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Preface

The International Workshop on Computer Algebra in Scientific Computing (CASC) is
an annual conference that brings together researchers and scientists working in the field
of computer algebra and researchers from various application areas that apply
pioneering methods of computer algebra in sciences such as physics, chemistry, life
sciences, and engineering, to discuss problems and solutions in the area, to identify new
issues, and to shape future directions for research.

This year, the 20th CASC conference was held in Lille (France). The computer
algebra group of Lille is one of the few French computer algebra groups hosted in a
computer science laboratory (initially the LIFL then CRIStAL, since 2015). This
context always pushed the group to develop symbolic methods with a focus on
applications and software development. Control theory has provided a major focus
since the group was founded in the 1980s by Gérard Jacob. The development of
symbolic methods dedicated to biological modeling has been continuously growing
since 2002, when Michel Petitot became group leader. Software development has
always been a major concern for the group, with a particular effort under the leadership
of François Boulier, group leader since 2011. In particular, at CRIStAL foundation, the
computer algebra group merged with a high-performance computing group, yielding
the “algebraic and high-performance computing” (CFHP) team, with the broader
“scientific computing” domain. In 2018, control theory received renewed interest from
the group, with the creation of GAIA (“geometry, algebra, informatics and applica-
tions”), both an Inria team and a subgroup of CFHP, led by Alban Quadrat.

From a computer algebra point of view, the research activity of the group was much
influenced by the works of Michel Fliess in control theory. The initial focus was on the
application of noncommutative algebra to the problem of expanding series from
dynamical systems by means of iterated integrals. Later, the group experience in
noncommutative algebra led to results in the theory of poly-logarithms (Hoang Ngoc
Minh and Joris Van Der Hoeven were group members at that time), which are related to
Riemann zeta function, and the investigation of chemical reaction networks (encoding
biological models) endowed with stochastic determination. In the 1990s, the simpli-
fication theory of systems of differential equations became a major domain, with two
approaches: (1) Ritt and Kolchin differential algebra and its elimination theory;
(2) differential geometry and Cartan’s equivalence method. The group was involved in
research on Ritt’s characteristic sets and made an important contribution to the theory
of regular chains both in the differential and in the polynomial case (Marc Moreno
Maza, now at ORCCA, was a group member for a few years). In terms of software, the
group developed an important relationship with Maplesoft. It released the diffalg (1996)
and the DifferentialAlgebra (2008) packages (itself relying on the open source BLAD
libraries). It contributed to the first version of the RegularChains library. All these
software packages have been shipped with the MAPLE standard library.
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The aforementioned events influenced the choice of Lille as a venue for the CASC
2018 workshop.

This volume contains 24 full papers submitted to the workshop by the participants
and accepted by the Program Committee after a thorough reviewing process with
usually three independent referee reports. Additionally, the volume includes two
contributions corresponding to the invited talks.

Polynomial algebra, which is at the core of computer algebra, is represented by
contributions devoted to the computation of Pommaret bases using syzygies, factor-
ization of multivariate polynomials, tropical Newton–Puiseux polynomials, positive
solutions of systems of signed parametric polynomial inequalities, sparse polynomial
arithmetic with the BPAS library, blackbox polynomial system solver on parallel
shared memory computers, investigation of analytic complexity of a bivariate holo-
morphic function by means of computer algebra tools, localization of polynomial ideals
by a new “local primary algorithm,” computation of the sparse multivariate polynomial
remainder sequence, splitting permutation representations of finite groups by polyno-
mial algebra methods, tropicalization of linear subspaces, and efficient implementation
of the algorithms for the computation of Gröbner basis with the aid of the Haskell
compiler.

In his invited talk, Jean-Guillaume Dumas promotes the idea that the proof-of-work
certificates can be efficiently computed in the cloud. When there is such a cloud-based
service, demanding computations are outsourced in order to limit infrastructure costs.
The idea of verifiable computing is to associate a data structure, a proof-of-work
certificate, to the result of the outsourced computation. This allows a verification
algorithm to prove the validity of the result faster than by recomputing it. The
problem-specific procedures in computer algebra are also presented for exact linear
algebra computations that are Prover-optimal, that is, that have much less financial
overhead.

The tutorial of Marc Moreno Maza is devoted to the problem of the symbolic
computation of the limits of multivariate functions. Although the calculation of such
limits is supported, with some limitations, in general-purpose computer algebra systems
such as Maple and Mathematica, Maple is not capable of computing limits of rational
functions in more than two variables. In this tutorial, it was shown how various types of
limits can be computed by means of algebraic calculations. Examples cover the Zariski
closure of a constructible set, the tangent cone of an algebraic set at one of its singular
points, and the limit of a real multivariate rational function at one of its poles.

Four papers deal with applications of symbolic and symbolic-numeric computations
for investigating and solving partial differential equations (PDEs) and ODEs in
mathematical physics and fluid mechanics: a new finite difference strongly consistent
scheme for steady Stokes flow, solution of elliptic boundary-value problems using
multivariate simplex Lagrange elements, and invertibility of difference operators
arising at the approximation of ODEs.

Applications of CASs in mechanics, physics, and biology are represented by the
following themes: satellite dynamics with aerodynamic attitude control systems,
dynamical systems with irrational first integrals, and modeling of the evolution of a
staphylococcus population with the aid of nonlinear integro-differential equations.

VI Preface
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The remaining topics include the application of the Bargmann–Moshinsky basis in
molecular and nuclear physics, the visualization of planar real algebraic curves with
singularities with the aid of a continuation method, signal processing with the aid of
Padé approximants, finding multiple solutions in nonlinear integer programming, and
investigation of noncommutative evolution equations with singularities.

The CASC 2018 workshop was supported financially by the University of Lille, the
Research Center in Computer Science, Signal and Automatics of Lille (CRIStAL -
UMR 9189), the National Center for Scientific Research (CNRS), the Inria Lille–Nord
Europe research center, and the Maplesoft company.

Our particular thanks are due to the members of the CASC 2018 local Organizing
Committee at the University of Lille, i.e., François Boulier, François Lemaire, and
Adrien Poteaux, who ably handled all the local arrangements in Lille. In addition, Prof.
F. Boulier provided us with the information about the computer algebra activities at the
University of Lille.

Furthermore, we want to thank all the members of the Program Committee for their
thorough work. We are grateful to Matthias Orth (Universität Kassel) for his technical
help in the preparation of the camera-ready manuscript for this volume. Finally, we are
grateful to the CASC publicity chair, Andreas Weber (Rheinische
Friedrich-Wilhelms-Universität Bonn), and his assistant Hassan Errami for the design
of the conference poster and the management of the conference website (http://www.
casc.cs.uni-bonn.de).

July 2018 Vladimir P. Gerdt
Wolfram Koepf

Werner M. Seiler
Evgenii V. Vorozhtsov
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Proof-of-Work Certificates that Can Be
Efficiently Computed in the Cloud

(Invited Talk)

Jean-Guillaume Dumas(B)

Université Grenoble Alpes, Laboratoire Jean Kuntzmann, CNRS, UMR 5224,
700 avenue centrale, IMAG - CS 40700, 38058 Grenoble, Cedex 9, France

Jean-Guillaume.Dumas@univ-grenoble-alpes.fr

Abstract. In an emerging computing paradigm, computational capa-
bilities, from processing power to storage capacities, are offered to users
over communication networks as a cloud-based service. There, demand-
ing computations are outsourced in order to limit infrastructure costs.

The idea of verifiable computing is to associate a data structure, a
proof-of-work certificate, to the result of the outsourced computation.
This allows a verification algorithm to prove the validity of the result,
faster than by recomputing it. We talk about a Prover (the server per-
forming the computations) and a Verifier.

Goldwasser, Kalai and Rothblum gave in 2008 a generic method to
verify any parallelizable computation, in almost linear time in the size
of the, potentially structured, inputs and the result. However, the extra
cost of the computations for the Prover (and therefore the extra cost
to the customer), although only almost a constant factor of the overall
work, is nonetheless prohibitive in practice.

Differently, we will here present problem-specific procedures in com-
puter algebra, e.g. for exact linear algebra computations, that are Prover-
optimal, that is that have much less financial overhead.

1 Introduction

In an emerging computing paradigm, computational capabilities, from processing
power to storage capacities, are offered to users over communication networks
as a service.

Many such outsourcing platforms are now well established, as Amazon web
services (through the Elastic Compute Cloud), Microsoft Azure, IBM Platform
Computing or Google cloud platform (via Google Compute Engine), as shown in
Fig. 1. None of these platforms, however, offer any guarantee whatsoever on the
calculation: no guarantee that the result is correct, nor even that the computation
has even effectively been done.

1.1 Verifiable Computing

This new paradigm holds enormous promise for increasing the utility of com-
putationally weak devices. A natural approach is for weak devices to delegate
c© Springer Nature Switzerland AG 2018
V. P. Gerdt et al. (Eds.): CASC 2018, LNCS 11077, pp. 1–17, 2018.
https://doi.org/10.1007/978-3-319-99639-4_1
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2 J.-G. Dumas

We run clusters so 
you don't have to...

Fig. 1. Some outsourced computing services

expensive tasks, such as storing a large file or running a complex computation,
to more powerful entities (say servers) connected to the same network. While
the delegation approach seems promising, it raises an immediate concern: when
and how can a weak device verify that a computational task was completed cor-
rectly? This practically motivated question touches on foundational questions in
cryptography, coding theory, complexity theory, proofs, and algorithms.

function F, input x

y=F(x), proof ?

www.psdgraphics.com
blog.fi−xifi.eu

Fig. 2. Verifying the computation should take less time than computing it

More generally, the question of verifying a result at a lower cost (time, mem-
ory) than that of recomputing it, as shown on Fig. 2, is of paramount importance.
Another example of application is for the extension of the trust about results
computed via probabilistic or approximate algorithms. There the idea is to gain
confidence into the correctness, but only at a cost negligible when compared to
that of the computation.

1.2 Linear Algebra, Global Optimization

For instance, GL7d19 is an 1 911 130 × 1 955 309 matrix whose rank 1 033 568
was computed once in 2007 with a Monte-Carlo randomized algorithm [19]. This
required 1050 CPU days of computation. We thus need publicly verifiable cer-
tificates to improve our confidence in computational results.

mmonagan@cecm.sfu.ca



Proof-of-Work Certificates that Can Be Efficiently Computed in the Cloud 3

In linear algebra our original motivation is also related to sum-of-squares. By
Artin’s solution to Hilbert 17th Problem, any polynomial inequality ∀ξ1, . . . , ξn ∈
R, f(ξ1, . . . , ξn) ≥ g(ξ1, . . . , ξn) can be proved by a fraction of sum-of-squares:

∃ui, vj ∈ R[x1, . . . , xn], f − g =

(
�∑

i=1

u2
i

)
/

⎛
⎝ m∑

j=1

v2
j

⎞
⎠ (1)

Such proofs can be used to establish global minimality for g =
infξv∈R f(ξ1, . . . , ξn) and constitute certificates in non-linear global optimiza-
tion. A symmetric integer matrix W ∈ SZ

n×n is positive semidefinite, denoted
by W � 0, if all its eigenvalues, which then must be real numbers, are non-
negative. Then, a certificate for positive semidefiniteness of rational matrices
constitutes, by its Cholesky factorizability, the final computer algebra step in an
exact rational sum-of-squares proof, namely

∃e ≥ 0, W [1] � 0, W [2] � 0, W [2] �= 0 :

(f − g)(x1, . . . , xn) · (me(x1, . . . , xn)T W [2]me(x1, . . . , xn)) =

md(x1, . . . , xn)T W [1]md(x1, . . . , xn), (2)

where the entries in the vectors md,me are the terms occurring in ui, vj in (1).
In fact, (2) is the semidefinite program that one solves [43]. Then, the client
can verify the positiveness by checking Descartes’ rule of signs on the certified
characteristic polynomial of W [1] and W [2]. Thus arose the question how to give
possibly probabilistically checkable certificates for linear algebra problems.

1.3 Techniques

The tools used to provide such efficient proof-of-work certificates stem from pro-
grams that check their work [12], to proof of knowledge protocols [7], via error-
correcting codes [35,42] complexity theory [1] or secure multiparty protocols [17],
and the interaction of these different methodologies is crucial.

Here we will thus follow this road map:

– We recalled that global optimization can be reduced to linear algebra. There-
upon we will focus on certificates for linear algebra problems [43] in computer
algebra, which extend the randomized algorithms of Freivalds [32].

– We combine those with probabilistic interactive proofs of Babai [5] and Gold-
wasser et al. [39],

– as well as Fiat-Shamir heuristic [9,29] turning interactive certificates into
non-interactive heuristics subject to computational hardness.

– Overall, we obtain problem-specific efficient certificates for dense, sparse,
structured matrices with coefficients in fields or integral domains.

mmonagan@cecm.sfu.ca



4 J.-G. Dumas

2 Interactive Protocols, the PCP Theorem and
Homomorphic Encryption

2.1 Arthur-Merlin Interactive Proof Systems

A proof system usually has two parts, a theorem T and a proof Π, and the
validity of the proof can be checked by a verifier V . Now, an interactive proof, or
a

∑
-protocol, is a dialogue between a prover P (or Peggy in the following) and

a verifier V (or Victor in the following), where V can ask a series of questions,
or challenges, q1, q2, . . . and P can respond alternatively, in successive rounds,
with a series of strings π1, π2, . . ., the responses, in order to prove the theorem T .
The theorem is sometimes decomposed into two parts, the hypothesis, or input,
H, and the commitment, C. Then the verifier can accept or reject the proof:
V (H,C, q1, π1, q2, π2, . . .) ∈ {accept, reject}.

To be useful, such proof systems should satisfy completeness (the prover
can convince the verifier that a true statement is indeed true) and soundness
(the prover cannot convince the verifier that a false statement is true). More
precisely, the protocol is complete if the probability that a true statement is
rejected by the verifier can be made arbitrarily small. Similarly, the protocol is
sound if the probability that a false statement is accepted by the verifier can be
made arbitrarily small. The completeness (resp. soundness) is perfect if accepted
(resp. rejected) statements are always true (resp. false).

It turns out that interactive proofs with perfect completeness are as powerful
as interactive proofs [33]. Thus in the following, as we want to prove correctness
of a result more than proving knowledge of it, we will mainly show interactive
proofs with perfect completeness.

The class of problems solvable by an interactive proof system (IP) is equal to
the class PSPACE [55] and a probabilistically checkable proof, PCP[r(n), π(n)] ,
for an input of length n, is a type of proof that can be checked by a randomized
algorithm using a bounded amount of randomness r(n) and reading a bounded
number of bits of the proof π(n). For instance, PCP[O(log n), O(1)] = NP [3,6].

In general, interactive protocols encompass many kinds of proofs and Prover
and Verifier settings. One can think of the difficulty of integer factorization ver-
sus that of re-multiplying found factors. Another example could be satisfiability
checking, where the solver has to explore the state space, while verifying a vari-
able assignment or a conflict clause could be much simpler [2]. In computer alge-
bra, the Prover can be a probabilistic algorithm or a symbolic-numeric program,
where the Verifier would perform the checks exactly or symbolically; further,
computer algebra systems could perform complex calculations where an inter-
active theorem prover (or proof assistant like Isabel-HOL or Coq) only has to a
posteriori formally verify the certificate [15,16].

Table 1 gives more examples of such settings.

mmonagan@cecm.sfu.ca



Proof-of-Work Certificates that Can Be Efficiently Computed in the Cloud 5

Table 1. Examples of prover/verifier settings

Prover Verifier

Computer Scientist Mathematician
Computer Algebra system Formal proof assistant
Cloud User
Server Client
Cellphone Trusted platform module

2.2 Goldwasser et al. Prover Efficient Interactive Certificates

Now, efficient protocols (interactive proofs between a Prover, responsible for the
computation, and a Verifier, to be convinced) can be designed for delegating
computational tasks.

Recently, generic protocols, mixing zero-sum checks [45] and probabilistically
checkable proofs, have been designed by teams around Shafi Goldwasser at the
MIT or Harvard, for circuits with polylogarithmic depth [38,57], namely for
problems that can be efficiently solved on a parallel computer (in the NC or
AC complexity class). These results have also been extended to any structured
inputs (any polynomial-time-uniform polylog-depth Boolean circuits in the sense
of Beame’s et al. [8], division circuits) [23].

The resulting protocols are interactive and there is a trade-off between the
number of interactive rounds, the volume of communication and the computa-
tional cost [50]; the cost for the verifier being usually only roughly proportional
to the input size.

These protocols can, e.g., certify that two supersparse polynomials are rel-
atively prime in verifier cost which is polylog time (and rounds) in the degree.
The produced certificates, in analogy to processor-efficient parallel algorithms,
are Prover-efficient: if the cost to compute the result by the best known algo-
rithm is T (n) for a size n problem, then the cost to produce the result together
with the verifiable certificate is T (n)1+o(1).

Those techniques can however produce a non negligible practical overhead
for the Prover and are restricted to certain classes of circuits.

2.3 Parno et al. Homomorphic Solutions

Another approach as been developed by Gentry et al., at Microsoft and IBM
research, it is Pinocchio. It solves a broader range of problems, to the cost of
using relatively inefficient homomorphic routines [48] in an amortized way.

The idea is that the Prover should run the program (or at least part of
the program twice), once normally on the input, and once homomorphically
on an encrypted version of the input. The Verifier will then verify the consis-
tency between the normal output and the encrypted one. Usually the Verifier is
required to run the algorithm at least once for a given size or structure of the
input but can reuse this for multiple inputs.

mmonagan@cecm.sfu.ca
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This generic procedure can be applied on specific linear algebra or polynomial
problems [25,28,31,60], or on generic quadratic arithmetic programs [48]. There,
fully homomorphic encryption can be used [36] or sometimes just pairings [48]
and/or cryptographic hashes [30].

Here also the Prover can be efficient, but subject in practice to the overhead
of homomorphic computations.

2.4 Public Verification, Delegatability, and Zero-Knowledge

Interactive certificates require some exchanges between the Prover and the Ver-
ifier. With such a protocol, the Verifier can be privately convinced that the
computation of the Prover produced the correct answer. This does not mean
that other people would be convinced by the transcript of their exchange: the
Prover and Verifier could be in cahoots and the supposedly random challenges
carefully crafted.

Fiat-Shamir heuristic [9,29] can thus turn interactive certificates into non-
interactive heuristics subject to computational hardness: the random challenges
are replaced by cryptographic hashes of all previous data and exchanges. Craft-
ing such values would then reduce to being able to forge cryptographic finger-
prints [20, Sect. 4.5].

Further, more properties could be sought for such protocols, such privacy
of data and/or computations. In this setting, a publicly verifiable computation
scheme can also be four algorithms (KeyGen, ProbGen, Compute, Verify), where
KeyGen is some (amortized) preparation of the data, ProbGen is the preparation
of the input, Compute is the work of the Prover and Verify is the work of the
Verifier [49]. Usually the Verifier also executes KeyGen and ProbGen but in a
more general setting these can be performed by different entities (respectively
called a Preparator and a Trustee).

This allows to define several adversary models but usually the protocols are
secure against a malicious Prover only (that is the Client must trust both the
Preparator and the Trustee).

One can also further impose that there is no interaction between the Client
and the Trustee after the Client has sent his input to the Server. Publicly veri-
fiable protocols with this property are said to be publicly delegatable [25,28,60].

Then, some different properties of the protocol could be desirable, such
as not disclosing the result but instead just providing a proof-of-work. This
results in general in zero-knowledge protocols over confidential data, such as
cryptocurrency transactions, as in, e.g., [39], with recent efficient implementa-
tions [10,11,13,14].

2.5 Problem-Specific Efficient Certificates

Differently, dedicated certificates (data structures and algorithms that are verifi-
able a posteriori, without interaction) have also been developed, e.g., in computer
algebra for exact linear algebra [20,22,24,32,43], even for problems that are not
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structured. There the certificate constitute a proof of correctness of a result, not
of a computation, and can thus also detect bugs in the implementations.

Moreover, problem-specific certificates can gain crucial logarithmic factors
for the verifier and allow for optimal prover computational time, see Fig. 3.

Fig. 3. Generic protocols [58] versus dedicated protocols for matrix multiplication

For this, the main difficulty is to be able to design verification algorithms
for a problem that are completely orthogonal to the computational algorithms
solving it, while remaining checkable in time and space not much larger than the
input.

3 Prover-Optimal Certificates in Linear Algebra

We show in this section, that such problem-specific certificates are attainable
in linear algebra, where we allow certificates that are validated by Monte Carlo
randomized algorithms.

3.1 Freivalds Zero Equivalence of Matrix Expressions

The seminal certificate in linear algebra is due to Rūsiņš Freivalds [32]: quadratic
time is feasible because a matrix multiplication AB can be certified by the
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resulting product matrix C via the probabilistic projection to matrix-vector
products (see also [44] who reduced the requirements to only O(log(n)) random
bits), shown in Protocol 1.

Prover Communication Verifier

A ∈ F
m×k, B ∈ F

k×n

Compute C = A · B C−−−−−−−−→ r
$←− S ⊆ F

Form v = [1, r, r2, . . . , rn−1]T

A (Bv) − Cv
?
= 0

Protocol 1. Matrix multiplication certificate [44].

In Protocol 1, we give the variant of [44] that requires log(n) random bits,
but works over sufficiently large coefficient domains, as its soundness is 1 − |S|

n
by the DeMillo-Lipton/Schwartz/Zippel lemma [18,53,61]. Freivalds’ original
version randomly selects a zero-one vector instead. This requires n random bits
instead but applies to any ring and gives a soundness larger than 1

2 .
In both cases it is sufficient to repeat the test several times to achieve any

desired probability.

3.2 Reductions to Matrix Multiplication

With a certificate for matrix expressions, then one can certify any algorithm
that reduces to matrix multiplication: the Prover records all the inter-
mediate matrix products and sends them to the Verifier who reruns the same
algorithm but checks the matrix products instead of computing them [43], as
shown in Protocol 2.

Prover Communication Verifier

All intermediate Runs the algorithm but
Runs the algorithm matrix products replace each matrix products

−−−−−−−−−−−−−→ by Freivalds’ checks

Protocol 2. Certificates with reduction to matrix multiplication [43, Sect. 5].

Overall, the communications and Verifier computational cost are given by
taking ω = 2 in the Prover’s complexity bounds (with potential additional log-
arithmic factors due to summations). Further, the production of the certificate

mmonagan@cecm.sfu.ca



Proof-of-Work Certificates that Can Be Efficiently Computed in the Cloud 9

has no computational overhead for the Prover: it only adds the communication
of the intermediate matrix products.

For instance, Storjohann’s Las Vegas rank algorithm of integer matrices [56]
becomes a non-interactive/non-cryptographic Monte Carlo checkable proof-of-
work certificate that has soft-linear time communication and verifier bit com-
plexity in the number of input bits!

3.3 Sparse or Structured Matrices

When the matrices are sparse or present some structure, quadratic run time
and/or quadratic communications might be overkill for the Verifier. There it is
better if his communications and computational cost is of the form μ(A)+n1+o(1)

where μ(A) is the number of operations to perform a matrix-vector product. This
scheme is thus also interesting if the considered matrix is only given as a black
box [40].

In that vein, we now have certificates for:

– non-singularity, Protocol 3;
– an upper bound to the rank, Protocol 4 (if elimination on the input

matrix is possible for the Prover then a variant without preconditioners can
be used [24,26]);

– the rank, combining Protocols 3 and 4;
– the minimal polynomial, using Protocol 5 (where fA,v

u is the monic scalar
minimal generating polynomial of the sequence uT v, . . . , uT Aiv, ρA,v

u is such
that ρA,v

u = fA,v
u ·G with G the generating function of the latter sequence, for

random vectors u and v, chosen by the Verifier [41, Theorem5]);
– the determinant, Protocol 6, which randomness could be reduced from O(n)

to a constant number of field elements [21, Sect. 7].

Additionally, properties of the given matrices can also sometimes be discov-
ered at low cost: whether the blackbox is a band matrix, has a low displace-
ment rank, has a few or many nilpotent blocks or invariant factors [27].
Similarly, the existence of a triangular one sided equivalence, as well as the
rank profiles can also be certified without sending an explicit factorization to
the Verifier [24]. For the latter, the price to pay is to require a linear number of
rounds.

3.4 Integer or Polynomial Matrices

Over an integral domain, the verification procedure can be performed via a ran-
domly chosen modular projection. If there are sufficiently many small maximal
ideals, then one can uniformly choose one at random and then ask for a certifi-
cation of the result in the associated quotient field as shown in Protocol 7.

For instance this gives very efficient certificates for polynomial or integer/ra-
tional matrices, provided that one has a bound on the degree or the magnitude
of the coefficients:

mmonagan@cecm.sfu.ca
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Prover V erifier

Input A ∈ F
n×n

Commitment
1 : non-singular ��

Challenge
2 : b�� b

$←− Sn ⊂ F
n

Response w ∈ F
n 3 : w �� Aw

?
= b

Protocol 3. Blackbox interactive certificate of non-singularity [20]

Prover V erifier

A ∈ F
m×n S ⊂ F

rank(A) ≤ r
1 : r �� r

?
< min{m, n}

2 : U, V�� U ∈ B
m×m
S , V ∈ B

n×n
S

preconditioners of size n1+o(1)

w ∈ F
r+1 �= 0

3 : w �� w
?

�= 0

[Ir+1|0]UAV

[
Ir+1

0

]
w

?
= 0

Protocol 4. Blackbox upper bound to the rank certificate [20]

Prover Communication Verifier

H(λ) = fA,v
u (λ),

h(λ) = ρA,v
u (λ). H, h−−−−−−→

φ, ψ ∈ F[λ] with

φfA,v
u + ψρA,v

u = 1,
φ, ψ−−−−−−→ deg(φ)

?
≤ deg(h) − 1,

deg(ψ)
?
≤ deg(H) − 1.

Random r0 ∈ S ⊆ F.

Checks GCD(H(λ), h(λ)) = 1 by φ(r0)H(r0) + ψ(r0)h(r0)
?
= 1.

Computes w such that r1←−−−−−− Random r1 ∈ S ⊆ F.

(r1In − A)w = v. w−−−−−−→ Checks (r1In − A)w
?
= v and (uT w)H(r1)

?
= h(r1).

Returns fA,v
u (λ) = H(λ).

Protocol 5. Certificate for fA,v
u [22]
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Prover Communication Verifier

1. Form B = DA with

D ∈ Sn ⊆ F
∗n D, u, v−−−−−−−−−−→

and u, v ∈ Sn,
s.t. deg(fB,v

u ) = n.
Protocol 5

2. H, h, φ, ψ−−−−−−−−−−→ Checks:
3. r1←−−−−−−−−−− deg(H)

?
= n,

4. w−−−−−−−−−−→ H
?
= fB,v

u , w.h.p.

5. Returns
fB,v
u (0)

det(D)
.

Protocol 6. Determinant certificate for a non-singular blackbox [22]

Prover Communication Verifier

Commitment Result r ∈ R
r−−−−−−−−→

Challenge I←−−−−−−−− I $←− maximal ideals

Response Result x ∈ R/I with
x, CR/I−−−−−−−−→ x

?≡ r mod I and
field certificate CR/I CR/I(x)

?
= valid

Protocol 7. Certification in a quotient field [20, Sects. 3.2 and 4.4].

– For integral matrices, if the true result v is bounded in magnitude, then
only a finite number of prime numbers will divide the difference between the
commitment r and the result. Therefore the result can be checked over a
small prime field [20, Theorem5].

– For polynomial matrices, if the true v(X) result’s degree is bounded, then
only a finite number of evaluation points can be roots of the difference poly-
nomial between the committed one r(X) and the result. Therefore the result
can be checked in the ground field at a small evaluation point [20, Theorem2].

The latter results allows, for instance, to certify the global optimization prob-
lems of Sect. 1.2. This is illustrated in Fig. 4, where many of the reductions pre-
sented here are recalled.

3.5 Non-interactive Certificates

The certificates in Sects. 3.1 and 3.2 are non-interactive: all the communications
can be recorded and publicly verified later.

On the contrary the certificates of Sects. 3.3 and 3.4 are interactive: the Ver-
ifier chooses some random bits during the computation of the certificate. Non-
interactivity can be recovered via Fiat-Shamir scheme: any random bits are gen-

mmonagan@cecm.sfu.ca



12 J.-G. Dumas

F
ig
.4

.G
lo

ba
lo

pt
im

iz
at

io
n

vi
a

pr
ob

le
m

-s
pe

ci
fic

in
te

ra
ct

iv
e

ce
rt

ifi
ca

te
s:

de
ns

e
(p

ur
pl

e)
or

sp
ar

se
(r

ed
)

al
ge

br
ai

c
pr

ob
le

m
s,

as
w

el
la

s
ov

er
th

e
re

al
s

(g
re

en
)

or
ob

liv
io

us
(y

el
lo

w
).

(C
ol

or
fig

ur
e

on
lin

e)

mmonagan@cecm.sfu.ca



Proof-of-Work Certificates that Can Be Efficiently Computed in the Cloud 13

erated by cryptographic hashes of the inputs and all the previous intermediate
commitments. Soundness is then subject to standard cryptographic assumptions.

For sparse or structured problems fewer results exist without this assumption,
or with worse complexity bounds:

– For the minimal polynomial (scalar or matrix) or the determinant, non-
interactive certificates exist, but with communications and computational
cost O(n

√
μ(A)) instead of μ(A) + n1+o(1) [21].

– Non-interactive certificates can also verify polynomial minimal approximant
bases in O(mD + mω), where D is the sum of the column degrees of the
output [37].

4 Some Open Problems

We conclude this survey with some open problems in the area of problem specific
linear algebra certificates:

– Sparse Smith form: for dense matrices, one can interactively certify any
normal form via a Freivalds certificate on a randomly chosen modular factor-
ization. With sparse matrices, even the modular projection of the change of
base can be too large. In that setting extending protocols for the rank or the
determinant to deal with the Smith form should be possible.

– Non integral domains certificates: more generally, how to efficiently cer-
tify some properties when there is no quotients or if those properties do not
carry over (e.g., Smith form)?

– We have defined certificates resisting a malicious server with unbounded
power. This is error detection with unbounded number of errors. Thus the
question of the complexity of problem specific unbounded error correc-
tion also arises. This path again was first taken for matrix multiplication [35]
and was recently extended to the matrix inverse [51].
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Abstract. We consider matrices L ∈ Matn(K[σ, σ−1]) of scalar differ-
ence operators, where K is a difference field of characteristic 0 with an
automorphism σ. We discuss approaches to compute the dimension of the
space of those solutions of the system of equations L(y) = 0 that belong
to an adequate extension of K. On the base of one of those approaches, we
propose a new algorithm for computing L−1 ∈ Matn(K[σ, σ−1]) when-
ever it exists. We investigate the worst-case complexity of the new algo-
rithm, counting both arithmetic operations in K and shifts of elements of
K. This complexity turns out to be smaller than in the earlier proposed
algorithms for inverting matrices of difference operators.

Some experiments with our implementation in Maple of the algorithm
are reported.

1 Introduction

Matrix calculus has wide application in various branches of science. Testing
whether a given matrix over a field or ring is invertible and computing the inverse
matrix are classical mathematical problems. Below, we consider these problems
for matrices whose entries belong to the ring (non-commutative) of scalar linear
difference operators with coefficients from a difference field K of characteristic
0 with an automorphism (shift) σ. We discuss some new algorithms for solving
these problems. These problems can be also solved by well-known algorithms
proposed originally for more general problems. The new algorithms below have
lower complexity.

In the case of matrices of operators, the term “unimodular matrix” is usually
used instead of “invertible matrix”. This term will be used throughout this paper.

In the differential case when the ground field K is a differential field of
characteristic 0 with a derivation δ = ′ and when the matrix entries are scalar
linear differential operators over K, algorithms for the unimodularity testing of
a matrix and computing its inverse were considered in [2]. For a given matrix L,
the algorithms discussed below rely on determining the dimension of the solution
space VL of the corresponding system of equations under the assumption that the
components of solutions belong to the Picard–Vessiot extension of K associated
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with L (see [16]). A matrix L of operators, when L is of full rank (the rows of
L are independent over the ring of scalar linear operators) is unimodular if and
only if dimVL = 0, i.e., VL is the zero space (see [4]).

There are two significant dissimilarities between the differential and difference
cases. One of them gives an advantage to the differential case, the other to the
difference case. The differential system y′ = Ay has the n-dimensional solution
space in the universal differential extension, regardless of the form (singular or
non-singular) of the n × n-matrix A [17]. But in the difference case, the non-
singularity of A is required. However, the difference case has the advantage that
the automorphism σ has the inverse in K[σ, σ−1], while the differentiation δ is
not invertible in K[δ].

It is worth noting that some algorithms for solving the “difference prob-
lems” formulated above have been proposed in [3]. The algorithms below have
lower complexity (this is the novelty of the results) due to the usage of the
EG-eliminations algorithm [1,6,7] as an auxiliary tool instead of the algorithm
Row-Reduction [11]. The obstacle for such a replacement in the differential case,
is the absence of the inverse element for δ in the ring K[δ].

The problems of unimodularity testing and inverse matrix construction can
be solved by applying various other algorithms. For example, the Jacobson and
Hermite forms of the given operator matrix can be constructed; their definitions
can be found in [13,15]. The complexity of the algorithms is greater than the
complexity of the algorithms in this paper and in [3]. Of course, the algorithms
in [13,15] are intended for more general problems, and the algorithms in this
paper and in [3] have advantages only for unimodularity recognition and the
construction of an inverse operator matrix.

We use the following notation. The ring of n × n-matrices (n is a positive
integer) with elements from a ring or field R is denoted by Mat n(R). If M is an
n × n-matrix, then Mi,∗ with 1 � i � n is the 1 × n-matrix equal to the ith row
of M . The diagonal n × n-matrix with diagonal elements r1, . . . , rn is denoted
by diag(r1, . . . , rn), and In is the n × n identity matrix.

The proposed algorithms are presented in Sect. 3. Their implementation in
Maple and some experiments are described in Sect. 5.

2 Preliminaries

2.1 Adequate Difference Extensions

As usual, a difference ring K is a commutative ring with identity and an auto-
morphism σ (which will frequently be referred to as a shift). If K is additionally
a field, then it is called a difference field. We will assume that the considered
difference fields are of characteristic 0. The ring of constants of a difference ring
K is Const (K) = {c ∈ K | σc = c}. If K is a difference field, then Const (K) is
a subfield of K. Let K be a difference field with an automorphism σ, and let Λ
be a difference ring extension of K (on K, the corresponding automorphism of
Λ coincides with σ; for this automorphism of Λ, we use the same notation σ).
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Definition 1. The ring Λ which is a difference ring extension of a field K is an
adequate difference extension of K if Const (Λ) is a field and an arbitrary system

σy = Ay, y = (y1, . . . , yn)T (1)

with a nonsingular A ∈ Mat n(K) has in Λn the linear solution space over
Const (Λ) of dimension n.

The non singularity of A in this definition is essential: e.g., if the first row of
A is zero, then the entry y1 in any solution of the system (1) is zero as well.

Note that the q-difference case [10] is covered by the general difference case.
If Const (K) is algebraically closed, then there exists a unique (up to a differ-

ence isomorphism, i.e., an isomorphism commuting with σ) adequate extension
Ω such that Const (Ω) = Const (K), which is called the universal difference
(Picard-Vessiot) ring extension of K. The complete proof of its existence is not
easy (see [16, Sect. 1.4]), while the existence of an adequate difference extension
for an arbitrary difference field can be rather easily proved (see [5, Sect. 5.1]).
However, it should be emphasized that, for an adequate extension, the equal-
ity Const (Λ) = Const (K) is not guaranteed; in the general case, Const (K) is
a proper subfield of Const (Λ). The assertion that a universal difference exten-
sion exists for an arbitrary difference field of characteristic 0 is not true if the
extension is understood as a field. Franke’s well-known example [12] is the scalar
equation over a field with an algebraically closed field of constants. This equation
has no nontrivial solutions in any difference extension having an algebraically
closed field of constants.

In the sequel, Λ denotes a fixed adequate difference extension of a difference
field with an automorphism σ.

2.2 Orders of Difference Operators

A scalar difference operator is an element of the ring K[σ, σ−1]. Given a nonzero
scalar operator f =

∑
aiσ

i, its leading and trailing orders are defined as

ord f = max{i | ai �= 0}, ord f = min{i | ai �= 0},

and the order of f is defined as

ord f = ord f − ord f.

Set ord 0 = −∞, ord 0 = ∞, and ord 0 = −∞.
For a finite set F of scalar operators (a vector, matrix, matrix row etc), ord F

is defined as the maximum of the leading orders of its elements; ordF is defined
as the minimum of the trailing orders of its elements; finally, ordF is defined as
ordF−ord F . A matrix of difference operators is a matrix from Mat n(K[σ, σ−1]).
In the sequel, such a matrix of difference operators is associated with some
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matrices belonging to Mat n(K). To avoid confusion of terminology, matrices of
difference operators will be briefly referred to as operators. The case of scalar
operators will be considered separately. An operator is of full rank (or is a full
rank operator) if its rows are linearly independent over K[σ, σ−1]. Same-length
rows u1, . . . , us with components belonging to K[σ, σ−1] are called linearly depen-
dent (over K[σ, σ−1]) if there exist f1, . . . , fs ∈ K[σ, σ−1] not all zero such that
f1u1 + · · ·+fsus = 0; otherwise, these rows are called linearly independent (over
K[σ, σ−1]). If

L ∈ Mat n(K[σ, σ−1]), l = ord L, t = ordL,

and L is nonzero, then it can be represented in the expanded form as

L = Alσ
l + Al−1σ

l−1 + · · · + Atσ
t, (2)

where Al, Al−1, . . . , At ∈ Mat n(K), and Al, At (the leading and trailing matrices
of the original operator) are nonzero.

Let the leading and trailing row orders of an operator L be α1, . . . , αn and
β1, . . . , βn, respectively. The frontal matrix of L is the leading matrix of the
operator PL, where

P = diag(σl−α1 , . . . , σl−αn), l = ord L.

Accordingly, the rear matrix of L is the trailing matrix of the operator QL,
where

Q = diag(σt−β1 , . . . , σt−βn), t = ordL.

If αi = −∞ (resp. βi = ∞) then the i-th row of P (resp. Q) is zero.
We say that L is strongly reduced if its frontal and rear matrices are both

nonsingular.

Definition 2. An operator L ∈ Mat n(K[σ, σ−1]) is unimodular or invertible if
there exists an inverse L−1 ∈ Mat n(K[σ, σ−1]): LL−1 = L−1L = In. The group
of unimodular n × n-operators is denoted by Υn. Two operators are said to be
equivalent if L1 = UL2 for some U ∈ Υn.

If L has a zero row (in such a case, its frontal and rear matrices have also
zero rows) then L is not of full rank, and is not unimodular: suppose, e.g., that
the first row of L is zero, then for any M ∈ Mat n(K[σ, σ−1]), the first row of the
product LM is also zero, thus, the equality LM = In is impossible. Similarly, if
U ∈ Υn and UL has a zero row then L /∈ Υn.

Let VL denote the space of the solutions of the system L(y) = 0 that belong
to Λn (see Sect. 2.1). For brevity, VL is sometimes called the solution space of L.
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For the difference case, Theorem 1 from [2] can be reformulated as follows.

Theorem 1. Let L ∈ Mat n(K[σ, σ−1]) be of full rank. Then

(i) If L is strongly reduced, then dim VL =
∑n

i=1 ordLi,∗.
(ii) L ∈ Υn iff VL = 0.

The proof is based on [4,5].

2.3 Complexity

Besides the complexity as the number of arithmetic operations (the arithmetic
complexity) one can consider the number of shifts in the worst case (the shift
complexity).

Thus, we will consider two complexities. This is similar to the situation with
sorting algorithms, when we consider separately the complexity as the number
of comparisons and, resp. the number of swaps in the worst case.

We can also consider the full algebraic complexity as the total number of all
operations in the worst case.

Supposing that L ∈ Mat n(K[σ, σ−1]), ord L = d, each of the mentioned
complexities is a function of n and d.

In asymptotic complexity estimates, along with the O notation we use the Θ
notation (see [14]): the relation f(n, d) = Θ(g(n, d)) is equivalent to

f(n, d) = O(g(n, d)) and g(n, d) = O(f(n, d)).

Note that the full complexity of an algorithm counting operations of two
different types in the worst case is not, in general, equal to the sum of two com-
plexities, counting operations of the first and, resp. second type. We can claim
only that the full complexity does not exceed that sum. If for the first and second
complexities we have asymptotic estimates Θ(f(n, d)) and Θ(g(n, d)) then for
the full complexity we have the estimate O(f(n, d)+g(n, d)). To this we can add
that if for the first and second complexities we have estimates O(f(n, d)) and
O(g(n, d)) then we have the estimate O(f(n, d)+g(n, d)) for the full complexity.

2.4 EG-Eliminations (Family of EG-Algorithms)

Definition 3. Let the ith row of the frontal matrix of L ∈ Mat n(K[σ, σ−1]) be
non-zero and have the form

(0, . . . , 0
︸ ︷︷ ︸

k

, a, . . . , b),

0 � k � n, a �= 0. In this case, k is the indent of the ith row of L.

The algorithm EGσ (the version published in [1]) is as follows:
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Algorithm: EGσ

Input: An operator L ∈ Mat n(K[σ, σ−1]) whose leading matrix has no zero row.
Output: An equivalent operator having an upper triangle leading matrix (that
operator is also denoted by L) or the message “is not of full rank”.
while L has rows with equal indents do

(Reduction) Let some rows r1, r2 of L have the same indent k. Then compute
v ∈ K such that the indent of the row

r = r1 − vr2 (3)

is greater than k or ord r < ordL (the computation of v uses one arithmetic oper-
ation); if r is zero row of L then STOP with the message “is not of full rank”fi;
The row from r1, r2 which has the smaller trailing order, must be replaced by r (if
ord r1 = ord r2 then any of r1, r2 can be taken for the replacement);

(Shift) If ord r < ordL then apply σordL−ord r to r in L
od;
Return L. �

Thus, each step of the algorithm EGσ is a combination “reduction + shift”.
All the steps are unimodular since the operator σ−1 is the inverse for σ.

Example 1.

L =

⎛

⎝
1 − 1

xσ

x2

2 −x
2σ + 1

⎞

⎠ =

⎛

⎝
0 − 1

x

0 −x
2

⎞

⎠ σ +
(

1 0
x2

2 1

)

. (4)

By applying the algorithm EGσ, the operator L is transformed as follows:
⎛

⎝
0 − 1

x

0 −x
2

⎞

⎠ σ +
(

1 0
−x

2 1

)
1−→

⎛

⎝
0 − 1

x

0 0

⎞

⎠ σ +
(

1 0
0 1

)
2−→

⎛

⎝
0 − 1

x

0 1

⎞

⎠ σ +

⎛

⎝
1 0

0 0

⎞

⎠ 3−→
⎛

⎝
0 0

0 1

⎞

⎠ σ +

⎛

⎝
1 0

0 0

⎞

⎠ 4−→
⎛

⎝
1 0

0 1

⎞

⎠ σ +

⎛

⎝
0 0

0 0

⎞

⎠ .

Here

1. L2,∗ :=
−x2

2
L1,∗ + L2,∗,

2. L2,∗ := σL2,∗,

3. L1,∗ := L1,∗ +
1
x

L2,∗,

4. L1,∗ := σL1,∗.

(5)

As the result of this transformation, we obtain the operator

⎛

⎝
1 0

0 1

⎞

⎠ σ, i.e.,

⎛

⎝
σ 0

0 σ

⎞

⎠ . (6)
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By analogy with EGσ we can propose an algorithm EGσ−1 in which the trailing
matrix of the operator is considered instead of its leading matrix.

Proposition 1. The arithmetic complexity of the algorithms EGσ, EGσ−1 is

Θ(n3d2), (7)

the shift complexity is
Θ(n2d2). (8)

Correspondingly, the full algebraic complexity is

O(n3d2). (9)

See [3, Sect. 5.4] for the proof.

3 Unimodularity Testing, Computing Inverse Operator

3.1 Unimodularity Testing

Proposition 2. Let the rear matrix of an operator L ∈ Mat n(K[σ, σ−1]) be
non-singular. Then applying EGσ to L gives an operator having a non-singular
rear matrix.

Proof. Let us prove that one step of EGσ does not change the determinant of
the rear matrix of L. Indeed, let the reduction stage of this step change a row r1
of L and before this step, we have ord r1 = β. The row r1 is replaced by a sum
of r1 and another row r2, multiplied by v ∈ K: r1 := r1 + vr2. The inequality
ord r2 � β holds. If ord r2 > β then the rear matrix gets no change. If ord r2 = β
then the determinant of the rear matrix gets no change since the shift stage does
not change the rear matrix.

The following algorithm can be verified by means of Theorem1 and Propo-
sition 2:

Algorithm: Unimodularity testing (this algorithm has been described in [3] )
Input: An operator L ∈ Mat n(K).
Output: “is unimodular” or “is not unimodular” depending on whether L is uni-
modular or not.
if EGσ−1 did not find that L is not of full rank and ord r = ord r for each row r of
EGσ(EGσ−1(L)) then Return “is unimodular” otherwise Return “is not unimodular”
fi. �

Example 2. Let L be again as in Example 1, i.e., of the form (4). The rear
matrix coincides with the trailing one, and is nonsingular. By applying the
algorithm EGσ, the operator L is transformed to L̃ of the form (6). We have
dim VL̃ = 0. Thus, the original operator L is unimodular.

Proposition 3. The arithmetic, shift and full algebraic complexities of the algo-
rithm Unimodularity testing are, resp. (7), (8), and (9).

Proof. This follows from Proposition 1 and the fact that the values of n, d are
not increased after applying EGσ−1 .
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3.2 Inverse Operator

Algorithm: ExtEGσ

Input: Operators J, L ∈ Mat n(K).
Output: The operator M = UJ , where U is such that EGσ(L) = UL.
Apply EGσ to L, and repeat in parallel the application of all the operations to J .�

Note that in the case when we use In as J , we obtain M which is equal to U .
By analogy with ExtEGσ we can propose an algorithm ExtEGσ−1 in which the

trailing matrix of the operator is considered instead of its leading matrix.

Proposition 4. We have ord U � nd on each step of applying of ExtEGσ to
L ∈ Mat n(K[σ, σ−1]), ord L = d.

Proof. If in a step of the algorithm the shift σk of a row r was performed, then
the order of U will be increased by no more than |k|, while the order of the
shifted row is decreased by |k|. This implies that ordU after any step of ExtEGσ

does not exceed the sum of the orders of all rows of L. The order of each row
does not exceed d and the sum of the orders of all rows of L does not exceed nd.

Proposition 5. Both arithmetic and shift complexities of each of the algorithms
ExtEGσ, ExtEGσ−1 can be estimated by O(n4d 2). The full complexity is O(n4d 2)
as well.

Proof. When one applies EGσ or EGσ−1 to L ∈ Mat n(K[σ, σ−1]), ordL = d, then
the operation (3) is performed at most n · nd times. By Proposition 4, when we
compute U , each operation (3) uses at most O(n ·nd) arithmetic operations, i.e.,
O(n2d) arithmetic operations. Totally, the number of arithmetic operations is
O(n2d · n2d), i.e. O(n4d 2).

The shift complexity of each of EGσ, EGσ−1 is O(n2d 2). When we substitute
nd for d (by Proposition 4) we obtain O(n4d 2).

The estimate O(n4d 2) for the full complexity follows from the obtained esti-
mates for the arithmetic and shift complexities.

Algorithm: Inverse operator
Input: An operator L ∈ Mat n(K).
Output: The inverse of L or the message “is not unimodular”.
U := In; (U, L) := ExtEGσ−1(U, L); (U, L) := ExtEGσ(U, L);
if ord r �= ord r for at least one row r of L then STOP with the message “is not
unimodular”
fi;
Let β1, . . . , βn be the trailing orders of rows of L,

thus L = MD with M ∈ Mat n(K), D = diag(σβ1 , . . . , σβn);
L−1 := diag(σ−β1 , . . . , σ−βn)M−1U. �
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Example 3. Consider again operator (4). To find L−1 after getting the operator
L̃ (as it was shown in Example 2), we first apply (5) to I2. We get

(
1 0
0 1

)
1−→

(
1 0

−x2

2 1

)
2−→

(
1 0

− (x+1)2

2 σ σ

)
3−→

⎛

⎜
⎝

1 − (x+1)2

2x σ 1
xσ

− (x+1)2

2 σ σ

⎞

⎟
⎠

4−→

⎛

⎜
⎝

σ − (x+2)2

2(x+1)σ
2 1

x+1σ2

− (x+1)2

2 σ σ

⎞

⎟
⎠ .

We get

L−1 = diag(σ−1, σ−1) I−1
2

⎛

⎜
⎝

σ − (x+2)2

2(x+1)σ
2 1

x+1σ2

− (x+1)2

2 σ σ

⎞

⎟
⎠ =

⎛

⎜
⎝

1 − (x+1)2

2x σ 1
xσ

−x2

2 1

⎞

⎟
⎠ .

Proposition 6. The estimate O(n4d2) holds for all of the arithmetic, shift, and
full complexities of the algorithm Inverse operator.

Proof. The statement follows from Proposition 5.

4 Other Versions of EG and Inverse Operator

The algorithm Inverse operator proposed in this paper is based on the ver-
sion [1] of the EG-eliminations algorithm as an auxiliary tool. Another variant
of the algorithm for constructing the inverse operator has been proposed in [3],
it is based on a version (named RR in [3]) of the Row-Reduction algorithm [11] as
an auxiliary tool. For a given operator, the algorithm RRσ constructs an equiv-
alent operator that has a nonsingular frontal matrix. Similarly, the algorithm
RRσ−1 constructs an equivalent operator that has a nonsingular rear matrix. The
arithmetic complexity of the algorithms presented in this paper and, resp. in
[3], is the same, however, the shift complexity (and, hence, the full algebraic
complexity) of the new algorithm is lower: O(n4d2) instead of Θ(n4d3).

Some other versions of the algorithms belonging to the EG-eliminations fam-
ily [6,7], whose full complexity does not differ much from the full complexity of
the above considered version, can be to some extent more convenient for imple-
mentation. This question has been discussed in [8]. In our Maple-implementation
of the Inverse operator algorithm represented below, we use elements of var-
ious variants of EG-eliminations. (It is well known that an algorithm that looks
the best in terms of complexity theory is not necessarily the best in computa-
tional practice.)

mmonagan@cecm.sfu.ca



On Unimodular Matrices of Difference Operators 27

5 Implementation and Experiments

The implementation1 is performed in Maple [18]. The existing implementation
of the algorithm EG described in [9] is taken as a starting point. The procedure
is adjusted to the difference case and to provide extended versions, both ExtEGσ

and ExtEGσ−1 . On top of the procedure for ExtEGσ and ExtEGσ−1 , the procedure
IsUnimodular to test the unimodularity of an operator and to compute its
inverse is implemented.

An operator L = Alσ
l + Al−1σ

l−1 + · · · + Atσ
t is specified at the input of

the procedures as the list
[A, l, t], (10)

where A is an explicit matrix

A = (Al|Al−1| . . . |At) (11)

of size n×n(l− t+1). The explicit matrix A is defined by means of the standard
Maple object Matrix. The entries of the explicit matrix are rational functions
of one variable, which are also specified in a standard way accepted in Maple. If
t = 0 then the input may be given alternatively just by the explicit matrix A.

The procedure IsUnimodular returns true or false as the result of check-
ing the unimodularity of the given operator, its inverse operator is returned
additionally being assigned to a given variable name (an optional input param-
eter of the procedure). The inverse operator is also represented by the list of its
explicit matrix and its leading and trailing orders. If the optional variable name is
not given, then the procedure uses the algorithm Unimodularity Testing from
Sect. 3.1, otherwise the algorithm Inverse Operator from Sect. 3.2 is used.

Example 4. We apply the procedure IsUnimodular to the operator matrix (4)
considered in Examples 1–3. The explicit matrix for the operator is

(
0 − 1

x 1 0
0 −x

2
x2

2 1

)

,

with l = 1 and t = 0. The procedure is applied twice: first time just for checking
the unimodularity, and the second time, for computing the inverse operator as
well. One can see that the result of the application coincides with the result
presented in Example 3 (the computation time is also presented):

1 Available at http://www.ccas.ru/ca/egrrext.
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> L := Matrix([[0, -1/x, 1, 0], [0, -x/2, x^2/2, 1]]);

L :=

⎡

⎣
0 − 1

x 1 0

0 −x
2

x2

2 1

⎤

⎦

> st:=time(): IsUnimodular(L, x); time()-st;

true

0.032

> st:=time(): IsUnimodular(L, x, ’InvL’); time()-st;

true

0.063

> InvL;

[[
− (x+1)2

2x
1
x 1 0

0 0 −x2

2 1

]

, 1, 0

]

Example 5. Consider the operator
(

σ−1 − 1
x−1

x2

2 −x
2σ + 1

)

.

The explicit matrix for the operator is
(

0 0 0 − 1
x−1 1 0

0 −x
2

x2

2 1 0 0

)

with l = 1 and t = −1. The procedure IsUnimodular is applied twice again: first
time just for checking the unimodularity, and the second time, for computing
the inverse operator as well. The computation time is also presented.
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> L:= Matrix([[0, 0, 0,-1/(x-1), 1, 0], [0, -x/2, x^2/2, 1, 0, 0]]);

L :=

⎡

⎣
0 0 0 − 1

x−1 1 0

0 −x
2

x2

2 1 0 0

⎤

⎦

> st:=time(): IsUnimodular([L, 1, -1], x); time()-st;

true

0.078

> st:=time(): IsUnimodular([L, 1, -1], x, ’InvL’); time()-st;

true

0.109

> InvL;

[[
− (x+1)2

2x 0 1 1
x 0 0

0 0 −x2

2 0 0 1

]

, 2, 0

]

It means that

(
σ−1 − 1

x−1
x2

2 −x
2σ + 1

)−1

=

(
− (x+1)2

2x σ2 + σ 1
xσ

x2

2 σ 1

)

.

In addition, a series of experiments has been executed.

Example 6. Consider the following n × n-operator with n = 2k:

M =
(

Ik A
0k Ik

)

, (12)

where 0k is the zero k×k-matrix, A ∈ Mat k(K[σ, σ−1]) is an arbitrary operator.
The operator (12) is unimodular for any A, its inverse operator is

M−1 =
(

Ik −A
0k Ik

)

. (13)

For each experiment, we have generated an operator A whose entries are
scalar difference operators having random rational function coefficients with the
numerators and denominators of the degree up to 2. We compute the inverse
for M of the form (12). The order of A, and hence, the order of M varies as
d = 1, 2, 4, 6, 8, 10 and the number of rows of M varies as n = 4, 6, 8, 10 (hence,
the number of rows of A varies as k = 2, 3, 4, 5). The inverse of M is calculated
in each experiment by IsUnimodular. The results are presented in Table 1.

The table shows that the computation time in general corresponds to the
complexity estimates (it should not be exact since the estimates are for the worst
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Table 1. Results of the experiments, in seconds

d = 1 d = 2 d =4 d = 6 d = 8 d=10

n = 4 0.125 0.188 0.500 0.969 2.078 2.906

n = 6 0.282 0.593 1.734 6.563 79.375 92.562

n = 8 0.516 1.500 37.938 94.813 427.375 1836.547

n = 10 0.703 5.562 910.218 1006.797 7576.063 13372.172

case and asymptotical). However, the computing time starts to increase faster
than expected with the growth of n and d. It is again caused by the significant
growth of the size of the elements of the matrix in the course of the computation.
The size of the elements in M−1 is equal to the size of the elements in M in
these experiments, so the coefficients of the elements are rational functions with
the numerators and denominators of the degree up to 2. But in the course of the
computation, the elements of the matrix have coefficients with the numerators
and denominators of the degree up to several dozens for the smaller n and d,
and up to several hundreds and even more than a thousand for the greater n
and d.

6 Conclusion

In this paper, we have presented some new algorithms for solving problems
for matrices whose entries belong to the non-commutative ring of scalar linear
difference operators with coefficients from a difference field K of characteristic
0 with an automorphism σ. Some algorithms for solving the difference problems
formulated in the paper had been proposed in [3]. The algorithms in the present
paper have lower complexity due to the usage of the EG-eliminations algorithm
as an auxiliary tool instead of Row-Reduction algorithm. The implementation
of the algorithm in Maple was done and some experiments were reported. The
experimental results show that the computation time corresponds in general to
the complexity estimates from the proposed theory.

From our work, new questions arise (they were earlier formulated in [3]). For
example, it is not clear, whether the problem of inverting can be reduced to the
matrix multiplication problem (similarly to the “commutative” case)?

One more question: whether there exists an algorithm for such n×n-matrices
inverting with the full complexity O(nadb), with a < 3? It is possible to prove
by the usual way that the matrix multiplication can be reduced to the problem
of the matrix inverting (we have in mind the difference matrices). However, it is
not so easy to prove that the problem of the matrix inverting can be reduced to
the problem of the matrix multiplication.

We will continue to investigate this line of enquiry.
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Abstract. We discuss algorithms for pseudo-division and division with
remainder of multivariate polynomials with sparse representation. This
work is motivated by the computations of normal forms and pseudo-
remainders with respect to regular chains. We report on the implemen-
tation of those algorithms with the BPAS library.

1 Introduction

General-purpose polynomial system solvers, like Maple’s solve command, com-
bine different algorithms using various polynomial data-types. Consider, as input
for such a solver, a polynomial system coming from a real life application, typi-
cally consisting of sparse multivariate polynomials with rational number coeffi-
cients. A pre-processing phase, using sparse polynomial data-types, attempts to
reduce the number of equations, variables or the total degree, say by exploiting
properties like symmetries. Then a core engine, say based on Gröbner bases, a
homotopy method, or triangular decompositions, determines a representation of
the real or complex solutions of the input system; this step generally requires
a change of polynomial representation (e.g. dense data-types) together with a
change of coefficient type (e.g. to finite fields when modular methods are used).
Finally, the representation computed by the core engine is converted to one
which is more “explicit” or convenient to an end-user; in fact, a return to the
original sparse polynomial data-type is likely to take place.

Core engines of polynomial systems solvers have driven a large body of work
in the computer algebra community. In particular, algorithms and implemen-
tation techniques supporting the polynomial and matrix data-types used by
those core engines have received great attention. In contrast, until a decade ago,
the implementation of sparse polynomial arithmetic, which is the default data-
type for general-purpose computer algebra systems, like Maple, Mathematica,
Sage, and Singular, was often less optimized. Nevertheless, we should mention
pioneer works like the seminal article of Johnson [11] in 1974.

Research works conducted in the last decade on sparse polynomial arithmetic
operations1 and data-types can essentially be categorized into two streams. The
1 Polynomial arithmetic operations refers here to addition, multiplication, division and

pseudo-division.
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first one deals primarily with algebraic complexity, see the works of van der
Hoeven and Lecerf [10] and those of Arnold and Roch [1]. The latter focuses on
implementation techniques, see the works of Monagan and Pearce [15,19], and
those of Gastineau and Laskar [5,6]. The present work subscribes to this second
stream. We are motivated by obtaining efficient implementation of triangular
decomposition algorithms based on the theory of regular chains [4]. To be precise,
we aim at adapting the algorithms of the RegularChains library [13] to the Basic
Polynomial Algebra Subprograms (BPAS). This latter library is written mainly
in C language, for high performance, wrapped in a C++ interface to make use of
object-oriented programming and for end-user usability. The Cilk extension [12]
is used for multi-threading, targeting multi-core processors. BPAS is already
equipped with parallel dense polynomial arithmetic over finite fields [20] and the
integers [3]. BPAS is publicly available in source at www.bpaslib.org.

We report in this paper on the implementation with the BPAS library of
elementary arithmetic operations for multivariate polynomials represented with
sparse data-types. In Sect. 2, we start by discussing multiplication and division
with remainder, following the papers [11,15,19]. Then, we propose an algorithm
for pseudo-division using similar principles. Our presentation of both division
with remainder and pseudo-division has two levels: one abstract level indepen-
dent of the supporting data-structures (see Algorithms 1 and 3) and one level
taking advantage of heap data-structures (see Algorithms 2 and 4). This presen-
tation allows us to formally prove those algorithms.

In Sect. 3, we discuss the implementation of the algorithms presented in
Sect. 2 within the BPAS library; we highlight the differences between our imple-
mentation and that realized in Maple by Monagan and Pearce. Note that,
currently, all the BPAS code for sparse polynomial arithmetic is entirely serial C
code, that is, multi-threading is not used yet. We stress the fact that, while algo-
rithms for division with remainder (Algorithms 1 and 2) may look similar to their
counterparts for pseudo-division (Algorithms 3 and 4), implementation of the lat-
ter is by far more challenging than that of the former. Indeed, pseudo-division is
essentially a univariate operation. Thus, when used in the context of multivariate
polynomials, careful data-structure manipulations are needed to optimize both
memory usage and access time to terms of polynomials, see Sect. 3.5. Section 4
gathers our experimental results. For multivariate polynomials over the inte-
gers (for which both BPAS and Maple have optimized implementation), BPAS
is usually faster with a speedup factor typically between 2 to 3, see Figs. 5, 6
and 8. For multivariate polynomials over the rational numbers (for which only
BPAS has an optimized implementation), BPAS is faster than Maple by 2 to
3 orders of magnitude, see Figs. 3, 4 and 7. This is particularly true for the
computation of normal forms, see Fig. 9.

2 Sparse Polynomial Arithmetic

For the treatment of sparse polynomial arithmetic we require both a distributed
and recursive view of polynomials, depending on the operation. For a distributed
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polynomial a ∈ D[x1, . . . , xm], for an integral domain D and variable ordering
x1 < x2 < · · · < xm, we use the notation a =

∑na

i=1 Ai =
∑na

i=1 aiX
αi , where

na is the number of (non-zero) terms, 0 �= ai ∈ D, αi is an exponent vector
for the variables X = (x1, . . . , xm). A term of a is represented by Ai = aiX

αi .
We assume that the terms are ordered (decreasing) lexicographically, so that
lc(a) = a1 is the leading coefficient of a, lm(a) = Xα1 is the leading monomial
of a, and lt(a) = a1X

α1 is the leading term of a. If a is not constant, the greatest
variable appearing in a is the main variable of a (denoted mvar(a)). Given a term
Ai of a, coef(Ai) = ai is the coefficient, expn(Ai) = αi is the exponent vector,
and deg(Ai, xj) is the component of αi corresponding to xj . Then, deg(a, xj) is
the maximum value of deg(Ai, xj) among all terms Ai of a.

For a recursive view of a non-constant polynomial a ∈ D[x1, . . . , xm],
again with x1 < x2 < · · · < xm, we view a as a univariate polynomial in
R[xj ], with xj = mvar(a) is the largest variable occurring in a, and where
R = D[x1, . . . , xj−1]. Viewed in R[xj ], the leading coefficient of a is the initial
of a (denoted init(a)). Given a term Ai of a ∈ R[xj ], coef(Ai) ∈ D[x1, . . . , xj−1]
and expn(Ai) = deg(Ai, xj).

Addition (or subtraction) of two polynomials requires joining the terms of
the two summands, combining terms with identical exponents (with possible
cancellation) and then sorting the terms of the sum. A näıve approach is to
compute the sum a + b term-by-term, adding a term of the addend (b) to the
augend (a), sorting at each step, in a manner similar to insertion sort. An efficient
algorithm instead uses merge sort, taking advantage of the fact that the terms
of a and b are already ordered. For details of the algorithm see [11, p. 65].

Multiplication of two polynomials requires generating the terms of the prod-
uct, combining terms with equal exponents and sorting the product terms. A
näıve approach is to compute the product a · b (where a has na terms and b has
nb terms) by distributing each term of the multiplier (a) over the multiplicand
(b) and combining like terms: c = a · b = (a1X

α1 · b) + (a2X
α2 · b) + · · · . This is

inefficient because all nanb terms are generated, whether or not they have equal
exponents, and the nanb terms must be sorted. Again, following Johnson [11],
we can obtain more efficient algorithms by generating terms in sorted order.

We make good use of the sparse data structure for a =
∑na

i=1 aiX
αi , and b =∑nb

j=1 bjX
βj , by observing that for given αi and βj , we always have that

Xαi+1+βj and Xαi+βj+1 are less than Xαi+βj in the term order. Given that
Xαi+βj > Xαi+βj+1 we can generate terms of the product in order by merging na

“streams” of terms obtained by multiplying a single term of a distributed over b,

a · b =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a1 · b1) Xα1+β1 + (a1 · b2) Xα1+β2 + (a1 · b3) Xα1+β3 + . . .

(a2 · b1) Xα2+β1 + (a2 · b2) Xα2+β2 + (a2 · b3) Xα2+β3 + . . .

...
(ana · b1) Xαna+β1 + (ana · b2) Xαna+β2 + (ana · b3) Xαna+β3 + . . .

and then selecting the maximum term from the heads of the streams. The new
head of the stream where a term is removed is then the term to its right in that
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stream. We can efficiently handle this sub-problem of selecting the maximum
term by storing the heads of the streams in a priority queue, which we imple-
ment using a binary max-heap. We minimize the size of the heap by choosing
the order of multiplicative factors such that na ≤ nb, which we are free to do
since multiplication is commutative. Because the heap multiplication algorithm
was specified completely by Johnson, we refer the reader to [11], which discusses
the algorithm and provides pseudo-code.

2.1 Division

We now consider the problem of multivariate division, where the input polyno-
mials a, b ∈ D[x1, . . . , xm], with b �∈ D being the divisor and a the dividend. We
assume that D is a field. Hence {b} is a Gröbner basis of the ideal it generates.
Thus, we can specify the output as q, r ∈ D[x1, . . . , xm] satisfying a = qb + r,
such that r is reduced with respect to b treated as a Gröbner basis.

Division presents a more tricky problem in terms of heap-optimization. We
must compute terms of the quotient and remainder in order, and produce terms
of the product qb in order, as terms of q are generated in the execution of the
algorithm. To see how this can be done without a heap, consider Algorithm1,
which computes q and r term by term by computing r̃ = lt(a − qb − r) at each
step. This works for multivariate division because introducing a new quotient
term whenever lt(b) | r̃ ensures that any subsequent terms of a − qb − r that do
not satisfy this condition will be remainder terms. This allows terms of both q
and r to be computed in order.

Proposition 1. Algorithm1 terminates and is correct.

Proof. It is enough to show that for each iteration of the loop, the term r̃
decreases strictly. It follows from the axioms of a term order that r̃ becomes
zero after finitely many iterations. We denote the values of the variables of Algo-
rithm1 on the i-th iteration by superscripts. For each i, depending on whether
or not lt(b) | r̃(i) holds, we have two possibilities:

– Q� = r̃(i)/B1, where Q� is a new quotient term;
– or Rk = r̃(i), where Rk is a new remainder term.

We provide the proof for the first case. The second case is similar but essentially
trivial. Since r̃(i) = Q�B1 holds by assumption, we have

r̃(i+1) = lt(a − q(i+1)b − r(i+1)) = lt(a − ([q(i) + Q�]b + r(i)))

= lt(a − (q(i)b + r(i) + (r̃(i) − r̃(i)) + Q�b))

= lt([(a − q(i)b − r(i)) − r̃(i)] − [Q�(b − B1)])

< lt(r̃(i)) = r̃(i).

The remainder r is reduced with respect to {b} because all terms Rk of r satisfy
lt(b) � Rk by construction. ��
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Heap-optimization can then be applied to Algorithm1 by using a heap to
keep track of the computation of the product qb. This is a special case of heap
multiplication. The major difference from multiplication, where all terms of both
factors are known at the outset, is that q is computed as the algorithm proceeds,
which forces q to be the multiplier and b the multiplicand. Thus, each stream
consists of a term Q� of q distributed over b. Another difference from multipli-
cation is that each stream is initiated with the term Q�B2, because Q�B1 need
not be computed because it is canceled out by construction.

The management of the heap to compute a product ab requires a num-
ber of specialized functions. We provide here a simplified interface consisting
of three functions. heapInsert(Ai, Bj) adds the product of Ai and Bj to the
heap2. heapPeek() gets the exponent vector ε of the top element in the heap.
heapExtract() removes the top element of the heap and inserts the next ele-
ment of the stream from which the top element came from. That is, if there are
any elements remaining in that stream. The key modification of Algorithm1 to
reach Algorithm 2 is to use terms of qb from the heap to compute r̃ = lt(a−qb−r).
This requires tracking three cases: (1) r̃ is an uncanceled term of a; (2) r̃ is a
term of the difference (a − r) − (qb); and (3) r̃ is a term of −qb such that all
remaining terms of a − r are smaller in the term order.

Let ε be the exponent vector of the top term of the heap computation of
qb. If the heap is empty, we let ε = (−1, 0, . . . , 0), which will be less than any
exponent of any polynomial term on account of the first element being −1. We
therefore abuse notation and write ε = −1 for an empty heap. Let Ak be the
greatest uncanceled term of a. Then, the three cases correspond to conditions on
the ordering of ε and expn(Ak). The term r̃ is an uncanceled term of a (case 1)
either if the heap is empty (indicating that no terms of q have yet been computed
or all terms of qb have been extracted) or if ε > −1 but ε < expn(Ak). In either
of these two situations ε < expn(Ak) holds. The term r̃ is a term of the difference
(a− r)− (qb) (case 2) if both Ak and ε have the same exponent (ε = expn(Ak)).
And r̃ is a term of −qb (case 3) whenever ε > expn(Ak) holds.

Algorithm 2 uses this observation to compute r̃ by adding a conditional to
compare the ranks of ε and expn(Ak). Terms are only extracted from the heap
when ε ≥ deg(Ak) holds; and when a term is extracted the next term from
the given stream, if there is one, is added to the heap (defined behaviour of
heapExtract()). The adding of new terms to q and r is almost identical to
Algorithm 1, except that for quotient terms we initiate a new stream starting
with Q�B2 (because Q�B1 is canceled by construction). Together with Proposi-
tion 1, then, we have established the following proposition.

Proposition 2. Algorithm2 terminates and is correct. ��

2 Note that the heap need not actually store product terms but can simply store the
indices of the two factors, with the product only computed when elements of the heap
are removed. This strategy is needed for pseudodivision, discussed below, where the
quotient terms are updated in the course of the algorithm.
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Algorithm 1. divide(a,b)
a, b ∈ D[x1, . . . , xm], mdeg(b) > 0, return q, r ∈
D[x1, . . . , xm] such that a = qb + r where r is
reduced with respect to the Gröbner basis {b}.
1: q := 0; r := 0
2: while r̃ := lt(a − qb − r) �= 0 do
3: if lt(b) | r̃ then
4: q := q + r̃/lt(b)
5: else
6: r := r + r̃
7: end if
8: end while
9: return (q, r)

Algorithm 3. pseudoDivide(a,b,x)
a, b ∈ D[x], deg(b, x) > 0, returns q, r ∈ D[x] and

� ∈ N such that h�a = qb + r, with deg(r, x) <
deg(b, x).

1: q := 0; r := 0; h := lc(b); � := 0; γ = deg(b.x)

2: while r̃ := lt(h�a − qb − r) �= 0 do
3: if xγ | r̃ then
4: q := hq + r̃/xγ ; � := � + 1
5: else
6: r := r + r̃
7: end if
8: end while
9: return (q, r, �)

Algorithm 2. divide(a,b)

a, b ∈ D[x1, . . . , xm], mdeg(b) > 0, return q, r ∈
D[x1, . . . , xm] such that a = qb + r where r is

reduced with respect to the Gröbner basis {b}.
1: q := 0; r := 0

2: k := 1; � := 0

3: while ε := heapPeek() > −1 or k ≤ na do

4: if ε < expn(Ak) then

5: r̃ := Ak

6: η := expn(Ak); k := k + 1

7: else if ε = expn(Ak) then

8: r̃ := Ak − heapExtract()

9: η := ε; k := k + 1

10: else

11: r̃ := −heapExtract()

12: η := ε

13: end if

14: if expn(B1) | η then

15: � := � + 1; Q� := r̃/B1; q := q + Q�

16: heapInsert(Q�, B2)

17: else

18: r := r + r̃

19: end if

20: end while

21: return (q, r)

Algorithm 4. pseudoDivide(a,b,x)

a, b ∈ D[x], deg(b) > 0, returns q, r ∈ D[x] and � ∈ N

such that h�a = qb + r, with deg(r, x) < deg(b, x).

1: q := 0; r := 0; h := lc(b)

2: ε := −1; s := 0

3: k := 1; � := 0; γ := deg(b, x)

4: while ε := heapPeek() > −1 or k ≤ na do

5: if ε < deg(Ak, x) then

6: r̃ := h�Ak

7: η := deg(Ak, x); k := k + 1

8: else if ε = deg(Ak, x) then

9: r̃ := h�Ak − heapExtract()

10: η := ε; k := k + 1

11: else

12: r̃ := −heapExtract()

13: η := ε

14: end if

15: if deg(b, x) ≤ η then

16: q := hq; � := � + 1; Q� := r̃/xγ

17: heapInsert(Q�, B2); q := q + Q�

18: else

19: r := r + r̃

20: end if

21: end while

22: return (q, r, �)

2.2 Pseudo-Division

The pseudo-division algorithm is essentially univariate, and terms here are ele-
ments of D[x] for an arbitrary integral domain D. Pseudo-division is essentially
a fraction-free division: rather than dividing a by h = lc(b) for each term of the
quotient q, it multiplies a by h. If the quotient ends up with � terms, then the
result must satisfy h�a = qb + r.

An important consequence of pseudo-division being univariate is that all
of the quotient terms are computed first and then all of the remainder terms
are computed. This is because we can always carry out a pseudo-division step
provided that deg(b, x) ≤ deg(lt(h�a−qb), x), where lt(h�a−qb) is the equivalent
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of r̃ from Algorithm 1 when r = 0. Thus, we adopt the same symbol for it
in Algorithm 3, which is the extension of Algorithm1 to pseudo-division. The
only difference in these algorithms is that each time we compute a new pseudo-
quotient term we do so as r̃/xγ , where γ = deg(b, x) (fraction free division),
rather than r̃/B1 = r̃/(hxγ) as before, and because we add a factor of h to a,
we must also multiply the previous value of the quotient by h.

Proposition 3. Algorithm3 terminates and is correct.

Proof. Similar to Proposition 1. The two cases here are Q� = r̃(i)/xγ and Rk =
r̃(i). We consider the first case (the second case is similar and essentially trivial).
In the first case r(i) = 0, since quotient terms are still being computed, so that
r̃(i) = lt(h�a − q(i)b). Since r̃(i) = Q�x

γ by assumption, hr̃(i) = Q�B1, and we
have

r̃(i+1) = lt(h�+1a − q(i+1)b − r(i+1)) = lt(h�+1a − ([hq(i) + Q�]b))

= lt(h�+1a − (hq(i)b + (hr̃(i) − hr̃(i)) + Q�b))

= lt(h[(h�a − q(i)b) − r̃(i)] − [Q�(b − B1)])

< lt(r̃(i)) = r̃(i).

The condition deg(r, x) < deg(b, x) is ensured because quotient terms are com-
puted until xγ

� r̃ holds, that is, until deg(h�a − qb, x) < deg(b, x) holds. ��
Heap-optimization of Algorithm 3 proceeds in much the same way as for divi-

sion. The only additional consideration required for Algorithm4 is the accounting
for factors of h in the computation of lt(h�a−qb−r). This only requires adding as
many factors of h to Ak that have been added to the quotient up to the current
iteration. Since � terms have been added to q, we multiply Ak by h� each time
we use one of the terms. Additional factors of h are added when the previous
quotient is multiplied by h prior to the computation of the next quotient term.
Other than this, the shift from Algorithm3 to Algorithm 4 follows the analogous
shift between Algorithms 1 and 2 exactly. We therefore have the following.

Proposition 4. Algorithm4 terminates and is correct.

Proof. The proof is a straightforward adaptation of the preceding observations
and the proofs for Propositions 2 and 3. The key observation is the first main
conditional statement in the while loop computes r̃ = lt(h�a − qb − r), where
r = 0 until q has been computed, and the second main conditional computes a
term of q or r from r̃ accordingly, following the structure of Algorithm3. ��

2.3 Multi-Divisor (Pseudo-)Division

One natural application of division with remainder of multivariate polynomials
is the computation of normal forms with respect to Gröbner bases. Moreover,
the computation of pseudo-quotient and pseudo-remainder of a polynomial with
respect to multiple polynomials (or a triangular set) is also natural. Normal forms
can be computed by Algorithms 5 and 7 in AppendixA while pseudo-division
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by a triangular set can be computed by Algorithms 6 and 8. Section 4 includes
benchmarks of those four algorithms implemented with the BPAS library.

3 Implementation and Optimizations

With the ever-increasing gap between processor speeds and memory-access time,
our implementation techniques focus on memory usage and management. Our
implementations effectively traverse memory while making use of memory-effi-
cient data structures with good data locality. In this section we consider polyno-
mial representations and corresponding data structures (Sect. 3.1), addition and
multiplication (Sect. 3.2), heap-optimizations (Sect. 3.3), division (Sect. 3.4), and
lastly, pseudo-division (Sect. 3.5).

3.1 Polynomial Representations

The simplest scheme to represent a polynomial sparsely would be a linked list
where each node in the list is a single term of that polynomial. This represen-
tation makes handling and manipulating terms very easy with simple pointer
manipulation. However, the indirection created by pointers and (possibly) poor
locality of successive nodes in the list makes this scheme inefficient for memory
usage. Rather, packing the polynomial terms into an array removes the overhead
of linked list pointers and improves locality. We call this array-based representa-
tion of a polynomial an alternating array following the terminology introduced
in 1997 in the BasicMath library, part of the European Project FRISCO https://
cordis.europa.eu/project/rcn/31471 en.html; see also [2].

The alternating array representation packs terms side-by-side in an array,
effectively alternating between coefficients and monomials. A coefficient and its
corresponding monomial are thus optimally local in memory with respect to each
other. Similar schemes have been used in Maple [18,19]. In the case of Maple,
their scheme uses pointers into a parallel array to store the multi-precision inte-
ger coefficient, whereas we store the multi-precision coefficients directly in the
array. Moreover, for this efficient data structure Maple is limited to integer
polynomials while all other polynomials use an old sum-of-products form [18].
In contrast, our alternating array representation in the BPAS library supports
both integer and rational number coefficients.

Coefficients are represented easily using GMP multi-precision numbers [7].
As for monomials, we use exponent packing. Using bit-masks and shifts, multiple
integers, each of small absolute value, can effectively be stored in a single 64-bit
machine word. The idea of exponent packing has been employed at least since
ALTRAN in the late 60s [8] and more recently in [10,16]. Some systems, such
as Maple, also encode the total degree of the monomial in the single 64-bit
word. This scheme wastes bits which could be used for additional variables or
higher degrees. In particular, monomials are limited to 21 variables each with
a maximum degree of 3 [18]. Our representation does not encode total degree,
therefore we can encode up to 32 variables, each of maximum degree 3. Moreover,
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in polynomial system solving, degrees of lower ordered variables often increase
much quicker than those of high ordered variables. Thus, in our implementation,
we pack exponents disproportionately within the machine word, giving more bits
to lower ordered variables, ensuring all 64 bits are made useful.

It is worth noting that our sparse representations are used for all of our algo-
rithms, including division and pseudo-division, where (pseudo-)quotients and
(pseudo-)remainders are often much more dense than the divisor and dividend.
However, since we are working with multivariate polynomials, a dense represen-
tation would grow exponentially with the number of variables and, therefore,
our sparse representation is still worthwhile and efficient.

3.2 Addition and Multiplication

For these two simple operations, we just point out a few implementation tricks.
An “in-place” addition (subtraction) can be implemented with our alternating
array representation. This is not strictly in-place, as that would involve far too
much memory movement and swapping of elements, resulting in poor locality and
poor performance. Instead, we can pre-allocate a destination array as with an
“out-of-place” addition algorithm, but, rather than copying coefficients, we reuse
the underlying GMP data. With modestly-sized coefficients, less than 192 bits
each, the savings can reach 20% compared to the out of place implementation.

As for multiplication, we pre-allocate the maximum possible space for the
product (na ·nb). Assuming that a has fewer terms than b, we pre-allocate space
in the heap for exactly na elements as that will be the exact number of streams to
consider. This minimizes memory movement and reallocation required through-
out the computation of appending product terms to the product polynomial. If
the product terms were to out-grow some initial conservative pre-allocation the
reallocation and memory movement could result in a large overhead.

3.3 Heap-Optimizations

The performance of our code is very dependent on the implementation of its
data-structures, and in particular, heaps. Aside from coefficient arithmetic, all
of the work for multiplying terms comes from obtaining the ordering of product
terms. Hence, the heap, whose purpose is to produce terms in the required order,
takes the majority of the effort of our algorithm. Our implementation of heaps
includes all the techniques reported in [16], including the technique of chaining.
We mention an additional trick used in our code. With chaining, the coefficients
of the product terms are already not stored directly in the heap, but they still
play a role in overall auxiliary memory needed for the algorithm. With our alter-
nating array representation of polynomials it is very easy to directly index the
operand polynomials to access the appropriate coefficient. Thus, our heap only
stores the indices of the operand coefficients which together form the coefficient
of the particular product term (Fig. 1). This reduces the memory required for
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each coefficient from 32 bytes, in the case of rational number coefficients, down
to 8 bytes. Similar schemes using pointers to coefficients have been examined in
[16,19] but indices are even more succinct than pointers.

Fig. 1. A heap of product terms, showing element chaining and index-based storing of
coefficients. In this case, terms Ai+1 · Bj and Ai−1 · Bj+2 have equal monomials and
are chained together.

3.4 Division

Division is essentially a direct application of multiplication. We again use heaps,
with all of its optimizations, using the production of product terms in-order
to produce the terms of the quotient and remainder in-order. Division varies
from multiplication as instead of producing the product terms of the two input
operands, we must produce product terms between the divisor and the continu-
ally updating quotient. This poses problems for memory management as we do
not know ahead of time the sizes of the quotient or remainder. In multiplication
we are able to pre-allocate na · nb space for the product as that is the known
maximum number of product terms. The indeterminate number of quotient and
remainder terms does not allow for such one-time allocation and we must con-
tinually check for producing more terms than the number for which we have
allocated space. We begin by allocating na space for the quotient and remain-
der, as generally the dividend is larger than the divisor. Then, if more terms are
produced than we have currently allocated for, we double the current allocation.

Whenever we reallocate space for the quotient we also reallocate space for
the same number of terms in the heap. Recall the maximum number of terms
in the heap is equal to the number of quotient terms (as we distribute terms of
the quotient over the divisor in the multiplication). So, we are safe in doing this
memory allocation for the heap even if it does not make use of it all. This has
benefits for performance as we do not need to check for overflow on each insert
into the heap; it is guaranteed to have enough space.

3.5 Pseudo-Division

As seen in Sect. 2 the algorithm for division can easily be adapted for pseudo-
division. With only the modification of multiplying the dividend and quotient by
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the divisor’s initial, we obtained an algorithm for pseudo-division that efficiently
produces terms in order. However, the implementation between these two algo-
rithms is very different. In essence, pseudo-division is a univariate operation,
viewing the input multivariate polynomials recursively. That is, the dividend
and divisor are seen as univariate polynomials over some arbitrary (polynomial)
integral domain. Therefore, coefficients can be, and indeed are, entire polyno-
mials themselves. Coefficient arithmetic becomes non-trivial. Our distributed
multivariate polynomial representation, as seen in Sect. 3.1 would be inefficient
to traverse and manipulate in this recursive way. We introduce a new polyno-
mial representation to easily view polynomials in this univariate, recursive way
in order to efficiently operate on them within the semantics of pseudo-division.

This recursive polynomial representation uses an in-place, very fast conver-
sion between the normal distributed representation and the recursive one. This
amounts to minimal overhead and allows the same polynomials to be easily used
as operands to pseudo-division or any other arithmetic operation. Of course,
an in-place conversion is beneficial to avoid memory movement and reduce the
working memory required for the algorithm.

To view the polynomial recursively, we begin by blocking the alternating
array representation of the distributed polynomial based on degrees of the main
variable. Each block groups together terms which have equal degree with respect
to the main variable. As our polynomials are ordered lexicographically, then all
terms are already in order with respect to the degree of the main variable, and,
moreover, within a block, all terms are also sorted lexicographically with respect
to all of the remaining variables. Because of this, we can create these blocks
in-place, without any memory movement, simply by maintaining the offset into
the array for the beginning of each block.

Next, we create a secondary alternating array to store these offsets. This array
alternates between an exponent of the main variable and a pointer to the original
array which is offset to point to the beginning of the block that corresponds to the
preceding main variable exponent. Note that we also store the size of each block.
This is convenient when we need to do coefficient arithmetic as those coefficients
are themselves polynomials that must know their size to perform arithmetic.
In addition, as we traverse the array to determine the blocks, we zero out the
degree of the main variable for every monomial. This ensures that the degree of
the main variable does not pollute the polynomial coefficient arithmetic. Figure 2
shows this secondary array structure along with the original array, highlighting
the conversion process.

These two alternating arrays together exactly and efficiently represent the
recursive view of a polynomial, having coefficients from an arbitrary polynomial
ring and univariate monomials. The secondary alternating array requires little
additional memory. It will have size equal to the number of unique values of
degree of the main variable in the distributed polynomial. In practice, with sparse
polynomials, this number is quite small. In the absolute worst case, for integer
polynomials that are fully dense with respect to the main variable, this secondary
array requires O(23n) additional space. With multi-precision coefficients and/or
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rational number coefficients, this fraction becomes much smaller. This additional
space becomes increasingly insignificant as the integers (rational numbers) grow
in size, as they always do in pseudo-division calculations.

Fig. 2. A distributed polynomial representation converted to the recursive polynomial
representation, showing the additional secondary array. The secondary array alternates
between: (1) exponent of the main variable, (2) size of the coefficient polynomial, and
(3) a pointer to the coefficient polynomial which is simply an offset into the original
distributed polynomial.

With the recursive view of a polynomial efficiently implemented, it is then
important to consider efficiency of coefficient arithmetic. As coefficients are now
full polynomials there is more overhead in manipulating them and performing
arithmetic. One important implementation detail is to perform the addition (and
subtraction) of like-terms in-place. Such combinations occur when computing the
leading term of h�a − qb and when combining like-terms in the quotient-divisor
product. In-place addition, as described in the previous sub-section, allows for
the re-use of underlying GMP data. Therefore, performance of in-place addi-
tion compared to out-of-place becomes increasingly better as coefficients grow
throughout the pseudo-division algorithm.

Similarly, the update of the quotient by multiplying by the initial of the divi-
sor, requires a multiplication of full polynomials. If we wish to save on memory
movement we should perform this multiplication in place. However, notice that,
in our recursive representation, coefficient polynomials are tightly packed in a
continuous array. To modify them in place would require shifting all following
coefficients down the array to make room for the strictly large product poly-
nomial. To avoid this unnecessary memory movement, we modify the recursive
data structure exclusively for the quotient polynomial. We break the continu-
ous array of coefficients into many arrays, one for each coefficient. This allows
them to grow without displacing the following coefficients. At the end of the
algorithm, once the quotient has finished being produced, we collect and com-
pact all of these disjoint polynomials into a single, packed array. In contrast, the
remainder is never updated once its terms are produced. Moreover, we do not
require any recursively viewed operations on the remainder. Hence, as terms of
the remainder are produced, we store them directly in the normal, distributed
representation, avoiding conversion out of the recursive representation and any
memory overhead of the additional recursive array.
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Lastly, our final optimization is common among other sparse pseudo-division
algorithms. We perform a divisibility test between a newly produced quotient
term and the initial of the divisor. If division is exact, we avoid one multiplication
of the quotient with the divisor’s initial, and the newly produced quotient term
is replaced by its quotient calculated by the exact division. This divisibility
test is little overhead as the test usually fails very early. Often, this divisibility
test is instead performed by a GCD calculation in order to always multiply the
quotient by the smallest possible polynomial instead of the full initial of the
divisor. However, efficient GCD calculation for multivariate polynomials is not
trivial. A simple divisibility is often sufficient in practice.

4 Experimentation

For univariate polynomials sparsity is easily defined as the maximum degree
difference between successive polynomial terms. Though sparsity is not so easily
defined for multivariate polynomials, we propose the following adaptation of the
univariate case to the multivariate one, inspired by Kronecker substitution. Let
f ∈ D[x1, . . . , xm] be non-zero and define r = max(deg(f, xi), 1 ≤ i ≤ m) + 1.
Then, every exponent vector e = (e1, . . . , em) of a term of f can be identified
with the radix r representation of the integer z(e) = e1+e2r+ · · ·+emrm−1. We
call sparsity of f the smallest integer s which is greater or equal to z(e) − z(e′),
where e, e′ are any two consecutive exponent vectors of f . If f has n terms
then we have rm ≤ n s. For our experiments, sparse polynomials were randomly
generated using the following parameters: number of variables m, number of
terms n, sparsity s, and maximum number of bits in any coefficient. Then,
exponent vectors are generated as radix r representations with m digits and
r computed as � n

√
s · m
.

We compare our implementation against Maple for both integer polynomi-
als and rational number polynomials. Over the past 10 years or so, Maple has
become the leader in integer polynomial arithmetic thanks to the extensive work
of Monagan and Pearce [15–17,19]. Benchmarks there provide clear indication
that their implementation outperforms many other computer algebra systems
including: Trip, Magma, Singular, and Pari. Moreover, other common sys-
tems like FLINT [9] and NTL [21] provide only univariate polynomial imple-
mentations, meaning the comparison against our multivariate implementation
would be unfair. Therefore, we compare our implementations against the lead-
ing high-performance implementation that is provided by Maple in particular,
Maple 2017.

We consider multiplication and division over Q (Figs. 3 and 4), multiplica-
tion and division over Z (Figs. 5 and 6), pseudo-division over Q and Z (Figs. 7
and 8), and multi-divisor normal form and pseudo-division computation over Q

(Fig. 9 and 10). In all cases (except dense integer multiplication) BPAS performs
favourably over Maple. We note that random instances of division do not pro-
vide smooth results due to varying sizes of resulting quotients and remainders.
Our benchmarks were collected using an Intel Xeon X560 processor at 2.67 GHz,
32 KB L1 data cache, 256 KB L2 cache, 12288 KB L3 cache, and 48 GB of RAM.
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Fig. 3. Q multiplication. Sparsity
varies as noted in the legend, #
coefficient bits is 128.

Fig. 4. Q division. Sparsity varies as
noted in the legend, # of divisor terms
is n/2, # coefficient bits is 128.

Fig. 5. Z multiplication. Sparsity
varies as noted in the legend, #
coefficient bits is 128.

Fig. 6. Z division. Sparsity varies as
noted in the legend, # divisor terms
is n/2, # coefficient bits is 128.

It is clear from these benchmarks that having optimized data structures and
fundamental algorithms is important. For polynomials over the rational numbers,
where Maple lacks an optimized implementation, our code performs orders of
magnitude better. Even for Maple’s optimized implementation of polynomials
over the integers, our code still performs at a fraction of the time. This perfor-
mance savings is substantial and is very apparent when comparing normal forms
(see Fig. 9). With the repeated division required for normal forms, an optimized
division algorithm results in extensive performance gains.
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Fig. 7. Q Pseudo-division. # dividend
terms is 175, # divisor terms is 50.

Fig. 8. Z Pseudo-division. # dividend
terms is 175, # divisor terms is 50.

Fig. 9. The divisor set is a random nor-
malized triangular set of Q[x1, x2, x3]
and deg(a, x1) − deg(t3, x1) = δ3,
deg(a, x2) − deg(t2, x2) = lg(δ)3,
deg(a, x3) − deg(t1, x3) = lg(δ)3 and
sparsity 2. BPAS implements Algo-
rithms 5 and 7, see Appendix A.

Fig. 10. The divisor set is a ran-
dom triangular set of Q[x1, x2, x3]
with non-constant initials, sparsity
2 and deg(a, x1) − deg(t3, x1) = δ3,

deg(a, x2)−deg(t2, x2) = lg(δ)3, deg(a, x3)−
deg(t1, x3) = lg(δ)3. BPAS uses Algo-
rithms 6 and 8.

5 Conclusion

The open-source library Basic Polynomial Algebra Subprograms (BPAS) pro-
vides high performance implementations of sparse multivariate polynomial arith-
metic, over Z and Q, including addition, multiplication, division, and pseudo-
division, using highly efficient data structures and algorithms. These fundamen-
tal operations were extended to the mid-level algorithms of multi-divisor division
(normal form) and multi-divisor pseudo-division. Their performance against the
leader in polynomial arithmetic, Maple, was shown to be a 2–3 times (or order
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of magnitude for Q) better. The optimization of these fundamental operations
will become the basis for efficient computations with regular chains.

Acknowledgments. The authors would like to thank IBM Canada Ltd (CAS project
880) and NSERC of Canada (CRD grant CRDPJ500717-16).

A Appendix

Let K be a field. If B is a Gröbner basis of K[x1, . . . , xm] Algorithm 5 com-
putes the normal form of a polynomial a ∈ K[x1, . . . , xm] (together with the
quotients) w.r.t. B; the principle is direct (or näıve). Alternatively, when B is a
zero-dimensional normalized (thus so-called Lazard) triangular set, one can use
Algorithm 7, the recursive principle of which is taken from [14]. Some details are
given here. For computing the normal form of polynomial a ∈ K[x1, . . . , xm] with
respect to a Lazard triangular set T = {t1, . . . , tm} ⊂ K[x1, . . . , xm], Algorithm 7
uses the recursive representation of polynomials. If m = 1, the result is obtained
by applying Algorithm2. Otherwise, the coefficients of a with respect to xm are
reduced w.r.t. to {t1, . . . , tm−1} by means of a recursive call (Lines 4–11 of the
pseudo-code), yielding a polynomial r. Then, r is divided by tm by applying
Algorithm 2, see Line 12, yielding a new polynomial r. Finally, the coefficients
w.r.t. xm of this new polynomial r are reduced w.r.t. to {t1, . . . , tm−1}, by means
of a second recursive call, see Lines 13–16.

Algorithm 5. NormalForm (a,B)
Given a, b1, . . . , bN ∈ K[x1, . . . , xm],
B = {b1, . . . , bN } a Gröbner basis, returns
q1, . . . , qN , r ∈ K[x1, . . . , xm] such that
a = q1b1 + · · ·+ qN bN + r where r is reduced
with respect to B.

1: h := a; r := 0
2: while h �= 0 do
3: i = 1;
4: while i ≤ N do
5: if lm(bi) | lm(h) then

6: qi := qi +
lt(h)
lt(bi)

7: h := h − lt(h)
lt(bi)

bi

8: i := 1
9: else
10: i := i + 1
11: end if
12: end while
13: r := r + lt(h)
14: h := h − lt(h)
15: end while
16: return (q1, . . . , qN , r)

Algorithm 6. näıveTSPD (a,T )
Given a, t1, . . . , tN ∈ K[x1, . . . , xm], T =
{t1, . . . , tN }, with mvar(t1) < · · · < mvar(tN ),
returns q1, . . . , qN , r, h ∈ K[x1, . . . , xm] such that
ha = q1t1+ · · ·+qN tN +r where r is reduced with
respect to the triangular set T (in the sense that
r = 0 or deg(r,mvar(tj)) < deg(tj ,mvar(tj)), 1 ≤
j ≤ N) and h is a product of powers of the initials
of the polynomials of T .

1: r := a; h := 1
2: for i = 1, . . . , N do
3: v := mvar(TN−i+1)
4: (Q, r, e) := pseudoDivide(r, TN−i+1, v)
5: H := init(TN−i+1)

e

6: h := H h
7: for j = 1, . . . , N do
8: qj := qjH
9: end for
10: qi := qi + Q;
11: end for
12: return (q1, . . . , qN , r, h)
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Algorithm 7. TSNF (a, T )
Given a ∈ K[x1, . . . , xm], T = {t1, . . . , tm} ⊂ K[x1, . . . , xm], with mvar(t1) = x1 < · · · <
mvar(tm) = xm and init(t1), . . . , init(tm) ∈ K, returns q1, . . . , qm, r ∈ K[x1, . . . , xm] such that
a = q1t1 + · · · + qmtm + r where r is reduced (in the sense of Gröbner bases) with respect to the
Lazard triangular set T .

1: if m = 1 then
2: (q1, r) := divide(a, t1)
3: else
4: for i = 0, . . . , deg(a, xm) do

5: ({Qj [i]}m−1
j=1 , R[i]) := TSNF(coef(a, xm, i), {tj}m−1

j=1 )

6: end for
7: q1 := 0; . . .; qm := 0
8: r :=

∑

i
R[i]xm

i

9: for j = 1, . . . , m − 1 do
10: qj := qj +

∑

i

Qj [i](xm)i

11: end for
12: (q̃, r) := divide(r, tm); qm := qm + q̃
13: for i = 0, . . . , deg(r, xm) do

14: ({Qj [i]}m−1
j=1 , R[i]) := TSNF(coef(r, xm, i), {tj}m−1

j=1 )

15: end for
16: execute Lines 8-11
17: end if
18: return (q1, . . . , qm, r)

Algorithm 8. recTSPD (a,T )
Same input and output specifications as Algorithm6.

1: if N = 1 then
2: (q1, r, e) := pseudodivide(a, t1,mvar(t1)); h = init(t1)

e

3: else
4: v := mvar(tN )
5: for i = 0, . . . , deg(a, v) do

6: ({Qj [i]}N−1
j=1 , R[i], H[i]) := recTSPD(coef(a, v, i), {tj}N−1

j=1 )

7: end for
8: q1 := 0; . . .; qN := 0
9: H1 := lcm(H[i], 0 ≤ i ≤ deg(a, v))

10: r :=
∑

i

H1
H[i]R[i]vi

11: for j = 1, . . . , N − 1 do

12: qj := qj +
∑

i

H1
H[i]Qj [i]v

i

13: end for
14: (q̃, r, ẽ) := pseudodivide(r, tN , v); h̃ = init(tN )ẽ

15: for j = 1, . . . , N − 1 do
16: qj := qj h̃
17: end for
18: qN := qN + q̃
19: for i = 0, . . . , deg(r, v) do

20: ({Qj [i]}N−1
j=1 , R[i], H[i]) := recTSPD(coef(r, v, i), {tj}N−1

j=1 )

21: end for
22: H2 := lcm(H[i], 0 ≤ i ≤ deg(r, v))
23: for j = 1, . . . , N do
24: qj := qjH2
25: end for
26: execute Lines 10-13 with H2 replacing H1
27: h := H1h̃H2
28: end if
29: return (q1, . . . , qN , r, h)

Algorithm 6 is a direct (or näıve) procedure for computing the pseudo-
remainder and the pseudo-quotients of a polynomial a ∈ K[x1, . . . , xm] by a
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triangular set T = {t1, . . . , tN}. Note that T may not be zero-dimensional, that
is, N < m may hold. Moreover, T may not be normalized; in particular its
initials may not be constant. Algorithm8 is a recursive version of Algorithm 6
following the same principles as Algorithm 7 and calling Algorithm 4 at Line 14.
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Abstract. We investigate the application of syzygies for efficiently com-
puting (finite) Pommaret bases. For this purpose, we first describe a non-
trivial variant of Gerdt’s algorithm [10] to construct an involutive basis
for the input ideal as well as an involutive basis for the syzygy module
of the output basis. Then we apply this new algorithm in the context of
Seiler’s method to transform a given ideal into quasi stable position to
ensure the existence of a finite Pommaret basis [19]. This new approach
allows us to avoid superfluous reductions in the iterative computation of
Janet bases required by this method. We conclude the paper by propos-
ing an involutive variant of the signature based algorithm of Gao et al.
[8] to compute simultaneously a Gröbner basis for a given ideal and for
the syzygy module of the input basis. All the presented algorithms have
been implemented in Maple and their performance is evaluated via a
set of benchmark ideals.

1 Introduction

Gröbner bases provide a powerful computational tool for a wide variety of prob-
lems connected to multivariate polynomial ideals. Together with the first algo-
rithm to compute them, they were introduced by Buchberger in his PhD thesis
[3]. Later on, he discovered two criteria to improve his algorithm [2] by omit-
ting superfluous reductions. In 1983, Lazard [15] developed a new approach by
using linear algebra techniques to compute Gröbner bases. In 1988, Gebauer
and Möller [9], by interpreting Buchberger’s criteria in terms of syzygies, pre-
sented an efficient way to improve Buchberger’s algorithm. Furthermore, Möller
et al. [16] extended this idea and described the first signature-based algorithm
to compute Gröbner bases. In 1999, Faugère [6], by applying fast linear algebra
on sparse matrices, found his F4 algorithm to compute Gröbner bases. Then, he
introduced the well-known F5 algorithm [7] that uses two new criteria (F5 and
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IsRewritten) based on the idea of signatures and that performs no useless reduc-
tion as long as the input polynomials define a (semi-)regular sequence. Finally,
Gao et al. [8] presented a new approach to compute simultaneously Gröbner
bases for an ideal and its syzygy module.

Involutive bases may be considered as a special kind of non-reduced Gröbner
bases with additional combinatorial properties. They originate from the works
of Janet [14] on the analysis of partial differential equations. By evolving related
methods used by Pommaret [17], the notion of involutive polynomial bases was
introduced by Zharkov and Blinkov [22]. Later, Gerdt and Blinkov [11] gener-
alised these ideas to the concepts of involutive divisions and involutive bases for
polynomial ideals to produce an effective alternative approach to Buchberger’s
algorithm (for the efficiency analysis of an implementation of Gerdt’s algorithm
[10], we refer to the web pages http://invo.jinr.ru). Recently, Gerdt et al. [12]
proposed a signature-based approach to compute involutive bases.

In this article we discuss effective approaches to compute involutive bases
and in particular Pommaret bases. These bases are a special kind of involutive
bases introduced by Zharkov and Blinkov [22]. While finite Pommaret bases do
not always exist, every ideal in a sufficiently generic position has one (see [13]
for an extensive discussion of this topic). A finite Pommaret basis reflects many
(homological) properties of the ideal it generates. For example, many invariants
like dimension, depth and Castelnuovo-Mumford regularity can be easily read
off from it. We note that all these invariants remain unchanged under coordinate
transformations. We refer to [20] for a comprehensive overview of the theory and
applications of Pommaret bases.

We first propose a variant of Gerdt’s algorithm to compute an involutive basis
which simultaneously determines an involutive basis for the syzygy module of
the output basis. Based on it, we improve Seiler’s method [19] to compute a
linear change of coordinates which brings the input ideal into a generic position
so that the new ideal has a finite Pommaret basis. Then, as a related work,
we describe an involutive version of the approach by Gao et al. [8] to compute
simultaneously Gröbner bases of a given ideal and of the syzygy module of the
input basis. All the algorithms described in this paper have been implemented
in Maple and their efficiency is illustrated via a set of benchmark ideals.

This paper is organized as follows. In Sect. 2, we review basic definitions and
notations related to involutive bases. Section 3 is devoted to a variant of Gerdt’s
algorithm which also computes an involutive basis for the syzygy module of the
output basis. In Sect. 4, we show how to apply it in the computation of Pommaret
bases. Finally in Sect. 5, we conclude by presenting an involutive variant of the
algorithm of Gao et al. by combining it with Gerdt’s algorithm.

2 Preliminaries

In this section, we review basic notations and preliminaries needed in the subse-
quent sections. Throughout this paper, we assume that P = k[x1, . . . , xn] is the
polynomial ring over an infinite field k. We consider polynomials f1, . . . , fk ∈ P
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and the ideal I = 〈f1, . . . , fk〉 generated by them. The total degree and the
degree w.r.t. a variable xi of a polynomial in f ∈ P are denoted by deg(f)
and degi(f), respectively. In addition, M = {xα1

1 · · · xαn
n | αi ≥ 0, 1 ≤ i ≤ n}

stands for the monoid of all monomials in P. We use throughout the reverse
degree lexicographic ordering with xn ≺ · · · ≺ x1. The leading monomial of a
given polynomial f ∈ P w.r.t. ≺ is denoted by LM(f). If F ⊂ P is a finite set
of polynomials, LM(F ) denotes the set {LM(f) | f ∈ F}. The leading coeffi-
cient of f , denoted by LC(f), is the coefficient of LM(f). The leading term of
f is defined to be LT(f) = LM(f) LC(f). A finite set G = {g1, . . . , gt} ⊂ P
is called a Gröbner basis of I w.r.t ≺ if LM(I) = 〈LM(g1), . . . ,LM(gt)〉 where
LM(I) = 〈LM(f) | f ∈ I〉. We refer e.g. to the book of Cox et al. [4] for further
details on Gröbner bases.

An analogous notion of Gröbner bases may be defined for sub-modules of
Pt for some t, see [5]. In this direction, let us recall some basic notations and
results. Let {e1, . . . , et} be the standard basis of Pt. A module monomial in Pt

is an element of the form xαei for some i, where xα is a monomial in P. So, each
f ∈ Pt can be written as a k-linear combination of module monomials in Pt.
A total ordering < on the set of monomials of Pt is called a module monomial
ordering if the following conditions are satisfied:

– if m and n are two module monomials such that n < m and xα ∈ P is a
monomial then xαn < xβm,

– < is a well-ordering.

In addition, we say that xαei divides xβej if i = j and xα divides xβ . Based
on these definitions, one is able to extend the theory of Gröbner bases to sub-
modules of the P-modules of finite rank. Some well-known examples of module
monomial orderings are term over position (TOP), position over term (POT)
and the Schreyer ordering.

Definition 1. Let {g1, . . . , gt} ⊂ P and ≺ a monomial ordering on P. We
define the Schreyer module ordering on Pt as follows: We write xαei ≺s xβej

if either LM(xαgi) ≺ LM(xβgj), or LM(xαgi) = LM(xβgj) and j < i.

Schreyer proposed in his master thesis [18] a slight modification of Buchberger’s
algorithm to compute a Gröbner basis for the syzygy module of a Gröbner basis.

Definition 2. Let us consider G = (g1, . . . , gt) ∈ Pt. The (first) syzygy module
of G is defined to be Syz(G) = {(h1, . . . , ht) | hi ∈ P,

∑t
i=1 higi = 0}.

Let G = {g1, . . . , gt} be a Gröbner basis. By Buchberger’s criterion, each S-
polynomial has a standard representation: SPoly(gi, gj) = ajimjigi −aijmijgj =
hij1g1 + · · ·+hijtgt where aji, aij ∈ k, hijl ∈ P and mji,mij are monomials. Let
Sij = ajimjiei − aijmijej − hij1e1 − · · · − hijtet be the corresponding syzygy.

Theorem 1 (Schreyer’s Theorem). With the above introduced notations, the
set {Sij | 1 ≤ i < j ≤ t} is a Gröbner basis for Syz(g1, . . . , gt) w.r.t. ≺s.
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Example 1. Let F = {xy − x, x2 − y} ⊂ k[x, y]. The Gröbner basis of F w.r.t.
x ≺dlex y is G = {g1 = xy − x, g2 = x2 − y, g3 = y2 − y} and the Gröbner basis
of Syz(g1, g2, g3) is {(x,−y + 1,−1), (−x, y2 − 1,−x2 + y + 1), (y, 0,−x)}.

If F = {f1, . . . , fk} is not a Gröbner basis, Wall [21] proposed an effective method
to compute Syz(F ). If the extended set G = f1, . . . , fk, fk+1, . . . , ft is a Gröbner
basis of 〈F 〉, then Syz(F ) = {As | s ∈ Syz(G)} where A is a matrix such that
G = FA.

We conclude this section by recalling some definitions and results from the
theory of involutive bases (see [10,20] for more details). Given a set of polyno-
mials, an involutive division partitions the variables into two disjoint subsets of
multiplicative and non-multiplicative variables.

Definition 3. An involutive division L is given on M if for any finite set
U ⊂ M and any u ∈ U , the set of variables is partitioned into the subsets of mul-
tiplicative variables ML(u,U) and non-multiplicative variables NML(u,U) such
that the following conditions hold where L(u,U) denotes the monoid generated
by ML(u,U):

1. v, u ∈ U , uL(u,U) ∩ vL(v, U) 
= ∅ ⇒ u ∈ vL(v, U) or v ∈ uL(u,U),
2. v ∈ U , v ∈ uL(u,U) ⇒ L(v, U) ⊂ L(u,U),
3. V ⊂ U and u ∈ V ⇒ L(u,U) ⊂ L(u, V ).

We shall write u |L w if w ∈ uL(u,U). In this case, u is called an L-involutive
divisor of w and w an L-involutive multiple of u.

We recall the definitions of the Janet and Pommaret division, respectively.

Example 2. Let U ⊂ P be a finite set of monomials. For each sequence d1, . . . , dn

of non-negative integers and for each 1 ≤ i ≤ n we define

[d1, . . . , di] = {u ∈ U | dj = degj(u), 1 ≤ j ≤ i}.

The variable x1 is Janet multiplicative (denoted by J -multiplicative) for u ∈ U
if deg1(u) = max{deg1(v) | v ∈ U}. For i > 1 the variable xi is Janet multi-
plicative for u ∈ [d1, . . . , di−1] if degi(u) = max{degi(v) | v ∈ [d1, . . . , di−1]}.

Example 3. For u = xd1
1 · · · xdk

k with dk > 0 the variables {xk, . . . , xn} are con-
sidered as Pommaret multiplicative (denoted by P-multiplicative) and the other
variables as Pommaret non-multiplicative. For u = 1 all the variables are multi-
plicative. The integer k is called the class of u and is denoted by cls(u).

Definition 4. The set F ⊂ P is called involutively head autoreduced if for each
f ∈ F there is no h ∈ F \ {f} with LM(h) |L LM(f).

Definition 5. Let I ⊂ P be an ideal and L an involutive division. An involu-
tively head autoreduced subset H ⊂ I is an involutive basis for I if for all f ∈ I
there exists h ∈ H so that LM(h) |L LM(f).
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Example 4. For the ideal I = 〈xy, y2, z〉 ⊂ k[x, y, z] the set {xy, y2, z, xz, yz}
is a Janet basis, but there exists only an infinite Pommaret basis of the form
{xy, y2, z, xz, yz, x2y, x2z, . . . , xky, xkz, . . .}. One can show that every ideal has
a finite Janet basis, i. e. the Janet division is Noetherian.

Gerdt [10] proposed an efficient algorithm to construct involutive bases using
a completion process where prolongations of given elements by non-multiplicative
variables are reduced. This process terminates in finitely many steps for any
Noetherian division. In addition, Seiler [19] characterized the ideals having finite
Pommaret bases by relating them to the notion of quasi stability. More precisely,
a given ideal has a finite Pommaret basis iff it is in quasi stable position (or
equivalently if the coordinates are δ-regular) see [19, proposition 4.4].

Definition 6. A monomial ideal I is called quasi stable if for any monomial
m ∈ I and all integers i, j, s with 1 ≤ j < i ≤ n and s > 0, if xs

i | m there exists
an integer t ≥ 0 such that xt

jm/xs
i ∈ I. A homogeneous ideal I is in quasi stable

position if LM(I) is quasi stable.

3 Computation of Involutive Basis for Syzygy Module

We present now an effective approach to compute, for a given ideal, simul-
taneously involutive bases of the ideal and of its syzygy module. We first
recall some related concepts and facts from [19]. In loc. cit., an involutive ver-
sion of Schreyer’s theorem is stated where S-polynomials are replaced by non-
multiplicative prolongations and an involutive normal form algorithm is used.

More precisely, let H ⊂ Pt be a finite set for some t ∈ N, ≺s the corresponding
Schreyer ordering and L an involutive division. We divide H into t disjoint
subsets Hi = {h ∈ H | LM(h) = xαei, x

α ∈ M}. In addition, for each i, let
Bi = {xα ∈ M | xαei ∈ LM(Hi)}. We assign to each h ∈ Hi the multiplicative
variables ML,H,≺(h) = {xi | xi ∈ ML,Bi

(xα) with LM(h) = xαei}. Then, the
definition of involutive bases for sub-modules proceeds as for ideals.

Let H = {h1, . . . , ht} ⊂ P be an involutive basis. Let hi ∈ H be an arbitrary
element and xk a non-multiplicative variable of it. From the definition of invo-
lutive bases, there exists a unique j such that LM(hj)|xk LM(hi). We order the
elements of H in such a way that i < j (which is always possible for a continuous
division [19, Lemma 5.5]). Then we find a unique involutive standard represen-
tation xkhi =

∑t
j=1 p

(i,k)
j hj where p

(i,k)
j ∈ k[ML,H,≺(hj)] and the corresponding

syzygy Si,k = xkei − ∑t
j=1 p

(i,k)
j ej ∈ Pt. We denote the set of all thus obtained

syzygies by HSyz = {Si,k | 1 ≤ i ≤ t;xk ∈ NML,H,≺(hi)}. An involutive division
L is of Schreyer type if all sets NML,H,≺(h) with h ∈ H are again involutive
bases for the ideals defined by them. Both the Janet and the Pommaret divisions
are of Schreyer type.

Theorem 2. ([19, Theorem 5.10]) With the above notations, let L be a con-
tinuous involutive division of Schreyer type w.r.t. ≺ and H an involutive basis.
Then HSyz is an L-involutive basis for Syz(H) w.r.t. ≺s.

mmonagan@cecm.sfu.ca



56 B. Binaei et al.

We now present a non-trivial variant of Gerdt’s algorithm [10] computing
simultaneously a minimal involutive basis for the input ideal and an involutive
basis for the syzygy module of this basis. It uses an analogous idea as the algo-
rithm given in [1]. However, since we aim at determining also a syzygy module,
we must save the traces of all reductions and for this reason we cannot use the
syzygies to remove useless reductions.

Algorithm 1. InvBasis

Input: A finite set F ⊂ P; an involutive division L; a monomial ordering ≺
Output: A minimal L-basis for 〈F 〉 and an L-basis for syzygy module of this basis.
1: F :=sort(F, ≺)
2: T := {(F [1], F [1], ∅, e1, false)}
3: Q := {(F [i], F [i], ∅, ei, false) | i = 2, . . . , |F |}
4: S := {} and j := |F |
5: while Q �= ∅ do
6: Q :=sort(Q, ≺s)
7: select and remove p := Q[1] from Q
8: h := InvNormalForm(p, T, L, ≺)
9: if h[1] = 0 then

10: S := S ∪ {h[2]}
11: end if
12: if h[1] = 0 and LM(Poly(p)) = LM(Anc(p)) then
13: Q := {q ∈ Q | Anc(q) �= Poly(p) or q[5] = true}
14: end if
15: if p[5] = true then
16: q :=Update(q, p) for each q ∈ T
17: end if
18: if h[1] �= 0 and LM(Poly(p)) �= LM(h) then
19: for q ∈ T with proper conventional division LM(h[1]) | LM(Poly(q)) do
20: Q := Q ∪ {[q[1], q[2], q[3], q[4], true]}
21: T := T \ {q}
22: end for
23: j := j + 1 and T := T ∪ {(h[1], h[1], ∅, ej , false)}
24: else
25: T := T ∪ {(h[1], Anc(p), NM(p), h[2], false)}
26: end if
27: for q ∈ T and x ∈ NML(LM(Poly(q)), LM(Poly(T )) \ NM(q)) do
28: Q := Q ∪ {(x. Poly(q), Anc(q), ∅, x. Rep(q), false)}
29: NM(q) := NM(q) ∪ NML(LM(Poly(q)), LM(Poly(T ))) ∪ {x}
30: end for
31: end while
32: return (Poly(T ), {Rep(p) − eindex(p) | p ∈ T} ∪ S)

The algorithm InvBas relies on the following data structure for polynomials.
To each polynomial f , we associate a quintuple p = (f, g, V,q, f lag). The first
entry f = Poly(p) is the polynomial itself, g = Anc(p) is the ancestor of f
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(realised as a pointer to the quintuple associated with the ancestor) and V =
NM(p) is its list of already processed non-multiplicative variables. The fourth
entry q = Rep(p) denotes the representation of f in our current basis, i.e. if q =∑

r∈T∪Q hreindex(r) then f =
∑

r∈T∪Q hr Poly(r) where hr ∈ P and index(r)
gives the position of r in the current list T ∪ Q. The final entry is a boolean
flag. If flag = true then at some stage of the algorithm p has been moved from
T to Q, otherwise flag = false. We denote by Sig(p) = LM≺s

(Rep(p)) the
signature of p. By an abuse of notation, Sig(f) also denotes Sig(p). The same
holds for the Rep function. If P is a set of quintuples, we denote by Poly(P )
the set {Poly(p) | p ∈ P}. In addition, the functions sort(X,≺) and sort(X,≺s)
sort X in increasing order according to LM(X) w.r.t. ≺ and {Sig(p) | p ∈ X}
w.r.t. ≺s, respectively. We remark that in the original form of Gerdt’s algorithm
[10] the function sort(Q,≺) was applied to sort the set of all non-multiplicative
prolongations, however, in our experiments we observed that using sort(Q,≺s)
increased the performance of the algorithm.

Obviously, the representation of each polynomial must be updated whenever
the set T ∪ Q changes in a non-trivial way. We remark that elements of Q can
appear non-trivially in the representations of polynomials only if they have been
elements of T at an earlier stage of the algorithm (recall that such a move is
noted in the flag of each quintuple), as all reductions are performed w.r.t. T only.
If updates are necessary, then they are performed by the function Update. Invo-
lutive normal forms are computed with the help of the following subalgorithm
taking care of the representations.

Algorithm 2. InvNormalForm

Input: A quintuple p; a set of quintuples T ; a division L; a monomial ordering ≺
Output: A normal form of p w.r.t. T and its new representation.

h := Poly(p) and G := Poly(T ) and q := Rep(p)
while h contains a monomial m which is L-divisible by g ∈ G do

if m = LM(Poly(p)) and C1(h, g) then
return ([0, Anc(p) Rep(Anc(g)) − Anc(g) Rep(Anc(p))])

end if
h := h − (cm/ LT(g)).g where c is the coefficient of m in h
q := q − (cm/ LT(g)) Rep(g)

end while
return ([h,q])

Here we apply the involutive form of Buchberger’s first criterion [10]. We say
that C1(p, g) is true if LM(Anc(p)) LM(Anc(g)) = LM(Poly(p)).

Theorem 3. If L is a Noetherian continuous involutive division of Schreyer
type then InvBasis terminates in finitely many steps and returns a minimal
involutive basis for its input ideal and also an involutive basis for the syzygy
module of the constructed basis.
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Proof. The termination of the algorithm is ensured by the termination of Gerdt’s
algorithm, see [10]. Let us now deal with its correctness. We first note that if
an element p is removed by Buchberger’s criteria, then it is superfluous and by
[10, Theorem 2] the set Poly(T ) forms a minimal involutive basis for 〈F 〉. Thus,
it remains to show that R = {Rep(p) − eindex(p) | p ∈ T} ∪ S is an involutive
basis for Poly(T ) = {h1, . . . , ht} w.r.t. ≺s. Using Theorem 2, we must show
that the representation of each non-multiplicative prolongation of the elements
of Poly(T ) appears in R. Let us consider hi ∈ Poly(T ) and a non-multiplicative
variable xk for it. Then, due to the structure of the algorithm, xkhi is created
and studied in the course of the algorithm.

Now, four cases can occur. If xkhi reduces to zero then we can write
xkhi =

∑t
j=1 p

(i,k)
j hj where p

(i,k)
j ∈ k[ML,H,≺(hj)]. Therefore the representa-

tion xkei − ∑t
j=1 p

(i,k)
j ej ∈ Pt is added to S and consequently it appears in

R. If the involutive normal form of xkhi is non-zero then we can write xkhi =∑t
j=1 p

(i,k)
j hj + h� where p

(i,k)
j ∈ k[ML,H,≺(hj)]. In this case, we add h� into T

and the representation component of xkhi is updated to xkei − ∑t
j=1 p

(i,k)
j ej .

Then, as we can see in the output of the algorithm, xkei − ∑t
j=1 p

(i,k)
j ej − e�

appears in R as the syzygy corresponding to xkhi.
The third case that may occur is that xkhi is removed by Buchberger’s first

criterion. Assume that p is the quintuple associated to xkhi and g is another
quintuple so that C1(p, g) is true. It follows that LM(Anc(p)) LM(Anc(g)) =
LM(Poly(p)) holds. We may let xkhi = u Anc(p), Poly(g) = v Anc(g) and
LM(xkhi) = m LM(g) for some monomials u and v and term m (assume that
the polynomials are monic). Thus,

xkhi − m Poly(g) = u Anc(p) − mv Anc(g).

As LM(Anc(p)) LM(Anc(g)) = LCM(LM(Anc(p)),LM(Anc(g))), Buchberger’s
first criterion applied to Anc(p) and Anc(g) yields that Anc(p)Rep(Anc(g)) −
Anc(g)Rep(Anc(p)) is the corresponding syzygy which is added to S.

The last case to be considered is that xkhi is removed by the second if-loop
in the main algorithm. In this case, we conclude that Anc(p) is reduced to zero
and in consequence hi is reduced to zero. So, hi is a useless polynomial and we
do not need to keep xkhi which ends the proof. ��
Remark 1. There also exists an involutive version of Buchberger’s second cri-
terion [10]: C2(p, g) is true if LCM(LM(Anc(p)),LM(Anc(g))) properly divides
LM(Poly(p)). We cannot use this criterion in the InvNormalForm algorithm.
A non-multiplicative prolongation xkhi removed by it is surely useless in the
sense that it is not needed for determining the involutive basis of I, but it can
nevertheless be necessary for the construction of its syzygy module.
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Example 5. Let us consider the ideal I generated by F = {f1 = z2, f2 = zy, f3 =
xz − y, f4 = y2, f5 = xy − y, f6 = x2 − x + z} ⊂ k[x, y, z] from [19, Example
5.6]. Then, F is a Janet basis w.r.t. z ≺ y ≺ x. Since x, y are non-multiplicative
variables for f1, f2, f3 and x is non-multiplicative variable for f4, f5 then the
following set is a Janet basis for the syzygy module of F : {ye1 −ze2, xe1 −ze3 −
e2, ye2 − ze4, xe2 − ze5 − e2, ye3 − ze5 + e4 − e2, xe3 − ze6 + e5 − e3 + e1, xe4 −
ye5 − e4, xe5 − ye6 + e2}.

4 Application to Pommaret Basis Computation

In this section we show how to apply the approach presented in the preceding
section in the computation of Pommaret bases. The Pommaret division is not
Noetherian and thus a given ideal may not have a finite Pommaret basis. How-
ever, a generic linear change of variables transforms the ideal into quasi stable
position where a finite Pommaret basis exists. Seiler [19] proposed a determin-
istic algorithm to compute such a linear change by performing repeatedly an
elementary linear change and then a test on the Janet basis of the transformed
ideal. Now, to apply the method presented in this paper, we use the InvBasis

algorithm to compute a minimal Janet basis H for the input ideal and at the
same time a Janet basis for Syz(H). Then, for each h ∈ H we check whether
there exists a variable which is Janet but not Pommaret multiplicative. If not,
H is a Pommaret basis and we are done. Otherwise, we make an elementary
linear change of variables, say φ. Then, we apply the following algorithm, Nex-

tInvBasis, to compute a minimal Janet basis for the ideal generated by φ(H)
by applying φ(Syz(H)) to remove superfluous reductions. We describe first the
main procedure.

Algorithm 3. QuasiStable

Input: A finite set F ⊂ P of homogeneous polynomials and a monomial ordering ≺
Output: A linear change Φ so that 〈Φ(F )〉 has a finite Pommaret basis

Φ :=the identity map
J, S :=InvBasis(F, J , ≺) and A :=Test(LM(J))
while A �= true do

φ := A[3] 
→ A[3] + cA[2] for a random choice of c ∈ k
Temp :=NextInvBasis(Φ ◦ φ(J), Φ ◦ φ(S), J , ≺)
B :=Test(LM(Temp))
if B �= A then

Φ := Φ ◦ φ and A := B
end if

end while
return (Φ)
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The function Test receives a set of monomials forming a minimal Janet
basis and returns true if it is a Pommaret basis, too. Otherwise, by [19, Propo-
sition 2.10], there exists a monomial m in the set for which a Janet multiplica-
tive variable (say x�) is not Pommaret multiplicative. In this case, the function
returns (false, x�, cls(m)). Using these variables, we construct an elementary
linear change of variables.

The NextInvBasis algorithm is similar to the InvBasis algorithm given
above. However, the new algorithm computes only the involutive basis of the
input ideal generated by a set H. In addition, in the new algorithm, we use
Syz(H) to remove useless reductions. Below, only the differences between the
two algorithms are exhibited.

Algorithm 4. NextInvBasis

Input: A finite set F ⊂ P; a generating set S for Syz(F ); an involutive division L; a
monomial ordering ≺

Output: A minimal involutive basis for 〈F 〉
... {Lines 1–6 of InvBasis}
select and remove p := Q[1] from Q
if �s ∈ S s.t LM≺s(s) | Sig(p) then

... {Lines 8–30 of InvBasis}
end if
... {Lines 31/32 of InvBasis}

Lemma 1. Let H ⊂ P and S be a generating set for Syz(H). For any invertible
linear change of variables φ, φ(S) generates Syz(φ(H)).

Proof. Suppose that H = {h1, . . . , ht} and S = {s1, . . . , s�} ⊂ Pt. Let si =
(pi1, . . . , pit). Since pi1h1 + · · · + pitht = 0 and φ is a ring homomorphism then
φ(pi1)φ(h1)+ · · ·+φ(pit)φ(ht) = 0 and therefore φ(si) ∈ Syz(φ(H)). Conversely,
assume that s = (p1, . . . , pt) ∈ Syz(φ(H)). This shows that p1φ(h1) + · · · +
ptφ(ht) = 0. By invertibility of φ we have (φ−1(p1), . . . , φ−1(pt)) ∈ Syz(H).
From assumptions, we conclude that (φ−1(p1), . . . , φ−1(pt)) = g1s1 + · · · + g�s�

for some gi ∈ P. By applying φ on both sides of this equality, we can deduce
that s is generated by φ(S) and the proof is complete. ��
Theorem 4. The algorithm QuasiStable terminates in finitely many steps
and returns for a given homogeneous ideal a linear change of variables s.t. the
transformed ideal possesses a finite Pommaret basis.

Proof. Seiler [19, Proposition 2.9] proved that for a generic linear change of vari-
ables φ, the ideal 〈φ(F )〉 has a finite Pommaret basis. He also showed that the
process of finding such a linear change, by applying elementary linear changes,
terminates in finitely many steps, see [19, Remark 9.11] (or [13]). These argu-
ments establish the finite termination of the algorithm. To prove the correctness,
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using Theorem 3, we must only show that if p ∈ Q is removed by s ∈ S then it is
superfluous. To this end, assume that F = {f1, . . . , fk} and s = (p1, . . . , pk).
Thus, we have p1f1 + · · · + pkfk = 0. On the other hand, we know that
LM≺s

(s) | Sig(p). W.l.o.g., we may assume that LM≺s
(s) = LM(p1)e1. There-

fore, Poly(p) can be written as a combination g1f1+ · · ·+gkfk such that LM(g1)
divides LM(p1). Let t = LM(p1)/LM(g1). We can write LM(g1)f1 as a linear
combination of some multiplications mfi where m is a monomial such that mei
is strictly smaller than LM(g1)e1. It follows that p has an involutive representa-
tion provided that we study tmfi for each m and i. Since the signature of tmfi is
strictly smaller than t LM(g1)e1 = Sig(p), we are sure that no loop is performed
and therefore p can be omitted. ��

We have implemented the algorithm QuasiStable in Maple 17
1 and com-

pared its performance with our implementation of the HDQuasiStable algo-
rithm presented in [1] (it is a similar procedure applying a Hilbert driven tech-
nique). For this, we used some well-known examples from computer algebra
literature. All computations were done over Q using the degree reverse lexico-
graphical monomial ordering. The results are represented in the following tables
where the time and memory columns indicate the consumed CPU time in sec-
onds and amount of megabytes of used memory, respectively. The dim column
refers to the dimension of the corresponding ideal. The columns corresponding to
C1 and C2 show, respectively, the number of polynomials removed by the C1 and
C2 criteria. The seventh column denotes the number of polynomials eliminated
by the criterion related to signature applied in the NextInvBasis algorithm
(see [1] for more details). The eighth column shows the number of polynomials
eliminated by the Hilbert driven technique which may be applied in the Nex-

tInvBasis algorithm to remove useless reductions, (see [1] for more details).
The ninth column shows the number of polynomials eliminated by the syzygy
criterion described in the NextInvBasis algorithm. The last three columns rep-
resent, respectively, the number of reductions to zero, the number of performed
elementary linear changes and the maximum degree attained in the computa-
tions. The computations in this paper are performed on a personal computer
with 2.60 GHz Pentium(R) Core(TM) Dual-Core CPU, 2 GB of RAM, 32 bits
under the Windows 7 operating system.

1 The Maple code of the implementations of our algorithms and examples are avail-
able at http://amirhashemi.iut.ac.ir/softwares.
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Weispfenning94 time memory dim C1 C2 SC HD Syz redz lin deg
QuasiStable 4.5 255.5 2 0 0 0 34 10 41 1 14

HDQuasiStable 5.3 261.4 2 0 1 9 46 - 29 1 14

Liu time memory dim C1 C2 SC HD Syz redz lin deg
QuasiStable 6.1 246.7 2 8 0 10 71 47 44 4 6

HDQuasiStable 8.9 346.0 2 6 3 25 125 - 60 4 6

Noon time memory dim C1 C2 SC HD Syz redz lin deg
QuasiStable 74.1 3653.2.2 1 6 7 10 213 83 215 4 10

HDQuasiStable 72.3 3216.9.7 1 4 24 10 351 - 105 4 10

Katsura5 time memory dim C1 C2 SC HD Syz redz lin deg
QuasiStable 95.7 4719.2 5 49 0 0 257 56 115 3 8

HDQuasiStable 120.8 5527.7 5 44 4 6 420 - 122 3 8

Vermeer time memory dim C1 C2 SC HD Syz redz lin deg
QuasiStable 175.5 8227.9 3 5 3 101 158 139 343 3 13

HDQuasiStable 192.5 8243.7 3 3 28 157 343 - 190 3 13

Butcher time memory dim C1 C2 SC HD Syz redz lin deg
QuasiStable 290.6 12957.8 3 135 89 73 183 86 534 3 8

HDQuasiStable 433.1 17005.5 3 178 178 219 355 - 386 3 8

As one sees for some examples, some columns are different. It is worth noting
that this difference may be due to the fact that the coefficients in the linear
changes are chosen randomly and this may affect the behavior of the algorithm.

5 Involutive Variant of the GVW Algorithm

Gao et al. [8] described recently a new algorithm, the GVW algorithm, to com-
pute simultaneously Gröbner bases for a given ideal and for the syzygy module
of the given ideal basis. In this section, we present an involutive variant of this
approach and compare its efficiency with the existing algorithms to compute
involutive bases. For a review of the general setting of the signature based struc-
ture that we use in this paper, we refer to [8]. Let {f1, . . . , fk} ⊂ P be a finite
set of non-zero polynomials and {e1, . . . , ek} the standard basis for Pk. Let us
fix an involutive division L and a monomial ordering ≺. Our goal is to compute
an involutive basis for I = 〈f1, . . . , fk〉 and a Gröbner basis for Syz(f1, . . . , fk)
w.r.t. ≺s. Let us consider

V = {(u, v) ∈ Pk × P | u1f1 + · · · + ukfk = v with u = (u1, . . . , uk)}
as an P-submodule of Pk+1. For any pair p = (u, v) ∈ Pk ×P, LM≺s

(u) is called
the signature of p and is denoted by Sig(p). We define the involutive version of
top-reduction defined in [8]. Let p1 = (u1, v1), p2 = (u2, v2) ∈ Pk × P. When v2
is non-zero, we say p1 is involutively top-reducible by p2 if:

– v1 is non-zero and LM(v2) L-divides LM(v1) and
– LM(tu2) �s LM(u1) where t = LM(v1)/LM(v2).

The corresponding top-reduction is p1 − ctp2 = (u1 − ctu2, v1 − ctv2) where
c = LC(v1)/LC(v2). Such a top-reduction is called regular, if LM(u1 − ctu2) =
LM(u1), and super otherwise.
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Definition 7. A finite subset G ⊂ V is called a strong involutive basis for
I if every pair in V is involutively top-reducible by some pair in G. A strong
involutive basis G is minimal if any other strong involutive basis G′ of I satisfies
LM(G) ⊆ LM(G′).

Proposition 1. Suppose that G = {(u1, v1), . . . , (um, vm)} is a strong involu-
tive basis for I. Then G0 = {ui | vi = 0 , 1 ≤ i ≤ m} is a Gröbner basis for
Syz(f1, . . . , fk), and G1 = {v1, . . . , vm} is an involutive basis for I.
Proof. The proof is an easy consequence of the proof of [8, Proposition 2.2]. ��

Let p1 = (u1, v1) and p2 = (u2, v2) be two pairs in V. We say that p1 is covered
by p2 if LM(u2) divides LM(u1) and t LM(v2) ≺ LM(v1) (strictly smaller) where
t = LM(u1)/LM(u2). Also, p is covered by G if it is covered by some pair in G.
A pair p ∈ V is eventually super reducible by G if there is a sequence of regular
top-reductions of p by G leading to (u′, v′) which is no longer regularly reducible
by G but super reducible by G.

Theorem 5. Let G ⊂ V be a finite set such that, for any module monomial
m ∈ Pk, there is a pair (u, v) ∈ G such that LM(u) | m. Then the following
conditions are equivalent:

1. G is a strong involutive basis for I,
2. any non-multiplicative prolongation of any element of G is eventually super

top-reducible by G,
3. any non-multiplicative prolongation of any element in G is covered by G.

Proof. The proof of all implications are similar to the proofs of the corresponding
statements in [8, Theorem 2.4] except that we need some slight changes in the
proof of (3 ⇒ 1). We proceed by reductio ad absurdum. Assume that there
is a pair p = (u, v) ∈ V which is not involutively top-reducible by G and has
minimal signature. Then, by assumption, there exists p1 = (u1, v1) ∈ G such that
LM(u) = t LM(u1) for some t. Select p1 such that t LM(v1) is minimal. Let us
now consider tp1. Two cases may happen: If all variables in t are multiplicative
for p1, then p − tp1 has a signature smaller than p and by assumption it has
a standard representation leading to a standard representation for p which is a
contradiction. Otherwise, t has a non-multiplicative variable. Then, tp1 is covered
by a pair p3 = (u3, v3) ∈ G. This shows that t3 LM(v3) ≺ t LM(v1) with t3 =
t LM(u1)/LM(u3). Therefore, the polynomial part of t3p3 is smaller than tv1
which contradicts the choice of p1, and this ends the proof. ��

Based on this theorem and similar to the structure of the GVW algorithm,
we describe a variant of Gerdt’s algorithm for computing strong involutive bases.
The structure of the new algorithm is similar to the InvBasis algorithm and
therefore we omit the identical parts.
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Algorithm 5. StInvBasis

Input: A finite set F ⊂ P; an involutive division L; a monomial ordering ≺
Output: A minimal strong involutive basis for 〈F 〉

F :=sort(F, ≺) and T := {(F [1], F [1], ∅, e1)}
Q := {(F [i], F [i], ∅, ei) | i = 2, . . . , |F |} and H := {}
while Q �= ∅ do

Q :=sort(Q, ≺s) and select/remove the first element p from Q
if p is not covered by G, T or H then

h := InvTopReduce(p, T, L, ≺)
if Poly(h) = 0 then

H := H ∪ {Sig(p)}
end if
if Poly(h) = 0 and LM(Poly(p)) = LM(Anc(p)) then

Q := {q ∈ Q | Anc(q) �= Poly(p)}
end if
if Poly(h) �= 0 and LM(Poly(p)) �= LM(Poly(h)) then

... {Lines 19–25 of InvBas}
end if
... {Lines 27–30 of InvBas}

end if
end while
return (Poly(T ), H)

Algorithm 6. InvTopReduce

Input: A quadruple p; a set of quadruples T ; a division L; a monomial ordering ≺
Output: A top-reduced form of p modulo T
h := p
while Poly(h) has a term am with a ∈ k and LM(Poly(q)) |L m with q ∈ T do

if m/ LM(Poly(q)) Sig(q) ≺s Sig(p) then
Poly(h) := Poly(h) − am/ LT(Poly(q)). Poly(q)
Rep(h) := Rep(h) − am/ LT(Poly(q)). Rep(q)

end if
end while
return (h)

The proof of the next theorem is a consequence of Theorem 5 and the ter-
mination and correctness of Gerdt’s algorithm.

Theorem 6. If L is Noetherian, then StInvBasis terminates in finitely many
steps returning a minimal strong involutive basis for its input ideal.

We have implemented the StInvBasis algorithm in Maple 17 and com-
pared its performance with our implementation of InvolutiveBasis algorithm
(see [1]) and VarGerdt algorithm (a variant of Gerdt’s algorithm, see [12]).
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Liu time memory C1 C2 SC cover redz deg
StInvBasis .390 14.806 - - - 17 20 6

InvolutiveBasis .748 23.830 4 3 2 - 18 6
vargerdt 1.653 64.877 6 3 - - 18 19

Noon time memory C1 C2 SC cover redz deg
StInvBasis 1.870 75.213 - - - 54 42 10

InvolutiveBasis 2.620 105.641 4 15 6 - 50 10
vargerdt 12.32 454.573 6 9 - - 56 10

Haas3 time memory C1 C2 SC cover redz deg
StInvBasis 157.623 6354.493 - - - 490 8 33

InvolutiveBasis 22.345 833.0 0 0 83 - 152 33
vargerdt 137.733 5032.295 0 98 - - 255 33

Sturmfels-Eisenbud time memory C1 C2 SC cover redz deg
StInvBasis 2442.414 120887.953 - - - 634 29 8

InvolutiveBasis 24.70 951.070 28 103 95 - 81 6
vargerdt 59.32 2389.329 43 212 - - 91 6

Weispfenning94 time memory C1 C2 SC cover redz deg
StInvBasis 183.129 8287.044 - - - 588 28 18

InvolutiveBasis 1.09 45.980 0 1 9 - 28 10
vargerdt 4.305 168.589 0 9 - - 38 15

As we observe, the performance of the new algorithm is not in general better
than that of the others. This is due to the signature-based structure of the new
algorithm which does not allow to perform full normal forms.
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tional Commutative and Non-commutative Algebraic Geometry. Proceedings of
the NATO Advanced Research Workshop, pp. 199–225. IOS Press, Amsterdam
(2005)

11. Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput.
Simul. 45(5–6), 519–541 (1998). https://doi.org/10.1016/S0378-4754(97)00127-4

12. Gerdt, V.P., Hashemi, A., Alizadeh, B.M.: Involutive bases algorithm incorporat-
ing F5 criterion. J. Symb. Comput. 59, 1–20 (2013). https://doi.org/10.1016/j.jsc.
2013.08.002

13. Hashemi, A., Schweinfurter, M., Seiler, W.: Deterministic genericity for polynomial
ideals. J. Symb. Comput. 86, 20–50 (2018)
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Abstract. We construct and analyze a strongly consistent second-order
finite difference scheme for the steady two-dimensional Stokes flow. The
pressure Poisson equation is explicitly incorporated into the scheme. Our
approach suggested by the first two authors is based on a combination
of the finite volume method, difference elimination, and numerical inte-
gration. We make use of the techniques of the differential and differ-
ence Janet/Gröbner bases. In order to prove strong consistency of the
generated scheme we correlate the differential ideal generated by the
polynomials in the Stokes equations with the difference ideal generated
by the polynomials in the constructed difference scheme. Additionally,
we compute the modified differential system of the obtained scheme and
analyze the scheme’s accuracy and strong consistency by considering this
system. An evaluation of our scheme against the established marker-and-
cell method is carried out.

Keywords: Computer algebra · Difference elimination
Finite difference approximation · Janet basis · Modified equations
Stokes flow · Strong consistency

1 Introduction

In this paper, we consider the two-dimensional flow of an incompressible fluid
described by the following system of partial differential equations (PDEs):

⎧
⎨

⎩

F (1) := ux + vy = 0 ,
F (2) := px − 1

ReΔu − f (1) = 0,
F (3) := py − 1

ReΔv − f (2) = 0.

(1)

c© Springer Nature Switzerland AG 2018
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Here the velocities u and v, the pressure p, and the external forces f (1) and f (2)

are functions in x and y; Re is the Reynolds number and Δ := ∂xx + ∂yy is the
Laplace operator.

A flow that is governed by these equations is denoted in the literature as a
Stokes flow or a creeping flow. Correspondingly, the PDE system (1) is called a
Stokes system. It approximates the Navier–Stokes system for a two-dimensional
incompressible steady flow when Re � 1. The last condition makes the non-
linear inertia terms in the Navier–Stokes system much smaller then the vis-
cous forces (cf. [16], Sect. 22·11), and neglecting of the nonlinear terms results
in Eqs. (1). The fundamental mathematical theory of the Stokes flow is, e.g.,
presented in [14].

Our first aim is to construct, for a uniform and orthogonal grid, a finite dif-
ference scheme for the governing system (1) which contains a discrete version
of the pressure Poisson equation and whose algebraic properties are strongly
consistent (or s-consistent, for brevity) [9,12] with those of Eq. (1). For this
purpose, we use the approach proposed in [7] based on a combination of the
finite volume method, numerical integration, and difference elimination. For the
generated scheme we apply the algorithmic criterion to verify its s-consistency.
The last criterion was designed in [12] for linear PDE systems and then gener-
alized in [9] to polynomially nonlinear systems. The computational experiments
done in papers [2,3] with the Navier–Stokes equations demonstrated a substan-
tial superiority in numerical behavior of s-consistent schemes over s-inconsistent
ones.

The linearity of Eq. (1) not only makes the construction and analysis of its
numerical solutions much easier than in the case of the Navier–Stokes equa-
tions, but also admits a fully algorithmic generation of difference schemes for
Eq. (1) and their s-consistency verification. To perform related computations
we use two Maple packages implementing the involutive algorithm (cf. [10]) for
the computation of Janet and Gröbner bases: the package Janet [4] for linear
differential systems and the package LDA [11] (Linear Difference Algebra) for
linear difference systems.

Our second aim is to compute a modified differential system of the con-
structed difference scheme, i.e., modified Stokes flow, and to analyse the accu-
racy and consistency of the scheme via this differential system. Nowadays the
method of modified equations suggested in [20] is widely used (see [6], Chap. 8
and [17], Sect. 5.5) in studying difference schemes. The method provides a natu-
ral and unified platform to study such basic properties of the scheme as order of
approximation, consistency, stability, convergence, dissipativity, dispersion, and
invariance. However, as far as we know, the methods for the computation of
modified equations have not been extended yet to non-evolutionary PDE sys-
tems. We show how the extension can be done for our scheme by applying the
technique of differential Janet/Gröbner bases.

The present paper is organized as follows. In Sect. 2, we generate for Eq. (1) a
difference scheme by applying the approach of paper [7]. In Sect. 3, we show that
our scheme is s-consistent and demonstrate s-inconsistency of another scheme
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obtained by a tempting compactification of our scheme. The computation of a
modified Stokes system for our s-consistent scheme is described in Sect. 4. Here,
we also show by the example of the s-inconsistent scheme of Sect. 3 how the mod-
ified Stokes system detects the s-inconsistency. Finally, a numerical benchmark
against the marker-and-cell method is presented in Sect. 5 and some concluding
remarks are given in Sect. 6.

2 Difference Scheme Generation for Stokes Flow

We consider the orthogonal and uniform solution grid with the grid spacing h
and apply the approach of paper [7] to generate a difference scheme for Eq. (1).

Step 1. Completion to Involution (we refer to [19] and to the references
therein for the theory of involution). We select the lexicographic POT (Position
Over Term) [1] ranking with

x � y, u � v � p � f (1) � f (2). (2)

Then the package Janet [4] outputs the following Janet involutive form of
Eq. (1) which is the minimal reduced differential Gröbner basis form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F (1) := ux + vy = 0,

F (2) := px − 1
Re

(
uyy − vxy

)
− f (1) = 0,

F (3) := py − 1
Re

(
vxx + vyy

) − f (2) = 0,

F (4) := pxx + pyy − f
(1)
x − f

(2)
y = 0.

(3)

We underlined the leaders, i.e., the highest ranking partial derivatives occurring
in Eqs. (3). F 4 is the pressure Poisson equation which, being the integrability
condition for system (1), is expressed in terms of its left-hand sides as

F (4) := F (2)
x + F (3)

y +
1

Re

(
F (1)

xx + F (1)
yy

)
= pxx + pyy − f (1)

x − f (2)
y . (4)

Remark 1. The differential polynomial F (2) in Eq. (3) is F (2) in Eq. (1) reduced
modulo the continuity equation F (1).

Step 2. Conversion into the Integral Form. We choose the following inte-
gration contour Γ as a “control volume” and rewrite equations F (1), F (2), and
F (3) into the equivalent integral form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∮

Γ

−v dx + u dy = 0,

∮

Γ

1
Re

uy dx +
(

p − 1
Re

ux

)

dy −
∫∫

Ω

f (1)dx dy = 0,

∮

Γ

−
(

p − 1
Re

vy

)

dx − 1
Re

vx dy −
∫∫

Ω

f (2)dx dy = 0,

(5)
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Fig. 1. Integration contour Γ (stencil 3 × 3).

where Ω is the internal area of the contour Γ .
It should be noted that we use in Eq. (5) the original form of F (2) given

in Eq. (1) (see Remark 1) since we want to preserve at the discrete level the
symmetry of system (1) under the swap transformation

{x, u, f (1)} ←→ {y, v, f (2)}. (6)

Step 3. Addition of Integral Relations for Derivatives. We add to sys-
tem (5) the exact integral relations between the partial derivatives of velocities
and the velocities themselves:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xj+1∫

xj

uxdx = u(xj+1, y) − u(xj , y),
yk+1∫

yk

uydy = u(x, yk+1) − u(x, yk),

xj+1∫

xj

vxdx = v(xj+1, y) − v(xj , y),
yk+1∫

yk

vydy = v(x, yk+1) − v(x, yk).
(7)

Step 4. Numerical Evaluation of Integrals. We apply the midpoint rule for
the contour integration in Eq. (5), the trapezoidal rule for the integrals (7) and
approximate the double integrals as

f
1(2)
i+1,k+14h2,

where h is the step of a square grid in the (x, y) plane.
As a result, we obtain the difference equations for the grid functions

uj, k ≈ u(jh, kh) , vj, k ≈ v(jh, kh), pj, k ≈ p(jh, kh) , f
(1,2)
j, k ≈ f (1,2)(jh, kh)

approximating functions u(x, y), v(x, y), p(x, y), f (1)(x, y), f (2)(x, y), and the
grid functions approximating partial derivatives

{
uxj, k ≈ ux(jh, kh), uyj, k ≈ uy(jh, kh),
vxj, k ≈ vx(jh, kh), vyj, k ≈ vy(jh, kh),
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where j, k ∈ Z:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(uj+2, k+1 − uj, k+1) 2h + (vj+1, k+2 − vj+1, k) 2h = 0,

1
Re

(
uyj+1, k − uyj+1, k+2

)
2h +

(

pj+2, k+1 − 1
Re

uxj+2, k+1

)

2h

−
(

pj, k+1 − 1
Re

uxj, k+1

)

2h − 4f
(1)
j+1, k+1h

2 = 0,

−
((

pn
j+1, k − 1

Re
vy

n
j+1, k

)

−
(

pn
j+1, k+2 − 1

Re
vy

n
j+1, k+2

))

2h

+
(

− 1
Re

vxj+2, k+1 +
1

Re
vxj, k+1

)

2h − 4f
(2)
j+1, k+1h

2 = 0,

uxj+1, k + uxj, k

2
h − uj+1, k + uj, k = 0,

vxj+1, k + vxj, k

2
h − vj+1, k + vj, k = 0,

uyj, k+1 + uyj, k

2
h − uj, k+1 + uj, k = 0,

vyj, k+1 + vyj, k

2
h − vj, k+1 + vj, k = 0.

(8)

Step 5. Difference Elimination of Derivatives. To eliminate the grid func-
tions ux, uy, vx, vy for the partial derivatives of the velocities, we construct a
difference Janet/Gröbner basis form of the set of linear difference polynomials
in left-hand sides of Eq. (8) with the Maple package LDA [12] for the POT
lexicographic ranking which is the difference analogue of the differential ranking
used on Step 1:

j � k, u � v � p � f (1) � f (2). (9)

The output of the LDA includes four difference polynomials not containing
the grid functions ux, uy, vx, vy. These polynomials comprise a difference scheme.
Being interreduced, this scheme does not reveal a desirable discrete analogue of
symmetry under the transformation (6). Because of this reason, we prefer the
following redundant but symmetric form of the scheme:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ (1) :=
uj+2, k+1 − uj, k+1

2h
+

vj+1, k+2 − vj+1, k

2h
= 0,

F̃ (2) :=
pj+2, k+1 − pj, k+1

2h
− 1

Re
Δ1 (uj,k) − f

(1)
j+1, k+1 = 0,

F̃ (3) :=
pj+1, k+2 − pj+1, k

2h
− 1

Re
Δ1 (vj,k) − f

(2)
j+1, k+1 = 0,

F̃ (4) := Δ2 (pj,k) − f
(1)
j+3, k+2 − f

(1)
j+1, k+2

2h
− f

(2)
j+2, k+3 − f

(2)
j+2, k+1

2h
= 0,

(10)

mmonagan@cecm.sfu.ca



72 Y. A. Blinkov et al.

where Δ1 and Δ2 are discrete versions of the Laplace operator acting on a grid
function gj, k as

Δ1 (gj, k) :=
gj+2, k+1 + gj+1, k+2 − 4gj+1, k+1 + gj+1, k + gj, k+1

h2
, (11)

Δ2 (gj, k) :=
gj+4, k+2 + gj+2, k+4 − 4gj+2, k+2 + gj+2, k + gj, k+2

4h2
. (12)

Remark 2. The difference equation F̃ (4) of the system (10) can also be obtained
(cf. [8]) from the integral form of F 4 in Eqs. (3)–(4) with the contour illustrated
in Fig. 1 by using the midpoint rule for the contour integration of the px and py

as well as for evaluation of the additional integrals

xj+2∫

xj

pxdx = p(xj+2, y) − p(xj , y),

yk+2∫

yk

pydy = p(x, yk+2) − p(x, yk), (13)

and the trapezoidal rule for the contour integration of f (1) and f (2).

The difference polynomials (10) approximate those in Eq. (3), and such cor-
respondence between differential and difference Janet/Gröbner bases is a conse-
quence of our choice of the differential (2) and difference (9) rankings.

3 Consistency Analysis

Let R = Q(Re, h)[u, v, p, f (1), f (2)] be the ring of differential polynomials over
the field of rational functions in Re and h. We consider the functions describ-
ing the Stokes flow (1) as differential indeterminates and their grid approxima-
tions as difference indeterminates. Respectively, we denote by R̃ the difference
polynomial ring whose elements are polynomials in the grid functions with the
right-shift operators σ1 and σ2 acting as translations, for example,

σ1 ◦ uj, k = uj+1, k, σ2 ◦ uj, k = uj, k+1. (14)

We denote by I := 〈F (1), F (2), F (3)〉 ⊂ R the differential ideal generated by
the set of left-hand sides in (1) and by Ĩ := 〈F̃ (1), F̃ (2), F̃ (3), F̃ (4)〉 ⊂ R̃ the
difference ideal generated by the left-hand sides of Eq. (10).

The elements in I vanish on solutions of the Stokes flow (1) and those in Ĩ
vanish on solutions of (10). We refer to an element in I (respectively, in Ĩ) as
to a consequence of Eq. (1) (respectively, of Eq. (10)).

Definition 1. [12] We shall say that a difference equation F̃ = 0 implies the
differential equation F = 0 and write F̃ � F when the Taylor expansion about a
grid point yields

F̃ −−−→
h→0

F · hk + O(hk+1), k ∈ Z≥0. (15)
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It is clear that to approximate Eq. (3), the scheme (10) must be pairwise con-
sistent with the involutive differential form (3). We call this sort of consistency
weak consistency.

Definition 2. [12] A difference polynomial set {F̃ (1), F̃ (2), F̃ (3), F̃ (4)} is weakly
consistent or w-consistent with differential system (3) if

(∀ 1 ≤ i ≤ 4 ) [ F̃ (i) � F (i) ]. (16)

The following definition establishes the consistency interrelation between the
differential and difference ideals generated by Eqs. (1) and (10), respectively.
If such a consistency holds, then it provides a certain inheritance of algebraic
properties of Stokes flow by the difference scheme.

Definition 3. [9] A finite difference approximation F̃ := {F̃ (1), . . . , F̃ (m)}
to (1) is strongly consistent or s-consistent with Stokes flow (1) if

(∀F̃ ∈ �F̃ �) (∃F ∈ I) [F̃ � F ], (17)

where �F̃ � is a perfect difference ideal [15] generated by the elements in the
difference approximation.

Theorem 1. [9] The s-consistency condition (17) holds if and only if a Gröbner
basis G̃ of Ĩ satisfies

(∀g̃ ∈ G̃ ) (∃g ∈ 〈F 〉 ) [ g̃ � g ]. (18)

Corollary 1. The difference scheme (10) is s-consistent with the Stokes sys-
tem (1).

Proof. By its construction, the set of difference polynomials in Eq. (10) is a
Janet/Gröbner basis of the elimination ideal Ĩ0 ∩ R where Ĩ0 is the difference
ideal generated by the polynomials in Eq. (8) (cf. [1], Theorem 2.3.4). The same
set is also a Janet/Gröbner basis for the ideal 〈F̃ (1), F̃ (2), F̃ (3)〉 and for the same
POT ranking with j � k and u � v � p � f (1) � f (2). It is readily verified with
the LDA package. Furthermore, it is easy to see that

F̃ (i) � F (i), (i = 1 ÷ 4) (19)

where F (i) are differential polynomials in Eq. (3). �

Remark 3. For the computation of the image in mapping (19) one can use the
command ContinuousLimit of the package LDA.

It is clear that s-consistency implies w-consistency. But the converse is not true.
For the numerical simulation of the Stokes flow it is tempting to replace F̃ (4) in
Eq. (10) with a more compact discretization

F̃
(4)
1 := Δ1 (pj,k) − f

(1)
j+2, k+1 − f

(1)
j, k+1

2h
− f

(2)
j+1, k+2 − f

(2)
j+1, k

2h
= 0. (20)
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Although this substitution preserves w-consistency since

F̃
(4)
1 � F (4), (21)

the scheme { F̃ (1), F̃ (2), F̃ (3), F̃
(4)
1 } is not s-consistent.

Proposition 1. The difference scheme {F̃ (1), F̃ (2), F̃ (3), F̃
(4)
1 } is s-inconsistent.

Proof. The difference polynomial (20) does not belong to the difference ideal Ĩ
generated by the polynomial set in Eq. (10) since F̃

(4)
1 is irreducible modulo the

ideal Ĩ. This can be shown by the direct computation of the normal form of F̃
(4)
1

modulo the Janet basis (10) with the routine InvReduce of the Maple package
LDA. �

Now let us analyse the s-consistency of {F̃ (1), F̃ (2), F̃ (3), F̃
(4)
1 }. The

Janet/Gröbner basis of the difference ideal Ĩ := 〈F̃ (1), F̃ (2), F̃ (3), F̃
(4)
1 〉 com-

puted with LDA consists of seven elements. Four of them imply system (3) and
the three remaining elements denoted by F̃ (5), F̃ (6), and F̃ (7) are rather cum-
bersome difference equations which imply, respectively, the following differential
ones {

F (5) := f
(1)
xxxxx + f

(1)
xyyyy + f

(2)
xxxxy + f

(2)
yyyyy = 0,

F (6) := f
(1)
xxx − f

(1)
xyy + f

(2)
xxy − f

(2)
yyy + 2 pyyyy = 0,

(22)

and F̃ (7) � F (6).
Equations (22) are not consequences of the Stokes equations since the dif-

ferential polynomials F (5) and F (6) are irreducible modulo the differential ideal
generated by the differential polynomials in Eq. (1). It follows that there are
solutions to the Stokes equations which do not satisfy Eq. (22).

Remark 4. Equations (22) impose the limitations on the external forces which
do not follow from the governing differential equations (1). This is a result of
s-inconsistency.

4 Modified Stokes Flow

In the framework of the method of modified equation (cf. [17], Sect. 5.5), a numer-
ical solution of the governing differential system (1), for given external forces f (1)

and f (2), should be considered as a set of continuous differentiable functions
{u, v, p} whose values at the grid points satisfy the difference scheme (10). Since
the difference Eq. (10) describe the differential ones (3) only approximately, we
cannot expect that a continuous solution interpolating the grid values exactly
satisfies Eq. (3). In reality, it satisfies another set of differential equations which
we shall call the modified steady Stokes flow or modified flow for short.

Generally, the method of modified differential equation uses the representa-
tion of difference equations comprising the scheme as infinite order differential
equations obtained by replacing the various shift operators in the difference
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equations by the Taylor series about a grid point. For equations of evolutionary
type, the next step is to eliminate all derivatives with respect to the evolutionary
variable of order greater than one. This step is done to obtain a kind of canonical
form of the modified equation. Then, truncation of the order of the differential
representations in the grid steps gives various modified equations (“differential
approximations”) of the difference scheme.

As we show, the fact that both equation systems are Gröbner bases of the ide-
als they generate and satisfy the condition (19) of s-consistency allows to develop
a constructive procedure for the computation of the modified flow. Since the finite
differences in the scheme (10) approximate the partial derivatives occurring in
Eq. (3) with accuracy O(h2), it would appear reasonable that the scheme would
have the second order of accuracy. For this reason, we restrict ourselves to the
computation of the second order modified flow.

The Taylor expansions of the difference polynomials in Eq. (10) at the grid
point (−h,−h) for F̃ (1), F̃ (2), F̃ (3), F̃

(4)
1 , and at the point (−2h,−2h) for F̃ (4)

read ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ (1) := ux + vy + h2uxxx

6 + h2vyyy

6 + O(h4) = 0,
F̃ (2) := px − 1

Reuxx − 1
Reuyy − f (1) + h2pxxx

6 − h2uxxxx

12Re

−h2uyyyy

12Re + O(h4) = 0,
F̃ (3) := py − 1

Revxx − 1
Revyy − f (2) + h2pyyy

6 − h2vxxxx

12Re

−h2vyyyy

12Re + O(h4) = 0,

F̃ (4) := pxx + pyy − f
(1)
x − f

(2)
y − h2f(1)

xxx

6 − h2f(2)
yyy

6

+h2pxxxx

3 + h2pyyyy

3 + O(h4) = 0,

(23)

where the terms of order h2 are written explicitly. The calculation of the right-
hand sides in Eq. (23) as well as the computation of the expressions given below
was done with the use of freely available Python library SymPy (http://www.
sympy.org/) for symbolic mathematics.

Remark 5. The Taylor expansions of the s-consistent difference scheme (10) and
of the s-inconsistent scheme {F̃ (1), F̃ (2), F̃ (3), F̃

(4)
1 } over the chosen grid points

contain only the even powers of h. It follows immediately from the fact that all
the finite differences occurring in the equations of both schemes are the central
difference approximations of the partial derivatives occurring in (3).

Furthermore, we reduce the terms of order h2 in the right-hand sides of (23)
modulo the differential Janet/Gröbner basis (10). This reduction will give us a
canonical form of the second order modified flow, since given a Gröbner basis,
the normal form of a polynomial modulo this basis is uniquely defined (cf. [1],
Sect. 2.1). The normal form can be computed with the command InvReduce using
the Maple package Janet.
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Thus, the Taylor expansion of the difference polynomials yields the second
order modified Stokes flow as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ (1) := ux + vy + h2 Ref(2)
y

6 − h2 Re pyy

6 + h2vyyy

3 + O(h4) = 0,

F̃ (2) := px + 1
Revxy − 1

Reuyy − f (1) + h2f(1)
xx

6 + h2f(1)
yy

4 + h2f(2)
xy

4

−h2pxyy

2 + h2uyyyy

6Re + O(h4) = 0,

F̃ (3) := py − 1
Revxx − 1

Revyy − f (2) − h2f(1)
xy

12 + h2f(2)
xx

12 − h2f(2)
yy

6

+h2pyyy

3 − h2vyyyy

6Re + O(h4) = 0,

F̃ (4) := pxx + pyy − f
(1)
x − f

(2)
y + h2f(1)

xxx

6 − h2f(1)
xyy

3

+h2f(2)
xxy

3 − h2f(2)
yyy

2 + 2h2pyyyy

3 + O(h4) = 0.

(24)

Remark 6. Note that the symmetry under the swap transformation (6) that
holds in Eq. (23) does not hold in Eq. (24). This symmetry breaking is a typical
effect of the application of the Gröbner reduction to symmetric systems and
caused by the non-symmetry of the term ordering.

As we know, Stokes flow (1) satisfies the integrability condition (4) which we
rewrite as

F (2)
x + F (3)

y +
1

Re

(
F (1)

xx + F (1)
yy

)
− F (4) = 0. (25)

Substitution of the Taylor expansions (24) into the equality (25) shows that
the sum of the second-order terms explicitly written in formulae (24) is equal
to zero. The following proposition shows that this is a consequence of the s-
consistency of the scheme.

Proposition 2. Given a uniform and orthogonal solution grid with a spacing
h, a w-consistent difference scheme for Eq. (3) is s-consistent only if its Taylor
expansion based on the central-difference formulas for derivatives and reduced
modulo system (3), after its substitution into the left-hand side of the equal-
ity (25) vanishes for every order in h2.

Proof. Let G̃ := {G̃(1), G̃(2), G̃(3), G̃(4)} be a set of s-consistent difference
approximations to the differential polynomials F (1), F (2), F (3), F (4) in the
Janet/Gröbner basis (3). The w-consistency of G implies the central difference
Taylor expansion

G̃(i) = F (i) +
∞∑

m=1

h2mr(i)m , r(i)m ∈ Q(Re)[u, v, p, f (1), f (2)] (i = 1 ÷ 4). (26)

We consider the family of difference polynomials (m ∈ N≥1)

G̃
(m)
0 := D

(m)
1 G̃(2) + D

(m)
2 G̃(3) +

1
Re

(
D

(m)
1,1 G̃(1) + D

(m)
2,2 G̃(1)

)
− G̃(4) (27)

with the central-difference operators D
(m)
1 , D

(m)
2 , D

(m)
1,1 , D

(m)
2,2 approximating the

partial differential operators ∂x, ∂y, ∂xx, ∂yy with accuracy h2m. Apparently,
G̃

(m)
0 belongs to the perfect difference ideal generated by G̃:
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(∀m ∈ N≥1) [ G̃(m)
0 ∈ �G̃�].

These difference operators are composed of the translations (14). For example,

D
(1)
i :=

σi − σ−1
i

2h
, D

(1)
i,i :=

σi − 2 + σ−1
i

h2
, i ∈ {1, 2}

and

D
(2)
i :=

−σ2
i + 8σi − 8σ−1

i + σ−2
i

12h
, D

(2)
i,i :=

−σ2
i + 16σi − 30 + 16σ−1

i − σ−2
i

12h2

with σ−1
1 ◦ u(j, k) = u(j − 1, k), σ−1

2 ◦ u(j, k) = u(j, k − 1), etc., σ2
i = σi ◦ σi

and σ−2
i = σ−1

i ◦ σ−1
i .

From Eqs. (26) and (27), we obtain

G̃
(1)
0 = F (2)

x + F (3)
y +

1
Re

(
F (1)

xx + F (1)
yy

)
− F (4) + O(h2),

⇒ F (2)
x + F (3)

y +
1

Re

(
F (1)

xx + F (1)
yy

)
− F (4) = 0, (28)

G̃
(2)
0 = h2

(

∂xr
(2)
1 + ∂yr

(3)
1 +

1
Re

(
∂xxr

(1)
1 + ∂yyr

(1)
1

))

+ O(h4)

⇒ ∂xr
(2)
1 + ∂yr

(3)
1 +

1
Re

(
∂xxr

(1)
1 + ∂yyr

(1)
1

)
= 0, (29)

...

G̃
(k)
0 = h2k

(

∂xr
(1)
k + ∂yr

(3)
k +

1
Re

(
∂xxr

(1)
k + ∂yyr

(2)
k

))

+ O(h2k+2)

⇒ ∂xr
(2)
k + ∂yr

(3)
k +

1
Re

(
∂xxr

(1)
k + ∂yyr

(1)
k

)
= 0 . . . .

The implication in Eq. (29) follows from the fact that the normal form of
the differential polynomial (29) modulo Eq. (3), if it is nonzero, does not belong
to the differential ideal generated by the polynomials in (3) that contradicts the
s-consistency of G̃. Because of the same argument, the equality (30) holds for
any k. �
Corollary 2. A w-consistent difference scheme for system (3) is s-consistent
if and only if its set of polynomials is a difference Janet/Gröbner basis for the
POT ranking (9).

Proof. “⇐” Because of our choice (9) of the ranking and the structure (3), differ-
ential Janet/Gröbner basis with the underlined leaders, a w-consistent difference
scheme composed of four difference polynomials {G̃(1), G̃(2), G̃(3), G̃(4)} has the
only difference S-polynomial of the form (27) which approximates the left-hand
side of the differential integrability condition (25). Together with the Taylor
expansion (26), the relations (28)–(30) imply the reduction of S-polynomial (27)
to zero modulo {G̃(1), G̃(2), G̃(3), G̃(4)}. Thus, the scheme is a Janet/Gröbner
basis.

“⇒” If a w-consistent set {G̃(1), G̃(2), G̃(3), G̃(4)} is a Janet/Gröbner basis,
then by Theorem 1 it is s-consistent. �
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We illustrate Proposition 2 and Corollary 2 by the s-inconsistent difference
scheme {F̃

(1)
1 , F̃

(2)
1 , F̃

(3)
1 , F̃

(4)
1 } of Sect. 3 where the first three difference equations

coincide with those of the system (10),

F̃
(i)
1 = F̃ (i) (i = 1, 2, 3),

and F̃
(4)
1 is given by Eq. (20). Because of the distinction of the last equation from

F̃ (4) in (10), the reduced Taylor expansions of equations F̃
(1)
1 = 0 and F̃

(4)
1 = 0

are different from F̃ (1) = 0 and F̃ (4) = 0 in system (24):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃
(1)
1 := ux + vy − h2 Re pyy

6 + h2vyyy

3 + O(h4) = 0,

F̃
(2)
1 := px + 1

Revxy − 1
Reuyy − f (1) + h2f(1)

xx

6 + h2f(1)
yy

4 + h2f(2)
xy

4

−h2pxyy

2 + h2uyyyy

6Re + O(h4) = 0,

F̃
(3)
1 := py − 1

Revxx − 1
Revyy − f (2) − h2f(1)

xy

12 + h2f(2)
xx

12 − h2f(2)
yy

6

+h2pyyy

3 − h2vyyyy

6Re + O(h4) = 0,

F̃
(4)
1 := pxx + pyy − f

(1)
x − f

(2)
y − h2f(1)

xxx

12 − h2f(1)
xyy

12

+h2f(2)
xxy

12 − h2f(2)
yyy

4 + h2pyyyy

6 + O(h4) = 0.

(30)

If we expand F̃ i
1 (i = 1÷ 4) up to the fourth order terms in h and substitute the

obtained expansions into the left-hand side of the integrability condition (25),
then we obtain

h2f
(1)
xxx

4
− h2f

(1)
xyy

4
+

h2f
(2)
xxy

4
− h2f

(2)
yyy

4
+

h2pyyyy

2
+ O(h4). (31)

Expression (31) contains terms of second order in h. Up to the factor 4,
the sum of these terms is the differential polynomial F (6) in Eq. (22). Thus,
the presence of the second-order terms in (31) is intimately related to the s-
inconsistency of (24) with governing Stokes equations (1). It is clear that the
PDE system (30) cannot be considered as a modified Stokes flow.

5 Numerical Simulation

In this section, we present a numerical simulation in order to experimentally
validate the s-consistent difference scheme (10) for which we constructed the
modified Stokes flow (24). For that, we suppose that the Stokes system (1) is
defined in the rectangular domain which is discretized in the x- and y-directions
by means of equidistant points. We simulate a fluid flow through porous media
which is often mainly caused by the viscous forces, so that its modeling using
the Stokes system (1) is reasonable; see Fig. 2. Such a setup has many practical
applications in the field of petroleum engineering [5].

We measure the maximum relative error of the average velocities compared to
a ground truth result obtained by computing with extremely tiny h-values. From
several simulations with varying h-values, we can follow that a maximum relative
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Fig. 2. Visualization of the simulation of a fluid flow through porous media using the
s-consistent difference scheme (10).

error of more than 15% in the velocity space compared to the ground truth should
not be tolerated in order to ensure for a sufficient degree of global accuracy.
Using this restriction we evaluate the performance of the s-consistent difference
scheme (10) against the popular classic marker-and-cell (MAC) method [13]. We
observe that compared to MAC, using the scheme (10), one can simulate with
around a factor of 1.7, i.e., with significantly larger h-values and, at the same
time, keep the relative error below the 15%-bar. Moreover, we observe that this
factor is only slightly dependent on the Reynolds number.

6 Conclusion

For the two-dimensional incompressible steady Stokes flow (1) and a regular
Cartesian solution grid, we presented a computer algebra-based approach in
order to derive the s-consistent difference scheme (10) for which we constructed
the modified Stokes flow (24). It shows that the generated scheme has order
O(h2).

Our computational procedure for the derivation of the modified Stokes flow
is based on a combination of differential and difference Gröbner basis techniques.
The first is applied to the governing Stokes equations (1) to complete them to
the involution form (3) incorporating the pressure Poisson equation F (4), and to
verify the s-consistency of the scheme by applying the criterion of s-consistency
(Theorem 1) which is fully algorithmic for linear systems of PDEs. The difference
Gröbner bases technique is used for the derivation of the scheme on the chosen
grid by means of difference elimination.

In addition, we used both techniques to construct a modified Stokes flow (24).
Its structure as well as that of the scheme depends on the used difference rank-
ing. We experimented with several rankings and finally preferred the POT rank-
ing satisfying (2) for the differential case and (9) for the difference case as the
best suited. To perform the related computations we used the Maple packages
Janet [4] and LDA [11].

Since our difference scheme (10) for ranking (9) is obtained from its first three
equations {F̃ (1), F̃ (2), F̃ (3)} by constructing the difference Janet/Gröbner basis
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(see Remark 2), it is interesting to check via the Gröbner bases whether there are
approximations of the continuity equation F (1) in the difference ideal generated
by F̃ := {F̃ (2), F̃ (3), F̃ (4)}. In the case of existence of such approximations they
might be used for the numerical study of Stokes flow in the velocity-pressure for-
mulation. However, the computation with LDA shows that the discrete version
of F (1) is not a consequence of F̃ . Thus, in the velocity-pressure formulation one
has to add information on the continuity equation to F̃ via the corresponding
boundary condition (cf. [18]).
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Abstract. This paper presents a proof of concept for symbolic and
numeric methods dedicated to the parameter estimation problem for
models formulated by means of nonlinear integro-differential equations
(IDE). In particular, we address: the computation of the model input-
output equation and the numerical integration of IDE systems.

1 Introduction

This paper is concerned with the problem of modeling phenomena by systems of
nonlinear integro-differential equations (IDE). Motivations for IDE modeling are
presented in [14]. In turn, this scientific question raises the two following prob-
lems: how to determine the identifiability property of such IDE models? how to
estimate parameters from experimental data? We focus on a particular method,
called the “input-output (IO) ideal” method, which is available in the nonlin-
ear differential case. The idea of this method consists in computing an equation
(called the “IO equation”) which is a consequence of the model equations and
only depends on the model inputs, outputs and parameters. In the nonlinear
differential case, it is known since [27] that it can serve to decide the identifia-
bility property of the model. It is known since [17] that it can also be used to
determine a first guess of the parameters from the experimental data. This first
guess may then be refined by means of a nonlinear fitting algorithm (of type
Levenberg-Marquardt) which requires many different numerical integrations of
the model.

Designing analogue theories and algorithms in the IDE case is almost a com-
pletely open problem in spite of many recent progresses on the algebraic prop-
erties of integro-differential algebras and their operator rings [2–4,19,20,33,36].

This article provides two contributions:

1. a symbolic method for computing an IO equation from a given nonlinear IDE
model. This method is incomplete but it is likely to apply over an important
class of models that are interesting for modelers;
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2. an algorithm for the numerical integration of IDE systems, implemented
within a new open source C library, endowed with a new MAPLE package
called Blineide. The library does not seem to have any available equiva-
lent. Our algorithm is an explicit Runge-Kutta method which is restricted
to Butcher tableaux specifically designed in order to avoid solving integral
equations at each step. In this paper, we provide three such tableaux.

The structure of the paper is as follows. Section 2 provides examples of IDE
equations and the symbolic method for computing an IO equation from an IDE
model. Section 3 describes our algorithm for the numerical integration of IDE.
Section 4 describes its implementation.

2 An IDE Input-Output Equation

This section starts with a short presentation of the Volterra-Kostitzin model,
which gives some insight on the point of introducing kernels in models. The
second section presents an academic IDE model and explains, over an example,
how to compute an IO equation. The last section contains a discussion on how
algorithmic the process illustrated by the example is.

2.1 The Volterra-Kostitzin Model

As pointed out in [14], one of the simplest nonlinear integro-differential models
studied in the literature is the Volterra-Kostitzin model [26, pp. 66–69] (more
recently revisited in [32, Chap. 4]), which may be used for describing the evolu-
tion of a population, in a closed environment, intoxicated by its own metabolic
products (other applications of the same model are considered in Kostitzin’s
book). It is an integro-differential equation since the unknown function y(x)
appears both differentiated and under some integral sign.

ẏ(x) = ε y(x) − λ y(x)2 − μ y(x)
∫ x

x−T

K(x − ξ) y(ξ) dξ. (1)

The independent variable x is time. The dependent variable y(x) is the popula-
tion, varying with time. The symbols ε, λ, μ and T denote parameters. The kernel
(or nucleus) K(x, ξ) = K(x − ξ) is the residual action function. For instance,
it could be very similar to a “survival function” in population dynamics [23, p.
3]: a decreasing function, starting at K(0) = 1, equal to 0 outside the interval
[0, T ]. Then K(x−ξ) would represent the “toxicity factor” of metabolic products
which are the most toxic when produced, at x = ξ, become less toxic with time,
and have a negligible toxic effect at time x = ξ + T .

In the case of models presented by chemical reaction systems, similar ker-
nels could arise from stochastic considerations. Indeed, if the molecularity (the
number of reactants) of each reaction is one, then the statistical moments of the
random variables which count molecules can be described by ODE [31]. However,
if the molecularity of some reactions is greater than one, then the ODE system
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for the statistical moments becomes infinite and is in general very difficult to
approximate by a finite system. A natural idea would then consist in tabulat-
ing the density probability of the event under consideration and incorporate the
tabulated curve as an integral kernel in some IDE model. See [24, Sect. 3.6].

2.2 A Compartmental IDE Model

The academic two-compartment model depicted in Fig. 1 is a close variant of
[40, (1), p. 517] endowed with an input u(x) and an IDE variant of the model
studied in [14]. Compartment 1 represents the blood system and compartment 2
represents some organ. Both compartments are supposed to have unit volumes.
The function u(x), which has the dimension of a flow, represents a medical drug,
injected in compartment 1. The drug diffuses between the two compartments,
following linear laws: the proportionality constants are named k12 and k21. In
this paper, we assume that the drug exits compartment 1, following a law given
by an integral term (this model is thus new), depending on a parameter μ (see the
Volterra-Kostitzin model for a possible modeling argument). The state variables
in this system are z1(x) and z2(x). They represent the concentrations of drug in
each compartment. This information is sufficient to write the two first equations
of the mathematical model (2). The last equation of (2) states that the output,
denoted y(x), is equal to z1(x). This means that only z1(x) is observed: some
numerical data are available for z1(x) but not for z2(x). The problem addressed
here then consists in estimating the three parameters k12, k21 and μ from these
data and the knowledge of u(x).

Fig. 1. A two-compartment model featuring three parameters.

In order to estimate the model parameters over such a model, the strat-
egy of the “input-output ideal” method consists in computing from the model
equations, an “input-output (IO) equation” featuring only the input u(x), the
output y(x) and the unknown parameters. If the model were differential only,
the computation of the IO equation, which is an elimination problem, could be
handled by means of the elimination theory of differential algebra. See [17,27]
and references therein. The IO equation itself could be algebraically described as
the single differential polynomial of the regular differential chain are associated
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to some differential polynomial ideal of some differential polynomial ring. In the
IDE case, there does not exist (yet) any integro-differential algebra theory, rich
enough to enunciate such a precisely defined statement.

ż1(x) = −k12 z1(x) + k21 z2(x) − μ z1(x)
∫ x

0

K(x − ξ) z1(ξ) dξ

︸ ︷︷ ︸
integral term

+u(x),

ż2(x) = k12 z1(x) − k21 z2(x), (2)

y(x) = z1(x).

2.3 A Work-Around Strategy

It turns out that a work-around strategy is available for a wide class of IDE
models. We present it over Model (2).

Renaming Integrals. The idea consists in renaming the integral term using a
new unknown function F (x), yielding a polynomial differential model (3), and
process this differential model by the classical IO ideal method.

ż1(x) = −k12 z1(x) + k21 z2(x) − μ z1(x)F (x) + u(x),
ż2(x) = k12 z1(x) − k21 z2(x), (3)
y(x) = z1(x).

Model (3) can be viewed as a polynomial system of the differential polynomial
ring R = F{z1, z2, y, u, F}, where F = Q(k12, k21, μ). As such, it generates a
perfect (even a prime) differential ideal A. It is even a regular differential chain
for A, with respect to some orderly ranking.

Eliminating State Variables. By an elimination procedure (eliminating z1
and z2) one can compute a regular differential chain Cio such that Cio∩F{y, F}
is a regular differential chain for the differential ideal A ∩ F{y, F}. The regu-
lar differential chain Cio ∩ F{y, F} is made of the following single differential
polynomial

Dio = ÿ(x) + μ ẏ(x)F (x) + k12 ẏ(x) + k21 ẏ(x) − u̇(x) + μ y(x) Ḟ (x)

+ μk21 y(x)F (x) − k21 u(x).
(4)

Integrating the IO Equation. Applying an integration algorithm for differ-
ential fractions, one gets the following reformulation of (4)

Dio = μk21 y(x)F (x) − k21 u(x)

+
d
dx

((k12 + k21) y(x) + μ y(x)F (x) − u(x)) +
d2

dx2
y(x),

(5)
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which can now easily be transformed into an integral equation (integrate twice
between 0 and x and use the kernel x − ξ (not to be confused with the kernel
K(x, ξ) present in model (3)) to encode double integrals by single ones—see [23,
Sect. 1.3.1]):

Iio = μk21

∫ x

0

(x − ξ) y(ξ)F (ξ) dξ − k21

∫ x

0

(x − ξ)u(ξ) dξ

+ (k12 + k21)
(∫ x

0

y(ξ) dξ − x y(0)
)

+ μ

(∫ x

0

y(ξ)F (ξ) dξ − x y(0)F (0)
)

−
(∫ x

0

u(ξ) dξ − xu(0)
)

+ y(x) − y(0) − x ẏ(0).

(6)

Normalizing Integral Terms. It is now time to replace F (x) by its value
(and F (0) by 0). However, the expression under the integral sign involves an
indeterminate (z1) which is supposed to be eliminated. Since this expression is a
differential polynomial, differential algebra tools can again be applied and we can
replace z1 by its normal form with respect to the regular differential chain Cio.
Since this chain involves the equation z1 = y, the normal form of z1 is y and we
actually replace F (x) by

∫ x

0

K(x − ξ) NF(z1, Cio)(ξ) dξ =
∫ x

0

K(x − ξ) y(ξ) dξ.

The Resulting Equation. After replacement, one eventually gets Eq. 7, given
in Fig. 2. In order to establish the global identifiability of model (3), the argument
would be the following: Eq. 7 is a linear combination c1m1 + · · ·+ c4m4 = m0. In

Fig. 2. An IO equation for model 3.
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principle, the “monomials” mi can be evaluated at different values of x over the
experimental data, yielding a linear system whose unknowns are the blocks of
parameters ci. If the matrix of this linear system has full rank, the system can
be solved, providing estimates for the blocks of parameters. Over this system, it
is—in principle—easy to recover estimates of the model parameters k12, k21, μ
from the estimates of the ci. These questions are not addressed in this paper.

2.4 Discussion

By many aspects, the computation of Eq. 7 from model (3) suggests algorithms
for processing models presented by systems of IDE.

Renaming Integrals. Indeed, it is always possible to rename many different
integral terms by new unknown functions Fi(x). The resulting model is a system
of differential polynomials (more generally, of differential fractions) in the sense
of differential algebra. If the initial IDE model is a dynamical system (i.e. is
solved w.r.t. differentiated state variables zi) then the resulting model defines
a prime differential ideal and is a regular differential chain for this ideal, w.r.t.
some orderly ranking.

Reference books for differential algebra are [25,35]. Regular differential chains
are generalizations of Ritt’s characteristic sets. In the non differential context,
regular chains provide an alternative to Gröbner bases for describing polynomial
ideals and performing some ideal-theoretic constructs. In the differential context,
the Gröbner bases theory does not generalize satisfactorily: regular differential
chains and other close concepts are the only tools available for investigating
properties of differential ideals. See [13] for a recent study of this concept.

Orderly rankings are defined in [25, I, 8, p. 75]. The fact that the differential
ideal defined by a dynamical system is prime follows from the fact that each
equation of the regular differential chain is linear in its leading derivative, hence
cannot be represented as the product of two differential polynomials with positive
degree in this leading derivative.

Eliminating State Variables. Eliminating the state variables can be achieved
by means of a differential elimination algorithm [1,10,11,28,34], using some
specific ranking, leading to some regular differential chain Cio. These elimi-
nation algorithms can be applied over any system of differential polynomials.
They can also be applied over any system of differential fractions, by handling
the numerators of the differential fractions as differential polynomial equations
and the denominators as differential polynomial inequations (polynomials that
are required to be nonzero). See the implementation of [7, RosenfeldGroebner].
Moreover, if the input model already is a regular differential chain w.r.t. some
(orderly) ranking, it is possible to apply an improved elimination method [12,30]
which avoids splitting cases. Let us conclude this section by a few remarks:
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– the state-of-the-art elimination algorithms do not try to minimize the number
of times these unknown functions get differentiated, which might be problem-
atic if the integral terms depend on (say) kernels which are not indefinitely
differentiable. A similar issue arises in the case of PDE [42];

– if the integral terms satisfy some known differential algebraic relation, it is
possible to enlarge the model equations with this relation before the elimina-
tion process.

Integrating the IO Equation. For simplicity, let us assume that, among
the many different differential polynomials occurring in the regular differential
chain Cio, a single one (called the IO equation) is free of the state variables.

The integration algorithm [9] may be applied over the IO equation or over
any equivalent differential fraction, obtained by dividing the equation by some
other differential polynomial, such as the leading coefficient (the initial) of the
IO polynomial. The result can then be converted into an IDE (such as (6)) by
means of classical techniques. See [8] and [23, Formula (1.45)].

From a theoretical point of view, this integration step is not mandatory.
In practice, it leads to formulas which are much more suitable for parameter
estimation, as established in [29,39].

Normalizing Integral Terms. Substituting back the unknown functions Fi(x)
by the integral terms they represent does not raise any problem. The normal-
ization of the expressions lying under the integral terms leads to a more subtle
issue.

In general, an integral term involves, as sub-expressions, many different (e.g.
in the case of nested integrals) differential fractions [f1, f2, . . . , fr]. The normal
form algorithm presented in [6] can be applied over all these fractions, w.r.t. the
whole regular differential chain Cio. These normal forms are themselves differ-
ential fractions [NF1,NF2, . . . ,NFr]. Replacing each f by its normal form, one
gets another formulation of the integral term, which is equivalent to the original
one.

In full generality, the normal forms may themselves depend on unknown
functions Fi(x) and one may consider to iterate this substitution process. If
the ranking w.r.t. which Cio is defined is not carefully chosen, the substitution
process may transform an IO equation into a non-IO equation or (worse) may
not terminate at all. A careful study of this issue is left for investigation in
another paper.

The Resulting Equation. If the resulting equation does not depend on the
state variables at all, it is a candidate for an IO equation. However, in the
absence of any sound integro-differential elimination theory, it is not clear that
it is minimal. For similar reasons, if the resulting equation depends on state
variables so that it is not an IO equation, it is not clear that no IO equation
exists at all.

mmonagan@cecm.sfu.ca



Integro-Differential Modeling 89

3 Numerical Integration of IDE Systems

According to [41], IDE are a particular case of delay differential equations (DDE)
(continuous delay differential equations). However, though there exist numeri-
cal solvers for DDE with constant delays [37], there does not seem to be any
widely available software for IDE. Within a whole section dedicated to DDE
[21, Sect. II.17], a single page is dedicated to the numerical integration problem
of IDE in [21, p. 351], which refers to [15] and sketches solutions in particu-
lar cases only. In this article, we focus on explicit Runge-Kutta methods. See
[18] to a theoretical study of their application to the numerical integration of
IDE. The relationship between these early works and our paper still needs some
investigation.

3.1 The Method

We are concerned with the numerical integration of IDE of the form

ẏ(x) = f(x, y(x)), (8)

over some integration interval [x0, xend]. The independent variable x is real. The
dependent variable y may actually be a vector of n functions of x. The function f
may depend on inputs u(x) and on integral terms of the form

∫ β(x)

α(x)

K(x, ξ)G(y(ξ)) dξ. (9)

The inputs u(x) and the kernels K(x, ξ) present within the integral terms (9)
are supposed to be Cρ for some ρ ≥ 0. For instance, we want to allow inputs to
be piecewise defined and kernels to be given by, say, cubic splines. It is required
that the integral upper bounds β(x) ≤ x (typically, β(x) = x) in order to obtain
“causal” systems; various lower bounds are allowed (typically α(x) = x0 or
α(x) = x−T for some T > 0). Some initial values need also be given. Depending
on integral lower bounds α(x), the value of y(x) may need to be prescribed on
some sufficiently large interval.

In this article, we are concerned with the integration problem by means of
a numerical integrator derived from explicit Runge-Kutta methods. Moreover,
we focus on the study of “fixed step size” integrators. On the one hand, once
such an integrator is designed, it is not difficult to design an adaptive step size
integrator following the approach which is classical for ODE—since embedded
formulas are available. See [21, Sect. II.4]. On the other hand, adaptive step
size controllers use the knowledge of the orders of both the principal and the
embedded formulas in order to estimate the local error. It is thus important
to make sure that the theoretical orders of these formulas correspond to their
practical orders—an investigation to be carried out using a “fixed step size”
integrator.

The quotes surrounding the qualifier “fixed step size” are due to the fact that
step sizes will actually vary during the integration process. Indeed, assuming
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some number of steps N is prescribed, one can define a reference step size hr =
(xend − x0)/N . Assuming moreover that an order p Runge-Kutta method is
prescribed, one expects the local error produced by the explicit Runge-Kutta
algorithm to be of the order of hp+1

r by [21, Theorem 3.4]. Now, if we had to
integrate an ODE, it would be sufficient to perform N steps of size hr. This
strategy does not apply here because we also want to avoid solving integral
equations or, more generally, implicit equations involving integrals.

Avoiding Solving Integral Equations. Assume that the current point
(x0, y0) is known. Consider some integral (9) to be evaluated at x = x0. Assume
thus that an approximation of y(ξ) is known over the interval [α(x0), x0]. Since
β(x) ≤ x, we have [α(x0), β(x0)] ⊂ [α(x0), x0] and the integral (9) can be
approximated by a mere quadrature. Thus f(x0, y0) also can be approximated
by quadratures and, given any step size h, the order 1 Euler method (10) permits
to compute an approximation of the next point (x1, y1)

y1(h) = y0 + h f(x0, y0). (10)

This is however not true anymore for order p > 1 classical Runge-Kutta meth-
ods. Consider Runge midpoint formula, summarized by the following Butcher
tableau1 with s = 2 stages [21, Chap. II.1, Table 1.1]

0
c2 a21

b1 b2

=
0
1
2

1
2

0 1

The Runge-Kutta formula [21, II.1, (1.8)] requires s evaluation of the function f
of formula (8). These evaluations have the form

ki = f(x0 + ci h, y0 + h (ai,1 k1 + · · · ai,i−1 ki−1)) (1 ≤ i ≤ s)

Assuming (x0, y0) is the current, known, position and the stepsize h > 0, we see
that negative ci correspond to an evaluation of f for x < x0 i.e. in the past.
A contrario, if any ci is positive (which is the case for all classical tableaux),
the evaluation of the formula implies an evaluation in the future which, in the
context of IDE, implies solving an integral equation—or worse. To overcome
this issue, we have designed the Butcher tableaux of Fig. 3 with negative ci only.
They were obtained, using the MAPLE computer algebra system, by brute force
identification of the coefficients of the Taylor series of the exact solution y(x0+h)
and the ones of the result of the Runge-Kutta formula, denoted y1(h) in [21, II.1,
1 Butcher tableaux were introduced by Butcher in [16] to provide a compact descrip-

tion of “Runge-Kutta methods”. To each tableau is associated a number of stages
(customarily denoted s) and an order (customarily denoted p). The computational
cost of a Runge-Kutta method increases with the number of stages. The efficiency
increases with the order. The coefficients of the tableaux are denoted ci (the leftmost
column), bj (the bottom row) and ai,j (the matrix).
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(1.8)]. The rightmost tableau has 5 stages since a Gröbner basis computation
proved that all 4 stages tableaux of order 4 must have c4 = 1 (a result which is
known, at least under some simplifying assumptions—see [21, Theorem 1.6]).

Fig. 3. The leftmost tableau has s = 2 stages, order p = 2 and an embedded formula
of order p̂ = 1 (Euler). The tableau in the middle has s = 3 stages, order p = 3 and an
embedded formula of order p̂ = 2. The rightmost tableau has s = 5 stages, order p = 4
and an embedded formula of order p̂ = 3. The coefficients ci of all tableaux (see the
leftmost columns) satisfy −1 ≤ ci ≤ 0 for 1 ≤ i ≤ s.

Stability Analysis. From a theoretical point of view, the stability of Butcher
tableaux can be determined by computing the stability function R(z) of each
tableau and establishing that its stability domain—which is the subset of the
complex plane such that |R(z)| < 1—is not empty. Some existing computer
algebra software are dedicated to this study [38] but we could not take advantage
of them by lack of access to Mathematica. Instead, we directly computed R(z)
using [22, IV, (2.8)]. We observed that our two first tableaux, for which p = s,
exhibit the stability function given in [22, IV, (2.12)]. The leftmost tableau has
the following stability function, which admits a non empty stability domain:

R(z) = 1 + z +
z2

2
+

z3

6
+

z4

24
− z5

24
·

Experimental evidence of the existence of non empty stability regions for the
tableaux of Fig. 3 is provided in Sect. 4.

Step Size Control. Runge-Kutta methods with ci < 0 have however a draw-
back when x0 is the initial value or is on the border of a piecewise defined
domain, since the integrator will try to estimate the current derivative of the
integral curve on the right hand piece of the domain from derivatives evaluated
on the left hand piece. This drawback is certainly a feature for integral terms
(by design of the equations). But the terms which lie outside integrals should be
evaluated on the right hand piece of the integration domain.

To achieve this goal, our strategy consists in starting with a single Euler step,
using a very small step size h0, then switch to some prescribed more efficient
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Runge-Kutta method of Fig. 3 and double the step size at each iteration until
the reference step size hr is reached. Precisely, assume we want to apply some
Runge-Kutta method of order p > 1. We expect a local error of order hp+1

r .
This local error can also be obtained by an Euler step with step size h0 such
that h2

0 = hp+1
r i.e. such that h0 = h

(p+1)/2
r . Let now k be an integer such that

h0 � hr/2k. Solving, one gets

k =
⌈
− log2

(
h

p−1
2

r

)⌉
, h0 =

hr

2k
·

Let us assume we are starting the integration with x0 precisely on the border
between two pieces of the integration interval or at its beginning. The first Euler
step with step size h0 does not involve any negative ci: the terms depending
on y and lying outside integrals are evaluated over the border, which may be
considered as part of the right hand piece. The second iteration starts at x0+h0.
Since the coefficients ci of Fig. 3 satisfy 0 ≥ ci ≥ −1, this step can be performed
using the order p Runge-Kutta method, with step size h0: all terms depending
on y and lying outside integrals are thus evaluated within the right hand piece.
The third iteration starts at x0 + 2h0. This step can be performed using the
order p Runge-Kutta method, with step size h = 2h0. Continue likewise, doubling
the step size at each iteration. At the iteration k + 2, the reference step h = hr

is reached (see below) and the integrator may continue with this fixed step size.

Step number Step size Method
1 h0 = hr/2k Euler
2 h0 Order p RK
3 2h0 Order p RK

...
k + 2 2k h0 = hr Order p RK

Evaluating Quadratures. In order to evaluate quadratures at any x, it is
necessary to be able to evaluate the dependent variable y at any ξ ∈ [x0, x].

For this, the whole sequence of points (xk, yk) computed by the numerical
integrator is recorded as well as the value fk = f(xk, yk) (the derivative of y)
whenever it is available. Two methods are implemented for estimating y(ξ):

1. by evaluating the interpolation polynomial defined by a set of points sur-
rounding ξ (the optimal number of points depends on the order of the Butcher
tableau), using Newton’s divided differences;

2. by evaluating the interpolation polynomial defined by Hermite interpolation
i.e. over a dense output of the integrator. See [21, Chap. II.6].

For quadratures, since the orders of our tableaux do not exceed 4, we use
basic integration schemes i.e. Newton and Simpson order 4 formulas, with step
size equal to the reference step size hr.
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4 Implementation

Our numerical integrator is implemented within an open source C library (about
4000 lines plus 3200 lines for the test suite of version 2.1) available at [5]. It
compiles over Linux platforms. It is endowed with a MAPLE library which con-
siderably simplifies the C code generation from mathematical systems.

The C code can be compiled using floating point numbers of various sizes
(simple, double, long double and quadruple precision). Its main functionalities
are a fixed step size numerical integrator for IDE systems and a function which
seeks the best fitting parameters of an IDE system w.r.t. experimental data. This
function is mostly a call to the GSL implementation of the Levenberg-Marquardt
algorithm, which relies on our numerical integrator in order to compute errors.

4.1 Data Types

Here is a quick review of the main data types. For a better flexibility, most of
them are parametrized by functions.

The library has been designed to apply over a piecewise defined integration
interval. Pieces may arise from many different sources: inputs may be piecewise
defined, delayed evaluations such as y(x − T ) may occur from differentiated
integral terms . . . The boundaries between the pieces of the integration interval
are called critical points.

A specific data type permits to describe the possibly many different inputs
u(x) of the IDE system to be integrated. An input is defined by a name, an
evaluation function and a function which permits to enlarge the set of the model
critical points with the ones which are due to the input.

A specific data type is dedicated to the model parameters. A parameter is
defined by a name, a floating point value, a function which permits to enlarge the
set of the model critical points with the ones which are related to the param-
eter, and two functions providing a transformation and its reciprocal before
performing nonlinear fitting methods (an example of such a useful pair of trans-
formations is the pair log / exp to keep positive small parameters which must
remain positive).

A specific data type describes the problem i.e. the IDE system to be inte-
grated. A problem is defined by a dimension n, an integration interval [x0, xend],
an array of n initial value functions (in the general case, the numerical inte-
gration of an IDE requires the knowledge of the dependent variable y over an
interval, not only a single value at x0), an array of inputs, an array of parameters
and a function fcn for evaluating the right hand sides of the IDE equations. A
field of the problem data structure contains a description of the problem critical
points.

The integral terms (9) occurring in the right hand sides of the IDE equations
are described in a separate array of the problem data structure. This permits to
evaluate them before calling fcn in order to speed up the integrator as follows.
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Recall that, at each integration step, the m (say) integral terms have to be
evaluated s (the number of stages) times. Thus: (1) by grouping the m × s
quadrature evaluations in the code, it is much easier to compute them in parallel
using OpenMP facilities; (2) in some cases, the s evaluations of a given integral
term can be computed almost at the cost of a single evaluation, by updating the
current result from one stage to the following one.

A last data type contains the whole data needed by the integration process
(it is called the “history”). It contains the sequence of all points computed so
far (which is the actual history), the problem, the Butcher tableau to be used
and a few other fields of minor importance.

4.2 Usefulness of the Computer Algebra Package

A MAPLE package, called Blineide and shipped with the C library, permits
to handle IDE problems given by mathematical formulas. It permits either to
directly perform computations from MAPLE or to generate C code to help pro-
grammers who want to work at C level.

Beyond the obvious simplification provided to the user, the idea of generating
C code from a computer algebra software provides two important enhancements
which are not yet implemented: (1) it should permit to detect linear (algebraic?)
dependencies between the integral terms occurring in the IDE model and use
this information to reduce the computation cost; (2) it might permit a symbolic
study of the location of critical points for a better reliability of the integrator.

4.3 Tests

Checking Convergence Towards Exact Solution. Some tests are designed
to check that the numerical integrator converges toward the true solution of a
given IDE system, with the expected experimental order. An example of such
an IDE is the following one, which admits y(x) = cos(x) as a solution:

ẏ(x) = sin(x) − y2(x) + 4
∫ x

0

(x − ξ)2 sin(ξ) y(ξ) dξ − x2 + 1,

y(0) = 1.

In order to test the experimental order of the numerical integrator over a given
example, the test function computes the relative error produced with 2k inte-
gration steps, for many different values of k. The experimental order is then
estimated, by linear least squares, as the slope a of the following equation:

k a + b = − log2(relerr). (11)

Other tests check the behaviour of the numerical integrator using various
inputs and kernels, including kernels defined by cubic splines.
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Checking Experimental Orders. We checked our integrator over Volterra-
Kostitzin model (1) and the compartmental IDE model (3). In the case of the
Volterra-Kostitzin model, we estimated the practical order of the integrator when
used with the Butcher tableaux of Fig. 3. In particular, we addressed the case of
non smooth kernels in integrals (see the curves of Fig. 4) and non smooth inputs
(curves not shown).

On the left hand picture of Fig. 4, the kernel is a cubic spline (i.e. a C2 curve).
On the right hand picture, the kernel is a smooth curve (on the two pictures, the
mathematical problem to be solved is thus not the same). In each picture, there
is one curve per Butcher tableau of Fig. 3. Each curve was obtained as follows:
a first integration was performed with 215 steps. Its result was then considered
as a reference value and compared with the result of other integrations with
28, 29, . . . , 214 steps, giving 7 points hence a curve, which should be a straight
line (see formula (11)). Its slope is a numerical estimate of the order of the
numerical integrator. In the case of a C2 kernel, the integrator has order 2 when
used with an order 2 tableau; and a non reliable order close to 2 when used with
order 3 and 4 tableaux. In the case of a smooth kernel, the integrator has the
same order as the tableau with which it is used (the curve for order 4 is slightly
irregular because the order of the quadrature formula does not match the one
of the Butcher tableau).

Fig. 4. Experimental evaluation of the order of the IDE numerical integrator over
Volterra-Kostitzin model (1), with an integral lower bound equal to zero.

Nonlinear Fit. A test solves the fitting problem addressed by Kostitzin over
data obtained on a population of staphylococcus, obtaining a much better result
than [26, p. 72] which is to be expected since Kostitzin estimated parameters
using his mathematical skills, without any computer! See Fig. 5.
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Fig. 5. Best fitting curve for (1) with the trivial kernel K(x, ξ) = 1 and an integral
lower bound equal to zero, against the staphylococcus population reported in [26, p.
72]. Optimal parameters are ε = 3.97 × 10−1, λ = 6.56 × 10−5 and μ = 1.02 × 10−6.

Conclusion

We have presented and discussed a symbolic method for computing the IO equa-
tion of a given IDE system which is likely to apply over an important class of IDE
models, together with an open source library dedicated to the numerical integra-
tion of such systems, endowed with a new MAPLE package. This library does
not only integrate IDE systems but provides also parameter estimation facilities.
It seems to have no available equivalent. Its existence is of major importance for
promoting IDE modeling.

However, these very promising results raise in turn many fascinating chal-
lenges, both theoretical and practical. Indeed, what about: a complete algo-
rithm for computing IO equations? an IDE analogue of the “input-output ideal”
method? a sound theory for critical points? implicit numerical integrators? These
issues will be addressed in future papers.
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Abstract. We present a new method for visualizing planar real alge-
braic curves inside a bounding box based on numerical continuation and
critical point methods. Since the topology of the curve near a singular
point is not numerically stable, we trace the curve only outside neigh-
borhoods of singular points and replace each neighborhood simply by a
point, which produces a polygonal approximation that is ε-close to the
curve. Such an approximation is more stable for defining the numerical
connectedness of the complement of the curve, which is important for
applications such as solving bi-parametric polynomial systems.

The algorithm starts by computing three types of key points of the
curve, namely the intersection of the curve with small circles centered
at singular points, regular critical points of every connected component
of the curve, as well as intersection points of the curve with the given
bounding box. It then traces the curve starting with and in the order of
the above three types of points. This basic scheme is further enhanced by
several optimizations, such as grouping singular points in natural clusters
and tracing the curve by a try-and-resume strategy. The effectiveness of
the algorithm is illustrated by numerous examples.

1 Introduction

Visualizing an implicit plane real algebraic curve is a classical and fundamental
problem in computational geometry and computer graphics. There have been
many works on this topic [5–7,15,18,20,21,24]. In the literature, a correct visu-
alization usually requires two conditions: (i) the generated polygonal approxima-
tion is ε-close to the curve, and (ii) the approximation is “topologically correct”,
which often means that the approximation is isotopic to the curve. There are
also many works [12,14,19,27] focusing only on (ii).

Different techniques [16] exist for visualizing plane curves, such as implicit-
to-parametric conversion, curve continuation and space subdivision. Symbolic
or hybrid symbolic-numeric approaches stand out for being capable of comput-
ing the exact topology and many of them are variants of cylindrical algebraic
c© Springer Nature Switzerland AG 2018
V. P. Gerdt et al. (Eds.): CASC 2018, LNCS 11077, pp. 99–115, 2018.
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decomposition. For the continuation-based approach, several difficulties arise,
such as finding at least one seed point from each connected component, deal-
ing with curve jumping and handling singularities. Each of the three problems
has its own interests. For instance, there are several approaches for comput-
ing at least one witness point for a real variety, either symbolically [8,13,26]
or numerically [17,29,30]. Different techniques for robustly tracing curves are
proposed [2,4,25,30]. Techniques for handling singularities also exist [1,11,23].

For curves with singularities, observe that condition (ii) is numerically ill-
posed, since a slight perturbation may completely change the topology of the
curve near a singular point, see Example 1 for instance. On the other hand, in
many applications, such as solving bi-parametric polynomial systems, condition
(ii) is unnecessary. Let us illuminate this point now. For a given bi-parametric
polynomial system, one can compute a border curve [9,10], or a border polyno-
mial [31] or discriminant variety [22] in general in the parametric space, where
the complement of the curve is a disjoint union of connected open cells, such
that above each cell the number of solutions of the system is constant and the
solutions are continuous functions of parameters with disjoint graphs. Let B
be a border curve and B̃ be a polygonal approximation ε-close to it. In [10],
we introduced the notion of ε-connectedness and showed that two points are
ε-connected w.r.t. B̃ implies that they are connected w.r.t. B, which in turn
implies that the parametric system has the same number of solutions at the
two points. Thus an ε-approximation of the border curve meeting only condition
(i) is good enough for the purpose of solving parametric systems. The curve
tracing subroutine in [10] relies on perturbation to handle singularities. In this
work, we develop a perturbation free algorithm. The algorithm traces the curve
only outside neighborhoods of singular points and replaces each neighborhood
simply by a point. An approximation produced in this way is more stable for
defining the numerical connectedness of the complement of the curve than those
approximations preserving the topology around singular points.

The paper is organized as follows. In Sect. 2, we formalize the problem and
provide a theoretical base algorithm to guarantee ε-closeness based on a robust
curve tracing method. Several strategies for improving the numerical stability of
tracing is proposed in Sect. 3, such as tracing the curve away from the singular
points rather than towards it, tracing the curve by a try-and-resume strategy,
and classifying singular points into natural clusters [3]. The theoretical algorithm
may require the step size to be very small. In Sect. 4, we present a more practical
algorithm based on optimizations in Sect. 3. Instead of preventing curve jumping,
it maintains a simple data structure to detect curve jumping. The effectiveness
of the algorithm is demonstrated through several nontrivial examples in Sect. 5.
Finally, in Sect. 6, we draw the conclusion and point out some possible future
directions to improve the current work.

2 A Theoretical Base Algorithm

It is highly nontrivial for continuation methods to guarantee that the polygonal
chains are ε-close to the curve even when the curve contains no singular points.
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Robust tracing without curve jumping must be involved. In the literature, there
are several techniques [2,4,25] that can solve this. Here we rely on a technique
developed in [30], which has been used to estimate the error of numerically
computed border curves in [10]. In particular, we have Theorem1, which provides
a way to obtain ε-approximation of a regular section of a curve.

2.1 Robust Tracing of Regular Curves

Definition 1. Let X and Y be two non-empty subsets of a metric space (M,d).
The Hausdorff distance dH(X,Y ) is defined by

dH(X,Y ) = max{supx∈X infy∈Y d(x, y), supy∈Y infx∈Xd(x, y)}.

Given a squarefree polynomial f ∈ R[x, y], a finite box B ⊂ R
2 and a given

precision ε ∈ R. A set S of polygonal chains contained in B is called an ε-
approximation of VR(f) if dH(ZR(S), VR(f) ∩ B) ≤ ε holds.

Let f be a squarefree polynomial of R[x, y]. Let Jf be the Jacobian of (f),
or simply J if no confusion arises. Let D be the unit disk centered at the origin.
Let B be a bounding box of R

2. W.l.o.g, we assume that B ⊂ D and that
K(f) = max({‖∇Jij(z)‖) | z ∈ D}) ≤ 1 holds, which can always be achieved by
shifting and rescaling.

Let z̃0 be an approximate point of VR(f), such that there exists a τ to make
the intersection of ‖z − z̃0‖ ≤ τ and VR(f) have only one connected component1

and the line in the gradient direction of f at z̃0 have only one intersection point
z0 with the component, see Fig. 1. We call z0 the associated exact point of z̃0 on
VR(f). Similarly we define z̃1 and z1.

Fig. 1. The associated exact point of an approximate point of the curve.

Let σ̃0 and σ̃1 be respectively the singular value of Jf (z̃0) and Jf (z̃1). Let

σ̃ := max(σ̃0, σ̃1). Let ρ ≥ 1 and ω =
√

2 (2 ρ − 1)
(
2 ρ − 2

√
ρ (ρ − 1) − 1

)

1 This component is a subset of a connected component C of VR(f) and the point z̃0
belongs to the Voronoi cell of C.
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Assume that 2ρ > 3ω holds (which is true for any ρ ≥ 1.6). Let s = σ̃−√
2τ

2
√
2ρ

.
Assume that s > 0 and ‖z̃1 − z̃0‖ < ω · s − 2τ. We have the following theorem.

Theorem 1. The points z0 and z1 are on the same component of VR(f). Let
Cz0z1 be the curve segment between z0 and z1 in VR(f). The Hausdorff distance
between Cz0z1 and the segment z̃0z̃1 is at most

tan
(

2 arccos(
1
ω

)
)

ω

4
√

2ρ
(
√

2τ + σ̃) + τ, or 1.082τ + 0.058σ̃ if ρ = 1.6.

Remark 1. The proof of the theorem is almost the same as Theorem 1 in [10]
and thus will not to be replicated here.

2.2 Handling Singularities

It is a well known fact that tracing a curve near singularities is difficult, as
illustrated in Fig. 2. The left subfigure illustrates tracing the zero of f = y2 −(−x2 + x

)3 starting with a regular point, where the right subfigure zooms in the
part of the left subfigure near the origin, which is a singular point. We see that
it may be difficult for curve tracing to escape out of the area near the origin, as
near the origin, Newton’s method requires to solve a linear system Az = b with
a very large condition number. As a result, the errors are radically amplified.

Fig. 2. Tracing the curve near a singular point.

Even worse, the topology of the curve near singularities is not numerically
stable, as illustrated by Example 1.

Example 1. Let f := x2 − y2. A slight perturbation of its coefficients changes
completely the local topology near its singular point (0, 0), as depicted in Fig. 3.

So instead of tracing through a singular point, we bypass it. Before presenting
an algorithm, we first use a simple example to illustrate the main idea.
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Plot of f − 0.001. Plot of f . Plot of f + 0.001.

Fig. 3. Plot of f and its perturbations.

Example 2. Consider the polynomial f := 6xy7+85x4y3−60x2y5−32x2y3+
14x4 − 35 y4. Its real zero set is displayed in Fig. 4 as the red curve.

It has three connected components inside the box −3 ≤ x ≤ 3,−4 ≤ y ≤ 2.
The component on the top has an isolated singular point (0, 0), colored in green.
To plot this component, we first draw a circle centered at the origin, which has
four intersection points with the curve, colored in black. Then we trace the four
branches starting with the four black points until meeting the boundary. Next
we plot the component at the left bottom corner. To do that, we start with
a blue point, which is an intersection point of the curve with a boundary of
the box, and trace the curve until meeting a boundary of the box. At last, we
plot the closed component at the right bottom corner. To do that, we compute
critical points of the curve in x-direction and get two yellow points. Starting
with any point of them, trace the curve until meeting the point itself. Finally
we plot the singular point. See the right subfigure of Fig. 4 for a visualization of

Fig. 4. Left: the curve and key points. Right: an approximation of the curve (ε = 0.4).
(Color figure online)
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the approximation. Note that the above procedure did not plot the whole curve.
The part in a small circular neighborhood of the origin is replaced by a point.
Such an approximation is numerically more stable than describing exactly the
topology near the origin, as illustrated by Example 1. Moreover, in applications
such as solving parametric polynomial systems, the curve is a border curve and
such an approximation suffices to answer exactly the number of real solutions of
the parametric system in an open cell of the complement of the curve.

– Algorithm ApproxPlotBase
– Input: a squarefree polynomial f ∈ R[x, y]; a bounding box B ⊂ R

2, and a
given precision ε.

– Output: an ε-approximation of VR(f).
– Assumptions: (i) the singular points are not on the boundary of the box B;

(ii) the distance between two singular points is at least ε; (iii) VR(f) has no
vertical components or equivalently f has no factors in R[x].

1. Compute the singular points S0 (inside B) by solving {f, ∂f
∂x , ∂f

∂y }.
2. Compute the intersection of the curve with circles centered at the singular

points with radius less than ε/22. Set S1 to be the set of these points, called
circular ring points, and C1 to be the set of these circles.

3. Compute the intersection of the curve with the boundaries. Set S2 to be the
set of these points.

4. Compute the witness points of VR(f) (inside B) by solving {f, ∂f
∂y }. Set S3

to be the set of these points. Remove from S3 points that are already inside
any circle in C1.

5. Starting with a point in S1, trace the curve robustly based on Theorem1 until
meeting (ε-close to) a point in S1 or S2. Remove the corresponding points met
in S1 or S2. Repeat Step (5) until S1 = ∅. Let the resulting set of polygonal
chains be P1.

6. Starting with a point in S2, trace the curve robustly until meeting a point
in S2. Remove the point met in S2. Repeat Step (6) until S2 = ∅. Let the
resulting set of polygonal chains be P2.

7. Remove points of S3 which are already on the computed curve.
8. Starting with a point in S3, trace the curve robustly until closed curves are

found. Remove point met during the tracing from S3. Repeat Step (8) until
S3 = ∅. Let the resulting set of polygonal chains be P3.

9. Return S0 ∪ P1 ∪ P2 ∪ P3.

Remark 2. Assumption (i) can be relaxed by slightly shrinking or expanding
the box. Assumption (ii) can be relaxed by grouping the singular points into
clusters. See Sect. 3 for details. Assumption (iii) can be relaxed by computing an
irreducible factorization and plotting vertical components separately.

Theorem 2. One can control errors of staring points and prediction-correction
in the above tracing algorithm, such that Algorithm ApproxPlotBase computes
an ε-approximation of VR(f).
2 One could replace the circles with axis aligned boxes inside them.
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Proof. We remark that to obtain an ε-approximation of the curve, one must have
one witness point from each connected component of the curve. If a component
is a solitary point, it must be in S0. For the other components which intersect
with the boundary or have singular points, the starting points are in S2 and S1

respectively. Note that although S3 may not contain witness points for every
connected component of Cf , it must contain at least one witness point for each
smooth closed component of VR(f), as their extreme points in the direction of
x must be inside S3. By the assumptions, the polynomial systems with zero
sets Si, i = 0, . . . , 3 are all zero-dimensional. If the interval Newton method [28]
converges, the error of solving these zero-dimensional systems and the error
of Newton iterations (in the corrector step), as well as the distance between
the curve and the polygonal chains can be controlled to be much less than ε
by Theorem 1. Otherwise, one can switch to α-theory [2,4] to guarantee the
convergence of Newton iterations. Moreover, by Theorem 1, curve jumping can
be avoided. Finally note that in the ε/2-neighborhood of the singular points, the
distance between the curve and the polygonal chains are less than ε. Thus, an
ε-approximation of VR(f) can be computed.

3 Improvements

In this section, we propose several strategies for improving the numerical stability
of the tracing algorithm in last section.

This first strategy is plotting the curve in the direction away from the singular
points rather than towards the singular point. In practice, the former can better
avoid curve jumping, as illustrated by Fig. 5. In this figure, the black curve is the
locus of f := x5 − y2. To trace the upper branch, we have two possible starting
points, namely the red × point, say z0, and the blue × point, say z1. If we start
from z0 and move in the tangent direction towards z1 in step size 0.09, we get
a red • point close to the upper branch, with which as an initial point, Newton

Fig. 5. Jump is more likely to happen when tracing towards singular points. (Color
figure online)
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iteration converges to a point still in the upper branch. However, if we start from
z1 and move in the tangent direction towards z0 in step size 0.09, we get a blue
• point close to the lower branch. As a result, Newton iteration converges to a
point in the lower branch.

This justifies why we first start with circular ring points instead of the bound-
ary points to trace the curve. However, this first strategy does not consider the
situation that there are two singular points in the same component, for which a
try-stop-resume strategy is needed, as illustrated by the following example.

Example 3. Consider again the polynomial f := y2−(−x2 + x
)3

. It is a closed
curve with two singular points (0, 0) and (1, 0).

In Fig. 6, the algorithm first plots the red points starting from two circular ring
points near (0, 0) and stops when the singular values drop (at the two × points,
which are called front points). It then starts from the two circular ring points
near (1, 0) and plots the blue points, which happen to meet the front points
before singular values drop.

Fig. 6. Try to plot the curve away from the singular points and stop when singular
values drop. (Color figure online)

The above example does not need the resuming step. Consider another one.

Example 4. Consider

f := − 3375 y14 − 4050 x4y9 + 108 y13 − 1215 x8y4 − 648 x2y9 + 2700 y11 + 1620 x4y6

+ 1296 x4y5 − 5400 x2y7 − 3240 x6y2 − 1170 y8 − 864 x6y − 810 x4y3

− 720 x2y4 + 4000 y6 + 2400 x4y + 540 y5 + 720 x4 − 1080 x2y − 135 y2 + 800.

The locus of f is visualized in Fig. 7. During the try phase, the algorithm starts
with the circular ring points at the bottom and plots the red point. After all
red parts have been plotted, it resumes and plots the blue parts and finally the
green parts. In this way, it avoids directly tracing from the left singular point to
the right one.

The third improvement is to take clustered singular points into consideration.
We borrow the notion of natural cluster from [3] on Voronoi vertices. Given a
set S of singular points of ZR(f) in a bounding box B. For any disk D(z, r)
centered at z of radius r, let ΔS(z, r) be the set of points in S contained in
D(z, r). If it is not empty, we call it a cluster of S. It is called a natural cluster
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Fig. 7. Try to plot the curve away from the singular points and stop when singular
values drop and resume. (Color figure online)

if D(z, r) and D(z, 3r) contains exactly the same set of points of S. We call
D(z, r) an associated disk of ΔS(z, r). Note that the associated disks of two
different clusters are also disjoint and the distance between their centers are at
least 3r. For a given S, it is easy to generate a set of disjoint natural clusters
and their associated disks. For instance, one can first sort the singular points in
an ascending order by the minimal distances between them. One can then check
if the points form natural clusters of radius r incrementally. If not, let d be the
minimal distances among points in S, one can always obtain natural clusters of
radius less than d/3. Let’s consider an example.

Example 5. Let g := −28x4yz + 58xy5 − 65xy2z3 + 23x4y + 24x3yz −
64x2z3 − 32xyz3 − 72xy2z + 6 z4 + 56xyz + 1 and f be the discriminant of
g w.r.t. z, which is an irreducible polynomial in Q[x, y]. A visualization of it in
the box −1 ≤ x ≤ 1,−1 ≤ y ≤ 1 is depicted in Fig. 8. The two points
(−0.9257645305e−1, 0.7100519895) and (−0.6009009066e−1, 0.7790657631) on
the top of Fig. 8 form a natural cluster of radius 0.1.

4 A Practical Algorithm

In Sect. 2, we presented a theoretical algorithm to compute an ε-approximation
of a curve, which may not be practical due to the small step size chosen. In
practice, one has to make a compromise between efficiency and accuracy. Based
on the improvement strategies in last section, next we develop a more practical
algorithm. Instead of preventing curve jumping, in the algorithms below, we
maintain a simple data structure to record if a start point has been visited. If a
point is visited more than once, then there is a possible curve jumping.
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Fig. 8. Plotting the curve with the help of natural clusters.

Algorithm 1. ApproxPlot
Input: A nonconstant squarefree polynomial f ∈ Q[x, y]. A bounding box

B ⊂ R
2. A precision ε > 0.

Output: An ε-approximation of f−1(0) in B.
1 begin
2 let S0 = VR({f, ∂f/∂x, ∂f/∂y}) ∩ B be the set of singular points of f in B;
3 let δ ≤ ε/2 be the radius of natural clusters;
4 cwp := ∅; bwp := ∅;
5 for each natural cluster C do
6 let p be the center point of C;
7 for each associated circular ring point q of p do
8 let s := ‖∇f (q)‖2; // s is the singular value of Jf (q)
9 let v := q − p; let c := 0; add (q, v, s, c) to cwp;

10 for each point q of f−1(0) ∩ ∂B do
11 let s := ‖∇f (q)‖2; let v be the direction towards the interior of B;
12 let c := 0; add (q, v, s, c) to bwp;

13 let Δ be the union of disks associated with the natural clusters; set
rwp := VR({f, ∂f/∂y}) ∩ B \ Δ;

14 rescale the coefficients of f if necessary;
/* Note that below the function PlotMain is called multiple times

with different arguments and flags. */

15 S1, front := PlotMain(f, B, cwp, bwp, rwp, δ, try);
16 S2 := PlotMain(f, B, front, bwp, rwp, δ, resume);
17 S3 := PlotMain(f, B, bwp, cwp, rwp, δ, boundary);
18 S4 := PlotOval(f, B, rwp, cwp ∪ bwp, δ);
19 return {∪4

i=0Si};
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Algorithm 2. PlotMain(f,B, cwp, bwp, rwp, δ, tag)
begin

S := ∅; front := ∅;
for j to |cwp| do

P := ∅;
(q, v, s, c) := cwp[j];
if cwp[j].c > 0 then

next;

else
cwp[i].c := 1;

mb := false; mc := false; mf := false;
while q ∈ B do

s′ := s; q′ := q; v′ := v;
P := P ∪ {q};
choose step size h ≤ δ/2 according to δ and s;
q := q + hv;
with q as initial point, apply Newton iterations to update q;
let s := ‖∇f (q)‖2;
let v := (∂f/∂y(q), −∂f/∂x(q))T and v := v/‖v‖2;
if v • v′ < 0 then v := −v ;

remove any element of rwp on q′q;
for i to |bwp| do

if (bwp[i].v) • v < 0 ∧ bwp[i].q ∈ q′q then
if bwp[i].c > 0 then

report curve jump error;
else

P := P ∪ {bwp[i].q};
mb := true; bwp[i].c := bwp[i].c + 1; break;

if mb then break;
for i to |cwp| do

if i 	= j and (cwp[i].v) • v < 0 and cwp[i].q ∈ q′q then

if cwp[i].c > 0 then
report curve jump error;

else if tag is ’resume’ or ’try’ then

P := P ∪ {cwp[i].q};
mc := true; cwp[i].c := cwp[i].c + 1; break;

if mc then break;
if tag=’try’ then

for i to |front| do
if front[i].v • v < 0 and front[i].q ∈ q′q then

P := P ∪ {front[i].q}; mf := true; remove front[i] from
front;
break;

if mf then break;
if s < s′ then

then add (q, v, s, 0) to front;break;

S := S ∪ {P};
return S;
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Remark 3. The main features of Algorithm ApproxPlot, such as tracing the
curve away from the singular points, and grouping the singular points into nat-
ural clusters and the try-and-resume strategy has been explained in last section.
Another feature of the algorithm is to detect curve jumping by counting the
number of times that a circular ring or boundary point is visited.

To achieve this, each circular point, boundary point, or new front point gener-
ated due to the drop of singular value, is treated as an object with four attributes
(q, v, s, c), where q is the point itself, v is the tracing direction, s is the singular
value of Jf (q) and c counts the times that q is visited. For an object ob, the
notation ob.q means taking the value of the attribute q. Each q should be visited
one and only one time. If its visiting time c > 1, there is a possible curve jump-
ing at q. It is easy to check that if there is no curve jumping, after executing
Algorithm PlotMain, the value of any c (counting visiting times of a circular ring
point or boundary point) can not be greater than 1. Moreover, if the numerical
errors are well controlled, after executing line 16 of Algorithm ApproxPlot, all the
points in rwp will only be on the closed components of the curve. Thus the value
of any c can not increase after executing Algorithm PlotOval. Finally we remark
that the algorithm may not detect curve jumping errors caused by exchanging
branches during tracing.

5 Experimentation

In this section, we provide some nontrivial examples to illustrate the effective-
ness of our method. Example 6 is selected from a list of challenges in [21] for
plane curve visualization. Example 7 is the discriminant of a random trivariate
polynomial. Example 8 is the resultant of two random trivariate polynomials.
Example 9 is a discriminant variety of a bi-parametric polynomial system. To
make a fair comparison with the Plots:-implicitplot command of Maple 18, all
polynomials are plotted using their irreducible factors.

We have implemented our algorithm in Maple. In the algorithms of last
section, there are several places where ones needs to solve zero-dimensional
polynomial systems, namely computing singular points, computing circular ring
points, computing boundary points and computing witness points. For the
first three, we find that it is more robust to call a symbolic solver and use
RootFinding:-Isolate of Maple. For the last one, we find it is more efficient to use
homotopy based methods and we implemented a Maple interface to hom4ps2.

Example 6. Let f := 1/4x6y2−1/2x4y4+1/4x2y6−(
x2 + y2

)7
. Visualizations

of it by Plot:-implicitplot in Maple and ApproxPlot are depicted in Fig. 9. No curve
jumping is reported by Algorithm ApproxPlot.

Example 7. Let f be the same polynomial as in Example 5. Visualizations of
it by Plot:-implicitplot in Maple and ApproxPlot are depicted in Fig. 10. The
polynomial f has branches very close to each other and the algorithm detects
curve jumping.

mmonagan@cecm.sfu.ca



Visualizing Planar Real Algebraic Curves with Singularities 111

Algorithm 3. PlotOval(f,B, rwp,wp, δ)
begin

S := ∅;
while rwp 
= ∅ do

P := ∅;
choose p ∈ rwp and set rwp := rwp \ {p}; k := 0; q := p;

let s := ‖∇f (q)‖2; let v := (∂f/∂y(q), −∂f/∂x(q))T and v := v/‖v‖2;
mt := false;
while q ∈ B do

k := k + 1; q′ := q; v′ := v; P := P ∪ {q};
choose step size h ≤ δ/2 according to δ and s;
q := q + hv;
with q as initial point, apply Newton iterations to update q;
let s := ‖∇f (q)‖2;

let v := (∂f/∂y(q), −∂f/∂x(q))T and v := v/‖v‖2;
if v • v′ < 0 then v := −v ;

if k > 2 and p ∈ q′q then
break;

remove any element of rwp other than p on q′q;
for i to |wp| do

if (wp[i].v) • v < 0 ∧ wp[i].q ∈ q′q then
if wp[i].c > 0 then

report curve jump error;

mt := true; wp[i].c := wp[i].c + 1; break;

if mt then break;

S := S ∪ {P};

return S;

Fig. 9. Visualization of Example 6.
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Fig. 10. Visualization of Example 7.

Example 8. Let f1 := 72 y2z5+26x2yz3−84x2y2−73xz2+6, f2 := −24x4z2−
35 yz3 + 43 yz2 − 66 z3 + 3. Let f be the resultant of f1 and f2 w.r.t. z. A
visualization of it is depicted in Fig. 11. The polynomial f has branches very
close to each other and the algorithm detects curve jumping.

Fig. 11. Visualization of Example 8.

Example 9. Let F := {8wyx2 + z4 + 6w3 + 8w2x − 9 y2 − 4 y + 1,−wx3 +
x4 + z4 +7x3 +2 y2x+2x2 +1} be a parametric system with parameters x, y. A
discriminant variety of F is a union of zero sets of two irreducible polynomials
in (x, y). A visualization of it is depicted in Fig. 12. No curve jumping is reported
by ApproxPlot.

mmonagan@cecm.sfu.ca



Visualizing Planar Real Algebraic Curves with Singularities 113

Fig. 12. Visualization of Example 9.

Remark 4. The running time of implicitplot largely depends on the value of the
option numpoints. The running time of ApproxPlot depends on the precision ε.
For the options chosen in this paper, here is a summary of the running time (in
seconds): Note that for these examples, lifting the value of numpoints for Maple
(from numpoints = 1000000) helps little on the quality of the visualization by
implicitplot, but increases significantly the running time.

System implicitplot ApproxPlot

Example 6 4 26

Example 7 26 47

Example 8 20 47

Example 9 32 6

6 Conclusion and Future Work

In this paper, we presented algorithms for visualizing planar algebraic curves
with singularities. The theoretical algorithm guarantees the polygonal approx-
imation ε-close to the curve. We introduced several strategies to turn the the-
oretical algorithm to be practical and illustrate its effectiveness by examples.
One bottleneck of the algorithm is the computation of singular points, whose
efficiency might be improved if the curve is known to be the resultant or dis-
criminant of two polynomials [19].

The algorithm presented in this paper can be readily generated to trac-
ing space curves with singularities in ambient space with dimension ≥3, which
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has direct applications in plotting border curves of parametric systems. But it
requires having an efficient algorithm for computing isolated singular points.

From a numeric point of view, singular points are not stable w.r.t. perturba-
tion. A small perturbation may transform a singular point to be exactly nonsin-
gular but still be ill-conditioned in the numerical sense. It will be interesting to
develop algorithms treating these “pseudo-singular” cases and “true-singular”
cases in the same way. A possible direction would be to generalize the penalty
method for computing witness points in [29] to tracing curves.
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Abstract. Exponential analysis in signal processing is essentially what
is known as sparse interpolation in computer algebra. We show how
exponential analysis from regularly spaced samples is reformulated as
Padé approximation from approximation theory and tensor decomposi-
tion from multilinear algebra.

The univariate situation is briefly recalled and discussed in Sect. 1.
The new connections from approximation theory and tensor decomposi-
tion to the multivariate generalization are the subject of Sect. 2. These
connections immediately allow for some generalization of the sampling
scheme, not covered by the current multivariate theory.

An interesting computational illustration of the above in blind source
separation is presented in Sect. 3.

Keywords: Exponential analysis · Parametric method · Multivariate
Padé approximation · Tensor decomposition

1 The Univariate Connections

Let us first introduce the problem statement of exponential analysis, which is
known in the computer algebra community as sparse interpolation [4,10]. After-
ward we rewrite it as a rational approximation problem and as a tensor decom-
position problem. In this section, we restrict ourselves to the univariate case.

Let the signal f(t) be given by

f(t) =
n∑

j=1

αj exp(φjt), αj , φj ∈ C, (1)

where the objective is to recover the values of the coefficients αj , j = 1, . . . , n
and the mutually distinct exponents φj , j = 1, . . . , n. Already in 1795, de Prony
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[14] proved that the problem can be solved from 2n equidistant samples if the
sparsity n is known, as we assume in the sequel.

In the following, we choose a real Δ �= 0 such that |�(φj)| < π/|Δ|, in order
to comply with [12,17], where �(·) denotes the imaginary part of a complex
number. The value Δ denotes the sampling step in the equidistant sampling
scheme

fk := f(kΔ) =
n∑

j=1

αj exp(φjkΔ) =
n∑

j=1

αjΦ
k
j , Φj = exp(φjΔ). (2)

With the samples fk, k = 0, . . . , 2n − 1, we fill the Hankel matrices

H(m)
n := (fm+i+j−2)

n
i,j=1 =

⎡

⎢⎢⎢⎣

fm fm+1 . . . fm+n−1

fm+1 fm+2 . . . fm+n

...
...

. . .
...

fm+n−1 fm+n . . . fm+2n−2

⎤

⎥⎥⎥⎦ , m ≥ 0.

From the expression (2) for the samples fk, we immediately find that H
(m)
n can

be factored as
H(m)

n = VnDαDm
Φ V T

n ,

where Vn is the Vandermonde matrix

Vn =
(
Φi−1

j

)n

i,j=1

and Dα and DΦ are diagonal matrices respectively filled with the vectors (α1,
. . . , αn) and (Φ1, . . . , Φn) on the diagonal. So the Φj , j = 1, . . . , n can be found
as the generalized eigenvalues λj , j = 1, . . . , n of the problem [11]

H(1)
n vj = λjH

(0)
n vj , (3)

where the vj , j = 1, . . . , n are the right generalized eigenvectors. From the gen-
eralized eigenvalues Φj = exp(φjΔ), the complex values φj can be extracted
uniquely because |�(φj)Δ| < π. After recovering the Φj , the αj can be com-
puted from the Vandermonde structured linear system

n∑

j=1

αjΦ
k
j = fk, k = 0, . . . , 2n − 1. (4)

In a noisefree mathematical context, n equations of (4) are linearly dependent
because of the relationship (3) between the Φj . How to proceed in a noisy con-
text is analyzed in great detail and including several variations in a forthcoming
paper and is outside the scope of the current presentation, where we focus on the
mathematical interrelationship between seemingly disconnected problem state-
ments.
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1.1 From Exponential Analysis to Padé Approximation in 1-D

Instead of filling Hankel matrices with the samples fk, we construct a formal
power series expansion

F (z) =
∑

k

fkzk.

The Padé approximant [m/n]F for F (z) of degree m in the numerator and n
in the denominator is defined as the irreducible form of the rational function
pm,n(z)/qm,n(z), with

pm,n(z) :=
m∑

j=0

ajz
j ,

qm,n(z) :=
n∑

j=0

bjz
j ,

that satisfies
F (z)qm,n(z) − pm,n(z) =

∑

k≥m+n+1

ckzk.

The computation of Padé approximants is closely connected to the solution of
Toeplitz structured linear systems. The [m/n]F is computed from putting to
zero the terms of degree 0 to m + n in (Fqm,n − pm,n)(z):

n∑

j=0

fk−jbj = ak, k = 0, . . . , m,

where fk = 0 if k < 0, and

n∑

j=0

fm+k−jbj = 0, k = 1, . . . , n.

Again using expression (2) for the fk and under the assumption that the Φj

are mutually distinct, it is not difficult to see that [2]

F (z) =
∑

k

fkzk

=
∑

k

⎛

⎝
n∑

j=1

αjΦ
k
j

⎞

⎠ zk

=
n∑

j=1

αj

(
∑

k

Φk
j zk

)

=
n∑

j=1

αj

1 − Φjz
.
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So the function F (z) is itself a rational function of degree n − 1 in the numera-
tor and n in the denominator. The consistency property of Padé approximants
guarantees that a rational function like F (z) is reconstructed from its formal
series expansion by its [n − 1/n]F Padé approximant, thereby needing only the
series coefficients f0, . . . , f2n−1. So we can also obtain the Φj from the Padé
denominator

n∏

j=1

(1 − Φjz) (5)

and the αj from the partial fraction decomposition of the approximant [n−1/n]F ,
through

Pn−1,n(z) =
n∑

j=1

αjLj(z), Lj(z) =
n∑

i=1
i�=j

(1 − Φiz).

The poles 1/Φj of F (z) can even directly be computed from the fk, in the order
of increasing magnitude, using the qd-algorithm [1].

1.2 From Exponential Analysis to Tensor Decomposition in 1-D

With the samples fk we can also fill an order N tensor T ∈ C
n1×···×nN where

2 ≤ nj ≤ n, 1 ≤ j ≤ N, 3 ≤ N ≤ 2n − 1,

N∑

j=1

nj = 2n + N − 1,

and
Tk1,...,kN

:= fk1+···+kN −N , 1 ≤ kj ≤ nj . (6)

The tensor of smallest order N = 3 is, for instance, of size n×n× 2 [13] and the
one of largest order N = 2n − 1 is symmetric and of size 2 × · · · × 2 [6]. For the
sequel, we generalize the definition of the square Hankel matrix above to cover
rectangular Hankel structured matrices

H(m)
n1,n2

=

⎡

⎢⎢⎢⎣

fm fm+1 . . . fm+n2−1

fm+1 fm+2 . . . fm+n2

...
...

. . .
...

fm+n1−1 fm+n1 . . . fm+n1+n2−2

⎤

⎥⎥⎥⎦ .

The tensor slices T·,·,k3,...,kN
equal

T·,·,k3,...,kN
= H(k3+···+kN −N+2)

n1,n2

and so are Hankel structured. The tensor T decomposes as

T =
n∑

j=1

αj

⎡

⎢⎢⎢⎣

1
Φj

...
Φn1−1

j

⎤

⎥⎥⎥⎦ ◦ · · · ◦

⎡

⎢⎢⎢⎣

1
Φj

...
ΦnN −1

j

⎤

⎥⎥⎥⎦ , (7)
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where still the Φj = exp(φjΔ) are mutually distinct and ◦ denotes the outer
product. Decomposition (7) is easily verified by checking the element at position
(k1, . . . , kN ) in (7):

Tk1,...,kN
=

n∑

j=1

αjΦ
k1−1
j · · · ΦkN −1

j

=
n∑

j=1

αjΦ
k1+···+kN −N
j

= fk1+···+kN −N .

The factor matrices are the rectangular Vandermonde structured matrices

Vnk,n =
(
Φi−1

j

)nk,n

i=1,j=1
, 1 ≤ k ≤ N.

Because of the Vandermonde structure of the factor matrices with nk ≤ n, k =
1, . . . , N , their Kruskal rank equals nk for all k. Since n1+ · · ·+nN = 2n+N −1
we find that the sum of the Kruskal ranks of the N factor matrices of the rank
n tensor T is bounded below by 2n + N − 1. Hence the Kruskal condition is
satisfied and the unicity of the decomposition is guaranteed.

2 The Multivariate Connections

The result from de Prony that (1) can be solved from only 2n samples if the
sparsity n is known and that the recovery of the linear coefficients αj and the
nonlinear parameters φj can be separated, is only recently truly generalized [5]
to d-variate functions of the form

f(x1, . . . , xd) =
n∑

j=1

αj exp (φj1x1 + · · · + φjdxd) , αj , φj� ∈ C. (8)

In [5], is proved that the αj , j = 1, . . . , n and φj�, j = 1, . . . , n, � = 1, . . . , d can
be recovered from (d+1)n samples in the absence of collisions or cancellations of
terms when sampling. In the latter case, the problem is still solvable but requires
some additional samples to untangle the collisions or cancellations [5]. For the
sequel, we also introduce the vectors x = (x1, . . . , xd) and φj = (φj1, . . . , φjd)
where it is clear from the context whether φj refers to a complex value as in the
previous section or a vector of complex values. Using the vector notation, (8)
becomes

f(x) =
n∑

j=1

αj exp (〈φj , x〉) .

The way to achieve the generalization (8) is by falling back on a one-dimensional
projected generalized eigenvalue problem requiring 2n samples, complemented
with d−1 structured linear systems each requiring n samples along linearly inde-
pendent directions to cover the additional dimensions, and one more structured
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Exponential Analysis, Padé Approximation, and Tensor Decomposition 121

linear system set up from the first 2n samples to recover the linear coefficients
αj .

We introduce the real linearly independent d-dimensional vectors Δ�, � =
1, . . . , d satisfying |�(〈φj ,Δ�〉)| < π, j = 1, . . . , n, � = 1, . . . , d. We further collect
the samples

fk := f(kΔ1), 0 ≤ k ≤ 2n − 1,

fk� := f(kΔ1 + Δ�), 0 ≤ k ≤ n − 1, 2 ≤ � ≤ d

and denote Φj� := exp(〈φj ,Δ�〉).
We assume now that all the values Φj1 are mutually distinct so that the

Φj1, j = 1, . . . , n can be obtained as the generalized eigenvalues of a generalized
eigenvalue problem of the form (3) where the Hankel matrices are filled with
the samples fk. Subsequently the αj are the solution of the Vandermonde linear
system

n∑

j=1

αjΦ
k
j1 = fk, k = 0, . . . , 2n − 1. (9)

Of course, from 〈φj ,Δ1〉 extracted from Φj1, the individual φj� cannot yet be
identified. For that purpose, we need the additional (d − 1)n samples fk� which
we reinterpret for each 2 ≤ � ≤ d as

n∑

j=1

(αjΦj�) Φk
j1 = fk�, k = 0, . . . , n − 1. (10)

In other words, with the samples fk� as right hand side for � fixed and with the
first n rows of the same Vandermonde coefficient matrix as in (9), we obtain the
unknown coefficients αjΦj� and subsequently the values Φj� from

αjΦj�

αj
, j = 1, . . . , n, 2 ≤ � ≤ d

and 〈φj ,Δ�〉 from Φj�. We remark that Φj� is easily paired to its associated
generalized eigenvalue Φj1 through the structured linear systems (9) and (10), a
problem that remained unsolved in various other approaches [9,15].

We now have extracted all the inner products 〈φj ,Δ�〉, j = 1, . . . , n, � =
1, . . . , d for linearly independent vectors Δ� and so for each 1 ≤ j ≤ n the
individual φj� can be retrieved as the solution of the following regular linear
system: ⎡

⎢⎣
Δ11 . . . Δ1d

...
...

Δd1 . . . Δdd

⎤

⎥⎦

⎡

⎢⎣
φj1

...
φjd

⎤

⎥⎦ =

⎡

⎢⎣
〈φj ,Δ1〉

...
〈φj ,Δd〉

⎤

⎥⎦ .

In [6], some preliminary work was done leading to a novel technique based
on the use of multivariate Padé approximation, but a proper rewrite of the
problem statement (8) in terms of Padé approximants was still lacking. We fill
this gap here by turning our attention to the concept of simultaneous Padé
approximant. We continue along the same lines with a reformulation into a
tensor decomposition problem of smaller order than in [6].
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2.1 From Exponential Analysis to Padé Approximation in d-D

Instead of one formal power series, we now set up d formal power series, namely

F1(z) =
∑

k

fkzk,

F�(z) =
∑

k

fk�z
k, 2 ≤ � ≤ d.

Making use of the expressions (9) and (10) for fk and fk�, respectively, we again
find that the functions

F1(z) =
n∑

j=1

αj

1 − Φj1z
,

F�(z) =
n∑

j=1

αjΦj�

1 − Φj1z
, 2 ≤ � ≤ d

are rational functions, each of degree n−1 in the numerator and degree n in the
denominator. Note that for all � = 1, . . . , d, the denominator of F�(z) is the same
and reveals the generalized eigenvalues Φj1 which are assumed to be mutually
distinct.

The rational functions F�(z), 1 ≤ � ≤ d can be recovered from the multivari-
ate samples fk, 0 ≤ k ≤ 2n−1 and fk�, 0 ≤ k ≤ n−1, 2 ≤ � ≤ d by computing the
simultaneous Padé approximant [(n − 1, . . . , n − 1)/n](F1,...,Fd) for the vector of
functions (F1(z), . . . , Fd(z)) [3, pp. 415–417], defined more precisely as the vec-
tor of irreducible forms of the rational functions pn−1,n,�(z)/qn−1,n(z), 1 ≤ � ≤ d
satisfying

(F�qn−1,n − pn−1,n,�) (z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

k≥2n

ckzk, � = 1,

∑

k≥n

ck�z
k, 2 ≤ � ≤ d.

(11)

So the denominator polynomial qn−1,n(z) = b0 + · · · + bnzn is computed from
the Toeplitz structured linear system

n∑

j=0

fn+k−jbj = 0, k = 0, . . . , n − 1,

arising from the accuracy-through-order conditions (11) for F1(z). We remark
that again the αj and Φj�, 2 ≤ � ≤ d are naturally paired to the poles 1/Φj1

of each rational function pn−1,n,�(z)/qn−1,n(z), which can be computed directly
from the samples using the qd-algorithm [1] applied to the formal series F1(z).
This pairing is essential to recover the individual φj�.

It is worthwhile to note that the Padé formulation of (8) allows a slight gener-
alization compared to the generalized eigenvalue formulation of the multivariate
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problem. The simultaneous Padé approximant [(n−1, . . . , n−1)/n](F1,...,Fd) can
also be computed from ν1 samples fk and ν� samples fk� for 2 ≤ � ≤ d, where
the total number of samples equals

d∑

�=1

ν� = (d + 1)n, ν� ≥ n,

instead of 2n samples fk and n samples fk� for 2 ≤ � ≤ d. In that setting (11)
becomes

(F�qn−1,n − pn−1,n,�)(z) =
∑

k≥ν�

ck�z
k, 1 ≤ � ≤ d,

and the common denominator qn−1,n(z) is computed from the linear system

n∑

j=0

fn+k−jbj = 0, k = 0. . . . , ν1 − n − 1,

n∑

j=0

fn+k−j,�bj = 0, k = 0, . . . , ν� − n − 1, 2 ≤ � ≤ d.

2.2 From Exponential Analysis to Tensor Decomposition in d-D

Along the same lines as above, a connection to a so-called coupled tensor decom-
position problem can be made. With the samples fk, k = 0, . . . , 2n − 1, a first
order N tensor T (1) of dimension n1 × · · · × nN is defined as in (6), which
decomposes as in (7), but with Φj replaced by Φj1:

T (1) =
n∑

j=1

αj

⎡

⎢⎢⎢⎣

1
Φj1

...
Φn1−1

j1

⎤

⎥⎥⎥⎦ ◦ · · · ◦

⎡

⎢⎢⎢⎣

1
Φj1

...
ΦnN −1

j1

⎤

⎥⎥⎥⎦ .

As explained in Sect. 1.2, this decomposition is unique as long as the Φj1 are
mutually distinct. Remains to recover the Φj�, 2 ≤ � ≤ d.

To this end, we construct another d − 1 order N tensors T (�), 2 ≤ � ≤ d of
dimension n1� × · · · × nN�, where

2 ≤ nj� ≤ n,

N∑

j=1

nj� = n + N − 1,

with tensor elements

T
(�)
k1,...,kN

:= fk1+···+kN −N,�, 2 ≤ � ≤ d,
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of which the slices T
(�)
·,·,k3,...,kN

are still Hankel structured. With

H(m,�)
n1,n2

=

⎡

⎢⎢⎢⎣

fm,� fm+1,� . . . fm+n2−1,�

fm+1,� fm+2,� . . . fm+n2,�

...
...

. . .
...

fm+n1−1,� fm+n1,� . . . fm+n1+n2−2,�

⎤

⎥⎥⎥⎦ ,

the tensor slices T
(�)
·,·,k3,...,kN

equal

T
(�)
·,·,k3,...,kN

= H(k3+···+kN −N+2,�)
n1,n2

.

The tensors T (�) decompose as

T (�) =
n∑

j=1

αjΦj�

⎡

⎢⎢⎢⎣

1
Φj1

...
Φn1�−1

j1

⎤

⎥⎥⎥⎦ ◦ · · · ◦

⎡

⎢⎢⎢⎣

1
Φj1

...
ΦnN�−1

j1

⎤

⎥⎥⎥⎦ ,

where the entries in the factor matrices from T (�) can all be obtained from the
decomposition of T (1), hence the term coupled tensor decomposition. Only the
sizes nj� × n of the factor matrices may be smaller as the sum of the nj� is
bounded by n+N −1 instead of 2n+N −1. The decomposition of the T (�) only
serves the purpose of recovering the αjΦj�, j = 1, . . . , n, 2 ≤ � ≤ d. Note again
the natural pairing of the αj and αjΦj�, 2 ≤ � ≤ d to the Φj1, which is required
to recover the individual φj� in (8).

A similar generalization as in Sect. 2.1 where now

N∑

j=1

nj +
d∑

�=2

N∑

j=1

nj� = (d + 1)n + d(N − 1)

is obviously also possible. Then the order N tensor T (1) of dimension n1×· · ·×nN

is such that

2 ≤ nj ≤ n,

N∑

j=1

nj = ν1 + N − 1

and decomposes in the same way as T (1) above (only the sum of the dimensions
is bounded differently). Similarly T (�), 2 ≤ � ≤ d of dimension n1� × · · · × nN�

obeys

2 ≤ nj� ≤ n,

N∑

j=1

nj� = ν� + N − 1

and decomposes as T (�) above. Note that Kruskal’s condition only guarantees
a unique decomposition if ν1 ≥ 2n. However, the unicity is guaranteed through
the other formulations of the problem statement, be it as a simultaneous Padé
approximation problem or a multivariate exponential analysis.
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3 Illustration: Blind Source Separation

We now illustrate the connections between exponential analysis or sparse inter-
polation with on the one hand Padé approximation and on the other hand tensor
decomposition. The emphasis is on the mathematical reformulations of the prob-
lem statement and not on the numerical aspects of the various algorithms that
can be used in either of the three settings.

We analyze a demo signal consisting of some wild bird chirps mixed with the
whistle of a passing train (the original signal is available at our website1). The
signal is graphed in Fig. 1: it lasts somewhat longer than 1.5 seconds and consists
of 12850 samples collected at a rate of 8192 samples per second with a high
signal-to-noise ratio. In Fig. 2, the signal’s spectrogram is given, put together by
applying the short-time Fourier transform to 257 non-overlapping frames of each
50 consecutive samples multiplied by a rectangular window function. It exhibits
clearly the Fourier transform’s typical leakage. Also the resolution is poor as we
consider windows of only 50 samples. The horizontal stripes in the spectrogram
represent the train whistle while the bird chirps are found in the higher frequency
flame-like elements.

Fig. 1. Real-valued demo signal

The objective now is to identify the bird chirps and the train whistle using
a sparse technique instead of the fast Fourier transform, thereby avoiding the
leakage and limited resolution. So we recover each contributing αj and φj in (1)
from the signal samples following the outline of Sect. 1. To this end, we again
divide the full data set into 257 non-overlapping windows of 50 samples. In each
window, we take the sparsity n = 20, meaning that we choose a model consisting
of 20 exponential terms, that we fit to 50 samples, in the least squares sense since
50 > 2n. For the practical computation, use was made of:

1 http://cma.uantwerpen.be/publications.
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Fig. 2. Spectrogram of the demo signal

– the ESPRIT algorithm from [16] for the exponential analysis,
– the qd-algorithm as in [1] for the rational function reformulation,
– Tensorlab from [18] for the tensor decomposition.

Complexitywise the Fourier analysis and exponential analysis of each window
compare as follows. A Fourier analysis of M samples is O(M log M) while an
exponential analysis using the Hankel structured generalized eigenvalue problem
(3) and the Vandermonde structured linear system (4) is O(n2 log n). When
solving (3)–(4) in a least squares sense from m > 2n samples then the complexity
increases to O((m−n)n2) [7,8]. Note that in practical applications usually M 

m and hence also M 
 n.

In Figs. 3, 4, and 5 at the top, we show the computed φj , j = 1, . . . , 20
from window number 88 (samples number 4351 till 4400), where only the blue
coloured φj are retained, for the exponential analysis, Padé approximation, and
tensor decomposition, respectively. The φj indicated in red are discarded because
either their imaginary part was (numerically) zero or their modulus was too large
(| · | > 1.05). The former does not contribute to a sound signal, while the latter
may cause ill-conditioning when setting up the Vandermonde matrices involved.

In the same figures at the bottom, the spectrogram results for each of expo-
nential analysis, Padé approximation, and tensor decomposition is shown. It is
clear that the sparse technique of exponential analysis and its reformulations do
not suffer from the undesirable leakage and limited resolution, as they identify
the frequency content in the signal f(t).
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Fig. 3. Extracted φj , j = 1, . . . , 20 using (3) (top) and spectrogram based on retained
φj (bottom) (Color figure online)
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Fig. 4. Extracted φj , j = 1, . . . , 20 using (5) (top) and spectrogram based on retained
φj (bottom) (Color figure online)
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Fig. 5. Extracted φj , j = 1, . . . , 20 using (7) (top) and spectrogram based on retained
φj (bottom) (Color figure online)
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Abstract. A symbolic algorithm which can be implemented in any com-
puter algebra system for generating the Bargmann–Moshinsky (BM)
basis with the highest weight vectors of SO(3) irreducible representations
is presented. The effective method resulting in analytical formula of over-
lap integrals in the case of the non-canonical BM basis [S. Alisauskas,
P. Raychev, R. Roussev, J. Phys. G 7, 1213 (1981)] is used. A symbolic
recursive algorithm for orthonormalisation of the obtained basis is devel-
oped. The effectiveness of the algorithms implemented in Mathematica
10.1 is investigated by calculation of the overlap integrals for up to μ = 5
with λ > μ and orthonormalization of the basis for up to μ = 4 with
λ > μ. The action of the zero component of the quadrupole operator
onto the basis vectors with μ = 4 is also obtained.

Keywords: SU(3) non-canonical basis · Group theory
Gram-Schmidt orthonormalization · Symbolic algorithms

1 Introduction

The formalism of SU(3) group provides a comprehensive theoretical founda-
tion for understanding this symmetry in nuclear structure [4,6–9]. However,
the construction of the SU(3) bases can usually be performed analytically only
for some special cases. In this respect, because of mathematical simplicity of
its definition, the Bargmann–Moshinsky (BM) basis [3,10] is especially conve-
nient for calculation. However, the necessity to introduce the physically rele-
vant angular momentum observable gives rise to non-canonical group reduction
SU(3) ⊃ O(3) ⊃ O(2). The BM vectors may be calculated from the simplest
vectors which correspond to the highest angular momentum projection M = L,
c© Springer Nature Switzerland AG 2018
V. P. Gerdt et al. (Eds.): CASC 2018, LNCS 11077, pp. 131–145, 2018.
https://doi.org/10.1007/978-3-319-99639-4_9
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i.e., the highest weight basis vectors with respect to the SO(3) group that was
proved in [10]. It should be stressed that the analytical and what is very impor-
tant an effective algorithm for construction of this basis is required for analysis
of some quantum systems.

As an example, one can consider the vibration (in particular, quadrupole)
and rotation motions which are the most important low energy nuclear motions.
The simplest SU(3) model Hamiltonian consists of the quadrupole-quadrupole
interaction, the rotational term, and the other terms constructed from generators
of the partner groups G = SU(3) × SU(3), see [8] and references therein. A
possible Hamiltonian H used in this schematic nuclear model can be written as

H = γC2(SU(3)) − κQ · Q + βL · L + H ′′(Q̄, L̄)
= (γ − κ)C2(SU(3)) + (3κ + β)L2 + H ′′(Q̄, L̄), (1)

where the second order Casimir operator C2(SU(3)) = Q · Q + 3L · L, Q and L
are generators of SU(3), i.e., quadrupole and angular momentum, respectively;
Q̄ and L̄ are generators of the intrinsic group SU(3). Some examples of physically
interesting forms of the interaction H ′′ can be written as

H3Q = h3Q

(
(Q ⊗ Q)32 − (Q ⊗ Q)3−2

)
, (2)

H3LQ = h3LQ

(
(L ⊗ Q)32 − (L ⊗ Q)3−2

)
, (3)

H4Q = h4Q

(√
14
5

(Q ⊗ Q)40 + (Q ⊗ Q)4−4 + (Q ⊗ Q)44
)
, (4)

where (Tλ′ ⊗ Tλ)L
M denotes the tensor product of two spherical tensors [13].

These interaction terms can simulate either the tetrahedral or octahedral nuclear
symmetry now widely considered in nuclear physics [5]. To find the corresponding
energies and quantum nuclear states one needs to solve the eigenvalue problem
of the Hamiltonian (1).

To solve the eigenvalue problem for H the appropriate basis constructed
according to the group chain SU(3) ⊃ SO(3) ⊃ SO(2) is required. There were
several attempts to construct such bases. They were based on different group
theoretical technics, for a short review see the introduction in the paper [11]. In
all those cases one obtains the non-orthogonal basis. This increases a complexity
of calculations of the reduced matrix elements of different operators, Clebsch–
Gordan coefficients, etc. It requires an adaptation of the Gram–Schmidt orthog-
onalization procedure to be more effective in symbolic calculations.

We start from the BM states which are linearly independent but as in other
approaches not orthonormal. However, we develop an effective symbolic algo-
rithm suitable for implementation in computer algebra systems. It is based on
the adapted Gram–Schmidt orthonormalization procedure but using the overlap
integrals calculated in an analytical form [2]. It provides the analytic construc-
tion of the desirable orthonormalized basis. Our adaptation of Gram–Schmidt
orthonormalization procedure consists in construction of recursive calculation
of the required quantities and the normalization integrals do not involve any
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square root operation. This distinct feature of the proposed orthonormalization
algorithm may make the large scale symbolic calculations feasible.

Then one can calculate in this orthonormalized basis the zero component of
the quadrupole operator Q0 in the analytical form using its simple form given
in the non-canonical BM basis [1,12]. The other components of the quadrupole
operator Qk written in the analytical form can be obtained by making use of
the Wigner–Eckart theorem with conventional SO(3) Clebsch–Gordan coeffi-
cients [13]. Thus, one can construct the above Hamiltonian (1) also in an ana-
lytical form.

The paper is organized as follows. In Sect. 2, the Symbolic Algorithm 1 for
calculation of overlap integrals of BM vectors is shown. In Sect. 3, the Symbolic
Algorithm 2 for orthonormalization of BM basis is given. In Sect. 4, an action of
the quadrupole operator Q0 onto the constructed basis is presented.

In the Conclusion, further applications of the elaborated symbolic algorithms
are pointed out.

2 Overlap Integrals of Bargmann–Moshinsky Basis

The effective method for constructing a non-canonical BM basis with the highest
weight vectors of SO(3) irreducible representations corresponding to the group
chain SU(3) ⊃ O(3) ⊃ O(2) was described in [2]. Let us introduce the notation
for the vectors of this basis:

∣
∣
∣
∣
(λ, μ)B

α,L, L

〉
. (5)

Here the quantum numbers λ, μ label irreducible representations (irreps),
λ, μ = 0, 1, 2, . . . and λ > μ; L,M are the quantum numbers of angular momen-
tum and its projection (in our case, M = L); α is the additional index that
is used for unambiguously distinguishing the equivalent SO(3) irreps (L) in a
given SU(3) irrep (λ, μ). The dimension of subspace irrep for given λ, μ can be
calculated by using the following formula:

Dλμ =
1
2
(λ + 1)(μ + 1)(λ + μ + 2). (6)

In order to perform classification of the BM states (5) one should determine the
set of allowed values of α and L. It is well known that the ranges of quantum
numbers α and L are determined by the values of quantum numbers λ and μ.
However, the determination of former quantities is rather cumbersome. The eas-
iest way to get the allowed values of α and L is by using the Symbolic Algorithm
1 that consists of the following steps:

Step 1. Firstly we should start with choosing some particular value of the
quantum number μ. For the following consideration, it is convenient to introduce
auxiliary label K [7] which varies in the ranges

K = μ, μ − 2, . . . , 1 or 0, since λ > μ. (7)
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The label K is related to α by

α =
1
2
(μ − K). (8)

So, for every fixed μ, the set of possible values of K can be obtained directly
from the definition of K from (7). Now, the set of allowed values of α may be
determined from these K values using relation (8).

Step 2. In the case K = 0, that may occur only for even values of μ, the allowed
values of L are determined by the label λ:

L = λ, λ − 2, . . . , 1 or 0. (9)

Step 3. In the case K �= 0, the Lmin = K. Since for every particular μ, there is
a number of possible K numbers, according to (7) there exists a number of the
corresponding α numbers. It means that for every particular μ, there will be a
number of pairs (α,Lmin). The maximum value of L is defined by the expression
Lmax = μ − 2α + λ − β, where

β =
{

0, λ + μ − L even,
1, λ + μ − L odd.

(10)

To determine Lmax it is convenient to consider two alternatives: λ − L is even
and λ − L is odd. In both cases, the label β is defined by the given μ value, and
the number Lmax is also determined. An illustrative example for calculation of
allowed values of α and L is presented in Table 1. The results for the case K = 0
are not included since in this case, their termination is rather straightforward. It
should be noted that the set of allowed values of L for overlap integrals is given
by the intersection of these sets for the corresponding <bra| and |ket> vectors.

In this paper, we use the following form of the formula for the overlap integral
<α|α′>=<α′|α> of the non-canonical BM states presented in [2]:

〈
α

∣
∣
∣
∣α

′
〉

=
〈

(λ, μ)B

α,L, L

∣
∣
∣
∣
(λ, μ)B

α′, L, L

〉
= C1(λ,L,Δ)(λ + 2)β(L − μ + 2α)!

×(λ − L + μ − 2α′ − β)!!(μ − 2α′ − β + Δ − 1)!!

×
∑

l,z

(
α′

1
2 (l − β − Δ)

)
(−1)(μ+2α−Δ−β)/2+z

(
1
2 (μ − 2α − Δ − β)

z

)

× (μ − l)!!
(μ − l − 2z)!!

(μ + β + Δ)!!
(μ − 2α′ + l)!!

(l − Δ + β − 1)!!(μ − Δ − β − 2z)!!

× (λ − L + μ − 2α − β)!!
(λ − L + Δ + 2z)!!

(λ + L − Δ + 2)!!
(λ + L − μ + 2α + β + 2z + 2)!!

(L + l)!
L!

× (λ + μ + L + β + 2)!!
(λ + L + l + β + 2z + 2)!!

(λ + β + 2z + 1)!
(λ + β + 1)!

(λ + μ − l − L + Δ)!!
(λ − L + μ − 2α′ − β)!!

×C2(λ,L,Δ, z). (11)
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Table 1. The allowed values of α, Lmin, and Lmax for up to μ = 5 when K �= 0.

μ α Lmin Lmax(λ − L even) Lmax(λ − L odd)

1 0 1 λ λ + 1

2 0 2 λ + 2 λ + 1

3 0 3 λ + 2 λ + 3

1 1 λ λ + 1

4 0 4 λ + 4 λ + 3

1 2 λ + 2 λ + 1

5 0 5 λ + 4 λ + 5

1 3 λ + 2 λ + 3

2 1 λ λ + 1

Here α ≥ α′ and β from (10) and we use the following notations:

Δ =
{

0, λ − L even,
1, λ − L odd,

(
m
n

)
=

m!
n!(m − n)!

,

C1(λ,L,Δ) =

{
1, L > λ + Δ,
(λ+L+Δ+1)!!

(2L+1)!! , L ≤ λ + Δ,

C2(λ,L,Δ, z) =

{
(λ+L+Δ+1+2z)!!

(2L+1)!! , L > λ + Δ,
(λ+L+Δ+1+2z)!!

(λ+L+Δ+1)!! , L ≤ λ + Δ.

Remark 1. The upper alternative in definition of the coefficients C1 and C2

corresponds to the overlap integrals which contain only λ in their final expression.
The summation parameter z runs from 0 to 1

2 (−2α − β − Δ + μ) except when
z < 1

2 (−Δ−λ+L). The summation parameter l runs from β +Δ to 2α′ +β +Δ
except when μ − l or l − Δ − β is odd.

The Algorithm 1 realized Steps 1–3 and function (11) was implemented in
the Mathematica code. This code was verified by calculating the overlap integrals
presented in [2]. We reproduced the results presented there for μ = 1, 2, 3, 4,
however, with some exceptions for μ = 4. Our results for μ = 4 are presented
in Tables 3 and 4 with specification of indices of the overlap integrals given in
Table 2. New corrected expressions of the overlap integrals with respect to the
incorrect results from Table 1 of Ref. [2] are marked by asterisk (*).

In this paper, the new results for the overlap integrals for the non-canonical
BM basis with the highest weight vectors of the SO(3) group irreps for μ = 5
were calculated and presented in Table 5. Here the more concise notation for the
overlap integrals 〈uα|uα′〉 of states (5) is introduced. We present the obtained
expressions for overlap integrals in Tables 6 and 7. The above algorithm was
realized in the form of the program implemented in the computer algebra sys-
tem Wolfram Mathematica 10.1. The typical running time of calculating the
irreducible representations μ = 4 and μ = 8 is 3 and 57 s and memory is 35
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Fig. 1. The CPU time versus parameter μ (a) and MaxMemoryUsed versus parameter
μ (b): maximum number of megabytes (Mb) used to store all data for the current
Wolfram system session during the calculations of the orthogonal BM basis (circles)
consisting of calculation of the overlap integrals by means of Algorithm 1 code (squares)
and execution of the othonormalization Gram–Schmidt procedure by means of Algo-
rithm 2 code (triangles).

and 47 Mb, respectively, using the PC Intel Pentium CPU 1.50 GHz 4 GB 64 bit
Windows 8. In Fig. 1 we show the CPU time and MaxMemoryUsed during cal-
culations of overlap integrals by Algorithm 1 versus parameter μ.

3 Orthonormalization of Bargmann–Moshinsky Basis

Let us construct the orthonormal basis in the space spanned by the non-canonical
BM vectors (5), (M = L). For this purpose, we propose a bit more efficient form
of the Gram–Schmidt orthonormalisation procedure

∣
∣
∣
∣
(λ, μ)
fi, L, L

〉
=

αmax∑

α=0

A
(λ,μ)
i,α (L)

∣
∣
∣
∣
(λ, μ)B

α,L, L

〉
. (12)

Here multiplicity index i is introduced to differentiate the orthonormalized states
and A

(λ,μ)
i,α (L) are the BM basis orthonormalization coefficients. These coeffi-

cients fulfill the following condition

A
(λ,μ)
i,α (L) = 0, if i > α. (13)

Because the BM vectors (5) are linearly independent, one can require the
orthonormalization properties for the vectors (12)

〈
(λ, μ)
fi, L, L

∣
∣
∣
∣
(λ, μ)
fk, L, L

〉
= δik. (14)

In this paper, we developed the analytical orthonormalization procedure
based on the Gram–Schmidt orthonormalization algorithm. For explicit con-
struction of orthonormalized BM basis, let us consider step by step the Symbolic
Algorithm 2.
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Table 2. Overlap integrals of non-canonical BM basis for μ = 4.

(α|α′) L λ − L even L λ − L odd

(2|2) 0, . . . , λ 〈u2|u2〉
(2|1) 2, . . . , λ 〈u2|u1〉
(2|0) 4, . . . , λ 〈u2|u0〉
(1|1) 2, . . . , λ 〈u1|u1〉 2, . . . , λ + 1 〈ũ1|ũ1〉
(1|1) λ + 2 〈u′

1|u′
1〉

(1|0) 4, . . . , λ 〈u1|u0〉 4, . . . , λ + 1 〈ũ1|ũ0〉
(1|0) λ + 2 〈u′

1|u′
0〉

(0|0) 4, . . . , λ 〈u0|u0〉 4, . . . , λ + 1 〈ũ0|ũ0〉
(0|0) λ + 2 〈u′

0|u′
0〉 λ + 3 〈ũ′

0|ũ′
0〉

(0|0) λ + 4 〈u′′
0 |u′′

0 〉

Step 1. First one needs to organize the loop running over all indices α =
αmax, αmax−1, . . . , 0 of a given set of the BM states. Then the first orthonormal-
ization coefficients of the orthogonal BM states (i.e., some linear combination of
initial states (5)) for a given value of α are calculated by the formula

bα,αmax =
〈uα|uαmax〉

〈uαmax |uαmax〉1/2
, (15)

where the 〈uα|uα′〉 denotes the overlap integrals (11).

Step 2. Secondly one needs to organize the inner loop inside the loop defined
in Step 1 of this algorithm. This inner loop should run over all indices α′ =
αmax − 1, αmax − 2, . . . , α + 1 of a given set of BM states. For the following
calculations, it is convenient to introduce the intermediate quantity

fα,α′ = −〈uα|uα′〉 +
〈uα|uαmax〉〈uαmax |uα′〉

〈uαmax |uαmax〉
. (16)

Now the orthonormalization coefficients for the BM states for any given values
of α and α′ are calculated by the formula

bα,α′ =
fα,α′

〈ψα′ |ψα′〉1/2
. (17)

Here the normalization integral is defined as

〈ψα|ψα〉 = 〈uα|uα〉 −
αmax∑

i=α+1

b2α,i. (18)

Step 3. Now we make the recursive step and calculate the next quantity fα,α′

from the results of the previous step:

fα,α′−1 = fα,α′→α′−1 +
1

〈ψα′ |ψα′〉fα→α′−1,α′fα,α′ . (19)
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Table 3. Overlap integrals of the non-canonical BM basis. for μ = 4 and λ − L even.

μ = 4 and λ − L even
〈u2|u2〉 = 8L!(λ − L)!!(λ + L + 1)!!(3L4 + 6L3

−(8λ(λ + 8) + 135)L2 − 2(4λ(λ + 8) + 69)L
+8(λ + 3)2(λ + 5)2)/(2L + 1)!!

〈u2|u1〉 = 8L!(−λ + L − 2)(λ + L + 6)(λ − L)!!(λ + L + 1)!!
×(3(L − 1)L − 2(2λ(λ + 8) + 33))/(2L + 1)!!

〈u2|u0〉 = 24L!(λ − L + 2)(λ − L + 4)(λ + L + 4)
×(λ + L + 6)(λ − L)!!(λ + L + 1)!!/(2L + 1)!!,

(∗) 〈u1|u1〉 = −4(L − 2)!(λ − L + 2)!!(λ + L + 1)!! 6L5 + 6(λ + 5)L4

−(λ(7λ + 59) + 150)L3 − (λ + 6)(λ(7λ + 55) + 118)L2

−(λ + 2)(λ(5λ + 48) + 129)L − 6(λ + 2)(λ(λ + 10) + 27))/(2L + 1)!!
(∗) 〈u′

1|u′
1〉 = 4(λ + 2)(λ + 3)(λ + 4)(λ + 35)λ!.

〈u1|u0〉 = 24(L − 2)!(λ − L + 4)(λ + L + 6)(λ − L + 2)!!
×(λ + L(λ + L(λ + L + 4) + 2) + 2)(λ + L + 1)!!/(2L + 1)!!

〈u′
1|u′

0〉 = 96(λ + 2)(λ + 3)(λ + 4)λ!
(∗) 〈u0|u0〉 = 24(L − 4)!(λ − L + 4)!!(λ + L + 1)!!(9(λ + 2)(λ + 4)

+L6 + 2(λ + 3)L5 + 8(λ + 2)(λ + 3)L + (λ(λ + 4) − 8)L4

−2(λ + 3)(λ + 6)L3 + (λ(5λ + 38) + 88)L2)/(2L + 1)!!,
〈u′

0|u′
0〉 = 48(λ + 2)(λ + 3)(λ + 4)(2λ2 + λ + 3)(λ − 2)!

〈u′′
0 |u′′

0 〉 = 24(λ + 2)(λ + 3)(λ + 4)(λ + 5)λ!

Here the arrows in the right hand side of the (19) indicate that the quantity fα,α′

obtained at the previous step is used with the appropriate substitution of indices.
Having calculated the quantity fα,α′ , the expression of the next orthonormaliza-
tion coefficient bα,α′ can be obtained by Eq. (17). The steps of the orthonormal-
ization algorithm defined above are recursively repeated doing the loop over all
allowed values of indices α and α′.

Step 4. Finally, we should collect all the coefficients in the recursively obtained
analytical expansion representing the orthonormalized state for every indepen-
dent BM state (5). In this way, we get the required orthonormalization coeffi-
cients of expansion (12).

Remark 2. The two advantages of the proposed Algorithm 2. First of all, its
simplicity: at any recursive step, fα,α′ is composed of fragments that are no
more complicated than that defined in the right hand side of Eq. (16) and the
normalization integrals (18). Secondly, recursive calculation of the quantities
fα,α′ (19) and the normalization integrals (18) do not involve any square root
operation. This distinct feature of the proposed orthonormalization algorithm
may make the large scale symbolic calculations feasible.

In this paper, the new results for the orthonormalization coefficients of the
non-canonical BM basis with the highest weight vectors of SO(3) irreps for μ = 4
were calculated and presented in Table 8. It should be noted that the orthonor-
malization coefficients for up to μ = 3 were calculated as well and their values are
equal to those presented in Table 2 of Ref. [2]. Let us illustrate the calculation of
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Table 4. Overlap integrals of the non-canonical BM basis for μ = 4 and λ − L odd.

μ = 4 and λ − L odd
〈ũ1|ũ1〉 = 6(λ + 2)(2(λ(λ + 10) + 27) − L2 − L)

×(L + 1)(L + 2)(L − 2)!(λ − L + 1)!!(λ + L + 2)!!/(2L + 1)!!.
〈ũ1|ũ0〉 = −6(λ + 2)(L + 1)(L + 2)(λ − L + 3)(λ + L + 7)

×(L − 2)!(λ − L + 1)!!(λ + L + 2)!!/(2L + 1)!!
〈ũ0|ũ0〉 = −6(λ + 2)(9(λ + 3) + L(λ + L(λ + L + 5) − 5))

×(L + 1)(L + 2)(L − 4)!(λ − L + 3)!!(λ + L + 2)!!/(2L + 1)!!
(∗) 〈ũ′

0|ũ′
0〉 = 6(λ + 2)(λ + 3)(λ + 4)2(λ + 5)(λ − 1)!

Table 5. Overlap integrals of non-canonical BM basis for μ = 5.

(α|α′) L λ − L even L λ − L odd

(2|2) 1, . . . , λ 〈u2|u2〉 1, . . . , λ + 1 〈ũ2|ũ2〉
(2|1) 3, . . . , λ 〈u2|u1〉 3, . . . , λ + 1 〈ũ2|ũ1〉
(2|0) 5, . . . , λ 〈u2|u0〉 5, . . . , λ + 1 〈ũ2|ũ0〉
(1|1) 3, . . . , λ 〈u1|u1〉 3, . . . , λ + 1 〈ũ1|ũ1〉
(1|1) λ + 2 〈u′

1|u′
1〉 λ + 3 〈ũ′

1|ũ′
1〉

(1|0) 5, . . . , λ 〈u1|u0〉 5, . . . , λ + 1 〈ũ1|ũ0〉
(1|0) λ + 2 〈u′

1|u′
0〉 λ + 3 〈ũ′

1|ũ′
0〉

(0|0) 5, . . . , λ 〈u0|u0〉 5, . . . , λ + 1 〈ũ0|ũ0〉
(0|0) λ + 2 〈u′

0|u′
0〉 λ + 3 〈ũ′

0|ũ′
0〉

(0|0) λ + 4 〈u′′
0 |u′′

0 〉 λ + 5 〈ũ′′
0 |ũ′′

0 〉

orthonormalization coefficients and output of their values that are symbolically
represented in Table 8. The explicit expressions for these coefficients calculated
by the Algorithm 2 realized Steps 1–4 was implemented in the Mathematica
code in terms of the overlap integrals <ui|uj> and <ũi|ũj> listed in Tables 3 and
4, respectively, are given below. The above algorithm was realized in the form of
the program implemented in the computer algebra system Wolfram Mathemat-
ica 10.1. The typical running time of calculating the irreducible representations
μ = 4 is 30 s and memory is 60 Mb using the PC Intel Pentium CPU 1.50 GHz
4 GB 64bit Windows 8. In Fig. 1, we show the CPU time and MaxMemoryUsed
during calculations of the orthonormal BM basis versus parameter μ by means of
Algorithms 1 and 2. One can see that the CPU time (in double logarithmic scale)
of execution of Algorithm 1 is linearly growing in contradistinction to Algorithm
2, whose execution time is growing faster than linearly due to manipulations
with rational expressions.
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Table 6. Overlap integrals of the non-canonical BM basis for μ = 5 and λ − L even.

μ = 5 and λ − L even
〈u2|u2〉 = 24(λ + 2)(L + 1)(L − 1)!(λ − L)!!(λ + L + 1)!!

×(−(4λ(λ + 10) + 109)L2 − 2(2λ(λ + 10) + 55)L
+8(λ(λ + 10)(λ(λ + 10) + 49) + 603) + L4 + 2L3)/(2L + 1)!!

〈u2|u1〉 = 24(λ + 2)(L + 1)(−λ + L − 2)(λ + L + 8)(L − 1)!
× ((L − 1)L − 2(λ(λ + 10) + 27)) (λ − L)!!(λ + L + 1)!!/(2L + 1)!!

〈u2|u0〉 = 24(λ + 2)(L + 1)(−λ + L − 4)(−λ + L − 2)(λ + L + 6)
×(L − 1)!(λ + L + 8)(λ − L)!!(λ + L + 1)!!/(2L + 1)!!

〈u1|u1〉 = 12(λ + 2)(L + 1)(L − 3)!(λ − L + 2)!!(λ + L + 1)!!
×((λ(3λ + 29) + 96)L3 + (λ(λ(3λ + 53) + 316) + 680)L2

+(λ(λ(7λ + 100) + 487) + 716)L − 2L5 − 2(λ + 7)L4

+2(λ(λ(7λ + 102) + 491) + 684))/(2L + 1)!!
〈u′

1|u′
1〉 = 12(λ + 2)(λ + 3)2(λ + 4)(λ + 5)(λ + 20)(λ − 1)!

〈u1|u0〉 = 24(λ + 2)(L + 1)(λ − L + 4)(λ + L + 8)(L − 3)!(λ − L + 2)!!
×(5λ + L(3λ + L(λ + L + 6) + 8) + 12)(λ + L + 1)!!/(2L + 1)!!

〈u′
1|u′

0〉 = 96(λ + 2)(λ + 3)2(λ + 4)(λ + 5)(λ − 1)
〈u0|u0〉 = 24(λ + 2)(L + 1)(L − 5)!(λ − L + 4)!!(λ + L + 1)!!

×(9(λ + 4)(9λ + 22) + (λ(λ + 12) + 12)L4

+2(λ − 1)(λ + 8)L3 + (λ(17λ + 114) + 248)L2

+4(λ(13λ + 68) + 96)L + L6 + 2(λ + 5)L5)/(2L + 1)!!
〈u′

0|u′
0〉 = 48(λ + 2)(λ + 3)2(λ + 4)(λ + 5)(λ(2λ + 3) + 10)(λ − 3)!

〈u′′
0 |u′′

0 〉 = 24(λ + 2)(λ + 3)(λ + 4)(λ + 5)2(λ + 6)(λ − 1)!

In the case of the subset of three independent BM vectors (5) indicated by
the displayed values of labels, expansion (12) takes the form
∣
∣
∣
∣
(λ, μ)
f0, L, L

〉
= A

(λ,μ)
0,0 (L)

∣
∣
∣
∣
(λ, μ)B

0, L, L

〉
+A

(λ,μ)
0,1 (L)

∣
∣
∣
∣
(λ, μ)B

1, L, L

〉
+A

(λ,μ)
0,2 (L)

∣
∣
∣
∣
(λ, μ)B

2, L, L

〉
,

A
(λ,4)
0,0 (L) = −〈ψ0|ψ0〉−1/2,

A
(λ,4)
0,1 (L) = −〈ψ0|ψ0〉−1/2

〈ψ1|ψ1〉
(

−〈u1|u0〉+ 〈u2|u1〉〈u2|u0〉
〈u2|u2〉

)
,

A
(λ,4)
0,2 (L) = 〈ψ0|ψ0〉−1/2

[ 〈u2|u0〉
〈u2|u2〉+

1
〈ψ1|ψ1〉

(
−〈u1|u0〉

+
〈u2|u1〉〈u2|u0〉

〈u2|u2〉
) 〈u2|u1〉

〈u2|u2〉
]

,

〈ψ0|ψ0〉 = 〈u0|u0〉 − 〈u2|u0〉2
〈u2|u2〉 − 1

〈ψ1|ψ1〉
(

−〈u1|u0〉+ 〈u2|u1〉〈u2|u0〉
〈u2|u2〉

)2

,

〈ψ1|ψ1〉 = 〈u1|u1〉 − 〈u2|u1〉2
〈u2|u2〉 .
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Table 7. Overlap integrals of the non-canonical BM basis for μ = 5 and λ − L odd.

μ = 5 and λ − L odd
〈ũ2|ũ2〉 = 24(L + 1)(L − 1)!(λ − L + 1)!!(λ + L + 2)!!

×(−(12λ(λ + 10) + 317)L2 − 2(6λ(λ + 10) + 161)L
+8(λ(λ + 10)(λ(λ + 10) + 49) + 603) + 10L3 + 5L4)/(2L + 1)!!

〈ũ2|ũ1〉 = 24(L + 1)(−λ + L − 3)(λ + L + 7)(λ − L + 1)!!
×5(L − 1)L − 6(λ(λ + 10) + 26)(L − 1)!(λ + L + 2)!!/(2L + 1)!!

〈ũ2|ũ0〉=120(L + 1)(−λ + L − 5)(−λ + L − 3)(λ + L + 5)
×(L − 1)!(λ + L + 7)(λ − L + 1)!!(λ + L + 2)!!/(2L + 1)!!

〈ũ1|ũ1〉 = 12(L + 1)(L − 3)!(λ − L + 3)!!(λ + L + 2)!!
×(6(λ + 3)(λ(5λ + 62) + 204) + (λ(11λ + 135) + 466)L3

+(λ(λ(11λ + 162) + 781) + 1222)L2 − 10L5 − 10(λ + 4)L4

−(λ(λ(17λ + 299) + 1722) + 3414)L)/(2L + 1)!!
〈ũ′

1|ũ′
1〉 = 12(λ + 2)(λ + 3)(λ + 4)(λ + 5)(λ + 54)λ!

〈ũ1|ũ0〉 = 120(L + 1)(λ − L + 5)(λ + L + 7)(L − 3)!(λ − L + 3)!!
×(3(λ + 3) + L(−λ + L(λ + L + 3) − 7)(λ + L + 2)!!/(2L + 1)!!

〈ũ′
1|ũ′

0〉 = 480(λ + 2)(λ + 3)(λ + 4)(λ + 5)λ!
〈ũ0|ũ0〉 = 120(L + 1)(L − 5)!(λ − L + 5)!!(λ + L + 2)!!

× L6 + 2(λ + 2)L5 + (λ − 7)(λ + 5)L4

+45(λ + 3)(λ + 5) − 16(λ + 4)(λ + 11)L
− 2(λ(3λ + 19) + 10)L3 + (λ(21λ + 188) + 439)L2

)
/(2L + 1)!!

〈ũ′
0|ũ′

0〉 = 240(λ + 2)(λ + 3)(λ + 4)(λ + 5) (λ(2λ + 1) + 4) (λ − 2)!
〈ũ′′

0 |ũ′′
0 〉 = 120(λ + 2)(λ + 3)(λ + 4)(λ + 5)(λ + 6)λ!

In the case of the subset of two independent BM vectors (5) indicated by the
displayed values of labels expansion (12) takes one of three possible linear com-
binations. The first one is given by expressions

∣
∣
∣
∣
(λ, μ)
f̃0, L, L

〉
= Ã

(λ,μ)
0,0 (L)

∣
∣
∣
∣
(λ, μ)B

0, L, L

〉
+ Ã

(λ,μ)
0,1 (L)

∣
∣
∣
∣
(λ, μ)B

1, L, L

〉
,

Ã
(λ,4)
0,0 (L) = −〈ψ̃0|ψ̃0〉−1/2,

Ã
(λ,4)
0,1 (L) = 〈ψ̃0|ψ̃0〉−1/2 〈ũ1|ũ0〉

〈ũ1|ũ1〉 ,

〈ψ̃0|ψ̃0〉 = 〈ũ0|ũ0〉 − 〈ũ1|ũ0〉2
〈ũ1|ũ1〉 .

mmonagan@cecm.sfu.ca



142 A. Deveikis et al.

Table 8. Transformation coefficients A
(λ,μ)
i,α (L) for μ = 4.

α i L λ − L even λ − L odd

2 2 0, 1,. . . ,λ A
(λ,4)
2,2 (L) —

1 2, 3,. . . ,λ A
(λ,4)
1,2 (L) —

0 4, 5,. . . ,λ A
(λ,4)
0,2 (L) —

1 1 2, 3,. . . ,λ + 1 A
(λ,4)
1,1 (L) Ã

(λ,4)
1,1 (L)

λ + 2 A
(λ,4)
1,1 (λ + 2) —

0 4, 5,. . . ,λ + 1 A
(λ,4)
0,1 (L) Ã

(λ,4)
0,1 (L)

λ + 2 A
(λ,4)
0,1 (λ + 2) —

0 0 4, 5,. . . ,λ + 1 A
(λ,4)
0,0 (L) Ã

(λ,4)
0,0 (L)

λ + 2 A
(λ,4)
0,0 (λ + 2) —

λ + 3 — Ã
(λ,4)
0,0 (λ + 3)

λ + 4 A
(λ,4)
0,0 (λ + 4) —

The second expression is of the following form:
∣
∣
∣
∣
(λ, μ)
f0, λ+2, λ+2

〉
= A

(λ,μ)
0,0 (λ+2)

∣
∣
∣
∣
(λ, μ)B

0, λ+2, λ+2

〉
+A

(λ,μ)
0,1 (λ+2)

∣
∣
∣
∣
(λ, μ)B

1, λ+2, λ+2

〉
,

A
(λ,4)
0,0 (λ+2) = −

(
λ+35

48(λ+2)(λ+3)2(λ+4)(λ+5)(2λ+7)(λ − 2)!

)1/2

,

A
(λ,4)
0,1 (λ+2) =

2
√

3
λ+3

((λ+2)(λ+4)(λ+5)(λ+35)(2λ+7)(λ − 2)!)−1/2
.

The third linear combination for two independent BM vectors (5) is read as
∣
∣
∣
∣
(λ, μ)
f1, L, L

〉
= A

(λ,μ)
1,1 (L)

∣
∣
∣
∣
(λ, μ)B

1, L, L

〉
+ A

(λ,μ)
1,2 (L)

∣
∣
∣
∣
(λ, μ)B

2, L, L

〉
,

A
(λ,4)
1,1 (L) = −〈ψ1|ψ1〉−1/2,

A
(λ,4)
1,2 (L) = 〈ψ1|ψ1〉−1/2 〈u2|u1〉

〈u2|u2〉 ,

∣
∣
∣
∣
(λ, μ)
f̃1, L, L

〉
= Ã

(λ,μ)
1,1 (L)

∣
∣
∣
∣
(λ, μ)B

1, L, L

〉
,

Ã
(λ,4)
1,1 (L) = (〈ũ1|ũ1〉)−1/2

.

If there is the only one BM vector (5) indicated by the displayed values of
labels the orthonormalization coefficient is equal to the reciprocal square root
of the corresponding overlap integral. In our case, there are two possible linear
combinations. The first one is read as
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∣
∣
∣
∣
(λ, μ)
f̃0, λ + 3, λ + 3

〉
= Ã

(λ,μ)
0,0 (λ + 3)

∣
∣
∣
∣
(λ, μ)B

0, λ + 3, λ + 3

〉
,

A
(λ,4)
0,0 (λ + 3) = [6(λ + 2)(λ + 3)(λ + 4)2(λ + 5)(λ − 1)!]−1/2,

∣
∣
∣
∣
(λ, μ)
f0, λ + 4, λ + 4

〉
= A

(λ,μ)
0,0 (λ + 4)

∣
∣
∣
∣
(λ, μ)B

0, λ + 4, λ + 4

〉
,

A
(λ,4)
0,0 (λ + 4) = [24(λ + 2)(λ + 3)(λ + 4)(λ + 5)λ!]−1/2.

The second form of the linear combination when there is only one BM vector
(5) is read as

∣
∣
∣
∣
(λ, μ)
f1, λ + 2, λ + 2

〉
= A

(λ,μ)
1,1 (λ + 2)

∣
∣
∣
∣
(λ, μ)B

1, λ + 2, λ + 2

〉
,

A
(λ,4)
1,1 (λ + 2) = [4(λ + 2)(λ + 3)(λ + 4)(λ + 35)λ!]−1/2,

∣
∣
∣
∣
(λ, μ)
f2, L, L

〉
= A

(λ,μ)
2,2 (L)

∣
∣
∣
∣
(λ, μ)B

2, L, L

〉
,

A
(λ,4)
2,2 (L) = (〈u2|u2〉)−1/2

.

4 The Action of the Zero Component of the Quadrupole
Operator onto the Orthogonal Basis

Following the paper [12], we determine the action of the zero component of the
second order generator of SU(3) group onto the BM basis vectors

Q0

∣
∣
∣
∣
(λ, μ)B

α,L, L

〉
=

∑

k=0,1,2
s=0,±1

a(k)
s

∣
∣
∣
∣
(λ, μ)B

α + s, L + k, L

〉
, (20)

where the coefficients a
(k)
s can be calculated as in [1] and they have the form

given in [12], and the inverse transformation Ã
(λμ)
i,α (L) from formula (12)

∣
∣
∣
∣
(λ, μ)B

α,L, L

〉
=

α∑

i=0

Ã
(λμ)
i,α (L)

∣
∣
∣
∣
(λ, μ)
fi, L, L

〉
, (21)

where conventional relations take place
∑

i

Ã
(λμ)
i,α′ (L)A(λμ)

i,α (L) = δα′,α and
∑

α

Ã
(λμ)
i′,α (L)A(λμ)

i,α (L) = δi′,i. (22)

Using (20), (21), and (22), one obtains the action of the zero component of the
quadrupole operator onto the orthogonal BM basis vectors

Q0

∣
∣
∣
∣
(λ, μ)
fi, L, L

〉
=

∑

j=0,...,αmax
k=0,1,2

q
(λμ)
ijk (L)

∣
∣
∣
∣
(λ, μ)
fj , L + k, L

〉
, (23)
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where the coefficients q
(λμ)
ijk (L) are calculated by the formula

q
(λμ)
ijk (L) =

∑

α=0,...,αmax
s=0,±1

A
(λμ)
i,α (L)a(k)

s Ã
(λμ)
j,(α+s)(L + k), (24)

and Ã
(λμ)
i,α (L) are elements of the inverse and the transpose of matrix

Ã
(λμ)
i,α (L) = (A−1)

(λμ)

α,i (L). (25)

The matrix elements of the quadrupole operators, generators of the group SU(3)
can be reduced to the calculation of the reduced matrix elements by means of
the Wigner–Eckart theorem

〈
(λμ)
jL + kM

∣
∣
∣
∣ Qm

∣
∣
∣
∣
(λμ)
iLM ′

〉
=

(LM ′ 2m|L + k,M)
√

2(L + k) + 1

〈
(λμ)
j, L + k

∣
∣
∣
∣

∣
∣
∣
∣ Q

∣
∣
∣
∣

∣
∣
∣
∣
(λμ)
i, L

〉
.

(26)
The corresponding reduced matrix element is determined by formula

〈
(λμ)
j, L + k

∣
∣
∣
∣

∣
∣
∣
∣ Q

∣
∣
∣
∣

∣
∣
∣
∣
(λμ)
i, L

〉
= (−1)k

√
2L + 1

(L + k, L, 20|LL)
q
(λ,μ)
i,j,k (L), (27)

where the coefficients q
(λ,μ)
i,j,k (L) are defined by (24). In this definition, k ≥ 0.

Dimension of subspace of the ket vectors |(λμ)iLM〉 at fixed λ and μ are defined
by Formula (6). The dimension of this subspace determines the complexity of
the above algorithms, i.e., required computer memory and execution time.

In this paper, the new results for the coefficients q
(λμ)
ijk (L) in the orthonor-

mal BM basis with the highest weight vectors of SO(3) irreps for μ = 4 were
calculated. The results are not presented here because of a restricted volume of
the issue and will be published elsewhere. Note that the coefficients q

(λμ)
ijk (L) for

up to μ = 3 were calculated as well and their values are equal to those presented
in Table 1 of Ref. [12].

5 Conclusion

We present the practical symbolic algorithm for constructing the non-canonical
Bargmann–Moshinsky (BM) basis with the highest weight vectors of SO(3) irreps
which can be implemented in any computer algebra system. This kind of basis is
widely used for calculating spectra and electromagnetic transitions in molecular
and nuclear physics. The program in the Mathematica language is now prepared
for calculating the non-canonical BM basis overlap integrals following the analyt-
ical formula given by [2]. The effective symbolic algorithm for orthonormalization
of the obtained BM basis based on the Gram–Schmidt orthonormalization proce-
dure is developed. The proposed recursive orthonormalization algorithm allows
one to find the analytical expressions of the orthonormalized basis. The distinct
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advantage of this method is that it does not involve any square root operation on
the expressions coming from the previous recursion steps for computation of the
orthonormalization coefficients for this basis. This makes the proposed method
very suitable for calculations on computer algebra systems. The symbolic nature
of the developed algorithms allows one to avoid the numerical round-off errors in
calculation of spectral characteristics (especially close to resonances) of quantum
systems under consideration and to study their analytical properties for under-
standing the dominant symmetries. Calculations of spectral characteristics of
the above nuclei models and study of their dominant symmetries will be done
in our next publications.
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Abstract. We study, by means of a fragment of theory about non-
commutative differential equations, existence and unicity of Drinfel’d
solutions Gi, i = 0, 1 (with asymptotic conditions). From there, we give
examples of Drinfel’d series with rational coefficients.

Keywords: Drinfel’d series · Harmonic sums
Knizhnik-Zamolodchikov equations polylogarithms · Polyzetas
Regularization · Renormalization
Noncommutative differential equations
Noncommutative generating series

1 Knizhnik-Zamolodchikov Differential Equations
and Coefficients of Drinfel’d Associators

In 1986 [11], in order to study the linear representations of the braid group Bn

coming from the monodromy of the Knizhnik-Zamolodchikov differential equa-
tions, Drinfel’d introduced a class of formal power series Φ on noncommutative
variables over the finite alphabet X = {x0, x1}. Such power series Φ are called
Drinfel’d series (or associators). For n = 3, it leads to the following fuchsian
differential equation with three regular singularities in {0, 1,+∞}:

(DE) dG(z) =
(

x0
dz

z
+ x1

dz

1 − z

)
G(z).

This is connected to the fact that the pure braid group on three strands P3 is
the semi-direct product of the pure braid group on two strands (a copy of Z)
with a copy of the free group on two generators. Although this interpretation of
(DE) does not play an explicit role below, it can be kept in mind with a view
towards applications.

Solutions of (DE) are power series, with coefficients which are mono-valued
functions on the simply connected domain Ω := C\ (]−∞, 0]∪ [1,+∞[) and can
be seen as multi-valued over1 C \ {0, 1} on noncommutative variables on X.

1 In fact, we have mappings from the universal covering ˜C \ {0, 1}.

c© Springer Nature Switzerland AG 2018
V. P. Gerdt et al. (Eds.): CASC 2018, LNCS 11077, pp. 146–163, 2018.
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Drinfel’d proved that (DE) admits two particular mono-valued solutions on
Ω [12,13]

G0(z)
˜z�0

exp[x0 log(z)] and G1(z)
˜z�1

exp[−x1 log(1 − z)]. (1)

and the existence of an associator ΦKZ ∈ R〈〈X〉〉 such that G0 = G1ΦKZ

[12,13] but he did not make explicit neither G0 and G1 nor ΦKZ . After that, via
representations of the chord diagram algebras, Lê and Murakami [26] expressed
the coefficients of ΦKZ as linear combinations of special values of several complex
variables zeta functions, {ζr}r∈N+ ,

ζr : Hr −→ R, (s1, . . . , sr) �−→
∑

n1>...>nk>0

1
ns1

1 . . . nsr

k

, (2)

where Hr := {(s1, . . . , sr) ∈ C
r | ∀m = 1, .., r,

∑m
i=1 
(si) > m}.

For (s1, . . . , sr) ∈ Hr, one has two ways of thinking ζr(s1, . . . , sr) as lim-
its, fulfilling identities [1,20,21]. Firstly, they are limits of polylogarithms and
secondly, as truncated sums, they are limits of harmonic sums:

Lis1,...,sk
(z) =

∑
n1>...>nk>0

zn1

ns1
1 . . . nsk

k

, for z ∈ C, |z| < 1, (3)

Hs1,...,sk
(N) =

N∑
n1>...>nk>0

1
ns1

1 . . . nsk

k

, for N ∈ N+. (4)

More precisely, if (s1, . . . , sr) ∈ Hr then, after a theorem by Abel, one has

lim
z→1

Lis1,...,sk
(z) = lim

n→∞ Hs1,...,sk
(n) =: ζr(s1, . . . , sk) (5)

else it does not hold, for (s1, . . . , sr) /∈ Hr, while Lis1,...,sk
is well defined over

{z ∈ C, |z| < 1} and so is Hs1,...,sk
, as Taylor coefficients of the following function

Lis1,...,sk
(z)

1 − z
=

∑
n≥1

Hs1,...,sk
(n)zn, for z ∈ C, |z| < 1. (6)

For r = 1, ζ1 is nothing else but the famous Riemann zeta function and,
for r = 0, it is convenient to set ζ0 to the constant function s �→ 1

R
. In all the

sequel, for simplification, we will adopt the notation ζ for ζr, r ∈ N.
In this work, we will describe the regularized solutions of (DE). Remark also

that replacing letters {xi}i=0,1 by constant matrices {Mi}i=0,1 (resp. analyti-
cal vector fields {Ai}i=0,1), one deals with linear (resp. nonlinear) differential
equations [3,5,19,25] (resp. [6,9,22]). Hence, (DE) can also be considered as
the universal linear and nonlinear differential equation with three singularities.
Therefore these computations can undergo an automatic treatment (see, for
instance [16] and the subsequent sessions).

For that, we are considering the alphabets X := {x0, x1} and Y0 := {ys}s≥0

equipped with the total ordering x0 < x1 and y0 > y1 > y2 > . . ., respectively.
Let us also consider Y := Y0 \ {y0}.
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The free monoid generated by X (resp. Y, Y0) is denoted by X∗ (resp.
Y ∗, Y ∗

0 ) and admits 1X∗ (resp. 1Y ∗ , 1Y ∗
0
) as unit. The sets of polynomials and

formal power series, with coefficients in a commutative Q-algebra A, over X∗

(resp. Y ∗, Y ∗
0 ) are denoted by A〈X〉 (resp. A〈Y 〉, A〈Y0〉) and A〈〈X〉〉 (resp.

A〈〈Y 〉〉, A〈〈Y0〉〉), respectively.
The sets of polynomials are A-modules and endowed with the associative

concatenation, the associative commutative shuffle (resp. quasi-shuffle) product,
over A〈X〉 (resp. A〈Y 〉, A〈Y0〉). Their associated coproducts are denoted, respec-
tively, Δ and Δ .

The shuffle algebra (A〈X〉, , 1X∗) and quasi-shuffle algebra (A〈Y 〉, , 1Y ∗)
admit the sets of Lyndon words denoted, respectively, by LynX and LynY , as
transcendence bases [27] (resp. [22,23]).

Now, for Z = X or Y , denoting LieA〈Z〉 and LieA〈〈Z〉〉 the sets of, respec-
tively, Lie polynomials and Lie series, the enveloping algebra U(LieA〈Z〉) is iso-
morphic to the (Hopf) bialgebra

H (Z) := (A〈Z〉, ., 1Z∗ ,Δ , e). (7)

We get also

H (Y ) := (A〈Y 〉, ., 1Y ∗ ,Δ , e) ∼= U(Prim(H (Y ))), (8)

where Prim(H (Y )) = spanA{π1(w)|w ∈ Y ∗} and, for any w ∈ Y ∗ [2,22,23],

π1(w) =
(w)∑
k=1

(−1)k−1

k

∑
u1,...,uk∈Y +

〈w|u1 . . . uk〉u1 . . . uk. (9)

The paper is organised as follows: Sect. 1 is devoted to setting the combina-
torial framework of noncommutative differential Knizhnik-Zamolodchikov equa-
tions and Drinfel’d associators. Afterwards, in Sect. 2, we recall some algebraic
structures about polylogarithms and harmonic sums, through their indexing by
words. In Sect. 3, we will study, by means of a fragment of theory about noncom-
mutative differential equations2, existence and unicity of Drinfel’d solutions (1).
Finally, in Sect. 4, we will renormalize solutions of (DE) and will regularize them
at singularites. Also some examples of Drinfel’d series with rational coefficients
are provided. Some results in this paper have been presented in [10], as preprint,
but never published before (see also [24]).

2 Indexing Polylogarithms and Harmonic Sums by
Words and Their Generating Series

For any r ∈ N, any combinatorial composition (s1, . . . , sr) ∈ N
r
+ can be associ-

ated with words

xs1−1
0 x1 . . . xsr−1

0 x1 ∈ X∗x1 and ys1 . . . ysr
∈ Y ∗. (10)

2 The main theorem, although not very difficult once the correct setting has been
implemented, is very powerful and new here in its two-sided version (see Subsect.
3.1).

mmonagan@cecm.sfu.ca



About Drinfel’d Associators 149

Similarly, any multi-index3 (s1, . . . , sr) ∈ N
r can be associated with words

ys1 . . . ysr
∈ Y ∗

0 . Then let us index polylogarithms and harmonic sums by words
[2,21]:

Lixr
0
(z) :=

(log(z))r

r!
, Li

x
s1−1
0 x1...xsr−1

0 x1
:= Lis1,...,sr

, Hys1 ...ysr
:= Hs1,...,sr

. (11)

Similarly, let Li−s1,...,−sk
and H−s1,...,−sk

be indexed by words4 as follows [7,8]:

Li−yr
0
(z) :=

(
z

1 − z

)r

,Li−ys1 ...ysr
:= Li−s1,...,−sr

and (12)

H−
yr
0
(n) :=

(
n

r

)
=

(n)r

r!
,H−

ys1 ...ysr
:= H−s1,...,−sr

.

There exists a law of algebra, denoted by �, in Q〈〈Y0〉〉, such that the mor-
phism (14) of algebras is surjective. With this, we get the following [7]

H−
• : (Q〈Y0〉, , 1Y ∗

0
) −→ (Q{H−

w}w∈Y ∗
0
,×, 1), w �−→ H−

w , (13)

Li−• : (Q〈Y0〉,�, 1Y ∗
0
) −→ (Q{Li−w}w∈Y ∗

0
,×, 1), w �−→ Li−w , (14)

such that [7]

ker H−
• = ker Li−• = Q〈{w − w�1Y ∗

0
|w ∈ Y ∗

0 }〉. (15)

Moreover, the families {H−
yk

}k≥0 and {Li−yk
}k≥0 are Q-linearly independent.

On the other hand, the following morphisms of algebras are injective

H• : (Q〈Y 〉, , 1Y ∗) −→ (Q{Hw}w∈Y ∗ ,×, 1), w �−→ Hw, (16)
Li• : (Q〈X〉, , 1X∗) −→ (Q{Liw}w∈X∗ ,×, 1), w �−→ Liw. (17)

Moreover, the families {Hw}w∈Y ∗ and {Liw}w∈X∗ are Q-linearly independent
and the families {Hl}l∈LynY and {Lil}l∈LynX are Q-algebraically independent.
But at singularities of {Liw}w∈X∗ , {Hw}w∈Y ∗ , the following convergent values

∀u ∈ Y ∗ − y1Y
∗, ζ(u) := Hu(+∞) and ∀v ∈ x0X

∗x1, ζ(v) := Liv(1) (18)

are no longer linearly independent and the values {Hl(+∞)}l∈LynY \{y1} (resp.
{Lil(1)}l∈LynX\X) are no longer algebraically independent [21,28].

The graphs of the isomorphisms of algebras, Li• and H•, as generating series,
read then [3,4,21]

L :=
∑

w∈X∗
Liww =

↘∏
l∈LynX

eLiSl
Pl and H :=

∑
w∈Y ∗

Hww =
↘∏

l∈LynY

eHΣl
Πl , (19)

3 The weight of (s1, . . . , sr) ∈ N
r
+ (resp. N

r) is defined as the integer s1 + . . . + sr

which corresponds to the weight, denoted (w), of its associated word w ∈ Y ∗ (resp.
Y ∗
0 ) and also (in the case of Y ) to the length, denoted by |u|, of its associated word

u ∈ X∗.
4 Note that, all these {Li−w}w∈Y ∗

0
and {H−

w}w∈Y ∗
0

diverge at their singularities.
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where the PBW basis {Pw}w∈X∗ (resp. {Πw}w∈Y ∗) is expanded over the basis
of U(LieA〈X〉) (resp. U(Prim(H (Y ))), {Pl}l∈LynX (resp. {Πl}l∈LynY ), and
{Sw}w∈X∗ (resp. {Σw}w∈Y ∗) is the basis of the shuffle (Q〈Y 〉, , 1X∗) (resp. the
quasi-shuffle (Q〈Y 〉, , 1Y ∗)) containing the transcendence basis {Sl}l∈LynX

(resp. {Σl}l∈LynY ).
By termwise differentiation, L satisfies the noncommutative differential equa-

tion (DE) with the boundary condition L(z)
˜z→0+ex0 log(z). It is immediate that

the power series H and L are group-like, for Δ and Δ , respectively. Hence, the
following noncommutative generating series are well defined and are group-like,
for Δ and Δ , respectively [21–23]:

Z :=
↘∏

l∈LynY \{y1}
eHΣl

(+∞)Πl and Z :=
↘∏

l∈LynX\X

eLiSl
(1)Pl . (20)

Definitions (5) and (18) lead then to the following surjective poly-morphism

ζ :
(Q1X∗ ⊕ x0Q〈X〉x1, , 1X∗)

(Q1Y ∗ ⊕ (Y − {y1})Q〈Y 〉, , 1Y ∗)
−� (Z,×, 1), (21)

x0x
r1−1
1 . . . x0x

rk−1
1

ys1 . . . ysk

�−→
∑

n1>...>nk>0

n−s1
1 . . . n−sk

k , (22)

where Z is the Q-algebra generated by {ζ(l)}l∈LynX\X (resp. {ζ(Sl)}l∈LynX\X),
or equivalently, generated by {ζ(l)}l∈LynY \{y1} (resp. {ζ(Σl)}l∈LynY \{y1}).

Now, let ti ∈ C, |ti| < 1, i ∈ N. For z ∈ C, |z| < 1, we have [18]

∑
n≥0

Lixn
0
(z) tn0 = zt0 and

∑
n≥0

Lixn
1
(z) tn1 =

1
(1 − z)t1

. (23)

These suggest to extend the morphism Li• over (Dom(Li•), , 1X∗), via Lazard’s
elimination, as follows (subjected to be convergent):

LiS(z) =
∑
n≥0

〈S|xn
0 〉 logn(z)

n!
+

∑
k≥1

∑
w∈(x∗

0x1)kx∗
0

〈S|w〉Liw(z), (24)

with C〈X〉 C
rat〈〈x0〉〉 C

rat〈〈x1〉〉 ⊂ Dom(Li•) ⊂ C
rat〈〈X〉〉 and C

rat〈〈X〉〉
denotes the closure, of C〈X〉 in C〈X〉X, by {+, ., ∗}. For example [18,19],

1. For any x, y ∈ X and for any i, j ∈ N+, u, v ∈ C such that |u| < 1 and |v| < 1,
since

(ux + vy)∗ = (xx)∗ (vy)∗ and (x∗) i = (ix)∗ (25)

then

Li(x∗
0) i (x∗

1) j (z) =
zi

(1 − z)j
. (26)
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2. For a ∈ C, x ∈ X, i ∈ N+, since

(ax)∗i = (ax)∗ (1 + ax)i−1 (27)

then

Li(ax0)∗i(z) = za
i−1∑
k=0

(
i − 1

k

)
(a log(z))k

k!
,

Li(ax1)∗i(z) =
1

(1 − z)a

i−1∑
k=0

(
i − 1

k

)
(a log((1 − z)−1)k

k!
. (28)

3. Let V = (t1x0)∗s1xs1−1
0 x1 . . . (trx0)∗srxsr−1

0 x1, for (s1, . . . , sr) ∈ N
r
+. Then

LiV (z) =
∑

n1>...>nr>0

zn1

(n1 − t1)s1 . . . (nr − tr)sr
. (29)

In particular, for s1 = . . . = sr = 1, one has

LiV (z) =
∑

n1,...,nr>0

Li
x

n1−1
0 x1...xnr−1

0 x1
(z) tn1−1

0 . . . tnr−1
r

=
∑

n1>...>nr>0

zn1

(n1 − t1) . . . (nr − tr)
. (30)

4. From the previous points, one gets

{LiS}S∈C〈X〉 C[x∗
0 ] C[(−x∗

0)] C[x∗
1 ] = span

C

{
za

(1 − z)b
Liw(z)

}a∈Z,b∈N

w∈X∗

⊂ span
C

{Lis1,...,sr
}s1,...,sr∈Z

r ⊕ span
C

{za|a ∈ Z}, (31)

{LiS}S∈C〈X〉 C

rat〈〈x0〉〉 C

rat〈〈x1〉〉 = span
C

{
za

(1 − z)b
Liw(z)

}a,b∈C

w∈X∗

⊂ span
C

{Lis1,...,sr
}s1,...,sr∈C

r ⊕ span
C

{za|a ∈ C}. (32)

3 Noncommutative Evolution Equations

As was previously said, Drinfel’d proved that (DE) admits two particular solu-
tions on Ω. These new tools and results can be considered as pertaining to the
domain of noncommutative evolution equations. We will, here, only mention what
is relevant for our needs.

Even for one sided 5 differential equations, in order to cope with limit initial
conditions (see applications below), one needs the two sided version.
5 As the left (DE) for instance (see [6]).
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Let then Ω ⊂ C be open simply connected and H(Ω) denotes the algebra of
holomorphic functions on Ω. We suppose we are given two series (called mul-
tipliers) without constant term M1,M2 ∈ H(Ω)+〈〈X〉〉 (X is an alphabet and
the subscript indicates that the series have no constant term). Let then

(DE2) dS = M1S + SM2.

be our two sided differential equation. A solution of it is a series S ∈ H(Ω)〈〈X〉〉
such that (DE2) is satisfied.

In the sequel, we will use of the following lemma.

Lemma 1. Let B be a filter basis on Ω and S a solution of (DE2) such that
limB〈S(z)|w〉 = 0, for all w ∈ X∗, then S ≡ 0.

Proof. Let us suppose S �≡ 0 and w be a word of minimal length of supp(S).
Then for this word, one has

d

dz
〈S|w〉 = 〈M1S + SM2|w〉 = 0,

due to the fact that Mi have no constant term. Then, for this word, z �→ 〈S(z)|w〉
is constant on Ω. But, due to the fact that limB〈S|w〉 = 0, one must have this
constant to be zero in contradiction with the reasoning on the support.

3.1 The Main Theorem

The following theorem, although not very difficult to establish once the correct
setting has been implemented, is very powerful and new here in its two-sided
version.6

Theorem 1. (i) Solutions of (DE2) form a C-vector space.
(ii) Solutions of (DE2) have their constant term (as coefficient of 1X∗) which

are constant functions (on Ω); there exist solutions with constant coefficient
1Ω (hence invertible).

(iii) If two solutions coincide at one point z0 ∈ Ω, they coincide everywhere.
(iv) Let be the following one-sided equations

(DE(1)) dS = M1S and (DE(2)) dS = SM2,

and let Si, i = 1, 2 be a solution of (DE(i)). Then S1S2 is a solution of
(DE2). Conversely, every solution of (DE2) can be constructed so.

(v) If Mi, i = 1, 2 are primitive and if S, a solution of (DE2), is group-like at
one point, (or, even at one limit point) it is globally group-like.

Proof. (i) Straightforward.

6 It implies the previous (one-sided) version [6] which was aimed at the linear inde-
pendence of coordinate functions.
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(ii) One can use Lemma 1 or directly remark that the map S �→ 〈S|1X∗〉 = ε(S)
is a character (of H(Ω)〈〈X〉〉) which commutes with the derivations, i.e.,

ε(dS) =
d

dz
ε(S).

Hence, as ε(Mi) = 0, for every solution of (DE2), one has d
dz (ε(S)) = 0

whence the claim, as Ω is connected.
Now, for each z0 ∈ Ω, one can construct the unique solution of (DE2) such
that S(z0) = 1X∗ by the following process (Picard’s process)

S0 = 1X∗ , Sn+1 = 1X∗ +
∫ z

z0

M1(s)Sn(s) + Sn(s)M2(s)ds

(term by term integration). Due to the fact that Mi(s), i = 1, 2 has no con-
stant term, its limit Sz0

Pic := limn→∞ Sn exists and is such that Sz0
Pic(z0) =

1X∗ . Then its constant term is everywhere 1
C

(i.e. 〈Sz0
Pic|1X∗〉 = 1Ω) and

therefore Sz0
Pic is invertible in H(Ω)〈〈X〉〉.

(iii) In fact, the previous reasoning can be carried over for any length (in point
“ii” it was for length 0). The claim is an easy consequence of Lemma 1.

(vi) The fact that the product S1S2 (for Si, i = 1, 2 solutions of (DE(i))) is a
solution of (DE2) is straightforward. Let us now suppose S to be a solution of
(DE2) and set, here for short, S2 := Sz0

Pic, the corresponding Picard solution
of (DE(2)) (notation as above). We now compute with T := S(S2)−1

dT = d(S(S2)−1) = dS(S2)−1 + Sd(S2)−1

= (M1S + SM2) + S(−S2)−1dS2(S2)−1 = M1T,

which proves the claim (as S = TS2).
(v) One first remarks that the two preceding points hold if (DE2) is stated for

series over any locally finite monoid [15]. Such a monoid M has the property
(and in fact is defined by it) that every element x ∈ M has a finite number
of factorizations

x = x1 . . . xn with xi ∈ M \ {1M},

and the length above is replaced by l(x) := sup(n) for all factorisations as
above7. Series over M are just functions S ∈ RM (the ring R here is R =
H(Ω) and 〈S|m〉 is another notation for the image of m by S), polynomials
are finitely supported series S ∈ R(M) and the canonical pairing series-
polynomials, 〈S|P 〉 reads

〈S|P 〉 :=
∑

m∈M

〈S|m〉〈m|P 〉.

7 For example l(1M ) = 0 and l(x) = 1 for x ∈ M+ \ (M+)2 (with M+ = M \ {1M})
the minimal set of generators of M [15]).
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Now, we return to the monoid X∗ but we will reason on M = X∗ ⊗ X∗ �
X∗ × X∗ (direct product, thus also locally finite). Let S be a solution of
(DE2) with Mi, i = 1, 2 primitive (hence without constant term). One has

d(S ⊗ S) = dS ⊗ S + S ⊗ dS

= (M1S + SM2) ⊗ S + S ⊗ (M1S + SM2)
= (M1 ⊗ 1 + 1 ⊗ M1)(S ⊗ S) + (S ⊗ S)(M2 ⊗ 1 + 1 ⊗ M2),

d(Δ (S)) = (Δ (dS))=Δ (M1S+SM2)=Δ (M1)Δ (S)+Δ (S)Δ (M2)

(again M = X∗ ⊗ X∗ ⊂ H(Ω)〈X〉 ⊗ H(Ω)〈X〉, all tensor products are over
H(Ω)). Hence, we see that S ⊗ S and Δ (S) (double series, i.e., series over
X∗ ⊗ X∗) satisfy two-sided differential equations with the same multipliers
(left= M1 ⊗1+1⊗M1 = Δ (M1) and right= M2 ⊗1+1⊗M2 = Δ (M2)),
then it suffices that they coincide at one point of Ω̄ in order that Δ (S) =
S⊗S (the property 〈S|1X∗〉 = 1 is granted from the fact that S is group-like
at one point of Ω̄).

Remark 1. – Every holomorphic series S(z) ∈ H(Ω)〈〈X〉〉 which is group-like
(Δ(S) = S ⊗ S and 〈S|1X∗〉) is a solution of a one-sided dynamics with
primitive multiplier (take M1 = (dS)S−1 and M2 = 0, or M2 = S−1(dS)
and M1 = 0).

– Invertible solutions of an equation of type S′ = M1S are on the same orbit
by multiplication on the right by invertible constant series, i.e., let Si, i =
1, 2 be invertible solutions of (DE(1)), then there exists an unique invertible
T ∈ C〈〈X〉〉 such that S2 = S1T . From this and point (iv) of the theorem,
one can parametrize the set of invertible solutions of (DE2).

3.2 Application : Unicity of Solutions with Asymptotic Conditions

In a previous work [6], we proved that asymptotic group-likeness, for a series,
implies8 that the series in question is group-like everywhere. The process above
(Theorem 1, Picard’s process) can still be performed, under certain conditions
with improper integrals. We then construct the series L recursively as

〈L(z)|w〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

logn(z)
n!

if w = xn
0∫ z

0

ds

1 − z
〈L(z)|u〉 if w = x1u∫ z

0

ds

z
〈L(z)|ux1x

n
0 〉 if w = x0ux1x

n
0 .

(33)

8 Under the condition that the multiplier be primitive, result extended as point (v) of
the theorem above.
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One can show that (see [6] for details):

– this process is well defined at each step and computes the series L as below;
– L is solution of (DE), is exactly G0 and is group-like.

We here only prove that G0 is unique using the theorem above. Consider the
series

T (z) = L(z)e−x0 log(z). (34)

Then T is solution of an equation of the type (DE2)

T ′(z) =
(

x0

z
+

x1

1 − z

)
T (z) + T (z)

−x0

z
, (35)

but

lim
z→z0

G0(z)e−x0 log(z) = 1, (36)

so, by Theorem 1, one has

G0(z)e−x0 log(z) = L(z)e−x0 log(z) (37)

and then9

G0 = L. (38)

A similar (and symmetric) argument can be performed for G1 and then, in
this interpretation and context, ΦKZ is unique.

4 Double Global Regularization of Associators

4.1 Global Renormalization by Noncommutative Generating Series

Global singularities analysis leads to to the following global renormalization
[3,4]:

lim
z→1

exp
(

−y1 log
1

1 − z

)
πY (L(z)) (39)

= lim
n→∞ exp

(∑
k≥1

Hyk
(n)

(−y1)k

k

)
H(n) = πY (Z ).

Thus, the coefficients {〈Z |u〉}u∈X∗ (i.e. {ζ (u)}u∈X∗) and {〈Z |v〉}v∈Y ∗

(i.e. {ζ (v)}v∈Y ∗) represent the finite part of the asymptotic expansions,
in {(1 − z)−a logb(1 − z)}a,b∈N

(resp. {n−aHb
1(n)}a,b∈N

) of {Liw}u∈X∗ (resp.
{Hw}v∈Y ∗). On the other way, by a transfer theorem [17], let {γw}v∈Y ∗ be the

9 See also [24].
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finite parts of {Hw}v∈Y ∗ , in {n−a logb(n)}a,b∈N
, and let Zγ be their noncommu-

tative generating series. Hence,

γ• : (Q〈Y 〉, , 1Y ∗) −→ (Z,×, 1), w �−→ γw, (40)

is a character and Zγ is group-like, for Δ . Moreover [22,23],

Zγ = exp(γy1)
↘∏

l∈LynY \{y1}
exp(ζ(Σl)Πl) = exp(γy1)Z . (41)

The asymptotic behavior leads to the bridge10 equation [3,4,22,23]

Zγ = B(y1)πY (Z ), or equivalently Z = B′(y1)πY (Z ), (42)

where (see [3,4] and [22,23])

B(y1)=exp
(

γy1−
∑
k≥2

(−y1)k ζ(k)
k

)
and B′(y1)=exp

(
−

∑
k≥2

(−y1)k ζ(k)
k

)
. (43)

Similarly, there is C−
w ∈ Q and B−

w ∈ N, such that [7]

H−
w(N)

˜N→+∞N (w)+|w|C−
w and Li−w(z)

˜z→1
(1 − z)−(w)−|w|B−

w . (44)

Moreover,

C−
w =

∏
w=uv,v �=1Y ∗

0

((v) + |v|)−1 and B−
w = ((w) + |w|)!C−

w . (45)

Now, one can then consider the following noncommutative generating series:

L− :=
∑

w∈Y ∗
0

Li−ww, H− :=
∑

w∈Y ∗
0

H−
ww, C− :=

∑
w∈Y ∗

0

C−
w w. (46)

Then H− and C− are group-like for, respectively, Δ and Δ and [7]

lim
z→1

h−1((1 − z)−1) � L−(z) = lim
N→+∞

g−1(N) � H−(N) = C−, (47)

h(t) =
∑

w∈Y ∗
0

((w) + |w|)!t(w)+|w|w and g(t) =
( ∑

y∈Y0

t(y)+1y

)∗
. (48)

4.2 Global Regularization by Noncommutative Generating Series

Next, for any w ∈ Y ∗
0 , there exists a unique polynomial p ∈ (Z[t],×, 1) of degree

(w) + |w| such that [7]

Li−w(z) =
(w)+|w|∑

k=0

pk

(1 − z)k
=

(w)+|w|∑
k=0

pke−k log(1−z) ∈ (Z[(1 − z)−1],×, 1),(49)

H−
w(n) =

(w)+|w|∑
k=0

pk

(
n + k − 1

k − 1

)
=

(w)+|w|∑
k=0

pk

k!
(n)k ∈ (Q[(n)•],×, 1), (50)

10 This equation is different from Jean Écalle’s one [14].
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where11

(n)• : N −→ Q, i �−→ (n)i = n(n − 1) . . . (n − i + 1). (51)

In other terms, for any w ∈ Y ∗
0 , k ∈ N, 0 ≤ k ≤ (w) + |w|, one has

〈Li−w |(1 − z)−k〉 = k!〈H−
w |(n)k〉. (52)

Hence, denoting p̃ the exponential transform of the polynomial p, one has

Li−w(z) = p((1 − z)−1) and H−
w(n) = p̃((n)•) (53)

with

p(t) =
(w)+|w|∑

k=0

pktk ∈ (Z[t],×, 1) and p̃(t) =
(w)+|w|∑

k=0

pk

k!
tk ∈ (Q[t],×, 1). (54)

Let us then associate p and p̃ with the polynomial p̌ obtained as follows:

p̌(t) =
(w)+|w|∑

k=0

k!pktk =
(w)+|w|∑

k=0

pkt k ∈ (Z[t], , 1). (55)

Let us recall also that, for any c ∈ C, one has

(n)c
˜n→+∞nc = ec log(n)

and, with the respective scales of comparison, one has the following finite parts

f.p.z→1c log(1 − z) = 0, {(1 − z)a logb((1 − z)−1)}a∈Z,b∈N
, (56)

f.p.n→+∞c log n = 0, {na logb(n)}a∈Z,b∈N
. (57)

Hence, using the notations given in (49) and (50), one can see, from (56) and
(57), that the values p(1) and p̃(1) obtained in (54) represent the following finite
parts:

f.p.z→1Li−w(z) = f.p.z→1LiRw
(z) = p(1) ∈ Z, (58)

f.p.n→+∞H−
w(n) = f.p.n→+∞HπY (Rw)(n) = p̃(1) ∈ Q. (59)

One can use then these values p(1) and p̃(1), instead of the values B−
w and

C−
w , to regularize, respectively, ζ (Rw) and ζγ(πY (Rw)) as showed Theorem 2

below because, essentially, B−
• and C−

• do not realize characters for, respectively,
(Q〈X〉, , 1X∗ ,Δ , e) and (Q〈Y 〉, , 1Y ∗ ,Δ , e) [7].

Now, in virtue of the extension of Li•, defined as in (23) and (24), and of the
Taylor coefficients, the previous polynomials p, p̃ and p̌ given in (54)–(55) can
be determined explicitly thanks to
11 Here, it is also convenient to denote Q[(n)•] the set of “polynomials” expanded as

follows

∀p ∈, Q[(n)•], p =
d∑

k=0

pk(n)k, deg(p) = d.

mmonagan@cecm.sfu.ca



158 G. H. E. Duchamp et al.

Proposition 1 ([24]).

1. The following morphisms of algebras are bijective:

λ : (Z[x∗
1], , 1X∗) −→ (Z[(1 − z)−1],×, 1), R �−→ LiR,

η : (Q[y∗
1 ], , 1Y ∗) −→ (Q[(n)•],×, 1), S �−→ HS .

2. For any w = ys1 , . . . ysr
∈ Y ∗

0 , there exists a unique polynomial Rw belonging
to (Z[x∗

1], , 1X∗) of degree (w) + |w|, such that

LiRw
(z) = Li−w(z) = p((1 − z)−1) ∈ (Z[(1 − z)−1],×, 1),

HπY (Rw)(n) = H−
w(n) = p̃((n)•) ∈ (Q[(n)•],×, 1).

In particular, via the extension, by linearity, of R• over Q〈Y0〉 and via the
linear independent family {Li−yk

}k≥0 in Q{Li−w}w∈Y ∗
0
, one has

∀k, l ∈ N, LiRyk
Ryl

= LiRyk
LiRyl

= Li−yk
Li−yl

= Li−yk�yl
= LiRyk�yl

.

3. For any w, one has p̌(x∗
1) = Rw.

4. More explicitly, for any w = ys1 , . . . ysr
∈ Y ∗

0 , there exists a unique polynomial
Rw belonging to (Z[x∗

1], , 1X∗) of degree (w) + |w|, given by

Rys1 ...ysr
=

s1∑
k1=0

s1+s2−k1∑
k2=0

. . .

(s1+...+sr)−
(k1+...+kr−1)∑

kr=0(
s1

k1

)
. . .

(
s1 + . . . + sr − k1 − . . . − kr−1

kr

)
ρk1 . . . ρkr

,

where, for any i = 1, . . . , r, if ki = 0 then ρki
= x∗

1 − 1X∗ else, for ki > 0,
denoting the Stirling numbers of second kind by S2(k, j)’s, one has

ρki
=

ki∑
j=1

S2(ki, j)(j!)2
j∑

l=0

(−1)l

l!
(x∗

1)
(j−l+1)

(j − l)!
.

Proposition 2 ([3,4,22,23]). With notations of (21), similar to the character
γ•, the poly-morphism ζ can be extended as follows

ζ : (Q〈X〉, , 1X∗) −→ (Z,×, 1) and ζ : (Q〈Y 〉, , 1Y ∗) −→ (Z,×, 1),

satisfying, for any ∈ LynY \ {y1},
ζ (πX(l)) = ζ (l) = γl = ζ(l)

and, for the generators of length (resp. weight) one, for X∗ (resp. Y ∗),

ζ (x0) = ζ (x1) = ζ (y1) = 0.

Now, to regularize {ζ(s1, . . . , sr)}(s1,...,sr)∈C

r , we use
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Lemma 2 ([7]).

1. The family {x∗
0, x

∗
1} is algebraically independent over (C〈X〉, , 1X∗) within

(C〈〈X〉〉, , 1X∗).
In particular, the power series x∗

0 and x∗
1 are transcendent over C〈X〉.

2. The module (C〈X〉, , 1X∗)[x∗
0, x

∗
1, (−x0)∗] is C〈X〉-free and a C〈X〉-basis of

it is given by the family {(x∗
0)

k (x∗
1)

l}(k,l)∈Z×N.
Hence, {w (x∗

0)
k (x∗

1)
l}(k,l)∈Z×N

w∈X∗ is a C-basis of it.
3. One has, for any xi ∈ X, C

rat〈〈xi〉〉 = span
C

{(txi)∗
C〈xi〉|t ∈ C}.

Since, for any t ∈ C, |t| < 1, one has Li(tx1)∗(z) = (1 − z)−t and [3,4]

HπY (tx1)∗ =
∑
k≥0

Hyk
1
tk = exp

(
−

∑
k≥1

Hyk

(−t)k

k

)
(60)

then, in virtue of Proposition 1, we obtain successively

Proposition 3 ([7]). The characters ζ and γ• can be extended as follows:

ζ : (C〈X〉 C[x∗
1], , 1X∗) −→ (C,×, 1

C
) and

γ• : (C〈Y 〉 C[y∗
1 ], , 1Y ∗) −→ (C,×, 1

C
),

such that, for any t ∈ C such that |t| < 1, one has

ζ ((tx1)∗) = 1
C

and γ(ty1)∗ = exp
(

γt −
∑
n≥2

ζ(n)
(−t)n

n

)
=

1
Γ (1 + t)

.

Theorem 2 ([24]).

1. For any (s1, . . . , sr) ∈ N
r
+ associated with w ∈ Y ∗, there exists a unique

polynomial p ∈ Z[t] of valuation 1 and of degree (w) + |w| such that

p̌(x∗
1) = Rw ∈ (Z[x∗

1], , 1X∗),
p((1 − z)−1) = LiRw

(z) ∈ (Z[(1 − z)−1],×, 1),
p̃((n)•) = HπY (Rw)(n) ∈ (Q[(n)•],×, 1),

ζ (−s1, . . . ,−sr) = p(1) = ζ (Rw) ∈ (Z,×, 1),
γ−s1,...,−sr

= p̃(1) = γπY (Rw) ∈ (Q,×, 1).

2. Let Υ (n) ∈ Q[(n)•]〈〈Y 〉〉 and Λ(z) ∈ Q[(1 − z)−1][log(z)]〈〈X〉〉 be the non-
commutative generating series of {HπY (Rw)}w∈Y ∗ and {LiRπY (w)}w∈X∗ :

Υ :=
∑

w∈Y ∗
HπY (Rw)w and Λ :=

∑
w∈X∗

LiRπY (w)w, with 〈Λ(z)|x0〉 = log(z).

Then Υ and Λ are group-like, for respectively Δ and Δ , and:

Υ =
↘∏

l∈LynY

e
HπY (RΣl

)Πl and Λ =
↘∏

l∈LynX

e
LiRπY (Sl)

Pl .
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3. Let Z−
γ ∈ Q〈〈Y 〉〉 and Z− ∈ Z〈〈X〉〉 be the noncommutative generating series

of {γπY (Rw)}w∈Y ∗ and12 {ζ (RπY (w))}w∈X∗ , respectively:

Z−
γ :=

∑
w∈Y ∗

γπY (Rw)w and Z− :=
∑

w∈X∗
ζ (RπY (w))w.

Then Z−
γ and Z− are group-like, for respectively Δ and Δ , and:

Z−
γ =

↘∏
l∈LynY

e
γπY (RΣl

)Πl and Z− =
↘∏

l∈LynX

eζ (πY (Sl))Pl .

Moreover,

F.P.n→+∞Υ (n) = Z−
γ and F.P.z→1Λ(z) = Z−, (61)

meaning that, for any v ∈ Y ∗ and u ∈ X∗, one has

f.p.n→+∞〈Υ (n)|v〉 = 〈Z−
γ |v〉 and f.p.z→1〈Λ(z)|u〉 = 〈Z−|u〉. (62)

To end this section, let us recall that the function Γ is meromorphic, admits
no zeroes and simple poles in −N. Hence, Γ−1 is entire and admits simple zeros
in −N.

Moreover, using the incomplete beta function, i.e., for z, a, b ∈ C such that
|z| < 1,
a > 0,
b > 0,

B(z; a, b) :=
∫ z

0

dt ta−1(1 − t)b−1

= Lix0[(ax0)∗ ((1−b)x1)∗](z)
= Lix1[((a−1)x0)∗ (−bx1)∗](z), (63)

and setting

B(a, b) := B(1; a, b)
= ζ (x0[(ax0)∗ ((1 − b)x1)∗])
= ζ (x1[((a − 1)x0)∗ (−bx1)∗]). (64)

we have, on the one hand, the following Euler’s formula

B(a, b)Γ (a + b) = Γ (a)Γ (b) (65)

12 On the one hand, by Proposition 2, one has 〈Z−|x0〉 = ζ (x0) = 0.
On the other hand, since Ry1 = (2x1)

∗ − x∗
1 then LiRy1

(z) = (1 − z)−2 − (1 − z)−1

and HπY (Ry1 )(n) =
(

n
2

) − (
n
1

)
. Hence, one also has 〈Z−|x1〉 = ζ (RπY (y1)) = 0 and

〈Z−
γ |x1〉 = γπY (Ry1 ) = −1/2.
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and, on the other hand13, in virtue of Proposition 3,

exp
(∑

n≥2

ζ(n)
(u + v)n − (un + vn)

n

)
=

Γ (1 − u)Γ (1 − v)
Γ (1 − u − v)

(66)

=
γ(−(u+v)y1)∗

γ(−uy1)∗γ(−vy1)∗
=

γ(−(u+v)y1)∗

γ(−uy1)∗ (−vy1)∗
.

Hence, it follows that

Corollary 1 ([24]). For any u, v ∈ C such that |u| < 1, |v| < 1 and |u + v| < 1,
one has

γ(−(u+v)y1)∗ = γ(−uy1)∗ (−vy1)∗ζ (x0[(−ux0)∗ (−(1 + v)x1)∗])
= γ(−uy1)∗ (−vy1)∗ζ (x1[(−(1 + u)x0)∗ (−vx1)∗]).

Remark 2 By (25), for any u, v ∈ C such that |u| < 1, |v| < 1 and |u + v| < 1,
one also has

ζ ((−(u + v)x1)∗) = ζ ((−ux1)∗ (−vx1)∗) = ζ ((−ux1)∗)ζ ((−vx1)∗) = 1.
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Abstract. In 2010, Shpilka and Volkovich established a prominent
result on the equivalence of polynomial factorization and identity test-
ing. It follows from their result that a multilinear polynomial over the
finite field of order 2 can be factored in time cubic in the size of the
polynomial given as a string. Later, we have rediscovered this result and
provided a simple factorization algorithm based on computations over
derivatives of multilinear polynomials. The algorithm has been applied
to solve problems of compact representation of various combinatorial
structures, including Boolean functions and relational data tables. In
this paper, we describe an improvement of this factorization algorithm
and report on preliminary experimental analysis.

1 Introduction

Polynomial factorization is a classic algorithmic problem in algebra [14], whose
importance stems from numerous applications. The computer era has stimulated
interest to polynomial factorization over finite fields. For a long period of time,
Theorem 1.4 in [8] (see also [12, Theorem 1.6]) has been the main source of infor-
mation on the complexity of this problem: a (densely represented) polynomial
Fpr (x1, . . . , xm) of the total degree n > 1 over all its variables can be factored
in time that is polynomial in nm, r, and p. In addition, practical probabilistic
factorization algorithms have been known.

In 2010, Shpilka and Volkovich [13] established a connection between poly-
nomial factorization and polynomial identity testing. The result has been formu-
lated in terms of the arithmetic circuit representation of polynomials. It follows
from these results that a multilinear polynomial over F2 (the finite field of the
order 2) can be factored in the time that is cubic in the size of the polynomial
given as a symbol sequence.

Multilinear polynomials over F2 are well known in the scope of mathemati-
cal logic (as Zhegalkine polynomials [15] or Algebraic Normal Form) and in cir-
cuit synthesis (Canonical Reed-Muller Form [10]). Factorization of multilinear
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polynomials is a particular case of decomposition (so-called conjunctive or AND-
decomposition) of logic formulas and Boolean functions. By the idempotence law
in the algebra of logic, multilinearity (all variables occur in degree 1) is a natural
property of these polynomials, which makes the factors have disjoint sets of vari-
ables F (X,Y ) = F1(X)F2(Y ), X ∩ Y = ∅. In practice, this property allows for
obtaining a factorization algorithm by variable partitioning (see below).

Among other application domains, such as game and graph theory, the most
attention has been given to decomposition of Boolean functions in logic circuit
synthesis, which is related to the algorithmic complexity and practical issues of
electronic circuits implementation, their size, time delay, and power consumption
(see [9,11], for example). One may note the renewed interest in this topic, which
is due to the novel technological achievements in circuit design.

The logic interpretation of multilinear polynomials over F2 admits another
notion of factorization, which is commonly called Boolean factorization (find-
ing Boolean divisors). For example, there are Boolean polynomials, which
have decomposition components sharing some common variables. Their prod-
uct/conjunction does not produce original polynomials in the algebraic sense but
it gives the same functions/formulas in the logic sense. In general, logic-based
approaches to decomposition are more powerful than algebraic ones: a Boolean
function can be decomposable logically, but not algebraically [9, Chap. 4].

In 2013, the authors have rediscovered the result of Shpilka and Volkovich
under simpler settings and in a simpler way [5,7]. A straightforward treatment
of sparsely represented multilinear polynomials over F2 gave the same worst-case
cubic complexity of the factorization algorithm. Namely, the authors provided
two factorization algorithms based, respectively, on computing the greatest com-
mon divisor (GCD) and formal derivatives (FD) for polynomials obtained from
the input one.

The algorithms have been used to obtain a solution to the following problems
of compact representation of different combinatorial structures (below we provide
examples, which intuitively explain their relation to the factorization problem).

– Conjunctive disjoint decomposition of monotone Boolean functions given in
positive DNF [5,7]. For example, the following DNF

ϕ = (x ∧ u) ∨ (x ∧ v) ∨ (y ∧ u) ∨ (y ∧ v) ∨ (x ∧ u ∧ v) (1)

is equivalent to

ψ = (x ∧ u) ∨ (x ∧ v) ∨ (y ∧ u) ∨ (y ∧ v), (2)

since the last term in ϕ is redundant, and we have

ψ ≡ (x ∨ y) ∧ (u ∨ v) (3)

and the decomposition components x∨y and u∨v can be recovered from the
factors of the polynomial

Fψ = xu + xv + yu + yv = (x + y) · (u + v) (4)

constructed for ψ.
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– Conjunctive disjoint decomposition of Boolean functions given in full DNF
[5,7]. For example, the following full DNF

ϕ = (x ∧ ¬y ∧ u ∧ ¬v) ∨(x ∧ ¬y ∧ ¬u ∧ v)∨
∨(¬x ∧ y ∧ u ∧ ¬v) ∨ (¬x ∧ y ∧ ¬u ∧ v)

is equivalent to

(x ∧ ¬y) ∨ (¬x ∧ y)
∧

(u ∧ ¬v) ∨ (¬u ∧ v), (5)

and the decomposition components of ϕ can be recovered from the factors of
the polynomial

Fϕ = xȳuv̄ + xȳūv + x̄yuv̄ + x̄yūv = (xȳ + x̄y) · (uv̄ + ūv) (6)

constructed for ϕ.
– Non-disjoint conjunctive decomposition of multilinear polynomials over F2,

in which components can have common variables from a given set. In [3],
a fixed-parameter polytime decomposition algorithm has been proposed, for
the parameter being the number of the shared variables between components.

– Cartesian decomposition of data tables (i.e., finding tables such that their
unordered Cartesian product gives the source table) [4,6] and generalizations
thereof for the case of a non-empty subset of shared attributes between the
tables. For example, the following table has a decomposition of the form:

B E D A C

z q u x y

y q u x y

y r v x z

z r v x z

y p u x x

z p u x x

=

A B

x y

x z

×
C D E

x u p

y u q

z v r

which can be obtained from the factors of the polynomial

zB · q · u · xA · yC+ yB · q · u · xA · yC+
yB · r · v · xA · zC+ zB · r · v · xA · zC +
yB · p · u · xA · xC+ zB · p · u · xA · xC

= (xA · yB + xA · zB) · (q · u · yC + r · v · zC + p · u · xC)

constructed for the table’s content.
In terms of SQL, Cartesian decomposition means reversing the first opera-
tor and the second operator represents some feasible generalization of the
problem:
T1 CROSS JOIN T2 SELECT T1.*, T2.* EXCEPT(Attr2)

FROM T1 INNER JOIN T2
ON T1.Attr1 = T2.Attr2

where EXCEPT(list) is an informal extension of SQL used to exclude list
from the resulting attributes. This approach can be applied to other table-
based structures (for example, decision tables or datasets appearing in the
K&DM domain, as well as the truth tables of Boolean functions).
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Shpilka and Volkovich did not address the problems of practical implemen-
tations of the factorization algorithm. However, the applications above require a
factorization algorithm to be efficient enough on large polynomials. In this paper,
we propose an improvement of the factorization algorithm from [4,6], which
potentially allows for working with larger inputs. An implementation of this ver-
sion of the algorithm in Maple 17 outperforms the native Maple’s Factor(poly)
mod 2 factorization, which in our experiments failed to terminate on input poly-
nomials having 103 variables and 105 monomials.

2 Definitions and Notations

A polynomial F ∈ F2[x1, . . . , xn] is called factorable if F = F1 ·. . .·Fk, where k ≥
2 and F1, . . . , Fk are non-constant polynomials. The polynomials F1, . . . , Fk are
called factors of F . It is important to realize that since we consider multilinear
polynomials (every variable can occur only in the power of ≤1), the factors are
polynomials over disjoint sets of variables. In the following sections, we assume
that the polynomial F does not have trivial divisors, i.e., neither x, nor x + 1
divides F . Clearly, trivial divisors can easily be recognized.

For a polynomial F , a variable x from the set of variables V ar(F ) of F ,
and a value a ∈ {0, 1}, we denote by Fx=a the polynomial obtained from F by
substituting x with a. For multilinear polynomials over F2, we define a formal
derivative as ∂F

∂x = Fx=0 + Fx=1, but for non-linear ones, we use the definition
of a “standard” formal derivative for polynomials. Given a variable z, we write
z|F if z divides F , i.e., z is present in every monomial of F (note that this is
equivalent to the condition ∂F

∂z = Fz=1).
Given a set of variables Σ and a monomial m, the projection of m onto Σ

is 1 if m does not contain any variable from Σ, or is equal to the monomial
obtained from m by removing all the variables not contained in Σ, otherwise.
The projection of a polynomial F onto Σ, denoted as F |Σ , is the polynomial
obtained as sum of monomials from the set S, where S is the set of the monomials
of F projected onto Σ.

|F | is the length of the polynomial F given as a symbol sequence, i.e., if
the polynomial over n variables has M monomials of lengths m1, . . . , mM then
|F | =

∑M
i=1 mi = O(nM).

We note that the correctness proofs for the algorithms presented below can
be found in [5,7].

3 GCD-Algorithm

Conceptually, this algorithm is the simplest one. It outputs factors of an input
polynomial whenever they exist.

1. Take an arbitrary variable x from V ar(F )
2. G := gcd(Fx=0,

∂F
∂x )

3. If G = 1 then stop
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4. Output factor F
G

5. F := G
6. Go to 1

Here the complexity of factorization is hidden in the algorithm for finding the
greatest common divisor of polynomials.

Computing GCD is known as a classic algorithmic problem in algebra [14],
which involves computational difficulties. For example, if the field is not too rich
(F2 is an example) then intermediate values vanish quite often, which essen-
tially affects the computation performance. In [2], Wittkopf et al. developed
the LINZIP algorithm for the GCD-problem. Its complexity is O(|F |3), i.e., the
complexity of the GCD-algorithm is asymptotically the same as for Shpilka and
Volkovich’s result for the case of multilinear polynomials (given as strings).

4 FD-Algorithm

In the following, we assume that the input polynomial F contains at least two
variables. The basic idea of FD-Algorithm is to partition a variable set into two
sets with respect to a selected variable:

– the first set Σsame contains the selected variable and corresponds to an irre-
ducible polynomial;

– the second set Σother corresponds to the second polynomial that can admit
further factorization.

As soon as Σsame and Σother are computed (and Σother 	= ∅), the corresponding
factors can be easily obtained as projections of the input polynomial onto these
sets.

1. Take an arbitrary variable x occurring in F
2. Let Σsame := {x}, Σother := ∅, Fsame := 0, Fother := 0
3. Compute G := Fx=0 · ∂F

∂x
4. For each variable y ∈ V ar(F ) \ {x}:

If ∂G
∂y = 0 then Σother := Σother ∪ {y}

else Σsame := Σsame ∪ {y}
5. If Σother =∅ then report ′′F is non-factorable ′′ and stop
6. Return polynomials Fsame and Fother obtained as projections

onto Σsame and Σother, respectively

The factors Fsame and Fother have the property mentioned above and hence, the
algorithm can be applied to obtain factors for Fother.

Note that FD-algorithm takes O(|F |2) steps to compute the polynomial G =
Fx=0 · ∂F

∂x and O(|G|) time to test whether the derivative ∂G
∂y equals zero. As we

have to verify this for every variable y 	= x, we have a procedure that computes
a variable partition in O(|F |3) steps. The algorithm allows for a straightforward
parallelization on the selected variable y: the loop over the variable y (selected
in line 4) can be performed in parallel for all the variables.
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One can readily see that the complexity of factorization is hidden in the com-
putation of the product G of two polynomials and testing whether a derivative
of this product is equal to zero. In the worst case, the length of G = Fx=0 · ∂F

∂x
equals Ω(|F |2), which makes computing this product expensive for large input
polynomials. In the next section, we describe a modification of the FD-algorithm,
which implements the test above in a more efficient recursive fashion, without
the need to compute the product of polynomials explicitly.

5 Modification of FD-Algorithm

Assume the polynomials A = ∂F
∂x and B = Fx=0 are computed. By taking a

derivative of A · B on y (a variable different from x) we have D = ∂Fx=0
∂y and

C = ∂2F
∂x∂y . We need to test whether AD + BC = 0, or equivalently, AD = BC.

The main idea is to reduce this test to four tests involving polynomials of smaller
sizes. Proceeding recursively in this way, we obtain smaller, or even constant,
polynomials for which identity testing is simpler. Yet again, the polynomial
identity testing demonstrates its importance, as Shpilka and Volkovich have
readily established.
Steps 3–4 of FD-algorithm are modified as follows:

Let A = ∂F
∂x , B = Fx=0

For each variable y ∈ V ar(F ) \ {x}:
Let D = ∂B

∂y , C = ∂A
∂y

If IsEqual(A,D,B,C) then Σother := Σother ∪ {y},
else Σsame := Σsame ∪ {y}

where (all the above mentioned variables are chosen from the set of variables of
the corresponding polynomials).

Define IsEqual(A,D,B,C) returning Boolean

1. If A = 0 or D = 0 then return (B = 0 or C = 0)
2. If B = 0 or C = 0 then return FALSE
3. For all variables z occurring in at least one of A,B,C,D :
4. If (z|A or z|D) xor (z|B or z|C) then return FALSE
5. Replace every X ∈ {A,B,C,D} with X := ∂X

∂z , provided z|X
6. If A = 1 and D = 1 then return (B = 1 and C = 1)
7. If B = 1 and C = 1 then return FALSE
8. If A = 1 and B = 1 then return (D = C)
9. If D = 1 and C = 1 then return (A = B)

10. Pick a variable z
11. If not IsEqual(Az=0,Dz=0,Bz=0,Cz=0) then return FALSE
12. If not IsEqual( ∂A

∂z ,
∂D
∂z ,

∂B
∂z ,

∂C
∂z ) then return FALSE

13. If IsEqual( ∂A
∂z ,Bz=0,Az=0,

∂B
∂z ) then return TRUE

14 Return IsEqual( ∂A
∂z ,Cz=0,Az=0,

∂C
∂z )

End Definition
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Several comments on IsEqual are in order:

– Lines 1–9 implement processing of trivial cases, when the condition AD = BC
can easily be verified without recursion. For example, when line 2 is executed,
it is already known that neither A nor D equals zero and hence, AD can not
be equal to BC. Similar tests are implemented in lines 6–9.

– At line 5 it is known that z divides both, AD and BC and thus, the problem
AD = BC can be reduced to the polynomials obtained by eliminating z.

– Finally, lines 11–14 implement recursive calls to IsEqual. Observe that the
parameter polynomials are obtained from the original ones by evaluating a
variable z to zero or by computing a derivative. Both of the operations yield
polynomials of a smaller size than the original ones and can give constant
polynomials in the limit. To determine the parameters of IsEqual we resort to
a trick that transforms one identity into two smaller ones. This transformation
uses a multiplier, which is not unique. Namely, we can select 16 variants
among 28 possible ones (see comments in Sect. 5.1 below) and this gives 16
variants of lines 13–14.

5.1 Complete List of Possible Parameters

If A, D, B, C are the parameters of IsEqual, we denote for a Q ∈ {A,D,B,C}
the derivative on a variable z and evaluation z = 0 as Q1 and Q2, respectively.

AD = BC iff (A1z + A2)(D1z + D2) = (B1z + B2)(C1z + C2),

A1D1z
2 + (A1D2 + A2D1)z + A2D2 = B1C1z

2 + (B1C2 + B2C1)z + B2C2.

The equality holds iff the corresponding coefficients are equal:
⎧
⎨

⎩

A1D1 = B1C1 (1)
A2D2 = B2C2 (2)

A1D2 + A2D1 = B1C2 + B2C1 (3)

If at least one of the identities (1), (2) does not hold then AD 	= BC. Otherwise,
we can use these identities to verify (3) in the following way.

By the rule of choosing z, we can assume A1, A2 	= 0. Multiplying both sides
of (3) by A1A2 gives

A2
1A2D2 + A1A

2
2D1 = A1A2B1C2 + A1A2B2C1.

Next, by using the identities (1) and (2),

A2
1B2C2 + A1A2B2C1 = A2

2B1C1 + A1A2B1C2,

A1B2(A1C2 + A2C1) = A2B1(A2C1 + A1C2).

Hence, it suffices to check (A1B2+A2B1)(A1C2+A2C1) = 0, i.e., at least one of
these factors equals zero. It turns out that we need to test at most 4 polynomial
identities, and each of them is smaller than the original identity AD = BC.
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Notice that the multiplier A1A2 is used to construct the version of IsEqual
given above.

By the rule of choosing z, we can take different multiplier’s combinations of
the pairs of 8 elements. Only 16 out of 28 pairs are appropriate:

A1A2 → A1C2 = A2C1, A1B2 = A2B1

A1B2 → A1D2 = B2C1, A1B2 = A2B1

A1C2 → A1D2 = B1C2, A1C2 = A2C1

A1D2 → A1D2 = B2C1, A1D2 = B1C2

A2B1 → A2D1 = B1C2, A1B2 = A2B1

A2C1 → A2D1 = B2C1, A1C2 = A2C1

A2D1 → A2D1 = B2C1, A2D1 = B1C2

B1B2 → B1D2 = B2D1, A1B2 = A2B1

B1C2 → A2D1 = B1C2, A1D2 = B1C2

B1D2 → B1D2 = B2D1, A1D2 = B1C2

B2C1 → A2D1 = B2C1, A1D2 = B2C1

B2D1 → B1D2 = B2D1, A2D1 = B2C1

C1C2 → C1D2 = C2D1, A1C2 = A2C1

C1D2 → C1D2 = C2D1, A1D2 = B2C1

C2D1 → C1D2 = C2D1, A2D1 = B1C2

D1D2 → C1D2 = C2D1, B1D2 = B2D1

5.2 Analysis of ModFD-Algorithm for Random Polynomials

We now provide a theoretical analysis of ModFD-algorithm. The complexity
estimations we describe here are conservative and, therefore, they give an upper
bound greater than O(|F |3) of the original FD-algorithm. However, the approach
presented here could serve as a basis to obtain a more precise upper bound, which
would explain the gain in performance in practice; we report on a preliminary
experimental evaluation in Sect. 6.

Our estimation is based on

Theorem 1 (Akra and Bazzi, [1]). Let the recurrence

T (x) = g(x) +
k∑

i=1

λiT (ωix + hi(x)) for x ≥ C

satisfy the following conditions:

1. T (x) is appropriately defined for x < C;
2. λi > 0 and 0 < ωi < 1 are constants for all i;
3. |g(x)| = O (xc); and
4. |hi(x)| = O

(
x

(log x)2

)
for all i.

Then

T (x) = Θ

(
xp

(
1 +

∫ x

1

g(t)
tp+1

dt

))
,

where p is determined by the characteristic equation
∑k

i=1 λiω
p
i = 1.
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For the complexity estimations, we assume that polynomials are represented
by alphabetically sorted lists of bitscales corresponding to indicator vectors for
the variables of monomials. Hence, to represent a polynomial F over n variables
with M monomials |F | = nM +cM bits are required, where c is a constant over-
head to maintain the list structure. This guarantees the linear time complexity
for the following operations:

– computing a derivative with respect to a variable (the derived polynomial
also remains sorted);

– evaluating to zero for a variable with removing the empty bitscale representing
the constant 1 if it occurs (the derived polynomial also remains sorted);

– identity testing for polynomials derived from the original sorted polynomial
by the two previous operations.

For IsEqual we have

1. x = |A|+ |B|+ |C|+ |D|. By taking into account the employed representation
of monomials (the bitscale is not shortened when a variable is removed), we
may also assume that |Q| = |Q1| + |Q2|.

2. ∀i, λi = 1.
3. ∀i, hi(x) = 0.
4. g(x) = O(nx). Therefore, the total time for lines 1–10 consists of the constant

numbers of linear (with respect to the input of IsEqual) operations executed
at most n times. Apparently, n is quite a conservative assumption, because
at a single recursion step, at least one variable is removed from the input set
of variables.

5. We need to estimate ω1, ω2, ω3, ω4.
Among all the possible choices of the multipliers mentioned in Sect. 5.1, let
us consider those of the form Q1Q2. They induce two equations that do not
contain one of the input parameters of IsEqual: A, B, C, D result in the
absence of the parts of D, C, B, A, respectively, among the parameters of
IsEqual in lines 13 and 14. Hence, the largest parameter can be excluded by
taking an appropriate Q; lines 13–14 of ModFD-algorithm are to be rewritten
with the help of this observation.
Without loss of generality, we may assume that the largest parameter is D
and thus, we can take Q equal to A. In this case, ω1, ω2, ω3, ω4 represent
the relative lengths of the parameters |A1| + |B1| + |C1| + |D1|, |A2| + |B2| +
|C2|+ |D2|, |A|+ |B|, |A|+ |C| for the recursive calls to IsEqual with respect
to |A| + |B| + |C| + |D|.
Since |A|, |B|, |C| ≤ |D|, we obtain |A| + |B|, |A| + |C|, |B| + |C| ≤ 2|D|.
Then the lengths |A| + |B| and |A| + |C|, respectively, can be estimated in
the following way:

|A| + |B| = x − |C| − |D| ≤ x − 0 − |A| + |B|
2

,

hence, |A| + |B|, |A| + |C| ≤ 2
3 .
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Let F be a multilinear polynomial over n variables with M monomials such
that no variable divides F . A random polynomial consists of monomials ran-
domly chosen from the set of all monomials over n variables. Variables appear
in monomials independently. For each variable x from var(F ), we can con-
sider the following quantity μx = ∂F

∂x (i.e. the part of monomials containing
this variable). We want to estimate the probability that among μx there exist
at least one, which is (approximately) equal to M

2 . Hence

P [there exists x such that μx is a median] = 1 − P [
∧

x μx is not median]
= 1 − P [μ1 is not median]n

= 1 − (1 − P [μ1 is a median])n

= 1 − (
1 − 1

2

)n

= 1 − 1
2n

Thus, with a high probability one can pick from a large polynomial (in our
case, from D) a variable such that |D1| ≈ |D2|.
Let us consider the following multicriteria linear program:

maximize

⎧
⎪⎪⎨

⎪⎪⎩

a1 + b1 + c1 + d1
a2 + b2 + c2 + d2

a + b
a + c

⎫
⎪⎪⎬

⎪⎪⎭
subject to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a + b + c + d = 1
d1 = d2

a ≤ d, b ≤ d, c ≤ d
a + b ≤ 2

3
a + c ≤ 2

3
all nonnegative

.

Since the objective functions and constraints are linear and the optimization
domain is bounded, we can enumerate all the extreme points of the problem
and select those points that give the maximum solution of the characteristic
equation of Theorem 1. By taking into account the symmetries between the
first and the second objective functions and between the third and fourth
ones, we obtain that

ω1 =
3
4
, ω2 =

1
4
, ω3 =

1
2
, ω4 =

1
2
. (∗)

Hence, the characteristic equation is
(

3
4

)p

+
(

1
4

)p

+
(

1
2

)p

+
(

1
2

)p

= 1.

Its unique real solution is p ≈ 2.226552. Finally, the total time for the ModFD-
algorithm obtained this way is

T = O(n2|F |2.226552).

6 Preliminary Experiments and Discussion

For a computational evaluation of the developed factorization algorithms, we
used Maple 17 for Windows run on 3.0 GHz PC with 8 GB RAM. The factor-
ization algorithm implemented in Maple Factor(poly) mod 2 can process mul-
tilinear polynomials over F2 with hundreds of variables and several thousands
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of monomials in several hours. But many attempts of factorization of polynomi-
als with 103 variables and 105 monomials were terminated by the time limit of
roughly one week of execution. In general, a disadvantage of all Maple imple-
mentations is that they are memory consuming. For example, the algorithm that
requires computing products of polynomials fails to work even for rather small
examples (about 102 variables and 103 monomials). Although GCD-algorithm is
conceptually simple, it involves computing the greatest common divisor for poly-
nomials over the “poor” finite field F2. A practical implementation of LINZIP
is not that simple. An older version of Maple reports on some inputs that
“LINZIP/not implemented yet”. We did not observe this issue in Maple 17. It
would be important to conduct an extensive comparison of the performance of
GCD- and FD-algorithm implemented under similar conditions. The factoriza-
tion algorithm (FD-based) for sparsely represented multilinear polynomials over
F2 demonstrates reasonable performance. BDD/ZDD can be considered as some
kind of the black box representation. We are going to implement factorization
based on this representation and to compare these approaches.

A careful study of the solution (*) given at the end of Sect. 5.2 shows that
it describes the case when |A| ≈ |D| ≈ x

2 and |B| ≈ |C| ≈ 0. This means that
at the next steps the maximal parameter is A: |A| ≈ x

2 , while the remaining
parameters are smaller. Thus, one can see that the lengths of the inputs to the
recursive calls of IsEqual are reduced at least twice in at most two levels of the
recursion. This allows for obtaining a more precise complexity bound, which will
be further studied.

Yet another property is quite important for the performance of the algo-
rithm. Evaluating the predicate IsEqual for the variables from the same factor
requires significantly less time compared with evaluation for other variables.
For polynomials with 50 variables and 100 monomials in the both components,
the speed-up achieves 10–15 times. The reason is evident and it again confirms
the importance of (Zero) Polynomial Identity Testing, as shown by Shplika and
Volkovich. Testing that the polynomial AD+BC is not zero requires less reduc-
tion steps in contrast with the case when it does equal zero. The latter requires
reduction to the constant polynomials. Therefore, we used the following app-
roach: if the polynomials A, D, B, C are “small” enough then the polynomial
AD + BC was checked to be zero directly via multiplication. For the polyno-
mials with the above mentioned properties, this allows to save about 3–5% of
the execution time. The first practical conclusion is that in general, the algo-
rithm works faster for non-factorable polynomials than for factorable ones. The
second is that we need to investigate new methods to detect variables from the
“opposite” component (factor). Below we give an idea of a possible approach.

It is useful to detect cases of irreducibility before launching the factorization
procedure. Using simple necessary conditions for irreducibility, as well as test-
ing simple cases of variable classification for variable partition algorithms, can
substantially improve performance. Let F be a multilinear polynomial over n
variables with M monomials such that no variable divides F . For each variable
x, recall that the value μx corresponds to the number of monomials containing
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x, i.e. the number of monomials in ∂F
∂x . Then a necessary condition for F to be

factorable is
∀x gcd (μx, M) > 1.

In addition, we have deduced several properties, which are based on analyzing
occurrences of pairs of variables in the given polynomial (for example, if there is
no monomial in which two variables occur simultaneously then these variables
can not belong to different factors). Of course, the practical usability of these
properties depends on how easily they can be tested.

Finally, we note an important generalization of the factorization problem,
which calls for efficient implementations of the factorization algorithm. To
achieve a deeper optimization of logic circuits we asked in [5,7] how to find
a representation of a polynomial in the form F (X,Y ) = G(X)H(Y ) + D(X,Y ),
where a “relatively small” defect” D(X,Y ) extends or shrinks the pure disjoint
factors. Yet another problem is to find a representation of the polynomial in the
form

F (X,Y ) =
∑

k

Gk(X)Hk(Y ), X ∩ Y = ∅,

i.e., a complete decomposition without any “defect”, which (along with the pre-
vious one) has quite interesting applications in the knowledge and data mining
domain. Clearly, such decompositions (for example, the trivial one, where each
monomial is treated separately) always exist, but not all of them are meaningful
from the K&DM point of view. For example, one might want to put a restriction
on the size of the “factorable part” of the input polynomial (e.g., by requiring
the size to be maximal), which opens a perspective into a variety of optimiza-
tion problems. Formulating additional constraints targeting factorization is an
interesting research topic. One immediately finds a variety of the known com-
putationally hard problems in this direction and it is yet to be realized how the
computer algebra and theory of algorithms can mutually benefit from each other
along this way.
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Abstract. We introduce tropical Newton–Puiseux polynomials admit-
ting rational exponents. A resolution of a tropical hypersurface is defined
by means of a tropical Newton–Puiseux polynomial. A polynomial com-
plexity algorithm for resolubility of a tropical curve is designed. The
complexity of resolubility of tropical prevarieties of arbitrary codimen-
sions is studied.

Keywords: Tropical Newton–Puiseux polynomials
Resolution of tropical hypersurfaces

Introduction

Recall (see e. g. [6]) that in the tropical semiring, ⊕ denotes min and ⊗ denotes
the (classical) addition +. As examples of tropical semirings one can take Z, R.
A tropical (respectively, tropical Laurent) monomial has the form

a ⊗ x⊗I := a ⊗ x⊗i1
1 ⊗ · · · ⊗ x⊗in

n

where a ∈ R and 0 ≤ i1, . . . , in ∈ Z (respectively, i1, . . . , in ∈ Z). Thus, classi-
cally a⊗x⊗I equals a linear function a+

∑
1≤j≤n ij ·xj . A tropical polynomial f

has the form
⊕

I aI ⊗ x⊗I , being classically a convex piece-wise linear function.
A vector x = (x1, . . . , xn) ∈ R

n is a tropical root of f if the minimum of
aI ⊗ x⊗I is attained at least for two different tropical monomials of f . The set
of all tropical roots of f constitutes a tropical hypersurface T (f) ⊂ R

n being a
finite union of polyhedra of dimensions n − 1.

We extend the concept of a tropical polynomial by allowing the exponents
i1, . . . , in to be rational calling it a tropical Newton–Puiseux polynomial. Assume
that

f =
⊕

0≤i≤d

fi ⊗ y⊗i (1)

for some tropical polynomials f0, . . . , fd in the variables x1, . . . , xn. We call a
Newton–Puiseux polynomial y a resolution of f (or of the tropical hypersurface
T (f)) if for any point x ∈ R

n the point (x, y(x)) ∈ R
n+1 provides a tropical root

of f (one can find the formal definitions below in Sect. 1).
c© Springer Nature Switzerland AG 2018
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This resembles Newton–Puiseux series from algebraic geometry with the dif-
ference that we consider finite supports since in the tropical semiring, one takes
min. One can view tropical Newton–Puiseux polynomials as a tropical analog of
algebraic functions.

In Sect. 1, we show that the set of all the resolutions of a tropical hypersurface
is finite and closed under taking min. Thus, there exists a minimal resolution,
and in case of a monic tropical polynomial

f = y⊗d ⊕
⊕

0≤i<d

fi ⊗ y⊗i

we provide a simple formula for the minimal resolution. In addition, a geometric
description of resolutions is given. Also we show that the resolubility of a tropical
hypersurface belongs to the complexity class NP .

In Sect. 2, a polynomial (bit-size) complexity algorithm is exhibited for resolv-
ing degree 1 tropical polynomials of the form f1 ⊗ y ⊕ f0, which is equivalent to
the divisibility of f0 by f1.

In Sect. 3, we design a polynomial (bit-size) complexity algorithm for testing
resolubility of a tropical curve in a real space of a fixed dimension, moreover,
the algorithm provides a succinct description of the set of all the resolutions.

In Sect. 4, we study the problem of resolubility of a system of tropical polyno-
mials in a single variable x and in several indeterminates y1, . . . , ys and establish
its NP -hardness.

In Sect. 5, we study tropical Newton–Puiseux rational functions, being trop-
ical quotients (or in other words, the classical subtraction) of pairs of tropical
Newton-Puiseux polynomials. An algorithm is suggested which tests resolubility
of a tropical curve by means of tropical Newton–Puiseux rational functions. The
complexity of the algorithm is polynomial for a fixed dimension of the ambient
space.

1 Resolution of a Tropical Hypersurface

Let an algebraic (classical) equation

F :=
∑

0≤i≤d

Fi · Y i = 0 (2)

where the coefficients Fi ∈ K[X1, . . . , Xn] for the field K = C((t1/∞)) of
Newton–Puiseux series, have a Laurent polynomial solution

Y =
∑

I

AI · XI (3)

with a finite sum over multiindices I ∈ Z
n and the coefficients AI ∈ K.

Denote the tropicalization

Trop(Y ) :=
⊕

I

Trop(AI) ⊗ X⊗I (4)
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where for a Newton–Puiseux series AI =
∑

0≤j<∞ bj · tsj/q with bj ∈ C, b0 �= 0
and increasing integers s0 < s1 < . . . its tropicalization Trop(AI) := s0/q ∈ Q.

Remark 1. Trop(Y ) is a solution of the tropical equation
⊕

0≤i≤d

Trop(Fi) ⊗ (Trop(Y ))⊗i (5)

This means that for any point x = (x1, . . . , xn) ∈ R
n, the minimal value of

Trop(Fi) ⊗ (Trop(Y ))⊗i at x for 0 ≤ i ≤ d is attained at least for two different
0 ≤ i1 < i2 ≤ d.

Remark 2. Observe that the validity of (5) does not change if one multiplies all
the rational coefficients in Trop(Fi), 0 ≤ i ≤ d by their common denominator
m and simultaneously all Trop(AI) (see (4)) by m to make all the coefficients
in Trop(Fi), 0 ≤ i ≤ d integers.

Remark 1 motivates the following definition.

Definition 1. A tropical hypersurface T (f) ⊂ R
n+1 defined by a tropical poly-

nomial (1) where fi are tropical polynomials in the variables x1, . . . , xn with inte-
ger coefficients (cf. Remark 2) has a resolution being a tropical Newton–Puiseux
polynomial

y =
⊕

I

aI ⊗ x⊗I (6)

for a finite sum over multiindices I ∈ Q
n and aI ∈ Q, if for any point x =

(x1, . . . , xn) ∈ R
n, the minimal value among fi⊗y⊗i, 0 ≤ i ≤ d (treated as piece-

wise linear functions) at x is attained at least for two different 0 ≤ i1 < i2 ≤ d.

Denote by N the common denominator of all the rational coordinates of
multiindices I from (6). Then y⊗N is a tropical (Laurent) polynomial which is
equal classically to N · minI{aI + i1x1 + · · · + inxn}.

Proposition 1. Let y be a resolution of f (see (1), (6)), then (x, y(x)) ∈ T (f).

Example 1. The tropical polynomial f = y ⊕ x ⊕ 0 has a resolution y = x ⊕ 0.
Its graph {(x, y(x)) : x ∈ R} ⊂ T (f) ⊂ R

2 consists of two half-lines, while the
tropical curve T (f) consists of three half-lines.

Proposition 2. Let y (see (6)) and
⊕

I bI ⊗ x⊗I be resolutions of (1). Then⊕
I(aI ⊕ bI) ⊗ x⊗I is also a resolution of (1).

The proof follows from an observation that for any point x ∈ R
n, the mini-

mum on the tropical monomials after opening the parenthesis in a power y⊗i (see
(6)) is attained on the powers of the kind (aI⊗x⊗I)⊗i. �

Below in Remark 4, we show that there is at most a finite number of resolu-
tions of (1). Hence according to Proposition 2, there exists a minimal resolution.
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Proposition 3. If
f = y⊗d ⊕

⊕

0≤i<d

fi ⊗ y⊗i

(see (1)) is monic then
y =

⊕

1≤i≤d

f
⊗(1/i)
d−i

is the minimal resolution.

Proof. For any point x ∈ R
n, the minimal y0 ∈ R such that (x, y0) belongs to the

tropical hypersurface T (f) ⊂ R
n+1 satisfies a (classical) equation d·y0 = fi(x)+i·

y0 for suitable 0 ≤ i < d (due to analyzing the Newton polygon). �

Note also that if fd−i =
⊕

J cJ ⊗ x⊗J then f
⊗(1/i)
d−i =

⊕
J(cJ/i) ⊗ x⊗(J/i).

Remark 3. When f is not monic, a resolution does not necessarily exist as in
the example f = (x ⊕ 0) ⊗ y ⊕ 0. On the other hand, one can write a similar
formula

y =
⊕

1≤i≤d

(fd−i � fd)⊗(1/i)

where � stands for the tropical division, i.e., the classical subtraction. In this
case, y is not necessarily a convex function, while being piecewise linear (cf.
Sect. 5).

Now we proceed to a geometric description of resolutions. Let (6) be a res-
olution of (1). Assume that for some I, the (convex) polyhedron MI ⊂ R

n of
points at which the (tropical) monomials {aJ ⊗ x⊗J}J of y attain the minimum
for aI ⊗ x⊗I , has the full dimension n. Observe that if MI has a dimension less
than n one can discard the monomial aI ⊗ x⊗I from y.

Assume that for some 0 ≤ i1 < i2 ≤ d and a pair of monomials ci1,I1 ⊗
x⊗I1 , ci2,I2 ⊗ x⊗I2 from the polynomials fi1 , fi2 , respectively, it holds

I1 + i1 · I = I2 + i2 · I; ci1,I1 + i1 · aI = ci2,I2 + i2 · aI , (7)

in other words, the monomials

(ci1,I1 ⊗ x⊗I1) ⊗ (aI ⊗ x⊗I)⊗i1 = (ci2,I2 ⊗ x⊗I2) ⊗ (aI ⊗ x⊗I)⊗i2

coincide. Consider the convex polyhedron MI,i1,I1,i2,I2 ⊂ MI of the points from
MI at which the minimum of the monomials (ci,I ⊗ x⊗I) ⊗ (aI ⊗ x⊗I)⊗i for the
monomials ci,I ⊗ x⊗I from fi, 0 ≤ i ≤ d is attained for (ci1,I1 ⊗ x⊗I1) ⊗ (aI ⊗
x⊗I)⊗i1 . We get the following lemma.

Lemma 1. Let (6) be a resolution of (1) and the polyhedron MI ⊂ R
n have

the full dimension n. Then the polyhedra MI,i1,I1,i2,I2 having the full dimension
n constitute a partition of MI , i. e., every two elements of the partition either
coincide or intersect by a set (face) of dimension less than n.
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It would be interesting to clarify, how many resolutions a tropical hypersur-
face might have?

Let the tropical degrees trdeg(fi) ≤ D, 0 ≤ i ≤ d.

Remark 4. The problem of resolving a tropical polynomial (1) belongs to the
complexity class NP . This follows from the observation that each coefficient aI
satisfies (7) (or equals infinity), and therefore, there are at most d2 ·(D+n

n

)
possi-

bilities for aI , taking into account that
(
D+n
n

)
bounds the number of monomials

in each fi.
Note that when fi, 0 ≤ i ≤ d are in sparse encoding, in the latter bound

one can replace
(
D+n
n

)
by the number of monomials in fi, 0 ≤ i ≤ d. Thus, the

problem of resolubility of (1) belongs to NP for both dense and sparse encodings
of (1).

It would be interesting to say more about the complexity of resolubility of
(1).

Remark 5. One can extend the results of this section to an input tropical
Newton–Puiseux polynomials in place of (1).

2 Polynomial Complexity Testing Divisibility of Tropical
Polynomials

If (1) has degree 1, i.e., f = f1 ⊗ y ⊕ f0, then according to (7), a resolution
(6) is equivalent to the divisibility f1 ⊗ y = f0 with y being a tropical Laurent
polynomial. We agree that two tropical (Laurent) polynomials are equal if they
are equal as (convex piece-wise linear) functions.

We describe an algorithm for testing divisibility within polynomial com-
plexity. First the algorithm deletes from f0 all the monomials of the form
b ⊗ xb1

1 ⊗ · · · ⊗ xbn
n which do not change f0 as a function. Geometrically, it

means that the hyperplane defined as the graph

{(x1, . . . , xn,
∑

1≤j≤n

bj · xj + b) : (x1, . . . , xn) ∈ R
n}

of this monomial in R
n+1 is higher (with respect to the last coordinate) than

the polyhedron P defined by the other monomials of f0 (observe that P is the
graph of f0 as a function). The latter is a problem of linear programming. Thus,
one can suppose f0 to be reduced, i.e., do not contain unnecessary monomials.
Also we suppose that f1 is reduced.

For every candidate I = (i1, . . . , in) ∈ Z
n,

∑
1≤j≤n |ij | ≤ D (see (7)) to

be in the support of a resolution y the algorithm calculates (again involving
linear programming) the minimal aI such that for each monomial c ⊗ x⊗C of
f1, the hyperplane in R

n+1 defined by the monomial (c ⊗ x⊗C) ⊗ (aI ⊗ x⊗I) is
(non-strictly) higher than P .

Then y =
⊕

I aI ⊗ x⊗I is a resolution of f1 ⊗ y ⊕ f0 iff for each monomial
b⊗x⊗B of f0, there exists I and a monomial c⊗x⊗C of f1 such that (aI ⊗x⊗I)⊗
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(c ⊗ x⊗C) = b ⊗ x⊗B . Reducing further y as described above, we conclude that
there is a unique reduced resolution y (provided that it does exist).

Summarizing, we obtain the following proposition.

Proposition 4. One can test resolubility of degree 1 tropical polynomial f1 ⊗
y⊕f0 (or equivalently, the divisibility f1⊗y = f0) within polynomial complexity.
In case of the divisibility, the algorithm yields the unique reduced resolution y.

3 Polynomial Complexity Algorithm for Resolving
Tropical Curves

Let a system of tropical polynomials

fi, 1 ≤ i ≤ k (8)

in n variables x, y1, . . . , yn−1 with integer coefficients determine a tropical preva-
riety T := T (f1, . . . , fk) ⊂ R

n. Let the tropical degrees trdeg(fi) ≤ d, 1 ≤ i ≤ k
and the bit-sizes of the coefficients of fi, 1 ≤ i ≤ k do not exceed L.

First, the algorithm constructs T as a union of polyhedra (see e.g. [6]). Each
of these polyhedra (including faces of all the dimensions) is defined by specifying
the monomials of fi, 1 ≤ i ≤ k (treated as linear functions) on which the min-
ima are attained (cf. e.g. [4]). The algorithm can find the partition of Rn into
polyhedra defined by given feasible tuples of signs (i.e., either the positive, either
the negative or zero) of all the differences of the monomials of fi, 1 ≤ i ≤ k
(in other words, by all the feasible orderings of the monomials of fi, 1 ≤ i ≤ k).
Namely, the algorithm finds the partition by recursion on the number of the
differences. If for a current subset of the differences, the partition of Rn w.r.t.
this subset is already constructed, the algorithm picks up the next difference
and for each element (being a polyhedron) of the current partition verifies which
signs of the picked up difference are feasible on this polyhedron (with the help
of linear programming). Thereupon, the algorithm discards the unfeasible tuples
of signs, which completes the recursive step.

The number of the elements of a current partition at every step of the recur-
sion is bounded by

n2 · 2n ·
(
k · (

d+n
n

)2

n

)

< kn · d2·n2

due to the Buck’s formula on the number of faces in an arrangement of hyper-
planes [3]. Hence the complexity of the recursion is bounded by a polynomial in
L, kn, dn

2
, taking into the account that the algorithm invokes linear program-

ming (kn · dn2
)O(1) times.

Since the tropical prevariety T is a union of appropriate subset of the elements
of the constructed partition of Rn, we get the following proposition.

Proposition 5. There is an algorithm which constructs the tropical prevari-
ety T (f1, . . . , fk) ⊂ R

n determined by (8) within the complexity polynomial in
L, kn, dn

2
.
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Now we assume that dimT = 1, thus T is a tropical curve. We design an
algorithm which verifies the resolubility of T , i.e., whether there exist tropical
Newton–Puiseux polynomials y1(x), . . . , yn−1(x) assuring a resolution of (8). The
latter is equivalent to the condition that every piecewise linear function yj , 1 ≤
j ≤ n − 1 is convex.

The algorithm produces a directed graph G whose vertices are the edges of
T (including the unbounded ones) not lying in a hyperplane of the form x = c.
Two edges e(−), e(+) of T (being vertices of G) with the same endpoint of the
kind

e(−) = ((x(−), y
(−)
1 , . . . , y

(−)
n−1), (x, y1, . . . , yn−1)),

e(+) = ((x, y1, . . . , yn−1), (x(+), y
(+)
1 , . . . , y

(+)
n−1))

are linked by an edge directed from e(−) to e(+) in G if

x(−) < x < x(+);
yj − y

(−)
j

x − x(−)
≥ yj − y

(+)
j

x − x(+)
, 1 ≤ j ≤ n − 1. (9)

when e(−) (respectively, e(+)) is unbounded with an endpoint (x, y1, . . . , yn−1)
(so, is a half-line), which we call unbounded from the left, we take an arbitrary
point of e(−) with x(−) < x (respectively, if e(+) is a half-line, we take a point of
e(+) with x(+) > x, and we call e(+) unbounded from the right). When an edge
of T has no endpoints, so is a line, it provides a resolution of T .

After that the algorithm produces a subset S of the vertices of G. It starts
with including into S all the edges of T (so, the vertices of G) unbounded from
the left (denote this set by S0). Thereupon, the algorithm includes into S all
the vertices of G reachable from S0. If a vertex of G corresponding to an edge
of T unbounded from the right, belongs to S, a path in G leading to such a
vertex from S0 provides a resolution of T (i.e., each piece-wise linear function
yj(x), 1 ≤ j ≤ n− 1 corresponding to the path is convex due to (9)). Moreover,
the paths in G from S0 to the vertices corresponding to the edges of T unbounded
from the right, are in a bijective correspondence with the resolutions of T .

Summarizing and taking into account Proposition 5, we obtain the following
theorem.

Theorem 1. There is an algorithm which tests resolubility of a tropical curve
T ⊂ R

n determined by (8), and in case of the resolubility yields a resolution.
The complexity of the algorithm is polynomial in L, kn, dn

2
. In particular, the

complexity is polynomial for a fixed ambient dimension n.

Remark 6. Let a system of tropical polynomials of the form (8) depend on
the variables x1, . . . , xm, y1, . . . , yn and the tropical prevariety T ⊂ R

m+n have
dimension m. Then one can try different subsets of all m-dimensional faces of T
as candidates to constitute a graph of a resolution

(x1, . . . , xm) → (x1, . . . , xm, y1(x1, . . . , xm), . . . , yn(x1, . . . , xm)) ∈ T
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of T similar to Remark 4. The latter, in fact, means that firstly, the projec-
tions of the chosen m-dimensional faces on R

m with the coordinates x1, . . . , xm

form a partition of R
m and secondly, that each piece-wise linear function

yj(x1, . . . , xm), 1 ≤ j ≤ n − 1 is convex.

4 Resolution of Systems of Tropical Polynomials
with Several Indeterminates

In this section, we consider the systems of tropical polynomials (instead of a
single polynomial (1)) in one variable x and several indeterminates y1, . . . , ys.
Thus, in a resolution (cf. (6)), each yi is a tropical Newton–Puiseux polynomial.
We show the following proposition.

Proposition 6. The problem of resolubility of a system of tropical polynomials
in a single variable and in several indeterminates is NP -hard.

Proof. We reduce 3-SAT to the problem under consideration, so we construct
a system R of tropical polynomials. For an instance of 3-SAT problem in n
variables u1, . . . , un, we introduce indeterminates y1, . . . , yn, z1, . . . , zn and add
to R tropical polynomials

yi ⊗ zi ⊕ x, 1 ≤ i ≤ n (10)

Formula (10) means that the resolutions of yi and of zi are both monomials in
x. Informally, 0 = x⊗0 encodes the truth and x = x⊗1 encodes the falsity, yi
corresponds to ui and zi corresponds to ¬ui.

For every jth 3-clause of the 3-SAT formula, say, um ∨ ¬uk ∨ ul, we add to
R the following tropical (linear) polynomials

ym ⊕ zk ⊕ yl ⊕ vj ; (11)

vj ⊕ x⊗1 ⊕ wj ; (12)

wj ⊕ x⊗1 ⊕ 0 (13)

with indeterminates vj , wj . Note that (13) ensures that in a resolution, the
reduced wj = x⊗1⊕0, then (12) ensures that the reduced vj contains the constant
monomial 0 (and possibly, monomials of the form c⊗x⊗b with 0 < b ≤ 1, c ≥ 0).
Finally, (11) ensures that one of the resolutions of ym, zk, yl equals 0.

Thus, existence of a resolution of the system R for all j implies the solvability
of the initial 3-SAT formula.

The converse is obvious: for a Boolean vector (u1, . . . , un) providing a solution
of the initial 3-SAT formula put yi = 0, zi = x⊗1 when ui is true and yi =
x⊗1, zi = 0 for ui being false. Thereupon put vj = ym⊕zk⊕yl. �

We mention that the problem of solvability of a system of tropical polyno-
mials is NP -complete [8].

It would be interesting to understand more about the complexity of the
problem under consideration in this section.
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5 Tropical Newton–Puiseux Rational Functions

Any tropical Newton–Puiseux rational function f1�f2, where f1, f2 are tropical
Newton–Puiseux polynomials, is a piece-wise linear (continuous) function (cf.
Remark 3). The converse is also true (see e.g. [1], [5]): any piece-wise linear
continuous function is a difference of two piece-wise linear convex functions. In
[7], an algorithm is suggested which represents a piece-wise linear function as
a difference of piece-wise linear convex functions with the complexity bound
being exponential. In case of one-variable functions, a polynomial complexity
algorithm for this problem is exhibited in [2].

Let a tropical curve T ⊂ R
n be determined by system (8). As in Sect. 3,

the algorithm finds T . Thereupon, similar to Sect. 3 it constructs a graph which
comprises all the paths consisting of the edges of T of the form

{(xl, y
(l)
1 , . . . , y

(l)
n−1), (xl+1, y

(l+1)
1 , . . . , y

(l+1)
n−1 ) : 0 ≤ l ≤ s}

where x0 := −∞ < x1 < · · · < xs < xs+1 := ∞, thus, this path contains s + 1
edges. The difference with Sect. 3 is that now we do not impose a requirement
on convexity.

The algorithm can pick up any such path (provided that it does exist), then
this path yields n − 1 piece-wise linear functions yi(x), 1 ≤ i < n. Making use
of [2] the algorithm represents yi(x) = gi(x) − hi(x) with piece-wise linear con-
vex functions gi, hi. This produces a tropical Newton–Puiseux rational function
resolution of T .

Summarizing and invoking the complexity bounds from Sect. 3, we get the
following proposition.

Proposition 7. There is an algorithm which tests resolubility of a tropical curve
determined by (8) by means of tropical Newton–Puiseux rational functions within
the complexity polynomial in L, kn, dn

2
. The algorithm yields a resolution, pro-

vided that it does exist. Therefore, the complexity is polynomial for a fixed dimen-
sion n of the ambient space.

It would be interesting to estimate the complexity of resolubility of tropi-
cal prevarieties or arbitrary dimensions by means of tropical Newton–Puiseux
rational functions.

Acknowledgments. The author is grateful to the grant RSF 16-11-10075 and to
MCCME for inspiring atmosphere.
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Abstract. We study the operation A⊥ of tropical orthogonalization,
applied to a subset A of a vector space (R∪{∞})n, and iterations of this
operation. Main results include a criterion and an algorithm, deciding
whether a tropical linear prevariety is a tropical linear variety formulated
in terms of a duality between A⊥ and A⊥⊥. We give an example of a
countable family of tropical hyperplanes such that their intersection is
not a tropical prevariety.

Keywords: Tropical linear prevarieties · Tropical linear varieties
Orthogonalization

Introduction

We study some aspects of tropical linear prevarieties and varieties. General con-
cepts of tropical algebra can be found in [17,18]. Specific questions of tropical
linear algebra were considered in [5,6,19,20].

We introduce the operation A⊥ of tropical orthogonalization applied to a
subset A of a vector space (R ∪ {∞})n. The special interest to us presents
an interplay between the tropical linear prevariety A⊥ and its orthogonalization
A⊥⊥. Our main results include a criterion and a deciding algorithm for a tropical
linear prevariety to be a tropical linear variety formulated in terms of a duality
between A⊥ and A⊥⊥. In this note, we present our results without proofs which
can be found in [13].

In Sect. 1 we list basic definitions, including the concept of a tropical hull of a
subset in (R ∪ {∞})n. We recall a fundamental theorem proved in [2,8], stating
that any tropical linear prevariety is the tropical hull of a finite set of vectors.
We give an example showing that the restriction of a tropical linear prevariety to
R

n may not be representable in this way. We describe a simple algorithm, with
polynomial complexity, testing the membership of a vector in a tropical hull.

In Sect. 2, we study some properties of double orthogonalization. In partic-
ular, we state that A⊥⊥ is the minimal tropical linear prevariety containing a
finite set A and that dimensions of tropical hulls of A and of A⊥⊥ coincide.
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https://doi.org/10.1007/978-3-319-99639-4_13

mmonagan@cecm.sfu.ca

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99639-4_13&domain=pdf


188 D. Grigoriev and N. Vorobjov

In Sect. 3, we present a theorem stating that, given two mutually complemen-
tary and orthogonal linear subspaces P and Q of the vector space (C((t1/∞)))n

over Puiseux series, there exists a finite A ⊂ (R ∪ {∞})n such that tropicaliza-
tions of P and Q coincide with A⊥ and A⊥⊥, respectively.

Section 4 contains a criterion and a deciding algorithm for a tropical linear
prevariety to be a tropical linear variety. The algorithm has a doubly exponential
complexity. We also give a brief description of algorithms which for a given
tropical linear variety A⊥ produces a linear subspace P whose tropicalization
coincides with A⊥.

Finally, in Sect. 5, we give an example of a countable family of tropical hyper-
planes in (R∪{∞})6 such that their intersection is not a tropical prevariety. This
strengthens examples in [7] (example of T. Theobald) and [12] about countable
intersections of nonlinear tropical hypersurfaces.

1 Tropical Hull

We use the notation R∞ for R ∪ {∞}. We assume that for all a ∈ R the rules
a < ∞, a + ∞ = ∞, ∞ + ∞ = ∞, and, for positive a, a · ∞ = ∞ hold. The
element ∞ is a “tropical zero”, being the neutral element with respect to taking
minimum.

Definition 1. For a given (a1, . . . , an) ∈ R
n
∞, a tropical hyperplane in R

n
∞ is

the set of all points (x1, . . . , xn) ∈ R
n
∞ at which a set {x1 + a1, . . . , xn + an}

has at least two minimal elements. A tropical linear prevariety in R
n
∞ is the

intersection of a finite number of tropical hyperplanes.

Remark 1. The point (∞, . . . ,∞) belongs to every tropical linear prevariety.
A tropical hyperplane according to Definition 1 corresponds to the notion of a
codimension one linear subspace in classical linear algebra. It can be identified
with a special case, when an+1 = ∞, of a more general notion of a tropical
hyperplane defined as a set of all points (x1, . . . , xn) ∈ R

n
∞ at which a set {x1 +

a1, . . . , xn + an, an+1}, where ai ∈ R∞, 1 ≤ i ≤ n + 1, has at least two minimal
elements.

Definition 2. Vectors v = (v1, . . . , vn), a = (a1, . . . , an) ∈ R
n
∞ are called trop-

ically orthogonal if among numbers vi + ai, 1 ≤ i ≤ n there are at least two
minimal. Note that (∞, . . . ,∞) is tropically orthogonal to every vector a ∈ R

n
∞.

For a set of vectors A = {a1, . . . ,ak} ⊂ R
n
∞ denote by A⊥ the set of all vectors

in R
n
∞ tropically orthogonal to each ai, 1 ≤ i ≤ k.

It is clear that {a}⊥ is a tropical hyperplane for a vector a ∈ R
n
∞, while A⊥

is a tropical linear prevariety when A ⊂ R
n
∞ is finite. Conversely, every tropical

linear prevariety in R
n
∞ coincides with A⊥ for a suitable finite set of vectors

A ⊂ R
n
∞.

mmonagan@cecm.sfu.ca



Orthogonal Tropical Linear Prevarieties 189

Definition 3. For a finite set of vectors A = {a1, . . . ,ak} ⊂ R
n
∞ define its

tropical hull Trophull(A) as the set of all vectors in R
n
∞ of the kind

min
1≤i≤k

{ti1n + ai},

where t1, . . . , tk are arbitrary elements in R∞, min1≤i≤k denotes the component-
wise minimum of a set of vectors, and 1n = (1, . . . , 1) is the unit vector in
R

n. For an arbitrary subset X ⊂ R
n
∞ define Trophull(X) as the union of sets

Trophull(A) over all finite subsets A ⊂ X.

Note that Trophull(A) always contains the point (∞, . . . ,∞) ∈ R
n
∞, because

all ti, 1 ≤ i ≤ k can be chosen to be ∞.

Lemma 1 ([5,6]). If B is finite and B ⊂ A⊥, then Trophull(B) ⊂ A⊥.

Definition 4. For every partition {i1, . . . , ip} ∪ {ip+1, . . . , in} of {1, . . . , n}, a
chart is an open convex polyhedron

Ci1,...,ip := {xi1 = · · · = xip = ∞} ∩ {xip+1 < ∞} ∩ · · · ∩ {xin < ∞} ⊂ R
n
∞.

Clearly, Rn
∞ is the union of all 2n pairwise disjoint charts.

One can extend the standard concepts of a convex polyhedron and a finite
polyhedral complex to the case of the subsets of the space R

n
∞ (see [8]). Restric-

tion of a convex polyhedron P ⊂ R
n
∞ to a chart Ci1,...,ip coincides with a usual

convex polyhedron in R
n−p translated by a vector in {0,∞}n−p with ∞ in

positions i1, . . . , ip. Hence, P is a finite union of translated usual convex poly-
hedra, and we define the dimension dim(P ) as the maximum of the dimensions
of restrictions of P to all charts. The dimension of a finite polyhedral complex
is defined as the maximum of dimensions of its convex polyhedra.

The following theorem directly follows from [8, Theorem 1] (part (2) of the
theorem was proved earlier in [2, Proposition 2]).

Let A = {a1, . . . ,ak} ⊂ R
n
∞ be a set of vectors.

Theorem 1 ([2,8]).

1. The set Trophull(A) is a union of all convex polyhedra of a polyhedral complex
in R

n
∞.

2. For any tropical linear prevariety A⊥ ⊂ R
n
∞, there exists a finite set of vectors

{b1, . . . ,bN} ⊂ R
n
∞ such that A⊥ = Trophull({b1, . . . ,bN}).

Corollary 1. Any tropical linear prevariety A⊥ ⊂ R
n
∞ is a union of all convex

polyhedra of a polyhedral complex in R
n
∞.

Remark 2. There is an algorithm, with polynomial complexity, which for a given
set A = {a1, . . . ,ak} ⊂ R

n
∞ and a vector x = (x1, . . . , xn) ∈ R

n
∞ tests the

inclusion x ∈ Trophull(A). We assume bit complexity, if all input vectors are in
(Z ∪ {∞})n, or the complexity of BSS model, if the input vectors are in R

n
∞.

Let, for definiteness, input vectors be in R
n
∞.
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The algorithm attempts to find a vector (t1, . . . , tk) ∈ R
k
∞ such that

x = min
1≤i≤k

{ti1n + ai}, (1)

where minimum is componentwise.
Fix i, 1 ≤ i ≤ k. If ai = (∞, . . . ,∞), then choose ti ∈ R

k
∞ arbitrarily.

Otherwise, let, for definiteness, elements ai1, . . . , ais be all different from ∞ for
1 ≤ s ≤ n. Choose ti ∈ R∞ as max1≤j≤s(xj − aij) (note that ti will turn out to
be ∞ if at least one of xj = ∞, where 1 ≤ j ≤ s). Chosen ti is the minimal such
that ti(1, . . . , 1) + ai ≥ x, where the inequality is componentwise.

Repeating the procedure for each i, 1 ≤ i ≤ k, we obtain the vector
(t1, . . . , tk). The vector x ∈ Trophull(A) iff the equality (1) takes place.

Theorem 1, (2) states that any linear tropical prevariety A⊥ = {a1, . . . ,an}⊥

⊂ R
n
∞ coincides with the tropical hull of a finite subset of its vectors. The

following example shows that this fact is not necessarily true for the restriction
A⊥ ∩ R

n.

Example 1 (cf. [11]). Let A0 = {a1, . . . ,an−1} ⊂ R
n, where

ai = (1, . . . , 1, 0
︸ ︷︷ ︸

i

, 1, . . . , 1, 0, 0) for 1 ≤ i ≤ n − 2 and an−1 = (1, . . . , 1, 0, 0).

It is easy to see that every vector x = (x1, . . . , xn) ∈ A⊥
0 ⊂ R

n
∞ should have min-

imal elements xn−1, xn, and, conversely, every vector x with minimal elements
xn−1, xn is in A⊥

0 . Therefore,

A⊥
0 = {t1n + (c1, . . . , cn−2, 0, 0)| for all 0 ≤ ci ∈ R∞ and t ∈ R∞}.

Directly from definitions it follows that A⊥
0 = Trophull({b1, . . . ,bn−1}),

where

bi = (∞, . . . ,∞, 0
︸ ︷︷ ︸

i

,∞, . . . ,∞, 0, 0) for 1 ≤ i ≤ n − 2 andbn−1 = (∞, . . . ,∞, 0, 0).

On the other hand, for restrictions A⊥
0 ∩R

n, such a representation, as a tropical
hull, is generally not true already when n = 3.

Proposition 1. For any finite set {v1, . . . ,vN} ⊂ A⊥
0 ∩ R

3 we have

A⊥
0 ∩ R

3 	⊂ Trophull({v1, . . . ,vN}).

2 Dual Tropical Linear Prevarieties

We extend the operation X⊥ introduced in Definition 2 so that it can be applied
to arbitrary (not necessarily finite) subsets X ⊂ R

n
∞. Namely, denote by X⊥

the set of all vectors in R
n
∞ orthogonal to each a ∈ X. We will use notations

X⊥⊥ := (X⊥)⊥ and X⊥⊥⊥ := (X⊥⊥)⊥.
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Remark 3. Observe that by the definition, for a finite subset A ⊂ R
n
∞, the set

A⊥⊥ is an intersection of an infinite number of tropical hyperplanes in R
n
∞. As

we will show in Sect. 5 below, not every intersection of even a countable number
of tropical hyperplanes is a union of cells of a finite polyhedral complex, let alone
linear tropical prevariety. However, in the special case of a finite A, the set A⊥⊥

is a linear tropical prevariety (Proposition 2).

Lemma 2. For any subset X ⊂ R
n
∞ we have:

1. Trophull(X) ⊂ X⊥⊥;
2. X⊥ = X⊥⊥⊥.

Proposition 2. Let A be a finite set of vectors in R
n
∞. Then A⊥⊥ is the minimal

tropical linear prevariety containing A.

For the proof of the next theorem, we recall the following definition.
Let A = {a1, . . . ,ak}. Since, by Proposition 2 and Corollary 1, both A⊥⊥ and

Trophull(A) have the structure of polyhedral complexes in R
n
∞, dimensions of

these sets are defined. By Lemma 2, (1), dim(Trophull(A)) ≤ dim(A⊥⊥).

Theorem 2. dim(Trophull(A)) = dim(A⊥⊥).

Remark 4. Lemma 12 in [11] implies that trk(A) + dim(A⊥) ≥ n for a finite
A ⊂ R

n
∞.

Example 2. Consider the set of vectors A0 ⊂ R
n from Example 1. Arguing as in

that example, we see that every vector y = (y1, . . . , yn) ∈ A⊥⊥
0 ⊂ R

n
∞ should

have minimal elements yn−1, yn, and, conversely, every vector y with minimal
elements yn−1, yn is in A⊥⊥

0 . It follows that A⊥⊥
0 = A⊥

0 . Observe that dim(A⊥
0 ) =

dim(A⊥⊥
0 ) = n − 1.

By Lemma 2, (1), Trophull(A0) ⊂ A⊥⊥
0 . On the other hand, Trophull(A0) 	=

A⊥⊥
0 . Indeed, we have A0 ⊂ A⊥⊥

0 = A⊥
0 , hence, by Lemma 1, Trophull(A0) ⊂

A⊥
0 . Then, by Proposition 1, A⊥⊥

0 ∩R
n = A⊥

0 ∩R
n 	⊂ Trophull(A0). In particular,

Trophull(A0) is not a tropical linear prevariety, by Proposition 2.

3 Tropicalization of Linear Subspaces

Let F denote the field C((t1/∞)) of Puiseux series over C. For an element y ∈ F

different from 0, let val(y) ∈ Q denote the valuation of the element y in F, i.e., the
power in the lowest term of the Puiseux series y. Separately define val(0) = ∞.

Definition 5 ( cf. [17]). Consider a linear form f := a1x1 + · · · + anxn, where
0 	= ai ∈ F for all 1 ≤ i ≤ n. The formal tropicalization of the hyperplane
{f = 0} ⊂ F

n is the tropical hyperplane, Tropf({f = 0}) ⊂ R
n, defined by the

set {y1 + val(a1), . . . , yn + val(an)} (see Definition 1).
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By Kapranov’s Theorem [17, Theorem 3.1.3], Tropf({f = 0}) coincides with
the (Euclidean) closure in R

n of the countable set

{(val(x1), . . . , val(xn))| (x1, . . . , xn) ∈ {f = 0}}.
The following definition is “dual” to Definition 4.

Definition 6. For every partition {i1, . . . , ir} ∪ {ir+1, . . . , in} of {1, . . . , n}, a
chart in F

n is an open set

Di1,...,ir := {xi1 = · · · = xir = 0} ∩ {xir+1 	= 0} ∩ · · · ∩ {xin 	= 0} ⊂ F
n.

Let P ⊂ F
n be a linear subspace of arbitrary dimension. Clearly,

P =
⋃

{i1,...,ir}
(P ∩ Di1,...,ir ),

where the union is taken over all subsets {i1, . . . , ir} of {1, . . . , n}.

Definition 7 (cf. [17]). The tropicalization Trop(P ∩ Di1,...,ir ) of P ∩ Di1,...,ir

is the set of all points (y1, . . . , yn) ∈ R
n
∞ such that yi1 = · · · = yir = ∞ and

(yir+1 , . . . , yin) belongs to the Euclidean closure in R
n−r of the set

{(val(xir+1), . . . , val(xin))| (xir+1 , . . . , xin) ∈ P ∩ Di1,...,ir}.

The tropicalization Trop(P ) of P is defined as
⋃

{i1,...,ir} Trop(P ∩ Di1,...,ir ).

Remark 5. Definition 7 immediately implies that for any two sets A,B ⊂ F
n,

there is the inclusion Trop(A ∩ B) ⊂ Trop(A) ∩ Trop(B). The inverse inclusion
⊃ is not generally true even for linear subspaces.

Let dim(P ) = d, and z1, . . . , zd ∈ P be a basis in P . Recall that Plücker
coordinates of P in the Grassmanian Gr(d,Fn) are all (d × d)-minors pj1,...,jd of
the matrix with rows z1, . . . , zd, corresponding to columns 1 ≤ j1 < · · · < jd ≤ n.
Any z = (z1, . . . , zn) ∈ P satisfies Plücker relation

∑

1≤i≤d+1

(−1)ipj1,...,ji−1,ji+1,...,jd+1zji = 0, (2)

for every subset of columns 1 ≤ j1 < · · · < jd+1 ≤ n. Note that relations (2) do
not depend on the choice of the basis in P .

Denote the set of points z satisfying (2) by Pj1,...,jd+1 .
The following statement is a strengthening of [19, Proposition 4.2].

Lemma 3.
Trop(P ) =

⋂

j1,...,jd+1

Trop(Pj1,...,jd+1). (3)

Let Q ⊂ F
n be a linear subspace orthogonal to P with dim(Q) = n − d.

According to [1,19], the tropicalizations Trop(P ) and Trop(Q) are orthogonal,
with dim(Trop(P )) = d and dim(Trop(Q)) = n − d.
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Theorem 3. There is a finite subset A ⊂ R
n
∞ such that Trop(P ) = A⊥ and

Trop(Q) = A⊥⊥.

Corollary 2. Let Trop(P ) = A⊥ for a linear subspace P ⊂ F
n and Q ⊂ F

n be
the subspace which is complementary orthogonal to P . Then Trop(Q) = A⊥⊥.

4 Criterion and Deciding Algorithm for Being a Tropical
Linear Variety

Let A ⊂ (Q ∪ {∞})n be a finite set of vectors. Since A⊥ and A⊥⊥ are tropical
linear prevarieties (see Proposition 2), Theorem 1 implies that

A⊥ = Trophull({x1, . . . ,xp}) and A⊥⊥ = Trophull({y1, . . . ,yq})

for some vectors x1, . . . ,xp,y1, . . . ,yq ∈ (Q ∪ {∞})n.

Definition 8. Let x ∈ (Q ∪ {∞})n and v ∈ F
n such that Trop(v) = x. Then v

is called the lifting of x.

Theorem 4. The following three statements are equivalent.

1. There exist mutually complementary and orthogonal linear subspaces P,Q in
F

n such that A⊥ = Trop(P ), and A⊥⊥ = Trop(Q) (in particular, A⊥ , A⊥⊥

are tropical linear varieties).
2. There exist liftings

v1, . . .vp,w1, . . . ,wq ∈ F
n of vectors x1, . . .xp,y1, . . . ,yq ∈ (Q ∪ {∞})n,

respectively, such that (vi,wj) = 0 for all 1 ≤ i ≤ p, 1 ≤ j ≤ q.
3. A⊥ is a tropical linear variety.

Corollary 3. There is an algorithm which for a given tropical linear prevariety
A⊥ = Trophull({x1, . . . ,xp}) where x1, . . . ,xp ∈ (Q∪{∞})n, decides whether it
is a tropical linear variety.

Proof. The input of the algorithm under construction is the set {x1, . . . ,xp} ⊂
(Q ∪ {∞})n. Using the algorithm from the proof of Theorem 1 in [8], construct
the set {y1, . . . ,yq} ⊂ (Q ∪ {∞})n such that A⊥⊥ = Trophull({y1, . . . ,yq}).

Consider, over F
∗ ∼= F \ {0}, the system of equations

∑

1≤ν≤n

ViνWjν = 0 (4)

for all 1 ≤ i ≤ p, 1 ≤ j ≤ q, 1 ≤ ν ≤ n such that xiν 	= ∞ and yjν 	= ∞,
where Vi = (Vi1, . . . , Vin),Wj = (Wj1, . . . ,Wjn) are vectors of variables. Using
[1,14], or [16], the algorithm constructs the tropical basis of the system of Eq.
(4), which is a finite set of polynomials H�, 1 ≤ � ≤ N , where N ≤ (p + q)n,
with integer coefficients and variables Viν ,Wjν such that xiν 	= ∞ and yjν 	= ∞.
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(See a detailed definition and properties of a tropical basis in [17, Sect. 2.6].) The
algorithm checks whether, for all 1 ≤ � ≤ N , vectors x1, . . .xp,y1, . . . ,yq, from
which coordinates xiν = ∞ and yjν = ∞ are removed, satisfy tropicalizations
Trop(H�). If yes, then, by the definition of tropical basis, there exist liftings
viν , wjν ∈ F

∗ of all xiν 	= ∞, yjν 	= ∞, respectively, which satisfy system (4). Let
P be the linear hull of vectors v1, . . .vp such that in every vi, each coordinate
corresponding to xiν 	= ∞ is the lifting viν , while each coordinate corresponding
to xiν = ∞ is 0. Similarly, let Q be the linear hull of vectors w1, . . .wq such
that in every wj , each coordinate corresponding to yjν 	= ∞ is the lifting wjν ,
while each coordinate corresponding to yjν = ∞ is 0. Then, by Theorem 4, P
and Q are mutually complementary and orthogonal linear subspaces of Fn, while
A⊥ = Trop(P ) and A⊥⊥ = Trop(Q). In particular, A⊥ and A⊥⊥ are tropical
linear varieties. If vectors x1, . . .xp,y1, . . . ,yq from which coordinates xiν = ∞
and yjν = ∞ are removed do not satisfy Trop(H�) for all 1 ≤ � ≤ N , then A⊥ is
not a tropical linear variety, by Theorem4.

The complexity of the algorithm is polynomial in the maximum of absolute
values of numerators and denominators of rational coordinates of vectors xi, 1 ≤
i ≤ p, and doubly exponential in n. In this regard, we note that the complexity
of the algorithm for computing the tropical basis in [16] is doubly exponential.

Remark 6. There is an algorithm which for a tropical linear prevariety A⊥ =
Trophull({x1, . . . ,xp}), where x1, . . . ,xp ∈ (Q∪{∞})n, produces bases of linear
subspaces P and Q, such that A⊥ = Trop(P ) and A⊥⊥ = Trop(Q), in case these
subspaces exist.

More precisely, as in the proof of Corollary 2, construct, using the algorithm
from the proof of Theorem 1 in [8], the set {y1, . . . ,yq} ⊂ (Q ∪ {∞})n such
that A⊥⊥ = Trophull({y1, . . . ,yq}). Apply the algorithm from [15] to vectors
xi,yj , 1 ≤ i ≤ p, 1 ≤ j ≤ q, from which coordinates xiν = ∞ and yjν = ∞ are
removed, and to system (4). The algorithm from [15] will either produce liftings
viν , wjν ∈ F

∗ of all xiν 	= ∞, yjν 	= ∞, respectively, which satisfy (4), or will
indicate that liftings don’t exist, i.e., vectors xi,yj with removed coordinates do
not belong to the tropicalization of (4). If liftings exist, then P is the linear hull of
vectors v1, . . .vp such that in every vi, each coordinate corresponding to xiν 	= ∞
is the lifting viν , while each coordinate corresponding to xiν = ∞ is 0. Similarly,
Q is the linear hull of vectors w1, . . .wq such that in every wj , each coordinate
corresponding to yjν 	= ∞ is the lifting wjν , while each coordinate corresponding
to yjν = ∞ is 0. Herewith, all coordinates of vectors vi,wj are Puiseux series in
Q((t1/∞)) and the algorithm computes their expansions up to a given power of
t, representing complex algebraic coefficients as zeroes of irreducible univariate
polynomials with integer coefficients.

We sketch briefly an alternative algorithm for producing P and Q. A proce-
dure in [15] reduces the construction of liftings to finding all points in a zero-
dimensional algebraic set in (Q((t1/∞)))N , by adding generic linear forms to
the tropical basis. All such points (absolutely irreducible components of the
zero-dimensional algebraic set) can be computed with singly exponential com-
plexity using algorithms from [3,9] (these algorithms have much more general
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scope). Zero-dimensional components are represented as elements of a finite
extension of the field Q(t) via a primitive element. Then, using a procedure from
[4] for Puiseux extension of solutions of polynomial equations over Q((t1/∞)),
the algorithm checks whether the tropicalization of a solution coincides with
x1, . . .xp,y1, . . . ,yq. Because this algorithm uses the procedure from [15], its
complexity is doubly exponential in n. The digest of symbolic manipulation
technique with Puiseux series can be found in [10].

5 Infinite Intersections of Tropical Linear Prevarieties

By the definition, the intersection of a finite number of tropical hyperplanes is a
tropical linear prevariety. In this section, we give an example of a countable family
of tropical hyperplanes in R

6
∞ such that their intersection is not a finite union

of convex polyhedra, in particular, not a tropical prevariety. This strengthens
examples in [7] (example of T. Theobald) and [12], in which intersections of
a countable families of tropical (non-linear) prevarieties were shown not to be
finite unions of convex polyhedra.

Choose a sequence {εi}n
i=1 of pairwise distinct real numbers εi such that

0 < εi < 1/4, and consider a tropical hyperplane Li ⊂ R
6
∞ defined by the set

{−i + x1,−i + x2,−i/2 − εi + y1,−i/2 + y2, z1, z2}

(see Definition 1).
Let

M :=
⋂

1≤i<∞
Li ⊂ R

6
∞.

Proposition 3. The set M ∩ R
6 is not a finite union of convex polyhedra. In

particular, M is not a tropical prevariety.
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Abstract. We propose new symbolic-numerical algorithms imple-
mented in Maple-Fortran environment for solving the self-adjoint
elliptic boundary-value problem in a d-dimensional polyhedral finite
domain, using the high-accuracy finite element method with multivari-
ate Lagrange elements in the simplexes. The high-order fully symmetric
PI-type Gaussian quadratures with positive weights and no points out-
side the simplex are calculated by means of the new symbolic-numerical
algorithms implemented in Maple. Quadrature rules up to order 8 on
the simplexes with dimension d = 3 − 6 are presented. We demonstrate
the efficiency of algorithms and programs by benchmark calculations of
a low part of spectra of exactly solvable Helmholtz problems for a cube
and a hypercube.

Keywords: Elliptic boundary-value problem · Finite element method
Multivariate simplex lagrange elements
High-order fully symmetric Gaussian quadratures
Helmholtz equation for cube and hypercube

1 Introduction

The progress of modern computing power offers more possibilities for setting and
numerical solution of multidimensional elliptic boundary-value problems (BVPs)
with high accuracy. 3D BVPs have wide applications in such areas as vibrating
membrane, electromagnetic radiation, motion of thermal neutrons in the reac-
tor, seismology, and acoustics, see, e.g., [4], while multidimensional BVPs have
applications in nuclear physics, see, e.g., [7]. For this purpose, novel numerical
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methods of high accuracy order are being developed. When reducing the bound-
ary value problem to an algebraic one in the finite element method (FEM) of
the order p, one of the problems is the calculation of integrals on a finite element
(we consider only simplicial finite elements) containing the products of two basis
functions of Lagrange or Hermite interpolation polynomials of the order p by
the coefficients for the unknown functions [5,9]. There are three possible ways
to calculate the integrals:

(i) using analytical calculation, which is possible for a limited number of cases;
(ii) using quadrature formulas with products of two basic functions used as a

weight function;
(iii) using quadrature formulas with a single weight function.

It is well known [20] that as a result of applying the pth order FEM to the
solution of the discrete spectrum problem for the elliptic (Schrödinger) equation,
the eigenfunction and the eigenvalue are determined with an accuracy of the
order p + 1 and 2p provided that all intermediate quantities are calculated with
sufficient accuracy. It follows that for the realization of the FEM of the order
p in the third case, the integrals must be computed at least with an accuracy
of the order 2p, depending on the problem considered. The most economical
calculation of such integrals is achieved using the quadratures of Gaussian type.
In the one-dimensional case, the nodes and the quadrature Gaussian weights
are expressed analytically; in the two-, three- and four-dimensional case, the
high-order quadrature formulas are determined numerically [2,6,8,10,17–19,21].
Note that for multidimensional integrals, numerous quadrature formulas of the
Newton–Cotes and third-order Gaussian type are known, too (see Ref. [1]).

The paper presents a new method for constructing fully symmetric multidi-
mensional Gaussian-type quadratures on a standard simplex. The main idea of
the method is replacing the coordinates of nodes with their symmetric combina-
tions obtained using the Vieta theorem, which simplifies the system of nonlinear
algebraic equations. The construction of the desired systems of equations is per-
formed analytically using an original algorithm implemented in Maple [13]. The
derived systems up to the sixth order are solved using the built-in procedure
PolynomialSystem, implementing the technique of Gröbner bases, and the sys-
tems of higher order are solved using the developed symbolic-numerical algorithm
based on numerical methods, implemented in Maple-Fortran environment. We
demonstrate the efficiency of algorithms and programs by benchmark calcula-
tions of the lower part of spectra in exactly solvable Helmholtz problems for a
cube and a hypercube.

The paper is structured as follows. In Sects. 2 and 3, the FEM schemes and
algorithms for solving the d-dimensional BVP are presented. In Sect. 4, the algo-
rithms for constructing the d-dimensional fully symmetric Gaussian quadratures
are presented. In Sect. 5, the benchmark calculations of the exactly solvable
Helmholtz problems for the cube and hypercube are presented. In Conclusion,
we discuss the results and perspectives.
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2 Setting of the Problem

Consider a self-adjoint boundary-value problem for the elliptic differential equa-
tion of the second order:

(D − E)Φ(z) ≡
(

− 1
g0(z)

d∑
ij=1

∂

∂zi
gij(z)

∂

∂zj
+ V (z) − E

)
Φ(z) = 0. (1)

For the principal part coefficients of Eq. (1), the condition of uniform ellipticity
holds in the bounded domain z = (z1, . . . , zd) ∈ Ω of the Euclidean space Rd,
i.e., the constants μ > 0, ν > 0 exist such that μξ2 ≤ ∑d

ij=1 gij(z)ξiξj ≤ νξ2,

ξ2 =
∑d

i=1 ξ2i , ∀ξi ∈ R. The left-hand side of this inequality expresses the
requirement of ellipticity, while the right-hand side expresses the boundedness of
the coefficients gij(z). It is also assumed that g0(z) > 0, gji(z) = gij(z) and V (z)
are real-valued functions, continuous together with their generalized derivatives
to a given order in the domain z ∈ Ω̄ = Ω ∪ ∂Ω with the piecewise continuous
boundary S = ∂Ω, which provides the existence of nontrivial solutions obeying
the boundary conditions [5] of the first kind

Φ(z)|S = 0, (2)

or the second kind

∂Φ(z)
∂nD

∣∣∣
S
= 0,

∂Φ(z)
∂nD

=
d∑

ij=1

(n̂, êi)gij(z)
∂Φ(z)
∂zj

, (3)

where ∂Φm(z)
∂nD

is the derivative along the conformal direction, n̂ is the outer
normal to the boundary of the domain S = ∂Ω, êi is the unit vector of z =∑d

i=1 êizi, and (n̂, êi) is the scalar product in Rd.
For a discrete spectrum problem, the functions Φm(z) from the Sobolev space

Hs≥1
2 (Ω), Φm(z) ∈ Hs≥1

2 (Ω), corresponding to the real eigenvalues E: E1 ≤
E2 ≤ . . . ≤ Em ≤ . . . satisfy the conditions of normalization and orthogonality

〈Φm(z)|Φm′(z)〉 =
∫

Ω

dzg0(z)Φm(z)Φm′(z) = δmm′ , dz = dz1 . . . dzd. (4)

The FEM solution of the boundary-value problems (1)–(4) is reduced to the
determination of stationary points of the variational functional [3,5]

Ξ(Φm, Em) ≡
∫

Ω

dzg0(z)Φm(z) (D − Em) Φ(z) = Π(Φm, Em), (5)

where Π(Φ,E) is the symmetric quadratic functional

Π(Φ,E) =
∫

Ω

dz

[ d∑
ij=1

gij(z)
∂Φ(z)
∂zi

∂Φ(z)
∂zj

+ g0(z)Φ(z)(V (z) − E)Φ(z)
]
.
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3 FEM Calculation Scheme

In FEM, the domain Ω = Ωh(z) =
⋃Q

q=1 Δq, specified as a polyhedral domain,
is covered with finite elements, in the present case, the simplexes Δq with d + 1
vertices ẑi = (ẑi1, ẑi2, . . . , ẑid), i = 0, . . . , d. Each edge of the simplex Δq is
divided into p equal parts, and the families of parallel hyperplanes H(i, k) are
drawn, numbered with the integers k = 0, . . . , p, starting from the corresponding
face (see also [5]). The equation of the hyperplane is H(i, k): H(i; z) − k/p = 0,
where H(i; z) is a linear function of z.

The node points of hyperplanes crossing Ar are enumerated with the sets
of integers [n0, . . . , nd], ni ≥ 0, n0 + . . . + nd = p, where ni, i = 0, 1, . . . , d are
the numbers of hyperplanes, parallel to the simplex face, not containing the ith
vertex ẑi = (ẑi1, . . . ẑid). The coordinates ξr = (ξr1, . . . , ξrd) of the node point
Ar ∈ Δq are calculated using the formula

(ξr1, . . . , ξrd) = (ẑ01, . . . , ẑ0d)
n0

p
+ (ẑ11, . . . , ẑ1d)

n1

p
+ . . . + (ẑd1, . . . , ẑdd)

nd

p
(6)

from the coordinates of the vertices ẑj = (ẑj1, . . . , ẑjd). Then the Lagrange inter-
polation polynomials (LIP) ϕp

r(z) are equal to one at the point Ar with the
coordinates ξr = (ξr1, . . . , ξrd), characterized by the numbers [n0, n1, . . . , nd],
and equal to zero at the remaining points ξr′ , i.e., ϕp

r(ξr′) = δrr′ , have the
form

ϕp
r(z) =

d∏
i=0

ni−1∏
n′
i=0

H(i; z) − n′
i/p

H(i; ξr) − n′
i/p

. (7)

As shape functions in the simplex Δq we use the multivariate Lagrange inter-
polation polynomials ϕp

l (z) of the order p that satisfy the condition ϕp
l (x1l′ , x2l′)

= δll′ , i.e., equal 1 at one of the points Al and zero at the other points. In this
method, the piecewise polynomial functions Np

l (z) in the domain Ω are con-
structed by joining the shape functions ϕp

l (z) in the simplex Δq:

Np
l (z) = {ϕp

l (z), Al ∈ Δq; 0, Al 
∈ Δq}

and possess the following properties: the functions Np
l (z) are continuous in the

domain Ω; the functions Np
l (z) equal 1 at one of the points Al and zero at the

rest of the points; Np
l (zl′) = δll′ in the entire domain Ω. Here l takes the values

l = 1, . . . , N .
The functions Np

l (z) form a basis in the space of polynomials of the pth order.
Now, the function Φ(z) ∈ H1(Ω) is approximated by a finite sum of piecewise
basis functions Np

l (z):

Φh(z) =
N∑

l=1

Φh
l Np

l (z). (8)
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Table 1. The orbits and their number of permutations for d = 3, 4, 5, 6.

d = 3 d = 4 d = 5 d = 6

Orbits Perm. Orbits Perm. Orbits Perm. Orbits Perm. Orbits Perm. Orbits Perm.

S4 1 S5 1 S6 1 S3111 120 S7 1 S4111 210

S31 4 S41 5 S51 6 S2211 180 S61 7 S3211 420

S22 6 S32 10 S42 15 S21111 360 S52 21 S2221 630

S211 12 S311 20 S33 20 S111111 720 S43 35 S31111 840

S1111 24 S221 30 S411 30 S511 42 S22111 1260

S2111 60 S321 60 S421 105 S211111 2520

S11111 120 S222 90 S331 140 S1111111 5040

S322 210

After substituting expansion (8) into the variational functional (5) and minimiz-
ing it [3,20], we obtain the generalized eigenvalue problem

ApΦh = εhBpΦh. (9)

Here Ap is the symmetric stiffness matrix; Bp is the symmetric positive definite
mass matrix; Φh is the vector approximating the solution on the finite-element
grid; and εh is the corresponding eigenvalue. The matrices Ap and Bp have the
form:

Ap = {ap
ll′}N

ll′=1,B
p = {bp

ll′}N
ll′=1, (10)

where the matrix elements ap
ll′ and bp

ll′ are calculated for simplex elements as

ap
ll′ =

d∑
ij=1

∫
Δq

gij(z)
∂ϕp

l (z)
∂zi

∂ϕp
l′(z)

∂zj
dz +

∫
Δq

g0(z)ϕp
l (z)ϕp

l′(z)V (z) dz,

bp
ll′ =

∫
Δq

g0(z)ϕp
l (z)ϕp

l′(z)dz. (11)

The economical implementation of FEM is the following.
The calculations, including those of FEM integrals for mass and stiffness

matrices at each subdomain Δq are performed in the local (reference) system of
coordinates x, in which the coordinates of the simplex vertices are the following:
x̂j = (x̂j1, . . . , x̂jd), x̂jk = δjk, j = 0, . . . , d, k = 1, . . . , d.

Let us construct the Lagrange interpolation polynomial (LIP) on an arbitrary
d-dimensional simplex Δq with vertices ẑi = (ẑi1, ẑi2, . . . , ẑid), i = 0, . . . , d. For
this purpose, we introduce the local system of coordinates x = (x1, x2, . . . , xd) ∈
Rd, in which the coordinates of the simplex vertices are x̂i. The relation between
the coordinates is given by the formula:

zi = ẑ0i +
d∑

j=1

Ĵijxj , Ĵij = ẑji − ẑ0i, i = 1, . . . , d. (12)
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Table 2. Quadrature rule on tetrahedra.

Orbit Weight Abscissas

14-points 4-order rule

S31 0.0801186758957551214557967806191 0.0963721076152827180679867982109

S31 0.1243674424942431317471251193937 0.3123064218132941261147265437508

S22 0.0303425877400011645313853999915 0.0274707886853344957750132954191

14-points 5-order rule

S31 0.0734930431163619495437102054863 0.0927352503108912264023239137370

S31 0.1126879257180158507991856523333 0.3108859192633006097973457337635

S22 0.0425460207770814664380694281203 0.0455037041256496494918805262793

24-points 6-order rule

S31 0.0399227502581674920996906275575 0.2146028712591520292888392193863

S31 0.0100772110553206429480132374459 0.0406739585346113531155794489564

S31 0.0553571815436547220951532778537 0.3223378901422755103439944707625

S211 0.0482142857142857142857142857143 0.0636610018750175252992355276057
0.6030056647916491413674311390609

35-points 7-order rule

S4 0.0954852894641308488605784361172 0.2500000000000000000000000000000

S31 0.0423295812099670290762861707986 0.3157011497782027994234299995933

S22 0.0318969278328575799342748240829 0.0504898225983963687630538229866

S211 0.0372071307283346213696155611915 0.1888338310260010477364311038546
0.5751716375870000234832415770223

S211 0.0081107708299033415661034334911 0.0212654725414832459888361014998
0.8108302410985485611181053798482

46-points 8-order rule

S31 0.0063972777406656176515049738764 0.0396757518582111225277078936298

S31 0.0401906214382288067038698161802 0.3144877686588789672386516888007

S31 0.0243081692121760770795396363192 0.1019873469010702748038937565346

S31 0.0548586277637264928464254253584 0.1842037697228154771186065671874

S22 0.0357196747563309013579348149829 0.0634363951662790318385035375295

S211 0.0071831862652404057248973769332 0.0216901288123494021982001218658
0.7199316530057482532021892796203

S211 0.0163720776383284788356885983306 0.2044800362678728018101543629799
0.5805775568740886759781950895673

The inverse transformation and the relation between the differentiation operators
are given by the formulas

xi =
d∑

j=1

(Ĵ−1)ij(zj − ẑ0j),
∂

∂xi
=

d∑
j=1

Ĵji
∂

∂zj
,

∂

∂zi
=

d∑
j=1

(Ĵ−1)ji
∂

∂xj
.

mmonagan@cecm.sfu.ca



Algorithms for Solving Elliptic Boundary-Value Problems 203

Table 3. Quadrature rule on d = 4 dimensional simplex.

Orbit Weight Abscissas

20-points 4-order rule

S41 0.0379539224206539610831511760634 0.0784224645320084412701860095372

S41 0.0681384495140965073072374189421 0.2449925002516506829747267241998

S32 0.0469538140326247658048057024973 0.0657807054017604429326659923627

30-points 5-order rule

S41 0.0492516801753157409383956672833 0.0853466308308594082516329452526

S41 0.0325114606587393649369493738878 0.2369600116614607056460832163398

S32 0.0175327109958004508766635908927 0.0412980141318484010482052159450

S32 0.0415857185871719961856638885218 0.2997443384790352862963354895649

56-points 6-order rule

S5 0.0732792367435547721884408088550 0.2000000000000000000000000000000

S41 0.0047429121713183739117905941798 0.0417033817484816144703679735243

S32 0.0371671124025330069869448829255 0.2956227971470980491911963343462

S311 0.0133362480184817717166547744056 0.1543949248731168427369921195673
0.5227506462276968325151584695712

S311 0.0132305059002443927025030951440 0.0478156751378274921515148624255
0.2819739419928806028716278777811

76-points 7-order rule

S5 0.0282727667597935101461654674137 0.2000000000000000000000000000000

S41 0.0171637920155537955591265968365 0.2494020893093779695674000557470

S32 0.0084262904177368737487641566458 0.0390279956601069690478223468028

S32 0.0151633627560453145809862914879 0.1283114044638121921594658569279

S311 0.0041099348414815560204478025486 0.0338474709865642635279969618386
0.7462624286813390611020624803775

S221 0.0189271014864994836117247005365 0.0448337964557961849763900084527
0.2098710857162324764262981778162

110-points 8-order rule

S41 0.0209889631062033488284471858741 0.1064160632601420588468274348524

S41 0.0025569304299619087111133529054 0.0405432824126613113549340882657

S32 0.0153364140237452308225281532013 0.0553205204859791157778648564000

S32 0.0143413703554045577679712361587 0.1329849247207488765271172398305

S32 0.0219839063571691797013874119590 0.2921649623679039933512390863408

S311 0.0036998351176104420717284969383 0.0333398788668747287190327986033
0.6960284779140254845117282473257

S311 0.0102875153954967332446050836803 0.1749055465990825034189472406388
0.4713583394803434080155451322627

S221 0.0028635538231280174352219226847 0.2139955562978852147651302856947
0.0055794471455235244097015787040
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Table 4. Quadrature rule on d = 5 dimensional simplex.

Orbit Weight Abscissas

27-points 4-order rule

S6 0.2380952380952380952380952380952 0.1666666666666666666666666666667

S51 0.0476190476190476190476190476190 0.0833333333333333333333333333333

S33 0.0238095238095238095238095238095 0.3110042339640731077939538617922

37-points 5-order rule

S6 0.1537202203084293617727126367247 0.1666666666666666666666666666667

S51 0.0289106224493151615615928162885 0.0750000000000000000000000000000

S42 0.0272301053298578547025239158396 0.0620931177937680448262436473512

S42 0.0176242976698541232213247818634 0.2494113069849930171206590075161

102-points 6-order rule

S51 0.0220609777699918416385171809216 0.0936784796657907179507883184494

S51 0.0010288939840293747752001192602 0.0270566434340766625713558698570

S42 0.0156264172618719457418380080610 0.0653950986037339179722692404805

S42 0.0278282494445825546266341924031 0.2298844181626658901051213339390

S321 0.0034940128146509199331768865324 0.0182868036924305667708203585711
0.1963426392615138866458359282858

137-points 7-order rule

S51 0.0251079912995851246690568379932 0.1962505998027202386302784835916

S51 0.0268181773072546325688248594140 0.1073064529494792948889112833415

S42 0.0088856106397381008037487732556 0.0499693465734168548516130660759

S33 0.0155965105537609568596496409074 0.2812294050576655725449341659515

S411 0.0013215130252633881273492640567 0.0287356582492413683812555969369
0.7243025794534749187969716773294

S321 0.0033930537821628193917167912812 0.1573270862326151676898601262299
0.0036548286115748769147071291765

257-points 8-order rule

S51 0.0176303711895221798359615170829 0.1062079269440531427851821818230

S51 0.0022261212103870366035563829745 0.0445128753938546747539305403018

S42 0.0166747305797216127029493671085 0.2215271654487921945556436076078

S33 0.0039660204626209654516270279365 0.0287362439702382298273521354305

S411 0.0013712761289024193505102030670 0.0302807316628161184245512327246
0.5742625240747101119061964222732

S321 0.0009261971752463936292941257741 0.0178653742410041824343316617132
0.1599485035546596050768099856676

S321 0.0048311921097760693226621205033 0.0971175464224689537586197747871
0.3509135920039025566598219642999

S321 0.0027473006113980140692238444274 0.1542598417836536904457879818959
0.0175301902661063495789625995714
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Table 5. Quadrature rule on d = 6 dimensional simplex.

Orbit Weight Abscissas

43-points 4-order rule

S7 0.1668996242406426424065553487802 0.1428571428571428571428571428571

S61 0.0271661981514270076903673620086 0.0712015434701090173255254362504

S43 0.0183696282485533801074535176331 0.0378762710421960021962053657298

64-points 5-order rule

S7 0.1055608940320069322326417879346 0.1428571428571428571428571428571

S61 0.0242990419532018650013794612051 0.0715539250843990305857473101707

S52 0.0117134616879203157617441588591 0.0506772832103077178123184150643

S43 0.0136675176242643823360307042168 0.2304358521244036512024566237956

175-points 6-order rule

S61 0.0004610493156525528548408228337 0.0250990960487081544700908516534

S61 0.0130199167458605046501306895616 0.1640882485030238802990581503886

S52 0.0020306497109021799567911952305 0.0278440785001665193354091212251

S43 0.0162220926263431272900952737070 0.0542711738847223476721544566326

S421 0.0028115843020805082211357117490 0.1203196589728741910526848418155
0.0037549817118180216976885119286

266-points 7-order rule

S61 0.0103583726453788825261551030659 0.1655537069170340713573624387430

S52 0.0127946542771734405339991326892 0.0800416917413849453828158790868

S52 0.0038665797691560684680540249746 0.0462060207372654835707639356206

S43 0.0068482273738159415062980403942 0.2251626772370571673652419443913

S43 0.0013006546667652760792540506406 0.0140208383611713481747343760562

S511 0.0005321899098570485728489000218 0.0246678063639990490447074776734
0.1759636130065151239491183217936

S421 0.0025718345607151378830459140997 0.1242831811867119456481842408470
0.0063723131014287473559192490677

553-points 8-order rule

S61 0.0119576998439189095322140668380 0.1646768753323421340942870425551

S61 0.0170033855208889021739988777538 0.1010702610627718250051913258275

S61 0.0015763271020889357220309420300 0.0445013301458845571180677283528

S43 0.0029960134851163901478666677698 0.0444259533505434743654069329655

S43 0.0057810264432097073309950803359 0.2211051271607452660739567583653

S511 0.0007096981072933306194796057518 0.0303842211182356803799849235650
0.2575978419615841769164822870809

S421 0.0003172772160146728270743668040 0.0126686383758556644736172343255
0.2101770124793451029895811597503

S421 0.0015276586289853906949163952851 0.1232675348992300327954722629436
0.0050316009864769548591929730662

S322 0.0012167434809951561924521816620 0.0955868297374816410778226310866
0.3377885686906383657970155568362
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The integrals that enter the variational functional (5) on the domain Ωh(z) =⋃Q
q=1 Δq, are expressed via the integrals, calculated on the element Δq, and

recalculated to the local coordinates x on the element Δ,
∫

Δq

dzg0(z)ϕp
r(z)ϕp

r′(z)V (z) = J

∫
Δ

dxg0(z(x))ϕp
r(x)ϕp

r′(x)V (z(x)), (13)

∫
Δq

dzgs1s2(z)
∂ϕp

r(z)
∂zs1

∂ϕp
r′(z)

∂zs2

= J

d∑
t1,t2=1

Ĵ−1
s1s2;t1t2

∫
Δ

dxgs1s2(z(x))
∂ϕp

r(x)
∂xt1

∂ϕp
r′(x)

∂xt2

,

where J = det Ĵ>0 is the determinant of the matrix Ĵ from Eq. (12), Ĵ−1
s1s2;t1t2 =

(Ĵ−1)t1s1(Ĵ
−1)t2s2 , dx = dx1 . . . dxd.

In the local coordinates, the LIP ϕp
r(x) is equal to one at the node point ξr

characterized by the numbers [n0, n1, . . . , nd], and zero at the remaining node
points ξ′

r, i.e., ϕr(ξ
′
r) = δrr are determined by Eq. (7) at H(0;x) = 1−x1 − . . . −

xd, H(i; z) = xi, i = 1, . . . , d:

ϕr(x) =
d∏

i=1

ni−1∏
ni=0

xi − ni/p

ni/p − ni/p

n0−1∏
n0=0

1 − x1 − . . . − xd − n0/p

n0/p − n0/p
. (14)

Integrals (13) are evaluated using the Gaussian quadrature of the order 2p.
Let εm and Φm(z) be exact solutions of Eq. (9) and εh

m and Φh
m be the

corresponding numerical solutions. Then the following estimations are valid [20]

|εm − εh
m| ≤ c1|εm|h2p, ‖Φm(z) − Φh

m‖0 ≤ c2|Em|hp+1, (15)

where ‖a(z)‖20 = 〈a(z)|a(z)〉, h is the maximal step of the finite-element grid, m
is the number of the corresponding solution, and the positive constants c1 and
c2 do not depend on the step h.

To solve the generalized eigenvalue problem (9), we choose the subspace iter-
ation method [3,20] elaborated by Bathe [3] for the solution of large symmetric
banded-matrix eigenvalue problems. This method uses the skyline storage mode
which stores the components of the matrix column vectors within the banded
region of the matrix, and is ideally suited for banded finite-element matrices.

4 Construction of the d-dimensional Quadrature
Formulas

Let us construct the d-dimensional p-ordered quadrature formula

∫
Δq

dzV (z) = |Δq|
nt∑

j=1

wjV (zj), z = (z1, . . . , zd), dz = dz1 . . . dzd, (16)
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for integration over the d-dimensional simplex Δq with vertices ẑi = (ẑi1, ẑi2, . . . ,
ẑid), i = 0, . . . , d, which is exact for all polynomials of the variables z1, . . . , zd

of degree not exceeding p, where nt is the number of nodes that is determined
during the calculation process. In Eq. (16), wj , j = 1, . . . , nt are the weights and
zj = (zj1, zj2, . . . , zjd) are the coordinates of nodes. |Δq| denotes the volume of
Δq. For each node zj , instead of sets of d coordinates we use the sets of d + 1
barycentric coordinates (BC) (xj0, xj1, . . . , xjd):

zj = xj0ẑ0 + . . . + xjdẑd, xj0 + . . . + xjd = 1. (17)

For this purpose, we introduce the local coordinate system x = (x1, x2, . . . , xd)
and (12). Therefore, without loss of generality, we construct the d-dimensional
p-ordered quadrature formula (16) on the standard simplex Δ with vertices
x̂j = (x̂j1, . . . , x̂jd), x̂jk = δjk, j = 0, . . . , d, k = 1, . . . , d, which is exact for
all polynomials of the variables x1, . . . , xd of degree not exceeding p:

∫
Δ

dxV (x) =
1
d!

nt∑
j=1

wjV (xj0, . . . , xjd). (18)

Since the following formula is valid for all permutations (l0, . . . , ld) of (k0, . . . , kd):

∫
Δ

dxxl1
1 . . . xld

d (1 − x1 − . . . − xd)l0 =
∏d

i=0 ki!(
d +

∑d
i=0 ki

)
!
,

we consider the fully symmetric Gaussian quadratures
∫

Δ

dxV (x) =
1
d!

a∑
j=1

wj

∑
j0,...,jd

V (xj00, xj11, . . . , xjdd), (19)

where the internal summation by j0, . . . , jd is carried out over the different per-
mutations of (xj0, xj1, . . . , xjd). Table 1 presents the orbits and the corresponding
number of different permutations for d = 3, 4, 5, 6. Here, for example, the orbit
S331 at d = 6 contains BC (α, α, α, β, β, β, γ), α 
= β 
= γ, α 
= γ, 3α+3β+γ = 1
and their different 140 permutations.

Substituting a monomial of the order not exceeding p in Eq. (19) instead
of V (x), we arrive at a system of nonlinear algebraic equations, that using the
Vieta theorem reduces to the form:

∫
Δ

dxsl2
2 sl3

3 × . . . × s
ld+1
d+1 =

1
d!

a∑
j=1

wjQjs
l2
j2s

l3
j3 × . . . × s

ld+1
jd+1, (20)

2l2 + 3l3 + . . . + (d + 1)ld+1 ≤ p, (21)

where

s2 =
d∑

i=0,j �=i

xixj , . . . , sd+1 =
d∏

i=0

xi, (22)
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sji, i = 2, . . . , d + 1, are their values in the BC (xj0, xj1, . . . , xjd), and Qj is the
number of different permutation of the BC. As in Ref. [15], instead of Eq. (22),
we can use

sj =
d∑

i=0

xj
i , j = 2, . . . , d + 1. (23)

The number of all lj ≥ 0 solutions of Eq. (21) provides the minimal num-
ber of independent nonlinear equations for the quadrature formula of the order
p. It means that we can obtain a set of independent polynomials by adding
new polynomials when increasing the order p. Below the first few independent
polynomials of the order not exceeding p ≤ 6 for d ≥ 5 are presented:

V1(x) = s1, for p = 1,
V2(x) = s2, for p = 2,
V3(x) = s3, for p = 3,

V4(x) = s22, V5(x) = s4, for p = 4,
V6(x) = s2s3, V7(x) = s5, for p = 5,

V8(x) = s32, V9(x) = s23, V10(x) = s2s4, V11(x) = s6, for p = 6.

(24)

We consider fully symmetric rules with positive weights, and no points are
outside the simplex (the so-called PI-type).

The np-points p-order quadrature rules are constructed with Algorithm 1 [21]
implemented by us in Maple and Fortran:

– for each decomposition np do

repeat
1. Randomly choose an initial guess for the unknowns nt.
2. Find a least square solution to Eqs. (20), (21) using a quasi-Newton

algorithm.
3. If a PI-type solution is found satisfying Eqs. (20), (21), with sufficient

accuracy, go to Step 4.
until maximum number of initial guesses tried.

– end for
– Stop.
– 4. Minimize the nonlinear equation for unknowns nt using the Levenberg–

Marquardt algorithm with high accuracy [12,14].

The Levenberg–Marquardt Algorithm 2:
Let f(x) be twice differentiable with respect to the variable x = (x1, . . . , xn).

We consider the minimization

min
x∈Rn

f(x). (25)

1. Start with an initial value x0, in S, an initial damping parameter λ0, and a
scaling parameter ρ. For k ≥ 0 do the following:
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2. Determine a trial iterate y, using

y = xk − (Hf (xk) + λ diag(Hf (xk)))−1 ∇f(xk), (26)

with λ = λkρ−1.
3. If f(y) < f(xk), where y is determined in Step 2, then set xk+1 = y and

λk+1 = λkρ−1. Return to Step 2, replace k with k + 1, and compute a new
trial iterate.

4. If f(y) ≥ f(xk) in Step 3, determine a new trial iterate, y, using (26) with
λ = λk.

5. If f(y) < f(xk), where y is determined in Step 4, then set xk+1 = y and
λk+1 = λk. Return to Step 2, replace k with k + 1, and compute a new trial
iterate.

6. If f(y) ≥ f(xk) in Step 5, then determine the smallest value of m so that when
a trial iterate y is computed using (26) with λ = λkρm, then f(y) < f(xk).
Set xk+1 = y and λk+1 = λkρm. Return to Step 2, replace k with k + 1, and
compute a new trial iterate.

7. Terminate the algorithm when ‖∇f(xk)‖ < ε, where ε is the specified toler-
ance.

In the above Algorithm 2, ∇f(x), Hf (x) are the gradient vector and the Hes-
sian matrix functions of f(x), respectively. diag(Hf (x)) is the diagonal matrix
of the Hessian matrix function Hf (x).

The weights (W) and the BC of PI-type rules of order p are presented in
Tables 2, 3, 4 and 5. Here, for example, for the orbit S421 at d = 6 contains the
BC (α, α, α, α, β, β, γ), α 
= β 
= γ, α 
= γ and their different 105 permutations.
We present α in the first line and β in the second line, since γ is expressed in
terms of α, β, i.e., γ = 1 − 4α − 2β. The rules of the fifth and sixth order on
tetrahedra coincide with the results of Ref. [2]. We believe that at least some of
the rules presented in this paper are new. But we can not guarantee that the
presented numbers of points of high-order quadrature rules are minimal. Note
that up to the order p = 6 W and BC were calculated using Maple with 32
significant digits. For p > 6, W and BC were calculated using Fortran with 10
significant digits (the first three steps of Algorithm 1). These calculations were
performed using the Central Information and Computer Complex, and HybriLIT
heterogeneous computing cluster at JINR. Starting from the approximate values
found with the Fortran code, W and BC were then calculated in Maple with 32
significant digits.

5 BVP for Helmholtz Equation in a d-dimensional
Hypercube

For benchmark calculations, we use the BVP for the Helmholtz equation (HEQ)
with the boundary condition (II) in a d-dimensional hypercube with the edge
length π. Since the variables are separated, the eigenvalues Em = Em1,...,md

are
sums of squared integers, Em = Em1,...,md

= m2
1 + . . . + m2

d, mk = 0, 1, . . .,
k = 1, . . . , d.
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Fig. 1. (a) Division of a 3D cube into 3! = 6 equal tetrahedrons (T1,. . . ,T6). (b)
The error ΔΦ8(z1, z2, z3) = |Φh

8 (z1, z2, z3) − Φ8(z1, z2, z3)| for the eighth eigenfunction
Φh

8 (z1, z2, z3) at fixed z3 = π/9, calculated using FEM with third-order LIPs versus
the exact eigenfunction Φ8(z1, z2, z3) corresponding to the eigenvalue E8 = 3. Here the
cube is divided into 23 cubes, each comprised of 6 tetrahedrons. The isolines marked 1
correspond to the values of ΔΦ8(z1, z2, z3) = ΔΦmax

8 /10, the isolines marked 2 corre-
spond to the values of ΔΦ8(z1, z2, z3) = 2ΔΦmax

8 /10,. . . , at ΔΦmax
8 ≈ 0.018.

Assertion (see also [16]). The hypercube is divided into d! equal simplices. The
vertices of each simplex are located on broken lines composed of d mutually
perpendicular edges, and the extreme vertices of all polygons are located on one
of the diagonals of the hypercube (for d = 3 see Fig. 1a).

Algorithm 3.
Input. A single d-dimensional hypercube with vertices the coordinates of

which are either 0 or 1 in the Euclidean space Rd. The chosen diagonal of the
hypercube connects the vertices with the coordinates (0, . . . , 0) and (1, . . . , 1).

Output. z
(i)
k = (z(i)k1 , . . . , z

(i)
kd ), the coordinates of the ith simplex.

Local. The coordinates of the vertices of the polygonal line are zk = (zk1, . . . ,
zkd), k = 0, . . . , d.

1. For all i = (i1, . . . , id), the permutations of the numbers (1, . . . , d):
1.1. For all k = 0, . . . , d and s = 1, . . . , d: z

(i)
k,s = {1, is ≤ k, ; 0, is > k}

1.2. If det(z(i)ks )d
ks=1 = −1 then z

(i)
kd ↔ z

(i)
kd−1.

3D HEQ for the cube. In Fig. 1b, we show the error ΔΦ8(z1, z2, z3) for the
eighth eigenfunction Φh

8 (z1, z2, z3) at fixed z3 = π/9, calculated using FEM with
third-order LIPs versus the exact eigenfunction Φ8(z1, z2, z3) corresponding to
the eigenvalue E8 = 3. In Fig. 2a, we also show the maximal error ΔΦmax

8 for
the exact eighth eigenfunction Φ8(z1, z2, z3) calculated using FEM with LIPs of
the orders p = 3, 4, 5 versus the number N of piecewise basis functions Np

l (z)
in the expansion (8). In Fig. 2b, we show the error of eigenvalues of the 3D
BVP for the HEQ at d = 3 with the boundary condition (II) using the FEM
scheme with 3D LIP of the order p = 6. As seen from Fig. 2, the errors of the
eigenfunctions and eigenvalues lie on parallel lines in the double logarithmic scale
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Fig. 2. (a) The maximal error ΔΦmax
8 = maxz1 ∈ (0, π), z2 ∈ (0, π), z3 ∈ (0, π)|

Φh
8 (z1, z2, z3) − Φ8(z1, z2, z3)| for the exact eighth eigenfunction Φ8(z1, z2, z3) calcu-

lated using FEM with LIPs of the orders p = 3, 4, 5 versus the number N of piecewise
basis functions Np

l (z) in the expansion (8). (b)The error ΔEm = Eh
m − Em calculated

using FEM with sixth-order LIPs versus the exact eigenvalue Em. Squares: the cube
divided into 6 tetrahedrons. Circles: the cube divided into 23 cubes, each comprised
of 6 tetrahedrons. Solid circles: the cube divided into 43 cubes, each comprised of 6
tetrahedrons.

Table 6. The lower part of the exact spectrum Em and the calculated spectrum Eh
m

for the 6D hypercube.

Em Eh
m

0 0.183360983479286 e−10

1 1.00023, 1.00034, 1.00034, 1.00034, 1.00034, 1.00034

2 2.04760, 2.04760, 2.04760, 2.04760, 2.04760, 2.04760, 2.04760, 2.04760,
2.04760, 2.07391, 2.08478, 2.08478, 2.08478, 2.08478, 2.08478

3 3.15060, 3.15196, 3.15196, 3.15196, 3.15196, 3.15196, 3.15780, 3.15780,
3.15780, 3.15780, 3.15780, 3.16319, 3.16319, 3.16319, 3.16319, 3.16319,
3.16319, 3.16319, 3.16319, 3.16319

which agrees with the theoretical error estimates (15) for the eigenfunctions and
eigenvalues depending on the maximal size of the finite element. For a cube with
the edge π divided into 43 cubes, each of them comprising 6 tetrahedrons, the
matrices A and B had the dimension 15625×15625. The matrices A and B were
calculated in two ways: analytically or with Gaussian quadratures from Sect. 4
using Maple 2015, 2x 8-core Xeon E5-2667 v2 3.3 GHz, 512 GB RAM, GPU Tesla
2075. For the considered task, the values of matrix elements agree with Gaussian
quadratures up to the order 10 with given accuracy. The generalized algebraic
eigenvalue problem (9) was solved during 20 min using Intel Fortran.

6D HEQ for the hypercube. We solved HEQ at d = 6 with the boundary
condition (II) using FEM scheme with 6D LIP of the order p = 3. The 6D
hypercube having the edge π was divided into n = d! = 6! = 720 simplexes
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(the size of the finite element being equal to π). On each of them N1(p) =
(p + d)!/(d!p!) = 84 third-order LIPs were used. The matrices A and B had the
dimension 4096 × 4096. The lower part of the spectrum Em is shown in Table 6.
The errors of the second, the third, and the fourth degenerate eigenvalue are
equal to 0.0003, 0.05, and 0.15, respectively. Note that applying the third-order
scheme for solving the BVPs of smaller dimension d, we obtained errors of the
same order. The calculation time was 9234.46 s using Maple 2015.

6 Conclusion

We have elaborated new calculation schemes, algorithms, and programs for
solving the multidimensional elliptic BVP using the high-accuracy FEM with
simplex elements. The elaborated symbolic-numerical algorithms and programs
implemented in Maple-Fortran environment calculate multivariate finite ele-
ments in the simplex and the fully symmetric PI Gaussian quadrature rules.
We demonstrated the efficiency of the proposed finite element schemes, algo-
rithms, and codes by benchmark calculations of BVPs for Helmholtz equation
of cube and hypercube. The developed approach is aimed at calculations of the
spectral characteristics of nuclei models and electromagnetic transitions [7,11].
This will be done in our next publications.
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Abstract. The dynamics of the rotational motion of a satellite, sub-
jected to the action of gravitational, aerodynamic and damping torques
in a circular orbit is investigated. Our approach combines methods of
symbolic study of the nonlinear algebraic system that determines equi-
librium orientations of a satellite under the action of the external torques
and numerical integration of the system of linear ordinary differential
equations describing the dynamics of the satellite. An algorithm for the
construction of a Gröbner basis was implemented for determining the
equilibria of the satellite for specified values of the aerodynamic torque,
damping coefficients, and principal central moments of inertia. Both the
conditions of the satellite’s equilibria existence and the conditions of
asymptotic stability of these equilibria were obtained. The transition
decay processes of the spatial oscillations of the satellite for various sys-
tem parameters have also been studied.

1 Introduction

The study of the satellite dynamics under the influence of gravitational and aero-
dynamic torques is an important topic for practical implementation of attitude
control systems of the artificial satellites. The gravity orientation systems are
based on the result that a satellite with unequal moments of inertia in the cen-
tral Newtonian force field in a circular orbit has stable equilibrium orientations
[1–3]. An important property of the gravity orientation systems is that these
systems can operate for a long time without fuel consumption. However, at alti-
tudes from 250 up to 500 km, the rotational motion of a satellite is subjected to
aerodynamic torque too. Therefore, it is necessary to study the joint action of
gravitational and aerodynamic torques and, in particular, to analyze the possi-
ble satellite equilibria and conditions of stability of these equilibria in a circular
orbit. The dynamics of a satellite subjected to gravitational and aerodynamic
torques was considered in many papers indicated in [2]. The problem of deter-
mining the classes of equilibrium orientations for general values of aerodynamic
c© Springer Nature Switzerland AG 2018
V. P. Gerdt et al. (Eds.): CASC 2018, LNCS 11077, pp. 214–229, 2018.
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torque was considered in [4–6]. In [7,8], some equilibrium orientations were found
in special cases, when the center of pressure is located on a satellite’s principal
central axis of inertia and on a satellite’s principal central plane of inertia. In
[9], all equilibrium orientations were found in the case of axisymmetric satellite.
In [10], all cases when the center of pressure is located in the satellite’s principal
central plane of inertia were considered using Computer Algebra methods. The
basic problems of the satellite dynamics with an aerodynamic attitude control
system have been presented in [2,6,11]. In [11], necessary and sufficient condi-
tions for the stability of the aligned equilibrium position of the satellite with the
aerodynamic orientation system using the damping moments of the gyroscopes
were obtained.

In this paper, we consider a new problem, when the satellite is subjected
to aerodynamic, gravitational, and active damping torques. The dynamics of
the gravitationally-oriented satellite under the action of the damping torque,
without taking into account the influence of the atmosphere on the motion of
the satellite, was studied in detail in [12]. The main extension here, in comparison
with [12], is the consideration of the additional influence of the atmosphere on
the dynamics of the satellite under the action of the damping torque. Adding the
action of the aerodynamic moment to the satellite leads to the appearance of new
parameters in the equations of motion, which complicates their solution, but at
the same time, it allows us to obtain new equilibrium solutions. In particular, the
appearance of an additional aerodynamic parameter in the algebraic equations
determining the stationary motions of the satellite seriously affects the runtime
and memory requirements of symbolic computations for solving these equations.

We assume that the center of pressure of aerodynamic forces is located on
one of the principal central axes of inertia of the satellite and the damping
torque depends on the projections of the angular velocity of the satellite. This
damping torque may be provided by using the angular velocity sensors. The
action of damping torques can ensure the asymptotic stability of the equilibria
of the satellite with aerodynamic attitude control system. The investigation of
satellite equilibria was performed by using the Computer Algebra Gröbner basis
methods. The regions with an equal number of equilibria were specified by using
the Meiman theorem [19] for the construction of discriminant hypersurfaces. The
conditions of equilibria stability are determined as a result of an analysis of the
linearized equations of motion using the Routh–Hurwitz criterion [20]. The types
of transition decay processes of spatial oscillations of the satellite at different
aerodynamic and damping parameters have been investigated numerically.

The question of finding regions of parameter space with certain equilibria
properties also occurred in relevance to a biology problem and was presented at
the CASC 2017 Workshop [21].

2 Equations of Motion

Consider the attitude motion of the satellite subjected to gravitational, aerody-
namic, and damping torques in a circular orbit. We assume that the satellite is
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a triaxial rigid body, and active damping torques depend on the projections of
the angular velocity of the satellite.

To write the equations of motion we introduce two right-handed Cartesian
coordinate systems with origin at the satellite’s center of mass O. The orbital
coordinate system is OXY Z, where the OZ axis is directed along the radius
vector from the Earth center of mass to the satellite center of mass; the OX axis
is in the direction of the satellite orbital motion. Then, the OY axis is directed
along the normal to the orbital plane. The satellite body coordinate system is
Oxyz, where Ox, Oy, and Oz are the principal central axes of inertia of the
satellite. The orientation of the satellite body coordinate system Oxyz with
respect to the orbital coordinate system is determined by means of the aircraft
angles of pitch (α), yaw (β), and roll (γ) (Fig. 1), and the direction cosines in
the transformation matrix between the orbital coordinate system OXY Z and
Oxyz are expressed in terms of aircraft angles using the relations [2]:

a11 = cos(x,X) = cos α cos β,

a12 = cos(y,X) = sinα sin γ − cos α sinβ cos γ,

a13 = cos(z,X) = sin α cos γ + cos α sinβ sin γ,

a21 = cos(x, Y ) = sinβ,

a22 = cos(y, Y ) = cos β cos γ, (1)
a23 = cos(z, Y ) = − cos β sin γ,

a31 = cos(x,Z) = − sin α cos β,

a32 = cos(y, Z) = cos α sin γ + sin α sinβ cos γ,

a33 = cos(z, Z) = cos α cos γ − sin α sinβ sin γ.

For small oscillations of the satellite, the angles of pitch, yaw, and roll correspond
to the rotations around the OY , OZ, and OX axes, respectively.

In the derivation of the equations of motion, we will make the following
assumptions [2]:

(1) the atmospheric effect on the satellite is reduced to the drag force applied
at the center of pressure and directed against the velocity of the satellite
center of mass relative to the air; the pressure center is located on the axis
Ox of the satellite. This assumption is fulfilled accurately enough for the
shape of the satellite close to the spherical;

(2) the atmospheric effect on the translational motion of the satellite is negligi-
ble;

(1) the atmospheric drag by the rotating Earth is neglected.

These assumptions make it possible to simplify the mathematical model of
the effect of the atmosphere on the rotational motion of the satellite and neglect
its influence on the parameters of the circular orbit.

Let the damping torque, in addition to the aerodynamic torque, act on the
satellite. Their integral vector projections on the axis Ox, Oy, and Oz are equal
to the following values: Mx = k̄1p1, My = k̄2q1, and Mz = k̄3r1. Here k̄1, k̄2, and
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k̄3 are the damping coefficients; p1, q1, and r1 are the projections of the satellite
angular velocity vector onto the axes Ox, Oy, and Oz; ω0 is the angular velocity
of the orbital motion of the satellite’s center of mass. Then the equations of
satellite attitude motion can be written in the Euler form:

Ap′
1 + (C − B)q1r1 − 3ω2

0(C − B)a32a33 + k̄1p1 = 0,

Bq′
1 + (A − C)r1p1 − 3ω2

0(A − C)a31a33 + ω2
0H1a13 + k̄2q1 = 0,

Cr′
1 + (B − A)p1q1 − 3ω2

0(B − A)a31a32 − ω2
0H1a12 + k̄3r1 = 0, (2)

where

p1 = (α′ + ω0)a21 + γ′,
q1 = (α′ + ω0)a22 + β′ sin γ, (3)
r1 = (α′ + ω0)a23 + β′ cos γ.

Moreover, here A, B, and C are the principal central moments of inertia of the
satellite. And H1 = −Qa/ω2

0 , Q is the drag force acting on the satellite, and
(a, 0, 0) are the coordinates of the satellite center of pressure in the reference
frame Oxyz. For the aerodynamically stable construction of the satellite, the
center of pressure lies behind its center of gravity and, therefore, a < 0. The
prime denotes the differentiation with respect to time t.

Over the systems (2) and (3) applying the change of variables (p, q, r) =
(p1/ω0, q1/ω0, r1/ω0) and after this introducing dimensionless parameters θA =
A/B, θC = C/B, k̃1 = k̄1/Bω0, k̃2 = k̄2/Bω0, k̃3 = k̄3/Bω0, h1 = H1/B, and
τ = ω0t, we can rewrite (2) and (3), and finally put respectively (because it is
transforming (2) and (3))

θAṗ + (θC − 1)qr − 3(θC − 1)a32a33 + k̃1p = 0,

q̇ + (θA − θC)rp − 3(θA − θC)a31a33 + h1a13 + k̃2q = 0, (4)
θC ṙ + (1 − θA)pq − 3(1 − θA)a31a32 − h1a12 + k̃3r = 0,

where

p = (α̇ + 1)a21 + γ̇,

q = (α̇ + 1)a22 + β̇ sin γ, (5)
r = (α̇ + 1)a23 + β̇ cos γ.

The dot denotes the differentiation with respect to τ .

3 Equilibrium Orientations of Satellite

Assuming the initial condition (α, β, γ) = (α0 = const, β0 = const, γ0 = const)
and also A �= B �= C (θA �= θC �= 1), we obtain from (4) and (5) the equations

mmonagan@cecm.sfu.ca



218 S. A. Gutnik and V. A. Sarychev

a22a23 − 3a32a33 + ka21 = 0,

(1 − ν)(a21a23 − 3a31a33) + h(a21a32 − a22a31) + ka22 = 0, (6)
ν(a21a22 − 3a31a32) − h(a23a31 − a21a33) + ka23 = 0,

which allow us to determine the satellite equilibria in the orbital coordinate
system. Here we consider the special case when k̃1/(θC − 1) = k̃2/(1 − θC) =
k̃3/(1 − θC) = k. This reduction in the number of parameters makes it possible
to simplify the system of equations and solve the problem. In (6), h = h1/(1−θC)
and ν = (1 − θA)/(1 − θC).

Substituting the expressions for the direction cosines from (1) in terms of the
aircraft angles into Eq. (6), we obtain three equations with three unknowns α,
β, and γ. Another way of closing Eq. (6) is to add the following three conditions
for the orthogonality of direction cosines:

a2
21 + a2

22 + a2
23 − 1 = 0,

a2
31 + a2

32 + a2
33 − 1 = 0, (7)

a21a31 + a22a32 + a23a33 = 0.

Equations (6) and (7) form a closed system of equations with respect to the
six direction cosines identifying the satellite equilibrium orientations. For this
system of equations, we formulate the following problem: for given values of
h, k, and ν, it is required to determine all the nine directional cosines, i.e., all
satellite equilibrium orientations in the orbital coordinate system. After a21, a22,
a23, a31, a32, and a33 are found, the direction cosines a11, a12, and a13 can be
determined from the conditions of orthogonality.

To find solutions of the algebraic system (6), (7) we used the algorithm
for constructing the Gröbner bases [13]. The method for constructing a Gröbner
basis is an algorithmic procedure for complete reduction of the problem involving
systems of polynomials in many variables to consideration of a polynomial in one
variable.

In our study, for Gröbner bases construction, we applied the command
Groebner[Basis] from the package Groebner implemented in the computer
algebra system Maple 15 [14]. We constructed the Gröbner basis of the system of
six second-order polynomials (6), (7) with six variables aij (i = 2, 3; j = 1, 2, 3),
with respect to the lexicographic ordering of variables by using option plex. In
the list of polynomials F:=[fi, i = 1, 2, 3, 4, 5, 6], fi are the left–hand sides of the
algebraic equations (6), (7). Thus, the Maple command used was as follows:

G:=map(factor,Groebner[Basis](F,plex(a31,a32,a33,a21,a22,a23)));

Here, calculating the Gröbner basis over the field of rational functions in h,
k, and ν we compute the generic solutions of our problem only. In our task from
the area of the satellite dynamics with aerodynamic attitude control system, the
main goal of the study is to estimate a range of system parameters for which the
satellite’s equilibria exist.

It should be taking into account that in practice, it is difficult to ensure a
constant value of the aerodynamic moment on the orbit and there are errors
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of the angular velocity sensors and the errors of the signals, which generate
damping torques, the exact bifurcation values of the coefficients are very difficult
to obtain. We are interested in estimating the size of regions in the space of
system parameters where equilibria exist. In the case of parametric dynamical
system solving, when the parameters reach non-generic solutions, the symbolic
application based on comprehensive Gröbner bases [15], discriminant varieties
[16], and comprehensive triangular decomposition [17,18] methods are used. In
our task, we did not use these methods because we did not consider the cases
of bifurcation values of the parameters, and for our problem, these methods are
rather complicated.

Here we write down the polynomial in the Gröbner basis that depends only
on one variable x = a23. This polynomial has the form

P (x) = P1(x)P2(x) = 0, (8)

where

P1(x) = x(x2 − 1),
P2(x) = p0x

4 + p1x
2 + p2 = 0,

p0 =
(
16(k2 + (1 − ν)2)(k2 + ν2)h4

− 24(k2 + ν(1 − ν))
(
k2 − 2ν(1 − ν)

)2
h2

+ 9(k2 − 2ν(1 − ν))4
)2

,

p1 = −h2
(
64(k2 + 4ν2)(k2 + (1 − ν)2)2h8

+ 16
(
(2 + 8ν)k8 + (72ν3 − 50ν2 + 8ν + 7)k6

− 4(1 − ν)(48ν4 − 58ν3 + 20ν2 − 8ν + 1)k4

+ 4ν(1 − ν)2(32ν4 − 104ν3 + 100ν2 − 25ν + 6)k2

+ 192ν3((1 − ν)5
)
h6 + 12(k2 − 2ν(1 − ν))2

(
(40ν − 21)k6

+ 4(32ν3 − 28ν2 + 5ν + 6)k4

+ 4(1 − ν)(56ν4 − 78ν3 + 24ν2 + 13ν + 3)k2

+ 288ν2(1 − ν)4
)
h4

− 36(k2 − 2ν(1 − ν)4
(
2(8ν − 5)k4 + (16ν3 − 24ν + 17)

+ 48ν(1 − ν)3
)
h2 + 27

(
k2 − 2ν(1 − ν)

)6((8ν − 5)k2

+ 12(1 − ν)2)
)
,

p2 = p21p22,

p21 = −h4k2(k2 + 4ν2 − 6ν)2

p22 = 4(k2 + 4ν2)h6 − 4(4k4 + (14ν2 − 2ν + 1)k2

+ 4ν2(1 + 4ν − 5ν2)h4

+ 3
(
k2 − 2ν(1 − ν)

)2(7k2 + 8ν + 4ν2)h2 − 9
(
k2 − 2ν(1 − ν)

)4
.

The left-hand side of (8) becomes zero under the conditions P1(x) = 0, P2(x) = 0.
Whence follows that in order to determine the equilibria it is required to consider
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separately the three cases: the first a2
23 = 1, the second a23 = 0, and the third

P2(a23) = 0. It should also be taken into account that equilibrium solutions are
determined only by such real roots (8) whose absolute values should be less than
or equal to 1.

In the first case, when a23 = ±1, (a21 = a22 = 0), system (6), (7) takes the
form

− 3νa31a32 − ha31a23 + ka23 = 0,

a2
31 + a2

32 = 1,

a2
23 = 1, (9)

a33 = a21 = a22 = 0.

The first two equations of system (9) can be written in a simpler form

P3(a32) = 9ν2a4
32 ± 6νha3

32 + (h2 − 9ν2)a2
32 ∓ 6νha32 + k2 − h2 = 0, (10)

a31 = ± k

(3νa32 ± h)
.

Having solved system (10), one can determine all six direction cosines of system
(9). The number of real roots of equations (10) does not exceed 8. It is possible
to show that each real root a32 of equations (10) corresponds to one equilibrium
solution of the original system (6), (7).

In studying the satellite equilibrium orientations in the first case, we deter-
mine the conditions for the existence of real roots of equations (10). To identify
these conditions, we use the Meiman theorem [19], which yields that the decom-
position of the space of parameters into domains with equal number of real roots
is determined by the discriminant hypersurface.

In our case, the discriminant hypersurface is given by the discriminant of
polynomial P3(a32). This hypersurface contains a component of codimension 1,
which is the boundary of domains with equal number of real roots. The set of
singular points of the discriminant hypersurface in the space of parameters k, h,
and ν is given by the following system of algebraic equations:

P3(y) = 0, P ′
3(y) = 0. (11)

Here y = a32, and the prime denotes the differentiation with respect to y.
We eliminate the variable y from system (11) by calculating the determi-

nant of the resultant matrix of Eq. (11) and obtain an algebraic equation of the
discriminant hypersurface as

P4(k, h, ν) = h6−(k2+27ν2)h4+9ν2(20k2+27ν2)h2−9ν2(4k2−9ν2)2 = 0. (12)

Now we should check the change in the number of equilibria when the surface
(12) is intersected. This can be done numerically by determining the number of
equilibria at a point of each domain P4(k, h, ν) = 0 in the space of parameters
k, h, and ν.
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Figure 2 presents an example of the properties and form of the discriminant
hypersurface P4(k, h, ν) = 0, which are two-dimensional cross sections of the
surface in the plane (k, h) at the fixed value of parameter ν = 0.5. Figure 2
shows the distributions of domains with equal number of real roots of Eq. (10)
and indicates the domains where four and two real solutions exist as well as the
domains where no real solutions exist (marked by 0).

In the second case, when a23 = 0, system (6), (7) takes the form

ka21 − 3a32a33 = 0,

ka22 − 3(1 − ν)a31a33 + h(a21a32 − a22a31) = 0,
ν(a21a22 − 3a31a32) + ha21a33 = 0, (13)

a2
21 + a2

22 = 1, a21a31 + a22a32 = 0,

a2
31 + a2

32 + a2
33 − 1 = 0.

From (13) we can obtain the following solutions:

a21 = a23 = a32 = 0, a2
22 = 1,

P5(a33) = 9(1 − ν)2a4
33 ± 6(1 − ν)ha3

33

+(h2 − 9(1 − ν)2)a2
33 ∓ 6(1 − ν)ha33 + k2 − h2 = 0, (14)

a31 = ± k

3(1 − ν)a33 ± h
.

Note that if in the expressions for the coefficients P5 from (14) the term (1 − ν)
is replaced by ν, we obtain the form of the coefficients of the polynomial P3 from
(10). Therefore, the conditions for the existence of real roots of Eq. (14) will be
determined by the discriminant (12), in which the term ν is replaced by (1− ν).
For example, for the value ν = 0.5, the conditions for the existence of real roots
of Eqs. (10) and (14) will be the same (see Fig. 2).

Now let us consider the third case for which the satellite equilibria are deter-
mined by the real roots of the biquadratic equation P2(a23) = 0 from (8). The
number of real roots of the biquadratic equation P2(a23) = 0 is even and not
greater than 4. For each solution, one can find from the second polynomial from
the constructed Gröbner basis two values of a22 and, then, their respective val-
ues a21. For each set of values a21, a22, and a23, one can unambiguously define
from original system (6), (7) the respective values of the direction cosines a31,
a32, and a33. Thus, each real root of the biquadratic Eq. (6) is matched with two
sets of values aij (two equilibrium orientations). Since the number of real roots
of biquadratic Eq. (6) does not exceed 4, the satellite at the third case can have
no more than 8 equilibrium orientations.

Real solutions of the biquadratic equation from (8) exist in the case when
the discriminant

D(k, h, ν) = p21 − 4p0p2 (15)

is non-negative. Using symbolic computations, it is possible to factorize the
discriminant (15) in rather simple form

D(k, h, ν) = h4D1(k, h, ν)
(
D2(k, h, ν)

)2
, (16)
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where

D1(k, h, ν) = 4h4 + 4
(
k4 − (1 + 4ν(1 − ν))k2 − 6ν(1 − ν)]h2

− (4k2 − 9)[k2 − 2ν(1 − ν)
)2

,

D2(k, h, ν) = 27
(
k2 − 4(1 − ν)2

)(
k2 − 2ν(1 − ν)

)5

− 32
(
(k2 + (1 − ν)2

)2(k2 + 4ν2)h6

+ 24
(
4k8 + (22ν2 − 12ν − 1)k6

+ 2(1 − ν)2(1 + 4ν + ν2)k4

− 4ν(1 − ν)2(6ν − 21ν2 + 19ν3 − 1)k2

+ 48ν3(1 − ν)5
)
h4

− 18
(
k2 − 2ν(1 − ν)

)3(5k4 + 2(ν2 + 7ν − 5)k2

− 24ν(1 − ν)3
)
h2.

For the existence of real roots of biquadratic equation from (8), it is nec-
essary to satisfy the inequality D(k, h, ν) ≥ 0 (D1(k, h, ν) ≥ 0). In case of
the D1(k, h, ν) > 0 (D2(k, h, ν) �= 0) and 0 ≤ a2

23 ≤ 1 inequalities fulfill-
ment, biquadratic Eq. (8) has four real roots a23. The boundary of the regions
of the necessary conditions for the existence of these solutions is the curve
D1(k, h, ν) = 0.

The regions of the necessary conditions for the existence of the real solutions
of biquadratic Eq. (8) on the plane (k, h) are presented in Figs. 3 and 4 for ν = 0.2
and ν = 0.5. For the values ν and (1 − ν) these regions coincide.

Thus, from Eq. (8), we can obtain all possible values of the direction cosine
a23 and corresponding values a21, a22, a31, a32, and a33 satisfying the initial
system (6), (7). Once the set of six values a21, a22, a23, a31, a32, and a33 is
found, the remaining three values a11, a12, and a13 can be uniquely determined
from the conditions of the orthogonality of the directional cosines. So we can
determine all the equilibrium orientations of the satellite under the influence of
aerodynamic, gravitational, and damping torques.

4 Necessary and Sufficient Conditions of Asymptotic
Stability Of the Equilibrium Orientations of Satellite

In order to study the necessary and sufficient conditions of asymptotic stability
of the equilibrium orientations of System (6) and (7), let us linearize the system
of differential Eqs. (4) and (5) in the vicinity of the specific equilibrium solution,
from the case 2 (a2

22 = 1, a21 = a23 = 0):

α = α0, β0 = γ0 = 0. (17)
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Fig. 1. Orientation of body–fixed axes with respect to the orbital coordinate system

Fig. 2. The regions with the fixed number of equilibria for ν = 0.5 for the cases 1, 2
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Fig. 3. The regions where the necessary conditions for the existence of equilibria are
satisfied for ν = 0.2 in case 3

Fig. 4. The regions where the necessary conditions for the existence of equilibria are
satisfied for ν = 0.5 in case 3
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Fig. 5. The transitional process of damping oscillations for k = 1.0; h = 5.0

Here α0 = arccos(a33), where a33 is a real root of algebraic Eq. (14). We
represent α, β, and γ in the form α = α0 + ᾱ, β = β0 + β̄, γ = γ0 + γ̄, where ᾱ, β̄
and γ̄ are small deviations from the equilibrium orientation (17) of the satellite.
The linearized system of equations of motion takes the following form:

¨̄α + (1 − θC)k ˙̄α +
(
(1 − θC)h cos α0 + 3(θA − θC) cos 2α0

)
ᾱ = 0,

θC
¨̄β + (1 − θC)k ˙̄β − (θA + θC − 1) ˙̄γ +

(
(1 − θC)h cos α0

+ (1 − θA)(1 + 3sin2α0)
)
β̄ +

(
1.5(1 − θA) sin 2α0

− (1 − θC)((1 − θA)k + h sin α0)
)
γ̄ = 0, (18)

θA ¨̄γ − (1 − θC)k ˙̄γ + (θA + θC − 1) ˙̄β + (1 − θC)(1 + 3cos2α0)γ̄
+ (1 − θC)(1.5 sin 2α0 − k)β̄ = 0.
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Fig. 6. The transitional process of damping oscillations for k = 1.0; h = 25.0

The characteristic equation of system (18)

(λ2 + A01λ + A02)(A0λ
4 + A1λ

3 + A2λ
2 + A3λ + A4) = 0 (19)

decomposes into quadratic and 4th degree equations. Here the following nota-
tions are introduced:

A01 = (1 − θC)k, A02 = (1 − θC)h cos α0 + 3(θA − θC) cos 2α0,

A0 = θAθC , A1 = (1 − θC)(θA − θC)k,

A2 = (θA + θC − 1)2 − (1 − θC)2k2 + (1 − θC)(θAh + θC(1 + 3cos2α0))
+ θA(1 − θA(1 + 3sin2α0),

A3 = k(1 − θC)
(
(1 − θC)(1 + 3cos2α0 − hcosα0) − (1 − θA)(1 + 3sin2α0)

)
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+ (θA + θC − 1)
(
(1 − θC)(hsinα0 + 1.5sin2α0) − 1.5(1 − θA)sin2α0],

A4 = (1 − θC)(1 + 3cos2α0)
(
(1 − θC)hcosα0 + (1 − θA)(1 + 3sin2α0)

)

+ (θA + θC − 1)
(
(1 − θC)(k + hsinα0 − 1.5(1 − θA)sin2α0

)
.

The necessary and sufficient conditions for asymptotic stability (Routh–
Hurwitz criterion) of the equilibrium solution (17) take the following form:

(1 − θC)k > 0, (1 − θC)h cos α0 + 3(θA − θC) cos 2α0 > 0,

Δ1 = A1 > 0,

Δ2 = A1A2 − A0A3 > 0, (20)
Δ3 = A1A2A3 − A0A

2
3 − A2

1A4 > 0,

Δ4 = Δ3A4 > 0.

The detailed analysis of the fulfillment of inequalities (20), under which necessary
and sufficient conditions for stability are satisfied was performed numerically for
fixed values of the parameters θA, θC , k, and h. One should take into account
also the following triangle inequalities for the real bodies, which parameters (θA
and θC) should fulfill: θA + θC > 1, θC + 1 > θA, θA + 1 > θC . The triangle
conditions isolate the infinite half-band in the (θA, θC) plane.

The numerical integration of system (4) and (5) was carried out for the fixed
values of the parameters θA, θC , k, and h where the conditions of asymptotic
stability (20) and the triangle inequalities hold. The different types of transition
decay processes of spatial oscillations of the satellite at different inertial, aero-
dynamic, and damping parameters are presented in Figs. 5 and 6. The initial
values of variables in the calculations were taken to be equal to 0.001.

Figure 5 shows that for rather small values of the damping coefficient and
for small values of the aerodynamic torque (k = 1, h = 5; θA = 0.7, θC = 0.4),
the system reaches the equilibrium solution (18) for α angle, when the τ value
exceeds 15, and for β and γ angles, when the τ values are equal to about 10.
Here equilibrium value α0 = arccos(a33) = −0.155 and a33 = 0.988 is the real
root of algebraic Eq. (14).

When the value of the aerodynamic torque h increases the satellite oscillation
frequency increases in angles α and β and the time of the transient process for
h = 25, k = 1.0, (θA = 0.7, θC = 0.4) (Fig. 6) is close to 15 for α angle and less
than 10 for β and γ angles. In Fig. 6, α0 = −0.0377. The value of the α angle
approaches zero when the aerodynamic moment significantly increases.

In the case of the satellite with an aerogyroscopic stabilization system, when
studying the dynamics of this system in [11] it was also shown that the satel-
lite oscillation frequency increased in angles α and β when the magnitude of
aerodynamic moment increased.

When the value of the damping coefficient increases, the time of the transient
process of the system to the equilibrium solution decreases, for example when
k = 1.5, h = 25 (θA = 0.7, θC = 0.4), the time of the transient process is less
than 10 for all three angles. For k = 2.0, h = 25 (θA = 0.7, θC = 0.4), the
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transition time becomes less than 7 also for all three angles, which corresponds
to one satellite turnover in the orbit.

5 Conclusion

In this paper, we present the study of the dynamics of the rotational motion
of the satellite subject to the gravitational, aerodynamic, and active damping
torques, which depend on the projections of satellite angular velocity.

The computer algebra method (based on the construction of Gröbner basis)
of determining all equilibrium orientations of the satellite in the orbital coordi-
nate system with given values of aerodynamic torque, damping coefficients and
principal central moments of inertia was presented. The conditions for existence
of these equilibria were obtained. We have made a detailed analysis of the evo-
lution of domains of existence of equilibrium orientations in the plane of system
parameters h and k for the fixed values of parameter ν.

For the special equilibrium orientation, when two axes of the satellite-center-
ed coordinate system coincide with two axes of the orbital coordinate system,
the necessary and sufficient conditions for asymptotic stability are obtained.

The numerical study of the character of transient processes of system, enter-
ing the special equilibrium orientation, has been carried out for various values of
aerodynamic and damping parameters. It has been shown that there is a wide
range of values of aerodynamic and damping parameters from which, choosing
the required values of parameters, one can provide the asymptotic stability of the
equilibrium orientation. The obtained results can be used to design aerodynamic
attitude control systems for the artificial Earth satellites.

Acknowledgments. The authors thank the reviewers for very useful remarks and
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Abstract. We explain how to compute all the solutions of a nonlinear
integer problem using the algebraic test-sets associated to a suitable
linear subproblem. These test-sets are obtained using Gröbner bases. The
main advantage of this method, compared to other available alternatives,
is its exactness within a quite good efficiency.

1 Introduction

In many real-life combinatorial optimization problems it is of great interest for
the decision-maker to have not only one solution, but the set of all optimal
solutions (see [15] or [11], for example). The information provided by this set can
give some unexpected insights about the features of the solutions, and sometimes
stands as a first step for multi-objective optimization as well.

On the other hand, sometimes these problems require nonlinear constraints
to be modeled properly. In [14] a method for problems of the form

min cxt

s.t. Axt ≤ bt

x ∈ Ω
x ∈ N

n

(1)

where A ∈ Z
m×n, c ∈ Z

n, b ∈ Z
m (operator t stands for transposition) and

the region Ω is finite and defined by linear and nonlinear constraints, was pro-
posed. This method makes use of the so called test-sets associated to the linear
subproblem

min cxt

s.t. Axt ≤ bt

x ∈ N
n

(2)
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Definition 1. A set T ⊂ Z
n is a test-set associated to problem 2 if T ⊂ ker(A),

and for any non optimal x feasible for 2 there exists a t ∈ T such that x − t is
feasible and c(x − t) < c(x).

As a consequence of this definition, starting from an optimal point x̂ of
problem 2 you can recover the set of all the feasible points, adding elements of
the test-set until you eventually complete all the feasible region. In this way, you
can obtain the optimal points of problem 1 walking back from the linear optimal
point until you reach the region Ω. Technical details can be found in [14]. The
feasible region will be supposed finite, although this is not strictly necessary.

There are several ways of computing test-sets (as a matter of fact, they can be
computed depending only on the cost and the matrix of constraints, not taking
into account the right hand side, for example). One of the most efficient and
manageable ways is using Gröbner bases (see for example [7]) with the software
4ti2 (see [9]). This approach is based in the classical paper [4], that shows how
to solve a Linear Integer problem obtaining Gröbner bases of a suitable binomial
ideal with respect to an ordering compatible with the cost function.

In [3,10] the method of [14] is applied to real-life size problems with very
competitive results. In this work, we (1) explain how to modify the walk-back
method to obtain all the optimal points, and (2) compare its performance with
the natural generalization of the algorithm presented in [15] and with the com-
mercial software BARON (see [1]).

Remark 1. The ideals corresponding to the method that we present in this work
are not zero-dimensional, so some efficient strategies as Triangular Decomposi-
tion can not be applied for the Gröbner bases computations. In principle, the
method proposed in [2] would be an alternative to treat some Nonlinear Integer
Optimization problems with zero-dimensional ideals, but as soon as some con-
straints can not be expressed in terms of polynomials or the rank of values of
the variables is big the method is useless.

2 Finding All the Optimal Points with a General Integer
Cut

In [15] a method is introduced to show how to compute all the optimal points in
Integer Linear Problems. Once an optimal point is obtained, the idea is to add
some conditions to make it unfeasible and solve again. More precisely, if you are
solving the problem 1 and have obtained an optimal solution (x0

1, . . . , x
0
n) you

can add the constraint
n∑

i=1

|xi − x0
i | ≥ 1

to assure that (x0
1, . . . , x

0
n) is unfeasible for this new problem. As you obtain new

optimal solutions you have to add a similar constraint for each solution. This
formulation can be linearized, as it is explained in [15, Prop. 1]. This method
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can be used for Nonlinear Integer problems simply considering problems of the
form

min cxt

s.t. Axt ≤ bt∑n
i=1 |xi − xj

i | ≥ 1, j = 1, . . . , N
x ∈ Ω
x ∈ N

n

with N constraints to try to obtain the (N + 1)-th optimal point. One of the
aims of this paper is to compare this natural approach to an alternative algebraic
method.

3 Finding All the Optimal Points with Test-Sets

Our algorithm is based on the algebraic algorithm of [14] that provides one
solution for a given nonlinear integer problem of the form

min cxt

s.t. Axt ≤ bt

x ∈ Ω
x ∈ N

n

(P )

where A ∈ Z
m×n, c ∈ Z

n, and b ∈ Z
m. Let us describe the steps of our method:

– We start, as in the algorithm proposed in [14], in the optimal point for a
suitable linear subproblem

min cxt

s.t. Axt ≤ bt

x ∈ N
n

(PL)

Remark 2. The selection of the subproblem has to do first with the computability
of the test-set, that can be a bottleneck as it is a computation of a Gröbner basis
of a certain ideal (see [7]). Moreover, although the test-set of the whole linear
part of problem 1 is available, sometimes it is better to compute the test-set
associated to a submatrix of A that gives us a more manageable number of
directions to be considered at any point during the walk-back. The constraints
that are not included in the submatrix are simply added to the description of Ω.

– Then we systematically add the elements of the corresponding test-set, thus
worsening the cost function trying to obtain in return feasible points for
problem 1, until we get into Ω.

– The difference to the original method (that was designed to find only one
optimal point) is that now we have to manage the searching of new possible
optimal points inside Ω, once we have reached a candidate. While in the
algorithm of [14] you discard new points with the same optimal value, we
instead stock them in a provisional list. This list will be the set of optimal
points as long as we find a new better value inside the region Ω.
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– If we eventually find an improvement in the cost we delete the provisional
list. Otherwise, we already have the set of optimal points.

The pseudocode of our algorithm is the following one:

INPUT: c, A, b; Ω; optimal point β of 2; T associated test-set of problem 2.

Opt := ∅;
Leaves := {β + t|∀t ∈ T} ∩ N

n

costOpt = ∞
IF β ∈ Ω
THEN Opt := {β};

costOpt := cβt

WHILE (Leaves �= ∅) DO
FOR h ∈ Leaves DO

IF c(h) < costOpt
Leaves = (Leaves \ {h}) ∪ ({h + t|∀t ∈ T} ∩ N

n)
IF h ∈ Ω
THEN Opt = {h};

costOpt = cht;
Leaves = (Leaves \ {h}) ∪ ({h + t|∀t ∈ T} ∩ N

n)

� the list of old candidates is deleted
� and updated with a new candidate

ELSE IF c(h) > costOpt
THEN Leaves = Leaves \ {h}
� these branches are discarded

ELSE IF c(h) = costOpt
THEN Leaves = (Leave \ {h}) ∪ ({h + t|∀t ∈ T} ∩ N

n)
IF h ∈ Ω
THEN Opt = Opt ∪ {h};
� a new candidate to be an optimal point has been obtained

END WHILE

OUTPUT: Opt the set of all optimal points of problem 1 with cost costOpt

Remark 3. It is straightforward to modify this algorithm to obtain the K best
optimal points for a given K, as in [11].

4 Computational Experiments

We have run all the examples to test our algorithm coded in Python in a com-
puter with an Intel Core i5, 3.5 Ghz, 8 Gb of RAM, under Ubuntu. The examples
with BARON [1] and COUENNE [6] have been sent to neos-server.org.

We have studied two families of examples: the integer portfolio problem and
the problem of reliability in series-parallel systems.
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4.1 Integer Portfolio Problem

In the integer portfolio problem (see [3]) we have to solve problems of the form

max
n∑

i=1

cixi

s.t. xCxt ≤ R0
n∑

i=1

bixi ≤ B

x ∈ N
n

(3)

where bi are the prices today of n alternative investments or assets; ci a forecast
for their future prices; the matrix C has to do with the covariance matrix of the
historical returns of the assets and it is a way of measuring the risk of a portfolio;
R0 stands for the maximum admissible risk; B is the available budget.

This so called mean-variance portfolio model was introduced by Markowitz
with continuous variables (see [12] for the model and [5] or [16] for the mixed-
integer case), but it is interesting to consider the case of integer variables: first
to take into account the finite divisibility of the assets and second to consider
some logical conditions that appear in these problems.

If you consider tailored examples for which two or more variables have the
same price and risk you obtain many different optima and can compare our
method to the generalization of [15]. As a general outcome we have obtained
that as the number of optimal points increases our method overcomes by far
the general cut method (coded in GAMS for COUENNE). Thereby, you can
consider for example the simple case

max 2x1 + x2 + x3 + · · · + xn−1 + xn

s.t. x1 + x2 + x3 + · · · + xn−1 + xn ≤ B

(
x1 · · · xn

)
C

⎛

⎜⎝
x1

...
xn

⎞

⎟⎠ ≤ R0

x ∈ N
n

(4)

with C defined by cii = 0.05, cij = −0.01 if i �= j for n = 10, 15, 20, 50, 100,
B = 10 and a not very tight R0 to include many points. In this family of
examples you can obtain thousands of optimal points. In average our method is
more than a hundred times faster for big numbers of optimal points.

Remark 4. Comparing with the commercial software BARON, that has the
option of computing the K best optimal solutions, we obtain better running
times only in 15% of the cases. Nevertheless, our method obtains exactly the
complete set of optimal points in all cases. BARON, in contrast to our method,
fails in 11% of the cases: in 5% of the cases it does not obtain the optimal cost
and in 6% does not find the complete set, due to rounding problems.
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4.2 Reliability Problems

The redundancy allocation problem can be formulated as the minimization of the
design cost of a series-parallel system with multiple component choices, while
ensuring a given system reliability level. The obtained model is a nonlinear inte-
ger programming problem with a nonlinear, nonseparable constraint (see [8,13]
or [10]). It has the form

min
n∑

i=0

k∑
j=1

cijxij

s.a. R(x) ≥ R0
k∑

j=1

xij ≥ 1, ∀i = 1, . . . , n

0 ≤ xij ≤ uij , ∀i = 1, . . . , n, j = 1, . . . , k
xij ∈ Z

+

(5)

with R(x) =
n∏

i=1

(
1 −

k∏
j=1

(1 − rij)xij

)
. In this problem n is the number of sub-

systems (in series); ki the number of different types of available components (in
parallel) for the i- th subsystem, 1 ≤ i ≤ n; rij the reliability of the j-th com-
ponent for the i-th subsystem, 1 ≤ i ≤ n, 1 ≤ j ≤ ki; cij , the cost of the j-th
component for the i-th subsystem, 1 ≤ i ≤ n, 1 ≤ j ≤ ki; lij , uij , lower/upper
bounds of number of j components for the i-th subsystem, 1 ≤ i ≤ n, 1 ≤ j ≤ ki;
R0, an admissible level of reliability of the whole system; xij , number of j com-
ponents used in the i-th subsystem, 1 ≤ i ≤ n, 1 ≤ j ≤ ki.

We have studied about 100 examples with 2, 3 and 4 subsystems and with
2 or 3 components in each subsystem (the costs and reliabilities generated ran-
domly, rij ∈ [0.90, 0.99] and R0 = 0.90). The summary is in Tables 1, 2 and 3
and contains only the information about the examples with multiple number of
solutions.

Table 1. Reliability examples n = 3, k = 2, 3.

Average CPU Time % Complete set of optimal solutions found

Test-set 0.2 100 %

BARON K-best 0.2 100 %

General cut 0.54 100 %

Table 2. Reliability examples n = 4, k = 2.

Average CPU Time % Complete set of optimal solution found

Test-set 0.46 100 %

BARON K-best 0.21 72.72 %

General cut 0.98 100 %
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Table 3. Reliability examples n = 4, k = 3.

Average CPU Time % Complete set of optimal solution found

Test-set 1.1 100 %

BARON K-best 0.19 61.54 %

General cut 1.29 100 %

We can observe that:

– The test-set method and the general cut method are exact. BARON, on the
contrary, does not give the complete set of optimal points or even one (in
fact, usually provides only one although you ask for the best 3 or 4 best) in
about 30 % of the cases.

– BARON is better in CPU time than the test-set method, and this is better
than the general cut method, and much better as the number of optimal
points increases substantially. If, for example, you treat an example with a
hundred optimal points you have to solve 99 problems with 1, 2, . . ., 99 new
constraints, respectively.

5 Conclusions

We have presented an exact method to obtain the set of all optimal points for a
given Nonlinear Integer problem as problem 1. A convenient linear subproblem is
selected and then, walking back from an optimal point of this linear subproblem
with the help of a test-set, the feasible region of the original problem is reached
in all different ways, updating a list of optimal points. In this work we have
studied two families of examples:

– Portfolio integer problems that can produce a huge number of optimal points
and for which our algorithm overcomes a general cut approach as the one
proposed in [15].

– Reliability problems, in which we point out problems of lack of exactness in
the commercial software BARON compared with our approach.
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Abstract. We consider systems of strict multivariate polynomial
inequalities over the reals. All polynomial coefficients are parameters
ranging over the reals, where for each coefficient we prescribe its sign.
We are interested in the existence of positive real solutions of our system
for all choices of coefficients subject to our sign conditions. We give a deci-
sion procedure for the existence of such solutions. In the positive case our
procedure yields a parametric positive solution as a rational function in
the coefficients. Our framework allows to reformulate heuristic subtrop-
ical approaches for non-parametric systems of polynomial inequalities
that have been recently used in qualitative biological network analysis
and, independently, in satisfiability modulo theory solving. We apply our
results to characterize the incompleteness of those methods.

1 Introduction

We investigate the problem of finding a parametric positive solution of a system
of signed parametric polynomial inequalities, if exists. We illustrate the problem
by means of two toy examples:

f(x) = c2x
2 − c1x + c0, g(x) = −c2x

2 + c1x − c0,

where c2, c1, c0 are parameters. An expression z(c) is called a parametric positive
solution of f(x) > 0 if for all c > 0 we have z(c) > 0 and f(z(c)) > 0. One
easily verifies that z(c) = c1

c2
is a parametric positive solution of f(x). However,

g(x) > 0 does not have any parametric positive solution since g(x) > 0 has no
positive solution when, e.g., c2 = c1 = c0 = 1. Of course, we are interested in
tackling much larger cases with respect to numbers of variables, monomials, and
polynomials.

The problem is important as systems of polynomial inequalities often arise
in science and engineering applications, including, e.g., the qualitative analysis
of biological or chemical networks [7,20,21,40] or Satisfiability Modulo Theories
(SMT) solving [1,22,32]. In both these areas, one is indeed often interested in
c© The Author(s) 2018
V. P. Gerdt et al. (Eds.): CASC 2018, LNCS 11077, pp. 238–253, 2018.
https://doi.org/10.1007/978-3-319-99639-4_17
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positive solutions. For instance, unknowns in the biological and chemical context
of [7,20,21,40] are positive concentrations of species or reaction rates, where
the direction of the reaction is known. In SMT solving, positivity is often not
required but, in the satisfiable case, benchmarks typically have also positive
solutions; comprehensive statistical data for several thousand benchmarks can
be found in [22]. In many areas systems have parameters and one desires to have
parametric solutions. Hence, an efficient and reliable tool for finding parametric
positive solutions can aid scientists and engineers in developing and investigating
their mathematical models.

The problem of finding parametric positive solutions is essentially that of
quantifier elimination over the first order theory of real closed fields. In 1930,
Tarski [38] showed that real quantifier elimination can be carried out algorith-
mically. Since then, there has been intensive research, producing profound the-
ories with dramatically improved asymptotic complexity, e.g., [5,10,14,24,33].
Practical complexity was improved as well, often in combination with highly
refined implementations, e.g., [2,8,11,13,17,23,25–28,30,35,36,41]. Today sev-
eral implementations of real quantifier elimination are available in well-supported
computer algebra software such as Maple [11,43], Mathematica [42, later editions
online], Qepcad B [9], or Reduce [18,28]. However, existing general quantifier
elimination software is still too inefficient for finding parametric positive solu-
tions with relevant problem sizes in our above-mentioned fields of applications.

The main contribution of this paper is to provide simple and practically effi-
cient algorithmic criteria for deciding whether or not a given signed parametric
system has a parametric positive solution. To be precise, we reduce the prob-
lem to SMT solving over quantifier-free linear real arithmetic (QF LRA). In case
of existence we provide an explicit formula (rational function) for a parametric
positive solution. The main challenge was eliminating many universal quantifiers
in the problem statement. We tackled that challenge by, firstly, carefully approx-
imating/bounding polynomials by suitable multiple of monomials and, secondly,
tropicalizing, i.e., linearizing monomials by taking logarithms in the style of [39].
However, unlike standard tropicalization approaches, we determine sufficiently
large finite bases for our logarithms, in order to get an explicit formula for para-
metric positive solutions.

Our main result also shines a new light on recent heuristic subtropical meth-
ods [22,37]: We provide a precise characterization of their incompleteness in
terms of the existence of parametric positive solutions for the originally non-
parametric input problems considered there. Furthermore our approach is appli-
cable to generalized polynomials with real exponents. Such polynomials have
been studied for related but different questions, also in the context of chemical
reaction networks, in [31].

The paper is structured as follows. In Sect. 2, we motivate and present a
compact and convenient notation for a system of multivariate polynomials, which
will be used throughout the paper. In Sect. 3, we precisely define the key notions
of signed parametric systems and parametric positive solutions. Then we present
and prove the main result of this paper, which shows how to check the existence
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of a parametric positive solution and, in the positive case, how to find one. In
Sect. 4, we apply our framework and our result to re-analyze and improve the
above-mentioned subtropical methods [22,37].

2 Notation

The principal mathematical object studied in this paper are systems of multi-
variate polynomials over the real numbers. In order to minimize cumbersome
indices, we are going to introduce some compact notations. Let us start with a
motivation by means of a simple example. We are going to use hat accents, like
f̂ , for naming polynomials and systems with concrete coefficients in contrast to
parametric ones, which we will introduce and discuss in the next section.

Example 1. Consider the following system of three polynomials in two variables:

f̂1 = −x5
1 + 4x2

1x2 − 2x2
1 + x2

2

f̂2 = 6x5
1 + x2

1x2 + 7x2
1 − 3x3

2

f̂3 = 4x5
1 + x2

1x2 − 2x2
1 − 5x3

2.

We rewrite those polynomials by aligning their signs, coefficients, and monomial
support:

f̂1 = −1 · 1 · x5
1x

0
2 + 1 · 4 · x2

1x
1
2 + −1 · 2 · x3

1x
0
2 + 0 · 1 · x2

1x
0
2 + 1 · 1 · x0

1x
2
2

f̂2 = 1 · 6 · x5
1x

0
2 + 1 · 1 · x2

1x
1
2 + 1 · 7 · x3

1x
0
2 + −1 · 3 · x2

1x
0
2 + 0 · 1 · x0

1x
2
2

f̂3 = 1 · 4 · x5
1x

0
2 + 1 · 1 · x2

1x
1
2 + −1 · 2 · x3

1x
0
2 + −1 · 5 · x2

1x
0
2 + 0 · 1 · x0

1x
2
2 ,

where signs are represented by −1, 0, and 1. Note that we are writing 0 coeffi-
cients as 0 ·1 for notational uniformity. Rewriting this in matrix-vector notation,
we have

⎡
⎣

f̂1
f̂2
f̂3

⎤
⎦ =

⎛
⎝

⎡
⎣

−1 1 −1 0 1
1 1 1 −1 0
1 1 −1 −1 0

⎤
⎦ ◦

⎡
⎣

1 4 2 1 1
6 1 7 3 1
4 1 2 5 1

⎤
⎦

⎞
⎠

⎡
⎢⎢⎢⎢⎣

x5
1x

0
2

x2
1x2

x2
1x

0
2

x0
1x

3
2

x0
1x

2
2

⎤
⎥⎥⎥⎥⎦

,

where ◦ is the component-wise Hadamard product. Pushing this even further,
we finally obtain

⎡
⎣

f̂1
f̂2
f̂3

⎤
⎦ =

⎛
⎝

⎡
⎣

−1 1 −1 0 1
1 1 1 −1 0
1 1 −1 −1 0

⎤
⎦ ◦

⎡
⎣

1 4 2 1 1
6 1 7 3 1
4 1 2 5 1

⎤
⎦

⎞
⎠

[
x1

x2

]
⎡
⎢⎣
5 0
2 1
2 0
0 3
0 2

⎤
⎥⎦
.

This concludes our example.
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In general, a system f̂ ∈ R[x1, . . . , xd]u of multivariate polynomials over the
reals will be written compactly as

f̂ = (s ◦ ĉ)xe,

where

f̂ =

⎡
⎢⎣

f̂1
...

f̂u

⎤
⎥⎦, s =

⎡
⎢⎣

s11 · · · s1v

...
...

su1 · · · suv

⎤
⎥⎦, ĉ =

⎡
⎢⎣

ĉ11 · · · ĉ1v

...
...

ĉu1 · · · ĉuv

⎤
⎥⎦,

x =

⎡
⎢⎣

x1

...
xd

⎤
⎥⎦, e =

⎡
⎢⎣

e1
...
ev

⎤
⎥⎦ =

⎡
⎢⎣

e11 · · · e1d

...
...

ev1 · · · evd

⎤
⎥⎦.

We call s ∈ {−1, 0, 1}u×v the sign matrix, ĉ ∈ R
u×v
+ the coefficient matrix, and

e ∈ N
v×d the exponent matrix of f̂ . The rows of the exponent matrix are named

e1,. . . , ev.

3 Main Result

Definition 2 (Signed Parametric Systems). A signed parametric system is
given by

f = (s ◦ c)xe,

where the sign matrix s ∈ {−1, 0, 1}u×v and the exponent matrix e ∈ N
v×d are

specified but the coefficient matrix c is unspecified in the sense that it is left
parametric. Formally, c is a u × v-matrix of pairwise different indeterminates.

When names of parameters and indeterminates are not important, signed
parametric systems are uniquely determined by the sign matrix s and the expo-
nent matrix e.

Example 3. The following is a signed parametric system derived from the system
in Example 1:

⎡
⎣

f1
f2
f3

⎤
⎦ =

⎛
⎝

⎡
⎣

−1 1 −1 0 1
1 1 1 −1 0
1 1 −1 −1 0

⎤
⎦ ◦

⎡
⎣

c11 c12 c13 c14 c15
c21 c22 c23 c24 c25
c31 c32 c33 c34 c35

⎤
⎦

⎞
⎠

[
x1

x2

]
⎡
⎢⎣
5 0
2 1
2 0
0 3
0 2

⎤
⎥⎦
.

This corresponds to

f1 = −c11x
5
1 + c12x

2
1x2 − c13x

2
1 + c15x

2
2

f2 = c21x
5
1 + c22x

2
1x2 + c23x

2
1 − c24x

3
2

f3 = c31x
5
1 + c32x

2
1x2 − c33x

2
1 − c34x

3
2.
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Definition 4 (Parametric Positive Solutions). Consider a signed paramet-
ric system f = (s ◦ c)xe. A parametric positive solution of f(x) > 0 is a function
z : Ru×v

+ → R
d
+ that maps each possible specification of the coefficient matrix c

to a solution of the corresponding non-parametric system, i.e.,

∀
c>0

f
(
z(c)

)
> 0.

Theorem 5 (Main). Let f = (s ◦ c)xe be a signed parametric system. Let

C(n) :=
∧
i

∧
sik<0

∨
sij>0

(ej − ek)n ≥ 1.

Then the following are equivalent:

(i) f(x) > 0 has a parametric positive solution.
(ii) C(n) has a solution n ∈ R

d.
(iii) C(n) has a solution n ∈ Z

d.

In the positive case, the following function z is a parametric positive solution of
f(x) > 0:

z(c) = tn, where t = 1 +
∑

sij>0
sik<0

cik

cij
.

In fact, we even have ∀
c>0

∀
r≥t

f(rn) > 0.

Proof. We first show that (i) implies (ii):

(i) ⇐⇒ ∀
c>0

∃
x>0

(s ◦ c)xe > 0

⇐⇒ ∀
c>0

∃
x>0

∧
i

∑
sij>0

cijx
ej >

∑
sik<0

cikxek

=⇒ ∃
x>0

∧
i

∑
sij>0

xej >
∑

sik<0
2vxek , by instantiating c

=⇒ ∃
x>0

∧
i

v max
sij>0

xej > max
sik<0

2vxek

⇐⇒ ∃
x>0

∧
i

max
sij>0

xej > max
sik<0

2xek

⇐⇒ ∃
x>0

∧
i

∧
sik<0

∨
sij>0

xej > 2xek

⇐⇒ ∃
x>0

∧
i

∧
sik<0

∨
sij>0

xej−ek > 2

⇐⇒ ∃
x>0

∧
i

∧
sik<0

∨
sij>0

(ej − ek) log2 x > 1

⇐⇒ ∃
n∈Rd

∧
i

∧
sik<0

∨
sij>0

(ej − ek)n > 1, using log2 : R+ ↔ R

=⇒ (ii).

mmonagan@cecm.sfu.ca



Positive Solutions of Systems of Signed Parametric Polynomial Inequalities 243

Assume now that (ii) holds. The existence of solutions n ∈ R
d and n ∈ Q

d of
C(n) coincides due to the Linear Tarski Principle: Ordered fields admit quantifier
elimination for linear formulas, and therefore Q is an elementary substructure of
R with respect to linear sentences [29]. Given a solution n ∈ Q

d, we can use the
principal denominator δ ≥ 1 of all coordinates of n to obtain a solution δn ∈ Z

d.
Hence (iii) holds.

We finally show that (iii) implies (i):

(i) ⇐⇒ ∀
c>0

∃
x>0

(s ◦ c)xe > 0

⇐⇒ ∀
c>0

∃
x>0

∧
i

∑
sij>0

cijx
ej >

∑
sik<0

cikxek

⇐= ∀
c>0

∃
x>0

∧
i

max
sij>0

cijx
ej >

( ∑
sik′ <0

cik′

)
max
sik<0

xek

⇐⇒ ∀
c>0

∃
x>0

∧
i

∧
sik<0

∨
sij>0

cijx
ej >

( ∑
sik′<0

cik′

)
xek

⇐⇒ ∀
c>0

∃
x>0

∧
i

∧
sik<0

∨
sij>0

xej−ek >
∑

sik′ <0

cik′

cij

⇐= ∀
c>0

∃
x>0

∧
i

∧
sik<0

∨
sij>0

xej−ek ≥ t, where t = 1 +
∑

si′j′>0
si′k′ <0

ci′k′

ci′j′

⇐⇒ ∀
c>0

∃
x>0

∧
i

∧
sik<0

∨
sij>0

(ej − ek) logt x ≥ 1

⇐⇒ ∃
n

∧
i

∧
sik<0

∨
sij>0

(ej − ek)n ≥ 1, using logt : R+ ↔ R

⇐= ∃
n∈Zd

∧
i

∧
sik<0

∨
sij>0

(ej − ek)n ≥ 1

⇐⇒ (iii).

In the proof of the implication from (iii) to (i) we have applied logt so that
n = logt x and, accordingly, x = tn, where t is as stated in the theorem. Notice
that any larger choice r ≥ t would work there as well. ��
Example 6. Consider

[
f1
f2

]
with f1, f2 taken from Example 3:

f1 = −c11x
5
1 + c12x

2
1x2 − c13x

2
1 + c15x

2
2

f2 = c21x
5
1 + c22x

2
1x2 + c23x

2
1 − c24x

3
2.

This gives us

s =
[−1 1 −1 0 1

1 1 1 −1 0

]
and e =

⎡
⎢⎢⎢⎢⎣

5 0
2 1
2 0
0 3
0 2

⎤
⎥⎥⎥⎥⎦

.
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Fig. 1. An SMT-LIB input file for Example 6

We obtain C(n) as follows:
(([

2 1
] − [

5 0
])

n ≥ 1 ∨ ([
0 2

] − [
5 0

])
n ≥ 1

) ∧(([
2 1

] − [
2 0

])
n ≥ 1 ∨ ([

0 2
] − [

2 0
])

n ≥ 1
) ∧(([

5 0
] − [

0 3
])

n ≥ 1 ∨ ([
2 1

] − [
0 3

])
n ≥ 1 ∨ ([

2 0
] − [

0 3
])

n ≥ 1
)
,

which simplifies to

(
[−3 1

]
n ≥ 1 ∨ [−5 2

]
n ≥ 1) ∧ (

[
0 1

]
n ≥ 1 ∨ [−2 2

]
n ≥ 1) ∧

(
[
5 −3

]
n ≥ 1 ∨ [

2 −2
]
n ≥ 1 ∨ [

2 −3
]
n ≥ 1).

This straightforwardly yields the input file shown in Fig. 1. It uses the stan-
dardized SMT-LIB language [4] so that it can be directly processed by highly
optimized SMT solvers like CVC4 [3], MathSat [12], SMT-RAT [15], Yices [19],
or Z3 [16]. All these tools certify satisfiability and give a possible solution for n,
which is called a model in the SMT world:

n =
[−5

2−2

]
.

Hence (s ◦ c)xe > 0 has a parametric positive solution, e.g.,

z(c) =
[
t−

5
2

t−2

]
, where t = 1 +

c11
c12

+
c11
c15

+
c13
c12

+
c13
c15

+
c24
c21

+
c24
c22

+
c24
c23

.

With this solution, in particular the non-parametric subsystem
[

f̂1

f̂2

]
of

Example 1 is feasible. If ĉ denotes the coefficient matrix there, then we can
compute t = 719

28 and

z(ĉ) =

[
784

√
20132

371694959

1568
516961

]
≈

[
0.0003
0.0015

]
.

Fig. 2 illustrates the situation.
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Fig. 2. Implicit plots of varieties of polynomials from Examples 6 and 7. (a) Both
polynomials are positive in the region containing (0.0003, 0.0015). Since this point is
an instance of a parametric positive solution, there will be a suitable point under all
modifications of absolute values of coefficients of the polynomials. (b) Both polynomials
are positive in the region containing (1.5, 1.5). (c) After modifying the absolute value
of the leading coefficient of f̂1 the polynomials are not simultaneously positive in the
first quadrant anymore.

Example 7. We slightly modify Example 6 and consider the subsystem
[

f1
f3

]
of

Example 3:

f1 = −c11x
5
1 + c12x

2
1x2 − c13x

2
1 + c15x

2
2

f3 = c31x
5
1 + c32x

2
1x2 − c33x

2
1 − c34x

3
2.

That is

s =
[−1 1 −1 0 1

1 1 −1 −1 0

]
, e =

⎡
⎢⎢⎢⎢⎣

5 0
2 1
2 0
0 3
0 2

⎤
⎥⎥⎥⎥⎦

.

Computing C(n) and generating SMT-LIB input analogously to Example 6,
SMT solvers will return “unsat,” which means that C(n) does not have a solu-
tion n ∈ R

2. Hence (s ◦ c)xe > 0, i.e. f1 > 0, f3 > 0, does not have a parametric
positive solution.

Nevertheless, with the concrete instantiations f̂1, f̂3 from Example 1 the cor-
responding system f̂1 > 0, f̂3 > 0 of inequalities is feasible in R

2
+. One possible

solution is [
3
2
3
2

]
.
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However, if we change the absolute value of the leading coefficient of f̂1 from 1
to 4 yielding f̂∗

1 = −4x5
1 + 4x2

1x2 − 2x2
1 + x2

2, then f̂∗
1 > 0, f̂3 > 0 is infeasible in

R
2
+. Figure 2 illustrates the situation.

4 A Re-analysis of Subtropical Methods

For non-parametric systems of real polynomial inequalities, heuristic Newton
polytope-based subtropical methods [22,37] have been successfully applied in
two quite different areas: Firstly, qualitative analysis of biological and chemical
networks and, secondly, SMT solving.

In the first area, a positive solution of a very large single inequality could
be computed. The left hand side polynomial there has more than 8 · 105 mono-
mials in 10 variables with individual degrees up to 10. This computation was
the hard step in finding an exact positive solution of the corresponding equation
using a known positive point with negative value of the polynomial and apply-
ing the intermediate value theorem. To give a very rough idea of the biological
background: The polynomial is a Hurwitz determinant originating from a sys-
tem of ordinary differential equations modeling mitogen-activated protein kinase
(MAPK) in the metabolism of a frog. Positive zeros of the Hurwitz determinant
point at Hopf bifurcations, which are in turn indicators for possible oscillation
of the corresponding reaction network. For further details see [21].

In the second area, a subtropical approach for systems of several polynomial
inequalities has been integrated with the SMT solver veriT [6]. That incomplete
combination could solve a surprisingly large percentage of SMT benchmarks very
fast and thus establishes an interesting heuristic preprocessing step for SMT
solving over quantifier-free nonlinear arithmetic (QF NRA). For detailed statistics
see [22].

The goal of this section is to make precise the connections between subtropical
methods and our main result here, to use these connections to improve the
subtropical methods, and to precisely characterize their incompleteness.

4.1 Subtropical Real Root Finding

In [37] we have studied an incomplete method for heuristically finding a posi-
tive solution for a single multivariate polynomial inequality with fixed integer
coefficients:

[f̂1] = (s ◦ ĉ)xe where s ∈ {−1, 0, 1}1×v, ĉ ∈ Z
1×v
+ , e ∈ N

v×d.

The method considers the positive and the negative support, which in terms of
our notions is given by

S+ = { ej | s1j > 0 }, S− = { ek | s1k < 0 }.
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Then [37, Lemma 4] essentially states that f1(x) > 0 has a positive solution if

C ′ :=
∨

ej∈S+

∃
n∈Rd

∃
γ∈R

⎛
⎜⎜⎝

[−ej 1
][n

γ

]
≤ −1 ∧

∧

ek∈S+∪S−
ek 	=ej

[
ek −1

][n
γ

]
≤ −1

⎞
⎟⎟⎠.

Unfortunately, in [37, Lemma 4] vectors el =
[
0 · · · 0

]
corresponding to absolute

summands are treated specially. We have noted already in [22, p. 192] that an
inspection of the proof shows that this is not necessary. Therefore we discuss here
a slightly improved and simpler version without that special treatment, which
has been explicitly stated as [22, Lemma 2].

The proof of the loop invariant (I1) in [37, Theorem 5(ii)] shows that the
positive support need not be considered in the conjunction:

C ′ ⇐⇒
∨

ej∈S+

∃
n∈Rd

∃
γ∈R

⎛
⎝[−ej 1

][n
γ

]
≤ 1 ∧

∧
ek∈S−

[
ek −1

][n
γ

]
≤ −1

⎞
⎠.

Starting with Fourier–Motzkin elimination [34, Sect. 12.2] of γ, we obtain

C ′ ⇐⇒
∨

ej∈S+

∃
n∈Rd

∧
ek∈S−

(ek − ej)n ≤ −2

⇐⇒
∨

ej∈S+

∃
n∈Rd

∧
ek∈S−

(ej − ek)n ≥ 1

⇐⇒ ∃
n∈Rd

∨
ej∈S+

∧
ek∈S−

(ej − ek)n ≥ 1

⇐⇒ ∃
n∈Rd

max
ej∈S+

(ejn) ≥ max
ek∈S−

(ekn + 1)

⇐⇒ ∃
n∈Rd

∧
ek∈S−

∨
ej∈S+

(ej − ek)n ≥ 1

⇐⇒ ∃
n∈Rd

C(n),

with C(n) as in Theorem 5.

Corollary 8. Let f̂ ∈ Z[x1, . . . , xd], say, f̂ = (s ◦ ĉ)xe, where s ∈ {−1, 0, 1}1×v,
ĉ ∈ Z

1×v
+ , e ∈ N

v×d. Let f = (s ◦ c)xe, where c is a 1 × v-matrix of pairwise
different indeterminates. Then the following are equivalent:

(i) The algorithm find-positive [37, Algorithm 1] does not fail, and thus
finds a rational solution of f̂ > 0 with positive coordinates.

(ii) There is a row ej of e with s1j > 0 such that the following LP problem has
a solution n ∈ Q

d: ∧
s1k<0

(ej − ek)n ≥ 1.
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(iii) f > 0 has a parametric positive solution.

In the positive case, f̂(rn) > 0 for all r ≥ 1 + v
∑

s1k<0
ĉ1k.

Proof. The equivalence between (i), (ii), and (iii) has been derived above.
According to Theorem 5, a solution for f̂ > 0 can be obtained by plugging ĉ

into the parametric positive solution z(c) = tn for f . Since we have positive
integer coefficients, we can bound t from above as follows.

t = 1 +
∑

s1j>0
s1k<0

ĉ1k

ĉ1j
≤ 1 +

∑
s1j>0
s1k<0

ĉ1k

1
≤ 1 + v

∑
s1k<0

ĉ1k. ��

In simple words the equivalence between (i) and (iii) in the corollary states
the following: The incomplete heuristic [37, Algorithm 1] succeeds if and only
if not only the inequality for the input polynomial has a solution as required,
but also the inequality for all polynomials with the same monomials and signs
of coefficients as the input polynomial.

We have added (ii) to the corollary, because we consider this form optimal
for algorithmic purposes. Our special case of one single inequality allows to
transform the conjunctive normal form provided by Theorem5 into an equivalent
disjunctive normal form without increasing size. This way, a decision procedure
can use finitely many LP solving steps [34] instead of employing more general
methods like SMT solving [32].

Finally notice that the brute force search for a suitable t in
find-positive [37, Algorithm 1, l.10–12] is not necessary anymore. Our corol-
lary computes a suitable number from the coefficients.

4.2 Subtropical Satisfiability Checking

Subsequent work [22] takes an entirely geometric approach to generalize the
work in [37] from one polynomial inequality to finitely many such inequalities.
Consider a system with fixed integer coefficients in our notation:

f̂ =

⎡
⎢⎣

f̂1
...

f̂u

⎤
⎥⎦ = (s ◦ ĉ)xe, where s ∈ {−1, 0, 1}u×v, ĉ ∈ Z

u×v
+ , e ∈ N

v×d.

Then [22, Theorem 12] derives essentially the following sufficient condition for
the existence of a positive solution of f̂ > 0:

C ′′ := ∃
n∈Rd

∃
γ1∈R

. . . ∃
γu∈R

u∧
i=1

⎛
⎝

⎛
⎝ ∨

sij>0

ejn + γi > 0

⎞
⎠ ∧

∧
sik<0

ekn + γi < 0

⎞
⎠.
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After an equivalence transformation, we can once more apply Fourier–Motzkin
elimination [34, Sect. 12.2]:

C ′′ ⇐⇒ ∃
n∈Rd

u∧
i=1

∨
sij>0

∃
γi∈R

(
ejn + γi > 0 ∧

∧
sik<0

ekn + γi < 0

)

⇐⇒ ∃
n∈Rd

u∧
i=1

∨
sij>0

∧
sik<0

(ej − ek)n > 0

⇐⇒ ∃
n∈Rd

u∧
i=1

max
sij>0

ejn > max
sik<0

ekn

⇐⇒ ∃
n∈Rd

u∧
i=1

∧
sik<0

∨
sij>0

(ej − ek)n > 0

⇐⇒ ∃
n∈Rd

u∧
i=1

∧
sik<0

∨
sij>0

(ej − ek)n ≥ 1

⇐⇒ ∃
n∈Rd

C(n),

with C(n) as in Theorem 5.

Corollary 9. Let f̂ ∈ Z[x1, . . . , xd]u, say, f̂ = (s◦ĉ)xe, where s ∈ {−1, 0, 1}u×v,
ĉ ∈ Z

u×v
+ , e ∈ N

v×d. Let f = (s ◦ c)xe, where c is a u × v-matrix of pairwise
different indeterminates. Then the following are equivalent:

(i) The incomplete subtropical satisfiability checking method for several inequal-
ities over QF NRA (quantifier-free nonlinear real arithmetic) introduced
in [22] succeeds on f̂ > 0.

(ii) The following SMT problem with unknowns n is satisfiable over QF LRA

(quantifier-free linear real arithmetic):

u∧
i=1

∧
sik<0

∨
sij>0

(ej − ek)n ≥ 1.

(iii) f > 0 has a parametric positive solution.

In the positive case, f̂(rn) > 0 for all r ≥ 1 + v
∑

sik<0
ĉik.

Proof. The equivalence between (i), (ii), and (iii) has been derived above. About
the solution r see the proof of Corollary 8. ��

The equivalence between (i) and (iii) in the corollary states the following:
The procedure in [22] yields “sat” in contrast to “unknown” if and only if not
only the input system is satisfiable, but that system with all real choices of
coefficients with the same signs as in the input system. While there are no
formal algorithms in [22], the work has been implemented within a combination
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of the veriT solver [6] with the library STROPSAT [22]. Our characterization
applies in particular to the completeness of this software.

We have added (ii) to the corollary, because we consider this form optimal for
algorithmic purposes. Like the original input C ′′ used in [22] this is a conjunctive
normal form, which is ideal for DPLL-based SMT solvers [32]. Recall that u is
the number of inequalities in the input, and d is the number of variables. Let
ι and κ be the numbers of positive and negative coefficients, respectively. Then
compared to [22] we have reduced d + u variables to d variables, and we have
reduced uκ clauses with ι atoms each plus u unit clauses to some different uκ
clauses with ι atoms each but without any additional unit clauses.

With the :produce-models option the SMT-LIB standard [4] supports the
computation of a suitable n in (ii), from which one can compute rn using the
bound at the end of the corollary. The work in [22] does not address the com-
putation of solutions. It only mentions that sufficiently large r will work, which
implicitly suggests a brute-force search like the one in [37, Algorithm 1, l.10–12].
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Abstract. We conduct qualitative analysis for a completely integrable
system of differential equations with irrational first integrals. These equa-
tions originate from gas dynamics and describe adiabatical motions of
a compressible gas cloud with homogeneous deformation. We study the
mechanical analog of this gas dynamical system – the rotational motion
of a spheroidal rigid body around a fixed point in a potential force field
described by an irrational function. Within our study, equilibria, pen-
dulum oscillations and invariant manifolds, which these solutions belong
to, have been found. The sufficient conditions of their stability in Lya-
punov’s sense have been derived and compared with the necessary ones.
The analysis has been performed with the aid of computer algebra tools
which proved to be essential. The computer algebra system “Mathemat-
ica” was employed.

1 Introduction

Many different natural phenomena and processes can be described mathemati-
cally by the same equations. Such a mathematical analogy allows one to apply
the methods developed for studying and an interpretation of phenomena and
processes of one type to phenomena and processes of other type. Let us con-
sider, e.g., the equations of adiabatical motions of an ideal gas in the form [9]:

divv = − 1
(γ − 1)

d

dt
ln T

∂tv = v ∧ rotv + T∇S − ∇
(v2

2
+

γT

γ − 1

)
(1)

∂tS + v · ∇S = 0,

where v is the vector of velocity of the gas, T is the gas temperature, γ is the
adiabatical index, and S is the entropy.

As was shown [6,16], in a Lagrangian formalism, when S is a quadratic func-
tion of Lagragian coordinates, and v depends on these linearly, partial differential
equations (1) are reduced to ordinary ones and describe the motions of an ellip-
soidal cloud of a compressible gas expanding freely in vacuum. The mechanical
c© Springer Nature Switzerland AG 2018
V. P. Gerdt et al. (Eds.): CASC 2018, LNCS 11077, pp. 254–271, 2018.
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interpretation of these equations was given [6]. They are identical with the equa-
tions of motion of a point mass in nine-dimensional Euclidean space. This gas
dynamical model was studied in a series of works, e.g., [1,15]. The present paper
is based on the results [7,9].

In [7], under some assumptions, such as the gas is monatomic with the adia-
batic index γ = 5/3, and there is neither rotation nor vorticity of the gas cloud,
the above gas dynamical model was reduced to three second order ordinary dif-
ferential equations. It was shown that they are equivalent to the equations of
motion of a point mass on the unit 2-sphere, and an additional integral of 3rd
degree in momenta has been derived for them. More general case was considered
in [9] when the gas ellipsoid rotates around one of its principal axes. Then the
equations of motion possess an additional first integral of 6th degree in momenta.

The study of the gas dynamical model proposed [16], [6] is ongoing to the
present time towards generalizations of the found integrable cases [8]. A topo-
logical analysis of the integrable cases with the additional first integrals of 3rd
and 6th degree has been done in [4]. In this work, the mechanical analog for
the gas cloud – the motion of a point mass on the 2-sphere – was investigated.
According to [3], the dynamics of a point mass on the 2-sphere is equivalent to
the motion of a spheroidal rigid body in a potential force field at zeroth level of
area integral. Thus, one can use this mechanical analog to study the gas dynam-
ical model and to apply the methods developed for the analysis of dynamical
systems of such type.

In the present work, the latter mechanical model is used for the qualitative
analysis of the gas dynamical system. We analyze the differential equations of the
spheroidal body in the above-mentioned integrable cases and obtain new results
for both the gas system and the mechanical one. As is well-known, the problem
of the qualitative analysis of differential equations is to find special solutions
(equilibria, periodic motions, etc.) of these equations and to study their stability
and bifurcations. Based on computer algebra methods, the computer analysis of
the above problems can be performed in analytical form. The latter enables us to
investigate the properties of the solutions under continuous (smooth) variation
of their parameters. The research technique based on computer algebra methods
as applied to the qualitative analysis of differential equations with first integrals
is presented in the paper. The symbolic analysis is performed using built-in pro-
cedures of the computer algebra system “Mathematica” (CAS) and the “Math-
ematica” software package [2]. The procedures are used to solve computational
problems arising in the study and to manipulate mathematical expressions. The
package is employed to investigate the stability of the special solutions.

For finding the special solutions, the Routh–Lyapunov method [13] and its
generalizations [12] are applied. By these methods, the qualitative analysis of
differential equations with polynomial first integrals is reduced to algebraic prob-
lems solved efficiently by CAS. The first integrals in the problem under consid-
eration are irrational; that is a special feature of the given problem. To avoid the
use of fractional exponents and fractions (that is usually difficult in CAS), we
transform irrational expressions to polynomial ones by introducing new variables.
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In addition to the above methods for finding the special solutions, the chains of
differential consequences [10] are applied. This technique mainly uses symbolic
differentiation of expressions and is well suited for both algebraic expressions
and irrational ones.

The paper is organized as follows. In Sect. 2, we analyze the equations of
motion of the body when these possess the additional cubic integral in momenta.
The special solutions of the equations are found and their stability is investigated.
In Sect. 3, the same problems are solved for the equations of motion of the body
when these have the additional integral of 6th degree in momenta. Finally, we
discuss the obtained results and give a conclusion in Sect. 4.

2 The Integrable Case with the Additional Cubic Integral

2.1 Formulation of the Problem

Euler–Poisson’s differential equations describing the motion of a spheroidal rigid
body around a fixed point in a force field with the potential 2V = 3a (γ2

1 + γ2
2 +

γ2
3)(γ1γ2γ3)−2/3 can be written as [5]

Ṁ1 = −[a (γ2
2 − γ2

3) (γ2
1 + γ2

2 + γ2
3)] (γ2γ3)−5/3 γ

−2/3
1 , γ̇1 = γ2M3 − γ3M2,

Ṁ2 = [a (γ2
1 − γ2

3) (γ2
1 + γ2

2 + γ2
3)] (γ1γ3)−5/3 γ

−2/3
2 , γ̇2 = γ3M1 − γ1M3, (2)

Ṁ3 = −[a (γ2
1 − γ2

2) (γ2
1 + γ2

2 + γ2
3)] (γ1γ2)−5/3 γ

−2/3
3 , γ̇3 = γ1M2 − γ2M1,

where Mi are the components of the kinetic momentum vector, γi are the direc-
tion cosines of “the vertical”, a is some constant.

The above equations under the corresponding interpretation of the variables
describe an expansion of the gas ellipsoid (without rotation) in vacuum. In this
case, Mi are the impulses, γi = Ai/

√∑
A2

i , where Ai are the lengths of principal
axes of the ellipsoid.

Equation (2) admit the following first integrals:

2H = M2
1 + M2

2 + M2
3 + 3a (γ2

1 + γ2
2 + γ2

3) (γ1γ2γ3)−2/3 = 2h,

V1 = γ2
1 + γ2

2 + γ2
3 = 1, V2 = M1γ1 + M2γ2 + M3γ3 = 0, (3)

V3 = M1M2M3 − 3a (γ1γ2γ3)1/3(M1γ
−1
1 + M2γ

−1
2 + M3γ

−1
3 ) = c1.

Here V3 is the additional integral derived in [7]. It is cubic with respect to
M1,M2,M3. This integral exists when the constant of the integral V2 is equal to
zero.

We can use the integrals having fixed constants for eliminating a part of the
variables from differential equations (2) and the rest of the integrals to reduce
the dimension of the problem. Let us eliminate the variable M1 from Eq. (2)
with the aid of V2 = 0. They become:

Ṁ2 = a (γ2
1 − γ2

3) (γ2
1 + γ2

2 + γ2
3) (γ1γ3)−5/3 γ

−2/3
2 ,

Ṁ3 = −a (γ2
1 − γ2

2) (γ2
1 + γ2

2 + γ2
3) (γ1γ2)−5/3 γ

−2/3
3 , (4)

γ̇1 = γ2M3 − γ3M2, γ̇2 = −[M2γ2 + M3(γ2
1 + γ3)] γ3γ−1

1 ,

γ̇3 = [M2(γ2
1 + γ2) + M3γ3] γ2γ−1

1 .
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The first integrals of the above equations are:

2H̃ = (M2γ2 + M3γ3)2 γ−2
1 + M2

2 + M2
3 + 3a (γ2

1 + γ2
2 + γ2

3) (γ1γ2γ3)−2/3= 2h̃,

V1 = γ2
1 + γ2

2 + γ2
3 = 1, Ṽ3 = −M2M3 (M2γ2 + M3γ3) γ−1

1

−3a (γ1γ2γ3)1/3[M2γ
−1
2 + M3γ

−1
3 − (M2γ2 + M3γ3) γ−2

1 ] = c̃1. (5)

Further, we conduct the qualitative analysis of Eq. (4). In the general case,
this problem is to find special solutions (equilibria, periodic motions) and to
investigate their qualitative properties. In the case of conservative systems, the
variety of the special solutions is expanded through stationary sets. By these
sets, we mean sets of any finite dimension on which the problem’s first integrals
(or their combinations) assume a stationary value. Zero-dimensional sets having
this property are known as stationary solutions, while we shall call positive
dimensional sets the stationary invariant manifolds (IMs).

Our goal is to find the stationary solutions and the IMs of Eq. (4) and to
investigate their stability.

2.2 Finding Invariant Manifolds

According to the Routh–Lyapunov method, the stationary solutions and the
IMs of the differential equations under consideration can be obtained by solving
the conditional extremum problem for the first integrals of these equations. For
this purpose, a linear or nonlinear combination of the first integrals (a family
of the first integrals) is constructed and the necessary extremum conditions for
this family with respect to the phase variables are written. Thus, in the case of
algebraic first integrals, the problem of finding stationary solutions and IMs is
reduced to solving a system of algebraic equations.

Following the technique chosen, we take the complete linear combination of
the first integrals of the problem:

2K = 2λ0H̃ − λ1V1 − 2λ3Ṽ3, (6)

where λ0, λ1, λ3 are the parameters of the family of the integrals K, and write
the necessary conditions for the integral K to have an extremum with respect to
the phase variables:

∂K/∂M2 = 0, ∂K/∂M3 = 0, ∂K/∂γi = 0 (i = 1, 2, 3). (7)

The solutions of system (7), when it is degenerate (its Jacobian is identically
equal to zero), allow one to define the IMs (or their families) for differential
equations (4) which correspond to the family of the first integrals K.

System (7) is that of five irrational equations with the parameters a, λ0, λ1,
λ3. We should transform these equations to polynomial ones to use computer
algebra methods, e.g., Gröbner basis method, for finding their solutions. For this
purpose, we introduce the new variables:

M2 = M2, M3 = M3, x1 = γ1, x2 = γ
1/3
2 γ

−1/3
1 , x3 = γ

1/3
3 γ

−1/3
1 . (8)
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In the above variables, the equations of motion (4) and first integrals (5) take
the form

Ṁ2 = −a(x6
3 − 1)(x6

2 + x6
3 + 1) x−2

2 x−5
3 , 3ẋ2 = −M3 (x6

2 + x6
3 + 1) x−2

2 ,

Ṁ3 = a(x6
2 − 1)(x6

2 + x6
3 + 1) x−5

2 x−2
3 , 3ẋ3 = M2 (x6

2 + x6
3 + 1) x−2

3 ,
ẋ1 = x1 (M3x

3
2 − M2x

3
3),

(9)

2Ĥ = M2
2 + M2

3 + (M2x
3
2 + M3x

3
3)

2 + 3a (x6
2 + x6

3 + 1) x−2
2 x−2

3 = 2ĥ,

V̂1 = x2
1 (x6

2 + x6
3 + 1) = 1,

V̂3=−M2M3 (M2x
3
2+ M3x

3
3) − 3ax2x3 [M2 (x−3

2 − x3
2) + M3 (x−3

3 − x3
3)] = ĉ1,

and the conditions for stationarity of the integral K can be written as:

[λ0x
2
2 (M2 + x3

2 (M2x
3
2 + M3x

3
3)) + λ3 (M3x

2
2 (2M2x

3
2 + M3x

3
3)

−3ax3 (x6
2 − 1)) ]x−2

2 = 0,

[λ0x
2
3 (M3 + x3

3 (M2x
3
2 + M3x

3
3)) + λ3 (M2x

2
3 (M2x

3
2 + 2M3x

3
3)

−3ax2 (x6
3 − 1)) ]x−2

3 = 0, λ1x1 (x6
2 + x6

3 + 1) = 0, (10)
[λ0 (M2 x5

2x
2
3 (M2x

3
2 + M3x

3
3) + a (2x6

2 − x6
3 − 1)) − λ2x

2
1x

8
2x

2
3

+λ3 [M2
2M3x

5
2x

2
3 − a (2M2x

3
3 (2x6

2 + 1) + M3x
3
2 (x6

3 − 1)) ]]x−3
2 x−2

3 = 0,

[λ0 (a (x6
2 − 2x6

3 + 1) − M3x
2
2x

5
3 (M2x

3
2 + M3x

3
3)) + λ2x

2
1x

2
2x

8
3

−λ3 [M2M
2
3x2

2x
5
3 − a (M2x

3
3 (x6

2 − 1) + 2M3x
3
2 (2x6

3 + 1)) ]]x−2
2 x−3

3 = 0.

First, we find the IMs of maximal codimension for Eq. (9). As the first inte-
grals of the problem define IMs and families of IMs of codimension 1, we start
with the IMs of codimension 2. As said before, the IMs can be derived as the
solutions of system (10) when it is degenerate. To this end, we compute a lexi-
cographical basis for the polynomials in square brackets (10) with respect to a
part of the phase variables and the parameters, e.g., λ0, λ1,M2,M3 (the polyno-
mials have least degrees with respect to these variables). Here the number of the
phase variables determines the codimension of the desired IM. This technique
enables us to obtain both the IMs and the conditions under which the stationary
equations become degenerate (see., e.g., [11]).

The “Mathematica” program GroebnerBasis is applied to compute the basis:

GroebnerBasis[ polys, {lambda0, lambda2, M2, M3},
CoefficientDomain -> RationalFunctions]

Here polys is the list of the polynomials in square brackets (10). All computations
are performed on a computer with processor Intel Core 7i (3.6 GHz) and 32 GB
RAM. The program has returned the basis in 21 s. So, we have the following
system:

σ0M
8
3 + σ2M

6
3 + σ4M

4
3 + σ6M

2
3 + σ8 = 0,

σM2 + σ1M
7
3 + σ3M

5
3 + σ5M

3
3 + σ7M3 = 0, (11)

λ1 = 0, f(M3, x2, x3, λ0, λ3, a) = 0, (12)
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where σj (j = 0, . . . , 8), σ are the polynomials of a, x2, x3 (their full form is given
in the Appendix), f is a linear function of λ0.

It is easy to verify by IM definition that Eq. (11) determine the IM of codi-
mension 2 of differential equations (9): the derivative of (11) calculated by virtue
of Eq. (9) vanishes on the given expressions.

The first of expressions (11) (λ1 = 0) is the condition of degeneration of
system (10). The latter expression (f = 0) allows one to derive the first integral
for the equations of vector field on IM (11).

By this technique, one can also find an IM of codimension 3. First, under
the condition λ1 = 0, we compute a Gröbner basis with respect to elimination
monomial order for the polynomials in square brackets (10):

gb = GroebnerBasis[ polys, {x3}, {M2, M3}, CoefficientDomain ->
RationalFunctions, MonomialOrder -> EliminationOrder]

Then, we construct a lexicographical basis:

GroebnerBasis[ gb, { M2, M3, x3},
CoefficientDomain -> RationalFunctions]

As a result, we have:

λ8
0x

12
3 − 2λ2

0ρ1ux6
3 − 12a1λ

2
3ρ2x

4
2x

4
3 + λ2

0 (16a3
1λ

6
3x

6
2 + λ6

0v
2) = 0,

2λ3
0λ3x2[(λ12

0 + 64a6
1λ

12
3 )x6

2+ 8a3
1λ

6
0λ

6
3 (x12

2 + 1)]M3 + λ4
0 (16a3

1λ
6
3 ρ2 + λ12

0 )ux4
2

−4a2
1λ

4
3 [16a3

1λ
6
3 (λ6

0v
2 + 12a3

1λ
6
3x

6
2) − λ12

0 (v2 − x6
2)]x

2
3 − 2a1λ

2
0λ

2
3 [λ12

0 − 32a3
1

×λ6
3 ρ2]ux2

2x
4
3 − λ10

0 ρ1 x4
2x

6
3 − 2a1λ

8
0λ

2
3x

8
3 [2a1λ

4
0λ

2
3u − ρ1 x2

2x
4
3] = 0,

[2λ0λ3v (λ12
0 v2+ 8a3

1λ
6
3x

6
2 (16a6

1λ
6
3x

6
2 + λ6

0 (x12
2 − 2v + 1)))]M2 − 2a1λ

2
3 [8a3

1λ
6
3v

−λ6
0(v − 2)] ρ3x4

2x3 − λ2
0 [λ12

0 (u + 2)v2 − 64a6
1λ

12
3 (2v + 3v2)x6

2

+8a3
1λ

6
0λ

6
3(5v2x6

2 − 2u)]x3
3 + 4a2

1λ
4
0λ

4
3x

2
2 [16a3

1λ
6
3((u + 1)v2 − 3) (13)

+λ6
0(4 − 3u2 − v3 + 16x6

2)]x
5
3 − λ6

0x
7
3 [2a1λ

2
3x

4
2ρ3 − λ2

0ρ3x
2
3

−4a2
1λ

4
0λ

4
3(v

2 − 2)x2
2x

4
3] = 0,

where u = x6
2 + 1, v = x6

2 − 1, a1 = a/3, ρ1 = λ6
0 − 8a3

1λ
6
3, ρ2 = λ6

0 − 4a3
1λ

6
3,

ρ3 = λ6
0v

2 + 16a3
1λ

6
3x

6
2. The total time to compute the basis is 8 s.

Likewise as above, it is easy to verify by IM definition that Eq. (13) define
the family of IMs of codimension 3 for differential equations (9). Here λ0, λ3

are the parameters of the family. In the terms of the paper, it is the family of
stationary IMs, since the integral K̂ = λ0Ĥ − λ3V̂3 assumes a stationary value
on the elements of this family.

One can show that the elements of IMs family (13) are the submanifolds of
IM (11). Let us find their intersection. To this end, we compute a lexicographical
basis with respect to the variables M2,M3, x3 for the polynomials of the system
composed of Eqs. (11), (13). The resulting equations are the family of IMs (13).
So, the original assumption is true.
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With (8), we can return to the initial variables M2,M3, γ1, γ2, γ3 in Eqs. (11),
(13). In the initial variables, these equations define, respectively, the IM of codi-
mension 2 and the family of IMs of codimension 3 for differential equations (4)
that can be verified by IM definition.

Other IMs of codimension 2 for the equations of motion (4) have been
obtained by the chains of differential consequences of the kind [10]:

W ′
0 = ϕ1(x)W1(x), W ′

1 = ϕ2(x)W2(x), . . . , W ′
k−1 = ϕk(x)Wk(x), . . . (14)

Here x = (M2,M3, γ1, γ2, γ3), and Wj(x) (j = 0, . . .), ϕm(x) (m = 1, . . .) are
some smooth functions of x, W ′

j (j = 1, . . .) are their derivatives by virtue of
differential equations (4).

We call the chain of differential consequences (14) cyclical one if for some k:

W ′
k =

k∑
i=0

ϕ̄i(x)Wi(x), (15)

where ϕ̄i(x) are the smooth functions.

Statement 1. If system (4) admits cyclical chain (15) then it has the IM defined
by the equations W0(x) = W1(x) = . . . = Wk(x) = 0. The proof is obvious.

In the given approach, computer algebra tools play an auxiliary role. They
give us a possibility to make computational experiments, e.g., for finding the
functions Wi that would be most “suitable” to generate the chain. The “Math-
ematica” program PolynomialReduce is used to test criterion (15).

Let be W0 = M2 +M3. On differentiating this expression by virtue of Eq. (4)
we obtain W1 = γ2 − γ3. The subsequent differentiation of W1 shows that dif-
ferential equations (4) admit the following cyclical chain:

W ′
0 = [a (γ2

1 + γ2γ3) (γ2
1 + γ2

2 + γ2
3) (γ1γ2γ3)−5/3]W1,

W ′
1 = −[(γ2

1 + γ2
2 + γ2γ3) γ−1

1 ]W0 + [M3 (γ2 + γ3) γ−1
1 ]W1.

According to Statement 1, the expressions

M2 + M3 = 0, γ2 − γ3 = 0 (16)

determine the IM of codimension 2 of differential equations (4).
The vector field on IM (16) is given by

Ṁ3 = −a (γ2
1 − γ2

3) (γ2
1 + 2γ2

3) γ
−5/3
1 γ

−7/3
2 , γ̇1 = 2M3γ3, γ̇3 = −M3γ1. (17)

In the same way, the IM defined by the equations

M2 − M3 = 0, γ2 + γ3 = 0 (18)

has been derived.
The vector field on this IM is described by

Ṁ3 = a (−γ3)1/3(γ2
3 − γ2

1) (γ2
1 + 2γ2

3) γ
−5/3
1 γ

−8/3
3 ,

γ̇1 = −2M3γ3, γ̇3 = M3γ1. (19)
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Note that IMs (16), (18) are stationary. The integral Ω = Ṽ 2
3 takes a stationary

value on them.
All found IMs for differential equations (4) can be “lifted up” into the phase

space of system (2). For this purpose, it is sufficient to add expression V2 = 0
(3) to the equations of these IMs. In particular, equations IMs (16), (18) take
the form

M2 + M3 = 0, γ2 − γ3 = 0, M1γ1 = 0 (20)

and M2 − M3 = 0, γ2 + γ3 = 0, M1γ1 = 0, respectively,
From the physical viewpoint, in the case of the spheroidal body, the above

equations together with (17), (19) define pendulum-like oscillations of the body.
From the formulation of the problem it follows that IM (20) is related to the prob-
lem of the expanding gas cloud only. Equation (20) together with (17) describe
the periodical changes of the cloud sizes.

2.3 Finding Stationary Solutions

As mentioned before, stationary solutions are usually found by the Routh–
Lyapunov method from the conditions for stationarity of a family of problem’s
first integrals. In the case of polynomial first integrals, this approach leads to
solving a system of polynomial equations. When the first integrals are not poly-
nomial or the polynomials have high degrees, the technique applied in [11] is
more suitable. The given technique is used in the present work.

Equate the right-hand sides of differential equations (4) to zero and add
relation V1 = 1 (5) to them:

a (γ2
1 − γ2

3) (γ2
1 + γ2

2 + γ2
3) (γ1γ3)−5/3 γ

−2/3
2 = 0, γ2M3 − γ3M2 = 0,

−a (γ2
1 − γ2

2) (γ2
1 + γ2

2 + γ2
3) (γ1γ2)−5/3 γ

−2/3
3 = 0, γ2

1 + γ2
2 + γ2

3 − 1 = 0,
−γ3γ

−1
1 [M2γ2 + M3(γ2

1 + γ3)] = 0,
γ2γ

−1
1 [M2(γ2

1 + γ2) + M3γ3] = 0.

(21)

Next, construct a lexicographical Gröbner basis with respect to M2,M3, γ1,
γ2, γ3 for the polynomials of the subsystem

γ2
1 − γ2

3 = 0, M2γ2 + M3(γ2
1 + γ3) = 0, M2(γ2

1 + γ2) + M3γ3 = 0,
γ2
1 − γ2

2 = 0, γ2M3 − γ3M2 = 0, γ2
1 + γ2

2 + γ2
3 − 1 = 0

of system (21). As a result, we have:

3γ2
3 − 1 = 0, 1 − 3γ2

2 = 0, 1 − 3γ2
1 = 0,M2 = 0, M3 = 0.

The latter system has the following solutions:

M2 = 0, M3 = 0, γ1 = ±3−1/2, γ2 = γ3 = 3−1/2,

M2 = 0, M3 = 0, γ1 = ±3−1/2, γ2 = γ3 = −3−1/2. (22)
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M2 = 0, M3 = 0, γ1 = ±3−1/2, γ2 = −3−1/2, γ3 = 3−1/2,

M2 = 0, M3 = 0, γ1 = ±3−1/2, γ2 = 3−1/2, γ3 = −3−1/2. (23)

On substituting these solutions into Eq. (4) they are satisfied.
Now, let us derive the family of the integrals which takes a stationary value

on solutions (22), (23). When these solutions are substituted into Eq. (7), we
find that the equations are satisfied under λ1 = 0.

On substituting λ1 = 0 into (6), we have:

K̃ = λ0H̃ − λ3Ṽ3. (24)

Thus, the family of the integrals K̃ assumes a stationary value on solutions (22),
(23). Each integral belonging to this family also takes a stationary value on the
above solutions. It is verified by direct calculation. In particular, the integral Ṽ3

is identically equal to zero on all solutions (22), (23).
In the same way as the IMs in Subsect. 2.2, the stationary solutions can be

“lifted up” into the phase space of system (2). From the physical viewpoint,
in the original phase space, these solutions correspond to the equilibria of the
spheroidal body, and only one of these solutions is related to the problem of
the expanding gas cloud: M1 = M2 = M3 = 0, γ1 = γ2 = γ3 = 3−1/2. It was
also found in [4]. This solution corresponds to the cloud of the spherical shape
without changing sizes.

One can show that stationary solutions (22), (23) belong to IM (11). To
this end, we substitute these solutions into the equations of the IM (they must
be written in the initial variables M2,M3, γ1, γ2, γ3). The equations turn into
identities. Thus, solutions (22), (23) belong to IM (11).

In the same way, we reveal that solutions (22) and (23) belong to IM (16) and
IM (18), respectively. Hence, IM (11) and IM (16) have the common points (i.e.,
the points of intersection of these IMs) defined by relations (22). Analogously,
relations (23) define the points of intersection of IM (11) and IM (18).

2.4 On Stability of Stationary Solutions

The integrals and their families, which take a stationary value on solutions
(22), (23), are used to investigate the stability of these solutions by the Routh–
Lyapunov method. The problem is to verify the sign-definiteness conditions for
the 2nd variation of the family of integrals which is obtained in the neighbor-
hood of the solution under study. These conditions are analyzed on the linear
manifold defined by the variations of the “conditional” integrals.

Let us investigate the stability of one of solutions (22), e.g.,

M2 = M3 = 0, γ1 = γ2 = γ3 = 3−1/2, (25)

which is related to the problem of the expanding gas cloud.
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We use the family of integrals K̃ (24). In the deviations y1 = γ1 − 3−1/2,
y2 = γ2 − 3−1/2, y3 = γ3 − 3−1/2, y4 = M2, y5 = M3 on the linear manifold
δV1 = 2(y1 + y2 + y3)/

√
3 = 0, the 2nd variation of K̃ in the neighborhood of

solution (25) can be written as:

δ2K̃ = λ0 [18a (y2
1 + y1y2 + y2

2) + y2
4 + y4y5 + y2

5 ] + 6
√

3aλ3 [y1 (y4 + 2y5)
+y2 (y5 − y4)]. (26)

The conditions for the quadratic form δ2K̃ to be positive definite in the form
of Sylvester’s inequalities are given by aλ0 > 0, a2λ2

0 > 0, a2λ0 (λ2
0−6aλ2

3) > 0,
a2(λ2

0 − 6aλ2
3)

2 > 0.
These inequalities are consistent under the following constraints on a, λ0, λ3:

a > 0, λ3 > 0, λ0 >
√

6
√

aλ3. (27)

Inequalities (27) are split up into 2 groups. The first (a > 0) is the sufficient
condition for the stability of solution (25), and the rest of the inequalities sepa-
rates some subfamily from the family of integrals K̃ (24), the elements of which
give us a possibility to derive this condition.

Let us show that the sufficient condition of stability is also necessary. To this
end, we use Lyapunov’s linear stability theorem [14].

In the case studied, the equations of first approximation, in the deviations
yi (i = 1, . . . , 5), are:

√
3 ẏ1 = y5 − y4,

√
3 ẏ2 = −(y4 + 2y5),

√
3 ẏ3 = 2y4 + y5,

ẏ4 = 6
√

3a (y1 − y3), ẏ5 = 6
√

3a (y2 − y1).

The characteristic equation λ (λ2 + 18a)2 = 0 of the above system has only
zero and pure imaginary roots when a > 0. On comparing the latter inequality
with (27), we conclude that the condition a > 0 is necessary and sufficient for
the stability of solution (25). For the rest of the stationary solutions, we have
obtained similar results.

Now, we investigate the stability of IM (16), which solution (25) belongs to.
For the equations of perturbed motion, in the deviations y1 = M2 + M3,

y2 = γ2 − γ3, on the linear manifold δV1 = 2γ3 y2 = 0, the 2nd variation of the
integral Ω = Ṽ 2

3 is:

δ2Ω = [3a (γ2
3 − γ2

1) + γ
2/3
1 γ

4/3
3 M2

3 ]2 γ
−10/3
1 γ

−2/3
3 y2

1 . (28)

On IM (16), the integral H̃ assumes the form:

H̄ = [M2
3 + 3a (γ2

1 + 2γ2
3)] (2γ−2/3

1 γ
−4/3
3 ) = h1. (29)

Eliminate M3 from (28) with (29):

4δ2Ω = (9aγ
4/3
1 − 2h1γ

4/3
3 )2 γ−2

1 γ
−2/3
3 y2

1 .
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Equate the numerator of the latter expression to zero and eliminate γ1 from the
resulting equation with the integral V1 = 1. As a result, we obtain the following
boundary value for γ2:

γ2 =
(2h1

9a
+ 1

)3/4

,

under which there exist the stable oscillations of the spheroidal body. As to the
gas ellipsoid, the latter relation allows one to determine the limit values for the
lengths of its principal axes under which the periodical changes of the cloud sizes
are stable.

When the stability of stationary solutions and IMs is studied on the base of
Lyapunov’s linear stability theorems and the 2nd Lyapunov method, we need
often to derive the sign-definiteness conditions for a quadratic form as well as the
characteristic equation for a system of linear differential equations with constant
coefficients. The computer program codes of these procedures are included in
the “Mathematica” software package [2]. This package has been developed to
do the qualitative analysis of conservative systems on the base of the approach
described in the this paper. It is applied as an auxiliary tool at different stages of
analysis of the systems. In the above calculations, for the given solution and the
given combination of the first integrals, the package has constructed the sign-
definiteness conditions for the quadratic form δ2K̃ (26) in the form of Sylvester’s
inequalities. The subsequent analysis of these inequalities was made by computer
algebra tools. In a similar manner, the package is used to investigate the stability
on the base of Lyapunov’s linear stability theorems.

3 The Integrable Case with the Additional 6th Degree
Integral

3.1 Formulation of the Problem

The equations of motion of the spheroidal body in a force field with the potential

2V = G [3a (γ1γ2γ3)−2/3 + 4c2 (γ2
1 + γ2

2) (γ2
1 − γ2

2)−2]

can be written as:

Ṁ1 = −G [a (γ2
2 − γ2

3) (γ2γ3)−5/3 γ
−2/3
1 + 4c2γ2γ3 (3γ2

1 + γ2
2) (γ2

1 − γ2
2)−3],

Ṁ2 = G [a (γ2
1 − γ2

3) (γ1γ3)−5/3 γ
−2/3
2 − 4c2γ1γ3 (γ2

1 + 3γ2
2) (γ2

1 − γ2
2)−3],

Ṁ3 = −G [a (γ2
1 − γ2

2) (γ1γ2)−5/3 γ
−2/3
3 − 16c2γ1γ2 (γ2

1 + γ2
2) (γ2

1 − γ2
2)−3],

γ̇1 = γ2M3 − γ3M2, γ̇2 = γ3M1 − γ1M3, γ̇3 = γ1M2 − γ2M1.

(30)

Here the variables Mi, γi (i = 1, 2, 3) are interpreted as in Sect. 2, G = γ2
1 + γ2

2 +
γ2
3 .

The first integrals of Eq. (30) are given by

2H = M2
1 + M2

2 + M2
3 + G [3a (γ1γ2γ3)−2/3 + 4c2(γ2

1 + γ2
2) (γ2

1 − γ2
2)−2] = 2h,

V1 = γ2
1 + γ2

2 + γ2
3 = 1, V2 = M1γ1 + M2γ2 + M3γ3 = 0,

V3 = (F3 + Fc)2 + 4Φ [Φ̄ γ2
1 γ−2

3 + 3a] [Φ̄ γ2
2 γ−2

3 + 3a
]

= c1,
(31)
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where

F3 = M1M2M3 − 3a (γ1γ2γ3)1/3 (M1γ
−1
1 + M2γ

−1
2 + M3γ

−1
3 ),

Fc = 4c2M3γ1γ2γ
2
3 (γ2

1 − γ2
2)−2,

Φ = 4c2γ2
3(γ1γ2γ3)2/3 (γ2

1 − γ2
2)−2, Φ̄ = M1M2 (γ1γ2γ3)2/3 γ−1

1 γ−1
2 + Φ − 3a.

Here V3 is the additional 6th degree integral with respect to M1,M2,M3. It has
been derived in [9]. This integral exists when the constant of the integral V2 is
equal to zero. Note that the potential energy V in this problem has a singularity
when γ1 = γ2.

Likewise as in Sect. 2, we shall consider the equations of motion of the body
on the manifold V2 = 0. On this manifold, differential equations (30) and first
integrals (31) take the form:

Ṁ1 = −G [a (γ2
2 − γ2

3) (γ2γ3)−5/3 γ
−2/3
1 + 4c2γ2γ3 (3γ2

1 + γ2
2) (γ2

1 − γ2
2)−3],

Ṁ2 = G [a (γ2
1 − γ2

3) (γ1γ3)−5/3 γ
−2/3
2 − 4c2γ1γ3 (γ2

1 + 3γ2
2) (γ2

1 − γ2
2)−3],

γ̇1 = −[M1γ1γ2 + M2 (γ2
2 + γ2

3)] γ−1
3 , γ̇2 = [M1 (γ2

1 + γ2
3) + M2γ1γ2] γ−1

3 ,
γ̇3 = γ1M2 − γ2M1.

(32)

2H̃ = M2
1 + M2

2 + (M1γ1 + M2γ2)2 γ−2
3 + G [3a (γ1γ2γ3)−2/3

+4c2(γ2
1 + γ2

2) (γ2
1 − γ2

2)−2] = 2h̃, V1 = γ2
1 + γ2

2 + γ2
3 = 1,

Ṽ3 = (F̃3 + F̃c)2 + 4Φ
[
Φ̄ γ2

1 γ−2
3 + 3a] [Φ̄ γ2

2 γ−2
3 + 3a] = c̃1, where

F̃3 = −M1M2 (M1γ1 + M2γ2) γ−1
3 − 3a (γ1γ2γ3)1/3 (M1γ

−1
1 + M2γ

−1
2

−(M1γ1 + M2γ2) γ−2
3 ), F̃c = −4c2(M1γ1 + M2γ2)γ1γ2 (γ2

1 − γ2
2)−2.

(33)

They have been derived from (30), (31) by eliminating the variable M3 from
them with the aid of V2 = 0.

In the present work, we restrict our consideration to the problem of finding
the stationary solutions for Eq. (32) and the investigation of their stability.

3.2 Finding Stationary Solutions

We apply the same technique as in Subsect. 2.3 to obtain the stationary solutions
of differential equations (32). For this purpose, these equations are written in
the variables M1 = M1, M2 = M2, x1 = γ1, x2 = γ

1/3
2 γ

−1/3
1 ,

x3 = γ
1/3
3 γ

−1/3
1 :

Ṁ1 = −Ḡ [a(x6
2 − 1)3(x6

2 − x6
3) − 4c2x8

2x
8
3 (x6

2 + 3)]x−5
2 x−5

3 (x6
2 − 1)−3,

Ṁ2 = Ḡ [(4c2x2
2x

8
3 (3x6

2 + 1) − a(x6
2 − 1)3(x6

3 − 1)]x−2
2 x−5

3 (x6
2 − 1)−3,

ẋ1 = −[M1x
3
2 + M2(x6

2 + x6
3)]x1x

−3
3 , 3ẋ2 = Ḡ [M1 + M2x

3
2]x

−2
2 x−3

3 ,
3ẋ3 = (x6

2 + x6
3 + 1) M2x

−2
3 ,

(34)

where Ḡ = x6
2 + x6

3 + 1.
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Next, we equate the right-hand sides of Eq. (34) to zero and consider the
following subsystem

a(x6
2 − 1)3(x6

2 − x6
3) − 4c2x8

2x
8
3 (x6

2 + 3) = 0,
(4c2x2

2x
8
3 (3x6

2 + 1) − a(x6
2 − 1)3(x6

3 − 1) = 0,
M1x

3
2 + M2(x6

2 + x6
3) = 0, M1 + M2x

3
2 = 0, M2 = 0 (35)

of the resulting system.
From the latter three equations (35), it follows that M1 = M2 = 0. For the

polynomials of the rest of the equations, we compute a Gröbner basis with respect
to the ordering x3 > x2. Taking into account the above values for M1,M2, we
have:

a3(x6
2 − 1)12 (x12

2 + 6x6
2 + 1) − 16384 c6x30

2 (x6
2 + 1)4 = 0,

16384a2c2x2
3 − 16384c6x22

2 (x6
2 + 1)3(31x6

2 + 32)(33x6
2 + 32) + a3x4

2(x
6
2 − 1)4

×(1023x54
2 − 1021x48

2 − 21488x42
2 + 86920x36

2 − 136858x30
2 + 71014x24

2

+72584x18
2 − 138224x12

2 + 88067x6
2 − 22529) = 0,

M1 = 0, M2 = 0. (36)

It is easy to verify by IM definition that Eq. (36) define the one-dimensional IM
of differential equations (34). The vector field on this IM is described by the
equation ẋ1 = 0. It has the following solution:

x1 = x0
1 = const. (37)

Equation (36) together with (37) and the condition

x2
1 (x6

2 + x6
3 + 1) = 1, (38)

which is the integral V1 in the variables x1, x2, x3, determine the set of fixed
points for system (34).

In the initial variables M1,M2, γ1, γ2, γ3, Eqs. (36) and (36)–(38) determine
the one-dimensional IM and the set of fixed points for system (32), respectively.
In the same way as in Sect. 2, these solutions can be “lifted up” into the phase
space of system (30).

From the physical viewpoint, in the original phase space, the solutions defined
by (36)–(38) correspond to the equilibria of the spheroidal body (the gas ellip-
soid). From equations (36)–(38) it follows that the number of the equilibria is no
more than 336 ∀ a �= 0, c �= 0. One can also see from these equations that they
can have one real positive solution only. Thus, in the problem of the expanding
gas cloud, there exists no more than one equilibrium position for each fixed pair
of values of the parameters a �= 0, c �= 0. The latter agrees with the result [4].
Further, we find the equilibria under some conditions imposed on the parameters
a and c.

System (34) is defined in the domain: x2
1 (x6

2 + x6
3 + 1) = 1, xi �= 0 (i =

1, 2, 3), x2 �= 1. We choose a value of x2 from this domain, e.g. x2 = 1/21/6,
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and then substitute it into the 1st equation of system (36). Whence, one can
obtain a = 192 (6/17)1/3c2. Under the above values of x2, a, from the rest of
Eqs. (36)–(38), we find x1, x3. So, for the given values of x2, a, system (36)–(38)
has the following solutions:

M1 = M2 = 0, x1 = (34/3)1/2 5−1, x2 = 2−1/6, x3 = ±21/3 (3/17)1/6,
M1 = M2 = 0, x1 = −(34/3)1/2 5−1, x2 = 2−1/6, x3 = ±21/3 (3/17)1/6.

In the initial variables, the above solutions are:

M1 = M2 = 0, γ1 = (34/3)1/2 5−1, γ2 = (17/3)1/2 5−1, γ3 = ±2
√

2 5−1,

M1 = M2 = 0, γ1 = −(34/3)1/2 5−1, γ2 = −(17/3)1/2 5−1,

γ3 = ±2
√

2 5−1. (39)

On substituting these solutions into differential equations (32) they are satisfied.
From the physical viewpoint, in the original phase space, solutions (39) cor-

respond to the equilibria of the spheroidal body. Only one of these solutions is
related to the problem of the expanding gas cloud:

M1 = M2 = M3 = 0, γ1 = (34/3)1/2 5−1, γ2 = (17/3)1/2 5−1, γ3 = 2
√

2 5−1.

It corresponds to the gas cloud of ellipsoidal shape. This ellipsoid is prolate along
its principal axis Ox.

As in Sect. 2, one can show that the family of integrals

K̃ = λ0H̃ − λ3Ṽ3 (40)

(and each integral of this family) assumes a stationary value on solutions (39).
The family of integrals K̃ (40) is used for the investigation of stability of the
given solutions.

3.3 On Stability of Stationary Solutions

In order to study the stability of stationary solutions (39), we apply the same
approach, methods and computing tools as in Sect. 2.

First, let us investigate the stability of one of solutions (39) which is related
to the problem of the expanding gas cloud:

M1 = M2 = 0, γ1 = (34/3)1/2 5−1, γ2 = (17/3)1/2 5−1, γ3 = 2
√

2 5−1. (41)

In the deviations y1 = M1, y2 = M2, y3 = γ1 − (34/3)1/2 5−1, y4 = γ2 −
(17/3)1/2 5−1, y5 = γ3 − 2

√
2 5−1, on the linear manifold δV1 = 2 [

√
51 (

√
2y3 +

y4) + 6
√

2y5]/15 = 0, the 2nd variation of the family of integrals K̃ in the
neighborhood of the solution under study is written as: δ2K̃ = Q1 + Q2, where

83521Q1 = 15000 c2 [204 (221λ0 − 161792 c4λ3) y2
4 +

√
102 (3961λ0

+7651328 c4λ3) y4y5 + (19822λ0 − 795295744 c4λ3) y2
5 ],

816Q2 = (986λ0 − 14450688 c4λ3) y2
1 + 2

√
2 (289λ0 + 10764288 c4λ3) y1y2

+(697λ0 − 17842176 c4λ3) y2
2 .
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The conditions for the family of the quadratic forms Q1, Q2 to be positive
definite are sufficient for the stability of solution (41). In the form of Sylvester’s
inequalities, they are:

221λ0 − 161792 c4λ3 > 0, 289λ2
0 − 22282240 c4λ0λ3 + 14495514624 c8λ2

3 > 0,

986λ0 − 14450688 c4λ3 > 0. (42)

Inequalities (42) are compatible under the following constraints on the parame-
ters λ0, λ3, c: 17λ0 > 16384 (40+

√
1546) c4λ3. The latter condition separates the

subfamily from the family of integrals K̃ (40), the elements of which enable us
to derive the sufficient conditions for the stability of solution (41). Comparison
of the above sufficient condition with the relation a = 192 (6/17)1/3c2 gives us
the following sufficient condition for the stability of solution (41): a > 0.

For solution (41), we have also derived the conditions of its stability on the
base of Lyapunov’s linear stability theorem. The resulting necessary stability
conditions coincide with the sufficient ones.

Similar results have been obtained for the rest of solutions (39).

4 Conclusion

In the given work, ordinary differential equations with irrational first integrals
were studied. These equations describe a series of dynamical systems, such as an
expansion of the gas ellipsoidal cloud in vacuum, the rotation of the spheroidal
body in a potential force field, the motion of a point mass on the spherical surface.
We analyzed the equations in the cases when they possess the additional first
integrals of 3rd and 6th degree in momenta. The purpose of the study was to find
the stationary solutions and IMs of the equations and to investigate their stabil-
ity. To solve these problems, computer algebra methods and tools were applied.
The first integrals in the problem are rather complicated irrational functions.
Computer algebra methods were used for transforming irrational equations to
polynomial ones and for finding their solutions.

In the problem of the expanding gas cloud, in addition to previously known
solutions, new IMs of codimension 2, 3 as well one-dimensional IM have been
obtained, and the physical interpretation for some of them has been done. It
was established that the previously known solutions belong to these IMs. It was
also shown that these solutions are stationary. For the stationary solutions and
IMs, the sufficient conditions of their stability on the base of the 2nd Lyapunov
method have been derived. The “Mathematica” software package developed by
the authors together with their colleagues was used to investigate the stability
of the found solutions. It should be noted that in the problem of the rotational
motion of the spheroidal body, there exists a greater number of stationary solu-
tions and IMs than in the above problem. Some of them have been found and
represented in the paper. The analysis of their stability has also been done.

The obtained results, their consistency with those known before, show that
the approach used as well the computing tools are rather efficient for the study
of the dynamical systems of the considered type.
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A Appendix

The coefficients of equation (11):

σ0 = x8
2x

8
3 (4x6

3 − (x6
2 − x6

3 − 1)2), σ2 = −2ax6
2

[
5 (x6

2 + 1)x18
3 − 2 (8x6

2

+5 (x6
2 + 1)2)x12

3 + (5 (x18
2 + 1) − 9x6

2 (x6
2 + 1))x6

3 + 2x6
2 (x6

2 − 1)2
]
,

σ4 = −36 a2x4
2 x4

3

[
((x6

2 + 1)2 + x6
2)x12

3 − 2(x18
2 + 6x6

2 (x6
2 + 1) + 1)x6

3

+(x24
2 − 2x6

2 (x12
2 + x6

2 + 1) + 1)
]
, σ6 = −54 a3x2

2 x2
3

[
(x18

2 + 7x6
2 (x6

2 + 1)

+1)x12
3 − 2 ((x12

2 + 1)2 + 14x12
2 + 7x6

2 (x12
2 + 1))x6

3 + (x6
2 − 1)2 (x6

2 + 1)3
]
,

σ8 = −27a4
[
((x6

2 + 1)2 + 4x6
2)x6

3 − (x6
2 + 1)3

]2
,

σ = −18a3x3
2x3

[
(x6

2 − 1) [(x6
2 + 1)2 + 4x6

2]
2 x30

3 − [3(x36
2 − 1) − 8x6

2(x
24
2 − 1)

−153x12
2 (x12

2 − 1)]x24
3 + 2 [x42

2 − 15x6
2(x

30
2 − 1) − 3x12

2 (x18
2 − 1)

+269x18
2 (x6

2 − 1) − 1]x18
3 + 2 [x48

2 − 2x6
2(x

36
2 − 1) − 82x12

2 (x24
2 − 1)

+102x18
2 (x12

2 − 1) − 1]x12
3 − (x6

2 + 1)4 [3(x30
2 − 1) − 23x6

2(x
18
2 − 1)

+86x12
2 (x6

2 − 1)]x6
3 + (x6

2 − 1)3 (x6
2 + 1)7

]
,

σ1 = x6
2x

10
3

[
[5 (x12

2 + 1) + 6x6
2]x

30
3 − 8 [2(x18

2 + 1) + x6
2(x

6
2 + 1)]x34

3

+2 [7(x24
2 + 1) − 16x6

2(x
12
2 + 1) − 30x12

2 ]x18
3 + 4 [(x30

2 + 1) + 12x6
2(x

18
2 + 1)

+3x12
2 (x6

2 + 1)]x12
3 − (x6

2 − 1)2 [11(x24
2 + 1) + 20x6

2(x
12
2 + 1) + 2x12

2 ]x6
3

+4(x6
2 − 1)4 (x18

2 + 1)
]
,

σ3 = ax4
2x

2
3

[
4 [17x6

2 (x6
2 + 1) + 11(x18

2 + 1)]x36
3 − [322x12

2 + 292x6
2 (x12

2 + 1)

+139(x24
2 + 1)]x30

3 − 4 [(277x12
2 (x6

2 + 1) + 16x6
2 (x18

2 + 1)− 29(x30
2 + 1))x24

3

+2 [72x18
2 + 281x12

2 (x12
2 + 1) + 300x6

2(x
24
2 + 1) + 23(x36

2 + 1)]x18
3

−4 [60x18
2 (x6

2 + 1) − 191x12
2 (x18

2 + 1) + 41x6
2 (x30

2 + 1) + 26 (x42
2 + 1)]x12

3

+(x6
2 − 1)2 [84x18

2 − 117x12
2 (x12

2 + 1) − 90x6
2 (x24

2 + 1) + 37 (x36
2 + 1)]x6

3

+6x6
2 (x6

2 − 1)4(x18
2 + 1)

]
,

σ5 = 3a2x2
2

[
(x6

2 + 1)2 [43(x12
2 + 1) + 42x6

2]x
36
3 − 2 [188x12

2 (x6
2 + 1)

+257x6
2 (x18

2 + 1) + 67(x30
2 + 1)]x30

3 − 2 [632x18
2 + 701x12

2 (x12
2 + 1)
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−4x6
2 (x24

2 + 1) − 53(x36
2 + 1)]x24

3 + 4 [272x18
2 (x6

2 + 1) + 119x12
2 (x18

2 + 1)
+203x6

2 (x30
2 + 1) + 14(x42

2 + 1)]x18
3 − [510x24

2 + 20x18
2 (x12

2 + 1)
−876x12

2 (x24
2 + 1) + 236x6

2(x
36
2 + 1) + 109(x48

2 + 1)]x12
3 + 2 (x6

2 − 1)2

×[81x18
2 (x6

2 + 1) − 9x12
2 (x18

2 + 1) − 59x6
2 (x30

2 + 1) + 19(x42
2 + 1)]x6

3

−4x6
2 (x12

2 − 1)4
]
,

σ7 = 9a3x4
3

[
2 ((x6

2 + 1)2 + 4x6
2) [7 (x12

2 + 1) + 6x6
2(x

12
2 + 2)]x30

3 − [37 (x36
2 + 1)

+x24
2 (208x6

2 + 161) + x12
2 (16x6

2 − 145) + 6(32x6
2 + 1)]x24

3 + 4 [7 (x42
2 + 1)

+x6
2(x

30
2 − 14) − 2x24

2 (22x6
2 + 141) − x12

2 (13x6
2 + 47) +1]x18

3 + 2 [9(x48
2 + 1)

+2x36
2 (62x6

2 + 83)+ 4x24
2 (128x6

2 − 95) + 2x12
2 (358x6

2 + 1)+ 2(60x6
2 + 1)]x12

3

−2 (x62 + 1) [16 (x482 + 1) + 9x362 (4x62 + 1) + x242 (x182 + 11) − 499x242 (x62 − 2)

−x62(8x
12
2 − 23) − 35x122 (11x62 − 1) + 3]x63 + (x62 − 1)2 (x62 + 1)4 [11 (x242 + 1)

−2x62 (23x122 + 21) + 2 (40x122 + 1)]
]
.
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Effective Localization Using Double Ideal
Quotient and Its Implementation

Yuki Ishihara(B) and Kazuhiro Yokoyama
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Abstract. In this paper, we propose a new method for localization of
polynomial ideal, which we call “Local Primary Algorithm”. For an ideal
I and a prime ideal P , our method computes a P -primary component of
I after checking if P is associated with I by using double ideal quotient
(I : (I : P )) and its variants which give us a lot of information about
localization of I.

Keywords: Gröbner basis · Primary decomposition · Localization

1 Introduction

In commutative algebra, the operation of “localization by a prime ideal” is well-
known as a basic tool. To realize it on computer algebra systems, we propose
new effective localization using double ideal quotient (DIQ) and its variants for
ideals, in a polynomial ring over a field. Here, by the words localization, we mean
the saturation or the contraction of localized ideals.

It is well-known that the localization of an ideal can be computed through
its primary decomposition. In more detail, for an ideal I of a polynomial ring
K[X] = K[x1, . . . , xn] over a field K and a multiplicatively closed set S in
K[X], once a primary decomposition Q of I is known, the localization (i.e.
the contraction of localized ideal) of I by S can be computed by IK[X]S ∩
K[X] =

⋂
Q∈Q,Q∩S=∅ Q (see Remark 3). Algorithms of primary decomposition

have been much studied, for example, by [2,3,5,8]. However, in practice, as
such primary decomposition tends to be very time-consuming, use of primary
decomposition is not an efficient way and we need an efficient direct method
without primary decomposition. Toward a direct method of localization, for a
given ideal I and a prime ideal P , first we provide several criteria for checking
if a primary ideal Q can be a P -primary component of I, and then present
a direct method named Local Primary Algorithm (LPA) which computes a P -
primary component of I. Our method applies different procedures for two cases;
isolated and embedded. Both cases use double ideal quotient and its variants
as a tool for generating and checking primary components. Of course, if we
know all associated primes disjoint from a multiplicatively closed set, we get its
localization without computing other primary components.
c© Springer Nature Switzerland AG 2018
V. P. Gerdt et al. (Eds.): CASC 2018, LNCS 11077, pp. 272–287, 2018.
https://doi.org/10.1007/978-3-319-99639-4_19
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For ideals I and J , we call an ideal (I : (I : J)) double ideal quotient in
the paper. Double ideal quotient appears in [10] to check associated primes or
compute equidimensional hull, and in [2], to compute equidimensional radical.
We survey other properties of double ideal quotient and find that it and its
variants have useful information about localization. For instance, for ideals I, J
and a primary decomposition Q of I, a variant of DIQ (I : (I : J)∞) coincides
with

⋂
Q∈Q,J⊂IK[X]√Q∩K[X] Q.

To check the practicality of criteria on LPA, we made an implementation on
the computer algebra system Risa/Asir [7] and demonstrate the performance in
several examples. To evaluate effectiveness coming from its speciality, we com-
pare timings of it to ones of a general algorithm of primary decomposition in
Risa/Asir.

For practical implements we devise several efficient techniques for improving
our LPA. (For efficient computation of ideal quotient and saturation, see [4,10]).
First, instead of computing the equidimensional hull hull(I+Pm), we use hull(I+
P

[m]
G ) where P

[m]
G = (fm

1 , . . . , fm
r ) for some generator G = {f1, . . . , fr} of P .

Second, we use a maximal independent set of P for computing hull(Q) where
Q is a P -hull-primary ideal. Since a maximal independent set U of P is one of
I + Pm, we obtain hull(I + Pm) = (I + Pm)K[X]K[U ]× ∩ K[X]. Moreover, we
also use U at the first step of LPA; use IK[X]K[U ]× ∩ K[X] instead of I. By
these efficient techniques, our experiment shows certain practicality of our direct
localization method.

2 Mathematical Basis

Throughout this paper, we denote a polynomial ring K[x1, . . . , xn] by K[X],
where K is a computable field (e.g. the rational field Q or a finite field Fp) and
we denote the set of variables {x1, . . . , xn} by X. We write (f1, . . . , ft)K[X] for
the ideal generated by elements f1, . . . , ft in K[X]. If the ring is obvious, we
simply use (f1, . . . , ft). When we simply say I is an ideal, it means the I is an
ideal of K[X]. Moreover, we denote the radical of I by

√
I.

2.1 Definition of Primary Decomposition and Localization

Here we give the definition of primary decomposition and that of localization
which seem slightly different from standard ones. We also give fundamental
notions and properties related to localization.

Definition 1. Let I be an ideal of K[X]. A set Q of primary ideals is called a
general primary decomposition of I if I =

⋂
Q∈Q Q. A general primary decompo-

sition Q is called a primary decomposition of I if the decomposition I =
⋂

Q∈Q Q
is an irredundant decomposition. For a primary decomposition of I, each primary
ideal is called a primary component of I. The prime ideal associated with a pri-
mary component of I is called a prime divisor of I and among all prime divisors,
minimal prime ideals are called isolated prime divisors of I and others are called

mmonagan@cecm.sfu.ca



274 Y. Ishihara and K. Yokoyama

embedded prime divisors of I. A primary component of I is called isolated if
its prime divisor is isolated and embedded if its prime divisor is embedded. We
denote by Ass(I) and Assiso(I) the set of all prime divisors of I and the set of
all isolated prime divisors respectively.

Definition 2. Let I be an ideal of K[X] and S a multiplicatively closed set in
K[X]. We denote the set {f ∈ K[X] | fs ∈ I for some s ∈ S} by IK[X]S ∩
K[X], and call it the localization of I with respect to S. For a multiplicatively
closed set K[X] \ P , where P is a prime ideal, we denote simply by IK[X]P ∩
K[X]. We assume a multiplicatively closed set S always does not contain 0.

Remark 3. Given a primary decomposition Q of an ideal I, the localiza-
tion of I by S is expressed as

⋂
Q∈Q,Q∩S=∅ Q. Moreover, it is also equal to

(I : (
⋂

P∈Ass(I),P∩S �=∅ P )∞). Thus if we know all primary components or all
associated primes, then we can compute localizations of I for any computable
multiplicatively closed sets S. (We are thinking mainly about cases where S is
finitely generated or the complement of a prime ideal. In these cases, we can
decide efficiently whether Q and S intersect or not). However, this method is
not a direct method since it computes unnecessary primary components or asso-
ciated primes.

Lemma 4. Let I be an ideal and P a prime divisor of I. If S is a multiplica-
tively closed set with P ∩ S = ∅ and Q is a P -primary ideal, then the following
conditions are equivalent.

(A) Q is a primary component of I.
(B) Q is a primary component of IK[X]S ∩ K[X].

Proof. First, (A) implies (B) from Proposition 4.9 in [1] . For primary decom-
positions Q of I and Q′ of IK[X]S ∩ K[X] with Q ∈ Q′, we obtain {Q′ ∈ Q |
Q′ ∩ S �= ∅} ∪ Q′ is also a primary decomposition of I. Hence, (B) implies (A).

Definition 5 ([1], Chap. 4). Let I be an ideal. A subset P of Ass(I) is said to
be isolated if it satisfies the following condition: for a prime divisor P ′ ∈ Ass(I),
if P ′ ⊂ P for some P ∈ P, then P ′ ∈ P.

Lemma 6 ([1], Theorem4.10). Let I be an ideal and P an isolated set con-
tained in Ass(I). For a multiplicatively closed set S = K[X] \ ⋃

P∈P P and a
primary decomposition Q of I, IK[X]S ∩ K[X] =

⋂
Q∈Q,

√
Q∈P Q.

Lemma 7. Let Q be a primary decomposition of I and Q ∈ Q. For a multi-
plicatively closed set S, the following conditions are equivalent.

(A) IK[X]S ∩ K[X] ⊂ IK[X]√Q ∩ K[X].
(B) Q ∩ S = ∅.
Proof. Show (A) implies (B). As IK[X]√Q ∩ K[X] ⊂ Q, IK[X]S ∩ K[X] =
⋂

Q′∈Q,Q′∩S=∅ Q
′ ⊂ Q. Since Q is irredundant, IK[X]S ∩K[X] has

√
Q-primary

component. Thus, Q∩S = ∅. Now, we show (B) implies (A). Then,
√
Q∩S = ∅

and Q′ ∩ S = ∅ for any Q′ ∈ Q s.t. Q′ ⊂ √
Q. Thus, IK[X]√Q ∩ K[X] =⋂

Q′⊂√
Q Q′ implies IK[X]S ∩ K[X] ⊂ IK[X]√Q ∩ K[X]. 	
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Next we introduce the notion of pseudo-primary ideal.

Definition 8. Let Q be an ideal. We say Q is pseudo-primary if
√
Q is a prime

ideal. In this case, we also say
√
Q-pseudo-primary.

Definition 9. Let I be an ideal and P an isolated prime divisor of I. For
P = {P ′ ∈ Ass(I) | P is the unique isolated prime divisor contained in P ′}
and S = K[X] \ ⋃

P ′∈P P ′, we call Q = IK[X]S ∩ K[X] the P -pseudo-primary
component of I. This definition is consistent with one in [8]. We note that the
P -pseudo-primary component is determined uniquely and has the P -isolated pri-
mary component of I as component.

Remark 10. Every P -pseudo-primary component of I is a P -pseudo-primary
ideal. Let QP be the P -pseudo-primary component of I. Then I =

⋂
P∈Assiso(I)

QP

∩I ′ for some I ′ s.t. Assiso(I ′) ∩ Assiso(I) = ∅. This decomposition is called a
pseudo-primary decomposition in [8], where it is computed by separators from
given Assiso(I). Meanwhile, we introduce another method to compute it by using
double ideal quotient in Lemma32.

Definition 11. Let I be an ideal and Q a primary decomposition of I. We call
hull(I) =

⋂
Q∈Q,dim(Q)=dim(I) Q the equidimensional hull of I. Since every pri-

mary component Q satisfying dim(Q) = dim(I) is isolated, hull(I) is determined
independently from choice of primary decompositions.

For a given I, hull(I) can be computed in several manners. For instance, it can
be computed by Ext functors [2] or a regular sequence contained in I [10].

Proposition 12 ([2], Theorem1.1. [10], Proposition 3.41). Let I be an
ideal and u ⊂ I be a c-length regular sequence, where c is the codimension of I.
Then hull(I) = ((u) : ((u) : I)) = annK[X](ExtcK[X](K[X]/I,K[X])).

Definition 13. Let I be an ideal. We say that I is hull-primary if hull(I) is
a primary ideal. For a prime ideal P , we say a hull-primary ideal I is P -hull-
primary if P = hull(

√
I).

Since a pseudo-primary ideal has the unique isolated component, we obtain the
following remark.

Remark 14. A pseudo-primary ideal is hull-primary.

By the definition of the P -pseudo-primary component of I, it is easy to prove
the following lemma.

Lemma 15. Let P be an isolated prime divisor of I and Q a P -pseudo-primary
component of I. Then, Q is a P -hull-primary and hull(Q) is the isolated P -
primary component of I.

Using Lemma 15 and a variant of double ideal quotient, we generate the isolated
P -primary component of I in Sect. 5.
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Lemma 16. Let Q be a primary ideal. Let I and J be ideals. If IJ ⊂ Q and
J �⊂ √

Q, then I ⊂ Q. In particular, if I ∩ J ⊂ Q and J �⊂ √
Q, then I ⊂ Q.

Proof. Let f ∈ I and g ∈ J \ √
Q. Since Q is

√
Q-primary, fg ∈ IJ ⊂ Q and

thus f ∈ Q. 	

Lemma 17. Let I be a P -hull-primary and Q a P -primary ideal. If I ⊂ Q, then
hull(I) ⊂ Q.

Proof. Let Q be a primary decomposition of I and J =
⋂

Q′∈Q,Q′ �=hull(I) Q
′. Then

I = hull(I) ∩ J ⊂ Q and J �⊂ P . Since Q is P -primary, we obtain hull(I) ⊂ Q
by Lemma 16. 	

Finally, we recall the famous Prime Avoidance Lemma.

Lemma 18 ([1], Proposition 1.11). (i) Let P1, . . . , Pn be prime ideals and
let I be an ideal contained in

⋃n
i=1 Pi. Then, I ⊂ Pi for some i.

(ii) Let I1, . . . , In be ideals and let P be a prime ideal containing
⋂n

i=1 Ii. Then
P ⊃ Ii for some i. If P =

⋂n
i=1 Ii, then P = Ii for some i.

2.2 Fundamental Properties of Ideal Quotient

We introduce fundamental properties of ideal quotient. The first two can be seen
in several papers and books ([1], Lemma 4.4. [4], Lemma 4.1.3. [10], a remark
before Proposition 3.56). The last two are direct consequences of the first two.

Lemma 19. Let I and J be ideals, Q a primary ideal and Q a primary decom-
position of I. Then,

(Q : J) =

⎧
⎪⎨

⎪⎩

Q, if J �⊂ √
Q,

K[X], if J ⊂ Q,√
Q-primary ideal properly containing Q, if J �⊂ Q, J ⊂ √

Q,

(Q : J∞) = (Q :
√
J

∞
) =

{
Q, if J �⊂ √

Q,

K[X], if J ⊂ √
Q,

(I : J) =
⋂

Q∈Q,J �⊂√
Q

Q ∩
⋂

Q∈Q,J �⊂Q,J⊂√
Q

(Q : J),

(I : J∞) = (I :
√
J

∞
) =

⋂

Q∈Q,J �⊂√
Q

Q.

3 Double Ideal Quotient

Double Ideal Quotient (DIQ) is an ideal of shape (I : (I : J)) where I and J are
ideals. For an ideal I and its primary decomposition Q, we divide Q into three
parts:

Q1(J) = {Q ∈ Q | J �⊂
√
Q}, Q2(J) = {Q ∈ Q | J ⊂ Q},

Q3(J) = {Q ∈ Q | J �⊂ Q, J ⊂
√
Q}.
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Then, our DIQ is expressed precisely by components of them. The following
proposition can be proved directly from Lemma 19. We omit an easy but tedious
proof.

Proposition 20. Let I and J be ideals. Then,

(I : (I : J)) =
⋂

Q∈Q2(J)

⎛

⎝Q :
⋂

Q′∈Q1(J)

Q′ ∩
⋂

Q′∈Q3(J)

(Q′ : J)

⎞

⎠

∩
⋂

Q∈Q3(J)

⎛

⎝Q :
⋂

Q′∈Q1(J)

Q′ ∩
⋂

Q′∈Q3(J)

(Q′ : J)

⎞

⎠ ,

√
(I : (I : J)) =

⋂

P∈Ass(I),J⊂P

P.

This proposition can be used to prove the following for prime divisors.

Corollary 21 ([10], Corollary 3.4). Let I be an ideal and P a prime ideal.
Then, P belongs to Ass(I) if and only if P ⊃ (I : (I : P )).

Proof. We note P ⊃ (I : (I : P )) if and only if P ⊃ √
(I : (I : P )). By Proposi-

tion 20,
√

(I : (I : P )) =
⋂

P ′∈Ass(I),P⊂P ′ P ′. If P ∈ Ass(I), then
√

(I : (I : P )) =
⋂

P ′∈Ass(I),P⊂P ′ P ′ ⊂ P . On the other hand, if P ⊃ √
(I : (I : P )), then there is

P ′ ∈ Ass(I) s.t. P ′ ⊂ P and P ′ ⊃ P . Thus P = P ′ ∈ Ass(I). 	

Replacing ideal quotient with saturation in DIQ, we have the following.

Proposition 22. Let Q be a primary decomposition of I. Then,

(I : (I : J)∞) =
⋂

Q∈Q,J⊂IK[X]√Q∩K[X]

Q, (1)

(I : (I : J∞)∞) =
⋂

Q∈Q,J⊂
√

IK[X]√Q∩K[X]

Q, (2)

(I : (I : J∞)) =
⋂

Q∈Q2(J)

(Q :
⋂

Q′∈Q1(J)

Q′) ∩ ⋂

Q∈Q3(J)

(Q :
⋂

Q′∈Q1(J)

Q′). (3)

We call them the first saturated quotient, the second saturated quotient, and
the third saturated quotient, respectively.

Proof. Here, we give an outline of the proof. The formula (1) can be proved by
combining the equation

(I : (I : J)∞) = (I :
√

(I : J)
∞

) =
⋂

Q∈Q,
⋂

Q′∈Q1(J)
√
Q′∩⋂

Q′∈Q3(J)
√
Q′ �⊂√

Q
Q

by Lemma 19 and the following equivalence

(1-a) J ⊂ IK[X]√Q ∩ K[X].
(1-b)

⋂
Q′∈Q1(J)

√
Q′ ∩ ⋂

Q′∈Q3(J)

√
Q′ �⊂ √

Q.
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for each Q ∈ Q. The second formula (2) can be proved by combining the equation
(I : (I : J∞)∞) = (I : (I : Jm)∞) =

⋂
Q∈Q,Jm⊂IK[X]√Q∩K[X] Q for a sufficiently

large m from the first formula (1), and the following equivalence

(2-a) Jm ⊂ IK[X]√Q ∩ K[X] for a sufficiently large m.

(2-b) J ⊂
√

IK[X]√Q ∩ K[X].

for each Q ∈ Q. The third formula (3) can be proved directly from Lemma 19.
Now, we explain some details. We show (1-a) implies (1-b). If

⋂

Q′∈Q1(J)

√
Q′ ∩

⋂

Q′∈Q3(J)

√
Q′ ⊂

√
Q,

then by Lemma 18,
√
Q′ ⊂ √

Q for some Q′ ∈ Q1(J)∪Q3(J). Since Q′ ⊂ √
Q′ ⊂√

Q, we obtain IK[X]√Q ∩ K[X] =
⋂

Q′′∈Q,Q′′⊂√
Q Q′′ ⊂ Q′. However, since

Q′ ∈ Q1(J) ∪ Q3(J), we obtain J �⊂ Q′ and this contradicts J ⊂ IK[X]√Q ∩
K[X] ⊂ Q′.

Show (1-b) implies (1-a). Let Q′ ∈ Q contained
√
Q. Since

⋂
Q′′∈Q1(J)

√
Q′′ ∩

⋂
Q′′∈Q3(J)

√
Q′′ �⊂ √

Q, we obtain Q′ �∈ Q1(J) ∪ Q3(J) and Q′ ∈ Q2(J). Hence,
J ⊂ Q′ and J ⊂ ⋂

Q′⊂√
Q Q′ = IK[X]√Q ∩ K[X].

Trivially, (2-a) implies (2-b) since J ⊂ √
Jm ⊂

√
IK[X]√Q ∩ K[X]. Show

(2-b) implies (2-a). For Q ∈ Q2(J) ∪ Q3(J), let mQ = min{m | Jm ⊂ Q}
and m = max{mQ | Q ∈ Q2(J) ∪ Q3(J)}. Then, (I : J∞) = (I : Jm). Since
IK[X]√Q ∩ K[X] =

⋂
Q′∈Q,Q′⊂√

Q Q′, we obtain Q′ ∈ Q2(J) ∪ Q3(J) for any
Q′ ∈ Q contained in

√
Q. Thus, we obtain Jm ⊂ IK[X]√Q ∩ K[X]. 	


Using the first saturated quotient, we devise criteria for primary component
in Sect. 4. The second saturated quotient can be used to isolated prime divisor
check and generate an isolated primary component in Sect. 5. The third saturated
quotient gives another prime divisor criterion (Criterion 5 in Sect. 4) other than
Corollary 19 by the following proposition.

Proposition 23. Let I and J be ideals. Then
√

(I : (I : J∞)) =
⋂

P∈Ass(I),J⊂P P.

Proof. Let Q be a primary decomposition of I. By Proposition 22 (3),

√
(I : (I : J∞)) =

⋂

Q∈Q2(J)

√

(Q :
⋂

Q′∈Q1(J)

Q′) ∩
⋂

Q∈Q3(J)

√

(Q :
⋂

Q′∈Q1(J)

Q′).

Since Q is minimal, we obtain Q �⊃ ⋂
Q′∈Q1(J)

Q′ for any Q ∈ Q2(J) and Q �⊃
⋂

Q′∈Q1(J)
Q′ for any Q ∈ Q3(J). Thus, by Lemma 19,

√
(I : (I : J∞)) =

⋂

Q∈Q2(J)

√

(Q :
⋂

Q′∈Q1(J)

Q′) ∩
⋂

Q∈Q3(J)

√

(Q :
⋂

Q′∈Q1(J)

Q′)

=
⋂

Q∈Q2(J)

√
Q ∩

⋂

Q∈Q3(J)

√
Q =

⋂

P∈Ass(I),J⊂P

P.
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4 Criteria for Primary Component and Prime Divisor

In this section, we present several criteria for primary component which check
if a P -primary ideal Q is a primary component of I or not without computing
primary decomposition of I based on the first saturated quotient. We first pro-
pose a general criterion applicable to any primary ideal. Later, we propose some
specialized criteria aiming for isolated primary components and maximal ones.
Finally, we add criteria for prime divisors.

4.1 General Primary Component Criterion

We use the first saturated quotient to check if a given primary ideal is a compo-
nent or not. We introduce a key notion saturated quotient invariant.

Definition 24. Let I and J be ideals. We say that J is saturated quotient invari-
ant of I if (I : (I : J)∞) = J.

Any localization is saturated quotient invariant. Conversely, any proper sat-
urated quotient invariant ideal is some localization of I.

Lemma 25. Let I be an ideal and J a proper ideal of K[X]. Then, the following
conditions are equivalent.

(A) J = IK[X]S ∩ K[X] for some multiplicatively closed set S.
(B) J is saturated quotient invariant of I.

Proof. Let Q be a primary decomposition. Show (A) implies (B). From Propo-
sition 22 (1),

(I : (I : IK[X]S ∩ A)∞) =
⋂

Q∈Q,IK[X]S∩K[X]⊂IK[X]√Q∩K[X]

Q. (4)

By Lemma 7, IK[X]S ∩K[X] ⊂ IK[X]√Q∩K[X] if and only if Q∩S = ∅. Thus,
⋂

Q∈Q,IK[X]S∩K[X]⊂IK[X]√Q∩K[X]

Q =
⋂

Q∈Q,Q∩S=∅
Q, (5)

Combining (4), (5) and IK[X]S ∩ K[X] =
⋂

Q∈Q,Q∩S=∅ Q by Remark 3, we
obtain (I : (I : IK[X]S ∩ A)∞) = IK[X]S ∩ K[X].

Next, show (B) implies (A). From Proposition 22 (1),

(I : (I : J)∞) =
⋂

J⊂IK[X]√Q∩K[X]

Q = J. (6)

Let P = {√
Q | Q ∈ Q, J ⊂ IK[X]√Q∩K[X]}. We may assume P �= ∅, otherwise

P = ∅ and J = K[X]. Then P is isolated since if P ′ ∈ Ass(I) and P ′ ⊂ P for
some P ∈ P, then J ⊂ IK[X]P ∩ K[X] ⊂ IK[X]P ′ ∩ K[X] and P ′ ∈ P.
Let S = K[X] \ ⋃

P∈P P . By Lemma 6, IK[X]S ∩ K[X] =
⋂

Q∈Q,
√
Q∈P Q =⋂

J⊂IK[X]√Q∩K[X] Q. By (3), we obtain IK[X]S ∩ K[X] = J . 	
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Based on Lemma 25, we have the following criterion for primary component.

Theorem 26 (Criterion 1). Let I be an ideal and P a prime divisor of I.
For a P -primary ideal Q, if Q �⊃ (I : P∞), then the following conditions are
equivalent.

(A) Q is a P -primary component for some primary decomposition of I.
(B) (I : P∞) ∩ Q is saturated quotient invariant of I.

Proof. Show (A) implies (B). Let Q be a primary decomposition. Let P =
{P ′ ∈ Ass(I) | P �⊂ P ′ or P ′ = P} and S = K[X] \ ⋃

P ′∈P P ′. Then S is
a multiplicatively closed set and (I : P∞) ∩ Q ⊂ IK[X]S ∩ K[X] since (I :
P∞) ∩ Q =

⋂
Q′∈Q,P �⊂√

Q′ Q′ ∩ Q. For each Q′ ∈ Q with Q′ ∩ S = ∅, there is
P ′ ∈ P such that

√
Q′ ⊂ P ′, i.e.

√
Q′ ∈ P. Thus, (I : P∞)∩Q ⊃ IK[X]S ∩K[X]

and (I : P∞)∩Q = IK[X]S ∩K[X]. By Lemma 25, IK[X]S ∩K[X] is saturated
quotient invariant of I.

Show (B) implies (A). By Lemma 25, there is a multiplicatively closed set S
such that (I : P∞) ∩ Q = IK[X]S ∩ K[X]. Let Q be a primary decomposition
of I. We know IK[X]S ∩ K[X] =

⋂
Q′∈Q,Q′∩S=∅ Q

′. By the assumption, Q �⊃
(I : P∞) and thus (I : P∞) ∩ Q has a P -primary component. Then neither⋂

Q′∈Q,Q′∩S �=∅ Q
′ nor (I : P∞) has a P -primary component. Hence,

I = (I : P∞) ∩Q∩ ⋂
Q′∈Q,Q′∩S �=∅ Q

′ =
⋂

Q′∈Q,P �⊂√
Q′ Q′ ∩Q∩ ⋂

Q′∈Q,Q′∩S �=∅ Q
′

is a primary decomposition and Q is its P -primary component. 	


4.2 Other Criteria for Primary Component

Next, we propose criteria for primary components having special properties
which can be applied for particular prime divisors. These criteria may be com-
puted more easily than the general one.

Criterion for Isolated Primary Component: If Q is a primary ideal whose
radical is an isolated divisor P of an ideal I, then we don’t need to compute
(I : P∞) since the P -primary component of I is the localization of I by P .

Theorem 27 (Criterion 2). Let I be an ideal and P an isolated prime divisor
of I. For a P -primary ideal Q, the following conditions are equivalent.

(A) Q is the isolated P -primary component of I.
(B) (I : (I : Q)∞) = Q.

Proof. Show (A) implies (B). Let S = K[X] \ P . By Lemma 25, Q = IK[X]S ∩
K[X] is saturated quotient invariant of I and thus (I : (I : Q)∞) = Q. Next,
we show (B) implies (A). By Lemma 25, there is a multiplicatively closed set S
s.t. IK[X]S ∩ K[X] = Q. Since Q is primary, IK[X]S ∩ K[X] is the isolated
P -primary component. 	
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Criterion for Maximal Primary Component: Each isolated prime divisor
is minimal in Ass(I). On the contrary, we consider “maximal prime divisor” and
propose the following criterion for it.

Definition 28. Let P be a prime divisor of I. We say P is maximal if there is
no prime divisor P ′ of I containing P properly.

Theorem 29 (Criterion 3). Let I be an ideal and P a maximal prime divisor
of I. For P -primary ideal Q, the following conditions are equivalent.

(A) Q is a P -primary component of I.
(B) (I : P∞) ∩ Q = I.

Proof. Show (A) implies (B). Let Q be a primary decomposition of I with Q ∈ Q.
Since P is maximal in Ass(I), (I : P∞) =

⋂
Q′∈Q,

√
Q′ �⊃P Q′ =

⋂
Q′∈Q,Q′ �=Q Q′.

Thus, (I : P∞) ∩ Q =
⋂

Q′∈Q,Q′ �=Q Q′ ∩ Q = I. Next, we show (B) implies
(A). Let Q′ be a primary decomposition of (I : P∞). Since Q′ does not have
P -primary component, Q′ ∪ {Q} is a primary decomposition of I. 	


Criterion for Another General Primary Component: The general case
can be reduced to maximal case via localization by maximal independent set
(See [4] the definition of maximal independent and its computation). Letting
S = K[U ]× = K[U ] \ {0}, we obtain the following as a special case of Lemma 4.

Theorem 30 (Criterion 4). Let I be an ideal and P a prime divisor of I. If
U is a maximal independent set of P in X and Q is a P -primary ideal, then the
following conditions are equivalent.

(A) Q is a primary component of I.
(B) Q is a primary component of IK[X]K[U ]× ∩ K[X].

4.3 Additional Criterion for Prime Divisor

Here, we add a criterion for prime divisor based on the third saturated quotient.

Theorem 31 (Criterion 5). Let I be an ideal and P a prime ideal. Then, the
following conditions are equivalent.

(A) P ∈ Ass(I).
(B) P ⊃ (I : (I : P )).
(C) P ⊃ (I : (I : P∞)).

Proof. By Corollary 21, (A) is equivalent to (B). By Proposition 23,√
(I : (I : P )) =

√
(I : (I : P∞)) =

⋂
P ′∈Ass(I),P⊂P ′ P ′. Thus, equivalence

between (A) and (C) is proved in a similar way to Corollary 21. 	

Next, we devise criteria for isolated prime divisor based on the second saturated
quotient.
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Lemma 32. Let I be an ideal and P an isolated prime divisor of I. If Q is the
P -pseudo-primary component of I, then (I : (I : P∞)∞) = Q.

Proof. Let Q be a primary decomposition of I. By Proposition 22 (2),

(I : (I : P∞)∞) =
⋂

Q∈Q,P⊂
√

IK[X]√Q∩K[X]
Q.

Thus it is enough to show that the following statements are equivalent for each
Q ∈ Q.

(1-a) P ⊂
√
IK[X]√Q ∩ K[X].

(1-b) P is the unique isolated prime divisor which is contained in
√
Q.

Show (1-a) implies (1-b). As
√
IK[X]√Q ∩ K[X] ⊂ √

Q, we know P ⊂ √
Q.

Then, suppose there is another isolated prime divisor P ′ contained in
√
Q. We

obtain √
IK[X]√Q ∩ K[X] =

⋂

Q′∈Q,Q′⊂√
Q

√
Q′ ⊂ P ′.

However, this implies P ⊂ P ′ and contradicts that P ′ is isolated. It is easy to
prove that (1-b) implies (1-a). 	

Theorem 33 (Criterion 6). Let I be an ideal and P a prime ideal containing
I. Then, the following conditions are equivalent.

(A) P is an isolated prime divisor of I.
(B) (I : (I : P∞)∞) �= K[X].

Proof. Show (A) implies (B). By Lemma 32, (I : (I : P∞)∞) = Q �= K[X].
Show (B) implies (A). By Proposition 22 (2),

(I : (I : P∞)∞) =
⋂

Q∈Q,P⊂
√

IK[X]√Q∩K[X]
Q �= K[X]

for a primary decomposition Q of I. Then, there is an isolated prime divisor P ′

containing P . Since
√
I ⊂ P ⊂ P ′ and P ′ is isolated, this implies P = P ′ is

isolated. 	

Since each prime divisor of I contains I, Theorem 33 directly induces the follow-
ing.

Corollary 34 (Criterion 7). Let I be an ideal and P a prime divisor of I.
Then,

(i) P is isolated if (I : (I : P∞)∞) �= K[X],
(ii) P is embedded if (I : (I : P∞)∞) = K[X].
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5 Local Primary Algorithm

In this section, we devise Local Primary Algorithm (LPA) which computes P -
primary component of I. Our method applies different procedures for two cases;
isolated and embedded. Algorithm 1 shows the outline of LPA. Its termination
comes from Proposition 35. We remark that, for given prime divisors disjoint
from a multiplicatively closed set S, we can compute all primary components
disjoint from S by LPA. Then their intersection gives the localization by S.

5.1 Generating Primary Component

First, we introduce several ways to generate primary component through equidi-
mensional hull computation.

Proposition 35 ([2], Sect. 4. [6], Remark 10). Let I be an ideal and P a
prime divisor of I. For any positive integer m, I+Pm is P-hull-primary, and for
a sufficiently large integer m, hull(I +Pm) is a P -primary component appearing
in a primary decomposition of I.

We can use Criteria for Primary Component to check m is large enough or
not. If P is an isolated prime divisor, then the component is computed directly
by using the second saturated quotient. By Lemmas 15 and 32, we obtain the
following theorem.

Theorem 36. Let I be an ideal and P an isolated prime divisor of I. Then
hull((I : (I : P∞)∞)) is the isolated P -primary component of I.

Algorithm 1. General Frame of Local Primary Algorithm
Input: I: an ideal, P : a prime ideal
Output: • a P -primary component of I if P is a prime divisor of I

• ”P is not a prime divisor” otherwise
1: if P is a prime divisor of I (Criterion 5) then
2: if P is isolated (Criteria 6,7) then
3: Q ← the P -pseudo-primary component of I (Lemma 32)
4: Q ← hull(Q) (Theorem 36)
5: return Q is the isolated P primary component
6: else
7: m ← 1
8: while Q is not primary component of I (Criteria 1,3,4) do
9: Q ← a P -hull-primary ideal related to m (Proposition 35, Lemma 38)

10: Q ← hull(Q)
11: m ← m + 1
12: end while
13: return Q is an embedded P -primary component
14: end if
15: else
16: return ”P is not a prime divisor”
17: end if
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5.2 Techniques for Improving LPA

We introduce a practical technique for implementing LPA.

5.3 Another Way of Generating Primary Component

Let G = {f1, . . . , fr} be a generator of P . Usually we take {fe1
1 fe2

2 · · · fer
r |

e1 + · · · + er = m} as a generator of Pm for a positive integer m. However, this
generator has (r+m−1)!

(r−1)!m! elements and it becomes difficult to compute hull(I+Pm)
when m becomes large. To avoid the explosion of the number of the generator,
we can use P

[m]
G = (fm

1 , . . . , fm
r ) instead.

Lemma 37. Let Q be a primary decomposition of I and Q ∈ Q. If
√
Q-hull-

primary ideal Q′ satisfies I ⊂ Q′ ⊂ Q, then (Q \ {Q}) ∪ {hull(Q′)} is another
primary decomposition of I.

Proof. By Lemma 17, we obtain I ⊂ Q′ ⊂ hull(Q′) ⊂ Q. Since I ∩ hull(Q′) = I
and Q ∩ hull(Q′) = hull(Q′), we obtain

I = I∩hull(Q′) =

⎛

⎝
⋂

Q′′∈Q,Q′′ �=Q

Q′′ ∩ Q

⎞

⎠∩hull(Q′) =
⋂

Q′′∈Q,Q′′ �=Q

Q′′∩hull(Q′).

Thus, (Q \ {Q}) ∪ {hull(Q′)} is an irredundant primary decomposition of I. 	

Lemma 38. For any positive integer m, I + P

[m]
G is P -hull-primary, and for

a sufficiently large m, hull(I + P
[m]
G ) is a P -primary component appearing in a

primary decomposition of I.

Proof. As
√
I + P =

√

I + P
[m]
G = P , I + P

[m]
G is P -hull-primary. By Theo-

rem 35, hull(I + Pm) is a P -primary component of I for a sufficiently large m.
Since I ⊂ I + P

[m]
G ⊂ I + Pm ⊂ hull(I + Pm), hull(I + P

[m]
G ) is a P -primary

component by Lemma 37. 	


5.4 Equidimensional Hull Computation with MIS

Next, we devise another computation of hull(I + Pm) based on maximal inde-
pendent set (MIS) which is much efficient than computations based on Proposi-
tion 12. Similarly, by this technique we can replace I with IK[X]K[U ]× ∩ K[X]
at the first step of LPA.

Lemma 39. Let I be a P -hull-primary ideal. For a maximal independent set U
of P , hull(I) = IK[X]K[U ]× ∩ K[X].

Proof. Let Q be a primary decomposition of I. Then, hull(I) is the unique
primary component disjoint from K[U ]×. Thus,

IK[X]K[U ]× ∩ K[X] =
⋂

Q∈Q,Q∩K[U ]×=∅ Q = hull(I).
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6 Experiments

We made a preliminary implementation on a computer algebra system Risa/Asir
[7] and apply it to several examples as naive experiments. Here we show some
typical examples. Timings are measured on a PC with Xeon E5-2650 CPU.

First, we see an ideal whose embedded primary components are hard to
compute. Let I1(n) = (x2) ∩ (x4, y) ∩ (x3, y3, (z + 1)n + 1). If n is considerably
large, it is difficult to compute a full primary decomposition of I1(n) though
the isolated divisor (x) can be detected pretty easily. We apply Local Primary
Algorithm (LPA) for this example to compute the isolated primary component
for P1 = (x). We also see another example which is more valuable for math-
ematics. An ideal Ak,m,n is defined in [9] and its primary decomposition has
important meanings in Computer Algebra for Statistics. We consider an isolated
prime divisor P2 = (x13, x23, x33, x43) of A3,4,5 in Q[xij | 1 ≤ i ≤ 4, 1 ≤ j ≤ 5].
In Table 1, we can see LPA has certain effectiveness by its speciality comparing a
full primary decomposition function noro pd.syci dec. From Proposition 12, we
also use double ideal quotient to compute equidimensional hull.

Table 1. Local primary algorithm (isolated)

Algorithm I1(100) I1(200) I1(300) I1(400) I1(500) A3,4,5/P2

noro pd.syci dec 0.36 15.6 88.3 289 96.0 >3600

LPA 0.02 0.04 0.07 0.11 0.14 14.3

Second, we consider embedded prime divisors; P3 = (x12x31−x32x11, x42x11−
x41x12, x42x31 − x41x32, x44x31 − x41x34, x44x32 − x42x34, x13, x21, x22, x23, x24,
x33, x43) of A2,4,4 in Q[xij | 1 ≤ i ≤ 4, 1 ≤ j ≤ 4] and P4 = (x16x27 − x17

x26, x34x13 − x33x14, x37x16 − x36x17, x36x27 − x37x26, x12, x15, x21, x22, x23,
x24, x25, x32, x35) of A2,3,7 in Q[xij | 1 ≤ i ≤ 3, 1 ≤ j ≤ 7]. In Table 2, LPA-Pm
is an implementation based on Lemma 38 and LPA-MIS is one from Lemma 39
and Criteria 3, 4. Both methods are implemented in LPA-(Pm+MIS). The prim-
itive LPA is not practical since the cost of computing hull(I +Pm) is very high.
On the other hand, we can see LPA-(Pm+MIS) has good effectiveness by its
speciality comparing a full primary decomposition function noro pd.syci dec.

Table 2. Local primary algorithm (embedded) and its improvement

Algorithm A2,4,4/P3 A2,3,7/P4

noro pd.syci dec 3.11 34.8

LPA >3600 168

LPA-Pm 4.75 29.1

LPA-MIS 0.58 0.38

LPA-(Pm+ MIS) 0.15 0.08
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7 Conclusion and Future Work

In commutative algebra, the operation of “localization by a prime ideal” is well-
known as a basic tool. However, its computation through primary decomposition
is very difficult. Thus, we devise a new effective localization Local Primary Algo-
rithm (LPA) using Double Ideal Quotient(DIQ) and its variants without com-
puting unnecessary primary components for localization. For our construction
of LPA, we devise several criteria for primary component based on DIQ and its
variants. We take preliminary benchmarks for some examples to examine certain
effectiveness of LPA coming from its speciality. To make our LPA very practical
we shall continue to improve it through obtaining timing data for a lot of larger
examples.

In future work, we are finding a way to compute “sample points” of prime
divisors. For localization it does not need all divisors; it is enough to find fP ∈
P ∩S for each prime divisor P with P ∩S �= ∅ and we obtain IK[X]S ∩K[X] =
(I : (

∏
P∩S �=∅ fP )∞). Another work is to apply our primary component criteria

to probabilistic or inexact methods for primary decomposition, such as numerical
ones. Probabilistic or inexact ways have low computational costs, however, they
have low accuracy for outputs. Hence, our criterion using double ideal quotient
may help to guarantee their outputs. Finally, localization in general setting, that
is localization by a prime ideal not necessary associated is interesting work.

Acknowledgment. The authors would like to thank the referees for their helpful
comments to improve the presentation of this paper. The authors are also grateful to
Masayuki Noro for technical assistance with the computer experiments and coding on
Risa/Asir.
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Abstract. We demonstrate how methods in Functional Programming
can be used to implement a computer algebra system. As a proof-of-
concept, we present the computational-algebra package. It is a com-
puter algebra system implemented as an embedded domain-specific lan-
guage in Haskell, a purely functional programming language. Utilising
methods in functional programming and prominent features of Haskell,
this library achieves safety, composability, and correctness at the same
time. To demonstrate the advantages of our approach, we have imple-
mented advanced Gröbner basis algorithms, such as Faugère’s F4 and
F5, in a composable way.

Keywords: Gröbner basis · Signature-based algorithms
Computational algebra · Functional programming · Haskell
Type system · Formal methods · Property-based testing
Implementation report

1 Introduction

In the last few decades, the area of computational algebra has grown larger. Many
algorithms have been proposed, and there have emerged plenty of computer
algebra systems. Such systems must achieve correctness, composability and safety
so that one can implement and examine new algorithms within them. More
specifically, we want to achieve the following goals:

Composability means that users can easily implement algorithms or mathe-
matical objects so that they work seamlessly with existing features.

Safety prevents users and implementors from writing “wrong” code. For exam-
ple, elements in different rings, e.g. Q[x, y, z] and Q[w, x, y], should be treated
differently and must not directly be added. Also, it is convenient to have
handy ways to convert, inject, or coerce such values.

Correctness of algorithms, with respect to prescribed formal specifications,
should be guaranteed with a high assurance.

We apply methods in the area of functional programming to achieve these
goals. As a proof-of-concept, we present the computational-algebra pack-
age [12]. It is implemented as an embedded domain-specific language in the
c© Springer Nature Switzerland AG 2018
V. P. Gerdt et al. (Eds.): CASC 2018, LNCS 11077, pp. 288–303, 2018.
https://doi.org/10.1007/978-3-319-99639-4_20
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Table 1. Symbols in code fragments

Haskell Language [10]. More precisely, we adopt the Glasgow Haskell Compiler
(GHC) [7] as our hosting language. We use GHC because: its type-system allows
us to build a safe and composable interface for computer algebra; lazy evalua-
tion enables us to treat infinite objects intuitively; declarative style sometimes
reduces a burden of writing mathematical programs; purity permits a wide range
of equational optimisation; and there are plenty of libraries for functional meth-
ods, especially property-based testing. These methods are not widely adopted in
this area; an exception is DoCon [23], a pioneering work combining Haskell and
computer algebra. Our system is designed with more emphasis on safety and
correctness than DoCon, adding more ingredients. Although we use a functional
language, some methods in this paper are applicable in imperative languages.

This paper is organised as follows. In Sect. 2, we discuss how the progres-
sive type-system of GHC enables us to build a safe and expressive type-system
for a computer algebra. Then, in Sect. 3, we see how the method of property-
based testing can be applied to verify the correctness of algebraic programs in a
lightweight and top-down manner. To demonstrate the practical advantages of
Haskell, Sect. 4 gives a brief description of the current implementations of the
Hilbert-driven, F4 and F5 algorithms. We also take a simple benchmark there.
We summarise the paper and discuss related and future works in Sect. 5.

In what follows, we use symbols in Table 1 in code fragments for readability.

2 Type System for Safety and Composability

In this section, we will see how the progressive type-level functionalities of GHC
can be exploited to construct a safe, composable and flexible type-system for a
computer algebra system. There are several existing works on type-systems for
computer algebra, such as in Java and Scala [15,18], and DoCon. However, none
of them achieves the same level of safety and composability as our approach,
which utilises the power of dependent types and type-level functions.

2.1 Type Classes to Encode Algebraic Hierarchy

We use type-classes, an ad-hoc polymorphism mechanism in Haskell, to encode
an algebraic hierarchy. This idea is not particularly new (for example, see
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Mechveliani [23] or Jolly [15]), and we build our system on top of the existing
algebra package [17], which provides a fine-grained abstract algebraic hierarchy.

Code 1. Group structure, coded in the algebra package

1 class Additive a where
2 (+) :: a → a → a
3 class Additive a ⇒ Monoidal a where
4 zero :: a
5 class Monoidal a ⇒ Group a where
6 negate :: a → a

Code 1 illustrates a simplified version of the algebraic hierarchy up to Group
provided by the algebra package. Each statement between class or ⇒ and
where, such as Additive a or Monoidal a, expresses the constraint for types.
For example, Lines 1 and 2 express “a type a is Additive if it is endowed with
a binary operation +”, and Lines 3 and 4 that “a type a is Monoidal if it is
Additive and has a distinguished element called zero”.

Note that none of these requires the “proof” of algebraic axioms. Hence, one
can accidentally write a non-associative Additive-instance, or non-distributive
Ring-instance1. This sounds rather “unsafe”, and we will see how this could be
addressed reasonably in Sect. 3.

2.2 Classes for Polynomials and Dependent Types

Expressing algebraic hierarchy using type-class hierarchy, or class inheritance,
is not so new and they are already implemented in DoCon or JAS. However,
these systems lack a functionality to distinguish the arity of polynomials or the
denominator of a quotient ring. In particular, DoCon uses sample arguments
to indicate such parameters, and they cannot be checked at compile-time. To
overcome these restrictions, we use Dependent Types.

For example, Code 2 presents the simplified definition of the class IsOrdPoly
for polynomials. We provide an abstract class for polynomials, not just an imple-
mentation, to enable users to choose appropriate internal representations fitting
their use-cases.

The class definition includes not only functions, but also associated types, or
type-level functions: Arity, MOrder and Coeff. Respectively, they correspond to
the number of variables, the monomial ordering and the coefficient ring.

Note that liftMap corresponds to the universality of the polynomial ring
R[X1, . . . , Xn]; i.e. the free associative commutative R-algebra over { 1, . . . , n }.

1 Indeed, one can use dependent types, described in the next subsection, to require such
proofs. However, this is too heavy for the small outcome, and does not currently work
for primitive types.
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Code 2. A type-class for polynomials

1 class (Module (Coeff poly) poly , Commutative poly , Ring poly ,
2 CoeffRing (Coeff poly), IsMonomialOrder (MOrder poly))
3 ⇒ IsOrdPoly poly where
4 type Arity poly :: N

5 type MOrder poly :: Type
6 type Coeff poly :: Type
7 liftMap :: (Module (Scalar (Coeff poly)) alg , Ring alg)
8 ⇒ (N<Arity poly → alg) → poly → alg

9 leadTerm :: poly → (Coeff poly , OrdMonom (MOrder poly) n)
10 ...

Code 3. Examples for polynomial instances

1 instance (IsMonomialOrder ord , CoeffRing r)
2 ⇒ IsOrdPoly (OrdPoly r ord n) where
3 type Arity (OrdPoly r ord n) = n
4 type MOrder (OrdPoly r ord n) = ord
5 type Coeff (OrdPoly r ord n) = r
6 ...
7

8 f :: OrdPoly Q Grevlex 3
9 f = let [x,y,z] = vars in x ^ 2 × y + 3 × x + z + 1

10

11 instance (CoeffRing r) ⇒ IsOrdPoly (Unipol r) where
12 type Arity (OrdPoly r ord n) = 1
13 type MOrder (OrdPoly r ord n) = Lex
14 type Coeff (OrdPoly r ord n) = r
15 ...

In theory, this function suffices to characterise the polynomial ring. However, for
the sake of efficiency, we also include some other operations in the definition.

Code 3 shows example instance definitions for the standard multivariate and
univariate polynomial ring types. Note that, in Lines 8 and 12, number literal
expressions 1 and 3 occur in type contexts. Types depending on expressions are
called Dependent Types in type theory. GHC supports them via the Promoted
Data-types language extension [27] since version 7.4. Our library heavily uses this
functionality, and achieves the type-safety preventing users from unintendedly
confusing elements from different rings.

2.3 Proofs in Dependent Types and Type-Driven Casting Function

In theory, we can use liftMap to cast between any elements of “compatible”
polynomial rings. To reduce the burden to write boilerplate casting functions, our
library comes with smart functions, as shown in Code 4. The convPoly function
maps a polynomial into one with the same setting but different representation;
e.g. OrdPoly Q Lex 1 into Unipol Q. The next injVars function maps an
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Code 4. Various casting function, with simplified type-signatures

1 convPoly :: (Coeff r ∼ Coeff r’, MOrder r ∼ MOrder r’,
2 Arity r ∼ Arity r’)
3 ⇒ r → r’
4 injVars :: (Arity r ≤ Arity r’, Coeff r ∼ Coeff r’)
5 ⇒ r → r’
6 injVarsOffset :: (n + Arity r ≤ Arity r’, Coeff r ∼ Coeff r’)
7 ⇒ Sing n → r → r’

element of R[X1, . . . , Xn] into another polynomial ring with the same coefficient
ring, but with more number of variables, e.g. R[X1, . . . , Xn+m], regardless of
ordering. For example, it maps Unipol Q into OrdPoly Q Grevelx 3. Then,
injVarsOffset is a variant of injVars which maps variables with offset; for
example,

1 injVarsOffset [sn | 3 | ] :: Unipol Q → Polynomial Q 5

maps Q[X] into Q[X0, . . . , X4] with X �→ X3. Here, [sn|3|] is called a sin-
gleton for the type-level natural number 3, first introduced by Eisenberg et
al. [4]. More precisely, for any type-level natural n, there is the unique expression
sing :: Sing n and we can use it as a tag for type-level arguments.

To work with type-level naturals, we sometimes have to prove some con-
straints. For example, suppose we want to write a variant of injVars mapping
variables to the end of those of the target polynomial ring, instead of the begin-
ning. We might first write it as follows:

1 injVarsAtEnd :: (Arity r ≤ Arity r’, Coeff r ∼ Coeff r’)
2 ⇒ r → r’
3 injVarsAtEnd =
4 let sn = sing :: Sing (Arity r)
5 sm = sing :: Sing (Arity r’)
6 in injVarsOffset (sm � sn) -- Errors!

However, GHC cannot see Arity r’ - Arity r + Arity r ≤ Arity r’.
Although this constraint is rather clear to us, we have to give the compiler its
proof. We have developed the type-natural package [14] which includes typical
“lemmas”. For example, we can use the minusPlus lemma to fix this:

1 -- From type -natural:

2 minusPlus :: Sing n → Sing m
3 → IsTrue (m ≤ n) → ((n - m) + m) � n
4

5 injVarsAtEnd :: (Arity r ≤ Arity r’, Coeff r ∼ Coeff r’)
6 ⇒ r → r’
7 injVarsAtEnd =
8 let sn = sing :: Sing (Arity r)
9 sm = sing :: Sing (Arity r’)

10 in withRefl (minusPlus sm sn Witness) $
11 injVarsOffset (sm � sn)
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Since giving such a proof each time is rather tedious, we can use type-checker
plugins to let the compiler try to prove constraints automatically. In particu-
lar, the author developed the ghc-typelits-presburger plugin [13] to resolve
propositions in Presburger arithmetic at compile time.

Our library also provides the LabPoly type, which converts existing polyno-
mial types into “labelled” ones. For example, one can write as follows:

1 f :: LabPoly (Polynomial Q 3) ’["x", "y", "z"]
2 f = 5 × #x ^ 2 × #y ^ 3 - #y × #z + 1

This relies on the DataKinds and OverloadedLabels language extensions
of GHC. GHC’s type system is strong enough to reject illegal terms and types,
such as #w :: LabPoly (Unipol Q)’["a"] (w is not listed as a variable) or
LabPoly (Polynomial Q 3) ’["x", "y", "x"] (the variable x occurs twice).
Using the type-level information, one can invoke the canonical inclusion maps
naturally as follows:

1 f :: LabPoly ’ Q Grevlex ’["x", "y", "z"]
2 f = #x × #y × #z + 2 × #y - 3 × #z × #x + 1
3 g :: LabPoly ’ Q Lex ’["w", "z", "y", "u", "x"]
4 g = canonicalMap f
5
6 -- Where:

7 canonicalMap :: (xs ⊆ ys , Wraps xs poly , Wraps ys poly ’,
8 IsPolynomial poly , IsPolynomial poly ’,
9 Coeff poly ∼ Coeff poly ’)

10 ⇒ LabPoly poly xs → LabPoly poly ’ ys

2.4 Optimising Casting Functions with Rewriting Rules

Since the casting functions are implemented generically, they sometimes intro-
duce unnecessary overhead. For example, if one uses injVars with the same
source and target types, it should just be the identity function. Fortunately, we
can use the type-safe Rewriting Rule functionality of GHC to achieve this:

1 {-# RULES "injVars/ identity" injVars = id #-}

Each rewriting rule fires at compile-time, if there is a term matching the
left-hand side of the rule and having the same type as the right-hand side.

In Haskell, it suffices just to consider algebraic laws to write down custom
rewriting rules. This is due to the purity of Haskell. That is, every expression
in Haskell is pure, in a sense that they evaluate to the same result when given
the same arguments. Note that this does not mean that Haskell cannot treat
values with side-effects; indeed, the type-system of Haskell distinguishes pure
and impure values at type-level, and one can treat impure operations without
violating purity as a whole. The trick behind this situation is to describe side-
effects as some kind of abstract instructions, instead of treating impure values
directly. Hence, for example, duplicating the same term does not make any dif-
ference in its meaning, provided that it is algebraically correct. Such a rewriting

mmonagan@cecm.sfu.ca



294 H. Ishii

rule is used extensively in Haskell. For example, Stream Fusion [3] uses them to
eliminate unnecessary intermediate expressions and fuse complicated functions
into efficient one-path constructions. Yet, DoCon did not do any optimisation
using rewriting rules.

In our library, we also use rewriting rules to remove idempotent applications
such as “grading” a monomial ordering twice, e.g:

1 {-# RULES "graded/graded" ∀ ord.

2 graded (graded ord) = graded ord #-}

2.5 Notes on Applicability in Imperative Languages

The safety we achieved in this section cannot be achieved at compile-time with-
out dependent types and type-level functions. Existing works using type-classes
or class inheritance to encode algebraic hierarchy, such as JAS or DoCon, lack
this level of safety. In theory, one can achieve the same level of safety even in a
statically-typed imperative language, if it supports a kind of dependent types.
For example, in C++, templates with non-type arguments can be used to simulate
dependent types. On the other hand, in Java, Generics do not allow non-type
arguments and we need to mimic Peano numerals with classes. In either case,
it requires much effort to prove the properties of naturals within them, because
they lack dedicated support for type-level naturals or type-checker plugins.

On the other hand, to make use of rewriting rules, we need purity as discussed
above.

3 Lightweight Correctness: Property-Based Testing

3.1 Property-Based Testing Introduced

In this section, we will address the correctness issue, in a top-down, or lightweight
manner. Especially, we apply the method of property-based testing [1] to verify
the correctness of our implementation. The idea is that one specifies the formal
properties that the implemented algorithms and types must satisfy, and checks
if they hold by testing them against randomly or exhaustively generated inputs.
Although it is not as rigorous as a theorem proving, it still gives a guarantee of
the correctness at high assurance, after repeating tests time after time.

Code 5 presents the example specifications for algebraic programs. In Lines
1 through 4, prop_division states that the implementation of Q must satisfy
the axioms of division ring. The prop_passesSTest function demand the result
of calcGroebnerBasis to pass the S-test. The tester accepts the specifications
above, generates a specified number of inputs (default: 100) and tests against
them. If all the inputs satisfy the specifications, it successfully halts; otherwise,
it reports counterexamples, which is useful while debugging.
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Code 5. Formal Specification of Algebraic Programs

1 prop_division :: Q → Property
2 prop_division q =
3 q 	= 0 =⇒ (recip q × q = 1 ∧ q × recip q = 1)
4 ∧ q × 1 = q ∧ 1 × q = q
5

6 prop_passesSTest n =
7 forAll (idealOfArity n) $ λ ideal →
8 let gs = calcGroebnerBasis (toIdeal ideal)
9 in all (isZero ◦ (‘modPoly ‘ gs))

10 [sPoly f g | f ← gs , g ← gs , f 	= g]

3.2 Discussion

There are several libraries for property-based testing adopting different strategies
to generate inputs. For example, QuickCheck [1] generates inputs randomly,
while SmallCheck [26] exhaustively enumerates inputs in the depth-increasing
order. Even though there are other implementations of property-based testers in
languages other than Haskell [11], it does not seem that it is applied in existing
systems, such as Singular [9], JAS or DoCon.

By its generative nature, property-based testing has several drawbacks and
pitfalls. First, evidently, it cannot assure the validity as rigorously as the for-
mal theorem proving, unless the input space is finite. There are several pieces of
research that combine formal theorem proving and computational algebra to rig-
orously certify correctness of implementations (for example, [2,24]). These first
formalise the theory of Gröbner basis in the constructive type-theory. Then, they
execute them within the host theorem proving language, or extract the program
into other languages. However, by its nature, this approach requires everything
to be proven formally. It is not so easy a task to prove the correctness of every
part of a program, even with help from automatic provers. Even if one manages
to finish the proof of the validity of some algorithm, when one wants to optimise
it afterwards, then one must prove the “equivalence” or validity of that optimisa-
tion. Moreover, it is sometimes the case that the validity, or even termination, of
the algorithm remains unknown when it is implemented; e.g. the correctness and
termination of Faugerè’s F5 [6] are proven very recently [25]. Furthermore, there
is an obvious restriction that we can extract programs only into the languages
supported by the theorem prover. We consider these conditions too restrictive,
and decided to adopt theorem proving only in trivial arity arithmetic.

Secondly, if the algorithm has a bad time complexity, property-based tests
can easily explode. Specifically, since Gröbner bases have double-exponential
worst time complexity, randomly generated input can take much time to be pro-
cessed. One might reduce the burden by combining randomised and enumerative
generation strategies carefully, but there is still a possibility that there are small
inputs which take much time. To avoid such a circumstance, one can reduce the
number of inputs, however it also reduces the assurance of validity.
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Finally, they are not so good at treating existential properties. Although
SmallCheck provides the existential quantifier in its vocabulary, it just tries
to find solutions up to a prescribed depth. If solutions are relatively “larger”
than their inputs, this results in false-negative failures. For example, one can
write the following specification that demands each element of the result of
calcGroebnerBasis to be a member of the original ideal, however it does not
work as expected:

1 prop_gbInc ideal =
2 let j = calcGroebnerBasis ideal
3 in exists $ λ cs →
4 and (zipWith (λ f gs → f = dot ideal gs) j cs)

In the above, dot i g denotes the “dot-product”. As a workaround, we cur-
rently combine inter-process communication with property-based testing. More
specifically, we invoke a reliable existing implementation, such as SINGULAR,
inside the spec as follows:

1 prop_gbInc = forAll arbitrary $ λ i → monadicIO $ do
2 let gs = calcGroebnerBasis i
3 is ← evalSingularIdealWith [] [] $
4 funE "reduce" [
5 idealE gs , funE "groebner" [idealE i]]
6 return $ all isZero is

Thus, if the existential property in question is decidable and has an existing
reliable implementation, then it might be better to call it inside specifications.

4 Case Study: Implementing the Hilbert-Driven, F4 and
F5 Algorithms for Calculating Gröbner Bases

In this section, we will focus on three algorithms as case-studies: the Hilbert-
driven, F4 and F5 algorithms. Firstly, we demonstrate the power of laziness
and parallelism by the Hilbert-driven algorithm. Then by the F4 interface, we
illustrate the practical example of composability. Finally, we skim through the
simplified version of the main routine of F5 and see how imperative programming
with mutable states can be written purely in Haskell. For our purpose, we will
discuss only a fragment of implementations that elucidates the advantages of
Haskell, rather than the entire implementation and theoretical details.

4.1 Homogenisation and Hilbert-Driven Basis Conversion

Homogenisation is a powerful tool in Gröbner basis computation. If I ⊆ k[X]
is a non-homogeneous ideal and Ī ⊆ k[x,X] its homogenisation, then one can
get a Gröbner basis for I by unhomogenising the Gröbner basis Ḡ for Ī w.r.t. a
suitably induced monomial ordering. In this way, any Gröbner basis algorithm
for homogeneous ideals can be converted into one for non-homogeneous ones.
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Code 6. Basic API for homogenisation

1 data Homogenised poly
2 instance IsOrdPoly poly ⇒ IsOrdPoly (Homogenised poly) where
3 type Arity (Homogenised poly) = 1 + Arity poly
4 type MOrder (Homogenised poly) = HomogOrder (MOrder poly)
5 type Coeff (Homogenised poly) = Coeff poly
6 ...

7 homogenise :: IsOrdPoly poly ⇒ poly → Homogenised poly
8 unhomogenise :: IsOrdPoly poly ⇒ Homogenised poly → poly
9

10 calcGBViaHomog :: (Field (Coeff poly), IsOrdPoly poly)
11 ⇒ (∀ r. (Field (Coeff r), IsOrdPoly r)
12 ⇒ Ideal r → [r])
13 → Ideal poly → [poly]
14 calcGBViaHomog calc i

15 | all isHomogeneous i = calc i

16 | otherwise = map unhomogenise ( calc (fmap homogenise i))

Code 6 is an API for these operations. The type Homogenised poly repre-
sents polynomials obtained by homogenising polynomials of type poly. Then
calcGBViaHomog calc i first checks if the input i is homogeneous. If it is so,
then it applies the argument calc to its input directly (Line 15); otherwise,
it first homogenises the input, applies calc , and then unhomogenises it to get
the final result (Line 16). Note that, though it uses the same term calc in
both cases, they have different types. In the first case, since it just feeds an
input directly, calc has type Ideal poly → [poly]. On the other hand, in
the non-homogeneous case, it is applied after homogenisation, hence it is of type
Ideal (Homogenised poly) → [Homogenised poly]. Thus, calcGBViaHomog
takes a polymorphic function as its first argument and this is why we have ∀
inside the type of the first argument. Such a nested polymorphic type is called
a rank n polymorphic type, and it is supported by GHC’s RankNTypes language
extension2.

For example, one can use the so-called Hilbert-driven algorithm as the first
argument to calcGBViaHomog. It first computes a Gröbner basis w.r.t. a lighter
monomial ordering, compute the Hilbert–Poincaré series (HPS) with it and use it
to compute Gröbner basis w.r.t. the heavier ordering. In this procedure, we need
the following operations on HPS: Equality test on HPS’s, nth Taylor coefficient
of the given HPS, and the Z[X]-module operation on HPS. Code 7 illustrates
such an interface for HPS. For equality test, we use the numerator hpsNumerator
of the closed form, and an infinite list taylor maintains Taylor coefficients. By
the lazy nature of Haskell, we can intuitively treat infinite lists and write a
convolution on them. In Line 12, par and seq specify the evaluation strategy.
In brief, expressions x and y in “ x ‘par‘ y” (resp. seq ) are evaluated parallelly

2 This can be achieved in object-oriented language with subtyping and Generics.
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Code 7. Data-type of and operations on Hilbert–Poincaré series

1 data HPS n = HPS { taylor :: [ Z ], hpsNumerator :: Unipol Z }
2

3 instance Eq (HPS a) where
4 ( = ) = ( = ) ‘on ‘ hpsNumerator
5 instance Additive (HPS n) where
6 HPS cs f + HPS ds g = HPS (zipWith (+) cs ds) (f + g)
7 instance LeftModule (Unipol Z ) (HPS n) where
8 f • HPS cs g = HPS (conv (taylor f � repeat 0) cs) (f × g)
9

10 conv :: [ Z ] → [ Z ] → [ Z ]
11 conv (x : xs) (y : ys) =
12 let parSum a b c = a ‘par‘ b ‘par‘ c ‘seq‘ (a + b + c) in
13 x × y :
14 zipWith3 parSum (map (x×) ys) (map (y×) xs) (0 : conv xs ys)

(resp. sequentially). Since every expression is pure in Haskell, we can safely take
advantage of parallelism, without a possibility of changing results.

4.2 A Composable Implementation of F4

F4 is one of the most efficient algorithms for Gröbner basis computation and
was introduced by Faugère [5]. Briefly, F4 reduces more than two polynomi-
als at once, replacing S-polynomial remaindering in the Buchberger Algorithm
with the Gaussian elimination of the matrices. This means that the efficiency
of F4 reduces to that of Gaussian elimination and the internal representation of
matrices. Thus, it is useful if we can easily switch internal representations and
elimination algorithms. For this purpose, we provide type-classes for mutable and
immutable matrices which admit row operations and a dedicated Gaussian elim-
ination. Code 8 demonstrates the interface for immutable and mutable matrices
(Matrix and MMatrix) and the type signature of our F4 implementation ( f4). In
Lines 1 and 6, the last type argument a of Matrix and MMatrix corresponds to
the type of coefficients. Note that one can give different instance definitions for
the same mat but different coefficient types a. For example, one can implement
efficient Gaussian elimination on Fp for Matrix Mat Fp, and then use it in the
definition of Matrix Mat Q, with the Hensel lifting or Chinese remaindering.

In Line 15, the first argument of f4 of type proxy mat specifies the internal
representation mat of matrices. In addition, f4 takes a selection strategy as the
second argument. Here, the selection strategy is abstracted as a weighting func-
tion to some ordered types, and we store intermediate polynomials in a heap
and select all the polynomials with the minimum weight at each iteration.

4.3 The F5 Algorithm

Finally, we present the simplified version of the main routine of Faugère’s F5 [6]
(Code 9). Readers may be surprised that the code looks much imperative. This is
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Code 8. Matrix classes and the F4 function

1 class MMatrix mat a where
2 fromRows :: [Vector a] → ST s (mat s a)
3 scaleRow :: Multiplicative a ⇒ Int → a → mat s a → ST s ()
4 ...

5

6 class MMatrix (Mutable mat) a ⇒ Matrix mat a where
7 type Mutable mat :: � → �
8 freeze :: Mutable mat s a → ST s (mat a)
9 ...

10 gaussReduction :: Field a ⇒ mat a → mat a
11
12 type Strategy f w = f → f → w
13 f4 :: (Ord w, IsOrdPoly poly , Field (Coeff poly),
14 Matrix mat (Coeff poly))
15 ⇒ proxy mat → Strategy poly w → Ideal poly → [poly]

made possible by the ST monad [19], which encapsulates side-effects introduced
by mutable states and prevents them from leaking outside. We use a functional
heap to choose the polynomial vectors with the least signature, demonstrating
the fusion of functional and imperative styles.

4.4 Benchmarks

We also take a simple benchmark and the result is shown in Table 2 (examples
are taken from Giovini et al. [8]). This compares the algorithms implemented
in our computational-algebra package and Singular. The first four rows cor-
respond to the alrorithms implemented in our library; i.e. the Buchberger algo-
rithm optimised with syzygy and sugar strategy (B), the degree-by-degree algo-
rithm for homogeneous ideals (DbyD), the Hilbert-driven algorithm (Hilb), and
F5. S(gr) and S(sba) stand for the groebner and sba functions in the Singu-
lar computer algebra system 4.0.3. The complete source-code is available on
GitHub [12]3. The benchmark program is compiled with GHC 8.2.2 with flags
-O2 -threaded -rtsopts -with-rtsopts=-N, and ran on an Intel Xeon E5-
2690 at 2.90 GHz, RAM 128GB, Linux 3.16.0-4 (SMP), using 10 cores in paral-
lel. We used the Gauge framework to report the run-time of our library, and the
rtimer primitive for Singular. For actual benchmark codes, see http://bit.ly/
hbench1 and hbench2. Unfortunately, in our system, F4 takes much more com-
puting time, hence we did not include the result. The results show that, among
the algorithms implemented in our system, F5 works fine in general, though it
takes much time in some specific cases. Nevertheless, there remains much room
for improvement to compete with the state-of-the-art implementations such as
Singular, although there is one case where our implementation is slightly faster
than Singular’s groebner function.

3 More specifically, we used the implementation in commit 70e6e7b.
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Code 9. Main Routine of the F5 Algorithm

1 f5 :: (Field (Coeff pol), IsOrdPoly pol)
2 ⇒ Vector pol → [( Vector pol , pol)]
3 f5 (map monoize → i0) = runST $ do
4 let n = length i0
5 gs ← newSTRef []
6 ps ← newSTRef $ H.fromList [ basis n i | i ← [0..n-1]]
7 syzs ← newSTRef
8 [ sVec (i0 ! m) (i0 ! n) | m ← [0..n-1], n ← [0..j-1] ]
9 whileJust_ (H.viewMin <$> readSTRef ps) $

10 λ (Entry sig g, ps ’) → do
11 ps := ps ’
12 (gs0 , ss0) ← (,) <$> readSTRef gs <∗> readSTRef syzs
13 unless (standardCriterion sig ss0) $ do
14 let (h, ph) = reduceSignature i0 g gs0
15 h’ = map (× injectCoeff (recip $ leadingCoeff ph)) h
16 if isZero ph then syzs :⇐ (mkEntry h : )
17 else do
18 let adds = fromList $ mapMaybe (regSVec (ph , h’)) gs0
19 ps :⇐ H.union adds
20 gs :⇐ (( monoize ph , mkEntry h’) :)
21 map (λ (p, Entry _ a) → (a, p)) <$> readSTRef gs

Table 2. Benchmark results (ms)

I1 (Lex) I1 (Grevlex) I2 (Lex) I2 (Grevlex) I3 (Grevlex)

B 1.820 × 100 1.593 × 101 1.400 × 101 4.129 × 100 6.689 × 102

DbyD 6.364 × 101 9.162 × 102 1.147 × 102 5.647 × 101 4.125 × 102

Hilb 1.644 × 102 2.313 × 102 5.265 × 101 3.414 × 101 9.645 × 103

F5 1.851 × 100 4.314 × 102 7.129 × 100 2.648 × 100 1.290 × 103

S(gr) 2.300 × 100 8.493 × 10−1 2.651 × 100 8.210 × 10−1 9.511 × 10−1

S(sba) 2.279 × 10−1 8.711 × 10−1 2.343 × 10−1 7.958 × 10−1 1.541 × 10−1

I1 := 〈35y4 − 30xy2 − 210y2z + 3x2 + 30xz − 105z2 + 140yt − 21u,

5xy3 − 140y3z − 3x2y + 45xyz − 420yz2 + 210y2t − 25xt + 70zt + 126yu〉
I2 := 〈w + x + y + z, wx + xy + yz + zw,wxy + xyz + yzw + zwx,wxyz − 1〉
I3 := 〈x31 − x6 − x − y, x8 − z, x10 − t〉

5 Conclusions

In this paper, we have demonstrated how we can adopt the methods developed
in the area of functional programming to build a computer algebra system. Some
of these methods are also applicable in imperative languages.

In Sect. 2, we presented a type-system strong enough to detect algebraic
errors at compile-time. For example, our system can distinguish number of vari-
ables of polynomial rings at type-level thanks to dependent types. It also enables
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us to automatically generate casting functions and we saw how their overhead
can be reduced using rewriting rules. As for type-systems for a computer algebra
system, there are several existing works [18,23]. However, these systems are not
safe enough for discriminating variable arity at type-level and don’t make use of
rewriting rules.

In Sect. 3, we successfully applied the method of property-based testing for
verification of the implementation, which is lightweight compared to the existing
theorem-prover based approach [2,24]. Although property-based testing is not
as rigorous as theorem proving, it is lightweight and can be applied to algo-
rithms not yet proven to be valid or terminate and available also for imperative
languages.

We have seen that, in Sect. 4, other features of Haskell, such as higher-order
polymorphism, parallelism and laziness, can also be easily applied to computer
algebra by actual examples. Even though they are shown as fragments of code,
we expect them to be convincing.

Since some of the methods in this paper, such as dependent types or property-
based testing, are not limited to the functional paradigm, it might be interesting
to investigate their applicability in the imperative settings.

From the viewpoint of efficiency, there is much to be done. For example,
efficiency of our current F4 implementation is far inferior to that of the näıve
Buchberger algorithm, and other algorithms are far much slower than state-of-
the-art implementations such as Singular. To optimise implementations, we can
make more use of Rewriting Rules and efficient data structures. Also, the par-
allelism must undoubtedly play an important role. Fortunately, there are plenty
of the parallel computation functionalities in Haskell, such as Regular Parallel
Arrays [16] and parallel package [22], and another book by Marlow [21] on gen-
eral topics in parallelism in Haskell. Also, there is an existing work by Lobachev
et al. [20] on parallel symbolic computation in Eden, a dialect of Haskell with
parallelism support. Although Eden is retired, the methods introduced there
might be helpful.

Acknowledgments. The author would like to thank my supervisor, Prof. Akira Terui,
for discussions, and to anonymous reviewers for helpful comments. This research is
supported by Grant-in-Aid for JSPS Research Fellow Number 17J00479, and partially
by Grants-in-Aid for Scientific Research 16K05035.

References

1. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2000, pp. 268–279. ACM, New York
(2000). https://doi.org/10.1145/351240.351266
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J.P.: Giving Haskell a promotion. In: Proceedings of the 8th ACM SIGPLAN
Workshop on Types in Language Design and Implementation, TLDI 2012, pp.
53–66. ACM, Philadelphia (2012)

mmonagan@cecm.sfu.ca

https://doi.org/10.1145/1863523.1863535
https://doi.org/10.1145/1863523.1863535
http://www.botik.ru/pub/local/Mechveliani/docon-A/2.02/manual.pdf
https://doi.org/10.1145/1411286.1411292


Splitting Permutation Representations
of Finite Groups by Polynomial Algebra

Methods

Vladimir V. Kornyak(B)

Laboratory of Information Technologies, Joint Institute for Nuclear Research,
141980 Dubna, Russia
vkornyak@gmail.com

Abstract. An algorithm for splitting permutation representations of a
finite group over fields of characteristic zero into irreducible components
is described. The algorithm is based on the fact that the components
of the invariant inner product in invariant subspaces are operators of
projection into these subspaces. An important part of the algorithm is the
solution of systems of quadratic equations. A preliminary implementation
of the algorithm splits representations up to dimensions of hundreds of
thousands. Examples of computations are given in the appendix.

1 Introduction

One of the central problems of group theory and its applications in physics is
the decomposition of linear representations of groups into irreducible compo-
nents. In general, the problem of splitting a module over an associative algebra
into irreducible submodules is quite nontrivial. An overview of the algorithmic
aspects of this problem can be found in Chap. 7 of [1]. For vector spaces over
finite fields, the most efficient is the Las Vegas algorithm 1 called MeatAxe [2].
This algorithm played an important role in solving the problem of classifying
finite simple groups. However, the approach used in the MeatAxe is ineffective
in characteristic zero, whereas quantum-mechanical problems are formulated just
in Hilbert spaces over zero characteristic fields. Our algorithm deals with repre-
sentations over such fields, and its implementation copes with dimensions up to
hundreds of thousands, which is not less than the dimensions achievable for the
MeatAxe. The algorithm requires knowledge of the centralizer ring of the consid-
ered group representation. In the general case, the calculation of the centralizer
ring is a problem of linear algebra, namely, solving matrix equations of the form
AX = XA. For permutation representations, there is an efficient way to com-
pute the centralizer ring, which reduces to constructing the set of orbitals. In
addition, permutation representations are fundamental in the sense that any lin-
ear representation of a finite group is a subrepresentation of some permutation
1 A Las Vegas algorithm is a randomized algorithm, each iteration of which either
produces the correct result, or reports a failure. An algorithm of this type always
gives the correct answer, but the run time is indeterminate.
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representation, and we use this fact in some quantum mechanical considerations
[3,4]. Thus, we consider only permutation representations here.

2 Mathematical Preliminaries

Let G (or G(Ω)) be a transitive permutation group on a set Ω ∼= {1, . . . ,N}.
We will denote the action of g ∈ G on i ∈ Ω by ig. A representation of G in
an N-dimensional vector space over a field F by the matrices P(g) with the
entries P(g)ij = δigj , where δij is the Kronecker delta, is called a permutation
representation. We assume that the permutation representation space is a Hilbert
space HN. We will assume that the base field F is a constructive splitting field of
the group G. In particular, such a field can be a subfield of the mth cyclotomic
field, where m is a suitable divisor of the exponent of G. Such a constructive
field F , being an abelian extension of the field Q, is a dense subfield of R or C.

An orbit of G on the Cartesian square Ω × Ω is called an orbital [5]. The
number of orbitals, called the rank of G(Ω), will be denoted by R. An orbital Δ
is called self-paired, if (i, j) ∈ Δ ⇒ (j, i) ∈ Δ, i.e., Δ = ΔT. Among the orbitals
of a transitive group, there is one diagonal orbital, Δ1 = {(i, i) | i ∈ Ω}, which
will always be fixed as the first element in the list of orbitals: {Δ1, . . . ,ΔR}. For
transitive action of G, there is a natural one-to-one correspondence between the
orbitals of G and the orbits of a point stabilizer Gi:

Δ ←→ Σi = {j ∈ Ω | (i, j) ∈ Δ} .

The Gi-orbits are called suborbits and their cardinalities will be called the
suborbit lengths. Note that |Δ| = N |Σi|.

The invariance condition for a bilinear form A in the Hilbert space HN can be
written as the system of equations A = P(g) AP

(
g−1

)
, g ∈ G. It is easy to verify

that in terms of the entries these equations have the form (A)ij = (A)igjg .

Thus, the basis of all invariant bilinear forms is in one-to-one correspondence
with the set of orbitals: with each orbital Δr ∈ {Δ1, . . . ,ΔR} is associated a
basis matrix Ar of the size N × N with the entries

(Ar)ij =

{
1, if (i, j) ∈ Δr,

0, if (i, j) /∈ Δr.

It is clear that the matrix of a self-paired orbital is symmetric. For the diag-
onal orbital, we have A1 = 1N. The matrices

A1,A2, . . . ,AR (1)

form a basis of the centralizer ring (or centralizer algebra) of the representation
P. The multiplication table for this basis has the form

ApAq =
R∑

r=1

Cr
pqAr, (2)

where Cr
pq are non-negative integers. The commutativity of the centralizer ring

indicates that the permutation representation P is multiplicity-free.
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3 Algorithm

Let T be a transformation (we can assume that T is a unitary matrix) that splits
the permutation representation P into M irreducible components:

T−1P(g) T = 1 ⊕ Ud2(g) ⊕ · · · ⊕ Udm
(g) ⊕ · · · ⊕ UdM

(g) ,

where Udm
is a dm-dimensional irreducible subrepresentation, ⊕ denotes the

direct sum of matrices, i.e., A ⊕ B = diag(A,B).
The identity matrix 1N is the standard inner product in any orthonormal

basis. In the splitting basis, we have the following decomposition of the standard
inner product

1N = 1d1=1 ⊕ · · · ⊕ 1dm
⊕ · · · ⊕ 1dM

.

The inverse image of this decomposition in the original permutation basis
has the form

1N = B1 + · · · + Bm + · · · + BM , (3)

where Bm is defined by the relation

T−1BmT = 01+d2+···+dm−1 ⊕1dm
⊕0dm+1+···+dM

≡ Dm. (4)

The set B1, . . . ,BM contains complete information about irreducible decom-
position of the representation P. In particular, the transformation matrix can
be obtained from the linear system B1T − TD1 = · · · = BMT − TDM = 0N .

The main idea of the algorithm is based on the fact that Bm’s form a complete
set of orthogonal projectors, i.e., in addition to the completeness (3), we have
the idempotency

B2
m = Bm (5)

and the mutual orthogonality

BmBm′ = 0N if m 	= m′. (6)

It follows from (4) that
tr Bm = dm. (7)

We see that all Bm’s can be obtained as solutions of the equation

X2 − X = 0N (8)

for the generic invariant form

X = x1A1 + · · · + xRAR.

Using the multiplication table (2), we can write the left-hand side of (8) as
a set of R polynomials (we will call them idempotency polynomials)

E(x1, . . . , xR) = {E1(x1, . . . , xR) , . . . , ER(x1, . . . , xR)} (9)
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and Eq. (8) can be written symbolically as

E(x1, . . . , xR) = 0. (10)

Each polynomial in (9) has the structure Er(x1, . . . , xR) = Qr(x1, . . . , xR)
− xr, where Qr(x1, . . . , xR) is a homogeneous quadratic polynomial in the inde-
terminates x1, . . . , xR.

In the basis (1), the projector Bm can be represented as

Bm = bm,1A1 + bm,2A2 + · · · + bm,RAR,

where the vector Bm = [bm,1, . . . , bm,R] is a solution of Eq. (10).
Since only A1 has nonzero diagonal elements, we have

tr Bm = bm,1N.

Combining this with (7) we can fix the coefficient bm,1:

bm,1 = dm/N.

Thus, the only relevant values of x1 in (10) are d/N for some d’s from the
interval [1, . . . ,N − 1]. Any relevant natural number d is either an irreducible
dimension or a sum of such dimensions. Using the orthogonality condition (6)
for the irreducible projectors, we can exclude the consideration of dimensions
that are sums of irreducible ones. The generic orthogonality condition can be
written as

BX = 0, (11)

where B = b1A1 + · · · + bRAR. Equation (11) is a system of linear equations for
the indeterminates x1, . . . , xR with the parameters b1, . . . , bR. Again, using the
multiplication table (2), we can write the left-hand side of (11) as a system of
R bilinear forms, which we denote by

O(b1, . . . , bR;x1, . . . , xR) (12)

and call orthogonality polynomials.
The core part of the algorithm is a loop on dimensions that starts with d = 1

and ends when the sum of irreducible dimensions becomes equal to N.
The current d is processed as follows.

– We solve 2 the system of equations E(d/N, x2, . . . , xR) = 0.
– If the system is incompatible, then go to the next d.
– If E(d/N, x2, . . . , xR) describes a zero-dimensional ideal, then we have k

(including k = 1) different d-dimensional irreducible subrepresentations.

2 The solution is always algorithmically realizable, since the problem involves only
polynomial equations with abelian Galois groups.
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– If the polynomial ideal has dimension h > 0, then we encounter an irre-
ducible component with a multiplicity k > 1. The corresponding component
of the centralizer algebra has the form A ⊗ 1d, where A is an arbitrary k × k
matrix, and ⊗ denotes the Kronecker product. The idempotency condition
(A ⊗ 1d)

2 = A ⊗ 1d implies A2 − A = 0. The complete family of solutions
of this equation 3 is a manifold of dimension

⌊
k2/2

⌋
= h. In this case, we

select, by a somewhat arbitrary procedure, k convenient mutually orthogonal
representatives in the family of equivalent subrepresentations.

– In any case, if at the moment we have a solution Bm, we append Bm to the list
of irreducible projectors, and exclude from the further consideration the cor-
responding invariant subspace by adding the linear orthogonality polynomials
BmX to the polynomial system:

E(x1, x2, . . . , xR) ← E(x1, x2, . . . , xR) ∪ {BmX} .

– After processing all Bm’s of dimension d, go to the next d.

4 Implementation

Our approach involves some widely used methods of polynomial computer alge-
bra. Therefore, it is reasonable, at least for the preliminary experience, to take
advantage of computer algebra systems with developed tools for working with
polynomials.

The complete algorithm is implemented by two procedures, the pseudocodes
of which are given below.

1. The procedure PreparePolynomialData is a program written in C. The
input data for this program is a set of permutations of Ω that generates the
group G(Ω) . The program computes the basis of the centralizer ring and its
multiplication table, constructs the idempotency and orthogonality polyno-
mials, and generates the code of the procedure SplitRepresentation that
processes the polynomial data. The main parameter that determines the run
time for PreparePolynomialData is the dimension of the representation.
The example in Sect. A.3 shows that the PC implementation copes with a
dimension of about one hundred thousand in a time of about one hour.

2. The procedure SplitRepresentation implements the above described loop
on dimensions that splits the representation of the group into irreducible
components. It is generated by the C program PreparePolynomialData .
Currently, the code is generated in the Maple 2017.3 language, and the
polynomial equations are processed by the Maple implementation of the
Gröbner bases algorithms. The run time for SplitRepresentation depends
mainly on the rank of the representation. Problems of rank R = 17 take about
8 hours on a PC.

3 It is well known that any solution of the matrix equation A2 = A can
be represented as A = Q−1 (1r ⊕ 0k−r)Q, where Q is an arbitrary invertible
k × k matrix and r ∈ [0, k].
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Input: S = {s1, . . . , sK} // set of permutations of Ω that generates group G
Output: E(x1, . . . , xR) , O(b1, . . . , bR;x1, . . . , xR) , SplitRepresentation
1: compute basis of centralizer ring A1, . . . , AR

2: compute multiplication table ApAq =
R∑

r=1

Cr
pqAr

3: construct idempotency polynomials E(x1, . . . , xR)
4: construct orthogonality polynomials O(b1, . . . , bR;x1, . . . , xR)
5: construct code SplitRepresentation for processing polynomial data
6: return SplitRepresentation (E(x1, . . . , xR) , O(b1, . . . , bR;x1, . . . , xR))

Algorithm 1: PreparePolynomialData

Input: E(x1, . . . , xR), O(b1, . . . , bR;x1, . . . , xR)
Output: IrreducibleProjectors = [(1, B1) , . . . , (dm, Bm) . . . , (dM , BM )]
1: IrreducibleProjectors ← [(

1, 1
N
[1, . . . , 1]

)]
// trivial subrepresentation

2: E(x1, . . . , xR) ← E(x1, . . . , xR) ∪ O(1, . . . , 1;x1, . . . , xR)
3: Sdim ← 1 // sum of dimensions, global variable
4: D ← 0 // current dimension, global variable
5: while Sdim < N do
6: D ← NextRelevantDimension(D)
7: all solutions ← SolveAlgebraicSystem(E(D/N, x2, . . . , xR))
8: if all solutions �= ∅ then
9: h ←NumberOfFreeParameters(all solutions)
10: if h = 0 then
11: for solution ∈ all solutions do
12: UseSingleSolution(solution)
13: else
14: repeat
15: solution ←PickBestSolution(all solutions)
16: UseSingleSolution(solution)
17: all solutions ←SolveAlgebraicSystem(E(D/N, x2, . . . , xR))
18: until all solutions = ∅

19: return IrreducibleProjectors

Algorithm 2: SplitRepresentation

Input: solution = [β1, . . . , βR]
1: E(x1, . . . , xR) ← E(x1, . . . , xR) ∪ O(β1, . . . , βR;x1, . . . , xR)
2: IrreducibleProjectors ← [IrreducibleProjectors, (D, solution)]
3: Sdim ← Sdim + D

Algorithm 3: UseSingleSolution
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Comments on the procedure SplitRepresentation :

– The procedure NextRelevantDimension can be implemented in different
ways, depending on the available information about the group and the rep-
resentation:

• The simplest implementation is “D ← D + 1”.
• The implementation “repeat D ← D + 1 until D | Ord(G)” is about

25% faster than the simplest one. In fact, the size of the group is always
known.

• Knowledge of the character decomposition provides the most efficient
loop on dimensions. Sometimes this information is available. Actually,
computing the character decomposition is much easier than computing
the decomposition of the representation.

– The procedures SolveAlgebraicSystem and NumberOfFreeParameters
involve the polynomial algebra functions available in the computer algebra
system used. At present, we use the Maple implementation of Gröbner basis
techniques.

– The PickBestSolution procedure is applied in the case of nontrivial mul-
tiplicity of the irreducible component. It selects a particular solution in the
parametric set of solutions. Currently, the choice of solutions with zero values
of parameters is used. Such an oversimplified approach sometimes leads to
“ugly roots” that go beyond the “natural” splitting field. This can be illus-
trated by the example of a 29155-dimensional representation of the Held group
whose decomposition into irreducible components is given in Sect.A.2. The
decomposition contains a 1275-dimensional irreducible component of multi-
plicity two. Representatives of this component obtained by the simple ver-
sion of PickBestSolution contain irrationality i

√
231 (see B(1)

1275 and B(2)
1275

expressions), which belongs to the quadratic field Q
(√−231

)
, while the repre-

sentation in question splits over the “much smaller” field Q
(√−7

)
. Therefore,

the PickBestSolution procedure requires improvement using strategies that
lead to minimal extensions of the field Q.

4.1 Comparison with the Magma Implementation of the MeatAxe

The Magma database contains a 3906-dimensional permutation representation
of the exceptional group of Lie type G2(5). The decomposition into irreducible
components of this representation over the field GF(2) is given in [6] as an
illustration of the possibilities of the MeatAxe.

The application of our algorithm to this problem shows that in the character-
istic zero, the considered representation is split over the field Q. The calculation
produces the following data:

mmonagan@cecm.sfu.ca



Splitting Permutation Representations of Finite Groups 311

Rank: 4. Suborbit lengths: 1, 30, 750, 3125.

3906 ∼=1 ⊕ 930 ⊕ 1085 ⊕ 1890

B1 =
1

3906

4∑

k=1

Ak

B930 =
5
21

(
A1 +

3
10

A2 +
1
50

A3 − 1
125

A4

)

B1085 =
5
18

(
A1 − 1

5
A2 +

1
25

A3 − 1
125

A4

)

B1890 =
15
31

(
A1 − 1

30
A2 − 1

30
A3 +

1
125

A4

)

Time C: 0.5 s. Time Maple: 0.8 s.
Magma failed to split the 3906-dimensional representation over the field Q

due to memory exhaustion after long computation, but we can simulate to some
extent the case of characteristic zero, using a field of a characteristic that does
not divide Ord(G2(5)). The smallest such field is GF(11).

Below is the session of the corresponding Magma V2.21-1 computation on
a computer with two Intel Xeon E5410 2.33 GHz CPUs (time is given in seconds).

> load "g25";
Loading "/opt/magma.21-1/libs/pergps/g25"
The Lie group G( 2, 5 ) represented as a permutation
group of degree 3906.
Order: 5 859 000 000 = 2^6 * 3^3 * 5^6 * 7 * 31.
Group: G
> time Constituents(PermutationModule(G,GF(11)));
[

GModule of dimension 1 over GF(11),
GModule of dimension 930 over GF(11),
GModule of dimension 1085 over GF(11),
GModule of dimension 1890 over GF(11)

]
Time: 282.060

5 Conclusion

The algorithm described here is based on the use of methods of polynomial
algebra, which are considered algorithmically difficult. However, our approach
leads to a small number (in typical cases) of low-degree polynomials. Recall that
the idempotency system (9) is a set of R square polynomials. Calculations of
Gröbner bases in Maple on PC are limited in practice to R = 17. Among the
886 permutation representations available in the Atlas [7], 761 (i.e., 86%) have
ranks R ≤ 17. As can be seen in Appendix A, even a straightforward implemen-
tation of the approach can cope with rather large tasks. The data presented in
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the appendix shows that the most restrictive parameter for the Maple part of
the implementation is the rank of representations, i.e., the number of polyno-
mial indeterminates. A possible way to improve performance is to try to develop
specialized algorithms that take into account the very special type of polyno-
mial equations that arise in the problem instead of the universal Gröbner basis
methods.

Acknowledgments. I am grateful to Yu.A. Blinkov, V.P. Gerdt and R.A. Wilson for
fruitful discussions and valuable advice.

A Examples of Computations

– Generators of representations are taken from the section “Sporadic groups”
of the Atlas [7].

– For a group G
• M(G) denotes the Schur multiplier, the 2nd homology group H2(G,Z),
• Out(G) denotes the outer automorphism group of G,
• n.G denotes a covering group of G, a central extension of G by Cn.

– The results presented below assume the following ordering for the centralizer
ring basis matrices

A1 = 1N, A2, . . . ,Ak,
︸ ︷︷ ︸

symmetric matrices

Ak+1,Ak+2 = AT
k+1, . . . ,AR−1,AR = AT

R−1︸ ︷︷ ︸
asymmetric matrices

.

The matrices within the first sublist are ordered by the rule: A < B if iA < iB ,
where iX = min (i | (X)i1 = 1). The same rule is applied to the first elements
of the pairs of asymmetric matrices.

– Representations are denoted by their dimensions in bold (possibly with some
signs added to distinguish different representations of the same dimension).
Permutation representations are underlined. Multiple subrepresentations are
underbraced in the decompositions.

– We omit the irreducible projectors related to the trivial subrepresentation:
these projectors have the standard form B1 = 1

N

∑R
k=1 Ak.

– All timing data refer to a PC with 3.30 GHz Intel Core i3 2120 CPU.

A.1 Higman–Sims Group HS

Main properties: Ord(HS) = 44352000 = 29 · 32 · 53 · 7 · 11.
M(HS) = C2. Out(HS) = C2.

11200-dimensional Representation of 2.HS
Rank: 16. Suborbit lengths: 12, 110, 1322, 1652, 6602, 7922, 990, 13202, 19802.

11200 ∼= 1 ⊕ 22 ⊕ 56 ⊕ 77 ⊕ 154 ⊕ 175 ⊕ 176 ⊕ 176 ⊕ 616 ⊕ 616

⊕ 770 ⊕ 825 ⊕ 1056 ⊕ 1980 ⊕ 1980 ⊕ 2520
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B22 =
11

5600

(
A1 +

13
33

A2 − 7
33

A3 +
1
11

A4 +
1
11

A5 +
13
33

A6 +
1
11

A7 − 7
33

A8

+
13
33

A9 + A10 − 7
33

A11 − 7
33

A12 +
1
11

A13 +
1
11

A14 − 17
33

A15

−17
33

A16

)

B56 =
1

200

(
A1 +

1
4
A3 +

1
4
A4 − 1

4
A5 +

1
4
A6 − 1

4
A8 − 1

4
A9 − A10

)

B77 =
11

1600

(
A1 +

1
11

A2 +
17
132

A3 − 23
132

A4 − 23
132

A5 +
37
132

A6 − 4
11

A7

+
17
132

A8 +
37
132

A9 + A10 − 2
33

A11 − 2
33

A12 +
1
66

A13 +
1
66

A14

+
8
33

A15 +
8
33

A16

)

B154 =
11
800

(
A1 +

3
55

A2 +
7
55

A3 +
1
11

A4 +
1
11

A5 − 1
11

A6 − 19
55

A7 +
7
55

A8

− 1
11

A9 + A10 − 1
55

A11 − 1
55

A12 − 3
55

A13 − 3
55

A14 − 7
55

A15

− 7
55

A16

)

B175 =
1
64

(
A1 +

7
55

A2 − 1
15

A3 +
1
33

A4 +
1
33

A5 +
1
33

A6 +
7
55

A7 − 1
15

A8

+
1
33

A9 + A10 +
1
33

A11 +
1
33

A12 − 1
15

A13 − 1
15

A14 +
37
165

A15

+
37
165

A16

)

B176 =
11
700

(
A1 +

2
33

A3 − 1
11

A4 +
1
11

A5 +
7
33

A6 − 2
33

A8 − 7
33

A9 − A10

+i
1
33

A11 − i
1
33

A12 + i
2
33

A13 − i
2
33

A14 + i
7
33

A15 − i
7
33

A16

)

B616 =
11
200

(
A1 − 7

132
A3 +

1
44

A4 − 1
44

A5 +
13
132

A6 +
7

132
A8 − 13

132
A9

−A10 − i
1
66

A11 + i
1
66

A12 − i
1
33

A13 + i
1
33

A14 + i
4
33

A15

−i
4
33

A16

)
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B770 =
11
160

(
A1 − 1

165
A2 − 1

60
A3 − 1

44
A4 − 1

44
A5 +

13
132

A6 − 4
55

A7

− 1
60

A8 +
13
132

A9 + A10 +
7

165
A11 +

7
165

A12 − 1
110

A13

− 1
110

A14 − 16
165

A15 − 16
165

A16

)

B825 =
33
448

(
A1 +

13
495

A2 +
7

220
A3 − 13

396
A4 − 13

396
A5 − 1

12
A6 +

12
55

A7

+
7

220
A8 − 1

12
A9 + A10 − 1

990
A13 − 1

990
A14 − 8

165
A15

− 8
165

A16

)

B1056 =
33
350

(
A1 − 23

495
A2 +

3
220

A3 +
1
36

A4 +
1
36

A5 +
13
132

A6 +
6
55

A7

+
3

220
A8 +

13
132

A9 + A10 − 1
55

A11 − 1
55

A12 − 2
495

A13

− 2
495

A14 +
4

165
A15 +

4
165

A16

)

B1980 =
99
560

(
A1 +

1
132

A3 − 1
396

A4 +
1

396
A5 − 7

132
A6 − 1

132
A8 +

7
132

A9

−A10 − i
1
33

A11 + i
1
33

A12 + i
1
99

A13 − i
1
99

A14

)

B2520 =
9
40

(
A1 − 1

165
A2 − 1

60
A3 +

1
396

A4 +
1

396
A5 − 7

132
A6 − 4

55
A7

− 1
60

A8 − 7
132

A9 + A10 − 1
330

A11 − 1
330

A12 +
1
90

A13

+
1
90

A14 +
4

165
A15 +

4
165

A16

)

Time C: 8 s. Time Maple: 1 h 39 min 6 s.

A.2 Held Group He

Main properties: Ord(He) = 4030387200 = 210 · 33 · 52 · 73 · 17.
M(He) = 1. Out(He) = C2.

29155-dimensional Representation of He
Rank: 12. Suborbit lengths: 1, 90, 120, 384, 9602, 1440, 2160, 28802, 5760,

11520.

29155 ∼= 1 ⊕ 51 ⊕ 51 ⊕ 680 ⊕ (1275 ⊕ 1275)
︸ ︷︷ ︸

⊕1920 ⊕ 4352 ⊕ 7650

⊕ 11900
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B51 =
3

1715

{
A1 +

5
12

A2 − 1
48

A3 +
1
8
A4 +

1
8
A5 +

13
48

A6 − 1
6
A7 − 1

6
A8

− 1
32

(

3 − i
7
√

7
3

)

A9 − 1
32

(

3 + i
7
√

7
3

)

A10

+
1
96

(
5 + 7i

√
7
)

A11 +
1
96

(
5 − 7i

√
7
)

A12

}

B680 =
8

343

(
A1 +

3
10

A2 − 1
48

A3 − 23
1440

A4 − 1
20

A5 +
1
8
A6 +

1
120

A7

+
13
90

A8 +
1
36

A9 +
1
36

A10 +
1
15

A11 +
1
15

A12

)

B(1)
1275 =

15
343

{

A1 +
1

4280

(
331
3

− 7i
√

231
)

A2 − 1
25680

(

13 − i
7
√

231
3

)

A3

− 1
25680

(
1381

3
+ 7i

√
231

)
A4 +

1
25680

(
2101 + 7i

√
231

)
A5

− 1
1712

(

13 − i
7
√

231
3

)

A6 +
1

2568

(
109
3

− i
7
√

231
5

)

A7

+
1

4815

(

1571 − i
7
√

231
2

)

A8 − 1
38520

(
467 − 7i

√
231

)
A9

− 1
38520

(
467 − 7i

√
231

)
A10

}

B(2)
1275 =

15
343

{

A1 +
1

4280

(
1381

3
+ 7i

√
231

)
A2 +

1
25680

(

227 − i
7
√

231
3

)

A3

− 1
25680

(
331
3

− 7i
√

231
)

A4 − 1
25680

(
389 + 7i

√
231

)
A5

+
1

1712

(

227 − i
7
√

231
3

)

A6 +
1

2568

(
319
3

+ i
7
√

231
5

)

A7

− 1
4815

(

394 − i
7
√

231
2

)

A8 − 7
38520

(
157
2

+ i
√

231
)

A9

− 7
38520

(
157
2

+ i
√

231
)

A10 − 1
16

A11 − 1
16

A12

}

B1920 =
384
5831

(
A1 +

1
120

A2 − 7
384

A3 +
1

120
A4 +

7
160

A5 − 7
384

A6 +
1

120
A7

− 2
15

A8 +
5

192
A9 +

5
192

A10 − 13
480

A11 − 13
480

A12

)
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B4352 =
256
1715

(
A1 +

1
8
A2 +

7
768

A3 − 5
576

A4 − 7
128

A6 − 1
48

A7

− 1
18

A8 +
1

576
A9 +

1
576

A10 − 1
192

A11 − 1
192

A12

)

B7650 =
90
343

(
A1 − 1

20
A2 +

1
120

A4 − 7
360

A5 − 1
90

A7 +
1
10

A8 +
1

240
A9

+
1

240
A10 − 1

80
A11 − 1

80
A12

)

B11900 =
20
49

(
A1 − 1

20
A2 − 1

720
A4 +

1
120

A7 − 1
18

A8 − 1
180

A9 − 1
180

A10

+
1
60

A11 +
1
60

A12

)

Time C: 47 s. Time Maple: 15 s.

A.3 Suzuki Group Suz

Main properties: Ord(Suz) = 448345497600 = 213 · 37 · 52 · 7 · 11 · 13.
M(Suz) = C6. Out(Suz) = C2.

65520-dimensional Representation of 2.Suz
Rank: 10. Suborbit lengths: 12, 8912, 28162, 3960, 12672, 207362.

65520 ∼= 1 ⊕ 143 ⊕ 364α ⊕ 364β ⊕ 364β ⊕ 5940 ⊕ 12012 ⊕ 14300

⊕ 16016 ⊕ 16016

B143 =
11

5040

(
A1 + A2 +

2
11

A3 − 1
11

A4 +
2
11

A5 − 1
11

A6 +
3
11

A9 +
3
11

A10

)

B364α
=

1
180

(
A1 + A2 +

1
16

A3 +
1
6
A4 +

1
16

A5 − 1
24

A6 − 1
144

A7 − 1
144

A8

−1
9
A9 − 1

9
A10

)

B364β
=

1
180

(

A1 − A2 − 1
8
A3 +

1
8
A5 + i

√
3

72
A7 − i

√
3

72
A8

+i

√
3

9
A9 − i

√
3

9
A10

)

B5940 =
33
364

(
A1 + A2 +

1
352

A3 +
1
66

A4 +
1

352
A5 +

1
66

A6 − 7
864

A7

− 7
864

A8 +
1
27

A9 +
1
27

A10

)
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B12012 =
11
60

(
A1 + A2 +

1
88

A3 − 1
66

A4 +
1
88

A5 +
1

264
A6 − 1

33
A9 − 1

33
A10

)

B14300 =
55
252

(
A1 + A2 − 5

352
A3 +

1
330

A4 − 5
352

A5 − 1
132

A6 +
1

288
A7

+
1

288
A8 +

1
99

A9 +
1
99

A10

)

B16016 =
11
45

(

A1 − A2 +
1

352
A3 − 1

352
A5 − i

√
3

288
A7 + i

√
3

288
A8

+i

√
3

99
A9 − i

√
3

99
A10

)

Time C: 6 min 3 s. Time Maple: 10 s.

98280-dimensional Representation of 3.Suz
Rank: 14. Suborbit lengths: 13, 8913, 28163, 5940, 19008, 207363.

98280 ∼= 1 ⊕ 78 ⊕ 78 ⊕ 143 ⊕ 364 ⊕ 1365 ⊕ 1365 ⊕ 4290 ⊕ 4290

⊕ 5940 ⊕ 12012 ⊕ 14300 ⊕ 27027 ⊕ 27027

B78 =
1

1260

(
A1 − 1

12
A2 − 1

3
A4 +

1
4
A6 − r

12
A7 − r2

12
A8

+
r

4
A9 +

r2

4
A10 − r2

3
A11 − r

3
A12 + rA13 + r2A14

)

B143 =
11

7560

(
A1 − 1

11
A3 +

3
11

A4 − 1
11

A5 +
2
11

A6 +
2
11

A9

+
2
11

A10 +
3
11

A11 +
3
11

A12 + A13 + A14

)

B364 =
1

270

(
A1 − 1

144
A2 +

1
6
A3 − 1

9
A4 − 1

24
A5 +

1
16

A6 − 1
144

A7

− 1
144

A8 +
1
16

A9 +
1
16

A10 − 1
9
A11 − 1

9
A12 + A13 + A14

)

B1365 =
1
72

(
A1 +

1
144

A2 +
1
9
A4 +

1
16

A6 +
r

144
A7 +

r2

144
A8

+
r

16
A9 +

r2

16
A10 +

r2

9
A11 +

r

9
A12 + rA13 + r2A14

)

B4290 =
11
252

(
A1 +

1
72

A2 − 5
99

A4 +
1
88

A6 +
r

72
A7 +

r2

72
A8

+
r

88
A9 +

r2

88
A10 − 5r2

99
A11 − 5r

99
A12 + rA13 + r2A14

)
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B5940 =
11
182

(
A1 − 7

864
A2 +

1
66

A3 +
1
27

A4 +
1
66

A5 +
1

352
A6 − 7

864
A7

− 7
864

A8 +
1

352
A9 +

1
352

A10 +
1
27

A11 +
1
27

A12 + A13 + A14

)

B12012 =
11
90

(
A1 − 1

66
A3 − 1

33
A4 +

1
264

A5 +
1
88

A6 +
1
88

A9

+
1
88

A10 − 1
33

A11 − 1
33

A12 + A13 + A14

)

B14300 =
55
378

(
A1 +

1
288

A2 +
1

330
A3 +

1
99

A4 − 1
132

A5 − 5
352

A6 +
1

288
A7

+
1

288
A8 − 5

352
A9 − 5

352
A10 +

1
99

A11 +
1
99

A12 + A13 + A14

)

B27027 =
11
40

(
A1 − 1

432
A2 +

1
297

A4 − 1
176

A6 − r

432
A7 − r2

432
A8

− r

176
A9 − r2

176
A10 +

r2

297
A11 +

r

297
A12 + rA13 + r2A14

)

r = exp(2πi/3) = − 1
2 + i

√
3
2 is the basic primitive 3rd root of unity.

Time C: 57 min 58 s. Time Maple: 7 min 41 s.
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Factoring Multivariate Polynomials
with Many Factors and Huge Coefficients
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Abstract. The standard approach to factor a multivariate polynomial
in Z[x1, x2, . . . , xn] is to factor a univariate image in Z[x1] then recover
the multivariate factors from their images using a process known as mul-
tivariate Hensel lifting. For the case when the factors are expected to be
sparse, at CASC 2016, we introduced a new approach which uses sparse
polynomial interpolation to solve the multivariate polynomial diophan-
tine equations that arise inside Hensel lifting.

In this work we extend our previous work to the case when the number
of factors to be computed is more than 2. Secondly, for the case where
the integer coefficients of the factors are large we develop an efficient
p-adic method. We will argue that the probabilistic sparse interpolation
method introduced by us provides new options to speed up the factor-
ization for these two cases. Finally we present some experimental data
comparing our new methods with previous methods.

Keywords: Polynomial factorization
Sparse polynomial interpolation · Multivariate Hensel lifting
Polynomial diophantine equations

1 Introduction

Suppose we seek to factor a multivariate polynomial a ∈ R = Z[x1, . . . , xn].
Today many modern computer algebra systems, such as Maple, Magma and
Singular, use Wang’s incremental design of multivariate Hensel lifting (MHL) to
factor multivariate polynomials over integers. MHL was developed by Yun [15]
and improved by Wang [13,14].

To factor a(x1, . . . , xn) the first step is to choose a main variable, say
x1, then compute the content of a in x1 and remove it from a. If a =∑d

i=0 ai(x2, . . . , xn)xi
1, the content of a is gcd(a0, a1, . . . , ad), a polynomial in

one fewer variables which is factored recursively. Let us assume this has been
done.

The second step identifies any repeated factors in a by doing a square-free
factorization. See Chap. 8 of [2]. In this step one obtains the factorization a =
b1b

2
2b

3
3 · · · bkk such that each factor bi has no repeated factors and gcd(bi, bj) = 1.

c© Springer Nature Switzerland AG 2018
V. P. Gerdt et al. (Eds.): CASC 2018, LNCS 11077, pp. 319–334, 2018.
https://doi.org/10.1007/978-3-319-99639-4_22
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Let us assume this has also been done. So let a = f1f2 . . . fr be the irreducible
factorization of a over Z. Also, let #f denote the number of terms of a polynomial
f and Supp(f) denote the support f , i.e., the set of monomials in f .

MHL chooses an evaluation point α = (α2, α3, . . . , αn) ∈ Z
n−1 where the

αi’s are preferably small and contain many zeros. Then a(x1, α) is factored over
Z. The evaluation point α must satisfy

(i) L(α) �= 0 where L is the leading coefficient of a in x1,
(ii) a(x1, α) must have no repeated factors in x1 and
(iii) fi(x1, α) must be irreducible over Q.

If any condition is not satisfied the algorithm must restart with a new evaluation
point. Conditions (i) and (ii) may be imposed in advance of the next step. One
way to ensure that condition (iii) is true with high probability is to pick a second
evaluation point β = (β2, . . . , βn) ∈ Z

n−1, factor a(x1, β) over Z and check that
the two factorizations have the same degree pattern before proceeding.

For simplicity let us assume a is monic and suppose we have obtained the
monic factors fi(x1, α) in Z[x1]. Next the algorithm picks a prime p which is big
enough to cover the coefficients of a and the factors fi of a.

The input to MHL is a, α, fi(x1, α) and p such that a(x1, α) =
∏r

i=1 fi(x1, α)
where gcd(fi(x1, α), fj(x1, α)) = 1 in Zp[x1] for i �= j. If the gcd condition is not
satisfied, the algorithm chooses a new prime p until it is.

There are two main subroutines in the design of MHL. For details see Chap. 6
of [2]. The first one is the leading coefficient correction algorithm (LCC). The
most well-known is the Wang’s heuristic LCC [14] which works well in practice
and is the one Maple currently uses. There are other approaches by Kaltofen [6]
and most recently by Lee [9]. In our implementation we use Wang’s LCC.

In a typical application of Wang’s LCC, one first factors the leading coefficient
of a, a polynomial in Z[x2, . . . , xn], by a recursive call and then one applies LCC
before the jth step of MHL. Then the total cost of the factorization is given by
the cost of LCC + the cost of factoring a(x1, α) over Z + the cost of MHL. One
can easily construct examples where LCC or factoring a(x1, α) dominates the
cost. However this is not typical. Usually MHL dominates the cost.

The second main subroutine solves a multivariate polynomial diophantine
problem (MDP). In MHL, for each j with 2 ≤ j ≤ n, Wang’s design of MHL
must solve many instances of the MDP in Zp[x1, . . . , xj−1]. Wang’s method for
solving an MDP (see Algorithm 2) is recursive. Although Wang’s method per-
forms significantly better than the previous algorithm that he developed with
Rothschild in [14], it does not explicitly take sparsity into account. During com-
putation, the ideal-adic representation of factors is dense when the evaluation
points α2, . . . , αn are non-zero. In practice, conditions (i) and (iii) of LCC may
force many non-zero αj ’s. This makes Wang’s approach exponential in n.

Zippel’s sparse interpolation [18] was the first probabilistic method aimed
at taking sparsity into account. Based on sparse interpolation and multivari-
ate Newton’s iteration, Zippel then introduced a sparse Hensel lifting (ZSHL)
algorithm in [17,19], which uses a MHL organization different from Wang’s.
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Another approach for sparse Hensel lifting for the sparse case was proposed by
Kaltofen (KSHL) in [6]. Kaltofen’s method is also based on Wang’s incremental
design of MHL but it uses a LCC different from Wang’s LCC and offers a distinct
solution to the multivariate diophantine problem (MDP) that appears in Wang’s
design of MHL.

At CASC 2016 the authors proposed a new practical sparse Hensel Lifting
algorithm (MTSHL) [11]. It is also based on Wang’s incremental design of MHL
and LCC but offers a solution to the MDP different from those of Zippel and
Kaltofen. To solve the MDP problem appearing in MHL, MTSHL exploits the
fact that at each step of MHL, the solutions to MDP’s, which are just Taylor
polynomial coefficients, are structurally related. At the jth step of MHL we are
recovering xj in the factors. Let f be one such factor in Zp[x1, x2, . . . , xj ] and let
f =

∑l
k=0 fk(xj −αj)k be its Taylor representation. At this point we know only

f0. But Supp(fk) ⊆ Supp(fk−1) with high probability if αj is chosen randomly
from [0, p−1] and p is sufficiently large. MTSHL is built on this key observation.

In this paper we consider the case where a has r > 2 factors and secondly
the case where the factors have large integer coefficients. When r > 2, the MDP
problem is called a multiterm MDP problem and an approach to the solution to
this problem is described in [2]. It reduces the multiterm MDP problem to r − 1
two term MDP problems. Our previous implementation of MTSHL described
in [11] also used this approach.

In Sect. 2 we define the MDP problem in the context of MHL. See Algo-
rithms 1 and 2. In Sect. 3 we discuss main ideas for the solution to the MDP
used by MTSHL and present it as Algorithm3 to make our explanation precise.
We call Algorithm 3 MTSHL-d (d stands for direct), since it differs from our pre-
vious version of MTSHL (Algorithm 4 in [11]) in how it solves MDP problems
when r > 2. For r = 2 it is the same as Algorithm 4 in [11].

In Sect. 4 we discuss the case r > 2. We argue that the probabilistic sparse
interpolation method used in the design of MTSHL allows us to reduce the time
spent solving multiterm MDP’s by up to a factor of r − 1. Because our proposal
also reduces the multiplication cost in the previous approach described in [2],
the observed speedup is sometimes greater than r − 1.

In Sect. 5, we study the case where the integer coefficients of the factors
are large. The current approach (see [2]) chooses a prime p and l > 0 such
that pl bounds any coefficients in the factors fi of a. We show that the sparse
MDP solver developed in [11] renders an improved option. Suppose one factor
f ∈ Z[x1, . . . , xn] has a p-adic representation f =

∑l
k=0 fkp

k. We show that
in this case also Supp(fk) ⊆ Supp(fk−1) with high probability if p is chosen
randomly. Therefore we propose first to factor a in Zp[x1, . . . , xn] by doing all
arithmetic mod p where p is a machine prime (e.g. 63 bits on a 64 bit computer),
i.e. run the entire Hensel lifting modulo a machine prime. Then lift the solution
to Zpl [x1, . . . , xn] by computing fk, again by solving each MDP appearing in the
lifting process using the sparse interpolation developed in the design of MTSHL.
Using this approach most of the computation is modulo p a machine prime.
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In Sect. 6 we present some timing data to compare our new approaches with
previous approaches and end with some concluding remarks.

In the paper we assume the input polynomial a is monic in x1 so as not to
complicate the presentation with LCC. We note that what we explain remains
true for the non-monic case with slight modifications. Our implementation uses
Wang’s LCC for the non-monic case.

2 The Multivariate Diophantine Problem (MDP)

The Multivariate Diophantine Problem (MDP) arises naturally as a subproblem
of the incremental design of MHL developed by Wang. For completeness we
provide the jth step of MHL as Algorithm 1 for the monic case and Wang’s
solution to the MDP as Algorithm2.

Algorithm 1. jth step of Multivariate Hensel Lifting for j > 1.
Input : αj ∈ Zp, aj ∈ Zp[x1, . . . , xj ], fj−1,1, . . . , fj−1,r ∈ Zp[x1, . . . , xj−1] where
aj , fj−1,i are monic in x1 and aj(xj = αj) =

∏r
i=1 fj−1,i.

Output : fj,1, . . . , fj,r ∈ Zp[x1, . . . , xj ] such that fj,i(xj = αj) = fj−1,i and aj =∏r
i=1 fj,i or FAIL.

1: for i from 1 to r do
2: σ0,i ← fj−1,i; fj,i ← σ0,i; bj,i ← ∏r

k=1,k �=i fj−1,k.
3: end for
4: error ← aj − ∏r

i=1 fj,i.
5: for k from 1 while error �= 0 and

∑r
i=1 degxj

fj,i < degxj
aj do

6: ck ← Taylor coefficient of (xj − αj)
k of error at xj = αj

7: if ck �= 0 then
8: Solve MDPj,k: σk,1bj,1 + · · · + σk,rbj,r = ck for σk,i ∈ Zp[x1, . . . , xj−1].
9: for i from 1 to r do

10: fj,i ← fj,i + σk,i × (xj − αj)
k

11: end for
12: error ← aj − ∏r

i=1 fj,i.
13: end if
14: end for
15: if error = 0 then return fj,1, . . . , fj,r else return FAIL end if

The MDP appears at line 8 of Algorithm1. Consider the case where the
number of factors r to be computed is 2, i.e., r = 2. We discuss the case r > 2
in Sect. 4.

Let u,w, c ∈ Zp[x1, . . . , xj ] with u and w monic with respect to the variable
x1 and let Ij = 〈x2 − α2, . . . , xj − αj〉 be an ideal of Zp[x1, . . . , xj ] with αi ∈ Z.
The MDP is to find multivariate polynomials σ, τ ∈ Zp[x1, . . . , xj ] that satisfy

σu + τw = c mod I
dj+1
j (1)
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with degx1
(σ) < degx1

(w) where dj is the maximal degree of σ and τ with
respect to the variables x2, . . . , xj and it is given that

GCD (u mod Ij , w mod Ij) = 1 in Zp[x1].

It can be shown that the solution (σ, τ) exists and is unique and independent
of the choice of the ideal Ij . For j = 1 the MDP is in Zp[x1] and can be solved
with the extended Euclidean algorithm (see Chap. 2 of [2]).

To solve the MDP for j > 1, Wang uses the same approach as for Hensel
Lifting, that is, an ideal-adic lifting approach. See Algorithm2.

Algorithm 2. WMDS (Wang’s multivariate diophantine solver)
Input A point αj ∈ Zp, polynomials c, fj,k ∈ Zp[x1, . . . , xj ] for k = 1, . . . , r and an
ideal I = 〈x2 − α2, . . . , xn − αn〉 with n ≥ j where gcd(fj,k mod I, fj,l mod I) = 1 in
Zp[x1] for k �= l and a degree bound dj satisfying dj ≥ max(degxj

σk) for 2 ≤ i ≤ n.

(One may use dj = degxj
a)

Output (σ1, . . . , σr) ∈ Zp[x1, . . . , xj ] satisfying
∑r

k=1 σkbk = c ∈ Zp[x1, . . . , xj ] where
bk =

∏r
i�=k fj,i and degx1

σk < degx1
fj,k or FAIL if no such solution exists.

1: bk ← ∏r
i�=k fj,i for k = 1, . . . , r

2: if j = 1 then use extended Euclidean algorithm (see Ch 2 of [2] for r = 2 and
Section 4 for r > 2) end if

3: (σ1,0, . . . , σr,0) ← WMDS(fj,k(xj = αj), c(xj = αj), I)
4: if WMDS output FAIL then return FAIL end if
5: σk ← σk,0 for k = 1, . . . , r; error ← c − ∑r

k=1 σkbk
6: for i = 1, 2, . . . , dj while error �= 0 do
7: ci ← Taylor coeff(error, (xj − αj)

i)
8: if ci �= 0 then
9: (s1, . . . , sr) ← WMDS(σk, ci, I)

10: if WMDS output FAIL then return FAIL end if
11: σk ← σk + sk × (xj − αj)

i for k = 1, . . . , r.
12: error ← error − ∑r

k=1 σkbk
13: end if
14: end for
15: if error = 0 then return (σ1, . . . , σr) else return FAIL end if

In general, if αj �= 0 the Taylor series expansion of σ and τ about xj = αj is
dense in xj so the ci �= 0. Then the number of calls to the Euclidean algorithm
of Wang’s solution to MDP is exponential in n. It is this exponential behaviour
that the design of MTSHL eliminates. On the other hand, if MHL can choose
some αj to be 0, for example, if the input polynomial a(x1, . . . , xn) is monic in
x1 then this exponential behaviour may not occur for sparse f and g.
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3 MTSHL’s Solution to the MDP via Sparse
Interpolation

We consider whether we can interpolate x2, . . . , xj in σ and τ in (1) using sparse
interpolation methods. If β ∈ Zp with β �= αj , then

σ(xj = β)u(xj = β) + τ(xj = β)w(xj = β) = c(xj = β) mod I
dj−1+1
j−1 .

For Kj = 〈x2−α2, . . . , xj−1−αj−1, xj−β〉 and Gj =GCD(u mod Kj , w mod Kj),
we obtain a unique solution σ(xj = β) iff Gj = 1. However Gj �= 1 is possible.
Let R = resx1(u,w) be the Sylvester resultant of u and w taken in x1. Since u,w
are monic in x1 one has1

Gj �= 1 ⇐⇒ resx1(u mod Kj , w mod Kj) = 0 ⇐⇒ R(α2, . . . , αj−1, β) = 0.

Let r = R(α2, . . . , αj−1, xj) ∈ Zp[xj ] so that R(α2, . . . , αj−1, β) = r(β). Also
deg(R) ≤ deg(u) deg(w) [1]. Now if β is chosen at random from Zp and β �= αj

then

Pr[Gj �= 1] = Pr[r(β) = 0] ≤ deg(r, xj)
p − 1

≤ deg(u) deg(w)
p − 1

.

This bound for Pr[Gj �= 1] is a worst case bound. In [10] we show that the
average probability for Pr[Gj �= 1] = 1/(p−1). Thus if p is large, the probability
that Gj = 1 is high. Interpolation is thus an option to solve the MDP.

As can be seen from line 10 of Algorithm 1, the solutions to the MDP are the
Taylor coefficients of the factors to be computed at the jth step. As such, if σ0,i

is sparse then the σk,i are also sparse. In line 5 of Algorithm 1, as k increases,
on average, the number of terms of the σk,i decrease even for dense cases. That
is, on average #σk,i < #σk−1,i. A natural idea then is to use sparse interpola-
tion techniques to solve the MDP. However, the sparse technique proposed by
Zippel [16] is also iterative; it recovers x2 then x3 etc. To make one more step in
this direction consider the following Lemma whose proof can be found in [11].

Lemma 1. Let f ∈ Zp[x1, . . . , xn] and let α be a randomly chosen element in
Zp and f =

∑dn

i=0 bi(x1, . . . , xn−1)(xn − α)i where dn = degxn
f. Then

Pr[Supp(bj+1) � Supp(bj)] ≤ |Supp(bj+1)| dn − j

p − dn + j + 1
for 0 ≤ j < dn.

Lemma 1 says that for the sparse case, if p is big enough then the probability
of Supp(bj+1) ⊆ Supp(bj) is high. This observation suggests, during MHL we
use σk−1,i as a form of the solution of σk,i. That is, the solutions to the MDP’s
are related. During MHL, these problems shouldn’t be treated independently
as previous approaches do. In light of the key role this assumption plays at

1 This argument also works for the non-monic case if the leading coefficients of u and
w w.r.t. x1 do not vanish at (α2, . . . , αn) modulo p, conditions which we note are
imposed by Wang’s LCC.
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each MHL step j > 1, for each factor fi, we call this assumption Supp(σk,i) ⊆
Supp(σk−1,i) for all k > 0 the strong SHL assumption.

Algorithms 3 and 4 below show how this assumption can be combined with
the sparse interpolation idea of Zippel [16] to reduce the solution to the MDP
problem to solving linear systems over Zp. To see how MTSHL works on a
concrete example for r = 2 and how MTSHL decreases the evaluation cost that
sparse interpolation brings see [11].

We present the jth step of the new version of MTSHL in Algorithm 4 below
and call it as MTSHL-d, as a shortcut for MTSHL direct. For r = 2 MTSHL-d
is equivalent to MTSHL described in [11]. In the following section we discuss the
case r > 2 and make it clear why we call it MTSHL direct.

4 The Multiterm Diophantine Problem

Let the input polynomial a(x1, . . . , xn) be square-free with total degree d and
irreducible factorization of a be

a = f1 · · · fr ∈ Z[x1, . . . , xn].

We consider the case r > 2. We start with the unique factorization of a1(x1) =
a(x1, α) = u1(x1) · · · ur(x1) ∈ Z[x1]. By Hilbert’s irreducibility theorem [7] most
probably ui(x1) = fi(x1, α). Next we choose a prime p which is big enough to
cover the coefficients occurring in each fi and then pass to mod p

a(x1, α) = u1(x1) · · · ur(x1) ∈ Zp[x1].

We need gcd(ui, uj) = 1 ∈ Zp[x1] for all 1 ≤ i < j ≤ r. Otherwise we choose a
different prime and repeat the process.

Suppose fi =
∑

k=0 σi,k(xj −αj)k. So σi,k is the kth Taylor coefficient of the
ith factor to be computed in the jth step of MHL. (See line 10 of Algorithm1.)
During the jth step of MHL, for each iteration k > 0, the algorithm computes
σk,i, by solving the multiterm Diophantine problem (multi-MDP), which is a
natural generalization of the MDP defined in Sect. 2 and denoted as MDPj,k in
line 8 of Algorithm 1. It has the form

MDPj,k : σk,1b1 + · · · + σk,rbr = ck,

where bk =
∏r

i=1,i �=k fj−1,i(x1, . . . , xj−1). So, given bk and ck in Zp[x1, . . . , xj−1],
the goal is to find σk,i for each i.

The current approach to solve a multiterm MDP is to reduce it into r − 1
two term MDP’s. We describe the idea with an example. Let r = 4 and to save
some space let ui = fj−1,i. Then

ck = σk,1b1 + σk,2b2 + σk,3b3 + σk,4b4

= σk,1u2u3u4 + σk,2u1u3u4 + σk,3u1u2u4 + σk,4u1u2u3

= σk,1u2u3u4 + u1(σk,2u3u4 + u2(σk,3u4 + σk,4u3)).
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Algorithm 3. SparseInt: solve an MDP using a sparse interpolation
Input: Polynomials fi, σi, c ∈ Zp[x1, x2, . . . , xj−1] for i = 1, . . . , r. fi are monic in x1

and p a prime.
Output: Update σi so that they form a solution to the multi-MDP σ1b1+· · ·+σrbr = c
in Zp[x1, x2, . . . , xj−1] where bi =

∏r
k=1,k �=i fi or FAIL.

1: for i from 1 to r do
2: σi ← ∑

l,k cilk(x3, ..., xj−1)x
l
1x

k
2 where cilk =

∑silk
w=1 cilkwMilkw with cilkw

are unknown coefficients to be solved for and xl
1x

k
2Milkw are the monomials in

Supp(σi).
3: end for
4: Let t = maxr

i=1{max silk = max #cilkw}
5: Pick (β3, . . . βj−1) ∈ (Zp\{0})j−3 at random.
6: for s from 1 to t do (Precomputation.(see [11]))
7: Let Ys = (x3 = βs

3 , . . . , xj−1 = βs
j−1).

8: Evaluate c(x1, x2, Ys) and fi(x1, x2, Ys) for 1 ≤ i ≤ r.
9: end for

10: for i from 1 to r do
11: Compute bi(x1, x2, Yi) =

∏r
k=1,k �=i fi(x1, x2, Yi) in Zp[x1, x2].b

12: end for
13: for i from 1 to r do
14: Compute monomial evaluation sets for σi

{Silk = {milkw = Milkw(β3, . . . , βj−1) : 1 ≤ w ≤ silk} for each l, k} .

15: If |Sikl| �= sikl for some ikl try a different choice for (β3, . . . , βj−1).
16: If this fails, return FAIL. (p is not big enough)
17: Let ti = maxl,k silk
18: for s from 1 to ti do (Compute the bivariate images of σi)
19: Solve σ̃1(x1, x2)f1(x1, x2, Yi) + · · · + σ̃r(x1, x2)fr(x1, x2, Yi) = c(x1, x2, Yi)

in Zp[x1, x2] for σ̃i(x1, x2) using multi-BDP (see section 4).
20: if multi-BDP returns FAIL then return FAIL end if

(multi-BDP fails if it choses γ ∈ Zp with gcd(fi(x1, γ, Yi), fj(x1, γ, Yi)) �= 1
for some i �= j ).

21: end for
22: for each l, k do
23: Construct and solve the silk × silk linear system

{
silk∑

w=1

cilkw mn
ilkw = coefficient of xl

1x
k
2 in σ̃i(x1, x2) for 1 ≤ n ≤ silk

}

for the coefficients cilkw of cilk(x3, . . . , xj−1). Because it is a Vandermonde
system in miklw which are distinct by Step 15 it has a unique solution.

24: end for
25: Substitute the solutions for cilkw into σi

26: end for
27: Verify probabilistically whether

∑r
i=1 σibi = c :

Pick β = (β1, . . . βj−1) ∈ Z
j−1
p at random.

if
∑r

i=1 σi(β)bi(β) �= c(β) then return FAIL end if
28: return σ1, . . . , σr

mmonagan@cecm.sfu.ca



Factoring Multivariate Polynomials 327

Algorithm 4. jth step of MTSHL-d for j > 1.
Input : αj ∈ Zp, aj ∈ Zp[x1, . . . , xj ], fj−1,1, . . . , fj−1,r ∈ Zp[x1, . . . , xj−1] where
aj , fj−1,i are monic in x1 and aj(xj = αj) =

∏r
i=1 fj−1,i.

Output : fj,1, . . . , fj,r ∈ Zp[x1, . . . , xj ] such that fj,i(xj = αj) = fj−1,i and aj =∏r
i=1 fj,i or FAIL.

1: for i from 1 to r do fj,i ← fj−1,i, σ0,i ← fj−1,i end do
2: error ← aj − ∏r

i=1 fj,i
3: for k = 1, 2, 3, . . . while error �= 0 and

∑r
i=1 deg(fj,i, xj) < deg(aj , xj) do

4: ck ← Taylor coefficient of (xj − αj)
k of error at xj = αj

5: if ck �= 0 then
6: Solve the MDPj,k (see line 8 of Alg. 1) without computing bj,i as follows:
7: for i from 1 to r do σk,i ← σk−1,i end do (Strong SHL assumption.)
8: (σk,1, . . . , σk,r) ← SparseInt( fj−1,i, ck, σk,i, i = 1, . . . , r) (see Alg. 3 )
9: if (σk,1, . . . , σk,r)=FAIL then restart MTSHL-d with a new α end if

10: for i from 1 to r do fj,i ← fj,i + σk,i × (xj − αj)
k end do

11: error ← aj − ∏r
i=1 fj,i

12: end if
13: end for
14: if error = 0 then return fj,1, . . . , fj,r else return FAIL end if

We first solve the MDP σk,1u2u3u4 + u1w1 = ck for σk,1 and w1. Then we solve
σk,2u3u4 + u2w2 = w1 for σk,2 and w2. Finally we solve σk,3u4 + σk,4u3 = w2

to compute σk,3 and σk,4. Let us call this approach as the iterative approach to
solve the multiterm MDP.

Note that Wang’s approach to solve the MDP is recursive. So when r > 2,
the iterative approach to solve multiterm MDP makes Wang’s design highly
recursive. Also, if the polynomials ui have many terms then the bi’s will be large
and expensive to compute. If we use the probabilistic sparse MDP solver of
MTSHL as described in [11] for each of these MDP’s, then we will first compute
the bi’s and then evaluate bi’s at random points. But evaluation is one of the
most costly operations in sparse interpolation and this cost increases as the size
of the polynomial to be evaluated increases.

However, the probabilistic non-recursive sparse interpolation idea used to
solve the MDP’s in MHL renders another simple and efficient option. One can
invoke the sparse MDP solver to compute the σk,i’s simultaneously without
reducing MDPj,k to r − 1 two term MDP’s in the following way.

According to Lemma 1, if αj is random and p is big, then for each factor fj,i,
with probability ≥1 − |Supp(σk,i)| di−i

p−di+j+1 one has Supp(σk,i) ⊆ Supp(σk−1,i)
for k = 1, .., di where σ0,i is defined as σ0,i := fj−1,i and di = degxj

(fj,i).
Therefore to solve MDPj,k we use Supp(σk−1,i) as a skeleton of the solution
of σk,i. That is, if σk−1,i =

∑
l,k milkMilk for milk ∈ Zp − {0} with distinct

monomials in Milk ∈ Zp[x1, . . . , xj−1], then we construct σ̄k,i =
∑

l,k cilkMilk as
a solution form (skeleton) of σk,i, where cilk are to be computed.
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At the kth iteration suppose that we need ti evaluations to recover the coeffi-
cients cilk (see line 17 of Algorithm 3). Let β = (β2, . . . βj−1) where βi ∈ Zp−{0}
be a random evaluation point. Consider the ti consecutive univariate multiterm
MDP’s

σ̃k,1b1(x1, β
s) + · · · + σ̃k,rbr(x1, β

s) = ci(x1, β
s) for 1 ≤ s ≤ ti, (2)

where the σ̃k,i are to be computed. By uniqueness of the solutions to the multi-
term MDP, with average probability

(
r
2

)
1
p one has σ̃k,i = σk,i(x1, β

s).
Equation 2 can be solved efficiently for σ̃k,i using the iterative approach in the

univariate domain Zp[x1]. Next the univariate images σ̄k,i(x1, β
s) of σ̄k,i are used

to compute the coefficient cilk of σ̄k,i by solving Vandermonde systems which
are constructed by equating the coefficients of σk,i(x1, β

j) and σ̃k,i (see line 23
of Algorithm 3). Again, if the strong SHL assumption is true, then by following
Zippel’s analysis in [16], one can show that with probability ≥1 − (#fi)

2

2(p−1) , we
have a unique solution to Vandermonde systems.

At this stage we have candidate solutions σ̄k,i for the actual solutions σk,i of
MDPj,k. Because our assumption Supp(σk,i) ⊆ Supp(σk−1,i) may be false, we
need to verify if σ̄k,i = σk,i. We do this using a random evaluation in line 27 of
Algorithm 3.

What does this approach bring us? First, MTSHL-d essentially follows
MTSHL but eliminates an iteration at the cost of an increase in the proba-
bility of failure. However this probability is negligible if p is big enough. In our
implementation we used a 31 bit prime and MTSHL-d never failed. Since it is an
iteration on r, we expect MTSHL-d to solve multi-MDP’s faster than MTSHL
by a factor of O(r). This is verified by the experimental data in Table 1 of Sect. 6.

Second, bk(x1, β
s) =

∏r
i=1,i �=k fi(x1, β

s), so we don’t need to compute bk ∈
Zp[x1, . . . , xj−1]. All we need to do is to compute and multiply their univariate
images fi(x1, β

s) of fi to obtain bk(x1, β
j).

Finally in MTSHL-d, like MTSHL, we may evaluate down to Z[x1, x2] instead
of Z[x1] to decrease the number of evaluations ti needed and the size of the
Vandermonde systems (Line 17 in Algorithm3). To do this MTSHL-d uses multi-
Bivariate Diophant Solver (multi-BDP). We implemented Multi-BDP in C. It
solves the bivariate multi-MDP by the iterative approach and uses evaluation
and interpolation on x2 to reduce to the univariate case.

5 The Case Modulo pl with l > 1

When the integer coefficients of a or the factors of a to be computed are huge
the current strategy implemented by most of the computer algebra platforms,
including Maple, Singular [9] and Magma [12], is the following. For details see [2].
First we pick a prime p and a natural number l > 0 such that the ring Zpl can
be identified with the ring Z. That is, we find a bound B such that the integer
coefficients of the polynomial a to be factored and its irreducible factors are
bounded by B. One way to choose such an upper bound B is given by [4]. Then
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Algorithm 5. LiftTheFactors for r = 2 (optimized)
Input : a ∈ Z[x1, . . . , xn], f0, g0 ∈ Zp[x1, . . . , xn] where a, f0, g0 are monic in x1

and a = f0g0 in Zp[x1, . . . , xn]. Also an integer bound l > 0 (For example, [Lemma 14,
[4]]).
Output : f, g ∈ Z[x1, . . . , xj ] such that a = fg ∈ Z[x1, . . . , xn] or FAIL

1: (f, g) ← (mods(u0, p), mods(w0, p)). (# use symmetric range)
2: modulus ← 1.
3: error ← (a − fg)/p, (σf , σg) ← (f, g)
4: for i from 1 to l while error �= 0 do
5: modulus ← modulus × p, c ← error mod p
6: # Solve the MDP σ u0 + τ w0 = c for σ and τ in Zp[x1, . . . , xn]:
7: (σ, τ) ← SparseInt(f, g, σf , σg, c) (Algorithm 3)
8: if SparseInt output FAIL then return FAIL end if
9: (σ, τ) ← (mods(σ, p), mods(τ, p)). (# use symmetric range)

10: (σf , σg) ← (σ, τ), error ← (error − (fτ + gσ) + στ × modulus)/p
11: (f, g) ← (f + σ × modulus, g + τ × modulus).
12: end for
13: if error �= 0 then return FAIL else return (f, g) end if

we choose l such that pl > 2B. Next the MDP solution in Zp[x1] is lifted to
the solution in Zpl [x1]. The second step is to lift the solution from Zpl [x1] to
Zpl [x1, . . . , xn]. Note that in the second step all arithmetic is in Zpl with pl > 2B.
In this section we question whether this strategy is the best approach for the
case l > 1.

Suppose for example that the coefficients of the factors are bounded by p10.
Before the factorization we don’t have this information. Since most likely the
coefficient bound B > p20, this means that throughout MHL all integer arith-
metic is modulo p20 which is expensive.

MTSHL’s sparse multivariate diophantine solver allows us to propose an
approach that eliminates most of the multi-precision arithmetic and allows us
to lift up to the size of the actual coefficients in the factors, thus avoiding B.

– First choose a random (m+1)-bit machine prime p, i.e. p ∈ [2m < p < 2m+1]
and compute the factorization of a by lifting the factorization in Zp[x1] to in
Zp[x1, . . . , xn] with MTSHL-d. Most of this work is mod p.

– Next compute a lifting bound B. One may use Lemma 14 of [4] for this
purpose. Now pick the smallest l such that pl > 2B.

– Then as a second stage do a p-adic lift of the factorization from Zp[x1, . . . , xn]
stopping when f and g are recovered or we exceed pl. The p-adic lift is pre-
sented as Algorithm 5. It reduces to solving MDPs in Zp[x1, . . . , xn].

To make the following explanation easier we assume r = 2 and suppose that
a = uw where a, u, w ∈ Z[x1, . . . , xn] and u,w are unknown to us. As a first
step we choose an evaluation ideal I = 〈x2 − α2, . . . , xn − αn〉 with randomly
chosen αi from [0, p − 1] such that conditions (i) and (ii) for MHL are satisfied
with l = 1. Then there is a factorization a = u(n)w(n) ∈ Zp[x1, . . . , xn]. This
factorization is computed using MTSHL-d.
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Now suppose that u (similarly w) has the form

u =
t∑

j=1

cjMj(x1, . . . , xn) =
t∑

j=1

l−1∑

i=0

sjip
iMj(x1, . . . , xn),

where the Mj are distinct monomials and 0 �= cj ∈ Z with cj =
∑l−1

i=0 sjip
j

where −pl/2 < sji < pl/2. Then we have

u =
l−1∑

i=0

⎛

⎝
t∑

j=1

sjiMj(x1, . . . , xn)

⎞

⎠ pi =
l−1∑

i=0

uip
i.

It follows that

u − ∑k−1
i=0 uip

i

pk
=

t∑

j=1

(
l−1∑

i=k

sjip
i−k

)

Mj(x1, . . . , xn).

Also, we have u0 = u mod p �= 0 since in the first stage u is lifted from u0. Now
we make a key observation: If p is chosen at random such that 2m < p < 2m+1,
the probability that p | ci is Pr[p | ci] = #distinct (m+1)bit prime divisors of ci

#mbit primes . Let
π(s) be the number of primes ≤ s. Since there are at most �log2m(ci)� many
(m + 1)-bit primes dividing ci we have

Pr[p | ci] ≤ �log2m(ci)�
π(2m+1) − π(2m)

≤ l

π(2m+1) − π(2m)

This probability is very small because according to the prime number theorem
π(s) ∼ s/ log(s) and hence π(2m+1) − π(2m) ∼ 2m

m log(2) .
It has been shown in [8] that the exact number of 31-bit primes (m = 30)

is 50697537. Therefore in our implementation the support of u0 will contain all
monomials Mi and Supp{uj} ⊆ Supp{u0} with probability >1 − t l

5·107 .
We make one more key observation and claim that Supp{uj} ⊆ Supp{uj−1}

for 1 ≤ j ≤ l with high probability: We have

uj = s0jM0 + s1jM1 + · · · + skjMt,

uj+1 = s0,j+1M0 + s1,j+1M1 + · · · + sk,j+1Mt.

For a given j > 0, if si,j+1 �= 0, but sij = 0 then Mi ∈ Supp(uj+1) but Mi /∈
Supp(uj). We consider Pr[sij = 0 | si,j+1 �= 0]. If A is the event that sij = 0 and
B is the event that si,j+1 = 0 then

Pr[A |Bc] =
Pr[A] − Pr[B] Pr[A |B]

Pr[Bc]
≤ Pr[A]

Pr[Bc]
.

It follows that

Pr[A]
Pr[Bc]

≤ l/(π(2m+1) − π(2m))
1 − l/(π(2m+1) − π(2m))

=
l

(π(2m+1) − π(2m)) − l
.
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Hence,

Pr[Supp{uj} ⊆ Supp{uj−1} | 1 ≤ j ≤ l] > 1 − t l

((π(2m+1) − π(2m)) − l
.

As an example for m = 30, l = 5, t = 500, this probability is >0.99993.
Hardy and Ramanujan [5] proved that for almost all integers, the number of

distinct primes dividing a number s is ω(s) ≈ log log(s). This theorem was gener-
alized by Erdős-Kac which shows that ω(s) is essentially normally distributed [3].
By this approximation note that

Pr[A]
Pr[Bc]

≤ log log(sij)/(π(2m+1) − π(2m))
1−loglog(si,j+1)/(π(2m+1)−π(2m))

=
log(l log p)

(π(2m+1)−π(2m))−log(l log p)
.

Hence the probability that Supp{uj} ⊆ Supp{uj−1} is �1 − t m log(lm)
2m−m log(lm) . As

an example for m = 30, l = 5, t = 500, this probability is >0.99995.
What does this mean in the context of multivariate factorization over mod

Zpl for l > 1? It means that the solutions to the multivariate diophantine prob-
lems occurring in the lifting process will, with high probability, be a subset of
the monomials of the solutions of the previous step and these solutions can be
computed simply by solving Vandermonde systems by using a machine prime p
and hence by an efficient arithmetic using a sparse MDP solver as described in
Algorithm 3.

We sum up the observations made in this section in Theorem1 below.

Theorem 1. Let p be a randomly chosen m-bit prime, i.e. p ∈ [2m < p < 2m+1].
With the notation introduced in this section

Pr(Supp{uj} ⊆ Supp{uj−1} for all 1 ≤ j ≤ l) > 1 − t l

((π(2m+1) − π(2m)) − l
.

This probability can be approximated by

Pr[Supp{uj} ⊆ Supp{uj−1} for all 1 ≤ j ≤ l] � 1 − tm log(lm)
2m − m log(lm)

.

6 Timing Data

In this section we give some experimental data to verify the effectiveness of
the methods described in Sects. 4 and 5. In the tables that follow all tim-
ings are in CPU seconds and were obtained on an Intel Core i5–4670 CPU
running at 3.40 GHz with 16 GB of RAM. For all Maple timings, we set
kernelopts(numcpus=1); to restrict Maple to use only one core as otherwise it
will do polynomial multiplications and divisions in parallel.
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6.1 Iterative vs Direct

In this section, we give some data in Table 1 to compare MTSHL-d with the
current approach, i.e. implementing MTSHL so that it solves multi-MDP’s using
iterative approach as explained in Sect. 4. We include also timings for Wang’s
algorithm which also uses the iterative approach.

We generated r random polynomials in n variables of total degree d with
T terms and coefficients from [1, 99] using Maple’s randpoly command thus
x1^(d+1)+randpoly([x1,\ldots,xn],degree=d,terms=T,coeffs=rand(1..99)) and
multiplied them. Then we factored these polynomials using (i) Wang’s algo-
rithm, (ii) MTSHL and (iii) MTSHL-d (our new method explained in Sect. 4).
All implementations are in Maple. tX(tY ) means that the algorithm factored the
polynomial in tX CPU seconds and spent tY CPU seconds solving multiterm
MDPs. OOM stands for out of memory. As can be seen from the data, MTSHL
is significantly faster than Wang’s algorithm and the MDP time in MTSHL-d is
less than the MDP time in MTSHL by a factor of r − 1 or more.

Table 1. Timings for Wang, MTSHL vs MTSHL-d with r > 2.

r/n/d/T Wang (MDP) MTSHL (MDP) MTSHL-d (MDP)

3/9/10/30 18.94 (16.00) 2.26 (0.60) 1.36 (0.30)

4/9/15/30 OOM 104.72 (23.23) 90.04 (6.55)

3/9/10/50 251.20 (240.77) 8.87 (2.28) 4.99 (0.71)

3/9/15/100 2302.69 (2235.2) 122.36 (28.58) 99.28 (8.17)

3/11/15/100 OOM 272.78 (42.74) 208.35 (11.51)

3/11/10/100 515.98 (424.76) 189.07 (23.90) 146.80 (6.25)

3/11/20/100 OOM 316.12 (66.7) 256.79 (19.22)

6.2 The pL Case

In this section, we give some data in Table 2 to compare the current approach,
i.e. implementing MTSHL so that it computes a bound lB and factors staying
in modulo ZplB arithmetic, with the p-adic lifting at the last step approach, i.e.
the -staying in Zp arithmetic approach-, as explained in this Sect. 5.

We generated 2 random polynomials in n variables of total degree d with T
with coefficients in [0, pl) for p = 231−1. Then we multiplied the two factors over
Z and then factored the product with MTSHL. Since MTSHL does not know
what the actual value of l is, it needs to compute the coefficient bound lB (using
Lemma 14 of [4]) and stays in the ZplB arithmetic. It factored the polynomial
in tX(tY ) seconds where tY denotes the time spent on solving MDP’s. Then
we factored the polynomial with MTSHL-d which uses p-adic lifting to recover
the integer coefficients as explained in Sect. 5. The timings in column MTSHL-d
(MDP) (Lift) are the total time, the time spent in MDP and the time spent
doing l lifts. The data in Table 2 shows that doing a p-adic lift is much faster
than the previous approach.
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Table 2. Timings for MTSHL vs MTSHL-d for large integer coefficients.

n/d/Tfi tfi l lB MTSHL (MDP) MTSHL-d (MDP) (Lift)

5/10/300 0.07 2 5 5.866 (5.101) 0.438 (0.132) (0.241)

5/10/500 0.11 2 5 9.265 (7.937) 1.194 (0.186) (0.480)

5/10/1000 0.23 2 5 14.448 (12.826) 2.202 (0.264) (1.332)

5/10/300 0.07 4 9 6.923 (6.104) 1.067 (0.156) (0.553)

5/10/500 0.11 4 9 10.971 (9.737) 1.854 (0.219) (1.231)

5/10/1000 0.23 4 9 16.943 (15.183) 3.552 (0.350) (2.632)

5/10/300 0.07 8 17 8.638 (7.596) 2.553 (0.201) (2.076)

5/10/500 0.11 8 17 13.118 (11.686) 3.101 (0.280) (2.396)

5/10/1000 0.23 8 17 19.031 (17.225) 4.905 (0.459) (4.032)

7 Conclusion

We have shown that when the number of factors to be computed ≥2 and for
the case where the coefficients of the factors are huge, sparse interpolation tech-
niques can be used to speed up multivariate polynomial factorization. The second
author has integrated our code into Maple under a MITACS internship with Dr.
Jürgen Gerhard of Maplesoft. The new code will become the default factoriza-
tion algorithm used by Maple’s factor command for multivariate polynomials
with integer coefficients. The old code will still be accessible as an option.
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Beyond the First Class of Analytic
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Abstract. We investigate the notion of analytic complexity of a bivari-
ate holomorphic function by means of computer algebra tools. An esti-
mate from below on the number of terms in the differential polynomials
defining classes of analytic complexity is established. We provide an algo-
rithm which allows one to explicitly compute the differential membership
criteria for certain families of bivariate analytic functions in the second
complexity class. The presented algorithm is implemented in the com-
puter algebra system Singular 4-1-1.

Keywords: Analytic complexity · Differential polynomial
Differentially algebraic function

1 Introduction

The notion of analytic complexity of a bivariate holomorphic function stems
from Hilbert’s 13th problem on the possibility to represent the algebraic function
implicitly defined by the reduced septic equation with three parameters through
compositions of functions in at most two variables. For continuous functions,
the positive answer is given in a much more general setup by the celebrated
Kolmogorov–Arnold theorem [1].

Theorem 1. (See [1].) Any continuous function defined on a compact subset
of Rn can be represented as a finite superposition of univariate continuous func-
tions and a single bivariate function s(x, y) which can be chosen to be the addi-
tion: s(x, y) = x + y.

Such a representation is only possible due to the vastness of the space of
all continuous functions of real variables defined on a compact set. In fact, the
construction in the proof of the Kolmogorov–Arnold theorem uses continuous
functions that are not analytic in any open set. In the analytic category, the
problem of representing a holomorphic function as a finite superposition of holo-
morphic functions in fewer variables turns out to be much more subtle. It leads
to the concept of classes of analytic complexity defined inductively as finite
superpositions of univariate functions and a fixed bivariate analytic function.

c© Springer Nature Switzerland AG 2018
V. P. Gerdt et al. (Eds.): CASC 2018, LNCS 11077, pp. 335–344, 2018.
https://doi.org/10.1007/978-3-319-99639-4_23
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Apart from trivial examples, computing or estimating the analytic complexity
of a bivariate holomorphic function is a difficult task which requires full use of
elimination theory and heavily relies on computer algebra tools.

In the present paper, we investigate the notion of analytic complexity of
a bivariate holomorphic function by means of computer algebra tools. An esti-
mate from below on the number of terms in the differential polynomials defining
classes of analytic complexity is established. We provide an algorithm which
allows one to explicitly compute the differential membership criteria for cer-
tain families of bivariate analytic functions in the second complexity class. The
presented algorithms are implemented in computer algebra system Singular 4-
1-1. All examples in the paper have been computed on Intel Core i5-4440 CPU
clocked at 3.10 GHz with 16 Gb RAM under MS Windows 7 Ultimate SP1.

The author is thankful to V. Beloshapka for the numerous fruitful discussions
on the analytic complexity of holomorphic functions and related topics.

2 Analytic Complexity of Bivariate Functions

Throughout the paper we denote by (x, y) the coordinates in the two-dimensional
complex space C

2. We denote by O(U) the space of functions that are holomor-
phic in the domain U ⊂ C

2. A (multi-valued) analytic function will be identified
with its germ unless explicitly stated otherwise. The next definition is central to
the paper.

Definition 1. (See [2].) The class of functions of analytic complexity zero Cl0
is defined to comprise the functions that depend on at most one of the variables.
A function F (x, y) is said to belong to the class Cln of functions with analytic
complexity n > 0 if and only if the following two conditions are satisfied:

(1) There exists a point (x0, y0) ∈ C
2 and a germ F(x, y) ∈ O(U(x0, y0)) of

this function holomorphic at (x0, y0) such that

F(x, y) = c(a(x, y) + b(x, y))

for some germs of holomorphic functions a, b ∈ Cln−1 and c ∈ Cl0;
(2) No relation of this form exists for a, b ∈ Clk with k < n − 1.

If there is no such representation for any finite n then the function F is said to
be of infinite analytic complexity.

Thus, a function of two complex variables is said to have analytic complex-
ity zero if and only if it only depends on one of the variables or is identically
constant. A function belongs to the first class of analytic complexity if it admits
a representation of the form c(a(x) + b(y)) for certain univariate analytic func-
tions a, b, c in some open subset of C2.

Typically, the analytic complexity of a bivariate holomorphic function is
rather difficult to estimate and even more difficult to compute exactly. The
inductive definition of analytic complexity leads to a wealth of counterintuitive

mmonagan@cecm.sfu.ca



Beyond the First Class of Analytic Complexity 337

examples. For instance, both the generic linear function αx + βy and the prod-
uct x · y of the variables clearly belong to the first class of analytic complexity.
The sum of two functions in Cl1 is usually a function in the second complex-
ity class. However, for any α, β, γ ∈ C

∗ the polynomial αx + βy + γxy is still
a function in Cl1 since

αx + βy + γxy = −αβ

γ
+

αβ

γ
+ αx + βy + γxy =

−αβ

γ
+

(
β√
γ

+
√

γ x

)(
α√
γ

+
√

γ y

)
.

A differential monomial with the unknown function F (x, y) is the product
of integer powers of F and its partial derivatives, i.e., an expression of the form
F p00F p10

x F p01
y F p20

xx F p11
xy F p02

yy · . . . (the product is finite). By a differential polyno-
mial over a field K with the unknown function F (x, y), we will mean a finite
linear combination of differential monomials with coefficients in K.

The next result due to V.K. Beloshapka shows that classes of analytic com-
plexity for bivariate holomorphic functions admit membership criteria defined
by differential polynomials with integer coefficients.

Theorem 2. (See [2].) The set of bivariate analytic functions whose analytic
complexity does not exceed n coincides with the set of holomorphic solutions to
a finite number of differential polynomials �n with integer coefficients, i.e.,

Cln = {F (x, y) : �n(F (x, y)) ≡ 0}.

Due to the conservation principle, the analytic continuation of a solution to
a system of partial differential equations whose coefficients are entire analytic
functions along any path also satisfies the same system of equations. Thus, it
suffices to apply a differential membership criterion for a class of analytic com-
plexity to any germ of the holomorphic function in question.

Theorem 2 implies that any function of finite analytic complexity is differen-
tially algebraic, i.e., satisfies a (typically nonlinear) partial differential equation
with constant coefficients. Thus, any differentially transcendental function (e.g.

the polylogarithm Lix(y) :=
∞∑

n=1

yn

nx ) necessarily has infinite analytic complexity.

In fact, the set of holomorphic functions of finite analytic complexity is a set of
first category in the space O(U) for any domain U ⊆ C

2.
Unfortunately, explicit differential membership criteria for the classes of ana-

lytic complexity or other families of (bivariate) analytic functions are in gen-
eral very difficult to compute. The only known elements of the family �n are
�0(F ) = FxFy and

�1(F ) = F 2
xFxyFyy − F 2

xFxyyFy − FxxFxyF 2
y + FxFxxyF 2

y ,

which have been found in [2]. The latter can be computed as the numerator
of the expression log(Fx/Fy)

∂x∂y which clearly vanishes for any F ∈ Cl1, i.e., for
F (x, y) = c(a(x) + b(y)).
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Differential membership criteria �n for the classes of analytic complexity
are so difficult to compute because for n ≥ 2, they are themselves incredibly
complex. Examples in Sect. 5 suggest that explicit computation of �2 is probably
beyond the capacity of modern computer algebra tools or requires a completely
new insight into the issue. An important tractable subset of the second analytic
complexity class, the so-called Cl3/2, has been considered in great detail in [6].
In the next section, we provide a rough estimate from below for the number of
differential monomials in the differential polynomial �n(F (x, y)) and describe
an algorithm which is later used to compute defining differential polynomials for
certain families of functions in the second class of analytic complexity. All of the
found differential polynomials are particular cases of the membership criterion
for the second class of analytic complexity which appears to be out of reach for
today’s computer algebra systems.

3 Estimating the Number of Terms in the Differential
Membership Criteria for Complexity Classes

The structure of nonlinear differential equations with both constant and vari-
able coefficients that define families of analytic functions depending on arbitrary
univariate functions was since long ago the focus of intensive research of numer-
ous authors (see [2,3,10] and the references therein). The complexity of such
differential equations typically grows very quickly with the number of univariate
functions that encode the family in question. Although these equations usually
enjoy a rich differential-algebraic structure, one of the most important ways of
estimating their complexity is by counting the number of differential monomials
in their irreducible factors. The following theorem provides a rough estimate
from below for the number of such monomials in the differential polynomials
defining classes of analytic complexity.

Theorem 3. The number of differential monomials in the differential member-
ship criterion for the n th class of analytic complexity is greater than (2n−1 +1)!

Proof. We prove the estimate by considering a family of functions for which the
defining differential polynomial is known. Namely, let

Sk = {F (x, y) : F (x, y) =
k∑

j=1

aj(x)bj(y)} (1)

be the family of bivariate analytic functions which can (locally) be represented
as the scalar product of univariate vector-valued functions (a1(x), . . . , ak(x)) and
(b1(y), . . . , bk(y)). Induction shows that for generic univariate analytic functions
aj(x) and bj(y), the analytic complexity of F (x, y) ∈ S2p−1 equals p. Indeed, by
definition, the analytic complexity of a1(x)b1(y) equals 1 while adding together
two generic elements in Sk results in the unit increment of the analytic complexity.
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For the sake of brevity, we use the notation Fxky� = ∂k+�F
∂xk∂y� . It has been

announced by C. Stéphanos and later proved in [8] (see also [9]) that the family
of functions Sn is the set of all solutions to the partial differential equation

∣∣∣∣∣∣∣∣∣

F Fx . . . Fxn

Fy Fxy . . . Fxny

...
...

. . .
...

Fyn Fxyn . . . Fxnyn

∣∣∣∣∣∣∣∣∣
= 0. (2)

By the construction of the family Sk, the number of differential monomials in
the differential membership criterion �p for the nth class of analytic complexity
cannot be smaller than the number of monomials in the differential polynomial
defining S2p−1 . The left-hand side of (2) is a differential polynomial with (n+1)!
differential monomials which concludes the proof.

Intensive computer experiments suggest that the determinant in the left-hand
side of (2) is irreducible as long as the function F (x, y) is sufficiently general.
Yet, no proof of this fact appears to be present in the literature.

Examples in Sect. 5 show that Theorem 3 gives a rather weak estimate on the
number of terms in the differential membership criterion �n(F (x, y)). In the next
section, we discuss a symbolic computational approach towards the structure of
this differential polynomial.

4 Algorithmic Computation of Differential Membership
Criteria

Efficient symbolic computation of partial differential relations defining families
of bi- and multivariate analytic functions is the focus of intensive research by
numerous authors. It is central to the fundamental monograph [10]. Most of
the bivariate analytic functions considered in [10] have finite analytic complex-
ity. An attempt to derive differential polynomials for compositions of analytic
functions is described in [7]. Such polynomials for certain families of functions
can also be computed by means of characteristic sets theory (see [4] and the
references therein).

Any family of bivariate analytic functions of finite analytic complexity is
typically annihilated by an infinite hierarchy of differential relations which is
heavily dependent on the field of allowed coefficients (see [6] and the example
in Sect. 5.2 below). Even in the case when the ideal of relations is principal, it
is in general not possible to minimize the differential order and the algebraic
degree of the generator simultaneously. For these reasons, efficient computation
of an annihilating differential polynomial for a given family of bivariate analytic
functions requires a thorough analysis of the structure of the generic element
in the family. When the family in question involves a function which satisfies
a linear partial differential equation, it is often beneficial to find a differential
polynomial whose coefficients only depend on this function.
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Algorithm 1. Algorithm for computing an annihilating differential polynomial
for a family of bivariate analytic functions
Require: List of complex variables vars list ; list of univariate functions fcns list ; list

of the numeric parameters of the equation defining the family of bivariate analytic
functions p list ; equation eqn defining a generic element in the family as a function
of the elements in vars list, fcns list, and p list.

Ensure: List of differential monomials with integer coefficients and the unknown func-
tion depending on the variables in vars list whose sum gives the defining relation
for the family of functions under study.

1: procedure DiffPoly(vars list, fcns list, p list, eqn)
2: J list := empty list
3: FJ list := empty list
4: D list := empty list
5: dp poly :=1
6: d :=1 � The order of the jet space where the differential polynomial is to be

found
7: repeat
8: for k = 0 : d : 1 do
9: for j = 0 : k : 1 do

10: Add ∂k(F (x,y)−eqn)

∂xj∂yk−j to J list � Forming the jet space of order d
11: end for
12: Add J list to FJ list
13: end for
14: for k = 0 : d : 1 do
15: for j = 1 : Length(fcns list): 1 do
16: u(x, y)=fcns list [j]

17: Add ∂ku
∂xk and ∂ku

∂xk to D list � Forming the list of differential
variables to be eliminated

18: end for
19: end for
20: dp poly = elimination ideal obtained by eliminating the elements of D list

out of the relations FJ list
21: d := d + 1
22: until dp poly �= 0
23: return dp poly
24: end procedure

The next algorithm was used to compute differential membership criteria for
a number of families in the second class of analytic complexity.

The key component and the bottleneck of the algorithm is of course the elim-
ination of differential variables out of a differential ideal. It makes an extensive
use of both built-in and custom-designed methods of elimination and cannot be
consistently described in a short research paper. For each family of functions in
the below examples, a particular version of the elimination procedure taking into
account the key differential-algebraic properties of the generic representative of
the family has been used.
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5 Computing Differential Membership Criteria for
Families in the Second Class of Analytic Complexity

We now employ Algorithm 1 to produce differential polynomials with integer
coefficients for certain families of bivariate analytic functions whose generic ele-
ments belong to the second class of analytic complexity. The generic element of
this class is a function that admits a local representation of the form

f(c(a(x) + b(y)) + w(u(x) + v(y)))

for univariate analytic functions a, . . . , w such that the above composition is well
defined and analytic in some domain in C

2. The below examples are obtained
by specifying some of these univariate functions in a certain concrete way.

5.1 A Differential Polynomial for the Family of Functions
F (x, y) = b(a(x) + y) + c(x + y)

Let a(·), b(·), c(·) be arbitrary univariate analytic functions such that the com-
position F (x, y) = b(a(x)+y)+c(x+y) is well defined for (x, y) in some domain
in the complex space C

2. Using Algorithm 1 we compute the following differen-
tial polynomial with integer coefficients which vanishes on any function in this
family:

FyF 2
yyyFxy − FyFyyFyyyyFxy − F 2

yyyFxFxy + FyyFyyyyFxFxy + FyFyyyyF 2
xy−

FyyyyFxF 2
xy − FyFyyFyyyFxyy + F 2

y FyyyyFxyy + FyyFyyyFxFxyy−
2FyFyyyyFxFxyy + FyyyyF 2

xFxyy − FyFyyyFxyFxyy + FyyyFxFxyFxyy+
FyFyyF 2

xyy − FyyFxF 2
xyy + FyF 2

yyFxyyy − F 2
y FyyyFxyyy − F 2

yyFxFxyyy+
2FyFyyyFxFxyyy − FyyyF 2

xFxyyy − FyFyyFxyFxyyy + FyyFxFxyFxyyy−
FyF 2

yyyFxx + FyFyyFyyyyFxx + F 2
yyyFxFxx − FyyFyyyyFxFxx−

FyFyyyyFxyFxx + FyyyyFxFxyFxx + 2FyFyyyFxyyFxx − 2FyyyFxFxyyFxx−
FyF 2

xyyFxx + FxF 2
xyyFxx − FyFyyFxyyyFxx + FyyFxFxyyyFxx+

FyFxyFxyyyFxx − FxFxyFxyyyFxx + FyFyyFyyyFxxy − F 2
y FyyyyFxxy−

FyyFyyyFxFxxy + 2FyFyyyyFxFxxy − FyyyyF 2
xFxxy − FyFyyyFxyFxxy+

FyyyFxFxyFxxy − FyFyyFxyyFxxy + FyyFxFxyyFxxy + FyFxyFxyyFxxy−
FxFxyFxyyFxxy + F 2

y FxyyyFxxy − 2FyFxFxyyyFxxy + F 2
xFxyyyFxxy−

FyF 2
yyFxxyy + F 2

y FyyyFxxyy + F 2
yyFxFxxyy − 2FyFyyyFxFxxyy+

FyyyF 2
xFxxyy + 2FyFyyFxyFxxyy − 2FyyFxFxyFxxyy − FyF 2

xyFxxyy+
FxF 2

xyFxxyy − F 2
y FxyyFxxyy + 2FyFxFxyyFxxyy − F 2

xFxyyFxxyy.

An alternative way of computing this differential polynomial can be based on
the main result of [6]. For families of polynomial instances of special functions of
hypergeometric type [5], the differential membership criteria computed by means
of Algorithm 1 get greatly simplified.

Since the above differential polynomial has differential order 4, the gen-
eral theory of partial differential equations suggests that its general solution
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depends on four univariate analytic functions. Thus, the initial family of func-
tions {b(a(x) + y) + c(x + y)} cannot exhaust the whole solution space of the
obtained differential polynomial and additional relations must be computed.
Similar arguments apply to the examples in the subsections that follow.

5.2 A Differential Polynomial for the Family of Functions
F (x, y) = c(a(ex + y) + b(x + y))

The family of bivariate analytic functions comprising functions of the form
c(a(d(x) + y) + b(x + y)) is one step closer to the generic element of the second
class of analytic complexity than the previous example. Unfortunately, numerous
computer experiments suggest that computation of the annihilating differential
polynomial with integer coefficients for this family of functions is probably out of
reach for the present day’s computer algebra systems. However, it turns out to be
possible to treat a subfamily of this class of functions corresponding to d(x) = ex

since all of the derivatives of this function coincide which brings symbolic elim-
ination within manageable range. Using Algorithm1 we compute the following
defining polynomial for this family with the coefficients in the ring Z[ex] :

e4x(−2FyF 2
yyFx + F 2

y FyyyFx + F 2
yyF 2

x − FyFyyyF 2
x + 2F 2

y FyyFxy+
2FyFyyFxFxy − FyyF 2

xFxy − 2F 2
y F 2

xy − F 3
y Fxyy + FyF 2

xFxyy−
F 2

y FyyFxx + F 2
y FxyFxx + F 3

y Fxxy − F 2
y FxFxxy)+

e3x(F 4
y − 2F 3

y Fx + 4FyF 2
yyFx − 2F 2

y FyyyFx + F 2
y F 2

x + FyFyyF 2
x−

F 2
yyF 2

x + FyFyyyF 2
x − FyyF 3

x + FyyyF 3
x − 4F 2

y FyyFxy − 2F 2
y FxFxy−

2FyFyyFxFxy + 2FyF 2
xFxy − 2FyyF 2

xFxy + 2F 2
y F 2

xy + 2F 2
xF 2

xy+
2F 3

y Fxyy − FyF 2
xFxyy − F 3

xFxyy + F 3
y Fxx + F 2

y FyyFxx − F 2
y FxFxx+

FyyF 2
xFxx + 2F 2

y FxyFxx − 2FyFxFxyFxx − F 2
y F 2

xx − F 3
y Fxxy+

F 2
y FxFxxy − F 3

y Fxxx + F 2
y FxFxxx)+

e2x(−F 2
y FyyFx − 2FyF 2

yyFx + F 2
y FyyyFx − F 2

yyF 2
x + FyFyyyF 2

x+
FyyF 3

x − 2FyyyF 3
x + F 3

y Fxy + 2F 2
y FyyFxy + 3F 2

y FxFxy−
2FyFyyFxFxy − 5FyF 2

xFxy + 6FyyF 2
xFxy + F 3

xFxy + 2F 2
y F 2

xy−
2F 2

xF 2
xy − F 3

y Fxyy + F 3
xFxyy − 3F 3

y Fxx + F 2
y FyyFxx + 4F 2

y FxFxx−
FyF 2

xFxx − FyyF 2
xFxx − 6F 2

y FxyFxx + 2FyFxFxyFxx − 2F 2
xFxyFxx+

F 2
y F 2

xx+ 2FyFxF 2
xx− F 3

y Fxxy+ F 3
xFxxy + 2F 3

y Fxxx − F 2
y FxFxxx − FyF 2

xFxxx)+
ex(−F 3

y Fx + F 2
y FyyFx + 2F 2

y F 2
x − FyFyyF 2

x + F 2
yyF 2

x − FyFyyyF 2
x−

FyF 3
x + FyyyF 3

x − F 3
y Fxy − F 2

y FxFxy + 2FyFyyFxFxy + 3FyF 2
xFxy−

2FyyF 2
xFxy − F 3

xFxy − 2F 2
y F 2

xy − 2F 2
xF 2

xy − FyF 2
xFxyy + F 3

xFxyy+
2F 3

y Fxx − F 2
y FyyFxx − 3F 2

y FxFxx + FyF 2
xFxx − FyyF 2

xFxx + 2F 2
y FxyFxx+

2FyFxFxyFxx + 4F 2
xFxyFxx + F 2

y F 2
xx − 4FyFxF 2

xx + F 3
y Fxxy + F 2

y FxFxxy−
2F 3

xFxxy − F 3
y Fxxx − F 2

y FxFxxx + 2FyF 2
xFxxx)−

FyyF 2
xFxy + 2F 2

xF 2
xy + FyF 2

xFxyy − F 3
xFxyy + FyyF 2

xFxx + F 2
y FxyFxx−

2FyFxFxyFxx − 2F 2
xFxyFxx − F 2

y F 2
xx + 2FyFxF 2

xx − F 2
y FxFxxy + F 3

xFxxy+
F 2

y FxFxxx − FyF 2
xFxxx.
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Treating ex as a new independent variable, we differentiate the above differ-
ential polynomial with respect to y and eliminate ex out of the obtained ideal.
The result is given by

−18F 18
y F 7

yyF 6
xFxy + 84F 17

y F 8
yyF 6

xFxy − 120F 16
y F 9

yyF 6
xFxy+

48F 15
y F 10

yy F 6
xFxy + 24F 19

y F 5
yyFyyyF 6

xFxy − 144F 18
y F 6

yyFyyyF 6
xFxy+

240F 17
y F 7

yyFyyyF 6
xFxy − 96F 16

y F 8
yyFyyyF 6

xFxy − 6F 20
y F 3

yyF 2
yyyF 6

xFxy+
72F 19

y F 4
yyF 2

yyyF 6
xFxy − 162F 18

y F 5
yyF 2

yyyF 6
xFxy+

2002F 20
y F 5

xF 2
xxFxxyF 4

xxxy − 3003F 19
y F 6

xF 2
xxFxxyF 4

xxxy+
3432F 18

y F 7
xF 2

xxFxxyF 4
xxxy − 3003F 17

y F 8
xF 2

xxFxxyF 4
xxxy+

2002F 16
y F 9

xF 2
xxFxxyF 4

xxxy − 1001F 15
y F 10

x F 2
xxFxxyF 4

xxxy+
364F 14

y F 11
x F 2

xxFxxyF 4
xxxy − 91F 13

y F 12
x F 2

xxFxxyF 4
xxxy+

14F 12
y F 13

x F 2
xxFxxyF 4

xxxy − F 11
y F 14

x F 2
xxFxxyF 4

xxxy + 2731 601 other terms.

The complexity of this differential polynomial suggests that the defining rela-
tions for the second class of analytic complexity are far beyond the capacity of
today’s computer algebra systems.

5.3 A Differential Polynomial for the Family of Functions
F (x, y) = b(a(x) + eαy ) + c(x)

We now consider a family of bivariate analytic functions whose elements depend
on a complex parameter apart from arbitrary univariate functions: {F (x, y) =
b(a(x) + eαy) + c(x), α ∈ C

∗}. Using Algorithm 1, we compute the following
defining differential polynomial with integer coefficients for this family:

F 2
yyyF 6

xy − 4FyyFyyyF 5
xyFxyy − F 2

yyF 4
xyF 2

xyy + 4FyFyyyF 4
xyF 2

xyy+
2FyFyyF 3

xyF 3
xyy − F 2

y F 2
xyF 4

xyy + 4F 2
yyF 5

xyFxyyy − 2FyFyyyF 5
xyFxyyy−

4FyFyyF 4
xyFxyyFxyyy + F 2

y F 4
xyF 2

xyyy + 4F 3
yyF 3

xyFxyyFxxy−
4FyFyyFyyyF 3

xyFxyyFxxy − 2FyF 2
yyF 2

xyF 2
xyyFxxy + 3F 2

y FyyyF 2
xyF 2

xyyFxxy−
F 2

y FyyFxyF 3
xyyFxxy − F 3

y F 4
xyyFxxy + F 3

y FxyF 2
xyyFxyyyFxxy − F 2

y F 2
yyF 2

xyyF 2
xxy+

F 3
y FyyyF 2

xyyF 2
xxy − 4F 3

yyF 4
xyFxxyy + 4FyFyyFyyyF 4

xyFxxyy+
2FyF 2

yyF 3
xyFxyyFxxyy − 3F 2

y FyyyF 3
xyFxyyFxxyy + F 2

y FyyF 2
xyF 2

xyyFxxyy+
F 3

y FxyF 3
xyyFxxyy − F 3

y F 2
xyFxyyFxyyyFxxyy + 2F 2

y F 2
yyFxyFxyyFxxyFxxyy−

2F 3
y FyyyFxyFxyyFxxyFxxyy − F 2

y F 2
yyF 2

xyF 2
xxyy + F 3

y FyyyF 2
xyF 2

xxyy.

We emphasize that the above polynomial annihilates any function in the
family under study and does not depend on the choice of the parameter α ∈ C

∗.
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A Theory and an Algorithm
for Computing Sparse Multivariate
Polynomial Remainder Sequence

Tateaki Sasaki(B)
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Abstract. This paper presents an algorithm for computing the poly-
nomial remainder sequence (PRS) and corresponding cofactor sequences
of sparse multivariate polynomials over a number field K. Most conven-
tional algorithms for computing PRSs are based on the pseudo remainder
(Prem), and the celebrated subresultant theory for the PRS has been con-
structed on the Prem. The Prem is uneconomical for computing PRSs of
sparse polynomials. Hence, in this paper, the concept of sparse pseudo
remainder (spsPrem) is defined. No subresultant-like theory has been
developed so far for the PRS based on spsPrem. Therefore, we develop
a matrix theory for spsPrem-based PRSs. The computational formula
for PRS, regardless of whether it is based on Prem or spsPrem, causes
a considerable intermediate expression growth. Hence, we next propose
a technique to suppress the expression growth largely. The technique
utilizes the power-series arithmetic but no Hensel lifting. Simple exper-
iments show that our technique suppresses the intermediate expression
growth fairly well, if the sub-variable ordering is set suitably.

Keywords: Multivariate polynomial remainder sequence
Cofactor sequence · Sparse multivariate polynomials
Pseudo remainder · Sparse pseudo remainder · Subresultant
Hearn’s trial-division algorithm

1 Introduction

The multivariate polynomial remainder sequence (PRS) is now scarcely studied.
However, some researchers are becoming interested in PRSs of sparse multivari-
ate polynomials. The first reason of revival of the study is due to applications.
Let G and H be relatively prime multivariate polynomials in K[x,u ], where
(u) = (u1, . . . , u�). Currently, we can compute the lowest-order element of the
elimination ideal 〈G,H〉 ∩ K[u ] through the last element of PRS(G,H) and its
cofactors [12]. The second reason is that conventional PRS algorithms are based
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on the pseudo remainder (Prem), but the Prem is not suited for sparse polyno-
mials, and researchers are now investigating another remainder which is more
reasonable than the Prem. We call the new Prem suited for sparse polynomials
sparse Prem (spsPrem). Then, we need a new theory for computing PRSs based
on the spsPrem. We call the spsPrem-based PRS sparse PRS (spsPRS).

Starting from G and H, we can generate a PRS (P1 = G,P2 =
H, . . . , Pi, Pi+1, . . . ) w.r.t. x, by the formula Pi+1 = rem(αiPi−1, Pi)/βi, where
αi, βi ∈ K[u ]. The αi makes the remainder in K[x,u ] and βi makes Pi+1

simple by removing a common factor contained in the coefficients, hence we
have Pi+1 ∈ K[x,u ]. Conventionally, the αi is set as αi = lc(Pi)δi , with
δi = deg(Pi−1) − deg(Pi) + 1, where lc(P ) and deg(P ) denote the leading coeffi-
cient and the degree of P , respectively, w.r.t. x. The remainder with this choice
of αi is the Prem(Pi−1, Pi). We note that the subresultant theory for the PRS
is critically dependent on the Prem. For the subresultant theory, see [1–5,7].

Now, consider that the given polynomials G and H are sparse w.r.t.
x. Then, Prem(G,H) is uneconomical. For example, if (G(x,u),H(x,u)) =
( ˜G(xl,u), ˜H(xl,u)), then the α in Prem( ˜G(x,u), ˜H(x,u)) is α =
lc( ˜H)deg( ˜G)−deg( ˜H)+1. Obviously, the leading term of G can be eliminated by H

with the same α, while the multiplier in Prem(G,H) is lc(H)l deg( ˜G)−l deg( ˜H)+1.
Hence, it is natural to introduce the spsPrem in which the multiplier α is made
as small as possible. We give a procedure of spsPrem in Sect. 2. The concept
of spsPrem is not new; Loos has defined the same concept in [9]. The problem
for spsPrem is that we have no subresultant-like theory for the PRS based on
spsPrem, so we cannot determine βi in actual computation. In fact, in [9], Loos
used only βi determined by the subresultant theory.

Therefore, the first aim of this paper is to develop a subresultant-like theory
for spsPrem-based PRSs. Now, we have already subresultant-like theories [10,
11]. Hence, following such theories, we develop a theory for spsPRSs in Sect. 3.
Currently, the theory is not complete for determining a theoretical formula for
βi, but it is sufficient for determining βi by Hearn’s trial-division algorithm [8].

The PRS computation causes a considerable intermediate expression growth,
regardless of whether Prem or spsPrem is used. The computational formula given
above for Pi+1 is executed by two steps: P ′

i+1 := rem(αiPi−1, Pi) ⇒ Pi+1 :=
P ′

i+1/βi. The expression size of P ′
i+1 is often very large compared with Pi+1. If

the PRS is “normal”, i.e., deg(Pi−1) − deg(Pi) = 1, then Collins’ algorithm sets
αi = lc(Pi)2 and βi = αi−1. For abnormal PRSs, Brown-Traub’s algorithm is
available in which the intermediate expression growth is much larger in general.
Enhancing the Prem-based PRS algorithms have been challenged by several
authors; see Ducos’ paper [6] and references in it. Probably, Ducos’ algorithm is
currently most efficient. However, even in his algorithm, the division is necessary
for computing Pi+1.

In Sect. 4, we present a new simple algorithm which suppresses the expression
growth largely. The idea is to use power-series multiplication and division. We
see that the division P ′

i+1/βi is exact, hence only a part of dividend is enough
to compute the quotient. Therefore, we cut off unnecessary part of P ′

i+1 by
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introducing the power-series variable for sub-variables. Speeding-up the polyno-
mial operations by using the power-series arithmetic is not new but done in [13].

2 Sparse Pseudo Remainder (spsPrem)

Let K be a field of numbers. In this paper, by F (x,u), we denote a poly-
nomial in K[x,u ], where x and (u) = (u1, . . . , u�) are the main variable
and the sub-variables, respectively; we usually treat the case of � ≥ 2. Let
F (x,u) be expressed as F (x,u) = fd(u)xd + fd−1(u)xd−1 + · · · + f0(u). By
deg(F ), lc(F ), and ltm(F ), we denote the degree, the leading coefficient, and
the leading term, respectively, of F w.r.t. x: deg(F ) = d, lc(F ) = fd(u),
ltm(F ) = fd(u)xd. By rest(F ) and Rest(F, i), with i ∈ {1, 2, . . . }, we denote the
rest terms of F and the i-th rest terms of F , respectively: rest(F ) = F − ltm(F ),
Rest(F, i) = fd−ix

d−i + fd−i−1x
d−i−1 + · · · ; if F is sparse w.r.t. x, we skip

the 0-coefficient terms. By gcd(G,H, . . . ) we denote the greatest common divi-
sor (GCD) of G,H, . . . . By cont(F ) we denote the content of F w.r.t. x;
cont(F ) = gcd(fd(u), . . . , f0(u)). By rem(G,H), we denote the remainder of
G divided by H w.r.t. x. If rem(G,H) = 0 then we say that H divides G and
express this as H |G.

Although the procedure of spsPrem has been given in [12], we describe it
below to make the paper self-contained. The cofactors Ai+1 and Bi+1, sat-
isfying Ai+1G + Bi+1H = Pi+1, play a crucial role in many cases. So, we
show the procedure of spsPrem for computing (Pi+1, Ai+1, Bi+1) below, where
(P1, A1, B1) = (G, 1, 0) and (P2, A2, B2) = (H, 0, 1).

Procedure spsPrem((Pi−1, Ai−1, Bi−1), (Pi, Ai, Bi)) ==
(1) cj := lc(Pj), dj := deg(Pj) (j = i−1, i);
(2) while δ := di−1 − di ≥ 0 do
(3) (Pi−1, Ai−1, Bi−1) :=

ci (Pi−1, Ai−1, Bi−1) − ci−1x
δ (Pi, Ai, Bi);

(4) ci−1 := lc(Pi−1); di−1 := deg(Pi−1); enddo;
(5) return (Pi+1, Ai+1, Bi+1) := (Pi−1, Ai−1, Bi−1).

By repeating spsPrem, we can generate spsPrem-based PRS which we call sparse
polynomial remainder sequence (spsPRS).

Just the same as the conventional PRS computed by using Prem, the spsPRS
will be such that the coefficients of each remainder Pi+1 (i ≥ 3) will contain a
big common factor, let it be βi, and we will compute Pi+1 by removing βi.
So, we redefine the output of spsPrem to be (P ′

i+1, A
′
i+1, B

′
i+1), and redefine

(Pi+1, Ai+1, Bi+1) to be as follows.
{

(P ′
i+1, A

′
i+1, B

′
i+1) = spsPrem((Pi−1, Ai−1, Bi−1), (Pi, Ai, Bi)),

(Pi+1, Ai+1, Bi+1) = (P ′
i+1, A

′
i+1, B

′
i+1)/βi, where β2 = 1.

(2.1)

We determine βi (i ≥ 3) to be a product of lc(Pj), where 2 ≤ j ≤ i−1. This
is the same as in the conventional algorithms. However, we determine βi very
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differently from the conventional way, because our subresultant-like theory for
the spsPRS computation is not well developed to give a theoretical formula for
βi. Our algorithm is executed in two phases. In the first phase, we determine
the form of βi by computing spsPRS of a simplified system. Then, in the second
phase, we compute spsPRS by using the form of βi determined in the first phase.
For details, see Sect. 4.

3 A Matrix Theory for Sparse PRS

Let M = (ci,j), with 1 ≤ i ≤ m and 1 ≤ j ≤ m+n, be an m× (m+n)
matrix over K[u ], where we assume that the leading m−1 columns of M are
linearly independent. Furthermore, we assume that, for any j ≥ 0, the (m+j)-th
column corresponds to xen−j , where en > en−1 > · · · > e0. Following Collins [4],
we define the associate polynomial, to be expressed as assP(M), as follows.

assP(M) def=
n

∑

j=0

∣

∣

∣

∣

∣

∣

∣

c1,1 · · · c1,m−1 c1,m+j

...
. . .

...
...

cm,1 · · · cm,m−1 cm,m+j

∣

∣

∣

∣

∣

∣

∣

xen−j . (3.1)

3.1 Elimination Matrix and Inverse Elimination

Although the targets of this paper are sparse polynomials, we explain the elimi-
nation matrix by dense polynomials Pi−2 = c

(e+2)
i−2 xe+2 + c

(e+1)
i−2 xe+1 + · · ·+ c

(0)
i−2,

Pi−1 = c
(e+1)
i−1 xe+1 + c

(e)
i−1x

e + · · ·+ c
(0)
i−1 and Pi = c

(e)
i xe + c

(e−1)
i xe−1 + · · ·+ c

(0)
i .

Put P ′
i = rem(c2i−1Pi−2, Pi−1) and P ′

i+1 = rem(c2i Pi−1, Pi), where ci−1
def= c

(e+1)
i−1

and ci
def= c

(e)
i . Then, P ′

i+1 can be expressed as P ′
i+1 = assP(M(i)

i+1), where

M(i)
i+1 =

⎛

⎜

⎝

c
(e)
i c

(e−1)
i c

(e−2)
i · · ·

c
(e)
i c

(e−1)
i · · ·

c
(e+1)
i−1 c

(e)
i−1 c

(e−1)
i−1 · · ·

⎞

⎟

⎠
. (3.2)

We call the rows of M(i)
i+1 coefficient vectors or coef-vectors in short: the 1st,

the 2nd and the 3rd rows are coef-vectors of xPi, Pi and Pi−1, respectively, and
the 1st, the 2nd and the 3rd columns correspond to xe+1-, xe- and xe−1-terms,
respectively. By upper-triangularizing the matrix M(i)

i+1, the bottom row of the
triangularized matrix gives the coef-vector of P ′

i+1. So, we call such a matrix as
M(i)

i+1 elimination matrix.
Now, we will express P ′

i+1 by the coef-vectors of Pi−1 and Pi−2; we neglect
the ±-sign for simplicity below. We add two coef-vectors of x2Pi−1 and xPi−1

to the above M(i)
i+1; let the matrix obtained be M′

i+1.
Since P ′

i = c2i−1Pi−2−(qi,1x+qi,0)Pi−1, with qi,1, qi,0 ∈ K[u ], we can replace
two coef-vectors of Pi of M′

i+1 by those of Pi−2. By this, we can convert M′
i+1

to the following matrix M(i−1)
i+1 .
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M(i−1)
i+1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

c
(e+2)
i−2 c

(e+1)
i−2 c

(e)
i−2 c

(e−1)
i−2 c

(e−2)
i−2 · · ·

c
(e+2)
i−2 c

(e+1)
i−2 c

(e)
i−2 c

(e−1)
i−2 · · ·

c
(e+1)
i−1 c

(e)
i−1 c

(e−1)
i−1 c

(e−2)
i−1 c

(e−3)
i−1 · · ·

c
(e+1)
i−1 c

(e)
i−1 c

(e−1)
i−1 c

(e−2)
i−1 · · ·

c
(e+1)
i−1 c

(e)
i−1 c

(e−1)
i−1 · · ·

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(3.3)

We call the operation which derives M(i−1)
i+1 from M(i)

i+1 inverse elimination.
We can find a relation between assP(M(i)

i+1) and assP(M(i−1)
i+1 ) easily, as

follows; note that ci = c
(ei,1)
i . Definition of assP(M) in (3.1) gives assP(M′

i+1) =
(ci−1)2assP(M(i)

i−1). Replacing the coef-vectors of Pi by those of Pi−2, we obtain
assP(M(i−1)

i+1 ) = (βi−1/c2i−1)
2assP(M′

i+1). Therefore, we find assP(M(i)
i+1) =

assP(M(i−1)
i+1 )(ci−1/βi−1)2.

Similarly, we can express the cofactors Ai+1 and Bi+1 by determinants easily.
We explain this by dense polynomials, by putting P1 = G = ge+1x

e+1 + gex
e +

ge−1x
e−1+ · · · and P2 = H = hex

e +he−1x
e−1+he−2x

e−2+ · · · . We can express
P ′
3 := Prem(P1, P2) and its cofactors A′

3 and B′
3 as follows.

P ′
3 = assP

(

⎛

⎝

he he−1 he−2 · · ·
he he−1 · · ·

ge+1 ge ge−1 · · ·

⎞

⎠

)

=

∣

∣

∣

∣

∣

∣

he he−1 Rest(x1P2, 2)
he Rest(x0P2, 1)

ge+1 ge Rest(x0P1, 2)

∣

∣

∣

∣

∣

∣

,

A′
3 =

∣

∣

∣

∣

∣

∣

he he−1 0
he 0

ge+1 ge x0

∣

∣

∣

∣

∣

∣

, B′
3 =

∣

∣

∣

∣

∣

∣

he he−1 x1

he x0

ge+1 ge 0

∣

∣

∣

∣

∣

∣

.

(3.4)

In fact, the above determinants for A′
3 and B′

3 give A′
3G + B′

3H = P ′
3. The

rightmost column of the determinant for P ′
3 may be t(x1P2, x

0P2, x
0P1); the

columns for the xe+1- and xe-terms of t(x1P2, x
0P2, x

0P1) give no contribution
because they are the same as the first and the second columns of the determinant,
respectively. It is easy to generalize the above representations to A′

i and B′
i.

3.2 Constructing the Elimination Matrix M(i−1)
i+1

The above method is applicable to sparse polynomials too, although the matrices
become pretty complicated; see an illustrative example in Subsect. 3.4.

The matrix M(i−1)
i+1 is now for sparse polynomials; note that, although the

zero-coefficient terms are skipped, we must pad 0-elements in the matrix so that
each column corresponds to the same exponent w.r.t. x. Let Qi−1 and Qi be
quotients in spsPrem(Pi−2, Pi−1) and spsPrem(Pi−1, Pi), respectively, and let
Qi−1 and Qi consist of μ and ν terms, respectively, as follows.

{

P ′
i := spsPrem(Pi−2, Pi−1) = lc(Pi−1)μPi−2 − Qi−1Pi−1,
Qi−1 = qi−1,μxδμ + · · · + qi−1,1x

δ1 , δμ > · · · > δ1 ≥ 0.
(3.5)

{

P ′
i+1 := spsPrem(Pi−1, Pi) = lc(Pi)νPi−1 − QiPi,

Qi = qi,νxδ′
ν + · · · + qi,1x

δ′
1 , δ′

ν > · · · > δ′
1 ≥ 0.

(3.6)
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We note that μ and ν depend on i. (We may better express μ and ν as μi−1 and
μi, respectively, which leads to complicated expressions in Qi−1 and Qi above.)
We will see later that the exponent-sets of Qi−1 and Qi etc. are quite important.
So, we define Qelist as follows.

Qelist := (. . . , (i−1 : δμ, . . . , δ1), (i : δ′
ν , . . . , δ′

1), . . . ). (3.7)

In constructing the elimination matrix, x-support, i.e., the support w.r.t. x,
plays an important role. For polynomial P = cnxen + cn−1x

en−1 + · · · + c0x
e0 ,

where en > en−1 > · · · > e0, the x-support is defined to be suppx(P ) def=
{xen , xen−1 , . . . , xe0}. For quotients Qi−1 and Qi in (3.5) and (3.6), we have
suppx(Qi−1) = {xδμ , . . . , xδ1} and suppx(Qi) = {xδ′

ν , . . . , xδ′
1}. We define S to

be the x-support for all the polynomials appearing in M(i−1)
i+1 , as follows.

S =
( ∪ν

j=1 suppx(xδ′
j Pi−2)

) ∪ suppx(Pi−1)
∪ ( ∪μ

k=1 ∪ν
l=0 suppx(xδk+δ′

lPi−1)
)

.
(3.8)

The M(i)
i+1 consists of ν coef-vectors of xδ′

ν Pi, . . . , x
δ′
1Pi and one coef-vector

of Pi−1. We can construct the M(i−1)
i+1 directly from Pi−2 and Pi−1, as follows.

Rule-1. Let coef-vectors of xδ′
ν Pi−2, . . . , xδ′

1Pi−2 be upper ν rows of M(i−1)
i+1 .

Rule-2. For each j ∈ {1, . . . , ν}, generate μ coef-vectors of xδμ+δ′
j Pi−1, . . . ,

xδ1+δ′
j Pi−1. Thus, we have μ×ν + 1 coef-vectors of Pi−1; the last one is the

coef-vector of Pi−1. Among these coef-vectors, let only mutually different ones
be the lower rows of M(i−1)

i+1 .
Rule-3. Arrange the elements of S in (3.8) in high-to-low degree order, and

let each element of S correspond to only one column of M(i−1)
i+1 .

Rule-4. Let μ̂ be the number of lower rows of M(i−1)
i+1 . Check the μ̂ lower rows

from the top: if the (ν+j)-th row is such that lc(Pi−1) is not the (ν+j, j)-
element, hence the element is 0, then delete the j-th column from M(i−1)

i+1 .

Remark 1. The Rule-4 is for the case that the leading-term elimination elim-
inates some lower terms, too, but it is messy to check this case in the runtime.
As we will mention in Sect. 4, we will compute a PRS of a simplified system to
know the sets of exponents of x, of Qi−1 and Qi. Once we know the exponent-sets,
constructing the elimination matrices is easy.
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Thus, we obtain the following matrix as M(i−1)
i+1 .

M(i−1)
i+1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

coefficient vector of xδ′
ν Pi−2

. . . . . . . . . . . .
coefficient vector of xδ′

1Pi−2

coefficient vector of xδμ+δ′
ν Pi−1

coefficient vector of xδμ−1+δ′
ν Pi−1

. . . . . . . . . . . .
coefficient vector of xδ1+δ′

1Pi−1

coefficient vector of Pi−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎫

⎬

⎭

ν rows

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

μ̂ rows

(3.9)

Theorem 1. Let the quotients Qi−1 in P ′
i := spsPrem(Pi−2, Pi−1) and Qi in

P ′
i+1 := spsPrem(Pi−1, Pi) consist of μ and ν nonzero terms, respectively, as in

(3.5) and (3.6). Then, the elimination matrix M(i−1)
i+1 which expresses P ′

i+1 in
terms of coef-vectors of Pi−2 and Pi−1 is given by that in (3.9) uniquely up to
the exchange of rows.

Proof. It is enough to show that the Rule-1–Rule-4 specify the elimination
matrix M(i−1)

i+1 uniquely. First, M(i−1)
i+1 must contain ν rows of Pi−2, hence the

Rule-1 specifies the upper rows uniquely. Then, for each upper row, μ rows
of Pi−1 are necessary, but duplicated rows are unnecessary. Hence, the Rule-2
specifies the lower rows uniquely. The S specifies enough columns for M(i−1)

i+1 .
The M(i−1)

i+1 contains μ̂+ ν rows, and its leading μ̂+ ν − 1 columns must be
linearly independent. The successive leading-term elimination of Pi−2 by Pi−1 is
nothing but the upper-triangularization of matrix M(i−1)

i+1 . Hence, if the leading
j columns, 1 < j < μ̂+ν, are linearly dependent then the Rule-4 detects the
dependence and reforms the matrix. 
�

3.3 Relation Between assP(M(i)
i+1) and assP(M(i−1)

i+1 )

We denote lc(Pi) and deg(Pi) by ci and di, respectively, as before. The matrix
M(i)

i+1 for P ′
i+1 = spsPrem(Pi−1, Pi) contains ν coef-vectors of Pi and one coef-

vector of Pi−1. On the other hand, the matrix M(i−1)
i+1 contains ν coef-vectors

of Pi−2 and μ̂ coef-vectors of Pi−1. Considering the reformation of assP(M(i)
i+1)

to assP(M′
i+1) in Subsect. 3.1, we see that adding μ̂−1 coef-vectors of Pi−1 to

M(i)
i+1 is equal to multiply (ci−1)μ̂−1 to the matrix. Since Pi = [(ci−1)μPi−2 −

Qi−1Pi−1]/βi−1, replacement of each coef-vector of Pi in M(i)
i+1 by that of Pi−2

is equal to multiplying (ci−1)μ/βi−1 to assP(M(i−1)
i+1 ). Therefore, we obtain the

following theorem (we neglect the ±-sign).
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Theorem 2. We have the following relation for i ≥ 3.

assP(M(i)
i+1) = assP(M(i−1)

i+1 ) · (ci−1)λi

(βi−1)ν
, where (3.10)

ν ≤ μ̂ ≤ μν + 1, λi
def= μν − μ̂ + 1 ≥ 0. (3.11)

Proof. Derivation of equation in (3.10) has been explained above. In the matrix
M(i)

i+1, at least one coef-vector of Pi−1 is necessary to eliminate the leading
element of each coef-vector of Pi−2. Hence, we have ν ≤ μ̂. In Rule-2 above,
μν + 1 coef-vectors of Pi−1 are generated, and μ̂ is the number of mutually
different ones among them. Hence, we have μ̂ ≤ μν + 1. 
�
Remark 2. One may think that the expression in the r.h.s. of (3.10) is a ratio-
nal function, but it is wrong. Eliminating upper ν rows of M(i−1)

i+1 by μ̂ lower
rows, just similarly as the determinant computation, each upper row is converted
to a coef-vector of P ′

i which can be divided by βi−1. Hence, in determining βi for
P ′

i+1, we may neglect the factor (βi−1)ν in (3.10).

Remark 3. One may think that the βi is determined by only the factor cμν−μ̂+1
i−1

in (3.10), but it is wrong. If lc(Pi−2) is a factor of lc(Pi−1) then the lc(Pi−2) is
contained in βi, as we will show in the next subsection.

3.4 An Illustrative Example

We explain the construction of the elimination matrix explicitly by an example,
and show that we can determine the βi once the elimination matrix is con-
structed. However, the determination of βi is rather complicated as we have
mentioned in Remark 3; we have chosen the example to show this clearly.

The coef-vectors of Pi−1 added to M(i)
i+1 are specified by suppx(Qi−1Qi).

Actually, we use the exponent-set of suppx(Qi−1Qi). The exponent-sets of Qi−1

and Qi are {δμ, . . . , δ1} and {δ′
ν , . . . , δ′

1}, respectively, and the exponent-set

of Qi−1Qi is computed as {δμ, . . . , δ1} ⊕ {δ′
ν , . . . , δ′

1} def= {δμ + δ′
ν , . . . , δ1 +

δ′
ν , . . . , δ1 + δ′

1}. We neglect the ±-sign of the elimination matrix below.

Example 1. Let P1 and P2 be the following polynomials.
{

P1 = x10×(y+z) + x7×(2y−z) + x5×(3y) − x3×(2z) + (2y−3z),
P2 = x10×(y−z) + x7×(y−3z) − x5×(5z) + x3×(4y) + (3y+5z). (3.12)

This example and the following remainder polynomials were given in [12]; we
can compute the polynomials by applying procedures spsPrem and reducePrem
given in the next section.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P3 = c3,7x
7 + c3,5x

5 + c3,3x
3 + c3,0 ⇐= rem(c12P1, P2)/ 1 ,

P4 = c4,6x
6 + c4,5x

5 + c4,4x
4 + c4,3x

3 + c4,1x + c4,0 ⇐= rem(c33P2, P3)/c2,
P5 = c5,5x

5 + c5,4x
4 + c5,3x

3 + c5,2x
2 + c5,1x + c5,0 ⇐= rem(c24P3, P4)/c23,

P6 = c6,4x
4 + c6,3x

3 + c6,2x
2 + c6,1x + c6,0 ⇐= rem(c25P4, P5)/c24c3,

Pi+1 ( i = 6, 7, 8, 9) are omitted ⇐= βi = αi−1 = c2i−1,

(3.13)
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where c3
def= lc(P3) = y2−yz+4z2, c4

def= lc(P4) = c3×(13y4+14y3z+42y2z2+
46yz3 + 17z4), and cj

def= lc(Pj) (j ≥ 5) are irreducible. The Qelist defined
in (3.7) is Qelist = ((2 : 0), (3 : 3 1 0), (4 : 1 0), (5 : 1 0), . . . ) and we
have (μ, ν) = (1, 3), (3, 2), (2, 2) for P ′

4, P
′
5, P

′
6, respectively. Below, we consider

P ′
4, P

′
5, P

′
6.

P ′
4 = assP

(

⎛

⎜

⎜

⎜

⎜

⎝

x10 x8 x7 · · · x3 x1 x0

c3,7 c3,5 · · · c3,0

c3,7 · · · c3,0

c3,7 · · · c3,3 c3,0

c2,10 c2,7 · · · c2,3 c2,0

⎞

⎟

⎟

⎟

⎟

⎠

)

⇐ rem(c33P2, P3) (3.14)

( {0} ⊕ {3, 1, 0} = {3, 1, 0} ⇒ add coef-vectors of x3P2, xP2 )

= assP
(

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x13 x11 x10 x8 x7 x6 · · · x0

c1,10 c1,7 c1,5 c1,3 · · ·
c1,10 c1,7 c1,5 · · ·

c1,10 c1,7 · · · c1,0

c2,10 c2,7 c2,5 c2,3 · · ·
c2,10 c2,7 c2,5 · · ·

c2,10 c2,7 · · · c2,0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

)

× (c2/β2)3

(c2)2
. (3.15)

By the right factor in (3.15) and β2 = 1, we can set β3 to be c2.

P ′
5 = assP

(

⎛

⎜

⎜

⎝

x7 x6 x5 · · · x1 x0

c4,6 c4,5 c4,4 · · · c4,0

c4,6 c4,5 · · · c4,0

c3,7 c3,5 · · · c3,0

⎞

⎟

⎟

⎠

)

⇐ rem(c24P3, P4) (3.16)

( {3, 1, 0} ⊕ {1, 0} = {4, 3, 2, 1, 0} ⇒ add 4 coef-vectors of P3 )

= assP
(

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x11 x10 x9 x8 x7 x6 x5 · · · x0

c2,10 c2,7 c2,5 · · ·
c2,10 c2,7 c2,5 · · · c2,0

c3,7 c3,5 c2,3 · · ·
c3,7 c3,5 c3,3 · · ·

c3,7 c3,5 c3,3 · · ·
c3,7 c3,5 · · ·

c3,7 c3,5 · · · c3,0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

)

× (c33/β3)2

(c3)4
. (3.17)

The right factor in (3.17) gives us β4 = c23; we need not consider (1/β3)2 due to
Remark 2. In fact, eliminating the 1st row (resp. the 2nd row) of the matrix in
(3.17) by 3rd, 5th and 6th rows (resp. 4th, 6th and 7th rows), we see that the
resulting row contains a factor β3. On the other hand, determination of β5 is
complicated.
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P ′
6 = assP

(

⎛

⎜

⎜

⎝

x6 x5 x4 · · · x1 x0

c5,5 c5,4 c5,3 · · · c5,0

c5,5 c5,4 · · · c5,1 c5,0

c4,6 c4,5 c4,4 · · · c4,1 c4.0

⎞

⎟

⎟

⎠

)

⇐ rem(c25P4, P5) (3.18)

( {1, 0} ⊕ {1, 0} = {2, 1, 0} ⇒ add coef-vectors of x2P4, xP4 )

= assP
(

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x8 x7 x6 x5 x4 · · · x0

c3,7 c3,5 c3,4 c3,3 · · ·
c3,7 c3,5 c3,4 · · · c3,0

c4,6 c4,5 c4,4 c4,3 c4,2 · · ·
c4,6 c4,5 c4,4 c4,3 · · ·

c4,6 c4,5 c4,4 · · · c4,0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

)

× (c24/β4)2

(c4)2
. (3.19)

In this case, the right factor of (3.19) gives c24 and, since c4,6 is a multiple of
c3(= c3,4), the first column of the matrix in (3.19) gives c3, hence we can set
β5 = c24c3. 
�

4 An Algorithm for Computing SpsPRS

In this and the next sections, we assume that G,H ∈ Z[x,u ].
One will be able to find a theoretical formula of βi if one repeats the inverse

elimination until P ′
i+1 is expressed by a matrix M(2)

i+1 the rows of which are
coef-vectors of P1=G and P2=H. For performing this plan, one must know the
quotient sequence (Q2, Q3, . . . , Qk−1). However, the sequence is complicated in
general if G and H are sparse. So, in the first half of this section, we will show that
we can estimate β2, . . . , βk−1 by Hearn’s trial-division algorithm given below. In
the second half of this section, we propose a very simple but efficient algorithm
which allows us to suppress the intermediate expression growth caused by the
PRS formula in (2.1)

4.1 Hearn’s Trial-Division Algorithm

In the computation of Prem-based PRS, βi is chosen to be βi =
∏i−1

j=2(lc(Pj))ni,j ,
where ni,j ∈ Z; the case of negative ni,j appears only in the “abnormal PRS” in
which deg(Pi′−1)−deg(Pi′) > 1 for some i′ < i. In the Prem-based PRS, even if
lc(Pi−1) is a factor of lc(Pi) hence P ′

i+1 is obviously a multiple of lc(Pi−1), this
factor is not included in βi.

In Hearn’s algorithm, we assume that βi is of the form βi =
∏i−1

j=2(lc(Pj))νi,j ,
where νi,j ≥ 0. This assumption is verified by Theorem 2 with Remark 2. With
this assumption only, we can determine the values of νi,i−1, . . . , νi,2, by successive
trial-divisions of P ′

i+1 by lc(Pj). It should be emphasized that, if lc(Pi−1) is a
factor of lc(Pi) hence P ′

i+1 contains lc(Pi−1) as a factor, then Hearn’s algorithm
removes lc(Pi−1) from P ′

i+1.
Hearn’s algorithm uses a list Alphs which is a list of (cj , μj), j = 2, 3, . . . ,

where cj = lc(Pj) and μj denotes the number of times cj is multiplied to Pj−1:
P ′

j+1 = rem((cj)μj Pj−1, Pj). The algorithm performs the trial-division of P ′
i+1
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by cj , from j = i−1 to j = 2 successively; we try the division from bigger to
smaller divisors, because cj may contain cj′ (j′ < j). If the trial-division by cj

succeeds then we decrease μj by 1 and continue the trial-division by cj so long
as μj > 0. We do not perform the trial-division by cj if μj = 0; since (cj)μj is
multiplied to Pj−1, the cj can be removed only μj times at most.

Procedure reducePrem(i+1, (Pi+1, Ai+1, Bi+1), Alphs) ==
%% Hearn’s trial-division algorithm [8]
(1) for j = i − 1 to 2 step -1 do
(2) cj := 1-st(j-th(Alphs)); μj := 2-nd(j-th(Alphs));
(3) while μj > 0 and cj divides Ai+1, Bi+1 do
(4) (Pi+1, Ai+1, Bi+1) := (Pi+1, Ai+1, Bi+1)/cj ;

μj := μj − 1; enddo;
(5) enddo; return (Pi+1, Ai+1, Bi+1).

We check the exact-division of Ai+1, Bi+1 by cj first in line (3), because if the
divisions succeed then Pi+1 is always divisible by cj , but the converse is not
always true. Hearn’s algorithm is practically quite good for sparse polynomials.

4.2 Avoiding Intermediate Expression Growth

As we have mentioned in Sect. 1, our idea is to compute the products and the
quotients of multivariate polynomials in formulas in (2.1) by the power-series
arithmetic w.r.t. sub-variables; the power-series arithmetic allows us to compute
only the lower-power terms of the products which are necessary to obtain the
quotients exactly.

In order to execute the above plan, the forms of β3, . . . , βk−1 must be known
before the computation of spsPRS. We get this information by computing the
spsPRS of a simplified system ( ˜G, ˜H). By spsPRS( ˜G, ˜H), we compute prsHist,
the history of PRS-computation. The prsHist is a list that the i-th element of
which is (i, (Mul μi), (Div νi,i−1, . . . , νi,2)), showing that αi = (lc(Pi))μi and
βi =

∏2
j=i−1(lc(Pj))νi,j . We propose two choices for specifying ( ˜G, ˜H).

– Choice-S: Substitute different small prime numbers for the sub-variables
of G and H, and compute the PRS( ˜G(x), ˜H(x)) over Z; currently, each prime
p satisfies |p| ≥ 5.

– Choice-L: Substitute different large random integers for sub-variables
except one, of G,H, and compute the PRS( ˜G(x, u1), ˜H(x, u1)) over p, where
p is a large prime number (word-size, say).

The Choice-S is for small systems (a few sub-variables, low degrees and small
numerical coefficients), and the Choice-L is for large systems of many sub-
variables.

We next explain how the sub-variables are treated as power-series. We intro-
duce a system variable T , with the variable-order x � T � u1, . . . .u�, and treat
T as the power-series variable. We multiply T to sub-variables, according to one
of the next two choices.
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– Choice-H: We multiply T to sub-variable except for the first sub-variable
u1: (u2, . . . , u�) �→ (Tu2, . . . , Tu�).

– Choice-A: We multiply T to all sub-variables: (u1,. . ., u�) �→ (Tu1,. . ., Tu�).

Thus, T denotes the “total-degree” of sub-variables being multiplied by T . The
Choice-H is suited for the case in which coefficients of Pi (especially Pk) are
nearly homogeneous in the sub-variables; in this case the Choice-A is very inef-
fective for cutting off the higher degree terms. The Choice-A is suited for the
case in which coefficients of Pi (especially Pk) consist of terms with total-degrees
distributed widely in each sub-variable.

We explain the power-series arithmetic briefly. We assume that the recur-
sive representation is adopted to express polynomials and power-series inside
the computer: let F (x,u) =

∑d
i=0 fi(u)xi, then F is represented by a list

((d, fd) . . . , (i, fi), . . . ), and each coefficient fi is also represented by a list recur-
sively. Since x � T � u1, u2, . . . , u�, the power-series operations are executed
only on the coefficients w.r.t. x. Each coefficient w.r.t. x is a power-series in
T , and the leading terms of the coefficient are the terms of the lowest degree
w.r.t. T ; in the Choice-H, a polynomial in u1 is the leading terms. In the power-
series arithmetic, the “cutoff-degree” Tcut must be set, and the products and
the quotients are computed only up to Tcut w.r.t. T , from low-to-high degrees.
Therefore, the above variable-ordering and the recursive representation are very
suited for executing the power-series arithmetic efficiently.

We set the cutoff-degree Tcut for Pi+1 as follows.

Tcut(Pi+1) := degT (Pi−1) + μi×degT (lc(Pi)) − (degT (βi) − ordT (βi)), (4.1)

where degT (P ) denotes the degree of P ∈ Z[x, T,u ], w.r.t. T , and ordT (β)
denotes the “order” of β ∈ Z[T,u ], i.e. the lowest power w.r.t. T , of terms of β.

Summarizing the above, our new algorithm which we call spsPcPRS is exe-
cuted as follows; by “Pc” we mean “Power-series coefficients”.

Procedure spsPcPRS(G,H) ==
%% use spsPrem for the remainder computation.
%% use reducePrem for computing prsHist.
%% for simplicity, we omit Ai and Bi below.
(1) construct a simplified system ( ˜G, ˜H);
(2) compute prsHist, as mentioned above;
(3) define the power-series variable T , and

multiply to (u) as mentioned above;
(4) while deg(Pi) > 0 do

{ compute Ci := Tcut(Pi+1) by (4.1);
compute P ′

i+1 up to Ci w.r.t. T ;
compute Pi+1 := P ′

i+1/βi up to Ci

by the power-series division };
(5) return {G,H,P3, . . . , Pk}.
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4.3 Simple Experiments and Remarks

We implemented procedure spsPcPRS on our algebra system GAL which was
developed mainly in Sasaki’s Lab., and made simple experiments on spsPcPRS.
We have adopted Choice-S for constructing { ˜G, ˜H} and Choice-H for multi-
plying T to sub-variables. The experiment was done on a computer with Intel(R)-
U2300 (1.20 GHz), operated by Linux 3.4.100.

Experiment 1 (Computation of prsHist). Let G and H be as follows.
{

G := x7×(y+z) + x5×(y−2z) + x2×(2y−z) + (2y−3z),
H := x7×(y−z) + x5×(2y+z) + x2×(y−3z) + (3y+5z). (4.2)

Substituting 5 and −7 for y and z of G and H, we obtain

˜G = −2x7 + 19x5 + 17x2 + 31, ˜H = 12x7 + 3x5 + 26x2 − 20.

Let ˜P ′
i+1 and ˜βi be the i-th element of spsPRS( ˜G, ˜H) and corresponding divisor,

respectively. We show ˜P ′
i+1 and ˜βi for i ≥ 4.

˜P ′
5 = −6077916x3 − 15335424x2 + 25899588x − 19888128,

: ˜β4 = 234 (= lc( ˜P3)),
˜P ′
6 = −411977666259432x2 + · · · − 408338884048680,

: ˜β5 = 234 (= lc( ˜P3)),
˜P ′
7 = −8961646092266965581842522112x + 47680693641208192155956232192,

: ˜β6 = (−25974)2 × (−59904) (= lc( ˜P5))2lc( ˜P4)),
˜P ′
8 = −1902772373882149756212480154339979759143232,

: ˜β7 = (−1760588317348)2 (= (lc( ˜P6))2).

We obtained the same prsHist for (G(x, 7,−11), H(x, 7,−11)). 
�
Experiment 2 (Computation of Pi+1 with Power-series). Let G and H
be as follows, where X is the main variable (this example was treated in [12]).

{

G =X6 (u+2v+w) + X4 (u−2x−z) + X2 (v+3y−z) + (v+2w+y),
H =X6 (v−w+2x) − X4 (v+y−2z) + X2 (w−2x+y) + (u−v+2z). (4.3)

From G and H, we generate polynomial pair (G�,H�) =: Ex-�, as follows.

Ex-6 : (G6,H6) := (G,H),
Ex-5 : (G5,H5) := replace (z) by (w) in (G,H),
Ex-4 : (G4,H4) := replace (y, z) by (v, w) in (G,H),
Ex-3 : (G3,H3) := replace (x, y, z) by (u, v, w) in (G,H).

The G and H in (4.3) suggest that the last element of spsPRS(G,H) is nearly
homogeneous in the sub-variables, so we employ Choice-H. In each Ex-i, the
PRS is (Gi,Hi, P3, P4, P5).
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We compared our new algorithm based on power-series arithmetic with old
one based on Hearn’s trial-division only, and the result is shown in Table 1,
where “#tms(P )” denotes the number of monomials contained in polynomial P ,
(CPU) and (GC) denote “Central Processing Unit” and “Garbage Collection”,
respectively. The unit of time is milliseconds.

Table 1. Comparison of new algorithm with old one.

Ex-� (old) trial-division (new) power-series division

#tms(P ′
5, A

′
5, B

′
5) #tms(P5, A5, B5) #tms(P ′

5, A
′
5, B

′
5) #tms(β4)

Ex-3 (65, 163, 163) (28, 62, 62) (27, 62, 63) 15

time(CPU)3.70 + (GC)0.00 time(CPU)2.77 + (GC)0.00

Ex-4 (279, 603, 603) (81, 154, 160) (81, 163, 164) 28

time(CPU)13.6 + (GC)2.01 time(CPU)6.12 + (GC)0.53

Ex-5 (961, 1880, 1880) (201, 329, 312) (206, 353, 330) 51

time(CPU)48.3 + (GC)8.13 time(CPU)12.9 + (GC)1.66

Ex-6 (2815, 5192, 5192) (445, 665, 671) (455, 728, 705) 84

time(CPU)165. + (GC)32.5 time(CPU)28.9 + (GC)4.94

Table 1 shows a very nice performance of our new algorithm: unnecessary
terms are cut off by power-series almost completely. We must say, however,
that the data in Table 1 are too nice. Performance of our algorithm depends on
the “sub-variable ordering” very much, and the above data were obtained by
choosing the best sub-variable ordering. 
�

The performance of our new algorithm will be good (resp. bad) if the number
of lowest-degree terms w.r.t. T , of βi (especially βk−1) is small (resp. large).
Furthermore, (4.1) tells that Tcut(Pi+1) becomes larger if degT (βi)−ordT (βi) >
0. Hence, we test our algorithm based on power-series division, by changing the
ordering of sub-variables.

Experiment 3 (Dependence on Sub-variable Ordering). We use the sys-
tem Ex-6 given in Experiment 2. Most computation of each PRS is occupied by
that of P5. Hence, we show the the numbers of terms of P ′

5, A
′
5, B

′
5 as well as the

total computation times. Note that #tms(P ′
5, A

′
5, B

′
5) = (2815, 5192, 5192) by

the old algorithm (Table 2).

The timing data are classified into three classes, Class-(1), Class-(2) and
Class-(3), in which leading sub-variables are in {v, x}, {y, z}, and {u,w}, respec-
tively,
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Table 2. Efficiency depends subVar-ordering strongly.

Ordering #tms(P ′
5, A

′
5, B

′
5, β4) Comput. time (msec)

v � u � w � x � y � z (462, 756, 752, 84) (CPU)32.0 + (GC)5.74

x � u � v � w � y � z (455, 728, 705,84) (CPU)28.9 + (GC)4.94

y � u � v � w � x � z (1144, 1861, 1815, 84) (CPU)82.9 + (GC)14.6

z � u � v � w � x � y (1174, 1944, 1955, 84) (CPU)87.7 + (GC)15.3

u � v � w � x � y � z (1270, 2150, 2246, 84) (CPU)102. + (GC)17.7

w � u � v � x � y � z (1270, 2275, 2278, 84) (CPU)104. + (GC)18.6

v : β4 = 4v4 + T ×(5 terms) + T 2×(13 terms) + T 3×(28 terms) + T 4×(37 terms),

x : β4 = 16x4 +T ×(4 terms)+ T 2×(12 terms)+ T 3×(25 terms)+T 4×(42 terms),

y : β4 = T 2×(6 terms) + T 3×(26 terms) + T 4×(52 terms),
z : β4 = T 2×(10 terms) + T 3×(26 terms) + T 4×(48 terms),
u : β4 = T 2×(15 terms) + T 3×(27 terms) + T 4×(42 terms),
w : β4 = T 2×(15 terms) + T 3×(27 terms) + T 4×(42 terms).

We see that our new algorithm shows the best performance when βk−1 contains
a term of the form ul

j and the sub-variable uj is set to be of highest order. 
�
Remark 4 (On Setting Sub-variable Ordering Optimally). Since we
know the βi before the computation of P ′

i+1, one idea of setting the sub-variable
ordering is to investigate βi whether or not it contains a term of single sub-
variable or terms of a very small total-degree w.r.t. sub-variables. An optimal
ordering may depend on i. Hence, this check may be done for βk−1 only. 
�

Finally, we comment on the time complexity of our new algorithm. The
complexity analysis of arithmetic operations of sparse multivariate polynomials
is not so easy because there are many models of polynomials; see [12] for one of
such models and a complexity analysis based on the model. As for the complexity
of the spsPrem-based old algorithm, see the analysis given in [12]. In this paper,
we show a comparison of the old algorithm and the new one using power-series
arithmetic, which is easy.

Let Cold and Cnew be time-complexities of computing (P ′
k, A′

k, B′
k) by the old

and the new algorithms, respectively, and ‖P ′
k,old‖ and ‖P ′

k,new‖ be the numbers
of terms of P ′

ks computed by the old and new algorithms, respectively. Since
the computation of spsPRS is dominated by that of (P ′

k, A′
k, B′

k), and since
complexity of Pi+1 by formulas in (2.1) is approximated by the size of P ′

i+1, we
have the following.

Cnew/Cold = O(‖P ′
k,new‖/‖P ′

k,old‖). (4.4)
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Abstract. A numerical irreducible decomposition for a polynomial sys-
tem provides representations for the irreducible factors of all positive
dimensional solution sets of the system, separated from its isolated solu-
tions. Homotopy continuation methods are applied to compute a numer-
ical irreducible decomposition. Load balancing and pipelining are tech-
niques in a parallel implementation on a computer with multicore proces-
sors. The application of the parallel algorithms is illustrated on solving
the cyclic n-roots problems, in particular for n = 8, 9, and 12.

Keywords: Homotopy continuation
Numerical irreducible decomposition · Mathematical software
Multitasking · Pipelining · Polyhedral homotopies
Polynomial system · Shared memory parallel computing

1 Introduction

Almost all computers have multicore processors enabling the simultaneous exe-
cution of instructions in an algorithm. The algorithms considered in this paper
are applied to solve a polynomial system. Parallel algorithms can often deliver
significant speedups on computers with multicore processors.

A blackbox solver implies a fixed selection of algorithms, run with default
settings of options and tolerances. The selected methods are homotopy continu-
ation methods to compute a numerical irreducible decomposition of the solution
set of a polynomial system. As the solution paths defined by a polynomial homo-
topy can be tracked independently from each other, there is no communication
and no synchronization overhead. Therefore, one may hope that with p threads,
the speedup will be close to p.

The number of paths that needs to be tracked to compute a numerical irre-
ducible decomposition can be a multiple of the number of paths defined by a
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homotopy to approximate all isolated solutions. Nevertheless, in order to prop-
erly distinguish the isolated singular solutions (which occur with multiplicity
two or higher) from the solutions on positive dimensional solutions, one needs a
representation for the positive dimensional solution sets.

On parallel shared memory computers, the work crew model is applied. In
this model, threads are collaborating to complete a queue of jobs. The pointer
to the next job in the queue is guarded by a semaphore so only one thread can
access the next job and move the pointer to the next job forwards. The design
of multithreaded software is described in [17].

The development of the blackbox solver was targeted at the cyclic n-roots
systems. Backelin’s Lemma [2] states that, if n has a quadratic divisor, then
there are infinitely many cyclic n-roots. Interesting values for n are thus 8, 9,
and 12, respectively considered in [4,7,16].

Problem Statement. The top down computation of a numerical irreducible
decomposition requires first the solving of a system augmented with as many
general linear equations as the expected top dimension of the solution set. This
first stage is then followed by a cascade of homotopies to compute candidate
generic points on lower dimensional solution sets. In the third stage, the output
of the cascades is filtered and generic points are classified along their irreducible
components. In the application of the work crew model with p threads, the
problem is to study if the speedup will converge to p, asymptotically for suffi-
ciently large problems. Another interesting question concerns quality up: if we
can afford the same computational time as on one thread, then by how much
can we improve the quality of the computed results with p threads?

Prior Work. The software used in this paper is PHCpack [20], which pro-
vides a numerical irreducible decomposition [18]. For the mixed volume compu-
tation, MixedVol [8] and DEMiCs [14] are used. An introduction to the homo-
topy continuation methods for computing positive dimensional solution sets is
described in [19]. The overhead of double double and quad double precision [9]
in path trackers can be compensated on multicore workstations by parallel algo-
rithms [21]. The factorization of a pure dimensional solution set on a distributed
memory computer with message passing was described in [10].

Related Work. A numerical irreducible decomposition can be computed by a
program described in [3], but that program lacks polyhedral homotopies, needed
to efficiently solve sparse polynomial systems such as the cyclic n-roots problems.
Parallel algorithms for mixed volumes and polyhedral homotopies were presented
in [5,6]. The computation of the positive dimensional solutions for the cyclic 12-
roots problem was reported first in [16]. A recent parallel implementation of
polyhedral homotopies was announced in [13].
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Contributions and Organization. The next section proposes the application
of pipelining to interleave the computation of mixed cells with the tracking
of solution paths to solve a random coefficient system. The production rate
of mixed cells relative to the cost of path tracking is related to the pipeline
latency. The third section describes the second stage in the solver and examines
the speedup for tracking paths defined by sequences of homotopies. In Sect. 4,
the speedup of the application of the homotopy membership test is defined.
One outcome of this research is free and open software to compute a numerical
irreducible decomposition on parallel shared memory computers. Computational
experiments with the software are presented in Sect. 5.

2 Solving the Top Dimensional System

There is only one input to the blackbox solver: the expected top dimension of
the solution set. This input may be replaced by the number of variables minus
one. However, entering an expected top dimension that is too high may lead to
a significant computational overhead.

2.1 Random Hyperplanes and Slack Variables

A system is called square if it has as many equations as unknowns. A system is
underdetermined if it has fewer equations than unknowns. An underdetermined
system can be turned into a square system by adding as many linear equa-
tions with randomly generated complex coefficients as the difference between
the number of unknowns and equations. A system is overdetermined if there are
more equations than unknowns. To turn an overdetermined system into a square
one, add repeatedly to every equation in the overdetermined system a random
complex constant multiplied by a new slack variable, repeatedly until the total
number of variables equals the number of equations.

The top dimensional system is the given polynomial system, augmented with
as many linear equations with randomly generated complex coefficients as the
expected top dimension. To the augmented system as many slack variables are
added as the expected top dimension. The result of adding random linear equa-
tions and slack variables is called an embedded system. Solutions of the embed-
ded system with zero slack variables are generic points on the top dimensional
solution set. Solutions of the embedded system with nonzero slack variables are
start solutions in cascades of homotopies to compute generic points on lower
dimensional solution sets.

Example 1. (embedding a system) The equations for the cyclic 4-roots problem
are

f(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x1 + x2 + x3 + x4 = 0
x1x2 + x2x3 + x3x4 + x4x1 = 0

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 = 0
x1x2x3x4 − 1 = 0.

(1)
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The expected top dimension equals one. The system is augmented by one linear
equation and one slack variable z1. The embedded system is then the following:

E1(f(x), z1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 + x2 + x3 + x4 + γ1z1 = 0
x1x2 + x2x3 + x3x4 + x4x1 + γ2z1 = 0

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 + γ3z1 = 0
x1x2x3x4 − 1 + γ4z1 = 0

c0 + c1x1 + c2x2 + c3x3 + c4x4 + z1 = 0.

(2)

The constants γ1, γ2, γ3, γ4 and c0, c1, c2, c3, c4 are randomly generated complex
numbers.

The system E1(f(x), z1) = 0 has 20 solutions. Four of those 20 solutions
have a zero value for the slack variable z1. Those four solutions satisfy thus the
system

E1(f(x), 0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 + x2 + x3 + x4 = 0
x1x2 + x2x3 + x3x4 + x4x1 = 0

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 = 0
x1x2x3x4 − 1 = 0

c0 + c1x1 + c2x2 + c3x3 + c4x4 = 0.

(3)

By the random choice of the constants c0, c1, c2, c3, and c4, the four solutions
are generic points on the one dimensional solution set. Four equals the degree of
the one dimensional solution set of the cyclic 4-roots problem.

For systems with sufficiently general coefficients, polyhedral homotopies are
generically optimal in the sense that no solution path diverges. Therefore, the
default choice to solve the top dimensional system is the computation of a mixed
cell configuration and the solving of a random coefficient start system. Tracking
the paths to solve the random coefficient start system is a pleasingly parallel
computation, which with dynamic load balancing will lead to a close to optimal
speedup.

2.2 Pipelined Polyhedral Homotopies

The computation of all mixed cells is harder to run in parallel, but fortunately
the mixed volume computation takes in general less time than the tracking of
all solution paths and, more importantly, the mixed cells are not obtained all at
once at the end, but are produced in sequence, one after the other. As soon as
a cell is available, the tracking of as many solution paths as the volume of the
cell can start. Figure 1 illustrates a 2-stage pipeline with p threads.

Figure 2 illustrates the application of pipelining to the solving of a random
coefficient system where the subdivision of the Newton polytopes has six cells.
The six cells are computed by the first thread. The other three threads take
the cells and run polyhedral homotopies to compute as many solutions as the
volume of the corresponding cell.

Counting the horizontal span of time units in Fig. 2, the total time equals
9 units. In the corresponding sequential process, it takes 24 time units. This
particular pipeline with 4 threads gives a speedup of 24/9 ≈ 2.67.
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Fig. 1. A 2-stage pipeline with thread P0 in the first stage to compute the cells to solve
the start systems with paths to be tracked in the second stage by p− 1 threads P1, P2,
. . ., Pp−1. The input to the pipeline is a random coefficient system g(x) = 0 and the
output are its solutions in the set g−1(0).

Fig. 2. A space time diagram for a 2-stage pipeline with one thread to produce 6 cells
C1, C2, . . ., C6 and 3 threads to solve the corresponding 6 start systems S1, S2, . . ., S6.
For regularity, it is assumed that solving one start system takes three times as many
time units as it takes to produce one cell.

2.3 Speedup

As in Fig. 1, consider a scenario with p threads:

– the first thread produces n cells; and
– the other p − 1 threads track all paths corresponding to the cells.

Assume that tracking all paths for one cell costs F times the amount of time
it takes to produce that one cell. In this scenario, the sequential time T1, the
parallel time Tp, and the speedup Sp are defined by the following formulas:

T1 = n + Fn, Tp = p − 1 +
Fn

p − 1
, Sp =

T1

Tp
=

n(1 + F )
p − 1 + Fn

p−1

. (4)

The term p−1 in Tp is the pipeline latency, the time it takes to fill up the pipeline
with jobs. After this latency, the pipeline works at full speed.

The formula for the speedup Sp in (4) is rather too complicated for direct
interpretation. Let us consider a special case. For large problems, the number
n of cells is larger than the number p of threads, n � p. For a fixed number p
of threads, let n approach infinity. Then an optimal speedup is achieved, if the
pipeline latency p − 1 equals the multiplier factor F in the tracking of all paths
relative to the time to produce one cell. This observation is formalized in the
following theorem.

Theorem 1. If F = p − 1, then Sp = p for n → ∞.
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Proof. For F = p − 1, T1 = np and Tp = n + p − 1. Then, letting n → ∞,

lim
n→∞ Sp = lim

n→∞
T1

Tp
= lim

n→∞
np

n + p − 1
= p. � (5)

In case the multiplier factor is larger than the pipeline latency, if F > p − 1,
then the first thread will finish sooner with its production of cells and remains
idle for some time. If p � 1, then having one thread out of many idle is not
bad. The other case, if tracking all paths for one cell is smaller than the pipeline
latency, if F < p − 1, is worse as many threads will be idle waiting for cells to
process.

The above analysis applies to pipelined polyhedral homotopies to solve a
random coefficient system. Consider the solving of the top dimensional system.

Corollary 1. Let F be the multiplier factor in the cost of tracking the paths to
solve the start system, relative to the cost of computing the cells. If the pipeline
latency equals F , then the speedup to solve the top dimensional system with p
threads will asymptotically converge to p, as the number of cells goes to infinity.

Proof. Solving the top dimensional system consists in two stages. The first stage,
solving a random coefficient system, is covered by Theorem 1. In the second
stage, the solutions of the random coefficient system are the start solutions in a
homotopy to solve the top dimensional system. This second stage is a pleasingly
parallel computation as the paths can be tracked independently from each other
and for which the speedup is close to optimal for sufficiently large problems. ��

3 Computing Lower Dimensional Solution Sets

The solution of the top dimensional system is an important first stage, which
leads to the top dimensional solution set, provided the given dimension on input
equals the top dimension. This section describes the second stage in a numerical
irreducible decomposition: the computation of candidate generic points on the
lower dimensional solution sets.

3.1 Cascades of Homotopies

The solutions of an embedded system with nonzero slack variables are regular
solutions and serve as start solutions to compute sufficiently many generic points
on the lower dimensional solution sets. The sufficiently many in the sentence
above means that there will be at least as many generic points as the degrees of
the lower dimensional solution sets.

Example 2. (a system with a 3-stage cascade of homotopies) Consider the fol-
lowing system:

f(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(x1 − 1)(x1 − 2)(x1 − 3)(x1 − 4) = 0
(x1 − 1)(x2 − 1)(x2 − 2)(x2 − 3) = 0
(x1 − 1)(x1 − 2)(x3 − 1)(x3 − 2) = 0
(x1 − 1)(x2 − 1)(x3 − 1)(x4 − 1) = 0.

(6)
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In its factored form, the numerical irreducible decomposition is apparent. First,
there is the three dimensional solution set defined by x1 = 1. Second, for
x1 = 2, observe that x2 = 1 defines a two dimensional solution set and four
lines: (2, 2, x3, 1), (2, 2, 1, x4), (2, 3, 1, x4), and (2, 3, x3, 1). Third, for x1 = 3,
there are four lines: (3, 1, 1, x4), (3, 1, 2, x4), (3, 2, 1, x4), (3, 3, 1, x4), and two iso-
lated points (3, 2, 2, 1) and (3, 3, 2, 1). Fourth, for x1 = 4, there are four lines:
(4, 1, 1, x4), (4, 1, 2, x4), (4, 2, 1, x4), (4, 3, 1, x4), and two additional isolated solu-
tions (4, 3, 2, 1) and (4, 2, 2, 1).

Sorted then by dimension, there is one three dimensional solution set, one
two dimensional solution set, twelve lines, and four isolated solutions.

The top dimensional system has three random linear equations and three
slack variables z1, z2, and z3. The mixed volume of the top dimensional system
equals 61 and this is the number of paths tracked in its solution. Of those 61
paths, 6 diverge to infinity and the cascade of homotopies starts with 55 paths.
The number of paths tracked in the cascade is summarized at the right in Fig. 3.

Fig. 3. At the left are the numbers of paths tracked in each stage of the computation
of a numerical irreducible decomposition of f(x) = 0 in (6). The numbers at the right
are the candidate generic points on each positive dimensional solution set, or in case of
the rightmost 8 at the bottom, the number of candidate isolated solutions. Shown at
the farthest right is the summary of the number of paths tracked in each stage of the
cascade.

The number of solutions with nonzero slack variables remains constant in
each run, because those solutions are regular. Except for the top dimensional
system, the number of solutions with slack variables equal to zero fluctuates,
each time different random constants are generated in the embedding, because
such solutions are highly singular.

The right of Fig. 3 shows the order of computation of the path tracking
jobs, in four stages, for each dimension of the solution set. The obvious parallel
implementation is to have p threads collaborate to track all paths in that stage.
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3.2 Speedup

The following analysis assumes that every path has the same difficulty and
requires the same amount of time to track.

Theorem 2. Let Tp be the time it takes to track n paths with p threads. Then,
the optimal speedup Sp is

Sp = p − p − r

Tp
, r = n mod p. (7)

If n < p, then Sp = n.

Proof. Assume it takes one time unit to track one path. The time on one thread
is then T1 = n = qp + r, q = �n/p	 and r = n mod p. As r < p, the tracking of
r paths with p threads takes one time unit, so Tp = q + 1. Then the speedup is

Sp =
T1

Tp
=

qp + r

q + 1
=

qp + p − p + r

q + 1
=

qp + p

q + 1
− p − r

q + 1
= p − p − r

Tp
. (8)

If n < p, then q = 0 and r = n, which leads to Sp = n. ��
In the limit, as n → ∞, also Tp → ∞, then (p − r)/Tp → 0 and so Sp → p.

For a cascade with D + 1 stages, Theorem 2 can be generalized as follows.

Corollary 2. Let Tp be the time it takes to track with p threads a sequence of
n0, n1, . . ., nD paths. Then, the optimal speedup Sp is

Sp = p − dp − r0 − r1 − · · · − rD

Tp
, rk = nk mod p, k = 0, 1, . . . D. (9)

Proof. Assume it takes one time unit to track one path. The time on one thread
is then

T1 = n0 + n1 + · · · + nD = q0p + r0 + q1p + r1 + · · · + qDp + rD, (10)

where qk = �nk/p	 and rk = nk mod p, for k = 0, 1, . . . ,D. As rk < p, the
tracking of rk paths with p threads takes D + 1 time units, so the time on p
threads is

Tp = q0 + q1 + · · · + qD + D + 1. (11)

Then the speedup is

Sp =
T1

Tp
=

pTp − dp + r0 + r1 + · · · + rD

Tp
(12)

= p − dp − r0 − r1 − · · · − rD

Tp
. � (13)

If the length D + 1 of the sequence of paths is long and the number of paths
in each stage is less than p, then the speedup will be limited.
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4 Filtering Lower Dimensional Solution Sets

Even if one is interested only in the isolated solutions of a polynomial system, one
would need to be able to distinguish the isolated multiple solutions from solutions
on a positive dimensional solution set. Without additional information, both an
isolated multiple solution and a solution on a positive dimensional set appear
numerically as singular solutions, that is: as solutions where the Jacobian matrix
does not have full rank. A homotopy membership test makes this distinction.

4.1 Homotopy Membership Tests

Example 3. (homotopy membership test) Consider the following system:

f(x) =
{

(x1 − 1)(x1 − 2) = 0
(x1 − 1)x2

2 = 0.
(14)

The solution consists of the line x1 = 1 and the isolated point (2, 0) which occurs
with multiplicity two. The line x1 = 1 is represented by one generic point as the
solution of the embedded system

E(f(x), z1) =

⎧
⎨

⎩

(x1 − 1)(x1 − 2) + γ1z1 = 0
(x1 − 1)x2

2 + γ2z1 = 0
c0 + c1x1 + c2x2 + z1 = 0,

(15)

where the constants γ1, γ2, c0, c1, and c2 are randomly generated complex num-
bers. Replacing the constant c0 by c3 = −2c1 makes that the point (2, 0, 0)
satisfies the system E(f(x), z1) = 0. Consider the homotopy

h(x, z1, t) =

⎧
⎨

⎩

(x1 − 1)(x1 − 2) + γ1z1 = 0
(x1 − 1)x2

2 + γ2z1 = 0
(1 − t)c0 + tc3 + c1x1 + c2x2 + z1 = 0.

(16)

For t = 0, there is the generic point on the line x1 = 1 as a solution of the
system (15). Tracking one path starting at the generic point to t = 1 moves the
generic point to another generic point on x1 = 1. If that other generic point at
t = 1 coincides with the point (2, 0, 0), then the point (2, 0) belongs to the line.
Otherwise, as is the case in this example, it does not.

In running the homotopy membership test, a number of paths need to be
tracked. To identify the bottlenecks in a parallel version, consider the output of
Fig. 3 in the continuation of the example on the system in 6.

Example 4 (Example 2 continued). Assume the spurious points on the higher
dimensional solution sets have already been removed so there is one generic point
on the three dimensional solution set, one generic point on the two dimensional
solution set, and twelve generic points on the one dimensional solution set.

At the end of the cascade, there are eight candidate isolated solutions. Four of
those eight are regular solutions and are thus isolated. The other four solutions
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Fig. 4. Stages in testing whether the singular candidate isolated points belong to the
higher dimensional solution sets.

are singular. Singular solutions may be isolated multiple solutions, but could
also belong to the higher dimensional solution sets. Consider Fig. 4.

Executing the homotopy membership tests as in Fig. 4, first on 3D, then on
2D, and finally on 1D, the bottleneck occurs in the middle, where there is only
one path to track.

Figure 5 is the continuation of Fig. 3: the output of the cascade shown in
Fig. 3 is the input of the filtering in Fig. 5. Figure 4 explains the last stage in
Fig. 5.

4.2 Speedup

The analysis of the speedup is another consequence of Theorem 2.

Corollary 3. Let Tp be the time it takes to filter nD, nD−1, . . ., n�+1 singular
points on components respectively of dimensions D, D −1, . . ., �+1 and degrees
dD, dD−1, . . ., d�+1. Then, the optimal speedup is

Sp = p − (D − �)p − rD − rD−1 − · · · − r�+1

Tp
, rk = (nkdk) mod p, (17)

for k = � + 1, . . . , D − 1,D.

Proof. For a component of degree dk, it takes nkdk paths to filter nk singular
points. The statement in (17) follows from replacing nk by nkdk in the statement
in (9) of Corollary 2. ��
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Fig. 5. On input are the candidate generic points shown as output in Fig. 3: 1 point
at dimension three, 2 points at dimension two, 18 points at dimension one, and 8
candidate isolated points. Points on higher dimensional solution sets are removed by
homotopy membership filters. The numbers at the right equal the number of paths in
each stage of the filters. The sequence 4, 1, 12 at the bottom is explained in Fig. 4.

Although the example shown in Fig. 5 is too small for parallel computation,
it illustrates the law of diminishing returns in introducing parallelisms. There
are two reasons for a reduced parallelism:

1. The number of singular solutions and the degrees of the solution sets could
be smaller than the number of available cores.

2. In a cascade of homotopies, there are as many steps as D + 1, where D is
the expected top dimension. To filter the output of the cascade, there are
D(D + 1)/2 stages, so longer sequences of homotopies are considered.

Singular solutions that do not lie on any higher positive dimensional solution
set need to be processed further by deflation [11,12], not available yet in a multi-
threaded implementation. Parallel algorithms to factor the positive dimensional
solutions into irreducible factors are described in [10].

5 Computational Experiments

The software was developed on a Mac OS X laptop and Linux workstations. The
executable for Windows also supports multithreading. All times reported below
are on a CentOS Linux 7 computer with two Intel Xeon E5-2699v4 Broadwell-
EP 2.20 GHz processors, which each have 22 cores, 256 KB L2 cache and 55 MB
L3 cache. The memory is 256 MB, in 8 banks of 32 MB at 2400 MHz. As the
processors support hyperthreading, speedups of more than 44 are possible.

On Linux, the executable phc is compiled with the GNAT GPL 2016 edition
of the gnu-ada compiler. The thread model is posix, in gcc version 4.9.4. The
code in PHCpack contains an Ada translation of the MixedVol Algorithm [8],
The source code for the software is at github, licensed under GNU GPL version 3.
The blackbox solver for a numerical irreducible decomposition is called as phc -B
and with p threads: as phc -B -tp. With phc -B2 and phc -B4, computations
happen respectively in double double and quad double arithmetic [9].
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5.1 Solving Cyclic 8 and Cyclic 9-Roots

Both cyclic 8 and cyclic 9-roots are relatively small problems, relative compared
to the cyclic 12-roots problem. Table 1 summarizes wall clock times and speedups
for runs on the cyclic 8 and 9-roots systems. The wall clock time is the real time,
elapsed since the start and the end of each run. This includes the CPU time,
system time, and is also influenced by other jobs the operating system is running.

Table 1. Wall clock times in seconds with phc -B -tp for p threads.

p Cyclic 8-roots Cyclic 9-roots

Seconds Speedup Seconds Speedup

1 181.765 1.00 2598.435 1.00

2 167.871 1.08 1779.939 1.46

4 89.713 2.03 901.424 2.88

8 47.644 3.82 427.800 6.07

16 32.215 5.65 267.838 9.70

32 22.182 8.19 153.353 16.94

64 20.103 9.04 150.734 17.24

With 64 threads the time for cyclic 8-roots reduces from 3 min to 20 s and for
cyclic 9-roots from 43 min to 2 min and 30 s. Table 2 summarizes the wall clock
times with 64 threads in higher precision.

Table 2. Wall clock times with 64 threads in double and quad double precision.

Cyclic 8-roots Seconds = hms format Cyclic 9-roots Seconds = hms format

dd 53.042 = 53s 498.805 = 8 m19 s

qd 916.020 = 15m 16 s 4761.258 = 1 h 19m 21 s

5.2 Solving Cyclic 12-Roots on One Thread

The classical Bézout bound for the system is 479,001,600. This is lowered to
342,875,319 with the application of a linear-product start system. In contrast,
the mixed volume of the embedded cyclic 12-roots system equals 983,952.

The wall clock time on the blackbox solver on one thread is about 95 h (almost
4 days). This run includes the computation of the linear-product bound which
takes about 3 h. This computation is excluded in the parallel version because the
multithreaded version overlaps the mixed volume computation with polyhedral
homotopies. While a speedup of about 30 is not optimal, the time reduces from
4 days to less than 3 h with 64 threads, see Table 3.

The blackbox solver does not exploit symmetry, see [1] for such exploitation.
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Table 3. Times of the pipelined polyhedral homotopies versus the total time in the
solver phc -B -tp, for increasing values 2, 4, 8, 16, 32, 64 of the tasks p.

p Seconds = hms format Speedup Total seconds = hms format Percentage

2 62812.764 = 17 h 26m 52 s 1.00 157517.816 = 43 h 45m 18 s 39.88%

4 21181.058 = 5h 53m 01 s 2.97 73088.635 = 20 h 18m 09 s 28.98%

8 8932.512 = 2h 28m 53 s 7.03 38384.005 = 10 h 39m 44 s 23.27%

16 4656.478 = 1h 17m 36 s 13.49 19657.329 = 5h 27m 37 s 23.69%

32 4200.362 = 1h 10m 01 s 14.95 12154.088 = 3h 22m 34 s 34.56%

64 4422.220 = 1h 13m 42 s 14.20 9808.424 = 2h 43m 28 s 45.08%

5.3 Pipelined Polyhedral Homotopies

This section concerns the computation of a random coefficient start system used
in a homotopy to solve the top dimensional system, to start the cascade homo-
topies for the cyclic 12-roots system. Table 3 summarizes the wall clock times to
solve a random coefficient start system to solve the top dimensional system.

For pipelining, we need at least 2 tasks: one to produce the mixed cells
and another to track the paths. The speedup of p tasks is computed over 2
tasks. With 16 threads, the time to solve a random coefficient system is reduced
from 17.43 h to 1.17 h. The second part of Table 3 lists the time of solving the
random coefficient system relative to the total time of the solver. For 2 threads,
solving the random coefficient system takes almost 40% of the total time and
then decreases to less than 24% of the total time with 16 threads. Already for
16 threads, the speedup of 13.49 indicates that the production of mixed cells
cannot keep up with the pace of tracking the paths.

Dynamic enumeration [15] applies a greedy algorithm to compute all mixed
cells and its implementation in DEMiCs [14] produces the mixed cells at a faster
pace than MixedVol [8]. Table 4 shows times for the mixed volume computation
with DEMiCs [14] in a pipelined version of the polyhedral homotopies.

Table 4. Times of the pipelined polyhedral homotopies with DEMiCs, for increasing
values 2, 4, 8, 16, 32, 64 of tasks p. The last time is an average over 13 runs. With 64
threads the times ranged between 23min and 47 min.

p Seconds = hms format Speedup

2 56614 = 15 h 43 m 34 s 1.00

4 21224 = 5h 53 m 44 s 2.67

8 9182 = 2h 23 m 44 s 6.17

16 4627 = 1h 17 m 07 s 12.24

32 2171 = 36m 11 s 26.08

64 1989 = 33m 09 s 28.46
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5.4 Solving the Cyclic 12-Roots System in Parallel

As already shown in Table 3, the total time with 2 threads goes down from more
than 43 h to less than 3 h , with 64 threads. Table 5 provides a detailed breakup
of the wall clock times for each stage in the solver.

Table 5. Wall clock times in seconds for all stages of the solver on cyclic 12-roots.
The solving of the top dimension system breaks up in two stages: the solving of a start
system (start) and the continuation to the solutions of the top dimensional system
(contin). Speedups are good in the cascade stage, but the filter stage contains also the
factorization in irreducible components, which does not run in parallel.

p Solving top system Cascade and filter Grand Speedup

Start Contin Total Cascade Filter Total Total

2 62813 47667 110803 44383 2331 46714 157518 1.00

4 21181 25105 46617 24913 1558 26471 73089 2.16

8 8933 14632 23896 13542 946 14488 38384 4.10

16 4656 7178 12129 6853 676 7529 19657 8.01

32 4200 3663 8094 3415 645 4060 12154 12.96

64 4422 2240 7003 2228 557 2805 9808 16.06

A run in double precision with 64 threads ends after 7 h and 37 min. This
time lies between the times in double precision with 8 threads, 10 h and 39 min,
and with 16 threads, 5 h and 27 min (Table 3). Confusing quality with precision,
from 8 to 64 threads, the working precision can be doubled with a reduction in
time by 3 h, from 10.5 h to 7.5 h.

References

1. Adrovic, D., Verschelde, J.: Polyhedral methods for space curves exploiting sym-
metry applied to the cyclic n-roots problem. In: Gerdt, V.P., Koepf, W., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 10–29. Springer,
Cham (2013). https://doi.org/10.1007/978-3-319-02297-0 2

2. Backelin, J.: Square multiples n give infinitely many cyclic n-roots. Reports,
Matematiska Institutionen 8, Stockholms universitet (1989)

3. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Software for numer-
ical algebraic geometry: a paradigm and progress towards its implementation. In:
Stillman, M.E., Takayama, N., Verschelde, J. (eds.) Software for Algebraic Geom-
etry. IMA Volumes in Mathematics and its Applications, vol. 148, pp. 33–46.
Springer, New York (2008). https://doi.org/10.1007/978-0-387-78133-4 1
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While computer algebra systems can perform highly sophisticated algebraic
tasks, they are much less equipped for solving problems from mathematical anal-
ysis in a symbolic manner. Elementary problems in analysis, like the manipu-
lation of Taylor series and the calculation of limits of univariate functions are
supported, with some limitations, in general-purpose computer algebra systems
such as Maple and Mathematica. However, limits of multivariate functions
and more advanced notions of limits, like topological closures, are almost absent
from such systems. For instance, and quite surprisingly, Maple is not capable
of computing limits of rational functions in more than two variables.

Many fundamental concepts in mathematics are defined in terms of limits
and it is highly desirable for computer algebra to implement those concepts.
However, limits are, by essence, hard to compute, or even not computable in an
algorithmic fashion, say by doing finitely many rational operations on polyno-
mials or matrices.

In this tutorial, we shall see how various types of limits can be computed
by means of algebraic calculations. Examples will cover the Zariski closure of
a constructible set, the tangent cone of an algebraic set at one of its singular
points, and the limit of a real multivariate rational function at one of its poles.

The tutorial will include a presentation of the underlying mathematical con-
cepts and algorithms as well as an extended software demonstration powered by
the RegularChains and PowerSeries libraries. Both libraries are freely available
in source from www.regularchains.org.
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