
Vladimir P. Gerdt · Wolfram Koepf
Werner M. Seiler · Evgenii V. Vorozhtsov (Eds.)

 123

LN
CS

 9
89

0

18th International Workshop, CASC 2016
Bucharest, Romania, September 19–23, 2016
Proceedings

Computer Algebra
in Scientific
Computing

Lecture Notes in Computer Science 9890

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Vladimir P. Gerdt • Wolfram Koepf
Werner M. Seiler • Evgenii V. Vorozhtsov (Eds.)

Computer Algebra
in Scientific
Computing
18th International Workshop, CASC 2016
Bucharest, Romania, September 19–23, 2016
Proceedings

123

Editors
Vladimir P. Gerdt
Laboratory of Information Technologies
Joint Institute of Nuclear Research
Dubna
Russia

Wolfram Koepf
Institut für Mathematik
Universität Kassel
Kassel
Germany

Werner M. Seiler
Institut für Mathematik
Universität Kassel
Kassel
Germany

Evgenii V. Vorozhtsov
Institute of Theoretical and Applied
Mechanics

Russian Academy of Sciences
Novosibirsk
Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-45640-9 ISBN 978-3-319-45641-6 (eBook)
DOI 10.1007/978-3-319-45641-6

Library of Congress Control Number: 2016949104

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

One of the main goals of the International Workshops on Computer Algebra in Sci-
entific Computing, which started in 1998 and since then have been held annually, is to
highlight cutting-edge advances in all major disciplines of Computer Algebra (CA).
And the second goal of the CASC workshops is to bring together both the researchers
in theoretical computer algebra and the engineers as well as other allied professionals
applying CA tools for solving problems in industry and in various branches of scientific
computing.

This year the 18th CASC conference was held in Bucharest (Romania). Computer
Algebra is popular among scientists in Romania. Researchers from many institutions,
such as the University of Bucharest, the Institute of Mathematics “Simion Stoilow”
of the Romanian Academy, the West University of Timişoara, the University “Al.
I. Cuza” of Iaşi, the Institute of Computing “Tiberiu Popoviciu” from Cluj-Napoca, the
“Horia Hulubei” National Institute for Research and Development in Physics and
Nuclear Engineering (Bucharest–Măgurele), and “Ovidius” University in Constanţa,
are working on subjects such as numerical simulation using computer algebra systems,
symbolic–numeric methods for polynomial equations and inequalities, algorithms and
complexity in computer algebra, application of computer algebra to natural sciences
and engineering, polynomial algebra, and real quantifier elimination. In Romania there
are several international conferences on Computer Algebra and related topics such as
the International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, SYNASC, in Timişoara, or the series of conferences on commutative
algebra and computer algebra held in Constanţa and Bucharest.

The above has affected the choice of Bucharest as a venue for the CASC 2016
workshop.

This volume contains 30 full papers submitted to the workshop by the participants
and accepted by the Program Committee after a thorough reviewing process with
usually three independent referee reports. Additionally, the volume includes two
invited talks.

Polynomial algebra, which is at the core of computer algebra, is represented by
contributions devoted to improved algorithms for computing the Janet and Pommaret
bases, the dynamic Gröbner bases computation, the algorithmic computation of poly-
nomial amoebas, refinement of the bound of Lagrange for the positive roots of uni-
variate polynomials, computation of characteristic polynomials of matrices whose
entries are integer coefficient bivariate polynomials, finding the multiple eigenvalues of
a matrix dependent on a parameter, the application of a novel concept of a resolving
decomposition for the effective construction of free resolutions, enhancing the extended
Hensel construction with the aid of a Gröbner basis, a hybrid symbolic-numeric method
for computing a Puiseux series expansion for every space curve that is a solution of a
polynomial system, numerical computation of border curves of bi-parametric real
polynomial systems, and the application of sparse interpolation in Hensel lifting and

pruning algorithms for pretropisms of Newton polytopes. Polynomial algebra also
plays a central role in contributions concerned with elimination algorithms for sparse
matrices over finite fields, new algorithms for computing sparse representations of
systems of parametric rational fractions, and quadric arrangement in classifying rigid
motions of a 3D digital image.

Several papers are devoted to using computer algebra for the investigation of var-
ious mathematical and applied topics related to ordinary differential equations (ODEs):
application of the Julia package Flows.jl for the analysis of split-step time inte-
grators of nonlinear evolution equations, the use of the CAS Maple 18 for the
derivation of operator splitting methods for the numerical solution of evolution
equations, and the complexity analysis of operator matrices transformations as applied
to systems of linear ODEs.

Three papers deal with applications of symbolic and symbolic-numeric computa-
tions for investigating and solving partial differential equations (PDEs) and ODEs in
mathematical physics and fluid mechanics: the construction of a closed form solution to
the kinematic part of the Cosserat partial differential equations describing the
mechanical behavior of elastic rods, symbolic-numeric solution with Maple of a
second-order system of ODEs arising in the problem of multichannel scattering, and
symbolic-numeric optimization of the preconditioners in a numerical solver for
incompressible Navier–Stokes equations.

Applications of CASs in mechanics and physics are represented by the following
themes: qualitative analysis of the general integrable case of the problem of motion of a
rigid body in a double force field, investigation of the influence of aerodynamic forces
on satellite equilibria with the aid of the Gröbner basis method, and generation of
irreducible representations of the point symmetry groups in the rotor + shape vibra-
tional space of a nuclear collective model in the intrinsic frame.

The first invited talk by Th. Hahn focuses on the application of computer algebra in
high-energy physics, in particular, the Mathematica packages FeynArts and FormCalc.
The second invited talk by C.S. Calude and D. Thompson deals with the problems of
incompleteness and undecidability. These are important problems related to the
foundations of mathematics. The authors discuss some challenges proof-assistants face
in handling undecidable problems. Several example problems, including the automated
proofs, are presented. The authors briefly describe the computer program Isabelle,
which they use as the proof assistant.

CASC 2016 features for the first time a full blown Topical Session. In this fairly
new feature of the CASC series, up to six talks around a common theme are invited.
The authors have an extended page limit, but their submissions are refereed according
to the same principles and with the same rigour as normal submissions. This time the
topic was Satisfiability Checking and Symbolic Computation (SC2) and the session also
marks the beginning of a European FET-CSA project with the same title (see http://
www.sc-square.org for more information about this project and its objectives). There is
a large thematic overlap between the fields of satisfiability checking (traditionally more
a subject in computer science) and of symbolic computation (nowadays mainly studied
by mathematicians). However, the corresponding communities are fairly disjoint and
each has its own conference series. The central goal of the SC2 project consists of
bridging this gap and of bringing together people from both sides.

VI Preface

http://www.sc-square.org
http://www.sc-square.org

Thus, the 2016 Topical Session intends to familiarize the CASC participants with
the many interesting problems in this domain. It was well organised by E. Abraham,
J. Davenport, P. Fontaine, and Th. Sturm and comprises five talks. One is a one-hour
survey talk by D. Monniaux on satisfiability modulo theory. The other four talks
concern the investigation of the complexity of cylindrical algebraic decomposition with
respect to polynomial degree, efficient simplification techniques for special real
quantifier elimination, the description of a new SAT + CAS verifier for combinatorial
conjectures, and a generalized branch-and-bound approach in SAT modulo nonlinear
integer arithmetic.

The CASC 2016 workshop was hosted and supported by the University of
Bucharest and the Romanian Mathematical Society. We appreciate that they provided
free accommodation for a number of participants. The five speakers in the Topical
Session received financial support from funds of the FET-CSA project Satisfiability
Checking and Symbolic Computation.

Our particular thanks are due to the members of the CASC 2016 Local Organizing
Committee at the University of Bucharest, Doru Ştefănescu, Luminiţa Dumitrică,
Mihaela, Miruleţ, and Silviu Vasile, who ably handled all the local arrangements in
Bucharest. Furthermore, we would like to thank all the members of the Program
Committee for their thorough work. We are grateful to Matthias Seiß (Kassel
University) for his technical help in the preparation of the camera-ready manuscript for
this volume. Finally, we are grateful to the CASC publicity chair Andreas Weber
(Rheinische Friedrich-Wilhelms-Universität Bonn) and his assistant Hassan Errami for
the design of the conference poster and the management of the conference web page
http://www.casc.cs.uni-bonn.de.

July 2016 Vladimir P. Gerdt
Wolfram Koepf

Werner M. Seiler
Evgenij V. Vorozhtsov

Preface VII

http://www.casc.cs.uni-bonn.de

Organization

CASC 2016 was organized jointly by the Institute of Mathematics at Kassel University,
the University of Bucharest, and the Romanian Mathematical Society.

Workshop General Chairs

Vladimir P. Gerdt Dubna
Werner M. Seiler Kassel

Program Committee Chairs

Wolfram Koepf Kassel
Evgenii V. Vorozhtsov Novosibirsk

Program Committee

Moulay Barkatou Limoges
François Boulier Lille
Jin-San Cheng Beijing
Victor F. Edneral Moscow
Matthew England Coventry
Jaime Gutierrez Santander
Sergey A. Gutnik Moscow
Jeremy Johnson Philadelphia
Victor Levandovskyy Aachen
Marc Moreno Maza London, CAN
Veronika Pillwein Linz
Alexander Prokopenya Warsaw
Georg Regensburger Linz
Eugenio Roanes-Lozano Madrid
Valery Romanovski Maribor
Doru Ştefănescu Bucharest
Thomas Sturm Nancy
Elias Tsigaridas Paris
Jan Verschelde Chicago
Stephen M. Watt W. Ontario
Kazuhiro Yokoyama Tokyo

Additional Reviewers

Alkis Akritas
Carlos Beltrán
Nikolaj Bjorner
Paola Boito
Charles Bouillaguet
Martin Bromberger
Changbo Chen
Pascal Fontaine
Vijay Ganesh
Andrzej Góźdź
Gavin Harrison
Vadim Isaev
Hidenao Iwane
Manuel Kauers
Kinji Kimura
François Lemaire
Scott Mccallum

Marc Mezzarobba
Bernard Mourrain
Hiroshi Murakami
Clément Pernet
Marko Petkovšek
Gerhard Pfister
Clemens G. Raab
Anca Rădulescu
Marc Rybowicz
Yosuke Sato
Arne Storjohann
Yao Sun
Stefan Takacs
Thorsten Theobald
Tristan Vaccon
Bican Xia

Local Organization

Doru Ştefănescu
Luminiţa Dumitrică

Mihaela Miruleţ
Silviu Vasile

Publicity Chair

Andreas Weber Bonn

Website

http://www.casc.cs.uni-bonn.de/2016
(Webmaster: Hassan Errami)

X Organization

http://www.casc.cs.uni-bonn.de/2016

Contents

On the Differential and Full Algebraic Complexities of Operator
Matrices Transformations . 1

Sergei A. Abramov

Resolving Decompositions for Polynomial Modules 15
Mario Albert and Werner M. Seiler

Setup of Order Conditions for Splitting Methods. 30
Winfried Auzinger, Wolfgang Herfort, Harald Hofstätter,
and Othmar Koch

Symbolic Manipulation of Flows of Nonlinear Evolution Equations,
with Application in the Analysis of Split-Step Time Integrators 43

Winfried Auzinger, Harald Hofstätter, and Othmar Koch

Improved Computation of Involutive Bases . 58
Bentolhoda Binaei, Amir Hashemi, and Werner M. Seiler

Computing All Space Curve Solutions of Polynomial Systems
by Polyhedral Methods . 73

Nathan Bliss and Jan Verschelde

Algorithmic Computation of Polynomial Amoebas 87
D.V. Bogdanov, A.A. Kytmanov, and T.M. Sadykov

Sparse Gaussian Elimination Modulo p: An Update. 101
Charles Bouillaguet and Claire Delaplace

MATHCHECK2: A SAT+CAS Verifier for Combinatorial Conjectures 117
Curtis Bright, Vijay Ganesh, Albert Heinle, Ilias Kotsireas, Saeed Nejati,
and Krzysztof Czarnecki

Incompleteness, Undecidability and Automated Proofs (Invited Talk) 134
Cristian S. Calude and Declan Thompson

A Numerical Method for Computing Border Curves of Bi-parametric
Real Polynomial Systems and Applications . 156

Changbo Chen and Wenyuan Wu

The Complexity of Cylindrical Algebraic Decomposition with Respect
to Polynomial Degree . 172

Matthew England and James H. Davenport

http://dx.doi.org/10.1007/978-3-319-45641-6_1
http://dx.doi.org/10.1007/978-3-319-45641-6_1
http://dx.doi.org/10.1007/978-3-319-45641-6_2
http://dx.doi.org/10.1007/978-3-319-45641-6_3
http://dx.doi.org/10.1007/978-3-319-45641-6_4
http://dx.doi.org/10.1007/978-3-319-45641-6_4
http://dx.doi.org/10.1007/978-3-319-45641-6_5
http://dx.doi.org/10.1007/978-3-319-45641-6_6
http://dx.doi.org/10.1007/978-3-319-45641-6_6
http://dx.doi.org/10.1007/978-3-319-45641-6_7
http://dx.doi.org/10.1007/978-3-319-45641-6_8
http://dx.doi.org/10.1007/978-3-319-45641-6_9
http://dx.doi.org/10.1007/978-3-319-45641-6_10
http://dx.doi.org/10.1007/978-3-319-45641-6_11
http://dx.doi.org/10.1007/978-3-319-45641-6_11
http://dx.doi.org/10.1007/978-3-319-45641-6_12
http://dx.doi.org/10.1007/978-3-319-45641-6_12

Efficient Simplification Techniques for Special Real Quantifier Elimination
with Applications to the Synthesis of Optimal Numerical Algorithms 193

Mădălina Eraşcu

Symbolic-Numeric Algorithms for Solving BVPs for a System of ODEs
of the Second Order: Multichannel Scattering and Eigenvalue Problems. 212

A.A. Gusev, V.P. Gerdt, L.L. Hai, V.L. Derbov, S.I. Vinitsky,
and O. Chuluunbaatar

Symbolic Algorithm for Generating Irreducible Rotational-Vibrational
Bases of Point Groups . 228

A.A. Gusev, V.P. Gerdt, S.I. Vinitsky, V.L. Derbov, A. Góźdź, A. Pȩdrak,
A. Szulerecka, and A. Dobrowolski

A Symbolic Investigation of the Influence of Aerodynamic Forces
on Satellite Equilibria . 243

Sergey A. Gutnik and Vasily A. Sarychev

Computer Algebra in High-Energy Physics (Invited Talk). 255
Thomas Hahn

A Note on Dynamic Gröbner Bases Computation . 276
Amir Hashemi and Delaram Talaashrafi

Qualitative Analysis of the Reyman – Semenov–Tian–Shansky Integrable
Case of the Generalized Kowalewski Top . 289

Valentin Irtegov and Tatiana Titorenko

On Multiple Eigenvalues of a Matrix Dependent on a Parameter. 305
Elizabeth A. Kalinina

A Generalised Branch-and-Bound Approach and Its Application
in SAT Modulo Nonlinear Integer Arithmetic . 315

Gereon Kremer, Florian Corzilius, and Erika Ábrahám

Computing Characteristic Polynomials of Matrices
of Structured Polynomials . 336

Marshall Law and Michael Monagan

Computing Sparse Representations of Systems of Rational Fractions 349
François Lemaire and Alexandre Temperville

On the General Analytical Solution of the Kinematic Cosserat Equations 367
Dominik L. Michels, Dmitry A. Lyakhov, Vladimir P. Gerdt,
Zahid Hossain, Ingmar H. Riedel-Kruse, and Andreas G. Weber

Using Sparse Interpolation in Hensel Lifting. 381
Michael Monagan and Baris Tuncer

XII Contents

http://dx.doi.org/10.1007/978-3-319-45641-6_13
http://dx.doi.org/10.1007/978-3-319-45641-6_13
http://dx.doi.org/10.1007/978-3-319-45641-6_14
http://dx.doi.org/10.1007/978-3-319-45641-6_14
http://dx.doi.org/10.1007/978-3-319-45641-6_15
http://dx.doi.org/10.1007/978-3-319-45641-6_15
http://dx.doi.org/10.1007/978-3-319-45641-6_16
http://dx.doi.org/10.1007/978-3-319-45641-6_16
http://dx.doi.org/10.1007/978-3-319-45641-6_17
http://dx.doi.org/10.1007/978-3-319-45641-6_18
http://dx.doi.org/10.1007/978-3-319-45641-6_19
http://dx.doi.org/10.1007/978-3-319-45641-6_19
http://dx.doi.org/10.1007/978-3-319-45641-6_20
http://dx.doi.org/10.1007/978-3-319-45641-6_21
http://dx.doi.org/10.1007/978-3-319-45641-6_21
http://dx.doi.org/10.1007/978-3-319-45641-6_22
http://dx.doi.org/10.1007/978-3-319-45641-6_22
http://dx.doi.org/10.1007/978-3-319-45641-6_23
http://dx.doi.org/10.1007/978-3-319-45641-6_24
http://dx.doi.org/10.1007/978-3-319-45641-6_25

A Survey of Satisfiability Modulo Theory . 401
David Monniaux

Quadric Arrangement in Classifying Rigid Motions of a 3D Digital Image. . . 426
Kacper Pluta, Guillaume Moroz, Yukiko Kenmochi, and Pascal Romon

A Lower Bound for Computing Lagrange’s Real Root Bound 444
Swaroop N. Prabhakar and Vikram Sharma

Enhancing the Extended Hensel Construction by Using Gröbner Bases 457
Tateaki Sasaki and Daiju Inaba

Symbolic-Numerical Optimization and Realization of the Method of
Collocations and Least Residuals for Solving the Navier–Stokes Equations. . . . 473

Vasily P. Shapeev and Evgenii V. Vorozhtsov

Pruning Algorithms for Pretropisms of Newton Polytopes 489
Jeff Sommars and Jan Verschelde

Computational Aspects of a Bound of Lagrange . 504
Doru Ştefănescu

Author Index . 513

Contents XIII

http://dx.doi.org/10.1007/978-3-319-45641-6_26
http://dx.doi.org/10.1007/978-3-319-45641-6_27
http://dx.doi.org/10.1007/978-3-319-45641-6_28
http://dx.doi.org/10.1007/978-3-319-45641-6_29
http://dx.doi.org/10.1007/978-3-319-45641-6_30
http://dx.doi.org/10.1007/978-3-319-45641-6_30
http://dx.doi.org/10.1007/978-3-319-45641-6_31
http://dx.doi.org/10.1007/978-3-319-45641-6_32

On the Differential and Full Algebraic
Complexities of Operator Matrices

Transformations

Sergei A. Abramov(B)

Dorodnitsyn Computing Centre,
Federal Research Center Computer Science

and Control of Russian Academy of Sciences,
Vavilova, 40, Moscow 119333, Russia

sergeyabramov@mail.ru

Abstract. We consider n×n-matrices whose entries are scalar ordinary
differential operators of order � d over a constructive differential field K.
We show that to choose an algorithm to solve a problem related to such
matrices it is reasonable to take into account the complexity measured
as the number not only of arithmetic operations in K in the worst case
but of all operations including differentiation. The algorithms that have
the same complexity in terms of the number of arithmetic operations can
though differ in the context of the full algebraic complexity that includes
the necessary differentiations. Following this, we give a complexity analy-
sis, first, of finding a superset of the set of singular points for solutions
of a system of linear ordinary differential equations, and, second, of the
unimodularity testing for an operator matrix and of constructing the
inverse matrix if it exists.

1 Introduction

In this paper, we discuss some algorithms which use operations on elements of a
differential field. A complexity analysis of such algorithms is based sometimes on
considering the complexity as the number of arithmetic operations in K in the
worst case (the arithmetic complexity). This approach is not always productive.
First, the differentiations are not for free, and there is no reason to believe that,
e.g., a differentiation is much cheaper than an addition or a multiplication when
the differential field is Q(x) with the standard differentiation by x. Second, we
may face a situation where two algorithms have the same arithmetic complexity.
However, it may be that the complexities of those two algorithms are different,
if we compute the number of differentiations in the worst case (the differential
complexity). Therefore, consideration of not only arithmetic but also differen-
tial complexity seems reasonable. This is similar to the situation with sorting

S.A. Abramov—Supported in part by the Russian Foundation for Basic Research,
project no. 16-01-00174.

c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 1–14, 2016.
DOI: 10.1007/978-3-319-45641-6 1

2 S.A. Abramov

algorithms, when we consider separately the complexity as the number of com-
parisons and, resp., the number of swaps. (For example, in [19], an upper bound
on the number of differentiations of equations in a differential system sufficient
for testing its compatibility is established. Actually, such a bound is an estimate
for the complexity of algorithms for the compatibility testing.)

We will also consider the full complexity as the total number of all operations
in the basic differential field in the worst case, when differentiations are included.
This complexity will be considered in the context of algebraic complexity theory:
the complexity is measured as the number of operation in K in the worst case
without taking into account the possible growth of “sizes” of the elements com-
puted by algorithms (similarly, say, to the complexity Θ(nlog2 7) of Strassen’s
algorithm [27] for multiplying square n × n-matrices).

Below, we discuss two well known algorithms for transforming operator matri-
ces, i.e., square matrices whose entries are scalar differential operators with coef-
ficients in the basic differential field. Earlier, only arithmetic complexity of those
algorithms was investigated, and it was established that asymptotically, their
arithmetic complexities agree. However, we show that their differential complex-
ities are different. Note that the functionalities of the algorithms are also slightly
different.

In Sect. 4, we discuss two computational problems, for which the above-
mentioned algorithms for transforming operator matrices are useful. The first
problem is related to finding singular points of solutions of the corresponding
system of linear ordinary differential equations. The second one is the problem of
testing unimodularity (i.e., invertibility) of an operator matrix and of construct-
ing the inverse matrix if it exists. Invertibility testing is a classical mathematical
problem, whose specifics depend on a field or a ring containing the matrix entries.
The question of unimodularity of such operator matrices arises, in particular,
in connection with the existence problems for solutions of differential systems
[23]. The “binary” testing (with the output yes or no, without constructing the
inverse when it exists) can also be considered as a problem which is of inde-
pendent interest. A careful complexity analysis allows one to make an informed
choice of a transformation algorithm as an adequate auxiliary tool for solving
each of these problems.

2 Preliminaries

2.1 Operator Matrices

Let K be a differential field of characteristic 0 with a derivation ∂ =′. For a
non-negative integer n, the ring of n × n-matrices with entries belonging to a
ring R is denoted by Mat n(R). The ring of scalar differential operators with
coefficients in K is denoted by K[∂]; the order of an operator l ∈ K[∂] which
is denoted by ord l is equal to the degree of the corresponding non-commutative
polynomial from K[∂]. Any non-zero operator matrix L ∈ Mat n(K[∂]) can be
represented as a differential operator with matrix coefficients in Mat n(K):

L = Ad∂
d + Ad−1∂

d−1 + · · · + A0, (1)

On the Differential and Full Algebraic Complexities of Operator Matrices 3

where A0, A1, . . . , Ad ∈ Mat n(K), and the matrix Ad (the leading matrix of L)
is non-zero. The number d is the order of L; we write d = ordL. The order of a
row of L is the biggest order of operators from K[∂] belonging to the row. Thus,
the order of an operator matrix coincides with the biggest order of all rows of
the operator matrix. A matrix L ∈ Mat n(K[∂]) is of full rank if its rows are
linearly independent over K[∂].

An operator matrix L is invertible in Mat n(K[∂]) and M is its inverse, if
LM = ML = In where In is the identity n × n-matrix. We write L−1 for M .
Invertible operator matrices are also called unimodular matrices.

In [23], the following example of a unimodular matrix and the inverse is given
(K = Q(x), ∂ = d

dx):

(
x2/2 −(x/2)∂ + 1

−x∂ − 3 ∂2

)−1

=
(

∂2 (x/2)∂
x∂ + 1 x2/2

)
. (2)

2.2 The Dimension of the Solutions Space

Let the constant field Const(K) = {c ∈ K | ∂c = 0} of K be algebraically closed.
We denote by Λ a fixed universal Picard–Vessiot differential extension field of
K (see [25, Sect. 3.2]). This is a differential extension Λ of K with Const(Λ) =
Const(K) such that any differential system ∂y = Ay with A ∈ Mat n(K[∂]) has
a solution space of dimension n over the constants. For arbitrary operator matrix
L of the form (1), we denote by VL the linear space over Const(Λ) of solutions
of L (i.e., solutions of the equation L(y) = 0) belonging to Λn. Its dimension
will be denoted by dimVL.

Suppose that Const (K) is not algebraically closed. It is not difficult to see
that for any differential field K of characteristic 0 there exists a differential
extension whose constant field is algebraically closed. Indeed, this is the alge-
braic closure K̄ with the derivation obtained by extending the derivation of K
in the natural way. In this case, Const (K̄) = Const (K) (see [25, Exercises 1.5,
2:(c),(d)], [26, Sect. 3]). In this case, VL is the linear space over Const(K̄) of solu-
tions of L whose components belong to the the universal differential extension
of K̄.

We use the notation Mi,∗, 1 � i � n, for the 1 × n-matrix which is the ith
row of an n×n-matrix M . Let a full rank operator matrix L be of the form (1).
If 1 � i � n then define αi(L) as the maximal integer k, 1 � k � d, such that
(Ak)i,∗ is a nonzero row. So, αi(L) = ordLi,∗.

The matrix F ∈ Mat n(K) such that Fi,∗ = (Aαi(L))i,∗, i = 1, . . . , n, is the
frontal matrix of L.

The group of unimodular matrices from Mat n(K[∂]) will be denoted by Υn.
We formulate a theorem which is a consequence of statements proven in [2,3]

(the equivalence (iii) can also be proven using [23, Theorem III]).

Theorem 1. Let L ∈ Mat n(K[∂]) be of full rank. In this case

(i) If L′ is the result of differentiating of a row of L then dimVL′ = dimVL + 1.

4 S.A. Abramov

(ii) If the frontal matrix of L ∈ Mat n(K[∂]) is invertible then

dim VL =
n∑

i=1

αi(L).

(iii) L ∈ Υn ⇐⇒ VL = 0.

We suppose in the sequel that the field K is constructive, in particular that
there exists a procedure for recognizing whether a given element of K is equal
to 0.

2.3 Algorithm EG (EG-Eliminations)

Given L ∈ Mat n(K[∂]) of full rank, algorithm EG ([2,4–6]) constructs an
embracing operator L

� ∈ Mat n(K[∂]) such that

– ordL
�

= ordL,
– the leading matrix of L

�

is invertible,
– L

�

= QL for some Q ∈ Mat n(K[∂]), thus VL ⊆ VL� .

If L is not of full rank then this algorithm reports this.
This algorithm is based on alternation of reductions and differentiations.

First, explain how the reduction works. It is checked whether the rows of the
leading matrix are linearly dependent over K. If they are, coefficients of the
dependence p1, . . . , pn ∈ K are found. From the rows of L corresponding to
nonzero coefficients, we select one. Let it be the ith row. This row is replaced
by the linear combination of the rows of L with the coefficients p1, . . . , pn. As
a result, the ith row of the leading matrix vanishes. This operation is called
reduction.

Let the ith row of the leading matrix be zero. Then we differentiate the ith
row of the operator matrix, i.e., replace each entry Lij ∈ K[∂] by the composition
of ∂ and Lij , j = 1, . . . , n (this operation is called row differentiation).

A version of algorithm EG is as follows.

If the rows of the leading matrix of L are linearly dependent over K then the
reduction is performed. Suppose that this makes the ith row of the leading matrix
zero. Then, we perform the differentiation of the ith row of the operator matrix
and continue the process of alternated reductions and differentiations until the
leading matrix becomes nonsingular, and, therefore, we get the output matrix L

�

.
If at some moment a zero row appears in the operator matrix or the number

of row differentiations becomes bigger than nd then L is not of full rank.

2.4 Algorithm RR

This algorithm is based originally on the algorithm FF [11]. A simplified version
of FF is RowReduction [9]; for short, we will use the abbreviation RR in the
sequel.

For a given L ∈ Mat n(K[∂]) of full rank, algorithm RR constructs L̆ ∈
Mat n(K[∂]) such that

On the Differential and Full Algebraic Complexities of Operator Matrices 5

– ord L̆ � ordL,
– the frontal matrix of L̆ is invertible,
– L̆ = UL for some U ∈ Υn, thus VL = VL̆.

A comment on the matrix U will be given later in this section. A version of
algorithm RR is as follows.

Let the rows of the frontal matrix of L be linearly dependent over K and coef-
ficients of the dependence be p1, . . . , pn ∈ K. From the rows of L corresponding
to nonzero coefficients, we select one having the highest order (if there are few
such rows then take any of them). Let it be the ith row. Then we replace Li,∗ of
the operator matrix by

n∑
j=1

pj∂
αi(L)−αj(L)Lj,∗ (3)

and continue this process until the frontal matrix becomes nonsingular, and,
therefore, we get the output matrix L̆.

If at some moment, a zero row appears in the operator matrix then L is not
of full rank.

Remark 1. In addition, algorithm RR allows (if it is required) to construct such
operator matrices U1, . . . , Ul ∈ Mat m(K [∂]), that U1, . . . , Ul are unimodular and

L̆ = Ul . . . U1L. (4)

Each Uj is of the form

i :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

. . .

1

p1∂
αi−α1 . . . pi−1∂

αi−αi−1 pi pi+1∂
αi−αi+1 . . . pn∂αi−αn

1

. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

with 1 � i � n, p1, . . . , pn ∈ K, pi �= 0 (this matrix corresponds to the replace-
ment Li,∗ by (3)).

A matrix of the form (5) will be called elementary. Each an elementary matrix
is unimodular: to obtain the inverse, one can replace in (5) its ith row by(− p1

pi
∂αi−α1 . . . − pi−1

pi
∂αi−αi−1 1

pi
− pi+1

pi
∂αi−αi+1 . . . − pn

pi
∂αi−αn

)
.

The list
U1, . . . , Ul (6)

of the elementary matrices involved into (4) can be constructed in the course of
executing RR with no extra cost.

6 S.A. Abramov

3 Differential and Full Complexities of Algorithms
for Operator Matrices Transformation

3.1 Diversity of Algebraic Complexities

Besides the complexity as the number of arithmetic operations (the arithmetic
complexity) one can consider the number of differentiations in the worst case
(the differential complexity).

We will also discuss the full complexity as the total number of all opera-
tions (the differentiations are included) in the field K in the worst case. In [3,9],
when the complexity of algorithms EG and RR was considered, the differen-
tiations were ignored (the same concerning algorithm which we will denote by
ExtRR and will discuss in Sect. 3.3). We will denote such a kind of complexity by
Fxx(n, d), where xx is the name of an algorithm under consideration, for exam-
ple, xx ∈ {RR, EG}. It is worthy to note that if we ignore the differentiations
then the arithmetic complexity can be in wrong values, since differentiating a
scalar differential operator requires to execute also arithmetic operations (addi-
tions). Therefore, Fxx(n, d) is only a visible (apparent) complexity (F = “at
First sight”). We will consider also the following functions of n, d:

– Bxx(n, d) — the number of row differentiations in the worst case,
– T̃xx(n, d) — the number of differentiations of elements of K in the worst case

(the differential complexity),
– Txx(n, d) — the number of all operations in K in the worst case (the full

complexity).

Along with O-notation we use the Θ-notation which is very common in com-
plexity theory ([21]). Recall that f(n, d) = Θ(g(n, d)) is equivalent to

f(n, d) = O(g(n, d)) & g(n, d) = O(f(n, d)).

If f(n, d) = Θ(g(n, d)) then we call Θ(g(n, d)) a sharp bound for f(n, d).
If xx ∈ {RR, EG} then

T̃xx(n, d) = Θ(Bxx(n, d)nd) (7)

for the the differential complexity T̃ . We have also

Txx(n, d) = Θ(Fxx(n, d) + Bxx(n, d)nd) (8)

for the full complexity T , since the case of a big number of differentiations is
concurrently the case when the number of arithmetic operations is big and vice
versa.

Asymptotic relation similar to (8) holds for the arithmetic complexity since
each differentiation of a row of L uses in the worst case besides nd of differentia-
tions of elements of K also the same number of arithmetic operations (additions)
in K.

On the Differential and Full Algebraic Complexities of Operator Matrices 7

Searching for coefficients p1, . . . , pn of a linear dependence for rows of a matrix
from Mat n(K) is equivalent to solving a homogeneous system of linear algebraic
equations with coefficients in K. The complexity of solving such a system is
Θ(nω), where ω is the matrix multiplication exponent, 2 < ω � 3. We have
FEG(n, d) = Θ(nω+1d + n3d2), BEG(n, d) = Θ(nd).

Proposition 1. The differential and the full complexity of EG allow the asymp-
totic estimates

T̃EG(n, d) = Θ(n2d2), TEG(n, d) = Θ(nω+1d + n3d2). (9)

Proof. We have mentioned that by Theorem 1(i, ii) each differentiation of a row
increases the dimension of the solutions space of an operator matrix by 1, and
in our case that dimension does not exceed nd. This implies the first estimate
from (9).

Each reduction step uses in the worst case Θ(nω+n2d) arithmetic operations.
The number of such steps is nd in the worst case. Together with the first estimate
from (9) this gives the second estimate. (The differentiation operations do not
affect significantly the full complexity of EG.)

Proposition 2. The differential and the full complexity of RR admit the asymp-
totic estimates

T̃RR(n, d) = Θ(n3d3), TRR(n, d) = Θ(nω+1d + n3d3). (10)

Proof. We have FRR(n, d) = Θ(nω+1d + n3d2) and BRR(n, d) = Θ(n2d2). This
implies the claim.

We see that BRR(n, d) grows faster than BEG(n, d). In the case of RR, the
differentiating operations increase the full complexity.

3.2 Algorithms �EG and �RR

Let the ith row r of the frontal matrix of L ∈ Mat n(K) have the form

(0, . . . , 0︸ ︷︷ ︸
k−1

, a, . . . , b),

1 � k � n, a �= 0. Then k is the pin index of the ith row of L.
If all rows of L have distinct pin indices then the frontal matrix of L is

nonsingular. Suppose that two rows r1, r2 of L have the same pin index k. Set
d1 = ord r1, d2 = ord r2. Let d1 � d2. There exists a v in K such that the
difference

r2 − v∂ d2−d1r1 (11)

either has the pin index which is bigger than k or has the order which is less
than d2. This can be used1 instead of a search for a linear dependency of the
1 For the difference case, this was used in first versions [1] of algorithm EG. In a

discussion related to the differential case, A. Storjohann drew the author’s attention
to the fact that the complexity of this approach is less than of one which uses solving
of linear algebraic systems (see also [24]).

8 S.A. Abramov

rows of the frontal matrix of L (in the case of EG, on key moments, the leading
and the frontal matrices coincide, and d2 − d1 = 0 in (11)). If L is of full rank
then the frontal matrix after the transformation is in triangular form.

This leads to modified versions of EG and RR. We will denote them as �EG
and, resp., �RR.

Proposition 3. The differential and the full complexities of �EG and �RR
admit the asymptotic estimates

T̃�EG(n, d) = Θ(n2d2), T�EG(n, d) = Θ(n3d2) (12)

and
T̃�RR(n, d) = Θ(n3d3), T�RR(n, d) = Θ(n3d3). (13)

Proof. The replacement of r2 by (11) is a unimodular operation on L. This
operation has the complexity Θ(nd). A row can have its pin index increased
at most n times before the order of the row is decreased. Thus, Fxx(n, d) =
Θ(nd · n · nd) = Θ(n3d2) for xx ∈ {�EG,�RR}. Concerning the differential
complexity, for �EG and, resp. �RR it is the same as for EG and RR.

We emphasize that the difference between two estimates T�RR = Θ(n3d3)
and T�EG(n, d) = Θ(n3d2) is due to the differential component: if we ignored
the operation of differentiation, then we would have the estimate Θ(n3d2) for
both complexities.

3.3 Extended RR: Computing U Along with L̆

To compute along with L̆ the multiplier U such that L̆ = UL, one can apply the
following algorithm (we call it ExtRR) to L:

Apply RR to L (this gives L̆), and repeat in parallel all the operations for the
matrix which is originally equal to the identity matrix In (this gives U).

The algorithm was presented in [9, Sect. 4]. Evidently, BExtRR(n, d) =
2BRR(n, d). The following proposition is useful for estimating FExtRR(n, d),
T̃ExtRR(n, d) and TExtRR(n, d):

Proposition 4. Let algorithm RR compute step-by-step the unimodular matri-
ces of the form (5) for L ∈ Mat n(K[∂]), ordL = d (see Remark 1). Then
ord (Uk . . . U1) = O(nd) for all k = 1, . . . , l.

Proof. It follows from [9, Proposition 1].

Proposition 4 and estimates (10) imply the estimates FExtRR(n, d) =
O(nω+1d + n4d2) = O(n4d2), and

T̃ExtRR(n, d) = O(n4d3), TExtRR(n, d) = O(n4d2 + n4d3) = O(n4d3). (14)

These estimates can be sharpened.

On the Differential and Full Algebraic Complexities of Operator Matrices 9

Proposition 5. Let L be unimodular. Then

ord L−1 � (n − 1)d (15)

and (15) is the tight bound: for all integer n, d such that d � 0, n � 2 there
exists L ∈ Mat n(K[∂]) such that ord L−1 = (n − 1)d.

Proof. The bound (15) follows from some estimates related to computing the
Hermite form given in [18, Theorem 5.5]. (The Hermite form of a unimodular
matrix is the identity, the transformation matrix U is the inverse.) Let us prove
that this bound is tight. Indeed, the n × n operator matrix of order d⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ∂d 0 0 0 0

0 1 ∂d 0 0 0

. . .

. . .

. . .

0 0 0 0 1 ∂d

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

has the inverse of order (n − 1)d:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −∂d ∂2d −∂3d . . . (−1)n−2∂(n−2)d (−1)n−1∂(n−1)d

0 1 −∂d ∂2d . . . (−1)n−3∂(n−3)d (−1)n−2∂(n−2)d

. . .

. . .

. . .

0 0 0 0 . . . 1 −∂d

0 0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

If algorithm ExtRR is applied to matrix (16) then this yields two matrices U
and In where U is equal to (17). Note in addition to (14) that applying RR to
matrix (16) yields U1, . . . , Un−1 (see (4), where l = n − 1 in this case) such that
ord (Uk . . . U1) = kd, k = 1, . . . , n − 1. Since

∑n−1
k=1 k3d3 = Θ(n4d3), we obtain

T̃ExtRR(n, d) = Θ(n4d3), TExtRR(n, d) = Θ(n4d2 + n3d3). (18)

Remark 2. As a consequence of (15) we obtain that if L ∈ Mat 2(K[∂]) is
unimodular then ordL−1 = ordL. (Miyake’s example (2) illustrates this.)

Note finally that to show the correctness of using �RR instead of RR for
ExtRR we have to prove an analog of the statement of Proposition 4. It is not
clear whether such a statement holds. In addition, the replacement of RR by
�RR does not improve estimate (18) due to the term n4d3, which replaces n3d3

in T�RR(n, d) since the number of elements in a row is now (n − 1)nd.

10 S.A. Abramov

3.4 When Differentiated Rows are Stored

One can store all the results of row differentiations. In this case, some upper
estimates for the total number of differentiations can easily be obtained.

Proposition 6. The number of row differentiations without repetitions (when
the result of each differentiation is stored, i.e., when we collect all such results)
executed by algorithms RR and �RR is O(nd2) and, resp., O(n2d2) in the
worst case; as a consequence, the number of differentiations of elements of K is
O(n2d3) and, resp., O(n3d3).

Proof. Let a row r be changed in the course of RR or �RR performance. Let
the order of r after the changing be d0 < d. In this case, one can compute and
store d − d0 rows

∂r, ∂(∂r), . . . , ∂(∂ . . . (∂r) . . .)︸ ︷︷ ︸
d−d0 differentiations

.

After this, when a row of the form ∂mr, m � d − d0 is needed for following
eliminations, pick the needed row from the collection of the stored rows. Thus,
we get modified versions of RR and �RR whose numbers of row differentiations
are not less than the analogous numbers for the original versions. It is easy to
see that for the modified version of RR, this number is not bigger than nd2, and
not bigger than n2d2 for �RR. The claim follows.

However, the estimates O(n2d3) and O(n3d3) for the number of differen-
tiations do not allow to decrease the exponent of d in (10), (13). Based on
Proposition 6, we cannot draw the conclusion that the storage of the results
of all the differentiations decreases significantly the full complexity of RR and
�RR. Similarly, using the upper bound O(n3d3) we cannot decrease the expo-
nent of d in (18). But the space complexity will go up when we store all the
results of differentiating.

Remark 3. It is not clear whether, say, the upper bound O(nd2) for the number
of row differentiations by RR is sharp. If for this number, the estimate O(nd)
holds then we would have the estimate O(n4d2) for the full complexity of the
version of ExtRR such that if a row r is differentiated m times then the rows
∂r, . . . , ∂mr are stored for potential later uses.

4 Two Computational Problems

4.1 Singularities of Systems

If, for example, K = Q(x), ∂ = d
dx and we are interested in singular points

of solutions of a system L(y) = 0, L ∈ Mat n(K), ordL = d, then by each of
algorithms EG, RR, �EG, DRR we can find a polynomial whose roots form
a finite superset of the set of such points [6–8]. The basic idea is that if the
leading matrix of L is invertible in Mat n(K) then we can take the (square-free
factorized) determinant of the leading matrix.

On the Differential and Full Algebraic Complexities of Operator Matrices 11

Similarly, we can use the frontal matrix, if it is invertible. The fact is that
if α1, . . . , αn are the row orders of L̆, d = ord L̆ = max{α1, . . . , αn} and D =
diag(∂d−α1 , . . . , ∂d−αn) then the leading matrix of DL̆ coincides with the frontal
matrix of L̆ (we do not need to compute DL̆).

Therefore, for example, algorithms �EG, �RR can be used to compute the
desirable polynomial. The distinction between complexities (12) and (13) shows
that at least when n and d are large enough algorithm �EG is probably better.
The full complexity (in the meaning of this paper) is Θ(n3d2).

4.2 The Unimodularity Testing

Applying algorithm ExtRR to L we transform L into L̆. Theorem 1(ii, iii) implies
that L is unimodular if and only if L̆ is invertible in Mat m(K). In this case,
(L̆)−1UL = In, where U is unimodular. Therefore, (L̆)−1U is the inverse for L.

The matrices U and L̆ can be constructed by ExtRR. By (14) the full com-
plexity of the computation of the inverse is

Θ(n4d3). (19)

The multiplication of L̆−1 and U does not change this estimate (recall that
ord L̆−1 � (n − 1)d).

In the case when we want only to test whether L is unimodular without
constructing L−1, then we can use �EG; as we have mentioned, L is unimodular
if and only if the number of differentiations has to be exactly equal to nd, and
the leading matrix is invertible in K after those differentiations. Such testing
has the complexity

Θ(n3d2). (20)

The formulated computational problems related to unimodularity can be
solved by different algorithms. For example, algorithms to construct the Jacobson
and Hermite forms of a given operator matrix can be used. A polynomial-time
deterministic algorithm for constructing the Jacobson form of L was proposed
in [22]. Its complexity is considered in [22] as a function of three variables, and
two of them are our n, d (in [22], another notation is used). The value of the
third variable is in the worst case nd, and for the complexity as a function of
the variables n, d one can derive the estimate Θ(n9d9). As we have mentioned
in the proof of Proposition 5, the Hermite form of a unimodular matrix is the
identity, the transformation matrix U is the inverse. The complexity estimate
for the algorithm given in [18, Theorem 5.5] is O(n7d3 log(nd)) (in our notation).
It looks like this estimate is tight. (Of course, the algorithms from [18,22] solve
more general problems, and the algorithm given above in this section has some
advantages only for recognizing invertibility of an operator matrix and comput-
ing the inverse matrix.)

The author is unaware of the algorithms which solve the testing unimodular-
ity problem with a complexity which is less than (20). Search in the literature
gave no positive result, but of course it is possible that such algorithms exist.
The author makes no attempt to offer a champion algorithm for solving this

12 S.A. Abramov

problem. Perhaps, for example, using the ideas of the fast matrix multiplication
over a field [16,27,28], as well as the fast multiplication algorithm for scalar
differential operators [12,13,20], one can propose an algorithm for fast multipli-
cation operator matrices and then get out of it the appropriate algorithm for
solving the unimodularity testing problem.

5 Conclusions

The author’s goal is to show that to choose an algorithm to solve a problem
over a differential field K it is reasonable to take into account the complexity
measured as not only the number of arithmetic operation in K but all opera-
tions including the operation of differentiation. The algorithms that have the
equivalent complexity as the number of arithmetic operations in the worst case
can differ in the context of the full algebraic complexity that includes needed
differentiations.

It is worthy to note that some versions of algorithms EG and RR are used
quite successfully, for example, for finding singular points of differential systems,
and we mentioned this in Sect. 4.1. We can expect that by these algorithms, the
unimodularity testing will be performed in practice in a reasonable time.

From the current work, new questions arise.
First, the question formulated in Sect. 3.4: suppose that we store all the

results of differentiations; does it allow to decrease the complexities (13), (14),
(19) (it would be desirable to get d2 instead of d3)?

Second. It is unclear whether there exists an algorithm for unimodularity
testing whose complexity is O(nαdβ), where α, β are real numbers and α < 3.
For matrices whose entries are commutative polynomials from K[x], there is an
algorithm [17] for constructing the inverse matrix with complexity O(n3ρ), where
ρ is the maximal degree of entries of given matrices (strictly speaking, algorithm
from [17] is for the case of “generic matrix inversion” only). It is unclear whether
the problem of constructing the inverse operator matrix is reducible to the prob-
lem of the operator matrix multiplication, similarly to the case when entries of
matrices belong to a field [15, Sect. 16.4]. Going back to matrix with polynomial
entries, note that there exists a matrix multiplication algorithm [14] with com-
plexity O(nωρ f(log n log ρ)), where f is a polynomial. However, an algorithm
with a similar complexity for the matrix inversion does not probably exists. It
looks like that the problem of constructing the inverse matrix is not reducible to
the problem of the operator matrix multiplication neither for polynomial matri-
ces nor for operator matrices.

Third, much recent work has focused on properly dealing with the growth in
the size of coefficients from K, for example, when K = Q(x) ([11,18] etc.). It
would be valuable to investigate the bit complexity of the unimodularity testing
algorithms. Another way is to consider the complexity as a function of three
variables: n, d and ρ, where ρ is such that all the polynomials involved into L as
numerators and denominators of coefficients of entries of L are of degree which
is ρ at most. The complexity itself is then the number of operations in Q in the

On the Differential and Full Algebraic Complexities of Operator Matrices 13

worst case. The algorithms should allow control over coefficients growth. It is
reasonable to continue to investigate this line of enquiry.

Acknowledgments. The author is thankful to M. Barkatou and A. Storjohann for
interesting discussions, and to anonymous referees for useful comments.

References

1. Abramov, S.: EG-eliminations. J. Differ. Equ. Appl. 5, 393–433 (1999)
2. Abramov, S., Barkatou, M.: On the dimension of solution spaces of full rank linear

differential systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V.
(eds.) CASC 2013. LNCS, vol. 8136, pp. 1–9. Springer, Heidelberg (2013)

3. Abramov, S., Barkatou, M.: On solution spaces of products of linear differential or
difference operators. ACM Comm. Comput. Algebra 4, 155–165 (2014)

4. Abramov, S., Bronstein, M.: On solutions of linear functional systems. In: ISSAC
2001 Proceedings, pp. 1–6 (2001)

5. Abramov, S., Bronstein, M.: Linear algebra for skew-polynomial matrices. Rapport
de Recherche INRIA RR-4420, March 2002. http://www.inria.fr/RRRT/RR-4420.
html

6. Abramov, S., Khmelnov, D.: On singular points of solutions of linear differential
systems with polynomial coefficients. J. Math. Sci. 185(3), 347–359 (2012). (Trans-
lated from: Fundamentalnaya i prikladnaya matematika 17(1), 3–21 (2011/2012))

7. Abramov, S., Khmelnov, D., Ryabenko, A.: Procedures for searching local solutions
of linear differential systems with infinite power series in the role of coefficients.
Program. Comput. Softw. 42(2), 55–64 (2016)

8. Barkatou, M., Cluzeau, T., El Bacha, C.: Simple form of higher-order linear dif-
ferential systems and their application in computing regular solutions. J. Symb.
Comput. 46(6), 633–658 (2011)

9. Barkatou, M., El Bacha, C., Labahn, G., Pflügel, E.: On simultaneous row and
column reduction of higher-order linear differential systems. J. Symb. Comput.
49(1), 45–64 (2013)

10. Beckermann, B., Labahn, G.: Fraction-free computation of matrix rational inter-
polants and matrix GCDs. SIAM J. Matrix Anal. Appl. 77(1), 114–144 (2000)

11. Beckermann, B., Cheng, H., Labahn, G.: Fraction-free row reduction of matrices
of Ore polynomials. J. Symb. Comput. 41, 513–543 (2006)

12. Benoit, A., Bostan, A., van der Hoeven, J.: Quasi-optimal multiplication of linear
differential operators. In: FOCS 2012 Proceedings, pp. 524–530 (2012)

13. Bostan, A., Chyzak, F., Le Roix, N.: Products of ordinary differential operators
by evaluating and interpolation. In: ISSAC 2008 Proceedings, pp. 23–30 (2008)

14. Bostan, A., Schost, E.: Polynomial evaluation and interpolation on special sets of
points. J. Complex. 21(4), 420–446 (2005)

15. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory.
Grundlehren der mathematischen Wissenschaften, vol. 315. Springer, Heidelberg
(1997)

16. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
J. Symb. Comput. 9(3), 251–280 (1990)

17. Jeannerod, C.-P., Villard, G.: Essentially optimal computation of the inverse of
generic polynomial matrices. J. Complex. 21(1), 72–86 (2005)

http://www.inria.fr/RRRT/RR-4420.html
http://www.inria.fr/RRRT/RR-4420.html

14 S.A. Abramov

18. Giesbrecht, M., Sub Kim, M.: Computation of the Hermite form of a matrix of Ore
polynomials. J. Algebra 376, 341–362 (2013)

19. Gustavson, R., Kondratieva, M., Ovchinnikov, A.: New effective differential Null-
stellensatz. Adv. Math. 290, 1138–1158 (2016)

20. van der Hoeven, J.: FFT-like multiplication of linear differential operators. J. Symb.
Comput. 33, 123–127 (2002)

21. Knuth, D.E.: Big omicron and big omega and big theta. ACM SIGACT News 8(2),
18–23 (1976)

22. Middeke, J.: A polynomial-time algorithm for the Jacobson form for matrices of
differential operators. Technical report No. 08–13 in RISC Report Series (2008)

23. Miyake, M.: Remarks on the formulation of the Cauchy problem for general system
of ordinary differential equations. Tôhoku Math. J. 32(2), 79–89 (1980)

24. Mulders, T., Storjohann, A.: On lattice reduction for polynomial matrices. J. Symb.
Comput. 37(4), 485–510 (2004)

25. van der Put, M., Singer, M.F.: Galois Theory of Linear Differential Equations.
Grundlehren der mathematischen Wissenschaften, vol. 328. Springer, Heidelberg
(2003)

26. Rosenlicht, M.: Integration in finite terms. Amer. Math. Mon. 79(9), 963–972
(1972)

27. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356
(1969)

28. Vassilevska Williams, V.: Multiplying matrices faster than Coppersmith-Winograd.
In: STOC 2012 Proceedings, pp. 887–898 (2012)

Resolving Decompositions for Polynomial
Modules

Mario Albert(B) and Werner M. Seiler

Institut für Mathematik, Universität Kassel, 34132 Kassel, Germany
{albert,seiler}@mathematik.uni-kassel.de

Abstract. We introduce the novel concept of a resolving decomposition
of a polynomial module as a combinatorial structure that allows for the
effective construction of free resolutions. It provides a unifying framework
for recent results of the authors for different types of bases.

1 Introduction

The determination of free resolutions for polynomial modules is a fundamen-
tal task in computational commutative algebra and algebraic geometry. Free
resolutions are needed for derived functors like Ext and Tor and many impor-
tant homological invariants like the projective dimension or the Castelnuovo-
Mumford regularity are defined via the minimal resolution. Furthermore, the
Betti numbers contain much geometric and topological information.

Unfortunately, it is rather expensive to compute a resolution. As a rough rule
of thumb one may say that computing a resolution of length � corresponds to
computing � Gröbner bases. In many cases one needs only partial information
about the resolution like the Betti numbers simply measuring its size. However,
all classical algorithms require to determine always a full resolution.

In [1] we provided a novel approach by combining the theory of Pommaret
bases and algebraic discrete Morse theory (together with an implementation in
the CoCoALib). It allows for the first time to determine Betti numbers—even
individual ones—without computing a full resolution and thus is for most prob-
lems much faster than classical approaches (see [1,3] for detailed benchmarks).
Furthermore, it scales much better and can be easily parallelised.

Because of these good properties it is of great interest to generalise this app-
roach to other situations. In [3], we extended it to Janet bases. While the proofs
remained essentially the same, the use of another involutive division required the
adaption of a number of technical points. Currently we are working on extensions
to some alternative bases which do not necessarily come from an involutive divi-
sion but provide similar combinatorial decompositions. Again this would require
a number of minor modifications of the same proofs. In a different line of work [2],
we introduced recently modules marked on quasi-stable submodules. Again one
obtains combinatorial decompositions based on multiplicative variables defined
by the Pommaret division, but this time no term order is used. Nevertheless, we
could show that many results of [1] remain true.
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 15–29, 2016.
DOI: 10.1007/978-3-319-45641-6 2

16 M. Albert and W.M. Seiler

The main objective of the current paper is the development of an axiomatic
framework that unifies all the above works. We introduce the novel concept of a
resolving decomposition which is defined via several direct sum decompositions.
It implies in particular the existence of standard representations and normal
forms. We then show that such a decomposition allows for the explicit determi-
nation of a free resolution and of Betti numbers.

The point of such a unification is not that it leads to any new algorithms.
Indeed, we will not present a general algorithm for the construction of resolving
decomposition. Instead one should see our results as a “meta-machinery” which
given any concept of a basis that induces a resolving decomposition delivers
automatically an effective syzygy theory for this kind of basis. For the concrete
case of the resolving decompositions induced by Janet or Pommaret bases, an
implementation of this effective theory is described (together with benchmarks)
in [1,3]. For other types of underlying bases only fairly trivial modifications of
this implementation would be required.

2 Resolving Decompositions

Let k be an algebraic closed field and P = k[x] with x = (x0, . . . , xn). Let
Pm
d =

⊕m
i=1 P(−di)ei be a finitely generated free P-module with grading

d = (d1, . . . , dm) and free generators e1, . . . , em. A module U ⊆ Pm
d is called

monomial module if it is of the form ⊕m
k=1J

(k)ek with J (k) is a monomial ideal
in P. A module term (with index i) is a term of the form xμei. For a monomial
ideal J ⊆ P we define N (J) ⊆ T as the set of terms in T not belonging to J .
For a monomial module U we define N (U) =

⋃m
k=1 N (J (k))ek. For an element

f ∈ Pm
d we define supp(f) as the set of module terms appearing in f with a

non-zero coefficient: f =
∑

xαeiα ∈supp(f) cαxαeiα
. If B is a set of homogeneous

elements of degree s in Pm
d , we write 〈B〉 for the k-vector space generated by B

in (Pm
d)s. For a module U ⊆ Pm

d we denote by pd(U) the projective dimension
and by reg(U) the (Castelnuovo-Mumford) regularity of U .

Let U ⊆ Pm
d be a finitely generated graded submodule and B = {h1, . . . ,hs}

a finite homogeneous generating set of U . For every hi ∈ B we choose a term
xμieki

∈ supphi denoted by hmhi and call it head module term. In addition to
that we define the head module terms of B, hm(B) := {hm(h) | h ∈ B} and the
head module of U , hm(U) = 〈hm B〉. Note that hm(U) depends on the choice of
B and on the choice of the head module terms in B.

Definition 1. We define a resolving decomposition of the submodule U as a
quadruple (B,hm(B),XB,≺B) with the following five properties:

(i) U = 〈B〉.
(ii) Let h ∈ B be an arbitrary generator. Then, for every module term xμek ∈

supp(h) \ {hm(h)}, we have xμek /∈ hm(U).
(iii) We assign a set of multiplicative variables XB(h) ⊆ x to every head module

term hm(h) with h ∈ B such that we have direct sum decompositions of both

Resolving Decompositions 17

the head module

hm(U) =
⊕
h∈B

k[XB(h)] · hm(h) (1)

and of the module itself

U =
⊕
h∈B

k[XB(h)] · h . (2)

(iv) (Pm
d)r = Ur ⊕ 〈N (hm(U))r〉 for all r ≥ 0.

(v) Let {f1, . . . , fs} denote the standard basis of the free module Ps. Given an
arbitrary term xδ ∈ T and an arbitrary generator hα ∈ B, we find for
every term xεei ∈ supp(xδhα) ∩ hm(U) a unique hβ ∈ hm(B) such that
xεei = xδ′

hm(hβ) with xδ′ ∈ k[XB(hβ)] by (iii). Then the term order ≺B
on Ps must satisfy xδfα
B xδ′

fβ.

In the sequel, we will always assume that (B,hm(B),XB,≺B) is a resolving
decomposition of the finitely generated module U = 〈B〉 ⊆ Pm

d . In addition to
the multiplicative variables, we define for h ∈ B the non-multiplicative variables
as XB(h) = {x0, . . . , xn} \ XB(h).

Remark 1. Resolving decompositions may be considered as a refinement of Stan-
ley decompositions. Indeed, (1) gives us a Stanley decomposition of the head
module of U and (2) of U itself. Consequently, it is easy to compute the Hilbert
functions of hm(U) and of U , respectively. Because of the identical structure
of the two decompositions, these two Hilbert functions are trivially the same
(which may be considered as a term order free version of Macaulay’s theorem in
the theory of Gröbner bases). In addition, (iii) gives us for every f ∈ U a unique
standard representation

f =
s∑

α=1

Pαhα

with Pα ∈ k[XB(hα)]. Condition (iv) implies the existence of unique normal
forms for all homogeneous elements f ∈ Pm. Due to this condition, we find
unique Pα ∈ k[XB(hα)] for every hα ∈ B such that f ′ = f−∑s

α=1 Pαhα and f ′ ∈
〈N (hm(U))〉 . Another important consequence of the definition of a resolving
decomposition is that (1) implies that every generators in B has a different head
module term.

While for the purposes of this work the mere existence of normal forms is
sufficient, we note that (v) implies that they can be effectively computed. The
choice of head terms and multiplicative variables in a resolving decomposition
induces a natural reduction relation. If f ∈ Pm

d contains a term xεei ∈ hm (U),
then there exists a unique generator h ∈ hm(B) such that xεei = xδ hm(h) with
xδ ∈ k[XB(h)] and we have a possible reduction f B−→ f − cxδh for a suitably
chosen coefficient c ∈ k.

18 M. Albert and W.M. Seiler

Lemma 1. For any resolving decomposition (B,hm(B),XB,≺B) the transitive
closure B−→∗ of B−→ is Noetherian and confluent.

Proof. It is sufficient to prove that for every term xγek in hm(U), there is a
unique g ∈ Pm

d such that xγek
B−→∗ g and g ∈ 〈N (hm(U))〉.

Since xγek ∈ hm(U), there exists a unique xδhα ∈ U such that xδ hm(hα) =
xγek and xδ ∈ XB(hα). Hence, xγek

B−→ xγek − cxδhα for a suitably chosen
coefficient c ∈ k. Denoting again the standard basis of Ps by {f1, . . . , fs}, we
associated the term xδfα with this reduction step. If we could proceed infinitely
with further reduction steps, then the reduction process would induce a sequence
of terms in Ps containing an infinite chain which, by condition (v) of Definition 1,
is strictly descending for ≺B. But this is impossible, since ≺B is a well-ordering.
Hence B−→∗ is Noetherian. Confluence is immediate by the uniqueness of the
element that is used at each reduction step. �

Furthermore, every resolving decomposition (B,hm(B),XB,≺B) induces nat-
urally a directed graph. Its vertices are given by the elements in B. If xj ∈ XB(h)
for some h ∈ B, then, by definition, B contains a unique generator h′ such that
xj hmh = xμ hmh′ with xμ ∈ k[XB(h′)]. In this case we include a directed edge
from h to h′. We call the thus defined graph the B-graph.

Lemma 2. The B-graph of a resolving decomposition (B,hm(B),XB,≺B) is
always acyclic.

Proof. Assume the B-graph was cyclic. Then we find generators hk1 , . . . ,hkt
∈ B,

which are pairwise distinct, variables xi1 , . . . , xit
such that xij

∈ XB(hm(hkj
))

for all j ∈ {1, . . . , t} and terms xμ1 , . . . , xμt such that xμj ∈ k[XB(hm(hkj
))] for

all j ∈ {1, . . . , t} satisfying:

xi1 hm(hk1) = xμ2 hm(hk2),
xi2 hm(hk2) = xμ3 hm(hk3),

...
xit

hm(hkt
) = xμ1 hm(hk1).

Multiplying with some variables, we obtain the following chain of equations:

xi1 · · · xit
hm(hk1) = xi2 · · · xit

xμ2 hm(hk2)
= xi3 · · · xit

xμ2xμ3 hm(hk3)
...
= xit

xμ2 · · · xμt hm(hkt
)

= xμ1 · · · xμt hm(hk1)

which implies that xi1 · · · xit
= xμ1 · · · xμt . Furthermore, condition (v) of Defin-

ition 1 implies in Ps the following chain:

xi1 · · · xit
fk1
B xi2 · · · xit

xμ2fk2
B · · ·
B xμ1 · · · xμtfk1 .

Resolving Decompositions 19

Because of xi1 · · · xit
= xμ1 · · · xμt , we must have throughout equality entailing

that k1 = · · · = kt which contradicts our assumptions. �
Example 1. Let ≺ be a term order on the free module Pm

d , L a continuous
involutive division ([7, Definition 2.1]) and B a finite, L-involutively autoreduced
set ([7, Definition 5.8]) which is a strong L-involutive basis ([7, Definition 5.1]) of
the submodule U ⊆ Pm

d it generates. Then B induces a resolving decomposition
of U with hm(B) = {lt(h1), . . . , lt(hs)}. The multiplicative variables XB are
assigned according to the involutive division L and we take as ≺B the Schreyer
order induced by B and ≺. Condition (i) of Definition 1 follows from [7, Corollary
5.5], condition (ii) is a consequence of the fact that B is involutively autoreduced
and condition (iii) follows from [7, Lemma 5.12]. According to [7, Proposition
5.13] every f ∈ Pm

d possesses a unique normal form. In Remark 1 we have seen
that this is equivalent to the fourth condition in our definition. Finally, (v) is
satisfied because of [8, Lemma 5.5] and the existence of an L-ordering. Hence an
autoreduced involutive basis always induces a resolving decomposition.

Example 2. Another example for resolving decompositions are the marked mod-
ules introduced in [2]. Marked modules are only defined for quasi-stable modules.
The construction of a marked basis is a bit different from the usual construc-
tion of Gröbner bases. We start with a quasi-stable monomial module V ⊆ Pm

d

which is generated by a monomial Pommaret basis H = {xμ1ek1 , . . . x
μseks

}.
Then we define a marked basis B = {h1, . . . ,hs} such that hm(hi) = xμieki

and supp(hi − xμieki
) ⊆ 〈N (V)deg(xμieki

)〉 . Furthermore it is required that
N (V)r induces a k-basis of (Pm

d)r/〈B〉r for all degrees r, which implies that
(Pm

d)r = 〈B〉r ⊕〈N (V)r〉 for all r. The multiplicative variables XB are assigned
according to the multiplicative variables of the Pommaret basis H (for a detailed
treatment see section two in [2]). We see immediately that the conditions (i), (ii)
and (iv) are satisfied. The first part of condition (iii) follows from the fact that
H = hm(B) is a Pommaret basis and the second part follows from the uniqueness
of the reduction process [2, Lemma 5.1]. Finally, we take for ≺B the TOP lift of
the lexicographic order; condition (v) then follows from [2, Lemma 3.6].

Example 3. Even in the case of a monomial module, not every Stanley decom-
position can be extended to a resolving decomposition. For m = 1, n = 4 and
the standard grading, we take as U the homogeneous maximal ideal in P. A
Stanley decomposition of U is then given by the set

B = {h1 = x0,h2 = x1,h3 = x2,h4 = x3,h5 = x4,h6 = x0x1x3,h7 = x0x2x3,

h8 = x0x2x4,h9 = x1x2x4,h10 = x1x3x4,h11 = x0x1x2x3x4}

20 M. Albert and W.M. Seiler

with multiplicative variables

XB(h1) = {x0, x1, x2}, XB(h2) = {x1, x2, x3}
XB(h3) = {x2, x3, x4}, XB(h4) = {x0, x3, x4}
XB(h5) = {x0, x1, x4}, XB(h6) = {x0, x1, x2, x3}
XB(h7) = {x0, x2, x3, x4}, XB(h8) = {x0, x1, x2, x4}
XB(h9) = {x1, x2, x3, x4}, XB(h10) = {x0, x1, x3, x4}

XB(h11) = {x0, x1, x2, x3, x4} .

It is not possible to find a term order ≺B which makes this Stanley decomposition
to a resolving one, as the corresponding B-graph contains a cycle (note that here
obviously hm(hi) = hi):

x3h1 = x0h4 , x1h4 = x3h2 , x0h2 = x1h1 .

3 Syzygy Resolutions via Resolving Decompositions

Let Pm
d0

be a graded free polynomial module with standard basis {e(0)1 , . . . , e(0)m }
and grading d0 = (d(0)1 , . . . d

(0)
m). Furthermore, let (B(0),hm(B(0)),XB(0) ,≺B(0))

be a resolving decomposition of a finitely generated graded module U ⊆ Pm
d0

with
B(0) = {h1, . . . ,hs1}. Our first goal is now to construct a resolving decomposition
of the syzygy module Syz(B(0)) ⊆ Ps1 which may be considered as a refined
version of the well-known Schreyer theorem for Gröbner bases.

For every non-multiplicative variable xk of a generator hα, we have a standard
representation xkhα =

∑s1
β=1 P

(α;k)
β hβ and thus a syzygy

Sα;k = xke(1)α −
s1∑

β=1

P
(α;k)
β e(1)β (3)

where {e(1)1 , . . . , e(1)s1 } denotes the standard basis of the free module Ps1
d1

with
grading d1 = (deg(h1), . . . ,deg(hs)). Let B(1) be the set of all these syzygies.

Lemma 3. Let S =
∑s1

l=1 Sle
(1)
l be an arbitrary syzygy of B(0) with coefficients

Sl ∈ P. Then Sl ∈ k[XB(0)(hl)] for all 1 ≤ l ≤ s1 if and only if S = 0.

Proof. If S ∈ Syz(B(0)), then
∑s1

l=1 Slhl = 0. Each f ∈ U can be uniquely written
in the form f =

∑s1
l=1 Plhl with hl ∈ B(0) and Pl ∈ k[XB(0)(hl)]. In particular,

this holds for 0 ∈ U . Thus 0 = Sl ∈ k[XB(0)(hl)] for all l and hence S = 0. �
For hα ∈ B(0) we denote the non-multiplicative variables by {xiα

1
, . . . , xiα

rα
}

with iα1 < · · · < iαrα
. Thus B(1) = ∪s1

j=1{Sj;ij
k

| 1 ≤ k ≤ ijrj
}.

Resolving Decompositions 21

Theorem 1. For every syzygy Sα;iα
k

∈ B(1) we set

hm(Sα;iα
k
) = xiα

k
e(1)α

and
XB(1)(Sα;iα

k
) = {x0, . . . xn} \ {xiα

1
, . . . , xiα

k−1
} .

Furthermore, we define ≺B(1) as the Schreyer order associated to B(0) and ≺B(0) .
Then the quadruple (B(1),hm(B(1)),XB(1) ,≺B(1)) is a resolving decomposition of
the syzygy module Syz(B(0)).

Proof. We first show that (B(1),hm(B(1)),XB(1) ,≺B(1)) is a resolving decompo-
sition of 〈B(1)〉. In a second step, we show that 〈B(1)〉 = Syz(B(0)).

The first condition of Definition 1 is trivially satisfied. By construction it is
obvious to see that

hm(〈B(1)〉) =
s1⊕

i=1

〈XB(0)(hi)〉e(1)i . (4)

A term xμe(1)l ∈ supp(Sα;k − xke
(1)
α) must satisfy by (3) that xμ ∈ k[XB(0)(hl)]

and hence xμe(1)l /∈ hm(〈B(1)〉) which implies condition (ii). The first part of
condition (iii) is again easy to see. It is obvious that

〈XB(0)(hα)〉e(1)α =
rα⊕

k=1

k[XB(1)(Sα,iα
k
)]xiα

k
e(1)α .

If we combine this equation with (4) the first part of the third condition follows.
The second part of this condition is a bit harder to prove. We take an arbi-

trary f ∈ 〈B(1)〉 and construct a standard representation for this module element.
We construct this representation according to hm(〈B(1)〉). We take the biggest
term xμe(1)α ∈ supp(f) ∩ hm(B(1)) with respect to the order ≺B(0) . There must
be a syzygy Sα;i, such that xi | xμ and xμ/xi ∈ k[XB(1)(Sα;i)]. We reduce f by
this element and get

f ′ = f − c
xμ

xi
Sα;i

for a suitable constant c ∈ k such that the term xμe(1)α is no longer in the support
of f ′. Every term xλe(1)β newly introduced by xμ

xi
Sα;i which also lies in hm(B(1))

is strictly less than xμe(1)α according to condition (v) of Definition 1 and Eq. (3)
defining the syzygies Sα;i. Now we repeat this procedure until we arrive at an
f ′′ such that supp(f ′′) ∩ hm (〈B(1)〉) = ∅. It is clear that we reach such an f ′′

in a finite number of steps, since the terms during the reduction decrease with
respect to ≺B(0) which is a well-order. We know that now all xεe(1)α ∈ supp(f ′′)
have the property that xε ∈ XB(0)(hα). Therefore we get that f ′′ = 0 due to
Lemma 3, which finishes the proof of this condition.

The above procedure provides us with an algorithm to compute arbitrary
normal forms and hence condition (iv) of Definition 1 follows immediately.

22 M. Albert and W.M. Seiler

For the last condition we note that now each head term xie
(1)
α is actually the

leading term of Sα;i with respect to the order ≺B(0) . Hence the corresponding
Schreyer order satisfies the last condition of Definition 1. �

As with the usual Schreyer theorem, we can iterate this construction and
derive this way a free resolution of U . By contrast to the classical situation,
it is however now possible to make precise statements about the shape of the
resolution (even if we do not obtain explicit formulae for the differentials).

Theorem 2. Let β
(k)
0,j be the number of generators h ∈ B(0) of degree j having

k multiplicative variables and set d = min {k | ∃j : β
(k)
0,j > 0}. Then U possesses

a finite free resolution

0 →
⊕

P(−j)rn+1−d,j → · · · →
⊕

P(−j)r1,j →
⊕

P(−j)r0,j → U → 0 (5)

of length n + 1 − d where the ranks of the free modules are given by

ri,j =
n+1−i∑

k=1

(
n + 1 − k

i

)
β
(k)
0,j−i.

Proof. According to Theorem 1, (B(1),hm(B(1)),XB(1) ,≺B(1)) is a resolving
decomposition for the module Syz1(U). Applying the theorem again, we can
construct a resolving decomposition of the second syzygy module Syz2(U) and
so on. Recall that for every index 1 ≤ l ≤ m and for every non-multiplicative
variable xk ∈ XB(0)(hα(l)) we have |XB(1)(Sl;k)| < |XB(0)(hα(l))|.

If D is the minimal number of multiplicative variables for a head module
term in B(0), then the minimal number of multiplicative variables for a head
term in B(1) is D + 1. This observation yields the length of the resolution (5).
Furthermore deg(Sk;i) = deg(hk) + 1, e. g. from the jth to the (j + 1)th module
the degree from the basis element to the corresponding syzygies grows by one.

The ranks of the modules follow from a rather straightforward combinatorial
calculation. Let β

(k)
i,j denote the number of generators of degree j of the i-th

syzygy module Syzi(U) with k multiplicative variables according to the head
module terms. By definition of the generators, we find

β
(k)
i,j =

k−1∑
t=1

β
(n+1−t)
i−1,j−1

as each generator with less multiplicative variables and degree j−1 in the resolv-
ing decomposition of Syzi(B(0)) contributes one generator with k multiplicative
variables. A lengthy induction allows us to express β

(k)
i,j in terms of β

(k)
0,j :

β
(k)
i,j =

k−i∑
t=1

(
k − l − 1

i − 1

)
β
(t)
0,j−i.

Resolving Decompositions 23

Now we are able to compute the ranks of the free modules via

ri,j =
n+1∑
k=1

β
(k)
i,j =

n+1∑
k=1

k−i∑
t=1

(
k − t − 1

i − 1

)
β
(t)
0,j−i =

n+1−i∑
k=1

(
n + 1 − k

i

)
β
(k)
0,j−i.

The last equality follows from a classical identity for binomial coefficients. �
Theorem 2 allows us to construct recursively resolving decompositions for

the higher syzygy modules. In the sequel, we denote the corresponding resolving
decomposition of the syzygy module Syzj(U) by (B(j),hm(B(j)),XB(j) ,≺B(j)). To
define an element of B(j), we consider for each generator hα ∈ B(0) all ordered
integer sequences k = (k1, . . . , kj) with 0 ≤ k1 < · · · < kj ≤ n of length |k| = j
such that xki

∈ XB(0)(hα) for all 1 ≤ i ≤ j. We denote for any 1 ≤ i ≤ j
by ki the sequence obtained by eliminating ki from k. Then the generator Sα;k

arises recursively from the standard representation of xkj
Sα;kj

according to the
resolving decomposition (B(j−1),hm(B(j−1)),XB(j−1) ,≺B(j−1)):

xkj
Sα;kj

=
s1∑

β=1

∑
l

P
(α;k)
β;l Sβ;l. (6)

The second sum is over all ordered integer sequences l of length j−1 such that for
all entries �i the variables x�i

is non-multiplicative for the generator hβ ∈ B(0).
Denoting the free generators of the free module which contains the jth syzygy
module by e(j)α,l, such that α ∈ {1, . . . , s1} and l is an ordered subset of XB(0)(hα)
of length j − 1 we get the following representation for Sα,k:

Sα;k = xkj
e(j)α;kj

−
s1∑

β=1

∑
l

P
(α;k)
β;l e(j)β;l.

Corollary 1. In the situation of Theorem2, set d = min {k | ∃j : β
(k)
0,j > 0} and

q = deg(B(0)) = max{deg(h) | h ∈ B(0)}. Then we obtain the following bounds
for the projective dimension, the Castelnuovo-Mumford regularity and the depth,
respectively, of the submodule U :

pd(U) ≤ n + 1 − d , reg(U) ≤ q , depth(U) ≥ d .

Proof. The first estimate follows immediately from the resolution (5) induced by
the resolving decomposition (B(0),hm(B(0)),XB(0) ,≺B(0)) of U . The last estimate
is a simple consequence of the first one and the graded form of the Auslander-
Buchsbaum formula. Finally, the ith module of this resolution is obviously gen-
erated by elements of degree less than or equal to q + i. This observation implies
that U is q-regular and thus the second estimate. �
Remark 2. The resolving decomposition (B(1),hm(B(1)),XB(1) ,≺B(1)) construc-
ted in Theorem 1 is always a Janet basis of the first syzygy module with respect

24 M. Albert and W.M. Seiler

to the term order ≺B(0) . This is simply due to the fact that the choice of the mul-
tiplicative variables in the resolving decomposition of the syzygy module made
in Theorem 1 is actually inspired by what happens for the Janet division. Hence
in the special case that the resolving decomposition is induced by a Pommaret
or a Janet basis, it is easy to see that also the resolving decompositions of the
higher syzygy modules are actually induced by Pommaret or Janet bases for
a Schreyer order constructed as in Theorem 1. Since a Janet basis which only
consists of variables is simultaneously an involutive basis for the alex division
(see [5] for the definition), the same is true for resolving decompositions induced
by alex bases.

At this point, one can also see some advantages of our general framework.
Our previous results require that the used involutive division is of Schreyer type.
This assumption ensures that we obtain at each step again an L-involutive basis
for the syzygy module with respect to a Schreyer order. In our new approach,
we automatically obtain Janet basis, as we can choose the head terms and the
multiplicative variables as we like. Consequently, we can now use an involutive
basis B for an arbitrary involutive division L as starting point for the construc-
tion of a resolution, provided its L-graph is acyclic (which is always the case if L
is continuous). The construction will not necessarily lead to L-involutive bases
of the syzygy modules, but for most applications this fact is irrelevant.

4 An Explicit Formula for the Differential

As in Sect. 3 let Pm
d0

be a graded free module with free generators e(0)1 , . . . e(0)m and

grading d0 = (d(0)1 , . . . d
(0)
m). We always work with a finitely generated graded

module U ∈ Pm
d0

with a resolving decomposition (B(0),hm(B(0)),XB(0) ,≺B(0))
where B(0) = {h1, . . . ,hs1}.

First we give an alternative description of the complex underlying the res-
olution (5). Let W =

⊕s1
α=1 Pwα and V =

⊕n
i=0 Pvi be two free P-modules

whose ranks are given by the size of the resolving decomposition (B(0),hm(B(0)),
XB(0) ,≺B(0)) and by the number of variables in P, respectively. Then we set
Ci = W ⊗P ΛiV where Λ• denotes the exterior product. A P-linear basis of Ci

is provided by the elements wα ⊗ vk where vk = vk1 ∧ · · · ∧ vki
for an ordered

sequence k = (k1, . . . , ki) with 0 ≤ k1 < · · · < ki ≤ n. Then the free subcomplex
S• ⊂ C• generated by all elements wα ⊗ vk with k ⊆ XB(0)(hα) corresponds to
(5) upon the identification e(i+1)

α;k ↔ wα ⊗ vk. Let ki+1 ∈ XB0(hα) \ k, then the
differential comes from (6),

dS(wα ⊗ vk,ki+1) = xki+1wα ⊗ vk −
∑
β,l

P
(α;k,ki+1)
β;l wβ ⊗ vl ,

and thus requires the explicit determination of all the higher syzygies (6).
In this section we present a method to directly compute the differential with-

out computing higher syzygies. It is based on ideas of Sköldberg [9,10] and gen-
eralises the theory which we developed in [1,3] for the special case of a resolution
induced by a Pommaret or a Janet basis for a given term order.

Resolving Decompositions 25

Definition 2. A graded polynomial module U has head linear syzygies, if it
possesses a finite presentation

0 −→ ker η −→ W =
s⊕

α=1

Pwα
η−→ U −→ 0 (7)

with a finite generating set H = {h1, . . . ,ht} of ker η where one can choose for
each generator hα ∈ H a head module term hm(hα) of the form xiwα.

Sköldberg’s construction begins with the following two-sided Koszul complex
(F , dF) defining a free resolution of U . Let V be a k-linear space with basis
{v0, . . . ,vn} (with n + 1 still the number of variables in P) and set Fj = P ⊗
ΛjV ⊗ U which obviously yields a free P-module. Choosing a k-linear basis
{ma | a ∈ A} of U , a P-linear basis of Fj is given by the elements 1 ⊗ vk ⊗ ma

with ordered sequences k of length j. The differential is now defined by

dF (1 ⊗ vk ⊗ ma) =
j∑

i=1

(−1)i+1
(
xki

⊗ vki
⊗ ma − 1 ⊗ vki

⊗ xki
ma

)
. (8)

Here it should be noted that the second term on the right hand side is not yet
expressed in the chosen k-linear basis of U . For notational simplicity, we will
drop in the sequel the tensor sign ⊗ and leading factors 1 when writing elements
of F•.

Sköldberg uses a specialisation of head linear terms. He requires that for a
given term order ≺ the leading module of ker η in the presentation (7) must be
generated by terms of the form xiwα. In this case he says that U has initially
linear syzygies. Our definition is term order free.

Under the assumption that the module U has initially linear syzygies via a
presentation (7), Sköldberg [10] constructs a Morse matching leading to a smaller
resolution (G, dG). He calls the variables

crit (wα) = {xj | xjwα ∈ lt ker η} ;

critical for the generator wα; the remaining non-critical ones are contained in
the set ncrit (wα). Then a k-linear basis of U is given by all elements xμhα with
hα = η(wα) and xμ ∈ k[ncrit (wα)].

According to [9] we define Gj ⊆ Fj as the free submodule generated by those
vertices vkhα where the ordered sequences k are of length j and such that every
entry ki is critical for wα. In particular W ∼= G0 with an isomorphism induced
by wα �→ v∅hα.

The description of the differential dG is based on reduction paths in the
associated Morse graph (for a detailed treatment of these notions, see [1,9] or [6])
and expresses the differential as a triple sum. If we assume that, after expanding
the right hand side of (8) in the chosen k-linear basis of U , the differential of
the complex F• can be expressed as

dF (vkhα) =
∑

m,μ,γ

Qk,α
m,μ,γvm(xμhγ) ,

26 M. Albert and W.M. Seiler

then dG is defined by

dG(vkhα) =
∑
l,β

∑
m,μ,γ

∑
p

ρp

(
Qk,α

m,μ,γvm(xμhγ)
)

(9)

where the first sum ranges over all ordered sequences l which consists entirely of
critical indices for wβ . Moreover the second sum may be restricted to all values
such that a polynomial multiple of vm(xμhγ) effectively appears in dF (vkhα)
and the third sum ranges over all reduction paths p going from vm(xμhγ) to
vlhβ . Finally ρp is the reduction associated with the reduction path p satisfying

ρp

(
vm(xμhγ)

)
= qpvlhβ

for some polynomial qp ∈ P.
It turns out that Sköldberg uses the term order ≺ only for distinguishing the

critical and non-critical variables. Therefore it is straightforward to see that his
construction also works for modules which have head linear syzygies. We simply
replace the definition of critical and non-critical variables. We define

crit (wα) = {xj | xjwα ∈ hm(H)} ,

where H is chosen as in Definition 2. Again the remaining variables are contained
in the set ncrit(wα).

In the sequel we will show that for a finitely generated graded module U with
resolving decomposition (B(0),hm(B(0)),XB(0) ,≺B(0)) the resolution constructed
by Sköldberg’s method is isomorphic to the resolution which is induced by the
resolving decomposition if we choose the head linear syzygies properly. Firstly
we obtain the following trivial assertion.

Lemma 4. If the graded submodule U ⊆ Ps1
d0

possesses a resolving decompo-
sition (B(0),hm(B(0)),XB(0) ,≺B(0)), then it has head linear syzygies. More pre-
cisely, we can set crit(wα) = XB(0)(hα), i.e. the critical variables of the gener-
ator wα are the non-multiplicative variables of hα = η(wα).

The lemmata which we subsequently cite from [1] are formulated for a Pom-
maret basis, which is an involutive basis. Nevertheless we can apply them directly
in our setting, if not stated otherwise, because their proofs remain applicable for
resolving decompositions. The reason for this is that they only need the existence
of unique standard representations and the division of variables into multiplica-
tive and non-multiplicative ones. Some of the proofs in [1] explicitly use the class
of a generator in B(0), a notion arising in the context of Pommaret bases. When
working with resolving decompositions, one has to replace it by the maximal
index of a multiplicative variable.

The reduction paths can be divided into elementary ones of length two. There
are essentially three types of reductions paths [1, Sect. 4]. The elementary reduc-
tions of type 0 are not of interest [1, Lemma 4.5]. All other elementary reductions
paths are of the form

vk(xμhα) −→ vk∪i(
xμ

xi
hα) −→ vl(xνhβ) .

Resolving Decompositions 27

Here k∪ i is the ordered sequence which arises when i is inserted into k; likewise
k \ i stands for the removal of an index i ∈ k.

Type 1: Here l = (k ∪ i)\j, xν = xμ

xi
and β = α. Note that i = j is allowed.

We define ε(i;k) = (−1)|{j∈k|j>i}|. Then the corresponding reduction is

ρ(vkxμhα) = ε(i;k ∪ i)ε(j;k ∪ i)xjv(k∪i)\j

(xμ

xi
hα

)
.

Type 2: Now l = (k ∪ i) \ j and xνhβ appears in the involutive standard
representation of xμxj

xi
hα with the coefficient λj,i,α,μ,ν,β ∈ k. In this case, by

construction of the Morse matching, we have i �= j. The reduction is

ρ(vkxμhα) = −ε(i;k ∪ i)ε(j;k ∪ i)λj,i,α,μ,ν,βv(k∪i)\j(xνhβ) .

These reductions follow from the differential (8): The summands appearing there
are either of the form xki

vki
ma or of the form vki

(xki
ma). For each of these sum-

mands, we have a directed edge in the Morse graph ΓA
F• . Thus for an elementary

reduction path

vk(xμhα) −→ vk∪i

(xμ

xi
hα

) −→ vl(xνhβ) ,

the second edge can originate from summands of either form. For the first form
we then have an elementary reduction path of type 1 and for the second form
we have type 2.

To show that the resolution induced by a resolving decomposition is isomor-
phic to the resolution constructed via Sköldberg’s method we need a classical
theorem concerning the uniqueness of free resolutions.

Theorem 3. [4, Theorem 1.6] Let U be a finitely generated graded Pm
d -module.

If F is the graded minimal free resolution of U and G an arbitrary graded free
resolution of U , then G is isomorphic to the direct sum of F and a trivial complex.

Assume that we have two graded free resolutions F , G of the same module U
with the same shape (which means that the homogeneous components of the free
modules in the two resolutions have always the same dimensions: dim (Fi)j =
dim (Gi)j). Then Theorem 3 implies that the two resolutions are isomorphic.
For the next theorem, we note the following important observation. The bases
of the free modules in the resolution G of Sköldberg are given by the generators
vkhα with k ⊆ XB(0)(hα).

Theorem 4. Let F be the graded free resolution which is induced by the resolv-
ing decomposition (B(0),hm(B(0)),XB(0) ,≺B(0)) and G the graded free resolution
which is constructed by the method of Sköldberg when the head linear syzygies are
chosen such that crit(hα) = XB(0)(hα) for every hα ∈ B(0). Then the resolutions
F and G are isomorphic.

28 M. Albert and W.M. Seiler

Proof. According to the observation made above, it is obvious that the two
resolutions F and G have the same shape. Together with Theorem 3, the claim
follows then immediately. �

For completeness, we repeat some simple results from [1]. They will show us,
that the differentials of both resolutions are very similar. In fact we show for the
resolution constructed via Sköldberg’s method, that we can find head module
terms in the higher syzygies which are equal to the head module terms of the
resolving decompositions of the higher syzygies of the induced free resolution.

Lemma 5. [1, Lemma 4.3] For a non-multiplicative index1 i ∈ crit (hα) let
xihα =

∑s1
β=1 P

(α;i)
β hβ be the standard representation. Then we have dG(vihα) =

xiv∅hα − ∑s1
β=1 P

(α;i)
β v∅hβ.

The next result states that if one starts at a vertex vi(xμhα) with certain
properties and follows through all possible reduction paths in the graph, one
will never get to a point where one must calculate an involutive standard rep-
resentation. If there are no critical (i. e. non-multiplicative) variables present at
the starting point, then this will not change throughout any reduction path. In
order to generalise this lemma to higher homological degrees, one must simply
replace the conditions i ∈ ncrit (hα) and j ∈ ncrit (hβ) by ordered sequences k, l
with k ⊆ ncrit (hα) and l ⊆ ncrit (hβ).

Lemma 6. [1, Lemma 4.4] Assume that i ∪ supp(μ) ⊆ ncrit (hα). Then for any
reduction path p = vi(xμhα) → · · · → vj(xνhβ) we have j ∈ ncrit (hβ). In
particular, in this situation there is no reduction path p = vi(xμhα) → · · · →
vkhβ with k ∈ crit (hβ).

The next corollary asserts that we can choose in Sköldberg’s resolution head
module terms in such a way that there is a one-to-one correspondence to the head
terms of the syzygies contained in the free resolution induced by the resolving
decomposition. This corollary is a direct consequence of Lemma 6.

Corollary 2. Let (k1, . . . , kj) = k ⊆ crithα, then

xkl
vk\kl

hα ∈ supp(dG(vkhα)).

In [1,3] we show a method to effectively compute graded Betti numbers
via the induced free resolution of Janet and Pommaret bases and the method
of Sköldberg. We show that we can compute the graded Betti numbers with
computing only the constant part of the resolution. With this method it is also
possible to compute only a single Betti number without compute the complete
constant part of the free resolution. The reason for that is that Sköldberg’s
formula allows to compute a differential in the free resolution independently of
the rest of the free resolution. Furthermore the theorem about the induced free
resolution gives us a formula to compute the ranks of these resolution. These
methods are also applicable for an arbitrary resolving decomposition due to the
fact that we proved Theorem 2 and the form of the differential (9).
1 For notational simplicity, we will identify sets X of variables with sets of the corre-

sponding indices and thus simply write i ∈ X instead of xi ∈ X.

Resolving Decompositions 29

References

1. Albert, M., Fetzer, M., Sáenz-de Cabezón, E., Seiler, W.: On the free resolution
induced by a Pommaret basis. J. Symb. Comp. 68, 4–26 (2015)

2. Albert, M., Bertone, C., Roggero, M., Seiler, W.M.: Marked bases over quasi-stable
modules. Preprint arXiv:1511.03547 (2015)

3. Albert, M., Fetzer, M., Seiler, W.M.: Janet bases and resolutions in CoCoALib. In:
Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS,
pp. 15–29. Springer, Switzerland (2015)

4. Eisenbud, D.: The Geometry of Syzygies: A Second Course in Algebraic Geometry
and Commutative Algebra. Graduate Texts in Mathematics. Springer, New York
(2005)

5. Gerdt, V.P., Blinkov, Y.A.: Involutive division generated by an antigraded mono-
mial ordering. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2011. LNCS, vol. 6885, pp. 158–174. Springer, Heidelberg (2011)

6. Jöllenbeck, M., Welker, V.: Minimal resolutions via algebraic discrete Morse theory.
Mem. Amer. Math. Soc. 197 (2009). AMS

7. Seiler, W.: A combinatorial approach to involution and δ-regularity I: involutive
bases in polynomial algebras of solvable type. Appl. Alg. Eng. Comm. Comp. 20,
207–259 (2009)

8. Seiler, W.: A combinatorial approach to involution and δ-regularity II: structure
analysis of polynomial modules with Pommaret bases. Appl. Alg. Eng. Comm.
Comp. 20, 261–338 (2009)

9. Sköldberg, E.: Morse theory from an algebraic viewpoint. Trans. Amer. Math. Soc.
358, 115–129 (2006)

10. Sköldberg, E.: Resolutions of modules with initially linear syzygies. Preprint
arXiv:1106.1913 (2011)

http://arxiv.org/abs/1511.03547
http://arxiv.org/abs/1106.1913

Setup of Order Conditions for Splitting Methods

Winfried Auzinger1, Wolfgang Herfort1, Harald Hofstätter1(B),
and Othmar Koch2

1 Technische Universität Wien, Vienna, Austria
{w.auzinger,w.herfort}@tuwien.ac.at, hofi@harald-hofstaetter.at

2 Universität Wien, Vienna, Austria
othmar@othmar-koch.org,

www.asc.tuwien.ac.at/∼winfried

www.asc.tuwien.ac.at/∼herfort

www.harald-hofstaetter.at

www.othmar-koch.org

Abstract. For operator splitting methods, an approach based on Tay-
lor expansion and the particular structure of its leading term as an ele-
ment of a free Lie algebra is used for the setup of a system of order
conditions. Along with a brief review of the underlying theoretical back-
ground, we discuss the implementation of the resulting algorithm in com-
puter algebra, in particular using Maple 18 (Maple is a trademark of
MapleSoftTM.). A parallel version of such a code is described, and its
performance on a computational node with 16 threads is documented.

Keywords: Evolution equations · Splitting methods · Order condi-
tions · Local error · Taylor expansion · Parallel processing

1 Introduction

The construction of higher order discretization schemes of one-step type for the
numerical solution of evolution equations is typically based on the setup and solu-
tion of a system of polynomial equations for a number of unknown coefficients.
Classical examples are Runge-Kutta methods, and their various modifications,
see e.g. [9].

To design particular schemes, we need to understand:

(i) how to generate a system of algebraic equations for the coefficients of the
higher-order method sought,

(ii) how to solve the resulting system of polynomial equations.

Here we focus on (i) which depends on the particular class of methods one is
interested in.1 We consider operator splitting methods, which are based on the
idea of approximating the exact flow of an evolution equation by compositions of
(usually two) separate subflows which are easier to evaluate. Splitting methods
1 The aspect (ii) enters the discussion in [2].

c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 30–42, 2016.
DOI: 10.1007/978-3-319-45641-6 3

Order Conditions for Splitting Methods 31

represent a very useful class of one-step methods for certain types of evolution
equations, as for instance Schrödinger type equations, and if the operator split-
ting is done in an appropriate way, they have very good stability properties
(possibly with complex instead of real coefficients for the case of parabolic equa-
tions). The more difficult problem is to find coefficients such that a higher order
of accuracy is obtained, i.e., coping with (i) and (ii),

Computer algebra is an indispensable tool for dealing with (i). Typically there
is a tradeoff between ‘manual’ a priori analysis and machine driven automati-
zation. For operator-splitting methods, a well-known approach is based on a
cumbersome recursive application of the Baker-Campbell-Hausdorff (BCH) for-
mula, see [8]. Here we are advocating another approach, namely implementation
of an algorithm for (i) which runs in a fully automatic mode. This approach
is described in [1,2]; it is based on Taylor expansion and a theoretical result
concerning the structure of the leading term in this expansion. This has the
advantage that explicit knowledge of the BCH coefficients is not required. It
may be called a generic, ‘brute-force’ approach. The efficiency of such a general
algorithm cannot be optimal in an overall sense; on the other hand, it is easy
to implement with optimal speedup on a parallel computer. Moreover, it can be
easily adapted to special cases like coefficient symmetries, to operator splitting
into more than two parts, and to pairs of splitting schemes akin to embedded
Runge-Kutta methods.

In the present paper we focus on the implementation aspect, in particular in
a parallel environment. The preparation of a parallel version was motivated by
the computational complexity which strongly grows when the desired order is
increased. Our parallel code scales in computation time at an (almost) optimal
rate, and this speedup is of great practical advantage when trying out different
variants, especially for more complex higher-order cases. This may also be viewed
as a hardness test for parallelization in Maple.

Topic (ii) is not discussed in this paper. Details concerning the theoretical
background and a discussion concerning concrete results and optimized schemes
obtained are given in [2], and a collection of optimized schemes can be found
at [3]. We note that a related approach has recently also been considered in [5].

In the rest of this introductory section we describe the mathematical back-
ground. In Sect. 2 we review our algorithm introduced in [1,2] based on Taylor
expansion of the local error. A parallel implementation is described in Sect. 3.
Modifications and extensions are indicated in Sect. 4, and performance measures
are documented in Sect. 5 by means of some examples.

1.1 Splitting Methods for the Integration of Evolution Equations

In many applications, the right hand side F (u) of an evolution equation

∂tu(t) = F (u(t)) = A(u(t)) + B(u(t)), t ≥ 0, u(0) given, (1)

splits up in a natural way into two terms A(u) and B(u), where the separate
integration of the subproblems

32 W. Auzinger et al.

∂tu(t) = A(u(t)), ∂tu(t) = B(u(t))

is much easier to accomplish than for the original problem.

Example 1. The solution of a linear ODE system with constant coefficients,

∂tu(t) = (A + B)u(t),

is given by
u(t) = et(A+B) u(0).

The simplest splitting approximation (‘Lie-Trotter’), starting at some initial
value u and applied with a time step of length t = h, is given by

S(h, u) = ehB ehA u ≈ eh(A+B)u.

This is not exact (unless AB = BA), but it satisfies

‖(ehB ehA − eh(A+B))u‖ = O(h2) for h → 0,

and the error of this approximation depends on behavior of the commutator
[A,B] = AB − BA. ��
A general splitting method takes steps of the form2

S(h, u) = Ss(h,Ss−1(h, . . . ,S1(h, u))) ≈ ΦF (h, u), (2a)

with
Sj(h, v) = ΦB(bj h, ΦA(aj h, v)), (2b)

where the (real or complex) coefficients aj , bj have to be found such that a certain
desired order of approximation for h → 0 is obtained.

The local error of a splitting step is denoted by

S(h, u) − ΦF (h, u) =: L(h, u). (3)

For our present purpose of finding asymptotic order conditions it is sufficient
to consider the case of a linear system, F (u) = F u = Au + B u with linear
operators A and B. We denote

Aj = aj A, Bj = bj B, j = 1 . . . s.

Then,

S(h, u) = S(h)u, S(h) = Ss(h)Ss−1(h) · · · S1(h) ≈ ehF , (4a)

with
Sj(h) = ehBj ehAj , j = 1 . . . s. (4b)

For the linear case the local error (3) is of the form L(h)u with the linear operator
L(h) = S(h) − ehF .
2 By ΦF we denote the flow associated with the equation ∂tu = F (u), and ΦA, ΦB are

defined analogously.

Order Conditions for Splitting Methods 33

1.2 Commutators

Commutators of the involved operators play a central role. For formal consis-
tency, we call A and B the ‘commutators of degree 1’. There is (up to sign) one
non-vanishing3 commutator of degree 2,

[A,B] := AB − B A,

and there are two non-vanishing commutators of degree 3,

[A, [A,B]] = A [A,B] − [A,B]A, [[A,B], B] = [A,B]B − B [A,B],

and so on; see Sect. 2.2 for commutators of higher degrees.

2 Taylor Expansion of the Local Error

2.1 Representation of Taylor Coefficients

Consider the Taylor expansion, about h = 0, of the local error operator L(h) of a
consistent one-step method (satisfying the basic consistency condition L(0) = 0),

L(h) =
p∑

q=1

hq

q!
dq

dhq
L(h)

∣∣∣
h=0

+ O(hp+1). (5)

The method is of asymptotic order p iff L(h) = O(hp+1) for h → 0; thus the
conditions for order ≥ p are given by

d
dh

L(h)
∣∣∣
h=0

= . . . =
dp

dhp
L(h)

∣∣∣
h=0

= 0. (6)

The formulas in (6) need to be presented in a more explicit form, involving the
operators A and B. For a splitting method (4), a calculation based on the Leibniz
formula for higher derivatives shows4 (see [2])

dq

dhq
L(h)

∣∣∣
h=0

=
∑

|k|=q

(
q

k

) ∏
j=s...1

kj∑
�=0

(
kj

�

)
B�

j A
kj−�
j − (A + B)q, (7)

with k = (k1, . . . , ks) ∈ Ns
0.

Representation of (7) in Maple. The non-commuting operators A and B are
represented by symbolic variables A and B, which can be declared to be non-
commutative making use of the corresponding feature implemented in the pack-
age Physics. Now it is straightforward to generate the sum (7), with unspecified
coefficients aj , bj , using standard combinatorial tools; for details see Sect. 3.

3 ‘Non-vanishing’ means non-vanishing in general (generic case, with no special
assumptions on A and B).

4 If A and B commute, i.e., AB = BA, then all these expressions vanish.

34 W. Auzinger et al.

2.2 The Leading Term of the Local Error Expansion

Formally, the multinomial sums in the expressions (7) are multivariate homoge-
neous polynomials of total degree q in the variables aj , bj , j = 1 . . . s, and the
coefficients of these polynomials are power products of total degree q composed
of powers of the non-commutative symbols A and B.

Example 2 ([2]). For s = 2 we obtain

d
dh

L(h)
∣∣∣
h=0

= (a1 + a2) A + (b1 + b2) B − (A + B),

d2

dh2
L(h)

∣∣∣
h=0

= ((a1 + a2)2)A2 + (2 a2 b1) AB

+ (2 a1 b1 + 2 a1 b2 + 2 a2 b2)B A + ((b1 + b2)2)B2

− (A2 + AB + B A + B2).

The consistency condition for order p ≥ 1 reads d
dh L(h)

∣∣
h=0

= 0, which is
equivalent to a1 + a2 = 1 and b1 + b2 = 1.

At first sight, for order p ≥ 2 we need 4, or (at second sight) 2 additional
equations to be satisfied, such that d2

dh2 L(h)
∣∣
h=0

= 0. However, assuming that
the conditions for order p ≥ 1 are satisfied, the second derivative d2

dh2 L(h)
∣∣
h=0

simplifies to the commutator expression

d2

dh2
L(h)

∣∣∣
h=0

= (2 a2 b1 − 1) [A,B],

giving the single additional condition 2 a2 b1 = 1 for order p ≥ 2. Assuming now
that a1, a2 and b1, b2 are chosen such that all conditions for p ≥ 2 are satisfied,
the third derivative d3

dh3 L(h)
∣∣
h=0

, which now represents the leading term of the
local error, simplifies to a linear combination of the commutators [A, [A,B]] and
[[A,B], B], of degree 3, namely

d3

dh3
L(h)

∣∣∣
h=0

= (3 a2
2 b1 − 1) [A, [A,B]] + (3 a2 b21 − 1) [[A,B], B]. ��

Remark 1. The classical second-order Strang splitting method corresponds to
the choice a1 = 1

2 , b1 = 1, a2 = 1
2 , b2 = 0, or a1 = 0, b1 = 1

2 , a2 = 1, b2 = 1
2 .

The observation from this simple example generalizes as follows:

Proposition 1. The leading term dp+1

dhp+1 L(h)
∣∣
h=0

of the Taylor expansion of
the local error L(h) of a splitting method of order p is a Lie element, i.e., it is
a linear combination of commutators of degree p + 1.

Proof. See [1,8]. ��

Order Conditions for Splitting Methods 35

Example 3. Assume that the coefficients aj , bj , j = 1 . . . s have been found such
that the associated splitting scheme is of order p ≥ 3 (this necessitates s ≥ 3).
This means that

d
dh

L(h)
∣∣∣
h=0

=
d2

dh2
L(h)

∣∣∣
h=0

=
d3

dh3
L(h)

∣∣∣
h=0

= 0,

and from Proposition 1 we know that

d4

dh4
L(h)

∣∣∣
h=0

= γ1 [A, [A, [A,B]]] + γ2 [A, [[A,B], B]] + γ3 [[[[A,B], B], B]

holds, with certain coefficients γk depending on the aj and bj . Here we have
made use of the fact that there are three independent commutators of degree 4
in A and B. ��
Targeting for higher-order methods one needs to know a basis of commutators
up to a certain degree. The answer to this question is known, and a full set of
independent commutators of degree q can be represented by a set of words of
length q over the alphabet {A,B}. A prominent example is the set of Lyndon-
Shirshov words (see [6]) displayed in Table 1. A combinatorial algorithm due to
Duval [7] can be used to generate this table.

Here, for instance, the word AABBB represents the commutator

[A, [[[A,B], B], B]] =

A2B3 − 3ABAB2 + 3AB2AB − 2AB3A + 3BAB2A − 3B2ABA + B3A2,

with leading power product A2B3 = AABBB (w.r.t. lexicographical order).

Table 1. Lq is the number of words of length q.

q Lq Lyndon-Shirshov words over the alphabet {A, B}
1 2 A, B

2 1 AB

3 2 AAB, ABB

4 3 AAAB, AABB, ABBB

5 6 AAAAB, AAABB, AABAB, AABBB, ABABB, ABBBB

6 9 AAAAAB, AAAABB, AAABAB, AAABBB, AABABB, AABBAB, AABBBB, ABABBB, ABBBBB

7 18 . . .

8 30 . . .

9 56 . . .

10 99 . . .

...
...

. . .

36 W. Auzinger et al.

2.3 The Algorithm: Implicit Recursive Elimination

On the basis of Proposition 1, and with a table of Lyndon-Shirshov words avail-
able, we can build up a set of conditions for order ≥ p for a splitting method
with s stages in the following way (recall the notation Aj := aj A, Bj = bj B).
This procedure corresponds to [1, Algorithm 2]:

For q = 1 . . . p:

– Generate the symbolic expressions (7) in the indeterminate coefficients aj , bj

and the non-commutative variables A and B.
– Extract the coefficients of the power products (of degree q) represented by

all Lyndon-Shirshov words of length q, resulting in a set of Lq polynomials
Pq,k(aj , bj) of degree q in the coefficients aj and bj .

The resulting set of
∑p

q=1 Lq multivariate polynomial equations

Pq,k(aj , bj) = 0, k = 1 . . . Lq, q = 1 . . . p (8)

represents the desired conditions for order p.
We call this procedure implicit recursive elimination, because the equations

generated in this way are correct in an ‘a posteriori’ sense (cf. Example 2):

– For q = 1, the basic consistency equations

P1,1(aj , bj) = a1 + . . . + as − 1 = 0,

P1,2(aj , bj) = b1 + . . . + bs − 1 = 0,
(9a)

are obtained.
– Assume that (9a) is satisfied. Then, due to Proposition 1, the additional

(quadratic) equation (note that L2 = 1)

P2,1(aj , bj) = 0, (9b)

represents one additional condition for a scheme of order p = 2.
– Assume that (9a) and (9b) are satisfied. Then, due to Proposition 1, the addi-

tional (cubic) equations (note that L3 = 2)

P3,1(aj , bj) = P3,2(aj , bj) = 0, (9c)

represent two additional conditions for a scheme of order p = 3.
– The process is continued in the same manner.

If we (later) have found a solution S = {aj , bj , j = 1 . . . s} of the resulting
system

(8) = {(9a), (9b), (9c), . . .}
of multivariate polynomial equations, this means that

– S satisfies (9a) ⇒
S represents a solution of order q = 1 at least;

Order Conditions for Splitting Methods 37

– S satisfies (9a) and (9b) ⇒
S represents a solution of order q = 2 at least;

– S satisfies (9a), (9b), and (9c) ⇒
S represents a solution of order q = 3 at least;

and so on. By induction we conclude that the whole procedure indeed results
in a solution S representing a method of the desired order p. See [2] for a more
detailed exposition of this argument.

Remark 2. In addition, it makes sense to generate the additional conditions for
order p + 1. Even if we do not solve for these conditions, they represent the
leading term of the local error, and this can be used to search for optimized
solutions for order p, where the coefficients in dp+1

dhp+1 L(h)
∣∣
h=0

become minimal
in size.

3 A Parallel Implementation

In our Maple code, a table of Lyndon-Shirshov words up to a fixed length (cor-
responding to the maximal order aimed for; see Table 1) is included as static
data. The procedure Order conditions displayed below generates a set of order
conditions using the algorithm described in Sect. 2.3.

– First of all, we activate the package Physics and declare the symbols A and
B as non-commutative.

– For organizing the multinomial expansion according to (7) we use standard
functions from the packages combinat and combstruct.

– The number of terms during each stage rapidly increases as more stages are
to be computed. Therefore we have implemented a parallel version based on
the package Grid. Parallelization is taken into account as follows:
• On a multi-core processor, all threads execute the same code. Each thread

identifies itself via a call to MyNode(), and this is used to control execution.
Communication between the threads is realized via message passing.

• Thread 0 is the master thread controlling the overall execution.
• For q = 1 . . . p:

* Each of the working threads generates symbolic expressions of the form
(recall Aj = aj A, Bj = bj B)

Πk :=
(

q

k

) ∏
j=s...1

kj∑
�=0

(
kj

�

)
B�

j A
kj−�
j , k ∈ Ns

0,

appearing in the sum (7). Here the work is equidistributed over the
threads, i.e., each of them generates a subset of {Πk, k ∈ Ns

0} in parallel.
* For each of these expressions Πk, the coefficients of all Lyndon-Shirshov

monomials of degree q are computed, and the according subsets of coef-
ficients are summed up in parallel.

38 W. Auzinger et al.

* Finally, the master thread 0 sums up the results received from all the
working threads. This results in the set of multivariate polynomials rep-
resenting the order conditions at level q.

– The Maple code displayed below is, to some extent, to be read as pseudo-code.
For simplicity of presentation we have ignored some technicalities, e.g., con-
cerning the proper indexing of combinatorial tupels, etc. The original, working
code is available from the authors.

> with(combinat)

> with(combstruct)

> with(Grid)

> with(Physics)

> Setup(noncommutativeprefix={A,B})

> Order_conditions := proc()

global p,s,OC, # I/O parameters via global variables

Lyndon # assume that table of Lyndon monomials is available

this_thread := MyNode() # each thread identifies itself

max_threads := NumNodes() # number of available threads

for j from 1 to s do

A_j[j] := a[j]*A

B_j[j] := b[j]*B

term[-1][j] := 1

end do

OC=[0$p]

for q from 1 to p do

if this_thread>0 then # working threads start computing

master thread 0 is waiting

Mn := allstructs(Composition(q+2),size=2)

for j from 1 to s do

term[q-1][j] := 0

for mn from 1 to nops(Mn) do

term[q-1][j] :=

term[q-1][j] +

multinomial(q,Mn[mn])*B_j[j]^Mn[mn][2]*A_j[j]^Mn[mn][1]

end do

end do

k := iterstructs(Composition(q+s),size=s)

OC_q_this_thread := [0$nops(Lyndon[q])]

while not finished(k) do # generate expansion (7) term by term

Ms := nextstruct(k)

if get_active(this_thread) then # get_active:

auxiliary Boolean function

for equidistributing workload

Pi_k := 1

for j from s to 1 by -1 do

Pi_k := Pi_k*term[Ms[j]-1][j]

end do

Pi_k := multinomial(q,Ms)*expand(Pi_k)

OC_q_this_thread := # compare coefficients of Lyndon monomials

OC_q_this_thread +

[seq(coeff(Pi_k,Lyndon[q][l]),l=1..nops(Lyndon[q]))]

end if

Order Conditions for Splitting Methods 39

end do

Send(0,OC_q_this_thread) # send partial sum to master thread

else # master thread 0 receives and sums up

partial results from working threads

OC[q] := [(-1)$nops(Lyndon[q])] # initialize sum

for i_thread from 1 to max_threads-1 do

OC[q] := OC[q] + Receive(i_thread)

end do

end if

end do

end proc

> # Example:

> p := 4

> s := 4

> Launch(Order_conditions,imports=["p","s"],exports=["OC"]) # run

> OC[1]

[a[1]+a[2]+a[3]+a[4]-1,

b[1]+b[2]+b[3]+b[4]-1]

> OC[2]

[2*a[2]*b[1]+2*a[3]*b[1]+2*a[3]*b[2]

+2*a[4]*b[1]+2*a[4]*b[2]+2*a[4]*b[3]-1]

> OC[3]

[3*a[2]^2*b[1]+6*a[2]*a[3]*b[1]+6*a[2]*a[4]*b[1]

+3*a[3]^2*b[1]+3*a[3]^2*b[2]+6*a[3]*a[4]*b[1]+6*a[3]*a[4]*b[2]

+3*a[4]^2*b[1]+3*a[4]^2*b[2]+3*a[4]^2*b[3]-1,

3*a[2]*b[1]^2+3*a[3]*b[1]^2+6*a[3]*b[1]*b[2]

+3*a[3]*b[2]^2+3*a[4]*b[1]^2+6*a[4]*b[1]*b[2]+6*a[4]*b[1]*b[3]

+3*a[4]*b[2]^2+6*a[4]*b[2]*b[3]+3*a[4]*b[3]^2-1]

> OC[4]

[4*a[2]^3*b[1]+12*a[2]^2*a[3]*b[1]+12*a[2]^2*a[4]*b[1]

+12*a[2]*a[3]^2*b[1]+24*a[2]*a[3]*a[4]*b[1]+12*a[2]*a[4]^2*b[1]

+4*a[3]^3*b[1]+4*a[3]^3*b[2]+12*a[3]^2*a[4]*b[1]

+12*a[3]^2*a[4]*b[2]+12*a[3]*a[4]^2*b[1]+12*a[3]*a[4]^2*b[2]

+4*a[4]^3*b[1]+4*a[4]^3*b[2]+4*a[4]^3*b[3]-1,

6*a[2]^2*b[1]^2+12*a[2]*a[3]*b[1]^2+12*a[2]*a[4]*b[1]^2

+6*a[3]^2*b[1]^2+12*a[3]^2*b[1]*b[2]+6*a[3]^2*b[2]^2

+12*a[3]*a[4]*b[1]^2+24*a[3]*a[4]*b[1]*b[2]+12*a[3]*a[4]*b[2]^2

+6*a[4]^2*b[1]^2+12*a[4]^2*b[1]*b[2]+12*a[4]^2*b[1]*b[3]

+6*a[4]^2*b[2]^2+12*a[4]^2*b[2]*b[3]+6*a[4]^2*b[3]^2-1,

4*a[2]*b[1]^3+4*a[3]*b[1]^3+12*a[3]*b[1]^2*b[2]

+12*a[3]*b[1]*b[2]^2+4*a[3]*b[2]^3+4*a[4]*b[1]^3

+12*a[4]*b[1]^2*b[2]+12*a[4]*b[1]^2*b[3]+12*a[4]*b[1]*b[2]^2

+24*a[4]*b[1]*b[2]*b[3]+12*a[4]*b[1]*b[3]^2+4*a[4]*b[2]^3

+12*a[4]*b[2]^2*b[3]+12*a[4]*b[2]*b[3]^2+4*a[4]*b[3]^3-1]

For practical use some further tools have been developed, e.g. for generating
tables of polynomial coefficients for further use, e.g., by numerical software other
than Maple. This latter job can also be parallelized.

40 W. Auzinger et al.

3.1 Special Cases

Some special cases are of interest:

– Symmetric schemes are characterized by the property S(−h,S(h, u)) = u.
Here, either a1 = 0 or bs = 0, and the remaining coefficient sets (aj) and
(bj) are palindromic. Symmetric schemes have an even order p, and the order
conditions for even orders need not be included; see [8]. Thus, we use a special
ansatz and generate a reduced set of equations.

– Palindromic schemes were introduced in [2] and characterized by the property
S(−h, Š(h, u)) = u, where, Š denotes the scheme S with the role of A and B
interchanged. In this case, the full coefficient set

(a1, b1, . . . , as, bs)

is palindromic. As for symmetric schemes, this means that a special ansatz is
used, and again it is sufficient to generate a reduced set of equations, see [2].

Apart from these modifications, the basic algorithm remains unchanged.

4 Modifications and Extensions

4.1 Splitting into More Than Two Operators

Our algorithm directly generalizes to the case of splitting into more than two
operators. Consider evolution equations where the right-hand side splits into
three parts,

∂tu(t) = F (u(t)) = A(u(t)) + B(u(t)) + C(u(t)), (10)

and associated splitting schemes,

S(h, u) = Ss(h,Ss−1(h, . . . ,S1(h, u))) ≈ ΦF (h, u), (11a)

with
Sj(h, v) = ΦC(cj h, ΦB(bj h, ΦA(aj h, v))), (11b)

see [4]. Here the linear representation (7) generalizes as follows, with Aj =
aj A, Bj = bj B, Cj = cj C, and k = (k1, . . . , ks) ∈ Ns

0, � = (�A, �B , �C) ∈ N3
0:

dq

dhq
L(h)

∣∣∣
h=0

=
∑

|k|=q

(
q

k

) ∏
j=s...1

∑
|�|=kj

(
kj

�

)
C�C

j B�B
j A�A

j − (A + B + C)q.

(12)
On the basis of these identities, the algorithm from Sect. 2.3 generalizes in a
straightforward way. The Lyndon basis representing independent commutators
now corresponds to Lyndon words over the alphabet {A, B, C}, see [2]. Concern-
ing special cases (symmetries etc.) and parallelization, similar considerations as
before apply.

Order Conditions for Splitting Methods 41

4.2 Pairs of Splitting Schemes

For the purpose of adaptive time-splitting algorithms, the construction of (opti-
mized) pairs of schemes of orders (p, p + 1) is favorable. Generating a respective
set of order conditions can also be accomplished by a modification of our code;
the difference lies in the fact that some coefficients are chosen a priori (corre-
sponding to a given method of order p + 1), but apart from this the generation
of order conditions for an associated scheme of order p works analogously as
before. Finding optimal schemes is then accomplished by tracing a large set of
possible solutions; see [2].

5 Computational Performance; Conclusions

The following computations were performed on a node consisting of two proces-
sors of type AMD Opteron 6132 HR (2.2 GHz) with 8 cores. This means that
together with a master thread up to 15 working threads can be used. An ample
memory of 32 GB is available.

Beginning with order p = 6, the computational effort becomes significant
(and strongly increases with higher orders). We consider two different parameter
settings (without assuming any symmetries for the setup of order conditions):

(i) AB – splitting, 10-stage scheme (s = 10), desired order p = 6,
(ii) ABC – splitting, 15-stage scheme (s = 15), desired order p = 6.

Timing data are specified in the format [d]:[hh]:mm:ss.
For case (i) we compare the performance for the fully parallelized version

including 15 working threads with a restricted, essentially sequential version
where only 1 working thread is used.

(i) • 15 active working threads:
wall clock time = 00:45,
total CPU time = 09:48.

This amounts to an overall processor utilization of about 85 %.

• 1 active working thread:
wall clock time = 07:46,
total CPU time = 07:58.

We approximately observe the expected linear speedup of running (wall clock)
time with the number of threads used. The slightly increased cost (in terms
of total CPU time) of the fully parallel version is to be attributed to commu-
nication between the threads.

(ii) • 15 active working threads:
wall clock time = 01:46:03,
total CPU time = 1:01:29:47.

This amounts to an efficient overall processor utilization of about 90 %.
For this case we have not performed a run with a single working thread.

42 W. Auzinger et al.

For the ABC case the absolute timing data are significantly larger due to the
fact that the number of terms in the Taylor expansion of the local error grows
much faster.5

Especially in this latter case, the poor computational performance of a
general-purpose symbolic system like Maple (including the Physics package)
becomes evident. Here, parallelization is essential to reduce wall-clock times as
much as possible. The algorithm presented here could also be implemented in
a ‘slimmer’ language as for instance C or Julia, but of course at the expense of
implementing many auxiliary components like various combinatorial functions
and, in particular, handling of expressions involving non-commutative variables.
In this sense, our implementation is a pragmatic one: Make use of a readily
available software package and gain performance via parallelization, a strategy
which may be relevant also for other kinds of symbolic codes.

Acknowledgements. This work was supported by the Austrian Science Fund (FWF)
under grant P24157-N13, and by the Vienna Science and Technology Fund (WWTF)
under grant MA-14-002. Computational results based on the ideas in this work have
been achieved in part using the Vienna Scientific Cluster (VSC).

References

1. Auzinger, W., Herfort, W.: Local error structures and order conditions in terms of
Lie elements for exponential splitting schemes. Opuscula Math. 34, 243–255 (2014)

2. Auzinger, W., Hofstätter, H., Ketcheson, D., Koch, O.: Practical splitting methods
for the adaptive integration of nonlinear evolution equations. Part I: Construction
of optimized schemes and pairs of schemes. To appear in BIT Numer. Math

3. Auzinger, W., Koch, O.: Coefficients of various splitting methods.
www.asc.tuwien.ac.at/ winfried/splitting/

4. Auzinger, W., Koch, O., Thalhammer, M.: Defect-based local error estimators for
high-order splitting methods involving three linear operators. Numer. Algorithms
70, 61–91 (2015)

5. Blanes, S., Casas, F., Farrés, A., Laskar, J., Makazaga, J., Murua, A.: New families
of symplectic splitting methods for numerical integration in dynamical astronomy.
Appl. Numer. Math. 68, 58–72 (2013)

6. Bokut, L., Sbitneva, L., Shestakov, I.: Lyndon-Shirshov words, Gröbner-Shirshov
bases, and free Lie algebras. In: Non-Associative Algebra and Its Applications, chap
3. Chapman & Hall / CRC, Boca Raton (2006)

7. Duval, J.P.: Géneration d’une section des classes de conjugaison et arbre des mots
de Lyndon de longueur bornée. Theoret. Comput. Sci. 60, 255–283 (1988)

8. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, 2nd edn.
Springer, Heidelberg (2006)

9. Ketcheson, D., MacDonald, C., Ruuth, S.: Spatially partitioned embedded Runge-
Kutta methods. SIAM J. Numer. Anal. 51, 2887–2910 (2013)

5 There are special cases of practical interest where this growth is much more moder-
ate; we do not discuss such details here.

http://www.asc.tuwien.ac.at/winfried/splitting/

Symbolic Manipulation of Flows of Nonlinear
Evolution Equations, with Application

in the Analysis of Split-Step Time Integrators

Winfried Auzinger1, Harald Hofstätter1(B), and Othmar Koch2

1 Technische Universität Wien, Vienna, Austria
w.auzinger@tuwien.ac.at, hofi@harald-hofstaetter.at

2 Universität Wien, Vienna, Austria
othmar@othmar-koch.org

www.asc.tuwien.ac.at/∼winfried

www.harald-hofstaetter.at

www.othmar-koch.org

Abstract. We describe a package realized in the Julia programming lan-
guage which performs symbolic manipulations applied to nonlinear evo-
lution equations, their flows, and commutators of such objects. This tool
was employed to perform contrived computations arising in the analysis
of the local error of operator splitting methods. It enabled the proof of
the convergence of the basic method and of the asymptotical correct-
ness of a defect-based error estimator. The performance of our package
is illustrated on several examples.

Keywords: Nonlinear evolution equations · Time integration · Splitting
methods · Symbolic computation · Julia language

1 Problem Setting

We are interested in the solution to nonlinear evolution equations

∂tu(t) = A(u(t)) + B(u(t)) = H(u(t)), u(0) = u0, (1)

on a Banach space X, where A and B are general nonlinear, unbounded operators
defined on a subset D ⊂ X, the solution is denoted by EH(t, u0), and analogously
for the two sub-flows associated with A and B. The structure of the vector fields
often suggests to employ additive splitting methods to separately propagate the
two subproblems defined by A and B,

u(t1) ≈ u1 := S(h, u0) = EB(bsh, ·)◦EA(ash, ·)◦. . .◦EB(b1h, ·)◦EA(a1h, u0), (2)

where the coefficients aj , bj , j = 1 . . . s are determined according to the require-
ment that a prescribed order of consistency is obtained [5].

Both in the a priori error analysis and for a posteriori error estimation, a
defect-based approach has been introduced in [4], which serves both to derive
theoretical error bounds and as a basis for adaptive step-size selection.
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 43–57, 2016.
DOI: 10.1007/978-3-319-45641-6 4

44 W. Auzinger et al.

In the analysis of this error estimate, extensive symbolic manipulation of the
flows defined by the operators in (1), their Fréchet derivatives and arising com-
mutators is indispensable. As such calculations imply a high effort of formula
manipulation and are highly error prone, we have implemented an automatic
tool in the Julia programming language to verify the calculation. The present
paper focusses on this tool, since in [4] no details on the implementation are
given. We are not aware of available tools providing the functionality required
for our task in established computer algebra systems, whence we decided on an
implementation from scratch. Julia is a high-level, high-performance dynamic
programming language for technical computing, see [1], which appeared conve-
nient for our purpose.

By defining a suitable set of substitution rules, the algorithm can check the
equivalence of expressions built from the objects mentioned. On this basis, it
was possible to ascertain the correctness of all steps in the proofs given in [4].

2 Local Error, Defect, and Error Estimator

We describe the background arising from the application of splitting methods (2)
to the solution of evolution equations (1), see [4]. The defect of the splitting
approximation is defined as

D(t, u) = S(1)(t, u) = ∂tS(t, u) − H(S(t, u)),

while the local error is given by

L(t, u) = S(t, u) − EH(t, u) =
∫ t

0

F(τ, t, u) dτ, (3)

with
F(τ, t, u) = ∂2EH(t − τ,S(τ, u)) · S(1)(τ, u).

The Lie-Trotter Method

We illustrate our analysis of the local error for the simplest Lie-Trotter splitting
method,

S(t, u0) = EB(t, EA(t, u0)),

see [4]. This involves some nontrivial crucial identities, namely (4)–(9) below,
which will be verified using our Julia package in Sect. 4.

Our aim is to show
S(1)(t, u) = O(t),

and thus
L(t, u) = O(t2).

S(1)(t, u) can be represented in the form

S(1)(t, u) = ∂t S(t, u) − H(S(t, u)) = S̃(1)(t, EA(t, u)), (4a)

Symbolic Manipulation of Nonlinear Flows 45

with
S̃(1)(t, v) = ∂2EB(t, v) · A(v) − A(EB(t, v)). (4b)

S̃(1)(t, v) satisfies

∂tS̃(1)(t, v) = B′(EB(t, v)) · S̃(1)(t, v) + [B,A](EB(t, v)),

S̃(1)(0, v) = 0,
(5)

where
[B,A](u) = B′(u)A(u) − A′(u)B(u)

denotes the commutator of the two vector fields.
From

∂tEF (t, u) = F (EF (t, u)) ⇒ ∂t∂2EF (t, u) · v = F ′(EF (t, u)) · ∂2EF (t, u) · v

it follows that ∂2EF (t, u) is a fundamental system of the linear differential equa-
tion

∂tX(t, u) = F ′(EF (t, u)) · X(t, u)

which satisfies
∂2EF (t, u)−1 = ∂2EF (−t, EF (t, u)).

The solution of an inhomogenous system like (5) of the form

∂tX(t, u) = F ′(EF (t, u)) · X(t, u) + R(t, u),
X(0, u) = X0(u)

can be represented by the variation of constant formula,

X(t, u) = ∂2EF (t, u) ·
(

X0(u) +
∫ t

0

∂2EF (−τ, EF (τ, u)) · R(τ, u) dτ

)
.

Hence, the term S̃(1)(t, v) defined in (4b) satisfies

S̃(1)(t, v) = ∂2EB(t, v) ·
∫ t

0

∂2EB(−τ, EB(τ, v)) · [B,A](EB(τ, v)) dτ.

From this integral representation it follows

D(t, u) = S̃(1)(t, EA(t, u)) = O(t),

and

L(t, u) =
∫ t

0

∂2EH(t − τ,S(τ, u)) · D(τ, u) dτ = O(t2).

As a basis for adaptive time-stepping, we define an a posteriori local error
estimator by numerical evaluation of the integral representation (3) of the local
error by the trapezoidal rule, yielding

L̂(t, u) = 1
2 t F(t, t, u) = 1

2 t D(t, u) = 1
2 t S(1)(t, u).

46 W. Auzinger et al.

To analyze the deviation of this error estimator from the exact error, we use the
Peano representation

L̂(t, u) − L(t, u) =
∫ t

0

K1(τ, t) ∂τF(τ, t, u) dτ,

with the kernel
K1(τ, t) = τ − 1

2 t = O(t).

To infer asymptotical correctness of the error estimator, we wish to show that

L̂(t, u) − L(t, u) = O(t3).

To this end, we compute

∂τF(τ, t, u) = ∂2EH(t − τ,S(τ, u)) · S(2)(τ, u)

+ ∂2
2EH(t − τ,S(τ, u))(S(1)(τ, u),S(1)(τ, u)) (6)

= ∂2EH(t − τ,S(τ, u)) · S(2)(τ, u) + O(t),

where

S(2)(t, u) = ∂t S(1)(t, u) − H ′(S(t, u)) · S(1)(t, u)

= S̃(2)(t, EA(t, u)), (7a)

with

S̃(2)(t, v) = ∂2S̃(1)(t, v) · A(v) − A′(EB(t, v)) · S̃(1)(t, v) + [B,A](EB(t, v)). (7b)

S̃(2)(t, v) satisfies

∂tS̃(2)(t, v) = B′(EB(t, v)) · S̃(2)(t, v)

+ B′′(EB(t, v))(S̃(1)(t, v), S̃(1)(t, v))
− [B, [B,A]](EB(t, v)) − [A, [B,A]](EB(t, v)) (8)

+ 2[B,A]′(EB(t, v)) · S̃(1)(t, v),

S̃(2)(0, v) = [B,A](v).

This implies the integral representation

S̃(2)(t, v) = ∂2EB(t, v) · [B,A](v) + ∂2EB(t, v) ·
∫ t

0

∂2EB(−τ, EB(τ, v)) ·
(
B′′(EB(τ, v))(S̃(1)(τ, v), S̃(1)(τ, v))

− [B, [B,A]](EB(τ, v)) − [A, [B,A]](EB(τ, v))

+ 2[B,A]′(EB(τ, v)) · S̃(1)(τ, v)
)

dτ.

Symbolic Manipulation of Nonlinear Flows 47

Thus,
S(2)(τ, u) = ∂2EB(τ, EA(τ, u)) · [B,A](EA(τ, u)) + O(t),

and altogether

L̂(t, u) − L(t, u) =
∫ t

0

K1(τ, t) ∂τF(τ, t, u) dτ

=
∫ t

0

K1(τ, t)

· ∂2EH(t − τ,S(τ, u)) · ∂2EB(τ, EA(τ, u)) · [B,A](EA(τ, u)) dτ + O(t3)

=
∫ t

0

K2(τ, t)

· ∂τ

(
∂2 EH(t − τ,S(τ, u)) · ∂2 EB(τ, EA(τ, u)) · [B,A](EA(τ, u))

)
dτ + O(t3),

where K2(τ, t) = 1
2τ(t − τ) = O(t2) by partial integration. Here,

∂τ

(
∂2EH(t − τ,S(τ, u)) · ∂2EB(τ, EA(τ, u)) · [B,A](EA(τ, u))

)
= O(1), (9a)

because this derivative can be expressed as
[
∂2EH(t − τ, EB(τ, v)) · ∂2EB(τ, v) · [[B,A], A](v)

+ ∂2EH(t − τ, EB(τ, v)) · ∂2S̃(1)(τ, v) · [B,A](v)

+ ∂2
2EH(t − τ, EB(τ, v))

(S̃(1)(τ, v), ∂2EB(τ, v) · [B,A](v)
)]

v=EA(t,u)
. (9b)

Fig. 1. Data type hierarchy of Flows.jl.

48 W. Auzinger et al.

The Strang Splitting Method

For the Strang splitting method

S(t, u0) = EB(t
2 , EA(t, EB(t

2 , u0))),

our aim is to show
S(1)(t, u) = O(t2),

and thus
L(t, u) = O(t3).

In this case the necessary manipulations become significantly more complex than
for the Lie-Trotter case, in particular concerning the analysis of a defect-based
a posteriori error estimator. The analysis is based on multiple application of
variation of constant formulas in a general nonlinear setting. This was the main
motivation for the development of our computational tool; in particular, the
theoretical results from [4], which are not repeated here, have been verified using
this tool.

3 The Julia Package Flows.jl

The package described in the following is available from [2]. It consists of approx-
imately 1000 lines of Julia code and is essentially self-contained, relying only on
the Julia standard library but not on additional packages. A predecessor written
in Perl has been used for the preparation of [4]. In a Julia notebook, the package
is initialized as follows:

In [1]: using Flows

Data Types

The data types in the package Flows.jl and their hierarchical dependence are
illustrated in Fig. 1.

Objects of the abstract type TimeExpression represent a first argument t in a
flow expression like EH(t, u).

Objects of type TimeVariable are generated as follows:

In [2]: @t vars t s r
Out[2]: (t,s,r)

Objects of type TimeLinearCombination:

In [3]: ex = t - 2s + 3r
Out[3]: 3r + t − 2s

Similarly, objects of the abstract type SpaceExpression represent a second argu-
ment u in a flow expression like EH(t, u).

Symbolic Manipulation of Nonlinear Flows 49

Objects of type SpaceVariables:

In [4]: @x vars u v w
Out[4]: (u,v,w)

In order to construct objects of type AutonomousFunctionExpression or Flow-
Expression like A(u) or EA(t, u) we first need to declare a symbol for A of type
AutonomousFunction.1

In [5]: @funs A
Out[5]: (A,)

Now we can generate objects of types AutonomousFunctionExpression and
FlowExpression:

In [6]: ex1 = A(u)
Out[6]: A(u)
In [7]: ex2 = E(A,t,u)
Out[7]: EA(t, u)

Additional arguments in such expressions represent arguments for Fréchet deriv-
atives with respect to a SpaceVariable u. Note that the order of the derivative
is implicitly determined from the number of arguments.

In [8]: ex1 = A(u,v,w)
Out[8]: A′′(u)(v, w)
In [9]: ex2 = E(A,t,u,v)
Out[9]: ∂2EA(t, u) · v

Objects of type SpaceLinearCombination can be built from such expressions:

In [10]: ex = -2E(A,t,u,v,w)+2u+A(v,w)
Out[10]: −2∂2

2EA(t, u)(v, w) + 2u + A′(v) · w

Methods

differential

This method generates the Fréchet derivative of an expression with respect to a
SpaceVariable applied to an expression.

In [11]: ex = A(B(u)) + E(A,t,u,v)
Out[11]: A(B(u)) + ∂2EA(t, u) · v

In [12]: differential(ex,u,B(w))
Out[12]: A′(B(u)) · B′(u) · B(w) + ∂2

2EA(t, u)(v,B(w))

t derivative

This method generates the derivative of an expression with respect to a Time-
Variable.
1 Likewise for objects of type NonAutonomousFunction.

50 W. Auzinger et al.

In [13]: ex = E(A,t-2s,u+E(B,s,v))
Out[13]: EA(t − 2s, u + EB(s, v))

In [14]: t derivative(ex,s)
Out[14]: ∂2EA(t−2s, u+EB(s, v)) ·B(EB(s, v))−2A(EA(t−2s, u+EB(s, v))

expand

A (higher-order) Fréchet derivative is a (multi-)linear map. The method expand
transforms the application of such a (multi-)linear map to a linear combination
of expressions into the corresponding linear combination of (multi-)linear maps.

In [15]: ex1 = E(A,t,u,2v+3w)
Out[15]: ∂2EA(t, u) · (2v + 3w)

In [16]: expand(ex1)
Out[16]: 2∂2EA(t, u) · v + 3∂2EA(t, u) · w

In [17]: ex2 = A(u,v+w,v+w)
Out[17]: 2A′′(u)(v + w, v + w)

In [18]: expand(ex2)
Out[18]: 2A′′(u)(v, w) + A′′(u)(v, v) + A′′(u)(w,w)

substitute

Different variants of substitutions are implemented. The most sophisticated one
is substitution of an object of type Function by an expression. For example,
this allows to define the double commutator [A, [A,B]](u) by substituting B in
[A,B](u) by [A,B](u):

In [19]: C AB = A(u,B(u))-B(u,A(u))
Out[19]: A′(u) · B(u) − B′(u) · A(u)

In [20]: substitute(C AB,B,C AB,u)
Out[20]: −A′′(u)(B(u), A(u)) + B′(u) · A′(u) · A(u) + B′′(u)(A(u), A(u))

−A′(u) · B′(u) · A(u) + A′(u) · (−B′(u) · A(u) + A′(u) · B(u))

commutator
This method generates expressions involving commutators [A,B] and double
commutators [A, [B,C]].

In [21]: ex1 = commutator(A,B,u)
Out[21]: A′(u) · B(u) − B′(u) · A(u)

In [22]: ex2 = commutator(A,B,C,u)
Out[22]: C ′(u) · B′(u) · A(u) + C ′′(u)(B(u), A(u)) − B′(u) · C ′(u) · A(u)

− B′′(u)(C(u), A(u)) + A′(u) · (B′(u) · C(u) − C ′(u) · B(u))

Example: We verify the Jacobi identity [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0:

In [23]: ex3 = expand(commutator(A,B,C,u)+commutator(B,C,A,u)
+commutator(C,A,B,u))

Out[23]: 0

Symbolic Manipulation of Nonlinear Flows 51

FE2DEF, DEF2FE
These methods substitute expressions according to the fundamental identity

A(EA(t, u)) = ∂2EA(t, u) · A(u),

see [4].

In [24]: ex1 = A(E(A,t,u))
Out[24]: A(EA(t, u))
In [25]: ex2 = FE2DEF(ex1)
Out[25]: ∂2EA(t, u) · A(u)
In [26]: DEF2FE(ex2)
Out[26]: A(EA(t, u))

reduce order

This method constitutes the essential manipulation needed for the verification of
the identities (4)–(9) in Sect. 2. By repeated differentiation of the fundamental
identity

A(EA(t, u)) − ∂2EA(t, u) · A(u) = 0

we obtain

A′(EA(t, u)) · ∂2EA(t, u) · v − ∂2
2EA(t, u)(A(u), v) − ∂2EA(t, u) · A′(u) · v = 0,

A′′(EA(t, u))(∂2EA(t, u) · v, ∂2EA(t, u) · w) + A′(EA(t, u)) · ∂2
2EA(t, u)(v, w)

−∂3
2EA(t, u)(A(u), v, w) − ∂2

2EA(t, u)(A′(u) · v, w)
−∂2

2EA(t, u)(A′(u) · w, v) − ∂2EA(t, u) · A′′(u)(v, w) = 0,

and so on. The method reduce order transforms expressions of the form of the
highest order derivative in these identities by means of these very identities:

In [27]: ex1 = E(A,t,u,A(u))
Out[27]: ∂2EA(t, u) · A(u)
In [28]: reduce order(ex1)
Out[28]: A(EA(t, u))
In [29]: ex2 = E(A,t,u,A(u),v)
Out[29]: ∂2

2EA(t, u)(A(u), v)
In [30]: reduce order(ex2)
Out[30]: A′(EA(t, u)) · ∂2EA(t, u) · v − ∂2EA(t, u) · A′(u) · v

In [31]: ex3 = E(A,t,u,A(u),v,w)
Out[31]: ∂3

2EA(t, u)(A(u), v, w)
In [32]: reduce order(ex3)
Out[32]: − ∂2

2EA(t, u)(A′(u) · w, v) − ∂2
2EA(t, u)(A′(u) · v, w)

− ∂2EA(t, u) · A′′(u)(v, w) + A′(EA(t, u)) · ∂2
2EA(t, u)(v, w)

+ A′′(EA(t, u))(∂2EA(t, u) · v, ∂2EA(t, u) · w)

Similarly for higher derivatives of analogous form.

52 W. Auzinger et al.

4 Verification of Crucial Identities

We describe a Julia notebook which implements the verification of the identities
(4)–(9) of Sect. 2.

Check (4)

We verify identity (4),

∂tS(t, u) − H(S(t, u)) =
[
∂2EB(t, v) · A(v) − A(EB(t, v))

]
v=EA(t,u)

.

In [1]: using Flows

In [2]: @t vars t
Out[2]: (t,)

In [3]: @x vars u v
Out[3]: (u,v)

In [4]: @funs A B
Out[4]: (A,B)

In [5]: E Atu = E(A,t,u)
Out[5]: EA(t, u)
In [6]: E Btv = E(B,t,v)
Out[6]: EB(t, v)
In [7]: Stu = E(B,t,E(A,t,u))
Out[7]: EB(t, EA(t, u))
In [8]: S1tv = differential(E(B,t,v),v,A(v))-A(E(B,t,v))
Out[8]: ∂2EB(t, v) · A(v) − A(EB(t, v))
In [9]: S1tu = substitute(S1tv,v,E(A,t,u))

ex1 = S1tu
Out[9]: −A(EB(t, EA(t, u))) + ∂2EB(t, EA(t, u)) · A(EA(t, u))
In [10]: ex2 = t derivative(Stu,t)-(A(Stu)+B(Stu))
Out[10]: −A(EB(t, EA(t, u))) + ∂2EB(t, EA(t, u)) · A(EA(t, u))
In [11]: ex1-ex2
Out[11]: 0

Check (5)

We verify identity (5),

∂tS̃(1)(t, v) = B′(EB(t, v)) · S̃(1)(t, v) + [B,A](EB(t, v)).

In [12]: ex1 = B(E(B,t,v),S1tv)+commutator(B,A,E(B,t,v))
Out[12]: −A′(EB(t, v)) · B(EB(t, v)) + B′(EB(t, v)) · (∂2EB(t, v) · A(v)

−A(EB(t, v))) + B′(EB(t, v)) · A(EB(t, v))
In [13]: ex2 = t derivative(S1tv,t)
Out[13]: −A′(EB(t, v)) · B(EB(t, v)) + B′(EB(t, v)) · ∂2EB(t, v) · A(v)
In [14]: reduce order(expand(ex1-ex2))
Out[14]: 0

Symbolic Manipulation of Nonlinear Flows 53

Check (6)

We verify identity (6),

∂τ

(
∂2EH(t − τ,S(τ, u)) · S(1)(τ, u)

)
= ∂2EH(t − τ,S(τ, u)) · S(2)(τ, u) + ∂2

2EH(t − τ,S(τ, u))(S(1)(τ, u),S(1)(τ, u)).

In [15]: @nonautonomous funs S
Out[15]: (S,)

In [16]: @funs H
Out[16]: (H,)

In [17]: S1tu = t derivative(S(t,u),t)-H(S(t,u))
Out[17]: −H(S(t, u)) + ∂1S(t, u)

In [18]: S2tu = t derivative(S1tu,t)-H(S(t,u),S1tu)
Out[18]: −H ′(S(t, u)) · ∂1S(t, u) + ∂2

1S(t, u) − H ′(S(t, u)) · (−H(S(t, u))
+∂1S(t, u))

In [19]: @t vars T
Out[19]: (T,)

In the following, a trailing semicolon in the input suppresses the display of the
corresponding output.

In [20]: ex1 = E(H,T-t,S(t,u),S2tu)+E(H,T-t,S(t,u),S1tu,S1tu);

In [21]: ex2 = t derivative(E(H,T-t,S(t,u),S1tu),t);

In [22]: reduce order(expand(ex1-ex2))
Out[22]: 0

Check (7)

We verify identity (7),

∂t S(1)(t, u) − H ′(S(t, u)) · S(1)(t, u)

=
[
∂2S̃(1)(t, v) · A(v) − A′(EB(t, v)) · S̃(1)(t, v) + [B,A](EB(t, v))

]
v=EA(t,u)

.

In [23]: S2tu = t derivative(S1tu,t)-A(Stu,S1tu)-B(Stu,S1tu)
ex1 = S2tu;

In [24]: S2tv = (differential(S1tv,v,A(v))-A(E(B,t,v),S1tv)
+commutator(B,A,E(B,t,v)))

ex2 = substitute(S2tv,v,E(A,t,u));

In [25]: expand(ex1-ex2)
Out[25]: 0

54 W. Auzinger et al.

Check (8)

We verify identity (8),

∂tS̃(2)(t, v) = B′(EB(t, v)) · S̃(2)(t, v)

+ B′′(EB(t, v))(S̃(1)(t, v), S̃(1)(t, v))
− [B, [B,A]](EB(t, v)) − [A, [B,A]](EB(t, v))

+ 2[B,A]′(EB(t, v)) · S̃(1)(t, v).

In [26]: ex1 = (B(E(B,t,v),S2tv) + B(E(B,t,v),S1tv,S1tv)
-commutator(B,B,A,E(B,t,v))
-commutator(A,B,A,E(B,t,v))
+2*substitute(differential
(commutator(B,A,w),w,S1tv),w,E(B,t,v)));

In [27]: ex2 = t derivative(S2tv,t);

In [28]: expand(ex1-ex2)
Out[28]: 0

Check (9)

We verify identity (9),

∂τ

(
∂2EH(t − τ,S(τ, u)) · ∂2EB(τ, EA(τ, u)) · [B,A](EA(τ, u))

)
=[

∂2EH(t − τ, EB(τ, v)) · ∂2EB(τ, v) · [[B,A], A](v)

+ ∂2EH(t − τ, EB(τ, v)) · ∂2S̃(1)(τ, v) · [B,A](v)

+ ∂2
2EH(t − τ, EB(τ, v))

(S̃(1)(τ, v), ∂2EB(τ, v) · [B,A](v)
)]

v=EA(t,u)
.

In [29]: ex1 = t derivative(E(H,T-t,Stu,E(B,t,E(A,t,u),
commutator(B,A,E(A,t,u)))),t);

In [30]: ex2 = (substitute(-E(H,T-t,E(B,t,v),E(B,t,v,
commutator(A,B,A,v)))+E(H,T-t,E(B,t,v),
differential(S1tv,v,commutator(B,A,v)))
+E(H,T-t,E(B,t,v),S1tv,E(B,t,v,
commutator(B,A,v))),v,E(A,t,u)));

In [31]: diff = ex1-ex2
diff = FE2DEF(diff)
diff = substitute(diff,H,A(v)+B(v),v)
diff = expand(reduce order(diff))

Out[31]: 0

Symbolic Manipulation of Nonlinear Flows 55

5 Elementary Differentials

To further demonstrate the functionality and correctness of our package, we
consider the elementary differentials obtained by repeated differentiation of a
differential equation,

y′(t) = F (y(t)),
y′′(t) = F ′(y(t)) · F (y(t)),
y′′′(t) = F ′′(y(t))(F (y(t), F (y(t)) + F ′(y(t)) · F ′(y(t)) · F (y(t)),

...

The number of terms in these expressions are available from the literature, see
[6, Table 2.1] or [3]. The following notebook generates the elementary differentials
and counts their number:

In [1]: using Flows

In [2]: @t vars t;
@x vars u;
@funs F;

In [3]: ex = E(F,t,u)
Out[3]: EF (t, u)

In [4]: ex = t derivative(ex,t)
Out[4]: F (EF (t, u))

In [5]: ex = t derivative(ex,t)
Out[5]: F ′(EF (t, u)) · F (EF (t, u))

In [6]: ex = t derivative(ex,t)
Out[6]: F ′(EF (t, u)) · F ′(EF (t, u)) · F (EF (t, u))

+ F ′′(EF (t, u))(F (EF (t, u)), F (EF (t, u)))

In [7]: ex = t derivative(ex,t)
Out[7]: 3F ′′(EF (t, u))(F ′(EF (t, u)) · F (EF (t, u)), F (EF (t, u)))

+ F ′′′(EF (t, u))(F (EF (t, u)), F (EF (t, u)), F (EF (t, u)))
+ F ′(EF (t, u)) · (F ′(EF (t, u)) · F ′(EF (t, u)) · F (EF (t, u))
+ F ′′(EF (t, u))(F (EF (t, u)), F (EF (t, u))))

This is not yet fully expanded. It is a linear combination consisting of 3 terms:

In [8]: length(ex.terms)
Out[8]: 3

If we expand it, we obtain a linear combination of 4 terms, corresponding to the
4 elementary differentials (Butcher trees) of order 4:

56 W. Auzinger et al.

In [9]: ex = expand(ex)
Out[9]: 3F ′′(EF (t, u))(F ′(EF (t, u)) · F (EF (t, u)), F (EF (t, u)))

+ F ′(EF (t, u)) · F ′(EF (t, u)) · F ′(EF (t, u)) · F (EF (t, u))
+ F ′′′(EF (t, u))(F (EF (t, u)), F (EF (t, u)), F (EF (t, u)))
+ F ′(EF (t, u)) · F ′′(EF (t, u))(F (EF (t, u)), F (EF (t, u)))

In [10]: length(ex.terms)
Out[10]: 4

In [11]: ex = expand(t derivative(ex,t));

In [12]: length(ex.terms)
Out[12]: 9

In [13]: ex = expand(t derivative(ex,t));

In [14]: length(ex.terms)
Out[14]: 20

In [15]: ex = expand(t derivative(ex,t));

In [16]: length(ex.terms)
Out[16]: 48

In [17]: ex = E(F,t,u)
ex = expand(t_derivative(ex,t))
println("order\t#terms")
println("---------------")
println(1,"\t",1)
ex = expand(t_derivative(ex,t))
println(2,"\t",1)
for k=3:16

ex = expand(t_derivative(ex,t))
println(k,"\t",length(ex.terms))

end

order #terms

1 1
2 1
3 2
4 4
5 9
6 20
7 48
8 115
9 286
10 719
11 1842
12 4766
13 12486

Symbolic Manipulation of Nonlinear Flows 57

14 32973
15 87811
16 235381

Acknowledgments. This work was supported in part by the projects P24157-N13 of
the Austrian Science Fund (FWF) and MA14-002 of the Vienna Science and Technology
Fund (WWTF).

References

1. http://julialang.org
2. https://github.com/HaraldHofstaetter/Flows.jl
3. The On-line Encyclopedia of Integer Sequences. https://oeis.org/A000081
4. Auzinger, W., Hofstätter, H., Koch, O., Thalhammer, M.: Defect-based local error

estimators for splitting methods, with application to Schrödinger equations, part
III: the nonlinear case. J. Comput. Appl. Math. 273, 182–204 (2015)

5. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, 2nd edn.
Springer, Heidelberg (2006)

6. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I, 2nd
edn. Springer, Heidelberg (1993)

http://julialang.org
https://github.com/HaraldHofstaetter/Flows.jl
https://oeis.org/A000081

Improved Computation of Involutive Bases

Bentolhoda Binaei1, Amir Hashemi1,2(B), and Werner M. Seiler3

1 Department of Mathematical Sciences, Isfahan University of Technology,
84156-83111 Isfahan, Iran

h.binaei@math.iut.ac.ir, Amir.Hashemi@cc.iut.ac.ir
2 School of Mathematics, Institute for Research in Fundamental Sciences (IPM),

19395-5746 Tehran, Iran
3 Institut für Mathematik, Universität Kassel, Heinrich-Plett-Straße 40,

34132 Kassel, Germany
seiler@mathematik.uni-kassel.de

Abstract. In this paper, we describe improved algorithms to compute
Janet and Pommaret bases. To this end, based on the method proposed
by Möller et al. [20], we present a more efficient variant of Gerdt’s algo-
rithm (than the algorithm presented in [16]) to compute minimal invo-
lutive bases. Furthermore, by using an involutive version of the Hilbert
driven technique along with the new variant of Gerdt’s algorithm, we
modify the algorithm given in [23] to compute a linear change of coor-
dinates for a given homogeneous ideal so that the new ideal (after per-
forming this change) possesses a finite Pommaret basis. All the proposed
algorithms have been implemented in Maple and their efficiency is dis-
cussed via a set of benchmark polynomials.

1 Introduction

Gröbner bases are one of the most important concepts in computer algebra for
dealing with multivariate polynomials. A Gröbner basis is a special kind of gen-
erating set for an ideal which provides a computational framework to determine
many properties of the ideal. The notion of Gröbner bases was originally intro-
duced in 1965 by Buchberger in his Ph.D. thesis and he also gave the basic
algorithm to compute it [2,3]. Later on, he proposed two criteria for detecting
superfluous reductions to improve his algorithm [1]. In 1983, Lazard [19] devel-
oped a new approach by relating Gröbner bases computations and linear algebra.
In 1988, Gebauer and Möller [10] reformulated Buchberger’s criteria in an effi-
cient way to improve Buchberger’s algorithm. Furthermore, Möller et al. [20]
proposed an improved version of Buchberger’s algorithm by using the syzygies
of the constructed polynomials to detect useless reductions (this algorithm may
be considered as the first signature-based algorithm to compute Gröbner bases).
Relying on the properties of the Hilbert series of an ideal, Traverso [26] described
the so-called Hilbert-driven Gröbner basis algorithm to improve Buchberger’s

A. Hashemi—The research of the second author was in part supported by a grant
from IPM (No. 94550420).

c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 58–72, 2016.
DOI: 10.1007/978-3-319-45641-6 5

Improved Computation of Involutive Bases 59

algorithm by discarding useless critical pairs. In 1999, Faugère [6] presented his
F4 algorithm to compute Gröbner bases which stems from Lazard’s approach
[19] and uses fast linear algebra techniques on sparse matrices (this algorithm
has been efficiently implemented in Maple and Magma). In 2002, Faugère pre-
sented the famous F5 algorithm for computing Gröbner bases [7]. The efficiency
of this signature-based algorithm benefits from an incremental structure and two
new criteria, namely F5 and IsRewritten criteria (nowadays known respectively
as signature and syzygy criteria). We remark that several authors have studied
signature-based algorithms to compute Gröbner bases and for novel approaches
in this directions we refer to e.g. [8,9].

Involutive bases may be considered as an extension of Gröbner bases (w.r.t.
a restricted monomial division) which include additional combinatorial prop-
erties. The origin of involutive bases theory must be traced back to the work
of Janet [18] on a constructive approach to the analysis of linear and certain
quasi-linear systems of partial differential equations. Then Janet’s approach was
generalized to arbitrary (polynomial) differential systems by Thomas [25]. Based
on the related methods developed by Pommaret in his book [21], the notion
of involutive polynomial bases was introduced by Zharkov and Blinkov in [27].
Gerdt and Blinkov [13] introduced a more general concept of involutive division
and involutive bases for polynomial ideals, along with algorithmic methods for
their construction. An efficient algorithm was devised by Gerdt [12] (see also
[15]) for computing involutive and Gröbner bases using the involutive form of
Buchberger’s criteria (see http://invo.jinr.ru for the efficiency analysis of the
implementation of this algorithm). In this paper, we refer to this algorithm as
Gerdt’s algorithm. Finally, Gerdt et al. [16] described a signature-based algo-
rithm (with an incremental structure) to apply the F5 criterion for deletion of
unnecessary reductions. Some drawbacks of this algorithm are as follows: Due to
its incremental structure (in order to apply the F5 criterion), the selection strat-
egy should be the POT module monomial ordering (which may not be efficient
in general). Furthermore, to respect the signature of computed polynomials, the
reduction process may be not accomplished and (since this may increase the
number of intermediate polynomials) this may significantly affect the efficiency
of the computation. Finally, the involutive basis that this algorithm returns may
be not minimal.

The aim of this paper is to provide an effective method to calculate Pommaret
bases. These bases introduced by Zharkov and Blinkov in [27] are a particular
form of involutive bases respecting many combinatorial properties of the ideals
they generate, see e.g. [22–24] for a comprehensive study of Pommaret bases.
They are not only of interest concerning computational aspects in algebraic
geometry (e.g. by providing deterministic approaches to transform a given ideal
into some classes of generic positions [23]), but they also serve for theoretical
aspects of algebraic geometry (e.g. by providing simple and explicit formulas
to read off many invariants of an ideal like dimension, depth and Castelnuovo-
Mumford regularity [23]).

Relying on the method developed by Möller et al. [20], we give a new
signature-based variant of Gerdt’s algorithm to compute minimal involutive

http://invo.jinr.ru

60 B. Binaei et al.

bases. In particular, the experiments show that the new algorithm is more effi-
cient than algorithm of Gerdt et al. [16]. On the other hand, [23] proposes an
algorithm to compute deterministically a linear change of coordinates for a given
homogeneous ideal so that the transformed ideal possesses a finite Pommaret
basis (note that in general a given ideal does not have a finite Pommaret basis).
In doing so, one computes iteratively the Janet bases of certain polynomial ideals.
By applying the involutive version of Hilbert driven technique to the new variant
of Gerdt’s algorithm, we modify this algorithm to compute Pommaret bases. We
have implemented all the algorithms described in this article and we assess their
performance on a number of test examples.

The rest of the paper is organized as follows. In the next section, we will
review the basic definitions and notations which will be used throughout this
paper. Section 3 is devoted to the description of the new variant of Gerdt’s
algorithm. In Sect. 4, we present the improved algorithm to compute a linear
change of coordinates for a given homogeneous ideal so that the new ideal has a
finite Pommaret basis. We analyze the performance of the proposed algorithms in
Sect. 5. Finally, in Sect. 6 we conclude the paper by highlighting the advantages
of this work and discussing future research directions.

2 Preliminaries

In this section, we review the basic definitions and notations from the theory of
Gröbner bases and involutive bases that will be used in the rest of the paper.
Throughout this paper we assume that P = k[x1, . . . , xn] is the polynomial
ring (where k is an infinite field). We consider also homogeneous polynomials
f1, . . . , fk ∈ P and the ideal I = 〈f1, . . . , fk〉 generated by them. We denote the
total degree of and the degree w.r.t. a variable xi of a polynomial f ∈ P by
deg(f) and degi(f) respectively. Let M = {xα1

1 · · · xαn
n | αi ≥ 0, 1 ≤ i ≤ n} be

the monoid of all monomials in P. A monomial ordering on M is denoted by
≺ and throughout this paper we shall assume that xn ≺ · · · ≺ x1. The leading
monomial of a given polynomial f ∈ P w.r.t. ≺ will be denoted by LM(f). If
F ⊂ P is a finite set of polynomials, we denote by LM(F) the set {LM(f) |
f ∈ F}. The leading coefficient of f , denoted by LC(f), is the coefficient of
LM(f). The leading term of f is defined to be LT(f) = LM(f) LC(f). A finite
set G = {g1, . . . , gk} ⊂ P is called a Gröbner basis of I w.r.t ≺ if LM(I) =
〈LM(g1), . . . ,LM(gk)〉 where LM(I) = 〈LM(f) | f ∈ I〉. We refer e.g. to [4] for
more details on Gröbner bases.

Let us recall the definition of Hilbert function and Hilbert series of a homo-
geneous ideal. Let X ⊂ P and s a positive integer. We define the degree s
component Xs of X to be the set of all homogeneous elements of X of degree s.

Definition 1. The Hilbert function of I is defined by HFI(s) = dim (Ps/Is)
where the right hand side denotes the dimension of Ps/Is as a k-linear space.

It is well-known that the Hilbert function of I is the same as that of LT(I)
(see e.g. [4, Proposition 4, page 458]) and therefore the set of monomials not

Improved Computation of Involutive Bases 61

contained in LT(I) forms a basis for Ps/Is as a k-linear space (Macaulay’s the-
orem). This observation is the key idea behind the Hilbert-driven Gröbner basis
algorithm. Roughly speaking, suppose that I is a homogeneous ideal and we
want to compute a Gröbner basis of I by Buchberger’s algorithm in increasing
order w.r.t. the total degree of the S-polynomials. Assume that we know before-
hand HFI(s) for a positive integer s. Suppose that we are at the stage where
we are looking at the critical pairs of degree s. Consider the set P of all critical
pairs of degree s. Then, we compare HFI(s) with the Hilbert function at s of
the ideal generated by the leading terms of all already computed polynomials.
If they are equal, we can remove P .

Below, we review some definitions and relevant results on involutive bases
theory (see [12] for more details). We recall first involutive divisions based on
partitioning the variables into two subsets of the variables, the so-called multi-
plicative and non-multiplicative variables.

Definition 2. An involutive division L is given on M if for any finite set
U ⊂ M and any u ∈ U , the set of variables is partitioned into the subset of
multiplicative ML(u,U) and non-multiplicative variables NML(u,U) such that
the following three conditions hold where L(u,U) denotes the monoid generated
by ML(u,U):

1. v, u ∈ U , uL(u,U) ∩ vL(v, U)
= ∅ ⇒ u ∈ vL(v, U) or v ∈ uL(u,U),
2. v ∈ U , v ∈ uL(u,U) ⇒ L(v, U) ⊂ L(u,U),
3. V ⊂ U and u ∈ V ⇒ L(u,U) ⊂ L(u, V).

We shall write u |L w if w ∈ uL(u,U). In this case, u is called an L-involutive
divisor of w and w an L-involutive multiple of u.

We recall the definitions of the Janet and the Pommaret division, respectively.

Example 1. Let U ⊂ P be a finite set of monomials. For each sequence d1, . . . , dn

of non-negative integers and for each 1 ≤ i ≤ n we define the subsets

[d1, . . . , di] = {u ∈ U | dj = degj(u), 1 ≤ j ≤ i}.

The variable x1 is Janet multiplicative (denoted by J -multiplicative) for u ∈ U
if deg1(u) = max{deg1(v) | v ∈ U}. For i > 1 the variable xi is Janet multi-
plicative for u ∈ [d1, . . . , di−1] if degi(u) = max{degi(v) | v ∈ [d1, . . . , di−1]}.

Example 2. For u = xd1
1 · · · xdk

k with dk > 0 the variables {xk, . . . , xn} are con-
sidered as Pommaret multiplicative (denoted by P-multiplicative) and the other
variables as Pommaret non-multiplicative. For u = 1 all the variables are multi-
plicative. The integer k is called the class of u and is denoted by cls(u).

The Pommaret division is called a global division, because the assignment of the
multiplicative variables is independent of the set U . In order to avoid repeating
notations let L always denote an involutive division.

Definition 3. The set F ⊂ P is called involutively head autoreduced if for each
f ∈ F there is no h ∈ F \ {f} with LM(h) |L LM(f).

62 B. Binaei et al.

Definition 4. Let I ⊂ P be an ideal. An L-involutively head autoreduced subset
G ⊂ I is an L-involutive basis for I (or simply either an involutive basis or
L-basis) if for every 0
= f ∈ I there exists g ∈ G so that LM(g) |L LM(f).

Example 3. Let I = {x2
1x3, x1x2, x1x

2
3} ⊂ k[x1, x2, x3]. Then, {x2

1x3, x1x2, x1x
2
3,

x2
1x2} is a Janet basis for I and {x2

1x3, x1x2, x1x
2
3, x

2
1x2, x

i+3
1 x2, x

i+3
1 x3 | i ≥ 0} is

a (infinite) Pommaret basis for I. Indeed, Janet division is Noetherian, however
Pommaret division is non-Noetherian (see [13] for more details).

Gerdt [12] proposed an efficient algorithm to construct involutive bases based
on a completion process where prolongations of generators by non-multiplicative
variables are reduced. This process terminates in finitely many steps for any
Noetherian division.

Definition 5. Let F ⊂ P be a finite. Following the notations in [23], the invo-
lutive span generated by F is denoted by 〈F 〉L,≺.

Thus, if a set F ⊂ I is an involutive basis for I then we have I = 〈F 〉L,≺.

Definition 6. Let F ⊂ I be an involutively head autoreduced set of homoge-
neous polynomials. The involutive Hilbert function of F is defined by IHFF (s) =
dim (Ps/(〈F 〉L,≺)s).

Since F is involutively head autoreduced, one easily recognizes that 〈F 〉L,≺ =⊕
f∈F k[ML(LM(f),LM(F))] · f . Thus using the well-known combinatorial for-

mulas to count the number of monomials in certain variables, we get

IHFI(s) =
(

n + s − 1
s

)
−

∑
f∈F

(
s − deg(f) + kf − 1

s − deg(f)

)

where kf is the number of multiplicative variables of f (see e.g. [12]). We remark
that an involutively head autoreduced subset F ⊂ I is an involutive basis for I
if and only if HFI(s) = IHFF (s) for each s.

3 Using Syzygies to Compute Involutive Bases

We now propose a variant of Gerdt’s algorithm [12] by using the intermediate
computed syzygies to compute involutive bases and especially Janet bases. For
this, we recall briefly the signature-based variant of the algorithm of Möller
et al. [20] to compute Gröbner bases (the practical results are given in Sect. 5).

Definition 7. Let us consider F = (f1, . . . , fk) ∈ Pk. The (first) syzygy module
of F is defined to be Syz(F) = {(h1, . . . , hk) | hi ∈ P,

∑k
i=1 hifi = 0}.

Schreyer in his master thesis proposed a slight modification of Buchberger’s
algorithm to compute a Gröbner basis for the module of syzygies of a Gröbner
basis. The construction of this basis relies on the following key observation (see
[5]): Let G = {g1, . . . , gs} be a Gröbner basis. By tracing the dependency of each

Improved Computation of Involutive Bases 63

SPoly(gi, gi) on G we can write SPoly(gi, gj) =
∑s

k=1 aijkgk with aijk ∈ P. Let
e1, . . . , es be the standard basis for Ps and mij = lcm(LT(gi),LT(gj)). Set

sij = mi,j/LT(gi).ei − mi,j/LT(gj).ej − (aij1e1 + aij2e2 + · · · + aijses).

Definition 8. Let G = {g1, . . . , gs} ⊂ P. Schreyer’s module ordering is defined
by xβej ≺s xαei, if LT(xβgj) ≺ LT(xαgi), and breaks ties by i < j.

Theorem 1 (Schreyer’s Theorem). For a Gröbner basis G = {g1, . . . , gs}
the set {sij | 1 ≤ i < j ≤ s} forms a Gröbner basis for Syz(g1, . . . , gs) w.r.t. ≺s.

Example 4. Let F = {xy − x, x2 − y} ⊂ k[x, y]. The Gröbner basis of F w.r.t.
x ≺dlex y is G = {g1 = xy − x, g2 = x2 − y, g3 = y2 − y} and the Gröbner basis
of Syz(g1, g2, g3) is {(x,−y + 1,−1), (−x, y2 − 1,−x2 + y + 1), (y, 0,−x)}.

Algorithm 1. GröbnerBasis

Input: A set of polynomials F ⊂ P; a monomial ordering ≺
Output: A Gröbner basis G for 〈F 〉
G := {} and syz := {}
P := {(F [i], ei) | i = 1, . . . , |F |}
while P �= ∅ do

select (using normal strategy) and remove p ∈ P
if � s ∈ syz s.t. s | Sig(p) then

f := Poly(p)
h := NormalForm(f, G)
syz := syz ∪ {Sig(p)}
if h �= 0 then

j := |G| + 1
for g ∈ G do

P := P ∪ {(r.h, r.ej)} s.t. r. LM(h) = LCM(LM(g), LM(h))
G := G ∪ {h}
syz := syz ∪ {LM(g).ej | LM(h) and LM(g) are coprime}

end for
end if

end if
end while
return (G)

According to this observation, Möller et al. [20] proposed a variant of Buch-
berger’s algorithm by using the syzygies of the constructed polynomials to
remove superfluous reductions. Algorithm 1 corresponds to it with a slight
modification to derive a signature-based algorithm to compute Gröbner bases.
We associate to each polynomial f the pair p = (f,mei) where Poly(p) = f is
the polynomial part of f and Sig(p) = mei is its signature. Furthermore, the
function NormalForm(f,G) returns a remainder of the division of f by G. If
Sig(p) = mei in the first step of the reduction process, we must not use fi ∈ G.

64 B. Binaei et al.

Algorithm 2. InvolutiveBasis

Input: A finite set F ⊂ P; an involutive division L; a monomial ordering ≺
Output: A minimal L-basis for 〈F 〉
F :=sort(F, ≺)
T := {(F [1], F [1], ∅, e1)}
Q := {(F [i], F [i], ∅, ei) | i = 2, . . . , |F |}
syz := {}
while Q �= ∅ do

Q :=sort(Q, ≺s)
p := Q[1]
if �s ∈ syz s.t s | Sig(p) with non-constant quotient then

h := InvolutiveNormalForm(p, T, L, ≺)
syz := syz ∪ {h[2]}
if h = 0 and LM(Poly(p)) = LM(Anc(p)) then

Q := {q ∈ Q | Anc(q) �= Poly(p)}
end if
if h �= 0 and LM(Poly(p)) �= LM(h) then

for q ∈ T with proper conventional divisibility LM(Poly(h)) | LM(Poly(q))
do

Q := Q ∪ {q}
T := T \ {q}

end for
j := |T | + 1
T := T ∪ {(h, h, ∅, ej)}

else
T := T ∪ {(h, Anc(p), NM(p), Sig(p))}

end if
for q ∈ T and x ∈ NML(LM(Poly(q)), LM(Poly(T)) \ NM(q)) do

Q := Q ∪ {(x. Poly(q), Anc(q), ∅, x. Sig(q))}
NM(q) := NM(q) ∪ NML(LM(Poly(q)), LM(Poly(T))) ∪ {x}

end for
end if

end while
return (Poly(T))

We show now how to apply this structure to improve Gerdt’s algorithm
[15]. [23, Theorem 5.10] contains an involutive version of Schreyer’s theorem
replacing S-polynomials by non-multiplicative prolongations and using involu-
tive division. Algorithm 2 represents the new variant of Gerdt’s algorithm for
computing involutive bases using involutive syzygies. For this purpose, we asso-
ciate to each polynomial f the quadruple p = (f, g, V,m.ei) where f = Poly(p)
is the polynomial itself, g = Anc(p) is its ancestor, V = NM(p) is the list of
non-multiplicative variables of f which have already been processed in the algo-
rithm and m.ei = Sig(p) is the signature of f . If P is a set of quadruples, we
denote by Poly(P) the set {Poly(p) | p ∈ P}. The functions sort(X,≺) and
sort(X,≺s) sort X by increasing LM(X) w.r.t. ≺ and {Sig(p) | p ∈ X} w.r.t.
≺s, respectively. The involutive normal form algorithm is given in Algorithm 3.

Improved Computation of Involutive Bases 65

Algorithm 3. InvolutiveNormalForm

Input: A quadruple p; a set of quadruples T ; an involutive division L; a monomial
ordering ≺
Output: An L-normal form of p modulo T , and the corresponding signature, if any
S := {} and h := Poly(p) and G := Poly(T)
while h has a monomial m which is L-divisible by G do

select g ∈ G with LM(g) |L m
if m = LM(Poly(p)) and (m/ LM(g). Sig(g) = Sig(p) or Criteria(h, g)) then

return (0, S)
end if
if m = LM(Poly(p)) and m/ LM(g). Sig(g) ≺s Sig(p) then

S := S ∪ {Sig(p)}
end if
h := h − cm/ LT(g).g where c is the coefficient of m in h

end while
return (h, S)

Furthermore, we apply the involutive form of Buchberger’s criteria from [12].
We say that Criteria(p, g) holds if either C1(p, g) or C2(p, g) holds where
C1(p, g) is true if LM(Anc(p)).LM(Anc(g)) = LM(Poly(p)) and C2(p, g) is true
if LCM(LM(Anc(p)),LM(Anc(g))) properly divides LM(Poly(p)).

Remark 1. We note that, due to the second if-loop in Algorithm 3, if miei is
added to syz, then there exists an involutive representation of the form migi =∑�

j=1 hjgj + h where T = {g1, . . . , g�} ⊂ P is the output of the algorithm, h the
L-normal form of p modulo T and LM(hj)ej ≺s miei for each j.

In the next proof, by an abuse of notation, we refer to the signature of a
quadruple as the signature of its polynomial part.

Theorem 2. InvolutiveBasis terminates in finitely many steps (if L is a
Noetherian division) and returns a minimal involutive basis for its input ideal.

Proof. The termination and correctness of the algorithm are inherited from those
of Gerdt’s algorithm [12] provided that we show that any polynomial removed
using syzygies is superfluous. This happens in both algorithms. Let us deal first
with Algorithm 2. Now, suppose that for p ∈ Q there exists s ∈ syz so that
s | Sig(p) with non-constant quotient. Suppose that Sig(p) = miei and s = m′

iei

where mi = um′
i with u
= 1. Let T = {g1, . . . , g�} ⊂ P be the output of the

algorithm and m′
igi =

∑�
j=1 hjgj + h be the representation of m′

igi with gj ∈
T, h, hj ∈ P and h the involutive remainder of the division of m′

igi by T . Then,
from the structure of both algorithms, we find that LM(hjgj) ≺ LM(m′

igi). In
particular, we have LM(hj)ej ≺s m′

iei for each j. It follows that LM(uhj)ej ≺s

um′
iei = miei for each j. On the other hand, if h
= 0 then, again by the structure

of the algorithm, uh has a signature less than miei. For each j and for each term
t in hj we know that the signature of utgj is less than miei and by the selection
strategy used in the algorithm which is based on Schreyer’s ordering, utgj should

66 B. Binaei et al.

be studied before m′
igi and therefore it has an involutive representation in terms

of T . Furthermore, the same holds also for uh provided that h
= 0. These
arguments show that m′

igi is unnecessary and it can be omitted. Now we turn
to Algorithm 3. Let p ∈ Q and g ∈ T so that LM(h) = u LT(g) and Sig(p) =
u Sig(g) where h = Poly(p) and u is a monomial. Using the above notations, let
Sig(p) = miei and Sig(g) = m′

iei where mi = um′
i. Furthermore, let m′

igi =∑�
j=1 hjgj + g be the representation of m′

igi with LM(hj)ej ≺s m′
iei for each j.

It follows from the assumption that LM(hjgj) ≺ LM(m′
igi) = LM(g) for each j.

We can write um′
igi =

∑�
j=1 uhjgj + ug. Since LM(uhj)ej ≺s um′

iei = miei for
each j then, by repeating the above argument, we deduce that uhjgj for each j
has an involutive representation. Therefore, um′

igi has a representation since u
is multiplicative for g. Thus h has a representation and it can be removed. �

4 Hilbert Driven Pommaret Bases Computations

The Pommaret division is not Noetherian and therefore, a given ideal may not
have a finite Pommaret basis. However, if the ideal is in quasi-stable position
(see Definition 9) it has a finite Pommaret basis and a generic linear change of
variables transforms any ideal into such a position. [23] proposes a deterministic
algorithm to compute such a linear change by computing repeatedly the Janet
basis of the last transformed ideal. We now improve it by incorporating an
involutive version of the Hilbert driven strategy.

Algorithm 4. HDQuasiStable

Input: A finite set F ⊂ P and a monomial ordering ≺
Output: A linear change Φ so that 〈Φ(F)〉 has a finite Pommaret basis
Φ := ∅ and J :=InvolutiveBasis(F, J , ≺) and A :=test(LM(J), ≺)
while A �= true do

G := substitution of φ := A[3]
→ A[3] + cA[2] in J for a random choice of c ∈ K
Temp :=HDInvolutiveBasis(G, J , ≺)
B :=test(LM(Temp))
if B �= A then

Φ := Φ, φ and J := Temp and A := B
end if

end while
return (Φ)

It is worth noting that in [23] it is proposed to perform a Pommaret head
autoreduction on the calculated Janet basis at each iteration. However, we do
not need to perform this operation because each computed Janet basis is min-
imal and by [11, Corollary 15] each minimal Janet basis is Pommaret head
autoreduced. All the used functions are described below. By the structure of the
algorithm, we first compute a Janet basis for the input ideal using Involutive-
Basis algorithm. From this basis, one can read off easily the Hilbert function of

Improved Computation of Involutive Bases 67

Algorithm 5. test
Input: A finite set U of monomials
Output: True if any element of U has the same number of Pommaret and Janet
multiplicative variables, and false otherwise
if ∃u ∈ U s.t. MP,≺(u, U) �= MJ ,≺(u, U) then

V := MJ ,≺(u, F) \ MP,≺(u, F)
return(false, V [1], xcls(u))

end if
return (true)

the input ideal. Furthermore, the Hilbert function of an ideal is invariant under
a linear change of variables. Thus we can exploit this Hilbert function in the
next Janet bases computations as follows. The algorithm has the same structure
as the InvolutiveBasis algorithm and so we omit the similar lines. We add
the written lines in the HDInvolutiveBasis algorithm between p := Q[1] and
the first if-loop in the InvolutiveBasis algorithm.

Algorithm 6. HDInvolutiveBasis

Input: A set of monomials F ; an involutive division L ; a monomial ordering ≺
Output: A minimal L-involutive basis for 〈F 〉
...
d := deg(p)
while HF〈F 〉(d) = IHFT (d) do

remove from Q all q ∈ Q s.t. deg(Poly(q)) = d
if Q = ∅ then

return (Poly(T))
else

p := Q[1]
d := deg(p)

end if
end while
...

Theorem 3. HDQuasiStable algorithm terminates in finitely many steps and
it returns a linear change of variables for a given homogeneous ideal so that the
changed ideal (after performing the change on the input ideal) possesses a finite
Pommaret basis.

Proof. Let I be the ideal generated by F , the input of the HDQuasiStable
algorithm. The termination of this algorithm follows, from one side, from the
termination of the algorithms to compute Janet bases. From the other side,
[23, Proposition 2.9] shows that there exists a Zariski open set U of kn×n so
that for each linear change of variables, say Φ, corresponding to an element of

68 B. Binaei et al.

U the transformed ideal Φ(I) has a finite Pommaret basis. Moreover, he proved
that the process of finding such a linear change terminates in finitely many
steps (see [23, Remark 9.11]). Taken together, these arguments show that the
HDQuasiStable algorithm terminates.

For the correctness, using the notations of the HDInvolutiveBasis algo-
rithm, we shall prove that any p ∈ Q removed by the Hilbert driven strategy
reduces to zero. In this direction, we recall that any change of variables is a
linear automorphism of P, [17, page 52]. Thus, for each i, the dimension over k
of components of degree i of I and that of I after the change remains stable.
This yields that the Hilbert function of I does not change after a linear change
of variables. Let J be the Janet basis computed by InvolutiveBasis. One can
readily observe that HFI(d) = IHFJ(d) for each d, and therefore from the first
Janet basis one can derive the Hilbert function of I and use it to improve the
next Janet bases computations. Now, suppose that F is the input of the HDIn-
volutiveBasis algorithm, p ∈ Q and HFI(d) = IHFT (d) for d = deg(Poly(p)).
It follows that dim (〈F 〉d) = dim (〈Poly(T)〉d) and therefore the polynomials
of Poly(T) generate involutively the whole set 〈F 〉d and this shows that p is
superfluous which ends the proof. �
Remark 2. We assumed that the input of the algorithms InvolutiveBasis
and HDQuasiStable was homogeneous. However, the former algorithm works
also for non-homogeneous ideals. Furthermore, the latter algorithm also may be
applied to non-homogeneous ideals provided that we consider the affine Hilbert
function for such ideals; i.e. HFI(s) = dim (P≤s/I≤s).

[23] provides a number of equivalent characterizations of the ideals which have
finite Pommaret bases. Indeed, a given ideal has a finite Pommaret basis if only
if the ideal is in quasi stable position (or equivalently if the coordinates are
δ-regular) see [23, Proposition 4.4].

Definition 9. A monomial ideal I is called quasi stable if for any monomial
m ∈ I and all integers i, j, s with 1 ≤ j < i ≤ n, s > 0 and xs

i | m there exists
an integer t ≥ 0 such that xt

jm/xs
i ∈ I. A homogeneous ideal I is in quasi stable

position if LT(I) is quasi stable.

Example 5. The ideal I = 〈x2
2x3, x

3
2, x

3
1〉 ⊂ k[x, y, z] is a quasi stable monomial

ideal and its Pommaret basis is {x2
2x3, x

3
2, x

3
1, x1x

2
2x3, x1x

3
2, x

2
1x

2
2x3, x

2
1x

3
2}.

5 Experiments and Comparison

We have implemented both algorithms InvolutiveBasis and HDQuasiStable
in Maple 171. We now compare the behavior of the algorithms InvolutiveBa-
sis and HDQuasiStable, respectively, with the algorithms by Gerdt et al. [16]

1 The Maple code of the implementations of our algorithms and examples are avail-
able at http://amirhashemi.iut.ac.ir/softwares.

http://amirhashemi.iut.ac.ir/softwares

Improved Computation of Involutive Bases 69

and QuasiStable [23], respectively (we remark that QuasiStable has the
same structure as the HDQuasiStable, however, to compute Janet bases we
use Gerdt’s algorithm). For this purpose, we used some well-known examples
from the computer algebra literature. All computations were done over Q and for
the degree reverse lexicographic monomial ordering. The results are shown in the
following tables where the time and memory columns indicate, respectively, the
consumed CPU time in seconds and the amount of used memory in megabytes.
The C1 and C2 columns show, respectively, the number of polynomials removed
by C1 and C2 criteria in the corresponding algorithm. The sixth column shows
the number of polynomials eliminated by the new criterion related to syzygies
applied in the InvolutiveBasis and InvolutiveNormalForm algorithms.
The F5 and S columns show the number of polynomials removed by the F5 and
the super-top-reduction criterion, respectively,. The last three columns repre-
sent the number of reductions to zero, the number and the maximum degree
of polynomials in the final involutive basis, respectively (we note that for the
algorithm by Gerdt et al. the number of polynomials is the size of the basis after
the minimization process). The computations in this paper are performed on a
personal computer with 2.70 GHz Intel(R) Core(TM) i7-2620M CPU, 8 GB of
RAM, 64 bits under the Windows 7 operating system.

Liu time memory C1 C2 Syz F5 S redz poly deg
InvolutiveBasis 1.09 37.214 4 3 2 - - 25 19 6

Gerdt et al. 2.901 41.189 7 39 - 25 0 1 19 7

Noon time memory C1 C2 Syz F5 S redz poly deg
InvolutiveBasis 3.822 43.790 4 15 6 - - 69 51 10

Gerdt et al. 45.271 670.939 8 107 - 49 3 17 51 10

Haas3 time memory C1 C2 Syz F5 S redz poly deg
InvolutiveBasis 8.424 95.172 0 20 24 - - 203 73 13

Gerdt et al. 41.948 630.709 1 88 - 88 16 68 73 13

Sturmfels-Eisenbud time memory C1 C2 Syz F5 S redz poly deg
InvolutiveBasis 22.932 255.041 28 103 95 - - 245 100 6

Gerdt et al. 2486.687 30194.406 29 1379 - 84 11 40 100 9

Lichtblau time memory C1 C2 Syz F5 S redz poly deg
InvolutiveBasis 24.804 391.3 0 5 6 - - 19 35 11

Gerdt et al. 205.578 3647.537 0 351 - 18 0 31 35 19

Eco7 time memory C1 C2 Syz F5 S redz poly deg
InvolutiveBasis 40.497 473.137 51 21 30 - - 201 45 6

Gerdt et al. 1543.068 25971.714 63 1717 - 175 8 18 45 11

Katsura5 time memory C1 C2 Syz F5 S redz poly deg
InvolutiveBasis 46.956 630.635 21 0 2 - - 68 23 12

Gerdt et al. 42.416 621.551 62 73 - 114 1 21 23 8

Katsura6 time memory C1 C2 Syz F5 S redz poly deg
InvolutiveBasis 81.526 992.071 43 0 4 - - 171 43 8

Gerdt et al. 608.325 795.196 77 392 - 209 1 41 43 11

As one can observe, InvolutiveBasis is a signature-based variant of Gerdt’s
algorithm which has a structure closer to Gerdt’s algorithm and it is more effi-
cient than the algorithm by Gerdt et al. Moreover, we can see the detection of
criteria and the number of reductions to zero by the algorithms are different.

70 B. Binaei et al.

Indeed, this difference is due to the selection strategy used in each algorithm.
More precisely, in the algorithm by Gerdt et al. the set of non-multiplicative
prolongations is sorted by POT ordering whereas in InvolutiveBasis it is
sorted using Schreyer ordering. However, one needs to implement it efficiently
in C/C++ to be able to compare it with GINV software2.

The next tables illustrate an experimental comparison of HDQuasiStable
and QuasiStable algorithms. In these tables, the HD column shows the number
of polynomials removed by the Hilbert driven strategy in the corresponding
algorithm. Further, the chen column shows the number of linear changes that one
needs to transform the corresponding ideal into quasi stable position. The deg
column represents the maximum degree of the output Pommaret basis (which
is the Castelnuovo-Mumford regularity of the ideal, see [23]). The remaining
columns show the number of detections of the corresponding criteria for all
computed Janet bases. Finally, we shall remark that in the next tables we use the
homogenization of the generating set of the test examples used in the previous
tables. In addition, the computation of Janet basis of an ideal generated by
a set F and the one of the ideal generated by the homogenization of F are
not the same. For example, the CPU time to compute the Janet basis of the
homogenization of the Lichtblau example is 270.24 s.

Liu time memory C1 C2 Syz HD redz chen deg
HDQuasiStable 4.125 409.370 4 3 2 93 56 4 6
QuasiStable 9.56 1067.725 14 3 - - 151 4 6

Katsura5 time memory C1 C2 Syz HD redz chen deg
HDQuasiStable 67.234 9191.288 44 3 6 185 168 2 8
QuasiStable 145.187 26154.263 86 29 - - 359 2 8

Weispfenning94 time memo C1 C2 Syz HD reds chen deg
HDQuasiStable 110.339 6268.532 0 1 9 45 170 1 15
QuasiStable 243.798 16939.468 0 2 - - 85 1 15

Noon time memory C1 C2 Syz HD redz chen deg
HDQuasiStable 667.343 66697.995 4 25 6 325 119 4 11
QuasiStable 1210.921 205149.994 16 35 - - 450 4 11

Sturmfels-Eisenbud time memory C1 C2 Syz HD redz chen deg
HDQuasiStable 1507.640 125904.515 86 308 440 1370 1804 12 8
QuasiStable 843.171 96410.344 218 1051 - - 3614 12 8

Eco7 time memory C1 C2 Syz HD redz chen deg
QuasiStable 2182.296 241501.340 298 98 373 1523 1993 8 11
QuasiStable 2740.734 500857.600 547 725 - - 3889 8 11

Haas3 time memory C1 C2 Syz HD redz chen deg
HDQuasiStable 5505.375 906723.699 0 0 91 84 255 1 33
QuasiStable 10136.718 1610753.428 1 120 - - 430 1 33

Lichtblau time memory C1 C2 Syz HD redz chen deg
HDQuasiStable 16535.593 2051064.666 0 44 266 217 265 2 30
QuasiStable 18535.625 2522847.256 0 493 - - 751 2 30

2 See http://invo.jinr.ru.

http://invo.jinr.ru

Improved Computation of Involutive Bases 71

6 Conclusion and Perspective

In this paper, a modification of Gerdt’s algorithm [15] which is a signature-
based version of the involutive algorithm [12,15] to compute minimal involutive
bases is suggested. Additionally, we present a Hilbert driven optimization of
the proposed algorithm, to compute (finite) Pommaret bases. In doing so, the
proposed algorithm computes iteratively Janet bases by using the modified form
of Gerdt’s algorithm and use them, in accordance to the ideas of [23], to perform
the variable transformations. The new algorithms have been implemented in
Maple and they are compared with Gerdt’s algorithm and with the algorithm
presented in [23] in terms of the CPU time and used memory, and several other
criteria. For all considered examples, the Maple implementations of the new
algorithms are shown to be superior over the existing ones. One interesting
research direction might be to develop a new variant of the proposed signature-
based version of the involutive algorithm by incorporating the advantages of the
algorithm in [15], in particular of the Janet trees [14]. Furthermore, it would be
of interest to study the behavior of different possible techniques to improve the
computation of Pommaret bases.

References

1. Buchberger, B.: A criterion for detecting unnecessary reductions in the construction
of Gröbner-bases. In: Ng, K.W. (ed.) EUROSAM 1979 and ISSAC 1979. LNCS,
vol. 72. Springer, Heidelberg (1979)

2. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. Univ. Innsbruck, Math-
ematisches Institut (Diss.), Innsbruck (1965)

3. Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: an algorithm for finding the
basis elements of the residue class ring of a zero dimensional polynomial ideal. J.
Symb. Comput. 41(3–4), 475–511 (2006). Translation from the German

4. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Undergraduate
Texts in Mathematics, 3rd edn. Springer, New York (2007)

5. Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in
Mathematics, vol. 185, 2nd edn. Springer, New York (2005)

6. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139(1–3), 61–88 (1999)

7. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of the International Symposium on Sym-
bolic and Algebraic Computation, ISSAC 2002, Lille, France, 07–10 July, pp. 75–83
(2002)

8. Gao, S., Guan, Y., Volny, F.: A new incremental algorithm for computing Groebner
bases. In: Proceedings of the International Symposium on Symbolic and Algebraic
Computation, ISSAC 2010, Munich, Germany, 25–28 July, pp. 13–19 (2010)

9. Gao, S., Volny, F.I., Wang, M.: A new framework for computing Gröbner bases.
Math. Comput. 85(297), 449–465 (2016)

10. Gebauer, R., Möller, H.: On an installation of Buchberger’s algorithm. J. Symb.
Comput. 6(2–3), 275–286 (1988)

72 B. Binaei et al.

11. Gerdt, V.P.: On the relation between Pommaret and Janet bases. In: Ganzha, V.G.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing,
pp. 167–181. Springer, Heidelberg (2000)

12. Gerdt, V.P.: Involutive algorithms for computing Gröbner bases. In: Computa-
tional Commutative and Non-commutative Algebraic Geometry, Proceedings of
the NATO Advanced Research Workshop, Chisinau, Republic of Moldova, 6–11
June 2004, pp. 199–225. IOS Press, Amsterdam (2005)

13. Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput.
Simul. 45(5–6), 519–541 (1998)

14. Gerdt, V.P., Blinkov, Y.A., Yanovich, D.: Construction of Janet bases I. monomial
bases. In: Ganzha, V.G., Mayr, E.M., Vorozhtsov, E.V. (eds.) Computer Algebra
in Scientific Computing, CASC 2001, pp. 233–247. Springer, Berlin (2001)

15. Gerdt, V.P., Hashemi, A., M.-Alizadeh, B.: A variant of Gerdt’s algorithm for
computing involutive bases. Bull. PFUR Ser. Math. Inf. Sci. Phys. 2, 65–76 (2012)

16. Gerdt, V.P., Hashemi, A., M.-Alizadeh, B.: Involutive bases algorithm incorporat-
ing F5 criterion. J. Symb. Comput. 59, 1–20 (2013)

17. Herzog, J., Hibi, T.: Monomial Ideals. Springer, London (2011)
18. Janet, M.: Sur les systèmes d’équations aux dérivées partielles. C. R. Acad. Sci.

Paris 170, 1101–1103 (1920)
19. Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of alge-

braic equations. In: van Hulzen, J.A. (ed.) Computer Algebra, EUROCAL 1983.
LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983)

20. Möller, H., Mora, T., Traverso, C.: Gröbner bases computation using syzygies. In:
Proceedings of the International Symposium on Symbolic and Algebraic Compu-
tation, ISSAC 1992, Berkeley, CA, USA, 27–29 July, pp. 320–328 (1992)

21. Pommaret, J.: Systems of Partial Differential Equations and Lie Pseudogroups,
vol. 14. Gordon and Breach Science Publishers, New York (1978). With a preface
by Andre Lichnerowicz

22. Seiler, W.M.: A combinatorial approach to involution and δ-regularity. I: involu-
tive bases in polynomial algebras of solvable type. Appl. Algebra Eng. Commun.
Comput. 20(3–4), 207–259 (2009)

23. Seiler, W.M.: A combinatorial approach to involution and δ-regularity. II: struc-
ture analysis of polynomial modules with Pommaret bases. Appl. Algebra Eng.
Commun. Comput. 20(3–4), 261–338 (2009)

24. Seiler, W.M.: Involution. The Formal Theory of Differential Equations and Its
Applications in Computer Algebra. Algorithms and Computation in Mathematics,
vol. 24. Springer, Berlin (2010)

25. Thomas, J.M.: Differential Systems, IX. 118 p. American Mathematical Society
(AMS), New York (1937)

26. Traverso, C.: Hilbert functions and the Buchberger algorithm. J. Symb. Comput.
22(4), 355–376 (1996)

27. Zharkov, A., Blinkov, Y.: Involution approach to investigating polynomial systems.
Math. Comput. Simul. 42(4), 323–332 (1996)

Computing All Space Curve Solutions
of Polynomial Systems by Polyhedral Methods

Nathan Bliss(B) and Jan Verschelde

Department of Mathematics, Statistics, and Computer Science,
University of Illinois at Chicago, 851 S. Morgan Street (m/c 249),

Chicago, IL 60607-7045, USA
{nbliss2,janv}@uic.edu

Abstract. A polyhedral method to solve a system of polynomial equa-
tions exploits its sparse structure via the Newton polytopes of the poly-
nomials. We propose a hybrid symbolic-numeric method to compute a
Puiseux series expansion for every space curve that is a solution of a
polynomial system. The focus of this paper concerns the difficult case
when the leading powers of the Puiseux series of the space curve are
contained in the relative interior of a higher dimensional cone of the
tropical prevariety. We show that this difficult case does not occur for
polynomials with generic coefficients. To resolve this case, we propose to
apply polyhedral end games to recover tropisms hidden in the tropical
prevariety.

Keywords: Newton polytope · Polyhedral end game · Polyhedral
method · Polynomial system · Puiseux series · Space curve · Tropical
basis · Tropical prevariety · Tropism

1 Introduction

In this paper we consider the application of polyhedral methods to compute
series for all space curves defined by a polynomial system. Polyhedral methods
compute with the Newton polytopes of the system. The Newton polytope of a
polynomial is defined as the convex hull of the exponents of the monomials that
appear with a nonzero coefficient.

If we start the development of the series where the space curve meets the first
coordinate plane, then we compute Puiseux series. Collecting for each coordinate
the leading exponents of a Puiseux series gives what is called a tropism. If we
view a tropism as a normal vector to a hyperplane, then we see that there are
hyperplanes with this normal vector that touch every Newton polytope of the
system at an edge or at a higher dimensional face. A vector normal to such a
hyperplane is called a pretropism. While every tropism is a pretropism, not every
pretropism is a tropism.

This material is based upon work supported by the National Science Foundation
under Grant No. 1440534.

c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 73–86, 2016.
DOI: 10.1007/978-3-319-45641-6 6

74 N. Bliss and J. Verschelde

In this paper we investigate the application of a polyhedral method to com-
pute all space curve solutions of a polynomial system. The method starts from
the collection of all pretropisms, which are regarded as candidate tropisms. For
the method to work, we focus on the following questions.

Problem Statement. Given that only the space curves are of interest, can
we ignore the higher dimensional cones of pretropisms? In particular, if some
tropisms lie in the interior of higher dimensional cones of pretropisms, is it then
still possible to compute Puiseux series solutions for all space curves?

Related Work. In symbolic computation, new elimination algorithms for sparse
systems with positive dimensional solution sets are described in [7]. Tropical
resultants are computed in [13]. Related polyhedral methods for sparse sys-
tems can be found in [10,15]. Conditions on how far a Puiseux series should
be expanded to decide whether a point is isolated are given in [8]. The authors
of [12] propose numerical methods for tropical curves. Polyhedral methods to
compute tropical varieties are outlined in [4] and implemented in Gfan [14]. The
background on tropical algebraic geometry is in [16].

Algorithms to compute the tropical prevariety are presented in [21]. For
preprocessing purposes, the software of [21] is useful. However, the focus on this
paper concerns the tropical variety for which Gfan [14] provides a tropical basis.
Therefore, our computational experiments with computer algebra methods are
performed with Gfan and not with the software of [21].

Organization and Contributions. In the next section we illustrate the advan-
tages of looking for Puiseux series as solutions of polynomial systems. Then we
motivate our problem with some illustrative examples. Relating the tropical pre-
variety to a recursive formula to compute the mixed volume characterizes the
generic case, in which the tropical prevariety suffices to compute all space curve
solutions. With polyhedral end games we can recover the tropisms contained in
higher dimensional cones of the tropical prevariety. Finally we give some exper-
imental results and timings.

2 Puiseux Series

When we work with Puiseux series we apply a hybrid method, combining exact
and approximate calculations. Figure 1 shows the plot, in black, of Viviani’s
curve, defined as the intersection of the sphere f = x2

1 +x2
2 +x2

3 − 4 = 0 and the
cylinder g = (x1 − 1)2 + x2

2 − 1 = 0.
There is one pretropism v = (2, 1, 0), which defines the initial forms of f and

g respectively as x2
3 − 4 and x2

2 − 2x1. For traditional Puiseux series, one would
choose to set x1 = 1, obtaining the four solutions (1,±√

2,±2) and leading terms
(t2,±√

2t,±2). If we instead use x1 = 2, we obtain rational coefficients and the
following partial expansion:⎡

⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ 2t2

2t − t3 − 1
4 t5 − 1

8 t7 − 5
64 t9

2 − t2 − 1
4 t4 − 1

8 t6 − 5
64 t9

⎤
⎦ . (1)

Computing All Space Curve Solutions of Polynomial Systems 75

Fig. 1. Viviani’s curve with improving Puiseux series approximations, labelled with
the number of terms used to plot each one.

The plot of several Puiseux approximations to Viviani’s curve is shown in gray
in Fig. 1.

If we shift the Viviani example so that its self-intersection is at the origin,
we obtain the following:

f(x) =
{

x2
1 + x2

2 + x2
3 + 4x1 = 0

x2
1 + x2

2 + 2x1 = 0 (2)

An examination of the first few terms of the Puiseux series expansion for this
system, combined with the On-Line Encyclopedia of Integer Sequences [17] and
some straightforward algebraic manipulation, allows us to hypothesize the fol-
lowing exact parameterization of the variety:

⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ −2t2

2 t3

1+
√
1−t2

− 2t

−2t

⎤
⎦ . (3)

We can confirm that this is indeed right via substitution. While this method is
of course not possible in general, it does provide an example of the potential
usefulness of Puiseux series computations for some examples.

3 Assumptions and Setup

Our object of study is space curves, by which we mean 1-dimensional varieties in
Cn. Because Puiseux series computations take one variable to be a free variable,
we require that the curves not lie inside V (〈xi〉) for some i; without loss of

76 N. Bliss and J. Verschelde

generality we choose to use the first variable. Some results require that the
curve be in Noether position with respect to x1, meaning that the degree of
the variety is preserved under intersection with x1 = λ for a generic λ ∈ C.
It is of course possible to apply a random coordinate transformation to obtain
Noether position, but we then lose the sparsity of the system’s exponent support
structure, which is what makes polyhedral methods effective.

4 Some Motivating Examples

In this section we illustrate the problem our paper addresses with some sim-
ple examples, first in 3-space, and then with a family of space curves in any
dimensional space.

4.1 In 3-Space

Our first running example is the system

f(x) =
{

x1x3 − x2x3 − x2
3 + x1 = 0

x3
3 − x1x2 − x2x3 − x2

3 − x1 = 0 (4)

which has an irreducible quartic and the second coordinate axis (0, x2, 0) as
its solutions. Because the line lies in the first coordinate plane x1 = 0, the
system is not in Noether position with respect to the first variable. Therefore,
our methods will ignore this part of the solution set. The algorithms of [6] can be
applied to compute components inside coordinate planes. Computing a primary
decomposition yields the following alternative, which lacks the portion in the
first coordinate plane:

f̃(x) =

⎧⎨
⎩

x1x3 − x2x3 − x2
3 + x1

x1x2 − x2
2 − x2x3 + x2

3 + x1 − 2x2 − 2x3

x3
3 − x2

2 − 2x2x3 − 2x2 − 2x3

(5)

The tropical prevariety contains the rays (2, 1, 1), (1, 0, 0), and (1, 0, 1);
because our Puiseux series start their development at x1 = 0, rays that have
a zero or negative value for their first coordinate have been discarded. The trop-
ical variety however contains the ray (3, 1, 1) instead of (2, 1, 1), leading to the
Puiseux expansion

⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ 108t3

t − 3t2 − 15t3 + 27t4 + 36t5

−t − 3t3 − 18t4 + 18t5 + 162t6

⎤
⎦ . (6)

This ray is a positive combination of (2, 1, 1) and (1, 0, 0). In other words,
it is possible for the 1-dimensional cones of the tropical prevariety to fail to
be in the tropical variety, and for rays in the tropical variety to “hide” in the
higher-dimensional cones of the prevariety.

Computing All Space Curve Solutions of Polynomial Systems 77

4.2 In Any Dimensional Space

This problem can also occur in arbitrary dimensions, as seen in the class of
examples

f(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x2
1 − x1 + x2 + x3 + · · · + xn = 0

x2
2 + x1 + x2 + x3 + · · · + xn = 0

x2
3 + x1 + x2 + x3 + · · · + xn = 0

...
x2

n−1 + x1 + x2 + x3 + · · · + xn = 0.

(7)

The ray (1, 1, 1, . . . , 1) is a 1-dimensional cone of its prevariety since it is normal
to a facet of each polytope, namely the linear portion of each polynomial. It is
not, however, in the tropical variety, since the initial form system (as it will be
defined in Sect. 5) contains the monomial x1.

5 The Generic Case

This hiding of tropisms in the higher dimensional cones of the prevariety is
problematic, as finding the tropical variety may require more expensive sym-
bolic computations. For a comparison between various approaches see Sect. 9.
Fortunately, this problem does not occur in general, as the next result will show.
But first, a few definitions.

Definition 1. We write a polynomial f with support set A as

f(x) =
∑
a∈A

caxa, ca ∈ C∗,xa = xa1
1 xa2

2 · · · xan
n . (8)

The initial form of f with respect to v is then

invf(x) =
∑

a∈invA

caxa, (9)

where invA = { a ∈ A | 〈a,v〉 = min
b∈A

〈b,v〉 }.

The initial form of a tuple of polynomials is the tuple of the initial forms of the
polynomials in the tuple.

Definition 2. For f ∈ C[x], I an ideal in C[x] and v ∈ Rn, we define the initial
ideal inv(I) as the ideal generated by {inv(f) : f ∈ I}.

Definition 3. For I = 〈f1, . . . , fm〉 ⊂ C[x] an ideal, the tropical prevariety is
the set of v ∈ Rn for which inv(fi) is not a monomial for any i. The tropical
variety is the set of v ∈ Rn for which inv(f) is not a monomial for any f ∈ I.

Proposition 1. For n equations in n + 1 unknowns with generic coefficients,
the set of ray generators of the tropical prevariety contains the tropical variety.

78 N. Bliss and J. Verschelde

It is important to note that our notion of generic here refers to the coefficients,
and not to generic tropical varieties as seen in [18] which are tropical varieties
of ideals under a generic linear transformation of coordinates.

Proof. The tropical prevariety always contains the tropical variety. We simply
want to show that all of the rays of the tropical variety show up in the prevariety
as ray generators, and not as members of the higher-dimensional cones. Let I =
〈p1, . . . , pn〉 ⊆ C[x0, . . . , xn], and let w be a ray in the tropical prevariety but not
one of its ray generators. We want to show that w is not in the tropical variety,
or equivalently that inw(I) contains a monomial. We will do so by showing that
Iw := 〈inw(p1), . . . , inw(pn)〉 contains a monomial, which suffices since this ideal
is contained in inw(I).

Suppose Iw contains no monomial. Then (x0x1 · · · xn)k /∈ Iw for any k. By
Hilbert’s Nullstellensatz V := V(Iw) � V(x0x1 · · · xn), i.e. V is not contained in
the union of the coordinate hyperplanes. Then there exists a = (a0, . . . , an) ∈ V
such that all coordinates of a are all nonzero. Since w lies in the interior a cone
of dimension at least 2, the generators of Iw are homogeneous with respect to at
least two linearly independent rays u and v. Thus (λu0μv0a0, . . . , λ

unμvnan) ∈ V
for all λ, μ ∈ C \ {0} where the ui,vi are the components of u and v, and V
contains a toric surface. If we intersect with a random hyperplane, by Bernstein’s
theorem B [3] the result is a finite set of points, with the possibility of additional
components that must be contained in the coordinate planes. Hence V can con-
tain no surface outside of the coordinate planes, and we have a contradiction.

6 Polyhedral Methods

We will show that the tropical prevariety provides an upper bound for the degree
of the solution curve. The inner product of a point a with a vector v is denoted
as 〈a,v〉 = a1v1 + a2v2 + · · · + anvn.

Lemma 1. Consider an (n − 1)-tuple of Newton polytopes P = (P1, P2,
. . . , Pn−1) in n-space. Let E be the edge spanned by (1, 0, . . . , 0) and (0, 0, . . . , 0).
The mixed volume of (P, E) equals

Vn(P, E) =
∑
v

v1Vn−1(invP), (10)

where v ranges over all rays in the tropical prevariety of P with v1 > 0, nor-
malized so that gcd(v) = gcd(v1, v2, . . . , vn) = 1, and invP = (invP1, invP2, . . .,
invPn−1), where invPk is the face with support vector v, formally expressed as

invPk = { a ∈ Pk | 〈a,v〉 = max
a∈Pk

〈a,v〉 }. (11)

Proof. We apply the following recursive formula [20] for the mixed volume

Vn(P, E) =
∑

v ∈ Zn

gcd(v) = 1

pE(v) Vn−1(invP), (12)

Computing All Space Curve Solutions of Polynomial Systems 79

where pE is the support function of the edge E:

pE(v) = max
e∈E

〈e,v〉 (13)

and invP = (invP1, invP2, . . . , invPn−1), where

invPk = { a ∈ Pk | 〈a,v〉 = pk(v) }, (14)

with pk the support function of the polytope Pk.
Because the edge E contains (0, 0, . . . , 0): pE(v) ≥ 0 and pE(v) = 0 when

v1 ≤ 0. Only those rays for which v1 > 0 contribute to Vn(P, E). We have then
pE(v) = v1.

The mixed volume of a tuple of polytopes equals zero if one of the polytopes
consists of only one vertex. The rays in the tropical prevariety contain all vectors
for which inv(Pk) is an edge or a higher dimensional face. These are the rays v
for which Vn−1(invP) > 0.

The application of Lemma 1 leads to a bound on the number of generic points
on the space curve. Denote C∗ = C \ {0}.

Lemma 2. Consider the system f(x) = 0, f = (f1, f2, . . ., fn−1) with P =
(P1, P2, . . . , Pn−1) where Pk is the Newton polytopes of fk. If the system is in
Noether position with respect to x1, then the degree of the space curve defined by
f(x) = 0 is bounded by Vn(P, E).

This result is a version of Lemma 2.3 from [15].

Proof. The proof of the lemma follows from the application of Bernshtein’s the-
orem [3] to the system {

f(x) = 0
x1 = γ, γ ∈ C∗. (15)

By the assumption of Noether position, there will be as many solutions to this
system as the degree of the space curve defined by f(x) = 0. The theorem
of Bernshtein states that the mixed volume bounds the number of solutions
in (C∗)n.

Formula (12) appears in the constructive proof of Bernshtein’s theorem [3]
and was implemented in the polyhedral homotopies of [25]. For systems with
coefficients that are sufficiently generic, the mixed volumes provide an exact
root count.

Theorem 1. Let f(x) = 0 be a polynomial system of n − 1 equations in n
unknowns, with sufficiently generic coefficients. Assume the space curve defined
by f(x) = 0 is in Noether position with respect to the first variable. Then all rays
v with v1 > 0 in the tropical prevariety of f lead to Puiseux series expansions
for the space curve defined by f(x) = 0. Moreover, the degree of the space curve
is the sum of the degrees of the Puiseux series.

80 N. Bliss and J. Verschelde

We illustrate the application of polyhedral methods to the motivating
examples.

Example 1. As a verification on the first motivating example (4), we consider
the rays (2, 1, 1), (1, 0, 0), and (1, 0, 1) of its tropical prevariety. The initial form
of f in (4) w.r.t. to the ray (2, 1, 1) is

in(2,1,1)f(x) =
{−x2x3 − x2

3 + x1 = 0
−x2x3 − x2

3 − x1 = 0.
(16)

To count the number of solutions of in(2,1,1)f(x) = 0 we apply a unimodular
coordinate transformation, x = yU :

U =

⎡
⎣2 1 1

1 0 0
0 1 0

⎤
⎦

⎧⎨
⎩

x1 = y2
1 y2

x2 = y1 y3
x3 = y1

(17)

which leads to the system

in(2,1,1)f(y) =
{−y2

1y3 − y2
1 + y2

1y2 = 0
−y2

1y3 − y2
1 − y2

1y2 = 0.
(18)

After removing the common factor y2
1 , we see that this system has one solution

for generic choices of the coefficients. As 2 is the first coordinate of (2, 1, 1), this
ray contributes two branches and adds two to the degree of the solution curve.
The other rays (1, 0, 0) and (1, 0, 1) each contribute one to the degree, and so we
recover the degree four of the solution curve.

Example 2. For the family of systems in (7), consider the curve in 4-space:

f(x) =

⎧⎨
⎩

x2
1 − x1 + x2 + x3 + x4 = 0

x2
2 + x1 + x2 + x3 + x4 = 0

x2
3 + x1 + x2 + x3 + x4 = 0.

(19)

For the tropism v = (2, 1, 1, 1), the initial form is

invf(x) =

⎧⎨
⎩

x2 + x3 + x4 = 0
x2 + x3 + x4 = 0
x2 + x3 + x4 = 0.

(20)

This tropism is in the interior of the cone in the tropical prevariety spanned by
v1 = (1, 1, 1, 1) and v2 = (1, 0, 0, 0). Using the same techniques as in the previous
example, we find inv1(I) has a mixed volume of one and inv2(I) has a mixed
volume of three, so for generic coefficients we again recover the degree of the
solution curve.

Computing All Space Curve Solutions of Polynomial Systems 81

7 Current Approaches

In [4] a method is given for computing the tropical variety of an ideal I defining a
curve. It involves appending witness polynomials from I to a list of its generators
such that for this new set, the tropical prevariety equals the tropical variety. Such
a set is called a tropical basis. Each additional polynomial rules out one of the
cones in the original prevariety that does not belong in the tropical variety. As
stated in [4] only finitely many additional polynomials are necessary, since the
prevariety has only finitely many cones.

The algorithm runs as follows. For each cone C in the tropical prevariety, we
choose a generic element w ∈ C. We check whether inw(I) contains a monomial
by saturating with respect to m, the product of ring variables; the initial ideal
contains a monomial if and only if this saturation ideal is equal to (1). If inw(I)
does not contain a monomial, the cone C belongs in our tropical variety. If it
does, we check whether mi ∈ I for increasing values of i until we find a monomial
m′ ∈ inw(I). Finally, we append m′ − h to our list of basis elements, where h
is the reduction of m with respect to a Gröbner basis of I under any monomial
order that refines w. For w to define a global monomial order, and thus allow a
Gröbner basis, it may be necessary to homogenize the ideal first.

Bounding the complexity of this algorithm is beyond the scope of this paper,
but for each cone it requires computing a Gröbner basis of I as well as another
(possibly faster) basis when calculating the saturation to check if the initial ideal
contains a monomial. In some cases we may only be concerned about tropisms
hiding in a particular higher-dimensional cone of the prevariety, such as with our
running example (7). Here it is reasonable to perform only one step of this algo-
rithm, namely looking for a witness for a single cone, which could be significantly
faster. However, this has the disadvantage of introducing more 1-dimensional
cones into the prevariety. More details, including some timing comparisons, will
be given in Sect. 9.

8 Polyhedral End Games

A polyhedral end game [11] applies extrapolation methods to numerically esti-
mate the winding number of solution paths defined by a homotopy. The leading
exponents of the Puiseux series are recovered via differences of the logarithms
of the magnitudes of the coordinates of the solution paths. Even in the case –
as in our illustrative example – where the given polynomials contain insufficient
information to compute all tropisms only from the prevariety, a polyhedral end
game manages to compute all tropisms. The setup is similar to that of [23],
arising in a numerical study of the asymptotics of a space curve, defined by the
system f(x) = 0: {

f(x) = 0
tx1 + (1 − t)(x1 − γ) = 0, γ ∈ C \ {0},

(21)

as t moves from 0 to 1, the hyperplane x1 = γ moves the coordinate plane
perpendicular to the first coordinate axis.

82 N. Bliss and J. Verschelde

As t moves from 0 to 1, it is important to note that t will actually never
be equal to one. In the polyhedral end games of [11], to estimate the winding
number via extrapolation methods, the step size decreases in a geometric ratio.
In particular, denoting the winding number by ω, for t = 1 − sω, and 0 < r < 1,
we consider the solutions for sk = s0r

k, k = 0, 1, . . ., starting at some s0 ≈ 0.
The constant γ in (21) is a randomly generated complex number. This implies

that for x1 = γ, the polynomial system in (21) for t = 0 has as many isolated
solutions (generic points on the space, eventually counted with multiplicities) as
the degree of the projection of the space curve onto the first coordinate plane.
As long as t < 1, the points remain generic, although the numerical condition
numbers are expected to blow up as t approaches one.

The deteriorating numerical ill conditioning can be mitigated by the use
of multiprecision arithmetic. For example, condition numbers larger than 108

make results unreliable in double precision. In double double precision, much
higher condition numbers can be tolerated, typically up to 1016, and this goes
up to 1032 for quad double precision. As we interpret the inverse of the condition
number as the distance to a singular solution, with multiprecision arithmetic we
can compute more points more accurately as needed in the extrapolation to
estimate winding numbers.

An additional difficulty arises when a path diverges to infinity, which mani-
fests itself by a tropism with negative coordinates. A reformation of the problem
in a weighted projective space corresponds to a unimodular coordinate trans-
formation which uses the computed direction of the solution path. Towards the
end of the path, this direction coincides with the tropism.

The a posteriori verification of a polyhedral end game is similar to computing
a Puiseux expansion starting at a pretropism.

9 Computational Experiments

In this section we focus on the family of systems (7) with a tropism hidden in
a higher dimensional cone of pretropisms. Classical families such as the cyclic
n-roots problems appear not to have such hidden pretropisms, at least not for
the cases computed in [1,2] and [19].

9.1 Symbolic Methods

To substantiate the claim that finding the tropical variety is computationally
expensive, we calculated tropical bases of the system (7) for various values of n.
The symbolic computations of tropical bases was done with Gfan [14]. Times are
displayed in Table 1. The computations were executed on an Intel Xeon E5-2670
processor running RedHat Linux. As is clear from the table, as the dimension
grows for this relatively simple system, computation time becomes prohibitively
large.

As mentioned in Sect. 7, an alternative to computing the tropical basis is
to only calculate the witness polynomial for a particular cone of the tropical

Computing All Space Curve Solutions of Polynomial Systems 83

Table 1. Execution times, in seconds, of the computation of a tropical basis for the
system (7); averages of 3 trials.

n 3 4 5 6 7

time 0.052 0.306 2.320 33.918 970.331

prevariety. We implemented this algorithm in Macaulay2 [5] and applied it to (7)
to cut down the cone generated by the rays (1, 1, . . . , 1) and (1, 0, 0, . . . , 0). In
all the cases we tried, the new prevariety contained the ray (2, 1, . . . , 1), as we
expected.

From Table 2 it is clear that this has a significant speed advantage over
computing a full tropical basis. However, it has the disadvantage of introducing
many more rays into the prevariety. The number can vary depending on the
random ray chosen in the cone, so the third column lists some of the values we
obtained over several trials. We only computed up through dimension 10 because
the prevariety computations were excessive for higher dimensions.

Table 2. Execution times in seconds of the computation of a witness polynomial for the
cone generated by (1, 1, . . . , 1), (1, 0, . . . , 0) of the system (7); averages of 3 trials. The
third column lists the number of rays in the fan obtained by intersecting the original
prevariety with the normal fan of the witness polynomial; since this can vary with the
choice of random ray, we list values from several tries.

dim time #rays in the new fan

3 0.004 4, 5

4 0.011 10, 11

5 0.004 13, 14

6 0.009 27, 49

7 0.033 13, 25, 102

8 0.170 124, 401, 504

9 0.963 758, 1076

10 10.749 514, 760, 1183, 2501

11 131.771

12 1131.089

9.2 Our Approach

The polyhedral end game was done with version 2.4.10 of PHCpack [22],
upgraded with double double and quad double arithmetic, using QDlib [9]. Poly-
hedral end games are also available via the Python interface of PHCpack, since
version 0.4.0 of phcpy [24].

84 N. Bliss and J. Verschelde

Table 3. Execution times on tracking d paths in n-space with a polyhedral end game.
The reported time is the elapsed CPU user time, in seconds. The last column represents
the average time spent on one path.

n d time time/d

4 4 0.012 0.003

5 8 0.035 0.006

6 16 0.090 0.007

7 32 0.243 0.010

8 64 0.647 0.013

9 128 1.683 0.016

10 256 4.301 0.017

11 512 7.507 0.015

12 1024 27.413 0.027

For the first motivating example (4) in 3-space, there are four solutions when
x1 = γ. The tropism (3, 1, 1), with winding number 3, is recovered when running
a polyhedral end game, tracking four solution paths. Even in quad double preci-
sion (double precision already suffices), the running time is a couple of hundred
milliseconds.

Table 3 shows execution times for the family of polynomial systems in (7).
The computations were executed on one core of an Intel Xeon E5-2670 processor,
running RedHat Linux.

All directions computed with double precision at an accuracy of 10−8. For this
family of systems, double precision sufficed to accurately compute the tropism
(2, 1, . . . , 1). Although the total number of paths grows exponentially, every path
has the same direction, so tracking only one path suffices. Clearly, these times
are significantly smaller than the time required to compute a tropical basis.

10 Conclusions

The tropical prevariety provides candidate tropisms for Puiseux series expansions
of space curves. As shown in [1,2] on the cyclic n-root problems, the pretropisms
may directly lead to series developments for the positive dimensional solution
sets. In this paper we studied cases where tropisms are in the relative interior
of higher-dimensional cones of the tropical prevariety. If the tropical prevariety
contains a higher dimensional cone and Puiseux series expansion fails at one of
the cone’s generating rays, then a polyhedral end game can recover the tropisms
in the interior of that higher dimensional cone of pretropisms. As our example
shows, this takes drastically less time than computing the tropical variety via
a tropical basis, especially as dimension grows. It is also faster than finding a
witness polynomial for just that particular cone, and avoids the issue of adding
rays to the tropical prevariety.

Computing All Space Curve Solutions of Polynomial Systems 85

References

1. Adrovic, D., Verschelde, J.: Computing Puiseux series for algebraic surfaces. In:
van der Hoeven, J., van Hoeij, M. (eds.) Proceedings of the 37th International
Symposium on Symbolic and Algebraic Computation (ISSAC 2012), pp. 20–27.
ACM (2012)

2. Adrovic, D., Verschelde, J.: Polyhedral methods for space curves exploiting sym-
metry applied to the cyclic n-roots problem. In: Gerdt, V.P., Koepf, W., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 10–29. Springer,
Heidelberg (2013)

3. Bernshtěın, D.: The number of roots of a system of equations. Funct. Anal. Appl.
9(3), 183–185 (1975)

4. Bogart, T., Jensen, A., Speyer, D., Sturmfels, B., Thomas, R.: Computing tropical
varieties. J. Symbolic Comput. 42(1), 54–73 (2007)

5. Grayson, D., Stillman, M.: Macaulay2, a software system for research in algebraic
geometry. http://www.math.uiuc.edu/Macaulay2/

6. Herrero, M., Jeronimo, G., Sabia, J.: Affine solution sets of sparse polynomial
systems. J. Symbolic Comput. 51(1), 34–54 (2012)

7. Herrero, M., Jeronimo, G., Sabia, J.: Elimination for generic sparse polynomial
systems. Discrete Comput. Geom. 51(3), 578–599 (2014)

8. Herrero, M., Jeronimo, G., Sabia, J.: Puiseux expansions and non-isolated points
in algebraic varieties. Commun. Algebra 44(5), 2100–2109 (2016)

9. Hida, Y., Li, X., Bailey, D.: Algorithms for quad-double precision floating point
arithmetic. In: 15th IEEE Symposium on Computer Arithmetic (Arith-15 2001),
11–17, Vail, CO, USA, pp. 155–162. IEEE Computer Society (2001). Shortened ver-
sion of Technical Report LBNL-46996, software at http://crd.lbl.gov/∼dhbailey/
mpdist/qd-2.3.9.tar.gz

10. Huber, B., Sturmfels, B.: A polyhedral method for solving sparse
polynomial systems. Math. Comput. 64(212), 1541–1555 (1995).
http://www.jstor.org/stable/2153370

11. Huber, B., Verschelde, J.: Polyhedral end games for polynomial continuation.
Numer. Algorithms 18(1), 91–108 (1998)

12. Jensen, A., Leykin, A., Yu, J.: Computing tropical curves via homotopy continu-
ation. Exp. Math. 25(1), 83–93 (2016)

13. Jensen, A., Yu, J.: Computing tropical resultants. J. Algebra 387, 287–319 (2013)
14. Jensen, A.: Computing Gröbner fans and tropical varieties in Gfan. In: Stillman,

M., Takayama, N., Verschelde, J. (eds.) Software for Algebraic Geometry. The
IMA Volumes in Mathematics and its Applications, vol. 148, pp. 33–46. Springer,
Heidelberg (2008)

15. Jeronimo, G., Matera, G., Solernó, P., Waissbein, A.: Deformation tech-
niques for sparse systems. Found. Comput. Math. 9(1), 1–50 (2008).
http://dx.doi.org/10.1007/s10208-008-9024-2

16. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry, Graduate Studies
in Mathematics, vol. 161. American Mathematical Society, Providence (2015)

17. OEIS Foundation Inc.: The on-line encyclopedia of integer sequences (2016).
http://oeis.org. Accessed 03 Nov 2015

18. Römer, T., Schmitz, K.: Generic tropical varieties. J. Pure Appl. Alge-
bra 216(1), 140–148 (2012). http://www.sciencedirect.com/science/article/pii/
S0022404911001290

http://www.math.uiuc.edu/Macaulay2/
http://crd.lbl.gov/~dhbailey/mpdist/qd-2.3.9.tar.gz
http://crd.lbl.gov/~dhbailey/mpdist/qd-2.3.9.tar.gz
http://www.jstor.org/stable/2153370
http://dx.doi.org/10.1007/s10208-008-9024-2
http://oeis.org
http://www.sciencedirect.com/science/article/pii/S0022404911001290
http://www.sciencedirect.com/science/article/pii/S0022404911001290

86 N. Bliss and J. Verschelde

19. Sabeti, R.: Numerical-symbolic exact irreducible decomposition of cyclic-12. LMS
J. Comput. Math. 14, 155–172 (2011)

20. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of
Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge
(1993)

21. Sommars, J., Verschelde, J.: Pruning algorithms for pretropisms of Newton poly-
topes. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC
2016. LNCS, vol. 9890, pp. 489–503 (2016)

22. Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial
systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276
(1999)

23. Verschelde, J.: Polyhedral methods in numerical algebraic geometry. In: Bates,
D., Besana, G., Di Rocco, S., Wampler, C. (eds.) Interactions of Classical and
Numerical Algebraic Geometry, Contemporary Mathematics, vol. 496, pp. 243–
263. AMS (2009)

24. Verschelde, J.: Modernizing PHCpack through phcpy. In: de Buyl, P., Varoquaux,
N. (eds.) Proceedings of the 6th European Conference on Python in Science
(EuroSciPy 2013), pp. 71–76 (2014)

25. Verschelde, J., Verlinden, P., Cools, R.: Homotopies exploiting Newton polytopes
for solving sparse polynomial systems. SIAM J. Numer. Anal. 31(3), 915–930
(1994)

Algorithmic Computation of Polynomial
Amoebas

D.V. Bogdanov1, A.A. Kytmanov2, and T.M. Sadykov1(B)

1 Plekhanov Russian University, Stremyanny 36, Moscow 125993, Russia
Sadykov.TM@rea.ru

2 Siberian Federal University, Svobodny 79, Krasnoyarsk 660041, Russia
aakytm@gmail.com

Abstract. We present algorithms for computation and visualization
of polynomial amoebas, their contours, compactified amoebas and sec-
tions of three-dimensional amoebas by two-dimensional planes. We also
provide a method and an algorithm for the computation of polynomials
whose amoebas exhibit the most complicated topology among all poly-
nomials with a fixed Newton polytope. The presented algorithms are
implemented in computer algebra systems Matlab 8 and Mathematica 9.

Keywords: Amoebas · Newton polytope · Optimal algebraic hypersur-
face · The contour of an amoeba · Hypergeometric functions

1 Introduction

The amoeba of a multivariate polynomial in several complex variables is the
Reinhardt diagram of its zero locus in the logarithmic scale with respect to
each of the variables [17]. The term “amoeba” has been coined in [5, Chap. 6]
where two competing definitions of the amoeba of a polynomial have been given:
the affine and the compactified versions. Both definitions are only interesting
in dimension two and higher since the amoeba of a univariate polynomial is
a finite set that can be explored by a variety of classical methods of localization
of polynomial roots.

The geometry of the amoeba of a polynomial carries much information on the
zeros of this polynomial and is closely related to the combinatorial structure of its
Newton polytope (see Theorem 1). Despite loosing half of the real dimensions,
the image of the zero locus of a polynomial in the amoeba space reflects the
relative size of some of its coefficients.

From the computational point of view, the problem of giving a complete
geometric or combinatorial description of the amoeba of a polynomial is a task
of formidable complexity [8,11], despite the substantial recent progress in this
direction [12–14]. The number of connected components of an amoeba comple-
ment as a function of the coefficients of the polynomial under study is still to be
explored by means of the modern methods of computer algebra. In particular,

c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 87–100, 2016.
DOI: 10.1007/978-3-319-45641-6 7

88 D.V. Bogdanov et al.

the conjecture by M. Passare on the solidness of maximally sparse polynomials
(see Definition 5) remains open for a long time.

Amoebas can be computed and depicted by means of a variety of approaches
and methods (see [3,6,9,11,13,14] and the references therein). The present paper
is meant to move forward the art of computing and drawing complex amoebas
of algebraic hypersurfaces. A special attention paid to the geometrically most
interesting and computationally most challenging case of optimal hypersurfaces
(see Definition 4). We expose methods and algorithms for computation and visu-
alization of amoebas of bivariate polynomials, their contours and compactified
versions. The developed algorithms are used in higher dimensions for depicting
sections of amoebas of polynomials in three variables. The main focus of the
paper is on polynomials whose amoebas have the most complicated topological
structure among all polynomials with a given Newton polytope (see Definition 4).
We provide an algorithm for explicit construction of such polynomials.

The presented algorithms are implemented in the computer algebra systems
Matlab 8 (64-bit) and Wolfram Mathematica 9 (64-bit). All examples in the
paper have been computed on Intel Core i5-4440 CPU clocked at 3.10 GHz
with 16 Gb RAM under MS Windows 7 Ultimate SP1.

2 Convex Polytopes, Cones and Amoebas: Definitions
and Preliminaries

Let p (x) be a polynomial in n complex variables:

p (x1, . . . , xn) =
∑
α∈A

cαxα =
∑
α∈A

cα1...αn
xα1
1 · . . . · xαn

n ,

where A ⊂ ZZn is a finite set.

Definition 1. The Newton polytope Np(x) of a polynomial p (x) is the convex
hull of the set A of its exponent vectors.

Definition 2. The recession cone of a convex set M is the set-theoretical max-
imal element in the family of convex cones whose shifts are contained in M .

Definition 3. The amoeba Ap(x) of a polynomial p (x) is the image of its zero
locus under the map Log : (x1, . . . , xn) �−→ (ln |x1| , . . . , ln |xn|) .

The connected components of the complement to the amoeba Ap(x) are
convex and in bijective correspondence with the expansions of the rational
function 1/p(x) into Laurent series centered at the origin [4]. The next state-
ment shows how the Newton polytope Np(x) is reflected in the geometry of the
amoeba Ap(x) [4, Theorem 2.8 and Proposition 2.6].

Theorem 1 (See [4]). Let p (x) be a Laurent polynomial and let {M} denote
the family of connected components of the amoeba complement cAp(x). There
exists an injective function ν : {M} → ZZn ∩ Np(x) such that the cone that is

Algorithmic Computation of Polynomial Amoebas 89

dual to the polytope Np(x) at the point ν (M) coincides with the recession cone
of M . In particular, the number of connected components of cAp(x) cannot be
smaller than the number of vertices of the polytope Np(x) and cannot exceed the
number of integer points in Np(x).

Thus, the amoeba of polynomial p(x) in n ≥ 2 variables is a closed connected
unbounded subset of IRn whose complement consists of a finite number of con-
vex connected components. Besides, a two-dimensional amoeba has “tentacles”
that go off to infinity in the directions that are orthogonal to the sides of the
polygon Np(x) (see Figs. 2 and 3).

The two extreme values for the number of connected components of an
amoeba complement are of particular interest.

Definition 4 (See [4, Definition 2.9]). An algebraic hypersurface H ⊂ (C∗)n,
n≥2, is called optimal if the number of connected components of the complement
of its amoeba cAH equals the number of integer points in the Newton polytope
of the defining polynomial for H. We will say that a polynomial (as well as its
amoeba) is optimal if its zero locus is an optimal algebraic hypersurface.

In other words, an algebraic hypersurface is optimal if the topology of its
amoeba is as complicated as it could possibly be under the condition that the
Newton polytope of the defining polynomial is fixed. The other extreme case
of the topologically simplest possible amoeba is defined as follows.

Definition 5 (See [10]). An algebraic hypersurface H ⊂ (C∗)n, n ≥ 2, is called
solid, if the number of connected components of its amoeba complement cAH
equals the number of vertices of the Newton polytope of its defining polyno-
mial H.

Thus, the solid and the optimal amoebas are the endpoints of the spectrum
of amoebas of polynomials with a given Newton polytope. Of course, there exist
plenty of optimal (as well as solid) amoebas defined by polynomials with a given
Newton polytope. In fact, both sets of amoebas regarded as subsets in the com-
plex space of coefficients of defining polynomials, have nonempty interior.

In the bivariate case, an amoeba is solid if and only if all of the connected
components of its complement are unbounded and no its tentacles are parallel.
A two-dimensional optimal amoeba has, on the contrary, the maximal possible
number of bounded connected components in its complement and the maximal
possible number of parallel tentacles.

The functional dependency of the topological type of the amoeba Ap(x) on
the coefficients of its defining polynomial p (x) is complex and little understood
at the present moment. A sufficient condition for the amoeba of a polynomial to
be optimal is that it satisfies a “natural” system of partial differential equations
of hypergeometric type [1,2] while the support of the polynomial in question is
complex enough [15]. In Sect. 4, we expose an algorithm for the computation
of the hypergeometric polynomial with the prescribed Newton polytope.

90 D.V. Bogdanov et al.

Example 1. Let N denote the convex hull of the set of lattice points
{(0, 0) , (1, 0) , (0, 2) , (2, 1)}, see Fig. 1. This polygon will appear in several exam-
ples that follow and has been chosen as one of the simplest polygons that contain
an inner integer point as well as an integer point in the relative interior of its edge.

Fig. 1. The support
of the polynomials in
Example 1

Figure 2 shows the amoebas of the four bivariate poly-
nomials p1 (x, y) = 1 + x + y + xy + y2 + x2y, p2 (x, y) =
1+x+3y+xy+y2+x2y, p3 (x, y) = 1+x+y+4xy+y2+x2y,
p4 (x, y) = 1+x+3y+4xy+y2 +x2y whose Newton poly-
gons coincide with N . The complement of the solid amoeba
in Fig. 2(a) consists of the four unbounded connected com-
ponents with two-dimensional recession cones. The com-
plement to the optimal amoeba in Fig. 2(d) comprises six
connected components: the four unbounded components
with the two-dimensional recession cones, one unbounded

component between the tentacles with the one-dimensional recession cone, and
the bounded component. The other two amoebas depicted in Figs. 2(b) and (c)
exhibit five connected components in their respective complements and topo-
logically assume an intermediate position between the solid and the optimal
amoebas defined by polynomials with the Newton polygon N .

The existing analytic methods [4,12] do not in general allow one to predict
the topological type of a polynomial with generic coefficients. From the computa-
tional point of view, the tasks of depicting the amoebas in Figs. 2(a) and (d) are
rather similar. Yet, to predict the existence of a bounded connected component
of a given order [4] in an amoeba complement by means of analytic methods is
in general a task of formidable complexity [11].

3 Computing Two-Dimensional Amoebas

Definition 6. We will call the “carcase” of an amoeba A any subset of A, such
that the number of connected components of the complement to the intersec-
tion A∩B for a sufficiently large ball B is as big as it could possibly be (that is,
equal to the number of connected components in the complement of A in IRn).

We remark that the carcase of an amoeba is not uniquely defined. However,
the topology of its complement in a sufficiently big ball is well-defined and is
as complex as possible. When speaking of depicting an amoeba we will mean
depicting its suitable carcase.

In this section, we consider bivariate polynomials of the form p (x, y) =∑
cijx

iyj and provide an algorithm for computing their amoebas.
Theorem 1 yields that the geometry of the amoeba Ap is closely related to the

properties of the Newton polytope Np of the polynomial p. Yet, the coefficients
of p also play a role and determine the size of the carcase of the amoeba in
question. In what follows, the boundary of the domain where the carcase of an
amoeba is depicted has been determined experimentally.

Algorithmic Computation of Polynomial Amoebas 91

Algorithm 1. Algorithm for computing the amoeba Ap of a bivariate
polynomial
Require: List of the polynomial coefficients cx list, in x by all monomials yk, k =

0, . . . , degy p; the boundaries of the rectangular domain in the logarithmic amoeba
space a, b; the number of values of the absolute value nr and the angle nϕ of the
complex variable.

Ensure: List of coordinates of points that belong to the amoeba carcase z list, w list.
1: procedure Amoeba2D(cx list, a, b, nr, nϕ)
2: z list := empty list
3: w list := empty list
4: d := the number of elements in cx list – 1
5: 1d := (1, . . . , 1) ∈ IRd � the vector with d units
6: hr := (exp (b) − exp (a)) / (nr − 1)
7: hϕ := 2π/ (nϕ − 1)
8: for r = exp(a) : exp(b) : hr do
9: for ϕ = 0 : 2π : hϕ do

10: x := r ∗ exp
(√−1 ∗ ϕ

)

11: y := roots(cx list) � the vector of zeros of the polynomial with the
coefficients cx list

12: Add Log(|x| ∗ 1d) to z list
13: Add Log(|y|) to w list
14: end for
15: end for
16: return {z list, w list}
17: end procedure

The next straightforward algorithm which computes the amoeba of a bivari-
ate polynomial has been used by numerous authors in various forms [3,6,9]. We
include it for the sake of completeness and future reference. We refer to [8] for
a detailed discussion of computational complexity of polynomial root finding
algorithms.

To obtain a picture of good quality the steps of the Algorithm 1 are repeated
with the variables x and y interchanged. The points with the computed coordi-
nates are depicted in the same figure.

Example 2. For the polynomial p4 (x, y) in Example 1, the lists of polynomial
coefficients in the variables x and y are as follows: cx list={1, 3+4x+x2, 1+x}
and cy list={y, 1 + 4y, 1 + 3y + y2}. The (carcase of the) amoeba is depicted
in the rectangle [−5, 5] × [−5, 5]. The number of values of the absolute value
of a variable is nr = 2000 while the number of values of its argument is nϕ = 180.
Figure 2 features the amoebas of the polynomials in Example 1 computed by
means of Algorithm 1.

The topologically more involved amoeba of the polynomial in Example 4 has
been computed in a similar way.

92 D.V. Bogdanov et al.

(a) (b) (c) (d)

Fig. 2. The amoebas of the polynomials p1 (x, y), p2 (x, y), p3 (x, y) and p4 (x, y)

4 Generating Optimal Polynomials

In this section, we employ the notion of a hypergeometric polynomial for the pur-
pose of constructive generation of optimal amoebas. We will need the following
auxiliary definition.

Definition 7. A formal Laurent series∑
s∈ZZn

ϕ (s) xs (1)

is called hypergeometric if for any j = 1, . . . , n the quotient ϕ(s + ej)/ϕ(s) is
a rational function in s = (s1, . . . , sn). Throughout the paper, we denote this
rational function by Pj(s)/Qj(s + ej). Here {ej}n

j=1 is the standard basis of the
lattice ZZn. By the support of this series we mean the subset of ZZn on which
ϕ(s) �= 0.

A hypergeometric function is a (multi-valued) analytic function obtained by
means of analytic continuation of a hypergeometric series with a nonempty
domain of convergence along all possible paths [5,10].

Theorem 2 (Ore, Sato, cf [16]). The coefficients of a hypergeometric series are
given by the formula

ϕ (s) = ts U (s)
m∏

i=1

Γ (〈Ai, s〉 + ci) , (2)

where ts = ts1
1 . . . tsn

n , ti, ci ∈ C, Ai = (Ai,1, . . . , Ai,n) ∈ ZZn, i = 1, . . . ,m and
U (s) is the product of a certain rational function and a periodic function φ (s)
such that φ (s + ej) = φ (s) for every j = 1, . . . , n.

Given the above data (ti, ci,Ai, U (s)) that determines the coefficient
of a multivariate hypergeometric Laurent series, it is straightforward to com-
pute the rational functions Pi (s) /Qi (s + ei) using the Γ -function identity
Γ (z + 1) = zΓ (z) (see e.g. [16]).

Algorithmic Computation of Polynomial Amoebas 93

Algorithm 2. Generation of a bivariate hypergeometric polynomial and its
defining system of equations
Require: List of vertices N list of a convex integer polygon P .
Ensure: List of coefficients c list of the hypergeometric polynomial p (x, y) whose

Newton polygon is P .
1: procedure Hyperpoly2D(N list)
2: B = list of outer normals to the sides of P

3: ϕ (s, t) = 1/
q∏

j=1

Γ (1 − 〈Bj , (s, t)〉 − cj)

4: c list = list of the coefficients of the hypergeometric polynomial
5: R1 = FunctionExpand[ϕ (s + 1, t) /ϕ (s, t)]
6: R2 = FunctionExpand[ϕ (s, t + 1) /ϕ (s, t)]
7: P1 = Numerator[R1]
8: P2 = Numerator[R2]
9: Q1 = Denominator[R1]

10: Q2 = Denominator[R2]
11: θx = xp′

x

12: θy = yp′
y

13: p = the polynomial defined by c list
14: if xP1(θ)p = Q1(θ)p and yP2(θ)p = Q2(θ)p then
15: return {c list}
16: end if
17: end procedure

Definition 8. A (formal) Laurent series
∑

s∈ZZn ϕ (s) xs whose coefficient sat-
isfies the relations ϕ(s + ej)/ϕ (s) = Pj (s) /Qj (s + ej) is a (formal) solution to
the following system of partial differential equations of hypergeometric type:

xjPj (θ) f (x) = Qj (θ) f (x) , j = 1, . . . , n. (3)

Here θ = (θ1, . . . , θn), θj = xj
∂

∂xj
.

The system (3) will be referred to as the Horn hypergeometric system defined
by the Ore–Sato coefficient ϕ(s) (see [2]) and denoted by Horn (ϕ).

For a convex integer polytope N , we construct the list B of the outer normals
to the faces of N . We denote the length of this list by q. We assume the elements
of B to be normalized so that the coordinates of each outer normal are integer
and relatively prime. Define the Ore–Sato coefficient

ϕ (s) =
1

q∏
j=1

Γ (1 − 〈Bj , s〉 − cj)
. (4)

The hypergeometric system (3) defined by the Ore–Sato coefficient ϕ(s) admits
a polynomial solution with several interesting properties. Under the additional
assumption that it cannot be factored in the ring of Puiseux polynomials
C[x1/d

1 , . . . , x
1/d
n] for any d ∈ IN, this polynomial turns out to have an optimal

94 D.V. Bogdanov et al.

amoeba. We will employ Algorithm 2 to generate optimal polynomials of hyper-
geometric type.

Example 3. The outer normals (normalized as explained above) to the sides
of the polygon shown in Fig. 1 are as follows: (0,−1), (−1, 0), (1, 2), (1,−1).
Using (4) we obtain

ϕ (s, t) = (Γ (s + 1) Γ (t + 1) Γ (−s − 2t + 5) Γ (−s + t + 2))−1.

By Definition 8 the above Ore–Sato coefficient ϕ (s, t) gives rise to the polyno-
mials

P1 (s, t) = (−s − 2t + 4) (−s + t + 1) , Q1 (s, t) = s + 2,
P2 (s, t) = (s + 2t − 4) (s + 2t − 3) , Q2 (s, t) = (t + 2) (−s + t + 3) .

The corresponding hypergeometric system is defined by the linear partial differ-
ential operators

{
x (−θx − 2θy + 4) (−θx + θy + 1) − (θx + 2) ,
y (θx + 2θy − 4) (θx + 2θy − 3) − (θy + 2) (−θx + θy + 3) .

(5)

It is straightforward to check that the hypergeometric polynomial p(x, y) =
1 + 4x + 6y + 24xy + 12x2y + 2y2 (whose coefficients are found in accordance
with Step 3 of Algorithm 2 and normalized to be relatively prime integers)
belongs to the kernels of operators (5).

Example 4. Using Algorithms 1 and 2 we compute the coefficients of the hyper-
geometric polynomial supported in the polygon Nph(x,y) shown in Fig. 3(a):
ph (x, y) = 2x2 + 20xy + 72x2y + 20x3y + 5y2 + 160xy2 + 450x2y2 + 160x3y2 +
5x4y2 +12y3 +300xy3 +800x2y3 +300x3y3 +12x4y3 +5y4 +160xy4 +450x2y4 +
160x3y4+5x4y4+20xy5+72x2y5+20x3y5+2x2y6. The amoeba Aph(x,y) of this
polynomial is depicted in Fig. 3(a)(right).

A more involved hypergeometric polynomial is given by ph2(x, y) =
−456456x3+488864376x2y−28756728x3y+ 25420947552x2y2−244432188x3y2+
3003x4y2−119841609888xy3+127104737760x2y3−465585120x3y3+6006x4y3+
1396755360y4 − 508418951040xy4 + 139815211536x2y4 − 232792560x3y4 +
1729x4y4 + 4190266080y5 − 355893265728xy5 + 41611670100x2y5 −
29628144x3y5 + 57x4y5 + 698377680y6 − 58663725120xy6 + 3328933608x2y6 −
705432x3y6 − 2327925600xy7 + 55023696x2y7 − 16930368xy8. Its defining Ore–
Sato coefficient equals ϕ(s, t) = Γ (s+t−4)Γ (−4s+t−16)Γ (−3s−2t−5)Γ (3s−
t − 3)Γ (2s + t − 5). The amoeba of this polynomial is shown in Fig. 3(b).

5 Computing Contours of Amoebas of Bivariate
Polynomials

The boundary of an amoeba admits a rich analytic structure that is revealed in
the following definition.

Algorithmic Computation of Polynomial Amoebas 95

(a) (b)

Fig. 3. The Newton polytope and the amoeba of the hypergeometric polynomial
ph (x, y) and polynomial ph2 (x, y)

Definition 9. The contour of the amoeba Ap(x) is the set Cp(x) of critical points
of the logarithmic map Log restricted to the zero locus of the polynomial p (x),
that is, the map Log : {p (x) = 0} → IRn.

The structure of the contour of an amoeba can be described in terms of the
logarithmic Gauss map which is defined as follows.

Definition 10. Denote by Gr(n, k) the Grassmannian of k-dimensional sub-
spaces in Cn. The logarithmic Gauss map [7] is defined to be the map γ : H �−→
Gr(n, k) that maps a regular point x ∈ reg H into the normal subspace γ(x) to
the image log H.

The boundary of an amoeba ∂Ap(x) is necessarily a subset of the contour Cp(x)

but is in general different from it.
Knowing the structure of the contour of an amoeba is important for describ-

ing the topological structure of the amoeba complement. Experiments show that
a cusp of the contour inside the “body” of the corresponding amoeba is a coun-
terpart of a missing connected component in its complement.

One of the ways to draw the contour of an amoeba is to depict the solutions
to the system of algebraic equations

{
p (x, y) = 0,
x∂p(x,y)

∂x − uy ∂p(x,y)
∂y = 0.

(6)

Here u ∈ IR ∪ {∞} is a real parameter that encodes the slope of the normal line
to the contour of the amoeba.

Eliminating the variables x and y out of system (6) we obtain polynomials
s (y, u) and t (x, u) that can be used to depict the contour of the amoeba by
means of the following algorithm.

Remark 1. The lists of coordinates that are obtained at each iteration of the
cycle in Algorithm 3 might contain additional elements that do not correspond
to the amoeba contour. They are sorted out by checking against the system
of equations (6). All visualization algorithms are linear in the lattice parameters
hr, hϕ, hu.

96 D.V. Bogdanov et al.

Algorithm 3. Computing the contour Cp of the amoeba of a bivariate
polynomial
Require: List of polynomial coefficients cx list, cy list depending on u, by all mono-

mials xk, k = 0, . . . , degx t, ym, m = 0, . . . , degy s; initial value u1, final value un

and the step hu.
Ensure: List of coordinates of points z list, w list that belong to the contour of the

amoeba.
1: procedure Contour2D(cx list, cy list, u1, un, hu)
2: z list := the empty list
3: w list := the empty list
4: dx := the number of elements in cx list – 1
5: dy := the number of elements in cy list – 1
6: for u = u1 : un : hu do
7: x := roots(cx list) � the vector of zeros of the polynomial with the

coefficients cx list
8: y := roots(cy list) � the vector of zeros of the polynomial with the

coefficients cy list
9: Add Log(|x|) to z list

10: Add Log(|y|) to w list
11: end for
12: return {z list, w list}
13: end procedure

Example 5. The system of equations (6) associated with the first polynomial in
Example 1 has the form

{
1 + x + y + xy + y2 + x2y = 0,
x − uy + xy − uxy + 2x2y − ux2y − 2uy2 = 0.

Eliminating variables x and y yields the equations u − 2uy + u2y − 4uy2 +
2u2y2 − 2uy3 − u2y3 + 3uy4 + 4uy5 + u2y5 = 1 − y − 4y2 − 9y3 − 7y4 − 4y5 and
−3u2 −3ux−5u2x−2ux2 +u2x2 +3ux3 +5u2x3 +2ux4 +3u2x4 +ux5 +u2x5 =
x2 + 2x3 + 5x4 + 2x5, respectively. The lists of the coefficients that depend on u
are cx list = {−1+u, 1−2u+u2, 4−4u+2u2, 9−2u−u2, 7+3u, 4+4u+u2} and
cy list = {−3u2, −3u−5u2, −1−2u+u2, −2+3u+5u2, −5+2u+3u2, −2+u+u2}.
The parameter u assumes values in the interval [−120, 120] with the step hu =
0.001. The obtained contours of the amoebas of the polynomials in Example 1
have nontrivial structure and are shown in Fig. 4.

6 Computing Two-Dimensional Compactified Amoebas

Definition 11. The compactified amoeba Ap(x) of a polynomial p (x) is defined
to be the image of its zero locus under the mapping

μ (x) =

∑
α∈A

α · |xα|
∑

α∈A

|xα| =

∑
(α1,...,αn)∈A

(α1, . . . , αn) · |xα1 · . . . · xαn |
∑

(α1,...,αn)∈A

|xα1 · . . . · xαn | . (7)

Algorithmic Computation of Polynomial Amoebas 97

(a) (b) (c) (d)

Fig. 4. Contours of the amoebas of the polynomials p1 (x, y), p2 (x, y), p3 (x, y) and
p4 (x, y)

Numeric computation of two-dimensional compactified amoebas is similar to that
of their affine counterparts (see Algorithm 1). The main computational issue is
dealing with the moment map (7) instead of the logarithmic map into the affine
space.

Example 6. Applying (7) to the polynomials in Example 1 yields the mapping

(x, y) �−→ μ (x, y) =

(1 · (0, 0) + |x| · (1, 0) + |y| · (0, 1) + |xy| · (1, 1) +
∣∣y2

∣∣ · (0, 2) +
∣∣x2y

∣∣ · (2, 1))
(|1| + |x| + |y| + |xy| + |y2| + |x2y|) =

(|x| + |xy| + 2
∣∣x2y

∣∣ , |y| + |xy| + 2
∣∣y2

∣∣ +
∣∣x2y

∣∣)
(|1| + |x| + |y| + |xy| + |y2| + |x2y|) .

The corresponding compactified amoebas inside the Newton polygon of their
defining polynomials are shown in Fig. 5.

(a) (b) (c) (d)

Fig. 5. Compactified amoebas of the polynomials p1 (x, y), p2 (x, y), p3 (x, y) and
p4 (x, y) inside their Newton polygon

98 D.V. Bogdanov et al.

7 Multivariate Outlook

Depicting three-dimensional amoebas represents a substantial computational
challenge due to the complex geometry of their shape. We will now treat the
problem of computing sections of amoebas of polynomials in three variables by
two-dimensional hyperplanes.

Consider a polynomial in three complex variables p (x, y, z) =
∑

cijkxiyjzk.
To compute the section of its amoeba by the plane |z| = const we fix the absolute
value of z and modify Algorithm 1 by adding a cycle with respect to the values
of the argument ϕz ∈ [0; 2π].

Algorithm 4. Computing the section of the amoeba Ap of a polynomial in three
variables by a two-dimensional plane
Require: List of polynomial coefficients cxz list, depending on x and z by all mono-

mials yk, k = 0, . . . , degy p; bounds a, b for the rectangular domain in the amoeba
space where the amoeba section is depicted; the numbers nr and nϕ of values of the
absolute value and the argument of the variable z ∈ C, respectively.

Ensure: List of points that belong to the amoeba section z list, w list.
1: procedure Amoeba3D(cxz list, a, b, nr, nϕ, z)
2: z list := empty list
3: w list := empty list
4: d := the number of elements in cxz list – 1
5: 1d := (1, . . . , 1) ∈ IRd � the vector of d units
6: hr := (exp (b) − exp (a)) / (nr − 1)
7: hϕ := 2π/ (nϕ − 1)
8: for r = exp(a) : exp(b) : hr do
9: for ϕ = 0 : 2π : hϕ do

10: x := r ∗ exp
(√−1 ∗ ϕ

)

11: y := roots(cxz list) � the vector of zeros of the polynomial with the
coefficients cxz list

12: Add Log(|x| ∗ 1d) to z list
13: Add Log(|y|) to w list
14: end for
15: end for
16: return {z list, w list}
17: end procedure

Example 7. Using Algorithm 4 we compute a section of the amoeba of the poly-
nomial p (x, y, z) = 1 + 3y + y2 + 6xy + x2y + xyz + xyz2. This polynomial is
one of the simplest polynomials with tetrahedral Newton polytopes that contain
integer points in the interior as well as in the relative interior of faces of all pos-
itive dimensions (see Fig. 7). The section of the amoeba Ap(x,y,z) by the plane
log |z| = 5 is shown in Fig. 7(right).

Algorithmic Computation of Polynomial Amoebas 99

Example 8. We now consider a computationally more challenging optimal hyper-
geometric polynomial in three variables supported in a regular integer octa-
hedron. Due to symmetry it suffices to consider its part that belongs to the
positive orthant and is shown in Fig. 6(left). We use a three-dimensional version
of Algorithm 2 to compute the corresponding (uniquely determined up to scaling)
hypergeometric polynomial: ph (x, y, z) = x2y2 + 36x2yz + 36xy2z + 256x2y2z +
36x3y2z + 36x2y3z + x2z2 + 36xyz2 + 256x2yz2 + 36x3yz2 + y2z2 + 256xy2z2 +
1296x2y2z2 +256x3y2z2 +x4y2z2 +36xy3z2 +256x2y3z2 +36x3y3z2 +x2y4z2 +
36x2yz3 +36xy2z3 +256x2y2z3 +36x3y2z3 +36x2y3z3 +x2y2z4. Figure 6(right)
shows the intersection of the amoeba Aph(x,y,z) with the three coordinate hyper-
planes as well as with the hyperplanes |x| = 3, |x| = 8, |y| = 6, |z| = 4 in the
logarithmic amoeba space. The figure space is orthogonal to the vector (1, 1, 1).

Fig. 6. The part of the support of ph (x, y, z) that belongs to the positive orthant and
the carcase of the corresponding part of the amoeba

Fig. 7. The Newton polytope Np(x,y,z) and the
section of the amoeba Ap(x,y,z) by the plane
log |z| = 5

We denote by (s, t, u) the coor-
dinates in the amoeba space of
Fig. 6(right). The bold segments
join the sections of the amoeba by
the planes t = 0, t = log 6, u = 0,
u = log 4, and the section of the
amoeba by the plane s = log 3. The
bold curve is the “top of the box,”
i.e., the intersection of the amoeba
with the plane u = log 4.

100 D.V. Bogdanov et al.

Acknowledgements. This research was supported by the state order of the Ministry
of Education and Science of the Russian Federation for Siberian Federal University
(task 1.1462.2014/K), by grant of the Government of the Russian Federation for inves-
tigations under the guidance of the leading scientists of the Siberian Federal University
(contract No. 14.Y26.31.0006) and by the Russian Foundation for Basic Research,
projects 15-31-20008-mol a ved and 16-41-240764-r a.

References

1. Dickenstein, A., Sadykov, T.M.: Algebraicity of solutions to the Mellin system and
its monodromy. Dokl. Math. 75(1), 80–82 (2007)

2. Dickenstein, A., Sadykov, T.M.: Bases in the solution space of the Mellin system.
Sbornik Math. 198(9–10), 1277–1298 (2007)

3. Forsberg, M.: Amoebas and Laurent Series. Doctoral Thesis presented at Royal
Institute of Technology, Stockholm, Sweden. Bromma Tryck AB, ISBN 91-7170-
259-8 (1998)

4. Forsberg, M., Passare, M., Tsikh, A.K.: Laurent determinants and arrangements
of hyperplane amoebas. Adv. Math. 151, 45–70 (2000)

5. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and
Multidimensional Determinants. Mathematics, Theory & Applications. Birkhäuser
Boston Inc., Boston (1994)

6. Johansson, P.: On the topology of the coamoeba. Doctoral Thesis presented at
Stockholm University, Sweden. US AB, ISBN 978-91-7447-933-1 (2014)

7. Kapranov, M.M.: A characterization of A-discriminantal hypersurfaces in terms of
the logarithmic Gauss map. Math. Ann. 290, 277–285 (1991)

8. Kim, M.-H.: Computational complexity of the Euler type algorithms for the roots
of complex polynomials. Thesis, City University of New York, New York (1985)

9. Nilsson, L.: Amoebas, discriminants and hypergeometric functions. Doctoral The-
sis presented at Stockholm University, Sweden. US AB, ISBN 978-91-7155-889-3
(2009)

10. Passare, M., Sadykov, T.M., Tsikh, A.K.: Nonconfluent hypergeometric functions
in several variables and their singularities. Compos. Math. 141(3), 787–810 (2005)

11. Purbhoo, K.: A Nullstellensatz for amoebas. Duke Math. J. 141(3), 407–445 (2008)
12. Rullg̊ard, H.: Stratification des espaces de polynômes de Laurent et la structure

de leurs amibes (French). Comptes Rendus de l’Academie des Sciences - Series I:
Mathematics 331(5), 355–358 (2000)

13. Theobald, T.: Computing amoebas. Experiment. Math. 11(4), 513–526 (2002)
14. Theobald, T., de Wolff, T.: Amoebas of genus at most one. Adv. Math. 239, 190–

213 (2013)
15. Sadykov, T.M., Tsikh, A.K.: Hypergeometric and Algebraic Functions in Several

Variables (Russian). Nauka (2014)
16. Sadykov, T.M.: On a multidimensional system of hypergeometric differential equa-

tions. Siberian Math. J. 39(5), 986–997 (1998)
17. Viro, T.: What is an amoeba? Not. AMS 49(8), 916–917 (2002)

Sparse Gaussian Elimination Modulo p:
An Update

Charles Bouillaguet1(B) and Claire Delaplace1,2

1 Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL -
Centre de Recherche en Informatique Signal et Automatique de Lille,

59000 Lille, France
charles.bouillaguet@univ-lille1.fr

2 Université de Rennes-1/IRISA, Rennes, France
claire.delaplace@irisa.fr

Abstract. This paper considers elimination algorithms for sparse matri-
ces over finite fields. We mostly focus on computing the rank, because it
raises the same challenges as solving linear systems, while being slightly
simpler.

We developed a new sparse elimination algorithm inspired by the
Gilbert-Peierls sparse LU factorization, which is well-known in the
numerical computation community. We benchmarked it against the usual
right-looking sparse gaussian elimination and the Wiedemann algorithm
using the Sparse Integer Matrix Collection of Jean-Guillaume Dumas.

We obtain large speedups (1000× and more) on many cases. In par-
ticular, we are able to compute the rank of several large sparse matrices
in seconds or minutes, compared to days with previous methods.

1 Introduction

There are essentially two families of algorithms to perform the usual operations
on sparse matrices (rank, determinant, solution of linear equations, etc.): direct
and iterative methods.

Direct methods (such as gaussian elimination, LU factorization, etc.) gener-
ally produce an echelonized version of the original matrix. This process often
incurs fill-in: the echelonized version has more non-zero entries than the origi-
nal. Fill-in increases the time and space needed to complete the echelonization.
As such, the time and space requirements of direct methods are usually unpre-
dictable; they may fail if not enough storage is available, or become excruciat-
ingly slow.

Iterative methods such as the Wiedemann algorithm [29] only perform
matrix-vector products and only need to store one or two vectors in addition
to the matrix. They do not incur any fill-in. On rank-r matrices, the number of
matrix-vector products that must be performed is 2r. Also, when a matrix M
has |M | non-zero entries, computing the matrix-vector product x · M requires
O (|M |) operations. The time complexity of iterative methods is thus O (r|M |),
which is fairly easy to predict, and the space complexity is essentially that of
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 101–116, 2016.
DOI: 10.1007/978-3-319-45641-6 8

102 C. Bouillaguet and C. Delaplace

keeping the matrix in memory. These methods are often the only option for very
large matrices, or for matrices where fill-in makes direct methods impractical.

In a paper from 2002, Dumas and Villard [15] surveyed and benchmarked
algorithms dedicated to rank computations for sparse matrices modulo a small
prime number p. In particular, they compared the efficiency of sparse gaussian
elimination and the Wiedemann algorithm on a collection of benchmark matrices
that they collected from other researchers and made available on the web [16].
They observed that while iterative methods are fail-safe and can be practical,
direct methods can sometimes be much faster. This is in particular the case when
matrices are almost triangular, so that gaussian elimination barely has anything
to do.

It follows that both methods are worth trying. In practical situations, a
possible workflow could be: “try a direct method; if there is too much fill-in,
abort and restart with an iterative method”.

We concur with the authors of [15], and strengthen their conclusion by devel-
oping a new sparse elimination algorithm which outperforms all other techniques
in some cases, including several large matrices which could only be processed by
an iterative algorithm.

Lastly, it is well-known that both methods can be combined: performing one
step of elimination reduces the size of the “remaining” matrix (the Schur com-
plement) by one, while increasing the number of non-zeros. This may decrease
the time complexity of running an iterative method on the Schur complement.
This strategy can be implemented as follows: “While the product of the number
of remaining rows and remaining non-zeros decreases, perform an elimination
step; then switch to an iterative method”. For instance, one phase of the record-
setting factorization of a 768-bit number [20] was to find a few vectors on the
kernel of a 2 458 248 361×1 697 618 199 very sparse matrix over F2 (with about
30 non-zero per row). A first pass of elimination steps (and discarding “bad”
rows) reduced this to a roughly square matrix of size 192 796 550 with about
144 non-zero per row. A parallel implementation of the block-Wiedemann [7]
algorithm then finished the job. The algorithm presented in this paper lends
itself well to this hybridization.

1.1 Our Contribution

Our original intention was to check whether the conclusions of [15] could be
refined by using more sophisticated sparse elimination techniques used in the
numerical world. To do so, we developed the SpaSM software library (SPArse
Solver Modulo p). Its code is publicly available in a repository hosted at: https://
github.com/cbouilla/spasm

Our code is heavily inspired by CSPARSE (“A Concise Sparse Matrix Package
in C”), written by Davis and abundantly described in his book [9]. We modified
it to work row-wise (as opposed to column-wise), and more importantly to deal
with non-square or singular matrices. At its heart lies a sparse LU factorization
algorithm. It is capable of computing the rank of a matrix, but also of solving

https://github.com/cbouilla/spasm
https://github.com/cbouilla/spasm

Sparse Gaussian Elimination Modulo p: An Update 103

linear systems (and, with minor adaptations, of computing the determinant,
finding a basis of the kernel, etc.).

We used this as a playground to implement the algorithms described in this
paper —as well as some other, less successful ones. This was necessary to test
their efficiency in practice. We benchmarked them using matrices from Dumas’s
collection [16], and compared them with the algorithms used in [15], which are
publicly available inside the LinBox library. This includes a right-looking sparse
gaussian elimination, and the Wiedemann algorithm.

There are several cases where the algorithm described in Sect. 3 achieve a
1000× speedup compared to previous algorithms. In particular, it systemati-
cally outperforms the right-looking sparse gaussian elimination implemented in
LinBox.

It is capable of computing the rank of several of the largest matrices from [16],
where previous elimination algorithms failed. In these cases, it vastly outperforms
the Wiedmann algorithm. In a striking example, two computations that required
two days with the Wiedemann algorithm could be performed in 30 min and 30 s
respectively using the new algorithm. More complete benchmark results are given
in Sect. 4.

We relied on three main ideas to obtain these results. First, we built upon
GPLU [19], a left-looking sparse LU factorization algorithm. We then used a
simple pivot-selection heuristic designed in the context of Gröbner basis compu-
tation [18], which works well with left-looking algorithms. On top of these two
ideas, we designed a new, hybrid, left-and-right looking algorithm.

Our intention is not to develop a competitor sparse linear algebra library; we
plan to contribute to LinBox, but we wanted to check the viability of our ideas
first.

1.2 Related Work

Sparse Rank Computation mod p. Our starting point was [15], where a
right-looking sparse gaussian elimination and the Wiedemann algorithm are com-
pared on many benchmark matrices. [23,24] consider the problem of large dense
matrices of small rank modulo a very small prime, while [25] shows that most
operations on extremely sparse matrices with only two non-zero entries per row
can be performed in time O (n). [17] discusses sparse rank computation of the
largest matrices of our benchmark collection by various methods. The largest
computation were performed with a parallel block-variant of the Wiedemann
algorithm.

Direct Methods in the Numerical World. A large body of work has
been dedicated to sparse direct methods by the numerical computation com-
munity. Direct sparse numerical solvers have been developped during the 1970’s,
so that several software packages were ready-to-use in the early 1980’s (MA28,
SPARSPAK, YSMP, ...). For instance, MA28 is an early “right-looking” (cf. Sect. 2)
sparse LU factorization code described in [12,13]. It uses Markowitz pivoting [22]
to choose pivots in a way that maintains sparsity.

104 C. Bouillaguet and C. Delaplace

Most of these direct solvers start with a symbolic analysis phase that ignores
the numerical values and just examines the pattern of the matrix. Its purpose is
to predict the amount of fill-in that is likely to occur, and to pre-allocate data
structures to hold the result of the numerical computation. The complexity of
this step often dominated the running time of early sparse codes. In addition, an
important step was to choose a priori an order in which the rows (or columns)
were to be processed in order to maintain sparsity.

Sparse linear algebra often suffers from poor computational efficiency,
because of irregular memory accesses and cache misses. More sophisticated direct
solvers try to counter this by using dense linear algebra kernels (the BLAS and
LAPACK) which have a much higher FLOP per second rate.

The supernodal method [6] does this by clustering together rows (or columns)
with similar sparsity pattern, yielding the so-called supernodes, and process-
ing them all at once using dense techniques. Modern supernodal codes include
CHOLDMOD [5] (for Cholesky factorization) and SuperLU [11]. The former is
used in Matlab on symmetric positive definite matrices.

In the same vein, the multifrontal method [14] turns the computation of a
sparse LU factorization into several, hopefully small, dense LU factorizations.
The starting point of this method is the observation that the elimination of a
pivot creates a completely dense submatrix in the Schur complement. Contem-
porary implementations of this method are UMFPACK [8] and MUMPS [1]. The
former is also used in Matlab in non-symmetric matrices.

Finally, “left-looking” algorithms are those that do not explicitly compute
the Schur complement during the sparse factorization. This is for instance the
case of SPARSPAK cited earlier. A very interesting algorithm, referred to as
GPLU [19], computes an LU factorization in time proportionnal to the number
of arithmetic operations needed to compute the product L × U (assuming the
zeros are not stored). In particular, the symbolic part of the factorization does
not dominate the numerical part asymptotically. This algorithm is implemented
in Matlab, and is used for very sparse unsymmetric matrices. It is also the heart
of the specialized library called KLU [10], dedicated to circuit simulation.

Direct Methods Modulo p. The world of exact sparse direct methods is much
less populated. Besides LinBox, we are not aware of many implementations of
sparse gaussian elimination capable of computing the rank of a matrix modulo p.
According to its handbook, the MAGMA [2] computer algebra system computes
the rank of a sparse matrix by first performing sparse gaussian elimination with
Markowitz pivoting, then switching to a dense factorization when the matrix
becomes dense enough. The Sage [28] system uses LinBox.

Some specific applications rely on exact sparse linear algebra. All compet-
itive factoring and discrete logarithms algorithms work by finding a few vec-
tors in the kernel of a large sparse matrix. Some controlled elimination steps
are usually performed, which makes the matrix smaller and denser. This has
been called “structured gaussian elimination” [21]. The process can be contin-
ued until the matrix is fully dense (after which it is handled by a dense solver), or
stopped earlier, when the resulting matrix is handled by an iterative algorithm.

Sparse Gaussian Elimination Modulo p: An Update 105

The current state-of-the-art factoring codes, such as CADO-NFS [26], seem to
use the sparse elimination techniques described in [4].

Modern Gröbner basis algorithms work by computing the reduced row-
echelon form of particular sparse matrices. An ad hoc algorithm has been
designed, exploiting the mostly triangular structure of these matrices to find
pivots without performing any computation [18]. An open-source implementa-
tion, GBLA [3], is available.

2 Sparse LU Factorization

In this section we discuss algorithms to compute a sparse LU factorization of a
matrix A of size n×m over a finite field. The techniques described in this paper
could in principle work over any field; for the sake of simplicity we focus on the
case of integers modulo a prime p that fits into a machine integer.

2.1 Definitions and Notations

We recall here some usefull definitions. A is an n-by-m matrix and its (unknown)
rank is denoted by r.

Because A is rectangular, we consider the PLUQ factorization of A where
L is n-by-r and lower-trapezoidal with a unit diagonal, U is r-by-m and upper-
trapezoidal with a non-zero diagonal and P (resp. Q) is a permutation over the
rows (resp. columns) of A. Computing a PLUQ factorization essentially amounts
to performing gaussian elimination. We recall the usual (dense) algorithm: at
each step i, choose a coefficient aik �= 0 called the pivot and “eliminate” every
coefficients under it by adding suitable multiples of row i to the rows below.
This method is said to be right-looking, because at each step it accesses the
data stored in the bottom-right of A (shaded aera in Fig. 1a). This contrasts
with left-looking algorithms (or the up-looking row-by-row equivalent described
in Sect. 2.3), that accesses the data stored in the left of L (respectively in the
top of U) represented by the shaded aera in Fig. 1b (c).

If we assume that we have performed some steps of the PLUQ decomposition,
then we have

PAQ =
(

A00 A01

A10 A11

)
,

such that A00 is square, nonsingular and can be factored as A00 = L00 · U00. It
leads to the following factorization of A:

PAQ =
(

L00

L10 I

)
·
(

U00 U10

S11

)
,

where L10 = A10U
−1
00 , U01 = L−1

00 A01 and S11 = A11 − A10A
−1
00 A01 is the Schur

Complement of A11 in A. It is represented by S in Fig. 1a.

106 C. Bouillaguet and C. Delaplace

L

U

S
L

U

A
L

U

A

Fig. 1. Data access pattern of several PLUQ factorization algorithms. The dark area
is the echelonization front. While the algorithm processes, they only access data in the
shaded area.

2.2 The Classical Right-Looking Algorithm

LinBox implements a sparse gaussian elimination that only computes U (and
not L) which is a straightforward adaptation of the classical (dense) algorithm
to sparse data structures: find a pivot, permute the rows and columns to move
the pivot to the diagonal, eliminate all the entries below the pivot, repeat. In
LinBox’s gaussian elimination code, a sparse matrix is an array of sparse vectors;
a sparse vector is a dynamic array of (column index, coefficient) pairs, sorted
by column indices. This dynamic array is essentially a std::vector object from
the C++ STL.

This is very similar to the early MA28, except that in MA28, sparse vectors are
unordered. Also, MA28 implements full Markowitz pivoting (greedily choosing the
pivot that minimises fill-in in the Schur complement), while LinBox implements
a faster relaxation thereof. Note that choosing the next pivot takes time Ω(n),
so that the complexity of the whole process is lower-bounded by Ω(n2). This is
suboptimal in some cases (e.g. tridiagonal matrices).

2.3 The Left-Looking GPLU Algorithm

The GPLU Algorithm was introduced by Gilbert and Peierls in 1988 [19]. It is
also abundantly described in [9], up to implementation details. During the k-th
step, the k-th column of L and U are computed from the k-th column of A
and the previous columns of L. The algorithm thus only accesses data on the
left of the echelonization front, and the algorithm is said to be “left-looking”.
It does not compute the Schur complement at each stage. We implemented a
row-by-row (as opposed to column-by-column) variant of this method which is
then “up-looking”.

The main idea behind the algorithm is that the next row of L and U can
both be computed by solving a triangular system. If we ignore row and col-
umn permutations, this can be derived from the following 3-by-3 block matrix
expression:

Sparse Gaussian Elimination Modulo p: An Update 107

⎛
⎝L00

l10 1
L20 l21 L22

⎞
⎠

⎛
⎝U00 u01 U02

u11 u12

U22

⎞
⎠ =

⎛
⎝A00 a01 A02

a10 a11 a12
A20 a21 A22

⎞
⎠ .

Here (a10 a11 a12) is the k-th row of A. L is assumed to have unit diagonal.
Assume we have already computed (U00 u01 U02), the first k rows of U . Then
we have:

(
l10 u11 u12

) ·
⎛
⎝U00 u01 U02

1
Id

⎞
⎠ =

(
a01 a11 a21

)
. (1)

Thus, the whole PLUQ factorization can be performed by solving a sequence of
n sparse triangular systems.

Sparse Triangular Solving. To make the above idea work, we need to solve
efficiently x ·U = b, where U is a sparse matrix stored by rows, and b is a sparse
vector (a row of A). The main trick of the GPLU algorithm is that it is possible
to determine the sparsity pattern of x without performing any kind of numerical
computation.

Theorem 1 (Gilbert and Peierls [19]). Define the directed graph GU =
(V,E) with nodes V = {1 . . . m} and edges E = {(i, j)|uij �= 0}. Let ReachU (i)
denote the set of nodes reachable from i via paths in GU and for a set B, let
ReachU (B) be the set of all nodes reachable from any nodes in B. The non-zero
pattern X = {j|xj �= 0} of the solution x to the sparse linear system x ·U = b is
given by X = ReachU (B), where B = {i|bi �= 0}, assuming there is no numerical
cancellation.

xi

xj
uii

uij

ujj

Fig. 2. The presence of xi and of uij entails that of xj in x.

This is due to the fact that xj can only be non-zero if either (1) bj is non-
zero, or (2) there is a node i such that xi �= 0 and uij �= 0 as shown in Fig. 2.
Thus, X can be determined by performing a graph traversal in GU starting from
each node of B. If we perform a depth-first search, then we will naturally obtain
X sorted in topological order : if uij �= 0, then i comes up before j in X . This
enables the following efficient procedure to compute x:

108 C. Bouillaguet and C. Delaplace

1: Scatter b into a (dense) working array w, initially filled with 0.
2: for all i ∈ X in topological order do
3: wi ← wi/uii

4: for all j > i such that uij �= 0 do
5: wj ← wj − wiuij

6: Gather x (get wi for i ∈ X), and reset w.
A striking feature of this triangular solver is that it may terminate in constant

time in some cases (for instance if U is bidiagonal, and b has only a constant
number of entries). In addition, the complexity of finding X is of the same order
as that of the numerical computation of x once X is known: each iteration of
line 5 in the above pseudo-code corresponds to the crossing of an edge in GU

during the construction of X . This holds well in our implementation: computing
X consistenty requires 25% of the time needed to compute x.

Selecting the Pivots. For the triangular systems to have a solution, we need to
make sure that the diagonal coefficient of U (the pivots) are non-zero. However,
while solving the system (1), we may find u11 = 0. There are two possible cases:
(1) If u11 = 0 and u12 �= 0, then we can permute the column j0 where u11 is
with another one j1, such that j0 < j1. (2) If u11 = 0 and u12 = 0, then there is
no way we can permute the columns of U to bring a non-zero coefficent on the
diagonal. This means that the current row of A is a linear combinations of the
previous rows. When the factorization is done, the number of non-empty rows
of U is the rank r of the matrix A.

Useful Heuristics. Right-looking algorithms have the possibility to choose the
next pivot by exploiting knowledge of the Schur complement (this is typically
what Markowitz pivoting is about). On the other hand, the only information
available to left-looking algorithms such as GPLU to choose pivots is the orig-
inal matrix, and the part of U that has already been computed. It is possible
to choose an a priori order in which to process the rows of the matrix in order
to keep U as sparse as possible. Many different strategies have been designed
to do so in the numerical world: the (approximate) minimum degree algorithm,
nested dissection, etc. The problem is that these algorithms are mostly adapted
to symmetric matrices, and a fortiori to square matrices. They are usually retro-
fitted to the unsymmetric case by applying them to ATA, which is square and
symmetric. However, when A is very rectangular, this becomes completely dense
and provide little useful information.

We instead implemented a much simpler heuristic inspired from an echel-
onization procedure dedicated to Gröbner basis computation by Faugére and
Lachartre [18]. We map each row to the column of its leftmost coefficient. When
several rows have the same leftmost coefficient, we select the sparsest row. We
then move the selected rows before the others and sort them by increasing posi-
tion of the left-most coefficient. As a result, the leftmost coefficient of each row
cannot occur in any selected row below it. It follows that the selected rows
are copied as-is into U , with zero fill-in. This is particularly well-suited to the

Sparse Gaussian Elimination Modulo p: An Update 109

GPLU algorithm, because this keeps U as sparse as possible; this in turn makes
the triangular solver fast.

Also, we observed that it can be beneficial to compute the rank of the trans-
pose of the matrix. Indeed, U has size r × m, so when m is much larger than
n, transposing the matrix before starting the computation ensures than U is
smaller. More often than not this decreases the running time of the factoriza-
tion (on the matrices from [16]). Lastly, we note that the running time of the
right-looking algorithm implemented in LinBox is usually not the same on A
and AT .

We also implemented a simple early abort test which is performed when
sufficiently many rows have been processed without finding any new pivot. A
random linear combination of the remaining rows is computed; if it belongs to
the row-space of U , then no new pivot will be found in the remaining rows with
probability greater than 1−1/p. This test can be repeated to increase its success
probability exponentially.

2.4 Left or Right?

The two algorithms presented in this section are incomparable. We illustrate this
by exhibiting two situations where each one consistently outperforms the other.
We generated two random matrices with different properties (situations A and
B in Table 1). The entries of matrix A are identically and independently dis-
tributed. There are zero with probability 99%, and chosen uniformly at random
modulo p otherwise. GPLU terminates very quickly in this case because it only
process the first ≈ 1000 rows before stopping, having detected that the matrix
has full column-rank.

In matrix B, one row over 1000 is random (as in matrix A), and the 999
remaining ones are sparse linear combination of a fixed set of 100 other ran-
dom sparse rows (as in matrix A). The right-looking algorithm discovers these
linear combinations early and quickly skip over empty rows in the Schur com-
plement. On the other hand, GPLU has to work its way thoughout the whole
matrix. Section 4 contains further “real” examples where an algorithm clearly
outperforms the other.

Table 1. Running time (in seconds) of the two algorithms on extreme cases.

Matrix Rows Columns Non-zero Rank Right-
Looking
(LinBox)

GPLU (SpaSM)

A 100 000 1 000 995 076 1000 3.0 0.02

B 100 000 1 000 4 776 477 200 1.7 9.5

110 C. Bouillaguet and C. Delaplace

3 A New Hybrid Algorithm

The right-looking algorithm enjoys a clear advantage in terms of pivot selection,
because it has the possibility to explore the Schur complement. The short-term
objective of pivot selection is to keep the Schur complement sparse.

In GPLU pivot selection has to be done “in the dark”, with the short-term
objective to keep U sparse (since this keeps the triangular solver fast). However,
GPLU performs the elimination steps very efficiently.

In this section, we present a new algorithm that combines these two strong
sides. It usually outperforms both the classical right-looking elimination and
GPLU. The new algorithm works as follows:

1. Use the Faugére-Lachartre heuristic to find as many pivots as possible in A.
2. Compute the Schur complement S with respect to these pivots, using GPLU.
3. Compute the rank of S by any mean (including recursively).

Pivot Selection. As in the right-looking algorithm, we begin by exploring the
matrix looking for pivots. However, instead of choosing only one, we try to pick
as many as possible. For this, we use the Faugére-Lachartre heuristic described
in Sect. 2.3: it finds a sequence of k rows such that the leftmost coefficient of each
rows does not appear in any subsequent row. It can thus be chosen as a pivot.
Those specific rows are copied as-is into U without any arithmetic operation.
The cost of this step is that of iterating over the entries of A.

Schur Complement. We then compute the Schur complement S with respect
to the chosen pivots. This amounts to eliminating every entries below the cho-
sen pivots. The left-looking side of the combination is that we use the GPLU
algorithm to compute the Schur complement.

If we denote by P the permutation of the rows of A that “pushes” this
well-chosen set of linearly independant rows at the top of A and if we ignore
the permutation over the columns of A, the PLU factorization of A can be
represented by the following 2-by-2 block matrix expression:

PA =
(

U00 U01

A10 A11

)
=

(
Id
L10 L11

)
·
(

U00 U01

U11

)
,

where (U00 U01) is the part of U provided by the Faugére-Lachartre heuristic.
What we need is S = A11 − A10U

−1
00 U01, the Schur Complement of A with

respect to U00. We compute S row-by-row. To obtain the ith row si of S, denote
by (ai0 ai1) the ith row of (A10 A11) and consider the following system:

(x0 x1) ·
(

U00 U01

Id

)
= (ai0 ai1)

We get x1 = ai1 − x0U01 = ai1 − ai0U−1
00 U01. From the definition of S, it

follows that x1 = si. Thus S can be computed by a sequence of sparse triangular

Sparse Gaussian Elimination Modulo p: An Update 111

solve. Because we chose U to be as sparse as possible, this process is fast. It can
also be parallelized efficiently: all the rows of S can be computed independently.

Computing the Rank of S. Once the Schur complement S has been computed,
it remains to find its rank. Several options are possible. If S is sparse, we can
either use the same technique recursively, or switch to GPLU, or switch to the
Wiedemann algorithm. If S is small and dense, we switch to dense gaussian
elimination. If S is big and dense, we abort and report failure.

In the first case, where several options are possible, some guesswork is
required to find the best course of action. By default, we found that allow-
ing only a limited number of recursive calls (usually less than 10, often 3) and
then switching to GPLU yields good results.

Tall and Narrow Schur Complement. It is beneficial to consider a special
case in the above procedure, when S has much more rows than columns (we
transpose S if it has much more columns than rows). This happens in particular
in the favorable situation where the Faugére-Lachartre heuristic finds almost all
possible pivots, and only very few remain to be found.

This situation can be detected as soon as the pivots have been selected,
because we known that S has size (n − k) × (m − k). In this case where S is
very tall and very narrow, it is wasteful to compute S entirely. Many well-known
techniques can be applied to obtain its rank by looking only at a fraction of
its entries (see [24]). For instance, a näıve solution consists in choosing a small
constant ε, building a dense matrix of size (m − k + ε) × (m − k) with random
(dense) linear combinations of the rows of S, and computing its rank using dense
linear algebra. A linear combination of the rows of S can be formed by taking
a random linear combinations of the rows of A, and then solving a triangular
system, just like before.

4 Implementation and Results

All the experiments we carried on an Intel core i7-3770 with 8 GB of RAM.
Only one core was ever used. We used J.-G. Dumas’s Sparse Integer Matrix
Collection [16] as benchmark matrices. We restricted our attention to the 660
matrices with integer coefficients. Most of these matrices are small and their
rank is easy to compute. Some others are pretty large. In all cases, their rank
is known, as it could always be computed using the Wiedemann algorithm. We
fixed p = 42013 in all tests.

Our implementation is quite straightforward. Matrices are stored in Com-
pressed Sparse Row format. Coefficients are stored in int variables, and are
reduced modulo p after each multiplication.

Sparse Elimination: Right-Looking vs GPLU. We first compare the effi-
ciencies of the right-looking gaussian elimination algorithm implemented in Lin-
Box and our implementation of the GPLU algorithm. LinBox uses its Markowitz-
like pivot selection, while SpaSM uses its default setting: transposing the matrix

112 C. Bouillaguet and C. Delaplace

if it has more columns than rows, and using the Faugére-Lachartre heuristic to
select pivots before actually starting the factorization.

We quickly observed that no algorithm is always consistently faster than the
other; one may terminate instantly while the other may run for a long time
and vice-versa. In order to perform a systematic comparison, we decided to set
an arbitrary threshold of 60 s, and count the number of matrices that could be
processed in this much time. LinBox could dispatch 579 matrices, while SpaSM
processed 606. Amongst these, 568 matrices could be dealt with by both algo-
rithms in less than 60s. This took 1100 s to LinBox and 463 s to SpaSM. LinBox
was faster 112 times, and SpaSM 456 times. These matrices are “easy” for both
algorithms, and thus we will not consider them anymore.

Table 2 shows the cases where one algorithm took less than 60 s while the
other took more. There are cases where each of the two algorithm is catastroph-
ically slower than the other. In some cases, a bug made the LinBox test program
crash with a segmentation fault. We conclude there is no clear winner (even if
GPLU is usually a bit faster. The hybrid algorithm described in Sect. 3 outper-
forms both.

A reviewer asked a comparison with GBLA [3]. This is difficult, because GBLA
is tailored for matrices arising in Gröbner basis computations, and exploit their
specific shape. For instance, they have (hopefully small) dense areas, which GBLA
rightly store in dense data structures. This phenomenon does not occur in our
benchmark collection, which is ill-suited to GBLA. GBLA is nevertheless undoubt-
edly more efficient on Gröbner basis matrices.

Direct Methods vs Iterative Methods. We now turn our attention to the
remaining matrices of the collection, the “hard” ones. Some of these are yet
unamenable to any form of elimination, because they cause too much fill-in.
However, some matrices can be processed much faster by our hybrid algorithm
than by any other existing method.

For instance, relat9 is the third largest matrix of the collection; computing
its rank takes a little more than two days using the Wiedemann algorithm. Using
the “Tall and Narrow Schur Complement” technique described above, the hybrid
algorithm computes its rank in 34 min. Most of this time is spent in forming a
size-8937 dense matrix by computing random dense linear combination of the 9
million remaining sparse rows. The rank of the dense matrix is quickly computed
using the Rank function of FFLAS-FFPACK [27]. A straightforward parallelization
using OpenMP brings this down to 10 min using the 4 cores of our workstation
(the dense rank computation is not parallel). The same goes for the rel9 matrix,
which is similar.

The rank of the M0,6-D9 matrix, which is the 9-th largest of the collection,
could not be computed by the right-looking algorithm within the limit of 8 GB of
memory. It takes 42 h to the Wiedemann algorithm to find its rank. The standard
version of the hybrid algorithm finds it in less than 30 s.

The shar te.b3 matrix is an interesting case. It is a very sparse matrix
of size 200200 with only 4 non-zero entries per row. Its rank is 168310.

Sparse Gaussian Elimination Modulo p: An Update 113

Table 2. Comparison of sparse elimination techniques. Times are in seconds.

Matrix Right-looking GPLU Hybrid

Franz/47104x30144bis 39 488 1.7

G5/IG5-14 0.5 70 0.4

G5/IG5-15 1.6 288 1.1

G5/IG5-18 29 109 8

GL7d/GL7d13 11 806 0.3

GL7d/GL7d24 34 276 11.6

Margulies/cat ears 4 4 3 184 0.1

Margulies/flower 7 4 7.5 667 2.5

Margulies/flower 8 4 37 9355 3.7

Mgn/M0,6.data/M0,6-D6 45 8755 0.1

Homology/ch7-8.b4 173 0.2 0.2

Homology/ch7-8.b5 611 45 10.7

Homology/ch7-9.b4 762 0.4 0.4

Homology/ch7-9.b5 3084 8.2 3.4

Homology/ch8-8.b4 1022 0.4 0.5

Homology/ch8-8.b5 5160 6 2.9

Homology/n4c6.b7 223 0.1 0.1

Homology/n4c6.b8 441 0.2 0.2

Homology/n4c6.b9 490 0.3 0.2

Homology/n4c6.b10 252 0.3 0.2

Homology/mk12.b4 72 9.2 1.5

Homology/shar te2.b2 94 1 0.2

Kocay/Trec14 80 31 4

Margulies/wheel 601 7040 4 0.3

Mgn/M0,6.data/M0,6-D11 722 0.4 0.6

Smooshed/olivermatrix.2 75 0.6 0.1

The right-looking algorithm fails, and the Wiedemann algorithm takes 3650s.
Both GPLU and the hybrid algorithm terminate in more than 5 h. However,
performing one iteration of the hybrid algorithm computes a Schur complement
of size 134645 with 7.4 non-zero entries per row on average. We see that the quan-
tity n|A|, a rough indicator of the complexity of iterative methods, decreases a
little. Indeed, computing the rank of the first Schur complement takes 2422 s
using the Wiedemann algorithm. This results in a 1.5× speed-up.

All-in-all, the hybrid algorithm is capable of quickly computing the rank
of the 3rd, 6th, 9th, 11th and 13th largest matrices of the collection, whereas
previous elimination techniques could not. Previously, the only possible option

114 C. Bouillaguet and C. Delaplace

Table 3. Some harder matrices. Times are in seconds. M.T. stands for “Memory
Thrashing”

Matrix n m |A| Right-looking Wiedemann Hybrid

kneser 10 4 349651 330751 992252 923 9449 0.1

mk13.b5 135135 270270 810810 M.T 3304 41

M0,6-D6 49800 291960 1066320 42 979 0.1

M0,6-D7 294480 861930 4325040 2257 20397 0.8

M0,6-D8 862290 1395840 8789040 20274 133681 7.7

M0,6-D9 1395480 1274688 9568080 M.T 154314 27.6

M0,6-D10 1270368 616320 5342400 22138 67336 42.7

M0,6-D11 587520 122880 1203840 722 4864 0.5

relat8 345688 12347 1334038 244 2

rel9 5921786 274667 23667185 127675 1204

relat9 9746232 274667 38955420 176694 2024

was the Wiedemann algorithm. The hybrid algorithm allows for large speedup
of 100×, 1000× and 10000× in these cases (Table 3).

Acknowledgement. Claire Delaplace was supported by the french ANR under the
BRUTUS project. We thank the anonymous reviewers for their comments.

References

1. Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl.
23(1), 15–41 (2001)

2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user lan-
guage. J. Symbolic Comput. 24(3–4), 235–265 (1997). http://dx.doi.org/10.1006/
jsco.1996.0125. computational algebra and number theory, London (1993)

3. Boyer, B., Eder, C., Faugère, J., Lachartre, S., Martani, F.: GBLA - gröbner basis
linear algebra package. CoRR abs/1602.06097 (2016). http://arxiv.org/abs/1602.
06097

4. Cavallar, S.: Strategies in filtering in the number field sieve. In: Bosma, W.
(ed.) ANTS 2000. LNCS, vol. 1838, pp. 209–232. Springer, Heidelberg (2000).
http://dx.doi.org/10.1007/10722028 11

5. Chen, Y., Davis, T.A., Hager, W.W., Rajamanickam, S.: Algo-
rithm 887: CHOLMOD, supernodal sparse cholesky factorization and
update/downdate. ACM Trans. Math. Softw. 35(3), 22:1–22:14 (2008).
http://doi.acm.org/10.1145/1391989.1391995

6. Cleveland Ashcraft, C., Grimes, R.G., Lewis, J.G., Peyton, P.W., Simon, H.D.,
Bjørstad, P.E.: Progress in sparse matrix methods for large linear systems on
vector supercomputers. Int. J. High Perform. Comput. Appl. 1(4), 10–30 (1987).
http://dx.doi.org/10.1177/109434208700100403

http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1006/jsco.1996.0125
http://arxiv.org/abs/1602.06097
http://arxiv.org/abs/1602.06097
http://dx.doi.org/10.1007/10722028_11
http://doi.acm.org/10.1145/1391989.1391995
http://dx.doi.org/10.1177/109434208700100403

Sparse Gaussian Elimination Modulo p: An Update 115

7. Coppersmith, D.: Solving homogeneous linear equations over F2 via block wiede-
mann algorithm. Math. Comput. 62(205), 333–350 (1994)

8. Davis, T.A.: Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern
multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004).
http://dx.doi.org/10.1145/992200.992206

9. Davis, T.A.: Direct Methods for Sparse Linear Systems (Fundamentals of Algo-
rithms 2). Society for Industrial and Applied Mathematics, Philadelphia (2006)

10. Davis, T.A., Natarajan, E.P.: Algorithm 907: KLU, A direct sparse solver for circuit
simulation problems. ACM Trans. Math. Softw. 37(3) (2010). http://doi.acm.org/
10.1145/1824801.1824814

11. Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal
approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20(3), 720–755
(1999)

12. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Numer-
ical Mathematics and Scientific Computation, Oxford University Press, USA, first
paperback edition edn. (1989)

13. Duff, I.S., Reid, J.K.: Some design features of a sparse matrix code. ACM Trans.
Math. Softw. 5(1), 18–35 (1979). http://doi.acm.org/10.1145/355815.355817

14. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse
symmetric linear. ACM Trans. Math. Softw. 9(3), 302–325 (1983).
http://doi.acm.org/10.1145/356044.356047

15. Dumas, J.G., Villard, G.: Computing the rank of sparse matrices over finite
fields. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2002, Pro-
ceedings of the fifth International Workshop on Computer Algebra in Scien-
tific Computing, Yalta, Ukraine, pp. 47–62. Technische Universität München,
Germany, September 2002. http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/
Publications/sparseeliminationCASC2002.pdf

16. Dumas, J.-G.: Sparse integer matrices collection. http://hpac.imag.fr
17. Dumas, J.-G., Elbaz-Vincent, P., Giorgi, P., Urbanska, A.: Parallel computation of

the rank of large sparse matrices from algebraic k-theory. In: Maza, M.M., Watt,
S.M. (eds.) Parallel Symbolic Computation, PASCO 2007, International Workshop,
27–28 July 2007, University of Western Ontario, London, Ontario, Canada, pp. 43–
52. ACM, New York (2007). http://doi.acm.org/10.1145/1278177.1278186

18. Faugére, J.-C., Lachartre, S.: Parallel gaussian elimination forgröbner bases com-
putations in finite fields. In: Maza, M.M., Roch, J.-L. (eds.) PASCO, pp. 89–97.
ACM, New York (2010)

19. Gilbert, J.R., Peierls, T.: Sparse partial pivoting in time proportional to
arithmetic operations. SIAM J. Sci. Stat. Comput. 9(5), 862–874 (1988).
http://dx.doi.org/10.1137/0909058

20. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A.,
Zimmermann, P.: Factorization of a 768-Bit RSA modulus. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010).
http://dx.doi.org/10.1007/978-3-642-14623-7 18

21. LaMacchia, B.A., Odlyzko, A.M.: Solving large sparse linear systems over finite
fields. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp.
109–133. Springer, Heidelberg (1991). http://dx.doi.org/10.1007/3-540-38424-3 8

22. Markowitz, H.M.: The elimination form of the inverse and its appli-
cation to linear programming. Manage. Sci. 3(3), 255–269 (1957).
http://dx.doi.org/10.1287/mnsc.3.3.255

http://dx.doi.org/10.1145/992200.992206
http://doi.acm.org/10.1145/1824801.1824814
http://doi.acm.org/10.1145/1824801.1824814
http://doi.acm.org/10.1145/355815.355817
http://doi.acm.org/10.1145/356044.356047
http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/Publications/sparseeliminationCASC2002.pdf
http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/Publications/sparseeliminationCASC2002.pdf
http://hpac.imag.fr
http://doi.acm.org/10.1145/1278177.1278186
http://dx.doi.org/10.1137/0909058
http://dx.doi.org/10.1007/978-3-642-14623-7_18
http://dx.doi.org/10.1007/3-540-38424-3_8
http://dx.doi.org/10.1287/mnsc.3.3.255

116 C. Bouillaguet and C. Delaplace

23. May, J.P., Saunders, B.D., Wan, Z.: Efficient matrix rank computation with appli-
cation to the study of strongly regular graphs. In: Wang, D. (ed.) Symbolic
and Algebraic Computation, International Symposium, ISSAC 2007, Waterloo,
Ontario, Canada, July 28–August 1, 2007, Proceedings, pp. 277–284. ACM (2007).
http://doi.acm.org/10.1145/1277548.1277586

24. Saunders, B.D., Youse, B.S.: Large matrix, small rank. In: Proceedings of the
2009 International Symposium on Symbolic and Algebraic Computation, ISSAC
2009, pp. 317–324. ACM, New York (2009). http://doi.acm.org/10.1145/1576702.
1576746

25. Saunders, D.: Matrices with two nonzero entries per row. In: Proceedings of the
2015 ACM on International Symposium on Symbolic and Algebraic Computation,
ISSAC 2015, pp. 323–330. ACM, New York (2015). http://doi.acm.org/10.1145/
2755996.2756679

26. The CADO-NFS Development Team: CADO-NFS, an implementation of the num-
ber field sieve algorithm (2015), release2.2.0. http://cado-nfs.gforge.inria.fr/

27. The FFLAS-FFPACK group: FFLAS-FFPACK: Finite Field Linear Algebra Sub-
routines/Package, v2.0.0 edn. (2014). http://linalg.org/projects/fflas-ffpack

28. The Sage Developers: Sage Mathematics Software (Version 5.7) (2013). http://
www.sagemath.org

29. Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans.
Inf. Theory 32(1), 54–62 (1986). http://dx.doi.org/10.1109/TIT.1986.1057137

http://doi.acm.org/10.1145/1277548.1277586
http://doi.acm.org/10.1145/1576702.1576746
http://doi.acm.org/10.1145/1576702.1576746
http://doi.acm.org/10.1145/2755996.2756679
http://doi.acm.org/10.1145/2755996.2756679
http://cado-nfs.gforge.inria.fr/
http://linalg.org/projects/fflas-ffpack
http://www.sagemath.org
http://www.sagemath.org
http://dx.doi.org/10.1109/TIT.1986.1057137

MATHCHECK2: A SAT+CAS Verifier
for Combinatorial Conjectures

Curtis Bright1, Vijay Ganesh1, Albert Heinle1(B), Ilias Kotsireas2,
Saeed Nejati1, and Krzysztof Czarnecki1

1 University of Waterloo, Waterloo, Canada
{cbright,vganesh,a3heinle}@uwaterloo.ca

2 Wilfred Laurier University, Waterloo, Canada
ikotsire@uwaterloo.ca

Abstract. In this paper we present MathCheck2, a tool which com-
bines sophisticated search procedures of current SAT solvers with
domain specific knowledge provided by algorithms implemented in com-
puter algebra systems (CAS). MathCheck2 is aimed to finitely verify
or to find counterexamples to mathematical conjectures, building on our
previous work on the MathCheck system. Using MathCheck2 we val-
idated the Hadamard conjecture from design theory for matrices up to
rank 136 and a few additional ranks up to 156. Also, we provide an inde-
pendent verification of the claim that Williamson matrices of order 35
do not exist, and demonstrate for the first time that 35 is the smallest
number with this property. Finally, we provided more than 160 matri-
ces to the Magma Hadamard database that are not equivalent to any
matrices previously included in that database.

1 Introduction

“Brute-brute force has no hope. But clever, inspired brute force is the
future.” – Doron Zeilberger1

A recent important movement is the incorporation of modern solvers for sat-
isfiability problems into suitable computations coming from the field of computer
algebra. Projects like SC2 [34] demonstrate that the interest is coming from both
academia, as well as from industry.

The great strength of SAT solvers are their sophisticated search proce-
dures. In recent years, conflict-driven clause-learning (CDCL) Boolean SAT
solvers [3,20,21] have become very efficient general-purpose search procedures for
a large variety of applications. Despite this remarkable progress these algorithms
have worst-case exponential time complexity, and may not perform well by them-
selves for many search applications. However, as we will show in this paper, the
run-time can be significantly reduced when adding domain knowledge to the
1 From Doron Zeilberger’s talk at the Fields institute in Toronto, December 2015

(http://www.fields.utoronto.ca/video-archive/static/2015/12/379-5401/mergedvid
eo.ogv, minute 44).

c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 117–133, 2016.
DOI: 10.1007/978-3-319-45641-6 9

http://www.fields.utoronto.ca/video-archive/static/2015/12/379-5401/mergedvideo.ogv
http://www.fields.utoronto.ca/video-archive/static/2015/12/379-5401/mergedvideo.ogv

118 C. Bright et al.

search procedure. This is where modern computer algebra systems (CAS) come
into play: Maple [6], Mathematica [38], Sage [35] and Magma [4] are often
rich storehouses of algorithms to compute domain-specific knowledge. Hence, the
complementary strengths of modern SAT solvers and CAS have a great poten-
tial when utilized in synergy. The domain-specific knowledge of a CAS can be
crucially important in cutting down a search space , while at the same time the
clever heuristics of SAT solvers, in conjunction with CAS, can efficiently search
a wide variety of spaces.

The success of the SAT and CAS combination has been demonstrated in a
previous paper on MathCheck [39]. There, Ganesh et al. explored one way of
combining these two classes of systems wherein the CAS was used as a theory
solver, à la DPLL(T), to add theory lemmas to the SAT solvers that was the
primary driver of the search. They primarily used MathCheck to finitely verify
(i.e., verify up to some finite bound) conjectures from graph theory.

Our main focus in this paper are conjectures in combinatorial mathematics,
which are often simple to state but very hard to verify. For example, a conjecture
like the Hadamard [7] might assert the existence of certain combinatorial objects
in an infinite number of cases, which makes exhaustive search impossible. In
such cases, mathematicians often resort to finite verification in the hopes of
learning some meta property of the class of combinatorial structures they are
investigating, or discover a counterexample to such conjectures. But even finite
verification of combinatorial conjectures up to some finite bound is very difficult,
because the search space for such conjectures is often exponential in the size
of the structures they refer to. This makes straightforward brute-force search
impractical, and also ansatz-driven methods (e.g., calculating Gröbner bases
[8]) do not scale well enough in general.

We present a different way of combining SAT and CAS and use it to finitely
verify the Hadamard conjecture. MathCheck2 can be viewed as a parallel
systematic generator of combinatorial structures referred to by the conjecture-
under-verification C. It uses the domain knowledge of a CAS to aid the paral-
lelization and prune away structures that do not satisfy C, while the SAT solver
is used to verify whether any of the remaining structures satisfy C. In addition,
we use UNSAT cores [3] from the SAT solver to further prune the search in a
CDCL-style learning feedback loop.

Hadamard Conjecture: We apply our system to the Hadamard conjecture
which states that for any natural number n, there exists a 4n × 4n matrix H
with ±1 entries for which HHT is a diagonal matrix with each diagonal entry
equal to 4n. In particular, we specialize in Hadamard matrices generated by the
so-called Williamson method. We verify that such Hadamard matrices do not
exist in order 4 · 35, a result which was previously computed using a different
methodology by D. --Doković [25]. However, due to the nature of the problem and
the techniques used, no short certificate of the computations could be produced,
making it difficult to check the work short of re-implementing the approach from
scratch. In fact, the author specifically states that

MathCheck2: A SAT+CAS Verifier for Combinatorial Conjectures 119

In the case n = 35 our computer search did not produce any solutions
[. . .] Although we are confident about the correctness of this claim, an
independent verification of it is highly desirable since this is the first odd
integer, found so far, with this property.

Because our system was written completely independently, uses different
techniques internally, and makes use of well-tested SAT solvers and CAS func-
tions, the results of our paper provide an independent verification solicited by
--Doković. (The above notes equally apply to the verification in [14].)

Previously used techniques could search effectively for Williamson matrices
for odd choices of n, leveraging additional symmetry in these cases. With the
help of SAT solvers, we are additionally able to show n = 35 is the smallest
natural number for which no Williamson matrices of order n exist, not merely
the smallest odd number.

2 Architecture of MATHCHECK2

The architecture of our proposed MathCheck2 system is outlined in Fig. 1. At
its heart is a generator of combinatorial structures, which uses data provided to
it by CAS functions to prune the search space and interfaces with SAT solvers
to verify the conjecture-in-question. The generator contains functions useful for
translating combinatorial conditions into clauses which can be read by a SAT
solver. It is possible to substitute the SAT solver with an SMT solver to simplify
the encoding process, but this resulted in a too large overhead in our compu-
tations. The generator is currently optimized to deal with conjectures which
concern Hadamard matrices from coding and combinatorial design theory.

Fig. 1. Outline of the architecture of MathCheck2.

Once the class of combinatorial objects has been determined, the script
accepts a parameter n which determines the size of the object to search for.
For example, when searching for Hadamard matrices, the parameter n denotes
the order (i.e., the number of rows) of the matrix. The generator then queries the
CAS (we chose Maple in our calculations) it is interfaced with for properties

120 C. Bright et al.

that any order n instance of the combinatorial object in question must satisfy.
However, since our generator is written in Python, many CAS functionality is
provided by certain modules such as numpy; in order to avoid overhead in calling
a CAS specifically, we tried to use these module functions whenever possible.
The result returned by the CAS is read by the generator and then used to prune
the space which will be searched by the SAT solver.

Once the generator determines the space to be searched it splits the space
into distinct subspaces in a divide-and-conquer fashion. Once the partitioning of
the search space has been completed, the script generates two types of files:

1. A single “master” file in DIMACS2 format which contains the conditions
specifying the combinatorial object being searched for. These are encoded
as propositional formulae in conjunctive normal form. An assignment to the
variables which makes all of them true would give a valid instance of the
object being searched for (and a proof that no such assignment exists proves
that no instance of the object in question exists).

2. A set of files which contain partial assignments of the variables in the mas-
ter file. Each file corresponds to exactly one subspace of the search space
produced by the generator.

The main advantage of splitting up the problem in such a way is that it eas-
ily facilitates parallelization. Using domain specific knowledge, we partition the
search space into different classes of the same mathematical structure, and since
these classes are independent of each other, a cluster of SAT solvers can search
the space for each partition in parallel.

Furthermore, in cases that an instance is found to be unsatisfiable, some SAT
solvers such as MapleSAT [18,19], that support the generation of a so-called
UNSAT core, can be used to further prune away other similar structures that
do not satisfy the conjecture-under-verification. Given an unsatisfiable instance
φ, its UNSAT core is a set of clauses that pithily characterizes the reason why φ
is unsatisfiable and thus encodes an unsatisfying subspace of the search space.

3 Background on Hadamard Matrices and Combinatorial
Mathematics

In this section we discuss the mathematical preliminaries necessary to under-
stand our work on MathCheck2 and its application to Hadamard matrices.

3.1 Hadamard Matrices

First, we define the combinatorial objects known as Hadamard matrices and
present some of their properties.

2 For more information on this format, please refer to http://www.satcompetition.
org/2009/format-benchmarks2009.html.

http://www.satcompetition.org/2009/format-benchmarks2009.html
http://www.satcompetition.org/2009/format-benchmarks2009.html

MathCheck2: A SAT+CAS Verifier for Combinatorial Conjectures 121

Definition 1. A matrix H ∈ {±1}n×n, n ∈ N, is called a Hadamard matrix,
if for all i �= j ∈ {1, . . . , n}, the dot product between row i and row j in H is
equal to zero. We call n the order of the Hadamard matrix.

First studied by Hadamard [10], he showed that if n is the order of a
Hadamard matrix, then either n = 1, n = 2 or n is a multiple of 4. In other
words, he gave a necessary condition on n for there to exist a Hadamard matrix
of order n. The Hadamard conjecture is that this condition is also sufficient,
so that there exists a Hadamard matrix of order n for all n ∈ N where n is a
multiple of 4.

Hadamard matrices play an important role in many widespread branches of
mathematics, for example in coding theory [23,29,36] and statistics [12]. Because
of this, there is a high interest in the discovery of different Hadamard matrices
up to equivalence. Two Hadamard matrices H1 and H2 are said to be equivalent if
H2 can be generated from H1 by applying a sequence of negations/permutations
to the rows/columns of H1, i.e., if there exist signed permutation matrices U and
V such that U · H1 · V = H2.

There are several known ways to construct sequences of Hadamard matri-
ces. One of the simplest such constructions is by Sylvester [33]: given a known
Hadamard matrix H of order n,

[
H H
H −H

]
is a Hadamard matrix of order 2n.

This process can of course be iterated, and hence one can construct Hadamard
matrices of order 2kn for all k ∈ N from H.

There are other methods which produce infinite classes of Hadamard matri-
ces such as those by Paley [27]. However, no general method is known which
can construct a Hadamard matrix of order n for arbitrary multiples of 4. The
smallest unknown order is currently n = 4 ·167 = 668 [7]. A database with many
known matrices is included in the computer algebra system Magma [4]. Further
collections are available online [31,32].

Because there are 2(n
2) matrices of order n with ±1 entries, the search space of

possible Hadamard matrices grows extremely quickly as n increases, and brute-
force search is not feasible. Because of this, researchers have defined special types
of Hadamard matrices which can be searched for more efficiently because they
lie in a small subset of the entire space of Hadamard matrices.

3.2 Williamson Matrices

One prominent class of special Hadamard matrices are those generated by so-
called Williamson matrices. These are described in this section.

Theorem 1 (cf. [37]). Let n ∈ N and let A, B, C, D ∈ {±1}n×n. Further,
suppose that

1. A, B, C, and D are symmetric;
2. A, B, C, and D commute pairwise (i.e., AB = BA, AC = CA, etc.);
3. A2 + B2 + C2 + D2 = 4nIn, where In is the identity matrix of order n.

122 C. Bright et al.

Then ⎡
⎢⎢⎣

A B C D
−B A −D C
−C D A −B
−D −C B A

⎤
⎥⎥⎦

is a Hadamard matrix of order 4n.

For practical purposes, one considers A, B, C, and D in the Williamson
construction to be circulant matrices, i.e., those matrices in which every row is
the previous row shifted by one entry to the right (with wrap-around, so that
the first entry of each row is the last entry of the previous row). Such matrices
are completely defined by their first row [x0, . . . , xn−1] and always satisfy the
commutativity property. If the matrix is also symmetric then we must further
have x1 = xn−1, x2 = xn−2, and in general xi = xn−i for i = 1, . . . , n − 1.
Therefore, if a matrix is both symmetric and circulant its first row must be of
the form

[x0, x1, x2, . . . , x(n−1)/2, x(n−1)/2, . . . , x2, x1] if n is odd
[x0, x1, x2, . . . , xn/2−1, xn/2, xn/2−1, . . . , x2, x1] if n is even.

(1)

Definition 2. A symmetric sequence of length n is one of the form (1), i.e.,
one which satisfies xi = xn−i for i = 1, . . . , n − 1.

Williamson matrices are circulant matrices A, B, C, and D which satisfy
the conditions of Theorem 1. Since they must be circulant, they are completely
defined by their first row. (In light of this, we may simply refer to them as if they
were sequences.) Furthermore, since they are symmetric the Hadamard matrix
generated by these matrices is completely specified by the 4

⌈
n+1
2

⌉
variables

a0, a1, . . . , a�(n−1)/2�, b0, . . . , b�(n−1)/2�, c0, . . . , c�(n−1)/2�, d0, . . . , d�(n−1)/2�.

Given an assignment of these variables, the rest of the entries of the matrices A,
B, C, and D may be chosen in such a way that conditions 1 and 2 of Theorem 1
always hold. There is no trivial way of enforcing condition 3, but we will later
derive consequences of this condition which will simplify the search for matrices
which satisfy it.

There are three types of operations which, when applied to the Williamson
matrices, produce different but essentially equivalent matrices. For our purposes,
generating just one of the equivalent matrices will be sufficient, so we impose
additional constraints on the search space to cut down on extraneous solutions
and hence speed up the search.

1. Ordering: Note that the conditions on the Williamson matrices are sym-
metric with respect to A, B, C, and D. In other words, those four matrices can
be permuted amongst themselves and they will still generate a valid Hadamard
matrix. Given this, we enforce the constraint that

|rowsum(A)| ≤ |rowsum(B)| ≤ |rowsum(C)| ≤ |rowsum(D)|,

MathCheck2: A SAT+CAS Verifier for Combinatorial Conjectures 123

where rowsum(X) denotes the sum of the entries of the first (or any) row of X.
Any A, B, C, and D can be permuted so that this condition holds.

2. Negation: The entries in the sequences defining any of A, B, C, or D can
be negated and the sequences will still generate a Hadamard matrix. Given this,
we do not need to try both possibilities for the sign of the rowsum of A, B, C,
and D. For example, we can choose to enforce that the rowsum of each of the
generating matrices is nonnegative. Alternatively, when n is odd we can choose
the signs so they satisfy rowsum(X) ≡ n (mod 4) for X ∈ {A,B,C,D}. In this
case, a result of Williamson [37] says that aibicidi = −1 for all 1 ≤ i ≤ (n−1)/2.

3. Permuting Entries: We can reorder the entries of the generating sequences
with the rule ai �→ aki mod n where k is any number coprime with n, and similarly
for bi, ci, di (the same reordering must be applied to each sequence for the result
to still be equivalent). Such a rule effectively applies an automorphism of Zn to
the generating sequences.

3.3 Power Spectral Density

Because the search space for Hadamard matrices is so large, it is advantageous
to focus on a specific construction method and describe properties which any
Hadamard matrix generated by this specific method must satisfy; such properties
can speed up a search by significantly reducing the size of the necessary space.
One such set of properties for Williamson matrices is derived using the discrete
Fourier transform from Fourier analysis, i.e., the periodic function DFTA(s) :=∑n−1

k=0 akωks for a sequence A = [a0, a1, . . . , an−1], where s ∈ Z and ω := e2πi/n is
a primitive nth root of unity. Because ωks = ωks mod n one has that DFTA(s) =
DFTA(s mod n), so that only n values of DFTA need to be computed and the
remaining values are determined through periodicity. In fact, when A consists of
real entries, it is well-known that DFTA(s) is equal to the complex conjugate of
DFTA(n − s). Hence only

⌊
n+1
2

⌋
values of DFTA need to be computed.

The power spectral density of the sequence A is given by

PSDA(s) := |DFTA(s)|2 for s ∈ Z.

3.4 Periodic Autocorrelation

As we will see, the defining properties of Williamson matrices (in particular,
condition 3 of Theorem 1) can be re-cast using a function known as the periodic
autocorrelation function (PAF). Re-casting the equations in this way is advanta-
geous because many other combinatorial conjectures can also be stated in terms
of the PAF. Hence, code which is used to counter-example or finitely verify one
such conjecture can be re-applied to many other conjectures.

124 C. Bright et al.

Definition 3. The periodic autocorrelation function of the sequence A is
the periodic function given by

PAFA(s) :=
n−1∑
k=0

aka(k+s) mod n for s ∈ Z.

Similar to the discrete Fourier transform, one has PAFA(s) = PAFA(s mod
n) and PAFA(s) = PAFA(n − s) (see [17]), so that the PAFA only needs to
be computed for s = 0, . . . ,

⌊
n−1
2

⌋
; the other values can be computed through

symmetry and periodicity.
Now we will see how to rewrite condition 3 of Theorem 1 using PAF values.

Note that the sth entry in the first row of A2 + B2 + C2 + D2 is

PAFA(s) + PAFB(s) + PAFC(s) + PAFD(s).

Condition 3 requires that this entry should be 4n when s = 0 and it should
be 0 when s = 1, . . . , n − 1. The condition when s is 0 does not need to be
explicitly checked because in that case the sum will always be 4n, as PAFA(0) =∑n−1

k=0(±1)2 = n and similarly for B, C, and D.
Additionally, the first row of A2 + B2 + C2 + D2 will be symmetric as each

matrix in the sum has a symmetric first row. Thus ensuring that

PAFA(s) + PAFB(s) + PAFC(s) + PAFD(s) = 0 for s = 1, . . . ,
⌈

n−1
2

⌉
(2)

guarantees that every entry in the first row of A2 + B2 + C2 + D2 is 0 besides
the first. Since A2 +B2 +C2 +D2 will also be circulant, ensuring that (2) holds
will ensure condition 3 of Theorem 1.

3.5 Compression

Because the size of the space in which a combinatorial object lies is gener-
ally exponential in the size of the object, it is advantageous to instead search
for smaller objects when possible. Recent theorems on so-called “compressed”
sequences allow us to do that when searching for Williamson matrices.

Definition 4 (cf. [26]). Let A = [a0, a1, . . . , an−1] be a sequence of length n =
dm and set

a
(d)
j = aj + aj+d + · · · + aj+(m−1)d, j = 0, . . . , d − 1.

Then we say that the sequence A(d) = [a(d)
0 , a

(d)
1 , . . . , a

(d)
d−1] is the m-

compression of A.

Example 1. Consider the sequence A = [1, 1,−1,−1,−1, 1,−1, 1, 1,−1, 1,−1,
−1,−1, 1] of length 15. Since 15 factors uniquely as 15 = 3 ·5, there are two non-
trivial choices for the tuple (d,m), namely (d,m) = (3, 5) and (d,m) = (5, 3).
The sequence A then has the two compressions

A(3) = [−3, 1, 1] and A(5) = [3,−1,−1,−1,−1].

MathCheck2: A SAT+CAS Verifier for Combinatorial Conjectures 125

As we will see, the space of the compressed sequences that we are interested
in will be much smaller than the space of the uncompressed sequences. What
makes compressed sequences especially useful is that we can derive conditions
that the compressed sequences must satisfy using our known conditions on the
uncompressed sequences. To do this, we utilize the following theorem which is a
special case of a result from [26].

Theorem 2. Let A, B, C, and D be sequences of length n = dm which satisfy

PAFA(s) + PAFB(s) + PAFC(s) + PAFD(s) =

{
4n, s = 0
0, 1 ≤ s < len(A).

(3)

Then for all s ∈ Z we have

PSDA(s) + PSDB(s) + PSDC(s) + PSDD(s) = 4n. (4)

Furthermore, both (3) and (4) hold if the sequences A, B, C, D are replaced
with their compressions A(d), B(d), C(d), D(d).

Since PSDX(s) is always nonnegative, Eq. (4) implies that PSDA(d)(s) ≤ 4n
(and similarly for B, C, D). Therefore if a candidate compressed sequence A(d)

satisfies PSDA(d)(s) > 4n for some s ∈ Z then we know that the uncompressed
sequence A can never be one of the sequences which satisfies the preconditions
of Theorem 2.

Useful Properties: Lastly, we derive some properties that the compressed
sequences which arise in our context must satisfy. For a concrete example, note
that the compressed sequences of Example 1 fulfill these properties.

Lemma 1. If A is a sequence of length n = dm with ±1 entries, then the
entries a

(d)
i , i ∈ {0, . . . , d − 1}, have absolute value at most m and a

(d)
i ≡ m

(mod 2).

Proof. For all 0 ≤ j < d we have, using the triangle inequality, that

∣∣a(d)
j

∣∣ =
∣∣∣∣
m−1∑
k=0

aj+kd

∣∣∣∣ ≤
m−1∑
k=0

|aj+kd| = m.

Additionally, a
(d)
j ≡ ∑m−1

k=0 1 ≡ m (mod 2) since aj+kd ≡ 1 (mod 2).

In the course of our research we discovered the following useful property of
compressed sequences which significantly reduces the number of SAT instances
we need to generate.

Lemma 2. The compression of a symmetric sequence is also symmetric.

126 C. Bright et al.

Proof. Suppose that A is a symmetric sequence of length n = dm. We want to
show that a

(d)
j = a

(d)
d−j for j = 1, . . . , d − 1. By reversing the sum defining a

(d)
j

and then using the fact that n = md, we have

m−1∑
k=0

aj+kd =
m−1∑
k=0

aj+(m−1−k)d =
m−1∑
k=0

an+j−d(k+1).

By the symmetry of A, an+j−d(k+1) = ad(k+1)−j , which equals ad−j+dk. The
sum in question is therefore equal to

∑m−1
k=0 ad−j+dk = a

(d)
d−j , as required.

4 Encoding and Search Space Pruning Techniques

An attractive property of Hadamard matrices when encoding them in a SAT
context is that each of their entries is one of two possible values, namely ±1.
We choose the encoding that 1 is represented by true and −1 is represented by
false. We call this the Boolean value or BV encoding. Under this encoding, the
multiplication function of two x, y ∈ {±1} becomes the XNOR function in the
SAT setting, i.e., BV(x · y) = XNOR(BV(x),BV(y)).

4.1 Encoding the Problem of Finding Hadamard Matrices as SAT
Instances

For each multiplication of two entries in a given matrix, one can store one addi-
tional variable representing the result of the multiplication. The sum of variables
(when thought of as ±1 values) can be encoded using a network of binary adders.
Both of these encodings add polynomially many extra variables to a given SAT
instance.

In this way, it is easy to realize the naive encoding of the problem of finding a
Hadamard matrix for a fixed order n ∈ N, i.e., the problem of finding hij ∈ {±1}
for 0 ≤ i, j < n which satisfy

∑n−1
k=0 hik ·hjk = 0 for all i �= j. However, the naive

encoding does not scale well, since the number of variables and conditions quickly
becomes too large as n increases.

The encoding of a quadruple of circulant Williamson matrices relies on far less
variables, which makes finding Hadamard matrices using the Williamson method
scale better. In particular, if each Williamson matrix has order n ∈ N, the entries
of all four matrices are determined by the knowledge of 4

⌈
n+1
2

⌉
entries, namely

a0, a1, . . . , a�(n−1)/2�, b0, . . . , b�(n−1)/2�, c0, . . . , c�(n−1)/2�, d0, . . . , d�(n−1)/2�.

The conditions can again be checked by introducing new variables for pairwise
products and realizing binary adders.

In the subsequent subsections, we present techniques using the results from
the previous section and allowing us to reach even higher orders for which we
can find Hadamard matrices.

MathCheck2: A SAT+CAS Verifier for Combinatorial Conjectures 127

4.2 Technique 1: Sum-of-Squares Decomposition

As a special case of compression, consider what happens when d = 1 and m = n.
In this case, the compression of A is a sequence with a single entry whose value
is

∑n−1
k=0 ak = rowsum(A). If A, B, C, and D are {±1}-sequences which satisfy

the conditions of Theorem 2, then the theorem applied to this m-compression
says that

PAFA(1)(0) + PAFB(1)(0) + PAFC(1)(0) + PAFD(1)(0) = 4n

which simplifies to

rowsum(A)2 + rowsum(B)2 + rowsum(C)2 + rowsum(D)2 = 4n,

and by Lemma 1 each rowsum must have the same parity as n.
In other words, the rowsums of the sequences A, B, C, and D decompose

4n into the sum of four perfect squares whose parity matches the parity of n.
Since there are usually only a few ways of writing 4n as a sum of four per-
fect squares this severely limits the number of sequences which could satisfy the
hypotheses of Theorem 2. Furthermore, some computer algebra systems contain
functions for explicitly computing what the possible decompositions are (e.g.,
PowersRepresentations in Mathematica and nsoks by Joe Riel of Maple-
soft [30]). We can query such CAS functions to determine all possible values
that the rowsums of A, B, C, and D could possibly take. For example, when
n = 35 we find that there are exactly three ways to write 4n as a sum of four
positive odd squares in ascending order, namely,

12 + 32 + 32 + 112 = 12 + 32 + 72 + 92 = 32 + 52 + 52 + 92 = 4 · 35.

As described in Sect. 3.2, any Williamson quadruple is equivalent to another
quadruple whose rowsum sum-of-squares decomposition is of one of the above
three types.

4.3 Technique 2: Divide-and-Conquer via Compression

Because each instance can take a significant amount of time to solve, it is benefi-
cial to divide instances into multiple partitions, each instance encoding a subset
of the search space. In our case, we found that an effective splitting method
was to split by compressions, i.e., to have each instance contain one possibility
of the compressions of A, B, C, and D. To do this, we first need to know all
possible compressions of A, B, C, and D. These can be generated by applying
Lemmas 1 and 2. For example, when n = 35 and d = 5 there are 28 possible
compressions of A with rowsum(A) = 1. Of those, only 12 satisfy PSDA(s) ≤ 4n
for all s ∈ Z. The calculation of PSDA(s) was possible to be performed within
Python using numpy instead of directly querying a CAS. There are also 12 pos-
sible compressions for each of B, C, and D with rowsum(B) = rowsum(C) = 3
and rowsum(D) = 11. Thus there are 124 total instances which would need to

128 C. Bright et al.

be generated for this selection of rowsums, however, only 41 of them satisfy the
conditions given by Theorem 2.

Furthermore, if n has two nontrivial divisors m and d then we can find all
possible m-compressions and d-compressions of A, B, C, and D. In this case,
each instance can set both the m-compression and the d-compression of each
of A, B, C, and D. Since there are more combinations to check when dealing
with two types of compression this causes an increase in the number of instances
generated, but each instance has more constraints and a smaller subspace to
search through.

4.4 Technique 3: UNSAT Core

After using the divide-and-conquer technique one obtains a collection of
instances which are almost identical. For example, the instances will contain
variables which encode the rowsums of A, B, C, and D. Since there are multiple
possibilities of the rowsums (as discussed in Sect. 4.2), not all instances will set
those variables to the same values. However, since the instances are the same
except for those variables, it is sometimes possible to use an UNSAT core result
from one instance to learn that other instances are unsatisfiable.

MapleSAT is one SAT solver which supports UNSAT core generation. Pro-
vided a master instance and a set of assumptions (variables which are set either
true or false), the UNSAT core contains a subset of the assumptions which make
the master instance unsatisfiable. Thus, any other instance which sets the vari-
ables in the UNSAT core in the same way must also be unsatisfiable.

For example, our instances for n = 35 contained 15,663 clauses which were
identical among all instances. The instances contained 3376 variables of which
only 168 were given as assumptions and assigned differently in each instance.

5 Verification of the Nonexistence of Williamson
Matrices of Order 35

We searched for Williamson matrices of order 35 using the techniques described
in Sect. 4 with both 5 and 7-compression. Despite the exponential growth of
possible first rows of the matrices A, B, C, and D, the described pruning results
in 21,674 SAT instances of three possible forms, as described in Fig. 2. Each
instance has subsequently been checked with several SAT solvers, and each one
has been discovered to be unsatisfiable. Using MapleSAT with UNSAT core
generation, 19,356 SAT solver calls were necessary to determine that all instances
were unsatisfiable.

Our practice was to have people that were not involved in writing the respec-
tive code verify its correctness, and to have domain experts verify the application
of the theorems used. Furthermore, our confidence of the correctness of our code
was strengthened by the successful discovery of Williamson-generated Hadamard
matrices for all the orders 4n with n < 35. These have been determined to be
valid Hadamard matrices by the computer algebra system Magma.

MathCheck2: A SAT+CAS Verifier for Combinatorial Conjectures 129

rowsum(A) rowsum(B) rowsum(C) rowsum(D) Number of Instances
1 3 3 11 6960
1 3 7 9 8424
3 5 5 9 6290

Fig. 2. The number of instances of each type generated in the process of searching for
Williamson matrices of order 35.

6 Experimental Results on Hadamard Matrices

We checked all of the Hadamard matrices we computed for equivalence against
those in Magma’s Hadamard matrix database. In total, our methods generated
160 pairwise inequivalent Hadamard matrices which were also not equivalent to
any matrices in this database. We submitted these to the Magma team and
one can download these on our project website (https://sites.google.com/site/
uwmathcheck/hadamard-conjecture).

Experimental Setup and Methodology: The timings were run on the high-
performance computing cluster SHARCNET@. Specifically, the cluster we used
ran CentOS 5.4 and used 64-bit AMD Opteron processors running at 2.2 GHz.
Each SAT instance was generated using MathCheck2 with the appropriate
parameters and the instance was submitted to SHARCNET to solve by running
MapleSAT on a single core (with a timeout of 24 h).

Figure 3 contains a summary of the performance of our encoding and pruning
techniques. The timings are for searching for Williamson matrices of order n with
25 ≤ n ≤ 35 and for each of the techniques discussed in Sect. 4. We did not use
Techniques 2 and 3 for orders 29 and 31 as they have no nontrivial divisors to
perform compression with, but they were otherwise very effective at partitioning
the search space in an efficient way. Technique 3 was effective at cutting down the
number of instances generated in certain orders. Although the instances pruned
tended to be those which would have been quickly solved, this technique would
be especially valuable in a situation where few cores are available, as it would
allow the overhead of many SAT solver calls to be avoided.

The timings given in Fig. 3 refer to the total amount of time used by Maple-
SAT across all the jobs run on SHARCNET for each order and technique. The
numbers in parentheses in Fig. 3 denote how many MapleSAT calls returned a
result and did not time out. The jobs using the base encoding and Technique 1
which did not time out all returned SAT. All of the jobs using Technique 2 com-
pleted without timing out and most the instances were found to be UNSAT. The
Technique 3 results were the same as the Technique 2 results except with fewer
calls to MapleSAT as some instances could immediately be determined to be
UNSAT.

https://sites.google.com/site/uwmathcheck/hadamard-conjecture
https://sites.google.com/site/uwmathcheck/hadamard-conjecture

130 C. Bright et al.

Order
Base Encoding

(Sec. 4.1)
Technique 1
(Sec. 4.2)

Technique 2
(Sec. 4.3)

Technique 3
(Sec. 4.4)

25 317s (1) 1702s (4) 408s (179) 408s (179)
26 865s (1) 3818s (3) 61s (3136) 34s (1592)
27 5340s (1) 8593s (3) 1518s (14994) 1439s (689)
28 7674s (1) 2104s (2) 234s (13360) 158s (439)
29 - 21304s (1) N/A N/A
30 1684s (1) 36804s (1) 139s (370) 139s (370)
31 - 83010s (1) N/A N/A
32 - - 96011s (13824) 95891s (348)
33 - - 693s (8724) 683s (7603)
34 - - 854s (732) 854s (732)
35 - - 31816s (21674) 31792s (19356)

Fig. 3. The numbers in parentheses denote how many MapleSAT calls successfully
returned a result for the given Williamson order. The timings refer to the total amount
of time used during those calls. A hyphen denotes a timeout after 24 h.

7 Related Work

The idea of combining the capabilities of SAT/SMT solvers and computer alge-
bra systems or domain-specific knowledge has been examined by various research
groups. Junges et al. [15] studied an integration of Gröbner basis theory in the
context of SMT solvers. Although they implemented their own version of Buch-
berger’s algorithm, they describe that it is possible to “plug in an off-the-shelf
GB procedure implementation such as the one in Singular” as the core pro-
cedure. Singular [9] is a computer algebra system with specialized algorithms
for polynomial systems. Ábrahám later highlights the potentials of combining
symbolic computation and SMT solving in [1]. The veriT SMT solver [5] uses
the computer algebra system Reduce [11] to support non-linear arithmetic.
The Lean theorem prover [22] combines domain-specific knowledge with SMT
solvers. Combining SAT and SMT with theorem proving has been done in the
automated theorem prover Coq as well [2]. The idea of using equivalences in
satisfiability problems to prune the search space has also been exploited by
symmetry breaking [13,28]. SAT-based results on the Erdős discrepancy conjec-
ture [16] inspired the previous version of MathCheck [39]. This version also
combined SAT with computer algebra systems but specialized in graph theory
and used the CAS to uncover theory lemmas as the search progressed. Work
related to finding Hadamard matrices has been referenced in Sect. 3.

8 Conclusions and Future Work

We have presented the advantages of utilizing the power of SAT solvers in
combination with domain specific knowledge and algorithms provided by com-
puter algebra systems. Our main mathematical problem was the verification of
the Hadamard conjecture for some orders by using MathCheck2 to search for

MathCheck2: A SAT+CAS Verifier for Combinatorial Conjectures 131

and discover Williamson matrices. We verified independently, as requested by
D. --Doković, that there is no Hadamard Matrix of order 4 ·35 which is generated
by Williamson matrices. Moreover, we discovered 160 Hadamard matrices that
are not equivalent to any matrix in the Magma Hadamard database.

A future direction is to scale to Hadamard matrices of higher order. For this,
we plan to refine the methods (e.g., by examining other construction types),
and possibly implement certain search strategies directly into the SAT solver.
We also want to analyze the UNSAT cores generated by Technique 3 to explain
their effectiveness in certain cases, as well as exploring the usage of incremen-
tal SAT solvers [3,24]. Finally, we plan to use MathCheck2 and our newly
acquired knowledge to consider other combinatorial problems. There are many
problems which can be expressed as a search for objects which satisfy certain
autocorrelation equations (as just one example, those involving complex Golay
sequences). Since the ability to work with autocorrelation is already built-in to
MathCheck2, we should be able to execute such searches with minor modifi-
cations.

References

1. Ábrahám, E.: Building bridges between symbolic computation and satisfiability
checking. In: Proceedings of the 2015 ACM on International Symposium on Sym-
bolic and Algebraic Computation, pp. 1–6. ACM, New York (2015)

2. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Wener, B.: Verifying
SAT and SMT in CoQ for a fully automated decision procedure. In: PSATTT
2011: International Workshop on Proof-Search in Axiomatic Theories and Type
Theories, pp. 11–25 (2011)

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user
language. J. Symbolic Comput. 24(3), 235–265 (1997)

5. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient SMT-Solver. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol.
5663, pp. 151–156. Springer, Heidelberg (2009)

6. Char, B.W., Fee, G.J., Geddes, K.O., Gonnet, G.H., Monagan, M.B.: A tutorial
introduction to Maple. J. Symbolic Comput. 2(2), 179–200 (1986)

7. Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of Combinatorial Designs. Discrete
Mathematics and its Applications (Boca Raton), 2nd edn. Chapman & Hall/CRC,
Boca Raton (2007)

8. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Springer,
New York (1992)

9. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-0-2 – A com-
puter algebra system for polynomial computations (2015). http://www.singular.
uni-kl.de

10. Hadamard, J.: Résolution d’une question relative aux déterminants. Bull. Sci.
Math. 17(1), 240–246 (1893)

11. Hearn, A.: Reduce user’s manual, version 3.8 (2004)
12. Hedayat, A., Wallis, W.: Hadamard matrices and their applications. Ann. Stat.

6(6), 1184–1238 (1978)

http://www.singular.uni-kl.de
http://www.singular.uni-kl.de

132 C. Bright et al.

13. Hnich, B., Prestwich, S.D., Selensky, E., Smith, B.M.: Constraint models for the
covering test problem. Constraints 11(2), 199–219 (2006)

14. Holzmann, W.H., Kharaghani, H., Tayfeh-Rezaie, B.: Williamson matrices up to
order 59. Des. Codes Crypt. 46(3), 343–352 (2008)

15. Junges, S., Loup, U., Corzilius, F., Ábrahám, E.: On Gröbner bases in the context
of satisfiability-modulo-theories solving over the real numbers. In: Muntean, T.,
Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080, pp. 186–198. Springer,
Heidelberg (2013)

16. Konev, B., Lisitsa, A.: A SAT attack on the Erdős discrepancy conjecture. In: Sinz,
C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 219–226. Springer, Heidelberg
(2014)

17. Kotsireas, I.S.: Algorithms and metaheuristics for combinatorial matrices. In:
Handbook of Combinatorial Optimization, pp. 283–309. Springer, New York (2013)

18. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for SAT solvers. In: Creignou, N., Le Berre, D., Le Berre, D., Le Berre,
D., Le Berre, D., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 123–140.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-40970-2 9

19. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Exponential recency weighted
average branching heuristic for SAT solvers. In: Proceedings of AAAI 2016 (2016)

20. Marques-Silva, J.P., Sakallah, K., et al.: GRASP: a search algorithm for proposi-
tional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

21. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation
Conference, pp. 530–535. ACM, New York (2001)

22. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: Felty, P.A., Middeldorp, A. (eds.) CADE-
25. LNCS, vol. 9195, pp. 378–388. Springer, Switzerland (2015)

23. Muller, D.E.: Application of Boolean Algebra to Switching Circuit Design and to
Error Detection. Electron. Comput. Trans. IRE Prof. Group Electron. Comput.
EC-3(3), 6–12 (1954)

24. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg
(2012)

25. -Doković, D.Ž.: Williamson matrices of order 4n for n = 33, 35, 39. Discrete Math.
115(1), 267–271 (1993)

26. -Doković, D.Ž., Kotsireas, I.S.: Compression of periodic complementary sequences
and applications. Des. Codes Crypt. 74(2), 365–377 (2015)

27. Paley, R.E.: On orthogonal matrices. J. Math. Phys. 12(1), 311–320 (1933)
28. Prestwich, S.D., Hnich, B., Simonis, H., Rossi, R., Tarim, S.A.: Partial symmetry

breaking by local search in the group. Constraints 17(2), 148–171 (2012)
29. Reed, I.: A class of multiple-error-correcting codes and the decoding scheme. Trans.

IRE Prof. Group Inf. Theory 4(4), 38–49 (1954)
30. Riel, J.: nsoks: A Maple script for writing n as a sum of k squares
31. Seberry, J.: Library of Williamson Matrices. http://www.uow.edu.au/∼jennie/

WILLIAMSON/williamson.html
32. Sloane, N.: Library of Hadamard Matrices. http://neilsloane.com/hadamard/
33. Sylvester, J.J.: Thoughts on inverse orthogonal matrices, simultaneous sign suc-

cessions, and tessellated pavements in two or more colours, with applications to
Newton’s rule, ornamental tile-work, and the theory of numbers. London Edinb.
Dublin Philos. Mag. J. Sci. 34(232), 461–475 (1867)

http://dx.doi.org/10.1007/978-3-319-40970-2_9
http://www.uow.edu.au/~jennie/WILLIAMSON/williamson.html
http://www.uow.edu.au/~jennie/WILLIAMSON/williamson.html
http://neilsloane.com/hadamard/

MathCheck2: A SAT+CAS Verifier for Combinatorial Conjectures 133

34. SC2: Satisfiability checking and symbolic computation. http://www.sc-square.org/
35. The Sage Developers: Sage Mathematics Software (Version 7.0) (2016). http://

www.sagemath.org
36. Walsh, J.L.: A closed set of normal orthogonal functions. Am. J. Math. 45(1), 5–24

(1923)
37. Williamson, J.: Hadamard’s determinant theorem and the sum of four squares.

Duke Math. J 11(1), 65–81 (1944)
38. Wolfram, S.: The Mathematica Book, version 4. Cambridge University Press

(1999)
39. Zulkoski, E., Ganesh, V., Czarnecki, K.: MathCheck: a math assistant via a combi-

nation of computer algebra systems and SAT solvers. In: Felty, P.A., Middeldorp,
A. (eds.) CADE-25. LNCS, vol. 9195, pp. 607–622. Springer, Switzerland (2015)

http://www.sc-square.org/
http://www.sagemath.org
http://www.sagemath.org

Incompleteness, Undecidability
and Automated Proofs

(Invited Talk)

Cristian S. Calude1(B) and Declan Thompson1,2

1 Department of Computer Science, University of Auckland, Auckland, New Zealand
cristian@cs.auckland.ac.nz

2 Department of Philosophy, Stanford University, Stanford, USA
http://www.cs.auckland.ac.nz/~cristian

http://www.stanford.edu/~declan

Abstract. Incompleteness and undecidability have been used for many
years as arguments against automatising the practice of mathematics. The
advent of powerful computers and proof-assistants – programs that assist
the development of formal proofs by human-machine collaboration – has
revived the interest in formal proofs and diminished considerably the value
of these arguments.

In this paper we discuss some challenges proof-assistants face in han-
dling undecidable problems – the very results cited above – using for
illustrations the generic proof-assistant Isabelle.

1 Introduction

Gödel’s incompleteness theorem (1931) and Turing’s undecidability of the halt-
ing problem (1936) form the basis of a largely accepted thesis that mathematics
cannot be relegated to computers. However, the impetuous development of pow-
erful computers and versatile software led to the creation of proof-assistants –
programs that assist the development of formal proofs by human-machine col-
laboration. This trend has revived the interest in formal proofs and diminished
considerably the value of the above thesis for the working mathematician.

An impressive list of deep mathematical theorems have been formally proved
including Gödel’s incompleteness theorem (1986), the fundamental theorem of
calculus (1996), the fundamental theorem of algebra (2000), the four colour the-
orem (2004), Jordan’s curve theorem (2005) and the prime number theorem
(2008). In 2014 Hales’s Flyspeck project team formally validated in [7] Hales’s
proof [21] of the Kepler conjecture. Why did Hales’ proof by exhaustion of the
conjecture – involving the checking of many individual cases using complex com-
puter calculations – published in the prestigious Annals of Mathematics, need
“a validation”? Because the referees of the original paper had not been “100 %
certain” that the paper was correct.

Hilbert’s standard of proof is becoming practicable due to proof-assistants.

c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 134–155, 2016.
DOI: 10.1007/978-3-319-45641-6 10

Incompleteness, Undecidability and Automated Proofs 135

Are proof-assistants able to handle undecidable problems, the very results
which have been used to argue the impossibility of doing mathematics with
computers? In what follows we discuss some challenges proof-assistants face in
handling two undecidable problems – termination and correctness – using for
illustrations the generic proof-assistant Isabelle.

2 Truth and Provability

2.1 Incompleteness

In 1931 K. Gödel proved his celebrated incompleteness theorem which states that
no consistent system of axioms whose theorems can be effectively listed (e.g., by
a computer program or algorithm) is capable of proving all true relations between
natural numbers (arithmetic). In such a system there are statements about the
natural numbers that are true, but unprovable within the system – they are
called undecidable statements in the system. For example, the consistency of
such a system can be coded as a true property of natural numbers which the
system cannot demonstrate, hence it is undecidable in the system. Furthermore,
extending the system does not cure the problem. Examples of systems satisfy-
ing the properties of Gödel’s incompleteness theorem are Peano arithmetic and
Zermelo–Fraenkel set theory. One can interpret Gödel’s theorem as saying that
no consistent system whose theorems can be effectively listed is capable of proving
any mathematically true statement.

2.2 Undecidability

Five years later A. Turing proved a computationally similar result, the exis-
tence of (computationally) undecidable problems, i.e. problems which have no
algorithmic solution. To this goal Turing proposed a mathematical model of
computability, based on what today we call a Turing machine (program), which
is widely, but not unanimously, accepted as adequate (the Church-Turing the-
sis). The halting problem is the problem of determining in a finite time, from a
description of an arbitrary Turing program and an input, whether the program
will finish running or continue to run forever. Turing’s theorem shows that no
Turing program can solve (correctly) every instance of the halting problem. Our
ubiquitous computers cannot do everything, a shock for some.

2.3 Incompleteness vs. Undecidability

Gödel’s undecidable statements depend on the fixed formal system; Turing’s
undecidable problems depend on the adopted mathematical model of compu-
tation. They are both relative. There is a deep relation between these results
coming from the impossibility of dealing algorithmically with some forms of
infinity. In what follows we present a form of Gödel’s incompleteness theorem by
examining the halting problem. By N(P, v) we mean that the Turing program P

136 C.S. Calude and D. Thompson

will never halt on input v. For any particular program P and input v, N(P, v)
is a perfectly definite statement which is either true (in case P will never halt in
the described situation) or false (in case P will eventually halt). When N(P, v)
is false, this fact can always be demonstrated by running P on v. No amount of
computation will suffice to demonstrate the fact that N(P, v) is true. We may
still be able to prove that a particular N(P, v) is true by a logical analysis of P ’s
behaviour, but, because of the undecidability of the halting problem, no such
automated method works correctly in all cases.

Suppose that certain strings of symbols (possibly paragraphs of a natural
language (English, for example)) have been singled out – typically with the help
of axioms and rules of inference – as proofs of particular statements of the form
N(P, v). Operationally, we assume that we have an algorithmic syntactic test
that can determine whether an alleged proof Π that “N(P, v) is true” is or is
not correct. There are two natural requirements for the rules of proof:

Soundness: If there is a proof Π that N(P, v) is true, then P will never halt on
input v.

Completeness: If P will never halt on input v, then there is a proof Π that
N(P, v) is true.

Can we find a set of rules which is both sound and complete? The answer is
negative. Suppose, by absurdity, we had found some “rules” of proof which are
both sound and complete. Suppose that the proofs according to these “rules” are
particular strings of symbols on some specific finite alphabet. Let Π1,Π2,Π3, . . .
be the quasi-lexicographic computable enumeration of all finite strings on this
alphabet. This sequence includes all possible proofs, as well as a lot of other
things (including a high percentage of total non-sense). But, hidden between the
non-sense, we have all possible proofs. Next we show how we can use our “rules”
to solve the halting problem – an impossibility. We are given a Turing program
P and an input v and have to test whether or not P will eventually halt on v.
To answer this question we run in parallel the following two computations:

(A) the computation of P on v,
(B) the computation consisting in generating the sequence Π1,Π2,Π3, . . . of

all possible proofs and using, as each Πi is generated, the syntactic test to
determine whether or not Πi is a proof of N(P, v).

The algorithm (A) and (B) stops when either (A) stops or in (B) a proof Πi

for N(P, v) is validated as correct: in the first case the answer is “P stops on v”
and in the second case the answer is “P does not stop on v”.

First we prove that the algorithm cannot stop simultaneously on both (A)
and (B). If the algorithm stops through (B) then a proof Πi for N(P, v) is
found, so by soundness the computation (A) cannot stop; if, on the contrary,
the computation (A) stops, then no valid proof for N(P, v) can exist because,
by soundness, then P will never halt on input v.

Second we prove that the algorithm stops either on (A) or on (B). Indeed,
if the algorithm does not stop on (A), then P will never halt on input v, so by

Incompleteness, Undecidability and Automated Proofs 137

completeness the algorithm will stop on (B). If the algorithm does not stop on
(B), then there is no valid proof for N(P, v), so again by completeness, P will
stop on v, hence the algorithm will stop through (A).

Finally we prove the correctness of the algorithm. If P will eventually halt
on v, then the computation (A) will eventually stop and the algorithm will give
the correct answer: “P stops on v”. If P never halts on v, (A) will be of no
use: however, because of completeness, there will be a valid proof Πi of N(P, v)
which will be eventually discovered by the computation (B). Having obtained
this Πi we will be sure (because of soundness) that P will indeed never halt.

Thus, we have described an algorithm which would solve the halting problem,
a contradiction! The conclusion is that no rules of proof can be both sound and
complete: there is a true statement N(P, v) which has no proof Π. This statement
is undecidable in the system: it cannot be proved nor disproved (being true, this
would contradict soundness).

The above proof does not indicate any particular pair (P, v) for which the
“rules” cannot prove that N(P, v) is true! We only know that there will be a pair
(P, v) for which N(P, v) is true, but not provable from the “rules”. There always
are other sound rules which decide the “undecidable” statement: for example,
adding the “undecidable” (true) statement as an axiom we get a larger system
which trivially proves the original “undecidable” statement. No matter how we
try to avoid an “undecidable” statement the new and more powerful rules will
in turn have their own undecidable statements.

2.4 Hilbert’s Programme and Hilbert’s Axiom

In the late 19th century mathematics – shaken by the discoveries of paradoxes
(for example, Russell’s paradox) – entered into a foundational crisis (in German,
Grundlagenkrise der Mathematik) which prompted the search for proper foun-
dations in the early 20th century. Three schools of philosophy of mathematics
were opposing each other: formalism, intuitionism and logicism. D. Hilbert, the
main exponent of formalism, held that mathematics is only a language and a
series of games, but not an arbitrary game with arbitrary rules. Hilbert’s pro-
gramme proposed to ground all mathematics on a finite, complete set of axioms,
and provide a proof that these axioms were consistent. Hilbert’s programme
included a formalisation of mathematics using a precise formal language with
the following properties: completeness, a proof that all true mathematical state-
ments can be proved in the adopted formal system, and consistency, a proof –
preferably involving finite mathematical objects only – that no contradiction can
be obtained in the formal system. The consistency of more complicated systems,
such as complex analysis, could be proven in terms of simpler systems and, ulti-
mately, the consistency of the whole of mathematics would be reduced to that
of arithmetic.

In his famous lecture entitled “Mathematical problems”, presented to
the International Congress of Mathematicians held in Paris in 1900, Hilbert
expressed his deep conviction in the solvability of all mathematical problems
(cited from [18, p. 11]):

138 C.S. Calude and D. Thompson

Is the axiom of solvability of every problem a peculiar characteristic of
mathematical thought alone, or is it possibly a general law inherent in the
nature of the mind, that all questions which it asks must be answerable?. . .
This conviction of the solvability of every mathematical problem is a pow-
erful incentive to the worker. We hear within us the perpetual call: There
is the problem. Seek its solution. You can find it by pure reason, for in
mathematics there is no ignorabimus.

Thirty years later, on 8 September 1930, in response to Ignoramus et ignor-
abimus (“We do not know, we shall not know”), the Latin maxim used as motto
by the German physiologist Emil du Bois-Reymond [10] to emphasise the lim-
its of understanding of nature, Hilbert concluded his retirement address to the
Society of German Scientists and Physicians1 – the same meeting where Gödel
presented his completeness and incompleteness theorems – with his now famous
words:

We must not believe those, who today, with philosophical bearing and
deliberative tone, prophesy the fall of culture and accept the ignorabimus.
For us there is no ignorabimus, and in my opinion none whatever in natural
science. In opposition to the foolish ignorabimus our slogan shall be: “We
must know. We will know.” (in German: Wir müssen wissen. Wir werden
wissen2).

2.5 Objective vs. Subjective Mathematics

According to Gödel [19], see also [18], objective mathematics consists of the body
of those mathematical propositions which hold in an absolute sense, without any
further hypothesis.

A mathematical statement constitutes an objective problem if it is a candidate
for objective mathematics, that is, if its truth or falsity is independent of any
hypotheses and does not depend on where or how it can be demonstrated. Prob-
lems in arithmetic are objective problems in contrast with problems in axiomatic
geometry, which depend on their provability in a specific axiomatic system.

Gödel’s subjective mathematics is the body of all humanly demonstrable or
knowable mathematically true statements, that is, the set of all propositions
which the human mind can in principle prove in some well-defined system of
axioms in which every axiom is recognised to belong to objective mathematics
and every rule preserves objective mathematics.

Does objective mathematics coincide with subjective mathematics? Gödel’s
answer (1951, see [19]) based on his incompleteness theorem was: Either . . . the

1 Included in the short radio presentation, see [24].
2 The words are engraved on Hilbert’s tombstone in Göttingen. This is a triple irony:

their use as an epitaph, the fact that the day before the talk, Hilbert’s optimism was
undermined by Gödel’s presentation of the incompleteness theorem, whose excep-
tional significance was, with the exception of John von Neumann, completely missed
by the audience.

Incompleteness, Undecidability and Automated Proofs 139

human mind . . . infinitely surpasses the powers of any finite machine, or else
there exist absolutely unsolvable . . . problems.

Working with a constructive interpretation of truth values “true”, “false” and
modal “can be known” Martin-Löf stated the following theorem [27]: There are
no propositions which can neither be known to be true nor be known to be false.

For the non-constructive mathematician this means that no propositions can
be effectively produced (i.e. by an algorithm) of which it can be shown that they
can neither be proved constructively nor disproved constructively. There may
be absolutely unsolvable problems, but one cannot effectively produce one for
which one can show that it is unsolvable.

2.6 Hilbert’s Programme After Incompleteness

In the standard interpretation, incompleteness shows that most of the goals of
Hilbert’s programme were impossible to achieve . . . However, much of it can be
and was salvaged by changing its goals slightly. With the following modifications
some parts of Hilbert’s programme have been successfully completed. Although
it is not possible to formalise all mathematics, it is feasible to formalise essentially
all the mathematics that “anyone uses”. Zermelo–Fraenkel set theory combined
with first-order logic gives a satisfactory and generally accepted formalism for
essentially all current mathematics. Although it is not possible to prove com-
pleteness for systems at least as powerful as Peano arithmetic (if they have a
computable set of axioms), it is feasible to prove completeness for many weaker
but interesting systems, for example, first-order logic (Gödel’s completeness the-
orem), Kleene algebras and the algebra of regular events and various logics used
in computer science. Undecidability is a consequence of incomputability: there
is no algorithm deciding the truth of statements in Peano arithmetic. Tarski’s
algorithm (see [32]) decides the truth of any statement in analytic geometry
(more precisely, the theory of real closed fields is decidable). With the Cantor-
Dedekind axiom, this algorithm can decide the truth of any statement in Euclid-
ean geometry. Finally, Martin-Löf theorem cited in the previous section strongly
limits the impact of absolutely unsolvable problems, if any exist, as one cannot
effectively produce one for which one could show that it is unsolvable.

3 Can Computers Do Mathematics?

Mathematical proofs are essentially based on axiomatic-deductive reasoning.
This view was repeatedly expressed by the most prominent mathematicians.
For Bourbaki [11], Depuis les Grecs, qui dit Mathématique, dit démonstration.

A formal proof, written in a formal language consisting of certain strings of
symbols from a fixed alphabet, satisfies Hilbert’s criterion of mechanical testing:

The rules should be so clear, that if somebody gives you what they claim
is a proof, there is a mechanical procedure that will check whether the
proof is correct or not, whether it obeys the rules or not.

140 C.S. Calude and D. Thompson

By making sure that every step is correct, one can tell once and for all whether
a proof is correct or not, i.e. whether a theorem has been proved. Hilbert’s con-
cept of formal proof is an ideal of rigour for mathematics which has important
applications in mathematical logic (computability theory and proof theory), but
for many years seemed to be irrelevant for the practice of mathematics which uses
informal (pen-on-paper) proofs. Such a proof is a rigorous argument expressed
in a mixture of natural language and formulae that is intended to convince a
knowledgeable mathematician of the truth of a statement, the theorem. Rou-
tine logical inferences are omitted. “Folklore” results are used without proof.
Depending on the area, arguments may rely on intuition. Informal proofs are
the standard of presentation of mathematics in textbooks, journals, classrooms,
and conferences. They are the product of a social process. In principle, an infor-
mal proof can be converted into a formal proof; however, this is rarely, almost
never, done in practice. See more in [15].

In the last 30 years a new influence on the mathematical practice has started
to become stronger and stronger: the impact of software and technology. Soft-
ware tools – called interactive theorem provers or proof-assistants – aiding the
development of formal proofs by human-machine collaboration have appeared
and got better and better. They include an interactive proof editor with which a
human can guide the search for, the checking of and the storing of formal proofs,
using a computer.

As discussed in Sect. 1, an impressive list of deep mathematical theorems
have been formally proved. The December 2008 issue of the Notices of AMS
includes four important papers on formal proof. A formal proof in Isabelle for a
sharper form of the Kraft-Chaitin theorem was given in [14]. In 2014 an auto-
mated proof of Gödel’s ontological proof of God’s existence was given in [9] and
an automatic 13-gigabyte proof solved a special case of the Erdös discrepancy
problem [26]; only a year later, Tao [31] gave a pen-and-paper general solution.
The current longest automatic proof has almost 200-tb3: it solves the Boolean
Pythagorean triples problem [23], a long-standing open problem in Ramsey the-
ory. A compressed 68-gb certificate allows anyone to reconstruct the proof for
checking.

Hilbert’s standard of proof is practicable, it’s becoming reality. However, as
noted in [17],

[T]he majority of mathematicians remain hesitant to use software to help
develop, organize, and verify their proofs. Yet concerns linger over usability
and the reliability of computerized proofs, although some see technological
assistance as being vital to avoid problems caused by human error.

There are three main obstacles to a wider use of automated proofs [17]:
(a) the lack of trust in the “machine”, (b) the necessity of repeatedly devel-
oping foundational material, (c) the apparent loss of understanding in favour
of the syntactical correctness (see also [13]). Current solutions involve (a) using

3 The approximate equivalent of all the digitised texts held by the US Library of
Congress.

Incompleteness, Undecidability and Automated Proofs 141

a small “trusted” kernel on top of which employ a complicated software that
parses the code, but ultimately calls the kernel to check the proof, or use an
independent checker, (b) growing archives of formal proofs (see for example [2])
and developing more powerful automatic proof procedures, (c) developing envi-
ronments in which users can write and check formal proofs as well as query
them with reference to the symptoms of understanding [15,33] and write papers
explaining formal proofs.

4 Formalised Computability Theory

Computability theory is an inherently interesting field for automated theorem
proving. Since the limitations of computation being studied are true of the the-
orem provers themselves, formalised computability theory is like modifying the
engine of a plane mid-flight.

Early work in formalised computability theory was completed by [30], who
formalised the primitive recursive functions in the ALF (Another Logical Frame-
work) proof-assistant [1], a predecessor of the contemporary Coq [3]. The pur-
pose of this formalisation was to provide a computer-checked proof that the
Ackermann function is not primitive recursive. As such, study into the relation-
ship of the recursive functions to other forms of computation was not undertaken.
A formalisation of Unlimited Register Machines (URM) was given in [36] (see
also [35]), and it was shown that URMs can simulate partial recursive func-
tions.4 The converse was not shown however. The paper [36] also formalised
partial recursive functions in Coq.

More recent work by Michael Norrish [28] has established a greater body
of formal computability theory. Norrish formalises an implementation of the λ-
calculus model of computation in the HOL4 system [4] and further defines the
partial recursive functions and establishes the computational equivalence of these
two models. A number of standard results are proven, including the existence
of a universal machine (which is constructed), the identification of recursively
enumerable sets with the ranges or domains of partially computable functions,
the undecidability of the halting problem and Rice’s theorem. For use in these
results, Norrish implements the “dove-tailing” method, whereby a function is
run on input 0, . . . , n for n steps, and then 0, . . . , n, n + 1 for n + 1 steps, and so
forth.

A formalisation of Turing machines is given in [8] in the Matita interactive
theorem prover [6]. While the focus is on the use of Turing machines in com-
plexity theory, a universal Turing machine is constructed, and its correctness
proved.

An impressive formalisation of three models of computable functions can
be found in [34]. Here, the authors define Turing machines, abacus machines
4 Historically, the syntactic class of partial functions constructed recursively is called
partially recursive functions, see [25,29]. This class coincides with the semantic par-
tial functions implementable by standard models of computation (Turing machines,
URMs, the λ-calculus etc.) – the partially computable functions.

142 C.S. Calude and D. Thompson

and partial recursive functions in the Isabelle, and give a formal proof of the
undecidability of the halting problem for Turing machines. Turing machines are
shown to be able to model abacus machines, and abacus machines to model
recursive functions. The bulk of [34]’s work is in creating a universal recursive
function which takes encodings of Turing machines as inputs, and gives the
same output as those machines would. This formally establishes not only the
existence of universal functions, but also the equivalence of the three models
of computation. While a universal Turing machine is not directly constructed,
its existence can be inferred from the proofs that Turing machines can model
abacus machines, which can in turn model recursive functions. This contrasts
with the direct constructions of a universal Turing machine given in [8]. The
establishment of the equivalence of recursive functions and the λ-calculus in [28]
gives us formal proofs of the computational equivalence of the following four
models: Turing machines, abacus machines, partial recursive functions and the
λ-calculus.

4.1 Automated Proofs in Isabelle

Isabelle is a generic proof-assistant derived from the Higher Order Logic (HOL)
theorem proving software, which in turn is a descendant of Logic for Computable
Functions (LCF). LCF was developed in 1972, HOL became stable around 1988,
and development of Isabelle started in the 1990s [20]. Isabelle is based on a small
core set of logical principles from which theories can be built up. As such, the
confidence with which we can claim any theorem proven in Isabelle to be true is
the same confidence with which we can claim that the small core is true.

Isabelle provides a formal language to work in, and a set of proof methods,
which allow it to prove statements using logical rules, definitions, and axioms,
as well as already proved statements. Proofs in Isabelle are essentially natural
deduction style. A structured proof language, Isar, is provided which aims to
make proofs more human readable, and which serves to greatly reduce the learn-
ing curve required to use Isabelle. In addition to the standard proof methods,
Isabelle has a feature called sledgehammer, which calls external automated theo-
rem provers in an attempt to prove the current goal. Isabelle is developed jointly
at the University of Cambridge, Technische Universität München and Université
Paris-Sud [5].

An Isabelle proof proceeds in an interactive manner. The user makes a claim,
and must then prove it. Isabelle’s output (separate to the source code which the
user writes) gives information like the goals currently needing to be proved and
whether any redundancy in proofs has been detected. Using jEdit, the user can
select a line of a completed proof, and check the output to see what was being
done at that point – this “hook” into the proof allows for easier understanding of
new proofs. Note that the Isabelle output is not included with the formal proof
which the user ends up with. Since it is not exported to documentation, we have
used an image of the output below.

Incompleteness, Undecidability and Automated Proofs 143

4.2 Partial Recursive Functions in Isabelle

The formalisation of partial recursive functions in Isabelle given by Xu et al.
in [34] makes use of a datatype recf of recursive functions. The constructors for
this datatype follow standard conventions for partial recursive functions, [29].
Adapting the original Isabelle code definitions to more standard notation and
using the notation xi;j to mean xi, xi+1, . . . , xj we have:

z(x) = 0,

s(x) = x0 + 1,

idmn (x) = xn,

Cnn(f, g)(x) = f(g0(x), . . . , gm(x)),

P rn(f, g)(x) =

{
f(x0;n−2), if xn−1 = 0,

g(x0;n−2, xn−1 − 1, P rn(f, g)(x0;n−2, xn−1 − 1)), otherwise,

Mnn(f)(x) = µ{y | f(x0;n−1, y) = 0}.

(1)

Separately, the termination for partial recursive functions is defined in [34] as
follows (notice that the clauses for z and s implicitly require a 1-ary list).

termi z([n])
termi s([n])

(n < m ∧ |x| = m) → termi idmn (x)
termi f(g0(x), . . . , gm(x)) ∧ ∀i termi gi(x) ∧ |x| = n → termi Cnn(f, g)(x)
∀y < xn−1 termi g(x0;n−2, y, Prn(f, g)(x0;n−2, y))∧

termi f(x0;n−2) ∧ |x| = n + 1 → termi Prn(f, g)(x)
|x| = n ∧ termi f(x, r) ∧ f(x, r) = 0∧

∀i < r termi f(x, i) ∧ f(x, i) > 0 → termi Mnn(f)(x)

To see how these definitions work, let us construct an implementation of the
addition function + within the framework [34]. We will take this opportunity to
demonstrate how proofs proceed in the Isabelle system (the rest of this section
has been generated from Isabelle code).

Addition is fairly easy to define using primitive recursion. We simply follow
the Robinson Arithmetic approach of defining

x + y =

{
x, if y = 0,
(s(x)) + z, if y = s(z).

Using primitive recursion, we have + := Pr1(id10, Cn3(s, [id32])). We note that
we use indices starting at 0. This is very similar to the Isabelle source code:

144 C.S. Calude and D. Thompson

definition "rec_add = (Pr 1 (id 1 0) (Cn 3 s [(id 3 2)]))"

Within Isabelle, we can prove that rec_add is indeed the addition function +.
The following lemma achieves this through an induction on the second argument.

lemma [simp] : "rec_exec rec_add [m, n] = m + n"

apply(induction n)

by(simp_all add:rec_add_def)

First we have stated the statement of the lemma. The command rec_exec

tells Isabelle to evaluate the function rec_add (that is, we are using Definition (1)
from above). Note that since they are unbound, there is an implicit universal
quantification over the variables m,n. We have flagged this lemma as a simplifi-
cation ([simp]), which tells Isabelle’s simp proof method that whenever it sees
rec_exec rec_add [m, n] it can be replaced by m+n . Our first step in the proof
is to apply induction to argument n. Isabelle determines that n is a natural
number (since the recursive functions are defined over them) and so adopts the
appropriate inductive hypothesis. As such there are two goals to prove. The first
is that adding 0 to m returns m, and the second is that if addition is correct
for m + n it is also correct for m + (n + 1). At this point, the Isabelle output
gives the information shown in Fig. 1. Both subgoals can be proved easily by
unpacking the definition of rec_add . Our final command is to apply the simp
proof method to all remaining subgoals, making use of the definition of rec_add .
The simp method utilises a large number of built in simplification rules, as well
as those rules added to it by [simp] flags in an attempt to prove the current
goal(s). Here it succeeds. Both commands by and apply apply the proof methods
indicated; the difference is that by tells Isabelle we have finished the proof – it is
a streamlining of an apply command followed by the qed end-of-proof command.

Fig. 1. The Isabelle output after applying the induction proof method.

Next, we will show that rec_add terminates on all inputs. This proceeds in a
more complex fashion. First, we establish that the unpacked definition terminates
(which requires a complete sub-proof), and then apply the definition to show that
rec_add terminates.

Incompleteness, Undecidability and Automated Proofs 145

lemma [simp] : "terminate rec_add [m, n]"

proof -

have "terminate (Pr 1 (id 1 0) (Cn 3 s [(id 3 2)])) ([m]@[n])"

proof
show "terminate (id 1 0) [m]" by (simp add: termi_id)

show "length [m] = 1" by simp

{fix y assume "y < n"

have "terminate (Cn 3 s [id 3 2]) [m, y, rec_exec (Pr 1 (id 1 0) (Cn

3 s [id 3 2])) [m, y]]"

proof
show "length [m, y, rec_exec (Pr 1 (id 1 0) (Cn 3 s [id 3 2])) [m,

y]] = 3" by simp

have "terminate (id 3 2) [m, y, rec_exec (Pr 1 (id 1 0) (Cn 3 s [id

3 2])) [m, y]]"

by (simp add: termi_id)

thus "∀ g∈set [id 3 2]. terminate g [m, y, rec_exec (Pr 1 (id 1 0)

(Cn 3 s [id 3 2])) [m, y]]"

by simp

show "terminate s (map (λg. rec_exec g [m, y, rec_exec (Pr 1 (id 1

0) (Cn 3 s [id 3 2])) [m, y]]) [id 3 2])"

by (simp add: termi_s)

qed
}
hence "∀ y < n. terminate (Cn 3 s [(id 3 2)])

([m, y, rec_exec (Pr 1 (id 1 0) (Cn 3 s [(id 3 2)])) [m, y]])"

by blast

thus "∀ y<n. terminate (Cn 3 s [recf.id 3 2])

([m] @ [y, rec_exec (Pr 1 (recf.id 1 0) (Cn 3 s [recf.id 3

2])) ([m] @ [y])])" by simp

qed
thus ?thesis by (simp add: rec_add_def)

qed

This proof uses a different style to the previous proof – the Isar mark up
language. Isar is designed to reflect the style of informal proofs, and is intended
to be fairly human readable. Commands such as hence, show and thus have
strict meanings within the system, which are similar to their natural language
meanings.

In the first step of the proof, we claim that Pr1(id10, Cn3(s, [id32])) (our addi-
tion function) halts on the arbitrary inputs m,n. This is established inside the
sub-proof. There we first show two simple facts – that the identity function ter-
minates on [m] and that [m] is a list of length 1. Next, we must establish the
following goal:

∀y < n(terminate Cn3(s, [id32])([m, y, Pr1(id10, Cn3(s, [id32]))([m, y]))).

This establishes termination for the recursive cases of the addition function. We
prove this statement by fixing an arbitrary y < n and showing that it is true
for that y. This requires another sub-proof, this time for the termination of

146 C.S. Calude and D. Thompson

Cn3(s, [id32]). There are three goals to achieve: First that the correct number of
arguments is supplied (i.e. the list is of length 3), second that id32 terminates on
a list of length 3 and third that the successor function terminates on a list of
length 1. Each is a straightforward unpacking of definitions, achieved by simp.

Having established that Pr1(id10, Cn3(s, [id32])) terminates on arbitrary
inputs m,n, we show our thesis (namely, that rec_add terminates on arbitrary
m,n) by applying the definition of rec_add . The command qed indicates the end
of a (successful) proof.

5 Formalising the Halting Problem and Its Undecidability

In [34] a detailed mechanised proof of the undecidability of the halting problem,
including proofs of correctness for all programs used, is given. The proof uses the
Turing machine model of computation and follows, in broad strokes, the classical
proof. The assumption is made of the existence of a Turing program H which
can solve the halting problem. Specifically, given an encoding 〈M,n〉 of a Turing
machine M and input n, H outputs 0 if M halts on n and 1 otherwise.

The following modification D of H is then constructed: D〈M〉 = ∞ if M〈M〉
halts, and D〈M〉 = 1, otherwise, and a contradiction is reached by computing:
D〈D〉 = ∞ iff D〈D〉 halts.

Any formalisation requires a number of aspects in the proof to be made
explicit. For example, the modification D must be constructed, and the changes
to H shown to be correct. Furthermore, explicit notions of halting and correct-
ness must be defined. Since proofs are computer checked, special care must be
taken with the implementation of halting.

In what follows we give an overview of the formal proof provided in [34] of
the undecidability of the halting problem. The formalisation of Turing machines
uses a two-way infinite single tape Turing machine in which tape cells can be in
one of two states – blank or occupied. The tape is represented by a pair (l, r)
of lists, with l representing the cells to the left of the read/write head and r
the cell being read and those to the right of it. Five actions are available; write
blank, write occupied, move left, move right and do nothing. A Turing program
is simply a list of pairs of actions and natural numbers representing states – the
order of the pairs encodes which instruction maps to which state and input. An
example program from [34] follows:

dither := [

read Bk︷ ︸︸ ︷
(WBk, 1),

read Oc︷ ︸︸ ︷
(R, 2)︸ ︷︷ ︸

state 1 (start)

, (L, 1), (L, 0)︸ ︷︷ ︸
state 2

]

The program begins in state 1. If it reads a blank cell, it writes a blank cell and
goes to state 1. If it reads an occupied cell, it moves right and goes to state 2.
In state 2, it moves left, returning to state one if it saw a blank cell and going to
state 0 (the halting state) if it saw an occupied cell. Hence this program halts

Incompleteness, Undecidability and Automated Proofs 147

on a tape containing two occupied cells, and loops indefinitely on any tape with
fewer such cells.

In order to ease construction of programs, a sequential composition of Turing
programs is introduced. Essentially, this modifies the programs by increasing the
state numbers of any subsequent programs and changing the halting state to the
start state of each next program. This composition is used to combine three
Turing programs: a copy program (to copy a machine’s code so it can read it),
the supposed program to solve the halting problem (H above) and a program to
loop infinitely in certain cases (the “dither” program). This result is the machine
D from above. Both the copying program and dither must be proved correct. We
will outline how this proceeds for dither.

Correctness of a Turing program is established through the use of Hoare
triples. Essentially, the triple {P}p{Q} indicates that program p run on a tape
satisfying P will result in a tape satisfying Q. We can also write {P}p ↑ to
indicate that p run on a tape satisfying P will never halt. The program dither
should satisfy the triples

{λtp.∃k.tp = (Bkk, 〈1〉)} dither {λtp.∃k.tp = (Bkk, 〈1〉)}
{λtp.∃k.tp = (Bkk, 〈0〉)} dither ↑

if it is to match the description above. The first statement can be established
in Isabelle by calculation; provided a tape matching the first condition, run the
dither program and see what happens. Due to the design of the implementa-
tion, this is straightforward and very easily automated. A proof of the second
statement clearly cannot proceed in the same manner – running dither on such a
tape should result in an infinite loop, a phenomenon which will affect any Isabelle
simulation of the machine. Instead, the second statement can be established by
an induction on the number of steps performed, starting with the given input
tape.

Having established the correctness of copy and dither, one can proceed to
prove the undecidability of the halting problem, following the standard method.
Here a definition of the halting problem must be introduced. The property of a
Turing machine p halting on an input n is defined using Hoare triples as follows:5

halts p n := {λtp.tp = ([], 〈n〉)} p {λtp.∃k,m, l.tp = (Bkk, 〈m〉@Bkl)}.

We then assume that a machine H exists which solves the halting problem.
Formally within Isabelle this is captured by the following Hoare triples:

halts M n → {λtp.tp = ([Bk], 〈(〈M〉, n)〉)} H {λtp.∃k.tp = (Bkk, 〈0〉)}
¬halts M n → {λtp.tp = ([Bk], 〈(〈M〉, n)〉)} H {λtp.∃k.tp = (Bkk, 〈1〉)}.

Then we define the diagonalising Turing machine contra by

contra := copy;H; dither

5 In Isabelle, the @ symbol indicates concatenation of lists. Also note that this defin-
ition of halts assumes functions with some number of inputs and a single output.

148 C.S. Calude and D. Thompson

where; indicates the sequential composition of the programs. The contradiction
is now reached through reasoning established from the proofs of correctness for
copy and dither, and the Hoare triple assumptions for H.

6 Correctness vs. Termination in Isabelle

In this section, we discuss some relations between the undecidable properties of
correctness and termination of functions in Isabelle. As a formal proof-assistant,
Isabelle is charged with being able to prove both these properties (or their nega-
tions) for arbitrary functions. A partially computable function is correct if it
gives the expected (with respect to some specifications) output on every input.
Correctness is a relative notion – a function may be syntactically fine, but if it
was intended to do multiplication and actually does division, it is not correct.
In contrast, the notion of termination of a function is absolute. The evaluation
of a partially computable function f terminates on input x is equivalent to the
mathematical property of f being defined on x. The two terminologies reflect
the dual origins of computability theory: partially recursive functions are exactly
the partially computable functions, i.e. the partial functions computed by Turing
machines. Correctness is more undecidable than termination, see [16].

Proofs of correctness and termination form a critical part of computability
theory and any formalisation of computability theory theorems cannot avoid
such proofs. For this reason, any implementation of partial recursive functions
within Isabelle needs to be able to handle correctness and termination. Clearly,
as we have discussed above, this presents a challenge. All results discussed in
this section have been generated from within the Isabelle system.

Suppose we have a unary partially computable function f (x and n are nat-
urals) and define the following partial function:

g(x, n) =

{
f(x), if n > 0,
0, otherwise.

Mathematically, for n > 0, g(x, n) is defined if and only if f(x) is defined.
Since g is defined for all values of x when n = 0, we have dom(g) = {(x, 0) | x ∈
N} ∪ {(x, n + 1) | x ∈ dom(f) ∧ n ∈ N}.

In practice, it is possible that n is the output of some other function which
tests properties of x. For example, we might take n = h(x). The resulting func-
tion t(x) = g(x, h(x)) has a domain which requires testing of h: dom(t) = {x ∈
N | x ∈ dom(h) ∧ (h(x) > 0 → x ∈ dom(f))}.

If h is total and has the property that h(x) > 0 → x ∈ dom(f) then this
gives a computable restriction of f ; in those cases where f(x) is undefined (and
possibly in some other cases), g(x, h(x)) = 0 since h(x) = 0. This can be useful
for working with f without worrying about incomputability. Of course, it may
be prudent to assume that f(x) �= 0 for all x, so that we can identify when a
potentially incomputable argument has been supplied.

Let us consider how g could be constructed in Isabelle, using the implemen-
tation of partial recursive functions from [34]. For any definition of g we should

Incompleteness, Undecidability and Automated Proofs 149

be able (in principle) to establish three facts. First, that it meets the definition
of g (and thereby is correct). Second, specifically that it returns 0 when n = 0.
Third, that in the case n = 0 it terminates. This third requirement may seem
superfluous at first – if the function returns 0 then surely it terminates – but as
we will see soon, the definitions for recursive functions in this interpretation do
not always result in termination behaving as expected.

Arguably the most obvious implementation of g is primitive recursion on n.
Indeed, if we define g this way we are able to establish all three requirements in
Isabelle with no difficulty. Instead, let us consider a function which we can prove
“correct” in some sense, but which does not terminate.

Take rec_times to be a computable function for multiplication, and rec_sg

to be the signature function: signature(0) = 0, signature(x) = 1 if x > 0.
These functions are defined as recursive functions using the implementation

from [34]. The following lemmata show that rec_times and are correctly defined.

lemma "rec_exec rec_times [x,y] = x*y" using rec_times_def by simp

lemma "rec_exec rec_sg [x] = (if x > 0 then 1 else 0)" using rec_sg_def

by simp

Here we notice an interesting interplay between object and meta lan-
guages. The left-hand side of each lemma references a formally defined
recursive function, using [34]’s implementation in Isabelle. For example,
rec_exec rec_times [x,y] = x*y evaluates the formal function rec_times on
input [x,y] . The right-hand side utilises built-in Isabelle functions, such as
multiplication * , if then statements and greater-than > . These can be seen
as meta-language operations, with rec_times and rec_sg in the object language.
An interesting observation is that the Isabelle language is meta with respect
to these functions. However, as part of a formal system, it would generally be
regarded as the object language. The two lemmata show correctness of the func-
tions, which follows from their definitions (suppressed for clarity) using the simp

proof method.
Now consider the following function intended to implement g.

definition "g2 F = Cn 2 rec_times [Cn 2 F [id 2 0], Cn 2 rec_sg [id 2 1]]"

In this definition, we simply multiply F (x) by signature(n). If n > 0 then the
answer will be F (x) and if n = 0 the answer will be F (x) × 0. In mathematical
notation, we have

g2(F) := Cn2(×, [Cn2(F, [id20]), Cn2(signature, [id21])]).

Expanding out the compositions, we have simply g2(F)(x, n) = F (x) ×
signature(n). Indeed, we can establish this in Isabelle by unpacking the defi-
nitions.

lemma "rec_exec (g2 F) [x, n] = (rec_exec F [x])*(rec_exec rec_sg [n])"

by(simp add:g2_def)

150 C.S. Calude and D. Thompson

The reader familiar with partial recursive functions, however, should have
noted an important problem with g2, if it is to implement g. As defined,
g(F)(x, 0) = 0, regardless of whether or not F (x) is defined. However F (x)×0 = 0
only if F (x) is defined. Specifically, for this construction we have dom(g2) =
{(x, n) | x ∈ dom(F)}, which differs from the domain for g. Hence g2 does not
implement g. Worryingly, we can still prove the following lemma in Isabelle.

lemma "rec_exec (g2 F) [x, n] = (if n>0 then rec_exec F [x] else 0)"

by (simp add: g2_def)

Once again this lemma follows by a simple unpacking of the definition. Notice
that the else condition does not depend upon F (x) being defined. According to
this lemma, if n = 0 then g2(F)(x, 0) = 0 for arbitrary F, x. Indeed, we can be
more specific.

lemma "rec_exec (g2 F) [x, 0] = 0"

by(simp add:g2_def)

Does this then mean that this implementation of partial recursive functions in
Isabelle is flawed? Arguably, yes. We have been able to show an incorrect lemma,
or at least a lemma which is incorrect given the natural understanding of the
rec_exec command. However we have not yet shown all the three facts needed
to be established. And it is with termination that we (as might be expected)
encounter problems.

lemma "terminate (g2 F) [x, 0]"

apply(simp add:g2_def)

proof
show "length [x, 0] = 2" by simp

show "terminate rec_times (map (λg. rec_exec g [x, 0]) [Cn 2 F [id 2 0],

Cn 2 rec_sg [id 2 (Suc 0)]])" by simp

show "∀ g∈set [Cn 2 F [id 2 0], Cn 2 rec_sg [id 2 (Suc 0)]]. terminate g

[x, 0]"

proof -

have "terminate (Cn 2 rec_sg [id 2 (Suc 0)]) [x, 0]" using termi_id

termi_cn by simp

moreover have "terminate (Cn 2 F [id 2 0]) [x, 0]"

proof
show "length [x, 0] = 2" by simp

show "∀ g∈set [id 2 0]. terminate g [x, 0]" using termi_id by simp

show "terminate F (map (λg. rec_exec g [x, 0]) [id 2 0])" sorry
qed

ultimately show ?thesis by simp

qed
oops

First we establish that the length of input is correct. We second show that
rec_times terminates on the required inputs. Decoded, this second statement
seems to be of the form terminate F (x) × signature(n). In fact it is slightly

Incompleteness, Undecidability and Automated Proofs 151

more subtle. We are asked to show that rec_times terminates on F (x) and
signature(0), but an inherent assumption in the Isabelle system is that these
are both defined natural numbers; that the inputs are in a correct format. Since
rec_times is a total function, we are able to prove this statement.

Finally, we are required to establish that both Cn2(F, [id20])(x, 0)
and Cn2(signature, [id21])(x, 0) terminate. The second claim is simple;
Cn2(signature, [id21])(x, 0) is a primitive recursive function and so will terminate
– an unpacking of definitions will establish this. The first claim is impossible to
establish however. We have Cn2(F, [id20](x, 0) = F (x) and so to establish that
Cn2(F, [id20](x, 0) terminates we must establish first that F (x) terminates (that
is, F (x) is defined).

Since F is arbitrary, we cannot establish termination for g2 on (x, 0). Hence
g2 does not implement g correctly. The problem of incorrectly establishing the
correctness of g2 can then be explained by requiring that correctness should
include termination. The implementation of partial recursive functions by [34]
has split evaluation of functions from their termination as a way to overcome
termination issues within Isabelle. This has come at the cost of clarity in the
implementation, and a departure from the standard definition of partial recursive
functions, where termination and evaluation are inextricably linked.

6.1 Reuniting Evaluation and Termination

In standard definitions of partial recursive functions, evaluation of the func-
tion is explicitly linked to the termination of any functions involved. For
example, in [12] the first mention of each function type specifies its domain.
Functions are built up recursively, and, for example, a function θ obtained
through composition θ(x1, . . . , xn) = ψ(φ1(x1, . . . , xn), . . . , φm(x1, . . . , xm)) has
the domain defined as dom(θ) = {(x1, . . . , xn) ∈ Nn | (x1, . . . , xn) ∈⋂m

i=1 dom(φi) and (φ1(x1, . . . , xn), . . . , φm(x1, . . . , xn)) ∈ dom(ψ)}.
This explicit mentioning of domain contrasts with [34]’s implementation.

In their implementation, the function executions are defined as having N∗ =
N ∪ N2 ∪ N3 ∪ . . . as their domain. That is, Isabelle will happily (attempt to)
evaluate a function on any input, regardless of whether it is in the domain of
that function. Restrictions to domain, and to correct arity of arguments, are
implemented entirely within the termination definitions.6

Partial recursive functions have domains built into them directly. Divorc-
ing domains from the function definitions – motivated by the wish to increase
understandability – is not a correct solution. Creating an implementation of
partial recursive functions in Isabelle in which termination and evaluation are
presented at once would be difficult. Isabelle requires proofs of termination for
certain functions, which is likely part of the reason [34] decided to split the
definitions. Proofs involving combined definitions are likely to be much messier
6 Of course it should be noted that if an input is not within that domain of a function,

Isabelle’s attempt to evaluate is likely not to terminate. However, consequential
strange behaviours can be observed, such as in g2.

152 C.S. Calude and D. Thompson

than the current model, since domains must explicitly be dealt with. From a
formal perspective, the separation allows for separate proofs, which are more
easily digested. However, it would be enough for a combined model to establish
equivalence with the [34] model. If we could implement partial recursive func-
tions in Isabelle, using a model defined as closely to a standard pen-and-paper
definition (such as that provided by [12]) as possible, we would have greater
confidence that model adequately represents the mathematical notion of partial
recursive function. Subsequently establishing the equivalence of this model with
that in [34] would allow the “importing” of results proved by [34]. This solution
would mean greater ease of formal proofs from the split model while maintaining
connection to the original model of partial recursive functions.

A tempting diversion in implementing partial recursive functions is ensuring
they can be evaluated by the proof system. This would mean the proof system
acting as an interpreter, and actually running the programs specified by the
functions. When we evaluate rec_add , actual recursive calls are made to find the
result.

This would be a very interesting approach – enlisting a modern computer
to simulate a decades old model of computation. However, from a standpoint
of formal proof, it is unnecessary. Proofs involving partial recursive functions at
most require unpacking general definitions – explicit evaluation of functions is
rarely required. That is, while evaluating addition through recursive calls may
be fun, it is highly unlikely that any proofs will require it; since proofs generally
deal with the abstract, we are less concerned with what 1 + 2 is and more with
how x + y works. Due to this, it would be acceptable for an implementation
of partial recursive functions to combine “evaluation” and termination at the
expense of the system actually being able to evaluate the functions.

7 ‘Symptoms’ of Undecidability in Isabelle

The problems in [34]’s implementation give one example of how undecidability
impacts Isabelle. The careful nature in which the model is constructed, and the
split of evaluation from termination are direct consequences of the undecidability
of the halting problem. The sledgehammer feature, which searches for proofs to
given claims, has a time restriction built in, again to combat undecidability.

Isabelle is a programming language, so its programs may terminate or not.
When dealing with models of computation, what happens when Isabelle attempts
to simulate such programs?

Isabelle has the ability to evaluate functions within the system. The user
can type value "1+2" and Isabelle’s output will display the answer. For basic
functions this acts as a calculator, and for functions defined in Isabelle it can
be used to ensure they behave as expected. It is interesting to see how Isabelle
handles non-terminating computations, since identifying them is undecidable.

Consider the partial recursive function defined by Mn1(+)(x) = μ{y | x+y =
0}. It is obvious that Mn1(+)(0) = 0 and Mn1(+)(x) = ∞ for x > 0.

How then will Isabelle evaluate value "rec_exec (Mn 1 rec_add) [1]"? In
fact Isabelle refuses to try, throwing instead a well-sortedness error. This makes

Incompleteness, Undecidability and Automated Proofs 153

sense. The Mn function requires finding the least element of a possibly empty set.
Since Isabelle has no guarantee the set is non-empty, it refuses to evaluate.

Isabelle’s cautious nature comes at a cost, failing to evaluate any recursive
function. The addition function is a recursive function and its definition does not
use minimisation. This puts it into the class of computable functions. If Isabelle
were to attempt to calculate value "rec_exec rec_add [1, 1]" , it would succeed.
However, Isabelle again refuses to try, throwing the same well-sortedness error.
Even a proof of general termination for rec_add does not help. Isabelle notices
that the rec_exec definition incorporates a minimisation clause, and so refuses
to have anything to do with evaluation. It even refuses to attempt evaluation of
value "rec_exec z [0]" .

Yet all is not lost. We can still prove rec_exec rec_add [1, 1] = 2 . In fact,
this is almost trivial, since we have proved already the general statement that
rec_exec rec_add [m, n] = m + n , and m+n (the Isabelle function) can be cal-
culated by Isabelle. This leads to an interesting contrast: Isabelle will not attempt
to evaluate partial recursive functions, but is happy to attempt to prove a claim
made by the user. While both operations involve skirting close to undefined
functions, in proofs Isabelle can offload much responsibility to the user. For our
original addition minimisation function Mn1(+), we can obviously not prove
an output for any input other than 0, but rec_exec (Mn 1 rec_add) [0] = 0 is
provable in Isabelle.

8 Concluding Remarks

The nature of computability makes automated proofs a particularly interesting
area. The landmark results of Gödel and Turing still loom large. Where they were
discussing hypothetical computation models, we are using equivalent models to
prove their own limitations. Yet we are still able to carve out larger sections of
what can be achieved. To avoid the inherent complications, novel approaches
need to be adopted, and the original proofs modified to achieve the required
goals, given the abilities of modern proof-assistants (see, for example, [22]).

The formalisation of recursive functions we have considered is a good example
of this. The model, though very similar, is not the traditional partial recursive
functions as termination and evaluation have been separated. It would be nice if
a combined model of partial recursive functions could be shown, within Isabelle,
to be equivalent to the model provided in [34].

Great progress has been made in both formal proving and developing com-
putability theory. Unexpectedly, the use of proof-assistants brings new connec-
tions between incompleteness and undecidability into sharp focus, so formal
proving can contribute to semantics too. We expect that the role of proof-
assistants for the working mathematician will steadily increase.

154 C.S. Calude and D. Thompson

References

1. Alf homepage. http://homepages.inf.ed.ac.uk/wadler/realworld/alf.html. Accessed
25 Oct 2014

2. Archive of formal proofs. http://afp.sourceforge.net. Accessed 18 May 2016
3. Coq homepage. http://coq.inria.fr/. Accessed 25 Oct 2014
4. HOL4 homepage. http://hol.sourceforge.net/. Accessed 25 Oct 2014
5. Isabelle homepage. http://isabelle.in.tum.de/. Accessed 20 Oct 2014
6. Matita hompage. http://matita.cs.unibo.it/. Accessed 25 Oct 2014
7. Flyspeck project, September 2014. http://aperiodical.com/2014/09/

the-flyspeck-project-is-complete-we-know-how-to-stack-balls
8. Asperti, A., Ricciotti, W.: Formalizing turing machines. In: Ong, L., de Queiroz,

R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 1–25. Springer, Heidelberg (2012)
9. Benzmüller, C., Woltzenlogel Paleo, B.: Automating Gödel’s ontological proof of

God’s existence with higher-order automated theorem provers. In: Schaub, T.,
Friedrich, G., O’Sullivan, B. (eds.) ECAI 2014, Frontiers in Artificial Intelligence
and Applications, vol. 263, pp. 93–98. IOS Press (2014)

10. Du Bois-Reymond, E.H.: Über die Grenzen des Naturerkennens; Die sieben
Welträthsel, zwei Vorträge. Von Veit, Leipzig (1898)

11. Bourbaki, N.: Theory of Sets. Elements of Mathematics. Springer, Heidelberg
(1968)

12. Calude, C.: Theories of Computational Complexity, North-Holland, Amsterdam
(1988)

13. Calude, C.S., Calude, E., Marcus, S.: Passages of proof. Bull. Eur. Assoc. Theor.
Comput. Sci. 84, 167–188 (2004)

14. Calude, C.S., Hay, N.J.: Every computably enumerable random real is provably
computably enumerable random. Logic J. IGPL 17, 325–350 (2009)

15. Calude, C.S., Müller, C.: Formal proof: reconciling correctness and understanding.
In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) MKM 2009, Held as Part
of CICM 2009. LNCS, vol. 5625, pp. 217–232. Springer, Heidelberg (2009)

16. Cooper, S.B.: Computability Theory. Chapman Hall/CRC, London (2004)
17. Edwards, C.: Automated proofs. Math struggles with the usability of formal proofs.

Commun. ACM 59(4), 13–15 (2016)
18. Feferman, S.: Are there absolutely unsolvable problems? Gödel’s dichotomy.

Philosophia Math. 14(2), 134–152 (2006)
19. Gödel, K.: Some basic theorems on the foundations of mathematics and their impli-

cations. In: Feferman, S., Dawson Jr., J.W., Goldfarb, W., Parsons, C., Solovay,
R.M. (eds.) Collected Works. Unpublished Essays and Lectures. vol. III, pp. 304–
323. Oxford University Press (1995)

20. Gordon, M.: From LCF to HOL: a short history. In: Proof, Language, and Inter-
action, pp. 169–186 (2000)

21. Hales, T.C.: A proof of the Kepler conjecture. Ann. Math. 162(3), 1065–1185
(2005)

22. Hernández-Orozco, S., Hernández-Quiroz, F., Zenil, H., Sieg, W.: Rare speed-up
in automatic theorem proving reveals tradeoff between computational time and
information value (2015). http://arxiv.org/abs/1506.04349

23. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
Pythagorean triples problem via cube-and-conquer (2016). http://arxiv.org/abs/
1605.00723v1 [cs.DM]

http://homepages.inf.ed.ac.uk/wadler/realworld/alf.html
http://afp.sourceforge.net
http://coq.inria.fr/
http://hol.sourceforge.net/
http://isabelle.in.tum.de/
http://matita.cs.unibo.it/
http://aperiodical.com/2014/09/the-flyspeck-project-is-complete-we-know-how-to-stack-balls
http://aperiodical.com/2014/09/the-flyspeck-project-is-complete-we-know-how-to-stack-balls
http://arxiv.org/abs/1506.04349
http://arxiv.org/abs/1605.00723v1
http://arxiv.org/abs/1605.00723v1

Incompleteness, Undecidability and Automated Proofs 155

24. Hilbert, D.: Hilbert’s 1930 radio speech. https://www.youtube.com/watch?
v=EbgAu X2mm4

25. Kleene, S.C.: Introduction to Metamathematics. North-Holland, Amsterdam
(1952)

26. Konev, B., Lisitsa, A.: A SAT attack on the Erdös discrepancy conjecture (2014).
http://arxiv.org/abs/1402.2184v2

27. Martin-Löf, P.: Verification then and now. In: De Pauli-Schimanovich, W., Koehler,
E., Stadler, F. (eds.) The Foundational Debate, Complexity and Constructivity in
Mathematics and Physics, pp. 187–196. Kluwer, Dordrecht (1995)

28. Norrish, M.: Mechanised computability theory. In: van Eekelen, M., Geuvers, H.,
Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 297–311. Springer,
Heidelberg (2011)

29. Soare, R.I.: Recursively Enumerable Sets and Degrees: A Study of Computable
Functions and Computably Generated Sets. Springer, Heidelberg (1987)

30. Szasz, N.: A machine checked proof that Ackermann’s function is not primitive
recursive. In: Huet, G. (ed.) Logical Environments, pp. 31–7. University Press
(1991)

31. Tao, T.: The Erdös discrepancy problem (2015). http://arxiv.org/abs/1509.
05363v5

32. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University
of California Press, Berkeley and Los Angeles (1951)

33. Thompson, D.: Formalisation vs. understanding. In: Calude, C.S., Dinneen, M.J.
(eds.) UCNC 2015. LNCS, vol. 9252, pp. 290–300. Springer, Heidelberg (2015)

34. Xu, J., Zhang, X., Urban, C.: Mechanising turing machines and computability
theory in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.)
ITP 2013. LNCS, vol. 7998, pp. 147–162. Springer, Heidelberg (2013)

35. Zammit, V.: A mechanisation of computability theory in HOL. In: von Wright, J.,
Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125. Springer, Heidel-
berg (1996)

36. Zammit, V.: On the Readability of Machine Checkable Formal Proofs. Ph.D. The-
sis, University of Kent, March 1999

https://www.youtube.com/watch?v=EbgAu_X2mm4
https://www.youtube.com/watch?v=EbgAu_X2mm4
http://arxiv.org/abs/1402.2184v2
http://arxiv.org/abs/1509.05363v5
http://arxiv.org/abs/1509.05363v5

A Numerical Method for Computing Border
Curves of Bi-parametric Real Polynomial

Systems and Applications

Changbo Chen and Wenyuan Wu(B)

Chongqing Key Laboratory of Automated Reasoning and Cognition,
Chongqing Institute of Green and Intelligent Technology,

Chinese Academy of Sciences, Beijing, China
changbo.chen@hotmail.com, wuwenyuan@cigit.ac.cn

Abstract. For a bi-parametric real polynomial system with parameter
values restricted to a finite rectangular region, under certain assump-
tions, we introduce the notion of border curve. We propose a numerical
method to compute the border curve, and provide a numerical error esti-
mation.

The border curve enables us to construct a so-called “solution map”.
For a given value u of the parameters inside the rectangle but not on the
border, the solution map tells the subset that u belongs to together with
a connected path from the corresponding sample point w to u. Conse-
quently, all the real solutions of the system at u (which are isolated) can
be obtained by tracking a real homotopy starting from all the real roots
at w throughout the path. The effectiveness of the proposed method is
illustrated by some examples.

1 Introduction

Parametric polynomial systems arise naturally in many applications, such as
robotics [7], stability analysis of biological systems [25], model predictive con-
trol [8], etc. In these applications, often it is important to identify different
regions in the real parametric space such that the system behaves the “same” in
each region.

It is not a surprise that symbolic methods have been the dominant approaches
for solving parametric systems due to their ability to describe exactly the struc-
ture of the solution sets. The symbolic methods can be classified into two cat-
egories, namely the approaches which are primarily interested in finding the
solutions in an algebraically closed field (often the complex field) or a real closed
field (often the real field). Methods belonging to the first category include the
Gröbner basis method [2], the characteristic set or triangular decomposition
method [29], the comprehensive Göbner bases method [26], the comprehensive
triangular decomposition method [4,5], etc. Methods belonging to the second one
include the quantifier elimination method [24], the cylindrical algebraic decom-
position method [6], the Sturm-Habicht sequence method [9], the parametric

c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 156–171, 2016.
DOI: 10.1007/978-3-319-45641-6 11

A Numerical Method for Computing Border Curves of Bi-parametric Real 157

geometric resolution method [21], etc. Our method is directly motivated by the
border polynomial method [30] and the discriminant variety method [12,18].

Another motivation of our work comes from the recent advances from the
numeric community. The homotopy continuation method [13,22], which was ini-
tially used to compute all the complex solutions of zero-dimensional polynomial
systems, has been developed to study the complex and real witness points of
positive dimensional polynomial system [10,22,27], as well as describing the real
algebraic curves [16] and surfaces [17]. The Cheater’s homotopy [14,22] provides
a way to compute the complex solutions of a parametric polynomial system at
a particular parameter value u by first computing the solutions of the system at
a generic random parametric value u0 and then using these solutions as start-
ing points for constructing a homotopy. In [15], a real homotopy continuation
method for computing the real solutions of zero-dimensional polynomial systems
is introduced. In [19], the authors provide a local approach to detect the singu-
larities of a parametric polynomial system along a solution path when sweeping
though the parametric space.

At last, we would like to mention that this work is also motivated by an
invited talk given by Hoon Hong [11], where the speaker suggested some possible
ideas for doing quantifier elimination by a symbolic-numeric approach.

In this paper, we propose a numeric method for computing all the real solu-
tions of a bi-parametric polynomial system F with parameters values restricted
in a rectangular region R. Under certain assumptions (see the beginning of
Sect. 2), there exists a border curve B in R which divides the rectangle R into
finitely many connected components (called cells) such that in each cell the real
zero set of F defines finitely many smooth functions with disjoint graphs. We
provide a numeric algorithm to compute such a curve and analyze its numerical
error. The key idea is to reduce the computation of the border curve to tracing
all its corresponding connected components in a higher dimensional space with
the help of the critical point techniques [20,27].

To handle the numerical error, we define the notion of δ-connectedness and
make use of the connected component of a graph G to represent the cells sepa-
rated by the border curve. Moreover, in each cell, we choose a sample point far
from the border curve and compute all the real solutions of F at this point. All
in all, the border curve B, the connectivity graph G, the set of sample points W
and the set Z of solutions at these sample points together form a so-called “solu-
tion map”. Now if one wants to compute the real solutions of F at a given value
u of parameters, instead of directly solving F (u), one could easily make use of
the solution map to choose the sample point w sharing the same cell with u and
construct real homotopies from known results VR(F (w)) to unknown VR(F (u)).

Obviously, provided that the solution map has been computed during an
offline phase, it will be very efficient to solve VR(F (u)) online by the real homo-
topy approach when the number of the real solutions at u is much smaller than
the number of complex ones. However, if one’s interest is only on computing the
real solutions of a zero-dimensional system, it is not recommended to go though
the above costly offline computation.

158 C. Chen and W. Wu

The notion of border curve is inspired by the notions of border polynomial
and discriminant variety. However, it applies directly to characterizing the real
zero set of a parametric system while the later two also characterize the distinct
complex solutions. We use the following example to illustrate the difference of
border curve with them.

Example 1. Consider a parametric system consisting of a single polynomial:

f := (X1 − U1)(X1 − U2 − 1)(X2
1 − 2U1 + U2

1 + 5)(X2
1 − 2U2 + U2

2 + 5).

The border polynomial or discriminant variety of f is defined by the discriminant
of f with respect to X1, which has 9 irreducible factors: U1−U2, U1−2+U2, U1−
1 − U2, U

2
2 + 3, U2

1 − 2U1 + 5, 2U2
1 − 2U1 + 5, U2

2 − 2U2 + 5, U2
1 + U2

2 − 2U2 +
5, U2

1 + U2
2 − 2U1 + 2U2 + 6. Among them, only the zero sets of the first three

factors are nonempty. They define the real counterpart of the border polynomial
or discriminant variety, which characterizes when f has multiple complex roots.
In contrast, the border curve is defined only by the polynomial U1−1−U2, which
characterizes when f has a multiple real root with respect to X1. Indeed, the last
two factors of f have no real points.

2 Border Curve

In this section, we introduce the concept of border curve for a bi-parametric
polynomial system and present a numeric method to compute it.

Throughout this paper, let F (X1, . . . , Xm, U1, U2) = 0 be a bi-parametric
polynomial system consisting of m polynomials with real coefficients. Let π :
Rm+2 → R2 be the projection defined by π(x1, . . . , xm, u1, u2) = (u1, u2). Let R
be a rectangle of the parametric space (U1, U2). We make the following assump-
tions for F and R:

(A1) The set VR(F) ∩ π−1(R) is compact.
(A2) Let F ′ := {F,det(JF)}, where det(JF) is the determinant of the Jacobian

of F with respect to (X1, . . . , Xm). We have dim(VR(F ′)) = 1.
(A3) At each regular point of VR(F ′), the Jacobian of F ′ has full rank.

Definition 1. Given a bi-parametric polynomial system F (X1, . . . , Xm, U1,
U2) = 0. Assume that it satisfies the first two assumptions. Then the border curve
B of F restricted to the rectangle R is defined as π(VR(F,det(JF))) ∩ R.

Remark 1. Assumption (A3) is not needed for this definition. It is required
by the subroutine RealWitnessPoint of Algorithm BorderCurve for numerically
computing the border. Assumption (A1) can be checked by symbolic methods [12].

Proposition 1. Let B be the border curve of F restricted to the rectangle R.
Then R\B is divided into finitely many connected components, called cells, such
that in each cell, the real zero set of F defines finitely many smooth functions,
whose graphs are disjoint.

A Numerical Method for Computing Border Curves of Bi-parametric Real 159

Proof. By Assumption (A2), the set R \ B is non-empty. Moreover it is a semi-
algebraic set and thus has finitely many connected components. Let C be any
component and let u be any point of C. Since u /∈ B, by Definition 1, if the set
π−1(u)∩VR(F) is not empty, the Jacobian JF is non-singular at each point of it.
Thus the set π−1(u) ∩ VR(F) must be finite. On the other hand, by the implicit
function theorem, around each neighborhood of these points, VR(F) uniquely
defines a smooth function of (U1, U2). By the compactness assumption (A1) and
the connectivity of C, the domain of these functions can be extended to the whole
C. For similar reasons, if the set π−1(u)∩VR(F) is empty, the set π−1(C)∩VR(F)
must also be empty. Thus the proposition holds.

Next we present a numeric algorithm for computing the border curve. Let
RealWitnessPoint be the routine introduced in [27] for computing the witness
points of a real variety VR(F ′) satisfying Assumption (A3). The basic idea of
this routine is to introduce a random hyperplane H. Then “roughly speaking”
the witness points of VR(F ′) either belong to VR(F ′)∩H or are the critical points
of the distance from the connected components of VR(F ′) to H.

Algorithm BorderCurve
Input: a bi-parametric polynomial system F = 0; a rectangle R.
Output: an approximation of the border curve of F restricted to R.
Steps:
1. Let F ′ be the new polynomial system F ∪ {det(JF)}.
2. Set W := ∅.
3. Compute the intersection of VR(F ′) with the fibers of the four edges of R

by a homotopy continuation method and add the points into W .
4. Compute RealWitnessPoint(F ′) and add the points into W .
5. For each point p in W , starting from p, follow both directions of the

tangent line of VR(F ′) at p, trace the curve F ′ by a prediction-projection
method (see Lemma 2), until a closed curve is found or the projections of
the traced points onto (U1, U2) hit the boundary of R.

6. Return the projections of the traced points in R.

Remark 2. In the above algorithm, it is possible that the determinant det(JF)
is a polynomial of large degree or with large coefficients. For numerical stability,
we can instead set F ′ := F ∪ JF · v ∪ {n · v − 1} with additional variables
v = {v1, . . . , vm}, where n is a random vector of Rm and n · v = 1 is a random
real hyperplane.

Example 2. Consider a rectangle R := [−3, 3]×[−3, 3] and a parametric system

F := [X_1^3+(11/6)*X_1^2-(8/15)*X_1*X_2-(8/3)*X_1*U_1-(4/3)*X_1*U_2

-(1/6)*U_2^2-77/30, X_2^3+(7/30)*X_1*U_1+(41/30)*X_1*U_2+(37/15)*X_2*U_2]

The discriminant variety of F is the zero set of an irreducible polynomial of
degree 24 with 301 terms.

160 C. Chen and W. Wu

-32788673396080447979520000000000000000*U_1^12*U_2^12

-...+1587241704052253597928493467628800000 U_1

+5802432050835806172320572531891200000 U_2

-109907933560147956473543161255680000

Its zero set is the red curve plotted in Fig. 3. Algorithm BorderCurve computes
a space curve in R4, whose projection onto (U1, U2,X1) is illustrated in Fig. 1.
The projection of the space curve onto (U1, U2) (namely the border curve B),
when drawn in the rectangle R, is “the same” (cannot tell the difference by eyes)
as the red curve shown in Fig. 3.

Fig. 1. The projection of the space curve onto (U1, U2, X1).

3 Numerical Error Estimation

In last section, we introduced the concept of border curve and provided an algo-
rithm to compute a numerical approximation of it. In this section, we estimate
the numerical error of such an approximated border curve. We first recall several
results from [28].

Lemma 1. Let P (X1, . . . , Xn) = {P1, . . . , Pn−1} be a set of n − 1 polynomials
with n variables. Let J be the Jacobian of P . Let Jij = ∂Pi/∂Xj, i = 1, . . . , n−1,
j = 1, . . . , n. Let K(P) := max({‖∇Jij(z)‖2 | z ∈ VR(

∑n
i=1 X2

i − 1}). Let
μ =

√
(n − 1)n. Assume that K(P) ≤ 1 holds. Let z0 and z1 be two points of

VR(
∑n

i=1 X2
i − 1). Then we have

‖J (z1) − J (z0)‖2 ≤ μ‖z1 − z0‖2.

A Numerical Method for Computing Border Curves of Bi-parametric Real 161

Remark 3. This lemma was proved in [28] as Eq. (21).

Lemma 2 (Theorem 3.9 in [28]). Let P (X1, . . . , Xn) = {P1, . . . , Pn−1} be a
set of n−1 polynomials with n variables such that VR(P) ⊂ VR(

∑n
i=1 X2

i −1) and
K(P) ≤ 1 hold. Let z0 be a point of VR(P). Let σ be the smallest singular value

of J (z0). Let μ =
√

(n − 1)n. Let ω =
√

2 (2 ρ − 1)
(
2 ρ − 2

√
ρ (ρ − 1) − 1

)
,

for some ρ ≥ 1. Assume that 2ρ > 3ω holds (which is true for any ρ ≥ 1.6).
Let s = σ

2μρ . Let L be a hyperplane which is perpendicular to the tangent line of
VR(P) at z0 of distance s to z0.

We move z0 in the tangent direction in distance s and apply the Newton Iter-
ation to the zero dimensional system P ∪{L}. Assume that the Newton Iteration
converges to z1. Then z1 is on the same component with z0 if and only if

‖z1 − z0‖ < ω · s. (1)

Remark 4. Note that one can always find a ρ ≥ 1.6 (by increasing ρ and thus
decreasing the step size s) such that ‖z1 − z0‖ < ω · s holds.

We have the following numerical error estimation of the border curve.

Theorem 1. Let F (X1, ...,Xm, U1, U2) = 0 be a bi-parametric polynomial sys-
tem satisfying the assumptions A1 and A2. Let B be the border curve of F
restricted to a rectangle R. Let F ′ := F ∪ {det(JF)}. We consider

P = {F̄ ′
1, ..., F̄ ′

m+1,
m∑

k=0

X2
k/2 − 1/2 = 0}, (2)

where F̄ ′
i, 1 ≤ i ≤ m + 1 is homogenized from F ′

i in variables {X1, ...,Xm} by
an additional variable X0.

Since we consider the solutions of P in a rectangular region, without loss of
generality, we can assume K(P) ≤ 1. Otherwise the polynomials can be rescaled
by that upper bound of K(P).

Let z0 and z1 be two points of VR(P) satisfying Eq. (1). Let Cz0z1 be the curve
segment between z0 and z1 in VR(P). Let z̃0 and z̃1 be computed points caused
by numerical error within distance ε to z0 and z1 respectively.

Let μ =
√

(m + 2)(m + 3). Let σ̃0 and σ̃1 be respectively the smallest singular
value of JP (z̃0) and JP (z̃1). Let σ̃ := max(σ̃0, σ̃1). Let ρ and ω be as defined in
Lemma 2. Let u0 and u1 be respectively the projection of z̃0 and z̃1. Let Bz0z1 ⊂ B
be the projection of Cz0z1 . Then the distance from Bz0z1 to the segment u0u1 is
at most

tan
(

2 arccos(
1
ω

)
)

ω

4μρ
(με + σ̃) + ε.

or 1.082ε + 0.082 σ̃
μ if we choose ρ = 1.6.

162 C. Chen and W. Wu

Proof. Let σ0 (resp. σ1) be the smallest singular value of JP (z0) (resp. JP (z1)).
Let si = σi

2μρ , i = 1, 2. Let L0 (resp. L1) be hyperplane which is perpendicular
to the tangent line of VR(P) at z0 (resp. z1) of distance s0 (resp. s1) to z0 (resp.
z1). Let h := ‖z0 − z1‖.

We define a cone with z0 as the apex, the tangent line at z0 as the axis,
and the angle deviating from the axis being θ := arccos(s0

ωs0
). By Lemma 2, the

curve from z0 to z1 must be in this cone when the step size is small. Similarly,
we can construct another cone with z1 as the apex, the tangent line at z1 as
the axis, and the angle deviating from the axis being θ := arccos(s1

ωs1
), such

that it contains the curve from z1 back to z0. The projection of the intersection
of these cones onto the parametric space is a triangle or quadrilateral. Figure 2
illustrates the two cones and the curve contained in them. From Fig. 2, we know
that |CE| < |AE| tan(2θ) and |CE| < |EB| tan(2θ) hold. Since |AE|+|EB| = h,
we deduce that |CE| < h

2 tan(2θ) = h
2 tan(2 arccos(1/ω)).

B(z1)

C

A(z0)

s1

s0

θ

E

D

θ

θ

θ

Fig. 2. A 2D image illustrating the intersection of two cones.

Next we estimate s0 and s1. By Weyl’s theorem [23], |σ̃i − σi| ≤ ‖JP (z̃i) −
JP (zi)‖2 holds. By Lemma 1, we have ‖JP (z̃i) − JP (zi)‖2 ≤ με. Thus σi ≤
με + σ̃i, i = 1, 2, holds. Therefore we have si ≤ με+σ̃

2μρ , i = 1, 2.
Since the distance from any point on the curve to the segment z0z1 is no

greater than |CD| and the distance from z0z1 to z̃0z̃1 is no greater than ε, we
obtain the final estimation

tan
(

2 arccos(
1
ω

)
)

ω

4μρ
(με + σ̃) + ε.

A Numerical Method for Computing Border Curves of Bi-parametric Real 163

Example 3. For the polynomial system F , the rectangle R given in Example 2,
the theoretical error estimation given by Theorem1 is about 7.08 × 10−3 while
the actual computed error is about 9.91 × 10−4. Both errors can be reduced if a
smaller step size is chosen.

4 Constructing the Solution Map

As an extension of Proposition 1, in this section, we introduce a numerical version
of the connected components of R\B and the notion of solution map to describe
the real solutions of the parametric system F restricted to the rectangle R.

In Sect. 2, we provided an algorithm to compute a numerical approximation of
the border curve. In Sect. 3, we estimated the distance between the approximated
border curve and the true border curve. Since the border curve and its approx-
imation usually do not overlap, two points are connected with respect to the
approximated curve does not imply that they are connected with respect to the
border curve. To handle this problem, we introduce the notion of “δ-connected”,
where δ should be no less than the error estimation provided by Theorem1, to
divide the interior of a rectangle into “numerically connected areas” with respect
to an approximation of the border curve.

Definition 2 (δ-stripe). Let p ∈ R2. Let Dr(p) be the closed disk of center
p and radius r. Let Γ be a path of R2. We define Γδ := ∪p∈Γ Dδ/2(p) as the
associated δ-stripe of Γ .

Definition 3 (δ-connected). Let R be a rectangle of R2 and let S be a set
of points in R. Let δ ≥ 0. Let p1, p2 be two points of R \ S. We say p1 and p2
are δ-connected with respect to S if there is a path Γ in R connecting p1 with
p2 such that there are no points of S belonging to the associated δ-stripe of Γ
connecting p1 and p2. A δ-connected set of R is a subset of R such that every
two points of it is δ-connected.

It is clear that the two notions connectedness and δ-connectedness coincide when
δ = 0 holds. The following two propositions establish the relations between
connectedness and δ-connectedness when δ > 0 holds.

Proposition 2. Let B be the border curve of a bi-parametric polynomial system
F restricted to a rectangle R. By Theorem1, there exists a polyline B̃ and a δ ≥ 0
such that B ⊆ B̃δ. If two points p1 and p2 are δ-connected with respect to B̃,
then they are connected with respect to B.

Proof. Since p1 and p2 are δ-connected with respect to B̃, there exists a path Γ
connecting p1 and p2 such that Γδ ∩ B̃ = ∅ holds. To prove the proposition, it is
enough to show that B has no intersection with Γ . Now assume that B intersects
with Γ at a point p. Since Γδ is the associated δ-stripe of Γ , the distance between
p and B̃ is greater than δ/2, which is a contradiction to the fact that B ⊆ B̃δ.

Next we associate a rectangle with a grid graph.

164 C. Chen and W. Wu

Definition 4. Let δ > 0. Let R be a rectangle with width mδ and with length
nδ, where m,n ∈ N. It can be naturally divided into a m×n grid of mn squares.
The grid itself also defines an undirected graph, whose vertices and edges are
exactly those of squares (overlapped vertices and edges are treated as one) in the
grid. Such a grid (together with the graph) is called the associated δ-grid of R.

Let G be a subgraph of the associated δ-grid of R. The set defined by G is
the set of points on G and the set of points inside the squares of G. Let p be a
point of R. Then p belongs to at least one square in the δ-grid of R. We pick
one of them according to some fixed rule and call it the associated square of p,
denoted by Ap.

Remark 5. Here, for simplicity, we use a grid where each square has the same
size. It is also possible to define a grid with different sizes of squares.

We have the following key observation.

Proposition 3. Let R be a rectangle and G be its associated δ-grid graph. Let
S be a set of interior points of R. For every p ∈ S, we remove from G all the
vertices of the associated square Ap of p and name the resulting graph still by G.
Let Z(G) be the set defined G. Then we have

– The distance between p and any point of Z(G) at least δ.
– Let q ∈ R \ Z(G). Then there exists a p, 1 ≤ i ≤ s, such that the distance

between p and q is at most 2
√

2δ.

Proof. For a given Ap, let Np be the set of all its neighboring squares (at most
8). When we delete the vertices (and the edges connected to them) of Ap, these
vertices and edges are also removed from Np. As a result, the distance between
p and those undeleted vertices and edges of Np is at least δ and at most 2

√
2δ.

Thus the proposition holds.

Remark 6. Informally speaking, this proposition tells us that the connected
components in G is at least δ, but at most 2

√
2δ far from the points in S.

Definition 5 (Connectivity Graph). Let δ > 0. Let R be a rectangle of R2

of size mδ×nδ. Let B be a set of sequences of points in R. The distance between
two successive points in a sequence is at most δ. A connectivity graph of (R,B)
is a subgraph G of the δ-grid of R such that

– Each connected component of G defines a δ-connected subset of R with respect
to B.

– There exists s ∈ N such that every interior point of R, which is sδ far from
points in S belongs to at least one of subsets defined by the connected compo-
nents of G.

The following algorithm computes a connectivity graph.

A Numerical Method for Computing Border Curves of Bi-parametric Real 165

Algorithm ConnectivityGraph
Input: A rectangle R of size mδ ×nδ, a set B of sequence of points belonging
to R. The distance between two successive points in a sequence is at most δ.
Output: A connectivity graph of (R,B).
Steps:
1. Let G be the δ-grid of R.
2. For each point p of B, delete the four vertices (and edges connected to

them) of the associated square Ap from G.
3. Return G.

Proposition 4. Algorithm ConnectivityGraph is correct.

Proof. By Proposition 3, for any vertex v of G and any point b of B, the dis-
tance between them is at least δ. Thus, by Definition 3, the zero set defined by
each connected component of G is δ-connected. By Proposition 3, if the minimal
distance between an interior point p of R and points in B is greater than 2

√
2δ,

then p must belong to the set defined by G. Thus, the algorithm is correct.

Finally we are able to define the solution map of a bi-parametric polynomial
system restricted to a rectangle R.

Definition 6 (Solution map). Given a rectangle R and a bi-parametric poly-
nomial system F (X1, . . . , Xm, U1, U2) = 0. Assume that F satisfies the assump-
tions A1, A2. A solution map of F restricted to R, denoted by M , is a quadruple
(B,G,W,Z) where

– B is a set of sequences of points approximating the border curve of F .
– G is a connectivity graph of (R,B).
– W is a set of points in R s.t. each point of W is a vertex of a connected

component of G and each connected component has exactly one vertex in W .
– Z is a correction of sets of points in Rm such that each element of Z is a

solution set of F at a point of W .

Example 4. Consider the system in Example 2. Its connectivity graph and solu-
tion map are shown in Fig. 3. The set of sample points is W = {(U1 = 1

2 , U2 =
−6
5), (U1 = 1

2 , U2 = 6
5), (U1 = −12

5 , U2 = −3
5)}. The corresponding set of solution

sets Z is

{{(X1 = 1.077556426, X2 = 1.497479963), (X1 = .9908314677, X2 = .4355629194),
(X1 = .8136158335, X2 = −1.930040765)}, {(X1 = −.8199351413, X2 = −.6397859006),
(X1 = −2.611117469, X2 = .3233313936), (X1 = 1.354310493, X2 = −1.291254606)},
{X1 = .2814014780, X2 = −2.885892092}}.

5 Real Homotopy Continuation

As an application of the solution map, in this section, we present how to construct
a real homotopy to compute all the real zeros of a parametric polynomial system
at a given value of parameters.

166 C. Chen and W. Wu

Fig. 3. The solution map (solution sets not shown).

Definition 7. Let H(X, t) ⊂ R[X1, . . . , Xn, t]. We call H(X, t) a real homotopy
if it satisfies the smoothness property: over the interval [0, 1], the real zero set of
H(X, t) defines a finite number of smooth functions of t with disjoint graphs.

Given a real homotopy and the solutions of H at t = 0, one can use a standard
prediction-projection method with the adaptive step size strategy in Lemma2
to trace the solution curves of H(X, t) to get the solutions of H at t = 1. We
denote such an algorithm by RealHomotopy.

For a bi-parametric polynomial system F , in previous section, we have shown
how to construct a solution map of F . To compute the real solutions of F at a
given u of the parameters, RealHomotopy is called to trace the real homotopy
starting from a known solution of F stored in M . More precisely, we have the
following algorithm OnlineSolve.

Algorithm OnlineSolve
Input: a bi-parametric system F ⊂ Q[X,U], a rectangle R, an interior point
u of R, a solution map M of F , and a point u of R.
Output: if u is not close to the border curve of F , return the real solutions of
F at u, that is VR(F (u)); otherwise throw an exception.
Steps:
1. Let G be the connectivity graph in M .
2. Let Au be the associated square of u. Let Cu be a connected component

of G such that Au is a subgraph of Cu. If Cu does not exist, throw an
exception. If Cu exists, let vu be one of the vertices of Au.

3. Let wu be the sample point of Cu in M .

A Numerical Method for Computing Border Curves of Bi-parametric Real 167

4. Let wu � vu be the shortest path between wu and vu computed for
instance by Dijkstra’s algorithm. Connecting vu and u with a segment
and denote the path wu � vu → u by Γ .

5. Let p0, p1, . . . , ps be the sequence of successive vertices of Γ .
6. Let S be the solution set of F (p0) in M .
7. For i from 0 to s − 1 do

(a) let (φi(t), ψi(t)) be a parametrization of the segment pipi+1, t ∈ [0, 1];
(b) let Hi(X, t) := F (X,U1 = φi(t), U2 = ψi(t));
(c) let S := RealHomotopy(Hi, S);

8. Return S.

Proposition 5. If an exception is not thrown, Algorithm OnlineSolve correctly
computes the real solutions of F at u.

Remark 7. The correctness of OnlineSolve can be easily verified from its
description. When the exception is thrown, it means that u is close to the border
curve of F , which indicates a numerically difficult region with ill-conditioned
Jacobians.

A connected path between a sample point (−5/2,−3/5) and a chosen point
(1,−1) is shown in Fig. 4. This path is a guide for building real homotopies.

Fig. 4. A connected path for constructing real homotopies.

168 C. Chen and W. Wu

6 Experimentation

In this section, we illustrate the effectiveness of our method by some exam-
ples. Our method was implemented in Maple, which will make external calls
to Hom4Ps2 (by exchanging input and output files) when it needs to compute
the solutions of a zero-dimensional polynomial system. The experimentation
was conducted on a Ubuntu Laptop (Intel i7-4700MQ CPU @ 2.40 GHz, 8.0 GB
memory). The memory usage was restricted to 60 % of the total memory. The
timeout (represented by − in Table 1) was set to be 1800 s. The experimenta-
tion results are summarized in Table 1, where BP denotes the command Reg-
ularChains[ParametricSystemTools][BorderPolynomial] and DV denotes the com-
mand RootFinding[Parametric][DiscriminantVariety] in the computer algebra sys-
tem Maple 18, and BC denotes BorderCurve.

Table 1. Experimentation results

Symbolic methods Numeric method

BP DV BC

Sys time (s) deg time (s) deg time (s) #(points)

1-2 1.340 1 0.562 1 3.798 171

1-3 0.575 4 0.019 4 2.147 307

1-4 0.433 9 0.021 9 1.097 252

1-5 0.385 16 0.024 16 0.668 153

1-6 0.575 25 0.031 25 1.940 313

1-7 0.396 30 0.053 30 1.579 127

1-8 0.389 48 2.724 48 3.399 668

2-2 0.552 4 0.028 4 3.641 839

2-3 0.800 24 0.372 24 14.748 2694

2-4 4.329 70 90.661 69 41.572 4084

2-5 68.930 173 - 10.695 266

2-6 - - 110.657 4190

3-2 0.726 14 0.070 12 1.073 306

3-3 - - 32.550 2301

3-4 - - 286.638 9672

4-2 16.309 48 6.947 32 11.654 1073

4-3 - - 188.058 5452

4-4 - - 1415.822 11342

5-2 - 991.215 72 53.230 185

5-3 - - 1054.712 11640

6-2 - - 790.768 1486

A Numerical Method for Computing Border Curves of Bi-parametric Real 169

The first column denotes the tested random sparse systems, each of which
has a label i-j, where i denotes the number of equations (same as number of
unknowns, or number of total variables minus 2) and j denotes the total degree.
More precisely, the system i-j has the form {Xj

k + low degree terms on X, U |
k = 1 · · · i}. The third and fifth column denotes respectively the degree of the
border polynomial and the degree of the polynomial representing the discrimi-
nant variety. The seventh column denotes the number of points obtained by the
numeric method for representing the border curves. The rest columns denote the
execution time for three methods. From the table, it is clear that the numeric
method (BC) outperforms the symbolic counterparts (BP and DV) on comput-
ing the border curves of systems of larger size.

7 Conclusion and Future Work

In this paper, under some assumptions, we introduced the concept of border
curve for a bi-parametric real polynomial system and proposed a numerical
method to compute it. The border curve was applied to describing the real solu-
tions of a parametric polynomial system through the construction of a solution
map and computing the real solutions of the parametric system at a particular
value of parameters through constructing a real homotopy.

We tested a preliminary implementation of our method in Maple on com-
puting the border curves of a set of randomly chosen sparse polynomial systems
and compared our implementation with similar symbolic solvers on these exam-
ples. The experimentation shows that the numerical one is much more efficient
than the symbolic ones on examples with more than 2 unknowns (or 4 variables).

In a future work, we will consider how to relax the assumptions introduced
in Sect. 2. To make this approach more practical, structures of the polynomial
system F ′ in Remark 2 must be exploited, for example using ideas in [28]. An
efficient (and parallel) implementation of the method in C like languages is
also important for applications. Extending the method to the multi-parametric
case with possibly the help of the roadmap method [1,3] and the numerical cell
decomposition method [17] will be investigated.

Acknowledgements. This work is partially supported by NSFC (11301524,
11471307, 61572024) and CSTC (cstc2015jcyjys40001).

References

1. Basu, S., Roy, M.F., Safey El Din, M., Schost, É.: A baby step-giant step roadmap
algorithm for general algebraic sets. Found. Comput. Math. 14(6), 1117–1172
(2014)

2. Buchberger, B.: An algorithm for finding a basis for the residue class ring of a
zero-dimensional polynomial ideal. Ph.D. thesis, University of Innsbruck (1965)

3. Canny, J.: The Complexity of Robot Motion Planning. MIT Press, Cambridge
(1987)

170 C. Chen and W. Wu

4. Chen, C., Golubitsky, O., Lemaire, F., Maza, M.M., Pan, W.: Comprehensive tri-
angular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007)

5. Chou, S.C., Gao, X.S.: Computations with parametric equations. In: ISSAC 1991,
pp. 122–127. ACM (1991)

6. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) Automata Theory and Formal Languages
2nd GI Conference. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

7. Corvez, S., Rouillier, F.: Using computer algebra tools to classify serial manipula-
tors. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 31–43. Springer,
Heidelberg (2004)

8. Fotiou, I.A., Rostalski, P., Parrilo, P.A., Morari, M.: Parametric optimization and
optimal control using algebraic geometry. Int. J. Control 79(11), 1340–1358 (2006)

9. González Vega, L., Lombardi, H., Recio, T., Roy, M.F.: Sturm-Habicht sequence.
In: ISSAC 1989, pp. 136–146. ACM (1989)

10. Hauenstein, J.D.: Numerically computing real points on algebraic sets. Acta Appli-
candae Mathematicae 125(1), 105–119 (2012)

11. Hong, H.: Overview on real quantifier elimination. In: MACIS 2013, p. 1 (2013)
12. Lazard, D., Rouillier, F.: Solving parametric polynomial systems. J. Symb. Com-

put. 42(6), 636–667 (2007)
13. Li, T.Y.: Numerical solution of multivariate polynomial systems by homotopy con-

tinuation methods. Acta Numerica 6, 399–436 (1997)
14. Li, T.Y., Sauer, T., Yorke, J.A.: The Cheater’s homotopy: an efficient procedure for

solving systems of polynomial equations. SIAM J. Numer. Anal. 26(5), 1241–1251
(1989)

15. Li, T.Y., Wang, X.S.: Solving real polynomial systems with real homotopies. Math.
Comput. 60, 669–680 (1993)

16. Lu, Y., Bates, D., Sommese, A., Wampler, C.: Finding all real points of a complex
curve. Contemp. Math. 448, 183–206 (2007)

17. Mario Besana, G., Di Rocco, S., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.:
Cell decomposition of almost smooth real algebraic surfaces. Numer. Algorithms
63(4), 645–678 (2012)

18. Moroz, G.: Complexity of the resolution of parametric systems of polynomial equa-
tions and inequations. In: ISSAC 2006, pp. 246–253. ACM (2006)

19. Piret, K., Verschelde, J.: Sweeping algebraic curves for singular solutions. J. Com-
put. Appl. Math. 234(4), 1228–1237 (2010)

20. Rouillier, F., Roy, M.F., Safey El Din, M.: Finding at least one point in each con-
nected component of a real algebraic set defined by a single equation. J. Complex.
16(4), 716–750 (2000)

21. Schost, E.: Computing parametric geometric resolutions. Appl. Algebra Eng. Com-
mun. Comput. 13(5), 349–393 (2003)

22. Sommese, A., Wampler, C.: The Numerical Solution of Systems of Polynomials
Arising in Engineering and Science. World Scientific Press, Singapore (2005)

23. Stewart, G.W.: Perturbation theory for the singular value decomposition. In: SVD
and Signal Processing, II: Algorithms, Analysis and Applications, pp. 99–109.
Elsevier (1990)

24. Tarski, A.: A decision method for elementary algebra and geometry. Fund. Math.
17, 210–239 (1931)

25. Wang, D.M., Xia, B.: Stability analysis of biological systems with real solution
classification. In: Kauers, M. (ed.) ISSAC 2005, pp. 354–361. ACM (2005)

A Numerical Method for Computing Border Curves of Bi-parametric Real 171

26. Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comp. 14, 1–29 (1992)
27. Wu, W., Reid, G.: Finding points on real solution components and applications to

differential polynomial systems. In: ISSAC 2013, pp. 339–346. ACM (2013)
28. Wu, W., Reid, G., Feng, Y.: Computing real witness points of positive dimensional

polynomial systems (2015). Accepted for Theoretical computer science. http://
www.escience.cn/people/wenyuanwu

29. Wu, W.T.: Basic principles of mechanical theorem proving in elementary geome-
tries. J. Sys. Sci. Math. Scis 4(3), 207–235 (1984)

30. Yang, L., Xia, B.: Real solution classifications of a class of parametric semi-
algebraic systems. In: A3L 2005, pp. 281–289 (2005)

http://www.escience.cn/people/wenyuanwu
http://www.escience.cn/people/wenyuanwu

The Complexity of Cylindrical Algebraic
Decomposition with Respect

to Polynomial Degree

Matthew England1(B) and James H. Davenport2

1 Faculty of Engineering, Environment and Computing, School of Computing,
Electronics and Maths, Coventry University, Coventry CV1 5FB, UK

Matthew.England@coventry.ac.uk
2 Department of Computer Science, University of Bath, Bath BA2 7AY, UK

J.H.Davenport@bath.ac.uk

http://computing.coventry.ac.uk/~mengland/

http://people.bath.ac.uk/masjhd/

Abstract. Cylindrical algebraic decomposition (CAD) is an important
tool for working with polynomial systems, particularly quantifier elim-
ination. However, it has complexity doubly exponential in the num-
ber of variables. The base algorithm can be improved by adapting to
take advantage of any equational constraints (ECs): equations logically
implied by the input. Intuitively, we expect the double exponent in the
complexity to decrease by one for each EC. In ISSAC 2015 the present
authors proved this for the factor in the complexity bound dependent on
the number of polynomials in the input. However, the other term, that
dependent on the degree of the input polynomials, remained unchanged.

In the present paper the authors investigate how CAD in the presence
of ECs could be further refined using the technology of Gröbner Bases
to move towards the intuitive bound for polynomial degree.

1 Introduction

A cylindrical algebraic decomposition (CAD) is a decomposition of Rn (under a
given variable ordering, so that the projections considered are (x1, . . . , xk) →
(x1, . . . , xj) for j < k) into cells. The cells are arranged cylindrically, meaning
the projections of any pair with respect to the given ordering are either equal
or disjoint. In this definition algebraic is short for semi-algebraic meaning each
CAD cell can be described with a finite sequence of polynomial constraints. A
CAD is produced to be invariant for input; originally sign-invariant for a set of
input polynomials (so on each cell each polynomial is positive, zero or negative),
and more recently truth-invariant for input Boolean-valued formulae built from
the polynomials (so on each cell each formula is either true or false).

Introduced by Collins for real quantifier elimination (QE) [1], applications of
CAD included parametric optimisation [26], epidemic modelling [10] and even
motion planning [42]. Recent applications include theorem proving [41], deriving
optimal numerical schemes [24] and reasoning with multi-valued functions [18].
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 172–192, 2016.
DOI: 10.1007/978-3-319-45641-6 12

The Complexity of CAD with Respect to Polynomial Degree 173

CAD has worst case complexity doubly exponential [9,20], due to the nature
of the information to be recorded rather than the algorithm used [9]. Let n be the
number of variables, m the number of input polynomials, and d the maximum
degree (in any one variable) of the input. Then a complexity analysis in Sect. 5
of [22] shows that the best known variant of Collins’ algorithm to produce a
sign-invariant CAD for the polynomials [37] has an upper bound on the size of
the CAD (i.e. number of cells) with dominant term

(2d)2
n−1m2n−122

n−1−1, (1)

i.e. the CAD grows doubly exponentially with the number of variables n.
In fact, at the end of the projection stage, when we are considering R1, this

analysis shows that we have M polynomials, each of degree D, where D = d2
O(n)

and M = m2O(n)
. Of course, by replacing {f, g} with {fg} we can reduce M at

the cost of increasing D, but since it is much easier to find the roots of {f, g} than
{fg}, we do not want to. The lower bound in [20] shows that D = d2

Ω(n)
, and in

[9] that, without artificial combination, M = m2Ω(n)
. Both rely on the technique

from [28], and the formulae demonstrating this growth are not straightforward:
in particular needing O(n) quantifier alternations. But the underlying polyno-
mials are simple: all linear for [9] and all bar two linear for [20]. Furthermore,
each polynomial only involves a bounded number of variables (generally two)
independent of n, showing that the doubly-exponential difficulty of CAD resides
in the complicated number of ways simple polynomials can interact.

To improve the CAD performance and this bound we now build CADs which
are not sign-invariant for polynomials but truth-invariant for formulae. This can
be achieved by identifying equational constraints (ECs): polynomial equations
logically implied by formulae. The presence of an EC restricts the dimension of
the solution space and if exploited properly by the algorithm we may expect a
reduction in complexity accordingly. Intuitively, we expect the double exponent
to decrease by 1 for each independent (to be made precise later) EC available.

In [22] the present authors described how to adapt CAD to make use of
multiple (primitive) ECs. Suppose that our input formula consists of polynomials
(as described above) and that � suitable ECs can be identified. The algorithm
in [22] was shown to have corresponding upper bound dominant term

(2d)2
n−1m2n−�−22�2n−�−3�. (2)

So while the bound is still doubly exponential with respect to n, some of the
double exponents have been reduced by �. To be precise, the double exponent of
m (and its corresponding constant factor) is reduced while the double exponent
with respect to d (actually 2d) has not. This is due to the focus of [22] being on
reducing the number of polynomials created during the intermediate calculations
with no attempt made to control degree growth.

Contribution and Plan. The present paper is concerned with how to gain
the corresponding improvement to the factor dependent on d to achieve the

174 M. England and J.H. Davenport

intuitive complexity bound. The hypothesis is that this should be possible by
making use of the theory of Gröbner bases in place of iterated resultants. We
start in Sects. 2.1 and 2.2 by reviewing background material on CAD, and then
focus on CAD in the presence of ECs in Sects. 2.3 and 2.4. In Sect. 3 we consider
how the growth of degree in iterated resultants grows compared to that of the
true multivariate resultant (which encodes what is needed for CAD with ECs).
In Sect. 3.3 we propose controlling this using Gröbner Bases and in Sect. 4 we
give a worked example of how these can precondition CAD. In Sect. 5 we sketch
how this improves upon the bound (2) and then we finish in Sect. 6 by discussing
some outstanding issues.

2 CAD with Respect to Equational Constraints

2.1 CAD Computation Scheme and Terminology

We describe the computation scheme and terminology that CAD algorithms
derived from Collins share. We assume a set of input polynomials (possibly
derived from input formulae) in ordered variables x = x1 ≺ . . . ≺ xn. The main
variable of a polynomial (mvar) is the highest ordered variable present.

The first phase of CAD, projection, applies projection operators recursively
on the input polynomials, each time producing another set of polynomials with
one less variable. Together these define the projection polynomials used in the
second phase, lifting, to build CADs incrementally by dimension. First a CAD
of the real line is built with cells (points and intervals) determined by the real
roots of the univariate polynomials (those in x1 only). Next, a CAD of R2 is built
by repeating the process over each cell in R1 with the bivariate polynomials in
(x1, x2) evaluated at a sample point of the cell in R1. This produces sections
(where a polynomial vanishes) and sectors (the regions between) which together
form the stack over the cell. Taking the union of these stacks gives the CAD of
R2. The process is repeated until a CAD of Rn is produced.

All cells are represented by (at least) a sample point and an index. The
latter is a list of integers, with the kth integer fixing variable xk according to the
ordered real roots of the projection polynomials in (x1, . . . , xk). If the integer
is 2i the cell is over the ith root (counting low to high) and if 2i + 1 over the
interval between the ith and (i+1)th (or the unbounded intervals at either end).

In each lift we extrapolate the conclusions drawn from working at a sample
point to the whole cell. The validity of this approach follows from the correct
choice of projection operator. For sign-invariance to be maintained the operator
must produce polynomials: delineable in a cell, meaning the portion of their zero
set in the cell consists of disjoint sections; and, delineable as a set, meaning the
sections of different polynomials are identical or disjoint. One of the projection
operators used in this paper is

P (B) := coeff(B) ∪ disc(B) ∪ res(B). (3)

The Complexity of CAD with Respect to Polynomial Degree 175

Here disc and coeff denote respectively the set of discriminants and coefficients of
a set of polynomials; and res denotes either the resultant of a pair of polynomials
or, when applied to a set, the set of polynomials

res(A) = {res(fi, fj) | fi ∈ A, fj ∈ A, fj �= fi} .

We assume B is an irreducible basis for a set of polynomials in which every
element has mvar xn. For a general set of polynomials A we would proceed by
letting B be an irreducible basis of the primitive part of A; apply the operators
above; and take the union of the output with the content of A. The operator P
was introduced in [37] along with proofs of related delineability results.

2.2 Brief Summary of Improvements to CAD

As discussed in the introduction, CAD has worst case complexity doubly expo-
nential in the number of variables. For some problems there exist algorithms with
better complexity [2], however, CAD implementations remain the best general
purpose approach for many. This is due in large part to the numerous techniques
developed to improve the efficiency of CAD since Collins’ original work includ-
ing: refinements to the projection operator [7,27,29,37]; the early termination of
lifting, such as when sufficient for QE [17] or for building a sub-CAD [45]; and
symbolic-numeric lifting schemes [32,43]. Some recent advances include further
refinements to the projection operator when dealing with multiple formulae as
input [4,5]; local projection approaches [8,44]; decompositions via complex space
[3,14]; and the development of heuristics for CAD problem formulation [6,21,46]
including machine learning approaches [31].

2.3 Equational Constraints

As discussed in the Introduction, identifying equational constraints can improve
the performance of CAD.

Definition. A QFF is a quantifier free Tarski formula: a Boolean combination
(∧,∨,¬) of statements about the signs (= 0, > 0, < 0) of integral polynomials.

An equational constraint (EC) is a polynomial equation logically implied by
a QFF. An EC is explicit if an atom of the QFF, and implicit otherwise.

Collins first suggested that the projection phase of CAD could be simplified
in the presence of an EC [16]. The insight is that a CAD sign-invariant for the
defining polynomial of an EC, and sign-invariant for any others only on sections
of that polynomial, would be sufficient. The intuitive restriction of (3) is to use
only those coefficients, discriminants and resultants which are derived from the
EC polynomial, as in (4) below where F ⊆ B is a basis for the EC polynomial.

PF (B) := P (F) ∪ {res(f, g) | f ∈ F, g ∈ B \ F} (4)

The validity of using this operator for the first projection was verified in [39],
with subsequent projections returning to (3). The operator could only be used

176 M. England and J.H. Davenport

for a single EC in the main variable of the system as the delineability result for
(4) could not be applied recursively, excluding its use at a subsequent projection
to take advantage of any EC with corresponding main variable. This led to the
development of the operator (5) in [40] which suffered no such reduction at the
cost of including the discriminants that had been removed from (3) by (4).

P ∗
F (B) := PF (B) ∪ disc(B \ F) (5)

See Sect. 2 of [22] for examples demonstrating these operators.
A system to derive implicit ECs was also introduced by [40], based on the

observation that the resultant of the polynomials defining two ECs itself defines
an EC. This is essential for maximising the savings from ECs since the reduced
operators (4), (5) are for use with a single EC; meaning the savings gained are
dependent not on the number of ECs, but the number identified with different
main variables. Note that such iterated resultants are already produced during
CAD projection. So using them as ECs requires us only to identify them as such
(rather than introducing new polynomials for consideration) and hence does not
mean an increase in m. Also, while they may have higher degree than the initial
input polynomials, their degree is no higher than the other polynomials at the
stage they are used (rather than just passed as content) by a projection operator.

In [22] the present authors reviewed the theory of reduced projection oper-
ators and deduced how it could also yield savings in the lifting phase; reducing
both the number of cells we must lift over with respect to polynomials; and
the number of such polynomials we lift with. These approaches meant that the
projection polynomials are no longer a fixed set (key to some CAD implemen-
tations) and that the invariance structure of the final CAD can no longer be
expressed in terms of sign-invariance of polynomials. For the worked example in
[22, Sect. 4] combining the advances in this subsection allowed a sign-invariant
CAD with 1,118,205 cells to be replaced by a truth invariant CAD with 93 cells.

2.4 CAD with ECs

Algorithm 1 describes the CAD projection phase in the presence of multiple ECs
described in the previous subsection. Note that (as with the previous theory of
multiple ECs this is based on) we assume the ECs are primitive. Algorithm 1
applies the best possible (smallest validated) projection operator at each stage.
The word suitable in the output declaration means a CAD lifting phase that
makes well-orientedness checks in line with the theory of McCallum’s projection
operators (see [37,39,40] for details). Algorithm 2 is one such suitable lifting
algorithm. It uses the Fi (knowledge of which projection steps made use of an
EC) to tailor its lifts: lifting only with respect to EC polynomials (steps 7–10)
and only over cells where an EC was satisfied (steps 11–15) (lifting trivially to
the cylinder otherwise). The correctness of these algorithms was proven in [22].

Table 1 is recreated from [22] and shows the growth in the number and degree
of the projection polynomials when following Algorithm 1 under the assumption
that we have declared ECs for the first � projections (so 0 < � ≤ min(m,n)).

The Complexity of CAD with Respect to Polynomial Degree 177

Algorithm 1. CAD Projection using multiple stated ECs
Input : A formula φ in variables x1, . . . , xn, and a sequence of sets {Ek}n

k=1;
each either empty or containing a single primitive polynomial with
mvar xk which defines an EC for φ.

Output: A sequence of sets of polynomials ready for a suitable CAD lifting
algorithm.

1 Extract from φ the set of defining polynomials An;
2 for k = n, . . . , 2 do
3 Set Bk to the finest squarefree basis for prim(Ak);
4 Set C to cont(Ak);
5 Set Fk to the finest squarefree basis for Ek;
6 if Fk is empty then
7 Set Ak−1 := C ∪ P (Bk);
8 else
9 Set Ak−1 := C ∪ P ∗

Fi
(Bi);

10 return A1, . . . , An; F1, . . . , Fn.

Rather than the actual polynomials created the table keeps track of sets of
polynomials known to have the (M,D)-property : the ability to be partitioned
into M subsets, each with maximum combined degree D.

The (M,D)-property was introduced in McCallum’s thesis and was used
(along with tables like Table 1) to give a detailed comparison of the complexity
of several different projection operators in [5, Sect. 2.3]. The key observation is
that the number of real roots in a set with the (M,D)-property is at most MD
(although in practice many will be in C \ R). Hence the number of cells in the
CAD of R1 is bounded by twice the product of the final entries, plus 1.

Define di and mi as the entries in the Number and Degree columns of Table 1
from the row with i Variables. Then the number of cells in the final CAD of Rn

is bounded by ∏n
i=1 [2midi + 1] . (6)

Omitting the +1s from each term will usually allow for a closed form expression
of the dominant term in the bound.

The derivation of bound (2) from Table 1 was given in [22, Sect. 5]. It involved
considering the two improvements to the lifting phase. The first was lifting only
with respect to EC polynomials; meaning that for the purposes of the bound
we could set mi to 1 for i = n, . . . , n − �. The second was to lift trivially (to a
cylinder) over those cells where an EC was false.

Denote by (†) the bound on the CAD of Rn−(�+1) given by (6) but with the
product terminating at n − (� + 1), as there can be no reduced lifting until this
point. The lift to Rn−� will involve stack generation over all cells, but only with
respect to the EC which has at most dn−� real roots and thus the CAD of Rn−�

at most [2dn−� + 1](†) cells. The next lift, to Rn−�−1, will lift the sections with
respect to the EC, and the sectors only trivially. Hence the cell count bound is
[2dn−(�−1) + 1]dn−�(†) + (dn−� + 1)(†) with dominant term 2dn−(�−1)dn−�(†).

178 M. England and J.H. Davenport

Algorithm 2. CAD Lifting using multiple stated ECs
Input : The output of Algorithm 1: two sequences of polynomials sets

A1, . . . , An; F1, . . . , Fn, the latter subsets of the former.
Output: Either: D, a truth-invariant CAD of Rn for φ (described by lists I and

S of cell indices and sample points); or FAIL, if not well-oriented.

1 If F1 is not empty then set p to be its element; otherwise set p to the product of
polynomials in A1;

2 Build D1 := (I1, S1) according to the real roots of p;
3 if n = 1 then
4 return D1;

5 for k = 2, . . . , n do
6 Initialise Dk = (Ik, Sk) with Ik and Sk empty sets;
7 if Fk is empty then
8 Set L := Bk;
9 else

10 Set L := Fk;

11 if Fk−1 is empty then
12 Set Ca := Dk−1 and Cb empty;
13 else
14 Set Ca to be cells in Dk−1 with Ik−1[−1] even;
15 Set Cb := Dk−1 \ Ca;

16 for each cell c ∈ Ca do
17 if An element of L is nullified over c then
18 return FAIL;

19 Generate a stack over c with respect to the polynomials in L, adding
cell indices and sample points to Ik and Sk;

20 for each cell c ∈ Cb do

21 Extend to a single cell in Rk (cylinder over c), adding index and sample
point to Ik and Sk;

22 return Dn = (In, Sn).

Subsequent lifts follow the same pattern and so the dominant term (omitting
the +1s) in the cell count bound for Rn is

2dndn−1 . . . dn−(�−1)dn−�

∏n−(�+1)
i=1

[
2midi + 1

]
. (7)

As shown in [22] using Table 1 (7) evaluates to (2).

3 Controlling Degree Growth

3.1 Iterated Resultant Calculations

As discussed in the Introduction, [22] showed that building truth-invariant CADs
by taking advantage of ECs reduced the CAD complexity bound from (1) to (2).

The Complexity of CAD with Respect to Polynomial Degree 179

Table 1. Projection in CAD with projection operator (5) � times and then (3).

Variables Number Degree

n m d

n − 1 2m 2d2

n − 2 4m 8d4

...
...

...

n − � 2�m 22�−1d2�

n − (� + 1) 22�m2 22�+1−1d2�+1

n − (� + 2) 24�m4 22�+2−1d2�+2

...
...

...

n − (� + r) 22r�m2r

22�+r−1d2�+r

...
...

...

1 22(n−1−�)�m2n−1−�

22n−1−1d2n−1

Most notably, the double exponent of the term with base m (number of input
polynomials) decreased by � (the number of projections made with respect to
an EC). However, the term with base d (degree of input polynomials) was
unchanged. This term is doubly exponential due to the iterated resultant cal-
culations during projection: the resultant of two degree d polynomials is the
determinant of a 2d × 2d matrix whose entries all have degree at most d, and
thus a polynomial of degree at most 2d2. This increase in degree compounded
by (n − 1) projections gives the first term of the bound (1).

When building CAD in the presence of ECs many of these iterated resultants
are avoided (thus reducing the number of polynomials, but not their degree).
Indeed, the derivation of ECs via propagation is itself an iterated resultant cal-
culation. The purpose of the resultant in CAD construction is to ensure that the
points in lower dimensional space where polynomials vanish together are iden-
tified, and thus that the behaviour over a sample point in a lower dimensional
cell is indicative of the behaviour over the cell as a whole.

The iterated resultant (and discriminant) calculations involved in CAD have
been studied previously, for example in [34,38]. We will follow the work of Busé
and Mourrain in [13] who consider the iterative application of the univariate
resultant to multivariate polynomials, demonstrating decompositions into irre-
ducible factors involving the multivariate resultants (following the formalisation
of Jouanolou [33]). They show that the approach will identify polynomials of
higher degree than the true multivariate resultant and thus more than required
for the purpose of identifying implicit equational constraints. For example, given
3 polynomials in 3 variables of degree d the true multivariate resultant has degree
O(d3) rather than O(d4).

180 M. England and J.H. Davenport

The key result of [13] for our purposes follows. Note that this, using the
formalisation of resultants in [33] [13, Sect. 2], considers polynomials of a given
total degree. However, the CAD complexity analysis discussed above and later is
(following previous work on the topic) with regards to polynomials of degree at
most d in a given variable. For clarity we use the Fraktur font when discussing
total degree and Roman fonts when the maximum degree.

Corollary ([13, Corollary 3.4]). Given three polynomials fk(x, y, z) of the
form

fk(x, y, z) =
∑

|α|+i+j≤dk

a
(k)
α,i,jx

αyizj ∈ S[x][y, z],

where S is any commutative ring, then the iterated univariate resultant

Resy

(
Resz(f1, f2),Resz(f1, f3)

) ∈ S[x]

is of total degree at most d21d2d3 in x, and we may express it in multivariate
resultants (following the formalism of Jouanolou [33]) as

Resy

(
Resz(f1, f2),Resz(f1, f3)

)
= (−1)d1d2d3Resy,z(f1, f2, f3)

×Resy,z,z′
(
f1(x, y, z), f2(x, y, z), f3(x, y, z′), δz,z′(f1)

)
.

(8)

Moreover, if the polynomials f1, f2, f3 are sufficiently generic and n > 1, then
this iterated resultant has exactly total degree d21d2d3 in x and both resultants
on the right hand side of the above equality are distinct and irreducible.

[Although not stated as part of the result in [13], under these genericity
assumptions, Resy,z(f1, f2, f3) has total degree d1d2d3 and the second resultant
on the right hand side of (8) has total degree d1(d1−1)d2d3 (see [13, Proposition
3.3] and [38, Theorem 2.6]).]

In [13] the authors interpret this result as follows1.

The resultant R12 := Resz(f1, f2) defines the projection of the intersection
curve between the two surfaces {f1 = 0} and {f2 = 0}. Similarly, R13 :=
Resz(f1, f3) defines the projection of the intersection curve between the
two surfaces {f1 = 0} and {f3 = 0}. Then the roots of Resy(R12, R13) can
be decomposed into two distinct sets: the set of roots x0 such that there
exists y0 and z0 such that

f1(x0, y0, z0) = f2(x0, y0, z0) = f3(x0, y0, z0),

and the set of roots x1 such that there exist two distinct points (x1, y1, z1)
and (x1, y1, z

′
1) such that

f1(x1, y1, z1) = f2(x1, y1, z1) and f1(x1, y1, z
′
1) = f3(x1, y1, z

′
1).

The first set gives rise to the term Resy,z(f1, f2, f3) in the factorization
of the iterated resultant Resy(Res12,Res13), and the second set of roots
corresponds to the second factor.

1 We note that in this quote we made a small correction to the description of the
second set of roots (removing a dash from y1 in the second distinct point). We thank
the anonymous referee of the present paper for identifying this correction.

The Complexity of CAD with Respect to Polynomial Degree 181

Only the first set are of interest to us if the fi are all ECs. However, for a general
CAD construction, the second set of roots may also be necessary as they indicate
points where the geometry of the sectors changes.

3.2 How Large Are These Resultants?

Suppose we are considering three ECs defined by f1, f2 and f3; that we wish to
eliminate two variables z = xn and y = xn−1; and that the fi have degree at
most d in each variable separately. Then we may näıvely set each di = nd to
bound the total degree.

The following approach does better. Let K = S[x1, . . . , xn−2, y, z] and L =
S[ξ1, . . . , ξN , y, z]. Only a finite number of monomials in x1, . . . , xn−2 occur as
coefficients of the powers of y, z in f1, f2 and f3. Map each such monomial
xα =

∏n−2
i=1 xαi

i to m̃j := ξmaxαi
j (using a different ξj for each monomial2) and

let f̃i ∈ L be the result of applying this map to the monomials in fi. Note that
the operation ˜ commutes with taking resultants in y and z (though not in the
xi of course).

The total degree in the ξj of f̃i is the same as the maximum degree in all the
x1, . . . , xn−2 of fi, i.e. bounded by d, and hence the total degree of the f̃i in all
variables is bounded by 3d (d for the ξi, d for y and d for z). If we apply (8) to
the f̃i, we see that

Resy

(
Resz(f̃1, f̃2),Resz(f̃1, f̃3)

)
has a factor Resy,z(f̃1, f̃2, f̃3) of total degree (in the ξj) (3d)3. Hence, by inverting
˜, we may conclude Resy,z(f1, f2, f3) has maximum degree, in each xi, of (3d)3.

The results of [13,33] apply to any number of eliminations. In particular,
if we have eliminated not 2 but � − 1 variables we will have a polynomial
Resxn−�+1...xn

(fn−�, . . . , fn) of maximum degree ��d� in the remaining variables
x1, . . . , xn−� as the last implicit EC.

These resultants Resxn−�+1...xn
therefore only have singly-exponential growth,

rather than the doubly-exponential growth of the iterated resultants: can we
compute them?

3.3 Gröbner Bases in Place of Iterated Resultants

A Gröbner Basis G is a particular generating set of an ideal I defined with
respect to a monomial ordering. One definition is that the ideal generated by
the leading terms of I is generated by the leading terms of G. Gröbner Bases
(GB) allow properties of the ideal to be deduced such as dimension and number
of zeros and so are one of the main practical tools for working with polynomial
systems. Their properties and an algorithm to derive a GB for any ideal were
introduced by Buchberger in his PhD thesis of 1965 [11]. There has been much
2 It would be possible to economise: if x1x

2
2 �→ ξ21 , then we could map x2

1x
4
2 to ξ41

rather than a new ξ42 . Since this trick is used purely for the analysis and not in
implementation, we ignore such possibilities.

182 M. England and J.H. Davenport

research to improve and optimise GB calculation, with the F5 algorithm [25]
perhaps the most used approach currently.

Like CAD the calculation of GB is necessarily doubly exponential in the
worst case [35] (when using a lexicographic order), although recent work in [36]
showed that rather than being doubly exponential with respect to the number of
variables present the dependency is in fact on the dimension of the ideal. Despite
this worst case bound GB computation can often be done very quickly usually
to the point of instantaneous for any problem tractable by CAD.

A reasonably common CAD technique is to precondition systems with mul-
tiple ECs by replacing the ECs by their GB. I.e. let E = {e1, e2, . . . } be a set
of polynomials; G = {g1, g2, . . . } a GB for E; and B any Boolean combination
of constraints, fi σi 0, where σi ∈ {<,>,≤,≥, �=,=}) and F = {f1, f2, . . . } is
another set of polynomials. Then

Φ = (e1 = 0 ∧ e2 = 0 ∧ . . .) ∧ B

Ψ = (g1 = 0 ∧ g2 = 0 ∧ . . .) ∧ B

are equivalent and a CAD truth-invariant for either could be used to solve prob-
lems involving Φ.

As discussed, the cost of computing the GB itself is minimal so the question
is whether it is beneficial to CAD. The first attempt to answer this question
was given by Buchberger and Hong in 1991 [12] (using GB and CAD implemen-
tations in the SAC-2 system [15]). These experiments were carried out before
the development of reduced projection operators and so the CADs computed
were sign-invariant (and thus also truth-invariant for the formulae involved). Of
the 10 problems studied: 6 were improved by the GB preconditioning, (speed-up
from 2-fold to 1700-fold); 1 problem resulted in a 10-fold slow-down; 1 timed out
after GB but completed without; and the other 2 were intractable both for CAD
and GB. The problem was recently revisited by Wilson et al. [47] who studied
the same problem set using Qepcad-B for the CAD and Maple 16 for the GB.
There had been a huge improvement to the time taken by GB computation but
it was still the case that two of the problems were hindered by GB precondi-
tioning. A recent machine learning experiment to decide when GB precondition
should be applied [30] found that 75 % of a data set of 1200 randomly generated
CAD problems benefited from GB preconditioning.

If we consider GB preconditioning of CAD in the knowledge of the improved
projection schemes for ECs (Subsect. 2.4) then we see an additional benefit from
the GB. It provides ECs which are not in the main variable of the system remov-
ing the need for iterated resultants to find implicit ECs to use in subsequent
projections.

Since our aim is to produce one EC in each of the last � variables, we need
to choose an ordering on monomials which is lexicographic with respect to xn �
xn−1 � · · · � xn−�+1: it does not actually matter (from the point of view of the
theory: general theory suggests that ‘total degree reverse lexicographic in the
rest’ would be most efficient in practice) how we tie-break after that.

The Complexity of CAD with Respect to Polynomial Degree 183

Let us suppose (in line with [22]) that we have � ECs f1, . . . , f� (at least
one of them, say f1 must include xn, and similarly we can assume f2 includes
xn−1 and so on), such that these imply (even over C) that the last � variables
are determined (not necessarily uniquely) by the values of x1, . . . , xn−�. Then
the polynomials f1, Resxn

(f1, f2), Resxn,xn−1(f1, f2, f3) etc. are all implied by
the fi. Hence either they are in the GB, or they are reduced to 0 by the GB,
which implies that smaller polynomials are in the GB. Hence our GB will contain
polynomials (which are ECs) of degree (in each variable separately) at most

d, 4d2, 27d3, . . . , ((� + 1)d)�+1.

Note that we are not making, and in the light of [36] cannot make, any similar
claim about the polynomials in fewer variables. Note also that it is vital that
the equations be in the last variables for this use of [13,33] to work. That is, our
results do not directly extend from the case we study, of first applying � reduced
CAD projections in the presence of ECs (before reverting to the standard ones),
to the more general case of having any � of the projections be reduced.

4 Worked Example

We will work with the polynomials

f1 := xy − z2 − w2 + 2z, f2 := x2 + y2 + z2 + w + z,

f3 := −w2 − y2 − z2 + x + z h := z + w,

and the semi-algebraic system

φ := f1 = 0 ∧ f2 = 0 ∧ f3 = 0 ∧ h > 0.

We assume a variable ordering z � y � x � w (meaning we will first project
with respect to z) and seek a CAD truth-invariant for φ.

In theory, we could analyse this system with a sign-invariant CAD for the
four polynomials {f1, f2, f3, h}. However in Maple neither our own CAD imple-
mentation [23] nor the CAD command within the RegularChains Library3

detailed in [3,14] finished within 30 min.
Instead, we should take advantage of the ECs available. There are 3 explicit

ECs within the input formula. However, they all have main variable z and so
only one of them may be a designated EC for projection purposes (and trying
to do this still results in a time-out after 30 min). The existing theory [22,40]
would suggest propagating the ECs by calculating:

r1 := res(f1, f2, z) = y4 + 2xy3 + (3x2 − 2w2 + 2w + 6)y2 + (2x3 − 2w2x

+ 2wx − 3x)y + x4 − 2w2x2 + 2wx2 + 6x2 + w4 − 2w3 + 4w2 + 6w,

r2 := res(f1, f3, z) = y4 + 2xy3 + (x2 − 2x + 2)y2 + (x − 2x2)y + w2 + x2 − 2x,

r3 := res(f2, f3, z) = 4y2 + x4 + 2x3 − 2w2x2 + 2wx2 + 3x2 − 2w2x + 2wx − 2x

+ w4 − 2w3 + 3w2 + 2w;
3 As downloaded from www.regularchains.org on 11th March 2016.

www.regularchains.org

184 M. England and J.H. Davenport

three implicit ECs with main variable y. We may continue to calculate ECs with
main variable x as:

R1 := res(r1, r2, y), R2 := res(r1, r3, y), R3 := res(r2, r3, y);

which evaluate to three different degree 16 polynomials in x available in the
Appendix. All possible resultants of these to eliminate x evaluate to 0 (and a
numerical plot of the Ri shows them all to have overlapping real part).

We now have multiple choices for running Algorithm 1 since we can only
declare one polynomial as an EC with a set main variable. There are hence
3 × 3 × 3 = 27 possible configurations. We attempt to build the CAD for each
choice (lifting using the improved procedure developed in [22]) and found that
6 configurations complete within 30 min. Of these there was an average of 152
cells calculated in 65 s. The optimal configuration gave 111 cells in 23 s using a
designation of f2, r3 and R2.

Now consider taking a GB of {f1, f2, f3}. We use a plex monomial ordering
on the same variable ordering as the CAD to achieve a basis defined by

g1 = 2z + x2 + x − w2 + w,

g2 = 4y2 + x4 + 2x3 + (−2w2 + 2w + 3)x2 + (2w2 + 2w − 2)x

+ w4 − 2w3 + 3w2 + 2w,

g3 = 4yx − x4 − 2x3 + (2w2 − 2w − 5)x2 + (2w2 − 2w − 4)x

− w4 + 2w3 − w2 − 4w,

g4 = (4w4 − 8w3 + 4w2 + 16w)y + x7 + 4x6 + (−4w2 + 4w + 18)x5

+ (−12w2 + 12w + 36)x4 + (5w4 − 10w3 − 31w2 + 40w + 53)x3

+ (10w4 − 20w3 − 34w2 + 52w + 32)x2 + (−2w6 + 6w5 + 7w4 − 32w3

+ 13w2 + 44w + 16)x − 2w6 + 6w5 − 2w4 − 14w3 + 12w2 + 16w,

g5 = x8 + 4x7 + (−4w2 + 4w + 18)x6 + (−12w2 + 12w + 36)x5 + (6w4 − 12w3

− 30w2 + 44w + 53)x4 + (12w4 − 24w3 − 32w2 + 60w + 32)x3

+ (−4w6 + 12w5 + 6w4 − 48w3 + 26w2 + 64w + 16)x2

+ (−4w6 + 12w5 − 4w4 − 28w3 + 24w2 + 32w)x

+ w8 − 4w7 + 6w6 + 4w5 − 15w4 + 8w3 + 16w2.

This is an alternative generating set for the ideal defined by the explicit ECs and
thus all the gi = 0 are also ECs for φ. Hence we may consider using these as the
designated ECs when building the CAD instead of the iterated resultants. Note
that the degrees of the GB polynomials (with respect to any one variable) are
on average lower (and never greater) than those of the (corresponding) iterated
resultants.

There is no longer any choice regarding the EC with mvar z or x but there
are 3 possibilities for the designation with mvar y. Designating g2 yields 83 cells
while either g3 or g4 result in 55 cells. All 3 configurations took less than 10 s to
compute (with designating g4 the quickest).

The Complexity of CAD with Respect to Polynomial Degree 185

5 Sketch of the Effect on Complexity

Following Sect. 3 we see that when building a lexicographical basis the degree of
the polynomials in the GB is restricted and thus this will be a better method for
the identification of implicit ECs to use in subsequent projections than iterated
resultants. Let us sketch how this will effect the complexity of CAD following
the techniques set out in [5,22] and summarised in Sect. 2.4.

The designated ECs will have lower degrees d, 4d2, 27d3 and in general (sd)s

for the EC with mvar xn−s. We use the word sketch in the section title partly
because we will ignore the constant factors and focus on the exponents of d
generated in what follows. This is both for simplicity in the analysis, and because
we have not found a closed form solution for the product of the constant factors in
the new analysis. But we do note that when using GB the constant factors grow
exponentially in � while with iterated resultants they grow doubly exponentially
in � (as in Table 1). Further, the constant term can be shown to be strictly lower
for all but the first few projections, with the issue there a laxness of the analysis
not the algorithm (as in Sect. 3.1 we saw that the multivariate resultants was
itself a factor of the iterated resultant). The other issues which prompted us to
use the word sketch are discussed in the next section.

We keep track of both the degree of the designated EC and the degree of the
entire set of polynomials. The reduced projection operator PF (B) will still take
discriminants and coefficients of these; and resultants of them with the other
projection polynomials. Thus the highest degree polynomial produced grows
with the exponent of d being the sum of the exponent from the designated EC
and that from the other polynomials. This generates the top half of Table 2 and
we see that the exponents form the so called Lazy Caterer’s sequence4 otherwise
known as the Central Polygonal Numbers. The remaining projections use the
sign-invariant projection operator and so the degree is squared each time, leading
to the bottom half of Table 2.

We can now consider the generic bound (7) using the degrees from Table 2
as the di. The term with base d may be computed by

∏�
s=0

(
ds+1

) ∏n−�−1
r=1

(
d2

r−1�(�+1)+2r)
.

The exponent of d evaluates to

2(n−�) 1
2 (�2 + � + 2) − 1

2 (�2 + �) − 2. (9)

Let us compare this with the term with base m from (2). As with the improve-
ments in [22], the improvements here have allowed the reduction of the double
exponent from by �, the number of ECs used. However, the reduction is not
quite as clean as the exponential term in the single exponent is multiplied by a
quadratic in �. This is to be expected as the singly exponential dependency on �
in the Number column of Table 1 was only in the term with constant base while
for Table 2 the term with base d is itself single exponential in �.
4 The On-Line Encyclopedia of Integer Sequences, 2010, Sequence A000124, https://

oeis.org/A000124.

https://oeis.org/A000124
https://oeis.org/A000124

186 M. England and J.H. Davenport

Table 2. Maximum degree of projection polynomials produced for CAD when using
projection operator (5) � times and then (3).

Variables Maximum degree

EC Others

n d d

n − 1 d2 d2

n − 2 d3 d4

n − 3 d4 d7

...
...

...

n − � d�+1 d�(�+1)(1/2)+1

n − (� + 1) d�(�+1)+2

n − (� + 2) d2�(�+1)+22

n − (� + 3) d22�(�+1)+23

...
...

n − (� + r) d2r−1�(�+1)+2r

...
...

1 d2n−�−2�(�+1)+2n−�−1

6 Discussion

We have considered the issue of CAD in the presence of multiple ECs. We fol-
lowed our recent work in [22] which reduced the complexity with respect to
the number of polynomials m, and showed that similar improvements can be
obtained with the respect to polynomial degree d by using Gröbner Bases in
place of iterated resultants. We have sketched the complexity results but defer
the full analysis until a number of issues can be cleared up. These include:

– Will using GB not risk increasing the base number of polynomials in m?

On one level this seems unlikely (since we are starting with a generating set all
in the main variable and deriving another which would mostly not be) but we
have yet to rule it out. Of course, the number of polynomials in the input can
bear little relation to the number generated by projection.

We note that there is an alternative way to use GB for CAD than that
outlined in Sect. 3.3 (replacing a set of ECs by another). We could instead use the
GB purely as an implicit EC generation tool; and just add selected polynomials
from it to our input without replacing anything. For example, the GB in the
worked example of Sect. 4 had 3 polynomials with main variable y only one of
which can be the designated EC. Rather than replacing all the fi by all the gi

we could instead just add 2 of the gi (one in main variable y and one in x) to
the input set to act as designated ECs at lower levels. This approach would cap
the increase in m to the number of designated ECs we can identify.

The Complexity of CAD with Respect to Polynomial Degree 187

– Will the GB always produce as many ECs with different main variables as the
iterated resultant method?

– How to proceed in the case where we have non-primitive ECs?

As with most previous work on ECs, we have assumed primitive designated ECs.
We refer the reader to: the final section of [22] where we sketch approaches that
could be adapted to deal with this (including the theory of TTICAD [4,5]); and
the final section of [19] where we demonstrate the importance of this issue by
showing the examples from [9,20] to involve imprimitive ECs.

– How is the complexity affected when the projections using ECs are not in
strict succession?

– Can we mix the orderings in the CAD and the GB?

Finally, we return to the fact acknowledged in Sect. 3.3 that previous work
on using GB to precondition CAD [12,30,47] has found that it is not always
beneficial and how that interacts with the claims of this paper. The simple answer
is that the analysis offered here is of the worst case and makes no claim to the
average complexity. However, we actually hypothesise that it was it was the fact
that the CAD computations involved in those paper did not take advantage of
the new multiple EC technology which will account for many of the cases were
GB hindered CAD. We plan future experiments to test this hypothesis.

Acknowledgements. This work was originally supported by EPSRC grant:
EP/J003247/1 and is now supported by EU H2020-FETOPEN-2016-2017-CSA project
SC2 (712689). Thanks to the referees for their helpful comments, and Prof. Buchberger
for reminding JHD that Gröbner bases were applicable here.

Appendix

A The Iterated Resultants from Section 4

R1 := res(r1, r2, y) = x16 + 8x15 + (−8w2 + 8w + 64)x14 + (−56w2 + 56w

+ 288)x13 + (28w4 − 56w3 − 332w2 + 400w + 1138)x12 + (168w4

− 336w3 − 1144w2 + 1552w + 2912)x11 + (−56w6 + 168w5 + 648w4

− 1816w3 − 2664w2 + 5328w + 6336)x10 + (−280w6 + 840w5

+ 1400w4 − 5400w3 − 2616w2 + 11368w + 7808)x9 + (70w8

− 280w7 − 500w6 + 3080w5 − 270w4 − 11576w3 + 4860w2

+ 20816w + 7381)x8 + (280w8 − 1120w7 + 80w6 + 6080w5 − 8480w4

− 11792w3 + 22840w2 + 20192w + 920)x7 + (−56w10 + 280w9

− 80w8 − 2160w7 + 4960w6 + 3200w5 − 22608w4 + 2584w3

+ 40840w2 + 16040w + 2024)x6 + (−168w10 + 840w9 − 1520w8

188 M. England and J.H. Davenport

− 1360w7 + 12016w6 − 11296w5 − 23368w4 + 30136w3 + 22032w2

+ 624w + 736)x5 + (28w12 − 168w11 + 396w10 + 160w9 − 3690w8

+ 6576w7 + 4520w6 − 24712w5 + 13154w4 + 37456w3 + 1464w2

− 1568w + 5968)x4 + (56w12 − 336w11 + 1192w10 − 1680w9

− 2688w8 + 12496w7 − 13464w6 − 16912w5 + 37240w4 + 13472w3

− 16384w2 + 1984w + 3072)x3 + (−8w14 + 56w13 − 248w12 + 520w11

+ 72w10 − 3088w9 + 7664w8 − 2040w7 − 16176w6 + 20424w5

+ 20056w4 − 15360w3 − 8544w2 + 4608w + 2304)x2 + (−8w14

+ 56w13 − 296w12 + 808w11 − 1144w10 − 776w9 + 6184w8 − 7048w7

− 6944w6 + 19696w5 + 3872w4 − 16832w3 − 1152w2 + 4608w)x + w16

− 8w15 + 52w14 − 184w13 + 454w12 − 440w11 − 772w10 + 3352w9

− 2447w8 − 4288w7 + 8200w6 + 2080w5 − 7664w4 − 384w3 + 2304w2

R2 := res(r1, r3, y) = x16 + 8x15 + (−8w2 + 8w + 28)x14 + (−56w2 + 56w

+ 48)x13 + (28w4 − 56w3 − 116w2 + 160w − 2)x12 + (168w4

− 336w3 + 80w2 + 184w − 256)x11 + (−56w6 + 168w5 + 108w4

− 592w3 + 852w2 − 240w − 12)x10 + (−280w6 + 840w5 − 1120w4

+ 360w3 + 1872w2 − 1448w + 2000)x9 + (70w8 − 280w7 + 220w6

+ 560w5 − 2742w4 + 3232w3 − 1428w2 + 224w + 4537)x8 + (280w8

− 1120w7 + 2720w6 − 3280w5 − 1280w4 + 6016w3 − 11696w2 + 7496w

+ 2552)x7 + (−56w10 + 280w9 − 620w8 + 480w7 + 2488w6 − 6880w5

+ 9384w4 − 5744w3 − 9404w2 + 12008w − 4120)x6 + (−168w10

+ 840w9 − 2960w8 + 5840w7 − 4832w6 − 3088w5 + 21104w4

− 27128w3 + 12552w2 + 3888w − 5888)x5 + (28w12 − 168w11 + 612w10

− 1280w9 + 498w8 + 3648w7 − 12424w6 + 17360w5 − 4546w4

− 13928w3 + 19032w2 − 9344w − 176)x4 + (56w12 − 336w11 + 1552w10

− 4200w9 + 7296w8 − 6080w7 − 7440w6 + 25880w5 − 31352w4

+ 13472w3 + 1856w2 − 10304w + 1536)x3 + (−8w14 + 56w13 − 284w12

+ 880w11 − 1740w10 + 1616w9 + 2468w8 − 10704w7 + 15828w6

− 8040w5 − 1064w4 + 9792w3 − 3168w2 + 2304)x2 + (−8w14 + 56w13

− 320w12 + 1096w11 − 2800w10 + 4600w9 − 3968w8 − 2152w7

+ 9592w6 − 10832w5 + 5312w4 + 4672w3 − 5760w2 + 4608w)x + w16

− 8w15 + 52w14 − 208w13 + 646w12 − 1376w11 + 2012w10 − 1136w9

− 1295w8 + 4328w7 − 3992w6 + 2368w5 + 2320w4 − 1920w3 + 2304w2

The Complexity of CAD with Respect to Polynomial Degree 189

R3 := res(r3, r3, y) = x16 + 8x15 + (−8w2 + 8w + 44)x14 + (−56w2 + 56w

+ 160)x13 + (28w4 − 56w3 − 228w2 + 272w + 430)x12 + (168w4

− 336w3 − 592w2 + 856w + 816)x11 + (−56w6 + 168w5 + 444w4

− 1264w3 − 812w2 + 1952w + 1092)x10 + (−280w6 + 840w5 + 560w4

− 3000w3 + 32w2 + 3032w + 736)x9 + (70w8 − 280w7 − 340w6

+ 2240w5 − 902w4 − 4208w3 + 2716w2 + 3120w − 183)x8 + (280w8

− 1120w7 + 480w6 + 3440w5 − 4640w4 − 2304w3 + 5840w2 + 1128w

− 1144)x7 + (−56w10 + 280w9 − 60w8 − 1760w7 + 3128w6 + 960w5

− 7352w4 + 3216w3 + 5860w2 − 1320w − 824)x6 + (−168w10 + 840w9

− 1280w8 − 880w7 + 5568w6 − 5008w5 − 4464w4 + 7848w3 + 984w2

− 2576w − 64)x5 + (28w12 − 168w11 + 276w10 + 400w9 − 2302w8

+ 2848w7 + 1880w6 − 7440w5 + 3582w4 + 5704w3 − 3208w2 − 1216w

+ 720)x4 + (56w12 − 336w11 + 880w10 − 840w9 − 1424w8 + 4800w7

− 3856w6 − 3464w5 + 6968w4 + 32w3 − 3392w2 + 448w + 512)x3

+ (−8w14 + 56w13 − 172w12 + 208w11 + 308w10 − 1504w9 + 1972w8

+ 432w7 − 3788w6 + 2920w5 + 2552w4 − 3136w3 − 864w2 + 1024w

+ 256)x2 + (−8w14 + 56w13 − 208w12 + 424w11 − 352w10 − 520w9

+ 1744w8 − 1416w7 − 1176w6 + 2928w5 − 384w4 − 1984w3 + 384w2

+ 512w)x + w16 − 8w15 + 36w14 − 96w13 + 150w12 − 48w11 − 308w10

+ 672w9 − 351w8 − 648w7 + 1096w6 − 880w4 + 128w3 + 256w2

References

1. Arnon, D., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I: the
basic algorithm. SIAM J. Comput. 13, 865–877 (1984)

2. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Algo-
rithms and Computations in Mathematics, vol. 10. Springer, Heidelberg (2006)

3. Bradford, R., Chen, C., Davenport, J.H., England, M., Moreno Maza, M., Wilson,
D.: Truth table invariant cylindrical algebraic decomposition by regular chains. In:
Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS,
vol. 8660, pp. 44–58. Springer, Heidelberg (2014)

4. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Cylindrical
algebraic decompositions for boolean combinations. In: Proceedings of ISSAC 2013,
pp. 125–132. ACM (2013)

5. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Truth
table invariant cylindrical algebraic decomposition. J. Symbolic Comput. 76, 1–35
(2016)

6. Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising problem for-
mulation for cylindrical algebraic decomposition. In: Carette, J., Aspinall, D.,
Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961, pp.
19–34. Springer, Heidelberg (2013)

190 M. England and J.H. Davenport

7. Brown, C.W.: Improved projection for cylindrical algebraic decomposition. J. Sym-
bolic Comput. 32(5), 447–465 (2001)

8. Brown, C.W.: Constructing a single open cell in a cylindrical algebraic decompo-
sition. In: Proceedings of ISSAC 2013, pp. 133–140. ACM (2013)

9. Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylin-
drical algebraic decomposition. In: Proceedings of ISSAC 2007, pp. 54–60. ACM
(2007)

10. Brown, C.W., El Kahoui, M., Novotni, D., Weber, A.: Algorithmic methods for
investigating equilibria in epidemic modelling. J. Symbolic Comput. 41, 1157–1173
(2006)

11. Buchberger, B.: Bruno Buchberger’s PhD thesis (1965): an algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial ideal.
J. Symbolic Comput. 41(3–4), 475–511 (2006)

12. Buchberger, B., Hong, H.: Speeding up quantifier elimination by Gröbner bases.
Technical report, 91–06. RISC, Johannes Kepler University (1991)

13. Busé, L., Mourrain, B.: Explicit factors of some iterated resultants and discrimi-
nants. Math. Comput. 78, 345–386 (2009)

14. Chen, C., Moreno, M.M., Xia, B., Yang, L.: Computing cylindrical algebraic decom-
position via triangular decomposition. In: Proceedings of ISSAC 2009, pp. 95–102.
ACM (2009)

15. Collins, G.E.: The SAC-2 computer algebra system. In: Caviness, B.F. (ed.) EURO-
CAL 1985. LNCS, vol. 204, pp. 34–35. Springer, Heidelberg (1985)

16. Collins, G.E.: Quantifier elimination by cylindrical algebraic decomposition - 20
years of progress. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination
and Cylindrical Algebraic Decomposition. Texts & Monographs in Symbolic Com-
putation, pp. 8–23. Springer, Heidelberg (1998)

17. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symbolic Comput. 12, 299–328 (1991)

18. Davenport, J.H., Bradford, R., England, M., Wilson, D.: Program verification in
the presence of complex numbers, functions with branch cuts etc. In: Proceedings
of SYNASC 2012, pp. 83–88. IEEE (2012)

19. Davenport, J.H., England, M.: Need polynomial systems be doubly-exponential?
In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol.
9725, pp. 157–164. Springer, Heidelberg (2016)

20. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J.
Symbolic Comput. 5(1–2), 29–35 (1988)

21. England, M., Bradford, R., Chen, C., Davenport, J.H., Maza, M.M., Wilson, D.:
Problem formulation for truth-table invariant cylindrical algebraic decomposition
by incremental triangular decomposition. In: Watt, S.M., Davenport, J.H., Sexton,
A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 45–60. Springer,
Heidelberg (2014)

22. England, M., Bradford, R., Davenport, J.H.: Improving the use of equational con-
straints in cylindrical algebraic decomposition. In: Proceedings of ISSAC 2015, pp.
165–172. ACM (2015)

23. England, M., Wilson, D., Bradford, R., Davenport, J.H.: Using the regular chains
library to build cylindrical algebraic decompositions by projecting and lifting. In:
Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 458–465. Springer,
Heidelberg (2014)

24. Erascu, M., Hong, H.: Synthesis of optimal numerical algorithms using real quan-
tifier elimination (case study: square root computation). In: Proceedings of ISSAC
2014, pp. 162–169. ACM (2014)

The Complexity of CAD with Respect to Polynomial Degree 191

25. Faugère, J.C.: A new efficient algorithm for computing groebner bases without
reduction to zero (F5). In: Proceedings of ISSAC 2002, pp. 75–83. ACM (2002)

26. Fotiou, I.A., Parrilo, P.A., Morari, M.: Nonlinear parametric optimization using
cylindrical algebraic decomposition. In: 2005 European Control Conference on
Decision and Control, CDC-ECC 2005, pp. 3735–3740 (2005)

27. Han, J., Dai, L., Xia, B.: Constructing fewer open cells by gcd computation in
CAD projection. In: Proceedings of ISSAC 2014, pp. 240–247. ACM (2014)

28. Heintz, J.: Definability and fast quantifier elimination in algebraically closed fields.
Theor. Comput. Sci. 24(3), 239–277 (1983)

29. Hong, H.: An improvement of the projection operator in cylindrical algebraic
decomposition. In: Proceedings of ISSAC 1990, pp. 261–264. ACM (1990)

30. Huang, Z., England, M., Davenport, J.H., Paulson, L.: Using machine learning to
decide when to precondition cylindrical algebraic decomposition with Groebner
bases (2016, to appear)

31. Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L.C., Bridge, J.:
Applying machine learning to the problem of choosing a heuristic to select the vari-
able ordering for cylindrical algebraic decomposition. In: Watt, S.M., Davenport,
J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp.
92–107. Springer, Heidelberg (2014)

32. Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of
a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination.
In: Proceedings of SNC 2009, pp. 55–64 (2009)

33. Jouanolou, J.P.: Le formalisme du résultant. Adv. Math. 90(2), 117–263 (1991)
34. Lazard, D., McCallum, S.: Iterated discriminants. J. Symbolic Comput. 44(9),

1176–1193 (2009)
35. Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commutative

semigroups and polynomial ideals. Adv. Math. 46(3), 305–329 (1982)
36. Mayr, E.W., Ritscher, S.: Dimension-dependent bounds for gröbner bases of poly-

nomial ideals. J. Symbolic Comput. 49, 78–94 (2013)
37. McCallum, S.: An improved projection operation for cylindrical algebraic decompo-

sition. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylin-
drical Algebraic Decomposition. Texts & Monograph in Symbolic Computation,
pp. 242–268. Springer, Heidelberg (1998)

38. McCallum, S.: Factors of iterated resultants and discriminants. J. Symbolic Com-
put. 27(4), 367–385 (1999)

39. McCallum, S.: On projection in CAD-based quantifier elimination with equational
constraint. In: Proceedings of ISSAC 1999, pp. 145–149. ACM (1999)

40. McCallum, S.: On propagation of equational constraints in CAD-based quantifier
elimination. In: Proceedings of ISSAC 2001, pp. 223–231. ACM (2001)

41. Paulson, L.C.: MetiTarski: past and future. In: Beringer, L., Felty, A. (eds.) ITP
2012. LNCS, vol. 7406, pp. 1–10. Springer, Heidelberg (2012)

42. Schwartz, J.T., Sharir, M.: On the “Piano-Movers” problem: I. the case of a two-
dimensional rigid polygonal body moving amidst polygonal barriers. Commun.
Pure Appl. Math. 36(3), 345–398 (1983)

43. Strzeboński, A.: Cylindrical algebraic decomposition using validated numerics. J.
Symbolic Comput. 41(9), 1021–1038 (2006)

44. Strzeboński, A.: Cylindrical algebraic decomposition using local projections. In:
Proceedings of ISSAC 2014, pp. 389–396. ACM (2014)

45. Wilson, D., Bradford, R., Davenport, J.H., England, M.: Cylindrical algebraic sub-
decompositions. Math. Comput. Sci. 8, 263–288 (2014)

192 M. England and J.H. Davenport

46. Wilson, D., England, M., Davenport, J.H., Bradford, R.: Using the distribution
of cells by dimension in a cylindrical algebraic decomposition. In: Proceedings of
SYNASC 2014, pp. 53–60. IEEE (2014)

47. Wilson, D.J., Bradford, R.J., Davenport, J.H.: Speeding up cylindrical algebraic
decomposition by Gröbner bases. In: Jeuring, J., Campbell, J.A., Carette, J., Dos
Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp.
280–294. Springer, Heidelberg (2012)

Efficient Simplification Techniques for Special
Real Quantifier Elimination with Applications

to the Synthesis of Optimal
Numerical Algorithms

Mădălina Eraşcu1,2(B)

1 Faculty of Mathematics and Computer Science, West University of Timişoara,
Timişoara, Romania

2 Institute e-Austria Timişoara, Timişoara, Romania
madalina.erascu@e-uvt.ro

Abstract. This paper presents efficient simplification techniques tai-
lored for sign semi-definite conditions (SsDCs). The SsDCs for a polyno-
mial f ∈ R[y] with parametric coefficients are written as ∀

y
L≤y≤U

f(y) ≥ 0

and ∀
y

L≤y≤U

f(y) ≤ 0. We give sufficient conditions for the simplification

techniques to be sound for linear and quadratic polynomials. We show
their effectiveness compared to state of the art quantifier elimination
tools for input formulae occurring in the optimal numerical algorithms
synthesis problem by an implementation on top of Reduce command of
Mathematica.

1 Introduction

Real quantifier elimination is a fundamental problem which arises in many chal-
lenging problems, in application areas like engineering, numerical analysis, pro-
gram analysis, databases. Thus, there has been extensive research on developing
efficient algorithms and software systems.

Due to Tarski [22], we have two remarkable results: (1) the theory of real
closed fields (RCF) admits quantifier elimination and (2) a decision procedure
for the theory was developed. Unfortunately, the decision procedure had non-
elementary complexity so was totally impractical. It was Collins [7] who gave
the first effective method of quantifier elimination (QE) using cylindrical alge-
braic decomposition (CAD). Since then, QE undergoes many improvements [6],
however QE is inherently doubly exponential [9] which makes it difficult to be
used to medium size problems. The improvements of the QE methods over RCF
are performed in different phases of the CAD-based algorithm [3,5,6,21] or are
taking into account the anatomy of the input formulae [6,15] or the structure of
the quantifiers blocks [14], but also employ various heuristics [10]. State of the
art tools implementing QE over RCF are QEPCAD-B [4], Reduce command of
Mathematica [19], Redlog [11], SynRAC [2]. In the past years, one could notice
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 193–211, 2016.
DOI: 10.1007/978-3-319-45641-6 13

194 M. Eraşcu

the efforts in adapting and integrating existing QE methods for RCF into the so-
called satisfiability modulo theory (SMT) solvers in order to solve industrial-size
problems [8,16]. In the SMT community, formula preprocessing is fundamental
before actually feeding it to the SMT solver [1].

In this paper, we present preprocessing/simplification methods for input for-
mulae of types:

∀
y

L≤y≤U

f(y) ≥ 0 ∀
y

L≤y≤U

f(y) ≤ 0

where f ∈ R[y], f(y) = yn + an−1y
n−1 + ... + a1y + a0 where an−1, ..., a0 are

real parameters. More precisely, we give quantifier-free conditions equivalent
to each of them. These conditions depend on the behavior (monotone, convex,
concave) of f on the interval [L,U], hence we give sufficient conditions for a
certain behavior for linear and quadratic case.

These simplification methods were motivated by our previous work [12,13]
and aim for the automation of the QE where state of the art techniques fail.

Motivating Case Study. Consider the fundamental operation of computing
the square root of a given real number. For the problem, various numerical
methods have been developed: [17,20]. We consider an interval version of the
problem [18] : given a real number x and an error bound ε, find an interval such
that it contains

√
x and its width is less than or equal to ε. A typical interval

method starts with an initial interval and repeatedly updates it by applying a
refinement map, say R, on it until it becomes narrow enough (see below).

in: x > 0, ε > 0
out: I, an interval such that

√
x ∈ I and width(I) ≤ ε

I ← [min(1, x),max(1, x)]
while width(I) > ε

I ← R(I, x)
return I

A well known hand-crafted refinement map (called Secant-Newton) is given by

R∗([L,U], x) �→
[
L +

x − L2

L + U
,U +

x − U2

2U

]

The problem is to check if there is any refinement map which is better than
Secant-Newton. At this aim, we fixed a search space, that is, a family of maps
in which we search for a better map:

Rp,q : [L,U], x �→ [L′, U ′]

L′ = L +
x + p0L

2 + p1LU + p2U
2

p3L + p4U
U ′ = U +

x + q0U
2 + q1UL + q2L

2

q3U + q4L

For solving the problem we need to find the values of p and q such that the result-
ing algorithm is optimal among the correct, terminating and quadratic conver-
gent ones. It can be stated as the following constrained optimization problem:

Efficient Simplification Techniques for Special Real Quantifier Elimination 195

Minimize
E(p, q) := sup

0<L≤√
x≤U

L�=U

U ′−L′
U−L

subject to
C(p, q) : ⇐⇒ ∀

L,U,x
0<L≤√

x≤U

0 < L′ ≤ √
x ≤ U ′

Q(p, q) : ⇐⇒ ∀
x

x>0

∃
c

c>0

∀
L,U

0<L≤√
x≤U

U ′ − L′ ≤ c (U − L)2

The constraint C ensures the correctness of the algorithm. The constraint Q
ensures the quadratic convergence of the algorithm. The objective function E
is the Lipschitz constant and measures the complexity of the algorithm (the
smaller, the faster).

For solving the constrained optimization problem, one cannot simply apply
standard numerical optimization methods to the above optimization problem
since: (1) the constraints C and Q are quantified formulae and (2) the objective
function E is the result of parametric optimization (sup). Fortunately, one can
easily translate it into a real quantifier elimination problem. Thus, the problem
of synthesizing optimal algorithms can be reduced to a real quantifier elimination
problem. In principle, the above problem can be carried out automatically using
quantifier elimination algorithms. However, the computational requirement is
so huge that the automatic synthesis is practically impossible with current real
quantifier elimination software.

We overcame this difficulty by mainly following the same solution process as
in our previous work [12,13]:

1. Reducing a complicated quantifier elimination formula into several simpler
ones, by: (a) carefully dividing the formula, exploiting the logical structure of
the formula, (b) designing and implementing some simplification techniques
for automating the quantifier elimination process.

2. Eliminating quantifiers from the resulting several simpler formulas automati-
cally, using the state of the art quantifier elimination software such as Math-
ematica [19] and QEPCAD-B [4].

As the result, we were able to synthesize semi-automatically an optimal quadratic
convergent algorithm (see Sect. 3.1), which is significantly better than the well
known hand-crafted Secant-Newton.

This paper extends/modifies our previous results [12,13] in the following
aspects:

1. In [12,13], we optimized also among the terminating maps, that is among the
maps satisfying the condition:

T (p, q) : ⇐⇒ ∀
x

x>0

∃
c

1>c>0

∀
L,U

0<L≤√
x≤U

U ′ − L′ ≤ c (U − L)

Since we know that we have at least one map for which c ∈ (0, 1) (Secant-
Newton map has c = 1

2) the condition T is left out.

196 M. Eraşcu

2. In [12], we optimized among the correct and terminating maps which fulfilled
a certain natural condition, obtaining an infinite family of optimal maps. In
[13], we detected in the class of optimal maps a single optimal quadratically
convergent map. In this paper, we removed the natural condition, enlarging
the class of optimal maps of [12] while the main result of [13] is preserved. The
removal of the additional constraint solves one of the open problems posed in
[12,13].

3. In [12,13], in the quantifier elimination from C, high degree manual interven-
tion was needed since the general QE tools failed to solve the QE problem. In
this paper, by abstracting these hands-on techniques into systematic ideas,
we devised simplification methods which assist the general QE by CAD algo-
rithm from Mathematica (Reduce command) in delivering a quantifier-free
formula. This partially solves one of the open problems posed in [12,13] and,
therefore, further investigations are needed for polynomials of degree 3 and
above.

The paper is structured as follows. In Sect. 2, we present simplification techniques
tailored for the optimal algorithm synthesis problem whose main result, that is, a
quadratically convergent optimal algorithm is presented in Sect. 3.1. In Sect. 3.2,
we show how we derived the main result. Finally, in Sect. 4, we conclude and
discuss future research directions.

2 Simplification Techniques for Sign Semi-definite
Conditions

In this section we introduce the definitions of sign semi-definite conditions, sim-
plification techniques tailored for them, as well as sufficient conditions for the
simplification techniques to be sound.

Definition 1. Let f(y) = yn + an−1y
n−1 + ... + a1y + a0 be a polynomial in y

over R. We call the following conditions sign semi-definite conditions (SsDCs)1

for f :

∀
y

L≤y≤U

f(y) ≥ 0 ∀
y

L≤y≤U

f(y) ≤ 0

Definition 2. f is monotone increasing on [L,U] iff ∀
x,y

L≤x≤y≤U

f(L)≤f(x)≤f(y)≤

f(U).

The following lemmas (Lemmas 1–4) eliminate one universally quantified vari-
able from an univariate polynomial expression providing equivalent necessary
and sufficient conditions. Note, however, that they can be applied also to multi-
variate polynomials, as in lemmas from Sect. 3.2.1, by viewing the multivariate
polynomials as univariate polynomials.
1 We will not consider here the sign definite conditions but they can be treated in a

similar fashion.

Efficient Simplification Techniques for Special Real Quantifier Elimination 197

Lemma 1. Let f be monotone increasing on [L,U]. Then we have

(a) ∀
y

L≤y≤U

f(y) ≥ 0 ⇐⇒ (L ≤ U ⇒ f(L) ≥ 0)

(b) ∀
y

L≤y≤U

f(y) ≤ 0 ⇐⇒ (L ≤ U ⇒ f(U) ≤ 0)

Lemma 2. Let f be monotone decreasing on [L,U]. Then we have

(a) ∀
y

L≤y≤U

f(y) ≥ 0 ⇐⇒ (L ≤ U ⇒ f(U) ≥ 0)

(b) ∀
y

L≤y≤U

f(y) ≤ 0 ⇐⇒ (L ≤ U ⇒ f(L) ≤ 0)

Lemma 3. Let f be convex on [L,U]. Then we have

(a) ∀
y

L≤y≤U

f(y) ≥ 0 ⇐⇒ (L ≤ c ≤ U ⇒ f(c) ≥ 0), where c is the critical

point of f.
(b) ∀

y
L≤y≤U

f(y) ≤ 0 ⇐⇒ (L ≤ U ⇒ f(L) ≤ 0 ∧ f(U) ≤ 0)

Lemma 4. Let f be concave on [L,U]. Then we have

(a) ∀
y

L≤y≤U

f(y)≥0 ⇐⇒ (L≤U ⇒ f(L)≥0 ∧ f(U)≥0).

(b) ∀
y

L≤y≤U

f(y)≤0 ⇐⇒ (L≤c≤U ⇒ f(c)≤0), where c is the critical point of

f.

Lemmas 1–4 are useful if one can determine algorithmically when a function is
monotone increasing/decreasing or convex/concave on a certain interval [L,U].
Checking algorithmically these for arbitrary degree f is a challenging problem
since we have to compute the real roots of f ′ (or to find isolating intervals for
them), which are the critical points of f . However, for degree 1 or 2 these checks
can be performed easily (Lemmas 5–8).

Lemma 5. Let f be a polynomial function of degree 1 on y. If the leading coef-
ficient of f on [L,U] is positive then f is increasing on [L,U].

Lemma 6. Let f be a polynomial function of degree 1 on y. If the leading coef-
ficient of f on [L,U] is negative then f is decreasing on [L,U].

Lemma 7. Let f be a polynomial function of degree 2 on y and c its critical
point.

(a) If c < L ≤ U and the leading coefficient of f on [L,U] is positive then f is
monotone increasing on [L,U].

(b) If L ≤ c ≤ U and the leading coefficient of f on [L,U] is positive then f is
convex on [L,U].

198 M. Eraşcu

(c) If L ≤ U < c and the leading coefficient of f on [L,U] is positive then f is
monotone decreasing on [L,U].

Lemma 8. Let f be a polynomial function of degree 2 on y and c its critical
point.

(a) If c < L ≤ U and the leading coefficient of f on [L,U] is negative then f is
monotone decreasing on [L,U].

(b) If L ≤ c ≤ U and the leading coefficient of f on [L,U] is negative then f is
concave on [L,U].

(c) If L ≤ U < c and the leading coefficient of f on [L,U] is negative then f is
monotone increasing on [L,U].

We implemented the results presented above in Mathematica (Simplifier rou-
tine http://www.risc.jku.at/projects/SPy/CASC2016/). It (a) uses the tactics
for eliminating a quantifier from Lemmas 1–4 if their preconditions are fulfilled
(Lemmas 5–8) (b) applies Reduce command of Mathematica to eliminate the rest
of the quantifiers. It was successfully applied to all, but one, quantifier elimina-
tion problems appearing in the synthesis of optimal algorithms (Sect. 3), however
(a) in some cases the quantifier-free formula obtained by Mathematica was fur-
ther simplified by hand for esthetic reasons (b) in the case the quantifier-free
formula could not be found by Mathematica, we manually eliminated one vari-
able then applied QEPCAD-B, concluding that the formula simplification step
of cylindrical algebraic decomposition plays a major role at delivering the final
answer.

3 Application: Synthesis of Optimal Numerical
Algorithms

In this section, we state the main result. We will use the notations and the results
introduced in the previous sections.

3.1 Main Result

Theorem 1 (Main). We have

(A) C ∧ Q ∧ 0 < E < 1 =⇒ E ≥ 1
4

(B) C ∧ Q ∧ E = 1
4 ⇐⇒ p = (−1, 0, 0, 1, 1) ∧ q =

(− 3
4 ,− 1

2 , 1
4 , 1, 1

)
For the simplicity of the solution process, we will use the following notation.

http://www.risc.jku.at/projects/SPy/CASC2016/

Efficient Simplification Techniques for Special Real Quantifier Elimination 199

Notation 1 2

y =
√

x (1)
W = U − L (2)
a = (a0, a1, a2, a3, a4) = (p0 + p1 + p2, p1 + 2p2, p2, p3 + p4, p4) (3)
b = (b0, b1, b2, b3, b4) = (q0 + q1 + q2, 2q0 + q1, q0, q3 + q4, q3) (4)

Recalling the formulation of the constrained optimization problem and the def-
initions of L′ and U ′ we have:

Minimize
E(a, b) := sup

0<L≤y≤L+W
W �=0

U ′−L′
W

subject to
C(a, b) : ⇐⇒ ∀

L,U,y
0<L≤y≤L+W

0 < L′ ≤ y ≤ U ′

Q(a, b) : ⇐⇒ ∀
y

y>0

∃
c

c>0

∀
L,W

0<L≤y≤L+W

U ′ − L′ ≤ c (U − L)2

where

L′ = L+
y2 + a0L2 + a1LW + a2W 2

a3L+ a4W
U ′ = L+W +

y2 + b0L2 + b1LW + b2W 2

b3L+ b4W

Note that the denominators of these maps must be non-zero, that is

(a3 > 0 ∧ a4 ≥ 0) ∨ (a3 < 0 ∧ a4 ≤ 0) (5)
∧
(b3 > 0 ∧ b4 ≥ 0) ∨ (b3 < 0 ∧ b4 ≤ 0) (6)

For the rest of the derivation process, we will use Notation 1. We will return to
the initial notation at the end of Sect. 3.2.3.

3.2 Proof

In this section, we prove Theorem 1. The proof essentially consists in two quan-
tifier elimination problems over real numbers, hence, in principle, could be car-
ried out automatically. However, the computational requirement is huge making
2 (2) was motivated by the desire for simplifying the bounds of

√
x. (3) and (4) are

motivated by (1) and (2) and by the initial definitions of L′ and U ′:

L′ = L +
y2 + (p0 + p1 + p2)L

2 + (p1 + 2p2)LW + p2W
2

(p3 + p4)L + p4W

U ′ = L + W +
y2 + (q0 + q1 + q2)L

2 + (2q0 + q1)LW + q0W
2

(q3 + q4)L + q3W
.

200 M. Eraşcu

the automatic proof practically impossible. To overcome this inconvenience, we
divided the proof into three parts: (1) simplify the constraint, (2) simplify the
objective function, and (3) carry out constrained minimization.

3.2.1 Simplify the Constraint
The aim of this section is to find a quantifier-free formula equivalent to C.
Since this can not be achieved automatically, we perform simplifications on C
(Lemmas 9–12).

It is natural to require that when L = y = L + W we have L′ = y = U ′.
Hence we have the following lemma:

Lemma 9. We have

∀
L,W,y

0<L=y=L+W

0 < L′ = y = U ′ =⇒ a0 = b0 = −1

Proof. Assume the left hand side of the formula. Let K be the formula obtained
from the left hand side formula by instantiating the universally quantified vari-
ables y and W with L and 0 respectively. Then K holds. By eliminating quan-
tifiers from the formula K, using Mathematica, we have a0 = b0 = −1.

In the following, we continue deriving a quantifier-free necessary condition of the
constraint C. First, we split C as follows:

C (a, b) ⇐⇒ C1 (a) ∧ C2 (a) ∧ C3 (b)

where

C1 (a) : ⇐⇒ ∀
L,W,y

0<L≤y≤L+W

0 < L′ C2 (a) : ⇐⇒ ∀
L,W,y

0<L≤y≤L+W

L′ ≤ y

C3 (b) : ⇐⇒ ∀
L,W,y

0<L≤y≤L+W

y ≤ U ′

This splitting is a natural thing to do because the new formulas are simpler.
Moreover it is used in the subsequent lemmas.

Lemma 10. We have

C =⇒ a3 > 0 ∧ a4 ≥ 0 ∧ a1 ≤ 0 ∧ a2 ≤ 0 ∧ a1 − a3 + 2 ≤ 0 ∧ a2 − a4 + 1 ≤ 0
∨
a3 < 0 ∧ a4 ≤ 0 ∧ a1 ≥ 0 ∧ a2 ≥ 0

Proof. Assume C. From Lemma 9, we have a0 = −1. From the C, we have C2.
By recalling the definition of L′, we have

∀
L,W,y

0<L≤y≤L+W

L +
y2 − L2 + a1LW + a2W

2

a3L + a4W
≤ y

Motivated by (5), we consider two cases.

Efficient Simplification Techniques for Special Real Quantifier Elimination 201

Case a3 > 0 ∧ a4 ≥ 0. By factoring, collecting the terms and noting that the
denominator of L′ is positive, that is

a3 > 0 ∧ a4 ≥ 0 ∧ 0 < L ≤ L + W =⇒ a3L + a4W > 0

we obtain a3 > 0 ∧ a4 ≥ 0 ∧ ∀
L,W

0<L≤L+W

∀
y

L≤y≤L+W

f1(y) ≤ 0 where

f1(y) := y2 − y(a3L + a4W) − L2 + a1LW + a2W
2 + L(a3L + a4W).

By using the Simplifier and further simplifying, we have

a3 > 0 ∧ a4 ≥ 0 ∧ a1 ≤ 0 ∧ a2 ≤ 0 ∧ a1 − a3 + 2 ≤ 0 ∧ a2 − a4 + 1 ≤ 0

Case a3 < 0 ∧ a4 ≤ 0. By factoring, collecting the terms and noting that the
denominator of L′ is negative, that is

a3 < 0 ∧ a4 ≤ 0 ∧ 0 < L ≤ L + W =⇒ a3L + a4W < 0

we obtain a3 < 0 ∧ a4 ≤ 0 ∧ ∀
L,W

0<L≤L+W

∀
y

L≤y≤L+W

f1(y) ≥ 0

By using the Simplifier and further simplifying, we have

a3 < 0 ∧ a4 ≤ 0 ∧ a1 ≥ 0 ∧ a2 ≥ 0

Lemma 11. We have

C =⇒ a3 > 0 ∧a4 ≥ 1 ∧ a2 = 0 ∧ a1 ≤ 0 ∧ a1 −a3 +2 ≤ 0 ∧ a1 +a4 ≥ 0

Proof. Assume C. From Lemma 9, we have a0 = −1. From C, we have C1. By
recalling the definition of L′, we have

∀
L,W,y

0<L≤y≤L+W

L +
y2 − L2 + a1LW + a2W

2

a3L + a4W
> 0

Motivated by (5), we consider two cases.
Case a3 > 0 ∧ a4 ≥ 0. By factoring, collecting the terms and noting that the
denominator of L′ is positive, that is,

a3 > 0 ∧ a4 ≥ 0 ∧ 0 < L ≤ L + W =⇒ a3L + a4W > 0

we obtain a3 > 0 ∧ a4 ≥ 0 ∧ ∀
L,W

0<L≤L+W

∀
y

L≤y≤L+W

f2(y) > 0 where

f2(y) := y2 + (a3 − 1)L2 + (a1 + a4)LW + a2W
2.

By combining with Lemma 10, using the Simplifier and further simplifying, we
have

a3 > 0 ∧ a4 ≥ 1 ∧ a2 = 0 ∧ a1 ≤ 0 ∧ a1 − a3 + 2 ≤ 0 ∧ a1 + a4 ≥ 0

202 M. Eraşcu

Case a3 < 0 ∧ a4 ≤ 0. By factoring, collecting the terms and noting that the
denominator of L′ is negative, that is

a3 < 0 ∧ a4 ≤ 0 ∧ 0 < L ≤ L + W =⇒ a3L + a4W < 0

we obtain a3 < 0 ∧ a4 ≤ 0 ∧ ∀
L,W

0<L≤L+W

∀
y

L≤y≤L+W

f2(y) < 0.

By combining with Lemma 10 and using the Simplifier, we obtain False.

Lemma 12. We have

C =⇒ b3>0∧b4≥0∧b1+2≥0∧b2+1≥0∧b1+b3≥0∧(b4−2>0∨ −b24+4b4+4b2≥0)
∨
b3<0∧b4≤0∧b1+2≤0∧b2+1≤0

Proof. Assume C. From Lemma 9, we have b0 = −1. From C, we have C3. By
recalling the definition of U ′, we have

∀
L,W,y

0<L≤y≤L+W

y ≤ L + W +
y2 − L2 + b1LW + b2W

2

b3L + b4W

Motivated by (6), we consider two cases.
Case b3 > 0 ∧ b4 ≥ 0. By factoring, collecting the terms and noting that the
denominator of U ′ is positive, that is

b3 > 0 ∧ b4 ≥ 0 ∧ 0 < L ≤ L + W =⇒ b3L + b4W > 0

we obtain b3 > 0 ∧ b4 ≥ 0 ∧ ∀
L,W

0<L≤L+W

∀
y

L≤y≤L+W

f3(y) ≥ 0 where

f3(y) := y2 − y(b3L + b4W) − L2 + b1LW + b2W
2 + (L + W) (b3L + b4W).

Using the Simplifier does not succeed because Reduce command of Mathe-
matica could not eliminate the quantifier from the formula b3 > 0 ∧ b4 ≥
0 ∧ ∀

L,W

0<L≤ b3L+b4W
2 ≤L+W

f3
(
b3L+b4W

2

) ≥ 0. Hence we divide the problem and

approach it using QEPCAD-B.
Since f3 is convex and its critical point of is b3L+b4W

2 , we have

b3 > 0 ∧ b4 ≥ 0 ∧ ∀
L,W

0<L≤L+W

f3(L) ≥ 0

∧ ∀
L,W

0<L≤ b3L+b4W
2 ≤L+W

f3
(
b3L+b4W

2

) ≥ 0

∧ ∀
L,W

0<L≤L+W

f3(L + W) ≥ 0

By eliminating the quantifiers and combining using QEPCAD-B, we have

b3 > 0∧b4 ≥ 0∧b1+2 ≥ 0∧b2+1 ≥ 0∧b1+b3 ≥ 0∧(b4−2 > 0∨−b24+4b4+4b2 ≥ 0)

Efficient Simplification Techniques for Special Real Quantifier Elimination 203

Case b3 < 0 ∧ b4 ≤ 0. By factoring, collecting the terms and noting that the
denominator of U ′ is negative, that is

b3 < 0 ∧ b4 ≤ 0 ∧ 0 < L ≤ L + W =⇒ b3L + b4W < 0

we obtain b3 < 0 ∧ b4 ≤ 0 ∧ ∀
L,W

0<L≤L+W

∀
y

L≤y≤L+W

f3(y) ≤ 0.

By using the Simplifier and further simplifying, we have

b3 < 0 ∧ b4 ≤ 0 ∧ b1 + 2 ≤ 0 ∧ b2 + 1 ≤ 0

Lemma 13 (Simplified constraint).We have C =⇒ F where

F (a, b) : ⇐⇒
a0 = −1 ∧ a1 ≤ 0 ∧ a2 = 0 ∧ a3 > 0 ∧ a4 ≥ 1 ∧ a1 − a3 + 2 ≤ 0 ∧ a1 + a4 ≥ 0
∧⎛
⎝
b0=−1∧b3>0∧b4≥0∧b1+2≥0∧b2+1≥0∧b1+b3 ≥0∧(b4−2>0∨−b24+4b4+4b2≥0)
∨
b0=−1∧b3<0∧b4≤0∧b1+2≤0∧b2+1≤0

⎞

⎠

Proof. Immediate from Lemmas 9, 11, and 12.

Lemma 14. We have C ∧ 0 < E < 1 =⇒ F ∧ 0 < E < 1

Proof. From Lemma 13, we have C =⇒F from which we trivially obtain the goal.

A careful reader might notice that quantifier elimination from the constrained
Q should be performed. This could not be achieved using manual and automatic
simplifications, so in the section simplify the objective function we eliminate the
quantifier from E under C ∧ 0 < E < 1 and verify, in the section carry out the
constrained minimization, if the optimal solution satisfies Q.

3.2.2 Simplify the Objective Function
In this subsection, we eliminate max and sup from the objective function E
under the constraint C∧0 < E < 1. Since this can not be achieved automatically
using the routines implemented in e.g. Mathematica, we performed a series of
strategic simplifications which eliminate the parameters a and b which do not
lead to 0 < E < 1.

Lemma 15. Assume C ∧ 0 < E < 1. Then

E(a, b) = max{E1(a, b), E2(a, b)}
where

E1(a, b) = sup
L,W
L>0
W>0
M≥0

[
M(L + W)2 + N

W

]
E2(a, b) = sup

L,W
L>0
W>0
M≤0

[
ML2 + N

W

]

where again

M =
1

b3L+b4W
− 1

a3L+a4W
; N = W +

−L2+b1LW +b2W
2

b3L+b4W
− −L2+a1LW

a3L+a4W

204 M. Eraşcu

Proof. Assume C ∧ 0 < E < 1. From Lemma 14, we have F ∧ 0 < E < 1. By
recalling the definitions of L′ and U ′, we have

E (a, b) = sup
L,W,y

0<L≤y≤L+W
W>0

⎡
⎣L + W + y2−L2+b1LW+b2W

2

b3L+b4W
−

(
L + y2−L2+a1LW

a3L+a4W

)
W

⎤
⎦

By combining the denominators, collecting the terms involving y2, simplifying,
and splitting the sup variables, we have

E (a, b) = sup
L,W
L>0
W>0

sup
y

L≤y≤L+W

[
My2 + N

W

]

By splitting the cases depending on the sign of M , we have

E (a, b) = max{E1(a, b), E2(a, b)}
where

E1 (a, b) = sup
L,W
L>0
W>0
M≥0

sup
y

L≤y≤L+W

[
My2+N

W

]
E2 (a, b) = sup

L,W
L>0
W>0
M≤0

sup
y

L≤y≤L+W

[
My2+N

W

]

Note that W > 0. We consider two cases.

Case 1 : M
W ≥ 0. Since f(y) = M

W y2+ N
W is a convex function in y with the critical

point 0 �∈ [L,L + W], we have that it is also strictly positive on [L,L + W] and

E1 (a, b) = sup
L,W
L>0
W>0
M≥0

[
M(L + W)2 + N

W

]

Case 2 : M
W ≤ 0. Since f is a concave function in y with the critical point

0 �∈ [L,L + W], we have that it is also strictly negative on [L,L + W] and

E2 (a, b) = sup
L,W
L>0
W>0
M≤0

[
ML2 + N

W

]

Note that f(0) = N
W , hence E (a, b) = max{E1(a, b), E2(a, b)} = E1(a, b).

Notation 2.

h1 = 1 − 1
a4

+
b2 + 1

b4

u1 = −a2
4b3(1 + b2) + a3b

2
4 − a4b4(−a4(2 + b1) + b4(2 + a1))

v1 = a3b3b4 − a4b3b4(2 + a1) − a3a4(b3(1 + b2) − b4(2 + b1))

Efficient Simplification Techniques for Special Real Quantifier Elimination 205

Lemma 16. Assume C ∧ 0 < E < 1.
(a) If b4 > 0 ∧ a4 < b4 ∧ a3 > b3 then

E1 (a, b) = h1 +
(

1
a4b4

)2

sup
V

0<V ≤ b3−a3
a4−b4

⎡
⎣ u1V + v1(

a3
a4

+ V
)(

b3
b4

+ V
)

⎤
⎦

(b) If b4 > 0 ∧ a4 > b4 ∧ a3 < b3 then

E1 (a, b) := h1 +
(

1
a4b4

)2

sup
V

V ≥ b3−a3
a4−b4

⎡
⎣ u1V + v1(

a3
a4

+ V
) (

b3
b4

+ V
)

⎤
⎦

(c) If b4 > 0 ∧ a4 ≥ b4 ∧ a3 ≥ b3 then

E1 (a, b) = h1 +
(

1
a4b4

)2

sup
V

V >0

⎡
⎣ u1V + v1(

a3
a4

+ V
)(

b3
b4

+ V
)

⎤
⎦

Proof. Assume C ∧ 0 < E < 1. From Lemma 14, we have F ∧ 0 < E < 1. Let
V = W

L . Recalling the notations in Lemma15, combining the denominators, and
simplifying, we have

E1 (a, b) = 1 + sup
V

V >0
a3+a4V
b3+b4V ≥1

[
(b1+2+(b2+1)V) (a3+a4V)−(a1+2+V) (b3+b4V)

(a3+a4V) (b3+b4V)

]

The expression of the denominator motivated us to split the analysis of E1 (a, b)
into two cases, based on the possible values of b4: b4 > 0, b4 ≤ 0.
Case b4 > 0. By carrying out polynomial division in V , simplifying and isolating
the terms involving V

E1 (a, b) = h1 +
(

1
a4b4

)2

sup
V

V >0
(a4−b4)V ≥b3−a3

⎡
⎣ u1V + v1(

a3
a4

+ V
)(

b3
b4

+ V
)

⎤
⎦

We find the domain of V . From Mathematica, we have

∃
V
(V >0 ∧ (a4−b4)V ≥ b3−a3) ⇐⇒ (a4<b4∧a3>b3)∨(a4=b4∧a3≥b3)∨a4>b4

Hence, we proceed by case distinction.
Case a4 < b4 ∧ a3 > b3. We have

E1 (a, b) = h1 +
(

1
a4b4

)2

sup
V

0<V ≤ b3−a3
a4−b4

⎡
⎣ u1V + v1(

a3
a4

+ V
) (

b3
b4

+ V
)

⎤
⎦

206 M. Eraşcu

Hence (a) is proved.
Case a4 = b4 ∧ a3 ≥ b3. We have

E1 (a, b) = h1 +
(

1
a4b4

)2

sup
V

V >0

⎡
⎣ u1V + v1(

a3
a4

+ V
) (

b3
b4

+ V
)

⎤
⎦ (7)

Case a4 > b4 necessitates further case distinction based on the sign of b3 − a3.
Case a4 > b4 ∧ a3 < b3. We have

E1 (a, b) = h1 +
(

1
a4b4

)2

sup
V

V ≥ b3−a3
a4−b4

⎡
⎣ u1V + v1(

a3
a4

+ V
) (

b3
b4

+ V
)

⎤
⎦

Hence, (b) is proved.
Case a4 > b4 ∧ a3 = b3. We have

E1 (a, b) = h1 +
(

1
a4b4

)2

sup
V

V >0

⎡
⎣ u1V + v1(

a3
a4

+ V
) (

b3
b4

+ V
)

⎤
⎦ (8)

Case a4 > b4 ∧ a3 > b3. We have

E1 (a, b) = h1 +
(

1
a4b4

)2

sup
V

V >0

⎡
⎣ u1V + v1(

a3
a4

+ V
) (

b3
b4

+ V
)

⎤
⎦ (9)

From (7), (8), and (9), we have:

E1 (a, b) = h1 +
(

1
a4b4

)2

sup
V

V >0

⎡
⎣ u1V + v1(

a3
a4

+ V
) (

b3
b4

+ V
)

⎤
⎦

and (a4=b4∧a3≥b3)∨(a4>b4∧a3=b3)∨(a4>b4∧a3>b3) ⇐⇒ a4≥b4∧a3≥b3.
Hence, (c) is proved.
Note that, if b4 ≤ 0, we have

F ∧ V > 0 ∧ a3 + a4V − (b3 + b4V)
b3 + b4V

≥ 0 ⇐⇒ False

Hence, there are no a, b with b3 < 0 ∧ b4 ≤ 0 such that 0 < E1 (a, b) < 1.

Lemma 17. Let b, w, t be strictly positive. Then we have

(1) sup
V

0<V ≤b

uV+v
(V+w)(V+t) ≥ ub+v

(b+w)(b+t)

(2a) sup
V

V >0

uV+v
(V+w)(V+t) ≥ 0

Efficient Simplification Techniques for Special Real Quantifier Elimination 207

(2b) sup
V

V >0

uV+v
(V+w)(V+t) = 0 iff v ≤ 0 ∧ u ≤ 0

(3a) sup
V

V ≥b

uV+v
(V+w)(V+t) ≥ 0

(3b) sup
V

V ≥b

uV+v
(V+w)(V+t) = 0 iff (v ≤ 0 ∧ u ≤ 0) ∨ (v > 0 ∧ u ≤ −v

b)

Proof. Proof of (1). We have two cases, depending whether the graph of the
function is above or below 0 (since y = 0 is horizontal asymptote).
Case v ≥ 0 ∧ u ≥ −v

b . We have sup
V

0<V ≤b

uV+v
(V+w)(V+t) ≥ ub+v

(b+w)(b+t) .

Case v ≤ 0 ∧ u ≤ −v
b . We have sup

V
0<V ≤b

uV+v
(V+w)(V+t) = ub+v

(b+w)(b+t) .

Hence sup
V

0<V ≤b

uV+v
(V+w)(V+t) ≥ ub+v

(b+w)(b+t) .

Proof of (2a). We have

sup
V

V >0

uV + v

(V + w) (V + t)
≥ lim

V →∞
uV + v

(V + w) (V + t)
= 0

Proof of (2b). We have sup
V

V >0

uV+v
(V+w)(V+t) = 0 ⇐⇒ ∀

V
V >0

uV+v
(V+w)(V+t) ≤ 0 ⇐⇒

v ≤ 0 ∧ u≤0 (by Mathematica)

Proof of (3a). We have

sup
V

V ≥b

uV + v

(V + w) (V + t)
≥ lim

V →∞
uV + v

(V + w) (V + t)
= 0

Proof of (3b). We have sup
V

V ≥b

uV+v
(V+w)(V+t) = 0 ⇐⇒ (v ≤ 0 ∧ u ≤ 0) ∨

(
v > 0 ∧ u ≤ −v

b

)
(by Mathematica)

Lemma 18. We have

C ∧ 0 < E < 1 ∧ b4 > 0 ∧ a4 ≥ b4 ∧ a3 ≥ b3 =⇒ h1 ≥ 1
4

∧ 0 < E < 1

Proof. Motivated by Lemma 16, we consider three cases. Case C ∧ 0 < E <
1 ∧ b4 > 0 ∧ a4 < b4 ∧ a3 > b3. From Lemma 13 and Mathematica, we have

min
a,b

C∧b4>0∧a4<b4∧a3>b3

h1 ≥ min
a,b

F∧b4>0∧a4<b4∧a3>b3

h1 = 0

Note that we have to compute

E = E1 (a, b) = h1 +
(

1
a4b4

)2

sup
V

0<V ≤ b3−a3
a4−b4

⎡
⎣ u1V + v1(

a3
a4

+ V
)(

b3
b4

+ V
)

⎤
⎦

208 M. Eraşcu

When the graph of h(V) = u1V+v1
(

a3
a4

+V
)(

b3
b4

+V
) is above 0, we have, by Lemma 17(1)

sup
V

0<V ≤ b3−a3
a4−b4

u1V + v1
(V + w) (V + t)

≥ u1
b3−a3
a4−b4

+ b3−a3
a4−b4(

b3−a3
a4−b4

+ w
)(

b3−a3
a4−b4

+ t
)

From Mathematica, we have
∃

a1,a3,a4
b1,b2,b3,b4

F ∧ b4>0 ∧ a4<b4 ∧ a3>b3 ∧ a3
a4

>0 ∧ b3
b4

>0 ∧ b>0 ∧ v1≥0 ∧ u1≥−v1
b ∧

u1b+v1
(b+w)(b+t) =0 ⇐⇒ True

and, therefore,

sup
V

0<V ≤ b3−a3
a4−b4

u1V + v1
(V + w) (V + t)

≥ u1
b3−a3
a4−b4

+ b3−a3
a4−b4(

b3−a3
a4−b4

+ w
) (

b3−a3
a4−b4

+ t
) ≥ 0

When the graph of h is below 0, by a similar reasoning we have

sup
V

0<V ≤ b3−a3
a4−b4

u1V + v1
(V + w) (V + t)

=
u1

b3−a3
a4−b4

+ b3−a3
a4−b4(

b3−a3
a4−b4

+ w
) (

b3−a3
a4−b4

+ t
) = 0

Summarizing

sup
V

0<V ≤ b3−a3
a4−b4

u1V + v1
(V + w) (V + t)

≥ u1
b3−a3
a4−b4

+ b3−a3
a4−b4(

b3−a3
a4−b4

+ w
) (

b3−a3
a4−b4

+ t
) ≥ 0

and since h1≥0, we have that E ≥0, which contradicts the assumption 0<E <1.
Case C ∧ 0 < E < 1 ∧ b4 > 0 ∧ a4 > b4 ∧ a3 < b3. From Lemma 13 and
Mathematica we have

min
a,b

C∧b4>0∧a4>b4∧a3<b3

h1 ≥ min
a,b

F∧b4>0∧a4>b4∧a3<b3

h1 =
1
4

but

F ∧ b4 > 0 ∧ a4 > b4 ∧ a3 < b3 ∧ h1 =
1
4

⇐⇒ False

Case C ∧ 0 < E < 1 ∧ b4 > 0 ∧ a4 ≥ b4 ∧ a3 ≥ b3. From Lemma 13 and
Mathematica we have

min
a,b

C∧b4>0∧a4≥b4∧a3≥b3

h2 ≥ min
a,b

F∧b4>0∧a4≥b4∧a3≥b3

h2 =
1
4

Hence we have C ∧ b4 > 0 ∧ a4 ≥ b4 ∧ a3 ≥ b3 =⇒ h1 ≥ 1
4 from which we

immediately obtain the goal.

Lemma 19 (Simplified objective function). Let C ∧0<E<1∧b4>0∧a4≥
b4∧a3≥b3. We have
(a) E ≥ h1

(b) E = h1 iff u ≤ 0 ∧ v ≤ 0

Proof. Immediate from Lemmas 15, 16, and 17.

Efficient Simplification Techniques for Special Real Quantifier Elimination 209

3.2.3 Carry Out the Constrained Minimization
In this subsection, we finally derive the main result (Theorem1) by carrying out
the constrained minimization, using the results from the previous two subsections
(Lemmas 14 and 19).

Proof. (Proof of (A)) We need to prove C ∧ Q ∧ 0 < E < 1 =⇒ E ≥ 1
4 . Note

C ∧ 0 < E < 1

=⇒C ∧ 0 < E < 1 ∧ b4 > 0 ∧ a4 ≥ b4 ∧ a3 ≥ b3 ∧ h1 ≥ 1
4

(by Lemma 18)

=⇒C∧0<E <1∧b4>0 ∧ a4≥b4∧a3≥b3∧E ≥h1∧h1≥ 1
4
(by Lemma 19(a))

=⇒E ≥ 1
4

Since C ∧ Q ∧ 0<E <1 =⇒ C ∧ 0<E <1, we obtain the goal.

Proof. (Proof of (B)) We need to prove

C ∧ Q ∧ E =
1
4

⇐⇒ p = (−1, 0, 0, 1, 1) ∧ q =
(

−3
4
,−1

2
,
1
4
, 1, 1

)

Direction =⇒: For simplicity, we will use in the proof the a, b notation and return
to the p, q notation in the end. Note

C ∧ E =
1
4

⇐⇒ C ∧ 0 < E < 1 ∧ E =
1
4

⇐⇒ C ∧ 0 < E < 1 ∧ b4 > 0 ∧ a4 ≥ b4 ∧ a3 ≥ b3 ∧ h1 ≥ 1
4

∧ E =
1
4

(from Lemma 18)

⇐⇒ C ∧ 0 < E < 1 ∧ b4 > 0 ∧ a4 ≥ b4 ∧ a3 ≥ b3 ∧ E ≥ h1 ∧ h1 ≥ 1
4

∧ E =
1
4

(from Lemma 19(a))

⇐⇒ C ∧ 0<E <1 ∧ b4 > 0 ∧ a4 ≥ b4 ∧ a3 ≥ b3 ∧ E =h1=
1
4

∧ u1 ≤ 0 ∧ v1 ≤ 0

(from Lemma 19(b))

⇐⇒ F ∧ 0<E <1 ∧ b4 > 0 ∧ a4 ≥ b4 ∧ a3 ≥ b3 ∧ E =h1=
1
4

∧ u1 ≤ 0 ∧ v1 ≤ 0

(from Lemma 13)

⇐⇒ a4 = b4 = 1 ∧ b2 = − 3
4 ∧ − 1

2 ≤ a1 ≤ 0 ∧ a3 − a1 − 2 ≥ 0 ∧
b1 + 2 ≥ 0 ∧ b1 + b3 ≥ 0 ∧ a3 ≥ b3 ∧ 4a1 − 4a3 − 4b1 + b3 ≥ 0

(by QEPCAD-B)

210 M. Eraşcu

Recalling the Notation 1, we have

p0 = −(1 + p1) ∧ p2 = 0 ∧ p4 = 1 ∧ − 1
2 ≤ p1 ≤ 0 ∧ p3 ≥ 1 + p1∧

q0 = − 3
4 ∧ q2 = − (

1
4 + q1

) ∧ q3 = 1 ∧ 1 + 2q1 ≥ 0 ∧ q1 + q4 ≥ 1
2∧

p3 ≥ q4 ∧ 4(p1 − p3 − q1) + q4 + 3 ≥ 0

⇐⇒ Z(p, q)

We have shown that C ∧ E = 1
4 =⇒ Z(p, q). We have C ∧ Q ∧ E = 1

4 =⇒ Z ∧ Q.
Finding automatically that the quantifier-free equivalent condition to Z ∧ Q is
p = (−1, 0, 0, 1, 1) ∧ q =

(− 3
4 ,− 1

2 , 1
4 , 1, 1

)
does not succeed. Hence we proceed

manually.
We assume Z ∧ Q ∧ ¬(p = (−1, 0, 0, 1, 1) ∧ q = (−3

4 ,− 1
2 , 1

4 , 1, 1)) and derive a
contradiction.
Case 1 : Z ∧ Q ∧ p �= (−1, 0, 0, 1, 1). Let p = (−1,−1

2 , 0, 1, 1). We immediately
have, by Mathematica, Z and ¬Q.
Case 2 : Z ∧ Q ∧ q �= (− 3

4 ,− 1
2 , 1

4 , 1, 1
)

Let q =
(− 3

4 , 0, 1
4 , 1, 1

)
. We immediately

have, by Mathematica, Z and ¬Q.
Direction ⇐=: C and Q and E = 1

4 are proved by Mathematica.

4 Conclusion and Future Work

In this paper, we presented efficient simplification techniques which proved to
be useful for the semi-automated synthesis of an optimal quadratic convergent
interval algorithm for square root computation, where state of the art techniques
implemented in quantifier elimination tools fail.

As future work, we plan to further investigate in the direction of simplification
techniques and to integrate them into state of the art quantifier elimination tools.

Acknowledgements. The author thanks Hoon Hong for providing feedback on an
earlier draft of this paper and to anonymous referees.

References

1. Abraham, E.: Building bridges between symbolic computation and satisfiability
checking. In: ISSAC 2015 Proceedings, pp. 1–6. ACM, New York (2015)

2. Anai, H., Yanami, H.: SyNRAC: a Maple-package for solving real algebraic con-
straints. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E.,
Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003, Part I. LNCS, vol. 2657,
pp. 828–837. Springer, Heidelberg (2003)

3. Brown, C.W.: Improved projection for cylindrical algebraic decomposition. J. Sym-
bolic Comput. 32(5), 447–465 (2001)

4. Brown, C.W.: QEPCAD-B: a program for computing with semi-algebraic sets using
CADs. SIGSAM Bull. 37(4), 97–108 (2003)

5. Brown, C.W.: Constructing a single open cell in a cylindrical algebraic decompo-
sition. In: ISSAC 2013 Proceedings, pp. 133–140. ACM, New York (2013)

Efficient Simplification Techniques for Special Real Quantifier Elimination 211

6. Caviness, B., Johnson, J. (eds.): Quantifier Elimination and Cylindrical Alge-
braic Decomposition. Texts and Monographs in Symbolic Computation. Springer,
Heidelberg (1998)

7. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Brakhage, H. (ed.) Automata Theory and Formal Languages.
LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

8. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an
open source C++ toolbox for strategic and parallel SMT solving. In: Heule, M.,
Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-24318-4 26

9. Davenport, J., Heintz, J.: Real quantifier elimination is doubly exponential. J.
Symbolic Comput. 5(1–2), 29–35 (1988)

10. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: ISSAC
2004 Proceedings, pp. 111–118. ACM, New York (2004)

11. Dolzmann, A., Sturm, T.: REDLOG: computer algebra meets computer logic.
SIGSAM Bull. (ACM Spec. Interest Group Symbolic Algebraic Manipulation)
31(2), 2–9 (1997)

12. Erascu, M., Hong, H.: Synthesis of optimal numerical algorithms using real quan-
tifier elimination (case study: square root computation). In: ISSAC 2014 Proceed-
ings, pp. 162–169. ACM, New York (2014)

13. Erascu, M., Hong, H.: Real quantifier elimination for the synthesis of optimal
numerical algorithms (case study: square root computation). J. Symbolic Comput.
75, 110–126 (2016)

14. Heintz, J., Roy, M.-F., Solern, P.: On the theoretical and practical complexity of
the existential theory of reals. Comput. J. 36(5), 427–431 (1993)

15. Iwane, H., Higuchi, H., Anai, H.: An effective implementation of a special quantifier
elimination for a sign definite condition by logical formula simplification. In: Gerdt,
V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol.
8136, pp. 194–208. Springer, Heidelberg (2013)

16. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer,
Heidelberg (2012)

17. Meggitt, J.E.: Pseudo division and pseudo multiplication processes. IBM J. Res.
Dev. 6(2), 210–226 (1962)

18. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Soci-
ety for Industrial and Applied Mathematics, Philadelphia (2009)

19. Wolfram Research. Mathematica Edition: Version 8.0. Wolfram Research (2010)
20. Revol, N.: Interval Newton iteration in multiple precision for the univariate case.

Numer. Algorithms 34(2–4), 417–426 (2003)
21. Strzebonski, A.: Cylindrical algebraic decomposition using validated numerics. J.

Symbolic Comput. 41(9), 1021–1038 (2006)
22. Tarski, A.: A decision method for elementary algebra and geometry. Bull. Am.

Math. Soc. 59, 91–93 (1953)

http://dx.doi.org/10.1007/978-3-319-24318-4_26

Symbolic-Numeric Algorithms
for Solving BVPs for a System of ODEs

of the Second Order: Multichannel Scattering
and Eigenvalue Problems

A.A. Gusev1(B), V.P. Gerdt1, L.L. Hai1, V.L. Derbov2, S.I. Vinitsky1,3,
and O. Chuluunbaatar1

1 Joint Institute for Nuclear Research, Dubna, Russia
gooseff@jinr.ru

2 Saratov State University, Saratov, Russia
3 RUDN University, 6 Miklukho-Maklaya Street, Moscow 117198, Russia

Abstract. Symbolic-numeric algorithms for solving multichannel scat-
tering and eigenvalue problems of the waveguide or tunneling type for
systems of ODEs of the second order with continuous and piecewise con-
tinuous coefficients on an axis are presented. The boundary-value prob-
lems are formulated and discretized using the FEM on a finite interval
with interpolating Hermite polynomials that provide the required con-
tinuity of the derivatives of the approximated solutions. The accuracy
of the approximate solutions of the boundary-value problems, reduced
to a finite interval, is checked by comparing them with the solutions
of the original boundary-value problems on the entire axis, which are
calculated by matching the fundamental solutions of the ODE system.
The efficiency of the algorithms implemented in the computer algebra
system Maple is demonstrated by calculating the resonance states of a
multichannel scattering problem on the axis for clusters of a few identical
particles tunneling through Gaussian barriers.

Keywords: Eigenvalue problem · Multichannel scattering problem ·
System of ODEs · Finite element method

1 Introduction

At present, the physical processes of electromagnetic wave propagation in mul-
tilayered optical waveguide structures and metamaterials [8], near-surface quan-
tum diffusion of molecules and clusters [5,7], and transport of charge carriers
in quantum semiconductor structures [6] are a subject of growing interest and
intense studies. The mathematical formulation of these physical problems leads
to the boundary-value problems (BVPs) for partial differential equations, which
are reduced by the Kantorovich method to a system of ordinary differential
equations (ODEs) of the second order with continuous or piecewise continuous

c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 212–227, 2016.
DOI: 10.1007/978-3-319-45641-6 14

Multichannel Scattering and Boundary Value Problems 213

potentials in an infinite region (on axis or semiaxis). The asymptotic boundary
conditions depend upon the kind of the considered physical problem, e.g., multi-
channel scattering, eigenvalue problem, or calculation of metastable states.

There is a number of unresolved problems in constructing calculation schemes
and implementing them algorithmically. For example, the conventional calcula-
tion scheme for solving the scattering problem on axis was constructed only for
the same number of open channels in the left-hand and right-hand asymptotic
regions [1]. Generally, the lack of symmetry in the coefficient functions entering
the ODE system with respect to the sign of the independent variable makes it
necessary to construct more general calculation schemes. In the eigenvalue prob-
lem for bound or metastable states of the BVPs with piecewise constant poten-
tials, the desired set of real or complex eigenvalues is conventionally calculated
from the dispersion equation using the method of matching the general solutions
with the unknown coefficients calculated from a system of algebraic equations.
This method is quite a challenge, when the number of equations and/or the
number of discontinuities of the potentials is large [8]. The aim of this paper
is to present the construction of algorithms and programs implemented in the
computer algebra systems Maple that allow progress in solving these problems
and developing high-efficiency symbolic-numeric software.

In earlier papers [2,3], we developed symbolic-numeric algorithms of the finite
element method (FEM) with Hermite interpolation polynomials (IHP) to calcu-
late high-accuracy approximate solutions for a single ODE with piecewise con-
tinuous potentials and reduced boundary conditions on a finite interval. Here
this algorithm is generalized to a set of ODEs and implemented as KANTBP
4M in the computer algebra system Maple [4]. For the multichannel scattering
problem with piecewise constant potentials on the axis, the numerical estimates
of the accuracy of the approximate solution of the BVP reduced to finite interval
are presented using an auxiliary algorithm of matching the fundamental solu-
tions at each boundary between the adjacent axis subintervals. The efficiency of
the algorithms is demonstrated by the example of calculating the resonance and
metastable states of the multichannel scattering problem on the axis for clusters
formed by a few identical particles tunneling through Gaussian barriers.

The paper has the following structure. Section 2 formulates the eigenvalue
problem and the multichannel scattering problem of the waveguide type for a
system of ODEs with continuous and piecewise continuous coefficients on an axis.
Sections 3 and 4 present the algorithms for solving the multichannel scattering
problem and the eigenvalue problem. The comparative analysis of the solutions
of the ODE system with piecewise constant potentials is given. In Sect. 5 the
quantum transmittance induced by metastable states of clusters is analysed.
Finally, the summary is given, and the possible use of algorithms and programs
is outlined.

2 Formulation of the Boundary Value Problems

The symbolic-numeric algorithm realized in Maple is intended for solving the
BVP and the eigenvalue problem for the system of second-order ODEs with

214 A.A. Gusev et al.

respect to the unknown functions Φ(z) = (Φ1(z), . . . , ΦN (z))T of the indepen-
dent variable z ∈ (zmin, zmax) numerically using the Finite Element Method:

(D − E I) Φ(i)(z) ≡
(

− 1
fB(z)

I
d

dz
fA(z)

d

dz
+ V(z)

+
fA(z)
fB(z)

Q(z)
d

dz
+

1
fB(z)

d fA(z)Q(z)
dz

− E I
)

Φ(z) = 0. (1)

Here fB(z) > 0 and fA(z) > 0 are continuous or piecewise continuous positive
functions, I is the identity matrix, V(z) is a symmetric matrix, Vij(z) = Vji(z),
and Q(z) is an antisymmetric matrix, Qij(z) = −Qji(z), of the effective poten-
tials having the dimension N×N . The elements of these matrices are continuous
or piecewise continuous real or complex-valued coefficients from the Sobolev
space Hs≥1

2 (Ω), providing the existence of nontrivial solutions subjected to
homogeneous mixed boundary conditions: Dirichlet and/or Neumann, and/or
third-kind at the boundary points of the interval z ∈ {zmin, zmax} at given val-
ues of the elements of the real or complex-valued matrix R(zt) of the dimension
N×N

(I) : Φ(zt) = 0, zt = zmin and/or zmax, (2)

(II) : lim
z→zt

fA(z)
(
I

d

dz
− Q(z)

)
= 0, zt = zmin and/or zmax, (3)

(III) :
(
I

d

dz
− Q(z)

) ∣∣∣∣
z=zt

= R(zt)Φ(zt), zt = zmin and/or zmax. (4)

One needs to note that the boundary conditions (2)–(4) can be applied to both
ends of the domain independently, e.g. the boundary condition (2) to zmin and, at
the same time, the boundary condition (4) to zmax. The solution Φ(z)∈Hs≥1

2 (Ω̄)
of the BPVs (1)–(4) is determined using the Finite Element Method(FEM) by
numerical calculation of stationary points for the symmetric quadratic func-
tional

Ξ(Φ, E, zmin, zmax) ≡
zmax∫

zmin

Φ•(z) (D−E I) Φ(z)dz=Π(Φ, E, zmin, zmax)+C,

C=−fA(zmax)Φ•(zmax)G(zmax)Φ(zmax)+fA(zmin)Φ•(zmin)G(zmin)Φ(zmin),

Π(Φ, E, zmin, zmax)=

zmax∫
zmin

[
fA(z)

dΦ•(z)
dz

dΦ(z)
dz

+fB(z)Φ•(z)V(z)Φ(z) (5)

+fA(z)Φ•(z)Q(z)
dΦ(z)

dz
−fA(z)

dΦ(z)•

dz
Q(z)Φ(z)−fB(z)EΦ•(z)Φ(z)

]
dz,

where G(z) = R(z) − Q(z) is a symmetric matrix of the dimension N×N , and
the symbol • denotes either the transposition T , or the Hermitian conjugation †.

Problem 1. For the multichannel scattering problem on the axis z∈(−∞,+∞)
at fixed energy E ≡ �E, the desired matrix solutions Φ(z) ≡ {Φ(i)

v (z)}N
i=1,

Multichannel Scattering and Boundary Value Problems 215

Φ(i)
v (z) = (Φ(i)

1v (z), . . . , Φ(i)
Nv(z))T (the subscript v takes the values → or ← and

indicates the initial direction of the incident wave) of the BVP for the system
of N ordinary differential equations of the second order (1) in the interval z ∈
(zmin, zmax) are calculated by the code. These matrix solutions are to obey the
homogeneous third-kind boundary conditions (4) at the boundary points of the
interval z ∈ {zmin, zmax} with the asymptotes of the “incident wave + outgoing
waves” type in the open channels i = 1, ..., No:

Φv(z → ±∞) =

⎧⎪⎪⎨
⎪⎪⎩

{
X(+)(z)Tv, z ∈ [zmax,+∞),
X(+)(z) + X(−)(z)Rv, z ∈ (−∞, zmin],

v =→,{
X(−)(z) + X(+)(z)Rv, z ∈ [zmax,+∞),
X(−)(z)Tv, z ∈ (−∞, zmin],

v =←,
(6)

where Tv and Rv are unknown rectangular and square matrices of transmission
and reflection amplitudes, respectively, used to construct the scattering matrix
S of the dimension No×No:

S =
(

R→ T←
T→ R←

)
, (7)

which is symmetric and unitary in the case of real-valued potentials.
For the multichannel scattering problem on a semiaxis z ∈ (zmin,+∞) or

z ∈ (−∞, zmax), the desired matrix solution Φ(z) of the BVP for the system
of N ordinary differential equations of the second order (1) is calculated in the
interval z ∈ (zmin, zmax). This matrix solution is to obey the homogeneous third-
kind boundary conditions (4) at the boundary point zmax or zmin of the interval,
with the asymptotes of the “incident wave + outgoing waves” type in the open
channels i = 1, ..., No:

Φ←(z → +∞) = X(−)(z) + X(+)(z)R←, z ∈ [zmax,+∞) (8)
or Φ→(z → −∞) = X(+)(z) + X(−)(z)R→, z ∈ (−∞, zmin],

and obeying the homogeneous boundary conditions (Dirichlet and/or Neumann,
and/or third-kind (see (2)–(4))) at the boundary point zmin or zmax to construct
the scattering matrix S = R← or S = R→, which is symmetric and unitary in
the case of real-valued potentials.

In the solution of a multichannel scattering problem, the closed channels are
taken into account. In this case, the asymptotic conditions (6), (8) have the form

LR : Φ→(z→ ± ∞) =

{
X(→)

max(z)T→+X(c)
max(z)Tc

→, z→ + ∞,

X(→)
min (z)+X(←)

min (z)R→+X(c)
min(z)Rc

→, z→ − ∞ (9)

RL : Φ←(z→ ± ∞) =

{
X(←)

max(z)+X(→)
max(z)R←+X(c)

max(z)Rc
←, z→ + ∞,

X(←)
min (z)T←+X(c)

min(z)Tc
←, z→ − ∞.

(10)

where X(→)
max(z) = X(+)(z), z ≥ zmax, X(→)

min (z) = X(+)(z), z ≤ zmin, X(←)
min (z) =

X(−)(z), z ≤ zmin in Eq. (9) and X(←)
max(z) = X(−)(z), z ≥ zmax X(→)

max(z) =

216 A.A. Gusev et al.

X(+)(z), z ≥ zmax, X(←)
min (z) = X(−)(z), z ≤ zmin in Eq. (10). It is assumed that

the leading terms of the asymptotic solutions X(±)(z) of the BVP at z ≤ zmin

and/or z ≥ zmax have the following form:
in the open channels V t

ioio
<E are oscillating solutions j=1, . . ., N , io=1, . . ., No:

X
(±)
ioj (z) → exp

(±ıpt
io

z
)

√
fA(z)pt

i

δioj , pt
io =

√
fB(zt)
fA(zt)

√
E − V t

ioio
(11)

in the closed channels V t
icic

≥E are exponentially decreasing solutions j=1, . . ., N ,
ic=No+1, . . ., N

X
(c)
icj (z) → 1√

fA(z)
exp

(−pt
ic |z|) δicj , pt

ic =

√
fB(zt)
fA(zt)

√
V t

icic
− E. (12)

These relations are valid if the coefficients of the equations with z ≤ zmin and/or
z ≥ zmax satisfy the following conditions t = min,max:

fA(z)
fB(z)

=
fA(zt)
fB(zt)

+ o(1), Vij(z) = V t
iiδij + o(1), Qt

ij(z) = o(1). (13)

In the procedure of solving the BVP (1)–(4), the corresponding symmetric
quadratic functional (5) is used, where the symbol • denotes the transposition
and the complex conjugation † for real-valued potentials and the transposition T

for complex-valued potentials required for discretisation of the problem using
the FEM.

Problem 2. For the eigenvalue problem the code calculates a set of M energy
eigenvalues E: �E1 ≤ �E2 ≤ . . . ≤ �EM and the corresponding set of eigen-
functions Φ(z) ≡ {Φ(m)(z)}M

m=1, Φ(m)(z) = (Φ(m)
1 (z), . . . , Φ(m)

N (z))T from the
space H2

2 for the system of N ordinary differential equations of the second
order (1) subjected to the homogeneous boundary conditions of the first and/or
second, and/or third kind (see (2)–(4)) at the boundary points of the interval
z ∈ (zmin, zmax). In the case of real-valued potentials, the solutions are subjected
to the normalisation and orthogonality conditions

〈Φ(m)|Φ(m′)〉 =
∫ zmax

zmin
fB(z)(Φ(m)(z))•Φ(m′)(z)dz = δmm′ , (14)

and the corresponding symmetric quadratic functional (5) is used, in which •

denotes the Hermitian conjugation † needed for discretisation of the problem by
the FEM. In the case of complex valued potentials, the solutions are to obey the
normalisation and orthogonality conditions (14), and the corresponding sym-
metric quadratic functional (5) is used, in which • denotes the transposition T .

To solve the bound-state problem on the axis or on the semiaxis, the original
problem is approximated by the BVP (1)–(4) on a finite interval z∈(zmin, zmax)
under the boundary conditions of the third kind (4) with the given matrices
R(zt), which are independent of the unknown eigenvalue E, and the set of

Multichannel Scattering and Boundary Value Problems 217

approximate eigenvalues and eigenfunctions is calculated. If the matrices R(zt)
depend on the unknown eigenvalue E, then R(zt, E) is determined by the known
asymptotic expansion of the desired solution. In this case, the Newtonian iter-
ation scheme is implemented to calculate the approximate eigenfunctions and
eigenvalues. The appropriate initial approximations are chosen from the solu-
tions calculated previously with the boundary conditions independent of E.

Problem 3. For the calculation of metastable states with unknown complex
eigenvalues E, the program solves the BVP for the set of equations (1) on a
finite interval with the homogeneous conditions of the third kind (4), depend-
ing on the unknown eigenvalue E, using the appropriate symmetric quadratic
functional (5). In this case, the symbol • denotes the transposition T , which
is necessary for the discretisation of the problem in the FEM. In contrast to
the scattering problem, the asymptotic solutions for metastable states contain
only outgoing waves, considered in the sufficiently large, but finite interval of
the spatial variable. For the metastable states on the axis z ∈ (−∞,+∞), the
eigenfunctions obey the boundary conditions of the third kind (4), where the
matrix R(zt) = diag(R(zt)) depends on the desired complex energy eigenvalue
E ≡ Em = �Em + ı�Em, �Em < 0 and is given by [9]

Rioio(z
t, Em) = ±

√
fB(zt)/fA(zt)

√
V t

ioio
− Em, t = min,max, (15)

where + or − corresponds to t = max or t = min, respectively, because the
asymptotic solution of this problem contains only outgoing waves in the open
channels V t

ioio
< �E, io = 1, . . . , No, while in the closed channels, there are only

decay waves V t
icic

> �E, ic = No + 1, . . . , N

Ricic(z
t, Em) = ∓

√
fB(zt)/fA(zt)

√
Em − V t

icic
, t = min,max, (16)

where + or − corresponds to t = min or t = max, respectively.
For the metastable states on the semiaxis z ∈ (zmin,+∞) or z ∈ (−∞, zmax),

the solution is to obey the boundary condition (4) at the boundary point zmax

or zmin and the boundary condition of the first, second, or third kind (see (2),
(3) or (4), respectively) at the boundary point zmin or zmax.

In this case, the eigenfunctions obey the orthogonality and normalisation
conditions

(Φ(m′)|Φ(m))=(Em−Em′)

⎡
⎣

zmax∫
zmin

(Φ(m′)(z))T Φ(m)(z)fB(z)dz−δm′m

⎤
⎦+Cm′m=0, (17)

Cm′m=
∑

t=min,max

∓fA(zt)(Φ(m′)(zt))T [Rioio(z
t,Em)−Rioio(z

t,Em′)−2Q(zt)]Φ(m)(zt),

where + or − corresponds to t = min or t = max, respectively. Note that the
orthogonality condition is derived by calculating the difference of two function-
als (5) with the substitution of eigenvalues Em, Em′ , eigenfunctions Φ(m)(z),

218 A.A. Gusev et al.

Φ(m′)(z), and elements of matrices R(zmax, Em), R(zmin, Em′) from Eq. (16).
The calculation of the complex eigenvalues and eigenfunctions of metastable
states is performed using the Newton iteration method. The appropriate ini-
tial approximations are chosen from the solutions calculated previously with the
boundary conditions at fixed E.

3 The Algorithm for Solving the Scattering Problem

We consider a discrete representation of the solutions Φ(z) of the problem (1)–(4)
reduced by means of the FEM to the variational functional (5), on the finite-
element grid, Ωp

hj(z)
[zmin, zmax] = [z0 = zmin, zl, l = 1, . . . , np − 1, znp = zmax],

with the mesh points zl = zjp = zmax
j ≡ zmin

j+1 of the grid Ωhj(z)[zmin, zmax] and

the nodal points zl = z(j−1)p+r, r = 0, . . . , p of the sub-grids Ω
hj(z)
j [zmin

j , zmax
j],

j = 1, . . . , n.
The solution Φh(z) ≈ Φ(z) is sought in the form of a finite sum over the basis

of local functions Ng
μ(z) at each nodal point z = zl of the grid Ωp

hj(z)
[zmin, zmax]

of the interval z ∈ Δ = [zmin, zmax] (see [2]):

Φh(z) =
L−1∑
μ=0

Φh
μNg

μ(z), Φh(zl) = Φh
lκmax ,

dκΦh(z)
dzκ

∣∣∣∣∣
z=zl

= Φh
lκmax+κ, (18)

where L = (pn+1)κmax is the number of basis functions and Φh
μ (matrices of the

dimension N×1) at μ = lκmax +κ are the nodal values of the κ-th derivatives of
the function Φh(z) (including the function Φh(z) itself for κ=0) at the points zl.

The substitution of the expansion (18) into the variational functional (5)
reduces the solution of the problem (1)–(4) to the solution of the algebraic
problem with respect to the matrix functions, Φh ≡ ((χ(1))h, . . . , (χ(No))h)
at E = Eh,

GpΦh ≡ (Ap − Eh Bp)Φh = MΦh, M = Mmax − Mmin, (19)

with the matrices Ap and Bp of the dimension NL×NL obtained by integration
in the variational functional (5) (see, e.g., [2]). The matrices Mmax and Mmin

arise due to the approximation of the boundary conditions of the third kind at
the left-hand and right-hand boundaries of the interval z ∈ (zmin, zmax)

dΦh(z)
dz

= (G(z) + Q(z))Φh(z), z = zmin, z = zmax. (20)

The elements of the matrix M = {Ml′1,l′2}NL
l′1,l′2=1 equal zero except those, for

which both indexes l′1 = (l1 −1)N +ν1, l′2 = (l2 −1)N +ν2 belong to the interval
1, ..., N or to the interval (L − κmax)N + 1, ..., (L − κmax)N + N , where N is the
number of equations (1) and L is the number of basis functions Ng

μ(z) in the
expansion of the desired solutions (18) in the interval z ∈ Δ = [zmin, zmax].

Multichannel Scattering and Boundary Value Problems 219

Input. We present the matrix Φh of the dimension NL×1 in the form of three
submatrices: matrix Φa of the dimension N×1, such that (Φa)i1 = (Φh)i1,
matrix Φc of the dimension N×1, such that (Φc)i1 = (Φh)(L−κmax)N+i,1, and the
matrix Φb of the dimension (L − 2)N×1 is derived by omitting the submatrices
Φa and Φc from the solution matrix. Then the matrices in l.h.s. and r.h.s. of
Eq. (19) take the form

(Ap − E Bp) =

⎛
⎝Gp

aa Gp
ab 0

Gp
ba Gp

bb Gp
bc

0 Gp
cb Gp

cc

⎞
⎠ , M =

⎛
⎝−Gp

min 0 0
0 0 0
0 0 Gp

max

⎞
⎠ . (21)

The matrices Gp
bb of the dimension (L− 2)N×(L− 2)N , Gp

ba and Gp
bc of the

dimension (L−2)N×N , Gp
ab and Gp

cb of the dimension N×(L−2)N , Gp
aa, Gp

cc,
of the dimension N×N are determined from the finite element approximation
and considered as known. The existence of zero submatrices is related to the
band structure of the matrix Gp from Eq. (19). The matrices Gmin and Gmax

of the dimension N×N correspond to nonzero blocks of the matrix M, and
the matrices Φa and Φc of the dimension N×1, are given by the asymptotic
values (9), (10) and will be considered below, the matrix Φb of the dimension
(L−2)N×1 is derived by omitting the submatrices Φa and Φc from the solution
matrix. We rewrite problem (19) in the following form

Gp
aaΦa + Gp

abΦb = −Gp
minΦa,

Gp
baΦa + Gp

bbΦb + Gp
bcΦc = 0, (22)

Gp
cbΦb + Gp

ccΦc = Gp
maxΦc.

Step 1. Let us eliminate Φb from the problem. From the second equation, the
explicit expression follows

Φb = −(Gp
bb)

−1Gp
baΦa − (Gp

bb)
−1Gp

bcΦc, (23)

however, it requires the inversion of a large-dimension matrix. To avoid it, we
consider the auxiliary problems

Gp
bbF ba = Gp

ba, Gp
bbF bc = Gp

bc. (24)

Since Gp
bb is a non-degenerate matrix, each of the matrix equations (24) has a

unique solution

F ba = (Gp
bb)

−1Gp
ba, F bc = (Gp

bb)
−1Gp

bc. (25)

Step 2. Then for the function Φb we have the expression

Φb = −F baΦa − F bcΦc, (26)

and the problem (19) with the matrix of the dimension NL×NL is reduced to
two algebraic problems with the matrices of the dimension N×N

Yp
aaΦa + Yp

acΦc = −Gp
minΦa, (27)

Yp
caΦa + Yp

ccΦc = Gp
maxΦc,

220 A.A. Gusev et al.

where Yp
∗∗ is expressed in terms of the solutions F ba and F bc of the prob-

lems (24)

Yp
aa = Gp

aa − Gp
abF ba, Yp

ac = −Gp
abF bc, (28)

Yp
ca = −Gp

cbF ba, Yp
cc = Gp

cc − Gp
cbF bc.

Note that the system of equations (28) is solved at step 4 for each of NL
o + NR

o

incident waves.

Step 3. Consider the solution (9) for the incident wave travelling from left to
right (LR) and the solution (10) for the incident wave travelling from right to
left (RL). Φ→(z→±∞) and Φ←(z→±∞) are matrix solutions of the dimension
1×NL

o and 1×NR
o . In other words, there are NL

o linearly independent solu-
tions, describing the incident wave traveling from left to right and NR

o linearly
independent solution, describing the incident wave traveling from right to left,
respectively. The matrices X(→)

min (z), X(←)
min (z) of the dimension 1×NL

o and the
matrices X(→)

max(z), X(←)
max(z) of the dimension 1×NR

o represent the fundamental
asymptotic solution at the left and right boundaries of the interval, describing the
motion of the wave in the arrow direction. The matrices X(c)

min(z) of the dimen-
sion 1×(N − NL

o) and X(c)
max(z) of the dimension 1×(N − NR

o) are fundamental
asymptotically decreasing solutions at the left and right boundaries of the inter-
val. The elements of these matrices are column matrices of the dimension N×1.
It follows that the matrices of reflection amplitudes R→ and R← are square
matrices of the dimension NL

o ×NL
o and NR

o ×NR
o , while the matrices of trans-

mission amplitudes T→, T← are rectangular matrices of the dimension NR
o ×NL

o

and NL
o ×NR

o . The auxiliary matrices Rc
→, Tc

→, Rc
← and Tc

← are rectangular
matrices of the dimension (N−NL

o)×NL
o , (N−NR

o)×NL
o , (N−NR

o)×NR
o and

(N−NL
o)×NR

o . Then the components of the wave functions (9) and (10) take
the form for LR and RL waves:

(Φa)ioiLo
=X

(→)

ioiLo
(zmin)+

NL
o∑

i′
o=1

X
(←)
ioi′

o
(zmin)R(→)

i′
oiLo

+
N−NL

o∑
i′
c=1

X
(c)
ioi′

c
(zmin)R(c→)

i′
ciLo

,

(Φc)ioiLo
=

NR
o∑

i′
o=1

X
(←)
ioi′

o
(zmax)T (→)

i′
oiLo

+
N−NR

o∑
i′
c=1

X
(c)
ioi′

c
(zmax)T (c→)

i′
ciLo

,

(Φa)ioiRo
=

NL
o∑

i′
o=1

X
(→)
ioi′

o
(zmin)T (←)

i′
oiRo

+
N−NL

o∑
i′
c=1

X
(c)
ioi′

c
(zmin)T (c←)

i′
ciRo

, (29)

(Φc)ioiRo
=X

(←)

ioiRo
(zmax)+

NR
o∑

i′
o=1

X
(→)
ioi′

o
(zmax)R(←)

i′
oiRo

+
N−NR

o∑
i′
c=1

X
(c)
ioi′

c
(zmax)R(c←)

i′
ciRo

,

where the asymptotic solutions X(→)(z)≡X(+)(z), X(←)(z)≡X(−)(z) of the BVP
at z≤zmin and/or z≥zmax are given by Eqs. (11)–(12). RL: The products in

Multichannel Scattering and Boundary Value Problems 221

the r.h.s. of Eq. (27) in accordance with (4) and (20) are calculated via the

first derivatives of the asymptotic solutions X ′(∗)
∗∗ (zt) = dX(∗)

∗∗ (z)
dz

∣∣∣
z=zt

for LR:

(Gp
minΦa)ioiLo

, (Gp
maxΦc)ioiLo

and RL: (Gp
minΦa)ioiRo

, (Gp
maxΦc)ioiRo

.

Step 4. Substituting the expressions (29) and their derivatives into Eq. (27), we
form and solve the system of inhomogeneous equations for LR at iLo = 1, ..., NL

o

NL
o∑

i′
o=1

⎛
⎝X ′(←)

ioi′
o
(zmin) +

N∑
jo=1

(Yp
aa)iojoX

(←)
joi′

o
(zmin)

⎞
⎠ R

(→)

i′
oiLo

+
N−NL

o∑
i′
c=1

⎛
⎝X ′(c)

ioi′
c
(zmin) +

N∑
jo=1

(Yp
aa)iojoX

(c)
joi′

c
(zmin)

⎞
⎠ R

(c→)

i′
ciLo

+
NR

o∑
i′
o=1

N∑
jo=1

(Yp
ac)iojoX

(←)
joi′

o
(zmax)T (→)

i′
oiLo

+
N−NR

o∑
i′
c=1

N∑
jo=1

(Yp
ac)iojoX

(c)
joi′

c
(zmax)T (c→)

i′
ciLo

= −X ′(→)

ioiLo
(zmin) −

N∑
jo=1

(Yp
aa)iojoX

(→)

joiLo
(zmin),

+
NL

o∑
i′
o=1

N∑
jo=1

(Yp
ca)iojoX

(←)
joi′

o
(zmin)R(→)

i′
oiLo

+
N−NL

o∑
i′
c=1

N∑
jo=1

(Yp
ca)iojoX

(c)
joi′

c
(zmin)R(c→)

i′
ciLo

+
NR

o∑
i′
o=1

⎛
⎝−X ′(←)

ioi′
o
(zmax) +

N∑
jo=1

(Yp
cc)iojoX

(←)
joi′

o
(zmax)

⎞
⎠ T

(→)

i′
oiLo

+
N−NR

o∑
i′
c=1

⎛
⎝−X ′(c)

ioi′
c
(zmax) +

N∑
jo=1

(Yp
cc)iojoX

(c)
joi′

c
(zmax)

⎞
⎠ T

(c→)

i′
ciLo

)

= −
N∑

jo=1

(Yp
ca)iojoX

(→)

joiLo
(zmin),

or a similar one for RL at iRo = 1, ..., NR
o that has a unique solution.

Remark. When solving the problem on a semiaxis with the Neumann or the
third-kind boundary conditions at the boundary zmin or zmax of the semiaxis, the
role of unknowns is played by the elements of the matrices Φa or Φc, instead of R
and T, while for the Dirichlet boundary conditions, we have Φa = 0 or Φc = 0,
so that in this case the corresponding equation is not taken into account.

4 The BVP with Piecewise Constant Potentials

The accuracy of the approximate solutions of the reduced BVPs on the finite
interval calculated by FEM is checked by comparison with the solutions of the

222 A.A. Gusev et al.

BVPs for the system of Eq. (1) at fA(z) = fA, fB(z) = fB , Qij(z) = 0 on the
entire axis with the matrix of piecewise constant potentials

Vij(z) = Vji(z) = {Vij;1, z ≤ z1; . . . ;Vij;k−1, z ≤ zk−1;Vij;k, z > zk−1}. (30)

Algorithm for solving the BVP by matching the fundamental solu-
tions. In the algorithm, the following series of steps are implemented in two
cycles io = iLo = 1, ..., NL

o and io = iRo = 1, ..., NR
o :

Step 1. In the intervals z ∈ (−∞, z1), z ∈ (zk−1,+∞), one of the asymp-
totic states of the multichannel scattering problem is constructed, Φ0 ≡ Φa =
{(Φa)i ≡ (Φa)iiLo

or (Φa)iiRo
} and Φk ≡ Φc = {(Φc)i ≡ (Φc)iiLo

or (Φc)iiRo
}, cor-

responding to Eq. (9) or (10), its explicit form given in Eq. (29).

Step 2. In the cycle by l for each of the internal subintervals z ∈ [zl−1, zl],
l = 2, . . . , k−1, the general solution is calculated that depends on 2N parameters
C2N(l−2)+1, . . . , C2N(l−1), Φl = Xl;1C2N(l−2)+1+...+Xl;2NC2N(l−1), of the ODE
system (1) with constant coefficients Vij;l from (30), the spectral parameter E
being fixed, and the first derivative of the obtained solution is calculated.

Step 3: In the cycle by l, the differences Φl(zl) − Φl−1(zl) and (d/dz)(Φl(z) −
Φl−1(z))|zl

, l = 1, . . . , k are calculated and set equal to zero. As a result, the
system of 2N(k−1) inhomogeneous equations with respect to 2N(k−1) unknown
expansion coefficients C1, . . . , C2N(k−2), as well as the corresponding elements of
the matrices T∗, R∗ listed in Eq. (29) are obtained and solved.

Remark. For solving the bound state problem or calculating metastable states,
the algorithm is modified as follows.

Fig. 1. A screenshot of the FEM algorithm run showing the components of five solu-
tions Φh

m(z), m = 1, ..., 5, of the bound state problem.

Multichannel Scattering and Boundary Value Problems 223

Fig. 2. The screenshot of the FEM algorithm run, showing the real (solid lines) and
the imaginary (dotted lines) components of the solution of the scattering problem for
the wave incident from the left, LR(1), and the waves incident from the right from the
first, RL(1), and the second RL(2) open channels.

1. The sequence of steps 1–3 is performed only once.
2. At Step 1, instead of the asymptotic expressions (9) and (10), one uses

Φ(z → ±∞) =
{

X(c)
max(z)C+, z → +∞, X(c)

min(z)C−, z → −∞,
}

(31)

where C± is a column matrix with the dimension 1×N , and X(c)
∗ (z) is the

specially selected fundamental solution that for bound states should decrease
exponentially at z → ±∞, while for metastable states must describe diverging
waves in open channels and decrease exponentially in closed channels.

3. In step 3, a system of 2N(k − 1) linear homogeneous algebraic equations for
2N(k − 1) + 1 unknown coefficients C1, . . . , C2N(k−2) and the corresponding
elements of the matrices C±, which is nonlinear and transcendent with respect
to the spectral parameter E, is obtained and solved.

Benchmark Calculations. We solved the BVP for the system of equations (1)
with the effective potentials (30) and the third-kind boundary conditions (4) on
a finite interval, which is determined from the asymptotic solutions (9), (10),
(11), (12) of the multichannel scattering problem on the axis

V(z)=

⎧
⎨

⎩

⎛

⎝
0 0 0
0 5 0
0 0 10

⎞

⎠ , z < −2;

⎛

⎝
−5 4 4
4 0 4
4 4 10

⎞

⎠ , −2 ≤ z ≤ 2;

⎛

⎝
0 0 0
0 0 0
0 0 10

⎞

⎠ , z > 2

⎫
⎬

⎭
.

For solving the BVP the uniform finite-element grid zmin= − 6, hj=1,...,30=0.4,
zmax=6 with seventh-order Hermitian elements (κmax, p)=(2, 3), p′=7 preserving
the continuity of the first derivative in the approximate solutions was chosen.
The calculations were performed with 16 significant digits. Given E=3.8, for the
wave incident from the left there is one open channel, NL

o =1, and for the wave
incident from the right, there are two open channels, NR

o =2. The comparison
of FEM results with those of solving the system of algebraic equations yields
the error estimate accuracy = San − Smatr ∼ 10−13. for the computation of
the square matrices of reflection amplitudes R→ and R←, having the dimension
1×1 and 2×2, and the rectangular matrices of transmission amplitudes T→ and

224 A.A. Gusev et al.

Fig. 3. The total probability |T|211 of transmission through the repulsive Gaussian
barrier versus the energy E (in oscillator units) at σ=1/10, α=20 for the cluster of
three (n=3, left panel) and four (n=4, right panel) identical particles initially being in
the in the ground symmetric (solid lines) and antisymmetric (dashed lines) state.

T← having the dimension 2×1 and 1×2. With the error of the same order, the
conditions of symmetry, S − ST and S-matrix unitarity SSdag − I are satisfied.
For five eigenvalues, the differences δEm = |Eh

m − Eex
m | between the results of

two above methods appeared to be of the order of 10−9 in the calculations
performed with 12 significant figures. The components Φm of the bound state
solutions and the solutions Φv of the scattering problem on a finite-element grid
are shown in Figs. 1 and 2. The running time for this example using KANTBP
4M implemented in Maple 16 is 232 s for the PC Intel Pentium CPU 1.50 GHz
4 GB 64 bit Windows 8.

5 Quantum Transmittance Induced by Metastable States

In Ref. [5], the problem of tunneling of a cluster of n identical particles, coupled
by pair harmonic oscillator potentials, through the Gaussian barriers V (xi) =
α/(2πσ2)1/2 exp(−x2

i /σ2), i = 1, ..., n, with averaging over the basis of the
cluster eigenfunctions was formulated as a multichannel scattering problem for
the system of ODEs (1) with the center-of-mass independent variable z = (x1 +
... + xn)/

√
n and the boundary conditions (4) that follow from the asymptotic

conditions (6) at fA(z) = 1, fB(z) = 1, Qij(z) = 0. The elements Vij(z) of the
effective potentials matrix were calculated analytically and plotted in [5].

Let us apply the technique developed in the present paper and implemented
as KANTBP 4M to the tunneling problem for the cluster comprising three and
four identical particles in symmetric (S) and antisymmetric (A) states.

At first we solve the scattering problem with fixed energy E = �E. The solu-
tions of the BVP were discretised on the finite-element grid Ωh = (−11(11)11)
for n = 3 and Ωh = (−13(13)13) for n = 4, with the number of Lagrange
elements of the twelfth order p′ = 12 shown in brackets. The boundary points
of the interval zt were chosen in accordance with the required accuracy of the
approximate solution max{|Vij(zt)/α|; i, j = 1, ..., jmax} < 10−8. The number N
of the cluster basis functions in the expansion of solutions of the original problem

Multichannel Scattering and Boundary Value Problems 225

[5] and, correspondingly, the number of equations for S-states for n = 3, 4 was
chosen equal to N = 21, 39 and for A-states N = 16, 15. The results of the calcu-
lations for three and four particles are presented in Fig. 3. The resonance values
of energy E = E

S(A)
l and the corresponding maximal values of the transmission

coefficient |T|211 clearly visible in Fig. 3 are presented in Table 1.

Table 1. The first resonance energy values E
S(A)
l , at which the maximum of the

transmission coefficient |T|211 is achieved, and the complex energy eigenvalues EM
m =

�EM
m + ı�EM

m of the metastable states for symmetric S (antisymmetric A) states of
n = 3 and n = 4 particles at σ = 1/10, α = 20.

l ES
l |T |211 m EM

m

1 8.175 0.775 1 8.175−ı5.1(–3)
8.306 0.737 2 8.306−ı5.0(–3)

2 11.111 0.495 3 11.110−ı5.6(–3)
11.229 0.476 4 11.229−ı5.5(–3)

3 12.598 0.013 5 12.598−ı6.4(–3)
6 12.599−ı6.3(–3)

4 13.929 0.331 7 13.929−ı4.5(–3)
14.003 0.328 8 14.004−ı4.6(–3)

5 14.841 0.014 9 14.841−ı3.5(–3)
14.877 0.008 10 14.878−ı3.5(–3)

l EA
l |T |211 m EM

m

1 11.551 1.000 1 11.551−ı1.8(–3)
11.610 1.000 2 11.610−ı2.0(–3)

2 14.459 0.553 3 14.459−ı2.9(–3)
14.564 0.480 4 14.565−ı2.7(–3)

l ES
l |T |211 m EM

m

1 10.121 0.321 1 10.119−ı4.0(–3)
2 10.123−ı4.0(–3)

2 11.896 0.349 3 11.896−ı6.3(–5)

3 12.713 0.538 4 12.710−ı4.5(–3)
12.717 0.538 5 12.720−ı4.5(–3)

4 14.858 0.017 6 14.857−ı4.3(–3)
7 14.859−ı4.3(–3)

5 15.188 0.476 8 15.185−ı3.9(–3)
9 15.191−ı3.9(–3)

6 15.405 0.160 10 15.405−ı1.4(–5)

7 15.863 0.389 11 15.863−ı5.3(–5)

l EA
l |T |211 m EM

m

1 19.224 0.177 1 19.224−ı4.0(–4)
2 19.224−ı4.0(–4)

2 20.029 0.970 3 20.029−ı3.3(–7)

For metastable states, the eigenfunctions obey the boundary conditions of the
third kind (4), where the matrices R(zt) = diag(R(zt)) depend on the desired
complex energy eigenvalue, E ≡ EM

m = �EM
m + ı�EM

m , �EM
m < 0, are given by

(15), (16), since the asymptotic solutions of this problem contain only outgoing
waves in the open channels. In this case, the eigenfunctions obey the orthogonal-
ity and normalisation conditions (17). The discretisation of the solutions of the
BVP was implemented on the above finite-element grid. The algebraic eigenvalue
problem was solved using the Newton method with the optimal choice of the
iteration step [3] using the additional condition Ξh(Φ(m), Em, zmin, zmax) = 0
obtained as a result of the discretisation of the functional (5) and providing
the upper estimates for the approximate eigenvalue. As the initial approxima-
tion we used the real eigenvalues and the eigenfunctions orthonormalised by the
condition that the expression in square brackets in Eq. (17) is zero. They were
found as a result of solving the bound-state problem with the functional (5) at
R(zt) = 0 on the grid Ωh = (−5(5)5) for n = 3 and n = 4. The results of the
calculations performed with the variational functional (5), (17), defined in the
interval [zmin, zmax], for the complex values of energy of the metastable states

226 A.A. Gusev et al.

EM
m ≡ Em = �EM

m + ı�EM
m for n = 3 and n = 4 are presented in Table 1.

The resonance values of energy corresponding to these metastable states are
responsible for the peaks of the transmission coefficient, i.e., the quantum trans-
parency of the barriers. The position of peaks presented in Fig. 3 is seen to be
in quantitative agreement with the real part �EM

m , and the half-width of the
|T|211(El) peaks agrees with the imaginary part Γ = −2�EM

m of the complex
energy eigenvalues EM

m = �EM
m + ı�EM

m of the metastable states by the order
of magnitude.

6 Summary and Perspectives

The developed approach, algorithms, and programs can be adapted and applied
to study the waveguide modes in a planar optical waveguide, the quantum dif-
fusion of molecules and micro-clusters through surfaces, and the fragmentation
mechanism in producing very neutron-rich light nuclei.

The work was partially supported by the Russian Foundation for Basic
Research, grant No. 14-01-00420, and the Bogoliubov-Infeld JINR-Poland
program.

References

1. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP 3.0:
new version of a program for computing energy levels, reflection and transmission
matrices, and corresponding wave functions in the coupled-channel adiabatic app-
roach. Comput. Phys. Commun. 185, 3341–3343 (2014)

2. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Derbov, V.L., Góźdź, A., Hai,
L.L., Rostovtsev, V.A.: Symbolic-numerical solution of boundary-value problems
with self-adjoint second-order differential equation using the finite element method
with interpolation hermite polynomials. In: Gerdt, V.P., Koepf, W., Seiler, W.M.,
Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 138–154. Springer,
Heidelberg (2014)

3. Gusev, A.A., Hai, L.L., Chuluunbaatar, O., Ulziibayar, V., Vinitsky, S.I., Derbov,
V.L., Gozdz, A., Rostovtsev, V.A.: Symbolic-numeric solution of boundary-value
problems for the Schrodinger equation using the finite element method: scattering
problem and resonance states. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov,
E.V. (eds.) CASC 2015. LNCS, vol. 9301, pp. 182–197. Springer, Heidelberg (2015)

4. Gusev, A.A., Hai, L.L., Chuluunbaatar, O., Vinitsky, S.I.: Program KANTBP 4M
for solving boundary-value problems for systems of ordinary differential equations
of the second order (2015). http://wwwinfo.jinr.ru/programs/jinrlib/kantbp4m/

5. Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Rostovtsev, V., Hai, L.L., Derbov,
V., Krassovitskiy, P.: Symbolic-numerical algorithm for generating cluster eigen-
functions: tunneling of clusters through repulsive barriers. In: Gerdt, V.P., Koepf,
W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 427–442.
Springer, Heidelberg (2013)

6. Harrison, P.: Quantum Well, Wires and Dots. Theoretical and Computational
Physics of Semiconductor Nanostructures. Wiley, New York (2005)

http://wwwinfo.jinr.ru/programs/jinrlib/kantbp4m/

Multichannel Scattering and Boundary Value Problems 227

7. Krassovitskiy, P.M., Pen’kov, F.M.: Contribution of resonance tunneling of molecule
to physical observables. J. Phys. B: At. Mol. Opt. Phys. 47, 225210 (2014)

8. Sevastyanov, L.A., Sevastyanov, A.L., Tyutyunnik, A.A.: Analytical calculations in
maple to implement the method of adiabatic modes for modelling smoothly irreg-
ular integrated optical waveguide structures. In: Gerdt, V.P., Koepf, W., Seiler,
W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 419–431. Springer,
Heidelberg (2014)

9. Siegert, A.J.F.: On the derivation of the dispersion formula for nuclear reactions.
Phys. Rev. 56, 750–752 (1939)

Symbolic Algorithm for Generating Irreducible
Rotational-Vibrational Bases of Point Groups

A.A. Gusev1, V.P. Gerdt1, S.I. Vinitsky1(B), V.L. Derbov2, A. Góźdź3,
A. Pȩdrak3, A. Szulerecka3, and A. Dobrowolski3

1 Joint Institute for Nuclear Research, Dubna, Russia
gooseff@jinr.ru, vinitsky@theor.jinr.ru
2 Saratov State University, Saratov, Russia

3 Institute of Physics, Maria Curie-Sk�lodowska University, Lublin, Poland

Abstract. Symbolic algorithm implemented in computer algebra sys-
tem for generating irreducible representations of the point symmetry
groups in the rotor + shape vibrational space of a nuclear collective model
in the intrinsic frame is presented. The method of generalized projection
operators is used. The generalized projection operators for the intrin-
sic group acting in the space L2(SO(3)) and in the space spanned by
the eigenfunctions of a multidimensional harmonic oscillator are con-
structed. The efficiency of the scheme is investigated by calculating the
bases of irreducible representations subgroup D4y of octahedral group in
the intrinsic frame of a quadrupole-octupole nuclear collective model.

Keywords: Generalized projection operators · Dihedral group ·
Irreducible representations · Quadrupole-octupole nuclear collective
model

1 Introduction

The motivation of the present work comes from searching for higher point sym-
metries in nuclei, in particular, tetrahedral nuclei [5,7]. To reveal such symme-
tries, e.g., the inter-band and intra-band E2 electromagnetic reduced transition
probabilities can be investigated [6].

For a more realistic description of oscillation modes it is necessary to construct
the rotational-vibration bases using the generalized projection operators for the
intrinsic rotation groups in the framework of nuclear collective models [15]. In par-
ticular, general collective orthogonal bases of irreducible representations (Irrs) of
the intrinsic point group D4y, i.e., the subgroup of the octahedral point group,
combining the zero-phonon and one-phonon excitations in the quadrupole and
octupole modes together with the rotational motion has been constructed. This
offers the possibility to diagonalize the quadrupole-octupole-rotational collective
Hamiltonians in future. Such a collective approach would enable searching for fin-
gerprints of the high-rank symmetries (e.g., octahedral, tetrahedral, etc.) in the
nuclear bands. This task could be performed by considering, e.g., the inter-band
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 228–242, 2016.
DOI: 10.1007/978-3-319-45641-6 15

Irreducible Rotational-Vibrational Bases of Point Groups 229

Table 1. Character table for the dihedral group D4y

Irrs\Classes C1 C2 C3 C4 C5 Cartesian bases

Γ1 = A1 1 1 1 1 1 v1 = R2 = x2 + y2 + z2

Γ2 = B1 1 1 −1 1 −1 v1 = (x2 − z2)

Γ3 = A2 1 1 1 −1 −1 v1 = y

Γ4 = B2 1 1 −1 −1 1 v1 = −xz

Γ5 = E 2 −2 0 0 0 v1 = x, v2 = −z

C1 = {E}, C2 = {C2y}, C3 = {C4y, C−1
4y }, C4 = {C2x, C2z}, C5 = {C2c, C2d}

and intra-band electromagnetic reduced transition probabilities B(Eλ) within the
set of eigensolutions of these Hamiltonians [10].

In this paper, we present a symbolic algorithm implemented in computer alge-
bra system for generating irreducible representations of point symmetry groups
in the rotor+shape vibrational space of a nuclear collective model in the intrinsic
frame. The algorithm was implemented in Reduce while Maple or Mathematica
can be used also. The algorithm for calculating the rotor bases has been elab-
orated in our previous paper [11] using the method of generalized projection
operators (GPOs) [2]. Here we formulate the GPO approach for the intrinsic
point symmetry group acting in the space L2(SO(3)) and in the space spanned
by eigenfunctions of the multidimensional harmonic oscillator. The efficiency of
this scheme is investigated by deriving the bases of irreducible representations of
the subgroup D4y of the octahedral group for the rotor space and for the (2+7) or
(2 + 4) dimensional oscillators in the intrinsic frame of the quadrupole-octupole
nuclear collective model.

The structure of the paper is the following. In Sect. 2, we describe the multi-
pole collective variables and the quadrupole-octupole collective model. In Sects. 3
and 4, we describe the algorithms and the results of calculations of the rota-
tion and shape vibrational bases, respectively. In the conclusion, we discuss the
perspectives of further studies.

2 Quadrupole-Octupole Collective Model

Let X(lab) = {q(lab) : q(lab) = (q(lab)
1 , q

(lab)
2 , . . . , q

(lab)
f))} be the configuration

space of a nucleus (single-particle+collective variables+ . . .) in the laboratory
frame. And, let the set {en(q(lab))} represent an orthonormal basis in the space
of states L2(X) having the required physical meaning. These functions can be
determined, e.g., by a set of commuting physical observables Âl, where l =
1, 2, . . . , r, and the functions {en(q(lab))} are the common eigenfunctions of Âl.

Let the functions Zν(q(lab)), where ν = 1, 2, . . . , νM , represent a set of
“global” properties of this nucleus (shape, density, multipole momenta, etc.),
then the expansion coefficients ανn, defined as

Zν(q(lab)) =
∑

n

α(lab)
νn en(q(lab)) (1)

can be considered as collective variables.

230 A.A. Gusev et al.

Table 2. The operators in representations Γ∗ the dihedral group D4y

Γ1(E)=
(
1
)

Γ1(C2x)=
(
1
)

Γ1(C2y)=
(
1
)

Γ1(C2z)=
(
1
)

Γ1(C4y)=
(
1
)

Γ1(C
−1
4y)=

(
1
)

Γ1(C2c)=
(
1
)

Γ1(C2d)=
(
1
)

Γ2(E)=
(
1
)

Γ2(C2x)=
(
1
)

Γ2(C2y)=
(
1
)

Γ2(C2z)=
(
1
)

Γ2(C4y)=
(
−1
)

Γ2(C
−1
4y)=

(
−1
)

Γ2(C2c)=
(
−1
)

Γ2(C2d)=
(
−1
)

Γ3(E)=
(
1
)

Γ3(C2x)=
(
−1
)

Γ3(C2y)=
(
1
)

Γ3(C2z)=
(
−1
)

Γ3(C4y)=
(
1
)

Γ3(C
−1
4y)=

(
1
)

Γ3(C2c)=
(
−1
)

Γ3(C2d)=
(
−1
)

Γ4(E)=
(
1
)

Γ4(C2x)=
(
−1
)

Γ4(C2y)=
(
1
)

Γ4(C2z)=
(
−1
)

Γ4(C4y)=
(
−1
)

Γ4(C
−1
4y)=

(
−1
)

Γ4(C2c)=
(
1
)

Γ4(C2d)=
(
1
)

Γ5(E)=

(
1 0

0 1

)
Γ5(C2x)=

(
1 0

0 −1

)
Γ5(C2y)=

(
−1 0

0 −1

)
Γ5(C2z)=

(
−1 0

0 1

)

Γ5(C4y)=

(
0 1

−1 0

)
Γ5(C

−1
4y)=

(
0 −1

1 0

)
Γ5(C2c)=

(
0 −1

−1 0

)
Γ5(C2d)=

(
0 1

1 0

)

One of the most frequently used parametrizations of the nuclear surface is the
Rayleigh expansion. The two-dimensional manifold (nuclear surface) is described
by the spherical angles {q

(lab)
1 = θ, q

(lab)
2 = φ}. The angular momentum observ-

ables Â1 = Ĵ2, Â2 = Ĵz generate the physical eigenbasis {en(q(lab)) = Ylm(θ, φ)}.
The required property is defined as the shape of the nucleus written in spherical
coordinates: Z(θ, φ) ≡ r = R(θ, φ) ∈ L2(S2).
This results in the expansion of this surface in terms of the chosen basis:

R(θ, φ) = R0(1 +
∑
l,m

α
(lab)�
lm Ylm(θ, φ)), (2)

where α
(lab)�
lm = (−1)mα

(lab)
l,−m are multipole collective surface variables [9].

One can notice that a more natural description of the collective nuclear
motions can be performed in the intrinsic frame. The intrinsic frame in respect
to the motion defined by a group of motions like rotations, translations, scaling
modes, etc., can be defined using the group theoretical tools.

Let the symbol G denote a dim(G)-dimensional Lie group of transformations
in the configuration space X(lab). The operators T (g) represent a realization of
the action of g ∈ G on X(lab) [3]:

q = T (g) q(lab), Fk(q, g) = 0, (3)

where k = 1, 2, . . . ,dim(G). The functions Fk(q, g) = 0 describe the appropriate
constraints required to eliminate the set redundant variables within the set of all
intrinsic variables {q}. In this way, the intrinsic variables consist of independent
variables {q} and {g}. Usually, the group elements g are parametrized by a set of
real parameters which are considered as intrinsic collective coordinates describing
the motion generated by the group G. The minimal and, at the same time, the
most important group of motions G is the group describing the rotational nuclear
motion.

Irreducible Rotational-Vibrational Bases of Point Groups 231

The standard choice of collective variables in the laboratory frame is given
by the deformation parameters {α

(lab)
λ }, were λ=1, 2, 3, ..., λmax, for details see

Ref. [13]. In our case, we consider λmax=3. The classical collective Hamiltonian
in the laboratory frame [8] can be written as

Hcl = Tcl + Vcl(α(lab)), (4)

where the kinetic energy with the time derivatives denoted by a dot above the
variable:

Tcl =
1
2

3∑
λ=1

Bλ

∑
μ

|α̇(lab)
λμ |2 =

1
2

3∑
λ=1

Bλ

∑
μ

(−1)μα̇
(lab)
λμ α̇

(lab)
λ,−μ (5)

and the potential energy (for the harmonic oscillator) is expressed as

Vcl(α(lab)) =
1
2

3∑
λ=1

Bλω2
λ

∑
μ

|α(lab)
λμ |2. (6)

In this model, the most part of interesting quantum observables are expressed in
terms of spherical tensors. The scalar product of such SO(3)–tensors is defined as

ξλ · ηλ =
∑

(λμ),(λ′ν)

h(λμ)(λ′ν)ξλμηλ′ν , (7)

where the basic geometric metric tensor is:

h(λμ)(λ′ν) =
√

2λ + 1 (λμλ′ν|00) = (−1)μδ
(λ′,−ν)
(λ,μ) (8)

Note that the Clebsch–Gordan coupling gives the only scalar product in the
manifold of spherical tensors. Then the metric form in the α manifold, which is
probably the most general one, is given by:

ds2 =
∑

λμ,λ′ν

Sλ(α)
√

2λ + 1 (λμλ′ν|00) dαλμdαλ′ν , (9)

where Sλ(α) are SO(3)–invariants. The conventional transformation of the collec-
tive variables α

(lab)
λμ′ and the spherical harmonics Yλμ′(θ, ϕ) from the laboratory

frame to αλμ and Yλμ(θ′, ϕ′) of the rotating (intrinsic, body-fixed) frame defined
by the Euler angles Ω = (Ω1, Ω2, Ω3) reads as [13]:

αλμ =
∑
μ′

Dλ
μ′μ(Ω)α(lab)

λμ′ , Yλμ(θ′, ϕ′) =
∑
μ′

Dλ
μ′μ(Ω)Yλμ′(θ, ϕ), (10)

where Dλ
μ′μ(Ω) ∈ L2(SO(3)) are Wigner functions [16]. The constraints Fk

imposed on these transformations proposed by Bohr for the case of λ = 2 are

F1,2(α,Ω) = α2,±1 = 0, F3(α,Ω) = α22 − α2,−2 = 0. (11)

232 A.A. Gusev et al.

Below we use these conditions as the standard form of constraints defining the
intrinsic frame.

Now we need the quantum collective Hamiltonian. The quantization proce-
dure (Pauli prescription) of the intrinsic classic Hamiltonian leads to the follow-
ing quantum form [8]:

Tcl → T̂ = −�2

2

∑
μμ′

1√|η|
∂

∂qμ

√
|η|(η−1)μμ′ ∂

∂qμ′ . (12)

Here the metric tensor and the scalar product in the intrinsic collective space is
obtained from (8) as:

ηk′k′ =
∑

λμλ′μ′

∂α
(lab)∗
λμ

∂qk

∂α
(lab)∗
λ′μ′

∂qk′ h(λμ)(λ′μ′), (13)

In the following we restrict the intrinsic collective space q = (q1, q2, . . . , qf ′), Ω,
where f ′ = f − dim(SO(3)) (dim(SO(3)) = 3), of multipole shape vibrations
to the intrinsic deformation parameters {α1μ}, {α20, α22}, {α3μ}, and to 3D
rotations: Ω = (Ω1, Ω2, Ω3). It is usually supposed that the dipole deformation
parameters {α1μ} are responsible for the center-of-mass motion. So, to obtain the
collective basis functions Ψ(q, Ω) ∈ L2(R2+7⊗SO(3)) of Irrs Γ∗ of intrinsic group
Ō and its subgroups, for example D̄4y, in the center-of-mass frame we apply the
idea of the adiabatic separation of vibrational q = {q2,q3}, q2 = {α20, α22},
q3 = {α3μ} and rotational Ω = (Ω1, Ω2, Ω3) motion [15]

Ψ
Γn1Γn2Γn3JMK2K3

a2b02t2;a3b03t3;t1pq (q, Ω) = vn2K2
a2b02t2

(q2)vn3K3
a3b03t3

(q3)vJM
n1t1pq(Ω). (14)

In fact, we can always choose the basis as a product of the vibrational quadrupole
vn2K2

a2b02t2
(q2), octupole vn3K3

a3b03t3
(q3) and rotational vJM

n1t1pq(Ω) states corresponding
to uncoupled harmonic oscillator Hamiltonians.

3 Generalized Projection Operators and Rotor Basis

Generalized projection operators (GPOs) for the intrisic group G act in the
Hilbert space K = L2(G) of functions on the laboratory group G. As a result,
they create the subspace of this space of states KΓ

b = ˆ̄PΓ
bbK. These operators are

defined as

ˆ̄PΓ
ab =

dim(Γ)
card(G)

∑
g∈G

(
ΔΓ

ab(g)
)�

ˆ̄g, (15)

where dim(Γ) denotes the dimension of Irrs Γ of the group G, card(G) is the
order of the group G, and ΔΓ

ab(g) denotes the matrix elements of the appropriate
Irr Γ for the element g. The symbol ˆ̄g denotes the unitary operator of the intrinsic
group G acting in the space K. The octahedral group O has been presented

Irreducible Rotational-Vibrational Bases of Point Groups 233

Table 3. Output for vJM
n1tpq0(Ω): Γ = Γn1 , J = 0, 1, 2, 3; t distinguishes equiv Irrs of

D̄4y intrinsic point group, rJ±
MK(Ω) = (rJ

MK(Ω)±rJ
M−K(Ω))/(

√
2), rJ

M0(Ω) = rJ
M0(Ω).

J Γ p q0 t vJM
ntpq0(Ω)

0 Γ1 = A1 1 1 1 v0M
1111(Ω) = r0M0(Ω)

1 Γ3 = A2 1 1 1 v1M
3111(Ω) = r1+M1(Ω)

1 Γ5 = E 1 1 1 v1M
5111(Ω) = −r1−

M1(Ω)

1 Γ5 = E 1 2 1 v1M
5112(Ω) = r1−

M1(Ω)

1 Γ5 = E 2 1 1 v1M
5121(Ω) = −r1M0(Ω)

2 Γ1 = A1 1 1 1 v2M
1111(Ω) = (

√
3r2M0(Ω) + 3r2+M2(Ω))/(2

√
3)

2 Γ2 = B1 1 1 1 v2M
2111(Ω) = (−√

3r2M0(Ω) + r2+M2(Ω))/2

2 Γ4 = B2 1 1 1 v2M
4111(Ω) = −r2−

M1(Ω)

2 Γ5 = E 1 1 1 v2M
5111(Ω) = r2+M1(Ω)

2 Γ5 = E 2 2 1 v2M
5122(Ω) = −r2−

M2(Ω)

3 Γ2 = B1 1 1 1 v3M
2111(Ω) = −r3−

M2(Ω)

3 Γ3 = A2 1 1 1 v3M
3111(Ω) = (

√
15r3+M1(Ω) + 5r3+M3(Ω))/(2

√
10)

3 Γ4 = B2 1 1 1 v3M
4111(Ω) = (−√

15r3+M1(Ω) + 3r3+M3(Ω))/(2
√

6)

3 Γ5 = E 1 1 1 v3M
5111(Ω) = −r3−

M3(Ω)

3 Γ5 = E 1 2 1 v3M
5112(Ω) = (

√
15r3−

M1(Ω) + 3r3−
M3(Ω))/(2

√
6)

3 Γ5 = E 2 1 1 v3M
5121(Ω) = (−√

5r3M0(Ω) − √
3r3+M2(Ω))/(2

√
2)

3 Γ5 = E 2 2 1 v3M
5122(Ω) = r3+M2(Ω)

in [11] while its subgroup D4y is described in Tables 1 and 2. The operators of
representations Γ∗ differ by transposition from Cornwell’s ones [4]. The rotational
basis vJM

n1t1pq(Ω) of the intrinsic octahedral group O in the space L2(SO(3))
spanned by the orthonormalized (in respect to the scalar product 〈ψ1|ψ2〉 =
1

8π2

∫ 2π

0
dΩ1

∫ π

0
dΩ2 sin(Ω2)

∫ 2π

0
dΩ3ψ1(Ω)�ψ2(Ω)) Wigner functions rJ

MK(Ω) =√
2J + 1DJ

MK(Ω)� was calculated using the symbolic algorithm GPO presented
in [11]. The algorithm was implemented in the computer algebra system Reduce.
The typical running time of calculating the rotational basis vJM

n1t1pq(Ω) for the
Irrs Γ1,...,Γ5 of the required group D̄4y for J ≤ 10 is 380 s using the PC Intel
Pentium CPU 1.50 GHz 4 GB 64 bit Windows 8. The results for J ≤ 3 are shown
in Table 3.

4 Shape Vibrational Basis

In this section, we present the calculation scheme aimed to generate irreducible
bases of intrinsic point groups in the shape vibration space of the nuclear col-
lective model state space using the generalized projection operator method. We
start from the precise definition of the rotation group action in both the geomet-
rical space of multipole collective surface variables in the intrinsic frame and the

234 A.A. Gusev et al.

functional spaces spanned by the vibrational states of the quadrupole-octupole
harmonic oscillator. To define the rotations of intrinsic spherical tensors with
respect to intrinsic rotation group, one can write the expansion of the nuclear
shape (2) in terms of spherical harmonics Ylm(θ′, φ′) in the intrinsic frame:

R(θ′, φ′) = R0

(
1 +

∑
lm

α�
lmYlm(θ′, φ′)

)
(16)

= R0

(
1+

∑
l

al0Yl0(θ′, φ′)+
∑
lm

(
almY

(+)
lm (θ′, φ′)+blmY

(−)
lm (θ′, φ′)

))
.

Here α�
l,m = (−1)mαl,−m are the intrinsic tensors describing nuclear deformation

with respect to the intrinsic frame. They can be expressed in terms of real-valued
components a and b:

αλ0=aλ0, αλμ=(aλμ−ıbλμ)/
√

2, αλ−μ=(−1)μ(aλμ+ıbλμ)/
√

2, (17)

by making use of the special combinations of spherical harmonics

Y
(+)
lm (θ′, φ′) = (Ylm(θ′, φ′) + (−1)mYl−m(θ′, φ′))/

√
2,

Y
(−)
lm (θ′, φ′) = ı(Ylm(θ′, φ′) − (−1)mYl−m(θ′, φ′))/

√
2.

Note that the spherical harmonics are tensors in respect to intrinsic rotations.
We rewrite the transformation ˆ̄gαλμ=ᾱλμ, ˆ̄g∈G,

ᾱλμ =
λ∑

μ′=−λ

Dλ
μμ′(g)�αλμ′ , Yλμ(θ̄′, ϕ̄′) =

λ∑
μ′=−λ

Dλ
μμ′(g)�Yλμ′(θ′, ϕ′) (18)

between two intrinsic coordinate frames. We use the relations between the
complex-valued coefficients ᾱλμ, αλμ and real-valued ones āλμ, b̄λμ, aλμ, bλμ

ᾱλ0=āλ0, ᾱλμ=(āλμ−ıb̄λμ)/
√

2, ᾱλ−μ=(−1)μ(āλμ−ıb̄λμ)/
√

2. (19)

Using the relations (17), (19), and the definition of Wigner functions [16]

Dλ
μμ′(g)∗= exp(ıμα)dλ

μμ′(β) exp(ıμ′γ), dλ
−μ−μ′(β)=(−1)μ+μ′

dλ
μμ′(β), (20)

exp(±ıμα)= cos(ıμα) ± ı sin(ıμα), exp(±ıμ′γ)= cos(ıμ′γ) ± ı sin(ıμ′γ),

we find the orthogonal transformation q̄ = M̄(g)q of the intrinsic variables
q = {aλμ, bλμ} to new intrinsic variables q̄ = {āλμ, b̄λμ}:

āλμ=
√

2Cλ
μ0aλ0 +

λ∑
μ′=1

(Cλ
μμ′+(−1)μ′

Cλ
μ−μ′)aλμ′+(Sλ

μμ′−(−1)μ′
Sλ

μ−μ′)bλμ′ ,

āλ0=Cλ
00aλ0+

λ∑
μ′=1

√
2Cλ

0μ′aλμ′+
√

2Sλ
0μ′bλμ′ , (21)

b̄λμ=−
√

2Sλ
μ0aλ0 +

λ∑
μ′=1

(−Sλ
μμ′−(−1)μ′

Sλ
μ−μ′)aλμ′ + (Cλ

μμ′−(−1)μ′
Cλ

μ−μ′)bλμ′ ,

Irreducible Rotational-Vibrational Bases of Point Groups 235

where Cλ
μμ′ = cos(μα+μ′γ)dλ

μμ′(β), Sλ
μμ′ = sin(μα+μ′γ)dλ

μμ′(β). The trans-
formation between both intrinsic frames q̄ = M̄(g)q is represented by a
block diagonal matrix λ = 2, 3, ..., λmax, with block matrices of the dimension
(2λ + 1) × (2λ + 1):

q̄=M̄(g)q, q̄=

⎛
⎜⎝

q̄2(g)
q̄3(g)

...

⎞
⎟⎠ , q=

⎛
⎜⎝

q2(g)
q3(g)

...

⎞
⎟⎠ , M̄(g)=

⎛
⎜⎝

M̄2(g) 0 . . .
0 M̄3(g) . . .
...

...
. . .

⎞
⎟⎠ , (22)

The transformation of pairs of components q̄λ =
(
āλλ . . . āλ1 āλ0 b̄λ1 . . . b̄λλ

)T

and qλ =
(
aλλ, . . . aλ1, aλ0 bλ1 . . . bλλ

)T are connected by the transformations
q̄λ = M̄λ(g)qλ, with the blocks matrices M̄λ ≡ M̄λ(g) of the following form

M̄λ=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

...
. . . Cλ

22+Cλ
2−2 Cλ

21−Cλ
2−1

√
2Cλ

20 Sλ
21+Sλ

2−1 Sλ
22−Sλ

2−2 . . .

. . . Cλ
12+Cλ

1−2 Cλ
11−Cλ

1−1

√
2Cλ

10 Sλ
11+Sλ

1−1 Sλ
12−Sλ

1−2 . . .

. . .
√

2Cλ
02

√
2Cλ

01 Cλ
00

√
2Sλ

01

√
2Sλ

02 . . .

. . . −Sλ
12−Sλ

1−2 −Sλ
11+Sλ

1−1 −√
2Sλ

10 Cλ
11+Cλ

1−1 Cλ
12−Cλ

1−2 . . .

. . . −Sλ
22−Sλ

2−2 −Sλ
21+Sλ

2−1 −√
2Sλ

20 Cλ
21+Cλ

2−1 Cλ
22−Cλ

2−2 . . .
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(23)

The inverse transformation is implemented using the transposed matrix M̄−1 =
M̄T because M̄ is the orthogonal matrix, i.e., M̄M̄T = M̄TM̄ = I. The matrix
M̄ transforming the intrinsic variables between the intrinsic frames is the trans-
posed matrix to the matrix M transforming the ‘laboratory’ variables to the
intrinsic ones, i.e., M̄ = MT corresponding to the transformation (10).

The quadrupole-octupole vibrational Hamiltonian Ĥv having the form of that
of a harmonic oscillator can be written in the intrinsic frame as

Ĥv=
[
− �2

2B2

(
∂2

∂(a20)2
+

∂2

∂(a22)2

)
+

B2ω
2
2

2
(
(a20)2+(a22)2

)]
(24)

+

[
− �2

2B3

(
3∑

μ=0

∂2

∂(a3μ)2
+

3∑
μ=1

∂2

∂(b3μ)2

)
+

B3ω
2
3

2

(
3∑

μ=0

(a3μ)2+
3∑

μ=1

(b3μ)2
)]

.

Since we do not introduce any interaction between the quadrupole and the octu-
pole vibrational modes, the eigenvalues of Ĥv (24) are sums of 2D and 7D har-
monic oscillator eigenvalues with the appropriate frequencies ω2 and ω3:

EK23
ν =�ω2(k1+k2+1) + �ω3(k3+...+k9+7/2), K23=K2+K3=k1+...+k9.

The corresponding eigenfunctions characterized by a set of quantum numbers
ν = {k1, ..., k9} of 9D harmonic oscillator can be expressed as the products of
1D harmonic oscillator eigenfunctions [12,13]:

236 A.A. Gusev et al.

ψǨ
ν (q) = ψK2

k1,k2
(q2)ψK3

k3,...,k9
(q3)δK23,k1+...+k9 , (25)

ψK2
k1,k2

(q2) = ψk1(η2a20)ψk2(η2a22), ψK3
k3,...,k9

(q3) = ψK3
k3k4k5k6

(qa
3)ψ

K3
k7k8k9

(qb
3),

ψK3
k3k4k5k6

(qa
3) = ψk3(η3a33)ψk4(η3a32)ψk5(η3a31)ψk6(η3a30),

ψK3
k7k8k9

(qb
3) = ψk7(η3b31)ψk8(η3b32)ψk9(η3b33),

where Ǩ = (K2,K3,K23). They are to satisfy the orthonormalization conditions∫
ψǨ

ν (q)ψǨ′
ν′ (q)dq = δǨ,Ǩ′δk1k′

1
...δk9k′

9
. (26)

The functions ψk∗(η∗a∗∗) in the above expressions are 1D harmonic oscillator
eigenfunctions with the parameter ηλ defined as ηλ =

√
Bλωλ/�:

ψk∗(η∗a∗∗) =

√ √
η∗

2kk!
√

π
Hk∗(

√
η∗a∗∗ exp(−η∗a2

∗∗/2), (27)

where Hk∗(x) = (2x)k∗ + ... are the Hermite polynomials [1].

4.1 GPOs Action – Intrinsic Groups

To construct the appropriate bases in the space of vibrational functions (25)
for the intrinsic point groups G we have to use the action of the operators (15)
corresponding to the intrinsic group:

Ψ Ǩ
nab0ν(q) =

dim(Γ)
card(G)

∑
g∈G

ΔΓ (g)ab0

� ˆ̄gψǨ
ν (q)

=
dim(Γ)
card(G)

∑
g∈G

ΔΓ (g)ab0

�
ψǨ

ν (M̄(g)q)

=
dim(Γ)
card(G)

∑
g∈G

ΔΓ (g)ab0

�
ψK2

k1,k2
(M̄2(g)q2)ψK3=K23−K2

k3,...,k9
(M̄3(g)q3), (28)

where the matrices of the representations ΔΓ (g)ab0 obtained from the action
of g ∈ G in the space of basis functions of the Cartesian variables are used.
In particular, for D4y, see Tables 1 and 2. In the above expressions, the labels
K23 = k1 + ... + k9, or K23 = K2 + K3, K2 = k1 + k2, K3 = k3 + ... + k9,
k1, k2 = K2 − k1 run over the full range k1, k2 = 0, ...,K2, and k3, k4, ..., k9 run
over the full range k3, ..., k9 = 0, ...,K3 that provides the decomposition of the
vibration space for a given K2 and K3 into the irreducible representations Γ .

The matrices M̄2(g) and M̄3(g) for g = (C4y) have the following form:

M̄2(C4y)=

⎡

⎢⎢
⎢
⎢
⎣

1
2

0
√

3
2

0 0
0 −1 0 0 0√
3
2

0 − 1
2

0 0
0 0 0 0 1
0 0 0 −1 0

⎤

⎥⎥
⎥
⎥
⎦

, M̄3(C4y)=

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎣

0 −
√
6
4

0 −
√

10
4

0 0 0√
6
4

0
√
10
4

0 0 0 0

0 −
√
10
4

0
√

6
4

0 0 0√
10
4

0 −
√
6
4

0 0 0 0

0 0 0 0 − 1
4

0
√
15
4

0 0 0 0 0 −1 0

0 0 0 0
√
15
4

0 1
4

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎦

. (29)

Irreducible Rotational-Vibrational Bases of Point Groups 237

Note that the matrices M̄2(g) act on the vector q2 = (a22, a21, a20, b21, b22)T

under the condition a21 = b21 = b22 = 0, that follows from Eq. (11). They
transform pairs of components a22 and a20 into combination of ā22 and ā20. In
this case, instead of Eq. (29) we have

(
ā22

ā20

)
= M̄2(g)

(
a22

a20

)
, M̄2(C4y) =

[
1
2

√
3
2√

3
2 − 1

2

]
. (30)

In turn, the matrices M̄3(g) act on the vector q3=(a33, a32, a31, a30, b31, b32, b33)T

and transform the pairs a32, a30 into a combination of ā32 and ā30, a33, a31 into
a combination of ā33 and ā31 and b33, b31 into a combination of b̄33 and b̄31.
An exception is the variable b32 which transforms into itself because it is an
invariant of the tetrahedral symmetry. In this case, instead of Eq. (29) we have

⎛
⎜⎜⎝

ā33

ā32

ā31

ā30

⎞
⎟⎟⎠ = M̄3(g)

⎛
⎜⎜⎝

a33

a32

a31

a30

⎞
⎟⎟⎠ , M̄3(C4y)=

⎡
⎢⎢⎢⎣

0 −
√
6
4 0 −

√
10
4√

6
4 0

√
10
4 0

0 −
√
10
4 0

√
6
4√

10
4 0 −

√
6
4 0

⎤
⎥⎥⎥⎦ . (31)

Note that in the decomposition (25) for the group D4y, instead of ψK3
k3,...,k9

(q3)

one can use the vectors ψ
Ka

3
k3,k4,k5,k6

(a33, a32, a31, a30)ψ
Kb

3
k7,k9

(b33, b31)ψ
Kc

3
k8

(b32).

This allows one to construct the vibrational basis ψ
Ka

3
k3,k4,k5,k6

(a33, a32, a31, a30) of
Irrs of D4y separately, in accordance with the conditions b33 = b32 = b31 = 0 [15].

The eigenfunctions ΨN
l,k(q̄0, q̄2) ∼ Hl(q̄0(g))Hk(q̄2(g)) transformed by the

orthogonal transformation M̄(g), where each pair of variables (q̄0, q̄2) is the
transformed pair of variables (q0, q2), are calculated using the formula [17]:

Hl(sin θq0+ cos θq2)Hk(cos θq0− sin θq2)=
l+k=N∑

j=0

αj,lk(g)Hl+k−j(q0)Hj(q2). (32)

The required coefficients αj,lk(g) are determined by the following expression:

αj,lk(g)=
min(j,l)∑

i=max(0,j−k)

l!k!(−1)i−j

i!(j−i)!(l−i)!(k−j+i)!
(cos θ)k−j+2i(sin θ)j+l−2i, (33)

where the values cos θ and sin θ are given by the direct substitutions of the
corresponding pairs of elements of the matrices M̄2(g) and M̄3(g).

The expressions (32) and (33) make it possible to express the action of the
group G onto the 2D oscillator functions for K2 = k1 + k2 as follows:

ˆ̄gΨK2
k1k2

(q0, q2) =
K2∑
j=0

αj,k1k2(g)ΨK2
k1+k2−j,j(q0, q2). (34)

238 A.A. Gusev et al.

Table 4. The vibrational functions vnK23
ab0t of Irrs Γ1,...,Γ5, K23=0, 1

Γ1, K23=0 v10
111=ψ0

[0](q)≡ ψ0
[000000](q)

K23=1

Γ1, v11
111=[

√
3
2

ψ1(a22)
ψ0(a22)

+ 1
2

ψ1(a20)
ψ0(a20)

]ψ0
[0](q)

Γ2, v21
111=[−

√
3
2

ψ1(a20)
ψ0(a20)

+ 1
2

ψ1(a22)
ψ0(a22)

]ψ0
[0](q)

Γ5, v51
111=v51

211=
ψ1(a33)
ψ0(a33)

ψ0
[0](q)

Γ5, v51
112=v51

212=
ψ1(a31)
ψ0(a31)

ψ0
[0](q)

Γ5, v51
121=v51

221=
ψ1(a32)
ψ0(a32)

ψ0
[0](q)

Γ5, v51
122=v51

222=
ψ1(a30)
ψ0(a30)

ψ0
[0](q)

Table 5. The vibrational functions vnK23
ab0t of Irrs Γ1,Γ2, K23=2

Γ1, K23=2

v12
111=[

√
15

10
ψ1(a20)
ψ0(a20)

ψ1(a22)
ψ0(a22)

+ 3
√

10
20

ψ2(a20)
ψ0(a20)

+
√

10
4

ψ2(a22)
ψ0(a22)

]ψ0
[0](q)

v12
112=[

√
15
5

ψ1(a20)
ψ0(a20)

ψ1(a22)
ψ0(a22)

−
√

10
5

ψ2(a20)
ψ0(a20)

]ψ0
[0](q)]

v12
113=[

√
15
8

ψ1(a30)
ψ0(a30)

ψ1(a32)
ψ0(a32)

+ 5
√

2
16

ψ2(a30)
ψ0(a30)

+ 3
√

2
16

ψ2(a32)
ψ0(a32)

+
√

2
2

ψ2(a33)
ψ0(a33)

]ψ0
[0](q)

v12
114=[− 3

√
110

176
ψ2(a30)
ψ0(a30)

+
√

110
22

ψ2(a31)
ψ0(a31)

+
√

110
16

ψ2(a32)
ψ0(a32)

− 3
√

33
88

ψ1(a30)
ψ0(a30)

ψ1(a32)
ψ0(a32)

+
√

33
11

ψ1(a31)
ψ0(a31)

ψ1(a33)
ψ0(a33)

]ψ0
[0](q)

v12
115=[

√
110
22

ψ1(a30)
ψ0(a30)

ψ1(a32)
ψ0(a32)

+
√
110
22

ψ1(a31)
ψ0(a31)

ψ1(a33)
ψ0(a33)

−
√

33
11

ψ2(a30)
ψ0(a30)

Γ2, K23=2

v22
111=[−

√
6
4

ψ2(a20)
ψ0(a20)

+
√

6
4

ψ2(a22)
ψ0(a22)

− 1
2

ψ1(a20)
ψ0(a20)

ψ1(a22)
ψ0(a22)

]ψ0
[0](q)

v22
112=[−

√
15
8

ψ1(a30)
ψ0(a30)

ψ1(a32)
ψ0(a32)

− 5
√

2
16

ψ2(a30)
ψ0(a30)

− 3
√

2
16

ψ2(a32)
ψ0(a32)

+
√
2
2

ψ2(a33)
ψ0(a33)

]ψ0
[0](q)

v22
113=[− 3

√
110

176
ψ2(a30)
ψ0(a30)

−
√

110
22

ψ2(a31)
ψ0(a31)

+
√

110
16

ψ2(a32)
ψ0(a32)

− 3
√

33
88

ψ1(a30)
ψ0(a30)

ψ1(a32)
ψ0(a32)

−
√

33
11

ψ1(a31)
ψ0(a31)

ψ1(a33)
ψ0(a33)

]ψ0
[0](q)

v22
114=[−

√
110
22

ψ1(a30)
ψ0(a30)

ψ1(a32)
ψ0(a32)

+
√

110
22

ψ1(a31)
ψ0(a31)

ψ1(a33)
ψ0(a33)

+
√
33

11
ψ2(a30)
ψ0(a30)

−
√

33
11

ψ2(a31)
ψ0(a31)

]ψ0
[0](q)

A more effective way for calculating the coefficients αj,lk(g) of the expansion (32)
is to use only the leading terms Hk∗(x) = (2x)k∗ + ... of the Hermite polynomials
[12,14]. It is important that this method can be also applied in a general case
of products of a finite number of Hermite polynomials. This means that for the
harmonic oscillator functions with K2 + K3 = K23, used in Eq. (28), we can
apply the following transformation:

ψK2
k1,k2

(M̄2(g)q2) =
∑

k′
1+k′

2=K2

α[2]k1,k2;k′
1,k′

2
(g)ψK2

k′
1,k′

2
(q2),

ψK3
k3,...,k9

(M̄3(g)q3) =
∑

k′
3+...+k′

9=K3

α[3]k3,...,k9;k′
3,...,k′

9
(g)ψK3

k′
3,...,k′

9
(q3). (35)

Irreducible Rotational-Vibrational Bases of Point Groups 239

For convenience, these formulae can be written in the matrix form. In the con-
sidered case, expression (28) can be presented as follows:

Ψ Ǩ
Γab0ν(q2,q3)=

∑
[k′]

AǨ
Γ ;νν′;ab0ψ

K2
k′
1,k′

2
(q2)ψK3

k′
3,...,k′

9
(q3)

=
∑

[k′]
AǨ

Γ ;νν′;ab0ψ
Ǩ
ν′ (q2,q3), (36)

AΓ ;νν′;ab0=
dim(Γ)
card(G)

∑
g∈G

ΔΓ (g)ab0

�
α[2]k1,k2;k′

1,k′
2
(g)α[3]k3,...,k9;k′

3,...,k′
9
(g). (37)

where [k′] = {(k′
1, ..., k

′
9) : k′

1 + k′
2 = K2, k

′
3 + ... + k′

9 = K3} and Ǩ = K2 + K3.

4.2 Algorithm for Construction of Shape-Vibrational Basis

Let us consider the algorithm for the explicit construction of the required bases
in the case of the intrinsic octahedral group Ō [11] and its subgroup D̄4y

from Tables 1 and 2 acting in the space of eigenfunctions of the quadrupole-
octupole harmonic oscillator (25)–(27) in accordance with (28) and (22), using
as INPUT.

Step 1. First one needs to organize two loops: the first one is over the main
oscillator quantum number K23 = 0, 1, . . . ,K23max and the second one is running
over all irreducible representations Γ ∈ {Γ1, Γ2, ..., ΓnΓ

} of the group G, where
nΓ denotes the number of irreducible representations.

For given K23 and Γ , in Eq. (36) choose a single (though we are doing the
loop over all b0 = 1, ...,dim(Γ)) fixed pair of indices (a = b0, b0) such that there

Table 6. The vibrational functions vnK23
ab0t of Irrs Γ3,...,Γ5, K23=2

Γ3, K23=2

v32
111=[−

√
5

4
ψ1(a30)
ψ0(a30)

ψ1(a31)
ψ0(a31)

+
√
5
4

ψ1(a32)
ψ0(a32)

ψ1(a33)
ψ0(a33)

−
√
3
4

ψ1(a30)
ψ0(a30)

ψ1(a33)
ψ0(a33)

−
√
3
4

ψ1(a31)
ψ0(a31)

ψ1(a32)
ψ0(a32)

]ψ0
[0](q)

Γ4, K23=2

v42
111=[

√
165
44

ψ1(a30)
ψ0(a30)

ψ1(a33)
ψ0(a33)

+
√
165
44

ψ1(a31)
ψ0(a31)

ψ1(a32)
ψ0(a32)

+ 5
√
11

44
ψ1(a30)
ψ0(a30)

ψ1(a31)
ψ0(a31)

+
√
11
4

ψ1(a32)
ψ0(a32)

ψ1(a33)
ψ0(a33)

]ψ0
[0](q)

v42
112=[−

√
330
44

ψ1(a30)
ψ0(a30)

ψ1(a31)
ψ0(a31)

− 3
√
22

44
ψ1(a30)
ψ0(a30)

ψ1(a33)
ψ0(a33)

+ 2
√
22

11
ψ1(a31)
ψ0(a31)

ψ1(a32)
ψ0(a32)

]ψ0
[0](q)

v42
113=[

√
10
4

ψ1(a30)
ψ0(a30)

ψ1(a33)
ψ0(a33)

−
√
6
4

ψ1(a30)
ψ0(a30)

ψ1(a31)
ψ0(a31)

]ψ0
[0](q)

Γ5, K23=2, b0 = 1

v52
111=v52

211=
ψ1(a22)
ψ0(a22)

ψ1(a33)
ψ0(a33)

ψ0
[0](q)

v52
112=v52

212=
ψ1(a20)
ψ0(a20)

ψ1(a33)
ψ0(a33)

ψ0
[0](q)

v52
113=v52

213=
ψ1(a22)
ψ0(a22)

ψ1(a31)
ψ0(a31)

ψ0
[0](q)

v52
114=v52

214=
ψ1(a20)
ψ0(a20)

ψ1(a31)
ψ0(a31)

ψ0
[0](q)

Γ5, K=2, b0 = 2

v52
121=v52

221=
ψ1(a22)
ψ0(a22)

ψ1(a32)
ψ0(a32)

ψ0
[0](q)

v52
122=v52

222=
ψ1(a20)
ψ0(a20)

ψ1(a32)
ψ0(a32)

ψ0
[0](q)

v52
123=v52

223=
ψ1(a22)
ψ0(a22)

ψ1(a30)
ψ0(a30)

ψ0
[0](q)

v52
124=v52

224=
ψ1(a20)
ψ0(a20)

ψ1(a30)
ψ0(a30)

ψ0
[0](q)

240 A.A. Gusev et al.

exists a set of the oscillator quantum numbers ν for which Ψ Ǩ
Γb0b0ν(q2,q3) are

not identically equal to zero. Note that, it can happen, so that all the vectors
Ψ Ǩ

Γb0b0ν(q2,q3) = 0 for the given b0 or the representation Γ .

Step 2. Given the subset of the vectors ũǨ,Γ,ν,b0
(q2,q3) = Ψ Ǩ

Γb0b0ν(q2,q3),
where ν = {k1, ..., k9}, run over all solutions of the equations k1 + k2 = K2,
k3 + ... + k9 = K3 for K23 = K2 + K3.

Now we have to choose the maximal subset of linearly independent vectors
from the set of the vectors ũǨ,Γ,ν,b0

(q2,q3).
To solve this problem we use the symmetric orthonormalization procedure.

The required overlaps of the vectors ũǨ,Γ,ν,b0
(q2,q3) are expressed in terms of

the coefficients AǨ
Γn;ν′;ab0

of Eq. (36):

Nνν′=〈ũǨ,Γ,ν,b0
|ũǨ,Γ,ν′,b0〉=

∑
[k′′]

AǨ
Γ ;νν′′;b0b0A

Ǩ
Γ ;ν′ν′′;b0b0 . (38)

For given K23 = K2 + K3, Γ and b0, these overlaps form a finite dimensional
Hermitian matrix referred to as the Gram matrix. The indices ν represent the
sets of oscillatory quantum numbers, i.e., ν = {k1, ..., k9}.

Solving the eigenvalue problem for the matrix N allows one to find the ortho-
normal basis, in which this matrix is diagonal:

Nwt = λtwt, (39)

where the first s values of t, i.e., t = 1, 2, . . . , s correspond to the eigenvalues
λt �= 0, and the indices t = s + 1, s + 2, . . . are related to λt = 0.

The coefficients wt allow the construction of states, which in the Genera-
tor Coordinate Method [13] are named the “natural states”. They furnish the
required basis in our space spanned with the vectors |ũǨ,Γ,ν,b0

〉 corresponding
to the non-zero eigenvalues λt �= 0:

|uǨ,Γ,t,b0
〉=At

∑
ν
wt(ν)|ũǨ,Γ,ν,b0

〉=At

∑
[k]

wt(ν)
∑

[k′]
AǨ

Γm;ν;b0b0;ν′ |Ψ Ǩ
ν′ 〉,(40)

where Ǩ, Γ , and b0 are fixed and At = {λt

∑
[k′]

|wt(ν′)|2}−1/2 is the normalization

coefficient. Thus, we obtain the required basis in the projected subspace KΓ
K23b0

.
Next, the vectors uǨ,Γ,t,b0

(q2,q3) are expanded using the harmonic oscillator
basis (25). We denote the expansion coefficients by BǨ

Γn,t,b0;ν′ = 〈ν′|uǨ,Γn,t,b0
〉.

They can be calculated from the formula (40) with t = 1, ..., s

uǨ,Γ,t,b0
(q2,q3) =

∑
[k′]

BǨ
Γ,t,b0;ν′Ψ Ǩ

ν′ (q2,q3)

BǨ
Γ,t,b0ν′ = δk′

1+...+k′
9,k1+...+k9At

∑
[k]

wt(ν)A
Ǩ
Γ ;ν;ab0;ν′ (41)

Step 3. Now we are able to apply the projection operators (28) for the irreducible
representation Γ of the group G to every vector uǨ,Γ,t,b0

(q2,q3), t = 1, ..., s and
for every a = 1, 2, ...,dim(Γ), with fixed b0:

v̄Ǩ,Γ,t,ab0
(q2,q3)= ˆ̄PΓ

ab0uǨ,Γ,t,b0
(q2,q3)=

∑
[k′]

C̄Ǩ,Γ,t,a,b0
ν,ν′ Ψ Ǩ

ν′ (q2,q3). (42)

Irreducible Rotational-Vibrational Bases of Point Groups 241

Using (36) and (42), the coefficients C̄Ǩ,Γ,t,a,b0
ν,ν′ can be written as

C̄Ǩ,Γ,t,a,b0
ν,ν′ = BǨ

Γ,t,b0;ν′AǨ
Γ ;ν;ab0;ν′ . (43)

Using the orthonormalization conditions (26) for v̄Ǩ,Γ,t,ab0
(q2,q3), we calculate

the normalization factor

N2
2 (Ǩ, Γ, t, ab0) =

∑
[k′]

∑
[k]

|C̄Ǩ,Γ,t,a,b0
ν,ν′ |2 (44)

and the required set of orthonormalized vectors vǨ,Γ,t,ab0
(q2,q3)

vnK23
ab0t ≡ vǨ,Γ,t,ab0

(q2,q3) =
∑

[k′]
CǨ,Γ,t,a,b0

ν,ν′ Ψ Ǩ
ν′ (q2,q3), (45)

CǨ,Γ,t,a,b0
ν,ν′ = C̄Ǩ,Γ,t,a,b0

ν,ν′ /N2(Ǩ, Γ, t, ab0).

The above algorithm (Steps 1–3) with OUTPUT, containing a set of the
vectors vnK23

ab0t from (45) for all irreducible representations of the intrinsic octahe-
dral group Ō or its subgroup from INPUT, was implemented in the computer
algebra system Reduce. The typical running time of calculating the irreducible
representations Γ1,...,Γ5 for the octahedral group for K23 ≤ 5 is 3080 s using the
PC Intel Core i5 CPU 3.33 GHz 4 GB 64bit Windows 7.

Example of OUTPUT for the group D̄4y, for all irreducible representations
Γ1, ..., Γ5, a=1, 2, b0=1, 2, K23=k1 + ... + k9 ≤ 2 the vectors v̄Ǩ,Γn,t,ab0

(q2,q3),
denoted for practical reason as vnK23

ab0t , are shown in Tables 4, 5, 6. The index t =
1, ..., s distinguishes between the equivalent representations. In the tables, one
should upload the basis functions ψ0

[0](q) ≡ ψ0
[000000](q) = ψ0

[00](q2)ψ0
[0000](q

a
3),

because we put b33=b32=b31 =0 to compare our results with Ref. [15].

5 Conclusion and Perspectives

The symbolic algorithms for evaluating the bases of irreducible representations
for the laboratory and intrinsic point groups in both the rotor space L2(SO(3))
and the shape vibrational space L2(R2+7) or L2(R2+4) of the octupole-quadru-
pole harmonic oscillator are presented.

These algorithms can be implemented in any computer algebra system deal-
ing with non-commuting operations calculus and used for generating a FOR-
TRAN code for more efficient numerical calculations.

These special realizations of bases are useful for calculating spectra and elec-
tromagnetic transitions in molecular and nuclear physics.

These algorithms can be adopted to any subgroup of the octahedral group
and applied for constructing the rotational–vibrational bases (14), especially for
collective models of molecules and nuclei.

The work was partially supported by the Russian Foundation for Basic
Research, grant No. 14-01-00420 and the Bogoliubov-Infeld JINR-Poland
program.

242 A.A. Gusev et al.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover,
New York (1965)

2. Barut, A., Ra̧czka, R.: Theory of Group Representations and Applications. PWN,
Warszawa (1977)

3. Chen, J.Q., Ping, J., Wang, F.: Group Representation Theory for Physicists. World
Sci., Singapore (2002)

4. Cornwell, J.F.: Group Theory in Physics. Academic Press, New York (1984)
5. Doan, Q.T., et al.: Spectroscopic information about a hypothetical tetrahedral

configuration in 156Gd. Phys. Rev. C 82, 067306 (2010)
6. Dobrowolski, A., Góźdź, A., Szulerecka, A.: Electric transitions within the sym-

metrized tetrahedral and octahedral states. Phys. Scr. T154, 014024 (2013)
7. Dudek, J., Góźdź, A., Schunck, N., Mískiewicz, M.: Nuclear tetrahedral symmetry:

possibly present throughout the Periodic Table. Phys. Rev. Lett. 88, 252502 (2002)
8. Góźdź, A., Dobrowolski, A., Pȩdrak, A., Szulerecka, A., Gusev, A.A., Vinitsky,

S.I.: Structure of Bohr type nuclear collective spaces - a few symmetry related
problems. Nucl. Theory 32, 108–122 (2013)

9. Góźdź, A., Pȩdrak, A., Dobrowolski, A., Szulerecka, A., Gusev, A.A., Vinitsky,
S.I.: Shapes and symmetries of nuclei. Bulg. J. Phys. 42, 494–502 (2015)

10. Góźdź, A., Szulerecka, A., Dobrowolski, A., Dudek, J.: Nuclear collective models
and partial symmetries. Acta Phys. Pol. B 42, 459–463 (2011)

11. Gusev, A.A., Gerdt, V.P., Vinitsky, S.I., Derbov, V.L., Góźdź, A.: Symbolic algo-
rithm for irreducible bases of point groups in the space of SO(3) group. In: Gerdt,
V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, pp.
166–181. Springer, Heidelberg (2015)

12. Pogosyan, G.S., Smorodinsky, A.Y., Ter-Antonyan, V.M.: Oscillator Wigner func-
tions. J. Phys. A 14, 769–776 (1981)

13. Ring, P., Schuck, P.: The Nuclear Many-Body Problem. Springer, New York (1980)
14. Rojansky, V.: On the theory of the Stark effect in hydrogenic atoms. Phys. Rev.

33, 1–15 (1929)
15. Szulerecka, A., Dobrowolski, A., Góźdź, A.: Generalized projection operators for

intrinsic rotation group and nuclear collective model. Phys. Scr. 89, 054033 (2014)
16. Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angu-

lar Momentum. World Sci., Singapore (1989)
17. Vilenkin, J.A., Klimyk, A.U.: Representation of Lie Group and Special Functions,

vol. 2. Kluwer Academic Publ., Dordrecht (1993)

A Symbolic Investigation of the Influence
of Aerodynamic Forces on Satellite Equilibria

Sergey A. Gutnik1(B) and Vasily A. Sarychev2

1 Moscow State Institute of International Relations (University),
76, Prospekt Vernadskogo, Moscow 119454, Russia

s.gutnik@inno.mgimo.ru
2 Keldysh Institute of Applied Mathematics, Russian Academy of Sciences,

4, Miusskaya Square, Moscow 125047, Russia
vas31@rambler.ru

Abstract. Computer algebra methods are used to study the properties
of a nonlinear algebraic system that determines equilibrium orientations
of a satellite moving along a circular orbit under the action of gravita-
tional and aerodynamic torques. An algorithm for the construction of a
Gröbner basis is proposed for determining the equilibrium orientations
of a satellite with given principal central moments of inertia and given
aerodynamic torque in special cases, when the center of pressure of aero-
dynamic forces is located in one of the principal central planes of inertia
of the satellite. The conditions of the equilibria existence are obtained,
depending on three dimensionless parameters of the problem. The num-
ber of equilibria depending on the parameters is found by the analysis
of real roots of algebraic equations from the constructed Gröbner basis.
The evolution of domains with fixed number of equilibria from 24 to 8
is investigated in detail. All bifurcation values of the system parameters
corresponding to the qualitative change of these domains are determined.

1 Introduction

In this work, a symbolic investigation of a satellite dynamics under the influence
of gravitational and aerodynamic torques is presented. The gravity orientation
systems are based on the result that a satellite with different moments of inertia
in the central Newtonian force field in a circular orbit has 24 equilibrium orien-
tations [1]. However, at altitudes from 250 up to 500 km, rotational motion of
a satellite is subjected to aerodynamic torque too. Therefore, it is necessary to
study the joint action of gravitational and aerodynamic torques and, in partic-
ular, to analyse all possible satellite equilibria in a circular orbit. Such solutions
are used in practical space technology in the design of attitude control systems
of satellites.

The basic problems of satellite dynamics with an aerodynamic attitude con-
trol system have been presented in [1]. The problem of determining the classes of
equilibrium orientations for general values of aerodynamic torque was considered
in [2,3]. In [4–6], some equilibrium orientations were found in special cases when
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 243–254, 2016.
DOI: 10.1007/978-3-319-45641-6 16

244 S.A. Gutnik and V.A. Sarychev

the center of pressure is located on a satellite principal central axis of inertia and
on a satellite principal central plane of inertia. In [7], all equilibrium orientations
were found in the case of axisymmetric satellite.

The present work continues the study started in [6]. In this paper, all cases
when the center of pressure is located in the satellite principal central plane
of inertia are considered. All possible equilibrium orientations are investigated,
and their existence conditions are obtained. The equilibrium orientations are
determined by real roots of the system of nonlinear algebraic equations. The
investigation of equilibria was possible due to application of Computer Algebra
Gröbner basis method. The evolution of domains with a fixed number of equi-
libria is investigated in dependence of three dimensionless system parameters.

2 Equations of Motion

Consider the motion of a satellite subjected to gravitational and aerodynamic
torques in a circular orbit. We assume that (1) the gravity field of the Earth is
central and Newtonian, (2) the satellite is a triaxial rigid body, (3) the effect of
atmosphere on a satellite is reduced to the drag force applied at the center of
pressure and directed against the velocity of the satellite center of mass relative
to the air, and the center of pressure is fixed in the satellite body. To write the
equations of motion we introduce two right-handed Cartesian coordinate systems
with origin at the satellite center of mass O. OXY Z is the orbital reference frame.
The axis OZ is directed along the radius vector from the Earth center of mass to
the satellite center of mass, the axis OX is in the direction of a satellite orbital
motion. Oxyz is the satellite body reference frame; Ox, Oy, and Oz are the
principal central axes of inertia of the satellite. The orientation of the satellite
body coordinate system Oxyz with respect to the orbital coordinate system is
determined by means of the aircraft angles of pitch α, yaw β, and roll γ, and the
direction cosines in the transformation matrix between the orbital coordinate
system OXY Z and Oxyz are represented by the following expressions:

a11 = cos(x,X) = cos α cos β,

a12 = cos(y,X) = sinα sin γ − cos α sinβ cos γ,

a13 = cos(z,X) = sin α cos γ + cos α sinβ sin γ,

a21 = cos(x, Y) = sinβ,

a22 = cos(y, Y) = cos β cos γ, (1)
a23 = cos(z, Y) = − cos β sin γ,

a31 = cos(x,Z) = − sin α cos β,

a32 = cos(y, Z) = cos α sin γ + sin α sinβ cos γ,

a33 = cos(z, Z) = cos α cos β − sin α sin β sin γ.

Then equations of the satellite attitude motion can be written in the Euler
form [1,4]:

Influence of Aerodynamic Forces on Satellite Equilibria 245

Aṗ + (C − B)qr − 3ω2
0(C − B)a32a33 = ω2

0(H2a13 − H3a12),
Bq̇ + (A − C)rp − 3ω2

0(A − C)a31a33 = ω2
0(H3a11 − H1a13),

Cṙ + (B − A)pq − 3ω2
0(B − A)a31a32 = ω2

0(H1a13 − H3a11), (2)
p = (α̇ + ω0)a21 + γ̇, q = (α̇ + ω0)a22 + β̇ sin γ,

r = (α̇ + ω0)a23 + β̇ cos γ.

Here p, q, and r are the projections of the satellite angular velocity onto the
axes Ox, Oy, and Oz; A, B, and C are the principal central moments of inertia
of the satellite (without loss of generality, we assume that B > A > C); ω0

is the angular velocity of the orbital motion of the satellite center of mass.
H1 = −aQ/ω2

0 , H2 = −bQ/ω2
0 , H3 = −cQ/ω2

0 , Q is the atmospheric drug force
acting on a satellite; a, b, and c are the coordinates of the center of pressure of
a satellite in the reference frame Oxyz. The dot designates differentiation with
respect to time t.

3 Equilibrium Orientations of a Satellite

Setting in (2) α = α0 = const, β = β0 = const, γ = γ0 = const, we obtain at
A �= B �= C the equations

(C − B)(a22a23 − 3a32a33) = H2a13 − H3a12,

(A − C)(a21a23 − 3a31a33) = H3a11 − H1a13, (3)
(B − A)(a21a22 − 3a31a32) = H1a12 − H2a11,

which allow us to determine the satellite equilibria in the orbital reference frame.
Substituting the expressions for the direction cosines from (1) in terms of the
aircraft angles and into Eq. (3), we obtain three equations with three unknowns
α, β, and γ. The second procedure for closing Eq. (3) is to add the following six
orthogonality conditions for the direction cosines

ai1aj1 + ai2aj2 + ai3aj3 − δij = 0, (4)

where δij is the Kronecker delta and i, j = 1, 2, 3. Equations (3) and (4) form
a closed system with respect to the direction cosines, which also specifies the
equilibrium solutions of the satellite.

The system (3) and (4) has been solved for general case of the problem when
H1 �= 0, H2 �= 0, H3 �= 0 [2,3]. With the help of computer algebra method
it was shown that equilibrium orientations are determined by real solutions of
algebraic equation of the twelfth degree. The equilibrium orientations and their
stability were analysed numerically. The problem has been solved analytically
only for some specific cases when the center of pressure is located on a satellite
principal central axis of inertia Ox, when H1 �= 0, H2 = H3 = 0 [4,5] and for
the case of axisymmetric satellite when A �= B = C [7]. When the pressure
center locates in the satellite principal central plane of inertia Oxz of the frame
Oxyz, in the case when H1 �= 0, H2 = 0, and H3 �= 0, very complex analytical

246 S.A. Gutnik and V.A. Sarychev

study of the system (3) and (4) was conducted, and the equilibria were analysed
numerically [6]. In the present work, the problem of determination of the classes
of equilibrium orientations for all cases when the pressure center locates in one of
satellite principal central planes of inertia of the frame Oxyz, when (1) H1 �= 0,
H2 �= 0, and H3 = 0, (2) H1 �= 0, H2 = 0, and H3 �= 0 and (3) H1 = 0, H2 �= 0,
and H3 �= 0, with the help of Computer Algebra methods is investigated. The
existence of flat solutions in these cases is specified.

4 Investigation of Equilibria

4.1 Equilibria in the Case H3 = 0 (H1 �= 0, H2 �= 0)

We begin by considering the first case H1 �= 0, H2 �= 0, and H3 = 0 when the
pressure center is located in the plane Oxy. Introducing dimensionless parameters
hi = Hi/(B − C), ν = (B − A)/(B − C), (0 < ν < 1), system (3) takes the form

a22a23 − 3a32a33 + h2a13 = 0,

(1 − ν)(a23a21 − 3a33a31) + h1a13 = 0, (5)
ν(a21a22 − 3a31a32) − h1a12 + h2a11 = 0.

To solve the algebraic system (4), (5) we applied the algorithm of constructing
the Gröbner bases [8]. The method of constructing the Gröbner bases is an
algorithmic procedure for complete reduction of the problem in the case of the
system of polynomials in several variables to the polynomial of one variable.
Using the Gröbner[gbasis] Maple 15 package [9] for constructing Gröbner bases,
the lexicographic monomial order was chosen. We constructed the Gröbner basis
for the system of nine polynomials (4), (5) with nine variables direction cosines
aij (i, j = 1, 2, 3), and in the list of polynomials, we include the polynomials
from the left-hand sides fi (i = 1, 2, ...9) of the algebraic equations (4), (5):

G:=map(factor,Gröbner[gbasis]([f1, ... f9], plex(a11, ... a33))).

Here we write down the polynomial in the Gröbner basis that depends only on
one variable x = a33. This polynomial has the form

P (x) = P1(x)P2(x) = 0, (6)

where

P1(x) = x(x2 − 1),
P2(x) = p0x

4 + p1x
2 + p2,

p0 = 9(1 − ν)2p23,
p1 = p3(h6

1 − (1 − ν)(6ν − (3 − ν)h2
2)h

4
1

− (1 − ν)2((2ν − 3)h4
2 + 9ν2(2h2

2 − 1))h2
1 + (1 − ν)4(h2

2 + 3ν)2),

Influence of Aerodynamic Forces on Satellite Equilibria 247

p2 = −ν2h2
1h

2
2(h

6
1 − (1 − ν)(5ν + 1 − (3 − ν)h2

2)h
4
1

− (1 − ν)2((2ν − 3)h4
2 + 2(5ν2 − ν + 1)h2

2 − 3ν(2 + ν))h2
1

+ (1 − ν)4(h2
2 − 1)(h2

2 + 3ν)2),
p3 = h4

1 + 2(1 − ν)(h2
2 − 3ν)h2

1 + (1 − ν)2(h2
2 + 3ν)2.

It is necessary to consider three cases a33 = 0, a2
33 = 1, and P2(a2

33) = 0 to
investigate system (4), (5).

In the first case when a33 = 0, system (4), (5) takes the form

3νa31a32 + (h1a31 + h2a32)a23 = 0,

a2
31 + a2

32 = 1,

a2
23 = 1, (7)

a33 = a13 = a21 = a22 = 0,

a11 = −a23a32, a12 = a23a21.

The first two equations of system (7) can be written in a simpler form

9ν2a4
31 + 6νh2a

3
31 + (h2

1 + h2
2 − 9ν2)a2

31 − 6νh2a31 − h2
1 = 0, (8)

a32 = ∓ h1a31

(3νa31 ± h2)
.

Having solved system (8) one can determine the remaining direction cosines
from the equations of system (7). The first equation of system (7) represents
the equations of four hyperbolas. Their two branches pass through the origin of
coordinate system (a31 = 0 and a32 = 0) in the plane of variables a31 and a32,
while the second equation determines the unit circle in this plane. The number of
real solutions to system (7) (and, hence, to system (8)) depends on the character
of intersections of the hyperbolas with the circle. It is clear that two branches of
the hyperbolas that pass through the origin of coordinates always intersect the
circle at four points. If two other branches of the hyperbolas also intersect the
circle, we have four more solutions. In the case when hyperbola branches touch
the circle four solutions merge into two (there are two pairs of multiple roots) [7].
Thus, system (7), and hence system (8) too, has either eight or four solutions.
It follows from the reasoning presented above that bifurcation points are those
points of plane a31, a32, through which the branches of hyperbolas and the circle
pass simultaneously, and where tangents to these curves coincide. The condition
of coincidence of the tangents to two hyperbola branches and the circle has the
following form

d(a31)
d(a32)

= −3νa32 ± h1

3νa31 ± h2
= −2a31

2a32

or

3ν(a2
32 − a2

31) ± h1a32 ∓ h2a31 = 0. (9)

248 S.A. Gutnik and V.A. Sarychev

Substituting the expression for a32 from (8) into the second equation of (7) and
equation (9), we get the following system of equations

h2
1a

2
31

(3νa31 + h2)2
= 1 − a2

31,
h2
1h2

(3νa31 + h2)2
= −(3νa31 + h2). (10)

Excluding h2
1 from system of equations (10), after some simple transformations

we get the relationship a31 = −(3ν)−1/3
h
1/3
2 . Finally, substituting the expression

for a31 into the second equation of (10) we arrive at the equation of astroid

h
2/3
1 + h

2/3
2 = (3ν)2/3. (11)

There are eight solutions inside the region h
2/3
1 + h

2/3
2 < (3ν)2/3; when pass-

ing through curve (11) (which is a bifurcation curve), the number of solutions
changes to four; there exist four solutions in the region h

2/3
1 + h

2/3
2 > (3ν)2/3.

Now let us consider the second case a2
33 = 1. In this case, system (4), (5)

takes the form

νa21a22 + (h1a21 + h2a22)a33 = 0,

a2
21 + a2

22 = 1,

a2
33 = 1, (12)

a31 = a32 = a13 = a23 = 0,

a11 = a22a33, a12 = − a21a33.

The first two equations of system (12) can be written in the following form:

ν2a4
21 + 2νh2a

3
21 + (h2

1 + h2
2 − ν2)a2

21 − 2νh2a31 − h2
1 = 0, (13)

a22 = ∓ h1a21

(νa21 ± h2)
.

Applying the approach suggested above for investigating system (7) one can
demonstrate that for system (12), the bifurcation curve separating the region of
existence of eight solutions from the region of existence of four solutions is also
the astroid

h
2/3
1 + h

2/3
2 = (ν)2/3. (14)

In Figs. 1, 2 and 3, astroids (11) and (14) for the ν values equal to 0.2, 0.5,
and 0.8 are presented, that separate in plane (h1, h2) three regions with dif-
ferent numbers of equilibrium orientations of the satellite under the action of
gravitational and aerodynamic torques. There exist 8, 6, and 4 real solutions
(16, 12, and 8 equilibria) of both Eqs. (8) and (13) for the first and second
cases in regions h

2/3
1 + h

2/3
2 < (ν)2/3; (ν)2/3 < h

2/3
1 + h

2/3
2 < (3ν)2/3, and

h
2/3
1 + h

2/3
2 > (3ν)2/3, respectively.

Let us consider the third case for which the satellite equilibria are determined
by the real roots of the biquadratic equation P2(x) = 0. The number of real roots

Influence of Aerodynamic Forces on Satellite Equilibria 249

of the biquadratic equation (6) is even and not greater than 4. For each solution,
one can find from the second polynomial from of the constructed Gröbner base
two values of a32 and, then, their respective values a31. For each set of values
a31, a32, and a33, one can unambiguously determine from original system (4)
and (5) the respective values of the direction cosines a11, a12, a13 a21, a22, and
a23. Thus, each real root of the biquadratic equation (6) is matched with two
sets of values aij (two equilibrium orientations). Since the number of real roots
of biquadratic equation (6) does not exceed 4, the satellite in the third case can
have no more than 8 equilibrium orientations.

For the variable t = x2 = a2
33, we get the quadratic equation

P2(t) = p0t
2 + p1t + p2 = 0. (15)

Equation (15) has two solutions

t1 =
−p1 −

√
p21 − 4p0p2

2p0
; t2 =

−p1 +
√

p21 − 4p0p2
2p0

. (16)

It is possible to show that the discriminant p21 − 4p0p2 ≥ 0 at any values of the
system parameters. Thus, in case of the inequality t1 = a2

33 > 0 satisfaction,
Eq. (15) has two real roots t1 and t2 which correspond to four a33 values, and
system (4), (5) (at a33 �= 0, a33 �= ±1) has 8 solutions, and these solutions
correspond to 8 satellite equilibrium orientations. These equilibria exist in the
domain bounded by the curve t1(h1, h2, ν) = 0. In Figs. 1, 2 and 3, these curves
are marked as t1.

In the domain bounded by the curves t1(h1, h2, ν) = 0, t2(h1, h2, ν) = 1
for which inequalities t1(h1, h2, ν) < 0 and 0 < t2(h1, h2, ν) < 1 take place, only
four equilibria exist, which correspond only to one root t2. Outside the boundary
t2(h1, h2, ν) = 1, there are no solutions of the third case. In Figs. 1, 2 and 3, these
curves are denoted as t2.

The results of the analysis of the equilibria total number in the third case
can be summarized as follows. The curves t1(h1, h2, ν) = 0, t2(h1, h2, ν) = 1
decompose the plane (h1, h2) into three domains where 8 equilibria, 4 equilibria,
and no equilibria exist.

The final decomposition of the plane (h1, h2) for all three cases is presented
in Figs. 1, 2 and 3 for ν = 0.2, ν = 0.5, and ν = 0.8. Curves (11), (14) and
t1(h1, h2, ν) = 0, t2(h1, h2, ν) = 1 separate the plane into domains with the
fixed number of equilibria equal to 24, 20, 16, 12, and 8.

4.2 Equilibria in the Case H1 = 0 (H2 �= 0, H3 �= 0)

Let us consider the next case H1 = 0, H2 �= 0, and H3 �= 0 when the pressure
center locates in the plane Oyz. System (3) in that case takes the form

a22a23 − 3a32a33 + h2a13 − h3a12 = 0,

(1 − ν)(a23a21 − 3a33a31) − h3a11 = 0, (17)
ν(a21a22 − 3a31a32) + h2a11 = 0.

250 S.A. Gutnik and V.A. Sarychev

Fig. 1. The regions with the fixed number of equilibria for ν = 0.2

Fig. 2. The regions with the fixed number of equilibria for ν = 0.5

Applying the approach suggested above for investigating system (4), (5), we
used the algorithm of constructing the Gröbner bases for the polynomials on the
left-hand sides of the system (4), (17). The polynomial in the Gröbner basis that
depends only on one variable in that case a31 has the form

Ph1(a31) = P3(a31)P4(a31) = 0, (18)

Influence of Aerodynamic Forces on Satellite Equilibria 251

Fig. 3. Regions with the fixed number of equilibria for ν = 0.8

where

P3(a31) = a31(a2
31 − 1),

P4(a31) = p40a
4
31 + p41a

2
31 + p42,

p40 = 9ν2(1 − ν)2p243,
p41 = p43(ν4h6

3 + ν2(1 − ν)(6ν2 − (3ν − 1)h2
2)h

4
3

− ν(1 − ν)2((2ν − 3)h4
2 + 9ν(2h2

2 − ν2))h2
3 + (1 − ν)4h2

2(h
2
2 + 3ν)2),

p42 = −h2
2h

2
3(ν

4h6
3 + ν2(1 − ν)(ν2(5 + ν) + (1 − 3ν)h2

2)h
4
3

+ ν(1 − ν)2((3ν − 2)h4
2 + 2ν(ν(1 − ν) − 5)h2

2 + 3ν3(1 + 2ν))h2
3

+ (1 − ν)4(h2
2 − ν2)(h2

2 + 3ν)2),
p43 = ν2h4

3 + 2ν(1 − ν)(h2
2 − 3ν)h2

3 + (1 − ν)2(h2
2 + 3ν)2.

It is also necessary to consider three cases, a31 = 0, a2
31 = 1, and P42(a2

31) = 0
to investigate system (4), (17).

In the first case when a31 = 0, using the approach described above in Sub-
sect. 4.1, it is possible to obtain the bifurcation curve

h
2/3
2 + h

2/3
3 = 32/3,

which separates the plane (h2, h3) into two regions with eight and four equilib-
rium orientations of the satellite. In the second case when a2

31 = 1, applying the
above approach one can demonstrate that for system (17), the bifurcation curve
separating the region of existence of eight solutions from the region of existence
of four solutions is also the astroid

h
2/3
2 + h

2/3
3 = 1.

252 S.A. Gutnik and V.A. Sarychev

Another two curves separating the regions with an equal number of equilibria
can be obtained from the conditions of existence of real roots of the biquadratic
equation P4(a31) = 0. The evolution of domains with a fixed number of equilib-
rium orientations in the plane of two parameters (h2, h3) is very similar to the
case described in 4.1.

4.3 Equilibria in the Case H2 = 0 (H1 �= 0, H3 �= 0)

In the last case H1 �= 0, H2 = 0, and H3 �= 0 when the pressure center locates
in the plane Oxz system (3) takes the form

a22a23 − 3a32a33 − h3a12 = 0,

(1 − ν)(a23a21 − 3a33a31) − h3a11 + h1a13 = 0, (19)
ν(a21a22 − 3a31a32) − h1a12 = 0.

Constructing the Gröbner bases for the polynomials on the left-hand sides of
system (4), (19), we will get the polynomial that depends only on one variable
a32 in the form

Ph2(a32) = P5(a32)P6(a32) = 0, (20)

where

P5(a32) = a32(a2
32 − 1),

P6(a32) = p60a
4
32 + p61a

2
32 + p62,

p60 = 9ν2p263,

p61 = p63(h6
1 + ν((2 + ν)h2

3 − 6(1 − ν))h4
1

+ ν2((2ν + 1)h4
3− 18(1 − ν)2h2

3 + 9(1 − ν)2)h2
1+ ν4h2

3(h
2
3+ 3(1 − ν))2),

p62 = −h2
1h

2
3(h

6
1 + ν((2 + ν))h2

3 + 5ν − 6)h4
1

+ ν2((2ν + 1)h4
3 + 2(9ν − 5ν2 − 5)h2

3 + 3(ν2 − 4ν + 3))h2
1

+ ν4(h2
3 − 1)(h2

3 + 3(1 − ν))2),
p63 = h4

1 + 2ν(h2
3 − 3(1 − ν))h2

1 + ν2(h2
3 + 3(1 − ν))2.

It is necessary to consider three cases a32 = 0, a2
32 = 1, P6(a32) = 0, to inves-

tigate the system (4), (19). In the first case when a32 = 0, using the approach
described in Subsect. 4.1, it is possible to obtain the bifurcation curve

h
2/3
1 + h

2/3
3 = (3(1 − ν))2/3,

which separates the plane (h1, h3) into two regions with eight and four equilib-
rium orientations of the satellite. In the second case when a2

32 = 1, the bifurca-
tion curve separating the region of existence of eight solutions from the region
of existence of four solutions is also the astroid

h
2/3
1 + h

2/3
3 = (1 − ν)2/3.

Influence of Aerodynamic Forces on Satellite Equilibria 253

Another two curves separating the regions with an equal number of equilibria
can be obtained from the conditions of existence of real roots of the biquadratic
equation P6(a32) = 0.

The evolution of domains with a fixed number of equilibrium orientations in
the plane of two parameters (h1, h3) is also very similar to the first case. In [6],
the sufficient conditions for stability of the equilibrium orientations for the last
case h1 �= 0, h2 = 0, and h3 �= 0 are obtained using the Lyapunov theorem.

Conditions a31 = 0, a2
31 = 1; a32 = 0, a2

32 = 1 and a33 = 0, a2
33 = 1 define all

flat solutions of the problem.

5 Conclusion

In this work, the attitude motion of the satellite under the action of gravita-
tional and aerodynamic torques in a circular orbit has been investigated. The
main attention was given to determination of the satellite equilibrium orienta-
tion in the orbital reference frame and to the analysis of their evolutions in three
cases when the center of pressure of aerodynamic forces is located in one of the
principal central planes of inertia of the satellite Oxy, Oxz, and Oyz.

The symbolic method of determination of all the satellite equilibria is sug-
gested in the cases when h1 = 0, or h2 = 0, or h3 = 0. The Computer algebra
system Maple is applied to reduce the satellite stationary motion system of nine
algebraic equations with nine variables to a single algebraic equation with one
variable, using the algorithm for the construction of Gröbner basis.

These results permit us to describe the change of the number of equilibrium
orientations of the satellite as a function of the parameters hi and ν. When the
aerodynamic torque is small enough, there exist 24 equilibria; when it is large
enough, there are 8. The evolution of domains with a fixed number of equilibrium
orientations was investigated both analytically and numerically in the plane of
two parameters (h1, h2) at different values of parameter ν. All bifurcation values
of the system parameters corresponding to the qualitative change of domains
with fixed number of equilibria were determined. The existence of flat solutions
of the problem was specified. The results of the study can be used at the stage
of preliminary design of the satellite with aerodynamic control system.

References

1. Sarychev, V.A.: Problems of orientation of satellites, Itogi Nauki i Tekhniki. Ser.
“Space Research”, vol. 11. VINITI, Moscow (1978)

2. Gutnik, S.A.: Symbolic-numeric investigation of the aerodynamic forces influence
on satellite dynamics. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V.
(eds.) CASC 2011. LNCS, vol. 6885, pp. 192–199. Springer, Heidelberg (2011)

3. Sarychev, V.A., Gutnik, S.A.: Dynamics of a satellite subject to gravitational and
aerodynamic torques. Investigation of equilibrium positions. Cosm. Res. 53, 449–457
(2015)

4. Sarychev, V.A., Mirer, S.A.: Relative equilibria of a satellite subjected to gravita-
tional and aerodynamic torques. Celest. Mech. Dyn. Astron. 76(1), 55–68 (2000)

254 S.A. Gutnik and V.A. Sarychev

5. Sarychev, V.A., Mirer, S.A., Degtyarev, A.A., Duarte, E.K.: Investigation of equilib-
ria of a satellite subjected to gravitational and aerodynamic torques. Celest. Mech.
Dyn. Astron. 97, 267–287 (2007)

6. Sarychev, V.A., Mirer, S.A., Degtyarev, A.A.: Equilibria of a satellite subjected to
gravitational and aerodynamic torques with pressure center in a principal plane of
inertia. Celest. Mech. Dyn. Astron. 100, 301–318 (2008)

7. Sarychev, V.A., Gutnik, S.A.: Dynamics of an axisymmetric satellite under the
action of gravitational and aerodynamic torques. Cosm. Res. 50, 367–375 (2012)

8. Buchberger, B.: A theoretical basis for the reduction of polynomials to canonical
forms. SIGSAM Bull. 10(3), 19–29 (1976)

9. Char, B.W., Geddes, K.O., Gonnet, G.H., Monagan, M.B., Watt, S.M.: Maple Ref-
erence Manual. Watcom Publications Limited, Waterloo (1992)

Computer Algebra in High-Energy Physics
(Invited Talk)

Thomas Hahn(B)

Max Planck Institute for Physics, Föhringer Ring 6, 80805 Munich, Germany
hahn@feynarts.de

Abstract. Paper and pencil are no longer sufficient to obtain the pre-
dictions mandated by modern colliders. This is due to the required preci-
sion, the number of final-state particles, and also the number of particles
in the model. More than any other collider, the Large Hadron Collider
(LHC) at CERN has to rely on precise theoretical predictions to even
look in the right place, let alone test measurements at a quantitative
level. The methods of perturbative quantum field theory, Feynman dia-
grams, have not changed much over time, and their application remains a
formidable, though fully algorithmic, calculational problem. This contri-
bution focusses on how Computer Algebra plays an essential role in this
programme and shows by a few examples how the methods are actually
implemented in a Computer Algebra system.

1 Introduction

Elementary particles and their interactions are mathematically described by
quantum-field-theoretical models given in the form of a Lagrangian density
L, usually made up of monomials in the quantum fields where bilinear terms
describe propagation and multilinear terms describe interactions. The quantum
fields are evaluated at the same point in space-time, hence the interactions are
pointlike and automatically satisfy the postulates of special relativity, i.e. in
the field-theoretical picture two matter particles interact by exchanging a force
particle, which propagates with at most light speed like all the other particles.

What is measured in collider experiments, on the other hand, are quantities
like the cross-section σ of a scattering reaction, which is the (suitably normalized)
probability to find a given particle in a certain part of the detector. The connec-
tion between the Lagrangian and the cross-section is made through the scatter-
ing operator S, where the differential cross-section for the reaction in → out is
proportional to the squared matrix element |M|2, M = 〈out|S |in〉.

The S-matrix element M is typically computed in perturbation theory with
the help of Feynman diagrams. For example, the following diagram contributes
to the cross-section of e+e− → tt̄ (top-pair production at an e+–e− collider):

c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 255–275, 2016.
DOI: 10.1007/978-3-319-45641-6 17

256 T. Hahn

The diagram is read from left to right: an electron–positron pair annihilates
into a photon which subsequently decays into the top–anti-top pair. But Feyn-
man diagrams not only display the physics intuitively, they can be translated
into formulas, the Feynman amplitudes, according to rules determined by the
Lagrangian L. Each of the dots (•) represents a coupling between the fermions
and the photon. This coupling is given by the fermion’s charge times

√
α, where

α � 1/137 is the fine-structure constant. The diagram above is hence of order
α, which is the lowest order.

In the next higher order many more diagrams contribute (314 in the Standard
Model, to be precise) of which only three are shown here:

Each diagram contains four dots now and is hence of order α2. At the same time
each diagram contains a closed loop, and this is no coincidence: the expansion
in α is at the same time an expansion in the number of loops. Each loop order
enhances the accuracy of the result but also contributes significantly to the
difficulty of the computation.

2 Particle-Physics Models

The Lagrangians considered in current high-energy physics are constructed on
symmetry principles. One posits that under special ‘field rotations’, the gauge
transformations, the Lagrangian is invariant. This restricts the terms allowed in
the Lagrangian.

The simplest quantum field theory realized in Nature, Quantum Electrody-
namics (QED), is symmetric under U(1) rotations and describes the electromag-
netic force, while the weak force transforms under SU(2) and the strong force
(Quantum Chromodynamics, QCD) under SU(3). These three theories are com-
bined in the Standard Model (SM) with product gauge group SU(3) × SU(2) ×
U(1). Despite its deceptively simple formula, which even fits on a T-shirt, it
embodies the results of more than 50 years of work in experimental and theo-
retical high-energy physics. Its particle content is summarized in Fig. 1.

Nearly all models in particle physics today are based on the SM, which means
they either contain the SM as a subgroup or admit a low-energy limit which
reproduces the SM.

Whereas in the 1950s and 1960s many discoveries were made experimentally
(unexpected signals showing up in the detector) and only later explained by
theory, these days (almost) no discovery is made without theory. This is cer-
tainly true for the top quark, discovered 1994 at Fermilab, and the Higgs boson,
discovered 2012 at CERN, where extensive theoretical analysis preceded the
experiment and pointed experimenters to the right place to look.

Computer Algebra in HEP 257

γ
Photon

0

W
W Boson
80.45 GeV

Z
Z Boson

91.1875 GeV

g
Gluon

0

H
Higgs Boson
125 GeV

d
Down Quark

∼ 5 MeV

s
Strange Quark

∼ 150 MeV

b
Bottom Quark

∼ 4.5 GeV

u
Up Quark
∼ 2 MeV

c
Charm Quark

∼ 1.5 GeV

t
Top Quark
173.4 GeV

e
Electron
511 keV

μ
Muon

105.6 MeV

τ
Tauon

1777 MeV

νe
Elec. Neutrino

< 3 eV

νμ
Muon Neutrino

< 190 keV

ντ
Tau Neutrino
< 18 MeV

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

L
epton

s

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Q
u
arks

⎪⎪⎪⎬
⎪⎪⎪⎭

F
erm

ion
s

(M
atter

P
articles)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

B
oson

s
(F
orce

P
articles)

Fig. 1. The Standard Model and its particle content.

For instance, Otto Nachtmann’s textbook on particle physics from 1986 [33]
contained a footnote stating that the top quark “likely” has a mass of around
40 GeV. This is clear indication that the experiments did not really know where
to look. The mass measurements honed in only after LEP had collected enough
data on electroweak precision observables, in particular the W-boson mass, which
was the most important input parameter for the prediction of the top-quark
mass. Such indirect constraints proceed through loop calculations and make
heavy use of computer algebra.

The SM is only considered an effective theory, however, as it contains many
parameters it does not predict and also it does not unify the fourth force of
Nature, gravity. With all SM particles established, we are currently posed for the
next big discovery of a particle ‘Beyond the Standard Model’ (BSM). Needless to
say, there is an overabundance of BSM models, and again, phenomenologists are
already excluding many of these models or restricting their parameter space e.g.
by considering their effects on precision observables through calculations that
rely on computer algebra.

3 The Challenges

Calculating Feynman diagrams is difficult for a number of reasons.
Firstly, combinatorics leads to a massive growth of terms both with number

of loops and number of external legs. To illustrate this effect the following table
lists the number of 2 → 2 topologies, i.e. the number of ways of connecting two
incoming with two outgoing legs for different numbers of loops. At this stage

258 T. Hahn

no physics is involved yet, which means the number of Feynman diagrams will
typically be even higher since a topology can often be realized multiply within
a model’s particles.

loops 0 1 2 3

2 → 2 topologies 4 99 2214 50051

Typical accuracy 30 % 10 % 2% 1%

General procedure known yes yes 1 → 1 no

Limits 2 → 8 2→5 1 → 2 1 → 1

Researchers have constantly sought to devise better algorithms and there is cer-
tainly some progress. For example, recursive algorithms effectively re-use parts
of diagrams that appear multiply [1,7,30].

Secondly, solving the loop integrals is far from trivial beyond one-loop order
and has become a field by itself, which also heavily profits from computer algebra.

Thirdly there are also difficult numerical issues such as efficient phase-space
integration, treatment of unstable particles, or significant numerical cancellations
between diagrams, which shall not be discussed in depth here.

Fig. 2. The LEP measurement of two precision observables (the rho-parameter and
effective weak mixing angle) with its one-sigma ellipse (68 % confidence level) vs. the
theoretical prediction, varied within the then-current bounds on mt and mH . Shown
in green is the prediction according to pure QED (no weak interaction). (colour figure
in online)

If the calculation is so formidable, do we really need higher orders after all?
The answer is Yes, for three reasons.

Computer Algebra in HEP 259

1. Higher orders are seen experimentally.
Figure 2 is a plot from the end of the LEP era which shows the plane in two
precision observables. The ellipse indicates the one-sigma range around the
measured value and the theoretical prediction in yellow takes into account the
then-current ranges of the top-quark and Higgs-boson masses. What makes
this plot special is the small green arrow in the lower left corner, however:
it indicates the prediction from pure QED alone. That is, a loop calculation
can completely rule out the theory without weak interactions.
In precision observables even higher-loop effects are seen, here for example
are prediction and measurement from the anomalous magnetic moment of the
muon, aμ:

1010aμ = 11614097.29 QED 1-loop
41321.76 2-loop
3014.19 3-loop

36.70 4-loop
.63 5-loop

690.6 Had.
19.5 EW 1-loop
−4.3 2-loop

11659176 theory, total
11659204 experiment (BNL)

This calculation is actually a very special case where loop integrals far beyond
the known results were computed numerically with brute force [5].

2. Indirect access to particles beyond the direct kinematic reach.
Models may contain particles too heavy to be produced directly at avail-
able collider energies. They nevertheless contribute to available observables
through loop effects. While this usually precludes a discovery, limits obtained
from such indirect sources can be used to limit the model’s parameter space
and focus experimental searches.
Both the top quark and the Higgs boson were discovered only after indirect
analyses based on loop calculations had narrowed down the search range.

3. Loop-mediated effects.
For a lot of interesting physics there exists no tree level at all, i.e. the lowest-
order contribution is from a one-loop diagram.
This happens to be the case for the main Higgs production mode at the LHC,
gg → H, which is mediated by a top loop since the (color-neutral) Higgs
boson does not directly couple to the gluon. In a particular approximation,
the infinite top-mass limit, an effective theory can be constructed where the
top loop is shrunk to a single vertex, and in this theory there is then a tree-
level result.
Also most reactions considered in flavor physics start at loop level. This is
intentionally so, for the idea is precisely to eliminate a ‘large’ SM contribution
that would screen subtle BSM effects in the flavor sector.

260 T. Hahn

The present state of the art of perturbative calculations in particle physics
is visualized in Fig. 3. The progress in this chart is unfortunately both slow and
not uniform.

Fig. 3. The present reach of perturbative calculations in high-energy physics. A third
axis, for the number of mass scales in the calculation (which likewise affects compu-
tational difficulty significantly), has been left out for visual clarity but would show
similar behavior as the other two axes.

4 Loop Integrals

Feynman diagrams are usually evaluated in momentum space. Momentum con-
servation fixes all momenta flowing through the ‘tree parts’ of a Feynman dia-
gram but for each loop one momentum is unconstrained which, in the quantum-
mechanical sense of summing over all possibilities, has to be integrated over:

(1)

Loop integrals can be divergent both in the ultraviolet (UV), which means they
diverge due to the upper integration bound, for example

(2)

Computer Algebra in HEP 261

and in the infrared (IR), which means they diverge due to the lower integration
bound, for example

(3)

How can finite and sensible results be obtained in the presence of divergent
Feynman integrals?

– In the first place the integrals have to be regularized, i.e. a regularization
parameter is introduced which renders the integral finite and reproduces the
divergence in a certain limit. Various regularization schemes are on the mar-
ket, but by far the most popular one is dimensional regularization [10] – it
introduces the fewest extra terms and is compatible with the most symme-
tries. In dimensional regularization the integrals are evaluated formally in D
instead of the original 4 dimensions, and the divergence then shows up as a
pole in D − 4.

– The UV divergences can be absorbed by renormalizing the theory, i.e. through
redefinitions of the model parameters. The parameters appearing in the
Lagrangian, masses m0 and couplings g0, have no physical significance beyond
tree level. Renormalization means to express observables computed in terms
of m0 and g0 by physical ones, m and g. In a renormalizable model the UV
divergences can (always!) be absorbed in the relations between m0, g0 and m,
g. Formally one substitutes m0 → m + δm, g0 → g + δg in the Lagrangian
which leads to new vertices containing δm and δg, and hence to additional
Feynman diagrams, the so-called counter-term diagrams. There are graphical
correspondences, for example the UV divergences arising from the left diagram
(a correction to the mass) are cancelled by the right diagram, where the loop
has been shrunk to a counter-term vertex:

– IR divergences have a different origin: since the photon (or gluon) is massless,
it can carry away an arbitrarily small amount of energy, hence an N -particle
reaction with charged external lines (electric or color) is indistinguishable
experimentally from the corresponding (N +1)-particle reaction with an addi-
tional soft photon (or gluon) emitted. Also here some combinatorics is at work,
for example the IR divergences cancel between the diagram on the left and
the two on the right, obtained by cutting the photon line:

262 T. Hahn

For practical calculations the following points are relevant:

– The (scalar) one-loop integrals are known and available in several public imple-
mentations [12,16,27,28,34].

– Beyond one-loop only special cases are exactly known (e.g. [6,32]), or expan-
sions are made [29]. There exist various general strategies to attack the inte-
gration [38], and many of them make heavy use of computer algebra, yet there
exists no algorithmic procedure.

– Loop integrals can be evaluated numerically, too, after the divergences have
been extracted e.g. by sector decomposition [11]. Computation times are easily
a factor 1000 higher then, however.

– The numerator of a loop integral can also contain powers of the loop momen-
tum, such integrals are known as tensor integrals. Algorithms exist to reduce
the tensor integrals, i.e. write them as linear combinations of scalar integrals
[31]. The one-loop procedure is known for a long time [36] but suffers from
a significant increase in number of terms with increasing number of external
legs. Recent improvements have mostly targeted this increase [35].

– The “D-dimensional” computation of the amplitude differs from the 4-dim.
one only by few explicit substitutions, for example the self-contracted metric
tensor becomes gμ

μ = D. Since the regulator will ultimately be removed again
(D → 4), most of these D’s are harmless, except if they multiply a divergent
loop integral which contains a 1/(D − 4) pole. Schematically:

D · (div. integral) = 4 · (div. integral) + extra term . (4)

This substitution essentially required all loop calculations to be done analyti-
cally, i.e. the automated ones by computer algebra. Only rather recently have
the extra terms generated in this way been re-cast, at one-loop order, in the
form of counter-terms, so that they can be added by computing extra Feynman
diagrams [18], and hence it is now possible to also do one-loop calculations
(semi)numerically.

5 The Recipe

We shall now give a methodological survey of the steps one would manually
perform to compute a cross-section from Feynman diagrams for the example
of the e+e− → t̄t reaction at tree level considered before. It shall serve as a
template for the computer-based implementation later.

1. Draw all topologically inequivalent diagrams with the desired number of
external legs and loops:

Computer Algebra in HEP 263

This is a graph-theoretical step with no physics input yet.
2. Figure out what particles can run on each topology:

This is a combinatorial step and requires physics input, i.e. one needs to
know which particles exist in the model and which interactions between them
are possible.
Observe that of the four topologies above only one could be realized due to
(electric and color) charge conservation, but this remaining one gives rise to
four Feynman diagrams.
Also certain approximations are usually carried out in this step. For example,
the coupling of fermions to scalars (which can easily be identified graphically)
is suppressed by a factor mf/MW which, for the electron, works out to 10−7.
It is thus a good approximation to leave out the left two diagrams already at
this relatively early stage of the computation.

3. Translate the diagrams into formulas by applying the Feynman rules:

(5)

This is an (arguably unusual) database look-up.
4. Contract the indices, take the traces, introduce invariants, etc.:

(6)

There are several ways of computing fermionic matrix elements like the F1

appearing here. The textbook approach is to square the amplitude and then
take the trace over Dirac matrices:

|F1|2 = Tr {(/k1 − me)γμ(/k2 + me)γν} Tr {(/k4 + mt)γμ(/k3 − mt)γν}
= 1

2s2 + st + (m2
e + m2

t − t)2. (7)

This step of algebraic simplification is not really necessary at tree-level,
and many programs indeed implement it numerically (e.g. [4,21]) to avoid
having to use a computer algebra system. With the help of extra Feynman
diagrams one can meanwhile even work (semi)numerically at one loop [18], see
Sect. 4. Beyond one-loop there is presently no purely numerical alternative,
however.

264 T. Hahn

5. Write the results up as a computer program, debug and run that program to
produce numerical values.
This is a programming step.

The Nobel Prize for physics 1999 to Gerard ’t Hooft and Martinus Veltman
was awarded “for having shown how the theory may be used for precise calcula-
tions of physical quantities.” The procedure outlined above may be complicated,
but it is algorithmic and can hence be given to a computer.

6 Implementation

As the Recipe in Sect. 5 has already demonstrated, the computation of Feynman
diagrams involves very different tasks. In particular it involves steps for which
computer algebra is naturally suited, such as treatment of D-dimensional and
tensorial objects, or Dirac traces. An analytical calculation can further take
better care of certain cancellations, e.g. due to gauge symmetry which are typical
for processes with external weak gauge bosons in the high-energy limit [17].

Computing the Feynman diagrams results in an expression for the squared
S-matrix element which finally needs to be integrated over the phase space
spanned by the outgoing particles. This integration is multidimensional (e.g.
4-, 7-dimensional) and is done numerically. The integrand is far from a smooth
function due to the propagators, 1/(p2 − m2), which lead to significant ‘ridge
structures’ in the vicinity of p2 ≈ m2. Even with dedicated Monte Carlo algo-
rithms, many points need to be sampled (107, say), hence for this purpose one
needs a fast integrand function, implemented in some high-level language, e.g.
Fortran or C++.

The computational model will thus be: Symbolic manipulation for the struc-
tural and algebraic operations. Compiled high-level language for the numerical
evaluation.

Automated computation of radiative corrections, at least at one-loop order,
has become an industry today due to the precision demands of the LHC. Many
packages have become available only in the last few years [3,8,9,13,15,19], most
of which are geared explicitly towards LHC calculations.

In the following we will have a closer look at two (by this standard) ‘old’ pack-
ages, FeynArts [22] and FormCalc [27], together with the loop-integral library
LoopTools, which date from the mid-1990s. They implement the ‘traditional’
Feynman-diagrammatic method (no recursions etc.) and perform an analytic cal-
culation as far as possible, for “any” model. The user can either inspect/modify
the analytic results in Mathematica or proceed to generate a Fortran or C code
for the numerical evaluation of the squared matrix element. Figure 4 gives a
‘flow-chart’ of the evaluation.

7 Generating Feynman Diagrams with FeynArts

FeynArts is a Mathematica package for the generation and visualization of Feyn-
man diagrams and amplitudes. The generation of amplitudes is a three-step
process which corresponds closely to Steps 1, 2, and 3 of the Recipe in Sect. 5.

Computer Algebra in HEP 265

Fig. 4. The evaluation of Feynman diagrams with FeynArts, FormCalc, and LoopTools.

In the first step, the distinct topologies for a given number of loops and
external legs are produced, e.g.

top = CreateTopologies[1, 1 → 2]

The internal algorithm starts from predefined zero-leg ‘starting’ topologies of
the requested loop order and successively adds legs:

This is not an entirely self-sufficient procedure, but the starting topologies also
carry some meta-information which would be difficult to obtain from scratch
and are currently available up to three loops.

In the second step, the physics information is read from a Model File which
contains the particle content and the coupling list, and the fields are distributed
over the topologies in all admissible ways, e.g.

ins = InsertFields[top, F[4,{3}] → {F[4,{2}], V[1]}]

The field labelling here is the one of the default model, SM.mod and corresponds
to the decay b → sγ, where b and s are the third and second members of the
down-type quark class F[4], and V[1] is the photon. This notation is part of
the more general concept of levels of fields:

266 T. Hahn

– The Generic Level determines the space–time properties of a field, e.g. a
fermion F. It also fixes the kinematic properties of the couplings. For example,
the FFV (fermion–fermion–vector boson) coupling is of the form

GLγμPL + GRγμPR , PL,R = 1
2 (1l ∓ γ5) . (8)

The coefficients GL,R do not depend on any other kinematical objects (only
model constants) and are specified at deeper levels.

– The Classes Level specifies the particle up to ‘simple’ index substitutions,
e.g. the neutrino class F[1] (where the generation index is not yet given). For
example, the coefficients for the -F[2], F[1], V[3] = �̄iνjW (anti-leptoni–
neutrinoj–W-boson) coupling are

GL =
iem�,i√

2 sin θwMW

δij , GR = 0 . (9)

This particular coupling was chosen for demonstration because, if neutrino
masses are neglected, the neutrino does not couple to right-handed fermions,
hence GR = 0 provides an easy sanity check. Observe that i and j, the gener-
ation indices of the two fermions, are not specified yet.

– The Particles Level spells out any indices left unspecified, e.g. the electron
F[2,{1}], being the first member of the lepton class F[2].

The reason for this splitting is mainly economy: kinematic simplifications can
be performed at Generic Level, where there are typically much fewer diagrams
than at lower levels. Likewise, ‘trivial’ sums e.g. over fermion generations need
not be written out explicitly in terms of Particles-Level Feynman diagrams.

The diagrams returned by CreateTopologies and InsertFields can be
drawn with Paint, with output as Mathematica Graphics object, PostScript, or
LATEX. LATEX code produced by Paint can be post-processed (e.g. ‘touched up’
for publication) with the FeynEdit editor [25].

Finally, the Feynman rules are applied with

amp = CreateFeynAmp[ins]

The output contains Feynman diagrams represented by the Mathematica
function FeynAmp. For illustration, consider the diagram

This diagram is given by FeynAmp[id , loopmom, genamp, ins], where

– id is an identifier for bookkeeping, e.g. GraphID[Topology == 1, Generic
== 1],

Computer Algebra in HEP 267

– loopmom identifies the loop momenta in the form Integral[q1],
– genamp is the generic amplitude,

I

32 Pi4
RelativeCF ➀

FeynAmpDenominator[
1

q12 − Mass[S[Gen3]]2
,

1

(−p1 + q1)2 − Mass[S[Gen4]]2
] ➁

(p1 − 2 q1)[Lor1] (−p1 + 2 q1)[Lor2] ➂

ep[V[1], p1, Lor1] ep∗[V[1], k1, Lor2] ➃

G(0)SSV[(Mom[1] − Mom[2])[KI1[3]]] G(0)SSV[(Mom[1] − Mom[2])[KI1[3]]] ➄

where individual items can easily be identified: prefactor ➀, loop denominators
➁, kinematic coupling structure ➂, polarization vectors ➃, coupling constants
➄.

– ins is a list of rules substituting the unspecified items in the generic amplitude,

{ Mass[S[Gen3]], Mass[S[Gen4]],
G(0)SSV[(Mom[1] − Mom[2])[KI1[3]]],
G(0)SSV[(Mom[1] − Mom[2])[KI1[3]]], RelativeCF } →

Insertions[Classes][{MW, MW, I EL, − I EL, 2}]

7.1 Model Files

Model Files are the ‘software within the software’ and provide FeynArts with
the necessary physics input. Technically they are ordinary Mathematica text
files loaded by FeynArts during model initialization which provide two main
objects: the list of particles, M$ClassesDescription, and the list of couplings,
M$CouplingMatrices.

The Model Files come in two kinds corresponding to the Generic and Classes
level of fields. For example, the FFV coupling of Eq. (8) can be written in the
form

C(F, F, V) =
(

GL

GR

)
·
(

γμPL

γμPR

)
≡ G · K . (10)

The kinematic vector K is stored in the Generic Model File (.gen) and
the coupling vector G in the Classes Model File (.mod). The Generic Model
File changes only if the user wants to work in a different representation of the
Poincaré group (i.e. rarely), whereas the Classes Model File is different for every
model considered.

The generic FFV coupling is stored as

AnalyticalCoupling[s1 F[j1,p1], s2 F[j2,p2], s3 V[j3,p3,{li3}]]
== G[1][s1 F[j1], s2 F[j2], s3 S[j3]] .

{ NonCommutative[DiracMatrix[li3], ChiralityProjector[-1]],
NonCommutative[DiracMatrix[li3], ChiralityProjector[+1]] }

where the dot product is explicit and the coupling vector for the �̄iνjW coupling
of Eq. (9) is stored as

268 T. Hahn

C[-F[2,{i}], F[1,{j}], V[3]]
== { {I EL Mass[F[2,{i}]]/(Sqrt[2] SW MW) IndexDelta[i, j]},

{0} }

Only Mass and IndexDelta are FeynArts functions here, all other symbols have
been chosen by the Model File’s creator. Observe that the r.h.s. is a list of lists,
hence the name M$CouplingMatrices is indeed appropriate: the inner lists may
also contain higher-order (i.e. counter-term) vertices.

Model Files for FeynArts can currently be generated by FeynRules [2] and
LanHEP [37]. The SARAH package [39] is useful for the high-level derivation
of SUSY models. FeynArts itself includes the ModelMaker tool which turns a
suitably defined Lagrangian into a Model File.

8 FormCalc

The output of FeynArts (see p. 261) is not in a good shape for immediate numer-
ical evaluation. It contains uncontracted indices, unregularized loop integrals,
fermion traces, SU(N) generators, etc. The symbolic expressions for the dia-
grams are thus first simplified algebraically with FormCalc, which performs the
following steps: indices are contracted, fermion traces evaluated, open fermion
chains simplified, color structures standardized, tensor integrals reduced, abbre-
viations introduced.

Fig. 5. The control flow in FormCalc.

Most of these steps are internally executed in FORM [40], a computer-algebra
system whose instruction set has many adaptations especially useful in high-
energy physics, see Sect. 9. The interfacing with FORM is transparent to the

Computer Algebra in HEP 269

user, i.e. the user does not have to work with the FORM code. FormCalc thus
combines the speed of FORM with the powerful instruction set of Mathematica
and the latter greatly facilitates further processing of the results. Figure 5 shows
the control flow in FormCalc.

The main function is CalcFeynAmp which is applied to a FeynArts ampli-
tude (the output of CreateFeynAmp) and combines the steps outlined above. Its
output is in general a linear combination of loop integrals with prefactors that
contain model parameters, kinematic variables, and abbreviations introduced by
FormCalc, e.g.

C0i[cc0, MW2, MW2, S, MW2, MZ2, MW2] *
(-4 Alfa^2 CW2 MW2/SW2 S AbbSum16 +

32 Alfa^2 CW2/SW2 S2 AbbSum28 +
4 Alfa^2 CW2/SW2 S2 AbbSum30 -
8 Alfa^2 CW2/SW2 S2 AbbSum7 +
Alfa^2 CW2/SW2 S (T - U) Abb1 +
8 Alfa^2 CW2/SW2 S (T - U) AbbSum29)

The first line represents the one-loop integral C0(M2
W ,M2

W , s,M2
W ,M2

Z ,M2
W),

multiplied with a linear combination of abbreviations like Abb1 or AbbSum29 with
coefficients containing kinematical invariants like the Mandelstam variables S,
T, and U, and model parameters such as the fine-structure constant Alfa = α.

8.1 Abbreviations

The automated introduction of abbreviations is a key concept in FormCalc. It
is crucial in rendering an amplitude as compact as possible. The main effect
comes from three layers of recursively defined abbreviations, introduced when
the amplitude is read back from FORM, i.e. during CalcFeynAmp. For example:

Written out, this abbreviation is equivalent to

Pair[e[1], e[2]] Pair[e[3], k[1]] Pair[e[4], k[1]] +
Pair[e[1], e[2]] Pair[e[3], k[2]] Pair[e[4], k[1]] +
Pair[e[1], e[2]] Pair[e[3], k[1]] Pair[e[4], k[2]] +
Pair[e[1], e[2]] Pair[e[3], k[2]] Pair[e[4], k[2]]

Singled out for abbreviation are objects of a particular kind, e.g. all kinematic
objects such as the dot products (Pair) here, and also subexpressions occurring
multiply, which amounts to a sort of common subexpression elimination. The
abbreviationing is also a beautiful example of an extremely efficient handshake

270 T. Hahn

between FORM and Mathematica: FORM singles out the subexpressions and
Mathematica introduces abbreviations for them.

For numerical evaluation, the abbreviations are grouped into categories:

1. Abbreviations that depend on the helicities.
2. Abbreviations that depend on angular variables.
3. Abbreviations that depend only on

√
s.

Correct execution of the different categories guarantees that almost no redundant
evaluations are made, e.g. in a 2 → 2 process with external unpolarized fermions,
statements in the innermost loop over the helicities are executed 24 times as
often as those in the loop over the angle. This technique of moving invariant
expressions out of the loop is known as ‘hoisting’ in computer science and makes
the generated code execute essentially as fast as hand-tuned code.

8.2 Code Generation

Numerical evaluation of the FormCalc results is done in Fortran or C99, firstly
for speed, and secondly for ease of inclusion into other programs.

Code generation for the squared amplitude is a highly automated procedure
shown in Fig. 6. FormCalc has two fairly advanced functions for code generation,
WriteSquaredME and WriteRenConst, and also offers low-level code generation
functions with which it is very easy to turn an arbitrary Mathematica expres-
sion into code. The philosophy is that the user should not have to modify the
generated code. This means that the code has to be encapsulated (i.e. no loose
ends the user has to bother with), and that all necessary subsidiary files (include
files, makefile) have to be produced, too.

One can also ‘come full circle’ and, with only minor changes in the setup, turn
the FormCalc-generated program into a MathLink executable [23] so that the
cross-section becomes available as a Mathematica function of its model parame-
ters. This is particularly useful for performing e.g. contour plots over parameter
space.

9 FORM

The open-source computer-algebra system FORM [40] is one of the major work-
horses for symbolic manipulation in high-energy physics. Since it is maybe not
so well-known outside of the field, a short introduction is in order here.

FORM is a non-interactive program (edit–run cycle) with a strongly typed
language, i.e. variables must be declared as symbols, vectors, indices, tensors,
functions, etc. Its main strength is on polynomial expressions, where it can han-
dle huge expressions, many times the amount of RAM available. The following
trivial program shall suffice for a look and feel:

Symbols a, b, c, d;
Local expr = (a + b)^2;

Computer Algebra in HEP 271

Fig. 6. Numerical evaluation of a Feynman amplitude in FormCalc: the SquaredME

subroutine is fully generated, for the user-level code templates are inserted, to be
modified as required for the application.

id b = c - d;
print;
.end

A FORM program is organized in modules, each terminated by a “dot” state-
ment (.sort, .store, .end, etc.). Figure 7 shows how FORM works through a
program:

– In the Generation Phase (“normal statements”) terms are only generated. All
operations in this phase are local, i.e. operate only on one term at a time.

– In the Sorting Phase (“dot statements”) the generated terms are inspected
and similar terms collected. This is the only ‘global’ operation which requires
FORM to look at all terms ‘simultaneously.’

This distinction gives the user strategic control over potentially time-consuming
global operations. It also allows FORM to concurrently execute the Generation
Phase over the terms on the available cores, which results in a degree of paral-
lelization not matched by other computer-algebra systems.

10 Validation

Whenever a procedure is automated, i.e. humans become ‘decoupled’ from the
actual computation, methods are needed to validate the results.

For Feynman amplitudes there are various things one can test:

– Cancellation of divergences
The divergences from loop integrals must cancel in the final result. For the UV

272 T. Hahn

Fig. 7. Generating and Sorting phases in a FORM program.

divergences this is relatively straightforward and can even be done analytically.
For IR divergences it is more complicated due to different phase spaces and
can usually only be achieved numerically.

– Gauge invariance
Gauge theories like the SM must be invariant under gauge transformations.
A pretty strong check is to compute the amplitude in an arbitrary gauge
and check that the gauge-parameter dependence cancels. The standard Rξ

gauges unfortunately lead to higher-rank tensor integrals and complicate the
computation a lot but one can use non-linear gauges which have been specially
engineered to avoid this effect [20]. The background-field method [17] amounts
to a different gauge choice, too, and constitutes a useful check for processes
involving external weak gauge bosons.

– Special limits
Certain limits of the calculation may be known from theoretical considerations.
For example, the high-energy behavior of reactions involving external weak
gauge bosons is known from the Equivalence Theorem [14] to be identical to
the one where the vector bosons have been substituted by their Goldstone
partners.

– Comparison with independent calculations
Comparing with other calculations is of course the “gold-plated mode” but
requires a lot of work. Standard software packages gain in reputation from
passing such tests and can in turn be used as reliable cross-checks. The avail-
ability of several independent packages for essentially the same task is not a
luxury but testifies to the difficulty of these calculations with plenty of error
sources.

11 Extensions

FeynArts and FormCalc have originally been designed, as many other software
packages, too, to do a ‘complete’ job. That is, all the steps from the generation of

Computer Algebra in HEP 273

Feynman diagrams to the numerical computation of a cross-section are executed
from a single control program (e.g. a single Mathematica session) – that at least
is how the demo programs insinuate usage. Such a ‘monolithic’ approach becomes
problematic when wanting to use the programs beyond their designed scope, for
example beyond one loop.

In a recent proof-of-concept implementation for a particular class of two-
loop Higgs-mass corrections [26], a suite of scripts was devised to reorganize
this so-far monolithic procedure: The calculation was compartmentalized into
several steps, each implemented as an independent shell script and invoked from
the command line. The Mathematica Kernel is run through the shell’s ‘here
documents’ [24], hence the script can be sent in the background or to some
compute cluster. The suite is coordinated through a makefile, so that only the
out-of-date parts of the calculation are redone. In lieu of ‘in vivo’ debugging
(e.g. setting breakpoints) detailed logs are kept. For the parts of the calculation
not available in FormCalc, e.g. the two-loop tensor reduction, external packages
were used. This first attempt already looks very promising to make flexible use of
existing programs, even for very specific tasks, while retaining core functionality
of the established packages.

12 Conclusions

With the present experimental situation in high-energy physics, where precision
is becoming more and more important to distinguish signal from background
and model candidates are having many particles and parameters, software engi-
neering has constantly been gaining ground. Theoretical calculations performed
with tools developed in recent years have increased the discrimination power of
experimental searches at LHC and other colliders and made discoveries such as
that of the Higgs boson 2012 possible.

The nature of perturbative calculations with Feynman diagrams make hybrid
programming techniques necessary. Computer algebra is an indispensible tool
because many calculations must be done symbolically. On the other hand, fast
number crunching can only be achieved in a compiled language.

Further development of the tools is important to extend the theoretical reach
and match the expected experimental precision of future colliders and discover
what lies beyond the Standard Model.

References

1. Actis, S., Denner, A., Hofer, L., Lang, J.-N., Scharf, A., Uccirati, S.: RECOLA:
REcursive Computation of One-Loop Amplitudes. arXiv:1605.01090

2. Alloul, A., Christensen, N., Degrande, C., Duhr, C., Fuks, B.: FeynRules 2.0 - a
complete toolbox for tree-level phenomenology. Comp. Phys. Comm. 185, 2250
(2014). arXiv:1310.1921

3. Alwall, J., et al.: The automated computation of tree-level and next-to-leading
order differential cross sections, and their matching to parton shower simulations.
JHEP 1407, 079 (2014). arXiv:1405.0301

http://arxiv.org/abs/1605.01090
http://arxiv.org/abs/1310.1921
http://arxiv.org/abs/1405.0301

274 T. Hahn

4. Alwall, J., Herquet, M., Maltoni, F., Mattelaer, O., Stelzer, T.: MadGraph 5: going
beyond. JHEP 1106, 128 (2011). arXiv:1106.0522

5. Aoyama, T., Hayakawa, M., Kinoshita, T., Nio, M.: Complete tenth-order QED
contribution to the muon g-2. Phys. Rev. Lett. 109, 111808 (2012). arXiv:1205.5370

6. Bauberger, S., Böhm, M.: Simple one-dimensional integral representations for
two loop selfenergies: the Master diagram. Nucl. Phys. B 445, 25 (1995).
arXiv:hep-ph/9501201

7. Berends, F., Giele, W.: On the construction of scattering amplitudes for spinning
massless particles. Nucl. Phys. B 507, 157 (1997). arXiv:hep-th/9704008

8. Bern, Z., Dixon, L., Febres Cordero, F., Höche, S., Ita, H., Kosower, D., Mâıtre,
D., Ozeren, K.: The BlackHat library for one-loop amplitudes. J. Phys. Conf. Ser.
523, 012051 (2014). arXiv:1310.2808

9. Bevilacqua, G., Czakon, M., Garzelli, M., van Hameren, A., Kardos, A.,
Papadopoulos, C., Pittau, R., Worek, M.: Helac-NLO. Comp. Phys. Comm. 184,
986 (2013). arXiv:1110.1499

10. Bollini, C., Giambiagi, J.J.: Dimensional Renormalization. Il Nuovo Cimento B
12, 20–26 (1972)

11. Borowka, S., Heinrich, G., Jones, S., Kerner, M., Schlenk, J., Zirke, T.: SecDec-3.0:
numerical evaluation of multi-scale integrals beyond one loop. Comp. Phys. Comm.
196, 470 (2015). arXiv:1502.06595

12. Carrazza, S., Ellis, R.K., Zanderighi, G.: QCDLoop: a comprehensive framework
for one-loop scalar integrals. arXiv:1605.03181

13. Cascioli, F., Höche, S., Krauss, F., Moretti, N., Pozzorini, S., Schönherr,
M., Siegert, F., Maierhöfer, P.: Next-to-leading order simulations with
Sherpa+OpenLoops. PoS LL 2014, 022 (2014)

14. Cornwall, J., Levin, D., Tiktopoulos, G.: Derivation of gauge invariance from high-
energy unitarity bounds on the s matrix. Phys. Rev. D 10, 1145 (1974)

15. Cullen, G., et al.: GoSam-2.0: a tool for automated one-loop calculations within the
Standard Model and beyond. Eur. Phys. J. C 74(8), 3001 (2014). arXiv:1404.7096

16. Denner, A., Dittmaier, S., Hofer, L.: Collier: a Fortran-based Complex One-Loop
LIbrary in Extended Regularizations. arXiv:1604.06792

17. Denner, A., Weiglein, G., Dittmaier, S.: Application of the background field
method to the electroweak standard model. Nucl. Phys. B 440, 95 (1995).
arXiv:hep-ph/9410338

18. Draggiotis, P., Garzelli, M., Papadopoulos, C., Pittau, R.: Feynman rules for
the rational part of the QCD 1-loop amplitudes, JHEP 0904, 072 (2010).
arXiv:0903.0356. Garzelli, M., Malamos, I., Pittau, R.: Feynman rules for the
rational part of the Electroweak 1-loop amplitudes. JHEP 1001, 040 (2009).
arXiv:0910.3130

19. Ellis, R.K., Giele, W., Kunszt, Z., Melnikov, K., Zanderighi, G.: One-loop ampli-
tudes for W+ 3 jet production in hadron collisions. JHEP 0901, 012 (2009).
arXiv:0810.2762

20. Gajdosik, T., Pasukonis, J.: Non Linear Gauge Fixing for FeynArts.
arXiv:0710.1999

21. Gleisberg, T., Hoeche, S., Krauss, F., Schönherr, M., Schumann, S., Siegert,
F., Winter, J.: Event generation with SHERPA 1.1. JHEP 0902, 007 (2009).
arXiv:0811.4622

22. Hahn, T.: Generating Feynman diagrams and amplitudes with FeynArts 3. Comp.
Phys. Comm. 140, 418 (2001). arXiv:hep-ph/0012260

23. Hahn, T.: A Mathematica interface for FormCalc-generated code. Comp. Phys.
Comm. 178, 217 (2008). arXiv:hep-ph/0611273

http://arxiv.org/abs/1106.0522
http://arxiv.org/abs/1205.5370
http://arxiv.org/abs/hep-ph/9501201
http://arxiv.org/abs/hep-th/9704008
http://arxiv.org/abs/1310.2808
http://arxiv.org/abs/1110.1499
http://arxiv.org/abs/1502.06595
http://arxiv.org/abs/1605.03181
http://arxiv.org/abs/1404.7096
http://arxiv.org/abs/1604.06792
http://arxiv.org/abs/hep-ph/9410338
http://arxiv.org/abs/0903.0356
http://arxiv.org/abs/0910.3130
http://arxiv.org/abs/0810.2762
http://arxiv.org/abs/0710.1999
http://arxiv.org/abs/0811.4622
http://arxiv.org/abs/hep-ph/0012260
http://arxiv.org/abs/hep-ph/0611273

Computer Algebra in HEP 275

24. Hahn, T., Illana, J.I.: Excursions into FeynArts and FormCalc. Nucl. Phys. Proc.
Suppl. 160, 101 (2006). arXiv:hep-ph/0607049

25. Hahn, T., Lang, P.: FeynEdit: a tool for drawing Feynman diagrams. Comp. Phys.
Comm. 179, 931 (2008). arXiv:0711.1345

26. Hahn, T., Paßehr, S.: Implementation of the O(α∈
�) MSSM Higgs-mass corrections

in FeynHiggs. arXiv:1508.00562
27. Hahn, T., Pérez-Victoria, M.: Automated one-loop calculations in four and D

dimensions. Comp. Phys. Comm. 118, 153 (1999). arXiv:hep-ph/9807565
28. van Hameren, A.: OneLOop: for the evaluation of one-loop scalar functions. Comp.

Phys. Comm. 182, 2427 (2011). arXiv:1007.4716
29. Harlander, R., Seidensticker, T., Steinhauser, M.: Complete corrections of O(αα∫)

to the decay of the Z boson into bottom quarks. Phys. Lett. B 426, 125 (1998).
arXiv:hep-ph/9712228

30. Kanaki, A., Papadopoulos, C.: HELAC: a Package to compute electroweak helicity
amplitudes. Comp. Phys. Comm. 132, 306 (2000). arXiv:hep-ph/0002082

31. Laporta, S.: High precision calculation of multiloop Feynman integrals by difference
equations. Int. J. Mod. Phys. A 15, 5087 (2000). arXiv:hep-ph/0102033

32. Martin, S., Robertson, D.: TSIL: a program for the calculation of two-loop self-
energy integrals. Comp. Phys. Comm. 174, 133 (2006). arXiv:hep-ph/0501132

33. Nachtmann, O.: Phänomene und Konzepte der Elementarteilchenphysik, Vieweg
(1986)

34. van Oldenborgh, G.J., Vermaseren, J.A.M.: New algorithms for one-loop integrals.
Z. Phys. C 46, 425 (1990)

35. Ossola, G., Papadopoulos, C., Pittau, R.: Reducing full one-loop amplitudes
to scalar integrals at the integrand level. Nucl. Phys. B 763, 147 (2007).
arXiv:hep-ph/0609007

36. Passarino, G., Veltman, M.: One Loop Corrections for e+ e− Annihilation Into
mu+ mu− in the Weinberg Model. Nucl. Phys. B 160, 151 (1979)

37. Semenov, A.: LanHEP - a package for automatic generation of Feynman rules from
the Lagrangian. Version 3.2. Comp. Phys. Comm. 201, 167 (2016). arXiv:1412.5016

38. Smirnov, V.: Feynman Integral Calculus. Springer, Berlin (2006)
39. Staub, F.: SARAH 3.2: Dirac Gauginos, UFO output, and more. Comp. Phys.

Comm. 184, 1792 (2013). arXiv:1207.0906
40. Ueda, T., Vermaseren, J.: Recent developments on FORM. J. Phys. Conf. Ser.

523, 012047 (2014)

http://arxiv.org/abs/hep-ph/0607049
http://arxiv.org/abs/0711.1345
http://arxiv.org/abs/1508.00562
http://arxiv.org/abs/hep-ph/9807565
http://arxiv.org/abs/1007.4716
http://arxiv.org/abs/hep-ph/9712228
http://arxiv.org/abs/hep-ph/0002082
http://arxiv.org/abs/hep-ph/0102033
http://arxiv.org/abs/hep-ph/0501132
http://arxiv.org/abs/hep-ph/0609007
http://arxiv.org/abs/1412.5016
http://arxiv.org/abs/1207.0906

A Note on Dynamic Gröbner Bases
Computation

Amir Hashemi1,2(B) and Delaram Talaashrafi3

1 Department of Mathematical Sciences, Isfahan University of Technology,
84156-83111 Isfahan, Iran

Amir.Hashemi@cc.iut.ac.ir
2 School of Mathematics, Institute for Research in Fundamental Sciences (IPM),

19395-5746 Tehran, Iran
3 Department of Electrical and Computer Engineering,

Isfahan University of Technology, 84156-83111 Isfahan, Iran
d.talaashrafi@ec.iut.ac.ir

Abstract. For most applications of Gröbner bases, one needs only a nice
Gröbner basis of a given ideal and does not need to specify the monomial
ordering. From a nice basis, we mean a basis with small size. For this pur-
pose, Gritzmann and Sturmfels [14] introduced the method of dynamic
Gröbner bases computation and also a variant of Buchberger’s algorithm
to compute a nice Gröbner basis. Caboara and Perry [6] improved this
approach by reducing the size and number of intermediate linear pro-
grams. In this paper, we improve the latter approach by proposing an
algorithm to compute nicer Gröbner bases. The proposed algorithm has
been implemented in Sage and its efficiency is discussed via a set of
benchmark polynomials.

1 Introduction

Gröbner bases are a fundamental tool in computer algebra which provide efficient
algorithmic computation in polynomial ideal theory. A Gröbner basis is a (gen-
erally not minimal) generating set for an ideal which allows to determine easily
many important properties of the ideal. The notion of Gröbner bases together
with the basic algorithm to compute them were originally introduced in 1965
by Buchberger in his Ph.D. thesis [3,4]. Later on, he proposed two criteria for
removing superfluous reductions to improve his algorithm [2]. Lazard [15] in 1983
established the link between Gröbner bases and linear algebra. In 1988, Gebauer
and Möller [11] installed in an efficient way Buchberger’s criteria on Buchberger’s
algorithm. In 1999, Faugère [8] presented his F4 algorithm to compute Gröbner
bases which relies on performing fast linear algebra techniques on sparse matri-
ces (this algorithm has been efficiently implemented in Maple and Magma). In
2002, Faugère presented the famous F5 algorithm (a signature-based algorithm
benefits from an incremental structure to apply two new criteria) for computing
Gröbner bases [9].

Although Robbiano [17] proved that there are infinitely many monomial
orderings on a multivariate polynomial ring, there are finitely many distinct
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 276–288, 2016.
DOI: 10.1007/978-3-319-45641-6 18

A Note on Dynamic Gröbner Bases Computation 277

reduced Gröbner bases for a given ideal (which leads to the definition of univer-
sal Gröbner bases), see [16]. On the other hand, for many applications of Gröbner
bases, we need only a Gröbner basis of a given ideal and do not need to specify
the monomial ordering. For such applications, we can point out the applications
of Gröbner bases in ideal membership test, computation of intersection of ideals,
computing a generating set for the syzygy module of a sequence of polynomials,
radical membership test and computation in residue class rings. Therefore, a
natural question that may arise is how to find the nicest Gröbner basis for an
ideal. In this article, from a nice Gröbner basis, we mean a basis having small
size (one may also consider a basis whose polynomials have small coefficients).
In this direction, Gritzmann and Sturmfels [14] presented the dynamic version
of Buchberger’s algorithm (by using the Hilbert function) for polynomial ideals
to obtain a nice Gröbner basis. Caboara [5] implemented this algorithm by using
the Gebauer-Möller algorithm [11]. The main tool in the dynamic Gröbner bases
computation consists in solving linear programs. Caboara and Perry [6] improved
this computation by reducing the size and the number of the intermediate linear
programs which have to be solved during the computation.

In this paper, we improve the approach proposed by Caboara and Perry by
performing exact computations to find vertices of a polyhedron instead of finding
the boundary vectors with approximate methods. Remark that these vertices are
essential to finding the compatible terms (Theorem 1). Furthermore, their app-
roach is based on choosing initial heuristic monomial orderings. However the
efficiency of the computation may be affected by the choice of these monomial
orderings. In our approach we do not need to choose any monomial ordering and
this may enhance the efficiencyof our algorithm. In particular, we have imple-
mented in Sage the dynamic version of the Gebauer-Möller algorithm based
on these techniques and have been able to find nicer Gröbner bases (for several
examples) than the Caboara-Perry algorithm.

The rest of the paper is organized as follows. In the next section, we will
review the basic definitions and notations which will be used throughout this
paper. Section 3 is devoted to the description of the Caboara-Perry algorithm.
In Sect. 4, we present our new techniques and apply it on the dynamic variant
of Gebauer-Möller algorithm. We analyze the performance of the proposed algo-
rithm in the last section. Finally, in Sect. 6 we conclude the paper by highlighting
the advantages of this work.

2 Preliminaries

In this section, we review the basic definitions and notations from the theory of
Gröbner bases which will be used in the paper. Throughout this paper we assume
that P = k[x1, . . . , xn] is the polynomial ring and k is a field. We shall consider a
sequence of polynomials f1, . . . , fm ∈ P and the ideal I = 〈f1, . . . , fm〉 generated
by the fi’s. For a polynomial f ∈ P, we let Supp(f) to be the set of all monomials
contained in f . For a monomial xα, with α ∈ Nn we write Exp(xα) = α. If ≺ is a
monomial ordering on P, the leading monomial of a polynomial f ∈ P w.r.t. ≺ is

278 A. Hashemi and D. Talaashrafi

denoted by LM(f). A monomial in Supp(f) is called a potential leading monomial
if there exists a monomial ordering ≺ on P such that it is the leading monomial
of f w.r.t. ≺. If F ⊂ P is a finite set of polynomials, we denote by LM(F) the set
{LM(f) | f ∈ F}. The leading coefficient of f is the coefficient of LM(f) and is
denoted by LC(f). The leading term of f is defined to be LT(f) = LM(f) LC(f).
A finite set G = {g1, . . . , gk} ⊂ P is called a Gröbner basis of I w.r.t ≺ if
LT(I) = 〈LT(g1), . . . ,LT(gk)〉 where LT(I) = 〈LT(f) | f ∈ I〉. We refer e.g.
to [7] for further details on Gröbner bases. To avoid confusion, we may denote
the leading monomial of f by LM≺(f) (of course the same holds also for other
presented notions).

Let us recall the definition of Hilbert function and Hilbert series of a homo-
geneous ideal. Let X ⊂ P and s a positive integer. We define the degree s part
Xs of X to be the set of all homogeneous elements of X of degree s.

Definition 1. The Hilbert function of a homogeneous ideal I is HFI(s) =
dim (Ps/Is) where the right-hand side is the dimension of Ps/Is as a k-vector
space.

Recall that the Hilbert series of a homogeneous ideal I ⊂ P is the following
power series HSI(t) =

∑∞
s=0 HFI(s)ts. It is well-known that the Hilbert series

of a homogeneous ideal may be expressed as the quotient of two polynomials.

Proposition 1. There exists a univariate polynomial p(t) so that HSI(t) =
p(t)/(1 − t)D with p(1) �= 0 and D = dim(I).

For the proof we refer to [10, Theorem 7, p. 130]. From [7, Proposition 4, p. 458]
we deduce that the Hilbert function of I is the same as that of LT(I) and this
provides an effective method to compute the Hilbert series of an ideal using
Gröbner bases, see e.g. [13]. This observation shows that the set of monomials
not contained in LT(I) forms a basis for Ps/Is as a k-vector space (Macaulay’s
theorem). Further, if we add a new polynomial f into a set of polynomials
F with LT(f) /∈ 〈LM(F)〉 then we have HF〈F 〉+〈f〉(s) ≤ HF〈F 〉(s) for each
s. Furthermore, we will need an ordering to compare the Hilbert functions of
two ideals. In doing so, we use the Hilbert series of the ideals. Let I,J ⊂ P
be two ideals. Then we write HSI(t) < HSJ (t) (or equivalently we say that
HFI < HFJ) if there exists a positive integer s so that HFI(i) = HFJ (i) for
each i < s and HFI(s) < HFJ (s). To compare effectively the Hilbert series of
two ideals, one may use Proposition 1 and read the sign of the first coefficient of
HSJ (t) − HSI(t) in its series expansion.

Remark 1. The defined Hilbert function (and therefore Hilbert series) is valid
only for homogeneous ideals, however, we consider not necessarily homogeneous
ideals. For this purpose, if F is a set of not necessarily homogeneous polynomials
we consider HF〈LM(F)〉(s) for each s and HS〈LM(F)〉(s).

A Note on Dynamic Gröbner Bases Computation 279

3 Dynamic Gröbner Bases Computation

Finding a suitable order is a crucial ingredient to obtain nice Gröbner bases with
less polynomials and less terms. For this purpose, one solution is to change the
monomial ordering each time a new polynomial is constructed during the com-
putation. It is proven in [14] that such an algorithm terminates with a Gröbner
basis. Keeping in mind that changing monomial orderings is done in a way that
previous computations remain valid. We call this method the Dynamic Gröbner
Basis Computation. In this section, we recall briefly the method proposed by
Caboara and Perry [6] which reduces the size and number of intermediate linear
programs (which one requires to solve) in dynamic Gröbner bases computation.

For each nonzero w ∈ Rn one can define an ordering on P using the inner
product of vectors. More precisely, for α, β ∈ Nn, we write α ≺w β if w.α < w.β
where α.w denotes the inner product of two vectors α,w ∈ Rn. If the elements
of w are linearly independent over Q then ≺w is a monomial ordering. However,
for a finite set F of polynomials, we can find a vector w ∈ Rn with independent
components so that ≺w can be used to identify LM(F). More precisely, assume
that a monomial ordering ≺ has been fixed on P. Then, there exists w ∈ Rn so
that for each f ∈ F we have LM≺(f) = LM≺w

(f).

Lemma 1. For any monomial ordering ≺ and a positive integer a, there is a
vector v ∈ Rd

+ such that for all monomials xα and xβ of total degree less than
or equal to a we have xα ≺ xβ if and only if v.α < v.β.

This observation leads to an integer programming model to study this rela-
tionship which is reviewed in the following. A polyhedron in Rn is an intersec-
tion of finite half-spaces in Rn. A polyhedron of the form {x ∈ Rn | Ax ≤ 0}
where A is a matrix with n columns is called a cone. The following lemma [14,
Lemma 1.3.1], relates monomial orderings and inner product of vectors.

Suppose that G ⊂ P is a finite set. Two monomial orderings ≺1 and ≺2 on P
are called equivalent for G if LM≺1(G) = LM≺2(G). For every G ⊂ P there
are finitely many equivalence classes of monomial orderings. These equivalence
classes are called cone associated classes to G and each class is denoted by
C(≺, G) where ≺ is a monomial ordering in that cone. Let G = {g1, . . . , gm}. The
associated cone C(≺, G) can be described as a system of linear inequalities, say
S, as follows: For each i = 1, . . . , m, we let Ti = {t | t ∈ Supp(gi) \ {LM≺(gi)}}.
Then, we set

S ={(y1, . . . , yn).(Exp(LM≺(gi)) − Exp(t)) > 0| ∀ t ∈ Ti, 0 ≤ i ≤ m} (1)
∪ {yi > 0 | 0 ≤ i ≤ n}.

This system has a crucial role in the dynamic Gröbner basis computation.

Definition 2. Boundary vectors of a cone are defined to be extreme points of
the intersection of the closure of the system (1) and y1 + · · · + yn = d for some
d ∈ R+.

280 A. Hashemi and D. Talaashrafi

For G ⊂ P and a cone C(≺, G) associated to G, a monomial t of a polynomial
f is said to be a compatible term w.r.t. C(≺, G) if there exists an order ≺′∈ C(≺
, G) such that LM≺′(f) = t.

Theorem 1 ([6, Theorem2]). Let G ⊂ P, f ∈ P and Ω be a set of boundary
vectors of the cone C(≺, G) for somse monomial ordering. Consider LM≺(f) =
t. If there exists a term order ≺′∈ C(≺, G) such that LM≺′(f) = u, then there
exists ω ∈ Ω so that ω.(Exp(u) − Exp(t)) > 0.

It is important to know that converse of above theorem does not hold, but
it has the following consequence, see [6, Corollary 1].

Corollary 1. If we know a set of boundary vectors Ω of C(≺, G), then any
monomial u in f is incompatible if ω.(Exp(u) − Exp(t)) < 0 for each ω ∈ Ω
where t = LM(f).

The dynamic Buchberger algorithm (only boundary vector technique part)
proposed in [6] is as follows. The required functions are introduced briefly after
the algorithm. Let e1, . . . , en be the standard basis for Rn. By convention, the
Spolynomial of a critical pair (f, 0) is defined to be f .

Algorithm 1. DynamicBuchberger

Input: F ⊂ P a finite set of polynomials
Output: G ⊂ P and a monomial ordering ≺ such that G is a Gröbner basis for 〈F 〉
select a monomial ordering ≺
G := {}
P := {(f, 0) | ∀ f ∈ F}
Ω := {e1, . . . , en}
while P �= ∅ do

select a pair (p, q) ∈ P and remove it from P
r : = A remainder of Spolynomial of (p, q) by G
if r �= 0 then

Add (g, r) to P for each g ∈ G and add r to G
t := LM≺(r)
U := Supp(r) \ {t}
find a new ordering ≺′, using identify clts(≺, t, U, Ω) to eliminate incompatible
terms and Hilbert function to rank compatible terms.
≺:= monitor(G, ≺, ≺′, lp(≺′, G))
remove useless pairs from P

end if
Ω := compute boundary vectors(lp(G, ≺))

end while
return (G, ≺)

Below, we explain all the used functions.

• The function lp(G,≺) returns the inequality system corresponding to
C(≺, G).

A Note on Dynamic Gröbner Bases Computation 281

• The function compute boundary vectors(lp(G,≺)) computes approximate
boundary vectors of the input cone using linear programming techniques.

• The function identify clts(≺, t, U,Ω) uses Theorem 1 to eliminate incompat-
ible terms of a polynomial with respect to the current cone and monomial
ordering. The Hilbert function helps to select a term among the compatible
terms that minimizes the basis of the ideal generated by the leading terms.

• To minimize number of constraints, in the algorithm we add only certain
inequalities to the system. These inequalities will only be for the terms that are
compatible. Taking into account that boundary vectors are approximated, this
can lead to inconsistency in the system. Finally, to avoid this inconsistency,
the algorithm calls monitor(G,≺,≺′, lp(≺′, G)) function at each step. In more
detail, this function verifies whether or not the previously-determined leading
terms remain invariant and if some leading terms would change, it finds a
compromise ordering if any exist.

4 Improved Dynamic Gröbner Bases Computation

In this section, we propose an improved version of the previous algorithm which
allows us to compute Gröbner bases with less polynomials and less terms. Let us
denote by LM(f) a potential leading monomial which is selected as the leading
monomial of f . Let F = {(f1, t1), . . . , (fm, tm)} such that fi ∈ P and LM(fi) = ti
for each i. The linear inequality system associated to F is presented as follows:

S ={
m⋃

i=1

(y1, . . . , yn).(Exp(ti) − Exp(t)) > 0 | t ∈ Supp(fi) \ {ti}} (2)

∪ {yi > 0 | 1 ≤ i ≤ n}.

Definition 3. If the closure of the system (2) joined with d = y1 + · · · + yn for
some d ∈ R+ is consistent, we refer to this intersection as the polyhedron of F .

Having a system of linear inequalities, there are algorithms for computing a
polyhedron defined by such a system and its vertices. We show that the exact
computation of vertices (see the end of this section) leads to nicer Gröbner
bases. In this direction, we modify the dynamic Buchberger’s algorithm to select
a leading term for each polynomial (and even for the input polynomials) at each
step of the algorithm. To this end, after computing a new polynomial, we find
its compatible terms with respect to already computed polynomials and leading
terms. Then, we select the best term among compatible terms as the leading
term of the new polynomial. In order to find compatible terms of a polynomial
w.r.t. a set of polynomials, we use the next trivial theorem which is in fact an
improved version of Theorem1.

Theorem 2. Let F = {(f1, t1), . . . , (fm, tm)} and P the polyhedron correspond-
ing to F . Further, let V = {v1, . . . , vk} be the set of vertices of P . Then, for a
polynomial f ∈ P, a monomial t ∈ Supp(f) is a compatible term if and only if
for each p ∈ Supp(f) \ {t} there exists v ∈ V with v.(Exp(t) − Exp(p)) > 0.

282 A. Hashemi and D. Talaashrafi

Proof. That is a consequence of the well-known Corner Point Theorem which
implies that a maximum of any objective function occurs at an extreme point,
see [6, Theorem 2] for further details. ��
Now, assume that we have a list of exact vertices of the polyhedron of a set F . The
next procedure finds compatible terms of a polynomial w.r.t F by Theorem 2.

Algorithm 2. FindCompatibleTerms

Input: f ∈ P and V set of vertices of its polyhedron
Output: All compatible terms of f
M := Supp(f)
ComTerms := {}
for p ∈ M do

flag := true
for t ∈ M \ {p} do

if � ∃v ∈ V such that v.(Exp(p) − Exp(t)) > 0 then
flag := false

end if
end for
if flag = true then

Add p into ComTerms
end if

end for
return (ComTerms)

In the following, for the seek of simplicity, we consider V,G,B,L, P as global
variables; i.e. each of these variables can be read and changed anywhere by each
of the functions. In order to describe the main algorithm of this section (the
improved dynamic Gröbner bases algorithm), we establish the next auxiliary
algorithm to update the used monomial ordering.

Algorithm 3. UpdateOrdering

Input: f ∈ P
Output: All compatible terms of f
ComTerms := FindCompatibleTerms(f, V)
t := HilbertHeuristic(ComTerms, LT(G))
G, B := Update(G, B, (f, t))
if |ComTerms| > 1 then

L := UpdateSystem(L, (f, t))
P := The polyhedron of L
V := The set of exact vertices of P
V ecOrder := center(P)
L := eliminate(P, L)

end if
return (V ecOrder)

A Note on Dynamic Gröbner Bases Computation 283

Let us briefly explain the main idea of the next algorithm. At each step, we
maintain a set L of linear equations which defines a polyhedron. Any vector in the
polyhedron describes an ordering which is compatible with past computations.
When a new and nonzero polynomial f is considered to be added to the set that
becomes a Gröbner basis, we choose a vector in the polyhedron (representing a
compatible monomial ordering) such that the best possible monomial appearing
in f moves to the leading position.

Algorithm 4. ImpDynGB

Input: F = {f1, . . . , fm} ⊂ P
Output: A Gröbner basis for 〈F 〉
B := {}
G := {}
L := {y1 ≥ 0, . . . , yn ≥ 0 , y1 + · · · + yn = d} for some d ∈ R+

P := The polyhedron of L
V := The set of exact vertices of P
V ecOrder := center(P)
for i from 1 to m do

V ecOrder :=UpdateOrdering(fi)
end for
while B �= ∅ do

select and remove a pair {f, g} from B
s := Spolynomial(f, g, V ecOrder)
r := A remainder of the division of s by G and w.r.t. V ecOrder
V ecOrder :=UpdateOrdering(r)

end while
return (G)

We explain below the used functions.

• The function center(P) finds a vector in the polyhedron P .
• We use HilbertHeuristic procedure to select one of the compatible terms as the

leading term of the new polynomial. Indeed, this function receives as input
a set of compatible terms T = {t1, . . . , tk} and a set of monomials M and
returns ti where the ideal generated by M ∪ {ti} has the minimum Hilbert
function (according to the ordering defined in Sect. 2) among all possible terms
in T . In the case that Hilbert function can not decide between two terms, we
break the tie using degree reverse lexicographical ordering.

• In addition, we use Update algorithm from [1] to refine the set of critical pairs
by applying Buchberger’s criteria when a new polynomial is constructed.

• UpdateSystem is a function to add inequalities related to the new polynomial
to the existing system.

• We should note that not all inequalities are needed. By eliminating them using
the eliminate function, we keep the sizes of systems of linear inequalities of
small as possible, which in the end makes the computation faster. One of

284 A. Hashemi and D. Talaashrafi

the approaches proposed by Caboara and Perry in [6] to reduce the size of
inequalities was to add only those constraints that correspond to terms that
the boundary vectors identify as compatible leading terms. In our Sage imple-
mentation, we call the function eliminate(P,L) where L is a set of inequal-
ities and P is the corresponding polyhedron and using the Sage function
inequalities list we compute the set of inequalities corresponding to P
and this would be a minimal representation for L.

Finally, in this algorithm, we use sugar strategy [12] for selecting pairs.

Remark 2. Algorithm 4 proceeds by computing Spolynomial and reduction com-
putations with respect to V ecOrder (which can be any arbitrary vector in the
polyhedron, and we choose the center point of the polyhedron). As a conse-
quence, the new algorithm does not need any monomial ordering.

Remark 3. Another interesting fact about the new algorithm is that the compu-
tations which are involved in changing of monomial orderings are only performed
when the new added polynomial has more than one compatible term. In partic-
ular, when the added polynomial has one compatible term, the new inequalities
won’t affect the polyhedron, and therefore we do not have to update the poly-
hedron. It is worthwhile noting that the only heuristic part of Algorithm4 is the
HilbertHeuristic procedure and in adition, the algorithm is deterministic.

Remark 4. We shall note that since all the cones pass through the origin then we
can assume d to be any positive integer to be sure that the plane y1+· · ·+yn = d
intersects all the cones.

Theorem 3. ImpDynGB algorithm terminates in finitely many steps and
returns a Gröbner basis for the input ideal.

Proof. The termination and correctness of the algorithm are inherited from those
of GröbnerNew2 (see [1, Theorem 5.73]). Indeed, we shall remark that when
we turn to a new monomial ordering then the already computed leading terms
remain invariant and this completes the proof. ��
Example 1. In this example, we present sage [18] commands to construct a
linear inequality system lp and add new inequality to it. Further, we show how
one can compute the exact vertices corresponding to a polyhedron.

lp = MixedIntegerLinearProgram()
y = lp.new variable(real = True, nonnegative = True)
lp.set objective(None)
for i in range (1, 5) :

lp.add constraint(y[i] >= 0)
lp.add constraint(−y[1] + 2y[3] + y[5] >= 0)
lp.add constraint(2y[3] + 3y[4] + y[1] >= 0)
lp.add constraint(y[1] + y[2] + y[3] + y[4] == 50)

A Note on Dynamic Gröbner Bases Computation 285

We can compute the polyhedron corresponding to lp using the next command.

P = lp.polyhedron()

The list of vertices of the polyhedron P , can be found using the following com-
mand

P.vertices list()

which is equal to

[[0, 50, 0, 0, 0], [0, 0, 0, 50, 0], [100/3, 0, 50/3, 0, 0], [50, 0, 0, 0, 50], [0, 0, 50, 0, 0]].

Conversely, we can find inequalities of a polyhedron P with the following com-
mand (this function is used in eliminate function)

P.inequalities−list().

5 Experimental Results

We have implemented ImpDynGB in sage1 and we have compared the behavior
of this algorithm with the Caboara-Perry algorithm [6]. Further, we compare the
results with the Gröbner basis w.r.t. reverse lexicographical (DRL) ordering. For
this purpose, we used some examples (see below) from [6] (except Example 3).
All computations were done over Q. The results are shown in the following tables
where the columns # Poly and # Monomials indicate, respectively, the number
of polynomials and the size of the set of all monomials appearing in the output
Gröbner basis (Table 1).
Test 1:

[u0 + 2u1 + 2u2 + 2u3 + 2u4 + 2u5 − 1, 2u0u1 + 2u1u2 + 2u2u3 + 2u3u4 + 2u4u5 − u1,

2u0u2 + u2
1 + 2u1u3 + 2u2u4 + 2u3u5 − u2, 2u0u3 + 2u1u2 + 2u1u4 + 2u2u5 − u3,

2u0u4 + 2u1u3 + 2u1u5 + u2
2 − u4, u

2
0 − u0 + 2u2

1 + 2u2
2 + 2u2

3 + 2u2
4 + 2u2

5]

Test 2:

[t4zb + x3ya, tx8yz − ab4cde, xy2z2d + zc2e2, tx2y3z4 + ab2c3e2]

Test 3:

[(z1 − 6)2 + z2
2 + z2

3 − 104, z2
4 + (z5 − 6)2 + z2

6 − 104, z2
7 + (z8 − 12)2 + (z9 − 6)2 − 80,

z1(z4 − 6) + z5(z2 − 6) + z3z6 − 52, z1(z7 − 6) + z8(z2 − 12) + z9(z3 − 6) + 64,

z4z7 + z8(z5 − 12) + z9(z6 − 6) − 6z5 + 32, 2z2 + 2z3 − 2z6 − z4 − z5 − z7 − z9 + 18,

z1 + z2 + 2z3 + 2z4 + 2z6 − 2z7 + z8 − z9 − 38, z1 + z3 + z5 − z6 + 2z7 − 2z8 − 2z4 + 8]

Test 4:

[x33z23 − y82a, x45 − y13z21b, x41c − y33z12, x22 − y33z12d, x5y17z22e − 1, xyzt − 1]

1 The Sage code of the implementations of our algorithms and examples are available
at http://amirhashemi.iut.ac.ir/softwares.

http://amirhashemi.iut.ac.ir/softwares

286 A. Hashemi and D. Talaashrafi

Test 5:

[xb − ya, (x − l)d − y(c − l), b2 − a2 − r2, (c − l)2 + d2 − s2, (a − c)2 + (b − d)2 − t2]

Test 6:

[45p + 35s − 165b − 36, 35p + 40z + 25t − 27s, 15w + 25ps + 30z − 18t − 165b2,

− 9w + 15pt + 20zs, wp + 2zt − 11b3, 99w − 11sb + 3b2]

Test 7:
[−x2yz4 + t, −x5y7 + uz2, vx3z − y2, z5 − xy3]

Test 8:

[abcde − 1, abcd + bcde + acde + deab + eabc, abc + bcd + cde + dea + eab,

ab + ed + bc + cd + ea, a + b + c + d + e]

Test 9:

[abcdef − 1, abcde + bcdef + cdefa + defab + efabc + fabcd

abcd + bcde + cdef + defa + efab + fabc, abc + bcd + cde + def + efa + fab,

ab + bc + cd + de + ef + fa, a + b + c + d + e + f]

Test 10:

[u + v + y − 1, t + 2u + z − 3, t + 2v + y − 1, −t − u − v + x − y − z,

tux2 − 1569/31250yz3, 587/15625ty + vz]

As one observes the new described algorithm outputs nicer Gröbner bases
than the Caboara-Perry algorithm (and also that the Gröbner bases w.r.t. reverse
lexicographical ordering).

Table 1. Comparison of ImpDynGB algorithm with Caboara-Perry algorithm.

Caboara-Perry DRL ordering ImpDynGB

System # Poly # Terms # Poly # Terms # Poly # Terms

Test 1 22 54 22 55 6 38

Test 2 35 137 239 479 83 166

Test 3 – – 39 1337 9 369

Test 4 21 42 529 1058 6 12

Test 5 12 67 25 637 8 34

Test 6 9 20 13 23 6 16

Test 7 7 14 38 76 5 10

Test 8 11 68 21 88 11 52

Test 9 20 129 45 199 17 114

Test 10 7 15 7 15 6 14

A Note on Dynamic Gröbner Bases Computation 287

6 Conclusion and Perspective

In this paper, a modification of Caboara-Perry algorithm [6] which is a variant
of Buchberger’s algorithm to compute Gröbner bases dynamically is suggested.
The main idea is as the Buchberger algorithm progresses, it may change the
monomial ordering (without starting with a fixed monomial ordering) so that
the new monomial ordering compromises the past computations and reduces the
volume below the Gröbner staircase using an ordering on Hilbert functions. We
shall note that our aim in this paper is not to speed-up the computation of
a Gröbner basis and is only to find a small Gröbner basis. With the improve-
ments presented in this paper one could expect that locally one finds the best
monomial ordering, where from locally best we mean that for small variations of
the monomial ordering, no smaller Gröbner bases could be found. However, the
global optimum requires an exhaustive enumeration of all Gröbner bases and
can be obtained using the concept of Gröbner fan [16]. The proposed algorithm
has been implemented in Sage and it was shown that over several examples the
described algorithm can find nicer Gröbner bases.

Acknowledgments. The research of the first author was in part supported by a grant
from IPM (No. 94550420). The authors are grateful to anonymous referees for their
useful and helpful comments on preliminary version of this paper.

References

1. Becker, T., Weispfenning, V.: Gröbner Bases: A Computational Approach to Com-
mutative Algebra. Springer, New York (1993). In cooperation with Heinz Kredel

2. Buchberger, B.: A criterion for detecting unnecessary reductions in the construction
of Gröbner-bases. In: Ng, E.W. (ed.) EUROSAM 1979. LNCS, vol. 72, pp. 3–21.
Springer, Heidelberg (1979)

3. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. Innsbruck: Univ.
Innsbruck, Mathematisches Institut (Diss.) (1965)

4. Buchberger, B.: Bruno Buchberger’s Ph.d. thesis 1965: an algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial ideal.
Translation from the German. J. Symb. Comput. 41(3–4), 475–511 (2006)

5. Caboara, M.: A dynamic algorithm for Gröbner basis computation. In: Proceedings
of International Symposium on Symbolic and Algebraic Computation, ISSAC 1993,
pp. 275–283 (1993)

6. Caboara, M., Perry, J.: Reducing the size and number of linear programs in a
dynamic Gröbner basis algorithm. Appl. Algebra Eng. Commun. Comput. 25(1–
2), 99–117 (2014)

7. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra, 3rd edn.
Springer, New York (2007)

8. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139(1–3), 61–88 (1999)

288 A. Hashemi and D. Talaashrafi

9. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of International Symposium on Symbolic
and Algebraic Computation, ISSAC 2002, pp. 75–83 (2002)

10. Fröberg, R.: An Introduction to Gröbner Bases. John Wiley & Sons, Chichester
(1997)

11. Gebauer, R., Möller, H.: On an installation of Buchberger’s algorithm. J. Symb.
Comput. 6(2–3), 275–286 (1988)

12. Giovini, A., Mora, T., Niesi, G., Robbiano, L., Traverso, C.: “One sugar cube,
please” or selection strategies in the Buchberger algorithm. In: Proceedings of
International Symposium on Symbolic and Algebraic Computation, ISSAC 1991,
pp. 49–54 (1991)

13. Greuel, G.M., Pfister, G.: A singular introduction to commutative algebra. With
contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann, 2nd
extended edn. Springer, Berlin (2007)

14. Gritzmann, P., Sturmfels, B.: Minkowski addition of polytopes: computational
complexity and applications to Gröbner bases. SIAM J. Discrete Math. 6(2), 246–
269 (1993)

15. Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of alge-
braic equations. In: van Hulzen, J.A. (ed.) EUROCAL 1983. LNCS, vol. 162, pp.
146–156. Springer, Heidelberg (1983)

16. Mora, T., Robbiano, L.: The Gröbner fan of an ideal. J. Symb. Comput. 6(2–3),
183–208 (1988)

17. Robbiano, L.: Term orderings on the polynomial ring. In: Caviness, B.F. (ed.)
EUROCAL 1985. LNCS, vol. 204, pp. 513–517. Springer, Heidelberg (1985)

18. Stein, W.: Sage: Open Source Mathematical Software (Version 7.0). The Sage
Group (2016). http://www.sagemath.org

http://www.sagemath.org

Qualitative Analysis of the Reyman –
Semenov–Tian–Shansky Integrable Case

of the Generalized Kowalewski Top

Valentin Irtegov and Tatiana Titorenko(B)

Institute for System Dynamics and Control Theory SB RAS,
134, Lermontov Street, Irkutsk 664033, Russia

{irteg,titor}@icc.ru

Abstract. Qualitative analysis for the general integrable case of the
problem of motion of a rigid body in double force field is conducted.
We seek invariant manifolds and the families of invariant manifolds of
various dimension and levels, which possess some extremum property,
and investigate their stability in the Lyapunov sense. It is shown that
in the case of parallel force fields, there exist the families of permanent
rotations of the body, the questions of their stability are considered. We
also find some classic analogues for the solutions of the original problem
and study their properties.

1 Introduction

In this paper, we consider the problem of motion of a rigid body with a fixed
point under the influence of two force fields. These fields can be gravitational and
magnetic (electric), and others. Such problems arise in many applications, e.g.,
space dynamics [1]. There are known several integrable cases of such systems
when the inertia moments of the body are related as follows: A = B = 2C, and
the force centers lie in the equatorial plane of inertia ellipsoid [2–4]. A series of
works are devoted to the study of these cases (see., e.g., [5–7]). Their main topic
is topological analysis of the system’s phase space. The questions of stability of
found solutions are not discussed. Our approach to the study of the system’s
phase space is based on solving the extremum problem for the elements of the
algebra of the problem’s first integrals. It allows us to apply the 2nd Lyapunov
method for the analysis of stability and other properties of found solutions.
In [8], we have conducted qualitative analysis of the Bogoyavlenskii particular
integrable case [2] via this approach. In the given paper, the general integrable
case revealed by Reyman A.G., Semenov–Tian–Shansky M.A. et al. [4] is studied.
They have found an additional first integral in the problem under study, which
can be considered as a generalization of classical area integral.

The approach used by us reduces the problem of qualitative analysis of
motion equations to an algebraic one that gives a possibility to apply com-
puter algebra tools in our study. We applied “Mathematica” computer algebra
system (CAS).
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 289–304, 2016.
DOI: 10.1007/978-3-319-45641-6 19

290 V. Irtegov and T. Titorenko

2 Formulation of the Problem

The rotation of a rigid body around a fixed point in double force field in the
moving coordinate axes is described by the following differential equations:

2ṗ = q r + bδ3, γ̇1 = γ2r − γ3q, δ̇1 = δ2r − δ3q,

2q̇ = x0γ3 − p r, γ̇2 = γ3p − γ1r, δ̇2 = δ3p − δ1r,

ṙ = −bδ1 − x0γ2, γ̇3 = γ1q − γ2p, δ̇3 = δ1q − δ2p,

(1)

where p, q, and r are the projections of the vector of angular velocity onto the
axes related to the body; γi (i = 1, 2, 3) are the components of the direction
vector of the 1st force field; δi (i = 1, 2, 3) are the components of the direction
vector of the 2nd force field; x0 and b are the components of the radius-vectors
of force centers, respectively.

Equations (1) admit the polynomial first integrals:

2H = 2(p2 + q2) + r2 + 2(x0γ1 − b δ2) = 2h,
V1 = (p2 − q2 − x0γ1 − b δ2)2 + (2p q − x0γ2 + b δ1)2 = c1,
V2 = γ2

1 + γ2
2 + γ2

3 = 1, V3 = δ21 + δ22 + δ23 = 1,
V4 = γ1δ1 + γ2δ2 + γ3δ3 = c2,
V5 = x2

0(pγ1 + qγ2 + r
2γ3)2 + b2(pδ1 + qδ2 + r

2δ3)2

−x0b r[(γ2δ3 − γ3δ2)p + (γ3δ1 − γ1δ3)q + r
2 (γ1δ2 − γ2δ1)]

+x0b
2γ1(δ21 + δ22 + δ23) − x2

0b δ2(γ2
1 + γ2

2 + γ2
3)

−bx0(bδ1 − γ2x0)(δ1γ1 + δ2γ2 + δ3γ3) = c3.

(2)

Here V5 is the additional first integral found in [4].
Our problem is to find the stationary sets of equations (1) and to investigate

their qualitative properties. By stationary sets, we mean sets of any finite dimen-
sion on which the necessary extremum conditions for the elements of the algebra
of first integrals in the problem under study are satisfied. Zero-dimension sets
having this property are known as stationary solutions, while nonzero-dimension
sets are called stationary invariant manifolds (IMs).

3 Obtaining Invariant Manifolds

For finding the desired solutions on the basis of the approach used, a combination
of the first integrals of the original problem is constructed. Here we restrict
ourselves to the linear one:

2K = 2λ0H − λ1V1 − λ2V2 − λ3V3 − 2λ4V4 − 4λ5V5. (3)

For a complete analysis of the problem, nonlinear combinations of the integrals
have to be considered as well.

Next, the necessary conditions for the integral K to have an extremum with
respect to the phase variables p, q, r, γi, δi are written down:

Qualitative Analysis of the Reyman – Semenov–Tian–Shansky Integrable 291

∂K/∂p = λ0p + λ1[b (δ2p − δ1q) + x0 (γ1p + γ2q) − p (p2 + q2)] + λ5[b x0r

(δ3γ2 − δ2γ3) − b2δ1�1 − x2
0γ1�2] = 0,

∂K/∂q = −λ0q + λ1[b (δ1p + δ2q) + q(p2 + q2) + x0 (γ1q − γ2p)]

+ λ5[b x0r (δ3γ1 − δ1γ3) + b2δ2�1 + x2
0γ2�2] = 0,

∂K/∂r = λ0r + λ5[2b x0[p (δ3γ2 − δ2γ3) + q(δ1γ3 − δ3γ1) + r(δ2γ1 − δ1γ2)]

− b2δ3�1 − x2
0γ3�2] = 0,

∂K/∂γ1 = λ0x0 − λ2γ1 − λ4δ1 − λ1x0�3 + λ5x0 [b [2x0(2δ2γ1 − δ1γ2)

+ r (δ2r − 2δ3q)] − 2b2(δ22 + δ23) − 2x0p�2] = 0,
∂K/∂γ2 = λ1x0�4 − λ2γ2 − λ4δ2 + λ5x0[bx0 (2bδ1δ2 + r (2δ3p − δ1r))

− 2(b (δ1γ1 + δ3γ3) + q�2)] = 0,
∂K/∂γ3 = −λ2γ3 − λ4δ3 + λ5x0[2bx0 (bδ1δ3 + r(δ1q − δ2p)) (4)

− (2b (δ3γ2 − 2δ2γ3) + r�2)] = 0,
∂K/∂δ1 = −λ1b�4 − λ3δ1 − λ4γ1 + λ5b [2b (x0(δ2γ2 + δ3γ3) − p�1)

− x0(γ2(r2 + 2x0γ1) − 2γ3q r)] = 0,

∂K/∂δ2 = −λ0b − λ1b �3 − λ3δ2 − λ4γ2 + λ5b [2x2
0 (γ2

1 + γ2
3) + x0 (2b (δ1γ2

− 2δ2γ1) + r (γ1r − 2γ3p)) − 2bq�1] = 0,
∂K/∂δ3 = −λ3δ3 − λ4γ3 − λ5b [b [2r(δ1p + δ2q + δ3r) + 2x0(2δ3γ1 − δ1γ3)]

+ 2x0(r(γ1q − γ2p) + x0γ2γ3)] = 0.

Here λi are the parameters of the family of the integrals K, �1 = 2δ1p + 2δ2q +
δ3r, �2 = 2γ1p + 2γ2q + γ3r, �3 = bδ2 − p2 + q2 + x0γ1, �4 = bδ1 + 2pq − x0γ2.

The above stationary conditions for the family of the integrals K represent
a system of nonhomogeneous cubic equations with the parameters λi, b, x0. The
solutions of these equations when they are dependent allow one to define IMs and
the IMs families of differential equations (1) which correspond to the integral K.
We call the IMs of equations (1) the first-level IMs.

3.1 First-Level Invariant Manifolds

Firstly, we find maximal dimension IMs and investigate their qualitative prop-
erties. As any first integral defines a family of IMs of codimension 1, we start
with the IMs of codimension 2.

In [2,6], three IMs of codimension 2 in the problem under study are presented.
The first corresponds to the zero level of integral V1 (2), the others have been
obtained by chains of differential consequences of motion equations. In the given
work, we find the IMs of such dimension from equations (4) by solving them
with respect to part of the phase variables and parameters λi. The latter, as
was shown in [8], gives a possibility to obtain the desired IMs as well as the first
integrals of vector fields on these IMs.

We take as unknowns, e.g., the following combination δ1, γ2, λ0, λ1, λ2, λ3, λ4

from the phase variables and the parameters λi, and construct a Gröobner basis

292 V. Irtegov and T. Titorenko

for the polynomials of system (4) with the “Mathematica” procedure Groebner-
Basis, where the option “EliminationOrder” is used for monomial ordering. As
a result, we have a system of equations equivalent to the initial one, but it is
decomposed into two subsystems. Below, one of them is analysed.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ρ2λ0 − λ1

[
p (q r + b δ3)[2(p2 + q2) + r2 − 2b δ2] − x0γ3 [2q (p2 + q2)

+r(q r + b δ3)] + 2x0q γ1 (p r − x0γ3)
]

= 0, ρ2λ1 + bx0 ρ1λ5 = 0,

ρ1ρ2λ2 + b x0λ5

[
(q r + b δ3)2[4p2 (δ22 + δ23) + (2q δ2 + r δ3)2]

+4x0 q (q r+b δ3)[2(q δ3γ1−p δ2γ3) δ2+(rγ1−2pγ3) δ23]+x2
0 (4(2q δ2γ3

+(2p γ1 + r γ3) δ3) qδ2γ3 + [4q2 (γ2
1 + γ2

3) + (2p γ1 + rγ3)2] δ23)
]

= 0,

ρ1ρ2λ3 + bx0λ5

[
(b2((2p γ1+r γ3)2 δ23+4 [p2δ23(γ

2
1 + γ2

3)+(p2+q2) δ22γ
2
3

+(2p γ1+r γ3) q δ2δ3γ3])+[4q2 (γ2
1+γ2

3)+(2p γ1 + r γ3)2](p r−γ3x0)2

+4b p [δ2γ3(2p γ1 + r γ3) − 2(γ2
1 + γ2

3) q δ3](x0γ3 − p r))
]

= 0,

ρ1λ4+2bx0λ5

[
(b [2δ2 (q δ3γ1−p δ2γ3)+(r γ1−2p γ3) δ23]+r [2(p2+q2) δ2γ1

+p rδ2γ3+(rγ1−2pγ3) qδ3]+x0[2(γ2
1 + γ2

3) qδ3−δ2γ3(2pγ1+rγ3)])
]

= 0.

(5)

{
2bp (δ2γ3 − δ3γ2) − (2pγ1 + 2qγ2 + rγ3)(p r − x0γ3) = 0,
2x0q (δ1γ3 − δ3γ1) − (2pδ1 + 2qδ2 + rδ3)(q r + bδ3) = 0. (6)

Here ρ1 = 2pδ3γ1 + 2qδ2γ3 + rδ3γ3, ρ2 = x0qγ3 − p (q r + bδ3).
As can easily be verified by IM definition, equations (6) define the IM of

codimension 2 of differential equations (1): the derivative of expressions (6) cal-
culated by virtue of equations (1) must vanish on the given expressions. Indeed,
the derivative of expressions (6) calculated by virtue of equations (1) can be
written as

[(2x0q
2γ1 − (q r + bδ3)2) y1 + b (2p2γ1 − x0γ

2
3) y2]/(2ρ2) = 0,

[x0(bδ23 + 2q2δ2) y1 + (2bp2δ2 + (p r − x0γ3)2) y2]/(2ρ2) = 0. (7)

with the aid of “Mathematica” procedure PolynomialReduce. Here y1, y2 are the
left-hand sides of equations (6), respectively.

As equalities (7) become identities when y1 = y2 = 0, hence the latter proves
invariance of solution (6).

The equations of vector field on IM (6) are given by:

2ṗ = q r + b δ3, 2ṙ = − 1
ρ2

[b ((2qδ2 + rδ3)(q r + b δ3) + 2x0(qδ3γ1 − pδ2γ3))

2q̇ = x0γ3 − p r, +x0(2pγ1 + rγ3)(p r − x0γ3)],

γ̇1 = −qγ3 +
r

2ρ2
[(2pγ1 + rγ3)(p r − x0γ3) − 2b p δ2γ3],

γ̇3 = qγ1 − p

2ρ2
[(2pγ1 + rγ3)(p r − x0γ3) − 2b pδ2γ3], (8)

δ̇2 = pδ3 − r

2ρ2
[(2qδ2 + rδ3)(q r + b δ3) + 2x0q δ3γ1],

δ̇3 = −pδ2 +
q

2ρ2
[(2qδ2 + rδ3)(q r + b δ3) + 2x0qδ3γ1].

Qualitative Analysis of the Reyman – Semenov–Tian–Shansky Integrable 293

They are derived from the original differential equations by elimination of the
variables δ1, γ2 from them with the aid of (6).

From (5), we find λ0, λ1, λ2, λ3, λ4:

λ0 = −b x0 λ5 ρ1

[
p (q r + b δ3)[2(p2 + q2) + r2 − 2b δ2] − x0γ3 [2q(p2 + q2)

+r(q r + b δ3)] + 2x0qγ1 (p r − x0γ3)
]
/(2ρ22), λ1 = −λ5 b x0 ρ1/ρ2,

λ2 = −b x0λ5

[
(q r + bδ3)2[4p2(δ22 + δ23) + (2qδ2 + rδ3)2] + 4x0 q (q r + bδ3)

×[2(qδ3γ1 − pδ2γ3) δ2 + (rγ1−2pγ3) δ23]+x2
0 (4 (2qδ2γ3+(2pγ1 + rγ3) δ3)

×qδ2γ3 + [4q2(γ2
1 + γ2

3) + (2pγ1 + rγ3)2] δ23)
]
/(ρ1ρ2),

λ3 = −bx0λ5

[
(b2((2γ1p + γ3r)2 δ23 + 4 [p2δ23(γ

2
1 + γ2

3) + (p2 + q2) δ22γ
2
3

+(2γ1p + γ3r) qδ2δ3γ3]) + [4q2(γ2
1 + γ2

3) + (2pγ1 + rγ3)2](p r − γ3x0)2

+4 bp [δ2γ3(2pγ1 + rγ3) − 2(γ2
1 + γ2

3) qδ3](x0γ3 − p r))
]
/(ρ1ρ2),

λ4 = −2bx0λ5

[
(b [2δ2(qδ3γ1 − pδ2γ3) + (rγ1 − 2pγ3) δ23] + r[2(p2 + q2) δ2γ1

+p rδ2γ3+(rγ1 − 2pγ3) qδ3]+x0[2(γ2
1 + γ2

3) qδ3−δ2γ3(2pγ1+rγ3)])
]
/ρ1.

(9)

The derivatives of right-hand sides of (9), which are computed by virtue of
equations (8), are identically equal to zero. The latter means that relations (9)
are the first integrals of equations (8). Note that the right-hand sides of the above
expressions as well as differential equations (8) are rational.

The structure of the 2nd subsystem is similar to the first one: its latter two
equations (from 7) define the IM of codimension 2 of motion equations (1), and
the top five equations allow one to obtain the first integrals of vector field on the
given IM. In this work, for space reasons, we represent the IM equations only:

σ2γ
2
2 + σ1γ2 + σ0 = 0, σ̂2δ1 + σ̂1γ2 + σ̂0 = 0. (10)

Here σi and σ̂i are the polynomials of p, q, r, δ2, δ3, γ1, γ3. These polynomials are
bulky, and their full form is given in Appendix. The verification of invariance for
this manifold is performed likewise as above.

It seems likely that there exist other IMs of codimension 2 of the original
differential equations which correspond to the integral K. In order to reveal
them by the above technique, it is necessary to construct Gröobner bases for the
polynomials of system (4) with respect to all the possible combinations of two
phase variables and five parameters λi. Altogether, the number of such different
combinations will be C2

9C5
6 = 216. We could not construct the bases for all these

combinations so far because the latter demands significant computer resources,
in particular, processor time. The bases which we could obtain have not given
new results.

It is not difficult to show that the intersection of IM (6) and IM (10) is a
non-empty set. To this end, let us construct a Gröobner basis for the polynomials
of systems (6), (10) with respect to, e.g., the variables δ1, γ1, γ2:

294 V. Irtegov and T. Titorenko

x2
0 [b2 δ23 + (p r − x0γ3)2] [4 q2 (γ2

1 + γ2
3) + (2pγ1 + rγ3)2] + b2 [(q r + b δ3)2

+x2
0γ

2
3] [4p2 (δ22 + δ23) + (2qδ2 + rδ3)2] + 2b x0

[
x0γ3q (2(p2 + q2) + r2)

−p (q r + b δ3)[2(p2 + q2) + r2 − 2b δ2]
]
(2pγ1δ3 + 2qγ3δ2 + rγ3δ3)

+4b x2
0 γ3(x0γ3 − p r) [2(p2 + q2)γ1δ2 + p rγ3δ2 + q δ3(rγ1 − 2pγ3)]

+4b2x0q (q r + b δ3) [2δ2(qγ1 δ3 − pγ3δ2) + (rγ1 − 2pγ3) δ23] = 0, (11)
2bp (δ2γ3 − δ3γ2) − (2pγ1 + 2qγ2 + rγ3)(p r − x0γ3) = 0,
2x0q (δ1γ3 − δ3γ1) − (2pδ1 + 2qδ2 + rδ3)(q r + bδ3) = 0.

As can easily be verified by IM definition, equations (11) define the IM of
codimension 3 of motion equations (1).

On substituting expressions (11) resolved with respect to δ1, γ1, γ2 into equa-
tions (6) and (10), these become identities. It means that IM (11) is a submanifold
of both IM (6) and IM (10), i.e., it belongs to their intersection.

3.2 The Invariant Manifolds of 2nd Level and Higher

Let us consider the problem of seeking IMs for differential equations (8) on first-
level IM (6). We shall call such IMs the 2nd-level IMs.

As mentioned above, any first integral defines the IMs family of codimension
1. Hence, first integrals (9) of differential equations (8) and their combinations
can be considered as the IMs families of these equations. The integrals can also
be used for obtaining other IMs, including the stationary ones.

The zero level of one of rational integrals (9)

K̂ =
2(pδ3γ1 + qδ2γ3) + rδ3γ3

x0qγ3 − p (q r + bδ3)
= c (c = const) (12)

defines the IM of equations (8) which is given by

2(pδ3γ1 + qδ2γ3) + rδ3γ3 = 0. (13)

Obviously, this IM is stable as any first integral.
The equations of vector field on IM (13)

2ṗ = q r + bδ3, γ̇1 = −γ3q − (2γ1p + γ3r)r
2q

,

2q̇ = x0γ3 − p r, 2γ̇3 =
2γ1(p2 + q2) + γ3p r

q
,

ṙ = −bδ3γ1
γ3

+
x0(2γ1p + γ3r)

2q
, 2δ̇3 =

δ3(2γ1(p2 + q2) + γ3p r)
γ3q

(14)

admit the first integral

K̄ =
γ3
δ3

= c0 (c0 = const) (15)

which is found directly from the above equations.

Qualitative Analysis of the Reyman – Semenov–Tian–Shansky Integrable 295

We consider (15) as the equation of IMs family, where c0 is the family para-
meter. It will be the family of 3rd-level IMs on 2nd-level IM (13). As any first
integral is stable, the elements of this IMs family are stable.

The vector field on the elements of the given family can be written as

2ṗ = q r + bδ3, 2q̇ = c0x0δ3 − p r, 2γ̇1 = −2γ1p r + c0δ3(2q2 + r2)
q

,

ṙ = −bγ1
c0

+
x0(2γ1p + c0δ3r)

2q
, 2δ̇3 =

2γ1(p2 + q2) + c0δ3p r

c0q
. (16)

Equations (16) possess the first integral

Ṽ1 =
(
p2 − q2 +

b (2γ1p + c0δ3r)
2c0q

− x0γ1

)2

+
(x0 (2γ1p + c0δ3r)

2q
+

b γ1
c0

+ 2p q
)2

= c̃1 (c̃1 = const). (17)

It is derived from integral V1 (2) by eliminating the variables δ1, δ2, γ2, γ3 from
it with the aid of (6), (13), (15).

The zero level of integral (17) defines the family of IMs of equations (16) on
the elements of IMs family (15):

y1 = p2 − q2 +
b (2γ1p + c0δ3r)

2c0q
− x0γ1 = 0,

y2 =
x0 (2γ1p + c0δ3r)

2q
+

b γ1
c0

+ 2p q = 0. (18)

It will be the family of the 4th-level stationary IMs. Integral (17) takes a sta-
tionary value on the elements of this family.

Since for the equations of perturbed motion, there exists the sign-definite
integral ΔṼ1 = y2

1 + y2
2 obtained in the neighbourhood of the elements of IMs

family (18), one can conclude that the elements of the family under consideration
are stable.

The equations of vector field on the elements of IMs family (18) are given by:

2ṗ =
2b (p2 + q2)σ + q r

r�
, 2q̇ =

2c0x0(p2 + q2)σ − p r

r�
, ṙ =

2(b p + c0x0q)σ

�
.

These have the following first integrals:

H̃ = r2 +
4σ2

�
, Ṽ2 =

(p2 + q2)2[b2(4q2 + r2) + c0x0(c0x0(4p2 + r2) − 8bp q)]
r2�2

.

Here � = b2 + c20x
2
0, σ = b q − c0x0p.

Using the above first integrals, we can find the 5th-level IMs and so on. Thus,
with the aid of first integrals on the IM of next level, it is possible to obtain the
IMs of various levels and to study their properties.

Further, we consider the problem of “lifting up” the above found IMs of
2nd-level and higher into the original phase space and the study of their prop-
erties there.

296 V. Irtegov and T. Titorenko

3.3 The “Lifted Up” Invariant Manifolds

The “lifting up” problem is resolved immediately. In order to obtain in the phase
space of system (1) the equations of IM corresponding to IM (13) on IM (6) it
is sufficient to add equations (6) to equation (13):

2bp (δ2γ3 − δ3γ2) − (2pγ1 + 2qγ2 + rγ3)(p r − x0γ3) = 0,
2x0q (δ1γ3 − δ3γ1) − (2pδ1 + 2qδ2 + rδ3)(q r + bδ3) = 0,
2(pδ3γ1 + qδ2γ3) + rδ3γ3 = 0.

(19)

By IM definition, it is verified that equations (19) define the IM of codi-
mension 3 of motion equations (1). This IM is stationary one: the integral
2K0 = V2V3 − V 2

4 takes a stationary value on it.
Analogously, IMs families (15) and (18) are “lifted up” into the original phase

space.
Having added equations (13), (6) to equation (15), we have the equations of

the IMs family of codimension 4 which correspond to IM (15) in the phase space
of system (1):

2bp (δ2γ3 − δ3γ2) − (2pγ1 + 2qγ2 + rγ3)(p r − x0γ3) = 0,
2x0q (δ1γ3 − δ3γ1) − (2pδ1 + 2qδ2 + rδ3)(q r + bδ3) = 0,
2(pδ3γ1 + qδ2γ3) + rδ3γ3 = 0, γ3 − c0δ3 = 0.

(20)

These represent the family of stationary IMs. The integral 2K1 = V2/c0+c0V3−
2V4 takes a stationary value on the elements of the family.

The family of stationary IMs of codimension 6 corresponds to IMs family
(18) in the original phase space. Its equations can be written as

2bp (δ2γ3 − δ3γ2) − (2pγ1 + 2qγ2 + rγ3)(p r − x0γ3) = 0,
2x0q (δ1γ3 − δ3γ1) − (2pδ1 + 2qδ2 + rδ3)(q r + bδ3) = 0,
2(pδ3γ1 + qδ2γ3) + rδ3γ3 = 0, γ3 − c0δ3 = 0, (21)

p2− q2+
b (2γ1p + c0δ3r)

2c0q
− x0γ1 = 0,

x0 (2γ1p + c0δ3r)
2q

+
b γ1
c0

+ 2p q = 0.

The integral 2K2 = −λ1V1 − λ2(V2 + c20V3 − 2c0V4) takes a stationary value on
the elements of this family. Note that both the integral V1 and the combination
of integrals V2 + c20V3 − 2c0V4 take stationary values on the elements of this IMs
family.

By combining the rest of first integrals (9) with IMs equations (6) or the
above presented, we can derive the equations of IM (or IMs families) which
differ from found already. Add, e.g., equations (20) to the first expression of (9).
The resulting equations define the family of stationary IMs of codimension 5 for
differential equations (1):

2bp (δ2γ3 − δ3γ2) − (2pγ1 + 2qγ2 + rγ3)(p r − x0γ3) = 0,
2x0q (δ1γ3 − δ3γ1) − (2pδ1 + 2qδ2 + rδ3)(q r + bδ3) = 0,
2(pδ3γ1 + qδ2γ3) + rδ3γ3 = 0, γ3 − c0δ3 = 0,

Qualitative Analysis of the Reyman – Semenov–Tian–Shansky Integrable 297

1
2(x0qγ3 − p (q r + bδ3))

[
p (q r + b δ3) [2(p2 + q2) + r2 − 2b δ2]

−x0γ3 [2q(p2+q2)+r(q r+b δ3)]+2x0qγ1 (p r−x0γ3)
]

= c̃ (c̃ = const).(22)

Here c̃ is the family parameter. The integral 2K3 = V2 + c20V3 − 2c0V4 takes a
stationary value on the elements of this family.

IMs and IMs families (19)–(22) are related: the IMs of lesser dimension are
submanifolds of IMs of greater dimension, and all these IMs belong to IM (6).
The latter is revealed by direct calculations.

Indeed, substitute expressions (19) resolved with respect to δ1, δ2, γ2 into
equations (6). They become identities. Hence, one can conclude that IM (19) is
a submanifold of IM (6). Analogously, relations between IMs family (20) and IM
(19) as well as the rest of IMs are established.

Let us investigate the stability of IMs and IMs families “lifted up” into the
original phase space. The integrals Ki are used for constructing the correspond-
ing Lyapunov functions.

Consider the family of IMs (21). For the equations of perturbed motion, the
variation of the integral K2 in the neighbourhood of the elements of IMs family
(21) can be written as

2ΔK2 = [ζ21 + ζ22] + [ξ21 + ξ22 + ξ23],

where y1, y2, y3, y4, y5, y6 are the deviations from the elements of the IMs family
under study, ζ1 = by2+x0y4, ζ2 = by1−x0y5, ξ1 = y4−c0y1, ξ2 = y5−c0y2, ξ3 =
y6 − c0y3.

The above quadratic form is sign-definite for the variables ζ1, ζ2, ξ1, ξ2, ξ3.
The latter is sufficient for the stability of the elements of IMs family (21) with
respect to the variables ζ1 = bδ2 + x0γ1 + q2 − p2, ζ2 = bδ1 − x0γ2 + 2qp, ξ1 =
γ1 − c0δ1, ξ2 = γ2 − c0δ2, ξ3 = γ3 − c0δ3.

Analogously, the stability of the elements of IMs families (20) and (22) is
studied. We have proved the stability of the elements of both families with
respect to part of the phase variables.

4 The Case of Parallel Force Fields

In this section, we study the solutions of equations (1) which can be obtained
directly from them.

First, we equate the right-handed parts of the original differential equations
to zero:

q r + bδ3 = 0, γ2r − γ3q = 0, δ2r − δ3q = 0,
x0γ3 − p r = 0, γ3p − γ1r = 0, δ3p − δ1r = 0,
−bδ1 − x0γ2 = 0, γ1q − γ2p = 0, δ1q − δ2p = 0

(23)

Equations (23) can be used for finding IMs in the problem under study.
Following the technique chosen for obtaining IMs, we construct a lexicographical

298 V. Irtegov and T. Titorenko

basis for the polynomials of system (23) with respect to some part of the phase
variables, e.g., γ1, γ2, γ3, δ1, δ2, δ3, r. The rest of the variables are considered as
parameters. The resulting system is equivalent to the initial one, but it can be
decomposed into two subsystems.

The subsystem 1:

q r + b δ3 = 0, x0γ3 − p r = 0, q2 + b δ2 = 0,

p2 − x0γ1 = 0, p q − x0γ2 = 0, p q + b δ1 = 0 (24)

The subsystem 2:

r = 0, δ3 = 0, γ3 = 0, bp2 δ2 + x0γ1q
2 = 0,

−bp δ2 − x0γ2q = 0, q δ1 − p δ2 = 0. (25)

As can easily be verified by IM definition, equations (24), taking into account
the constraints imposed on the constants of cosines integrals V2, V3 (2), define
the one-dimensional IM of motion equations (1). The vector field on the given
IM is described by the equation ṗ = 0. So, geometrically, in space R9, this IM
corresponds to a curve, over each point of which the family of the solutions
p=p0=const of the latter equation is defined. Let us show that all the solutions
belonging to the IM under consideration are stationary.

Equations (24) together with V2, V3 (2), p = p0 define in the original phase
space the family of solutions of system (1):

p = p0, q = −bp0
x0

, r = − z1
p0x0

, γ1 =
p20
x0

, γ2 = −bp20
x2
0

,

γ3 = − z1
x2
0

, δ1 =
p20
x0

, δ2 = −bp20
x2
0

, δ3 = − z1
x2
0

, (26)

where p0 is the family parameter, z1 =
√

x4
0 − (b2 + x2

0) p40 (p0 < |x0/(b2+x2
0)

1/4|
is the condition for the above solutions to be real).

Substitute (26) into the equations of stationarity (4) and find λ2, λ3, λ5 from
the resulting equations as some functions of λ0, λ4, p0, b, x0. Next, having sub-
stituted these functions into (3), we have the family of integrals

2Ǩ1 = λ0

[
2H +

x2
0

(b2 + x2
0)p

2
0

(
x2
0V2 + b2V3 − 4x2

0p
2
0

(b2 + x2
0)p

4
0 + x4

0

)
V5

]
− λ1V1

+ λ4(V2 + V3 − 2V4).

The above family of the integrals is split up into three subfamilies which
are the coefficients of λ0, λ1, λ4, respectively. Each of the subfamilies assumes a
stationary value on the elements of family (26). Hence, the solutions under study
are stationary. Note that the above one-dimensional IM itself is stationary: the
integral V1 takes a stationary value on this IM.

On substituting expressions (26) into V4 (2), the latter becomes identically
equal to 1. So, the above solutions correspond to the case when the vectors γi

Qualitative Analysis of the Reyman – Semenov–Tian–Shansky Integrable 299

and δi (i = 1, 2, 3) are parallel. From a mechanical viewpoint, the elements of
the family of stationary solutions (26) correspond to the permanent rotations of
the body around the direction of the coinciding force fields with angular velocity
ω2 = x2

0p
−2
0 . The axis position of the latter in the body depends on the parameter

p0 and does not coincide with the principal axes of the body, besides the case
ω2 =

√
x2
0 + b2.

Next, substitute expressions (24), V2, V3 (2) resolved with respect to the vari-
ables γ1, γ2, γ3, δ1, δ2, δ3, q, r into (6). The latter equations turn into identities.
Whence, one concludes that the one-dimensional IM under consideration is a
submanifold of IM (6).

Finally, let us investigate the stability of the IM defined by equations (24),
V2, V3 (2), using the integral V1 for constructing a Lyapunov function.

The variation of the integral V1 in the neighbourhood of a solution belonging
to this IM in the deviations

y1 = δ1 − p20
x0

, y2 = δ2 +
bp20
x2
0

, y3 = δ3 +
z1
x2
0

, y4 =
p20
x0

− γ1, y5 = γ2 +
bp20
x2
0

,

y6 = γ3 +
z1
x2
0

, y7 = q +
bp0
x0

, y8 = r +
z1

p0x0
, y9 = p − p0

can be written as ΔV1 = ζ21 + ζ22 , where ζ1 = [b (x0y1 + p20) − (x2
0y5 − bp20) +

2(x0y7 − bp0)(y9 + p0)]x−1
0 , ζ2 = −[(b (x2

0y2 − bp20) + (x0y7 − bp0)2]x−2
0 + (y9 +

p0)2−(x0y4+p20). Since the latter quadratic form is sign-definite for the variables
appearing in it, the IM under study is stable with respect to the variables ζ1 =
2p q − x0γ2 + b δ1, ζ2 = p2 − q2 − x0γ1 − b δ2.

Similarly, equations (25), taking into account the constraints imposed on the
constants of the cosines integrals, define the one-dimensional IM of motion equa-
tions (1), the vector field on which is described by the equation ṗ = 0 (p = p̃0 =
const), and everything aforesaid for the IM defined by equations (24), V2, V3 (2)
is true for the given IM.

Having substituted equations (25), V2, V3 (2) resolved with respect to γ1, γ2,
γ3, δ1, δ2, δ3, q, r into (11), we find that these turn into identities. Hence, the IM
under consideration is a submanifold of IM (11).

4.1 On Some Classic Analogues of the Solutions of the Original
Problem

When b = 0, equations (1) correspond to the Kowalewski integrable case of
motion of the body under the influence of one force field only [9]. This section
of the paper studies the solutions of the Kowalewski differential equations which
are some analogues for a number of the solutions of equations (1).

A. On the stationary IM p2 − q2 − x0γ1 − b δ2 = 0, 2p q − x0γ2 + b δ1 = 0 of
equations (1) (the case V1 = 0) there exists the Bogoyavlenskii integral [2]:

V6 = (p2 + q2)r − 2px0γ3 + 2b qδ3.

300 V. Irtegov and T. Titorenko

When b = 0, it turns into the integral V̄6 = (p2 + q2)r − 2px0γ3 of the
Kowalewski equations on the IM:

p2 − q2 − x0γ1 = 0, 2p q − x0γ2 = 0. (27)

The following duality condition

Ω1 = 2H̄V̄2 − V̄ 2
1 = V̄ 2

6 , Ω2 = 2H̄V̄2 − V̄ 2
6 = V̄ 2

1 . (28)

holds for the integrals V̄1 and V̄6, where H̄, V̄1 and V̄2 are the energy, area, and
cosines integrals of the Kowalewski equations on IM (27), respectively.

Expressions (28) are the envelopes for the following combinations of the
integrals:

2K1 = 2H̄ − 2μV̄6 + μ2V̄2, 2K2 = 2H̄ − 2μV̄1 + μ2V̄2.

As follows from (28), the zero levels of the integrals V̄1 and V̄6 define the IMs
on which the envelopes Ω1, Ω2 take stationary values, respectively. Obviously,
these IMs are stable as any first integrals.

B. When b = 0, equations (6) are

(2pγ1 + 2qγ2 + rγ3)(p r − x0γ3) = 0,
q [2x0 (δ1γ3 − δ3γ1) − (2pδ1 + 2qδ2 + rδ3)r] = 0. (29)

Note that these are not the IM equations for the problem of the Kowalewski top,
since the variables δi(i = 1, 2, 3) appear in the 2nd equation.

The first equation is split up as follows:

2pγ1 + 2qγ2 + rγ3 = 0, p r − x0γ3 = 0. (30)

Here the first equation is the area integral (its constant is zero) in the Kowalewski
problem. It defines the stationary IM of the Kowalewski top. This IM is stable
as any first integral.

Second equation (30) together with the solution q = 0 for the 2nd equation
of (29) define the family of stationary IMs of the Kowalewski top:

p r − x0γ3 = 0, q = 0, λ1 = x0/p, λ2 = 1/p2, λ3 = −x2
0/p2. (31)

This solution can be obtained from the equations of stationarity for the fol-
lowing family of integrals 2K = 2H̃ − 2λ1Ṽ1−λ2Ṽ2−λ3Ṽ3 by solving these
equations with respect to the unknowns q, r, λ1, λ2, λ3. In this case, the pro-
jection of angular velocity p = p0 is constant, and it is the family parameter.
Here H̃, Ṽ1, Ṽ2, Ṽ3 are the energy, area, cosines and Kowalewski integrals of the
Kowalewski top in the original phase space of this problem.

The vector field on the elements of IMs family (31) is given by:

ṙ = −x0γ2, γ̇1 = γ2r, γ̇2 = γ3p0 − γ1r, γ̇3 = −γ2p0.

Qualitative Analysis of the Reyman – Semenov–Tian–Shansky Integrable 301

So, the motions on the elements of this family are the rotations of the body with
variable angular velocity around an axis lying in the principal xOz plane of the
body.

Having introduced the deviations ξ1 = q, ξ2 = p r − x0γ3 from the elements
of the IMs family under consideration, we have the positive-definite variation of
the integral K when x0γ1 < 0:

2ΔK = p−2
0 (−2x0γ1ξ

2
1 + ξ22 − ξ41).

Hence, the elements of the IMs family under study are stable. The above suffi-
cient condition of stability is equivalent to the restriction h − p20 < 0.

C. When b = 0, equations (10) are decomposed into several subsystems. One
of them is represented below.

2γ3(p r−x0γ3)((p2 + q2) r−x0pγ3)−rγ1[(p2 + q2)r2−2prx0γ3 + x2
0γ

2
3] = 0,

x0γ3 [x0γ3γ2 + 2p(rγ2 − qγ3)] − r(p2 + q2)(rγ2 − 2qγ3) = 0. (32)

As can easily be verified, equations (32) define the IM of the Kowalewski top.
The vector field on this IM can be written as:

2ṗ = q r, 2q̇ = x0γ3 − p r, ṙ = −2x0q γ3 σ1

σ2
, γ̇3 = −2x0q γ3 σ1

rσ2
. (33)

These are obtained by eliminating γ1 and γ2 from the Kowalewski equations with
the aid of (32). Here σ1 = (p2+q2)r−px0γ3, σ2 = (p2+q2)r2−x0γ3(2p r−x0γ3).

The above equations admit the first integrals

2Ĥ = 2p2 + 2q2 + r2 + 4x0γ3

(p

r
− x0q

2γ3
σ2

)
, V̂1 = 4pγ3

(p

r
− x0q

2γ3
σ2

)

+
4q2γ3σ1

σ2
+ rγ3, V̂2 = 4γ2

3

(p

r
− x0q

2γ3
σ2

)2

+
(2qγ3σ1

σ2

)2

+ γ2
3 ,

V̂3 =
(
p2−q2−2x0γ3(

p

r
− x0q

2γ3
σ2

)
)2

+
(
2pq − 2x0qγ3σ1

σ2

)2

,
r

γ3
= c0 = const.

The top four of them are derived by eliminating γ1 and γ2 from the integrals
H̃, Ṽ1, Ṽ2, Ṽ3, using expressions (32). The latter is found directly from equa-
tions (33). Likely, these integrals are dependent, and they can be used for the
further analysis of the problem.

Note that the IM given by the equations p = r = γ2 = 0 belongs to IM
(32). The motions on this IM are the pendulum oscillations of the body around
the horizontal y axis. The IM defined by equations p = r = γ2 = δ1 = δ3 = 0
corresponds to the above IM in the phase space of system (1).

Equations (1) also have the IM given by the equations q = r = γ2 = γ3 =
δ1 = 0. These describe the oscillations of the body around the x axis coinciding
with the direction of the 1st force field.

The latter two IMs of equations (1) are found from the conditions of sta-
tionarity for the nonlinear combination of the original problem integrals 2Kr =
2H2 − λ1V1 − λ2V2 − λ3V3 by resolving these equations with respect to some
part of the phase variables and the parameters λi.

302 V. Irtegov and T. Titorenko

5 Conclusion

In this paper, the procedures based on computer algebra methods, in particular,
Gröbner bases, have been proposed for obtaining the IMs of various dimension
and levels, and their analysis. These allow one to find IMs together with the first
integrals of vector fields on them. The integrals can also be used in the problem
of qualitative analysis. The procedures proposed can be applied for the study of
conservative systems, including complete integrable ones.

With the aid of the above technique, qualitative analysis of the problem of
motion of a rigid body in double force field for the general integrable case has
been conducted. The IMs and the families of IMs of various dimension and levels
have been found. Their relationships have been established. For a series of the
stationary IMs, the sufficient conditions of their stability with respect to part of
the phase variables have been obtained. It was shown that in the case of parallel
force fields, there exist the families of permanent rotations of the body. The
sufficient conditions of their stability with respect to part of the phase variables
have also been derived. For some IMs of the original problem, the solutions
corresponding to them in the problem for one force field, have been obtained.

This research was supported financially by the Russian Foundation for Basic
Research (16-07-00201). This work was also supported in part by the Council for
Grants of the President of Russian Foundation for state support of the leading
scientific schools, project NSh-8081.2016.9.

Appendix

The coefficients of equations (10):

σ2 = 4x2
0ru [(bδ2 + x0γ1)z − 4(p (q r + bδ3)− x0γ3 q)(bδ3 p + x0γ3q)],

σ1 = 4x0

[
2b4 δ33 p (δ2 (r

2 + 2u)− δ3q r) + b3 δ3 p [2δ2r (δ3 q (r2 + u)− δ2 r u)

− δ23 (r
2 (3u + 2q2) + 4p2u)] + b2δ3 p r u [δ2 r (r2 + 2v)− δ3q (4p

2 + 3r2)]

+ 2b3 x0 δ23 [γ3 (δ2 q (r2 − 2u) + δ3 r u) + δ3 γ1 p (r2 + 2u)]

+ b2 x0 [δ
2
3 q (2γ1 p r (r2+3u)+γ3 (r

2 (2p2 + u)+4p2u))−2δ2γ3 r (δ3 (u
2+r2v)

+ δ2 q r u)] + bx2
0 r2 u [δ3 γ1 p (4q2 + r2) + γ3 (δ2 q (r2 + 2v)− δ3ru)]

+ x2
0 γ3 q r u [γ3 p (4q2 − 3r2)−γ1r (4p

2 − r2)]+2b2 x2
0 δ3 γ3 [δ3 q (γ1 (r

2 − 2u)

− 2γ3 p r)+δ2 γ3p (r
2+2u)]+b x2

0 [γ
2
3 p (2δ2 q r (u−r2)+δ3 (4q

2u−r2(u+2q2)))

+ 2δ3γ1r(γ1 p r u − γ3(3u
2 + r2v))] + 2b x3

0 γ2
3 [δ2γ3 q (r2 − 2u) + δ3 (γ3 r u

+ γ1p(r
2 + 2u))] + x3

0γ3[2γ1 q r (γ1 r u + γ3 p (3u − r2)) + γ2
3 (q r2 (2p2 + 3u)

− 4q3u)] + 2x4
0 γ3

3q (γ1 (r
2 − 2u)− γ3p r)

]
,

σ0 = b5δ23 [4δ22 δ3 q (r2 − 2u)− 2δ33 q (4p2 + r2) + 4δ32 r u + δ2 δ23 r (r2 + 4(v − q2))]

+ 2b4δ3 [δ2 δ23 q r2 (r2−8q2)−4δ22 δ3 r (u2 + q2 (u−r2)) + 4δ32q r2 u−δ33r (4p2+r2)

× (q2+u)]+b3r2 u [4δ22δ3q (r
2−2u)− 2δ33q (4p2+r2) + 4δ32r u + δ2δ

2
3r (r2+4(v

Qualitative Analysis of the Reyman – Semenov–Tian–Shansky Integrable 303

− q2))]+b2x0r u [4δ2δ3γ1q r (r2−4p2)−2δ23γ3p r (r2−4q2) + δ23γ1(16p
2q2 + r4)

+ 4δ2 u (4δ3γ3p q + δ2γ1r
2)−4δ22γ3p r (r2 + 2u)]+2b3x0 [4δ3γ3p q r (3δ23u−2δ22 r2)

+ 4δ22r2 u (2δ3γ1q−δ2γ3p)+δ33γ1q (r
2(r4−4q2) + 8p2u) + 2δ2δ

2
3γ1r (2q

2(r2−u)

+ (r2 − 2u)u)− δ2δ
2
3γ3p (r

2(r2 + 4v)− 8u2)] + b4x0δ
2
3 [4δ2γ1(2δ3q (r

2 − 2u)

+ 3δ2r u)− 4δ22γ3p (r
2 + 2u) + 2δ23γ3p (4(q

2 + u) + r2) + δ23γ1r (r
2 + 4(v − q2))]

+ bx2
0γ3r

2u [δ2γ3r (4(p
2 + v) + r2)− 2δ3γ3q (4p

2 + r2)− 4δ2γ1p (4q
2 + r2)]

+ 2bx3
0γ3 [4p r u (3δ3γ

2
3 q−δ2γ

2
1 r)−δ2γ

2
3p r2 (8p2 + r2) + δ3γ1γ3q(r

2(r2−4q2)

+ 8p2u) + 2δ2γ1γ3r(2p
2(r2+u)+u(r2+2u))]+bx4

0γ
2
3 [2δ3γ

2
3q(r2−4(u+p2))

+ 4γ2
1(δ3q (r

2−2u) + 3δ2r u)−8δ2γ1γ3p (r
2 + 2u)+δ2γ

2
3r (4(p2 + v) + r2)]

+ b2x2
0 [2δ

2
3γ2

3r (r2v−4(2p2q2 + u2))− 16δ2δ3γ1γ3p q r3 − 2δ23γ1γ3p (8q
4 + r4

+ 4p2(2q2 + r2)) + 8δ22γ2
3r (2p4 + q4 + p2(3q2 + r2))+4γ1r

2u (2δ2δ3γ1q−4δ22γ3p

+ δ23γ1r) + 2δ2δ3γ
2
3q (r4 − 8u2 + 4r2v)] + 2b2x3

0 [4δ2δ3γ1γ
2
3q (r2 − 2u)

+ 2γ1r u (δ23γ2
1 + 3δ22γ2

3) + 4δ23γ3
3p (2q2 + u)− 2γ3p (r

2 + 2u)(δ23γ2
1 + δ22γ2

3)

+ δ23γ1γ
2
3r (r2 + 6v)] + 2b3x2

0 [2q (r
2 − 2u)(δ33γ2

1 + δ22δ3γ
2
3)− 4δ33γ2

3q (3p2 + q2)

+ 2δ2r u (3δ23γ2
1 + δ22γ2

3)− 4δ2δ
2
3γ1γ3p (r

2 + 2u) + δ2δ
2
3γ2

3r (r2 + 6v)]

+ x3
0γ

2
3r u [2γ3p r (4q2 − r2) + γ1 (16p

2q2 + r4)] + 2x4
0γ

2
3 [2γ

2
1r3 u + γ2

3r (r2−4q2)

× (p2 + u)− γ1γ3p (8q
4 + r4 + 4p2 (2q2 + r2))] + x5

0γ
2
3 [2γ

3
3p (4q2 − r2) + 4γ3

1r u

− 4γ2
1γ3p (r

2 + 2u) + γ1γ
2
3r (4(p2 + v) + r2)],

σ̂2 = 2b4δ23 (2δ2u + δ3q r) + b2r u [2δ2 r u − δ3q(4p
2 − r2)] + b3δ3 [6δ2q r u

+ δ3 ((p
2 + 3q2)r2 − 4p2u)]− bx0γ3p r u (4q2 + r2) + 2b3x0δ

2
3 (2γ1u − γ3p r)

+ 2b2x0 r[δ3q (γ1u − 2γ3p r)− 3δ2γ3p u] + 2b2x2
0γ

2
3 (δ3q r + 2δ2u)

+ bx2
0γ3 [γ3((3p

2 + q2)r2 + 4q2u)− 2γ1p r u] + 2bx3
0γ

2
3 (2γ1u − γ3 p r),

σ̂1 = 2x4
0γ

2
3 (2γ1u + γ3 p r) + x2

0r u [2γ1r u − γ3p (4q
2 − r2)]− x3

0γ3 [6γ1p r u

− γ3(4q
2u − (3p2 + q2)r2)]− bx0δ3q r u (4p2 + r2) + 2b3x0δ

2
3 (2δ2u − δ3 q r)

+ 2bx2
0r (γ3p (2δ3q r − δ2u) + 3δ3γ1q u) + 2b2x2

0δ
2
3 (γ3p r + 2γ1 u)

− b2x0δ3 [δ3 ((p
2 + 3q2)r2 + 4p2u)− 2δ2q r u] + 2bx3

0γ
2
3 (2δ2u − δ3q r),

σ̂0 = 2b4δ33 (δ2p r − 2δ3p q) + 2b3δ3 [δ3p (δ2q (r
2 − 2u)− 2δ3 (u + q2)r)− δ22p r u]

− b2δ3p r u [4δ3q r+δ2 (4q
2−r2)] + bx0r [δ2γ3q (4p

2+r2)u + δ3γ1 p (4q2+r2)u]

+ 2b3x0δ
2
3 [γ3(δ2qr + δ3u) + δ3 (γ1p r + γ3u)] + b2x0 [2δ

2
3(2γ3q r (2p2 + q2)

+ γ1 p q (r2 + 2u)) + δ2γ3 (δ3(4u
2 − 2r2v)− 2δ2q ru)]

+ 2b2x2
0δ3γ3 [δ3γ1q r + γ3p (δ2r − 4δ3q)]− x2

0γ3q r u [4γ3p r + γ1 (4p
2 − r2)]

+ bx2
0 [2δ3p r (γ2

1u − 2γ2
3(p

2 + 2q2))− γ3 (δ3γ1 (4u
2 + 2r2v)

+ 2δ2γ3p q (r2 + 2u))] + 2bx3
0γ

2
3 [r (δ3γ1p + δ2γ3q) + 2δ3γ3u]

+ x3
0γ3q [2γ

2
1ru + γ3(4γ3r(2p

2 + q2) + γ1p (4u − 2r2))] + 2x4
0γ

3
3q (γ1r − 2γ3p),

z = 4[bδ3 (q r + bδ3)− x0γ3 (p r − x0γ3)] + r2u, u = p2 + q2, v = p2 − q2.

304 V. Irtegov and T. Titorenko

References

1. Sarychev, V.A., Mirer, S.A., Degtyarev, A.A., Duarte, E.K.: Investigation of equilib-
ria of a satellite subjected to gravitational and aerodynamic torques. Celest. Mech.
Dyn. Astron. 97(4), 267–287 (2007)

2. Bogoyavlenskii, O.I.: Two integrable cases of a rigid body dynamics in a force field.
USSR Acad. Sci. Doklady 275(6), 1359–1363 (1984)

3. Yehia, H.: New integrable cases in the dynamics of rigid bodies. Mech. Res. Comm.
13(3), 169–172 (1986)

4. Bobenko, A.I., Reyman, A.G., Semenov-Tian-Shansky, M.A.: The Kowalewski Top
99 years later: a Lax pair, generalizations and explicit solutions. Commun. Math.
Phys. 122, 321–354 (1989)

5. Zotev, D.V.: Fomenko-Zieschang invariant in the Bogoyavlenskyi case. Regul.
Chaotic Dyn. 5(4), 437–458 (2000)

6. Ryabov, P.E., Kharlamov, M.P.: Classification of singularities in the problem of
motion of the Kovalevskaya top in a double force field. Sb. Math. 203(2), 257–287
(2012)

7. Ryabov, P.E.: Phase topology of one irreducible integrable problem in the dynamics
of a rigid body. Theoret. Math. Phys. 176(2), 1000–1015 (2013)

8. Irtegov, V., Titorenko, T.: On Invariant Manifolds and Their Stability in the Prob-
lem of Motion of a Rigid Body under the Influence of Two Force Fields. In: Gerdt,
V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol.
9301, pp. 220–232. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24021-3 17

9. Kowalewski, S.: Sur le problème de la rotation d’un corps solide autour d’un point
fixe. Acta Math. 12, 177–232 (1889)

http://dx.doi.org/10.1007/978-3-319-24021-3_17

On Multiple Eigenvalues of a Matrix
Dependent on a Parameter

Elizabeth A. Kalinina(B)

Saint-Petersburg State University, Saint-Petersburg, Russia
ekalinina69@gmail.com

Abstract. In this paper, a square matrix with elements linearly depen-
dent on a parameter is considered. We propose an algorithm to find all
the values of the parameter such that the matrix has a multiple eigen-
value. We construct a polynomial whose roots are these values of the
parameter. A numerical example shows how the algorithm works.

1 Introduction

For two square k × k complex matrices A and B without common eigenvalues,
we would like to find all values of λ (real or complex) such that matrix A + λB
has a multiple eigenvalue, i.e., an eigenvalue of multiplicity greater than 1.

It is well known that a generic matrix has only simple eigenvalues. Nev-
ertheless, multiple eigenvalues typically appear in matrix families. Earlier the
consideration of such singular matrices was, on the whole, only theoretically
significant. However, now it has different practical applications in quantum
mechanics, nuclear physics, optics and kinetics of material systems [14,18].

Similar problems are studied in perturbation theory. Many papers deal with
condition numbers of matrices with multiple eigenvalues (see, e.g., the recent
works [2,9,10]). But in these papers, only the values of λ close to zero are con-
sidered. Here we assume that λ can take on arbitrary values.

A detailed description of this problem, its properties and applications
together with the solution based on the Newton method are presented in [6]. Also
it is noted that there appears to be no globally convergent numerical method
for the problem of finding all such values of λ. So the problem remains topical.
In the recent paper [15], a method that allows us to find all required values of
λ using only standard matrix computations is proposed. Unfortunately, as was
mentioned by the authors themselves, this method is very sensitive and can be
applied only for small matrices.

In this paper, an algorithm to construct a polynomial whose zeroes are the
required values of λ is presented. Zeroes of the obtained polynomial can be
found with arbitrary accuracy by any suitable method. The algorithm is based
on properties of the Kronecker product of matrices and the Leverrier method for
the computation of the characteristic polynomial of a matrix [11,21]. Also we
present a numerical example that shows how the algorithm works. The results
are compared with the ones obtained by the method described in [15].
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 305–314, 2016.
DOI: 10.1007/978-3-319-45641-6 20

306 E.A. Kalinina

It is shown how the suggested algorithm could be generalized to the case of
matrix with elements polynomially dependent on a parameter.

2 Preliminary Results

Consider a polynomial

f(x) = a0x
n + a1x

n−1 + a2x
n−2 + . . . + an, a0 �= 0, aj ∈ C, j = 0, 1, . . . , n.

Let λ1, λ2, . . . , λn ∈ C be the zeros of f counted with their multiplicity.

Definition 1. For a polynomial f(x), the Newton sums s0, s1, s2, . . . are defined
as

s0 = n;

sp = λp
1 + λp

2 + . . . + λp
n, p = 1, 2, . . .

The Newton identities [19] give relations between the coefficients of a poly-
nomial f and the Newton sums:

sp =
{−(a1sp−1 + a2sp−2 + . . . + ap−1s1 + pap)/a0, if p ≤ n,

−(a1sp−1 + a2sp−2 + . . . + ansp−n)/a0, if p > n.
(1)

Suppose, for a polynomial f(x) of degree n, we know the Newton sums
s1, s2, . . . , sn. Assuming a0 = 1, we can find the coefficients of f(x) by the
following formulae (the Newton formulae):

a1 = −s1; a2 = −(s2 + a1s1)/2 ;
ap = −(sp + a1sp−1 + a2sp−2 + . . . + ap−1s1)/p, if p ≤ n. (2)

These formulae can be rewritten as follows [12]:

ap =
(−1)p

p!

∣∣∣∣∣∣∣∣∣∣

s1 1 0 0 . . . 0
s2 s1 2 0 . . . 0
s3 s2 s1 3 . . . 0
. . .
sp sp−1 sp−2 sp−3 . . . s1

∣∣∣∣∣∣∣∣∣∣
p×p

. (3)

For any matrix Dk×k, the Newton sums of its characteristic polynomial can
be expressed through the traces of the powers of D. The following formulae give
these expressions:

sp = SpDp, p = 1, 2, . . . , (4)

where SpD stands for the trace of matrix D.

Definition 2. If A is a k×k matrix and B is an �×� matrix, then the Kronecker
product A ⊗ B is the k� × k� block matrix

[A ⊗ B]k�×k� =

⎡
⎢⎢⎣

a11B a12B . . . a1kB
a21B a22B . . . a2kB
. . .

ak1B ak2B . . . akkB

⎤
⎥⎥⎦ .

On Multiple Eigenvalues of a Matrix Dependent on a Parameter 307

By α1, . . . , αk and β1, . . . , β� denote the eigenvalues of matrices A and B,
respectively.

Given A and B, construct the matrix

C = A ⊗ I�×� − Ik×k ⊗ B.

Here Ik×k stands for the k × k identity matrix.
Suppose we know the eigenvalues of matrices A and B, then to find the

eigenvalues of C we can use the following theorem [13].

Theorem 1. The eigenvalues of the matrix C are αi − βj, where i = 1, 2, . . . , k
and j = 1, 2, . . . , �.

Hence, we obtain the necessary and sufficient condition for two matrices A
and B to have a common eigenvalue.

Corollary 1. Matrices Ak×k and B�×� have a common eigenvalue iff det C = 0.

We will use the following properties of the Kronecker product of matrices
and the trace [8]:

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), (5)
Sp (A ⊗ B) = SpA · Sp B. (6)

For a k × k-matrix D, by δ1, δ2, . . . , δk denote its eigenvalues counted with
their multiplicity. Consider the matrix

CD = D ⊗ I − I ⊗ D. (7)

According to Theorem 1, the eigenvalues of CD are equal to δi − δj , where
i, j ∈ {1, 2, . . . , k}. Therefore, all the eigenvalues of D are simple iff rank CD =
k2 − k.

3 Multiple Eigenvalues of a Matrix Dependent
on a Parameter

Consider two square k × k complex matrices A and B. We would like to find all
the values of λ such that the matrix D(λ) = A + λB has a multiple eigenvalue.

Remark 1. Suppose that A and B have no eigenvalues in common. This condition
can be verified by Corollary 1 to theorem 1.

By sp and Sp (p = 0, 1, 2, . . .) denote the Newton sums of characteristic poly-
nomials of matrices D and CD, respectively. The following theorem establishes
the relation between sp and Sp (recall that by (4) sp = SpDp, Sp = Sp Cp

D):

308 E.A. Kalinina

Theorem 2. The trace of the matrix Cp
D (p = 1, 2, . . .) can be found by the

formulae

S2p = 2ks2p − 2C1
2ps2p−1s1 + 2C2

2ps2p−2s2 − . . . + (−1)pCp
2ps

2
p,

S2p−1 = 0. (8)

Here Cp
n =

n!
p!(n − p)!

, p = 0, 1, 2,

Proof. By formula (5), we get:

Cp
D = Dp ⊗ I − C1

pD
p−1 ⊗ D + C2

pD
p−2 ⊗ D2 − . . . + (−1)pI ⊗ Dp.

To conclude the proof, it remains to use property (6). ��
Now we can prove the necessary and sufficient condition for a matrix to have

a multiple eigenvalue.

Theorem 3. Matrix D has a multiple eigenvalue iff
∣∣∣∣∣∣∣∣

S2 2 0 . . . 0
S4 S2 4 . . . 0
. . .

Sk2−k Sk2−k−2 Sk2−k−4 . . . S2

∣∣∣∣∣∣∣∣
(k2−k)/2×(k2−k)/2

= 0. (9)

Proof. By formulae (3), the coefficient Ak2−k of μk in the characteristic polyno-
mial of matrix CD

det(CD − μIk2×k2) = A0μ
k2

+ A1μ
k2−1 + A2μ

k2−2 + . . . + Ak2

can be expressed through the Newton sums Sp = Sp Cp
D:

Ak2−k =
1

(k2−k)!

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 . . . 0 0
S2 0 2 0 . . . 0 0
0 S2 0 3 . . . 0 0

. . .
0 Sk2−k−2 0 Sk2−k−4 . . . 0 k2 − k − 1

Sk2−k 0 Sk2−k−2 0 . . . S2 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

Using the Laplace expansion formula for the determinant [7] along the columns
with even indices, we get:

Ak2−k =
1

(k2 − k)!

∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . 0
S2 3 0 . . . 0
S4 S2 5 . . . 0
. . .

Sk2−k−2 Sk2−k−4 Sk2−k−6 . . . k2 − k − 1

∣∣∣∣∣∣∣∣∣∣

On Multiple Eigenvalues of a Matrix Dependent on a Parameter 309

×

∣∣∣∣∣∣∣∣

S2 2 0 . . . 0
S4 S2 4 . . . 0
. . .

Sk2−k Sk2−k−2 Sk2−k−4 . . . S2

∣∣∣∣∣∣∣∣

=
1

(k2 − k)!!

∣∣∣∣∣∣∣∣

S2 2 0 . . . 0
S4 S2 4 . . . 0
. . .

Sk2−k Sk2−k−2 Sk2−k−4 . . . S2

∣∣∣∣∣∣∣∣
,

where (k2 − k)!! stands for the product of all even natural numbers from 1 to
k2 − k. The last equality concludes the proof. ��

The following formulae similar to the Newton formulae allow us to find Ak2−k

without using determinant.

Corollary 2.

A2 = −S2;A4 = −(S4 + A2S2)/2 ;
A2p = −(S2p + A2S2p−2 + A4S2p−4 + . . . + A2p−2S2)/2p,

if p ≤ (k2 − k)/2. (10)

Theorems 1, 2, and 3 together with formulae (10) allow us to provide an
algorithm to find all values of λ such that matrix D = A + λB has a multiple
eigenvalue. In order to do this, first we must find the traces of the powers of D.
We will use the following properties of matrix trace [19]:

Lemma 1. Sp (AB) = Sp (BA), Sp (A + B) = SpA + SpB.

Hence, we have the following equality:

sp = SpDp = SpAp + λC1
p(SpAp−1B) + λ2C2

pSp (Ap−2B2) + . . . + λpSp Bp

(p = 1, 2, 3, . . .) (11)

Thus, it is necessary to find the first 1 to k2 −k powers of matrices A and B.

Remark 2. We can omit the last operation of matrix multiplication. It is suffi-
cient to find only the elements situated on the main diagonal of the resulting
matrix.

Remark 3. The calculation of matrix powers is rather expensive problem. For
large matrices, the Strassen algorithm [17] for fast matrix multiplication can be
useful.

Remark 4. For large k, we can compute the first 1 to k − 1 powers of matrices
A and B. Then we can find the traces of obtained matrices and characteristic
polynomials of matrices A and B, using the Newton formulae (2). After that,
we can use the Cayley – Hamilton theorem [19] and Lemma 1 for calculating the
traces of matrices Ap and Bp for p = k, k + 1, . . . , k2 − k.

310 E.A. Kalinina

3.1 The Algorithm

Let A and B be two square k × k-matrices. It is necessary to find all values of λ
(real or complex) such that the matrix A + λB has a multiple eigenvalue.

1. Calculate the powers of matrices A and B: Ap, Bp, (p = 1, 2, 3, . . . , k2 −
k − 1).

2. Calculate the traces of matrices ApBq p, q ∈ {0, 1, 2, . . ., k2 − k}, p + q ≤
k2 − k.

3. By (11), calculate the Newton sums sp of the characteristic polynomial of
matrix D = A + λB (p = 1, 2, . . . , k2 − k).

4. By (8), find the Newton sums S2p = SpD2p of the characteristic polyno-
mial of matrix CD (p = 1, 2, . . . , (k2 − k)/2).

5. Calculate the zeroes of the polynomial (9).
The obtained zeroes are the required values of λ.

Remark 5. The method can be generalized for a matrix D(λ) with elements
polynomially dependent on λ, i.e., for the matrix polynomial

D(λ) = A0λ
m + A1λ

m−1 + . . . + Am,

where Aj j = 0, 1, . . . ,m is a square k × k complex matrix. In this case, it is
more difficult to calculate the Newton sums of the characteristic polynomial of
matrix D(λ). All the other steps do not change. (In [20], a survey of different
problems concerning the eigenvalues of a matrix and known methods of their
solutions is presented.)

3.2 Asymptotic Complexity of the Algorithm and Accuracy
of Computations

In the algorithm, matrix multiplication is the most expensive operation. The
square matrix multiplication has an asymptotic complexity of O(n3), if carried
out naively. The current O(np) algorithm with the lowest known exponent p is a
generalization of the Coppersmith – Winograd algorithm [3] that has an asymp-
totic complexity of O(n2.3728639). The Strassen algorithm has an asymptotic
complexity of O(nlog27) ≈ O(n2.807). To compute Ap, Bp (p = 1, 2, . . . , k2−k−1)
we have to do 2(k2 − k − 2) matrix multiplications (we have O(k5) operations),
then we find traces of matrices ApBq, p, q ∈ {0, 1, 2, . . . , k2 − k}, p + q ≤ k2 − k
— approximately O(k6) operations in all. Hence, there are O(k6) operations, if
we do not take into account finding of zeroes of polynomial (9).

We can evaluate all the complex zeros of an kth degree univariate polyno-
mial with relative errors ≤ ε using O(k2 log k(log k + log(1/ε)) arithmetic opera-
tions [16]. For ε = 1/(10k3

), we have O(k6) operations. Therefore, the suggested
algorithm has an asymptotic complexity of O(k6).

It is difficult to estimate how many times the singular value decomposition
(SVD) must be computed during the work of algorithm described in [15]. How-
ever, because the SVD computation complexity is O(n2) [5], the asymptotic
complexity of algorithm described in [15] is not less than O(k6). Therefore, the

On Multiple Eigenvalues of a Matrix Dependent on a Parameter 311

asymptotic computational complexities of two algorithms mentioned above may
be considered equal.

Matrix multiplication is the base operation in the algorithm suggested in
the present paper. Hence, we would like to reduce the numerical errors that
occur in this operation. For matrix multiplication in floating point arithmetic,
the accuracy of computations can be improved without much extra cost using
result presented in [1]. For every inner product, computations are made in dou-
ble precision, and the result is rounded to a single precision number. For k × 1
vectors U, V , suppose that |UT ||V | ≤ υ|UT V |, where |U |, |V | are vectors whose
components equal the absolute values of components of the vectors U, V , respec-
tively. Then for an inner product UT V , the computed inner product is almost as
accurate as the correctly rounded exact product. The bound for an inner product
UT V equals

|fl(fle(UT V)) − UT V | < υ|UT V | +
kυe

1 − kυe/2
(1 + υ)|UT ||V |.

Here υ (“unit roundoff”) is the maximum value of relative error, υ = ε/2 (for
example, for float (4 bytes) ε ≈ 1.19 · 10−7, for double (8 bytes) ε ≈ 2.22 · 10−16,
for long double (10 or 12 bytes depending on the system) ε ≈ 1.08 · 10−19). The
values of ε can be found in the standard included file float.h for C-compiler for
the architecture x86. By fl(a) denote computation with ordinary precision (with
t binary digits), by fle(a) denote computation with extended precision (with 2t
binary digits), υe is the corresponding unit roundoff.

Remark 6. In single precision, the condition |UT ||V | ≤ υ|UT V | holds for the
inner product with absolute value of more than 0.1862645142 ·10−8k. For exam-
ple, if k = 4000, then the absolute value of the inner product must be more than
0.7450580568 · 10−5.

Remark 7. There exists a direct way to solve the problem under consideration.
We can find the characteristic polynomial of matrix D = A+λB and then com-
pute the values of parameter corresponding to its multiple eigenvalues. But this
approach seems to be quite expensive. Coefficients of the obtained polynomial are
polynomially dependent on λ. The maximum possible degree of such a coefficient
equals k. To find the required values of λ we must compute the discriminant of
the characteristic polynomial, i.e., the determinant of a (k2−k)×(k2−k) polyno-
mial matrix. According to results presented in [4], the computational complexity
of this approach is not less than O(k7).

3.3 A Numerical Example

The computations in the following example were made using Maple 13.0.

Example 1. Consider the problem from [15]. For matrices

A =

⎛
⎝ 1 −2 3

−1 1 2
1 1 −1

⎞
⎠ , B =

⎛
⎝ 1 −1 1

1 1 3
−1 1 1

⎞
⎠ ,

312 E.A. Kalinina

it is necessary to find all values of the parameter λ such that matrix D = A+λB
has a multiple eigenvalue.

Compute the Newton sums of the characteristic polynomial of matrix A+λB:

s1 = 3λ + 1 ;
s2 = 5λ2 + 6λ + 17 ;
s3 = 21λ3 + 33λ2 + 30λ − 8 ;
s4 = 65λ4 + 124λ3 + 82λ2 + 4λ + 117 ;
s5 = 173λ5 + 415λ4 + 485λ3 + 285λ2 + 240λ − 134 ;
s6 = 473λ6 + 1386λ5 + 2121λ4 + 1620λ3 + 522λ2 − 324λ + 890.

The Newton sums of the characteristic polynomial of matrix CD are:

S2 = 12λ2 + 24λ + 100 ;
S4 = 186λ4 + 504λ3 + 1980λ2 + 2424λ + 4234 ;
S6 = −11280λ6 − 33840λ5 − 35904λ4 + 6480λ3 + 36282λ2

+42300λ + 64058.

The coefficients are:

A2 = −S2/2 = −6λ2 − 12λ − 50 ;
A4 = −(S4 + A2S2)/4 = −57/2λ4 − 54λ3 − 123λ2 − 6λ + 383/2 ;
A6 = −(S6 + a2S4 + A4S2)/6

= 2123λ6 + 6738λ5 + 11459λ4 + 10908λ3 + 21226λ2 + 20952λ + 64246/3.

The zeroes of equation A6 = 0 are:

−2.333069484;−1.401818975 ± 0.6190045476i ,

0.2836993683 ± 0.1543575855i , 1.933794680.

The obtained values of λ differ from the ones presented in [15] in the first decimal
places:

1.5628;−2.2078;−1.1690 ± 0.8436i ; 0.2735 ± 0.0988i .

Compare the eigenvalues of matrix A + λB at the point λ = −2.333069484 and
at the point λ = −2.2078.

For λ = −2.333069484, the eigenvalues are:

−0.257071186441648280,−0.257116318877424144,−5.48502094668092610.

As we can see, the first two eigenvalues coincide up to three first decimal places.
For λ = −2.2078, the eigenvalues are:

0.567197754532772214;−1.01664058066736440;−5.17395717386540620.

As we can see, all the eigenvalues are distinct.

On Multiple Eigenvalues of a Matrix Dependent on a Parameter 313

The authors of the paper [15] note that their method has an error that is
quite large. They propose to use it only for matrices of small sizes. But we see
that in this case, the obtained error can be large, too.

4 Conclusions

For the problem considered in this paper, we propose an algorithm based on the
Kronecker product and the Newton sums. The roots of the constructed univariate
polynomial could be found by any suitable method with desirable accuracy.

Certainly, the suggested algorithm can be generalized for matrices with ele-
ments polynomially dependent on a parameter. For further investigation, there
remains to develop such an algorithm in detail.

Acknowledgments. The author is grateful to the anonymous referees for valuable
suggestions that helped to improve the paper.

References

1. Björk, Å., Dahlquist, G.: Numerical Mathematics and Scientific Computations,
vol. 1. SIAM, Philadelphia (2008)

2. Burke, J.V., Lewis, A.S., Overton, M.: Optimization and pseudospectra, with appli-
cations to robust stability. SIAM J. Matrix Anal. Appl. 25(1), 80–104 (2003)

3. Coppersmith, D., Winograd, Sh.: Matrix multiplication via arithmetic progres-
sions. J. Symbolic Comput. 9(3), 251–280 (1990)

4. Giorgi, P., Jeannerod, C.-P., Villard, G.: On the complexity of polynomial matrix
computations. In: ISSAC 2003, pp. 135–142. ACM Press, New York (2003)

5. Golub, G.H., Van Loan, Ch.F: Matrix Computations. The Johns Hopkins Univer-
sity Press, Baltimore and London (1996)

6. Jarlebring, E., Kvaal, S., Michiels, W.: Computing all pairs (λ; μ) such that λ is a
double eigenvalue of A + μB. SIAM J. Matrix Anal. Appl. 32, 902–927 (2011)

7. Horn, R.A., Johnson, Ch.R.: Matrix Analysis. Cambridge University Press, New
York (2013)

8. Horn, R.A., Johnson, Ch.R.: Topics in Matrix Analysis. Cambridge University
Press, New York (1991)

9. Karow, M.: Eigenvalue condition numbers and a formula of Burke, Lewis and
Overton. Electron. J. Linear Algebra 15, 143–153 (2006)

10. Kressner, D., Peláez, M.J., Moro, J.: Structured Hölder condition numbers for
multiple eigenvalues. SIAM J. Matrix Anal. Appl. 31(1), 175–201 (2009)

11. Leverrier, U.J.J.: Sur les variations séculaires des élements des orbites pour les sept
planètes principales. J. de Math. 1(5), 220–254 (1840)

12. Littlewood, D.E.: The Theory of Group Characters and Matrix Representations of
Groups. Oxford University Press, Oxford (1950)

13. MacDuffee, C.C.: The Theory of Matrices. Chelsea Publishing Company, New York
(1956)

14. Mailybaev, A.A.: Computation of multiple eigenvalues and generalized eigenvectors
for matrices dependent on parameters. Numer. Linear Algebra Appl. 13, 419–436
(2006)

314 E.A. Kalinina

15. Muhič, A., Plestenjak, B.: A method for computing all values λ such that A + λB
has a multiple eigenvalue. Linear Algebra Appl. 440, 345–359 (2014)

16. Pan, V.: Algebraic complexity of computing polynomial zeros. Comput. Math.
Appl. 14(4), 285–304 (1987)

17. Strassen, V.: Gaussian elimination is not optimal. Num. Math. 13, 354–356 (1969)
18. Schucan, T.H., Weidenmüller, H.A.: Perturbation theory for the effective interac-

tion in nuclei. Ann. Phys. 76, 483–501 (1973)
19. Gantmacher, F.R.: Theory of Matrices, vol. 2. AMS Chelsea Publishing Company,

Providence (1960)
20. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford

(1965)
21. Wayland, H.: Expansion of determinantal equations into polynomial form. Quart.

Appl. Math. 2(4), 277–305 (1945)

A Generalised Branch-and-Bound Approach
and Its Application in SAT Modulo Nonlinear

Integer Arithmetic

Gereon Kremer(B), Florian Corzilius, and Erika Ábrahám

RWTH Aachen University, Aachen, Germany
gereon.kremer@cs.rwth-aachen.de

Abstract. The branch-and-bound framework has already been success-
fully applied in SAT-modulo-theories (SMT) solvers to check the satisfi-
ability of linear integer arithmetic formulas. In this paper we study how
it can be used in SMT solvers for non-linear integer arithmetic on top of
two real-algebraic decision procedures: the virtual substitution and the
cylindrical algebraic decomposition methods. We implemented this app-
roach in our SMT solver SMT-RAT and compared it with the currently best
performing SMT solvers for this logic, which are mostly based on bit-
blasting. Furthermore, we implemented a combination of our approach
with bit-blasting that outperforms the state-of-the-art SMT solvers for
most instances.

1 Introduction

Satisfiability checking [7] aims to develop algorithms and tools to check the satis-
fiability of existentially quantified logical formulas. Driven by the success of SAT
solving for propositional logic, fruitful initiatives were started to enrich propo-
sitional SAT solving with solver modules for different theories. SAT-modulo-
theories (SMT) solvers [6] make use of an efficient SAT solver to check the
logical (Boolean) structure of formulas, and use different theory solver modules
for checking the consistency of theory constraint sets in the underlying theory.

Besides theories, such as equality logic, uninterpreted functions, bit-vectors
and arrays, SMT solvers also support arithmetic theories. Apart from inter-
val constraint propagation (ICP), SMT solving for quantifier-free linear real
arithmetic (QF LRA) often makes use of linear programming techniques such
as the simplex method [15]. For quantifier-free non-linear real arithmetic
(QF NRA), algebraic decision procedures, e.g. the virtual substitution (VS)
method [28] or the cylindrical algebraic decomposition method (CAD) [12] can
be used.

There are several powerful SMT solvers, e.g., CVC4 [4], MathSAT5 [11], Sateen
[23], veriT [9], Yices2 [18] and Z3 [25] which offer solutions for quantifier-free lin-
ear integer arithmetic (QF LIA) problems that mostly build on the ideas in [17].
Closely related to our work is the SMT-adaptation of the branch-and-bound
(BB) framework [26] in MathSAT5.
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 315–335, 2016.
DOI: 10.1007/978-3-319-45641-6 21

316 G. Kremer et al.

When moving from the real to the integer domain, non-linear arithmetic
becomes undecidable. Despite this fact, there are a few SMT solvers that support
the satisfiability check of quantifier-free non-linear integer arithmetic (QF NIA)
formulas, either for restricted domains (in which case the domain becomes finite
and the problem becomes decidable) or in an incomplete manner. Some of these
SMT solvers apply linearisation [8], whereas other tools, such as iSAT3 [19] and
raSAT [27], use interval constraint propagation adapted to the integer domain.
To the best of our knowledge, all other prominent solvers, such as AProVE [20],
CVC4 or Z3, apply mainly bit-blasting, which exploits SAT solvers by the use of
a binary encoding of bounded integer domains.

Although the satisfiability problem for QF NIA is undecidable, we see in
the employment and adaptation of algebraic decision procedures a promising
alternative to achieve incomplete but practically efficient satisfiability checking
solutions for QF NIA problems. Such solutions are urgently needed in several
research areas to open new possibilities and enable novel approaches. A typical
example is the field of program verification where, for instance, deductive proof
systems often generate QF NIA formulas as verification conditions (see e.g. [3]).
Just to mention a second example, for the termination analysis of programs
often QF NIA termination conditions need to be checked for satisfiability [8].
Currently, non-linear integer arithmetic problems appearing in these areas are
often solved using, e.g., theorem proving, linearisation or bit-blasting.

Today’s SMT solvers neither exploit adaptations of algebraic QF NRA deci-
sion procedures for finding QF NIA solutions1 nor use the BB framework to check
QF NIA formulas for satisfiability. In this paper we investigate these issues. The
main contributions of this paper are:

– We show on the example of the CAD method that some algebraic decision
procedures for QF NRA can be adapted to drive their search towards integer
solutions. Experimental results show that this approach works surprisingly
well on the satisfiable problem instances which we considered.

– We propose improvements for the general integration of BB in SMT solving.
– We show on the examples of the VS and the CAD methods, how algebraic

QF NRA decision procedures can be embedded into the BB framework to solve
QF NIA problems.

– Finally, we provide experimental results to illustrate how different deci-
sion procedures can be strategically adapted, combined and embedded in
the BB framework to tackle the challenge of QF NIA satisfiability checking.

The rest of the paper is structured as follows. We start in Sect. 2 with prelim-
inaries on QF NIA, SMT solving, and the VS and the CAD methods. In Sect. 3
we present a general framework for BB. Sections 4 and 5 are devoted to the

1 Z3 has a command-line option to solve, instead of QF NIA problems, their
QF NRA relaxations. This way Z3 can detect unsatisfiability (no real solution is
found) or sometimes even satisfiability (the found real solution happens to be inte-
ger), but otherwise it returns “unknown”.

A Generalised Branch-and-Bound Approach and Its Application in SAT 317

integration of the VS and the CAD methods, respectively, into the BB frame-
work. After an experimental evaluation of the presented approach in Sect. 7, we
conclude the paper in Sect. 8.

2 Preliminaries

(Quantifier-free non-linear arithmetic) formulas ϕ are Boolean combinations
of constraints c which compare polynomials p to 0. A polynomial p can be a
constant, a variable x, or a sum, difference or product of polynomials:

p :: = 0 | 1 | x | (p + p) | (p − p) | (p · p)
c :: = p = 0 | p < 0
ϕ :: = c | (¬ϕ) | (ϕ ∧ ϕ)

We use further operators such as disjunction ∨, implication ⇒ and com-
parisons >, ≤, ≥, �=, which are defined as syntactic sugar the standard way,
and standard syntactic simplifications (e.g., we omit parentheses based on the
standard operator binding order, write p1p2 instead of p1 · p2, −p instead of
0 − p).

We use Z[x1, . . . , xn] to denote the set of all polynomials (with integer
coefficients) over the variables x1, . . . , xn for some n ≥ 1. A polynomial
p ∈ Z[x1, . . . , xn] is called univariate if n = 1, and multivariate otherwise. By
Var(ϕ), Pol(ϕ) and Con(ϕ) we refer to the set of all variables, polynomials
and constraints occurring in the formula ϕ, respectively; especially, Pol(p ∼ 0)
denotes the polynomial p of a given constraint p ∼ 0 with ∼∈ {<,≤,=, �=,≥, >}.

Each polynomial p ∈ Z[x1, . . . , xn] can be equivalently transformed to the
form akx

e1,k
1 . . . x

en,k
n + . . . + a1x

e1,1
1 . . . x

en,1
n + a0 with coefficients aj ∈ Z for

0 ≤ i ≤ n and exponents ei,j ∈ N0 for 1 ≤ i ≤ n and 1 ≤ j ≤ k. We call
mj := x

e1,j
1 . . . x

en,j
n a monomial, tj := ajmj a term, and a0 the constant part of p.

In the following, we assume that polynomials are in the above form with pairwise
different monomials; note that this form is unique up to the ordering of the terms.
By p1 ≡ p2 (ϕ1 ≡ ϕ2) we denote that the polynomials p1 and p2 (the formulas
ϕ1 and ϕ2) can be transformed to the same form. By deg(tj) :=

∑n
i=1 ei,j we

denote the degree of the term tj . By deg(p := max1≤j≤k deg(tj) we denote the
degree of p and by deg(xi, p) := max1≤j≤k ei,j the degree of xi in p. A polynomial
p is linear, if deg(p) ≤ 1, and non-linear otherwise. A formula ϕ is linear, if all
polynomials p ∈ Pol(ϕ) are linear, and non-linear otherwise.

We use the standard semantics of arithmetic formulas. In the theory of
quantifier-free non-linear integer arithmetic (QF NIA), all variables xi are
integer-valued (the domain of xi, denoted by Dom(xi), is Z); in quantifier-free
non-linear real arithmetic (QF NRA) all variables xi are real-valued (Dom(xi) =
R); in the theory of non-linear mixed integer-real arithmetic (QF NIRA), vari-
ables can have either domain. We denote by ϕZ (ϕR) that ϕ is interpreted as a
QF NIA (QF NRA) formula, and call ϕR the real relaxation of ϕZ.

As a preprocessing step for QF NIA formulas, we replace inequalities p �= 0 by
p < 0 ∨ p > 0. Furthermore, based on the integrality of all variables, we simplify

318 G. Kremer et al.

Table 1. Simplification of a QF NIA constraint (
∑k

i=1 aimi) + a0 ∼ 0, where g is the
greatest common divisor of a1, . . . , ak, a

′
0 := a0

g
and r :=

∑
i = 1k ai

g
mi

< ≤ = ≥ >

a′
0 ∈ Z r + a′

0 + 1 ≤ 0 r + a′
0 ≤ 0 r + a′

0 = 0 r + a′
0 ≥ 0 r + a′

0 − 1 ≥ 0

a′
0 �∈ Z r + �a′

0� ≤ 0 r + �a′
0� ≤ 0 false r + 	a′

0
 ≥ 0 r + 	a′
0
 ≥ 0

constraints in the formula according to Table 1. After these simplifications, only
the relations =, ≥ and ≤ (but no <, > nor �=) appear in the formulas.

The substitution of a variable x by a value v ∈ Dom(x) in a formula ϕ
is denoted by ϕ[v/x]. A value (v1, . . . , vn) ∈ Rn is a real root or zero of a
polynomial p ∈ Z[x1, . . . , xn] if p(v1, . . . , vn) := p[v1/x1] . . . [vn/xn] ≡ 0. A value
(v1, . . . , vn) ∈ Rn is a solution of a formula ϕ with Var(ϕ) = {x1, . . . , xn} if
ϕ(v1, . . . , vn) := ϕ[v1/x1] . . . [vn/xn] ≡ true.

The satisfiability checking problem is the problem to decide whether there
exists a solution for a given formula ϕ. Note that checking the satisfiability of a
quantifier-free formula ϕ with Var(ϕ) = {x1, . . . , xn} and checking the validity
of the existentially quantified formula ∃x1. . . . ∃xn.ϕ define the same problem.

2.1 SAT-modulo-theories Solving

For the satisfiability check of logical formulas over some theories, SAT-modulo-
theories (SMT) solvers combine a SAT solver with one or more theory solvers.
The SAT solver is used for the efficient exploration of the logical structure of
the input formula, whereas the theory solver(s), implementing some decision
procedures for the underlying theory, are used to check the consistency of sets
(conjunctions) of certain theory constraints. The SMT-solving framework is illus-
trated in Fig. 1.

Boolean abstraction

SAT solver
Theory
solver(s)

constraints

(sat+model) or
(unsat+explanation) or

(unknown)

input
CNF formula

SAT/UNSAT

Fig. 1. The SMT solving framework

In this work we consider a less-
lazy SMT-solving approach based on
DPLL [16] SAT solving. The input for-
mula is brought to negation normal
form, negation is applied to atomic con-
straints, and finally conjunctive normal
form (CNF) is built (using Tseitin’s trans-
formation), resulting in a conjunction of
disjunctions of atomic (not negated) con-
straints. The SAT solver tries to find a
satisfying solution for the Boolean skele-
ton of the input formula, which is the

propositional logic formula obtained by replacing each constraint c by a fresh
proposition hc. In other words, the SAT solver tries to determine a set of con-
straints such that the input formula is satisfiable if the determined constraints
have a common solution. During its search, the SAT solver works “less lazily”,

A Generalised Branch-and-Bound Approach and Its Application in SAT 319

i.e., it asks the theory solver(s) regularly whether the set of those constraints,
whose abstraction variables are true in the current partial assignment, are
together consistent. Note that we do not need to pass the negation of constraints
with false abstraction variables to the theory solver, because all abstraction
variables appear in the transformed formula without negation. Therefore, all
clauses are still satisfiable even if we wrongfully assign a variable to false.

The DPLL algorithm, used in most state-of-the-art SAT solvers, executes
the following loop: It repeatedly makes a decision, assuming a certain value
for some proposition. Then it applies Boolean constraint propagation (BCP),
thereby identifying variable assignments that are implied by the last decision. If
the propagation succeeds without conflicts, a new decision is made. However, the
propagation might also lead to a conflict, which means that the current partial
assignment cannot be extended to a full satisfying solution. In the latter case
conflict resolution is applied to determine which decisions led to the conflict.
After backtracking, i.e., undoing some of the previous decisions, the SAT solver
learns a new clause to exclude the found conflict (and other similar ones) from
the future search and continues the search in other parts of the search space.

In the less-lazy SMT-solving context, theory solvers need to be able to work
incrementally, i.e., to extend a previously received set of constraints with new
constraints and to check the extended set for consistency while reusing collected
information from the last check in order to improve the performance; similarly,
they need to be able to backtrack, i.e., to remove constraints from their current
constraint sets. Furthermore, to enable the SAT solver to resolve theory-rooted
conflicts, the theory solver has to return an explanation if it detects inconsistency,
usually in form of an inconsistent subset of its received constraints.

We use our SMT-solving toolbox SMT-RAT [14] to implement the approaches
described in this work, and to compare the results to other approaches. SMT-RAT
provides a rich set of SMT-compliant implementations of QF NRA/ QF NIA

procedures. These procedures are encapsulated in modules, which are executed
by our SMT solver according to a user-defined strategy. In this work, we will use
only sequential strategies, where a preprocessing module, a SAT solver module,
and one or more theory solver modules are arranged sequentially. The SAT
solver sends theory constraints in an incremental fashion to the first theory solver
module, which tries to determine whether its received constraints have a common
satisfying solution. The first theory solver might also pass on sub-problems2 to
be checked for satisfiability to the next theory solver module and so on. Each
theory solver module returns to its caller module (i) either satisfiability along
with a model if requested, (ii) or unsatisfiability and an explanation in form of
an infeasible subset of its received formulas, (iii) or unknown. Besides modules
for parsing the input problem and transforming it to conjunctive normal form
as requested by SAT solving, we use a MiniSat-based SAT solver module and
theory solver modules implementing the simplex, the VS and the CAD methods,
and a theory solver module for bit-blasting.

2 These sub-problems are not necessarily constraints or conjunctions of constraints,
but in general formulas with arbitrary Boolean structure.

320 G. Kremer et al.

2.2 Virtual Substitution

The virtual substitution (VS) method [28] is an incomplete decision procedure
for non-linear real arithmetic. As we aim at satisfiability checking, we restrict
ourselves to the quantifier-free fragment QF NRA (where we understand all free
variables as existentially quantified). Given a QF NRA formula ϕR in variables
Var(ϕR) = {x1, . . . , xn}, the VS iteratively eliminates variables that appear at
most quadratic in ϕR. Assume w.l.o.g. that we want to eliminate a variable xn,
such that deg(xn, p) ≤ 2 for all p ∈ Pol(ϕR).

In the univariate case, i.e. Pol(ϕR) ⊆ Z[xn], we can use the solution equation
for quadratic polynomials to determine the real roots of all p ∈ Pol(ϕR). They
separate regions in which each p ∈ Pol(ϕR) is sign-invariant. We determine for
each of those sign-invariant regions a representative element, which we collect in
the set of test candidates T (xn, ϕR). Due to the sign-invariance of those regions,
ϕR is satisfiable if and only if one of the test candidates satisfies the formula.

Even if the formula contains multivariate polynomials, we can apply the solu-
tion equation to determine real roots ti and the side conditions SC(ti) for their
existence (radicand non-negative, denominator is not zero), if we interpret multi-
variate polynomials p ∈ Z[x1, . . . , xn] as univariate polynomials with polynomial

ϕn
R

. . .

t1xn
. . .

ϕn−1
R

:= ϕn
R
[tinxn

//xn] ∧ SC(tinxn
)

ϕ1
R
:= ϕ2

R
[ti2x2

//x2] ∧ SC(ti2x2
)

. . .

t1x1
. . .

true

ti1x1
. . .

. . .

tk1
x1

..

tinxn
. . .

. . .

tkn
xn

T (xn, ϕn
R
) :

T (x1, ϕ1
R
) :

Fig. 2. Possible VS depth-first search

coefficients p ∈ Z[x1, . . . , xn−1][xn].
However, now the results are paramet-
ric in x1, . . . , xn−1, therefore we know
neither the existence nor the order of
the roots; here, the VS uses −∞ as a
test candidate from the left-most sign-
invariant region, and infinitesimals ε
in order to represent with t + ε the
sign-invariant region on the right of t.
As the test candidates might contain
fractions, radicals, −∞ and ε, stan-
dard substitution [ti/xn] can lead to
improper expressions which are not
arithmetic formulas. Instead we use
the virtual substitution [ti//xn] which
resolves these improper expressions with special rules [28] resulting in a
QF NRA formula ϕR[ti//xn] that is satisfiability-equivalent to ϕR[ti/xn].

In summary, the VS specifies a finite set T (xn, ϕR) of (symbolic) test candi-
dates (TCs) for xn in ϕR, and for each TC t ∈ T (xn, ϕR) some side conditions
SC(t), such that

ϕR is satisfiable ⇔
∨

t∈T (xn,ϕR)
(ϕR[t//xn] ∧ SC(t)) is satisfiable. (1)

In [13] we presented an implementation of the VS for satisfiability checking,
which executes a depth-first search for a true leaf as illustrated in Fig. 2; a
solution can be read off the solution path from the root to the true leaf.

A Generalised Branch-and-Bound Approach and Its Application in SAT 321

2.3 Cylindrical Algebraic Decomposition

The cylindrical algebraic decomposition (CAD) [1,2,12] is a complete decision
procedure for non-linear real arithmetic, which we will use in the SMT solv-
ing context for checking the satisfiability of QF NRA formulas. Due to space
restriction, we give only a high-level description here.

Given a formula ϕR in variables x1, . . . , xn, the CAD method partitions Rn

into a finite number of disjoint n-dimensional cells. Each of them is a connected
semi-algebraic set over which all polynomials in Pol(ϕR) are sign-invariant and
thus either all or none of the points in a cell satisfy ϕR. The cells are constructed
to be cylindrical : the projections of any two n-dimensional cells onto the k-
dimensional space (1 ≤ k < n) are either identical or disjoint. The n-dimensional
cells with identical k-dimensional projections S form cylinders S × Rn−k.

The CAD method uses a two-phase approach to compute such a partition-
ing. In the projection phase, a projection operator is applied to the input set
Pn = Pol(ϕR) of n-dimensional polynomials with respect to the variable xn,
yielding a set Pn−1 ⊂ Z[x1, . . . , xn−1] of (n−1)-dimensional polynomials, whose
real roots constitute the boundaries of the (n−1)-dimensional projections of the
n-dimensional CAD cells. The projection operator is applied recursively until
a set P1 ⊂ Z[x1] of univariate polynomials is obtained. Note that this imposes
a fixed variable ordering that cannot easily be changed without recomputing
the projection. Much work has been done on providing efficient methods for
computing preferably small projections, for example in [10,22,24].

x1

x2

(a) Plot of the solution space and
the sample points

P2:{x2
1−2x2, x1−3x2+3/2}

P1:{3x2
1−2x1−3} }3/2ξ2,1,

}15/6,2/3,1/2,0,S2(1):{

ξ1,−1,S1:{

(b) Schematic overview of the CAD method

Fig. 3. CAD example for c1 : x2
1 − 2x2 ≤ 0 and c2 : x1 − 3x2 + 3/2 ≥ 0

In the second phase called lifting or construction, the CAD method
constructs a sample point for each of the cells. It first isolates the real
roots ξ1, . . . , ξk of the polynomials in P1 which constitute the bound-
aries of the 1-dimensional projections of the cells which are the intervals
I = {(−∞, ξ1), [ξ1, ξ1], (ξ1, ξ2), . . ., (ξk,∞)}. We choose a sample point from each
of these intervals Ii, resulting in a sample set S1 = {s1, . . . , s2k+1}. Each sample
point s ∈ S1 from some interval Ii is now lifted using the polynomials from P2:
each polynomial from P2 is partially evaluated on s which results in a set of uni-
variate polynomials whose real roots {ξs

1, . . . ξ
s
ls

} are again isolated. For each real

322 G. Kremer et al.

root {ξs
1, . . . ξ

s
ls

} there exists a surface Ii×ξs
j and together these surfaces separate

the cylinder Ii × R into 2 · ls + 1 individual cells. Assuming that ξs
1 < . . . < ξs

ls
,

these cells are the surfaces Ii × ξs
j (for j = 1, . . . , ls), the regions between two

surfaces Ii × (ξs
j , ξ

s
j+1) (for j = 1, . . . , ls − 1), and the regions below and above

all separating surfaces Ii × (−∞, ξs
1) and Ii × (ξs

ls
,∞). We can again take sam-

ple points from these cells and repeat the lifting procedure until we obtain n-
dimensional sample points that are representatives for the n-dimensional cells
that are sign-invariant with respect to the polynomials in Pn. We evaluate ϕR

for each n-dimensional sample point to check whether one of them satisfies the
formula, in which case we obtain a satisfying solution, otherwise the formula is
not satisfiable.

The CAD method is illustrated on a 2-dimensional example in Fig. 3.
Figure 3a depicts the solution space, while Fig. 3b visualises the CAD computa-
tion. The sample point (1, 2/3) satisfies the formula x2

1−2x ≤ 0∧x1−3x2+3/2 ≥ 0.
Note that we can choose a sample point from intervals between real roots. This
choice is important when searching for integer solutions: while there is no integer
solution for the sample point 1 from the interval (ξ1, ξ2), selecting 0 instead of
1 would have resulted in the integer solution (0, 0).

3 A General Branch-and-Bound Framework

A popular approach to check QF LIA formulas ϕZ for satisfiability is the branch-
and-bound (BB) framework [26]. It first considers the relaxed problem ϕR in
the real domain. If the relaxed problem is unsatisfiable then the integer problem
is unsatisfiable, too. Otherwise, if there exists a real solution then it is either
integer-valued, in which case ϕZ is satisfiable, or it contains a non-integer value
r ∈ R \ Z for an integer-valued variable x. In the latter case a branching takes
place: BB reduces the relaxed solution space by excluding all values between
�r� = max{r′ ∈ Z | r′ ≤ r} and �r� = min{r′ ∈ Z | r′ ≥ r} in the x-dimension,
described by the formula ϕ′ = ϕ∧ (x ≤ �r�∨x ≥ �r�). This procedure is applied
iteratively, i.e., BB will now search for real-valued solutions for ϕ′. BB terminates
if either an integer solution is found or the relaxation is unsatisfiable. Note that
BB is in general incomplete even for the decidable logic QF LIA.

The most well-known application combines BB with the simplex method. As
branching introduces disjunctions and thus in general non-convexity, branching
is implemented by case splitting: in one search branch we assume x ≤ �r�, and
in a second search branch we assume x ≥ �r�. Depending on the heuristics, the
search can be depth-first (full check of one of the branches, before the other
branch is considered), breadth-first (check real relaxations in all current open
branches before further branching is applied), or it can follow a more sophisti-
cated strategy.

The combination of BB with the simplex method was also explored in the
SMT-solving context [17]. The advantage in this setting is that we have more
possibilities to design the branching.

A Generalised Branch-and-Bound Approach and Its Application in SAT 323

– We can integrate a theory solver module based on the simplex method as
described above, implementing BB internally in the theory solver by case
splitting. It comes with the advantage that case splitting is always local to
the current problem of the theory solver and does not affect later problems,
and with the disadvantage that we cannot exploit the advantages of learning,
i.e., to remember reasons of unsatisfiability in certain branches and use this
information to speed up the search in other branches.

– Alternatively, given a non-integer solution r for a variable x found by the
theory solver on a relaxed problem, we can lift the branching to the SAT
solver by extending the current formula with a new clause (x ≤ �r�∨x ≥ �r�)
[5]. The newly added clause must be satisfied in order to satisfy the extended
formula. Therefore, the SAT solver assigns (the Boolean abstraction variable
of) either x ≤ �r� or x ≥ �r� to true, i.e., the branching takes place. On
the positive side, lifting branching information and branching decisions to the
SAT solver allows us to learn from information collected in one branch, and
to use this learnt information to speed up the search in other branches. On
the negative side, the branching is not local anymore as it is remembered in a
learnt clause. Therefore, it might cause unwanted splittings in later searches.

To unify advantages, MathSAT5 [21] implements a combined approach with
theory-internal splitting up to a given depth and splitting at the logical level
beyond this threshold.

Following the BB approach in combination with the simplex method, we can
transfer the idea also to non-linear integer arithmetic: We can use QF NRA deci-
sion procedures to find solutions for the relaxed problem and branch at non-
integer solutions of integer-valued variables. However, there are some important
differences. Most notably, the computational effort for checking the satisfiability
of non-linear real-arithmetic problems is much higher than in the linear case.
If we have found a real-valued solution and apply branching to find integer
solutions, the branching will refine the search in the VS and CAD methods: it
will create additional test candidates for the VS and new sample points for the
CAD method, which will serve as roots for new sub-trees in the search tree.
However, the search trees in both branches have a lot in common, that means,
a lot of the same work has to be done for both sides of the branches. To prevent
the solvers from doing much unnecessary work, we have to carefully design the
BB procedure.

– Branching has to be lifted to the SAT solver level to enable learning, both in
the form of branching lemmas as well as explanations for unsatisfiability in
different branches.

– Learning explanations will allow us to speed up the search by transferring
useful information between different branches. However, we need to handle
branching lemmas thoughtfully and assure that learnt branching lemmas will
not lead to branching for all future sub-problems, but only for “similar” ones
where the branching will probably be useful.

– As branching refines the search, it has to work in an incremental fashion
without resetting solver states.

324 G. Kremer et al.

– If possible, the search strategies of the underlying QF NRA decision procedures
have to be tuned to prefer integer solutions (and if they can choose between
different integer values, they must choose the most “promising” one).

– Last but not least, as the performance of solving QF NRA formulas for sat-
isfiability highly improves if different theory solvers implementing different
decision procedures are used in combination, a practically relevant BB app-
roach for QF NIA should support this option.

3.1 Processing Branching Lemmas in DPLL(T) SAT Solving

As mentioned before, an SMT solver combines a SAT solver and one or more
theory solver modules. First we discuss our general approach of adapting these
modules to implement BB for non-linear arithmetic, as described in Algorithm 1.

If we remove the Lines 14, 18–19, 22–27 from Algorithm 1 (printed in italic
font) then we achieve the standard SMT framework without BB embedding. This
basic algorithm first applies Boolean constraint propagation (BCP, Line 2) to
detect implications of current decisions. If BCP does not lead to a conflict, the
consistency in the theory domain is checked (Lines 3–4). If the theory constraints,
which have to hold according to the current Boolean assignment, are inconsistent
(Line 5) then the theory solver provides an explanation (an infeasible subset of its
input constraints). We negate this explanation (resulting in a tautology) and add
its Boolean abstraction as a new clause to the clause set to exclude this theory
conflict from future search (Line 6); If either the BCP led to a Boolean conflict or
a theory conflict occurred, then the solver tries to resolve the conflict (Line 10).
If the conflict can be resolved (Line 11), then backtracking removes some of the
decisions that led to the conflict; note that also the corresponding theory con-
straints will be removed from the input constraint list of the underlying theory
solver (Line 12). As a result of a successful conflict resolution, a new clause will
be learnt that will cause new implications in the next BCP iteration. Otherwise,
if the conflict cannot be resolved, the input formula is unsatisfiable (Line 15).

Otherwise, if no conflict occurred, either all variables are assigned, in which
case we have found a full solution (Line 28), or we choose one unassigned vari-
able to which we assign a certain value (Lines 20–21) and propagate this when
executing the next iteration of the main loop.

We modify this algorithm as follows. Firstly, additionally to sat and unsat,
we allow theory solvers to return unknown. We do so because it is possible that
the underlying theory solving procedure cannot determine the consistency of
the set of constraints at hand. For instance, since QF NIA is undecidable, a
theory solver for QF NIA can only be incomplete. This means either that the
theory solver has non-terminating cases (which none of our theory solvers do),
or that the theory solver relaxes each problem to a version that is decidable
(e.g. QF NRA). The latter case is only possible if we allow inconclusive answers,
in which case the theory solver will return unknown. If the Boolean assignment
is partial and the theory solver returns unknown, the SAT solver continues its
search. If a full satisfying Boolean assignment was found by the SAT solver,
but the theory solver cannot determine whether the solution is consistent in the

A Generalised Branch-and-Bound Approach and Its Application in SAT 325

Algorithm 1. Extended SAT solving algorithm for BB in SMT

extended SAT algorithm()
begin
1 : while true do
2 : if BCP returns no conflict then
3 : send newly assigned theory constraints to theory solver
4 : check theory consistency
5 : if theory solver returned unsat then
6 : learn theory conflict
7 : end if
8 : end if
9 : if Boolean or theory conflict occurred then

10 : try to resolve conflict
11 : if conflict can be resolved then
12 : backtrack in SAT and theory solving
13 : else
14 : if Line 26 was visited then return unknown

15 : else return unsat

16 : end if
17 : else
18 : if theory solver returned urgent branching lemmas then
19 : learn them and branch
20 : else if not all propositional variables are assigned then
21 : assign a value to an unassigned propositional variable
22 : else if theory solver returned unknown then
23 : if theory solver returned final branching lemmas then
24 : learn them and branch
25 : else
26 : exclude current Boolean assignment from further search
27 : end if
28 : else return sat // theory solver returned sat

29 : end if
30 : end while
end

(integer) theory, then the SAT solver excludes the current Boolean assignment
from further search (by learning a clause in Line 26) and continues its search;
if the following search detects a satisfying solution then the SMT solver returns
sat, otherwise it returns unknown (Line 14).

Additionally to returning unknown, a theory solver can also return a so-called
lemma that explains the inconclusive answer in more detail and that helps the
SMT solver in finding a conclusive answer. This can happen for example if the
theory solver has found a solution for the real relaxation of its input problem
ϕ, but it is not integer-valued. In this case, the theory solver might return a
branching lemma of the form

(c1 ∧ . . . ∧ ck) ⇒ (x ≤ �r� ∨ x ≥ �r�), (2)

326 G. Kremer et al.

demanding to split the domain of the integer-valued variable x at the non-integer
value r ∈ R\Z, under the condition that the branching premise c1∧ . . .∧ck with
{c1, . . ., ck} ⊆ Con(ϕ) holds. Additionally, the theory solver can specify which
of the two branches it prefers to start with. We call the Boolean abstraction
(¬hc1 ∨ . . .∨¬hck ∨hx≤�r� ∨hx≥
r�) of the branching lemma in Eq. 2 a branching
clause and its last two (possibly fresh) literals branching literals.

Branching lemmas can be either urgent or final3. Urgent branching lemmas
are immediately abstracted, added to the SAT solver’s clause set and used for
branching (Lines 18–19). Final branching lemmas are relevant only if the SAT
solver has a full satisfying Boolean assignment (Lines 23–24). When a branching
clause is added, one of its branching literals (the one that was not preferred
by the theory solver) will be assigned false (thus, if the branching premise
is true, BCP will assign true to the preferred branching literal; this way we
prevent that both branching literals become true, what would result in a theory
conflict). Afterwards, we handle the branching clause just as any learnt clause
and benefit from the usual reasoning and learning4 process, which yields the best
performance according to our experience.

To prevent unnecessary branchings, we assign always the value false to
branching literals as decision variables in Line 29. Remember that only con-
straints with true abstraction variables will be passed to the theory solver. I.e.,
only branching clauses whose premise is true play a role in the theory, and for
those clauses only one of the branching literals.

4 Branch-and-Bound with Virtual Substitution

In this section we present how the VS method as introduced in Sect. 2.2 can
be embedded into the BB framework to check the satisfiability of a given
QF NIA formula ϕn

Z
over (theory) variables x1, . . . , xn. First we apply VS on

the real relaxation ϕn
R

of ϕn
Z
. If we determine unsatisfiability, we know that ϕn

Z
is

also unsatisfiable. Otherwise, if we have found a solution S with the VS for ϕn
R
,

as illustrated in Fig. 2, then S maps the variables Var(ϕn
R
) = {x1, . . . , xn} to

TCs S(xj) = t
ij
xj (1 ≤ j ≤ n). For QF NIA formulas we can omit to consider

strict inequalities as described in Table 1. This saves us from considering TCs
with infinitesimals as introduced in [28] and the comparably higher complex-
ity they entail. Therefore, S(xj) is either −∞ or of the form qj,1+qj,2

√
qj,3

qj,4
with

qj,1, . . . , qj,4 ∈ Z[x1, . . . , xj−1] (roots parametrised in some polynomials).
If a solution S for the relaxation ϕn

R
is found then there is a true leaf in

the search tree, as illustrated in Fig. 2. We now try to construct an integer solu-
tion S∗ from the parametrised solution S, as illustrated in Fig. 4, traversing the
solution path from the true leaf backwards. If the TC ti1x1

for x1 is not −∞, it
does not contain any variables, thus we can determine whether its value is inte-
ger and set S∗(x1) to this value. If ti1x1

= −∞, we can take any integer which is
3 In the experimental results we use final lemmas only.
4 Note that modern SAT solvers also allow to forget learnt clauses that did not con-

tribute to conflicts recently. This applies also to branching clauses.

A Generalised Branch-and-Bound Approach and Its Application in SAT 327

strictly smaller than all the other TCs in T (x1, ϕ
1
R
). Now we iterate backwards:

for each test candidate t
ij
xj on the solution path, which is not −∞, we sub-

stitute the values S∗(x1), . . . , S∗(xj−1) for the variables x1, . . . , xj−1, resulting
in S∗(xj) := S(xj)[S∗(x1)/x1] . . . [S∗(xj−1)/xj−1], which again does not contain
any variables and we can evaluate whether its value is integer. If t

ij
xj = −∞

then we evaluate all test candidates from T (xj , ϕ
j
R
) whose side conditions hold

by substituting S∗(x1), . . . , S∗(xj−1) for x1, . . . , xj−1 in the TC expressions, and
we set S∗(xj) to an integer value that is strictly smaller than all those TC val-
ues. We repeat this procedure until either a full integer solution is found or the
resulting value is not integer in one dimension.

If all TC values are integer then VS returns sat. Otherwise, if we deter-
mine that S∗(xj) for some j is not integer-valued, then there is some z ∈ Z

such that S∗(xj) ∈ (z − 1, z). In this case we return the branching lemma
(
∧

ψ∈Origxj
(S(xj))

ψ) ⇒ (xj ≤ z − 1 ∨ xj ≥ z), where Origxj
(S(xj)) denotes

the VS module’s received constraints being responsible for the creation of the
TC S(xj). We can determine this set recursively with Origxj

(S(xj)) :=Origxj
(c)

if we used constraint c ∈ Con(ϕj
R
) for generating the TC S(xj), and where

Origxj
(c) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c , if j = n
Origxj+1

(c) , if xj �∈ Var(c)
Origxj+1

(S(xj+1)) ∪ Origxj+1
(c′) , if c′ ∈ Con(ϕj+1

R
) such that

c ∈ Con(c′[S(xj+1)//xj+1])
Origxj+1

(S(xj+1)) , otherwise.

Note that the last case occurs if the given constraint is introduced through
a TC’s side condition.

true ti1x1

∈ Z

ϕ1
R

ti2x2

∈ Z

t
ij
xj

�∈ Z

ϕj
R

. . . tinxn
ϕn

R

[ti1x1/x1] [ti2x2/x2]

. . .

. . .

Fig. 4. Solution path from Fig. 2 traversed backwards from the leaf to the root

Basically, if we have found a non-integer valued TC S∗(xj) /∈ Z, we can still
continue the procedure to determine all other non-integer-valued TCs, but the
gain (enabling a heuristics to select on which variable value we want to branch)
comes at high computational costs, as we need to compute with nested fractions
and square roots. Therefore, we do not consider other heuristics but branch
always on the first detected non-integer value. In contrast, as we will see in the
next section, the CAD methods offers more freedom to design other heuristics.

This procedure is sound, as we do not prune any integer solutions. It is not
complete, as it might branch infinitely often for the same variable at an always

328 G. Kremer et al.

increasing or always decreasing value. This procedure can also be used to check
a QF NIRA formula for satisfiability, if we eliminate real-valued variables first.

5 Branch-and-Bound with the CAD Method

Also the CAD method can be embedded into the BB approach the usual way,
however, it offers more flexibility to tune its search towards integer solutions.

Sample point selection. The computation time of the lifting phase heavily
depends on the representation size of the numbers involved. The representa-
tion of an integer is inherently smaller than that of a fractional number of a
similar value due to the lack of a denominator and a smaller numerator. There-
fore, when selecting a sample point from a given interval, we always choose an
integer value whenever one exists. As a side effect, this is not only faster due
to the smaller representation but also generates integer solutions automatically
which generally helps to avoid unnecessary branches.

When several integer values are available in a given interval as possible sam-
ple points, some of them might lead to a full integer solution whereas some
others not. Unfortunately, there is no generally valid rule to determine more
“promising” samples. In our implementation we choose integer samples around
the interval middle.

Note that we could even stop lifting for the given partial sample if a complete
integer extension of the current sample becomes impossible during the lifting.
However, if at an earlier level we had the choice between different integer values
for a cell sample then we cannot conclude unsatisfiability in the current sub-tree.
Therefore, even if we cannot choose integer samples, in the current implementa-
tion we continue lifting and search for a satisfying real extension of the partial
integer sample. If the search leads to a (non-integer) solution, we request branch-
ing at the SAT level. Otherwise, if the current branch is unsatisfiable in the real
domain, we continue the search in other parts of the search space.

Example 1. Consider P2 = {x2
2 + x1 = 0, x1 < −1}. Projecting x2 yields P1 =

{x1, x1 + 1} with real roots {−1, 0}. To satisfy x1 < −1, we only need to choose
a sample for x1 from (−∞,−1). Assume we choose −2. Lifting −2 yields the
polynomials {x2

2 − 2,−1} with real roots {−√
2,

√
2}, both being non-integer.

All other cells around these roots violate the sign condition. However, we cannot
infer unsatisfiability in the integer domain: selecting −4 instead of −2 would
have produced the polynomials {x2

2 + 4,−3} with integer roots {−2, 2}.

Remark 1. We would like to mention an idea, which is not yet implemented
but might lead to further improvements. Assume as above an integer sample
s = (s1, . . ., sj) ∈ Zj for which lifting yields no integer extension. Assume now
additionally that in each dimension i = 1, . . ., j the sample si is the only integer
point in the respective interval; we say that s is unique. In this special case the
current sub-tree cannot contain any integer solutions; we can safely stop lifting
for s and continue in other parts of the search space.

A Generalised Branch-and-Bound Approach and Its Application in SAT 329

If we find a solution elsewhere, we can return sat. However, if the input
formula has no integer solution, CAD needs to return an explanation for unsat-
isfiability. In the real domain, we generate such an explanation by specifying for
each full-dimensional sample s (i.e., for each leaf in the lifting tree) the set Es

of all original constraints that are violated by the leaf, and computing a possi-
bly small covering set E which contains at least one constraint from each leaf’s
set Es.

Now, if we do not complete the lifting for some sub-trees because we deter-
mined unsatisfiability at an earlier level, we cannot use the same approach
to generate explanations. Instead, we can proceed as follows: Remember that
s = (s1, . . ., sj) ∈ Zj is the sample for which lifting was stopped because s is
unique and it has no integer extension. Each si samples an interval, whose end-
points are zeros of some polynomials from Pi at (s1, . . ., si−1); let P s

i ⊆ Pi be
the set of those polynomials for i = 1, . . ., j and let P s

i = ∅ for i = j + 1, . . ., n.
Now we follow back the projection tree, and for i = 1, . . ., n − 1 we iteratively
add to P s

i+1 all “projection parents”5 of all polynomials in P s
i , i.e., all those

polynomials that were used in the projection to generate P s
i . As a result we

achieve a set P s
n ⊆ Pn of original constraints, which serve as an explanation

for the unsatisfiability of the sub-tree rooted at s. We compute this set P s
n for

each unique non-completed sample, build their union, and further extend it with
additional constraints from Pn to cover all sets Es′ of full-dimensional sample
leafs s′. The resulting set is an infeasible subset of the input constraint set.

Remark 2. As the selection of sample points might be crucial for discovering
integer solutions, we also experimented with choosing (if possible) multiple sam-
ple points for an interval instead of a single one. However, the overhead due to
these redundant sample points greatly outweighs any gain, even if only two sam-
ples for a single interval are chosen. This is because the redundancy increases
with every dimension and often leads to an additional exponential growth.

Sample point lifting order. The order in which sample points are lifted is crucial
for fast solution finding. As we want to find integer solutions, we first lift integer
sample points before considering non-integer ones. Furthermore, if we already
have a partial lifting tree due to a previous incremental call to the CAD method,
for further lifting we choose partial integer sample points of high dimension first.

Constructing branching lemmas. If CAD finds a solution s = (s1, . . . , sn) ∈ Rn \
Zn, it returns unknown and requests branching at the SAT level. We have tried
three alternative strategies to generate branching lemmas. The first strategy
branches on the value of xi with i = min{i = 1, . . ., n | si �∈ Z}. The second
strategy is similar but takes the highest index. In both cases, the branching
premise is the set of all received constraints; in the future we will also experiment
with the set P s

n (see Remark 1).

5 A projected polynomial can have several “parents”; in this case we can choose any
of them. In practice, one could store the chronologically “oldest” parents, as back-
tracking removes input polynomials in chronologically reverse order.

330 G. Kremer et al.

The third strategy makes use of the sampling heuristics of the CAD that
strongly prefers integers. That means that the longest integer prefix
(s1, . . . , sj) ∈ Zj of s cannot be further extended with an integer sample com-
ponent. This strategy generates the branching lemma6

C →
(∨j

i=1
xi ≤ si − 1 ∨ xi ≥ si + 1

)
. (3)

Currently, the branching premise C is again the set of all received constraints.
In the future we will also investigate collecting all constraints that reject integer
sample points in the vicinity of the first non-integer component sj+1. Let sj+1↓
(sj+1↑) be s where sj+1 is replaced by �sj+1� (�sj+1�). We define the branching
premise by {c ∈ C | c(sj+1↓) ≡ false ∨ c(sj+1↑) ≡ false}.

6 Combination of Procedures

We can often improve the performance for solving QF NRA formulas if we have
different decision procedures at hand and use them in combination such that the-
ory modules can pass on sub-problems for satisfiability check to other modules.
In SMT-RAT, such combinations of decision procedures were already available for
QF NRA problems. In this section we discuss how to extend the approach for
QF NIA and the BB framework, on the examples of theory modules implement-
ing the simplex, VS and CAD methods.

Given a set C of non-linear integer arithmetic constraints, the simplex
method can be used to check the consistency of the relaxed linear constraints
in C, first neglecting the non-linear ones. If simplex determines that the real
relaxation of the linear part of the problem is unsatisfiable, it returns unsat.
If it finds an integer solution that also satisfies the non-linear constraints, it
returns sat. If it finds a solution that is not completely integer, but satisfies the
real relaxation of the non-linear constraints, it creates a branching lemma and
returns unknown. Otherwise, it forwards the whole input C to another theory
solving module, and passes back the result and, if constructed, the branching
lemma to its caller.

For VS, assume that we eliminate the variable xj (1 ≤ j ≤ n) from the
formula ϕj

R
as illustrated in Fig. 2. In general, we can also use the virtual sub-

stitution if in some of the polynomials in ϕj
R

the degree of xi is higher than 2:
We generate all test candidates for xj from all constraints in which xj appears
at most quadratic. If any of those test candidates leads to a satisfying solution,
we can conclude the satisfiability of ϕj

R
. Otherwise, we can pass the sub-problem

ϕj
R

to another theory solving module for satisfiability check. If it returns unsat,
we have to consider another path in the search tree of Fig. 2. If it returns sat,
we can use the integer assignment of the variables in the passed sub-problem to
construct an integer solution for the remaining variables as explained in Sect. 4.
Finally, if the sub-call returns unknown and constructs a branching lemma, then
6 This form of multiple-branch lemmas are handled analogously to the 2-branch-case.

A Generalised Branch-and-Bound Approach and Its Application in SAT 331

VS returns unknown and passes the branching lemma through. If there is no
other theory solving module to be called, the sub-call also returns unknown.

The CAD theory solving module implements a complete decision procedure
for QF NRA. For this logic, the CAD module does not pass on any sub-problems
to other solver modules.

7 Experimental Results

We consider a sequential strategy a sequence of modules that call each other
sequentially as described before and we denote it by M1 → . . . → Mk where M1
may issue sub-calls to M2 and so on. We evaluated different sequential strategies
for solving QF NIA formulas, using the following modules Mi:

– The SAT solver module MSAT behaves as explained in Sect. 3.
– MSATStop works similarly except that it returns unknown if an invoked theory

solver module returns unknown, instead of continuing the search for further
Boolean assignments. The module MSATStop provides us a reference: if this
module is able to solve a problem then the problem can be considered irrelevant
for BB (as BB was not involved).

– The module MLRA implements the simplex method with branching lemma
generation, as explained in Sect. 6.

– The theory solver modules MVS (implementing VS) and MCAD (implementing
CAD) check the real relaxation of a QF NIA input formula. If the relaxation is
unsatisfiable they return unsat, if they coincidentally find an integer solution
they return sat, otherwise they return unknown (without applying BB).

– The VS module MVSZ
constructs branching lemmas as explained in Sect. 4.

– The CAD modules MCADFirst
Z

and MCADLast
Z

construct branching lemmas
(Sect. 5) based on the first - resp. last-lifted variable with a non-integer assign-
ment.

– The CAD module MCADPath
Z

constructs branching lemmas which exclude the
longest integer prefix of the found non-integer solutions (Eq. 3).

– Bit-blasting is implemented in the module MIntBlast. In our strategies it will
be combined with a preceding incremental variable bound widening module
MIncWidth, which constrains, for instance, first that all variables are in [−1, 2],
if no solution can be found, it requires all variables to be in [−3, 4] etc.

All experiments were carried out on AMD Opteron 6172 processors. Every solver
was allowed to use up to 4 GB of memory and 200 s of wall clock time.

For our experiments we used the largest benchmark sets for QF NIA from the
last SMT-COMP: AProve, Leipzig (both generated by automated termination
analysis) and Calypto (generated by sequential equivalence checking). Addi-
tionally, we crafted a new benchmark set Calypto∞ by removing all variable
bound constraints from Calypto and thereby obtaining unbounded problems
(together 8572 problem instances, see headline in Fig. 5e for the size of each set).

Selection of a VS heuristic. The SMT-RAT strategy MSATStop → MVS could solve
7215 sat and 84 unsat instances, ran out of time or memory for 1146 instances,

332 G. Kremer et al.

and returned unknown for 127 instances. Applying the SMT-RAT strategy MSAT →
MVS to those 127 instances, we can solve an additional 30 sat instances. If we
replace the module MVS by the MVSZ

module, which applies branching lemmas,
we can solve further 63 sat and 10 unsat instances (see Fig. 5b).

RATZ: MSAT MLRA MVS
Z

MCADFirst
Z

RATblast: MIncWidth MIntBlast

RATblast.Z: MIncWidth MIntBlast RATZ

(a) The SMT-RAT strategies [14] used for the
experimental results

VSR VSZ

time # time

sat 30 714.2 93 487.3
unsat 0 0.0 10 9.2

(b) Comparison of 2 VS heuristics on 126
(101 sat, 25 unsat) for BB relevant in-
stances

CADR CADFirst
Z

CADLast
Z

CADPath
Z

time # time # time # time

sat 12 137.7 12 183.5 11 182.7 7 58.4
unsat 0 0.0 13 150.8 13 151.0 2 131.9

(c) Comparison of 4 CAD heuristics on 55
(27 sat, 28 unsat) for BB relevant instances

70% 80% 90% 100%

102s

103s

104s

RATZ Z3 4.4.1

RATblast AProVE

RATblast.Z

(d) Cumulative time to solve instances
from all benchmark sets

Benchmark→ AProve (8129) Calypto (138) Leipzig (167) Calypto ∞ (138) all (8572)
Solver↓ # time # time # time # time # time

RATZ sat 7283 2294.8 67 71.2 9 260.4 133 298.9 7492 2925.3
unsat 73 14.3 52 40.7 0 0.0 3 < 0.1 128 55.1

RATblast sat 8025 866.3 21 35.6 156 603.3 87 16.0 8289 1521.2
unsat 12 0.4 5 0.1 0 0.0 0 0.0 17 0.5

RATblast.Z sat 8025 780.7 79 122.3 156 511.5 134 21.8 8394 1436.3
unsat 71 42.6 46 127.5 0 0.0 3 0.1 120 170.2

Z3 sat 7992 14695.5 78 19.1 158 427.6 126 57.3 8354 15199.5
unsat 102 595.9 57 117.6 0 0.0 3 2.3 162 715.8

AProVE sat 8025 7052.2 74 559.1 159 696.5 127 685.2 8385 8993.0
unsat 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0

(e) Comparison of 3 SMT-RAT strategies to currently fastest SMT solvers for QF NIA

Fig. 5. The column # contains the number of solved instances and the column time
contains the amount of seconds needed for solving these instances

Selection of a CAD heuristic. The SMT-RAT strategy MSATStop → MCAD could
solve 6656 sat and 26 unsat instances. The main reason why this approach can
already solve more than 77% of the examples lies in the nature of the CAD to
choose preferably integer sample points and, of course, in the structure of the
benchmark instances. The strategy ran out of time or memory for 1835 instances,
and returned unknown for 55 instances. On these 55 examples, we compared
the SMT-RAT strategy MSAT → MCAD and 3 other strategies replacing the MCAD

module by MCADFirst
Z

, MCADLast
Z

and MCADPath
Z

. As shown in Fig. 5c, we find 12

A Generalised Branch-and-Bound Approach and Its Application in SAT 333

additional sat instances with the MCAD module. The BB modules MCADFirst
Z

and
MCADLast

Z

perform very similar and find 13 additional unsat instances. This is due
to the fact that almost always the assignment of only one variable was not yet
integer. With the heuristic in the module MCADPath

Z

we could solve less instances.

Combined strategies. We crafted three strategies, depicted in Fig. 5a, to com-
bine different theory solver modules7. The strategy RATblast.Z combines RATblast
and RATZ by first using bit-blasting up to a width of 4 bits. If this does not yield
a solution, it continues to use RATZ.

We compared these three strategies with the two fastest SMT solvers from the
2015 SMT-COMP for QF NIA: Z3 and AProVE. Though CVC4 performed worse
than these two solvers, its experimental version solved slightly more instances
than AProVE in about half of the time; we did not include it here but expect
it to perform between Z3 and AProVE. Figure 5e shows that RATZ and RATblast
complement each other well, especially for satisfiable instances. Compared to Z3
and AProVE, RATblast.Z solves more satisfiable instances and does this even faster
by a factor of more than 10 and 6, respectively. The strategy RATZ solves less
instances, but, as shown in Fig. 5d, this strategy solves the first 85 percent of the
examples faster than any other SMT-RAT strategy or SMT solver. On unsatisfiable
instances, however, Z3 is still better than SMT-RAT while AProVE is not able to
deduce unsatisfiability due to its pure bit-blasting approach.

We also tested all SMT-RAT strategies which use BB, once with and once
without using a branching premise. Here we could not detect any notable dif-
ference, which we mainly relate to the fact that those problem instances, for
which BB comes to application, are almost always pure conjunctions of con-
straints and involve only a small number of branching lemma liftings. For a
more reliable evaluation a larger set of QF NIA benchmarks would be needed.

8 Conclusion and Future Work

The efficiency of solving QF NIA formulas highly depends on a good strategic
combination of different procedures. In this paper we comprised two algebraic
procedures, the virtual substitution and the cylindrical algebraic decomposition
methods, in a combination with the branch-and-bound approach, which has
already been applied effectively in combination with the simplex method. We
showed by experimental evaluation that this combination highly complements
bit-blasting, the currently most efficient approach for QF NIA.

The next steps to enhance the strategy for solving QF NIA formulas could
involve interval constraint propagation in order to infer better bounds for the
variables. We also plan to further optimise the generation of branching lemmas
and of the explanations of unsatisfiability in the theory solving modules.

7 Additionally, all of these strategies employ a common preprocessing.

334 G. Kremer et al.

References

1. Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I:
the basic algorithm. SIAM J. Comput. 13(4), 865–877 (1984)

2. Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition II:
an adjacency algorithm for the plane. SIAM J. Comput. 13(4), 878–889 (1984)

3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., M. Leino, K.R.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

4. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

5. Barrett, C.W., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in
SAT modulo theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 512–526. Springer, Heidelberg (2006)

6. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications,
vol. 185, Chap. 26, pp. 825–885. IOS Press, Amsterdam (2009)

7. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
Amsterdam (2009)

8. Borralleras, C., Lucas, S., Navarro-Marset, R., Rodŕıguez-Carbonell, E., Rubio,
A.: Solving non-linear polynomial arithmetic via SAT modulo linear arithmetic. In:
Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 294–305. Springer, Heidelberg
(2009)

9. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol.
5663, pp. 151–156. Springer, Heidelberg (2009)

10. Brown, C.W.: Improved projection for cylindrical algebraic decomposition. J. Sym-
bolic Comput. 32(5), 447–465 (2001)

11. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

12. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Brakhage, H. (ed.) Automata Theory and Formal Languages,
vol. 33, pp. 134–183. Springer, Berlin (1975)

13. Corzilius, F., Ábrahám, E.: Virtual substitution for SMT-solving. In: Owe, O.,
Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 360–371. Springer,
Heidelberg (2011)

14. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an
open source C++ toolbox for strategic and parallel SMT solving. In: Heule, M.,
et al. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Heidelberg (2015)

15. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press,
Princeton (1963)

16. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

17. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

A Generalised Branch-and-Bound Approach and Its Application in SAT 335

18. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Heidelberg (2014)

19. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetik constraint systems with complex Boolean structure. J.
Satisfiability Boolean Model. Comput. 1, 209–236 (2007)

20. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:
SAT solving for termination analysis with polynomial interpretations. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer,
Heidelberg (2007)

21. Griggio, A.: A practical approach to satisfiability modulo linear integer arithmetic.
J. Satisfiability Boolean Model. Comput. 8, 1–27 (2012)

22. Hong, H.: An improvement of the projection operator in cylindrical algebraic
decomposition. In: Watanabe, S., Nagata, M. (eds.) Proceedings of the ISSAC
1990, pp. 261–264. ACM, New York (1990)

23. Kim, H., Somenzi, F., Jin, H.S.: Efficient term-ITE conversion for satisfiability
modulo theories. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 195–208.
Springer, Heidelberg (2009)

24. McCallum, S.: An improved projection operation for cylindrical algebraic decom-
position of three-dimensional space. J. Symbolic Comput. 5(1), 141–161 (1988)

25. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

26. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons,
Inc., New York (1986)

27. Tung, V.X., Van Khanh, T., Ogawa, M.: raSAT: an SMT solver for polynomial
constraints. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS, vol. 9706, pp.
228–237. Springer, Heidelberg (2016)

28. Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and
beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997)

Computing Characteristic Polynomials
of Matrices of Structured Polynomials

Marshall Law(B) and Michael Monagan(B)

Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
mylaw@sfu.ca, mmonagan@cecm.sfu.ca

Abstract. We present a parallel modular algorithm for finding charac-
teristic polynomials of matrices with integer coefficient bivariate polyno-
mials. For each prime, evaluation and interpolation gives us the bridge
between polynomial matrices and matrices over a finite field so that the
Hessenberg algorithm can be used.

1 Introduction

We are interested in specific structured matrices obtained from [9] which arise
from combinatorial problems. The goal is to compute their respective charac-
teristic polynomials. Let A(x, y) represent the matrix of interest with dimension
n × n. The entries of A are polynomials in x and y of the form

Aij(x, y) = cijx
ayb

with a, b ∈ N ∪ {0}, cij ∈ Z, 1 ≤ i, j ≤ n. Please see Appendix A1 for the 16 by
16 example. Let C(λ, x, y) ∈ Z[λ, x, y] be the characteristic polynomial, which is

C(λ, x, y) = det (A − λIn)

by definition, where In is the n × n identity matrix.
The matrix sizes range from 16 to 256, so using the general purpose routine in

a computer algebra system like Maple will work only for the small cases. Finding
the characteristic polynomial using Maple takes over one day for the 128 by 128
case. Fortunately, there is much structure in the coefficients of the characteristic
polynomial. We are able to automatically find this structure and take advantage
of it. This paper presents the optimizations to computing the characteristic poly-
nomial. On multi-core machines, we can compute the characteristic polynomial
of the largest size 256 matrix in less than 24 h.

Paper Outline. Section 2 discusses some background along with core routines
in our method. Section 3 summarizes a naive first approach. Section 4 is the query
phase of our algorithm, which determines the structure to be taken advantage of.
Section 5 presents how the optimizations work, based on the structure discovered
from Sect. 4. Section 6 is on the parallel algorithm. Section 7 and onwards include
timings, appendix and references.
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 336–348, 2016.
DOI: 10.1007/978-3-319-45641-6 22

Computing Characteristic Polynomials of Matrices 337

2 Background

One method for computing the characteristic polynomial C(λ, x, y) for a poly-
nomial matrix is to construct the characteristic matrix A − λIn and use the
Bareiss fraction-free algorithm [2] to compute its determinant. Magma uses this
method. The Bariess algorithm is a modification of Gaussian elimination based
on Sylvester’s identity. Since the core routine is similar to that of Gaussian elim-
ination, it does O(n3) arithmetic operations in the ring Z[λ, x, y] which include
polynomial subtraction, multiplication and exact division.

Maple uses the Berkowitz method [3] when the “CharacteristicPolynomial”
routine in the “LinearAlgebra” package is called. This algorithm does O(n4)
arithmetic operations in the ring Z[x, y] with no divisions. For our matrices, it
is much faster than the O(n3) fraction-free method, over 10 times faster for the
16 by 16 case. The reason is that the intermediate polynomials in the Bareiss
fraction free method grow in size and the multiplications and divisions are more
expensive than the multiplications in the Berkowitz algorithm.

2.1 Hessenberg

For matrix entries over a field F , the Hessenberg algorithm [4] does O(n3) arith-
metic operations in F to find C(λ) in F [λ]. This algorithm builds up the charac-
teristic polynomial from submatrices, and is the core of our modular algorithm.
The first stage transforms the matrix A into a matrix H in Hessenberg form
while preserving the characteristic polynomial. The Hessenberg form of H is
given below.

H =

⎡
⎢⎢⎢⎢⎢⎣

h1,1 h1,2 h1,3 . . . h1,n

k2 h2,2 h2,3 . . . h2,n

0 k3 h3,3 . . . h3,n

...
.

...
0 . . . 0 kn hn,n

⎤
⎥⎥⎥⎥⎥⎦

The second stage computes the characteristic polynomial of H using a recur-
rence. Let Cm(λ) represent the characteristic polynomial of the top left subma-
trix formed by the first m rows and columns. We have the following recurrence
relation starting with C0(λ) = 1,

Cm(λ) = (λ − hm,m)Cm−1(λ) −
m−1∑
i=1

⎛
⎝hi,mCi−1(λ)

m∏
j=i+1

kj

⎞
⎠ .

2.2 The Modular Algorithm

We compute the image of the characteristic polynomial for a sequence of primes
p1, p2, . . . pm. Then to recover the solution over the integers we simply use
Chinese remainder algorithm. Below is the outline, followed by the homomor-
phism diagram in Fig. 1 for the modular algorithm.

338 M. Law and M. Monagan

1. For each prime p in p1, p2, . . . pm, do the following:
(a) Evaluate the matrix entries at x = αi and y = βj modulo p.
(b) Apply the Hessenberg algorithm to compute C(λ, αi, βj) the characteris-

tic polynomial of the evaluated matrix A(αi, βj) modulo p.
(c) Interpolate the coefficients of λ in y and x for C(λ, x, y) modulo p.

2. Recover the integer coefficients of C(λ, x, y) using the Chinese remainder
algorithm (CRA).

Z
n×n[x, y] Z[λ, x, y]

Z
n×n
p [x, y] Zp[λ, x, y]

Z
n×n
p Zp[λ]

Characteristic Polynomial

p ∈ {p1, p2, . . . , pm}Mod

x = αi, y = βjEvaluate

CRA

Hessenberg Algorithm

O(n3) arithmetic operations in Zp

Interpolate y, x

Fig. 1. Modular algorithm homomorphism diagram

2.3 Degree Bounds

To interpolate x and y in C(λ, x, y) the modular algorithm needs 1 + degx C
points for x and 1 + degy C for y. The degrees in x, y of the characteristic
polynomial are bounded by the following:

degx C(λ, x, y) ≤ Dx = min

⎛
⎝ n∑

i=1

n
max
j=1

degx Aij ,

n∑
j=1

n
max
i=1

degx Aij

⎞
⎠

degy C(λ, x, y) ≤ Dy = min

⎛
⎝ n∑

i=1

n
max
j=1

degy Aij ,

n∑
j=1

n
max
i=1

degy Aij

⎞
⎠

Each sum within the two equations above adds the largest degree in each
row and column respectively. Then we take the minimum of the two to obtain
the best degree bound in that variable.

Kronecker Substitution. There is no doubt that the problem will be sim-
pler if the matrices of interest only consist of one variable. This can be
achieved by a Kronecker substitution. To ensure a reversible substitution, let
b > degx C(λ, x, y), and apply it to A(x, y = xb). Then C(λ, x, y) can be recov-
ered from the characteristic polynomial of A(x, y = xb).

Computing Characteristic Polynomials of Matrices 339

We use b = Dx + 1, as this is the smallest possible value for an invertible
mapping. As expected, the degrees of the polynomial entries in A(x, y = xb)
become quite large. Now the problem has effectively become solving for

det(A(x, xb) − λIn) = C(λ, x, xb).

Note that in our benchmarks section, no Kronecker substitution was involved.

Coefficient Bound. The classical Hadamard inequality for n by n integer
matrix M = (mij) asserts

|det(M)| ≤ H(M) =

⎛
⎝ n∏

i=1

n∑
j=1

|mij |2
⎞
⎠

1/2

.

A similar bound [11] exists for matrices with polynomial entries. Let M(x) =
(mij) with mij a polynomial in Z[x]. Let s0, s1, . . . be the coefficients of the
polynomial representation of det(M(x)). Let T = (tij) be the n by n matrix
obtained from M as follows. Let tij be the sum of the absolute values of the
coefficients of mij(x). Then the equivalent bound is given by

||det(M)||2 =
(∑

|si|2
)1/2

≤ H(T) =

⎛
⎝ n∏

i=1

n∑
j=1

|tij |2
⎞
⎠

1/2

.

This bound generalizes to matrices of multivariate polynomials with integer coef-
ficients by using a Kronecker substitution. The entries of our matrix A(x, y) are
unit monomials. Thus for M = A−λIn, tii = 2 and tij = 1 for i �= j. The height
of C(λ, x, y), denoted ||C(λ, x, y)||∞, is bounded by

||C(λ, x, y)||∞ ≤ ||C(λ, x, y)||2 ≤
(

n∏
(n + 3)

)1/2

= (n + 3)n/2.

This bound tells us how many primes are needed at most to recover the integer
coefficients of C(λ, x, y). Namely, we need

∏m
i=1 pi > 2(n + 3)n/2. Note that,

with optimizations to be mentioned, the integer coefficients can be recovered
with fewer primes.

Let C(λ) =
∑n

i=0 ciλ
i be the characteristic polynomial of A. Because c0 =

C(0) = det(A) we suspected that ||C(λ)||∞ ≤ H(T). Thus for our matrices, we
thought we could replace the above bound (n+3)n/2 with the Hadamard bound
nn/2 on det(T). But in [5], an example of integer matrix with entries ±1 is given
where |c1| > nn/2 > |c0|.

3 Naive First Approach

For starters, we will proceed with a Kronecker substitution. With that, the
degrees of the matrix entries are much larger, so we decided to use fast evaluation

340 M. Law and M. Monagan

and interpolation. The fast algorithms used are based on the FFT (Fast Fourier
Transform), which have been optimized. Since the transform itself is not the
main concern, we will take advantage of the transforms decimated in time and
frequency, as the authors did in [10].

3.1 Structures Found

Here we identify the foundation and justification for the following sec-
tions/phases, as there is much room for optimization. Let C(λ, x, y) =∑n

i=0 ci(x, y)λi. Then the coefficients of λi can be written in the form

ci(x, y) = fi(x, y)xgiyhi(x2 − 1)ki

where the fi are bivariate polynomials with even degrees in x. See AppendixA3
for c0(x, y) and c1(x, y) for 16 by 16 matrix. The exponent values gi, hi, ki ∈
N ∪ {0}, for 0 ≤ i < n, represent factors. Table 1 below contains the values
for these parameters for the n = 16 matrix (see AppendixA1) and also other
information about fi(x, y). The columns degx are the degrees of fi in x and
columns degy are the degrees of fi in y. Notice that the largest integers in
ci(x, y) in magnitude (see columns ||ci||∞) decrease as i increases but those in
fi (see columns ||fi||∞) increase and decrease.

Table 1. Data for the coefficients of C(λ, x, y) for n = 16.

i gi hi ki degx degy ||fi||∞ ||ci||∞ i gi hi ki degx degy ||fi||∞ ||ci||∞
0 32 32 32 0 0 1 601080390 8 12 10 10 20 12 4730 35264

1 32 28 28 4 4 4 160466400 9 14 8 8 16 12 3740 10876

2 24 25 25 14 6 31 28428920 10 8 6 6 20 12 2116 3242

3 26 22 22 12 8 128 16535016 11 10 4 4 16 12 806 1556

4 20 19 19 18 10 382 3868248 12 4 3 3 18 10 454 322

5 22 16 16 16 12 684 946816 13 6 2 2 12 8 142 108

6 16 14 14 20 12 1948 183648 14 0 1 1 14 6 31 22

7 18 12 12 16 12 3738 82492 15 4 0 0 4 4 4 4

3.2 Method of Approach

As the structure suggests, the most complicated factors to recover are the bivari-
ate polynomials fi(x, y). In the next two sections, we present two phases to
recover C(λ, x, y). The first phase is to find gi, hi, ki for 0 ≤ i < n. The second
phase is to compute the “cofactors” fi(x, y).

Computing Characteristic Polynomials of Matrices 341

4 Phase 1 - Query

The factors that need to be found for each λ coefficient are namely

xgiyhi(x2 − 1)ki .

We can find the lowest degrees gi and hi by making two queries mod a prime,
one for each variable. In each query, we evaluate one variable of the matrix A
to obtain an image of the characteristic polynomial in the other variable. Let p
be the prime and γ be chosen at random from Zp. We evaluate the matrix A to
obtain the two univariate matrices with integer coefficients modulo p

A(x, γ) mod p and A(γ, y) mod p.

Their respective characteristic polynomials are

C(λ, x, y = γ) and C(λ, x = γ, y).

This is a much simpler problem, as the entries have much smaller degree and no
Kronecker substitution is necessary. Even for our large matrices, the characteris-
tic polynomial of univariate matrices can solved within minutes. The query phase
concludes by finding the necessary parameters for phase 2, which are the factor
degrees gi, hi, ki for 0 ≤ i < n, and hence the minimal number of evaluation
points ex and ey.

Due to two random evaluations, there is a possibility of failure in this phase.
But we will show that the failure probability is small.

4.1 Lowest Degree Factors

After making the two queries, we have images C(λ, x, y = γ) and C(λ, x = γ, y).
For each λ coefficient, simply search for first and last non-zero coefficient in x
or y. The lowest degrees correspond to gi, hi for 0 ≤ i < n. Now also let ḡi, h̄i

be the largest degrees with non-zero coefficient in x, y respectively. To see it in
perspective, the coefficient of λi in C(λ, x, y = γ) has the form

•xḡi + · · · + •xgi

where the symbol • represents integers modulo p. Similarly for C(λ, x = γ, y),

•yh̄i + · · · + •yhi

and the key values ḡi, gi, h̄i, hi can found easily by searching for first non-zeroes.

Non-zero Factors. Most coefficients of λ have a factor of (x2 − 1)ki with ki
large. Removing this reduces the number of evaluation points needed and the
integer coefficient size of ci(x, y)/(x2 − 1)ki , hence also the number of primes
needed. To determine ki, we pick 0 < γ < p at random and divide ci(x, γ) by
(x2 − 1) modulo p repeatedly. For our matrices it happens that ki = hi.

In general, to determine if (ax + b) is a factor of a coefficient of ci(x, y), for
small integers a > 0, b, we could compute the roots of ci(x, γ), a polynomial
in Zp[x], using Rabin’s algorithm [12]. From each root, we try to reconstruct a
small fraction − b

a using rational number reconstruction (Sect. 5.10 of [6]). We
have not implemented this.

342 M. Law and M. Monagan

4.2 Required Points

Now to find the minimal points required to recover all the fi(x, y), for 0 ≤ i < n.
Since we have already computed the largest, smallest and factor degrees, we can
know the maximal degrees of fi(x, y) in both variables. The minimal number of
evaluation points in x, y needed to interpolate x and y are given respectively by

ex := max
1
2
{ḡi − gi − 2ki} + 1, for 0 ≤ i < n

ey := max{h̄i − hi} + 1, for 0 ≤ i < n

The scalar of half in ex is due an optimization to be mentioned later (see
Sect. 5.3.). The subtraction of 2ki corresponds to the factor (x2 − 1)ki .

4.3 Unlucky Evaluations

As mentioned earlier, random evaluations may cause the algorithm to return an
incorrect answer, as we will explain here. Without loss of generality, consider the
query of randomly evaluating at y = γ. Let di = degx fi(x, y), then

fi(x, y) =
di∑
j=0

fij(y)xj , where fij ∈ Z[y].

When fi0(γ) = 0, then the lowest degree is strictly greater than gi, which is
incorrect. If the algorithm continues, the target for interpolation is compromised,
and the final answer is incorrect.

If fidi
(γ) = 0, then the largest degree becomes less than ḡi. This may affect

ex, the required number of evaluation points, which takes the maximum of a set
(see Sect. 4.2). The final answer will still be correct as long as ex is correct.
Definition 1. Let p be a prime, and 0 ≤ γ < p. Then γ is an unlucky evaluation
if for any 0 ≤ i < n,

fi0(γ) = 0 (mod p) or fidi
(γ) = 0 (mod p)

where Dy ≥ degy C(λ, x, y) (from Sect. 2.3).

Theorem 1. The probability that γ is unlucky is at most 2nDy

p .

Proof. Since Dy ≥ degy C(λ, x, y), so degy fij ≤ Dy for all i, j. For each 0 ≤ i <
n, there are at most 2Dy points where

fi0(γ) = 0 (mod p) or fidi
(γ) = 0 (mod p).

There are n of these cases, giving a total of 2nDy unlucky evaluations. Therefore
the probability of an unlucky evaluation (for 0 ≤ i < n) is given by

Pr [fi0(γ) = 0 (mod p) or fidi
(γ) = 0 (mod p)] ≤ 2nDy

p
.

We use a 31 bit prime p = 227×15+1 in the query phase. For our largest matrix,
the parameters are n = 256, Dx = 3072 and Dy = 1024. Our algorithm makes
two queries, one for each variable, so the probability of an unlucky evaluation is
less than 0.105 %.

Computing Characteristic Polynomials of Matrices 343

5 Phase 2 - Optimizations

The structure for each λ coefficient is already known, so in this section we will
use a specific matrix and its characteristic polynomial. We have implemented
each of the following optimizations with Newton interpolation. We note that
these optimizations apply for fast interpolation (FFT) too.

We will illustrate the optimizations on the λ6 coefficient from the 16 by 16
matrix. The coefficient of λ6 is

c6(x, y) = f6(x, y)x16y14
(
x2 − 1

)14
where f6(x, y) (see Appendix A2) has 91 terms and is irreducible over Z. The
parameters for the 16 by 16 matrix include g6 = 16, h6 = 14 = k6, and ḡ6 =
64, h̄6 = 26.

If the Kronecker substitution were to be used, it will use the substitution
y = x97, implying Fourier transform size of s = 4096 > 64 + 26(97) = 2586.
If we work on one variable at a time, it will require (64 + 1)(26 + 1) = 1755
points. Keep in mind that the total number of evaluation points is the same
as the number of calls to the Hessenberg algorithm, which is the bottleneck
of the whole algorithm. Our implementation of the FFT involves the staircase
increments as well, but can be eliminated if the truncated FFT (see [1,8]) were
to be used.

Consider the step of interpolating x after y is interpolated. Let E =
{α1, α2, . . . } be the evaluation points, and Vi = {ci(α1, y), ci(α2, y), . . . } be the
values. By the end of this section, we will only require (10 + 1)(12 + 1) = 143
points, which gives a gain of more than a factor of 12. Note that the gain is
greater for larger matrices.

5.1 Lowest Degree

Since the lowest degree is known, that is g6 = 16, we need to interpolate
c6(x, y)/x16. For each αj ∈ E, divide Vi by αg6

j point wise. Then regular inter-
polation will give

c6(x, y)/x16 = f6(x, y)y14(x2 − 1)14.

In this example there is a saving of g6 = 16 points. This optimization also
applies to the other variable y, as hi = 14. When both variables are taken
into account, the total number of evaluation points is reduced from 1775 to
(64 − 16 + 1)(26 − 14 + 1) = 637.

5.2 Even Degree

All the terms in fi(x, y) have even degrees in x. So if we interpolate fi(x1/2, y)
instead of fi(x, y), the degree of the target is halved, and the number of evalua-
tion points is also (approximately) halved. To do so, simply square each value in

344 M. Law and M. Monagan

E, and proceed with interpolation as usual. The polynomial recovered will have
half of the true degree, then double each exponent to recover fi(x, y).

The even degrees structure for our matrices only applies to variable x. With
this optimization the number of evaluation points decreases from (64 + 1) to
(32 + 1).

5.3 Non-zero Factors

Here we have multiplicity of k6 = 14. This optimization is similar to that of the
lowest degree. For each αj ∈ E, we divide each Vi value by (α2

j − 1)hi . Then
regular interpolation will return

ci(x, y)/(x2 − 1)14 = fi(x, y)x16y14.

E cannot contain ±1, because there will be divisions by zero. This optimization
is only applicable to variable x, and it alone decreases the number of evaluation
points from (64 + 1) to (36 + 1).

Since ki is large, ||fi(x, y)||∞ will be much smaller than ||ci(x, y)||∞. There-
fore the algorithm needs fewer primes to recover C(λ, x, y). The largest coefficient
of (x2−1)ki is

(
ki

�ki/2�
)
. For the 16 by 16 case, the coefficient bound for C(λ, x, y)

is (16 + 3)8 a 34 bit integer. The actual height ||C(λ, x, y)||∞ is a 30 bit integer
(see Table 1) and max ||fi(x, y)||∞ = 4730 = ||f8(x, y)||∞ is a 13 bit integer. For
the 64 by 64 case, ||C(λ, x, y)||∞ is 188 bits and max ||fi(x, y)||∞ is 72 bits.

Due to this loose bound, the problem has effectively become much smaller
in terms of integer coefficient size. The target is max0≤i<n ||fi(x, y)||∞, instead
of the much larger max0≤i<n ||ci(x, y)||∞. So C(λ, x, y) can be recovered with
fewer primes. We give more details in Sect. 5.5.

5.4 Combined

If all three improvements in Sects. 5.1, 5.2 and 5.3 are combined together, the
number of evaluation points required for x is ex = (64− 16− 2× 14)/2+1 = 11.
Likewise for y, ey = (26 − 14) + 1 = 13. So the total the number of evaluations
and hence Hessenberg calls decreases from 1755 to 11 × 13 = 143. Since the
degrees in y are dense with the lowest degree optimization, we evaluate x first
then y and interpolate in reverse order.

5.5 Chinese Remainder Algorithm

The last step of the modular algorithm is to recover the solution over the integers.
For m primes and each non-zero coefficient 0 ≤ ci < pi, we have to solve the
system of congruences

u ≡ ci (mod pi) for 1 ≤ i ≤ m.

Computing Characteristic Polynomials of Matrices 345

To build up the final coefficients u over Z, we use the mixed radix representation
for the integer u, namely, we compute integers v1, v2, . . . , vm such that

u = v1 + v2p1 + v3p1p2 + · · · + vmp1p2 . . . pm−1.

See p. 206 of [7]. To account for negative coefficients in C(λ) we solve for vi in
the symmetric range −pi

2 < vi < pi

2 to obtain u in the range −M
2 < u < M

2
where M =

∏m
i=1 pi. From the non-zero factors optimization, the coefficient size

bound on ||fi(x, y)||∞ becomes a very loose one. As stated previously for the 64
by 64 matrix, the bound is is 188 bits, but we can recover C(λ, x, y) with only
72 bits. So after computing each image of C(λ, x, y) mod p1, p2, . . . , we build the
solution in mixed radix form until it stabilizes, that is when vk = 0.

6 Parallelization

The modular algorithm was originally chosen since the computation for each
prime can be done in parallel. Each evaluation, Hessenberg call and interpolation
may also be computed in parallel. We chose to run each prime sequentially and
look to parallelize within each prime for two reasons. First, we don’t know how
many primes are necessary because of the loose bound from Sect. 5.3. Second,
memory may become an issue for computers with low RAM.

Our implementation in Cilk C does the x evaluations in parallel, and it
suits the incremental method more. With each prime, the algorithm starts by
evaluating x, and this evaluation is trivial since the matrix has unit monomials.
In the previous section we have seen that ex = 11 is required for the smallest
case (16 by 16). But this matrix is too small to see any significant speed up.
The 64 by 64 matrix on a computer with 4 cores shows a good speed up close
to the theoretical maximum. Please see the benchmarks section for more details
on timings.

7 Benchmarks

Table 2 consists of timings of our modular algorithm. Column min is the min-
imum number of 30 bit primes needed to recover the integer coefficients in
C(λ, x, y). Column bnd is the number of primes needed using the bound for
||C(λ, x, y)||∞. The number of calls to the Hessenberg algorithm is (xy)(min +k)
assuming we require k check primes. Our implementation uses k = 1 check prime.
Table 3 includes data for Maple 2016 and Magma V2.22-2. The names and details
of machines we ran our software on are given below and they all run Fedora 22.

– sarah: Intel Core i5-4590 quad core at 3.3 GHz, 8 GB RAM
– mark: Intel Core i5-4670 quad core at 3.4 GHz, 16 GB RAM
– luke: AMD FX8350 eight core at 4.2 GHz, 32 GB RAM
– ant: Intel Core i7-3930K six core at 3.2 GHz, 64 GB RAM

346 M. Law and M. Monagan

Table 2. Modular algorithm timings in seconds (s), minutes (m) or hours (h)

Size #Points #Primes Sarah Mark Luke Ant

n x, y min,bnd 1 Core 4 Cores 1 Core 4 Cores 1 Core 8 Cores 1 Core 6 Cores

16 11,13 1, 2 0.04 s 0.01 s 0.04 s 0.01 s 0.04 s 0.01 s 0.04 s 0.01 s

32 28,31 1, 3 0.48 s 0.10 s 0.58 s 0.10 s 0.60 s 0.10 s 0.64 s 0.14 s

64 67,61 3, 7 19.12 s 5.19 s 18.64 s 5.08 s 32.93 s 4.84 s 21.52 s 4.16 s

128 131,141 6, 16 14.72m 3.92m 14.30m 4.41m 30.36m 4.41m 16.85m 2.87m

256 261,281 12, 35 14.42 h 3.75 h 14.23 h 3.77 h 31.29 h 4.28 h 16.53 h 2.74 h

Table 3. Maple and Magma timings in seconds (s), minutes (m) or hours (h)

Size Maple Magma

Sarah Mark Luke Ant Ant

n real cpu real cpu real cpu real cpu cpu

16 0.28 s 0.30 s 0.21 s 0.23 s 0.46 s 0.53 s 0.32 s 0.36 s 0.32 s

32 34.1 s 45.2 s 30.2 s 41.1 s 50.3 s 83.7 s 32.7 s 46.3 s 99.7 s

64 19.9 h 32.6 h 12.1 h 23.2 h 3.63 h 5.42 h 2.86 h 3.91 h 15.1 h

128,256 Not attempted

A Appendix

A1: 16 x 16 matrix

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x8 x5y x5y x4y2 x5y x2y2 x4y2 x3y3 x5y x4y2 x2y2 x3y3 x4y2 x3y3 x3y3 x4y4

x7 x6y x4y x5y2 x4y x3y2 x3y2 x4y3 x4y x5y2 xy2 x4y3 x3y2 x4y3 x2y3 x5y4

x7 x4y x6y x5y2 x4y xy2 x5y2 x4y3 x4y x3y2 x3y2 x4y3 x3y2 x2y3 x4y3 x5y4

x6 x5y x5y x6y2 x3y x2y2 x4y2 x5y3 x3y x4y2 x2y2 x5y3 x2y2 x3y3 x3y3 x6y4

x7 x4y x4y x3y2 x6y x3y2 x5y2 x4y3 x4y x3y2 xy2 x2y3 x5y2 x4y3 x4y3 x5y4

x6 x5y x3y x4y2 x5y x4y2 x4y2 x5y3 x3y x4y2 y2 x3y3 x4y2 x5y3 x3y3 x6y4

x6 x3y x5y x4y2 x5y x2y2 x6y2 x5y3 x3y x2y2 x2y2 x3y3 x4y2 x3y3 x5y3 x6y4

x5 x4y x4y x5y2 x4y x3y2 x5y2 x6y3 x2y x3y2 xy2 x4y3 x3y2 x4y3 x4y3 x7y4

x7 x4y x4y x3y2 x4y xy2 x3y2 x2y3 x6y x5y2 x3y2 x4y3 x5y2 x4y3 x4y3 x5y4

x6 x5y x3y x4y2 x3y x2y2 x2y2 x3y3 x5y x6y2 x2y2 x5y3 x4y2 x5y3 x3y3 x6y4

x6 x3y x5y x4y2 x3y y2 x4y2 x3y3 x5y x4y2 x4y2 x5y3 x4y2 x3y3 x5y3 x6y4

x5 x4y x4y x5y2 x2y xy2 x3y2 x4y3 x4y x5y2 x3y2 x6y3 x3y2 x4y3 x4y3 x7y4

x6 x3y x3y x2y2 x5y x2y2 x4y2 x3y3 x5y x4y2 x2y2 x3y3 x6y2 x5y3 x5y3 x6y4

x5 x4y x2y x3y2 x4y x3y2 x3y2 x4y3 x4y x5y2 xy2 x4y3 x5y2 x6y3 x4y3 x7y4

x5 x2y x4y x3y2 x4y xy2 x5y2 x4y3 x4y x3y2 x3y2 x4y3 x5y2 x4y3 x6y3 x7y4

x4 x3y x3y x4y2 x3y x2y2 x4y2 x5y3 x3y x4y2 x2y2 x5y3 x4y2 x5y3 x5y3 x8y4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Computing Characteristic Polynomials of Matrices 347

A2: f6(x, y) of 16 x 16 matrix

(2x
16

+ 4x
14

)y
12

+ (4x
18

+ 32x
16

+ 28x
14

+ 8x
12

)y
11

+

(x
20

+ 34x
18

+ 149x
16

+ 188x
14

+ 43x
12 − 22x

10
+ 3x

8
)y

10
+

(16x
20

+ 128x
18

+ 452x
16

+ 568x
14

+ 268x
12 − 32x

10 − 72x
8 − 8x

6
)y

9
+

(52x
20

+ 348x
18

+ 910x
16

+ 1172x
14

+ 704x
12

+ 68x
10 − 136x

8 − 120x
6 − 28x

4
)y

8
+

(112x
20

+ 596x
18

+ 1344x
16

+ 1788x
14

+ 1224x
12

+ 216x
10 − 220x

8 − 184x
6 − 92x

4 − 32x
2
)y

7
+

(133x
20

+734x
18

+1551x
16

+1948x
14

+1476x
12

+428x
10 − 320x

8 − 276x
6 − 81x

4 − 34x
2 − 15)y

6
+

(112x
20

+ 596x
18

+ 1344x
16

+ 1788x
14

+ 1224x
12

+ 216x
10 − 220x

8 − 184x
6 − 92x

4 − 32x
2
)y

5
+

(52x
20

+ 348x
18

+ 910x
16

+ 1172x
14

+ 704x
12

+ 68x
10 − 136x

8 − 120x
6 − 28x

4
)y

4
+

(16x
20

+ 128x
18

+ 452x
16

+ 568x
14

+ 268x
12 − 32x

10 − 72x
8 − 8x

6
)y

3
+

(x
20

+ 34x
18

+ 149x
16

+ 188x
14

+ 43x
12 − 22x

10
+ 3x

8
)y

2
+

(4x
18

+ 32x
16

+ 28x
14

+ 8x
12

)y + (2x
16

+ 4x
14

)y
0

A3: First two coefficients of C(λ, x, y) for 16 by 16 matrix

c0(x, y) = x32y32
(
x2 − 1

)32
c1(x, y) = −x32y28

(
x2 − 1

)28 (
2x4y2 + 4x2y3 + 4x2y2 + y4 + 4x2y + 1

)

B1: Time 16 by 16 on Maple

A := Matrix(16, 16, [[x^8, x^5*y, ...], ...]);
with(LinearAlgebra):
C := CodeTools[Usage](CharacteristicPolynomial(A, lambda)):

B2: Time 16 by 16 on Magma

P<x,y> := PolynomialRing(IntegerRing(), 2);
A := Matrix(P, 16, 16, [[x^8, x^5*y, ...], ...]);
time C := CharacteristicPolynomial(A);

References

1. Arnold, A.: A new truncated fourier transform algorithm. In: Proceedings of ISSAC
2013, pp. 15–22. ACM Press (2013)

2. Bareiss, E.H.: Sylvester’s identity and multistep integer-preserving Gaussian elim-
ination. Math. Comput. 22(103), 565–578 (1968)

3. Berkowitz, S.J.: On computing the determinant in small parallel time using a small
number of processors. Inf. Process. Lett. 18(3), 147–150 (1984)

348 M. Law and M. Monagan

4. Cohen, H.: A Course in Computational Algebraic Number Theory, p. 138. Springer,
Heidelberg (1995)

5. Dumas, J.G.: Bounds on the coefficients of the characteristic and minimal polyno-
mials. J. Inequalities Pure Appl. Math. 8(2), 1–6 (2007). Article ID 31

6. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, New York (2003)

7. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra.
Kluwer Academic Publishers, Boston (1992)

8. van der Hoeven, J.: The truncated fourier transform and applications. In: Proceed-
ings of ISSAC 2004, pp. 290–296. ACM Press (2004)

9. Kauers, M.: Personal Communication
10. Law, M., Monagan, M.: A parallel implementation for polynomial multiplication

modulo a prime. In: Proceedings of PASCO 2015, pp. 78–86. ACM Press (2015)
11. Lossers, O.P.: A Hadamard-type bound on the coefficients of a determinant of poly-

nomials. SIAM Rev. 16(3), 394–395 (2006). Solution to an exercise by Goldstein,
A.J., Graham, R.L. (2006)

12. Rabin, M.: Probabilistic algorithms in finite fields. SIAM J. Comput. 9(2), 273–280
(1979)

Computing Sparse Representations of Systems
of Rational Fractions

François Lemaire(B) and Alexandre Temperville

University of Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de
Recherche en Informatique Signal et Automatique de Lille, 59000 Lille, France

francois.lemaire@univ-lille1.fr, a.temperville@ed.univ-lille1.fr

Abstract. We present new algorithms for computing sparse represen-
tations of systems of parametric rational fractions by means of change
of coordinates. Our algorithms are based on computing sparse matrices
encoding the degrees of the parameters occurring in the fractions. Our
methods facilitate further qualitative analysis of systems involving ratio-
nal fractions. Contrary to symmetry based approaches which reduce the
number of parameters, our methods only increase the sparsity, and are
thus complementary. Previously hand made computations can now be
fully automated by our methods.

Keywords: Parametric systems · Simplification of rational fractions ·
Sparse basis of vector spaces

1 Introduction

This article presents new algorithms for computing sparse representations of
systems of parametric rational fractions by means of change of variables. The
goal of these algorithms is to help the analysis of parametric systems of rational
fractions by producing sparser and equivalent formulations. Simplifying para-
metric systems is a central task, since many qualitative analyses (such as steady
point analysis, bifurcation analysis, . . .) rely on quite costly computations in
real algebraic geometry (see [1] and references therein).

Symmetry based approaches [2–6] reduce the number of parameters and as
a consequence usually help the analysis of parametric systems. On the contrary,
our approach keeps the number of parameters (in the same spirit as [2, Algo-
rithm SemiRectifySteadyPoints]) and makes the systems sparsest (in the sense of
Algorithms getSparsestFraction and getSparsestSumOfFractions given later).

This work was motivated by the differential system (see Example 14):
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G′ = θ(1 − G) − αk1k2k3P
4G

M ′ = ρb(1 − G) + ρfG − δMM

P ′ =
4θ(1 − G) − 4αk1k2k3P

4G − δP P + βM

16k1k2k3P 3 + 9k1k2P 2 + 4k1P + 1

(1)

c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 349–366, 2016.
DOI: 10.1007/978-3-319-45641-6 23

350 F. Lemaire and A. Temperville

where the unknown functions are G = G(t), M = M(t) and P = P (t), and
where the parameters are θ, α, k1, k2, k3, ρb, ρf , δM , δP and β.

Equation (1) was considered in [7], and rewritten with the guessed change of
variables k̄3 = k1k2k3, k̄2 = k1k2, k̄1 = k1, in order to obtain [7, Equation (3.4)]
(in the case n = 4 and γ0 = 1). Our new algorithm getSparsestSumOfFractions
(see Sect. 4) was designed to automatically compute this change of variables,
which yields the following simpler system:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

G′ = θ(1 − G) − αk̄3P
4G

M ′ = ρb(1 − G) + ρfG − δMM

P ′ =
4θ(1 − G) − 4αk̄3P

4G − δP P + βM

16k̄3P 3 + 9k̄2P 2 + 4k̄1P + 1
·

(2)

The relatively small improvement between (1) and (2) in terms of degrees proves
useful while searching for a Hopf Bifurcation. Indeed, the Routh-Hurwitz crite-
rion applied on systems (1) and (2) leads to semi-algebraic systems of the form
h1, h2, h3, h4 = 0, h5, h6, h7 > 0, with respective degrees 9, 2, 9, 42, 12, 20, 23 in
the case of (1), and smaller degrees 7, 2, 7, 32, 8, 14, 19 in the case of (2).

Consider a system of parametric rational fractions, involving parameters of a
set U . To this system, we associate the so-called matrix representation encoding
the degrees of the monomials in U . We then consider an invertible monomial
map φ (i.e. an application which sends each parameter of U to a monomial
in the elements of a set Ū). The monomial map φ acts linearly on the matrix
representation above, which allows us to look for a sparsest matrix representation
using only linear algebra techniques. However, the use of fractions brings some
difficulty since fractions are invariant when both numerators and denominators
are multiplied by the same value. Example 10 shows how to automatically rewrite
the fraction x

1+x+ixτ1w into the sparser fraction 1
y+1+iτ1w by first dividing both

numerators and denominators by x and then introducing y = 1/x.
Section 2 introduces the basic concepts. Section 3 introduces two new algo-

rithms. Roughly speaking, the first one called CSBmodulo computes a sparsest
representation of a vector space modulo another vector space, where both vec-
tor spaces are given by their basis. The second one called getSparsestFraction
is a direct application of CSBmodulo for computing a sparsest representation
of a fraction. Section 4 describes Algorithm getSparsestSumOfFractions which is
a generalization of getSparsestFraction for systems or sums of rational fractions.
Section 5 details the (technical) proof of CSBmodulo, relying on Corollary 4 which
clarifies the structure of the sparsest bases.

2 Preliminaries

Consider K a commutative field and U = {u1, . . . , un} a set of variables. We
consider monomials in U of the form uα1

1 · · · uαn
n where the αi are in Z. Since

negative integer exponents are allowed, u1u
−1
2 u3 is considered as a monomial.

The row vector (1, . . . , 1) of length 	 is denoted by 1� (or simply 1 when the
context is clear).

Computing Sparse Representations of Systems of Rational Fractions 351

2.1 Matrix Representation of a Fraction

Definition 1. Consider a matrix N = (αi,j) in Zn×�, a set T = {t1, . . . , t�} of
elements of K, and an integer g with 1 ≤ g < 	. By definition, the triple (N,T, g)
written in the form

⎛
⎝

⎞
⎠

α1,1 . . . α1,g α1,g+1 . . . α1,� u1

...
. . .

...
...

. . .
...

...
αn,1 . . . αn,g αn,g+1 . . . αn,� un

t1 . . . tg tg+1 . . . t�

, (3)

represents the fraction q =
∑g

i=1 timi∑�
i=g+1 timi

where mi = u
α1,i
1 u

α2,i
2 · · · uαn,i

n . The

triple (N,T, g) (or simply N) is called a matrix representation of q.

Example 1. Taking g = 2, U = {a, b}, and K = Q(x, y), the triple

N =

(
1 0

∣∣∣∣ 1 0
)

a
0 2 0 1 b
t1 t2 t3 t4

(4)

with t1 = 2, t2 = 3xy, t3 = y2, t4 = 5x represents the fraction

q1 =
2a + 3b2xy

ay2 + 5bx
∈ K(U). (5)

Proposition 1. Consider a triple (N,T, g) representing a fraction q. Then, for
any column vector v ∈ Zn, the triple (N +v1, T, g) also represents the fraction q.

Proof. For any integer δ ∈ Z, adding δ1 to the k-th row of N amounts to multiply
both numerator and denominator of q by the same monomial uδ

k.

Example 2. By Proposition 1 with v = (−1, 2), the two triples()
1 2 1 1 ā

−2 −2 −2 −1 b̄
t1 t2 t3 t4

(6)

()
0 1 0 0 ā
0 0 0 1 b̄
t1 t2 t3 t4

(7)

represent the same fraction q̄1 of K(ā, b̄) written in two different ways:

q̄1 =
2 ā

b̄2
+ 3 ā2

b̄2
xy

ā
b̄2

y2 + 5 ā
b̄
x

(8)

q̄1 =
2 + 3āxy

y2 + 5b̄x
· (9)

352 F. Lemaire and A. Temperville

2.2 Monomial Map

In the following definition, the ring K(Ū1/p), where Ū = {ū1, . . . , ūn}, denotes
the ring of fractions K

(
ū
1/p
1 , . . . , ū

1/p
n

)
.

Definition 2. Consider an invertible matrix C ∈ Qn×n, and two sets of vari-
ables U = {u1, u2, . . . , un} and Ū = {ū1, ū2, . . . , ūn}. The matrix C defines the
ring homomorphism φC from K(U) to K(Ū1/p), where p is the lcm of all denom-
inators of the elements of C, in the following way: φC(uk) =

∏n
i=1 ū

ci,k
i for 1 ≤

k ≤ n. The map φC is called a monomial map. One simply denotes φC by φ
when no confusion is possible.

In this article, we will consider special monomials maps φ and fractions q
such that φ(q) is also a rational fraction of K(Ū).

2.3 Action of a Monomial Map

Proposition 2. Consider a triple (N,T, g) representing a fraction q in K(U),
and an invertible matrix C in Qn×n. If CN only contains elements of Z, then
the triple (CN, T, g) is a matrix representation of the fraction φC(q) of K(Ū).

Proof. Immediate.

Corollary 1. Consider a triple (N,T, g) representing a fraction q, an invertible
matrix C in Qn×n, and a column vector v in Qn. If N̄ = CN +v1 only contains
elements of Z, then the triple (N̄ , T, g) is a matrix representation of φC(q).

Proof. Direct consequence of Propositions 1 and 2.

Example 3. Let us respectively denote by N and N̄ the matrices from Eqs. (4)
and (7), and consider the invertible matrix C

()
1 1 ā

−2 −1 b̄
a b

. (10)

Recall the fractions q1 and q̄1 from Examples 1 and 2. One easily checks that
N̄ = CN + v1, where v = (−1, 2). Consequently Corollary 1 implies that q̄1 is
indeed equal to φC(q1).

3 Sparsifying a Fraction

Consider a triple (N,T, g) representing a fraction q ∈ K(U) with the notations
of Definition 1. A sparse matrix N means that many monomials mi involve a
few uj , implying that the fraction q is sparse w.r.t. to the uj .

In this article, we have chosen to make the matrix N sparsest in order to
simplify the corresponding fraction q. To do so, we allow ourselves monomial

Computing Sparse Representations of Systems of Rational Fractions 353

changes of variables on U . More precisely, by relying on Corollary 1, we look
for an invertible matrix C in Qn×n and a column vector v in Qn, such that the
matrix N̄ = CN +v1 only has integer values and is sparsest. Anticipating on the
algorithms, the matrix C and the vector v given in Example 3 yield a sparsest
possible matrix N̄ .

[8, Algorithm CSB (Compute Sparsest Basis)] solves the problem above in
the particular case where v is the zero vector. Indeed, [8, Algorithm CSB] takes
as input a full row rank matrix M and returns a sparsest (i.e. with the least
number of nonzeros) matrix M̄ with entries in Z, which is row-equivalent to M
(recall two matrices A and B of the same dimension are called row-equivalent if
A = PB for some invertible matrix P).

As a consequence, Algorithm CSB needs to be generalized to compute a
sparsest basis of the rows of N “modulo” some other basis; this is what Algo-
rithm CSBmodulo does.

3.1 Algorithm CSBmodulo

Algorithm CSBmodulo below takes as input two matrices N and P such that(
N
P

)
has a full row rank. It returns a matrix N̄ and an invertible matrix C ∈

Qn×n such that N̄ = CN + V P for some matrix V in Qn×s. Moreover, N̄ is
sparsest and only has entries in Z. The proof of Algorithm CSBmodulo is quite
technical, especially proving that the computed N̄ is sparsest. Since the proof
is not necessary to understand the rest of the article, it has been placed in the
appendix.

The idea of Algorithm CSBmodulo is the following. One first considers N

and P in a symmetric way by building a sparsest basis of M =
(

N
P

)
at Line 2,

thus obtaining a matrix M̄ , whose rows are then sorted by increasing number of
nonzeros at Line 4. As a consequence, M̄ = DM for some invertible matrix D.
Then the matrix N̄ is obtained by choosing n rows M̄r1 , . . . , M̄rn

of M̄ . Denoting
by E the matrix composed of the n first columns of D, for any choice of rows
in M̄ , one gets N̄ = CN + V P for some matrix V , and where C is composed
by the rows Er1 , . . . , Ern

. The choice of rows has to be done carefully. First, the
matrix C should be invertible. This condition is ensured by Line 9. Second, the
matrix N̄ should be sparsest. This condition will be ensured by first selecting
the sparsest rows (i.e. the first rows of M̄ since its rows are sorted).

Example 4. Take the following full row rank matrices

N =

⎛
⎝1 1 1 0 1 0 1 1 1

0 1 0 1 1 0 1 0 0
0 0 0 0 1 0 1 0 0

⎞
⎠ and P =

⎛
⎝1 1 1 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1

⎞
⎠

354 F. Lemaire and A. Temperville

Algorithm 1. CSBmodulo(N,P)

Input: Two matrices N ∈ Zn×� and P ∈ Zs×� such that

(
N
P

)
has full row rank.

Output: A matrix N̄ ∈ Zn×� and an invertible matrix C ∈ Qn×n such that
N̄ = CN + V P for some matrix V in Qn×s. Moreover, N̄ is sparsest.

1 begin

2 M ←
(

N
P

)
;

3 M̄ ← CSB(M) ;
4 Sort the rows of M̄ by increasing number of nonzeros (from top to bottom) ;

5 Compute the invertible matrix D ∈ Q(n+s)×(n+s) such that M̄ = DM ;

6 Denote by E ∈ Q(n+s)×n the n first columns of D ;

7 Consider empty matrices C ∈ Q0×n and N̄ ∈ Z0×� ;
8 for i from 1 to n + s do

9 if Rank

(
C
Ei

)
> Rank(C) then

10 C ←
(

C
Ei

)
; N̄ ←

(
N̄
M̄i

)
;

11 return N̄ , C ;

considered later in Example 12. The matrices D and M̄ computed by Lines 2–5
of Algorithm CSBmodulo are (using our implementation of CSB)

M̄ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0
1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and D =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 −1 −1 0 −1
0 0 0 0 1 0
0 −1 1 1 0 0
0 1 −1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

·

The extraction from M̄ of the matrix N̄ by Lines 6–10 will consider the three
first columns of D and ignore rows 2, 4 and 6 of M̄ , yielding

N̄ =

⎛
⎝0 1 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0

⎞
⎠ ·

Remark 1. Algorithm CSBmodulo extracts the matrix C from the n first columns
of D. This extraction could be made by computing the row rank profile [9]: the
row rank profile of an m×n matrix A of rank r is the lexicographically smallest
sequence of r indices of linearly independent rows of A. An PLUQ decomposition
algorithm using Gaussian elimination is proposed in [9] to compute such a set.

Computing Sparse Representations of Systems of Rational Fractions 355

3.2 Algorithm getSparsestFraction

This section presents Algorithm getSparsestFraction which computes a sparsest
representation of a fraction q. It relies on Algorithm CSBmodulo. We first present
Propositions 3 and 4 which are needed when the number of variables in U can
be decreased by a monomial map. Propositions 3 and 4 are in fact a particular
case of a more general treatment based on scaling type symmetries.

Proposition 3. Consider a triple (N,T, g) representing a fraction q ∈ K(U).
If N has not full row rank, then there exist a monomial map φC and a full row
rank matrix N ′ such that (N ′, T, g) represents the fraction q̄ = φC(q).

Proof. If N ∈ Zn×� with Rank(N) = p < n, then there exists a full row rank

matrix N ′ ∈ Zp×� and an invertible matrix C ∈ Qn×n such that CN =
(

N ′

0

)
.

By Proposition 2, the fraction q̄ represented by the triple (CN, T, g) is equal to
φC(q). Because the matrix CN has n − p zero rows, one can discard the n − p
last variables and the triple (N ′, T, g) still represents the fraction q̄.

Example 5. Take q2 = 2+3abxy
y2+5abx ∈ K(U) with K = Q(x, y) and U = {a, b}. A

matrix representation of q2 is N =
(

0 1 0 1
0 1 0 1

)
a
b

with t1 = 2, t2 = 3xy, t3 =

y2, t4 = 5x. By taking C =
(

1 0
−1 1

)
and N ′ =

(
0 1 0 1

)
, one has CN =

(
N ′

0

)
.

Consequently, the monomial map φC satisfies φC(a) = ā/b̄ and φC(b) = b̄, thus
φC(q2) = 2+3āxy

y2+5āx ∈ K(Ū).

Proposition 4. Consider a triple (N,T, g) representing a fraction q ∈ K(U),

such that N has full row rank. If
(

N
1

)
has not full row rank, then there exist a

monomial map φC and a matrix N ′ such that (N ′, T, g) represents the fraction

q̄ = φC(q), where
(

N ′

1

)
has full row rank.

Proof. Since N has full row rank and
(

N
1

)
has not full row rank, one has 1 =∑n

i=1 βiNi for some βi ∈ Q. Without loss of generality, one assumes that βn �= 0
(by exchanging some variables in the set U). Using Corollary 1 and the relation

CN − v1 =
(

N ′

0

)
where C =

⎛
⎜⎜⎜⎝

0

I
...
0

β1 · · · βn

⎞
⎟⎟⎟⎠, v =

⎛
⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎠ and N ′ =

⎛
⎜⎝

N1

...
Nn−1

⎞
⎟⎠, the

fraction q̄ represented by the (CN, T, g) is equal to φC(q). Because the last row
of CN is zero, one can discard the last variable of U , and the triple (N ′, T, g)

still represents the fraction q̄. Moreover, the matrix
(

N ′

1

)
has full row rank.

356 F. Lemaire and A. Temperville

Example 6. Take q3 = 2a+3bxy
ay2+5bx ∈ K(U) with K = Q(x, y) and U = {a, b}. A

matrix representation of q3 is N =
(

1 0 1 0
0 1 0 1

)
a
b

with t1 = 2, t2 = 3xy, t3 =

y2, t4 = 5x. One has CN − v1 =
(

N ′

0

)
where C =

(
1 0
1 1

)
, v = (0, 1) and

N ′ =
(
1 0 1 0

)
. Consequently, q̄3 equals φC(q3) = 2āb̄+3b̄xy

āb̄y2+5b̄x
= 2ā+3xy

āy2+5x ∈ K(ā).

Furthermore, q̄3 can be represented by N ′ =
(
1 0 1 0

)
ā , where

(
N ′

1

)
has full

row rank.

Algorithm 2. getSparsestFraction(N,T, g)
Input: A triple (N, T, g) representing a fraction q ∈ K(U)
Output: A triple (N̄ , T, g) and an invertible matrix C in Qn×n, such that

(N̄ , T, g) represents φC(q). Moreover, N̄ is sparsest and only has
entries in Z.

1 begin

2 Apply Propositions 3 and 4 for ensuring that

(
N
1

)
has full row rank ;

3 N̄ , C ← CSBmodulo(N,1) ;
4 return (N̄ , T, g), C ;

Example 7. Let us apply Algorithm getSparsestFraction on the triple (N,T, g)

of (4), representing the rational fraction q1 of (5). The matrix
(

N
1

)
has full row

rank (which is 3) so getSparsestFraction(N,T, g) calls CSBmodulo(N,1). During
the CSBmodulo(N,1) call, the matrix M̄ computed at Line 4 and the invertible
matrix D computed at Line 5 are:

M̄ =

⎛
⎝0 1 0 0

0 0 0 1
1 0 1 0

⎞
⎠ and D =

⎛
⎝ 1 1 −1

−2 −1 2
1 0 0

⎞
⎠ .

Moreover, the matrix C computed by Lines 6–10 is simply the upper-left two
by two submatrix of D, which is exactly the matrix (10). Finally the matrix N̄
computed by Lines 6–10 is obtained by selecting the two first rows of M̄ , yielding
the matrix (7) and its corresponding fraction (9).

Remark that if one simply computes CN , one gets the matrix representation
(6) corresponding to the fraction (8), which is not as nice as the fraction (9)
represented by N̄ .

The following example shows that the monomial map φC computed by Algo-
rithm getSparsestFraction can involve fractional exponents.

Computing Sparse Representations of Systems of Rational Fractions 357

Example 8. Take the matrix representation

N =

⎛
⎝ 1 0

∣∣∣∣∣∣
0 0

⎞
⎠ a

0 3 1 0 b
0 0 0 1 c
x y x y

representing the fraction q = ax+b3y
bx+cy ∈ K(a, b, c) where K = Q(x, y, z). Then

getSparsestFraction(N,T, g) returns

N̄ =

⎛
⎝ 1 0

∣∣∣∣∣∣
0 0

⎞
⎠ ā

0 1 0 0 b̄
0 0 1 0 c̄
x y x y

and C =

⎛
⎝ 1 0 0

1/2 1/2 1/2
−3/2 −1/2 −3/2

⎞
⎠ ·

The following example shows that negative exponents for the parameters are
sometimes needed.

Example 9. Take the matrix representation

N =
(

0 1 −1
∣∣ 0

)
a

2 x y z + 1

representing the fraction q = 2+ax+ y
a

z+1 ∈ K(a) where K = Q(x, y, z). Then
getSparsestFraction(N,T, g) returns N , showing that the representation above,
which contains a negative exponent, is already sparsest. Moreover, N is the
unique sparsest representation (in the sense of this article), since any addition
of a multiple of 1 to N will produce at least three nonzeros.

Vin

R1

R2 C

Vout

Fig. 1. An electric circuit with two resistors R1 and R2 and a capacitor C.

Example 10. The transfer function H = Vout/Vin of the circuit given in Fig. 1 is

H =
R2

R1 + R2 + iR1R2Cw
, where i2 = −1 and w is the frequency. We consider

H ∈ K(R1, R2, C) with K = C(w) i.e. we consider R1, R2 and C as parameters.
It can be shown that H admits a scaling symmetry acting on R1, R2, and C. As
a consequence, using symmetry based techniques, one can discard one parameter

358 F. Lemaire and A. Temperville

by a suitable (nonunique) change of variables. For example, H can be rewritten
as

H =
x

1 + x + ixτ1w
(11)

by taking x = R2/R1 and τ1 = R1C. Also, H can be rewritten as

H =
1

y + 1 + iyτ2w
(12)

by taking y = R1/R2 and τ2 = R2C. Other changes of variables would also be
possible but are not given here.

The relations (11) and (12) are not sparsest. Relation (12) can easily be made
sparsest using the change of variables a = yτ2 yielding H = 1

y+1+iaw · However,
Relation (11) requires a slightly more subtle treatment, by first dividing both
numerators and denominators by x thus writing H = 1

1
x+1+iτ1w

and then taking
y = 1/x (please note that a = τ1 since a = yτ2 = (R1/R2)R2C = R1C = τ1).
The division by x will be automatically discovered by getSparsestFraction applied
to the triple

N =

(
1

∣∣∣∣ 0 1 1
)

x
0 0 0 1 τ1
1 1 1 iw

thanks to the line 1 added to N during the call of CSB, allowing to replace the
first line N1 of N by N1 − 1 =

(
0 | −1 0 0

)
. Moreover, our implementation of

CSB will negate the row
(
0 | −1 0 0

)
since it only contains nonpositive entries.

3.3 Complexity of getSparsestFraction

Except the CSBmodulo call, the instructions of Algorithm getSparsestFraction are
done at most in O(n3). In fact, the complexity of getSparsestFraction is dominated
by the one of CSBmodulo, which can be exponential in n in the worst case [8].

4 Sparsifying a Sum of Fractions

We now consider a sum of rational fractions in K(U). It could be rewritten as
a single fraction by reducing the fractions to the same denominator. However,
one will avoid such a manipulation for two reasons. First, this can increase the
sizes of the numerator and denominator. Second, a practitioner might want to
keep an expression as a sum of fractions. This last point occurs for example in
the Biology context with expressions of the shape p +

∑ Vixi

xi+ki
where the xi are

concentrations, p is a polynomial in the xi and some other parameters, and the
Vi and ki are the constants of some Michaelis-Menten terms [10,11].

Computing Sparse Representations of Systems of Rational Fractions 359

4.1 Matrix Representation of a Sum of Fractions

Definition 3. Consider s fractions qi ∈ K(U), where each fraction qi is repre-
sented by a triple (N i, T i, gi). Then, the set of the triples H = {(N i, T i, gi)1≤i≤s}
is called the matrix representation of the sum S =

∑s
i=1 qi. The set H of triples

can be written as the following matrix, where the double bar separates two dif-
ferent fractions:

N =
(
N1 N2 . . . Ns

)
. (13)

Example 11. Consider the sum of rational fractions S1 defined by

S1 =
2a + abxy

ay2 + 7bx
+ abcy +

abcy2 + 3ay

ax
· (14)

A possible matrix representation of S1 is
()1 1 1 0 1 0 1 1 1 a

0 1 0 1 1 0 1 0 0 b
0 0 0 0 1 0 1 0 0 c
t1 t2 t3 t4 t5 t6 t7 t8 t9

(15)

with t1 = 2, t2 = xy, t3 = y2, t4 = 7x, t5 = y, t6 = 1, t7 = y2, t8 = 3y, t9 = x.

Consider a matrix representation (N i, T i, gi)1≤i≤s of a sum S =
∑

qi.
Because Proposition 1 can be applied independently on each fraction qi, one
introduces Proposition 5 which generalizes Proposition 1, after introducing the
matrix 1S of size s × (

∑s
i=1 card(T i)) defined as

1S =

⎛
⎜⎜⎜⎝
1card(T 1)

1card(T 2)

. . .
1card(T s)

⎞
⎟⎟⎟⎠ . (16)

Proposition 5. Consider a set of triples (N i, T i, gi) representing a sum of
rational fractions S =

∑s
i=1 qi as written in Definition 3. For any V ∈ Zn×s,

N̄ = N + V 1S is a matrix representation of S.

Proof. Apply Proposition 1 on each fraction qi.

4.2 Action of a Monomial Map

The following Proposition 6 and Corollary 2 are respectively the generalizations
of Proposition 2 and Corollary 1 for sum of fractions.

Proposition 6. Consider a set of triples (N i, T i, gi) representing a sum of
rational fractions S =

∑s
i=1 qi as written in Definition 3. Consider an invert-

ible matrix C in Qn×n. If CN only have entries in Z, then CN is a matrix
representation of S̄ = φC(S).

360 F. Lemaire and A. Temperville

Corollary 2. Consider a set of triples (N i, T i, gi) representing a sum of ratio-
nal fractions S =

∑s
i=1 qi as written in Definition 3. Consider an invertible

matrix C in Qn×n and a vector V in Qn×s. If CN + V 1S only have integer
entries, then CN + V 1S is a matrix representation of S̄ = φC(S).

Example 12. Take the map φ(a) = ā, φ(b) = ā
b̄
, φ(c) = b̄c̄

ā defined by the follow-
ing invertible matrix C: ()1 1 −1 ā

0 −1 1 b̄
0 0 1 c̄
a b c

. (17)

With this change of variables, the fraction S1 of Example 11 becomes

S̄1 =
2ā + ā2

b̄
xy

āy2 + 7 ā
b̄
x

+ āc̄y +
āc̄y2 + 3āy

āx
· (18)

Taking the matrix representation N of S1 as written in (15), CN is a matrix
representation of S̄1 = φC(S1). The matrix CN can however be made sparser
by considering

V =

⎛
⎝−1 0 −1

1 0 0
0 0 0

⎞
⎠ , (19)

and by applying Corollary 2. Indeed the following matrix N̄ = CN + V 1S1 is
also a matrix representation of S̄1⎛

⎝0 1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0

⎞
⎠ ā

b̄
c̄

, (20)

and represents

S̄1 =
2b̄ + āxy

b̄y2 + 7x
+ āc̄y +

c̄y2 + 3y

x
· (21)

Remark that adding V 1S1 to CN corresponds to multiplying by b̄
ā the numerator

and the denominator of the first fraction, and dividing by ā the numerator and
the denominator of the third fraction in (18).

4.3 Algorithm getSparsestSumOfFractions

Algorithm getSparsestSumOfFractions relies on the same ideas as Sect. 3: given
a set of triples (N i, T i, gi) representing a sum of rational fractions S =

∑s
i=1 qi

as written in Definition 3, one looks for an invertible matrix C and a matrix V
such that CN + V 1S is sparsest.

We first present Proposition 7, which is a slight generalization of Proposition 4.
As in Sect. 3, Proposition 7 is needed when the sum of fractions admits scaling type
symmetries in the U variables.

Computing Sparse Representations of Systems of Rational Fractions 361

Proposition 7. Consider a set of triples (N i, T i, gi) representing a sum of
rational fractions S =

∑s
i=1 qi as written in Definition 3. Assume that N has full

row rank. If
(

N
1S

)
has not full row rank, then there exists a monomial map φC

and matrices N ′i such that the set of triples (N ′i, T i, gi) represents the fraction

S̄ = φC(S), where
(

N ′

1S

)
has full row rank.

Proof. The matrix M =
(

N
1S

)
has not full row rank, so there exists a non

trivial linear dependency between the rows of M . Since both matrices N and 1S

have full row rank, the linear dependency necessarily involves a row of N with a
nonzero coefficient. The end of the proof is similar to the one of Proposition 4.

Algorithm 3. getSparsestSumOfFractions(H)
Input: A set H = {(N i, T i, gi)1≤i≤s} representing a sum of rational fractions

S =
∑s

i=1 qi ∈ K(U) as in Definition 3.
Output: A set H̄ = {(N̄ i, T i, gi)1≤i≤s} and an invertible matrix C in Qn×n,

such that H̄ represents φC(q). Moreover N̄ =
(
N̄1|| · · · ||N̄s

)
is

sparsest and only has entries in Z.
1 begin

2 Apply Propositions 3 and 7 for ensuring that

(
N
1S

)
has full row rank ;

3 N̄ , C ← CSBmodulo(N,1S) ;

4 Write N̄ as
(
N̄1|| · · · ||N̄s

)
;

5 return {(N̄ i, T i, gi)1≤i≤s}, C ;

Example 13. Recall the fraction S1 from Example 11 and its matrix representa-

tion N of Eq. (15). One checks that the matrix
(

N
1S

)
has full row rank. Conse-

quently getSparsestSumOfFractions(N) calls CSBmodulo(N,1S). Our implemen-
tation of CSBmodulo returns the matrix N̄ of Eq. (20) and the matrix C of
Eq. (17). Consequently, getSparsestSumOfFractions computes the sparsest sum
of fractions S̄1 = φC(S1) of Eq. (21).

4.4 Application to Systems of ODEs

The techniques presented for the sum of fractions can be adapted for systems of
differential equations of the form X ′(t) = F (Θ,X(t)) (where X(t) is a vector of
functions, F (Θ,X(t)) is a vector of fractions and the Θ are parameters), such as
Eq. (1). Indeed, one can consider the sum of fractions

∑s
i=1 Fi(Θ,X(t)), where

the Fi(Θ,X(t)) denotes the components of the vector F (Θ,X(t)), and apply
Algorithm getSparsestSumOfFractions.

362 F. Lemaire and A. Temperville

Example 14. Consider the sum S of the three right-hand sides of Eq. (1) seen as
a fraction of K(k1, k2, k3) with K = Q(θ, α, ρb, ρf , δM , δP , β). It can represented
by

N =

⎛
⎝ 0 1

∣∣∣∣∣∣
0

∥∥∥∥∥∥
0

∣∣∣∣∣∣
0

∥∥∥∥∥∥
0 1

∣∣∣∣∣∣
1 1 1 0

⎞
⎠ k1

0 1 0 0 0 0 1 1 1 0 0 k2
0 1 0 0 0 0 1 1 0 0 0 k3
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

.

with t1 = θ(1 − G), t2 = −αP 4G, t3 = 1, t4 = ρb(1 − G) + ρfG − δMM , t5 = 1,
t6 = 4θ(1 − G) − δP P + βM , t7 = −4αP 4G, t8 = 16P 3, t9 = 9P 2, t10 = 4P ,
t11 = 1.

Algorithm getSparsestSumOfFractions(S) yields the sparsest Eq. (2) and the
monomial map φ(k1) = k̄1, φ(k2) = k̄2/k̄1, φ(k3) = k̄3/k̄2 encoded by the matrix

C =

⎛
⎝1 −1 0

0 1 −1
0 0 1

⎞
⎠. Please note that the matrix 1S was not useful in the compu-

tations, since N̄ = CN .

5 Proof of Algorithm CSBmodulo

This last section is the most technical part of the article. We first present some
definitions and intermediate results. We then present a new corollary showing
that all the sparsest row bases of the same matrix (see Definition 4) share some
common structure (see Corollary 4). Finally the proof of Algorithm CSBmodulo
is presented.

Let M (resp. v) be a matrix (resp. vector). We denote by N (M) (resp. N (v))
the number of nonzero coefficients of M (resp. v).

Definition 4. Let M ∈ Qn×� a matrix with full row rank. One calls sparsest
row basis of M any matrix M̄ which is sparsest and row-equivalent to M .

Definition 5. Let N ∈ Qn×� and P ∈ Qn×s two matrices with full row rank.

Assume that
(

N
P

)
has full row rank. One calls sparsest row basis of N modulo P

any matrix N ′ which is sparsest and satisfies N ′ = CN +V P for some invertible
matrix C and some matrix V.

Following Lemma 1 is a rephrasing of [8, Theorem 1]. It is the key ingredient
ensuring the greedy approach chosen in [8], which consists in repeatedly reducing
the number of nonzeros of some row of M , until it is not possible anymore.

Lemma 1. Take a full row rank matrix M . The matrix M is not a sparsest row
basis of M iff there exists an index i and a row vector v such that vi �= 0 and
N (vM) < N (Mi).

Computing Sparse Representations of Systems of Rational Fractions 363

Corollary 3. Take a full row rank matrix M . If the matrix M is not a spars-
est row basis of M , Lemma 1 applies. Moreover, replacing the row Mi by vM
yields a sparser row-equivalent matrix. See [8, Algorithm EnhanceBasis] for an
implementation of Corollary 3.

Proposition 8. Take a sparsest basis N ′ of N modulo P with the same assump-
tions as in Definition 5. Then there exist matrices P ′, C ′, V ′, G′,W ′ such that(

N ′

P ′

)
is a sparsest basis of the matrix

(
N
P

)
, with

(
N ′

P ′

)
=

(
C ′ V ′

G′ W ′

)(
N
P

)

where C ′ is invertible.

Proof. The existence of C ′ and V ′ is given by Definition 5. Consider the matrix

M ′ =
(

N ′

P

)
. If M ′ is not a sparsest row basis of

(
N
P

)
, it can be made sparser

using Corollary 3. Moreover, the row to improve is necessarily not a row of N ′,
since N ′ is a sparsest row basis of N modulo P . After applying Corollary 3 a

certain number of times, one gets a sparsest row basis
(

N ′

P ′

)
of

(
N
P

)
which

proves the existence of P ′, G′ and W ′.

Proposition 9. Take a sparsest basis M̄ of a full row rank matrix M . Assume
that the rows of M̄ and M are sorted by increasing number of nonzeros. Let D
be the matrix defined by DM̄ = M . Then N (M̄i) ≤ N (Mi) for any 1 ≤ i ≤ n.
Moreover, for any 1 ≤ i, j ≤ n, if N (Mi) < N (M̄j), then Dij = 0.

Proof. Let us prove the first point and assume N (Mi) < N (M̄j) for some i and
j with Dij �= 0. Following ideas from Corollary 3, M̄ is not sparsest since M̄j

could be replaced by the sparser row Mi since Mi =
∑

j DijM̄j and Dij �= 0.
Let us now prove that N (M̄i) ≤ N (Mi) for any 1 ≤ i ≤ n. By contradiction,

assume that there exists a k such that N (M̄k) > N (Mk) and N (M̄i) = N (Mi)
for i ≤ k − 1. Each row Mi is a linear combination of rows of M̄ . If all k first
rows of Mi were linear combinations of the k − 1 rows of M̄ , then the k first
rows would not be linear independent, and M could not have full row rank.
Consequently, there exist two indices i, l and a row vector v such that i ≤ k ≤ l,
M̄i = vM̄ with vl �= 0. Since N (M̄l) ≥ N (M̄k) > N (Mk) ≥ N (Mi), the row M̄l

can be made sparser by replacing it by the sparser row Mi using Lemma 1. This
leads to a contradiction since M̄ is sparsest.

The new following corollary proves that all sparsest row bases of some fixed
matrix share some common structure.

Corollary 4. Take two sparsest basis M̄ and M ′ of the same matrix M . Assume
that the rows of M̄ and M ′ are sorted by increasing number of nonzeros. Let T
the matrix defined by M̄ = TM ′. Then for any 1 ≤ i ≤ n, one has N (M̄i) =
N (M ′

i). Moreover, T is a lower block triangular matrix, where the widths of
blocks correspond to the width of the blocks of rows of M̄ which have the same
number of nonzeros.

364 F. Lemaire and A. Temperville

Proof. It is a direct consequence of Proposition 9 applied twice: the first time by
considering that M̄ is a sparsest row basis of M ′, the second time by considering
that M ′ is a sparsest row basis of M̄ .

Lemma 2. Let H ∈ Qm×� and U ′ = Qt×m. If U ′H = 0 then Rank(U ′) +
Rank(H) ≤ m.

Proof. Consequence of the Rank-nullity theorem applied on the transpose of H

Proof (CSBmodulo is correct). The fact that the computed matrices N̄ , C sat-
isfies N̄ = CN + V P for some V is a consequence of the selection strategy in
the loop. It is left to the reader. Moreover, the matrix N̄ has entries in Z since
it is a submatrix of M̄ which also have entries in Z because it was computed by
Algorithm CSB.

The difficult point is to show that N̄ is sparsest. To prove that point, we
assume that N (N̄) > N (N ′) for some sparsest row basis N ′ of N modulo P ,
and show a contradiction. By Proposition 8, there exists a matrix P ′ such that(

N ′

P ′

)
is a sparsest basis of the matrix

(
N
P

)
. Let us denote M ′ the matrix

obtained by sorting the rows of
(

N ′

P ′

)
by increasing number of nonzeros. Let

us introduce the indices s1 < . . . < sn such that M ′
si

= N ′
i . By Corollary 4,

N (M̄i) = N (M ′
i) for any 1 ≤ i ≤ n, and there exists an invertible lower block

triangular matrix T such that M̄ = TM ′.
For sake of simplicity, one assumes that the number of nonzeros in the rows

of M̄ are strictly increasing, hence the matrix T is lower triangular with nonzero
diagonal elements. Denote by r1, . . . , rn the indices of the rows of M̄ which are
selected by the loop in Algorithm CSBmodulo to produce the matrix N̄ (i.e. N̄i =
M̄ri

for 1 ≤ i ≤ n). Since we assumed N (N̄) > N (N ′), then N (N̄k) > N (N ′
k)

for some k. By taking k minimal, one has N (N̄1) ≤ N (N ′
1), . . . , N (N̄k−1) ≤

N (N ′
k−1) and N (N̄k) > N (N ′

k). From the inequalities above, one has r1 ≤ s1,
r2 ≤ s2, . . . , rk−1 ≤ sk−1 and rk > sk, which we summarize here:

M̄ T M ′⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
M̄r1

...
M̄rk−1

...

...

...
M̄rk

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝

T1,1

...
. . .

Tn,1 · · · Tn,n

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

...
M ′

s1
...

M ′
sk−1

...
M ′

sk

...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Computing Sparse Representations of Systems of Rational Fractions 365

Among the first sk rows of M̄ , there are k − 1 rows which were selected by
the algorithm. As a consequence, sk − k + 1 rows were not selected, implying
that each unselected row Ei with i ≤ sk is a linear combination of the previous
rows Ej with j < i. By storing row-wise those linear combinations above in a
matrix U , one gets a (sk − k + 1) × n matrix, where columns from indices sk + 1
to n are zero. Moreover, the matrix U has full row rank since U has a echelon
form.

Let us write D =
(
E F

)
. By definition of U , one has UD =

(
UE UF

)
=(

0 UF
)
. Since M̄ = DM , then UM̄ = UDM =

(
0 UF

) (
N
P

)
= UFP .

On the other side, since M̄ = TM ′, then UM̄ = UTM ′. Since the columns
from indices sk + 1 to n of U are zero, the matrix UT also have columns from
indices sk + 1 to n which are zero. Moreover, UT has also full rank.

With notations of Proposition 8 and some easy computations, the product
UTM ′ can be written as UTHN + JP where H has sk rows including the rows
1, 2, . . . , k of C ′ and some rows of G′, and some matrix J .

Consequently, UM̄ = UFP = UTHN + JP which implies (UF − J)P =

(UTH)N . Since
(

N
P

)
has full row rank, UTH (and also (UF −J)) is necessarily

the zero matrix.
By Lemma 2, Rank(UT)+Rank(H) ≤ sk. However, Rank(UT) = sk −k+1,

and Rank(H) ≥ k since the k rows C ′
1, . . . , C ′

k are taken from the invertible
matrix C ′. Thus Rank(UT)+Rank(H) ≥ sk +1 which contradicts Rank(UT)+
Rank(H) ≤ sk. As a consequence, the assumption N (N̄) > N (N ′) leads to a
contradiction, so N (N̄) ≤ N (N ′) and N̄ is indeed sparsest.

References

1. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Algo-
rithms and Computation in Mathematics, vol. 10, 2nd edn. Springer, Heidelberg
(2006)

2. Lemaire, F., Ürgüplü, A.: A method for semi-rectifying algebraic and differential
systems using scaling type lie point symmetries with linear algebra. In: Proceedings
of the 2010 International Symposium on Symbolic and Algebraic Computation,
ISSAC 2010, pp. 85–92. ACM, New York (2010)

3. Sedoglavic, A.: Reduction of algebraic parametric systems by rectification of their
affine expanded lie symmetries. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB
2007. LNCS, vol. 4545, pp. 277–291. Springer, Heidelberg (2007)

4. Hubert, E., Labahn, G.: Scaling invariants and symmetry reduction of dynamical
systems. Found. Comput. Math. 13(4), 479–516 (2013)

5. Fels, M., Olver, P.J.: Moving coframes: II. Regularization and theoretical founda-
tions. Acta Applicandae Math. 55(2), 127–208 (1999)

6. Olver, P.J.: Applications of Lie Groups to Differential Equations. Graduate Texts
in Mathematics, vol. 107, 2nd edn. Springer, New York (1993)

7. Boulier, F., Lemaire, F., Sedoglavic, A., Ürgüplü, A.: Towards an automated reduc-
tion method for polynomial ODE models of biochemical reaction systems. Math.
Comput. Sci. 2(3), 443–464 (2009)

366 F. Lemaire and A. Temperville

8. Lemaire, F., Temperville, A.: On defining and computing “Good” conservation
laws. In: Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol.
8859, pp. 1–19. Springer, Heidelberg (2014)

9. Dumas, J.G., Pernet, C., Sultan, Z.: Computing the rank profile matrix. In: Pro-
ceedings of the 2015 International Symposium on Symbolic and Algebraic Compu-
tation, ISSAC 2015, pp. 149–156. ACM, New York (2015)

10. Henri, V.: Lois générales de l’action des diastases. Librairie Scientifique A.
Hermann, Paris (1903)

11. Michaelis, L., Menten, M.L.: Die Kinetik der Invertinwirkung. Biochemische
Zeitschrift 49, 333–369 (1913)

On the General Analytical Solution
of the Kinematic Cosserat Equations

Dominik L. Michels1(B), Dmitry A. Lyakhov2, Vladimir P. Gerdt3,
Zahid Hossain1,4, Ingmar H. Riedel-Kruse4, and Andreas G. Weber5

1 Department of Computer Science, Stanford University, 353 Serra Mall,
Stanford, CA 94305, USA
michels@cs.stanford.edu

2 Visual Computing Center, King Abdullah University of Science and Technology,
Al Khawarizmi Building, Thuwal 23955-6900, Saudi Arabia

dmitry.lyakhov@kaust.edu.sa
3 Group of Algebraic and Quantum Computations,
Joint Institute for Nuclear Research, Joliot-Curie 6,

141980 Dubna, Moscow Region, Russia
gerdt@jinr.ru

4 Department of Bioengineering, Stanford University, 318 Campus Drive,
Stanford, CA 94305, USA

{zhossain,ingmar}@stanford.edu
5 Institute of Computer Science II, University of Bonn, Friedrich-Ebert-Allee 144,

53113 Bonn, Germany
weber@cs.uni-bonn.de

Abstract. Based on a Lie symmetry analysis, we construct a closed
form solution to the kinematic part of the (partial differential) Cosserat
equations describing the mechanical behavior of elastic rods. The solu-
tion depends on two arbitrary analytical vector functions and is analyt-
ical everywhere except a certain domain of the independent variables in
which one of the arbitrary vector functions satisfies a simple explicitly
given algebraic relation. As our main theoretical result, in addition to
the construction of the solution, we proof its generality. Based on this
observation, a hybrid semi-analytical solver for highly viscous two-way
coupled fluid-rod problems is developed which allows for the interactive
high-fidelity simulations of flagellated microswimmers as a result of a
substantial reduction of the numerical stiffness.

Keywords: Cosserat rods · Differential thomas decomposition ·
Flagellated microswimmers · General analytical solution · Kinematic
equations · Lie symmetry analysis · Stokes flow · Symbolic computation

1 Introduction

Studying the dynamics of nearly one-dimensional structures has various scientific
and industrial applications, for example in biophysics (cf. [11,12] and the refer-
ences therein) and visual computing (cf. [18]) as well as in civil and mechanical
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 367–380, 2016.
DOI: 10.1007/978-3-319-45641-6 24

368 D.L. Michels et al.

engineering (cf. [5]), microelectronics and robotics (cf. [7]). In this regard, an
appropriate description of the dynamical behavior of flexible one-dimensional
structures is provided by the so-called special Cosserat theory of elastic rods
(cf. [2], Chap. 8, and the original work [10]). This is a general and geometrically
exact dynamical model that takes bending, extension, shear, and torsion into
account as well as rod deformations under external forces and torques. In this
context, the dynamics of a rod is described by a governing system of twelve first-
order nonlinear partial differential equations (PDEs) with a pair of independent
variables (s, t) where s is the arc-length and t the time parameter. In this PDE
system, the two kinematic vector equations ((9a)–(9b) in [2], Chap. 8) are para-
meter free and represent the compatibility conditions for four vector functions
κ,ω,ν, v in (s, t). Whereas the first vector equation only contains two vector
functions κ,ω, the second one contains all four vector functions κ,ω,ν, v . The
remaining two vector equations in the governing system are dynamical equa-
tions of motion and include two more dependent vector variables m̂(s, t) and
n̂(s, t). Moreover, these dynamical equations contain parameters (or parametric
functions of s) to characterize the rod and to include the external forces and
torques.

Because of its inherent stiffness caused by the different deformation modes
of a Cosserat rod, a pure numerical treatment of the full Cosserat PDE system
requires the application of specific solvers; see e.g. [15,17]. In order to reduce the
computational overhead caused by the stiffness, we analyzed the Lie symmetries
of the first kinematic vector equation ((9a) in [2], Chap. 8) and constructed its
general and (locally) analytical solution in [16] which depends on three arbitrary
functions in (s, t) and three arbitrary functions in t.

In this contribution we perform a computer algebra-based Lie symmetry
analysis to integrate the full kinematic part of the governing Cosserat system
based on our previous work in [16]. This allows for the construction of a general
analytical solution of this part which depends on six arbitrary functions in (s, t).
We prove its generality and apply the obtained analytical solution in order to
solve the dynamical part of the governing system. Finally, we prove its practi-
cability by simulating the dynamics of a flagellated microswimmer. To allow for
an efficient solution process of the determining equations for the infinitesimal
Lie symmetry generators, we make use of the Maple package SADE (cf. [22]) in
addition to Desolv (cf. [8]).

This paper is organized as follows. Section 2 describes the governing PDE sys-
tem in the special Cosserat theory of rods. In Sect. 3, we show that the functional
arbitrariness in the analytical solution to the first kinematic vector equation that
we constructed in [16] can be narrowed down to three arbitrary bivariate func-
tions. Our main theoretical result is presented in Sect. 4, in which we construct
a general analytical solution to the kinematic part of the governing equations
by integrating the Lie equations for a one-parameter subgroup of the Lie sym-
metry group. Section 5 illustrates the practicability of this approach by realizing
a semi-analytical simulation of a flagellated microswimmer. This is based on
a combination of the analytical solution of the kinematic part of the Cosserat

On the General Analytical Solution of the Kinematic Cosserat Equations 369

PDE and a numerical solution of its dynamical part. Some concluding remarks
are given in Sect. 6 and limitations are discussed in Sect. 7.

2 Special Cosserat Theory of Rods

In the context of the special Cosserat theory of rods (cf. [2,7,10,16]), the motion
of a rod is defined by a vector-valued function

[a, b] × R � (s, t) �→ (r(s, t), d1(s, t), d2(s, t)) ∈ E3 .

Here, t denotes the time and s is the arc-length parameter identifying a material
cross-section of the rod which consists of all material points whose reference
positions are on the plane perpendicular to the rod at s. Moreover, d1(s, t) and
d2(s, t) are orthonormal vectors, and r(s, t) denotes the position of the material
point on the centerline with arc-length parameter s at time t. The Euclidean
3-space is denoted with E3. The vectors d1, d2, and d3 := d1 × d2 are called
directors and form a right-handed orthonormal moving frame. The use of the
triple (d1, d2, d3) is natural for the intrinsic description of the rod deformation
whereas r describes the motion of the rod relative to the fixed frame (e1, e2, e3).
This is illustrated in Fig. 1.

From the orthonormality of the directors follows the existence of so-called
Darboux and twist vector functions κ =

∑3
k=1 κkdk and ω =

∑3
k=1 ωkdk deter-

mined by the kinematic relations

∂sdk = κ × dk , ∂tdk = ω × dk . (1)

The linear strain of the rod and the velocity of the material cross-section are
given by vector functions ν := ∂sr =

∑3
k=1 νkdk and v := ∂tr =

∑3
k=1 vkdk.

r(s, t)r(s, t)d1d1

d2d2
d3d3

e1e1 e2e2

e3e3

s = as = a s = bs = b

Fig. 1. The vector set {d1, d2, d3} forms a right-handed orthonormal basis. The direc-
tors d1 and d2 span the local material cross-section, whereas d3 is perpendicular to
the cross-section. Note that in the presence of shear deformations d3 is unequal to the
tangent ∂sr of the centerline of the rod.

370 D.L. Michels et al.

The components of the strain variables κ and ν describe the deformation of the
rod: the flexure with respect to the two major axes of the cross-section (κ1, κ2),
torsion (κ3), shear (ν1, ν2), and extension (ν3).

The triples

κ = (κ1, κ2, κ3) , ω = (ω1, ω2, ω3) , ν = (ν1, ν2, ν3) , v = (v1, v2, v3) (2)

are functions in (s, t), that satisfy the compatibility conditions

∂t∂sdk = ∂s∂tdk , ∂t∂sr = ∂s∂tr . (3)

The substitution of (1) into the left equation in (3) leads to

κ̃t = ω̃s − κ × ω with κ̃t = ∂t

3∑
k=1

κkdk , ω̃s = ∂s

3∑
k=1

ωkdk .

On the other hand one obtains, κ̃t = κt + ω × κ and ω̃s = ωs + κ × ω with
κt = (∂tκ1, ∂tκ2, ∂tκ3) and ωs = (∂sω1, ∂sω2, ∂sω3), and therefore

κt = ωs − ω × κ . (4)

Similarly, the second compatibility condition in (3) is equivalent to

νt = vs + κ × v − ω × ν (5)

with νt = (∂tν1, ∂tν2, ∂tν3) and vs = (∂sv1, ∂sv2, ∂sv3).
The first-order PDE system (4) and (5) with independent variables (s, t)

and dependent variables (2) forms the kinematic part of the governing Cosserat
equations ((9a)–(9b) in [2], Chap. 8). The construction of its general solution is
the main theoretical result of this paper.

The remaining part of the governing equations in the special Cosserat theory
consists of two vector equations resulting from Newton’s laws of motion. For a
rod density ρ(s) and cross-section A(s), these equations are given by

ρ(s)A(s)∂tv = ∂sn(s, t) + F (s, t) ,
∂th(s, t) = ∂sm(s, t) + ν(s, t) × n(s, t) + L(s, t) ,

where m(s, t) =
∑3

k=1 mk(s, t)dk(s, t) are the contact torques, n(s, t) =∑3
k=1 nk(s, t)dk(s, t) are the contact forces, h(s, t) =

∑3
k=1 hk(s, t)dk(s, t) are

the angular momenta, and F (s, t) and L(s, t) are the external forces and torque
densities.

The contact torques m(s, t) and contact forces n(s, t) corresponding to the
internal stresses, are related to the extension and shear strains ν(s, t) as well as
to the flexure and torsion strains κ(s, t) by the constitutive relations

m(s, t) = m̂ (κ(s, t),ν(s, t), s) , n(s, t) = n̂ (κ(s, t),ν(s, t), s) . (6)

On the General Analytical Solution of the Kinematic Cosserat Equations 371

Under certain reasonable assumptions (cf. [2,7,16]) on the structure of the right-
hand sides of (6), together with the kinematic relations (4) and (5), it yields to
the governing equations (cf. [2], Chap. 8, (9.5a)–(9.5d))

κt = ωs − ω × κ ,
νt = vs + κ × v − ω × ν ,
ρJ · ωt = m̂s + κ × m̂ + ν × n̂ − ω × (ρJ · ω) + L ,
ρAv t = ns + κ × n̂ − ω × (ρAv) + F ,

(7)

in which J is the inertia tensor of the cross-section per unit length. The dynam-
ical part of (7) contains parameters characterizing the rod under consideration
of ρ,A,J and the external force and torque densities F and L, whereas the
kinematic part is parameter free.

3 Analytical Form of the Darboux and Twist Functions

In [16], we constructed a general solution to (4) that is the first equation in
the PDE system (7). In so doing, we proved that the constructed solution is
(locally) analytical and provides the structure of the twist vector function ω
and the Darboux vector function κ:

ω =f − sin(p)
p

p × f +
1 − cos(p)

p2
(
p (p · f) − p2 f

)

+ pt +
p − sin(p)

p3
(
p (p · pt) − p2 pt

) − 1 − cos(p)
p2

p × pt ,

κ =ps +
p − sin(p)

p3
(
p (p ·ps) − p2 ps

) − 1 − cos(p)
p2

p × ps ,

(8)

where f := (f1(t), f2(t), f3(t)) and p := (p1(s, t), p2(s, t), p3(s, t)) are arbitrary
vector-valued analytical functions, and p2 := p21 + p22 + p23.

It turns out that the functional arbitrariness of f and p is superfluous, and
that (8) with f (t) = 0 is still a general solution to (4). This fact is formulated
in the following proposition.

Proposition 1. The vector functions ω and κ expressed by

ω =pt +
p − sin(p)

p3
(
p (p · pt) − p2 pt

) − 1 − cos(p)
p2

p × pt , (9a)

κ =ps +
p − sin(p)

p3
(
p (p · ps) − p2 ps

) − 1 − cos(p)
p2

p × ps (9b)

with an arbitrary analytical vector function p(s, t), are a general analytical solu-
tion to (4).

Proof. Let (s0, t0) be a fixed point. The right-hand sides of (9a) and (9b) satisfy
(4) for an arbitrary vector function p(s, t) analytical in (s0, t0). It is an obvious

372 D.L. Michels et al.

consequence of the fact that (8) is a solution to (4) for arbitrary f (t) analytical
in t0.

Also, the equalities (9a) and (9b) can be transformed into each other with

ω(s, t) ⇔ κ(s, t) and ∂s ⇔ ∂t (10)

reflecting the invariance of (4) under (10). The equalities (9a) and (9b) are
linear with respect to the partial derivatives pt and ps, and their corresponding
Jacobians. The determinants of the Jacobian matrices Jω(∂tp1, ∂tp2, ∂tp3) and
Jκ(∂sp1, ∂sp2, ∂sp3) coincide because of the symmetry (10) and read1

J(p) := det (Jω) = det (Jκ) = 2
cos(p) − 1

p2
. (11)

Let ω(s, t) and κ(s, t) be two arbitrary vector functions analytical in (s0, t0).
We have to show that there is a vector function p(s, t) analytical in (s0, t0)
satisfying (9a) and (9b). For that, chose real constants a, b, c such that

cos(
√

a2 + b2 + c2) − 1
a2 + b2 + c2

�= 0

and set p0 := {a, b, c}. Then (9a) and (9b) are solvable with respect to the partial
derivatives of pt and ps in a vicinity of (s0, t0), and we obtain the first-order
PDE system of the form

pt = Φ(ω,p) , ps = Φ(κ,p) , (12)

where the vector function Φ is linear in its first argument and analytical in p at
p0.

Also, the system (12) inherits the symmetry under the swap (10) and is
passive and orthonomic in the sense of the Riquer-Janet theory (cf. [23] and the
references therein), since its vector-valued passivity (integrability) condition

∂sΦ(ω,p) − ∂tΦ(κ,p) = 0

holds due to symmetry. Therefore, by Riquier’s existence theorems [24] that
generalize the Cauchy-Kovalevskaya theorem, there is a unique solution p(s, t)
of (12) analytical in (s0, t0) and satisfying p(s0, t0) = p0. �

4 General Solution to the Kinematic Equation System

In this section, we determine a general analytical form of the vector functions
ν(s, t) and v(s, t) in (2) describing the linear strain of a Cosserat rod and its
velocity. These functions satisfy the second kinematic equation (5) of the gov-
erning PDE system (7) under the condition that the Darboux and the twist

1 The equalities in (11) are easily verifiable with Maple (cf. [16]), Sect. 3.5.

On the General Analytical Solution of the Kinematic Cosserat Equations 373

functions, κ(s, t) and ω(s, t), occurring in the last equation, are given by (9a)
and (9b) which contain the arbitrary analytical vector function p(s, t).

Similarly, as we carried it out in [16] for the integration of (4), we analyze Lie
symmetries (cf. [19] and the references therein) and consider the infinitesimal
generator

X := ξ1∂s + ξ2∂t +
3∑

i=1

(
θi∂ωi

+ ϑi∂κi
+ φi∂νi

+ ϕi∂vi

)
(13)

of a Lie group of point symmetry transformations for (4) and (5). The coeffi-
cients ξ1, ξ2, θi, ϑj , φm, ϕn with i, j,m, n ∈ {1, 2, 3} in (13) are functions of the
independent and dependent variables.

The infinitesimal criterion of invariance of (4) and (5) reads

X (pr)h1 = X (pr)h2 = 0 whenever h1 = h2 = 0 , (14)

where

h1 := κt − ωs + ω × κ , h2 := νt − vs − κ × v + ω × ν . (15)

In addition to those in (13), the prolonged infinitesimal symmetry generator X(pr)

contains extra terms caused by the presence of the first-order partial derivatives
in (4) and (5).

The invariance conditions (14) lead to an overdetermined system of linear
PDEs in the coefficients of the infinitesimal generator (13). This determining sys-
tem can be easily computed by any modern computer algebra software (cf. [6]).
We make use of the Maple package Desolv (cf. [8]) which computes the deter-
mining system and outputs 138 PDEs.

Since the completion of the determining systems to involution is the most
universal algorithmic tool of their analysis (cf. [6,14]), we apply the Maple pack-
age Janet (cf. [4]) first and compute a Janet involutive basis (cf. [21]) of 263
elements for the determining system, which took about 80 min of computation
time on standard hardware.2 Then we detected the functional arbitrariness in the
general solution of the determining system by means of the differential Hilbert
polynomial

4s2 + 18s + 21 = 8
(

s + 2
s

)
+ 6

(
s + 1

s

)
+ 7 (16)

computable by the corresponding routine of the Maple package Differen-
tialThomas (cf. [3]). It shows that the general solution depends on eight arbi-
trary functions of (s, t). However, in contrast to the determining system for (4)
which is quickly and effectively solvable (cf. [16]) by the routine pdesolv built in
the package Desolv, the solution found by this routine to the involutive deter-
mining system for (4) and (5) needs around one hour of computation time and
has a form which is unsatisfactory for our purposes, since the solution contains
2 The computation time has been measured on a machine with an Intel(R) Xeon E5

with 3.5 GHz and 32GB DDR-RAM.

374 D.L. Michels et al.

nonlocal (integral) dependencies on arbitrary functions. On the other hand, the
use of SADE (cf. [22]) leads to a satisfying result. Unlike Desolv, SADE uses
some heuristics to solve simpler equations first in order to simplify the remaining
system. In so doing, SADE extends the determining systems with certain inte-
grability conditions for a partial completion to involution. In our case the routine
liesymmetries of SADE receives components of the vectors in (15) and outputs
the set of nine distinct solutions in just a few seconds. The output solution set
includes eight arbitrary functions in (s, t) which is in agreement with (16). Each
solution represents an infinitesimal symmetry generator (13).

Among the generators, there are three that include an arbitrary vector func-
tion, which we denoted by q(s, t) = (q1(s, t), q2(s, t), q3(s, t)), with vanishing
coefficients θi, ϑi, i ∈ {1, 2, 3}. The sum of these generators is given by

X0 := (−∂sq1 + q2κ3 − q3κ2) ∂ν1 + (−∂sq2 + q3κ1 − q1κ2) ∂ν2 +
(−∂sq3 + q1κ3 − q3κ1) ∂ν3 + (−∂tq1 + q2ω3 − q3ω2) ∂v1 + (17)

(−∂tq2 + q3ω1 − q1ω2) ∂v2 + (−∂tq3 + q1ω3 − q3ω1) ∂v3 .

It generates a one-parameter Lie symmetry group of point transformations
(depending on the arbitrary vector function q(s, t)) of the vector functions ν(s, t)
and v(s, t) preserving the equality (5) for fixed κ(s, t) and ω(s, t).

In accordance to Lie’s first fundamental theorem (cf. [19]), the symmetry
transformations

ν �→ ν′(a) , v �→ v ′(a) with group parameter a ∈ R ,

generated by (17), are solutions to the following differential (Lie) equations whose
vector form reads

daν′ = q × κ − qs , dav
′ = q × ω − q t , ν′(0) = ν, v ′(0) = v . (18)

The Eqs. (18) can easily be integrated, and without a loss of generality the
group parameter can be absorbed into the arbitrary function q. This gives the
following solution3 to (5):

ν = q × κ − qs , v = q × ω − q t . (19)

Proposition 2. The vector functions ω(s, t), κ(s, t), ν(s, t), and v(s, t)
expressed by (9a)–(9b) and (19) with two arbitrary analytical functions p(s, t)
and q(s, t) form a general analytical solution to (4) and (5).

Proof. The fact that (9a) and (9b) form a general analytical solution to (4) was
verified in Proposition 1.

We have to show that, given analytical vector functions ν(s, t) and v(s, t)
satisfying (5) with analytical ω(s, t) and κ(s, t) satisfying (4), there exists an
analytical vector function q(s, t) satisfying (19). Consider the last equalities as
3 It is easy to check with Maple that the right-hand sides of (19) satisfy (5) for

arbitrary q(s, t) if one takes (9a) and (9b) into account.

On the General Analytical Solution of the Kinematic Cosserat Equations 375

a system of first-order PDEs with independent variables (s, t) and a dependent
vector variable q . According to the argumentation in the proof of Proposition 1,
this leads to the fact, that the equations in (19) are invariant under the trans-
formations

ν(s, t) ⇔ v(s, t) , ω(s, t) ⇔ κ(s, t) , ∂s ⇔ ∂t .

This symmetry implies the satisfiability of the integrability condition

∂t(q × κ − ν) − ∂s(q × ω − v) = 0

without any further constraints. Therefore, the system (19) is passive (involu-
tive), and by Riquier’s existence theorem, there is a solution q to (19) analytical
in a point of analyticity of ω, κ, ν, v . �

5 Simulation of Two-Way Coupled Fluid-Rod Problems

To demonstrate the practical use of the analytical solution to the kinematic
Cosserat equations, we combine it with the numerical solution of its dynamical
part. The resulting analytical solutions (9a)–(9b) and (19) for the kinematic part
of (7) contain two parameterization functions p(s, t) and q(s, t), which can be
determined by the numerical integration of the dynamical part of (7). The sub-
stitution of the resulting analytical solutions (9a)–(9b) and (19) into the latter
two (dynamical) equations of (7), the replacement of the spatial derivatives with
central differences, and the replacement of the temporal derivatives according to
the numerical scheme of a forward Euler integrator, leads to an explicit expres-
sion.4 Iterating over this recurrence equation allows for the simulation of the
dynamics of a rod.

In order to embed this into a scenario close to reality, we consider a flagel-
lated microswimmer. In particular, we simulate the dynamics of a swimming
sperm cell, which is of interest in the context of simulations in biology and bio-
physics. Since such a highly viscous fluid scenario takes place in the low Reynolds
number domain, the advection and pressure parts of the Navier-Stokes equations
(cf. [13]) can be ignored, such that the resulting so-called steady Stokes equations
become linear and can be solved analytically. Therefore, numerical errors do not
significantly influence the fluid simulation part for which reason this scenario
is appropriate for evaluating the practicability of the analytical solution to the
kinematic Cosserat equations. The steady Stokes equations are given by

μΔu = ∇p − F , (20)
∇ · u = 0 , (21)

in which μ denotes the fluid viscosity, p the pressure, u the velocity, and F the
force. Similar to the fundamental work in [9] we use a regularization in order to
develop a suitable integration of (20) and (21). For that, we assume
4 We do not explicitly write out the resulting equations here for brevity. A construction

of a hybrid semi-analytical, semi-numerical solver is also described in our recent
contribution [17].

376 D.L. Michels et al.

F (x) = f0 φε(x − x0),

in which φε is a smooth and radially symmetric function with
∫

φε(x) dx = 1,
is spread over a small ball centered at the point x0.

Let Gε be the corresponding Green’s function, i.e., the solution of ΔGε(x) =
φε(x) and let Bε be the solution of ΔBε(x) = Gε(x), both in the infinite
space bounded for small ε. Smooth approximations of Gε and Bε are given by
G(x) = −1/(4π ‖x‖) for ‖x‖ > 0 and B(x) = −‖x‖ /(8π), the solution of the
biharmonic equation Δ2B(x) = δ(x).
The pressure p satisfies Δp = ∇ · F , which can be shown by applying the
divergence operator on (20) and (21), and is therefore given by p = f0 · ∇Gε.
Using this, we can rewrite (20) as

μΔu = (f0 · ∇)∇Gε − f0φε

with its solution

μu(x) = (f0 · ∇)∇Bε(x − x0) − f0Gε(x − x0) ,

the so-called regularized Stokeslet.
For multiple forces f1, . . . ,fN centered at points x1, . . . ,xN , the pressure p

and the velocity u can be computed by superposition. Because Gε and Bε are
radially symmetric, we can additionally use ∇Bε(x) = B′

εx/ ‖x‖ and obtain5

p(x) =
N∑

k=1

(fk · (x − xk))
G′

ε(‖x − xk‖)
‖x − xk‖ , (22)

u(x) =
1
μ

N∑
k=1

[
fk

(
B′

ε(‖x − xk‖)
‖x − xk‖ − Gε(‖x − xk‖)

)
(23)

+ (fk · (x − xk))(x − xk)
‖x − xk‖ B′′

ε (‖x − xk‖) − B′
ε(‖x − xk‖)

‖x − xk‖3
]

.

The flow given by (23) satisfies the incompressibility constraint (21).
Because of

ΔGε(‖x − xk‖) =
1

‖x − xk‖ (‖x − xk‖ G′
ε(‖x − xk‖))′ = φε(‖x − xk‖) ,

the integration of

G′
ε(‖x − xk‖) =

1
‖x − xk‖

∫ ‖x−xk‖

0

sφε(s) ds

leads to Gε. Similarly,

1
‖x − xk‖ (‖x − xk‖ B′

ε(‖x − xk‖))′ = Gε(‖x − xk‖)

5 Since at this point, the functions φε, Gε, and Bε only depend on the norm of their
arguments, we change the notation according to this.

On the General Analytical Solution of the Kinematic Cosserat Equations 377

leads to the expression

B′
ε(‖x − xk‖) =

1
‖x − xk‖

∫ ‖x−xk‖

0

sGε(s) ds

to determine Bε. We make use of the specific function

φε(‖x‖) =
15ε4

8π(‖x‖2 + ε2)7/2
,

which is smooth and radially symmetric.
Up to now, this regularized Stokeslet (22) and (23) allows for the computation

of the velocities for given forces. Similarly, we can tread the application of a
torque by deriving an analogous regularized Rodlet; see e.g. [1]. In the inverse
case, the velocity expressions can be rewritten in the form of the equations

u(xi) =
N∑

j=1

Mij(x1, . . . ,xN)f j

for i ∈ {1, . . . , N} which can be transformed into an equation system U = MF
with a (3N × 3N)-matrix M := (Mij)i,j∈{1,...,N}. Since in general M is not
regular, an iterative solver have to be applied.

A flagellated microswimmer can be set up by a rod representing the centerline
of the flagellum; see [11]. Additionally, a constant torque perpendicular to the
flagellum’s base is applied to emulate the rotation of the motor. From forces
and torque the velocity field is determined. Repeating this procedure to update
the system state iteratively introduces a temporal domain and allows for the
dynamical simulation of flagellated microswimmers; see Figs. 2 and 3. Compared
to a purely numerical handling of the two-way coupled fluid-rod system, the
step size can be increased by four to five orders of magnitude, which leads to an
acceleration of four orders of magnitude. This allows for real-time simulations of
flagellated microswimmers on a standard desktop computer.6

6 Conclusison

We constructed a closed form solution to the kinematic equations (4) and (5) of
the governing Cosserat PDE system (7) and proved its generality. The kinematic
equations are parameter free whereas the dynamical Cosserat PDEs contain a
number of parameters and parametric functions characterizing the rod under
consideration of external forces and torques. The solution we found depends on
two arbitrary analytical vector functions and is analytical everywhere except
at the values of the independent variables (s, t) for which the right-hand side
of (11) vanishes. Therefore, the hardness of the numerical integration of the

6 The simulations illustrated in Figs. 2 and 3 can be carried out in real-time on a
machine with an Intel(R) Xeon E5 with 3.5 GHz and 32GB DDR-RAM.

378 D.L. Michels et al.

Fig. 2. Simulation of a monotrichous bacteria swimming in a viscous fluid. The rotation
of the motor located at the back side of the bacteria’s head causes the characteristic
motion of the flagellum leading to a movement of the bacteria.

Fig. 3. Simulation of a sperm cell swimming into the direction of an egg. The concen-
tration gradient induced by the egg is linearly coupled with the control of the motor.
In contrast to the bacteria in Fig. 2, the flagellum of a sperm cell does not have its
motor at its base as simulated here. Instead several motors are distributed along the
flagellum (cf. [20]), for which reason this simulation is not fully biologically accurate,
but still illustrates the capabilities of the presented approach.

On the General Analytical Solution of the Kinematic Cosserat Equations 379

Cosserat system, in particular its stiffness, is substantially reduced by using
the exact solution to the kinematic equations. The application of the analytical
solution prevents from numerical instabilities and allows for accurate and efficient
simulations. This was demonstrated for the two-way coupled fluid-rod scenario
of microswimmers, which could efficiently be simulated with an acceleration of
four orders of magnitude compared to a purely numerical handling.

7 Limitations

Because of the presence of parameters in the dynamical part of the Cosserat
PDEs, the construction of a general closed form solution to this part is hopeless.
Even if one specifies all parameters and considers the parametric functions as
numerical constants, the exact integration of the dynamical equations is hardly
possible. We analyzed Lie symmetries of the kinematic equations extended with
one of the dynamical vector equations including all specifications of all para-
meters and without parametric functions. While the determining equations can
be generated in a reasonable time, their completion to involution seems to be
practically impossible.

Acknowledgements. This work has been partially supported by the Max Planck
Society (FKZ-01IMC01/FKZ-01IM10001), the Russian Foundation for Basic Research
(16-01-00080), and a BioX Stanford Interdisciplinary Graduate Fellowship. The review-
ers’ valuable comments are gratefully acknowledged.

References

1. Ainley, J., Durkin, S., Embid, R., Boindala, P., Cortez, R.: The method of images
for regularized stokeslets. J. Comput. Phys. 227, 4600–4616 (2008)

2. Antman, S.S.: Nonlinear Problems of Elasticity. Applied Mathematical Sciences,
vol. 107. Springer, New York (1995)

3. Bächler, T., Gerdt, V., Langer-Hegermann, M., Robertz, D.: Algorithmic Thomas
decomposition of algebraic and differential systems. J. Symbolic Comput. 47,
1233–1266 (2012)

4. Blinkov, Y., Cid, C., Gerdt, V., Plesken, W., Robertz, D.: The Maple package
Janet: II. linear partial differential equations. In: Ganzha, V., Mayr, E., Vorozhtsov,
E. (eds.) Computer Algebra in Scientific Computing, CASC 2003, pp. 41–54.
Springer, Heidelberg (2003)

5. Boyer, F., De Nayer, G., Leroyer, A., Visonneau, M.: Geometrically exact Kirchhoff
beam theory: application to cable dynamics. J. Comput. Nonlinear Dyn. 6(4),
041004 (2011)

6. Butcher, J., Carminati, J., Vu, K.T.: A comparative study of some computer alge-
bra packages which determine the Lie point symmetries of differential equations.
Comput. Phys. Commun. 155, 92–114 (2003)

7. Cao, D.Q., Tucker, R.W.: Nonlinear dynamics of elatic rods using the Cosserat
theory: modelling and simulation. Int. J. Solids Struct. 45, 460–477 (2008)

8. Carminati, J., Vu, K.T.: Symbolic computation and differential equations: Lie sym-
metries. J. Symb. Comput. 29, 95–116 (2000)

380 D.L. Michels et al.

9. Cortez, R.: The method of the regularized stokeslet. SIAM J. Sci. Comput. 23(4),
1204–1225 (2001)

10. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann, Paris (1909)
11. Elgeti, J., Winkler, R., Gompper, G.: Physics of microswimmers–single particle

motion and collective behavior: a review. Rep. Prog. Phys. 78(5), 056601 (2015)
12. Goldstein, R.: Green algae as model organisms for biological fluid dynamics. Ann.

Rev. Fluid Mech. 47(1), 343–375 (2015)
13. Granger, R.: Fluid Mechanics. Dover Classics of Science and Mathematics. Courier

Corporation, Mineola (1995)
14. Hereman, W.: Review of symbolic software for Lie symmetry analysis. CRC hand-

book of Lie group analysis of differential equations. In: Ibragimov, N.H. (ed.) New
Trends in Theoretical Developments and Computational Methods, pp. 367–413.
CRC Press, Boca Raton (1996)

15. Lang, H., Linn, J., Arnold, M.: Multibody dynamics simulation of geometrically
exact Cosserat rods. In: Berichte des Fraunhofer ITWM, vol. 209 (2011)

16. Michels, D.L., Lyakhov, D.A., Gerdt, V.P., Sobottka, G.A., Weber, A.G.: Lie
symmetry analysis for Cosserat rods. In: Gerdt, V.P., Koepf, W., Seiler, W.M.,
Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 324–334. Springer,
Heidelberg (2014)

17. Michels, D., Lyakhov, D., Gerdt, V., Sobottka, G., Weber, A.: On the partial
analytical solution to the Kirchhoff equation. In: Gerdt, V., Koepf, W., Seiler,
W.M., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing, CASC
2015, pp. 320–331. Springer, Heidelberg (2015)

18. Michels, D., Mueller, P., Sobottka, G.: A physically based approach to the accurate
simulation of stiff fibers and stiff fiber meshes. Comput. Graph. 53B, 136–146
(2015)

19. Oliveri, F.: Lie symmetries of differential equations: classical results and recent
contributions. Symmetry 2, 658–706 (2010)

20. Riedel-Kruse, I., Hilfinger, A., Howard, J., Jülicher, F.: How molecular motors
shape the flagellar beat. HFSP J. 1(3), 192–208 (2007)

21. Robertz, D.: Formal Algorithmic Elimination for PDEs. Lecture Notes in Mathe-
matics, vol. 2121. Springer, Heidelberg (2014)

22. Filho, R.T.M., Figueiredo, A.: [SADE] a Maple package for the symmetry analysis
of differential equations. Comput. Phys. Commun. 182, 467–476 (2011)

23. Seiler, W.M.: Involution: The Formal Theory of Differential Equations and its
Applications in Computer Algebra. Algorithms and Computation in Mathematics.
Springer, Heidelberg (2010)

24. Thomas, J.M.: Riquier’s existence theorems. Ann. Math. 30, 285–310 (1929). 30,
306–311 (1934)

Using Sparse Interpolation in Hensel Lifting

Michael Monagan(B) and Baris Tuncer

Department of Mathematics, Simon Fraser University,
Burnaby, BC V5A 1S6, Canada
{mmonagan,ytuncer}@sfu.ca

Abstract. The standard approach to factor a multivariate polynomial
in Z[x1, x2, . . . , xn] is to factor a univariate image in Z[x1] then lift the
factors of the image one variable at a time using Hensel lifting to recover
the multivariate factors. At each step one must solve a multivariate poly-
nomial Diophantine equation. For polynomials in many variables with
many terms we find that solving these multivariate Diophantine equa-
tions dominates the factorization time. In this paper we explore the use
of sparse interpolation methods, originally introduced by Zippel, to speed
this up. We present experimental results in Maple showing that we are
able to dramatically speed this up and thereby achieve a good improve-
ment for multivariate polynomial factorization.

1 Introduction

Suppose that we seek to factor a multivariate polynomial a ∈ R = Z[x1, . . . , xn]
and a = fg with f, g in R and gcd(f, g) = 1. The multivariate Hensel lifting
algorithm (MHL) developed by Yun [11] and improved by Wang [9,10] uses a
prime number p and an ideal I = 〈x2 − α2, . . . , xn − αn〉 of Zp[x1, . . . , xn] where
α2, α3, . . . , αn ∈ Zp is a random evaluation point chosen by the algorithm.

For a given polynomial h ∈ R, let us use the notation

hj := h(x1, . . . , xj , xj+1 = αj+1, . . . , xn = αn) mod p

so that a1 = a(x1, α2, . . . , αn) mod p. The input to MHL is a, I, f1, g1 and p such
that a1 = f1g1 and gcd(f1, g1) = 1 in Zp[x1]. The input factorization a1 = f1g1
is obtained by factoring a(x1, α2, . . . , αn) over the integers. See [2].

Let dj denote the total degree of aj with respect to the variables x2, . . . , xj

and Ij = 〈x2 − α2, . . . , xj − αj〉 with j ≤ n. Wang’s MHL lifts the factorization
a1 = f1g1 variable by variable to aj = fjgj ∈ Zp[x1, . . . , xj]/I

dj+1
j . It turns out

that fn ≡ f mod p and gn ≡ g mod p. For sufficiently large p we recover the
factorization of a over Z.

We give a brief description of the jth step of the MHL (assuming that the
inputs are monic in the variable x1, for simplicity) in Algorithm 1 for j > 1. For
details see [2]. There are two main sub-routines in the design of MHL. The first
one is the leading coefficient correction algorithm. The most well-known is the
Wang’s heuristic leading coefficient algorithm [9] which works well in practice and
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 381–400, 2016.
DOI: 10.1007/978-3-319-45641-6 25

382 M. Monagan and B. Tuncer

is the one Maple currently uses. There are other approaches by Kaltofen [3] and
most recently by Lee [4]. In our implementation we use Wang’s leading coefficient
algorithm. The second main subroutine is the multivariate Diophantine problem
(MDP). In MHL, for each j with j ≤ n, Wang’s design of MHL must solve many
instances the MDP. In the Maple timings (see Sect. 5), for most of the examples
90 % of the time is spent solving MDPs.

In this paper we propose various approaches of sparse interpolation to solve
MDP and present the results of our experiments. We will assume that a, f, g
are monic in x1 so as not to complicate the MHL algorithm with leading coef-
ficient correction. In Sect. 2 we define the MDP in detail. In Sect. 3 we show
that interpolation is an option to solve the MDP. If the factors to be computed
are sparse then the solutions to the MDP are also sparse. We show in Sect. 3.1
how to use Zippel’s sparse interpolation to solve the MDP and we describe an
improvement to the solution proposed in Sect. 3.2. We have observed that often
the evaluation cost is the most expensive part of these algorithms. In Sect. 3.3
we will propose an improvement to the evaluation method used in the sparse
interpolation process. Sparse Hensel Lifting (SHL) was first introduced by Zip-
pel [14] and then improved by Kaltofen [3]. In Sect. 4 we show that if we use
Wang’s leading coefficient correction then Kaltofen’s SHL algorithm can be sim-
plified, improved and implemented efficiently. Based on Lemma 1 in Sect. 4 we
will propose our SHL organization which is presented as Algorithm4. Finally in
Sect. 5 we will give some timing data to compare our factorization algorithms
with Wang’s algorithm, which is currently used by Maple.

2 The Multivariate Diophantine Problem (MDP)

Following the notation in Sect. 1, let u,w, c ∈ Zp[x1, . . . , xj] in which u and
w are monic polynomials with respect to the variable x1 with j � 1 and let
Ij = 〈x2 − α2, . . . , xj − αj〉 be an ideal of Zp[x1, . . . , xj] with αi ∈ Zp. The MDP
consists of finding multivariate polynomials σ, τ ∈ Zp[x1, . . . , xj] that satisfy

σu + τw = c mod I
dj+1
j

with degx1
(σ) < degx1

(w) where dj is the maximal total degree of σ and τ with
respect to the variables x2, . . . , xj and it is given that

1. GCD(u,w) | c and
2. GCD (u mod Ij , w mod Ij) = 1 in Zp[x1].

It can be shown that the solution (σ, τ) exists and is unique provided the second
condition is satisfied and that the solution is independent of the choice of the
ideal Ij . For j = 1 the MDP is in Zp[x1] and can be solved with the extended
Euclidean algorithm (see Chap. 2 of [2]).

It can be seen from Algorithm 1 that at step j, there are at most
max(degxj

(fj), degxj
(gj)) calls to MDP. To solve the MDP for j > 1, Wang

uses the same approach as for Hensel Lifting, that is, an ideal-adic approach

Using Sparse Interpolation in Hensel Lifting 383

Algorithm 1. jth step of Multivariate Hensel Lifting for j > 1.
Input : αj ∈ Zp, aj ∈ Zp[x1, . . . , xj], fj−1, gj−1 ∈ Zp[x1, . . . , xj−1] where aj , fj−1, gj−1

are monic in x1 and aj(xj = αj) = fj−1gj−1.
Output : fj , gj ∈ Zp[x1, . . . , xj] such that aj = fjgj .

1: σj0 ← fj−1, τj0 ← gj−1, σj ← σj0, τj ← τj0, monomial ← 1
2: error ← aj − fj−1 gj−1

3: for i from 1 to deg(aj , xj) while error �= 0 do
4: monomial ← monomial × (xj − αj)
5: c ← coefficient of (xj −αj)

i in the Taylor expansion of the error about xj = αj

6: if c �= 0 then
7: Solve the MDP σjiτj0 + τjiσj0 = c in Zp[x1, . . . , xj−1] for σji and τji.
8: (σj , τj) ← (σj + σji × monomial, τj + τji × monomial).
9: error ← aj − σj τj .

10: end if
11: end for
12: fj ← σj and gj ← τj

(see [2]). In general, if αk �= 0 for j ≤ k, then an 〈xk − αk〉-adic expansion of the
solution is expensive to compute. Since even a sparse solution turns out to be
dense in an 〈xk − αk〉-adic expansion, the number of MDP’s to be solved signif-
icantly increases and hence the time complexity of MHL becomes expensive. In
the following sections we will present various approaches to solve the MDP.

3 Solution to the MDP via Interpolation

We consider whether we can interpolate x2, . . . , xj in σ. If β ∈ Zp with β �= αj ,
then we have

σ(xj = β)u(xj = β) + τ(xj = β)w(xj = β) = c(xj = β) mod I
dj−1+1
j−1 .

For Kj = 〈x2 − α2, . . . , xj−1 − αj−1, xj − β〉 and Gj = GCD(u mod Kj ,
w mod Kj), we obtain a unique solution σ(x1, . . . , xj−1, β) iff Gj = 1. How-
ever it is possible that Gj �= 1. Let R = resx1(u,w) be the Sylvester resultant of
u and v taken in x1. Since u,w are monic in x1 one has

Gj �= 1 ⇐⇒ resx1(u mod Kj , w mod Kj) = 0 ⇐⇒ R mod Kj = 0.

Also deg(R) ≤ deg(u) deg(w) [1]. Then by the Schwartz-Zippel Lemma [8,13]

Prob(Gj �= 1) ≤ deg(u) deg(w)
p − 1

.

If β �= αj is chosen at random and p is large, the probability that Gj = 1 is high
so interpolation is thus an option to solve the MDP. If Gj �= 1, we could choose
another β but our implementation does not do this and simply returns FAIL.
The bound above for Prob(Gj �= 1) is a worst case bound. We note that in [6]
we show that the average probability for Prob(Gj �= 1) = 1/(p − 1).

384 M. Monagan and B. Tuncer

3.1 Solution to the MDP via Sparse Interpolation

Following the sparse interpolation idea of Zippel in [12], given a sub-solution
σj(x1, . . . , xj = αj) for αj ∈ Zp we use this information to create a sub-solution
form σf and compute σj(x1, . . . , xj = βj) for some other random βj ∈ Zp with
high probability if p is big. Suppose the form of σj is

σf =
m∑

i=1

ci(x2, ..., xj)xni
1 where ci =

ti∑
k=1

cikxγ2k
2 · · · xγjk

j with cik ∈ Zp\{0}.

Let t = maxm
i=1 ti be the maximum number of terms in the coefficients of σ. In

sparse interpolation we obtain each cik by solving m linear systems of size at most
t × t. As explained in [12], each linear system can be solved in O(t2) arithmetic
operations in Zp. We then interpolate xj in σj from σj(x1, . . . , xj−1, βk) for
k = 0, . . . ,degxj

(σj). Finally we compute τj = (cj − σjuj)/wj .

3.2 First Improvement

The approach introduced in the preceding section solves the interpolation prob-
lem based on projection down to Zp[x1]. To reduce the cost we tried projecting
down to Zp[x1, x2] because this will likely reduce the number t of evaluation
points needed. Let the total degree of σ in x1, x2 be bounded by d and let

σf =
∑

i+k≤d

cik(x3, ..., xj)xi
1x

k
2 where cik =

sik∑
l=0

ciklx
γ3l
3 · · · xγjl

j with cikl ∈ Zp\{0}.

Let s = max sik be the maximum number of terms in the coefficients of σf . Here
we solve O(d2) linear systems of size at most s × s. For s < t, the complexity of
solving the linear systems decreases by a factor of (t/s)2. We also save a factor
t/s in the evaluation cost.

To solve the MDP in Zp[x1, x2] we have implemented an efficient dense bivari-
ate Diophantine solver (BDP) in C. The algorithm incrementally interpolates x2

in both σ and τ from univariate images in Zp[x1]. When σ and τ stabilize we
test whether σ(x1, x2)u(x1, x2)+τ(x1, x2)w(x1, x2) = c(x1, x2) using sufficiently
many evaluations to prove the correctness of the solution. The cost is O(d3)
arithmetic operations in Zp where d bounds the total degree of c, u, w, σ and
τ in x1 and x2. We do not compute τ using division because that would cost
O(d4) arithmetic operations. This bivariate MDP solving algorithm is presented
as algorithm BSDiophant below.

3.3 The Evaluation Cost

In our experiments we found that the sparse interpolation approach we propose
reduces the time spent solving MDPs but evaluation becomes the most time
dominating part of the factoring algorithm.

Using Sparse Interpolation in Hensel Lifting 385

Algorithm 2. BSDiophant
Input A big prime p and u, w, c ∈ Zp[x1, x2, . . . , xj].
Output (σ, τ) ∈ Zp[x1, x2, . . . , xj] such that σu+ τw = c ∈ Zp[x1, x2, . . . , xj] or FAIL.
It returns FAIL if condition 2 (see Sect. 2) is not satisfied for the choice of any β in the
algorithm. This is detected in subroutine BDP.

1: if n = 2 then call BDP to return (σ, τ) ∈ Zp[x1, x2]
2 or FAIL end if .

2: Pick β1 ∈ Zp at random
3: (uβ1 , wβ1 , cβ1) ← (u(x1, . . . , xj = β1), w(x1, . . . , xj = β1), c(x1, . . . , xj = β1).
4: (σ1, τ1) ← BSDiophant(uβ1 , wβ1 , cβ1 , p).
5: if σ1 = FAIL then return FAIL end if
6: k ← 1, σ ← σ1, q ← (xj − β1) and σf ← skeleton of σ1.
7: repeat
8: h ← σ
9: Set k ← k + 1 and pick βk ∈ Zp at random distinct from β1, . . . , βk−1

10: (uβk , wβk , cβk) ← (u(x1, . . . , xj = βk), w(x1, . . . , xj = βk), c(x1, . . . , xj = βk).
11: Solve the MDP σkuβk + τkwβk = cβk using sparse interpolation with σf .
12: if σk = FAIL then return FAIL end if
13: Solve σ = h mod q and σ = σk mod (xj − βk) for σ ∈ Zp[x1, x2, . . . , xj].
14: q ← q · (xj − βk)
15: until σ = h and w|(c − σu)
16: Set τ ← (c − σu)/w and return (σ, τ).

Suppose f =
∑s

i=1 ciXiYi where Xi is a monomial in x1, x2, Yi is a monomial
in x3, . . . , xn, 0 �= ci ∈ Zp and we want to compute

fj := f(x1, x2, x3 = αj
3, . . . , xn = αj

n), for j = 1, . . . , t.

To compute fj efficiently, one way is to pre-compute the powers of αi’s in (n−2)
tables and then do the evaluation using tables. We implemented this first. Let
di = deg(f, xi) and d = max3≤i≤n di. For a fixed j, computing the n − 2 tables
of powers of αj

i ’s (i.e. 1, αj
i , α

2j
i , . . . , αdij

i) costs ≤ (n − 2)d multiplications. To
evaluate one term ciYi at (αj

3, . . . , α
j
n) costs n−2 multiplications using the tables.

Then the cost of evaluating f at (αj
3, . . . , α

j
n) is s(n − 2) multiplications. Hence

the total cost of t evaluations is bounded above by CT = s(n− 2)t+(n− 2)dt =
t(n − 2)(s + d) multiplications using tables.

However when we use sparse interpolation points of the form (αj
3, . . . , α

j
n) for

j = 1, . . . , t we can reduce the evaluation cost by a factor of (n − 2) by a simple
organization. As an example suppose

f = x22
1 + 72x3

1x
4
2x4x5 + 37x1x

5
2x

2
3x4 − 92x1x

5
2x

2
5 + 6x1x

3
2x3x

2
4

and we want to compute fj := f(x1, x2, α
j
3, α

j
4, α

j
5) for 1 ≤ j ≤ t. Before com-

bining and sorting, we write the terms of each fj as

fj = x22
1 + 72αj

4α
j
5x

3
1x

4
2 + 37(αj

3)
2αj

4x1x
5
2 − 92(αj

5)
2x1x

5
2 + 6αj

3(α
j
4)

2x1x
3
2

= x22
1 + 72(α4α5)jx3

1x
4
2 + 37(α2

3α4)jx1x
5
2 − 92(α2

5)
jx1x

5
2 + 6(α3α

2
4)

jx1x
3
2.

386 M. Monagan and B. Tuncer

Now let

c(0) := [1, 72, 37,−92, 6] and θ := [1, α4α5, α
2
3α4, α

2
5, α3α

2
4].

Then in a for loop j = 1, . . . , t we can update the coefficient array c(0) by the
monomial array θ by defining c

(j)
i = c

(j−1)
i θi for 1 ≤ i ≤ s so that each iteration

computes the coefficient array

c(j) = [1, 72(α4α5)j , 37(α2
3α4)j ,−92(α2

5)
j , 6(α3α

2
4)

j]

using s = #f multiplications in the coefficient field to obtain

fj = x22
1 + 72(α4α5)jx3

1x
4
2 + 37(α2

3α4)jx1x
5
2 − 92(α2

5)
jx1x

5
2 + 6(α3α

2
4)

jx1x
3
2.

Then sorting the monomials and combining terms we get

fj = x22
1 + 72(α4α5)jx3

1x
4
2 + (37(α2

3α4)j − 92(α2
5)

j)x1x
5
2 + 6(α3α

2
4)

jx1x
3
2.

Note that sorting is time consuming so it should be done once at the beginning.
With the organization described above one evaluates Yi at (α3, . . . , αn) in

(n − 3) multiplications using tables. The cost of n − 2 tables of powers is ≤
(n − 2)d. Then at the first step the cost (of creating θ, the monomial array) is
≤ s(n − 3). After that the cost of each evaluation is s multiplications. Hence
the total cost is bounded above by CN = st + s(n − 3) + (n − 2)d. Compared
with CT = s(n − 2)t + (n − 2)dt the gain is a factor of (n − 2). Roman Pearce
implemented this improved evaluation algorithm in C for us in such a way that
from Maple, we can obtain the next evaluation using s multiplications.

4 Sparse Hensel Lifting

4.1 On Kaltofen’s SHL

Factoring multivariate polynomials via Sparse Hensel Lifting (SHL) uses the
same idea of the sparse interpolation [14]. Following the same notation intro-
duced in Sect. 1, at (j − 1)th step we have fj−1 = xdf

1 + cj1M1 + · · · + cjtjMtj

where tj is the number of non-zero terms that appear in fj−1, Mk’s are the
distinct monomials in x1, . . . , xj−1 and cjk ∈ Zp for 1 ≤ k ≤ tj . Then at the jth

step SHL assumes fj = xdf
1 + Λj1M1 + · · · + ΛjtjMtj where for 1 ≤ k ≤ tj ,

Λjk = c
(0)
jk + c

(1)
jk (xj − αj) + c

(2)
jk (xj − αj)2 + · · · + c

(djk
)

jk (xj − αj)djk

with c
(0)
jk := cjk and where df = degx1

(f), djk = degxn
(Λjk) with c

(i)
jk ∈ Zp for

0 ≤ i ≤ djk . The assumption is the same for the factor gj−1.
To recover fj from fj−1 and gj from gj−1, during the jth step of MHL

(see Algorithm 1 above) one starts with σj0 = fj−1, τj0 = gj−1, then in a
for loop starting from i = 1 and incrementing it while the error term and
its ith Taylor coefficient is non-zero, by solving MDP’s σj0τji + τj0σji = e

(i)
j

Using Sparse Interpolation in Hensel Lifting 387

for 1 ≤ i ≤ max(degxj
(fj),degxj

(gj)). After the loop terminates we have fj =∑degxj
(fj)

k=0 σjk(xj−αj)k. On the other hand if the assumption of SHL is true then
we have also fj = xdf

1 +(
∑dj

i=0 c
(i)
j1 (xj−αj)i)M1+· · ·+(

∑dj

i=0 c
(i)
jtj

(xj−αj)i)Mtj =

xdf
1 +

∑dj

i=0(c
(i)
j1 M1 + · · · + c

(i)
jtj

Mtj)(xj − αj)i. Similarly for gj .
Hence we see that if the assumption of SHL is true then the support of each

σjk will be a subset of support of fj−1. Therefore we can use fj−1 as the skeleton
of the solution of each σjk. The same is true for τjk. Although it is not stated
explicitly in [3], this is one of the underlying ideas of Kaltofen’s SHL (KHL).

In a classical implementation of MHL, at the jth step in the for loop (see
Algorithm 1) one gets the monic factors and then after the loop one applies
leading coefficient correction. However in [3] leading coefficient correction is also
done in the for loop. If we do leading coefficient correction after the for loop,
Kaltofen’s SHL idea reduces to solve the MDP by assuming for each 1 ≤ i ≤ dj ,
σji = u1M1 + · · · + utjMtj and τji = utj+1N1 + · · · + utj+rj

Nrj
for unknowns

uk and distinct monomials M1, . . . ,Mtj and N1, . . . , Nrj
in x1, . . . , xj−1. Then

by equating coefficients of the monomials appearing on the LHS and the RHS
in the MDP equation one gets a linear system in the uk’s. By construction this
system is homogeneous.

At the jth step of MHL (see Algorithm 1), throughout the loop σj0 and
τj0 remain the same. So, if the SHL assumption is true the assumed solution
structures of σji and τji will remain the same on the LHS and only the RHS of
the MDP will change. Hence just before the loop it is sufficient to find rj + tj
linearly independent equations among O(rjtj) linear equations while keeping
track of which monomials they correspond. We call this monomial set Mon,
construct the corresponding matrix L, and compute L−1. Then in the for loop,
for each i, one simply has to compute the Taylor coefficient of e

(i)
j of the error,

extract the coefficients from it corresponding to each monomial in Mon, form the
related vector v, and then compute w = L−1v to recover uk’s. This improvement
makes the algorithm faster by a factor of deg(aj , xj).

We present the jth step of KHL in Algorithm 3. We give an example to show
explicitly how it works in Appendix KHL.

Our organization of Kaltofen’s approach needs no forward translation to
xj
→ xj + αj and not back translation xj + αj
→ xj , and also does not need to
define the sets E

(i)
j−1 defined in [3]. This simplifies the algorithm.

Let B = aj(x1, . . . , xj +αj , αj+1, . . . , αn). Note that if we proceed in the way
explained in [3] then for each i in the for loop we should compute

B −
(

f
(i−1)
j + (

tj∑
k=1

ukMk)xi
j

) (
g
(i−1)
j + (

rj+tj∑
k=1

ukNk)xi
j

)
(1)

where f
(i−1)
j =

∑i−1
k=0 σjk(xj − αj)k, g

(i−1)
j =

∑i−1
k=0 τjk(xj − αj)k and then by

expanding (1) we need to form a linearly independent system by equating it with
the error. Then we should apply back translation xj + αj
→ xj .

388 M. Monagan and B. Tuncer

Algorithm 3. jth step of improved Kaltofen’s SHL for j > 2.
Input : aj ∈ Zp[x1, . . . , xj], fj−1, gj−1 ∈ Zp[x1, . . . , xj−1] and αj ∈ Zp where
aj , fj−1, gj−1 are monic in x1. Also, aj(x1, . . . , xj−1, xj = αj) = fj−1gj−1.
Let fj−1 = xdf

1 + cj1M1 + · · · + cjtjMtj and gj−1 = xdg
1 + sj1N1 + · · · + sjrjNrj where

M1, . . . , Mtj , and N1, . . . , Nrj are monomials in x1, . . . , xj−1 and df = degx1
f and

dg = degx1
g.

Output : fj , gj ∈ Zp[x1, . . . , xj] such that aj = fjgj

or FAIL (No such factorization exists.)

1: (σj0, τj0) ← (fj−1, gj−1).
2: (σj , τj) ← (σj0, τj0).
3: monomial ← 1.
4: Introduce unknowns u1, . . . , urj+tj and D ← σj0(u1N1 + · · · + urjNrj) +

τj0(urj+1M1 + · · · + utjMtj)
5: Expand D and collect the coefficients of the monomials in x1, . . . , xj−1. Each coef-

ficient is a homogeneous linear equation in uk’s.
6: Let S be the array of all these homogeneous equations and Mon be the array of

monomials such that Si is the coefficient of Moni in the expansion of D.
7: Find i1, . . . , irj+tj such that E = {Si1 , . . . , Sirj+tj

} is a linearly independent set.

Do this choosing equations of the form of c uk for some constant c first.
8: if no such E exists then return FAIL (SHL assumption is wrong) end if
9: Construct the (rj + tj) × (rj + tj) matrix L corresponding to the set E such that

the unknown ui corresponds to ith column of L
10: Compute L−1.
11: error ← aj − fj−1 gj−1

12: for i from 1 to deg(aj , xj) while error �= 0 do
13: monomial ← monomial × (xj − αj)
14: c ← coefficient of (xj −αj)

i in the Taylor expansion of the error about xj = αj

15: if c �= 0 then
16: for k from 1 to rj + tj do
17: vk ← the coefficient of Monik of the polynomial c
18: end for
19: w ← L−1v
20: σji ← ∑tj

k=1 wkMk and τji ← ∑rj
k=1 wk+tjNk.

21: (σj , τj) ← (σj + σji × monomial, τj + τji × monomial).
22: error ← aj − σjτj .
23: end if
24: end for
25: if error �= 0 then return FAIL else return (σj , τj) end if

We have implemented our improved KHL in Maple. The most time con-
suming step is the step 7 of Algorithm 3 where one has to find rj + tj linearly
independent equations out of O(rjtj) linear equations and invert the correspond-
ing matrix. The most obvious way to get the linear system is to start with a set
of one equation then add new equations to the set, one at time, until the system
has full rank rj + tj .

To implement this we use Maple’s RowReduce function which performs in-
place Gauss elimination on the input mod p Matrix L. This function is imple-

Using Sparse Interpolation in Hensel Lifting 389

mented in C and optimized. The time complexity is the time complexity of Gauss
elimination O((rj + tj)3) plus the time for the failed cases, which, according to
our experiments, is not negligible. In our experiments we have observed that
this approach is effective only when the factors are very sparse. According to
our experiments in Sect. 5.2, although our improved version of KHL is signifi-
cantly faster than that described in [3], it is still slower than Wang’s algorithm.

4.2 Our SHL Organization

Before explaining our SHL organization we make the following observation:

Lemma 1. Let f ∈ Zp[x1, . . . , xn] and by Support(f) we denote the set of
monomials present in f. Let α be a randomly chosen element in Zp and
f =

∑dn

i=0 bi(x1, . . . , xn−1)(xn − α)i be the (xn − α)−adic expansion of f, where
dn = degxn

f. Then for a given j with 0 ≤ j < dn,

Prob(Support(bj+1) � Support(bj)) ≤ |Support(bj+1)| dn − j

p − dn + j + 1
.

Proof. For simplicity assume that p > j, otherwise we will need to introduce
Hasse derivatives but the idea will be the same. We have

bj(x1, . . . , xn−1) =
1
j!

∂

∂xj
n

f(x1, . . . , xn−1, xn = α).

If we write f ∈ Zp[xn][x1, . . . , xn−1] as

f = c1(xn)M1 + c2(xn)M2 + · · · + ck(xn)Mk

where M1,M2, . . . ,Mk are the distinct monomials in x1, . . . , xn−1 and we denote
∂

∂xj
n
ci(xn) = c

(j)
i (xn) then

bj =
∂

∂xj
n

f(xn = α) = c
(j)
1 (α)M1 + c

(j)
2 (α)M2 + · · · + c

(j)
k (α)Mk.

bj+1 =
∂

∂xj+1
n

f(xn = α) = c
(j+1)
1 (α)M1 + c

(j+1)
2 (α)M2 + · · · + c

(j+1)
k (α)Mk.

For a given j > 0, if c
(j+1)
i (α) �= 0, but c

(j)
i (α) = 0 then Mi /∈ Support(bj).

We need to compute Prob(c(j)i (α) = 0 | c(j+1)
i (α) �= 0). If A is the event that

c
(j)
i (α) = 0 and B is the event that c

(j+1)
i (α) = 0 then

Prob(A |Bc) =
Prob(A) − Prob(B)Prob(A |B)

Prob(Bc)
≤ Prob(A)

Prob(Bc)
.

By the Schwartz-Zippel Lemma [8,13]

Prob(A)
Prob(Bc)

≤ degxn
(c(j)i (y))/p

1 − (degxn
(c(j+1)

i (y))/p)
=

(dn − j)/p

1 − (dn − j − 1)/p
=

dn − j

p − dn + j + 1
.

�

390 M. Monagan and B. Tuncer

Lemma 1 shows that for the sparse case, if p is big enough then the probability
of Support(bj+1) ⊆ Support(bj) is high.

Following the notation of Lemma1 above, for a given α ∈ Zp, let us call α
unlucky, if Support(bj+1) � Support(bj) for some 0 ≤ j < dn. So, for a given f ,
if c

(j)
i has a root but does not have a double root at xn = α, then α is unlucky for

bj+1, i.e. Support(bj+1) � Support(bj): Consider the following example where
Support(bj+1) � Support(bj) for j = 1, 2.

f := (x6
1 + x5

1 + x4
1)(x2 − 1)3 + (x5

1 + x4
1 + x3

1)(x2 − 1) + x7
1 + 1 ∈ Z509[x1, x2].

But if we choose another point 301 and compute the (x2 − 301)−adic expansion
of f =

∑3
i=0 bi(x1)(x2 − 301)i we have

b0 = x7
1 + 95x6

1 + 395x5
1 + 395x4

1 + 300x3
1 + 1

b1 = 230x6
1 + 231x5

1 + 231x4
1 + x3

1

b2 = 391x6
1 + 391x5

1 + 391x4
1

b3 = x6
1 + x5

1 + x4
1

and we see that Support(bj+1) ⊆ Support(bj) for 0 ≤ j ≤ 2. In fact for this
example α = 1, 209,−207 are the only unlucky points as can be seen by consid-
ering f ∈ Z509[x2][x1], that is,

f = x7
1 + (x2 − 1)3x6

1 + (x2 − 209)(x2 − 1)(x2 + 207)x5
1

+ (x2 − 209)(x2 − 1)x4
1 + (x2 − 1)x3

1 + 1.

Note that these points are unlucky only for b2. Before we give an upper bound for
the number of unlucky points we consider the following example. Let p = 1021,

f = (x2 − 841)(x2 − 414)(x2 − 15)(x2 − 277)x9
1

+ (x2 − 339)(x2 − 761)(x2 − 752)(x2 − 345)x7
1

and f (i) = ∂
∂xi

2
f(x1, x2). Then

f (1) = 4(x2 − 384)(x2 − 230)(x2 − 291)x9
1 + 4(x2 − 441)(x2 + 127)(x2 + 453)x7

1

f (2) = 12(x2 − 89)(x2 − 174)x9
1 + 12(x2 − 473)(x2 − 115)x7

1

f (3) = (24x2 − 93)x9
1 + (24x2 + 91)x7

1 and
f (4) = 24x9

1 + 24x7
1.

So, the maximum number of unlucky points occurs if each c
(j)
i splits for dif-

ferent points, hence |Support(f)|dn(dn+1)
p is an upper bound for the probability

of hitting an unlucky point. For a sparse polynomial with 1000 terms, dn = 20,
for p = 231 − 1, this probability is 0.000097. This observation suggests that we
use σi,j−1 (or τi,j−1) as a form of the solution of σji (or τij).

Back to our discussion on SHL, based on the observation above the jthstep
(j > 1) of our SHL organization is summarized in Algorithm4. In Appendix
SHL we give a concrete example to show how it works.

Using Sparse Interpolation in Hensel Lifting 391

Algorithm 4. jth step of Sparse Hensel Lifting for j > 1.
Input : aj ∈ Zp[x1, . . . , xj], fj−1, gj−1 ∈ Zp[x1, . . . , xj−1] and αj ∈ Zp where
aj , fj−1, gj−1 are monic in x1. Also, aj(x1, . . . , xj−1, xj = αj) = fj−1gj−1.
Output : fj , gj ∈ Zp[x1, . . . , xj] such that aj = fjgj or FAIL (No such factorization
exists.)

1: if rj > tj then interchange fj−1 with gj−1 end if
2: (σj0, τj0) ← (fj−1, gj−1).
3: (σj , τj) ← (σj0, τj0).
4: monomial ← 1.
5: error ← aj − fj−1 gj−1

6: for i from 1 to deg(aj , xj) while error �= 0 do
7: monomial ← monomial × (xj − αj)
8: c ← coefficient of (xj −αj)

i in the Taylor expansion of the error about xj = αj

9: if c �= 0 then
10: σg ← skeleton of τj,i−1

11: Solve the MDP σj0 τji + τj0 σji = c for σji and τji in Zp[x1, . . . , xj−1]
12: using σg and our sparse interpolation from Sect. 3.2.
13: if (σji, τji)=FAIL then
14: (σji, τji) ← BSDiophant(σj0, τj0, c, p)
15: if (σji, τji)=FAIL then restart the factorization with a different ideal
16: end if
17: end if
18: (σj , τj) ← (σj + σji × monomial, τj + τji × monomial).
19: error ← aj − σjτj .
20: end if
21: end for
22: if error �= 0 then return FAIL (No such factorization exists)
23: else return (σj , τj)
24: end if

4.3 Some Remarks on Algorithm 4

Step 8 in the for loop computes the ith Taylor coefficient of the error at xj = αj .
Maple used to compute this using the formula c = g(xj = αj)/i! where g is the
i’th derivative of error wrt xj . Instead, Maple now uses the more direct formula
c =

∑d
k=i coeff(error, xk

j)αk−i
j

(
k
i

)
where d = degxj

error which is three times
faster [7].

At step 10 Algorithm 4 makes the assumption Support(τji) ⊆ Support(τj,i−1)
based on Lemma 1. Note that, if the minimum of the number of the terms of each
factor of aj is t = min(#fj ,#gj), then at step 11 the probability of the failure of
the assumption is ≤ t

dj−i
p−dj−(i−1) ≤ tdj

p−2dj
and its cost is the evaluation cost + cost

of a system of linear equation solving which is bounded above by O(t2). Another
costly operation is the cost of multivariate division, σji = (c−σj0τji)/τj0, which
is hidden in sparse interpolation. If the algorithm fails to compute (σji, τji) at
step 11 then it passes to a safe way at step 14.

392 M. Monagan and B. Tuncer

Another expensive operation in the Algorithm4 is the error computation,
error ← aj − σjτj , in the for loop. To decrease this cost, one of the ideas in

[5] can be generalized to MHL. Let σj =
∑degxj

σj

s=0 σj,s(xj − αj)s and σ
(i)
j =∑i

s=0 σj,s(xj − αj)s (similarly for τ). One has

e
(i+1)
j = aj − σ

(i)
j τ

(i)
j

= aj − (σ(i−1)
j + σj,i(xj − αj)i)(τ (i−1)

j + τj,i(xj − αj)i)

= aj − σ
(i−1)
j τ

(i−1)
j − (σ(i−1)

j τj,i + τ
(i−1)
j σj,i)(xj − αj)i

= e
(i)
j − U (i)(xj − αj)i

where U (i) := (σ(i−1)
j τj,i + τ

(i−1)
j σj,i). Hence in the for loop we have the relation

e
(i+1)
j = e

(i)
j −(xj−αj)iU (i) for a correction term U (i) ∈ O((xj−αj)i−1). Also for

i � 0 it is known that (xj −αj)i divides e
(i)
j . So if we define c

(i)
j := e

(i)
j /(xj −αj)i

then c
(i)
j can be computed efficiently using

c
(i+1)
j = (c(i)j − U (i))/(xj − αj).

Hence we may compute c
(i)
j for i = 1, 2, . . . until it becomes zero instead of

computing e
(i)
j . According to our experiments, this observation decreases the

cost when the number of factors is 2. For more than 2 factors, the generalization
of it does not bring a significant advantage. So, in our implementations we only
use this update formula when the number of factors is 2.

Also note that, in our SHL organization (Algorithm4), we use only one of
the SHL assumptions and eliminate the recursive step in MHL to compute the
skeleton of the solution. In Kaltofen’s approach one cannot focus on some subset
of the uk’s as we do, since the system of equations are coupled.

5 Some Timing Data

To compare the result of our ideas with Wang’s, first we factored the determi-
nants of Toeplitz and Cyclic matrices of different sizes as concrete examples.
Note that the factors in these concrete examples are not sparse. Our results are
presented in Sect. 5.1. Then we created sparse random polynomials A,B using

xd
1 + randpoly([x2, .., xn], degree =d, terms =t)

in Maple and computed C = AB ∈ R. Note that we chose monic factors in x1 so
as not to complicate the algorithm with leading coefficient correction and to have
a fair comparison with Maple’s factorization algorithm. We used p = 231 −1 and
two ideal types for factoring C: ideal type 1: I = 〈x2 −0, x3 −0, · · · , xn −0〉 and
ideal type 2: I = 〈x2 − α1, x3 − α2, · · · , xn − αn〉 where the αi’s in practice are
small. However for sparse Hensel liftings, as explained in Sect. 4, it is important

Using Sparse Interpolation in Hensel Lifting 393

that αi’s should be chosen from a large interval. For these we chose αi’s randomly
from Zq −{0} with q = 65521. Our results are presented in Sect. 5.2. In Sect. 5.2
we also included the ideal type 1 case since according to our experiments it is the
only case where Wang’s algorithm is faster. This is because a sparse polynomial
remains sparse for the ideal type 1 and hence the number of MDP’s to be solved
significantly decreases and the evaluation cost of sparse interpolation becomes
dominant which is not the case for Wang’s algorithm for the ideal type 1 case.
However it is not always possible to use ideal type 1. For example, ideal type 1
cannot be used to factor Cyclic or Toeplitz determinants.

In the tables below all timings are in CPU seconds and are for the Hensel
liftings part of the polynomial factorization. They were obtained on an Intel
Core i5–4670 CPU running at 3.40 GHz.

tW is the time for Wang’s algorithm which Maple currently uses (see [2]),
tUW is the time for Wang’s algorithm with the improved Hensel,

tS is the time for Zippel’s sparse interpolation from Sect. 3.1,
tBS is the time for the improved sparse interpolation from Sect. 3.2,

tKHL is the time for the Kaltofen’s sparse Hensel lifting from Sect. 4.1,
tNBS is the time for the sparse Hensel lifting from Sect. 4.2,

tX(tY) means factoring time tX with tY seconds spent solving MDPs.

5.1 Factoring the Determinants of Cyclic and Toeplitz Matrices

Let Cn denote the n × n cyclic matrix and let Tn denote the n × n symmetric
Toeplitz matrix below.

Cn =

⎛
⎜⎜⎜⎜⎜⎝

x1 x2 . . . xn−1 xn

xn x1 . . . xn−2 xn−1

...
...

...
...

...
x3 x4 . . . x1 x2

x2 x3 . . . xn x1

⎞
⎟⎟⎟⎟⎟⎠

and Tn =

⎛
⎜⎜⎜⎜⎜⎝

x1 x2 · · · xn−1 xn

x2 x1 · · · xn−2 xn−1

.
xn−1 xn−2 · · · x1 x2

xn xn−1 · · · x2 x1

⎞
⎟⎟⎟⎟⎟⎠

The determinants of Cn and Tn are polynomials in n variables x1, x2, . . . , xn

which factor. For n > 1 det(Tn) has 2 factors and x1 + x2 + · · · + xn is a factor

Table 1. Timings (CPU seconds) for factoring determinants of n × n cyclic matrices.

n tW tUW tKHL tS tBS tNBS

5 0.004 (0.003) 0.014 (0.013) 0.07 (0.068) 0.014 (0.003) 0.015 (0.012) 0.014 (0.012)

7 0.057 (0.054) 0.054 (0.04) 1157.(1157.) 0.018 (0.006) 0.019 (0.014) 0.017 (0.014)

10 0.912 (0.666) - - 1.049 (0.823) 0.775 (0.549) 0.434 (0.179)

11 9.437 (8.785) 8.413 (8.107) ∞ 0.503 (0.23) 0.505 (0.226) 0.354 (0.071)

12 42.64 (38.38) - - 7.705 (4.35) 7.288 (3.913) 4.372 (1.047)

13 258.5 (208.9) 256.5 (208.9) ∞ 20.40 (8.936) 20.05 (8.408) 13.78 (1.697)

394 M. Monagan and B. Tuncer

of Cn. Table 1 presents timings for Hensel liftings in CPU seconds to factor
det Cn. For n = 6, 10, 12 the number of factors is 3,4 and 6 respectively. For
n = 5, 7, 11, 13 the number of factors is 2. We didn’t implement KHL to factor
more than 2 factors. This is why we didn’t include the timing for KHL for the
case n = 6. As can be seen from the data below KHL is not effective for n ≥ 7.
Table 2 presents timings for Hensel liftings in CPU seconds to factor detTn.

Table 2. Timings for factoring determinants of n × n symmetric Toeplitz matrices.

n tW tUW tKHL tS tBS tNBS

5 0.003 (0.002) 0.014 (0.001) 0.02 (0.018) 0.014 (0.014) 0.017 (0.017) 0.015 (0.012)

6 0.016 (0.013) 0.016 (0.005) 0.308 (0.306) 0.04 (0.026) 0.042 (0.031) 0.021 (0.008)

7 0.025 (0.012) 0.044 (0.029) 1157.5(1157.5) 0.031 (0.019) 0.032 (0.019) 0.045 (0.03)

8 0.057 (0.044) 0.072 (0.052) 119.88(119.86) 0.103 (0.086) 0.096 (0.087) 0.059 (0.026)

9 0.167 (0.126) 0.151 (0.123) 486.45(486.41) 0.279 (0.258) 0.194 (0.168) 0.088 (0.06)

10 0.654 (0.461) 0.629 (0.496) 25021.(25021.) 1.389 (1.245) 0.675 (0.531) 0.366 (0.222)

11 2.699 (2.06) 2.538 (2.11) ∞ 7.612 (7.109) 2.677 (1.751) 1.133 (0.589)

12 25.93 (18.68) 23.07 (17.95) ∞ 69.91 (65.8) 22.08 (15.72) 13.86 (7.579)

13 48.59 (37.43) 47.01 (37.73) ∞ 508.3 (495.8) 48.86 (36.11) 32.81 (20.36)

Table 3. The timing table for random data with ideal type 1

n/d/t tW tUW tS tBS

3/35/100 0.11 (0.06) 0.10 (0.06) 0.17 (0.13) 0.07 (0.03)

3/35/500 0.39 (0.16) 0.44 (0.17) 0.60 (0.36) 0.31 (0.08)

5/35/100 0.183 (0.15) 0.18 (0.15) 0.46 (0.43) 0.72 (0.69)

5/35/500 1.42 (0.53) 2.61 (0.51) 5.25 (2.92) 5.05 (2.68)

7/35/100 0.18 (0.16) 0.18 (0.15) 0.79 (0.76) 1.05 (1.02)

7/35/500 1.48 (0.71) 2.36 (0.65) 12.44 (10.43) 7.77 (5.61)

Table 4. The timing table for random data with ideal type 2

n/d/t tW tUW tKHL tS tBS tNBS

3/35/100 2.87 (1.88) 2.14 (1.88) 0.401 (0.046) 0.65 (0.38) 0.38 (0.08) 0.32 (0.04)

3/35/500 5.77 (3.69) 4.30 (3.57) 1.957 (0.057) 1.36 (0.61) 0.90 (0.14) 0.81 (0.05)

5/35/100 88.10 (86.28) 86.45 (85.64) 3.337 (2.551) 6.12 (5.21) 5.04 (4.11) 1.16 (0.36)

5/35/500 472.1 (402.5) 392.2 (370.7) 3732. (3717.) 67.57 (45.98) 48.1 (25.5) 26.0 (4.86)

6/35/100 309.1 (306.3) 323.8 (322.6) 4.383 (3.409) 12.53 (11.42) 9.29 (7.11) 1.49 (0.46)

7/35/100 800.0 (797.0) 829.7 (828.5) 10.22 (9.134) 16.82 (15.15) 10.8 (9.77) 1.58 (0.59)

Using Sparse Interpolation in Hensel Lifting 395

5.2 Random Data

Table 3 below presents timings for the random data where ideal type 1 is used.
For the ideal type 1 case SHL is not used, since the zero evaluation probability
is high for the sparse case. Table 4 below presents timings for the random data
where ideal type 2 is used. As can be seen KHL is effective only when the factors
have 100 terms or less.

6 Conclusion

We have shown that solving the multivariate polynomial diophantine equations
in sparse Hensel lifting algorithm can be improved by using sparse interpolation.
This leads to an overall improvement in multivariate polynomial factorization.
Our experiments show that the improvement is practical.

Appendix KHL

Suppose we seek to factor a = fg where f = x1
5+3x1

2x2x3
2−7x1

4−4x1x3+1
and g = x1

5 + x1
2x2x3 − 7x3

4 − 6. Let α3 = 2 and p = 231 − 1. Before lifting we
have a and

f (0) := f(x3 = 2) = x1
5 − 7x1

4 + 12x1
2x2 − 8x1 + 1

g(0) := g(x3 = 2) = x1
5 + 2x1

2x2 − 118.

If the assumption of SHL is true then we assume that f =
∑degx3

f

i=0 fi(x3 −
2)i and g =

∑degx3
g

i=0 gi(x3 − 2)i where each fi and gi are in the form

fi = c1x1
4 + c2x1

2x2 + c3x1 + c4 and gi = c5x1
2x2 + c6

for some unknowns C = {c1, c2, c3, c4, c5, c6}. First we construct

D =
(
x1

5 − 7x1
4 + 12x1

2x2 − 8x1 + 1
) (

c5x1
2x2 + c6

)
+

(
x1

5 + 2x1
2x2 − 118

) (
c1x1

4 + c2x1
2x2 + c3x1 + c4

)
.

Expanding D we see the system of homogeneous linear equations as coefficients

D = c1x1
9 + (c2 + c5) x1

7x2 + (2 c1 − 7 c5) x1
6x2 + c3x1

6

+ (c4 + c6) x1
5 + (2 c2 + 12 c5) x1

4x2
2 + (−118 c1 − 7 c6) x1

4

+ (2 c3 − 8 c5) x1
3x2 + (−118 c2 + 2 c4 + c5 + 12 c6) x1

2x2

+ (−118 c3 − 8 c6) x1 − 118 c4 + c6

We need 6 linearly independent equations from these. First we check whether
there are single equations. In this example we see that c1 and c3 corresponding
to monomials x1

9, x1
6. Then we go over the equations one by one to get a

396 M. Monagan and B. Tuncer

rank 6 system. In this example we see that equations corresponding to the set
Mon = {x1

9, x1
6, x1

7x2, x1
6x2, x1

5, x1
4} are linearly independent. We obtain

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 1 0
2 0 0 0 −7 0
0 0 0 1 0 1

−118 0 0 0 0 −7

⎤
⎥⎥⎥⎥⎥⎥⎦

and compute L−1. In the following e
(k)
3 denotes the coefficient of (x3 − 2)k in

the Taylor expansion of the error about x3 = 2. Let also f0 := f (0), g0 :=
g(0), f (k) :=

∑k
i=0 fi(x3 − 2)i, g(k) :=

∑k
i=0 gi(x3 − 2)i.

In Algorithm 3 v is the vector constructed by extracting the coefficients of
e
(k)
3 corresponding to monomials in Mon = {x1

9, x1
6, x1

7x2, x1
6x2, x1

5, x1
4} and

w = L−1v mod p. Now for the loop,
Step i = 1: error = a − f (0)g(0)

e
(1)
3 = 13x1

7x2 − 7x1
6x2 − 4x1

6 + 36x1
4x2

2 − 224x1
5

+1568x1
4 − 16x1

3x2 − 4103x1
2x2 + 2264x1 − 224

v =
[
0 −4 13 −7 −224 1568

]
w = L−1v =

[
0 12 −4 0 1 −224

]
f (1) = f (0) +

(
12x1

2x2 − 4x1

)
(x3 − 2)

= x1
5 − 7x1

4 + 12x1
2x2x3 − 12x1

2x2 − 4x1x3 + 1
g(1) = g(0) +

(
x1

2x2 − 224
)
(x3 − 2) = x1

5 + x1
2x2x3 − 224x3 + 330

Step i = 2 : error = a − f (1)g(1)

e
(2)
3 = 3x1

7x2 + 6x1
4x2

2 − 168x1
5 + 1176x1

4 − 2370x1
2x2 + 1344x1 − 168

v =
[
0 0 3 0 −168 1176

]
w = L−1v =

[
0 3 0 0 0 −168

]
f (2) = f (1) + 3x1

2x2(x3 − 2)2 = x1
5 + 3x1

2x2x3
2 − 7x1

4 − 4x1x3 + 1
g(2) = g(1) − 168(x3 − 2)2 = x1

5 + x1
2x2x3 − 168x3

2 + 448x3 − 342

Step i = 3 : error = a − f (2)g(2)

e
(3)
3 = −56x1

5 + 392x1
4 − 672x1

2x2 + 448x1 − 56
v =

[
0 0 0 0 −56 392

]
w = L−1v =

[
0 0 0 0 0 −56

]
f (3) = f (2) + 0 = x1

5 + 3x1
2x2x3

2 − 7x1
4 − 4x1x3 + 1

g(3) = g(2) − 56 (x3 − 2)3 = x1
5 + x1

2x2x3 − 56x3
3 + 168x3

2 − 224x3 + 106

Using Sparse Interpolation in Hensel Lifting 397

At the end of the 3rd iteration we have recovered f actually and so we could
obtain g = a/f via trial division and terminate. But let’s go further.

Step i = 4 : error = a − f (3)g(3)

e
(4)
3 = −7x1

5 + 49x1
4 − 84x1

2x2 + 56x1 − 7
v =

[
0 0 0 0 −7 49

]
w = L−1v =

[
0 0 0 0 0 −7

]
f (4) = f (3) + 0 = x1

5 + 3x1
2x2x3

2 − 7x1
4 − 4x1x3 + 1

g(4) = g(3) − 7 (x3 − 2)4 = x1
5 + x1

2x2x3 − 7x3
4 − 6

for i = 5, error = a − f (4)g(4) = 0 and we have the factors!

Appendix SHL

We give an example of our SHL. Suppose we seek to factor a = fg where

f = x1
8 + 2x1x2

2x4
3x5 + 4x1x2

2x3
3 + 3x1x2

2x4x5
2 + x2

2x3x4 − 5
g = x1

8 + 3x1
2x2x3x4

2x5 + 5x1
2x2x3

2x4 − 3x4
2x5

2 + 4x5

Let α3 = 1, p = 231 − 1. Before lifting x5 we have

f (0) := f(x5 = 1) = x1
8 + 4x1x2

2x3
3 + 2x1x2

2x4
3 + 3x1x2

2x4 + x2
2x3x4 − 5

g(0) := g(x5 = 1) = x1
8 + 5x1

2x2x3
2x4 + 3x1

2x2x3x4
2 − 3x4

2 + 4

satisfying a(x5 = α5) = f (0)g(0). If the SHL assumption is true then at the first
step we assume f =

∑degx5
f

i=0 fi(x5 − 1)i and g =
∑degx5

g

i=0 gi(x5 − 1)i where f1
and g1 are in the form

f1 =
(
c1x3

3 + c2x4
3 + c3x4

)
x1x2

2 + c4x2
2x3x4 + c5

g1 =
(
c6x3

2x4 + c7x3x4
2
)
x1

2x2 + c8x4
2 + c9

for some unknowns C = {c1, . . . , c9}. In the following e
(k)
5 denotes the coefficient

of (x5−1)k in the Taylor expansion of the error about x5 = 1. Let also f0 := f (0),
g0 := g(0), f (k) :=

∑k
i=0 fi(x5 − 1)i and g(k) :=

∑k
i=0 gi(x5 − 1)i.

We start by computing the first error term e
(1)
5 = a − f (0)g(0). We obtain

e
(1)
5 = 3x1

10x2x3x4
2 + 2x1

9x2
2x4

3 + 6x1
9x2

2x4 + 12x1
3x2

3x3
4x4

2 − 6x1
8x4

2

+ 10x1
3x2

3x3
2x4

4 + 12x1
3x2

3x3x4
5 + 30x1

3x2
3x3

2x4
2 + 27x1

3x2
3x3x4

3

+ 3x1
2x2

3x3
2x4

3 + 4x1
8 − 24x1x2

2x3
3x4

2 − 18x1x2
2x4

5 − 15x1
2x2x3x4

2

+ 16x1x2
2x3

3 − 20x1x2
2x4

3 − 6x2
2x3x4

3 + 36x1x2
2x4 + 4x2

2x3x4 + 30x4
2 − 20.

398 M. Monagan and B. Tuncer

The MDP to be solved is:

D := f0
((

c6x3
2x4 + c7x3x4

2
)
x1

2x2 + c8x4
2 + c9

)
+ g0

((
c1x3

3 + c2x4
3 + c3x4

)
x1x2

2 + c4x2
2x3x4 + c5

)
= e

(1)
5 .

Our aim is first to get
((

c6x3
2x4 + c7x3x4

2
)
x1

2x2 + c8x4
2 + c9

)
since it will

create a smaller matrix. For sparse interpolation we need 2 evaluations only: we
choose [x3 = 2, x4 = 3] and [x3 = 22, x4 = 32] and compute D([x3 = 2, x4 = 3]) :

(
x1

8 + 95x1x2
2 + 6x2

2 − 5
) (

(12 c6 + 18 c7) x1
2x2 + 9 c8 + c9

)
+

(
x1

8 + 114x1
2x2 − 23

) (
(8 c1 + 27 c2 + 3 c3) x1x2

2 + 6 c4x2
2 + c5

)
= 54x1

10x2 + 72x1
9x2

2 − 50x1
8 + 13338x1

3x2
3 + 324x1

2x2
3 − 270x1

2x2

− 6406x1x2
2 − 300x2

2 + 250

and D([x3 = 4, x4 = 9]). Calling BDP to solve these bivariate Diophan-
tine equations we obtain the solutions [σ1, τ1] = [54x1

2x2 − 50, 72x1x2
2] and

[σ2, τ2] = [972x1
2x2 − 482, 1512x1x2

2]. Hence we have

(12 c6 + 18 c7) x1
2x2 + 9 c8 + c9 = 54x1

2x2 − 50
(144 c6 + 324 c7) x1

2x2 + 81 c8 + c9 = 972x1
2x2 − 482

Then we solve the Vandermonde linear systems
[

12 18
144 324

] [
c6
c7

]
=

[
54
972

]
and

[
9 1
81 1

] [
c8
c9

]
=

[−50
−482

]

to obtain c6 = 0, c7 = 3, c8 = −6, c9 = 4. So g1 = 3x1
2x2x3x4

2 − 6x4
2 + 4.

Then by division we get f1 = (e(1)5 − f0g1)/g0 = 2x1x2x4
3 + 8x2x3

4. Hence

f (1) = f0 +
(
2x1x2

2x4
3 + 6x1x2

2x4

)
(x5 − 1)

g(1) = g0 +
(
3x1

2x2x3x4
2 − 6x4

2 + 4
)
(x5 − 1) .

Note that we use the division step above also as a check for the correctness of
the SHL assumption. Since the solution to the MDP is unique, we would have
g0 � (e(1)5 − f0g1), if the assumption was wrong.

Now following Lemma 1 by looking at the monomials of f1 and g1, we assume
that the form of the f2 and g2 are

f2 = c1x1x2
2x4

3 + c2x1x2
2x4 + c3

g2 = c4x1
2x2x3x4

2 + c5x4
2 + c6

for some unknowns C = {c1, . . . , c6}. After computing the next error a−f (1)g(1)

we compute e
(2)
5 and the MDP to be solved is:

D := f0
(
c4x1

2x2x3x4
2 + c5x4

2 + c6
)
+g0

(
c1x1x2

2x4
3 + c2x1x2

2x4 + c3
)

= e
(2)
5 .

Using Sparse Interpolation in Hensel Lifting 399

We need 2 evaluations again: Choose [x3 = 5, x4 = 6] and [x3 = 52, x4 = 62] and
compute

D([x3 = 5, x4 = 6]) :=(
x1

8 + 950x1x2
2 + 30x2

2 − 5
) (

180 c4x1
2x2 + 36 c5 + c6

)
+

(
x1

8 + 1290x1
2x2 − 104

) (
216 c1x1x2

2 + 6 c2x1x2
2 + c3

)
= 18x1

9x2
2 − 108x1

8 + 23220x1
3x2

3 − 104472x1x2
2 − 3240x2

2 + 540

and similarly for D([x3 = 25, x4 = 36]). Calling BDP we obtain the solu-
tions to these bivariate Diophantine equations [σ1, τ1] = [−108, 18x1x2

2] and
[σ2, τ2] = [−3888, 108x1x2

2] respectively. Hence we have 180 c4x1
2x2 + 36 c5 +

c6 = −108 and 32400 c4x1
2x2+1296 c5+c6 = −3888 respectively. Then we solve

the Vandermonde linear systems

[180] [c4] = [0] and
[

36 1
1296 1

] [
c5
c6

]
=

[−108
−3888

]

to obtain c4 = 0, c5 = −3, c6 = 0. So g2 = −3x4
2. Then by division we get

f2 = (e(2)5 − f0g2)/g0 = 3x1x2
2x4 (x5 − 1)2. Hence

f (2) = f (1) + 3x1x2
2x4 (x5 − 1)2

= x1
8 + 2x1x2

2x4
3x5 + 4x1x2

2x3
3 + 3x1x2

2x4x5
2 + x2

2x3x4 − 5
g(2) = g(1) +

(−3x4
2
)
(x5 − 1)2

= x1
8 + 3x1

2x2x3x4
2x5 + 5x1

2x2x3
2x4 − 3x4

2x5
2 + 4x5.

The next error e
(3)
5 = a − f (2)g(2) = 0 and we have the factors!

We used four evaluations and solved three (2 × 2) linear systems. For the
same problem KHL would need to find 9 linearly independent homogeneous
linear equations out of 28 equations first. A natural question is, is it possible for
KHL to focus on to some subset of the variables first? The answer is no. The
systems of equations constructed by KHL are coupled.

References

1. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, 3rd edn. Springer,
Heidleberg (2007)

2. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra.
Kluwer, Boston (1992)

3. Kaltofen, E.: Sparse Hensel Lifting. In: Caviness, B.F. (ed.) EUROCAL 1985.
LNCS, vol. 204, pp. 4–17. Springer, Heidelberg (1985)

4. Lee, M.M.: Factorization of multivariate polynomials. Ph.D. Thesis (2013)
5. Miola, A., Yun, D.Y.Y.: Computational aspects of Hensel-type univariate polyno-

mial greatest common divisor algorithms. In: Proceedings of EUROSAM 1974, pp.
46–54. ACM Press (1974)

6. Monagan, M.B., Tuncer, B.: Some results on counting roots of polynomials and
the Sylvester resultant. In: Proceedings of FPSAC 2016. DMTCS (to appear 2016)

400 M. Monagan and B. Tuncer

7. Monagan, M.B., Pearce, R.: POLY: a new polynomial data structure for Maple
17. In: Feng, R., Lee, W.-S., Sato, Y. (eds.) Computer Mathematics, pp. 325–348.
Springer, Heidelberg (2014)

8. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities.
J. ACM 27, 701–717 (1980). ACM Press

9. Wang, P.S.: An improved multivariate polynomial factoring algorithm. Math. Com-
put. 32, 1215–1231 (1978). AMS

10. Wang, P.S., Rothschild, L.P.: Factoring multivariate polynomials over the integers.
Math. Comput. 29(131), 935–950 (1975). AMS

11. Yun, D.Y.Y.: The Hensel Lemma in algebraic manipulation. Ph.D. Thesis (1974)
12. Zippel, R.: Interpolating polynomials from their values. J. Symbolic Comput. 9,

375–403 (1990). Academic Press
13. Zippel, R.E.: Probabilistic algorithms for sparse polynomials. In: Proceedings of

EUROSAM 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)
14. Zippel, R.E.: Newton’s iteration and the sparse Hensel algorithm. In: Proceedings

of SYMSAC 1981, pp. 68–72. ACM Press (1981)

A Survey of Satisfiability Modulo Theory

David Monniaux1,2(B)

1 Univ. Grenoble Alpes, VERIMAG, 38000 Grenoble, France
David.Monniaux@imag.fr

2 CNRS, VERIMAG, 38000 Grenoble, France

Abstract. Satisfiability modulo theory (SMT) consists in testing the
satisfiability of first-order formulas over linear integer or real arithmetic,
or other theories. In this survey, we explain the combination of propo-
sitional satisfiability and decision procedures for conjunctions known as
DPLL(T), and the alternative “natural domain” approaches. We also
cover quantifiers, Craig interpolants, polynomial arithmetic, and how
SMT solvers are used in automated software analysis.

1 Introduction

Satisfiability modulo theory (SMT) solving consists in deciding the satisfiability
of a first-order formula with unknowns and relations lying in certain theories.
For instance, the following formula has no solution x, y ∈ R:1

(x ≤ 0 ∨ x + y ≤ 0) ∧ y ≥ 1 ∧ x ≥ 1 . (1)

The formula may contain negations (¬), conjunctions (∧), disjunctions (∨) and,
possibly, quantifiers (∃, ∀).

A SMT-solver reports whether a formula is satisfiable, and if so, may pro-
vide a model of this satisfaction; for instance, if one omits x ≥ 1 in the preced-
ing formula, then its solutions include (x = 0, y = 1). Other possible features
include dynamic addition and retraction of constraints, production of proofs
and Craig interpolants (Sect. 4.2), and optimization (Sect. 4.3). SMT-solving has
major applications in the formal verification of hardware, software, and control
systems.

Quantifier-free SMT subsumes Boolean satisfiability (SAT), the canonical
NP-complete problem, and certain classes of formulas accepted by SMT-solvers
belong to higher complexity classes or are even undecidable. This has not
deterred researchers from looking for algorithms that, in practice, solve many

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013)/ERC Grant Agreement nr. 306595 “STATOR”.

1 This survey focuses on linear and polynomial numeric constraints over integers and
reals. SMT however encompasses theories as diverse as character strings, inductive
data structures, bit-vector arithmetic, and ordinary differential equations.

c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 401–425, 2016.
DOI: 10.1007/978-3-319-45641-6 26

402 D. Monniaux

relevant instances at reasonable costs. Care is taken that the worst-case cost
does not extend to situations that can be dealt with more cheaply.

Most SMT solvers follow the DPLL(T) framework (Sect. 2.2): a CDCL solver
for SAT (Sect. 2.1) is used to traverse the Boolean structure, and conjunctions
of atoms from the formula are passed to a solver for the theory. This approach
limits the interaction between theory values and Boolean reasoning, which led to
the introduction of natural domain approaches (Sect. 3). Finally, we shall see in
Sect. 4 how to go beyond mere quantifier-free satisfiability testing, by handling
quantifiers, providing Craig interpolants, or providing optimal solutions. Let us
now first see a few generalities, and how SMT-solving is used in practice.

1.1 Generalities

Consider quantifier-free propositional formulas, that is, formulas constructed
from unknowns (or variables) taking the values “true” (t) and “false” (f) and
propositional connectives ∨ (or), ∧ (and), ¬ (not); x̄ shall be short-hand for
¬x.2 A formula is: in negation normal form (NNF) if the only ¬ connectives are
at the leaves of its syntax tree (that is, wrap around unknowns but not larger
formulas); a clause if it is a disjunction of literals (a literal is an unknown or its
negation); in disjunctive normal form (DNF) if it is a disjunction of conjunctions
of literals; in conjunctive normal form (CNF) if it is a conjunction of clauses. If
A implies B, then A is stronger than B and B weaker than A. Uppercase letters
(F) shall denote formulas, lowercase letters (x) unknowns, and lowercase bold
letters (x) vectors of unknowns.

Satisfiability testing consists in deciding whether there exists a satisfying
assignment (or solution) for these unknowns, that is, an assignment making the
formula true. For instance, a = t, b = t, c = f is a satisfying assignment for
(a ∨ c) ∧ (b ∨ c) ∧ (ā ∨ c̄). In case the formula is satisfiable, a solver is generally
expected to provide such a satisfying assignment; in the case it is unsatisfiable,
it may be queried for an unsatisfiable core, a subset of the conjunction given as
input to the solver that is still unsatisfiable.

Satisfiability modulo theory extends propositional satisfiability by having
some atomic propositions be predicates from a theory. For instance, (x >
0 ∨ c) ∧ (y > 0 ∨ c) ∧ (x ≤ 0 ∨ c̄) is a formula over linear rational arithmetic
(LRA) or linear integer arithmetic (LIA), depending on whether x and y are to
be interpreted over the rationals or integers.

Different unknowns may range in different sets; for instance f(x) 	= f(y)∧x =
z +1∧z = y −1 has unknowns f : Z → Z and x, y, z ∈ Z. This formula is said to
be over the combination of uninterpreted functions and linear integer arithmetic
(UFLIA). In this formula, f is said to be uninterpreted because we give no
definition for it; we shall see in Sect. 2.6 that this formula has no satisfying
assignment and how to establish this fact automatically.

2 Further propositional connectives, such as exclusive-or, or “let x be e1 in e2” con-
structs may be also considered.

A Survey of Satisfiability Modulo Theory 403

Listing 1.1. Example of SMT-LIB 2 file. Assertions x ≥ 0, y ≤ 0, f(x) �= f(y) and
x+y ≤ 0 are added, then the problem is checked to be unsatisfiable. The last assertion
is retracted and replaced by x + y ≤ 1, the problem becomes satisfiable and a model is
requested (see Listing 1.2)

(set− logic QF UFLIA)
(set−option : produce−models t rue)
(declare−fun x () In t)
(declare−fun y () In t)
(declare−fun f (I n t) In t)
(as se r t (>= x 0))
(as se r t (>= y 0))
(as se r t (d i s t i n c t (f x) (f y)))
(push 1)
(as se r t (<= (+ x y) 0))
(check−sat)
(pop 1)
(as se r t (<= (+ x y) 1))
(check−sat)
(get−model)

1.2 The SMT-LIB Format and Available Theories

SMT solvers can be used (i) as a library, from an application programming
interface, typically from C/C++, Java, Python, or OCaml (ii) as an independent
process, from a textual representation, possibly through a bidirectional pipe.

APIs for SMT-solvers are not standardized, though there have been efforts such
as JavaSMT3 to provide a common layer for several solvers. In contrast,much effort
hasbeenput intodesigning and supporting the commonSMT-LIB [4] format, a tex-
tual representation (Listing 1.1); some solvers support other languages than SMT-
LIB, sometimes alongside it. Libraries of benchmark problems, sorted according

Listing 1.2. Z3’s answers to the SMT-LIB Listing 1.1

unsat
sa t
(model

(define−fun y () In t 1)
(define−fun x () In t 0)
(define−fun f ((x ! 1 In t)) In t

(i t e (= x ! 1 0) 2
(i t e (= x ! 1 1) 3

2)))
)

3 https://github.com/sosy-lab/java-smt [42].

https://github.com/sosy-lab/java-smt

404 D. Monniaux

to the theories involved and the presence or absence of quantifiers (Table 1), are
available in that format. New theories are proposed; for instance, a theory for con-
straints over IEEE-754 floating-point arithmetic [40] is under evaluation.

Table 1. Categories of formulas in SMT-LIB; e.g. QF UFLIA means quantifier-free com-
bination of uninterpreted functions.

Linear real arithmetic LRA

Linear integer arithmetic LIA

Linear mixed integer and real arithmetic LIRA

Bit-vector arithmetic BV

Nonlinear (polynomial) real arithmetic NRA

Nonlinear (polynomial) integer arithmetic NIA

Nonlinear (polynomial) mixed integer and real arithmetic NIRA

Uninterpreted functions UF

Arrays A/AX

Quantifier-free QF

Alas, some features, such as quantifier elimination or the extraction of Craig
interpolants (Sect. 4.2) do not have standard commands. Furthermore, not all
tools implement all operators and commands following the standard.

1.3 Use in Program Analysis Applications

A major use of SMT-solvers is the analysis of software. In most cases (but not
always), the solutions of the formula to be tested for satisfiability correspond
to execution traces of the software verifying certain desirable or undesirable
properties: for instance traces going into error states.

Symbolic Execution. In symbolic program execution [44], a program is exe-
cuted as though operating on symbolic inputs. Along a straight path in the
program, the semantics of the instructions and tests encountered accumulate
as a path condition, expressing the relationship between the final values and the
inputs. In case a branching instruction is encountered, the analyzer tests whether
either branch may be taken by checking for a solution to the conjunction of the
path condition and the guard associated with the branch: branches for which a
solution is known not to exist are not retained for the rest of the analysis. The
analysis thus explores a tree of possible executions, which in general does not
cover all possible executions of the program: this is acceptable in bug-finding
applications.

Pure symbolic execution may prove infeasible due to the large number of
paths to explore. This is especially true if the program involves loads and writes

A Survey of Satisfiability Modulo Theory 405

to memory, due to the aliasing conditions to test (“does this read correspond to
this write?”). Because of this, often what is done is a mixture of concrete and
symbolic execution, dubbed concolic: sometimes a non-symbolic value is picked
(e.g. memory allocation addresses) for simpler execution. In whitebox fuzzing,
concolic execution is applied from symbolic values coming from external inputs
(files, network communications) so as to reach security hazards [31].

Inductiveness Check and Bounded Model Checking. In some other cases
[30,36,37], the formula encodes the full set of executions between two control
locations in a program, such that there is no looping construct between these
locations: one Boolean variable is added per control location, expressing whether
or not the execution goes through that location.

In the Floyd-Hoare approach to proving the correctness of programs (see e.g.
[69]), the user is prompted for an inductive invariant for each looping construct: a
formula I that holds at loop initiation, and that, if it holds at one loop iteration,
holds at the next (inductiveness). In other words, there is no execution of the loop
guard and loop body that starts in I and ends in ¬I ′ (I ′ is I where the variables
are renamed in order to express their final, not initial, values). In modern tools,
the loop guard and body are turned into a first-order formula that is conjoined
with I and ¬I ′, then checked for unsatisfiability; or equivalently through aweakest
precondition computation, as in Frama-C [18].

Example 1. Consider the array fill program (assume n ≥ 0):

in t t [n] ;
for (in t i =0 ; i<n ; i ++) t [i] = 42 ;

In order to prove the postcondition ∀k 0 ≤ k < n ⇒ t[k] = 42, one needs the
loop invariant

I
�
= (0 ≤ i ≤ n) ∧ (∀k 0 ≤ 0 ≤ k < i ⇒ t[k] = 42) . (2)

The inductiveness condition is

(I ∧ i < n) ⇒ I[i �→ i + 1, t �→ update(t, i, 42)] , (3)

where update(t, i, 42) is the array t where i has been replaced by 42, and I[i �→ x]
is formula I where i has been replaced by x. This condition is checked by showing
that the negation of this formula is unsatisfiable — after Skolemization:

(0 ≤ i ≤ n) ∧ (∀k 0 ≤ k < i ⇒ t[k] = 42) ∧ i < n

∧ (¬(0 ≤ i + 1 ≤ n) ∨ (0 ≤ k0 ≤ i ∧ update(t, i, 42)[k0] 	= 42)) .
(4)

update(t, i, 42)[k0] expands into ite(k0 = i, 42, t[k0]) where ite(a, b, c) means “if a
then b else c”. The universal quantifier is instantiated with k = k0, a new unknown
tk = t[k] is introduced to handle the uninterpreted function f (Sect. 2.6) and the
resulting problem is solved over linear integer arithmetic (Sect. 2.4).

406 D. Monniaux

2 The DPLL(T) Architecture

Most SMT-solvers follow the DPLL(T) architecture: a solver for pure proposi-
tional formulas, following the DPLL or CDCL class of algorithms, drives decision
procedures for each theory (e.g. linear arithmetic) by adding or retracting con-
straints and querying for satisfiability. DPLL(T) and decision procedures for
many interesting logics are explained in more detail in e.g. [9,47].

2.1 CDCL Satisfiability Testing

We shall only give a cursory view of satisfiability testing and refer the reader to
e.g. [6] for more in-depth treatment.

Many algorithms for satisfiability testing for quantifier-free formulas only
accept formulas in conjunctive normal form (conjunction of clauses). Naive con-
version into conjunctive normal form, by application of distributivity of ∨ over
∧, incurs an exponential blowup. It is however possible to construct, from any
formula F , a formula F ′ in CNF but with additional free variables, such that
any satisfying assignment to F can be extended to a satisfying assignment on
F ′ and any satisfying assignment on F ′, restricted to the free variables of F , is
a satisfying assignment of F . Tseitin’s encoding is the simplest way to do so:
to any subformula e1 ∧ e2 of F , associate a new propositional variable xe1∧e2

and constrain it such that it is equivalent to e1 ∧ e2 by clauses ¬xe1∧e2 ∨ e1,
¬xe1∧e2 ∨ e2, ¬e1 ∨ ¬e2 ∨ xe1∧e2 (and similarly for e1 ∨ e2).

Example 2. Consider
(
(a ∧ b̄ ∧ c̄) ∨ (b ∧ c ∧ d̄)

) ∧ (b̄ ∨ c̄) . (5)

Assign propositional variables to sub-formulas:

e ≡ a ∧ b̄ ∧ c̄ f ≡ b ∧ c ∧ d̄ g ≡ e ∨ f h ≡ b̄ ∨ c̄ φ ≡ g ∧ h ; (6)

these equivalences are turned into clauses:

ē ∨ a ē ∨ b̄ ē ∨ c̄ ā ∨ b ∨ c ∨ e
f̄ ∨ b f̄ ∨ c f̄ ∨ d b̄ ∨ c̄ ∨ d ∨ f
ē ∨ g f̄ ∨ g ḡ ∨ e ∨ f
b ∨ h c ∨ h h̄ ∨ b̄ ∨ c̄
φ̄ ∨ g φ̄ ∨ h ḡ ∨ h̄ ∨ φ φ .

(7)

The model (a, b, c, d) = (t, f , f , t) of (5) is extended by (e, f, g) = (t, f , t),
producing a model of the system of clauses (7), i.e., the conjunction of these
clauses. Conversely, any model of that system, projected over (a, b, c, d), yields
a model of (5).

Let F ′ be the conjunction of clauses forming the problem. The Davis–
Putnam–Logemann–Loveland algorithm (DPLL) decides a propositional formula
in CNF (conjunction of clauses) by maintaining a partial assignment of the

A Survey of Satisfiability Modulo Theory 407

variables (that is, an assignment to only some of the variables) and Boolean
constraint propagation: if we have assigned a = f , b = t and we have a clause
a ∨ ¬b ∨ c, then we can derive c = t. If an assignment satisfies all clauses, then
the algorithm terminates with one solution. If it falsifies at least one clause, then
there is no solution for our starting partial assignment (thus no solution at all
if our starting partial assignment was empty). If propagation is insufficient to
conclude, then the algorithm chooses a variable x and a true value b and extends
the assignment with x = b; if no solution is found for that assignment, then it
backtracks and replaces it by x = b̄. The solver thus constructs a search tree.

The practical performance of the solver depends highly on the heuristics for
choosing x and b. Much effort has been put into researching these heuristics,
such as Variable State Independent Decaying Sum (VSIDS) [55]; understanding
why they work well is an active research topic. The Boolean constraint prop-
agation phase must be implemented very efficiently, using data structures that
minimize the traversal of irrelevant data (clauses that will not result in further
propagation); e.g. the two watched literals per clause scheme [49, Sect. 4.5.1.2].

From a run of the DPLL algorithm concluding to unsatisfiability one can
extract a resolution proof of unsatisfiability. The proof has the form of a tree
whose leaves are some of the original clauses of the problem (constituting an
unsatisfiable core) and whose inner nodes correspond to the choices made during
the search. Each inner node is the application of the resolution rule: knowing
C1 ∨ a and C2 ∨ ā, where C1 and C2 are clauses and a is a choice variable, one
can derive C1 ∨ C2, written:

C1 ∨ a C2 ∨ ā

C1 ∨ C2 . (8)

Example 3. Consider the system of clauses 7. Boolean clause propagation from
unit clause φ simplifies φ̄ ∨ g and φ̄ ∨ h into g and h respectively, and removes
clause ḡ ∨ h̄ ∨ φ. Since g and h are now t, we can remove clauses ē ∨ g and f̄ ∨ g,
b ∨ h, and c ∨ h, and simplify ḡ ∨ e ∨ f into e ∨ f and h̄ ∨ b̄ ∨ c̄ into b̄ ∨ c̄:

ē ∨ a ē ∨ b̄ ē ∨ c̄ ā ∨ b ∨ c ∨ e f̄ ∨ b
f̄ ∨ c f̄ ∨ d b̄ ∨ c̄ ∨ d ∨ f e ∨ f b̄ ∨ c̄ .

(9)

The system no longer has unit clauses to propagate and thus must pick a
literal, for instance b. By propagation, the system now reaches a contradiction.
Since contradiction was reached from assumption b, the converse b̄ must be
assumed. In fact, it is possible to derive the learned clause b̄ by resolution from
the set of clauses:

e ∨ f f̄ ∨ c
e ∨ c ē ∨ b̄

b̄ ∨ c b̄ ∨ c̄

b̄ . (10)

408 D. Monniaux

From any “unsatisfiable” run of a DPLL (even in the CDCL variant, see
below) solver, a resolution proof can be extracted. This is a fundamental limi-
tation of that approach, since it is known that for certain families of formulas,
such as the pigeonhole principle [33], any resolution proof has exponential size
in the size of the formula — thus any DPLL/CDCL solver will take exponential
time.

Performance was considerably increased by extending DPLL with clause
learning, yielding constraint-driven clause learning (CDCL) algorithms [49]. In
CDCL, when a partial assignments leads by propagation to the falsification of
a clause, the deductions made during this propagation are analyzed to obtain
a subset of the partial assignment sufficient to entail the falsification of this
clause. This subset yields a conjunction x̂1 ∧ · · · ∧ x̂n (where x̂i is either xi or
¬xi), such that its conjunction with F ′ is unsatisfiable. In other words, it yields
a clause ¬x̂1 ∨ · · · ∨ ¬x̂n that is a consequence of F ′ (in fact, that clause can
be obtained by resolution from F ′). This clause can thus be conjoined to the
problem F ′ without changing its set of solutions; but learning that clause may
help cut branches in the search tree early.

Again, the learned clause appears as the root of a resolution proof whose
leaves are clauses of the original problem. Since the same learned clause may be
used several times, the final proof appears as a directed acyclic graph (DAG, i.e.,
a tree with shared sub-branches). There exist formulas admitting DAG resolution
proofs exponentially shorter than the smallest tree resolution proof [67].

A resolution proof, or a more compact format, may thus be produced during
an “unsatisfiable” run. A highly optimized SAT or SMT solver is likely to contain
bugs, so it may be desirable to have an independent, simpler, possibly formally
verified checker reprocess such as proof [3,8,43].

2.2 DPLL(T)

The most common way to deal with atomic propositions inside satisfiability
testing is the so-called DPLL(T) scheme, combining a CDCL satisfiability solver
and a decision procedure for conjunctions of propositions from theory T . A
quantifier-free formula F over T , say

(x ≥ 0 ∨ 2x + y ≥ 1) ∧ (y ≥ 0) ∧ (x + y ≤ −1) , (11)

is converted into a propositional formula F ′ (here (a∨ b)∧ c∧d) by replacing
each atomic proposition by a propositional variable, using a dictionary (here,
x ≥ 0 �→ a, 2x + y ≥ 1 �→ b, y ≥ 0 �→ c, x + y ≤ −1 �→ d) and after conversion to
canonical form (so that e.g. x + y ≥ 1 and 2x + 2y − 2 ≥ 0 are considered the
same, and x + y < 1 is considered as ¬(x + y ≥ 1)). F ′ realizes a propositional
abstraction of F : any solution of F induces a solution of F ′, but not all solutions
of F ′ necessarily induce a solution of F .

Consider the solution a = t, b = f , c = t, d = t of F ′; it corresponds to

x ≥ 0 ∧ ¬(2x + y ≥ 1) ∧ y ≥ 0 ∧ x + y ≤ −1 . (12)

A Survey of Satisfiability Modulo Theory 409

The inequalities x ≥ 0 ∧ y ≥ 0 ∧ x + y ≤ −1 have no common solution; in
other words, ¬(a ∧ c ∧ d) is universally true. The theory clause ¬a ∨ ¬c ∨ ¬d can
be conjoined to F ′. There remains a solution a = f , b = t, c = t, d = t of F ′;
but it entails the contradiction 2x + y ≥ 1 ∧ y ≥ 0 ∧ x + y ≤ −1. The theory
clause b̄∨ c̄∨ d̄ is then conjoined to F ′. Then the propositional problem becomes
unsatisfiable, establishing that F has no solution. We have therefore refined the
propositional abstraction according to spurious counterexamples.

In current implementations, the propositional solver does not wait until a
total satisfying assignment is computed to call the decision procedure for con-
junctions of theory formulas. Partial assignments, commonly at each decision
point in the DPLL/CDCL algorithm, are tested for satisfiability. In addition,
the theory solver may, opportunistically, perform theory propagation: if it notices
that some asserted constraints imply the truth or falsehood of another known
predicate, it can signal it to the SAT solver. The theory solver should be incre-
mental, that is, suited for fast addition or retraction of theory constraints, keep-
ing enough internal state to avoid needless recomputation. The SAT solver should
be incremental as well, allowing the dynamic addition of clauses.

Multiple theories may be combined, most often by a variant of the Nelson–
Oppen approach [47, Chap. 10].

2.3 Linear Real Arithmetic

In the case of linear rational, or equivalently real, arithmetic (LRA), the the-
ory solver is typically implemented using a variant [24,25] of the simplex
algorithm [20,63]. The atomic (in)equalities from the formula, put in canoni-
cal form, are collected; new variables are introduced for the linear combinations
of variables that are not of the form ±x where x is a variable. For instance, (11)
is rewritten as (x ≥ 0 ∨ α ≥ 1) ∧ (y ≥ 0) ∧ (β ≤ −1), together with the system
of linear equalities α = 2x + y and β = x + y.

The simplex algorithm both maintains a tableau and, for each variable, a
current valuation and optional lower and upper bounds. At all times, the simplex
tableau contains a system of linear equalities equivalent to this system, such that
the variables are partitioned into those (basic variables) occurring (each alone)
on the left side and those occurring on the right side. The non-basic variables
are assigned one of their bounds, or at least a value between these bounds. The
simplex algorithm tries to fit each basic variable within its bounds; if one does
not fit, it makes it non-basic and assigns to it the bound that was exceeded,
and selects a formerly non-basic variable to make it basic, through a pivoting
operation maintaining the equivalence of the system of equalities.

The algorithm stops when either a candidate solution fitting all bounds is
found, either one equation in the simplex tableau can be shown to have no
solution using interval arithmetic from the bounds of the variables (the interval
obtained from the right hand side does not intersect that of the basic variable on
the left hand side). A pivot selection ordering is used to ensure that the algorithm
always terminates. Theory propagation may be performed by noticing that the
current tableau implies that some literals are satisfied.

410 D. Monniaux

Example 4. Consider the system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 ≤ 2x + y
−6 ≤ 2x − 3y

−1000 ≤ 2x + 3y ≤ 18
−2 ≤ −2x + 5y
20 ≤ x + y .

(13)

This system is turned into a system of equations (“tableau”) and a system
of inequalities on the variables:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a = 2x +y 2 ≤ a
b = 2x −3y −6 ≤ b
c = 2x 3y −1000 ≤ c ≤ 18
d = −2x +5y −2 ≤ d
e = x +y 20 ≤ e .

(14)

The variables on the left of the equal signs are deemed “nonbasic” and those
on the right are “basic”. The simplex algorithm performs pivoting steps on the
tableau, akin to those of Gaussian eliminations, until a tableau such as this one
is reached: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e = 7/16c −1/16d
a = 3/4c −1/4d
b = 1/4c −3/4d
x = 5/16c −3/16d
y = 1/8c +1/8d .

(15)

Now consider the first equation (e =). By interval analysis, knowing c ≤ 18
and d ≥ −2, −7/16c − 1/16d ≤ 8. Yet e ≥ 20, thus the system has no solu-
tion. These coefficients 7/16 and 1/16 can be applied to the original inequalities
constraining c and d, with coefficient 1 for that defining e, and the resulting
inequalities are summed into a trivially false one:

7/16 (−2x −3y) ≥ −7/16 × 18
1/16 (−2x +5y) ≥ −1/16 × 2
1 x +y ≥ 20

0 0 ≥ 28 .

(16)

By reading nonzero coefficients off the conflicting line of the simplex tableau,
one gets a minimal set of contradictory constraints: d+1 constraints, correspond-
ing to the nonbasic variable and the basic variables with nonzero multipliers,
where d is the dimension of the space. These multipliers may be presented as an
unsatisfiability witness to an independent proof checker.

Most SMT solvers implement the simplex algorithm using rational arith-
metic. In most cases arising from verification problems, rational arithmetic can
be performed using machine integers, without need for going into extended pre-
cision arithmetic [21]. A common implementation trick is to use a datatype
containing a machine-integer (numerator , denominator) pair or a pointer to an
extended precision rational.4 This approach is however very inefficient in the rare
4 e.g. ZArith https://forge.ocamlcore.org/projects/zarith.

https://forge.ocamlcore.org/projects/zarith

A Survey of Satisfiability Modulo Theory 411

cases where the solver goes a lot into extended precision: the size of numerators
and denominators grows fast.

This is why it was proposed to perform linear programming in floating-point
arithmetic [11,26,45,58].5 Because the results of floating-point computations
cannot be immediately trusted, some checking is needed. One idea is not to
recover floating-point numeric information, but the final partition between basic
and nonbasic variables [11,45,58]; once this partition is known, the tableau is
uniquely defined and can be computed by plain linear arithmetic — Gaussian
elimination, or better algorithms, including multimodular [66, Chap. 7] or p-
adic approaches.6 It is then easy to check the alleged conflicting line, in exact
precision.

In some cases, linear arithmetic reasoning may be used to prove the unsat-
isfiability of polynomial problems. One approach is to expand polynomials and
consider all monomials as independent variables (e.g. xy2 is replaced by a fresh
unknown vxy2). A refinement [50] is to consider lemmas stating that if two poly-
nomials are nonnegative, then so is their product: e.g. x− 1 ≥ 0∧ y − 2 ≥ 0 =⇒
vxy − 2x − y + 2 ≥ 0.7 Because the set of such products has size exponential in
the maximal degree, heuristics are used to pick the most promising ones. Exper-
iments have shown this approach to be competitive, even with a rudimentary
and sub-optimal connection between linear SMT-solver and nonlinear reasoning.

Some earlier solvers (e.g. CVC3) solver linear real arithmetic by Fourier-
Motzkin elimination [29]. This approach is generally not considered efficient,
since Fourier-Motzkin elimination tends to generate many redundant constraints,
which then may need to be eliminated by linear programming, which defeats the
purpose of avoiding using the simplex algorithm.

2.4 Linear Integer Arithmetic

In the case of linear integer arithmetic, the scheme generally used is the same as
the one generally used for integer linear programming: the solver first attempts
solving the rational relaxation of the problem (nonstrict inequalities are kept,
strict inequalities x < e are rewritten as x ≤ e − 1). If there is no solution over
the rationals, there is no integer solution. If a rational solution is found, and has
only integral coefficients (say, (x, y, z) = (0, 1, 2)), then the problem is decided.

If the proposed solution has non-integral coefficients (say, (x, y, z) = (13 , 0, 1)),
then it is excluded by a constraint removing not only that spurious solution but
5 The performance with linear programming solvers meant for large industrial

instances was however disappointing [26], due to overhead. Closer integration is
needed.

6 As implemented in e.g. Linbox (http://www.linalg.org/), IML (https://cs.uwaterloo.
ca/∼astorjoh/iml.html) [12] and SageMath (http://www.sagemath.org/).

7 One can in fact prove a form of completeness of that approach when the prob-
lem contains linear constraints defining a bounded polyhedron, and one nonlinear
constraint: if such a problem is unsatisfiable, then this can be proved by going to a
sufficiently high degree of products. This follows from Krivine–Handelman’s theorem
[34,46].

http://www.linalg.org/
https://cs.uwaterloo.ca/~astorjoh/iml.html
https://cs.uwaterloo.ca/~astorjoh/iml.html
http://www.sagemath.org/

412 D. Monniaux

a whole chunk of them. Traditional approaches include (i) branch-and-bound
[63, Sect. 24.1]: add a lemma excluding one segment of non-integral values of the
fractional unknowns (here, x ≤ 0 ∨ x ≥ 1); branching is however not guaranteed
to terminate in general [45]. (ii) Gomory cuts [63, Chap. 23] (iii) branch-and-cut
[56], a combination of both of the above iv) cuts from proofs or extended branches
[23], which can generate e.g. x ≤ z ∨ x ≥ z + 1.

The full integer linear decision procedure can be encapsulated and only
export theory lemmas and theory propagation, just as the rational linear proce-
dure, or export the branching lemma to the SMT solver, as a learned clause, so
as to allow propositional reasoning over it.

An alternative to linear programming plus branching and/or cuts is Pugh’s
Omega test [61], which may also be used to simplify constraints. This test is
based on Fourier-Motzkin elimination [29], with the twist that, due to divisibility
constraints, it may need to enumerate cases up to the least common multiple of
the divisors.

2.5 Exponential Behavior Due to Limited Predicate Vocabulary

Example 5. Let n > 0 be a constant integer. Let (ti)0≤i≤n, (xi)0≤i<n and
(yi)0≤i<n be real unknowns (or rational or integer). Let

Di
�
=(xi − ti ≤ 2) ∧ (yi − ti ≤ 3) ∧ ((ti+1 − xi ≤ 3) ∨ (ti+1 − yi ≤ 2)) , (17)

Pn
�
=

n−1∧
i=0

Di ∧ tn − t0 > 5n . (18)

These formulas are known as “diamond formulas” since they correspond to
paths in a difference graph composed of “diamonds”:

t0

x0

y0

t1

2

3

3

2

x1

y1

t2

2

3

3

2

tn−1

xn−1

yn−1

tn

2

3

3

2

To a human, it is obvious that Di ⇒ ti+1 ≤ ti + 5 and thus Pn is unsatisfiable.
A DPLL(T) solver, however, proceeds by elimination of contradictory conjunc-
tions of atoms from the original formula. Any contradictory conjunction of atoms
from Pn must include a conjunction of the form

∧n−1
i=0 Fi ∧ tn − t0 > 5n where

Fi is either (xi − ti ≤ 2)∧ (ti+1 −xi ≤ 3) or (yi − ti ≤ 3)∧ (ti+1 − yi ≤ 2). There
are an exponential number of such conjunctions, and a DPLL(T) solver has to
block them by theory lemmas one by one.

In other words, the proof system used by a DPLL(T) solver is sufficient to
prove that a “diamond formula” is unsolvable, but needs exponential proofs

A Survey of Satisfiability Modulo Theory 413

for doing so. Any pure DPLL(T) solver, whatever its heuristics and implemen-
tation, must thereof run in exponential time on this family of formulas. This
motivated the study of algorithms capable of inferring lemmas involving new
atoms (Sect. 3.2).

Diamond formulas are simplifications of formulas occurring in e.g. worst-case
execution time and scheduling applications. The solution proposed in [35] was
to pre-compute upper bounds tj − ti ≤ Bij on the difference of arrival times
between i and j (or, equivalently, the total time spent in the program between
i and j) and conjoin these bounds to the problems. These bounds are logically
implied by the original problem, and thus the set of solutions (valid execution
traces with timings) does not change; but the resulting formula isY considerably
more tractable. The lemmas tj − ti ≤ Bij and tk − tj ≤ Bik allow the solver to
avoid exploring many combinations of paths i → j and j → k: for instance, if
one searches for a path such that tk − ti ≥ 100, it is known that tk − tj ≤ 40,
and the solver explores a path i → j such that tj − ti ≤ 42 on this path, then
the solver can immediately cut the search without exploring the paths j → k in
detail.

2.6 Uninterpreted Functions and Arrays

There exists several variants of how to decide uninterpreted functions (UF) in
combination with other theories [47, Chap. 4]; we shall expose only one approach
here. A quantifier-free formula (e.g. f(x) 	= f(y) ∧ x = z + 1 ∧ z = y − 1) is
rewritten so that each application of an uninterpreted function is replaced by a
fresh variable (e.g. fx 	= fy ∧x = z +1∧z = y −1), several identical applications
getting the same variable. A solution in x, y, z, fx, fy is sought. If x = y but not
fx 	= fy in that solution, the implication x = y ⇒ fx = fy is conjoined to the
problem. Again, this is a counterexample-guided refinement of the theory.

Example 6. f(x) 	= f(y)∧x = z+1∧z = y−1, where x, y, z ∈ Z and f : Z → Z,
has no solution because x = z + 1 ∧ z = y − 1 implies that x = y, and it is then
impossible that f(x) 	= f(y). One may establish this by solving fx 	= fy ∧ x =
z + 1 ∧ z = y − 1, getting (x, y, z, fx, fy) = (1, 1, 0, 0, 1), noticing the conflict
between x = y and fx 	= fy and conjoining x = y ⇒ fx = fy.

Arrays are “functionally updatable” uninterpreted functions [47, Chap. 7]:
update(f, x0, y0) is the function mapping x 	= x0 to f [x] and x0 to y0.

3 Natural-Domain SMT

In DPLL(T) there is a fundamental difference between propositional and other
kinds of unknowns: the second are never dealt with directly during the search
process. In contrast, in natural-domain SMT, one directly constrains and assigns
to numeric unknowns during the search. After initial attempts [17,54], two main
directions arose.

414 D. Monniaux

3.1 Abstract CDCL (ACDCL)

The DPLL approach is to assign to each unknown (propositional variable) one
of t, f , and “undecided” — that is, a non-empty subset of the set of possible val-
ues {t, f}. Initially, all variables are assigned to “undecided”. Then, the Boolean
constraint propagation phase uses each individual clause as a constraint over
its literals: if all literals except for one are assigned to f , then the last one gets
assigned to t. In other words, information known about some variables leads to
information on other variables linked by the same constraint. If the information
derived is that some variable cannot be assigned some value (“contradiction”),
then it means the problem is unsatisfiable. In most cases, however, a contra-
diction cannot be derived by only the initial pass of propagation. In that case,
the system picks an undecided variable and splits the search between the t and
f cases. Several splits may be needed, thus the formation of a search tree. If
a contradiction is derived in a branch, that branch is closed and the system
backtracks to an earlier level.

That approach may be extended to variables lying within an arbitrary domain
D, say, the real numbers or the floating-point numbers. The system maintains
for each variable an assignment to a subset of D (several types of variables may
be used simultaneously, there may therefore be several D), chosen among an
abstract domain8 D� of subsets of D; say, for numeric variables, D� may be the
set of closed intervals of D. Constraints may now constrain variables of different
types, and each constraint acts as a propagator of information. For instance, if
there is a constraint x = y + z, and x is currently assigned the interval [1,+∞)
and y the interval [4, 10], then, applying z = x−y, one can derive x ∈ [−9,+∞):
the current interval for x may thus be refined.

Note that, for soundness, it is not important that the information propagated
should be optimally precise, as long as it contains the possible values: in the
above example, it would be sound to propagate x ∈ [−9.1,+∞) — but unsound
to derive xx ∈ [−8.99,+∞). In the case of interval propagation for D = R,
one sound way to implement it is using floating-point interval arithmetic with
directed rounding: the upper bound of an interval is rounded towards +∞, the
lower bound towards −∞.

ACDCL also applies clause learning, but in a more general manner than
CDCL [10, Sect. 5]. Consider F

�
= y = x ∧ z = x · y ∧ z ≤ −1 and a search

context with x ≤ −4. Then, by interval propagation, y ≤ −4, and z ≥ 16,
which contradicts z ≤ −1. CDCL-style clause learning would learn that x ≤ −4
contradicts F , and thus learn the clause ¬(x ≤ −4) ≡ x > −4. But there is a
weaker reason why such choice of x contradicts F : x < 0 is sufficient to ensure
contradiction; the solver can exclude a larger part of the search space by learning
the clause ¬(x < 0) ≡ x ≥ 0. Generalizing the reasons for a contradiction is a
form of abduction. One difficulty is that there may be no weakest generalization
expressible in the abstract domain: for instance, the choices x ≥ 10 and y ≥ 10
contradict the constraint x + y < 10, but x ≥ 0 ∧ y ≥ 10, x ≥ 5 ∧ y ≥ 5

8 Following the terminology of abstract interpretation; see [10] for more.

A Survey of Satisfiability Modulo Theory 415

and x ≥ 10 ∧ y ≥ 0 are three incomparable generalizations of the contradiction
(leading to three clauses x < 0 ∨ y < 10 etc.), which are optimal in the sense
that if one fixes the interval for x (resp. y), the interval for y (resp. x) is the
largest that still ensures contradiction.

3.2 Model-Constructing Satisfiability Calculus (MCSAT)

In DPLL(T) (i) only propositional atoms (including Boolean unknowns) are
assigned during the search (ii) the set of atoms considered does not change
throughout the search (this may cause exponential behavior, see Sect. 2.5
(iii) when the search process, after assigning b1, . . . , bn concludes that it is impos-
sible to assign a Boolean value to an atom bn+1, it derives a learned clause over
a subset of b1, . . . , bn that excludes the current assignment but also, hopefully,
many more. In contrast, in model-constructing satisfiability calculus (MCSAT)
[22], both propositional atoms and numeric unknowns get assigned during the
search, and new arithmetic predicates are generated through learning.

Linear Real Arithmetic. Assume variables x1, . . . , xn have been assigned
values v(x1), . . . , v(xn) in the current branch of the search, and that two atoms
xn+1 ≤ a and xn+1 ≥ b, where a and b are linear combinations of variables other
than xn+1, have been assigned to t, such that b > a in the assignment v; then it
is impossible to pick a value for xn+1 in that assignment. In fact, it is impossible
to pick a value for it in any assignment such that b > a.

Assignments that conflict for the same reason are eliminated by a Fourier-
Motzkin elimination [29] elementary step, valid for all x1, . . . , xn+1:

¬xn+1 ≤ a ∨ ¬xn+1 ≥ b ∨ a ≥ b . (19)

Example 7. Consider Example 5 with n = 3. The solver has clauses xi − ti ≤ 2,
yi − ti ≤ 3, ti+1 − xi ≤ 3 ∨ ti+1 − yi ≤ 2 for 0 ≤ i < 3, and t0 = 0, t3 ≥ 16.

The solver picks t0 �→ 0, t1 − x0 ≤ 3 �→ t, x0 �→ 0, t1 �→ 0, t2 − x1 ≤ 3 �→ t,
x1 �→ 0, t2 �→ 0, t3 − x2 ≤ 3 �→ t, x2 �→ 0. But then, there is no way to assign t3,
because of the current assignment x2 �→ 0 and the inequalities t3 − x2 ≤ 3 and
t3 ≥ 16. The solver then learns by Fourier-Motzkin:

¬(t3 ≥ 16) ∨ ¬(t3 − x2 ≤ 3) ∨ x2 ≥ 13 . (20)

which may in fact be immediately simplified by resolution with the original clause
t3 ≥ 16 to yield ¬(t3 − x2 ≤ 3) ∨ x2 ≥ 13. The assignment to x2 is retracted.

But then, there is no way to assign x2, because of the current assignment
t2 �→ 0 and the inequality x2−t2 ≤ 2. The solver then learns by Fourier-Motzkin:

¬(x2 ≥ 13) ∨ ¬(x2 − t2 ≤ 2) ∨ t2 ≥ 11 . (21)

By resolution, ¬(t3 − x2 ≤ 3) ∨ t2 ≥ 11. The truth assignment to t3 − x2 ≤ 3 is
retracted.

416 D. Monniaux

At this point, the solver has t0 �→ 0, t1 − x0 ≤ 3 �→ t, x0 �→ 0, t1 �→ 0,
t2 − x1 ≤ 3 �→ t, x1 �→ 0, t2 �→ 0, t3 − x2 ≤ 3 �→ f . By similar reasoning in
that branch, the solver derives t3 − x2 ≤ 3 ∨ t2 ≥ 11. By resolution between the
outcomes of both branches, one gets t2 ≥ 11.

By similar reasoning, one gets t1 ≥ 6 and then t0 ≥ 1, but then there is no
satisfying assignment to t0. The problem has no solution.

In contrast to the exponential behavior of DPLL(T) on Example 5, MCSAT
has linear behavior: each branch of each individual disjunction is explored only
once, and the whole disjunction is then summarized by an extra atom.

The dynamic generation of new atoms by MCSAT, as opposed to DPLL(T),
creates two issues. (i) If infinitely many new atoms may be generated, termina-
tion is no longer ensured. One can ensure termination by restricting the genera-
tion of new atoms to a finite basis (this basis of course depends on the original
formula); this is the case for instance if the numeric variables x1, . . . , xn are
always assigned in the same order, thus the generated new atoms are results of
Fourier-Motzkin elimination of xn, then of xn−1 etc. down to x2.9 In practice,
the interest of being able to choose variable ordering trumps the desire to prove
termination. (ii) Since many new atoms and clauses are generated, some garbage
collection must be applied, as with learned clauses in a CDCL solver.

Implementation-wise, note that, like a clause in CDCL, a linear inequality
is processed only when all variables except for one are assigned. Similar to two
watched literals per clause, one can apply two watched variables per inequality.

Nonlinear Arithmetic (NRA). The MCSAT approach can also be applied to
polynomial real arithmetic. Again, the problem is: assuming a set of polynomial
constraints over x1, . . . , xn, xn+1 have no solution over xn+1 for a given valuation
v(x1), . . . , v(xn), how can we explain this impossibility by a system of constraints
over x1, . . . , xn that excludes v(x1), . . . , v(xn) and hopefully many more?

Jovanović and de Moura [41] proposed applying a modified version of Collin’s
[15] projection operator in order to perform a partial cylindrical algebraic decom-
position. In that approach, known as NLSAT, one additional difficulty is that
assignments to variables may refer to algebraic reals, and thus the system needs
to compute to compute over algebraic reals, including as coefficients to polyno-
mials. It is yet unknown whether this approach could benefit from using other
projection operators such as Hong’s [39] or McCallum’s [51].

4 Beyond Quantifier-Free Decidability

4.1 Quantifiers

Quantifier Elimination by Virtual Substitution. In the case of some the-
ories, such as linear real arithmetic, a finite sequence of instantiations can be
9 Successive applications of Fourier-Motzkin may lead to very large sets of predicates,

thus this argument seems of mostly theoretical interest.

A Survey of Satisfiability Modulo Theory 417

produced such that F
�
= ∀x P (x) is equivalent to

∧n
i=1 P (vi); note that the vi

are not constants, but functions of the free variables of F , obtained by analyzing
the atoms of P . Because this approach amounts to substituting expressions into
the quantified variable, it is called substitution, or virtual substitution if appro-
priate data structures and algorithms avoid explicit substitution. Examples of
substitution-based methods include Cooper’s [16] for linear integer arithmetic,
Ferrante and Rackoff’s [27] and Loos and Weisfpenning’s [48] methods for linear
real arithmetic.

Example 8. Consider ∀y (y ≥ x ⇒ y ≥ 1). Loos and Weisfpenning’s method
collects the expression to which y is compared (here, x and 1) and then substi-
tutes them into y. For each expression e, one must also substitute e + ε where ε
is infinitesimal,10 and also substitute −∞ (equivalently, one can substitute e− ε
for each expression, and also +∞). The result is therefore

∧
e∈{x,x+ε,1,1+ε,−∞}

e ≥ x ⇒ e ≥ 1 (22)

or, after expansion and simplification, x ≥ 1.

We thus have eliminated the quantifier; by recursion over the structure of a
formula and starting at the leaves, we can transform any formula of linear real
arithmetic into an equivalent quantifier-free formula.11

In these eager approaches, the size of the substitution set may grow quickly
(especially for linear integer arithmetic, which may involve enumerating all cases
up to the least common multiple of the divisibility constants). For this rea-
son, lazy approaches were proposed where the substitutions are generated from
counterexamples, in much the same way that learned lemmas are generated in
DPLL(T) [7,60]. For a formula A(x)∧∀y B(x, y), the system first solves A(x) for
a solution x0, then checks whether there exists y such that ¬B(x0, y); if so, such
an y0 is generalized into one of the possible substitutions S1(x) and the system
restarts by solving A(x) ∧ B(x, S1(x). The process iterates until a solution is
found or the substitutions accumulated block all solutions for x; termination is
ensured because the set of possible symbolic substitutions is finite. Note that a
full quantifier elimination is not necessary to produce a solution.

Quantifier Elimination by Projection. In case a quantifier elimination, or
projection, algorithm, is available for conjunctions of constraints, as happens with
linear real arithmetic,12one can, given a formula ∃y F (x,y), find a conjunction

10 x ≥ K + ε with K real means x > K.
11 In the case of linear integer arithmetic, we need to enrich the language of the output

formula with constraints of divisibility by constants: e.g. ∃x y = 2x is equivalent to
quantifier-free 2 | x.

12 This amounts to projection of convex polyhedra, for which there exist algorithms
based on conversion to generators (vertices), Fourier-Motzkin elimination and prun-
ing, or parametric linear programming, among others [28].

418 D. Monniaux

C1 ⇒ F , project C1 over x as π(C1), conjoin ¬π(C1) to F and repeat the
process (generating C2 etc.) until the F becomes unsatisfiable [57].

∨
i Ci is

then equivalent to ∃y F . Again, this process may be made lazier, for nested
quantification in particular [59,60].

Instantiation Heuristics. The addition of quantifiers to theories (such as
linear integer arithmetic plus uninterpreted functions) may make them unde-
cidable. This does not however deter designers of SMT solvers from attempting
to have them decide as many formulas as possible. A basic approach is quanti-
fier instantiation by E-matching. If a formula in negation normal form contains
a subformula ∀x P (x), then this formula is replaced by a finite instantiation∧n

i=1 P (vi). The vi are extracted from the rest of the formula, possibly guided
by counterexamples. This approach is not guaranteed to converge: an infinite
sequence of instantiations may be produced for a given quantifier. In the case of
local theories, one can however prove termination.

4.2 Craig Interpolation

The following conjunction is satisfiable if and only if it is possible to go from a
model x0 of A to a model xn of B by a sequence of transitions (τi)1≤i≤n:

A(x0) ∧ τ1(x0,x1) ∧ · · · ∧ τn(xn−1,xn) ∧ B(xn) . (23)

In program analysis, A typically expresses a precondition, ¬B a postcondition,
xi the variables of the program after i instruction steps, and τi the semantics of
the i-th instruction in a sequence, and the formula is unsatisfiable if and only if
B is always true after executing that sequence of instruction starting from A.

A hand proof of unsatisfiability would often consist in exhibiting predicates
I1(x1), . . . , In−1(xn−1), such that, posing I0 = A and In = B, for all 0 ≤ i < n,

∀xi,xi+1 Ii(xi) ∧ τi+1(xi,xi+1) ⇒ Ii+1(xi+1) , (24)

along with proofs of these local inductiveness implications.13

A SMT-solver, in contrast, produces a monolithic proof of unsatisfiability
of (23): it mixes variables from different xi, that is, in program analysis, from
different times of the execution of the program. It is however possible to obtain
instead a sequence Ii satisfying (24) by post-processing that proof [13,14,52].

In any theory admitting quantifier elimination, such a sequence must exist:

Ii+1 ≡ ∃xi Ii(xi) ∧ τi+1(xi,xi+1) (25)

defines the strongest sequence of valid interpolants; the weakest is:

Ii ≡ ∀xi+1 τi+1(xi,xi+1) ⇒ Ii+1(xi+1) . (26)
13 In program analysis, this corresponds to stating “after the first instruction, the

program variables satisfy I1, but then if one executes the second instruction from
I1, the program variables then satisfy I2. . . ”, and {Ii} τi {Ii+1} constitute Hoare
triples.

A Survey of Satisfiability Modulo Theory 419

The strongest sequence corresponds to computing exactly the sequence of sets
of states reachable by τ1, then τ2 ◦ τ1 etc. from A.

Binary interpolation consists in: given A and B, produce I such that

∀x0,x1,x2 A(x0,x1) ⇒ I(x1) ⇒ B(x1,x2) , (27)

in which case, if the theory admits quantifier elimination, ∃x0 A(x0,x1) and
∀x2 B(x1,x2) are respectively the strongest and weakest interpolant, and any
I in between (∃x0 A(x0,x1) ⇒ I ⇒ ∀x2 B(x1,x2)) is also an interpolant.

One of the main uses of Craig interpolation in program analysis is to syn-
thesize inductive invariants, for instance by counterexample-guided abstraction
refinement in predicate abstraction (CEGAR) [53] or property-guided reacha-
bility (PDR). Interpolants obtained by quantifier elimination are too specific
(overfitting): for instance, strongest interpolants exactly fit the set of states
reachable in 1, 2, . . . steps. It has been argued that interpolants likely to be
useful as inductive invariants should be “simple” — short formula, with few
“magical constants”. A variety of approaches have been proposed for getting
such interpolants [2,65,68] or to simplify existing interpolants [38].

A

B

Fig. 1. Binary interpolation in linear arithmetic. The hashed areas represent A and B
(Eq. 28) respectively. A possible interpolant I between A and B (A ⇒ I, I ⇒ ¬B) is
the grey area x ≤ 1 ∨ y ≤ 1. The dashed lines define two other possible interpolants,
x + y ≤ 5 and x + 2y ≤ 9.

Example 9. Consider the interpolation problem A ⇒ I, I ⇒ ¬B (Fig. 1):

A1
�
= x ≤ 1 ∧ y ≤ 4 A2

�
= x ≤ 4 ∧ y ≤ 1

A
�
= A1 ∨ A2 B

�
= x ≥ 3 ∧ y ≥ 3 .

(28)

SMTInterpol14 and MathSAT15 produce I
�
= x ≤ 1∨y ≤ 1. This is due to

the way these tools produce interpolants from DPLL(T) proofs of unsatisfiability.
On this example, a DPLL(T) solver will essentially analyze both branches of
14 SMTInterpol 2.1-31-gafd0372-comp.
15 MathSAT 5.3.10.

420 D. Monniaux

A1 ∨ A2. The first branch yields A1 ⇒ ¬B. Finding I1 such that A1 ⇒ I1 and
I1 ⇒ ¬B amounts to finding a separating hyperplane between these two convex
polyhedra; I1

�
= x ≤ 1 works. Similarly, I2 such that A1 ⇒ I2 and I2 ⇒ ¬B can

be I2
�
= y ≤. I1 ∨ I2 is then produced as interpolant.

Yet, a search for a single separating hyperplane may produce x + 2y ≤ 9, or
x + y ≤ 5. The second hyperplane may seem preferable according to a criterion
limiting the magnitude of integer constants.

It is easy to see that if one can find interpolants for arbitrary conjunctions
A,B such that A ⇒ ¬B, one can find them between arbitrary quantifier-free for-
mulas, by putting them into DNF. Because such a procedure would be needlessly
costly due to disjunctive normal forms, the usual approach is to post-process a
DPLL(T) proof that A(x,y)∧B(y,z) is unsatisfiable [13,14]. First, interpolants
are derived for all theory lemmas: each lemma expresses that a conjunction of
atoms from the original formula is unsatisfiable, these atoms can thus be divided
into a conjunction α of atoms from A and a conjunction β of atoms from B, and
an interpolant I is derived for α ⇒ ¬β. Then, these interpolants are combined
following the resolution proof of the solver. This is how the interpolants from
Example 9 were produced by the solvers.

The problem is therefore: given A(x,y)∧B(y,z) unsatisfiable, where A and
B are conjunctions, how do we find I(y) such that A ⇒ I and I ⇒ ¬B? If
the theory is linear rational arithmetic, this amounts to finding a separating
hyperplane between the polyhedra A and B. Let us note

A
�
=

∧
i a

′′
i · x + ai · y ≥ a′

i , B
�
=

∧
j b

′′
j · z + bj · y ≥ b′

j . (29)

Each a′
i (resp. b′

j) is a pair (a′R
i , a′ε

i) lexicographically ordered, where a′R
i is

the real part and c′ε
i is infinitesimal; all other numbers are assumed to be real.

y ≥ (xR, xε) with xε > 0 and y ∈ R expresses that y > xR.
Since A∧B is unsatisfiable, by Farkas’ lemma, there exists an unsatisfiability

witness (λi), (μj), such that
∑

i λia
′′
i = 0

∑
j μjb

′′
j = 0∑

i λiai +
∑

j μjbj = 0
∑

i a′
i +

∑
j b′

j > 0 (30)

Such coefficients can in fact be read off the simplex tableau from the most
common way of implementing a DPLL(T) solver for linear real arithmetic, as
described in Sect. 2.3. Then the following is a valid interpolant (recall that the
right-hand side can contain infinitesimals, leading to >):

I
�
=

∑
i

(λiai) · y ≥
∑

i

λia
′
i (31)

For polynomial arithmetic, one approach replaces nonnegative reals by sums-
of-squares of polynomials, and Farkas’ lemma by Positivstellensatz [19].

A Survey of Satisfiability Modulo Theory 421

Another difficulty is posed for certain theories, for which the solving process
involves generating lemmas introducing atoms not present in the original. Con-
sider the approaches for linear integer arithmetic described in Sect. 2.4: except
for branch-and-bound, all can generate new constraints involving any of the
unknowns, without respecting the original partition of variables. This poses a
problem for interpolation: if interpolating for A(x, y) ∧ B(y, z) over linear real
arithmetic, we can rely on all atomic propositions being linear inequalities either
over x, y or y, z, but here, we have new atomic propositions that can involve both
x, z. Special theory-dependent methods are needed to get rid of these new propo-
sitions when processing the DPLL(T) proof into an interpolant [13,14].

4.3 Optimization

Instead of finding one solution, one may wish to find a solution that maximizes
(or nearly so) some function f .

A simple approach is binary search: provided one can get a lower bound l and
an upper bound h on the maximum f(x∗), one queries the solver for a solution
x such that f(x) ≥ m, where m = l+h

2 ; if such a solution is found, refine the
lower bound l := f(x) and restart, otherwise h := m and restart. Proceed until
l = h. This converges in finite time if f has integer value. This approach has
been successfully applied to e.g. worst-case execution time problems [35].

In the case of LRA (resp. LIA), optimization generalizes linear programming
(resp. linear integer programming) to formulas with disjunctions. In fact, lin-
ear programming can be applied locally to a polyhedron of solutions: when a
DPLL(T) solver finds a solution x of a formula F , it also finds a conjunction C
of atoms such that C ⇒ F ; C defines a polyhedron and one can optimize within
it, until a local optimum xl. Then one adds the constraint f(x) > f(xl) and
restart; the last xl found is the optimum (one can also detected unboundedness).
This approach can never enumerate the same C (or subsets thereof) twice and
thus must terminate. It may, however, scan an exponential number of useless
C’s; it may be combined with binary search for best effect [64].

5 Conclusion

Considerable progress has been made within the last 15 years on increasingly
practical decision procedures for increasingly large classes of formulas, even
though worst-case complexity is prohibitive, and sometimes even though the
class is undecidable.16 Major ingredients to that success were (i) lazy genera-
tion of lemmas, partial projections or instantiations, guided by counterexamples
16 Worst-case complexity, or completeness in complexity classes, is therefore not always

a good indicator of practical performance. Average complexity is difficult to define
(one needs to suppose a probability distribution on formulas) and may ill-describe
practical use cases: it is well-known that random SAT instances behave unlike indus-
trial examples [1], and same with random linear constraints [58]. For want of better
indication, performance is measured on libraries of benchmarks.

422 D. Monniaux

(as opposed to eager exhaustive generation, often explosive) (ii) generalization
of counterexamples so as to learn sufficiently general blocking lemmas (iii) tight
integration of propositional and theory-specific reasoning.

Nonlinear arithmetic reasoning (polynomials, or even transcendental
functions) is still a very open question. Current approaches in SMT [41] are based
on partial cylindrical algebraic decomposition [15]; possibly methods based on
critical points [5,32,62] could be investigated as well.

There are several challenges to using computer algebra procedures inside
a SMT solver. (i) These procedures may not admit addition or retraction of
constraints without recomputation. (ii) They may compute eagerly large sets
of formulas (as in conventional cylindrical algebraic decomposition). (iii) They
may be very complex and thus likely to contain bugs.17 Being able to produce
independently-checkable proof witnesses would help in this respect.

Acknowledgements. Thanks to the anonymous referees for their careful proofreading.

References

1. Achlioptas, D.: 8. In: [6], pp. 245–270
2. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Sharygina, N., Veith,

H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 313–329. Springer, Heidelberg (2013)
3. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular

integration of SAT/SMTsolvers to coq throughproofwitnesses. In: Jouannaud, J.-P.,
Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg (2011)

4. Barrett, C., Fontaine, P., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB). www.SMT-LIB.org (2016)

5. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer,
Berlin (2006)

6. Handbook of Satisfiability, vol. 185. IOS Press, Amsterdam (2009)
7. Bjørner, N.: Linear quantifier elimination as an abstract decision procedure. In:

Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 316–330. Springer,
Heidelberg (2010)

8. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kauf-
mann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer,
Heidelberg (2010)

9. Bradley, A.R., Manna, Z.: The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer, Berlin (2007)

10. Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding floating-
point logic with abstract conflict driven clause learning. Formal Methods Syst.
Des. 45(2), 213–245 (2014)

11. Barbosa, C., de Oliveira, D., Monniaux, D.: Experiments on the feasibility of using
a floating-point simplex in an SMT solver. In: Fontaine, P., Schmidt, R.A., Schulz,
S. (eds.) Workshop on Practical Aspects of Automated Reasoning (PAAR). EPiC
Series, vol. 21, pp. 19–28. Easychair (2012)

17 The author had several computer algebra packages crash or produce wrong results.
Perhaps running large libraries of benchmarks would help in finding such bugs.

www.SMT-LIB.org

A Survey of Satisfiability Modulo Theory 423

12. Chen, Z., Storjohann, A.: A BLAS based C library for exact linear algebra on
integer matrices. In: Proceedings of the ISSAC 2005, pp. 92–99. ACM, New York
(2005)

13. Christ, J.: Interpolation modulo theories. Ph.D. thesis, Albert-Ludwigs-
Universität, Freiburg (2015)

14. Christ, J., Hoenicke, J., Nutz, A.: Proof tree preserving interpolation. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 124–138.
Springer, Heidelberg (2013)

15. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975)

16. Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: Meltzer,
B., Michie, D. (eds.) Machine Intelligence 7, pp. 91–100. Edinburgh University
Press, Edinburgh (1972)

17. Cotton, S.: Natural domain SMT: a preliminary assessment. In: Chatterjee, K.,
Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 77–91. Springer,
Heidelberg (2010)

18. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012)

19. Dai, L., Xia, B., Zhan, N.: Generating non-linear interpolants by semidefinite pro-
gramming. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
364–380. Springer, Heidelberg (2013)

20. Dantzig, G.B., Thapa, M.N.: Linear Programming 1: Introduction. Springer,
New York (1997)

21. de Moura, L.M.: Personal communication
22. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In:

Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 1–12. Springer, Heidelberg (2013)

23. Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: a complete and practical tech-
nique for solving linear inequalities over integers. Form. Methods Syst. Des. 39(3),
246–260 (2011)

24. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

25. Dutertre, B., de Moura, L.M.: Integrating simplex with DPLL(T). Sri-csl-06-01,
SRI International, computer science laboratory (2006)

26. Faure, G., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: SAT modulo
the theory of linear arithmetic: exact, inexact and commercial solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 77–90. Springer,
Heidelberg (2008)

27. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real
addition with order. SIAM J. Comput. 4(1), 69–76 (1975)

28. Fouilhé, A.: Revisiting the abstract domain of polyhedra: constraints-only repre-
sentation and formula proof. Ph.D. thesis, Université de Grenoble (2015)

29. Fourier, J.: Histoire de l’acadmie, partie mathmatique. In: Mmoires de l’Acadmie
des sciences de l’Institut de France, vol. 7. Gauthier-Villars, xlvij-lv (1827) (1824)

30. Gawlitza, T., Monniaux, D.: Invariant generation through strategy iteration in
succinctly represented control flow graphs. Logic. Methods Comput. Sci. 8(3:29),
1–35 (2012)

424 D. Monniaux

31. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-
ing. Queue 10(1), 20:20–20:27 (2012)

32. Grigor’ev, D.Y., Vorobjov Jr., N.N.: Solving systems of polynomial inequalities in
subexponential time. J. Symb. Comput. 5(1–2), 37–64 (1988)

33. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)
34. Handelman, D.: Representing polynomials by positive linear functions on compact

convex polyhedra. Pacific J. Math. 132(1), 35–62 (1988)
35. Henry, J., Asavoae, M., Monniaux, D., Maiza, C.: How to compute worst-case

execution time by optimization modulo theory and a clever encoding of program
semantics. In: Zhang, Y., Kulkarni, P. (eds.) Languages, Compilers, Tools and
Theory for Embedded Systems (LCTES), pp. 43–52. ACM, New York (2014)

36. Henry, J., Monniaux, D., Moy, M.: PAGAI: a path sensitive static analyzer. In:
Jeannet, B. (ed.) Third Workshop on Tools for Automatic Program Analysis
(TAPAS 2012). Electronic Notes in Theoretical Computer Science 289, pp. 15–
25 (2012)

37. Henry, J., Monniaux, D., Moy, M.: Succinct representations for abstract interpre-
tation. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 283–299.
Springer, Heidelberg (2012)

38. Hoder, K., Kovács, L., Voronkov, A.: Playing in the grey area of proofs. In: Field,
J., Hicks, M. (eds.) ACM Symposium on Principles of Programming Languages
(POPL), pp. 259–272. ACM, New York (2012)

39. Hong, H.: An improvement of the projection operator in cylindrical algebraic
decomposition. In: Watanabe, S., Nagata, M. (eds.) Proceedings of the ISSAC
1990, pp. 261–264. ACM, New York (1990)

40. IEEE: IEEE standard for Binary floating-point arithmetic for microprocessor sys-
tems. ANSI/IEEE Standard 754–1985 (1985)

41. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Hei-
delberg (2012)

42. Karpenkov, E., Beyer, D., Friedberger, K.: JavaSMT: A unified interface for SMT
solvers in Java. In: VSTTE (2016, to appear)

43. Keller, C.: Extended resolution as certificates for propositional logic. In:
Blanchette, J.C., Urban, J. (eds.) Proof Exchange for Theorem Proving (PxTP).
EPiC Series, vol. 14, pp. 96–109. EasyChair (2013)

44. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

45. King, T., Barrett, C.W., Tinelli, C.: Leveraging linear and mixed integer program-
ming for SMT. In: Formal Methods in Computer-Aided Design, (FMCAD), pp.
139–146. IEEE (2014)

46. Krivine, J.L.: Anneaux préordonnés. J. d’analyse mathématique 12, 307–326
(1964)

47. Kroening, D., Strichman, O.: Decision Procedures. Springer, New York (2008)
48. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J.

36(5), 450–462 (1993)
49. Marques-Silva, J.P., Lynce, I., Malik, S.: 4. In: [6], pp. 131–153
50. Maréchal, A., Fouilhé, A., King, T., Monniaux, D., Périn, M.: Polyhedral approx-

imation of multivariate polynomials using Handelman’s theorem. In: Jobstmann,
B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 166–184. Springer,
Berlin (2016)

A Survey of Satisfiability Modulo Theory 425

51. McCallum, S.: An improved projection operation for cylindrical algebraic decom-
position. In: Quantifier Elimination and Cylindrical Algebraic Decomposition, pp.
242–268. Springer, Wien (1998)

52. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1),
101–121 (2005)

53. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

54. McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to richer logics. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462–476. Springer,
Heidelberg (2009)

55. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Design Automation Conference (DAC), pp.
530–535. ACM, New York (2001)

56. Mitchell, J.E.: Branch-and-cut algorithms for combinatorial optimization prob-
lems. In: Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Applied Optimiza-
tion. Oxford University Press, Oxford (2002)

57. Monniaux, D.: A quantifier elimination algorithm for linear real arithmetic. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330,
pp. 243–257. Springer, Heidelberg (2008)

58. Monniaux, D.: On using floating-point computations to help an exact linear arith-
metic decision procedure. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 570–583. Springer, Heidelberg (2009)

59. Monniaux, D.: Quantifier elimination by lazy model enumeration. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 585–599. Springer,
Heidelberg (2010)

60. Phan, A.D., Bjørner, N., Monniaux, D.: Anatomy of alternating quantifier sat-
isfiability (work in progress). In: Fontaine, P., Goel, A. (eds.) 10th International
Workshop on Satisfiability Modulo Theories (SMT), pp. 120–130 (2012)

61. Pugh, W.: The Omega test: A fast and practical integer programming algorithm
for dependence analysis. In: Supercomputing, pp. 4–13. ACM, New York (1991)

62. Safey El Din, M., Schost, É.: Polar varieties and computation of one point in each
connected component of a smooth real algebraic set. In: Proceedings of the ISSAC
2003, pp. 224–231. ACM, New York (2003)

63. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)
64. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) cost functions. In:

Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp.
484–498. Springer, Heidelberg (2012)

65. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg
(2012)

66. Stein, W.A.: Modular Forms, a Computational Approach. Graduate Studies in
Mathematics, vol. 79. AMS (2007)

67. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning: 2: Classical Papers
on Computational Logic 1967–1970, pp. 466–483. Springer, Berlin (1983)

68. Unno, H., Terauchi, T.: Inferring simple solutions to recursion-free horn clauses
via sampling. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
149–163. Springer, Heidelberg (2015)

69. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

Quadric Arrangement in Classifying Rigid
Motions of a 3D Digital Image

Kacper Pluta1,2(B), Guillaume Moroz5(B), Yukiko Kenmochi3,
and Pascal Romon4

1 Université Paris-Est, LIGM, Champs-sur-Marne, France
kacper.pluta@univ-paris-est.fr

2 Université Paris-Est, LAMA, Champs-sur-Marne, France
3 Université Paris-Est, LIGM, CNRS, ESIEE Paris, Champs-sur-Marne, France

yukiko.kenmochi@esiee.fr
4 Université Paris-Est, LAMA, UPEM, Champs-sur-Marne, France

pascal.romon@u-pem.fr
5 INRIA Nancy-Grand-Est, Project Vegas, Villers-lès-Nancy, France

guillaume.moroz@inria.fr

Abstract. Rigid motions are fundamental operations in image process-
ing. While bijective and isometric in R3, they lose these properties when
digitized in Z3. To understand how the digitization of 3D rigid motions
affects the topology and geometry of a chosen image patch, we classify
the rigid motions according to their effect on the image patch. This clas-
sification can be described by an arrangement of hypersurfaces in the
parameter space of 3D rigid motions of dimension six. However, its high
dimensionality and the existence of degenerate cases make a direct appli-
cation of classical techniques, such as cylindrical algebraic decomposition
or critical point method, difficult. We show that this problem can be first
reduced to computing sample points in an arrangement of quadrics in
the 3D parameter space of rotations. Then we recover information about
remaining three parameters of translation. We implemented an ad-hoc
variant of state-of-the-art algorithms and applied it to an image patch
of cardinality 7. This leads to an arrangement of 81 quadrics and we
recovered the classification in less than one hour on a machine equipped
with 40 cores.

1 Introduction

Rigid motions (i.e., rotations, translations and their compositions) defined on Z3

are simple yet crucial operations in many image applications (e.g., image regis-
tration [33] and motion tracking [32]). However, it is also known that such oper-
ations cause geometric and topological defects [18,19,22]. As such alterations
happen locally, due to digitization, discrete motion maps have been studied for
small image patches, in order to understand such defects at local scale [20,21,23].

For such a local analysis, one wishes to generate all possible images of an
image patch under digitized rigid motions. In digital geometry and combina-
torics, some complexity analysis of such a problem has been made for some
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 426–443, 2016.
DOI: 10.1007/978-3-319-45641-6 27

Quadric Arrangement in Classifying Rigid Motions of a 3D Digital Image 427

geometric transformations. The complexities are related to the size of a given
image patch in general: O(n3) for 2D rotations [2]; O(n9) for 2D rigid motions
[17] and O(n18) for 2D affine transformations [10], where n stands for a diameter
of a subset of an image patch. Later, in this article we show that the theoretical
complexity of such a problem for 3D rigid motions is O(n24).

However, there are few algorithms available for generating all the transformed
images from a given image patch. Algorithms known to us are: 2D rotations [21];
3D rotations around a given rational axis [30,31]; 2D rigid motions [17,23] and
2D affine transformations [10]. However, none of them can be applied to 3D rigid
motions.

In this article, we reformulate this classification problem on a finite digital
image as an arrangement of quadrics, containing many degenerate cases. We
then solve the problem by computing all the 3D open cells in this arrangement.
The original problem involves a naive decomposition of the six dimensional para-
meter space of 3D rigid motions, and can be formulated as an arrangement of
hypersurfaces given by polynomials of degree two with integer coefficients. Our
goal is to compute for each full–dimensional open cell at least one representative
point, so-called sample point. The state-of-the-art techniques such as cylindri-
cal algebraic decomposition or critical point method [3] are burdened by double
exponential [5] and exponential [26] complexity respectively, with respect to the
number of variables. Therefore, their direct application to the problem of decom-
position of the six dimensional parameter space of 3D digitized rigid motions are
practically inefficient. Indeed, high dimensionality and existence of cases such as
asymptotic critical values [13]—e.g., a plane orthogonal to a coordinate axis is
tangent to a hypersurface in a point at infinity—make a computation of such an
arrangement difficult.

In this article, we propose an ad-hoc method as follows. We first show that
the problem can be simplified by uncoupling the six parameters of 3D rigid
motions to end up with two systems in three variables, and start by studying an
arrangement of quadrics in R3. These two systems correspond to the rotational
and translational parameters of rigid motions, respectively. In order to detect
all topological changes along one non-generic, chosen direction by sweeping a
plane, we compute all critical points including asymptotic critical values in this
arrangement of quadrics. Moreover, we compute at least one sample point for
each open full dimensional cell in the arrangement – sample points of full dimen-
sional components provide information to generate different images of an image
patch under digitized rigid motions. Our strategy is similar to the one proposed
by Mourrain et al. [15] where the main differences are: we do not use generic
directions: we handle asymptotic cases and give new criteria to compute critical
values in polynomials of degree two; we compute and store at least one sample
point for each full dimensional open cell where Mourrain et al. [15] compute full
adjacency information for all cells in an arrangement; moreover, we precompute
all critical values a priori while in the former approach only one type of critical
values needs to be computed before the main algorithm. Those sample points are
then used to decompose the other three dimensional parameter space. Finally,

428 K. Pluta et al.

our implementation is provided together with a numerical experiment for a small
image patch.

2 Classifying Rigid Motions of a 3D Digital Image

2.1 Rigid Motions on the 3D Cartesian Grid

Rigid motions on R3 are bijective isometric maps defined as
∣∣∣∣U : R3 → R3

x �→ Rx + t (1)

where t = (t1, t2, t3) ∈ R3 is a translation vector and R is a rotation matrix. Let
A be a skew-symmetric matrix

A =

⎡
⎣ 0 c −b
−c 0 a
b −a 0

⎤
⎦

where a, b, c ∈ R and I be the 3 × 3 identity matrix. Then almost any rotation
matrix R can be obtained by the Cayley transform [4]:

R = (I−A)(I + A)−1

=
1

1 + a2 + b2 + c2

⎡
⎣1 + a2 − b2 − c2 2(ab − c) 2(b + ac)

2(ab + c) 1 − a2 + b2 − c2 2(bc − a)
2(ac − b) 2(a + bc) 1 − a2 − b2 + c2

⎤
⎦ .

(2)

Indeed, rotations by π around any axis can only be obtained by the Cayley trans-
form as a limit: angles of rotation converge to π when a, b, c tend to infinity [29].
In practice, this constraint is negligible and does not affect generality of our study
(see the following section which discusses the evolution of an image patch under
3D digitized rigid motions). Using this formula, a rigid motion is parametrized by
the six real parameters (a, b, c, t1, t2, t3).

According to Eq. (1), we generally have U(Z3) � Z3. As a consequence, in
order to define digitized rigid motions as maps from Z3 to Z3, we combine, as
usual, the results of the rotation with a digitization operator

∣∣∣∣D : R3 → Z3

(x1, x2, x3) �→
(⌊

x1 + 1
2

⌋
,
⌊
x2 + 1

2

⌋
,
⌊
x3 + 1

2

⌋)

where �s� denotes the largest integer not greater than s. The digitized rigid motion
is thus defined by U = D ◦ U|Z3 . Due to the behavior of D that maps R3 onto Z3,
digitized rigid motions are, most of the time, non–bijective. However, some are,
and an algorithmic approach to these digitized rotations is given in [24].

Quadric Arrangement in Classifying Rigid Motions of a 3D Digital Image 429

Fig. 1. An example of discontinuity of U . In (a) and (b) the image U(c) remains
within the same unit cube—digitization cell—centered around the origin depicted in
blue; thus the image U(c) is the same for the two digitized motions U associated to the
continuous motions U that slightly differ with respect to the parameters. However, the
point v = c+(1, 0, 0)t, has distinct images U(v) in (a) and (b); in (a), the digitization
operator D sends U(v) onto the green integer point, while in (b), it sends it onto the
red one (Color figure online)

2.2 Image Patch and Its Alterations Under Digitized 3D Rigid
Motions

Let us consider a finite set N ⊂ Z3, called an image patch whose center c
and radius r of N are given by c = 1

|N |
∑

v∈N v and r = maxv∈N ‖v − c‖,
respectively. Note that, in this article, we consider c as the origin, for simplicity.
Next, we express the evolution of such an image patch N under digitized rigid
motions U .

The digitized rigid motions U = D ◦ U are piecewise constant, and thus
non-continuous, which is a consequence of the nature of the digitization operator
D. In particular, the image U(v) of a given point v may remain constant as
the parameters of U vary, and then suddenly jump from one point of Z3 to
another. In other words, an image patch N evolves non-continuously, under
digitized rigid motions, in accordance with the parameters of U that underlies
U (see Fig. 1). Hereafter, without loss of generality we assume that U(c) stays
in the digitization cell of c, namely U(c) = c, since translation by an integer
vector would not change the geometry of N . Under this assumption we have
that t ∈ (− 1

2 , 1
2

)3. Moreover, thanks to symmetry (reflections and rotations) we
consider only non-negative a, b, c.

Studying the non-continuous evolution of an image patch N is equivalent
to study the discontinuities of U(v) for every v ∈ N \ {c}, which occur when
U(v) is on the half-grid plane, namely a boundary of a digitization cell. This is
formulated by

Riv + ti = ki − 1
2

(3)

where ki ∈ H(N) = Z ∩ [−r′, r′],Ri is the i-th row of the rotation matrix for
i ∈ {1, 2, 3} and r′ is the longest radius of U(N) for all U , so that r′ = r +

√
3.

430 K. Pluta et al.

3 Arrangement of Quadrics

3.1 The Problem as an Arrangement of Hypersurfaces

For any image patch N , the parameter space

Ω =
{

(a, b, c, t1, t2, t3) ∈ R6 | a, b, c ≥ 0,−1
2

< ti <
1
2

for i = 1, 2, 3
}

is partitioned by a set of hypersurfaces given by Eq. (3) into a finite num-
ber of connected subsets, namely, 6D open cells whose points induces differ-
ent rigid motions U|N but identical digitized rigid motions U|N = D ◦ U|N .
For a given image patch N of radius r, hypersurfaces (3) in Ω are given by
the possible combinations of integer 4–tuples (v1, v2, v3, ki) for i = 1, 2, 3 where
v = (v1, v2, v3) ∈ N \ {c} and ki ∈ H(N). Since |N | − 1 is in O(r3) and |H(N)|
is in O(r), the number of considerable hypersurfaces is in O(r4), and thus in
accordance with [8, Theorem 21.1.4] the overall complexity of the arrangement
is theoretically bounded by O(r24).

Our goal is to compute for each 6D open cell in Ω at least one representa-
tive point, a so-called sample point. As the direct application of the cylindrical
algebraic decomposition or critical points method to this problem is practically
inefficient – due to the high dimensionality and existence of degenerate cases
that make computation of the arrangement difficult. Therefore, in the following
discussion we develop an indirect but still exact strategy.

3.2 Uncoupling the Parameters

The first idea of our strategy consists in uncoupling the parameters in the six
dimensional parameter space Ω. Namely, we show that by considering the dif-
ferences between the hypersurfaces given in Eq. (3) for different v ∈ N and
k ∈ H(N)3, we can reduce the problem to the study of an arrangement of
surfaces in the (a, b, c)–space, and then lift the solution to the six dimensional
space.

Let us consider a rigid motion defined by R and t. The condition for having
U(v) = k = (k1, k2, k3) ∈ Z3 where v ∈ N is

ki − 1
2

< Riv + ti < ki +
1
2

for i = 1, 2, 3. Equivalently,

ki − 1
2
−Riv < ti < ki +

1
2
−Riv. (4)

Let us call a configuration a list of couples (v,k), which describe how the image
patch N is transformed. This configuration can be described as a function

∣∣∣∣F : N → H(N)3

v = (v1, v2, v3) �→ k = (k1, k2, k3).

Quadric Arrangement in Classifying Rigid Motions of a 3D Digital Image 431

We want to ascertain whether a given configuration F arises from some digitized
rigid motion U , i.e., corresponds to some parameters a, b, c, t1, t2, t3. Then the
inequalities (4) state precisely the necessary and sufficient conditions for the
existence of the translation part t of such a rigid motion, assuming that a, b, c
are already known. Let us now remark that all these inequalities can be summed
up in three inequalities indexed by i:

max
v∈N

(
F (v)i − 1

2
−Riv

)
< min

v∈N

(
F (v)i +

1
2
−Riv

)
. (5)

or, equivalently to the following list of inequalities

∀v,v′ ∈ N , F (v′)i − 1
2
−Riv′ < F (v)i +

1
2
−Riv. (6)

The key observation is that we have eliminated the variables t1, t2, t3 and have
reduced to a subsystem of inequalities in a, b, c. Moreover, due to the rational
expression in the Cayley transform (2), we may use the following polynomials of
degree 2:

qi[v, ki](a, b, c) = (1 + a2 + b2 + c2)(2ki − 1 − 2Riv), (7)

for i = 1, 2, 3, namely

q1[v, k1](a, b, c) = −2(1 + a2 − b2 − c2)v1 − 4(ab − c)v2 − 4(b + ac)v3 + 2k1 − 1,

q2[v, k2](a, b, c) = −4(ab + c)v1 − 2(1 − a2 + b2 − c2)v2 − 4(bc − a)v3 + 2k2 − 1,

q3[v, k3](a, b, c) = −4(ac − b)v1 − 4(a + bc)v2 − 2(1 − a2 − b2 + c2)v3 + 2k3 − 1.

Inequality (6) can be rewritten as the quadratic polynomial inequalities

∀v,v′ ∈ N , Qi[v,v′, F (v)i, F (v′)i](a, b, c) > 0,

where

Qi[v,v′, ki, k
′
i](a, b, c) = qi[v, ki](a, b, c)+2(1+a2+b2+c2)−qi[v′, k′

i](a, b, c), (8)

for i = 1, 2, 3. The set of quadratic polynomials for our problem is then given
by Q = {Qi[v,v′, ki, k

′
i](a, b, c) | i = 1, 2, 3,v,v′ ∈ N , ki, k

′
i ∈ H(N)}. Figure 2

illustrates the zero sets of some quadratic polynomials in Q.

(a) (b)

Fig. 2. Examples of the zero sets of two quadratic polynomials of Q

432 K. Pluta et al.

4 Computing an Arrangement of Quadrics in 3D

In this section we discuss how to compute the arrangement of quadrics
Q(a, b, c) = 0 for Q ∈ Q given by Eq. (8). Our strategy is similar to one proposed
by Mourrain et al. [15]. The main differences are that we do not store infor-
mation about cells different from sample points of full dimensional connected
components and we precompute and sort all event points—points which induce
changes of topology in an arrangement of quadrics—a priori. Moreover, we con-
sider cases such as asymptotic critical values. In short, our method is as follows:
Step 1: detect and sort all the events in which topology of an arrangement
changes; Step 2: sweep by a plane the set of quadrics along a chosen direction.
The sweeping plane stops between two event points and we project quadrics
related to them onto the sweeping plane. This reduces to the problem of 2D
arrangement of conics for each of such points. After this procedure, for each
sample point we recover the translation part of the parameter space of digitized
3D rigid motions. The description of this last part will be given in the next
section. Notice that proposed approach could be also applied to solve a similar
problem in 2D, i.e., generation of the different images of a 2D image patch under
2D digitized rigid motions – a solution to this problem was already proposed by
Ngo et al. [17].

4.1 Bifurcation and Critical Values

In [15], the authors show how to describe an arrangement of quadric by sweeping
a plane along a generic direction. Using the theory of generalized critical values
[12,13,25] we will show how to compute a point per open connected component
of an arrangement of quadric using a projection along a non-generic direction.

In the following, we consider an arrangement of smooth quadrics Si ⊂ R3

defined by Qi(a, b, c) = 0 for all Qi ∈ Q. Note that, if quadric Si has isolated
singularities then without loss of generality one can remove them and work with
remaining smooth parts of Si. We denote by A the set of maximally connected
components of R3 \ ⋃

i Si.
Let C be an open cell of A. We can associate to C the extremal values

Cinf = inf{a | (a, b, c) ∈ C} and Csup = sup{a | (a, b, c) ∈ C}. We will show in
this section that these values are included in a bifurcation set (see Definition 1).

In the following, for i, j, k ∈ Z, we denote by Si the surface defined by
Qi(a, b, c) = 0, by Cij the curve defined by Qi = Qj = 0 and by Pijk the
points defined by Qi = Qj = Qk = 0. Furthermore, we assume that Si are
smooth surfaces of dimension two, the Cij are smooth curves of dimension one
and ρ(Pijk) are finite sets of values.

The projection map on the first coordinate a is denoted by ρ, and its restric-
tion to a submanifold M ⊂ R3 is denoted by ρ|M. Moreover, for a0 ∈ R we
denote by Ma0 the set ρ−1

|M(a0). Similarly, for an open interval]a0, b0[⊂ R we
denote by M]a0,b0[the set ρ−1

|M(]a0, b0[).
We are interested in computing the set of values a above which the topology

of the cells of A change. We will show in Lemma 1 that this set is included

Quadric Arrangement in Classifying Rigid Motions of a 3D Digital Image 433

in the bifurcation set of the projections on the first axis restricted to different
manifolds.

Definition 1. Let M be a submanifold of R3. We call bifurcation set of ρ|M
the smallest set B(ρ|M) ⊂ R such that ρ : M\ ρ−1

(
B(ρ|M)

) → R \ B(ρ|M) is
a locally trivial fibration.

More specifically, for all a0 ∈ R \ B(ρ|M), there exists ε > 0 and a homeomor-
phism

ψ :]a0 − ε, a0 + ε[× Ma0 → M]a0−ε,a0+ε[,

such that ρ ◦ ψ(x, p) = x for all (x, p) ∈]a0 − ε, a0 + ε[× Ma0 .
In the following, we will consider the finite set B ⊂ R defined as the union of

the bifurcation sets of ρ|Si
and ρ|Cij

and the projections of Pijk. More precisely,
we define:

Bi = B(ρ|Si
) ∪

⋃
j �=i

B(ρ|Cij
) ∪

⋃
j �=i,k �=i,j �=k

ρ(Pijk)

and B =
⋃

i Bi.

Lemma 1. Let C be a maximal open connected cell of R3 \ ⋃
i Si. Let β be the

smallest value of B such that Cinf < β and let a0 ∈]Cinf , β[. Finally, let ∂Ca0 be
the boundary of Ca0 and JC be its edges. More precisely, JC is the set of indices
i such that the intersection of Si with ∂Ca0 has dimension one. Then Cinf ∈ Bi

for all i ∈ JC.

Proof. Let i ∈ JC and let p be a point on Si ∩ ∂Ca0 that does not belong to any
surface Sj for j �= i. Let α ≤ Cinf be the maximal point of Bi less than a0. Then
ρ|Si

and ρ|Cij
are trivial fibrations above]α, β[and ρ(Pijk) ∩]α, β[= ∅ for j �= i

and k �= i different integers. In particular, the points of the curves Cij never cross
above]α, β[. More formally, there exists a continuous function φ :]α, β[→ Si

such that φ(a0) = p and ρ ◦ φ(x) = x and Qj(φ(x)) �= 0 for all j �= i. Let Tε be
the tube defined by Tε = {(a, b, c) ∈ R3 | a ∈ [Cinf , a0] and ‖(a, b, c)−φ(a)‖ < ε}.
We now prove by contradiction that α = Cinf . If α < Cinf , then there exists a
sufficiently small ε > 0 such that the respective intersections of Tε with Qi < 0
and Qi > 0 are connected and such that Tε does not intersect any Sj for j �= i.
Since p ∈ Tε, the intersection of Tε with C is not empty. Moreover, C is a
maximally connected component in the complement of the union of the Sj , such
that one of the two connected component of Tε \ Si is included in C. Thus, the
tube Tε intersects Ca for all a ∈ [Cinf , a0]. In particular CCinf is not empty, which
is a contradiction with the definition of Cinf . In particular, Cinf = α, which allows
us to conclude that Cinf ∈ Bi. ��
Figure 5 illustrates intervals such that the topology of Ca, a ∈]α, β[remains
constant.

For each value v0 ∈ B, we denote by Ja ⊂ N the set of indices i such that
v0 ∈ Bi. Moreover, for a set of indices J , we denote by AJ the set of maximally
open connected components of R3 \ ⋃

j∈J Sj .

434 K. Pluta et al.

Corollary 1. Let C be a maximal open connected cell of R3\⋃
i Si. Let m > Cinf

be the smallest value of B greater than Cinf . For all a ∈]Cinf ,m[, there exists a
cell C′ ∈ AJCinf

such that C′
a ⊂ Ca.

Proof. According to Lemma 1, Cinf is contained in all Bi such that Si intersects
the border of Ca with dimension one. In particular, one of the cells of AJCinf

∩
ρ−1(a) is included in Ca. ��

From a constructive point of view, the authors of [12] showed that the
bifurcation set is included in the union of the critical and asymptotic criti-
cal values. More specifically, given a polynomial map f : M → R, we have
B(f) ⊂ K(f) ∪ K∞(f), where K(f) are the critical values of f and K∞ are its
asymptotic critical values. In [15], the authors called the points of K(ρ|Si

) events
of type A, the points of K(ρ|Cij

) events of type B and the points ρ(Pijk) events
of type C. We extended their classification for degenerate projections, and we
say that the points of K∞(ρ|Si

) are of type A∞ and the points of K∞(ρ|Cij
) are

of type B∞.
From a computational point of view, we recall in the next section how to

compute the critical values of types A, B and C. For the types A∞ and B∞, we
use the results from [12] and simplify them for the case of quadrics.

Finally as described in Subsect. 4.4, our strategy will be to compute the
generalized critical values a and for each value, we store also Ja the set of indices
i such that either:

– a ∈ K(ρ|Ci
) ∪ K∞(ρ|Ci

)
– a ∈ K(ρ|Cij

) ∪ K∞(ρ|Cij
) for j �= i

– a ∈ ρ(Pijk) for j �= i, k �= i and j �= k

This will allow us to reduce the number of quadrics to consider in the interme-
diate steps of our sweeping plane algorithm.

4.2 Detection of Critical Values

Type A. The first type corresponds to values s ∈ K(ρ|Si
) above which topology

of open connected components in A changes. Algebraically, such an event corre-
sponds to a value of s = a—called a-critical value—for which there is a solution
to the system Qi(s, b, c) = ∂bQi(s, b, c) = ∂cQi(s, b, c) = 0.

Type B. This type corresponds to the case s ∈ K(ρ|Cij
). Such an event cor-

responds to an a-critical values for which there are solutions to the system
Qi(s, b, c) = Qj(s, b, c) = (∇Qi ×∇Qj)1(s, b, c) = 0.

Type C. There are values s ∈ ρ(Pijk) above which topology of open connected
components in A changes. An a-critical value is such that there are solutions to
the system Qi(s, b, c) = Qj(s, b, c) = Qk(s, b, c) = 0. Note that it can happen that
an intersection between three quadrics is a curve. This issue can be solved if a
curve projects on a point, thanks to the elimination theory and use of resultants

Quadric Arrangement in Classifying Rigid Motions of a 3D Digital Image 435

or Gröbner basis, by computing univariate polynomial which vanishes on the
projection of the curve [6]. For more information about events of the types A,
B and C we refer the reader to [15]. Figure 3 shows examples of events of types
A, B and C.

(a) (b) (c)

Fig. 3. Example of events of type A—sweeping plane tangent in a point to a quadrics
(a), B—curve of intersection of two quadrics lay in a sweeping plane (b) and (c) a point
of intersection of three quadrics lays in a sweeping plane. Sets of points, which induce
an event are depicted in red and a sweeping plane is depicted in green (Color figure
online)

Right now, we are going to discuss the cases of asymptotic critical values.

Type A∞. This type of critical values corresponds to the situation when a plane
orthogonal to one of the coordinate axes is tangent to a quadric in a point at
infinity (see Fig. 4).

Lemma 2. Let S be a smooth quadric defined by Q(a, b, c) = 0. Denoting by

M(a) the matrix

(
∂2Q
∂b2

∂2Q
∂b ∂c

∂Q
∂b (a, 0, 0)

∂2Q
∂c ∂b

∂2Q
∂c2

∂Q
∂c (a, 0, 0)

)
that depends only on a,

K∞(ρ|S) = {a | M(a) has rank at most 1}.

Proof. Consider the mapping f : R3 → R2 such that (a, b, c) �→ (a,Q(a, b, c)).
The definition of K∞ implies K∞(ρ|S) = K∞(f) ∩ R × {0}. Let q(a, b, c) =

max(| ∂Q
∂b |,| ∂Q

∂c |)
max(| ∂Q

∂a |,| ∂Q
∂b |,| ∂Q

∂c |) . Then using [12, Proposition 2.5 and Definition 3.1] with df =(
1 0 0

∂Q
∂a

∂Q
∂b

∂Q
∂c

)
, we have that there exists a sequence (an, bn, cn) ∈ R3 such that

|bn|+ |cn| → ∞ and an → a and (|bn|+ |cn|)q(an, bn, cn) → 0. Since ∂Q
∂a , ∂Q

∂b and
∂Q
∂c are linear functions, this implies that in the definition of K∞, the expression
|bn| + |cn| divided by the denominator of q(an, bn, cn) is bounded. In particular
the numerator of q(an, bn, cn) converges toward 0. More specifically, ∂Q

∂b and ∂Q
∂c

converge toward 0. On the other hand, either |bn| or |cn| goes toward infinity.
Assume without restriction of generality that |bn| goes toward infinity. In this
case, the function ∂2Q

∂c2
∂Q
∂b − ∂2Q

∂b ∂c
∂Q
∂c is a linear function that depends only on

b. Then this function converges toward 0 if and only if the coefficient in front

436 K. Pluta et al.

Fig. 4. Example of asymptotic critical value. A line (in blue) is parallel to the b-axis
and tangent to a asymptote—red curves laying on the yellow surface—in a point at
infinity. For readability only a part of the yellow surface is presented (Color figure
online)

of b in this function and its constant coefficient are 0. In particular, if ∂2Q
∂c2 or

∂2Q
∂b ∂c is non-zero, the matrix M(a) has rank 1. If both are 0, then with similar
arguments, we can see that M(a) is the null matrix. Thus K∞ is the set of a
such that M(a) has a rank less than or equal 1. ��
The algorithm to detect this type of events is as follows. Step 1: we compute
∂bQ(a, b, c) = ub + vc + wa + t and ∂cQ(a, b, c) = u′b + v′c + w′a + t′, where
u, v, w, t, u′, v′, w′, t′ ∈ Z are coefficients of the corresponding polynomials and
Q ∈ Q. Step 2: let V stands for the cross product of Vb = (u, v, wa + t) and
Vc = (u′, v′, w′a + t′), then we solve for a such that all the terms of V are
equal 0.

Type B∞. In this case we are considering the asymptotic critical points of the
projection restricted to a curve defined by the intersection of two quadrics
Qi, Qj ∈ Q. Using [12, Proposition 4.2], these correspond to the a-coordinate
of the sweeping planes that cross the projective closure of the curve at infinity.
More formally, we have:

K∞(ρ|Cij
) = {a | ∃(an, bn, cn) ∈ Cij s.t. |bn| + |cn| → +∞ and an → a}

In particular, this set is also the set of values a such that either the projection
of Cij on the (a, b)-plane or the projection of Cij on the (a, c)-plane has an
asymptote in a.

Using [12, Proposition 4.2], these are the elements of a set of non-properness
of the projection map. The properties of this set and algorithms to compute it

Quadric Arrangement in Classifying Rigid Motions of a 3D Digital Image 437

Fig. 5. Visualization of plane sweeping of quadrics. Projection planes at three different
midpoints depicted in green. In between the planes we have a-critical values – a values
in which topology of an arrangement changes. Conics obtain from quadrics in red and
black (Color figure online)

have been studied notably in [7,11,14]. In our case the non-properness set of the
projection restricted to Cij is the set of a-coordinates of the sweeping planes
that cross at infinity the projective closure of Cij .

To detect such a case we apply the following steps. Step 1: we eliminate the c
(resp. b) variable, and we denote the corresponding polynomials as Pb(a, b) (resp.
Pc(a, c)). Step 2: let Cb(a) and Cc(a) stands for head coefficients—coefficients
of leading monomials—of Pb(a, b) and Pc(a, c), respectively. The asymptotic
critical value for a pair of quadrics happens for Cb(a) = 0 or Cc(a) = 0.

4.3 Sorting Critical Values

In this section we focus on the representation of a-critical values as real algebraic
numbers—roots of univariate polynomials—and operations such as comparison
of them, necessary to sort a-critical values.

Similarly to Mourrain et al. [15] we represent a real algebraic number α as
a pair: an irreducible univariate polynomial P ∈ Z[a] such that P (α) = 0 and
an open isolating interval]g, h[, g, h ∈ Q, containing α and such that there is
no other root of P in this interval. Note that, the isolation of the roots of an
irreducible univariate polynomial can be made using Descartes’ rule [27].

Let α = (P,]g, h[) and β = (Q,]i, j[) such that P,Q ∈ Z[a] and g, h, i, j ∈ Q,
stand for two real algebraic numbers. Then we can conclude if α = β while
checking a sign of GCD of P and Q at an intersecting interval. On the other
hand, to conclude if α is bigger than β or β bigger than α we apply a strategy,
which consists of refinement of isolating intervals until their disjointness. When

438 K. Pluta et al.

two intervals are disjoint then we can compare their bounds and conclude if α is
bigger than β (or β bigger than α)1. To refine an isolating interval of real roots,
one can use e.g., bisection of intervals, Newton interval method [9], [16, Chap. 5]
or quadratic interval refinement method proposed by Abbot [1].

Ability to compare two different algebraic numbers allows us to sort a list of
events which can be done with well-known sorting algorithm such as quicksort.

4.4 Sweeping a Set of Quadrics

After sorting the set of a-critical values we are ready to compute sample points
of open cells. The sweeping plane moves along the a-axis and stops in between
two consecutive a-critical values in a midpoint. At such a midpoint we project
the set of quadrics onto the sweeping plane by setting their a variable to be equal
to the midpoint. This allows us to simplify the problem at a midpoint into the
arrangement of conics, which can be solved by applying a strategy similar to the
one developed so far, such that we compute and sort a set of b-critical values
(or c-critical values) in the arrangement of conics and sweep it by a line. One can
also apply the critical points method. Note that we found cylindrical algebraic
decomposition practically inefficient for such a problem. Figure 5 shows conics
for three a-critical values in an arrangement of two quadrics.

The remaining question is which quadrics we should use at each midpoint
to miss no open cell. In our approach we use all the quadrics of Q for the first
midpoint (see Fig. 6). Then for any other midpoint we use only the quadrics,
related to the lowermost one from the pair, of a-critical values that bound this
midpoint. Indeed, doing so we ensure that at the end of our strategy we collect
at least one sample point for each full dimensional open cell thanks to Lemma 1,
Corollary 1 and Lemma 2.

Fig. 6. The first projection of 81 quadrics obtain for the image patch N =
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0), (−1, 0, 0), (0,−1, 0), (0, 0,−1)}

1 Our implementation of real algebraic numbers and their comparison can be down-
loaded from https://github.com/copyme/RigidMotionsMapleTools.

https://github.com/copyme/RigidMotionsMapleTools

Quadric Arrangement in Classifying Rigid Motions of a 3D Digital Image 439

5 Recovering Translation Parameter Values

The algorithm proposed in the previous section gives us the set R of sample
points (a, b, c) ∈ Q3, which correspond to the rotation parameters. In this section
we discuss how to obtain sample points (t1, t2, t3) of the translation part for each
(a, b, c) ∈ R and how to generate different images of an image patch under rigid
motions.

Let us first note that Eq. (3) under the assumption of t ∈ (− 1
2 , 1

2

)3 defines
the set of planes in the range PPP =

(− 1
2 , 1

2

)3 for each (a, b, c) ∈ R, by setting
v ∈ N and k ∈ H(N)3. These planes divide PPP into cuboidal regions. Figure 7
illustrates an example of such critical planes in PPP.

To obtain different images of an image patch N rotated by a given a, b, c ∈ Q,
under translations (t1, t2, t3) ∈ PPP, we compute the arrangement of planes in PPP

which involves sorting of critical planes and finding a midpoint of each cuboidal
region bounded by them.

Remark 1. Note that we can have several sample points (a, b, c) inducing the
topologically equivalent arrangement of planes (the order of planes is identical).
Therefore, to avoid unnecessary calculations we can define a hash function H
which returns a different signature for each sample point (a, b, c) which induce a
different order of the critical planes.

To define a hash function H, let I stands for a collection of indexes of critical
planes. Then we define the hash function that returns the sorted indices of I
with respect to the order of critical planes.

(a) (b) (c)

Fig. 7. Visualization of the critical planes for N = {(1,0,0), (0,1,0), (0,0,1), (0,0,0),
(−1, 0, 0), (0,−1, 0), (0, 0,−1)} and some (a, b, c). For the sake of visibility three types
of orthogonal critical planes are presented separately

6 A Case Study

In this section we would like to address some issues of the proposed algo-
rithm while considering a particular image patch N . Hereafter, we consider
N = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0), (−1, 0, 0), (0,−1, 0), (0, 0,−1)}.

440 K. Pluta et al.

6.1 Combinatorial Issue

The number of quadrics obtain directly from Eq. (8) for N is 441. In this section
we will show that this number is reduced to 81 by discarding those which are
always strictly positive (resp. negative) and ones which are redundant. Note that
similar studies remain valid for different image patches.

Let us consider vectors u1 = (1, 0, 0) (resp. u2 = (0, 1, 0), u3 = (0, 0, 1)) and
h =

(
1
2 , 1

2 , 1
2

)
. Then we obtain the following inequality from (6)

ui · (k′ − h−Rv′) < ui · (k + h−Rv) (9)

for i = 1, 2, 3 where v,v′ ∈ N ,k,k′ ∈ H(N)3. This induces

ki − k′
i + 1 − ui ·R(v − v′) > 0, (10)

where we know that K = ki−k′
i +1 ∈ Z∩ [−1, 3]. We then consider the following

different cases of V̄ = ‖v − v′‖:

1. when V̄ = 0, then there is no K ∈ Z ∩ [−1, 3] satisfying (10),
2. when V̄ = 1, then there are 6 different pairs of (v,v′) and we obtain K ∈ {0},
3. when V̄ = 2, then there are 6 different pairs of (v,v′) and we obtain K ∈

{−1, 0, 1},
4. when V̄ =

√
2, then there are 12 different pairs of (v,v′) and we obtain

K ∈ {−1, 0, 1}.

Therefore, the number of valid quadrics Q[v,v′, ki, k
′
i] for each case is 0 (case 1),

6 (case 2), 18 (case 3) and 36 (case 4). Note that case 2 is included in case 3 up to
a constant, as that we can ignore the 6 quadrics. This finally gives us 18+36

2 = 27
quadrics per direction and thus 81 in total.

6.2 Implantation and Experiments

We have implemented the proposed algorithm in Maple 2015 and our code can be
downloaded from https://github.com/copyme/RigidMotionsMapleTools. In our
implementation we have tried to obtain a good performance. Since the computa-
tion of critical values and sample points are not difficult to parallelize, we imple-
mented this part of the algorithm in the Maple Grid framework and we performed
tests on a machine equipped with two processors Intel(R) Xeon(R) E5-2680 v2;
clocked at 2.8 GHz, with installed 251.717 GiB of memory. After the uncoupling,
we obtained 81 quadrics, as predicted. Computation of sample points in such an
arrangement took for 20, 15, 10, 5 computational nodes around 16, 19, 22 and
33 min, respectively. Notice that computing and sorting of critical values took
around 2 min for 20–10 nodes and around 3 min for 5 nodes. Note that, sorting
of critical values was performed on one node. Moreover, computations in such set-
ting need around 21 GiB of memory. Presented real time and memory usage were
obtained thanks to the Maple function Usage from the package CodeTools. In our
implementation we used for each arrangement of conics the critical point method

https://github.com/copyme/RigidMotionsMapleTools

Quadric Arrangement in Classifying Rigid Motions of a 3D Digital Image 441

implemented in RAGlib which returns rational sample points [28]. Note that the
average of the number of conics per midpoint is around 11.

Finally, for all the obtained each sample point (a, b, c) we recovered the dif-
ferent images of the image patch under digitized rigid motions which took again
around 18, 22, 28 and 42 min for 20, 15, 10 and 5 nodes respectively2. Note that
the memory usage did not exceed few mebibytes. The computation of differ-
ent images of the image patch N consists of calculating for each sample point
(a, b, c) an arrangement of planes (see Fig. 7). In such an arrangement each sam-
ple point (t1, t2, t3) of full dimensional cell bounded by planes represents the
translation part of rigid motions. Using this information we generate an image
of the image patch N , by appling to it a digitized rigid motion given by the value
of (a, b, c, t1, t2, t3). Note that for different sample points (a, b, c) that belong to
the same full dimensional component we observe that planes presented in Fig. 7
move but they do not change their order. Figure 8 shows some images of an
image patch for fixed (a, b, c) values and different (t1, t2, t3) values.

(a) (b) (c)

Fig. 8. Visualization of (a) the image patch N = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0),
(−1, 0, 0), (0,−1, 0), (0, 0,−1)} and its images under digitized rigid motions: the rota-
tion given by a = 330688038827

274877906944
, b = 7, c = 9 followed by the translation (b) t = 0 and

(c) t = (− 35
100

, 28
100

, 4
10

). For a sake of simplification, N is presented layer-by-layer. Each
point of N is represented by a colored square with c in black

7 Conclusions

In this article, we proposed a method to decompose the 6D parameter space of
digitized rigid motions for a given 3D image patch. We first uncouple the six
parameters of 3D rigid motions to end up with two systems in three variables,
and start by studying an arrangement of quadrics in R3.

Our approach to compute an arrangement of quadrics in 3D is similar to
the one proposed by Mourrain et al. [15] where the main differences are: we
do not use generic directions: we handle asymptotic cases and give new criteria
to compute critical values in polynomials of degree two: we compute and store
at least one sample point for each full dimensional open cell where Mourrain
et al. [15] compute full adjacency information for all cells in an arrangement;
moreover, we precompute all critical values a priori while in the former approach

2 Note that this time is affected by a time needed to read a list of sample points (a, b, c)
from a hard drive before the main computations.

442 K. Pluta et al.

only one type of critical values needs to be computed before the main algorithm.
Those sample points are then used to decompose the other three dimensional
parameter space. We also provided our implementation together with a numerical
experiment for some small image patch.

As a part of our future work we would like to use the presented method in a
study of topological alteration of Z3 under 3D digitized rigid motions.

Acknowledgments. This work received funding from the project Singcast (ANR–
13–JS02–0006).

References

1. Abbott, J.: Quadratic interval refinement for real roots. Commun. Comput. Alge-
bra 48(1/187), 3–12 (2014)

2. Amir, A., Kapah, O., Tsur, D.: Faster two-dimensional pattern matching with
rotations. Theoret. Comput. Sci. 368(3), 196–204 (2006)

3. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer,
Heidelberg (2005)

4. Cayley, A., Forsyth, A.: The Collected Mathematical Papers of Arthur Cayley, vol.
1. The University Press, Cambridge (1898)

5. Collins, G.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Brakhage, H. (ed.) Automata Theory and Formal Languages.
LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

6. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra. Springer,
New York (1996)

7. El Din, M.S., Schost, E.: Properness defects of projections and computation of
atleast one point in each connected component of a real algebraic set. Discrete
Comput. Geomet. 32(3), 417 (2004)

8. Halperin, D.: Arrangements. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook
of Discrete and Computational Geometry, 2nd edn., pp. 529–562. Chapman and
Hall/CRC (2004)

9. Hansen, E.: Global optimization using interval analysis - the multi-dimensional
case. Numerische Mathematik 34(3), 247–270 (1980)

10. Hundt, C., Lískiewicz, M.: On the complexity of affine image matching. In:
Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 284–295. Springer,
Heidelberg (2007)

11. Jelonek, Z.: Topological characterization of finite mappings. Bull. Polish Acad. Sci.
Math 49(3), 279–283 (2001)

12. Jelonek, Z., Kurdyka, K.: Quantitative generalized Bertini-Sard theorem for
smooth affine varieties. Discrete Comput. Geom. 34(4), 659–678 (2005)

13. Kurdyka, K., Orro, P., Simon, S., et al.: Semialgebraic Sard theorem for generalized
critical values. J. Diff. Geom. 56(1), 67–92 (2000)

14. Moroz, G.: Properness defects of projection and minimal discriminant variety. J.
Symbol. Comput. 46(10), 1139–1157 (2011)

15. Mourrain, B., Tecourt, J.P., Teillaud, M.: On the computation of an arrangement
of quadrics in 3D. Comput. Geom. 30(2), 145–164 (2005)

16. Neumaier, A.: Interval Methods for Systems of Equations. Encyclopedia of Math-
ematics and its Applications. Cambridge University Press, Cambridge (1991)

Quadric Arrangement in Classifying Rigid Motions of a 3D Digital Image 443

17. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid
transformations in 2D digital images. Comput. Vis. Image Underst. 117(4),
393–408 (2013)

18. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Topology-preserving conditions
for 2D digital images under rigid transformations. J. Math. Imaging Vis. 49(2),
418–433 (2014)

19. Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid transfor-
mation of 2D digital images. IEEE Trans. Image Process. 23(2), 885–897 (2014)

20. Nouvel, B., Rémila, E.: On colorations induced by discrete rotations. In: Nyström,
I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 174–183.
Springer, Heidelberg (2003)

21. Nouvel, B., Rémila, E.: Configurations induced by discrete rotations: periodicity
and quasi-periodicity properties. Discrete Appl. Math. 147(2–3), 325–343 (2005)

22. Pluta, K., Kenmochi, Y., Passat, N., Talbot, H., Romon, P.: Topological alterations
of 3D digital images under rigid transformations. Research report, Université Paris-
Est, Laboratoire d’Informatique Gaspard-Monge UMR 8049 (2014). https://hal.
archives-ouvertes.fr/hal-01333586

23. Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijective rigid motions of the
2D cartesian grid. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI
2016. LNCS, vol. 9647, pp. 359–371. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-32360-2 28

24. Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijectivity certification of 3D
digitized rotations. In: Bac, A., Mari, J. (eds.) CTIC 2016. LNCS, vol. 9667, pp.
30–41. Springer, Heidelberg (2016)

25. Rabier, P.J.: Ehresmann fibrations and Palais-Smale conditions for morphisms of
Finsler manifolds. Ann. Math. 146, 647–691 (1997)

26. Renegar, J.: On the computational complexity and geometry of the first-order the-
ory of the reals. Part I: Introduction. Preliminaries. The geometry of semi-algebraic
sets. The decision problem for the existential theory of the reals. J. Symbol. Com-
put. 13(3), 255–299 (1992)

27. Rouillier, F., Zimmermann, P.: Efficient isolation of polynomial’s real roots. J.
Comput. Appl. Math. 162(1), 33–50 (2004)

28. Safey El Din, M.: Testing sign conditions on a multivariate polynomial and appli-
cations. Math. Comput. Sci. 1(1), 177–207 (2007)

29. Singla, P., Junkins, J.L.: Multi-resolution Methods for Modeling and Control of
Dynamical Systems. CRC Press, Boca Raton (2008)

30. Thibault, Y.: Rotations in 2D and 3D discrete spaces. Ph.D. thesis, Université
Paris-Est (2010)

31. Thibault, Y., Sugimoto, A., Kenmochi, Y.: 3D discrete rotations using hinge angles.
Theoret. Comput. Sci. 412(15), 1378–1391 (2011)

32. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Computing
Surveys (CSUR) 38(4), 13 (2006)

33. Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput.
21(11), 977–1000 (2003)

https://hal.archives-ouvertes.fr/hal-01333586
https://hal.archives-ouvertes.fr/hal-01333586
http://dx.doi.org/10.1007/978-3-319-32360-2_28
http://dx.doi.org/10.1007/978-3-319-32360-2_28

A Lower Bound for Computing Lagrange’s
Real Root Bound

Swaroop N. Prabhakar and Vikram Sharma(B)

The Institute of Mathematical Sciences CIT Campus,
Taramani, Chennai 600113, India
{npswaroop,vikram}@imsc.res.in

Abstract. In this paper, we study a bound on the real roots of a poly-
nomial by Lagrange. From known results in the literature, it follows that
Lagrange’s bound is also a bound on the absolute positiveness of a poly-
nomial. A simple O(n log n) algorithm described in Mehlhorn-Ray (2010)
can be used to compute the bound. Our main result is that this is opti-
mal in the real RAM model. Our paper explores the tradeoff between
improving the quality of bounds on absolute positiveness and their com-
putational complexity.

Keywords: Real root bounds · Lagrange’s bound · Absolute positive-
ness · Algebraic decision tree · Complexity lower bounds

1 Introduction

Root bounds are functions that operate on univariate polynomials with complex
coefficients and compute an upper bound on the absolute value of its roots. The
literature contains many root bounds; see, e.g., [16, Chap. 6]. Some of these root
bounds (e.g., see van der Sluis [13]), are tight relative to the largest absolute value
among all the roots of the polynomial. Often, however, one is interested in the
special case of upper bounds on just the positive real roots of a polynomial with
real coefficients; for instance, in the continued fraction based algorithms for real
root isolation [2,12]. For this special case, the literature contains some bounds
[1,4,7,14,15]. In [6], Hong showed that most of the known root bounds are in fact
bounds for absolute positiveness of a polynomial, i.e., a real number such that
the polynomial and all its non-vanishing derivatives are positive for any value
greater than this real number. He introduced a new bound and showed that it
is tight relative to the threshold of absolute positiveness of the polynomial. The
quality of a root bound is defined to be the ratio of the bound with respect to
the threshold of absolute positiveness. It was shown in [4] that within a general
framework of bounds on absolute positiveness, Hong’s bound is nearly optimal,
i.e., it is off by a constant factor with respect to the best bound that is possible
in this framework. Thus in terms of quality of real root bounds, Hong’s bound
is nearly the best. However, it was not clear if the quality of the bound was
achieved at the cost of the increased effort in computing the bound, since a naive
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 444–456, 2016.
DOI: 10.1007/978-3-319-45641-6 28

A Lower Bound for Computing Lagrange’s Real Root Bound 445

implementation of Hong’s bound has arithmetic cost quadratic in the degree, n,
of the polynomial. This computational bottleneck was overcome by Mehlhorn
and Ray [9], who gave an O(n) arithmetic cost algorithm to compute Hong’s
bound for univariate polynomials.

Recently, Collins [5] showed that a real root bound by Lagrange [8] is always
better than Hong’s bound. It must be noted that the Lagrange’s bound had not
been covered in the framework proposed in [4]. A simplified derivation of the
Lagrange’s bound is given in [3,10], and an extension to the complex setting is
given in [10]. The improvement is by a constant factor. Given this improvement,
one can ask the following questions regarding Lagrange’s real root bound:

Q1. Is the bound also a bound on the absolute positiveness of the polynomial?
Q2. Can the bound be computed using O(n) arithmetic operations?

In Theorem 1, we given an affirmative answer to the first question. This result
is not very surprising and immediately follows from known results in the literature.

Regarding the second question, we show in Theorem 4 that the answer is nega-
tive in the real RAM model [11]. This is done by reducing a certain decision prob-
lem in geometry, called the Point-Hull Bijection problem (introduced in Sect. 4),
to comparing Lagrange’s real root bound with Hong’s bound. We then show in
Theorem 2 that the complexity of the bijection problem in the real RAM model
is Ω(n log n). This is done by showing that any algebraic decision tree for decid-
ing the Point-Hull Bijection problem has height roughly Ω(n log n). To obtain
this lower bound, we derive a lower bound on the “topological complexity” of the
bijection problem. Using standard results (see Propositions 1 and 2) these lower
bounds translate to lower bounds in various computational models, in particu-
lar, the real RAM model. Therefore, the best algorithm to compute Lagrange’s
real root bound is essentially the O(n log n) algorithm given in [9, Sect. 3.1]. Our
result highlights the tradeoff between obtaining bounds for absolute positiveness
that are better in quality than Hong’s bound and the arithmetic complexity of
computing them. In particular, we show that the constant factor improvement in
the quality of Lagrange’s real root bound over Hong’s bound comes at an increased
computational cost. In some sense, therefore, Hong’s bound attains the right com-
promise in this quality-vs-complexity tradeoff.

2 Absolute Positiveness of Lagrange’s Real Root Bound

In this section, we will prove that the Lagrange’s real root bound [8] is a bound
on the absolute positiveness of a polynomial. Let

f(x):=xn −
n−1∑
k=0

akxk, (1)

where ak ∈ R≥0. Let R(f) be the maximum and ρ(f) be the second maximum in
the sequence |ak|1/(n−k), k = 0, 1, . . . , n−1 (we assume that n > 1). Lagrange’s
real root bound of f is defined as

L(f):=R(f) + ρ(f). (2)

446 S.N. Prabhakar and V. Sharma

It is known that L(f) is a bound on the positive roots of f [3,5,10]. We show
that it is also a bound on the positive roots of its non-vanishing derivatives.
First we prove the following result, a variation of the result in [4, Lemma 2.2],
which shows that any upper bound on the positive roots of f is a bound on the
absolute positiveness of f .

Lemma 1. L(f) is a bound on the absolute positiveness of f defined in (1).

Proof. The jth derivative of f is given by

f (j)(x) =
n !

(n − j) !
xn−j −

n−1∑
k=j

k !
(k − j) !

akxk−j .

Taking n !/(n − j) ! common from the RHS, we get,

f (j)(x) =
n !

(n − j) !

⎛
⎝xn−j −

n−1∑
k=j

k !
(k−j) !

n !
(n−j) !

akxk−j

⎞
⎠ .

Since k !
(k−j) ! < n !

(n−j) ! , we have

f (j)(x) >
n !

(n − j) !

⎛
⎝xn−j −

n−1∑
k=j

akxk−j

⎞
⎠ , for all x > 0.

So,

f (j)(x) >
n !

(n − j) !
f(x)
xj

, for all x > 0.

Hence, L(f) is a bound on the absolute positiveness of f . ��
Collins [5] used L(f) to improve upon a root bound due to Hong [6]. Consider

a general polynomial f(x):=
n∑

i=0

aix
i ∈ R[x], where an > 0. For every ai < 0,

define
si:=argmin{|ai/aj |1/(j−i) : j > i aj > 0}. (3)

Now for each j such that aj > 0, define

gj(x):=ajx
j +

∑
si=j,ai<0

aix
i.

Notice that gj is in the form given in (1), so R(gj) and ρ(gj) are well-defined as
the first and the second maximum, respectively, in the sequence |ai/aj |1/(j−i).
Define L(gj) as in (2). However, this can be done if gj has two or more negative
coefficients; otherwise, if gj has exactly one negative ai, then L(gj) is taken to
be the unique positive root of gj ; if gj does not have negative coefficients, then
L(gj):=0. Lagrange’s Real Root Bound of f is defined as

L(f):= max
j

L(gj). (4)

A Lower Bound for Computing Lagrange’s Real Root Bound 447

To compute L(f), we can compute the polynomials gj . This can be done in
O(n log n) by the algorithm given in [9, Sect. 3.1]. We can then compute L(gj)
in O(n) time over all j. A further linear step of computing maxj L(gj) gives us
L(f). Our first result is the following:

Theorem 1. The Lagrange Real Root Bound L(f) is a bound on the absolute
positiveness of f .

Proof. Since every negative monomial aix
i has a unique si associated with it,

we have
f(x) =

∑
aj>0

gj(x).

From Lemma 1 and the definition of L(gj), we know that L(gj) is a bound on the
absolute positiveness of gj . Hence, from (4), we conclude that L(f) is a bound
on the absolute positiveness of f . ��

Collins [5, Theorem 5] showed that L(f) is better than the Hong’s bound [6],

H(f):=2max
ai<0

min
aj>0
j>i

∣∣∣∣ ai

aj

∣∣∣∣
1/(j−i)

.

Mehlhorn and Ray [9] gave an algorithm for computing H(f) in O(n) arithmetic
operations. Can a similar algorithm exist for computing L(f)? In the following
sections, we will answer this question in the negative.

3 Algebraic Decision Trees – Basic Notations and
Definitions

Given two positive integers m, d, an (m, d)-order algebraic decision tree is a
rooted tree T in which every internal node has associated with it a multivariate
polynomial in m variables of total degree at most d. The input or domain of the
decision tree is Rm. Every internal node u of T has three children labeled “+”,
“–” and “0”. The leaves output either a zero or a one. An algebraic decision
tree computes a function from Rm to {0, 1}. The value of this function at p ∈
Rm is computed as follows: we evaluate the polynomial associated with the
root node of T at p; depending on whether the sign of this evaluation is −,
0, or +, the computation proceeds recursively from the child of the root node
labeled by the corresponding sign; we stop when we reach a leaf and output
the value, either zero or one, associated with the leaf. From the description, it
follows that the set of points in Rm that reach a given node in the tree form a
semi-algebraic set. It is well known that a semi-algebraic set can be partitioned
into connected components. Two points p, q ∈ Rm are said to be in the same
connected component corresponding to a node u of T iff there exists a continuous
curve γ : [0, 1] → Rm such that γ(0) = p, γ(1) = q and for all t ∈ [0, 1], the
point γ(t) on the curve satisfies the set of polynomial equalities and inequalities

448 S.N. Prabhakar and V. Sharma

from the root of T to the node u. The measure of complexity in this model is the
height of the decision tree T , which counts the number of worst case polynomial
evaluations from the root node to a leaf.

We say that an algebraic decision tree T solves the membership problem
for a set S ⊆ Rn if it satisfies the following: T outputs 1 on p ∈ Rm iff p ∈ S. The
main idea in showing a lower bound for a membership problem in the algebraic
decision tree model is to lower bound the height of T in terms of, #S, the total
number of connected components in the set S. We can then use the following
fundamental result of Ben-Or [11, p. 102] to obtain a lower bound on the height
of T :

Proposition 1. The height of any (m, d)-order algebraic decision tree T that
solves the membership problem for S is Ω(logd(#S) − m).

We will crucially use the following fact that relates lower bounds in the algebraic
decision tree model with lower bounds in the real RAM model [11, p. 30].

Proposition 2. A lower bound for a decision problem A in the algebraic deci-
sion tree model implies the same lower bound on A in the real RAM model.

4 Lower Bound on a Geometric Problem

Consider the lower hull H of (n+2) points in R2 such that all the (n+2) points
are vertices of the lower hull; note that under this assumption the vertices of
H can be ordered in increasing order of x-coordinate; in this paper, we only
consider such hulls. From any point p ∈ R2 there are two rays that are tangent
to the hull H. Of these two rays, the lower ray from p to H is the ray such that
direction of the sweep to the other ray is counterclockwise. The lower tangent
from p to H is the line corresponding to the lower ray from p. Note that p can be
on H, in which case the lower tangent is an edge containing p; in particular, if
p is a vertex of H, the lower tangent is the edge that has p as the left endpoint.
The point of lower tangency for p is the left most vertex of H on the lower
tangent from p. The definition ensures that the lower tangent is well-defined for
all points in the plane.

The Point-Hull Bijection problem is the following: For a fixed H, given
an ordered point set P = (p1, . . . , pn), where pi ∈ R2, such that all the points
in P are to the left of the leftmost vertex of H, determine if every vertex of H,
excluding the leftmost and the rightmost vertex, is a point of lower tangency
for some point in P? An ordered point set P that has such a bijection to the
vertices of H is called a YES-instance to the problem. All other instances of
P are NO-instances; in particular, if P has a point to the right of the leftmost
point of H then it is a NO-instance. Since the input is a set of n points in R2,
we take the length of the input to be 2n.

Known algorithms for computing the points of lower tangency test whether a
given point is on one side of a given line or on the line. These tests are equivalent to
evaluating a polynomial, and hence these algorithms can be modeled as algebraic

A Lower Bound for Computing Lagrange’s Real Root Bound 449

P

H

(a)

H
P

(b)

0

1

2 3

4

5 0

1

2 3

4

5

Fig. 1. A point set P shown in blue, hull H and lower tangencies. The points in Pe

and Po are shown circumscribed by boxes and circles, respectively. The figure labelled
(a) is a NO-instance, whereas the figure labelled (b) is a YES-instance, to the Point-Hull
Bijection problem.

decision trees. So algebraic decision trees solving the Point-Hull bijection problem
can be thought of as computing a function from R2n to the set {0, 1}. The set
of ordered point sets P that are YES-instances to the problem form a connected
components in R2n. Two YES-instances are in different connected components iff
all continuous paths connecting these two instances contain a NO-instance. We
will now derive a lower bound on the number of such components.

Suppose P is an ordered point set that is a YES-instance to the Point-Hull
Bijection problem with respect to a given hull H. By enumerating the vertices of
H from left to right, starting with 0 to (n + 1), we partition P into two subsets
as follows:

Po:={pi ∈ P | p′
is point of lower tangency on H is odd}

and
Pe:={pi ∈ P | p′

is point of lower tangency on H is even}.

For the ease of exposition, we assume that all the odd indices in P are in Po and
all the even indices are in Pe. We now construct a large set P of ordered point
sets obtained from P such that all these instances are solutions to the Point-Hull
Bijection problem. Keeping Po fixed, we apply a permutation σ to the indices
of points in Pe; let Pσ be the ordered point set obtained in this manner from P .
Note that the permutation σ only changes the order in which the points from
Pe are processed, but Pσ is still a solution to the problem. The set P, therefore,
contains (n/2)! many instances that are solutions to the Point-Hull Bijection
problem. We are now in a position to derive the following lower bound:

Lemma 2. There are at least (n/2)! connected components for the Point-Hull
Bijection problem.

Proof. Consider two distinct ordered point sets Pσ, Pσ′ ∈ P. Then we know that
there is an even position 2i such that j:=σ(2i) is not the same as k:=σ′(2i).

450 S.N. Prabhakar and V. Sharma

In other words, the points pj ∈ Pe at the position indexed 2i in Pσ and the point
pk ∈ Pe at the same position in Pσ′ are different (by construction, the points in
the odd position are the same in both).

Let � be the vertical line touching the leftmost point of H. Consider a contin-
uous curve γ : [0, 1] → R2n that connects Pσ and Pσ′ . Without loss of generality,
we assume that γ(t) stays to the left �; otherwise, we obtain a NO-instance to
the problem. The component, γ2i(t), of γ(t) gives us a continuous path between
pj and pk. Since the points in P are to the left of �, and the lower tangents
intersect � in decreasing order of y-coordinates, it follows that the points pj and
pk are on opposite sides of the lower tangent incident on either the (j −1) or the
(j + 1) vertex of H. As γ2i(t) is a continuous function and is also restricted to
the left of �, it intersects one of these tangents. So we have a point set Q ∈ R2n

on γ(t) such that there are two points in Q that have the same lower tangent in
H, which means that Q is a NO-instance to the problem. Therefore, Pσ and Pσ′

are in different connected components, and so we have the desired lower bound.
For an illustration, see Fig. 2. ��

H

�

0

1

2 3

4

5

p1

p2

p3

γ2(t)

p4

Fig. 2. In the example above Pσ = {p1, p2, p3, p4} and Pσ′ = {p1, p4, p3, p2}, j = 2
and k = 4. Now the component γ2(t) is a continuous path in R2 that takes p2 to p4.
Clearly, the path intersects the lower tangent of p3 at the point shown in red. (Color
figure online)

Using the lemma above along with Propositions 1 and 2, we obtain the fol-
lowing lower bound.

Theorem 2. The arithmetic complexity of any algorithm solving the Point-Hull
Bijection problem is Ω(n log n) in the real RAM model, where 2n is the length
of the input.

It must be noted that d does not play a role in the lower bound above, because
for a given algebraic decision tree d is fixed and hence (1/ log d) is a constant.

A Lower Bound for Computing Lagrange’s Real Root Bound 451

To show the lower bound on algorithms computing L(f), we need a point-hull
pair that satisfies certain properties. For a hull H, let MinSlopeH and MaxSlopeH

denote the least and the largest slope over the edges of H. We call a point-hull
pair (P,H) nice if it satisfies the following conditions:

(A1): MaxSlopeH < MinSlopeH + 1.
(A2): The interval (MinSlopeH ,MaxSlopeH] contains the slopes of all the
lower tangents from P to H.
(A3): The x-coordinates of points in P and H are fixed to 0, . . . , 2n + 1.

An example of a nice point-hull pair is given in Fig. 3; assumptions (A1) and
(A2) are not restrictive since we can construct instances where these assumptions
hold, as shown in the figure.

0

0

2 3

5
p1

p2

p3 4
1

p4

q

H

Fig. 3. The vertices labeled 0 to 5 are the vertices of H; the point set P is shown in
blue; the red points are obtained by swapping the y-coordinates of p2 and p4. Note
that q and p3 have the same point of tangency on H. (Color figure online)

For a nice point-hull pair (P,H), the input is only the ordered set of y-
coordinates of the points in P . However, our earlier argument in Lemma 2 breaks
down, because we cannot permute points in Pe, since their x-coordinates are
fixed and permuting the y-coordinates may yield a NO-instance to the Point-
Hull Bijection problem; e.g., in Fig. 3, if we swap the y-coordinates of p2 and p4
then the resulting point set is a NO-instance.

For every input y ∈ Rn, define the ordered point set

Py:=((0, y0), . . . , (n − 1, yn−1)).

452 S.N. Prabhakar and V. Sharma

Since the x-coordinates are fixed, we have to count the number of connected
components corresponding to y ∈ Rn such that (Py,H) is a YES-instance of the
Point-Hull Bijection problem.

To create a large number of input instances that are in different connected
components we do the following. For (xi, yi):=pi ∈ Pe, we define the following
point set

Qi:={points of intersection of tangents incident on even vertices
in H with the line x = xi}.

For the example shown in Fig. 3, the sets Q2 and Q4 are illustrated in Fig. 4.
For every pi ∈ Pe, we have |Qi| = n/2. So p2 can be replaced with n/2 points
from Q2 corresponding to the n/2 tangents. However, to maintain a bijection,
p4 has to avoid the tangent on which p2 is mapped, and so can be replaced with
((n/2)−1) points from Q4. Continuing in this manner, we obtain a YES-instance
Py′ . The construction gives us (n/2)! such input instances y′ ∈ Rn. Our claim
is that two such instances y,y′ are in different connected components in Rn,
i.e., on every continuous path connecting them there is a y′′ such that Py′′ is a
NO-instance to the Point-Hull Bijection problem.

0

0

2 3

5
p1

p2

p3 4
1

p4 q2

q4

H

Fig. 4. The sets Q2 = {p2, q2} and Q4 = {p4, q4} corresponding to the example shown
in Fig. 3.

Consider a continuous curve γ : [0, 1] → Rn connecting y and y′. There has
to be a pi ∈ Pe that is mapped to (xi, yi) ∈ Py and (xi, y

′
i) ∈ Py′ , where yi �= y′

i.
Let γi : [0, 1] → R be the ith component of γ that maps yi to y′

i. Therefore,

A Lower Bound for Computing Lagrange’s Real Root Bound 453

in R2, γi takes the point (xi, yi) to (xi, y
′
i) along the line x = xi. Since (xi, yi)

and (xi, y
′
i) are on two different tangents incident on even vertices in H, and γi

can only move along the line x = xi, it has to cross a tangent which is incident on
an odd vertex of H; e.g., in Fig. 4, the path from p2 to q2 keeping the x-coordinate
fixed crosses the lower tangent corresponding to p3. So there is a point y′′ ∈ Rn

along the path of γ from y to y′ such that Py′′ is a NO-instance to the Point-Hull
Bijection problem. Hence y and y′ are in two different connected components in
Rn. Therefore, we apply Propositions 1 and 2, to get the following result.

Theorem 3. The arithmetic complexity of any algorithm solving the Point-Hull
Bijection problem for a nice point-hull pair (P,H) in the real RAM model is
Ω(n log n), where n is the length of the input.

5 Lower Bound on Computing Lagrange’s Real Root
Bound

In this section, we will use Theorem 3 to derive a lower bound on the arithmetic
complexity of computing L(f) (recall the definition from (4)). Before we proceed
with the derivation, we reinterpret L(f).

Given a polynomial f(x):=
∑n

i=0 aix
i, let

pi:=(i, log(1/|ai|))

be the point corresponding to the monomial aix
i in f . For ai < 0, define si as

in (3); recall that si is only defined for negative monomials. For a given pi such
that ai < 0, let Hi be the lower hull of the points in the set {pj : j > i, aj > 0}.
By definition of si we have

∣∣∣∣ ai

asi

∣∣∣∣
1

si−i

= min
j>i;aj>0

log
∣∣∣∣ ai

aj

∣∣∣∣
1

j−i

.

This can be interpreted as the slope of the lower tangent from pi to Hi; note
that if pj ∈ Hi is the point of lower tangency for pi then si = j. For aj > 0,
define Tj as the set of lower tangents associated with pj , i.e.,

Tj :={pi ∈ P, such that si = j}.

Let MaxSlope1j and MaxSlope2j be the first and second maximum over the
slopes of the lower tangents of the points in Tj ; if |Tj | = 0, then MaxSlope1j = 0
and if |Tj | = 1, then MaxSlope2j = 0. Define

MaxSlope:= max
j

{MaxSlope1j ,where aj > 0}. (5)

Then we have the following interpretations: For Hong’s bound

H(f) = 21+MaxSlope, (6)

454 S.N. Prabhakar and V. Sharma

and for Lagrange’s real root bound

L(f) = max
(

max
j: |Tj |=1

2MaxSlope1j , max
j: |Tj |>1

(
2MaxSlope1j + 2MaxSlope2j

))
. (7)

Using this interpretation, we will derive a lower bound on computing L(f).

Theorem 4. An algorithm for computing L(f) for a real polynomial f of degree
n requires Ω(n log n) arithmetic operations in the real RAM model.

Proof. The main idea of the proof is to use an algorithm for computing
Lagrange’s real root bound to decide the Point-Hull Bijection problem for a
nice point-hull pair (Py,H), where y ∈ Rn.

Let (Py,H) be a nice point-hull pair such that

Py = {(i, ai) : i ∈ [0, . . . , n − 1], ai ∈ R}
and

H = {(i, bi) : i ∈ [n, . . . , 2n + 1], bi ∈ R}.

From (Py,H), we construct the following polynomial

f(x):=
∑

(i,bi)∈H

xi

2bi
−

∑
(i,ai)∈Py

xi

2ai
. (8)

This reduction from (Py,H) to f requires O(n) many exponentiation operations.
To decide the Point-Hull Bijection problem for (Py,H), we do the following:

compute L(f) and H(f), for f given in (8). If 2L(f) = H(f), we output YES;
otherwise, we output NO. We now prove the correctness of this algorithm.

If (Py,H) is a YES-instance of the Point-Hull Bijection problem, then for all
j, such that aj > 0, |Tj | = 1. Therefore, from (5), (6) and (7), we obtain that
H(f) = 2L(f).

Now we prove the converse: If (Py,H) is a NO-instance of the Point-Hull
Bijection problem then 2L(f) > H(f). Let j be an index such that |Tj | > 1.
Then from the interpretation of L(f) given in (7) we obtain that

2L(f) ≥ 2(2MaxSlope1j + 2MaxSlope2j)

≥ 22+MinSlopeH

> 21+MaxSlopeH

≥ 21+MaxSlope = H(f),

where the second and fourth inequalities follow from assumption (A2), and the
third inequality follows from assumption (A1).

Since H(f) can be computed with O(n) many arithmetic operations, we can
decide whether a nice point-hull pair (Py,H) is a YES-instance in essentially
the time taken by the algorithm for computing L(f). From the lower bound in
Theorem 3 and the result in [11, p. 29, Proposition 1], we get the desired claim. ��

A Lower Bound for Computing Lagrange’s Real Root Bound 455

6 Conclusion and Further Directions

In this paper, we show that Lagrange’s real root bound L(f) is a bound on the
absolute positiveness of a polynomial f . A goal in this line of work is to actually
derive a tight bound on the largest positive root f , if one exists. Note that such
a bound should be able to detect if f has a positive real root or not. It is clear
that any algorithm for isolating real roots can be used to detect existence of a
positive real root. In the converse direction, we can ask the following question:
Is the problem of deciding whether a polynomial has a positive root at least as
hard as isolating its real roots? One way to prove such a statement is to give
a reduction from real root isolation that takes sub-quadratic (in the degree)
arithmetic cost and makes at most sub-linear calls to detecting positive roots.
On the other hand, one can also try to obtain an algorithm with sub-quadratic
arithmetic cost for detecting or approximating positive roots.

Another direction to pursue is to generalize L(f) to the multivariate setting.
In [6], Hong actually derives a bound on the absolute positiveness of multi-
variate polynomials. In this setting, the notion of absolute positiveness is the
following: A multivariate polynomial P (x1, . . . , xn) with real coefficients is said
to be absolutely positive from a positive real value B iff P and all its non-
zero partial derivatives of arbitrary order are positive for x1 ≥ B, . . . , xn ≥ B.
It is natural to derive a version of the Lagrange real root bound for multivariate
polynomials and give an algorithm to compute it, similar to the one in [9]. One
could then try to generalize the lower bound in Theorem3 to this more general
setting.

Acknowledgement. The authors would like to express their gratitude to
Dr. Prashant Batra and the referees for their invaluable comments and suggestions.

References

1. Akritas, A.G., Strzeboński, A., Vigklas, P.: Implementations of a new theorem
for computing bounds for positive roots of polynomials. Computing 78, 355–367
(2006)

2. Akritas, A.: Vincent’s theorem in algebraic manipulation. Ph.D. thesis, Opera-
tions Research Program, North Carolina State University, Raleigh, North Carolina
(1978)

3. Batra, Prashant: On the quality of some root-bounds. In: Kotsireas, Ilias S., Rump,
Siegfried M., Yap, Chee K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 591–595.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-32859-1 50

4. Batra, P., Sharma, V.: Bounds on absolute positiveness of multivariate polynomi-
als. J. Symb. Comput. 45(6), 617–628 (2010)

5. Collins, G.E.: Krandick’s proof of Lagrange’s real root bound claim. J. Symb.
Comput. 70(C), 106–111 (2015). http://dx.doi.org/10.1016/j.jsc.2014.09.038

6. Hong, H.: Bounds for absolute positiveness of multivariate polynomials. J. Symb.
Comput. 25(5), 571–585 (1998)

7. Kioustelidis, J.: Bounds for the positive roots of polynomials. J. Comput. Appl.
Math. 16, 241–244 (1986)

http://dx.doi.org/10.1007/978-3-319-32859-1_50
http://dx.doi.org/10.1016/j.jsc.2014.09.038

456 S.N. Prabhakar and V. Sharma

8. Lagrange, J.L.: Traité de la résolution des équations numériques de tous les degrés,
Œuvres de Lagrange, vol. 8, 4th edn. Gauthier-Villars, Paris (1879)

9. Mehlhorn, K., Ray, S.: Faster algorithms for computing Hong’s bound on absolute
positiveness. J. Symbol. Comput. 45(6), 677–683 (2010). http://www.science-
direct.com/science/article/pii/S0747717110000301

10. Mignotte, M., Ştefănescu, D.: On an Estimation of Polynomial Roots by
Lagrange. Prepublication de l’Institut de Recherche Mathématique Avancée,
IRMA, Univ. de Louis Pasteur et C.N.R.S. (2002). https://books.google.co.in/
books?id=NAd4NAEACAAJ

11. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer, New York (1985)

12. Sharma, V.: Complexity of real root isolation using continued fractions. Theor.
Comput. Sci. 409(2), 292–310 (2008)

13. van der Sluis, A.: Upper bounds for roots of polynomials. Numer. Math. 15,
250–262 (1970)

14. Ştefănescu, D.: New bounds for the positive roots of polynomials. J. Univ. Comput.
Sci. 11(12), 2132–2141 (2005)

15. Ştefănescu, D.: A new polynomial bound and its efficiency. In: Gerdt, V.P.,
Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301,
pp. 457–467. Springer, Switzerland (2015). http://dx.doi.org/10.1007/978-3-319-
24021-3 33

16. Yap, C.K.: Fundamental Problems of Algorithmic Algebra. Oxford University
Press, Oxford (2000)

http://www.sciencedirect.com/science/article/pii/S0747717110000301
http://www.sciencedirect.com/science/article/pii/S0747717110000301
https://books.google.co.in/books?id=NAd4NAEACAAJ
https://books.google.co.in/books?id=NAd4NAEACAAJ
http://dx.doi.org/10.1007/978-3-319-24021-3_33
http://dx.doi.org/10.1007/978-3-319-24021-3_33

Enhancing the Extended Hensel Construction
by Using Gröbner Bases

Tateaki Sasaki1(B) and Daiju Inaba2

1 University of Tsukuba, Tsukuba-shi, Ibaraki 305-8571, Japan
sasaki@math.tsukuba.ac.jp

2 Japanese Association of Mathematics Certification, Ueno 5-1-1,
Tokyo 110-0005, Japan
d.inaba@su-gaku.net

Abstract. Contrary to that the general Hensel construction (GHC) uses
univariate initial Hensel factors, the extended Hensel construction (EHC)
uses multivariate initial Hensel factors determined by the Newton poly-
gon of the given multivariate polynomial. In the EHC so far, Moses-Yun’s
(MY) interpolation functions (see the text) are used for Hensel lifting,
but the MY functions often become huge when the degree w.r.t. the
main variable is large. In this paper, we propose an algorithm which
uses, instead of MY functions, Gröbner bases of two initial factors which
are homogeneous w.r.t. the main variable and the total-degree variable
for sub-variables. The Hensel factors computed by the EHC are poly-
nomials in the main variable with coefficients of mostly rational func-
tions in sub-variables. We propose a method which converts the ratio-
nal functions into polynomials by replacing the denominators by system
variables. Each of the denominators is determined by the lowest order
element of a Gröbner basis. Preliminary experiments show that our new
EHC method is much faster than the previous one.

Keywords: Extended Hensel construction · Sparse multivariate poly-
nomial · Singular leading coefficient · Gröbner basis · syzygy

1 Introduction

Let F (x,u) be a polynomial in K[x,u], where (u) = (u1, . . . , u�) with � ≥ 2
and K is a number field (one may consider K = Q). Let fn(u) be the leading
coefficient (LC) of F w.r.t. x. We say that the leading coefficient of F is singular
(or that F is of LC-singular) if fn(u) vanishes at the origin 0 of u : fn(0) = 0.

The Hensel construction is one of the most useful techniques in computer alge-
bra: well known are the Hensel construction of univariate polynomials over Z and
the generalized Hensel construction (GHC) for multivariate polynomials [6,15].

Work supported by Japan Society for Promotion of Science KAKENHI Grant num-
ber 15K00005.

c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 457–472, 2016.
DOI: 10.1007/978-3-319-45641-6 29

458 T. Sasaki and D. Inaba

In ideal cases, the GHC is used for F (x,u) without shifting the origin of u . This
simple usage fails for polynomials with singular LCs, and we must shift the origin to
make the LCs non-singular. Then, another problem arises if F is sparse w.r.t. u :
origin shifting increases the number of terms very much. This problem is called the
nonzero substitution problem.

Various attempts have been made to solve the nonzero substitution problem.
In 1979, an idea was given by Zippel, based on Schwartz-Zippel’s lemma [14,17].
Speaking roughly, the lemma says: Choose (r) = (r1, . . . , r�) ∈ Z� randomly
satisfying |ri| ≤ L (1 ≤ i ≤ �), where L is enough large. Then, the probability
that any nonzero polynomial Q(u) becomes 0 at u = r is enough small. Zippel’s
idea is as follows. For unknown polynomial P (x,u) ∈ Q[x,u], if P (x, r) contains
no xe-term, then interpolate P (x,u) by assuming that P has no xe-term. In
[18], Zippel incorporated this algorithm with the GHC for monic polynomials,
and showed that the interpolation can be done iteratively by solving a system
of polynomial equations by Newton’s method. In [5], de Kleine, Monagan and
Wittkopf removed the monicness restriction of Zippel’s algorithm and developed
a very efficient GCD algorithm for sparse polynomials. Kaltofen [4] proposed
another algorithm. He factorizes F (x, s), with (s) ∈ Z�, and recovers factors of
fn(u) and F (x,u) by variable-by-variable Hensel lifting of F (x,u−s) performed
with Zippel’s method so that the expression swell is suppressed.

An essentially new extension of GHC was done by Sasaki and Kako [12,13] in
1993, and they called the construction extended Hensel construction (EHC). The
EHC performs the Hensel construction of multivariate polynomials with singu-
lar LCs, without the nonzero substitution. The EHC was originally considered
to compute “series expansion” of the multivariate algebraic function x = φ(u)
defined as a solution of F (x,u) = 0, with � ≥ 2, at the critical point of F (x,u):
we say (s) ∈ C� a critical point of F if F (x, s) has multiple root(s). In 2000, the
present authors applied the EHC to factorization of sparse multivariate polyno-
mials with singular LCs, by using polynomials as the initial factors [8]. In 2005,
one of the author (D.I) implemented the EHC and showed that the EHC fac-
torizes sparse LC-singular multivariate polynomials, by an order of magnitude
faster than the GHC-based algorithm [2]. In 2015, Sanuki and present authors
applied the EHC to compute the GCD of sparse LC-singular multivariate poly-
nomials [10], and found that the algorithm is slightly slower than Maple’s routine
which is based on Zippel’s idea.

The conventional algorithm of EHC is very bad for polynomials which are
sparse in both x and u : the algorithm is based on the so-called “Moses-Yun’s”
interpolation functions (MY functions) [7], and the computation of MY func-
tions is very heavy; see Sect. 2 for examples. Furthermore, the conventional EHC
algorithm has no clever device of handling rational functions in u , appearing in
the coefficients of Hensel factors. In this paper, we solve these problems on the
conventional EHC drastically.

In Sect. 2, we survey briefly the conventional algorithm for EHC, and point out
its faults by an example. In Sect. 3, we describe our new algorithm. In particular,

Enhancing the Extended Hensel Construction by Using Gröbner Bases 459

wewill prove that the denominator factor is determinedby the lowest order element
of the Gröbner basis. In Sect. 4, we show very good results of experiments for a non-
trivial example.

2 A Brief Survey of the EHC

Let polynomial F (x,u) ∈ K[x,u] be as follows, where (u) = (u1, . . . , u�).

F (x,u) = fn(u)xn + fn−1(u)xn−1 + · · · + f0(u), fn(u)f0(u) �= 0. (2.1)

We treat x and u as the main variable and sub-variables, respectively. By
deg(F), ltm(F), lc(F), we denote the degree, the leading term, the leading coef-
ficient (LC), respectively, w.r.t. x of F . By rem(F,G) and res(F,G), we denote
the remainder of F by G and the resultant of F and G, respectively, w.r.t. x.
By cont(F), we denote the content of F w.r.t. x, i.e., gcd(fn(u), . . . , f0(u)),
where gcd denotes the greatest common divisor. F is called primitive and of LC-
singular (often called that LC is singular) if cont(F) = 1 and fn(0, . . . , 0) = 0,
respectively. F is called squarefree if F has no duplicated root w.r.t. x. Let
T = c ue1

1 · · · ue�

� be a monomial, with c ∈ K. By tdeg(T), we denote the total-
degree of T : tdeg(T) = e1 + · · · + e�. By 〈G1, . . . , Gr〉, we denote the ideal
generated by G1, . . . , Gr.

2.1 Newton Line and Newton Polynomial

We assume that the given polynomial F (x,u) is squarefree and primitive. The
EHC begins with determination of Newton polynomial; the Newton polynomials
are unchanged by the EHC, so we define them only for the given polynomial.

Definition 1 (Newton line and Newton polynomial). Let F (x,u) be a
polynomial in K(u)[x], where K is a number field. For each term cxdteue1

1 · · · ue�

�

of F (x, tu), where c is a nonzero number, t is the total-degree variable for u, and
e = e1 + · · ·+ e�, plot a dot at the point (d, e) in two-dimensional plane; see Fig.
1. The Newton polygon N of F (x,u) is a convex hull containing all the dots
plotted. Let the lower sides of N , traced clockwise, be N1, . . . ,Nρ which we call
Newton lines. For each i ∈ {1, . . . , ρ}, the Newton polynomial FNi

(x,u) is the
sum of all the terms of F (x,u) plotted on Ni. Let ni be the x-coordinate of
the left end of Ni (i = 1, . . . , ρ). Then, FNi

can be divided by xni . We express
FNi

(x,u)/xni by FNi
(x,u) and call it net Newton polynomial.

The EHC of F (x,u) is performed successively on N1 → N2 → · · · → Nρ. In
each construction on Ni (i ∈ {1, . . . , ρ}), we define a weighting of variable x and
u and introduce the order-variable t, depending on the slope λi of Ni. Let the
coordinate of right end of N1 be (n0, ν0) and the coordinate of left end of Ni be
(ni, νi). Then, the slope of Ni is given by λi = (νi−1−νi)/(ni−1−ni). Let n̂i and
ν̂i be integers satisfying n̂i > 0, ν̂i/n̂i = λi and gcd(n̂i, ν̂i) = 1. Then, we define
F(x,u , t) and FNi

(x,u), as follows; the terms of FNi
(x,u) are given weight t0,

hence FNi
is t-independent.

460 T. Sasaki and D. Inaba

ex

et

n3 n2 n1 n0

N3

N2

N1

Fig. 1. Newton polygon and Newton lines N3, N2, N1

F(x,u , t) def= tn̂i(λini−νi)F (x/tν̂i , tn̂iu), (2.2)

FNi
(x,u) def= tn̂i(λini−νi)FNi

(x/tν̂i , tn̂iu). (2.3)

Note that FN (x/tν̂ , tn̂u) is (x/tν̂ , tn̂u)-homogeneous. The Hensel lifting is done
by changing the modulus 〈 tk 〉 as k=1 ⇒ 2 ⇒ 3 ⇒ · · · .

2.2 EHC Based on MY Interpolation Functions

We briefly survey the conventional EHC which is based on the MY functions.
By this survey, we will point out faults of the conventional EHC method and
explain the necessity of introducing a new method of EHC suitable for parse
multivariate polynomials. Below, we omit the i specifying the index of Ni.

Let F (x,u) be a squarefree polynomial having only one Newton line N of
slope λ. Hence, deg(F) = deg(FN) = n and we define n̂ and ν̂ as in Sect. 2.1.

First, we factorize the FN (x,u) as follows; since FN (x,u) is a homogeneous
polynomial, we can factorize it by treating it to be of �−1 sub-variables.

{
FN (x,u) = cont(FN)G

(0)
1 (x,u) · · · G(0)

r (x,u),
gcd(G(0)

j1
, G

(0)
j2

) = 1 (∀j1 �= j2).
(2.4)

The G
(0)
i (x/tν̂ , tn̂u) (∀i) is also (x/tν̂ , tn̂u)-homogeneous. Second, for l =

0, 1, . . . , n−1, we compute “Moses-Yun’s functions” A
(l)
1 (x,u), · · · , A

(l)
r (x,u) to

satisfy
⎧⎪⎨
⎪⎩

A
(l)
1 (x,u)

FN (x,u)

G
(0)
1 (x,u)

+ · · · + A(l)
r (x,u)

FN (x,u)

G
(0)
r (x,u)

= xl,

deg(A(l)
i) < deg(G(0)

i) (1 ≤ ∀i ≤ r).
(2.5)

Third, we assign the factors of lc(F) to F,G
(0)
1 , . . . , G

(0)
r suitably, so that we

have lc(F) = lc(G(0)
1 · · · G(0)

r); see [2] for the assignment. Then, we introduce the

Enhancing the Extended Hensel Construction by Using Gröbner Bases 461

t-order by (2.2), which converts F and G
(0)
i (1 ≤ i ≤ r) into F and G(0)

i , respec-
tively. Finally, using G(0)

1 , . . . , G(0)
r as initial factors, we compute G(k)

1 , . . . ,G(k)
r

for k = 0 → 1 → 2 → · · · , by the following formulas.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δF (k) ≡ F(x,u , t) − G(k−1)
1 (x,u , t) · · · G(k−1)

r (x,u , t) (mod tk+1)
= tk+n̂(ν−λn) [δfn−1(u)xn−1 + · · · + δf0(u)],

G(k)
i = G(k−1)

i + tk+γi
∑n−1

l=0 A
(l)
i (x,u) δfl(u) (i=1, . . . , r),

where γi is the t-order of G
(0)
i (x/tν̂ , tn̂u).

(2.6)

After the construction, we put G
(k)
i (x,u) = G(k)

i (x,u , 1) (i=1, . . . , r).
Since the upper equation for l = 0 in (2.5) can be rewritten as

A
(0)
i (x,u)

FN (x,u)

G
(0)
i (x,u)

+ B
(0)
i (x,u)G(0)

i (x,u) = 1, (2.7)

we can compute A
(0)
i by the extended Euclidean algorithm in K(u)[x]. Then,

A
(l)
i with l ≥ 1 can be computed as rem(xlA

(0)
i , G

(0)
i). By these, we can specify

the expression of A
(l)
i as follows; for concrete expressions of A

(l)
i , see [8,10].

Characteristic 1: A
(l)
i (x,u) is a polynomial in x with coefficients in K(u).

Characteristic 2: The denominators of the rational function coefficients are
products of res(G(0)

i , FN /G
(0)
i) and powers of lc(G(0)

i).

2.3 Faults of the Conventional Method

The conventional method is simple mathematically but has the following faults.

Fault 1: Computing MY functions A
(l)
i , B

(l)
i (1 ≤ i ≤ r; 0 ≤ l < deg(F)), is

based on the extended Euclidean method and quite time-consuming. Further-
more, even if F is sparse w.r.t. x, the sparseness is not utilized at all.

Fault 2: The denominators appearing in MY functions are often too large
compared with those appearing in Hensel factors; there occurs cancellation
between the denominator and the corresponding numerator.

Fault 3: Handling polynomials with coefficients of rational functions is pretty
messy and time-consuming. We want to compute Hensel factors by using
polynomial arithmetic as much as possible.

We show actual MS polynomials and Hensel factors by an Example.

Example 1. Let F = GH + 3x10y5z5, where G and H are as follows.

G = (x5y3 + 2z) (x5z3 − 2y) + x3z4,
H = (x5y3 − 3z) (x5z3 + 3y) + x7y6.

(2.8)

F has only one Newton line and corresponding Newton polynomial is (x5y3 +
2z) (x5y3 − 2z) (x5z3 + 3y) (x5z3 − 2y). We set initial polynomials G0 and H0 as

462 T. Sasaki and D. Inaba

G0 := (x5y3 + 2z) (x5z3 − 2y) and H0 := (x5y3 − 3z) (x5z3 + 3y). Only x10-,
x5- x0-terms appear in G0 and H0, while F contains x20-, x17-, x15-, x13-, x12-,
x10-, x8-, x7-, x5-, x3-, x0-terms. Therefore, in the EHC of F by the conventional
method, we must compute MY functions A(l), B(l) for 10 different values of l.
On the other hand, in the method to be proposed in this paper, we compute a
Gröbner basis of 〈G0,H0〉, and the basis contains polynomials of only x10-, x5-,
x0-terms.

For reference, we show several of MY functions and Hensel factors computed
by the conventional method. We note that the denominators of Hensel factors
are factors of res(G0,H0) = −9765625 y20z20 (3y4 − 2z4)5 (2y4 − 3z4)5.

A
(0)

=
(y7z3−y3z7)x5−2y8+5y4z4−2z8

5 yz (3y4−2z4)(2y4−3z4)
, B

(0)
=

(−y7z3+y3z7)x5−3y8+5y4z4−3z8

5 yz (3y4−2z4)(2y4−3z4)

G(14) = G0 + x3z4 +
18y5z5(y4−z4)x5+12y6z6

5 (3y4−2z4)(2y4−3z4)
+

45y8z12(y4−z4)x8+9y5z9(2y8−y4z4+2z8)x3

25 (3y4−2z4)2(2y4−3z4)2
,

H(14) = H0 + x7y6 − 18y5z5(y4−z4)x5+27y6z6

5 (3y4−2z4)(2y4−3z4)

− 45y8z12(y4−z4)x8+27y5z9(9y8−17y4z4+9z8)x3

25 (3y4−2z4)2(2y4−3z4)2
.

�
The above computation was done by an EHC package implemented in Math-

ematica. The above expressions are obtained by applying the GCD and factor-
ization routines many times, as one can easily thinks, hence the computation is
very slow and messy. Actual timing data will be given in Sect. 3.4.

3 Use of Gröbner Basis in the EHC

One may think that MY functions A
(l)
1 , . . . , A

(l)
r can be computed efficiently

from (2.5), but it is wrong; we compute each A
(0)
i by using (2.7), independently

from others. Similarly, G
(k)
i and H

(k)
i are computed independently from others.

Therefore, it is enough to discuss the case of two initial factors. In this section,
we assume that two initial factors are G0,H0 ∈ K[x,u]. Then, the formulas on
EHC become as follows.

{ F(x,u , t) ≡ G(k)(x,u , t)H(k)(x,u , t) (mod tk+1),

tkδF (k) = δF(k) ≡ F − G(k−1)H(k−1) (mod tk+1).
(3.1)

G(k) = G(k−1) + tkδG(k), H(k) = H(k−1) + tkδH(k), G(0) = G0, H(0) = H0.(3.2)
δH(k)G0 + δG(k)H0 = δF (k), deg(δG(k)) < deg(G0), deg(δH(k)) < deg(H0). (3.3)

Here, we have assumed that the leading coefficient of F has been processed
to satisfy the above degree constraints. Note that δG(k), δH(k) ∈ K(u)[x] in
general. The leftmost equality in (3.3) suggests us to use the Gröbner basis of
ideal 〈G0,H0〉 for the computation of δG(k) and δH(k).

Remark 1. The terms of polynomial F (x,u) etc. are weighted depending on
the slope of Newton line. However, we compute a Gröbner basis Γ of 〈G0.H0〉
without the weighting variable t, because the terms of FN (x,u) are weighted to
be 0; see (2.3).

Enhancing the Extended Hensel Construction by Using Gröbner Bases 463

3.1 On a Gröbner Basis of 〈G0, H0〉
The xeue1

1 · · · ue�

� is called the power product. Let � be a term-order which orders
the power products in K[x,u] uniquely, with 0 as the lowest order term. Let f(u)
be a polynomial in K[u], expressed as the sum of monomials ciTi, 1 ≤ i ≤ m:

f(u) = c1T1 + c2T2 + · · · + cmTm, ci ∈ K, T1 � T2 � · · · � Tm. (3.4)

By htm(f),hc(f),hpp(f), rest(f), we denote the head term, the head coefficient,
the head power product, the rest terms, respectively, of f : htm(f) = c1T1, hc(f) =
c1, hpp(f) = T1, rest(f) = f − c1T1. The F is G-irreducible if hpp(G) does not
divide hpp(F). The most important operations in computing Gröbner basis are
the M-reduction (Mred) and the S-polynomial (Spol) construction: let F and G be
polynomials expressed as in (3.4), then Mred(F,G) = F − [htm(F)/htm(G)]G
if hpp(G) | hpp(F), and Spol(F,G) = [L/htm(F)]F − [L/htm(G)]G, where
L = lcm(hpp(F),hpp(G)) with lcm the operation of least common multiple. By
rem(F,G) (we use “rem” again) we denote the result of successive applications
of M-reduction of F by G so that rem(F,G) is G-irreducible. Note that, since
we apply the Mred to only the head term, rest(rem(F,G)) may be G-reducible.

Let Γ be a Gröbner basis of 〈G0,H0〉 w.r.t. the term order � satisfying
x � u1, . . . , u�; Γ is not a reduced basis, as we have mentioned just above. Let
Ĝi be an element of Γ , then Ĝi can be expressed as a linear combination of G0

and H0 as

Ĝi = AiG0 + BiH0, Ai, Bi ∈ K[x,u]. (3.5)

We call the pair (Ai, Bi) the syzygy for Ĝi. We express the syzygy by a polynomial
Si(γ, η) = Aiγ + Biη, where γ and η are system variables. Summarizing,

{
Γ = {Ĝ1, . . . , Ĝs} ⊂ K[x,u], Ĝ1 ≺ · · · ≺ Ĝs,

S = {S1(γ, η), . . . , Ss(γ, η)}, Si(G0,H0) = Ĝi (∀i).
(3.6)

Lemma 1. (1) Ĝ1 ∈ K[u]. (2) If Ĝi≥2 /∈ K[u] then Ĝ1 | res(G0,H0).

Proof. Since G0 and H0 are relatively prime, R
def= res(G0,H0) is not 0. Since

R ∈ 〈G0,H0〉, R must be M-reducible to 0 by Γ . Therefore, Γ must contain
element(s) in K[u]. This proves 1). Claim 2) is obvious from claim 1). �

3.2 Computing Polynomial Parts of δG(k) and δH(k)

Suppose that δF (k) ∈ K[x,u]. M-reducing δF (k) by the elements of Γ , we obtain

δF (k) = δF̂ (k) + δR(k), δF̂ (k) = q1Ĝ1 + · · · + qsĜs, qi ∈ K[x,u] for ∀i. (3.7)

Here, δR(k) is in K[x,u] and Γ -irreducible. We have δF̂ (k) ∈ 〈G0,H0〉 and δR(k) /∈
〈G0,H0〉. Given δF̂ (k), we can compute polynomials ĥ and ĝ in K[x,u], satisfying
δF̂ (k) = ĥG0 + ĝH0, as follows.

464 T. Sasaki and D. Inaba

Method to calculate ĥ and ĝ satisfying ĥG0 + ĝH0 = δF̂ (k): By replacing
every Ĝi in δF̂ (k) by Si(γ, η), 1 ≤ i ≤ s, δF̂ (k) becomes a polynomial in
K[γ, η, x,u]. Then, ĥ and ĝ are coefficients of γ and η, respectively, of δF̂ (k).

�
Remark 2. We normalize each Ĝi, hence the syzygy (Ai, Bi) is also multiplied
by a normalization constant. The (q1, . . . , qs) in (3.7) is computed as the syzygy
for δR(k), but we must not normalize δR(k) and we must multiply −1 to the syzygy
to get the (q1, . . . , qs).

One may put δG(k) = ĝ and δH(k) = ĥ. This is OK if deg(ĝ) < deg(G0) and
deg(ĥ) < deg(H0). If these degree constraints are not satisfied, we must reduce
the degrees of ĝ and ĥ. For the degree reduction, the next lemma is very useful.

Lemma 2. Let ĥ and ĝ computed as above be such that deg(ĥ) ≥ deg(H0) and
deg(ĝ) ≥ deg(G0). If there exist δG(k), δH(k) ∈ K[x,u] satisfying deg(δG(k)) <

deg(G0), deg(δH(k)) < deg(H0) and δF̂ (k) = δH(k)G0 + δG(k)H0, then we can
compute δG(k) and δH(k) as δG(k) := rem(ĝ, G0) and δH(k) := rem(ĥ,H0),
where the remainders may be computed either by the division or by Mreds.

Proof. Since δF̂ (k) can be expressed in two ways, we obtain (ĥ − δH(k))G0 =
−(ĝ−δG(k))H0. Since G0 and H0 are relatively prime, this equality implies that
G0 | (ĝ − δG(k))) and H0 | (ĥ − δH(k))). These relations and degree inequalities
tell us that δG(k) = rem(ĝ, G0) and δH(k) = rem(ĥ,H0). �
Theorem 1 (main theorem 1). Let δR(l) and ĥ, ĝ be defined as above. If
δR(k) = 0 and we can degree-reduce ĥ, ĝ so that we have deg(ĥ) < deg(H0)
and deg(ĝ) < deg(G0), then we have δG(k), δH(k) ∈ K[x,u]. If δR(k) �= 0 or we
cannot degree-reduce ĥ and ĝ, then we must introduce rational functions in the
coefficients w.r.t. x, of δG(k) and δH(k).

Proof We have described the methods of computing ĥ, ĝ and degree-reducing
them. Therefore, if there exist δG(k), δH(k) in K[x,u], then the former half of the
theorem is valid. If δR(k) �= 0 while δG(k), δH(k) ∈ K[x,u] then (3.3) shows that
δR(k) can be expressed as δR(k) = δF (k)−δF̂ (k) = (δH(k)− ĥ)G0+(δG(k)− ĝ)H0.
This means that δR(k) ∈ 〈G(0),H(0)〉, which is contradictory to that δR(k) is
Γ -irreducible. The case that the degree-reduction fails will be treated by “forced
degree-reduction” to be defined in Sect. 3.3, which shows that lc(G0) and lc(H0)
will enter into the coefficients as the denominator factors. �

3.3 How to Treat the Rational-Function Coefficients

In this subsection, assuming that δR(k) �= 0, we first determine a denominator
factor, to be denoted by D, then we convert rational functions with denominator
D into polynomials by introducing a system variable. We obey the following
policy in determining D; with this policy, we need not handle rational-function
coefficients superficially.

Enhancing the Extended Hensel Construction by Using Gröbner Bases 465

Our policy for treating rational-function coefficients: We determine a
denominator D ∈ K[u] so that the product D δR(k) may become a polynomial
in 〈G0,H0〉, i.e., we may have h and g in K[x,u] satisfying D δR(k) = hG0 +
gH0. Then, we replace 1/D in δG(k) and δH(k) by the system variable %D
and convert δG(k) and δH(k) into polynomials in K[%D,x,u]. We determine
D to be as low order as possible, and we order %D as %D � x � u1, . . . , u�.

�
Method to calculate h and g satisfying hG0 + gH0 = D δR(k):

Determine the denominator D as in the above policy, and replace the fac-
tor Ĝ1 in D δR(k) by A1γ + B1η. Then, h and g are the coefficients of γ and
η, respectively, of the resulting expression. Finally, try to degree-reduce the
h and g by using Lemma 2. �

Forced degree-reduction of h and g: Consider, for example, to degree-
reduce g by G0. Multiplying
D′ = lc(G0)/ gcd(lc(g), lc(G0)) to g, we can eliminate ltm(g) by G0. Thus,
we compute “pseudo-remainder” of g divided by G0. Below, by D′, we denote
the product of terms ∈ K[u], multiplied to g and h, in reducing all the high
degree terms of h and g. �

Theorem 2. Let D′ be the denominator factor introduced by the forced degree-
reduction (D′ = 1 if no forced degree-reduction is made). First, determining
D to be D = Ĝ1/ gcd(Ĝ1, δR

(k)), compute δH(k), δG(k) satisfying D′D δR(k) =
δH(k)G0 + δG(k)H0, deg(δH(k)) < deg(H0) and deg(δG(k)) < deg(G0). After
this, if C = gcd(D′D, cont(δH(k)), cont(δG(k))) �= 1, then reset D′D as D′D :=
D′D/C. Then every rational-function coefficient of δG(k) and δH(k) is expressed
as Nj/D′D, where Nj ∈ K[u].

Proof. Note that D δR(k) is a polynomial in K[x,u], having a factor Ĝ1. Hence,
We can determine polynomials h and g satisfying D δR(k) = hG0 + gH0, and
we can determine δH(k), δG(k) satisfying D′D δR(k) = δH(k)G0 + δG(k)H0, with
degree conditions. Dividing this equality by D′D/C, we obtain the theorem. �
Remark 3. If δF (k) contains denominator variables %D[1], . . . , then we take
out coefficients of denominator variables and M-reduce the coefficients by Γ .

We give a simple choice of D, by assuming that

Ĝ1, . . . , Ĝλ ∈ K[u], Ĝλ+i /∈ K[u] (∀i ≥ 1). (3.8)

Example 2. Let F (x, y, z) be as follows, where x is the main variable.

F = (y2z)x4 + (y3z2+yz2+yz)x3 + (y4z+y2z3+2y2z2+y−z)x2

+ (y3z2+y3z+y2z+yz3)x + (y3−y2z+yz−z2) + 3xyz.

Without the last underlined term, F is factorizable. F has two Newton lines of
slopes −1/2 and 1. The Newton polynomial on the right Newton line is

FN1 = (x2y2z+xyz+y−z)×x2 def= G0H0, H0 = x2.

466 T. Sasaki and D. Inaba

The Gröbner basis of 〈G0.H0〉 w.r.t. the lexicographic (lex) order is

{Ĝ1, . . . , Ĝ4} = {y2−2yz+z2, xz2+y−z, xy−xz, x2},

and the corresponding syzygies S1,S4 are as follows.

S1 = (−xyz + y − z) γ + (xy3z2 − y3z + 2y2z2) η,
S2 = (−xz + 1) γ + (xy2z2 − y2z + yz2) η,
S3 = x γ + (−xy2z − yz) η, S4 = η.

We note that Ĝ1 = res(G0,H0) in this example.
We show the first 2 steps of the EHC of F with initial factors G0 and H0. In

this example, Theorem 2 specifies the denominator D to be y−z at k = 2, but
we dare to choose as D = Ĝ1 = (y − z)2. This is to give an illustrative example
of simplification below.

At k=1: δF (1) = t1 x3yz2 = t1 (xyz2 H0) ⇒ δG(1) = xyz2, δH(1) = 0,
At k=2: δF (2) = t2 (3xyz) = t2 ((−3y2z)H0 + 3G0 + δR(2)), δR(2) = −3y+3z,

D1: we set D1 := Ĝ1 = y2 − 2yz + z2,
⇒ δG(2) = −3y2z + %D1×(−3xy4z2+3xy3z3+3y4z−9y3z2+6y2z3),

δH(2) = 3 + %D1×(3xy2z−3xyz2−3y2+6yz−3z2)

Observing the coefficients of %D1 in δG(2) and δH(2), we see that their last three
terms, i.e., (−3y4z+9y3z2−6y2z3) and (3y2−6yz+3z2) can be “simplified” by Ĝ1,
and that the simplified terms cancel −3y2z in δG(2) and 3 in δH(2), respectively.
This kind of simplification appears quite frequently. �

If λ ≥ 2 then there may be another candidate of denominator, let it be
D′ ∈ K[u], such that D′ ≺ D. It is not easy to find the simplest one. Below, we
will show only one simple choice.

A simple choice of denominator D in the case of λ ≥ 2 : Let D be the
lowest order element of {Ĝi/ gcd(Ĝi, C δR(k)) | i=1, . . . , λ}.

3.4 How to Simplify δG(k)δH(k), etc.

In our method described above, δG(k) and δH(k) are expressed as ĝ+g and ĥ+h,
respectively. This seems to be natural. In order to simplify ĝ + g and ĥ + h, we
have investigated several methods so far, by computing ĝ and g (and ĥ and h)
separately. However, we have failed to find a satisfactory one.

On the other hand, we have noticed a very interesting evidence which makes
δG(k) and δH(k) simple. Consider Example 2: δG(2) is composed of two polyno-
mials, −3y2z which came from ĝ and %D1×(−3xy4z2 + · · ·+6y2z3) which came
from g. Rewriting −3y2z as −%D1×(3y2z)×(y−z)2 and adding to the second
polynomial, the result becomes a much simpler polynomial. The same is true for
δH(k). We notice another evidence in Example 1: G(14) and H(14) are expressed
very concisely. Therefore, we employ the following policy for the simplification.

Enhancing the Extended Hensel Construction by Using Gröbner Bases 467

Our policy for simplifying δG(k) and δH(k): Suppose δG(k) is given as
δG(k) = %D

e
ge(x,u)+%D

e−1
ge−1(x,u)+ · · ·+g0(x,u), we convert the r.h.s.

polynomial as %D
e×(

ge(x,u)+D(u)ge−1(x,u)+· · ·+D(u)eg0(x,u)
)
. Here,

D(u) is a denominator factor which the system variable %D represents.

We advance this policy further. Since ĝ and g (and ĥ and h, resp.) are added
later, we will do as follows.

Our policy for computing ĥ, ĝ, h, g : (a) The case of δR(k) = 0 : Compute ĥ
and ĝ as describe in Sect. 3.2.
(b) The case of δR(k) �= 0 : Reset δR(k) and δF̂ (k) as δR(k) := δF̂ (k) + δR(k)

and δF̂ (k) := 0, then compute h and g as described in Sect. 3.3.

3.5 On Term Order and on Computing Syzygies

In Sect. 3.1, we did not specify the term order on sub-variables u1, . . . , u�. If we
employ the lex order, the computation is often very slow. Therefore, we introduce
a term-order named “sub-variable total-degree (stdeg) order”, as follows.

xd ue1
1 · · · ue�

� ←→ (d,
∑�

i=1 ei, e1, . . . , e�). (3.9)

In our method, not only the Gröbner basis but also syzygies are inevitable.
Method of syzygy computation is simple and well known [1]. However, the con-
ventional method is usually much more expensive than computing the Gröbner
basis itself. In the rest of this subsection, we propose an efficient method of
syzygy computation.

We explain our method for the case of two initial factors G0 and H0. Starting
with P1 = G0 and P2 = H0, suppose that the Gröbner basis computation gener-
ates polynomials as P3 → P4 → · · · → Pk. Syzygies are conventionally computed
parallel to this computation, as (A3, B3) → (A4, B4) → · · · → (Ak, Bk), with
initial syzygies (A1, B1) = (1, 0) and (A2, B2) = (0, 1). However, this method is
very inefficient in that, i) most polynomials generated are not included in Γ and ii)
syzygies become larger and larger as the computation proceeds, while most com-
putations in final stage are only to convince that Spol(Pi, Pj) is M-reduced to 0.
So, during the Gröbner basis computation, we generate only procedures to gener-
ate syzygies, which we call “procedural syzygies (p-syzygies)”, and, after finishing
the Gröbner basis computation, we convert p-syzygies into actual syzygies.

The computation of Gröbner basis is a sequence of Mreds, Spol constructions
and the normalization of polynomials; in this paper, we assume that the nor-
malization makes the polynomial P to satisfy hc(P) = 1. Below, let polynomials
F and G be such that htm(F) = f1S1 and htm(G) = g1T1. By #F and #G we
denote the indices given to F and G, respectively; if P is a nonzero polynomial
generated i-th and stored in the current intermediate basis then we give i to P
as its index. If a polynomial being stored in an intermediate basis is M-reduced
later, then the M-reduced polynomial is indexed by a new sequential index. By
this, we can obtain actual syzygies by “evaluating” p-syzygies for polynomials
from smaller index to larger ones.

468 T. Sasaki and D. Inaba

The following shows the rules of generating p-syzygies.

“p-syzygies” for Mred, Spol and Normalization:

On Mred(F,G) : (Mred (#F , (0, .., 0), 1) (#G, S1/T1, −f1/g1)),

On Spol(F,G) : (Spol (#F , L/S1, g1) (#G, L/T1, −f1)),
where L := lcm(S1, T1),

On Normalization of F : (Nmlz 1/f1).

We call the above “(#G, S1/T1, −f1/g1)” etc. an “IPC triplet”. F will
be M-reduced by Gi, Gj , etc., multiply. Then, each time the F is M-reduced,
corresponding IPC triplet is appended at the tail of the p-syzygy. The same is
true if Spol(F,G) is M-reduced by others. The normalization is made when F is
fully M-reduced and the result is not zero. Hence, the “(Nmlz 1/f1)” is always
appended as the last element of the p-syzygy for F .

We prepare a system array %Syzygy and store the p-syzygy for i-th poly-
nomial in %Syzygy[i]. Given p-syzygies in %Syzygy, procedure convPsyz2Asyz
converts the p-syzygies into actual syzygies, as follows, where #mx below is the
maximum index of nonzero polynomials generated. Procedure IPC2Asyz below
converts an IPC-triplet (#, PowP, Coef) into an actual syzygy: it multiplies
a monomial ‘Coef×PowP’ to %Syzygy[#] (which is already an actual syzygy).
Procedures first(l) and rest(l), with l a list of IPC triplets, return the first
element of l and the rest of l, respectively.

Procedure convPsyz2Asyz(%Syzygy, #mx) ==
For i = 3 to #mx do

{ Asyz := evalPsyz(%Syzygy[i]);
store Asyz to %Syzygy[i] }

Procedure evalPsyz(Psyz) ==
begin Asyz := IPC2Asyz(first(Psyz)); goto next;
loop: Asyz := Asyz + IPC2Asyz(first(Psyz));
next: if (Psyz := rest(Psyz)) �= () then goto loop;

return Asyz; end

Among the #mx polynomials, Γ contains only a part of them, and many
syzygies in %Syzygy are needless for polynomials in Γ . Therefore, if we compute
syzygies for only polynomials which are necessary to compute syzygies for the
elements of Γ , the computation becomes faster. Such a computation is possible
if we apply procedure evalPsyz recursively; when we encounter j-th p-syzygy
in the execution of evalPsyz(i-th p-syzygy) then we apply evalPsyz to the j-th
p-syzygy during the execution.

Enhancing the Extended Hensel Construction by Using Gröbner Bases 469

4 Timing Data and Final Remarks

We have tested our new EHC algorithm by the polynomial given in Example 1
and two related problems. Let F (x, y, z) ∈ Q[x, y, z] be as follows, where x is the
main variable:

F = {(x5y3+2z) (x5z3−2y)+x3z4}×{(x5z3+3y) (x5y3−3z)+x7y6}+3x10y5z5.
(4.1)

F has only one Newton line with Newton polynomial (x5y3 − 3z) (x5y3 +
2z) (x5z3 + 3y) (x5z3 − 2y). The slope of the Newton line is 2/5, so x, y and
z are weighted as (x, y, z) → (x/t2, t5y, t5z). We choose the initial Hensel fac-
tors to be of degree 10 w.r.t. x, hence we have the following three choices.

ChoiceA : G0 = (x5y3 + 2z) (x5z3 − 2y), H0 = (x5y3 − 3z) (x5z3 + 3y),
ChoiceB : G0 = (x5y3 − 3z) (x5z3 − 2y), H0 = (x5y3 + 2z) (x5z3 + 3y),
ChoiceC : G0 = (x5y3 − 3z) (x5y3 + 2z), H0 = (x5z3 + 3y) (x5z3 − 2y).

(4.2)
The Choice A has been treated in Example 1; the structure of polynomial in (4.1)
suggests that the term x3z4 will appear in δG(4), the term x7y6 will appear in
δH(6), and terms with rational function coefficients will appear in δG(10) and
δH(10). As we will see later, the Hensel factors in Choice C show the most
complicated behavior.

Let ΓA, ΓB and ΓC be Gröbner bases in Choices A, B and C, respectively.
ΓA, ΓB and ΓC consist of 5, 4 and 6 polynomials, and each of them contains
only one polynomial in Q[u], as follows.

ΓA : Ĝ11 = (1/6) yz (3y4−2z4) (2y4−3z4), (4.3)

ΓB : Ĝ6 = yz (y4+z4), (4.4)

ΓC : Ĝ5 = (1/6) (3y4−2z4) (2y4−3z4) (y4+z4). (4.5)

We compare the new EHC algorithm with the old one from the viewpoint of
computational time. The new EHC algorithm was implemented on our algebra
system named GAL which was developed mainly in Sasaki’s Lab., and the com-
putation was done on a computer with Intel(R)-U2300 (1.20GHz), operated by
Linux 3.4.100. The old EHC algorithm was implemented on Mathematica, and
the computation was done on a computer with Intel(R)-B800 (1.50GHz), oper-
ated by MS Windows 7. Each datum in Tables is an average of 100 repetitions
of corresponding unit operation (Tables 1 and 2).

It is surprising that the new EHC algorithm is very efficient compared with
the old one. One reason for this is that the old EHC algorithm was implemented
by using high level commands of Mathematica, while the new EHC algorithm
uses various low level procedures of GAL. Another surprise is that the new EHC
algorithm spent most time for the factorization of the net Newton polynomial
FN . This slowness of the factorization will be due to that we have applied the

470 T. Sasaki and D. Inaba

Table 1. Timing data (msec) by old EHC algorithm

Comp. step Choice A Choice B Choice C

FN & Factri. see right 133.38 see left

MY-functions 567.07 318.24 472.22

δG(4), δH(4) 34.630 33.080 35.720

δG(6), δH(6) 59.280 63.340 67.710

δG(8), δH(8) (δF = 0) 110.14 115.75

δG(10), δH(10) 99.920 158.65 170.36

Table 2. Timing data (msec) by new EHC algorithm

Comp. step Choice A Choice B Choice C

FN & Factri. see right 23.19 see left

Γ &Syzygies 0.670 0.250 0.330

δG(4), δH(4) 0.018 0.190 0.270

δG(6), δH(6) 0.175 0.360 0.830

δG(8), δH(8) (δF = 0) 0.400 0.830

δG(10), δH(10) 0.554 1.160 3.070

GHC-based factorization algorithm for FN which is sparse both in x and y, z.
We are planning to develop algorithms for multivariate GCD and factorization,
which are based on the EHC with Gröbner bases.

We explain how the denominator factors were determined.

Choice A: Since 6 Ĝ11 = yz (6y8 −13y4z4 +6z8) and δR(10) = 18y3z3, the
denominator factor was determined as Ĝ11/ gcd(Ĝ11, δR

(10)) = (6y8−13y4z4+
6z8) = (3y4−2z2) (2y4−3z4).

Choice B: Since Ĝ6 = yz(y4+z4) and δR(4) = −5z8z8−15x3yz5, we obtained
Ĝ6/ gcd(Ĝ6, δR

(4)) = y5 + yz4. Then, we found gcd(cont(δH4)), cont
(δG(4))) = y, and we finally obtained y4+z4 as the denominator factor for
k = 4. The same is true for k = 6, 8, 10.

Choice C: Since 6Ĝ5 = 6y12−7y8z4−7y4z8+6z12 = (y4+z4) (3y4−2z4) (2y4−
3z4), we found gcd(Ĝ5, δR

(k)) = 1 and gcd(cont(δHk)), cont(δG(k))) =
6y8 − 13y4z4 + 6z8 for k = 4, 6, 8, hence we obtained y4+z4 as the denomi-
nator factor. For k = 10, we found gcd(cont(δH10)), cont(δG(10))) = 1, so the
denominator factor changed to Ĝ5.

We see that the denominator factors were determined rather complicatedly, as
the theory in Sect. 3 suggests. We note that, for the above experiment, Lemma 2
is enough for the degree reduction, and the forced degree reduction was unneces-
sary. Our experiments are not enough to judge the superiority of our algorithm,
but we did not make enough experiment because of the following reason.

Enhancing the Extended Hensel Construction by Using Gröbner Bases 471

Before the implementation, we feared that the computation of Gröbner bases,
in particular the syzygies, is time consuming. We are currently satisfied with
the efficiency of our syzygy algorithm for small-sized polynomials; it occupies
only a part of the time of whole Gröbner basis computation for small-sized
polynomials. However, we have recognized that the syzygy computation becomes
heavy in many cases; if we increase the degrees of sub-variables or introduce non-
simple numerical coefficients then the syzygies become quite large expressions.
Therefore, we have to attain much more enhancements.

After submitting the present paper, we have done such enhancements which
improve our algorithm described in Sect. 3 by an order of magnitude in the
computation time [11]. The essential idea in the study is that we compute neither
a Gröbner basis nor the syzygies for the elements of the basis, but compute only
one element in K[u] and the syzygy for the element, as efficiently as possible.
Furthermore, in this study, we have proved a theorem which states that the
Gröbner basis Γ of 〈G0,H0〉 is such that Γ ∩ K[u] contains only one element.
This theorem makes the discussions in Sect. 3 pretty simple.

References

1. Buchberger, B.: Gröbner bases: an algorithmic methods in polynomial idealtheory.
In: Multidimensional Systems Theory, Chapter 6. Reidel Publishing (1985)

2. Inaba, D.: Factorization of multivariate polynomials by extended Hensel construc-
tion. ACM SIGSAM Bull. 39(1), 2–14 (2005)

3. Inaba, D., Sasaki, T.: A numerical study of extended Hensel series. In: Verschede,
J., Watt, S.T., (eds.) Proceedings of SNC 2007, pp. 103–109. ACM Press (2007)

4. Kaltofen, E.: Sparse Hensel lifting. In: Caviness, B.F. (ed.) EUROCAL 1985.
LNCS, vol. 204, pp. 4–17. Springer, Heidelberg (1985)

5. de Kleine, J., Monagan, M., Wittkopf, A.: Algorithms for the non-monic case of
the sparse modular GCD algorithm. In: Proceedings of ISSAC 2005, pp. 124–131
(2005)

6. Musser, D.R.: Algorithms for polynomial factorizations. Ph.D. thesis, University
of Wisconsin (1971)

7. Moses, J., Yun, D.Y.Y.: The EZGCD algorithm. In: Proceedings of ACM National
Conference, pp. 159–166. ACM (1973)

8. Sasaki, T., Inaba, D.: Hensel construction of F (x, u1, . . . , u�), � ≥ 2, at a singular
point and its applications. ACM SIGSAM Bull. 34(1), 9–17 (2000)

9. Sasaki, T., Inaba, D.: A study of Hensel series in general case. In: Moreno Maza,
M., (ed.) Proceedings of SNC 2011, pp. 34–43. ACM Press (2011)

10. Sanuki, M., Inaba, D., Sasaki, T.: Computation of GCD of sparse multivariate
polynomial by extended Hensel construction. In: Proceedings of SYNASC2015
(Symbolic and Numeric Algorithms for Scientific Computing), pp. 34–41. IEEE
Computer Society (2016)

11. Sasaki, T., Inaba, D.: Various enhancements of extended Hensel construction for
sparse multivariate polynomials. In: Proceeding of SYNASC 2016 (2016, to appear)

12. Sasaki, T., Kako, F.: Solving multivariate algebraic equation by Hensel construc-
tion. Preprint of Univ. Tsukuba, March 1993

13. Sasaki, T., Kako, F.: Solving multivariate algebraic equation by Hensel construc-
tion. Japan J. Ind. Appl. Math. 16(2), 257–285 (1999). (This is almost the same
as [12]: the delay of publication is due to very slow reviewing process.)

472 T. Sasaki and D. Inaba

14. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27, 701–717 (1980)

15. Wang, P.S., Rothschild, L.P.: Factoring multivariate polynomials over the integers.
Math. Comput. 29, 935–950 (1975)

16. Wang, P.S.: An improved multivariate factoring algorithm. Math. Comput. 32,
1215–1231 (1978)

17. Zippel, R.: Probabilistic algorithm for sparse polynomials. In: Ng, E.W. (ed.)
EUROSAM 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)

18. Zippel, R.: Newton’s iteration and the sparse Hensel lifting (extended abstract).
In: Proceedings of SYMSAC 1981, pp. 68–72 (1981)

Symbolic-Numerical Optimization
and Realization of the Method of Collocations

and Least Residuals for Solving
the Navier–Stokes Equations

Vasily P. Shapeev1,2 and Evgenii V. Vorozhtsov1(B)

1 Khristianovich Institute of Theoretical and Applied Mechanics,
Russian Academy of Sciences, Novosibirsk 630090, Russia

{shapeev,vorozh}@itam.nsc.ru
2 Novosibirsk National Research University, Novosibirsk 630090, Russia

Abstract. The computer algebra system (CAS) Mathematica has been
applied for constructing the optimal iteration processes of the Gauss–
Seidel type at the solution of PDE’s by the method of collocations and
least residuals. The possibilities of the proposed approaches are shown
by the examples of the solution of boundary-value problems for the 2D
Navier–Stokes equations.

Keywords: Computer algebra system · Symbolic-numerical algorithm ·
Interface CAS–Fortran · Preconditioner · Krylov subspaces · Multigrid

1 Introduction

In recent decades, rapid development of mathematical methods, first of all, the
numerical modelling has taken place. It is used in increasing amount both in
conventional domains of physics and technology and in other domains. A wide
variety of modelled phenomena and processes, the complexity and peculiarities
in arising mathematical problems make increased demands for the properties and
capabilities of numerical methods and stimulate a search for the new methods
possessing better properties as the previous methods.

Many researchers showed in their works a substantial benefit from using
computer algebra systems (CASs) in the process of deriving the formulas of
new numerical algorithms, their realization and verification of the corresponding
computer codes [1,4,5,24]. In the present work, an emphasis is placed on the
demonstration of the efficiency of the CAS application for the optimization of
iteration processes for solving the systems of linear algebraic equations (SLAE)
arising at the realization of the method of collocations and least residuals (CLR).
At the realization of this method, as in other cases, the problem of optimizing
the iterative processes of the SLAE solution is important.

The CLR method, which was proposed in [13] and developed further in the
subsequent works of other authors, is one of the methods, which enables the effi-
cient solution of PDEs [6,16–19,21–23]. The works [6,19,21–23] have shown the
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 473–488, 2016.
DOI: 10.1007/978-3-319-45641-6 30

474 V.P. Shapeev and E.V. Vorozhtsov

usefulness of the application of a CAS at the derivation of formulas of the differ-
ent versions of the CLR method. The versions of the method were constructed,
which have enabled the obtaining of the solutions of the 2D and 3D benchmark
problems, which are among the most accurate at present [2,20].

Three families of methods for accelerating the iteration processes of solv-
ing the SLAEs are the most popular today: the algorithms using Krylov space
methods [9,15], multigrid [26], and the preconditioners.

In recent years, a number of researchers have shown a high efficiency of the
combined application of different algorithms [10–12,25]. In particular, in [10],
the acceleration with factor of 25 was achieved with the aid of a combination
of multigrid and GMRES in comparison with a standard multigrid algorithm.
Diagonal preconditioners have gained widespread acceptance, see, e.g., [8,14].

In contrast to the previous works [6,7,18,19,21–23], we present in this work
for the first time the application of a CAS for formulating the preconditioner
and its optimization for the use in the CLR method. Besides, the algorithms
of the preconditioner, Krylov subspaces, and of the Fedorenko method have
been combined for the first time. Such a combination has been proposed and
implemented generally for the first time and has proved to be very efficient and
has resulted in a considerable acceleration of the solution of two-dimensional
stationary incompressible Navier–Stokes equations.

It was shown previously in [21,23] how one can apply the CASMathematica for
the derivation and verification of the formulae of the CLR method as well as for
their translation into the arithmetic operators of the Fortran language. Therefore,
these stages of the computer implementation of the symbolic-numerical algorithm
of the CLR method are described briefly in the following.

2 Description of the CLR Method

Consider a boundary-value problem for the system of Navier–Stokes equations

(V · ∇)V + ∇p =
1

Re
ΔV − f , divV = 0, (x1, x2) ∈ Ω, (1)

V
∣∣
∂Ω

= g (2)

in the region Ω with the boundary ∂Ω. In Eq. (1), x1, x2 are the Cartesian spatial
coordinates, V = (v1(x1, x2, v2(x1, x2)) is the velocity vector; p = p(x1, x2) is the
pressure, f = (f1, f2) is the given vector function, Re is the Reynolds number,
Δ = ∂2

∂x2
1

+ ∂2

∂x2
2
, (V · ∇) = v1

∂
∂x1

+ v2
∂

∂x2
. System (1) is solved under the

Dirichlet boundary conditions (2), where g = g(x1, x2) = (g1, g2) is a given
vector function. The condition

∫∫
Ω

p dx1dx2 = 0 (3)

is imposed on the pressure. It is valid in the absence of the sources and sinks in
region Ω [6]. The square

Ω = {(x1, x2), 0 ≤ xi ≤ L, i = 1, 2} (4)

Symbolic-Numerical Optimization and Realization of the Method 475

is taken in the following as the problem solution region, where L > 0 is a
given length of the square side. In the given problem (1)–(4), region (4) is
discretized by a grid with square cells Ωij , i, j = 1, . . . , I, I ≥ 1. It is con-
venient to introduce the local coordinates y1 and y2 in each cell Ωij . The
dependence of local coordinates on global spatial variables x1 and x2 is spec-
ified by relations ym = (xm − xm,i,j)/h, m = 1, 2, where xm,i,j is the value
of the coordinate xm at the center of cell Ωij , and h is the halved length of
the square cell side. Let u(y1, y2) = (u1, u2) = V(hy1 + x1,i,j , hy2 + x2,i,j),
q(y1, y2) = p(hy1 + x1,i,j , hy2 + x2,i,j). The Navier–Stokes equations then take
the following form:

Δum − Reh
(

u1
∂um

∂y1
+ u2

∂um

∂y2
+

∂q

∂ym

)
= Re · h2fm, m = 1, 2; (5)

1
h

(
∂u1

∂y1
+

∂u2

∂y2

)
= 0, (6)

where Δ = ∂2

∂y2
1

+ ∂2

∂y2
2
. The Newton linearization of equations (5) gives

Δus+1
m −(Re ·h)

(
us
1u

s+1
m,y1

+ us+1
1 us

m,y1
+ us

2u
s+1
m,y2

+ us+1
2 us

m,y2
+ qs+1

ym

)
= Fm, (7)

where m = 1, 2, and s is the number of the iteration over the nonlinearity,
s = 0, 1, 2, . . ., us

1, u
s
2, q

s is the known approximation to the solution at the
sth iteration starting from the chosen initial guess with index s = 0, Fm =
Re

[
h2fm−h

(
us
1u

s
m,y1

+ us
2u

s
m,y2

)]
, um,yl

= ∂um/∂yl, qym
= ∂q/∂ym, l,m=1, 2.

The approximate solution in each cell Ωi,j is sought in the form of a linear
combination of the basis vector functions ϕl:

(us
1, u

s
2, q

s)T =
∑

l b
s
i,j,lϕl, (8)

where the superscript T denotes the transposition operation. In the given version
of the method, the ϕl are the polynomials. Thus, the approximate solution is
a piecewise polynomial. In the given work, the second-degree polynomials in
variables y1, y2 are employed for the approximation of velocity components, and
the first-degree polynomials are used for the pressure approximation. In the
chosen space, there are fifteen basis functions in total. Since the coefficients are
constant in the continuity equation, which has a simple form, it is easy to satisfy
it at the expense of the choice of basis polynomials ϕl. It is not difficult to
find that it is required to this end that they satisfy three linear relations. There
will finally remain only twelve independent basis polynomials from the original
fifteen ones. They are presented in Table 1. One can term their set a solenoidal
basis because div ϕl = 0.

The number of collocation points and their location inside the cell may
vary in different versions of the method. In the given work, three versions of
the specification of the collocation point coordinates have been implemented.
Denote by Nc the number of collocation points inside each cell. In the case when
Nc = 2, the coordinates of collocation points are as follows: (ω, ω), (−ω, ω),

476 V.P. Shapeev and E.V. Vorozhtsov

Table 1. The form of basis functions ϕl

l 1 2 3 4 5 6 7 8 9 10 11 12

ϕl 1 y1 y2 y2
1 −2y1y2 y2

2 0 0 0 0 0 0

0 −y2 0 −2y1y2 y2
2 0 1 y1 y2

1 0 0 0

0 0 0 0 0 0 0 0 0 1 y1 y2

where 0 < ω < 1. At Nc = 4, the local coordinates of collocation points have
the form (±ω,±ω). In the case of Nc = 8, the coordinates of collocation points
were specified in the following way: the locations of the first four points was the
same as at Nc = 4, and the coordinates of the next four points were specified by
formulas (±ω, 0), (0,±ω).

Substituting (8) as well as the numerical values of the coordinates of each
collocation point in (7) we obtain 2Nc linear algebraic equations:

∑12
m=1 a

(1)
ν,m · bs+1

m = fs
ν , ν = 1, . . . , 2Nc . (9)

It was proposed in the work [13] to augment the collocation equations by
the solution matching conditions at the boundaries between neighboring cells of
the spatial computational grid within the framework of the method of colloca-
tions and least squares (CLS). The parameters were introduced in the matching
conditions in the work [7]. It was shown therein with the aid of numerical experi-
ments that the regions of parameter values at which the global SLAE of the CLS
method is well conditioned intersects to a considerable extent with the regions
in which one observes the highest accuracy of the approximate solution.

However, the influence of the matching conditions on the condition number
of the algebraic system for finding the coefficients affecting the basis functions in
the expansions of the solution vector components was not investigated in [7,13].
This investigation is carried out below in Sect. 3, where it is shown that the
incorporation of the matching conditions into the SLAE of the CLR method
enables a substantial reduction of the condition number of the local SLAEs in
internal grid cells by four–five decimal orders of magnitude. This increases the
reliability of the CLR method.

By analogy with [6,7,13] let us augment the system of equations of the dis-
crete problem in the Ωij cell by the conditions of matching with the solutions
of the discrete problem, which are taken in all cells adhering to the given cell.
We will write these conditions at separate points (called the matching points)
on the sides of the Ωij cell, which are common with its neighboring cells. The
matching conditions are taken here in the form

h∂(u+)n

∂n + (u+)n = h∂(u−)n

∂n + (u−)n, (10)

h∂(u+)τ

∂n + (u+)τ = h∂(u−)τ

∂n + (u−)τ , (11)
q+ = q−. (12)

Symbolic-Numerical Optimization and Realization of the Method 477

Here h ∂
∂n = h

(
n1

∂
∂x1

+ n2
∂

∂x2

)
= n1

∂
∂y1

+ n2
∂

∂y2
, n = (n1, n2) is the exter-

nal normal to the side of the Ωij cell, (·)n, (·)τ are the normal and tangential
components of the velocity vector with respect to the cell side, u+, u− are the
limits of the function u as its arguments tend to the matching point from inside
and outside the Ωij cell.

For the uniqueness of the pressure determination in the solution, we either
specify its value at a single point of the region or approximate condition (3) by
the formula

1
h

(∫∫
Ωi,j

q dy1dy2

)
= 1

h

(
−I∗ +

∫∫
Ωi,j

q∗dy1dy2

)
. (13)

Here I∗ is the integral over the entire region, which is computed as a sum of
the integrals over each cell at the foregoing iteration, q∗ is the pressure in a cell
from the foregoing iteration.

Denote by Nm the number of matching points for the velocity vector com-
ponents on the sides of each cell. At Nm = 4, the coordinates of these matching
points are specified by the formulas (±1, 0), (0,±1). At Nm = 8, the coordinates
of matching points are as follows: (±1,−ζ), (±1, ζ), (−ζ,±1), (ζ,±1), where
0 < ζ < 1. In the computational examples presented below, the value ζ = 1/2
was used. The matching conditions for pressure (12) are set at four points with
coordinates (±1, 0), (0,±1).

Using Eq. (8), we substitute the coordinates of these points in each of three
matching conditions (10)–(12). We obtain from the first two conditions 2Nm

linear algebraic equations for velocity components. The substitution of represen-
tation (8) in (12) also yields four linear algebraic (matching) equations.

In the present work, the pressure was specified at the vertex of the Ω1,1 cell
or condition (13) was used. If the cell side coincides with the boundary of region
Ω, then the boundary conditions are written at the corresponding points instead
of the matching conditions for the discrete problem solution: um = gm, m = 1, 2.

Uniting the equations of collocations, matching, and the equations obtained
form the boundary conditions, if the cell Ωij is the boundary cell, we obtain in
each cell a SLAE of the form

Ai,j · X s+1
i,j = f s,s+1

i,j , (14)

where X s+1
i,j = (bs+1

i,j,1, . . . , b
s+1
i,j,12)

T . In the versions studied in the present work,
system (14) is overdetermined. The symbolic expressions for the coefficients of
all equations of SLAE (14) were derived on computer in Fortran form by using
symbolic computations with Mathematica. At the obtaining of the final form
of the formulas for the coefficients of the equations, it is useful to perform the
simplifications of the arithmetic expressions of polynomial form to reduce the
number of the arithmetic operations needed for their numerical computation. To
this end, we employed standard functions of the Mathematica system, such as
Simplify and FullSimplify for the simplification of complex symbolic expres-
sions arising at the symbolic stages of the construction of the formulae of the
method. Their application enabled a two-three-fold reduction of the length of
polynomial expressions.

478 V.P. Shapeev and E.V. Vorozhtsov

For the numerical solution of the SLAE of the discrete problem a process was
applied, which may be called conventionally the Gauss–Seidel iteration scheme.
One global (s + 1)th iteration meant that all the cells were considered sequen-
tially in the computational region Ω. In each cell, SLAE (14) was solved by
the orthogonal method (of Givens or Householder), and the values known at the
solution construction at the (s+1)th iteration were taken in the right-hand sides
of equations (10)–(12) as the u− and q− in a given cell.

3 Preconditioners for the CLR Method

It is necessary to solve in each cell Ωij the SLAE of the form (14). Let us omit
in (14) the superscripts and subscripts for the sake of brevity:

AX = f . (15)

The condition number of a rectangular matrix A is calculated by the formula

κ(A) =
√

‖ A1 ‖ · ‖ A−1
1 ‖, (16)

where it is assumed that matrix A1 = AT A is non-singular.
We have at first tried the well-known diagonal (Jacobi) preconditioner

described in [14], but it has not produced in our case the expected accelera-
tion of the iterations convergence. On the other hand, it is well known that the
introduction of parameters in the preconditioner increases its capabilities for a
reduction of the condition number because one can then select these parameters
from the requirement of the condition number minimization. In our case, we
have constructed a preconditioner involving the parameters ξ and η.

The parameter ξ is introduced by multiplying by ξ the both sides of (7):

ξ[Δus+1
m − (Re · h)(us

1u
s+1
m,y1

+ us+1
1 us

m,y1
+ us

2u
s+1
m,y2

+ us+1
2 us

m,y2
+ qs+1

ym
)] = ξFm, m = 1, 2. (17)

The parameter η is introduced in (10) as follows:

h
∂(u+)n

∂n
+ η(u+)n = h

∂(u−)n

∂n
+ η(u−)n. (18)

Denote by Acol the 2Nc × 12 matrix of the system obtained from (17) upon
substituting the collocation point coordinates. The pressure enters the momen-
tum equation (17) only in the form of the derivatives ∂q/∂y1, ∂q/∂y2, therefore,
the coefficient affecting b10 in the matrix Acol is equal to zero. Because of this
the matrix Acol is singular. In order to eliminate this singularity we include
in Acol the row corresponding to Eq. (13). This row has the following form:
{0, 0, 0, 0, 0, 0, 0, 0, 0, h, 0, 0}. Denote such an augmented matrix by Ãcol. This
matrix is non-singular. It is seen from (17) that the entries of the matrix Ãcol

depend on the solution at the foregoing iteration. Therefore, a further inves-
tigation of the condition number properties was made on a given grid at the

Symbolic-Numerical Optimization and Realization of the Method 479

solution of a specific problem as follows. At first we obtained a good approxi-
mation of the solution on the grid of 80 × 80 cells with the aid of the multigrid
algorithm. The obtained numerical values of the solution were then used for
computing the entries of the matrix Ãcol. Thus, the entries of the matrix Ãcol

depend on parameters ξ and h. To obtain the matrix Ãcol consisting only of
numerical elements the numerical values of the half-step h were specified by the
formula h = 0.5/(2M), M = 20, 40, 60, 80, 160, 320. Besides, the parameter
ξ was varied in the interval from 0.01 to 20. The built-in function of the CAS
Mathematica Norm[A1, 2] was further used for computing the condition num-
ber according to (16). This function calculates the Euclidean norm of a square
matrix. The condition number κ(Ãcol) was found to be independent of the value
of the grid half-step h. In the interval 0.01 ≤ ξ ≤ 20, the number κ(Ãcol) varied
within the following limits: 4.2255 · 106 ≤ κ(Ãcol) ≤ 4.2258 · 106 (here Nc = 8).
The CAS Mathematica printed the following message: “Inverse: luc: Result for
inverse of badly conditioned matrix”.

Denote by Amat the matrix corresponding to matching conditions (18), (11),
and (12). Then one can present the entire matrix A as

A =
(

Ãcol

Amat

)
. (19)

At a given numerical value of the half-step h, the entries of the matrix A depend
on ξ and η. Let G(ξ, η) = κ(A(ξ, η)). Denote by ξopt, ηopt the values of the
parameters ξ and η, at which the function G(ξ, η) reaches its minimum. We
describe in the following a numerical algorithm for finding the values ξopt and
ηopt in any internal cell Ωij . To save the CPU time we take only the cell lying
at the center of the computational region, and then use the obtained values of
ξopt and ηopt in the entire region (4). Therefore, we will call the values ξopt and
ηopt quasi-optimal.

An attempt was made at the use of the built-in Mathematica function NMini-
mize[...] for finding the minimum of the function G(ξ, η) in some given region
of the variation of parameters ξ and η. It has turned out, however, that this
function requires many hours of the work of the Intel processor with tact fre-
quency of 3.0 GHz. Another built-in function FindArgMin[...], which might
also be used for the same purpose, has proved also to be very slow. In this con-
nection, we have implemented the following algorithm of a search for the point
(ξopt, ηopt), at which the minimum of the function G(ξ, η) is reached. At first
some rectangular region D

(1)
ξ,η was specified in the plane (ξ, η), which included

those values of the parameters ξ and η, at which the computations by the CLR
method with the preconditioner under consideration demonstrated the conver-
gence of the iterative process of the solution obtaining. A rectangular uniform
grid of size 10×80 nodes was specified in the region D

(1)
ξ,η, where 10 and 80 nodes

were taken along the ξ-axis and η-axis, respectively. Then with the aid of of a
simple scanning of all nodes (ξi, ηj) such a node (ξi0 , ηj0) was found, in which
the value of the function G(ξ, η) was minimal. After that, a new region D

(2)
ξ,η was

built the sizes of which in each coordinate direction ξ and η were by the factor

480 V.P. Shapeev and E.V. Vorozhtsov

of 1/2 smaller than in the case of the region D
(1)
ξ,η, but the number of grid nodes

in D
(2)
ξ,η was the same as in D

(1)
ξ,η. The geometric center of the new region D

(2)
ξ,η

was at point (ξi0 , ηj0), which was found in the region D
(1)
ξ,η. This process of the

contraction of the regions of the optimum search continued until the values of
(ξ(ν−1)

opt , η
(ν−1)
opt) and (ξ(ν)opt, η

(ν)
opt), which were found in the regions, respectively,

D
(ν−1)
ξ,η and D

(ν)
ξ,η (ν = 2, 3, . . .), coincided in all three digits of the mantissa of

the machine floating-point number. The entire process required no more than
three minutes of the work of a desktop computer (Fig. 1). This algorithm was
used for elucidating the influence of the value of the grid half-step h, the number
of collocation points Nc, and the choice of the norm on the values ξopt and ηopt.
It has turned out that the obtained values of ξopt and ηopt do not depend on the
value of h. Table 2 presents the values ξopt and ηopt as well as κ(A(ξopt, ηopt))
for two different values of the number of collocation points in the cell and of two
different norms: the Euclidean norm (‖ · ‖E) and the Frobenius norm (‖ · ‖F) for
the case of test (25). It is seen that a reduction of Nc affects more significantly
the value ξopt than the value ηopt.

However, it was found with the aid of trial computations that a faster con-
vergence was observed at different values of the parameters ξ and η. Therefore,
another technique of determining the quasi-optimal parameters ξopt and ηopt
of the preconditioner was considered, which is based on the criterion for the
iteration process convergence. The iteration process employed for the numerical
solution of the SLAE of the discrete problem may be termed the Gauss–Seidel

Fig. 1. Surfaces κ(A(ξ, η)) obtained at the use of the Euclidean norm (a) and the
Frobenius norm (b), Nc = 8

Table 2. Influence of the number of collocation points in the cell on the quasi-optimal
values ξ, η for preconditioner

Nc (ξopt)E (ηopt)E κE (ξopt)F (ηopt)F κF

4 0.213 1.738 3.83 0.264 1.871 6.74

8 0.156 1.747 3.84 0.189 1.873 6.71

Symbolic-Numerical Optimization and Realization of the Method 481

iteration scheme. It is well known that the solution of SLAE (15) with rectan-
gular matrix A by the method of least squares is equivalent to the solution of
the SLAE of the form

A1X = f 1, (20)

where A1 = AT A, f 1 = AT f . Here A1 is a 12 × 12 matrix. In the Gauss–
Seidel method, the original matrix A1 in (20) is represented as a sum of two
matrices: A1 = B + C, and one considers the iteration process of the form
BX n+1 + CX n = f 1. We obtain from here

X n+1 = −B−1CX n + B−1f 1. (21)

Introduce the notation T = −B−1C. We can then rewrite (21) in the form

X n+1 = TX n + B−1f 1. (22)

On the other hand, one can write the Jacobi method for the solution of system
(20) also in the form (22), if one sets T = I − D−1A1 and B = D, where
D = diag(αii)12i=1, and αij are the entries of the matrix A1, i, j = 1, . . . , 12.
Thus, one can consider the Gauss–Seidel method as a modification of the Jacobi
method.

We consider below the problem of optimizing the choice of parameters ξ and
η in a particular case when only the values X n from the foregoing iteration
are always used in the right-hand sides of matching conditions. The iteration
method for system (22) coincides with the Jacobi method. One can consider this
optimization procedure as the first approximation of the solution of the problem
of optimizing the parameters of a more general iterative process (21). As is
known, the sufficient condition for the convergence of the Jacobi method has the
form ‖ T(ξ, η) ‖< 1. The minimum of ‖ T(ξ, η) ‖ was found with the aid of the
procedure described above at a search for the condition number minimum. It has
been shown that there is a ravine in the ‖ T(ξ, η) ‖ surface, and its bottom is
parallel with the ξ-axis. The value ηopt = 3.478 corresponds to this bottom, and
ξ may be chosen from the requirement that ‖ T(ξ, η) ‖ remains small. It is also
found that ‖ T ‖ slightly exceeds the value 1. But it should be remembered that
the process of the Gauss–Seidel type has in fact been implemented, therefore,
one can expect that at the values of ξ and η corresponding to the ravine in the
‖ T(ξ, η) ‖ surface the relation ‖ T ‖< 1 will be satisfied. Note that κ(A(ξ, η)) =
7.575 at ξ = 0.1, η = 3.5, thus, it is higher only by a factor of about two than
the value of κ(A(ξ, η)), which has been obtained from the requirement of the
κ(A) minimum.

4 The Krylov and Multigrid Procedures for the CLR
Method

In the present work, a version of the Krylov method, which was described in
detail in [21,22], was used as the second technique for accelerating the con-
vergence of the iteration process of the SLAE solution. The third technique,

482 V.P. Shapeev and E.V. Vorozhtsov

which has been used here, is the multigrid technique. The main idea of multi-
grid is the selective damping of the error harmonics [3,26]. In the CLR method,
as in other methods, the number of iterations necessary for reaching the given
accuracy of the approximation to the solution depends on the initial guess. As a
technique for obtaining a good initial guess for the iterations on the finest grid
among the grids used in a multigrid complex we have applied the prolongation
operations along the ascending branch of the V-cycle — the computations on
a sequence of refining grids. The passage from a coarser grid to a finer grid is
made with the aid of the prolongation operators. Let us illustrate the algorithm
of the prolongation operation by the example of the velocity component u1(y1,
y2, b1, . . ., b12). Let h1 = h, where h is the half-step of the coarse grid, and let
h2 = h1/2 be the half-step of the fine grid on which one must find the expansion
of function u1 over the basis.
Step 1. Let X1, X2 be the global coordinates of the coarse grid cell center. We
make the following substitutions into the polynomial expression for u1:

yl = (xl − Xl)/h1, l = 1, 2. (23)

As a result, we obtain the polynomial

U1(x1, x2, b1, . . . , b12) = u1

(
x1 − X1

h1
,
x2 − X2

h1
, b1, . . . , b12

)
. (24)

Step 2. Let (X̃1, X̃2) be the global coordinates of the center of any of the four cells
of the fine grid, which lie in the coarse grid cell. We make the substitution in (24)
xl = X̃l + ỹl · h2, l = 1, 2. As a result, we obtain the second-degree polynomial
Ũ1 = P (ỹ1, ỹ2, b̃1, . . . , b̃12) in variables ỹ1, ỹ2 with coefficients b̃1, . . . , b̃12. After
the collection of terms of similar structure it turns out that the coordinates
X1,X2 and X̃1, X̃2 enter b̃l (l = 1, . . . , 12) only in the form of combinations
δxl = (Xl − X̃l)/h1. According to (23), the quantity −δxl = (X̃l −Xl)/h1 is the
local coordinate of the fine grid cell center in the coarse grid cell.

Let us present the expressions for coefficients b̃j (j = 1, . . . , 12) of the
solution representation in a fine grid cell with the half-step h2 in terms of the
coefficients b1, . . . , b12 of the solution representation in a cell with the half-step
h1 = 2h2:

b̃1 = b1 − b2δx1 + b4δx
2
1 − (b3 + 2b5δx1)δx2 + b6δx

2
2;

b̃2 = σ1(b2 − 2b4δx1 + 2b5δx2); b̃3 = σ1[b3 + 2(b5δx1 − b6δx2)];
b̃4 = σ2b4; b̃5 = σ2b5; b̃6 = σ2b6;
b̃7 = b7 − b8δx1 + b9δx

2
1 + δx2(b2 − 2b4δx1 + b5δx2);

b̃8 = σ1(b8 − 2b9δx1 + 2b4δx2);
b̃9 = σ2b9; b̃10 = b10 − b11δx1 − b12δx2; b̃11 = σ1b11; b̃12 = σ1b12,

where σ1 = h2/h1, σ2 = σ2
1 . The analytic expressions for coefficients b̃1, . . . , b̃12

were found efficiently with the aid of the Mathematica functions Expand[...],

Symbolic-Numerical Optimization and Realization of the Method 483

Coefficient[...], Simplify[...]. To reduce the length of obtained coeffi-
cients we have applied a number of transformation rules as well as the Mathemat-
ica function FullSimplify[...]. As a result, the length of the final expressions
for b̃1, . . . , b̃12 proved to be three times shorter than the length of the original
expressions. The Fortran form of the above prolongation operator expressions
was produced with the aid of the Mathematica functions ToString[...] and
FortranForm[...].

5 Results of Numerical Experiments

Consider the following exact solution of the Navier–Stokes equations (1):

u1 = cos(2πx1) sin(2πx2), u2 = − sin(2πx1) cos(2πx2),

p = 1
2

[
cos

(
πx1
2

)
+ cos

(
πx2
2

)] − 2X sin(πX/2)
π . (25)

The expressions f1 and f2 in (1) are obtained by substituting (25) in (1).
The root-mean-square solution errors were calculated:

δu(h)=
[1
2M2

M∑
i=1

M∑
j=1

2∑
ν=1

(uν,i,j − uex
ν,i,j)

2
] 1

2
, δp(h)=

[1
M2

M∑
i=1

M∑
j=1

(pi,j − pex
i,j)

2
] 1

2
,

where M is the number of cells along each coordinate direction, uex
i,j and pex

i,j

are the velocity vector and the pressure according to the exact solution (25).
The quantities ui,j and pi,j denote the numerical solution obtained by the CLR
method described above. The convergence orders νu and νp are computed by
the well-known formulas [21,23]. Let bs

i,j,l, s = 0, 1, . . . be the values of the
coefficients bi,j,l in (8) at the sth iteration. The following condition was used for
termination of the iterations over the nonlinearity: δbs+1 < ε, where δbs+1 =
maxi,j(max1≤l≤12 |bs+1

i,j,l − bs
i,j,l|), and ε < h2 is a small positive quantity. We will

Fig. 2. Error δbs at the use of different preconditioners: () ξ = ξopt, η = ηopt;
(−−−) ξ = η = 1; (· · · · · ·) the diagonal preconditioner

484 V.P. Shapeev and E.V. Vorozhtsov

call the quantity δbs+1 the pseudo-error of the approximate solution. A series
of computations has been done for the purpose of studying the influence of a
specific form of the preconditioner on the convergence of iterations by the CLR
method. In this series of runs, the satisfaction of the inequality δbs < 10−9

was the criterion for the computation termination. The results are presented in
Fig. 2. The cross on the s-axis shows the number of the iteration s, beginning
with which the computation within the framework of the multigrid algorithm
was carried out on the grid of 80 × 80 cells. It is seen that in the absence of the
preconditioner, when ξ = 1 in (17) and η = 1 in (18), the pseudo-error δbs starts
growing after the passage to the computation on the 80 × 80 grid.

The diagonal preconditioner of [14] also demonstrates a similar behavior,
whereas the preconditioner using (17), (18) with ξ = ξopt = 0.156, η = ηopt =
1.747 ensures the convergence to δbs < 10−9. Therefore, all the computations
were done below in this section with the use of the preconditioner of Sect. 3 with
ξ = ξopt, η = ηopt.

Figures 3, 4 and Table 3 present the results of numerical experiments whose
aim was to elucidate the influence on the convergence acceleration of the iter-
ation process for solving the Navier–Stokes equations only at the use of the
two-parameter preconditioner and the Krylov method. In these computations,
it was assumed that the Reynolds number Re = 1000 and L = 0.5 in (4). These
computations were done on the 40×40 grid, Nc = 8. The following quasi-optimal
values of quantities ξ and η were used according to Table 2: ξ = ξopt = 0.213,

Fig. 3. Influence of the number of the residuals k in Krylov algorithm [22] on the
convergence rate of quantities log10 δbn (a) and log10 δu (b), where n is the number of
iterations

Fig. 4. Comparison of the profiles of approximate solution with the exact one at
x2 = L/4

Symbolic-Numerical Optimization and Realization of the Method 485

Table 3. Quantities δu, δp, νu, νp on a sequence of grids, Re =1000, L = 0.5, Nc = 8

M δu δp νu νp

10 2.204E−03 3.087E−03

20 7.174E−04 9.021E−04 1.62 1.77

40 1.801E−04 2.521E−04 1.99 1.84

80 4.070E−05 9.547E−05 2.15 1.40

η = ηopt = 1.738. The case k = 0 (see the caption to Fig. 3) corresponds to a
computation without using the algorithm of Krylov subspaces. In this series of
runs, Eq. (13) was included in the overdetermined SLAE (14). In the process of
iterations by the CLR method, the absolute value of integral (3) dropped from
the value of the order O(10−3) to the value of the order O(10−12) − O(10−13).
The number of iterations Nit needed for satisfying the inequality δbn < 10−9

amounted to 17429, 1577, 969, and 1072, respectively, at k = 0, 2, 10, and 20.
Thus, the application of the Krylov algorithm at Re = 1000 with k = 10 has
enabled a reduction of the iterations needed for the solution convergence by the
factor of 18 in comparison with the case when k = 0.

A computation was also done in the absence of the preconditioner that is
when ξ = η = 1, see the dash-dot lines in Fig. 3. In this case, 26384 iterations
were required by the CLR method at k = 0 to satisfy the inequality δbn < 10−9

that is by the factor of 1.5 higher than at the use of the values ξopt and ηopt
in the preconditioner. It is seen in Fig. 3(b) that the error δun of the converged
solution is higher by 100.884 times than at the use of the values ξopt and ηopt
in the preconditioner. It is seen in Table 3 that at Re = 1000, the convergence
order νu is close to 2, and νp < νu at M ≥ 40.

Table 4. Influence of the preconditioner and the combination of the Krylov and
Fedorenko methods on a sequence of grids of sizes 5 · 2m × 5 · 2m, m = 0, . . . , 4 on
the convergence rate of the CLR method at Re = 1000

Method Nit CPU time, s. AF δu δp

Kmgr = 1, k = 0 851119 464718 1.0 3.587E−05 7.065E−04

Kmgr = 5, k = 0 1282529 843849 0.55 2.108E−05 4.570E−04

Kmgr = 1, k = 9 39521 21944 21.18 3.587E−05 7.060E−04

Kmgr = 1, k=10 40154 22375 20.77 3.587E−05 7.063E−04

Kmgr = 5, k = 5 6185 2119 219.31 3.570E−05 6.713E−05

Kmgr = 5, k = 8 6283 2172 213.96 3.571E−05 6.392E−05

Kmgr = 5, k = 9 5832 2018 230.29 3.571E−05 5.787E−05

Kmgr = 5, k=10 6090 2186 212.59 3.571E−05 5.628E−05

486 V.P. Shapeev and E.V. Vorozhtsov

Figure 4 shows the solution obtained by the CLR method by symbols Δ (v1),
◦ (v2), and ∇ (p); the curves of the exact solution are depicted by the solid,
dashed, and dash-dot lines for v1, v2, and p, respectively. One can see here a
good agreement between the numerical results and the analytic solution.

The computations were done with the use of the ascending branch of the
V-cycle, which corresponds to the prolongation operation, for the purpose of
elucidating the influence of only multigrid algorithm on the acceleration of con-
vergence in the CLR method. The computations were also done, in which the
motion along the ascending branch of the multigrid V-cycle was combined with
the acceleration algorithm based on Krylov’s subspaces. The results of these
computations are presented in Table 4. In this table, Kmgr is the number of
sequentially used grids in the multigrid complex. If Kmgr = 1, then this means
that only one grid is employed in the computation, and this is the finest grid
with the number of cells 80 × 80. The integer Nit is the total number of itera-
tions made on all grids of the complex. The factor AF of the iteration process
acceleration as a result of the application of some acceleration technique is cal-
culated as the ratio of the CPU time at Kmgr = 1, k = 0 to the CPU time
at the application of a sequence of grids in combination with the application of
the multigrid algorithm on each grid (Kmgr > 1, k = 0) or at the application
of a sequence of grids combined with the application of the Krylov’s algorithm
on each grid (Kmgr > 1, k > 1). In all computations shown in Table 4, the
quasi-optimal values ξopt = 0.08, ηopt = 3.48 were used in the two-parameter
preconditioner. It is seen in Table 4 that the highest convergence acceleration
— by the factor of 230 in comparison with the computation only on the finest
grid — takes place when five grids are applied in the multigrid algorithm and 9
residuals are applied in the Krylov method.

For a better elucidation of the capabilities of CASs at the construction of the
versions of the CLR method, the numerical experiments were done here to solve
the benchmark problem of the lid-driven cavity flow on a grid of 320× 320 cells.
The above-described techniques for accelerating the convergence of iterations
were also applied here, and in this case, the value AF = 162 was achieved.
The obtained results were compared with the most accurate results of other
researchers obtained at Re = 1000. The obtained results coincided with the
results of [2,6,20] with the accuracy of ≈10−3.

6 Conclusions

The CAS Mathematica has been applied for constructing the optimal iteration
processes of the Gauss–Seidel type at the solution of boundary-value problems
by the CLR method. A large amount of symbolic computations, which arose at
the derivation of the basic formulae of the CLR method, was done efficiently
with Mathematica. It is very important that the application of CAS has facili-
tated greatly this work, reduced at all its stages the probability of errors usually
introduced by the mathematician at the development of a new algorithm.

Symbolic-Numerical Optimization and Realization of the Method 487

Note that the algorithm of a search for optimal parameters of the two-
parameter preconditioner, which has been proposed in the present work, can be
extended also for the cases of the solution of other PDEs by the CLR method.

References

1. Amodio, P., Blinkov, Y., Gerdt, V., La Scala, R.: On consistency of finite difference
approximations to the Navier-Stokes equations. In: Gerdt, V.P., Koepf, W., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 46–60. Springer,
Heidelberg (2013)

2. Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow.
Comput. Fluids 27, 421–433 (1998)

3. Fedorenko, R.P.: The speed of convergence of one iterative process. USSR Comput.
Math. Math. Phys. 4(3), 227–235 (1964)

4. Ganzha, V.G., Mazurik, S.I., Shapeev, V.P.: Symbolic manipulations on a com-
puter and their application to generation and investigation of difference schemes.
In: Caviness, B.F. (ed.) ISSAC 1985 and EUROCAL 1985. LNCS, vol. 204, pp.
335–347. Springer, Heidelberg (1985)

5. Gerdt, V.P., Blinkov, Y.A.: Involution and difference schemes for the Navier–Stokes
equations. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS,
vol. 5743, pp. 94–105. Springer, Heidelberg (2009)

6. Isaev, V.I., Shapeev, V.P.: High-accuracy versions of the collocations and least
squares method for the numerical solution of the Navier-Stokes equations. Comput.
Math. Math. Phys. 50, 1670–1681 (2010)

7. Isaev, V.I., Shapeev, V.P., Eremin, S.A.: Investigation of the properties of the
method of collocations and least squares for solving the boundary-value problems
for the Poisson equation and the Navier-Stokes equations. Comput. Technol. 12(3),
1–19 (2007). (in Russian)

8. Jiang, B., Lin, T.L., Povinelli, L.A.: Large-scale computation of incompressible
viscous flow by least-squares finite element method. Comput. Meth. Appl. Mech.
Engng. 114(3–4), 213–231 (1994)

9. Krylov, A.N.: On the numerical solution of the equation, which determines in
technological questions the frequencies of small oscillations of material systems.
Izv. AN SSSR, Otd. matem. i estestv. nauk 4, 491–539 (in Russian) (1931)

10. Lucas, P., Zuijlen, A.H., Bijl, H.: Fast unsteady flow computations with a Jacobian-
free Newton-Krylov algorithm. J. Comp. Phys. 229(2), 9201–9215 (2010)

11. Nasr-Azadani, M.M., Meiburg, E.: TURBINS: an immersed boundary, Navier-
Stokes code for the simulation of gravity and turbidity currents interacting with
complex topographies. Comp. Fluids 45(1), 14–28 (2011)

12. Nickaeen, M., Ouazzi, A., Turek, S.: Newton multigrid least-squares FEM for the
V-V-P formulation of the Navier-Stokes equations. J. Comp. Phys. 256, 416–427
(2014)

13. Plyasunova, A.V., Sleptsov, A.G.: Collocation-grid method of solving the nonlinear
parabolic equations on moving grids. Modelirovanie v mekhanike 18(4), 116–137
(1987). (in Russian)

14. Ramšak, M., Škerget, L.: A subdomain boundary element method for high-
Reynolds laminar flow using stream function-vorticity formulation. Int. J. Numer.
Meth. Fluids 46, 815–847 (2004)

488 V.P. Shapeev and E.V. Vorozhtsov

15. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Manchester Univer-
sity Press, Manchester (1991)

16. Semin, L., Shapeev, V.: Constructing the numerical method for Navier–Stokes
equations using computer algebra system. In: Ganzha, V.G., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 367–378. Springer,
Heidelberg (2005)

17. Semin, L.G., Sleptsov, A.G., Shapeev, V.P.: Collocation and least-squares method
for Stokes equations. Comput. Technol. 1(2), 90–98 (1996). (in Russian)

18. Shapeev, V.: Collocation and least residuals method and its applications. EPJ Web
Conferences 108, 01009 (2016). doi:10.1051/epjconf/201610801009

19. Shapeev, V.P., Isaev, V.I., Idimeshev, S.V.: The collocations and least squares
method: application to numerical solution of the Navier-Stokes equations. In: Eber-
hardsteiner, J., Böhm, H.J., Rammerstorfer, F.G. (eds.) CD-ROM Proceedings of
the 6th ECCOMAS, Sept. 2012, Vienna Univ. of Tech. ISBN: 978-3-9502481-9-7
(2012)

20. Shapeev, A.V., Lin, P.: An asymptotic fitting finite element method with exponen-
tial mesh refinement for accurate computation of corner eddies in viscous flows.
SIAM J. Sci. Comput. 31, 1874–1900 (2009)

21. Shapeev, V.P., Vorozhtsov, E.V.: CAS application to the construction of the collo-
cations and least residuals method for the solution of 3D Navier–Stokes equations.
In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013.
LNCS, vol. 8136, pp. 381–392. Springer, Heidelberg (2013)

22. Shapeev, V.P., Vorozhtsov, E.V., Isaev, V.I., Idimeshev, S.V.: The method of collo-
cations and least residuals for three-dimensional Navier-Stokes equations. Vychis-
litelnye metody i programmirovanie 14, 306–322 (2013). (in Russian)

23. Shapeev, V.P., Vorozhtsov, E.V.: Symbolic-numeric implementation of the method
of collocations and least squaresfor 3D Navier–Stokes equations. In: Gerdt, V.P.,
Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp.
321–333. Springer, Heidelberg (2012)

24. Valiullin, A.N., Ganzha, V.G., Meleshko, S.V., Murzin, F.A., Shapeev, V.P.,
Yanenko, N.N.: Application of symbolic manipulations on a computer for genera-
tion and analysis of difference schemes. Preprint Inst. Theor. Appl. Mech. Siberian
Branch of the USSR Acad. Sci., Novosibirsk No. 7 (1981). (in Russian)

25. Wang, M., Chen, L.: Multigrid methods for the stokes equations using distributive
gauss-seidel relaxations based on the least squares commutator. J. Sci. Comput.
56(2), 409–431 (2013)

26. Wesseling, P.: An Introduction to Multigrid Methods. Wiley, Chichester (1992)

http://dx.doi.org/10.1051/epjconf/201610801009

Pruning Algorithms for Pretropisms
of Newton Polytopes

Jeff Sommars(B) and Jan Verschelde

Department of Mathematics, Statistics, and Computer Science, University of Illinois
at Chicago, 851 S. Morgan Street (m/c 249), Chicago, IL 60607-7045, USA

{sommars1,janv}@uic.edu

Abstract. Pretropisms are candidates for the leading exponents of Pui-
seux series that represent positive dimensional solution sets of polynomial
systems. We propose a new algorithm to both horizontally and vertically
prune the tree of edges of a tuple of Newton polytopes. We provide
experimental results with our preliminary implementation in Sage that
demonstrates that our algorithm compares favorably to the definitional
algorithm.

1 Introduction

Almost all polynomial systems arising in applications are sparse, as few mono-
mials appear with nonzero coefficients, relative to the degree of the polynomials.
Polyhedral methods exploit the sparse structure of a polynomial system. In the
application of polyhedral methods to compute positive dimensional solution sets
of polynomial systems, we look for series developments of the solutions, and
in particular we look for Puiseux series [29]. The leading exponents of Puiseux
series are called tropisms. The Newton polytope of a polynomial in several vari-
ables is the convex hull of the exponent tuples of the monomials that appear
with nonzero coefficient in the polynomial.

In [10], polyhedral methods were defined in tropical algebraic geometry. We
refer to [27] for a textbook introduction to tropical algebraic geometry. Our
textbook reference for definitions and terminology of polytopes is [39].

Our problem involves the intersection of polyhedral cones. A normal cone of
a face F of a polytope P is the convex cone generated by all of the facet normals
of facets which contain F . The normal fan of a polytope P is the union of all of
the normal cones of every face of P . Given two fans F1 and F2, their common
refinement F1 ∧ F2 is defined as

F1 ∧ F2 =
⋃

C1 ∈ F1

C2 ∈ F2

C1 ∩ C2. (1)

This material is based upon work supported by the National Science Foundation
under Grant No. 1440534.

c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 489–503, 2016.
DOI: 10.1007/978-3-319-45641-6 31

490 J. Sommars and J. Verschelde

As the common refinement of two fans is again a fan, the common refinement of
three fans F1, F2, and F3 may be computed as (F1 ∧ F2) ∧ F3.

Problem Statement. Given the normal fans (F1, F2, . . . , Fn) of the Newton
polytopes (P1, P2, . . . , Pn), a pretropism is a ray in a cone C,

C = C1 ∩ C2 ∩ · · · ∩ Cn ∈ F1 ∧ F2 ∧ · · · ∧ Fn, (2)

where each Ci is the normal cone to some ki-dimensional face of Pi, for ki ≥ 1,
for i = 1, 2, . . . , n. Our problem can thus be stated as follows: given a tuple of
Newton polytopes, compute all pretropisms.

We say that two pretropisms are equivalent if they are both perpendicular to
the same tuples of faces of the Newton polytopes. Modulo this equivalence, there
are only a finite number of pretropisms. Ours is a difficult problem because of the
dimension restrictions on the cones. In particular, the number of pretropisms can
be very small compared to the total number of cones in the common refinement.

Pretropisms are candidates tropisms, but not every pretropism is a tropism,
as pretropisms depend only on the Newton polytopes of the system. For poly-
nomial systems with sufficiently generic coefficients, every tropism is also a
pretropism. See [9] for an example.

Related Work. A tropical prevariety was introduced in [10] and Gfan [26] is
a software system to compute the common refinement of the normal fans of the
Newton polytopes. Gfan relies on the reverse search algorithms [4] in cddlib [20].

The problem considered in this paper is a generalization of the problem to
compute the mixed volume of a tuple of Newton polytopes, for which prun-
ing methods were first proposed in [15]. Further developments can be found in
[21,31],with corresponding free softwarepackagesMixedVol [22] andDEMiCS [30].
A recent parallel implementation along with a complexity study appears in [28].
The relationship between triangulations and the mixed subdivisions is explained
and nicely illustrated in [13].

The main difference between mixed volume computation and the computa-
tion of the tropical prevariety is that in a mixed volume computation the vertices
of the polytopes are lifted randomly, thus removing all degeneracies. This lift-
ing gives the powers of an artificial parameter. In contrast, in a Puiseux series
development of a space curve, the first variable is typically identified as the para-
meter and the powers of the first variable in the given polynomials cannot be
considered as random.

A practical study on various software packages for exact volume computation
of a polytope is described in [12]. Exact algorithms on Newton polytopes are dis-
cussed in [18]. The authors of [16] present an experimental study of approximate
polytope volume computation. In [17], a polynomial-time algorithm is presented
to compute the edge skeleton of a polytope. Computing integer hulls of convex
polytopes can be done with polymake [3].

Our contributions and organization of the paper. In this paper we out-
line two different types of pruning algorithms for the efficient computation of

Pruning Algorithms for Pretropisms of Newton Polytopes 491

pretropisms. We report on a preliminary implementation in Sage [36] and illus-
trate the effectiveness on a parallel computer for various benchmark problems.
This paper extends the results of our EuroCG paper [35] as well as [34].

2 Pruning Algorithms

2.1 Horizontal and Vertical Pruning Defined

Because we are interested only in those cones of the common refinement that
contain rays perpendicular to faces of dimension one or higher, we work with
the following modification of (1):

F1 ∧1 F2 =
⋃

C1 ∈ F1, C1 ⊥ edge of P1

C2 ∈ F2, C2 ⊥ edge of P2

C1 ∩ C2. (3)

The ∧1 defines the vertical pruning as the replacement of ∧ by ∧1 in (F1∧F2)∧F3

so we compute (F1 ∧1 F2) ∧1 F3. Cones in the refinement that do not satisfy the
dimension restrictions are pruned away in the computations. Our definition of
vertical pruning is currently incomplete, but we will refine it in 2.5 after we have
formally defined our algorithms.

The other type of pruning, called horizontal pruning is already partically
implicitly present in the

⋃
operator of (3), as in a union of sets of cones, every

cone is collected only once, even as it may originate as the result of many different
cone intersections. With horizontal pruning we remove cones of F1 ∧1 F2 which
are contained in larger cones. Formally, we can define this type of pruning via
the ∧2 operator:

F1 ∧2 F2 =
⋃

C ∈ F1 ∧1 F2, C �⊂ C ′

C ′ ∈ F1 ∧1 F2 \ {C}

C. (4)

2.2 Pseudo Code Definitions of the Algorithms

Algorithm 2 sketches the outline of our algorithm to compute all pretropisms of a
set of n polytopes. Along the lines of the gift wrapping algorithm, for every edge of
the first polytope we take the plane that contains this edge and consider where this
plane touches the second polytope. Algorithm1 starts exploring the edge skeleton
defined by the edges connected to the vertices in this touching plane.

The exploration of the neighboring edges corresponds to tilting the ray r
in Algorithm 1, as in rotating a hyperplane in the gift wrapping method. One
may wonder why the exploration of the edge skeleton in Algorithm1 needs to
continue after the statement on line 4. This is because the cone C has the
potential to intersect many cones in P , particularly if P has small cones and C
is large. Furthermore it is reasonable to wonder why we bother checking cone
containment when computing the intersection of two cones provides more useful

492 J. Sommars and J. Verschelde

Algorithm 1. Explores the skeleton of edges to find pretropisms of a polytope
and a cone.
1: function ExploreEdgeSkeleton(Polytope P , Cone C)
2: r := a random ray inside C
3: inr(P) := vertices of P with minimal inner product with r
4: EdgesToTest := all edges of P that have vertices in inr(P)
5: Cones := ∅
6: TestedEdges := ∅
7: while EdgesToTest �= ∅ do
8: E := pop an edge from EdgesToTest
9: CE := normal cone to E

10: ShouldAddCone := False
11: if CE contains C then
12: ConeToAdd := C
13: ShouldAddCone := True
14: else if C ∩ CE �= {0} then
15: ConeToAdd := C ∩ CE

16: ShouldAddCone := True
17: end if
18: if ShouldAddCone then
19: Cones := Cones ∪ ConeToAdd
20: Edges := Edges ∪ E
21: for each neighboring edge e of E do
22: if e �∈ TestedEdges then
23: EdgesToTest := EdgesToTest∪e
24: end if
25: end for
26: end if
27: TestedEdges := TestedEdges ∪ E
28: end while
29: return Cones
30: end function

information. Checking cone containment means checking if each of the generators
of C is contained in CE , which is a far less computationally expensive operation
than computing the intersection of two cones.

In the Newton-Puiseux algorithm to compute series expansions, we are inter-
ested only in the edges on the lower hull of the Newton polytope, i.e. those edges
that have an upward pointing inner normal. For Puiseux for space curves, the
expansions are normalized so that the first exponent in the tropism is positive.
Algorithm 2 is then easily adjusted so that calls to the edge skeleton computation
of Algorithm 1 are made with rays that have a first component that is positive.

2.3 Correctness

To see that these algorithms will do what they claim, we must define an additional
term. A pretropism graph is the set of edges for a polytope that have normal cones

Pruning Algorithms for Pretropisms of Newton Polytopes 493

Algorithm 2. Finds pretropisms for a given set of polytopes
1: function FindPretropisms(Polytope P1, Polytope P2, . . . , Polytope Pn)
2: Cones := set of normal cones to edges in P1

3: for i := 2 to n do
4: NewCones := ∅
5: for Cone in Cones do
6: NewCones := NewCones ∪ ExploreEdgeSkeleton(Pi, Cone)
7: end for
8: for Cone in NewCones do
9: if Cone is contained within another cone in NewCones then

10: NewCones := NewCones - Cone
11: end if
12: end for
13: Cones := NewCones
14: end for
15: Pretropisms := set of generating rays for each cone in Cones
16: return Pretropisms
17: end function

intersecting a given cone. We will now justify why the cones output by Algorithm1
correspond to the full set of cones that live on a pretropism graph.

Theorem 1. Pretropism graphs are connected graphs.

Proof. Let C be a cone, and let P be a polytope with edges e1, e2 such that
they are in the pretropism graph of C. Let C1 be the cone of the intersection of
the normal cone of e1 with C, and let C2 be the cone of the intersection of the
normal cone of e2 and C. If we can show that there exists a path between e1
and e2 that remains in the pretropism graph, then the result will follow.

Let n1 be a normal to e1 that is also in C1 and let n2 be a normal to e2 that
is also in C2. Set n = tn1 + (1 − t)n2 where 0 ≤ t ≤ 1. Consider varying t from
0 to 1; this creates the cone Cn, a cone which must lie within C, as both n1 and
n2 lie in that cone. As n moves from 0 to 1, it will progressively intersect new
faces of P that have all of their edges in the pretropism graph. Eventually, this
process terminates when we reach e2, and we have constructed a path from e1
to e2. Since a path always exists, we can conclude that pretropism graphs are
connected graphs.
�

Since pretropism graphs are connected, Algorithm 1 will find all cones of
edges on the pretropism graph. In Algorithm2, we iteratively explore the edge
skeleton of polytope Pi, and use the pruned set of cones to explore Pi+1. From
this, it is clear that Algorithm2 will compute the full set of pretropisms.

2.4 Analysis of Computational Complexity

In estimating the cost of our algorithm to compute all pretropisms, we will first
consider the case when there are two polytopes. We will take the primitive opera-
tion of computing pretropisms to be the number of cone intersections performed,

494 J. Sommars and J. Verschelde

as that number will drive the time required for the algorithm to complete. For
a polytope P , denote by ne(P) its number of edges. The upper bound on the
number of primitive operations for two polytopes P1 and P2 is the product
ne(P1) × ne(P2), while the lower bound equals the number of pretropisms.

Denote by EP,e the pretropism graph resting on polytope P corresponding to
the ray determined by edge e. Let ne(EP,e) denote the number of edges in EP,e.

Proposition 1. The number of primitive operations in Algorithm2 on two poly-
topes P1 and P2 is bounded by

ne(P1)∑
i=1

ne(EP2,ei), (5)

where ei is the i-th edge of P1.

As EP,e is a subset of the edges of P : ne(EP,e) ≤ ne(P). Therefore, the bound
in (5) is smaller than ne(P1) × ne(P2).

To interpret (5), recall that Algorithm 2 takes a ray from inside a normal
cone to an edge of the first polytope for the exploration of the edge graph of
the second polytope. If we take a simplified view on the second polytopes as a
ball, then shining a ray on that ball will illuminate at most half of its surface.
If we use the estimate: ne(EP2,ei) ≈ ne(P2)/2, then Algorithm 2 cuts the upper
bound on the number of primitive operations in half.

Estimating the cost of the case of n polytopes follows naturally from the cost
analysis of the case of 2 polytopes. For n polytopes, the upper bound on the
number of primitive operations required is the product ne(P1) × ne(P2) × . . . ×
ne(Pn).

Proposition 2. The number of primitive operations in Algorithm2 on n poly-
topes P1, P2, . . . , Pn is bounded by

ne(P1)∑
i=1

⎛
⎝ n∏

j=2

ne(EPj ,ei)

⎞
⎠ (6)

where ei is the i-th edge of P1.

Again, if we use the estimate that ne(EPj ,ei) ≈ ne(Pj)/2, then Algorithm 2
reduces the upper bound on the number of primitive operations by 1

2n−1 . This
estimate depends entirely on the intuition that we are cutting the number of
comparisons in half. This estimate may not hold in the case when we have large
lineality spaces, and thus have huge input cones. This situation can be partially
remedied by sorting the input polytopes from smallest dimension of lineality
space to highest. This seeds Algorithm 2 with the smallest possible input cones.

2.5 Horizontal and Vertical Pruning Revisited

The definitional algorithm of pretropism can be interpreted as creating a tree
structure. From a root node, connect the cones of P1. On the next level of the

Pruning Algorithms for Pretropisms of Newton Polytopes 495

tree, place the cones resulting from intersecting each of the cones of P2 with
the cones of P1, connecting the new cones with the cone from P1 that they
intersected. It is likely that at this level of the tree there are many cones that
are empty. Continue this process creating new levels of cones representing the
intersection of the previous level of cones with the next polytope until the nth
polytope has been completed. The cones at the nth layer of the tree represent
the cones generated by pretropisms.

Our algorithms can be seen to improve on this basic tree structure in two
distinct ways. Algorithm 1 reduces the number of comparisons needed through
exploring the edge skeletons of the polytopes. Because of this, there are many
times that we do not perform cone intersections that will result in 0 dimen-
sional cones. From the perspective of the tree, this is akin to avoiding drawing
edges to many 0 dimensional cones; we call this vertically pruning the tree. We
horizontally prune the tree through Algorithm2 which reduces the number of
cones necessary to follow for a given level. This is illustrated in Fig. 1. By both
horizontally and vertically pruning the tree of cones, we are able to avoid per-
forming many unnecessary cone intersections. We will demonstrate the benefits
of pruning experimentally in the sections to come.

A B C

D E F G H I F J H G

K L MNO P Q R S T UMNO P R S Q

A B C

D E F G H I F J H G

K L MNO P Q R S T U

Fig. 1. Nodes A, B, C represent cones to P1. Nodes D, E, F, and G represent intersec-
tions of cone A with cones to P2, etc. Nodes K and L represent intersections of cone D
with cones to P3, etc. Duplicate nodes are removed from the second tree at the bottom.

496 J. Sommars and J. Verschelde

3 Implementation

Our algorithm takes as input a modified version of the data structure output by
the gift wrapping algorithm to compute convex hulls. It conceptually exploits
the connectivity between vertices, edges, and facets, but only requires the edge
skeleton of the polytope. To accomplish this, we created edge objects that had
vertices, references to their neighboring edges, and the normal cone of the edge.
When polytopes were not full dimensional, we included the generating rays of the
lineality space when we created the normal cones. This has the negative effect
of increasing the size of the cone, but is essential for the algorithm to work.

3.1 Code

We developed a high level version of Algorithm2 in Sage [36], using its modules
for lattice polytopes [32], and polyhedral cones [11]. To compute the intersections
of cones, Sage uses PPL [6]. Our preliminary code is available at https://github.
com/sommars/GiftWrap.

3.2 Parallelism

To improve the performance of our core algorithms, we also implemented high
level parallelism. We used the built in Python queue structure to create a job
queue of cones in lines 5 through 7 of Algorithm2. Each call to the Algorithm 1
is done independently on a distinct process, using the computers resources more
efficiently.

Additionally, we have implemented parallelism in checking the cone contain-
ments in lines 8 through 12 of Algorithm1. To check if cone C1 is contained
within another cone C2, it requires checking if each of the linear equations and
inequalities of C1 is or is not restricted by each of the linear equations and
inequalities of C2. However, there is much overlap between cones, with many
distinct cones sharing some of the same linear equations or inequalities. Because
of this, we optimized by creating a lookup table to avoid performing duplicate
calculations. However, with large benchmark problems, creation of this table
becomes prohibitively slow. To amend this problem, we parallelized the creation
of the table, with distinct processes performing distinct calculations.

4 Generic Experiments

To test the algorithms, we generate n − 1 simplices spanned by integer points
with coordinates uniformly generated within the range of 0 to 30. This input
corresponds to considering systems of n − 1 sparse Laurent polynomials in n
variables with n + 1 monomials per equation. We can compare with the mixed
volume computation if we add one extra linear equation to the Laurent poly-
nomial system. Then the mixed volume of the n-tuple will give the sum of the
degrees of all the curves represented by the Puiseux series. Assuming generic

https://github.com/sommars/GiftWrap
https://github.com/sommars/GiftWrap

Pruning Algorithms for Pretropisms of Newton Polytopes 497

choices for the coefficients, the degrees of the curves can be computed directly
from the tropisms, as used in [38] and applied in [1,2].

Denoting by MV(P) the mixed volume of an n-tuple P of Newton polytopes:

MV(P) =
∑
v

(
n

max
i=1

vi − min
(

n
min
i=1

vi, 0
))

(7)

where the sum ranges over all tropisms v.
All computations were done on a 2.6 GHz Intel Xeon E5-2670 processor in

a Red Hat Linux workstation with 128 GB RAM using 32 threads. When per-
forming generic tests, the program did not perform any cone containment tests
because no cone can be contained in another cone in this case.

4.1 Benchmarking

Table 4 shows a comparison between the two distinct methods of computing
pretropisms. The mixed volume was computed with the version of MixedVol [22],
available in PHCpack [37] since version 2.3.13. For systems with generic coeffi-
cients, the mixed volume equals the number of isolated solutions [7]. While a fast
multicore workstation Table 1 can compute millions of solutions, a true super-
computer will be needed in the case of billions of solutions. For larger dimensions,
the new pruning method dominates the method suggested by the definition of
pretropism.

Table 1. Comparisons between the definitional and our pruning method, for randomly
generated generic simplices. Timings are listed in seconds.

n Definitional Pruning #Pretropisms Mixed volume

3 0.008 0.20 7 319

4 0.11 0.42 18 7,384

5 1.33 0.76 58 152,054

6 13.03 2.75 171 4,305,758

7 243.88 20.17 614 91,381,325

8 2054.11 220.14 1,878 2,097,221,068

4.2 Number of Cone Intersections

Another way that the definitional algorithm can be compared to our new algo-
rithm is through comparing the number of cone intersections required for each
algorithm. Table 2 contains a comparison of these numbers. A large number of
trials were performed at each dimension so we could conclude statistically if our
mean number of intersections differed from the number of intersections required

498 J. Sommars and J. Verschelde

by the cone intersection algorithm. To test this hypothesis, we performed t-tests
using the statistical software package R [33]. For every dimension from 3 to 8,
we were able to reject the null hypothesis that they had the same mean and
we were able to conclude that the new algorithm has a lower mean number
of intersections (p < 2 × 10−16 for every test). We had estimated the cost to
be an improvement by a factor of 1

2n−1 , but experimentally we found a greater
improvement as can be seen in Table 2.

Table 2. Average number of cone intersections required for each algorithm, comparing
the definitional algorithm with our pruning algorithm for generic inputs. The second
to last column contains the ratio predicted by our cost estimate and the final column
contains the actual ratio.

n Definitional Pruning Predicted ratio Actual ratio

3 36 29 0.5 0.72

4 1,000 288 0.25 0.288

5 50,625 2,424 0.125 0.0478

6 4,084,101 18,479 0.0625 0.00452

7 481,890,304 145,134 0.03125 0.000301

8 78,364,164,096 1,150,386 0.015625 0.0000147

4.3 Comparison with Gfan

In the generic case, our code is competitive with Gfan. Table 3 contains timing
comparisons, with input polynomials determined as they were previously deter-
mined; the timings in the Gfan column were obtained by running the current
version 0.5 of Gfan [25].

Table 3. Comparisons between Gfan and our implementation, for dimensions 3
through 8. Timings are listed in seconds.

n Gfan Pruning

3 0.036 0.12

4 0.23 0.25

5 2.03 0.80

6 23.49 10.73

7 299.32 49.53

8 3,764.83 540.32

Pruning Algorithms for Pretropisms of Newton Polytopes 499

5 Benchmark Polynomial Systems

Many of the classic mixed volume benchmark problems like Katsura-n, Chandra-
n, eco-n, and Noonberg-n are inappropriate to use as benchmark systems for
computing pretropisms. A good testing system needs to have a positive dimen-
sional solution set as well as being a system that can be scaled up in size. The
aforementioned mixed volume benchmark problems all lack positive dimensional
solution sets, so we did not perform tests on them. We have found the cyclic n-
roots problem to be the most interesting system that fulfills both criteria, as
there are a variety of sizes of solution sets within them and the difficulty of com-
puting pretropisms increases slowly. We also provide experimental data for the
n-vortex and the n-body problem, but these problems quickly become uncom-
putable with our prototype Sage implementation.

5.1 Cyclic-n Experiments

The cyclic n-roots problem asks for the solutions of a polynomial system, com-
monly formulated as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x0 + x1 + · · · + xn−1 = 0

i = 2, 3, 4, . . . , n − 1 :
n−1∑
j=0

j+i−1∏
k=j

xk mod n = 0

x0x1x2 · · ·xn−1 − 1 = 0.

(8)

This problem is important in the study of biunimodular vectors, a notion
that traces back to Gauss, as stated in [19]. In [5], Backelin showed that if n has
a divisor that is a square, i.e. if d2 divides n for d ≥ 2, then there are infinitely
many cyclic n-roots. The conjecture of Björck and Saffari [8], [19, Conjecture 1.1]
is that if n is not divisible by a square, then the set of cyclic n-roots is finite. As
shown in [1], the result of Backelin can be recovered by polyhedral methods.

Instead of directly calculating the pretropisms of the Newton polytopes of
the cyclic n-root problem, we chose to calculate pretropisms of the reduced cyclic
n-root problem. This reformulation [14] is obtained by performing the substitu-
tion xi = yi

y0
for i = 0 . . . n−1. Clearing the denominator of each equation leaves

the first n− 1 equations as polynomials in y1, . . . yn−1. We compute pretropisms
of the Newton polytopes of these n− 1 equations because they yield meaningful
sets of pretropisms. Calculating with the reduced cyclic n-roots problem has the
benefit of removing much of the symmetry present in the standard cyclic n-roots
problem, as well as decreasing the ambient dimension by one. Unlike the standard
cyclic n-roots problem, some of the polytopes of the reduced cyclic n-roots prob-
lem are full dimensional, which leads to calculation speed ups. A simple trans-
formation can be performed on the pretropisms we calculate of reduced cyclic
n-root problem to convert them to the pretropisms of cyclic n-root problem, so
calculating the pretropisms of reduced cyclic n-roots problem is equivalent to
calculating the pretropisms of the cyclic n-roots problem.

500 J. Sommars and J. Verschelde

Table 4 shows how our implementation scales with time. As with the generic
case, our implementation shows great improvement over the definitional algo-
rithm as n becomes larger. For n > 8, the definitional algorithm was too ineffi-
cient to terminate in the time allotted.

Table 4. Comparisons between the definitional and our pruning method for reduced
cyclic-n. Timings are listed in seconds

n Definitional Pruning #Pretropisms Mixed Volume

4 0.02 0.62 2 4

5 0.43 1.04 0 14

6 17.90 1.56 8 26

7 301.26 2.57 28 132

8 33681.66 9.43 94 320

9 44.97 276 1224

10 978.67 712 3594

Just as we surpassed our estimates of the expected number of cone intersec-
tions in the generic case, we also surpassed our estimated ratio in the case of
reduced cyclic-n. Table 5 contains experimental results.

Table 5. Number of cone intersections required for each algorithm, comparing the
definitional algorithm with our pruning algorithm for reduced cyclic-n. The second to
last column contains the ratio predicted by our cost estimate and the final column
contains the actual ratio

n Definitional Pruning Predicted ratio Actual ratio

4 120 44 0.25 0.36

5 1850 210 0.125 0.113

6 63,981 2,040 0.0625 0.0318

7 989,751 6,272 0.03125 0.00634

8 58,155,904 39,808 0.015625 0.000684

9 198,300 0.0078125

10 1,933,147 0.00390625

5.2 n-body and n-vortex

The n-body problem [23] is a classical problem from celestial dynamics that
states that the acceleration due to Newtonian gravity can be found by solving a
system of equations (9). These equations can be turned into a polynomial system
by clearing the denominators.

Pruning Algorithms for Pretropisms of Newton Polytopes 501

ẍj =
∑
i�=j

mi(xi − xj)
r3ij

1 ≤ j ≤ n (9)

The n-vortex problem [24] arose from a generalization of a problem from fluid
dynamics that attempted to model vortex filaments (10). Again, these equations
can be turned into polynomials through clearing denominators.

Vi = I
∑
i�=j

Γj

zi − zj
1 ≤ j ≤ n (10)

Table 6 displays experimental results for both the n-body problem and the n-
vortex problem. We expect to be able to compute higher n for these benchmark
problems when we develop a compiled version of this code.

Table 6. Experimental results of our new algorithm. Timings are in seconds. The last
column gives the number of cone intersections.

System n Pruning time #Pretropisms #Intersections

n-body 3 0.62 4 121

4 5.07 57 25,379

5 13,111.42 2,908 18,711,101

n-vortex 3 0.71 4 87

4 2.93 25 10,595

5 1457.48 569 5,021,659

6 Conclusion

To compute all pretropisms of a Laurent polynomial system, we propose to
exploit the connectivity of edge skeletons to prune the tree of edges of the tuple
of Newton polytopes. The horizontal and vertical pruning concepts we introduce
are innovations that reduce the computational complexity of the problem. Our
first high level implementation in Sage provides practical evidence that shows
that our new pruning method is better than the definitional method with a
variety of types of polynomial systems.

References

1. Adrovic, D., Verschelde, J.: Computing Puiseux series for algebraic surfaces. In:
van der Hoeven, J., van Hoeij, M. (eds.) Proceedings of the 37th International
Symposium on Symbolic and Algebraic Computation (ISSAC 2012), pp. 20–27.
ACM (2012)

502 J. Sommars and J. Verschelde

2. Adrovic, D., Verschelde, J.: Polyhedral methods for space curves exploiting sym-
metry applied to the cyclic n-roots problem. In: Gerdt, V.P., Koepf, W., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 10–29. Springer,
Heidelberg (2013)

3. Assarf, B., Gawrilow, E., Herr, K., Joswig, M., Lorenz, B., Paffenholz, A.,
Rehn, T.: Computing convex hulls and counting integer points with polymake.
arXiv:1408.4653v2

4. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration
of arrangements and polyhedra. Discrete Comput. Geom. 8(3), 295–313 (1992)

5. Backelin, J.: Square multiples n give infinitely many cyclic n-roots. Reports,
Matematiska Institutionen 8, Stockholms universitet (1989)

6. Bagnara, R., Hill, P., Zaffanella, E.: The Parma Polyhedral Library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

7. Bernshtěın, D.: The number of roots of a system of equations. Funct. Anal. Appl.
9(3), 183–185 (1975)

8. Bjöck, G., Saffari, B.: New classes of finite unimodular sequences with unimodular
Fourier transforms. Circulant Hadamard matrices with complex entries. C.R. Acad.
Sci. Paris Série I 320, 319–324 (1995)

9. Bliss, N., Verschelde, J.: Computing all space curve solutions of polynomial systems
by polyhedral methods. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V.
(eds.) CASC 2016. LNCS, vol. 9890, pp. 73–86. Springer, Heidelberg (2016)

10. Bogart, T., Jensen, A., Speyer, D., Sturmfels, B., Thomas, R.: Computing tropical
varieties. J. Symbolic Comput. 42(1), 54–73 (2007)

11. Braun, V., Hampton, M.: Polyhedra module of Sage, The Sage Development Team
(2011)

12. Büeler, B., Enge, A., Fukuda, K.: Exact volume computation for polytopes:a prac-
tical study. In: Kalai, G., Ziegler, G. (eds.) Polytopes -Combinatorics and Compu-
tation, DMV Seminar, vol. 29, pp. 131–154. Springer, Heidelberg (2000)

13. De Loera, J., Rambau, J., Santos, F.: Triangulations, Structures for Algorithms
and Applications. Algorithms and Computation in Mathematics, vol. 25. Springer,
Heidelberg (2010)

14. Emiris, I.: Sparse Elimination and Applications in Kinematics. Ph.D. thesis, Uni-
versity of California at Berkeley, Berkeley (1994)

15. Emiris, I., Canny, J.: Efficient incremental algorithms for the sparse resultant and
the mixed volume. J. Symbolic Comput. 20(2), 117–149 (1995)

16. Emiris, I., Fisikopoulos, V.: Efficient random-walk methods for approximating
polytope volume. In: Proceedings of the Thirtieth Annual Symposium on Com-
putational Geometry (SoCG 2014), pp. 318–327. ACM (2014)

17. Emiris, I., Fisikopoulos, V., Gärtner, B.: Efficient edge-skeleton computation for
polytopes defined by oracles. J. Symbolic Comput. 73, 139–152 (2016)

18. Emiris, I., Fisikopoulos, V., Konaxis, C.: Exact and approximate algorithms for
resultant polytopes. In: Proceedings of the 28th European Workshop on Compu-
tational Geometry (EuroCG 2012) (2012)

19. Führ, H., Rzeszotnik, Z.: On biunimodular vectors for unitary matrices. Linear
Algebra Appl. 484, 86–129 (2015)

20. Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M.,
Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer,
Heidelberg (1996)

21. Gao, T., Li, T.: Mixed volume computation for semi-mixed systems. Discrete Com-
put. Geom. 29(2), 257–277 (2003)

http://arxiv.org/abs/1408.4653v2

Pruning Algorithms for Pretropisms of Newton Polytopes 503

22. Gao, T., Li, T., Wu, M.: Algorithm 846: MixedVol: a software package for mixed-
volume computation. ACM Trans. Math. Softw. 31(4), 555–560 (2005)

23. Hampton, M., Jensen, A.: Finiteness of relative equilibria in the planar generalized
n-body problem with fixed subconfigurations. J. Geom. Mech. 7(1), 35–42 (2015)

24. Hampton, M., Moeckel, R.: Finiteness of stationary configurations of the four-
vortex problem. Trans. Am. Math. Soci. 361(3), 1317–1332 (2009)

25. Jensen, A.: Gfan, a software system for Gröbner fans and tropical varieties. http://
home.imf.au.dk/jensen/software/gfan/gfan.html

26. Jensen, A.: Computing Gröbner fans and tropical varieties in Gfan. In: Stillman,
M., Takayama, N., Verschelde, J. (eds.) Software for Algebraic Geometry. The
IMA Volumes in Mathematics and its Applications, vol. 148, pp. 33–46. Springer,
Heidelberg (2008)

27. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry, Graduate Studies
in Mathematics, vol. 161. American Mathematical Society, Providence (2015)

28. Malajovich, G.: Computing mixed volume and all mixed cells in quermass-
integral time, to appear in Found. Comput. Math. http://dx.doi.org/10.1007/
s10208-016-9320-1

29. Maurer, J.: Puiseux expansion for space curves. Manuscripta Math. 32, 91–100
(1980)

30. Mizutani, T., Takeda, A.: DEMiCs: a software package for computing the mixed
volume via dynamic enumeration of all mixed cells. In: Stillman, M., Takayama,
N., Verschelde, J. (eds.) Software for Algebraic Geometry. The IMA Volumes in
Mathematics and Its Applications, vol. 148, pp. 59–79. Springer, New York (2008)

31. Mizutani, T., Takeda, A., Kojima, M.: Dynamic enumeration of all mixed cells.
Discrete Comput. Geom. 37(3), 351–367 (2007)

32. Novoseltsev, A.: lattice polytope module of Sage, The Sage Development Team
(2011)

33. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2008). http://
www.R-project.org, ISBN 3-900051-07-0

34. Sommars, J., Verschelde, J.: Exact gift wrapping to prune the tree of edges of
Newton polytopes to compute pretropisms. arXiv:1512.01594

35. Sommars, J., Verschelde, J.: Computing pretropisms for the cyclic n-roots problem.
In: 32nd European Workshop on Computational Geometry (EuroCG 2016), pp.
235–238 (2016)

36. Stein, W., et al.: Sage Mathematics Software (Version 6.9). The Sage Development
Team (2015). http://www.sagemath.org

37. Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial
systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276
(1999)

38. Verschelde, J.: Polyhedral methods in numerical algebraic geometry. In: Bates,
D., Besana, G., Di Rocco, S., Wampler, C. (eds.) Interactions of Classical and
Numerical Algebraic Geometry, Contemporary Mathematics, vol. 496, pp. 243–
263. AMS (2009)

39. Ziegler, G.: Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152.
Springer, New York (1995)

http://home.imf.au.dk/jensen/software/gfan/gfan.html
http://home.imf.au.dk/jensen/software/gfan/gfan.html
http://dx.doi.org/10.1007/s10208-016-9320-1
http://dx.doi.org/10.1007/s10208-016-9320-1
http://www.R-project.org
http://www.R-project.org
http://arxiv.org/abs/1512.01594
http://www.sagemath.org

Computational Aspects of a Bound of Lagrange

Doru Ştefănescu(B)

University of Bucharest, Bucharest, Romania
stef@rms.unibuc.ro

Abstract. We consider the bound R + ρ of Lagrange and we obtain
some improvements of it. We also discuss the efficiency of this bound of
Lagrange and of its refinements.

1 Introduction

During the last decades, there were discovered new bounds for the positive roots
of univariate polynomials with real coefficients. However, there exists an old
bound of Lagrange that can be useful in applications, this is R + ρ bound:

Theorem 1 (Lagrange, 1767). Let F be a nonconstant monic polynomial of
degree n over R and let {aj ; j ∈ J} be the set of its negative coefficients. Then
an upper bound for the positive real roots of F is given by the sum of the largest
and the second largest numbers in the set

{
j

√
|aj | ; j ∈ J

}
.

The bound R + ρ can be used also for bounding the roots of univariate
polynomials with complex coefficients, see [9]:

Theorem 2. Let F (X) = Xd +a1X
d−1+ · · ·+ad−1X +ad be a polynomial with

complex coefficients, with d > 0 and ad �= 0 and

|ai1 |1/i1 ≥ |ai2 |1/i2 ≥ · · · ≥ |aid |1/id .

We put R = |ai1 |1/i1 , ρ = |ai2 |1/i2 . The number R + ρ is an upper bound for
the absolute values of the roots of the polynomial F .

Lagrange has not given a proof, and just to the beginning of XXIth century, his
result was not used in rootbounding. However, during the XIXth and XXth cen-
turies, Theorem 1 was considered at least three times. In 1842, Nouvelles Annales
de Mathématiques proposed its statement as a problem, and A. Pury gave a proof
which seems to be forgotten until very recently. The result was stated and proved
in a paper of E.C. Westerfield [15], and he considered it as a new bound of him [17].
We note that Westerfield ignored the memory of Lagrange. The result of Lagrange
was explicitly cited in the book of A.M. Ostrowski [12], p. 125.

c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 504–511, 2016.
DOI: 10.1007/978-3-319-45641-6 32

Computational Aspects of a Bound of Lagrange 505

As the bound R + ρ was considered unproved it was considered in a tech-
nical paper by M. Mignotte and D. Ştefănescu [9], where they gave two proofs.
Also G.E. Collins and W. Krandick thought that the result was unproved and
gave a proof, see [4]. The proof Krandick–Collins was recently simplified by
P. Batra [2]. On the other hand, the implementation of the bound R + ρ was
discussed by Akritas-Streboński-Vigklas [1].

Remark. From Theorem 2 — the complex version of the theorem of Lagrange
— it is easy to deduce as corollary the bound of Fujiwara [5].

2 · d
max
i=1

|ai|1/i ,

which is one of the best for the absolute values of the roots of complex
polynomials.

2 The Method of Cauchy

Nowadays we have more approaches for proving the result of Lagrange. One of
them is the method of Cauchy, considered explicitly by Mignotte–Ştefănescu [9].
We note that the method of Cauchy (1829, [3]) was used indirectly also by other
authors, for example, by Pury [13].

Theorem 3 (Cauchy, 1829). Let F (X) = Xn +a1X
n−1 + · · ·+an−1X +an ∈

C[X] be nonconstant and let σ be the unique positive real root of the polynomial

G(X) = Xn − |a1|Xn−1 − · · · − |an−1|X − |an| .

Then any number surpassing σ is a bound for the moduli of the roots of F .

The basic idea is to observe that if we consider a nonconstant polynomial
F (X) = Xn+a1X

n−1+· · ·+an−1X+an with complex coefficients, it is sufficient
to prove that R + ρ is an upper bound for the unique root of the polynomial
Xn−|a1|Xn−1−· · ·−|an−1|X−|an| , where R and ρ are the two largest numbers
in the set

{∣∣ak

∣∣1/k; 1 ≤ k ≤ n
}
. This implies the same bound for the roots of F .

We note that Collins–Krandick and Batra follow the strategy proposed by
Lagrange in [7], namely to use the device of Newton for finding the largest root
of a polynomial.

3 Refinements of the Bound of Lagrange

If we compare the bound R + ρ with other bounds we note that it seems to be
one of the best. So it is natural to ask if it can be improved. Such a refinement
was obtained by Mignotte–Ştefănescu in [10]:

506 D. Ştefănescu

Theorem 4. Let F (X) = Xd +a1X
d−1+ · · ·+ad−1X +ad be a polynomial with

complex coefficients, with d > 0 and ad �= 0. Suppose that |ai1 |1/i1 ≥ |ai2 |1/i2 ≥
· · · ≥ |aid |1/id and put R = |ai1 |1/i1 , ρ = |ai2 |1/i2 , i1 = j and

Cj =

⎧⎨
⎩

R + ρ +
√

R2 − 2Rρ + 5ρ2

2
if j = 1,

(Rj−1 + Rj−2ρ + · · · + ρ j−1)1/(j−1) for j = 2, . . . , d.

Then for any complex root z of F we have

|z| ≤ max

{
Cj ,

R + ρ +
√

R2 − 2Rρ + 5ρ 2

2

}
.

3.1 A Cubic Polynomial Related to the Bound of Lagrange

We observe that for j = 2, Theorem 4 gives exactly the bound R+ρ of Lagrange.
We shall give another bound for this case. More precisely, we shall prove that a
bound for the positive roots of the polynomial F is given by the largest positive
root of a particular cubic polynomial. Then we shall prove that this bound is
smaller than the bound of Lagrange and we shall give estimates for it.

Proposition 1. Let F (X) = Xd + a1X
d−1 + · · · + ad−1X + ad be a polynomial

with complex coefficients such that

|a2|1/2 := R > ρ := |ai2 |1/i2 ≥ · · · ≥ |aid |1/id .

Then the largest positive root of the polynomial

H(X) = X3 − 2ρX2 − (R2 − ρ2)X + ρ(R2 − ρ2)

is an upper bound for the absolute values of the roots of the polynomial F .

Proof. We use the method of Cauchy, so we associate the polynomial

G(X) = Xd − |a1|Xd−1 − · · · − |ad−1|X − |ad|.

By Theorem 3 of Cauchy we search an upper bound for the positive root of G .
We have

G(x) ≥ g(x) := xd − R2 xd−2 + r2 xd−2 −
d∑

k=1

ρk xd−k .

We consider h(x) := (x − ρ)g(x) . We have

h(x) = (x − ρ)
(
xd − (R2 − ρ2)xd−2 −

d∑
k=1

ρk xd−k
)

Computational Aspects of a Bound of Lagrange 507

= xd+1 − (R2 − ρ2)xd−1 −
d∑

k=1

ρk xd−k+1 − ρ xd + ρ(R2 − ρ2)xd−2

+
d∑

k=0

ρk+1 xd−k

= xd+1 − (R2 − ρ2)xd−1 −
d−1∑
s=0

ρs+1 xd−s − ρ xd + ρ(R2 − ρ2)xd−2

+
d∑

s=1

ρs+1 xd−s

= xd+1 − 2ρ xd − (R2 − ρ2)xd−1 + ρ(R2 − ρ2)xd−2 + ρd+1

> xd+1 − 2ρ xd − (R2 − ρ2)xd−1 + ρ(R2 − ρ2)xd−2

=
(
x3 − 2ρ x2 − (R2 − ρ2)x + ρ(R2 − ρ2)

)
xd−2

= H(x)xd−2 ,

with H(x) = x3 − 2ρ x2 − (R2 − ρ 2)x + ρ (R2 − ρ2). ��

Estimates for the Largest Positive Root of the Polynomial H.

Lemma 1. The polynomial H has three real roots and its largest positive root
is smaller than R + ρ .

Proof. We observe that

H(−R) = −ρ(R2 + Rρ + ρ2) < 0 ,

H(0) = ρ(R2 − ρ2) > 0 ,

H(R) = −ρ (R2 − Rρ + ρ 2) < 0 ,

H(R + ρ) = ρ(R2 − ρ2) > 0 ,

It follows that the polynomial H has three real roots, namely in the intervals
(−R, 0) , (0, R) and (R,R + ρ) .

We observe that the largest of these roots lies in the interval (R,R + ρ), so
it is positive and smaller than R + ρ . ��
Proposition 2. The largest positive root of the polynomial

H(x) = x3 − 2ρ x2 − (R2 − ρ 2)x + ρ (R2 − ρ2)

lies in the interval (R + ρ/2 , R + ρ) .

508 D. Ştefănescu

Proof. We observe that

H(R +
ρ

2
) = −ρ2

4

(
R +

7ρ

2

)
< 0 ,

and
H(R + ρ) = ρ (R2 − ρ2) > 0 .

So the largest positive root of the polynomial H lies in the interval
(R + ρ/2, R + ρ) . ��

3.2 Experiments

We keep the notation from Proposition 2. We search for smaller intervals than
that from the previous Proposition.

We first consider

H(R +
3
4
ρ) =

ρ

2

(
R2 − 5

8
Rρ − 61

32
ρ2

)

and we note that H(R + 3
4ρ) > 0 if R/ρ > 1.73 .

We also have

H(R +
3
5
ρ) =

ρ

5

(
R2 − 8

5
Rρ − 113

25
ρ2

)
,

so H(R + 3
5ρ) is positive for R/ρ > 3.072 .

3.3 Another Polynomial

We can obtain another improvements of the bound of Lagrange by considering
another polynomial which gives upper bounds for the roots of the F .

We first give a proof shorter than those in [9] of the result of Lagrange:

Proposition 3. Let F (X) = Xd + a1X
d−1 + · · · + ad−1X + ad be a polynomial

with complex coefficients, with d > 0 and ad �= 0 and

|ai1 |1/i1 ≥ |ai2 |1/i2 ≥ · · · ≥ |aid |1/id .

We put R = |ai1 |1/i1 , ρ = |ai2 |1/i2 and j = i1 . Then the largest positive root of
the polynomial

u(X) = (X − 2ρ)Xj − (Rj − ρj)(X − ρ)

is an upper bound for the absolute values of the roots of the polynomial F .

Proof. We first note, by Descartes’s rule of signs, that the polynomial u has an
unique positive root.

By Theorem 3 of Cauchy, it is sufficient to find an estimation for the unique
positive root of the associated polynomial

G(X) = Xd − |a1|Xd−1 − · · · − |ad−1|X − |ad|.

Computational Aspects of a Bound of Lagrange 509

We observe that |ai| ≤ ρi for all i = 1, 2, . . . , d, i �= j . Then, for x > ρ, we have

f(x) ≥ xd − (Rj − ρj)xd−j −
d∑

k=1

ρk xd−k .

We put

g(X) = Xd − (Rj − ρj)Xd−j −
d∑

k=1

ρk Xd−k , h(X) = (X − ρ)g(X)

and we observe that

h(X) = (X − ρ)Xd+1 − (Rj − ρj)(X − ρ)Xd−j −
d−1∑
s=0

ρs+1Xd−s +
d∑

s=1

ρs+1Xd−s

= (X − 2ρ)Xd − (X − ρ)(Rj − ρj)Xd−j + ρd+1 .

For x > 0 we have

h(x) =
(
(x − 2ρ)xj − (x − ρ)(Rj − ρj)

)
xd−j + ρd+1 .

We put u(X) = (X −2ρ)Xj − (X −ρ)(Rj −ρj) and we notice that, if, for x > 0,
we have u(x) > 0, then h(x) > 0 . ��

We search intervals containing the largest positive root of the polynomial
u(X) = (X − 2ρ)Xj − (X − ρ)(Rj − ρj) .

Lemma 2. We have u(R + ρ) > 0 .

Proof. We have the inequalities

u(R + ρ) = (R − ρ)(R + ρ)j − R(Rj − ρj)

= (R − ρ)

(
j∑

k=0

(
j

k

)
Rk−jρk − (Rj + Rj−1ρ + · · · + Rρj−1)

)

= (R − ρ)
(

(jRj−1ρ +
j(j − 1)

2
Rj−2ρ2 + · · · + jRρj−1)

− (Rj−1ρ + Rj−2ρ2 + · · · + R2ρj−2 + Rρj−1)
)

> 0 . ��
We observe that

u(R +
ρ

2
) = (R +

ρ

2
)j(R − 3ρ

2
) − (R − ρ

2
)(Rj − ρj) .

510 D. Ştefănescu

Lemma 3. If R < 3
2ρ we have

u(R +
ρ

2
) < 0 .

Proof. In this case we have

u(R +
ρ

2
) = (R − 3

2
ρ)(R +

ρ

2
)j − (R − ρ

2
)(Rj − ρj) < 0 . ��

Corollary 1. If R < 3
2ρ , a bound for the positive roots of the polynomial F lies

in the interval (R + ρ
2 , R + ρ) .

4 Comparisons and Numerical Results

We consider the bounds given by Theorems 2, 4, and Proposition 3. We denote by
H(P) the bound of H. Hong [6] and by A(P) the threshold of positiveness of P :

H(P) = 2 · max
i

ai<0

min
j>i

aj>0

(|ai|
aj

) 1
di − dj ,

the threshold of positiveness of an univariate polynomial P with real
coefficients is

A(P) = inf {D(P) ; D(P) ∈ {bounds for positiveness of P}} .

Example 1. We consider the polynomial P (X) = X5−2X4+2X3−3X2−2X−2 .
We have R = 2, ρ = 1.442 . We obtain the following bounds

Th 2 Th 4 H(P) Prop 3 A(P)

3.442 3.189 4.000 3.189 2.069

The best result is given by Theorem 4. It can be obtained also by finding the
largest positive root of the polynomial u from Proposition 3.

Example 2. Let P (X) = X7−X6−9X5−8X4−3X3+12X +1 . We have R = 3
and ρ = 2 . In this case j = 2, so we will consider also the cubic polynomial H
from Proposition 1. We have

Th 2 Th 4 H(P) Prop 3 Prop 1 A(P)

5.0 5.0 6.0 4.613 4.613 3.884

We observe that both Propositions 1 and 3 give the best bound. In fact, in
this case, the polynomials H and u coincide.

Computational Aspects of a Bound of Lagrange 511

d R ρ Th 2 Th 4 H(P) Prop 3 Prop 1 A(P)

6 2 1.259 3.259 2.498 4 2.498 — 1.233

7 1.414 1.189 2.603 2.603 2.828 2.378 2.378 1.166

8 1.104 1.080 2.184 2.172 2.208 2.172 — 1.082

Example 3. We consider the family of polynomials Pd(X) = Xd − 2X5 + 3X4 −
2X3 − 1 , where d ≥ 6 , discussed in [14]. Note that for d = 7, we have j = 2,
and we can apply Proposition 1.

Conclusions. The bound of Lagrange gives good results with respect to known
efficient bounds for polynomials with real coefficients. We proved that it can
be improved. Because of the Theorem of Cauchy such results give also accurate
bounds for absolute values of the roots of univariate polynomials with complex
coefficients.

References

1. Akritas, A.G., Strzeboński, A.W., Vigklas, P.S.: Lagrange’s bound on the values
of the positive roots of polynomials (private communication)

2. Batra, P.: On a proof of Lagrange’s bound for real roots (private communication)
3. Cauchy, A.-L.: Exercices de Mathématiques, t. 4, Paris (1829)
4. Collins, G.E.: Krandick’s proof of Lagrange’s real root bound claim. J. Symb.

Comp. 70, 106–111 (2015)
5. Fujiwara, M.: Über die obere Schranke des absoluten Betrages der Wurzeln einer

algebraischen Gleichung. Tôhoku Math. J. 10, 167–171 (1916)
6. Hong, H.: Bounds for absolute positiveness of multivariate polynomials. J. Symb.

Comp. 25, 571–585 (1998)
7. Lagrange, J.-L.: Traité de la résolution des équations numériques, Paris (Reprinted

in Œuvres, t. VIII, Gauthier-Villars, Paris (1879)) (1798)
8. Mignotte, M., Ştefănescu, D.: Polynomials - An Algorithmic Approach. Springer,

Singapore (1999)
9. Mignotte, M., Ştefănescu, D.: On an estimation of polynomial roots by Lagrange.

Prépubl. IRMA, 25/2002, 17 pag., Strasbourg (2002)
10. Mignotte, M., Ştefănescu, D.: On the bound R+ρ of Lagrange (available from the

authors on request)
11. Problème 6. Limite de Lagrange. Nouv. Annales Math. 1, 58 (1842)
12. Ostrowski, A.M.: Solutions of Equations and Systems of Equations. Academic

Press, New York (1960)
13. Pury, A.: Solution du problème 6. Limite de Lagrange. Nouv. Annales Math. 1,

243–244 (1842)
14. Ştefănescu, D.: A new polynomial bound and its efficiency. In: Gerdt, V.P., Koepf,

W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301, pp. 457–
467. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24021-3 33

15. Westerfield, E.C.: New bounds for the roots of an algebraic equation. Amer. Math.
Monthly 38, 30–35 (1931)

16. Westerfield, E.C.: A new bound for the zeros of polynomials. Amer. Math. Monthly
40, 18–23 (1933)

17. Westerfiled, E.C.: New bounds for the roots of an algebraic equation. Amer. Math.
Monthly 38, 30–35 (1931)

http://dx.doi.org/10.1007/978-3-319-24021-3_33

Author Index

Ábrahám, Erika 315
Abramov, Sergei A. 1
Albert, Mario 15
Auzinger, Winfried 30, 43

Binaei, Bentolhoda 58
Bliss, Nathan 73
Bogdanov, D.V. 87
Bouillaguet, Charles 101
Bright, Curtis 117

Calude, Cristian S. 134
Chen, Changbo 156
Chuluunbaatar, O. 212
Corzilius, Florian 315
Czarnecki, Krzysztof 117

Davenport, James H. 172
Delaplace, Claire 101
Derbov, V.L. 212, 228
Dobrowolski, A. 228

England, Matthew 172
Eraşcu, Mădălina 193

Ganesh, Vijay 117
Gerdt, Vladimir P. 212, 228, 367
Góźdź, A. 228
Gusev, A.A. 212, 228
Gutnik, Sergey A. 243

Hahn, Thomas 255
Hai, L.L. 212
Hashemi, Amir 58, 276
Heinle, Albert 117
Herfort, Wolfgang 30
Hofstätter, Harald 30, 43
Hossain, Zahid 367

Inaba, Daiju 457
Irtegov, Valentin 289

Kalinina, Elizabeth A. 305
Kenmochi, Yukiko 426
Koch, Othmar 30, 43

Kotsireas, Ilias 117
Kremer, Gereon 315
Kytmanov, A.A. 87

Law, Marshall 336
Lemaire, François 349
Lyakhov, Dmitry A. 367

Michels, Dominik L. 367
Monagan, Michael 336, 381
Monniaux, David 401
Moroz, Guillaume 426

Nejati, Saeed 117

Pȩdrak, A. 228
Pluta, Kacper 426
Prabhakar, Swaroop N. 444

Riedel-Kruse, Ingmar H. 367
Romon, Pascal 426

Sadykov, T.M. 87
Sarychev, Vasily A. 243
Sasaki, Tateaki 457
Seiler, Werner M. 15, 58
Shapeev, Vasily P. 473
Sharma, Vikram 444
Sommars, Jeff 489
Ştefănescu, Doru 504
Szulerecka, A. 228

Talaashrafi, Delaram 276
Temperville, Alexandre 349
Thompson, Declan 134
Titorenko, Tatiana 289
Tuncer, Baris 381

Verschelde, Jan 73, 489
Vinitsky, S.I. 212, 228
Vorozhtsov, Evgenii V. 473

Weber, Andreas G. 367
Wu, Wenyuan 156

	Preface
	Organization
	Contents
	On the Differential and Full Algebraic Complexities of Operator Matrices Transformations
	1 Introduction
	2 Preliminaries
	2.1 Operator Matrices
	2.2 The Dimension of the Solutions Space
	2.3 Algorithm EG (EG-Eliminations)
	2.4 Algorithm RR

	3 Differential and Full Complexities of Algorithms for Operator Matrices Transformation
	3.1 Diversity of Algebraic Complexities
	3.2 Algorithms EG and RR
	3.3 Extended RR: Computing U Along with
	3.4 When Differentiated Rows are Stored

	4 Two Computational Problems
	4.1 Singularities of Systems
	4.2 The Unimodularity Testing

	5 Conclusions
	References

	Resolving Decompositions for Polynomial Modules
	1 Introduction
	2 Resolving Decompositions
	3 Syzygy Resolutions via Resolving Decompositions
	4 An Explicit Formula for the Differential
	References

	Setup of Order Conditions for Splitting Methods
	1 Introduction
	1.1 Splitting Methods for the Integration of Evolution Equations
	1.2 Commutators

	2 Taylor Expansion of the Local Error
	2.1 Representation of Taylor Coefficients
	2.2 The Leading Term of the Local Error Expansion
	2.3 The Algorithm: Implicit Recursive Elimination

	3 A Parallel Implementation
	3.1 Special Cases

	4 Modifications and Extensions
	4.1 Splitting into More Than Two Operators
	4.2 Pairs of Splitting Schemes

	5 Computational Performance; Conclusions
	References

	Symbolic Manipulation of Flows of Nonlinear Evolution Equations, with Application in the Analysis of Split-Step Time Integrators
	1 Problem Setting
	2 Local Error, Defect, and Error Estimator
	3 The Julia Package Flows.jl
	4 Verification of Crucial Identities
	5 Elementary Differentials
	References

	Improved Computation of Involutive Bases
	1 Introduction
	2 Preliminaries
	3 Using Syzygies to Compute Involutive Bases
	4 Hilbert Driven Pommaret Bases Computations
	5 Experiments and Comparison
	6 Conclusion and Perspective
	References

	Computing All Space Curve Solutions of Polynomial Systems by Polyhedral Methods
	1 Introduction
	2 Puiseux Series
	3 Assumptions and Setup
	4 Some Motivating Examples
	4.1 In 3-Space
	4.2 In Any Dimensional Space

	5 The Generic Case
	6 Polyhedral Methods
	7 Current Approaches
	8 Polyhedral End Games
	9 Computational Experiments
	9.1 Symbolic Methods
	9.2 Our Approach

	10 Conclusions
	References

	Algorithmic Computation of Polynomial Amoebas
	1 Introduction
	2 Convex Polytopes, Cones and Amoebas: Definitions and Preliminaries
	3 Computing Two-Dimensional Amoebas
	4 Generating Optimal Polynomials
	5 Computing Contours of Amoebas of Bivariate Polynomials
	6 Computing Two-Dimensional Compactified Amoebas
	7 Multivariate Outlook
	References

	Sparse Gaussian Elimination Modulo p: An Update
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Sparse LU Factorization
	2.1 Definitions and Notations
	2.2 The Classical Right-Looking Algorithm
	2.3 The Left-Looking GPLU Algorithm
	2.4 Left or Right?

	3 A New Hybrid Algorithm
	4 Implementation and Results
	References

	MATHCHECK2: A SAT+CAS Verifier for Combinatorial Conjectures
	1 Introduction
	2 Architecture of MATHCHECK2
	3 Background on Hadamard Matrices and Combinatorial Mathematics
	3.1 Hadamard Matrices
	3.2 Williamson Matrices
	3.3 Power Spectral Density
	3.4 Periodic Autocorrelation
	3.5 Compression

	4 Encoding and Search Space Pruning Techniques
	4.1 Encoding the Problem of Finding Hadamard Matrices as SAT Instances
	4.2 Technique 1: Sum-of-Squares Decomposition
	4.3 Technique 2: Divide-and-Conquer via Compression
	4.4 Technique 3: UNSAT Core

	5 Verification of the Nonexistence of Williamson Matrices of Order 35
	6 Experimental Results on Hadamard Matrices
	7 Related Work
	8 Conclusions and Future Work
	References

	Incompleteness, Undecidability and Automated Proofs
	1 Introduction
	2 Truth and Provability
	2.1 Incompleteness
	2.2 Undecidability
	2.3 Incompleteness vs. Undecidability
	2.4 Hilbert's Programme and Hilbert's Axiom
	2.5 Objective vs. Subjective Mathematics
	2.6 Hilbert's Programme After Incompleteness

	3 Can Computers Do Mathematics?
	4 Formalised Computability Theory
	4.1 Automated Proofs in Isabelle
	4.2 Partial Recursive Functions in Isabelle

	5 Formalising the Halting Problem and Its Undecidability
	6 Correctness vs. Termination in Isabelle
	6.1 Reuniting Evaluation and Termination

	7 `Symptoms' of Undecidability in Isabelle
	8 Concluding Remarks
	References

	A Numerical Method for Computing Border Curves of Bi-parametric Real Polynomial Systems and Applications
	1 Introduction
	2 Border Curve
	3 Numerical Error Estimation
	4 Constructing the Solution Map
	5 Real Homotopy Continuation
	6 Experimentation
	7 Conclusion and Future Work
	References

	The Complexity of Cylindrical Algebraic Decomposition with Respect to Polynomial Degree
	1 Introduction
	2 CAD with Respect to Equational Constraints
	2.1 CAD Computation Scheme and Terminology
	2.2 Brief Summary of Improvements to CAD
	2.3 Equational Constraints
	2.4 CAD with ECs

	3 Controlling Degree Growth
	3.1 Iterated Resultant Calculations
	3.2 How Large Are These Resultants?
	3.3 Gröbner Bases in Place of Iterated Resultants

	4 Worked Example
	5 Sketch of the Effect on Complexity
	6 Discussion
	A The Iterated Resultants from Section4
	References

	Efficient Simplification Techniques for Special Real Quantifier Elimination with Applications to the Synthesis of Optimal Numerical Algorithms
	1 Introduction
	2 Simplification Techniques for Sign Semi-definite Conditions
	3 Application: Synthesis of Optimal Numerical Algorithms
	3.1 Main Result
	3.2 Proof

	4 Conclusion and Future Work
	References

	Symbolic-Numeric Algorithms for Solving BVPs for a System of ODEs of the Second Order: Multichannel Scattering and Eigenvalue Problems
	1 Introduction
	2 Formulation of the Boundary Value Problems
	3 The Algorithm for Solving the Scattering Problem
	4 The BVP with Piecewise Constant Potentials
	5 Quantum Transmittance Induced by Metastable States
	6 Summary and Perspectives
	References

	Symbolic Algorithm for Generating Irreducible Rotational-Vibrational Bases of Point Groups
	1 Introduction
	2 Quadrupole-Octupole Collective Model
	3 Generalized Projection Operators and Rotor Basis
	4 Shape Vibrational Basis
	4.1 GPOs Action -- Intrinsic Groups
	4.2 Algorithm for Construction of Shape-Vibrational Basis

	5 Conclusion and Perspectives
	References

	A Symbolic Investigation of the Influence of Aerodynamic Forces on Satellite Equilibria
	1 Introduction
	2 Equations of Motion
	3 Equilibrium Orientations of a Satellite
	4 Investigation of Equilibria
	4.1 Equilibria in the Case H3=0 (H1 =0, H2 =0)
	4.2 Equilibria in the Case H1=0 (H2 =0, H3 =0)
	4.3 Equilibria in the Case H2=0 (H1 =0, H3 =0)

	5 Conclusion
	References

	Computer Algebra in High-Energy Physics (Invited Talk)
	1 Introduction
	2 Particle-Physics Models
	3 The Challenges
	4 Loop Integrals
	5 The Recipe
	6 Implementation
	7 Generating Feynman Diagrams with FeynArts
	7.1 Model Files

	8 FormCalc
	8.1 Abbreviations
	8.2 Code Generation

	9 FORM
	10 Validation
	11 Extensions
	12 Conclusions
	References

	A Note on Dynamic Gröbner Bases Computation
	1 Introduction
	2 Preliminaries
	3 Dynamic Gröbner Bases Computation
	4 Improved Dynamic Gröbner Bases Computation
	5 Experimental Results
	6 Conclusion and Perspective
	References

	Qualitative Analysis of the Reyman -- Semenov--Tian--Shansky Integrable Case of the Generalized Kowalewski Top
	1 Introduction
	2 Formulation of the Problem
	3 Obtaining Invariant Manifolds
	3.1 First-Level Invariant Manifolds
	3.2 The Invariant Manifolds of 2nd Level and Higher
	3.3 The ``Lifted Up'' Invariant Manifolds

	4 The Case of Parallel Force Fields
	4.1 On Some Classic Analogues of the Solutions of the Original Problem

	5 Conclusion
	References

	On Multiple Eigenvalues of a Matrix Dependent on a Parameter
	1 Introduction
	2 Preliminary Results
	3 Multiple Eigenvalues of a Matrix Dependent on a Parameter
	3.1 The Algorithm
	3.2 Asymptotic Complexity of the Algorithm and Accuracy of Computations
	3.3 A Numerical Example

	4 Conclusions
	References

	A Generalised Branch-and-Bound Approach and Its Application in SAT Modulo Nonlinear Integer Arithmetic
	1 Introduction
	2 Preliminaries
	2.1 SAT-modulo-theories Solving
	2.2 Virtual Substitution
	2.3 Cylindrical Algebraic Decomposition

	3 A General Branch-and-Bound Framework
	3.1 Processing Branching Lemmas in DPLL(T) SAT Solving

	4 Branch-and-Bound with Virtual Substitution
	5 Branch-and-Bound with the CAD Method
	6 Combination of Procedures
	7 Experimental Results
	8 Conclusion and Future Work
	References

	Computing Characteristic Polynomials of Matrices of Structured Polynomials
	1 Introduction
	2 Background
	2.1 Hessenberg
	2.2 The Modular Algorithm
	2.3 Degree Bounds

	3 Naive First Approach
	3.1 Structures Found
	3.2 Method of Approach

	4 Phase 1 - Query
	4.1 Lowest Degree Factors
	4.2 Required Points
	4.3 Unlucky Evaluations

	5 Phase 2 - Optimizations
	5.1 Lowest Degree
	5.2 Even Degree
	5.3 Non-zero Factors
	5.4 Combined
	5.5 Chinese Remainder Algorithm

	6 Parallelization
	7 Benchmarks
	A Appendix
	References

	Computing Sparse Representations of Systems of Rational Fractions
	1 Introduction
	2 Preliminaries
	2.1 Matrix Representation of a Fraction
	2.2 Monomial Map
	2.3 Action of a Monomial Map

	3 Sparsifying a Fraction
	3.1 Algorithm CSBmodulo
	3.2 Algorithm getSparsestFraction
	3.3 Complexity of getSparsestFraction

	4 Sparsifying a Sum of Fractions
	4.1 Matrix Representation of a Sum of Fractions
	4.2 Action of a Monomial Map
	4.3 Algorithm getSparsestSumOfFractions
	4.4 Application to Systems of ODEs

	5 Proof of Algorithm CSBmodulo
	References

	On the General Analytical Solution of the Kinematic Cosserat Equations
	1 Introduction
	2 Special Cosserat Theory of Rods
	3 Analytical Form of the Darboux and Twist Functions
	4 General Solution to the Kinematic Equation System
	5 Simulation of Two-Way Coupled Fluid-Rod Problems
	6 Conclusison
	7 Limitations
	References

	Using Sparse Interpolation in Hensel Lifting
	1 Introduction
	2 The Multivariate Diophantine Problem (MDP)
	3 Solution to the MDP via Interpolation
	3.1 Solution to the MDP via Sparse Interpolation
	3.2 First Improvement
	3.3 The Evaluation Cost

	4 Sparse Hensel Lifting
	4.1 On Kaltofen's SHL
	4.2 Our SHL Organization
	4.3 Some Remarks on Algorithm 4

	5 Some Timing Data
	5.1 Factoring the Determinants of Cyclic and Toeplitz Matrices
	5.2 Random Data

	6 Conclusion
	References

	A Survey of Satisfiability Modulo Theory
	1 Introduction
	1.1 Generalities
	1.2 The SMT-LIB Format and Available Theories
	1.3 Use in Program Analysis Applications

	2 The DPLL(T) Architecture
	2.1 CDCL Satisfiability Testing
	2.2 DPLL(T)
	2.3 Linear Real Arithmetic
	2.4 Linear Integer Arithmetic
	2.5 Exponential Behavior Due to Limited Predicate Vocabulary
	2.6 Uninterpreted Functions and Arrays

	3 Natural-Domain SMT
	3.1 Abstract CDCL (ACDCL)
	3.2 Model-Constructing Satisfiability Calculus (MCSAT)

	4 Beyond Quantifier-Free Decidability
	4.1 Quantifiers
	4.2 Craig Interpolation
	4.3 Optimization

	5 Conclusion
	References

	Quadric Arrangement in Classifying Rigid Motions of a 3D Digital Image
	1 Introduction
	2 Classifying Rigid Motions of a 3D Digital Image
	2.1 Rigid Motions on the 3D Cartesian Grid
	2.2 Image Patch and Its Alterations Under Digitized 3D Rigid Motions

	3 Arrangement of Quadrics
	3.1 The Problem as an Arrangement of Hypersurfaces
	3.2 Uncoupling the Parameters

	4 Computing an Arrangement of Quadrics in 3D
	4.1 Bifurcation and Critical Values
	4.2 Detection of Critical Values
	4.3 Sorting Critical Values
	4.4 Sweeping a Set of Quadrics

	5 Recovering Translation Parameter Values
	6 A Case Study
	6.1 Combinatorial Issue
	6.2 Implantation and Experiments

	7 Conclusions
	References

	A Lower Bound for Computing Lagrange's Real Root Bound
	1 Introduction
	2 Absolute Positiveness of Lagrange's Real Root Bound
	3 Algebraic Decision Trees -- Basic Notations and Definitions
	4 Lower Bound on a Geometric Problem
	5 Lower Bound on Computing Lagrange's Real Root Bound
	6 Conclusion and Further Directions
	References

	Enhancing the Extended Hensel Construction by Using Gröbner Bases
	1 Introduction
	2 A Brief Survey of the EHC
	2.1 Newton Line and Newton Polynomial
	2.2 EHC Based on MY Interpolation Functions
	2.3 Faults of the Conventional Method

	3 Use of Gröbner Basis in the EHC
	3.1 On a Gröbner Basis of "426830A G0,H0"526930B
	3.2 Computing Polynomial Parts of G(k) and H(k)
	3.3 How to Treat the Rational-Function Coefficients
	3.4 How to Simplify , H(k), etc.
	3.5 On Term Order and on Computing Syzygies

	4 Timing Data and Final Remarks
	References

	Symbolic-Numerical Optimization and Realization of the Method of Collocations and Least Residuals for Solving the Navier--Stokes Equations
	1 Introduction
	2 Description of the CLR Method
	3 Preconditioners for the CLR Method
	4 The Krylov and Multigrid Procedures for the CLR Method
	5 Results of Numerical Experiments
	6 Conclusions
	References

	Pruning Algorithms for Pretropisms of Newton Polytopes
	1 Introduction
	2 Pruning Algorithms
	2.1 Horizontal and Vertical Pruning Defined
	2.2 Pseudo Code Definitions of the Algorithms
	2.3 Correctness
	2.4 Analysis of Computational Complexity
	2.5 Horizontal and Vertical Pruning Revisited

	3 Implementation
	3.1 Code
	3.2 Parallelism

	4 Generic Experiments
	4.1 Benchmarking
	4.2 Number of Cone Intersections
	4.3 Comparison with Gfan

	5 Benchmark Polynomial Systems
	5.1 Cyclic-n Experiments
	5.2 n-body and n-vortex

	6 Conclusion
	References

	Computational Aspects of a Bound of Lagrange
	1 Introduction
	2 The Method of Cauchy
	3 Refinements of the Bound of Lagrange
	3.1 A Cubic Polynomial Related to the Bound of Lagrange
	3.2 Experiments
	3.3 Another Polynomial

	4 Comparisons and Numerical Results
	References

	Author Index

