u- Quotient [u[3], v[3]] vi u=v; v=r],' If[Abs[v|[2]]] 2] =, err,]]
2 2 vI2]

In[11]:= CenterCond[L_] := Table[Factor[
Replace[Sing2Math[L], (n_Integer | Times[n_Integer, x__]) :» If[n > 0, RATCONVERT[n, 32003] x,
~RATCONVERT[-n, 32003] x], {3}][il], {i, 1, Length[DownValues[L]]}]

In[12]:= CenterCond[L] // MatrixForm

Out[12)//MatrixForm=
{220 -b20, = (360 +396202b20 - 52 b02b20 + 27 202 b20” - 9 202602 b20%) }
{b20, a20}
{%(3202+41002), I (3220+2b20)}
{§ (3a02 +4b02), a20 + 3 b20, 18+b02b20}
1

{p20, 7 (3202 +41b02), -6 +a20b02}
{020, a02 -1b02, 6 +a20b02}

Fig. 1. MATHEMATICA code for rational reconstruction

In the code PreRead, there is a global variable the value of which, if set,
is applied to the text or box form of every input expression before it is fed
to MATHEMATICA. The function Sing2Math transforms the output L of the
type list of SINGULAR to a list of MATHEMATICA, the RATCONVERT performs
the rational reconstruction of a given number using the algorithm of [23], and
applying CenterCond we obtain the rational reconstruction for the whole list L.

The Resonant Center Problem 141

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Bibikov, Y.N.: Local theory of nonlinear analytic ordinary differential equations.
Lecture Notes in Mathematics, vol. 702. Springer, Heidelberg (1979)

Bruno, A.D.: A Local Method of Nonlinear Analysis for Differential Equations.
Nauka, Moscow (1979) (in Russian); Local Methods in Nonlinear Differential Equa-
tions. Springer, Berlin (1989) (translated from Russian)

Chavarriga, J., Giacomini, H., Giné, J., Llibre, J.: On the integrability of two-
dimensional flows. J. Differential Equations 157, 163-182 (1999)

Chavarriga, J., Giacomini, H., Giné, J., Llibre, J.: Darboux integrability and the
inverse integrating factor. J. Differential Equations 194, 116-139 (2003)

Chen, X., Giné, J., Romanovski, V.G., Shafer, D.S.: The 1: — q resonant cen-
ter problem for certain cubic Lotka—Volterra systems. Appl. Math. Comput. (to
appear)

Christopher, C., Li, C.: Limit Cycles of Differential Equations. Birkhauser, Basel
(2007)

Christopher, C., Rousseau, C.: Nondegenerate linearizable centres of complex pla-
nar quadratic and symmetric cubic systems in C2. Publ. Mat. 45, 95-123 (2001)
Christopher, C., Mardesic, P., Rousseau, C.: Normalizable, integrable and lineariz-
able saddle points for complex quadratic systems in C?. J. Dyn. Control Syst. 9,
311-363 (2003)

Decker, W., Pfister, G., Schonemann, H.A.: Singular 2.0 library for computing the
primary decomposition and radical of ideals primdec.lib (2001)

Dulac, H.: Détermination et intégration d’une certaine classe d’équations
différentielles ayant pour point singulier un centre. Bull. Sci. Math. 32, 230-252
(1908)

Fronville, A., Sadovski, A.P., Zoladek, H.: Solution of the 1 : —2 resonant center
problem in the quadratic case. Fund. Math. 157, 191-207 (1998)

Giné, J.: On the number of algebraically independent Poincaré-Liapunov constants.
Appl. Math. Comput. 188, 1870-1877 (2007)

Giné, J., Mallol, J.: Minimum number of ideal generators for a linear center per-
turbed by homogeneous polynomials. Nonlinear Anal. 71, €132-e137 (2009)
Gianni, P., Trager, B., Zacharias, G.: Grébner bases and primary decomposition
of polynomials. J. Symbolic Comput. 6, 146-167 (1988)

Gravel, S., Thibault, P.: Integrability and linearizability of the Lotka—Volterra Sys-
tem with a saddle point with rational hyperbolicity ratio. J. Differential Equa-
tions 184, 20-47 (2002)

Greuel, G.M., Pfister, G., Schonemann, H.: Singular 3.0. A Computer Algebra
System for Polynomial Computations. Centre for Computer Algebra, University of
Kaiserslautern (2005), http://www.singular.uni-kl.de

Hu, Z., Romanovski, V.G., Shafer, D.S.: 1 : —3 resonant centers on C? with homo-
geneous cubic nonlinearities. Comput. Math. Appl. 56, 1927-1940 (2008)
Liapunov, M.A.: Probléeme général de la stabilité du mouvement. Ann. of Math.
Stud. 17. Pricenton University Press, Princeton (1947)

Liu, C., Chen, G., Li, C.: Integrability and linearizability of the Lotka—Volterra
systems. J. Differential Equations 198, 301-320 (2004)

Poincaré, H.: Mémoire sur les courbes définies par les équations différentielles.
Journal de Mathématiques 37, 375422 (1881); 8, 251-296 (1882), Oeuvres de Henri
Poincaré, vol. I, pp. 3-84. Gauthier—Villars, Paris (1951)

http://www.singular.uni-kl.de

142

21.

22.

23.

24.

J. Giné et al.

Romanovski, V.G., Shafer, D.S.: On the center problem for p : —q resonant poly-
nomial vector fields, Bull. Belg. Math. Soc. Simon Stevin 15, 871-887 (2008)
Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: A Computa-
tional Algebra Approach. Birkhduser, Boston (2009)

Wang, P.S., Guy, M.J.T., Davenport, J.H.: P-adic reconstruction of rational num-
bers. SIGSAM Bull. 16, 2-3 (1982)

Zo}@dek, H.: The problem of center for resonant singular points of polynomial
vector fields. J. Differential Equations 137, 94-118 (1997)

Complexity of Solving Systems with Few
Independent Monomials and Applications
to Mass-Action Kinetics

Dima Grigoriev! and Andreas Weber?

1 CNRS, Mathématiques, Université de Lille, Villeneuve d’Ascq, 59655, France,
Dmitry.Grigoryev@math.univ-1lillel.fr
2 Institut fiir Informatik II, Universitit Bonn, Friedrich-Ebert-Allee 144,
53113 Bonn, Germany,
weber@cs.uni-bonn.de

Abstract. We design an algorithm for finding solutions with nonzero
coordinates of systems of polynomial equations which has a better com-
plexity bound than for known algorithms when a system contains a few
linearly independent monomials. For parametric binomial systems we
construct an algorithm of polynomial complexity. We discuss the appli-
cations of these algorithms in the context of chemical reaction systems.

Keywords: Complexity of solving systems of polynomial equations,
Smith form, toric systems, mass-action kinetics, chemical reaction net-
works.

1 Introduction

We study systems of polynomial equations with a few linearly independent mono-
mials. To find solutions with nonzero coordinates of such systems we design in
Sect. 2] an algorithm which makes use of a combination of the multiplicative
structure on the monomials with the additive structure emerging from the lin-
ear equations on monomials called Gale duality and which was used in [1] for
improving Khovanskii’s bound on the number of real solutions of systems of
fewnomials. This combination allows one to diminish the number of variables,
being crucial since the latter brings the greatest contribution into the complex-
ity of solving systems of polynomial equations. Moreover, the designed algorithm
allows one to look for positive real solutions that is important in the applications
to mass-action kinetics [2-7].

Note that the designed algorithm has a better complexity bound than the one
just employing the known general methods for solving systems of polynomial
equations |8, 9] or inequalities [10]. So more, it has better complexity bounds
than the methods relying on Grébner bases [11] or involutive divisions [12] which
have double-exponential complexity upper and lower bound [13].

In Sect. Bl we expose an algorithm finding solutions of parametrical binomial
systems with nonzero coordinates and parameters within polynomial complexity

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 143-[[54] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

144 D. Grigoriev and A. Weber

which invokes computing the Smith canonical form of an integer matrix. Such
systems also emerge in mass-action kinetics. Similar to Sect. 2 the algorithm
allows one to look for positive real solutions. The polynomial complexity cannot
be achieved using the general methods for solving systems of polynomial equa-
tions or, respectively, inequalities (as well as the Grobner or involutive bases
because the example of generators of an ideal from |13] with double-exponential
complexity consists just of binomials).

In [14] a polynomial complexity algorithm is designed to test whether a bi-
nomial system has a finite number of affine solutions (including ones with zero
coordinates). On the other hand, it is proved in |14] that the problem of counting
the number of affine solutions of a binomial system is # P-complete. We observe
also that the problem of testing whether a system of binomial equations ex-
tended by linear equations (being customary in biochemical reactions networks)
has a positive solution, is NP-hard. Indeed, adding to a system of binomials
z;-y; = 1,1 <4< nin 2-n variables linear equations z; +y; = 5/2, 1 <i<mn
and a single linear equation in the variables x1, ..., x,, we arrive to the knapsack
problem.

Potential applications of these algorithms in the context of chemical reaction
networks are discussed in Sect.[dl We also expose a computational example there.

As a related work we mention also [15] where an algorithm for solving systems
of quadratic inequalities is designed with the complexity bound being good when
the number of inequalities is rather small.

2 Polynomial Systems with a Few Linearly Independent
Monomials

Any system of polynomial equations can be represented in a form
A-Y=0 (1)

where A = (a,;), 1 <k <Il,1<j<misamatrix,andY = (¥;),1 <j<m
is a vector of monomials Y; = X{7' ... X} in the variables X1,..., X,,. An al-
gorithm designed in this Section searches for solutions of (Il) with non-vanishing
coordinates z1,...,z, € (Q)* := Q\ {0}. The condition of non-vanishing co-
ordinates is not too restrictive for the purposes of mass-action kinetics since in
the latter one looks usually for solutions with positive real coordinates. Assume
that y;; <d, 1 <j <m,1 <4< n, and that the entries a; ; € Z are integers,
therein |ag ;j| < M. The assumption on aj ; to be integers is adopted just for
the sake of simplifying complexity bounds, one could consider by the same token
algebraic entries a ; € Q.

The considered form of systems of polynomial equations appears, in particular,
in the study of stationary solutions of the dynamical equations of the mass-action
kinetics |24, |6, [7].

In general, the algorithm solving systems (I} (with or without imposing
the condition of non-vanishing coordinates of solutions) has complexity bound

Complexity of Solving Systems with Few Independent Monomials 145

polynomial in [, d"Q, log M [8,19]. In this paper, we suggest an algorithm for solv-
ing systems with the complexity being better than in general when the difference
r:=m —rk(A) is small enough.

The solutions of system (Il) depend on r parameters Z1, ..., Z,. One can thus
express monomials Y; = 21<k<7~ Uk - 2k, 1 < j < m with suitable rationals
Uj k€ Q.

One can bring the matrix y := (y;;) to the Smith canonical form. Namely,
one can find integer square matrices B = (bo,g) of size m x m and C' = (cy5)
of the size n x n such that det(B) = det(C) = 1, and the matrix V = (v;;) =
ByC, 1 < j <m,1 < i < n has the following form. The only non-vanishing
entries v;; are on the diagonal v;; # 0,1 < j < p where p := rk(y). More-
over, v11|vaa|---|vpp, although we will not make use of this extra property
on divisibility. The complexity of constructing matrices B, C is polynomial in
n, m, logd |16]; moreover, one can make its parallel complexity poly-logarithmic
[17]). In particular, |by.gl, |cy.6] < (d - min{n,m})Omininm}),

Consider polynomials f; = ngjgm ij‘“'j € Q[Z1,...,Z,],1 < s <m. Then
deg(fs) < m-(d-min{n, m})°mir{n.m}) The input system (I)) has a solution over
(Q)* iff the system of equations f,11 = --- = f,, = 1 and inequation f; --- f, # 0
has a solution in Z1, ..., Z, over Q. In particular, among f,11,..., fm the poly-
nomial f; = Yy, p < ¢ < m occurs, when the monomial Y, equals 1 identically
(provided that the monomial 1 is among the monomials Y7, ...,Y},). The latter
yields an equation (fy =) > p<, gk - Zx = 1. One can find the irreducible
components of the constructible set of solutions of the latter system using |8, |9].
Any solution (z1,...,2,) of the latter system provides a solution of the input
system as follows.

Denote the monomials W; := [],<;<, Xf”, 1 < t < n. Then the equa-
tions W,** = f;, 1 < t < p impose the conditions on Wy, 1 < t < p, while
Wp+1, ..., W, can be chosen as arbitrary non-zeros. Finally, having Wy, ..., W,
one can come back to X1, ..., X, by means of the matrix C~!.

Sometimes, in the applications to chemistry one looks for positive real solu-
tions X1 > 0,..., X, > 0 of the input system () |3, 4, 6, [7]. The latter is equiv-
alent to W7 > 0,...,W,, > 0. This imposes the condition f; > 0,1 <t < p and
one can solve the system of inequalities f; > 0,1 <t <p, fpr1 == fmn =1
over the reals with the help of [10]. After that W;, 1 < t < p are obtained
uniquely from the equations W, = f;, 1 <t < p, while W41 > 0,...,W,, >0
can be chosen in an arbitrary way. Finally, we can summarize the results.

Proposition 1. One can design an algorithm which finds the irreducible com-
ponents of the constructible set of solutions with non-vanishing coordinates
ZT1,...,Zn of a system of polynomial equations ([d) within complexity polyno-
mial in I, n, m, (d- min{n,m})o(mi“{”’m})""Q, log M. Moreover, the algorithm
can find positive real solutions of () also within the same complexity bound.

Note2 that this complexity bound is better than the bound polynomial in
I, d"", log M from [8-10] when r is significantly smaller than n. As usually, the
practical complexity bounds are apparently better than the established a priori

146 D. Grigoriev and A. Weber

bounds, especially when the complexity of bringing to the Smith form being
small.

Remark 1. Using indeterminates Z1, ..., Z, in a similar way to our proposal has
been done by several authors, see e.g. [2,[3] and references therein. Also using
the Smith normal form has been proposed in [2] as well as [3] (in addition to
using logarithms or the Hermite normal form), but for computations the Hermite
normal form or Grébner basis methods have been used in these papers. Hence
although several parts of our proposed algorithms have been around for the
special case of chemical reaction networks for several years, but nevertheless in
addition to the complexity analysis also our proposed algorithm seems to be new
in its full form.

3 Parametric Binomial Systems

Now suppose that a matrix A at each of its rows contains at most two non-
vanishing entries, and moreover every entry is a monomial of the form 3- K¥ :=
B K- Kg Herein 3 € Q and K1, ..., K, play the role of parameters. Such
parametric systems appear in the applications to mass-action kinetics [3, |4, |6,
7, [18]. In other words, each equation of ({Il) can be viewed as a binomial in
the variables Xi,..., X, Ki,..., K, We pose a question, for which non-zero
values of K1, ..., K, the system (Il has a solution in non-vanishing x1, ..., 2,7
Alternatively, for which positive real values of K, ..., K, the system (IJ) has a
positive real solution?
Rewrite now the system () of [binomials in the form

X% =8 K%, 1<j<1 (2)

where X := X% ... x5 KHi .= Kfj’l -~-K,?j"’. The algorithm brings the
matrix G := (g;,;), 1 < j <1, 1 <14 < n to the Smith canonical form. Thus, the
algorithm yields integer unimodular matrices B’, C’ such that B’ - G - C' is in
the Smith canonical form. Let s := rk(G) and the only non-vanishing entries of
B'-G - C' be its first s diagonal entries g i,...,g; ;- Denote B' =: (b’), 1 <
Jra <land v; LK = [1i<a<i(Ba ~KH‘¥)b;‘a.

The system (2) for given non-zero Ki,..., K, has a solution in non-zero
Xy,..., X, iff

v KT =1,s4+1<j<l. (3)

In its turn, solvability of (2] in positive real solutions Xi,..., X, for positive
real Ki,..., K, imposes extra conditions 51 > 0,...,5; > 0.

For non-zero values of parameters K7, . . ., K, satisfying (3) one can find mono-
mials ngz‘gn Xic“’i7 1 < p < s, where the matrix C" =: (¢}, ;), 1 < 1,4 < n, from
the equations (J], <, X:“’i)g:w =Y - KM 1 <y < s, while the non-zero
values of the monomials [[,.,, Xic“’i,s +1 < p < n are chosen in an arbi-
trary way. Then the algorithm uniquely finds X1,..., X, from the monomials

Complexity of Solving Systems with Few Independent Monomials 147

[li<i<n Xic‘”’, 1 < pu < n with the help of the matrix (C’)~1. Respectively, for
positive real K1,..., K, to get positive real X1,..., X,, one chooses the positive

values of the monomials], ., -, X" s4+1 < p<nin an arbitrary way.

To describe the conditions on non-zero Ki,..., K, satisfying (B)), the algo-
rithm brings (I — s) x ¢ matrix H' := (h}), s+1 < j <[, 1 < a < g, where
the vector H; =: (h},), 1 < a < g, to the Smith canonical form. Thus, the
algorithm yields integer unimodular matrices B” = (b7 5), s+1< 4,6 <1, C" =
(cha)s 1 < pya < g such that the only non—vamshmg entries of the matrix
B" - H'-C" are its first ¢ diagonal entries hy ;,...,hy;, where t = rk(H’).

—bY . S
Denote € := [[, 15,7 > s+ 1 < j < 1. Then @) has a solution in
non-zero ki, ..., kg iff

G =1s+t+1<j<l. (4)

If @) holds one can find the valyes of the monomials [lica<q K. oo 1< u<t
from the equalities (H1<a<qK - “)hu no=€gyp, 1 < p < t, while the non-zero

<!’

values of the monomials [, ., Ko, t41 < i < q are chosen in an arbitrary
way. Respectively, the latter values are taken as arbitrary positive reals when one
is looking for positive reals K1, ..., K,. After that, the algorithm finds uniquely
Ki, ..., K, from the values of the monomials ngagq K;“’“, 1 < p < g with the
help of the matrix (C")~!

Thus, the described algorithm applies twice the subroutine for construct-
ing the Smith canonical form (and does not need to involve algorithms for
solving systems of polynomial equations). Observe that solvability of ([2)) for
NON-ZEI0 I1,...,Tn, k1,...,kq 1S equivalent to solvability of). Each ¢; =

ngagl 52”, s +1 < j <1 for appropriate integers A; o € Z such that

Aol < (d-min{l,n})O@intteh (g min{i, ¢})0 min{ta})

assuming that all the exponents in (2) satisfy inequalities |g; |, |k, < d (due
o |16, [17]).

To verify (@) the algorithm constructs a relative factorization of f1,. .., p; (for
the sake of simplifying notations assume that all 31, ..., 3; are positive integers;
for rational numbers one has to consider the absolute values of their numerators
and denominators). Namely, the algorithm constructs by recursion nonnegative

integers 71, ...,7, pairwise relatively prime such that 8, = n*"' - """, 1 <
p < [for suitable nonnegative integers x, ;. As a base of recursion the algorithm
starts with (q,..., ;. Assume that at some step the algorithm has constructed

Bi,..., By such that (B1---B,)[(B1---Bi). Take any pair §;,8;, 1 < i # j <
I' for which ¢ := GCD(B],8;) # 1 and replace the pair 3;, 8} by the triple
0, 8i/0, B;/0. If there is no such a pair the algorithm halts.

The product of the modified (I’ 4+ 1)-tuple is a strict divisor of the prod-
uct (B ---B;) at the previous step of the algorithm. Hence after at most of
logy (81 -+ B1) < 1-logy M steps the algorithm constructs the relative factoriza-
tion 71, ..., 1. One can easily show that the latter is unique, although we don’t

148 D. Grigoriev and A. Weber

make use of its uniqueness. The complexity of constructing 7y, ..., 7, is bounded
by a polynomial in [, log M. In particular, Z1§H§l, 1<i<r Kp,i 18 also bounded by
a polynomial in [, log M.

Now the algorithm is able to verify equalities (@) representing each ¢; =
[Li<i<, niyj’i, s+t+1 < j <lasaproduct of powers of 1, ..., 7, for appropriate
integers v;; (perhaps, nonnegative). Then ¢; = 1 iff v;; = 0,1 < ¢ < r. The
complexity of computing all v;;, s+t +1 <7 <[, 1<17<r does not exceed a
polynomial in n, I, g, log(d- M). Finally, we can summarize the results obtained
in this section.

Proposition 2. One can solve a parametric binomial system (3) with non-zero
values of both parameters ki, ..., kq and variables x1,...,x, within polynomial
complexity, i.e., within a polynomial in the size n, 1, q, log(d - M) of the input.
Within the same complezity bound one can find positive real solutions of (3).

Remark 2. In the proof of |19, Theorem 4.1] a similar application of the Smith
normal form is used for the special case of binomial systems arising for so called
“deficiency zero systems” of chemical reaction networks (see [2] for a definition
or Sect. F] below; please notice that [2] as the final journal version of |[19] un-
fortunately no longer contains the cited algorithmic application of the Smith
normal form). However, for general parametric binomial systems our algorithm
applying twice the subroutine for constructing the Smith canonical form seems
to be new—in addition to providing a complexity analysis.

4 Applications to Chemical Reaction Networks

There is a vast literature for chemical reaction networks with mass action kinet-
ics. We refer to |2] and the cited literature therein for definitions relevant in our
context.

In these systems the matrix A in () can be factored as

A=Y I, I, (5)

where I, = (ig;), 1 < k < h,1 < j < m is an integer matrix with entries
0,1,—1, Y is an [x h-integer matrix with non-negative entries, and I, is a
matrix k, , of reaction rates, which in general are seen as parameters for the
system. The occurring dimensions can be interpreted as follows: n is the number
of participating molecular species, [is the number of reactions, and m is the
number of complexes.

Following [2] the deficiency of a chemical reaction network with an associated
polynomial system of the form

Y-I,-I;-Y

can be defined as R
rkl, —rtkY - I,.

Hence it is a non-negative integer.

Complexity of Solving Systems with Few Independent Monomials 149

4.1 Chemical Reaction Networks with Toric Steady States

Remarkably, many chemical reaction systems have the property that the steady
state ideal of the corresponding polynomial system is a binomial ideal [18]. Using
the terminology of [18] these systems are ones having toric steady states.

For a given chemical reaction network the property of having toric steady
states is dependent on the parameters in general. A simple instance is given in
[18, Example 2.3].

For chemical reaction networks with toric steady states for all admissible
parameters Péres Milldn et al. [18] establish criteria for the existence of positive
equilibria, and also for so called multi-stationarity, which are basically linear
algebra criteria.

However, in cases for which multi-stationarity is established, the criteria in
[18] give no detailed information about the structure of the equilibria of the
system, whereas our algorithm computes in polynomial time all equilibria hence
allowing a detailed analysis of them.

On the other hand, in the algorithm presented in Sect. [B] we presume that
already the input system is in the form of a parametric binomial system, whereas
in |18] it is not necessary that the input system is of this form, but the main
result in [18] gives sufficient conditions for a chemical reaction system to have
toric steady states.

For a given chemical reaction network, which potentially has toric steady
states, there are several possibilities to come up with a parametric binomial
system that in turn can be solved by the algorithm presented in Sect. B

— Use the construction for a binomial system given in [6]. As this construction
uses an enumeration of spanning trees of underlying graphs, its worst time
complexity is exponential.

— As a sufficient condition one can check [18, Condition 3.1]. Then |18, The-
orem 3.3] gives an easy construction for a binomial system generating the
steady state ideal. A check of |18, Condition 3.1] for a given basis of ker A
is easily doable. However, enumerating all possible bases of ker A yields ex-
ponential complexity. So one has to hope for suitable heuristics to come up
with good test candidates among all bases of ker A.

— Compute Grobner bases (any monomial ordering would be sufficient). As
already mentioned the worst time complexity is doubly-exponential, but the
practical complexity could be much better for many relevant examples (as
also there is freedom to use a suitable monomial ordering).

Although for all of these constructions the worst case complexity is (at least)
exponential, it might nevertheless be interesting to explore their behavior for
actual chemical reaction systems.

Moreover, the factorization A = Y - I, - I[;—or other factorizations of the
matrix A—might yield much simpler problems. For instance, for deficiency zero
systems the fact that rk I, = rk Y -1, implies that only I,,- I has to be considered
instead of Y - I, - I.

150 D. Grigoriev and A. Weber

Although the worst-case complexity of these methods all are worse than the
one of the general algorithm given in Sect. [l one can employ all of them and the
latter algorithm using simple coarse grained competitive parallelism, which can
be realized in many software infrastructure—e.g. the one already used a decade
ago and described in [20].

Remark 3. Of course solving systems gives significantly more information than
counting the number of solutions only. Also other forms of solution testing can be
applied. One of these criteria is whether the projection onto one coordinate of all
positive steady states of a system is unique. This property directly corresponds
to the “absolute concentration robustness” [21], for which a special criterion for
systems having deficiency of 1 is proven in [22].

4.2 Examples from the BioModels Database

We use examples stored in the BioModels database [23] in the following to discuss
the practical relevance of the assumptions made above. Of course, for other
example classes the situation might be different.

For most of the examples for which r being significantly smaller than n, the
deficiency of the network is 0. Hence the Deficiency-zero-theorem already gives
significant information about the uniqueness [2, 24] of equilibria for these cases
and also the algorithm given in the proof of |19, Theorem 4.1] could compute
these unique equilibria for a fixed set of parameter, i.e., a unique solution to
the polynomial system. However, we are not aware of an implementation of this
method, and our algorithm given in Sect. 3 is as efficient as the more restricted
method of [19, Theorem 4.1].

However, there are also several example of networks having deficiency 1 or
even higher deficiencies — for which no such general theorems are known, for
which r being significantly smaller than n.

Example BIOMOD188. As an example we consider the model with the num-
ber 188 in the BioModels database, which was originally described in [25]. The
network induces a stoichiometric matrix of size 20 x 20 and has a deficiency of
4. The dimension of the nullspace of the stoichiometric matrix A is 6. The rank
of the exponent matrix Y is 11.

The polynomial system is as follows (with two instances of the 0-polynomial
due to the automated construction of the system from the SBML description):

ko x4 — ke 21+ ks - w3 — ko -T2 - 1 + k10 - T3 — k16 - T1 - T + K17 - 9,

k7 x5 — kg -xo-x1 + k1o - 23 — k14 - T2 - T6 + k15 - T8,

—kg-x3+ko-x2 21 —kio-®3,k3 - 22 + ks 18 — ks x4, ko - 212 — K1 - T3,
ki3 - 10 - ®7 — k19 - T6, —k13 - T10 - T7 + K19 - s,

k142226 — k15 - 8, k16 - T1 - T6 — k17 - T9 — K18 - X9,

ki1 — k12 - 210, k1 - 5 + ks - x4 + ke - 21 + K12 - 210 + K18 - 20,

—ko - x12, ks - T3, k7 - x5, ke - 1 + k1s - To, ko - x4, k5 - T4, k3 - w2 4 Ky - 28,0,0

Complexity of Solving Systems with Few Independent Monomials 151

Notice that the polynomial system no longer contains all of the variables in
the set {z1,xa,...,220}, but only the subset of cardinality 11 consisting of
{xlv X2, X3, L4, T5,L6,L7,L8, LY, T10, .’L‘lg}.

Now if we consider the factorization of the polynomial system into

Y I, I Y

with a diagonal matrix I one can consider the groupings according to the law
of associativity:

(Y I, Ix)- Y (6)
(Y I) - (IxY). (7)

If we consider the view expressed in (@) one has to perform the linear algebra over
the field Q(k1, .. ., k) but having only the x4, ..., z, as variables in subsequent
steps. When considering the k1, ..., k,, as part of the monomials, i.e., taking the
view expressed in (7)) the linear algebra is over Q but the k1, ..., k,, have to be
counted as variables in addition to the z1,...,x,. Notice that the latter view is
used by Clarke [26].

Using both approaches we find that some of the F; (1 <14 < 20) are zero, and
hence the system does not have a solution with all non-zero entries.

When inspecting more closely which entries are zero, we find that—taking
ki,...,koo as parameters— the Y3, Yy, Y5, Yig, Y11, Y12, Y13, Y16 are zero when
expressed as linear combinations of the Z;. When viewing the reaction constants
as part of the monomials we obtain that Y3, Yy, Ys, Yig, Y11, Y13, Y19 are zero.
When resolving these conditions in terms of the z; (and k;) we obtain in the
k-as-parameter-case the logical condition

23=0A24=0AN25=0A210=0A212=0A1=0 (8)
and in the k-in-monomial-case

ks 23 =0ANks-24=0ANki-25=0Akia-210=0ANkop-2120=0A
kr-x5 =0 AN ko-24=0A k11 =0. (9)

Hence there are no solutions unless k117 = 0, which is a condition leading to
the inconsistency 1 = 0 in (B)—without any further information in the k-as-
parameter-case. When going back to the original description using the software
infrastructure described in |27] we obtain the information that associated with
constant kq1 there is a creation of — damDNA from “the environment”; more-
over, associated with kjo there is a reaction denoted damDNA — Sink. So
there are some quasi-steady states involved in the SBML representation of the
reaction system. Dealing rigorously with quasi-steady state approximations is
an important line of research in algebraic biology (see e.g. [2§]).

When considering solutions of polynomial systems we can apply the substitu-
tions k11 = 0,23 = 0,24 = 0,25 = 0,210 = 0,212 = 0 and consider the resulting
system.

152 D. Grigoriev and A. Weber

Example BIOMODO053. As another example we take the model #53 from
the BIOMOD database.

The chemical reaction network involves 6 species and has deficiency 2. The
resulting polynomial system is as follows:

—kiz120 + kox3 — ksxy, —k12122 + kows — kraaxs + Ko,
kEiz129 — kows — kaxs + kaxy — koxs — k1273, k3xs — kaza — kexa,
kst — krxoxs — ksxs + k11, kexa + krxaws + koxs.

Our simple prototype implementation of our algorithms using the computational
infrastructure of Maple can easily determine that the system has a solution with
all-non-zero entries. Our algorithm can come up with a explicit representation of
the solution after some minutes of computation time. The string representation
of the output is big (about 1 MB). However, the big output size is mainly due
to rather lengthy polynomial expressions in the parameters occurring in the
solutions. The structure of the solutions in the symbols representing a “can be
chosen arbitrarily” in the methods presented above (cf. Sect. [2) is much simpler.

5 Conclusion and Future Work

Although several related ideas have been around in the literature on algebraic
methods for chemical reaction systems the full algorithmic development given
above seems to be new—in addition to providing the complexity analysis.

In contrast to the known theorems developed in the context of chemical reac-
tion network theory—which only work in special cases but give results entirely
independent of the parameters—our algorithms are universally applicable.

It will be the topic of future research to systematically apply careful implemen-
tations of the algorithms given in this paper to the networks given in databases
such as BioModels database and others. For this purpose we will integrate the
implementation of the algorithms described in this paper into the general infras-
tructure described in [27]. By these tests, we will not only explore the practical
limits of the methods but we also might get insight into the question whether
some of the properties that hold for deficiency-zero and deficiency-one systems
(such as unique positive steady states for a chemical compatibility class, or the
absolute concentration robustness property for a certain subclass) also hold for
systems of deficiency bigger than one—at least parametrically for relevant ranges
of parameters.

Acknowledgements. The first author is grateful to the Max-Planck Institut
fiir Mathematik, Bonn for its hospitality during writing this paper. We are grate-
ful to M. Eiswirth for useful discussions initiating this research. The help of Satya
Swarup Samal and Hassan Errami in generating the algebraic input for our com-
putational examples out of the SBML descriptions is greatly appreciated by us.
Also the authors are grateful to the anonymous referees for valuable remarks.

Complexity of Solving Systems with Few Independent Monomials 153

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Bihan, F., Sottile, F.: Fewnomial bounds for completely mixed polynomial systems.
Advances in Geometry 11(3), 541-556 (2011)

Gatermann, K., Huber, B.: A family of sparse polynomial systems arising in chem-
ical reaction systems. Journal of Symbolic Computation 33(3), 275-305 (2002)
Gatermann, K., Wolfrum, M.: Bernstein’s second theorem and Viro’s method for
sparse polynomial systems in chemistry. Advances in Applied Mathematics 34(2),
252-294 (2005)

Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze
Hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6),
1361-1382 (2005)

Domijan, M., Kirkilionis, M.: Bistability and oscillations in chemical reaction net-
works. Journal of Mathematical Biology 59(4), 467-501 (2009)

Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems.
Journal of Symbolic Computation 44(11), 1551-1565 (2009)

Sturm, T., Weber, A., Abdel-Rahman, E.O., El Kahoui, M.: Investigating algebraic
and logical algorithms to solve Hopf bifurcation problems in algebraic biology.
Mathematics in Computer Science 2(3), 493-515 (2009)

Chistov, A.L.: Algorithm of polynomial complexity for factoring polynomials and
finding the components of varieties in subexponential time. Journal of Soviet Math-
ematics 34(4), 1838-1882 (1986)

Grigoriev, D.: Factorization of polynomials over a finite field and the solution of
systems of algebraic equations. Journal of Soviet Mathematics 34(4), 1762-1803
(1986)

Grigoriev, D., Vorobjov, N.N.: Solving systems of polynomial inequalities in subex-
ponential time. Journal of Symbolic Computation 5(1-2), 37-64 (1988)

Sturmfels, B.: Grobner bases and convex polytopes. University Lecture Series,
vol. 8. American Mathematical Society, Providence (1996)

Gerdt, V.: Involutive methods applied to algebraic and differential systems. Con-
structive algebra and systems theory. Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad.
Wet., R. Neth. Acad. Arts Sci. 53, 245-250 (2006)

Mayr, E., Meyer, A.: The complexity of the word problems for commutative semi-
groups and polynomial ideals. Adv. in Math 46, 305-329 (1982)

Cattani, E., Dickenstein, A.: Counting solutions to binomial complete intersections.
Journal of Complexity, 1-25 (2007)

Grigoriev, D., Pasechnik, D.V.: Polynomial-time computing over quadratic maps.
I. sampling in real algebraic sets. Comput. Complexity 14, 20-52 (2005)
Frumkin, M.: An application of modular arithmetic to the construction of algo-
rithms for solving systems of linear equations. Soviet Math. Dokl 229, 1067-1070
(1976)

Dumas, J.G., Saunders, B.D.: On efficient sparse integer matrix Smith normal form
computations. Journal of Symbolic Computation 32, 71-99 (2001)

Pérez Millan, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems
with toric steady states. Bulletin of Mathematical Biology, 1-29 (October 2011)
Gatermann, K., Huber, B.: A family of sparse polynomial systems arising in chem-
ical reaction systems. Technical Report Preprint SC 99-27, Konrad-Zuse-Zentrum
fiir Informationstechnik Berlin (1999)

El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination
in a software-component architecture. Journal of Symbolic Computation 30(2),
161-179 (2000)

154

21.

22.

23.

24.

25.

26.

27.

28.

D. Grigoriev and A. Weber

Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction
networks. Science 327(5971), 1389-1391 (2010)

Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction
networks. supporting online material. Science 327(5971), 1389-1391 (2010)

Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L.,
He, E., Henry, A., Stefan, M.I., Snoep, J.L., Hucka, M., Le Novere, N., Laibe, C.:
BioModels database: An enhanced, curated and annotated resource for published
quantitative kinetic models. BMC Systems Biology 4, 92 (2010)

Feinberg, M.: Stability of complex isothermal reactors-I. the deficiency zero and
deficiency one theorems. Chemical Engineering Science 42(10), 2229-2268 (1987)

Proctor, C.: Explaining oscillations and variability in the p53-Mdm2 system. BMC
Systems Biology 2, 75 (2008)

Clarke, B.L.: Complete set of steady states for the general stoichiometric dynamical
system. The Journal of Chemical Physics 75(10), 49704979 (1981)

Samal, S.S., Errami, H., Weber, A.: A Software Infrastructure to Explore Alge-
braic Methods for Bio-Chemical Reaction Networks. In: Gerdt, V.P., et al. (eds.)
CASC 2012, LNCS, vol. 7442, pp. 294-307. Springer, Heidelberg (2012)

Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E.: Applying a Rigorous Quasi-
Steady State Approximation Method for Proving the Absence of Oscillations in
Models of Genetic Circuits. In: Horimoto, K., Regensburger, G., Rosenkranz, M.,
Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 56-64. Springer, Heidelberg
(2008)

Symbolic-Numerical Calculations of High-|m|
Rydberg States and Decay Rates
in Strong Magnetic Fields*

Alexander Gusev, Sergue Vinitsky, Ochbadrakh Chuluunbaatar,
Vladimir Gerdt, Luong Le Hai, and Vitaly Rostovtsev **

Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
gooseff@jinr.ru, vinitsky@theor.jinr.ru

Abstract. Symbolic-numeric solving of the boundary value problem for
the Schrédinger equation in cylindrical coordinates is given. This prob-
lem describes the impurity states of a quantum wire or a hydrogen-like
atom in a strong homogeneous magnetic field. It is solved by apply-
ing the Kantorovich method that reduces the problem to the boundary-
value problem for a set of ordinary differential equations with respect
to the longitudinal variables. The effective potentials of these equations
are given by integrals over the transverse variable. The integrands are
products of the transverse basis functions depending on the longitudinal
variable as a parameter and their first derivatives. To solve the prob-
lem at high magnetic quantum numbers |m| and study its solutions we
present an algorithm implemented in Maple that allows to obtain ana-
lytic expressions for the effective potentials and for the transverse dipole
moment matrix elements. The efficiency and accuracy of the derived al-
gorithm and that of Kantorovich numerical scheme are confirmed by
calculating eigenenergies and eigenfunctions, dipole moments and decay
rates of low-excited Rydberg states at high |m/| ~ 200 of a hydrogen atom
in the laboratory homogeneous magnetic field y ~ 2.35 x 1075 (B ~ 6T)).

1 Introduction

In earlier papers, we considered the application of the Kantorovich method for
solving the discrete- and continuous-spectrum boundary-value problems (BVP)
[1] for hydrogen-like atoms in magnetic field and the ion axial channelling prob-
lem in a crystal. The approach implies the use of a parametric basis of oblate
spheroidal angular functions in spherical coordinates where the radial variable
runs a semi-axis [2/3/45]. The method has been further developed in connection
with calculations of spectral and optical characteristics of model semiconductor
nanostructures, namely, quantum dots(QD), quantum wells(QW) and quantum

* This work was partially supported by the RFBR Grants Nos. 10-02-00200 and
11-01-00523.

** The coauthors (AG, SV, OC, VG, and LH) congratulate Vitaly Rostovtsev on
turning 20 for the fourth time.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 155-[[71] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

156 A. Gusev et al.

wires(QWr) [6I7I89]. For this purpose we used different parametric basis func-
tions in appropriate coordinate systems. The functions were calculated by solving
parametric eigenvalue problems by means of the program ODPEVP [10].

Taking into account the growing interest in problems possessing axial symme-
try, like impurity states of QWr’s or high-angular-momentum Rydberg states and
quasi-stationary states imbedded in continuum of a hydrogen atom in magneto-
optical traps [IIIT2T3], it is imperative to implement the Kantorovich scheme for
solving the BVP for the longitudinal variable running the whole axis of a cylin-
drical coordinate system[8/9]. This would allow direct calculation of the main
characteristics of a multichannel scattering problem, such as reflection and trans-
mission coefficients matrices, recombination rates and ionization cross-sections
for Rydberg states, and decay rates of the lowest bound states of manifolds with
high values of the magnetic quantum number |m/| [TIT2JT3].

For the Schrédinger equation describing a hydrogen-like atom in a strong
homogeneous magnetic field, the boundary-value problem (BVP) in cylindrical
coordinates is reduced to solving a set of the longitudinal equations in the frame-
work of the Kantorovich method. The effective potentials of these equations are
given by integrals over the transverse variable, the integrands being products
of transverse basis functions, depending on the longitudinal variable as a pa-
rameter, and their first derivatives with respect to the parameter. One can say
that at high |m|, the discrete-spectrum problem is described by a system of two
coupled 2D- and 1D-oscillators corresponding to the transverse p and longitu-
dinal z variables, with the frequencies w, and w;, respectively. To analyze the
low-excited Rydberg states of such system it is useful to have the solution in
an analytic form. Indeed, for high |m| we can consider the Coulomb potential
as a perturbation with respect to the transversal centrifugal potential and the
oscillator potential with the frequency w, = /2. For the laboratory magnetic
field B = Byy ~ 6T, i.e., ¥ ~ 2.35 x 1075, this is true at the adiabatic parameter
values 1 ~ 5.89, where 1 is defined as m = (w,/w,)*3 = |m|y!/3. Under the
condition [m| > 6v~1/3 we can approximate the Coulomb potential by a Taylor
expansion in powers of the auxiliary transverse variable with respect to a spe-
cially chosen point with given accuracy in the region of its convergence. Then we
can find the approximate transversal eigenvalues and eigenfunctions depending
parametrically on the longitudinal variable, in the framework of a perturbation
scheme and by using the eigenvalues and eigenfunctions of the 2D oscillator
as unperturbed ones. To express analytically the transverse basis functions and
eigenvalues, the corresponding effective potentials, and the transverse dipole mo-
ment matrix elements as well as perturbation solution of the BVP, we elaborate a
symbolic-numerical algorithm (SNA) implemented in Maple. The efficiency and
accuracy of the algorithm and that of the derived Kantorovich numerical scheme
are confirmed by computation of eigenenergies and eigenfunctions, dipole mo-
ments and decay rates for the manifolds of high-|m| low-excited Rydberg states
of a hydrogen atom in the laboratory homogeneous magnetic field, and by com-
parison with the results obtained by other methods.

Symbolic-Numerical Calculations of High-|m| Rydberg States 157

The paper is organized as follows. In Section 2, we briefly describe the reduc-
tion by the KM of the 3D eigenvalue problem at fixed values |m| of magnetic
quantum number to the 1D eigenvalue problem for a set of close-coupled longi-
tudinal equations. In Sections 3 and 4, the algorithm for calculating the effective
potentials and the transverse dipole moment matrix elements in the analytic
form at large values of |m| is presented. The algorithm has been implemented
in Maple. To find the validity range of the method, in Section 5 we compare our
results with the known ones obtained in the cylindrical coordinates. Decay rates
of the lowest bound states of manifolds with high magnetic quantum number |m)|
are also presented here. In Section 6, we conclude and discuss possible future
applications of the described method.

2 Problem Statement in Cylindrical Coordinates

The component ¥(p, z) of the wave function ¥(p, z,) = ¥(p, z) exp(vmy) /v 27
of a hydrogen atom in an axially symmetric magnetic field B = (0,0, B) in
the cylindrical coordinates (p, z, ¢) satisfies the 2D Schrddinger equation in the
region 2. = {0 < p < 0o and —o0 < z < x0}:

02 10 0
- v AC!I/) =e¥ s %) AC:_) al
5,22 (P 2) + AL (p, 2) = e¥(p, z) pappap+m7+U(p z),(1)
m? ,.)/2p2 2q
U yR) = + +VYC 3 %), ch yR) = — . 2
(p:2) 2Ty (p;2), Velp,2) Vb (2)

Here m = 0,41, ... is the magnetic quantum number, v = B/By = hw./(2Ry),
By = 2.35 x 10°T is a dimensionless parameter which determines the field
strength B, w. = eB/(m.c) = eByy/(mec) is the cyclotron frequency, and
U(p,z) is the potential energy (see Fig. [[h), ¢ is Coulomb charge of nucleus.
We use the atomic units (a.u.) i = m. = e = 1 and assume the mass of the
nucleus to be infinite. In these expressions, ¢ = 2F, E is the energy (expressed
in Rydbergs, 1 Ry = (1/2) a.u.) of the bound state |mo) with fixed values of m
and z-parity o = £1, and ¥(p, z) = 0™ (p, z) = o¥™(p, —z) is the correspond-
ing wave function. The boundary conditions in each mo subspace Lz2(f2) of the
complete Hilbert space have the form

ov
;igép (gi’ ?) =0, for m=0, and ¥(0,z)=0, for m#0, (3)
plgrolo U(p,z)=0. (4)

The eigenfunction ¥(p, z) = W(p,z) € L2(f2) of the discrete real-valued spec-
trum € : €3 < €g < ---€ < --- < 1y obeys the asymptotic boundary condition.
Approximately this condition is replaced by the boundary condition of the sec-
ond and/or first type at small and large |z|, but finite |z| = zpmax > 1,

. 0W(p,z) _ _ _ _
lli% 55 =0, o=+1, ¥(p,0)=0, o=-1, (5)

ZLHEOO U(p,z) =0 — ¥(p,£[zmax|) = 0. (6)

158 A. Gusev et al.

In numerical calculation of the eigenvalues and eigenfunctions with given accu-
racy by programs KANTBP2 and ODPEVP realizing the finite element method,
we used computational schemes derived from the Rayleigh—Ritz variational func-
tional [IIT0]

_ T OW(p, z) OW(p,z) | OW(p, z) OW(p, 2)
R(W,, ;) = (/ dz/,od,o 95 DY dp dp (7)
— Zmax 0

anx

+(p, z)(my + Ulp, 2)) ¥ (p, 2) / / pdp¥(p, 2)¥y (p, 2)

Zmax

with the additional normalization and orthogonality conditions

(t[t") / / pdpWy(p, 2)Wy (p, 2 / / pdp¥i(p, z)Py (p, 2) =61 (8)

Zmax

For m # 0 eigenfunctions ¥;(p, z) ~ p/™!/2 at small p. So, in numerical calcula-
tions, a reduced interval [0 < pPmin, Pmax > 1] is conventionally used [§].

2.1 Kantorovich Reduction

Consider a formal expansion of the partial solution ¥;"“(p, z) of Egs. (I))-#) cor-
responding to the eigenstate |mot) expanded in the finite set of one-dimensional

: : . Jmax
basis functions {B}"(p; z) }27

Jmax

U (p, z Z B} (p; z m”t)(z)-)

In Eq. @), the functions x® (2) = x™7(2), (x®(2))" = (th)(z),. .. 7X§de (2))
are unknown, and the surface functions B(p;z) = B™(p;—z), (B(p;2))T =
(Bi(p; 2),. .., Bjn..(p;2)) form an orthonormal basis for each value of the vari-
able z € R which is treated as a parameter.

In KM, the wave functions B;(p; z) (see Fig.2]) and the potential curves E;(z)
(in Ry) are determined as solutions of the following eigenvalue problem

AcBj(p:2) = B;(=)Bj(p: 2), (10)

with the operator A, from ([I)-(2) and the boundary conditions (@),) at each
fixed z € R. Since the operator in the left-hand side of Eq. (0] is self-adjoint,
its eigenfunctions are orthonormal

(Bipi2)

@ma>—1m&ma&m@mWﬁm (11)

where ;5 is the Kronecker symbol. Therefore, we transform the solution of the
above problem into the solution of an eigenvalue problem for a set of jmax

Symbolic-Numerical Calculations of High-|m| Rydberg States 159

0.0004
0.020 ;
0.0003 5
0.015
0.0002+ 3
1
0.010
0.0001-
0.005 U
Osc
2000 3000 4000 3 6000
C p
0 -0.00014
Coul
1000 2000 3000 4000 5000 6000)
p -0.0002-

864

Fig. 1. Left panel: the profile of potential energy U(p, 2) = m?/p? +~v2p? /4 + Ve(p, 2)
(U) in the plane z = 0 and its components, namely, the centrifugal (C), oscillator (Osc),
and Coulomb (Coul) potentials. Right panel: the approximation errors §U (imax) (p,2) =
Zg;‘i‘x UD(p,2) = U(p,2) (jmax = 1,...,9) of the potential energy U(p,z = 0). Here
g=—1,m=—200, v = 2.553191 - 10~ (B = 6T, 1 ~ 5.89)

ordinary second-order differential equations that determines the energy e and
the coefficients x () (z) of the expansion (@)

2 z
(_Idc; YU +QE) !+ d?zi)) XV =alxW(z). (12)

Here I, U(z) = U(—2), and Q(z) = —Q(—=2) are the jmax X jmax matrices whose
elements are expressed as
° OB;(p; z) 0B;(p; 2
U(2) = B2+ Hy(2), Hy() = [PN OB 1)
0 z z
e OB;(p; z
Lij(z) = i, Qij(2) = —Qyi(z) = —/ Bi(p; 2) ngp)pdp.
0

The discrete spectrum solutions € : €7 < €2 < ---€ < -+- < 7y at fixed m and
parity ¢ = +1 obey the asymptotic boundary condition and are orthonormal

lim (d‘i — Q(z)) xP()=0, o=+1, xP0)=0, oc=-1, (14)

z—0

Jim x(2) =0 = X (Ezuw) =0, (15)
Fmex t T t Fmex t T t/

[(x) xO@iz=2 [(@) X ez = b 16)
—Zmax 0

Remark 1. In diagonal adiabatic approximation

(- gz + 0)6 =) (17)

discrete spectrum € : €1 < €j2 < -+ €5, < -+ < v numerated by number v that
(v)

determines the number v — 1 of nodes of the solution x;’(z) at fixed value j.

160 A. Gusev et al.

0.0008.
0.0006-
0.0004-

0.0002-

3000 3500 e - iy
33004000 4500 < - 10000

p p

Fig. 2. The basis functions B; and Bs for m = —200, ¢ = 1, v = 2.553191 - 1075

3 Solving the Parametric Eigenvalue Problem at
Large |m|

Step 1. In ([I0), (1) apply the transformation to a scaled variable x
0’ b= VT
2 V1/2

and put A (2) = E;(2)/(27) = A\ +m/246);(2), where A\ = n+(jm| +1)/2.
The eigenvalue problem reads

xr =

(18)

g 9 m? x m q

— — — X | Bi(z;2) =0, 19

8xx8x+4x+4+2 7\/2;0_’_22 J J(wZ) ()
with a normalization condition

1

Y

At ¢ = 0, Eq. (I9) without m/2 takes the form

/00 Bj(x;2)%dz = 1. (20)
0

0 0 m? =z NG

L(n)B" (z) = L(n) = — — A 21
B @) =0, L= 8+ T 0 e
and has the regular and bounded solutions at
0 _
Al =n+(m|+1)/2, (22)
where the transverse quantum number n = N, = j—1=0,1,... determines the

number of nodes of the solution B](O) (z) = sz%(x) with respect to the variable
z. The normalized solutions of Eq. (21]) take the form

Symbolic-Numerical Calculations of High-|m| Rydberg States 161

0 o ml o n! 2
BY@) = Cume 30 T L@ o= [, L]
1 oo
[BO@BY @ = b (24)

0

where L) (x) are Laguerre polynomials [I4].

Step 2. Substituting the notation d\;(z) = A;(2) —)\540) -m/2=E;(2)/(2v) —
(n 4+ (m 4+ |m| + 1)/2), and the Taylor expansion in the vicinity of the point
Ty = Tg7Y:

Jmax

=— V) (2, 2)ek = — <l 25)
7\/250 +2° ;; 2 V(22 +225)1/2 (

eqz—zsy) 3%q(r—xsy)® | 5Pq(r—xsv)? et
v2(2242x4)3/2 293(224-2x4)5/2 294(22+2x4)7/2 (2242x4)9/2

into Eq. (IJ) at ¢ # 0, transform it to the following form

L(n)B (jz V) (2)ek —oX; (2)) Bj(x;2) = 0. (26)

Here ¢ is a formal parameter that will be put to be 1 in the final expression.
The parameters xs = p2/2 and p, approximately correspond to the minimum
of the potential energy (2)). In so doing, the Coulomb term is neglected. In
the calculations we choose ps = 1/2|m|/ under assumption that the condition
v2p? /4 4+ m?/p? > 2|q|/p is valid. The approximation errors U Umax)(p, 2) at
Jmax = 1,...,9 are illustrated in Fig. [[b. One can see that in the localization
interval p € [3000,5000] of the eigenfunction (I9), the errors decrease with in-
creasing order jmax (see Fig. 2)). Performing Taylor expansion at |z|/ps > 1, we
arrive at the inverse power series that gives the same results as the perturbation
theory in powers of 1/|z| [§].

ch(xv Z) = -

Step 3. The solution of Eq. 24]) is found in the form of perturbation expansion
in powers of €

zuax k!uax
Z A (2), Bjlwiz)=BY(@)+ Y FBP(x,2). (27)

k=0
Equating coefficients at the same powers of €, we arrive at the system of inhomo-
geneous differential equations with respect to corrections A'” (2) and B (x,2):

LB (@) =0 = 117(2), (25)
Lm)BY (z,2) = (AP (2) = VO (2) BO(a)
k—1
+ @) - VEPDE)BP(w,2) = 0G), k> 1

p=1

162 A. Gusev et al.

-8
0.0001 1 7.x10]

0

“8]
-0.0001 5.x10

=
-0.0002 -8

3.x10]

-0.0003

-0.0004

-8
1.x 10

-10000 -5000 0 5000 10000 -5 5000 10C
z

0.00015

0.00010

-9
5.x10
> 0.00005

8] 5
= -Lx10 o o
-8
-15x10 -0.00005
8]
-2.x10 -0.00010
-8
-25x10] -0.00015
-10000 -5000 0 5000 10000 ~10000 -5000 0 5000 10000
z z

Fig. 3. The eigenvalues E;(z) and the effective potentials Hj;(z), H,; () (curves
Hjj—1(z), j = 2,...,6, are marked by number 1, curves Hj;—2(z), j = 3,...6, are
marked by number 2 and curves Hj;_3(z), j =4, ..., 6, are marked by number 3) and
Qjj (z) (curves Qj;-1(2), j = 2,...,6, are marked by number 1, and curves @Q;;-2(z),
j =3, ..., 6, are marked by number 2) for m = —200, ¢ = 1, v = 2.553191 - 105

To solve Egs. (28) we used the nonnormalized orthogonal basis

|m|

Buss(@) = Cupme 525 LI (@) = Copy Oy B (@), (29)

<S‘S/> = Am Bis (x)Bn+s’ (x)dx = Oss17Y (n +n'm)' (n <(Fn$++8)??)'

The action of the operators L(n) and = on the functions B,,1¢(x) is defined by
the relations

L(n)Bnis(x) = sBnis(w), (30)
TBnys(z) = —(n+ s+ |m|)Bnis—1(z) + (2(n + 5) + |m| + 1) Bnys(x)
—(n+s+1)Bnystr(z)
that involve no fractional powers of quantum numbers n and m.
Step 4. Applying Eqs. (B0), the right-hand side fy(Lk) (z) and the solutions

B (z,2) of the system (28) are expanded over the nonnormalized basis states
Bn+s(x)

Smax Smax
BO@ = S @B, fOE = S S Busae). (31
S=—Smax S$=—Smax

Then the recurrent set of linear algebraic equations for unknown nonnormalized
coefficients b%kg(z) and corrections A%k)(z) is obtained

bl (2) = F(2) = 0, 5= —smax, -+ Smas,

Symbolic-Numerical Calculations of High-|m| Rydberg States 163

which is solved sequentially for k = 1,2, ..., kpax:

fflkg (2)=0 — AP (z); b%k;(z) = flks) (2)/8, $= —Smax,--+sSmax, SF 0.
The initial conditions ([22]) and b&ol(z) = 040 follow from Eqgs. (1)) and (24).
Step 5. To obtain the normalized wave function Bj(x;2) up to the kth order,
the coeflicient b(k) are defined by the following relation:

Smax Smax

bl (2 Z ST0ST bEP)sls)P) (2), big P (2) = 0.

p 1 s'=—=Smax =~ Smax
As an example of the output file at steps 1-5, we display nonzero coefficients
,\;’“)(z), b%k; (2) of the expansions [27), (BI) over the nonnormalized basis func-
tions (29) up to O(g?):
A = nt(jml+1)/2,

AW (2) = q ¢@ntiml+l) wg
224 2m, 222 4210)3/2 A (224-22,)3/2
AP (2) = —¢?(2n+|m|+1)/ (7422 +225)*) — 3g[Jm|[> +2+6n|m|
wn2+6n+3|m|—2v<2n+\m\+1>x3+xm/<2w3<z2+2x3>5/2>,
b\ (2) =1, (32)
b1 (2) = —a(n+1m))/ (V2(z2+22,)%2), b (2) = q(n+1)/ (Y2 (=2 +22,)%/2),
(

(
b4 (2) = a(n+|m|) (n+m|—1)(2g—37/(22+2x,)) / (47 (=2 +22,)°),
b1 (2) = a(n+|ml) (24437 (2n+[m| —yws) v/ (224 22,)) / (7! (2> +225)°),
(

b0 (2) = (22 +2n-+2n|m|+|m|+1) /(29" (22 +225)%),
b7 (2) = —q(n+1)(2q+37v(2n+ |m|+2— vz)/ (224 22,)) / (V4 (2> +22,)%),
b (2) = g(n+1)(n+2)(2q+3vV/(22+2x,)) /(47" (22 +21,)%).

These expansions involve parameters x5 = p?/2 and p, that approximately cor-
responded to the minimum of the potential energy ([2)) and determined the point
xo = yxs of expansion of [25) of Coulomb potential V,(x, z).

Step 6. In terms of the scaled variable z, the expressions of the effective poten-
tials H;;(2) = Hj;(z) and Q;;(2) = —Qj;(2) take the form

o1 T 0B;(z; z) 0Bj(x; 2) N 170 L\ 0Bj(x52)
H;j(z)= 7/dx P 9: Qij(z)= y dxB;(z; z) 9s (33)
0 0

To calculate them we expand the solution (26) over the normalized orthogonal

basis B,(LJZS m(2) with the normalized coefficients bn it sim(2)s
kmax Smax k 0
Bj(w;2) = =2 3 DB (@) G

S$=—Smax

164 A. Gusev et al.

The normalized coefficients b*) (z) are expressed via b&’“l(z),

nin+s;m

(%) = 50 (s n! (n+ s+ |m|)!

as follows from Eqs. (31)), (84), and (29).

Step 7. As a result of substituting Eqs. (34) into Eq. (33), the matrix elements
take the form

Kmax min(Smax,Smax+t) W) db(k—&-_tkl)-&- (Z)
n—+t;n+s;m
Q]]+t Z Z Z bn;n-&-s;m('z) dz)

=0 s=max(—Smax,—Smax+1)

kmax min(smax;Smax+t) (k") (k—k")
dbn sn+s; m() dbn+t-n+s-m(z)
D D v v (a0

=0 s=max(—Smax,—Smax+1)

By collecting the coefficients at similar powers of ¢ in Eq. (36]) the algorithm
yields the final expansions of eigenvalues and effective potentials available in the
output file

Kkmax Kmax Kmax

ZE(k) ZH(k)), Qij(z ZQ(’“) . (37)

Successful runs of the Maple implementation of the algorithm were performed
up t0 kmax = 6 (the run time 30 s using Intel Core i5, 3.36 GHz, 4 GB). Below we
present a few first nonzero coefficients derived in the analytic form (j =n+1):

B = 2y(n+ (m + |m| +1)/2),
EVy=— 2 2q(2n+|m|3+21) _ r "
\/z+p (22+p2)%/ (224+p2)%/
2¢2(2n+|m|+1)
v3(2% + p2)3
3q[|m|2+2+6n|m|+6n>+6n+3|m|—y(2n+|m|+1)p2+ piy? /4]
72(22+P3)5/2 ’

(2) _
E; (2) = —

QS) 1(2) = —\/n\/nJr\m\ 12(22)5/2’
- [
Qg)_z(z) = \/n\/nl\/ner\/ner1473(;552/)3)7/2,

0 =0 2t 24+ o=]

1 0>
H? ,(z) = —9¢° ~1 -1 : :
pr=ale) = 2OV |y et ey

Symbolic-Numerical Calculations of High-|m| Rydberg States 165

4020 -
300 P,
4000
3980 -400
3960 P ot
73940 77 & 2500
3920 .
3900 L O o
Py P
3880 67
10000 -5000 0 5000 10000 10000 -5000 0 5000 10000
z z
14
Prg 0.6 Bs
12
0.5
10
i q0.4
=8 =
=5 =
6 03
4 Py 0.2
2 01 Py
10000 -5000 0 5000 10000 -10000 -5000 0 5000 10000
z z

Fig.4. Transverse dipole matrix elements PT‘LT:,”ml_l (subscripts m, n’ run
0,1,2,3,4,5,6) for m = —200, ¢ = 1, v = 2.553191 - 10~°

As an example, Fig. Blshows the eigenvalues and effective potentials (1), which
agree with those calculated numerically using ODPEVP [10] with the accuracy
of the order of 10710, We used finite element grid on the interval p € [pmin =
2000, pmax = 6000] with the Lagrange elements of fourth order. Expanding (1)
into the Taylor series at |z|/ps > 1, we arrive at perturbation expansion in
powers of 1/z [§].

4 Calculations of the Transversal Dipole Matrix Elements

Using the scaled variable = defined by Eq. ([I8) one can express the trans-
|m| F 1,n’> and

. . 1
verse dipole matrix elements Pi\;nl,lmF (z) = <\m\,n’peiw

P) = (] | pee

—|m| £1, n’> possessing the property
<|m|,n‘pexp(:|:zg0)’\m\ ¥ 1,n’> = <|m| ¥ 1,n"pexp(:|:zg0)’\m\,n>,

where i =n + 1 and j = n/ + 1, in the following form

—|m|,—|m|% m|,|m 2 m m
Pij‘ h=mlE oy = Pi‘j bImIFL () = \/73 /del l(x;z)\/ach‘» T (2 2).(38)
0

According to Egs. (22.7.12), (33.7.30), and (22.7.31) of [I4], the dipole mo-
ment matrix elements calculated with normalized basis functions ||m|,n) =

Bgl)zn‘(x)e”mw/\/%r by means of Eq. ([23]) are expressed as

. 2
Pz.(jo)’| lmlF1 _ \/ 3<|m|,n‘\/xeiw |m| F Ln’>
v

166 A. Gusev et al.

2,026 P19 1 ! : : 20470i 7
25] | : : : 2,51 :
> : . . . - >
X 301 & 30
o o
W -3,5] w -3,5]
N N
40y - 4,01
451 - ' 451
B 50t
1 2 3 4 5 6 7 1 2 3 4 5 6 7
<j>=j <j>

Fig. 5. Energy eigenvalues 2FE; for even (o = +1) lower eigenstates vs the state number
(j) calculated in the diagonal adiabatic approximation (left) and in the Kantorovich
approximation at jmax = 6 with given accuracy (right) Here m = —200, v = 2.553191 -

107°, g =1, 0 = +1. The quantity (j Z Jixs,s(dz is the averaged quantum
number, s is the eigenvalue number in the ascendmg energy sequence F1 < B < ... <
E; < ... < /2, corresponding to the number v of the eigenvalue Ej; < Ejs < ... <
Ej, < ... <v/2 counted at each (j) = j in diagonal approximation (I7) of Egs. (I2))

27
72 m O K3 m
= [e [T B e e B (e
- \/7 [V1]+ 1/2F 1/2 = Spgrm/n+ 1/2F 1/2]. (39)

As a result of substituting Egs. (84)) and (39)) into Eq. (B8], the matrix elements
take the following analytic form (j =n+1)

|m|,|m|— (k);lm]|m|—
Pt Z P (),

min(k,k—k’—t)
(k)s|m||m|— (k") (k—K")
P]]+t \/ Z Z |:bn;n+s;|m\()anrt in+s;|m|— ('Z)

=0 s=max(—k,k’' —k—t)

v/l + 1= b @R Vs 1] (40)

Successful run of the Maple-implemented algorithm was performed up to kpax =
6 (run time 90 s with Intel Core i5, 3.36 GHz, 4 GB). A few first nonzero
coefficients derived in the analytic form are presented below (j =n + 1):

pOmlimi=1y _ V2V Iml L g1,y Y2/ mlg
oo /38 + 223/
pOsImlmI=1 () Vnv2
Jj—1 \/’Y
pOmlimi=1y VA2Vt ml(Vn ot m] = 1= /n o fml 1)
J—1j (p2 + 22)3/245/2 J

(41)

Symbolic-Numerical Calculations of High-|m| Rydberg States 167

0,021 =200, 6=+1, y=2.553191 10°

0 2000 4000 6000 8000 0 2000 4000 6000 8000

z z
FE 46007 -
4400
4200
I I G
4000 O
X
380
3600 i
3400
3200 T T T T T 3200 T T T T T
0 2000 4000 6000 8000 0 2000 4000 6000 8000
z z

Fig. 6. Upper panels: the first three components of the eigenfunctions x; 70 and x; 71
(j = 1,2,3). The dominant components are j = 1 ({j) = 1.43) with v —1 = 25
nodes and j = 2 ({§) = 1.56) with v — 1 = 18 nodes, respectively. Lower panels:

the profile of the wave function W75 2%~ (p,2) and ¥~ *°% = (p, 2) of the

resonance states in the zz plane with the energies 2E7=2°%7="" = 2151832 -

107*Ry and 2E7=20%=t! — 2150977 - 10"*Ry pointed by arrows in the right
panel of Fig.

_ V2l = 1/n |+ 1= n = m|)q
) (63 + 222/ |

The comparison of our analytical numerical results with those obtained numeri-
cally using the program ODPEVP [10] shows the convergence of the perturbation
series expansion up to kmax = 6 with four significant digits. Expanding ([@0) into
a Taylor series at |z|/ps > 1, we arrive at the inverse power series for the dipole
matrix elements. To obtain the leading terms at |z| — oo it is sufficiently to put

ps = 0 in (HIJ).

1); —1
PRI)

5 Calculations of Rydberg States and Decay Rates

In Fig. [l we present an example of the lower part of discrete spectrum calculated
in the diagonal adiabatic and Kantorovich approximations with the effective
potentials (B7)) by means of the program KANTBP2 [I]. In numerical calculations
at ¢ = —1, v = 2.553191 - 10~° for |m| ~ 200, we use finite element grid on the
interval z € [0, zmax = 11000] with the Lagrange elements of fourth order. In

168 A. Gusev et al.

Fig. 6l we show an example of resonance states formed by coupling of the quasi-

degenerate states with the energies QE"L_I:)QOZO(SU = 2151260 10~ Ry and

E;”_zzzologg 1= 2151202 10~ *Ry in the diagonal adiabatic approximation

(@) pointed by arrows in the left panel of Fig.
The partial transition decay rates [5_,z are calculated as

T = & 5 |) (Be — B/t 42)
i85 = sris)|-, wsy = Ly — Lg)/N.

- 3 drephc®

In the above expressions, €9 = 8.854187817 - 1072 F/m is the dielectric con-
stant, the energy Fy = FEzEp and the dipole moment (§'|f|8) = ap(&|r|3)

are expressed in the atomic units Ep = 2Ry = 4.35974434 - 1078 J, ap =
0.52917721092- 1071 m, i.e.

Tig = 2.142-10'"9(Ey — F3)3|(8'|r]3))* x s L. (43)
Here |(3'|r|5)|? defined by the expression
(& [e13)2 = (1/2)|(& loe™#13)* + [(5'|213)[* + (1/2)|(5|pe T [5)[%, (44)

where (3|z|3) and (3'|pe*'#|5) are the longitudinal and transverse dipole mo-
ment, respectively. As follows from Eq. ({0),

Jmax Zmax
(51205 = im0 S / X ()2 (2), (45)
i,j=1" Zmin
jmax Z!uax
(5pE*15) = b1 > / dax () P ()07 (2). (46)

i,j=1 Y Zmin

In Table [[l we show our present results for partial decay rates ([@3]) and dipole
moments (48] and ({G]). The results were obtained numerically by means of the
program KANTBP 2.0 [I] using the analytically derived effective potentials (B7))
and matrix elements of transversal dipole moments {0, i.e., Mz 3= (5'|pe~*#|3)
for cyclotron decay (C) (¢ — ¢’ = g, where ¢ = j — m is magnetron quantum
number, m—m'=m -1, 0 =0’ =0, j—j =j— 1, v=>v =v); Mgs:=(5|z]3)
for the bounce decay (B) (¢—¢'=¢, m—m'=m,c—0c'=—0, j— 75 =j,v—>
v'=v—1), and Mzz;=(5"|pe™*¥|3) for the magnetron decay (M) (¢—q =q — 1,
m—m'=m-+1,0—d =0, j—>j =4, v—=v =v). The results agree with the
numerical ones from [I2] within the required accuracy.

In Table[we also show the energy values 23 calculated in the Kantorovich
approximation (K) at jnmax = 6, and obtained by the aid of the diagonal approx-
imation (7)) in the analytical form

2B ~ 2B = U + &0 + Z”‘"‘”‘s(” D (47)
3U»() 202+ 2 +1
51(21) == Wz,i(QU + 1), gz(,lv) = v (4 9)a
wz,i
@ v+ DT+ 170+ 21)(UM)2 520 4 1)(202 + 20 + 3) U
€ =~ 16w . + 8w '

R 2zt

Symbolic-Numerical Calculations of High-|m| Rydberg States 169

Table 1. The partial transition decay rates I's_,s evaluated using Eq. (@3] from the
state |3) =|juom) to |5') =|j'v",0’m’) with energies 2E5 and 2E|3 calculated using
the Kantorovich approximation (K) at jmax = 6 and the corresponding dipole moments
M3s. In square brackets, numerical results of [I2] are given. The energies calculated
in analytical form using the crude diagonal approximation with the Taylor series of
U;i(2z) = E;(2) up to harmonic (H) and anharmonic (A) terms of order of z* and 2'°,
respectively. The corresponding energies in the diagonal approximation with Taylor

series of Uj;(z) = Ei(2)+H:(z) differing only in two last digits, are shown in parentheses.

53 |j,v,a,m> |j/avlvalam/> F§~>§’a M§’§a 2E§a 2E§’a
s ap 10~*Ry 10~*Ry
C 5 1(2,1,41,-200) [1,1,41,-201) 13.1 276.4 K —4.20933 —4.80384

[13.7] [283] H —4.29978(76) —4.80384(83)
A —4.30019(18) —4.80424(23)

C 135 |3,1,4+1,-200) |2,1,41,—201) 26.3 390.9 K —3.78171 —4.28632
[27.5] [401] H —3.78299(95) —4.28688(86)
A —3.78342(38) —4.28729(27)

B 1 1[1,2,—1,-200) |1,1,4+1,—200) 0.180 349.4 K —4.73499 —4.81688
0.178] [350] H —4.73329(27) —4.81683(83)
A —4.73531(29) —4.81724(23)

B 2 1|1,3,+1,-200) |1,2,—1,—200) 0.345 499.0 K —4.65469 —4.73499
0.342] [500] H —4.64974(71) —4.73329(27)
A —4.65497(94) —4.73531(29)

M 1 1[1,1,41,-200) |1,1,4+1,—199) 0.045 3870 K —4.81688 —4.83003
0.044] [3872] H —4.81683(83) —4.82993(93)
A —4.81724(23) —4.83034(33)

The latter was obtained using SNA like in Section 3, but for a perturbed 1D
oscillator with adiabatic frequency w, ;. It was accomplished with the help of
a Taylor expansion up to z2#max of effective potentials U;;(2) = E;(2) + Hyi(2)
from Eq. 1) for the harmonic (H) and anharmonic (A) terms, i.e., 2kmax = 2
and 2kmax = 10, respectively,

Usi(z) = Uy (0) + wiizZ + Z::;x UZ-(ZN)ZZ””. (48)

Moreover, in Table [Il we present also the results for the energies [{@7) in the
crude and adiabatic approximations obtained without and with the diagonal
potential H;;, respectively. One can see that the energies in crude adiabatic
and adiabatic approximations differ only in two last significant figures, i.e., are
the same within the accuracy of ~ 1078. One can see from Table [l that the
adiabatic harmonic (H) diagonal approximation and the crude anharmonic (A)
one provide the upper and lower estimations of the energy values of low-excited
Rydberg states with j = 1, respectively.

Remark 2. In the expansions ([@T7)) and [8]), the coefficients are calculated using
U = Ual0), w2, = (PUs(2)[d2)e=0/2, U™ = (@Usa(2)d=**) =0/ (2)).

170 A. Gusev et al.

: : : 2 _ N Fmax max (k) _
In the harmonic approximation w? ; i E+Z k=2 wz o Wherew ") o =

(dQEz(k) (2)/dz?).—0/2 and wikZ)H = (dzH(k)()/dz)2=0/2, the leading terms are:

W _ %4 3q@n+|ml+1) o) _ 9¢*(2n® +2n|m| + 20+ |m|+1)

=hE 23 703 » Y T POyt ’
2 _ 16¢ 15¢(2n+|m|+1) 15q(6n? + 6n|m|+ 6n+m? + 3|m| + 2)
CenE T g 278 i 2%p]
6¢°(2 1
| 6a°(2n + || + 1)
v2p8

The substitution of ps; = \/2|m|/7 into the leading term w2~ wili)’E atn=20

yields w? ; = (q,/7y(2|m| —3))/)/(4m?./2|m|). At ¢ = 1 we obtain the adiabatic

1/3

pammeter (wp/wz,i=1)? = |m|y'/3, where w, = 7/2, in agreement with [I3].

6 Conclusions

A new efficient method to calculate wave functions and decay rates of high-|m)|
Rydberg states of a hydrogen atom in a magnetic field is developed. It is based
on the KM application to parametric eigenvalue problems in cylindrical coor-
dinates. The results are in a good agreement with the calculations executed in
spherical coordinates at fixed |m| > 140 for v ~ 2.553-10~°. The elaborated SNA
for calculation of the effective potentials, dipole moment matrix elements, and
the perturbation solutions in analytic form allows us to generate effective ap-
proximations for a finite set of longitudinal equations. This provides benchmark
calculations for the new version KANTBP3 of our earlier program KANTBP2 [1]
announced in [9]. The developed approach is a useful tool for calculating the
threshold phenomena in formation, decay, and ionization of (anti)hydrogen-like
atoms and ions in magneto-optical traps [II12/13], and channelling of ions in
thin films [4].
The authors thank Prof. V.L. Derbov for valuable discussions.

References

1. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP
2.0: New version of a program for computing energy levels, reaction matrix and
radial wave functions in the coupled-channel hyperspherical adiabatic approach.
Phys. Commun. 179, 685-693 (2008)

2. Gusev, A., Gerdt, V., Kaschiev, M., Rostovtsev, V., Samoylov, V., Tupikova, T.,
Vinitsky, S.: A Symbolic-Numerical Algorithm for Solving the Eigenvalue Problem
for a Hydrogen Atom in Magnetic Field. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov,

V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 205-218. Springer, Heidelberg (2006)

3. Chuluunbaatar, O., Gusev, A.A., Derbov, V.L., Kaschiev, M.S., Melnikov, L.A.,
Serov, V.V., Vinitsky, S.I.: Calculation of a hydrogen atom photoionization in a
strong magnetic field by using the angular oblate spheroidal functions. J. Phys.
A 40, 11485-11524 (2007)

10.

11.

12.

13.

14.

Symbolic-Numerical Calculations of High-|m| Rydberg States 171

Gusev, A.A., Derbov, V.L., Krassovitskiy, P.M., Vinitsky, S.I.: Channeling problem
for charged particles produced by confining environment. Phys. At. Nucl. 72, 768—
778 (2009)

Chuluunbaatar, O., Gusev, A.A., Gerdt, V.P., Rostovtsev, V.A., Vinitsky, S.I.,
Abrashkevich, A.G., Kaschiev, M.S., Serov, V.V.: POTHMF: A program for com-
puting potential curves and matrix elements of the coupled adiabatic radial equa-
tions for a hydrogen-like atom in a homogeneous magnetic field. Comput. Phys.
Commun. 178, 301-330 (2008)

Gusev, A.A., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A., Vinitsky, S.I.,
Derbov, V.L., Serov, V.V.: Symbolic-Numeric Algorithms for Computer Analysis
of Spheroidal Quantum Dot Models. In: Gerdt, V.P., Koepf, W., Mayr, E-W.,
Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 106-122. Springer,
Heidelberg (2010); arXiv:1104.2292

Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Gusev, A.A., Rostovtsev, V.A.:
Symbolic-Numerical Algorithms for Solving Parabolic Quantum Well Problem with
Hydrogen-Like Impurity. In: Gerdt, V.P., Mayr, E.-W., Vorozhtsov, E.V. (eds.)
CASC 2009. LNCS, vol. 5743, pp. 334-349. Springer, Heidelberg (2009)
Chuluunbaatar, O., Gusev, A., Gerdt, V., Kaschiev, M., Rostovtsev, V., Samoylov,
V., Tupikova, T., Vinitsky, S.: A Symbolic-Numerical Algorithm for Solving the
Eigenvalue Problem for a Hydrogen Atom in the Magnetic Field: Cylindrical Co-
ordinates. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007.
LNCS, vol. 4770, pp. 118-133. Springer, Heidelberg (2007)

Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A.:
Symbolic-Numerical Algorithms to Solve the Quantum Tunneling Problem for a
Coupled Pair of Ions. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V.
(eds.) CASC 2011. LNCS, vol. 6885, pp. 175-191. Springer, Heidelberg (2011)
Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: ODPEVP:
A program for computing eigenvalues and eigenfunctions and their first deriva-
tives with respect to the parameter of the parametric self-adjoined Sturm-Liouville
problem. Comput. Phys. Commun. 180, 1358-1375 (2009)

Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Derbov, V.L., Melnikov, L.A.,
Serov, V.V.: Photoionization and recombination of a hydrogen atom in a magnetic
field. Phys. Rev. A 77, 034702-1-034702—4 (2008)

Guest, J.R., Choi, J.-H., Raithel, G.: Decay rates of high-|m| Rydberg states in
strong magnetic fields. Phys. Rev. A 68, 022509-1-022509-9 (2003)

Guest, J.R., Raithel, G.: High-|m| Rydberg states in strong magnetic fields. Phys.
Rev. A 68, 052502-1-052502-9 (2003)

Abramovits, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New
York (1972)

Quasi-stability versus Genericity

Amir Hashemi', Michael Schweinfurter?, and Werner M. Seiler?

! Department of Mathematical Sciences, Isfahan University of Technology,
Isfahan, 84156-83111, Iran
Amir.Hashemi@cc.iut.ac.ir
2 Institut fiir Mathematik, Universitit Kassel
Heinrich-Plett-Strafie 40, 34132 Kassel, Germany
{michael.schweinfurter, seiler}@mathematik.uni-kassel.de

Abstract. Quasi-stable ideals appear as leading ideals in the theory of
Pommaret bases. We show that quasi-stable leading ideals share many of
the properties of the generic initial ideal. In contrast to genericity, quasi-
stability is a characteristic independent property that can be effectively
verified. We also relate Pommaret bases to some invariants associated
with local cohomology, exhibit the existence of linear quotients in Pom-
maret bases and prove some results on componentwise linear ideals.

1 Introduction

The generic initial ideal of a polynomial ideal 0 # Z 4P = k[X] = k[z1, ..., 2]
was defined by Galligo [I0] for the reverse lexicographic order and chark = 0;
the extension to arbitrary term orders and characteristics is due to Bayer and
Stillman [5]. Extensive discussions can be found in [9] Sect. 15.9], [I7, Chapt. 4]
and [I3]. A characteristic feature of the generic initial ideal is that it is Borel-
fixed, a property depending on the characteristics of k.

Quasi-stable ideals are known under many different names like ideals of nested
type [6], ideals of Borel type [I9] or weakly stable ideals [7]. They appear nat-
urally as leading ideals in the theory of Pommaret bases [25], a special class of
Grobner bases with additional combinatorial properties. The notion of quasi-
stability is characteristic independent.

The generic initial ideal has found quite some interest, as many invariants
take the same value for 7 and ginZ, whereas arbitrary leading ideals generally
lead to larger values. However, there are several problems with ginZ: it depends
on chark; there is no effective test known to decide whether a given leading
ideal is ginZ and thus one must rely on expensive random transformations for
its construction. The main point of the present work is to show that quasi-stable
leading ideals enjoy many of the properties of ginZ and can nevertheless be
effectively detected and deterministically constructed.

Throughout this article, P = k[X] denotes a polynomial ring in the variables
X = {z1,...,2,} over an infinite field k of arbitrary characteristic and 0 #
T <P a proper homogeneous ideal. When considering bases of Z, we will always
assume that these are homogeneous, too. m = (X) <P is the homogeneous

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 172-[[34] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Quasi-stability versus Genericity 173

maximal ideal. In order to be consistent with [24]25], we will use a non-standard
convention for the reverse lexicographic order: given two arbitrary terms z#, z"
of the same degree, T# <y eviex € if the first non-vanishing entry of u — v is
positive. Compared with the usual convention, this corresponds to a reversion
of the numbering of the variables X.

2 Pommaret Bases

Pommaret bases are a special case of involutive bases; see [24] for a general
survey. The algebraic theory of Pommaret bases was developed in [25] (see
also [26l Chpts. 3-5]). Given an exponent vector g = [ft1,...,n] # 0 (or the
term z# or a polynomial f € P with It f = z# for some fixed term order),
we call min {7 | u; # 0} the class of p (or z* or f), denoted by clsp (or clsz#
or cls f). Then the multiplicative variables of z# or f are Xp(zt) = Xp(f) =
{z1,...,2as,}. We say that = is an involutive divisor of another term z¥, if
| ¥ and 2”7 " € K[z, ..., Tcs). Given a finite set F C P, we write deg F
for the maximal degree and cls F for the minimal class of an element of F.

Definition 1. Assume first that the finite set H C P consists only of terms. H
is a Pommaret basis of the monomial ideal T = (H), if as a k-linear space

P rlxpn)]-h=1 (1)

heH

(in this case each term x¥ € T has a unique involutive divisor x* € H). A finite
polynomial set H is a Pommaret basis of the polynomial ideal I for the term
order <, if all elements of H possess distinct leading terms and these terms form
a Pommaret basis of the leading ideal 1t Z.

Pommaret bases can be characterised similarly to Grébner bases. However, invo-
lutive standard representations are unique. Furthermore, the existence of a Pom-
maret basis implies a number of properties that usually hold only generically.

Proposition 2 ([24, Thm. 5.4]). The finite set H C T is a Pommaret basis of
the ideal T <P for the term order <, if and only if every polynomial 0 # f € T
possesses a unique involutive standard representation f =3, .4, Pnh where each
non-zero coefficient P, € k[Xp(h)] satisfies 1t (Pph) <1t (f).

Proposition 3 ([24, Cor. 7.3]). Let H be a finite set of polynomials and < a
term order such that no leading term in 1t H is an involutive divisor of another
one. The set H is a Pommaret basis of the ideal (H) with respect to <, if and
only if for every h € H and every non-multiplicative index clsh < j < n the
product x;h possesses an involutive standard representation with respect to H.

Theorem 4 (|25, Cor. 3.18, Prop. 3.19, Prop. 4.1]). Let H be a Pommaret
basis of the ideal T <P for an order <.

(1) If D = dim (P/Z), then {x1,...,xp} is the unique mazimal strongly inde-
pendent set modulo T (and thus WZ Nklxy,...,zp] = {0}).

174 A. Hashemi, M. Schweinfurter, and W.M. Seiler

(ii) The restriction of the canonical map P — P /T to the subring klx1,...,zp]
defines a Noether normalisation.

(iii) If d = minpey clsh is the minimal class of a generator in H and < is
the reverse lexicographic order, then x1,...,x4-1 is a maximal P /I-regular
sequence and thus depthP/Z =d — 1.

The involutive standard representations of the non-multiplicative products z;h
appearing in Proposition Bl induce a basis of the first syzygy module. This ob-
servation leads to a stronger version of Hilbert’s syzygy theorem.

Theorem 5 ([25, Thm. 6.1]). Let H be a Pommaret basis of the ideal T C P.

If we denote by Bék) the number of generators h € H with clslth = k and set
d = clsH, then T possesses a finite free resolution

0_>7)7"n—d_>...—)73r1—>7)700—>1—>0 (2)

of length n — d where the ranks of the free modules are given by

n—i n k
- E
n=y ("7 F)a 3)
k=d
We denote by regZ the Castelnuovo-Mumford regularity of Z (considered as a
graded module) and by pdZ its projective dimension. The satiety satZ is the
lowest degree from which on the ideal Z and its saturation I°% = T : m®™
coincide. These objects can be easily read off from a Pommaret basis for < eyiex.

Theorem 6 ([25, Thm. 8.11,Thm. 9.2, Prop. 10.1, Cor. 10.2]). Let H
be a Pommaret basis of the ideal T <9 P for the order <ieviex. We denote by
Hi={h € H|clsh=1} the subset of generators of class 1.

(i) regZ = degH.

(ii) pdZ =n—clsH.

(iii) Let H, = {h/sc(liegl1 o | h € H1}. Then the set H = (H \ Hi) UH, is a
weak Pommaret basid] of the saturation T%%. Thus T = T : x3° and the
ideal T is saturated, if and only if H1 = (.

(iv) satZ = deg H;.

Remark 7. Bayer et al. [3] call a non-vanishing Betti number 3;; extremal, if
Bre =0 for all k > ¢ and ¢ > j. In [25] Rem. 9.7] it is shown how the positions
and the values of all extremal Betti numbers can be obtained from the Pommaret
basis H for <reviex- Let hy, € H be of minimal class among all generators of
maximal degree in ‘H and set i1 = n —clsh,, and ¢1 = degh,,. Then B;, 4,44,
is an extremal Betti number and its value is given by the number of generators
of degree q; and class n — 7. If clsh,, = depthZ, it is the only one. Otherwise
let h., be of minimal class among all generators of maximal degree in {h € H |
clsh < clshy, }. Defining i2, g2 analogous to above, f;, q,+i, is a further extremal
Betti number and its value is given by the number of generators of degree ¢
and class n — 45 and so on.

! Thus elimination of redundant generators yields a Pommaret basis [24] Prop. 5.7].

Quasi-stability versus Genericity 175

3 J-Regularity and Quasi-stable Ideals

Not every ideal Z <1'P possesses a finite Pommaret basis. One can show that this
is solely a problem of the chosen variables X'; after a suitable linear change of
variables X = AX with a non-singular matrix A € k”*" the transformed ideal
7 <P = Kk[X] has a finite Pommaret basis (for the same term order which we
consider as being defined on exponent vectors) [25, Sect. 2].

Definition 8. The variables X are 0-regular for Z << P and the order <, if T
has a finite Pommaret basis for <.

In [25], Sect. 2] a method is presented to detect effectively whether given variables
are d-singular and, if this is the case, to produce deterministically d-regular
variables. Furthermore, it is proven there that generic variables are d-regular so
that one can also employ probabilistic approaches although these are usually
computationally disadvantageous.

It seems to be rather unknown that Serre implicitly presented already in 1964
a version of §-regularity. In a letter appended to [14], he introduced the notion of
a quasi-regular sequence and related it to Koszul homologyE Let V be a finite-
dimensional vector space, SV the symmetric algebra over V and M a finitely
generated graded SV-module. A vector v € V is called quasi-regular at degree ¢
for M, if ym = 0 for an m € M implies m € M,. A sequence (v1,...,vg) of
vectors v; € V is quasi-regular at degree ¢ for M, if each v; is quasi-regular at
degree g for M/{v1,...,v;—1)M.

Given a basis X of V, we can identify SV with the polynomial ring P = k[X].
Then it is shown in [I5, Thm. 5.4] that the variables X are J-regular for a
homogeneous ideal Z <1P and the reverse lexicographic order, if and only if they
form a quasi-regular sequence for the module P/Z at degree regZ.

Our first result describes the degrees appearing in the Pommaret basis for the
reverse lexicographic order in an intrinsic manner and generalises [29, Lemma 2.3]
where only Borel-fixed monomial ideals for char k = 0 are considered.

Proposition 9. Let the variables X be §-reqular for the ideal T and the reverse
lexicographic order. If H denotes the corresponding Pommaret basis and H; C H
the subset of generators of class i, then the integer

¢; = max { g€ Ny | ((Z,z1,...,i—1) : ®i)g (L, 21, ..., Tiz1)q } (4)
satisfies q; = degH; — 1 (with the convention that deg() = max() = —c0).

Proof. Set P = Kk[z;,...,2,] and Z = Z|y,—...—p, ,—0 < P. Then it is easy to
see that ¢; = max {q | (Z : ;) # Z,}. Furthermore, the variables z;, ..., z, are
d-regular for Z and the reverse lexicographic order—the Pommaret basis of 7 is
given by H = U, Hi with Hy = Hilz,——a; ,—o (cf. 27, Lemma 3.1]).
Assume first that #; = 0. In this case z;f € Z implies f € Z, as one can
immediately see from the involutive standard representation of z; f with respect

% Quasi-regular sequences were rediscovered by Schenzel et al. [23] under the name
filter-regular sequences and by Aramova and Herzog [I] as almost regular sequences.

176 A. Hashemi, M. Schweinfurter, and W.M. Seiler

to H (all coefficients must lie in (x;)). If H; # 0, then we choose a generator
hoax € H; of maximal degree. By the properties of <ieviex, we find hmax € (z4)
and hence may write hpyax = 2;g. By definition of a Pommaret basis, § ¢ 7 and
thus ¢; > degg = deg H; — 1.

Assume now that ¢; > degM; — 1. Then there exists a polynomial feP \7:'
with deg f = ¢; and z;f € Z. Consider the involutive standard representation
zif = Yoien P h with respect to . If clsh > i, then we must have Pj € (z;).
If clsh = i, then by definition P; € k[z;]. Since deg (zif) > degH;, any non-
vanishing coefficient P; must be of positive degree in this case. Thus we can
conclude that all non-vanishing coefficients P; lie in (x;). But then we may di-
vide the involutive standard representation of z; f by x; and obtain an involutive
standard representation of f itself so that f € Z in contradiction to the assump-
tions we made. O

Consider the following invariants related to the local cohomology of P/Z (with

respect to the maximal graded ideal m = (x1,...,2,)):
ai(P/T) = max {q | Hy,(P/I)q # 0}, 0<i<dim(P/T),
reg, (P/Z) = max{a;(P/I)+i|0<i<t}, 0<t<dim(P/I),
a;f(P/T) = max{a;(P/I)|0<1i<t}, 0<t<dim(P/I).

Trung [29, Thm. 2.4] related them for monomial Borel-fixed ideals and char k = 0
to the degrees of the minimal generators. We can now generalise this result to
arbitrary homogeneous polynomial ideals.

Corollary 10. Let the variables X be d-regular for the ideal T <1 P and the
reverse lexicographic order. Denote again by H; the subset of the Pommaret
basis H of T consisting of the generators of class i and set q; = degH; — 1. Then

reg, (P/Z) = max{qi1,q2,---,G+1}, 0<t<dim(P/I),
a;f(P/Z) =max{qi,q2 — 1,...,q+1 — t}, 0<t<dim(P/I).
Proof. This follows immediately from [29, Thm. 1.1] and Proposition [0 O

For monomial ideals it is in general useless to transform to -regular variables, as
the transformed ideal is no longer monomial. Hence it is a special property of a
monomial ideal to possess a finite Pommaret basis: such an ideal is called quasi-
stable. The following theorem provides several purely algebraic characterisations
of quasi-stability independent of Pommaret bases. It combines ideas and results
from [4], Def. 1.5], [0, Prop. 3.2/3.6], [L9, Prop. 2.2] and [25] Prop. 4.4].

Theorem 11. Let Z <P be a monomial ideal and D = dim (P/Z). Then the
following statements are equivalent.

(i) Z is quasi-stable.
(ii) The variable xy is not a zero divisor for P/I5 and for all 1 < k < D the
variable xp11 is not a zero divisor for P/{L,x1, ..., xx)%".

Quasi-stability versus Genericity 177

(iii) We have T : 23° CZ :25° C --- C T : 2% and for all D < k < n an
exponent ey, > 1 exists such that xZ" cT.

(iv) For alll <k <n the equality L : x3° =1 : (z,...,2n)> holds.

(v) For every associated prime ideal p € Ass(P/Z) an integer 1 < j < n exists
such that p = (z;,...,xn).

(vi) If z* € T and p; > 0 for some 1 < i < n, then for each 0 < r < p; and
1 < j <n an integer s > 0 exists such that xjx”/x: eT.

The terminology “quasi-stable” stems from a result of Mall. The minimality
assumption is essential here, as the simple example (22, y?) < k[z,y] shows.

Lemma 12 (|21, Lemma 2.13], [26, Prop. 5.5.6]). A monomial ideal is
stableﬁ if and only if its minimal basis is a Pommaret basis.

Thus already in the monomial case Pommaret bases are generally not minimal.
The following result of Mall characterises those polynomial ideals for which the
reduced Grobner basis is simultaneously a Pommaret basis. We provide here a
much simpler proof due to a more suitable definition of Pommaret bases.

Theorem 13 (|21, Thm. 2.15]). The reduced Grébner basis of the ideal T <<P
18 simultaneously a Pommaret basis, if and only if 1t T is stable.

Proof. By definition, the leading terms 1t G of a reduced Grobner basis G form
the minimal basis of It Z. The assertion is now a trivial corollary to Lemma
and the definition of a Pommaret basis. O

4 The Generic Initial Ideal

If we fix an order < and perform a linear change of variables X = AX with a
non-singular matrix A € k™™, then, according to Galligo’s Theorem [I0J5], for
almost all matrices A the transformed ideal Z <t P = k[X] has the same leading
ideal, the generic initial ideal ginZ for the used order. By a further result of
Galligo [TTI5], ginZ is Borel fixed, i.e. invariant under the natural action of the
Borel group. For chark = 0, the Borel fixed ideals are precisely the stable ones;
in positive characteristics the property of being Borel fixed has no longer such a
simple combinatorial interpretation.

We will show in this section that many properties of the generic initial ideal
ginZ also hold for the ordinary leading ideal It Z—provided the used variables
are d-regular. This observation has a number of consequences. While there does
not exist an effective criterion for deciding whether a given leading ideal is ac-
tually ginZ, d-regularity is simply proven by the existence of a finite Pommaret
basis. Furthermore, ginZ can essentially be computed only by applying a ran-
dom change of variables which has many disadvantages from a computational
point of view. By contrast, [25, Sect. 2] presents a deterministic approach for the

3 In our “reverse” conventions, a monomial ideal Z is called stable, if for every term
t € T and every index k = clst < i < n also z;t/zy € T.

178 A. Hashemi, M. Schweinfurter, and W.M. Seiler

construction of d-regular variables which in many case will lead to fairly sparse
transformations.

From a theoretical point of view, the following trivial lemma which already
appeared in [BI0] implies that proving a statement about quasi-stable leading
ideals immediately entails the analogous statement about ginZ.

Lemma 14. The generic initial ideal ginZ is quasi-stable.

Proof. For chark = 0, the assertion is trivial, since then ginZ is even stable,
as mentioned above. For arbitrary chark, it follows simply from the fact that
generic variabled] are d-regular and thus yield a quasi-stable leading ideal. O

The next corollary is a classical result [I3] Cor. 1.33] for which we provide here
a simple alternative proof. The subsequent theorem extends many well-known
statements about ginZ to the leading ideal in d-regular variables (for < eyiex);
they are all trivial consequences of the properties of a Pommaret basis.

Corollary 15. Let Z <P be an ideal and chark = 0. Then all bigraded Bett:
numbers satisfy the inequality 8; ;(P/I) < B;;(P/ginT).

Proof. We choose variables X' such that 1tZ = ginZ. By Lemma [I4] these vari-
ables are J-regular for the given ideal Z. As chark = 0, the generic initial ideal
is stable and hence the bigraded version of ([B]) applied to 1t Z yields the bigraded
Betti number 3; ;(P/ginZ). Now the claim follows immediately from analysing
the resolution (2)) degree by degree. a

Theorem 16. Let the variables X be §-reqular for the ideal TP and the reverse
lexicographic order <ieviex-

(i) pdZ =pdItZ.

(ii) satZ =satlt 7.

(iii) regZ =regltZ.

(iv) reg, T =reg, It T for all 0 <t < dim (P/Z).

(v) af(Z) =af(WI) for all 0 <t < dim (P/I).

(vi) The extremal Betti numbers of T and It T occur at the same positions and
have the same values.

(vii) depthZ = depthltZ.

(viii) P/Z is Cohen-Macaulay, if and only if P/t T is Cohen-Macaulay.

Proof. The assertions (i-v) are trivial corollaries of Theorem [6land Corollary [I0]
respectively, where it is shown for all considered quantities that they depend only
on the leading terms of the Pommaret basis of Z. Assertion (vi) is a consequence
of Remark [M and the assertions (vii) and (viii) follow from Theorem @l a

Remark 17. In view of Part (viii), one may wonder whether a similar statement
holds for Gorenstein rings. In [27, Ex. 5.5] the ideal Z = (2% —zy, yz, y?, z2,22) <

* Recall that we assume throughout that k is an infinite field, although a sufficiently
large finite field would also suffice [26] Rem. 4.3.19].

Quasi-stability versus Genericity 179

k[x, y, z] is studied. The used coordinates are J-regular for <reyiex, as a Pommaret
basis is obtained by adding the generator z%y. It follows from [27, Thm. 5.4]
that P/Z is Gorenstein, but P/1tZ not. A computation with CoCoA []] gives
here ginZ = (22,yz,9% w2, 2y, 23) (assuming chark = 0) and again one may
conclude with [27, Thm. 5.4] that P/ ginZ is not Gorenstein.

5 Componentwise Linear Ideals

Given an ideal Z <P, we denote by Z;4, = (Zy) the ideal generated by the homo-
geneous component Z, of degree d. Herzog and Hibi [16] called Z componentwise
linear, if for every degree d > 0 the ideal Z(4y = (Z4) has a linear resolution. For
a connection with Pommaret bases, we need a refinement of §-regularity.

Definition 18. The wvariables X are componentwise d-regular for the ideal T
and the order <, if all ideals L4 for d > 0 have finite Pommaret bases for <.

It follows from the proof of [25, Thm. 9.12] that for the definition of component-
wise d-regularity it suffices to consider the finitely many degrees d < regZ. Thus
trivial modificiations of any method for the construction of -regular variables
allow to determine effectively componentwise §-regular variables.

Theorem 19 ([25, Thm. 8.2, Thm. 9.12]). Let the variables X be compo-
nentwise d-reqular for the ideal T AP and the reverse lexicographic order. If T is
componentwise linear, then the free resolution (@) of T induced by the Pommaret
basis H is minimal and the Betti numbers of I are given by (3). Conversely, if
the resolution () is minimal, then the ideal T is componentwise linear.

The following corollary generalises the analogous result for stable ideals to com-
ponentwise linear ideals (Aramova et al. [2, Thm. 1.2(a)] noted a version for
gin7). It is an immediate consequence of the linear construction of the resolu-
tion @) in [25, Thm. 6.1] and its minimality for componentwise linear ideals.

Corollary 20. Let Z<P be componentwise linear. If the Betti number B; ; does
not vanish, then also all Betti numbers B;r ; with i < i do not vanish.

As a further corollary, we obtain a simple proof of an estimate given by Aramova
et al. [2 Cor. 1.5] (based on [18, Thm. 2]).

Corollary 21. Let T <P be a componentwise linear ideal with pdZ = p. Then

the Betti numbers satisfy 3; > (1:11)

Proof. Let H be the Pommaret basis of Z for < eylex in componentwise d-regular
variables and d = cls H. By Theorem [[9] (2]) is the minimal resolution of Z and
hence @) gives us §;. By Theorem l, p = n — d. We also note that J-regularity

implies that 5(()k) > 0 for all d < k < n. Now we compute

4_n_i n—k k) _ P V4 (n—10) P V4 _ p+1
= ()= (=2 () - ()

k=d l=i

by a well-known identity for binomial coefficients. O

180 A. Hashemi, M. Schweinfurter, and W.M. Seiler

Ezample 22. The estimate in Corollary 2Tl is sharp. It is realised by any com-
ponentwise linear ideal whose Pommaret basis satisfies B(()Z) =0 for ¢ < d and

5(()1) =1 for ¢ > d. As a simple monomial example consider the ideal Z generated
by the d terms hy =z, hy = x%"'x3131+17. ooy hg =0 - 'Z‘gﬁll‘gdﬂ for
arbitrary exponents «; > 0. One easily verifies that H = {hq,...,hq} is indeed

simultaneously the Pommaret and the minimal basis of Z.

Recently, Nagel and Romer [22] Thm. 2.5] provided some criteria for componen-
twise linearity based on ginZ (see also [2, Thm 1.1] where the case chark = 0
is treated). We will now show that again ginZ may be replaced by It Z, if one
uses componentwise §-regular variables. Furthermore, our proof is considerably
simpler than the one by Nagel and Romer.

Theorem 23. Let the variables X be componentwise §-reqular for the ideal TP
and the reverse lexicographic order. Then the following statements are equivalent:

(i) Z is componentwise linear.

(ii) 1tZ is stable and all bigraded Betti numbers ;; of I and It coincide.
(iii) 1t Z is stable and all total Betti numbers B; of T and WtZ coincide.
(iv) Wt Z is stable and Bo(Z) = Bo(tZ).

Proof. The implication “(i) = (ii)” is a simple consequence of Theorem[I9l Since
our variables are componentwise d-regular, the resolution (2)) is minimal. This
implies immediately that 1t Z is stable. Applying Theorem [] to the Pommaret
basis 1t H of 1t Z yields the minimal resolution of 1t Z. In both cases, the lead-
ing terms of all syzygies are determined by 1t H and hence the bigraded Betti
numbers of Z and 1t Z coincide.

The implications “(ii) = (iii)” and “(iii) = (iv)” are trivial. Thus there only
remains to prove “(iv) = (i)”. Let H be the Pommaret basis of Z. Since It Z is
stable by assumption, It H is its minimal basis by Lemma [[2] and 3y (1t Z) equals
the number of elements of H. The assumption 8y(Z) = So(It Z) implies that H is
a minimal generating system of Z. Hence, none of the syzygies obtained from the
involutive standard representations of the non-multiplicative products yh with
h € H and y € Xp(h) may contain a non-vanishing constant coefficients. By
[25] Lemma 8.1], this observation implies that the resolution (&) induced by H
is minimal and hence the ideal Z is componentwise linear by Theorem O

”

6 Linear Quotients

Linear quotients were introduced by Herzog and Takayama [20] in the context
of constructing iteratively a free resolution via mapping cones. As a special case,
they considered monomial ideals where certain colon ideals defined by an ordered
minimal basis are generated by variables. Their definition was generalised by
Sharifan and Varabaro [28] to arbitrary ideals.

Definition 24. Let Z <P be an ideal and F = {f1,..., fr} an ordered basis of
it. Then T has linear quotients with respect to F, if for each 1 < k < r the ideal
(f1,--+, Jk—1) : fx is generated by a subset X, C X of variables.

Quasi-stability versus Genericity 181

We show first that in the monomial case this concept captures the essence of
a Pommaret basis. For this purpose, we “invert” some notions introduced in
[25]. We associate with a monomial Pommaret basis H a directed graph, its
P-graph. Tts vertices are the elements of H. Given a non-multiplicative variable
x; € Xp(h) for a generator h € H, there exists a unique involutive divisor h € H
of z;h and we include a directed edge from h to h.

An ordering of the elements of H is called an inverse P-ordering, if a >
whenever the P-graph contains a path from h, to hg. It is straightforward
to describe explicitly an inverse P-ordering: we set a > f, if clsh, < clshg
or if clsh, = clshg and hy <jex hg, i.e. we sort the generators h, first by
their class and then within each class lexicographically (according to our reverse
conventions!). One easily verifies that this defines an inverse P-ordering.

Ezample 25. Consider the monomial

ideal Z C k|z,y, z] generated by the hs >hs

six terms hy = 22, ho = yz, hy = 2,

hy = xz, hs = 2y and hg = z2. One / \

easily verifies that these terms form a (5)
Pommaret basis of Z. The P-graph in

[B) shows that the generators are al- \ /

ready inversely P-ordered, namely ac- hy > hy

cording to the description above.

Proposition 26. Let H = {h1,...,h,} be an inversely P-ordered monomial
Pommaret basis of the quasi-stable monomial ideal T < P. Then the ideal T
possesses linear quotients with respect to the basis H and

(hi,oo s hg—1) he = (Xp(he)) k=1,...r. (6)

Conversely, assume that H = {h1,...,h,} is a monomial generating set of the
monomial ideal T QP such that (@) is satisfied. Then T is quasi-stable and H
its Pommaret basis.

Proof. Let y € Xp(hg) be a non-multiplicative variable for hy € H. Since H is
a Pommaret basis, the product yhi possesses an involutive divisor h; € ‘H and,
by definition, the P-graph of H contains an edge from k to 7. Thus i < k for an
inverse P-ordering, which proves the inclusion “2”.

The following argument shows that the inclusion cannot be strict. Consider a
term t € k[Xp(hy)] consisting entirely of multiplicative variables and assume that
thi € (hi,...,hg_1), i.e. thy = sih;, for some term s; € k[X] and some in-
dex i; < k. By definition of a Pommaret basis, s; must contain at least one non-
multiplicative variable y; of h;, . But now we may rewrite y1 hi, = sohy, withis < i3
and sg € k[Xp(hi,)]. Since this implies cls ho > cls hy, we find Xp (hi,) C Xp(hs,).
Hence after a finite number of iterations we arrive at a representation thy = sh;
where s € k[Xp(h;)] which is, however, not possible for a Pommaret basis.

For the converse, we show by a finite induction over k that every non-multi-
plicative product yhy with y € X p(hi) possesses an involutive divisor h; with
1 < k which implies our assertion by Proposition Bl For k¥ = 1 nothing is to be

182 A. Hashemi, M. Schweinfurter, and W.M. Seiler

shown, since (@) implies in this case that all variables are multiplicative for hy
(and thus this generator is of the form h; = zf, for some £ > 0), and k = 2 is
trivial. Assume that our claim was true for hy, ha, ..., hiy—1. Because of (@), we
may write yhy = t1h;, for some i; < k. If t1 € k[Xp(h;,)], we set ¢ = ¢; and are
done. Otherwise, t; contains a non-multiplicative variable y; € X' p(h;,). By our
induction assumption, y; h;, has an involutive divisor h;, with i5 < ¢; leading to
an alternative representation yhy = toh;,. Now we iterate and find after finitely
many steps an involutive divisor h; of yhy, since the sequence iy > is > -+ is
strictly decreasing and h; has no non-multiplicative variables. a

Remark 27. As we are here exclusively concerned with Pommaret bases, we for-
mulated and proved the above result only for this special case. However, Propo-
sition remains valid for any involutive basis with respect to a continuous
involutive division L (and thus for all divisions of practical interest). The conti-
nuity of L is needed here for two reasons. Firstly, it guarantees the existence of an
L-ordering, as for such divisions the L-graph is always acyclic [25, Lemma 5.5].
Secondly, the above argument that finitely many iterations lead to a representa-
tion thy = sh; where s contains only multiplicative variables for h; is specific for
the Pommaret division and cannot be generalised. However, the very definition
of continuity [12, Def. 4.9] ensures that for continuous divisions such a rewriting
cannot be done infinitely often.

In general, we cannot expect that the second part of Proposition 26] remains
true, when we consider arbitrary polynomial ideals. However, for the first part
we find the following variation of [28, Thm. 2.3].

Proposition 28. Let H be a Pommaret basis of the polynomial ideal T <P for
the term order < and b’ € P a polynomial with1th' ¢ WH. If T : h' = (X p(h')),
then H' = H U {h'} is a Pommaret basis of J = I + (h'). If furthermore T is
componentwise linear, the variables X are componentwise d-reqular and H' is a
minimal basis of J, then J is componentwise linear, too.

Proof. f T : W' = (Xp(h')), then all products of h' with one of its non-
multiplicative variables lie in Z and hence possess an involutive standard repre-
sentation with respect to H. This immediately implies the first assertion.

In componentwise §-regular variables all syzygies obtained from the involutive
standard representations of products yh with h € H and y € X p(h) are free of
constant coefficients, if Z is componentwise linear. If #’ is a minimal basis of 7,
the same is true for all syzygies obtained from products yh' with y € X p(R’).
Hence we can again conclude with [25, Lemma 8.1] that the resolution of J
induced by H’ is minimal and J componentwise linear by Theorem O

References

1. Aramova, A., Herzog, J.: Almost regular sequences and Betti numbers. Amer. J.
Math. 122, 689-719 (2000)

2. Aramova, A., Herzog, J., Hibi, T.: Ideals with stable Betti numbers. Adv.
Math. 152, 72-77 (2000)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Quasi-stability versus Genericity 183

Bayer, D., Charalambous, H., Popescu, S.: Extremal Betti numbers and applica-
tions to monomial ideals. J. Alg. 221, 497-512 (1999)

Bayer, D., Stillman, M.: A criterion for detecting m-regularity. Invent. Math. 87,
1-11 (1987)

Bayer, D., Stillman, M.: A theorem on refining division orders by the reverse lexi-
cographic orders. Duke J. Math. 55, 321-328 (1987)

Bermejo, I., Gimenez, P.: Saturation and Castelnuovo-Mumford regularity. J.
Alg. 303, 592-617 (2006)

Caviglia, G., Sbarra, E.: Characteristic-free bounds for the Castelnuovo-Mumford
regularity. Compos. Math. 141, 1365-1373 (2005)

CoCoATeam: CoCoA: a system for doing Computations in Commutative Algebra,
http://cocoa.dima.unige.1it

Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry.
Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)

Galligo, A.: A propos du théoréme de préparation de Weierstrass. In: Norguet, F.
(ed.) Fonctions de Plusieurs Variables Complexes. Lecture Notes in Mathematics,
vol. 409, pp. 543-579. Springer, Berlin (1974)

Galligo, A.: Théoreme de division et stabilité en géometrie analytique locale. Ann.
Inst. Fourier 29(2), 107-184 (1979)

Gerdt, V., Blinkov, Y.: Involutive bases of polynomial ideals. Math. Comp.
Simul. 45, 519-542 (1998)

Green, M.: Generic initial ideals. In: Elias, J., Giral, J., Mir6-Roig, R., Zarzuela, S.
(eds.) Six Lectures on Commutative Algebra. Progress in Mathematics, vol. 166,
pp. 119-186. Birkh&user, Basel (1998)

Guillemin, V., Sternberg, S.: An algebraic model of transitive differential geometry.
Bull. Amer. Math. Soc. 70, 1647 (1964), (With a letter of Serre as appendix)
Hausdorf, M., Sahbi, M., Seiler, W.: §- and quasi-regularity for polynomial ideals.
In: Calmet, J., Seiler, W., Tucker, R. (eds.) Global Integrability of Field Theories,
pp. 179-200. Universitatsverlag Karlsruhe, Karlsruhe (2006)

Herzog, J., Hibi, T.: Componentwise linear ideals. Nagoya Math. J. 153, 141-153
(1999)

Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics, vol. 260.
Springer, London (2011)

Herzog, J., Kiihl, M.: On the Bettinumbers of finite pure and linear resolutions.
Comm. Alg. 12, 1627-1646 (1984)

Herzog, J., Popescu, D., Vladoiu, M.: On the Ext-modules of ideals of Borel type.
In: Commutative Algebra. Contemp. Math, vol. 331, pp. 171-186. Amer. Math.
Soc., Providence (2003)

Herzog, J., Takayama, Y.: Resolutions by mapping cones. Homol. Homot. Appl. 4,
277-294 (2002)

Mall, D.: On the relation between Grobner and Pommaret bases. Appl. Alg. Eng.
Comm. Comp. 9, 117-123 (1998)

Nagel, U., Roémer, T.: Criteria for componentwise linearity. Preprint
arXiv:1108.3921 (2011)

Schenzel, P., Trung, N., Cuong, N.: Verallgemeinerte Cohen-Macaulay-Moduln.
Math. Nachr. 85, 57-73 (1978)

Seiler, W.: A combinatorial approach to involution and d-regularity I: Involutive
bases in polynomial algebras of solvable type. Appl. Alg. Eng. Comm. Comp. 20,
207-259 (2009)

http://cocoa.dima.unige.it

184 A. Hashemi, M. Schweinfurter, and W.M. Seiler

25. Seiler, W.: A combinatorial approach to involution and J-regularity II: Structure
analysis of polynomial modules with Pommaret bases. Appl. Alg. Eng. Comm.
Comp. 20, 261-338 (2009)

26. Seiler, W.: Involution — The Formal Theory of Differential Equations and its
Applications in Computer Algebra. Algorithms and Computation in Mathematics,
vol. 24. Springer, Berlin (2009)

27. Seiler, W.: Effective genericity, d-regularity and strong Noether position. Comm.
Alg. (to appear)

28. Sharifan, L., Varbaro, M.: Graded Betti numbers of ideals with linear quotients.
Matematiche 63, 257-265 (2008)

29. Trung, N.: Grobner bases, local cohomology and reduction number. Proc. Amer.
Math. Soc. 129, 9-18 (2001)

Invariant Theory:
Applications and Computations
(Invited Talk)

Gregor Kemper

Zentrum Mathematik M11,
Technische Universitdt Miinchen
Boltzmannstr. 3, 85748 Garching, Germany
Kemper@ma.tum.de

Abstract. Being at the crossroads of several mathematical disciplines,
invariant theory has a wide range of applications. Many of these depend
on computing generating or at least separating subsets of rings of invari-
ants. This talk gives some examples in which invariant theory is applied
to graph theory, computer vision, and coding theory. We also give an
overview of the state of the art of algorithmic invariant theory.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, p. 185, 2012.

(© Springer-Verlag Berlin Heidelberg 2012

Local Generic Position for Root Isolation
of Zero-Dimensional Triangular
Polynomial Systems

Jia Li', Jin-San Cheng?, and Elias P. Tsigaridas®

! Beijing Electronic Science and Technology Institute
2 KLMM, AMSS, Chinese Academy of Sciences
3 POLSYS project, INRIA, LIP6/CNRS
jcheng@amss.ac.cn, lijia@besti.edu.cn, elias@polsys.lip6.fr

Abstract. We present an algorithm to isolate the real roots, and com-
pute their multiplicities, of a zero-dimensional triangular polynomial
system, based on the local generic position method. We also present-
experiments that demonstrate the efficiency of the method.

1 Introduction

Solving polynomial systems is a basic problem in the fields of computational
sciences, engineering, etc. A usual technique is to transform the input polynomial
system to a triangular one using well known algebraic elimination methods, such
as Grobner bases, characteristic sets, CAD, and resultants. In most of the cases
we have to deal with zero-dimensional systems. For example, for computing the
topology of a real algebraic curve or surface with CAD based methods [2J6I3]
we need to isolate the real roots of a zero-dimensional triangular system and also
know their multiplities.

A (zero-dimensional) triangular system has the form X, = {f1, ..., fo}, where
fi € Qlzy,...,2;] (i=1,...,n), and Q is the field of rational numbers. Our aim
is to isolate the zeros £€" = (&1,...,&,) € C"(or R™) of X, where C, R are the
fields of complex and real numbers, respectively.

The local generic position method (shortly LGP) was introduced in [4]. It was
used to solve bivariate polynomial systems and the experiments show that it is
competitive in practice. The method has been extended to solve general zero-
dimensional systems using Grobner basis computations and linear univariate rep-
resentation [5]. In this paper, we extend LGP to solve general zero-dimensional
triangular systems using only resultant computations.

We will explain how to isolate the roots of a zero-dimensional polynomial
system as X = {f(z),g(z,y), h(x,y,2)}. The case with more variables are sim-
ilar. At first, we isolate the roots of f(z) = 0 and compute the root separation
bound as 1. Then we compute the root bound of g(x,y) = f(z) = 0 on y
and denote as Ro. Choose a rational number s; such that 0 < s1 < r1/Rs.
The roots of f(zx — s1y) = g(z — s1y,y) = 0 are in a generic position. Let
h1 = Resy(f(x —s1y),9(x — s1y,y)). And the roots of f = g = 0 corresponding

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 186-{[J7] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Local Generic Position and Triangular Systems 187

to «, where f(a) = 0, are uniquely projected to the neighborhood of « with
radius 71 by h1 = 0, say ;. Thus we can recover the y-coordinate of these roots
from y = (8; — «)/s1. Thus we get the roots of f = g = 0. And we get a root
separation bound for these y roots for a fixed «, choose the smallest one from
all roots of f = 0 as ry. Similarly, compute a root bound Rj3 for z coordinates
of the roots of f = g = h = 0. Choose a rational sy as 0 < sy < 12/Rs3.
Let g1 = Res,(g(x,y — s22), h(z,y — s2 2, 2)). Isolate the roots of f = g1 =0
as for isolating the roots of f = g = 0 (We can use the same s1). For each
root P = (a,p8) of f = g = 0, we can recover z-coordinates of the roots of
f =g =h =0 from the roots P, = (a,7;) of f = g1 = 0 in P’s neighborhood
with radius ro by z = (7; — 8)/s2. Thus we get all the roots of f =g =h =0.
And we also get an algebraic representation of the zeros of the system X': each
coordinate of each zero is a linear combination of roots of several univariate
polynomials. Using this representation we can compute the zeros of the system
up to any desired precision. Our method is complete in the sense that X, can
be any zero-dimensional triangular system.

There is an extensive bibliography for isolating the roots of zero-dimensional
triangular polynomial systems. However, most of the methods can not apply
to triangular systems with multiple zeros directly [RIQI53II9]. Usually, they
decompose the system into triangular systems without multiple zeros and then
isolate the real zeros. Cheng et al [7] provided a direct method which does not
compute an algebraic representation of the real zeros and can not compute their
multiplicities. In [22] a method for computing the multiplicities is presented in
the case where the zeros have already been computed. Concerning the algebraic
representation of the roots of a polynomial system, let us mention Rouillier [I7]
that used the rational univariate representation, and Gao and Chou [12] that
presented a representation for the zeros of a radical characteristic set. Using
Grobner basis computations, [I] presented a representation of the zeros of a
system that depends on the multiplicities.

The rest of the paper is structured as follows: In Section 2 we present the
theory of isolating the roots of a zero-dimensional triangular polynomial system.
In Section 3, we give the algorithm, present an example, and compare our method
with other methods. We conclude in Section 4.

2 Zero-Dimensional Triangular System Solving

Let Y; = {fl(l‘l), fg(.’l’,‘l,l‘g), ey fi(xl,.’I}Q, S ,xi)} S Q[.’L‘l, X2, ..., Z‘Z}(Z =1,...,
n) be a general zero-dimensional triangular system. £' = (&1,...,&;) € Zero(X};),
where Zero(t) represents the zero set of ¢ = 0. And ¢ can be a polynomial or a
polynomial system.

Let f € C[z]. Then the separation bound sep(f) and root bound rb(f) of
f are defined as follows: sep(f) := min{A(a, §)|Va, 8 € Cs.t.f(a) = f(B) =
0, a # B}, where A(a, 8) := max{|Re(a—5)|, Im(a— 5)|}, Re(a—B), Im(a—)
are the real part and imaginary part of @ — 8 respectively. We also need the
definition of the root bound: rb(f) := max{|a||Va € Cs.t.f(a) = 0}.

188 J. Li, J.-S. Cheng, and E.P. Tsigaridas

Assume that we have solved the system X;(1 < i < n — 1). The assumption
is reasonable since we can solve X directly with many existing tools, such as
[1821]. And we can get a separation bound r1 of fi(z1). Based on the roots of
f1 =0, we can estimate the root bound Rs.

Let r;(1 < j < i) be a positive rational number, such that

1 ,
r; < min sep(f; (€771 z.)). 1
J = 2 er-1eZero(5; 1) p(fg(ﬁ J)) (1)

We can compute r; after we get the roots of f; (&1, zj) =0.

Based on the zeros of X;, we can estimate the root bound on x;41 (we will
show how to estimate the bound later) to get a positive rational number R4,
such that

Rji1 2> gjerzré?gizj)fb(fj+1(€j,$j+1))~ (2)
We usually add a previously estimated value, say ’I“;- 41, for rj41 to the above root
bound to ensure that after shearing and projection, the fixed neighborhoods of
the zeros of T; ;(X; ;) (see definition below) are disjoint. Then when we compute
7j+1, we choose the one no larger than 7).

We say two plane curves defined by f,¢ € Clz,y| s.t. ged(f,g) = 1 are in a
generic position w.r.t. y if (1) The leading coefficients of f and g w.r.t. y have
no common factors, and (2) If h is the resultant of f and g w.r.t. y, then any
a € C such that h(a) =0, f(a,y), g(a, y) have only one common zero in C.

Now we introduce local generic position [45]. Given f,g € Q[z,y], not
necessarily in generic position, we consider the the mapping ¢ : (z,y) — (z +
sY,y), s € Q, with the following properties: (i) ¢(f), #(g) are in a generic position
w.r.t. y, and (ii) Let h, h be the resultants of ¢(f), #(g) and f, g w.r.t. y, respec-
tively. Each root v of h(z) = 0 has a neighbor interval H, such that H,NHz = ()
for roots 8 # « of h = 0. And any root (v,n) of f = g = 0 which has a same
z-coordinate 7, is mapped to v’ = y+sn € H,, where h(y) = 0, h(y') = 0. Thus

!’
we can recover n = " 7.

2.1 Basic Theory and Method

For each &' = (€1,...,&;) € Zero(%;), the roots of fiy1(&", ;1) = 0 are bounded
by Ri+1. We can take a shear mapping on fiy1(x1,...,2,41) such that when
projected to i-D space, all the roots of fi+1(£i, Zi+1) = 0 are projected into the
fixed neighborhood of §; (centered at &; and radius bounded by r;). This can be
achieved by take the following shear mapping on (z;, z;4+1).

T

Xojy1 =x; +
' Rit1

Tit1, X141 = Tig1- (3)
Applying (@) to the system X;;;, we derive a new system X; , = {fi(z1),...,

fica(wy, o), filen, i, Xoapn = gl Xva), fina (@, i,

Local Generic Position and Triangular Systems 189

Fig. 1. Local generic position

X211 —RZIX1,¢+17X1,¢+1)}- Let

Toip1(w1, ... 2i-1, Xoi11) = Resx, ., (fi(wr, o021, Xoip1 —
R:jrle,i+1)7fi+1(xla-~-7-'L'i—1’X2,i+1 - Rtjrle,i+17X1,z‘+1))v

where Res;(f,g) is the resultant of f and g w.r.t. ¢. There is only one root
of fit1(&1,y..., &i—1,02— R:L X1,i+1, X1.i+1) = 0 corresponding to each i-D root

(&1,...,&—1,02) € Zero(XY), where X¥* = X;_1 U{T2 ;+1}. As is shown in Figure
[A5 is some dot point on z;-axis. Corresponding to each dot point, there is only
one box point. Each box point corresponds to one triangle point. We will further
study the relationship between the zeros of X, 41 and X;_1 U {73 i+1} below.
Considering the multiplicities of the zeros, we give the following lemma.

Lemma 1. For each zero &€ of X;_1, there exists a one to one correspondence
between the roots of {fi(&1,. .., &—1,%i), fix1(§1y- - &im1, @i, Tix1)} = 0 and the
roots of Toit1(&1, - &i—1,Xo2441) = 0, and the multiplicities of corresponding
zeros in their equation(s) are the same.

Proof. Note that we derive the system Oy := {fi(&,...,&-1,X2i41 —
Ry Xvit), firn (o §im1, Xoin — gl Xuag1, X1i4)} from the system
61 = {fil&,...,&—1,2i), fix1(&1,. .., &—1,%i, Tit1)} by coordinate system

transformation. So there exists a one to one correspondence between their zeros,
including the multiplicities of the zeros by the properties of local generic position.
And the coordinate system transformation ensures that for any zero (&;,&+1),
when projected to z;-axis by LGP method, the zero is in the fixed neighbor-
hood of & (centered at &; and radius bounded by r;). This ensures that all the
zeros of @y, when projected to x;-axis, do not overlap, which means any root
of Tp i11(&1, - .., &—1, X2,i+1) = 0 corresponds to one zero of ©,. So there exists
a one to one correspondence between roots of T5 ;+1(&1,...,&—1,Xo2,41) = 0
and the zeros of ©;. It is not difficult to find that the degree of the polynomial
fil€r, .. &—1, Xoip1— R:jrl X1,i41) w.r.t. Xq ;41 is equal to its total degree. And
Ty it1(&1, ..., &—1,X2,i+1) is the resultant of the two polynomials in Oy w.r.t.
X1,i+1. Based on the theory in Section 1.6 in [II], we can conclude that the mul-
tiplicities of the roots in T5 ;41(&1, - - -, &i—1, X2,i+1) = 0 equals the multiplicities
of the corresponding zeros of @3, and then @;. So the lemma is true.

190 J. Li, J.-S. Cheng, and E.P. Tsigaridas

Lemma 2. There exists a one to one correspondence between the zeros of tri-
angular systems X;11 and X;—1 U{Ts ;11(21, ..., 2i—1, X2,+1)}. And the corre-
sponding zeros have the same multiplicities in their system.

Proof. Since both the systems have a same sub-system X;_;, we can derive that
the lemma is correct by Lemma [Il

Lemma 3. For (&,...,&) € Zero(X;), the roots of fir1(&1,. .., &, Tip1) are:
Tig1 = R:rl (€2 — &), where (2 — &i| < 71iy Toiv1(&1,---,8i-1,C2) =0. (4)

Proof. The first formula is directly derived from (B]). Since the first formula just

holds for (s, corresponding zeros having &; as coordinate, the inequality holds.

The above lemma tells us how to derive the roots of fi+1(&1,...,&,xiy1) =0
from the roots of T ;+1(&1,...,&—1, Xo2441) = 0. From (@) and (@), the corollary
below is obvious.

Corollary 1. All the roots of To;y1(&1,...,&i—1,X2,i+1) = 0 are inside the
fized neighborhood of 0 (centered at 0 bounded by R;) for all (&1,...,&i-1) €
Zero(X;_1).

We apply the previous procedure on the triangular system X;_1 U {T5 ;11} with
the mapping

Ti—1
X3i+1 =21 + R Xoiv1, Xoir1 = Xoiy, (5)
(]
T3ip1(w1, ..., 2i—2, X3,i11) = Resx, ., (fi—2(w1, ..., 2i—3, X3,i11 —
Ti—1 Ti—1
r X2i+1), Tojipr (1, oo, 2ims, Xz — ' Xoji1, Xoi41)).

So, we have a triangular system X;_o U {T3 ;11}. Since Corollary [l holds, the
results in Lemma [2 still hold on X;_1 U {T% 41} and X;_2 U {T5,4+1}. By @),
and similarly as (), we derive

Go= T (G—&), [G—&al<rii, Taina(ér,..,&i2,G) =0 (6)

Then we have z;41 = R;jl(rfjl ({3 — &i—1) — &), where |(3 — &-1] < ri-1,
S8 (G = &) =&l < Taaga (&, &m0, G3) = 0.
The above formula means that we can get the roots of fi+1(&1,...,&, xit1) =

0 by solving T5 ;+1(&1, ..., &i—2, X3i+1) = 0 directly.

Step by step, we can derive a univariate polynomial Tji1 j+1(Xit1,i+1). It
holds ¢; = }ff (Giv1—&1) and |41 —&1] < 1. Now we can represent Zero(f;41(&1,

5 &iyit1)) by &1, .., & and the roots of Tig 1 i1(Xit1,i41), where (&1,...,&) €

Zero(X;).
Lemma 4. For any zero (&1,...,&) € Zero(X;), each root &4+1 of fiv1(&1y-- -,
&, xir1) = 0 is mapped to a root of Tyt i+1(Xit1,i+1) = 0. And we can derive
Eiv1 by Tig1,i11(Xig1,i41) = 0 as follows.
R; R; R

(G=&), ¢ = . (Ga=&i-1),--, Gi= rf (Gir1=€1), Tigr,iv1(Xig1,i41) =0,

T4 i—

iv1 =

where (2 — & <1y, |3 — &1 < ricty-o [Gir1 — & < 71s

Local Generic Position and Triangular Systems 191

Proof. Using Lemma [3 recursively, we can derive the above formula.

Lemma 5. For any (&,...,&) € Zero(X;), each distinct root &i41 of
fir1(&1s- -+, &y wiv1) = 0 is mapped to a root of Tiy1,iv1(Xiv1,41) = 0. And

we can derive: '
K

Rji1
& =] ;)(Mi+1 — mi), (7)
=1
where Ni+1 € ZeI‘O(TZ‘+17i+1), n; € ZeI‘O(TZ‘J’), and |’I7i+1 — 77i| < (H;;ll R:il)’f‘i.
Proof. According to Lemma [we know

&= (G-&) = = (T2 " m - St (T2 e,
Note that here (; = 7;. Similarly, we have

61 = (e 2 s = Zica [)6
= (T ijl)m - T e - e
= @y 2 e = 7 Sl el - e
= (e " mis — ;jlz LT]
SR (T - ST)

i R
= (G20 7)) (ier = mi).-

i—1 7y

Mit1 —mil = Hg 1 R +1 G| < Hg 1 R, +1Rz+1 = (Hj:l Rit1)i
The lemma has been proved.
Lemma 6. The multiplicity of the zero (&1,...,&,&i+1) of Xit1 is equal to the
multiplicity of the corresponding root in Tiyq i41(Xiy1,441) = 0.
Proof. Using Lemma [2 recursively, we can derive the lemma.
Theorem 1. With the notations above, we have the following representation for

a general zero-dimensional triangular system Xp :{{T1 1, s Tan}:{ri, -y Tn-1},
{Ra,...,R,}}, such that the zeros of X, can be derived as follows.

& = m,m € Zero(Ty 1),
& = (e —m),me € Zero(Taz2), 2 —m| <,

i—1 7

B i—1 R; — y
& = (L= 7)) —nim1)sm € Zero(Tya), Inivr — mil < (I1;21 &7, 7

... e .
§n = (H?:l :ﬂj—l)(nn - 77n—1) T € Zero() ‘nn nn—l‘ < (H?:l R:il)Tn—la

where Tj;(j = 1,...,n) are univariate polynomials, Th1 = fi. For each zero
(&1,...,&) (1 <1< n) of the system X;, the multiplicity of the zero in the system
is the multiplicity of the corresponding zero n; in the univariate polynomial T; ;.

Remark: From the second part of the theorem, we can compute the multiplic-
ities of the roots of fit1(&1,...,&,xiy1) = 0, it is the multiplicity of the zero
(&1,...,&+1) in Y41 dividing the multiplicity of the zero (&1,...,&) in X;.

192 J. Li, J.-S. Cheng, and E.P. Tsigaridas

2.2 Estimation of Bounds r;, R;;+1

To estimate the bounds r;, R;11, we can directly derive the bound by the method
in [I0]. But the derived bounds r; is tiny and R+ is huge. We prefer to use
direct methods to get the bounds.

The methods to estimate the bound for r;, R;+1 can be used both for complex
and real roots isolation. We focus on real roots isolation in this paper.

For R;;1, we have two methods to estmate it. One of them is computing

S(ziy1) = Rese, (Rese, (- - - Rese, (fix1, fi), -+ 5 f2), f1) (8)

first, estimating R; 11 by estimating the root bound of S(z;41).

Now, we introduce the second method. we at first estimate the root bound
on fit1(&1,...,&, ziy1) = 0 for a fixed zero (£1,...,&;). Doing so, we need to
use the definition of sleeve (see [TUT4YT5] for details). Given g € Q[xz1,...,Zx],
we decompose it uniquely as g = gt — g~, where g%, 9~ € Q[z1,...,x,] each
has only positive coefficients and with minimal number of monomials. Given an
isolating box O&" = [ay,by] X --- X [as, by] for & = (£1,...,&), we assume that
aj,b;j,& > 0,1 < j <isince we can take a coordinate system transformation to
satisfy the condition when &; < 0. Then we define

fi(z) = ff+1(mgi;x) = :kl(bi’x) - fz‘_+1(aivx)v
fd()= fﬁ-l(Dfi;x) = fiil(ai?x) - fijrl(bi7x)7 9)
where a; = (a1, . ..,a;), bj=(b1,...,b;). Then (f*, f4)isa sleeve of fit1(€%, zit1).
When considering x > 0, we have (see [7]): f4(z) < fir1(&',2) < f%(z).
If the leading coefficients of f,, and f; have the same signs, then we can find
that the root bound of f;11(€", x) is bounded by the root bounds of f,, and f,.

8

Lemma 7. [20] Let a polynomial of degree d be f(z) = agz® +ag_129 1 +...+
ag € Rlz], aq # 0. Let R =1+ maxo<p<d—1|y"|, then all zeros of f(x) lie inside
the circle of radius R about the origin.

If the considered triangular system is not regular, the leading coefficients of
fu and fy always have different signs. But the absolute value of the leading
coefficients are very close to zero. So usually, the root bound of f; (€', x) is
also bounded by the larger of the root bound of f, and f;. Then we can get
R;+1 by the lemma above.

For r;, we can directly compute the bound on the zeros of X; using (). It is
for complex roots. Since we focus on real roots, we compute r; after we get the
real roots of X; = 0 with the following formula.

sep(f) := min{|a — B||Va, B € Rs.t.f(a) = f(B) = 0,0 # B}. (10)

If we use () to compute 7;, the roots of the system are in a local generic position
after a shear mapping. When we use ({I0) to compute r;, though all the real roots
of the system have some local property, the complex roots may not in a generic
position. Since a random shear mapping usually puts the system into a generic
position, we can get the real roots of the given system.

Local Generic Position and Triangular Systems 193

2.3 Precision Control

When we compute the approximating zeros of a given zero-dimensional triangu-
lar system with the method we provided, the errors of the zeros will cumulate.
So we need to control the error under a wanted precision. This is what we want
to discuss in this subsection.

Consider the coordinate &; of the zero &™ = (&,...,&,) of the triangular
system X, in Theorem [Il Assume that we derive the coordinate §; under the
precision p;(> 0), and we isolate the roots of T} ;(X; ;) = 0 under the precision
€;(> 0), Note that p1 = €.

From (), the following lemma is clear.

Lemma 8. With the symbol above, we can derive that the root precision p; for
& 1s defined as follows: p; = (H;;ll R’”_’l)(ei +€i—1)-

Tj

From Lemma [§, we can compute the zeros of X, under any given precision by
controlling the precisions €;(1 < i < n). For example, we can set them as follows
if we require the precision of the output zeros to be e.

r; €

; ri €

J
EZ‘:H? .
Rj412

=g g Sisn-D e =1

(1)

In order to avoid refining the roots when we want to control the precision under
a given €, we can assume R;fl to be less than a number previously, such as 10, 23,
before we solve the systemt. This help us to previously estimate the precisions
that should be used to get the roots of T; ;(X; ;) = 0(1 <i <mn).

For root isolation, we require not only the roots satisfying the given precision,
but the isolating boxes being disjoint for distinct roots. We will show how to
ensure that the isolating boxes are disjoint. For real numbers o and 3, o < 8 in
R, if we use intervals [a,b] and [c,d] to represent them respectively. Denote

c—bb<ec,
0, b>c.

ol = 1o~ al. Di(a 5) = {

Let & = (&,...,¢&) € [at,bt] x ... x [al,b}] C R",i=1,2. Denote

nr-n

€ = max {b; —aj}, Dis(¢!, €*) = min {Dis(¢, &)}

If Dis(&1,€2) > 0, we say &' and €2 are disjoint.

Theorem 2. Use the notations above. We use intervals to represent real num-
bers and use boxes to represent real points, if for any n] € Zero(T;;), ni—1 €

Zero(nfl’ifl)f ‘775 - 771'*1| < (H;;Ql R:j_l)Tif 1= 23 cee ,TL;j = 1>2;

Dis(n;,07) > [ni-1l, (12)

then any two real zeros € = (€1,...,€L) and €2 = (€2,...,€2) of X, are disjoint.

194 J. Li, J.-S. Cheng, and E.P. Tsigaridas

Proof. We need only to consider the case n},n? are in the neighborhood of 7;_.
Otherwise, they are obviously disjoint. According to (@), for any i = 2,...,n,

i—1 R; _ i—1 R;
el = (IT2h)l —micn), € = (12)2 — i),

i—1

i—1
. R; .) Rii) .
Dis(e},€7) = ([T " "Disnf —mie1.n? — i) > (J] 777 @is(nf n?) — [mial) > 0 (13)
. T‘j

r
j=1 J j=1

if (I2) is satisfied. Thus Dis(¢", £2) > 0.

3 The Algorithm and Experiments

Algorithm 3. Isolate the real roots of a 0-dim. triangular system.
Input: A zero-dimensional triangular system X, a precision €.
Output: The solutions of the system in isolating interval representation.

1. Isolate the real roots of f1(x1) = 0 under the precision p = 260' Let Ty 1 = f1.
2. For ¢ from 2 to n,
(a) Estimate r;_; with method in Section 2.2.

(b) Estimate R; with method in Section 2.2.
(c¢) Compute T; ;(X;,;) with method in Section 2.1. '
(d) Isolate the real roots of T;;(X;;) = 0 with precision H;: R:j—l a0 (if
i = n, take H;le Rﬁ L2). Compute the multiplicities of the roots if
J

needed when i = n.
(e) If (I2) is not satisfied, then refine the real roots of T/~ (X; ™) = 0 until
([I2) is satisfied.
(f) Recover the real zeros of X; from T; ;,(X; ;) and X,_1 by Theorem [II
3. Get the solutions:{{71,1(X1,1),.--, Tnn(Xnn)}, {r1,...,7n-1}, {R2,..., Rn}},
or numeric solutions and their corresponding multiplicities.

Example 4. Consider the system {x? — 6,52% + 102y + 6y> — 5,22 + 22y +
292 +4yz+522—1}. We derive a symbolic representation of the roots, as well as
a floating point approximation up to precision 1(1)3 . We isolate the roots of f1 =0
using precision 2_1104 and we derive the zero set: H = {¢1 = —2.449490070, &2 =
2.449490070}. Let 11 = 2. Consider & ~ —2.449490070 € [—2.45,—2.44]. We
can use —2.45, —2.44 to construct f*(y), fi(y) for f2(€1,vy). We compute a root
bound for f“(y), fi(y). For both it is < 6. Similarly, we compute a root bound
for the other root in H. we notice that all the root bounds are less than 6. We
have computed r2 = 2, so we set Ry = 6 + 2 = 23. By considering a coordinate
system transformation, we derive a system X% as follows
{X20° — 5 Xo2 Xo1 4 1 X212 — 6,5 X02% + 2 Xo0 Xoq + ?é X217 — 5}
Hence we can compute Ta 5 = 36 X2724— 1(283 X2,22—|— 132053621. Solve T 2(X2,2) =0
under the precision 8.1104, we have its real roots and multiplicities (the number
in each bracket is the multiplicity of the root in the system):
G = {n} = —1.939178944 [2],n3 = 1.939178944 [2]}.

For each root g in G, if it satisfies |ne — &1| < 1 = 2, then it corresponds to
&1, where & is a root in H. And the multiplicity of (&1,m2) in the given system

Local Generic Position and Triangular Systems 195

is the corresponding multiplicity of nz in T3 = 0. In this way, we can get the
approzimating roots of the subsystem Xs:
{[—2.449490070 [1], 2.041244504 [2]], [2.449490070 [1], —2.041244504 [2]]}.

With the method of Section 2.2, we estimate rs = 2, and we derive that 3 is a
bound for the z coordinate. Let R3 = 2+2 = 4 and ro = 2 and consider a coordi-
nate system transformation as mentioned above. By computing the resultant, we
can get T3 3 = 810000 28 —13500000 2°+84375000 2 — 234375000 2%+ 244140625.

Then, we get the solution of the given triangular system as follows.

{{X11% — 6,36 X32" — 1083 X, 52 4 130321 810000 2® — 13500000 2
+ 84375000 2 — 234375000 22 + 244140625}, {2, 2}, {8,4}}.

We solve T3 3 using precision 16_1104, and derive its roots and multiplicities:
J = {n} = —2.041241452 [4],n3 = 2.041241452 [4]}.

For each root 3 in J, if it satisfies |93 — na2| < 1212 ro = é, then it corresponds
to the same (&1,&2) with na, where (&1,&2) is a root in Xs. And the multiplicity
of (&1,&2,m3) in the given system is the corresponding multiplicity of ns. In this
way, we can get the approximating roots of the system:

{[—2.449490070 [1], 2.041244504 [2], —0.816497800 [4]], [2.449490070 [1],
—2.041244504 [2],0.816497800 [4]]}.

Using Lemma[8, the precision of roots is 4(g 1y + 16.1104) < 108

In the below, we illustrate the function of our algorithm by some examples. The
timings are collected on a computer running Maple 15 with 2.29GHz CPU, 2G
memory and Windows XP by using the time command in Maple.

We compare our method with Discoverer, Isolate, EVB and Vincent-Collins-
Akritas algorithm. Discoverer is a tool for solving problems about polynomial
equations and inequalities [19]. Isolate is a tool to solve general equation systems
based on Realsolving C library by Rouillier. EVB is developed by Cheng et
al in [7]. Vincent-Collins-Akritas(VCA) algorithm which isolates real roots for
univariate polynomials uses techniques which are very close to the ones used by
Rioboo in [I6]. Sqf is the method in [7] for zero-dimensional triangular system
without multiple roots. All the required precision are 0.001.

Table 1. Timing of Real Root Isolation of System without Multiple Roots (Seconds)

Degree(k) Vars LGP Dis Iso VCA EVB Sqf
1-11 2 0.104 0.228 0.187 0.861 0.577 0.014

12-30 2 23.790 17.269 175.684 28.362 210.295 0.140
1-4 3 25.614 19.290 202.681 29.727 246.102 0.156
5-9 3 55.579 41.769 453.217 62.407 512.930 0.223
1-3 4 11.947 8.748 87.936 14.612 105.436 0.077
4-5 4 40.597 30.529 327.949 46.067 379.516 0.190

In Table 1, we compare different methods by computing some zero-dimen-
sional triangular polynomial systems without multiple roots. All the tested sys-
tems are generated randomly and dense. They have the form (f1, fo,..., fn)
in which deg(f1) = deg(f2) = ... = deg(fn) = k are the total degrees of the

196 J. Li, J.-S. Cheng, and E.P. Tsigaridas

Table 2. Timing of Real Root Isolate of surfaces(Seconds)

Example Degree LGP Iso EVB
fi 6 84.000 394.344 118.922

f2 4 0.031 0.078 0.078
f3 4 0.250 0.375 0.453
fa 4 0.218 0.578 0.86

polynomials and their coefficients are random integers from -9 to 9. For each
1=1,2,...,30;n = 2,3,4, we compute five systems. After all, we divide those
systems into serval groups by degree and the number of variables, and take
average timings for different group.

In Table 2, we find four famous surfaces. We generate the systems as follow.
Let f be the defining polynomial of a surface in R®. We compute the resultant
of f and g’: with respect to z. Denote its squarefree part as g. Then we compute
the resultant of g and gz with respect to y and denote the squarefree part as h.
Thus we get a triangular polynomial system {h, g, f}. We decompose them into
sub-system. This kind of system is usually zero-dimensional and have multiple
roots. The total timing for each surface are collected in table 2 for the methods
which can deal with multiple roots directly. They are Isolate, EVB and LGP.

f1 is Barth’s sextic surface with 65 singularities. fo is A squared off sphere.
fs is a deformation of quartics. f4 is a Kummer surface with 16 singular points.

fi = 4(2.6182% — y?)(2.618y? — 2%)(2.6182% — 2?) — 4.236(x? + y? + 2% — 1)%;
fo=at+yt 42t L fs=(2 - 1)+ (2 - 12+ (22— 1)% —s5,5 = 1;

fo=at +yt 42t — (0.5 + 1) (2 + ¢ + 22) — (2%y® + 2%2% + y?2%) + (0.5 + 1)*.
From the data, we can find that LGP works well for system with multiple roots
comparing to the existing direct method. For the systems without multiple roots,
Sqf is the most efficient method. LGP works well for system with fewer roots. For
the systems with higher degrees or more variables, that is, systems with more roots,
LGP will slow down comparing to other methods. The reason is that H;;ll R:}l
becomes small, thus the resultant computations take much more time.

4 Conclusion and Future Work

We present an algorithm to isolate the real roots and to count the multiplicities
of a zero-dimensional triangular system directly. It is effective and efficient, es-
pecially comparing to other direct methods. We will analyze the complexity of
the algorithm in our full version.

Acknowledgement. The authors would like to thank the anonymous refer-
ees for their valuable suggestions. The work is partially supported by NKBRPC
(2011CB302400), NSFC Grants (11001258, 60821002, 91118001), and China-
France project EXACTA (60911130369) and the French National Research
Agency (ANR-09-BLAN-0371-01).

Local Generic Position and Triangular Systems 197

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Alonso, M.-E., Becker, E., Roy, M.-F., Wérmann, T.: Multiplicities and idem-
potents for zero dimensional systems. In: Algorithms in algebraic Geometry and
Applications. Progress in Mathematics, vol. 143, pp. 1-20. Birkh&user (1996)
Berberich, E., Kerber, M., Sagraloff, M.: Exact Geometric-Topological Analysis
of Algebraic Surfaces. In: Teillaud, M. (ed.) Proc. of the 24th ACM Symp. on
Computational Geometry (SoCG), pp. 164-173. ACM Press (2008)

Boulier, F., Chen, C., Lemaire, F., Moreno Maza, M.: Real Root Isolation of Reg-
ular Chains. In: ASCM 2009, pp. 1-15 (2009)

Cheng, J.S., Gao, X.S., Li, J.: Root isolation for bivariate polynomial systems with
local generic position method. In: ISSAC 2009, pp. 103-110 (2009)

Cheng, J.S., Gao, X.S., Guo, L.: Root isolation of zero-dimensional polynomial
systems with linear univariate representation. J. of Symbolic Computation (2011)
Cheng, J.S., Gao, X.S., Li, M.: Determining the Topology of Real Algebraic Sur-
faces. In: Martin, R., Bez, H.E., Sabin, M.A. (eds.) IMA 2005. LNCS, vol. 3604,
pp. 121-146. Springer, Heidelberg (2005)

Cheng, J.S., Gao, X.S., Yap, C.K.: Complete Numerical Isolation of Real Roots in
0-dimensional Triangular Systems. JSC 44(7), 768-785 (2009)

Collins, G.E., Johnson, J.R., Krandick, W.: Interval arithmetic in cylindrical alge-
braic decomposition. Journal of Symbolic Computation 34, 145-157 (2002)
Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.:
A Descartes Algorithm for Polynomials with Bit-Stream Coefficients. In: Ganzha,
V.G., Mayr, E'W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 138
149. Springer, Heidelberg (2005)

Emiris, I.Z., Mourrain, B., Tsigaridas, E.P.. The DMM bound: Multivariate (ag-
gregate) separation bounds. In: ISSAC 2010, pp. 243-250. ACM, Germany (2010)
Fulton, W.: Introduction to intersection theory in algebraic geometry. CBMS Re-
gional Conference Series in Mathematics, vol. 54. Conference Board of the Math-
ematical Sciences, Washington, DC (1984)

Gao, X.S., Chou, S.C.: On the theory of resolvents and its applications. Mathe-
matics and Systems Science (1997)

Hong, H.: An Efficient Method for Analyzing the Topology of Plane Real Algebraic
Curves. Mathematics and Computers in Simulation 42, 571-582 (1996)

Hong, H., Stahl, V.: Safe start region by fixed points and tightening. Comput-
ing 53(3-4), 323-335 (1994)

Lu, Z., He, B., Luo, Y., Pan, L.: An Algorithm of Real Root Isolation for Polynomial
Systems. In: SNC 2005 (2005)

Rioboo, R.: Computation of the real closure of an ordered field. In: ISSAC 1992.
Academic Press, San Francisco (1992)

Rouillier, F.: Solving zero-dimensional systems through the rational univariate rep-
resentation. AAECC 9, 433-461 (1999)

Sagraloff, M.: When Newton meets Descartes: A Simple and Fast Algorithm to
Isolate the Real Roots of a Polynomial. CoRR abs/1109.6279 (2011)

Xia, B., Zhang, T.: Real Solution Isolation Using Interval Arithmetic. Computers
and Mathematics with Applications 52, 853-860 (2006)

Yap, C.: Fundamental Problems of Algorithmic Algebra. Oxford University Press,
New York (2000)

Yap, C., Sagraloff, M.: A simple but exact and efficient algorithm for complex root
isolation. In: ISSAC 2011, pp. 353-360 (2011)

Zhang, Z.H., Fang, T., Xia, B.C.: Real solution isolation with multiplicity of 0-
dimensional triangular systems. Science China: Information Sciences 54(1), 6069
(2011)

On Fulton’s Algorithm for Computing
Intersection Multiplicities

Steffen Marcus!, Marc Moreno Maza?, and Paul Vrbik?

! Department of Mathematics, University of Utah
2 Department of Computer Science, University of Western Ontario

Abstract. As pointed out by Fulton in his Intersection Theory, the in-
tersection multiplicities of two plane curves V(f) and V (g) satisfy a series
of 7 properties which uniquely define I(p; f, g) at each point p € V(f, g).
Moreover, the proof of this remarkable fact is constructive, which leads
to an algorithm, that we call Fulton’s Algorithm. This construction, how-
ever, does not generalize to n polynomials fi,..., fn. Another practical
limitation, when targeting a computer implementation, is the fact that
the coordinates of the point p must be in the field of the coefficients of
fi,..., fn. In this paper, we adapt Fulton’s Algorithm such that it can
work at any point of V(f,g), rational or not. In addition, we propose
algorithmic criteria for reducing the case of n variables to the bivariate
one. Experimental results are also reported.

1 Introduction

Intuitively, the intersection multiplicity of two plane curves counts the number of
times these curves intersect. There are more formal ways to define this number.
The following one is commonly used, see for instance [QITI2IE/T8]. Given an
arbitrary field k and two bivariate polynomials f, g € k[z,y], consider the affine
algebraic curves C' := V(f) and D := V(g) in A? = k‘2, where k is the algebraic
closure of k. Let p be a point in the intersection. The intersection multiplicity of
pin V(f,g) is defined to be

I(pa fvg) = dlmk(OAz,p/ <f7g>)

where O,z ;, and dim, (042 ,,/ (f, g)) are the local ring at p and the dimension of
the vector space Qa2 ,,/ (f, g). The intersection multiplicity of two plane curves
at a point admits many properties. Among them are the seven below, which are
proved in [9, Section 3-3| as well as in [IIT2].

(2-1) I(p; f,g) is a non-negative integer for any C, D, and p such that C and D
have no common component at p. We set I(p; f,g) = oo if C and D have
a common component at p.

(2-2) I(p; f,g)=0if and only if p ¢ C N D.

(2-3) I(p; f,g) is invariant under affine change of coordinates on AZ2.

(2-4) I(p; f,9) = 1(p;9, f)

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 198 2012.
© Springer-Verlag Berlin Heidelberg 2012

On Fulton’s Algorithm for Computing Intersection Multiplicities 199

(2-5) I(p; f,g) is greater or equal to the product of the multiplicity (see [9} §3.1])
of pin f and g, with equality occurring if and only if C and D have no
tangent lines in common at p.

(2-6) I(p; f,gh) = I(p; f,9) + 1(p; f,h) for all b € k[z,y].

(2-7) I(p; f,g9) = I(p; f, g+ hf) for all h € k[x,y].

Remarkably, Properties (2-1) through (2-7) uniquely determine I(p; f, g). This
observation is made by Fulton in [9] Section 3-3] where he exhibits an algorithm
for computing I(p; f, g) using (2-1) through (2-7) as rewrite rules.

In order to obtain a practical implementation of this algorithm, a main ob-
stacle must be overcome. To understand it, let us first recall that computer
algebra systems efficiently manipulate multivariate polynomials whenever their
coefficients are in the field of rational numbers or in a prime field. In particu-
lar, popular algorithms for decomposing the algebraic variety V' (f1, ..., f,) with
fis.-oy fn € Ek[x1,...,2,] rely only on operations in the field &, thus avoiding
to manipulate non-rational numbers, that is, elements of k \ k. For instance,
algorithms such as those of [4] represent the variety V(fi,..., fn) (which is a
subset of k:n) with finitely many regular chains T1,...,T. of k[z1,...,x,] such
that we have

V(fi,..., fn)=V(T1)U---UV(T,). (1)

Now, observe that the intersection multiplicity I(p; f1,..., fn) of f1,..., fn at a
point p is truly a local notion, while each of the V(T;) may consist of more than
one point, even if T; generates a maximal ideal of k[z1,...,x,]. Therefore, in
order to use regular chains for computing intersection multiplicities, one needs
to be able to compute “simultaneously” all the I(p; f1,..., fn) for p € V(T3)

In Section Bl we propose an algorithm achieving the following task in the
bivariate case: given M C k[z,y| a maximal ideal, compute the common value
of all I(p; f,g) for p € V(M). In Section [we relax the assumption of M being
maximal and require only that a zero-dimensional regular chain T C k[z,y]
generates M. However, in this case, the values of I(p; f,g) for p € V(T') may
not be all the same. This situation is handled via splitting techniques as in [4].

Thus, for n = 2, we obtain a procedure TriangularizeWithMultiplicity(f1, ..., fn)

which returns finitely many pairs (71, m1), ..., (Te, me) where Ty, ..., T, C k[x,
..., Zy] are regular chains and my,...,m. are non-negative integers satisfying
Equation () and for each i = 1,...,e, we have

(Vp € V(T3)) 1(p; fr,- - -, fn) = mi. (2)

We are also interested in generalizing Fulton’s Algorithm to n multivariate poly-
nomials in n variables—our ultimate goal being an algorithm that realizes the
above specification for n > 2.

We denote by A™ the n-dimensional affine space over k. Let f1,..., fn € k[z1,
..., Tp] be n polynomials generating a zero-dimensional ideal with (necessarily
finite) zero set V(f1,..., fn) C A™. Let p be a point in the intersection V' (f1) N
<NV (fn), that is, V(f1,..., fn). The intersection multiplicity of p in V(f1,...,
fn) is the generalization of the 2-variable case (as in [6/I8])

I(paflaafn) = dlmk (OA",ZJ/ <f1a-~'afn>)a

200 S. Marcus, M.M. Maza, and P. Vrbik

where Opn , and dim, (Opn p/ (f1,-.., fn)) are (respectively) the local ring at
the point p and the dimension of the vector space Oan »/ (f1,- ., fn)-

Among the key points in the proof of Fulton’s algorithmic construction is that
k[x1] is a principal ideal domain. Fulton uses Property (2-7) in an elimination
process similar to that of the Euclidean Algorithm. Since k[z1,...,2,—1] is no
longer a PID for n > 3, there is no natural generalization of (2-1) through (2-7)
to the n-variate setting (up to our knowledge) that would lead to an algorithm
for computing I(p; f1,..., fn)-

To overcome this obstacle, at least for some practical examples, we propose an
algorithmic criterion to reduce the n-variate case to that of n — 1 variables. This
reduction requires two hypotheses: V'(f,,) is non-singular at p, and the tangent
cone of V (f1,..., fn—1) at p and the tangent hyperplane of V(f,) at p meet
only at the point p. The second hypothesis ensures that each component of the
curve V(f1,..., fn—1) meets the hypersurface V(f,,) without tangency at p. This
transversality assumption yields a reduction from n to n — 1 variables proved
with Theorem [Il

In Section [we discuss this reduction in detail. In particular, we propose
a technique which, in some cases, replaces f1,..., f, by polynomials g1,...,¢gn
generating the same ideal and for which the hypotheses of the reduction hold.
Finally, in Section 8 we give details on implementing the algorithms herein and
in Section [0 we report on our experimentation for both the bivariate case and
the techniques of Section [1l

We conclude this introduction with a brief review of related works. In [5],
the Authors report on an algorithm with the same specification as the above
TriangularizeWithMultiplicity(f1, . . . , fn). Their algorithm requires, however, that
the number of input polynomials is 2. In [I7], the Authors outline an algorithm
with similar specifications as ours. However, this algorithm is not complete,
even in the bivariate case, in the sense that it may not compute the intersection
multiplicities of all regular chains in a triangular decomposition of V' (f1,..., fn).

In addition, our approach is novel thanks to an important feature which makes
it more attractive in terms of performance. We first compute a triangular de-
composition of V(f1,..., fn) (by any available method) thus without trying to
“preserve” any multiplicity information. Then, once V(f1,..., fn) is decomposed
we work “locally” at each regular chain. This enables us to quickly discover points
p of intersection multiplicity one by checking whether the Jacobian matrix of fi,

.., fn is invertible at p. We have observed experimentally that this strategy
leads to massive speedup.

2 Regular Chains

In this section, we recall the notions of a regular chain. From now on we assume
that the variables of the polynomial ring k[z1,. .., x,] are ordered as z,, > --- >
x1. For a non-constant f € k[z1,...,z,], the main variable of f is the largest
variable appearing in f, while the initial of f is the leading coefficient of f
w.r.t. the main variable of f. Let T' C k[z1,...,2,] be a set of n non constant

On Fulton’s Algorithm for Computing Intersection Multiplicities 201

polynomials. We say that T is triangular if the main variables of the elements
of T are pairwise different. Let t; be the polynomial of 7" with main variable z;.
We say that T is a (zero-dimensional) regular chain if, for ¢ = 2,...,n the initial
of t; is invertible modulo the ideal (t1,...,¢;—1). Regular chains are also defined
in positive dimension, see [TIT5].

For any maximal ideal M of k[z1, ...,x,] there exists a regular chain T
generating M, see [14]. Therefore, for any zero-dimensional ideal Z of k[z1, ...,
x| there exist finitely many regular chains T4, ..., T, C k[z1, ..., x,] such
that we have V(Z) = V(T1) U --- U V(T.). Various algorithms, among them
those published in [20JTOIT4UT9/4], compute such decompositions. The Triangu-
larize command of the RegularChains library [16] in MAPLE implements the de-
composition algorithm of [4]. This library also implements another algorithm
of [] that we will use in this paper and which is specified hereafter. For a
regular chain T' C k[z1,...,2,] and a polynomial p € k[z1,...,x,], the opera-
tion Regularize(p, T') returns regular chains Th,...,7T, C k[z1,...,2,] such that
we have V(T) = V(T1) U --- U V(T¢) and for all i = 1,...,e we have either
V(p) NV(T;) =0 or V(T) C V(p). We will make use of the following result
which can easily be derived from [4]: if Regularize(p, T') returns T1, ..., T, then
we have

(Vp € V(T3;)) Regularize(p, T;) = T;. (3)

3 Intersection Multiplicity

As above, let f1,..., fn € k[z1,...,z,] be n polynomials in n variables such that
the ideal (f1,..., fn) they generate is zero-dimensional. Let p € V(f1,..., fn)
and denote the maximal ideal at p by M,,. When needed, denote the coordinates
of p by (a1,...,ay), so that we have M, = (z1 — a1, ..., Tn — an).

Definition 1. The intersection multiplicity of p in V(f1, ..., fn) is given by
the length of Oan p/ (f1,- .-, fn) as an Opn ,-module.

Since we consider A™ as defined over the algebraically closed field &, we know (see,
for instance, [§]) that the length of this module is equal to its dimension as a k
vector space, which is precisely the definition of Section 1. Our algorithm depends
on the fact that the intersection multiplicity satisfies a generalized collection of
properties similar to (2-1) through (2-7) for the bi-variate case. They are the
following:

I(p; f1,..., fn) is a non-negative integer.
1(p; fl,...,fn) =0ifandonly if p ¢ V(f1,..., fn)
I(p; f1,..., fn) is invariant under affine change of coordinates on A™.
I(p, fis-es fn) = I(p, fo’(l)7 e fa(n)) for any o € 6,,.
I(p; (x1 —)™, ..., (xy — an)™) = my - - - My, for all non-negative inte-
gers my, ..., My.
(n-6) If g, h € k[z1,...,z,]) make fi1,..., fn_1,gh a zero-dimensional, then I(p;
fiseoos fom1,9R) = 1(p; f1, ..o, fae1,9) + L(p; f1, ..., fn—1, k) holds.
(n_7) I(p;fla"'afnflag) :I(p;fla“-afnflag‘i»h) for all h € <f1a-~-afnfl>'

202 S. Marcus, M.M. Maza, and P. Vrbik

In order to reduce the case of n variables (and n polynomials) to that of n — 1
variables (see Section[7]) we require an additional property when n > 2. Of course,
the assumptions necessary for this property may not hold for every polynomial
system. However, we discuss in Section [7l a technique that can overcome this
limitation for some practical examples.

(n-8) Assume the hypersurface h,, = V(f,) is non-singular at p. Let v,, be its
tangent hyperplane at p. Assume furthermore that h, meets each compo-
nent of the curve C = V(fi,..., fn—1) transversely, that is, the tangent
cone T'C,,(C) intersects v, only at the point p. Let h € k[z1,...,x,] be
the degree 1 polynomial defining v,,. Then, we have

I(paflaafn):I(pvflaafnflahn)

Recall that the tangent cone T'Cp(C) can be thought of as the set of tangents
given by limiting the secants to C passing through p. If g1, ..., 95 € k[z1,...,2,]
are polynomials generating the radical of the ideal (f1,..., fn—1), then TC,(C)
is also given by TC,(C) = (in(g1),...,in(gs)) where in(g;), for i = 1,...,s, is
the initial form of g;, that is, the homogeneous component of g; of the lowest
degree.

Theorem 1. I(p; fi1,..., fn) satisfies the properties (n-1) through (n-8).

Proof. For the first seven properties, adapting the proofs of [9JI2] is routine,
except for (n-6), and we omit them for space consideration. For (n-6) and (n-8),
as well as the others, the reader is refered to our technical report with the same
title and available in the Computing Research Repository (CoRR).

4 Expansion of a Polynomial Family about at an
Algebraic Set

The tools introduced herein help build an algorithm for computing the intersec-
tion multiplicity of fi,..., fn at any point of V(f1,..., fn), whenever the ideal

(f1,- .-, [n) is zero-dimensional and when, for n > 2, certain hypothesis are met.

Let 41,...,Yn be n new variables with ordering %, > --- > y;. Let F!, ...,
F™ € klx1,...,Zn,Y1,- -, Yn) be polynomials in x1,...,2n,y1,...,Yn With coef-
ficients in k. We order the monomials in y1,...,y, (resp. z1,...,x,) with the
lexicographical term order induced by y, > -+ > y; (resp. , > -+ > 7). We
denote by Spi1,...,Spn the respective monomial supports (i.e. the set of mono-
mials with non-zero coefficients) of F'!, ..., F™ regarded as polynomials in the
variables y1,...,y, and with coeflicients in k[z1,...,x,]. Let ¢ be any integer
index in 1,...,n. Write

Fi=>" Fip, (4)

HES pi

On Fulton’s Algorithm for Computing Intersection Multiplicities 203

where all F:L are polynomials of k[z1, ..., x,]. In particular, the F} represent Fli
when p = y? - y% = 1. Denote by Fiyn the polynomial of k[z1,...,x.][y1,. -,
Yn—1] defined by
Fa,= > Ean
1€ Sy
deg(p, yn) =0

Let 7 be a (proper) ideal of k[z1, ..., x,]. We denote by NF(f,Z) the normal
form of f w.r.t. the reduced lexicographical Grébner basis of 7 for x,, > --- > 3.

Let p € A™ with coordinates & = (a1, ..., ay). For a monomial pp = y§* - - y&»,

we denote by shift(u, «) the polynomial of k[x1, ..., x,] defined by
Shifi(,0) = (01— @) -+ (2 —)"

We denote by M, the maximal ideal of k[z1,...,z,] generated by x1 — a1, ...,
Zn, — . When no confusion is possible, we simply write F' and f instead of F*
and f;. We denote by eval(F, «) the polynomial

eval(F,a) = Y NF(F,, Mq)shift(u, o) (5)
HESE

in k[z1,...,2,]). We call this the specialization of F' at o. Let W C A™ be an
algebraic set over k, that is, the zero set V/(P) in A™ of some P C k[z1,...,Z,].
Finally, consider a family (f,,a € W) of polynomials of k[x1,...,x,].

We say that F' is an expansion of f about W if for every point o of W we
have f = eval(F, a). More generally, we say that F' is an expansion of the
polynomial family (fo,o € W) about W if for every point o of W we have
fo = eval(F,a). We conclude this section with a fundamental example of
the concepts introduced below. For p = y° ---y°», we denote by c(f,) the

Lot (One should

eilen! 9zt
recognize these as the coefficients in a Taylor expansion.) Let Sc(f) be the set
of the y°* - - -y monomials such that e; < deg(f,x;) holds for all i =1,... e.
Then, the polynomial C(f) = ZMESc(f) c(f, 1) p is an expansion of f about W.

polynomial of k[z1,...,z,] defined by c(f, pu) =

5 Computing Intersection Multiplicities of Bivariate
Systems: Irreducible Case

We follow the notations introduced in Section @l Let F!, ..., F™ be the expan-
sions of f1,..., fn, about an algebraic set W C A™. In this section, we assume
W = V(M) holds for a maximal ideal M of k[z1,...,z,] and that n = 2 holds.

Theorem 2. The intersection multiplicity of fi, fo is the same at any point
of V(M); we denote it by I(M; fi1, f2). Moreover, Algorithm [computes this
multiplicity from F', F? by performing arithmetic operations in k[z1,x2] only.

This first claim in Theorem Plshould not surprise the expert reader. The length of
the module Opn ,/ (f1,. .., fn) over a non-algebraically closed field is not neces-
sarily equal to the dimension as a k vector space, though length equals dimension

204 S. Marcus, M.M. Maza, and P. Vrbik

Algorithm 1. IMy(M; F1, F?)

Input: F'', F? € k[x1,22,v1,92] and M C k[z1, x2] maximal such that F', F?
are expansions of f1, fo € k[x1,x2] about V(M) and (f1, f2) is a
zero-dimensional ideal.

Output: I(M; f1, f2).
1 if NF(F}, M) # 0 then

2 return 0;
3 if NF(F?, M) # 0 then
4 return 0;
5 7 = deg(FZ,, mod M,y1);
6 s := deg(FZ2,, mod M,y1);
7 if r =0 then
Fl_pl
8 return tdeg(F2,, mod M,y1) +IMz(M; ~ <*2 F?);

9 if s =0 then
2_
10 return tdeg(Fiy2 mod M, y1) + IMa(M; F*, F

Y2

Fiyz).
b

11 ay := le(FL,, mod M,y1);

12 a3 := le(F2,, mod M,y1);

13 if r < s then

14 let b1 € k[z1, z2] such that a1 b1 =1 mod M;
15 H:=F?— agblyffrFl;

16 return IMz(M; F!' H);

17 let by € k[z1, z2] such that a2 b = 1 mod M;

18 H := F' — a1boy| *F?;

19 return IMs(M; H, F?);

when the field is algebraically closed. The dimension, however, remains the same
over both k£ and k.

Proof. We show that IMg(M; F!, F?), as returned by Algorithm [0 computes
I(p; f1, f2) uniformly for all p € V(M) and performs operations in k[z1,]
only. Algorithm correctness and termination follows from three claims.

Claim 1: If I(p; f1, f2) = 0 holds for some p € V(M), then IMy(M; F1, F?)
correctly returns 0.

Claim 2: If I(p; f1, f2) > 0 holds for all p € V(M), and if either deg(FL,,
mod M,y1) = 0 or deg(F2,, mod M,y;) = 0 holds, then IMQ(M;FI,Fg)
correctly invokes IMa(M; G, G?) where each G* € k[z1, 2, y1,y2] is an expan-
sion of a polynomial family about V(M) such that min(deg(G*,y2),deg(G?,
y2)) < min(deg(F"', y2), deg(F?, y2)).

Claim 3: If I(p;fi,f2) > 0 holds for all point p € V(M), and if
deg(FL,, mod M,y;) > 0 and deg(FZ2,, mod M,y;1) > 0 both hold, then

the call IMy(M; FY, F?) correctly invokes IMa(M;GY, G?) where each G' €

On Fulton’s Algorithm for Computing Intersection Multiplicities 205

klx1,22,y1,y2] is an expansions of a polynomial family about V(M) such
that min(deg(GLyz,yl),deg(Gin,yl) is strictly less than min(deg(Fin,yl)7
deg(FEyz, yl)

Proof (of Claim 1). Assume that there is p € V(M) such that I(p; f1, f2) =0
holds. From (2-2), this implies that we have p &€ V(f1, f2). Since M is maximal,
we deduce that W N V(f) = () holds. Thus, the intersection multiplicity of f1, f2
is null at any point of V/(M). Moreover, deciding whether this latter fact holds
amounts to testing whether one of NF(F}', M), NF(F2, M) is zero or not, which
can be computed in k[z1, 23] with a regular chain generating M.

Remark 1. From now on, we assume that I(p; f1, f2) > 0 holds for all p € V(M).
Since M is maximal, this implies that W C V(F}) and W C V(F?) both hold.
Besides, the ideal M is one of the associated primes of (f1, f2) C k[z1, z2].

Proof (of Claim 2). Assume that either
deg (F1 mod /\/l,y1) =0 or deg (F2

<yo <yo mod M’yl) =0

holds. Since the role of f; and f can be exchanged, using (2-4), we assume that
deg(Fiy2 mod M, y;) = 0 holds. Consider any point a@ = (ay, as) of V(M).
Since F} is null modulo M, the relation deg(F,, mod M,y;) = 0 implies that
the whole polynomial F iy , is actually null modulo M. Thus, the specialization

eval(F!, o) can be divided by 22 — ap. Applying (2-6), we have
I(p; f1, f2) = I(p;w2 — o2, fo) + I(p; 1 fa), (6)

where I(p;z2 — g, f2) is the trailing degree of fo evaluated at zo = o (via
(2-5)). Since F'!, F? are expansions of fi, fo about V (M), Equation (@) yields

Fl_F!

IMy(M; F, F?) = tdeg(F2,, mod M, y1) + IMa(M; w2 F) ()

where tdeg(Féy2 mod M, y;) is the trailing degree of Fiyz regarded as a poly-
nomial in y; with coefficients in the field k[z1, z2]/ M.
Proof (of Claim 3). We assume that

deg(FL, mod M,y;) > 0 and deg(F2

<y2 <y2

mod M,y1) >0
both hold. Since the role of f; and f2 can be exchanged, using (2-4),
deg(FL, mod M,y;) < deg(F2, mod M,y;)

<y2 <y2
is assumed to hold. Let a1, a2 € k[x1,z2] be polynomials and r < s be positive
integers such that a1y} and asyj are the leading terms of Fiyz and F EyQ regarded
as polynomials in y; with coefficients in k[x1, z2]/M. Since W NV (ay) = 0 holds
there exists a polynomial by € k[x1,x2] such that we have a1 b1 = 1 mod M.
Define H := F? — agbyy; " F*. Clearly, this an expansion of a polynomial family
(ha, v € V(M)) about V(M) such that we have eval(H, a) = h,, where

ha = fo — az(a)br(a) (1 — 1)*™" f1. (8)
Using (2-7), we have I(p; f1, f2) = I(p; f1, ha), for all p € V(M), yielding
|M2(M;F1,F2):|M2(M;F1,H). (9)

206 S. Marcus, M.M. Maza, and P. Vrbik

6 Computing Intersection Multiplicities of Bivariate
Systems: Zero-Dimensional Case

The generalization from érreducible zero-dimensional algebraic sets V(M) to
arbitrary ones relies on standard techniques for computing triangular decompo-
sition of polynomial systems (see for instance [20/T0/T4/T9/4]).

Algorithm [2] is the adaptation of Algorithm [for n = 2 variables. In this
algorithm we use two yet unmentioned methods: LT and Tdeg, and one yet
unmentioned language construct: output. Similar to Regularize, the call LT(F?,
T), or leading term of F? modulo (T), returns a list of pairs, (C,az:), where
C C k[z1,z2] is a regular chain and ap: is the lexicographical leading term of
F' when viewed as a polynomial in y; < ya with coefficients in k[xq,z2]/(C);
moreover the union of V(C')’s form a partition of V(T'). The specification for
TDeg “trailing degree” is analogue. Finally, as we are returning a sequence we
use the language construct output(z,y) to indicate that (z,y) has been added
to the sequence that will ultimately be returned.

Theorem 3. Algorithm[2 terminates and works correctly.

Proof. We distinguish two cases: Algorithm [2] does not split the computations
and does split the computations. In this proof, Cy,...,C. C designate regular
chains of k[z1,...,zy] such that V(T') is the disjoint union of V(C),...,V(C.).
Non-splitting case: Assume that IMy(T; F!, F?) computed by Algorithm 2] does
not split the computation, thus returning a single pair (7', m). Using Relation (3),
one can check that IMy(C;; F', F?) returns (C;, m), for each i = 1,...,e. Assume
that C1,...,C. generate maximal ideals. One can check that, when it does not
split, Algorithm [2] performs the same computation as Algorithm [l By virtue
of Theorem Pl Algorithm [0 works correctly with input maximal ideals, thus
each call IMy(C;; F1, F?2) correctly returns (C;, m). Consequently, IMo(T; F1, F?)
correctly returns (7', m) also, since is the disjoint union of V(Cy),...,V(Ce).

Splitting case: From now on, assume now that the call IMy(T'; F, F?) com-
puted by Algorithm [splits and returns pairs (Cy,my), ..., (Ce,me), where
we no longer assume that C4,...,C, generate maximal ideals. From the non-
splitting case and Relation (B]), we know that each call IMy(Cy; F1, F2) correctly
returns (C;, m). We conclude again with the fact that V(T')

7 Reduction to the Bivariate Case

We return to the n-variate case, using the same notations as in Sections Bl We
discuss how this n-variate case can be reduced to the bivariate one, for which
Algorithm 2l computes the intersection multiplicity of two plane curves (without
common components) at any point of their intersection.

We start by considering Property (n-8) of Section Bl Let p € V(f1,..., fn).
Assume the hypersurface h,, = V(f,,) is non-singular at p. Let v,, be its tangent
hyperplane at p. Assume furthermore that the tangent cone T'C),(C) intersects

On Fulton’s Algorithm for Computing Intersection Multiplicities 207

Algorithm 2. IMy(T; F'*, F?)

Input: F! and F? as given in Algorithm [II

Output: Finitely many pairs (73, m;) where T; C k[x1,...,2n] are regular
chains and m; € Z" such that Equation () holds and for all
p € V(T?) we have I(p; f1,..., fn) = mi.

1 for T € Regularize (Fll,T) do

2 if F! ¢ (T) then

3 output(T,0);

4 else

5 for T € Regularize (F?,T) do

6 if FE ¢ (T) then

7 output(7,0);

8 else

9 for (T,ap1) € LT (F2,,,T) do
10 for (T,ap2) € LT (F2,,,T) do

/* Wlog deg(FL,,) < deg(FZ,,) */

11 if ap1 € (T') then

12 for (T,d) € TDeg (F2,,,T) do

1 1

13 for (T,i) € IMx(T, " "< F?) do
14 output(7T, (d + 7));

15 else

16 H — F? — ap2 - Inverse (ap, T) - F';

17 output (IMz(T, F*, H));

vp, only at the point p. Let h € k[x1,...,x,] be the degree 1 polynomial defining
Up. Finally, recall (Theorem[) that I(p; f1,..., fn) = I(p; f1,..., fn—1, k) holds.

Up to re-numbering the variables, we can assume that the coefficient of x,
in h is non-zero, thus h = x, — h’, where b’ € k[z1,...,2,_1]. Hence, we can
rewrite the ideal (f1,..., fn—1,h) as (g1,...,9gn—1, h) where g; is obtained from
fi by substituting x,, with A’. If instead of a point p, we have a zero-dimensional

regular chain T' C k[z1,...,x,], we use the techniques developed in Sections
and [6] to reduce to the case of a point. Assuming x; < -+ < z,, this leads to

I(p; f1,- s fu) = LT NE[x1, ..., Zne1]5 91, -+ s Gra1)-
In practice, this reduction from n to n — 1 variables does not always apply.
For instance, this is the case for Ojika 2 C k[z,y, 2]:

P4yt+z—l=c+y’+z—l=a+y+22—-1=0. (10)

However, using the equation 22 + y 4+ 2z — 1 = 0 to eliminate z from the other
two, we obtain two bivariate polynomials f, g € k[z,y]. At any point of p € V' (h,
f,g) the tangent cone of the curve V(f, g) is independent of z; in some sense it is

208 S. Marcus, M.M. Maza, and P. Vrbik

“vertical”. Moreover, at any point of p € V(h, f, g) the tangent space of V(h) is
not vertical. Thus, the reduction applies without computing any tangent cones.
We conclude this section by explaining how the tangent cone T'C),(C) is com-
puted when the above trick does not apply. For simplicity, assume k = C and
assume that none of the V(f;) are singular at p. For each component G through
pof C=V(f1,..., fn—1), we proceed as follows: There exists a neighborhood B
of p such that V'(f;) is not singular at all ¢ € (BN G)\ {p}, fori=1,...,n—1.
Let v;(q) be the tangent hyperplane of V(f;) at ¢. Regard v1(q) N -+ Nw,—1(q)
as a parametric variety with the coordinates of ¢ as parameters. Then, we have
TCL(G) = v1(qg) N---Nwvyp_1(q) when g approaches p, which we compute by a
variable elimination process. Finally, TC,(C) is the union of all the T'C,(G). This
approach avoids standard basis computation and extends easily for working with
the zero set V(T') of a zero-dimensional regular chain T instead of a point p.

8 Implementation

We have done an implementation in MAPLE that depends heavily on the Regular-
Chains library. As this implementation is sufficiently different from the theoretical
algorithm it is meaningful to discuss how we realized it.

These differences can be traced back to a common origin: the data struc-
ture simulating the expansions F' defined in Section @l for the purpose of the
algorithms of Sections [B] and Bl Recall that the expansions F',..., F" belong

to klx1,...,Zn,Y1,--.,Yn] where x1,...,z, are the variables of the input poly-
nomials fi,..., f, and where y1,...,y, are essentially “placeholders”. But our
algorithms fundamentally treat F',..., F™ as vectors, performing only additions
and subtractions on them.

While these expansions F'', ..., F™ are a nice trick to manipulate “simultane-

ously” Taylor expansions at several points of a variety, a naive implementation
could suffer from performance bottleneck (hardly surprisingly when doubling the
number of variables). In particular, we observe that during the execution of the
algorithms, all the partial derivatives of f1,..., f, may not be needed. Therefore,
one may wish to take advantage of lazy or delayed evaluation.

A structure utilizing delayed computation is well suited for this. To demon-
strate why, suppose that F* is a data structure implementing F* such that F*(ay,

S an) = Fj for p = yf*---yir. To determine F'(ay,...,an + 1) one must

anl-s-l 8}-1(“8;;"“"). Combining this rule with F¢ (ay,...,a,_1,0) =

Fi(ay,...,an_1) and F(0) = f; gives a recursive function whose output matches
our specification. We call these “lazy Taylor expansions” (LTEs).

Moreover these LTEs have a very useful property: F (ay,...,an_1) = Féy
They are also surprisingly straightforward to implement in MAPLE.

Notice that the “data structure” for the LTEs are in fact procedures. There-
fore any method processing LTEs, like Subtract for instance, will take as input
procedures and return a procedure. This notion may be unusual but requires
very little overhead (practically undetectable in our experiments). We outline
the remaining important methods for our algorithms:

only compute

On Fulton’s Algorithm for Computing Intersection Multiplicities 209

Division by ypy:
Filay,...,an)
Yn
Multiplication by u: Let Fi(a1,...,a,) = 0if there is i for which a; < 0, then

]-'i(al,..‘,an) . (yg’1 ZJZ) =]-'i(al —b1,...,an —by)

Substitute y,, = h1y1 + +++ + hpn—1Yn—1. For every by,...,b, with b, > 0,
F(b1,...,by) < 0 and

=F'ay,...,an +1)

]-'(al + ki, . Qn-1 +kn,1) — f(al,...,an,1)+

bn k kn_
h 1 ...h n 1.
Z (kh' k‘n—l) ! n-l

ki+-+kn_1=bn o

Using these LTEs along with careful, and repeated, invocations of the Regular-
Chains[Regularize] command, our algorithms can be realized.

9 Experiments

We have fully implemented the bivariate case, that is, Algorithm 2l on top of the
RegularChains library in MAPLE. As this is the base case for the n-variate algo-
rithm it is of paramount importance that it runs fast and correctly. The n-variate
implementation is a work in progress and there is large room for improvements.

We choose to study systems taken from [2] and [13]—a suite of examples used
for benchmarking and testing bivariate system solvers. All timings are given in
seconds and the base field has characteristic 962592769 in all cases. It should be
noted that, despite 962592769 being a so-called FFT-prime, we are not using the
FastArithmeticTools package of the RegularChains library. This is because our
current implementation is only generic and works in any characteristic. However,
some of the systems in [I3] are too challenging for being directly solved in char-
acteristic zero without using an approach based on modular, or other advanced,
techniques. Results are in Table[Il

We are happy with the results of these experiments for two reasons. First,
we could not find an instance where Triangularize produced regular chains for
which our algorithm IMs could not correctly and expeditiously determine the
intersection multiplicities. Secondly, applying Property (2-5) from Section 1 to
our bivariate code admits a speedup factor in the hundreds. Indeed this property
enables us to determine if the intersection multiplicity is one simply by checking
the invertibility of the Jacobian of fi, fo modulo the current regular chain.

Our n-variate implementation is based on the techniques discussed in Sec-
tion [l As with the bivariate case, our experiments are done in characteristic
962592769. We have taken examples from [7] (a paper on intersection multiplic-
ity) and from [3] (a test suite for benchmarking homotopy solvers). Observe that
the reduction techniques of Section [apply successfully for 3 examples and par-
tially for 2 examples. We also note that tangent cone computations are currently
a bottleneck. A new algorithm for this task is work in progress.

210 S. Marcus, M.M. Maza, and P. Vrbik

Table 1. (LEFT) Input Polynomials (after specialization to bivariate). (RIGHT)
Experimental results for the bivariate case. Dimension is calculated by MAPLE’s
Polynomialldeals:-NumberOfSolutions command which gives the number of solutions
counted with multiplicity. Time(Aize) is time required by RegularChains:-Triangularize
to decompose the system into N=#rc’s many regular chains and Time(rc_im) =
Time(rc_im(rci)) +---+ Time(rc_im(rcy)): the total time for rc_im, our imple-
mentation of Algorithm 3, to determine intersection multiplicities of an entire system.

System Dim Time(Aize) #rc’s Time(rc_im)

(1,3) 888 9.7 20 19.2

(1,4) 1456 226.0 8 9.023

Label Name terms degree (1,5) 1595 169.4] 25.4
1 hard one 30 37 (3,5) 1413 225 27 28.6
2 L6 _circles 4 24 (4,5) 1781 218.4 9 13.9
3 spiral29 24 63 52 (5,1) 1759 1130 10 15.8
4 tryme 38 59 (6,8) 1680 99.7 12 37.6
5 challenge 12 49 30 (6,9) 2560 299.3 10 22.9
6 challenge 12 1 64 40 (6,10) 1320 131.9 7 8.4
7 compact surf 52 18 (6,11) 1440 59.8 17 27.5
8 degree 6 surf 467 42 (7,8) 1152 32.8 12 16.2
9 mignotte _xy 81 64 (7,9) 756 18.5 16 11.2
10 SA 4 4 eps 63 33 (8,9) 1084 3745 10 11.3
11 spider 292 36 (8,10) 1362 232.5 7 9.3
(8,11) 1256 49.6 17 45.7

(9,11) 1792 1151 16 17.2

(10,11) 1180 40.9 17 21.3

Table 2. Experimental results for the n-variate case. Dimension is again the dimen-
sion of the vector space k[x1,...,2zx»]/(f1,..., fn) and Points is the degree of the variety
V(fi,..., fn). DNize and rc_im are the same as in Table [l Cones and COV give (re-
spectively) the time to calculate the tangent cones or to do a change of variables of
the system. Finally, Total is the sum of the previous three columns and Success is
the number of points (counted with multiplicity) for which the bivariate reduction was
success full over the dimension of of the vector space k[z1,...,za]/{(f1,..., fn)-

Name Dim Points Aize Cones COV rc_im Total Success

Nbodyb 99 49 1.60 0.00 0.06 1.90 2.00 51/99
mth191 27 18 0.56 5400.00 0.04 0.01 5400.00 23/27
ojika2 8 5 020 820 0.13 047 8.80 8/8
E-Arnoldl 45 30 0.89 1100.00 0.01 1800.00 2900.00 45/45
ShiftedCubes 27 25 0.66 0.00 0.00 0.52 0.52 27/27

On Fulton’s Algorithm for Computing Intersection Multiplicities 211

Acknowledgements. This project has benefited from useful conversations with
Dr. Roi Docampo and Dr. Noah Giansiracusa, and was funded, in part, by grants
from Maplesoft, MITACS and NSERC of Canada.

References

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J.

Symb. Comp. 28(1-2), 105-124 (1999)

Berberich, E., Emeliyanenko, P., Sagraloff, M.: An elimination method for solv-
ing bivariate polynomial systems: Eliminating the usual drawbacks. CoRR,
abs/1010.1386 (2010)

Bini, D., Mourrain, B.: Polynomial test suite,
http://www-sop.inria.fr/saga/POL/| (accessed: April 1, 2012)

Chen, C., Moreno Maza, M.: Algorithms for computing triangular decompositions
of polynomial systems. In: Proc. ISSAC 2011, pp. 83-90. ACM (2011)

Cheng, J.-S., Gao, X.-S.: Multiplicity preserving triangular set decomposition of
two polynomials. CoRR, abs/1101.3603 (2011)

Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Text in Math-
ematics, vol. 185. Springer, New York (1998)

Dayton, B.H., Zeng, Z.: Computing the multiplicity structure in solving polynomial
systems. In: Proceedings of ISSAC 2005, pp. 116-123. ACM (2005)

Fulton, W.: Introduction to intersection theory in algebraic geometry. CBMS Re-
gional Conference Series in Mathematics, vol. 54. Conference Board of the Math-
ematical Sciences, Washington, DC (1984)

Fulton, W.: Algebraic curves. Advanced Book Classics. Addison-Wesley (1989)

. Kalkbrener, M.: A generalized euclidean algorithm for computing triangular rep-

resentations of algebraic varieties. J. Symb. Comp. 15, 143-167 (1993)

Kirwan, F.: Complex algebraic curves. London Mathematical Society Student
Texts, vol. 23. Cambridge University Press, Cambridge (1992)

Knapp, A.W.: Cornerstones. In: Advanced algebra. Birkhduser Boston Inc., Boston
(2007), Along with a companion volume 1t Basic algebra

Labs, O.: A list of challenges for real algebraic plane curve visualization software. In:
Emiris, I.Z., Sottile, F., Theobald, T. (eds.) Nonlinear Computational Geometry,
pp. 137-164. Springer, New York (2010)

Lazard, D.: Solving zero-dimensional algebraic systems. J. Symb. Comp. 15, 117—
132 (1992)

Lemaire, F., Moreno Maza, M., Pan, W., Xie, Y.: When does (T) equal Sat(T)?
In: Proc. ISSAC 2008, pp. 207-214. ACM Press (2008)

Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library. In: Ilias, S.
(ed.) Maple Conference 2005, pp. 355-368 (2005)

Li, Y.L., Xia, B., Zhang, Z.: Zero decomposition with multiplicity of zero-
dimensional polynomial systems. CoRR, abs/1011.1634 (2010)

Shafarevich, I.R.: Basic algebraic geometry 1, 2nd edn. Springer, Berlin (1994)
Wang, D.M.: Elimination Methods. Springer (2000)

Wu, W.T.: A zero structure theorem for polynomial equations solving. MM Re-
search Preprints 1, 2-12 (1987)

http://www-sop.inria.fr/saga/POL/

A Note on the Space Complexity
of Fast D-Finite Function Evaluation

Marc Mezzarobba

Inria, AriC, LIP (UMR 5668 CNRS-ENS Lyon-Inria-UCBL)

marc@mezzarobba.net

Abstract. We state and analyze a generalization of the “truncation
trick” suggested by Gourdon and Sebah to improve the performance of
power series evaluation by binary splitting. It follows from our analysis
that the values of D-finite functions (i.e., functions described as solutions
of linear differential equations with polynomial coefficients) may be com-
puted with error bounded by 277 in time O(p(lgp)>*°™")) and space O(p).
The standard fast algorithm for this task, due to Chudnovsky and Chud-
novsky, achieves the same time complexity bound but requires ©(plgp)
bits of memory.

1 Introduction

Binary splitting is a well-known and widely applicable technique for the fast
multiple precision numerical evaluation of rational series. For any series), sy
with lim sup,, |sn\1/ " < 1 whose terms s,, obey a linear recurrence relation with
polynomial coefficients, e.g.,

)
1
2= nz:;)sna Sn = (TL + 1)2n+1’ 2(” + 2)5n+1 - (n + 1)8” =0,

the binary splitting algorithm allows one to compute the partial sum Zg;ol Sn

in O(M(N(lg N)?)) bit operations [5l3]. Here M(n) stands for the complexity of
multiple precision integer multiplication, and lg denotes the binary logarithm.
As N = O(p) terms of the series are enough to make the approximation error
less than 277, the complexity of the algorithm is softly linear in the precision p,
assuming M(n) = O(n(lgn)°M).

Methods based on binary splitting tend to be favored in practice even in
cases when asymptotically faster algorithms (typically AGM iterations [2]) would
apply. One high-profile example is the computation of billions of digits of clas-
sical constants such as 7, {(3) or . Basically all record computation in recent
years were achieved by evaluating suitable series using variants of binary split-
ting [9/28).

A drawback of the classical binary splitting algorithm, both from the com-
plexity point of view and in practice, is its comparatively large memory usage.
Indeed, the algorithm amounts to the computation of a product tree of matri-
ces derived from the recurrence—see Sect. Bl below for details. The intermediate

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 212 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Note on the Space Complexity of Fast D-Finite Function Evaluation 213

results are matrices of rational numbers whose bit sizes roughly double from
one level to the next. Near the root, their sizes can (and in general do) reach
O(plgp), even though the output has size ©(p).

However, the space complexity can be lowered to O(p) using a slight variation
of the classical algorithm. The basic idea is to truncate the intermediate results
to a precision O(p) when they start taking up more space than the final result.
Of course, these truncations introduce errors. To make the trick into a genuine
algorithm, we need to analyze the errors, add a suitable number of “guard digits”
at each step and check that the space and time complexity of the resulting
process stay within the expected bounds.

The opportunity to improve the practical behavior of binary splitting using
truncations has been noticed by authors of implementations on several occasions
over the last decade or so. Gourdon and Sebah [10] describe truncation as a
“crucial” optimization. Besides the expected drop of memory usage, they report
running time improvements by an “appreciable” constant factor. Cheng et al. [4]
compare truncation with alternative (less widely applicable but sometimes more
efficient) approaches. Most recently, Kreckel [I4] explicitly asks how to make
sure that the new roundoff errors do not affect the correctness of the result.

Indeed, the above-mentioned error analysis did not appear in the literature
until very recently. An article by Yakhontov [26/27] now provides the required
bounds in the case of the generalized hypergeometric series ,F,, which covers all
examples where the truncation trick had been used before. But the applicability
of the method is actually much wider.

The purpose of this note is to present a more general and arguably simpler
analysis. Our version is more general in two main respects. First, besides hyper-
geometric series, it applies to the solutions of linear ordinary differential equa-
tions with rational coefficients, also known as D-finite (or holonomic) series [21].
D-finite series are exactly those whose coefficients obey a linear recurrence re-
lation with rational coefficients, while hypergeometric series correspond to re-
currences of the first order. Second, we take into account the coefficient size of
the recurrence that generates the series to be computed. Allowing the size of
the coefficients to vary with the target precision p makes it possible to use the
modified binary splitting procedure as part of the “bit burst” algorithm [5] to
handle evaluations at general real or complex points approximated by rationals
of size ©(p).

Additionally, our analysis readily adapts to other applications of binary split-
ting. The simplicity and generality of the proof are direct consequences of viewing
the algorithm primarily as the computation of a product tree. See Gosper [§] and
Bernstein [T}, §12-16] for further comments on this point of view.

The remainder of this note is organized as follows. Section[2lcontains some nota-
tions and assumptions. In Sect.Bl we recall the standard binary splitting algorithm,
which will serve as a subroutine in the linear-space version. Then, in Sect.] we
state and analyze the “truncated” variant that achieves the linear space complex-
ity for general D-finite functions. Finally, Sect. [l offers a few comments on other
variants of the binary splitting method and possible extensions of the analysis.

214 M. Mezzarobba

2 Setting

The performance of the binary splitting algorithm crucially depends on that of
integer multiplication. Following common usage, we denote by M(n) a bound
on the time needed to multiply two integers of at most n bits. Currently the
best theoretical bound [7] is M(n) = O(n(lgn)exp O(lg" n)), where lg*n =
min{k1g°* n < 1}. In practice, implementations such as GMP [I1] use variants
of the Schénhage-Strassen algorithm of complexity O(n(Ign)(lglgn)). We make
the usual assumption [25] that the function n — M(n)/n is nondecreasing. It fol-
lows that M(n) +M(m) < M(n +m). We also assume that the space complexity
of integer multiplication is linear, which is true for the standard algorithms.

Write K = Q(¢), and define the bit size of a number (z + iy)/w € K (where
w,z,y € Z) as [lgw] + [lgz] + [lgy] + 1. Consider a linear differential equation
with coefficients in IK(z). It will prove convenient to clear all denominators (both
polynomial and integer) and multiply the equation by a power of z to write
it as

<a7~(z) (zi)r +o 4 al(z)zddz + ao(z)) ~y(z) =0, ap € Zli[z]. (1)

Let s = maxy deg ag, and let h; denote the maximum bit size of the coefficients
of the aj. Although our complexity estimates depend on r and hj, we do not
consider more general dependencies on the equation. Thus, the a; are assumed
to vary only in ways that can be described in terms of these two parameters.
Specifically, we assume that s = O(1) and that the coefficients of ay(z)/a,(0)
are all restricted to some bounded domain.

We also assume that 0 is an ordinary (i.e. nonsingular) point of (). This
implies that a,(0) # 0 and s > r. The case of regular singular points (those
for which we still have a,(0) # 0 but possibly s < r [I3, Chap. 9]) is actually
similar [23[I7]; we focus on ordinary points to avoid cumbersome notations.

Let p = min{|z| : a,(2) = 0} € (0,00]. Then any formal series solution
Y(2) = >, 50 Ynz" of [l converges on the disk [2| < p. We select a particular so-
lution (say, by specifying initial values %(0), ...,y (0) in some fixed, bounded
domain), and an evaluation point ¢ € K with |¢| < p. Let hy denote the bit size
of ¢, and let h = h1 + ho. Again, hs is allowed to grow to infinity, but we assume
that |¢| is bounded away from p.

Given p > 0, our goal is to compute a complex number w € K such that
|w —y(¢)] < 27P. By a classical argument, which can be reconstructed by substi-
tuting a series with indeterminate coefficients into (), the sequence (y,) obeys
a recurrence relation of the form

bo (1) Yntr 4+ b1(N)Yngr—1 + -+ + bs(n)Ynqr—s = 0, b; € K [n]. (2)

Writing ax(2) = ago + ag12 + - - + ax,s2°, the b; are given explicitly by

bj(n) = a;(n+r—j" 3)
k=0

A Note on the Space Complexity of Fast D-Finite Function Evaluation 215

Based on the matrix form of the recurrence (2)), set

B(TL) —_ (CCRSTL) ?) c K(n)(‘;+1)><(s+1) (4)
where
1
C(n) = o B=(0 000
_ ba(n) o b1(n) S—1r zeroes r—1 zeroes
bO('n) bo(’n)

Let P(a,b) = B(b—1)---B(a+ 1)B(a) for all a < b. (In particular, P(a,a) is
the identity matrix.)

One may check that by(n) # 0 for n > 0, due to the fact that 0 is an ordinary
point of (). Thus the computation of a partial sum Sy = Zﬁ;ol YnC™ reduces
to that of the matrix product P(0, N). Indeed, we have

(yn+r—s<na sy yn+r—1<n7 Sn)T = P(Ov n) (yr—& sy Yr—1, O)T

where y,._s = 0,...,y_1 = 0,90, ...,yr—1 are easily determined from the initial
values of the differential equation.

3 Review of the Classical Binary Splitting Algorithm

Since the entries of the matrix B(n) are rational functions of n, the bit size of
P(a,b) grows as O((b—a)lgb) when b, (b — a) — oco. This bound is sharp in the
sense that it is reached for some (in fact, most) differential equations. Computing
P(a,b) as B(b—1)-[B(b—2) - [-- B(a)]] then takes time at least quadratic in
b — a, as can be seen from the combined size of the intermediate results. The
term “binary splitting” refers to the technique of reorganizing the product into a
balanced tree of subproducts, using the relation P(a,b) = P(m,b) - P(a, m) with
m = |3(a+0b)], and so on recursively.

A slight complication stems from the fact that removing common divisors
between the numerators and denominators of the fractions appearing in the
intermediate P(a,b) € K"™*" would in general be too expensive. Multiplying the
numerators and denominators separately and doing a single final division yields
better complexity bounds. Let

B(n) = bo(n)(B(n) € Z[i][n] **H*CHV ¢ = (/0 (C€Zl], (). (5)

The entries of B(n) are polynomials of degree at most r and bit size O(h). To
compute P(a,b) by binary splitting, we multiply the E(n) for a < n < b using
Algorithm [II and then divide the resulting matrix by its bottom right entry.
The general algorithm considered here was first published by Chudnovsky and
Chudnovsky [5], with (up to minor details) the analysis summarized in Prop. [
The idea of binary splitting was known long before [8I[1].

216 M. Mezzarobba

Algorithm 1. BinSplit(a,b)
1 If b — a < (some threshold)

> Return B(b—1)--- B(a) where B is defined by (G
3 else

4 Return BinSplit(| “3°|,b) - BinSplit(a, | “3°])

Proposition 1. [5/ Asb,N =b—a,h,r — oo withr = O(N), Algorithm[l com-
putes an unreduced fraction equal to P(a,b) in O(M(N (h+rlgb)) 1g N)) operations,
using O(N(h +rlg b)) bits of memory. Assuming M(n) = n(lgn)(lglgn)°®,
both bounds are sharp.

Proof (sketch). The bit sizes of the matrices that get multiplied together at any
given depth 0 < § < [lg N7 in the recursive calls are at most C27° N (h + dlgb)
for some C. Since there are at most 2° such products and the multiplication
function M(-) was assumed to be subadditive, the contribution of each level is
bounded by M(C(b—a)(h+ dlgb)), whence the total time complexity. See [5J17]
for details. The intermediate results stored or multiplied together at any stage of
the computation are disjoint subproducts of B(b—1)--- B(a), and we assumed
the space complexity of n-bit integer multiplication to be O(n), so the space
required by the algorithm is linear in the combined size of the B(n). Finally,
it is not hard to construct examples of differential equations that reach these
bounds.

Remark 1. The link between our setting and the more common description of
the algorithm for hypergeometric series is as follows. In the notation of Haible
and Pananikolaou [12] also used in Yakhontov’s article, the partial sums of the
hypergeometric series are related to its defining parameters a, b, p, ¢ by

s+ _ [o0 >(5(7) > iy b
<S<z‘>> (zg:}gg;i vira)) \s6-1)) V= e

B(i) \ _ (b(i)pGE) O B(i—1)P(i—1)

T(O,i)) = (a(i)p(i) b(i)q(i))(7(0,i—1)) upon clear-
ing denominators. The standard recursive algorithm for hypergeometric se-
ries may be seen an “inlined” computation of the associated product tree.

Each recursive step is equivalent to the computation of the matrix product
B.P, 0 B/P, 0
(T, BrQr) (Ty BiQ)

This equation becomes (

We return to the evaluation of a D-finite power series within its disk of conver-
gence. From the differential equation (II), suitable initial conditions, the evalua-
tion point ¢ and a target precision p, one can compute [I§] a truncation order N
such that |Sy —y(¢)] <277 and

{N ~Kp=(1g(<| /p) 'p, ifp<oo (6)
N =0(p/lgp), if p = oo.

Combined with these estimates, Proposition [implies the following.

A Note on the Space Complexity of Fast D-Finite Function Evaluation 217

Corollary 1. Write £ = h+rlgp. Under the assumptions of Proposition[d, one
can compute y(¢) in O(M(¢plgp)) bit operations, using O(€p) bits of memory.
The complexity goes down to O(M(€p)) operations and O(€p/lgp) bits of memory
when a,(z) is a constant.

This result is the basis of more general evaluation algorithms for D-finite func-
tions [5]. Indeed, binary splitting can be used to compute the required series sums
at each step when solving a differential equation of the form () by the so-called
method of Taylor series [15]. Corollary [l thus extends to the evaluation of y out-
side the disk |z| < p. Chudnovsky and Chudnovsky further showed how to reduce
the cost of evaluation from Q(hp) = Q(p?) to softly linear in p when h = O(p).
This last situation is very natural since it covers the case where the point (is
itself a O(p)-digits approximation resulting from a previous computation. The
method, known as the bit burst algorithm, consists in solving the differential
equation along a path made of approximations of { of exponentially increasing
precision. Its time complexity is O(M(p(lgp)?)) [16]. The improvements from
the next section apply to all these settings. See also [24] for an overview of more
sophisticated applications.

4 “Truncated” Binary Splitting

The superiority of binary splitting over alternatives like summing the series in
floating-point arithmetic results from the controlled growth of intermediate re-
sults. Indeed, in the product tree computed by Algorithm [Il, the exact represen-
tations of most subproducts P(a,b) are much more compact than ©(p)-digits
approximations would be. However, as already mentioned, the bit sizes of the
P(a,b) also grow larger than p near the root of the tree. The size of a subprod-
uct appearing at depth § is roughly 27N (h +rlg N). Assuming N = O(p), this
means that the intermediate results get significantly larger than the output in
the top O(lglgp) levels of the tree.

A natural remedy is to use a hybrid of binary splitting and naive summation.
More precisely, we split the full product P(0, N) into A = ©(InN) subprod-
ucts of O(p) bits each, which are computed by binary splitting. The results are
accumulated by successive multiplications at precision O(p).

We make use of the following notations to state and analyze the algorithm.
In Equations (@) to () below, the coefficients of a general matrix A € CF**
are denoted apq = Tpq + iYpq (1 < p,g < k) with 4, ¥p 4 € R. Let ||-]| be a
submultiplicative norm on C***_ and let 55 > 0 be such that

1Al < BN (4), N(A) = max{|z;; hi<i i<k (7)

) ‘yi,j

For definiteness, assume for now that ||-|| = ||-||; is the matrix norm induced by
the vector 1-norm. (We will discuss this choice later.) Then it holds that

k
NA) <Al = Zaz,jK\/?kN(A) ®)

218 M. Mezzarobba

Algorithm 2. TruncBinSplit(p)
The notation X(q), q=0,1,... refers to a single memory location X at different points q
of the computation.
1 Set e =27P
2 Compute N such that |Sy — y(¢)| < e |[22/18]
3 Set A= [N(h + rlg N)], where h and r are given following Eq. (I
4+ Compute M such that max SPLANL TN +e < M < CN/4] where C
does not depend on p, h,r [bay, by approximating the right-hand side of (@) from
above with O(lgp) bits of precision]
Initialize P(*) :=id € K(s+Dx(=+1)
6 Forq_O,l,...,A—l
Q= (Qi,) = BinSplit(L NJ | 94" N|) (Algorithm [
s Q) = Trunc(QS+1 s+l -0, .} oA M~4+1g)
o Plath) .= Trunc(Q(q) pla), 21A M—A+atle)
10 Return P4

o

and
bk (n)
bo(n)) . ©)

Observe that, since 1 is an eigenvalue of B(n) and the norm ||-|| is assumed to
be submultiplicative, we have ||B(n)|| > 1 for all n. Besides, it is clear from (3)
that ||B(n)|| is bounded.

Given a € Q and € < 1, let

Trunc(a,e) = sgn(a) [2°]al] 27¢, e= [lge™']. (10)

b—1
P(B(n)| < 1 £
IP(ab)l < TT 130 < T (1+ a1+ el

n=a

We have |Trunc(a, €) — a| < €; the size of Trunc(a, €) is O(lge™!) for bounded a;
and Trunc(a, €) may be computed in O(M(h + €)) bit operations where h is the
bit size of a. We extend the definition to matrices A € IKF*F by

Trunc(A,) = (Trunc(zp,q, 85 '€) + i Trunc(yp,q, ﬁk_le))lgp’qgk, (11)

so that again | Trunc(A,e) — A|| < e. Note that we often write expressions of
the form Trunc(a x b,e) for some operator x. Though this does not affect our
complexity bounds, it is usually better to compute the approximate value of
a * b directly instead of starting with an exact computation and truncating the
result. See Brent and Zimmermann [3] for some relevant algorithms.

The complete binary splitting algorithm with truncations is stated as Algo-
rithm 2l Its key properties are summarized in the following propositions.

Proposition 2. The output P = TruncBinSplit(p) of Algorithm[@ is such that
1P = P(0, N)| <

Proof. Set P9 = P(0,| 4N]) and Q@ = P(| 4N/, [4'N]). Then, for 0 <
q < 4, it holds that

|p@ —p@)g € €

o (12)

A Note on the Space Complexity of Fast D-Finite Function Evaluation 219

Indeed, this is true for ¢ = 0. After Step] of each loop iteration, we have the
bound [|QV — QW <), M~4+1e < ¢ since ||B(n)|| > 1 for all n. Using (I2)
and the inequality |Q(?|| < M from Step [it follows that

||Q(q)]5(q) _ Q(q)P(Q)||<||Q(Q) _ Q(q)””p(q)n + HQ(q)HHP(q) _ p(q)”
2q+1 €
T 24 MA-e U

After taking into account the truncation error from Step B we obtain

[P+ — platD)|| = || platD) — (@) p@)|| < t1 e
SA

Mqufl

which concludes the induction.

Proposition 3. Not counting the cost of Step[2, Algorithm [2 runs in time

O(M(p)(h+7lgp)lgp), if p < oo,
{OEM(P)(thTlgp)), if p = oo, (13)

as p,h,r — oo with r = O(lgp) and h = O(p). In both cases, it uses O(p) bits of
memory (where the hidden constant is independent of h and r, under the same
growth assumptions).

We neglect the cost of finding IV to avoid a lengthy discussion of the complexity
of the corresponding bound computation algorithms. It could actually be checked
to be polynomial in r and 1gp.

Proof. Computing the bound M using Equation (@) as suggested is more than
enough to ensure that lg M = O(N/A). It requires O(N) arithmetic operations
on O(Ig p)-bit numbers, that is, o(N(Ig N)?) bit operations.

By Proposition [l each of the A calls to BinSplit requires

O(M(X (h+rlgN))lgN) = O(M(p)lgp)

bit operations. The resulting matrices Q(P) all have size O(p), hence the divisions
from Step B can be done in O(M(p)) operations using Newton’s method [25]
Chap. 9]. The truncations in Steps [l and @ ensure that the bit sizes of P and Q
are always at most

lge '+ AlgM +1g A+ O(1) = O(p). (14)

It follows that the matrix multiplications from Step [l take O(M(p)) operations
each. Summing up, each iteration of the loop from Step [0l can be performed in
O(M(p) 1g p) operations, for a total of O(AM(p) lg p). Equation (I3)) follows upon
setting N = O(p) or N = O(p/lgp) according to (6.

The required memory comprises space for the current values of P(@) and Q@,
any temporary storage used by the operations from Steps [to [@ and an ad-
ditional O(lgp) bits to manipulate auxiliary variables such as M and q. We

220 M. Mezzarobba

Table 1. Complexity of some D-finite function evaluation algorithms based on binary
splitting. The rows labeled “BinSplit” summarize the cost of computing a single sum
by binary splitting, with or without truncations. Those labeled “BitBurst” refer to
the computation of y(¢) by the “bit burst” method, using either of Algorithm [I] and
Algorithm] at each step. All entries are asymptotic bounds as p,h — oo with h =
O(p). In the “BinSplit” case, we also let r tend to infinity under the assumption that
r = O(lgp). The whole point of the “bit burst” method is to get rid the dependency
on h.

Time Space (classical) Space (trunc.)
p < oo BinSplit O(M(p(h +rlgp)lgp)) O(p(h+rlgp)) O(p)
BitBurst OM(p(lgp)?)) O(plgp) O(p)
p = oo BinSplit OM(p(h+rlgp))) O(p(r+h/lgp)) O(p)
BitBurst O(M(p(lgp)?)) O(p) O(p)

have seen that P@ and Q9 have bit size O(p). Besides, our assumption that
fast integer multiplication could be performed in linear space implies the same
property for division by Newton’s method. Thus, Steps B and @ use O(p) bits of
auxiliary storage. Finally, again by Proposition [Il the calls to Algorithm [l use
O((N/A)(h +rlgp)) = O(p) bits of memory.

Plugging Algorithm Plinto the numerical evaluation algorithms mentioned at the
end of Sect. Bl yields corresponding improvements for the evaluation of D-finite
functions at more general points. Table [[l summarizes the complexity bounds we
obtain. The omitted proofs are direct adaptations of those that apply without
truncations [BI22I17]. There would be much to say on the hidden constant factors.
The main result may be stated more precisely as follows.

Theorem 1. Let U C C be a simply connected domain such that 0 € U and
ar(2) #£0 for all z € U. Fiz Ly,...,l.—1 € C and { € U. Assume that 0 is an
ordinary point of {d), and let y be the unique solution of {dl) defined on U and
such that y®(0) = €y, 0 < k < r. Then, the value y(¢) may be computed with
error bounded by 277 in time O(M(p)(Igp)?) and space O(p), not counting the
resources needed to approximate the {y, or ¢ to precision O(p) or to find suitable
truncation orders for the Taylor series involved.

Finally, some comments are in order regarding the “working precision”; that is,
the size p’ of the entries of P and Q in Algorithm Bl Equation (Id) suggests a
number of “guard digits” p’ — p = O(p). Moreover, if the bound M is computed
using (@), the hidden constant depends on the choice of ||-||.

Let By = lim,— o B(n). For the norm |||, given by Lemma [below, we

opt
have
b—1
1 [P(a,b)ll,pe < S 18(| Buolope + O(n™h) = O(lg(b - a)),

and hence g || P(a, b)|| = O(lg(b — @)) for any norm ||-|.

A Note on the Space Complexity of Fast D-Finite Function Evaluation 221

Lemma 1. There exists a matriz norm |||, such that || Bes|lopt = 1.

Proof. We mimic the classical proof of Householder’s theorem [20, Sect. 4.2].
By @), the limit Cos = lim,, o0 C(n) is the companion matrix of the polynomial
z%a,(1/z). The eigenvalues of (C are strictly smaller than 1 in absolute value
since [¢| < p. Let I' be such that I'"1C,.I" is in (lower) Jordan normal form.
Let A > 0, and set IT = diag(1, \,...,*) - diag(I",1). Then IT~'B,ITI is lower
triangular, with off-diagonal entries tending to zero as A — 0. Hence we have
|IT~'BooII||; = 1 for X small enough. We choose such a A (e.g., A = L=iel/e)

2max(1,[¢])
and set || Allopt = |[1T 1AI||1.

One way to eliminate the overestimation in the algorithm is to compute approxi-
mations of the matrices P(| { V], qul N |) with O(lg p) digits of precision before
doing the computation at full precision. One then uses the norms of these ap-
proximate products instead of those of the individual B(n) to determine M. We
can also explicitly construct an approximation IT of the matrix IT from the proof
of Lemma [T precise enough that || [I~'BII||; = 1, and use the corresponding
norm instead of ||-||; in ([@). (Compare [22, Algorithm B|.) Other options in-
clude computing symbolic bounds on the coefficients of P(a,b) as a function of
a and b [18] or finding an explicit integer ng such that n > ng = [|B(n)|,,, =1
based on the symbolic expression of n. Which variant to use in practice depends
on the features of the implementation platform.

In any case, replacing the O(+) in the space complexity bound by an explicit
constant would also require more specific assumptions on the memory representa-
tion of the objects we work with, as well as finer control on the space complexity
of integer multiplication and division (see, e.g., Roche [19]).

5 Final Remarks

What we lose and what we retain. The price we pay for the reduced memory
usage is the ability to easily extend the computation to higher precision. Indeed,
the classical algorithm computes the exact value of the matrix P(0, N), from
which we can deduce P(0,N’) for any N’ > N in time roughly proportional to
N’ — N. This is no longer true with the linear-space variant. In some “lucky”
cases where P(0, N) can be represented exactly in linear space, it is possible to
get the memory usage down to O(N) while preserving restartability: see Cheng
et al. [4] and the references therein. Additionally, the resulting running time is
reportedly lower than using truncations, probably owing to the fact that the
size of the subproducts in the lg(N/A) lower levels of the tree is reduced as well.
Unfortunately, the applicability of the technique is limited to very special cases.

Two other traditional selling points of the binary splitting method are its easy
parallelization and good memory locality. Nothing is lost in this respect, except
that the memory bound grows to ©(¢ - p) when using ¢t = o(lg N) parallel tasks
in the approximate part of the computation.

222 M. Mezzarobba

Generalizations. The idea of binary splitting “with truncations” and the outline
of its analysis adapt to various settings not covered here. For instance, we may
consider systems of linear differential equations instead of scalar equations [5].
Product trees of matrices over number fields K’ = Q(«) other than Q(¢) or
over rings of truncated power series K’ [[e]] / (¢*) are also useful, respectively, to
evaluate limits of D-finite functions at regular singular points of their defining
equations, and to make the analytic continuation process more efficient for equa-
tions of large order [22I17]. It is not essential either that the coefficients of the
recurrence relation satisfied by the y, are rational functions of n: all we really
ask is that they have suitable growth properties and can be computed fast.

Implementation. We are working on an implementation of the algorithm from
Sect. @ in an experimental branch of the software package NumGfun [I6]. The
current state of the code is available from
http://marc.mezzarobba.net/supporting-material/trunc-CASC2012/.

A comparison (updated periodically) with the implementation of binary split-
ting without truncations used in previous releases of NumGfun is also included.

Acknowledgments. I would like to thank Nicolas Brisebarre and Bruno Salvy
for encouraging me to write this note and offering useful comments, and Anne
Vaugon for proofreading parts of it.

References

1. Bernstein, D.J.: Fast multiplication and its applications. In: Buhler, J., Steven-
hagen, P. (eds.) Algorithmic Number Theory, pp. 325-384. Cambridge University
Press (2008), http://www.msri.org/communications/books/Book44/

2. Borwein, J.M., Borwein, P.B.: Pi and the AGM. Wiley (1987)

3. Brent, R.P., Zimmermann, P.: Modern Computer Arithmetic. Cambridge Univer-
sity Press (2010), http://www.loria.fr/~zimmerma/mca/mca-cup-0.5.7.pdf

4. Cheng, H., Hanrot, G., Thomé, E., Zima, E., Zimmermann, P.: Time- and space-
efficient evaluation of some hypergeometric constants. In: Wang, D. (ed.) ISSAC
2007, pp. 85-91. ACM (2007),
http://www.cs.uleth.ca/"cheng/papers/issac2007.pdf

5. Chudnovsky, D.V., Chudnovsky, G.V.: Computer algebra in the service of mathe-
matical physics and number theory. In: Chudnovsky and Jenks [6], pp. 109-232

6. Chudnovsky, D.V., Jenks, R.D. (eds.): Computers in Mathematics, Stanford Uni-
versity. Lecture Notes in Pure and Applied Mathematics, vol. 125 (1986), Dekker
(1990)

7. Firer, M.: Faster integer multiplication. SIAM Journal on Computing 39(3), 979
1005 (2009), http://www.cse.psu.edu/ furer/Papers/mult.pdf

8. Gosper, W.: Strip mining in the abandoned orefields of nineteenth century mathe-
matics. In Chudnovsky and Jenks [6], pp 261-284

9. Gourdon, X., Sebah, P.: Constants and records of computation. Updated August
12 (2010), http://numbers. computation.free.fr/Constants/constants.html

10. Gourdon, X., Sebah, P.: Binary splitting method (2001),
http://numbers.computation.free.fr/Constants/Algorithms/splitting.ps

http://marc.mezzarobba.net/supporting-material/trunc-CASC2012/
http://www.msri.org/communications/books/Book44/
http://www.loria.fr/~zimmerma/mca/mca-cup-0.5.7.pdf
http://www.cs.uleth.ca/~cheng/papers/issac2007.pdf
http://www.cse.psu.edu/~furer/Papers/mult.pdf
http://numbers.computation.free.fr/Constants/constants.html
http://numbers.computation.free.fr/Constants/Algorithms/splitting.ps

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A Note on the Space Complexity of Fast D-Finite Function Evaluation 223

Granlund, T., et al.: GNU Multiple Precision Arithmetic Library,
http://gmplib.org/

Haible, B., Papanikolaou, T.: Fast multiprecision evaluation of series of rational
numbers (1997), http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/
papanik/ps/TI-97-7.ps.gz

Hille, E.: Ordinary differential equations in the complex domain. Wiley (1976),
Dover reprint (1997)

Kreckel, R.B.: decimal(y) =~ "0.57721566[0-9]{1001262760}39288477" (2008),
http://www.ginac.de/ kreckel/news.html#EulerConstantOneBillionDigits
Mathews, J.H.: Bibliography for Taylor series method for D.E.’s (2003),
http://math.fullerton.edu/mathews/n2003/taylorde/TaylorDEBib/Links/
TaylorDEBib_lnk_3.html

Mezzarobba, M.: NumGfun: a package for numerical and analytic computation
with D-finite functions. In: Koepf, W. (ed.) ISSAC 2010, pp. 139-146. ACM (2010),
http://arxiv.org/abs/1002.3077, doi:10.1145/1837934.1837965

Mezzarobba, M.: Autour de I’évaluation numérique des fonctions D-finies. Thése
de doctorat, Ecole polytechnique (November 2011),
http://tel.archives-ouvertes.fr/pastel-00663017/

Mezzarobba, M., Salvy, B.: Effective bounds for P-recursive sequences. Journal of
Symbolic Computation 45(10), 1075-1096 (2010),
http://arxiv.org/abs/0904.2452| doi:10.1016/j.jsc.2010.06.024

Roche, D.S.: Efficient Computation with Sparse and Dense Polynomials. PhD the-
sis, University of Waterloo (2011),
http://uwspace.uwaterloo.ca/handle/10012/5869

Serre, D.: Matrices. Graduate Texts in Mathematics, vol. 216. Springer (2002)
Stanley, R.P.: Differentiably finite power series. European Journal of Combina-
torics 1(2), 175-188 (1980)

van der Hoeven, J.: Fast evaluation of holonomic functions. Theoretical Computer
Science 210(1), 199-216 (1999),
http://www.texmacs.org/joris/hol/hol-abs.html

van der Hoeven, J.: Fast evaluation of holonomic functions near and in regular
singularities. Journal of Symbolic Computation 31(6), 717-743 (2001),
http://www.texmacs.org/joris/singhol/singhol-abs.html

van der Hoeven, J.: Transséries et analyse complexe effective. Habilitation & diriger
des recherches, Université Paris-Sud, Orsay, France (2007),
http://www.texmacs.org/joris/hab/hab-abs.html

von Zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge
University Press (2003)

Yakhontov, S.V.: Calculation of hypergeometric series with quasi-linear time and
linear space complexity. Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo
Universiteta. Seriya: Fiziko-Matematicheskie Nauki 24, 149-156 (2011)
Yakhontov, S.V.: A simple algorithm for the evaluation of the hypergeometric series
using quasi-linear time and linear space. Preprint 1106.2301v1, arXiv (June 2011),
English version of [26], http://arxiv.org/abs/1106.2301

Yee, A.J.: Mathematical constants — billions of digits. Updated March 7 (2011),
http://www.numberworld.org/digits/

http://gmplib.org/
http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/papanik/ps/TI-97-7.ps.gz
http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/papanik/ps/TI-97-7.ps.gz
http://www.ginac.de/~kreckel/news.html#EulerConstantOneBillionDigits
http://math.fullerton.edu/mathews/n2003/taylorde/TaylorDEBib/Links/TaylorDEBib_lnk_3.html
http://math.fullerton.edu/mathews/n2003/taylorde/TaylorDEBib/Links/TaylorDEBib_lnk_3.html
http://arxiv.org/abs/1002.3077
http://tel.archives-ouvertes.fr/pastel-00663017/
http://arxiv.org/abs/0904.2452
http://uwspace.uwaterloo.ca/handle/10012/5869
http://www.texmacs.org/joris/hol/hol-abs.html
http://www.texmacs.org/joris/singhol/singhol-abs.html
http://www.texmacs.org/joris/hab/hab-abs.html
http://arxiv.org/abs/1106.2301
http://www.numberworld.org/digits/

Inversion Modulo Zero-Dimensional
Regular Chains

Marc Moreno Maza, Eric Schost, and Paul Vrbik

Department of Computer Science, Western University
{moreno,eschost,pvrbik}@csd.uwo.ca

Abstract. We consider the questions of inversion modulo a regular
chain in dimension zero and of matrix inversion modulo such a regu-
lar chain. We show that a well-known idea, Leverrier’s algorithm, yields
new results for these questions.

1 Introduction

Triangular sets, and more generally regular chains, constitute a useful data struc-
ture for encoding the solutions of algebraic systems. Among the fundamental
operations used by these objects, one finds a few low-level operations, such as
multiplication and division in dimension zero. Higher-level algorithms can then
be built upon these subroutines: for instance, the authors of [§] outline a proba-
bilistic and modular algorithm for solving zero-dimensional polynomial systems
with rational coefficients. Their algorithm requires matrix inversion modulo reg-
ular chains.

Despite a growing body of work, the complexity of several basic questions
remains imperfectly understood. In this article, we consider the question of in-
version modulo a triangular set in dimension zero, and by extension, matrix
inversion modulo such a triangular set. We show that a well-known idea, Lever-
rier’s algorithm, surprisingly admits new results for these questions.

Triangular sets. We adopt the following convention: a triangular set is a family
of polynomials T = (T1,...,T,) in k[X1,..., X,], where k is a field. We require
that for all ¢, T; € k[X1,...,X;] is monic in X; and reduced with respect to (17,

., T;—1). Note that the slightly more general notion of a regular chain allows
for non necessarily monic T;; in that case, the requirement is that the leading
coefficient of T; be invertible modulo (T7y,...,T;_1). These regular chains may
be called “zero-dimensional”, since they encode finitely many points. Note that
we do not require that the ideal (T) be radical.

Multiplication modulo triangular sets. In the context of triangular sets, the
first non-trivial algorithmic question is modular multiplication. For this, and
for the question of inversion in the following paragraph, the input and output
are polynomials reduced modulo (T). We thus denote by Rt the residue class
ring k[X1,..., Xn]/(Th,...,Ty). For all i < n, let us write d; = deg(T;, X;); the
n-tuple (di,...,dy) is the multi-degree of T. Then, the set of monomials

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 224-P35] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Inversion Modulo Zero-Dimensional Regular Chains 225

My ={X{'--- X" | 0<e; <d; forall i}

is the canonical basis of the k-vector space Rr; its cardinality is the integer
or =di - - dy, which we call the degree of T. In all our algorithms, elements of
Ry are represented on this basis.

As of now, the best known algorithm for modular multiplication features the
following running time [15]. For > 1, write lg(x) = log(max(z, 2)). Then, there
exists a universal constant K such that given A, B in RT, one can compute
AB € Rt using at most K4"6t lg(o1)lglg(dr) operations in k.

Inversion modulo triangular sets. For inversion, several questions can be posed.
In this paper we consider the problem: given A € Ry, decide whether A is invert-
ble, and if so, compute its inverse. We are also interested in its the generalization
to matrices over Rr: given a (d X d) matrix A € Mq(Rr), decide whether it is
invertible, and if so, compute its inverse. We simply call this the problem of
invertibility test / inversion in Ry (or in .#y(RT)).

This question should be contrasted with the following one: given A € R,
decompose the ideal (T) into a product of pairwise coprime ideals of the form
(Ty) N ---N(T,), all T; being triangular sets, such that for all ¢ < r, A is
either a unit modulo (T;), or zero modulo (T;); we also compute the inverse
of A modulo all (T;) that are among the first category. A similar, albeit more
complex, question could be raised for matrices over Rt. To distinguish it from
the previous problem, we call this question the quasi-inverse computation.

When the ideal (T) is maximal, so Rt is a field, the two questions are the
same. Without this assumption the question of computing quasi-inverses is more
complex than the inversion problem: when A is a zero-divisor modulo (T, the
first approach would just return “not invertible”; the second approach would
actually require us to do some extra work.

As of now, most known algorithms naturally handle the second, more gen-
eral problem. Indeed, the natural approach is the following: to compute an in-
verse in the residue class ring Rt = k[X1,...,X,]/(Th,...,Ty), we see it as
Ry/[X,]/(Ty), where T’ is the triangular set (11,...,T,—1) in k[X1,..., Xpn-1].
Then, testing if A € Ry is invertible, and inverting it when possible, is usually
done by computing its extended GCD with T;, in Rt/ [X,], see [I2JI8I7IT5]. This
approach requires several quasi-inverse computations in Rt/ (namely those of
all leading terms that arise during the extended GCD algorithm). Even if A is
invertible in R/, some of these leading terms may be zero-divisors, thus we may
have to decompose T.

Main results. Our two main results concern the inversion problem, first for
elements of R, then for matrices over Rr.

In what follows, in addition to T, let st = max(dy,...,d,). Our theorems
also involve the quantity w, which denotes the exponent of matrix multiplica-
tion [4, Ch. 15]: explicitly, this means that w is such that over any ring A, matrices
of size d can be multiplied in d“ operations (+, X) in A. We take 2 < w < 3, the
best known value being w < 2.3727 [24].

226 M. Moreno Maza, E. Schost, and P. Vrbik

Theorem 1. There exists a constant C such that: If 1,..., st are units in k,
then one can perform an invertibility test / inversion in Rt using

C4"n dr 551‘3)71)/2 lg(or) lglg(dr)
operations in k.

Dropping logarithmic factors, we see that the cost of inversion modulo (T) grows

like 4™ SSF -/ 2, whereas the cost of multiplication modulo (T) grows like

4™)r. In other words, the overhead for inversion grows like s,(l‘f -/ 2, which is

between s}r/ 2 and sT, depending on w.
The second theorem describes the cost of matrix invertibility test and

inversion.

Theorem 2. There exists a constant C such that: If 1,..., st are units in k,
then one can perform an invertibility test / inversion in Mq(Rr) using

4"y (dwﬂ/? + sl 2) lg(dr) lg lg(or)
operations in k.

Previous work. As stated above, most previous works on the invertibility ques-
tion in Rt actually give algorithms for quasi-inverses, using dynamic evaluation
techniques [9]. Unfortunately, managing the decompositions induced in quasi-
inverse computations in an efficient manner leads to very complex algorithms:
as of now, the fastest algorithm for quasi-inverse follows from [7J6], and features
a running time of the form A" [], ., d;lg(d;)* 1glg(d;), for some non-explicit con-
stant A\ (conservative estimates give A > 60).

Dynamic evaluation techniques carry over to matrix inversion, and make it
possible to implement Gaussian elimination with coefficients in R, handling de-
compositions of T when zero-divisors are met. The complexity of such a process
seems quite complex to analyze; to our knowledge, this has not been done yet.

The algorithms from [7I6] apply half-GCD techniques in a recursive man-
ner, together with fast Chinese remaindering techniques to handle splitting. We
mention here another approach from [16]: using evaluation / interpolation tech-
niques, the Authors extend it in [I7] to an algorithm with cost growing like
25 (P).

The main ingredient in our theorems is Leverrier’s algorithm [13], a method
for computing the characteristic polynomial of a matrix by means of the compu-
tation of the traces of its powers. Once the characteristic polynomial is known,
it can be used to express the inverse of a matrix A as a polynomial in A —
we still refer to this extension to inverse computation as Leverrier’s algorithm,
somewhat inappropriately.

This algorithm has been rediscovered, extended and improved in work by
(among others) Souriau [23], Faddeev [I0], Csanky [5], and Preparata and
Sarwate [19]. The latter reference introduces the “baby steps / giant steps”

Inversion Modulo Zero-Dimensional Regular Chains 227

techniques that are used herein; note on the other hand that the focus in these
references is on the parallel complexity of characteristic polynomial or the in-
verse, which is not our main interest here.

Similar “baby steps / giant steps” techniques have been discovered in other
contexts (algorithms on polynomials and power series) by Brent and Kung [3] and
Shoup [2T22]. In these references, though, no mention was made of applications
to modular inversion.

2 Leverrier’s Algorithm

In this paper, we are interested in inversion algorithms which:

1. invert dense (d x d) matrices with entries in a ring A;
2. invert elements in the A-algebra A[X]/(T), for some degree d monic polyno-
mial T in A[X].

When we use these results, we take A of the form R, for some triangular set T.
Our goal is to perform as little invertibility tests / inversions in A as possible:
we thus rely on Leverrier’s algorithm, which only does one. With A of the form
R, this allows us to avoid unnecessary splittings of T.

Since both scenarios share many similarities, we strive to give a unified pre-
sentation, at the cost of a slight increase in notational burden.

2.1 Setup and Main Result

The following setup enables us to handle both cases above at once. Let A be
our base ring and let .Z;(A) be the free A-algebra of (d x d) matrices over A.
We consider an A-algebra B that is free of rank e as an A-module, and which
admits an A-algebra embedding ¢ : B — .#4(A); we assume d < e. The two
above scenarios fit into this description:

1. In the first case, B is the whole A-algebra .#;(A) and ¢ is the identity; here,
e =d?

2. In the second case, B is the A-algebra A[X]/(T). It can be identified to a sub-
algebra of .#4(A) by means of the mapping ¢ that maps A € B = A[X]/(T)
to the (d x d) matrix of multiplication by A. In this case, the rank of B is
e=d.

To any element A € B, we associate its trace tr(A) € A, defined as the trace of the
matrix ¢(A) € #4(A), and its characteristic polynomial x 4 € A[X], defined as
the characteristic polynomial of the matrix ¢(A); the latter is a monic polynomial
of degree d in A[X]. Finally, the determinant det(A) of A is defined similarly, as
the determinant of ¢(A).

For our computations, we suppose that a basis B of the A-module B is known.
In both cases above, we have a canonical choice: matrices with a single non-zero
entry, equal to one, in the first case, and the monomial basis 1, X,..., X% ! in
the second case.

228 M. Moreno Maza, E. Schost, and P. Vrbik

An addition in B then takes e operations (+, x) in A. For multiplication,
things are less straightforward: we let M(IB) be such that one multiplication in
B can be done using M(B) operations (+, x) in A. The other black-box we need
is for determining the trace: we let T(B) be such that the traces of all basis
elements of B can be computed in T(B) operations (+, X) in A. We give details
below on M(B) and T(B) for our two main cases of interest.

Then, Leverrier’s algorithm, combined with baby steps / giant steps tech-
niques, yields the following result.

Proposition 1. Suppose that 1,...,d are units in A. Given A € B, one can
decide whether A is invertible, and if so compute its inverse, using

T(B) + 0 (\/d M(B) + d<w1>/2e)

operations (+, X) in A, and one invertibility test / inversion in A.

We will prove this result explicitly. Still, although this result may not have ap-
peared before in this exact form, its specializations to our two cases of interest are
not exactly new. As we said in the introduction, when B = .#;(A), this approach
is essentially Preparata and Sarwate’s algorithm [19]. When B = A[X]/(T’), this
is in essence a combination of results of Brent and Kung [3] and Shoup [21122],
although these references do not explicitly discuss inverse computation, but re-
spectively modular composition and minimal polynomial computation.

Our first case of interest is B = .#y(A), with rank e = d>. In this case,
computing the traces of all basis elements is straightforward, so T(B) takes linear
time O(e) = O(d?). Matrix multiplication takes time M(B) = d“, so that we end
up with a total of

O (dw+1/2)

operations (+, x) in A, as is well-known.

Our second case of interest is B = A[X]/(T'), with rank e = d. In this case,
computing the traces of all basis elements requires some work (namely, com-
puting the Taylor series expansion of a rational function), and can be done in
O(M(d)) operations (+, x) in A, see [20] — here, and in what follows, M(d) is a
multiplication time function, such that we can multiply degree d polynomials in
M(d) base ring operations [I1, Ch. 9]. Multiplication in B takes time O(M(d))
as well, so we end up with a total of

0 (m M(d) + d<w+1>/2) —0 (d<w+1>/z)

operations (4, X) in A.

Other cases could be considered along these lines, such as taking B of the
form A[X1, Xo]/(Th,Ts), with (T1,T») a triangular set of degree d, but we do
not need this here.

Inversion Modulo Zero-Dimensional Regular Chains 229

2.2 OQOutline of the Algorithm

In essence, Leverrier’s algorithm relies on two facts: for A in B, (i) the traces of
the powers of A are the Newton sums of x4 (A’s characteristic polynomial) and
(i1) Cayley-Hamilton’s theorem, which says that A cancels y 4.

Fact (i) above is made explicit in the following folklore lemma; see e.g. [I] for
essentially the same arguments, in the case where B = .#;(A).

Lemma 1. Let rev(xa) = X%a(1/X) be the reverse polynomial of xa. Then
the following holds in A[[X]]:

revix = -3 t(ATthx 1)

rev
>0

Proof. This equality is well-known when A is a field and when B = .Z,;(A). We
use this fact to prove the lemma in our slightly more general setting.

Let f11.1,. .., fta.qa be d* indeterminates over Z, and let p be the (d x d) matrix
with entries (p; ;). It is sufficient to prove we have

rev Xu - Ztr 2+1 (2)

rev(xu) i>0

where tr(p), x, and rev(x,) are defined as previously. Indeed, starting from the
equality for p, we can deduce it for A € B by applying the evaluation morphism
ti; — ¢(A); ;, where ¢(A); ; is the (4, j)-th entry of the matrix ¢p(A) € AZ4(A).

To prove our equality for i, we can see the variables p;; over Q, so that
we are left to prove (@) over the field L = Q(u1,1,. .., fa,q4). Since L is a field,

it is sensible to introduce the roots ~i,...,7vq of x, in L, which are thus the
eigenvalues of p. Then, @) is a well-known restatement of the Newton-Girard
identities (see for instance Lemma 2 in [2]). O

Let us write

xa=X"—a X — .. —qq
Then, extracting coefficients in () shows that knowing the values s = tr(A¥),
for k =1,...,d, enables us to obtain the coefficients a; in a successive manner
using the formula
1 k—1
ar = k <5k — Zskiai> . (3)
i=1
(Note our assumption that 1,...,d are units in A makes this identity well-

defined.) Computing all a; in this manner takes a quadratic number of opera-
tions in A. Using Newton iteration to solve the differential equation (), which
essentially boils down to computing a power series exponential, one can compute
ai,...,aq from sq,...,sq4 in O(M(d)) operations (+, x) in A [3120].

Thus, we now assume we know the characteristic polynomial x4 of A. Fact
(i1) above then amounts to the following. Cayley-Hamilton’s theorem implies
that xa(¢(A)) =0 in .#4(A), and thus that x4(A) = 0 in B; in other words,

230 M. Moreno Maza, E. Schost, and P. Vrbik

AdfalAd_l — 7ad,1A7ad = 0.

This can be rewritten as
A(A”l*1 —a AT ad—1) = Q4.
Thus, if ag = det(A) is invertible in A, A is invertible in B, with inverse
A1 :a;l(AUF1 — a1 A%2 — Ce—ag—1); (4)

conversely, if A is invertible in B, ¢(A) is invertible in .#;4(A), and thus aq is
invertible in A.

To summarize this outline, Leverrier’s algorithm can decide if A is invertible
(and if so compute its inverse) by means of the following steps:

1. compute the traces s1, ..., sq of the powers of A

2. deduce x4 using (), using O(M(d)) operations (+, x) in A

3. A is invertible in B if and only if a4 is invertible in A; if so, we deduce A~!
by means of ().

2.3 Baby-Steps / Giant Steps Techniques

The direct implementation of Step 1 of Leverrier’s algorithm consists of com-
puting the powers A', ..., A% then taking their traces; this requires O(d) mul-
tiplications in B. Similarly, the direct approach to Step 3 by means of Horner’s
scheme requires O(d) multiplications in B. As is well-known, the baby steps /
giant steps techniques allows for the reduction of the number of multiplications
for both steps, from O(d) to O(v/d). We review this idea here, and analyze it in
our general setup.

The dual of B. As a preliminary, we say a few words about linear forms over B.
Let B* = Homy (B, A) be the dual of B, that is, the set of A-linear forms B — A.
For instance, the trace tr : B — A is in B*.

Since we assume we have an A-basis B of B, it is natural to represent elements
of B* by means of their values on the basis B. Since we assume that B has rank
e, its elements can be seen as column-vectors of size e, and the elements of B*
as row-vectors of size e. Then, applying a linear form to an element takes O(e)
operations (4, x) in A.

There exists a useful operation on B*, the transposed product. The A-module
B* can be turned into a B-module: to any A € B, and to any A € B*, we can
associate the linear form Ao\ : B — A defined by (Ao)\)(B) = A(AB). A general
algorithmic theorem, the transposition principle [4, Th. 13.20], states that given
A and A, one can compute the linear form A o A using M(B) operations in A
(that is, for the same cost as multiplication in B).

Step 1. Using transposed products, we now explain how to implement the first
step of Leverrier’s algorithm. As a preliminary, we “compute the trace”, that

Inversion Modulo Zero-Dimensional Regular Chains 231

is, its values on the basis B. As per our convention, this takes T(IB) operations
(4, x) in A.
Let m = [Vd]| and m’ = [(d + 1)/m], so that both m and m’ are O(v/d). The
baby steps / giant steps version of Step 1 first computes the sequence of “baby
steps”

Mo, My, Ms, ..., M,, =A% A A% ... A™,

by means of repeated multiplications by A. Then, by repeated transposed mul-
tiplications by M,,, we compute the “giant steps” (which are here linear forms)

’

Aoy A1y A2,y Ay = tr, My, otr, M2 otr, ..., M™ otr.

m

Computing all M; and A; takes O(\/ d) multiplications and transposed multipli-
cations in B, for a total of O(v/d M(B)) operations (+, x) in A.

Knowing the M; and A;, we can compute the required traces as A;(M;), for
0<i<mand0<j<m|, since they are given by

j(M;) = tr(M;M3,) = tr(A*A™) = tr(A*F™9),

and the exponent i +mj cover all of 0,...,d. As we saw above, computing each
Aj(M;) amounts to doing a dot-product in size e, so a direct approach would
give a cost of O(de) operations in A.

Better can be done, though. Consider the (e x m) matrix I" whose columns
give the coefficients of My, ..., M,,_1 on the basis B, and the (m' x e¢) matrix A
whose rows give the coefficients of Ag, ..., A\,r—1 on the dual basis of B. Then,
the (j,¢)-th entry of AI" is precisely the value A;(M;). Since m and m' are both
equivalent to v/d, a naive matrix multiplication algorithm computes the product
AT in O(de) operations in A, as above. However, by doing a block product, with
O(e/+/d) blocks of size O(v/d), we obtain AI' using O(d“~1/2¢) operations
(+, %) in A.

Step 3. In order to perform Step 3, we have to evaluate A%~1 — q; 4972 —
- — ag—11, then divide by aq if possible. Let us write ag = —1, and define
a; = —ag—1—; for i =0,...,d — 1; then, the quantity to compute is

d—1
p(A) = Z A
i=0

We extend the sum, by adding dummy coefficients «; set to zero, to write

mm’—1

p(A) = Y A}

i=0
this is valid, since by construction mm’ — 1 > d. For k > 0, let us then define

(k+1)m—1 m—1
Ok = g o; M = E Qg o M

i=km =0

232 M. Moreno Maza, E. Schost, and P. Vrbik

then, we see that we have

p(A) = (- (Om -1 My + Oy —2) My + - - -) My, + 00. (5)

Using this formula, the algorithm to compute p(A) first requires the computation
of all M;, for i = 0,...,m, using O(v/d M(B)) operations (4, x) in A.

Next, we have to compute oy, . . ., o/ —1. As for Step 1, let I" denote the (exm)
matrix whose columns give the coefficients of A% = My, ..., A™~1 = M,,. Then,
o is obtained by right-multiplying the matrix I by the size m column vector
[km - A(kp1)ym—1])". Joining all these column vectors in a (m x m’) matrix
A, we obtain all o, by computing the product I'A. As for Step 1, the cost is
O(d“=Y/2¢) operations (+, x) in A.

Finally, once all o, are known, we obtain p(A) by means of m’ products and
additions in B; the cost is O(v/d M(B)) operations (+, x) in A. Putting all costs
seen before together, we obtain the cost announced in Proposition [

3 Proof of the Main Theorems

Using Proposition[] it becomes straightforward to prove Theorems [l and 2 Let
T = (T1,...,T,) be a triangular set of multidegree (di,...,d,) in k[X1,...,
X,]. First, we deal with invertibility test and inversion in R, assuming that all
integers from 1 to st = max(ds,...,d,) are units in k.

Let A be in Rr. As in the introduction, we view Rt as Rr/[X,,]/(T},), where T
is the triangular set (T1,...,T,—1) in k[X1,..., X,,—1]. Applying Proposition[I]
and referring to the discussion just after it, we see that we can decide whether
A is invertible in Ry, and if so compute its inverse, using

1. O (d%wﬂ)m) operations (4, x) in Ry/; and

2. one invertibility test / inversion in R .
As recalled in the introduction, multiplications in Rt can be done for the cost
of K4" 161/ 1g(d1/)1glg(d1/) operations in k, for some constant K. The same
holds for additions in R/, since additions can be done in optimal time .
Let K’ be a constant such that the big-Oh estimate in the first item above is
bounded by K'd* /2.

Notice é1 = dy ---d,_1, and that it admits the obvious upper bound: dp, <

dr. Then, the total running time I(dy, ..., dy) of the invertibility test / inversion
algorithm follows the recurrence

l(dy,... dy) < KK'4" Yy - dpy_1d“T/21g(67) 1g1g (1) + 1(dy, . . . dn_1),
which can be simplified as
I(dy,...,d,) < C4"opd@=D/21g(6p) 1glg(dx) + (dy, . .., dn_1),

with C = KK'/4. Unrolling the recurrence, we obtain

I(dy, ... dn) < C4"6rp (d&“*”/z ot de‘”/Q) lg(61) lglg (o).

With st = max(dy, - -

I(dy, ...

Inversion Modulo Zero-Dimensional Regular Chains

which proves Theorem [I

OO Lo W W WW W W LW WWWW R, R e e e 3

CU O O O O OU W s o s e R W W Wwwww

125
125
125
125
125
125

,dyp), this admits the upper bound

Jdy) < C4™n 67 sE 7V 1g(61) 1glg(51),

Table 1. Experimental results (in seconds)

m
3
6
9

12
15
18

3
6
9
12
15
18

3
6
9
12
15
18

3
6
9
12
15
18

3
6
9
12
15
18

3
6
9
12
15
18

0.03
0.03
0.07
0.19
0.26
0.47

0.02
0.10
0.43
0.96
1.67
3.17

0.02
0.33
0.93
2.30
4.22
8.07

0.14
1.75
5.68
13.47
22.9
42.67

0.88
10.6
32.8
74.9
121
213

0.75
7.07
22.5
53.7
94.1
175.08

Leverrier

Traces CharPoly Inverse Horner Total
0.00 0.00 0.01 0.04
0.00 0.00 0.02 0.05
0.00 0.00 0.06 0.13
0.00 0.00 0.12 0.31
0.00 0.00 0.23 0.49
0.00 0.00 045 0.92
0.00 0.00 0.01 0.03
0.01 0.00 0.09 0.20
0.01 0.00 021 0.65
0.01 0.00 0.63 1.60
0.02 0.00 129 2.98
0.02 0.00 2.09 5.28
0.01 0.00 0.03 0.06
0.01 0.00 0.20 0.54
0.02 0.00 050 1.45
0.02 0.00 151 3.83
0.03 0.00 3.36 7.61
0.05 0.00 543 13.56
0.02 0.08 0.22 0.46
0.07 0.07 146 3.35
0.11 0.08 3.58 9.45
0.16 0.07 9.18 228
0.27 0.08 194 4238
0.27 0.07 30 73
0.22 0.58 1.6 3.28
0.43 0.63 9.80 21.4
0.77 0.62 225 56.7
1.07 0.63 55.1 132
1.38 0.65 111 233
1.67 0.58 163 379
0.08 0.63 0.74 2.20
0.22 0.63 5.07 14
0.38 0.55 12.6 36.0
0.65 0.54 332 88.1
0.84 0.54 721 167
1.08 0.57 112 288

MatrixInverse
Time
0.2
0.07
0.15
0.34
0.54
0.72

0.12
0.39
1.09
2.26
4.09
6.67

0.22
0.87
2.28
4.60
8.02
13.14

7.7
10.4
15.5

24
35.7
52.2

54.5
100
184
324
524
840

159
299
548
960
1582
2462

233

234 M. Moreno Maza, E. Schost, and P. Vrbik

Theorem[2 then follows from the combination of Proposition[Iland Theorem[Il
To invert a (d x d) matrix A with entries in R, we apply Leverrier’s algorithm
in Proposition [I, over the ring A = Ry. As explained after Proposition [Il the
cost is O(d“*1/2) operations (+, x) in R, followed by the invertibility test /
inversion of the determinant of A in Rt. The cost reported in Theorem Pl then
follows easily from the bounds on the cost of multiplication and invertibility test
in RT.

4 Experimental Results

In this section, we compare Maple implementations of two approaches: our own
recursive Leverrier algorithm and the existing (Gauss-Bareiss based) method
from the RegularChains Maple library [I4]. Our implementation uses the Regu-
larChains library for normal forms, multiplication, etc, so we believe that this
is a fair comparison.

Letting p = 962592769, we choose a random dense regular chain T in F),[X7,

., X,), with varying n, with and multidegree (d, ..., d) for some varying d. We
invert a random (and thus invertible) m xm matrix A with random entries in R.
We compare our results to the MatrixInverse function from RegularChains.

Table [gives the results of our experiments on a AMD Athlon running Linux,
using Maple 15. For our algorithm, we detail the timings for trace computation
(Step 1 of the algorithm), reconstituting the characteristic polynomial x4 (Step
2), the inverse of the determinant of A, and the computation of the inverse of A
itself (Step 3). As was to be expected, Step 1 and Step 3 take comparable times.
For n = 1, our algorithm behaves very similarly to the built-in MatrixInverse.
Already for n = 3, our implementation usually gives better results.

Acknowledgments. We acknowledge the support of the Canada Research
Chairs Program and of NSERC.

References

1. Abdeljaoued, J., Lombardi, H.: Méthodes matricielles: introduction a la complexité
algébrique. Mathématiques & Applications, vol. 42. Springer (2004)

2. Bostan, A., Flajolet, P., Salvy, B., Schost, E.: Fast computation of special resul-
tants. J. Symb. Comp. 41(1), 1-29 (2006)

3. Brent, R.P., Kung, H.T.: Fast algorithms for manipulating formal power series.
Journal of the ACM 25(4), 581-595 (1978)

4. Biirgisser, P., Clausen, M., Shokrollahi, A.: Algebraic Complexity Theory. Springer
(1997)

5. Csanky, L.: Fast parallel matrix inversion algorithms. SIAM J. Comput. 5(4), 618—
623 (1976)

6. Dahan, X., Jin, X., Moreno Maza, M., Schost, E.: Change of ordering for regular
chains in positive dimension. Theoretical Computer Science 392(1-3), 37-65 (2008)

7. Dahan, X., Moreno Maza, M., Schost, E., Xie, Y.: On the complexity of the D5
principle. Transgressive Computing, 149-168 (2006)

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Inversion Modulo Zero-Dimensional Regular Chains 235

Dahan, X., Moreno Maza, M., Schost, E., Wu, W., Xie, Y.: Lifting techniques for
triangular decompositions. In: ISSAC 2005, pp. 108-115. ACM Press (2005)
Della Dora, J., Discrescenzo, C., Duval, D.: About a New Method for Computing
in Algebraic Number Fields. In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS,
vol. 204, pp. 289-290. Springer, Heidelberg (1985)

Faddeev, D., Sominskii, I.: Collected problems in higher algebra. Freeman (1949)
von Zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press (1999)

Langemyr, L.: Algorithms for a multiple algebraic extension. In: Effective Methods
in Algebraic Geometry. Progr. Math, vol. 94, pp. 235-248. Birkh&user (1991)

Le Verrier, U.J.J.: Sur les variations séculaires des éléments elliptiques des sept
planétes principales : Mercure, Venus, La Terre, Mars, Jupiter, Saturne et Uranus.
J. Math. Pures Appli. 4, 220-254 (1840)

Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library. In: Kotsireas,
1.S. (ed.) Maple Conference 2005, pp. 355-368 (2005)

Li, X., Moreno Maza, M., Schost, BE.: Fast arithmetic for triangular sets: from
theory to practice. Journal of Symbolic Computation 44(7), 891-907 (2009)

Li, X., Maza, M.M., Pan, W.: Computations modulo regular chains. In: ISSAC
2009, pp. 239-246. ACM Press (2009)

Li, X., Moreno Maza, M., Pan, W.: Gecd computations modulo regular chains.
Technical report, Univ. Western Ontario, 30 pages (2009) (submitted)

Moreno Maza, M., Rioboo, R.: Polynomial GCD Computations over Towers of
Algebraic Extensions. In: Giusti, M., Cohen, G., Mora, T. (eds.) AAECC 1995.
LNCS, vol. 948, pp. 365-382. Springer, Heidelberg (1995)

Preparata, F.P., Sarwate, D.V.: An improved parallel processor bound in fast ma-
trix inversion. Information Processing Letters 7(2), 148-150 (1978)

Schonhage, A.: The fundamental theorem of algebra in terms of computational
complexity. Technical report, Univ. Tiibingen, 73 pages (1982)

Shoup, V.: Fast construction of irreducible polynomials over finite fields. Journal
of Symbolic Computation 17(5), 371-391 (1994)

Shoup, V.: Efficient computation of minimal polynomials in algebraic extensions
of finite fields. In: ISSAC 1999, pp. 53-58. ACM Press (1999)

Souriau, J.-M.: Une méthode pour la décomposition spectrale et Iinversion des
matrices. Comptes rendus des Séances de I’Académie des Sciences 227, 1010-1011
(1948)

Vassilevska Williams, V.: Breaking the Coppersmith-Winograd barrier (2011)

Sparse Polynomial Powering Using Heaps

Michael Monagan and Roman Pearce

Department of Mathematics, Simon Fraser University, Burnaby, B.C., Canada
{mmonagan,rpearcea}@cecm.sfu.ca

Abstract. We modify an old algorithm for expanding powers of dense
polynomials to make it work for sparse polynomials, by using a heap to
sort monomials. It has better complexity and lower space requirements
than other sparse powering algorithms for dense polynomials. We show
how to parallelize the method, and compare its performance on a series
of benchmark problems to other methods and the Magma, Maple and
Singular computer algebra systems.

Keywords: Sparse Polynomials, Powers, Heaps, Parallel Algorithms.

1 Introduction

Expanding powers of sparse polynomials is an elementary function of computer
algebra systems. Despite receiving a lot of attention in the 1970’s, a fragmented
situation exists today where the fastest sparse methods make time and memory
tradeoffs that improve one case at the expense of others. Thus, programmers of
computer algebra systems must implement multiple routines and carefully select
among them to obtain good performance.

For an introduction to this problem and current methods it is hard improve on
the papers by Richard Fateman [1I2]. He characterizes the relative performance
of the algorithms by counting coefficient operations. We briefly discuss these
results. Let f be a polynomial with ¢ terms to be raised to a power k > 1. We
use f; to refer to the i* term of f and #f to refer to the number of terms of f.
We consider two cases: sparse and dense.

In the sparse case, the terms of f interact as if they were algebraically inde-
pendent, e.g. as in f = 21 + x2 + - - - + z;. Expanding f* creates (k+,t€_1) terms,
the most possible. In the dense case the terms of f combine as much as possible,
eg.asin f=14+x 422+ -+ 21 If there are no cancellations, f* will have
kE(t —1) + 1 terms.

We want a sparse algorithm to have good performance in the dense case, to
allow for a smooth transition to dense methods inside a general purpose routine.
The literature suggested that current sparse methods do an order of magnitude
too much work in the dense case, so we developed new methods to address this.
This in turn forced us to reassess sparse and dense algorithms for powering, as
the consensus heavily favors dense algorithms.

Our contribution is two methods for powering sparse polynomials. The first,
Sparse SUMS, has the best performance in the dense case. The second method,
which we call FPS, is a modification to improve performance in the sparse case.

V.P. Gerdt et al. (Eds.): CASC 2012, LNCS 7442, pp. 236-B47] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Sparse Polynomial Powering Using Heaps 237

The methods in the literature are as follows.

RMUL computes f* = f - fi=! for i = 2... k. The memory taken by =2 may
be reused to hold f? so that total storage is at most twice the result.

RSQR computes f* = (f/?)? fori=2...|log, k|, with extra multiplication by
f at each 1 in the binary expansion of k. E.g. f13 = f1102 = (((f)2. £)?)? - f.

Gentleman and Heindel note in [4lJ5] that RSQR is vastly inferior to RMUL
in the sparse case. RSQR also requires asymptotically fast dense multiplication
to improve on RMUL in the dense case. Therefore, RSQR is a dense algorithm.
The best feature of RMUL is that it aggressively combines like terms. This can
be of great importance on large problems which “fill-in”. Its weakness is sparse
problems and high powers.

BINA selects f; € f and expands g = (f1 + 1)* using the binomial theorem. It
expands (f — f1) for i = 2...k using RMUL and merges f* = Z?:o gi- (f— f1)b

BINB is similar to BINA except that f is split into equal-sized parts f = g+ h.
It expands and merges f* = Z?:o (’Z) cgt - hFE

Binomial methods originate with Fateman in [I], who shows that BINB is
nearly optimal in the sparse case. Alagar and Probst [I1] improve on this using
recursion, and Rowan [16] expands the set of powers {g‘} more efficiently, both
for the sparse case only. For the dense case, Fateman in [2] shows that BINA is
comparable to RMUL and much faster than BINB. The tradeoff made in BINB
assumes that few like terms combine. This makes it unsuitable for our purpose.
In BINA, we avoid unbalanced merging by storing all (f — f1)* and performing
a simultaneous n-ary merge that multiplies by each g; inline. This makes BINA
extremely fast in most cases, at the cost of extra memory.

MNE generates all combinations of terms with multinomial coefficients, see [6].
This quickly becomes infeasible in the dense case.

FFT performs fast multipoint evaluation at roots of unity modulo primes, uses
modular exponentiation on the values, then performs fast interpolation. Over Z
it uses multiple primes and Chinese remaindering.

As noted by Ponder in [I0], the FFT can be competitive in practice because
high powers of sparse polynomials tend to fill in. For multivariate polynomials,
one can use the Kronecker substitution as suggested by Moenck [9], however this
separates the variables with very high degrees and thus limits gains from fill-in.
A weakness of the FFT is that small polynomials raised to high powers over Z
require many large FFTs. For that case the following classical method is faster,
a crucial fact which was brought to our attention by Greg Fee.

SUMS is a dense method. Let f = Z?:o fiz*. To compute g = f* = Z?io g;
we compute go = f¥ and use the formula g; = i}o Z?;”i(d’z)((k +1)j —1)figi—;
fori=1...kd.

The SUMS algorithm is originally due to Euler and is used to exponentiate
power series, see [2J38]. The algorithm is extremely fast for small polynomials
raised to large powers, as it is linear in k£ and quadratic in d.

238 M. Monagan and R. Pearce

Two features of the SUMS formula recall the sparse multiplication algorithm
of Johnson [7]. First, it computes each new term of the result in order. Second,
it merges pairwise products f;g,—; of equal degree, but scaled by ((k+1)j —).
Our starting point was to make a sparse method by skipping over products that
a sparse representation omits, that is, where f; or g;—; equals zero.

What methods do computer algebra systems presently use for this problem?
Singular 3.1 uses RMUL. Magma 2.17 uses RSQR. Maple 16 selects among our
implementations of RMUL, BINA, and RSQR. For univariate powering, Maple
estimates when RSQR will beat BINA. For multivariate powers, Maple bounds
the extra memory needed for BINA and uses RMUL when this is too large.

For the underlying multiplications, Magma and Maple use dense algorithms
for univariate polynomials over Z. Magma uses the Schonhage-Strassen method
with a single modulus of the form 22" 4 1. Maple evaluates at a large integer of
the form 264 to leverage the FFT from integer multiplication. For multivariate
multiplications, Maple, Magma, and Singular all use classical sparse algorithms
and distributed polynomial representations. Maple uses our codes from [12/14].

Our paper is organized as follows. Section 2 develops the Sparse SUMS and
FPS algorithms and describes our implementation. The complexity of powering
is discussed in Section 2.1l Section describes our approach to parallelization
which we also used successfully for sparse polynomial division in [I5]. Section [
compares the performance of the algorithms on benchmark problems.

2 Sparse Sums

For completeness we briefly derive SUMS. Let f = Z?:o fiz' € Q[z] and g = f*.
Then ¢’ =k f* 1. f and f- ¢ = kg- f'. Equating terms of degree i — 1 in

o+ i)g1 + 205w ++) = Klgo+ v+)(fr + 2o +-+)

we obtain min(d,i