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Sadly, Andreas Weber passed away on March 15,
2020. Andreas studiedmathematics and computer
science at the Universities of Tübingen, Germany,
andBoulder,Colorado,USA.He thenworked as a
postdoc at the Institute for Computer Science at
Cornell University, New York, USA; the Univer-
sity of Tübingen, Germany; and the Fraunhofer
Institute for Computer Graphics Research,
Germany. Since 2001, he was a professor at the
University of Bonn, Germany.

Scientifically, he was considered an authority in
the fields of physics-based modeling and simula-
tion, as well as applications of computer algebra
in the natural sciences and particularly biology.
He was incredibly well-read, possessed an
immense wealth of knowledge across different
disciplines, and was highly committed to interna-
tional and interdisciplinary networking. Due to his
great hospitality and openness, his group in Bonn
developed into a permanent lively meeting place of
scientists from different fields from all over the
world, where science could take place at its best.

Andreas made many contributions to CASC,
attending almost all conferences in its history. He
contributed many papers, hosted CASC in Bonn
in 2007, was an invited speaker in 2010, a PC
member during 2000–2013, and most recently
served as publicity chair in 2014–2019. We will
always remember his good-natured humor and
his boundless compassion for science and for
others. We will miss his presence very much.



Preface

The International Workshop on Computer Algebra in Scientific Computing (CASC),
held annually since 1998, has established itself as a leading forum for presenting recent
developments in the area of computer algebra and on pioneering applications of
computer algebra methods in sciences such as physics, chemistry, celestial mechanics,
life sciences, engineering, etc. The CASC 2020 International Workshop featured a
balanced mix of high-level keynote speeches and concurrent oral sessions.

CASC 2020 Venue

It was initially decided, in the autumn of 2019, that the 22nd CASC International
Workshop would be held at Johannes Kepler University (JKU), Linz, Austria, in
September 2020. The choice of this university was particularly fitting since research in
computer algebra has been conducted therein for many years.

The city of Linz, and maybe even more the little village of Hagenberg 25 km north
of Linz, is well known in the computer algebra community, since the RISC (Research
Institute for Symbolic Computation) is located in a medieval castle in Hagenberg.
RISC was founded in 1987 by Bruno Buchberger as an institute of JKU and moved to
Hagenberg in 1989. Since its foundation RISC has developed into one of the world’s
leading institutes in the area of symbolic computation. Buchberger’s vision encloses
the entire range from pioneering mathematical research to industry proven software
engineering. The RISC Software Company was founded in 1992 as part of RISC and it
embodies the duality of basic research and applications.

To mathematicians, Bruno Buchberger is known as the inventor of Gröbner bases
theory and Buchberger’s algorithm, which he developed in his PhD thesis in 1965.
Nowadays, Gröbner bases are one of the fundamental pillars of symbolic computation
and the applications range from algebraic geometry or applied mathematics to science
and engineering. Every major computer algebra system has its implementation of
Gröbner bases.

Presently, symbolic computation has a strong basis in Linz. RISC is currently
directed by Peter Paule and consists of the following research groups: automated
reasoning, computer algebra for combinatorics, computer algebra for differential
equations, computer algebra for geometry, formal methods, rewriting-related tech-
niques and applications, and symbolic methods in kinematics. The JKU Institute for
Algebra, led by Manuel Kauers, also puts a strong emphasis on research in computer
algebra. The main research areas covered are symbolic summation and integration,
operator algebras, special functions identities and inequalities, and applications of
computer algebra in combinatorics, experimental mathematics, and systems biology.
Furthermore, there is a group on symbolic computation under the guidance of Josef
Schicho at the Radon Institute for Computational and Applied Mathematics (RICAM),



an institute of the Austrian Academy of Sciences (OeAW). Its focus is on computer
algebra, algebraic geometry, differential algebra, holonomic functions, and kinematics.

The research activity of the mathematical departments of Linz actively promote the
significant impact of computer algebra in scientific computing. For over 20 years they
have been showing a strong commitment to interdisciplinary research. In 1998 the
Special Research Program (SFB) “Numerical and Symbolic Scientific Computing” was
launched with the participating institutes of Applied Geometry, Computational Math-
ematics, Industrial Mathematics, and RISC. This enterprise became a role model for
interdisciplinary research and doctoral education. At the end of its runtime in 2008, it
was succeeded by the doctoral program (DK) “Computational Mathematics: Numerical
Analysis and Symbolic Computation.” In addition to the four institutes of the SFB,
currently the participating institutes are the institute for Algebra, Stochastics, and
RICAM. One of the general goals of the doctoral education in the DK is to gain
expertise in algorithmic mathematics. Two decades of interdisciplinary cooperation
have also shaped the curriculum of the undergraduate education at JKU. There is a
basic understanding that scientific computing and computer algebra go well together,
which makes Linz a great place to meet for CASC, even if it is only virtually this year.

The Organizing Committee of CASC 2020 monitored the development of the
COVID-19 pandemic. The safety and well-being of all conference participants was our
priority. After studying and evaluating the announcements, guidance, and news
released by relevant national departments, the decision was made to host CASC 2020
as an online event.

Overview of the Volume

This year, CASC 2020 had two categories of participation: (1) talks with accompa-
nying papers to appear in the proceedings, and (2) talks with accompanying extended
abstracts for distribution locally at the conference only. The latter was for work either
already published, or not yet ready for publication, but in either case still new and of
interest to the CASC audience. The former was strictly for new and original research
results, ready for publication.

All papers submitted for the LNCS proceedings received a minimum of three
reviews, and some received more, with the average number of reviews being 3.2 per
paper. In addition, the whole Program Committee (PC) was invited to comment and
debate on all papers. At the end of the review process, the PC chose to accept 28
papers. A further 6 papers were accepted later through a conditional path (the authors
had to first provide a revised version to meet specific requirements set by the PC).
Hence in total this volume contains 34 contributed papers, along with 2 papers to
accompany our keynote talks.

The invited talk of Ovidiu Radulescu is devoted to the application of tropical
geometry for the mathematical modeling of biological systems. Tropical geometry
methods exploit a property of biological systems calledmultiscaleness, summarized by
two properties: i) the orders of magnitude of variables and timescales are widely
distributed, and ii) at a given timescale, only a small number of variables or
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components play a driving role, whereas large parts of the system have passive roles
and can be reduced. Several models of biological systems and their reductions are
presented. The change of variables is used to “tropicalize” biochemical networks. It is
shown how to find the appropriate scalings for parameters with the aid of tropical
geometry approaches. The conclusion is made that tropical geometry methods are
possible ways to symbolic characterization of dynamics in high dimension, also to
synthesize dynamical systems with desired features.

The other invited talk by Werner Seiler is accompanied by a joint paper with
Matthias Seiß which gives an overview of their recent works on singularities of implicit
ordinary or partial differential equations. This includes firstly the development of a
general framework combining algebraic and geometric methods for dealing with
general systems of ordinary or partial differential equations, and for defining the type of
singularities considered here. An algorithm is also presented for detecting all singu-
larities of an algebraic differential equation over the complex numbers. The adaptions
required for the analysis over the real numbers are then discussed. The authors further
outline, for a class of singular initial value problems, for a second-order ordinary
differential equation, how geometric methods allow them to determine the local
solution behavior in the neighborhood of a singularity, including the regularity of the
solution. Finally, it is shown for some simple cases of algebraic singularities how such
an analysis can be performed there.

Polynomial algebra, which is at the core of computer algebra, is represented by
contributions devoted to establishing intrinsic complexity bounds for constructing
zero-dimensional Gröbner bases, the implementation of power series arithmetic in the
Basic Polynomial Algebra Subprograms (BPAS) Library, the investigation of the
relations between the Galois group and the triviality of the exponent lattice of a
univariate polynomial, multiplier verification with the aid of Nullstellensatz-proofs, the
complexity analysis of sparse multivariate Hensel lifting algorithms for polynomial
factorization, the new approximate GCD algorithm with the Bezout matrix, the com-
putation of logarithmic vector fields along an isolated complete intersection singularity,
the computation of parametric standard bases for semi-weighted homogeneous isolated
hypersurface singularities with the aid of the CAS SINGULAR, acceleration of sub-
division root-finders for real and complex univariate polynomials, the optimization of
multiplying univariate dense polynomials with long integer unbalanced coefficients
with the aid of Tom–Crook approach, the investigation of the Routh–Hurwitz stability
of a polynomial matrix family under real perturbations, symbolic-numeric computation
of the Bernstein coefficients of a polynomial from those of one of its partial derivatives,
and the derivation with the aid of Gröbner bases of new optimal symplectic
higher-order Runge–Kutta–Nyström methods for the numerical solution of molecular
dynamics problems.

Several papers are devoted to linear algebra and its applications: finding good pivots
for small sparse matrices, the presentation of a new linear algebra approach for
detecting binomiality of steady state ideals of reversible chemical reaction networks,
and parametric linear system solving by using the comprehensive triangular Smith
normal form.

Two papers deal with applications of symbolic-numerical computations for: com-
puting orthonormal bases of the Bohr–Mottelson collective model, implemented in the
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CAS MATHEMATICA, and a symbolic-numeric study of geometric properties of
adiabatic waveguide modes.

Two papers are devoted to the application of symbolic computations for investi-
gating and solving ordinary differential equations (ODEs): contact linearizability of
scalar ODEs of arbitrary order and the investigation of the invariance of Laurent
solutions of linear ODEs under possible prolongations of the truncated series which
represent the coefficients of the given equation.

Three papers deal with the investigation and solution of celestial mechanics prob-
lems: applications of the CAS MATHEMATICA, to the study of stationary motions of
a system of two connected rigid bodies in a constant gravity field with the aid of
Gröbner bases and to the analytic investigation of the translational-rotational motion of
a non-stationary triaxial body in the central gravity field; the obtaining of periodic
approximate solutions of the three-body problem with the aid of conservative difference
schemes and the free open-source mathematics software system SAGE (www.
sagemath.org).

The remaining topics include the new complexity estimates of computing integral
bases of function fields, first-order tests for toric varieties, which arise, in particular, in
chemical reaction networks, Hermite interpolation of a rational function with error
correction, the improved balanced NUCOMP algorithm for the arithmetic in the divisor
class group of a hyperelliptic curve, algebraic complexity estimates for an efficient
method of removing all redundant inequalities in the input system, a multithreaded
version of the robust tracking of one path of a polynomial homotopy, the improvement
of the Lazard's method for constructing the cylindrical algebraic decomposition, new
extensions implemented in the SCALA algebra system, a new MAPLE package that
allows obtaining compatible routes in an overtaking railway station of any number of
tracks, and the use of the LEGO digital designer for teaching algebraic curves in
mathematical education via LEGO linkages.

August 2020 François Boulier
Matthew England

Timur M. Sadykov
Evgenii V. Vorozhtsov
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Tropical Geometry of Biological Systems
(Invited Talk)

Ovidiu Radulescu(B)

University of Montpellier, CNRS UMR5235 LPHI, Montpellier, France
ovidiu.radulescu@umontpellier.fr

Abstract. Tropical geometry ideas were developed by mathematicians
that got inspired from very different topics in physics, discrete mathe-
matics, optimization, algebraic geometry. In tropical geometry, tools like
the logarithmic transformation coarse grain complex objects, drastically
simplifying their analysis. I discuss here how similar concepts can be
applied to dynamical systems used in biological modeling. In particular,
tropical geometry is a natural framework for model reduction and for the
study of metastability and itinerancy phenomena in complex biochemical
networks.

Keywords: Tropical geometry · Chemical reaction networks · Model
reduction · Singular perturbations · Metastability · Itinerancy

1 Introduction

Mathematical modelling of biological systems is a daunting challenge. In order
to cope realistically with the biochemistry of cells, tissues and organisms,
both in fundamental and applied biological research, systems biology mod-
els use hundreds and thousands of variables structured as biochemical net-
works [1,16,38]. Nonlinear, large scale network models are also used in neuro-
science to model brain activity [7,29]. Ecological and epidemiological modelling
cope with population dynamics of species organized in networks and interacting
on multiple spatial and temporal scales [2,28]. Mathematical models of complex
diseases such as cancer combine molecular networks with population dynam-
ics [5].

Denis Noble, a pioneer of multi-cellular modelling of human physiology, advo-
cated the use of middle-out approaches in biological modelling [23]. Middle-out
is an alternative to bottom-up, that tries to explain everything from detailed
first principles, and to top-down, that uses strongly simplified representations
of reality. A middle-out model uses just enough details to render the essence
of the overall system organization. Although this is potentially a very power-
ful principle, the general mathematical methods to put it into practice are still
awaited.

Recently, we have used tropical geometry to extract the essence of biologi-
cal systems and to simplify complex biological models [24,25,30,32,33]. Tropical
c© Springer Nature Switzerland AG 2020
F. Boulier et al. (Eds.): CASC 2020, LNCS 12291, pp. 1–13, 2020.
https://doi.org/10.1007/978-3-030-60026-6_1
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2 O. Radulescu

geometry methods exploit a feature of biological systems called multiscale-
ness [11,35], summarized by two properties: i) the orders of magnitude of vari-
ables and timescales are widely distributed; and ii) at a given timescale, only a
small number of variables or components play a driving role, whereas large parts
of the system have passive roles and can be reduced.

Modellers and engineers reduce models by introducing ad hoc small param-
eters in their equations. After scaling of variables and parameters, singular
perturbations techniques such as asymptotic approximations, boundary lay-
ers, invariant manifolds, etc. can be used to cope with multiple time scales.
These techniques, invented at the beginning of the 20th century for problems in
aerodynamics and fluid mechanics [26] are also known in biochemistry under the
name of quasi-equilibrium and quasi-steady state approximations [10,12,13,36].
The reduction of the model in a singular perturbation framework is tradition-
ally based on a two time scales (slow and fast) decomposition: fast variables
are slaved by the slow ones and can therefore be eliminated. Geometrically,
this corresponds to fast relaxation of the system to a low dimensional invari-
ant manifold. The mathematical bases of the slow/fast decomposition were set
in [14,39,40] for the elimination of the fast variables, and in [8] for the existence
of a low dimensional, slow invariant manifold. However, the slow/fast decomposi-
tion is neither unique, nor constant; it depends on model parameters and can also
change with the phase space position on a trajectory. Despite of several attempts
to automatically determine small parameters and slow/fast decompositions, the
problem of finding a reduced model remains open. We can mention numerical
approaches such as Computational Singular Perturbations [18], or Intrinsic Low
Dimensional Manifold [21] that perform a reduction locally, in each point of the
trajectory. Notwithstanding their many applications in reactive flow and com-
bustion, these methods are simulation based and may not provide all the possible
reductions. Furthermore, explicit reductions obtained by post-processing of the
data generated by these numerical methods may be in conflict with more robust
approaches [33]. A computer algebra approach to determine small parameters
for the quasi-steady state reduction of biochemical models was proposed, based
on Gröbner bases calculations, but this approach is limited to models of small
dimension [9].

Perturbation approaches, both regular and singular, operate with orders of
magnitude. In such approaches, some terms are much smaller than others and
can, under some conditions, be neglected. Computations with orders of magni-
tudes follow maxplus (or, depending on the definition of orders, minplus) alge-
braic rules. The same rules apply to valuations, that are building blocks for
tropical geometry [22]. We developed tropical geometry methods to identify sub-
systems that are dominant in certain regions of the phase- and/or parameter-
space of dynamical systems [30,32]. Moreover, tropical geometry is a natural
approach to find the scalings needed for slow/fast decompositions and perform
model order reduction in the framework of geometric singular perturbation the-
ory. Scaling calculations are based on finding solutions of the tropical equili-
bration problem, which is very similar to computing tropical prevarieties [25].
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For such a problem we have effective algorithms that work well for medium size
biochemical models (10–100 species) [20,33,37].

Tropical approaches provide a timescale for each biochemical species or relax-
ation process and one generally has not only two but multiple timescales. This
situation is the rule rather than the exception in biology. For instance, cells or
organisms use multiple mechanisms to adapt to changes of their environment.
These mechanisms involve rapid metabolic or electrophysiological changes (sec-
onds, minutes), slower changes of gene expression (hours), and even slower muta-
tional genetic changes (days, months). Within each category, sub-mechanism
timescales spread over several log scale decades. We are using tropical approaches
also to cover such situations and obtain reductions for systems with more than
two timescales [17].

Interestingly, the dominance relations unravelled by tropical geometry can
highlight approximate conservation laws of biological systems, i.e. conserva-
tion laws satisfied by a dominant subsystem and not satisfied by the full system.
These approximate conservations are exploited for the simplification of biologi-
cal models [6]. Beyond their importance for model reduction, approximate con-
servations and tropical equilibrations can be used for computing metastable
states of biochemical models, defined as regions of very slow dynamics in phase
space [32,34,35]. Metastable states represent a generalization of the stable steady
states commonly used in analyzing biological networks [29]. A dynamical system
spends an infinite time in the neighbourhood of stable steady state, and a large
but finite time in the neighborhood of metastable states. In biology, both steady
and metastable states are important. The existence of metastable states leads
to a property of biological systems called itinerancy, meaning that the system
can pass from one metastable state to another one during its dynamics [15,29].
From a biological point of view itinerancy explains plasticity during adaptation,
occurring in numerous situations: brain functioning, embryo development, cellu-
lar metabolic changes induced by changes of the environment. The study of the
relation between the network structure and the metastable states is also a pos-
sible way to design dynamical systems with given properties. This is related to
the direction suggested by O.Viro at the 3rd European Congress of Mathematics
to use tropical geometry for constructing real algebraic varieties with prescribed
properties in the sense of Hilbert’s 16th problem [41,42].

2 Models of Biological Systems and Their Reductions

Chemical reaction networks (CRN) are bipartite graphs such as those repre-
sented in Fig. 1, where one type of node stands for chemical species and the
other for reactions. Although mainly designed for modelling cell biochemistry,
CRNs can also be used to describe interactions of the cell with its microen-
vironment in tissue models and also the population dynamics in compartment
models in ecology and epidemiology. When the copy numbers of all molecular
species are large, CRN dynamics is given by systems of ordinary differential
equations, usually with polynomial or rational right hand side. For instance, in
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the Michaelis–Menten model, an archetype of enzymatic reactions, the differen-
tial equations for the concentrations of relevant chemical species (substrate and
enzyme-substrate complex) have the form

dx1

dt
= −k1x1 + k2x1x2 + k3x2

dx2

dt
= k1x1 − k2x1x2 − (k3 + k4)x2, (1)

where k1, . . . , k4 are kinetic parameters.
The Michaelis–Menten model is already quite simple, however comprehensive

models of cell biochemistry can be very large. By model reduction one trans-
forms the system of differential equations into a system with less equations and
variables that have approximately the same solutions. The variables of the full
model missing in the reduced model should be also computable, for instance as
functions of the reduced model variables. For applications it is handy when not
only the full model but also the reduced model is a CRN, like in Fig. 1.

3 Tropical Geometry Approaches

In order to “tropicalize” biochemical networks, one replaces parameters and
species with orders of magnitude. This is performed by the change of variables

x �→ a = log(x)/ log ε,

where ε is a small, positive parameter.
This logarithmic change of variables defines a map Vε : R+ → R ∪ {−∞}. It

is easy to check that when ε → 0,

Vε(xy) = Vε(x) + Vε(y),
Vε(x + y) = min(Vε(x), Vε(y)).

This mapping transforms the semifield R+ into the semifield Rmin (or min-plus
algebra) where multiplication, addition, 0 and 1 become addition, multiplica-
tion, −∞ and 0, respectively. Furthermore, Vε(x) represents the order of magni-
tude of x and can express dominance relations, because when ε → 0

Vε(x) < Vε(y) =⇒ x >> y.

Tropicalizing a biochemical model consists of keeping in the r.h.s. of the ODEs
only the dominant terms and eliminating the other terms [24]. As can be seen in
the Fig. 2 for the Michaelis–Menten model, generically there is only one dominant
term, but there are special situations when more than two dominant terms exist.
We called tropical equilibration the situation when at least two dominant terms,
one positive and one negative exist [24]. Heuristically, the tropical equilibration
corresponds to compensation of dominant terms and to slow dynamics, whereas
the dynamics with uncompensated dominant terms is fast.
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Fig. 2. Analysis of dominant terms in the tropicalized Michaelis–Menten model for
k4 << k3. Each ODE corresponds to a tripod (tropical curve) made of three half-lines.
The lines where two monomial terms are dominant in each ODE form the tropical
prevariety (intersection of the two tropical curves). The solid half-lines of the tropical
prevariety form the tropical equilibrations.

4 Scaling and Singular Perturbation Schemes

In singular perturbation problems it is considered that both parameters and
species concentrations depend on some small parameter. In practice we consider
that the parameters of the model can be written as k = k̄(ε∗)γ where ε∗ is a
small positive parameter1. Next, we replace k by k(ε) = k̄εγ and we study the
asymptotic solutions in the limit ε → 0. If ε∗ is small enough, then the asymptotic
solutions are close to the solutions of the model.

The tropical geometry approaches allow to find the appropriate scalings.
To this end, we use valuations of parameters and species concentrations defined
as V (x(ε)) = limε→0 Vε(x(ε)), V (k(ε)) = limε→0 Vε(k(ε)). It follows, at lowest
order that

x(ε) = x̄εV (x), k(ε) = k̄εV (k). (2)

The valuations of the parameters can be obtained by rounding from their actual
numeric values V (k) = round(Vε∗(k)), where ε∗ can be any small positive num-
ber. Different choices of ε∗ are only approximately equivalent and in practice
one tries several values and selects a robust choice. We showed in [32] that the
valuations of the concentrations V (x) have to satisfy tropical equilibrations.

1 this procedure restricts the asymptotic regime to very small or very large parameters;
translation is needed for asymptotic studies close to finite special parameter values.
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Let us illustrate how this can be used to define slow/fast decompositions
and reduce the Michaelis–Menten model. Consider the case when k3 << k4
corresponding to the quasi-steady state approximation. In this case we have

dx̄1

dt
= −εγ1 k̄1x̄1 + εγ2+a2 k̄2x̄1x̄2 + εγ3+a2−a1 k̄3x̄2,

dx̄2

dt
= εγ1+a1−a2 k̄1x̄1 − εγ2+a1 k̄2x̄1x̄2 − εγ4 k̄4x̄2 − εγ3 k̄3x̄2, (3)

where γi = V (ki), 1 ≤ i ≤ 4, aj = V (xj), 1 ≤ j ≤ 2.
Each tropical equilibration leads to a scaling and to a candidate reduced

model. For instance, the tropical equilibration γ1 + a1 − a2 = γ2 + a1 = γ4
leads to

x̄′
1 = −k̄1x̄1 + k̄2x̄1x̄2 + εγ3−γ4 k̄3x̄2,

εγ1−γ4 x̄′
2 = k̄1x̄1 − k̄2x̄1x̄2 − k̄4x̄2 − εγ3−γ4 k̄3x̄2, (4)

where the derivatives are with respect to the rescaled time τ = εγ1 and γ3−γ4 > 0
(because k3 << k4).

The case γ1−γ4 > 0 is typically a singular perturbation case and the solution
of (4) converges to the solution of

x̄′
1 = −k̄1x̄1 + k̄2x̄1x̄2,

0 = k̄1x̄1 − k̄2x̄1x̄2 − k̄4x̄2, (5)

as ε → 0.
The justification of the convergence lies outside tropical geometry consid-

erations and uses singular perturbations results; in this simple case it follows
from [39]. Some general results of convergence can be found in [32] for the two
time scale case and in [17] for the multiple timescale case.

The second equation of (5) is called quasi-steady state condition. Using this
condition to eliminate x̄2, we obtain the reduced model

x̄′
1 = − Vmaxx̄1

x̄1 + Km
, (6)

that is the Briggs-Haldane approximation to the Michaelis–Menten model, with
Vmax = k̄1k̄4/k̄2, Km = k̄4/k̄2.

By this procedure a model of two differential equations and four parameters
was reduced to a model of one differential equation and two parameters.

5 Approximate Conservation Laws

In the case when k3 >> k4 using the same procedure as in the preceding section
for the tropical equilibration γ1 + a1 − a2 = γ2 + a1 = γ3 leads to
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0 = −k̄1x̄1 + k̄2x̄1x̄2 + k̄3x̄2,

0 = k̄1x̄1 − k̄2x̄1x̄2 − k̄3x̄2, (7)

as ε → 0.
The quasi-steady state equations are indeterminate and one can not elimi-

nate both fast variables x1 and x2 as usual in the quasi-steady state approxi-
mation. Furthermore, the slow variables whose dynamics have to be retained in
the asymptotic limit are not explicit.

This degenerate case occurs quite often in practice. In order to obtain a reduc-
tion, we exploit approximate conservations. When k3 >> k4, the fast dynamics
of the Michaelis–Menten model can be approximated by

dx1

dt
= −k1x1 + k2x1x2 + k3x2,

dx2

dt
= k1x1 − k2x1x2 − k3x2. (8)

It can be easily checked that this system has a first integral d(x1+x2)
dt = 0.

x1 +x2 is called an approximate conservation law because it is conserved by the
fast approximated system and is not conserved by the full system.

By introducing the new variable x3 = x1 + x2 = x̄3ε
min(a1,a2) we get

dx̄1

dt
= εγ3+a2−a1(−k̄1x̄1 + k̄2x̄1x̄2 + k̄3x̄2),

dx̄2

dt
= εγ3(k̄1x̄1 − k̄2x̄1x̄2 − k̄3x̄2 − εγ4−γ3 k̄4x̄2),

dx̄3

dt
= −εγ4+a2−min(a1,a2)k̄4x̄2. (9)

As γ4 + a2 − min(a1, a2) > γ3 and γ4 + a2 − min(a1, a2) > γ3, it follows
that the variable x3 is slower than both x1 and x2, with no condition on the
valuations of parameters and variables.

More generally, approximate conservations can be defined each time a scaling
of the system by powers of ε is known. We proved, for polynomial ODEs, that
any approximate linear or polynomial conservation law is a slow variable [6].
This result can be used for model reduction in the degenerate situation when
the quasi-steady state equations are indeterminate.

6 Metastability

A typical trajectory of a multiscale system consists in a succession of quali-
tatively different slow segments separated by fast transitions (see Fig. 3). The
slow segments, corresponding to metastable states or regimes, can be of sev-
eral types such as attractive slow invariant manifolds, Milnor attractors, saddle
connections, etc.
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According to the famous conjecture of Jacob Palis, smooth dynamical sys-
tems on compact spaces should have a finite number of attractors whose basins
cover the entire ambient space [27]. These conditions apply to biochemical reac-
tion networks whose ambient space is compact because of conservation, or dissi-
pativity. The conjecture could be extended to metastable states where smooth-
ness of the vector fields and compactness of the ambient space should lead to
a finite number of such states. In this case, symbolic descriptions of the trajecto-
ries as sequences of symbols, representing the metastable states that are visited,
are possible.

Tropical equilibrations are natural candidates for slow attractive invariant
manifolds and metastable states. Beyond the purely geometric conditions, hyper-
bolicity conditions are needed for the stability of such states [17,32]. The set of
tropical equilibrations is a polyhedral complex. The maximal dimension faces of
such a complex are called branches (Fig. 4).

Because it is much easier to make calculations in polyhedral geometry than
with high dimensional smooth dynamical systems, the computation of tropical
branches represents a useful tool for understanding complex dynamical systems.
Moreover, many dynamical properties such as timescales, are linear functions of
parameter and species concentrations orders after tropicalization. Thus, polyhe-
dral geometry can be used for expressing conditions for particular model behav-
iors. This opens fascinating directions for the synthesis of systems with desired
properties.

Fig. 3. Dynamics of multiscale systems can be represented as itinerant trajectory in a
patchy phase space landscape made of slow attractive invariant manifolds. The term
crazy-quilt was coined to describe such a patchy landscape [11]. In the terminology of
the singular perturbations theory slow dynamics takes place on these slow manifolds,
while fast transitions (layers) occur by following the flow of the fast vectorfield (long
arrows) away from the slow manifolds. From [35].
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Fig. 4. Left: Polyhedral tropical branches for a model of MAPK cellular signaling in
projection on directions of variation of three chemical species; a real trajectory spans
several such branches in a well defined sequence, from alpha (initial condition) to
omega (steady state). Right: The adjacency relations of the branches in the polyhedral
complex are represented as a graph.

7 Conclusion

Tropical geometry has promising applications in the field of analysis of biological
models.

The calculation of tropical equilibrations is a first important step in algo-
rithms for automatic reduction of complex biological models. By model reduc-
tion, complex models are transformed into simpler models that can be more
easily analyzed, simulated and learned from data.

Tropical geometry methods are possible ways to symbolic characterization of
dynamics in high dimension, also to synthesis of dynamical systems with desired
features. This may have important practical applications but can also provide
at least partial answers to open questions in mathematics.

Several tools for tropical simplification of biological systems are currently
being developed within the French-German Symbiont consortium [3,4] and will
be made available to the computer algebra and computational biology commu-
nities.
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Abstract. We review our recent works on singularities of implicit ordi-
nary or partial differential equations. This includes firstly the develop-
ment of a general framework combining algebraic and geometric methods
for dealing with general systems of ordinary or partial differential equa-
tions and for defining the type of singularities considered here. We also
present an algorithm for detecting all singularities of an algebraic differ-
ential equation over the complex numbers. We then discuss the adaptions
required for the analysis over the real numbers. We further outline for
a class of singular initial value problems for a second-order ordinary
differential equation how geometric methods allow us to determine the
local solution behaviour in the neighbourhood of a singularity including
the regularity of the solution. Finally, we show for some simple cases of
algebraic singularities how there such an analysis can be performed.
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1 Introduction

Many different forms of “singular” behaviour appear in the context of differential
equations and many different views have been developed for them. Most of them
are related to singularities of individual solutions of a given differential equation
like blow-ups or shocks, i. e., either a solution component or some derivative of
it becomes infinite. Other interpretations are concerned with bifurcations, with
multivalued solutions or with singular integrals. In dynamical systems theory,
many authors call stationary points (or equilibria) singularities.

We will identify a (system of) differential equations with a geometric object
and singularities are points on it which are “different” from the generic points.
“Different” means e. g. that the dimensions of certain geometric structures jump.
Therefore, from all the “singularities” mentioned above, stationary points are
closest to our singularities. In fact, in the case of ordinary differential equations,
we will analyze the local solution behaviour by constructing a dynamical system
for which the singularity is a stationary point.
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In this article, we will given an overview over some recent results of ours;
for all details and in particular proofs, we must refer to the original works [22,
34,35]. In [22], a general framework for dealing with singularities of arbitrary
systems of ordinary or partial differential equations was developed by combining
methods from differential algebra, algebraic geometry and differential topology.
Conceptually, it follows the classical geometric approach to define singularities
that dates back at least to Clebsch and Poincaré (see [27] for a review and
historical perspective) and extends it also to partial differential equations and
to situations where one has no longer a manifold but a variety. Because of the
use of algebraic methods, the theory could be made fully algorithmic and was
implemented in Maple. We will present these results in the Sects. 2–4.

A central algebraic method used, the Thomas decomposition, assumes that
the underlying field is algebraically closed. For our use of the differential Thomas
decomposition the base field is largely irrelevant and we can continue to use
it also for real differential equations. The actual identification of singularities
is done via an algebraic Thomas decomposition and – as shown for some concrete
examples in [35] – its application to real equations is problematic. As the key step
for the detection of singularities is the analysis of a linear system of equations
over an algebraic set, we can replace it in the real case by a parametric Gaussian
elimination followed by a quantifier elimination. Simultaneously, this allows us to
extend to semialgebraic equations, i. e. to systems comprising not only equations
and inequations, but also more general inequalities like positivity constraints.
These considerations from [35] are the topic of Sect. 5.

Once we have identified a singularity, we want to analyse the local solution
behaviour. This cannot be done at the same level of generality as the detection.
In Sect. 6, we study geometric singularities of real ordinary differential equa-
tions using methods from dynamical systems theory. Then we restrict further to
quasilinear equations and show in Sect. 7 – following [34] – how, for a specific
class of scalar second-order singular initial value problems, non-trivial existence,
(non)uniqueness and regularity results can be obtained.

While the analysis of geometric singularities is a classical topic, algebraic singu-
larities have been essentially ignored in the context of differential equations. One
of the few exceptions is the work by Falkensteiner and Sendra [12] where the theory
of plane algebraic curves is used to analyse first-order scalar autonomous ordinary
differential equations. We will show in Sect. 8 how our geometric approach allows
us to analyse certain simple situations with ad hoc methods.

2 Differential Systems and Algebraic Differential
Equations

In this section we introduce most of the algebraic and geometric techniques used
in this article. For lack of space, we cannot provide a completely self-contained
introduction. For any unexplained terminology on the (differential) algebraic
side we refer to [30] and on the geometric side to [32].

We begin with the algebraic point of view. Consider the polynomial ring
P = C[x1, . . . , xn] with the ranking defined by xi < xj for i < j. The largest
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variable appearing in a polynomial p ∈ P is called its leader ld p. Considering p
as a univariate polynomial in this variable, the initial init p is defined as lead-
ing coefficient and the separant sep p as the derivative ∂p/∂ ld p. An algebraic
system S is a finite set of polynomial equations and inequations

S =
{

p1 = 0, . . . , ps = 0, q1 �= 0, . . . , qt �= 0
}

(A)

with polynomials pi, qj ∈ P and s, t ∈ N0. Its solution set SolS =
{
a ∈ Cn |

pi(a) = 0, qj(a) �= 0 ∀ i, j
}

is a locally Zariski closed set, namely the difference
of the two varieties Sol ({p1 = 0, . . . , ps = 0}) and Sol ({q1 = 0, . . . , qt = 0}). The
algebraic system (A) is simple, if (i) it is triangular, (ii) it has non-vanishing
initials, i. e. for each r ∈ {p1, . . . , ps, q1, . . . , qt}, the equation init r = 0 has no
solution in SolS and (iii) it is square-free, i. e. for each r ∈ {p1, . . . , ps, q1, . . . , qt},
the equation sep r = 0 has no solution in SolS. Simple systems behave “better”
in many respects than general systems. One can show that for a simple system S
the saturated ideal

Ialg(S) := 〈p1, . . . , ps〉 : q∞ ⊂ P where q = init p1 · · · init ps (1)

is the vanishing ideal of the Zariski closure of SolS [30, Prop. 2.2.7].
A Thomas decomposition of (A) consists of finitely many simple algebraic

systems S1, . . . , Sk such that Sol S is the disjoint union of SolS1, . . . ,Sol Sk. Any
algebraic system admits a Thomas decomposition (which is not unique). This
decomposition was introduced by Thomas [39,40] in the context of differential
algebra. It follows the general philosophy of treating algebraic or differential
systems via triangular sets (see [16,17] for a survey). A special feature of it is
its disjointness. It had been largely forgotten, until it was revived by Gerdt [13];
a modern presentation can also be found in [30]. Concrete implementations have
been provided in [2,3,14] and some more theoretical applications in [21,25].

In the differential case, we consider the ring of differential polynomials K{U}
where K = C(x1, . . . , xn), U = {u1, . . . , um} are finitely many differential inde-
terminates and where we take the partial derivatives δi = ∂/∂xi as derivations.
Given some differential polynomials p1, . . . , ps ∈ K{U}, we must distinguish
between the algebraic ideal 〈p1, . . . , ps〉 and the differential ideal 〈p1, . . . , ps〉Δ
generated by them. The latter one contains in addition all differential conse-
quences δμp of any element p of it. We also introduce the subring D ⊂ K{U} of
those differential polynomials where also the coefficients are polynomials in the
variables xi. For any � ∈ N0, we define the finitely generated subalgebra

D� = C
[
xi, uα

μ | 1 ≤ i ≤ n, 1 ≤ α ≤ m, |μ| ≤ �
]

which may be considered as the coordinate ring of a jet bundle (see below).
We choose on K{U} an orderly Riquier ranking <. The notion of leader,

initial and separant can be extended straightforwardly. A differential system S
is a finite set of differential polynomial equations and inequations

S =
{

p1 = 0, . . . , ps = 0, q1 �= 0, . . . , qt �= 0
}

(D)
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with pi, qj ∈ D and s, t ∈ N0. As solution set Sol S, we take for simplicity all
formal power series solutions. The differential system (D) is simple, if (i) it is
simple as an algebraic system in the finitely many jet variables uα

μ which actually
occur in S ordered according to <, (ii) its equation part forms a passive system
in the sense of Janet–Riquier theory for the Janet division and (iii) no leader of
an inequation qj is an (iterated) derivative of the leader of an equation pk.

A Thomas decomposition of the differential system (D) consists of finitely
many simple differential systems S1, . . . , Sk such that SolS is the disjoint
union of the solution sets SolS1, . . . ,Sol Sk. Any differential system admits such
a decomposition which can be computed algorithmically by interweaving alge-
braic Thomas decompositions and the Janet–Riquier theory.

The key tool in the geometric theory of differential equations (see [32] and
references therein) are jet bundles. For K being either R or C, we set X = Kn,
U = Km and consider maps φ : X → U which in the real case are assumed to be
smooth and in the complex case to be holomorphic and which need be defined
only on some open subset of X . The coordinates x = (x1, . . . , xn) on X are the
independent variables and the coordinates u = (u1, . . . , um) on U represent the
dependent variables or unknown functions. The �th order jet bundle J�(X ,U)
consist of all Taylor polynomials of degree � of such maps φ. Coordinates on
J�(X ,U) are therefore (x,u(�)) where x gives the expansion point and the jet
variables u(�) represent the Taylor coefficients up to order � which we may iden-
tify with the corresponding derivatives of φ at the point x. For the components
of u(�) we use the usual multi-index notation uα

μ = ∂|μ|φα/∂xμ with 1 ≤ α ≤ m

and μ ∈ Nn
0 satisfying 0 ≤ |μ| ≤ �. Hence we find that J�(X ,U) ∼= Kd� with

d� = n + m
(
m+�

�

)
. For our purposes, two topologies on J�(X ,U) are relevant:

one is induced by the Euclidean metric on Kd� and the other one is the Zariski
topology on Kd� with varieties as closed sets. Finally, we introduce the canon-
ical projection maps π�

k : J�(X ,U) → Jk(X ,U) with π�
k(x,u(�)) = (x,u(k)) for

� > k ≥ 0 and π� : J�(X ,U) → X with π�(x,u(�)) = x.

Definition 1. An algebraic jet set of order � is a locally Zariski closed subset
J� ⊆ J�(X ,U) (i. e. J� is the difference of two varieties in J�(X ,U)). Such a set
J� is an algebraic differential equation of order �, if in addition the Euclidean
closure of π�(J�) equals X . An algebraic jet set or an algebraic differential equa-
tion is called irreducible, if it is an irreducible locally Zariski closed subset.

We define here differential equations as a geometric object and do not distin-
guish between scalar equations and systems. An algebraic jet set is obtained by
considering the solution set of an algebraic system on J�(X ,U). The additional
condition for an algebraic differential equation ensures that the independent
variables are indeed independent. It excludes equations like x1 + x2 = 0 which
obviously is not a differential equation. Admitted is an equation like xu′ = 1
where x = 0 is not contained in the projection but in its closure. We use here
the Euclidean closure, as we would like to be able to express each point outside
of the set π�(J�) as the limit of a sequence of points inside.

Any map φ : X → U induces a map j0φ : X → J0(X ,U) = X × U
defined by j0φ(x) =

(
x, φ(x)

)
. The graph Γφ of φ is the image of j0φ. For
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any order � > 0, we may consider the prolongations j�φ : X → J�(X ,U) given by
j�φ(x) =

(
x, φ(x), ∂xφ(x), . . . , ∂�

xφ(x)
)

where ∂k
xφ(x) represents all derivatives

of φ of order k. The next definition reformulates geometrically the classical one.

Definition 2. A (classical) solution of the algebraic differential equation J� ⊆
J�(X ,U) is a map φ : X → U such that its prolongation satisfies im j�φ ⊆ J�.

Example 3. Let us consider the ordinary differential equation u′ = xu2 from
this geometric view point. It represents a typical differential equation with
singular solutions, as an elementary integration yields the general solution
φc(x) = 2/(2c − x2) parametrised by an arbitrary constant c ∈ R.

Fig. 1. Ordinary differential equation with singular solutions. Left: prolonged solutions
in J1(R,R). Right: classical solution graphs in x-u plane (Color figure online).

The left half of Fig. 1 shows in dark blue the corresponding algebraic differen-
tial equation J1 ⊂ J1(R,R) and in light blue for some values of c the prolonged
solutions j1φc(x). In the right half, traditional graphs of these solutions show
clearly the poles for positive values of c. We will see later that this differential
equation has no singularities in the sense relevant for this article.

If one tries to combine the algebraic and the geometric point of view, one
has to note some fundamental differences between the two. A differential ideal
automatically contains all differential consequences of its generators. By choosing
a jet bundle of a certain order �, we immediately restrict to equations of order
at most �. On the other hand, geometric notions like the singularities we will
consider in the next section cannot even be formulated in differential algebra.
Thus moving from one point of view to the other one requires some care, as
otherwise information is lost.

In applications, one usually starts with a differential system S like (D).
The following approach appears to be very natural to associate with it for any
given order � ∈ N0 an algebraic jet set in J�(X ,U). We take the differential ideal

Îdiff(S) = 〈p1, . . . , ps〉Δ ⊆ D
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generated by the equations in S. It induces the algebraic ideal

Î�(S) = Îdiff(S) ∩ D� ⊆ D�

as the corresponding finite-dimensional truncation. It automatically contains all
hidden integrability conditions up to order �. The inequations in S are also used
to define an algebraic ideal: K�(S) = 〈Q̂�〉D�

with Q̂� =
∏

ord (qj)≤� qj . We then
define the algebraic jet set

Ĵ�(S) = Sol
(Î�(S)

) \ Sol
(K�(S)

) ⊆ J�(X ,U)

consisting of all points of J�(X ,U) satisfying both the equations and the inequa-
tions in S interpreted as algebraic (in)equations in J�(X ,U).

However, this procedure leads to many problems. The ideals Î�(S) are often
too small (not radical) and the algebraic jet sets Ĵ�(S) are not necessarily alge-
braic differential equations. Furthermore, the effective determination of Î�(S) is
difficult. Finally, the sets Ĵ�(S) are possibly too small, as an algebraic interpre-
tation of inequations is much stronger than a differential one. Differentially, the
inequation u′ �= 0 simply excludes the zero function; algebraically, it excludes all
points with a vanishing u′-coordinate and thus e. g. all critical points of solutions.
A more extensive discussion of these problems can be found in [22].

The situation improves, if one assumes that S is a simple differential system.
Taking – following the reasoning behind (1) – the saturated differential ideal

Idiff = Îdiff(S) :
( s∏

j=1

init (pj) sep (pj)
)

(2)

instead of Îdiff(S) and then using the same procedure as above to define algebraic
ideals I�(S) and algebraic jet sets J�(S), one can show that these ideals are
automatically radical and that explicit generators of the algebraic ideals I�(S)
are easily computable (see [22] for details).

The saturation in (2) leads to a Zariski closure. The inequations of a simple
differential system exclude all points where an initial or separant vanishes and
thus most of the singularities studied later. The saturation restores some of them
and we only exclude irreducible components completely consisting of such points.

Example 4. Consider the system Ŝ consisting of the two partial differential equa-
tions p1 = uux−yu−y2 and p2 = yuyu which is not simple. A differential Thomas
decomposition yields only one simple system S obtained by augmenting Ŝ by the
inequation q = sep p1 = u. The algebraic ideal Î1(S) obtained by truncating the
differential ideal 〈p1, p2〉Δ has the prime decomposition Î1(S) = 〈p2, p3〉 ∩ 〈u, y〉
where p3 = uxuy − u − y implying that also the differential ideal is not prime.
Saturating with respect to Q = yu removes the prime component 〈u, y〉 and we
find that Idiff(S) = 〈p2, p3〉Δ and I1(S) = 〈p2, p3〉 ⊂ D1.

Definition 5. An algebraic differential equation J� ⊂ J�(X ,U) is locally inte-
grable, if there exists a Zariski open and dense subset R� ⊆ J� such that J�

possesses for each point ρ ∈ R� at least one solution φ with ρ ∈ im j�φ.
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Local integrability is for many purposes an important concept. If a point
ρ ∈ J� is “far away” from any (prolonged) solution, then one can argue how
relevant such a point is. In fact, the existence of such points is a clear indication
that J� has not been well chosen. A typical problem are overlooked hidden
integrability conditions. As any simple differential system is passive, we obtain
via the existence theorem of Riquier the following result for our construction.

Proposition 6 ([22, Prop. 3.6, Lemma 3.7]). Let S be a simple differential sys-
tem. The the Zariski closure J�(S) = Sol

(I�(S)
)

is a locally integrable algebraic
differential equation.

3 Singularities of Algebraic Differential Equations

In the affine space Kd� all coordinates are equal. In the jet bundle J�(X ,U) we
distinguish different types like independent and dependent variables or deriva-
tives. The contact distribution C� ⊂ TJ�(X ,U) encodes these different roles and
is generated by the vector fields

C
(�)
i = ∂xi +

m∑

α=1

∑

0≤|μ|<�

uα
μ+1i

∂uα
μ

, 1 ≤ i ≤ n , (3)

Cμ
α = ∂uα

μ
, 1 ≤ α ≤ m, |μ| = � (4)

where μ + 1i is obtained by increasing the ith entry of μ by one.

Definition 7. Let J� ⊆ J�(X ,U) be an algebraic jet set. The Vessiot cone Vρ[J�]
at ρ ∈ J� is the intersection of the tangent cone CρJ� with the contact space C�|ρ.

At a smooth point, the tangent cone CρJ� and the tangent space TρJ� coin-
cide and thus the Vessiot cone becomes a Vessiot space, i. e. a K-linear space,
which can be computed by linear algebra. Since the Vessiot spaces are contained
in the contact distribution, we make for any vector v ∈ Vρ[J�] the ansatz

v =
∑

i

aiC
(�)
i |ρ +

∑

|μ|=�

∑

α

bα
μCμ

α |ρ (5)

with yet to be determined coefficients ai, bα
μ ∈ K. Let the jet set J� be given

as the solution set of an algebraic system on J�(X ,U) with equations pτ = 0.
At a smooth point ρ, v is tangential to J�, if and only if dpτ |ρ(v) = 0 for all τ
leading to a homogeneous linear system for the coefficient vectors a, b,

D(ρ)a + M�(ρ)b = 0 , (6)

where the entries of the matrices D, M� are given by Diτ (ρ) = C
(�)
i (pτ )(ρ) and

(M�)μ
ατ (ρ) = Cμ

α(pτ )(ρ). The rank of (6) and thus the dimension of Vρ[J�] may
vary over J�. Considered as functions of ρ, the solutions of (6) are smooth out-
side of a Zariski closed set and – by potentially enlarging this set – we may even
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assume that the dimension remains constant, since dimension is an upper semi-
continuous function. Thus on a Zariski open and dense set we obtain a smooth
regular distribution.

The projection π�
�−1 : J�(X ,U) → J�−1(X ,U) induces at any point ρ ∈

J�(X ,U) the vertical space Vρπ
�
�−1 = ker Tρπ

�
�−1 spanned by the vectors Cμ

α |ρ.
The vertical part of the Vessiot cone at a point ρ ∈ J� is the symbol cone
Nρ[J�] = Vρ[J�] ∩ Vρπ

�
�−1. At smooth points, we will speak of the symbol space.

Again, on a Zariski open subset of J� the symbol spaces Nρ[J�] define a smooth
regular distribution N[J�].

At a smooth point ρ ∈ J�, the symbol space Nρ[J�] consists of those solutions
of (6) where all coefficients a vanish: it is the kernel of the symbol matrix M�(ρ).
Hence, we can write the Vessiot space as a direct sum Vρ[J�] = Nρ[J�] ⊕ Hρ

with some π�-transversal complement Hρ which is not uniquely determined.
J� is a differential equation of finite type, if on a Zariski open and dense subset
the symbol cones vanish. For such equations, we expect that generically to every
point ρ ∈ J� there exists a unique solution φ with ρ ∈ im jqφ, i. e. we may
consider ρ as initial data for an initial value problem.

Remark 8. Computing the Vessiot space via (6) can be seen as a “projective”
version of prolongation. Indeed, the formal derivative with respect to xi of a dif-
ferential equation pτ = 0 of order � is

Dipτ = C
(�)
i (pτ ) +

m∑

α=1

∑

|μ|<�

Cμ
α(pτ )uα

μ+1i
. (7)

For an ordinary differential equation of finite type a = a is scalar and we have
one coefficient bα for each unknown function uα. If (a,b) is a solution of (6),
then the unique solution φ with ρ ∈ im jqφ satisfies φ(�+1)(x0) = b/a where
x0 = π�(ρ), i. e. the Vessiot space contains information about the derivatives in
the next order. Obviously, if a = 0, then φ(�+1) blows up, as x approaches x0.

We will denote the family of Vessiot cones by V[Jq] and call it briefly the
Vessiot distribution of J�, although strictly speaking we obtain a distribution
only on a subset of Jq. But the considerations above justify this slight abuse of
language. The Vessiot distribution can be interpreted as a kind of “infinitesimal
solution space” of J�: if φ is any solution of J� and ρ lies on im j�φ, then the
tangent space Tρ im j�φ lies in the Vessiot cone Vρ[J�].

Definition 9. A generalized solution of the algebraic differential equation J� ⊆
J�(X ,U) with dim X = n is an n-dimensional submanifold N ⊆ J� such that
TρN ⊆ Vρ[J�] at every point ρ ∈ N . The projection π�

0(N ) ⊂ J0(X ,U) of a
generalized solution is called a geometric solution.

If φ is a classical solution of J�, then im j�φ is a generalized solution and the
graph Γφ = im j0φ of φ the corresponding geometric solution. Furthermore, at
any point ρ ∈ im j�φ we find that Vρ[J�] = N�[Jρ]⊕Tρ im j�φ. As we will see later,
an algebraic differential equation may possess further generalized solutions.
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Definition 10 ([22, Def. 4.1]). Let J� ⊆ J�(X ,U) be a locally integrable alge-
braic differential equation and dim X = n. A point ρ ∈ J� is an algebraic singu-
larity of J�, if ρ is a non-smooth point of J� in the sense of algebraic geometry.
A smooth point ρ ∈ J� is called

(i) regular, if ρ possesses a Euclidean open neighbourhood U ⊆ J� such that
the Vessiot cones form on U a regular distribution which is decomposable
as V[J�]|U = N [J�]|U ⊕ H with an n-dimensional, transversal, involutive,
smooth distribution H ⊆ TU ;

(ii) regular singular, if ρ possesses a Euclidean open neighbourhood U ⊆ J�

such that the Vessiot cones form on U a regular distribution but where
dim Vρ[J�] − dim Nρ[J�] < n;

(iii) irregular singular, if there does not exist a Euclidean open neighbourhood
U ⊆ J� such V[J�]|U is a regular distribution, i. e. any such neighbourhood
contains a point ρ̄ such that dim Vρ[J�] > dim Vρ̄[J�].

An irregular singularity ρ is purely irregular, if dim Vρ[J�] − dim Nρ[J�] = n.
Regular and irregular singular points are also called geometric singularities.

Algebraic singularities are not considered in the differential topological the-
ory and one finds there much simpler definitions (see e. g. [1] or [27]), as only
ordinary differential equations are considered where it is not necessary to con-
sider neighbourhoods. One knows in advance the “right” dimension of the Vessiot
spaces and can thus compare pointwise with this value. For partial differential
equations, this is generally no longer the case and Definition 10 represents to
our knowledge the first definition of geometric singularities for general systems
of partial differential equations (the much simpler intermediate case of partial
differential equations of finite type was already considered in [18]).

Remark 11. The three cases distinguished in Definition 10 for smooth points
correspond essentially to an analysis of the linear system (6). At an irregular
singular point, its rank does not take the maximal possible value attained in
the other two cases. At a regular point, the symbol matrix alone is already of
this rank. Thus geometric singularities are characterized by a rank drop of the
symbol matrix. At non-singular points of an ordinary differential equations, the
complement H is always one-dimensional and thus trivially involutive. In this
case (or more generally for any locally integrable differential equation of finite
type), the taxonomy of Definition 10 is complete. For partial differential equa-
tions, it is still an open question whether points can exist on J� which satisfy all
conditions for a regular point except the involutivity of H (see [22] for a more
extensive discussion of this topic).

Example 12. We consider the algebraic differential equation J2 ⊂ J2(C2,C) for
one unknown function u in two independent variables x, y defined by:

x2uxx + xux + (x − 1)2u = 0 , (1 − y2)uyy + 2yuy + 2u = 0 .
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Seven cases arise in the analysis of the linear system (6) for the Vessiot spaces:

1. Regular points on J2 are characterized by the conditions x �= 0 and y2−1 �= 0.
They have a three-dimensional Vessiot space.

2. Points where x = 0, y2−1 �= 0 and either ux �= 0 or uy �= 0 are regular singular.
They also possess a three-dimensional Vessiot space. As the coefficients a1 and
a2 in (5) must satisfy the equation 2uxa1 + uya2 = 0, only a one-dimensional
transversal complement exists.

3. Basically the same holds for points where y2 − 1 = 0, x �= 0 and either
yux+uxy �= 0 or u �= 0: they are regular singular and have a three-dimensional
Vessiot space with a one-dimensional transversal complement defined by the
equation (yux + uxy)a1 − 2ua2 = 0.

4. Points where x = 0, y2 − 1 = 0 and either ux �= 0 or yuxy + ux �= 0 are
irregular singularities which are not purely irregular: the Vessiot space is
four-dimensional with a one-dimensional transversal complement defined by
the condition a1 = 0.

5. Points where x = 0, ux = 0, uy = 0 and y2 − 1 �= 0 are purely irregular
singular and possess a four-dimensional Vessiot space defined by the equation
(y2 − 1)b02 − 2yuxya1 = 0.

6. The same behaviour is shown by points with y2 −1 = 0, u = 0, uy = 0, x �= 0,
but with the Vessiot space defined by the equation x2b20 + (x2 − xy − 2x −
1)uxa1 = 0.

7. Finally, the points where x = 0, y2 −1 = 0, uxy = 0 and u = 0 are also purely
irregular singular but now with a five-dimensional Vessiot space.

Note that the cases 2, 3 and 4 do not correspond to an algebraic jet set but the
union of two such sets, because of the disjunctions in their defining conditions.
Hence, if one applies the algorithm we will present in the next section to this
example, then one obtains actually 10 = 7 + 3 cases.

Any definition of a “singularity” is only meaningful, if generic points are reg-
ular. For equations of finite type, this is obvious and not even discussed in the
literature. However, for general partial differential equations, such a statement
becomes highly non-trivial and its proof requires major results from the geomet-
ric theory of differential equations. The key issue is to prove the involutivity of
the complement H over a Zariski open and dense subset.

Theorem 13 ([22, Thm. 4.7]). Let S be a simple differential system which con-
tains no equation of an order greater than � ∈ N and J�(S) the associated alge-
braic differential equation. Then the regular points in the Zariski closure J�(S)
contain a Zariski open and dense subset.

4 Regularity Decompositions

(Geometric) singularities are points where the dimensions of some geometric
structures like symbol or Vessiot spaces jump. An algebraic jet set J� ⊆ J�(X ,U)
is regular, if it consists only of smooth points and both its Vessiot distribution
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V[J�] and its symbol N[J�] define smooth vector bundles over J�. The solution
space of the linear system (6) behaves uniformly over a regular algebraic jet set
and thus all points on such a set are classified identically by Definition 10.

Definition 14. Let S ⊂ D be a simple differential system and J�(S) ⊂ J�(X ,U)
the associated algebraic jet set in a sufficiently high order �. Let furthermore
J�(S) = J�,1 ∪ · · · ∪ J�,t be its decomposition into irreducible varieties. A regu-
larity decomposition of the variety J�,k represents it as a disjoint union of finitely
many regular algebraic jet sets J (1)

�,k , . . . ,J (r)
�,k , the regularity components of J�,k,

and of the set ASing
(J�(S)

)
of algebraic singularities.

A constructive proof of the existence of regularity decompositions for any
simple differential system is provided by Algorithm 1 below. Regularity decom-
positions are not unique and thus this algorithm simply returns one possible
decomposition. The first two lines represent an algebraic preprocessing. In Line 2,
the algebraic ideal I�(S) is constructed explicitly via Janet–Riquier and Gröbner
theory – for details see [22, Rem. 3.8]. The determination of a prime decompo-
sition in Line 3 is a standard task in commutative algebra. Then the algorithm
loops over each prime component. In Line 5, two simultaneous linear systems
are set up over each prime component, i. e. we consider the combined system

⎧
⎨

⎩

J(pk,j) = 0 ,
v(pk,j) = 0 ,

pk,j = 0 ,

⎫
⎬

⎭
j = 1, . . . , sk . (8)

Here the polynomials pk,j form a basis of the kth prime ideal I�,k(S). The two
linear systems are obtained by applying two vector fields to these generators.
The first one, J =

∑
μ

∑
α cα

μ∂uα
μ
+

∑
i di∂xi represents a general tangent vector in

the jet bundle with yet undetermined coefficients c and d. The first linear system
in (8) encodes the condition that J is tangential to the kth prime component.
By the Jacobian criterion, a jump in its rank characterizes algebraic singularities.
The second linear system is constructed with a general contact vector (5) and
thus represents (6) for determining the Vessiot spaces. Changes in its behaviour
indicate geometric singularities.

The undetermined coefficients a, b, c, d represent the unknowns of the linear
systems and we consider the left hand sides of the equations as elements of
D ex

� = D�[a,b, c,d]. As changes in the behaviour of the linear systems indicate
singularities, these can be detected by an algebraic Thomas decomposition of (8)
for a suitably chosen ordering. More precisely, we must have: (i) d > c > b >
a > u > x, (ii) restricted to the jet variables u it must correspond to an orderly
ranking and (iii) the variables cα

μ and bα
μ are ordered among themselves in the

same way as the derivatives uα
μ .

Given a simple algebraic system Sex
k,� in the obtained decomposition, the

subsystem Sk,� obtained by eliminating all equations and inequations containing
some of the auxiliary variables a, b, c, d describes a regular jet set. In practice,
one is nevertheless strongly interested in getting the extended systems Sex

k,�, as
the appearing leaders allow us to deduce the dimensions of the Vessiot and
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Algorithm 1: Regularity Decomposition for a Simple Differential System
Input: a simple differential system S over the ring K{U} of differential

polynomials and a sufficiently high order � ∈ N
Output: a regularity decomposition for each prime component I�,k(S) of the

algebraic ideal I�(S) ⊂ D�

1 begin
2 compute a generating set {p1, . . . , ps} of the radical ideal I�(S)
3 compute a prime decomposition I�(S) = I�,1(S) ∩ . . . ∩ I�,t(S) of I�(S) and

a generating set {pk,1, . . . , pk,sk} for each prime component I�,k(S)
4 for k = 1 to t do
5 compute an algebraic Thomas decomposition Sex

k,1, . . . , Sex
k,rk

of the
algebraic system defined over D ex

� for an ordering as described above

6 return the systems Sk,i consisting of those equations p = 0 and inequations
q �= 0 in Sex

k,i with p ∈ D� and q ∈ D�

symbol spaces and thus to classify automatically the points on the jet set [22,
Prop. 5.10]. The proof of the correctness of Algorithm 1 requires a number of
rather technical issues and cannot be discussed here – see [22, Thm. 5.13].

Example 15. The hyperbolic gather is one of the elementary catastrophes. Inter-
preted as a first-order ordinary differential equation, it is given by J1 =
{(u′)3 + uu′ − x = 0}. A real picture of it is contained in Fig. 2 presented in
Example 19 below. Despite its simplicity, it well illustrates some of the prob-
lems appearing in the practical use of Algorithm 1. Using the implementation of
the Thomas decomposition described in [2], our algorithm returns a regularity
decomposition with seven components all consisting of smooth points. One com-
ponent contains the two irregular singularities, namely the points (2,−3,−1)
and (−2,−3, 1) shown in Fig. 2 in red. The regular singularities fill three com-
ponents. Two of them correspond to the fold line shown in Fig. 2 in white which
arises as the common zero set of our equation and its separant. The “tip” of
the fold line is put in a separate component. The third component contains
only complex points and is thus not visible in Figure 2. Finally, there are three
components with regular points. A closer analysis of the Vessiot spaces at these
points (presented in [22, Ex. 7.2]) reveals that they can be combined into a single
regularity component; the splitting into three separate components is solely an
artifact of the Thomas decomposition due to its internal use of projections along
each coordinate axis.

It represents a general problem of Algorithm 1 that it performs implicitly
a Thomas decomposition of the considered irreducible varieties. Some singulari-
ties indeed arise from the geometry of these varieties: it was no coincidence that
in Example 15 all singularities lie on the fold line. But the Thomas decomposi-
tion automatically also puts all points on the differential equation lying under or
over the fold line in separate components, although this is generally unnecessary
for the singularity analysis. In systems with several unknown functions u (and
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corresponding derivatives), this effect can be much more pronounced and its size
depends generally on the ordering of the entries of u (and the induced effect on
the ordering of their derivatives u(�)), although this ordering is irrelevant for the
analysis of the differential equation.

5 Semialgebraic Differential Equations

So far, we have exclusively considered the case of complex differential equations,
as the Thomas decomposition assumes that the underlying field is algebraically
closed. As in applications real equations dominate, we discuss now following [35]
an extension of the ideas of the last sections to differential equations over the real
numbers. We will not provide a complete solution to this problem. The approach
presented above consists essentially of three phases. In the first phase, we perform
a differential Thomas decomposition. Here the underlying field plays only a minor
role, as a crucial point is the completion to a passive system.

In the second phase, we construct from an obtained simple differential system
a suitable algebraic differential equation. This step involves some problematic
operations. Firstly, we perform a saturation which provides us with a radical
ideal. Over the real numbers, we should actually strive for the real radical accord-
ing to the real nullstellensatz (see e. g. [6, Sect. 4.1] for a discussion). An algo-
rithm for determining the real radical was proposed by Becker and Neuhaus
[5,24]; an implementation over the rational numbers exists in Singular [37].
Secondly, we need irreducible varieties and hence a prime decomposition. Since
computing such a decomposition is related to factorization, it strongly depends
on the underlying field. Again, effective methods exist only over the rational
numbers. Thus we conclude that for arbitrary simple differential systems the
second phase cannot be done completely algorithmically.

It is unclear whether all steps of the second phase are really necessary. For
example, for determining the tangent space at a smooth point, one does not
need the real radical. Many problems in practise automatically lead to prime
ideals. We will in the sequel assume that we are able to perform all required
computations by saying that we are dealing with a well-prepared system and
concentrate on a real variant of the third phase.

In the third phase, we solve two linear systems over a locally Zariski closed
set. In the previous section, we simply threw all (in)equations together and
computed an algebraic Thomas decomposition. Now we will present an alterna-
tive approach making stronger use of the “staggered” structure of the problem
and the partial linearity. Furthermore, we also extend the class of differential
equations considered. An algebraic differential equation was essentially defined
as a locally Zariski closed sets, i. e. it was described by equations pi = 0 and
inequations qj �= 0. Over the real numbers, it is desirable to include also inequal-
ities qj � 0 where � stands for some relation in {<,>,≤,≥, �=}. Thus we replace
the condition “locally Zariski closed” by “semialgebraic” (see e. g. [6, Chap. 2]).
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Definition 16. A semialgebraic jet set of order � is a semialgebraic subset J� ⊆
J�(X ,U). Such a set J� is a semialgebraic differential equation of order �, if in
addition the Euclidean closure of π�(J�) equals X .

We call a semialgebraic jet set J� ⊆ J�π basic, if it can be described by a finite
set of equations pi = 0 and a finite set of inequalities qj > 0. We call such a pair
of sets a basic semialgebraic system on J�π. It follows from an elementary result
in real algebraic geometry [6, Prop. 2.1.8] that any semialgebraic jet set can be
expressed as a union of finitely many basic semialgebraic jet sets. We will always
assume that our sets are given in this form and study each basic semialgebraic
system separately, as for some steps in our analysis it is crucial that at least the
equation part of the system is a pure conjunction.

The basic idea underlying the approach of [35] is to treat the system (8)
in stages. So far, we computed an algebraic Thomas decomposition of the full
system for a suitably chosen ordering. It was not really relevant that parts of the
system were linear (although it makes the determination of the Thomas decom-
position faster). Now we study first only the linear parts of (8) as a parametric
linear system in the unknowns a, b, c and d with the jet variables x and u(q)

considered as parameters (appearing in polynomial form).
Parametric Gaussian elimination has been studied for more than 30 years,

see e. g. [4,15,36]. A parametric Gaussian elimination returns a finite set of
pairs (γ,H) where the guard γ describes the conditions for this particular case
and H represents the corresponding solution of the linear system. The guard γ
is basically a conjunction of equations and inequations describing the choices
made for the various pivots arising during the solution process. A key point is
the application of advanced logic and decision procedures for an efficient heuristic
handling of the potentially exponentially large number of arising cases. We used
a reimplementation of the Redlog [10] package PGauss – see [35, Sect. 3]. It
applies strong heuristic simplification techniques [11] and quantifier elimination-
based decision procedures [19,31,42,43].

The two linear subsystems of (8) are independent of each other. The analysis
of the Jacobian criterion is straightforward: changes in the rank of the matrix are
automatically delivered by a parametric Gauss algorithm. The analysis of the
system for the Vessiot spaces is a bit more involved. For simplicity, we restrict
to the case of ordinary differential equations where the vector a contains only
a single entry a. Here we can give pointwise criteria: a point is regular, if the
Vessiot space is one- and the symbol space zero-dimensional; it is regular singular,
if both spaces are one-dimensional and irregular singular if the Vessiot space has
a dimension higher than one. Thus here it does not suffice to look only at the
rank of the matrix; one must also analyse the relative position of the Vessiot
space to the vertical space of the jet bundle or more prosaically whether there
are non-trivial solutions for which a = 0. In [35, Sect. 3], we developed a variant
of parametric Gaussian elimination which takes as additional input a sublist of
variables for which such considerations are taken into account.

Once all the different cases appearing in the solution of the linear systems
have been determined, we must check which of them actually occur on our
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Algorithm 2: RealSingularities
Input: Σ� =

(
(pa = 0)a=1,...,A, (qb > 0)b=1,...,B

)
well-prepared, basic

semialgebraic system with pa, qb ∈ D� ∩ Z[t,u, . . . ,u(�)]
Output: finite system (Γi, Hi)i=1,...,I with
(i) each Γi is a disjunctive normal form of polynomial equations, inequations,

and inequalities over D� describing a semialgebraic subset J�,i ⊆ J�

(ii) each Hi describes the Vessiot spaces of all points on J�,i

(iii) all sets J�,i are disjoint and their union is J�

1 begin
2 set up the matrix A of the second linear part of (8) using the equations

(pa = 0)a=1,...,A

3 Π =
(
γτ , Hτ

)
τ=1,...,t

← ParametricGauss
(
A, (b, a), (a),R

)

4 for τ = 1 to t do
5 let Γτ be a disjunctive normal form of γτ ∧ ∧

Σ�

6 check satisfiability of Γτ using real quantifier elimination on

∃t ∃u . . . ∃u(�) Γτ

7 if Γτ is unsatisfiable then
8 delete (γτ , Hτ ) from Π
9 else

10 replace (γτ , Hτ ) by (Γτ , Hτ ) in Π

11 return Π

semialgebraic jet set. Thus for each case (γ,H) obtained we must verify whether
or not the conjunction of its guard γ with the semialgebraic description of the
jet set possesses a solution. Such a check represents a classical task for real
quantifier elimination [7]. If the answer is yes, then the conjunction gives a
semialgebraic description of one component in our regularity decomposition.
For various reasons like a better readability of the results, we always return a
disjunctive normal form of the semialgebraic description (for more details see
[35]). In a more formal language we arrive thus at Algorithm 2.

Example 17. We study again the hyperbolic gather. In Example 15, the Thomas
decomposition yielded unnecessarily many components in the regularity decom-
position and some of them contained only complex points making them irrelevant
for a real analysis. Using the above outlined approach, one obtains a real reg-
ularity decomposition consisting of exactly three components corresponding to
the regular, the regular singular and the irregular singular points [35, Ex. 15].
This is an effect of the reversal of the analysis: we first study the different cases
arising in the linear systems, then we check where on the differential equation
the cases occur. This strategy should generally lead to a lower number of cases.

In [35, Ex. 15] the elliptic gather given by (u′)3 − uu′ − x = 0 (i. e., it dif-
fers only by the sign of the middle term) is considered. In a complex analysis,
one obtains for both gathers essentially the same result. Over the real numbers,



Algebraic and Geometric Analysis of Singularities of IDEs 29

the elliptic gather has no irregular singularities (they are now complex). Con-
sequently, our real approach yields a regularity decomposition with only two
components.

6 Analysis of Geometric Singularities

After the detection of singularities, we will now discuss the local solution
behaviour around them – but only for ordinary differential equations of finite
type, as not much is known for partial differential equations. We also consider
only the real case using methods from dynamical systems theory. Let ρ = (x̄, ū(�))
be a smooth point on an algebraic differential equation J�. We consider it as ini-
tial data for an initial value problem: we search for solutions φ of J� such that
φ(x̄) = ū, φ′(x̄) = ū′,. . . , φ(�)(x̄) = ū�. We distinguish between two-sided solu-
tions which exist in an interval (x̄ − ε, x̄ + ε), i. e., for which im j�φ goes through
the point ρ, and one-sided solutions which either begin in ρ, i. e., exist on an
interval [x̄, x̄+ε), or end in ρ, i. e., exist on an interval (x̄−ε, x̄]. We are interested
in the existence, (non)uniqueness and regularity of such solutions. Away from
irregular singularities, the theory is rather simple, as the following generalization
of standard results for explicit ordinary differential equations shows.

Theorem 18 ([18, Thm. 4.1]). Let J� be a smooth algebraic ordinary differen-
tial equation of order � such that at every point ρ ∈ J� the Vessiot space Vρ[J�]
is one-dimensional. If ρ is a regular point, then there exists a unique smooth
classical two-sided solution φ with ρ ∈ im j�φ. More precisely, it can be extended
in both directions until im j�φ reaches either the boundary of J� or a regular
singular point. If ρ is a regular singular point, then either two smooth classical
one-sided solutions φ1, φ2 exist with ρ ∈ im j�φi which either both start or both
end in ρ or only one classical two-sided solution exists whose (�+1)th derivative
blows up at x = π�(ρ).

Proof. By the made assumptions, V[J�] can be generated in an open neighbour-
hood of ρ by a smooth vector field X. The standard existence and uniqueness
theorems guarantee for each point ρ ∈ J� the existence of a unique integral curve
of X defining a unique generalized solution Nρ with ρ ∈ Nρ. This generalized
solution is a smooth curve which can be extended until it reaches the boundary
of J� and around each regular point ρ̄ ∈ Nρ it projects onto the graph of a strong
solution φ, since Vρ̄[J�] is transversal to π� by definition of a regular point.

If ρ is a regular singular point, then Xρ is vertical for π�, i. e. its ∂x-component
vanishes. The behaviour of the corresponding geometric solution Ñρ = π�

0(Nρ)
depends on whether or not the ∂x-component changes its sign at ρ. If the sign
changes, then Ñρ has two branches corresponding to two classical solutions which
either both end or both begin at ρ̂ = π�

0(ρ). Otherwise Ñρ is around ρ̂ the graph
of a classical solution, but Remark 8 implies that the (� + 1)th derivative of this
solution at x = π�(ρ) must be infinite.
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Example 19. We continue our study of the hyperbolic gather by looking at the
local solution behaviour. Figure 2 shows on the left hand side a number of gener-
alized solutions in cyan and on the right hand side the corresponding geometric
solutions in blue. One can see that whenever a generalized solution crosses trans-
versely the white fold line outside of an irregular singularity, then the geometric
solution reverses its direction (more precisely, the curve defining it has a cusp
there). At these “reversal points”, the geometric solution cannot be interpreted
as the graph of a function. Hence one obtains in the classical picture two one-
sided solutions. The curve in magenta shows the generalized solution that goes
through the tip of the fold line. The corresponding geometric solution is still a
classical one, but only C1: one can see that it is not smooth at the origin, as by
Theorem 18 its second derivative blows up.

Fig. 2. Generalized solutions of the hyperbolic gather. Left: situation in J1(R,R).
Right: projection to x-u plane (Color figure online).

At irregular singularities, the solution behaviour can be more complicated.
It follows from their definition that they form an algebraic jet set of codimension
at least 2. Hence, if ρ ∈ J� is an irregular singularity, then we can find an open,
simply connected submanifold U ⊂ J� such that ρ ∈ U and everywhere in U the
Vessiot spaces are one-dimensional. On U the Vessiot distribution V[J�] can be
generated by a single smooth vector field X. In principle, it is straightforward
to construct such a vector field by solving (6), but one must exclude certain
degeneracies appearing e. g. in the presence of singular integrals.

If J� is locally integrable, then we may assume without loss of generality by
(the proof of) [32, Prop. 9.5.10] that J� is described by a square system pτ = 0
with as many equations as unknowns. Thus the symbol matrix M� is square
and for ordinary differential equations the matrix D becomes a vector d. Let
M† = adj (M�) be the adjugate of M . On U , the Vessiot distribution is generated
by the vector field X = det (M)C(�)

1 − ∑m
α=1(M

†d)αC�
α which can be smoothly

extended to a neighbourhood of ρ, as all its coefficients are polynomials.
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Proposition 20. Let J� be a locally integrable differential equation and assume
that on U the vector d does not vanish and that det (M) and the components
of M†d do not possess a non-trivial joint common divisor. Then any smooth
extension of the vector field X vanishes at ρ.

Proof. The made assumptions ensure that X is a “minimal” generator of the
Vessiot distribution on U . At the irregular singularity ρ, the rank of M(ρ) drops
and thus det (M) = 0. If it drops by more than one, then M†(ρ) = 0 and the
claim is trivial. If the rank drops only by one, then the vector d(ρ) must lie in
the column space of M(ρ) for an irregular singularity. It follows now by Cramer’s
rule that M†(ρ)d(ρ) = 0 and hence Xρ = 0.

Thus at least generically we can analyse the local solution behaviour by using
dynamical systems theory: we are given a smooth vector field X on J� for which ρ
is a stationary point. If ρ is a hyperbolic stationary point, then the eigenvalues
of Jac (X) completely determine the local phase portrait. Otherwise, one must
resort to more advanced techniques like blow-ups.

Example 21. In the case of the hyperbolic gather, the Vessiot distribution is gen-
erated by the vector field X = (3(u′)2 + u)(∂x + u′∂u) + (1 − (u′)2)∂u′ . The
Jacobian at the irregular singularity ρ = (2,−3, 1) (the analysis of the other
irregular singularity proceeds analogously) is J =

(
0 1 −6
0 −1 6
0 0 2

)
with the three

eigenvalues 2, −1 and 0. Although J1 is a two-dimensional submanifold, we are
computing here with all three jet coordinates in J1(R,R). Thus we must decide
which eigenvalue is irrelevant. This is straightforward: we only have to check
which eigenvector is not tangential to J1. It turns out that in our case 0 is irrel-
evant. Hence ρ is a saddle point of X, as one can also clearly see on the left hand
side of Fig. 2. The red curves there are two invariant manifolds tangent to the
eigenspaces which for us represent two generalized solutions which intersect at
the irregular singularity.

If an irregular singularity ρ is a node of the vector field X, then infinitely
many (two-sided) generalized solutions intersect there. At a focus, all general-
ized solutions are one-sided, as they do not possess a well-defined tangent when
spiralling into ρ and hence cannot be combined to a smooth curve through ρ.
For higher-dimensional equations, the analysis in particular of non-hyperbolic
stationary points can be arbitrarily complicated. For scalar first-order equa-
tions a complete classification of generic irregular singularities was given in [8,9].
The typical behaviour at an irregular singularity is thus that the usual unique-
ness statements break down and several general solutions intersect there. There
are, however, also degenerate situations where one still obtains a unique solution
(see e. g. [34, Ex. 3.5]); in this case one speaks of an apparent singularity.

7 Quasilinear Equations

Quasilinear ordinary differential equations have their own theory, which some-
what surprisingly seems to have been overlooked in the differential topological
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literature. By contrast, in the context of differential algebraic equations, authors
have studied almost exclusively the quasilinear case – see e. g. [26,28,38,41] –
using analytic methods. For simplicity, we study here following [34] only the case
of a scalar ordinary differential equation ([33] treats first-order systems)

g(x, u(�−1))u� = f(x, u(�−1)) (9)

where u� denotes the �th derivative of u and u(�) all derivatives up to order �.
We further assume that f , g are polynomials of their arguments. Let J� be the
corresponding algebraic jet set.

Whether or not a point ρ = (x̄, ū(�)) ∈ J� is a singularity does not depend
on the value of ū� in this special case, as it does not appear in (6). The key
property of quasilinear equations is that they can be studied at one order less.
More precisely, outside of the irregular singularities the Vessiot distribution V[J�]
can be generated by a vector field X. Denoting by C

(�)
t = ∂x +

∑�−1
i=0 ui+1∂ui

the
transversal contact field on J�(R,R) and by C

(�)
v = ∂u�

the vertical one, we may
choose X = gC

(�)
t +

(
C

(�)
t (g)u� − C

(�)
t (f)

)
C

(�)
v . Expanding X, one sees that it is

projectable to the field Y = gC
(�−1)
t +fC

(�−1)
v on J�−1(R,R). Strictly speaking,

Y is only defined outside the projections of the irregular singularities of J�. But
as we assume that f , g are polynomials, Y can obviously be extended smoothly
to the whole jet bundle J�−1(R,R).

Definition 22. A point ρ̃ ∈ J�−1(R,R) is an impasse point for J�, if Y is not
transversal at ρ̃ (i. e. if g(ρ̃) = 0). Otherwise, it is a regular point. An impasse
point is proper, if Y vanishes there, and improper otherwise. A weak generalized
solution of J� is a one-dimensional manifold Ñ ⊂ J�−1(R,R) such that Yρ̃ ∈
Tρ̃Ñ for all points ρ̃ ∈ Ñ . A weak geometric solution is the projection π�−1

0 (Ñ )
of a weak generalized solution Ñ .

We use here the terminology “impasse points” to distinguish them from the
singularities of J� which are always points on J�. Singularities always project
on impasse points, but there may be impasse points without a point on J�

above them (see [34, Prop. 5.4] for a more precise analysis). This is the deeper
reason why quasilinear equations require their own theory. Like a singularity, an
impasse point can be only apparent – see [34, Ex. 6.3]. We speak about “weak”
generalized solutions, as even in the case that they are the prolongations of a
function it is not guaranteed that this function is � times differentiable. Hence
it can be considered as a solution only in a weak sense. One can provide an
existence and (non)uniqueness theorem analogous to Theorem 18 for equations
without proper impasse points. For lack of space, we omit the details and refer
to [34, Thm. 6.5].

To indicate the wide variety of phenomena that may appear around impasse
points of quasilinear equations, we now specialise to the following class of singular
second-order initial value problems

g(x)u′′ = f(x, u, u′) , u(y) = c0 , u′(y) = c1 (10)
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where we assume that y is simple zero of g. Liang [23] studied it for the special
case g(x) = x and y = 0 with analytical techniques. We showed in [34] that all
his results can be recovered with geometric means in our slightly more general
situation in a much more transparent way. Here we can only sketch some basic
ideas of our approach; for all details we refer to [34, Sect. 8].

Key questions are the (non)uniqueness and the regularity of the solutions
of (10). For the latter point, it does not suffice to study only the differential
equation J2 ⊂ J2(R,R) corresponding to (10), but one must also analyse its
prolongations J� ⊂ J�(R,R) for all � > 2 which are obtained by differentiating
the given equation (10). We set F2(x, u(2)) = g(x)u′′ − f(x, u, u′) and write for
any order � > 2

F�(x, u(�)) = g(x)u� +
[
(� − 2)g′(x) − fu′(x, u(1))

]
u�−1 − h�(x, u(�−2))

where the contributions of the lower-order terms can be recursively computed
as h3(x, u(1)) = C

(1)
t f(x, u(1)) and for � > 3 as

h�(x, u(�−2)) = C�−2
t

(
h�−1(x, u(�−3)) − [

(� − 3)g′(x) − fu′(x, u(1))
]
u�−2

)
.

Then the equation J� is the zero set of F2, . . . , F�. If we apply the above idea of
projecting the Vessiot distribution to one order less, then J2 yields the vector
field Y (1) = g(x)∂x + g(x)u′∂u + f(x, u(1))∂u′ on J1(R,R) and for any � ≥ 2 we
get from J�+1 the vector field

Y (�) = g(x)C(�)
t +

(
h�−1(x, u(�−3)) − [

(� − 1)g′(x) − fu′(x, u(1))
]
u�

)
C(�)

v (11)

defined on the three-dimensional submanifold J� ⊂ J�(R,R).
Our initial data define a point ρ1 = (y, c0, c1) ∈ J1(R,R). It turns out

that for the analysis of our initial value problem at each relevant prolongation
order � there exists a unique irregular singularity ρ� ∈ J� above ρ1, i. e. with
π�

1(ρ�) = ρ1. We will find that the existence, (non)uniqueness and regularity of
solutions depend solely on two values: δ = g′(y) and γ = fu′(ρ1). Because of our
assumption that y is a simple zero, δ cannot vanish. Our initial value problem
has a resonance at order q ∈ N, if qδ = γ. If this is the case, we consider the
resonance parameter Aq = hq+2(ρq) and speak of a smooth resonance for Aq = 0
and of a critical resonance otherwise.

Our approach consists of analyzing the phase portraits of the vector
fields Y (�) around their stationary points ρ�. This requires in particular to
determine the eigenvalues of the Jacobians Jac (Y (�))(ρ�). This is fairly simple
except that we face again the problem that (11) is written in all jet variables
up to order �, although Y (�) lives only on a three-dimensional manifold. Fortu-
nately, it can be overcome with a little trick and one obtains as eigenvalues δ, 0
and γ − (�−1)δ. If δ and γ have different signs, then we find at any prolongation
order one negative, one zero and one positive eigenvalue and thus qualitatively
the same phase portrait. If δ and γ have the same sign, then at a certain prolon-
gation order the phase portrait changes qualitatively, as one eigenvalue changes
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its sign. In the case of a resonance, one finds at a certain prolongation order
a double eigenvalue. It depends on the vanishing of the resonance parameter
whether or not the Jacobian is diagonalisable. A deeper study of the invariant
manifolds of the stationary point leads to the following result.

Theorem 23. If there is no resonance, then three cases arise:

δγ < 0: The initial value problem (10) possesses a unique smooth two-sided
solution and no additional one-sided solutions.

δγ > 0: The initial value problem (10) possesses a one-parameter family of
two-sided solutions and no additional one-sided solutions. One member of the
family is smooth, all others are in Ck \ Ck+1 with k = �γ/δ�.

γ = 0: The initial value problem (10) possesses a unique smooth two-sided solu-
tion and possibly further additional one-sided solutions.

If there is a resonance at order k > 0, then the initial value problem (10) pos-
sesses a one-parameter family of two-sided solutions and no additional one-sided
solutions. If the resonance is smooth, all solutions are smooth. For a critical res-
onance, all solutions are in Ck \ Ck+1.

As demonstrated by an explicit example in [34], there are many possibilities
in the case γ = 0: there could be no one-sided solutions at all or there could
be infinitely many which either come from both sides or only from one side.
The exact behaviour depends on further values besides δ and γ and no complete
classification is known. The situation becomes much more complicated, if one
drops the assumption that y is a simple zero. In this case δ = 0 and if in
addition γ = 0, then the Jacobian has a triple eigenvalue 0. The analysis of such
a stationary point is rather difficult, as it requires a blow-up in three dimensions.
For the subsequent blow-down, one must understand the global dynamics of
a two-dimensional dynamical system which can be very complicated.

8 Analysis of Algebraic Singularities

Singularities of varieties have been extensively studied in algebraic geometry,
but not much is known about their effect on differential equations. As algebraic
differential equations are locally Zariski closed sets, we cannot avoid dealing with
them. In the complex case, their detection is straightforward using the Jacobian
criterion (over the real numbers the situation is somewhat different, as at a sin-
gularity the variety may still be locally a manifold). Thus the main point is to
analyse the local solution behaviour in their neighbourhood. Ritt provides sev-
eral examples of algebraic differential equations with singular integrals where the
singular integrals consist entirely of algebraic singularities (see e. g. [29, II.§19]).
However, he does not comment on this fact.

We will not develop a general theory for handling algebraic singularities, but
we will indicate with two concrete examples some phenomena that can show up.
We will use a rather ad hoc approach which probably can be extended to more
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general situations, but we refrain here from any formalities. In the first example,
we study the local solution behaviour near an isolated algebraic singularity using
the Vessiot spaces of neighbouring points.

Example 24. Let J1 be the two-dimensional cone in the three-dimensional jet
bundle J1(R,R) given by (u′)2 −u2 −x2 = 0. The vertex is an isolated algebraic
singularity representing one component of a regularity decomposition while all
other points are regular and form the second component. We are interested in
how many solutions go through the vertex and their regularity.

Fig. 3. Generalized solutions going through an algebraic singularity of a real first-order
differential equation. Left: situation in J1(R,R). Right: projection to x-u plane (Color
figure online).

Consider the Vessiot spaces of the regular points. They are generated by the
vector field X = u′∂x + (x2 + u2)∂u + (x − uu′)∂u′ . By restricting to either
the lower or the upper half cone, we can express u′ by x and u and project
to the x-u plane obtaining the vector fields Y± = ±√

x2 + u2∂x + (x2 + u2)∂u

which can trivially be continued to the origin where they vanish. As they are
not differentiable there, the origin cannot be studied using the Jacobian.

By transforming to polar coordinates, i. e. by performing a blow-up of the
stationary point in the origin, one can show that the dynamical system defined
by Y possesses a unique invariant curve going through the origin and within
a sufficiently small neighbourhood of the origin all nearby trajectories look sim-
ilar to this manifold. Furthermore, on one side of the origin the invariant curve
corresponds to a trajectory going into the origin, while on the side we have an
outgoing trajectory (hence the stationary point is not really visible).

Recall that such an invariant curve corresponds to a generalized solution and
we obtain one such curve for each half cone, i. e. from each of the fields Y± (see
the red curves in Fig. 3). As the graphs of both solutions possess a horizontal
tangent at the origin, it is possible to “switch” at the singularity from one to
the other. Hence, we find that our equation possesses exactly four C1 solutions
for the initial condition u(0) = 0 and u′(0) = 0. By analyzing the prolongations
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of our equation, it is not difficult to verify that the solutions that stay inside of
one half cone are even smooth, whereas the “switching” solutions are only C1, as
their second derivative jumps from 1 to −1 or vice versa at x = 0. Figure 3 also
shows in white the Vessiot cone at the algebraic singularity which consists of two
intersecting lines. One sees that they are indeed the tangents to the prolonged
solutions through the singularity.

In Algorithm 1, we perform a prime decomposition so that we always work
with (subsets of) irreducible varieties. One reason for this in practise rather
expensive step is to avoid the algebraic singularities automatically given by the
intersection of different irreducible components in the case of a reducible variety.
We prefer to deal with such points only in a later stage after we have already
analyzed each irreducible component separately. Given an algebraic differential
equation Jq which is reducible in this sense, an obvious interesting question is
whether solutions exist which “switch” from one component to another and if
yes, what is their regularity?

Example 25. We consider over the real numbers the scalar first-order ordinary
differential equation J1 given by (u′ −c)

(
(u′)2 +u2 +x2 −1

)
= 0 with a constant

c ∈ [−1, 1]. As we have written the equation in factored form, one immediately
recognizes that J1 is simply the unit sphere J1,1 in the jet bundle J1(R,R)
united with a horizontal plane J1,2 at height c (see Fig. 4). For |c| �= 1, the
intersection is a circle C, otherwise simply a point.

Fig. 4. First-order differential equation with two irreducible components. Left: gener-
alized solutions in J1(R,R). Right: solution graphs in x-u plane (Color figure online).

The differential equation J1,2 : u′ = c is of course trivial to analyse: as it
is explicit, all points on the corresponding plane are regular and all generalized
solutions are straight lines. The differential equation J1,1 : (u′)2+u2+x2 = 1 has
already been studied at many places (see e. g. [32, Ex. 9.1.12] or [35, Ex. 10]) and
its singularities form the equator. A point ρ = (x̄, ū, p̄) lies on the intersection
and thus is an algebraic singularity of J1, if p̄ = c and ū2 + x̄2 = 1 − c2.
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Consider first the case c �= 0. Then ρ is for each component J1,i a regular
point and we have on each component a unique generalized solution curve γi

through ρ. Without loss of generality, assume γi(0) = ρ. We may form a further
generalized solution like γ(t) = γ1(t) for t ≤ 0 and γ(t) = γ2(t) for t ≥ 0 (and
yet another by swapping the indices 1 and 2). While this curve γ is trivially
continuous at 0, it is in general not differentiable there, as the tangent vectors
γ′
1(0) and γ′

2(0) disagree. However, the corresponding geometric solution, i. e. the
projection of im γ to the x-u plane, is the graph of an everywhere differentiable
function u = f(x) with f ′(x) = p̄. This can be seen on the right hand side of
Fig. 4. The green and the red curve represent geometric solutions of J1,1; the
black lines the corresponding ones of J1,2. One can see that the latter ones are
exactly the tangents of the former one and hence connecting “half” a curve with
“half” a line yields still the graph of a function which is at least C1.

The tangent vectors γ′
1(0) and γ′

2(0) generate the Vessiot spaces Vρ[J1,1] and
Vρ[J1,2]. As their slopes correspond to the second derivatives of the solutions
leading to the curves γ1 and γ2, our “composed” solutions can be C2, if and
only if these Vessiot spaces coincide. A simple computation shows that Vρ[J1,1]
is generated by the vector p̄(∂x + p̄∂u) − (x̄ + ūp̄)∂p while Vρ[J1,2] is spanned by
∂x + c∂u. It is straightforward to show that the Vessiot spaces coincide only at
two special points ρ± on the intersection C, namely at

ρ± =
(

∓c

√
1 − c2

1 + c2
,±

√
1 − c2

1 + c2
, c

)
.

In Fig. 4 this corresponds to the red curve, as one can see on the right hand side
that the intersection of the red and the black graph happens at an inclination
point of the red graph. By analyzing the next prolongation, one can show that
even for these two special points the “composed” solutions are only C2. We con-
clude that our differential equation J1 possesses four solutions through any point
ρ ∈ C. Two of them are smooth (the ones corresponding to γ1 and γ2), the two
“composed” ones are only C1 respectively C2, if ρ is one of the points ρ±.

In the case c = 0, the intersection C is the equator and thus the singular
locus of J1,1. Here we have an example where the classification of a point lying
on several irreducible components differs for the different components. J1,1 has
two irregular singularities, namely the points (0,±1, 0), and both are a folded
focus. This means that no generalized solution of J1,1 approaches them with
a well-defined tangent and this would be necessary for going through them.
Thus through each of these two points there exists only one generalized solution
of J1, namely the one of J1,2. Any other point ρ ∈ C is a regular singularity
of J1,1. Thus on J1,1 there are only two one-sided solutions starting or ending
at ρ. However, we can combine each of them with “half” a solution of J1,2 as
discussed for c �= 0 to generate two additional C1 solutions so that J1 has three
solutions through ρ one of which is smooth. As at all regular singularities the
Vessiot space is vertical, we do not find any special points where the “composed”
solutions possess a higher regularity than C1.
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9 Conclusions

We presented a mixture of geometric and algebraic techniques for studying sin-
gularities of differential equations. For the basic concepts, we followed essentially
the differential topological approach to geometric singularities and extended it
also to differential equations which are not of finite type. We augmented this
approach by algebraic ideas to extend its range of applicability, as many differ-
ential equations in applications do not lead to manifolds, but only to varieties.
This implies that we must furthermore deal with algebraic singularities.

In the first half of this article, we concentrated on the algorithmic detection
of singularities. We used the differential Thomas decomposition from differen-
tial algebra to obtain simple differential systems from which we can extract in
a well-defined manner an algebraic differential equation to which the geometric
theory can be applied. The actual detection of the singularities is then performed
with an algebraic Thomas decomposition. Although there is still a gap in the
theory for differential equations which are not of finite type, as it is not clear
whether there might appear further types of singularities, it is remarkable that
the classification can be performed completely algorithmically.

This is possible only, because we searched for singularities at a prescribed
order. For lack of space, we did not discuss here the question how singularities
at different prolongation orders are related. It is easy to see that if we prolong,
then every point on the prolonged equation lying over a singularity of the original
equation must be again a singularity. Furthermore, there can never be a point
over a regular singularity. For the existence of (formal) power series solutions,
it is therefore necessary that we can construct an infinite tower of irregular
singularities lying above each other. An example due to Lange-Hegermann [20,
Ex. 2.93] (see also the discussion in [35, Ex. 16]) shows that generally it is not
possible to decide the existence of such an infinite tower at any finite order.

It should have become apparent that for the study of singularities it makes
a great difference whether we work over the real or the complex numbers. The
detection of singularities over the complex numbers is simpler, as they form
an algebraically closed field which is algorithmically a great advantage. Any
analysis of singularities was performed in this work over the real numbers, as it
was based on techniques from dynamical systems theory. One should note that
also the questions studied differ considerably in dependence of the base field. The
regularity of solutions or the difference between one- and two-sided solutions is
an issue only over the real numbers. Over the complex numbers, there exists
already an extensive theory of singularities of linear differential equations going
back at least to Fuchs and Frobenius which is nowadays often considered as
a part of differential Galois theory. Here the determination of monodromy or the
Stokes phenomenon are of great importance and have noreal counterpart.
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Abstract. Let C be a plane curve given by an equation f(x, y) = 0
with f ∈ K[x][y] a monic irreducible polynomial. We study the prob-
lem of computing an integral basis of the algebraic function field K(C)
and give new complexity bounds for three known algorithms dealing
with this problem. For each algorithm, we study its subroutines and,
when it is possible, we modify or replace them so as to take advantage
of faster primitives. Then, we combine complexity results to derive an
overall complexity estimate for each algorithm. In particular, we modify
an algorithm due to Böhm et al. and achieve a quasi-optimal runtime.

Keywords: Puiseux series · Linear algebra · Polynomial matrices

1 Introduction

When handling algebraic function fields, it is often helpful –if not necessary– to
know an integral basis. Computing such bases has a wide range of applications
from symbolic integration to algorithmic number theory and applied algebraic
geometry. It is the function field analogue of a well-known and difficult problem:
computing rings of integers in number fields. As often, the function field version
is easier: the algorithm of Zassenhaus [25] described for number fields in the
late 60’s can indeed be turned into a polynomial-time algorithm for function
fields which was later precisely described by Trager [23].

However, there are very few complexity results going further than just stating
a polynomial runtime. Consequently, most of the existing algorithms in the lit-
erature are compared based on their runtimes on a few examples and this yields
no consensus on which algorithm to use given an instance of the problem. In this
paper, we provide complexity bounds for three of the best-known algorithms to
compute integral bases and provide complexity bounds based on state-of-the art
results for the underlying primitives.

In this paper, we focus on the case of plane curves given by equations of
the form f(x, y) = 0 with f ∈ K[x, y] irreducible. Without loss of generality,
we also assume that f is monic in y. We set the notation n = degy f and
dx = degx f . The associated function field is K(C) = Frac (K(x)[y]/f(x, y)). It
is an algebraic extension of degree n of K(x). An element h(x, y) of K(C) is
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integral (over K[x]) if there exists a monic bivariate polynomial P (x, y) such
that P (x, h(x, y)) equals 0 in K(C). The set of such elements forms a free K[x]-
module of rank n and a basis of this module is called an integral basis of K(C).

The irreducibility of f is required to make sure that the function field K(C)
is indeed a field and not a product of fields. If this hypothesis fails it will be
detected during the factorization process in Algorithm 3 and integral bases for
each factor will be computed, while Algorithm 1 will return a basis for the
integral closure of K[x] in K(x)[y]/〈f〉 (see the beginning of [12, Section 6]).
However, these algorithms will both fail if f is not squarefree because it means
that Disc(f) = Resy

(
f, ∂f

∂y

)
= 0.

Computing integral bases of algebraic function fields has applications in sym-
bolic integration [23] but more generally an integral basis can be useful to handle
function fields. For instance, the algorithm of van Hoeij and Novocin [13] uses
such a basis to “reduce” the equation of function fields and thus makes them
easier to handle. The algorithm of Hess [11] to compute Riemann-Roch spaces
is based on the assumption that integral closures have been precomputed. This
assumption is sufficient to establish a polynomial runtime, but a more precise
complexity estimate for Hess’ approach requires to assess the cost of computing
integral closures as well.

Our Contribution. We provide complexity estimates for three algorithms dedi-
cated to computing integral bases of algebraic function fields in characteristic 0
or greater than n. This assumption serves two purposes: it ensures the existence
of Puiseux expansions used in Algorithms 1 and 3 and is also used in technical
hypothesis in Algorithm 2 to compute the radical of an ideal. To the best of our
knowledge, no previous bounds were given for these algorithms. Another app-
roach which has received a lot of attention is the use of Montes’ algorithm. We
do not tackle this approach in the present paper, a complexity estimate has been
given by Bauch in [2, Lemma 3.10] in the case of number fields. Using the Montes
algorithm, a local integral basis of a Dedeking domain A at a prime ideal p is
computed in O

(
n1+εδ log q + n1+εδ2+ε + n2+εδ1+ε

)
p-small operations, with δ

the p-valuation of Disc(f), q the cardinal of A/p and ε any positive real number.
Our contribution is actually not limited to a complexity analysis: the algo-

rithms that we present have been modified so that we could establish better
complexity results. We also discuss possible improvements to van Hoeij’s algo-
rithm in a particular case which is not uncommon in the literature. Our main
complexity results are Theorems 1, 2 and 3. Note that we count field operations
and do not take into account the coefficient growth in case of infinite fields nor
the field extensions incurred by the use of Puiseux series. We also made the
choice not to delve into probabilistic aspects: all the algorithms presented here
are “at worst” Las Vegas due to the use of Poteaux and Weimann’s algorithm,
see for instance [21, Remark 3].

We decided to give worst-case bounds and to only involve n and Disc(f) in
our theorems so as to give ready-to-use results. Our proofs, however, are meant
to allow the interested reader to derive sharper bounds involving more precise
parameters such as the regularity and ramification indices of Puiseux series.
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We summarize these complexity estimates in Table 1 in a simpler context:
we ignore the cost of factorizations and bound both n and dx = degx f by D.
In this case, the input size is in O(D2) and output size in O(D4). The constant
2 ≤ ω ≤ 3 refers to a feasible exponent for matrix multiplication, see [18] for the
smallest value currently known. Translating the above bound, the complexity of
the Montes approach is at best in Õ(D5) but only for computing a local integral
basis at one singularity, while the algorithm detailed in Sect. 4 computes a global
integral basis for a quasi-optimal arithmetic complexity (i.e. in Õ(D4)).

Although we hope that this will change in a near future, our contribution
remains of purely theoretical nature because we crucially rely on primitives
(fast computation of Popov and Hermite forms, Puiseux series and factoriza-
tion over K[[x]][y]) which have not been implemented yet. This is the reason
why we do not provide timings in the present paper and redirect to [4, Section 8]
for runtime comparisons of state-of-the-art implementations.

Organization of the Paper. We sequentially analyze the three algorithms: Sect. 2
is dedicated to van Hoeij’s algorithm [12], Sect. 3 to Trager’s algorithm [23] and
Sect. 4 to an algorithm by Böhm et al. introduced in [4]. In each section, we first
give an overview of the corresponding algorithm and insist on the parts where
we perform some modifications. The algorithms we describe are variations of the
original algorithms so we give no detailed proof of exactness and refer to the
original papers in which they were introduced. Then, we establish complexity
bounds for each algorithm by putting together results from various fields of
computer algebra. We were especially careful about how to handle linear algebra,
Puiseux series and factorization over K [[x]] [y].

Table 1. Simplified complexity estimates for computing integral bases.

Algorithm Worst-case complexity

Trager’s algorithm [23] ˜O(D7)

Van Hoeij’s algorithm [12] ˜O(Dω+4)

Böhm et al.’s algorithm [4] ˜O(D4)

2 Van Hoeij’s Algorithm

2.1 Puiseux Series

We recall some basic concepts about Puiseux series and refer to [24] for more
details. Assuming that the characteristic of K is either 0 or > n, the Puiseux
theorem states that f ∈ K[x][y] has n roots in the field of Puiseux series⋃

e≥1 K
(
(x1/e)

)
.

Following Duval [10], we group these roots into irreducible factors of f . First,
one can write f =

∏r
i=1 fi with each fi irreducible in K[[x]][y]. Then, for
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1 ≤ i ≤ r we write fi =
∏ϕi

j=1 fij , where each fij is irreducible in K[[x]][y].
Finally, for any (i, j) ∈ {1, . . . , r} × {1, . . . , ϕi} we write

fij =
ei−1∏
k=0

(
y − Sij(x1/eiζk

ei
)
)

,

where Sij ∈ K ((x)) and ζei
is a primitive ei-th root of unity.

Definition 1. The n fractional Laurent series Sijk(x) = Sij(x1/eiζk
ei

) are called
the classical Puiseux series of f above 0. The integer ei is called the ramification
index of Sijk.

Proposition 1. For a fixed i, the fij’s all have coefficients in Ki, a degree ϕi

extension of K and they are conjugated by the associated Galois action. We have∑r
i=1 eiϕi = n.

Definition 2. [21, Definition 2] A system of rational Puiseux expansions over
K (K-RPE) of f above 0 is a set {Ri}1≤i≤r such that

• Ri(T ) = (Xi(T ), Yi(T )) ∈ Ki((T ))2,
• Ri(T ) = (γiT

ei ,
∑∞

j=ni
βijT

j), where ni ∈ Z, γi �= 0 and βini
�= 0,

• fi(Xi(T ), Yi(T )) = 0,
• the integer ei is minimal.

In the above setting, we say that Ri is centered at (Xi(0), Yi(0)). We may
have Yi(0) = ∞ if ni < 0 but this cannot happen if f is monic.

Definition 3. [21, Definition 3] The regularity index of a Puiseux series S of f
with ramification index e is the smallest N ≥ min(0, evx(S)) such that no other
Puiseux series S′ have the same truncation up to exponent N/e. The truncation
of S up to its regularity index is called the singular part of S.

It can be shown that two Puiseux series associated to the same RPE share the
same regularity index so we can extend this notion (and the notion of singular
part) to RPE’s.

2.2 Description of van Hoeij’s Algorithm

We will be looking for an integral basis of the form pi(x, y)/di(x), where the pi

are degree i monic polynomials in y. It is known that the irreducible factors of
the denominators di are among the irreducible factors of the discriminant with
multiplicity at least 2. We can treat these factors one by one by first looking
for local integral bases at each of these factors, i.e. bases whose denominators
can only be powers of such an irreducible factor. A global integral basis is then
recovered from these local bases by CRT.

To compute a local integral basis at a fixed factor φ, van Hoeij [12] follows the
following strategy. Start from (1, y, . . . , yn−1) and update it so that it generates
a larger module, until this module is integrally closed. This basis is modified
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by multiplying it by an appropriate triangular matrix in the following way. Let
us fix a d, then bd must be a linear combination of the b0, . . ., bd−1 such that
(ybd−1 +

∑d−1
i=0 aibi)/φj is integral with j as large as possible.

To this end, the coefficients of the linear combination are first set to be
variables and we write equations enforcing the fact that the linear combination
divided by φ has to be integral. If a solution of this system is found, the value
of bd is updated and we repeat the process so as to divide by the largest possible
power of φ. Note that a solution is necessarily unique, otherwise the difference
of two solutions would be an integral element with numerator of degree d − 1,
which means that the j computed in the previous step was not maximal. When
there is no solution, we have reached the maximal exponent and move on to
computing bd+1.

For the sake of completeness, we give a description of van Hoeij’s algorithm
but we refer to van Hoeij’s original paper [12] for a proof that this algorithm
is correct. This algorithm is originally described for fields of characteristic 0
but also works in the case of positive characteristic provided that we avoid
wild ramification (see [12, Section 6.2.]). To deal with this issue, we make the
assumption that we are either considering characteristic zero or greater than n.

2.3 Complexity Analysis

In this section, we prove the following theorem.

Theorem 1. Let f(x, y) be a degree n monic irreducible polynomial in y. Algo-
rithm 1 returns an integral basis for the corresponding function field and costs
the factorization of Disc(f) and Õ(nω+2 deg Disc(f)) field operations, where
2 ≤ ω ≤ 3 is a feasible exponent for linear algebra.

Proof. First, we need to compute the discriminant and recover its square factors,
which costs a factorization of a univariate polynomial of degree ≤ ndx.

Then, we need to compute the Puiseux expansions ηi of f at one root of each
factor in Sfac, up to precision N = maxi

∑
i�=j v(ηi − ηj). Using the algorithm

of Poteaux and Weimann [21], the Puiseux expansions are computed up to pre-
cision N in Õ(n(δ + N)) field operations, where δ stands for the valuation of
Disc(f). Indeed, these expansions are computed throughout their factorization
algorithm, which runs in Õ(n(δ + N)) field operations as stated in [21, Theo-
rem 3]. Therefore, in theory, we will see that computing the Puiseux expansions
has a negligible cost compared to other parts of the algorithm since N ≤ n2.

Another problem coming from the use of Puiseux expansions is that we have
to evaluate bivariate polynomials (the bi’s) at the Puiseux expansions of f .
However this matter can be dealt with by keeping them in memory and updating
them along the computations. This way, for a fixed d we first initialize bd =
ybd−1 so we just have to perform a product of Puiseux expansions at precision
O(n2) and then each time bd is updated it will amount to performing a linear
combination of Puiseux expansions. Since we fix precision at N ≤ n2, taking into
account the denominator in the exponents of the Puiseux series this amounts to
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Input : A monic irreducible polynomial f(y) over K[x]
Output : An integral basis for K[x, y]/〈f〉
n ← degy f ;

Sfac ← set of factors P such that P 2|Disc(f);
for φ in Sfac do

Compute α a root of φ (possibly in an extension);
Compute ηi the singular parts of the n Puiseux expansions of f at α ;
N ← maxi

∑

i�=j v(ηi − ηj);

Extend the precision of the ηi’s up to N ;
b0 ← 1;
for d ← 1 to n − 1 do

bd ← ybd−1;
solutionfound ← true;
Let a0, . . . ad−1 be variables;

a ← (bd +
∑d−1

i=0 aibi)/(x − α);
while solutionfound do

Write the equations, i.e. the coefficients of a(x, ηi(x)) with negative
power of (x − α) for any i;
Solve this linear system in the ai’s;
if no solution then

solutionfound ← false;
end
else

There is a unique solution (ai) in K(α)d;
Substitute α by x in each ai;

bd ← (bd +
∑d−1

i=0 aibi)/φ;

end

end

end

end
From all the local bases perform CRT to deduce B an integral basis;
return B ;

Algorithm 1: Van Hoeij’s algorithm [12]

handling polynomials of degrees ≤ n3. Thus, in our case, arithmetic operations
on Puiseux series can be performed in Õ(n3) field operations.

The main task in this algorithm is to solve a linear system of c equations
in d variables over the extension K(α), where c is the total number of terms of
degrees < 1 in the n Puiseux expansions. In the worst case, each Puiseux series
has n terms of degree < 1 and so c can be bounded above by n2. More precisely,
we can bound it by ne, where e is the maximum of the ramification indices of
the classical Puiseux expansions of f .

In most cases, this system will be rectangular of size c × d so we solve it in
time Õ(cdω−1) using [6, Theorem 8.6]. This step is actually the bottleneck for
each iteration and using the bounds on d and c it runs in Õ(nω+1 deg φ) field
operations, since the extension K(α) of K has degree ≤ deg φ.
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This process is iterated over the irreducible factors of the discriminant
appearing with multiplicity at least 2, and for φ such a factor we have to solve
at most n + M(φ)/2 systems, where M(φ) is the multiplicity of φ in Disc(f).
Indeed, each time a solution to a system is found the discriminant is divided
by φ2 so that cannot happen more than M(φ)/2 times, but since we need to
make sure that we have no solution before incrementing d we will have to han-
dle n additional systems. Thus, for a fixed factor φ the cost of solving the systems
is bounded by O(n · nω+1 deg φ + nω+1 deg φM(φ)). Thus, the complexity is in
Õ

(∑
φ∈Sfac

nω+1M(φ) deg φ + nω+2
∑

φ∈Sfac
deg φ

)
.

Remark 1. If the base field is a finite field Fq, factoring the discriminant is done
in Õ((ndx)1.5 log q + ndx(log q)2) bit operations [16].

Remark 2. The above formula shows how the size of the input is unsufficient
to give an accurate estimate of the runtime of van Hoeij’s algorithm. Indeed,
in the best possible case #Sfac, deg φ and M(φ) might be constant, and all
the cφ,i’s might be equal to d, leading to an overall complexity in O(nω+2). In
the worst possible case however, the sum

∑
φ∈Sfac

deg φ is equal to the degree

of the discriminant, leading to an overall complexity in Õ(nω+2 deg Disc(f)).

2.4 An Improvement in the Case of Low-Degree Singularities

Instead of incrementally computing the bi’s, it is possible to compute one bk by
solving the exact same systems, except that this time the previous bi’s may not
have been computed (and are thus set to their initial values yi). The apparent
drawback of this strategy is that it computes bk without exploiting previous
knowledge of smaller bi’s and therefore leads to solving more systems. More pre-
cisely, if we already know bk−1 then we have to solve ek − ek−1 + 1 systems
otherwise we may have to solve up to ek +1 systems. Using the complexity anal-
ysis above, we can bound the complexity of finding a given bk without knowing
any other bi by Õ(n2kω−1(ek + 1) deg φ).

However, we know that for a fixed φ, the bi’s can be taken of the form
pi(x, y)/φei where the exponents ei’s are non-decreasing and bounded by M(φ).
Therefore, when M(φ) is small enough compared to n, it makes sense to pick a
number k and compute bk. If bk = yk then we know that bi = yi for any i smaller
than k. If bk = pk(x, y)/φM(φ) then we know that we can take bi = yi−kbk for i
greater than k. In most cases neither of this will happen but then we can repeat
the process recursively and pick one number between 1 and k − 1 and another
one between k + 1 and n and repeat.

In the extreme case where we treat M(φ) as a constant (but deg φ is still
allowed to be as large as deg Disc(f)/2) this approach saves a factor Õ(n) com-
pared to the iterative approach computing the bi’s one after another. This is
summarized by the following proposition.

Proposition 2. Let f(x, y) be a degree n monic irreducible polynomial in y
such that irreducible factors of Disc(f) only appear with exponent bounded by an
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absolute constant. The above modification of van Hoeij’s algorithm returns an
integral basis for the corresponding function field and costs a univariate factor-
ization of degree ≤ ndx and Õ(nω+1 deg Disc(f)) field operations, where ω is a
feasible exponent for linear algebra.

Proof. Let us first assume that M(φ) = 1, then the problem is just to find the
smallest k such that ek = 1. Since the ei’s are non-decreasing, we can use binary
search and find this k after computing O(log n) basis elements bi’s, for a total
cost in Õ(nω+1 deg φ) and we indeed gain a quasi-linear factor compared to the
previous approach. As long as M(φ) is constant, a naive way to get the same
result is to repeat binary searches to find the smallest k such that ek = 1, then
the smallest k such that ek = 2 and so on.

Remark 3. Such extreme cases are not uncommon among the examples pre-
sented in the literature and we believe that beyond this extreme, there will be a
trade-off between this strategy and the classical one for non-constant but small
multiplicities. We do not investigate this trade-off further because finding proper
turning points should be addressed in practice as it depends both on theory and
implementation.

3 Trager’s Algorithm

3.1 A Description of Trager’s Algorithm

We first need to introduce the notion of discriminant of a module as this will
give us a measure of the “size” of K[x]-modules as well as a stopping criterion
in the following algorithm.

Consider n elements v1, . . . , vn in K(x)[y], since this is a degree n separable
extension of K(x), we can define n distinct embeddings σi into an algebraic
closure. The matrix (σi(vj)i,j) is called the conjugate matrix of (v1, . . . , vn).

Definition 4. The discriminant of (v1, . . . , vn) is the square of the determinant
of the conjugate matrix of (v1, . . . , vn).

Definition 5. Let V be a K[x]-module of rank n and (v1, . . . , vn) a K[x]-basis
for V . The discriminant of V , denoted by Disc(V ), is the ideal generated by the
discriminant of (v1, . . . , vn) defined above.

Computing an integral basis amounts to computing the integral closure of
the K[x]-module generated by the powers of y. Trager’s algorithm [23] com-
putes such an integral closure iteratively using the following integrality crite-
rion to decide when to stop. Note that there exists many similar algorithms
like Round 2 and Round 4 using various criteria for integrality. A more precise
account on these algorithms and their history is given in the final paragraphs
of [9, Section 2.7].
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Proposition 3. [23, Theorem 1] Let R be a principal domain (K[X] in our
case) and V a domain that is a finite integral extension of R. Then V is integrally
closed if and only if the idealizer of every prime ideal containing the discriminant
equals V .

Proof. See [23].

More precisely, Trager’s algorithm uses the following corollary to the above
proposition:

Proposition 4. [23, Corollary 2] The module V is integrally closed if and only
if the idealizer of the radical of the discriminant equals V .

Starting from any basis of integral elements generating a module V the idea
is to compute V̂ the idealizer of the radical of the product of all such ideals
in V . Either V̂ is equal to V and we have found an integral basis, or V̂ is strictly
larger and we can repeat the operation. We therefore build a chain of modules
whose length has to be finite. Indeed, the discriminant of each Vi has to be a
strict divisor of that of Vi−1.

Input : A degree n monic irreducible polynomial f(y) over K[x]
Output : An integral basis for K[x, y]/〈f〉
D ← Disc(f);
B ← (1, y, . . . , yn−1);
while true do

Set V the K[x]-module generated by B;
Q ← ∏

Pi, where P 2
i |D;

If Q is a unit then return B;
Compute JQ(V ) the Q-trace radical of V ;

Compute V̂ the idealizer of JQ(V );

Compute M the change of basis matrix from V̂ to V ;
Compute det M , if it is a unit then return V ;
Update B by applying the change of basis;
D ← D/(det M)2;

V ← V̂ ;

end

Algorithm 2: A bird’s eye view of Trager’s algorithm [23]

Computing the Radical. Following Trager, we avoid computing the radical of
the ideal generated by Disc(f) directly. First, we note that this radical is the
intersection of the radical of the prime ideals generated by the irreducible factors
of Disc(f). Let P be such a factor, we then use the fact that in characteristic zero
or greater than n, the radical of 〈P 〉 is exactly the so-called P -trace radical of V
(see [23]) i.e. the set JP (V ) = {u ∈ V |∀w ∈ V, P |tr(uw)}, where the trace tr(w)
is the sum of the conjugates of a w ∈ K(x)[y] viewed as a degree n algebraic
extension of K(x).
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The reason we consider this set is that it is much easier to compute than
the radical. Note that Ford and Zassenhaus’ Round 2 algorithm is designed to
handle the case where this assumption fails but we do not consider this pos-
sibility because if it should happen it would be more suitable to use another
algorithm designed by van Hoeij for the case of small characteristic [14]. This
latter algorithm is different from the one we detailed in Sect. 2 but follows the
same principle, replacing Puiseux series by a criterion for integrality based on
the Frobenius endomorphism.

Finally, for Q =
∏

Pi we define JQ(V ), the Q-trace radical of V , to be the
intersection of all the JPi

(V ). Here, we further restricted the Pi’s to be the
irreducible factors of Disc(f) whose square still divide Disc(f). In what follows,
we summarize how JQ(V ) is computed in Trager’s algorithm. Once again, we
refer to [23] for further details and proofs.

Let M be the trace matrix of the module V , i.e. the matrix whose entries are
the (tr(wiwj))i,j , where the wi’s form a basis of V . An element u is in the Q-
trace radical if and only if Mu is in Q ·K[x]n. In Trager’s original algorithm, the
Q-trace radical is computed via a 2n×n row reduction and one n×n polynomial
matrix inversion.

We replace this step and compute a K[x]-module basis of the Q-trace radical
by using an algorithm of Neiger [20] instead. Indeed, given a basis wi of the K[x]-
module v, the Q-trace radical can be identified to the set

{
f1, . . . , fn ∈ K[x]n

∣∣∣∣ ∀1 ≤ j ≤ n,

n∑
i=1

fitr(wiwj) = 0 mod Q(x)

}
.

Using [20, Theorem 1.4] with n = m and the shift s = 0, there is a determin-
istic algorithm which returns a basis of the Q-trace radical in Popov form for a
cost of Õ(nω deg Q) field operations.

Computing the Idealizer. The idealizer of an ideal m of V is the set of u ∈ Frac(V )
such that um ⊂ m. Let Mi represent the multiplication matrix by mi with
input basis (v1, . . . , vn) and output basis (m1, . . . ,mn). We define M to be the
concatenation of such matrices, namely M = (M t

1, . . . ,M
t
n)t. Then to find the

elements
∑n

i=1 uivi in the idealizer we have to find all u = (u1, . . . , un)t ∈ K(x)n

such that Mu ∈ K[x]n
2
. Note that building these multiplication matrices has

negligible cost (in O(n2) field operations) using the technique of [22].
Following Trager, we row-reduce the matrix M and consider M̂ the top left

n × n submatrix and the elements of the idealizer are now exactly the u such
that M̂u ∈ K[x]n. Thus, the columns of M̂−1 form a basis of the idealizer.
Furthermore, the transpose of M̂−1 is the change of basis matrix from Vi to Vi+1.

3.2 Complexity Analysis

The purpose of this section is to prove the following theorem.
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Theorem 2. Consider f a degrees n monic irreducible polynomial in K[x][y],
then Algorithm 2 returns an integral basis for the cost of factoring Disc(f) and
Õ(n5 deg Disc(f)) operations in K.

Proof. The dominant parts in this algorithm are the computations of radicals
and idealizers, which have been reduced to linear algebra operations on polyno-
mial matrices. First, we have already seen how to compute the Q-trace radical
JQ(V ) in Õ(nω deg Q) field operations using the algorithm presented in [20].

To compute the idealizer of JQ(V ), we row-reduce a n2 × n matrix with
entries in K[x] using naive Gaussian elimination. This costs a total of O(n4)
operations in K(x).

Then we extract the top n × n square submatrix M̂ from this row-reduced
n2 × n matrix and invert it for Õ(nω) operations in K(x). The inverse M̂−1 is
a basis of a module V̂ such that V ⊂ V̂ ⊂ V .

To translate operations in K(x) into operations in K, one can bound the
degrees of all the rational fractions encountered, however it is quite fastidious to
track degree growth while performing the operations described above. In fact,
we exploit the nature of the problem we are dealing with.

Our first task is to row-reduce a matrix M built such that a u =
∑n

i=1 ρivi

is in V̂ if and only if M(ρ1, . . . , ρn)t ∈ K[x]n. The ρi’s are rational fractions
but their denominators divide Q. Therefore, we fall back to finding solutions of
M(ũ1, . . . , ũn)t ∈ (Q(x) · K[x])n, where the ũi’s are polynomials. In this case,
it does no harm to reduce the entries of the matrix M modulo Q, however
performing Gaussian elimination will induce a degree growth that may cause us
to handle polynomials of degree up to ndeg Q instead of deg Q. With this bound,
the naive Gaussian elimination costs a total of O(n5 deg Q) operations in K.

After elimination, we retrieve a n × n matrix M̂ whose entries have degrees
bounded by ndeg Q. Inverting it will cause another degree increase by a factor
at most n. Thus, the inversion step has cost in Õ(nω+2 deg Q). Since ω ≤ 3, each
iteration of Trager’s algorithm has cost bounded by O(n5 deg Q).

Now, let us assess how many iterations are necessary. Let us assume that
we are exiting step i and have just computed Vi+1 from Vi. Let us consider P
a square factor of Disc(Vi). Let m be a prime ideal of Vi containing P . Let us
consider u ∈ Vi+1, then by definition uP ∈ m because P ∈ m and therefore
u ∈ 1

P m ⊂ 1
P Vi. Thus, Vi+1 ⊂ 1

P Vi. This means that at each step i we have
Disc(Vi+1) = Disc(Vi)/Q2

i , where Qi is the product of square factors of Disc(Vi).
Thus, the total number of iterations is at most half the multiplicity of the largest
factor of Disc(f).

More precisely, if we assume that the irreducible factors of Disc(f) are r poly-
nomials of respective degrees di and multiplicity νi, then the overall complexity
of Trager’s algorithm is in

Õ

⎛
⎝

ν∑
i=1

n5
∑

j≤r, νj≥2i

dj

⎞
⎠ ,

where ν = �max νi/2�.
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Since
∑r

i=1 νidi ≤ deg Disc(f), the above bound is in Õ(n5 deg Disc(f)),
which ranges between Õ(n6dx) and Õ(n5) depending on the input f .

Remark 4. In the above proof, our consideration of degree growth seems quite
pessimistic given that the change of basis matrix has prescribed determinant. It
would be appealing to perform all the computations modulo Q but it is unclear
to us whether the algorithm remains valid. Another possibility of improvement
would be to apply a more sophisticated technique than Gaussian elimination.
However, Trager’s algorithm manipulates n2 ×n polynomial matrices of degrees
up to deg Disc(f) so it runs in time Ω(n3 deg Disc(f)), which is no better than
the bound we give in next section.

4 Integral Bases Through Weierstrass Factorization and
Truncations of Puiseux Series

Like van Hoeij’s algorithm, this algorithm due to Böhm et al. [4] relies on com-
puting local integral bases at each “problematic” singularity and then recovering
a global integral basis. But this algorithm splits the problem further into comput-
ing a local contributions to an integral basis at each branch of each singularity.

More precisely, given a reduced Noetherian ring A we denote by A its nor-
malization i.e. the integral closure of A in its fraction field Frac(A). In order to
compute the normalization of A = K[x, y]/〈f(x, y)〉 we use the following result
to perform the task locally at each singularity.

Proposition 5. [4, Proposition 3.1] Let A be a reduced Noetherian ring with
a finite singular locus {P1, . . . , Ps}. For 1 ≤ i ≤ s, let an intermediate ring
A ⊂ A(i) ⊂ A be given such that A

(i)
Pi

= APi
. Then

∑s
i=1 A(i) = A.

Proof. See the proof of [5, Proposition 3.2].

Each of these intermediate rings is respectively called a local contribution to A

at Pi. In the case where A
(i)
Pj

= APj
for any j �= i, we say that A(i) is a minimal

local contribution to A at Pi. Here, we consider the case A = K[x, y]/〈f(x, y)〉
and will compute minimal local contributions at each singularity of f . This is
summarized in Algorithm 3.

In this section, we revisit the algorithm presented by Böhm et al. in [4] and
replace some of its subroutines in order to derive a complexity bound stated
in Theorem 3. Note that these modifications are performed solely for the sake
of complexity and rely on algorithms for which implementations may not be
available. Our new description makes this algorithm both simpler and more
efficient because Hensel lifting remains “hidden” within Poteaux and Weimann’s
factorization algorithm over K[[x]][y]. Some useful quantities are also shown to
come as byproducts of the factorization so we avoid recomputing them.

Theorem 3. Let f(x, y) be a degree n irreducible monic polynomial in y. Then
Algorithm 3 returns an integral basis of K[x, y]/〈f〉 and costs a factorization
of Disc(f) over K, at most n factorizations of degree n polynomials over an
extension of K of degree ≤ deg Disc(f) and Õ(n2 deg Disc(f)) operations in K.
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Input : A monic irreducible polynomial f(y) over K[x]
Output : An integral basis for K[x, y]/〈f〉
n ← degy f ;

Sfac ← set of factors φ such that φ2|Disc(f);
for φ in Sfac do

Compute α a root of φ (possibly in an extension);
Apply a linear transform to fall back to the case of a singularity at x = 0;
Compute the maximal integrality exponent E(f);
Using Proposition 9, factor f over K[[x]][y];
Compute the Bézout relations of Proposition 7;
Compute integral bases for each factor as in Section 4.1;
As in Section 4.2, recover the local contribution corresponding to φ;
(For this, use Proposition 7 and Proposition 11)

end
From all the local contributions, use CRT to deduce an integral basis B;
return B ;

Algorithm 3: Adaptation of the algorithm by Böhm et al. [4]

Remark 5. The factorizations incurred by the use of Poteaux and Weimann’s
algorithm are only necessary to ensure that quotient rings are actually fields,
this cost can be avoided by using the D5 principle [8] at the price of a potential
complexity overhead. However, using directed evaluation [15] yields the same
result without hurting our complexity bounds.

4.1 Computing Normalization at One Branch

Let us first address the particular case when f(x, y) is an irreducible Weier-
strass polynomial. This way, we will be able to compute integral bases for each
branches at a given singularity. The next section will then show how to glue this
information first into a local integral basis and then a global integral basis can
be computed using CRT as in van Hoeij’s algorithm. The main result of this
section is the following proposition.

Proposition 6. Let g be an irreducible Weierstrass polynomial of degree m
whose Puiseux expansions have already been computed up to sufficiently large
precision ρ. An integral basis for the normalization of K[[x]][y]/〈g〉 can be com-
puted in Õ(ρm2) operations in K.

As in van Hoeij’s algorithm, the idea is to compute for any 1 ≤ d < m a poly-
nomial pd ∈ K[x][y] and an integer ed such that pd(x, y)/xed is integral and ed

is maximal. We clarify this notion of maximality in the following definition.

Definition 6. Let P ∈ K[x][y] be a degree d monic polynomial (in y). We
say that P is d-maximal if there exists an exponent ed such that P (x, y)/xed is
integral and there is no degree d monic polynomial Q such that Q(x, y)/xed+1 is
integral.
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Remark 6. To the best of our knowledge this notion has not received a standard
name in the literature and was often referred to using only the word maximal.

Let us consider the m Puiseux expansions γi of g. Since g is irreducible, these
expansions are conjugated but let us first make a stronger assumption: there
exists a t ∈ Q such that all the terms of degree lower than t of the expansions γi

are equal and the terms of degree t are conjugate. We truncate all these series
by ignoring all terms of degree greater or equal to t. This way, all the expansions
share the same truncation γ.

Lemma 1. [4, Lemma 7.5] Using the notation and hypotheses of previous para-
graph, for any 1 ≤ d < m the polynomial pd = (y − γ)d is d-maximal.

Proof. See [4].

In a more general setting, more truncations are iteratively performed so as
to fall back in the previous case. We recall below the strategy followed in [4] for
the sake of completeness.

Initially we have g0 = g =
∏m

i=1(y−γi). We compute the smallest exponent t
such that the expansions γi are pairwise different. We truncate the expansions
to retain only the exponents smaller than t and denote these truncations γ

(1)
j .

Among these m expansions, we extract a set of r mutually distinct expansions
which we denote by ηi. Note that by local irreducibility, each of these expansions
correspond to exactly m/r identical γ

(1)
j ’s. We further denote g0 =

∏m
i=1(y−γ

(1)
i )

and g1 =
∏r

i=1(y − ηi) and u1 = m/r. We actually have g0 = gu1
1 .

We recursively repeat the operation: starting from a polynomial gj−1 =∏rj−1
i=1 (y − ηi), we look for the first exponent such that all the truncations of

the ηi are pairwise different. Truncating these expansions up to exponent strictly
smaller, we compute gj−1 =

∏mj

i=1(y − γ
(j)
i ). Once again we retain only one

expansion per set of identical truncations and we define a gj =
∏rj

i=1(y −ηi) and
uj = mj/rj .

The numerators of the integral basis that the algorithm shall return are
products of these gi’s. Loosely speaking, the gi have decreasing degrees in y
and decreasing valuations so for a fixed d the denominator pd is chosen of the
form

∏
gνi

i where the νi’s are incrementally built as follows: ν1 is the largest
integer such that degy(gν1

1 ) ≤ d and ν1 ≤ u1, then ν2 is the largest integer such
that degy(gν1

1 gν2
2 ) ≤ d and ν2 ≤ u2, and so on. This is Algorithm 6 of [4], we

refer to the proof of [4, Lemma 7.8] for exactness.
Since we assumed that we are treating a singularity at 0, the denominators

are powers of x. The proper exponents are deduced in the following way: for
each gi we keep in memory the set of expansions that appear, we denote this set
by Ngi

. Then for any γ in the set Γ of all Puiseux expansions of g we compute
σi =

∑
η∈Ngi

v(γ − η) which does not depend on the choice of γ ∈ Γ . For any j,
if pj =

∏
k gνk

k then the exponent ej of the denominator is given by �∑k νkσk�.
Detailed justifications of this are given in [4].
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Complexity Analysis. Let us now give a proof of Proposition 6. To do so, remark
that the gk’s are polynomials whose Puiseux series are precisely the trunca-
tion ηi’s of the above γ

(i)
j . Equivalently, one can say that the gk’s are the norms

of the Puiseux expansions ηi’s.
To compute them, we can appeal to Algorithm NormRPE of Poteaux and

Weimann [21, Section 4.1]. Suppose we know all the expansions involved up to
precision ρ sufficiently large. These expansions are not centered at (0,∞) because
g is monic. Therefore, the hypotheses of [21, Lemma 8] are satisfied and Algo-
rithm NormRPE compute each of the gi’s above in time Õ(ρdegy(gi)2).

Then we remark that the total number of such gi’s is in O(log m). Indeed,
at each step the number of expansions to consider is at least halved (Puiseux
expansions are grouped according to their truncations being the same, at least
two series having the same truncation). Since the degree of each gi is no greater
than m − 1, all these polynomials can be computed in Õ(m2ρ) operations in K.

Once the gi’s are known we can deduce the numerators pi’s as explained
above. Building them incrementally starting from p1 each pi is either equal to
a gj or can be expressed as one product of quantities that were already computed
(either a gj or a pk for k < i). Therefore, computing all the numerators amounts
to computing at most m products of polynomials whose degrees are bounded
by m over K[x]/〈xρ〉. Using Schönhage-Strassen’s algorithm for these products
the total cost is in Õ(ρm2) operations in K. The cost of computing denominators
is negligible so this concludes the proof.

4.2 Branch-Wise Splitting for Integral Bases

Once again, let us assume that we are treating the local contribution at the
singularity x = 0. In the setting of van Hoeij’s algorithm, this corresponds to
dealing with a single irreducible factor of the discriminant. We further divide
the problem by considering the factorization f = f0

∏r
i=1 fi, where f0 is a unit

in K[[x]][y] and the other fi’s are irreducible Weierstrass polynomials in K[[x]][y].
We can apply the results from the previous section to each fi for i > 0 in

order to compute an integral basis of K[[x]][y]/〈fi〉. In this section, we deal with
two problems: we explain how to compute the factorization of f and how to
efficiently perform an analogue of the Chinese Remainder Theorem to compute
an integral basis of K[[x]][y]/〈f1 · · · fr〉 from the integral bases at each branch.
For the sake of completeness, we recall in Sect. 4.3, how Böhm et al. take f0 into
account and deduce a minimal local contribution at any given singularity.

Proposition 7. [4, Proposition 5.9] Let f1, . . . , fr be the irreducible Weier-
strass polynomials in K[[x]][y] appearing in the factorization of f into branches.
Let us set hi =

∏
j=1,j �=i fj. Then fi and hi are coprime in K((x))[y] so

that there exist polynomials ai, bi in K[[x]][y] and positive integers ci such that
aifi + bihi = xci for any 1 ≤ i ≤ r.



On the Complexity of Computing Integral Bases of Function Fields 57

Furthermore, the normalization of K[[x]][y]/(f1 · · · fr) splits as

K[[x]][y]/〈f1 · · · fr〉 ∼=
r⊕

i=1

K[[x]][y]/〈fi〉

and the splitting is given explicitly by

(t1 mod f1, . . . , tr mod fr) �→
r∑

i=1

bihiti
xci

mod f1 · · · fr.

Proof. See [7, Theorem 1.5.20].

The following corollary is used to recover an integral basis for
K[[x]][y]/〈f1 · · · fr〉.
Proposition 8. [4, Corollary 5.10] With the same notation, let

(
1,

p
(i)
1 (x, y)

xe
(i)
1

, . . . ,
p
(i)
mi−1(x, y)

xe
(i)
mi−1

)

represent an integral basis for fi, where each p
(i)
j ∈ K[x][y] is a monic degree j

polynomial in y. For 1 ≤ i ≤ r, set

B(i) =

(
bihi

xci
,
bihip

(i)
1

xci+e
(i)
1

, . . . ,
bihip

(i)
mi−1

xci+e
(i)
mi−1

)
.

Then B(1) ∪ · · · ∪ B(r) is an integral basis for f1 · · · fr.

In [4], these results are not used straightforwardly because the authors
remarked that it was time-consuming in practice. Instead, the ci’s are computed
from the singular parts of the Puiseux expansions of f and the polynomials βi

replace the bi’s, playing a similar role but being easier to compute.
Indeed, these βi’s are computed in [4, Algorithm 8] and they are actually

products of the polynomials gi’s already computed by [4, Algorithm 7], which is
the algorithm that we detailed above to describe the computation of an integral
basis for each branch. The only new data computed in order to deduce the βi’s
are the suitable exponents of the gi’s. This is achieved through solving linear
congruence equations. This step can be fast on examples considered in practice
and we also note that the βi’s seem more convenient to handle because they are
in K[x][y] and they contain less monomials than the bi’s. However the complexity
of this problem (often denoted LCON in the literature) has been widely studied,
see for example [1,3] but, to the best of our knowledge, none of the results
obtained provide bounds that we could use here.

For the sake of complexity, we therefore suggest another way which is based
on computing the bi’s of Proposition 7. We also compute the factorization
of f into branches in a different way: instead of following the algorithms of [4,
Section 7.3 & 7.4] we make direct use of the factorization algorithm of Poteaux
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and Weimann [21] so we also invoke their complexity result [21, Theorem 3]
which is recalled below. Another advantage to this is that we will see that the
bi’s can actually be computed using a subroutine involved in the factorization
algorithm, which simplifies even further the complexity analysis.

Proposition 9. [21, Theorem 3] There exists an algorithm that computes the
irreducible factors of f in K[[x]][y] with precision N in Õ(degy(f)(δ + N))
expected operations in K plus the cost of one univariate factorization of degree
at most degy(f), where δ stands for the valuation of Disc(f).

Proof. See [21, Section 7].

Let us now get back to the first steps of Algorithm 3: we have to compute E(f)
to assess up to what precision we should compute the Puiseux series and then
compute the factorization of f , the integers ci and the polynomials bi.

In each section, we tried to keep the notation of the original papers as much
as we could which is why we introduced E(f) but the definition given in [4,
Section 4.8] is exactly the same as the N in van Hoeij’s paper [12]. This bound
can be directly computed from the singular part of the Puiseux expansions of f .
We recall its definition: E(f) = maxi

∑
i�=j v(γi − γj), where the γi’s are the

Puiseux expansions of f .
Following [4], we need to compute the factorization of f into branches up to

precision E(f)+ ci. Using Poteaux and Weimann’s factorization algorithm from
Proposition 9, we can compute the factors fi up to the desired precision.

Furthermore, using a subroutine contained within this algorithm, we can
compute the Bézout relation aifi + bihi = xci up to precision E(f) + ci. This is
detailed in [21, Section 4.2], where our ci is the lifting order κ and our fi and hi

are respectively the H and G of Poteaux and Weimann. The algorithm used to
compute the Bézout relations is due to Moroz and Schost [19].

Complexity Analysis. We analyze the cost of the computations performed in this
section and summarize them by the following proposition.

Proposition 10. Let f(x, y) be a degree n monic irreducible polynomial in y
and let δ be the x-valuation of Disc(f). Then the integers ci’s and E(f), a
factorization in branches f = f0

∏r
i=1 fi as well as the polynomials ai’s and

bi’s of Proposition 7 can be computed up to precision E(f) + ci for a univariate
factorization degree n over K and a total of Õ(n2δ) field operations.

Proof. First, the singular parts of the Puiseux series of f above 0 are computed
for Õ(nδ) field operations by [21, Theorem 1]. This allows us to compute E(f).

Then we compute the factorization in branches up to a sufficient precision
to compute the ci’s. We then extend the precision further so as to compute the
factorization and the Bézout relations aifi +bihi = xci up to precision E(f)+ci.

Invoking [19, Corollary 1], computing a single Bézout relation up to precision
E(f)+ci costs Õ(n(E(f)+ci)) field operations. Computing the factorization of f

in branches up to the same precision with Proposition 9 accounts for Õ(n(δ +
ci + E(f)) operations in K and one univariate factorisation of degree n over K.
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Using [4, Definition 4.14], we note that E(f) can also be seen as en−1, which
is bounded by the valuation δ of the discriminant because we assumed that we
were handling a singularity at x = 0. Thanks to [21, Proposition 8] we can
bound ci by the valuation of ∂f

∂y which is itself bounded by δ.
Putting these bounds together, the overall cost is one univariate factorization

of degree n over K and Õ(nδ) operations in K for the factorization step while
the n Bézout relations requires Õ(n2δ) operations in K. This concludes the proof.

4.3 Contribution of the Invertible Factor f0

To deal with this problem, we reuse the following result without modification.

Proposition 11. [4, Proposition 6.1] Let f = f0g be a factorization of f with f0
and g in K[[x]][y], f0 a unit and g a Weierstrass polynomial of y-degree m. Let(
p0 = 1, p1

xe1 , . . . , pm−1
xem−1

)
be an integral basis for K[[x]][y]/〈g〉 such that the pi’s

are degree i monic polynomials in K[x][y] and let f0 be a monic polynomial in
K[x][y] such that f0 = f0 mod xem−1 . Let us denote d0 = degy(f0).

Then (
1, y, . . . , yd0−1, f0p0,

f0p1
xe1

, . . . ,
f0pm−1

xem−1

)

is an integral basis for the normalization of K[[x]][y]/〈f〉.
Proof. See [4].

Since we handle a single singularity at 0, the previous basis is also a K[x]-
module basis of the minimal local contribution at this singularity by [4, Corol-
lary 6.4].

Complexity Analysis. This step involves a truncation of f0 modulo xem−1 and m
products of polynomials in K [[x]] [y]/〈xem−1〉 whose y-degrees are bounded by
n = degy(f). This incurs Õ(mnem−1) field operations. Since we are treating a
singularity at x = 0, we have em−1 = O(δ) with δ the valuation of Disc(f) so
that we can simplify the above bound as Õ(n2δ) field operations.

4.4 Proof of Theorem 3

In this section, we put all the previous bounds together and prove Theorem 3.

Proof. As in van Hoeij’s algorithm, we first compute Disc(f) and factor it in
order to recover its irreducible square factors. For each irreducible factor φ such
that φ2|Disc(f), we compute the corresponding minimal local contribution. For
each of them, we first perform a translation so as to handle a singularity at x = 0.
If there are several conjugated singularities we can handle them like in van
Hoeij’s algorithm, at the price of a degree deg φ extension of K which we denote
by K ′ in this proof. Also note that through this transform the multiplicity M(φ)
corresponds to the valuation δ of the discriminant.
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First, we split f into branches using Proposition 10 for a cost in Õ(n2M(φ))
operations in K ′ and one univariate factorization of degree ≤ n over K ′.

Then, at each branch fi, we apply Proposition 6 with precision ρ = E(f)+ci.
Therefore, the complexity of computing an integral basis at each branch fi is
in Õ(M(φ) degy(fi)2) operations in K ′. Since

∑
i deg fi ≤ n, computing the

integral bases at all the branches costs Õ(n2M(φ)) operations in K ′.
At the end of this step, we have integral bases Bi of the form

(
1,

p1(x, y)
xe1

, . . . ,
pmi−1(x, y)

xemi−1

)

with mi = degy fi but the pi’s are in K ′[[x]][y].
At first glance, this is a problem because Proposition 8 requires the pi’s to

be in K ′[x][y]. However, the power of x in the denominators is bounded a priori
by E := E(f) + max1≤i≤r ci so we can truncate all series beyond this exponent.
Indeed, forgetting the higher order terms amounts to subtracting each element
of the basis by a polynomial in K ′[x]. Such polynomials are obviously integral
elements so they change nothing concerning integrality.

We can thus apply Proposition 8 to get an integral basis for f1 · · · fr. This
costs O(n) operations in K ′ [[x]] [y]/〈xE , f(x, y)〉. Each such operation amounts
to nE operations in K ′. We have previously seen that E is in O(M(φ)) so the
overall cost of applying Proposition 8 is in O(n2M(φ)) operations in K ′.

After this process, the basis that we obtained must be put in “triangular
form” (i.e. each numerator pi should have degree i in y in order for us to apply
Proposition 11). To do this, we first reduce every power of y greater or equal
to n using the equation f(x, y) = 0. For a fixed i, by the Bézout relations,
hi has y-degree ≤ n − mi and bi has y-degree < mi, so we have to reduce a
total of O(n) bivariate polynomials whose degrees in y are in O(n). Using a fast
Euclidean algorithm, this amounts to Õ(n2) operations in K ′[x]/〈xE〉, hence a
cost in O(n2M(φ)) operations in K ′.

Once done, every element in the basis can be represented by a vector of
polynomials in K ′[x] whose degrees are bounded by E. To put the above integral
basis in triangular form, it suffices to compute a Hermite Normal Form of a full
rank n×n polynomial matrix. Using [17, Theorem 1.2] an algorithm by Labahn,
Neiger and Zhou performs this task in Õ(nω−1M(φ)) operations in K ′.

We can finally apply Proposition 11 and deduce the minimal local contribu-
tion for the factor φ in Õ(n2M(φ)) operations in K ′.

Overall, given a factor φ, computing the corresponding minimal local con-
tribution to the normalization of K[C] costs the factorization of Disc(f), one
univariate factorization of degree ≤ n over K and Õ(n2M(φ)) operations in K ′.
Computing all the local contributions can therefore be done for the factorization
of Disc(f), #Sfac univariate factorization of degree ≤ n over extensions of K of
degree ≤ maxφ∈Sfac

deg φ and Õ(n2 deg Disc(f)) operations in K.
In the case of conjugate singularities, we follow the idea of van Hoeij rather

than [4, Remark 7.17] and simply replace α by x in the numerators and (x −
α) by φ in the denominators because it does not harm our complexity bound.
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In this process, some coefficients of the numerators are multiplied by polynomials
in x, which clearly preserves integrality. Since the numerators are monic in y, no
simplification can occur and the basis property is also preserved.

Finally, a global integral basis for K[x, y]/〈f〉 is deduced by a Chinese remain-
der theorem. This can be achieved in quasi-linear time in the size of the local
bases. Each of them being in O(n2 deg Disc(f)), this last CRT does not increase
our complexity bound. This concludes the proof.

5 Conclusion

In the setting of Table 1, the best bound given in this paper is in Õ(D4) which
is quasi-quadratic in the input size, but quasi-linear in the output size. It is
surprising that we are able to reach optimality without even treating the local
factors fi through a divide-and-conquer approach like in [21]. This would allow
us to work at precision δ/n instead of δ most of the time, but this does not affect
the worst-case complexity of the whole algorithm. From an implementation point
of view, however, this approach will probably make a significant difference.

Note that we are still relatively far from having implementations of algo-
rithms actually reaching these complexity bounds because we lack implementa-
tions for primitives involved in computing Popov/Hermite forms, Puiseux series
and factorizations over K [[x]] [y]. In some experiments we performed, Puiseux
series were actually the most time-consuming part, which is why Trager’s algo-
rithm may remain a competitive choice despite our complexity results. We refer
to [4, Section 8] for more detailed timings and experiments.
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discussions and to Grégoire Lecerf for feedback on a preliminary version of this paper.
The author also wishes to thank the anonymous reviewers for their comments.

References

1. Arvind, V., Vijayaraghavan, T.C.: The complexity of solving linear equations over
a finite ring. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp.
472–484. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31856-
9 39

2. Bauch, J.D.: Computation of integral bases. J. Number Theory 165, 382–407
(2016)

3. de Beaudrap, N.: On the complexity of solving linear congruences and computing
nullspaces modulo a constant. arXiv preprint arXiv:1202.3949 (2012)
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Abstract. We consider linear ordinary differential equations, each of
the coefficients of which is either an algorithmically represented power
series, or a truncated power series. We discuss the question of what can be
learned from equations given in this way about its Laurent solutions, i.e.,
solutions belonging to the field of formal Laurent series. We are interested
in the information about these solutions, that is invariant with respect to
possible prolongations of the truncated series which are the coefficients
of the given equation.

Keywords: Differential equations · Truncated power series ·
Algorithmically represented infinite power series · Laurent series ·
Computer algebra systems

1 Introduction

We will consider operators and differential equations written using the operation
θ = x d

dx . In the original operator

L =
r∑

i=0

ai(x)θ i, (1)

as well as in the equation L(y) = 0, for each ai(x), i = 0, 1, . . . , r, one of two
possibilities is allowed: ai(x) can be

– an infinite series represented algorithmically: the series
∑

anxn is defined by
an algorithm computing an by n,
or

– a truncated series

ai(x) =
ti∑

j=0

aijx
j + O(xti+1), (2)
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where ti is an integer such that ti ≥ −1 (if ti = −1 then the sum in (2)
is 0). We call ti the truncation degree of the coefficient ai(x) represented in
the form (2). Note that a coefficient in (1) can be of the form O(xm), m ≥ 0.

We assume that at least one of the constant terms of a0(x), . . . , ar(x) is
nonzero.

The coefficients of series belong to a field K of characteristics 0. The following
notations are standard:

– K[x] and K[x, x−1] are the rings of polynomials and, resp., Laurent polyno-
mials with coefficients from K.

– K[[x]] is the ring of formal power series with coefficients from K.
– K((x)) is the quotient field of the ring K[[x]]; the elements of this field are

formal Laurent series with coefficients from K.

Definition 1. The degree deg f(x) of a polynomial f(x) from K[x] or K[x, x−1],
is defined as the largest degree of x belonging to f(x) (deg 0 = −∞ by con-
vention). Note that the degree of a Laurent polynomial is in some cases non-
positive, even when this polynomial is not a constant: deg(2x−2 + x−1) = −1,
deg(3x−1 + 1) = 0, etc.

The solutions we are interested in belong to the field of formal Laurent series
with the coefficients from K. We will call such solutions as Laurent. A more
exact specification for the problem of finding such solutions will be given later
in this introductory section. We will not discuss the questions of convergence of
series.

A discussion of the algorithmic aspect of problems of this kind involves con-
sidering the question of representing infinite series, in particular, the series which
play the role of the coefficients of the equation.

In [1–3], an algorithmic representation was considered. It was detected that
some problems associated with the solutions of equations given in this way turn
out to be algorithmically unsolvable, though, at the same time, the other part
is successfully solvable. For example, the problem of finding Laurent solutions is
solvable: these solutions can be represented algorithmically in the same sense as
the representation of the coefficients of the equation. (In the mentioned papers,
not only scalar equations were discussed, but also systems of equations.)

In [3,8], the authors considered the problems of constructing solutions under
the assumption that all series playing the role of the coefficients of a given
equation or system are represented in the truncated form. In [8], it was found
out which truncation of the system coefficients will be sufficient to calculate
a given number of initial terms of the series, included in the exponentially-
logarithmic solutions of the system. In [5,6], we considered this problem as the
task of constructing truncated solutions; it was shown how to construct the
maximum possible number of initial terms of the series included in the Laurent
and regular solutions of the equation.

In this paper, we admit the presence in the original equation of such coef-
ficients that are of two different kinds indicated below formula (1). We are
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interested in information on Laurent solutions that is invariant with respect
to possible prolongations of the truncated series representing the coefficients of
the equation. But everything is not so simple already with the definition of the
concept of “solution” for an equation which, in the presence of truncated coeffi-
cient, is, in fact, not completely specified. We introduce the concept “truncated
Laurent solution”.

Definition 2. Let an operator L have the form (1) and

L(y) = 0 (3)

be the equation corresponding to this operator. An expression

f(x) + O(xk+1), (4)

in which f(x) ∈ K[x−1, x] \ {0} and k is an integer greater than or equal to
deg f(x), is called a truncated Laurent solution of (3), if for any specification of
all O(xti+1) (that is, for any replacement of the symbols O(...) by concrete series
having corresponding valuation) included in the coefficients ai(x) of equation (3),
such a specification of the series O(xk+1) in (4) is possible that the specified
expression (4) becomes a Laurent solution to the specified equation. This k in (4)
is the truncation degree of the solution.

We propose an algorithm that allows for an equation L(y) = 0 represented
in the explained form and an integer k to construct all such truncated Laurent
solutions of this equation that have a truncation degree not exceeding k. If the
equation does not have such truncated Laurent solutions then the result of the
algorithm will indicate this.

The algorithm is described in Sect. 5. But first it is shown in Sect. 2 that
both checking the finiteness of the set of those k for which the formulated prob-
lem has a solution, and finding the maximum possible value of k if it exists,
are algorithmically undecidable problems. Our algorithm works with a specific
given k.

Section 6 describes the implementation of the algorithm in Maple [9].

2 The Equation Threshold

Definition 3. Let L be of the form (1). Consider the set N of all integers n such
that the equation L(y) = 0 has a truncated Laurent solution whose truncation
degree is n. Let N be nonempty and have the maximal element. We will call this
element the threshold of the equation L(y) = 0. If the set N contains arbitrarily
large integers, then we say that the threshold of the equation is ∞. If this set is
empty, then the threshold is conventionally −∞.

Remark 1. In Sect. 3 it will be, in particular, shown that if the set N considered
in the previous definition is nonempty, then the subset of its negative elements
is finite.
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For demonstrating an example, we will need the notions of the series valuation
and the prolongation of an equation.

Definition 4. For a nonzero formal Laurent series a(x) =
∑

aix
i ∈ K((x)) its

valuation is defined as val a(x) = min{i | ai �= 0}, with val 0 = ∞. A prolonga-
tion of the operator L of the form (1) is defined as an operator

L̃ =
r∑

i=0

bi(x)θ i ∈ K[[x]][θ]

such that bi(x) = ai(x) if all terms of ai(x) are known and

bi(x) − ai(x) = O(xti+1) (5)

(i.e., val (bi(x) − ai(x)) > ti) for truncated ai(x), i = 0, 1, . . . , r.

Example 1. Consider the equation

(1 + O(x))θy + a0(x)y = 0, (6)

where

a0(x) =
∞∑

j=k

a0jx
j ,

Set k = val a0(x). For k = 0, i.e., for a00 �= 0, truncated Laurent solutions exist
only when a00 is an integer. We will consider the case

k = val a0(x) ≥ 1. (7)

Here, any prolongation of equation (6) has Laurent solutions. If the leading
coefficient of this equation is 1+

∑∞
j=1 a1jx

j then each Laurent solution is of the
form

C

(
1 − a0k

k
xk +

a0ka11 − a0,k+1 + a2
01

k + 1
xk+1 + O(xk+2)

)
,

where C is an arbitrary constant.
Thus, for equations of the form (6) with val a0(x) > 0, the coefficient of xk+1

in all nonzero Laurent solutions depends on coefficients of prolongation of the
original equation (6). Consequently, the number k = val a0(x) is the threshold.

If val a0(x) = ∞, in other words, if a0(x) = 0, then all extensions of the
equation (6) will have Laurent solutions y(x) = C, and the threshold of the
equation (6) is k = val a0(x) = ∞.

Proposition 1. There exists no algorithm that, for an arbitrary equation L(y)=
0 with an operator L of the form (1), finds out whether its threshold is finite
or infinite.
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Proof. It is known that there is no algorithm that allows for an arbitrary series
represented algorithmically to check whether this series is zero — this fact fol-
lows from the fundamental results of A. Turing [10]. If there was an algorithm
that allows us to solve the problem formulated in the condition of the present
proposition, then applying it to equation (6), in which the series a0(x) is rep-
resented algorithmically, would allow us to determine whether the series a0(x)
is zero (first it is necessary to verify that the constant term of this series is
zero: see the assumption made by us when considering Example 1 (7); if this
constant term is not equal to zero, then, of course, the series is non-zero). The
impossibility of this algorithm follows.

Corollary 1. There is no algorithm that allows for an arbitrary equation L(y) =
0 with the operator L of form (1), to calculate the value (an integer or one of
the symbols ∞, −∞) of its threshold.

Proposition 2. Let L(y) = 0 be an equation with an operator L of form (1)
and k ∈ Z. It can be tested algorithmically whether k exceeds the threshold of the
equation or not; if the answer is positive then the threshold h of this equation
can be found. In addition, all such truncated Laurent solutions whose truncation
degree does not exceed h can be constructed.

Proof. We check the existence of invariant initial segments of solutions up to xk

by actually constructing these segments. The construction is considered as suc-
cessful, if the resulting coefficients for powers of x do not include unknown coef-
ficients of the prolongation of the equation (this approach was used in [5] when
considering equations with all coefficients represented by truncated series). If it
was not possible to reach xk then, first, it was established that the value of k
exceeds the threshold of the equation, and, second, it is possible to find the
threshold value and find all the invariant initial segments of the Laurent solu-
tions.

Remark 2. Thus, if the considered k is such that for a given equation L(y) = 0
with the operator L having the form (1) there does not exist truncated Laurent
solutions of truncation degree k, then this circumstance opens, in particular, the
opportunity of finding the threshold of the original equation — a quantity which
is by Corollary 1 of the Proposition 1 non-computable algorithmically, in case if
one is based only on the original equation.

3 Induced Recurrence Equations

Let σ denote the shift operator such that σcn = cn+1 for any sequence (cn). The
transformation

x → σ−1, θ → n

assigns to a differential equation
r∑

i=0

ai(x)θ iy(x) = 0, (8)
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where ai(x) ∈ K[[x]], the induced recurrent equation

u0(n)cn + u−1(n)cn−1 + · · · = 0. (9)

Equation (8) has a Laurent solution y(x) = cvxv +cv+1x
v+1+ . . . if and only

if the two-sided sequence . . . , 0, 0, cv, cv+1, . . . satisfies equation (9) (see [4]).
In our assumption, for the given operator (1), some of whose coefficients are
truncated series, at least one of the constant terms of a0(x), . . . , ar(x) is not
equal to zero. Thus,

u0(n) =
r∑

i=0

ai,0 ni (10)

is a non-zero polynomial which is independent of any prolongations of the given
operator L. It can be considered as a version of the indicial polynomial of the
given equation. The finite set of integer roots of this polynomial contains all
possible valuations v of Laurent solutions of all prolongations of the equation
L(y) = 0.

If the polynomial u0(n) has no integer roots, then no prolongation of L(y) = 0
has nonzero Laurent solutions. In this case, set the threshold of the equation
L(y) = 0 to be −∞.

Let α1 < . . . < αs be all integer roots of the polynomial u0(n). Then, the
set N from Definition 3 has no element which is less than α1. All prolongations
of the equation L(y) = 0 have Laurent solutions with valuation αs (see, e.g., [5]).
Thus, αs ∈ N , and as a consequence, the threshold is greater than or equal to αs.
The threshold is −∞ if and only if the polynomial u0(n) has no integer root.

4 Computing Coefficients of Truncated Laurent Solutions

Computing elements of the sequence (cn) of coefficients of Laurent solutions can
be performed by successively increasing n by 1, starting with n = α1 which is
the minimum integer root of the polynomial u0(n). Set cn = 0 for n < α1. If
u0(n) �= 0 for some integer n then (9) allows us to find cn by cn−1, cn−2, . . .
Since cn = 0 when n < α1, relation (9) has a finite number of non-zero terms.
If u0(n) = 0, we declare cn an unknown constant. The previously calculated
cn−1, cn−2, . . . , cα1 satisfy the relation

u−1(n)cn−1 + u−2(n)cn−2 + · · · + u−n+α1(n)cα1 = 0. (11)

These relations allow us to calculate the values of some previously introduced
unknown constants. After the value of n exceeds the greatest integer root of
u0(n), new unknown constants and relations of form (11) will not occur any
longer.

If L has truncated coefficients, then it is possible that for some n ≥ α1, the
left-hand side of (9) depends on those unspecified coefficients that are hidden
in (1) in the symbols O (some of coefficients of L may be of the form (2)). These
unspecified coefficients will be called literals. For u0(n) �= 0, the calculated value
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of cn depends on literals. For u0(n) = 0, if relation (11) depends on literals then
computing the previously introduced unknown constants is postponed until n
reaches αs. When n = αs, we obtain

(a) the values of the coefficients cα1 , cα1+1, . . . , cαs
(all of which depend on

unknown constants, some of which may depend on literals as well);
(b) the set of unknown constants;
(c) the set of relations for unknown constants containing literals.

By the set (c) we can find values of unknown constants which are invariant to
all prolongations of the given truncated equation (see [6] for details). We declare
the unknown constants that did not get values involved into the Laurent solution
of the differential equation the arbitrary constants.

5 Algorithm

Input data:

– a differential operator L of the form (1), whose each coefficient is either an
algorithmically represented power series or a truncated power series,

– an integer number k.

Output result:

– The answer to the question of the existence of truncated Laurent solutions
for the equation L(y) = 0. If there are no such solutions, then the output is
the empty list [ ].

– If the answer to the question is positive then the algorithm computes all the
truncated Laurent solutions, whose truncation degrees do not exceed k; it
is possible that some solutions are computed with bigger truncation degree
(such solutions are found by the algorithm due to the general computation
strategy). If the algorithm finds out that k exceeds the threshold of the equa-
tion L(y) = 0 then the algorithm computes the value h of the threshold
(see Remark 2) and constructs all the truncated Laurent solutions, whose
truncation degrees do not exceed h.

The steps:

1. By (10), compute u0(n). Find the set

α1 < · · · < αs

of all integer roots of u0(n). If the set is empty then there are no truncated
Laurent solutions; stop the work with the result [ ].

2. d := αs − α1; compute the coefficients

u−j(n) :=
r∑

i=0

ai,j (n − j)i, j = 1, . . . ,max{d, k − α1},

of the induced recurrent equation (9).
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3. Compute the coefficients cn, n = α1, α1 + 1, . . . , αs, of the truncated Laurent
solution using (9) as it is described in Sect. 4.

4. If k > αs then continue computing cn using (9) with n subsequently increased
by 1 while the both following conditions hold
(a) n ≤ k,
(b) a non trivial set of the values of the arbitrary constants exists such that

cn is independent of the literals (it is detailed in [6, Sect. 4.1]).
If (a) is true, but (b) is false for the current n then the threshold of the
equation is computed as h = n− 1. In the latter case, substitute k by smaller
value: k := h. Report the substitution with the value h.

5. Construct the list of all truncated Laurent solutions

cvxv + cv+1x
v+1 + · · · + cmxm + O(xm+1), v ∈ {α1, . . . , αs}, m ≤ k, (12)

containing no literals as described in [6, Sect. 4.1]. (Some elements of the set
{α1, . . . , αs} might be not used in the truncated Laurent solutions (12)).

6 Implementation; Examples of Use

We have implemented the algorithm in Maple [9] as an extension of LaurentSol-
ution procedure from the package TruncatedSeries [7]. The first argument
of the procedure is a differential equation L(y) = 0 where L is an operator of
form (1). Previously, the procedure worked for the case where all the series, which
are the coefficients of the equation, are represented as truncated series. Now it is
also possible to represent them (or part of them) algorithmically. The application
of θk to the unknown function y(x) is written as theta(y(x),x,k). The trun-
cated coefficients of the equation, i.e., the coefficients of the form (2) are written
as a_i(x)+O(x^(t_i+1)), where a i(x) is a polynomial of the degree not higher
than t i over the field of algebraic numbers. Algorithmically represented series
might be specified either as a polynomial or as a finite or infinite power series
in integer powers of x, or as a sum of a polynomial and such power series. The
power series is written in a usual Maple form as Sum(f(i)*x^i,i=a..b), where
f(i) is an expression or a function that implements an algorithm for computing
the number coefficient of the series with the index i, the specified a and b are
the lower and the upper bounds of summation, the upper bound might be infi-
nite which is designated as infinity. The coefficients of both polynomials and
series, as in the case of truncated series, are the elements of the field of algebraic
numbers. Irrational algebraic numbers are represented in Maple as the expression
RootOf(p( Z), index = k), where p( Z) is an irreducible polynomial, whose k-
th root is the given algebraic number. For example, RootOf(_Z^2-2, index=2)
represents −√

2. An unknown function of the equation is specified as the second
argument of the procedure.

Concerning the implementation of the algorithm from Sect. 5, the procedure
has got two new optional parameters:
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– ’top’=k — where k is an integer number, for which it is needed to determine
whether it exceeds the threshold of the given equation (by default, k equals
the maximum integer root of the indicial polynomial if at least one coefficient
of the equation is non-truncated and k equals the threshold otherwise);

– ’threshold’=’h’ — where h specifies the name of the variable, which will
be assigned to the value of the threshold in the case if it is computed, or to
the value FAIL, if the threshold is not determined, i.e., if it exceeds the given
value k.

The result of the procedure is a list of truncated Laurent solutions with
different valuations. Each element of the list is represented as

cvi
xvi + cvi+1x

vi+1 + · · · + cmi−1x
mi−1 + O(xmi), (13)

where vi is the valuation for which the existence of a truncated Laurent solution
is determined; mi has the previous meaning, ci are the calculated coefficients of
the truncated Laurent solution, which can be linear combinations of arbitrary
constants of the form cj .

The implementation and a session of Maple with examples of using the pro-
cedure LaurentSolution are available at the address

http://www.ccas.ru/ca/truncatedseries

in the section “The next version of the procedure LaurentSolution”.
Below we present six examples, which we combine into one, containing para-

graphs 1–6.

Example 2
1. In the equation two coefficients are given as a truncated series and one

coefficient is represented algorithmically as the sum of the polynomial and the
power series:
> eq1 := (-1+x+x^2+O(x^3))*theta(y(x), x, 2)+
> (-2+O(x^3))*theta(y(x), x, 1)+
> (1+x+Sum(x^i/i!, i = 2 .. infinity))*y(x);

eq1 :=
(−1 + x + x2 + O

(
x3

))
θ(y(x), x, 2) +

(−2 + O
(
x3

))
θ(y(x), x, 1)

+

(
1 + x +

∞∑

i=2

xi

i!

)
y(x)

> LaurentSolution(eq1, y(x), ’top’ = 2, ’threshold’ = h1_2);

[ ]

The output means that the equation has no truncated Laurent solutions. The
threshold:
> h1_2;

−∞

http://www.ccas.ru/ca/truncatedseries
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The value of the threshold is −∞, and it confirms that there are no truncated
Laurent solutions.

2. The equation has both truncated and algorithmically represented coeffi-
cients. The separate function f is used to specify power series:
> f := (i -> i^2+2*i+1-(i+1)^2):
> eq2 := (-1+x+x^2+O(x^3))*theta(y(x), x, 2)+
> (-2+O(x^3))*theta(y(x), x, 1)+
> (Sum(f(i)*x^i, i = 0 .. infinity))*y(x);

eq2 :=
(−1 + x + x2 + O

(
x3

))
θ(y(x), x, 2) +

(−2 + O
(
x3

))
θ(y(x), x, 1)

+

( ∞∑

i=0

(
i2 + 2i + 1 − (i + 1)2

)
xi

)
y(x)

> LaurentSolution(eq2, y(x), ’top’ = 2, ’threshold’ = h2_2);

[
c1
x2

− 4 c1
x

+ c2 + O(x), c2 + O
(
x3

)]

The truncated Laurent solutions with valuations −2 and 0 and with different
truncation degrees are found. The threshold:
> h2_2;

FAIL

It means that the given value k = 2 does not exceed the threshold.

Apply the procedure to the given equation again with k = 5:
> LaurentSolution(eq2, y(x), ’top’ = 5, ’threshold’ = h2_5);

[
c1
x2

− 4 c1
x

+ c2 + O(x), c2 + O
(
x6

)]

It is seen that the truncated solution with the valuation −2 is not changed, and
the truncation degree of the one with the valuation 0 is increased. The threshold:
> h2_5;

FAIL

It means that the given value k = 5 does not exceed the threshold. The func-
tion f, which is used to specify the series coefficient of y(x), computes 0 coefficient
for any index value i. Therefore, the coefficient of y(x) equals 0. The threshold
of the equation is ∞, and any value k will not exceed the threshold. Note that
the zero series might be specified just as the polynomial 0, or the term with y(x)
might be absent in the equation.

3. The equation has also both truncated and algorithmically represented
coefficients. The algorithmically represented coefficient of y(x) is written as the
polynomial:
> eq3 := (-1+x+x^2+O(x^3))*theta(y(x), x, 2)+
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> (-2+O(x^3))*theta(y(x), x, 1)+(x+6*x^2)*y(x);

eq3 :=
(−1 + x + x2 + O

(
x3

))
θ(y(x), x, 2) +

(−2 + O
(
x3

))
θ(y(x), x, 1)

+
(
x + 6x2

)
y(x)

> LaurentSolution(eq3, y(x), ’top’ = 2, ’threshold’ = h3_2);

[
c1
x2

− 5 c1
x

+ c2 + O(x), c2 +
1
3
x c2 +

5
6
x2 c2 + O

(
x3

)]

The truncated Laurent solutions with valuations −2 and 0 and with different
truncation degrees are found again. The threshold:
> h3_2;

FAIL

It means that the given value k = 2 does not exceed the threshold.

Apply the procedure to the given equation with k = 5:
> LaurentSolution(eq3, y(x), ’top’ = 5, ’threshold’ = h3_5);

[
c1
x2

− 5 c1
x

+ c2 + O(x), c2 +
1
3
x c2 +

5
6
x2 c2 +

13
30

x3 c2 + O
(
x4

)]

The threshold:
> h3_5;

3

It is seen that the threshold is achieved in the computed truncated solutions
with the valuation 0.

4. The equation is a prolongation of the equation eq3:
> eq4 := (-1+x+x^2+9*x^3+O(x^4))*theta(y(x), x, 2)

+(-2+(x^3)/2+O(x^4))*theta(y(x), x, 1)+(x+6*x^2)*y(x);

eq4 :=
(−1 + x + x2 + 9x3 + O

(
x4

))
θ(y(x), x, 2)

+
(

−2 +
1
2
x3 + O

(
x4

))
θ(y(x), x, 1) +

(
x + 6x2

)
y(x)

> LaurentSolution(eq4, y(x), ’top’ = 5, ’threshold’ = h4_5);

[
c1
x2

− 5 c1
x

+ c2 +
1
3
x c2 + O

(
x2

)
, c2 +

1
3
x c2 +

5
6
x2 c2 +

13
30

x3 c2

+
95
144

x4 c2 + O
(
x5

)]
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The truncated Laurent solutions with valuations −2 and 0 and with different
truncation degrees are found again. These truncated solutions are the prolonga-
tions of the computed truncated solutions of the equation eq3. The threshold:
> h4_5;

4

It is seen that the threshold is achieved in the computed truncated solutions
with the valuation 0.

5. The equation is another prolongation of the equation eq3:
> eq5 := (-1+x+x^2+RootOf(z^2-2, z, index = 2)*x^3+O(x^4))*
> theta(y(x), x, 2)+(-2+2*RootOf(z^2-2, z, index = 2)*x^3+
> O(x^4))*theta(y(x), x, 1)+(x+6*x^2)*y(x);

eq5 :=
(−1 + x + x2 + RootOf

(
Z2 − 2, index = 2

)
x3 + O

(
x4

))
θ(y(x), x, 2)

+
(−2 + 2RootOf

(
Z2 − 2, index = 2

)
x3 + O

(
x4

))
θ(y(x), x, 1)

+
(
x + 6x2

)
y(x)

> LaurentSolution(eq5, y(x), ’top’ = 5, ’threshold’ = h5_5);
[

c1
x2

− 5 c1
x

+ c2 + x

(
1
3

c2 − 35
3

c1

)
+ O

(
x2

)
, c2 +

1
3
x c2 +

5
6
x2 c2

+
13
30

x3 c2 + x4

(
19
36

c2 +
1
24

RootOf
(

Z2 − 2, index = 2
)

c2

)
+ O

(
x5

)]

The truncated Laurent solutions with valuations −2 and 0 and with different
truncation degrees are found again. These truncated solutions are the prolonga-
tions of the computed truncated solutions of the equation eq3, but are different
from the computed truncated solutions of the equation eq4. The threshold:
> h5_5;

4

It is seen that the threshold is achieved again in the computed truncated solutions
with the valuation 0.

The results of the application of the procedure to the equations eq4 and eq5
show that the earlier computed truncated Laurent solutions of the equation eq3
contain the maximum possible number of initial terms, since two different pro-
longations of the equation eq3 have different truncated Laurent solutions, which
are the prolongations of the found truncated solutions of the equation eq3.

6. The equation is a prolongation of the equation eq3 as well, and all its
coefficients are represented algorithmically:
> eq6 := (-1+x+x^2+Sum((-1)^i*x^i/i!, i = 3 .. infinity))*
> theta(y(x), x, 2)+(-2+2*(Sum((-1)^i*x^i/i!, i = 3 ..
> infinity)))*theta(y(x), x, 1)+(x+6*x^2)*y(x);

eq6 :=

(
−1 + x + x2 +

∞∑

i=3

(−1)ixi

i!

)
θ(y(x), x, 2)
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+

(
−2 + 2

( ∞∑

i=3

(−1)ixi

i!

))
θ(y(x), x, 1) +

(
x + 6x2

)
y(x)

> LaurentSolution(eq6, y(x), ’top’ = 5, ’threshold’ = h6_5);

[
c1
x2

− 5 c1
x

+ c2 + x

(
1
3

c2 − 35
3

c1

)

+x2

(
5
6

c2 − 145
48

c1

)
+ x3

(
13
30

c2 − 103
16

c1

)
+ x4

(
25
48

c2 − 2131
576

c1

)

+x5

(
2057
5040

c2 − 4303
960

c1

)
+ O

(
x6

)
, c2 +

1
3
x c2 +

5
6
x2 c2

+
13
30

x3 c2 +
25
48

x4 c2 +
2057
5040

x5 c2 + O
(
x6

)]

The two truncated Laurent solutions with the same truncation degree are found,
which are the prolongations of the computed truncated solutions of the equation
eq3. The threshold:
> h6_5;

FAIL

Thus, k = 5 does not exceed the threshold. The case when all the coefficients
are represented algorithmically is the case when the threshold of the equation
is ∞, and any value k does not exceed the value of the threshold.

7 Concluding Remarks

This study is a continuation of the studies started in [2,7], in which it was
assumed that either all the coefficients of a differential equation are represented
algorithmically, and in this sense, are given completely, or are represented in the
truncated form. In the current paper, the presence of both types of coefficients
is allowed.

The presence of infinite series in the input data of a problem is a source
of difficulties (the algorithmic impossibility of answering certain natural ques-
tions). This is, e.g., related to the fact that if sequences of coefficients of series
can be specified by arbitrary algorithms, then it is impossible to test algorith-
mically the equality of such series to zero (this is a consequence of the classical
results of A. Turing on the undecidability of the problem of terminating of an
algorithm [10]).

There is nowhere to go from this in the problem considered above, — see
Proposition 1. However, along with this, we must admit that in the situation we
are faced, in a certain sense, with a lighter version of the algorithmic undecid-
ability. This undecidability is, so to speak, not too burdensome.
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Indeed, we cannot indicate the greatest degree of the truncated Laurent solu-
tion existing for a given equation (the threshold of the equation). However, if
we are interested in all solutions of a truncation degree not exceeding a given
integer k then the algorithm proposed in Sect. 5 allows us to construct all of
them.

It would be interesting to try to obtain similar results for the solutions of a
more general form — the so-called regular and exponentially logarithmic solu-
tions, and generalize this to the systems of differential equations. We will con-
tinue to investigate this line of enquiry.

Acknowledgments. The authors are grateful to anonymous referees for their helpful
comments.
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of the application of algebraic methods to dynamical systems are the Singer
theorems on elementary integrals [5,15]. However, it is well known that the vast
majority of dynamical systems cannot be integrated in elementary functions and
numerical methods are used to study them alongside with a qualitative analysis
of the solution behavior.

The standard numerical method for studying dynamical systems suggests
replacing the derivatives in differential equations with finite differences, and
thus reduces the numerical analysis of a dynamical system to solving systems
of algebraic equations. Traditionally, the focus of numerical analysis is on the
accuracy of approximation, the proximity of an approximate and exact solution,
and its stability with respect to rounding errors [12]. Despite the importance
of these questions, one cannot fail to notice that the finite difference method
produces algebraization of the problem, that is, it brings the problem to the
form most convenient for using purely algebraic tools.

The ultimate goal of our research is to clarify how to use the finite difference
method for a qualitative analysis of dynamical systems. We believe that the app-
roach that provides a simple and effective tool for the approximate calculation
of solution parameters can be no less effective in a qualitative analysis.

For inheritance by an approximate solution of the properties of an exact
solution, it is extremely important that the approximate solution is found using
conservative schemes, i.e., schemes that preserve all algebraic integrals of motion.
We made sure that in the general case, such schemes should be implicit [1]. We
use numerical calculations using implicit schemes only to illustrate theoreti-
cal results, being fully aware of the difficulties encountered in developing effec-
tive numerical methods based on implicit schemes [17]. It is likely that explicit
schemes are good for developing purely numerical methods, and implicit ones
for combining numerical and symbolic methods.

First of all, we considered the simplest example, namely, a linear oscillator
and showed that the midpoint scheme not only preserves all the algebraic inte-
grals of this system, but also gives periodic approximate solutions (Example 3).
This result can be transferred to a system of coupled oscillators, since the matrix
of this system can always be reduced to a diagonal form. One class of solutions
traditionally associated with the name of Lagrange, can be obtained by assuming
that all the distances aij are equal to one constant a [4]. The next natural step
is to consider the inheritance of periodicity in nonlinear problems that have a
lot of algebraic integrals but are not reducible to quadratures. Therefore, as an
object of study in the present paper, we chose periodic solutions of the planar
three-body problem.

In Sect. 1 we introduce the necessary notation. Inheritance of the exact solu-
tion properties is discussed in Sect. 2, where we investigate a linear oscillator.
Section 3 describes our finite difference schemes preserving the integrals of the
three-body problem. In Sect. 4 we formulate the analogue of Lagrange problem
for approximate solutions. One class of its solutions (triangular solutions) is
described in Sect. 5.
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1 Basic Definitions

Consider a dynamical system
ẋ = f(x), (1)

where x = (x1, . . . xn), and f is a rational function of its argument. Any finite-
difference scheme for this system is a system (S) of algebraic equations that
determine the relation between the value of the variable x, taken at a certain
moment of time t, and the value x̂ of this variable taken at the moment of time
t + dt. In this case, x, x̂ can be considered as two lists of symbolic variables
[x1, . . . , xn] and [x̂1, . . . , x̂n]. Even the step dt can be treated as a symbolic vari-
able. It is quite acceptable to restrict ourselves to a case when the coefficients of
this scheme are rational numbers. In this case the investigation of the scheme (S)
can be performed using the toolkit developed for operating with the ideals of
polynomial rings over the field Q.

Example 1. An explicit Euler scheme for the system

ẋ = −y, ẏ = x, (2)

describing a harmonic oscillator, is written as a system of two algebraic equa-
tions:

x̂ − x = −ydt, ŷ − y = xdt

Similar to Ref. [1], we do not require that at dt → 0 the system should turn
into a differential equation. Instead, we assume a purely algebraic condition: the
system (S) allows a solution for x̂ in the form of Puiseux series in powers of dt,
and

x̂ = x + f(x)dt + . . . .

The conservation of the integral I(x) of the system (1) means that from the
system (S), the equation

I(x̂) = I(x)

follows. We will call the system (S) conservative, if it preserves all algebraic
integrals of motion of the considered dynamical system.

Example 2. The system (2) has an algebraic integral

x2 + y2 = C. (3)

The standard Euler scheme does not preserve it, while the midpoint scheme

x̂ − x = −(ŷ + y)
dt

2
, ŷ − y = (x̂ + x)

dt

2
(4)

preserves it according to Cooper theorem [2,11].
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Now let us take algebraic numbers for the coordinate of the point x0 and
the step dt. We will understand the approximate solution of the initial-value
problem

dx

dt
= f(x), x(0) = x0, (5)

found according to the finite-difference scheme (S) as a finite or infinite sequence
{x0, x1, x2, . . . }, whose elements are determined recursively. To find xn+1, one
has to do the following:

– substitute x = xn into the system (S),
– find the solution x̂ of this system that tends to xn when dt → 0, and accept

this solution for xn+1.

In this treatment, we will interpret xn as approximate solutions of the initial-
value Problem (5) at point t = ndt. It is quite possible that at the chosen value
of dt, the desired root xn does not exist. Then we truncate the sequence at the
nth step and say that for t = ndt there is a singular point of the approximate
solution.

Quantitatively, the relation between the approximate solution of the
Problem (5) and the exact one has always been in the focus of researchers’ atten-
tion [12]. Let x = x(t) be an exact solution considered on a segment 0 ≤ t ≤ T
and dt = T/N , N ∈ N. Then, under the above assumptions about the scheme,
there are such constants M and λ that

‖xn − x(ndt)‖ ≤ MeλT dt.

We now proceed to the subject of inheritance of the exact properties by an
approximate solution.

2 Inheritance of the Exact Solution Properties

One of the most noticeable qualitative properties of an exact solution is its peri-
odicity. Can an approximate solution inherit it? To understand how to deter-
mine the concept of periodicity of an approximate solution, consider the simplest
example.

Example 3. The exact solution of the system (2), first, has a period of 2π and,
second, describes a circle (3) on the phase plane xy. The approximate solution
found using the Euler scheme, does not inherit these properties. The sequence
x2

n + y2
n grows monotonically, and the points (xn, yn) lie on an expanding spiral,

see Fig. 1. On the contrary, the solution found using the midpoint scheme (4)
inherits the above properties. From the conservation of the quadratic integral
x2 + y2 = C it immediately follows that the points (xn, yn) lie on a circle. If we
take for α the minimal positive root of the equation

(1 + iα)2N = (1 + α2)N , (6)



On Periodic Approximate Solutions of the Three-Body Problem 81

Fig. 1. Solution of the intial-value problem for Eq. (2) using the Euler method (solid)
and the midpoint method (dashed), Δt = 0.1, 100 steps are made

which in terms of trigonometric functions can be expressed as

α = tan
π

N
,

then the calculation according to the midpoint finite-difference scheme (4) with
the step

Δt = 2α = 2 tan
π

N
,

in N steps leads to the initial values of x, y. The proof of this theorem is presented
in [4, th. 2].

This example prompts how to define the notion of period in a general case.
The approximate solution {x0, x1, . . . }, found using the scheme (S) with a certain
step dt, will be called periodic if this sequence is periodic, i.e., if there exists such
a natural number N that xN = x0. The number Ndt will be referred to as the
period of this solution. We emphasize that when the step dt is changed the
sequence {x0, x1, . . . } is no more periodic.

Example 4. The midpoint scheme (4) yields periodic solutions at a number of
step values that form a descending sequence converging to zero. The correspond-
ing sequence of periods

NΔt = 2N tan
π

N
= 2π +

2π3

3
1

N2
+ . . .

converges to the exact solution period 2π.

As can be seen, in the case of the simplest dynamical system, the approx-
imate solution found by the conservative scheme inherits the basic qualitative
properties of the exact solution. This circumstance may be a general property of
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conservative schemes, or it may be due to the fact that the system under consid-
eration is completely integrable: preserving the integral makes all points of the
phase plane lie on a circle. Of course, the most interesting cases are when there
are many integrals, but all the same, they are not enough to reduce the problem
to quadratures. An excellent example of this kind is given by the problem of
many bodies.

3 Conservative Schemes for the Problem of Many Bodies

The classical problem of n bodies [13] consists in finding solutions of the
autonomous system of ordinary differential equations

mir̈i =
n∑

j=1, j �=i

γ
mimj

r3ij
(rj − ri) , i = 1, . . . , n (7)

Here ri is the position vector of the i-th body, and rij is the distance between
the i-th and j-th body. For brevity we denote the velocity components of the
i-th body as ẋi = ui, ẏi = vi and żi = wi and the appropriate velocity vector
as vi. The first finite-difference scheme for the many-body problem, preserving
all classical integrals of motion, was proposed in 1992 by Greenspan [7–10] and
independently in somewhat different form by J.C. Simo and O. González [6,14].

Our approach is close to the invariant energy quadratization method (IEQ
method) which was used by Zhang et al. [17] to conserve the energy at the
discretization of Hamiltonian systems including Kepler two-body problem. Like
in IEQ method we “transform the energy into a quadratic form of a new variable
via a change of variables” [17]. We introduce the following additional variables

rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2, i, j = 1, 2, . . . , N, i < j

and
ρij =

1
rij

, i, j = 1, 2, . . . , N, i < j.

We arrive at a system of ordinary differential equations that incorporates the
system for coordinates

ṙi = vi, i = 1, . . . , n, (8)

the system for velocities

miv̇i =
n∑

j=1

γ
mimjρij

r2ij
(rj − ri) , i = 1, . . . , n, (9)

the system for distances

ṙij =
1
rij

(ri − rj) · (vi − vj), i, j = 1, . . . , n; i �= j, (10)
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and the system for inverse distances

ρ̇ij = −ρij

r2ij
(ri − rj) · (vi − vj), i, j = 1, . . . , n; i �= j. (11)

This system possesses all algebraic integrals of a many-body problem and addi-
tional integrals

r2ij − (xi − xj)2 − (yi − yj)2 − (zi − zj)2 = const, i �= j (12)

and
rijρij = const, i �= j. (13)

The solutions of this extended system, on which

rijρij = 1, i �= j, (14)

and
r2ij − (xi − xj)2 − (yi − yj)2 − (zi − zj)2 = 0, i �= j (15)

correspond to the solutions of the many-body problem.
According to the Cooper theorem, the midpoint scheme

x̂ − x

dt
= f

(
x̂ + x

2

)
, (16)

written for this extended system, preserves all quadratic integrals of motion
exactly, therefore, it is a conservative scheme for the many-body problem.
To investigate the inheritance by the approximate solution of the properties
of the exact solution, we consider the particular periodic solutions. For the
many-body problem many such solutions have been found, and we will con-
sider the simplest family of such solutions, discovered as early as by Euler and
Lagrange [13].

4 Lagrange Problem

Lagrange found all the exact solutions to the three-body problem at which the
distances between the bodies do not change. These solutions fall into two families.
In the first case, the bodies form a regular triangle, which rotates around its
center of gravity with a constant angular velocity. In the second case, the bodies
lie on one straight line that rotates around the center of gravity. Conventionally,
the first case is associated with the name of Lagrange, and the second with the
name of Euler [13]. We will find out if there are approximate solutions that
inherit these properties.

Problem 1. Using the midpoint scheme, find all approximate solutions of the
planar three-body problem (8)–(11), in which the distances between the bodies
are unchanged

r̂ij = rij , i �= j, (17)

and the constraint integrals have their natural values

r2ij − (xi − xj)2 − (yi − yj)2 = 0, rijρij = 1. (18)
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In theory, this problem is algorithmically solvable; moreover, an algorithm
for eliminating the unknowns based on the calculation of Gröbner bases and
implemented in any computer algebra system is quite enough to solve it. Indeed,
we add to the system of algebraic equations (S) defining a midpoint scheme
for differential equations (8)–(11), 9 more equations (17) and (18). Our system
comprises 3 ·4+3 ·2 = 18 variables, to which we must also add the 19-th one, dt.
In the 19-dimensional affine space these equations define a certain algebraic
set M . Let us denote its projection on the 10-dimensional space of initial values
and dt by V and the projection on the 10-dimensional space of the finite values
and dt by V̂ . To make the approximate solution satisfy the conditions of the
Problem 1, it is necessary that at each step its points belong to both V and V̂ .
This condition is close to the sufficient one, if we specially exclude the case of
singular points.

Unfortunately, we could not apply the standard computer algebra tools
implemented in Sage to find the manifolds V and V̂ . Probably, the number
of variables is still too large for calculations on a common computer (see the
Appendix 5). Therefore, the problem will have to be solved partially by hand.

Assume from the beginning, that the solution x0, x1, . . . , satisfying the con-
ditions of the Problem 1, exists. Then rij and r̂ij are equal to one and the same
number; we denote it by aij , i.e., we assume

rij = aij , ρij =
1

aij
. (19)

In this case the coordinates and velocities can be found using a simpler scheme.
The projections of the coordinates and velocities on the Ox-axis are described
by the scheme

⎧
⎪⎪⎨

⎪⎪⎩

x̂i − xi =
dt

2
(ûi + ui), i = 1, 2, 3

mi(ûi − ui) =
γdt

2

∑

j �=i

mimj

a3
ij

(x̂j + xj − x̂i − xi), i = 1, 2, 3
(20)

An analogous scheme is obtained for the projection on the Oy-axis
⎧
⎪⎪⎨

⎪⎪⎩

ŷi − yi =
dt

2
(v̂i + vi), i = 1, 2, 3

mi(v̂i − vi) =
γdt

2

∑

j �=i

mimj

a3
ij

(ŷj + yj − ŷi − yi), i = 1, 2, 3
(21)

These equations define the midpoint scheme for the dynamical system
⎧
⎨

⎩

żi = wi, i = 1, 2, 3

miẇi = −∂U

∂zi
, i = 1, 2, 3,

(22)

where the potential is given by the expression

U =
γm1m2

2a3
12

(z1 − z2)2 +
γm1m3

2a3
13

(z1 − z3)2 +
γm2m3

2a3
23

(z2 − z3)2.
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This observation allows replacing the finite-difference schemes (20) and (21) with
much more common system of differential equations (22), describing oscillations
in a system of coupled oscillators.

Theorem 1. If the Problem 1 allows a solution, then the projections of the
coordinates and velocities onto the axes Ox and Oy can be found as solutions of
the Problem (22), found using the midpoint scheme.

Due to (17), the equations for the distances yield three additional equations

(x̂j +xj − x̂i−xi)(ûj +uj − ûi−ui)+(ŷj +yj − ŷi−yi)(v̂j +vj − v̂i−vi) = 0 (23)

The equations for reciprocal distances with constraint (18) taken into account
yield the same three equations. To clarify the role of these relations in Sage
is already an easy problem. We have expressed from the linear systems (20)
and (21) the velocities via the coordinates x1, . . . , x̂1, . . . . Then we have substi-
tuted these equations into (23), and as a result, we have obtained again equali-
ties (18). From this a theorem inverse to the Theorem 1 immediately follows.

Theorem 2. Let a pair of solutions {zi = xi, wi = ui} and {zi = yi, wi = vi}
to the Problem (22) is found using the midpoint scheme and is constrained by
three equations

(xi − xj)2 + (yi − yj)2 = a2
ij , i �= j. (24)

Then it may be raised to an approximate solution of the Lagrange problem,
accepting (19).

We emphasize that constraints (24) are imposed on the approximate solution
rather than on the exact one. The complete solution of Problem 1 is somewhat
cumbersome because of a large number of complex solutions ignored in mechan-
ics [13], therefore, here we restrict ourselves to an expressive particular case.

5 Triangular Solution

One class of solutions traditionally associated with the name of Lagrange can
be obtained by assuming that all the distances aij are equal to one constant a.
Then system (22) can be rewritten as a system of three equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d2(z2 − z1)
dt2

+ ω2(z2 − z1) = 0,

d2(z3 − z1)
dt2

+ ω2(z3 − z1) = 0,

d2(m1z1 + m2z2 + m3z3)
dt2

= 0.

(25)

Here an auxiliary variable has been introduced

γ
m1 + m2 + m3

a3
= ω2, (26)
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that has the meaning of the frequency squared. Therefore, this system possesses
three quadratic integrals

(wi − wj)2 + ω2(zi − zj)2 = Cij ,

exactly preserved by the midpoint scheme. Of course, only two of them are
independent.

For any solution {zi = xi, wi = ui}
(ui − uj)2 + ω2(xi − xj)2 = Cij .

To obtain from them the relations (24), we define the triple y1, y2, y3 as a solution
to a system of linear equations

⎧
⎪⎨

⎪⎩

u2 − u1 = ω(y2 − y1),
u3 − u1 = ω(y3 − y1),
m1u1 + m2u2 + m3u3 = ω(m1y1 + m2y2 + m3y3).

Velocities v1, v2, v3 are defined to ensure the validity of the following relations
⎧
⎪⎨

⎪⎩

− ω(x2 − x1) = v2 − v1,

− ω(x3 − x1) = v3 − v1,

m1v1 + m2v2 + m3v3 = 0,

which in the case of differential equations are obtained as derivatives of the
preceding equalities. As a result, we arrive at the set {zi = yi, wi = vi} that
satisfies the system (22) and is coupled with the first set by the relation (24).
This means that in the present case, all conditions of Theorem 2 are satisfied.

Corollary 1. There exists a family of approximate solutions to the three-body
problem, on which the bodies form a regular triangle with the constant side a.This
solution can be raised from two solutions of a linear dynamical system (22) found
using the midpoint scheme.

Example 5. We implemented the calculation of the solution of dynamical sys-
tems according to the midpoint scheme in Sage. To solve the system of non-
linear equations we use the method of simple iterations with the control of
the conservation of all classical integrals. As applied to the Lagrange case with
m1 = m2 = m3 = 1, we have obtained a circular motion even when choosing an
intentionally coarse step (Fig. 2).

As we saw above (Example 3), the step dt in the midpoint scheme for the
system (22) can be chosen in such a way that the approximate solution becomes
periodic, and its frequency tends to the frequency of the exact solution, i.e., to
the value (26). This solution inherited the periodicity of the exact solution, in
which three bodies, while maintaining the shape and dimensions of a regular
triangle, rotate around the center of gravity with an angular frequency (26) [13].
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Fig. 2. Solution to the three-body problem in the Lagrange case, Δt = 0.1

Conclusion

In the present paper, we have formulated the Lagrange Problem 1 of finding all
approximate solutions of the three-body problem at which the distances between
the bodies remain constant. The Theorems 1 and 2 reduce the problem to the
study of the properties of linear oscillators. In particular, it turns out that the
periodicity of the exact solution in the Lagrange case, when the bodies form a
regular triangle, is inherited by the approximate solution (Corollary 1).

We have so far avoided a complete solution of the Problem 1, since it obvi-
ously has more complex solutions discarded in mechanics. It does not seem to
us that these solutions are not interesting, so we will return to this issue later.
It is quite natural to try further to consider finite difference analogues of other
classical problems of the theory of three bodies, including triangular solutions
with the points moving along ellipses.

At the moment, our experiments with the three-body problem are limited
not so much by present-day computer capacities, which are still not enough to
work with dozens of symbol variables, but rather by very incomplete kit of tools
implemented to exclude unknowns. The fact is that the midpoint scheme for
the many-body problem is rich in discrete symmetries. The exclusion method
implemented in Sage is based on the Gröbner bases with lex ordering and does
not take the symmetry of the system into account, but sometimes the usage of
such symmetries speeds up computing [3,16]. We believe that the “factorization”
of the system by these symmetries can reduce the number of unknowns by n
times, where n is the number of bodies in the system.



88 E. A. Ayryan et al.

Appendix A Investigation of the Set V in Sage

We have tried unsuccessfully to investigate the algebraic set V introduced above
in Sect. 4 of Sage, using the tools developed by W. Stein for working with ideals in
multidimensional polynomial rings. Using the notation of (19), we have rewritten
system (S) as 1) three equations

(xi − xi)2 + (yi − yj)2 = a2
ij ,

2) two systems (20) and (21), and 3) three equations

(ri − rj) · (vi − vj) = 0, i, j = 1, . . . , n; i �= j,

which in our case are equivalent to six equations that approximate Eqs. (10)
and (11). Systems (20) and (21) are linear in variables marked with hats. We
have solved these systems in Sage by means of standard function solve:

x=var(’x1,x2,x3,y1,y2,y3,u1,u2,u3,v1,v2,v3’)

xx=var(’xx1,xx2,xx3,yy1,yy2,yy3,uu1,uu2,uu3,vv1,vv2,vv3’)

var(’dt,a,b,c’)

K=QQ[a,b,c,dt,x1,x2,x3,y1,y2,y3,u1,u2,u3,v1,v2,v3]

def lagrange_hat():

eqs=[

xx1-x1==(uu1+u1)*dt/2, xx2-x2==(uu2+u2)*dt/2, xx3-x3==(uu3+u3)*dt/2,

yy1-y1==(vv1+v1)*dt/2, yy2-y2==(vv2+v2)*dt/2, yy3-y3==(vv3+v3)*dt/2,

uu1-u1==dt/2*(1/a^3*(xx2+x2-xx1-x1) + 1/b^3*(xx3+x3-xx1-x1)),

uu2-u2==dt/2*(1/a^3*(xx1+x1-xx2-x2) + 1/c^3*(xx3+x3-xx2-x2)),

uu3-u3==dt/2*(1/c^3*(xx2+x2-xx3-x3) + 1/b^3*(xx1+x1-xx3-x3)),

vv1-v1==dt/2*(1/a^3*(yy2+y2-yy1-y1) + 1/b^3*(yy3+y3-yy1-y1)),

vv2-v2==dt/2*(1/a^3*(yy1+y1-yy2-y2) + 1/c^3*(yy3+y3-yy2-y2)),

vv3-v3==dt/2*(1/c^3*(yy2+y2-yy3-y3) + 1/b^3*(yy1+y1-yy3-y3)), ]

return solve(eqs,xx)

Then we have constructed an ideal of the algebraic set V (in our code called
Lagrange ideal):

def lagrange_ideal():

S=lagrange_hat()

Q1=(xx1+x1-xx2-x2)*(uu1+u1-uu2-u2)+(yy1+y1-yy2-y2)*(vv1+v1-vv2-v2)

Q2=(xx3+x3-xx2-x2)*(uu3+u3-uu2-u2)+(yy3+y3-yy2-y2)*(vv3+v3-vv2-v2)

Q3=(xx1+x1-xx3-x3)*(uu1+u1-uu3-u3)+(yy1+y1-yy3-y3)*(vv1+v1-vv3-v3)

Q1=Q1.subs(S).numerator()

Q2=Q2.subs(S).numerator()

Q3=Q3.subs(S).numerator()

global K

J=K*[Q1,Q2,Q3, (x1-x2)^2+(y1-y2)^2-a^2,

(x1-x3)^2+(y1-y3)^2-b^2,

(x3-x2)^2+(y3-y2)^2-c^2,

u1+u2+u3, v1+v2+v3,

x1+x2+x3, y1+y2+y3]

return J
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For simplicity, we have added to the equations that determine the set V a con-
dition of coincidence of the gravity center and the origin of coordinates. Thus
we obtained an ideal J in the ring

Q[a, b, c, dt, x1, x2, x3, y1, y2, y3, u1, u2, u3, v1, v2, v3].

Sage is unable to answer even such trivial questions about this ideal as belonging
of element y1 + y2 + y3 to ideal J :

sage: J=lagrange_ideal()
sage: K(y1 + y2 + y3) in J
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Abstract. Multiplication of univariate dense polynomials with long
integer unbalanced (having different lengths) coefficients is considered.
By reducing the problem to the product of bivariate polynomials with
balanced coefficients, Toom–Cook approach is shown, pointing out some
optimizations in order to reduce the computational cost. As a byproduct,
univariate sparse Toom–Cook is also sketched. Lastly, some experimental
results concerning performance comparisons are presented.

Keywords: Long integer multiplication · Toom-Cook · Polynomial
multiplication · Interpolation

1 Introduction

This paper deals with the product of univariate polynomials with unbalanced
long integer coefficients: each of them having many digits (hundreds, thousands
or even more bits) and differing by small ratios (e.g. one coefficient is two, three,
or 4/3 times longer than another one).

Let a(x), b(x), c(x) = a(x) · b(x) ∈ Z[x], with

a(x) =
da∑

i=0

aix
i ; b(x) =

db∑

i=0

bix
i ; c(x) =

d=da+db∑

i=0

cix
i

We analyze the problem by using the point of view of Toom–Cook paradigm
(in the following simply TC, for short). To make things clear, for z ∈ Z let δ(z)
be its number of digits (in whatever but fixed “long” base 1 � B ∈ N: for
example, in computer science B is usually 232μ or 264μ for a certain 0 �= μ ∈ N).

The subquadratic multiplication algorithms due to Karatsuba [14], Toom
and Cook [6,19] were proposed more than 50 years ago and are widely used
today for long integer products when the length of the factors lies in a certain
c© Springer Nature Switzerland AG 2020
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range [17], while Schönhage–Strassen algorithm [16], based on FFT, is used for
bigger ones. Actually they are formulated in terms of univariate polynomials,
with the underlying hypothesis that the coefficients appearing in the core of
the methods are more or less balanced, that is to say with the same number
of “digits”. Other multiplication methods exist, see [7,9] and the more recent
results [11,12], but their interest is purely theoretical, as they became efficient
only for really huge numbers.

TC–k approach is based on the Evaluate–(recursive) Multiply–Interpolate
(EMI) paradigm, with two more steps (splitting and recomposition) when used
recursively or to compute the product of two natural numbers. The idea is to
obtain the 2k − 1 coefficients of c(x) with as many non-linear operations at the
price of some linear ones more than schoolbook method (SB). For example, for
long integer multiplication, let u, v ∈ N, with h = δ(u) and k = δ(v): we indicate
with M(h, k) the computational cost of their product, setting Mk = M(k, k)
and M = M1. To compute the product u · v = w ∈ N, follow the five steps
indicated below.

1) Splitting: Fix an appropriate base B ∈ N and represent the two operands
by two homogeneous polynomials a, b ∈ N[x, h] with degree d1, d2 respectively
and coefficients 0 � ai, bi < B, with ad1 , bb2 �= 0 (base B expansion).

a(x, h) =
d1∑

i=0

aix
ihd1−i ; b(x, h) =

d2∑

i=0

bix
ihd2−i

This way u = a(B, 1) and v = b(B, 1). Let c(x, h) = a(x, h)b(x, h). For the
classical TC–k method one has d1 = d2 = k − 1, while in general, for possibly
unbalanced operands, d1 + d2 = 2(k − 1), k being an arbitrary multiple of 1/2.

2) Evaluation: Choose 2k − 1 values νi = (ν′
i, ν

′′
i ) ∈ Z

2 (the corresponding
homogeneous value is ν′

i/ν′′
i , with (1, 0) usually represented by ∞) with ν′

i and ν′′
i

coprime and νi �= ±νj for i �= j: evaluate both operands at all of them, obtaining
the values a(νi), b(νi).

3) Recursion: Compute wi = a(νi) · b(νi) recursively. Let w = (wi) be the
resulting vector of values.

4) Interpolation: Solve the interpolation problem c(νi) = wi inverting the
pseudo–Vandermonde matrix Ak generated by the νi values, computing c =
A−1

k w, where c = (ci) is the vector of c(x, h) coefficients.
5) Recomposition: Once all the coefficients have been computed, it is suf-

ficient to evaluate back w = c(B, 1).
For example, interpolation matrices for TC–2.5 and TC–3 are

A2.5 =

⎛

⎜⎜⎝

1 0 0 0
−1 1 −1 1

1 1 1 1
0 0 0 1

⎞

⎟⎟⎠ ; A3 =

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0
16 8 4 2 1
1 −1 1 −1 1
1 1 1 1 1
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠

TC–k algorithm core complexity is based on the relation Mk = (2k − 1)M .
Standard analysis shows that the computational asymptotic complexity of the
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method is O(nlogk(2k−1)). The multiplicative constant hidden by the O(·) nota-
tion absorbs the complexity of the first two and last two phases. In order to
minimize it, a careful choice of νi values and of the operations sequence for
Evaluation, Interpolation and Recomposition phases helps in reducing the extra
overhead.

We underline explicitly that the TC–k algorithm optimality is restricted to a
limited range of factor lengths, that in practice depends on the computer archi-
tecture, available amount of memory, used data structures, and other technical
details. Therefore the following considerations are in general not applicable in
an asymptotic sense, when the sizes of the coefficients have no growth limit.

2 Multiplication of Polynomials with Unbalanced Long
Coefficients

Considering univariate dense polynomial with long coefficients, TC algorithms
can be doubly involved: in the polynomials themselves and in their coefficients.
In regard to the Kronecker trick [15], reducing polynomial multiplication to long
integer multiplication (see e.g. [8]), we point out a small note, but we will literally
go in the opposite direction: adding instead one variable more.

The starting point of our analysis is the fact that when coefficients are unbal-
anced, straightforward use of TC–k for polynomials can sometimes be counter-
productive.

Example (1) : consider TC–3 case, with δ(a2) = δ(b2) = 4 and δ(ai) = δ(bj) =
1 otherwise (represented with the notation [1, 1, 4]2). Classical TC–3 recursive
multiplication phase

c4 = w∞ = a2b2 ⇒ M4 = 7M
w2 = (4a2 + 2a1 + a0)(4b2 + 2b1 + b0) ⇒ M4 = 7M
w1 = (a2 + a1 + a0)(b2 + b1 + b0) ⇒ M4 = 7M
w−1 = (a2 − a1 + a0)(b2 − b1 + b0) ⇒ M4 = 7M

c0 = w0 = a0b0 ⇒ M

would require P = 4 · 7 + 1 = 29 “basic” products, not to mention interpola-
tion cost. By applying straightforwardly the schoolbook method the following is
obtained instead:

c4 = a2b2 ⇒ M4 = 7M
c3 = a2b1+ a1b2 ⇒ M(4, 1) + M(1, 4) = 8M
c2 = a2b0+ a1b1+ a0b2 ⇒ M(4, 1) + M + M(1, 4) = 9M
c1 = a1b0+ a0b1 ⇒ M + M = 2M
c0 = a0b0 ⇒ M

so that just P ′ = 7 + 8 + 9 + 2 + 1 = 27 < P products would be needed.
This suggests that unbalance can sometimes make some difference. At a first
glance, a mix of TC and schoolbook methods could be considered, computing
c1 instead of e.g. w2, saving thus 5 products and simplifying the interpolation
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phase: this way P would be lowered to 24. In the following we will show how
only 17 products are sufficient.

The point is that the classical TC–k preprocessing idea is to split factors
into as balanced as possible (k − 1)-degree “polynomials”, precisely because
of this: TC–k methods exploit the, so to say, mixing of coefficient products.
If i1, j1, i2, j2, h ∈ N are such that i1 + i2 = j1 + j2 = h then we obtain as
(partial) result (ai1bi2 + aj1bj2)x

h, and the more pairs “converge” to xh, the
more efficient the TC method is. Consider on the other side the product

(a2x
2 + a0)(b1x + b0) = (a2b1)x3 + (a2b0)x2 + (a0b1)x + (a0b0)

There is no coefficient mixing at all here: it is an ordinary polynomial product,
so no TC–optimization can be done. In this paper we study multiplications for
which there is at least one mix, so that TC methods can effectively be applied.

2.1 A Note About the Kronecker Trick

Consider the following case: let a2 = b2 = B4−1 and ai = bj = B−1 otherwise in
example (1) above (the maximum possible values). Applying blindly the upper
bound of [8] for c(x) coefficients |ci| � L = (1 + min(da, db))N(a)N(b), where
N(a) = maxi{|ai|}, the value L = 3(B4 − 1)2 is obtained. Working with binary
representations (as it is usually the case with computers), if B = 2n, then L <
28n+2, and the splitting parameter Kp for Kronecker trick results therefore to
be Kp = 8n + 2.

Better upper bounds could be computed by considering how ci depends on
aj , bh coefficients and their exact size, but we take the opportunity to point out a
completely general idea: we simply don’t take into account the head coefficient cd

in the analysis, because it has never overlapping issues with other coefficients to
take care of.

Here the new bound is L′ = 2(B4 − 1)(B − 1) = 2(24n − 1)(2n − 1) < 25n+1,
with a smaller splitting parameter K ′

p = 5n + 1.

3 Sparse Univariate Toom–Cook

Classical balanced and more recent unbalanced TC algorithms [1–3,20] are now
quite well established fast multiplication methods for dense polynomials (with
balanced coefficients). To the best of our knowledge, their sparse versions have
still not been deeply analyzed, but they may appear in the bivariate approach
(BZ), that can benefit from their use – see next section. We present here some
basic versions, with some details to give an idea, considering deg(a) � deg(b)
and a0, b0 �= 0. In general, sparsity can reduce the overhead of evaluation and
interpolation phases or lower the actual value of k.

To begin with, Karatsuba algorithm core is a clever way of computing c(x) =
(a1x+a0)(b1x+ b0) = (a1b1)x2 +(a1b0 +a0b1)x+a0b0 with just three – instead
of four – coefficient products, as

c(x) = (a1b1)x2 + [(a1 + a0)(b1 + b0) − a1b1 − a0b0]x + a0b0
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Note that it can be easily generalized for the case c(x) = (a2x
r+a0)(b2xr+b0)

(with r > 1), which strictly speaking is sparse, but in practice it can be treated
as a dense one with a simple change of variable1. Three cases of sparsity follow, in
which some basic products and one “interlaced” Karatsuba emerge and suffice.

1 (a3x
3 + a1x + a0)(b1x + b0)

= (a3b1)x4+ (a3b0)x3+ (a1b1)x2+ (a1b0 + a0b1)x + (a0b0)
= (a3b1)x4+ (a3b0)x3+ (a1b1)x2+ [(a1 + a0)(b1 + b0) − a1b1 − a0b0]x + (a0b0)

2 (a2x
2 + a1x + a0)(b2x2 + b0)

= (a2b2)x4+ (a1b2)x3+ (a2b0 + a0b2)x2+ (a1b0)x + (a0b0)
= (a2b2)x4+ (a1b2)x3+ [(a2 + a0)(b2 + b0) − a2b2 − a0b0]x2+ (a1b0)x + (a0b0)

3 (a3x
3 + a2x

2 + a0)(b1x + b0)
= (a3b1)x4+ (a3b0 + a2b1)x3+ (a2b0)x2+ (a0b1)x + (a0b0)
= (a3b1)x4+ [(a3 + a2)(b1 + b0) − a3b1 − a2b0]x3+ (a2b0)x2+ (a0b1)x + (a0b0)

Two distinct simultaneous applications of Karatsuba method are also possible:

(a3x
3 + a2x

2 + a1x + a0)(b2x2 + b0) =
(a3b2)x5 + (a2b2)x4 + (a3b0 + a1b2)x3 + (a2b0 + a0b2)x2 + (a1b0)x + (a0b0) =
(a3b2)x5 + (a2b2)x4 + [(a3 + a1)(b2 + b0) − a3b2 − a1b0]x3+

[(a2 + a0)(b2 + b0) − a2b2 − a0b0]x2 + (a1b0)x + (a0b0)

These basic cases show that the generic EMI approach (involved matrices and
number of operations) becomes simpler for sparse factors. In the last following
example a Karatsuba and a TC–2.5 are at the same time interlaced.

(a4x
4 + a3x

3 + a2x
2 + a1x + a0)(b2x2 + b0) =

a4b2x
6 + a3b2x

5 + (a4b0 + a2b2)x4 + (a3b0 + b2a1)x3 + (a2b0 + b2a0)x2+
a1b0x + a0b0 =

a4b2x
6 + a3b2x

5+
[
(a4+a2+a0)(b0+b2)+(a4−a2+a0)(b0−b2)

2 − a0b0

]
x4+

[(a3 + a1)(b2 + b0) − a3b2 − a1b0] x3+[
(a4+a2+a0)(b0+b2)−(a4−a2+a0)(b0−b2)

2 − a4b2

]
x2 + a1b0x + a0b0

A bit more generally, if e.g. a(x) = ae(x2) (one factor is even) and b(x) =
be(x2) + xbo(x2) (the other one is not even nor odd) the product can be split
into two independent subproducts – c(x) = (aebe)(x2) + x(aebo)(x2) – and the
resulting interpolation matrix (phase 4 of EMI) into two submatrices, making
thus the inversion sequence of linear basic operations shorter.

1 The same idea can, of course, be applied to the general case a(xr)b(xr).
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4 Using Toom–Cook Bivariate Multiplication

Multivariate TC methods have not been so deeply studied as their univariate
versions (refer to [13] and, for a detailed study on Karatsuba, TC–2.5 and TC–3,
to [4]). We let them enter the game by considering univariate polynomials p(x)
as bivariate ones p(x, t), representing their (long) coefficients as polynomials
themselves in t (similarly as in phase 1 of EMI, but without the homogenizing h
variable – with the underlying meaning t ≡ B), see [5]. This is actually the
definition of a general injective mapping τ : Z[x] � p(x) τ

↪→ p(x, t) ∈ Z[x, t].
In most software implementations the split of the generic ai (or bi) coefficient
is almost for free, as it can be simply identified by a pointer to its first “digit”
(word, in computer science terms) and its length, as is the case with GMP library.
Example (1) would imply e.g. for a(x) the following representation

a(x, t) = (a2,3t
3 + a2,2t

2 + a2,1t + a2,0)x2 + a1,0x + a0,0

with, in this case, a1,0 = a1 and a0,0 = a0: similarly for b(x, t). A graphical
representation of the supports follows, where each number in the support of
c(x, t) indicates the number of products ai,jbh,k appearing as addend in the cor-
responding coefficient (we define as r-point a product support monomial whose
coefficient expression has r addends and as r>-point one with more than r).

t3

t2

t
1

⎡

⎢⎢⎣

1
1
1

1 1 1

⎤

⎥⎥⎦

1 x x2

×

⎡

⎢⎢⎣

1
1
1

1 1 1

⎤

⎥⎥⎦ =

1 x x2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3

2 2 4
2 2© 3
2 2 2

1 2 3 2 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

t6

t5

t4

t3

t2

t
1

1 x x2 x3 x4

Structure SB TC BZ
[1, 1, k]2 6k + 3 8k − 3 4k + 1
[1, k, 1]2 6k + 3 6k − 1 4k + 1
[k, 1, k]2 12k − 3 10k − 5 8k − 3

As you can see, c(x, t) support
cardinality is 17. For example,
c3,2 = a2,2b1,0 + a1,0b2,2 (cir-
cled in the representation) is a
2-point. Generally speaking, the
bigger the numbers, the more
effective bivariate TC is.

The results of simple calcula-
tions à la TC of the number of
needed products – not consider-
ing linear operations – for some
classes of examples are shown in
the table alongside.
In general, for what concerns the

computational complexity, the products [u0, ..., uda
] × [v0, ..., vdb

] and its sym-
metric [uda

, ..., u0] × [vdb
, ..., v0] are obviously equivalent.

It can be useful to consider terms xitj as points (i, j) ∈ N
2, in order to

visualize operations and have thus a double point of view, helping to better
visualize and understand ideas and procedures. What follows is essentially a
high level description of our bivariate BZ method proposal, with details on some
of its possible optimizations made explicit.
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4.1 Evaluation Phase

In order to have an as-easy-as-possible interpolation matrix (structured and with
many zeroes) to be inverted in phase 4 of EMI, we distinguish between sides,
base, border and inner points of the product support.

Let c(x, t) = τ(c(x)) =
∑

i,j cijx
itj ∈ Z[x, t], let d be its degree in the x

variable and Ji = max{j | cij �= 0} for i = 0, . . . , d. The two sides of the “tower”
are the sets S1 = {tj | j = 0, . . . , J0}, S2 = {xdtj | j = 0, . . . , Jd}: the base is the
set B = {xi | i = 0, . . . , d}, with σ1 = |S1|, σ2 = |S2|, β = |B|.

We call border points the terms xitJi and border the set of all border points.
Graphically speaking, they correspond to the topmost points in each column of
the tower. Border points of c(x, t) derive from composition of border points of
a(x, t) and b(x, t): they can be used as subsets of evaluations for the bivariate
case just like univariate TC methods. We will also consider the convex hull of
the tower. Its interesting part is actually the one relative to the border: we will
focus on it and call it simply hull.

Let ϕ(n) : N � n → (n + 1)/2 ∈ Q. To individuate the needed linear com-
binations giving a less dense as possible interpolation matrix we consider the
sides, the base, the border (hull) and finally the inner points:

Algorithm :

1. Apply (possibly unbalanced) univariate TC–ϕ(σ1), TC–ϕ(σ2), TC–ϕ(β) to
the sides and the base of the tower, respectively.

2. Divide the hull into “segments” si: sequences of hull points (sub-polynomials,
so to say) belonging to the same line (considered in the N

2 space), with
slope mi. Segments may or may not contain all points between extremes (for
example, in the presented case the segment [1, x2t3, x4t6] has only the point
corresponding to x2t3 between its extremes). Let li be the actual number of
points of si.

3. Apply the appropriate univariate (possibly unbalanced or sparse) TC–ϕ(li)
to each si – see details below.

4. Consider the remaining points on the border and check if some other univari-
ate TC can be applied – see some possible cases in the examples in (1), at
the end of the section.

5. Eventually apply “true” bivariate TC to recover the set of remaining inner
points (values) of the tower. Theoretically it is possible to recycle the eval-
uation values of a(x, t), b(x, t) obtained in the precedent points for border
evaluations as partial evaluation results for this phase.

Univariate TC evaluations for the three cases in step 1) above – base and
borders – require in total just σ1 + σ2 + β − 2 products: the values a0,0b0,0 and
ada,0bdb,0 can in fact be shared between the evaluation of the base and the left
(right) side, respectively, and can be computed just once.

Consider the segments of the hull of c(x, t). The ordered sequence of its slopes
can in general be easily deduced by the hulls of a(x, t) and b(x, t) by first merging
their set of slopes m(a),m(b) and ordering the resulting set in decreasing order.
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Let #s′
i,

#s′′
i be the discrete lengths of the segments of a(x, t) and b(x, t) (1 if there

is no such segment) having slope mi, respectively. The corresponding segment si

of c(x, t) will have length li � #s′
i +#s′′

i − 1. Hull segments can be treated as
univariate polynomials, but – geometrically speaking – they are embedded in a
bivariate set along oblique lines.

In fact, nontrivial product hull segments derive from (product of) segments
with the same slope m = m1/m2 (with m2 > 0) correspondingly belonging to
the hulls of the factors. They can be detected with a weighted homogenization
(with homogenizing variable H). Focusing e.g. on a(x, t), let its total weighted
degree be δa = max

i=0,...,da

{m2Ji − m1i}.

Theoretically speaking, the “partial” polynomial as(x, t) whose terms con-
tribute to the hull points on the segment s can be obtained first by computing

as(x, t,H) = a

(
xHm1 ,

t

Hm2

)
Hδa

and then setting H = 0 – and similarly for b(x, t). By knowing this, it is in
practice simply sufficient to detect the coefficients of as(x, t) and bs(x, t) to
work with and compute the needed evaluations for the corresponding segment
by using them directly.

4.2 Interpolation Phase

By ordering opportunely the terms of the product support, the initial lines of the
interpolation phase matrix – for the part related to sides and base – show three
interlaced block submatrices corresponding to univariate TCs, while remaining
lines (relative to inner points) are in general full. In order to have a well defined
matrix structure, one can order terms e.g. in the following way:

[ xdtJd , . . . , xdt, xd, xd−1, . . . , x, 1, t, . . . , tJ0 ,

{
sides
base

xitJi , hull vertices (1-points)
xi′

tJi′ , other border 1-points (left-right)
xi′′

tJi′′ , border 1>-points (left-right)
xi′′′

tj ] inner points (left-right, bottom-up)

In the interpolating phase one can take advantage of the sparsity of the inter-
polation matrix, if evaluation was done as explained. Some examples follow, in
which submatrices corresponding to sides, base and border appear. The last full
lines correspond to the inner points.
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[1, 1, 3] × [1, 1, 3]

1
2

1 1 ⇒ 2 2 3
1 × 1 2 2 2

1 1 1 1 1 1 1 2 3 2 1

(3 inner points)

;

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
16 8 4 2 1
1 1 1 1 1
1 −1 1 −1 1

1
16 8 4 2 1
1 1 1 1 1
1 −1 1 −1 1

1
1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 1 −1 1 1 1 1 1 1 −1 −1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[1, 1, 4] × [1, 1, 4]

1
2
3

1 1 ⇒ 2 2 4
1 × 1 2 2 3
1 1 2 2 2

1 1 1 1 11 1 1 1 2 3 2 1

(5 inner points)

;

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
64 32 16 8 4 2 1
1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1
1 2 4 8 16 32 64
1 −2 4 −8 16−32 64

1
1 1 1 1 1
1 −1 1 −1 1
1 2 4 8 16

1
1 1 1

64 32 16 8 4 2 1 1 1 1 1 8 8 2 4 2 4
1 −1 1 −1 1 −1 1 1 1 1 1 −1 −1 −1 1 −1 1
1 1 1 1 1 1 1 −1 1 −1 1 1 −1 −1 −1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 1 −1 −1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

As the number of inner points grows in general quadratically with the x, t-
degrees of the factors, the benefit of matrices sparsity given by border analysis
is someway limited. It is therefore convenient to use this kind of approach with
polynomials with low x-degrees and split the coefficients in a reasonable number
of “pieces”, with a clever choice of B, letting possibly recursion do its job on
subproducts.

Note that, beyond having trivial products on the sides or border, sometimes
inner points (coefficients) can be as well directly obtained with a single multipli-
cation. This someway permits to bypass and shorten the general interpolation
scheme. For example, they correspond to the three underlined “1”s in the below
shown case.
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[3, 1, 1] × [1, 1, 2]

1
1 1 1 2
1 × 1 ⇒ 1 1 2 1 1
1 1 1 1 1 1 1 2 3 2 1

;

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

16 8 4 2 1
1 1 1 1 1
1 −1 1 −1 1

1
1

1
1

1
1

−1 1 1 1 1 1 −1 1 −1 1 −1 1 −1 −1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We point out for the sake of completeness that in some cases, depending on the
shape of factor supports, “univariate” TCs can be present on the border but not
on the hull (underlined entries in the following cases).

Inner Karatsuba
[1, 2] × [3, 1, 3, 4]

1
1 1 2 2

1 1 1 ⇒ 1 2 1 3 2
1 × 1 1 1 1 2 2 3 2

1 1 1 1 1 1 1 2 2 2 1

Inner TC–3, TC–2.5
[2, 2, 2, 1, 1, 4, 5, 6] × [2, 2, 2, 1, 1, 4, 5]

1
2 2

2 4 3
1 1 1 1 4 6 4

1 2 4 4 2 3 7 8 5
1 1 1 ⇒ 2 6 8 6 4 6 9 9 5

1 1 1 1 1 4 8 10 8 6 7 9 8 4
1 1 1 × 1 1 1 2 3 2 1 4 8 10 8 6 6 7 6 3

1 1 1 1 1 1 1 1 1 1 1 2 4 6 6 6 8 10 10 8 6 5 5 4 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 7 6 5 4 3 2 1

(1)

5 Experimental Results

Some results comparing four multiplication methods, implemented as scripts
for PARI/GP [18], follow. We present in Figs. 1, 2, 3 graphics for the three
cases [1, 1, n]2 with n = 2, 3, 4, reporting what happens with greater and greater
coefficient unbalance. Timing comparisons are made with respect to schoolbook
polynomial multiplication method (SB) and percentage results are shown.
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In the keys, TC stands for Toom-Cook–3, KR for the Kronecker trick (keeping
in mind the idea in note 2.1) and BZ for the bivariate approach. Logarithmic scale
is used for the axis of the abscissas (number of bits of the smallest coefficient).
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Fig. 1. Time ratios in percent for [1, 1, 2]2 case (PARI–GP)

SB (the 100% line) reveals to be quite effective compared to both TC and
KR under a certain threshold, and the different ranges of integer coefficient
lengths for which BZ is competitive can be noticed. Note also how the graphic
shapes depend on coefficient unbalancedness, but the general behavior is anyway
sufficiently well defined.
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Fig. 2. Time ratios in percent for [1, 1, 3]2 case (PARI–GP)
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Fig. 3. Time ratios in percent for [1, 1, 4]2 case (PARI–GP)
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Fig. 4. Time ratios in percent for [1, 2, 1]2 case (PARI–GP)

For very long coefficients, other technical issues to be taken care of enter the
game, as memory management, data locality, cache swapping, etc., so that the
behavior begins to get messier and more dependent on machine architecture.
A more detailed technical analysis and a lower level software implementation is
needed in order to understand more deeply how the shapes of the supports and
the length of the coefficients impact on timings.
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Fig. 5. Time ratios in percent for [1, 3, 1]2 case (PARI–GP)
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Fig. 6. Time ratios in percent for [3, 1, 1]2 case (NTL)

Figures 4 and 5 refer to the more symmetric cases [1, 2, 1]2 and [1, 3, 1]2. In
this case the benefits are inferior and the best performance seems not to overcome
TC’s.

Comparisons with respect to NTL C++ library [10] (version 11.4.3, using
GMP-6.2.0) are shown in Figs. 6 ([3, 1, 1]2 case), 7 ([4, 1, 1]2), 8 ([1, 2, 1]2) and 9
([1, 3, 1]2). Currently there is no TC implementation in NTL: subquadratic meth-
ods “jump” from Karatsuba directly to FFT. We therefore implemented in C++
(BZ and) an ad-hoc TC–3 method for NTL, by using the mpz-layer of GMP
as well. Time ratios (in percent) of SB (called plain in NTL), TC and BZ are
computed with respect to default NTL polynomial multiplication method.
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Fig. 7. Time ratios in percent for [4, 1, 1]2 case (NTL)
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Fig. 8. Time ratios in percent for [1, 2, 1]2 case (NTL)

The gains that can be observed seem to indicate that the implementation of
special code handling unbalanced multiplication could give significant improve-
ments. Moreover, with NTL the effect we highlighted with our example (1)
emerges to evidence: a clever algorithm (Karatsuba in NTL) can be even slower
than SB on unbalanced coefficients.
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Fig. 9. Time ratios in percent for [1, 3, 1]2 case (NTL)

6 Conclusions

An analysis of univariate dense polynomial multiplication with unbalanced long
coefficients was presented, highlighting computational particularities of different
approaches, comparing them both from the theoretical and (in some case) exper-
imental point of view. Switching from the unbalanced univariate to the balanced
bivariate paradigm seems to be quite promising for coefficients having a certain
length/ratio and for some polynomial support shape.

The proposed multiplication algorithm was detailed for some degrees
of unbalance (3:1, 4:1) managed by small-degree TCs. The used EMI
evaluation/inversion sequences, nevertheless, have a wider use: by padding the
smaller coefficients, they can be applied also when the ratio of the sizes of num-
bers is even larger (5:1, 6:1, . . . ).

For small degrees of x, t, complete case studies seem to reveal good chances
of still not completely explored optimization possibilities for implementation.

Acknowledgments. The authors would like to deeply thank all the referees for their
precious comments that helped to improve the paper.
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Abstract. We discuss the design and implementation of multivariate
power series, univariate polynomials over power series, and their asso-
ciated arithmetic operations within the Basic Polynomial Algebra Sub-
programs (BPAS) Library. This implementation employs lazy variations
of Weierstrass preparation and the factorization of univariate polyno-
mials over power series following Hensel’s lemma. Our implementation
is lazy in that power series terms are only computed when explicitly
requested. The precision of a power series is dynamically extended upon
request, without requiring any re-computation of existing terms. This
design extends into an “ancestry” of power series whereby power series
created from the result of arithmetic or Weierstrass preparation automat-
ically hold on to enough information to dynamically update themselves
to higher precision using information from their “parents”.

Keywords: Lazy power series · Weierstrass preparation · Hensel’s
lemma

1 Introduction

Power series are polynomial-like objects with, potentially, an infinite number of
terms. They play a fundamental role in theoretical computer science, functional
analysis, computer algebra, and algebraic geometry. Of course, the fact that
power series may have an infinite number of terms presents interesting challenges
to computer scientists. How to represent them on a computer? How to perform
arithmetic operations effectively and efficiently with them?

One standard approach is to implement power series as truncated power
series, that is, by setting up in advance a sufficiently large accuracy, or pre-
cision, and discarding any power series term with a degree equal or higher to
that accuracy. Unfortunately, for some important applications, not only is such
accuracy problem-specific, but sometimes cannot be determined before calcula-
tions start, or later may be found to not go far enough. This scenario occurs,
for instance, with modular methods [16] for polynomial system solving [7] based
on Hensel lifting and its variants [11]. It is necessary then to implement power
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series with data structures and techniques that allow for reactivity and dynamic
updates.

Since a power series has potentially infinitely many terms, it is natural to
represent it as a function, that we shall call a generator, which computes the
terms of that power series for a given accuracy. This point of view leads to nat-
ural algorithms for performing arithmetic operations (addition, multiplication,
division) on power series based on lazy evaluation.

Another advantage of this functional approach is the fact that it supports con-
currency in a natural manner. Consider a procedure which takes some number of
power series as input and returns a number of power series. Assume the genera-
tors of the outputs can be determined in essentially constant time, which is often
the case. Subsequent computations involving those output power series can then
start almost immediately. In other words, the first procedure call is essentially
non-blocking, and the output power series can (i) be used immediately as input
to other procedure calls, and (ii) have their terms computed only as needed. This
approach allows for power series terms to be computed or “produced” while con-
currently being “consumed” in subsequent computations. These procedure calls
can be seen as the stages of a pipelined computation [17, Ch. 9].

In this work, we present our implementation of multivariate power series
(Sect. 3) and univariate polynomials over multivariate power series “UPoPS”
(Sect. 4) based on the ideas of lazy evaluation. Factoring such polynomials,
by means of Hensel’s lemma and its extensions and variants, like the extended
Hensel construction (EHC) [1,20] and the Jung-Abhyankar Theorem [19], is our
driving application. We discuss a lazy implementation of factoring via Hensel’s
lemma (Sect. 6) by means of lazy Weierstrass preparation (Sect. 5).

Our implementation is part of the Basic Polynomial Algebra Subprograms
(BPAS) library [3], a free and open-source computer algebra library for polyno-
mial algebra. The library’s core, of which our power series and UPoPS are a part,
is carefully implemented in C for performance. The library also has a C++ inter-
face for better usability. Such an interface for power series is forthcoming. Our
current implementation is both sequential and over the field of rational numbers.
However, the BPAS library has the necessary infrastructure, in particular asyn-
chronous generators, see [4], to take advantage of the concurrency opportunities
(essentially pipelining) created by our design based on lazy evaluation.

Existing implementations of multivariate power series are also available in
Maple’s PowerSeries1 library [2,15] and SageMath [22]. The former is simi-
larly based on lazy evaluation, while the latter uses the truncated power series
approach mentioned above. Our experimental results show that our implemen-
tation in BPAS outperforms its counterparts by several orders of magnitude.

Lazy evaluation in computer algebra has some history, see the work of
Karczmarczuk [14] (discussing different mathematical objects with an “infinite”
length) and the work of Monagan and Vrbik [18] (discussing sparse polynomial
arithmetic). Lazy univariate power series, in particular, have been implemented

1 This library is accessible, yet undocumented, in Maple 2020 as
RegularChains:-PowerSeries. See www.regularchains.org/documentation.html.

www.regularchains.org/documentation.html
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by Burge and Watt [6] and by van der Hoeven [13]. However, up to our knowledge,
our implementation is the first for multivariate power series in a compiled code.

2 Background

This section gathers basic concepts about multivariate formal power series. We
suggest the book of G. Fischer [9] for an introduction to the subject. We start
with formal power series arithmetic. Let K be an algebraic number field and K

its algebraic closure. We denote by K[[X1, . . . , Xn]] the ring of formal power
series with coefficients in K and with variables X1, . . . , Xn.

Let f =
∑

e∈Nn aeX
e be a formal power series and d ∈ N. The homogeneous

part and polynomial part of f in degree d are denoted by f(d) and f (d), and defined
by f(d) =

∑
|e|=d aeX

e and f (d) =
∑

k≤d f(k). Note that e = (e1, . . . , en) is a
multi-index, Xe stands for Xe1

1 · · · Xen
n , |e| = e1 + · · · + en, and ae ∈ K holds.

Let f, g ∈ K[[X1, . . . , Xn]]. Then the sum, difference, and product of f and g
are given by f ± g =

∑
d∈N

(f(d) ± g(d)) and fg =
∑

d∈N

(
Σk+�=d (f(k)g(�))

)
.

The order of a formal power series f ∈ K[[X1, . . . , Xn]], denoted by ord(f), is
defined as min{d | f(d) �= 0}, if f �= 0, and as ∞ otherwise. We recall several
properties. First, K[[X1, . . . , Xn]] is an integral domain. Second, the set M =
{f ∈ K[[X1, . . . , Xn]] | ord(f) ≥ 1} is the only maximal ideal of K[[X1, . . . , Xn]].
Third, for all k ∈ N, we have Mk = {f ∈ K[[X1, . . . , Xn]] | ord(f) ≥ k}.

Krull Topology. Let (fn)n∈N be a sequence of elements of K[[X1, . . . , Xn]] and
f ∈ K[[X1, . . . , Xn]]. We say that (fn)n∈N converges to f if for all k ∈ N there
exists N ∈ N s.t. for all n ∈ N we have n ≥ N ⇒ f − fn ∈ Mk. We say
that (fn)n∈N is a Cauchy sequence if for all k ∈ N there exists N ∈ N s.t. for all
n,m ∈ N we have n,m ≥ N ⇒ fm − fn ∈ Mk. The following results hold:
we have

⋂
k∈N

Mk = 〈0〉. Moreover, if every Cauchy sequence in K converges,
then every Cauchy sequence of K[[X1, . . . , Xn]] converges too.

Inverse of a Power Series. Let f ∈ K[[X1, . . . , Xn]]. Then, the following
properties are equivalent: (i) f is a unit, (ii) ord(f) = 0, (iii) f �∈ M. Moreover,
if f is a unit, then the sequence (un)n∈N, where un = 1 + g + g2 + · · · + gn and
g = 1 − f/f(0), converges to the inverse of f/f(0).

Assume n ≥ 1. Denote by A the ring K[[X1, . . . , Xn−1]] and by M be the
maximal ideal of A. Note that n = 1 implies M = 〈0〉.
Lemma 1. Let f, g, h ∈ A such that f = gh holds. Assume n ≥ 2. We write
f =

∑∞
i=0 fi, g =

∑∞
i=0 gi and h =

∑∞
i=0 hi, where fi, gi, hi ∈ Mi \Mi+1 holds

for all i > 0, with f0, g0, h0 ∈ K. We note that these decompositions are uniquely
defined. Let r ∈ N. We assume that f0 = 0 and h0 �= 0 both hold. Then the term
gr is uniquely determined by f1, . . . , fr, h0, . . . , hr−1.

Lemma 1 is essential to our implementation of Weierstrass Preparation The-
orem (WPT). Hence, we give a proof by induction on r. Since g0h0 = f0 = 0
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and h0 �= 0 both hold, the claim is true for r = 0. Now, let r > 0 and we can
assume that g0, . . . , gr−1 are uniquely determined by f1, . . . , fr−1, h0, . . . , hr−2.
Observe that to determine gr, it suffices to expand f = gh modulo Mr+1:
f1 + f2 + · · ·+ fr = g1h0 +(g2h0 + g1h1)+ · · ·+(grh0 + gr−1h1 + · · · + g1hr−1) .
gr is then found by polynomial multiplication and addition and a division by h0.

Now, let f ∈ A[[Xn]], written as f =
∑∞

i=0 aiX
i
n with ai ∈ A for all i ∈ N .

We assume f �≡ 0 mod M[[Xn]]. Let d ≥ 0 be the smallest integer such that
ad �∈ M. Then, WPT states the following.

Theorem 1. There exists a unique pair (α, p) satisfying the following:

(i) α is an invertible power series of A[[Xn]],
(ii) p ∈ A[Xn] is a monic polynomial of degree d,
(iii) writing p = Xd

n +bd−1X
d−1
n + · · ·+b1Xn +b0, we have: bd−1, . . . , b1, b0 ∈ M,

(iv) f = αp holds.

Moreover, if f is a polynomial of A[Xn] of degree d + m, for some m, then α is
a polynomial of A[Xn] of degree m.

Proof. If n = 1, then writing f = αXd
n with α =

∑∞
i=0 ai+dX

i
n proves

the existence of the claimed decomposition. Now assume n ≥ 2. Let us write
α =

∑∞
i=0 ciX

i
n with ci ∈ A for all i ∈ N. Since we require α to be a unit, we

have c0 �∈ M. We must then solve for bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . such that
for all m ≥ 0 we have:

a0 = b0c0
a1 = b0c1 + b1c0
a2 = b0c2 + b1c1 + b2c0

...
ad−1 = b0cd−1 + b1cd−2 + · · · + · · · + bd−2c1 + bd−1c0

ad = b0cd + b1cd−1 + · · · + · · · + bd−1c1 + c0
ad+1 = b0cd+1 + b1cd + · · · + · · · + bd−1c2 + c1

...
ad+m = b0cd+m + b1cd+m−1 + · · · + · · · + bd−1cm+1 + cm

...

We will compute each of bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . modulo each of the
successive powers of M, that is, M,M2, . . . ,Mr, . . .. We start modulo M. By
definition of d, the left hand sides of the first d equations above are all 0
mod M. Since c0 is a unit, each of b0, b1, . . . , bd−1 is 0 mod M. Plugging this
into the remaining equations we obtain ci ≡ ad+i mod M, for all i ≥ 0. There-
fore, we have solved for each of bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . modulo M. Let
r > 0 be an integer. We assume that we have inductively determined each of
bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . modulo each of M, . . . ,Mr. We wish to deter-
mine them modulo Mr+1. Consider the first equation, namely a0 = b0c0, with
a0, b0, c0 ∈ A. It follows from the hypothesis and Lemma 1 that we can compute
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b0 modulo Mr+1. Consider the second equation, that we re-write a1−b0c1 = b1c0.
A similar reasoning applies and we can compute b1 modulo Mr+1. Continuing in
this manner, we can compute each of b2, . . . , bd−1 modulo Mr+1. Finally, using
the remaining equations, determine ci mod Mr+1, for all i ≥ 0. �

This theorem allows for three remarks. First, the assumption of the theo-
rem, namely f �≡ 0 mod M[[Xn]], can always be met, for any f �= 0, by a
suitable linear change of coordinates. Second, WPT can be used to prove that
K[[X1, . . . , Xn]] is both a unique factorization domain (UFD) and a Noetherian
ring. Third, in the context of the theory of analytic functions, WPT implies
that any analytic function (namely f in our context) resembles a polynomial
(namely p in our context) in the vicinity of the origin.

Now, let f = akY k + · · · + a1Y + a0 with ak, . . . , a0 ∈ K[[X1, . . . , Xn]]. We
define f = f(0, . . . , 0, Y ) ∈ K[Y ]. We assume that f is monic in Y (ak = 1).
We further assume K is algebraically closed. Thus, there exist positive integers
k1, . . . , kr and pairwise distinct elements c1, . . . , cr ∈ K such that we have f =
(Y − c1)k1(Y − c2)k2 · · · (Y − cr)kr .

Theorem 2 (Hensel’s Lemma). There exists f1, . . . , fr ∈ K[[X1, . . . , Xn]]
[Y ], all monic in Y , such that we have:

1. f = f1 · · · fr,
2. deg(fj , Y ) = kj, for all j = 1, . . . , r,
3. fj = (Y − cj)kj , for all j = 1, . . . , r.

Proof. The proof is by induction on r. Assume first r = 1. Observe that k = k1
necessarily holds. Now define f1 := f . Clearly f1 has all the required properties.
Assume next r > 1. We apply a change of coordinates sending cr to 0. That is:
g(X1, . . . , Xn, Y ) := f(X1, . . . , Xn, Y +cr) = (Y +cr)k +a1(Y +cr)k−1+· · ·+ak.
WPT applies to g. Hence there exist α, p ∈ K[[X1, . . . , Xn]][Y ] such that α is a
unit, p is a monic polynomial of degree kr, with p = Y kr , and we have g = αp.
Then, we set fr(Y ) = p(Y − cr) and f∗ = α(Y − cr). Thus fr is monic in Y and
we have f = f∗fr. Moreover, we have The induction hypothesis applied to f∗

implies the existence of f1, . . . , fr−1. �

3 The Design and Implementation of Lazy Power Series

Our power series implementation is both lazy and high-performing. To achieve
this, our design and implementation has two goals:

(i) compute only terms of the series which are truly needed; and
(ii) have the ability to “resume” a computation, in order to obtain a higher

precision power series without restarting from the beginning.

Of course, the lazy nature of our implementation refers directly to (i), while the
high-performance nature is due in part to (ii) and in part to other particular
implementation details to be discussed.
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Facilitating both of these aspects requires the use of some sort of generator
function—a function which returns new terms for a power series to increase its
precision. Such a generator, is the key to high-performance in our implementa-
tion, yet also the most difficult part of the design.

Our goal is to define a structure encoding power series so that they may be
dynamically updated on request. Each power series could then be represented as
a polynomial alongside some generator function. A key element of this design is
to “hide” the updating of the underlying polynomial. In our C implementation
this is done through a functional interface comprising of two main functions: (i)
getting the homogeneous part of a power series, and (ii) getting the polynomial
part of a power series, each for a requested degree. These functions call some
underlying generator to produce terms until the requested degree is satisfied.

geometric_series_ps := proc(vars::list)
local homog_parts := proc(vars::list)

return d -> sum(vars[i], i=1..nops(vars))^d;
end proc;
ps := table();
ps[DEG] := 0;
ps[GEN] := homog_parts(vars); #capture vars in closure , return a function
ps[POLY] := ps[GEN](0);
return ps;

end proc;

Listing 1. The geometric series as a lazy power series

As a first example, consider, the construction of the geometric series as a lazy
power series, in Maple-style pseudo-code, in Listing 1. A power series is a data
structure holding a polynomial, a generator function, and an integer to indicate
up to which degree the power series is currently known. In this simple example,
we see the need to treat functions as first-class objects. The manipulation of
such functions is easy in functional or scripting languages, where dynamic typing
and first-class function objects support such manipulation. This manipulation
becomes further interesting where the generator of a power series must invoke
other generators, as in the case of arithmetic (see Sect. 3.2).

In support of high-performance we choose to implement our power series in
the strongly-typed and compiled C programming language rather than a script-
ing language. On one hand, this allows direct access to our underlying high-
performance polynomial implementation [5], but on the other hand creates an
impressive design challenge to effectively handle the need for dynamic function
manipulation. In this section we detail our resulting solution, which makes use
of a so-called ancestry in order for the generator function of a newly created
power series to “remember” from where it came. We begin by discussing the
power series data structure, and our solution to generator functions in C. Then,
Sect. 3.2 examines power series multiplication and division using this structure,
and evaluates our arithmetic performance against SageMath and Maple.
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3.1 The Power Series Data Structure, Generators, and Ancestors

The organization of our power series data structure is focused on supporting
incremental generation of new terms through continual updates. To support this,
the first fundamental design element is the storage of terms of the power series.
The current polynomial part, i.e. the terms computed so far, of a power series
are stored in a graded representation. A dense array of (pointers to) polynomials
is maintained whereby the index of a polynomial in this array is equal to its
(total) degree. Thus, this is an array of homogeneous polynomials representing
the homogeneous parts of the power series, called the homogeneous part array.
The power series data structure is a simple C struct holding this array, as well
as integer numbers indicating the degree up to which homogeneous parts are
currently known, and the allocation size of the homogeneous part array.

Using our graded representation, the generator function is simply a function
returning the homogeneous part of a power series for a requested degree. Unfor-
tunately, in the C language, functions are not readily handled as objects. Hence,
we look to essentially create a closure for the generator function (see, e.g., [21,
Ch. 3]), by storing a function pointer along with the values necessary for the
function. For simplicity of implementation, these captured values are passed to
the function as arguments. We first describe this function pointer.

In an attempt to keep the generators as simple as possible, we enforce some
symmetry between all generators and thus the stored function pointers. Namely:
(i) the first parameter of each generator must be an integer, indicating the
degree of the homogeneous polynomial to be generated; and (ii) they must return
that homogeneous polynomial. For some generator functions, e.g. the geometric
series, this single integer argument is enough to obtain a particular homogeneous
part. However, this is insufficient for most cases, particularly for generating a
homogeneous part of a power series which resulted from an arithmetic operation.

Therefore, to introduce some flexibility in the generators, we extend the pre-
vious definition of a generator function to include a finite number of void pointer
parameters following the first integer parameter. The use of void pointer param-
eters is a result of the fact that function pointers must be declared to point to
a function with a particular number and type of parameters. Since we want
to store this function pointer in the power series struct, we would otherwise
need to capture all possible function declarations, which is a very rigid solu-
tion. Instead, void pointer parameters simultaneously allow for flexibility in
the types of the generator parameters, as well as limit the number of function
pointer types which must be captured by the power series struct. Flexibil-
ity arises where these void pointers can be cast to any other pointer type, or
even cast to any machine-word-sized plain data type (e.g. long or double). In
our implementation these so-called void generators are simple wrappers, casting
each void pointer to the correct data type for the particular generator, and then
calling the true generator. Sect. 3.2 provides an example in Listing 4.

Our implementation, which supports power series arithmetic, Weierstrass
preparation, and factorization via Hensel’s lemma, currently requires only 4
unique types of function pointers for these generators. All of these function
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pointers return a polynomial and take an integer as the first parameter. They
differ in taking 0–3 void pointer parameters as the remaining parameters. We
call the number of these void pointer parameter the generator’s order. We then
create a union type for these 4 possible function pointers and store only the union
in the power series struct. The generator’s order is also stored as an integer to
be able to choose the correct generator from the union type at runtime.

Finally, these void pointers are also stored in the struct to eventually be
passed to the generator. When the generator’s order is less than maximum, these
extra void pointers are simply set to NULL. The structure of these generators, the
generator union type, and the power series struct itself is shown in Listing 2.
In our implementation, these generators are used generically, via the aforemen-
tioned functional interface. In the code listings which follow, these functions are
named homogPart PS and polynomialPart PS, to compute the homogeneous
part and polynomial part of a power series, respectively.

typedef Poly_ptr (* homog_part_gen)(int);
typedef Poly_ptr (* homog_part_gen_unary)(int , void*);
typedef Poly_ptr (* homog_part_gen_binary)(int , void*, void*);
typedef Poly_ptr (* homog_part_gen_tertiary)(int , void*, void*, void*);

typedef union HomogPartGenerator {
homog_part_gen nullaryGen;
homog_part_gen_unary unaryGen;
homog_part_gen_binary binaryGen;
homog_part_gen_tertiary tertiaryGen;

} HomogPartGenerator_u ;

typedef struct PowerSeries {
int deg;
int alloc;
Poly_ptr* homog_polys;
HomogPartGenerator_u gen;
int genOrder;
void *genParam1, *genParam2, *genParam3;

} PowerSeries_t;

Listing 2. A first implementation of the power series struct in C and function pointer
declarations for the possible generator functions. Poly ptr is a pointer to a polynomial.

In general, these void pointer generator parameters are actually pointers
to existing power series struct. For example, the operands of an arithmetic
operation would become arguments to the generator of the result. This relation
then yields a so-called ancestry of power series. In this indirect way, a power
series “remembers” from where it came, in order to update itself upon request
via its generator. This may trigger a cascade of updates where updating a power
series requires updating its “parent” power series, and so on up the ancestry
tree. Section 3.2 explores this detail in the context of power series arithmetic,
meanwhile it is also discussed as a crucial part of a lazy implementation of
Weierstrass preparation (Sect. 5) and factorization via Hensel’s lemma (Sect. 6).

The implementation of this ancestry requires yet one more additional fea-
ture. Since our implementation is in the C language, we must manually manage
memory. In particular, references to parent power series (via the void pointers)
must remain valid despite actions from the user. Indeed, the underlying updating
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mechanism should be transparent to the end-user. Thus, it should be perfectly
valid for an end-user to obtain, for example, a power series product, and then
free the memory associated with the operands of the multiplication.

In support of this we have established a reference counting scheme. Whenever
a power series is made the parent of another power series its reference count is
incremented. Therefore, users may “free” or “destroy” a power series when it is
no longer needed, but the memory persists as long as some other power series
has reference to it. Destruction is then only a decrement of a reference counter.
However, once the counter falls to 0, the data is actually freed, and moreover,
a child power series will decrement the reference count of its parents. In a final
complication, we must consider the case when a void pointer parameter is not
pointing to a power series. We resolve this by storing, in the power series struct,
a value to identify the actual type of a void parameter. A simple if condition
can then check this type and conditionally free the generator parameter, if it is
not plain data. For example, a power series or a UPoPS, see Listing 3.

typedef enum GenParamType {
PLAIN_DATA = 0,
POWER_SERIES = 1,
UPOPS = 2,
MPQ_LIST = 3

} GenParamType_e;

void destroyPowerSeries_PS(PowerSeries_t* ps) {
--(ps->refCount);
if (ps->refCount <= 0) {

for (int i = 0; i <= ps->deg; ++i) {
freePolynomial(homog_polys[i]);
}
if (ps->genParam1 != NULL && ps->paramType1 == POWER_SERIES) {

destroyPowerSeries_PS(( PowerSeries_t *) ps->genParam1);
}
// repeat for other parameters.

}
}

Listing 3. Extending the power series struct to include reference counting and proper
management of reference counts to parent power series via destroyPowerSeries PS

3.2 Implementing Power Series Arithmetic

With the power series structure fully defined, we are now able to see exam-
ples putting its generators to use. Given the design established in the previous
section, implementing a power series operation is as simple as defining the unique
generator associated with that operation. In this section we present power series
multiplication and division using this design. Let us begin with the former.

As we have seen in Sect. 2, the power series product of f, g∈K[[X1, . . . , Xn]]
is defined simply as h = fg =

∑
d∈N

(
Σk+�=d (f(k)g(�))

)
. In our graded rep-

resentation, continually computing new terms of h requires simply computing
homogeneous parts of increasing degree. Indeed, for a particular degree d we
have (fg)(d) =

∑
k+�=d f(k)g(�). Through our use of an ancestry and generators,

the power series h can be constructed lazily, by simply defining its generator



Power Series Arithmetic with the BPAS Library 117

and generator parameters, and instantly returning the resulting struct. The
generator in this case is exactly a function to compute (fg)(d) from f and g.

In reality, the generator stored in the struct encoding h is the void gener-
ator homogPartVoid prod PS which, after casting parameters, simply calls the
true generator, homogeneousPart prod PS. This is shown in Listing 4. There,
multiplyPowerSeries PS is the actual power series operator, returning a lazily
constructed power series product. There, the parents f and g are reserved (ref-
erence count incremented) and assigned to be generator parameters, and the
generator function pointer set. Finally, a single term of the product is computed.

Poly_ptr homogPart_prod_PS(int d, PowerSeries_t* f, PowerSeries_t* g) {
Poly_ptr sum = zeroPolynomial ();
for (int i = 0; i <= d; i++) {

Poly_ptr prod = multiplyPolynomials(
homogPart_PS(d-i, f), homogPart_PS(i, g));

sum = addPolynomials(sum , prod);
}
return sum;

}

Poly_ptr homogPartVoid_prod_PS(int d, void* param1, void* param2) {
return homogPart_prod_PS(d, (PowerSeries_t *) param1,

(PowerSeries_t *) param2);
}

PowerSeries_t* multiplyPowerSeries_PS(PowerSeries_t* f, PowerSeries_t* g) {
if (isZeroPowerSeries_PS(f) || isZeroPowerSeries_PS(g)) {

return zeroPowerSeries_PS ();
}
reserve_PS(f); reserve_PS(g);
PowerSeries_t* prod = allocPowerSeries(1);
prod->gen.binaryGen= &( homogPartVoid_prod_PS)
prod->genParam1 = (void*) f;
prod->genParam2 = (void*) g;
prod->paramType1 = POWER_SERIES;
prod->paramType2 = POWER_SERIES;
prod->deg = 0;
prod->homogPolys[0] = homogPart_prod_PS(0, f, g);
return prod;

}

Listing 4. Computing the multiplication of two power series, where homogPart prod PS

is the generator of the product

Now consider finding the quotient h =
∑

e ceX
e which satisfies f = gh for

a given power series f =
∑

e aeX
e and an invertible power series g =

∑
e beX

e.
One could proceed by equating coefficients in f = gh, with b0 being the constant
term of g, to obtain ce = 1/b0

(
ae − ∑

k+�=e bkc�

)
. This formula can easily be

rearranged in order to find the homogeneous part of h for a given degree d:
h(d) = 1/g(0)

(
f(d) − ∑d

k=1 g(k)h(d−k)

)
. This formula is possible since to compute

h(d) we need only h(i) for i = 1, . . . , d − 1. Moreover, the base case is simply
h(0) = f(0)/g(0), a valid division in K since g(0) �= 0. The rest follows by induction.

In our graded representation, this formula yields a generator for a power series
quotient. The realization of this generator in code is simple, as shown in Listing 5.
Not shown is the void generator wrapper and a top-level function to return the
lazy quotient, which is simply symmetric to the previous multiplication example.
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The only trick to this generator for the quotient is that it requires a reference
to the quotient itself. This creates an issue of a circular reference in the power
series ancestry. To avoid this, we abuse our parameter typing and label the
quotient’s reference to itself as plain data.

Poly_ptr homogPart_quo_PS(int d, PowerSeries_t* f, PowerSeries_t* g,
PowerSeries_t* h) {
if (d == 0) {

return dividePolynomials(homogPart_PS(0, f), homogPart_PS(0, g));
}
Poly_ptr s = homogPart_PS(d, f);
for (int i = 1; i <= deg; ++i) {

Poly_ptr p = multiplyPolynomials(homogPart_PS(i, g),
homogPart_PS(d-i, h));

s = subPolynomials(s, p);
}
return divideByRational(s, homogPart(0, g))

}

Listing 5. Computing the division of two power series, where homogPart quo PS is the
genrator of the quotient

We now look to compare our implementation against SageMath [22], and
Maple 2020. In Maple, the PowerSeries library [2,15] provides lazy multivari-
ate power series, meanwhile the built-in mtaylor command provides truncated
multivariate taylor series. Similarly, SageMath includes only truncated power
series. In these latter two, an explicit precision must be used and truncations can-
not be extended once computed. Consequently, our experimentation only mea-
sures computing a particular precision, thus not using our implementation’s abil-
ity to resume computation. We compare against all three; see Figs. 1, 2 and 3.

In SageMath, the multivariate power series ring R[[X1, . . . , Xn]] is imple-
mented using the univariate power series ring S[[T ]] with S = R[X1, . . . , Xn].
In S[[T ]], the subring formed by all power series f such that the coefficient of T i

in f is a homogeneous polynomial of degree i (for all i ≥ 0) is isomorphic to
R[[X1, . . . , Xn]]. By default, Singular [8] underlies the multivariate polynomial
ring S while Flint [12] underlies the univariate polynomials used in univariate
power series. Python 3.7 interfaces and joins these underlying implementations.
To see exactly how SageMath works consider f ∈ K[[X1,X2]] with the goal is
to compute 1

f and f · 1
f to precision d. One begins by constructing the power

series ring in X1,X2 over Q with the default precision set to d as R.<x,y> =
PowerSeriesRing(QQ, default prec=d). Then g = f^-1 returns the inverse,
and h = f * g the desired product, to precision d.

Throughout this paper our benchmarks were collected with a time limit of
1800 seconds on a machine running Ubuntu 18.04.4 with an Intel Xeon X5650
processor running at 2.67 GHz, with 12x4GB DDR3 memory at 1.33 GHz.

The first set of benchmarks are presented in Fig. 1 where the power series
f = 1 + X1 + X2 is both inverted and multiplied by its inverse. Figures 2 and
3 present the same but for f = 1 + X1 + X2 + X3 and f = 2 + 1

3 (X1 + X2),
respectively. In all cases, f · 1f includes the time to compute the inverse. It is clear
that our implementation is orders of magnitude faster than existing implementa-
tions. This is due in part to the efficiency of our underlying polynomial arithmetic
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implementation [5], but also to our execution environment. Our implementation
is written in the C language and fully compiled, meanwhile, both SageMath
and Maple have a level of interpreted code, which surely impacts performance.
We note that, through truncated power series as polynomials, the dense multi-
plication of a power series by its inverse is trivial for SageMath and mtaylor.

Fig. 1. Computing 1
f

and f · 1
f

for f = 1 + X1 + X2

4 Univariate Polynomials over Lazy Power Series

A univariate polynomial with multivariate power series coefficients, i.e. a univari-
ate polynomial over power series (UPoPS), is implemented as a simple extension
of our existing power series. Following a simple dense univariate polynomial
design, our UPoPS are represented as an array of coefficients, each being a
pointer to a power series, where the index of the coefficient in the array implies
the degree of the coefficient’s associated monomial. Integers are also stored for
the degree of the polynomial and the allocation size of the coefficient array. In
support of the underlying lazy power series, we also add reference counting to
UPoPS.

The arithmetic of UPoPS is inherited directly from its coefficient ring (our
lazy power series) and follows a naive implementation of univariate polynomials
(see, e.g. [10, Ch. 2]). Through the use of our lazy power series, our imple-
mentation of UPoPS is automatically lazy through each individual coefficient’s
ancestry. Lazy UPoPS addition, subtraction, and multiplication follow easily.

One important operation on UPoPS which is not inherited directly from
our power series implementation is Taylor shift. This operation takes a UPoPS
f ∈ K[[X1, . . . , Xn]][Y ] and returns f(Y + c) for some c ∈ K. Normally, the shift
operator would be defined for any element of the ground ring K[[X1, . . . , Xn]],
however our use of Taylor shift in applying Hensel’s lemma (see Sect. 6), requires
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Fig. 2. Computing 1
f

and f · 1
f

for f = 1 + X1 + X2 + X3

Fig. 3. Computing 1
f

and f · 1
f

for f = 2 + 1
3
(X1 + X2)

only shifting by elements of K, and we thus specialize to that case. Since the
coefficients of f are lazy power series, our goal is to compute f(Y + c) lazily
as well. Since our UPoPS are represented in a dense fashion, we compute the
coefficients of f(Y +c) as a polynomial in Y . Let S = (si,j) be the lower triangular
matrix such that si,j is the coefficient of Y j in the binomial expansion (Y + c)i,
for i = 0, . . . , k, and j = 0, . . . , i, where k = deg(f). Let A = (ai) be the vector
of the coefficients of f and B = (bi) that of the coefficients of f(Y + c), so that
we have f(Y ) =

∑
0≤i≤kaiY

i and f(Y + c) =
∑

0≤i≤kbiY
i. Then we can verify

that bi is the inner product of the i-th sub-diagonal of S with the lower k +1− i
elements of A, for i = 0, . . . , k. In particular for i = 0, the coefficient b0 is the
inner product of the diagonal of S and the vector A.
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Recalling that c ∈ K, the construction of bi can be performed in a graded
fashion from the linear combinations of homogeneous parts of aj for j ≤ i. The
homogeneous part bi(d) of degree d, can be computed from only aj(d) , for j ≤ i.
Therefore, a generator for bi is easily constructed from the homogeneous parts
of aj , for j ≤ i, using multiplication by elements of K and polynomial addition.
Therefore, we can construct the entire UPoPS f(Y +c) in a lazy manner through
initializing each coefficient bi with a so-called linear combination generator. Since
the main application of Taylor shift is factorization via Hensel’s lemma, we leave
its evaluation to Sect. 6 where benchmarks for factorization are presented.

5 Lazy Weierstrass Preparation

In this section we consider the application of Weierstrass Preparation Theorem
(WPT) to univariate polynomials over power series. Let f , p, α be elements
of K[[X1, . . . , Xn]][Y ], where f =

∑d+m
i=0 aiY

i, p = Y d +
∑d−1

i=0 biY
i, and α =∑m

i=0 ciY
i. From the proof of WPT (Theorem 1), we have that f = αp implies

the following equalities:

a0 = b0c0
a1 = b0c1 + b1c0

...
ad−1 = b0cd−1 + b1cd−2 + · · · + bd−2c1 + bd−1c0

ad = b0cd + b1cd−1 + · · · + bd−1c1 + c0
...

ad+m−1 = bd−1cm + cm−1

ad+m = cm

(1)

Following the proof, we wish to solve these equations modulo successive pow-
ers of M, the maximal ideal of K[[X1, . . . , Xn]]. This implies that we will be
iteratively updating each power series b0, . . . , bd−1, c0, . . . , cm by adding homo-
geneous polynomials of increasing degree, precisely as we have done for all lazy
power series operations thus far. To solve these equations modulo Mr+1, both
the proof of WPT and the algorithm operate in two phases. First, the coefficients
b0, . . . , bd−1 of p are updated using the equations from a0 to ad−1, one after the
other. Second, the coefficients c0, . . . , cm of α are updated.

Let us begin with the first phase. Rearranging the equations that express a0

to ad−1 shows their successive dependency where bi−1 is needed for bi:

a0 = b0c0
a1 − b0c1 = b1c0

a2 − b0c2 − b1c1 = b2c0
...

ad−1 − b0cd−1 − b1cd−2 + · · · − bd−2c1 = bd−1c0

(2)
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Consider that b0, . . . , bd−1, c0, . . . , cm are known modulo Mr and a0, . . . , ad−1

are known modulo Mr+1. Using Lemma 1 the first equation a0 = b0c0 can then
be solved for b0 modulo Mr+1. From there, the expression a1−b0c1 then becomes
known modulo Mr+1. Notice that the constant term of b0 is 0 by definition, thus
the product b0c1 is known modulo Mr+1 as long as b0 is known modulo Mr+1.
Therefore, the entire expression a1 − b0c1 is known modulo Mr+1 and Lemma 1
can be applied to solve for b1 in the equation a1 − b0c1 = b1c0. This argument
follows for all equations, therefore solving for all b0, . . . , bd−1 modulo Mr+1.

In the second phase, we look to determine c0, . . . , cm modulo Mr+1. Here,
we have already computed b0, . . . , bd−1 modulo Mr+1. A rearrangement of the
remaining equations of (1) shows that each ci may be computed modulo Mr+1:

cm = ad+m

cm−1 = ad+m−1 − bd−1cm

cm−2 = ad+m−2 − bd−2cm − bd−1cm−1

...
c0 = ad − b0cd − b1cd−1 − · · · − bd−1c1

(3)

Consider the second equation. Observe that ad+m−1 and bd−1 are known modulo
Mr+1 and that bd−1 ∈ M holds. Then, the product bd−1cm is known modulo
Mr+1 and we deduce cm−1 modulo Mr+1. The same follows for cm−2, . . . , c0.

With these two sets of re-arranged equations, we have seen how the coeffi-
cients of p and α can be updated modulo successive powers of M. That is to say,
how they can be updated by adding homogeneous parts of successive degrees.
This design lends itself to be implemented as generator functions.

The first challenge to this design is that each power series coefficient of p is not
independent, and must be updated in a particular order. Moreover, to generate
homogeneous parts of degree d for the coefficients of p, the coefficients of α must
also be updated to degree d − 1. Therefore, it is a required side effect of each
generator of b0, . . . , bd−1, c0, . . . , cm that all other power series are updated. To
implement this, the generators of the power series of p are a mere wrapper of the
same underlying updating function which updates all coefficients simultaneously.
This so-called Weierstrass update follows two phases as just explained.

In the first phase one must use Lemma 1 to solve for the homogeneous part
of degree r for each b0, . . . , bd−1. To achieve this effectively, our implementation
follows two key points. The first is an efficient implementation of Lemma 1 itself.
Consider again the equations of Lemma 1 for f = gh modulo Mr+1:

f(1) + f(2) + · · · + f(r) = (g(1) + g(2) + · · · + g(r))(h(0) + h(1) + · · · + h(r))
=

(
g(1)h(0)

)
+

(
g(2)h(0) + g(1)h(1)

)
+ · · · +(

g(r)h(0) + g(r−1)h(1) + · · · + g(1)h(r−1)

)
.

(4)

The goal is to obtain g(r). What one should realize is that computing g(r) requires
only a fraction of this formula. In particular, we have
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Algorithm 1. WeierstrassUpdate(f , p, α, F)

Input: f =
∑d+m

i=0 aiY
i, p =

∑d
i=0 biY

i, α =
∑m

i=0 ciY
i, ai, bi, ci ∈ K[[X1, . . . , Xn]]

satisfying Theorem 1, F = {Fi | Fi = ai − ∑i
k=0 bkci−k, i = 0, . . . , d − 1}, with

b0, . . . , bd−1, c0, . . . , cm known modulo Mr, the maximal ideal of K[[X1, . . . , Xn]].
Output: b0, . . . , bd−1, c0, . . . , cm known modulo Mr+1, updated in-place.

� phase one
1: for i = 0 to d − 1 do
2: s := 0
3: for k = 1 to r − 1 do
4: s := s + homogPart PS(r − k, bi) × homogPart PS(k, c0)

5: homogPart PS(r, bi) := ( homogPart PS(r, Fi) − s ) / homogPart PS(0, c0)

� phase two
6: for i = 0 to m do
7: homogPart PS(r, ci) � force an update of ci for next update.

f(r) = g(r)h(0) + g(r−1)h(1) + · · · + g(1)h(r−1), (5)

and g(r) can be computed with simply polynomial addition and multiplication,
followed by the division of a single element of K, since h(0) has degree 0.

The second key point is that, in order to compute g(r), i.e. the homogeneous
parts of degree r of b0, . . . , bd−1, we must first find f(r), i.e. the homogeneous
parts of degree r of a0, a1−b0c1, a2−b0c2−b1c1, etc. from (2). A nice result of our
existing power series design is that we can define some lazy power series, say Fi,
such that Fi = ai − ∑i

k=0 bkci−k. These Fi can then be automatically updated
via its generators when the bk are updated. The implementation of phase one
of Weierstrass update is then simply a loop over solving Eq. (5), where f(r) is
automatically obtained through the use of generators on the power series Fi.

Phase two of Weierstrass update follows the same design as in the definition
of those Fi power series. In particular, from (3) we can see that each cm, . . . , c0 is
merely the result of some power series arithmetic. Hence, we simply rely on the
underlying power series arithmetic generators to be the generators of cm, . . . , c0.

With the above discussion, we have fully defined a lazy implementation of
Weierstrass preparation. It begins with an initialization, which simply uses lazy
power series arithmetic to create F0, . . . , Fd−1, cm, . . . , c0, and initializes each
b0, . . . , bd−1 to 0. Then, the generators for b0, . . . , bd−1 all call the same underly-
ing Weierstrass update function. This function is shown in Algorithm 1, which
is split into two phases as our discussion has suggested.

In our implementation, we store a pointer to the array of F0, . . . , Fd−1 in the
UPoPS struct of p for ease of calling Weierstrass update. This, along with the
circular references between coefficients of p and α, creates a delicate situation for
reference counting. Readers may refer to our code in BPAS [3] for our solution.

Notice also that, although phase one requires updating each bi in order from
i = 0 to d − 1, the same is not true for c0, . . . , cm. This second phase is embar-
rassingly parallel. Structuring Weierstrass preparation as a lazy operation also
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naturally exposes further concurrency opportunities, such a parallel pipeline
structure in the case of factorization via Hensel’s lemma, see Sect. 6.

Finally, we report on experimental results for Weierstrass preparation against
the PowerSeries library. We note that the latter is not a lazy implementation,
returning only a truncated UPoPS. We have studied two families of examples:

(i) 1
1+X1+X2

Y k + Y k−1 + · · · + Y 2 + X2Y + X1 and
(ii) 1

1+X1+X2
Y k + Y k−1 + · · · + Y �k/2� + X2Y

�k/2�−1 + · · · + X2Y + X1.

The first results in p of degree 2, while the second results in p of degree �k/2�,
thus emphasizing the performance of phase two and phase one of the algorithm,
respectively. The results of this experiment are summarized in Figs. 4 and 5.

Fig. 4. Applying Weierstrass preparation on family (i) for increasing precisions

Fig. 5. Applying Weierstrass preparation on family (ii) for increasing precisions
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Not only is our implementation orders of magnitude faster than Maple, but the
difference in computation time further increases with increasing precision (total
degree in X1,X2). This can be attributed to our efficient underlying power series
arithmetic, as well as our smart implementation of Lemma 1.

6 Lazy Factorization via Hensel’s Lemma

In Sect. 2 we have seen the description of Hensel’s lemma for univariate poly-
nomial over power series. Specifically, that the proof by construction provides a
mechanism to factor UPoPS. We now look to make that construction lazy.

Recall that the proof of Theorem 2 provides a mechanism to factor a UPoPS
f ∈ K[[X1, . . . , Xn]][Y ] into factors f1, . . . , fr based on Taylor shift and repeated
applications of Weierstrass preparation. The construction begins by first fac-
torizing the polynomial f̄ = f(0, . . . , 0, Y ) ∈ K[Y ], obtained by evaluating all
variables in power series coefficients to 0, into linear factors. This can be per-
formed with a suitable (algebraic) factorization algorithm for K. For simplicity
of presentation, let us assume that f̄ factorizes into linear factors over K, thus
returning a list of roots c1, . . . , cr ∈ K with respective multiplicities k1, . . . , kr.
The construction then proceeds recursively, obtaining one factor at a time.

Let us describe one step of the recursion, where f∗ describes the current
polynomial to factorize, initially being set to f . For a root ci of f̄ , we perform a
Taylor shift to obtain g = f∗(Y + ci) such that g has order ki (as a polynomial
in Y ). The Weierstrass preparation theorem can then be applied to obtain p and
α ∈ K[[X1, . . . , Xn]][Y ] where p is monic and of degree ki. A Taylor shift is then
applied in reverse to obtain fi = p(Y −cr), a factor of f , and f∗ = α(Y −cr), the
UPoPS to factorize in the next step. The full procedure for obtaining all factors
of f is shown as an iterative process, instead of recursive, in Algorithm 2.

The beauty of this algorithm is that it is immediately a lazy algorithm with
no additional effort. Using the underlying lazy operations of Taylor shift (Sect. 4)
and Weierstrass preparation (Sect. 5), the entire factorization is performed lazily,
returning a factorization nearly instantly. The power series coefficients of these
factors can automatically be updated later using their generators, which are
simply Taylor shift operations on top of a Weierstrass update.

Notice too the opportunities for concurrency exposed from a lazy Taylor shift
and lazy Weierstrass. The factors f1, . . . , fr are created from successive appli-
cations of Weierstrass preparation. They in essence form a pipeline of processes
[17, Ch. 9]. Updating one factor simultaneously causes its associated α from
Weierstrass preparation to be updated. This in turn allows the next factor to
be updated since this α is the input into the next Weierstrass preparation. This
concurrency is on top of that available within a single Weierstrass preparation.

We now compare our implementation of factorization via Hensel’s lemma
in BPAS against that of Maple’s PowerSeries library. In the latter, two func-
tions are available for this operation: ExtendedHenselConstruction (EHC) and
FactorizationViaHenselLemma (FVHL). FVHL has the same specifications as
Algorithm 2 while EHC factorizes UPoPS over the field of Puiseux series in
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Algorithm 2. HenselFactorization(f)

Input: f =
∑k

i=0 aiY
i, ai ∈ K[[X1, . . . , Xn]].

Output: f1, . . . , fr satisfying Theorem 2.
1: f̄ = f(0, . . . , 0, Y )
2: c1, . . . , cr := obtain roots of f̄ � by some appropriate factorization algorithm
3: f∗ = f
4: for i = 1 to r do
5: g := f∗(Y + ci)
6: p, α := WeierstrassPreparation(g)
7: fi := p(Y − ci)
8: f∗ := α(Y − ci)

9: return f1, . . . , fr

X1, . . . , Xn, see [1]. Our tests use two UPoPS f , one of degree 3 and one of
degree 4, such that f̄ splits into linear factors over Q; in this way the output is
the same for our BPAS code, EHC, and FVHL.

The results of this experiment are summarized in Fig. 6 for the two UPoPS.
Our implementation is orders of magnitude faster. We observe that the gap
between our implementation and EHC increases both as UPoPS degree increases
and as power series precision increases. A theoretical comparison, in terms of
complexity analysis, between the EHC and Algorithm 2 is work in progress.

Fig. 6. Applying factorization via Hensel’s lemma to the UPoPS f1 = (Y − 1)(Y −
2)(Y − 3) + X1(Y

2 + Y ) and f2 = (Y − 1)(Y − 2)(Y − 3)(Y − 4) + X1(Y
3 + Y )
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7 Conclusions and Future Work

Throughout this work we have explored the design and implementation of lazy
multivariate power series, employing them in Weierstrass preparation and the
factorization of univariate polynomials over power series via Hensel’s lemma. Our
implementation in the C language is orders of magnitude faster than existing
implementations in SageMath and Maple’s PowerSeries library. In part, this
is due to overcoming the challenge of working with dynamic generator functions
in a compiled language, rather than using a more simplistic scripting language.

Yet, still more work can be done to further improve the performance of our
implementation. The implementation of our arithmetic follows naive quadratic
algorithms; instead, relaxed algorithms [13] should be integrated into our imple-
mentation to improve its algebraic complexity. Further, as mentioned in the case
of Weierstrass preparation and in factorization via Hensel’s lemma, there are
opportunities for concurrency in their implementation as lazy operations. This
concurrency can be exploited with parallel programming techniques, including
a parallel map and parallel pipeline, to yield further improved performance.
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Abstract. In 1994 Daniel Lazard proposed an improved method for
constructing a cylindrical algebraic decomposition (CAD) from a set
of polynomials, which recent work has, finally, fully validated. Lazard’s
method works for any set of input polynomials, but is less efficient than
the method of Brown (2001) which, however, fails for input sets that
are not “well-oriented”. The present work improves Lazard’s method so
that it is as efficient for well-oriented input as Brown’s method, while
retaining its infallibility. Justifying these improvements requires novel
and non-trivial mathematics.

1 Introduction

In 1994 Lazard [13] proposed an improved method for construction of cylindrical
algebraic decomposition (CAD). The method comprised a simplified projection
operation together with a generalized cell lifting process. However a flaw in
some of the essential underlying theory was subsequently noticed [3,7]. Two
recent papers [17,18] addressed the validity of the method. This paper describes
a number of enhancements to the method. For some of these improvements,
nontrivial mathematics is required.

Developed by George Collins in the early 1970s [6], CAD is a data structure
that provides an explicit geometric representation of a semi-algebraic set in R

n—
a set that is defined by boolean combinations of n-variate integral polynomial
equalities and inequalities over the real numbers (these expressions are called
Tarski formulas). This data structure supports a number of important opera-
tions on semi-algebraic sets/Tarski formulas, including satisfiability of formulas
(equivalently determining whether a semi-algebraic set is non-empty), determin-
ing the dimension of a semi-algebraic set, quantifier elimination for quantified
Tarski formulas, and more. Constructing a CAD from a formula is computa-
tionally hard, in fact its worst-case is doubly exponential in n [4]. None-the-less,
variations of CAD have been implemented in a number of systems, and improve-
ments to CAD construction are still the subject of on-going research.

Collins’ original algorithm followed this basic scheme: start with a (typi-
cally quantified) formula F , extract the set A of n-variate integral polynomials
c© Springer Nature Switzerland AG 2020
F. Boulier et al. (Eds.): CASC 2020, LNCS 12291, pp. 129–149, 2020.
https://doi.org/10.1007/978-3-030-60026-6_8
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appearing in F , compute P , a superset of the elements of A referred to as the
projection of A, and construct the CAD data structure based on P (referred to
as lifting). Generally in this scheme, the smaller one is able to make the pro-
jection P , the smaller the data-structure and the quicker it can be constructed.
So several improved projection operators have been developed in the interven-
ing years, such as Hong’s projection [10], the McCallum projection [15] and the
Brown-McCallum projection [3].

The last 30 years have seen many improvements to CAD construction and its
application to various problems that break with the basic scheme above by con-
necting CAD construction more tightly with the initial formula F and/or inter-
twining projection and the construction of the CAD data structure. This includes
“partial” CAD [8], in which the CAD is built in such a way that the formula F is
leveraged for early termination; “open” CAD [19], which modifies the projection
for formulas with only strict inequalities; “equational constraints” [16], which
optimizes projection for formulas that include constraints that are equations;
divide-and-conquer [20] and incremental CAD construction [9,12]; truth-table
invariant CAD [2]; “conflict-driven” approaches to CAD [11]; and many more.

The present work is concerned with the Lazard projection operator, defined in
Subsect. 2.1. We present a number of improvements to this operator in the form
of certain commonly occurring situations in which the projection set can be made
smaller than what was originally proposed by Lazard. Our main contribution is
an analogue of the improvement to the McCallum projection introduced in [3].
Let A ⊂ Z[x1, . . . , xn] be an irreducible basis. We show that, for every f ∈ A for
which f is nullified by only finitely many points in R

n−1, the trailing coefficient
of f can be omitted from the Lazard projection set provided that certain CAD
method modifications are made. This and other improvements are discussed
in the context of following the basic scheme in which projection is followed
by constructing the CAD data structure, as outlined above, and the present
work limits itself to that scope. However, it is important to note that these
improvements will carry forward into Lazard projection versions of all of the
ideas referenced in the previous paragraph. So, for example, a Lazard version of
the equational constraints projection will be able to leverage the improvements
we describe here, just as a Lazard version of divide-and-conquer or incremental
CAD would.

We believe our contribution here will be useful for symbolic computation
researchers and practitioners, as well as related communities. Here is our rea-
soning. CAD is widely applicable, and the recently validated Lazard method
uses the smallest (hence most efficient) infallible projection operator for CAD
amongst all the different projection schemes that have been proposed. There-
fore we expect the Lazard method to be adopted by those wishing to use CAD
for specific applications of interest. It follows that improvements to the original
Lazard method which result in computational savings are important. Our con-
tribution herein offers an improvement to this method for so-called well-oriented
input sets A—the same conditions under which the Brown-McCallum projection
applies. (This means roughly that polynomials in A should have at most finitely
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many nullifying points, and a similar condition should hold recursively for the
projection of A.) It has been pointed out [15] that such input is expected to
occur frequently, and a survey of the QE/CAD literature reveals that indeed
many, if not most, problems considered therein have well-orientation. Moreover,
our improvement is applicable under much weaker conditions as well. It can be
applied to projecting any polynomial p that has at most finitely many nullifying
points, even if A as a whole fails to be well-oriented, and even if elements of
the projection of p are not well-oriented. Hence we expect our enhancement to
remain useful in principle and practice in the years to come.

The remainder of this paper is organized as follows. Section 2 gives an
overview of Lazard’s projection and its supporting theory. The presentation
includes some novel aspects. Section 3 presents the main contribution of the
paper, as stated above. The mathematics required to make this improvement
to the Lazard projection is rather different from the earlier result of [3], and
more details are involved. Section 4 describes several additional improvements
that apply in lower-dimensional cases. Section 5 contains some brief concluding
remarks.

2 Synopsis of Lazard’s Method and Supporting Theory

2.1 Lazard’s Projection and Valuation

Background material on CAD, and in particular its projection operation, can be
found in [1,6–8,14,15]. We present a precise definition of the projection oper-
ator PL for CAD introduced by Lazard [13]. Put R0 = Z and, for n ≥ 1, put
Rn = Rn−1[xn] = Z[x1, . . . , xn]. Elements of the ring Rn will usually be consid-
ered to be polynomials in xn over Rn−1. We shall call a subset A of Rn whose
elements are irreducible polynomials of positive degree and pairwise relatively
prime an irreducible basis. (This concept is analogous to that of squarefree basis
which is used in the CAD literature, for example [14].)

Definition 1 (Lazard projection). Let A be a finite irreducible basis in Rn,
with n ≥ 2. The Lazard projection PL(A) of A is the subset of Rn−1 comprising
the following polynomials:

1. all leading coefficients of the elements of A,
2. all trailing coefficients (i.e. coefficients independent of xn) of the elements of

A,
3. all discriminants of the elements of A, and
4. all resultants of pairs of distinct elements of A.

Remark 1. Let A be an irreducible basis. Lazard’s projection PL(A) is the
smallest (hence optimal) “general purpose” projection set that has been pro-
posed for CAD. Now PL(A) contains and is usually strictly larger than the
Brown-McCallum projection PBM (A) [3] since the latter set omits the trailing
coefficients of the elements of A. However, the Brown-McCallum projection is
not “general purpose” in the sense that it may fail in case A is not well-oriented.
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Lazard [13] outlined a claimed CAD algorithm for A ⊂ Rn and R
n which

uses the projection set PL(A). The specification of his algorithm requires the
following concept of his valuation:

Definition 2 (Lazard valuation). Let K be a field. Let n ≥ 1, f ∈
K[x1, . . . , xn] nonzero, and α = (α1, . . . , αn) ∈ Kn. The Lazard valuation
( valuation, for short) vα(f) of f at α is the element v = (v1, . . . , vn) of N

n

least (with respect to ≤lex) such that f expanded about α has a term

c(x1 − α1)v1 · · · (xn − αn)vn

with c �= 0. (Note that ≤lex denotes the lexicographic order on N
n.)

With K, n and f as in the above definition, and S ⊂ Kn, we say f is
valuation-invariant in S if the valuation of f is the same at every point of S.
Lazard’s proposed CAD algorithm also uses a technique for “evaluating” a poly-
nomial f ∈ Rn at a sample point in R

n−1. This technique is described in slightly
more general and structured terms in the next subsection.

2.2 Lazard Evaluation

Let K be a field which supports explicit arithmetic computation. Let n ≥ 2,
1 ≤ i < n, take a nonzero element fi in K[xi, . . . , xn], and let αi ∈ K. The
Lazard evaluation of fi at αi is a certain element fi+1 of K[xi+1, . . . , xn] which
(together with a nonnegative integer vi) is the result of the following process
(subalgorithm):

Algorithm 1 (LazardEvalStep)
Input: fi ∈ K[xi, . . . , xn] such that fi �= 0, αi ∈ K.
Output: fi+1 ∈ K[xi+1, . . . , xn], vi ≥ 0 such that fi = (xi − αi)vigi, with gi ∈
K[xi, . . . , xn] and gi(αi, xi+1, . . . , xn) �= 0 and fi+1 = gi(αi, xi+1, . . . , xn).

Set vi ← the greatest integer v s.t. (xi − αi)v|fi.
Set gi ← fi/(xi − αi)vi .
Set fi+1 ← gi(αi, xi+1, . . . , xn).

There are two immediate applications of the subalgorithm LazardEvalStep.
Here is the first. Suppose we are given f ∈ K[x1, . . . , xn] with f �= 0, and
α = (α1, . . . , αn) ∈ Kn, and that we wish to compute vα(f). We could repeatedly
call subalgorithm LazardEvalStep as follows:

Algorithm 2 (LazardVal)
Input: f ∈ K[x1, . . . , xn], f �= 0, α ∈ Kn.
Output: v = (v1, . . . , vn), the Lazard valuation of f at α.

Set f1 ← f .
For i ← 1 to n do

Call LazardEvalStep with inputs fi and αi, obtaining outputs fi+1 and vi.
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Set v ← (v1, . . . , vn).

With α(i) = (αi, . . . , αn), the assertion “vα(f) = the result of concatenating
(v1, . . . , vi−1) and vα(i)(fi)” is an invariant of Algorithm 2, from which the cor-
rectness of this algorithm follows. Here is the second application of Algorithm 1.
Suppose we are given f as above and α = (α1, . . . , αn−1) ∈ Kn−1, and that we
wish to compute a certain element fα(xn) of K[xn] called the Lazard evaluation
of f at α [18]. The following method could be used to compute fα(xn) together
with an (n − 1)-tuple v called the Lazard valuation of f on α.

Algorithm 3 (LazardEval)
Input: f ∈ K[x1, . . . , xn], f �= 0, α ∈ Kn−1.
Output: fα(xn), the Lazard evaluation of f at α, and v = (v1, . . . , vn−1), the
Lazard valuation of f on α.

Set f1 ← f .
For i ← 1 to n − 1 do

Call LazardEvalStep with inputs fi and αi, obtaining outputs fi+1 and vi.
Set fα(xn) ← fn. Set v ← (v1, . . . , vn−1).

Remark 2. With K, n and f as above, v = (v1, . . . , vn−1), and α ∈ Kn−1, the
second output of Algorithm 3, f(α, xn) = 0 (identically) if and only if vi > 0,
for some i in the range 1 ≤ i ≤ n − 1. With αn ∈ K arbitrary, the integers vi,
with 1 ≤ i ≤ n − 1, are the first n − 1 coordinates of v(α,αn)(f).

2.3 Lazard’s CAD Algorithm

One more definition is needed before we can state Lazard’s main claim and his
algorithm based on it. This definition is not explicit in [13] – it was introduced
in [17] to help clarify and highlight Lazard’s main claim:

Definition 3. [Lazard delineability] With K = R and x denoting (x1, . . . , xn−1),
let f be a nonzero element of R[x, xn] and S a subset of Rn−1. We say that f is
Lazard delineable on S if

1. the Lazard valuation of f on α is the same for each point α ∈ S;
2. there exist finitely many continuous functions θ1 < · · · < θk from S to R,

with k ≥ 0, such that, for all α ∈ S, the set of real roots of fα(xn) is
{θ1(α), . . . , θk(α)} (where in the case k = 0, this means that, for all α ∈ S,
the set of real roots of fα(xn) is empty);

3. in the case k > 0, there exist positive integers m1, . . . ,mk such that, for all
α ∈ S and all i, mi is the multiplicity of θi(α) as a root of fα(xn).

When f is Lazard delineable on S we refer to the graphs of the θi as the Lazard
sections of f over S, and to the mi as the associated multiplicities of these
sections. The regions between successive Lazard sections, together with the region
below the lowest Lazard section and that above the highest Lazard section, are
called Lazard sectors.
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It is shown in [18] that if f is Lazard delineable on S then f is valuation-
invariant in every Lazard section and sector of f over S. We remark that if f
vanishes identically at no point of S, then f is Lazard delineable on S if and only
if f is delineable on S in the usual sense [14,17]. Lazard delineability addresses
the partitioning of the cylinder over S in relation to f in case f vanishes identi-
cally on S, in which case the usual delineability does not apply.

We express Lazard’s main claim, essentially the content of his Proposition 5
and subsequent remarks, as follows (as in [17]):

Let A be a finite irreducible basis in Rn, where n ≥ 2. Let S be a connected
subset of Rn−1. Suppose that each element of PL(A) is valuation-invariant
in S. Then each element of A is Lazard delineable on S, and the Lazard
sections over S of the elements of A are pairwise disjoint.

This claim concerns valuation-invariant lifting in relation to PL(A): it asserts
that the condition, “each element of PL(A) is valuation-invariant in S”, is suf-
ficient for an A-valuation-invariant stack in R

n to exist over S. We can now
describe Lazard’s proposed CAD algorithm (as in [17]):

Algorithm 4 (Valuation-invariant CAD, Lazard projection (VCADL))
Input: A is a list of integral polynomials in x1, . . . , xn.
Output: I and S are lists of indices and sample points, respectively, of the cells
comprising an A-valuation-invariant CAD of Rn.

1. If n > 1 then go to (2). Isolate the real roots of the irreducible factors of the
nonzero elements of A. Construct cell indices I and sample points S from
the real roots and return.

2. Set B ← the finest squarefree basis for prim(A). That is, B is assigned the
set of ample irreducible factors of elements of the set prim(A) of primitive
parts of elements of A of positive degree. Set P ← cont(A) ∪ PL(B) (where
cont(A) denotes the set of contents of elements of A). Call VCADL with
input P , obtaining outputs I ′ and S ′. Set I ← the empty list. Set S ← the
empty list.
For each α = (α1, . . . , αn−1) in S ′ do

Let i be the index of the cell containing α. Set f∗(xn) ← ∏
f∈B fα(xn).

(For each f ∈ B, if f(α, xn) �= 0 then set fα(xn) ← f(α, xn), else con-
struct fα(xn) using Algorithm 3, with K = Q(α).) Isolate the real roots
of f∗(xn). Construct cell indices and sample points for Lazard sections
and sectors of elements of B from i, α and the real roots of f∗(xn). Add
the cell indices to I and the sample points to S.

The correctness of the above algorithm – namely, the claim that, given A ⊂
Rn, it produces a CAD of R

n such that each cell of the CAD is valuation-
invariant with respect to each element of A – follows from Lazard’s main claim
by induction on n. (However, recall that Lazard’s original proof sketch of his
main claim contained a serious flaw.)
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We note that it is remarked already in [18], page 64, that when the leading
coefficient of polynomial f in the variable xn is nowhere vanishing (e.g. constant),
the trailing coefficient does not need to be included in the projection. For the
remainder of the paper we will assume this optimization as part of the “original”
Lazard projection.

2.4 Example of Lazard’s Projection

Consider computing a CAD in which the quadratic polynomial

q := x2 − ((a + c)d − (a − bc))

is sign-invariant, where the variable order is a ≺ b ≺ c ≺ d ≺ x (meaning project
with respect to x first, then with respect to d, etc.). Because the irreducible
polynomial f := (a+c)d−(a−bc) is the discriminant of q with respect to x, and
by the remark recalled above, the projection PL({q}) is {f}, which indeed is the
case regardless of what projection operator you use. The interesting point is the
next projection, i.e. PL({f}), because f is nullified on the positive-dimensional
region a = −c∧b = −1. Lifting into x-space is justified by Theorem 1 below (with
f = q), which requires that the discriminant f of q is Lazard-valuation invariant
in any region we lift over. Were we to rely on the McCallum projection, we
would be requiring the order-invariance of f , and this nullification on a positive
dimensional region would be a problem. Thus, it is precisely in this case that it
is most interesting to see how the Lazard projection and the associated lifting
method work. PL({f}) eliminating d produces {a+ c, bc−a}, and the remaining
projections produce {b, b + 1} and {a}. After some lifting steps, we will have a
positive dimensional cell C := 0 < a ∧ b = −1 ∧ c = −a with sample point, for
example, (a, b, c) = (2,−1,−2). Following VCADL, we set f∗(d) to the Lazard
evaluation of f at the sample point, which we compute as:

i fi αi fi+1 vi

1 cd + ad + bc − a a = 2 cd + 2d + bc − 2 0
2 cd + 2d + bc − 2 b = −1 cd + 2d − c − 2 0
3 (c + 2)1(d − 1) c = −2 d − 1 1
Lazard evaluation yields: d − 1 (0, 0, 1)

So lifting into d-space over the cell C partitions C × R into the region in which
d − 1 = 0 (where the Lazard valuation is (0, 0, 1, 1)), and the regions above and
below (where the Lazard valuation is (0, 0, 1, 0)). Thus we have Lazard-valuation
invariance, as required.

2.5 Summary of Supporting Theory

A special form of Lazard’s main claim, in which S is assumed to be a connected
submanifold of Rn−1, and each element of A, an irreducible basis, is concluded
to be Lazard analytic delineable on S etc., is proved in [18]. This special form
of the claim is sufficient to validate Lazard’s method. The key result used in
proving this claim is the following:
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Theorem 1. Let f(x, xn) ∈ R[x, xn] have positive degree d in xn, where
x = (x1, . . . , xn−1). Let D(x), l(x) and t(x) denote the discriminant, leading
coefficient and trailing coefficient (that is, the coefficient independent of xn) of
f , respectively, and suppose that each of these polynomials is nonzero (as an
element of R[x]). Let S be a connected analytic submanifold of R

n−1 in which
D, l and t are all valuation-invariant. Then f is Lazard analytic delineable on S,
hence valuation-invariant in every Lazard section and sector over S. Moreover,
the same conclusion holds for the polynomial f∗(x, xn) = xnf(x, xn).

This is Theorem 5.1 of [18]. The main ingredients of the proof are certain
results on transforming the valuation of f at a point into the order of f at the
origin along a certain curve, a “wing” argument which involves application of the
valuation transformation results, and a corollary of the classical Puiseux with
parameter theorem well known to singularity theorists.

We state the Puiseux with parameter theorem here as it will be used in the
next section of the present paper. We use the following notation (as in [18]):
with ε = (ε1, . . . , εk), Uε,r = Uε × Ur, where Uε = {x = (x1, . . . , xk) ∈ C

k :
|xi| < εi,∀i}, Ur = {y ∈ C : |y| < r}. In the statement of the theorem “analytic”
means “complex analytic”.

Theorem 2. (Puiseux with parameter)
Let

f(x, y, z) = zd +
d−1∑

i=0

ai(x, y)zi, (1)

be a monic polynomial in z with coefficients ai(x, y) analytic in Uε,r. Suppose
that the discriminant of f is of the form Df (x, y) = ymu(x, y) with analytic
function u non vanishing on Uε,r. Then, there are a positive integer N (we may
take N = d!) and analytic functions ξi(x, t) : Uε,r1/N → C such that for all
(x, t) ∈ Uε,r1/N ,

f(x, tN , z) =
d∏

i=1

(z − ξi(x, t)).

Note that “parameter” in the name “Puiseux with parameter” refers to the
k-tuple x, which “parametrizes” the Puiseux roots ξi(x, t). Note also that the
appendix of [18] contains a concise proof of the Puiseux with parameter theorem.

3 Refinement to Lazard’s Projection and Method

In this section we first present a corollary to Puiseux with parameter which is
slightly different from Corollary 4.2 of [18]. Our corollary, unlike the one in [18],
omits any hypothesis about the trailing coefficient of f , and its conclusion is
slightly weaker. Yet it is sufficient for our main purpose here. (It is in essence
a complex analytic analogue of Corollary 3.15 of [17].) Next we state and prove



Enhancements to Lazard’s Method for CAD 137

the key theorem which underlies our refinement to Lazard’s projection. Our
key theorem is at once an analogue of the main result (that is, Theorem 3.1)
of [3] (which is stated in slightly expanded form as Theorem 3.9 of [17]), and
an analogue of the main theorem (Theorem 5.1) of [18]. Its proof uses our vari-
ant corollary of Puiseux with parameter. Finally we describe circumstances in
which we may use our refined Lazard projection in CAD construction, and the
modifications to CAD such use entails.

3.1 New Corollary to Puiseux with Parameter

We use the same notation as used in the presentation of Puiseux with parameter
above. Puiseux with parameter assumes that f(x, y, z) is a monic polynomial
with analytic coefficients. We shall prove the following corollary of Puiseux with
parameter which can be applied to a nonmonic polynomial provided that its
leading coefficient is of a suitable form. Here again, “analytic” means “complex
analytic”.

Corollary 1. (Corollary to Puiseux with parameter)
Let

f(x, y, z) = ad(x, y)zd +
d−1∑

i=0

ai(x, y)zi, (2)

be a polynomial in z with coefficients ai(x, y) analytic in Uε,r. Suppose that
the discriminant D(x, y) and leading coefficient ad(x, y) of f satisfy D(x, y) =
ymu(x, y) and ad(x, y) = yhv(x, y), for some integers m,h ≥ 0 and some analytic
functions u and v nonvanishing in Uε,r. Then there exists integers N > 0 and
κ ≥ 0, analytic functions ξ′

1, . . . , ξ
′
κ : Uε,r1/N → C and ξκ+1, . . . , ξd : Uε,r1/N →

C, and integers δ ≥ 0 and μ1, . . . , μκ > 0 such that for all (x, t) ∈ Uε,r1/N

f(x, tN , z) = tδv(x, tN )
κ∏

i=1

(tμiz − ξ′
i(x, t))

d∏

j=κ+1

(z − ξj(x, t)).

Proof. Define the polynomial f̃(x, y, z̃) by

f̃(x, y, z̃) = z̃d +
d−1∑

i=0

ad−1−i
d aiz̃

i. (3)

We may apply Theorem 2 to this polynomial because its discriminant equals
a
(d−1)(d−2)
d D(x, y), and hence satisfies the hypothesis of Theorem 2. Therefore,

by this theorem, there is a positive integer N and analytic functions ηi(x, t):
Uε,r1/N → C such that

f̃(x, tN , z̃) =
d∏

i=1

(z̃ − ηi(x, t))
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for all (x, t) ∈ Uε,r1/N . Then we have

ad−1
d f(x, tN , z) = f̃(x, tN , adz) =

d∏

i=1

(adz − ηi(x, t)) (4)

for all (x, t) ∈ Uε,r1/N where, for simplicity, ad denotes ad(x, tN ) in Eq. 4 above.
Let m0 = hN and let κ denote the number of i such that m0 strictly exceeds the
order mi of ηi(x, t) in t. (That is, mi is the least power of t which occurs amongst
all the nonzero terms of the power series expansion of ηi at the origin, but if
ηi vanishes identically then mi = ∞. So κ is the number of indices i for which
m0 > mi.) Renumber the roots ηi(x, t) so that m0 > mi for 1 ≤ i ≤ κ, and hence
m0 ≤ mj for κ+1 ≤ j ≤ d. For κ+1 ≤ j ≤ d, put ξj(x, t) = ad(x, tN )−1ηj(x, t).
Then the ξj are analytic in Uε,r1/N .

From Eq. 4, after multiplying both sides by ad(x, tN ), dividing both sides by
ad(x, tN )d−κ, and applying the definition of ξj(x, t), we obtain:

aκ
df(x, tN , z) = ad

κ∏

i=1

(adz − ηi(x, t))
d∏

j=κ+1

(z − ξj(x, t)) (5)

for all (x, t) ∈ Uε,r1/N , where (again) ad denotes ad(x, tN ) in Eq. 5 above. For
1 ≤ i ≤ κ, let μi = m0 − mi. Then each μi > 0, as we have noted. Now it is
not too difficult to show that m0 − (μ1 + μ2 + · · · + μκ) ≥ 0. (The basic idea of
the proof of this inequality is to equate the term ad(x, tN )κad−κ(x, tN )zd−κ on
the left hand side of Eq. 5 with the corresponding term on the right hand side
of this equation: in particular, the order in t of this term must be considered.)
Putting δ = m0 − (μ1 + · · · + μκ), it follows that δ ≥ 0.

For 1 ≤ i ≤ κ, put ξ′
i(x, t) = tμiad(x, tN )−1ηi(x, t). Then the ξ′

i are analytic in
Uε,r1/N . Finally from Eq. 5, after dividing both sides by ad(x, tN )κ, redistributing
certain powers of t, and applying the definition of ξ′

i, we obtain the desired
expression for f(x, tN , z).

3.2 Key Result for Projection Refinement

Our main result is stated as follows.

Theorem 3. Let f(x, xn) ∈ R[x, xn] have positive degree d in xn, where
x = (x1, . . . , xn−1). Let D(x) and l(x) denote the discriminant and leading coef-
ficient of f with respect to xn, respectively, and suppose that D(x) is a nonzero
polynomial. (Of course l(x) is a nonzero polynomial, by definition.) Let S be a
connected analytic submanifold of R

n−1 in which both D and l are valuation-
invariant, and at no point of which f vanishes identically. Then f is analytic
delineable on S, hence valuation-invariant in every section and sector over S.
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Proof. Recall from [18] that an (n−1)-tuple of positive integers c = (c1, . . . cn−1)
is termed an evaluator for a set V ⊂ N

n−1 if for every i = n−2, . . . , 2, 1 we have

ci ≥ 1 + max
v∈V

∑

j>i

cjvj .

Let c be an evaluator for VD ∪Vl, where VD = {vp(D) | p ∈ S} and Vl = {vp(l) |
p ∈ S}. (Recall that c exists because both VD and Vl are finite.) By hypotheses,
D and l are valuation-invariant in S. Consider ψ : S × R → R

n−1 defined by

ψ(p, y) = p + (yc1 , . . . , ycn−1).

By Proposition 5.4 of [18], for p ∈ S fixed, D(ψ(p, y)) and l(ψ(p, y)) (as poly-
nomials in y) have finite orders m := 〈c, vp(D)〉 and h := 〈c, vp(l)〉 at y = 0,
respectively. Since D and l are valuation-invariant in S, these orders are thus
independent of p ∈ S. With f(x, xn) = ad(x)xd

n + ad−1(x)xd−1
n + · · · + a0(x),

where ad(x) = l(x), let

fψ(p, y, z) = f(ψ(p, y), z) = ad(ψ(p, y))zd + · · · + a0(ψ(p, y)),

for all p ∈ S and y ∈ R. As observed, for every fixed p ∈ S, l(ψ(p, y)), as a
polynomial in y, has finite order h at y = 0, and hence is a nonzero polynomial.
Therefore, for every fixed p ∈ S, the degree in z of fψ(p, y, z) equals d, and
l(ψ(p, y)) and D(ψ(p, y)) are equal to the leading coefficient lψ(p, y) and dis-
criminant Dψ(p, y) of fψ(p, y, z) with respect to z, respectively. Let p0 be fixed.
We shall show that, with respect to local coordinates on S near p0, and after
complexification, fψ (and Dψ, lψ) satisfy the hypotheses of Corollary 1. We shall
use the conclusion of this Corollary to show that f is analytic delineable on a
neighbourhood of p0 ∈ S. We now present this argument in detail.

Denote the dimension of S by k, and choose local coordinates x̂ = (x̂1, . . . , x̂k)
on S near p0. That is, choose an analytic coordinate system Φ : U → V , with
Φ = (φ1, . . . , φn−1), where U ⊂ R

n−1 is a neighbourhood of p0, V ⊂ R
n−1

is a neighbourhood of 0, and Φ(p0) = 0, such that S ∩ U is defined by
φk+1(x) = 0, . . . , φn−1(x) = 0 within U [14]. Denote by φ : S ∩ U → W the
homeomorphism (chart) defined by φ(x) = (φ1(x), . . . , φk(x)), which maps S∩U
onto the neighbourhood W ⊂ R

k of 0, and identify (φ1, . . . , φk) with (x̂1, . . . , x̂k),
denoted by x̂. Note that φ−1 is an analytic mapping.

Denote by f̂ψ(x̂, y, z) the function fψ expressed in these coordinates. That
is,

f̂ψ(x̂, y, z) = ad(ψ(φ−1(x̂), y))zd + · · · + a0(ψ(φ−1(x̂), y)).

Then each coefficient of f̂ψ with respect to z is analytic in W × R and the
same is true of its discriminant D̂ψ. Indeed, for every fixed x̂ ∈ W , D̂ψ(x̂, y) =
D(ψ(φ−1(x̂), y)), as polynomials in y. Hence, for every fixed x̂ ∈ W , the order
in y of D̂ψ(x̂, y) equals m, and this order is independent of x̂ ∈ W . Hence, by
Lemma 4.4 of [18],

D̂ψ(x̂, y) = ymû(x̂, y), (6)
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for some analytic û defined near the origin, with û(0, 0) �= 0. Similarly, the
leading coefficient l̂ψ of f̂ψ satisfies

l̂ψ(x̂, y) = yhv̂(x̂, y), (7)

for some analytic v̂ defined near the origin, with v̂(0, 0) �= 0. Denoting the
coefficient of zi in f̂ψ by âi(x̂, y), notice that âi has a complexification: that
is, a complex analytic extension, essentially unique, to a polydisk Uε,r in C

k+1,
which we shall also denote by âi(x̂, y). Thus and similarly, f̂ψ, D̂ψ, etc., are all
considered to be defined in Uε,r, and Eqs. 6, 7 are valid therein. By refining Uε,r

as necessary, we may assume that û and v̂ are both nonvanishing in Uε,r. In
summary, f̂ψ satisfies the hypotheses of Corollary 1 in Uε,r. Therefore, by this
Corollary, there are integers N > 0 and κ ≥ 0, analytic functions ξ̂′

i, ξ̂j defined
in Uε,r1/N , and integers δ ≥ 0 and μi > 0, such that for all (x, t) ∈ Uε,r1/N

f̂ψ(x̂, tN , z) = tδ v̂(x̂, tN )
κ∏

i=1

(tμiz − ξ̂′
i(x̂, t))

d∏

j=κ+1

(z − ξ̂j(x̂, t)). (8)

We claim that, for all i and j, with κ + 1 ≤ i �= j ≤ d, R̂i,j(x̂, t) := ξ̂i(x̂, t) −
ξ̂j(x̂, t) is valuation-invariant in Uε × {0}. This claim follows by Proposition 3.4
of [18], since R̂i,j(x̂, t) is a factor of D̂ψ(x̂, tN ) and the latter function is valuation-
invariant in this set. An important consequence of this is that either R̂i,j(x̂, 0)
vanishes throughout Uε or R̂i,j(x̂, 0) vanishes at no point of Uε. In other words,
either the roots ξ̂i(x̂, 0) and ξ̂j(x̂, 0) coincide for all x̂ ∈ Uε or these roots remain
different for all x̂ ∈ Uε.

Now restricting Eq. 8 to real space, and transforming the restricted Equation
into our original coordinates, we have

fψ(p, tN , z) = tδv(p, tN )
κ∏

i=1

(tμiz − ξ′
i(p, t))

d∏

j=κ+1

(z − ξj(p, t)) (9)

in (S ∩ U) × Ir1/N , where Ir1/N = (−r1/N , r1/N ). The complex valued functions
ξ′
i and ξj are defined in (S ∩ U) × Ir1/N by the equations ξ′

i(p, t) = ξ̂′
i(φ(p), t)

and ξj(p, t) = ξ̂j(φ(p), t), and are hence continuous.
By hypothesis, fψ(p, 0, z) = f(p, z) �= 0, as a polynomial in z, for all p ∈ S∩U .

Hence δ = 0 and ξ′
i(p, 0) �= 0 for all p ∈ S ∩ U . By Eq. 9 we may therefore write

f(p, z) = (−1)κv(p, 0)
κ∏

i=1

(ξ′
i(p, 0))

d∏

j=κ+1

(z − ξj(p, 0)) (10)

in S ∩ U . Hence, in particular, f(p, z) has degree d − κ for each fixed p ∈ S ∩ U .
Let α1 < α2 < · · · < αs denote the real roots of f(p0, z) and let αs+1, . . . , αt

denote the distinct nonreal roots of f(p0, z). (This is a fresh use of variable t,
having now dispensed with its previous use.) For each i, 1 ≤ i ≤ t, let mi
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denote the multiplicity of αi. Then
∑t

i=1 mi = d−κ. Let σ denote the minimum
separation between the roots αi if t > 1, and let σ = 1 if t = 1. For 1 ≤ i ≤ t,
let Ci denote the circle of radius σ/2 centred at αi.

For each i, with 1 ≤ i ≤ t, let Si = {j | κ + 1 ≤ j ≤ d and ξj(p0, 0) = αi}.
Then Si has exactly mi elements. By continuity of the functions ξj(p, 0), with
p ∈ S ∩ U , and since the degree of f(p, z) equals d − κ for all p ∈ S ∩ U , as
previously noted, there exists a refinement U0 of the neighbourhood U of p0 such
that for all p ∈ S ∩ U0 and for all i with 1 ≤ i ≤ t, all ξj(p, 0) with j ∈ Si lie
in the interior of circle Ci, and this interior contains no other roots of f(p, z).
Since the nonreal roots of f(p0, z) occur in conjugate pairs, each Ci’s interior,
with s+1 ≤ i ≤ t, contains no real points. By our observation above concerning
the functions R̂i,j , either the roots ξi(p, 0) and ξj(p, 0) coincide for all p ∈ S ∩U0

or they remain different for all such p. Therefore, for each i, with 1 ≤ i ≤ s, the
roots ξj(p, 0) with j ∈ Si remain coincident for all p ∈ S ∩ U0, and we denote
the common value of such roots by θi(p). Then θi(p) is necessarily real for all
p ∈ S ∩U0, since any nonreal roots of f(p, z) occur in conjugate pairs. Also, each
function θi : S ∩ U0 → R is analytic since the composite θiφ

−1 is in φ(S ∩ U0).
Therefore f is analytic delineable on S ∩ U0. That f is analytic delineable on
the whole of S follows by connectedness of f .

3.3 Method Modifications

Theorem 3 justifies leaving the trailing coefficient out of the projection of a
polynomial f whenever we can ensure that f is not nullified on the regions we
lift over. Also, noting that any polynomial is clearly Lazard-valuation invariant
on a single-point cell, we may leave the trailing coefficient of a polynomial f out
of its projection if f is not nullified over any of the regions we lift over, except
possibly single-point regions. This suggests a modification of VCADL, which we
describe in this section.

At the outset we assume we have a useful and efficient finite zero test, with
some additional features, for the coefficients of a given element f ∈ Rn. More
precisely, we will use a procedure, which we shall denote simply by T , that takes
an element f of Rn as input and outputs a finite set S ⊂ R

n−1 or fail, with
the requirement that if S ⊂ R

n−1 is returned, then S contains the set of all
points in R

n−1 on which the input f is nullified. Such a procedure could be
obtained as follows. Consider the set of (n−1)-variate coefficients of f . First use
a “quick test” that tries to prove that the system of equations defined by the
coefficients is unsatisfiable over the reals. There are a number of possibilities for
this, including simple substitution of linear equations. If such a “quick test” fails
to prove unsatisfiability over R, then one could apply any suitable finite zero
test over C – an example of such a test is described in Sect. 6 of [15]. If this test
does not succeed in showing that the coefficients of f have only finitely many
common zeros, then T returns fail. If one of the above tests succeeded, then T
calls a selected algorithm which computes a desired set S ⊂ R

n−1.
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Definition 4 (Modified Lazard projection). Let A be a finite irreducible
basis in Rn, with n ≥ 2. Let Γ be a finite set of points in R

n with algebraic
number components. The modified Lazard projection Pmod

L (A,Γ ) of A,Γ is the
finite subset of Rn−1 comprising the following polynomials:

1. all leading coefficients of the elements of A,
2. all discriminants of the elements of A, and
3. all resultants of pairs of distinct elements of A,
4. all trailing coefficients (i.e. coefficients independent of xn) of elements of A

for which T returns fail,

paired with the set of points

{(γ1, . . . , γn−1) | (γ1, . . . , γn−1, γn) ∈ Γ} ∪
⋃

f∈A

T (f),

where A = {f | f ∈ A ∧ T (f) �= fail}.
Use of the modified Lazard projection in CAD construction requires the

description of the following subalgorithm which takes as inputs both A ⊂ Rn

and Γ (as defined above), and returns the sample data for an associated CAD
of Rn. (Γ is used to pass nullification point data from one recursive call to the
next, and is intended to be empty for the initial call.)

Algorithm 5 (VCADL modified subalgorithm (VCADLmodsub))
Input: A is a list of integral polynomials in x1, . . . , xn, and Γ a set of algebraic
points in R

n.
Output: I and S are lists of indices and sample points, respectively, of the cells
comprising an A-valuation-invariant CAD of Rn.

1. If n > 1 then go to (2). Isolate the real roots of the irreducible factors of the
nonzero elements of A. Construct cell indices I and sample points S from
the real roots and the points in Γ and return.

2. Set B ← the finest squarefree basis for prim(A). Set (P, Γ ′) ← Pmod
L (B,Γ ).

Call VCADLmodsub with inputs (cont(A)∪P, Γ ′), obtaining outputs (I ′,S ′).
Set I ← the empty list. Set S ← the empty list.
For each α = (α1, . . . , αn−1) in S ′ do

Let i be the index of the cell containing α. Set f∗(xn) ← ∏
f∈B fα(xn).

Let D be a list of the isolated real roots of f∗(xn).
Set E ← {γn | (α1, . . . , αn−1, γn) ∈ Γ}.
Construct cell indices and sample points for Lazard sections and sectors
of elements of B from i, α and D ∪ E.
Add the cell indices to I and the sample points to S.

A main algorithm VCADLmod, with input only A ⊂ Rn, could be obtained
by simply invoking VCADLmodsub with inputs A and φ (empty set of points).
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3.4 An Example Illustrating the Modified Lazard Projection

Here we consider one concrete example showing how the modified Lazard pro-
jection results in reduced projection factor sets. Consider the polynomial set

A := {f := (x − 1)2 + (ac − 1)dx + (b2 + ac), g := ad + ac + 1}
and variable order a ≺ b ≺ c ≺ d ≺ x.

Projecting x: since degx(g) = 0 , we only project f , which has leading coef-
ficient ldcfx(f) = 1 and trailing coefficient trcfx(f) = b2 + ac + 1. Because the
leading coefficient is constant, the projection consists only of the discriminant
df := discrx(f) = (ac−1)2d2−4(ac−1)d−4(ac+b2). (Note that the original and
modified Lazard projections produce the same thing, according to our remark
at the end of Sect. 2.3.)

Projecting d: the set to be projected is {g, df}. Since a = ac + 1 = 0 is not
satisfiable, g is nowhere nullified, and since the discriminant of g is a constant,
the modified Lazard projection of g consists solely of ldcfd(g) = a. It is also clear
that df is nowhere nullified, since its leading and trailing coefficients cannot be
zero simultaneously1. Thus its projection consists of the ldcfd(df ) = (ac − 1)2

and discrd(df ) = 16(ac − 1)2(ac + b2 + 1). Finally the projection also includes
resd(df, g) = a4c4 +2a2(2a−1)c2 −4a3c−4a2b2 +4a+1. The irreducible factors
of the projection are:

{a, ac − 1, ac + b2 + 1, a4c4 + 2a2(2a − 1)c2 − 4a3c − 4a2b2 + 4a + 1}
which differs from the original Lazard projection in that the two trailing coeffi-
cients ac + 1 and ac + b2 are missing.

If we were to follow through with projecting c and then b, we would arrive
at a projection set in which there are eight irreducible factors at level one (i.e.
in variable a only). In comparison, using the original Lazard projection would
have produced a projection set in which there are 21 irreducible factors at level
one. The table below shows how the degrees of these factors are distributed.

degree 1 2 3 4
num. 1-level polys, original Lazard 7 6 2 6

num. 1-level polys, modified Lazard 3 1 2 2

Note that since the given set A is well-oriented, the Brown-McCallum pro-
jection could also be applied here. However, a key point of the discussion is to
compare the modified and original Lazard projections.

3.5 Complexity Analysis

Let A ⊂ Z[x1, . . . , xn]. We denote by PM (A) the McCallum projection of A,
as defined in Sect. 6 of [15] and Sect. 2.1 of [2]. We define the enhanced Lazard
1 The system ac− 1 = 0 ∧ ac+ b2 = 0 is easily shown to be unsatisfiable by a number

of means, including simply substituting for linearly occurring variables.
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projection of A, denoted by PLE(A), to be the set cont(A)∪P constructed in algo-
rithm VCADLmodsub. Following the presentation in Sect. 2.3 of [2] we undertake
a preliminary complexity analysis for a variation of VCADLmod applied to A
under a certain assumption. In particular, we will derive a bound for the num-
ber of cells in the CAD of Rn produced by VCADLmod (the cell count) under
the assumption that for each element f of the irreducible basis B for prim(A),
T (f) �= fail and T (f) = φ, and with the variation that the original Lazard
projection PL is to be used instead for projections subsequent to the first, if any.

As in [2], the key parameters for the analysis are, apart from n, variations on
the number m of polynomials in A and their maximum degree d in any variable.

Definition 5. A has partition bounds (m, d) if it can be partitioned into no
more than m subsets such that the product of the elements of each subset has
degree in any variable at most d.

Lemma 1. Suppose that A has partition bounds (m, d) and that for each f ∈ B
T (f) �= fail, then PLE(A) has partition bounds (M, 2d2), with M = m(m+1)/2.

Proof. This result is an analogue of Lemma 11 of [2] which applies to PM (A).
The proof of Lemma 11 can be adjusted to yield the justification needed here.
Steps 1 and 2 (the first and second claims) remain valid here. Since PLE(A)
includes no non-leading coefficients of B by hypothesis, step 3 is not required
here. Hence PLE(A) can be partitioned into m + (m(m − 1)/2) = m(m + 1)/2
subsets each with partition bounds (1, 2d2). ��

We can now use Table 1 of [2], in conjunction with the lemma above and
Corollary 12 of [2], to estimate the growth in the number and degrees of pro-
jection polynomials when using operator PLE for the first projection and oper-
ator PL for subsequent projections, if any. Under the assumption stated above
the cell count of the CAD produced depends only on the number of real roots
of projection polynomials subject to standard or Lazard evaluation. Hence we
have:

Theorem 4. Let A ⊂ Z[x1, . . . , xn], with irreducible basis B for prim(A), have
partition bounds (m, d). Suppose that for each f ∈ B, T (f) �= fail and T (f) = φ.
Then, letting M = m(m+1)/2, the cell count of the CAD of Rn produced by the
variant of VCADLmod described above is bounded by

(2Md + 1)
n−1∏

r=1

(22
r

d2
r

M2r−1
+ 1).

This bound has the same form as that stated for CAD construction using
operator PM on page 11 of [2]. However, in that context, the parameter M has
the slightly larger value �(m + 1)2/2�. Both bounds are likely to be pessimistic.
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3.6 An Example Contrasting Various Projection Operators

Consider the formula y ≥ 0∧y+(a−b)x2+(2a−3b+c)ax+c−b ≤ 0 and the vari-
able order a ≺ b ≺ c ≺ x ≺ y. We attempted to construct CADs for this formula
using Qepcad b’s implementation of the Hong, Brown-McCallum and McCal-
lum projections. Note that Qepcad b implements a number of optimizations to
these operators to reduce the projection set sizes and, for the McCallum/Brown-
McCallum operators, to deduce that correctness can be guaranteed for many
kinds of non well-oriented input. We then used interactive features of Qepcad
b to simulate the original and improved Lazard methods to determine the num-
ber of cells in the CADs they would produce. All the results are summarized in
the following table.

Method Number of 5-level cells

Improved Lazard 1389
McCallum/Brown-McCallum Fail
Original lazard 5125
Hong 4933

We note first that Brown-McCallum & McCallum fail on this because the
resultant of the two input polynomials is nullified on the positive dimensional
region a = b = c, and none of the checks that Qepcad b has can verify that
we have order-invariance none-the-less. We next note that our improved Lazard
clearly outperforms regular Lazard because we discover that the projection factor
a2c2 + (4a3 − 6a2b − 4a + 4b)c + 4a4 − 12a3b + 9a2b2 + 4ab − 4b2 as a polynomial
in c is only nullified at a = b = 0. So we add that as a projection point, and
do not include the trailing coefficient, which has higher degree and more terms
than the other coefficients. Interestingly, when using Hong’s method, Qepcad
b deduces that the leading and degree-one coefficients of this polynomial are
sufficient, and so avoids adding the large trailing coefficient. This is why Hong’s
method actually outperforms the original Lazard projection on this example. So
we see that, without the optimizations from this paper, Lazard’s method may
be outperformed by the optimized version of Hong’s method.

4 Further Improvements

There are special cases in which the Lazard projection may be reduced beyond
what is suggested by the results of the previous section. In this section we
describe several such situations with regards to polynomials in two or three
variables. This is more useful than it might seem at first, because these improve-
ments also hold for polynomials in two or three variables “embedded” in higher
dimensional problems. This is made precise in Theorem 9 below. It will be useful
in the following to define the “level” of a polynomial.
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Definition 6. Let V be a set of variables, and let x1 ≺ x2 ≺ · · · ≺ xn be an
ordering of the elements of V . The level of polynomial f over V with respect to
the ordering is the largest i such that degxi

(f) > 0.

4.1 Reduced Projections for Two or Three Variables

The following theorems justify leaving out the trailing coefficients for 2-level
and, in some cases, 3-level polynomials. In the theorem statements, polynomial
primitivity, degree, etc. are understood to be with respect to the variable of
highest order (that is, the main variable), as usual.

Theorem 5. With x ≺ y, let f ∈ R[x, y] be primitive, of positive degree and
squarefree. Let D(x) and l(x) denote the discriminant and leading coefficient,
respectively, of f . On any connected subset S of R in which D(x) and l(x) are
sign-invariant, f is Lazard delineable.

This is a consequence of an observation in [6].

Theorem 6. Let f be a primitive and squarefree polynomial in the variables,
x, y and z, ordered x ≺ y ≺ z, such that degz(f) > 1. Let D(x, y) and l(x, y)
denote the discriminant and leading coefficient, respectively, of f . If D and l are
relatively prime, then on any connected region S ⊆ R

2 in which D and l are
Lazard-valuation invariant, f is Lazard delineable.

Proof. Since D and l are relatively prime, their set of common zeros is a finite
set of isolated points. Thus if S has positive dimension, the Lazard invariance
of D and l implies that at least one of them is non-zero throughout S. If l is non-
zero, clearly f is not nullified in S. The same conclusion holds if D is non-zero,
since at any point that nullifies f , the discriminant of f must be zero. So, if S
has positive dimension, f is nullified nowhere on S, and thus Theorem 3 implies
that f is Lazard delineable. This leaves only the case in which S is a single-point
cell, but of course any polynomial is vacuously Lazard delineable over a single
point cell. ��

For our final special case, we consider three-level polynomials that are linear
in the main variable—since the preceding theorem does not apply to that case.

Theorem 7. Let f be a primitive and squarefree polynomial in the variables,
x, y and z, ordered x ≺ y ≺ z, of the form ad1

1 ad2
2 · · · adm

m z + be1
1 be2

2 · · · ben
n ,

where the ai’s and bj’s are irreducible polynomials in x and y. Assume that
all of the ai’s have positive degree in y. Let P = {ri,j | degy(bj) > 0 ∧ ri,j =
resy(ai, bj)∨degy(bj) = 0∧ ri,j = bj}. On any connected region S ⊆ R

2 in which
the elements of P are Lazard-valuation invariant, f is Lazard delineable.

Proof. If polynomial f is nullified at a point (α1, α2), there must be i and j
such that ai(α1, α2) = bj(α1, α2) = 0. This means ri,j(α1, α2) = 0. Since f is
primitive, ai and ri,j are relatively prime, so their common zeros are a finite set
of isolated points. Thus, the Lazard-valuation invariance of both in S implies
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that S is a single-point, which means f is vacuously Lazard-valuation invariant
on S. If S has positive dimension, f is no nullified on S, and therefore Theorem 3
implies that f is Lazard delineable. ��

4.2 Carrying over Improvements

In this section we prove that improvements to projection that we produce for two
and three level special cases can be carried over into problems that include poly-
nomials in two and three variables embedded in more dimensions. This further
increases the applicability of problems from this section.

Theorem 8. Fix variable ordering x1 ≺ · · · ≺ xn, which we call ord. Consider
suborder xi1 ≺ xi2 ≺ . . . ≺ xik , which we call ord′. Let p ∈ R[xi1 , . . . xik ], be a
primitive squarefree polynomial. Let m : Rn → R

k be given by m(a1, . . . , an) =
(ai1 , ai2 , . . . , aik). Denote by vord(p, a) the Lazard valuation of p at point a with
respect to ord. Let (r1, . . . , rn) = vord(p, a).

1. If xj is not in {xi1 , . . . , xik} then rj = 0, and
2. vord′(p,m(a)) = m(vord(p, a)) for any a ∈ R

n.

Proof. This follows directly from the Lazard evaluation process, since a variable
in ord that does not appear in polynomial p just results in a zero entry in the
Lazard valuation, and otherwise has no effect. ��
Theorem 9. Continuing with the assumptions from Theorem 8. Let S be a
region in R

n, and let S′ = {m(α) | α ∈ S}. Polynomial p is Lazard valuation
invariant in S with respect to ord if and only if p is Lazard valuation invariant
in S′ with respect to ord′.

Proof. Assume that p is Lazard valuation invariant in S with respect to ord, and
let a′ and b′ be points in S′. Then by the definition of S′, there exist points a and b
in S such that m(a) = a′ and m(b) = b′. By assumption, vord(p, a) = vord(p, b),
so by Theorem 8 we have vord′(p,m(a)) = vord′(p,m(b)). Thus, vord′(p, a′) =
vord′(p, b′), and we get that p is Lazard valuation invariant in S′ with respect
to ord′.

Assume p is not Lazard valuation invariant in S with respect to ord. Then
there exist points a and b in S such that vord(p, a) �= vord(p, b). Thus we have
vord′(p,m(a)) �= vord′(p,m(b)). Since m(a) and m(b) are both in S′, we get that p
is not Lazard valuation invariant in S′ with respect to ord′. ��

5 Conclusion

To summarize, we have proved that we can omit from the Lazard projection of A
the trailing coefficient of every element f of A for which f can be determined to
have only finitely many nullifying points in R

n−1, provided certain modifications
to the CAD method are made. This makes Lazard’s method competitive in
principle with the Brown-McCallum method in the well-oriented case. Lazard’s
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method is already known to be infallible in the non-well-oriented case (unlike
Brown-McCallum). It will be interesting to compare the performance of the two
methods experimentally for a range of well-oriented sample problems. We have
provided also a selection of further enhancements to Lazard’s method.

It will be great to see progress on the adaptation of Lazard’s method to the
other approaches to CAD mentioned in the Introduction. As remarked there, we
expect that the results of the present paper will be beneficial for such efforts.
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Abstract. Sparse multivariate Hensel lifting (SHL) algorithms are used
in multivariate polynomial factorization as efficient randomized algo-
rithms. They improve on Wang’s classical multivariate Hensel lifting
which can be exponential in the number of variables for sparse factors.

In this work, we present worst case complexity analyses and fail-
ure probability bounds for two recently developed SHL algorithms. One
of the algorithms solves the multivariate Diophantine equations using
sparse interpolation, and the other interpolates the factors directly from
bivariate images obtained using bivariate Hensel lifting.

We have observed that a linear expression swell occurs in both
approaches. We have modified the second approach to eliminate the
expression swell. Our improvement also injects more parallelism into the
sparse interpolation step.

We have made a high-performance parallel implementation of our new
SHL algorithm in Cilk C. We present timing benchmarks comparing our
Cilk C implementation with the factorization algorithms in Maple and
Magma. We obtain good parallel speedup and our algorithm is much
faster than Maple and Magma on our benchmarks.

Keywords: Sparse multivariate Hensel lifting · Sparse interpolation ·
Multivariate Diophantine equations · Polynomial factorization ·
Bivariate Hensel lifting · Cilk C

1 Introduction

Polynomial factorization has been a central topic in computer algebra, and it
continues to play a critical role in other fields such as algebraic coding theory,
cryptography, number theory and algebraic geometry [5]. In this work, we focus
on the main tool used to factor multivariate polynomials, namely, multivariate
Hensel lifting (MHL). MHL was initially developed by Yun [19] and Wang [18] to
factor polynomials with integer coefficients, but it can be applied to polynomials
with coefficients in other domains, for example, finite fields [1,4] and algebraic
number fields [15,16,20].
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To factor a multivariate polynomial a ∈ Z[x1, x2, · · · , xn], Wang’s multivari-
ate Hensel lifting [18] first chooses integers α2, . . . , αn and factors the univariate
image a(x1, α2, . . . , αn) in Z[x1]. Then it recovers the multivariate factors from
their images one variable at a time. A key step in Wang’s MHL is the solu-
tion of a sequence of multivariate polynomial Diophantine equations (MDPs).
Wang’s MHL has been implemented in many computer algebra systems including
Maple, Magma, Macsyma, Mathematica and Singular. For a detailed description
of Wang’s MHL we refer the reader to Chap. 6 of [5].

It is known that when factors are sparse and the evaluation points α2, . . . , αn

are mostly non-zero, Wang’s method for solving MDPs can be exponential in
the number of variables [9,12]. To resolve this, Zippel [22] introduced the first
polynomial-time probabilistic algorithm in 1981 that takes advantage of spar-
sity. Other sparse Hensel lifting (SHL) algorithms were developed by Kaltofen
in 1985 [6] and Kaltofen and Trager in 1990 [7].

In 2016, Monagan and Tuncer [9] proposed a new sparse Hensel lifting algo-
rithm called MTSHL. The authors made a key observation which they call the
strong SHL assumption (see Lemma 1 of [9]) which is applied to solve the MDPs
that appear in Wang’s MHL in random polynomial time. A detailed complexity
analysis for MTSHL was completed for the average-case in [12]. MTSHL was
integrated into Maple 2019 [13].

In 2018, Monagan and Tuncer [11] introduced another approach that does
not solve MDPs. Instead, at each Hensel lifting step, it interpolates the factors
from many bivariate images which are obtained using bivariate Hensel lifting.
Classical bivariate Hensel lifting (BHL) costs O(d4) where d = deg(a) is the
total degree of the input polynomial. The cost of BHL is improved to O(d3) by
Monagan in [14]. This approach is appropriate for multivariate Hensel lifting
because the degree of the factors is rarely 100, and often 10 or lower.

Our work is motivated by the following observation. In the main Hensel
lifting step (see Algorithm 1) which is used in MTSHL ([12]), in [11] and also
in Wang’s multivariate Hensel lifting [18], when the evaluation point αj is non-
zero, an expression swell occurs in each factor as it is recovered (in line 13). This
increases the cost of the error computation (in line 14).

Our first contribution is a new algorithm CMSHL which reorganizes the
sparse Hensel lifting algorithm in [11] to eliminate the expression swell. Our
second contribution is a worst case complexity analysis for CMSHL and for
MTSHL and bounds for the failure probability of both algorithms. Our third
contribution is a high-performance parallel implementation of CMSHL using
Cilk C [3] for multi-core computers.

Our paper is organized as follows. In Sect. 2, we present the two sparse mul-
tivariate Hensel lifting algorithms from [9,12] and [11]. We study the expression
swell and give examples of it for the worst case and then we present our new
algorithm CMSHL which eliminates the expression swell. In Sect. 3 we give worst
case complexity analyses for MTSHL and CMSHL along with their failure prob-
abilities. In Sect. 4 we present timings comparing our Cilk C implementation
of CMSHL with Maple and Magma’s factorization commands for a variety of
input problems. The timings (see Tables 3, 4 and 5) demonstrate good parallel
speedup. In Sect. 5 we give some details of our Cilk C implementation.
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2 Two Algorithms of Sparse Multivariate Hensel Lifting

Suppose we seek the factors of a multivariate polynomial a ∈ Z[x1, · · · , xn].
Similar to Wang’s multivariate Hensel lifting (MHL), a few preliminary steps
are done before sparse multivariate Hensel lifting (SHL) [10]:

The first step is to compute and remove the content of a in a chosen main vari-
able, say x1. For a =

∑d
i=0 ai(x2, · · · , xn)xi

1, the content of a is gcd(a0, · · · , ad),
a polynomial with one fewer variable which can be factored recursively. Let us
assume this has already been done.

The second step is to identify any repeated factor in a by doing a square-free
factorization (see ch.8 in [5]). After this, we obtain the factorization a=b1b

2
2 · · · bk

k

such that each factor bi is square-free and gcd(bi, bj) = 1 for i �= j. Without loss
of generality, suppose this has also been done and let a = f1f2 · · · fr be the
irreducible factorization of a over Z.

Next, an evaluation point ααα = (α2, · · · , αn) ∈ Z
n−1 is chosen and then

a(x1,ααα) is factored over Z. The evaluation point ααα must satisfy the following
conditions: (i) L(ααα) �= 0 where L is the leading coefficient of a in x1, (ii) a(x1,ααα)
must have no repeated factor in x1, and (iii) fi(x1,ααα) must be irreducible. Con-
ditions (i) and (ii) can be enforced in advance whereas (iii) can be ensured with
high probability by choosing the integers αi from a sufficiently large set.

For simplicity, throughout this paper we only consider two irreducible factors
f and g both monic in x1. For multi-factor cases, we refer the reader to [10].
Let a = fg where f and g are monic irreducible polynomials in Z[x1, · · · , xn].
We define hj := h(x1, · · · , xj , αj+1, · · · , αn) for a polynomial h ∈ Z[x1, · · · , xn].
To factor a, the image a1 is first factored over Z. From Hilbert’s irreducibility
theorem (see e.g. [8]), f1 and g1 are irreducible with high probability.

Now we start the process of sparse multivariate Hensel lifting to recover f and
g from a, f1, g1. The inputs are a, f1, g1, ααα and a prime p such that gcd(f1, g1) = 1
in Zp[x1]. The algorithm lifts (f1, g1) to (f2, g2), then lifts (f2, g2) to (f3, g3) etc.
until (fn, gn) is obtained. At each step, aj − fjgj mod p = 0 so that at the final
step, an − fngn mod p = 0. To recover the integer coefficients in the factors one
may either use a sufficiently large p or perform the Hensel lifting using a machine
prime (we use 63 bit primes) and, if necessary, do a subsequent p-adic lift [10].

2.1 MTSHL

The jth Hensel lifting step for both approaches of sparse multivariate Hensel
lifting in [9,12] and [11] is presented. Our presentation includes worst case com-
plexity bounds for the main steps as an aid for the reader and for later reference.
We use the notation #f to be the number of non-zero terms of a polynomial f .

The first approach (MTSHL [9,12]) is presented in Algorithms 1 and 2.
Algorithm 2 is called from Algorithm 1 in a loop to solve the MDPs via sparse
interpolation. Note that in Algorithm 2, if max(ti) is much larger (or much
smaller) than max(si) then it will be faster to interpolate the smaller of σ and τ
only and obtain the larger of σ and τ using σu + τw = c. The second approach
in [11] is shown in Algorithm 3.
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Algorithm 1. MTSHL: Hensel lift xj with MDPs via sparse interpolation.
1: Input: A prime p, αj ∈ Zp, aj ∈ Zp[x1, · · · , xj] monic in x1,

fj−1, gj−1 ∈ Zp[x1, · · · , xj−1] s.t. aj(x1, ..., xj−1, αj) = fj−1gj−1 with j > 2.
2: Output: fj, gj ∈ Zp[x1, · · · , xj] s.t. aj = fjgj where fj(xj =αj) = fj−1 and

gj(xj =αj) = gj−1; Otherwise, FAIL.
3: (σ0, τ0) ← (fj−1, gj−1); (fj, gj) ← (fj−1, gj−1).
4: error ← aj − fjgj; monomial ← 1.
5: for i = 1, 2, · · · while error �= 0 and deg(fj, xj) + deg(gj, xj) < deg(aj, xj) do
6: monomial ← monomial · (xj − αj).
7: ci ← coeff(error, (xj − αj)

i).
8: if ci �= 0 then
9: // Solve the MDP σigj−1 + τifj−1 = ci for σi, τi ∈ Zp[x1, · · · , xj−1].

10: σf ← σi−1; τf ← τi−1.
11: (σi, τi) ← SparseInterp(gj−1, fj−1, ci, σf , τf) // Algorithm 2
12: if (σi, τi) = FAIL then return FAIL end if
13: (fj, gj) ← (fj + σi · monomial, gj + τi · monomial).
14: error ← aj − fjgj.
15: end if
16: end for
17: if error = 0 then return (fj, gj) else return FAIL end if

Algorithm 2. SparseInterp: solve an MDP using sparse interpolation.
1: Input: u,w, c, σf , τf ∈ Zp[x1, · · · , xj−1] where u,w are monic in x1.
2: Output: The solution (σ, τ) to the MDP σu + τw = c ∈ Zp[x1, · · · , xj−1] or FAIL.
3: Let dσ = deg(σf , x1) and σ =

∑dσ
i=0 ζi(x2, · · · , xj−1)x

i
1 with ζi =

∑si
l=1 ailMil

and dτ = deg(τf , x1) and τ =
∑dτ

i=0 ηi(x2, · · · , xj−1)x
i
1 with ηi =

∑ti
l=1 bilNil, where

ail, bil are to be determined, xi1Mil, x
i
1Nil are monomials in σf , τf .

4: Let s be the maximum of si and ti.
5: Pick βββ = (β2, · · · , βj−1) ∈ (Zp\{0})j−2 at random.
6: Evaluate monomials at βββ: . . . . . . . . . . . . . . . . . . . . . . . . . . O((j − 2))(#f + #g + dmax))

S = {Si = {mil = Mil(βββ) : 1 ≤ l ≤ si}, 0 ≤ i ≤ dσ} and
T = {Ti = {nil = Nil(βββ) : 1 ≤ l ≤ ti}, 0 ≤ i ≤ dτ}.

7: if any |Si| �= si or |Ti| �= ti then return FAIL end if
8: for k from 1 to s in parallel do
9: Let Yk = (x2 = βk

2 , · · · , xj−1 = βk
j−1).

10: Evaluate u,w, c at Yk: u(x1,Yk),w(x1,Yk), c(x1,Yk). . . . . . .O(s(#f + #g + #a))
11: if gcd(u(x1,Yk),w(x1,Yk)) �= 1 then return FAIL end if
12: Solve σk(x1)u(x1,Yk) + τk(x1)w(x1,Yk) = c(x1,Yk) ∈ Zp[x1]. . . . . . . . . . . . . O(s d21)
13: end for
14: for i from 0 to dσ in parallel do
15: Construct and solve the si × si linear system for ail: . . . . . . . . . . . . . . . . . . . .O(s#f)

{
si∑

l=1

ailm
k
il = coeff(σk(x1), x

i
1) for 1 ≤ k ≤ si

}

.

16: end for
17: Substitute the solution ail into σ.
18: Similarly, construct τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(s#g)
19: if σu + τw = c then return (σ, τ) else return FAIL // wrong σf or τf
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Algorithm 3. Hensel lift xj via bivariate Hensel lifting [11].
1: Input: A prime p, αj ∈ Zp, aj ∈ Zp[x1, · · · , xj] monic in x1,

fj−1, gj−1 ∈ Zp[x1, · · · , xj−1] s.t. aj(x1, ..., xj−1, αj) = fj−1gj−1 with j > 2.
2: Output: fj, gj ∈ Zp[x1, · · · , xj] s.t. aj = fjgj where fj(xj =αj) = fj−1 and

gj(xj =αj) = gj−1; Otherwise, FAIL.

3: Let σ0 = fj−1, fj =
∑dfj

h=0 σh(x1, ..., xj−1)(xj − αj)
h with σh =

∑df
i=0 (

∑si
l=1 chilMil) x

i
1.

Let τ0 = gj−1, gj =
∑dgj

h=0 τh(x1, ..., xj−1)(xj − αj)
h with τh =

∑dg
i=0

(∑ti
l=1 dhilNil

)
xi1.

Milx
i
1, Nilx

i
1 are monomials in σ0, τ0. df = deg(fj−1, x1), dg = deg(gj−1, x1).

We are to determine: chil, dhil, dfj = deg(fj, xj), dgj = deg(gj, xj).
4: Pick βββ = (β2, · · · , βj−1) ∈ Z

j−2
p at random.

5: Evaluate monomials at βββ . . . . . . . . . . . . . . . . . . . . . . . . . . . .O((j − 2)(#f + #g + dmax))
S = {Si = {mil = Mil(βββ), 1 ≤ l ≤ si}, 0 ≤ i ≤ df − 1} and
T = {Ti = {nil = Nil(βββ), 1 ≤ l ≤ ti}, 0 ≤ i ≤ dg − 1}.

6: if any |Si| �= si or any |Ti| �= ti then return FAIL end if
7: Let s be the maximum of si and ti.
8: for k from 1 to s in parallel do
9: Let Yk = (x2 = βk

2 , · · · , xj−1 = βk
j−1).

10: Ak,Fk,Gk ← aj(x1,Yk, xj), fj−1(x1,Yk), gj−1(x1,Yk). . . . . . . . . O(s(#f + #g + #a))
11: if gcd(Fk,Gk) �= 1 then return FAIL end if // unlucky evaluation
12: Call BivariateHenselLift(Ak,Fk,Gk, αj, p) to compute σhk(x1) and τhk(x1) s.t.

Ak = fkgk where fk =
∑dfj

h=0 σhk(xj − αj)
h and gk =

∑dgj
h=0 τhk(xj − αj)

h.
13: end for
14: for h from 1 to dfj do
15: for i from 0 to df do
16: Construct and solve the si × si linear system for chil . . . . . . . . . . . . . . .O(sdj#f)

{
si∑

l=1

chilm
k
il = coeff(σhk(x1), x

i
1) for 1 ≤ k ≤ si

}

17: end for
18: end for
19: Substitute the solution chil into σh and expand to get fj. . . . . . . . . . . . . . . . O(d2j #f)
20: Similarly to construct gj. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(sdj#g)
21: if aj = fjgj then return (fj, gj) else return FAIL end if

2.2 Intermediate Expression Swell

In Algorithm 1, an expression swell may occur in line 13 and 14. In Algorithm 3
an expression swell may occur at the final expansion step (line 19). To illustrate
the expression swell, we consider the partial sums of fj . Let

f
(i)
j =

i∑

k=0

σk(x1, · · · , xj−1)(xj − αj)k for 0 ≤ i ≤ dj , and

f
(i)
jH = (((σdj

(xj − αj) + σdj−1)(xj − αj) + · · · )(xj − αj)) + σdj−i ,
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Table 1. Number of terms in f
(i)
j and f

(i)
jH with a randomly generated polynomial.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

#σi 925 737 584 459 352 268 196 134 94 64 48 24 13 7 3

#f
(i)
j 925 1512 1851 1999 2021 1934 1768 1628 1486 1411 1226 1130 1071 1028 989

#f
(i)
jH

3 10 23 47 95 159 253 387 583 851 1203 1662 2246 2983 989

Table 2. Number of terms in f
(i)
j and f

(i)
jH in a worst case.

i 0 1 2 3 4

#σi 7 7 7 7 7

#f
(i)
j 7 14 21 28 7

#f
(i)
jH 7 14 21 28 7

where f
(i)
jH is the expansion in Horner’s form and dj = deg(fj , xj). f

(i)
j and f

(i)
jH

correspond to the intermediate steps in line 13 of Algorithm 1 and in line 19 of
Algorithm 3 respectively. We are interested in #f

(i)
j and #f

(i)
jH for 0 ≤ i ≤ dj .

An example of a randomly generated polynomial with p = 231 − 1, j = 5,
dj = 14, d = 20 and #fj = 989 is shown in Table 1. The density ratio
#fj/

(
d+j

j

)
≈ 0.0186. The ratios max(#f

(i)
j )/#fj and max(#f

(i)
jH)/#fj are 2.043

and 3.016 respectively. This example shows a typical trend in an average case
where max(#f

(i)
j )/#fj � 1 + d/j [12]. We observe that #σi decreases as i

increases from 0 to dj . The number of terms #f
(i)
j increases to a peak in the

first few expansions and gradually shrinks back to #fj , whereas #f
(i)
jH increases

to a higher peak than max(#f
(i)
j ) and drops down to #fj at the last iteration.

The following example illustrates the worst case where #f
(i)
j increases lin-

early to its maximum, dj#fj .

fj = (31x3 + 100x2
3 + (49 + 36x2

2 + (x4
1 + 44x2

1 + 28)x3
2)x

3
3)x

4
4,

with p = 101, j = 4 and #fj = 7. Table 2 shows the number of terms in f
(i)
j .

max(#f
(i)
j ) equals to dj#fj . This is because

σi =
1
i!

∂(i)fj

∂xi
j

(xj = αj) for 0 ≤ i ≤ dj

and in this example fj only contains the terms with x
dj

j . In this case, #σi is

never reduced as i increases from 0 to dj and we have max(#f
(i)
j )/#fj = dj .

2.3 Our New Algorithm: CMSHL

We present a new approach which eliminates the expression swell in Algorithm 3.
The idea is depicted in Fig. 1. Consider one of the factors fj at the jth Hensel
lifting step:
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Fig. 1. Dashed arrows: Algorithm 3 [11], expression swell occurs at the expansion step.
Lined arrows: CMSHL (Algorithm 4).

fj(x1, · · · , xj) =
dfj∑

i=0

σi(x1, · · · , xj−1)(xj − αj)i =
dfj∑

i=0

σ̄i(x1, · · · , xj−1)xi
j , (1)

where dfj = deg(fj , xj). There are two routes to recover σ̄i(x1, · · · , xj−1) in (1)
from its bivariate image fj(x1, xj). One route is to first recover σi(x1, · · · , xj−1)
from σi(x1) using sparse interpolation and then expand to get σ̄i(x1, · · · , xj−1)
in (1) (through the dashed arrows in Fig. 1). This has been done previously
in [11]. In our new algorithm (CMSHL), bivariate images are expanded first and
then the coefficients σ̄i(x1, · · · , xj−1) are recovered directly from σ̄i(x1) to get
the final expanded form. This is through the lined arrows in Fig. 1. Multivariate
polynomial expansions are avoided where expression swells can occur.

Our solution is presented in Algorithm 4 (CMSHL). The correctness of
this algorithm is based on the following. Since all loop ranges are finite, algo-
rithm CMSHL terminates. When CMSHL terminates it outputs either two fac-
tors fj , gj or FAIL. Since CMSHL tests if aj = fjgj in line 21 the output (fj , gj)
is the correct factorization. The failure probability is presented in Sect. 3.

Algorithm CMSHL also has a significant advantage for parallelization, how-
ever, it only uses the weak SHL assumption during a sparse interpolation. It
cannot use the strong SHL assumption as in MTSHL to reduce the number
of terms in a loop for a typical average case. The strong and the weak SHL
assumptions are both defined in Sect. 3.1.

3 Complexity Analyses

For both MTSHL and CMSHL, the number of arithmetic operations in Zp are
bounded for the worst-case, along with the failure probabilities. We first need
the Schwartz-Zippel Lemma [17,21]:

Lemma 1. Let F be a field and f �= 0 be a polynomial in F [x1, x2, · · · , xn]
with total degree d and let S ⊆ F . Then the number of roots of f in Sn is at
most d|S|n−1. Hence if βββ is chosen at random from Sn then Pr[f(βββ) = 0] ≤ d

|S| .



The Complexity of Two Sparse Multivariate Hensel Lifting Algorithms 157

Algorithm 4. CMSHL: Hensel lifting xj via bivariate Hensel lifting.
1: Input: A prime p, αj ∈ Zp, aj ∈ Zp[x1, · · · , xj] monic in x1,

fj−1, gj−1 ∈ Zp[x1, · · · , xj−1] s.t. aj(x1, ..., xj−1, αj) = fj−1gj−1 with j > 2.
2: Output: fj, gj ∈ Zp[x1, · · · , xj] s.t. aj = fjgj where fj(xj =αj) = fj−1 and

gj(xj =αj) = gj−1; Otherwise, FAIL.
3: Let fj−1 = xdf1 +

∑df−1
i=0 σi(x2, ..., xj−1)x

i
1 with σi =

∑si
k=1 cikMik

and gj−1 = xdg1 +
∑dg−1

i=0 τi(x2, ..., xj−1)x
i
1 with τi =

∑ti
k=1 dikNik,

where Mik, Nik are the monomials in σi, τi respectively.
4: Pick βββ = (β2, · · · , βj−1) ∈ Z

j−2
p at random.

5: Evaluate monomials at βββ: . . . . . . . . . . . . . . . . . . . . . . . . . . . O((j − 2)(#f + #g + dmax))
S = {Si = {mik = Mik(βββ), 1 ≤ k ≤ si}, 0 ≤ i ≤ df − 1} and
T = {Ti = {nik = Nik(βββ), 1 ≤ k ≤ ti}, 0 ≤ i ≤ dg − 1}.

6: if any |Si| �= si or any |Ti| �= ti then return FAIL end if
7: Let s be the maximum of si and ti.
8: for k from 1 to s in parallel do
9: Let Yk = (x2 = βk

2 , · · · , xj−1 = βk
j−1).

10: Ak,Fk,Gk ← aj(x1,Yk, xj), fj−1(x1,Yk), gj−1(x1,Yk). . . . . . . . . O(s(#f + #g + #a))
11: if gcd(Fk,Gk) �= 1 then return FAIL end if // unlucky evaluation
12: fk, gk ← BivariateHenselLift(Ak,Fk,Gk, αj, p). . . . . . . . . . . . . . . . .O(s(d21dj + d1d

2
j ))

13: end for
14: Let fk = xdf1 +

∑μ
l=1 αklM̃l(x1, xj) for 1 ≤ k ≤ s, where μ ≤ d1dj.

15: for l from 1 to μ in parallel do
16: i ← deg(M̃l, x1).
17: Solve the si × si linear system for clk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(sdj#f)

{
si∑

k=1

mn
ikclk = αnl for 1 ≤ n ≤ si

}

18: end for
19: Construct fj ← xdf1 +

∑μ
l=1 (

∑si
k=1 clkMik(x2, ..., xj−1)) M̃l(x1, xj).

20: Similarly, construct gj. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(sdj#g)
21: if aj = fjgj then return (fj, gj) else return FAIL end if

3.1 MTSHL

MTSHL uses the strong SHL assumption to solve the multivariate Diophantine
equations (MDPs) in a loop. The following lemma was proved in [9]:

Lemma 2. Let f ∈ Zp[x1, · · · , xn] and let α be a randomly chosen element
in Zp. Let f =

∑dn

i=0 σi(x1, · · · , xn−1)(xn − α)i where dn = deg(f, xn). Then,

Pr[Supp(σi+1) � Supp(σi)] ≤ |Supp(σi+1)|
dn − i

p − dn + i + 1
for 0 ≤ i < dn.

The assumption that Supp(σi) ⊆ Supp(σi−1) for 1 ≤ i ≤ dn is called the
strong SHL assumption in [9,12]. In Sect. 3.2 our new algorithm will assume
Supp(σi) ⊆ Supp(σ0) for 1 ≤ i ≤ dn. This assumption is called the weak SHL
assumption in [9,12].
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Step 11 of Algorithm 1 applies the strong SHL assumption by employing
Supp(σf ) = Supp(σi−1) and Supp(τf ) = Supp(τi−1) as the supports for σi

and τi. Therefore we only solve systems of linear equations for the coefficients.
This is the key feature to solve the MDPs via Algorithm 2, which we shall analyze
in the following.

3.1.1 The Failure Probability of the MDPs

There are two places where Algorithm 2 can return FAIL intermediately: line 7
and line 11. The failure probabilities are bounded as follows. Proofs follow [12].

Proposition 1. Let p be a large prime, d = deg(a) and s be the number
defined in line 4 of Algorithm 2. When Algorithm 1 calls Algorithm 2 with
inputs (u,w, c, σf , τf ) = (gj−1,fj−1,ci,σi−1,τi−1), if Supp(σi) ⊆ Supp(σi−1) and
Supp(τi) ⊆ Supp(τi−1), for i = 1, 2, 3, · · · , then Algorithm 2 fails to compute
(σi, τi) for the MDP σigj−1 + τifj−1 = ci with a probability less than

d s(#fj−1 + #gj−1)
2(p − 1)

︸ ︷︷ ︸
line 7

+
d2s2

p − 1
︸ ︷︷ ︸
line 11

. (2)

Proof. For line 7, let Δi =
∏

1≤l<k≤si
(Mil−Mik), where Mil,Mik are monomials

in S defined in line 6. Let Δ =
∏dσ

i=0 Δi. Then Δ(βββ) = 0 implies Δi(βββ) = 0 for
some i so that not all monomial evaluations are distinct. Also, deg(Mil) < d for
each monomial in S. Thus,

deg(Δ) <

dσ∑

i=0

d

(
si

2

)

≤ d s

2

dσ∑

i=0

(si − 1) <
ds#fj−1

2
.

By Lemma 1,

Pr[Δ(βββ) = 0] ≤ deg(Δ)
p − 1

<
ds#fj−1

2(p − 1)
.

Similarly, the monomial evaluations for τ are considered.
To solve the Diophantine equation in line 12, we need

gcd(u(x1, Yk), w(x1, Yk)) = gcd(gj−1(x1, Yk), fj−1(x1, Yk)) = 1.

Let R = res(gj−1, fj−1, x1) ∈ Zp[x2, · · · , xj−1]. Since fj−1 and gj−1 are monic
in x1, the univariate Diophantine solver returns FAIL if

gcd(gj−1(x1, Yk), fj−1(x1, Yk)) �= 1 ⇐⇒ R(Yk) = 0.

Let S =
∏s

k=1 R(xk
2 , x

k
3 , · · · , xk

j−1). Since deg(fj−1) < d and deg(gj−1) < d,
deg(R) < d2 and

deg(S) =
s∑

k=1

k deg(R) <
s∑

k=1

kd2 =
d2s(s + 1)

2
.
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By Lemma 1,

Pr[R(Yk) = 0 for some k] = Pr[S(βββ) = 0] ≤ deg(S)
p − 1

<
d2s2

p − 1
.

Adding the failure probabilities at line 7 and 11, we obtain the result. �

At the end of Algorithm 2, σu+τw = c can be checked probabilistically with
a single evaluation point. If Algorithm 2 returns FAIL at line 19, the support in
either σ or τ was wrong (strong SHL assumption fails). By Lemma 2, Algorithm 1
fails at the jth Hensel lifting step due to a wrong support in σi with a probability
no more than

dj−1∑

i=0

|supp(σi+1)|
dj − i

p − dj + i + 1
≤#fj−1

dj−1∑

i=0

dj − i

p − dj + i + 1
<

dj(dj + 1)#fj−1

2(p − dj + 1)
,

where dj = deg(aj , xj).
Note that the number s in Proposition 1 varies since MDPs are called in a

loop from Algorithm 1. We denote sj,i as the maximum number of monomials
in the coefficients of σi−1 and τi−1 in x1 for the ith call of the MDP in the jth

Hensel lifting step. Let sj = maxi(sj,i) and Tfgj−1 = max(#fj−1,#gj−1). We
have dj ≤ d. Adding up the failure probabilities at line 7, 11 and 19, we obtain
the failure probability at the jth Hensel lifting step:

Proposition 2. Let p be a large prime, d = deg(a), sj = maxi(sj,i) and
Tfgj−1 = max(#fj−1,#gj−1). Algorithm 1 (MTSHL) fails to compute fj,gj from
fj−1,gj−1 at the jth Hensel lifting step (j > 2) via Algorithm 2 with a probability
less than

d2sj(Tfgj−1 + d sj) + d2Tfgj−1 + dTfgj−1

p − d + 1
. (3)

For the whole MTSHL process (for 2 ≤ j ≤ n), we have #fj−1 ≤ #f ,
#gj−1 ≤ #g.

Proposition 3. Let p be a large prime, n be the number of variables in a,
d = deg(a), smax = max(sj) and Tfg = max(#f,#g). MTSHL (the jth Hensel
lifting step as in Algorithm 1) fails to solve the MDP via sparse interpolation
(Algorithm 2) with a probability less than

(n − 2)
(
d2smax(Tfg + d smax) + d2Tfg + dTfg

)

p − d + 1
. (4)

We illustrate the probability in Proposition 3 for a typical large factorization
problem. Let n = 10, d = 102, Tfg = 104 and smax = 102. If p is a 64-bit prime
≈ 1.8 × 1019, then MTSHL fails with probability less than 8.72 × 10−9. Thus
for p sufficiently large, the failure probability is low.
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3.1.2 The Complexity of the MDP
After discussing the failure probabilities, it remains to bound the number of
arithmetic operations in Zp. We have the complexity of the MDP as follows:

Theorem 1. Let p be a large prime, s be the number defined in line 4 of
Algorithm 2, d1 = deg(a, x1) and aj (j > 2) be monic in x1. When Algorithm 1
calls Algorithm 2, if the strong SHL assumption holds, then with a failure proba-
bility less than in (2), the number of arithmetic operations in Zp for solving the
MDP σigj−1 + τifj−1 = ci for i = 1, 2, · · · in the worst case is

O(s(#aj + d21)). (5)

Proof. Appendix A.

3.1.3 The Complexity of MTSHL
Now we return to the analysis of Algorithm 1 – Hensel lifting xj with multivariate
Diophantine equations. One bottleneck of Algorithm 1 is the error computation
step at line 14. There is an expression swell of fj and gj at line 13 of up to a
factor of dj = deg(a, xj). We have the complexity at the jth Hensel lifting step:

Theorem 2. Let p be a large prime, d1 = deg(a, x1), dj = deg(a, xj) and sj =
maxi(sj,i). With a failure probability less than in (3), the number of arithmetic
operations in Zp for the jth Hensel lifting step (via Algorithm 1) in the worst
case is

O(d2j#aj
︸ ︷︷ ︸
line7,13

+ djsj(#aj + d21)︸ ︷︷ ︸
MDP

+ d3j#fj−1#gj−1
︸ ︷︷ ︸

error comp.

). (6)

Proof. To compute coeff(error, (xj−αj)i) in step 7, using repeated differentiation
and evaluation costs O(i#error). The total cost is O(d2j#aj).

The total cost of sparse interpolation in step 11 is O(djsj(#aj + d21)), from
Theorem 1.

The total cost of adding the factors in step 13 is O
(∑dj

i=1 i(#fj−1 + #gj−1)
)
,

which is O(d2j (#fj−1 + #gj−1)).

The total cost of error computation in step 14 is O
(∑dj

k=1 #f
(k)
j #g

(k)
j

)
=

O
(∑dj

i=1(i#fj−1)(i#gj−1)
)

⊆ O(d3j#fj−1#gj−1).
Assuming #fj−1 ≤ #aj and #gj−1 ≤ #aj , the total cost for Algorithm 1 is

O(d2j#aj
︸ ︷︷ ︸
line 7,13

+ djsj(#aj + d21)︸ ︷︷ ︸
MDP

+ d3j#fj−1#gj−1
︸ ︷︷ ︸

error comp.

). �

In Theorem 2, the expression swell appears as the factor of d2j . On average
the expression swell is much less. For sparse factors, we know that #fj−1 � #fj

for n/2 ≤ j ≤ n [12]. The complexity of the whole MTSHL process is given in
the following:
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Theorem 3. Let p be a large prime, a ∈ Zp[x1, · · · , xn] monic in x1, ααα =
(α2, · · · , αn) ∈ Z

n−1
p be a random evaluation point, f , g be the monic irre-

ducible factors of a, f1 = f(x1,ααα), g1 = g(x1,ααα) be the image polynomials with
gcd(f1, g1) = 1. Then with a failure probability less than in (4), the total number
of arithmetic operations in Zp for lifting f1,g1 to fn,gn in n − 1 steps using
MTSHL (Algorithm 1) in the worst case is

O(d21d2 + d1d
2
2︸ ︷︷ ︸

first BHL

+(n − 2)(d2max#a + smaxdmax(#a + d21) + d3max#f#g
︸ ︷︷ ︸

MTSHL

)), (7)

where di = deg(a, xi) for 1 ≤ i ≤ n, dmax = maxn
i=3(di) and smax = max(sj).

3.2 CMSHL

In Algorithm CMSHL, the weak SHL assumption is used instead of the strong
SHL assumption (see Sect. 3.1 for the definition). Similar to Lemma 2, we have
the following (proof follows [9]):

Lemma 3. Let f ∈ Zp[x1, · · · , xn] and let α be a randomly chosen element
in Zp. Let f =

∑dn

i=0 σi(x1, · · · , xn−1)(xn − α)i where dn = deg(f, xn). Then,

Pr[Supp(σi) � Supp(σ0)] ≤ |Supp(σi)|
dn

p − dn + i
for 1 ≤ i ≤ dn.

3.2.1 The Failure Probability of CMSHL
For the jth Hensel lifting step, by Lemma 3, the failure probability due to a
wrong support in either fj or gj (Algorithm 4 fails at line 21) is bounded by

(#fj−1 + #gj−1)
dj∑

i=1

dj

p − dj + i
≤

d2j (#fj−1 + #gj−1)
p − dj + 1

.

The number s defined in line 7 of Algorithm 4 is equivalent to sj = max(sj,i)
in MTSHL. We denote sj as the number s in line 7 of Algorithm 4 at the jth

Hensel lifting step. Identical to MTSHL (Proposition 1), the failure probabilities
at line 6 and 11 are

d sj(#fj−1 + #gj−1)
2(p − 1)

︸ ︷︷ ︸
line 6

+
d2s2j
p − 1
︸ ︷︷ ︸
line 11

.

Adding the failure probabilities at line 6, 11 and 21, we have the failure
probability at the jth Hensel lifting step for Algorithm 4 (CMSHL):

Proposition 4. Let p be a large prime, d = deg(a), Tfgj−1=max(#fj−1,#gj−1)
and sj be the number s defined in line 7 of Algorithm 4 at the jth Hensel lifting
step. Then Algorithm 4 fails to compute fj,gj from fj−1,gj−1 at the jth Hensel
lifting step (j > 2) with a probability less than

d sj(Tfgj−1 + d sj) + 2d2Tfgj−1

p − d + 1
. (8)
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3.2.2 The Complexity of CMSHL
Theorem 4. Let p be a large prime, d1 = deg(a, x1), dj = deg(a, xj) and sj

be the number s defined in line 7 of Algorithm 4 for the jth Hensel lifting step.
With a failure probability less than in (8), the number of arithmetic operations
in Zp for the jth Hensel lifting step (via Algorithm 4) in the worst case is

O(djsj(#fj−1 + #gj−1 + d21 + d1dj) + sj#aj). (9)

Proof. Appendix B.

For the whole process of CMSHL (for 2 ≤ j ≤ n), we have the following:

Theorem 5. Let p be a large prime, a ∈ Zp[x1, · · · , xn] monic in x1, ααα =
(α2, · · · , αn) be a randomly chosen evaluation point from Z

n−1
p , f , g be the monic

irreducible factors of a, f1 = f(x1,ααα), g1 = g(x1,ααα) be the image polynomials
with gcd(f1, g1) = 1. With a failure probability less than

(n − 2)(d smax(Tfg + d smax) + 2d2Tfg)
p − d + 1

, (10)

the number of arithmetic operations in Zp for lifting f1,g1 to fn,gn in n−1 steps
using CMSHL (Algorithm 4) in the worst case is

O(d21d2 + d1d
2
2︸ ︷︷ ︸

first BHL

+(n − 2) (smaxdmax(#f + #g + d21 + d1dmax) + smax#a)
︸ ︷︷ ︸

CMSHL

), (11)

where d = deg(a), di = deg(a, xi) for 1 ≤ i ≤ n, dmax = maxn
i=3(di), smax =

max(sj) and Tfg = max(#f,#g).

4 Experimental Results

We have implemented our Hensel lifting algorithm in the C programming lan-
guage and parallelized parts of it for multi-core computers using Cilk C [3]. Cilk
uses the fork-join idiom for parallel programming. Our C code and Cilk C code
is freely available on the web at http://www.cecm.sfu.ca/CAG/code/CASC2020

Following the recommendation in [12] we interpolate f(x1, . . . , xj) (using
sparse interpolation) from trivariate images f(x1, x2, β

i, xj) instead of from
bivariate images f(x1, β

i, xj). To obtain a trivariate image we interpolate x2

using dense interpolation from bivariate images f(x1, γk, βi, xj) which we obtain
using bivariate Hensel lifting. Although this increases the cost of computing
images by a factor of deg(f, x2), using trivariate images typically reduces sj in
equation (9) which speeds up all other parts of our algorithm. We refer the reader
to [12] for an analysis of the expected reduction in sj .

We give three sets of timings for our factorization code. The first set (see
Table 3) is for factors with a low degree of 7 and an increasing number of
terms t (#f = #g = t). For this case evaluating a(x1, x2, β

i, xj) is the bottle-
neck of our algorithm. The second set (see Table 4) is for factors with a fixed
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Table 3. Real timings in CPU seconds for low degree d and increasing terms t. NA:
not attempted; > 32GB: out of memory.

n d t s f × g New times (1 core) New times (16 cores) Maple Maple Magma

Total Hensel Eval Total Hensel Eval 2019 2017 V2.25-5

6 7 500 17 0.025 0.084 0.012 0.029 0.081 0.016 0.007 1.897 33.77 43.21

6 7 1000 30 0.107 0.340 0.021 0.170 0.169 0.028 0.027 4.540 95.48 50.38

6 7 2000 47 0.451 1.199 0.033 0.768 0.321 0.044 0.114 97.21 186.7 195.6

6 7 4000 81 1.932 3.583 0.055 2.632 0.543 0.065 0.281 139.4 325.4 777.0

6 7 8000 144 8.249 8.778 0.101 7.107 1.248 0.125 0.830 201.1 470.5 1958.0

9 7 500 14 0.025 0.119 0.013 0.031 0.094 0.013 0.005 4.699 2794.2 849.2

9 7 1000 28 0.108 0.493 0.021 0.204 0.232 0.066 0.031 15.57 16094 915.8

9 7 2000 50 0.449 2.169 0.034 1.313 0.433 0.042 0.160 3597.7 >32GB 9082.8

9 7 4000 99 1.963 13.94 0.067 10.47 1.570 0.076 0.816 >32GB NA 15444

9 7 8000 178 8.244 88.39 0.121 74.14 8.313 0.138 5.575 NA NA >32GB

number of terms and an increasing degree d. For these problems Hensel lifting
becomes the bottleneck. To address this we use Monagan’s O(d3) method [14]
for Hensel lifting in Zp[x, y]. The third set (see Table 5) is for polynomials where
the factor f has a lot more terms than g. For these problems evaluation and
solving Vandermonde systems are the bottlenecks. To solve the Vandermonde
systems we use Zippel’s linear space quadratic time method in [23].

All experiments were performed on a server with two Intel E5-2660 8 core
CPUs running at 2.2GHz (base) and 3.0GHz (turbo) hence the maximum theo-
retical parallel speedup is a factor of 16 × 2.2/3.0 = 11.7.

In Tables 3, 4 and 5 the factors f and g are of the form xd
1+

∑t−1
i=2 ai

∏n
j=1 x

eji

j

with coefficients ai chosen randomly from [1, 999] and exponents eji chosen ran-
domly from [0, d − 1]. The time in column f × g is the time our C code takes to
multiply a = f × g using an algorithm with arithmetic complexity O(#f #g).

Because the factors are monic and have many terms, almost all of the fac-
torization time is in multivariate Hensel lifting. The timings for our algorithm
are for Hensel lifting xn the last variable only, which is most of the time. The
quantity s in column 4 is the number of images needed to interpolate x3, . . . , xn.

For Maple we report timings for Maple 2017 and Maple 2019. Maple 2017
and Magma 2.25-5 are both using Wang’s organization of MHL as described
in Chap. 6 of [5]. Maple 2019 is using Monagan and Tuncer’s sparse Hensel
lifting from [9,12]. These algorithms do many computations with multivariate
polynomials in Zp[x1, . . . , xj ] including many multiplications and divisions. In
contrast, our algorithm does no arithmetic with multivariate polynomials.

In Tables 3, 4 and 5 we report the total time of our new algorithm in column
total, the time evaluating a(x1, x2, β

i, xn) for 1 ≤ i ≤ s in column eval, the time
in bivariate Hensel lifting in column hensel, and for Table 5, the time solving the
Vandermonde systems in column solve. Timings are given for our Cilk C code
for 1 core and 16 cores.



164 T. Chen and M. Monagan

Table 4. Real timings in CPU seconds for increasing degree d and fixed t. NA: not
attempted; > 32GB: out of memory.

n d t s f × g New times (1 core) New times (16 cores) Maple Maple Magma

Total Hensel Eval Total Hensel Eval 2019 2017 v2.25-5

6 10 500 10 0.026 0.079 0.022 0.017 0.069 0.020 0.004 3.068 466.8 134.7

6 15 500 6 0.025 0.101 0.051 0.011 0.094 0.036 0.004 8.206 11002 610.1

6 20 500 5 0.025 0.168 0.117 0.012 0.101 0.036 0.004 18.77 51325 27317

6 40 500 3 0.025 0.669 0.617 0.011 0.272 0.205 0.008 148.7 NA 29.04

6 60 500 3 0.025 2.083 2.025 0.014 0.583 0.519 0.010 545.2 NA 371.4

6 80 500 3 0.025 5.644 5.586 0.014 0.950 0.892 0.010 1210.9 NA 1242.1

6 100 500 2 0.025 7.740 7.687 0.008 1.375 1.303 0.008 NA NA NA

6 10 2000 30 0.455 1.434 0.070 0.737 0.258 0.043 0.056 675.11 1889.3 908.0

6 15 2000 18 0.455 1.327 0.168 0.488 0.341 0.100 0.060 3905.7 63082 9317.1

6 20 2000 12 0.455 1.336 0.329 0.332 0.335 0.136 0.042 4677.2 > 105 17339

6 40 2000 6 0.455 2.853 1.999 0.183 0.686 0.472 0.038 >32GB NA > 105

6 60 2000 6 0.455 8.940 8.071 0.203 1.313 1.106 0.052 NA NA NA

6 80 2000 4 0.455 15.17 14.34 0.158 2.565 2.279 0.084 NA NA NA

6 100 2000 3 0.455 21.77 20.92 0.173 2.644 2.357 0.086 NA NA NA

Table 5. Real timings in CPU seconds for increasing #f = t and #g = 20.

n d t #g s f × g Total Hensel Eval Solve Total Hensel Eval Solve

9 7 10000 20 212 0.043 0.871 0.156 0.340 0.287 0.350 0.155 0.060 0.039

9 7 20000 20 409 0.076 2.641 0.254 1.107 1.108 0.663 0.256 0.122 0.096

9 7 40000 20 789 0.135 9.465 0.475 4.243 4.175 1.917 0.477 0.480 0.361

9 7 80000 20 1503 0.258 34.16 0.920 15.68 16.33 4.782 0.913 1.362 1.373

9 7 160000 20 2984 0.499 132.3 1.791 62.13 64.37 13.67 1.844 5.586 5.244

Tables 3 and 5 show good parallel speedup for the evaluations a(x1, x2, β
i, xn).

Table 4 shows that for higher degree polynomials the Hensel lifting dominates.
To obtain the parallel speedups for the Hensel lifting in Table 4 we parallelize the
evaluations of a(x1, x2, β

i, xn) at x2 = γk for different k as well as the bivariate
Hensel Lifts in Zp[x1, xn].

Table 5 shows that when one factor is much larger than the other, the
time solving Vandermonde systems becomes significant. The solving time is not
reported in Tables 3 and 4 because it is insignificant.

The timings in Tables 3, 4, and 5 agree with our analysis for CMSHL in
Theorem 4. In Table 3, for example, when n = 9 and t increases from 2000 to
4000, #aj is quadrupled and sj is doubled, we see the evaluation time for 1 core
increases by a factor of 10.47/1.313 = 7.97 ≈ 8. This agrees with the term sj#aj

in (9). In Table 4, when t = 2000 and d increases from 60 to 100, we expect the
time for Hensel lifting at d = 100 to be 1

2 (100/60)3 · 8.071 = 18.68 which is
close to the result 20.92. In Table 5, when t and s are doubled, both timings for
evaluations and solving Vandermonde systems are quadrupled as expected.
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5 Implementation Notes

To store the multivariate polynomial a =
∑t

i=1 aiMi(x1, . . . , xn) we encode the
monomials Mi in 64 bit integers mi. We store a as the triple (A,X, t) where

A = a1 a2 . . . at and X = m1 m2 . . . mt

are stored as arrays. For n variables we use q = 64/n bits per variable which
limits the maximum degree in each variable to 2q −1. Although monomial pack-
ing limits the degree and number of variables that our software can handle it
significantly improves the speed. For polynomials with more variables and/or
higher degrees, we are experimenting with the 128 bit integer type __int128
supported by the gcc compiler.

One of the advantages of our algorithm is that there are no multivariate
polynomial multiplications and divisions. The most time consuming operation is
evaluation which is linear in the number of terms. We compute a(x1, x2, β

i, xn)
for β ∈ Z

n−3
p for 1 ≤ i ≤ s. We have parallelized these evaluations. We parallelize

each evaluation a(x1, x2, β
i, xn) in blocks and do two evaluations at a time.

We also execute the bivariate Hensel lifts in parallel and we solve the Vander-
monde linear systems in parallel. To avoid memory bottlenecks, we use in-place
algorithms for all parallel tasks. A routine is in-place if it, and all the subroutines
it calls, allocate no memory. They work in the memory of the input and output.
This means that our Cilk tasks are not simultaneously trying to allocate and
de-allocate memory. We give an example of an in-place algorithm.

The following conversion occurs at the end of bivariate Hensel lifting. We
have polynomials a0(x), a1(x), . . . , ad(x) in Zp[x], a non-zero element α ∈ Zp,
and we want to expand the bivariate polynomial

f(x, y) =
d∑

i=0

ai(x)(y − α)i,

that is, we want to compute new polynomials āi ∈ Zp[x] such that f(x, y) =
∑d

i=0 āi(x)yi in Zp[x, y]. One way to expand f(x, y) is to use Horner’s rule

f(x, y) = a0(x) + (y − α) [a1(x) + (y − α) [a2(x) + · · · + (y − α)ad(x) . . . ]] .

Coding this in Maple or Magma will cause 2d pieces of memory to be allocated
for the intermediate products and sums. To code this in C we have to handle
the memory explicitly. How we do this depends the data structure we use for
storing polynomials in Zp[x, y].

Let f ∈ Zp[x, y], dx = deg(f, x), dy = deg(f, y) and di = deg(f, xi). We store
f as a pair (D,A) where D is an array of integers storing the degree information
[dy, d0, d1, . . . , ddy] and A is an array of arrays storing [a0(x), a1(x), . . . , ad(x)].
To do the conversion we use this version of Horner’s rule

for i = d − 1, d − 2, . . . , 0 do
for j = i, i + 1, . . . , d − 1 do

aj(x) := aj(x) − α aj+1(x).
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To implement this in-place we use the inplace routine polsubmul(a, da, b, db, α, p)
from our Zp[x] library which computes a(x) := a(x)−α b(x) in the memory of a
and returns the degree of the result. The routine polsubmul assumes the size of
the array a is big enough to hold b. Assuming each array Ai has space for 1+dx
coefficients in Zp, we can do the conversion in the memory of (D,A) with

for( i=D[0]-1; i>=0; i-- )
for( j=i; j<d; j++ )

D[j+1] = polsubmul(A[j],D[j],A[j+1],D[j+1],alpha,p);

We have coded every subroutine in our bivariate Hensel lift to run in-place so
that our bivariate Hensel lift can also be made in-place. In this way, when we run
bivariate Hensel lifts in parallel, they all run in their own pre-allocated memory.

Our C implementation of Algorithm CMSHL for Hensel lifting is imple-
mented for machine primes p < 263 for efficiency. It obtains the factors mod-
ulo p. To recover factors with larger integer coefficients, one may, starting with
the factors modulo p, do a p-adic lift (see Monagan and Tuncer [10]) to obtain
the factors modulo pk for sufficiently large k.

6 Conclusion

Algorithm 1 is the basis for several polynomial factorization algorithms, includ-
ing Wang’s method from [18] which is used in most computer algebra systems
today, and Monagan and Tuncer’s method [9,12] which is now used in Maple.
In this work we observed an expression swell in Algorithm 1 that is linear in
the worst case. We presented a new sparse Hensel lifting algorithm CMSHL that
avoids the expression swell. CMSHL, which is based on the method in [11], is
suited for parallelization because it reduces multivariate polynomial factoriza-
tion to many polynomial evaluations, many bivariate Hensel lifts, and solving
many Vandermonde systems.

Our Cilk C implementation of CMSHL shows good parallel speedup for these
three steps. The code is also much faster than the Maple and Magma factoriza-
tion algorithms for the large factorization problems we tested, mainly because it
does not do any multivariate polynomial arithmetic. We have also given a worst
case complexity analysis for CMSHL and have determined its failure probability.
For factors with many terms and not too high degree, as in Table 3, our experi-
ments show that evaluation is the bottleneck. This agrees with the term sj#aj

in equation (9) in our complexity analysis. Thus further improvement will need
to consider these evaluations.

For future work, we would like to use CMSHL to factor polynomials rep-
resented by black boxes in the spirit of Kaltofen and Trager [7] and Diaz and
Kaltofen [2].
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Appendix A Proof of Theorem 1

We bound the total number of arithmetic operations in Zp for the worst case in
Algorithm 2. Let s be the number defined in line 4, dmax = maxj−1

i=2 deg(a, xi)
and dfmax = maxj−1

i=2 deg(f, xi).
For step 6, one way to evaluate the monomials is to create a table of powers

for each variable x2, · · · , xj−1, as shown in Fig. 2. It takes
∑j−1

i=2 (dσfi
− 1) ≤

(j−2)(dfmax−1) multiplications to compute the table, where dσfi
= deg(σf , xi).

After creating the table, it takes O
(
(j − 3)

∑dσ
i=0 si

)
= O((j − 3)#σf ) multi-

plications to evaluate monomials in S. Similarly for the evaluations in T . Thus,
the total cost is O((j − 2)(#σf + #τf + dmax)).

Fig. 2. Evaluation table for variables x2, · · · , xj−1.

In step 7, it costs O
(∑dσ

i=0 si log(si) +
∑dτ

i=0 ti log(ti)
)

number of compar-
isons to sort the monomial evaluations and search for identical values along the
sorted arrays. This is O(log(s)(#σf + #τf )).

For step 10, monomial evaluations and its coefficients are stored in two
arrays, say M and C. At the first iteration, each entry in M is squared and
then multiplied by the corresponding coefficient in C to compute the sum.
Each iteration costs 3(#u + #w + #c) arithmetic operations. The total cost
is O(s(#fj−1 + #gj−1 + #aj)).

In step 12, each univariate Diophantine solver costs O(d21).
In step 14 to 16, the Vandermonde solver costs

∑dσ
i=0 O(s2i ) ⊆ O(s#σf ).

We have #σf ≤ #fj−1 and #τf ≤ #gj−1. Assuming j−2 � s, #fj−1 ≤ #aj

and #gj−1 ≤ #aj , the total cost of Algorithm 2 is

O(s(#fj−1 + #gj−1 + #aj)
︸ ︷︷ ︸

Eval in line 10

+ s d21︸︷︷︸
line 12

+ s(#σf + #τf )
︸ ︷︷ ︸

Solve in line 14−16

) ⊆ O(s(#aj + d21)). �

Appendix B Proof of Theorem 4

Similar to the analysis of Algorithm 2, we bound the total number of arithmetic
operations in Zp for the worst case in Algorithm 4. Let dmax = maxj−1

i=2 deg(a, xi).
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The total cost of evaluations in step 5 is O((j − 2)(#fj−1 + #gj−1 + dmax)).

The if statement in step 6 costs O
(∑df−1

i=0 si log(si) +
∑dg−1

i=0 ti log(ti)
)

⊆
O(log(s)(#fj−1 + #gj−1)) comparisons to sort and search for identical values.

The total cost of step 10 is O(s(#fj−1 + #gj−1 + #aj)).
Each bivariate Hensel lift in line 12 costs Θ(d1d2j + djd

2
1) [14].

Using Zippel [23] the total cost of the Vandermonde solver in step 17 is
∑df−1

i=0 djO(s2i ) ⊆ O(djs#fj−1) for fj . Similarly, for gj , we have O(djs#gj−1).
Assuming j − 2 � s, the total cost of Algorithm 4 is

O(s(#fj−1 + #gj−1 + #aj)
︸ ︷︷ ︸

Eval in line 10

+ s(d21dj + d1d
2
j )

︸ ︷︷ ︸
BHL in line 12

+ s dj(#fj−1 + #gj−1)
︸ ︷︷ ︸

Solve in line 17

)

⊆ O(djs(#fj−1 + #gj−1 + d21 + d1dj) + s#aj). �
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Abstract. For a given pair of univariate polynomials with real coef-
ficients and a given degree, we propose a modification of the GPGCD
algorithm, presented in our previous research, for calculating approxi-
mate greatest common divisor (GCD). In the proposed algorithm, the
Bézout matrix is used in transferring the approximate GCD problem to
a constrained minimization problem, whereas, in the original GPGCD
algorithm, the Sylvester subresultant matrix is used. Experiments show
that, in the case that the degree of the approximate GCD is large, the
proposed algorithm computes more accurate approximate GCDs than
those computed by the original algorithm. They also show that the com-
puting time of the proposed algorithm is smaller than that of the SNTLS
algorithm, which also uses the Bézout matrix, with a smaller amount of
perturbations of the given polynomials and a higher stability.

Keywords: Approximate GCD · GPGCD algorithm · Bézout matrix ·
Modified newton method

1 Introduction

With the progress of algebraic computation with polynomials and matrices, we
are paying more attention to approximate algebraic algorithms. Algorithms for
calculating approximate GCD, which are approximate algebraic algorithms, con-
sider a pair of given polynomials f and g that are relatively prime in general, and
find f̃ and g̃ which are close to f and g, respectively, in the sense of polynomial
norm, and have the greatest common divisor of a certain degree. These algo-
rithms can be classified into two categories: 1) for a given tolerance (magnitude)
of ‖f − f̃‖ and ‖g− g̃‖, make the degree of approximate GCD as large as possible,
and 2) for a given degree d, minimize the magnitude of ‖f − f̃‖ and ‖g − g̃‖.

In both categories, algorithms based on various methods have been proposed
including the Euclidean algorithm ([1,17,18]), low-rank approximation of the
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https://doi.org/10.1007/978-3-030-60026-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60026-6_10&domain=pdf
http://orcid.org/0000-0003-0846-3643
https://doi.org/10.1007/978-3-030-60026-6_10


The GPGCD Algorithm with the Bézout Matrix 171

Sylvester matrix or subresultant matrices ([5,6,9–11,19,24,26]), Padé approxi-
mation ([15]), and optimizations ([3,12,20,25]). Among them, the second author
of the present paper has proposed the GPGCD algorithm based on low-rank
approximation of subresultant matrices by optimization ([22,23]), which belongs
to the second category above.

In this paper, we propose another formulation of the GPGCD algorithm by
using the Bézout matrix, which is also used in zerofinding [14], while subresultant
matrices have been used in the original algorithm. Using the Bézout matrix,
we get higher accuracy for computed approximate GCD in the case of given
polynomials of high degrees. In comparison with the SNTLS algorithm which
also uses the Bézout matrix, the proposed algorithm calculates an approximate
GCD with a smaller amount of computing time, smaller perturbations of the
given polynomials, and higher stability.

The rest of the paper is organized as follows. In Sect. 2, we give a formulation
of the transformation of the approximate GCD problem to the optimization
problem using the Bézout matrix. In Sect. 3, we review the modified Newton
method used for optimization. In Sect. 4, we illustrate the proposed algorithm
by examples. In Sect. 5, the results of experiments are shown.

2 Transformation of the Approximate GCD Problem
Using the Bézout Matrix

Let F (x) and G(x) be univariate polynomials with real coefficients:

F (x) = fmxm + · · · + f0x
0,

G(x) = gnxn + · · · + g0x
0,

(1)

with m ≥ n > 0. Throughout this paper, the norm ‖F (x)‖ denotes the 2-norm
‖F (x)‖2 := (f2

m +f2
m−1 + · · ·+f2

0 )
1
2 . For a given integer d with n ≥ d > 0, let us

find polynomials F̃ (x) and G̃(x) whose degrees respectively do not exceed those
of F (x) and G(x), such that

F̃ (x) = f̃mxm + · · · + f̃0x
0 = F̄ (x) × H̃(x),

G̃(x) = g̃nxn + · · · + g̃0x
0 = Ḡ(x) × H̃(x),

(2)

where H̃(x) is a polynomial of degree d and F̄ (x) and Ḡ(x) are relatively prime
polynomials. In this case, we call H̃(x) an approximate GCD of polynomials F (x)
and G(x). For a pair of polynomials F (x) and G(x) and a degree d, we consider
the problem which finds the approximate GCD with the degree d while mini-
mizing the norm of the perturbations

Δ :=
√

‖F (x) − F̃ (x)‖2 + ‖G(x) − G̃(x)‖2. (3)

Without loss of generality, for a polynomial G of degree n, we also represent G
as G(x) = gmxm + · · · + g0x

0, where gm = · · · = gn+1 = 0. Here, we choose the
Bézout matrix to formulate the problem.
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Definition 1 (Bézout Matrix [8]). Let F (x) and G(x) be two real polynomials
with the degree at most m. Then, the matrix Bez(F,G) = (bij)i,j=1...m, where

F (x)G(y) − F (y)G(x)
x − y

=
m∑

i,j=1

bijx
i−1yj−1,

is called the Bézout matrix associated to F (x) and G(x).

Note that the Bez(F,G) is m × m symmetric matrix, and its element (bij) is
represented in terms of the coefficients of F (x) and G(x) as

bij =
mij∑
k=1

fj+k−1gi−k − fi−kgj+k−1, (4)

where mij = min{i,m+1−j} [8]. Furthermore, we have the following relationship
between the degree of the GCD, the rank, and the elements of the Bézout matrix.

Theorem 1 (Barnett’s theorem [8]). Let F (x) and G(x) be two real poly-
nomials with the degree at most m. Let d = deg(gcd(F,G)) and (b1, . . . , bm) =
Bez(F,G). Then, the vectors bd+1, . . . , bm are linearly independent, and there
exists coefficients ci,j such that

bi =
m−d∑
j=1

ci,jbd+j , 1 ≤ i ≤ d, (5)

Furthermore, the monic form of the GCD of F (x) and G(x) is represented as

gcd(F,G) = xd + cd,1x
d−1 + · · · + c1,1x

0. (6)

From the Barnett’s theorem, obviously we have

rank(Bez(F,G)) + deg(gcd(F,G)) = m. (7)

Let B̃ = Bez(F̃ , G̃). In the case that F̃ (x) and G̃(x) have a GCD of degree d,
we have rank(B̃) = m − d. Let B̃ = Ũ Σ̃Ṽ T be the singular value decomposition
(SVD) of B̃, where Ṽ = (ṽ1, . . . , ṽm). Then, we have

B̃ṽ = 0, (8)

where ṽ = ṽm−d+1 = (ṽ1, . . . , ṽm). Namely, we have the constraints

Gi = b̃i1ṽ1 + · · · + b̃imṽm = 0, i ≤ m, (9)

where
(b̃ij)i,j = B̃, (10)

which can be represented by Eq. (4) with the coefficients f̃i and g̃i.
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Let B = Bez(F,G) and let B = UΣV T be the SVD of B, with V =
(v1, . . . ,vm). For solving the problem more effectively, we also make the per-
turbation of

v = vm−d+1 = (v1, . . . , vm) (11)

small. Thus, the objective function is represented as

F =
m∑
i=0

(f̃i − fi)2 +
n∑

i=0

(g̃i − gi)2 +
m∑
i=1

(ṽi − vi)2. (12)

Here, we let the variables of the objective function be

x = (x1, x2, . . . , x2m+n+2)T

= (f̃0, . . . , f̃m, g̃0, . . . , g̃n, ṽ1, . . . , ṽm)T .
(13)

Therefore, the problem of finding an approximate GCD is formulated as a con-
strained minimization problem: find a minimizer of the objective function F in
Eq. (12), subject to g(x) = (G1(x), . . . , Gm(x))T = 0 in Eq. (9).

3 The Modified Newton Method

We consider a constrained minimization problem of minimizing an objective
function f(x) : R

s → R which is twice continuously differentiable, subject
to the constraints g(x) = (G1(x), . . . , Gt(x))T , where Gi(x) is a function of
R

s → R and is also twice continuously differentiable. We use the modified New-
ton method by Tanabe ([21]), which is a generalization of the Gradient Pro-
jection method ([16]), used in the original GPGCD algorithm ([23]). For xk

which satisfies g(xk) = 0, we calculate the search direction dk and the Lagrange
multipliers λk by solving the following linear system

(
I −(Jg (xk))T

Jg (xk) O

)(
dk

λk+1

)
= −

(∇f(xk)
g(xk)

)
, (14)

where Jg (x) is the Jacobian matrix represented as

Jg (x) =
∂gi
∂fj

. (15)

4 The Algorithm for Calculating Approximate GCD

In this section, we give an algorithm for calculating approximate GCD using the
Bézout matrix. In the modified Newton method, the Jacobian matrix and the
initial values are represented as follows.
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4.1 Representation of the Jacobian Matrix

From the constraints (9) and the objective function (12), the elements of the
Jacobian matrix are represented as follows:

∂Gi

∂x̃j
=

m∑
l=1

∂b̃il
∂x̃j

ṽl

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∑i−1
k=0 g̃kṽj−i+k 1 ≤ i < j ≤ m + 1∑m−i

k=0 g̃i+kṽj+k 1 ≤ j ≤ i ≤ m∑i−1
k=0 f̃kṽj−m−i+k−1 1 ≤ i < j − m − 1

≤ n + 1
−∑m−i

k=0 f̃i+kṽj−m+k−1 1 ≤ j − m − 1
≤ min{i, n + 1} ≤ m

b̃i,j−m−n−2 m + n + 2 < j

≤ 2m + n + 2

, (16)

where b̃ij is represented as in Eq. (10). The size of the Jacobian matrix is m ×
(2m + n + 2).

4.2 Setting the Initial Values

For the given polynomials (1), and the singular vectors (11), we give the initial
value x0 with the coefficients and elements of the singular vector as

x0 = (f0, . . . fm, g0, . . . , gn, v1, . . . , vm). (17)

4.3 Calculating the Approximate GCD

Let x∗ be the minimizer calculated by the modified Newton method, correspond-
ing to the coefficients of F̃ (x) and G̃(x). Then, we calculate the GCD of F̃ (x)
and G̃(x) using the Bézout matrix B̃ = Bez(F̃ , G̃) with Theorem 1.

4.4 The Algorithm

Summarizing the above, we give the algorithm for calculating approximate GCD
as follows:

Algorithm 1 (The GPGCD algorithm with the Bézout matrix).
Inputs:

– F (x), G(x) ∈ R(x): the given polynomials with deg F (x) ≥ deg G(x) > 0,
– d ∈ N: the given degree of approximate GCD with d ≤ deg(G),
– ε > 0: the stop criterion with the modified Newton method,
– 0 < α ≤ 1: the step width with the modified Newton method.
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Outputs:

– H̃(x): the approximate GCD, with deg(H̃) = d,
– F̃ (x), G̃(x): the polynomials which are close to F and G, respectively, with

the GCD H̃.

Step 1 Calculate the Bézout matrix B = Bez(F,G), the Jacobian matrix (16),
and the singular vector v as in (11).

Step 2 Set the initial values x0 as in (17).
Step 3 Solve the linear system (14) to find the search direction dk.
Step 4 If ‖dk‖ < ε, obtain the x∗ as xk, calculate polynomials F̃ (x) and G̃(x),

then go to Step 1. Otherwise, let xk+1 = xk + αdk and calculate the
Bézout matrix and the Jacobian matrix with xk+1, then go to Step 3.

Step 5 Calculate the approximate GCD H̃(x) with Theorem 1. Return F̃ (x),
G̃(x) and H̃(x).

4.5 Running Time Analysis

We give an analysis of the arithmetic running time of Algorithm 1.
In Step 1, we set the initial values by the construction of the Bézout matrix,

the construction of the Jacobian matrix, and the SVD of the Bézout matrix.
Since the dimension of the Bézout matrix and the Jacobian matrix is m and
m(2m+n+2), respectively, we can estimate the running time of the construction
of the Bézout matrix, the construction of the Jacobian matrix and the SVD of
the Bézout matrix is O(m2) ([4]), O(m(2m + n + 2)) (the Jacobian matrix is
computed by (16)) and O(m3) ([7]), respectively.

In Step 3, since the dimension of the Jacobian matrix is m(2m + n + 2), the
running time for solving the linear system is O((3m + n + 2)3) ([7]).

In Step 4, the running time of the construction of the Bézout matrix and the
Jacobian matrix is O(m2) and O(m(2m + n + 2)), respectively.

In Step 5, the running time for calculating the approximate GCD H̃(x) is
O(m2).

As a consequence, the running time of Algorithm 1 is the number of iteration
times O((3m + n + 2)3).

5 Experiments

We have implemented our GPGCD algorithm on Maple 2016 ([2]). The test
polynomials F (x) and G(x) are generated as follows:

F (x) = F0(x)H(x) +
eF

‖FN (x)‖FN (x),

G(x) = G0(x)H(x) +
eG

‖GN (x)‖GN (x).
(18)

Here F0(x), G0(x), and H(x) are polynomials of degrees m − d, n − d, and d,
respectively, where F0(x) and G0(x) are relatively prime polynomials. They are
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generated as polynomials that their coefficients are floating-point numbers and
their absolute values are not greater than 10.1 The noise polynomials FN (x)
and GN (x) are polynomials of degrees m − 1 and n − 1, respectively, which
are randomly generated with coefficients given as the same as for F0(x), G0(x)
and H(x).

We have generated 15 groups of test polynomials, each group comprising
100 tests. The degrees of polynomials in each test are shown in Table 1. In the
first 10 groups, we set the degree of input polynomials to be twice the degree
of the approximate GCD. In the last 5 groups, we have changed the degree of
approximate GCD for the same degree of input polynomials. In our tests, the
norm of the noise eF and eG are set as eF = eG = 0.01. The stop criterion ε and
the stop width α in Algorithm 1 are set as 10−8 and 1, respectively. The stop
tolerance of the SNTLS algorithm is 10−5.

We have carried out the tests on CPU Intel(R) Core(TM) i5-6600 at 3.30 GHz
with RAM 8.00 GB, under Windows 10.

5.1 Setting the Criteria for Classifying Successful Computation of
an Approximate GCD

By generating the test polynomials in Eq. (18), the perturbation is set as
√

e2F + e2G =
√

0.012 + 0.012 ≈ 1.414 × 10−2, (19)

which is called “the given perturbation”. For setting the criteria for classifying
successful computation of an approximate GCD, we first give a criterion

√
‖F (x) − F̃ (x)‖2 + ‖G(x) − G̃(x)‖2 ≤ 1.414 × 10−2,

as the perturbations Δ in Eq. (3) is not supposed to exceed the given per-
turbation (19). However, we have found out that this criterion is not enough
with examples that were found in our experiments with the proposed algorithm,
shown in Eqs. (21) and (22). In Examples (21) and (22), F and G are input
polynomials, while F̃ , G̃, and H̃ are the outputs of Algorithm 1.

In both examples, the perturbations Δ in Eq. (3) do not exceed the given
perturbation (19). In the examples, we have also calculated F̂ and Ĝ which are
the remainders2 of F̃ and G̃ divided by H̃, respectively (F̃ = AH̃ + F̂ , G̃ =
BH̃ + Ĝ). If the approximate GCD is successfully calculated, the norm of the
remainders

R :=
√

‖F̂‖2 + ‖Ĝ‖2 (20)

is supposed to be close to 0. In Example (21), the norm of the remainders (20)
is sufficiently small, while, in Example (22), the norm of the remainders (20) is
not sufficiently small.
1 The coefficients are generated with the Mersenne Twister algorithm [13] by built-in

function Generate with RandomTools:-MersenneTwister in Maple, which approxi-
mates a uniform distribution on [−10, 10].

2 Remainders are calculated with built-in function SNAP:-Remainder.
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The examples show that the calculated approximate GCD may not be accu-
rate even though the perturbation is small. Therefore, to classify whether an
approximate GCD is successfully calculated or not, the criteria are set as fol-
lows:

1.
√

‖F (x) − F̃ (x)‖2 + ‖G(x) − G̃(x)‖2 ≤ 1.414 × 10−2,

2. R =
√

‖F̂‖2 + ‖Ĝ‖2 ≤ 10−5.

In Criterion 1, the perturbation is supposed not to exceed the given perturba-

tion (19). In Criterion 2, the norm of the remainders R =
√

‖F̂‖2 + ‖Ĝ‖2 is
supposed to be sufficiently small.

5.2 The Experimental Results

We have carried out the tests with the GPGCD algorithm with the Bézout
matrix. For comparison, we have also carried out the tests with the original
GPGCD algorithm from Group 1 to Group 15, and the SNTLS algorithm [20],
which also uses the Bézout matrix, from Group 1 to Group 5 and from Group
11 to Group 15.3

Based on the criteria, the number of successful tests for each group is shown
in Table 2. Columns ‘Bézout’, ‘Sylvester’, ‘SNTLS’, ‘All’ represent the number
of successful tests for the GPGCD algorithm with the Bézout matrix, the orig-
inal GPGCD algorithm, the SNTLS algorithm and for all of the 3 algorithms,
respectively.

Remark 1. To keep fairness, we have compared the data only for successful tests
for all of the algorithms.

The average computing time, the norm of perturbations, the norm of remain-
ders, and the number of iterations for successful tests for all of the algorithms
are shown in Tables 3, 4, 5, and 6, respectively.

In Tables 3, 4, 5, and 6, columns ‘Bézout’, ‘Sylvester’, and ‘SNTLS’ represent
the data for the GPGCD algorithm with the Bézout matrix, the original GPGCD
algorithm, and the SNTLS algorithm, respectively.

For the average of the norm of the remainders, the arithmetic mean value
may be affected by some of the extreme values. In Table 5, we also show the
geometric mean of the norm of the remainders, which shows the average of the
order of magnitude.

5.3 Comparison with the Original GPGCD Algorithm

In Table 2, we see that in the 15 groups of tests, the number of successfully
calculated tests for the GPGCD algorithm with the Bézout matrix is smaller
3 We have excluded test polynomials from Group 6 to Group 10, because, for those

polynomials, the computing time for the SNTLS algorithm is too long (over 100min
with tests in Group 6 whose degree of input polynomials is 60).
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than that for the original GPGCD algorithm in the case of input polynomials
and approximate GCD of low degrees, and larger than that for the original
GPGCD algorithm in the case of input polynomials and approximate GCD of
high degrees.

By comparing the data between the first 10 groups of tests, we see that
for the successful tests for both algorithms, though the computing time of the
proposed algorithm is not as small as that of the original GPGCD algorithm
(shown in Table 3), the norm of remainders of the proposed algorithm is smaller
than that of the original GPGCD algorithm in the case of polynomials of high
degrees (shown in Table 5).

By comparing the data between the last 5 groups of tests, we see that for
the successful tests for both algorithms, the norm of remainders of the proposed
algorithm is smaller than that of the original GPGCD algorithm in the case of
approximate GCD of high degrees (shown in Table 5).

The running time of the original algorithm is O((3(m + n − d))3) ([23]). The
running time of the proposed algorithm, O((3m+n+2)3), is smaller than that of
the original GPGCD algorithm in the case that d < 2n+4

3 . The computing time
of the proposed algorithm is supposed to be smaller than that of the original
GPGCD algorithm with the conditions in the experiments, but the results of the
experiments show the opposite.

5.4 Comparison with the SNTLS Algorithm

Table 2 shows that, in the first 5 groups and the last 5 groups of tests, the number
of successfully calculated tests for the proposed algorithm is smaller than that
for the SNTLS algorithm.

Through the experiments, the SNTLS algorithm tends to have higher accu-
racy in the sense of the norm of the remainders than the proposed algorithm
and the original GPGCD algorithm (shown in Table 5), while perturbation of the
SNTLS algorithm is not as small as that of the two GPGCD algorithms (shown
in Table 4). A typical example that was found in our experiments is shown in Eq.
(23). We see that in Example (23), the norm of the remainders (R) is sufficiently
small, while the perturbation (Δ) is larger than the given perturbation (19).

We have estimated that the running time for each iteration in the SNTLS
algorithm is O((3m + n − d + 2)3), which is smaller than that of the proposed
algorithm, while the computing time of the proposed algorithm is smaller than
that of the SNTLS algorithm (shown in Table 3).

Through the experiments, we have found out that the computation for some
of the tests with the SNTLS algorithm have not finished within one hour, while
for the same tests with both of the GPGCD algorithm have finished successfully.
For these cases with the SNTLS algorithm, we have interrupted the computation
after 50 iterations and computed the perturbed polynomials and the approximate
GCD with the data from the iterations which have been interrupted. We see that
in all of these cases, the perturbation (Δ) is larger than the given perturbation
(19), which is similar to Example (23). In this sense, it shows that the proposed
algorithm is more stable than the SNTLS algorithm.
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6 Conclusions

We have proposed an algorithm that uses the Bézout matrix based on the
GPGCD algorithm. The proposed algorithm has a smaller running time in the
case that the degree of approximate GCD is not large, and through the experi-
ments, the proposed algorithm shows higher accuracy than the original GPGCD
algorithm in the case when the degree of the approximate GCD is large. In com-
parison with the SNTLS algorithm which also uses the Bézout matrix, the pro-
posed algorithm calculates an approximate GCD with a smaller amount of com-
puting time, smaller perturbations of the input polynomials, and higher stability
through experiments.

Though the estimated running time of the proposed algorithm is smaller than
that of the original GPGCD algorithm in the case when the degree of approx-
imate GCD is not large, the actual computing time of the proposed algorithm
is larger than that of the original GPGCD algorithm through the experiments.
We have found out that the actual computing time needed for the construction
of the Bézout matrix and the Jacobian matrix is larger than that for solving the
linear system (14), despite the estimate of running time which shows that the
running time for solving the linear system (14) is O(m3) which is larger than
that for the construction of the Bézout matrix and the Jacobian matrix which
is O(m2). Making the proposed algorithm more efficient will be one of direc-
tions of our future research. Furthermore, an extension of our algorithm using
weighted norms ([14]) will also be one of our future research topics.

Despite the fact that the estimated running time of the proposed algorithm
is larger than that of the SNTLS algorithm, the actual computing time of the
proposed algorithm is smaller than that of the SNTLS algorithm. The result
suggests that these implementations deserve a more detailed analysis.
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Table 1. Degrees of test polynomials (18)

Group m = deg(F ) n = deg(G) d = deg(H)

1 10 10 5

2 20 20 10

3 30 30 15

4 40 40 20

5 50 50 25

6 60 60 30

7 70 70 35

8 80 80 40

9 90 90 45

10 100 100 50

11 50 50 5

12 50 50 10

13 50 50 15

14 50 50 20

15 50 50 25

Table 2. The number of tests that meets the criteria

Group Number of tests

Bézout Sylvester SNTLS All

1 97 99 98 97

2 82 91 85 81

3 60 82 77 60

4 46 79 66 46

5 47 39 66 36

6 30 22 — 20

7 27 18 — 18

8 18 14 — 12

9 14 9 — 6

10 14 9 — 9

11 17 57 47 17

12 22 61 52 22

13 30 20 50 18

14 34 27 49 25

15 45 41 62 38
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Table 3. Comparison of computing time (See Remark 1 for detail)

Group Average time (sec.)

Bézout Sylvester SNTLS

1 7.504×10−2 5.961×10−2 1.535×10−1

2 7.958×10−1 4.367×10−1 1.181

3 1.653 8.089×10−1 3.242

4 2.985 1.347 11.730

5 4.426 1.958 22.546

6 6.651 2.954 —

7 7.981 3.646 —

8 10.569 5.185 —

9 12.440 4.393 —

10 17.592 5.984 —

11 4.729 1.106 30.673

12 4.645 1.011 24.877

13 4.792 9.696×10−1 24.739

14 4.564 8.630×10−1 23.627

15 5.118 7.550×10−1 22.771

Table 4. Comparison of the norm of perturbations (3) (See Remark 1 for detail)

Group Average

Bézout Sylvester SNTLS

1 6.346931×10−3 6.346940×10−3 6.346997×10−3

2 7.035965×10−3 7.036040×10−3 7.111237×10−3

3 6.795088×10−3 6.795097×10−3 8.742038×10−3

4 6.706903×10−3 6.706909×10−3 6.706925×10−3

5 6.824742×10−3 6.824741×10−3 6.824750×10−3

6 6.715120×10−3 6.715120×10−3 —

7 7.118744×10−3 7.118732×10−3 —

8 6.840067×10−3 6.840078×10−3 —

9 7.256039×10−3 7.256032×10−3 —

10 7.124559×10−3 7.124564×10−3 —

11 2.634340×10−3 2.634942×10−3 2.634340×10−3

12 4.617887×10−3 4.617956×10−3 4.617887×10−3

13 5.332392×10−3 5.332505×10−3 5.332392×10−3

14 6.452837×10−3 6.452873×10−3 6.452837×10−3

15 6.798100×10−3 6.798127×10−3 6.798108×10−3
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Table 5. Comparison of the norm of remainders (20) (See Remark 1 for detail)

Gr. Arithmetic mean Geometric mean

Bézout Sylvester SNTLS Bézout Sylvester SNTLS

1 2.585×10−7 5.591×10−11 6.910×10−11 1.563×10−11 7.148×10−13 6.939×10−13

2 4.514×10−6 3.002×10−10 1.719×10−10 4.026×10−10 3.905×10−12 3.522×10−12

3 3.106×10−6 2.594×10−10 2.939×10−10 6.765×10−9 1.617×10−11 1.506×10−11

4 4.138×10−6 1.816×10−10 1.506×10−10 2.962×10−8 2.989×10−11 2.587×10−11

5 1.059×10−6 1.693×10−5 1.572×10−10 2.054×10−7 7.708×10−6 7.428×10−11

6 1.647×10−6 2.923×10−5 — 4.546×10−7 1.460×10−5 —

7 3.753×10−6 2.906×10−5 — 5.408×10−7 1.762×10−5 —

8 9.924×10−7 3.267×10−5 — 6.056×10−7 2.383×10−5 —

9 2.582×10−6 3.970×10−5 — 1.065×10−6 3.184×10−5 —

10 5.170×10−6 6.185×10−5 — 1.328×10−6 5.090×10−5 —

11 4.217×10−6 1.624×10−9 6.863×10−10 1.760×10−8 3.654×10−11 3.410×10−11

12 4.749×10−6 5.795×10−10 5.110×10−10 3.255×10−7 1.197×10−10 1.241×10−10

13 3.340×10−6 3.330×10−5 7.452×10−10 3.908×10−7 1.766×10−5 2.980×10−10

14 4.246×10−7 1.528×10−5 2.529×10−10 1.717×10−7 9.999×10−6 1.205×10−10

15 6.482×10−7 1.610×10−5 2.366×10−10 2.313×10−7 8.445×10−6 1.016×10−10

Table 6. Comparison of the number of iterations (See Remark 1 for detail)

Group Average number of iterations

Bézout Sylvester SNTLS

1 2.237 3.093 3.031

2 2.370 3.062 3.716

3 2.35 3.05 5.867

4 2.434 3.022 4.761

5 2.583 3.028 2.778

6 2.6 3.05 —

7 2.833 3 —

8 2.833 3 —

9 2.5 3 —

10 2.556 3 —

11 2.765 1 3.706

12 2.546 1 3.864

13 2.556 1 4.111

14 2.4 1 3.72

15 2.579 1 2.974
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F (x) := 24.35467659x10 − 16.98261439x9 − 74.84052127x8

+ 45.72321036x7 + 25.24635127x6 − 6.618882298x5

+ 28.00488463x4 − 23.01650876x3 + 39.85773244x2

− 17.87827873x − 28.59581303,

G(x) := 18.07487567x10 − 0.5207310267x9 − 45.95049998x8

− 24.03693723x7 + 30.52699312x6 + 96.43514331x5

− 12.98476016x4 − 63.09966135x3 − 42.21071223x2

+ 2.244520517x + 43.86799924,

F̃ (x) = 24.3518562750250x10 − 16.9810481741899x9 − 74.8412673761213x8

+ 45.7239877362181x7 + 25.2453891983873x6 − 6.61806019040930x5

+ 28.0049393854550x4 − 23.0170430598979x3 + 39.8579457401336x2

− 17.8774686643460x − 28.5967141490441,

G̃(x) = 18.0763796579614x10 − 0.522186160911192x9 − 45.9486461908583x8

− 24.0379730412682x7 + 30.5268197720611x6 + 96.4361328610033x5

− 12.9845682284478x4 − 63.1010698450796x3 − 42.2093213135731x2

+ 2.24532874696889x + 43.8660092385339,

H̃(x) = x5 − 0.0198739343264150x4 − 1.67341575817232x3

− 0.0826245996156027x2 − 0.531150763766694x + 1.40628969338512,

Δ =
√

‖F (x) − F̃ (x)‖2 + ‖G(x) − G̃(x)‖2 = 0.00578261308305222,

F̂ (x) = 2.30926389122033 × 10−13x4 − 3.05533376376843 × 10−13x3

+ 1.42108547152020 × 10−13x2 − 2.20268248085631 × 10−13x

+ 3.05533376376843 × 10−13,

Ĝ(x) = 5.50670620214078 × 10−14x4 − 3.55271367880050 × 10−13x3

+ 1.56319401867222 × 10−13x2 − 1.66089364483923 × 10−13x

+ 2.27373675443232 × 10−13,

R =
√

‖F̂‖2 + ‖Ĝ‖2 = 7.22300963376246 × 10−13.

(21)
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F (x) := 0.1766713555x10 + 61.40696577x9 + 16.97723836x8

− 98.53372181x7 − 33.29739487x6 − 53.01237461x5

− 107.2631922x4 − 44.39926514x3 − 65.76778029x2

+ 49.07634648x + 27.73066658,

G(x) := −0.0799481570x10 − 26.37832559x9 − 16.98213985x8

+ 33.28081373x7 + 90.2104557x6 − 27.34128713x5

− 20.66348810x4 + 12.71888631x3 + 81.21689912x2

+ 91.05587991x + 23.63244802,

F̃ (x) = 0.177716772952069x10 + 61.4048417594346x9 + 16.9760552139165x8

− 98.5341789215241x7 − 33.2981170063200x6 − 53.0129121533162x5

− 107.262870697403x4 − 44.3995689180854x3 − 65.7681756996879x2

+ 49.0761750948950x + 27.7326910319257,

G̃(x) = −0.0762724095297875x10 − 26.3817204683292x9 − 16.9848862314274x8

+ 33.2795003835884x7 + 90.2100574768607x6 − 27.3423956063330x5

− 20.6642442968902x4 + 12.7198843248631x3 + 81.2156355194280x2

+ 91.0567877271623x + 23.6284289478540,

H̃(x) = x5 + 344.630262139286x4 − 210.982672870932x3

− 181.719887733887x2 − 433.650477152187x − 158.328743852362,

Δ =
√

‖F (x) − F̃ (x)‖2 + ‖G(x) − G̃(x)‖2 = 0.00826656291248941,

F̂ (x) = 3.47523730496033 × 108x4 − 2.11852203486360 × 108x3

− 1.81658961482431 × 108x2 − 4.36057563872763 × 108x

− 1.59376135103876 × 108,

Ĝ(x) = −1.48991716316745 × 108x4 + 9.08260951212297 × 107x3

+ 7.78815317646166 × 107x2 + 1.86948283392243 × 108x

+ 6.83283523549969 × 107,

R =
√

‖F̂‖2 + ‖Ĝ‖2 = 7.00237743622062 × 108.
(22)
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F (x) := 0.2444489655x10 − 18.92615417x9 + 63.91966715x8

− 3.013484233x7 − 70.45198569x6 + 88.67816884x5

− 115.7540570x4 − 44.02256569x3 + 68.62533154x2

− 57.13421559x + 45.63944175,

G(x) := −0.2968329607x10 + 22.04593872x9 − 55.89650876x8

− 49.40533781x7 + 61.74422687x6 − 56.67607764x5

+ 20.76671672x4 + 23.11312753x3 − 85.16586593x2

− 49.75412158x − 86.87574838,

F̃ (x) = −0.0921867419910542x10 + 25.1711846426639x9 − 48.3791835554963x8

− 42.3226815168449x7 + 0.587145137610493x6 + 87.9881298102165x5

− 115.806492504772x4 − 43.9219670362163x3 + 68.5088816347304x2

− 57.0592112917500x + 45.6388192929715,

G̃(x) = 0.971366003301017x10 − 26.3817204683292x9 − 16.9848862314274x8

+ 33.2795003835884x7 + 78.9365949745973x6 − 33.0045642782866x5

+ 44.4446856175190x4 + 37.1210544363078x3 + 0.770946756608030x2

+ 22.0716689225433x − 21.3709987313362,

H̃(x) = x5 − 1.29900475944232x4 − 0.494680213464673x3

− 181.719887733887x2 − 0.643083948588068x + 0.511524452719042,

Δ =
√

‖F (x) − F̃ (x)‖2 + ‖G(x) − G̃(x)‖2 = 111.265101285836,

F̂ (x) = −1.13686837721616 × 10−13x4 − 2.84217094304040 × 10−14x3

+ 5.68434188608080 × 10−14x2 − 3.55271367880050 × 10−14x

+ 4.26325641456060 × 10−14,

Ĝ(x) = 1.27897692436818 × 10−13x4 + 7.10542735760100 × 10−15x3

− 3.55271367880050 × 10−14x2 + 1.77635683940025 × 10−14x

− 4.26325641456060 × 10−14,

R =
√

‖F̂‖2 + ‖Ĝ‖2 = 1.41574637134818 × 10−13.

(23)
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Abstract. Parametric linear systems are linear systems of equations in
which some symbolic parameters, that is, symbols that are not considered
to be candidates for elimination or solution in the course of analyzing
the problem, appear in the coefficients of the system. In this work we
assume that the symbolic parameters appear polynomially in the coeffi-
cients and that the only variables to be solved for are those of the linear
system. The consistency of the system and expression of the solutions
may vary depending on the values of the parameters. It is well-known
that it is possible to specify a covering set of regimes, each of which is
a semi-algebraic condition on the parameters together with a solution
description valid under that condition.

We provide a method of solution that requires time polynomial in
the matrix dimension and the degrees of the polynomials when there
are up to three parameters. In previous methods the number of regimes
needed is exponential in the system dimension and polynomial degree
of the parameters. Our approach exploits the Hermite and Smith nor-
mal forms that may be computed when the system coefficient domain is
mapped to the univariate polynomial domain over suitably constructed
fields. Our approach effectively identifies intrinsic singularities and rami-
fication points where the algebraic and geometric structure of the matrix
changes. Parametric eigenvalue problems can be addressed as well: simply
treat λ as a parameter in addition to those in A and solve the paramet-
ric system (λI − A)u = 0. The algebraic conditions on λ required for a
nontrivial nullspace define the eigenvalues. We do not directly address
the problem of computing the Jordan form, but our approach allows
the construction of the algebraic and geometric eigenvalue multiplicities
revealed by the Frobenius form, which is a key step in the construction
of the Jordan form of a matrix.

Keywords: Hermite form · Smith form · Frobenius form · Parametric
linear systems.
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1 Introduction

Speaking in simple generalities, we say that symbolic computation is concerned
with mathematical equations that contain symbols; symbols are used both for
variables, which are typically to be solved for, and parameters, which are typ-
ically carried through and appear in the solutions, which are then interpreted
as formulae: that is, objects that can be further studied, perhaps by varying
the parameters. One prominent early researcher said that the difference between
symbolic and numeric computation was merely a matter of when numerical val-
ues were inserted into the parameters: before the computation meant you were
going to do things numerically, and after the computation meant you had done
symbolic computation. The words “parameters” and “variables” are therefore
not precisely descriptive, and can often be used interchangeably. Indeed as a
matter of practice, polynomial equations can often be taken to have one subset
of its symbols taken as variables rather than any other subset in quite strategic
fashion: it may be better to solve for x as a function of y than to solve for y as
a function of x.

In this paper we are concerned with systems of equations containing several
symbols, some of which we take to be variables, and all the rest as parameters.
More, we restrict our attention to problems in which the variables appear only
linearly. Parameters are allowed to appear polynomially, of whatever degree.

Parametric linear systems (PLS) arise in many contexts, for instance in the
analysis of the stability of equilibria in dynamical systems models such as occur
in mathematical biology and other areas. Understanding the different potential
kinds of dynamical behavior can be important for model selection as well as anal-
ysis. Another important area of interest is the role of parametric linear systems
in dealing with the stability of the equilibria of parametric autonomous system
of ordinary differential equations (see [25] and [11]). One particularly famous
example is the Lotka-Volterra system which arises naturally from predator-prey
equations. See also [24] and [23]. Other examples of the use of parametric linear
system from science and engineering includes their application in computing the
characteristic solutions for differential equations [8], dealing with colored Petri
nets [13] and in operations research and engineering [9,17,21,31]. Some problems
in robotics [2] and certain modelling problems in mathematical biology, see e.g.
[29], also can benefit from the ability to effectively solve PLS.

After some discussion of prior comprehensive solving work in Sect. 2, we pro-
ceed with formal problem and solution definitions for parametric linear systems
(PLS) in Sect. 3. Our primary tool for solving these is by way of comprehensive
triangular Smith normal form (CTSNF), which is introduced in Sect. 4. The
following section reduces PLS to CTSNF and Sect. 6 describes the solution of
CTSNF problems for the case of up to three parameters.

An application that seems at first to be of only theoretical interest is the
computation of the matrix logarithm, or indeed any of several other matrix
functions such as matrix square root. We briefly discuss this example in more
detail with a pair of small matrices in Sect. 7.2. We also give other examples in
Sect. 7.
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2 Prior Work

Interest in computation of the solution of PLS dates back to the beginning of
symbolic computation. For instance, one of the first things users have requested
of computer algebra systems is the explicit form of the inverse of a matrix con-
taining only symbolic entries1: the user is then typically quite dissatisfied at the
complexity of the answer if the dimension is greater than, say, 3. Of course, the
determinant itself, which must appear in such an answer, has a factorial number
of terms in it, and thus growth in the size of the answer must be more than
exponential. Therefore the complexity of any algorithm to solve PLS must be at
least exponential in the number of parameters.

An interesting pair of papers addressing the case of only one parameter is [1]
and [15]. These papers assume full rank of the linear system—and thus compute
the “generic” case when in fact there are isolated values of the parameter for
which the rank drops—and use rational interpolation of the numerical solutions
of specialized linear systems to recover this generic solution.

Many authors have sought comprehensive solutions—by which is meant com-
plete coverage of all parametric regimes—through various means. One of the first
serious methods was the matrix-minor based approach of William Sit [25], which
enables practical solution of many problems of interest. Recently, the problem
of computing the Jordan form of a parametric matrix once the Frobenius form
is known has been attacked by using Regular Chains [4] and this has been mod-
erately successful in practice. Simple methods and heuristics for linear systems
containing parameters continue to generate interest, even when Regular Chains
are used, such as in [3].

Other authors such as [16,18–20] and [30] have tackled the even more diffi-
cult problem of computing the comprehensive solution of systems of polynomial
equations containing parameters, and of course their methods can be applied to
the linear equations being considered here.

By restricting our attention in this paper to linear problems and to those of
three parameters or fewer we are able to guarantee better worst case performance
(polynomially many solution regimes) and hope to provide better efficiency in
many instances than is possible using those general-purpose approaches.

3 Definitions and Notation

Let F be a field and Y = (y1, . . . , ys) a list of parameters. Then F [Y ] is the
ring of polynomials and F (Y ) is the field of rational functions in Y . For each
tuple a = (a1, . . . , as) in F s, evaluation at a is a mapping F [Y ] → F . We will
extend this mapping componentwise to polynomials, vectors, matrices, and sets
thereof over F [Y ]. We will use the Householder convention, typesetting matrices
in upper case bold, e.g. A, and lower case bold for vectors, e.g. b.

1 This is merely an anecdote, but one of the present authors attests that this really
has happened.
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For the most part, for such objects over F [Y ], we know Y from context and
write A rather than A(Y ), but write A(a) for the evaluation at Y = a.

For a set of polynomials, S, we will denote by V (S) the variety of the ideal
generated by S. This is the set of tuples a such that f(a) = {0}, for all f ∈ S.
We will be concerned with pairs N,Z of polynomial sets, N,Z ⊂ F [Y ], defining
a semialgebraic set in F s consisting of those tuples a that evaluate to nonzero
on N and to zero on Z. By a slight abuse of notation, we call this semialgebraic
set V (N,Z) = V (Z) \ V (N). Our inputs are polynomial in the parameters but
the output coefficients in general are rational functions. The evaluation mapping
extends partially to F (Y ): For a rational function n(Y )/d(Y ) in lowest terms (n
and d relatively prime), the image n(a)/d(a) is well defined so long as d(a) �= 0.

Definition 3.1. The data for a parametric linear system (PLS) problem
is matrix A and right hand side vector b over F [Y ], together with a semialgebraic
constraint, V (N,Z), with N,Z ⊂ F [Y ]. Only of interest are those parameter
value tuples in V (N,Z), i.e., on which the polynomials in N are nonzero and
the polynomials in Z are zero.

For the PLS problem (A,b, N, Z), a solution regime is a tuple
(u,B, N ′, Z ′) with coefficients of u and B in F (Y ), such that, for all a ∈
V (N ′, Z ′), u(a) is a solution vector and B(a) is a matrix whose columns form
a nullspace basis for A(a).

A PLS solution is a set of solution regimes that covers V (N,Z), which
means, for PLS solution {(ui,Bi, Ni, Zi) | i ∈ 1, . . . , k}, every parameter value
assignment that satisfies the problem semialgebraic constraint N,Z also satisfies
at least one regime semialgebraic constraint Ni, Zi. In other words V (N,Z) ⊂
∪k
i=1V (Ni, Zi).

We call entries that must occur in any Z in the solution an intrinsic restric-
tion, or singularity. We call the differing sets V (Ni, Zi) that may occur in covers
of V (N,Z) the ramifications of the cover.

We next give an example that illustrates the PLS definition and also sketches
the prior approach to PLS given by William Sit in [25]. If, for M of size r × r ,

A is
[
M B
C D

]
, and conformally b =

[
c d

]T , then a solution u =
[
v w

]T satisfies

Mv + Bw = c (3.1)

and
Cv + Dw = d . (3.2)

Under the condition that det(M) is nonzero and all larger minors of A are
zero, equation (3.1) can be solved with specific solution w = 0 and v = M−1c.
Provided the system is consistent (equation (3.2) holds), we have the regime

(
[
v w

]T
,

[−M−1B
I

]
, N, Z),

where N = {det(M)} and Z = {all (i+1)×(i+1) minors of A})). Call solution
regimes of this type minor defined regimes.
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Since an n × n matrix has
∑n

k=0

(
n
k

)2 =
(
2n
n

)
minors, there are exponentially

many minor defined regimes. However, some of these regimes may not be solu-
tions due to inconsistency or it may be possible to combine several regimes into
one. For instance if det(M) is a constant, and b = 0, then all rank r solutions
are covered by this one regime. Sit [25] has made a thorough study of minor
defined regimes and their simplifications.

Another approach is to base solution regimes on the pivot choices in an LU
decomposition. The simplest thing to do is to leave it to the user, although one
has to also inform the user through a proviso when this might be necessary [6].
That is, provide the generic answer, but also provide a description of the set N .
A more sophisticated approach is developed in [3,4] using the theory of regular
chains and its implementation in Maple [18] to manage the algebraic conditions.
For example a given matrix entry may be used as a pivot, with validity dependent
on adding the polynomial to the non-zero part, N , of the semialgebraic set. For
a comprehensive solution the case that entry is zero must also be pursued. In the
worst case, this leads to a tree of zero/nonzero choices of depth n and branching
factor n.

4 Triangular Smith Forms and Degree Bounds

In this paper we take a different approach, with the solution regimes arising
from Hermite normal forms, of which triangular Smith forms are a special case.
We give a system of solution regimes of polynomial size in the matrix dimen-
sion, n, and polynomial degree, d. Each regime is computed in polynomial time
and the regime count is exponential only in the number of parameters. To use
Hermite forms we will need to work over a principal ideal domain such as, for
parameters x, y, F (y)[x]. We will restrict our input matrix to be polynomial in
the parameters. This first lemma shows it is not a severe constraint.

Lemma 4.1. Let (A,b, N, Z) be a well defined PLS over field F (Y ), for param-
eter set Y , with A ∈ F (Y )m×n and b ∈ F (Y )m with numerator and denominator
degrees bounded by d in each parameter of Y . Well defined means that denomi-
nators of A,B are in N . The problem is equivalent (same solutions) to one in
which the entries of the matrix and vector are polynomial in the parameters Y ,
the dimension is the same, and the degrees are bounded by nd.

Proof. Because the PLS is well defined, it is specified by N that all denomi-
nator factors of A(a),b(a) are nonzero for a ∈ V (N,Z). Let L be a diagonal
matrix with the i-th diagonal entry being the least common multiple (lcm) of the
denominators in row i of A, b. These lcms also evaluate to nonzero on V (N,Z).
It follows that L(a)A(a)u(a) = L(a)b(a) if and only if A(a)u(a) = b(a). Thus
the PLS (LA,Lb, V (N,Z)) is equivalent and its matrix and vector have poly-
nomial entries of degrees bounded by nd.

We will reduce PLS to triangular Smith normal form computations. The rest of
this section concerns computation of triangular Smith normal form and bounds
for the degrees of the form and its unimodular cofactor.
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Definition 4.2. Given field K and variable x, a matrix H over K[x] is in
(reduced) Hermite normal form if it is upper triangular, its diagonal entries
are monic, and, for each column in which the diagonal entry is nonzero, the
off-diagonal entries are of lower degree than the diagonal entry. If each diago-
nal entry of H exactly divides all those below and to the right, then H is column
equivalent to a diagonal matrix with the same diagonal entries (its Smith normal
form). An equivalent condition is that, for each i, the greatest common divisor
of the i × i minors in the leading i columns equals the greatest common divisor
of all i × i minors. Following Storjohann [27, Section 8, Definition 8.2] we call
such a Hermite normal form a triangular Smith normal form. It will be the
central tool in our PLS solution.

For notational simplicity, we have left out the possibility of echelon structure
in a Hermite normal form. We will talk of Hermite normal forms only for matrices
having leading columns independent up to the rank of the matrix. Every such
matrix over K[x] is row equivalent to a unique matrix in Hermite form as defined
above. For given A we have UA = H, with U unimodular, i.e. det(U) ∈ K∗,
and H in Hermite form. If A is nonsingular, the unimodular cofactor U is unique
and has determinant 1/c, where c is the leading coefficient of det(A). This follows
since det(U) det(A) = det(H), which is monic.

The next definition and lemma concern assurance that Hermite form com-
putation will yield a triangular Smith form.

Definition 4.3. Call a matrix nice if its Hermite form is a triangular Smith
form (each diagonal entry exactly divides those below and to the right). In par-
ticular, a nice matrix has leading columns independent up to the rank.

There is always a column transform (unimodular matrix R applied from the
right) such that AR is nice. The following fact, proven in [14] shows that a
random transform over F suffices with high probability.

Fact 4.4. Let A be a m×n matrix over K[x] of degree in x at most d. Let R be
a unit lower triangular matrix with below diagonal elements chosen from subset
S of K uniformly at random. Then AR is nice over K[x] with probability at
least 1 − 4n3d/|S|.

Note that degx(AR) = degx(A) and, for K = F (y),A ∈ F [y, x]m×n and
S ⊂ F we also have degy(AR) = degy(A).

We continue with analysis of degree bounds for Hermite forms of matrices,
particularly degree bounds for triangular Smith forms of nice matrices. The first
result needed is the following fact from [10]. Through the remainder of this paper
we will employ “soft O” notation, where, for functions f, g ∈ R

k → R we write
f = O (̃g) if and only if f = O(g · logc |g|) for some constant c > 0.

Fact 4.5. Let F be a field, x, y parameters, and let A be in F [y, x]n×n, nonsin-
gular, with degx(A) ≤ d, degy(A) ≤ e. Over F (y)[x], let H the unique Hermite
form row equivalent to A and U be the unique unimodular cofactor such that
UA = H. The coefficients of the entries of H, U are rational functions of y.
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Let Δ be the least common multiple of the denominators of the coefficients in
H, U, as expressed in lowest terms.

(a) degx(U) ≤ (n − 1)d and degx(H) ≤ nd.
(b) degy(num(H)),degy(num(U)) ≤ n2de (bounds both numerator and denom-

inator degrees).
(c) degy(Δ) ≤ n2de.
(d) H and U can be computed in polynomial time: deterministically in

O (̃n9d4e) time and Las Vegas probabilistically (never returns an incorrect
result) in O (̃n7d3e) expected time.

Proof. This is [10, Summary Theorem]. The situation there is more abstract,
more involved. We offer this tip to the reader: their ∂, z, σ, δ correspond respec-
tively to our x, y, identity, identity.

Item (c) is not stated explicitly in a theorem of [10] but is evident from
the proofs of Theorems 5.2 and 5.6 there. The common denominator is the
determinant of a matrix over K[z] of dimension n2d and with entries of degree
in z at most e.

We will generalize this fact to nonsingular and non-square matrices in
Theorem 4.6. In that case the unimodular cofactor, U, is not unique and may
have arbitrarily large degree entries. The following algorithm is designed to pro-
duce a U with bounded degrees.

Algorithm 1. U, H = HermiteForm(A)

Require: Nice matrix A ∈ F [y, x]m×n, for field F and parameters x, y.
Ensure: For K = F (y), Unimodular U ∈ K[x]m×m and H ∈ K[x]m×n in triangular

Smith form such that UA = H. The point of the specific method given here is to
be able, in Theorem 4.6, to bound degx(U,H) and degy(U,H) (numerators and
denominators).

1: Compute r = rank(A) and nonsingular U0 ∈ Km×m such that A = U0A has non-
singular leading r × r minor. Because A is nice the first r columns are independent
and such U0 exists. U0 could be a permutation found via Gaussian elimination,
say, or a random unit upper triangular matrix. In the random case, failure to
achieve nonsingular leading minor becomes evident in the next step, so that the
randomization is Las Vegas.

2: Let U0A =

[
A1 A2

A3 A4

]
and B =

[
A1 0r×m−r

A3 Im−r

]
. B is nonsingular. Compute its

unique unimodular cofactor U1 and Hermite form T = U1B =

[
H1 ∗
0 ∗

]
.

If H1 is in triangular Smith form, let H = U1U0A =

[
H1 H2

0 0

]
.

Let U = U1U0 and return U, H.
Otherwise go back to step 1 and choose a better U0. With high probability this
repetition will not be needed; probability of success increases with each iteration.
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Theorem 4.6. Let F be a field, x, y parameters, and let A be in F [y, x]m×n of
rank r, degx(A) ≤ d, and degy(A) ≤ e. Then, for the triangular Smith form
form UAR = H computed as U, H = HermiteForm(AR), we have

(a) Algorithm HermiteForm is (Las Vegas) correct and runs in expected time
O(m7d3e);

(b) degx(U,H) ≤ md;
(c) degy(U, H) = O (̃m2de).

Proof. Let R be as in Fact 4.4 with K = F (y) and S ⊂ F . If the field F is small,
an extension field can be used to provide large enough S.

We apply HermiteForm to AR to obtain U, H, and use the notation of
the algorithm in this proof. We see by construction that B is nonsingular, from
which it follows that U1 and T are uniquely determined. B is nice because A
is nice and all j-minors of B for j > r are either zero or equal to detA1. It
follows that the leading r columns of H must be those of T. The lower left
(m − r) × (n − r) block of H must be zero because rank(H) = rank(A). The
leading r rows are independent, and any nontrivial linear combination of those
rows would be nonzero in the lower left block. Then H is in triangular Smith form
and left equivalent to A as required. The runtime is dominated by computation
of U1 and T for B, so Fact 4.5 provides the bound in (a).

For the degree in x, applying Fact 4.5, we have degx(U1) ≤ (m − 1)d. Not-
ing that U0 has degree zero, we have degx(U) = degx(U1) and degx(H) =
degx(U) + degx(A) ≤ (m − 1)d + d = md.

For the degree in y, note first that the bounds d, e for degrees in A apply
as well to B. We have, by Fact 4.5, that degy(num(U1)) = O (̃m2de) and
the same bound for degy(den(U1)). For H, note that num(H)/den(H) =
num(U)A/den(U) so that and degy(den(H)) ≤ degy(U) = O (̃m2de), and
degy(num(H)) ≤ degy(num(U)A) = O (̃m2de) + e = O (̃m2de). �	

5 Reduction of PLS to Triangular Smith Forms

In this section we define the Comprehensive Triangular Smith Normal form
problem and solution and show that PLS can be reduced to it. The next section
addresses the solution of CTSNF itself.

Definition 5.1. For field F , parameters Y = (y1, . . . , ys), FY is a param-
eterized extension of F if FY = Fs, the top of a tower of extensions
F0 = F, F1, . . . , Fs where, for i ∈ 1, . . . , s, each Fi is either Fi−1(yi) (rational
functions) or Fi−1[yi]/〈fi〉, for fi irreducible in yi over Fi−1 (algebraic exten-
sion). When a solution regime to a PLS or CTSNF problem is over a parameter-
ized extension FY , the irreducible polynomials involved in defining the extension
tower for FY will be in the constraint set Z of polynomials that must evaluate
to zero.
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A comprehensive triangular Smith normal form problem (CTSNF prob-
lem) is a triple (A, N, Z) of a matrix A over F [Y, x] and polynomial sets
N,Z ⊂ F [Y, x], so that V (N,Z) constrains the range of desired parameter values
as in the PLS problem.

For CTSNF problem (A, N, Z) over F [Y, x], a triangular Smith regime
is of the form (U,H,R, N ′, Z ′), with U, H over FY [x], where FY is a parame-
terized extension of F and any polynomials defining algebraic extensions in the
tower are in Z ′, such that on all a ∈ V (N ′, Z ′), H(a) is in triangular Smith
form over F (a)[x], U(a) is unimodular in x, R is nonsingular over F , and
U(a)A(a)R = H(a).

A CTSNF solution is a list {(Ui,Hi,Ri, Ni, Zi)|i ∈ 1, . . . , k}, of trian-
gular Smith regimes that cover V (N,Z), which is to say

V (N,Z) ⊂ ∪{V (Ni, Zi) | i ∈ 1, . . . , k}.

The goal in this section is to reduce the PLS problem to the CTSNF problem.
The first step is to show it suffices to consider PLS with a matrix already in
triangular Smith form. The second step is to show each CTSNF solution regime
generates a set of PLS solution regimes.

Lemma 5.2. Given a parameterized field FY and matrix A over F [Y, x], let H
be a triangular Smith form of A over FY [x], with U unimodular over FY [x],
and R nonsingular over F such that UAR = H. PLS problem (A,b, N, Z) over
F [Y, x] has solution regimes (u1,B1, N1, Z1), . . . , (us,Bs, Ns, Zs) if and only if
PLS problem (H, Ub, N, Z) has solution regimes (R−1u1,R−1B1, N1, Z1), . . . ,
(R−1us,R−1Bs, Ns, Zs).

Proof. Under evaluation at any a ∈ V (N,Z), U(a) is unimodular and R is
unchanged and nonsingular. Thus the following are equivalent.

1. A(a)u(a) = b(a).
2. U(a)A(a)u(a) = U(a)b(a).
3. (U(a)A(a)R)(R−1u(a)) = U(a)b(a).

�	
Then we have the following algorithm to solve a PLS with the matrix already

in triangular Smith form. For simplicity we assume a square matrix, the rectan-
gular case being a straightforward extension.
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Algorithm 2. TriangularSmithPLS
Require: PLS problem (H,b, N, Z), with H ∈ KY [x]n×n and b ∈ KY [x]n, where FY

is a parameterized extension for parameter list Y and x is an additional parameter,
with N, Z ⊂ F [Y ] and H in triangular Smith form.

Ensure: S, the corresponding PLS solution (a list of regimes).
1: For any polynomial s(x) let sqfr(s) denote the square-free part. Let si denote the

i-th diagonal entry of H, and define s0 = 1, sn+1 = 0. Then, for i ∈ 0, . . . , n, define
fi = sqfr(si+1)/sqfr(si). Let I be the set of indices such that fi has positive degree
or is zero.

2: For each r ∈ I include in the output S the regime R = (u,B, V ), where u =
(H−1

r br, 0n−r), with Hr the leading r × r submatrix of H and br = (b1, . . . , br)
and B = (er+1, . . . , en). Here ei denotes the i-th column of the identity matrix.

3: Return S.

Lemma 5.3. Algorithm TriangularSmithPLS is correct and generates at most√
2d regimes, where d = deg(det(H)).

Proof. Note that, for each row k, the diagonal entry sk divides all other entries
in the row. Then H has rank r just in case sr �= 0 and sr+1 = 0, i.e., in the cases
determined in step 1 of the algorithm. The addition of sr to N and fr to Z ensures
rank r and invertibility of Hr. For all evaluation points a ∈ V (N,Z) satisfying
those two additional conditions, the last n − r rows of H are zero. Hence the
nullspace B is correctly the last n− r columns of In. For such evaluation points,
the system will be consistent if and only if the corresponding right hand side
entries are zero, hence the addition of br+1, . . . , bn to Z. �	

Algorithm 3. PLSviaCTSNF
Require: A PLS problem (A,b, N, Z) over F [Y, x], for parameter list Y and additional

parameter x.
Ensure: A corresponding PLS solution S = ((ui,Bi, Ni, Zi) | i ∈ 1, . . . , s).
1: Over the ring F (Y )[x], Let T solve the CTSNF problem (A, N, Z). T is a set of

triangular Smith regimes of form (U,H, R, N ′, Z′). Let S = ∅.
2: For each Hermite regime (U,H, R, N ′, Z′) in T , using algorithm

TriangularSmithPLS, solve the PLS problem (H, Ub, N ′, Z′). Adjoin to S
the solution regimes, adjusted by factor R−1 as in Lemma 5.2.

3: Return S.

Theorem 5.4. Algorithm 3 is correct.

Proof. For every parameter evaluation a ∈ V (N,Z) at least one triangular Smith
regime of T in step 2 is valid. Then, by Lemmas 5.3 and 5.2, step 3 produces a
PLS regime covering a. �	
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6 Solving Comprehensive Triangular Smith Normal Form

In view of the reductions of the preceding section, to solve a parametric linear
system it remains only to solve a comprehensive triangular Smith form problem.
This is difficult in general but we give a method to give a comprehensive solution
with polynomially many regimes in the bivariate and trivariate cases.

Theorem 6.1. Let A ∈ F [y, x]m×n of degree d in x and degree e in y, and
let N,Z be polynomial sets defining a semialgebraic constraint on y. Then the
CTSNF problem (A, N, Z) has a solution of at most O(n2de) triangular Smith
regimes.

Proof. If N is nonempty, then at the end of the construction below just adjoin N
to the N∗ of each solution regime. If Z is nonempty it trivializes the solution to
at most one regime: let z(y) be the greatest common divisor of the polynomials
in Z. If z is 1 or is reducible, the condition is unsatisfiable, otherwise return the
single triangular Smith regime for A over F [y]/〈z(y)〉. Otherwise construct the
solution regimes as follows where we will assume the semialgebraic constraints
are empty.

First compute triangular Smith form U0,H0,R0 over F (y)[x] such that
A = U0H0R0. This will be valid for evaluations that do not zero the denom-
inators (polynomials in y) of H0,U0. So set N0 = den(U0,H0) (or to be the
set of irreducible factors that occur in den(U0,H0). Set Z0 = ∅ to complete the
first regime.

Then for each irreducible polynomial f(y) that occurs as a factor in N0 adjoin
the regime (Uf ,Hf ,Rf , Nf = N \ {f}, Zf = {f}), that comes from computing
the triangular Smith form over (F [y]/〈f〉)[x]. From the bounds of Theorem 4.6
we have the specified bound on the number of regimes. �	

We can proceed in a similar way when there are three parameters, but must
address an additional complication that arises.

Theorem 6.2. Let A ∈ F [z, y, x]m×n of degree d in x and degree e in y, z,
and let N,Z be polynomial sets defining a semialgebraic constraint on y and z.
Then the CTSNF problem (A, V (N,Z)) has a solution of at most O(n4d2e2)
triangular Smith regimes.

Proof. As in the bivariate case above, we solve the unconstrained case and just
adjoin N,Z, if nontrivial, to the semialgebraic condition of each solution regime.

First compute triangular Smith form U0,H0,R0 over F (y, z)[x] such that
A = U0H0R0. This will be valid for evaluations that do not zero the denomina-
tors (polynomials in y, z) of H0,U0. Thus we set (N0, Z0) = ({den(U0,H0)}, ∅)
to complete the first regime.

Then for each irreducible polynomial f that occurs as a factor in N0, if y
occurs in f , adjoin the regime (Uf ,Hf ,Rf , Nf = N\{f}, Zf = {f}), that comes
from computing the triangular Smith form over (F (z)[y]/〈f〉)[x]. If y does not
occur in f , interchange the roles of y, z.
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In either case we get a solution valid when f is zero and the solution denom-
inator δf is nonzero. This denominator is of degree O(n2de) in each of y, z by
Theorem 4.6. [It is the new complicating factor arising in the trivariate case.] It
is relatively prime to f , so Bézout’s theorem [7] in the theory of algebraic curves
can be applied: there are at most deg(f) deg(δ) points that are common zeroes of
f and δ. We can produce a separate regime for each such (y, z)-point by evaluat-
ing A at the point and computing a triangular Smith form over F [x]. Summing
over the irreducible f dividing the original denominator in N0 we have O((n2de)2)
bounding the number of these denominator curve intersection points. �	
Corollary 6.3. For a PLS with m × n matrix A, b an m-vector, and with
degx(A,b) ≤ d,degy(A,b) ≤ e,degz(A,b) ≤ e, we have

1. O(m1.5d0.5) regimes in the PLS solution for the univariate case (domain of
A, b is F [x]).

2. O(m2.5d1.5e) regimes in the PLS solution for the bivariate case (domain of
A, b is F [x, y]).

3. O(m4.5d2.5e2) regimes in the PLS solution for the trivariate case (domain of
A, b is F [x, y, z]).

Proof. By Lemma 5.3, each CTSNF regime expands to at most
√

md PLS
regimes. �	

7 Normal Forms and Eigenproblems

Comprehensive Hermite Normal form and comprehensive Smith Normal form are
immediate corollaries of our comprehensive triangular Smith form. For Hermite
form, just take the right hand cofactor to be the identity, R = I, and drop the
check for the divisibility condition on the diagonal entries in Algorithm 2. For
Smith form one can convert each regime of CTSNF to a Smith regime. Where
UAR = H with H a triangular Smith form, perform column operations to
obtain UAV = S with S the diagonal of H. In H the diagonal entries divide
the off diagonal entries in the same row. Subtract multiples of the i-th column
from the subsequent columns to eliminate the off diagonal entries. Because the
diagonal entries are monic, no new denominator factors arise and det(V) =
det(R) ∈ F . Thus when (U,H,R, N, Z) is a valid regime in a CTSNF solution
for A, then (U,S,V, N, Z) is a valid regime for Smith normal form.

It is well known that if A ∈ Kn×n for field K (that may involve param-
eters) and λ is an additional variable, then the Smith invariants s1, . . . , sn of
λI − A are the Frobenius invariants of A and A is similar to its Frobenius nor-
mal form, ⊕n

i=1Csi , where Cs denotes the companion matrix of polynomial s.
Thus we have comprehensive Frobenius normal form as a corollary of CTSNF,
however it is without the similarity transform. It would be interesting to develop
a comprehensive Frobenius form with each regimes including a transform.

Parametric eigenvalue problems for A correspond to PLS for λI − A with
zero right hand side. Often eigenvalue multiplicity is the concern. The geometric
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multiplicity is available from the Smith invariants, as for example on the diagonal
of a triangular Smith form. Common roots of 2 or more of the invariants expose
geometric multiplicity and square-free factorization of the individual invariants
exposes algebraic multiplicity. Note that square-free factorization may impose
further restrictions on the parameters. Comprehensive treatment of square-free
factorization is considered in [18].

7.1 Eigenvalue Multiplicity Example

The following matrix, due originally to a question on sci.math.num-analysis in
1990 by Kenton K. Yee, is discussed in [5]. We change the notation used there
to avoid a clash with other notation used here. The matrix is

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z−1 z−1 z−1 z−1 z−1 z−1 z−1 0
1 1 1 1 1 1 0 1
1 1 1 1 1 0 1 1
1 1 1 1 0 1 1 1
1 1 1 0 1 1 1 1
1 1 0 1 1 1 1 1
1 0 1 1 1 1 1 1
0 z z z z z z z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

One of the original questions was to compute its eigenvectors. Since it contains
a symbolic parameter z, this is a parametric eigenvalue problem which we can
turn into a parametric linear system, namely to present the nullspace regimes
for λI − Y.

Over F (z)[λ], after preconditioning, we get as the triangular Smith form
diagonal (1, 1, 1, 1, 1, λ2 − 1, λ2 − 1, (λ2 − 1)f(λ)), where f(λ) = λ2 − (z + 6 +
z−1)λ + 7.

Remark 7.1. Without preconditioning, the Hermite form diagonal is instead
(1, 1, 1, 1, λ − 1, λ2 − 1, (λ2 − 1), (λ + 1)f(λ)).

The denominator of U, H is a power of z, so the only constraint is z = 0
which is already a constraint for the input matrix. We get regimes of rank 5
for λ = ±1, rank 7 for λ being a root of f , and rank 8 for all other λ. In terms
of the eigenvalue problem, we get eigenspaces of dimension 3 for each of 1, −1
and of dimension 1 for the two roots of f(λ).

To explore algebraic multiplicity, we can examine when f has 1 or −1 as a
root. When z is a root of z2 + 14 z + 1, f(λ) factors as (λ − 1)(λ − 7) and when
z = 1 we have f(λ) = (λ + 1)(λ + 7). These factorizations may be discovered by
taking resultants of f with λ − 1 or λ + 1.

7.2 Matrix Logarithm

Theorem 1.28 of [12] states the conditions under which the matrix equation
exp(X) = A has so-called primary matrix logarithm solutions, and under which
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conditions there are more. If the number of distinct eigenvalues s of A is strictly
less than the number p of distinct Jordan blocks of A (that is, the matrix A is
derogatory), then the equation also has so-called nonprimary solutions as well,
where the branches of logarithms of an eigenvalue λ may be chosen differently
in each instance it occurs.

As a simple example of what this means, consider

A =
[

a 1
0 a

]
. (7.1)

When we compute its matrix logarithm (for instance using the MatrixFunction
command in Maple), we find

XA =
[

ln (a) a−1

0 ln (a)

]
. (7.2)

This is what we expect, and taking the matrix exponential (a single-valued
matrix function) gets us back to A, as expected. However, if instead we consider
the derogatory matrix

B =
[

a 0
0 a

]
(7.3)

then its matrix logarithm as computed by MatrixFunction is also derogatory,
namely

XB =
[

ln (a) 0
0 ln (a)

]
. (7.4)

Yet there are other solutions as well: if we add 2πi to the first entry and −2πi
to the second logarithm, we unsurprisingly find another matrix XC which also
satisfies exp(X) = B. But adding 2πi to the first entry of XA while adding −2πi
to its second logarithm, we get another matrix

XD =
[

ln (a) + 2 iπ a−1

0 ln (a) − 2 iπ

]
(7.5)

which has the (somewhat surprising) property that exp(XD) = B, not A.
This example demonstrates in a minimal way that the detailed Jordan struc-

ture of A strongly affects the nature of the solutions to the matrix equation
exp(X) = A. This motivates the ability of code to detect automatically the dif-
fering values of the parameters in a matrix that make it derogatory. To explicitly
connect this example to CTSNF, consider

M =
[
a b
0 a

]
(7.6)

so that A above is Mb=1 and B = Mb=0. The CTSNF applied to λI − M
produces two regimes, with forms

Hb�=0 =
[
1 λ/b
0 (λ − a)2

]
,Hb=0 =

[
λ − a 0

0 λ − a

]
, (7.7)

exposing when the logarithms will be linked or distinct. Note that in this case
the Frobenius structure equals the Jordan structure.
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7.3 Model of Infectious Disease Vaccine Effect

Rahman and Zou [22] have made a model of vaccine effect when there are two
subpopulations with differing disease susceptibility and vaccination rates. Within
this study stability of the model is a function of the eigenvalues of a Jacobian J.
Thus we are interested in cases where the following matrix is singular.

A = λI − J =

⎡
⎢⎢⎣

λ − w 0 −a −c
0 λ − x −b −d
0 0 λ − a − y c
0 0 b λ − d − z

⎤
⎥⎥⎦ .

Here w, x are vaccination rates for the two populations, y, z are death rates,
a, d are within population transmission rates, and b, c are the between popu-
lation transmission rates. We have simplified somewhat: for instance a, b, c, d
are transmission rates multiplied by other parameters concerning population
counts. Stability depends on the positivity of the largest real part of an eigen-
value. For the sake of reducing expression sizes in this example we will arbitrarily
set y = z = 1/10. For the same reason we will skip right multiplication by an R
to achieve triangular Smith form. Hermite form H of λI−J will suffice, revealing
the eigenvalues that are wanted.

H =

⎡
⎢⎣

λ + w 0 0 −(ad − aλ − bc − a/10)/c
0 λ + x 0 λ + 1/10
0 0 1 (d − λ − 1/10)/c
0 0 0 λ2 + (1/5 − a − d)λ + ad − cb − (1/10)d − (1/10)a + 1/100

⎤
⎥⎦ .

The discriminant of the last entry gives the desired information for the appli-
cation subject to the denominator validity: c �= 0. When c = 0 the matrix is
already in Hermite form, so again the desired information is provided.

This example illustrates that often more than three parameters can be easily
handled. In experiments with this model not reported here, we did encounter
cases demanding solution beyond the methods of this paper. On a more positive
note, we feel that comprehensive normal form tools could help analyze models
like this when larger in scope, for instance modeling 3 or more subpopulations.

7.4 The Kac-Murdock-Szegö Example

In [4] we see reported times for computation of the comprehensive Jordan form
for matrices of the following form, taken from [28], of dimensions 2 to about 20:

KMSn =

⎡
⎢⎢⎢⎢⎢⎣

1 −ρ
−ρ ρ2 + 1 −ρ

. . . . . . . . .
−ρ ρ2 + 1 −ρ

−ρ 1

⎤
⎥⎥⎥⎥⎥⎦

. (7.8)
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This is, apart from the (1, 1) entry and the (n, n) entry, a Toeplitz matrix
containing one parameter, ρ. The reported times to compute the Jordan form
were plotted in [4] on a log scale, and looked as though they were exponen-
tially growing with the dimension, and were reported in that paper as growing
exponentially.

The theorem of this paper states instead that polynomial time is possible
for this family, because there are only two parameters (ρ and the eigenvalue
parameter, say λ). The Hermite forms for these matrices are all (as far as we
have computed) trivial, with diagonal all 1 except the final entry which con-
tains the determinant. Thus all the action for the Jordan form must happen
with the discriminant of the determinant. Experimentally, the discriminant with
respect to λ has degree n2 + n − 4 for KMS matrices of dimension n ≥ 2 (this
formula was deduced experimentally by giving a sequence of these degrees to
the Online Encyclopedia of Integer Sequences [26]) and each discriminant has a
factor ρn(n−1), leaving a nontrivial factor of degree 2n − 4 growing only linearly
with dimension. The case ρ = 0 does indeed give a derogatory KMS matrix
(the identity matrix). The other factor has at most a linearly-growing number
of roots for each of which we expect the Jordan form of the corresponding KMS
matrix to have one block of size two and the rest of size one. We therefore see
only polynomial cost necessary to compute comprehensive Jordan forms for these
matrices, in accord with our theorem.

8 Conclusions

We have shown that using the CTNSF to solve parametric linear systems is
of cost polynomial in the dimension of the linear system and polynomial in
parameter degree, for problems containing up to three parameters. This shows
that polynomially many regimes suffice for problems of this type. To the best of
our knowledge, this is the first method to achieve this polynomial worst case.

It remains an open question whether, for linear systems with a fixed number
of parameters greater than three, a number of regimes suffices that is polynomial
in the input matrix dimension and polynomial degree of the parameters, being
exponential only in the number of parameters.

Through experiments with random matrices we have indication that the
worst case bounds we give are sharp, though we have not proven this point.
As the examples indicated, many problems will have fewer regimes, and some-
times substantially fewer regimes. We have not investigated the effects of further
restrictions of the type of problem, such as to sparse matrices.
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Abstract. We have developed a symbolic-numeric algorithm implemen-
ted in Wolfram Mathematica to compute the orthonormal non-canonical
bases of symmetric irreducible representations of the O(5)×SU(1,1) and
O(5) × SU(1,1) partner groups in the laboratory and intrinsic frames,
respectively. The required orthonormal bases are labelled by the set
of the number of bosons N , seniority λ, missing label μ denoting the
maximal number of boson triplets coupled to the angular momentum
L = 0, and the angular momentum (L, M) quantum numbers using the
conventional representations of a five-dimensional harmonic oscillator in
the laboratory and intrinsic frames. The proposed method uses a new
symbolic-numeric orthonormalization procedure based on the Gram–
Schmidt orthonormalization algorithm. Efficiency of the elaborated pro-
cedures and the code is shown by benchmark calculations of orthogonal-
ization matrix O(5) and O(5) bases, and direct product with irreducible
representations of SU(1,1) and SU(1,1) groups.

Keywords: Orthonormal non-canonical basis · Irreducible
representations · Group O(5) × SU(1, 1) · Gram–Schmidt
orthonormalization · Wolfram Mathematica

1 Introduction

The Bohr–Mottelson collective model [1,2] has gained widespread acceptance in
calculations of vibrational-rotational spectra and electromagnetic transitions in
atomic nuclei [3–5]. For construction of basis functions of this model, different
approaches were proposed, for example, [6–9], that lead only to nonorthogonal
set of eigenfunctions needed in further orthonormalization, considered only in
c© Springer Nature Switzerland AG 2020
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intrinsic frame [10–15]. However, until now, there are no sufficiently universal
algorithms for evaluation of the required orthonormal bases needed for large-
scale applied calculations in both intrinsic and laboratory frames used in mod-
ern models to revival point symmetries in specified degeneracy spectra [16,17].
Creation of such symbolic-numeric algorithm is a goal of the present paper.

In the present paper, we elaborate an universal effective symbolic-numeric
algorithm implemented as the first version of O5SU11 code in Wolfram Mathe-
matica for computing the orthonormal bases of the Bohr–Mottelson(BM) col-
lective model in both intrinsic and laboratory frames. It is done on the base of
theoretical investigations for constructing the non-canonical bases for irreducible
representations (IRs) of direct product groups G = O(5) × SU(1,1) in the labo-
ratory frame [8] and Ḡ = O(5) × SU(1,1) in the intrinsic frame [7]. We pay our
attention to computing bases in both laboratory and intrinsic frames needed for
construction of the algebraic models accounting symmetry group [18,19] based
on anti-isomorphism between G and Ḡ partner groups [16,17], and point sym-
metries in modern calculations, for example, [20–23]. The required orthonormal
bases are labelled by the set of the number of bosons N , seniority λ, missing
label μ, denoting the maximal number of boson triplets coupled to the angu-
lar momentum L = 0, and the angular momentum (L,M) quantum numbers
using the conventional representations of a five-dimensional harmonic oscillator
in the laboratory and intrinsic frames. In the proposed method, the authors use a
symbolic-numeric non-standard recursive and fast orthonormalization procedure
based on the Gram–Schmidt (G–S) orthonormalization algorithm. Efficiency of
the elaborated procedures and the code is shown by benchmark calculations of
orthogonalization matrix O(5) and O(5) bases, and IRs of SU(1,1) group.

The structure of the paper is as follows. In the second section, we present
characterization of group G = O(5) × SU(1,1) and characterization of states.
In Subsects. 2.5 and 2.6, we give the explicit formulas needed for the construction
of symmetric nonorthogonal bases for IRs of the O(5) and G = O(5) ⊗ SU(1,1)
groups. In the third section, we present the construction of the orthonormal
basis of the collective nuclear model in intrinsic frame corresponding IRs of the
Ḡ = O(5) × SU(1,1) group. In the fourth section, we present the algorithm
and benchmark calculations of overlaps and orthogonalization upper triangular
matrices applied for constructing the orthonormal basis vectors in the labora-
tory and intrinsic frames. In conclusion, we give a resumé and point out some
important problems for further applications of proposed algorithms.

2 Characterization of Group O(5) × SU(1,1) and
Characterization Of States in the Laboratory Frame

Quantum description of collective motions by using the deformation vari-
ables α̂

(l)
m needs the Hilbert space L2(α̂(l)), which is the state space of (2l + 1)-

dimensional harmonic oscillator. The Hamiltonian of this harmonic oscillator
has the form

Hl =
1
2

∑

μ

(
π̂(l)

μ π̂(l)μ + α̂(l)μα̂(l)
μ

)
, (1)
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where
α̂(l)

m =
∑

μ

gmμα̂(l)μ = (−1)mα̂(l)−m (2)

denotes the multiplication operator by the variable α̂
(l)
m and

π̂(l)
m =

∑

m

gmμπ̂(l)μ = −i
∂

∂α̂(l)m
(3)

denotes the conjugate momentum to the coordinate α̂
(l)
μ .

The covariant metric tensor gmm′ in the corresponding manifold has the form

gmm′ = gmm′
= (−1)l

√
2l + 1(lmlm′|00) = (−1)mδ−m′

m . (4)

The operators α̂
(l)
m , π̂

(l)
m fulfil the standard commutation relations

[
α̂(l)

m , π̂(l)m′]
= iδm′

m ,
[
α̂(l)

m , α̂
(l)
m′

]
= 0,

[
π̂(l)m, π̂(l)m′]

= 0. (5)

By using these operators one can build the creation and annihilation spinless
boson operators η

(l)
m and ξ

(l)
m with the angular momentum l

η(l)
m =

1√
2

(
α̂(l)

m − iπ̂(l)
m

)
, ξ(l)m =

1√
2

(
α̂(l)

m + iπ̂(l)
m

)
. (6)

Contravariant operators can be built in standard way

ηm =
∑

μ

gmμημ, ξm =
∑

μ

gmμξμ. (7)

They satisfy the following commutation relations

[ξm, ηm′ ] = δm
m′ ,

[
ξm, ξm′]

= [ηm, ηm′ ] = 0, (ηm)† = ξm (ξm)† = ηm. (8)

2.1 Characterization of U(2l+1)

It can be shown that the bilinear forms

(η ⊗ η)(L)
M ,

(
ξ̃ ⊗ ξ̃

)(L)

M
,

(
η ⊗ ξ̃

)(L)

M
,

where L = 0, 1 . . . 2l, ξ̃m = (−1)mξ−m (9)

generate the non-compact symplectic group Sp(2(2l+1),R).
Group theory analysis leads to two classifications of boson states:

Sp(2(2l+1),R) ⊃ U(2l+1),
Sp(2(2l+1),R) ⊃ O(2l+1) × SU(1,1). (10)



Symbolic-Numeric Algorithm for Computing Orthonormal Basis 209

The orthonormal group O(2l+1) and the non-compact unitary group SU(1,1)
are complementary in two physical IRs of the symplectic group Sp(2(2l+1),R)
(for odd and even number of bosons).

The unitary group U(2l+1) has (2l+1)2 generators Emm′ or bosons operators

(η ⊗ ξ̃)(L)
M =

1
2
(−1)l

∑

mm′
(lmlm′|LM)Emm′ , where L = 0, 1, . . . 2l, (11)

Emm′=
1
2
(Nmm′+Λmm′), Nmm′=α̂mα̂m′+π̂mπ̂m′ , Λmm′=i(α̂mπ̂m′−π̂mα̂m′).

The operators (η ⊗ ξ̃)(L)
M fulfil the following commutation relations

[
(η ⊗ ξ̃)(L1)

M1
, (η ⊗ ξ̃)(L2)

M2

]
=

√
(2L1 + 1)(2L2 + 1)

∑

LM

[(−1)L − (−1)L1+L2 ]

×(L1M1L2M2|LM)
{

L1 L2 L
l l l

}
(η ⊗ ξ̃)(L)

M .

The second order Casimir invariant of the group U(2l+1) is given by

C2 =
2l∑

L=0

AL, AL = (−1)L
√

2L + 1
[
(η ⊗ η)(L) ⊗ (ξ̃ ⊗ ξ̃)(L)

](0)
0

. (12)

It can be shown that

C2 = N̂(N̂ − 1), where N̂ =
∑

μ

ημξμ =
√

2l + 1(η ⊗ ξ̃)(0)0 , (13)

the operator N̂ is the boson number operator.
The eigenvalues of C2 depend only on the number of bosons in a given state.

In the state which contains N bosons, the expectation value of C2 is

〈C2〉N = N(N − 1). (14)

At the same time, N uniquely labels symmetric IRs of U(2l + 1).
Arbitrary state of N bosons can be constructed by using the vectors:

|n−l, n−l+1 . . . nl〉 =
1√

(n−l)! (n−l+1)! . . . (nl)!
(η−l)n−l . . . (ηl)nl |0〉. (15)

According to this, to define uniquely the state of bosons, located on a level with
angular momentum equal to l, one needs to have a set of 2l+1 quantum numbers.

2.2 Characteristic of O(2l+1)

The orthogonal group O(2l+1) contains one-to-one transformations of linear
spaces spanned by the tensors α(l) = (α(l)

−l, . . . , α
(l)
l ) which do not change the

quadratic form
β2 =

∑

μ

α(l)
μ α(l)μ. (16)
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Generators of this group are l(2l+1) independent operators Λmm′ for m > m′.
The commutation relation for these generators are

[Λm1m2 , Λm3m4 ]=δm2m3Λm1m4+δm1m4Λm2m3−δm1m3Λm3m4−δm2m4Λm1m3 ,

where δmm′ =
∑

μ

gmμδμ
m′ = (−1)mδ−m

m′ . (17)

It is possible to get a more useful form of these generators

Λmm′ = ηmξm′ − ηm′ξm = (−1)l
∑

LM

[1 − (−1)L](lmlm′|LM)(η ⊗ ξ̃)(L)
M . (18)

This implies that the operators (η ⊗ ξ̃)(L=1, 3, 5,..., 2l+1)
M are the generators of the

group O(2l+1).
The second-order Casimir invariant of the orthogonal group O(2l+1) is

Λ2 =
2l∑

L=0

[1 − (−1)L]AL. (19)

For unique labelling of totally symmetric IRs of O(2l+1), one needs only one
quantum number λ. Eigenvalues of operators Λ2 are the numbers

〈
Λ2

〉
λ

= λ(λ + 2l − 1). (20)

The quantum number λ is called seniority and denotes the number of bosons
which are not coupled to pairs with zero angular momentum.

2.3 Characteristic of SU(1,1)

The non-compact unitary group SU(1, 1) is the complementary group to the
orthogonal group O(2l+1).

The group SU(1,1) has three generators:

S+=
√

2l + 1
2

(η ⊗ η)(0)0 , S−=
√

2l + 1
2

(ξ̃ ⊗ ξ̃)(0)0 , S0=
1
2

(
N̂+

2l + 1
2

)
. (21)

The above generators satisfy the following commutation relations:

[S+, S−] = −2S0, [S0, S+] = S+, [S0, S−] = −S−, (22)

and the conjugation relation
(S+)† = S−. (23)

The second-order Casimir invariant of the group SU(1,1) is the following operator

S2 = S2
0 − S0 − S+S−. (24)

One can show that the following relation is satisfied

Λ2 = 4S2 − 1
4
(2l − 3)(2l + 1). (25)

So, the eigenvalues of S2 are given by
〈
S2

〉
= S(S − 1), where S =

1
2

(
λ +

2l + 1
2

)
. (26)
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2.4 Construction of States with N > λ

Let the state
|λ,N = λ, χ〉 = |λλχ〉 (27)

denote the state having the seniority number λ which is equal to the number of
particles N in the system. Then it satisfies the conditions

S−|λλχ〉 = 0, S0|λλχ〉 =
1
2
(λ +

2l + 1
2

)|λλχ〉. (28)

In the above equations, χ denotes the set of quantum numbers which are needed
for labelling the states of the boson system. One can construct the states hav-
ing the number of bosons N greater than the seniority number λ (N > λ) by
using the action of creation operators of boson pairs coupled to zero angular
momentum S+:

|λNχ〉 =

√
Γ

[
λ + 1

2 (2l + 1)
]

[12 (N − λ)]! Γ
[
1
2 (N + λ + 2l + 1)

] (S+)
1
2 (N−λ)|λλχ〉. (29)

Angular momentum is a good quantum number characterizing nuclear states.
It implies that the rotation group O(3) generated by the operators

L(1)
m =

√
1
3
l(l + 1)(2l + 1) (η ⊗ ξ̃)(1)m (30)

should be contained in the group chain which classifies these states.
The operator L̂2 of the squared angular momentum (the Casimir operator

for SO(3)) can be constructed as follows:

L̂2 =
1∑

m=−1

(−1)mL(1)
m L

(1)
−m = l(l + 1)(2l + 1)

2l∑

L=0

{
l l 1
l l L

}
AL + l(l + 1)N̂ .

In conclusion, the quantum boson states for l = 0, 1, 2, . . . can be classified
according to two group chains

U(2l+1) ⊃ O(2l+1) ⊃ · · · ⊃ O(3) ⊃ O(2), (31)
O(2l+1) ⊗ SU(1,1) ⊃ · · · ⊃,O(3) ⊗ U(1) ⊃ O(2). (32)

Unitary subgroup SU(1,1) ⊃ U(1) is generated by the operator S0, and the
generator of rotation about the z-axis generating the subgroup O(3) ⊃ O(2) is
the operator L

(1)
0 .

The states constructed according to the first group chain (31) will be
denoted by

|NλξLM〉, (33)

and the states constructed according to the second group chain (32) will be
denoted by replacing letters N and λ

|λNξLM〉. (34)



212 A. Deveikis et al.

The vectors (33) and (34) though constructed in different way can be identified
as the same vectors. In the following, we will treat them as identical.

But one has to stress that vectors (33) and (34) span IRs of different groups.
The vectors (33) form a basis of IRs of the group U(2l+1), for given N . The
vectors (34) span the basis of IRs of the group O(2l+1) ⊗ SU(1,1), for given λ.
According to the above property, we can construct the states of N bosons by
using the easier scheme (32).

Table 1. The set of values of dimensions of IRs O(5) group De
λ at even L and Do

λ at
odd L and their sum Dλ = De

λ + Do
λ vs λ

λ 10 20 30 40 50 60 70 80 90 100

De
λ 322 1892 5711 12782 24102 40671 63492 93562 131881 179452

Do
λ 184 1419 4705 11039 21424 36860 58344 86879 123465 169099

Dλ 506 3311 10416 23821 45526 77531 121836 180441 255346 348551

2.5 Construction of the Nonorthogonal Basis for Symmetric IRs of
the Group O(5)

As the first step, we start with the construction of a basis for the group O(5)
from Subsect. 2.2 at l = 2. We start the construction with the state of maximal
seniority λ and maximal angular momentum L0 = 2λ:

|λ〉 = (η(2)
2 )λ|0〉 (35)

generated by the action of the creation spinless boson operator η
(2)
2 ≡ η2 from (6)

on the vacuum vector |0〉 in representation (15) of elementary boson basis of
symmetric IR group U(5) from Subsect. 2.1 at l = 2. Next, we construct the
operators Ô(λ, μ, L,M) commuting with the Casimir operator Λ̂2 from (19) of
group O(5) and with lowering the angular momentum to the required L

Ô(λ, μ, L,M) =
∑

L≤m≤2λ

βm(λ,L)(L−)m−M (L+)m+λ−3μ
[
(η ⊗ ξ̃)(3)−3

]λ−μ

, (36)

where

βm(λ,L) =
(−1)m

(m − L)!(m + L + 1)!
, L+ = − 1√

2
L
(1)
+1, L− =

1√
2
L
(1)
−1, (37)

i.e., with commutator [L̂i, L̂j ] = +ıεijkL̂k, where εijk is the totally antisymmet-
ric symbol, ε123 = +1. The quantum number μ denotes the maximal number of
boson triplets coupled to the angular momentum L = 0. It can be shown that if

(λ−3μ) ≤ L ≤ 2(λ−3μ)(even L), (λ−3μ) ≤ (L+3) ≤ 2(λ−3μ)L(odd L), (38)
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where 0 ≤ μ ≤ [λ/3], and [λ
3 ] denotes the integer part of λ

3 , then the vectors
Ô(λ, μ, L,M)|λ〉 are linearly independent and they form a basis for IRs of the
group O(5), for given λ.

The dimension Dλ of this space is Dλ = 1
6 (λ + 1)(λ + 2)(2λ + 3) at fixed λ

is determined by following [6]:

Dλ=De
λ + Do

λ=
[λ/3]∑

μ=0

[2λ−6μ]′∑

L=2[(λ+1−3μ)/2]

(2L + 1) +
[(λ−3)/3]∑

μ=0

[2λ−6μ−3]′∑

L=2[(λ−3μ)/2]+1

(2L + 1), (39)

where the prime means summation by step 2 and [μ] = Floor(μ) is the largest
integer not greater that μ. For example, see Table 1.

Table 2. The set of accessible values μ of the states |λμLL〉 for L = 0, . . . , 17 and
λ = 0, . . . , 17 in non empty square depending on accessible values of momentum L and
seniority λ. Degeneracy dλL is given by formula dλL = μmax − μmin + 1.

L, λ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 0 1 2 3 4 5

1

2 0 0 1 1 2 2 3 3 4 4 5 5

3 0 1 2 3 4

4 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5

5 0 0 1 1 2 2 3 3 4 4

6 0 0 0 0,1 1 1 1,2 2 2 2,3 3 3 3,4 4 4

7 0 0 0 1 1 1 2 2 2 3 3 3 4

8 0 0 0 0,1 0,1 1 1,2 1,2 2 2,3 2,3 3 3,4 3,4

9 0 0 0 0,1 1 1 1,2 2 2 2,3 3 3

10 0 0 0 0,1 0,1 0,1 1,2 1,2 1,2 2,3 2,3 2,3 3,4

11 0 0 0 0,1 0,1 1 1,2 1,2 2 2,3 2,3

12 0 0 0 0,1 0,1 0,1 0,1,2 1,2 1,2 1,2,3 2,3 2,3

13 0 0 0 0,1 0,1 0,1 1,2 1,2 1,2 2,3

14 0 0 0 0,1 0,1 0,1 0,1,2 0,1,2 1,2 1,2,3 1,2,3

15 0 0 0 0,1 0,1 0,1 0,1,2 1,2 1,2

16 0 0 0 0,1 0,1 0,1 0,1,2 0,1,2 0,1,2 1,2,3

17 0 0 0 0,1 0,1 0,1 0,1,2 0,1,2

The range of accessible values of μ at given accessible λ and L is determined
by inequalities:

μmin= max(0, Ceiling

(
λ−L

3

)
, μmax=Floor

(
λ−(L+3(Lmod2))/2

3

)
, (40)

where Ceiling(μ) is the lowest integer not lower that μ and Floor(μ) is the
largest integer not greater that μ. The multiplicity dλL is given by the value
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of dλL = μmax − μmin + 1. For example, the set of accessible values μ at the
given accessible λ and L of states |λμLL〉 is given in Tables 2 and 3. One
can see that there is no degeneracy dvL = 1 for the first few angular momenta
L=0, 2, 3, 4, 5, 7, but not for L=6: dλL = 2. The range of angular moment L that
corresponds to a given maximum dmax

vL of μ-degeneracy dvL is [10]

6(dmax
λL − 1) ≤ L ≤ 6(dmax

λL − 1) + 5, dmax
λL = 1, 2, . . . .

For example, see Tables 2 and 3: 0 ≤ L ≤ 5, dmax
λL = 1, 6 ≤ L ≤ 11, dmax

λL = 2,
12 ≤ L ≤ 17, dmax

λL = 3.

Table 3. Continuation of Table 2 for L = 0, . . . , 17 and λ = 18, . . . , 34

L, λ 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

0 6 7 8 9 10 11

1

2 6 6 7 7 8 8 9 9 10 10 11

3 5 6 7 8 9 10

4 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10

5 5 5 6 6 7 7 8 8 9 9 10

6 4,5 5 5 5,6 6 6 6,7 7 7 7,8 8 8 8,9 9 9 9,10 10

7 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9

8 4 4,5 4,5 5 5,6 5,6 6 6,7 6,7 7 7,8 7,8 8 8,9 8,9 9 9,10

9 3,4 4 4 4,5 5 5 5,6 6 6 6,7 7 7 7,8 8 8 8,9 9

10 3,4 3,4 4,5 4,5 4,5 5,6 5,6 5,6 6,7 6,7 6,7 7,8 7,8 7,8 8,9 8 9 8,9

11 3 3,4 3,4 4 4,5 4,5 5 5,6 5,6 6 6,7 6,7 7 7,8 7,8 8 8,9

12 2,3,4 3,4 3,4 3,4,5 4,5 4,5 4,5,6 5,6 5,6 5,6,7 6,7 6,7 6,7,8 7,8 7,8 7,8,9 8,9

13 2,3 2,3 3,4 3,4 3,4 4,5 4,5 4,5 5,6 5,6 5,6 6,7 6,7 6,7 7,8 7,8 7,8

14 2,3 2,3,4 2,3,4 3,4 3,4,5 3,4,5 4,5 4,5,6 4,5,6 5,6 5,6,7 5,6,7 6,7 6,7,8 6,7,8 7,8 7,8,9

15 1,2,3 2,3 2,3 2,3,4 3,4 3,4 3,4,5 4,5 4,5 4,5,6 5,6 5,6 5,6,7 6,7 6,7 6,7,8 7,8

16 1,2,3 1,2,3 2,3,4 2,3,4 2,3,4 3,4,5 3,4,5 3,4,5 4,5,6 4,5,6 4,5,6 5,6,7 5,6,7 5,6,7 6,7,8 6,7,8 6,7,8

17 1,2 1,2,3 1,2,3 2,3 2,3,4 2,3,4 3,4 3,4,5 3,4,5 4,5 4,5,6 4,5,6 5,6 5,6,7 5,6,7 6,7 6,7,8

As conclusion of this analysis, we get the non-orthogonal basis for the totally
symmetric IRs of the group O(5) which is denoted by four quantum numbers
λ, μ, L, M

|λμLM〉no =
∑

L≤m≤2λ

βm(λ,L)(L−)m−M (L+)m+λ−3μ(η−1)λ−μ(η2)μ|0〉, (41)

where λ denotes the seniority number, μ can be interpreted as the maximal
number of boson triplets coupled to the angular momentum L = 0.

These results can be rewritten in representation (15) of elementary boson
basis of symmetric IRs group U(5) from Subsect. 2.1 at l = 2. For this purpose, let
us assume that the third component of the angular momentum has its maximal
value M = L

|λμL M = L〉 =
∑

n−2...n2

〈n−2 n−1 . . . n2|λμL M = L〉no|n−2 . . . n2〉. (42)
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Here the vectors 〈n′
−2 . . . n′

2|λμ′LM = L〉no in the representation of the five-
dimensional harmonic oscillator 〈n′

−2 . . . n′
2| have the form

〈n−2 . . . n2|λμLM = L〉=(2L + 1)

√
6n0 (n−2)! (n−1)! . . . (n2)! (2L)!

(L + λ − 3μ)! (L−λ+3μ)!
(43)

×
∑

p1...p8 q1...q5

(−1)p1+p3+p5+p7+q2+q4 2p1+2p3+2p6+p8+q2+q4

× (λ−μ)! μ! (p2+p3+2p5+2p6+2p7+3p8)! (p2+p6+p8+q2+2q3+3q4+4q5)!
(p1)! (p2)! . . . (p8)! (q1)! (q2)! . . . (q5)! (L + 2λ − p4 − p5 + 1)!

,

where the following conditions are satisfied
∑

i

ni = λ,
∑

i

ini = L,
∑

i

pi = λ − μ,
∑

i

qi = μ, (44)

p1+q1=n−2, p3+p4+q2=n−1, p2+p7+q3=n0, p5+p6+q4=n1, p8+q5=n2.

Vectors 〈n−2 . . . n2|λμLM〉 at −L≤M<L are calculated from recurrence
relations

〈n−2 . . . n2|λμLM − 1〉 = ((L−M+1)(L+M))−1/2〈n−2 . . . n2|L̂−|λμLM〉 =

((L−M+1)(L+M))−1/2
[
2
√

n−2(n−1+1)〈n−2−1, n−1+1, n0, n1, n2|λμLM〉
+

√
6n−1(n0+1)〈n−2, n−1−1, n0+1, n1, n2|λμLM〉

+
√

6n0(n1+1)〈n−2, n−1, n0−1, n1+1, n2|λμLM〉
+2

√
n1(n2+1)〈n−2, n−1, n0, n1−1, n2+1|λμLM〉

]
, (45)

where summation is performed over ni ≥ 0 subjected to the following conditions:∑
i ni = λ,

∑
i ini = M .

Calculating the above coefficients one gets the vectors of the non-orthogonal
basis for the totally symmetric IRs of the group O(5) which is denoted by four
quantum numbers λ, μ, L, M for given λ:

|λλμLM〉 =
∑

n−2...n2

〈n−2 . . . n2|λλμLM〉|n−2 . . . n2〉. (46)

2.6 Basis of IRs for Groups O(5) ⊗ SU(1,1)

In this part, we construct the states with an arbitrary number of bosons equal to
N , greater than seniority number N > λ. At this point, we use the construction
described in Sect. 2.4. By using Eq. (29) for l = 2 one gets

|λNμLM〉 =

√
2

N−λ
2 (2λ + 3)!!(

N−λ
2

)
! (N + λ + 3)!!

(S+)
N−λ

2 |λμLM〉, (47)
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where (N −λ)/2 = 1, 2, . . . is integer. Next we can rewrite operator (S+)
N−λ

2 in
a polynomial form:

(S+)
N−λ

2 =
(

η−2η2 − η−1η1 +
1
2
η0η0

)N−λ
2

=
∑

k1k2k3

(−1)k2

(
1
2

)k3
(

N−λ
2

k1k2k3

)
(η−2η2)k1(η−1η1)k2(η0)2k3 ,

(
k

k1 . . . kN

)
= δk∑N

i=1 ki

k!
k1! . . . kN !

.

After easy transformations one gets

〈n−2 . . . n2|λNμLM〉 =

√
2

N−λ
2 (2λ + 3)!!(

N−λ
2

)
! (N + λ + 3)!!

×
∑

k1k2k3

(−1)k2

2k3

(
N−λ

2
k1k2k3

)√
n−2!n−1!n0!n1!n2!

(n−2−k1)!(n−1−k2)!(n0−2k3)!(n1−k2)!(n2−k1)!

×〈n−2 − k1, n−1 − k2, n0 − 2k3, n1 − k2, n2 − k1|λμLM〉. (48)

Calculating the above coefficients one gets the vectors of the non-orthogonal
symmetric basis of IRs of the group O(5) ⊗ SU(1,1) which is denoted by five
quantum numbers λ, N, μ, L, and M for given λ and N :

|λNμLM〉 =
∑

n−2...n2

〈n−2 . . . n2|λNμLM〉|n−2 . . . n2〉, (49)

Ψ lab
λNμLM (αm)=

∑

n−2...n2

〈αm|n−2 . . . n2〉〈n−2 . . . n2|λNμLM〉, (50)

where 〈αm|n−2 . . . n2〉 is the orthonormal basis from (15) 〈n−2 . . . n2|n′
−2 . . . n′

2〉
=δn−2n′

−2
. . . δn2n′

2
, the following conditions are fulfilled:

∑
i ni=N ,

∑
i ini=M .

The effective algorithm for calculation of the required orthonormal basis is given
in Sect. 4.

3 Nonorthogonal Basis of the IRs O(5) × SU(1,1) Group
in the Intrinsic Frame

The collective variables αm at m= − 2,−1, 0, 1, 2 in the laboratory frame are
expressed through variables am′=am′(β, γ) in the intrinsic frame by the relations

αm=
∑

m′
D2∗

mm′(Ω)am′ , a−2=a2=β sin γ/
√

2, a−1=a1=0, a0 = β cos γ, (51)

where D2∗
mm′(Ω) is the Wigner function of IRs of O(3) group in the intrinsic

frame [24] (marker ∗ is complex conjugate). The five-dimensional equation of the
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B-M collective model in the intrinsic frame β ∈ R1
+ and γ,Ω ∈ S4 with respect

to Ψ int
λNμLM ∈ L2(R1

+

⊗
S4) with measure dτ=β4 sin(3γ)dβdγdΩ reads as

{H(BM)−EBM
n }ΨλNμLM=0, H(BM)=

1
2

(
− 1

β4

∂

∂β
β4 ∂

∂β
+

Λ̂2

β2
+β2

)
. (52)

Here EBM
N = (N + 5

2 ) are eigenvalues, Λ̂2 is the quadratic Casimir operator of
O(5) in L2(S4(γ,Ω)) at nonnegative integers N = 2nβ + λ, i.e., at even and
nonnegative integers N − λ determined as

(Λ̂2−λ(λ+3))ΨλNμLM=0, Λ̂2=− 1
sin(3γ)

∂

∂γ
sin(3γ)

∂

∂γ
+

3∑

k=1

( ˆ̄Lk)2

4 sin2(γ− 2
3kπ)

,(53)

where the nonnegative integer λ is the so-called seniority and ( ˆ̄Lk)2 are the
angular momentum operators of O(3) along the principal axes in intrinsic frame,
i.e., with commutator [ ˆ̄Li,

ˆ̄Lj ] = −ıεijk
ˆ̄Lk.

Eigenfunctions Ψ int
λNμLM of the five-dimensional oscillator have the form

Ψ int
λNμLM (β, γ,Ω)=

∑

Keven

Φint
λNμLK(β, γ)D(L)∗

MK (Ω), (54)

where Φint
λNμLK(β, γ)=FNλ(β)Cλμ

L φ̂λμL
K (γ) are the components in the intrinsic

frame, D(L)∗
MK (Ω) =

√
2L+1
8π2

D
(L)∗
MK (Ω)+(−1)LD

(L)∗
M,−K(Ω)

1+δK0
are the orthonormal Wigner

functions with measure dΩ, summation over K runs even values K in range:

K = 0, 2, . . . , L for even integer L : 0 ≤ L ≤ Lmax, (55)
K = 2, . . . , L − 1 for odd integer L : 3 ≤ L ≤ Lmax.

The orthonormal components FNλ(β) ∈ L2(R1
+) corresponding to reduced func-

tions β−2FNλ(β) with measure dβ of IRs of SU(1,1) group [25] are as follows:

FNλ(β)=

√
2( 12 (N−λ))!

Γ ( 12 (N+λ+5))
βλL

λ+ 3
2

(N−λ)/2(β
2) exp

(
−1

2
β2

)
, (56)

where L
λ+ 3

2
(N−λ)/2(β

2) is the associated Laguerre polynomial with the number of
nodes nβ = (N −λ)/2 [26]. The overlap of the eigenfunctions (54) characterized
their nonorthogonality with respect to the missing label μ reads as

〈Ψ int
λNμLM |Ψ int

λ′N ′μ′L′M ′〉 =
∫

dτΨ int∗
λNμLM (β, γ,Ω)Ψ int

λNμLM (β, γ,Ω) (57)

=δN,N ′δλ,λ′δL,L′δM,M ′〈φλμL|φλμ′L〉,
where 〈φλμL|φλμ′L〉 is the reduced overlap: scalar product with integration by γ

〈φλμL|φλμ′L〉 = Cλμ
L Cλμ′

L

∫ π

0
dγ sin(3γ)

∑
Keven

2(φ̂λμL
K (γ)φ̂λμ′L

K (γ))

1+δK0
, (58)
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and Cλμ
L is the corresponding normalization factor of φλμL

K (γ) = Cλμ
L φ̂λμL

K (γ)

(Cλμ
L )−2=

∫ π

0

dγ sin(3γ)
∑

Keven

2(φ̂λμL
K (γ))2

1 + δK0
. (59)

The reduced Wigner coefficients in the chain O(5) ⊃ O(3) read as [13]

(λμL, λ′μ′L′, λμL′′)=
∫ π

0

dγ sin(3γ)
∑

KK′K′′
(−1)L−L′

(L,L′,K,K ′|L′′,−K ′′)

×φλμL
K (γ)φλ′μ′L′

K′ (γ)φλ′μ′L′
K′ (γ), (60)

where φλμL
K (γ) are the orthonormalized eigenfunctions calculated in the section 4

with respect to the overlap (58)corresponds to the orthonormalized eigenfunc-
tions (54) with respect to the overlap (57) with the set of quantum numbers
λ, μ, L, and M .

The components φ̂λμL
K (γ)=(−1)Lφ̂λμL

−K (γ) for even K and φ̂λμL
K (γ) = 0 for

odd L and K = 0 as well as for odd K are determined below according to
[5–7,12]. It should be noted that for these components, L �= 1, |K| ≤ L for
L = even and |K| ≤ L − 1 for L = odd:

φ̂λμL
K (γ)=

nmax∑

n=0

F στμ
nλL(γ)

[
GnL

|K|(γ)δL,even + ḠnL
|K|(γ)δL,odd

]
; (61)

K = Kmin,Kmin + 2, . . . , Kmax;

Kmin =
{

0 , L = even,
2 , L = odd; Kmax =

{
L , L = even,
L − 1 , L = odd;

nmax =
{

L/2 , L = even,
(L − 3)/2 , L = odd;

δL,even =
{

1 , L = even,
0 , L = odd; δL,odd =

{
0 , L = even,
1 , L = odd;

where L/2 ≤ λ−3μ ≤ L for L = even, and (L+3)/2 ≤ λ−3μ ≤ L for L = odd;

ḠnL
K (γ)=

L−3∑

k=3−L,2

〈L−3, 3, k, K−k|LK〉GnL−3
|k| (γ) sin 3γ(δK−k,2−δK−k,−2); (62)

GnL
K (γ)=(−

√
2)n

L−2n∑

k=2n−L,2

〈L−2n, 2n, k, K−k|LK〉S(L−2n)/2

|k| (γ)Sn
|K−k|(−2γ); (63)

Sr
K(γ) =

[
(2r+K)!(2r−K)!

(4r)!

]1/2

(
√

6)rr!

[r/2+K/4]∑

q=K/2

(
1

2
√

3

)2q−K/2

× 1

(r − 2q + K/2)!(q − K/2)!q!
(cos γ)r+K/2−2q(sin γ)2q−K/2;
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F στμ
nλL(γ) = (−1)μ+τ−n2−n/2

[(μ+τ−n)/2]∑

r=0

Cστμ
rnλL2−r(cos 3γ)μ+τ−n−2r; (64)

τ =
{

λ − 3μ − L/2 , L = even,
λ − 3 − 3μ − (L − 3)/2 , L = odd.

σ = L − λ + 3μ;

Cστμ
rnλL =

3nσ!λ!(−1)r2r(2μ + 2τ − 2r + δL,odd)!(3r)!
2μ+nn!(2λ + 1)!r!(μ + τ − r)!(μ + τ − n − 2r)!

(65)

×
min(σ,λ,3r−τ+n)∑

s=max(n−τ,0)

(−1)s4s(τ + s)!(2λ + 1 − 2s)!
s!(σ − s)!(τ − n + s)!(3r − τ + n − s)!(λ − s)!

;

where Sr
K(γ) is taken to be equal 0, if sin 3γ=0 or cos 3γ=0, F στμ

nλL(γ) is taken
to be equal 0, if cos 3γ=0, Cστμ

rnλL is taken to be equal 0, if μ+τ−n−2r<0.
For example, at λ = 3μ and L = 0,M = 0, and λ = 3μ+3 and L = 3,M = 3,

the eigenfunctions are known:

ΨλNμLM (β, γ,Ω) = C0
μβ3μ exp(−β2/2)Pμ(cos(3γ)), (66)

ΨλNμLM (β, γ,Ω)=C3
μβ3μ+3 exp(−β2/2)P 1

μ+1(cos(3γ))(D(3)∗
32 (Ω)−D

(3)∗
3,−2(Ω)),

where P 1
μ+1(cos(3γ)) are associated Legendre polynomials [26].

The eigenfunctions ΨλNμLM (β, γ,Ω) at L≤6 were calculated in [27,28]. How-
ever, for calculation of the required orthogonal basis including large values of λ
and L for large-scale calculations of eigenvalue BM problem (52) for Hamil-
tonian H=HBM (β, γ,Ω)+V (β, γ)+K(β, γ) with potential function V (β, γ) and
additional kinetic function K(β, γ) determined in [5,7,10,11], one needs to have
a fast algorithm for calculation and orthonormalization of nonorthogonal eigen-
functions ΨλNμLM (β, γ,Ω) from (54) at accessible degeneracy characterized by
the missing label μmin ≤ μ ≤ μmax from (40) and also Tables 2 and 3. The
effective algorithm for calculation of the required orthonormal basis is given in
the Sect. 4.

4 Algorithm and Benchmark Calculations of Overlaps
and Orthogonalization Matrices

In the laboratory frame, the overlaps 〈ûμ|ûμ′〉≡〈λNμLM |λNμ′LM〉 are calcu-
lated by the formula

〈ûμ|ûμ′〉=
∑

n′
−2...n′

2

〈λNμLM |n′
−2 . . . n′

2〉〈n′
−2 . . . n′

2|λNμ′LM〉. (67)

Here vectors 〈αm|ûμ′〉=〈αm|λNμ′LM〉 in the representation of the orthonormal
basis 〈n′

−2 . . . n′
2| of the five-dimensional harmonic oscillator (15) are determined
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by Eqs. (49) and (50) through the unnormalized and non-orthogonal μ′ compo-
nents 〈n′

−2 . . . n′
2|λNμ′LM〉 of the reduced vectors |û′

μ〉 from Eqs. (43, 45, 48).
In the intrinsic frame, the overlap 〈ûμ|ûμ′〉≡〈λNμLM |λNμ′LM〉 reads as:

〈ûμ|ûμ′〉=
∫ π

0

sin(3γ)dγ
∑

K≥0,even

2φ̂λμL
K (γ)φ̂λμ′L

K (γ)
1 + δK0

. (68)

Here vectors 〈β, γ,Ω|ûμ′〉 = 〈β, γ,Ω|λNμ′LM〉 in the representation of the
orthonormal Wigner functions D(L)∗

MK (Ω) and components FNλ(β) are deter-
mined by Eqs. (54)-(59) through the unnormalized and non-orthogonal by μ′

components φ̂λμ′L
K (γ) of the reduced vectors |ûμ′〉 = 〈γ|φ̂λμ′L〉 from (61)–(65).

The numerical calculations performed in the program SO5U11 use the floating-
point arithmetics. In this case, we use instead of the unnormalized nonorthogo-
nal |ûμ〉 the normalized but nonorthogonal eigenvectors |uμ〉:

|uμ〉 = N̂−1
μμ |ûμ〉, N̂μμ = (〈ûμ|ûμ〉)1/2 , (69)

where the normalization matrix is equal to N̂μμ′ = N̂μμδμμ′ , and the normalized
overlaps are

〈uμ|uμ′〉 = 〈ûμ|N̂−1
μμ N̂−1

μ′μ′ |ûμ′〉, 〈uμ|uμ〉 = 1. (70)

We orthonormalize these normalized nonorthogonal BM states |uμ〉:

|φμ〉 =
μmax∑

μ′=μmin

|uμ′〉Aμ′,μ=
μmax∑

μ′=μmin

|ûμ′〉Âμ′,μ, A = N̂Â. (71)

Below the hat symbol over some vectors and matrices is used to label calculations
with unnormalized BM vectors. The symbols Aμ′,μ denote the matrix elements
of the upper triangular matrix of the BM basis orthonormalization coefficients.
These coefficients satisfy the following condition

Aμ′,μ = 0, if μ′ > μ, μ, μ′ = μmin, . . . , μmax. (72)

The matrix A is constructed to satisfy the orthonormalization conditions

〈φμ|φμ′〉=δμμ′ ,

dλL∑

i′,k′=1

Ai′,i〈ui′ |uk′〉Ak′,k=δi,k, 〈ui|uk′〉=
dλL∑

k′=1

A−1
k′,iA

−1
k′,k. (73)

Here the multiplicity index i or internal index k, k′ = 1, . . . , dλL is recalculated
by formula dλL = μmax − μmin + 1 to external index μ, μ′ = μmin, . . . , μmax and
vice versa was introduced to distinguish the orthonormalized BM states at given
values of quantum numbers λ,N,L,M and takes the same number of values as
μ. Note the last relation in (73) is a decomposition of the overlap matrix to
a product of the low and upper triangular inverse matrices (A−1)TA−1.
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Table 4. Algorithm for calculation of elements of the upper triangular matrix Aμ,μ′

which is used for the generation of an orthonormal basis |φμ〉= ∑μmax
μ′=μmin

|uμ′〉Aμ′,μ

starting from |uμmin〉 till |uμmax〉, where the external index μ, μ′ = μmin, . . . , μmax

is recalculated by formula k = μ − μmin + 1 to internal index k, k′ = 1, . . . , dλL,
dλL = μmax − μmin + 1 and vice versa

Input: Overlap matrix 〈uk|uk′ 〉 ;

Output: Orthogonalization of the upper triangular matrix Ak′,k ;

1.1 Ak′,k = δk′k, k = 1, . . . , dλL, k′ = k, . . . , dλL ;

1.2 fk,k′ = 〈uk|uk′ 〉, k = 1, . . . , dλL, k′ = k, . . . , dλL;

for n = 1 to dλL do

2.1 uk = −fk,n/fk,k, k = 1, . . . , n − 1; uk ≡ uk,n;

2.2 fn,n = fn,n +
∑n−1

k=1 u2
kfk,k + 2

∑n−1
k=1 ukfk,n;

2.3 fn,k = fn,k +
∑n−1

k′=1
uk′ fk′,k, k = n + 1, . . . , dvL;

2.4 Ak,n =
∑n−1

k′=k
Ak,k′ uk′ , k = 1, . . . , n − 1;

end for

3.1 Ak′,k = Ak′,k/
√

fkk, k = 1, . . . , n, k′ = 1, . . . , k;

test:
∑dλL

n′,k′=1
An′,n〈un′ |uk′ 〉Ak′,k = δn,k

Below we present the analytical orthonormalization algorithm (see Table 4)
based on the G-S orthonormalization procedure of a set of non-orthogonal linear
independent vectors: û1, . . ., ûimax

unnormalized or u1, . . ., uimax
normalized [29]

φ̂i = ui − 〈φ̂1|ui〉
〈u1|u1〉 − · · · − 〈φ̂i−1|ui〉

〈ui−1|ui−1〉 , i = 1, . . . , imax. (74)

Here for the intrinsic frame, the scalar product 〈φ̂i|φ̂i〉 is determined by (68)
while for laboratory frame 〈φ̂i|φ̂i〉 = φ̂T

i φ̂i. After calculation of a set of orthog-
onal but as yet unnormalized vectors φ̂i starting from i = 1 till imax, one cal-

culates the set of orthogonal and normalized vectors φi: φi = φ̂i/

√
〈φ̂i|φ̂i〉 at

i = 1, . . . , imax. It is important that here the normalization of calculated orthog-
onal unnormalized vectors φ̂i is realized after orthogonalization with respect to
conventional realization G-S procedure [30]. It gives important possibility to
avoid the source of numerical round-off errors in floating-point calculations or if
necessary to use the integer arithmetic or symbolic calculations of the recursive
algorithm given below. The essential part of the proposed algorithm consists in
factorization of the recursive relations (74) by extracting the required orthogonal-
ization upper triangular matrix Aμ′μ acting on the initial set of non-orthogonal
vectors |uμ′〉: |φμ〉= ∑μmax

μ′=μmin
|uμ′〉Aμ′,μ. It means that the calculated matrix

Aμ′μ ≡ Alab
μ′,μ(N,M) in the laboratory frame is the same on all components

|uμ〉 = 〈n−2, n−1, n0, n1, n2|uμ〉 of the initial set of the non-orthogonal reduced
vectors |uμ′〉; action of calculated matrix Aμ′μ≡Aint

μ′,μ(λ,N,L,M) in the intrin-

sic frame is the same on all components φλμ′L
K (γ)=Cλμ′

L φ̂λμ′L
K (γ) of the initial

set of the non-orthogonal reduced vectors |uμ′〉 = 〈γ|φλμ′L〉. The accuracy of
its calculation is automatically checked by means of orthogonality relations (73)
without preliminary calculation of required orthogonal normalized vectors φi.
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Remark. A direct calculation of the overlap of the orthogonal bases Ψ lab
λNμLM (αm)

in the laboratory frame (50) and Φint
λNμLK(β, γ) in the intrinsic frame (54) is

the tutorial task. Using Eq. (1.16) of Ref. [7] one can check that the following
relations hold:

Ψ lab
λNμLM (αm) =

L∑

K=0,even

Φint
λNμLK(β, γ)DL∗

MK(Ω), (75)

Φint
λNμLK(β, γ) =

L∑

M=0

Ψ lab
λNμLM (αm)DL

MK(Ω), (76)

where the variables αm in the laboratory frame are expressed through the ones
am = am(β, γ) in the intrinsic frame by relations (51).

The presented Algorithm (see Table 4) can be realized in any Computer
Algebra System. It has been realized here as the function NormOverlapa of the
first version of O5SU11 code implemented in Mathematica 11.1 [31].

NormOverlapa[Overlap_] :=Module[{},
For[x = 1, x <= Length[Overlap], x++,

A[x, x]=1;
For[xx = x, xx <= Length[Overlap], xx++,

fover[x, xx] = Part[Overlap, x, xx];
]

];
For[n = 1, n <= Length[Overlap], n++,

For[k = 1, k <= n-1, k++,
ui[k]=-fover[k, n]/fover[k, k];

]
fover[n, n]=fover[n, n]+Sum[ui[k]*ui[k]*fover[k, k],{k,1,n-1}]

+Sum[2*ui[k]*fover[k, n],{k,1,n-1}];
For[k = n+1, k <= Length[Overlap], k++,
fover[n, k]=fover[n, k]+Sum[ui[kk]*fover[kk, k],{kk,1,n-1}];

];
For[k = 1, k <= n-1, k++,
A[k, n]=Sum[A[k,kk]*ui[kk],{kk,k,n-1}];

]
];
Return[
Table[
If[x > xx, 0, A[x, xx]/Sqrt[fover[xx, xx]] ]
, {x, 1, Length[Overlap]}, {xx, 1, Length[Overlap]}]]

];
(*test: *)

A=NormOverlapa[Overlap]
Transpose[A]*Overlap*A (*gives identity matrix*)
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Below we present benchmark calculations of the overlap matrices 〈ûμ|ûμ′〉 or
〈uμ|uμ′〉 and orthogonalization matrices Âμ′μ or Aμ′μ executed with help of the
O5SU11 code.

In the laboratory frame, the unnormalized overlap 〈ûμ|ûμ′〉 from
(67) and orthogonalization matrix Âμ′μ from (71) at λ=12, N =
12, μ=0, 1, 2, L=12,M=12 are as follows:

〈ûμ|ûμ′ 〉=
⎛

⎝
159549545.26713809 213803.08882591313 57637.968478797638
213803.08882591313 4988824.1342315109 −422776.94375296634
57637.968478797638 −422776.94375296634 744945.4277113013

⎞

⎠ ,

Âμ′μ=

⎛

⎝
0.0000791684632054189660 −5.999558704952660 ∗ 10−7 −5.501511852913287 ∗ 10−7

0 0.000447714234829464325 0.000098204232353384462
0 0 0.00115861132845170549

⎞

⎠ .

The normalized overlap 〈uμ|uμ′〉no from (67) and orthogonalization matrix Aμ′μ
from (71) at λ=12, N = 12, μ=0, 1, 2, L=12,M=12:

〈uμ|uμ′ 〉=
⎛

⎝
1.0000000000000000000 0.00757821796968012826 0.00528687022845146168
0.00757821796968012826 1.0000000000000000000 −0.2193057245440392052
0.00528687022845146168 −0.2193057245440392052 1.0000000000000000000

⎞

⎠ ,

Aμ′μ=

⎛

⎝
1.0000000000000000000 −0.00757821796968012826 −0.00694912043276433934
0 1.0000000000000000000 0.2193457895990078230
0 0 1.0000000000000000000

⎞

⎠ .

The unnormalized overlap 〈ûμ|ûμ′〉 from (67) and orthogonalization matrix Âμ′μ
from (71) at λ=12, N=14, μ=0, 1, 2, L=12,M=12:

〈ûμ|ûμ′ 〉=
⎛

⎝
4.62693681274700 ∗ 109 6.200289575951 ∗ 106 1.671501085885 ∗ 106

6.200289575951 ∗ 106 1.44675899892714 ∗ 108 −1.22605313688360 ∗ 107

1.671501085885 ∗ 106 −1.22605313688360 ∗ 107 2.16034174036277 ∗ 107

⎞

⎠ ,

Âμ′μ=

⎛

⎝
0.00001470121454788776 −1.1140900826293 ∗ 10−7 −1.021605104012 ∗ 10−7

0 0.0000831384462433374 0.0000182360681372795
0 0 0.0002151487224526028

⎞

⎠ .

The normalized overlap 〈uμ|uμ′〉no from (67) and orthogonalization matrix Aμ′μ
from (71) at λ=12, N=14, μ=0, 1, 2, L=12, M=12:

〈uμ|uμ′ 〉=
⎛

⎝
1.0000000000000000000 0.00757821796968012826 0.00528687022845146168
0.00757821796968012826 1.0000000000000000000 −0.2193057245440392052
0.00528687022845146168 −0.2193057245440392052 1.0000000000000000000

⎞

⎠ ,

Aμ′μ=

⎛

⎝
1.0000000000000000000 −0.00757821796968012826 −0.00694912043276433934
0 1.0000000000000000000 0.2193457895990078230
0 0 1.0000000000000000000

⎞

⎠ .

Note that the overlaps 〈ûμ|ûμ′〉 calculated in the laboratory frame and defined
by Eqs. (43), (45) at fixed values of λ and L are independent of M, i.e., they are
equal for different values of the quantum number M . This is due to the Wigner–
Eckart theorem for spherical tensors in respect to SO(3) group. It means that
the corresponding orthogonalization matrices Aμ′,μ defined by Eq. (73) at fixed
values of λ and L with different values of quantum number M are equal too.
These facts give essential optimization of the computer resources in the large-
scale calculations with increasing seniority number λ determined by eigenvalues
of the Casimir operator of the group O(5), see Table 1 and Eq. (39).
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One can see also that the overlaps of orthogonalization matrices at fixed L
for the case of N > λ differ only by an integer multiplier from the case N = λ,
for example, in the above cases, this multiplier is equal to 29.

In intrinsic frame, the unnormalized overlap 〈ûμ|ûμ′〉 is determined by (68)
and orthogonalization matrix Âμ′μ from (71) at λ=6, N=6, μ=0, 1, L=6, with
summation over K=0, 2, 4, 6:

〈ûμ|ûμ′ 〉=
(

7572204π/385 −301113π/40040
−301113π/40040 1699π/65065

)

=

(
61789.0401503461 −23.6257339835260
−23.6257339835260 0.0820343643809891

)

,

Âμ′μ=

(
0.004022946671779255 0.001334983666487966
0 3.491419967151016

)

.

The following normalized overlap 〈uμ|uμ′〉 and matrix Aμ′μ are

〈uμ|uμ′〉=
(

1.000000000000000 −0.3318422478360953
−0.3318422478360953, 1.000000000000000

)
,

Aμ′μ=
(

1.000000000000000 0.3318422478360953
0 1.000000000000000

)
.

The unnormalized overlap 〈ûμ|ûμ′〉 from (68) and the orthogonalization matrix
Âμ′μ from (71) at λ=12, N=12, μ=0, 1, 2, L=12, with summation over
K=0, 2, . . ., 12:

〈ûμ|ûμ′ 〉=
⎛

⎝
1116847934437.424 −48516553.06697824 7016.562464786226
−48516553.06697824 5966.500516763265 −0.9790521939740782
7016.562464786226 −0.9790521939740782 0.0008802758859593768

⎞

⎠ ,

Âμ′μ=

⎛

⎝
9.462436483745545e − 7 5.623880080711865e − 7 −4.629117698040114e − 8
0 0.01294613581264879 0.003808823740956861
0 0 33.70471020973709

⎞

⎠ .

The following normalized overlap 〈uμ|uμ′〉 and matrix Aμ′μ are

〈uμ|uμ′〉=
⎛

⎝
1.000000000000000 −0.5943374193710569 0.2237783001963385
−0.5943374193710569 1.000000000000000 −0.4272052696463735
0.2237783001963385 −0.4272052696463735 1.000000000000000

⎞

⎠ ,

Aμ′μ=

⎛

⎝
1.000000000000000 0.5943374193710569 −0.04892099097301160
0 1.000000000000000 0.2942054521964399
0 0 1.000000000000000

⎞

⎠ .

As an example, in Fig. 1 we show the CPU time and MaxMemoryUsed dur-
ing of calculations of overlap integrals (67) and (68) and execution of the G-S
orthonormalization procedure (71)-(72) in the laboratory and intrinsic frames
by the above symbolic algorithm versus parameter λ with help of the O5SU11
code using the PC Intel Celeron CPU 2.16 GHz 4GB 64bit Windows 8.1. The
computations were evaluated numerically to 20-digit precision that have been
confirmed by the calculated values of the diagonal matrices from the last arrow
test of Algorithm in Table 4 to 20-digit precision. One can see that the CPU
time (in logarithmic scale) of execution of the overlap integrals is linearly grow-
ing. However, the G–S orthonormalization procedure in the intrinsic frame has
reduced the computer resources in comparison with one in the laboratory frame.
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Fig. 1. The CPU time in s. (on the left) and the maximum memory in Mb used to store
intermediate data for the current Mathematica session in computation of the overlap
integrals and orthogonalization matrices (on the right). Both values are given versus
the parameter λ at L = λ in the laboratory (marked by squares) and intrinsic (marked
by cycles) frames.

5 Conclusion

In present paper, we have elaborated a new universal effective symbolic-numeric
algorithm implemented as the first version of O5SU11 code in the Wolfram Math-
ematica for computing the orthonormal basis of the Bohr–Mottelson(BM) collec-
tive model in the both intrinsic and laboratory frames, which can be implemented
in any computer algebra system. This kind of basis is widely used for calculat-
ing the spectra and electromagnetic transitions in solid, molecular, and nuclear
physics. The new symbolic algorithm for orthonormalization of the obtained
BM basis based on the Gram–Schmidt orthonormalization procedure has been
developed.

The distinct advantage of this method is that it does not involve any square
root operation on the expressions coming from the previous steps for compu-
tation of the orthonormalization coefficients for this basis. This makes the pro-
posed method very suitable for calculations using computer algebra systems. The
symbolic nature of the developed algorithms allows one to avoid the numerical
round-off errors in calculation of spectral characteristics (especially close to res-
onances) of quantum systems under consideration and to study their analytical
properties for understanding the dominant symmetries [19].

The program SO5U11 in the Mathematica language for the orthonormaliza-
tion of the non-canonical basis using the overlap integrals in the laboratory
and intrinsic frames (Eqs. (67) and (68)) given by the analytical formula is now
prepared and will be published as an open code elsewhere. The great advantage
of the program SO5U11 is the possibility to specify an arbitrary precision of cal-
culations which is especially important for large-scale calculations of physical
quantities that involve procedures of matrices inversion in eigenvalue problems
with degenerated spectra or similar one [32].
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18. Góźdź, A., et al.: Structure of Bohr type collective spaces - a few symmetry related
problems. Nuclear Theor. 32, 108–122 (2014). Eds. A. Georgiewa, N. Minkov,
Heron Press, Sofia (2014)
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Abstract. The eikonal equation links wave optics to ray optics. In the
present work, we show that the eikonal equation is also valid for an
approximate description of the phase of vector fields describing guided-
wave propagation in inhomogeneous waveguide structures in the adia-
batic approximation. The main result of the work was obtained using the
model of adiabatic waveguide modes. Highly analytical solution proce-
dure makes it possible to obtain symbolic or symbolic-numerical expres-
sions for vector fields of guided modes. Making use of advanced computer
algebra systems, we describe fundamental properties of adiabatic modes
in symbolic form. Numerical results are also obtained by means of com-
puter algebra systems.

Keywords: Vector fields · Eikonal equation · Luneburg lens ·
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1 Introduction

Vector problems of electrodynamics usually require significant computational
resources and are studied using various numerical methods, such as the finite-
difference time-domain (FDTD) or Yee’s method, finite element method (FEM),
incomplete Galerkin method (IGM) or Kantorovich method, as well as their
combinations.

1.1 Purely Numerical Methods

Finite-Difference Methods. Completely numerical methods, e.g., FDTD
[1–3] and other finite-difference methods, begin from discretization of the

The contribution of D.V. Divakov (investigation – obtaining numerical results) and
A.A. Tiutiunnik (investigation – obtaining symbolic results) is supported by the
Russian Science Foundation (grant no. 20-11-20257). The contribution of A.L.
Sevastianov is conceptualization, formal analysis and writing.

c© Springer Nature Switzerland AG 2020
F. Boulier et al. (Eds.): CASC 2020, LNCS 12291, pp. 228–244, 2020.
https://doi.org/10.1007/978-3-030-60026-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60026-6_13&domain=pdf
http://orcid.org/0000-0001-5944-6187
http://orcid.org/0000-0002-4643-327X
http://orcid.org/0000-0002-0280-485X
https://doi.org/10.1007/978-3-030-60026-6_13


Study of Geometric Properties of Adiabatic Waveguide Modes 229

continuous variables of the problem and, thereby, offer no possibility of ana-
lyzing solutions at the level of symbolic expressions from the very first step.

Finite-difference methods are universal and suitable for the widest class of
problems – both linear and nonlinear problems are approximated by finite-
difference analogues. However, the price to pay for this versatility is the sig-
nificant expenditure of computer resources, especially if the object is extended
and nonuniform in one or several spatial directions. The success of such methods
is directly related to the availability of large computing power.

Finite Element Methods. Finite element methods as well as finite-difference
methods are applicable to a wide class of problems [4–6]. Although the solution
is represented as a functional dependence, this dependence only ensures smooth-
ness of the solution rather than reflects its physical properties. Due to their
versatility, finite element methods are also dependent on computing power.

1.2 Symbolic-Numerical Methods

Galerkin and Kantorovich Methods. In solving electrodynamic problems,
there is an “intermediate” class of methods that represent the approximate solu-
tion as an expansion in a system of basis functions. The expansion coefficients
can be constants (in the classical Galerkin method [12,13]) or functions of one
or several spatial variables (in the Kantorovich method [7,8] and in the incom-
plete Galerkin method [9–11]). The system of functions in which the solution is
expanded must be complete in the functional space to which the desired solution
should belong, and some additional conditions (e.g., matching, smoothness, etc.).

As a rule, a fortunate choice of basis functions allows solving the problem
with sufficient accuracy even keeping a small number of expansion terms.

The main advantages of this “mixed” approach are:

1. Saving computing resources. The initial problem for multidimensional partial
differential equations is reduced at a symbolic level to a system of ordinary
differential equations (ODE) with initial or boundary conditions. The problem
for the ODE system is solved in reasonable time on a personal computer.

2. Representation of results in the form of symbolic expressions allows a more
detailed analysis and provides greater clarity of their physical meaning.

Model of Adiabatic Waveguide Modes. We used the symbolic-numerical
approach to develop the adiabatic waveguide modes (AWM) method based on
the model of adiabatic waveguide modes described in Refs. [14,15].

In Ref. [15], a symbolic form of the adiabatic waveguide modes in an arbitrary
homogeneous layer of a multilayer waveguide was derived, basing on which it is
possible to construct waveguide modes of multilayer smoothly-irregular waveg-
uide structures. With further use of the symbolic-numerical approach, these
modes can serve as a basis for Kantorovich decomposition.
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1.3 Formulation of the Problem

The problem of finding the phase of a waveguide mode in a regular waveguide
(by the example of a three-layer regular waveguide) was considered and numer-
ically solved in [15]. This problem reduces to finding zeros of the characteristic
determinant of the matrix of boundary equations, which yields the phase decel-
eration coefficients of the guided modes βj . The phase of each of the guided
modes ϕj (z) is trivially determined given the phase deceleration coefficient:
ϕj (z) = βj (z − z0) + ϕ0, where ϕ0 is the initial phase, corresponding to z = z0.

The next stage of the study is to formulate the problem of finding the phase
of an adiabatic waveguide mode in an irregular waveguide (by the example of a
four-layer waveguide with one irregular layer) and to solve it numerically. In this
case the presence of a layer with variable thickness violates the linear behaviour
of the phase, so that if the layer irregularity depends on both y and z, the phase
will also be a function of y and z.

The formulation of this problem and the development of an approximate
method for solving it is the subject of the present paper. As an irregular struc-
ture, we consider the Luneburg waveguide lens, which is a three-layer regular
waveguide with a fourth layer having variable thickness depending on y and z.

The structure choice was not accidental: it is an object rather complicated
for modeling, however, its basic properties are known from physical experiments.
So, we will carry out numerical calculations using the example of a Luneburg
waveguide lens.

2 Methods and Approaches

2.1 AWM Model, the Form of the Solution

The AWM model approximately describes the guided modes in smoothly-irreg-
ular waveguide structures (for details see Section 2 of Ref. [15]). In this study
without loss of generality, a four-layered structure will be considered.

The AWM model makes use of the asymptotic method [16], in which elec-
tromagnetic fields are presented in the form [15]:

�E (x, y, z, t) =
∞∑

s=0

�Es (x; y, z)
(−iω)γ+s exp {iωt − ik0ϕ (y, z)} , (1)

�H (x, y, z, t) =
∞∑

s=0

�Hs (x; y, z)
(−iω)γ+s exp {iωt − ik0ϕ (y, z)} , (2)

where k0 is the wavenumber, ϕ (y, z) is the phase, and �Es (x; y, z), �Hs (x; y, z)
determine the amplitude of the s-th order. In the notation of �Es (x; y, z),
�Hs (x; y, z) the separation of x by a semicolon means the following assumption:
∂ �Es/∂y, ∂ �Es/∂z, ∂ �Hs/∂y, ∂ �Hs/∂z are small quantities.
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In other words, the following expressions for the derivatives are valid:

∂ �E

∂y
= −ik0ϕy

�E,

∂ �E

∂z
= −ik0ϕz

�E,

and the analogous expressions:

∂ �H

∂y
= −ik0ϕy

�H,

∂ �H

∂z
= −ik0ϕz

�H,

in which ϕy and ϕz are partial derivatives of ϕ (y, z) in y and z, respectively.

2.2 AWM Model. Reduction of Maxwell Equations

The Maxwell equations in the zero order (s = 0) of the asymptotic expansion
reduce to a system of ordinary differential equations of the first order [15]:

∂�u

∂x
+ A (x, y, z) �u = �0, (3)

and two additional relations

E0
x =

1
ε

(
ϕzH

0
y − ϕyH0

z

)
, (4)

H0
x = − 1

μ

(
ϕzE

0
y − ϕyE0

z

)
, (5)

where the desired vector function �u (x; y, z) consists of the variables

�u (x; y, z) =
(
E0

y H0
z H0

y E0
z

)T

that describe the distribution of the appropriate field components along the
x-axis at each point (y, z). Matrix A is defined as follows [15]

A (x, y, z) =

⎛

⎜⎜⎜⎜⎝

0 − ik0ϕ2
y

ε + ik0μ
ik0ϕyϕz

ε 0
− ik0ϕ2

z

μ + ik0ε 0 0 ik0ϕyϕz

μ

− ik0ϕyϕz

μ 0 0 ik0ϕ2
y

μ − ik0ε

0 − ik0ϕyϕz

ε
ik0ϕ2

z

ε − ik0μ 0

⎞

⎟⎟⎟⎟⎠
(6)

where ε = ε (x, y, z) and μ = μ (x, y, z) are the piecewise constant permittivity
and permeability, respectively.
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2.3 AWM Model. Reduction of Boundary Conditions for Maxwell
Equations

At the discontinuity surfaces of ε = ε (x, y, z) and μ = μ (x, y, z) the match-
ing conditions must be satisfied that follow from the boundary conditions for
Maxwell equations. For planar boundaries x = c (c = const) the tangential com-
ponents E0

y ,H0
z ,H0

y , E0
z must be continuous, i.e., in vector notation [15],

[�u]|x=c = �0, (7)

where [�u]|x=c = �u|x=c−0 − �u|x=c+0 is the jump of vector function �u at the point
x = c. For curved boundaries x = h (y, z) the continuity conditions [15]

[�u + V �u]|x=h(y,z) = �0, (8)

must be fulfilled, where matrix V has the following form:

V =

⎛

⎜⎜⎜⎝

0 hyϕy

ε −hyϕz

ε 0
−hzϕz

μ 0 0 hzϕy

μ
hyϕz

μ 0 0 −hyϕy

μ

0 −hzϕy

ε
hzϕz

ε 0

⎞

⎟⎟⎟⎠ , (9)

where hy and hz are partial derivatives of h (y, z) in y and z, respectively.
Guided modes correspond to electromagnetic fields that satisfy the asymp-

totic conditions [17]
‖�u‖ −−−−−→

x→±∞ 0. (10)

2.4 AWM Model. The Approximation of “Horizontal” Boundary
Conditions

At first let us restrict ourselves to the approximation of “horizontal” bound-
ary conditions (7), which will play the role of zero-order approximation to the
boundary conditions (8) with respect to the small parameter ν at

ν = ‖V ‖ � 1, (11)

where ‖V ‖ = max
i,j

{|vi,j |}.

Remark. Relation (11) is valid if any of the quantities hyϕy, hyϕz, hzϕy and
hzϕz is small in absolute value. In the AWM model the smoothly irregular
structures are considered, for which hy, hz are small. Hence, ν is not small only
when the quantities ϕy and ϕz (or at least one of them) are much greater than
unity. Therefore, the principal aspect of the considered approximation is the
estimation of smallness of ν, which will be performed a posteriori in the course
of numerical calculations.
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2.5 AWM Model. Setting of the Problem for the Current Study

In Ref. [15], system (3) is solved in the symbolic form for constant ε, μ, which
offers a possibility of solving the system (3) for piecewise constant ε, μ. Given
the general solution of the system (3) in each domain of constant ε, μ and the
matching conditions (7) for the boundaries between these domains, using the
conditions (10) for unlimited domains of constant ε, μ, we derive a homogeneous
system of equations. The unknowns in this system are coefficients at the func-
tions of the fundamental system of solutions in each domain of constant ε, μ.
The determinant of this system should be zero to ensure the existence of a non-
trivial solution.

In the layer number α with constant permittivity and permeability ε = εα,
μ = μα the solution of the system of differential Eq. (3) has the form [15]

�uα (x; y, z) = Aα

⎛

⎜⎜⎝

qα

−iεαηα

0
ϕyϕz

⎞

⎟⎟⎠ eγαx + Bα

⎛

⎜⎜⎝

−iμαηα

pα

ϕyϕz

0

⎞

⎟⎟⎠ eγαx+

+ Cα

⎛

⎜⎜⎝

qα

iεαηα

0
ϕyϕz

⎞

⎟⎟⎠ e−γαx + Dα

⎛

⎜⎜⎝

iμαηα

pα

ϕyϕz

0

⎞

⎟⎟⎠ e−γαx,

(12)

where qα = ϕ2
y − εαμα, pα = ϕ2

z − εαμα, ηα =
√

ϕ2
y + ϕ2

z − εαμα, γα = k0ηα,

and Aα, Bα, Cα,Dα are indefinite constants at each point (y, z).
In this study, using the computer algebra system, we formulate an approx-

imate problem of computing the coefficient of phase deceleration in a general
case of a smoothly irregular four-layer structure by an example of the Luneburg
waveguide lens.

To present the problem in symbolic form, we consider a four-layer waveguide
structure with one layer of variable thickness, which is characterized by the
following permittivity and permeability:

ε =

⎧
⎪⎪⎨

⎪⎪⎩

εc, x > h2 (y, z)
εl, h1 < x < h2 (y, z)
εf , 0 < x < h1

εs, x < 0

, μ =

⎧
⎪⎪⎨

⎪⎪⎩

μc, x > h2 (y, z)
μl, h1 < x < h2 (y, z)
μf , 0 < x < h1

μs, x < 0

(13)

The symbolic representation of the solution �uα (x; y, z) in each layer α =
s, f, l, c is known (see (12)). This allows writing down a symbolic representation
of the characteristic matrix of boundary conditions in the zero-order approxima-
tion with respect to ν, i.e., the conditions (7) at the boundaries x = 0, x = h1

and x = h2 (y, z). Using standard Maple [18] commands subs, expand and
simplify, we derive a system of boundary equations based on the solutions
�uα (x; y, z) and the boundary conditions. In each of the four layers, the solution
comprises four indefinite constants (see (12)), while the boundary conditions at
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three boundaries x = 0, x = h1 and x = h2 (y, z) yield only 12 equations. The
other 4 equations follow from asymptotic conditions (10).

The resulting system of equations at any fixed (y, z) is a system of linear
algebraic homogeneous equations having the form

M∗ (y, z, ϕy, ϕz) �C = �0, (14)

where M∗ is the matrix of coefficients generally dependent on both y, z and
partial derivatives of the sought function ϕy, ϕz; �C is a vector composed of the
indefinite coefficients Aα, Bα, Cα and Dα looked for. System (14) has a nontrivial
solution if and only if

det M∗ (y, z, ϕy, ϕz) = 0. (15)

Equation (15) is a nonlinear partial differential equation of the first order. It
is convenient to solve this equation using the method of characteristics, which
reduces the initial nonlinear partial differential equation to a system of ordinary
differential equations for the characteristics [19].

Thus, the sought phase of the adiabatic waveguide mode ϕ (y, z) must satisfy
the nonlinear Eq. (15), which can be explicitly written only after calculating the
determinant in a symbolic form.

Remark. Symbolic calculation of a 12 × 12 determinant is possible only using
the libraries of symbolic transformations. The authors make use of Maple system
for this purpose.

Before calculating the determinant (15), we performed symbolic transforma-
tions to simplify the elements of matrix M∗ specified symbolically. As a result
of symbolic simplifications, problem (15) reduces to two problems:

1. Finding zeros of the determinant of the reduced matrix for the considered
domain of (y, z), or, in other words, solving the non-linear equation
det M

(
y, z, β2 (y, z)

)
= 0 (where β2 (y, z) = ϕ2

y + ϕ2
z) and finding desired

β2 (y, z) for each (y, z) from the considered domain;
2. Subsequent solution of the reduced nonlinear differential equation with the

right-hand side calculated at Step 1: ϕ2
y + ϕ2

z = β2 (y, z).

Problem 1 was solved using the function Determinant of the Maple package
LinearAlgebra. The zeros of determinant were approximately found using the
classical bisection method [20].

Remark. A specific feature of waveguide problems is that the localizing a zero of
the determinant within an interval of 10−15 one has to deal with the values of the
determinant itself of the order of 1030. Therefore, in the numerical calculations
we used the numbers with enlarged mantissa by setting Digits := 30.

Problem 2 was solved by the method of characteristics [19] using the com-
mand charstrip from the library PDETools [18], which allows getting a system
of ordinary differential equations for characteristics from a nonlinear first-order
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partial differential equation. This system complemented with the initial condi-
tions was solved numerically using a Fehlberg fourth-fifth-order Runge-Kutta
method with degree four interpolant – rkf45 – with the parameter, determining
the relative error relerr = 10−12 [18]. The method is implemented in Maple in
a symbolic-numerical form.

2.6 Numerical Experiment. Verification

To verify the implemented method we consider the waveguide Lunenburg lens
of the radius R, designed to focus the waveguide mode TE0 at the distance
F = 2R. Within the frameworks of the AWM in the zero-order approximation
with respect to ν � 1 (approximation of “horizontal” boundary conditions) the
problem of finding the phase for different lens radii (from 102 to 104 wavelengths)
was solved. Besides, we estimated a posteriori the order of ν for the same lens
radii to determine the range of validity of the approximation of “horizontal”
boundary conditions.

As the initial data we took the parameters of the Luneburg lens designed by
Konstantin Lovetskiy [21] using the method of cross sections, the initial data for
which were provided by the solution of the Morgan equation [22].

3 Results

3.1 Results Obtained in Symbolic Form

We consider the four-layer waveguide structure, formed by a three-layered waveg-
uide on which the fourth layer of variable thickness is deposited, sufficiently
extended in the plane yOz to ensure the conditions |∂h2/∂y| � 1, |∂h2/∂z| � 1.

Using the Maple toolkit, we write the boundary equations of the AWM model
in the zero-order approximation with respect to ν � 1 in a symbolic form.

The Main Result. In the zero-order approximation with respect to ν � 1
(the approximation of “horizontal” boundary conditions) the phase ϕ (y, z) in
the AWM model satisfies the eikonal equation

ϕ2
y + ϕ2

z = β2 (y, z) , (16)

where β2 (y, z) is the square of the phase deceleration coefficient.

Appendix. The quantity β2 (y, z) is determined as a root of the equation

det M
(
y, z, β2 (y, z)

)
= 0, (17)

where the 8 × 8 matrix M is defined as

M =
(

M11 M12

M21 M22

)
, (18)



236 D. V. Divakov et al.

Fig. 1. Structure of the irregular four-layer waveguide (additional waveguide layer has
variable thickness d = h2 (y, z) − h1)

where

M11 =

⎛

⎜⎜⎝

θs iηfμf − iηsμs θs −iηfμf − iηsμs

iηfεf − iηsεs θs −iηfεf − iηsεs θs

θfeγf h1 −ieγf h1ηfμf θfe−γf h1 ie−γf h1ηfμf

−ieγf h1ηfεf θfeγf h1 ie−γf h1ηfεf θfe−γf h1

⎞

⎟⎟⎠ , (19)

M12 =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 ie−γldηlμl 0 −ieγldηlμl

ie−γldηlεl 0 −ieγldηlεl 0

⎞

⎟⎟⎠ , (20)

M21 =

⎛

⎜⎜⎝

eγf h1 0 e−γf h1 0
0 eγf h1 0 e−γf h1

0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , (21)

M22 =

⎛

⎜⎜⎝

−e−γld 0 −eγld 0
0 −e−γld 0 −eγld

θc iηcμc + iηlμl θc iηcμc − iηlμl

iηcεc + iηlεl θc iηcεc − iηlεl θc

⎞

⎟⎟⎠ (22)

and ηα =
√

β2 (y, z) − εαμα, d = h2 (y, z)−h1, θc = εlμl−εcμc, θf = εlμl−εfμf ,
θs = εfμf − εsμs.
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3.2 Results Obtained Numerically

To verify the result obtained we consider the Luneburg waveguide lens designed
to focus the waveguide mode TE0 at length F = 2R, where R is the waveguide
lens radius.

We consider the guided mode TE0, propagating in a three-layer waveguide
from z = −∞ (see Fig. 1) in the positive direction of the z-axis with the phase
ϕ0 (z) = β0 (z + R), where β0 is the coefficient of phase deceleration. At z = −R
the mode enters the waveguide lens. The phase in this domain satisfies the eikonal
Eq. (16), which is to be solved.

Initial Data: The wavelength λ = 0.55 [μm]; the wavenumber k0 =
2π/λ

[
μm−1

]
; the waveguide lens radius R = 103λ; the thickness of the main

waveguide layer h1 = 2λ; the coating and the substrate in the model are
semi-infinite; the variable thickness of the additional waveguide layer is defined
as d (y, z) = h2 (y, z) − h1. Due to the cylindrical symmetry of the lens,
h2 (y, z) = h (r)|

r=
√

y2+z2/R
, the plot of h (r) is shown in Fig. 2; the permittivi-

ties of the materials are εc = 1, εf = 2.449225, εl = 3.61, εs = 2.1609, and their
permeabilities are μc = μf = μl = μs = 1; the coefficient of phase deceleration
of the mode TE0 of the three-layer waveguide is β0 ≈ 1.55149273806929012586.

Fig. 2. The upper boundary of the additional waveguide layer

Numerical Results. The variable thickness d (y, z) of the additional waveguide
layer corresponds to the function β2 (y, z) that determines the square of the phase
deceleration coefficient at the point (y, z), presented in Fig. 3.

The characteristics of the eikonal equation with the right-hand side β2 (y, z)
(shown in Fig. 3) are presented in Fig. 4 by the projections of the characteristics
on the plane yOz, which we will refer to as rays, and in Fig. 5 by the integral
surface ϕ (y, z) of the eikonal Eq. (16), composed of the family of integral curves.

Remark. The calculations for lenses with radii R = 102λ, 103λ, 104λ yield
seemingly similar results (like in Fig. 4, 5) differing only in the scale of the
considered domain.
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Fig. 3. Plot of β2 (y, z)

Fig. 4. Projections of characteristics on the yOz plane for the Luneburg lens with
R = 103λ, F = 2R
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Fig. 5. Integral surface of the phase, composed of the family of integral curves for the
Luneburg lens with R = 103λ, F = 2R

Table 1. Lengths of the localization interval of the ray crossing point and apertures
for different lens radii

R |IF | , μm |IF | /F A/R, %

102λ 1.53 × 10−3 1.39 × 10−5 93.8

103λ 1.78 × 10−2 1.62 × 10−5 97.9

104λ 1.54 × 10−1 1.40 × 10−5 98.8

The crossing points of all calculated rays passed through the lens are localized
in the interval IF = [zmin ; zmax]. In Table 1 for R = 102λ, 103λ, 104λ we
present the calculated interval lengths |IF | = zmax − zmin, as well as |IF | /F ,
where F = 2R. For each R = 102λ, 103λ, 104λ we also present the limit value
of A/R in percent, where the rays, coming from the points −A ≤ z ≤ A cross
among themselves, while the rays coming from the points z > A and z < −A
are parallel to the z-axis.

We also calculate the discrepancy of the eikonal equation

δabs = max
∣∣ϕ2

y + ϕ2
z − β2 (y, z)

∣∣ ,

δrel = max
{∣∣ϕ2

y + ϕ2
z − β2 (y, z)

∣∣ /
∣∣β2 (y, z)

∣∣}

along the rays, where ϕy and ϕz are found approximately using the method of
characteristics (Table 2).

The calculated values of max |ϕyhy| ,max |ϕzhy| ,max |ϕyhz| and max |ϕzhz|
are summarized in Table 3.
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Table 2. Discrepancy of the eikonal equation

R δabs δrel

102λ 9.95 × 10−6 4.11 × 10−6

103λ 7.69 × 10−6 3.19 × 10−6

104λ 7.34 × 10−6 3.00 × 10−6

Table 3. Calculated values of max |ϕyhy| , max |ϕzhy| , max |ϕyhz| and max |ϕzhz|

R max |ϕyhy| max |ϕzhy| max |ϕyhz| max |ϕzhz|
102λ 1.79 × 10−3 7.36 × 10−2 3.97 × 10−2 1.19 × 100

103λ 1.79 × 10−4 7.36 × 10−3 3.97 × 10−3 1.19 × 10−1

104λ 1.79 × 10−5 7.36 × 10−4 3.97 × 10−4 1.19 × 10−2

4 Discussion

4.1 Symbolic Results

In this paper, we investigate the AWM model [14,15] in the zeroth order of
the asymptotic method using the approximation of “horizontal” boundary con-
ditions. The latter is important from a physical point of view, since it allows
comparing the AWM model calculations with the results of the cross-sectional
method [21,23,24], which also makes use of “horizontal” boundary conditions.

In waveguide problems, the system of boundary equations plays an important
role, because its solution determines the phase of the guided modes and the
constants for their further numerical construction.

A symbolic-calculation study of the system of boundary equations (in the
zeroth approximation with respect to the parameter ν) allowed simplifying the
form of the system at the symbolic level and reducing the problem in a form
convenient for numerical solution.

Instead of solving equation detM∗ (y, z, ϕy, ϕz) = 0, which is extremely diffi-
cult to analyze in the symbolic form (the matrix dimension in the general case is
12 × 12) we obtain symbolically the eikonal equation ϕ2

y + ϕ2
z = β2 (y, z), where

only the right-hand side is specified numerically. The quantity β2 (y, z) is speci-
fied numerically because it is a solution of the equation detM

(
y, z, β2 (y, z)

)
= 0,

where due to symbolic manipulations the initial system of boundary equations
with the 12 × 12 matrix M∗ is reduced to an equivalent system with the 8 × 8
matrix M (see. (18)–(22)). Moreover, the computer algebra tools allow deter-
mination of β2 (y, z) with enhanced accuracy, using the values with extended
number of decimal digits.

The eikonal equation links geometric optics to wave optics, and in the present
work its explicit derivation in the AWM model for the particular case of small ν
is important for geometric interpretation of the guided propagation of adiabatic
modes.
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Moreover, numerical experiments answer the question about the applicability
of the approximation of “horizontal” boundary conditions within the frameworks
of the AWM model.

4.2 Numerical Results

In numerical experiments we consider the waveguide Luneburg lens designed
to focus the radiation at the distance F = 2R, where R is the waveguide lens
radius. The calculated rays, passing through the lens, with sufficient accuracy
intersect in the focus point (see Fig. 4). The relative error is of the order of 10−5

(see Table 1, column 3) for the radii of the lens 102λ − 104λ.
In fact, the rays calculated using the AWM model with high accuracy cross

in the lens focus at any considered radii of the lens. It is important that the
calculations demonstrate that the greater the lens radius (see Table 1, column 4),
the greater is the lens aperture within the given accuracy. Thus, for the lens
radius 104λ the aperture amounts to 98.8%.

In other words, the greater the radius of the waveguide lens, the more exactly
the behavior of the rays close to the lens edges is described by the AWM model
in the approximation of “horizontal” boundary conditions.

The applicability of “horizontal” boundary conditions is largely determined
by the smallness of the parameter ν. Commonly ν is considered small if it is by
two orders of magnitude smaller than unity, i.e., if ν ∼ 10−2. By definition,
ν = ‖V ‖ = max {max |ϕyhy| ,max |ϕzhy| ,max |ϕyhz| ,max |ϕzhz|}. Table 3
presents the values of max |ϕyhy| ,max |ϕzhy| ,max |ϕyhz| and max |ϕzhz| cal-
culated along the rays. Only for the lens with the radius 104λ the parameter ν
is of the order of 10−2 and can be considered small.

From Table 3 it is also seen that the larger the radius of the waveguide lens,
the smaller the parameter ν. Therefore, for extended Luneburg lenses with R >
104λ the approximation of “horizontal” boundary conditions is likely to be valid.

The AWM model is formulated for smoothly irregular waveguide structures,
so that the approximation of “horizontal” boundary conditions is a natural first
step. However, this approximation does not describe the complete variety of
physical effects, e.g., the effect of mode hybridization. Note, that the AWM
model as such can describe vector fields without using the approximation of
“horizontal” boundary conditions. In this case it is necessary to solve the problem
det M∗ (y, z, ϕy, ϕz) = 0, to which the method of characteristics can be also
applied. An additional difficulty will consist in the necessity to calculate partial
derivatives of the determinant. This problem is also expected to be solved using
the computer algebra system that allows symbolic differentiation of cumbersome
expressions like a determinant.

In the present work, we solved only the problem of approximate determi-
nation of the phase. We did not set the problems of describing the field in the
waveguide lens completely and, what is of primary importance, of constructing
the field near the focal point, which is much more difficult.
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The present study is focused at developing symbolic-numerical techniques for
phase determination. A necessary condition is the use of symbolic manipulations
with symbolic expressions, which allows the formulation of the main result.

The Maple option of numerical calculations using extended number of
decimal digits appears to be extremely important for solving ill-conditioned
problems.

All Maple programs created within the framework of the current study are
publicly available at the following link https://bitbucket.org/DmitriyDivakov/
waveguide-luneburg-lens/downloads/.

5 Conclusion

In this work, the eikonal equation is symbolically derived, governing the phase
of the adiabatic waveguide mode in the approximation of “horizontal” boundary
conditions. Based on numerical calculations, it was found that the approximation
of “horizontal” boundary conditions is valid for Luneburg waveguide lenses with
a radius of more than 104λ.

Potential applicability of the model of adiabatic waveguide modes to describ-
ing the electromagnetic field behavior in focusing problems is demonstrated,
which is of importance for modeling and design of waveguide lenses.

As the next step, it is planned to consider the same Luneburg waveguide
lens without using the approximation of “horizontal” boundary conditions in
the frameworks of the AWM model.

Acknowledgments. The authors are grateful to Konstantin Lovetskiy for providing
numerical data of the designed Luneburg lens, based on which all numerical calculations
were carried out. The authors are grateful to Leonid Sevastianov for useful discussions
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Abstract. In this paper, we give a thorough revision of Lakshman’s
paper by fixing some serious flaws in his approach. Furthermore, fol-
lowing this analysis, an intrinsic complexity bound for the construction
of zero-dimensional Gröbner bases is given. Our complexity bound is in
terms of the degree of the input ideal as well as the degrees of its gener-
ators. Finally, as an application of the presented method, we exhibit and
analyze a (Monte Carlo) probabilistic algorithm to compute the degree
of an equidimensional ideal.

1 Introduction

Gröbner bases, introduced by Bruno Buchberger in 1965 in his Ph.D. thesis [5]
are a powerful tool for constructive problems in polynomial ideal theory. Using
the linear algebra method proposed by Lazard [21] to compute Gröbner bases
and by having the maximum degree of the intermediate polynomials during the
Gröbner basis computation, we are able to give the complexity of this computa-
tion. In 1982, Mayr and Meyer [26] proved that, in the worst case, the maximum
degree of a reduced Gröbner basis of an ideal may be double exponential in terms
of the maximum degree of a generating set of the ideal. However, for the class
of zero-dimensional ideals this upper bound becomes single exponential.

Let us recall some of the existing results on the complexity of computing
zero-dimensional Gröbner bases. Let R be the polynomial ring K[x1, . . . , xn] and
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I ⊂ R a zero-dimensional ideal generated by polynomials of degree at most d.
Let us fix a monomial ordering on R. Lazard in [22] showed that if the projective
dimension of I is zero then the complexity of computing a Gröbner basis for I
is dO(n). Then, Dickenstein et al. in [7] proved the complexity bound dO(n2) for
this problem. Lazard and Lakshman in [20] described a probabilistic algorithm
to compute in time dO(n) Gröbner bases of the radical of I as well as of all
the irreducible components of

√
I. Finally, based on this algorithm, Lakshman

in [19] showed that the reduced Gröbner basis of I and reduced Gröbner bases
for all primary components of I can be constructed in a time polynomial in dn.
Unfortunately, the approach presented in [19] has serious flaws which are inves-
tigated in this paper. In principle, there are several errors in [19] (as in Lemmata
1, 4 and 5), but the main doubt lies on the statement of [19, Theorem 2]. After
fixing these flaws (by a thorough revision of the paper), based on Lakshman’s
method, we give new upper bounds for the complexity of computing reduced
Gröbner bases for I and of the primary components of I. Our bound depends on
the maximum degree of a generating set of I, the degree of I and degrees of the
primary components of I. Finally, as an application of this approach, we present
a probabilistic method to compute the degree of an equi-dimensional ideal and
analyze its complexity.

The article is organized as follows. In the next section, we review the basic
definitions and notations which will be used throughout. In Sect. 3, we revise
the paper [19] in order to fix its flaws and improve its results. In the last section,
we illustrate an application of the results obtained in Sect. 3 for computing the
degree of an equidimensional ideal.

2 Preliminaries

In this section, we introduce basic notations and preliminaries (related to the
Gröbner bases and degree of an ideal) needed in the subsequent sections. Let K
be an infinite field, X = X1, . . . , Xn be a sequence of variables and R = K[X]
be the polynomial ring over K. We consider polynomials f1, . . . , fk ∈ R and the
ideal a = (f1, . . . , fk) generated by them (if the fi’s are homogeneous then we
will stress it). Furthermore, the dimension of the ideal a, denoted by dim(a), is
the (Krull) dimension of the corresponding factor ring A = R/a.

We denote by M (X) = {Xα1
1 · · · Xαn

n | (α1, . . . , αn) ∈ N
n} the set of all

monomials in R. Let us fix a monomial ordering ≺ on M (X) with X1 ≺ · · · ≺
Xn. The leading monomial of a non-zero polynomial f ∈ R, denoted by LM(f),
is the greatest monomial w.r.t. ≺ appearing in f and its coefficient is the leading
coefficient of f , denoted by LC(f). The leading term of f is the product LT(f) =
LC(f)LM(f). We denote by t(f) the set of all monomials appearing in f . We
denote by �t(f) the number of terms appearing in f . For a finite set F we write
�t(F ) = max{�t(f) | f ∈ F}.

For every finite set F , we denote by LM(F ) the set {LM(f) | f ∈ F}. The
leading monomial monoid of an ideal a ⊂ R w.r.t. ≺ is defined as

LM(a) = {LM(f) | 0 �= f ∈ a}.
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For every non-zero polynomial f ∈ R, we denote by 〈LM〉(f) the set of all
LM(f)Xα with α = (α1, . . . , αn) ∈ N

n. We denote by 〈LM〉(F ) the set monomi-
als in the following class:

〈LM〉(F ) =
⋃

f∈F

〈LM〉(f) =
⋃

f∈F

LM(f) · M (X).

Recall that a finite subset G ⊂ a is called a Gröbner basis for a w.r.t. ≺ if
LM(a) = 〈LM〉(G). A Gröbner basis G is minimal if all leading coefficients of
all polynomials in G are equal to 1 and that for all f ∈ G we have LM(f) �∈
〈LM〉(G\{f}). Computing a minimal Gröbner basis from a given Gröbner basis
does not increase significantly the complexity of the computation. Finally, recall
that a reduced Gröbner basis G of an ideal a is a minimal Gröbner basis such
that for every f ∈ G no term of f lies in 〈LM〉(G \ {f}).

A key ingredient of the computation of Gröbner bases is Hironaka’s multi-
variate division algorithm, also called computation of a normal form (remainder)
w.r.t. a finite set of polynomials (see [6, Theorem 3, page 64], and more precisely,
Exercise 11, page 69). Let F ⊂ R be a finite set of polynomials and f ∈ R. We will
denote by NF(f, F ) a remainder of the multi-variate division of f by F . Another
relevant ingredient in the computation of Gröbner bases is the S-polynomial. For
two non-zero polynomials f, g ∈ R, their S-polynomial is defined to be

S(f, g) =
M

LT(f)
f − M

LT(g)
g, (1)

where M is the least common multiple of LM(f) and LM(g). In addition,
S(f, g, F ) stands for a remainder of the Hironaka division of S(f, g) by F . We also
denote by S(f, 0, F ) a normal form of f w.r.t. F . Buchberger’s criterion asserts
that a finite set F is a Gröbner basis if and only if S(f, g, F ) = 0 for all f, g ∈ F .

The normal set of an ideal a w.r.t. ≺ is the set of all monomials not in
LM(a). For every finite subset F ⊂ R, we also denote by N(F ) the monomials
not in 〈LM〉(F ). Recall that an ideal a ⊂ R is zero-dimensional if and only if
N(a) is finite. Moreover, given a zero-dimensional ideal a ⊂ R the residue classes
{f + a | f ∈ N(a)} forms a basis for A as a K-vector space. Hence, if a is zero-
dimensional, we obviously have dimK(R/a) = �N(a). For more details, we refer
the reader to [6].

Let E be an N-graded R-module. Given any s ∈ N, we denote by Es the
union of {0} and the set of the elements of E of degree s. Recall that the Hilbert
function of a is defined by HFa(s) = dimK(Rs/as). From a certain degree, this
function of s is equal to a (unique) polynomial in s, called the Hilbert polynomial,
and is denoted by HPa. The Hilbert series of a is the following power series

HSa(t) =
∞∑

s=0

HFa(s)ts.

By the Hilbert-Serre theorem, we know that the Hilbert series of a may be written
as p(t)/(1 − t)r where r = dim(a) and p(1) �= 0. Let us recall the definitions of
the degree of a homogeneous ideal, see e.g. [36, page 43] and [4].
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Definition 1. Suppose that a is a homogeneous ideal with r = dim(a). If r > 0,
the (homogeneous) degree of a, denoted by deg(a), is (r − 1)! times the leading
coefficient of the Hilbert polynomial of a. If r = 0, the degree of a is the sum of
the coefficients of HSa(t).

By [18, page 173], we have deg(a) = p(1) and in consequence since a and
LM(a) share the same Hilbert function, deg(a) = deg(〈LM〉(a)). Now, let us
turn our attention to the relation between the degrees of an ideal and its primary
components. Let q be a p-primary ideal. The length of q, denoted by �(q), is the
maximum length � of a chain q = q1 ⊂ · · · ⊂ q� = p of primary ideals. Note
that � is the length of the Artinian local ring (R/q)p. With these notations, we
have deg(q) = �deg(p). The degree of a homogeneous ideal a equals to the sum
of the degrees of its primary components of dimension dim(a). Let m ⊂ R be a
maximal ideal and q an m-primary ideal. Then, deg(q) = dimK(R/q). If a ⊂ R
is a zero-dimensional ideal then we have

deg(a) =
m∑

i=1

deg(qi),

where a =
⋂m

i=1 qi is the irredundant primary decomposition of a. We con-
clude this section, by defining the degree of a non-necessarily homogeneous zero-
dimensional ideal a ⊂ R. Let hR be the ring K[X0,X1, . . . , Xn] where X0

is a new variable. For any polynomial f ∈ R, we define its homogeniza-
tion to be hf = X

deg(f)
0 f(X1/X0, . . . , Xn/X0) ∈ hR. Furthermore, we define

ha = (hf | f ∈ a) ⊂ hR. It is clear that dim(ha) = 1. Then, we define
deg(a) to be deg(ha). If a =

⋂m
i=1 qi is the irredundant primary decomposi-

tion of a zero-dimensional ideal a then hq1 ∩ · · · ∩ hqm is an irredundant pri-
mary decomposition of ha ⊂ hR and dim(h

qi) = 1 for each i. In addition,
since homogenization of a primary (resp. prime) ideal remains primary (resp.
prime) ideal, we conclude that the length of a primary ideal remains stable
after homogenization, see e.g. [38, Chapter VII, Theorem 17]. These arguments
yield deg(a) =

∑m
i=1 deg(qi) =

∑m
i=1 �i deg(pi) where qi is pi-primary and

�i = �(qi). Finally, if �(a) stands for max{�1, . . . , �m} then we have trivially,
max{�(a),m} ≤ deg(a).

3 A Thorough Revision of Lakshman’s Paper

In this section, we make a thorough revision of the paper [19] by Lakshman
with special focus on fixing its serious flaws. In addition, using this approach
we will present intrinsic complexity bounds for computing Gröbner bases of a
zero-dimensional ideal and for all its primary components.

Indeed, there are some flaws in the intermediate statements leading to
[19, Theorem 2]. Firstly, in Lemma 1, Lakshman claims that some sequence
of ideals is increasing, which is obviously wrong since it is, in fact, a decreas-
ing sequence of ideals. This error may be fixed without any effort. Secondly,
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Lemmata 4 and 5 are directly false since he assumes that the index of a pri-
mary zero-dimensional ideal agrees with its length and this is not always true
(see Corollary 10 below for an obvious counterexample). Lakshman’s bound in
Lemma 4 must be replaced by what we exhibit in Lemma 15 below. This modifies
[19, Lemma 5] making it doubtful and somehow misleading. Not only because
of this confusion between index and length, but also because [19] omits a lot
of relevant material to bound the arithmetic complexity of the algorithm. The
correction of Lemma 5 in [19] now becomes Lemma 16 and none of the bounds
we have found agrees with the bounds exhibited by Lakshman in his paper.

Next, [19, Lemma 6] contains the main flaw. The author assumes that the
number of field operations required to compute a normal form w.r.t. a finite
set F only depends on the number of polynomials in F and the number of non-
zero terms involved. As far as we know, no proof of this fact is known. This was
the reason to introduce the function TS in Definition 5. In addition, this forces
us to make a thorough revision of his Lemma 6 and leads to Theorem 17 which
summarizes our study of the complexity of Lakshman’s algorithm. Finally, [19,
Theorems 2 and 3] can be replaced by Corollaries 18 and 22, respectively.

3.1 Complexity of Converting Gröbner Bases

In this subsection, we give the complexity of converting a given Gröbner basis of
a zero-dimensional ideal into the reduced Gröbner basis for the same ideal with
respect to the same monomial order (see Corollary 7). We first fix a monomial
order ≺ on R. For a polynomial f ∈ R, we denote by degXi

(f) the degree of f
w.r.t. the variable Xi.

Lemma 2. Let a ⊂ R be a zero-dimensional ideal and F ⊂ a be a finite set of
generators of a (although not necessarily a Gröbner basis for a). Assume that
N(F ) is a finite set. Then, for all S ⊆ {1, . . . , n}, such that �S ≤ n − 1, there is
some f ∈ F such that degXi

(LM(f)) = 0 for all i ∈ S.

Proof. Let MS(X) = {∏k �∈S Xαk

k | αk ∈ N}. Since �S ≤ n − 1 then MS(X) is
infinite and it is not completely included in N(F ), because N(F ) is a finite set.
Thus, there must be some m =

∏
k �∈S Xαk

k ∈ MS(X) such that m �∈ N(F ). Thus

m ∈
⋃

f∈F

〈LM〉(f),

which implies that exists some f ∈ F such that LM(f) divides m. Hence, for any
i ∈ S, no non-zero power of Xi may divide LM(f) and, thus degXi

(LM(f)) = 0
for all i ∈ S. �
This lemma implies the following result.

Lemma 3. With the same hypothesis as in Lemma 2, for every monomial m ∈
N(F ) and for each 1 ≤ i ≤ n we have degXi

(m) < max{degXi
(f) | f ∈ F}.
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Proof. Let m = Xα1
1 · · · Xαn

n ∈ N(F ) and di = max{degXi
(LM(f)) | f ∈ F} for

each i. Consider the sets T = {k ∈ {1, . . . , n} | dk ≤ αk} and S = {1, . . . , n}\T .
Reasoning by reductio ad absurdum assume that T �= ∅. Thus, �S ≤ n − 1
and from Lemma 3, there is f ∈ F with degXi

(LM(f)) = 0, ∀i ∈ S. Thus, we
conclude that LM(f) has the form

∏
k∈T Xβk

k . Then, as dk is maximal, βk ≤ dk,
for all k ∈ T and, hence, LM(f) =

∏
k∈T Xβk

k | ∏
k∈T Xdk

k . On the other hand∏
k∈T Xdk

k | m which implies that LM(f) divides m, leading to a contradiction.
It follows that T = ∅ and this yields the claim. �

Next, let us consider a ⊂ R an arbitrary zero-dimensional ideal and let
G = {f1, . . . , fs} be a minimal Gröbner basis of a w.r.t. ≺. As G is minimal, we
may assume that

LM(fs) ≺ · · · ≺ LM(f1). (2)

Now, we transform the elements in G as follows. Let hi = fi − LT(fi) for 1 ≤
i ≤ s. Due to (2), every monomial in hi is strictly smaller than any leading
monomial of fk for all k satisfying 1 ≤ k ≤ i. Let h̃i = NF(hi, {fi+1, . . . , fs})
and f̃i = LT(fi) + h̃i. We have the following statement.

Lemma 4. With these notations and assumptions, we have:

i) LM(f̃i) = LM(fi) and G̃ = {f̃1, . . . , f̃s} is the reduced Gröbner basis of a.
ii) Any monomial in t(h̃i) lies in N(a) and �t(h̃i) ≤ �N(a).
iii) The number of non-zero terms of every element of G̃ is at most �N(a) + 1.

Proof. The results are folklore from the theory of Gröbner bases, see e.g. [6]. �
Definition 5. Let TS(n, t, k,D) be an upper bound over the number of arith-
metic operations of elements in the field K required to compute S(f, g, F ) where

i) F generates a zero-dimensional ideal, �F ≤ k and N(F ) is finite,
ii) the number of non-zero terms of any polynomial in {f, g} ∪ F is at most t,
iii) the maximum of the degrees of the polynomials in {f, g} ∪ F is at most D.

Note that TS(n, t, k,D) is assumed to be also a bound for the number of
arithmetic operations required to compute a normal form NF(f, F ) = S(f, 0, F ),
provided that f and F satisfy the required conditions.

Remark 6. The bound TS(n, t, k,D) is known to be finite, as we have

TS(n, t, k,D) ∈ O

(
nt log(D)

(
tk

(
D + n

n

))ω)

where ω < 2.373 is the exponent of the complexity of matrix multiplication,
see [23]. Other bounds under different assumptions can be found in the literature.
It is worth noting that van der Hoeven in [34] by using the concepts of relaxed
power series and fast sparse polynomial arithmetic described a fast algorithm for
sparse reduction of a polynomial w.r.t. an autoreduced set of polynomials.
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Corollary 7. Let a be a zero-dimensional ideal. The computation of the reduced
Gröbner basis Gred from a Gröbner basis G of a can be done in a number of
arithmetic operations in K which is bounded by the following quantity:

O (�G (n�t(G) + TS (n, �t(G), �G,D)))

where D is is an upper bound for the degrees of the polynomials in G.

Proof. To compute the reduced Gröbner basis, we first compute a minimal
Gröbner basis Gmin from G. In doing so, let us sort G = {f1, . . . , fs} and remove
all fi with LM(fi) = LM(fi−1) to obtain a subset G1 = {g1, . . . , gr} ⊆ G such
that the LM(gr) ≺ · · · ≺ LM(g1). Then, we eliminate from G1 all those gi’s
such that LM(gi) is divisible by some LM(gk) with k > i. The final result is
a minimal Gröbner basis Gmin. This can be done, obviously in a time linear
in n, �G and �t(G) (note that checking the divisibility of two monomials needs n
comparisons, and we consider each comparison as a field operation). Now, tak-
ing Gmin we proceed as explained above to get a reduced Gröbner basis. The
total operations performed by this procedure depends polynomially on the num-
ber of elements in Gmin and the cost of performing the corresponding reductions.
But, each normal form computation is performed in a number of field operations
bounded by TS (n, �t(G), �(G),D), thus proving the corollary. �

3.2 Complexity of Computing the Primary Decomposition

In this subsection, we present the complexity of computing a Gröbner basis for
a primary component of a zero-dimensional ideal under suitable assumptions of
genericity (see Corollary 18). Then, we apply this result to prove our main result
about the complexity of computing reduced Gröbner bases for zero-dimensional
ideals (see Corollary 22). Let us first define the index of a primary ideal.

Definition 8. Let p ⊂ R be a prime ideal and q a p-primary ideal. We define
the index of q as the minimum positive integer Ind(q) = ρ such that pρ ⊆ q.

Observe that in any Noetherian ring (in particular, in R) the index of a
primary ideal is always well-defined. We then fix a zero-dimensional ideal a ⊂ R.
Recall that a is zero-dimensional if and only if every associated prime of a is
maximal in R. The following classical statement may be seen in [35].

Lemma 9. Let a be a zero-dimensional ideal as above. Let p ⊂ R be an associ-
ated prime of a and q a p-primary ideal occurring in a minimal primary decom-
position of a. Let ρ be the index of q. Then, the following properties hold:

i) if σ < ρ then dimK(R/(a + pσ−1)) < dimK(R/(a + pσ)),
ii) if σ ≥ ρ then q = a + pρ = a + pσ.

Namely, the index of a p-primary ideal q occurring in a minimal primary
decomposition of a zero-dimensional ideal a is the minimal positive integer ρ
such that a + pρ = a + pρ+1 and, in this case, q = a + pρ. This is the key
ingredient of the Lakshman algorithm in [19].
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Corollary 10. With these notations, let a ⊂ R be a zero-dimensional ideal, q
an isolated p-primary component of a. Then,

i) Ind(q) ≤ �(q), see also [4, Lemma 1]. In particular, Ind(q) deg(p) ≤ deg(q).
ii) �(q) is an upper bound for the minimal positive integer ρ ∈ N such that

a + pρ = a + pρ+1.

Proof. Let ρ = Ind(q) be the index of q. Then, according to Claim i) of Lemma 9,
for every σ < ρ, the ideal a + pσ satisfies p =

√
q =

√
a + pρ ⊆ √

a + pσ ⊆ p.
Hence,

√
a + pσ = p for every σ < ρ. Thus, a+ pσ is a p-primary ideal. Claim i)

of Lemma 9 implies that the following is a chain of p-primary ideals with strict
inclusions:

q = a + pρ ⊆/ a + pρ−1 ⊆/ · · · ⊆/ a + p2 ⊆/ a + p = p

and, hence, Ind(q) ≤ �(q) as claimed. Since deg(q) = �(q) deg(p), it follows that
Ind(q) deg(p) ≤ deg(q).

Finally, Claim ii) of the statement immediately follows from Claim ii) of
Lemma 9. �
Example 11. This example shows that the equality Ind(q) = �(q) in Claim i) of
Corollary 10 does not hold in general: let R = K[x1, x2], p = (x1, x2) and q the
p-primary ideal given by q = p4. We can see easily that deg(p) = 1 and Ind(q) =
ρ = 4. It is obvious that a basis of R/q as a K-vector space is determined by all
the monomials of degree at most 3, hence yielding �(q) = 10 > Ind(q) = 4.

Now, we recall Lakshman’s main algorithm to compute a Gröbner basis of
an isolated primary component q of a zero-dimensional ideal a, provided that
we are given a finite set of generators of a and the reduced Gröbner basis of the
corresponding associated prime p.

Algorithm 1. PrimaryComponent

Input: A finite generating set F of a zero-dimensional ideal a and the reduced Gröbner
basis G of the associated prime p of a

Output: The reduced Gröbner basis of the p-primary component q of a
C := F
B := G � The reduced Gröbner basis of a + p = p.
while B �= C do

C := B � B is the reduced Gröbner basis of some a + pσ, for σ < Ind(q).
B := The reduced Gröbner basis of the ideal generated by F ∪ B · G

� B becomes the reduced Gröbner basis of a + p · (a + pσ) = a + pσ+1.
end while
return (B)

Lemma 12. Algorithm 1 computes the reduced Gröbner basis of the isolated
primary component q. The number of reduced Gröbner basis calculations (i.e. the
number of times the procedure enters in the while-loop) is at most Ind(q) ≤ �(q).
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Proof. Both claims are obvious in view of Corollary 10. �
The complexity analysis then depends on the complexity of computing the

reduced Gröbner basis inside each while-loop. Let a =
⋂m

i=1 qi be an irredun-
dant primary decomposition of a zero-dimensional ideal a where each qi is pi-
primary for each i. From now on, we assume that the variables X1, . . . , Xn are
in generic position w.r.t.

√
a = ∩m

i=1pi. More precisely, we assume that there are
h1, . . . , hn ∈ K[X1] such that

√
a = (Xn − hn(X1), . . . , X2 − h2(X1), h1(X1))

where deg(hi) ≤ deg(h1) − 1 for each 2 ≤ i ≤ n, and deg(h1) = deg(
√
a) =∑m

i=1 deg(pi). We refer to this property as
√
a being in normal X1-position. This

may be achieved by a generic linear change of coordinates to transform
√
a into

this position, see e.g. [13]. Now, let q be a p-primary component of a. The generic
change of variables is also well suited for each of its associated primes and, hence,
we may assume that

p = (Xn − gn(X1), . . . , X2 − g2(X1), g1(X1)), (3)

where deg(gi) ≤ deg(p) − 1 for each 2 ≤ i ≤ n, and deg(g1) = deg(p). Observe
that g1 is some irreducible factor of h1 in K[X1] and for 2 ≤ i ≤ n, we have gi =
rem(hi, g1) is the remainder of the division of hi by g1, see [1, Proposition 8.69]
for more details. According to the comments introduced in Algorithm 1, the
procedure computes reduced Gröbner bases of all p-primary ideals hi = a + pi

where 1 ≤ i ≤ Ind(q) ≤ �(q). Let us also denote by Bi the reduced Gröbner
basis of hi computed in the course of Algorithm 1. The following statement was
proved in [19, Lemma 2].

Lemma 13. With the same notations as above, let Bi be the reduced Gröbner
basis of hi computed by Algorithm 1. Let δ = deg(p) be the degree of the prime
ideal p associated to a. Then, all leading monomials in Bi are of the form
(Xδ

1 )i1Xi2
2 · · · Xin

n with ij ≥ 0.

Let m ∈ R be a monomial which belongs to the normal set N(hi) = M (X) \
LM(hi) of some intermediate primary ideal hi computed by Algorithm 1. Define
the class m of all monomials associated to m w.r.t. hi as:

Clhi
(m) = {m,X1m, . . . ,Xδ−1

1 m}.

The following lemma resumes the main properties of these classes.

Lemma 14. Let m = (Xδ
1 )j1Xj2

2 · · · Xjn
n and m′ = (Xδ

1 )j′
1X

j′
2

2 · · · Xj′
n

n be two
monomials. Then, the following statements hold.

i) If m ∈ N(hi) then Clhi
(m) ⊆ N(hi).

ii) Given m,m′ ∈ N(hi) as above, we have:

Clhi
(m) ∩ Clhi

(m′) �= ∅ ⇐⇒ Clhi
(m) = Clhi

(m′) ⇐⇒ m = m′.



254 A. Hashemi et al.

iii) The number of classes of equivalence Clhi
(m) is at most � = �(q).

In particular, the set of classes Clhi
(m) defines a partition of N(hi). Namely,

there is a finite set of monomials m1, . . . ,mL ∈ N(hi) of the form

mr = (Xδ
1 )jr,1nr, (4)

where nr ∈ K[X2, . . . , Xn] are monomials such that

N(hi) =
L⋃

r=1

Clhi
(mr) (5)

is a disjoint decomposition of N(hi) with L ≤ �(q).

Proof. As Bi is the reduced Gröbner basis of hi, then by Lemma 13 we may
assume that LM(Bi) has the form

LM(Bi) = {(Xδ
1 )i1u1, . . . , (Xδ

1 )itut},

where t ∈ N and uk ∈ K[X2, . . . , Xn] are monomials. Consequently, we have:

LM(hi) =
t⋃

k=1

(Xδ
1 )ikuk · {Xμ1

1 · · · Xμn
n | (μ1, . . . , μn) ∈ N

n}.

Now, to prove Claim i), assume in contrary that for some 0 ≤ r ≤ δ − 1, we
have Xr

1m ∈ Clhi
(m) ∩ LM(hi). Then, there exist some k and some a ∈ N with

Xδj1+r
1 = Xδik+a

1 and uk | Xj2
2 · · · Xjn

n .

Thus, we must have ik ≤ j1 and in turn (Xδ
1 )ikuk | (Xδ

1 )j1Xj2
2 · · · Xjn

n ∈ N(hi)
which is impossible and this proves Claim i).

As for Claim ii), assume that there exist r, r′ with 0 ≤ r, r′ ≤ δ−1 such that:

Xr
1m = Xr′

1 m′ ∈ Clhi
(m) ∩ Clhi

(m′) �= ∅.

Assume that r′ ≥ r, then we have m = Xr′−r
1 m′ ∈ Clhi

(m′). It follows that
δj1 = δj′

1 +(r′ − r) which implies δ | r′ − r, and 0 ≤ r′ − r < δ. Thus r = r′ and,
hence, m = m′, proving Claim ii).

Assume m1, . . . ,mL is a sequence of monomials with
⋃L

k=1 Clhi
(mk) ⊆ N(hi)

where the union is a disjoint union of sets of cardinality δ. Hence, we have

�
L⋃

k=1

Clhi
(mk) =

L∑

k=1

�Clhi
(mk) = Lδ ≤ �N(hi) = deg(hi) ≤ deg(q) = �(q) deg(p)

and so, L ≤ �(q), because δ = deg(p) and this shows Claim iii). Finally, let
u = Xt1

1 Xt2
2 · · · Xtn

n ∈ N(hi). Let i1, r ∈ N be the quotient and the remainder of
the Euclidean division of t1 by δ. Let us define v = (Xδ

1 )i1Xt2
2 · · · Xtn

n . Thus, we
have u = Xr

1v ∈ Clhi
(v): if v ∈ LM(hi), then u ∈ LM(hi) which is impossible;

hence v ∈ N(hi) and therefore u ∈ Clhi
(v). �
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The following lemma is the corrected version of [19, Lemma 4] in which we
replace the index of a primary component by its length.

Lemma 15. With the same notations as above, let G be the reduced Gröbner
basis of p w.r.t ≺. Let Bi be the reduced Gröbner basis for hi w.r.t ≺ computed
by Algorithm 1. Then, �LM(G · Bi) ≤ n2� and �N(G · Bi) ≤ (n + 1)�δ.

Proof. Let m1, . . . ,mL ∈ N(hi) be the monomials described in Equality (5).
By Claim i) of Lemma 14, for all r and for all k with 0 ≤ k ≤ δ − 1, we have
Xk

1 mr ∈ N(hi). Let m = (Xδ
1 )i1Xi2

2 · · · Xin
n ∈ LM(Bi) with ik ≥ 0. Two cases

may happen: if i1 ≥ 1, then m/Xδ
1 = (Xδ

1 )i1−1Xi2
2 · · · Xin

n ∈ N(qi). Then, there
would exist r and k with 0 ≤ k ≤ δ − 1, such that m/Xδ

1 = Xk
1 mr. According to

Equality (4) of Lemma 14, mr = (Xδ
1 )jr,1nr, where nr ∈ K[X2, . . . , Xn]. Then,

(Xδ
1 )i1Xi2

2 · · · Xin
n = m = Xk

1 Xδ
1mr = Xk

1 (Xδ
1 )jr,1+1nr.

We conclude that k = 0 and, hence, m/Xδ
1 = mr. Otherwise, if i1 = 0, then

m = Xi2
2 · · · Xin

n ∈ LM(Bi) is not a constant. Thus, there exist some k with 2 ≤
k ≤ n, such that M/Xk = Xi2

2 · · · Xik−1
k · · · Xin

n ∈ N(hi). The same argument
used in the case i1 ≥ 1 applies to conclude that there must be some r with
1 ≤ r ≤ L, such that m/Xk = mr. In conclusion, we have proved the inclusion:

LM(Bi) ⊆ {Xδ
1mr : 1 ≤ r ≤ L}

⋃
(

n⋃

k=2

{Xkmr : 1 ≤ r ≤ L}
)

. (6)

According to Lemma 14, we conclude that �LM(Bi) ≤ nL ≤ n�. Moreover,
as Bi is reduced, then �Bi = �LM(Bi) ≤ n�. From Equality (3) we know that
the Gröbner basis G of p has n elements. This yields �LM(G · Bi) ≤ n2�.

Let us now study the bound for �N(G · Bi). We have obviously N(hi) =
N(Bi) ⊆ N(G · Bi). Next, let us prove that the following inclusion holds:

N(G · Bi) \ N(hi) ⊆
δ−1⋃

t=0

{Xt
1u | u ∈ LM(Bi)}. (7)

Let m ∈ N(G · Bi) be a monomial not in N(hi). Then, m �∈ LM(G · Bi) and
m ∈ LM(hi) = LM(Bi). Thus, there exists f ∈ Bi such that u = LM(f) and
m = Xt1

1 · · · Xtn
n u. We claim that t1 < δ and t2 = · · · = tn = 0. If t1 ≥ δ, then

m = Xt1−δ
1 Xt2

2 · · · Xtn
n

(
Xδ

1u
)

= Xt1−δ
1 Xt2

2 · · · Xtn
n (LM(g1)LM(f)) ∈ LM(G ·Bi)

which contradicts m �∈ LM(G · Bi). Similarly, if tk ≥ 1 for some k then

m = Xt1
1 · · · Xtk−1

k · · · Xtn
n (Xku) ∈ LM(G · Bi),

which is also impossible because of the same reason. In conclusion, if m is a
monomial in N(G · Bi) \ N(hi) there exists u ∈ LM(Bi) and t, 0 ≤ t ≤ δ − 1,
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such that m = Xt
1u. This proves the inclusion (7). Finally, we just count the

cardinalities of these sets to conclude

�N(G · Bi) ≤ �N(hi) + δ�LM(Bi) ≤ Lδ + δnL ≤ (n + 1)δ�.

�
Assume that a is a zero-dimensional ideal generated by F = {f1, . . . , fk} with
deg(fi) ≤ d. As in Equality (3), assume that G = {Xn − gn(X1), . . . , X2 −
g2(X1), g1(X1)} generates p. Let Bi be the reduced Gröbner basis of hi = a+ pi

and Bi+1 the reduced Gröbner basis for hi+1 = a+p ·hi = a+pi+1 computed by
Algorithm 2 from F ∪G·Bi. Note that this algorithm is a variant of Buchberger’s
algorithm applied to our situation. In the next lemma, we bound the size of Bi+1

and the total number of S-polynomials to construct it, cf. [19, Lemma 5].

Algorithm 2. Buchberger

Input: A finite set F ∪ G · Bi

Output: A Gröbner basis Bi+1 for hi+1

˜F := {NF(fj , G · Bi) | j = 1, . . . , k}
T := ˜F ∪ G · Bi

P := {{f, g} | f �= g, f, g ∈ T}
while P �= ∅ do

select {f, g} from P
r := S(f, g, T )
if r = 0 then

P := P \ {{f, g}}
else

T := T ∪ {r}
P := P ∪ {{r, h} | h ∈ T, h �= r}

end if
end while
B := The reduced form of T , by performing an autoreduction
return (B)

Lemma 16. With the above notations, the following statements hold.

i) �Bi+1 ≤ k + (n + 1)2 deg(q).
ii) �N(hi+1) = �N(Bi+1) ≤ deg(q).
iii) The total number of treated S-polynomials to compute Bi+1 is at most

(
k + (n + 1)2 deg(q)

)3
.

iv) For every S(f, g,H) constructed in the course of the algorithm, we have:

max
({degX1

(f),degX1
(g)} ∪ {degX1

(h) | h ∈ H}) ≤ max{d,deg(q)},

and for all k, 2 ≤ k ≤ n,

max
({degXk

(f),degXk
(g)} ∪ {degXk

(h) | h ∈ H}) ≤ max{d, �(q)}.



Intrinsic Complexity for Constructing Zero-Dimensional Gröbner Base 257

Proof. To bound the size of Bi+1, let us first count the number of S-polynomials
leading to a non-zero normal form computed in this algorithm. Let R be this
number. For this, we shall need to introduce some subindices to determine the
size of the intermediate sets computed in the course of this algorithm. We ini-
tialize with T0 := T and P0 := P . In addition, one step is one iteration of the
algorithm leading to a non-zero normal form. Thus, TR is a Gröbner basis of the
ideal hi+1. Whereas the sequence Ts is an increasing sequence, Ps+1 does not
necessarily contain Ps, since some of the elements of Ps may have been removed.

An upper bound for the number of the treated S-polynomials is given by

�
R⋃

s=0

Pj + k + �TR ≤ (R + 1)max{�Ps | 0 ≤ s ≤ R} + k + �TR . (8)

Note that, in the above bound, we considered the fact that the computation of F̃
from F requires k additional S-polynomials. Here we took also into account the
last step of the algorithm to compute the reduced Gröbner basis B. For this
purpose, the number of S-polynomials that we need to perform is at most �TR .
Now, one observes that for each s we have

{
�Ts+1 = �Ts + 1,
�Ps+1 ≤ �Ps + �Ts.

(9)

Let us denote by S0 the cardinality of the initial set T0. According to (6) we
have �Bi = �LM(Bi) ≤ n�. As G contains only n polynomials, we obtain

{
S0 = �T0 = �(F ∪ G · Bi) ≤ �F + �(G · Bi) ≤ k + n2�,

�P0 =
(
S0
2

)
.

(10)

Next, observe that Ts ⊇ F ∪ G · Bi ⊇ G · Bi and if r = S(f, g, Ts) �= 0, the
leading monomial of r belongs to the normal set N(Ts), which satisfies N(Ts) ⊆
N(G · Bi). Thus, according to Lemma 15, we conclude that

R ≤ �N(G · Bi) ≤ (n + 1)�δ = (n + 1) deg(q)

and in turn �Bi+1 ≤ �TR ≤ k + n2� + (n + 1)�δ ≤ k + (n + 1)2 deg(q), proving
the first claim. We notice that hi+1 ⊂ q and therefore N(hi+1) ⊂ N(q). This
implies that �N(hi+1) ≤ �N(q) = deg(q) and the second claim now easily follows.
To prove Claim iii), proceeding by induction and using (9) we can show that for
all s with 0 ≤ s ≤ R, it holds

�Ps ≤
(
S0

2

)
+ sS0 +

s∑

t=1

t. (11)

It follows that for all s, we have

�Ps ≤
(
S0

2

)
+ RS0 +

R∑

t=1

t ≤ 1
2

(
S 2

0 + R2
)

+ RS0 =
1
2

(S0 + R)2
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and hence

�Ps ≤ 1
2

(
k + n2� + (n + 1) deg(q)

)2 ≤ 1
2

(
k + (n + 1)2 deg(q)

)2
.

Thus, according to Inequality (8), the total number of S-polynomials calculated
by our version of Buchberger’s algorithm is bounded by

(R + 1)max{�Ps | 0 ≤ s ≤ R} + k + �TR ≤ (
k + (n + 1)2 deg(q)

)3
.

In order to prove Claim iv), we proceed by induction on i. For every finite set Q
and for all k, 1 ≤ k ≤ n, we denote by δk(Q) = max{degXk

(h) | h ∈ Q}.
As B1 = {Xn − gn(X1), . . . , X2 − g2(X1), g1(X1)}, we then conclude that

δ1(B1) = max{degX1
(h) | h ∈ B1} = deg(p) = δ

and, for all k with 2 ≤ k ≤ n, δk(B1) = max{degXk
(h) | h ∈ B1} = 1. Hence

the first step of the induction holds. Now observe that Bi+1 is computed from F
and G · Bi using a sequence of intermediate sets of polynomials T0, T1, . . . , TR .
Every polynomial f in T0 satisfies one of the following two conditions:

– If f ∈ G · Bi, for any k with 2 ≤ k ≤ n, we have

degX1
(f) ≤ δ + δ1(Bi), degXk

(f) ≤ 1 + δk(Bi). (12)

– If f ∈ F̃ then f is a sum of non-zero terms in N(G ·Bi), then, from Lemma 3
we conclude that for all k with 1 ≤ k ≤ n, it holds

degXk
(f) ≤ max{degXk

(h) | h ∈ G · Bi},

and the degree bounds of (12) also apply to degX1
(f) and degXk

(f).

We know that Tj+1 = Tj ∪{S(f, g, Tj)} for some polynomials f, g ∈ Tj . However,
as G · Bi ⊆ Tj , we conclude N(Tj) ⊆ N(G · Bi). Hence, every polynomial added
to Tj to build up Tj+1 is a linear combination of monomials in N(G·Bi). Applying
once more Lemma 3, we conclude that, for all k with 2 ≤ k ≤ n it holds

δ1(Tj+1) ≤ δ + δ1(Bi),
δk(Tj+1) ≤ 1 + δk(Bi).

(13)

The reduced Gröbner basis Bi+1 is obtained from TR by applying some com-
putations of normal forms of polynomials whose degrees are bounded by those
of TR . All in all, for all k with 2 ≤ k ≤ n we immediately see that

δ1(Bi+1) ≤ δ + δ1(Bi) ≤ (i + 1)δ1(B1) = (i + 1)δ,
δk(Bi+1) ≤ 1 + δk(Bi) ≤ i + 1.

Finally, we note that the reduced Gröbner basis of q is obtained by the sequence
of intermediate reduced Gröbner bases B1, . . . , BL with L = �. We then con-
clude that for all i and k, we have δ1(Bi) ≤ �δ = �(q) deg(p) = deg(q) and
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δk(Bi) ≤ � = �(q). Taking into account that we have considered some pre-
liminary computations of normal forms to obtain F̃ from F and that poly-
nomials in F have total degrees at most d, we get δ1(BL) ≤ max{d,deg(q)}
and δk(BL) ≤ max{d, �(q)}. The same bounds apply for every term S(f, g,H)
involved in the computation of S-polynomials along this process. �
Our first partial complexity estimate is the content of the following result, cf.
the corollary on page 231 of [19].

Theorem 17. Let q be a zero-dimensional ideal such that
√
a is in normal X1-

position. The number of field operations required by Algorithm 1 is at most

O
(
�(q)

(
k + (n + 1)2 deg(q)

)3) × TS(n, τ, �Θ,D)

where TS is the function that measures the number of arithmetic operations
required to compute an S-polynomial with the following parameters:

• τ := max{�t(F ), (n + 1)(deg(q) + 1)2} being an upper bound for the number
of non-zero terms involved,

• �Θ := k+(n+1)2 deg(q) being an upper bound for the maximum cardinalities
of the sets of polynomials involved,

• D := max{2d,deg(q) + (n − 1)�(q)} being an upper bound for the maximum
of the degrees of the polynomials involved.

Proof. From Lemma 12, we know that the number of times that Algorithm 1
enters the while-loop is at most �(q) ≤ deg(q). On the other hand, as already
mentioned, to compute the reduced Gröbner basis for q, we shall compute the
intermediate reduced Gröbner bases B1, . . . , BL with L = �(q) by starting from
the reduced Gröbner basis B0 := G for p. Thus, it suffices to prove that the
claimed bound without �(q) holds for the number of arithmetic operations to
construct Bi+1 from Bi for each i. For this purpose, by Lemma 16, the number
of computations of S-polynomials and normal forms is bounded by

O
((

k + (n + 1)2 deg(q)
)3)

. (14)

In addition, at each step, we shall need to compare whether Bi and Bi+1 are
equal, before doing anything. As both of them are reduced Gröbner basis, we
just have to compare them element-by-element. This can be done in time

O(�Bi�Bi+1 max{�t(Bi), �t(Bi+1)}).

Observe that in Lemma 16, it was shown that for each i, �Bi+1 ≤ k +
(n + 1)2 deg(q). Moreover, in Lemma 15, we have proved that �t(Bi+1) ≤
(n + 1) deg(q). These arguments confirm the upper bound (14) for the num-
ber of operations required in Algorithm 1.

To complete the proof, it is enough to show that the number of arith-
metic operations in the field K to calculate an S-polynomial is bounded by
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TS(n, τ, �Θ,D). Following Definition 5, we first prove that the number of non-
zero terms in any involved polynomial is at most max{�t(F ), (n+1)(deg(q)+1)2}.
Remark that to compute the Gröbner basis Bi+1 using Algorithm 2, we construct
an increasing sequence of sets of generators of hi+1, say T0 ⊂ T1 ⊂ · · · ⊂ TR .
We want to bound the maximum number of terms occurring in any of the Ts’s.
As Bi is a reduced Gröbner basis of hi, from Lemmata 4 and 16, the max-
imum number of non-zero terms of any polynomial in Bi is bounded by
� (N(Bi))+1 ≤ deg(q)+1. Now, we consider an arbitrary polynomial h ∈ G ·Bi

that generates the ideal phi. The number of terms in h is bounded by

�t(G · Bi) ≤ �t(G) × �t(Bi) ≤ (δ + 1)(�N(Bi) + 1) ≤ (deg(p) + 1) (deg(q) + 1) .

Recall that in Algorithm 2 we defined T0 := F̃ ∪G ·Bi. Every term of f̃j belongs
to N(G · Bi) and, hence, from Lemma 15 we have

�t(F̃ ) ≤ �N(G · Bi) ≤ (n + 1) deg(q).

We conclude that the number of terms of any polynomial in T0 is at most

max{�N(G · Bi), (deg(p) + 1)(deg(q) + 1)} ≤ (n + 1)(deg(q) + 1)2.

It can be shown similarly, by induction and using the fact that T0 ⊆ Ts and
G · Bi ⊆ Ts for all s, that the same bound holds for Ts as well. Thus, by
considering the polynomials in F , the number of non-zero terms involved in
the algorithm is bounded by max{�t(F ), (n + 1)(deg(q) + 1)2}. Moreover, in
Lemma 16, we proved that k+(n+1)2 deg(q) is an upper bound for the maximum
cardinalities of the sets of polynomials. Finally, from Claim iv) of Lemma 16, we
conclude that the maximum degree of S(f, g,H) constructed in the Algorithm 2
is at most max{2d,deg(q) + (n − 1)�(q)} and this finishes the proof. �
Corollary 18. Let a be a zero-dimensional ideal such that

√
a is in normal

X1-position and K a field with efficient factorization of univariate polynomi-
als. Assume that the radical

√
a is given by the Kronecker description of the

form
√
a = (Xn − gn(X1),Xn−1 − gn−1(X1), . . . , X2 − g2(X1), g1(X1)) where

g1, . . . , gn ∈ K[X1] with deg(gi) < deg(g1), for all i, 2 ≤ i ≤ n. Then, we can
compute the reduced Gröbner bases for all isolated primary components of a in
a number of field operations which is bounded by PFC(a) + Q(a) where

• the quantity PFC(a) is the Polynomial Factorization Cost, i.e. the number
of arithmetic operations required in K to factorize a univariate polynomial
over K of total degree bounded by the degree of a and coefficients of bit length
bounded by the logarithmic height of V (a) viewed as an arithmetic variety.

• Q(a) is O
(
�(a) deg(

√
a)

(
(n + 1)2 deg(a) + k

)3) × TS(n, τ, �Θ,D).

Proof. From Theorem 17, we know that the reduced Gröbner basis of the pri-
mary component q can be computed in a number of arithmetic operations in K
bounded by

O
(
�(q)

(
(n + 1)2 deg(q) + k

)3) × TS(n, τ, �Θ,D).
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On the other hand, the number of primary components of a is bounded by the
number of associated primes of a and this number is at most deg(

√
a). �

Remark 19. The quantity PFC(a) aims to capture the complexity of factor-
ing a univariate polynomial which can be obtained as the instantiation of an
elimination polynomial related to a.

In the case K is a number field, since the old times of LLL, Trager’s method
and Landau-Miller norm method approach, we know that PFC(a) is bounded
by a polynomial in the degree of the field extension [K : Q], deg(a) and the log-
arithmic height of V (a). In our conditions, the less precise quantity could be the
logarithmic height of V (a). Bézout Inequality (see [17,36]) and the Arithmetic
Bézout Inequality (see e.g., [3,25,27,29–32], or the references in [12,28]) imply
the following upper bounds for deg(a) and the logarithmic height of V (a):

deg(a) ≤ dn−dim(a), ht(V (a)) ≤ O(dn−dim(a)(h + n log(d)))

where ht(V (a)) is equal to ht(a) and h is a bound for the bit length of coeffi-
cients of the fi’s. Hence, in this case PFC(a) is bounded by a polynomial in
[K : Q], dn−dim(a), n and h Note that in the case K = Q, in [2, Corollary 5.3]
an algorithm is presented for factoring a polynomial f ∈ Q[X] within the bit
complexity O(r8 + r6p2) where r = deg(f) and p = log(||f ||2). Hence, in this
case and under our hypothesis, PFC(a) is bounded by a quantity which is a
polynomial of order:

PFC(a) ≤
(
dn−dim(a)nh

)O(1)

.

Remark 20. The same type of statement holds for a perfect field with an efficient
univariate factorization algorithm. In the case of finite fields we have to add the
phrase “with enough elements”, in order to have efficient probabilistic non-zero
polynomial identity tests (as those in [16,33,39]), for polynomials with degrees
bounded by deg(a). Note that in the case K is a finite field, as it is known in the
literature of the topic, the number of arithmetic operations in the ground field
K of deterministic factorization of univariate polynomials (and, hence, PFC(a))
is bounded by a polynomial in deg(a) and in the characteristic of the field. If
we admit probabilistic algorithms, the quantity PFC(a) would be bounded by
a polynomial in deg(a) ≤ dn−dim(a) and the logarithm of the field cardinality.
See the survey [37] for more detailed references.

Remark 21. From the estimation of TS(n, τ, �Θ,D) in Remark 6, it holds Q(a) ≤
k3dO(n2). Our insistence to exhibit an accurate bound for Q(a) comes from our
interest to analyze whether Q(a) can be of order

(
dn−dim(a)

)O(1)
= dO(n). From

our study, we conclude that this bound can be achieved provided that there exist
methods to compute S-polynomials faster than those cited in Remark 6.

Corollary 22. The same bound presented in Corollary 18 holds for the number
of arithmetic operations in K to compute the reduced Gröbner basis for a.
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Proof. In [19, page 232], it has been shown that by computing the reduced
Gröbner bases of the primary components of a and by applying a variant of the
FGLM algorithm [11] one is able to construct the reduced Gröbner basis for a.
Note that, in this variant of the FGLM algorithm, we shall consider the vectors of
size at most deg(a) and therefore the FGLM cost would be O(ndeg(a)3) ≤ Q(a),
see [11, Proposition 4.1]. �

4 Complexity of Computing the Degree of an Ideal

In this section, we give an algorithm to compute the degree of an ideal. Then,
after stating some required preliminaries, we provide the complexity analysis of
this algorithm (see Theorem 23).

Let K be an algebraically closed field with efficient factorization of univari-
ate polynomials. Let a = (f1, . . . , fk) ⊂ K[X] be an equidimensional1 ideal of
dimension r. In [15], it has been shown that one is able to choose generic linear
polynomials �1, . . . , �r so that the ideal a + (�1, . . . , �r) is zero-dimensional and
the sum of the degrees of all primary components of this ideal is defined to be the
degree of a. On the other hand, in [13], it has been shown that by a generic linear
change of coordinates

√
a is transformed to normal X1-position. Thus, we may

choose generic linear polynomials �1, . . . , �n such that b = a+(�1, . . . , �n) is zero-
dimensional and

√
b is in normal X1-position. Based on the results presented in

Section 3 we give the next probabilistic algorithm to compute deg(a).

Algorithm 3. Degree

Input: A finite generating set F of an equidimensional a of dimension r
Output: deg(a)

choose generic linear polynomials �1, . . . , �n ∈ K[X1, . . . , Xn]
compute a Kronecker description of V (

√
b) where b = a + (�1, . . . , �n)

factor the univariate minimal equation of the chosen primitive element of the residue
ring K[V (b)] := K[X1, . . . , Xn]/

√
b.

compute a Kronecker description of each of the associated prime p of b.
compute deg(q), for every primary component q of b.
return

∑

q deg(q) where q is a primary component of the ideal b

It is worth noting that different approaches have been developed in liter-
ature to compute primary components of a zero-dimensional ideal generated
by g1, . . . , gs. For example, we can point out the method of Kronecker solver
introduced by Giusti et al. [14] (see also [8,10,24]). In this approach, we shall
require several assumptions: gi for 1 < i ≤ n forms a non-zero divisor in
K[X]/(g1, . . . , gi−1). In addition, we shall perform a linear change of variables

1 That is all isolated primes of a share the same dimension. Note that, in general, an
equidimensional is not unmixed. A proper ideal is said to be unmixed if its dimension
is equal to the dimension of every associated prime of the ideal.
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so that the 12 conditions mentioned in [10, page 127] are satisfied. Under these
assumptions, an efficient method, without the use of Gröbner bases, is given
to compute Kronecker representations for all the primary components of the
ideal. Now, let K be of characteristic zero, di denote the degree of gi so that
d1 ≥ · · · ≥ ds and let d = d1 · · · dn. Then, in [9] an algorithm has been proposed
for these computations within the arithmetic complexity Õ(d11 + (L + ns)d6)
where g1, . . . , gs are given by a straight-line program of size L. As a consequence
of Corollary 22, we obtain the main result of this section.

Theorem 23. Algorithm 3 is a (Monte Carlo) probabilistic algorithm such that
for every input equidimensional ideal a ⊂ R, given by a system of generators F =
{f1, . . . , fk} of degree at most d and coefficients of bit length at most h, outputs
the degree deg(a). The total number of arithmetic field operations performed by
this algorithm is bounded by the sum of two quantities depending on the input
ideal Kron(a)+PFC(a)+Q(a) where Kron(a) denotes the number of arithmetic
operations in K to compute the Kronecker description for

√
a.
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Abstract. Stationary motions of a system of two connected rigid bo-
dies in a constant gravity field are studied. With the help of computer
algebra tools, we construct the symbolic characteristic function of the
system and use it as a starting point for deriving the equations of motion.
Stationary solutions of the equations which correspond to permanent
rotations of the system are found and their stability in the sense of
Lyapunov is investigated. The computer algebra system Mathematica
and the software package developed on its basis are applied to solve the
problems under study.

1 Introduction

Systems of connected rigid bodies are widely used in designing complicated tech-
nical devices and instruments as their models to study the dynamical properties
of these objects. In particular, concerns spacecraft, platform mechanisms, indus-
trial robots, and etc. By now there are many publications devoted to the mod-
elling and analysis of the dynamics of connected rigid bodies, because this area
of research has been actively developing since the middle of the last century (see,
e.g., [1–3]). From recent works, we mention [4–6]. Nevertheless, in the dynamics
of connected rigid bodies there exist unresolved problems so far. Particularly
it concerns the qualitative analysis of such systems. As a rule, the systems are
multiparametric, depend on many variables, and their symbolic analysis requires
bulky computations. Trying to simplify the systems for the purpose of their qual-
itative analysis, one imposes constraints on the geometry of masses of the bodies,
the points of their connection, etc. We consider the problem in more general for-
mulation. The motion of a system of two rigid asymmetric bodies linked together
by an ideal spherical hinge in a constant gravity field is studied. The attachment
point does not lie on the principal inertia axes of one of the bodies. For the
given mechanical system, we find and analyze stationary motions by means of
computer algebra methods as well as the software package LinModel.m written
in the language of the computer algebra system (CAS) Mathematica [7]. This
package is used for obtaining the symbolic equations of motion of the system.
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Fig. 1. Bodies system.

Constructing the equations of motion is based on the Lagrangian formalism.
First, using a geometrical description of a mechanical system, the package com-
putes its symbolic characteristic function – the Lagrange function. At the next
step, this function is used as a starting point for deriving the equations of motion.
Then the equations are analyzed. We find their solutions possessing the following
property: the first integrals of the problem take stationary values on them. Such
solutions are called stationary. In our work, we restrict ourselves to the solutions
corresponding to permanent rotations of the system. The Lyapunov stability of
the solutions is investigated. The energy integral and other first integrals of the
equations of motion are used to obtain sufficient conditions of their stability.

The paper is organized as follows. In Sect. 2 and 3, deriving the Lagrange
function and the equations of motion are described. In Sect. 4–6, we find the
stationary solutions and invariant manifolds (IMs) for the equations. In Sect. 7,
the stability of the stationary solutions is analyzed. Finally, we give a conclusion
in Sect. 8.

2 Constructing the Lagrange Function

The motion of the system of two rigid bodies S1 and S2 (Fig. 1) in a constant
gravity field is considered. The first of them has the fixed point O1. The bodies
are linked together by the ideal spherical hinge O2.

The following coordinate systems are introduced to describe the motion
of the mechanical system: the inertial O1XY Z (its Z axis with the unit vec-
tor ν is directed vertically upwards), the moving frames O1x1y1z1 and O2x2y2z2
attached rigidly to the bodies S1 and S2, respectively. The xi, yi, zi (i = 1, 2)
axes are directed along the principal inertia axes of the bodies. The centers of
masses c1 and c2 correspondingly lie on the O1z1 and O2z2 axes. The positions
of O1x1y1z1 with respect to O1XY Z and O2x2y2z2 with respect to O1x1y1z1
are defined by Euler’s angles ψ1, θ1, ϕ1 and ψ2, θ2, ϕ2.
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The geometrical description of the above mechanical system for the Math-
ematica package LinModel.m is given below. It is used as input data by the
package to construct the Lagrange function of the system.
1. The general system data:

the number of the bodies in the system = 2,
the direction of gravity = − Z.

The latter means that the direction of gravity is opposite to the O1Z axis.
2. The description of motion of the body S1 with respect to O1XY Z:

mass = m1,
r0O1

= {0, 0, 0},
r1c1 = {0, 0, c1},
v0
O1

= {0, 0, 0},
rotation axes of the body = {3, 1, 3},
rotation angles = {ψ1, θ1, ϕ1},
JO1 = {{A1, 0, 0}, {0, B1, 0}, {0, 0, C1}}.

3. The description of motion of the body S2 with respect to O1x1y1z1:

mass = m2,
r1O2

= {s1, s2, s3},
r2c2 = {0, 0, c2},
v1
O2

= {0, 0, 0},
rotation axes of the body = {3, 1, 3},
rotation angles = {ψ2, θ2, ϕ2},
JO2 = {{A2, 0, 0}, {0, B2, 0}, {0, 0, C2}}.

Here m1,m2 are the masses of the bodies, r0O1
, r1O2

are the radius vectors of the
points O1, O2 in the coordinate systems O1XY Z and O1x1y1z1, respectively;
v0
O1

, v1
O2

are the vectors of linear velocities of the points O1, O2 in the projec-
tions onto the axes of O1XY Z and O1x1y1z1; Ai, Bi, Ci are the principal inertia
moments of the bodies (from now and further i = 1, 2); rici are the radius vectors
of the point ci in the frame Oixiyizi; JOi is the inertia tensor of the body Si

with respect to the point Oi in the frame Oixiyizi.
The above description encoded in the language of the CAS Mathematica is

placed by the user in a file. LinModel reads it from the file and computes for the
body Si its absolute angular velocity ωi, the absolute linear velocity vOi

of the
point Oi, and the kinetic energy of the body by the formula:

2Ti = miv2
Oi

+ ωi · JOi · ωi + 2mi[vOi
× ωi] · rici .

The kinetic energy of the system is defined as follows: T =
∑2

i=1 Ti.
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The force function of the system and each body Si in a constant gravity field
are calculated by the formulae:

U =
2∑

i=1

Ui, Ui = −mig(ν · r0ci) + const,

where g is the acceleration of gravity, r0c1 = r0O1
+ r1c1 , r

0
c2 = r0O1

+ r1O2
+ r2c2 .

As a result, LinModel returns the kinetic energy

2T = (A1p
2
1 + B1q

2
1 + C1r

2
1) + A2(b11p1 + p2 + b12q1 + b13r1)2

+ B2(b21p1 + b22q1 + q2 + b23r1)2 + C2(b31p1 + b32q1 + b33r1 + r2)2

+ m2 [(s2p1 − s1q1)2 + (s1r1 − s3p1)2 + (s3q1 − s2r1)2]
]

+ c2m2

[
(b21p1 + b22q1 + q2 + b23r1) [b13 (s2p1 − s1q1) + b12(s1r1 − s3p1)

+ b11(s3q1 − s2r1)] − (b11p1 + p2 + b12q1 + b13r1)(b23 (s2p1 − s1q1)
+ b22(s1r1 − s3p1) + b21(s3q1 − s2r1)),

the force function

U = −g [a33c1m1 + m2[a13 (c2b31 + s1) + a23 (c2b32 + s2) + a33 (c2b33 + s3)] ],

and the Lagrange function L = T + U of the mechanical system.
Here pi, qi, ri are the projections of the angular velocity vector of the body

Si onto the axes of Oixiyizi:

pi = ψ̇i sin ϕi sin θi + θ̇i cos ϕi,

qi = ψ̇i cos ϕi sin θi − θ̇i sin ϕi,

ri = ϕ̇i + ψ̇i cos θi,

akl, bkl are the elements of cosine matrices of angles between the axes of O1XY Z
and O1x1y1z1, and O1x1y1z1 and O2x2y2z2, respectively. These are related to
Euler’s angles ψi, θi, and ϕi as follows:

akl = ζ
(1)
kl , bkl = ζ

(2)
kl (k, l = 1, . . . , 3), where

ζ
(i)
11 = cos ϕi cos ψi − cos θi sin ϕi sin ψi,

ζ
(i)
12 = cos ψi cos θi sin ϕi + cos ϕi sin ψi, ζ

(i)
13 = sin ϕi sin θi,

ζ
(i)
21 = − cos ψi sin ϕi − cos ϕi cos θi sin ψi,

ζ
(i)
22 = cos ϕi cos ψi cos θi − sin ϕi sin ψi,

ζ
(i)
23 = cos ϕi sin θi, ζ

(i)
31 = sinψi sin θi, ζ

(i)
32 = − cos ψi sin θi,

ζ
(i)
33 = cos θi (i = 1, 2).

As one can see, the kinetic energy and the force function are represented
in algebraic form. Such representation is more suitable from the viewpoint of
symbolic computations.
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3 Deriving the Equations of Motion

Using the Lagrange function L as input data, LinModel produces the equations
of motion of the system under study by the formulae [8]:

d

dt

( ∂L

∂ω(i)

)
=

∂L

∂ω(i)
× ω(i) +

∂L

∂α(i)
× α(i) +

∂L

∂β(i)
× β(i) +

∂L

∂γ(i)
× γ(i),

α̇(i) = α(i) × ω(i), β̇
(i)

= β(i) × ω(i), γ̇(i) = γ(i) × ω(i)(i = 1, 2).

Here ω(i) = (pi, qi, ri), αT (1) = (a11, a21, a31), βT (1)
= (a12, a22, a32), γT (1) =

(a13, a23, a33), αT (2)= (b11, b21, b31), βT (2)
=(b12, b22, b32), γT (2)= (b13, b23, b33).

The resulting equations are written as

(A1 + m2(s22 + s23)) ṗ1 + (A2b11 + c2m2(b22s3 − b23s2)) ṗ2
+(B2b21 + c2m2(b13s2 − b12s3)) q̇2 − (A2 − B2)b21(b21ṗ1 + b22q̇1 + b23ṙ1)
−b31(A2−C2)(b31ṗ1 + b32q̇1 + b33ṙ1) − m2s1(s2q̇1 + s3ṙ1) + A2(V7ṗ1 + V10q̇1
+V11ṙ1) + c2m2[(b13b21−b11b23)(2s2ṗ1−s1q̇1)+(b11b22−b12b21)(2s3ṗ1−s1ṙ1)
+(b13b22−b12b23)(s2q̇1 + s3ṙ1)]+b31C2ṙ2+A2[ q1 (V11p1−V8r1)
+r1(V9q1−V10p1) + V12(q21 − r21)] + A2p2(b13q1−b12r1) + B2q2(b23q1−b22r1)
+C2r2(b33q1−b32r1) + (C1 − B1) q1r1 − (A2 − C2)[(b33q1 + b11q2 − b32r1)
×(b32q1+b33r1) + b31(q2(b11p1+b12q1) + p1(b33q1+b11q2)+r1(b13q2−b32p1))
−b21p2r2]−(A2−B2)[(b23q1−b22r1)(b21p1+b22q1+b23r1)−r2(b21(b11p1
+b12q1) + b11(b21p1 + b22q1) + r1(b13b21 + b11b23)) + b31p2q2]
+(B2 − C2)[b31p2(b21p1 + b22q1 + b23r1) + b21p2(b31p1 + b32q1 + b33r1)
−b11q2r2] + c2m2

[
(b31(b12p2 + b22q2) − b32(b11p2 + b21q2))(r1s1 − 2p1s3)

−(b31(b13p2 + b23q2)−b33(b11p2 + b21q2))(q1s1−2p1s2) + (b32(b13p2 + b23q2)
−b33(b12p2 + b22q2) + b21p2)(q1s2 + r1s3)
+(b13b21 − b11b23)(r1(p1s1 + 2q1s2) + (r21 − q21)s3)
+(b12b21 − b11b22)(q1(p1s1 + 2r1s3) + (q21 − r21)s2)
−(b11q2(q1s2 + r1s3) + q1s1(b22p2 − b12q2) + r2s3(b12p2 + b22q2))
+(b12b23 − b13b22)p1(r1s2 − q1s3) − (b33s2 − b32s3)(p22 + q22)
+((b13q2−b23p2) r1s1+(b13p2+b23q2) r2s2)

]
+m2(r1s2−q1s3)(p1s1+q1s2

+r1s3) − g[a23c1m1 + m2(c2(a33b32 − a23b33) + (a33s2 − a23s3))] = 0,
(B1 + m2(s21 + s23)) q̇1 + (A2b12 + c2m2(b23s1 − b21s3)) ṗ2
+(B2b22 + c2m2(b11s3 − b13s1)) q̇2 − (A2 − B2)b22(b21ṗ1 + b22q̇1 + b23ṙ1)
−b32(A2−C2)(b31ṗ1 + b32q̇1 + b33ṙ1)−m2s2(s1ṗ1 + s3ṙ1) + A2(V10ṗ1 + V8q̇1
+V12ṙ1)+c2m2[(b13b22−b12b23)(s2ṗ1−2s1q̇1)+(b11b22−b12b21)(2s3q̇1−s2ṙ1)
−(b13b21−b11b23)(s1ṗ1+s3ṙ1)]+b32C2ṙ2+A2[ p1(V7r1−V12q1) + r1(V10q1
−V9p1) + V11(r21 − p21)] + A2p2(b11r1 − b13p1) + B2q2(b21r1 − b23p1)
+C2r2(b31r1−b33p1) + (A1−C1)p1r1 + (B2−C2)[b22p2(b31p1+b32q1+b33r1)
+b32p2(b21p1 + b22q1 + b23r1) − b12q2r2] − (A2 − C2)[(b12q2 + b31r1 − b33p1)
×(b31p1+b32q1+b33r1)+b32q2(b11p1+b13r1) + b12q2((b32q1 + b33r1) − b33r1)
−b22p2r2] + (A2 − B2)[(b23p1 − b21r1)(b21p1 + b22q1 + b23r1) + r2 (b12(b21p1
+b22q1) + b22(b11p1 + b13r1) + b12(b22q1 + b23r1)) − b32p2q2]

(1)
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+c2m2

[
[b31(b12p2 + b22q2)− b32(b11p2 + b21q2)](r1s2 − 2q1s3)

−[b32(b13p2 + b23q2)− b33(b12p2 + b22q2)] (2q1s1 − p1s2)
−[(b13p2 + b23q2) r2s1 + (b23p2 − b13q2) r1s2]
+(b11b23 − b13b21) q1(r1s1 − p1s3) + (p22 + q22)(b33s1 − b31s3)
+[b33(b11p2 + b21q2)− b31(b13p2 + b23q2) + b22p2 − b12q2](p1s1 + r1s3)
+[(b11q2 − b21p2) p1s2 + (b11p2 + b21q2) r2s3]
+(b12b23 − b13b22)[p1(p1s3 − 2r1s1)− r1(q1s2 + r1s3)]

−(b12b21 − b11b22)[(p
2
1 − r21)s1 + p1(q1s2 + 2r1s3)]

]

+m2[p1s3(q1s2 + r1s3)− r1s1(p1s1 + q1s2) + (p21 − r21)s1s3]
+g[m2(a13s3 − a33s1) + c1m1a13 + c2m2(a13b33 − a33b31)] = 0,
(C1 +m2(s

2
1 + s22)) ṙ1 + (A2b13 + c2m2(b21s2 − b22s1)) ṗ2

+(B2b23 + c2m2(b12s1 − b11s2)) q̇2 − (A2 −B2)b23(b21ṗ1 + b22q̇1 + b23ṙ1)
−(A2−C2)b33(b31ṗ1+b32q̇1 + b33ṙ1)−m2s3(s1ṗ1+s2q̇1)+A2(V11ṗ1+V12q̇1
+V9ṙ1)+c2m2[(b12b21−b11b22)(s1ṗ1+s2q̇1)+(b13b22−b12b23)(s3ṗ1−2s1ṙ1)
+(b11b23 − b13b21)(s3q̇1 − 2s2ṙ1)] + b33C2ṙ2 +A2[ p1(V12r1 − V7q1)
+q1(V8p1 − V11r1) + V10(p

2
1 − q21)]− (A1 −B1)p1q1

+A2(b12p1 − b11q1) p2 +B2(b22p1 − b21q1) q2 + C2(b32p1 − b31q1) r2
−(A2 − C2)[(b31p1 + b32q1)(b32p1 − b31q1 + b13q2) + b33((b32p1 − b31q1
+b13q2) r1 + (b11p1 + b12q1 + b13r1) q2)− b23p2r2]
+(B2 − C2)[b33p2(b21p1 + b22q1 + b23r1) + b23p2(b31p1 + b32q1 + b33r1)
−b13q2r2] + (A2 −B2)[(b21q1 − b22p1)(b21p1 + b22q1 + b23r1)
+r2(b23(b11p1+b12q1) + b13(b21p1+b23r1)+b13(b22q1+b23r1))−b33p2q2]

−c2m2

[
(p22 + q22)(b32s1 − b31s2) + (b11b22 − b12b21)r1(q1s1 − p1s2)

+[(b23 + b12b31 − b11b32) p2 − (b13 − b22b31 + b21b32) q2](p1s1 + q1s2)
+[(b12b33 − b13b32) p2 + (b22b33 − b23b32) q2](2r1s1 − p1s3)
+[(b13b31 − b33b11) p2 + (b23b31 − b33b21) q2](2r1s2 − q1s3)
−[(b21s2 − b22s1) q2r2 + (b21p1 + b22q1) p2s3]
+[(b12s1 − b11s2) p2r2 + (b11p1 + b12q1) q2s3]
+(b13b22 − b12b23)[p1(p1s2 − 2q1s1)− q1(q1s2 + r1s3)]

−(b13b21 − b11b23)[(p
2
1 − q21)s1 + p1(2q1s2 + r1s3)]

]

+m2[(q1s1 − p1s2)(p1s1 + q1s2 + r1s3) + g(c2(a23b31 − a13b32)
+(a23s1 − a13s2))] = 0,
A2(b11ṗ1 + ṗ2 + b12q̇1 + b13ṙ1) + c2m2[b23(s1q̇1 − s2ṗ1) + b22(s3ṗ1 − s1ṙ1)

+b21(s2ṙ1 − s3q̇1)]− (A2 +B2 − C2)(b31p1q2 + b32q1q2 + b33q2r1)
+(C2 −B2)[(b21p1 + b22q1 + b23r1)(b31p1 + b32q1 + b33r1) + q2r2]
+(A2 −B2 + C2)(b21p1r2 + b22q1r2 + b23r1r2)

+c2m2

[
(b12b31−b11b32)((p

2
1 + q21)s3 − r1(p1s1 + q1s2)) + (b13b32−b12b33)

×(q1(q1s1 − p1s2) + r1(r1s1 − p1s3))− (b13b31 − b11b33)(p1(p1s2 − q1s1)

+r1(r1s2 − q1s3))− g(a13b21 + a23b22 + a33b23)
]
= 0,

B2(b21ṗ1 + b22q̇1 + q̇2 + b23ṙ1) + c2m2[b13 (s2ṗ1−s1q̇1) + b12(s1ṙ1−s3ṗ1)
+b11(s3q̇1 − s2ṙ1)] + (A2 +B2 − C2)p2 (b31p1 + b32q1 + b33r1)
+(A2 − C2) [(b11p1 + b12q1 + b13r1)(b31p1 + b32q1 + b33r1) + p2r2]
+(A2 −B2 − C2)r2 (b11p1 + b12q1 + b13r1)

+c2m2

[
(b22b31−b21b32) ((p

2
1 + q21)s3 − r1(p1s1 + q1s2))−(b23b31−b21b33)

×(p1(p1s2 − q1s1) + r1(r1s2 − q1s3)) + (b23b32 − b22b33)((q
2
1 + r21)s1

−p1(q1s2 + r1s3)) + g(a13b11 + a23b12 + a33b13)
]
= 0,
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C2(b31ṗ1 + b32q̇1 + b33ṙ1 + ṙ2) − (A2 − B2 + C2)p2(b21p1 + b22q1
+b23r1) − (A2 − B2 − C2) q2(b11p1 + b12q1 + b13r1)
−(A2 − B2)[ (b11p1 + b12q1 + b13r1)(b21p1 + b22q1 + b23r1) + p2q2] = 0,

ȧ11 = a21r1 − a31q1, ȧ12 = a22r1 − a32q1, ȧ13 = a23r1 − a33q1,
ȧ21 = a31p1 − a11r1, ȧ22 = a32p1 − a12r1, ȧ23 = a33p1 − a13r1,
ȧ31 = a11q1 − a21p1, ȧ32 = a12q1 − a22p1, ȧ33 = a13q1 − a23p1,

(2)

ḃ11 = b21r1 − b31q1, ḃ12 = b22r1 − b32q1, ḃ13 = b23r1 − b33q1,

ḃ21 = b31p1 − b11r1, ḃ22 = b32p1 − b12r1, ḃ23 = b33p1 − b13r1,

ḃ31 = b11q1 − b21p1, ḃ32 = b12q1 − b22p1, ḃ33 = b13q1 − b23p1.

(3)

Equations (1)–(3) have the following first integrals. The integrals of energy
and kinetic moment:

H = T − U = h,

V =
∂L

∂ω(1)
· γ(1) = a13

[
A1p1 + A2b11p2 + B2b21q2 + b31C2r2

−(A2 − B2)b21(b21p1 + b22q1 + b23r1) − b31(A2 − C2)(b31p1 + b32q1 + b33r1)
+c2m2[(b11b23 − b13b21)(q1s1 − 2p1s2) + (b12b21 − b11b22)(r1s1 − 2p1s3)
+((b13q2 − b23p2)s2 + (b22p2 − b12q2)s3) + (b13b22 − b12b23)(q1s2 + r1s3)]

+m2(p1(s22 + s23) − s1(q1s2 + r1s3)) + A2(V7p1 + V10q1 + V11r1)
]

+a23

[
A2b12p2 + B1q1 + B2b22q2 + b32C2r2

−(A2 − B2)b22(b21p1 + b22q1 + b23r1) − b32(A2 − C2)(b31p1 + b32q1 + b33r1)
+c2m2[(b12b23 − b13b22)(2q1s1 − p1s2) + (b12b21 − b11b22)(r1s2 − 2q1s3)
+((b23p2 − b13q2)s1 − b21p2s3 + b11q2s3) − (b13b21 − b11b23)(p1s1 + r1s3)]

+m2(q1(s21 + s23) − s2(p1s1 + r1s3)) + A2[V10p1 + V8q1 + V12r1]
]

+a33

[
A2b13p2 + B2b23q2 + b33C2r2 + C1r1 (4)

−(A2 − B2)b23(b21p1 + b22q1 + b23r1) − b33(A2 − C2)(b31p1 + b32q1 + b33r1)
+c2m2[(b12b21 − b11b22)(p1s1 + q1s2) + ((b12q2 − b22p2)s1 + (b21p2 − b11q2)s2)
+(b12b23 − b13b22)(2r1s1 − p1s3) + (b13b21 − b11b23)(2r1s2 − q1s3)]
+m2(r1(s21 + s22) − (p1s1 + q1s2)s3) + A2(V11p1 + V12q1 + V9r1)] = c,

where h and c are arbitrary constants.
The geometric integrals:

V1 = a2
11 + a2

21 + a2
31 = 1, V7 = b211 + b221 + b231 = 1,

V2 = a2
12 + a2

22 + a2
32 = 1, V8 = b212 + b222 + b232 = 1,

V3 = a2
13 + a2

23 + a2
33 = 1, V9 = b213 + b223 + b233 = 1,

V4 = a11a12 + a21a22 + a31a32 = 0, V10 = b11b12 + b21b22 + b31b32 = 0,
V5 = a11a13 + a21a23 + a31a33 = 0, V11 = b11b13 + b21b23 + b31b33 = 0,
V6 = a12a13 + a22a23 + a32a33 = 0, V12 = b12b13 + b22b23 + b32b33 = 0.

(5)
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For brevity, the denotations Vj (j = 7, . . . , 12) are used in (1), (4) instead of
the corresponding expressions.

4 Invariant Manifolds of the Equations of Motion

Using geometric integrals (5), we can eliminate some variables from the equations
of motion and the rest of the integrals.

The relations

V1 − 1 = 0, V2 − 1 = 0, V3 − 1 = 0, V4 = 0, V5 = 0, V6 = 0 (6)

define the IM of codimension 6 for differential equations (2).
Neither equations (1) nor integrals (4) contain the variables a11, a21, a31, a12,

a22, a32. So, these equations can be considered as differential equations on IM (6).
The relations

V10 = 0, V11 = 0, V12 = 0 (7)

define the IM of codimension 3 for differential equations (3).
Eliminating b12, b23, and b33 from (3) with the help of (7), we obtain the

differential equations on IM (7). These have two IMs of codimension 1:

b13 ∓ b22b31 ± b21b32 = 0.

Two IMs of codimension 4 correspond to them in the original phase space:

b11b12 + b21b22 + b31b32 = 0, b11b23 − b21b22b31 − (b211 + b231)b32 = 0,

(b211 + b221)b22 + b21b31b32 + b11b33 = 0, b13 − b22b31 + b21b32 = 0 (8)

and

b11b12 + b21b22 + b31b32 = 0, b11b23 − b21b22b31 − (b211 + b231)b32 = 0,

(b211 + b221)b22 + b21b31b32 + b11b33 = 0, b13 + b22b31 − b21b32 = 0. (9)

Equations (6), (8) and (6), (9) determine two IMs of codimension 10 of dif-
ferential equations (2) and (3). The equations of motion (1)–(3) are further
analyzed on IM (6), (8).

5 Stationary Solutions of Differential Equations on the
IM

Differential equations (2), (3) and their first integrals on IM (6), (8) are given by

ȧ13 = a23r1 − a33q1, ȧ23 = a33p1 − a13r1, ȧ33 = a13q1 − a23p1,

ḃ11 = −b31q2 + b21r2, ḃ21 = b31p2 − b11r2, ḃ31 = −b21p2 + b11q2,

ḃ22 = b32p2 +
1

b11
[(b21b22 + b31b32) r2],

ḃ32 = −(b22p2 +
1

b11
[(b21b22 + b31b32) q2]). (10)



274 V. Irtegov and T. Titorenko

Ṽ1 = a2
13 + a2

23 + a2
33 = 1, Ṽ2 = b211 + b221 + b231 = 1,

Ṽ3 = b222 + b232 +
1

b211
(b21b22 + b31b32)2 = 1. (11)

These relations have been derived from equations (2), (3) and integrals (5) by
elimination of a11, a21, a31, a12, a22, a32, b12, b13, b23, b33 from them with the help
of (6), (8).

Having eliminated b12, b13, b23, b33 from differential equations (1) and inte-
grals (4) with the help of (8), we obtain the equations written on IM (8).

Let us consider the problem of the existence of the solutions like

pi = p0i , qi = q0i , ri = r0i , ak3 = a0
k3, bk1 = b0k1, b22 = b022, b32 = b032 (12)

(i = 1, 2; k = 1, 2, 3)

for the differential equations on IM (6), (8). Here p0i , q
0
i , r

0
i , a

0
k3, b

0
k1, b

0
22, b032 are

some constants.
To solve this problem, we substitute (12) into equations (10) and relations

Ṽ2 = 1, Ṽ3 = 1 (11). These are satisfied, e.g., under the following values of the
variables:

p1 = p01, q1 = q01 , r1 = r01, p2 = q2 = r2 = 0, a13 =
a33p

0
1

r01
,

a23 =
a33q

0
1

r01
, b11 = 1, b21 = 0, b22 = 0, b31 = 0, b32 = 1.

Next the above values are substituted into differential equations (1) written
on the IM under consideration. The equations take the form:

(B2 − B1 + C1 − C2) q01r
0
1
2 + m2r

0
1 (s2r01 − s3q

0
1)(s1p

0
1 + s2q

0
1 + s3r

0
1)

−c2m2r
0
1 [(s1p01 + 2s2q

0
1) r01 + s3(r01

2 − q01
2)] + a33g[m2 ((c2 + s2)r01 − s3q

0
1)

−c1m1q
0
1 ] = 0,

(A1 + A2 − B2 − C1) p01r
0
1
2 + m2r

0
1(s3p

0
1 − s1r

0
1)(s1p

0
1 + s2q

0
1 + s3r

0
1)

+c2m2q
0
1r

0
1(s1r

0
1 − s3p

0
1) + a33g[c1m1p

0
1 − m2(s1r01 + s3p

0
1)] = 0,

(B1 + C2 − A1 − A2)p01q
0
1r

0
1 + m2r

0
1(s1q

0
1 − s2p

0
1)(s1p

0
1 + s2q

0
1 + s3r

0
1)

+c2m2r
0
1[s1(p

0
1
2 − q01

2) + (2s2q
0
1 + s3r

0
1) p01] − a33m2g[(c2 + s2)p01 − s1q

0
1 ] = 0,

(C2 − B2)q01r
0
1 + c2m2 [r01(s1p

0
1 + s2q

0
1) − s3(p01

2 + q01
2)] − a33c2m2g = 0,

(A2 − C2) p01q
0
1r

0
1 + c2m2r

0
1[s1q

0
1 (q01 − s2p

0
1) + (s1r01 − s3p

0
1) r01]

+a33c2m2gp01 = 0, −(A2 − B2)p01r
0
1 = 0.

(13)

Now, using the Mathematica built-in function GroebnerBasis, we compute
a lexicographical basis with respect to, e.g., s1, s2, c1, p

0
1 for the polynomials

of system (13). It enables us to obtain both the values for p01, q
0
1 , r

0
1 and the

conditions of existence of the desired solution.
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As a result, we have the following system:

p01 = 0,

((B2 − C2)2 − (B1 + B2 − C1) c22m2) q01
2
r01

2 + c2m2q
0
1r

0
1 [c2C2q

0
1r

0
1

+s3(B2 − C2 − c22m2)(q01
2 + r01

2)] + a33c2m2g [2c2m2ga33

−q01 (c1c2m1q
0
1 + (3 (C2 − B2) + c22m2) r01) + c2m2s3(q01

2 + r01
2)] = 0,

((C2 − B2) r01 + c2m2 (s2r01 − s3q
0
1)) q01 − c2m2g a33 = 0,

s1 = 0,

whence it follows:

p01 = 0, s1 = 0, s2 =
c2m2g a33 + q01 [(B2 − C2) r01 + c2m2s3q

0
1 ]

c2m2 q01r
0
1

,

c1 =
1

c22m1m2g a33q01
2

[
c2m2ga33 [2c2m2g a33 + [(3(B2−C2) − c22m2) q01r

0
1

+c2m2s3 (q01
2

+ r01
2
)]] + q01r

0
1 [((B2 − C2)2 + c22m2(C1 + C2 − B1

−B2)) q01r
0
1 − c2m2s3(C2 − B2 + c22m2)(q01

2
+ r01

2
)]
]
. (14)

Using the 3rd relation of (14) and setting q01 = r01, we find r01:

r01 = ±
√

c2m2g a33

z
, (15)

where z = C2 − B2 + c2m2(s2 − s3).
From Ṽ1 = 1 (11), taking into account the values for a13, a23, p

0
1, q

0
1 , r

0
1, we

have a33 = ±1/
√

2.
Thus, the following solutions for the differential equations on IM (6), (8) are

obtained:

p1 = 0, q1 = ±2−1/4

√
c2m2g

z1
, r1 = ±2−1/4

√
c2m2g

z1
, p2 = q2 = r2 = 0,

a13 = 0, a23 = − 1√
2
, a33 = − 1√

2
, b11 = 1, b21 = 0, b22 = 0, b31 = 0,

b32 = 1; (16)

p1 = 0, q1 = ±2−1/4

√
c2m2g

z2
, r1 = ±2−1/4

√
c2m2g

z2
, p2 = q2 = r2 = 0,

a13 = 0, a23 =
1√
2
, a33 =

1√
2
, b11 = 1, b21 = 0, b22 = 0, b31 = 0,

b32 = 1. (17)

Here z1 = B2 − C2 − c2m2(s2 − s3), z2 = −z1. The conditions for the solutions
to be real are z1 > 0 (z2 > 0).
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On substituting the above solutions into the differential equations under con-
sideration, these are satisfied under the following constraints on the parameters:

c1 =
1

m1(B2 − C2 + c2m2(s3 − s2))

[
m2((B2 − C2)(s2 − s3) + c2(B1 − C1

+2m2s2(s3 − s2) + c2m2(s2 + s3)))
]
, s1 = 0. (18)

Thus, the differential equations on IM (6), (8) have the solutions of type (12)
when their parameters satisfy conditions (18).

From a mechanical viewpoint, solutions (16), (17) correspond to the following
motion of the mechanical system under study: the body S1 rotates about an
immobile axis positioned in the body (in the plane O1y1z1) with the angular
velocity ω2 = ±(

√
2c2m2 g)/(B2 − C2 + c2m2(s3 − s2)), and the body S2 is at

rest relative to S1. As can be seen from (16) and (17), the body S1 has opposite
positions with respect to the coordinate system O1XY Z in these cases. The
motions of similar type for the symmetric bodies were studied in [3].

6 On Families of the Integrals Assuming Stationary
Values

Now we consider the problem of obtaining the families of integrals assuming
stationary values on solutions (16), (17). To this end, the linear combination
from the first integrals of the differential equations on IM (6), (8) is constructed:

2K = λ0H̃ − λ1Ṽ − λ2Ṽ1 − λ3Ṽ2 − λ4Ṽ3 (λi = const). (19)

Here H̃ and Ṽ are the integrals H and V (4) from which b12, b13, b23, and b33
have been eliminated with the help of (8); λi (i = 0, 1, . . . , 4) are the parameters
of the family of integrals K.

The necessary extremum conditions for K with respect to the phase variables
are written as

∂K

∂pi
= 0,

∂K

∂qi
= 0,

∂K

∂ri
= 0,

∂K

∂ak3
= 0,

∂K

∂bk1
= 0,

∂K

∂b22
= 0,

∂K

∂b32
= 0(i = 1, 2; k = 1, 2, 3).

Next, taking into account conditions (18), we substitute solutions (16) into
the above equations and find the constraints on λi under which the solutions
satisfy them:

λ2 = −2−1/2α2[(B1c2 + B2(c2 + s2) − s2(C2 + c2m2(c2 + s2))
+c2m2s3(2c2 + s3))]λ0, λ1 = ∓21/4

√
c2 αλ0,

λ3 = −2−3/2c2α
2(B2 + 2c2m2(s3 − s2))λ0,

λ4 = −2−1/2c2α
2(B2 + c2m2(s3 − s2))λ0,
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where α =
√

m2g/z1.
Having substituted the latter expressions into (19), we have:

2K1,2 = H̃ ± 21/4α
√

c2 Ṽ + 2−1/2α2(B1c2 + B2(c2 + s2)

−s2(C2 + c2m2(c2 + s2)) + c2m2s3(2c2m2 + s3))Ṽ1

+2−3/2α2c2(B2(Ṽ2 + 2Ṽ3) − 2c2m2(s2 − s3)(Ṽ2 + Ṽ3)). (20)

The integrals K1 and K2 assume stationary values, respectively, on the 1st
and 2nd solutions of (16). It is easy to verify by direct computations.

One can derive similarly the integrals K3 and K4 taking stationary values
on the 1st and 2nd solutions of (17):

2K3,4 = H̃ ± 21/4β
√

c2 Ṽ + 2−1/2β2(B1c2 + B2(c2 + s2)

−s2(C2 + c2m2(c2 + s2)) + c2m2s3(2c2m2 + s3))Ṽ1

+2−3/2β2c2(B2(Ṽ2 + 2Ṽ3) − 2c2m2(s2 − s3)(Ṽ2 + Ṽ3)),

where β =
√

m2g/z2.

7 On the Stability of Stationary Solutions

Let us investigate the stability of the solutions (16) by the Routh–Lyapunov
method [9]. To this end, the integrals K1 and K2 are used. We solve this problem
under the condition s2 = c2 to obtain the observable form of stability conditions.

Under the above restriction, the integrals K1 and K2 take the form

4K̃1,2 = 2H̃ ± 2
√

2 z̄Ṽ + 2 z̄2[B1 + 2B2 − C2 + m2(s23 − 2c2(c2 + s3))]Ṽ1

+z̄2[B2(Ṽ2 + 2Ṽ3) − 2c2m2(c2 − s3)(Ṽ2 + Ṽ3)], (21)

z̄ =
√

c2m2g/(21/4
√

B2 − C2 + c2m2(s3 − c2)).
For the equations of perturbed motion, the second variation of the inte-

gral K̃1 (K̃2) obtained in the neighborhood of the solution under study on the
linear manifold

δṼ1 = −
√

2(y2 + y3) = 0, δṼ2 = 2y4 = 0, δṼ3 = 2y8 = 0

can be written as δ2K̄1,2 = Q1 + Q2, where

4Q1 = A2y
2
10 + 2(A2 − c22m2) y10y9 + (A1 + A2 − m2(c22 − s23)) y2

9

±2
√

2(A2 − c22m2) z̄y1y10 ± 2
√

2[A1 + A2 − m2(c22 − s23)] z̄y1y9

+2[B1 + 2B2 − C2 + m2(2c2(s3 − c2) + s23)] z̄
2y2

1 − 2
√

2(A2 − B2)
×z̄2y1y5 − (A2 − B2) z̄2y2

5 − [A2 − B2 + 2c2m2(c2 − s3)] z̄2y2
7

+[
√

2c2gm2 − 2z̄2 (A2 − C2 − c2m2(c2 − s3))] y5y7 + 2[
√

2(C2 − A2)

+c2m2(g +
√

2(c2 + s3)z̄2)] z̄2y1y7, (22)
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4Q2 = (B1 + C2 + m2s
2
3) y2

11 + 2c2m2s3 y11y12 + B2 y2
12

+2(B2 − c22m2) y12y13 + (B2 + C1 − c22m2)y2
13 + 2C2y11y14 + C2y

2
14

±2
√

2(B1 + C2 + m2s
2
3) z̄y2y11 ∓ 2

√
2[B2 − c2m2(c2 + s3)] z̄y2y12

∓2
√

2(B2 + C1 − c22m2) z̄y2y13 ± 2
√

2C2 z̄y2y14 + 4(B1 + 2B2

−C2 + m2(2c2(s3 − c2) + s23)) z̄2y2
2 + (B2 − C2 + 2c2m2(s3 − c2)) z̄2y2

6

+2c2m2(2
√

2s3 z̄2 + g)y2y6. (23)

Here y1 = a13, y2 = a23 + 1√
2
, y3 = a33 + 1√

2
, y4 = b11 − 1, y5 = b21, y6 =

b22, y7 = b31, y8 = b32 − 1, y9 = p1, y10 = p2, y11 = q1 ∓ z̄, y12 = q2, y13 =
r1 ∓ z̄, y14 = r2 are the deviations from the unperturbed motion.

The conditions for the quadratic forms Q1 and Q2 to be positive definite are
sufficient for the stability of the solutions under consideration. According to the
Sylvester criterion, the conditions of positive definiteness for the quadratic form
Q1 are given by

Δ1 = A2 > 0,
Δ2 = A2(B2 − A2) z̄2 > 0,
Δ3 = (B2 − A2)[A1A2 + m2(A2(c22 + s23) − c42m2)] z̄2 > 0,
Δ4 = c2m2(c2 − s3)(A2 − B2)[A1A2 + m2(A2(c22 + s23) − c42m2)] z̄4 > 0,
Δ5 = c2m2(A2 − B2)[(A1 − B1 − B2 + C2 + 3c22m2)s3 − c2(A1 − B1

−B2 + C2 + c22m2)] [A1A2 + m2(A2(c22 + s23) − c42m2)]z̄6 > 0.

These are reduced to the equivalent system of inequalities by elementary trans-
formations:

A1A2 + m2(A2(c22 + s23) − c42m2) > 0,

c2 − s3
(A2 − B2) c2

> 0,
A1 − B1 − B2 + C2 + c22m2(c2−3s3)

c2−s3

A2 − B2
> 0. (24)

We obtain in a similar way the conditions for the quadratic form Q2 to be
positive definite:

B1B2 + m2(B2 − c22m2)s23 > 0,
B1(B2(C1 + c22m2) − c42m

2
2) + C1m2(B2 − c22m2)s23 > 0,

B2 − C2 − 2c22m2 + 2c2m2s3 > 0,
(B2 − C2 − 2c22m2 + 2c2m2s3)(B1 + 2B2 − C1 − 2C2 − 3c22m2 + m2s

2
3)

−c22m
2
2(c2 + s3)2 > 0.

(25)
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Taking into account the condition for solutions (16) to be real, we find that
inequalities (24) and (25) are consistent when the following constraints hold:

c2 > 0 and s3 ≥ 5c2 and
[
B1 + 2B2 + m2s

2
3 > C1 + 2C2 + c2m2(4c2 + s3)

and B1 + B2 +
2c32m2

c2 − s3
> A1 + C2 + 3c22m2 and C2 < B2 + c2m2(s3 − 3c2)

and
B2(c2 − s3)
c22(c2 − 3s3)

≤ m2 ≤ B2

c22

and
[(

B1 + B2 > C2 + m2

(c42m2

A2
+ s3

( 2c22
s3 − c2

− s3

))

and
(
A2 <

c42m2

c22 + s23
and A1 >

c42m
2
2

A2
− m2(c22 + s23)

))

or
( c42m2

c22 + s23
< A2 < B2 and B1 + B2 > C2 +

c22m2(c2 − 3s3)
c2 − s3

)]]
. (26)

The above constraints have been derived with Mathematica built-in function
Reduce. This function has produced a great deal of variants for the consistent
conditions. Only part of them is represented here for space reasons. From the
presented conditions, it follows that the motions under study are stable when
the attachment point O2 lies above the center of mass of the body S2, and the
parameters of the bodies satisfy constraints (26).

Similar sufficient conditions have been obtained for solutions (17): c2 < 0
and s3 ≤ 5c2 and [. . .] (here the expressions in the square brackets are the same
as (26)). Whence we conclude: the motions under study are stable when the
attachment point of the bodies lies below the center of mass of the body S2.

Sufficient stability conditions are usually compared with the corresponding
necessary ones. The sufficient conditions are considered good enough when they
correspond closely to the necessary ones. In the case of the mechanical system
under study, it is another problem for our future work. Here we restrict ourselves
to a graphical illustration of our result. To do this, we put

B1 = 2A1, C1 =
3
2
A1, B2 =

3
2
A2, C2 = 2A2, m2 =

3A2

2c22
.

Under the above values, solutions (16) and inequalities (26) correspondingly
take the form:

p1 = 0, q1 = ±
√

3g

21/4
√

3s3 − 4c2
, r1 = ±

√
3g

21/4
√

3s3 − 4c2
, p2 = q2 = r2 = 0,

a13 = 0, a23 = − 1√
2
, a33 = − 1√

2
, b11 = 1, b21 = 0, b22 = 0, b31 = 0, b32 = 1.

s3 > 0 and 0 < c2 ≤ s3
5

and n >
2c2 − 5s3
c2 − s3

, where n = A1/A2.
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The stability region defined by the latter inequalities and plotted with Math-
ematica built-in function RegionPlot3D is shown in Fig. 2 (the dark region). So,
when s3, c2, and n assume the values from this region, and the parameters Bi, Ci,
and m2 have the above values, the solutions under investigation are stable.

0

2

4
s3

6

8

10

A1 A2

0.0

0.5

1.0

c2

Fig. 2. Stability area.

8 Conclusion

Using computer algebra methods and the software package developed on the
basis of the CAS Mathematica, we have constructed the symbolic characteristic
function and the equations of motion for the system of two connected rigid bod-
ies in a constant gravity field. New particular solutions for the equations have
been found. These correspond to the following motions of the mechanical sys-
tem: the first body rotates permanently and the second is at rest relative to the
first. The linear combinations of the first integrals of the problem, which take
stationary values on the solutions, have been derived. These combinations were
used to investigate the stability of the solutions. It was shown that the solutions
are stable when the parameters of the bodies of the system obey correspond-
ing restrictions.
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Abstract. In this paper, we propose an efficient method for removing all
redundant inequalities generated by Fourier-Motzkin Elimination. This
method is based on an improved version of Balas’ work and can also
be used to remove all redundant inequalities in the input system. More-
over, our method only uses arithmetic operations on matrices and avoids
resorting to linear programming techniques. Algebraic complexity esti-
mates and experimental results show that our method outperforms alter-
native approaches, in particular those based on linear programming and
the simplex algorithm.

Keywords: Polyhedral set · Fourier-Motzkin Elimination · Algebraic
complexity · Efficient implementation

1 Introduction

Polyhedral sets play an important role in computational sciences. For instance,
they are used to model, analyze, transform and schedule for-loops of computer
programs; we refer to [3,4,6,15,16,21,38]. Of prime importance are the following
operations on polyhedral sets: (i) conversion between H-representation and V-
representation (performed, for instance, by the double description method); and
(ii) projection, as performed by Fourier-Motzkin Elimination.

Although the double description (DD) method and Fourier-Motzkin Elim-
ination (FME) have a lot in common, and, they are considered as the same
algorithm in the paper [8] of Winfried Bruns and Bogdan Ichim, they are not
totally similar. Quoting Komei Fukuda and Alain Prodon from [18]: “The FME
algorithm is more general than the DD method, but often considered as the
same method partly because it can be used to solve the extreme ray enumera-
tion problem”.

Fourier-Motzkin Elimination is an algorithmic tool for projecting a poly-
hedral set onto a linear subspace. It was proposed independently by Joseph
Fourier and Theodore Motzkin, respectively in 1827 and 1936. See the paper [14]
of George Danzing and Section 12.2 of the book [35] of Alexander Schrijver,
for a presentation of Fourier-Motzkin Elimination. The original version of this
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algorithm produces large amounts of redundant inequalities and has a double
exponential algebraic complexity. Removing all these redundancies is equivalent
to giving the so-called minimal representation of the projection of a polyhe-
dron. Leonid Khachiyan explained in [28] how linear programming (LP) could be
used to remove all redundant inequalities, thereby reducing the cost of Fourier-
Motzkin Elimination to a number of machine word operations singly exponential
in the dimension of the ambient space. However, Khachiyan did not state a more
precise running time estimate taking into account the characteristics of the poly-
hedron being projected, such as the number of its facets.

As we shall prove in this paper, rather than using linear programming one
may use only matrix arithmetic, increasing the theoretical and practical effi-
ciency of Fourier-Motzkin Elimination while still producing an irredundant rep-
resentation of the projected polyhedron.

Other algorithms for projecting polyhedral sets remove some (but not all)
redundant inequalities with the help of extreme rays: see the work of David A.
Kohler [29]. As observed by Jean-Louis Imbert in [24], the method he proposed
in that paper and that of Sergei N. Chernikov in [11] are equivalent. On the topic
of finding extreme rays of a polyhedral set in H-representation, see Natálja V.
Chernikova [12], Hervé Le Verge [30] and Komei Fukuda [18]. These methods are
very effective in practice, but none of them can remove all redundant inequalities
generated by Fourier-Motzkin Elimination.

Fourier-Motzkin Elimination is well suited for projecting a polyhedron,
described by its facets (given by linear inequalities), onto different sub-spaces.
And our paper is about projecting polyhedral sets to lower dimensions, elim-
inating one variable after another, thanks to the Fourier-Motzkin Elimination
algorithm as described in Schrijver’s book [35]. In fact, our goal is to find the
minimal representations of all of the successive projections of a given polyhedron
(in H-representation, thus given by linear inequalities), by eliminating variables
one after another, using the Fourier-Motzkin Elimination algorithm. Comput-
ing these successive projections has applications in the analysis, scheduling and
transformation of for-loop nests of computer programs. For instance, after apply-
ing a uni-modular transformation to the loop counters of a for-loop nest, the loop
bounds of the new for-loop nest are derived from the successive projections of a
well-chosen polyhedron.

In this paper, we show how to remove all the redundant inequalities gener-
ated by Fourier-Motzkin Elimination, considering a non-empty, full-dimensional,
and pointed polyhedron as the input. Our approach is based on an improved ver-
sion of a method proposed by Egon Balas in [2]. To be more specific, we first
compute a so-called initial redundancy test cone from which we can derive the
so-called redundancy test cone, which is used to detect the redundant inequalities
generated after each elimination of a variable.

Consider a non-empty, full-dimensional, and pointed polyhedron Q ⊆ Q
n

as input, given by a system of m linear inequalities of height h. We show,
see Theorem 5, that eliminating the variables from that system, one after
another (thus performing Fourier-Motzkin Elimination) can be done within
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O(m
5n
2 nθ+1+εh1+ε) bit operations, for any ε > 0, where θ is the exponent of

linear algebra, as defined in the landmark book [19].
Therefore, we obtain a more favourable estimate than the one presented

in [25,26] for Fourier-Motzkin Elimination with a removal of the redundant
inequalities via linear programming. Indeed, in those papers, the estimate is
O(n2 m2n LP(n, 2nhn2mn)) bit operations, where LP(d,H) is an upper bound
for the number of bit operations required for solving a linear program in n
variables and with total bit size H. For instance, in the case of Karmarkar’s
algorithm [27], we have LP(d,H) ∈ O(d3.5H2 · log H · log log H). Then, compar-
ing the exponents of m, n and h, we have 5n

2 , θ + 1 + ε, 1 + ε respectively with
the method proposed in the present paper and 4n + ε, 6 + ε, 2 + ε respectively
with the estimate of [25,26].

Our algorithm is stated in Sect. 4 and follows the revisited version of Balas’
algorithm presented in Sect. 3. Since the maximum number of facets of any
standard projection of Q is O(m�n/2�), our running time for Fourier-Motzkin
Elimination is satisfactory; the other factors in our estimate come from the cost
of linear algebra operations for testing redundancy.

We have implemented the algorithms proposed in Sect. 4 using the BPAS
library [10] publicly available at www.bpaslib.org. We have compared our code
against other implementations of Fourier-Motzkin Elimination including the CDD
library [17]. Our experimental results, reported in Sect. 6, show that our pro-
posed method can solve more test-cases (actually all) that we used, while the
counterpart software failed to solve some of them.

Section 2 provides background materials about polyhedral sets and polyhe-
dral cones together with the original version of Fourier-Motzkin Elimination. As
mentioned above, Sect. 3 contains our revisited version of Balas’ method and
detailed proofs of its correctness. Based on this, Sect. 4 presents a new algo-
rithm producing a minimal projected representation for a given full-dimensional
pointed polyhedron. Complexity results are established in Sect. 5. In Sect. 6 we
report on our experimentation and in Sect. 7 we discuss related works.

To summarize, our contributions are: (i) making Balas’ algorithm to be
practical, by devising a method for finding the initial redundancy test cone
efficiently and using it in the Fourier-Motzkin Elimination, (ii) exhibiting the
theoretical efficiency of the proposed algorithm by analyzing its bit complexity,
and, (iii) demonstrating its practical effectiveness (implemented as part of the
BPAS library) compared to other available related software.

2 Background

In this section, we review the basics of polyhedral geometry. Section 2.1 is dedi-
cated to the notions of polyhedral sets and polyhedral cones. Sections 2.2 and 2.3
review the double description method and Fourier-Motzkin elimination. We con-
clude this section with the cost model that we shall use for complexity analysis,
see Sect. 2.4. As we omit most proofs, for more details please refer to [18,35,37].
For the sake of simplicity in the complexity analysis of the presented algorithms,

www.bpaslib.org
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we constraint our coefficient field to the field of rational numbers Q. However,
all of the algorithms presented in this paper apply to polyhedral sets with coef-
ficients in the field R of real numbers.

Throughout this paper, we use bold letters, e.g. v, to denote vectors and
we use capital letters, e.g. A, to denote matrices. Also, we assume that vectors
are column vectors. For row vectors, we use the transposition notation, as in At

for the transposition of matrix A. The concatenation of two column vectors v
and w is denoted (v,w), thus using parentheses, while the concatenation of two
row vector vt and wt is denothed [vt,wt], thus using square brackets. For a
matrix A and an integer k, we denote by Ak is the row of index k in A. More
generally, if K is a set of integers, we denote by AK the sub-matrix of A with
row indices in K.

2.1 Polyhedral Cones and Polyhedra

Polyhedral Cone. A set of points C ⊆ Q
n is called a cone if for each x ∈ C

and each real number λ ≥ 0 we have λx ∈ C. A cone C ⊆ Q
n is called convex

if for all x,y ∈ C, we have x + y ∈ C. If C ⊆ Q
n is a convex cone, then

its elements are called the rays of C. For two rays r and r′ of C, we write
r′ � r whenever there exists λ ≥ 0 such that we have r′ = λr. A cone C ⊆ Q

n

is a polyhedral cone if it is the intersection of finitely many half-spaces, that
is, C = {x ∈ Q

n | Ax ≤ 0} for some matrix A ∈ Q
m×n. Let {x1, . . . ,xm}

be a set of vectors in Q
n. The cone generated by {x1, . . . ,xm}, denoted by

Cone(x1, · · · ,xm), is the smallest convex cone containing those vectors. In other
words, we have Cone(x1, . . . ,xm) = {λ1x1 + · · · + λmxm | λ1 ≥ 0, . . . , λm ≥ 0}.
A cone obtained in this way is called a finitely generated cone.

Polyhedron. A set of vectors P ⊆ Q
n is called a convex polyhedron if

P = {x | Ax ≤ b} holds, for a matrix A ∈ Q
m×n and a vector b ∈ Q

m, for
some positive integer m. Moreover, the polyhedron P is called a polytope if P
is bounded. From now on, we always use the notation P = {x | Ax ≤ b} to
represent a polyhedron in Q

n. The system of linear inequalities {Ax ≤ b} is
called a representation of P . We say an inequality ctx ≤ c0 is redundant w.r.t.
a polyhedron representation Ax ≤ b if this inequality is implied by Ax ≤ b. A
representation of a polyhedron is minimal if no inequality of that representation
is implied by the other inequalities of that representation. To obtain a mini-
mal representation for the polyhedron P , we need to remove all the redundant
inequalities in its representation. This requires the famous Farkas’ lemma. Since
this lemma has different variants, we simply mention here the variant from [35]
which we use in this paper.

Lemma 1 (Farkas’ lemma). Let A ∈ Q
m×n be a matrix and b ∈ Q

m be a
vector. Then, there exists a vector t ∈ Q

n with t ≥ 0 satisfying At = b if and if
ytb ≥ 0 holds for every vector y ∈ Q

m satisfying ytA ≥ 0.

A consequence of Farkas’ lemma is the following criterion for testing whether an
inequality ctx ≤ c0 is redundant w.r.t. a polyhedron representation Ax ≤ b.
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Lemma 2 (Redundancy test criterion). Let c ∈ Q
n, c0 ∈ Q, A ∈ Q

m×n

and b ∈ Q
m. Assume Ax ≤ b is a consistent linear inequality system. Then,

the inequality ctx ≤ c0 is redundant w.r.t. Ax ≤ b if and only if there exists a
vector t ≥ 0 and a number λ ≥ 0 satisfying ct = ttA and c0 = ttb + λ.

Characteristic Cone and Pointed Polyhedron.The characteristic cone of P
is the polyhedral cone denoted by CharCone(P ) and defined by CharCone(P ) =
{y ∈ Q

n | x + y ∈ P, ∀x ∈ P} = {y | Ay ≤ 0}. The linearity space of
the polyhedron P is the linear space denoted by LinearSpace(P ) and defined as
CharCone(P ) ∩ −CharCone(P ) = {y | Ay = 0}, where −CharCone(P ) is the set
of the −y for y ∈ CharCone(P ). The polyhedron P is pointed if its linearity
space is {0}.

Lemma 3 (Pointed polyhedron criterion). The polyhedron P is pointed if
and only if the matrix A is full column rank.

Extreme Point and Extreme Ray. The dimension of the polyhedron P ,
denoted by dim(P ), is the maximum number of linearly independent vectors in
P . We say that P is full-dimensional whenever dim(P ) = n holds. An inequality
atx ≤ b (with a ∈ Q

n and b ∈ Q) is an implicit equation of the inequality system
Ax ≤ b if atx = b holds for all x ∈ P . Then, P is full-dimensional if and only if
it does not have any implicit equation. A subset F of the polyhedron P is called
a face of P if F equals {x ∈ P | Asubx = bsub} for a sub-matrix Asub of A and
a sub-vector bsub of b. A face of P , distinct from P and of maximum dimension
is called a facet of P . A non-empty face that does not contain any other face
of a polyhedron is called a minimal face of that polyhedron. Specifically, if the
polyhedron P is pointed, each minimal face of P is just a point and is called an
extreme point or vertex of P . Let C be a cone such that dim(LinearSpace(C)) = t.
Then, a face of C of dimension t + 1 is called a minimal proper face of C. In
the special case of a pointed cone, that is, whenever t = 0 holds, the dimension
of a minimal proper face is 1 and such a face is called an extreme ray. We
call an extreme ray of the polyhedron P any extreme ray of its characteristic
cone CharCone(P ). We say that two extreme rays r and r′ of the polyhedron
P are equivalent, and denote it by r � r′, if one is a positive multiple of the
other. When we consider the set of all extreme rays of the polyhedron P (or
the polyhedral cone C) we will only consider one ray from each equivalence
class. A pointed cone C can be generated by its extreme rays, that is, we have
C = {x ∈ Q

n | (∃c ≥ 0) x = Rc}, where the columns of R are the extreme
rays of C. We denote by ExtremeRays(C) the set of extreme rays of the cone C.
Recall that all cones considered here are polyhedral. The following, see [32,37],
is helpful in the analysis of algorithms manipulating extreme rays of cones and
polyhedra. Let E(C) be the number of extreme rays of a polyhedral cone C ∈ Q

n

with m facets. Then, we have:

E(C) ≤
(

m − 
n+1
2 �

m − 1

)
+

(
m − 
n+2

2 �
m − n

)
≤ m�n

2 �. (1)
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Algebraic Test of (Adjacent) Extreme Rays. Given t ∈ C and a cone
C = {x ∈ Q

n | Ax ≤ 0}, we define the zero set ζA(t) as the set of row indices i
such that Ait = 0, where Ai is the i-th row of A. For simplicity, we use ζ(t)
instead of ζA(t) when there is no ambiguity. The proof of the following, which
we call the algebraic test, can be found in [18]: Let r ∈ C. Then, the ray r is
an extreme ray of C if and only if we have rank(Aζ(r)) = n − 1. Two distinct
extreme rays r and r′ of the polyhedral cone C are called adjacent if they span a
2-dimensional face of C. From [18], we have: Two distinct extreme rays, r and r′,
of C are adjacent if and only if rank(Aζ(r)∩ζ(r′)) = n − 2 holds.

Polar Cone. Given a polyhedral cone C ⊆ Q
n, the polar cone induced by C,

denoted by C∗, is defined as: C∗ = {y ∈ Q
n | ytx ≤ 0,∀x ∈ C}. The proof of

the following property can be found in [35]: For a given cone C ∈ Q
n, there is a

one-to-one correspondence between the faces of C of dimension k and the faces
of C∗ of dimension n − k. In particular, there is a one-to-one correspondence
between the facets of C and the extreme rays of C∗.

Homogenized Cone. The homogenized cone of the polyhedron P = {x ∈ Q
n |

Ax ≤ b} is denoted by HomCone(P ) and defined by: HomCone(P ) = {(x, xlast) ∈
Q

n+1 | Ax − bxlast ≤ 0, xlast ≥ 0}.

Lemma 4 (H-representation correspondence). An inequality Aix ≤ bi is
redundant in P if and only if the corresponding inequality Aix − bixlast ≤ 0 is
redundant in HomCone(P ).

Theorem 1 (Extreme rays of the homogenized cone). Every extreme
ray of the homogenized cone HomCone(P ) associated with the polyhedron P is
either of the form (x, 0) where x is an extreme ray of P , or (x, 1) where x is an
extreme point of P .

2.2 The Double Description Method

It follows from Sect. 2.1 that any pointed polyhedral cone C can be represented
either as the intersection of finitely many half-spaces (given as a system of linear
inequalities Ax ≤ 0 and called H-representation of C) or as Cone(R), where R is
a matrix, the columns of which are the extreme rays of C (called V-representation
of C). The pseudo-code of the double description method, as presented in [18],
and implemented in the CDD library [17] is shown in Algorithm 1. This algo-
rithm calls partition and AdjacencyTest functions. Given a set of vectors J and
an inequality Ai, the partition function places each member j of J into one of the
sets J+, J0, J−, according to the sign (positive, null or negative) of Aij . More-
over, the AdjacencyTest determines adjacency of the input extreme rays. This
algorithm produces the V-representation of a pointed polyhedral cone given by
its H-representation. Some of the results presented in our paper depend on alge-
braic complexity estimates for the double description method. In [18], one can
find an estimate in terms of arithmetic operations on the coefficients of the input
H-representation. Since we need a bit complexity estimate, we provide one as
Lemma 9.
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Algorithm 1. DDmethod
1: Input: a matrix A ∈ Q

m×n defining the H-representation of a pointed cone C
2: Output: a matrix R defining the V-representation of C
3: let K be the set of the indices of A’s independent rows
4: R′ := (AK)−1

5: let J be the set of the columns of R′

6: while K �= {1, . . . , m} do
7: select a A-row index i �∈ K
8: set R′ to be an empty matrix
9: J+, J0, J− := partition(J, Ai)

10: add the vectors in J+ and J0 as columns to R′

11: for p ∈ J+ do
12: for n ∈ J− do
13: if AdjacencyTest(AK , rp, rn) = true then
14: rnew := (Airp)rn − (Airn)rp

15: add rnew as a column to R′

16: end if
17: end for
18: end for
19: let J be the set of the columns of R′

20: K := K ∪ {i}
21: end while
22: let R be the matrix created by the vectors in J as its columns
23: return (R)

2.3 Fourier-Motzkin Elimination

Let A ∈ Q
m×p and B ∈ Q

m×q be matrices. Let c ∈ Q
m be a vector. Consider

the polyhedron P = {(u,x) ∈ Q
p+q | Au + Bx ≤ c}. We denote by proj(P ;x)

the projection of P on x, that is, the subset of Qq defined by proj(P ;x) = {x ∈
Q

q | ∃ u ∈ Q
p, (u,x) ∈ P}.

Fourier-Motzkin elimination (FME for short) is an algorithm computing the
projection proj(P ;x) of the polyhedron of P by successively eliminating the u-
variables from the inequality system Au + Bx ≤ c. This process shows that
proj(P ;x) is also a polyhedron.

Let �1, �2 be two inequalities: a1x1+· · ·+anxn ≤ c1 and b1x1+· · ·+bnxn ≤ c2.
Let 1 ≤ i ≤ n such that the coefficients ai and bi of xi in �1 and �2 are positive
and negative, respectively. The combination of �1 and �2 w.r.t. xi, denoted by
Combine(�1, �2, xi), is:

−bi(a1x1 + · · · + anxn) + ai(b1x1 + · · · + bnxn) ≤ −bic1 + aic2.

Theorem 2 shows how to compute proj(P ;x) when u consists of a single
variable xi. When u consists of several variables, FME obtains the projection
proj(P ;x) by repeated applications of Theorem 2.

Theorem 2 (Fourier-Motzkin theorem [29]). Let A ∈ Q
m×n be a matrix

and let c ∈ Q
m be a vector. Consider the polyhedron P = {x ∈ Q

n | Ax ≤ c}.
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Let S be the set of inequalities defined by Ax ≤ c. Also, let 1 ≤ i ≤ n. We
partition S according to the sign of the coefficient of xi:

S+ = {� ∈ S | coeff(�, xi) > 0},

S− = {� ∈ S | coeff(�, xi) < 0},

S0 = {� ∈ S | coeff(�, xi) = 0}.

We construct the following system of linear inequalities:

S′ = {Combine(sp, sn, xi) | (sp, sn) ∈ S+ × S−} ∪ S0.

Then, S′ is a representation of proj(P ; {x \ {xi}}).

With the notations of Theorem 2, assume that each of S+ and S− counts
m
2 inequalities. Then, the set S′ counts (m

2 )2 inequalities. After eliminating p

variables, the projection would be given by O((m
2 )2

p

) inequalities. Thus, FME
is double exponential in p.

On the other hand, from [33] and [26], we know that the maximum number
of facets of the projection on Q

n−p of a polyhedron in Q
n with m facets is

O(m�n/2�). Hence, it can be concluded that most of the generated inequalities
by FME are redundant. Eliminating these redundancies is the main subject of
the subsequent sections.

2.4 Cost Model

For any rational number a
b , thus with b = 0, we define the height of a

b , denoted
as height(a

b ), as log max(|a|, |b|). For a given matrix A ∈ Q
m×n, let ‖A‖ denote

the infinity norm of A, that is, the maximum absolute value of a coefficient
in A. We define the height of A, denoted by height(A) := height(‖A‖), as the
maximal height of a coefficient in A. For the rest of this section, our main
reference is the PhD thesis of Arne Storjohann [36]. Let k be a non-negative
integer. We denote by M(k) an upper bound for the number of bit operations
required for performing any of the basic operations (addition, multiplication,
and division with remainder) on input a, b ∈ Z with |a|, |b| < 2k. Using the
multiplication algorithm of Arnold Schönhage and Volker Strassen [34] one can
choose M(k) ∈ O(k log k log log k).

We also need complexity estimates for some matrix operations. For positive
integers a, b, c, let us denote by MM(a, b, c) an upper bound for the number of
arithmetic operations (on the coefficients) required for multiplying an (a × b)-
matrix by an (b× c)-matrix. In the case of square matrices of order n, we simply
write MM(n) instead of MM(n, n, n). We denote by θ the exponent of linear
algebra, that is, the smallest real positive number such that MM(n) ∈ O(nθ).

We now give the complexity estimates in terms of M(k) ∈ O(k log k log log k)
and B(k) = M(k) log k ∈ O(k(log k)2 log log k). We replace every term of the
form (log k)p(log log k)q(log log log k)r, (where p, q, r are positive real numbers)
with O(kε) where ε is a (positive) infinitesimal. Furthermore, in the complex-
ity estimates of algorithms operating on matrices and vectors over Z, we use a
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parameter β, which is a bound on the magnitude of the integers occurring dur-
ing the algorithm. Our complexity estimates are measured in terms of machine
word operations. Let A ∈ Z

m×n and B ∈ Z
n×p. Then, the product of A by B

can be computed within O(MM(m,n, p)(log β)+(mn+np+mp)B(log β)) word
operations, where β = n ‖A‖ ‖B‖ and ‖A‖ (resp. ‖B‖) denotes the maximum
absolute value of a coefficient in A (resp. B). Neglecting logarithmic factors,
this estimate becomes O(max(m,n, p)θ max(hA, hb)) where hA = height(A) and
hB = height(B). For a matrix A ∈ Z

m×n, a cost estimate of Gauss-Jordan
transform is O(nmrθ−2(log β) + nm(log r)B(log β)) word operations, where r
is the rank of the input matrix A and β = (

√
r‖A‖)r. Let h be the height

of A, for a matrix A ∈ Z
m×n, with height h, the rank of A is computed

within O(mnθ+εh1+ε) word operations, and the inverse of A (when this matrix
is invertible over Q and m = n) is computed within O(mθ+1+εh1+ε) word oper-
ations. Let A ∈ Z

n×n be an integer matrix, which is invertible over Q. Then,
the absolute value of any coefficient in A−1 (inverse of A) can be bounded up to
(
√

n − 1‖A‖(n−1)).

3 Revisiting Balas’ Method

As recalled in Sect. 2, FME produces a representation of the projection of a poly-
hedron by eliminating one variable at a time. However, this procedure generates
lots of redundant inequalities limiting its use in practice to polyhedral sets with
a handful of variables only. In this section, we propose an efficient algorithm
which generates the minimal representation of a full-dimensional pointed poly-
hedron, as well as its projections. Throughout this section, we use Q to denote
a full-dimensional pointed polyhedron in Q

n, where

Q = {(u,x) ∈ Q
p × Q

q | Au + Bx ≤ c}, (2)

with A ∈ Q
m×p, B ∈ Q

m×q and c ∈ Q
m. Thus, Q has no implicit equations

in its representation and the coefficient matrix [A,B] has full column rank. Our
goal in this section is to compute the minimal representation of the projection
proj(Q;x) given by proj(Q;x) := {x | ∃u, s.t.(u,x) ∈ Q}. We call the cone
C := {y ∈ Q

m | ytA = 0 and y ≥ 0} the projection cone of Q w.r.t.u. When
there is no ambiguity, we simply call C the projection cone of Q. Using the
following so-called projection lemma, we can compute a representation for the
projection proj(Q;x):

Lemma 5 ([11]). The projection proj(Q;x) of the polyhedron Q can be repre-
sented by

S := {ytBx ≤ ytc,∀y ∈ ExtremeRays(C)},

where C is the projection cone of Q defined above.

Lemm 5 provides the main idea of the block elimination method. However,
the represention produced in this way may have redundant inequalities. In [2],
Balas observed that if the matrix B is invertible, then we can find a cone such
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that its extreme rays are in one-to-one correspondence with the facets of the
projection of the polyhedron (the proof of this fact is similar to the proof of our
Theorem 3). Using this fact, Balas developed an algorithm to find all redundant
inequalities for all cases, including the cases where B is singular.

In this section, we will explain Balas’ algorithm1 in detail. To achieve this,
we lift the polyhedron Q to a space in higher dimension by constructing the
following objects.

Construction of B0. Assume that the first q rows of B, denoted as B1, are
independent. Denote the last m − q rows of B as B2. Add m − q columns,
eq+1, . . . , em, to B, where ei is the i-th vector in the canonical basis of Q

m,
thus with 1 in the i-th position and 0’s anywhere else. The matrix B0 has the
following form:

B0 =

[
B1 0

B2 Im−q

]
.

To maintain consistency in the notation, let A0 = A and c0 = c.

Construction of Q0. We define:

Q0 := {(u,x′) ∈ Q
p × Q

m | A0u + B0x′ ≤ c0 , xq+1 = · · · = xm = 0}.

From now on, we use x′ to represent the vector x ∈ Q
q, augmented with m − q

variables (xq+1, . . . , xm). Since the extra variables (xq+1, . . . , xm) are assigned
to zero, we note that proj(Q;x) and proj(Q0;x′) are “isomorphic” by means of
the bijection Φ:

Φ :
proj(Q;x) → proj(Q0;x′)

(x1, . . . , xq) �→ (x1, . . . , xq, 0, . . . , 0)

In the following, we will treat proj(Q;x) and proj(Q0;x′) as the same polyhedron
when there is no ambiguity.

Construction of W 0. Define W 0 to be the set of all (v,w, v0) ∈ Q
q ×Q

m−q ×Q

satisfying

W 0 = {(v,w, v0) | [vt,wt]B−1
0 A0 = 0, [vt,wt]B−1

0 ≥ 0,
−[vt,wt]B−1

0 c0 + v0 ≥ 0}.
(3)

Similar to the discussion in the work of Balas, the extreme rays of the cone
proj(W 0; {v, v0}) are used to construct the minimal representation of the pro-
jection proj(Q;x).

Theorem 3 shows that extreme rays of the cone proj(W 0; {v, v0}), which is
defined as

proj(W 0; {v, v0}) := {(v,−v0) | (v, v0) ∈ proj(W 0; {v, v0})},

1 It should be noted that, although we are using his idea, we have found a flaw in
Balas’ paper. In fact, the last inequality in representation of W 0 is written as equality
that paper.
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are in one-to-one correspondence with the facets of the homogenized cone of
proj(Q;x). As a result its extreme rays can be used to find the minimal repre-
sentation of HomCone(proj(Q;x)).

Lemma 6. The operations “computing the characteristic cone” and “computing
projections” commute. To be precise, we have:

CharCone(proj(Q;x)) = proj(CharCone(Q);x).

Proof. By the definition of the characteristic cone, we have CharCone(Q) =
{(u,x) | Au + Bx ≤ 0}, whose representation has the same left-hand side as
the one of Q. The lemma is valid if we can show that the representation of
proj(CharCone(Q);x) has the same left-hand side as proj(Q;x). This is obvious
with the Fourier-Motzkin Elimination procedure.

Theorem 3. The polar cone of HomCone(proj(Q;x)) equals to
proj(W 0; {v, v0}).

Proof. By definition, the polar cone (HomCone(proj(Q;x))∗ is equal to

{(y, y0) | [yt, y0][xt, xlast]t ≤ 0,∀ (x, xlast) ∈ HomCone(proj(Q;x))}.

This claim follows immediately from (HomCone(proj(Q;x))∗ = proj(W 0; {v, v0}).
We prove this latter equality in two steps.

(⊇) For any (v,−v0) ∈ proj(W 0; {v, v0}), we need to show that

[vt,−v0][xt, xlast]t ≤ 0

holds when (x, xlast) ∈ HomCone(proj(Q;x)). Remember that Q is pointed. As
a result, HomCone(proj(Q;x)) is also pointed. Therefore, we only need to verify
the desired property for the extreme rays of HomCone(proj(Q;x)), which either
have the form (s, 1) or (s, 0) (Theorem 1). Before continuing, we should notice
that since (v, v0) ∈ proj(W 0; {v, v0}), there exists w such that [vt,wt, v0] ∈ W 0.
Cases 1 and 2 below conclude that (v,−v0) ∈ HomCone(proj(Q;x))∗ holds.

Case 1: for the form (s, 1), we have s ∈ proj(Q;x). Indeed, s is an extreme
point of proj(Q;x). Hence, there exists u ∈ Q

p, such that we have Au+ Bs ≤ c.
By construction of Q0, we have A0u + B0s′ ≤ c0, where s′ = [st, sq+1, . . . , sm]t

with sq+1 = · · · = sm = 0. Therefore, we have:

[vt,wt]B−1
0 A0u + [vt,wt]B−1

0 B0s′ ≤ [vt,wt]B−1
0 c0.

This leads us to vts = [vt,wt]s′ ≤ [vt,wt]B−1
0 c0 ≤ v0. Therefore, we have

[vt,−v0][st, xlast]t ≤ 0, as desired.
Case 2: for the form (s, 0), we have

s ∈ CharCone(proj(Q;x)) = proj(CharCone(Q);x).

Thus, there exists u ∈ Q
p such that Au + Bs ≤ 0. Similarly to Case 1, we

have [vt,wt]B−1
0 A0u + [vt,wt]B−1

0 B0s′ ≤ [vt,wt]B−1
0 0. Therefore, we have



Complexity Estimates for Fourier-Motzkin Elimination 293

vts = [vt,wt]s′ ≤ [vt,wt]B−1
0 0 = 0, and thus, we have [vt,−v0][st, xlast]t ≤ 0,

as desired.
(⊆) For any (y, y0) ∈ HomCone(proj(Q;x))∗, we have [yt, y0][xt, xlast]t ≤ 0

for all (x, xlast) ∈ HomCone(proj(Q;x)). For any x ∈ proj(Q;x), we have ytx ≤
−y0 since (x, 1) ∈ HomCone(proj(Q;x)). Therefore, we have ytx ≤ −y0, for all
x ∈ proj(Q;x), which makes the inequality ytx ≤ −y0 redundant in the system
{Au + Bx ≤ c}. By Farkas’ Lemma (see Lemma 2), there exists p ≥ 0,p ∈ Q

m

and λ ≥ 0 such that ptA = 0, y = ptB, y0 = ptc + λ. Remember that A0 = A,
B0 = [B,B′], c0 = c. Here B′ is the last m − q columns of B0 consisting of
eq+1, . . . , em. Let w = ptB′. We then have

{ptA0 = 0, [yt,wt] = ptB0,−y0 ≥ ptc0,p ≥ 0},

which is equivalent to

{pt = [yt,wt]B−1
0 , [yt,wt]B−1

0 A0 = 0,

− y0 ≥ [yt,wt]B−1
0 c0, [yt,wt]B−1

0 ≥ 0}.

Therefore, (y,w,−y0) ∈ W 0, and (y,−y0) ∈ proj(W 0; {v, v0}). From this,
we deduce that (y, y0) ∈ proj(W 0; {v, v0}) holds.

Theorem 4. The minimal representation of proj(Q;x) is given exactly by

{vtx ≤ v0 | (v, v0) ∈ ExtremeRays(proj(W0; (v, v0))) \ {(0, 1)}}.
Proof. By Theorem 3, the minimal representation of the homogenized cone
HomCone(proj(Q;x)) is given exactly by

{vx − v0xlast ≤ 0 | (v, v0) ∈ ExtremeRays(proj(W0; (v, v0)))}.

Using Lemma 4, any minimal representation of HomCone(proj(Q;x)) has at most
one more inequality than any minimal representation of proj(Q;x). This extra
inequality is xlast ≥ 0 and, in this case, proj(W 0; (v, v0)) will have the extreme
ray (0, 1), which can be detected easily. Therefore, the minimal representation
of proj(Q;x) is given by

{vtx ≤ v0 | (v, v0) ∈ ExtremeRays(proj(W0; (v, v0))) \ {(0, 1)}}.
For simplicity, we call the cone proj(W 0; {v, v0}) the redundancy test cone

of Q w.r.t. u and denote it by Pu(Q). When u is empty, we define P(Q) := Pu(Q)
and we call it the initial redundancy test cone. It should be noted that P(Q)
can be used to detect redundant inequalities in the input system, as it is shown
in Steps 3 to 8 of Algorithm 4.

4 Minimal Representation of the Projected Polyhedron

In this section, we present our algorithm for removing all the redundant inequal-
ities generated during Fourier-Motzkin elimination. Our algorithm detects and
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eliminates redundant inequalities, right after their generation, using the redun-
dancy test cone introduced in Sect. 3. Intuitively, we need to construct the cone
W 0 and obtain a representation of the redundancy test cone, Pu(Q), where u
is the vector of eliminated variables, each time we eliminate a variable during
FME. This method is time consuming because it requires to compute the pro-
jection of W 0 onto {v, v0} space at each step. However, as we prove in Lemma 7,
we only need to compute the initial redundancy test cone, using Algorithm 2,
and the redundancy test cones, used in the subsequent variable eliminations,
can be found incrementally without any extra cost. After generating the redun-
dancy test cone, the algorithm, using Algorithm 3, keeps the newly generated
inequality only if it is an extreme ray of the redundancy test cone.

Note that a byproduct of this process is a minimal projected representation
of the input system, according to the specified variable ordering. This repre-
sentation is useful for finding solutions of linear inequality systems. The notion
of projected representation was introduced in [25,26] and will be reviewed in
Definition 1.

For convenience, we rewrite the input polyhedron Q defined in Eq. (2) as:
Q = {y ∈ Q

n | Ay ≤ c}, where A = [A,B] ∈ Q
m×n, n = p + q and y =

[ut,xt]t ∈ Q
n. We assume the first n rows of A are linearly independent.

Algorithm 2. Generate initial redundancy test cone
Input: S = {Ay ≤ c}, a representation of the input polyhedron Q;
Output: P, a representation of the initial redundancy test cone;
1: Construct A0 in the same way we constructed B0, that is, A0 := [A,A′], where

A′ = [en+1, . . . , em] with ei being the i-th vector of the canonical basis of Qm;
2: Let W := {(v,w, v0) ∈ Q

n×Q
m−n×Q | −[vt,wt]A−1

0 c+v0 ≥ 0, [vt,wt]A−1
0 ≥ 0};

3: P = proj(W ; {v, v0});
4: return (P);

Remark 1. There are two important points about Algorithm 2. First, we only
need a representation of the initial redundancy test cone. This representation
does not need to be minimal. Therefore, calling Algorithm 2 in Algorithm 4
(which computes a minimal projected representation of a polyhedron) does not
lead to a recursive call to Algorithm 4. Second, to compute the projection
proj(W ; {v, v0}), we need to eliminate m − n variables from m + 1 inequali-
ties. The block elimination method is applied to achieve this. As it is shown
in Lemma 5, the block elimination method will require to compute the extreme
rays of the projection cone (denoted by C), which contains m+1 inequalities and
m+1 variables. However, considering the structural properties of the coefficient
matrix of the representation of C, we found out that computing the extreme
rays of C is equivalent to computing the extreme rays of another simpler cone,
which still has m + 1 inequalities but only n + 1 variables.
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Lemma 7. A representation of the redundancy test cone Pu(Q) can be obtained
from P(Q) by setting coefficients of the corresponding p eliminated variables to 0
in the representation of P(Q).

Proof. To distinguish from the construction of P(Q), we rename the vari-
ables v,w, v0 as vu,wu, vu, when constructing W 0 and computing the test
cone Pu(Q).

That is, we have Pu(Q) = proj(W 0; {vu, vu}), where W 0 is the set of all
(vu,wu, vu) ∈ Q

q × Q
m−q × Q satisfying

{(vu,wu, vu) | [vt
u,wt

u]B−1
0 A = 0,−[vt

u,wt
u]B−1

0 c + vu ≥ 0, [vt
u,wt

u]B−1
0 ≥ 0},

while we have P(Q) = proj(W ; {v, v0}) where W is the set of all (v,w, v0) ∈
Q

n×Q
m−n×Q satisfying {(v,w, v0) | −[vt,wt]A−1

0 c+v0 ≥ 0, [vt,wt]A−1
0 ≥ 0}.

By Step 1 of Algorithm 2, [vt,wt]A−1
0 A = vt holds for all (v,w, v0) ∈ W . We

can rewrite v as vt = [vt
1,v

t
2], where v1 and v2 are the first p and last n−p vari-

ables of v. Then, we have [vt,wt]A−1
0 A = vt

1 and [vt,wt]A−1
0 B = vt

2. Similarly,
we have [vt

u,wt
u]B−1

0 A = 0 and [vt
u,wt

u]B−1
0 B = vt

u for all (vu,wu, vu) ∈ W 0.
This lemma holds if we can show Pu = P|v1=0. We prove this in two steps:

(⊆) For any (vu, vu) ∈ Pu(Q), there exists wu ∈ Q
m−q, such that

(vu,wu, vu) ∈ W 0.

Let [vt,wt] := [vt
u,wt

u]B−1
0 A0, where vt = [vt

1,v
t
2] (v1 ∈ Q

p,v2 ∈ Q
n−p, and

w ∈ Q
m−n). Then, because (vu,wu, vu) ∈ W 0, we have vt

1 = [vt
u,wt

u]B−1
0 A = 0

and vt
2 = [vt

u,wt
u]B−1

0 B = vu. Let v0 = vu, it is easy to verify that (v,w, v0) ∈
W . Therefore, (0,vu, vu) = (v, v0) ∈ P(Q).

(⊇) For any (0,v2, v0) ∈ P(Q), there exists w ∈ Q
m−n, such that

(0,v2,w, v0) ∈ W.

Let [vt
u,wt

u] := [0,vt
2,w

t]A−1
0 B0. We have vu = [0,vt

2,w
t]A−1

0 B = v2. Let
vu = v0, it is easy to verify that (vu,wu, vu) ∈ W 0. Therefore, (v2, v0) =
(vu, vu) ∈ Pu(Q).

Consider again the polyhedron Q = {y ∈ Q
n | Ay ≤ c}, where A =

[A,B] ∈ Q
m×n, n = p + q and y = [ut,xt]t ∈ Q

n. Fix a variable order-
ing, say y1 > · · · > yn, For 1 ≤ i ≤ n, we denote by A(yi) the inequalities
in the representation Ay ≤ c of Q whose largest variable is yi. We denote by
ProjRep(Q; y1 > · · · > yn) the linear system A(y1) if n = 1 and the conjunction of
A(y1) and ProjRep(proj(Q;y2); y2 > · · · > yn) otherwise, where y2 = (y2, . . . , yn).
Of course, ProjRep(Q; y1 > · · · > yn) depends on the representation which is
used of Q.

Definition 1 (Projected representation). For the polyhedron Q ⊆ Q
n, we

call projected representation of Q w.r.t. the variable order y1 > · · · > yn any
linear system of the form ProjRep(Q; y1 > · · · > yn). We say that such a linear
system P is a minimal projected representation of Q if, for all 1 ≤ k ≤ n,
every inequality of P , with yk as largest variable, is not redundant among all the
inequalities of P with variables among yk, . . . , yn.
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We can generate a minimal projected representation of a polyhedron, w.r.t. an
specific variable ordering by Algorithm 4.

Algorithm 3. Extreme ray test
Input: (P, �), where (i) P := {(v, v0) ∈ Q

n ×Q | M [vt, v0]
t ≤ 0} with M ∈ Q

m×(n+1),
(ii) � : aty ≤ c with a ∈ Q

n and c ∈ Q;
Output: true if [at, c]t is an extreme ray of P, false otherwise;
1: Let s := M [at, c]t;
2: Let ζ(s) be the index set of the zero coefficients of s;
3: if rank(Mζ(s)) = n then
4: return (true);
5: else
6: return (false);
7: end if

5 Complexity Estimates

In this section, we analyze the computational complexity of Algorithm 4, which
computes a minimal projected representation of a given polyhedron. This com-
putation is equivalent to eliminating all variables, one after another, in Fourier-
Motzkin elimination. We prove that using our algorithm, finding a minimal pro-
jected representation of a polyhedron is singly exponential in the dimension n
of the ambient space. The most consuming procedure in Algorithm 4 is finding
the initial redundancy test cone. This operation requires another polyhedron
projection in higher dimension. As it is shown in Remark 1, we can use block
elimination method to perform this task efficiently. This requires the computa-
tion of the extreme rays of the projection cone. The double description method
is an efficient way to solve this problem. We begin this section by computing the
bit complexity of the double description algorithm.

Lemma 8 (Coefficient bound of extreme rays). Let

S = {x ∈ Q
n | Ax ≤ 0}

be a minimal representation of a cone C ⊆ Q
n, where A ∈ Q

m×n. Then, the
absolute value of a coefficient in any extreme ray of C is bounded over by (n −
1)n‖A‖2(n−1).

Proof. From the properties of extreme rays, see Sect. 2.1, we know that when r
is an extreme ray, there exists a sub-matrix A′ ∈ Q

(n−1)×n of A, such that
A′r = 0. This means that r is in the null-space of A′. Thus, the claim follows by
proposition 6.6 of [36].
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Algorithm 4. Minimal Projected Representation of Q

Input: S = {Ay ≤ c}: a representation of the input polyhedron Q;
Output: A minimal projected representation of Q;
1: Generate the initial redundancy test cone P by Algorithm 2;
2: S0 := { };
3: for i from 1 to m do
4: Let f be the result of applying Algorithm 3 with the inputs P and Aiy ≤ ci;
5: if f = true then
6: S0 := S0 ∪ {Aiy ≤ ci};
7: end if
8: end for
9: P := P|v1=0;

10: for i from 0 to n − 1 do
11: Si+1 := { };
12: for �pos ∈ Si with positive coefficient of yi+1 do
13: for �neg ∈ Si with negative coefficient of yi+1 do
14: �new := Combine(�pos, �neg, yi+1);
15: Let f be the result of applying Algorithm 3 with the inputs P and �new;
16: if f = true then
17: Si+1 := Si+1 ∪ {�new};
18: end if
19: end for
20: end for
21: for � ∈ Si with zero coefficient of yi+1 do
22: Let f be the result of applying Algorithm 3 with the inputs P and � ;
23: if f = true then
24: Si+1 := Si+1 ∪ {�};
25: end if
26: end for
27: P := P|vi+1=0;
28: end for
29: return (S0 ∪ S1 ∪ · · · ∪ Sn);

Lemma 9. Let S = {x ∈ Q
n | Ax ≤ 0} be the minimal representation of

a cone C ⊆ Q
n, where A ∈ Q

m×n. The double description method requires
O(mn+2nθ+εh1+ε) bit operations, where h is the height of the matrix A.

Proof. The cost of Algorithm 1 during the processing of the first n inequalities
(Line 4) is negligible (in comparison to the subsequent computations) since it
is equivalent to find the inverse of an n × n matrix. Therefore, to analyze the
complexity of the DD method, we focus on the while-loop located at Line 6
of the Algorithm 1. After adding t inequalities, with n ≤ t ≤ m, the first
step is to partition the extreme rays at the t − 1-iteration, with respect to the
newly added inequality (Line 9 of Algorithm 1). Note that we have at most
(t − 1)� n

2 � extreme rays (Eq. (1)) whose coefficients can be bounded over by
(n − 1)n‖A‖2(n−1) (Lemma 8) at the t − 1-iteration. Hence, this step needs at
most C1 := (t − 1)�n

2 � × n × M(log((n − 1)n‖A‖2(n−1))) ≤ O(t�
n
2 �n2+εh1+ε)
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bit operations. After partitioning the vectors, the next step is to check adja-
cency for each pair of vectors (Line 13 of of Algorithm 1). The cost of this
step is equivalent to computing the rank of a sub-matrix A′ ∈ Q

(t−1)×n of
A. This should be done for tn

4 pairs of vectors. This step needs at most
C2 := tn

4 × O((t − 1)nθ+εh1+ε) ≤ O(tn+1nθ+εh1+ε) bit operations. We know
there are at most t�

n
2 � pairs of adjacent extreme rays. The next step is to com-

bine every pair of adjacent vectors in order to obtain a new extreme ray (Line 14
of Algorithm 1). This step consists of n multiplications in Q of coefficients with
absolute value bounded over by (n − 1)n‖A‖2(n−1) (Lemma 8) and this should
be done for at most t�

n
2 � vectors. Therefore, the bit complexity of this step, is

no more than C3 := t�
n
2 � × n × M(log((n − 1)n‖A‖2(n−1))) ≤ O(t�

n
2 �n2+εh1+ε).

Finally, the complexity of iteration t of the while loop is C := C1 + C2 + C3.
The claim follows after simplifying m × C.

Lemma 10 (Complexity of constructing the initial redundancy test
cone). Let h be the maximum height of A and c in the input system, then
generating the initial redundancy test cone (Algorithm 2) requires at most

O(mn+3+ε(n + 1)θ+εh1+ε)

bit operations. Moreover, proj(W ; {v, v0}) can be represented by O(m� n+1
2 �)

inequalities, each with a height bound of O(mεn2+εh).

Proof. We analyze Algorithm 2 step by step.

Step 1: Construction of A0 from A. The cost of this step can be neglected.
However, it should be noticed that the matrix A0 has a special structure. With-
out loss of generality, we can assume that the first n rows of A are linearly
independent. The matrix A0 has the following structure:

A0 =

(
A1 0

A2 Im−n

)
,

where A1 is a full rank matrix in Q
n×n and A2 ∈ Q

(m−n)×n.

Step 2: Construction of the Cone W . Using the structure of the matrix A0,
its inverse can be expressed as

A−1
0 =

(
A−1

1 0

−A2A
−1
1 Im−n

)
.

Also, from Sect. 2.4 we have ‖A−1
1 ‖ ≤ (

√
n − 1‖A1‖)n−1. Therefore, ‖A−1

0 ‖ ≤
n

n+1
2 ‖A‖n, and ‖A−1

0 c‖ ≤ n
n+3
2 ‖A‖n‖c‖ + (m − n)‖c‖. That is, height(A−1

0 ) ∈
O(n1+εh) and height(A−1

0 c) ∈ O(mε + n1+εh). As a result, height of coefficients
of W can be bounded over by O(mε + n1+εh).

To estimate the bit complexity, we need the following consecutive steps:
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– Computing A−1
0 , which requires

O(nθ+1+εh1+ε) + O((m − n)n2M(max(height(A2), height(A−1
1 ))))

≤ O(mnθ+1+εh1+ε) bit operations;

– Constructing W := {(v,w, v0) | − [vt,wt]A−1
0 c + v0 ≥ 0, [vt,wt]A−1

0 ≥ 0}
requires at most

C1 := O(m1+εnθ+1+εh1+ε) + O(mnM(height(A−1
0 , c)))

+O((m − n)h) ≤ O(m1+εnθ+ε+1h1+ε) bit operations.

Step 3: Projecting W and Finding the Initial Redundancy Test Cone.
Following Lemma 5, we obtain a representation of proj(W ; {v, v0}) through find-
ing extreme rays of the corresponding projection cone.

Let E = (−A2A
−1
1 )t ∈ Q

n×(m−n) and gt be the last m − n elements of
(A−1

0 c)t. Then, the projection cone can be represented by:

C = {y ∈ Q
m+1 | yt

⎛
⎜⎝

E

gt

Im−n

⎞
⎟⎠ = 0,y ≥ 0}.

Note that yn+2, . . . , ym+1 can be solved from the system of equations in the
representation of C. We substitute them in the inequalities and obtain a repre-
sentation of the cone C ′, given by:

C ′ = {y′ ∈ Q
n+1 | y′t

(
E

gt

)
≤ 0,y′ ≥ 0}

In order to find the extreme rays of the cone C, we can find the extreme
rays of the cone C ′ and then back-substitute them into the equations to find
the extreme rays of C. Applying the double description algorithm to C ′, we
can obtain all extreme rays of C ′, and subsequently, the extreme rays of C.
The cost estimate of this step is bounded over by the complexity of the dou-
ble description algorithm with C ′ as input. This operation requires at most
C2 := O(mn+3(n + 1)θ+ε max(height(E,gt))1+ε) ≤ O(mn+3+ε(n + 1)θ+εh1+ε)
bit operations. The overall complexity of the algorithm can be bounded over by:
C1+C2 ≤ O(mn+3+ε(n+1)θ+εh1+ε). Also, by Lemma 8 and Lemma 9, we know
that the cone C has at most O(m�n+1

2 �) distinct extreme rays, each with height
no more than O(mεn2+εh). That is, proj(W 0; {v, v0}) can be represented by at
most O(m�n+1

2 �) inequalities, each with a height bound of O(mεn2+εh).

Lemma 11. Algorithm 3 runs within O(m
n
2 nθ+εh1+ε) bit operations.

Proof. The first step is to multiply the matrix M and the vector (t, t0).
Let dM and cM be the number of rows and columns of M , respectively.
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Thus, M ∈ Q
dM×cM . We know that M is the coefficient matrix of

proj(W 0, {v, v0}). Therefore, after eliminating p variables cM = q + 1, where
q = n − p and dM ≤ m

n
2 . Also, we have height(M) ∈ O(mεn2+εh). With

these specifications, the multiplication step and the rank computation step need
O(m

n
2 n2+εh1+ε) and O(m

n
2 (q + 1)θ+εh1+ε) bit operations, respectively. The

claim follows after simplification.

Using Algorithms 2 and 3, we can find the minimal projected representation
of a polyhedron in singly exponential time w.r.t. the number of variables n.

Theorem 5. Algorithm 4 is correct. Moreover, a minimal projected representa-
tion of Q can be produced within O(m

5n
2 nθ+1+εh1+ε) bit operations.

Proof. The correctness of the algorithm follows from Theorem 4 and Lemma 7.
By [24,29], we know that after eliminating p variables, the projection of the

polyhedron has at most mp+1 facets. For eliminating the next variable, there will
be at most (mp+1

2 )2 pairs of inequalities to be considered and each of the pairs
generate a new inequality which should be checked for redundancy. Therefore,
the overall complexity of the algorithm is:

O(mn+3+ε(n + 1)θ+εh1+ε) +
n∑

p=0

m2p+2O(m
n
2 nθ+εh1+ε) = O(m

5n
2 nθ+1+εh1+ε).

6 Experimentation

In this section we report on our software implementation of the algorithms pre-
sented in the previous sections. Our implementation as well as our test cases are
part of the BPAS library, available at http://www.bpaslib.org/.

We report on serial and parallel implementation of the Minimal Projected
Representation (MPR) algorithm. Comparing with the Project command of
the PolyhedralSets package of Maple 2017 and the famous CDD library (ver-
sion 2018), we have been able to solve our test cases more efficiently. We believe
that this is the result of using a more effective algorithm and an efficient imple-
mentation in C.

As test cases we use 16 consistent linear inequality systems. The first 9 test
cases, (t1 to t9) are linear inequality systems that are randomly generated. The
systems S24 and S35 are 24-simplex and 35-simplex polytopes. The systems C56
and C510 are cyclic polytopes in dimension five with six and ten vertices, The
system C68 is a cyclic polytope in dimension six with eight vertices, C1011 is
cyclic polytope in dimension ten with eleven vertices, and, Cro6 is the cross
polytope in 6 dimension [22]. The test column of Table 1 shows these systems
along with the number of variables and the number of inequalities for each of
them.

We implemented the MPR algorithm with two different approaches: one iter-
ative following closely Algorithm 4, and the other reorganizing that algorithm by
means of a divide and conquer scheme. In both implementations, we use a dense

http://www.bpaslib.org/
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representation for the linear inequalities. In the first approach, we use unrolled
linked lists to encode linear inequality systems. Indeed, using this data structure,
we are able to store an array of inequalities in each node of a linked list and we
can improve data locality. However, we use simple linked lists in the divide and
conquer version to save time on dividing and joining lists. Although both these
approaches have shown quite similar and promising results in terms of running
time, we anticipate to get better results if we combine unrolled linked lists with
the divide and conquer scheme while using a varying threshold for recursion as
the algorithm goes on.

Columns MPR-itr and MPR-rec of the Table 1 give the running time (in mil-
liseconds) of these implementations on a configuration with an Intel-i7-7700T
CPU (4 cores, 8 threads, clocking at 3.8 GHz). Also, columns CDD, Maple,
and Maple-MPR are corresponding to running times of the Fourier algorithm
in the CDD library, which uses LP for redundancy elimination, the function
PolyhedralSets:-Project of Maple, and, an implementation of our algorithm
in the Maple programming language, on the same system, respectively.

Table 1. Running time (in milliseconds) table for a set of examples, varying in the
number of variables and inequalities, collected on a system with Intel-i7-7700T 4-core
processor, clocking at 3.8 GHz.

Test (var, ineq) MPR-itr MPR-rec CDD Maple Maple-MPR

S24 (24,25) 46 41 411 6485 3040

S35 (35,36) 205 177 2169 57992 9840

Cro6 (6,64) 28 29 329 246750 8610

C56 (5,6) 1 1 13 825 140

C68 (6,16) 4 4 866 20154 650

C1011 (10,11) 95 92 >1h >1h >1h

C510 (5,42) 23 22 7674 6173 6070

T1 (5,10) 7 7 142 7974 1400

T2 (10,12) 109 112 122245 3321217 13330

T3 (7,10) 26 26 8207 117021 2900

T4 (10,12) 368 370 1177807 >1h 26650

T5 (5,11) 7 7 75 8229 1650

T6 (10,20) 26591 26156 >1h >1h >1h

T7 (9,19) 162628 158569 >1h >1h >1h

T8 (8,19) 21411 20915 >1h >1h >1h

T9 (6,18) 1281 1263 77372 >1h 267920

Using the divide and conquer scheme, we have been able to parallelize our
program, with Cilk [5]. We call this algorithm Parallel Minimal Projected Rep-
resentation (PMPR). Table 2 presents the running time (in milliseconds) and
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speedup of the multi-core version of the algorithm. The columns PMPR-1, PMPR-
4, PMPR-8, and, PMPR-12 demonstrate the running time of the multi-core program
on a system with Intel-Xeon-X5650 (12 cores, 24 threads, clocking at 2.6 GHz),
using 1, 4, 8, and 12 Cilk workers, respectively. The numbers in brackets show
the speedup we gain using multi-threading.

Table 2. Running time (in milliseconds) table for our set of examples, with different
number of Cilk workers, collected on a system Intel-Xeon-X5650 and 12 CPU cores,
clocking at 2.6GHz.

Test PMPR-1 PMPR-4 PMPR-8 PMPR-12

S24 67 71 (0.9 x) 73 (0.9 x) 83 (0.8 x)

S35 291 308 (0.9 x) 310 (0.9 x) 375 (0.7 x)

Cro6 54 45 (1.2 x) 36 (1.5 x) 34 (1.5 x)

C56 2 3 (0.6 x) 3 (0.6 x) 12 (0.1 x)

C68 8 7 (1.1 x) 7 (1.1 x) 19 (0.4 x)

C1011 176 62 (2.8 x) 47 (3.7 x) 53 (3.3 x)

C510 38 33 (1.1 x) 34 (1.1 x) 40 (0.9 x)

T1 13 8 (1.6 x) 9 (1.4 x) 17 (0.7 x)

T2 205 67 (3.0 x) 55 (3.7 x) 57 (3.5 x)

T3 48 20 (2.4 x) 18 (2.6 x) 20 (2.4 x)

T4 685 207 (3.3 x) 141 (4.8 x) 126 (5.4 x)

T5 14 9 (1.5 x) 10 (1.3 x) 11 (1.2 x)

T6 44262 12995 (3.4 x) 6785 (6.5 x) 5163 (8.5 x)

T7 282721 78176 (3.6 x) 48048 (5.8 x) 35901 (7.8 x)

T8 41067 10669 (3.8 x) 5689 (7.2 x) 4471 (9.1 x)

T9 2407 742 (3.2 x) 491 (4.8 x) 448 (5.3 x)

7 Related Works and Concluding Remarks

As we previously discussed, removing redundant inequalities during the exe-
cution of Fourier-Motzkin Elimination is the central issue towards efficiency.
Different algorithms have been developed to solve this problem. They also have
been implemented in the various software libraries, including but not limited to:
CDD[17], VPL[7], PPL[1], Normaliz[9], PORTA[13], and Polymake[20] In this section,
we briefly review some of these works.

In [11], Chernikov proposed a redundancy test with little added work, which
greatly improves the practical efficiency of Fourier-Motzkin Elimination. Kohler
proposed a method in [29] which only uses matrix arithmetic operations to test
the redundancy of inequalities. As observed by Imbert in his work [24], the
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method he proposed in his paper as well as those of Chernikov and Kohler are
essentially equivalent. Even though these works are effective in practice, none
of them can remove all redundant inequalities generated by Fourier-Motzkin
Elimination.

Besides Fourier-Motzkin Elimination, block elimination is another algorith-
mic tool to project polyhedra on a lower dimensional subspace. This method
relies on the extreme rays of the so-called projection cone. Although there exist
efficient methods to enumerate the extreme rays of this projection cone, like the
double description method [18] (also known as Chernikova’s algorithm [12,30]),
this method can not remove all the redundant inequalities.

In [2], Balas shows that if certain inconvertibility conditions are satisfied,
then the extreme rays of the redundancy test cone exactly defines a minimal
representation of the projection of a polyhedron. As Balas mentioned in his
paper, this method can be extended to any polyhedron.

A drawback of Balas’ work is the necessity of enumerating the extreme rays
of the redundancy test cone (so as to produce a minimal representation of the
projection proj(Q;x)) which is time consuming. Our algorithm tests the redun-
dancy of the inequality ax ≤ c by checking whether (a, c) is an extreme ray of
the redundancy test cone or not.

Another related topic to our work is the concept of subsumption cone,
as defined in [23]. Consider the polyhedron Q given in Eq. (2), define T :=
{(λ, α, β) | λtA = αt, λtc ≤ β, λ ≥ 0}, where λ and α are vectors of dimen-
sion m and n respectively, and β is a variable. The subsumption cone of Q is
obtained by eliminating λ in T , that is, proj(T ; {α, β}). We proved that con-
sidering a full-dimensional, pointed polyhedron, where the first n rows of the
coefficient matrix are linearly independent, the initial redundancy test cone and
the subsumption cone are equivalent.

Given a V-representation of a polyhedron P , one can obtain the V-repre-
sentation of any projection of P 2. The double description method turns the
V-representation of the projection to its H-representation. Most existing soft-
ware libraries dealing with polyhedral sets store a polyhedron with these two
representations, like the Parma Polyhedra Library (PPL) [1]. In this case, it
is convenient to compute the projection using the block elimination method.
When we are only given the H-representation, the first thing is to compute the
V-representation, which is equivalent to the procedure of computing the initial
test cone in our method. When we need to perform successive projections, it
is well-known that Fourier-Motzkin Elimination performs better than repeated
applications of the double description method.

Recently, the verified polyhedron library (VPL) [7] takes advantage of para-
metric linear programming to project a polyhedron. Like PPL, VPL may not
beat Fourier-Motzkin Elimination when we need to perform successive projec-
tions. In VPL, the authors rely on raytracing to remove redundant inequali-
ties. This is an efficient way of removing redundancies, but this cannot remove

2 For example, P is generated by {(1, 2, 3, 4)t, (2, 3, 4, 5)t, (2, 3, 7, 9)t}, the projection
of P onto the last two coordinates is generated by {(3, 4)t, (4, 5)t, (7, 9)t}.
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them all, thus Linear Programming (LP) is still needed. As pointed out in [31],
raytracing is effective when there are not many redundancies; unfortunately,
Fourier-Motzkin Elimination typically generates lots of redundancies.

Another modern library dealing with polyhedral sets computation is the Nor-
maliz library [9]. In this library, Fourier-Motzkin Elimination is used for conver-
sion between different descriptions of polyhedral sets. This is a different strategy
than the one of our paper. As discussed in the introduction, we are motivated
here by performing successive projections as required in the analysis, scheduling
and transformation of for loop nests of computer programs.

References

1. Bagnara, R., Hill, P.M., Zaffanella, E., Bagnara, A.: The parma polyhedra library
user’s manual (2002)

2. Balas, E.: Projection with a minimal system of inequalities. Comput. Optim. Appl.
10(2), 189–193 (1998)

3. Bastoul, C.: Code generation in the polyhedral model is easier than you think.
In: Proceedings of the 13th International Conference on Parallel Architectures and
Compilation Techniques, PACT 2004, pp. 7–16. IEEE Computer Society, Wash-
ington, DC (2004). https://doi.org/10.1109/PACT.2004.11

4. Benabderrahmane, M.-W., Pouchet, L.-N., Cohen, A., Bastoul, C.: The polyhedral
model is more widely applicable than you think. In: Gupta, R. (ed.) CC 2010.
LNCS, vol. 6011, pp. 283–303. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-11970-5 16

5. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. SIGPLAN Not. 30(8), 207–216
(1995). https://doi.org/10.1145/209937.209958

6. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. SIGPLAN Not. 43(6), 101–113
(2008). https://doi.org/10.1145/1379022.1375595

7. Boulme, S., Marechaly, A., Monniaux, D., Perin, M., Yu, H.: The verified polyhe-
dron library: an overview, pp. 9–17 (2018)

8. Bruns, W., Ichim, B.: Normaliz: algorithms for affine monoids and rational cones.
J. Algebra 324(5), 1098–1113 (2010)
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Abstract. The new extension methods in Dotty (codename for Scala 3)
allow us to solve a long-standing problem with type classes and coercion.
It enables the realization of a new Scala adapter for the Java Algebra
System (JAS). Our design is compared to the existing Scala DSL for
the Rings computer algebra library, and shown to be interchangeable
with it. The question whether Scala can be used for library development
is raised, and it turns out to be adequately efficient, taking advantage of
the new language inline feature for code specialization.
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1 Introduction

In a previous incarnation of this work [2], we have shown that it is possible
to use type classes in Scala to model categories as an alternative to f-bounded
polymorphism, used in the Java Algebra System [3]. It has several benefits: it
allows post-facto extensions [7], making it possible to reuse existing classes with-
out wrappers. It also allows for generic numeric-symbolic implementations with
unboxed primitive types for improved efficiency. There was however a problem
with coercion and its interaction with type classes. In consequence, we had to
devise a hybrid scheme: as type classes make it possible to work with values of
any type, why not exercise them on f-bounded wrappers, which are coercion-
friendly?

The downside of this approach was that we could not use it to implement
a Scala DSL to existing libraries (namely JAS) like is currently possible with
Jython or JRuby. For this, we had to wait for improvements in the Scala language
itself, which are now begining to emerge in Scala 3 (codenamed “Dotty”).

2 Outline

The paper is organized as follows. Section 3 presents the new extension methods
introduced in Dotty and their suitability for our purpose. In Sect. 4 we discuss
the problematic interaction of type classes with coercion, and propose a solution.
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F. Boulier et al. (Eds.): CASC 2020, LNCS 12291, pp. 307–315, 2020.
https://doi.org/10.1007/978-3-030-60026-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60026-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-60026-6_17


308 R. Jolly

In Sect. 5, a new Scala adapter for JAS is introduced, based on this solution.
Section 6 reviews a similar implementation in the Rings computer algebra sys-
tem. Lastly, Sect. 7 outlines the benefits of the language for library in addition
to interface development.

3 New in Dotty: Extension Methods

There are two important features a computer algebra language must support to
allow a proper mathematical notation: operator overloading and implicit conver-
sion. In [2], we have investigated how to implement operator overloading with
type classes. In Dotty, these are now enhanced to support extension methods
[4], which allows to define infix operators, with their parameters on both sides:

trait Ring[T]:
def (x: T) + (y: T): T
def zero: T

This simple definition allows to endow Java’s BigInteger with an arithmetic
operator, defined as a method with a + symbol as its name, and also to provide
the 0 of the ring:

type BigInteger = java.math.BigInteger

given BigInteger as Ring[BigInteger]:
def (x: BigInteger) + (y: BigInteger) = x.add(y)
def zero = java.math.BigInteger.valueOf(0)

For reference, in former Scala versions the typeclass definition was much more
complicated:

trait Ring[T] {
def plus(x: T, y: T): T
def zero: T

}
object Ring {

trait ExtraImplicits {
implicit def infixRingOps[T: Ring](lhs: T): Ops[T] =

new OpsImpl(lhs)
}
trait Ops[T] {

def lhs: T
def factory: Ring[T]
def +(rhs: T) = factory.plus(lhs, rhs)

}
class OpsImpl[T: Ring](val lhs: T) extends Ops[T] {

val factory = implicitly[Ring[T]]
}

}
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With this mechanism, we can add two BigIntegers with a symbolic + despite
the fact that it is not present in the original class. This is how operator over-
loading is addressed in our design. There is however a problem when implicit
conversion is added into the mix, as explained in the next section.

4 Type Classes and Implicit Conversion: A Difficult
Marriage

A vast majority of computer languages support some form of implicit conversion
(or “coercion”). For instance, Scala can automatically convert not only from Int
to Long, but also to custom classes like BigInt, which makes it an extensible
mechanism.

scala> 1l + 1
scala> 1 + 1l
// res1: Long = 2

scala> BigInt(1) + 1
scala> 1 + BigInt(1)
// res3: scala.math.BigInt = 2

However, even with such simple example, one quickly runs into difficulties,
as outlined below, regarding the divideAndRemainder operation. This is in the
case of older Scala versions:

scala> BigInt(1) /% 1
res4: (scala.math.BigInt, scala.math.BigInt) = (1,0)
scala> 1 /% BigInt(1)
<console>:8: error: value /% is not a member of Int

1 /% BigInt(1)
^

In Dotty, there is progress, as the error message gives us a hint on how to
solve the problem.

scala> 1 /% BigInt(1)
^^^^

value /% is not a member of Int, but could be made
available as an extension method.

Here, we should note that BigInt, which is part of the Scala standard library,
is implemented following the “wrapper” approach, that is to say, it is an adapter
to Java’s BigInteger, with appropriate symbolic methods in front of the class’
arithmetic methods.

This is in contrast with the typeclass approach, exposed in the previous
section, which does not play well with coercion. We have to lift by hand the
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values to the desired ring, and we can only add two BigIntegers but not mix a
simple Int. Likewise for polynomials: we must lift coefficients to the polynomial
ring using a constructor (r in the example).

BigInteger(1) + 1 => BigInteger(1) + BigInteger(1)
x + 1 => x + r(1)

This is solved in Dotty, thanks to extension methods, but only for operations
to the right. For operations to the left, we need to import the operators explicitly,
as exposed in more detail in the next section. Alternatively, we could also restrict
ourselves to a “big endian notation”, that is, in descending monomial order from
left to right, leaving “naked” coefficients only to the right of the expression. But
this is not an ideal solution.

5 Scala Adapter for JAS

Let us now introduce our Scala adapter for JAS. We declare a class Ring as a
subtype of the abstract Ring structure of the ScAS hierarchy. Then, we define
our extension methods to call the non-symbolic methods of JAS. First we have
the ring operations, and a compare method, inherited from the fact that it is an
ordered ring. Then we have some ring specific methods isUnit, characteristic,
and the 0 and the 1 of the ring. Lastly, there are some prettyprint methods to
display the value as a String or in MathML.

class Ring[T <: RingElem[T] : RingFactory]
extends scas.structure.ordered.Ring[T] {

def factory = summon[RingFactory[T]]
def (x: T) + (y: T) = x.sum(y)
def (x: T) - (y: T) = x.subtract(y)
def (x: T) * (y: T) = x.multiply(y)
def compare(x: T, y: T) = x.compareTo(y)
def (x: T).isUnit = x.isUnit
def characteristic = factory.characteristic
def zero = factory.getZERO()
def one = factory.getONE()
def (x: T).toCode(level: Level) = x.toString
def (x: T).toMathML = ???
def toMathML = ???

}

Here, we have a perfect instance of an object-functional implementation, with
a subtyping relation in the type parameter of Ring. This is because, as men-
tionned previously, JAS uses f-bounded polymorphism (a mechanism by which a
type is allowed to have itself as type parameter bound) and we have to take it into
account. But we also have a RingFactory context bound, which is a functional
programming concept. So we have both an object-oriented and a functional pro-
gramming concept in the same program, which is quite an achievement of Scala.

Here is a use case for the JAS adapter, with the “Polypower” benchmark.



Progress Report on the Scala Algebra System 311

import jas.{ZZ, BigInteger, poly2scas, coef2poly,
int2bigInt, bigInt2scas}

given r as GenPolynomialRing[BigInteger](ZZ,
Array("x", "y", "z"), TermOrderByName.INVLEX)

val Array(one, x, y, z) = r.gens
val s = poly2scas(r)
import s.{+, *}

val p = 1 + x + y + z
val q = p \ 20
val q1 = q + 1
val q2 = q * q1
q2.length
// 12341

The import section contains all the required items for clarity, but it could
be replaced with a wildcard import. Next, we define a typeclass instance for
polynomials over the integers, with the variables and term order. On the next
line, we get the generators into variables with suitable names. Our main result is
that with the import of the typeclass’ operators +, * it is possible for the design
to work as expected. But our second result is that, contrarily to what is exposed
in the documentation [4], it is not sufficient to have the typeclass instance in
scope to make the extension methods available. This is however necessary when
the coefficient is on the left, and we might still expect some improvement in this
regard in a future version of the language.

Here is the equivalent Python code for comparison.

from jas import PolyRing, ZZ
# sparse polynomial powers

r = PolyRing( ZZ(), "(x, y, z)", PolyRing.lex );
# [one, x, y, z] = r.gens()

p = 1 + x + y + z;
q = p ** 20;
q1 = q + 1;
q2 = q * q1;
len(q2)
// 12341

The code is a bit more concise, but Scala does not look bad in comparison.
In Python, we do not have to assign the generators because they are injected
automatically in the scripting interface.
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6 Related Work : Scala DSL for Rings

The Rings project [6] has opted for a similar, typeclass-based design with its
Scala DSL interface. To address the coercion problem, as far as we can tell the
retained solution looks as follows in the new typeclass syntax.

trait Ring[E]:
def (x: E) + (y: Int): E
def (x: E) + (y: E): E
def (x: Int) + (y: E): E

trait IPolynomialRing[Poly <: IPolynomial[Poly], E]
extends Ring[Poly]:

def (x: Poly) + (y: E): Poly
def (x: E) + (poly: Poly): Poly

Here, in addition to the + operator acting on the polynomial ring elements,
two additional extension methods are provided to add a coefficient on both sides.
Hence, there is no need to lift coefficients to the polynomial ring, and no implicit
conversion is involved.

import cc.redberry.rings

import rings.poly.PolynomialMethods._
import rings.scaladsl._
import syntax._

implicit val ring = UnivariateRing(UnivariateRing(Z, "x"), "y")
val x = ring("x")
val y = ring("y")
ring.show(x+y)
// x+y

However, the drawback of this solution occurs when there are several levels
of recursion, as in the case of nested polynomial rings. In that case, the design
will fail, as shown in the code excerpt below. To mitigate this, all generators are
first lifted to the topmost ring by means of parsing, which the scripting principle
is especially meant to avoid, for type-safety.

implicit val r = UnivariateRing(Z, "x")
implicit val s = UnivariateRing(r, "y")
val x = r("x")
val y = s("y")
s.show(1+x)

javax.script.ScriptException:
overloaded method value + with alternatives:
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(x: Int)Int <and>
...

cannot be applied to (UnivariatePolynomial[BigInteger])
in s.show(1+x)

Thanks to its ability to reuse existing classes, our own design can be adjusted
to the Rings library with a similar adapter as to JAS, allowing to solve this nested
polynomial problem. The adapter is shown below.

abstract class Ring[T] extends scas.structure.ordered.Ring[T]:
def ring: cc.redberry.rings.Ring[T]
def coder = Coder.mkCoder(ring)
def (x: T) + (y: T) = ring.add(x, y)
def (x: T) - (y: T) = ring.subtract(x, y)
def (x: T) * (y: T) = ring.multiply(x, y)
def compare(x: T, y: T) = ring.compare(x, y)
def (x: T).isUnit = ring.isUnit(x)
def characteristic = ring.characteristic
def zero = ring.getZero()
def one = ring.getOne()
def (x: T).toCode(level: Level) = coder.stringify(x)
def (x: T).toMathML = ???
def toMathML = ???

7 A Language for Computer Algebra Libraries

The Rings as well as the JAS libraries both have to make some trade-offs to save-
guard efficiency versus genericity. For instance, in JAS the exponent vectors are
specialized by hand with Long exponents. In Rings, some liberties are taken with
type safety, as a wildcard is used in the definition of cc.redberry.rings.po
ly.MultivariateRing and asInstanceOf in the definition of cc.redberry.ri
ngs.scaladsl.Rings.MultivariateRing. As far as we can tell, this is all to
allow unboxed primitive polynomial term coefficients.

On the other hand, Scala offers some mechanisms for automatic code spe-
cialization. In the former versions, there was a @specialized annotation, but
it is abandonned in Dotty. Fortunately, there is a replacement mechanism with
the new Inline feature [5], which is exemplified in the code excerpt below.

abstract class MathLib[N : Numeric]:
def dotProduct(xs: Array[N], ys: Array[N]): N

object MathLib:
inline def apply[N : Numeric] = new MathLib[N]:

def dotProduct(xs: Array[N], ys: Array[N]) =
require(xs.length == ys.length)
var i = 0
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var s: N = Numeric[N].zero
while (i < xs.length)

s = s + xs(i) * ys(i)
i += 1

s

Here, the inline modifier in front of apply means that the code will be
copied at every use site, replacing the type parameter by some concrete type.
Below, an example is given that computes a dot product which is specialized
in Double.

val mlib = MathLib[Double]

val xs = Array(1.0, 1.0)
val ys = Array(2.0, -3.0)
mlib.dotProduct(xs, ys)
// -1.0

We have used this principle to specialize a generic implementation of power
product exponents in the Scala Algebra System [1]. To assess the gain in effi-
ciency of inline specialized code, we have used the Polypower benchmark that
we have seen previously. Computations were made on a Intel Atom x5-Z8300
processor at 1.44GHz with 2GB of RAM on Linux debian 4.19.0-8-amd64 and
OpenJDK 64-Bit Server VM version “11.0.6”. The result is shown in Fig. 1.

Fig. 1. Polypower benchmark. Execution times in seconds versus degree of polynomial
multiplication with non-specialized and specialized generic exponent vectors, respec-
tively, together with originally specialized JAS code for comparison. As we can see,
there is considerable cost for boxing, which is removed by specialization. (In the legend,
scas nspec stands for non-specialized vectors, scas is for specialized vectors, and jas

for the original JAS data)
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8 Conclusion

The new extension methods in Dotty allowed us to solve a long-standing problem
with type classes and coercion. It enabled the realization of a new Scala adapter
for JAS. Our design compares favorably to the existing Scala DSL for Rings, as it
allows arithmetic operations in nested polynomial rings without parsing. Thanks
to type classes, it is even possible to use our interface as a front-end replacement
for Rings. The question whether Scala could be used for library development is
raised, and it turns out to be adequately efficient, taking advantage of the new
language inline feature for code specialization.

Acknowledgments. The author would like to thank the anonymous referees for their
useful suggestions.
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Abstract. The problem of Routh–Hurwitz stability of a polynomial
matrix family is considered as that of discovering the structure of the
stability domain in the parameter space. Algorithms for finding the spec-
tral abscissa and the distance to instability from any internal point of the
stability domain to its boundary for the case of real perturbations are
proposed. The treatment is performed in the ideology of analytical algo-
rithm for elimination of variables and localization of zeros of algebraic
systems. Some examples are given.
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1 Introduction

Matrix A ∈ R
n×n is called stable (Routh – Hurwitz stable) if all its eigen-

values are situated in the open left half plane of the complex plane. For a stable
matrix A, some perturbation E ∈ R

n×n may lead to that eigenvalues of A + E
cross the imaginary axis, i.e., to the loss of stability.

The smallest real perturbation E that makes A + E unstable is called the
destabilizing real perturbation. It is connected with the notion of the dis-
tance to instability (stability radius) under real perturbations.

Denote by Λ(A) the spectrum of a matrix A. The distance of a stable matrix A
to instability under real perturbations is formally defined as

βR(A) = min{||E|| | η(A + E) ≥ 0, E ∈ R
n×n}, (1)

where || · || denotes some norm in R
n×n while

η(A) = max{�(λ) |λ ∈ Λ(A)} (2)

is the spectral abscissa of the matrix A.
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The problem of finding the distance to instability has a rich history. There
are many different approaches and results concerning bounds and characteri-
zations of complex and real stability radii [14]. The real stability radius prob-
lem is known as essentially more difficult than its complex counterpart [9]. We
will tackle exactly this case: hereinafter, the notion “distance to instability”
should be understood in the meaning “distance to instability under real pertur-
bations”. The next narrowing of the object of the present investigation relates
to the choice of the norm in (1): we will treat this to be Frobenius norm (con-
trary to the complex case, the spectral and Frobenius norms define different
real stability radii [6]). The Frobenius norm is considered to be more applica-
ble to the problems arising in Control Theory, admitting natural extensions to
infinite-dimensional systems [2]. However, it should be mentioned that while the
2-norm variant of the problem has been explored intensively [5,10,17], there are
just a few studies [3,8,14] on the Frobenius norm counterpart. The treatment
of the latter is considered as far more complex than the former due to the fun-
damental difference between the spectral and Frobenius norms. To confirm this
statement, one can notice that the orders of the matrices from the examples
presented in the cited papers (and in the works [1,18,20]) never exceed 4. The
present paper should be viewed as the continuation of the two preceding papers
on the Schur stability [11] and on the Routh – Hurwitz stability under complex
perturbations [12].

The stated problem can be treated as a particular case of the general problem
of finding the distance to instability in the parameter space for a matrix with
entries polynomially depending on a parameter vector μ = (μ1, μ2, . . . , μk), k ≥
1. Indeed, one can pose the problem of finding the domain of stability in the
parameter space R

k, i.e., the domain

P = {μ ∈ R
k | A(μ) is stable} . (3)

If P �= ∅, the next problem is its estimation with the aid of simple domains
like boxes or discs, or finding the distance to its boundary from a particular
specialization μ[0] ∈ R

k.
In Sect. 2, we outline the algebraic backgrounds of the suggested approach

that is based on the resultant and discriminant computation using their represen-
tation in the form of the appropriate Hankel determinant. This toolkit provides
an algebraic method for finding the spectral abscissa of a polynomial matrix
family.

In Sect. 3, we detail the structure of the boundary of set (3). We also propose
an algebraic approach to the problem of finding the distance to instability
in the parameter space, i.e., the Euclidean distance d∗(μ[0]) from a given point
μ[0] ∈ R

k corresponding to a stable matrix A(μ[0]) to the nearest point μ∗ ∈ R
k

at the boundary of domain (3). Reduction of the problem to that one of the
univariate algebraic equation solving allows one to utilize symbolic procedures
for zero approximation within the desired accuracy [4,23]. In Sect. 4, we present
a new algorithm for finding the distance to instability in the matrix space (or
stability radius) and corresponding destabilizing perturbation for a matrix
family A(μ) of the order 3.
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In Sect. 5, some numerical examples are presented illuminating the efficiency
of the suggested algorithms.

Remark. All the numerical computations were made in CAS Mathematica 12.0
with the help of functions Discriminant and Resultant. We present the results
of the approximate computations with the 10−6 accuracy.

2 Algebraic Preliminaries

Here we give some auxiliary results regarding the properties of the zero sets of
polynomials.

Given a polynomial

f(z) = a0z
n + a1z

n−1 + a2z
n−2 + . . . + an ∈ C[z], a0 �= 0, n ≥ 2

with zeroes α1, α2, . . . , αn and a polynomial

g(z) = b0z
m + b1z

m−1 + · · · + bm−1z + bm ∈ C[z], b0 �= 0

with zeros β1, . . . , βm, the resultant of these polynomials is formally defined by
the formula

R(f, g) := am
0 bn

0

n∏

�=1

m∏

j=1

(α� − βj), (4)

while practically it can be expressed as a polynomial in the coefficients of f(z)
and g(z) using several determinantal representations. Here the following one [15]
is used:

Theorem 1 (Kronecker). Let deg f > deg g. Expand g(z)/f(z) in Laurent
series in powers of z−1:

g(z)
f(z)

=
c0
z

+
c1
z2

+ · · · +
cj

zj+1
+ . . . (5)

and compose the Hankel matrix

C = [cj+k]n−1
j,k=0 =

⎡

⎢⎢⎢⎢⎣

c0 c1 c2 . . . cn−1

c1 c2 c3 . . . cn

c2 c3 c4 . . . cn+1

. . . . . .
cn−1 cn cn+1 . . . c2n−2

⎤

⎥⎥⎥⎥⎦
. (6)

Denote by Cj its jth leading principal minor. One has

R(f, g) = an+m
0 Cn .
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Polynomials f(z) and g(z) possess a unique common zero iff Cn = 0, Cn−1 �= 0.
This zero can be expressed by the formula

λ = −a1

a0
− 1

Cn−1

∣∣∣∣∣∣∣∣∣∣∣∣

c0 c1 c2 . . . cn−2

c1 c2 c3 . . . cn−1

c2 c3 c4 . . . cn

. . . . . .
cn−3 cn cn−2 . . . c2n−5

cn−1 cn cn+1 . . . c2n−3

∣∣∣∣∣∣∣∣∣∣∣∣

. (7)

For the particular case g(z) ≡ f ′(z), the coefficients of expansion (5) are
known as the Newton sums of the polynomial f(z). They can be computed
recursively by the formulas

sk =
{−(a1sk−1 + a2sk−2 + · · · + ak−1s1 + akk)/a0, if k ≤ n;

−(a1sk−1 + a2sk−2 + · · · + ansk−n)/a0, if k > n.

Matrix (6) is transformed into the matrix

S = [sj+k]n−1
j,k=0 (8)

that relates to the discriminant of the polynomial f(z), i.e., to

D(f) := a2n−2
0

∏

1≤j<k≤n

(αk − αj)2.

Corollary 1. Denote by Sj the jth leading principal minor of matrix (8). Then
one has

D(f) = a2n−2
0 Sn .

The polynomial f(z) possesses a single multiple zero of the multiplicity 2 iff
Sn = 0, Sn−1 �= 0. This zero can be represented as a rational function of the
coefficients of f(z) via formula (7) where substitution {cj := sj}2n−3

j=0 is made.

Remark. In some further formulas involving resultant and discriminant of the
multivariate polynomials, we will occasionally specify with subscripts the vari-
able of the considered polynomials like Rz or Dz.

The resultant can effectively solve several problems connected with compu-
tation of symmetric functions of the zeros of a polynomial like the one in the
following result [13].

For the polynomial f(z) ∈ R[z], find the real and imaginary part of f(x+ iy)
({x, y} ⊂ R):

f(z) = f(x + iy) = Φ(x, y2) + iyΨ(x, y2),

where

Φ(x, Y ) = f(x) − 1
2!

f ′′(x)Y +
1
4!

f (4)(x)Y 2 − . . . ,

Ψ(x, Y ) = f ′(x) − 1
3!

f (3)(x)Y +
1
5!

f (5)(x)Y 2 − . . . .
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Theorem 2. Polynomial

X (x) = RY (Φ(x, Y ), Ψ(x, Y ))

is of the degree N = n(n − 1)/2 and possesses the set of zeros coinciding with
{

1
2
(αj + αk)

∣∣∣∣∣1 ≤ j < k ≤ n

}
. (9)

The leading coefficient of X (x) equals (−1)�n/4�2Nan−1
0 , while its free term

equals
K(f) = RY (Φ(0, Y ), Ψ(0, Y ))

= RY (an − an−2Y + an−4Y
2 + . . . , an−1 − an−3Y + an−5Y

2 + . . . ). (10)

For a polynomial f(z), the following criterion of stability is valid [19]:

Theorem 3 (Routh). Polynomial f(z) is stable iff
(a) all the coefficients a0, . . . , an are of the same sign;
(b) all the coefficients of X (x) are of the same sign.

It is evident that set (9) contains the real parts of the complex-conjugate
pairs of the zeros of the polynomial f(z) (if any). Therefore, one can apply
Theorem 2 for finding spectral abscissa (2) of a stable matrix A.

Theorem 4. Let f(z) = det(zI − A). The value η(A) equals the maximum of
the real zeros of the polynomials f(z) and X (x).

Example 1. Find the spectral abscissa for the matrix

A(μ) =

⎡

⎣
−1 −μ2 −1
μ −μ − 1 μ
μ2 1 −μ2 − 1

⎤

⎦ . (11)

Solution. We have

f(z;μ) = z3 + (μ2+μ+3)z2 + (2μ3+3μ2+μ+3)z + 2μ5+3μ3+2μ2+μ+1;
X (x;μ) = −8x3 − (8μ2 + 8μ + 24)x2 − (2μ4 + 8μ3 + 20μ2 + 14μ + 24)x

− (5μ4 + 7μ3 + 11μ2 + 5μ + 8).

Domain of stability (3) in the parameter line is defined as P = (μ(0),+∞),
where μ(0) stands for the zero of f(0, μ) = 0, namely μ(0) ≈ −0.682328. For these
values of parameters, each of the equations f(z, μ) = 0 and X (x;μ) = 0 has a
single real zero, the corresponding branches of these implicit functions compose
the plot of the spectral abscissa η(A) as the function of μ (Fig. 1). �

Among the conditions of stability given in Theorem 3, those imposed on the
free terms of the polynomials f(z) and X (x) are somehow the mostly critical
for keeping the stability property. This statement can be clarified when treat-
ing the problem of stability of matrix families. Let A(μ) be a matrix with the
entries polynomially depending on a parameter vector μ = (μ1, . . . , μk); then its
characteristic polynomial f(z, μ) = det(zI − A(μ)) is a polynomial in z and μ.
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Fig. 1. Example 1. Plot of η(μ); branch of f(z, μ) = 0 (thin blue), branch of X (x;μ) = 0
(red boldface) (Color figure online)

Theorem 5. If A(μ) is stable for at least one specialization of the parameter
vector, then the equations

an(μ) = 0 and K(f ;μ) = 0 (12)

define implicit manifolds in R
k that form the boundary for stability domain (3)

in the parameter space.

The domain of stability P can be estimated via testing the inclusions of
simpler subdomains like, for instance, the box:

{
μ−
1 ≤ μ1 ≤ μ+

1 , μ−
2 ≤ μ2 ≤ μ+

2 , . . . , μ−
k ≤ μk ≤ μ+

k

}
.

In [12], this approach is tackled via reduction to that of localization of real zeros
of a univariate polynomial. Other types of approximations can be done with the
aid of balls inscribed in P: if μ[0] ∈ P, then the distance to instability in the
parameter space gives the maximal radius for this ball. Since this distance is
that from the point to algebraic manifolds (12), one can try to investigate this
problem using algebraic approach.

3 Distance to Instability in the Parameter Space

The problem of finding the Euclidean distance from a point X0 to an algebraic
manifold defined implicitly by the equation

G(X) = 0 (13)

in R
k, k ∈ {2, 3},deg G > 1 can evidently be reduced to the constrained opti-

mization problem for the objective function ‖X − X0‖2. The critical values of
this function are the zeroes of the univariate algebraic equation that is further
referred to as the distance equation [11,21].

First consider the case of R2. Let X0 = (0, 0) and the polynomial G(x, y) be
even in y and such that G(0, 0) �= 0. Denote G̃(x, y2) ≡ G(x, y). Let

F(z) := Dx(G̃(x, z − x2)) = 0. (14)



322 E. A. Kalinina et al.

Any critical value of the function x2 + y2 on curve (13) is among the positive
zeros of this equation. The distance from (0, 0) to (13) is attained either on the
real zero of the polynomial G(x, 0) = 0 or on the square root of some positive
zero of distance equation (14). Unfortunately, one cannot expect that only the
minimal positive zero z∗ should be taken into account (as it was erroneously
claimed in [11,21]). The reason for this is an opportunity for this zero to be
generated by the pair of nonreal points on the considered curve (α∗,±ıβ∗), where
{α∗, β∗} ⊂ R. To block this occasion, one has to verify an additional condition
z∗ − x2

∗ > 0 for the multiple zero x = x∗ of the polynomial G̃(x, z∗ − x2).
Fortunately, generically this check can be done in terms of the minors of the
determinantal representation of the discriminant, namely using Corollary 1.

With this in mind, one can generalize the suggested approach first to the
case of arbitrary polynomial G(x, y), not necessarily even in any of its variables.
Indeed, the problem can be evenized. Let us take in (14)

G̃(x, y2) := G(x, y)G(x,−y) ≡ G2
1(x, y2) − y2G2

2(x, y2)

where the polynomials G1(x, y2) and G2(x, y2) are the even and odd terms in y
of the expansion

G(x, y) ≡ G1(x, y2) + yG2(x, y2), {G1, G2} ⊂ R[x, y2] .

This trick results in some extraneous factors in the expression for F(z):

F(z) ≡ F1(z)F2
2 (z) with F2(z) := Rx(G1(x, z − x2), G2(x, z − x2)) .

The true distance equation is then F1(z) = 0.

Example 2. For the matrix

A(μ1, μ2) =

⎡

⎣
−3μ1 − 6 −μ1 + 3μ2 − 1 −4μ1 + 1

−3μ1 + 3μ2 + 4 3μ1 − 6 −5μ1 + 5μ2 + 1
−4μ1 + 2μ2 − 2 −μ1 − 2μ2 − 2 2μ1 − 2μ2 − 7

⎤

⎦ ,

find the distance to instability in the parameter plane from (μ1, μ2) = (0, 0).

Solution. Curves (12) are as follows

det A = −89μ3
1 + 165μ2μ

2
1 + 196μ2

1 − 148μ2
2μ1 − 49μ2μ1 + 181μ1 + 48μ3

2

−19μ2
2 − 89μ2 − 310;

K(f, μ) = −23μ3
1 + 69μ2μ

2
1 − 359μ2

1 − 120μ2
2μ1 + 114μ2μ1 − 759μ1 + 50μ3

2

+50μ2
2 + 642μ2 + 2122.

For the curve detA(μ1, μ2) = 0 and the point (μ1, μ2) = (0, 0), the distance
equation is as follows:

F1(z) = 10624349317642400000z9 − 1702800388943847625680z8

+ 88798497635238525972984z7 − 1682843326433512329073521z6

+ 13619697110026932844935337z5 − 69025641522462473951213248z4

+ 185050119302182865515991868z3 − 322704374130337551354957112z2

+ 353199794304953430778611408z− 163574921725683199207642400 = 0 .



Routh – Hurwitz Stability of a Polynomial Matrix Family 323

Fig. 2. Example 2. Boundaries for the stability domain: detA = 0 (thin blue) and
K(f, μ) = 0 (red boldface) (Color figure online)

The distance equals ≈ 1.067503.
Analogously, the distance equation for the curve K(f, μ) = 0 is

F1(z) = 4078209762893700000z9−· · ·−30191200178664399108114655353316 = 0

and the distance equals ≈ 1.378284 (Fig. 2). �
Distance evaluation for an arbitrary point (x0, y0) to curve (13) can be

reduced to the case just considered via linear substitution.
The treatment of the problem for the manifolds in R

3 is carried out in a
similar manner with the aid of the notion of the discriminant of a bivariate
polynomial f(x, y). Using the result [16,22], one can utilize the following iterative
formula

Dx,y(f(x, y)) := gcd(Dx(Dy(f(x, y)),Dy(Dx(f(x, y)))

for its computation. On computing every internal discriminant in the right-hand
side, one should get rid of extraneous square factors.

Then for manifold (13) where G(x1, x2, x3) is an even polynomial in x3, the
distance equation can be found as

F(z) := Dx1,x2(G̃(x1, x2, z − x2
1 − x2

2)) = 0 where G̃(x1, x2, x
2
3) ≡ G(x1, x2, x3) .

Extension of the result to the case of arbitrary polynomial G is carried out in a
manner similar to that utilized for the bivariate case.

Example 3. For the matrix

A =

⎡

⎣
−3μ1 + 2μ3 − 6 −μ1 + 3μ2 − 2μ3 − 1 −4μ1 + 3μ3 + 1
−3μ1 + 3μ2 + 4 3μ1 − 2μ3 − 6 −5μ1 + 5μ2 + 2μ3 + 1

−4μ1 + 2μ2 − 2μ3 − 2 −μ1 − 2μ2 + μ3 − 2 2μ1 − 2μ2 + 2μ3 − 7

⎤

⎦ ,

find the distance to instability in the parameter space from (μ1, μ2, μ3)=(0, 0, 0).
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Solution. Here both distance equations for manifolds (12) are of the degree
21, and on representing them as polynomials in Z[z], the coefficients are of the
orders up to 1092. The distance to instability ≈ 0.928353 is achieved in the
manifold detA(μ) = 0, namely at the matrix

≈
⎡

⎣
−9.334477 −0.972349 −3.595076
1.506453 −2.665523 −4.050548

−4.394287 −3.224794 −6.232273

⎤

⎦ .

4 Distance to Instability in the Matrix Space

As one can notice from the solutions to Examples 2 and 3, with the increase
of the number of parameters in a matrix family, the tremendous increase of
the distance equation degree might be expected. Therefore, for the distance to
instability problem in the space R

n×n, it is judicious to look for an alternative
approach that reduces somehow the number of parameters involved. Indeed,
this can be done via reducing the problem to that of finding the destabilizing
perturbation. It turns out that this matrix E∗ should be of a low rank, namely
either 1 or 2. We recall first the relative result [24].

Theorem 6. Suppose A ∈ R
n×n is stable. The distance to instability βR(A)

equals the minimal of the two values: either

σmin(A) (15)

or √
min

{X,Y }∈Rn,||X||=1,||Y ||=1,XT Y =0
(XT AY )(Y T AX)≤0

F (X,Y ) , (16)

where σmin(A) stands for the smallest singular value of the matrix A,

F (X,Y ) = ||AX||2 + ||AY ||2 − (XT AY )2 − (Y T AX)2

and all vector norms here are 2-norms.

This result can be interpreted in the ideology of Sect. 3. We precede this inter-
pretation with the following statement known as the Principle of the Irrelevance
of Algebraic Inequalities:

Theorem 7 (H.Weyl[25]). Let R be an infinite integral domain with n inde-
pendent indeterminates x1, . . . , xn. Let P and Q be polynomials in R[x1, . . . xn]
such that if P(η1, . . . , ηn) �= 0, for some ηi in R, then Q(η1, . . . , ηn) = 0.
Then Q ≡ 0.

Theorem 8. For the nonsingular matrix A and for the manifold det B = 0
in R

n×n, the distance to instability equation coincides with the characteristic
equation

det(zI − AT A) = 0 .
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Proof. Let V be an eigenvector of the matrix AT A corresponding to its eigen-
value σ2 with σ > 0:

AT AV = σ2V . (17)

We first prove that the matrix

E = −AV V T

V T V
(18)

satisfies the conditions det(A + E) = 0. Indeed, by (18) one has:

[det(A + E)]2 = det(A + E)T (A + E)

= det
(

AT A − AT AV V T

V T V
− V V T AT A

V T V
+

V V T AT AV V T

(V T V )2

)

and, due to (17),

= det
(

AT A − 2σ2V V T

V T V
+ σ2V V T V V T

(V T V )2

)
= det

(
AT A − σ2V V T

V T V

)
.

Since the column V/
√

V T V is an eigenvector of the symmetric matrix AT A
corresponding to the eigenvalue σ2, the last determinant vanishes.

In a similar way, the relation ‖E‖ = σ can be established.
Finally, let us prove that matrix (18) is orthogonal to the manifold detB = 0

at the “point” B = A + E. For simplicity, we will assume ‖V ‖ = 1 in the rest of
the proof. Let us compute the gradient of detB:

∇(det B) = [B11, B12, . . . , B1n, B21, B22, . . . , Bnn]

where Bjk stands for the algebraic complement to the entry bjk in det B. This
row is just a vectorization of the matrix [adj(B)]T where adj(B) stands for
the adjugate matrix of B. Let us find the expression for adj(B) for the choice
B = A + E, i.e., for detB = 0. For this aim, the Sherman – Morrison formula
can be utilized:

(A + uvT )−1 = A−1 − 1
1 + vT A−1u

A−1uvT A−1 , (19)

Here {u, v} ∈ R
n are column vectors and it is assumed that

1 + vT A−1u �= 0 . (20)

Note that
det(A + uvT ) = (1 + vT A−1u) det A .

The last equality is just a consequence of the Schur complement formula for the
determinant of the order (n + 1):

−det(A + uvT ) =
∣∣∣∣

A u
vT −1

∣∣∣∣ = (−1 − vT A−1u) det A .
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Under condition (20), formula (19) is equivalent to the equality

adj(A + uvT ) = det A
{
(1 + vT A−1u)A−1 + A−1uvT A−1

}
. (21)

This equality can be treated as an algebraic identity with respect to the entries
of the matrix A and the columns u, v. Being valid under restriction (20) that is
also algebraic w.r.t. the just mentioned entries, it should be also valid for the
case 1 + vT A−1u = 0. The last claim is a consequence of Theorem 7.

Therefore, for the matrix E = −AV V T , formula (21) yields the relationship
that is sufficient for the collinearity of E and ∇(det B) computed at B = A+E:

E = τ
{
(−det A)(V V T A−1)T

}
for τ :=

σ2

det A
.

This is equivalent to the equality

AV V T = σ2(A−1)T V V T

that is valid due to (17).

�
Formula (18) yields the destabilizing perturbation E∗ for the case βR(A) =

σmin(A); this matrix has rank 1. If βR(A) equals the value (16) that is attained
at X∗ and Y∗, then

E∗ = (aX∗−AY∗)Y T
∗ +(bY∗−AX∗)XT

∗ where a := XT
∗ AY∗, b := Y T

∗ AX∗ . (22)

It is known [7] that matrix (22) has rank 2. We can now recognize its nonzero
eigenvalues.

Theorem 9. If a �= −b, then matrix (22) has a unique nonzero eigenvalue
λ = −XT

∗ AX∗ = −Y T
∗ AY∗ of the multiplicity 2.

Proof. Evidently, the vectors X∗ and Y∗ are the eigenvectors of the matrix ET
∗ :

XT
∗ E∗ = XT

∗ (aX∗ − AY∗)Y T
∗ + XT

∗ (bY∗ − AX∗)XT
∗

= aY T
∗ − (XT

∗ AY∗)Y T
∗ − (XT

∗ AX∗)XT
∗ = −(XT

∗ AX∗)XT
∗ .

Similarly, one has: Y T
∗ E∗ = −(Y T

∗ AY∗)Y T
∗ .

To prove that the values XT
∗ AX∗ and Y T

∗ AY∗ are identical, let us utilize the
Lagrange multiplier method for the constrained minimization problem involved
in (16). According to Theorem 6, the Lagrangian function is given by

F1(X,Y, p, q, r) = XT AT AX + Y T AT AY − (XT AY )2 − (Y T AX)2

+ p(XT X − 1) + q(Y T Y − 1) + r(XT Y ),

where p, q, and r are the Lagrange multipliers.
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Differentiating F1 w.r.t. X and Y and setting to zero vector O ∈ R
n, we get

2AT AX − 2(XT AY )AY − 2(Y T AX)AT Y + 2pX + rY = O, (23)
2AT AY − 2(Y T AX)AX − 2(XT AY )AT X + 2qY + rX = O. (24)

Pre-multiplying (23) by Y T and equation (24) by XT , we get

2Y T AT AX − 2(XT AY )(Y T AY ) − 2(Y T AX)(Y T AY ) + r = 0,

2XT AT AY − 2(Y T AX)(XT AX) − 2(XT AY )(XT AX) + r = 0,

whence it follows that

(XT AY + Y T AX)(Y T AY − XT AX) = 0 .

�
Theorem 6 reduces essentially the number of variables in the distance to

instability evaluation problem (roughly, from n2 to 2n). However, the new con-
strained optimization problem is still complicated in treatment even for the low
order matrices. Below we suggest a new algorithm for finding the distance to
instability for a polynomial matrix of the order 3.

In what follows, we will consider the most general case a �= −b, that is,
XT

∗ AY∗ �= −Y T
∗ AX∗.

Lemma 1. Let the nonzero vectors X,Y be orthogonal and XT AY �= −Y T AX.
Then there exists ϕ ∈ [0, 2π) such that the vectors

X ′ = X cos ϕ − Y sin ϕ, Y ′ = X sin ϕ + Y cos ϕ (25)

satisfy the condition

X ′T AX ′ = Y ′T AY ′ =
1
2

(
XT AX + Y T AY

)
. (26)

Proof. Condition X ′T AX ′ = Y ′T AY ′ will be satisfied iff

XT AX cos2 ϕ − XT AY cos ϕ sin ϕ − Y T AX cos ϕ sin ϕ + Y T AY sin2 ϕ

= XT AX sin2 ϕ + XT AY sin ϕ cos ϕ + Y T AX sin ϕ cos ϕ + Y T AY cos2 ϕ.

This yields the following relation for ϕ:

tan 2ϕ =
XT AX − Y T AY

XT AY + Y T AX
. (27)

For this value, one has:

X ′T AX ′ = XT AX cos2 ϕ + Y T AY sin2 ϕ − 1
2
(XT AY + Y T AX) sin 2ϕ

= XT AX cos2 ϕ + Y T AY sin2 ϕ − 1
2
(XT AX − Y T AY ) cos 2ϕ

=
1
2
(XT AX + Y T AY ).

�
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It is evident that four vectors X,Y,AX, and AY are linearly dependent.

Lemma 2. Suppose that

AX = α1X + β1Y + U, AY = α2X + β2Y + cU, (28)

for some vector U orthogonal to the plane span(X,Y ), some scalars α1, α2, β1,
β2, c and

||X|| = ||Y || = 1, UT X = UT Y = XT Y = 0 . (29)

Then for any rotation of the plane span(X,Y ) around the origin, the sum of
squared norms of vector rejections of AX and AY from the plane span(X,Y )
equals (1 + c2)||U ||2.
Proof. Rotation through an angle ϕ maps vectors X and Y to vectors (25). Then
we get

AX ′ = (α1 cos ϕ − α2 sin ϕ)X + (β1 cos ϕ − β2 sin ϕ)Y + (cos ϕ − c sin ϕ)U,

AY ′ = (α1 sin ϕ + α2 cos ϕ)X + (β1 sin ϕ + β2 cos ϕ)Y + (sin ϕ + c cos ϕ)U.

Hence, the vector rejections of AX ′ and AY ′ from the plane span(X,Y ) are
(cos ϕ − c sin ϕ)U and (sinϕ + c cos ϕ)U .

�
Lemma 3. For vectors X,Y,U satisfying conditions (28) and (29), we have

F (X,Y ) = (XT AX)2 + (Y T AY )2 + (1 + c2)||U ||2 .

Proof. By direct calculation.

�
Now we can prove the main result.

Theorem 10. Let A ∈ R
3×3 be stable. The distance to instability βR(A) equals

the minimal of the two values: either (15) or

√
min
Z∈R3

H(Z) where H(Z) :=
F (Z)

2G2(Z)
(30)

with

F (Z) := (ZT Z)G(Z,AZ,A2Z) + G(Z,AZ)G(Z,A2Z) , (31)
G(Z) = G(Z,AZ) . (32)

Here G(Z1, Z2, . . . ) stands for the Gram determinant of the columns
{Z1, Z2, . . . } ⊂ R

3 (i.e., G(Z1, Z2, . . . ) = det([Z1, Z2, . . . ]T [Z1, Z2, . . . ])).
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Proof. We want to find vectors X∗ and Y∗ in R
3 minimizing the function F (X,Y )

from Theorem 6. Since vectors X∗, Y∗, AX∗ and AY∗ are linearly dependent, it
follows that the planes span(X∗, Y∗) and span(AX∗, AY∗) have nonzero intersec-
tion and there exists a vector Z in the plane span(X∗, Y∗) such that the vec-
tor AZ belongs to the same plane. Let us take this vector and, with the help of
the Gram–Schmidt process, form an orthonormal basis of the plane span(Z,AZ):

X ′ =
1√

ZT Z − (ZT AZ)2

ZT AT AZ

(
Z − ZT AZ

ZT AT AZ
AZ

)
and Y ′ =

AZ√
ZT AT AZ

(33)

Since coordinates of a vector w.r.t. an orthonormal basis can be found as
inner products, we have

{
AX ′ = (X ′T AX ′)X ′ + (Y ′T AX ′)Y ′ + X ′

⊥,
AY ′ = (X ′T AY ′)X ′ + (Y ′T AY ′)Y ′ + Y ′

⊥,
(34)

where the vectors X ′
⊥ and Y ′

⊥ are orthogonal to the plane span(X ′, Y ′) =
span(Z,AZ). Now, by formulas (33), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X ′T AX ′ =
1

Δ(z)

(
(ZT AZ)2

ZT AT AZ
ZT AT A2Z − (ZT AZ)(ZT A2Z)

)
,

Y ′T AX ′ =
1√
Δ(z)

(
ZT AT AZ − ZT AZ

ZT AT AZ
ZT AT A2Z

)
,

X ′T AY ′ =
1√
Δ(z)

(
ZT A2Z − ZT AZ

ZT AT AZ
ZT AT A2Z

)
,

Y ′T AY ′ =
ZT AT A2Z

ZT AT AZ
,

(35)

where
Δ(z) := ZT Z(ZT AT AZ) − (ZT AZ)2

(32)≡ G(Z) .

From formulas (34) and (35), one can express X ′
⊥ and Y ′

⊥ in terms of Z.
Hence, taking into account formula (26) and Lemma 3, we reduce constrained

optimization problem (16) to that one with the objective function

1
2
(X ′T AX ′ + Y ′T AY ′)2 + X ′

⊥
T
X ′

⊥ + Y ′
⊥

T
Y ′

⊥ ≡ H(Z) ,

where H(Z) is introduced by (30).

�
Now let us compute the destabilizing perturbation. For vector Z∗ providing

the minimum of the function H(Z), calculate the orthonormal basis X ′, Y ′ of
the plane span(Z∗, AZ∗) by formulas (33). Formula (27) then gives the angle of
rotation ϕ. Formulas (25) yield then the new basis

X∗ = X ′ cos ϕ − Y ′ sin ϕ, Y∗ = X ′ sin ϕ + Y ′ cos ϕ , (36)

and E∗ is evaluated via substitution of these vectors into (22).
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5 Numerical Examples

Example 4. Find the distance to instability for the Frobenius matrix
⎡

⎣
0 1 0
0 0 1

−91 −55 −13

⎤

⎦ .

Solution. According to Theorem 10, we first compute the smallest singular
value of the matrix: σmin(A) = 1

2 (
√

11658 − √
11294) ≈ 0.849493.

To find value (30), we get

F (z1, z2, z3) = 11524253650z61z2z3 + 425696830z41z2z
3
3 + 5064605728z31z

3
2z

2
3

+ 22232496040z31z
4
2z3 + . . . + 2861716z32z

5
3 + 2248z1z

7
3 + 8866z2z

7
3 ,

G(z1, z2, z3) = 8281z41+10010z31z2+2366z31z3+11306z21z
2
2+1612z21z2z3

+ 170z21z
2
3 + . . . + 280z22z

2
3+208z1z2z

2
3+26z2z

3
3 .

Consider polynomials

f(x1, x2) := F (x1, x2, 1) and g(x1, x2) := G(x1, x2, 1) .

To find the required minimum, we have to solve the following system of equations

P (x1, x2) :=
∂f

∂x1
g − 2

∂g

∂x1
f = 0, Q(x1, x2) :=

∂f

∂x2
g − 2

∂g

∂x2
f = 0 . (37)

The resultant Rx2(P,Q) is a polynomial of the degree 111 in x1 and it is reducible
over Z. The factor that we are interested in is as follows:

94190675654040017020891x9
1 − 22681293720779964505681381x8

1 + . . .

−273195451131347640172023654739x1 + 192526346708943083753790294889.

Its real zeros are:

x1∗ ≈ −6.678096, 0.975914, 238.671049 .

The distance equation is

F1(z) := 264608725603218736465972352 z9

−2482778534463182978702672498368 z8

−6041404353227684472243312413983416 z7

−1877558806061842045151793279691093879 z6

+3444539171155009717150498602966054761144 z5

−1186542801582178871855841844801398886312992 z4

+181692433990859305990739054557502710597775512 z3

−13198757472174374727616225822264438695814063040 z2

+368286917642318169638677583309966662025865855312 z

−76666423289221009399784933127534178578400622592 = 0
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and its real zeros are

z∗ ≈ 0.209742, 80.144078, 11426.774168 .

The distance to instability
√

z∗ ≈ 0.457976 is achieved at x1∗ ≈ −6.678096,
x2∗ ≈ 12.477326.

Finally let us find the destabilizing perturbation E∗ via formula (22). Vec-
tors (33) are as follows:

X ′ ≈
⎡

⎣
−0.457503

0.887647
−0.052659

⎤

⎦ , Y ′ ≈
⎡

⎣
0.135037
0.010822

−0.990773

⎤

⎦ .

Hence, we get tan 2ϕ ≈ −0.018430 and basis (36) is:

X∗ ≈
⎡

⎣
−0.456238

0.887709
−0.061793

⎤

⎦ , Y∗ ≈
⎡

⎣
−0.139251
−0.002636

0.990245

⎤

⎦ .

Therefore, a ≈ 0.883746, b ≈ −6.563069 and

E∗ ≈
⎡

⎣
0.043826 0.024309 −0.398268

−0.007436 0.070758 −0.208628
−0.002061 0.003541 0.001451

⎤

⎦ .

�
Example 5. For matrix (11), find the dependence of the distance to instability
on the parameter μ.

Remark. For this matrix, a plot of distance to instability for complex pertur-
bations was presented in [12].

Solution. For matrix (11), we have

F (Z) = 4 + 18μ2 + 4μ3 + 22μ4 + 4μ5 + 12μ6 + 3μ8 − 4μz1 + 4μ2z1 + . . . ,

G(Z) = 1 + μ2 + 4μ2z21 + μ4z21 + 2μ2z31 − 2μ4z31 + μ2z41 + μ4z41 + . . . .

Then polynomials (37) have the following degrees:

degz1
P = 10,degz2

P = 11,degμP = 16,degz1
Q = 11,degz2

Q = 10,degμQ = 16.

The resultant

Rz2(P,Q) = 704482010726400μ330z1111 − 13526054605946880μ329z1111 + . . .

is a polynomial in μ and z1, degμ Rz2 = 332,degz1
Rz2 = 111. It happens to

be reducible over Z, and on elimination of the extraneous factors, one gets the
equation

(12μ29 + 152μ28 + 719μ27 + . . .)z91 + . . . + 490μ4 − 98μ3 − 151μ2 − 54μ − 8 = 0 .
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For any specialization of the parameter μ, the z1 value can be evaluated with any
predetermined accuracy. Then we can find the corresponding values z2 and (30).
In Fig. 3, the dependence of βR on the parameter μ is presented.

When μ ≤ μ(0) ≈ −0.682328, the matrix A(μ) is unstable, i.e., βR(A) = 0.
The distance to instability over the interval μ(0) ≤ μ ≤ μ(1) ≈ 0.772543 is equal
to the minimal singular value of the matrix (displayed as thin blue plot in Fig. 3).
The red boldface plot demonstrates the values of βR found by (30).

Fig. 3. Example 4. Distance to instability in the matrix space

The switching value μ = μ(1) corresponds to the matrix A(μ) that is equidis-
tant from the two boundaries of the stability domain, i.e., it can be destabilized
by two matrices of the identical norm:

E∗1≈
⎡

⎣
−0.042420 0.023236 0.031892

−0.623514 0.341538 0.458770

−0.670580 0.367319 0.504151

⎤

⎦ , E∗2≈
⎡

⎣
0.871781 0.073653 −0.066321

0.084323 0.406861 0.430345

−0.077178 0.437408 0.490915

⎤

⎦ .

�
Remark. In all the examples of the matrices of the order 3 that have been done
by the authors, the degree of the distance equation in the matrix space equals
9. Thus, the fear of the permanent degree growth with that of the number of
parameters of the family expressed at the beginning of Sect. 4, is not confirmed.
Therefore, it is of interest to clarify this dependence.

6 Conclusions

We have investigated the Routh – Hurwitz stability property for matrices with
the entries polynomially depending on parameters in the case of real perturba-
tions. We have concerned with the following issues
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– finding the spectral abscissa of a matrix;
– description and estimation of the domain of stability in the parameter space;
– computation of the distance to instability in the matrix space.

The purely algebraic procedures based on symbolic algorithms for the elimination
of variables and localization of the real zeros for algebraic equation systems
have been suggested for solving the stated problems. This provides one with
precise information on the obtained solution, i.e., the results do not depend on
the precision of calculations and round-off errors. For further investigation, it
remains to optimize the computational efficiency of the suggested algorithms for
their application to the matrices of arbitrary order.

Acknowledgments. The authors are grateful to Prof Evgenii Vorozhtzov and to the
anonimous referees for valuable suggestions that helped to improve the quality of the
paper.
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Abstract. We generalize Hermite interpolation with error correction,
which is the methodology for multiplicity algebraic error correction
codes, to Hermite interpolation of a rational function over a field K from
function and function derivative values.

We present an interpolation algorithm that can locate and correct
≤ E errors at distinct arguments ξ ∈ K where at least one of the values
or values of a derivative is incorrect. The upper bound E for the number
of such ξ is input. Our algorithm sufficiently oversamples the rational
function to guarantee a unique interpolant. We sample (f/g)(j)(ξi) for
0 ≤ j ≤ �i, 1 ≤ i ≤ n, ξi distinct, where (f/g)(j) is the j-th derivative
of the rational function f/g, f, g ∈ K[x], GCD(f, g) = 1, g �= 0, and
where N =

∑n
i=1(�i + 1) ≥ Df + Dg + 1 + 2E + 2

∑E
k=1 �k; Df is an

upper bound for deg(f) and Dg an upper bound for deg(g), which are
input to our algorithm. The arguments ξi can be poles, which is truly or
falsely indicated by a function value ∞ with the corresponding �i = 0.
Our results remain valid for fields K of characteristic ≥ 1 + maxi �i. Our
algorithm has the same asymptotic arithmetic complexity as that for
classical Hermite interpolation, namely N(log N)O(1).

For polynomials, that is, g = 1, and a uniform derivative profile
�1 = · · · = �n, our algorithm specializes to the univariate multiplicity
code decoder that is based on the 1986 Welch-Berlekamp algorithm.
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1 Introduction

Algebraic error correction codes are based on interpolating a polynomial f from
its values ai = f(ξi) at distinct argument scalars ξi, when some of the inputs âλ

for the evaluations are incorrect, namely âλ �= aλ. The coefficients of f are from a
field K, as are the arguments ξi and the list of correct and incorrect evaluations âi.
The 1960 algorithm by Irving Reed and Gustave Solomon [16] reconstructs a
polynomial f of degree ≤ D from n = D + 1 + 2E values âi when ≤ E of the
values are incorrect, namely |{λ | âλ �= f(ξλ)}| ≤ E. The number of evaluations
is optimal: for n = D + 2E there may exist two polynomials that interpolate
with ≤ E errors. The Reed-Solomon decoder generalizes to rational functions
f/g ∈ K(x) with n = Df + Dg + 1 + 2E, where Df ≥ deg(f), Dg ≥ deg(g)
[1]. Decoding can be performed by the extended Euclidean Algorithm [19,21] or
by solving a linear system [8]. Lemma 3.2 in [8] shows that for Df = deg(f),
Dg = deg(g), n − 1 evaluations are always insufficient to correct E errors.

Multiplicity codes [3–5,11,13,15,17] generalize the Reed-Solomon problem
to the Hermite interpolation problem with error correction. In classical (error-
free) Hermite interpolation one reconstructs a polynomial (or rational function)
from the values of the polynomial and its derivatives. The classical algorithm
of divided differences can reconstruct f from ai,j = f (j)(ξi), where ξ1, . . . , ξn ∈
K are distinct scalars, f (j) is the j-th derivative of f , and 0 ≤ j ≤ �i with
(�1 + 1) + · · · + (�n + 1) = D + 1. We shall assume that the characteristic of
the field K is either 0 or ≥ 1 + max �i. For the case that n = 1, one has f(x) =∑

0≤j≤�1
f (j)(ξ1)/j! (x − ξ1)j . As in the Reed-Solomon decoding problem, one

assumes that some inputs âi,j �= f (j)(ξi). It is clear that not all evaluation profiles
(�1, . . . , �n) with

∑n
i=1(�i + 1) = D + 1 + 2E are decodable when there are ≤ E

errors. For example, if n = 1 the oversampled derivatives cannot reveal all errors,
since f (j)(x) = 0 for j ≥ deg(f) + 1. Furthermore, if all âi,0 are erroneous, the
constant coefficient of f is unrecoverable. Example 1 below shows that if one has
D = deg(f), n = D + 2E and �1 = · · · = �2E = 1 and �2E+1 = · · · = �D+2E = 0,
that is N = D + 4E, there may be a second polynomial of degree ≤ D that fits
all but E evaluations.

The reason why, in the Hermite case, one may have to match every bad value
with more than one additional good value, in contrast to the Reed-Solomon
decoder, is apparent from the Birkhoff generalization of the Hermite interpola-
tion problem. In Birkhoff interpolation one does not have all consecutive deriva-
tives at a scalar ξi. Schoenberg [18] uses a matrix Θ = [θi,j ]1≤i≤n,0≤j≤D ∈
{0, 1}n×(D+1) with exactly (D + 1) 1-entries. If θi,j = 1 then the evaluation
ai,j = f (j)(ξi) is input. For K = R one asks for which Θ’s one always gets a
unique interpolant. The Pólya-Schoenberg Theorem states that for n = 2 there is
a unique interpolant if and only if ∀j, 0 ≤ j ≤ D−1:

∑
0≤μ≤j(θ1,μ+θ2,μ) ≥ j+1.

If those Pólya conditions are violated, then either there are more than one
solution or there is no solution. In the error correction setting, for exam-
ple, in erasure codes, the errors invalidate evaluations, that is, set θi,j = 0
whenever âi,j is an error. Thus the remaining good points may constitute an
(oversampled) Birkhoff problem that does not have one unique solution. For
example, for f(x) = (x2 − 12)(x2 − 72) we have f(x)′ = 4x(x2 − 52), so
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f(−1) = f(1) = f(−7) = f(7) = 0, f ′(0) = f ′(−5) = f ′(5) = 0 is interpolated
at 7 good values by the polynomials 0 and f (see also Example 2). Multiplicity
code decoders also need to locate the erroneous locations. Our problem is more
difficult: the correct values are those of a rational function, not of a polynomial.

The algorithms for error-correcting Hermite interpolation of polynomials and
rational functions, in analogy to the Pólya conditions, interpolate a unique poly-
nomial or rational function from its upper bounds for the degrees and the number
of errors by sufficient oversampling. Suppose the profile of derivatives at each dis-
tinct argument ξi (1 ≤ i ≤ n) is sorted: �1 ≥ · · · ≥ �n ≥ 0. Again, we assume that
the characteristic of K is either 0 or ≥ �1 + 1. For a rational function f/g ∈ K(x)
we input Df ≥ deg(f), Dg ≥ deg(g), âi,j ∈ K for 1 ≤ i ≤ n and 0 ≤ j ≤ �i, and
E such that for ≤ E of all arguments ξi there is an error at least one j:

E ≥ |{i | 1 ≤ i ≤ n and ∃j, 0 ≤ j ≤ �i : âi,j �= (f/g)(j)(ξi)}|.

We use the fresh symbol ∞ = (f/g)(ξi) if g(ξi) = 0 and allow both false (non-
pole) scalars âi,j ∈ K at such poles, as well as false poles âi,j = ∞ when g(ξi) �= 0.
We shall assume that the only âi,j = ∞ are at evaluations j = 0 and that then
no derivatives are present, that is, �i = 0. If âi,j = ∞ �= âi,k for some j �= k then
one of the values is erroneous, unless the characteristic of K is positive and ≤ Dg.
In that case, the list of values âi,0, âi,1, . . . at ξi is pre-processed: see Remark 2.
Note that without errors, f/g cannot be interpolated at a single argument ξ1
when all derivative values are ∞.

Our algorithm recovers f/g if the number of evaluations, N , at n distinct ξi

satisfies

N
def
=

n∑

i=1

(�i +1) = Df +Dg +1+2
E∑

i=1

(�i +1) = Df +Dg +1+2E +2
E∑

i=1

�i (1)

(see Theorem 1). The equation (1) implies 2E + 1 ≤ n (see (6)). Note that
if N < the right-side of (1), one needs to increase either n or �E+1, . . . , �n and
sample more values. If N > the right-side of (1), one can decrease �n, . . . , �E+1

and/or n. If equality in (1) is achieved, further reduction of oversampling may
be possible while preserving (1); see Remark 4. For polynomial interpolation
we can set Dg = 0. In relation to Example 1: with D = deg(f), g = 1, if
�1 = · · · = �2E+1 = 1 and �2E+2 = · · · = �D+2E = 0 then f is recovered
uniquely from N = D + 4E + 1 evaluations with ≤ E errors. For �i = 0 for
all i, our algorithm specializes to rational function recovery with errors with
n = N = Df + Dg + 1 + 2E.

1.1 Comparison to Multiplicity Code Decoders

Multiplicity codes are based on Hermite polynomial interpolation with error
correction, that is, Df = D, Dg = 0. In [11] the following parameter settings
are used: n = q and the field of scalars is K = Fq, a finite field of q elements.
The number of derivatives is uniformly �1 = · · · = �q = s − 1. There are ≤ E =
(sq − D − 1)/(2s) indices λκ where at least one of the s derivative values âλκ,j



338 E. L. Kaltofen et al.

(0 ≤ j ≤ s − 1) is an error. At each error index λκ, there can be as many as s
errors, for a total of (sq−D−1)/2 errors, the latter of which is the degree of the
error locator polynomial in [11, Section 3.1]. Multiplicity codes then recover the
code polynomial from the N = sq values âi,j for 1 ≤ i ≤ q and 0 ≤ j ≤ s − 1,
which agrees with the right-side of (1): D + 1 + 2Es = sq. Our decoders here
allow for unequal �i.

Our main contribution is the generalization to Hermite interpolation of ratio-
nal functions from such partially erroneous values, including the handling of
arguments at roots of the denominator, that is, poles. An important idea behind
Algorithm 5.1 is from the algorithm in [20] (as cited in ([6])) for Hermite ratio-
nal function interpolation, which in turn is based on Cauchy interpolation via
the extended Euclidean algorithm. Our algorithm essentially performs Warner’s
algorithm, now on an unreduced fraction of polynomials, where both numera-
tor and denominator are multiplied with the error locator polynomial, which the
Cauchy interpolation algorithm computes (see Lemma 1). The Welch-Berlekamp
decoder for Reed-Solomon codes [21] and its generalization to multiplicity code
decoders [11, Section 3.1.1] also has our interpretation of solving such a Cauchy
problem.

Because of derivatives, in the Hermite setting the roots of the error locator
polynomial have multiplicities. With our assumption that âi,j = ∞ only if j =
�i = 0, we can prove that the N values in (1) are sufficient for unique recovery
if there are ≤ E arguments ξi with some âi,j being an error (see Theorem 1).

The half-GCD algorithm [14] and fast Hermite interpolation algorithms [2]
then yield an arithmetic complexity of N(log N)O(1). We note that the unique-
ness of the interpolant for the error-free Hermite rational function problem
implies uniqueness with errors when oversampled at N points (1), which yields
a linear system for the coefficients of the unreduced numerator and denominator
polynomials. Our approach computes a solution via the extended Euclidean algo-
rithm and additionally optimizes the required polynomial division: see Remark
3. Our Algorithm 5.1 also diagnoses if no valid rational function interpolant
exists, which can be used to perform list-decoding: see Remark 6.

2 Polynomial Hermite Interpolation

Let n ≥ 1, ξi ∈ K for 1 ≤ i ≤ n be distinct values, �1 ≥ �2 ≥ · · · ≥ �n ≥ 0,
ai,j ∈ K for 1 ≤ i ≤ n and 0 ≤ j ≤ �i. Suppose that the characteristic of K is
either 0 or ≥ �1 + 1. For d = (�1 + 1) + · · · + (�n + 1) − 1 there exists a unique
f ∈ K[x] with deg(f) ≤ d such that ai,j = f (j)(ξi) for 1 ≤ i ≤ n and 0 ≤ j ≤ �i

where f (j)(x) is the j-th derivative of f(x) = cdx
d + · · · + c1x + c0 defined by

f (j)(x) =
( d∑

δ=0

cδx
δ
)(j)

=
d∑

δ=j

cδ δ(δ − 1) · · · (δ − j + 1) xδ−j . (2)

We note that if K has any characteristic, the rational function field K(x) is a
differential field with the derivative ′ being a function satisfying c′ = 0 for all
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c ∈ K, x′ = 1 and (F +G)′ = F ′+G′ and (FG)′ = F ′G+FG′ for all F,G ∈ K(x),
which yields (2). See also Remark 2 below.

The algorithm of divided differences, which goes back to at least Guo
Shoujing (1231–1316), computes the coefficients c̄i,j forming the decomposition
of f(x) in mixed-shifted-basis representation

f(x) =
n∑

ν=1

�ν∑

μ=0

c̄ν−1,μ

( ν−1∏

κ=1

(x − ξκ)�κ+1
)
(x − ξν)μ.

For 1 ≤ i ≤ n and 0 ≤ j ≤ �i the interpolant

Hi,j(x) =
i∑

ν=1

�′
ν∑

μ=0

c̄ν−1,μ

( ν−1∏

κ=1

(x − ξκ)�κ+1
)
(x − ξν)μ

with �′
ν = �ν for ν < i and �′

i = j,

fits the values aν,μ for 1 ≤ ν ≤ i and 0 ≤ μ ≤ �′
ν . We compute the next Hi,j+1

(j < �i) or Hi+1,0 (j = �i) to fit ai,j+1 or ai+1,0, respectively. For j < �i we have

Hi,j+1(x) = Hi,j(x) + c̄i−1,j+1Gi,j+1(x),

Gi,j+1(x) =
( i−1∏

κ=1

(x − ξκ)�κ+1
)
(x − ξi)j+1.

Note that G
(μ)
i,j+1(ξν) = 0 for 1 ≤ ν ≤ i and 0 ≤ μ ≤ �′

ν , so Hi,j+1(x) interpolates

all of Hi,j ’s values. Finally, G
(j+1)
i,j+1 (ξi) =

( ∏i−1
κ=1(ξi − ξκ)�κ+1

)
(j + 1)!, which is

�= 0 by our assumption that the characteristic of K is 0 or ≥ �1 + 1. Therefore
H

(j+1)
i,j+1 (ξi) = ai,j+1 has a unique solution c̄i−1,j+1. The case Hi+1,0 is similar.

Algorithms for computing the Hermite interpolant f in soft-linear arithmetic
complexity go back to [2].

3 Rational Function Recovery

Our algorithms are a generalization of the Cauchy interpolation algorithm for
rational functions, which is based on the extended Euclidean algorithm. We now
state the key lemma, which goes back to Leopold Kronecker’s algorithm for
computing Padé approximants.

Lemma 1. Let d and e be non-negative integers, and let H(x) ∈ K[x], K an
arbitrary field, deg(H) ≤ d + e; furthermore, let ξi, 1 ≤ i ≤ d + e + 1, be not
necessarily distinct elements in K.

1. Define r0 =
∏d+e+1

i=1 (x − ξi) and r1(x) = H(x). Now let rρ(x), qρ(x) ∈ K[x]
be the ρ-th remainder and quotient respectively, in the Euclidean polynomial
remainder sequence

rρ−2(x) = qρ(x)rρ−1(x) + rρ(x), deg(rρ) < deg(rρ−1) for ρ ≥ 2.
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In the exceptional case H = 0 the sequence is defined to be empty. Finally,
let sρ(x), tρ(x) ∈ K[x] be the multipliers in the extended Euclidean scheme
sρr1 + tρr0 = rρ, namely,

s0 = t1 = 0, t0 = s1 = 1,

sρ = sρ−2 − qρ sρ−1, tρ = tρ−2 − qρ tρ−1 for ρ ≥ 2.

Then there exists an index γ ≥ 1, such that deg(rγ) ≤ d < deg(rγ−1) and

rγ ≡ sγH (mod r0) and deg(sγ) ≤ e. (3)

2. Let R(x), S(x) ∈ K[x] be another solution of (3), namely

R ≡ S H (mod r0) d ≥ deg(R) and e ≥ deg(S). (4)

Then sγR = rγS. If furthermore GCD(R,S) = 1 then R = c rγ , S = c sγ for
some c ∈ K \ {0}.

Proof. See [7, Lemma 1].

4 Error-Correcting Hermite Interpolation

Let f(x) ∈ K[x] be a univariate polynomial and D be an upper bound of deg(f).
One is given a set of n distinct arguments ξ1, . . . , ξn ∈ K, and for each argu-
ment ξi, one is given a row vector

Âi,∗ = [âi,0, . . . , âi,�i
] ∈ K1×(�i+1).

We call âi,j an error if âi,j �= f (j)(ξi), and we call Âi,∗ error-free if âi,j = f (j)(ξi)
for all j = 0, . . . , �i. Let {λ1, . . . , λk} ⊂ {1, . . . , n} be the set of indices where
every row vector Âλ1,∗, . . . , Âλk,∗ has at least one error, and let E ≥ k (if all
row vectors Â1,∗, . . . , Ân,∗ are error-free, then let E = k = 0). As in Section 2
we assume that K is a field of characteristic 0 or ≥ 1 + maxi �i. To uniquely
recover f(x), a condition n ≥ 2E + 1 is necessary: if n = 2E, one can have for
f ∈ K[x] with E errors âi,0 = f(ξi) + 1 �= f(ξi) where 1 ≤ i ≤ E, and for f + 1
with E errors âi,0 = f(ξi) �= f(ξi) + 1 where E + 1 ≤ i ≤ 2E, that is both f
and f + 1 are valid interpolants with E errors. Without loss of generality, we
assume that �1 ≥ · · · ≥ �n ≥ 0, and let

Â =

⎡

⎢
⎣

Â1,∗
...

Ân,∗

⎤

⎥
⎦ ∈ (

K1×(�1+1) ∪ · · · ∪ K1×(�n+1)
)n

be the vector of those value row vectors. The total number of values in Â is
N =

∑n
i=1(�i + 1). We will show how to recover the polynomial f(x) from the

points ξ1, . . . , ξn and the values in Â by the extended Euclidean algorithm if

n +
n∑

i=E+1

�i = D + 1 + 2E +
E∑

i=1

�i. (5)
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Note that the equality (5) is equivalent to
∑n

i=1(�i +1) = D+1+2E+2
∑E

i=1 �i,
which means Â has N = D + 1 + 2E + 2

∑E
i=1 �i values. Furthermore, the

equality (5) implies that n ≥ 2E +1, because recovery is unique and for n ≤ 2E
we would have the ambiguous solution above; more explicitly, for n ≤ 2E we
have the contradiction

n +
n∑

i=E+1

�i ≤ 2E + �E+1E < D + 1 + 2E +
E∑

i=1

�i. (6)

We remark that the condition (5) can be relaxed to n +
∑n

i=E+1 �i ≥ D +
1 + 2E +

∑E
i=1 �i, because in that case, one can decrease �n, �n−1, . . . , �E+1

successively to achieve the equality (5). In fact, even if the equality is satisfied,
one may still be able to reduce the �i’s on both sides so that the algorithm can
recover f(x) with fewer values (see Remark 4).

4.1 Error-Correcting Polynomial Hermite Interpolation

Input: � A field K, nonnegative integers D,E ∈ Z≥0;
� A set of distinct points {ξ1, . . . , ξn} ⊆ K;
� A list of n row vectors Â = [Âi,∗]1≤i≤n where

� �1 ≥ · · · ≥ �n ≥ 0; the characteristic of K is either 0 or ≥ �1 + 1;
� Âi,∗ = [âi,0, . . . , âi,�i

];
� n +

∑n
i=E+1 �i = D + 1 + 2E +

∑E
i=1 �i (=⇒ n ≥ 2E + 1).

Output: � The interpolant f(x) ∈ K[x] and the error locator polynomial Λ(x) in
K[x] which satisfy

� deg(f) ≤ D;
� Λ(x) = 1 or Λ(x) =

∏k
κ=1(x−ξλκ

)δκ where ξλ1 , . . . , ξλk
are distinct

and k ≤ E;
� row vector Âi,∗ is error free if and only if i /∈ {λ1, . . . , λk};
� δκ = �λκ

+ 1 − min{j | f (j)(ξλκ
) �= âλκ,j}.

� Or a message indicating there is no such interpolant.

1. If âi,j = 0 for all i = 1, . . . , n and j = 0, . . . , �i, then return f = 0 and Λ = 1.
2. Compute the Hermite interpolant H(x) ∈ K[x] of the data set {(ξi; âi,0, . . . ,

âi,�i
) | i = 1, . . . , n}, namely compute a polynomial H(x) ∈ K[x] such that

H(j)(ξi) = âi,j.
If E = 0 and deg(H) ≤ D, then return f = H and Λ = 1. If E = 0 and
deg(H) > D, then return a message indicating there is no such interpolant.

3. Let r0 = (x − ξ1)�1+1 · · · (x − ξn)�n+1, r1 = H, s0 = 0, s1 = 1, and ρ = 2.
3a. Compute the ρ-th Euclidean polynomial remainder rρ and the multiplier

sρ in the extended Euclidean scheme sρr1 + tρr0 = rρ, namely

rρ(x) = rρ−2(x) − qρ(x)rρ−1(x), deg(rρ) < deg(rρ−1),
sρ(x) = sρ−2(x) − qρ(x)sρ−1(x).
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3b. If deg(rρ) ≤ D + E +
∑E

i=1 �i,then let γ = ρ and go to Step 4.
3c. Otherwise, let ρ = ρ + 1 and go to Step 3a.
By the half-GCD algorithm, Step 3 can be performed in soft-linear arithmetic
complexity.

4. If sγ divides rγ , then factorize sγ over K; if sγ has ≤ E distinct factors, then go
to Step 5. Otherwise return a message indicating there is no such interpolant.

5. Compute f = rγ/sγ . If deg(f) ≤ D, then return f and Λ = sγ/lc(sγ), where
lc(sγ) is the leading coefficent of sγ . Otherwise return a message indicating
there is no such interpolant.
Step 3 computes (rγ , sγ) as in Lemma 1 with d = D + E +

∑E
i=1 �i and e =

E +
∑E

i=1 �i. We will prove that if there is an interpolant f(x) ∈ K[x] which
satisfies the output specifications, then rγ/sγ = (fΛ)/Λ = f (see Lemma 2)
and Λ = sγ/lc(sγ) (see Lemma 3). Here sγ �= 0 because GCD(sγ , tγ) = 1
for γ ≥ 2.
On the other hand, if the polynomial rγ/sγ computed in Step 5 has degree
≤ D, then it satisfies the output specifications, which we will prove as a
special case in Lemma 5. Therefore, we can check the validity of rγ/sγ without
computing all the values (rγ/sγ)(j)(ξi) for i = 1, . . . , n and j = 0, . . . , �i.

Lemma 2. With the notation as in Algorithm 4.1, if there is a polynomial f ∈
K[x] which satisfies the output specifications, then

fΛ ≡ HΛ (mod r0). (7)

Moreover, rγ/sγ = (fΛ)/Λ = f , which implies the interpolant f is unique.

Proof. Recall that Λ(x) = (x − ξλ1)
δ1 · · · (x − ξλk

)δk is the error locator polyno-
mial where

(i) ξλ1 , . . . , ξλk
are the arguments with erroneous values, that is, for indices λκ ∈

{λ1, . . . , λk}, there exists j ∈ {0, . . . , �λκ
} such that f (j)(ξλκ

) �= âλκ,j ;
(ii) δκ = �λκ

+ 1 − min{j | f (j)(ξλκ
) �= âλκ,j}, κ = 1, . . . , k.

Since r0 = (x − ξ1)�1+1 · · · (x − ξn)�n+1, proving the equality (7) is equivalent
to proving (x − ξi)�i+1 divides (fΛ − HΛ) for all i = 1, . . . , n, which is again
equivalent to proving the following equality:

(fΛ)(j)(ξi) = (HΛ)(j)(ξi) for all i = 1, . . . , n and j = 0, . . . , �i. (8)

If i /∈ {λ1, . . . , λk} then f (j)(ξi) = âi,j = H(j)(ξi) for all j = 0, . . . , �i and (8)
follows immediately. For ξλκ

(1 ≤ κ ≤ k) and j = 0, . . . , �λκ
,

(fΛ)(j)(ξλκ
) =

j∑

τ=0

(
j

τ

)

f (j−τ)(ξλκ
)Λ(τ)(ξλκ

),

(HΛ)(j)(ξλκ
) =

j∑

τ=0

(
j

τ

)

H(j−τ)(ξλκ
)Λ(τ)(ξλκ

).
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Moreover,

Λ(τ)(ξλκ
) = 0 if τ < δκ, (9)

f (j−τ)(ξλκ
) = âλκ,j−τ = H(j−τ)(ξλκ

) if τ ≥ δκ. (10)

The equality (9) holds because Λ(x) has a factor (x − ξλκ
)δκ ; the equality (10)

follows from

j − τ ≤ �λκ
− τ < �λκ

+ 1 − δκ = min{j | f (j)(ξλκ
) �= âλκ,j}.

Therefore, f (j−τ)(ξλκ
)Λ(τ)(ξλκ

) = H(j−τ)(ξλκ
)Λ(τ)(ξλκ

) for all τ = 0, . . . , j,
and (8) is proved.

Let d = D + E +
∑E

i=1 �i, e = E +
∑E

i=1 �i, R = fΛ, and S = Λ. Then
deg(r0) = d + e + 1, deg(H) ≤ d + e, deg(R) ≤ d, and deg(S) ≤ e. By Lemma 1,
rγ/sγ = R/S = fΛ/Λ = f .

Lemma 3. With the notation as in Algorithm 4.1, we have Λ = sγ/lc(sγ).

Proof. By Lemma 2, rγ = sγf . On the other hand, rγ ≡ sγH (mod r0).
Therefore

sγf ≡ sγH (mod r0). (11)

Let (x − ξλκ
)δκ be a factor of Λ and denote εκ = min{ j | f (j)(ξλκ

) �= âλκ,j},
then

δκ + εκ = �λκ
+ 1.

Since (x − ξλκ
)�λκ+1 is a factor of r0, it follows from (11) that (x − ξλκ

)δκ+εκ

divides (f − H)sγ . In addition, εκ = min{ j | f (j)(ξλκ
) �= âλκ,j = H(j)(ξλκ

)}
implies that

GCD((x − ξλκ
)δκ+εκ , f − H) = (x − ξλκ

)εκ .

Therefore (x − ξλκ
)δκ divides sγ , and so Λ divides sγ .

Assume that sγ = Λw for some w ∈ K[x], then rγ = sγf = fΛw, so the
extended Euclidean scheme sγr1 + tγr0 = rγ becomes

fΛw = HΛw + tγr0.

However, from Lemma 2, we know that fΛ ≡ HΛ (mod r0), which means there
is t̃ ∈ K[x] such that

fΛ = HΛ + t̃ r0.

Therefore tγ = t̃ w, and this leads to w ∈ K because GCD(sγ , tγ) = 1. Since the
leading coefficient of Λ is 1, we have sγ = lc(sγ)Λ.

Note that Reed-Solomon decoding is a special case of our setting where �1 =
· · · = �n = 0 and n = N = D+1+2E. When �1 ≥ 1 and n ≤ D+2E, our method
requires N = D + 1 + 2E + 2

∑E
i=1 �i which is more than the values required

by Reed-Solomon decoding. However, in some cases, the number of values we
required is necessary for computing a unique interpolant f(x), that is, there can
be two valid interpolants if fewer values are given. We show this by the following
example.
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Example 1. Let K = algclo(Q)∩R be the real algebraic closure of Q, and assume
that 2E ≤ D − 1. Let ξ2E+1, . . . , ξD+2E be D distinct points in K and

f(x) =
D+2E∏

i=2E+1

(x − ξi).

By Rolle’s theorem, f(x)′ has D − 1 distinct roots in K, which allows us to
choose 2E distinct points ξ1, . . . , ξ2E from these roots. Moreover, all the points
ξ1, . . . , ξ2E , ξ2E+1, . . . , ξD+2E are distinct. Now we have f ′(ξ1) = · · · = f ′(ξ2E) =
0 and f(ξ2E+1) = · · · = f(ξD+2E) = 0. Let �1 = · · · = �2E = 1, �2E+1 = · · · =
�D+2E = 0 and n = D + 2E, then N =

∑n
i=1(�i + 1) = D + 4E. Suppose the N

values are given as follows:

âi,0 = f(ξi) for i = 1, . . . , E,
âi,0 = 0 for i = E + 1, . . . , D + 2E,
âi,1 = 0 for i = 1, . . . , 2E.

⎫
⎬

⎭
(12)

If the E errors are â1,0, . . . , âE,0, then 0 is a valid interpolant; if the E
errors are âE+1,0, . . . , â2E,0 then f is a valid interpolant. Thus for the points
ξ1, . . . , ξD+2E and the D +4E values in (12), there are ≥ 2 valid interpolants. �

Example 2. As we have shown in Sect. 1, from Birkhoff problems with multiple
solutions one obtains Hermite interpolation problems with errors that have mul-
tiple solutions. For instance, for the polynomial f(x) = (x2 − 12)3(x2 − 72)3 we
have f (j)(ξ) = 0 for ξ = ±1, ξ = ±7 and j = 0, 1, 2, and f ′(ξ) = 0 for ξ = 0
and ξ = ±5. Therefore with those n = 7 arguments ξ and �i = 2 for 1 ≤ i ≤ 7,
one has both f and the zero polynomial as a solution with E = 3 errors at
N = 21 = deg(f) + 1 + 2E + 2 values. �

Example 3. If the field of scalars K has finite characteristic ≥ �1 + 1, our count
(5) is optimal for higher derivatives. Let n = 2E + 1 and let �1 = · · · = �2E+1 =
p − 1 for a prime number p which is the characteristic of the field of scalars K,
whose cardinality is |K| ≥ 2E + 2, so that there exist n + 1 distinct elements
ξi in K. Let f(x) = (x − ξ1)p. Then f(ξ1) = 0 and f (j)(ξi) = 0 for all 1 ≤
i ≤ n and 1 ≤ j ≤ �i. Therefore f and the zero polynomial interpolate all
(2E + 1)p − 2E zero values, and E errors cannot be unambiguously corrected
from N = (2E + 1) deg(f) values. If one adds an (N + 1)’st value f(ξn+1) then
N + 1 = deg(f) + 1 + 2E + 2E(p − 1) = (2E + 1)p + 1 (cf. (5)) and Algorithm
4.1 interpolates a unique polynomial with ≤ E erroneous values. �

Remark 1. If all �i ≤ 1, we can prove that N = 2D +2E is the optimal count in
the case that n ≥ 2E + 1 which is necessary, and that 2E ≥ D − 1 and that the
characteristic of K is either 0 or ≥ D + 1. For D = 0 we have N = n = 2E + 1.
We first show that the zero polynomial is the only interpolant of evaluations
that yield 0 at any of N − 2E of the evaluations. If E0 ≤ 2E values f(ξi)
are removed, a non-zero polynomial of degree D can be zero at the remaining
n − E0 values only if n − E0 ≤ D ⇐⇒ E0 ≥ n − D. There are N − n ≥ 0
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values of f ′, of which one removes 2E −E0 ≤ 2E − (n−D) values. There remain
≥ N −n− (2E −n+D) = D values of f ′ at distinct arguments, which are zero,
which means f ′ = 0 and, by our assumption on the characteristic, deg(f) = 0.
Because f(ξi) = 0 at one of the n ≥ 2E + 1 arguments ξi, f = 0.

If there are N = 2D + 2E − 1 values, we choose n = 2E + D. We know from
Example 1 that there exists a non-zero polynomial f and argument values ξi

for 1 ≤ i ≤ n = D + 2E, such that f(ξi) = 0 for i = 2E + 1, . . . , 2E + D and
f ′(ξi) = 0 for i = 1, . . . D − 1 ≤ 2E. �

5 The Rational Function Case

Let f(x), g(x) ∈ K[x], g �= 0, deg(f) ≤ Df , deg(g) ≤ Dg, GCD(f, g) = 1. One
is given a set of n distinct arguments ξ1, . . . , ξn ∈ K, and for each argument ξi,
one is given a row vector

Âi,∗ = [âi,0, . . . , âi,�i
] ∈ (K ∪ {∞})1×(�i+1).

We call âi,j an error if one of the two cases happens: ξi is not a pole of (f/g)(j) and
âi,j �= (f/g)(j)(ξi), or, ξi is a pole of (f/g)(j) and âi,j �= ∞. Let {λ1, . . . , λk} ⊂
{1, . . . , n} be the set of indices where every row vector Âλ1,∗, . . . , Âλk,∗ has at
least one error, and let E ≥ k (if all row vectors are error-free then let E = k = 0).
Let Â be the list of these row vectors:

Â =

⎡

⎢
⎣

Â1,∗
...

Ân,∗

⎤

⎥
⎦ ∈ (

(K ∪ {∞})1×(�1+1) ∪ · · · ∪ (K ∪ {∞})1×(�n+1)
)n

.

We assume that �1 ≥ · · · ≥ �n ≥ 0, and the last n∞ (n∞ can be zero) rows of Â

only have one value ∞ and all other rows of Â have values in K, that is, we have
the input specifications:

� �1 ≥ · · · ≥ �n−n∞ ≥ 0; if the characteristic p of K is > 0, then p ≥ �1 + 1
is required.
� âi,j �= ∞ for all i = 1, . . . , n − n∞ and 0 ≤ j ≤ �i;
� âi,0 = ∞ and �i = 0 for all i = n − n∞ + 1, . . . , n.

For an arbitrary Â, we process the inputs as is discussed in the following remark.

Remark 2. If for a location i one has âi,j = ∞ for all j, then a pole is indicated
either truly or falsely. In this case we compress the list to a single value âi,0 =
∞ and reset �i = 0. For a true pole, and for characteristic of K either 0 or
≥ deg(g) + 1, all values are correct, but the additional âi,j = ∞ for j ≥ 1 yield
no additional information. In fact, f(x) = 1/xD cannot be interpolated from the
values f (j)(0) = ∞ for all 0 ≤ j ≤ D without errors. Our handling of poles is not
a restriction of our algorithm, but is in the nature of the Hermite interpolation
problem.

If for a location i, the list of values âi,0, âi,1, . . . is a mix of both elements ∈ K
and ∞’s, we remove or truncate the list depending on the characteristic of K.
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1. For characteristic of K either 0 or ≥ Dg + 1, we have for g(x) = (x −
α1)μ1 · · · (x − αν)μν , αi distinct ∈ algclo(K), that

(f(x)
g(x)

)′
=

f(x)′

g(x)
− f(x)g(x)′

g(x)2

=
f(x)′ ∏

i(x − αi) − f(x)
∑

i μi

∏
j �=i(x − αj)

g(x)
∏

i(x − αi)
, (13)

where the right-side of (13) is a reduced rational function because no αi is a
root of the numerator: f(αi) �= 0 because f/g is reduced, and μi

∏
j �=i(αi −

αj) �= 0 in K for all i by our assumption on the characteristic of K. Therefore,
if the list âi,0, âi,1, . . . is a mix of both elements ∈ K and ∞’s, then some
values in the list must be errors, so we remove the argument ξi and the list
of values altogether. We also reduce the number of errors accordingly.
Note that our algorithms do not account for error distributions and assume
the worst case. For instance, if in a list of �i = 20 values there is a single ∞,
we do not treat ∞ as a likely error. If fact, if there is a burst of errors, that ∞
may be the correct value.

2. For positive characteristic p ≤ deg(g), a mix of ∞’s and field element values
may not indicate an error: for ξ1 = 0 and f/g = (cxp+1 + 1)/xp, (f/g)′ = c
and has no pole at 0. For such a field, if âi,0 �= ∞ and âi,j = ∞ for some
j ≥ 1, then either âi,0 or âi,j is an error, so we remove the argument ξi and
the list of values altogether and adjust the number of errors. Otherwise, we
truncate the list to a single value âi,0 = ∞ and reset �i = 0. �

Now we show how to recover the rational function f/g by the extended
Euclidean algorithm with the following condition:

n +
n∑

i=E+1

�i = n +
n−n∞∑

i=E+1

�i = Df + Dg + 1 + 2E +
E∑

i=1

�i. (14)

Let E∞ be the number of false poles, i. e., E∞ = |{i | âi,0 = ∞, g(ξi) �= 0}|.
Note that n∞ ≤ Dg + E∞. The condition (14) implies that n − n∞ ≥ 2(E −
E∞) + 1, since otherwise we have the contradiction:

n∞ + (n − n∞) +
n−n∞∑

i=E+1

�i ≤ (Dg + E∞) + 2(E − E∞) + (E − 2E∞)�E+1

< Df + Dg + 1 + 2E +
E∑

i=1

�i.

The condition (14) can also be relaxed to n +
∑n−n∞

i=E+1 �i ≥ Df + Dg + 1 + 2E +
∑E

i=1 �i, because in that case, one can always adjust the �i’s to achieve (14) (see
Remark 4).
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5.1 Error-Correcting Rational Function Hermite Interpolation

Input: � A field K, nonnegative integers Df ,Dg, E ∈ Z≥0;
� A set of distinct points {ξ1, . . . , ξn} ⊂ K.
� A list of n row vectors Â = [Âi,∗]1≤i≤n and n∞ ∈ Z≥0 where

� �1 ≥ · · · ≥ �n−n∞ ≥ 0, �n−n∞+1 = · · · = �n = 0;
� the characteristic of K is either 0 or ≥ �1 + 1;
� Âi,∗ = [âi,0, . . . , âi,�i

] and âi,j ∈ K for all i = 1, . . . , n − n∞ and
j = 0, . . . , �i;

� âi,0 = ∞ for all i = n − n∞ + 1, . . . , n;
� n +

∑n−n∞
i=E+1 �i = Df + Dg + 1 + 2E +

∑E
i=1 �i.

Output: � The rational function f/g ∈ K(x) such that
� f, g ∈ K[x], g �= 0, GCD(f, g) = 1;
� deg(f) ≤ Df and deg(g) ≤ Dg;
� f/g produces errors in ≤ E row vectors of Â.

� Or a message indicating there is no such function.

1. If âi,j = 0 for all i = 1, . . . , n and j = 0, . . . , �i, then return f/g = 0.
2. Let I∞ = {n − n∞ + 1, . . . , n} and P∞(x) =

∏
i∈I∞(x − ξi).

3. For i = 1, . . . , n − n∞ and j = 1, . . . , �i, compute

b̂i,j
def
=

j∑

τ=0

(
j

τ

)

âi,τP (j−τ)
∞ (ξi).

4. Compute the polynomial Hermite interpolant H̄(x) of the data set {(ξi; b̂i,0,

. . . , b̂i,�i
) | i = 1, . . . , n − n∞} (namely H̄(j)(ξi) = b̂i,j, see Section 2). Let

H(x) = H̄(x)P∞(x).
5. Let r0(x) = P∞(x)

∏n−n∞
i=1 (x − ξi)�i+1, r1 = H, s0 = 0, s1 = 1 and ρ = 2.

5a. Compute the ρ-th Euclidean polynomial remainder rρ and the multiplier
sρ in the extended Euclidean scheme sρr1 + tρr0 = rρ, namely

rρ(x) = rρ−2(x) − qρ(x)rρ−1(x), deg(rρ) < deg(rρ−1),
sρ(x) = sρ−2(x) − qρ(x)sρ−1(x).

5b. If deg(rρ) ≤ Df + n∞ + E +
∑E

i=1 �i, then let γ = ρ and go to step 6.
5c. Otherwise, let ρ = ρ + 1 and go to Step 5a.
Step 5 computes (rγ , sγ) as in Lemma 1 with d = Df + E +

∑E
i=1 �i + n∞

and e = Dg + E +
∑E

i=1 �i − n∞. We will prove in Lemma 4 that if there are
f, g ∈ K[x] satisfy the output specifications, then rγ/(sγP 2

∞) = f/g. Here we
also have sγ �= 0 because GCD(sγ , tγ) = 1 when γ ≥ 2 and s1 = 1.

6. Compute Γ = GCD(rγ , sγ) and f/g = rγ/(sγP 2
∞) with GCD(f, g) = 1.

6a. If deg(f) ≤ Df and deg(g) ≤ Dg, compute k1 =
∣
∣{i | 1 ≤ i ≤ n − n∞,

Γ (ξi) = 0}∣∣ and k2 =
∣
∣{i | n − n∞+1 ≤ i ≤ n, g(ξi) �= 0}∣∣; if k1+k2 ≤ E

then return f/g.
6b. If deg(f) > Df , or deg(g) > Dg, or k1 + k2 > E, return a message

indicating there is no such function.
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We will prove in Lemma 5 that the rational function f/g returned by Step 6a
satisfies the output specifications. Therefore, we can check the validity of f/g
without computing all the values f (j)(ξi) and g(j)(ξi) for i = 1, . . . , n and
j = 0, . . . , �i.
We will define the error locator polynomial Λ(x) in Lemma 4, and then based
on Lemma 6, we show how to compute f/g and Λ(x) more efficiently other
than reducing the fraction rγ/(sγP 2

∞) and evaluating Γ and g (see Remark 3).

Lemma 4. We use the notation of Algorithm 5.1 and assume that there exists
a rational function f/g ∈ K(x) which satisfies the output specifications. Let
ξλ1 , . . . , ξλk

be the arguments with erroneous values, that is, for indices λκ ∈
{λ1, . . . , λk}, there exists j ∈ {0, . . . , �λκ

} such that âi,j is an error. For λκ /∈ I∞,
let δκ = �λκ

+ 1 − min{j | âλκ,j is an error }. Let

Λ̄(x) =
∏

λκ∈{λ1,...,λk}\I∞

(x − ξλκ
)δκ ,

Λ∞(x) =
∏

λκ∈{λ1,...,λk}∩I∞

(x − ξλκ
),

g∞(x) =
∏

1≤ν≤n, ν∈I∞\{λ1,...,λk}
(x − ξν). (15)

Let Λ(x) = Λ̄(x)Λ∞(x) and ḡ = g/g∞. Then

fP∞Λ ≡ HḡΛ̄ (mod r0). (16)

Moreover, f/g = rγ/(sγP 2
∞), which implies the interpolant f/g is unique.

Proof. Note that P∞ = Λ∞g∞, we have HḡΛ̄ = H̄P∞ḡΛ̄ = H̄gΛ, hence (16) is
equivalent to

fP∞Λ ≡ H̄gΛ (mod r0). (17)

By the same argument as in the proof of (7) in Lemma 2, proving (17) is equiv-
alent to proving the following two equalities:

(fP∞Λ)(ξi) = (H̄gΛ)(ξi) for i ∈ I∞, (18)

(fP∞Λ)(j)(ξi) = (H̄gΛ)(j)(ξi) for i /∈ I∞, j = 0, . . . , �i. (19)

Note that H̄gΛ = (H̄ḡΛ̄)P∞, therefore both sides of the equation in (18) are
equal to zero because P∞(ξi) = 0 for i ∈ I∞.

It remains to prove (19). For i /∈ I∞ and j = 0, . . . , �i,

(fP∞Λ)(j)(ξi) =
j∑

τ=0

(
j

τ

)

(fP∞)(j−τ)(ξi)Λ(τ)(ξi)

(H̄gΛ)(j)(ξi) =
j∑

τ=0

(
j

τ

)

(H̄g)(j−τ)(ξi)Λ(τ)(ξi),
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we show that either Λ(τ)(ξi) = 0 or (fP∞)(j−τ)(ξi) = (H̄g)(j−τ)(ξi) by consid-
ering the following three cases.

Case 1. ξi /∈ {ξλ1 , . . . , ξλk
}, then for j = 0, . . . , �i,

(fP∞)(j)(ξi) =
j∑

σ=0

(
j

σ

)

f (σ)(ξi)P (j−σ)
∞ (ξi) (20)

=
j∑

σ=0

(
j

σ

) σ∑

μ=0

(
σ

μ

)

âi,σ−μg(μ)(ξi)P (j−σ)
∞ (ξi) (21)

= (H̄g)(j)(ξi). (22)

The equality (21) follows from

f (σ) = ( (f/g) g )(σ) =
σ∑

μ=0

(
σ
μ

)
(f/g)(σ−μ)g(μ).

Case 2. ξi = ξλκ
for some κ ∈ {1, . . . , k} and τ < δκ, then Λ(τ)(ξλκ

) = 0.
Case 3. ξi = ξλκ

for some κ ∈ {1, . . . , k} and τ ≥ δκ, then j − τ < min{j |
(f/g)(j)(ξλκ

) �= âλκ,j}, and one can prove that (fP∞)(j−τ)(ξλκ
) =

(H̄g)(j−τ)(ξλκ
) as in (22).

Now (19) is proved, which completes the proof of (16). Let R = fP∞Λ and
S = ḡΛ̄, we rewrite (16) as

R ≡ SH (mod r0).

Let d = Df + E +
∑E

i=1 �i + n∞ and e = Dg + E +
∑E

i=1 �i − n∞ we have
deg(r0) = d + e + 1 by the input specifications of the Algorithm 5.1 (or the
condition (14)). Moreover, deg(H) ≤ d + e, deg(R) ≤ d and deg(S) ≤ e, by
Lemma 1, we have R/S = rγ/sγ . Thus f/g = R/(SP 2

∞) = rγ/(sγP 2
∞).

Lemma 5. Let Γ = GCD(rγ , sγ) and f/g = rγ/(sγP 2
∞) with GCD(f, g) = 1 be

as in Step 6 of Algorithm 5.1. If deg(f) ≤ Df , deg(g) ≤ Dg and k1 + k2 ≤ E,
then f/g satisfies the output specifications of Algorithm 5.1.

Proof. It is sufficient to prove that f/g produces errors in ≤ k1 row vectors of
the list [Â1,∗, . . . , Ân−n∞,∗]. By the extended Euclidean scheme sγr1+tγr0 = rγ ,

rγ ≡ sγH (mod P ), (23)

where H = r1 and P = r0. Since fP 2
∞/g = rγ/sγ and Γ = GCD(rγ , sγ), (23)

leads to
fP 2

∞Γ ≡ gH Γ (mod P ). (24)

By dividing P∞, we get

fP∞Γ ≡ gH̄ Γ (mod
n−n∞∏

i=1

(x − ξi)�i+1). (25)
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Therefore, if Γ (ξi) �= 0, then (fP∞)(j)(ξi) = (gH̄)(j)(ξi) for all j = 0, . . . , �i,
and this equality expands to (20), (21), and (22). Because P∞(ξi) �= 0 for all
i = 1, . . . , n − n∞, it follows from (20, 21) that f (j)(ξi) =

∑j
μ=0

(
j
μ

)
âi,j−μg(μ)(ξi)

if i ∈ {1, . . . , n − n∞} and Γ (ξi) �= 0. This means for f/g, the list [Â1,∗, . . . ,
Ân−n∞,∗] has at least n − n∞ − k1 error-free row vectors.

From Lemma 4 and Lemma 5, we conclude the correctness of the Algorithm
5.1 in the following theorem.

Theorem 1. Let Df ,Dg, E and �1 ≥ · · · ≥ �n be nonnegative integers, and let K
be a field of characteristic ≥ �1+1. For a set of n distinct points {ξ1, . . . , ξn} ⊂ K

and a list of n row vectors Â = [Âi,∗]1≤i≤n with Âi,∗ = [âi,0, . . . , âi,�i
] ∈ (K ∪

{∞})1×(�i+1), if Â satisfies the input specifications of the Algorithm 5.1, then
either there is a unique rational function interpolant f/g satisfying the output
specifications and the Algorithm 5.1 will return it, or there is no such rational
function interpolant and the Algorithm 5.1 will report the nonexistence.

Lemma 6. With the notation as in Algorithm 5.1 and Lemma 4, we have

GCD(rγ , sγ) = Λ̄ · GCD(ḡ, g∞),

and Λ2
∞ divides rγ .

Proof. We first prove that Λ̄ divides sγ and rγ . Since rγ ≡ sγH (mod r0), we
have

rγ ḡ ≡ sγHḡ = sγ(H̄g)Λ∞ (mod r0). (26)

On the other hand, let R = fP∞Λ and S = ḡΛ̄, as it is shown in the proof of
Lemma 4 that

rγS = sγR, (27)

which is rγ(ḡΛ̄) = sγfP∞Λ. Because Λ̄ �= 0, dividing Λ̄ on both sides results in

rγ ḡ ≡ sγ(fP∞)Λ∞ (mod r0). (28)

Combining (26) and (28) leads to

sγ(H̄g)Λ∞ ≡ sγ(fP∞)Λ∞ (mod r0). (29)

Since Λ̄ is a factor of r0 and GCD(Λ̄, Λ∞) = 1, Λ̄ divides sγ(H̄g − fP∞). Let
(x − ξλκ

)δκ be a factor of Λ̄, and let εκ = min{j | (f/g)(j)(ξλκ
) �= âλκ,j}, using

the same argument as in the proof of Lemma 3, one can prove that (x − ξλκ
)δκ

divides sγ , and so Λ̄ divides sγ . Because rγ ≡ sγH (mod r0), Λ̄ also divides rγ .
Now assume that GCD(rγ , sγ) = Λ̄w for some w ∈ K[x]. Let v =

GCD(ḡ, g∞), then GCD(R,S) = Λ̄v. From (27), we have the reduced fractions:

rγ/(Λ̄w)
sγ/(Λ̄w)

=
R/(Λ̄v)
S/(Λ̄v)

, (30)
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which implies that

rγ/w = c(R/v), sγ/w = c(S/v) for some c ∈ K \ {0}. (31)

Combining the Euclidean scheme sγr1 + tγr0 = rγ , we have

R − SH

v
=

rγ − sγH

cw
=

tγr0
cw

, (32)

and so (R − SH)/r0 = (tγv)/(cw). By Lemma 4, (R − SH)/r0 is a polynomial,
which implies that w divides (tγv). But GCD(tγ , w) = 1 because sγ and tγ are
relatively prime, therefore w divides v.

We now prove that v = w : suppose v = ww∗ with deg(w∗) ≥ 1. Since v
divides g∞, there exists a ξi, with 1 ≤ i ≤ n and i �∈ {λ1, . . . , λk}, such that
g∞(ξi) = w∗(ξi) = 0. We have the following contradiction:

0 = rγ(ξi) − H(ξi)sγ(ξi) (33)
= cf(ξi)Λ(ξi)Λ∞(ξi)(g∞/w∗)(ξi) (34)
�= 0. (35)

The Eq. (33) follows from rγ = sγr1 + tγr0; (34) is a consequence of (31) and
P∞(ξi) = 0; since g∞ in (15) has single roots, (g∞/w∗)(ξi) �= 0, which leads
to (35).

Finally, f/g = rγ/(sγP 2
∞) = rγ/(sγΛ2

∞g2∞) and GCD(g, Λ∞) = 1, so Λ2
∞

must be a factor of the numerator rγ .

Remark 3. Instead of computing f/g by reducing the fraction rγ/(sγP 2
∞) as in

Step 6 of the Algorithm 5.1, we can compute Λ̄ and Λ∞ first, and then compute
f/g. In other words, for computing Λ and f/g, we can replace the Step 6 of the
Algorithm 5.1 with the following steps:

6a. Compute Γ = GCD(rγ , sγ), r̃ = rγ/Γ , and s̃ = sγ/Γ .
6b. Compute w = GCD(Γ, P∞), u = P∞/w and Λ̄ = Γ/w.
6c. Compute ũ = r̃/u, Λ∞ = GCD(ũ, P∞), f̃ = ũ/Λ∞, g∞ = P∞/Λ∞, and

g̃ = s̃ w g∞.
6d. Let k1 and k2 be the number of distinct factors of Λ̄ and Λ∞ respectively.
6d(i) If deg(f̃) ≤ Df , deg(g̃) ≤ Dg, and k1 + k2 ≤ E, return f̃/g̃, Λ̄, and Λ∞.
6d(ii) Else, return a message indicating there are no f, g ∈ K[x] such that

deg(f) ≤ Df , deg(g) ≤ Dg and f/g produces errors in ≤ E row vec-
tors of Â.

Proof. By Lemma 6, Γ = Λ̄ · GCD(ḡ, g∞). Since g∞(ξλκ
) �= 0 (see (15)) for all

λκ ∈ {λ1, . . . , λk}, we have GCD(Λ, g∞) = 1, thus GCD(Γ, P∞) = GCD(ḡ, g∞)
and Γ = Λ̄ w. From (31), we have

r̃ = rγ/Γ = c(R/Γ ) and s̃ = sγ/Γ = c(S/Γ ) for some c ∈ K \ {0}.
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Using the substitutions R = fΛP∞, S = ḡΛ̄, Γ = Λ̄ w, and u = P∞/w, one can
verify that ũ = cfΛ∞ and g̃ = cg. Because f and g are relatively prime, we have
GCD(f, g∞) = 1, so GCD(ũ, P∞) = Λ∞.

6 Further Remarks

Remark 4. As stated in the introduction, the sufficient conditions (1, 5, 14)
for an interpolation profile of orders of derivatives �1 ≥ · · · ≥ �n at distinct
arguments may oversample, because the �i’s are on both sides and could be
reduced simultaneously while preserving the conditions. Therefore, one can add
the following “pre-processing data” Step 0 at the beginning of the Algorithm
4.1, which may reduce the number of values for recovering f and improve the
efficiency of the algorithm.

0. For every j = 0, 1, . . . , �1, let mj = max{ i | âi,j is given as input} (the dimen-
sion of the j-th column of Â, the number of inputs for the j-th derivative).
Furthermore, let Mj =

∑j
μ=0 mμ, which is the number of inputs up to the

j-th derivative. Compute the minimal β such that Mβ ≥ D + 1 + 2(β + 1)E.
Let

N [new] = D + 1 + 2(β + 1)E (36)

and

�
[new]
i =

⎧
⎨

⎩

β for 1 ≤ i ≤ N [new] − Mβ−1,
β − 1 for N [new] − Mβ−1 + 1 ≤ i ≤ mβ ,
�i for i > mβ .

(37)

Now m
[new]
β = N [new] − Mβ−1 and

∑n
i=1(�

[new]
i + 1) = N [new].

One can also add Step 0 at the beginning of Algorithm 5.1 by replacing D
with Df + Dg. Fig. 1 shows how Step 0 removes redundant values. Recall we
are given n distinct points ξ1, . . . , ξn, and for each point ξi, we are given a row
vector of values: Âi,∗ = [âi,0, . . . , âi,�i

] with �1 ≥ · · · ≥ �n ≥ 0, and Â is the list
of these row vectors

Â =

⎡

⎢
⎣

Â1,∗
...

Ân,∗

⎤

⎥
⎦ .

Â is shown as the “staircase” in Figure 1, which has D = 15, E = 2, n = 8,
�1 = 11, �2 = 10, �3 = �4 = 8, �5 = �6 = 7, �7 = 3, �8 = 0, N = 62, β = 5,
N [new] = 40, �

[new]
1 = · · · = �

[new]
5 = 5, �

[new]
6 = 4. Intuitively, Step 0 cuts Â by

the red line and removes the right part, and the left part has N [new] values.

Lemma 7. The β computed in the Step 0 above is no more than D.
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Fig. 1. Truncation by β

Proof. By the minimality of β, we have Mβ−1 ≤ D + 2βE, and so

mβ = Mβ − Mβ−1 ≥ N [new] − Mβ−1 ≥ 2E + 1.

Moreover, m0 ≥ · · · ≥ mβ−1 ≥ mβ ≥ 2E + 1, thus

(2E + 1)β ≤
β−1∑

j=0

mj = Mβ−1 ≤ D + 2βE,

which concludes that β ≤ D.

Remark 5. If we are given an error rate 1/q (q ∈ Z≥3) instead of an upper
bound E on the number of errors, and we are also given bounds

(i) Df ≥ deg(f), Dg ≥ deg(g)
(ii) β = max{j | (f/g)(j) is available for evaluation},

then the Algorithm 5.1 can recover f/g for q−2(β+1) = η > 0 with n =
⌈

qδ
(β+1)η

⌉

distinct arguments and N = δ+2(β+1)
⌊

δ
η

⌋
values where δ = Df +Dg(β+1)+1.

Cf. [9, Remark 1.1] and [10, Remark 1.1].

Remark 6. In the input specifications of the Algorithm 5.1, the number of values
in Â is C = Df + Dg + 1 + 2

∑E
i=1(�i + 1) (see also (1)), which guarantees that

the Algorithm 5.1 either returns a unique valid interpolant f/g or determines
no such interpolant exists. If E ≥ 1 and Â has C − (�n + 1) values, we can use
Algorithm 5.1 on every n − 1 row vectors of Â and with input Df ,Dg, E − 1, to
compute all possible rational functions f/g which satisfy:

� f, g ∈ K[x], g �= 0, GCD(f, g) = 1;
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� deg(f) ≤ Df and deg(g) ≤ Dg;
� f/g produces errors in ≤ E row vectors of Â.

This is because for every such rational function f/g, there is μ ∈ {1, . . . , n}
for which f/g produces errors in ≤ E − 1 row vectors of the list Â −
Âμ,∗

def
= [Â1,∗, . . . , Âμ−1,∗, Âμ+1,∗, . . . , Ân,∗] (if μ = 1 or n, consider Â0,∗ and

Ân+1,∗ as empty row vectors). Moreover, the list Â−Âμ,∗ has C−(�n+1)−(�μ+1)
values which are sufficient to recover f/g with the input bounds Df ,Dg and
E − 1, because C − (�n + 1) − (�μ + 1) is equal to:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Df + Dg + 1 + 2
E∑

i=1,i �=μ

(�i + 1) + (�μ − �n), if 1 ≤ μ ≤ E,

Df + Dg + 1 + 2
E−1∑

i=1

(�i + 1) + (2�E − �μ − �n), if E + 1 ≤ μ ≤ n

This method can be generalized to situations where Â has C −∑n−n0
i=n (�i +1)

values and n0 is a small constant compared to E. For the polynomial case with
a uniform derivative profile, that is, Dg = 0 and �1 = · · · = �n, [4] and [12] give
algorithms to list-decode derivative (or multiplicity) codes by solving differential
equations.

7 Conclusion

Interpolation algorithms go back to ancient Chinese mathematicians. Algorithms
that also can tolerate errors in the evaluations appeared as error correction alge-
braic codes in the early1960 s. Table 1 gives a brief history. Our paper completes
the second column by giving an error correction interpolation algorithm of nearly
linear arithmetic complexity for a rational function from values at its derivatives.

Table 1. A brief history of univariate interpolation.

Polynomial Rational Function

at values Sun-Tsu/Lagrange, Cauchy

Guo Shoujing/Newton

at values Hermite, Warner [20]

of derivatives Birkhoff

at values Reed and Solomon [16] Beelen, Høholdt,

with errors Nielsen, Wu [1]

at values Multiplicity codes: Rosenbloom This paper

of derivatives with errors and Tsfasman [17]
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A Appendix

Notation (in alphabetic order):

âi,j the input value for the j-th derivative of f , or an error, at the i-th point

̂Ai,∗ = [âi,0, . . . , âi,�i
], the row vector of values for the i-th point ξi

̂A = [ ̂A1,∗, . . . , ̂An,∗]T , the collection of all input values

b̂i,j =
∑j

τ=0

(

j
τ

)

âi,τ P
(j−τ)
∞ (ξi)the value for the j-th derivative of H at the i-th point

β the minimal integer such that there are ≥ D + 1 + 2E + 2βE values for derivatives of order ≤ β

cj the coefficient of xj in f

D an upper bound of the degree of the polynomial interpolant

Df an upper bound of the degree of the numerator of the rational interpolant

Dg an upper bound of the degree of the denominator interpolant

δκ = �λκ + 1 − min{ j | âλκ,j is an error}
E an upper bound on the number of errors in the input values to the algorithm

ξi the i-th interpolation point

ξλκ 1 ≤ κ ≤ k, are the points with erroneous values, namely, ∃j s.t. âλκ,j is an error

εκ = min{ j | âλκ,j is an error} = �λκ + 1 − δκ

f polynomial interpolant or numerator of the rational interpolant for the correct values

g the denominator of the rational interpolant for the correct values

ḡ a factor of g indicating true non-poles

g∞ a factor of g indicating true poles

H the polynomial Hermite interpolant for all input values (including ≤ E errors)

I∞ = {i | ∃j s.t. âi,j = ∞}
k the actual number of points with erroneous input values

K a field

�i the highest derivative order at the i-th point

Λ the error locator polynomial

Λ̄ =
∏

κ∈{1,...,k},λκ /∈I∞ (x − ξλκ )δκ

Λ∞ =
∏

κ∈{1,...,k},λκ∈I∞ (x − ξλκ )

mj the number of input values for the j-th derivative of f

Mj the number of input values for up to the j-th derivative of f

n the number of distinct points

n∞ degree of P∞
N the number of the input values

P∞ =
∏

∃j s.t. âi,j=∞(x − ξi), the polynomial indicating all poles

r0 = (x − ξ1)�1+1 · · · (x − ξn)�n+1

rγ the γ-th remainder of the Euclidean polynomial remainder sequence r0, r1, . . .

sγ the Bézout coefficient of r1 in the γ-th extended Euclidean scheme: sγr1 + tγr0 = rγ

tγ the Bézout coefficient of r0 in the γ-th extended Euclidean scheme: sγr1 + tγr0 = rγ
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Abstract. For sparse matrices up to size 8 × 8, we determine optimal
choices for pivot selection in Gaussian elimination. It turns out that they
are slightly better than the pivots chosen by a popular pivot selection
strategy, so there is some room for improvement. We then create a pivot
selection strategy using machine learning and find that it indeed leads
to a small improvement compared to the classical strategy.

1 Introduction

It can be cumbersome to solve a sparse linear system with Gaussian elimination
because a poor choice of a pivot can have a dramatic effect on the sparsity.
In the worst case, we start with a fairly sparse matrix, and already after a
small number of elimination steps, we are faced with a dense matrix, for which
continuing the elimination procedure may be too costly. The principal goal of
a linear system solver for sparse matrices is therefore to maintain as much of
the sparsity as possible, for as long as possible. To achieve this goal, we can pay
special attention to the pivot selection. A popular pivot selection strategy which
aims at maintaining the sparsity of a matrix is attributed to Markowitz [3,10].
It is based on the notion of “fill-in”, which is defined as the number of matrix
entries that get affected when a particular element is chosen as pivot. More
precisely, for a matrix A = ((ai,j))

n,m
i,j=1, let ri be the number of nonzero entries

of the ith row (i = 1, . . . , n) and cj be the number of nonzero entries of the jth
column (j = 1, . . . , m). Then the fill-in associated to the entry at position (i, j)
is defined as (ri − 1)(cj − 1). Note that this is exactly the number of cells into
which something gets added when the entry at (i, j) is chosen as pivot:

⎛
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The selection strategy of Markowitz is to choose among the eligible candidates a
pivot for which the fill-in is minimized. The strategy thus neglects that touching
a cell that already is nonzero does not decrease the sparsity (it may in fact
increase if we are lucky enough).

It is known that finding a pivot that minimizes the number of new entries
introduced during the whole elimination process has been shown to be NP-
complete by Yannakakis [16]. But how much does this matter? In other words:
how close does the Markowitz pivot selection strategy get to the theoretical
optimum? This is the first question we address in this paper. By an exhaustive
search through all square matrices up to size 8 × 8 in an idealized setting, we
have determined the pivot choices that minimize the total number of operations.
As expected, it turns out that with the optimal pivot choice, the number of
operations is indeed smaller than with the Markowitz strategy, albeit just by a
small amount. This confirms the common experience that the Markowitz strat-
egy is a good approach, especially since it also has the feature that it can be
easily implemented and does not cost much. Nevertheless, there is some room
for improvement, and the second question we address in this paper is how this
room for improvement could possibly be exploited. We tried to do so by training
a pivot selection strategy using machine learning. It turns out that the resulting
neural network performs indeed a bit better than the Markowitz strategy, at
least in the setting under consideration.

Our study is limited to small matrices because determining the optimal pivots
by exhaustive search is prohibitively expensive for larger matrices. It is clear that
sparsity optimization for matrices of this size does not have any practical rele-
vance. In fact, it may be argued that there are no nonzero sparse matrices of size
8 × 8 at all, because each such matrix has at least 12.5% nonzero entries, which
is far more than the sparsity of matrices arising in many numerical applications.
However, our results indicate that the gap between Markowitz criterion and the
optimal choice can possibly be narrowed by adequate use of machine learning,
and it may have some relevance for sparse matrices with symbolic entries for
which the cost of arithmetic is so high that spending some additional time on
searching for a better pivot may be justified. In future work, we will investigate
whether the machine learning approach can also be used to construct a selection
strategy for symbolic matrices of more realistic sizes.

2 Algebraic Setting

We will distinguish two kinds of matrix entries: 0 (zero) and ∗ (nonzero), and
we ignore the possibility of accidental cancellations, so we adopt the simplifying
assumption that the sum of two nonzero elements is always nonzero. As coeffi-
cient domain, we therefore take the set S = {0, ∗} together with addition and
multiplication defined as follows:

+ 0 ∗
0 0 ∗
∗ ∗ ∗

· 0 ∗
0 0 0
∗ 0 ∗

.
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The operations we count are ∗+∗ and ∗·∗, i.e., operations not involving zero. As
we have primarily applications with symbolic matrices in mind (originating, e.g.,
from applications in symbolic summation [9], Gröbner bases computation [5], or
experimental mathematics [1,2]), we do not worry about stability issues.

The exact number of operations depends not only on the choice of the pivot
but also on how the elimination is performed. We consider two variants. In the
first variant, we add a suitable multiple of the pivot row to all rows which have
a nonzero entry in the pivot column:

⎛
⎝

a b 0
0 c d
e f g

⎞
⎠

←−

−e/a

+

�

⎛
⎝

a b 0
0 c d
0 f − eb/a g

⎞
⎠ .

In this case, we count the following operations. First, there are c − 1 divisions
to compute the factors corresponding to e/a in the above sketch, where c is the
number of nonzero elements in the pivot column. Secondly, there are (r−1)(c−1)
multiplications to compute all the numbers corresponding to eb/a, where r is
the number of nonzero elements in the pivot row. Finally, for each clash of two
nonzero elements in the submatrix, like f and eb/a in the sketch above, we count
one addition.

The second variant is inspired by fraction free elimination [6]. Here we do
not compute a multiplicative inverse of the pivot. Instead, the affected rows in
the submatrix are multiplied by the pivot:

⎛
⎝

a b 0
0 c d
e f g

⎞
⎠

←−

−e

+

�

⎛
⎝

a b 0
0 c d
0 af − eb ag

⎞
⎠ .

In this case, we count the following operations. First, the number of multipli-
cations by a is given by

∑
i(ri − 1) where ri is the number of nonzero entries

in the ith row and the summation ranges over the rows which have a nonzero
entry in the pivot column, excluding the pivot row. Secondly, there are again
(r−1)(c−1) multiplications compute all the numbers corresponding to eb in the
above sketch, where r is is the number of nonzero elements in the pivot row and
c the number of nonzero elements in the pivot column. Finally, for each clash of
two nonzero elements in the submatrix, like af and eb in the sketch above, we
count one addition.

In the following, we refer to the first variant as the “field case” (because it
involves a division) and to the second variant as the “ring case” (because it is
fraction free).

3 How Many Matrices Are There?

It is clear that when we distinguish two kinds of entries, 0 and ∗, then there are
2n

2
different matrices of size n×n. However, for the problem under consideration,

we do not need to consider all of them. Pivot search will not be affected by
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permuting the rows of a matrix. For two n × n matrices A,B, write A ≈ B if a
suitable permutation of rows turns A into B. Then ≈ is an equivalence relation,
and we get a normal form with respect to ≈ by simply sorting the rows. It suffices
to consider these normal forms, which reduces the problem from 2n

2
matrices to(

2n+n−1
n

)
equivalence classes. The number of equivalence classes is the number

of sorted n-tuples of binary numbers less than 2n.
As we consider a pivot search that also allows column exchanges, we can go a

step further. Write A ∼ B if applying a suitable permutation to the rows and a
suitable permutation to the columns turns A into B. This is also an equivalence
relation, but it is less obvious how to get a normal form. It was observed by
Zivkovic [17] that deciding ∼ on binary matrices is equivalent to deciding the
graph isomorphism problem for bipartite graphs. The idea is to interpret the
matrix as adjacency matrix where row indices correspond to vertices of the first
kind and column indices correspond to vertices of the second kind of a bipartite
graph. Permuting rows or columns then amounts to applying permutations to
each of the two kinds of vertices. Graph isomorphism is a difficult problem, but
it is not a big deal for the matrix sizes we consider here. We used the nauty
library [11] to compute normal forms with respect to ∼, and only analyzed
matrices in normal form.

There does not appear to be a simple formula for the number of equivalence
classes with respect to ∼, but for small n, the numbers can be determined by
Polya enumeration theory, as explained for example in [7], and they are available
as A002724 in the OEIS [14]. Here are the counts for n = 1, . . . , 9.

n |Sn×n| |Sn×n/≈| |Sn×n/∼|
1 2 2 2

2 16 10 7

3 512 120 36

4 65 536 3 876 317

5 33 554 432 376 992 5 624

6 68 719 476 736 119 877 472 251 610

7 562 949 953 421 312 131 254 487 936 33 642 660

8 18 446 744 073 709 551 616 509 850 594 887 712 14 685 630 688

9 2 417 851 639 229 258 349 412 352 7 145 544 812 472 168 960 21 467 043 671 008

An 8× 8 binary matrix can be conveniently represented in a 64bit word, and
for storing some information about the elimination cost for various pivot choices
(best, worst, average, Markowitz), we spend altogether 56 bytes per matrix.
With this encoding, a database for all 6 × 6 matrices consumes about 3.8 TB of
space, a database for all 7 × 7 matrices up to row permutations consumes about
7.3 TB, and a database for all 8×8 matrices up to row and column permutations
consumes 784 GB. The number of equivalence classes for 9×9 matrices is so much
larger that we have not considered them. Not only would a database for 9 × 9
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cost an absurd amount of disk space, it would also make the programming more
cumbersome and the analysis less efficient because we need more than one word
per matrix.

4 Exhaustive Search

We use exhaustive search to create databases with the following information: the
matrix itself, the cost of elimination over a field and over a ring with the best
pivot and what is the best pivot, the cost with the worst pivot and what is the
worst pivot, the median of the elimination costs, and the same considering only
the pivots which produce minimum fill-in. For matrices of size n × n we only
do one elimination step and then use the data from the database of matrices of
size n−1. We include a simplified pseudocode to show how the data is produced.
By M(n) we denote a set of representatives of Sn×n with respect to ∼. The
function Eliminate takes a matrix and a row and column index and returns the
result of performing one step of Gaussian elimination. The function Cost takes
the same input and returns the number of operations needed in the elimination
step. The mappings costmin, costmax and costmed are the database entries.

input : A size n, a set of n × n matrices M(n) and three mappings
costmin, costmax and costmed from M(n − 1) to the reals

output: three mappings costmin, costmax and costmed from M(n) to
the reals

1 for m ∈ M(n) do
2 if there exist i, j ∈ {1, . . . , n} with Cost(m, i, j) = 0 then
3 m ← Eliminate(m, i, j)
4 costmin(m) ← costmin(m)
5 costmax(m) ← costmax(m)
6 costmed(m) ← costmed(m)
7 else
8 costmin(m) ← ∞; costmax(m) ← −∞
9 for all (i, j) ∈ {1, . . . , n}2 with mij = ∗ do

10 m ← Eliminate(m, i, j)
11 o ← Cost(m, i, j)
12 costmin(m) ← Min(costmin(m) + o, costmin(m))
13 costmax(m) ← Max(costmax(m) + o, costmax(m))
14 costij ← costmed(m) + o

15 costmed(m) ← Median(cost)

The median in line 15 is taken only over those pivots which have been con-
sidered. For the minimum fill-in strategy we adjust the if statement in line 9
such that only pivots which produce minimum fill-in are considered. In this case
also the database entries are taken from the minimum fill-in strategy.

Note that not only a pivot with no other elements in its column results in
zero elimination cost (since there is nothing to eliminate), but also a pivot with
no other elements in its row results in no elimination cost, since it does not
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change any matrix entries apart from those which become 0. In line 2 we ensure
that regardless of the strategy we are analyzing a free pivot is always chosen.
Also note that if there are several such pivots, then the order in which we chose
them does not affect the total cost.

We use the function genbg from the nauty package to produce the list of n× n
matrices and we use the nauty package main function to compute a canonical
form after the elimination step.

The full source code and the databases up to size 6× 6 can be found at
https://github.com/jakobmoosbauer/pivots. The larger databases can be pro-
vided by the authors upon request.

5 Machine Learning

There have been some recent advances in applying machine learning for improv-
ing selection heuristics in symbolic computation. As it is the case for Gaussian
elimination, many algorithms allow different choices which do not affect cor-
rectness of the result, however may have a large impact on the performance.
Machine learning models have for example been applied in cylindrical algebraic
decomposition [8] and Buchberger’s algorithm [13]. For more applications see [4].

Without going into too much detail on the background of machine learning,
we give here a summary of our approach, mainly in order to document the
computations we performed in order to facilitate a proper interpretation of the
experimental results reported later. For explanations of the technical terms used
in this section, we refer to the literature on machine learning.

We train a reinforcement learning agent [15] to select a good pivot in Gaus-
sian elimination. In reinforcement learning an agent interacts with an environ-
ment by choosing an action in a given state. In every time step the agent is
presented with a state st, chooses an action at and the environment returns the
new state st+1 and a reward rt+1. In our case the state is the matrix and the
action is a row and a column index. The new state is the matrix we get after
performing the elimination with the chosen pivot and the reward is minus the
number of operations needed in the elimination step. An episode is a sequence of
steps that transform a matrix to row echelon form. The agent tries to maximize
the return Gt =

∑T−t
k=0 γkrt+k+1 with the discount factor 0 < γ ≤ 1. The return

measures the expected future rewards and the discount factor makes the agent
prefer earlier rewards over later rewards. Since we have a bound on the length of
the episode we can choose γ = 1, in this case the return equals the total number
of operations needed.

A difference to the more common concept of supervised learning is that we
do not need a training set with training data. Instead we can sample from all
possible inputs and the reward signal replaces the training data. This reduces
the problem that an agent can produce bad answers outside of the training pool.
We sample matrices equally distributed from all binary matrices. During the
learning process actions are chosen using an ε-greedy policy. This means that
with a probability of ε we choose a random action, with probability 1−ε we choose

https://github.com/jakobmoosbauer/pivots
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a greedy action, i.e., the action the agent would choose in the given situation.
This policy ensures accurate predictions for the actions the agent eventually
chooses and also that we do not miss good choices because we never try them.

The main component of the reinforcement learning agent is the deep Q-
network which approximates the Q-value function [12,15]. The Q-value function
maps a state and an action to the expected return value. We can use this infor-
mation to pick a pivot that has the lowest expected cost. Since we need to fix
the network size in advance we can only consider matrices of bounded size. For
the present paper we stick to small matrix sizes since we can evaluate the overall
performance using the database and the network stays of easy manageable size.

We encode the row and column of the pivot by a one-hot vector. This means
we use 2n inputs nodes which each correspond to a row or a column and set those
of the pivot to 1 and the others to 0. We also tried to use the fill-in as additional
input feature to see whether it improves the performance. After experimenting
with different network structures we settled with a fully connected network with
n(n+2), respectively n(n+2)+1 input nodes and two hidden layers with n(n+2)
nodes and a relu activation function. We chose this architecture to fit the task
at hand, for larger matrices training and evaluating this neural network would
get prohibitively expensive. Selecting appropriate features or decomposing the
problem in smaller parts are possible ways around this.

The network is trained using deep Q-learning with experience replay and a
target network [12]. Experience replay means that we keep a replay buffer with
state-action-reward pairs we created and in each training step we sample a batch
of training data for the network to learn from. This helps the network not to
“forget” what it already learned.

For the learning process there are different hyperparameters which control
the learning process. They can have a huge impact on the performance and the
convergence of the learning process. We did not invest a lot of time in tuning
network architecture and hyperparameters, since our goal was to evaluate the
general applicability of machine learning to this problem rather than finding
best-possible results. The ε-greedy policy starts at ε = 0.5 and slowly decays to
ε = 0.1. We use a discount factor of 1, learning rate 0.001, and a batch size of 50.
The learning rate describes the step size of the parameter adjustment for the
neural network. If the learning rate is too small, then the convergence is very
slow, if the learning rate is too big the process does not converge at all.

The goal of reinforcement learning to maximize a reward function directly
applies to our problem, which is to minimize the number of operations needed.
Another advantage is that we have a totally observable deterministic environ-
ment. A difficulty we are faced with is that we can choose among a large number
of different actions, which depends on the current state. So for each possible
action we need an extra call to the neural network. This could be avoided by
only considering pivots with small fill-in instead of all possible pivots. Neural
networks are quite good at pattern recognition, which seems to be useful in our
context. However, since the computational cost is invariant under row and col-
umn permutation, there is no locality of features in the pivot selection problem.
Therefore it is not reasonable to use convolutional layers, which proved very
useful in other tasks involving pattern recognition.
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6 Results

In this section we analyze the results of the exhaustive search and the perfor-
mance of machine learning. In the first graph we show the savings achieved by
using the minimum fill-in strategy compared to the median cost. We observe that
for matrices of size 8 × 8 the Markowitz criterion saves on average 42% of the
operations needed in the field case and 37% in the ring case (left graph). More-
over, these numbers tend to grow as the matrices grow larger. So it is reasonable
to expect that even larger savings are achieved for very large matrices.

In the graph on the right we compare the median cost when choosing pivots
with minimal fill-in to the optimal pivot. For matrices of size 6×6 to 8×8 there
are possible savings of about 5% in the field case and about 7% in the ring case.
These numbers are increasing up to size 7× 7, but there is a decrease from 7× 7
to 8 × 8. In view of this decrease, it is hard to predict how the graph continues
for matrix sizes that are currently out of the reach of exhaustive search.

For matrices of size 6 × 6 we also analyzed how the improvement potential
depends on the sparsity of the matrix. For matrices with less than 30% nonzero
entries, almost all choices of pivots perform equally. We see that the highest
savings compared to the minimum fill-in strategy can be made for matrices
with 40 to 60% nonzero entries, in the ring case up to 80% nonzero entries.
Although for rather dense matrices there is still room for sparsity improvements,
for these matrices the Markowitz strategy is almost optimal. During the elimina-
tion matrices become denser every step, as we introduce new nonzero entries. By
minimizing the fill-in we look ahead only one step in the elimination process. For
matrices which are almost dense this seems to be sufficient, whereas for sparser
matrices it might be helpful to look ahead further.

Since several different pivots can have minimal fill-in, the question arises
whether we just need a refined criterion to pick an optimal pivot among those
that have minimal fill-in, or if we need to do something completely different. In
order to address this question, we test if the best pivot which produces minimal
fill-in is already optimal. We observe that the percentage of matrices where
Markowitz’s strategy is optimal throughout the whole computation drops to 46%
in the field case and 30% in the ring case for 8× 8 matrices. It seems reasonable to
assume that for large matrices there is almost always a better strategy, even if you
could choose the best pivot among those which have minimal fill-in. Even though
pivots that have minimal fill-in are not always optimal, it seems reasonable that
optimal pivots still have rather small fill-in. Although we did not analyze this
with our database, we did not observe any examples where the optimal pivot
had very large fill-in compared to other choices.

The table below shows the improvement achieved by the machine learning
model compared to the fill-in strategy. The machine learning model is able to
surpass the Markowitz strategy by a very small amount. The network was trained
on 40000 to 100000 matrices to a point where additional training did not result
in further improvement. While for 4 × 4 and 5 × 5 matrices this means that the
model was presented every matrix multiple times, for the larger sizes the model
was only trained on a small part of all matrices. This indicates that the model
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can generalize well from a small amount of samples. The results achieved using
the fill-in as additional input to the network did not noticeably differ from those
where we did not provide it. However, using the fill-in as feature we needed fewer
training episodes to achieve similar results. So the machine learning model was
able to find a better strategy knowing only the matrix entries, but providing
additional features helps to speed up training. Since neither further training nor
using a deeper network did improve the results it is likely that the model gets
stuck in a local maximum.

n 4 5 6 7

field 0.75% 1.31% 1.72% 1.92%

ring 1.19% 2.19% 3.27% 3.99%

Let us consider an example where we can see why the minimum fill-in strategy
does sometimes not perform very well. This is the 6 × 6 matrix (actually 6 × 5,
since the last row consists of zeros) with the largest difference between the best
pivot and the best pivot that produces minimum fill-in both over a ring and over
a field: ⎛

⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗

⎞
⎟⎟⎟⎟⎠

.

When the rows and columns are sorted like this it is easy to spot that if we choose
a pivot in the first column, we get a row echelon form after one elimination step
with 11 operations. However, the pivots in the first column produce fill-in 5 and
those in the last row produce only fill-in 4. Choosing the pivot with the minimal
fill-in results in four elimination steps and in each step we have to eliminate every
row, resulting in a total of 32 field operations. Over a ring the difference becomes
even larger, 15 operations are needed with the best pivot and 55 if we always
pick what produces minimal fill-in. There are two takeaways from this example.
First we notice that the fill-in for the better pivot is produced by elements in its
row and the fill-in for the other pivot is produced by the column. Especially in
the ring case this leads to a large amount of extra computations since for every
element we want to eliminate all the elements in the corresponding row have
to be multiplied by the pivot. This suggests to use some kind of weighted fill-in
where the number of elements in the column is weighted higher than the number
of elements in the row. Another heuristic criterion motivated by this example
is to do a two-step lookahead. In the first two columns there is a block of four
nonzero elements and all other elements are 0. If we choose one of these four
elements as pivot, then we only have to eliminate one row and the elimination
is completed for both rows, since the second column contains no other elements.
In this particular example the neural network finds the optimal pivot with the
higher fill-in.
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Abstract. Automated reasoning techniques based on computer algebra
are an essential ingredient in formal verification of gate-level multiplier
circuits. Generating and independently checking proof certificates helps
to validate the verification results. Two algebraic proof systems, Null-
stellensatz and polynomial calculus, are well-known in proof complexity.
The practical application of the polynomial calculus has been studied
recently. However, producing and checking Nullstellensatz certificates
for multiplier verification has not been considered so far. In this paper
we show how Nullstellensatz proofs can be generated as a by-product
of multiplier verification and present our Nullstellensatz proof checker
Nuss-Checker. Additionally, we prove quadratic upper bounds on the
proof size for simple array multipliers.

1 Introduction

Formal verification aims to prove or disprove the correctness of a given system
with respect to a certain specification. Nonetheless, the verification process might
not be correct and contain errors. Thus it is common to produce proof certifi-
cates, which can be checked by stand-alone proof checkers in order to increase
the confidence in the results of the verification process.

For example, many applications of formal verification use satisfiability (SAT)
solving and various resolution or clausal proof formats [17], such as DRUP
[13,14], DRAT [18], and LRAT [11] are available to validate the verification
results. In the annual SAT competition it is even required to provide certificates
since 2013.

However, in certain applications SAT solving cannot be applied successfully.
For instance formal verification of arithmetic circuits, more precisely multiplier
circuits is considered to be hard for SAT solving. The current state of the art
in verifying multiplier circuits relies on computer algebra [9,24,31,32]. In this
approach the circuit is modeled as a set of polynomials and it is shown that the
specification, also encoded as a polynomial, is implied by the polynomials that
are induced by the circuit. That is, for each gate in the circuit a polynomial is
defined that captures the relations of the inputs and output of the gate. These
gate polynomials generate a Gröbner basis [7]. Preprocessing techniques based
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on variable elimination are applied to rewrite and thus simplify the Gröbner
basis [24,31]. After preprocessing the specification polynomial is reduced by the
rewritten gate polynomials until no further reduction is possible. The given mul-
tiplier is correct if and only if the final result is zero.

Besides circuit verification, algebraic reasoning in combination with SAT
solving [6] is successfully used to solve complex combinatorial problems, e.g.,
finding faster ways for matrix multiplication [19,20], computing small unit-
distance graphs with chromatic number 5 [16], or solving the Williamson con-
jecture [5], and has possible future applications in cryptanalysis [8,40]. All these
applications raise the need to invoke algebraic proof systems for proof validation.

Two algebraic proof systems are commonly known in the proof complexity
community, polynomial calculus (PC) [10] and Nullstellensatz (NSS) [3]. Both
systems are well-studied, with the main focus on deriving complexity measures,
such as degree and proof size, e.g., [2,22,33,34]. Proofs in PC allow us to dynam-
ically capture that a polynomial can be derived from a given set of polynomials
using algebraic ideal theory. However, PC as defined in [10], is not suitable for
practical proof checking [23], thus we introduced the practical algebraic calcu-
lus (PAC) in [37] that can be checked efficiently.

Proofs in NSS capture whether a polynomial can be represented as a linear
combination from a given set of polynomials. Since NSS proofs are more static we
made the following conjecture for the application of multiplier circuit verification
in [23]: “In a correct NSS proof we would also need to express the rewritten
polynomials as a linear combination of the given set of polynomials and thus
lose the optimized representation, which will most likely lead to an exponential
blow-up of monomials in the NSS proof.”

In this paper we show that this conjecture has to be rejected, at least for those
multiplier architectures considered in this paper. We introduce how NSS proofs
can be produced in our verification tool AMulet [24,26] and our experimental
results demonstrate that we are able to generate concise NSS proofs. For simple
array multipliers, which consist only of full- and half-adders that are arranged in
a grid-like structure, we prove quadratic bounds for the proof size. Furthermore,
we present our NSS proof checker Nuss-Checker and discuss important design
decisions that help to improve the checking time and memory usage.

2 Preliminaries

We describe our state-of-the-art approach in gate-level multiplier verification
using computer algebra [24], and give an introduction to the algebraic proof
systems PC, PAC, and NSS.

2.1 Multiplier Verification

Digital circuits are used in computers and digital systems and compute binary
digital values for the logical function they implement, given binary values at the
input. The computation is usually realized by logic gates, representing simple
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Fig. 1. All polynomial encodings covered by AIG nodes

Boolean functions, such as NOT, AND, OR. The specification of a circuit is a
desired relation between its inputs and outputs and the goal of verification is
to formally prove that the circuit fulfills its specification, i.e., for all inputs the
outputs of the circuit match the specification.

In our setting, we consider gate-level integer multiplier circuits C
with 2n input bits a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} and 2n out-
put bits s0, . . . , s2n−1 ∈ {0, 1}. The internal gates are denoted by
g1, . . . , gk ∈ {0, 1}. Let R be a commutative ring with unity and let
R[a0, . . . , an−1, b0, . . . , bn−1, g1, . . . , gk, s0, . . . , s2n−1] = R[X]. Since we consider
integer multipliers, we will later set the ring R = Z, but for now let us keep the
more general ring R. The multiplier C is correct iff for all possible inputs ai,
bi ∈ {0, 1} the following specification L = 0 holds:

L = −
2n−1∑

i=0

2isi +
(n−1∑

i=0

2iai

)(n−1∑

i=0

2ibi

)
(1)

A common representation of circuits are And-Inverter-Graphs (AIG) [28],
which are directed acyclic graphs consisting of two-input nodes that represent
logical conjunction. The edges may contain a marking that indicates logical
negation. The semantics of each node implies a polynomial relation, cf. Fig. 1.

Let G(C) ⊆ R[X] be the set of polynomials that contains for each gate of the
given circuit C the corresponding polynomial of Fig. 1, with u, v, and w replaced
by corresponding variables x ∈ X. We call these polynomials gate constraints.

All variables x ∈ X are Boolean and we enforce this property by adding for
each variable a Boolean value constraint x(x − 1) = 0. Let B(Y ) = {y(1 − y) |
y ∈ Y } ⊆ R[X] for Y ⊆ X, be the set of Boolean value constraints for Y .

On the set of terms we fix an order ≤ such that for all terms τ, σ1, σ2 it holds
that 1 ≤ τ and σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2. An order is called a lexicographic term
order if for all terms σ1 = xd1

1 · · · xdr
r , σ2 = xe1

1 · · · xer
r we have σ1 < σ2 iff ∃i ∈ N

with dj = ej for all j < i, and di < ei. For a polynomial p = cτ + · · · the largest
term τ (w.r.t. ≤) is called the leading term < (p) = τ . Furthermore lc(p) = c is
called the leading coefficient and lm(p) = cτ is called the leading monomial of p.
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Definition 1 ([24]). Let P ⊆ R[X]. If for a term order, all leading terms
of P only consist of a single variable with exponent 1, are unique, and further
lc(p) ∈ R× for all p ∈ P , we say P has unique monic leading terms (UMLT).

We order the polynomials in G(C) according to a lexicographic term order,
such that the output variable of a gate is always greater than the inputs of
the gate. Such an order is also called reverse topological term order [29]. It
immediately follows that G(C) has UMLT. Let X0 ⊆ X be the set of all variables
that do not occur as leading terms in G(C) and let J(C) = 〈G(C) ∪ B(X0)〉 ⊆
R[X]. The circuit fulfills its specification if and only if we can derive that L ∈
J(C) [24].

For the remainder of this section let R = Z. Because of the UMLT property
of the gate polynomials, G(C)∪B(X0) defines a D-Gröbner basis [4] for J(C) ⊆
Z[X] [24]. We further showed in [24] that J(C) = 〈G(C) ∪ B(X)〉 ⊆ Z[X],
i.e., J(C) contains all Boolean value constraints for x ∈ X. Thus the correctness
of the circuit can be established by reducing L by the gate polynomials and all
Boolean value constraints and checking whether the result is zero.

It was shown in [30] that simply reducing the specification by G(C) ∪ B(X)
leads to large intermediate reduction results. Thus, we developed preprocessing
techniques based on variable elimination [24]. Typical components in multipliers
are full- and half-adders, which are used to add three resp. two bits and produce
a two-bit output c, s. The specification is −2c−s+x+y +z = 0 for a full-adder
and −2c−s+x+y = 0 for a half-adder, with x, y, z representing the inputs. We
include these specifications in the D-Gröbner basis by eliminating the internal
variables of the full- and half-adders in C. After preprocessing L is reduced by
the rewritten D-Gröbner basis G(C)′ until completion.

However, parts of the multiplier, more precisely final stage adders that are
generate-and-propagate (GP) adders [36], are hard to verify using computer
algebra. Contrarily, equivalence checking of adder circuits is easy for SAT solv-
ing. Hence, we combine SAT solving and computer algebra and our verification
tool AMulet automatically replaces the complex GP adders by simple ripple-
carry adders [24]. The correctness of the replacement is verified by SAT solvers
and the rewritten multiplier is verified using computer algebra techniques. We
generate DRUP proofs in SAT solvers and PAC proofs in AMulet. These proofs
can be merged into one single PAC proof [25].

2.2 Algebraic Proof Systems

In the following we introduce algebraic proof formats, which are able to generate
proof certificates using algebraic reasoning methods. Algebraic proof systems
typically reason over polynomials in K[X], where K is a field and the variables
X represent Boolean values. The aim of an algebraic proof is to derive whether a
polynomial f can be derived from a given set of polynomials G = {g1, . . . , gl} ⊆
K[X] together with the Boolean value constraints B(X) = {x2

i − xi | xi ∈ X}.
In algebraic terms this means to show that the polynomial f ∈ 〈G ∪ B(X)〉.
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The first proof system we consider is the polynomial calculus (PC) [10]. A
proof in PC is a sequence of proof rules P = (p1, . . . , pm), with pi ∈ K[X] and
pm = f . Each rule has the following form that model the properties of an ideal:

Axiom
p

p ∈ G ∪ B(X)

Addition
p q

p + q
p, q both appear in P

Multiplication
p

qp
p appears earlier in P , q ∈ K[X]

The following metrics for PC are common in proof complexity, e.g. in [22,34]:

Definition 2. Let deg(p) be the degree of a polynomial p. The degree of a PC
proof P is the maximum degree of any proof rule pi, i.e., deg(P ) = max{deg(pi)}.
Definition 3. The length of a PC proof P is defined as the maximum number
of proof rules, i.e. length(P ) = m.

Definition 4. Let msize(p) denote the number of monomials in a polynomial p.
The size of a PC proof P is the number of monomials in all proof rules pi, i.e.,

size(P ) =
m∑

i=1

msize(pi).

However, PC proofs cannot be checked efficiently, as the sequence of proof
rules only contains the conclusion polynomials of each proof rule. Thus we mod-
ified PC in [23,37] and extended PC by adding information on the derivation of
each pi, yielding the practical polynomial algebraic calculus (PAC).

Furthermore, in our application with G = G(C), all polynomials in G have
UMLT. Thus we were able to generalize the soundness and completeness argu-
ments of PC to polynomial rings R[X] over commutative rings R with unity [24],
thus also to Z[X]. Additionally, we treat the Boolean value constraints implicitly,
i.e., we consider proofs in the ring Z[X]/〈B(X)〉 to admit shorter proofs [23,27].

The metrics degree, length, and size can be directly applied to PAC proofs.
PAC proofs can be checked using our proof checkers Pacheck or PastÈque
[23,27]. The proof checkers read the given set of polynomials G∪B(X) and verify
the correctness of each proof line by checking whether the necessary conditions
are fulfilled. We furthermore check whether it holds for one proof rule that pi = f .

The Nullstellensatz proof system [3] derives whether a polynomial f ∈ K[X]
can be represented as a linear combination from a given set of polynomials
G = {g1, . . . , gl} ⊆ K[X] and the Boolean value constraints B(X). That is, an
NSS proof for a given polynomial f and a set of polynomials G is an equality

l∑

i=1

higi +
∑

xj∈X

rj(x2
j − xj) = f, for hi, rj ∈ K[X]. (2)
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By the same arguments given for PAC [24], we are able to generalize the
soundness and completeness arguments of NSS proofs to rings R[X] for our
application where G = G(C) has UMLT. We consider R = Z and again treat the
Boolean value constraints implicitly to yield shorter proofs. Thus, the NSS proof
we consider for a given polynomial f ∈ Z[X]/〈B(X)〉 and a set of polynomials
G = {g1, . . . , gl} ⊆ Z[X]/〈B(X)〉 is an equality P , such that

l∑

i=1

higi = f ∈ Z[X]/〈B(X)〉, (3)

with hi ∈ Z[X]/〈B(X)〉. We call gi the base of the NSS proof and hi co-factors.
The following metrics for NSS are common in proof complexity, e.g. in [1,15]:

Definition 5. The degree of an NSS proof P is max{deg(higi)}.

Definition 6. The size of an NSS proof P is given as

size(P ) =
l∑

i=0

msize(hi)msize(gi).

A further metric is the representation size that measures the total number of
monomials in the polynomials gi and the co-factors hi. As the name indicates,
it estimates the number of monomials needed to write down an NSS proof.

Definition 7. The representation size of an NSS proof P is given as

repsize(P ) =
l∑

i=0

(msize(hi) + msize(gi)).

Checking NSS proofs seems straightforward as we simply need to expand
the products higi, calculate the sum, and compare the derived polynomial to
the given target polynomial f . However, we discuss practical issues of proof
checking in Sect. 5, where we introduce our proof checker Nuss-Checker.

3 Proof Generation

In this section we discuss how NSS proofs can be generated in our verification
tool AMulet [24]. We introduced in Sect. 2 that we distinguish two phases
during verification of multipliers. In the preprocessing step we eliminate vari-
ables from the induced D-Gröbner basis G(C) to gain a simpler polynomial
representation G(C)′. In the second step the specification is reduced by the
rewritten D-Gröbner basis G(C)′ to determine whether the given circuit is cor-
rect. Both phases have to be included in the NSS proof to yield a representation
of the specification L as a linear combination of the original gate constraints
G(C) ∈ Z[X]/〈B(X)〉.
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AMulet reads the given AIG, determines a reverse topological term ordering
and encodes each AIG node by a corresponding polynomial to derive the set of
gate constraints G(C). All polynomials from G(C) are kept in the memory even
if they are removed from the D-Gröbner basis during preprocessing.

In the preprocessing step, we repeatedly eliminate all variables v ∈ X \ X0

from G(C) that occur in the tail of only one polynomial, cf. Sect. 4.2. in [26].
Let pv ∈ G(C) such that < (pv) = v. Since G(C) has UMLT and v /∈ X0,
such a pv exists. All polynomials p ∈ G(C) \ {p}, with v ∈ p are reduced by
pv to remove v from p. The reduction algorithm is depicted in Algorithm 1 and
returns polynomials h, r ∈ Z[X]/〈B(X)〉 such that p+hpv = r ∈ Z[X]/〈B(X)〉.
In contrast to more general polynomial division/reduction algorithms we use the
fact in Algorithm 1 that lm(pv) = −v.

Algorithm 1: Reduction(p, pv, v)
Input : Polynomials p, pv ∈ Z[X]/〈B(X)〉, lm(pv) = −v
Output: Polynomials h, r ∈ Z[X]/〈B(X)〉 such that p + hpv = r

1 t ← p, r ← p, h ← 0;
2 while t �= 0 do
3 if v ∈< (t) then
4 h = h + lm(t)/v;
5 r = r + pv lm(t)/v mod 〈B(X)〉;
6 t = t − lm(t);

7 return h, r

Algorithm 2: Add-to-basis-representation(pv, h,base(r))
Input : Polynomials pv, h ∈ Z[X]/〈B(X)〉, basis representation base(r)
Output: Updated basis representation base(r) such that (pv, h) is included

1 if pv → orig then
2 if (pv, hi) ∈ base(r) for any hi then
3 base(r) ← (base(r) \ {(pv, hi)}) ∪ {(pv, hi + h)};
4 else
5 base(r) ← base(r) ∪ {(pv, h)};

6 else
7 foreach (p′

i, h
′
i) ∈ base(pv) do Add-to-basis-representation(p′

i, hh
′
i)

8 return base(r)

We replace the polynomial p by the calculated remainder r, and remove pv
from the D-Gröbner basis [24]. To keep track of the rewriting steps we want to
store information on the derivation of the rewritten polynomials r.

Definition 8. We call base(r) = {(pi, qi) | pi ∈ G(C), qi ∈ Z[X]/〈B(X)〉} the
basis representation of r ∈ Z[X]/〈B(X)〉, such that r =

∑
(pi,qi) ∈base(r) qipi.
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For the rewritten polynomial r that is derived by Algorithm 1, we have to
include the tuples (p, 1), (pv, h) in the basis representation base(r), cf. Algorithm 2.
However, we want to represent r in terms of the original gate constraints G(C) only,
thus we need to take into account whether the polynomial p resp. pv are original
gate constraints or whether they are rewritten, that is base(p) 
= {}.

If pv is an original gate constraint we include the tuple (pv, h) in base(r).
If pv does not occur in any tuple in base(r), we simply add (pv, h) to base(r).
Otherwise base(r) contains a tuple (pv, hi) that has to be updated to (pv, hi+h),
which corresponds to merging common factors in base(r).

If the polynomial pv is not an original gate constraint, base(pv) 
= {}, i.e.,
pv can be written as a linear combination pv = h′

1p1 + · · · + h′
lpl for some origi-

nal constraints pi and h′
i ∈ Z[X]/〈B(X)〉. Thus the tuple (pv, h) corresponds to

hpv = hh′
1p1 + · · · + hh′

lpl. We traverse through the tuples (pi, h′
i) ∈ base(pv),

multiply each of the co-factors h′
i by h and add the corresponding tuple (pi, hh′

i)
to base(r). Multiplying and expanding the product hhi may lead to an exponen-
tial blow-up in the size of the NSS proof as the following example shows.

Algorithm 3: Spec-Reduction(L, G(C)′)
Input : Circuit specification L ∈ Z[X], D-Gröbner basis G(C)′

Output: Remainder r, Basis representation base(L)
1 r ← L, base(L) ← {};
2 foreach g ∈ G(C)′ do
3 r, h ← Reduction(r, g,< (g));
4 base(L) ← Add-to-basis-representation(r, g, h, base(L));

5 return r, base(L)

Example 1. Consider a set of polynomials G = {−y1 + (1 + x0)y0,−y2 + (1 +
x1)y1, . . . ,−yk + (1 + xk−1)yk−1} ⊆ Z[y0, . . . yk, x0, . . . xk] and assume we elimi-
nate y1, . . . , yk−1, yielding −yk +(1+x0)(1+x1) . . . (1+xk−1)y0. The expanded
form of the co-factor of y0 contains 2k monomials.

Surprisingly our experiments, cf. Sect. 6, show that this blow-up does not
occur in arithmetic circuit verification, rejecting our conjecture of [23].

Example 2. We demonstrate a sample run of Algorithm 2. Let G(C) =
{p1, p2, p3} ⊆ Z[X]/〈B(X)〉 and x, y, z ∈ Z[X]/〈B(X)〉. Assume q1 = p1 +
xp2, and q2 = p3 + yp2. Thus base(q1) = {(p1, 1), (p2, x)} and base(q2) =
{(p2, y), (p3, 1)}. Let p = q1 + zq2. We receive base(p) by adding (q1, 1) and
(q2, z) to base(p) = {}.

(q1, 1): Since q1 /∈ G(C), we and add each tuple of base(q1) = {(p1, 1), (p2, x)}
with co-factors multiplied by 1 to base(p). We gain base(p) = {(p1, 1), (p2, x)}.

(q2, z): We consider base(q2) = {(p2, y), (p3, 1)} and add (p2, yz) and (p3, z) to
base(p). Since p3 is not yet contained in the ancestors of p, we directly add (p3, z)
to base(p). The polynomial p2 is already contained in base(p), thus we add yz
to the co-factor x of p2 and we derive base(p) = {(p1, 1), (p2, x + yz), (p3, z)}.
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After preprocessing is completed, we repeatedly apply Algorithm 1 and
reduce the specification polynomial L by the rewritten D-Gröbner basis G(C)′.
We consider the polynomials g ∈ G(C)′ in reverse topological order, such that
each polynomial in G(C)′ has to be considered exactly once for reduction. We
generate the final NSS proof by deriving a basis representation for L. Therefore
we add after each reduction step the tuple (g, h), where h is the corresponding
co-factor of polynomial g, to the base representation base(L) using Algorithm 2.
Algorithm 3 shows the complete reduction process.

We check whether the final remainder r is zero. If so, base(L) represents an
NSS proof and is printed to a file. If r is not zero, r contains only input variables
ai, bi ∈ X0 and can be used to generate counter-examples [23].

4 Proof Size

In this section we examine the proof complexity of the induced NSS proofs in
AMulet for certain multiplier architectures. In particular we are interested in the
degree and proof (representation) size. First, we examine these proof metrics for
btor-multipliers that are generated by Boolector [35]. In this architecture AND-
gates are used to produce the partial products, which are accumulated in an array
structure using full- and half-adders. The final-stage adder is a ripple-carry adder.
These multipliers are considered as “simple” multipliers, because they can be fully
decomposed into full- and half-adders, cf. Fig. 2 for input bit-width 4. The AIG
representation of full- and half-adders is shown in Figs. 3 and 4.
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Fig. 2. The architecture of btor-multipliers for input bit-width 4

In previous work [37] we studied the proof complexity of PAC proofs
and empirically demonstrated that checking commutativity of btor-multipliers
induces PAC proofs of quadratic length and cubic size. However these proofs were
produced using existing computer algebra systems [41] that are not targeted for
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multiplier verification. In more recent work [26] we investigated the proof met-
rics for PAC proofs that are generated in our verification tool AMulet [24]. We
formally derived that n-bit btor-multipliers generate PAC proofs with degree
3 that have a length of 16n2 − 20n − 1 and a proof size (cf. Definition 4) in
O(n2 log(n)).

In the following we will investigate the complexity of NSS proofs that are
generated by AMulet for btor-multipliers. We split the gate constraints in G(C)
into three categories: the output polynomials that link an output si to an output
of a full- or half-adder, that is −si + s′

k or −si − s′
k + 1 depending on the

sign of s′
k. For example, the multiplier in Fig. 2 induces the output polynomial

−s3 + s′
8. Furthermore, we consider polynomials representing partial products,

i.e., −pij + aibj . All remaining polynomials in G(C) are induced from the full-
and half-adders in the circuit, i.e., the internal adder polynomials.

We are able to express the specification of each full- and half-adder, cf. Sect. 2
as a linear combination of the internal adder polynomials. Figure 3 shows the
AIG representing a full-adder, as it occurs in btor-multipliers. Depending on the
position of the full-adder in the multiplier, the sign of the inputs x, y, and z
may be inverted and thus internal variables of the full-adder are negated, which
affects the proof size. The full-adder in Fig. 3 represents the full-adder in btor-
multipliers that yields the largest NSS proofs (input x and output c are inverted).
We use the proof size of these full-adders to estimate an upper bound of the proof
size. The corresponding gate polynomials can be seen on the right side of Fig. 3
together with the co-factors that are induced in AMulet. Expanding the linear
combination yields the specification −2(1 − c) + s + (1 − x) − y − z. Figure 4
shows the same result for a half-adder resulting in −2c − s + x + y. From the
polynomials in Figs. 3 and 4 we are able to derive the following lemmas.

Lemma 1. The NSS proof generated in AMulet for a half-adder has maximum
size 61 and maximum representation size 45. The NSS proof for a half-adder has
maximum size 23 and maximum representation size 19.

Proof. Figures 3 and 4 show the representation of the full-adder and half-adders
that occur in btor-multipliers that maximize the NSS proof size. Furthermore the

zy

x

g1 g2

g3

g4 g5

s c gate constraints co-factors
−c+ g5g2 − g5 − g2 + 1 −2
−s+ g4g5 − g4 − g5 + 1 1
−g4 − g3x+ x g5 − 1
−g5 − g3x+ g3 g3x − 2g2 + x+ 1
−g3 + g1g2 − g1 − g2 + 1 2g2x − 2g2 + 1
−g1 + yz − y − z + 1 g2 − 1
−g2 + yz yz − y − z + 2

Fig. 3. Full-adder architecture in btor-multipliers



378 D. Kaufmann and A. Biere

yx

g1 c

s
gate constraints co-factors
−s+ g1c − g1 − c+ 1 1
−g1 + xy − x − y + 1 c − 1
−c+ xy xy − x − y + 2

Fig. 4. Half-adder architecture in btor-multipliers

induced co-factors in AMulet are shown. We simply count the number of mono-
mials in the polynomials and use the definition of proof (representation) size, cf.
Definitions 6 and 7 to yield the desired results.

Lemma 2. The degree of an NSS proof for a full- or half-adder is 3.

Proof. It can be seen in Figs. 3 and 4 that multiplying each of the gate polyno-
mials by the corresponding co-factor yields degree at most 3 in Z[X]/〈B(X)〉.

We use the full- and half-adder specifications to derive a concise NSS proof.
That is, we want to find co-factors, such that we are able to express the spec-
ification L cf. Eq. 1 as a linear combination of the output polynomials, adder
specifications and the polynomials that represent partial products.

It is easy to see that all the output polynomials, i.e., −si + s′
k or −si − s′

k +1
need to be multiplied by the corresponding constant 2i, because neither the
internal adder polynomials nor the polynomials representing partial products
contain any output variable si of the multiplier. Furthermore, since all adder
specifications are linear, we multiply these polynomials by constants to cancel
output variables of an adder that are input to another adder. For example,
the multiplier of Fig. 2 induces the polynomials −2c′

11 − s′
11 + c′

7 + p33 + c′
10,

−2c′
10−s′

10+s′
7+p23+c′

9. We multiply the first polynomial by two to cancel the
monomials containing c′

10. It follows by the same arguments that we only need
to multiply the polynomials −pij + aibj by constants to cancel the variables pij .
Using these observations and the following lemmas that are derived in [26] we
are able to derive quadratic bounds for the proof (representation) size of btor-
multipliers in Theorems 1 and 2.

Lemma 3 (Lemma 2 in [26]). Let C be a btor-multiplier of input bit-width n.
Then C contains n half-adders and n2 − 2n full-adders.

Theorem 1. The proof size of n-bit btor-multipliers produced in AMulet is
bounded by 63n2 − 93n.

Proof. Using Lemma 3, we derive that the proof size for all full- and half-adder
specifications is at most 23n+61n2−122n = 61n2−99n. These specifications are
only multiplied by constants during reduction, thus reduction has no effect on the
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proof size. The 2n polynomials representing the circuit outputs are multiplied by
constants, thus each polynomial contributes at most 3 monomials. Each of the
n2 polynomials representing partial products is also multiplied by a constant,
adding 2 monomials to the proof size. Collecting the results leads to a proof size
of 61n2 − 99n + 6n + 2n2 = 63n2 − 93n.

Theorem 2. The proof representation size of n-bit btor-multipliers produced in
AMulet is bounded by 48n2 − 63n.

Proof. Using Lemma 3 and multiplying the co-factors by appropriate constants
we derive that the proof representation size for all full- and half-adder specifica-
tions is at most 19n+45n2−90n = 45n2−71n. The 2n polynomials representing
the circuit outputs are multiplied by constants. Thus for each of the 2n products
we derive a representation size 4. Each of the n2 polynomials representing par-
tial products is also multiplied by a constant, adding 3 monomials to the proof
representation size. Collecting the results leads to a proof representation size of
45n2 − 71n + 8n + 3n2 = 48n2 − 63n.

Theorem 3. The degree of the NSS proof of n-bit btor-multipliers is 3.

Proof. It follows from Lemma 2 that the degree of the NSS proof for an adder
specification is 3. This linear adder specification is only multiplied by constants
in the NSS proof for btor-multipliers. Furthermore, the degree of the output poly-
nomials is 1 and the degree of the polynomials representing the partial products
is 2, and both are multiplied only by constant factors in the NSS proof. Thus
the maximum degree of a polynomial product in the NSS is 3.

Figure 5 shows the proof (representation) size together with the derived
bounds of Theorems 1 and 2 for btor-multipliers with an input bit-width n in
[4, 128]. The absolute error of the bounds can be seen in Fig. 6, which empirically
indicates that the difference between the upper bound and the real proof size is
in O(n), giving us a precise bound on the coefficient of the quadratic terms.

Fig. 5. Proof size (left) and proof representation size (right) for btor-multipliers
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Fig. 6. Absolute error of the estimated bounds for proof (representation) size (left).
Empirical evaluation of proof metrics for bp-wt-rc–multipliers (right)

The second multiplier architecture we consider are the complex bp-wt-rc-
multipliers that are part of the AOKI benchmarks [21]. These benchmarks only
scale up to input bit-width 64. The bp-wt-rc–multipliers use a Booth encod-
ing [36] to generate the partial products, which are then accumulated using a
Wallace-tree. The final-stage adder is a ripple-carry adder. The abbreviations of
these components “Booth encoding” – “Wallace-tree” – “ripple-carry adder” give
this architecture its name. Due to their irregular structure we only give empirical
evidence for the proof metrics, which can be seen in the right side of Fig. 6.

Proposition 1. Let C be a bp-wt-rc–multiplier of input bit-width n. The degree
of the NSS proof is in O(log(n)). The proof (representation) size is in O(n2).

5 Proof Checking

We validate the correctness of the generated NSS proofs by checking whether∑l
i=1 qipi = L ∈ Z[X]/〈B(X)〉 for pi ∈ G(C), qi ∈ Z[X]/〈B(X)〉. This sounds

rather straightforward as theoretically we only need to multiply the original con-
straints pi by the co-factors qi and calculate the sum of the products. However,
we will discuss in this section that depending on the implementation the time and
maximum amount of memory that is allocated varies by orders of magnitude.

We implemented an NSS proof checker, called Nuss-Checker in C. It con-
sists of approximately 1800 lines of code and is published1 as open source under
the MIT license. Nuss-Checker reads three input files <input>, <cofact>, and
<target>. The file <input> contains the original gate constraints pi, <cofact>
contains the corresponding co-factors qi in the same order. Nuss-Checker reads
the files <input> and <cofact>, generates the products and then verifies that
the sum of the products is equal to the polynomial given in <target>.

The polynomials in Nuss-Checker are internally stored as ordered linked
lists of monomials. The coefficients are represented using the GMP library and
1 http://fmv.jku.at/nussproofs.

http://fmv.jku.at/nussproofs
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the terms are ordered linked lists of variables. All internally allocated terms are
shared using a hash table. We already discussed in [23] that the variable ordering
has an enormous effect on the memory usage of the tool, since different variable
orderings induce different terms. In the default mode Nuss-Checker orders the
variables by their name using the function strcmp, as this minimized memory
usage for our application [23]. Nuss-Checker furthermore supports to use the
same variable ordering as in the given files. That is, whenever a new variable is
parsed we assign an increasing numerical level value and sort according to this
value. Both orderings strcmp and level can be applied in reverse order too.

Nuss-Checker generates the products on the fly. That is, we parse both files
<input> and <cofact> simultaneously, read two polynomials qi and pi from each
file and calculate the product qipi.

The polynomial arithmetic needed for multiplication and addition is imple-
mented from scratch, because in the default setting we always calculate modulo
the ideal 〈B(X)〉. General algorithms for polynomial arithmetic need to take
exponent arithmetic over Z into account [38], which is not the case in our set-
ting. Furthermore, in our previous work on PAC [37] we used modern computer
algebra systems, Mathematica [41] and Singular [12], for proof checking, which
turned out to be much slower than our own implemented algorithms.

Addition of two polynomials is implemented by pushing the monomials of
both polynomials on a stack, which is then sorted (using Quicksort) according
to the fixed term ordering and monomials with equal terms are merged to yield
the final sum. Multiplication is implemented in a similar way.

Since addition of polynomials in Z[X] is associative, we are able to derive dif-
ferent addition schemes. We experimented with four different addition patterns,
which are depicted in Fig. 7 for adding six polynomials. The subscript i of “+i”
shows the order of the addition operation.

If we sum up all polynomials at once, we do not generate the intermediate
addition results. Instead we push all monomials of the l products piqi onto one
big stack. Afterwards, the monomials on the stack are sorted and merged, which
corresponds to one big addition. In this addition scheme we do not compute any
intermediate summands, which makes the algorithm very fast, because we sort
the stack only once. However, all occurring monomials of the products are pushed
on the stack and stored until the final sorting and merging, which increases the
memory usage of Nuss-Checker.

If we add up in sequence, we only store one polynomial in the memory, and
always add the lastest product piqi. This allows for monomials to cancel, which
helps to reduce the memory usage. On the other hand, in our application the
target polynomial L contains n2 partial products that lead to intermediate sum-
mands of quadratic size, which slows down the checking time.

If we add up in a tree structure with breadth first, we add two consecu-
tive products of the NSS proof and store the resulting sum. After parsing the
proof, we have l

2 polynomials on a stack. We repeatedly iterate over the stack
and always sum up two consecutive polynomials, until only one polynomial is
left. This has the effect that we do not collect and carry along the n2 partial
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Fig. 7. Addition schemes of 6 polynomials

products. However, the memory usage increases, because we store l
2 polynomials

simultaneously.
In the addition scheme, where we use a tree structure and sum up depth first,

we develop the tree on-the-fly by always adding two polynomials of the same
layer as soon as possible. It may be necessary to sum up remaining intermediate
polynomials that are elements of different layers, as can be seen in Fig. 7. Similar
to using a tree structure with breadth first addition, we do not collect and
carry along the partial products. Furthermore, we always store at most �log(l)�
polynomials in the memory, as a binary tree with l leafs has height �log(l)� and
we never have more polynomials than layers in the memory.

We apply the presented addition schemes on btor-multipliers, cf. Sect. 4 and
it can be seen in Fig. 8 that the results compare favorably to our conjectures
of checking time and memory usage for each addition scheme. However, Nuss-
Checker supports all presented options for addition, with adding up in binary
tree, depth first set as default, because for different applications, using other
addition schemes may be more beneficial.

For example, we shuffled the order of the polynomials in the NSS proof of
128-bit btor-multipliers 200 times and report the box-plots of the checking time
and memory usage in Fig. 9. Since “adding up in sequence” always exceeded the
time limit of 300 s, we omit its box-plot. It can be seen that the fastest addition
scheme is now “all at once”. However, the “tree based, depth first” approach
still has the smallest memory usage.
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Fig. 8. Time (left) and memory usage (right) of addition schemes

Fig. 9. Checking time (left) and memory usage (right) of shuffled NSS proofs

6 Evaluation

In this section we provide experimental results for generating and checking NSS
proofs for multiplier verification and we aim to provide a comprehensive com-
parison between PAC and NSS proofs for the selected multiplier architectures.

In our experiments we use an Intel Xeon E5-2620 v4 CPU at 2.10 GHz (with
turbo-mode disabled) with a memory limit of 128 GB. The time is listed in
rounded seconds (wall-clock time). The wall-clock time is measured from starting
the tools until they are finished. Source code, benchmarks and experimental data
are available at http://fmv.jku.at/nussproofs.

In our experiments we consider the simple btor-multipliers with an input
bit-width n in [4, 128] and the complex bp-wt-rc–multipliers with an input bit-
width n in [4, 64]. These architectures are already discussed in detail in Sect. 4.

More complex multipliers include GP adders [36]. However, in our verification
approach [24] these GP adders are replaced by ripple-carry adders and only
the rewritten multiplier is verified using computer algebra. Thus it suffices to
consider complex multipliers that include a ripple-carry adder in this paper.

http://fmv.jku.at/nussproofs
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Fig. 10. Proof generation time for btor (left) and bp-wt-rc (right) multipliers

For both architectures we produce PAC proofs using AMulet as described
in [23,26], which are checked using our proof checker Pacheck. We generate
NSS proofs as described in Sect. 3 and check these proofs using the default
configurations of Nuss-Checker.

The results are depicted in Figs. 10–13, where we compare the proof genera-
tion and checking time as well as the size of the proof files and the memory usage
of the proof checkers. In all figures we represent the measurements in terms of
the size of the input AIG, i.e., the number of circuit constraints, because the
number of gates in these multipliers is quadratic in the bit-width n.

Figure 10 shows the time needed to generate the NSS and PAC proofs in
AMulet. It can be seen that for btor-multipliers the generation time of PAC
proofs is around 30% slower than for NSS proofs. For bp-wt-rc–multipliers PAC
proofs are produced slightly faster than NSS proofs.

The size of the proof files (in megabyte) is shown in Fig. 11. Depending on
the multiplier architecture the size of the NSS proof file is 5–10 times smaller
than the size of the PAC proof. This result is actually expected as the PAC proof
includes all intermediate steps and results of generating and adding the products.
In the NSS proof file we only store the co-factors without any intermediate steps.

Figure 12 depicts that NSS proofs can be checked faster than the correspond-
ing PAC proofs. In fact, even for a btor-multiplier with input bit-width 128,
where the AIG contains more than 129 000 nodes, checking the NSS proof takes
around 1 s and is four times faster than checking the PAC proof. We observed
that the proportion between multiplication and addition in Nuss-Checker is
around 1:1.7, e.g. for 128-bit btor-multipliers 0.25 s are used by the multiplication
function and 0.4 s are used by the addition operation.

Last, we compare the memory usage of Pacheck and Nuss-Checker, i.e.,
the maximum amount of memory that is allocated during proof checking and it
can be seen in Fig. 13 that NSS proofs need less than a third of the memory.
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Fig. 11. Size of the proof files for btor (left) and bp-wt-rc (right) multipliers

Fig. 12. Proof checking time for btor (left) and bp-wt-rc (right) multipliers

The AOKI benchmarks contain 192 different multiplier architectures, 168
of which can be successfully verified using AMulet. We compare the proof
generation and checking time of PAC and NSS proofs for these 168 multipliers
in Fig. 14. We fixed the input bit-width of all multipliers to 64. It can be seen
that for multipliers that use Booth encoding to generate the partial products the
generation time of NSS proofs is slightly slower than for PAC proofs. However,
checking the NSS proof is almost always faster than checking PAC proofs.
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Fig. 13. Memory usage of checkers for btor (left) and bp-wt-rc (right) multipliers

Fig. 14. Generation (left) and checking time (right) for 64-bit multipliers

7 Conclusion

In this paper we elaborated whether concise Nullstellensatz proofs can be gener-
ated to validate the results of multiplier verification using computer algebra. We
discussed how Nullstellensatz proofs are developed as by-product in our verifica-
tion tool AMulet. Our experiments showed that we are able to produce compact
Nullstellensatz proofs that are faster to check than proof certificates based on the
polynomial calculus. For simple array multipliers we formally derived quadratic
bounds on the proof size for Nullstellensatz proofs. Furthermore, we presented
our Nullstellensatz proof checker Nuss-Checker and discussed several design
decisions that allow efficient proof checking.

In the future we want to further investigate the connection between polyno-
mial calculus and Nullstellensatz for multiplier verification and want to derive
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possibilities to convert DRUP proofs to Nullstellensatzproofs, similar to con-
verting DRUP proofs into PAC proofs as in [25]. Another intriguing research
direction is to develop techniques that allow production of smaller Nullstellen-
satz proofs and connect it to SAT solving [24]. More general problems beyond
the Boolean case may be also of interest [39].
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Abstract. The embedding of computer algebra technology within some
software and hardware environments is a part of some recent techno-
logical improvements for mathematics education, in particular for gifted
students. Computer algebra methods for simulation and modeling can be
effectively used to connect symbolic computation and dynamic geometry
in the popular dynamic mathematics software GeoGebra, based on fast
calculation of Gröbner bases. As a result, teaching of algebraic curves
via linkages and LEGO constructions can be approached with the help
of a combination of novel tools.

In our contribution, we describe a set of three tools: the software tool
LEGO Digital Designer, the program GeoGebra and the use of a web-
camera through the CindyJS system for the introduction of basic issues
concerning algebraic curves and geometric loci.

Keywords: Linkages · Algebraic geometry · LEGO · GeoGebra ·
CindyJS

1 From Watt’s Steam Machine to STEAM Education

In the era of modern machining tools like computer-numerically-controlled
(CNC) drills, boring tools and lathes, there seems to be no challenge on pro-
ducing straight line movements anymore. Historically, as Kempe writes,

“. . .until 1874 no-one in England knew of a method for drawing a straight
line that was, in principle, perfect. The first solution was found by a French
army officer called Peaucellier and was brought to England by Professor
Sylvester in a lecture at the Royal Institution in January 1874.” [8]

Peaucellier’s method was independently discovered by Lipkin in 1871, a
young Russian mathematician, Chebyshev’s student. He received a substantial
reward from the Russian government for this discovery [9]. Also Peaucellier was
awarded by the French government by winning the Prix Montyon in 1875 for this
invention, in the same year when Lipkin died. All of these events were about 90
years after James Watt’s invention of the parallel linkage that was described in
his patent specification of 1784 for the steam engine.
c© Springer Nature Switzerland AG 2020
F. Boulier et al. (Eds.): CASC 2020, LNCS 12291, pp. 390–401, 2020.
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Watt’s invention was extremely important for the industry, but the motion
it provided was just almost-straight. It is nowadays, however, still in use, for
example, in vehicle suspensions (Fig. 1)—it prevents relative sideways motion
between the axle and body of the car.

Fig. 1. Watt’s linkage in a 1998 Ford Ranger EV suspension [15]

These revolutionary results may deserve new interest according to the
STEAM approach in mathematical education. Precise study of the motions these
linkages produce is still a challenge from the scientific point of view (see e.g. [7]
or [1]), and, without the freshly available digital tools they cannot even be well
described at schools. Luckily, recent improvements in GeoGebra, and also in some
other software like CindyJS [5], and, in addition, the free availability of LEGO
Digital Designer, can already provide an achievable way to explain the most part
of the underlying theory at schools as well. For STEAM educators, the connec-
tion here between science (S), technology (T), engineering (E), and mathematics
(M) should be evident. In addition, arts (A) can also be affected when the beauty
of motions or even the linkages themselves are admired (see e.g. Fig. 2 on Theo
Jansen’s artistic linkages, and [4] for their mathematical description).

This paper presents a possible way to offer digital resources in this topic aim-
ing to highlight the didactical use of linkages in a STEAM-driven methodology
supported by effective computer algebra techniques. Some feedback on the pro-
posals was already given by a set of very gifted students after a summer camp
in the United States in Colorado Springs in 2019 [11]. To emphasize the con-
nection between mathematics and these mechanisms, we can simply call them
“mathemachines”. (See, for example, http://www.macchinematematiche.org, to
read more about their long history.)

http://www.macchinematematiche.org
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Fig. 2. Mathematical artist Theo Jansen with one of his beach-beasts

In this paper, the computer algebra part of the novel technology is high-
lighted, but, as a harmonic extension of it, two other technical perspectives are
mentioned.

2 Mathematical Background

It is surprisingly easy to describe a four-bar linkage by mathematical means.
In Fig. 3, 4, and 5, Watt’s linkage is shown as LEGO constructions, and also
a mathematical sketch. In the latter figure, points A and C are fixed in the
coordinate system, while points (m,n) and (f, g) have a circular motion around
them, respectively. Point (x, y) is the midpoint of the connecting bar between
(m,n) and (f, g). The movement of point (x, y) is to be determined—we assume
that a pen refill is inserted at this position in the LEGO construction, and a curve
is drawn by the constrained motion. This system can be described by 5 algebraic
equations, and the only preliminary knowledge is the Pythagorean theorem (or,
equivalently, the equation of a circle, or computing the distance between two
points), and the two co-ordinate equations of a midpoint. Figure 6 shows the
result of manual drawing with the help of the LEGO linkage.

Finding the geometric positions of (x, y) mathematically, that is, describing
them in an algebraic way requires only simple operations of the input equations,
namely additions, subtractions and multiplications. The theoretical basis and
a practical algorithm that is based on it is well-known since Buchberger’s 1965
PhD thesis [3] (namely Gröbner basis and elimination). The method is, however,
not part of the secondary curriculum, simply because of the required theoretical
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Fig. 3. Watt’s parallel linkage given by a LEGO construction drawn in LDD

Fig. 4. Watt’s parallel linkage built by LEGO elements in real life

knowledge in algebra (see [13] for more details), and the extremely high amount
of the required operations—from the practical point of view. As a result, some
parts of these concepts need to be used as black-box in the education at sec-
ondary level.
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Fig. 5. Description of Watt’s parallel linkage by mathematical means

Fig. 6. Watt’s curve, constructed with a LEGO linkage and a G2 type pen refill

3 Digital Tools

3.1 LEGO Digital Designer

LEGO Digital Designer (LDD) is a free tool for Windows and Mac operating sys-
tems1, developed by LEGO System A/S. It is available for download at https://
www.lego.com/en-us/ldd#full-section-2. LDD offers constructing, saving, and re-
opening LEGO constructions in a handy way. Young learners can observe pre-
constructed digital assemblies in all details, and can move and rotate them to
have a full understanding on how the parts are connected (see Fig. 3 and 7).
This supports individual work. (See [10] for a complete set of .lxf files for imme-
diate use with LDD.)

In fact, LDD has advanced capabilities to try to find the exact alignment of
parts. This is performed internally with numerical means when using the Hinge

1 Linux users can also use the software freely with the WINE emulator. See www.winehq.
org for more details.

https://www.lego.com/en-us/ldd#full-section-2
https://www.lego.com/en-us/ldd#full-section-2
www.winehq.org
www.winehq.org


“Mathemachines” via LEGO, GeoGebra and CindyJS 395

Fig. 7. LDD version 4.3.10 displays the Peaucellier-Lipkin linkage

Align Tool. LDD can also export the assembly plan in various formats, including
a web page or a single figure.

3.2 GeoGebra

Technology plays an important role when manipulating equation systems. Sev-
eral computer programs, and GeoGebra [6] is included on this list, have an effec-
tive way to compute the algebraic equation for the positions of the moving point
(x, y) of a setup given in Watt’s linkage. This process is called elimination—we
actually get rid of all variables in an equation system but x and y.

Here we give a simple example of elimination. A two-meter-long ladder is
sliding down the wall from its vertical position, until it reaches its horizontal
stage. A cat is sitting in its middle. One needs to determine the movement
of the cat. By solving this question, we assume that we put the edge of the
wall in the origin and the wall corresponds to a part of the y-axis. Now an
equation system can be given which contains the end points of the ladder with
their coordinates (a, 0), (0, b), the length of the ladder (here 2), and the position
(x, y) for the cat. In this case, the equation system (a − 0)2 + (0 − b)2 = 22,
a+0
2 = x, 0+b

2 = y describes the movement. After eliminating all variables but x
and y we obtain x2 + y2 = 1 that clearly corresponds to a circle with its center
in the origin and radius 1. But, in fact, the cat does not move on the full circle,
only on a quarter of it. Actually, by elimination we obtain the Zariski closure of
the expected solution—it is the algebraic closure of the quadrant.

GeoGebra’s built-in command Eliminate can be directly used to obtain the
equation as seen in Fig. 8. Its syntax is the form Eliminate(<List of Polynomi-
als>, <List of Variables>).
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Fig. 8. The Eliminate command and its result in GeoGebra Classic 6

Fig. 9. A dynamic construction that shows the movement of a configurable linkage and
computes its algebraic counterpart automatically

On the other hand, elimination is computed so effectively in GeoGebra that it
is possible to compute several different eliminations with different setups for the
linkage, multiple times in one second. Practically, this means that the learners
can do real-time experiments by dragging the fixed points A and C (see Fig. 5)
or change the lengths of the bars. To achieve this, the user has to construct a
geometrical model of the linkage by means of a strict Euclidean construction,
that is, using GeoGebra tools that can be internally translated to straightedge
and compass construction steps. Figure 9 shows a possible way of assembling
such an online activity, available at https://www.geogebra.org/m/sDCTVGrg#
material/DpPyzRdx.

https://www.geogebra.org/m/sDCTVGrg#material/DpPyzRdx
https://www.geogebra.org/m/sDCTVGrg#material/DpPyzRdx
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Fig. 10. A setup that produces the union of three circles for the algebraic closure

In Fig. 9, the learner has options to drag A or C, or change the length of f
or g. This covers all possible setups of a four-bar linkage. The thick (in the online
version: green) curve shows all possible positions of point (x, y) denoted by T ,
while the thin (online: red) curve is the so-called algebraic closure of this set,
also described by a formula at the bottom. From the user’s perspective, after
fixing A, C, f and g the movement of point T (it is draggable) is constrained on
the thick curve that is a subset of the thin curve (namely, the Zariski closure of
the thick curve).

Digital resources like the one shown in Fig. 9 can be produced by using the
command LocusEquation in GeoGebra.

Further commands like Factor help the learners to understand some elements
of the theory of factorization of polynomials at a basic level. The produced
curve of a four-bar linkage is sometimes a union of two or more curves and
their corresponding polynomials are presented only as their product. In Fig. 10,
we can see a setup of A, C, f , and g that produces a union of three curves.
Their algebraic counterpart is a circle for each case, but their product is not
automatically factorized by GeoGebra. The learners should be motivated to find
the factorization of a sextic polynomial, first by hand, and later to use computer
algebra to do this step automatically.

GeoGebra fully supports online applets that include all the above mentioned
commands. Technically, GeoGebra has a built-in version of the Giac computer
algebra system [12], and this combination can be used on several platforms includ-
ing desktop computers, web environments or even mobile devices. For presenta-
tions, therefore, a web-based activity can be preferred (as a GeoGebra book, for
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instance). For do-it-yourself activities, a downloadable version of GeoGebra can
be recommended, both the Classic 5 and 6 versions.

On the other hand, GeoGebra has further support that allows understanding
the mathematics behind the Peaucellier–Lipkin linkage. The basic idea of the
linkage mechanism is a circle inverter, that is, a linkage that have two moving
points P and P ′ and they are the corresponding images of each other according
to a map of a circle inversion with a fixed center point O and radius r. Mathe-
matically speaking, for a certain circle inversion I the equation I(P ) = P ′ holds.
To connect the basic idea of the linkage mechanism and its mathematical coun-
terpart we use GeoGebra’s built-in tool that supports reflecting any geometrical
object about a circle, namely, to perform an inversion.

Figure 11 shows how GeoGebra is capable of presenting several objects
and their inverted images at the same time (see https://www.geogebra.org/m/
kqta2rwa for an online version). Here the reference circle of the inversion is the
unit circle (drawn in magenta in the online version), and the set of parallel
input lines (drawn in red) are mapped into circles (drawn in blue) that are going
through the origin O and all of them have their centers on the y-axis. The input
object is technically a single (red) line. Its trace is always shown as the user
drags it, while the output object has the same behavior.

Fig. 11. Observing some fundamental properties of circle inversion with GeoGebra
(Color figure online)

3.3 CindyJS

CindyJS is a programming language designed for web based experiments. Among
many other features, it successfully connects the user’s web camera and the
machine’s GPU computations with its WebGL plugin [14].

There are several mathematical experiments that can be supported with
CindyJS and a web camera. Among others, the input picture can be considered
point-by-point and transformed by using algebraic functions, eventually multi-
ple times. In such a way, the properties of complex functions can be visually

https://www.geogebra.org/m/kqta2rwa
https://www.geogebra.org/m/kqta2rwa
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demonstrated, or self-similar geometric objects can be investigated, including
fractals.

In fact, CindyJS can also be used to introduce some fundamental properties
of circle inversion by inverting rectangle formed bitmaps, pixel-by-pixel. Effective
processing of the high amount of numerical computations allows that the learner
or the teacher can use the built-in web camera of the laptop as the input bitmap,
and for each pixel, the output can be quickly computed. In such a way it is very
easy and quick to verify that a set of parallel lines of the plane is mapped into
a set of circles (and eventually into an invariant line).

For instance, in Fig. 12, the author is shown in a striped shirt with the ref-
erence circle, before and after inversion. The points outside the input image are
shown as black points in the middle of the output image. The black points form
a “black snowman”: its border is a union of four circle arcs that are joining
perpendicularly to their neighbors—this geometrical object is actually the map
of a rectangle after inversion. (Note that the consecutive sides of a rectangle
are perpendicular to each other, and inversion preserves angles.) Also, a set of
parallel lines are mapped into a set of circles (except the one that goes through
the center of the reference circle).

Fig. 12. Observing some fundamental properties of circle inversion with CindyJS

4 Finalizing the Story

As it is well-known today, the Peaucellier–Lipkin linkage is a combination of
a circle inversor and a constrained circular motion. The assembly provides an
exact linear motion, and the main part of explanation is that a circle inversion
maps each circle that goes through the center of the reference circle, to an exact
straight line. This follows immediately from the converse of property seen in
Fig. 11 and 12. (See also [2] for a more detailed explanation.)

By combining LDD to help constructing linkages manually, and using GeoGe-
bra to compute the movements of the “mathemachines” in an exact way, and
finally, to learn some basic properties of circle inversion (with the extensive help
of CindyJS’ WebGL capabilities), we have an effective set of digital tools to help
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learners in finding Peaucellier’s revolutionary idea themselves. Learners need a
set of LEGO parts with 27 elements of 9 kinds to build several types of linkages
(see Table 1), and, optionally2, their own laptops with Internet connection to
access the freely available software tools.

Table 1. Shopping list of the LEGO bricks with suggested colors to minimize costs

Part Beam 15 Beam 11 Beam 9 Half beam 6 Beam 5 Beam 3 Beam 1×1 Long pin Pin Total

Color red gray yellow gray white gray gray blue black

Code 32278 32525 40490 32063 32316 32523 18654 6558 2780

Set 1 2 2 4 3 1 2 3 9 27

The concept is not just promoting understanding but allowing the students
to achieve finding a mathemachine that produces an exact straight movement,
by themselves, with some hints from the teacher. According to the author’s
experience, this is possible not just among very gifted 11 years old learners,
but also with students between 15 and 18, with more average skills. Processing
of students’ feedback on a mathematics camp in Upper Austria, held in Schloß
Weinberg at Kefermarkt in February 2020 (see http://www.projektwoche.jku.at/
2020/projekt2020 proj05.shtml), is still under evaluation and planned as input
for further research.

5 Conclusion

In this paper, we have demonstrated heavy use of computer algebra in teaching
algebraic curves via LEGO linkages. Computer algebra was triggered by Gröbner
basis computations to obtain elimination of a set of variables from a polynomial
ideal. Effective computation of Gröbner bases was crucial to enable fast visual-
ization of the Zariski closure of the movement of a four-bar linkage, but also to
allow deciding if a given LEGO linkage produces a linear motion or not.

However, some theoretical details had to be skipped at the presented edu-
cational level. On the other hand, the complexity of the algorithms could still
be communicated. The achieved results, namely, the geometry of the set of out-
puts, were possible to discuss and interpret among young learners as well. As a
conclusion, recent computer algebra methods can fruitfully improve students’
understanding on mathematical concepts by a careful collection of novel techni-
cal means.

2 Computer use for children at camp in Colorado Springs was very limited. Instead of
using their own computers, the lecturer’s computer was used during the classroom
work. Tutorials on the assembly of LEGO linkages were printed instead of using
them electronically. This made building the linkages a bit more difficult but still
achievable.

http://www.projektwoche.jku.at/2020/projekt2020_proj05.shtml
http://www.projektwoche.jku.at/2020/projekt2020_proj05.shtml
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Computer algebra was just one part of the applied technology. LDD and
CindyJS completed the educational scenario in a harmonic combination.
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Abstract. Arithmetic in the divisor class group of a hyperelliptic curve
is a fundamental component of algebraic geometry packages implemented
in computer algebra systems such as Magma and Sage. In this paper, we
present an adaptation of Shanks’ NUCOMP algorithm for split model
hyperelliptic curves of arbitrary genus that uses balanced divisors and
includes a number of enhancements to optimize its efficiency in that set-
ting. Our version of NUCOMP offers better performance than Cantor’s
algorithm in the balanced divisor setting. Compared with Magma’s built-
in arithmetic, our Magma implementation shows significant speed-ups for
curves of all but the smallest genera, with the improvement increasing
as the genus grows.

1 Introduction

The divisor class group of a hyperelliptic curve defined over a finite field is a
finite abelian group at the center of a number of important open questions in
algebraic geometry and number theory. Sutherland [14] surveys some of these,
including the computation of the associated L-functions and zeta functions used
in his investigation of Sato-Tate distributions [13]. Many of these problems lend
themselves to numerical investigation, and as emphasized by Sutherland, fast
arithmetic in the divisor class group is crucial for their efficiency. Indeed, imple-
mentations of these fundamental operations are at the core of the algebraic
geometry packages of widely-used computer algebra systems such as Magma
and Sage.

All hyperelliptic curves are represented as models that are categorized as
either ramified (imaginary), split (real), or inert according to their number of
points at infinity defined over the base field. Ramified curves have one point at
infinity, whereas split curves have two. Inert (also called unusual) curves have
no infinite points defined over the base field and are usually avoided in practice
as they have cumbersome divisor class group arithmetic and can be transformed
to a split model over at most a quadratic extension of the base field.

Divisor class group arithmetic differs on ramified and split models. The split
scenario is more complicated. As a result, optimizing divisor arithmetic on split
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hyperelliptic curves has received less attention from the research community.
However, split models have many interesting properties; most importantly, there
exists a large array of hyperelliptic curves that cannot be represented with a
ramified model and require a split model representation. Thus, exhaustive com-
putations such as those in [13] conduct the bulk of their work on split models
by necessity.

Arithmetic in the divisor class group of a hyperelliptic curve can be described
algebraically using an algorithm due to Cantor [1], and expressed in terms of
polynomial arithmetic. Various improvements and extensions to Cantor’s algo-
rithm have been proposed for ramified model curves, including an adaptation of
Shank’s NUCOMP algorithm [11] for composing binary quadratic forms [6]. The
main idea behind NUCOMP is that instead of composing two divisors directly
and then reducing to find an equivalent reduced divisor, a type of reduction
is applied part way through the composition, so that when the composition
is finished the result is almost always reduced. The effect is that the sizes of
the intermediate operands are reduced, resulting in better performance in most
cases. Improvements to NUCOMP have been proposed, most recently the work
of [5], where best practices for computing Cantor’s algorithm and NUCOMP are
empirically investigated.

NUCOMP has also been proposed for arithmetic in the so-called infrastruc-
ture of a split model curve [8]. However, as shown by Galbraith et al. [4,9],
arithmetic on split model hyperelliptic curves is most efficiently realized via a
divisor arithmetic framework referred to as balanced. Although the balanced
and the infrastructure frameworks are similar, NUCOMP had yet to be applied
explicitly to the former.

In this paper, we present an adaptation of NUCOMP for divisor class group
arithmetic on split model hyperelliptic curves in the balanced divisor framework.
We incorporate optimizations from previous works in the ramified model setting
and introduce new balanced setting-specific improvements that further enhance
practical performance. Specifically, our version of NUCOMP includes various
improvements over its infrastructure counterpart [8]:

– it describes for the first time exactly how to use NUCOMP in the framework
of balanced divisors, including explicit computations of the required balancing
coefficients;

– it introduces a novel normalization of divisors in order to eliminate the extra
adjustment step required in [8] for typical inputs when the genus of the hyper-
elliptic curve is odd, so that in all cases typical inputs require no extra reduc-
tion nor adjustment steps;

– it uses certain aspects of NUCOMP to compute one adjustment step almost
for free in some cases.

We present empirical results that demonstrate the efficiency gains realized from
our new version of NUCOMP as compared with the previous best balanced
divisor class group arithmetic based on Cantor’s algorithm and the arithmetic
implemented in Magma, showing that NUCOMP is the method of choice for all
but the smallest genera. With our improvements, NUCOMP is more efficient
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than Cantor’s algorithm for genus as low as 5, compared to 7 using the version
in [8], both of which are within the possible range of applications related to
numerical investigations of number-theoretic conjectures. Our implementation
is faster than Magma’s built-in arithmetic for g ≥ 7, and the gap increases with
the genus; we assume that a more fair comparison using, for example, optimized
C implementations would further narrow this gap in performance.

The rest of the paper is organized as follows. In Sect. 2 we provide back-
ground information on split model hyperelliptic curves. Balanced divisor arith-
metic using Cantor’s algorithm is presented in Sect. 3. In Sect. 4 we present our
version of NUCOMP for the balanced divisor setting, as well as details of our
improvements. In Sect. 5 we present empirical results comparing our version of
NUCOMP to Cantor’s algorithm and Magma’s built-in arithmetic. Finally, we
give some conclusions and directions for future work in Sect. 6.

2 Background

In this section we recall the essential relevant notions related to divisor classes
of hyperelliptic curves and their arithmetic. For more details and background,
the reader is referred to [10, § 12.4] for Sect. 2.1 and [3, Chapter 7] for Sect. 2.2.

2.1 Split Model Hyperelliptic Curves

As described in [10, Definition 12.4.1], a hyperelliptic curve C of genus g defined
over a finite field k is given by a hyperelliptic equation

y2 + h(x)y = f(x), with h, f ∈ k[x],

that is absolutely irreducible and non-singular. A split model for a hyperelliptic
curve C of genus g over k is given by a hyperelliptic equation satisfying deg(f) =
2g + 2 and deg(h) ≤ g + 1. In addition, the leading coefficient of f is a square
except over fields of characteristic 2 where it is of the form s2+s for some s ∈ k∗.

Let C(k) be the set of k-rational points of C. The hyperelliptic involution of
C is the map ι : C(k) → C(k) that sends a finite point P = (x, y) on C to the
point P = ι(P ) = (x,−y − h(x)) on C. A point P on C is ramified if ι(P ) = P ,
and unramified otherwise.

The model used to represent a hyperelliptic curve determines the number
and type of points at infinity. A split model representation has two unramified
k-rational points at infinity denoted ∞+ and ∞−, where ι(∞+) = ∞−. Rami-
fied models have a single ramified k-rational point at infinity, and inert models
have none. It is sometimes possible to change the model of a curve C without
modifying the field of definition k by translating other points to infinity. If C has
a ramified k-rational point, one can obtain a ramified model for C by translating
this point to infinity, by [10, Theorem 12.4.12]. If C does not have a ramified
k-rational point, but has an unramified k-rational point, then similarly, that
point can be translated to infinity, providing two points at infinity ∞+, ∞−
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and thus C can be represented with a split model. If no k-rational points exist,
including at infinity, then the hyperelliptic curve C can only be represented by an
inert model; no alternative ramified or split models are possible over k. However,
hyperelliptic curves that have neither a ramified nor an unramified k-rational
point are rare and only exist over fields whose cardinality is small relative to the
genus. If k is a finite field of cardinality q, the Weil bound #C(k) ≥ q+1−2g

√
q

guarantees that a genus g hyperelliptic curve C over k has a k-rational point
whenever q > 4g2, and an unramified k-rational point when q > 4g2 + 2g + g.

Split models therefore are more general than ramified, as ramified models are
only obtainable when the curve has a ramified point. Inert models of curves can
easily be avoided in practice by translating to a split or ramified model when q
is sufficiently large to guarantee a k-rational point, or by considering the curve
as a split model over a quadratic extension of k otherwise. Thus, in this work
we only consider improvements for hyperelliptic curves given by a split model,
with performance comparisons to ramified models given in Sect. 5.

2.2 Divisor Class Groups of Split Model Hyperelliptic Curves

A divisor on a hyperelliptic curve C defined over k is a formal sum D =
∑

nP P
of points P ∈ C(k) with only finitely many nP �= 0. The support of D, denoted
supp(D), is the set of points P ∈ C(k) occurring in D with nP �= 0. The degree of
D is deg(D) =

∑
np. A divisor D is said to be defined over k if σD =

∑
nP σP =

D for all σ ∈ Gal(k/k). The set of all degree zero divisors on C defined over
k, denoted Div0

k(C), is an Abelian group under component-wise addition. A
divisor is principal if it is of the form div(α) =

∑
P ordP (α)P for some function

α ∈ k(C)∗ where k(C) = k(x, y) is the function field of C. Principal divisors
have degree zero and the set of all principal divisors Prin0

k(C) = {div(α) | α ∈
k(C)∗} is a subgroup of Div0

k(C). The divisor class group of C defined over
k is the quotient group Pic0k(C) = Div0

k(C)/Prin0
k(C). The principal divisor

corresponding to ∞+ − ∞− (resp. ∞− − ∞+) is denoted D∞+ (resp. D∞−).
A divisor D =

∑
P nP P is affine if nP∞ = 0 for all k-rational points at infinity

P∞ on C. The divisor D is effective if nP ≥ 0 for all points P . An effective divisor
can be written as

∑
Pi, where the Pi need not be distinct. An affine effective

divisor D =
∑

Pi is semi-reduced if for any Pi ∈ supp(D), ι(Pi) �∈ supp(D),
unless Pi = ι(Pi). A semi-reduced divisor D is reduced if deg(D) ≤ g.

A semi-reduced divisor D has a compact Mumford representation D = (u, v)
such that u, v ∈ k[x], deg(v) < deg(u), u is monic, and u | (v2 + vh − f).
Explicitly, u is defined as the polynomial whose roots are the x-coordinates of
every affine point in the support of D =

∑
nP P accounting for multiplicity,

i.e. u =
∏

i(x − xi)nPi for all Pi = (xi, yi) ∈ supp(D). The polynomial v is
the interpolating polynomial that passes through the points Pi. The Mumford
representation of D is said to be reduced if deg(u) ≤ g. The degree of a semi-
reduced divisor D = (u, v) in Mumford representation is given by deg(D) =
deg(u).

Every rational divisor class in Pic0k(C) can be represented by a degree zero
divisor [D] that has a semi-reduced affine portion, but this representation is
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not necessarily unique. As described in [4], let D∞ be an effective divisor of
degree g supported on k-rational points at infinity. Over split model curves,
let D∞ = 	g/2
∞+ + �g/2�∞−. Then, every divisor class [D] over genus g
hyperelliptic curves described with a split model can be uniquely written as
[D0 − D∞] where D0 = Da + Di is a k-rational divisor of degree g with the
affine portion Da reduced, and Di is a specially-chosen divisor supported on
the infinite points, for example as described in the next section. Note that as is
standard practice, we refer to the degree of such a divisor class representative
as the degree of the affine part Da, although this is a slight abuse of notation as
the divisor D technically has degree zero.

3 Balanced Divisor Arithmetic Using Cantor’s Algorithm

Over split model curves, divisor classes in Pic0k(C) do not have a unique, reduced
Mumford representation. The Mumford representation only utilizes information
about the affine portion Da of D0 = Da + Di for D = D0 − D∞; uniqueness
is lost because the same affine portion of D0 could be combined with different
multiples of ∞+ and ∞− in Di to represent different divisor classes. Galbraith
et al. [4] defined a reduced balanced divisor representation for split model curves
which appends to the polynomials u, v a balancing coefficient n, the number of
copies of ∞+ in D0, hence [D] = [u, v, n]. In order for this representation to be
unique and reduced, n is kept small, in the range [0, g − deg(u)] and deg u ≤ g.
A divisor class [D] = [u, v, n] therefore corresponds to

[u, v, n] = [u, v] + n∞+ + (g − deg(u) − n)∞− − D∞.

In this notation, for example,

[1, 0, 	g/2
] = [1, 0] + 	g/2
∞+ + �g/2�∞− − D∞

is the unique representative of the neutral divisor class in Pic0k(C).
Addition of divisor classes represented as reduced balanced divisors, as

described in [4], is done via a two-step process. First, the affine parts of the
divisors are added and reduced using Cantor’s algorithm, while computing the
new balancing coefficient n of the result. At this point it is possible that the
resulting divisor class is neither reduced nor balanced, so a series of adjustment
steps is applied, up-adjustments if n needs to be increased and down-adjustments
if it needs to decrease, until the n value satisfies 0 ≤ n ≤ g − deg u and is thus
balanced. The main advantage of using balanced divisor representatives is that
in the generic case, where both divisors have degree g and n = 0, the number of
adjustment steps required is zero for even genus and one for odd genus.1

The two algorithms that we present in the following sections for addition and
reduction (Algorithm 1) and for adjustment (Algorithm 2) follow this strategy

1 The required adjustment step over odd genus reduces the degree of the intermediate
divisor, similar to a reduction step.
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with a variety of practical improvements. We adopt an alternative normalization
of the v polynomial from the Mumford representation, as well as well-known
algorithmic improvements to Cantor’s algorithm described, for example, in [5], as
described next. In all algorithms presented, let lc(a) denote the leading coefficient
of polynomial a and monic(a) = a/lc(a), i.e. the polynomial a made monic.

3.1 Extended Mumford Representation and Tenner’s Algorithm

One standard optimization for arithmetic with ideals of quadratic number fields
is to represent the ideal as a binary quadratic form, a representation that includes
a third redundant coefficient that is useful computationally. In the context of
divisor arithmetic, this means adding the polynomial w = (f −v(v+h))/u to the
Mumford representation, so that balanced divisor classes in our implementation
have four coordinates, [u, v, w, n].

This polynomial must be computed in every application of Cantor’s algorithm
as well as in reduction steps and adjustment steps. Having it available as part
of the divisor representation results in some savings in the divisor addition part,
and allows for the use of Tenner’s algorithm for reduction and adjustment steps, a
standard optimization for computing continued fraction expansions of quadratic
irrationalities (see, for example, [7, §3.4]).

3.2 Divisor Representation Using Reduced Bases

The standard Mumford representation of a divisor [u, v] has v reduced modulo u,
but any other polynomial congruent to v modulo u can also be used. In split
model curves, an alternate representation called the reduced basis turns out to
be computationally superior in practice. Reduced bases are defined in terms
of the unique polynomial V +, the principal (polynomial) part of the root y of
y(y + h(x)) − f(x) = 0 for which deg(f − V +(V + + h)) ≤ g, or the other root
V − = −V + − h. Note that such V + and V − only exist for split models.

We say that a representation of the affine divisor [u, v] given by [u, ṽ] is
in reduced basis or positive reduced basis if ṽ = V + − [(V + − v) (mod u)]
and in negative reduced basis if ṽ = V − − [(V − − v)) (mod u)]. To con-
vert a divisor [u, v, w, n] into negative reduced basis [u, v′, w′, n], first compute
(q, r) = DivRem(V − − v, u), where we define DivRem(a, b) as q, r, the quotient
and remainder, respectively, obtained when dividing a by b, i.e. a = qb + r. For
uniqueness, we take the remainder r satisfying deg(r) < deg(b). Then v̂ = V −−r,
w′ = w − q(v + h + v̂), and let v′ = v̂. To convert back to positive reduced basis,
first compute q �= 0, r such that v′ = qu + r, then w = w′ − q(v′ + h + r),
and let v = r.

In both types of reduced basis, cancellations cause the degree of f − ṽ(ṽ +h)
to be two less than that obtained using v mod u instead of ṽ, resulting in more
efficient divisor addition. Although divisor class composition and reduction are
not affected by this representation, a negative reduced basis is computed in an
up adjustment, and positive in a down adjustment. By working with divisors
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that are already in a reduced basis, we avoid having to change basis when the
corresponding type of adjustments are required.

In our implementation, we use the negative reduced basis to represent our
balanced divisors. For even genus curves, no adjustments are required for typical-
case inputs, so either type of reduced basis will do. However, for odd genus one
up adjustment is always required for typical inputs. Having divisors always rep-
resented via a negative reduced basis ensures that base changes are not required
before computing this adjustment step.

3.3 Balanced Add

Balanced Add, described in Algorithm 1, for adding divisor classes over split
model curves, closely follows an optimized version of Cantor’s algorithm (Algo-
rithm 1 of [5]), with the addition of keeping v in negative reduced basis, keeping
track of the balancing coefficient n, and applying adjustment steps at the end as
described in [4]. The algorithm is optimized for the frequently-occurring situation
where gcd(u1, u2) = 1, based on a description due to Shanks of Gauss’s compo-
sition formulas for binary quadratic forms. A more efficient doubling algorithm
can be obtained by specializing to the case that D2 = D1 and simplifying.

Balanced Add, and indeed all the divisor class addition algorithms presented
here, require applications of the extended Euclidean algorithm for polynomials.
Throughout, we use the notation (d, s, t) = XGCD(a, b) to denote the output of
this algorithm, specifically d = gcd(a, b) = as + bt with s, t normalized so that
deg(s) < deg(b) − deg(d) and deg(t) < deg(a) − deg(d).

In the balanced setting, addition and reduction are similar to that over rami-
fied curves, the only difference being the threshold for applying a reduction step
is deg(u) > g + 1 instead of deg(u) > g; adjustment steps are applied when
deg(u) = g + 1. Reduction steps decrease the degree of the affine portion of the
divisor class by at least two, so at most �g/2� steps are required to reduce the
output of the composition portion to a linearly equivalent divisor whose affine
part has degree at most g + 1.

3.4 Balanced Adjust

Balanced Adjust, described in Algorithm 2, is called after partially reducing a
divisor D = [u, v, w, n], for a final reduction from degree g+1 if necessary, and for
balancing if n is outside the required range 0 ≤ n ≤ g−deg(u). Balanced Adjust
can be viewed as a composition of the affine portion with D∞+ , when n is above
the threshold (down adjustments) or D∞− when n is below (up adjustments).
This can be thought of as transferring a symbolic copy of the point ∞+ (for
down) or ∞− = −∞+ (for up) into the affine portion, keeping the divisor class
the same. The number of adjustment steps required is at most 	g/2
.

4 Balanced NUCOMP

Cantor’s algorithm [1] is closely related to Gauss’ composition and reduction of
binary quadratic forms. In 1988, Shanks [11] described an alternative to Gauss’
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Algorithm 1. Balanced Add
Input: [u1, v1, w1, n1], [u2, v2, w2, n2], f, h, V

−.
Output: [u, v, w, n] = [u1, v1, w1, n1] + [u2, v2, w2, n2].

1: t1 = v1 + h.
2: Compute (S, a1, b1) = XGCD(u1, u2).
3: K = a1(v2 − v1) (mod u2).
4: if S �= 1 then
5: Compute (S′, a2, b2) = XGCD(S, v2 + t1).
6: K = a2K + b2w1.
7: if S′ �= 1 then
8: u1 = u1/S

′, u2 = u2/S
′, w1 = w1S

′.

9: K = K (mod u2).
10: S = S′.
11: T = u1K, u = u1u2, v = v1 + T .
12: w = (w1 − K(t1 + v))/u2.
13: n = n1 + n2 + deg(S) − �g/2�.
14: if deg(u) ≤ g then
15: if deg(v) ≥ deg(u) then
16: (q, r) = DivRem(V − − v, u).
17: tv = V − − r, w = w − q(v + h + tv), v = tv.

18: else
19: while deg(u) > g + 1 do
20: if deg(v) = g + 1 and lc(v) = lc(−V − − h) then
21: n = n + deg(u) − g − 1.
22: else if deg(v) = g + 1 and lc(v) = lc(V −) then
23: n = n + g + 1 − deg(w).
24: else n + (deg(u) − deg(w))/2.

25: uo = u, u = w.
26: (q, r) = DivRem(V − + v + h, u).
27: vt := V − − r, w = uo − q(vt − v), v = vt.

28: w = lc(u)w, u = monic(u).

29: return Balanced Adjust([u, v, w, n], f, h, V −).

method called NUCOMP. Instead of composing and then reducing, which results
in a non-reduced intermediate quadratic form with comparatively large coeffi-
cients, the idea of NUCOMP is to start the composition process and to apply
an intermediate reduction of the operands using a simple continued fraction
expansion before completing the composition. The result is that the intermedi-
ate operands are smaller, and at the end the resulting quadratic form is in most
cases reduced without having to apply any additional reduction steps. Jacobson
and van der Poorten [6] showed how to apply the ideas of NUCOMP to divi-
sor class group arithmetic, obtaining analogous reductions in the degrees of the
intermediate polynomial operands.

Applied to our setting, the main idea is that the element (v + y)/u ∈ k(C)
is approximated by the rational function u2/K with u2,K from Algorithm 1.
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Algorithm 2. Balanced Adjust
Input: [ua, va, wa, na], f, h, V

+, where deg(ua) ≤ g + 1.
Output: [u, v, w, n] = [ua, va, wa, na], where deg(u) ≤ g and 0 ≤ n ≤ deg(u) − g.
1: u = ua, v = va, w = wa, n = na,
2: if n < 0 then
3: while n < 0 do
4: uo = u, u = w.
5: (q, r) = DivRem(V − + v + h, u).
6: vt := V − − r, w = uo − q(vt − v), v = vt.
7: n = n + g + 1 − deg(u).

8: w = lc(u)w, u = monic(u).
9: else if n > g − deg(u) then

10: t = −V − − h.
11: (q, r) = DivRem(t − v, u).
12: vt = t − r, w = w − q(v + h + vt), v = vt.
13: while n > g − deg(u) + 1 do
14: n = n + deg(u) − g − 1, uo = u, u = w.
15: (q, r) = DivRem(t + v + h, u).
16: vt := t − r, w = uo − q(vt − v), v = vt.

17: if n > g − deg(u) then
18: n = n + deg(u) − g − 1, uo = u, u = w.
19: (q, r) = DivRem(V − + v + h, u).
20: vt := V − − r, w = uo − q(vt − v), v = vt.
21: else
22: t = V − − V +, (q, r) = DivRem(t, u).
23: vt = v + t − r, w = w − q(v + vt), v = vt.

24: w = lc(u)w, u = monic(u).

25: return [u, v, w, n].

Cantor’s Algorithm first computes the non-reduced divisor, and subsequently
applies a reduction algorithm that can be expressed in terms of expanding the con-
tinued fraction of the quadratic irrationality (v + y)/u. The first several partial
quotients of the simple continued fraction expansion of the rational approximation
u2/K are the same as that of (v+y)/u, and these can be computed without having
to first compute the non-reduced divisor (u, v). Given those partial quotients, the
final reduced divisor can be computed via expressions involving them and other
low-degree operands, again without having to first compute the non-reduced divi-
sor (u, v). For more details on the theory behind NUCOMP, see [8].

The most recent work on NUCOMP [5] provides further optimizations and
empirical results demonstrating that it outperforms Cantor’s algorithm for
hyperelliptic curves of genus as small as 7, and that the relative performance
improves as the genus increases. An enhanced version of NUCOMP for adding
and reducing divisors without balancing, that works for curves defined over
arbitrary fields and incorporates all the optimizations described in the previ-
ous section, is presented in Algorithm 3.
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Algorithm 3. NUCOMP
Input: [u1, v1, w1], [u2, v2, w2], f , h.
Output: [u, v, w] with [u, v, w] = [u1, v1, w1] + [u2, v2, w2].

1: if deg(u1) < deg(u2) then
2: [ut, vt, wt] = [u2, v2, w2], [u2, v2, w2] = [u1, v1, w1].
3: [u1, v1, w1] = [ut, vt, wt].

4: t1 = v1 + h, t2 = v2 − v1.
5: Compute (S, a1, b1) = XGCD(u1, u2).
6: K = a1t2 (mod u2).
7: if S �= 1 then
8: Compute (S′, a2, b2) = XGCD(S, v2 + t1).
9: if S′ �= 1 then

10: u1 = u1/S
′, u2 = u2/S

′. (exact divisions)
11: w1 = w1S

′.
12: K = K (mod u2).
13: S = S′.
14: if deg(u2) + deg(u1) ≤ g then
15: u = u2u1, v = v1 + u1K.
16: w = (w1 − K(t1 + v))/u2. (exact division)
17: if deg(v) ≥ deg(u) then
18: (q, r) = DivRem(v, u).
19: w = w + q(v + h + r), v = r.

20: else
21: Set r = K, r′ = u2, c

′ = 0, c = −1, l = −1.
22: while deg(r) > (deg(u2) − deg(u1) + g)/2 do
23: (q, rn) = DivRem(r′, r).
24: Set r′ = r, r = rn, cn = c′ − qc, c′ = c, c = cn, l = −l.

25: t3 = u1r.
26: M1 = (t3 + t2c)/u2. (exact division)
27: M2 = (r(v2 + t1) + w1c)/u2. (exact division)
28: u′ = l(rM1 − cM2).
29: z = (t3 + c′u′)/c. (exact division)
30: v = (z − t1) (mod u′).
31: u = monic(u′).
32: w = (f − v(v + h))/u.

33: return [u, v, w].

Although this version of NUCOMP is intended for divisor class group addi-
tion on ramified model hyperelliptic curves, it also works for adding reduced
affine divisors and producing a reduced output over split model curves. In [8],
the authors also describe how to use this to perform arithmetic in the infrastruc-
ture of a split model hyperelliptic curve, but not in the divisor class group. It
was shown that for split model curves the output of NUCOMP is always reduced
for even genus curves, but that for odd genus at least one extra reduction step
is required.
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In the following (Algorithm 4), we present an adaptation of NUCOMP,
denoted Balanced NUCOMP, for performing divisor class group arithmetic on
a split model hyperelliptic curve using balanced divisor arithmetic. A more effi-
cient doubling algorithm optimized for the case that the input divisors are equal,
denoted Balanced NUDUPL, is used for our testing in Sect. 5 and presented as
Algorithm 5 for the reader’s convenience. Our additions and improvements to
Algorithm 3 include the following:

4.1 using divisors normalized with the negative reduced basis so that in both even
and odd genus, divisor additions generically require no further reduction nor
adjustment steps after NUCOMP;

4.2 adapting NUCOMP to the balanced setting by tracking and updating the
balancing coefficient n appropriately, including determining how to update
the balancing coefficient n after the simple continued fraction steps;

4.3 using simple continued fraction steps of NUCOMP to eliminate an adjust-
ment step for certain non-generic cases where the degree of the output divisor
is small.

In the following subsections, we provide more details and justification for each
of these modifications.

4.1 Normalization with Negative Reduced Basis

Let [u1, v1, w1, n1] and [u2, v2, w2, n2] be the input for Balanced NUCOMP. For
split model curves, the simple continued fraction portion of NUCOMP can
absorb at most one adjustment step while still ensuring that the output divisor
is reduced, by setting the bound for the simple continued fraction expansion in
line 22 appropriately. If the bound is set any lower than in Algorithm 4, then
the resulting u polynomial ends up having degree greater than g, meaning that
the divisor is not reduced.

We make the choice to normalize all our divisor class representatives using
the negative reduced basis for the following reasons:

1. For odd genus, the generic case for divisor class arithmetic requires an up
adjustment. Ensuring that our divisors are normalized using negative reduced
basis allows us to perform this adjustment step via an extra step in the
NUCOMP simple continued fraction part, so that after NUCOMP the output
for the generic case is both reduced and balanced without any further steps.

2. For even genus, the generic case requires no adjustments, so either positive
reduced or negative reduced basis works equally well.

3. Non-generic cases of divisor class addition over even and odd genus require
either up adjustments, down adjustments or no adjustment. Over even genus,
out of all cases that require adjustments, exactly half are down and half are
up. Over odd genus, far more non-generic cases require an up adjustment
than down. This can be seen by analyzing the computation of the balancing
coefficient n in the composition portion of Algorithm 1. Line 12 states n =
n1 + n2 + deg(S) − 	g/2
, where the ceiling function increases the cases for
which n < 0 for odd genus curves.
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Algorithm 4. Balanced NUCOMP
Input: [u1, v1, w1, n1], [u2, v2, w2, n2], f , h, V −.
Output: [u, v, w, n] with [u, v, w, n] = [u1, v1, w1, n1] + [u2, v2, w2, n2].

1: if deg(u1) < deg(u2) then
2: [ut, vt, wt, nt] = [u2, v2, w2, n2], [u2, v2, w2, n2] = [u1, v1, w1, n1].
3: [u1, v1, w1, n1] = [ut, vt, wt, nt].

4: t1 = v1 + h, t2 = v2 − v1.
5: Compute (S, a1, b1) = XGCD(u1, u2).
6: K = a1t2 (mod u2).
7: if S �= 1 then
8: Compute (S′, a2, b2) = XGCD(S, v2 + t1).
9: K = a2K + b2w1.

10: if S′ �= 1 then
11: u1 = u1/S

′, u2 = u2/S
′. (exact divisions)

12: w1 = w1S
′.

13: K = K (mod u2).
14: S = S′.
15: D = deg(u2) + deg(u1).
16: n = n1 + n2 + deg(S) − �g/2�.
17: if D ≤ g and ((n ≥ 0 and n ≤ g − D) or deg(w1) − deg(u2) > g)) then
18: T = u1K, u = u2u1, v = v1 + T .
19: w = (w1 − K(t1 + v))/u2. (exact division)
20: if deg(v) ≥ deg(u) then
21: (q, r) = DivRem(V − − v, u).
22: tv = V − − r, w = w − q(v + h + tv), v = tv.

23: else
24: Set r = K, r′ = u2, c

′ = 0, c = −1, l = −1.
25: while deg(r) ≥ (deg(u2) − deg(u1) + g + 1)/2 do
26: (q, rn) = DivRem(r′, r).
27: Set r′ = r, r = rn, cn = c′ − qc, c = cn, c′ = c, l = −l.

28: t3 = u1r.
29: M1 = (t3 + ct2)/u2, M2 = (r(v2 + t1) + w1c)/u2. (exact divisions)
30: u = l(rM1 − cM2).
31: z = (t3 + c′u)/c. (exact division)
32: v = V − − [(t1 − z + V −) (mod u)].
33: u = monic(u).
34: w = (f − v(v + h))/u. (exact division)
35: if deg(z) < g + 1 then
36: n = n + deg(u2) − deg(r′) + g + 1 − deg(u).
37: else
38: n = n + deg(u2) + deg(r).

39: return Balanced Adjust([u, v, w, n], f, h, V −).

Note that it is possible to identify some non-generic cases that require a down
adjustment directly from the input divisors. One could then consider using this
information to change the basis to positive reduced at the beginning of the
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Algorithm 5. Balanced NUDUPL
Input: [u1, v1, w1, n1], f , h, V −.
Output: [u, v, w, n] with [u, v, w, n] = 2[u1, v1, w1, n1].

1: t1 = v1 + h, t2 = t1 + v1.
2: Compute (S, a1, b1) = XGCD(u1, t2).
3: K = b1w1.
4: if S �= 1 then
5: u1 = u1/S. (exact division)
6: w1 = w1S.

7: K = K (mod u1).
8: D = 2deg(u1).
9: n = 2n1 + deg(S) − �g/2�.

10: if D ≤ g and ((n ≥ 0 and n ≤ g − D) or deg(w1) − deg(u1) > g)) then
11: T = u1K, u = u2

1, v = v1 + T .
12: w = (w1 − K(t2 + T ))/u1. (exact division)
13: if deg(v) ≥ deg(u) then
14: (q, r) = DivRem(V − − v, u).
15: tv = V − − r, w = w − q(v + h + tv), v = tv.

16: else
17: Set r = K, r′ = u1, c

′ = 0, c = −1, l = −1.
18: while deg(r) ≥ (g + 1)/2 do
19: (q, rn) = DivRem(r′, r).
20: Set r′ = r, r = rn, cn = c′ − qc, c = cn, c′ = c, l = −l.

21: M2 = (rt2 + w1c)/u1. (exact division)
22: u = l(r2 − cM2).
23: z = (u1r + c′u)/c. (exact division)
24: v = V − − [(V − − z + t1) (mod u)].
25: u = monic(u).
26: w = (f − v(v + h))/u. (exact division)
27: if deg(z) < g + 1 then
28: n = n + deg(u1) − deg(r′) + g + 1 − deg(u).
29: else
30: n = n + deg(u1) + deg(r).

31: return Balanced Adjust([u, v, w, n], f, h, V −).

algorithm, so that the adjustment saved via NUCOMP’s simple continued frac-
tion steps is a down adjustment. However, applying the change of basis requires
roughly the same amount of computation as one adjustment step in the right
direction relative to the basis. We found that in practice any savings obtained
were negligible, as adjustments in the wrong direction rarely occur, so we chose
not to include this functionality in our algorithm.

4.2 Adapting NUCOMP to the Balanced Setting

Most of the logic for updating the balancing coefficient n is the same as in
Cantor’s algorithm as presented above (Algorithm 1). The main difference is
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that NUCOMP does not require reduction steps, as the output is already reduced
due to the simple continued fraction reduction of coefficients in lines 24–26 of
Balanced NUCOMP. However, it is necessary to determine how these NUCOMP
reduction steps affect the resulting balancing coefficient n.

The computation of the simple continued fraction expansion in NUCOMP
implicitly keeps track of a principal divisor Dδ, such that for input divi-
sors D1, D2 and the reduced output divisor D3, D1 + D2 = D3 + Dδ, and
knowledge of Dδ gives us the information needed to update n. Some of this is
described in the version of NUCOMP from [8], but this version does not account
for special cases of the last reduction step (where the leading coefficient of input
v is the same as the leading coefficient of V + or V −) nor the use of negative
reduced basis. In our analysis we account for both, aligning with the special
cases from the reduction portion of Balanced Addition (Algorithm 1) and from
Balanced Adjust (Algorithm 2).

The last continued fraction step may either be a normal reduction step, a
special reduction step or an adjustment step. Special reductions steps can be
viewed as reductions that encounter cancellation with either ∞+ or ∞−. The
cancellation effectively mimics a composition with ∞+ or ∞−, thus requiring
the same accounting of the balancing coefficient n as an adjustment step. If the
last step is an adjustment step, Balanced NUCOMP attempts a reduction, but a
reduced basis effectively already applies composition at infinity, so the attempted
reduction completes the adjustment. In both cases, the choice of either positive
or negative reduced basis solely dictates the direction of the adjustment. We
refer to the last simple continued fraction step as special if either an adjustment
or special reduction step is computed; otherwise we refer to it as normal.

There are four possible cases for the computation of n dictated by the choice
of positive or negative reduced basis and either normal or special last steps. Note
that we do not include cases that arise with positive reduced basis in Algorithm 4,
due to our choice of working exclusively with negative reduced basis, but we do
describe the computation of n for this case below, too, as we implement and
compare both versions in the next Section.

First we describe how to test for special last steps, then how the n value is
computed depending on the type of basis used and whether the last step is special
or normal. The last step is special exactly when deg(z) < g + 1 as in line 34 of
the Balanced NUCOMP algorithm, where z is given in line 30. To see this, we
first recall that, as described in [8], each continued fraction step of NUCOMP
corresponds to a divisor equivalent to the sum of the input divisors D1 and D2.
Let [u′, v′] denote the Mumford representation of the divisor corresponding to
the second-last continued fraction step. The last continued fraction step is a
special step whenever deg(v′) = g + 1 and the leading coefficient of v′ is the
same as that of V − (or V + if positive reduced basis is being using), because in
that case cancellations in the leading coefficients of V − − v′ (or V + − v′) in the
computation of v cause the degree of u to be less than g, implying that the last
step is special.
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Comparing the computation of v in line 31 of balanced NUCOMP with the
computation of v in the reduction step of Balanced Addition (Algorithm 1), and
also in any case of Balanced Adjust (Algorithm 2), we see that v′ = v1−z. Thus,
the conditions for the last continued fraction step being special are satisfied when
deg(z) < g + 1, because this implies that the degree and leading coefficients of
v′ and v1 are the same. Note that deg(v1) = g + 1 and the leading coefficient
of v1 is the same as that of V + (or V −) because the input divisor [u1, v1] is
given in negative (or positive) reduced basis. As stated earlier, the simple con-
tinued fraction steps of Algorithm 4 (lines 24–26) can only incorporate up to
one adjustment step in addition to all the required reduction steps. Thus, a final
call to Algorithm 2 is required in order to ensure that the output divisor is both
reduced and balanced.

4.3 Eliminating an Adjustment for Some Non-generic Cases

The non-balanced version of NUCOMP presented at the beginning of this section
(Algorithm 3, lines 14–19) makes use of the observation that if D = deg(u1/S)+
deg(u2/S) ≤ g, then completing the composition using Cantor’s algorithm will
produce a divisor that is reduced without having to do any subsequent reduction
steps. In the balanced setting, the corresponding balancing coefficient is n =
n1 +n2 +deg(S)−	g/2
. If this divisor is not balanced, i.e. n < 0 or n > g −D,
then one may apply NUCOMP’s simple continued fraction-based reduction in
order to compute one adjustment step, saving one of the more expensive standard
adjustment steps. However, this is only beneficial if deg(w1) − deg(u2) ≤ g,
because otherwise the resulting output divisor will not be reduced due to the
fact that deg(u) depends on the degree of w1S/(u2/S) = w1/u2. Thus, we only
finish the composition with Cantor’s algorithm (lines 16–21 of Algorithm 4) if the
resulting divisor is reduced and balanced, or if it is reduced and not balanced but
performing a NUCOMP reduction step would result in an non-reduced divisor.

5 Empirical Results

In this section we provide empirical data to illustrate the relative performance
of the composition algorithms presented above over both ramified curves and
split model curves using positive and negative reduced basis representations. We
implemented all the algorithms for addition and doubling in Magma as a proof of
concept2. Therefore, the absolute timings are not of great importance. The reader
should rather focus on the relative cost between the various algorithms and mod-
els. See https://github.com/salindne/divisorArithmetic/tree/master/generic for
raw data, auxiliary graphs and Magma scripts of implementations used in this
section.

2 The experiments were performed on a workstation with an Intel Xeon 7550 processor
that has 64 cores, each of which is 64-bit and runs at 2.00 GHz.

https://github.com/salindne/divisorArithmetic/tree/master/generic
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As a preliminary benchmark, we compared addition using the versions of
Cantor’s algorithm described earlier and our version of NUCOMP over ramified
and split model curves by computing a Fibonacci-like sequence of divisors using
Di+1 = Di + Di−1, starting from two random divisors. We collected timings for
all genus ranging from 2 to 50 and prime fields of sizes 2, 4, 8, 16, 32, 64, 128,
256, 512 and 1024 bits. All timings were run over random hyperelliptic curves
with h = 0, using implementations of our algorithms that were specialized to
exclude any computations with h.

We also performed similar experiments for our doubling algorithms (Cantor’s
algorithm and NUDUPL, which is NUCOMP specialized to doubling a divisor)
over ramified and split model curves, by computing series of thousands of addi-
tions of a divisor class with itself. The data for doubling is omitted below, as the
relative performance between the various algorithms considered was the same as
for addition.

For ramified model curves, the Cantor-based algorithms we used are the
same as Algorithm 1 but with the steps dealing with the balancing coefficient n
removed and with divisors normalized via v mod u as opposed to a reduced
basis. We used Algorithm 3 for NUCOMP. For split model curves, the positive
reduced basis algorithms are based on Algorithms 1, 2 and 4, but with divisors
normalized via V +− [(V +−v) (mod u)] as opposed to a negative reduced basis.
We also include timings using Magma’s built-in arithmetic for ramified and split
model curves.

Apart from the absolute timings, we observed that the relative performances
of the various algorithms do not depend on the field size. In the next figures,
we illustrate our comparison for 32-bit fields only, as these results are also rep-
resentative of the other field sizes. From these plots, we can draw the following
conclusions:

– For split model curves, as illustrated in the first graph, negative reduced
and positive reduced basis perform about the same for even genus. As
expected, negative reduced basis is slightly better for odd genus due to
the fact that generic cases require no adjustments steps in negative reduced
basis as opposed to one adjustment step in positive reduced basis.

– The second graph shows that, for split model curves, our implementation
of balanced NUCOMP rapidly becomes faster than Cantor as g grows. It
also shows that, when using balanced NUCOMP, the difference between
the best algorithms for split and ramified model curves is negligible for all
genus. Furthermore, all of our implementations are considerably faster than
Magma’s built in arithmetic as the genus grows. The graph does not include
timings for Magma for g > 32 so that the comparisons between the other
algorithms are easier to see. We note that our best split model algorithm is
about five times faster at genus 50.
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– Not surprisingly, as shown in the last graph, for small genus (g < 5), Can-
tor’s algorithms are slightly faster than the NUCOMP algorithms. Magma’s
built-in arithmetic is also faster for g < 7. We suspect that this is due to
Magma’s implementation having access to faster internal primitives, while
our implementation has to use the generic polynomial ring setting. Even so,
our implementation of NUCOMP is the fastest option for g ≥ 7.
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6 Conclusions and Future Work

Our results indicate that Balanced NUCOMP provides an improvement for com-
puting balanced divisor class arithmetic in split model hyperelliptic curves with
a cross-over as low as genus 5. As expected, our choice of normalizing v in neg-
ative reduced basis and therefore incorporating up-adjustments into NUCOMP
performs equally well when compared to positive reduced over even genus, and
slightly better over odd. Furthermore, our algorithm performs almost as well and
sometimes better than ramified curve NUCOMP and closes the performance gap
between ramified model and split model divisor arithmetic.

Integrating our algorithms directly into Magma’s built in arithmetic might
reduce the relative performance, either lowering or elimination any cross over
points between our algorithms and Magma’s arithmetic. It would be of interest
to adapt NUCOMP for divisor arithmetic over non-hyperelliptic Ca,b curves as
this setting also plays a role in computational number theoretic applications [13].
Adapting NUCOMP for addition in the divisor class group of superelliptic curves
based on [12] may also yield favourable results. It would also be interesting to
see if explicit formulas for divisor class group arithmetic based on Balanced
NUCOMP applied to arithmetic in split model hyperelliptic curves of low genus,
can improve on current best [2,13].
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Abstract. We consider the problem of the exact linearization of scalar
nonlinear ordinary differential equations by contact transformations.
This contribution is extending the previous work by Lyakhov, Gerdt,
and Michels addressing linearizability by means of point transforma-
tions. We have restricted ourselves to quasi-linear equations solved for
the highest derivative with a rational dependence on the occurring vari-
ables. As in the case of point transformations, our algorithm is based on
simple operations on Lie algebras such as computing the derived algebra
and the dimension of the symmetry algebra. The linearization test is an
efficient algorithmic procedure while finding the linearization transfor-
mation requires the computation of at least one solution of the corre-
sponding system of the Bluman-Kumei equation.

Keywords: Contact symmetry · Differential Thomas decomposition ·
Exact linearization · Nonlinear ordinary differential equations ·
Symbolic computation

1 Introduction

Symmetry analysis as a systematic method was discovered by Sophus Lie more
than 150 years ago and then rediscovered by Ovsyannikov and his colleagues
in the 20 century. Sophus Lie himself considered groups of point and contact
transformations to integrate systems of partial differential equations. His key
idea was to obtain first infinitesimal generators of one-parameter symmetry sub-
groups and then to construct the full symmetry group. The study of symmetries
of differential equations allows one to gain insights into the structure of the prob-
lem they describe. Existence of symmetry group allows to decrease the order of
differential equation, reduce from partial to ordinary differential equations, con-
struct particular exact solutions or sometimes even general solutions.

In contrast to Lie, recently Lyakhov, Gerdt, and Michels discovered [7,8] that
such kind of properties like exact linearizations could be detected completely
algorithmically without solving the determining system. It relies strongly on
differential algebra and symbolic manipulations with differential equations. Their
work in this field was inspired by Ibragimov and Meleshko [2,18]. We want to
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exclude obtaining of explicit expressions (as they are really large and not really
meaningful) and instead of it obtain an algorithm to test the exact linearization
property.

This paper is organized as follows. In Sect. 2, we briefly describe the math-
ematical objects we deal with and the former result on linearization by point
transformation [7]. In Sect. 3, we introduce contact symmetry and prove the
main theorem of our paper. The implementation of algorithms and its applica-
tion is illustrated in Sect. 4 by several examples. Finally, we provide a conclusion
in Sect. 5.

2 Point Symmetry

We consider an arbitrary order ordinary differential equation (ODE) of the form

y(n) = f(x, y, y′, . . . , y(n−1)) , y(k) :=
dky

dxk
(1)

with a rational right-hand side which is solved with respect to the highest
derivative.

If an ODE of the form (1) admits transformation into a linear nth order
homogeneous equation

u(n)(t) +
n−1∑

k=0

ak(t)u(k)(t) = 0 , u(k) :=
dku

dtk

by means of functions1

u = φ(x, y) , t = ψ(x, y) , (2)

then we say that (1) admits exact linearization or is linearizable by point trans-
formation.

The invertibility of (2) is provided by the local differential condition

J := φxψy − φyψx �= 0 .

Our way to check the linearizability of Eq. (1) is based on Lie’s approach [4].
We study the symmetry properties of (1) under the infinitesimal transformation

x̃ = x + ε ξ(x, y) + O(ε2) , ỹ = y + ε η(x, y) + O(ε2) . (3)

The invariance condition for (1) under the transformation (3) is given by the
equality

X (y(n) − f(x, y, ..., y(n−1)))|y(n)=f(x,y,...,y(n−1)) = 0 ,

1 Please note, that we assumed analytical homeomorphisms.
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where the symmetry operator reads

X := ξ ∂x +
n∑

k=0

η(k)∂y(k) , η(k) := Dxη(k−1) − y(k)Dx ξ ,

η(0) := η, and Dx := ∂x +
∑

k≥0 y(k+1)∂y(k) is the total derivative operator with
respect to x.

This set of symmetry operators forms a basis of the Lie symmetry algebra

[Xi,Xj ] =
m∑

k=1

Ck
i,jXk , 1 ≤ i < j ≤ m. (4)

Let L denote the Lie symmetry algebra and m = dim(L). An important role for
the analysis plays the derived algebra L′ ⊂ L which by definition is a subalgebra
that consists of all commutators of pairs of elements in L.

Lie showed ([5], Ch. 12, p. 298, “Satz” 3) that the Lie point symmetry algebra
of an n-order ODE has a dimension m satisfying

n = 1, m = ∞; n = 2, m ≤ 8; n ≥ 3, m ≤ n + 4 .

Interrelations between n and m ensure the linearizability of the differential
equation (1) by point transformation. Here we present the two theorems that
describe such interrelations and form the basis of our exact linearization test.

Theorem 1. ([9], Thm. 1) A necessary and sufficient condition for the lin-
earization of (1) with n ≥ 3 via a point transformation is the existence of an
n-dimensional abelian subalgebra of (4).

The proof is based on the following lemma which is important for further dis-
cussions of contact symmetries.

Lemma 1. Let us suppose three linear independent operators Xi = fi(x, y) ∂
∂x +

gi(x, y) ∂
∂y , i = 1, 2, 3 commuting each other. Then, there exists an appropriate

point transformation which maps Xi onto X̄i = f̄i(t) ∂
∂u .

Proof. By rectification the theorem for the non-singular point, we can also find
a point transformation to map one operator (e.g. X1) to shift ∂

∂u . Then,

X̄i = ḡi(t)
∂

∂t
+ f̄i(t)

∂

∂u
, i = 2, 3 .

Since [X2,X3] = 0, direct calculations show that

ḡ2(t)f̄ ′
3(t) − ḡ3(t)f̄ ′

2(t) = 0, ḡ2(t)ḡ′
3(t) − ḡ3(t)ḡ′

2(t) = 0 .

One of two possibilities may hold: either f ′
2g

′
3 − f ′

3g
′
2 = 0 or both g2 = g3 = 0.

The first case is not possible without g2 = g3 = 0. Otherwise it contradicts the
linear independence of the operators.
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Corollary. Lemma 1 could be easily generalized to an arbitrary number of
operators more than 3.

The main result for point symmetry is based on the following theorem, which
forms a basis for the algebraic test linearization.

Theorem 2. ([7]) Eq. (1) with n ≥ 2 is linearizable by a point transformation
if and only if one of the following conditions is fulfilled:

1. n = 2, m = 8;
2. n ≥ 3, m = n + 4;
3. n ≥ 3, m ∈ {n+1, n+2} and the derived algebra of (4) is abelian of dimension

n.

This theorem shows that the verification of linearizability requires only check-
ing of dimensions and also finding the derived algebra, which is simple from a com-
putational point of view and abstract theory of finite-dimensional Lie algebra.

3 Contact Symmetry

The most general smooth invertible transformation of variables for an ODE is a
contact transformation. It is a local diffeomorphism of the jet bundle J1π into
itself defined in standard coordinates by the formulas

X = X(x, y, p) , Y = Y (x, y, p) , P = Yp/Xp .

Here, we use the standard notation y′ = p and Y ′ = P . Also, as a contact
transformation, Xp(Yx + pYy) = Yp(Xx + pXy) is required. One should be
aware that the third formula is only valid for nontrivial contact transforma-
tions (i.e. Xp �= 0). We use P = (Yx + pYy)/(Xx + pXy) instead for point
transformations. The notion of contact transformation was introduced in Lie’s
doctoral dissertation first. One-parameter group of a contact symmetry is a flow
of contact transformation2

x̄ = x̄(x, y, p, a) , ȳ = ȳ(x, y, p, a) , p̄ = p̄(x, y, p, a) .

It defines in a similar way as for point transformation the infinitesimal operator

X := ξ(x, y, p) ∂x + η(x, y, p) ∂y + η[1](x, y, p)∂p ,

which is an appropriate derivation of the one-parameter group at a = 0. But
contact transformation comes with additional constraints on the components of
the generator X :

ηp − pξp = 0, η[1] = ηx + p(ηy − ξx) − p2ηy .

2 It defines an identity transformation if a = 0.
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Definition 1. A Lie algebra of contact vector fields is reducible if there exists
a local contact transformation around a non-singular point which maps these
vector fields onto the first prolongations of point vector fields. Otherwise, it is
irreducible.

The beautiful property of contact symmetries is that except the three spe-
cific Lie algebras on plane, all other ones are reducible. Moreover, the following
theorem clarifies it.

Theorem 3. ([13], page 134; [17]) Finite-dimensional irreducible Lie algebras
of contact transformations in the complex plane (x, y), where x and y are in
general complex numbers, belong to one of the following three classes modulo
local contact transformations: L6, L7, and L10, which dimensions are 6, 7 and
10.

The direct computation of the derived algebra shows that

[L6, L6] = L6, [L7, L7] = L6, [L10, L10] = L10 .

This leads to an interesting observation. Any abelian contact Lie algebra
possesses the zero derived algebra by definition, thus it is reducible. Then, trans-
forming to basis when it is merely a prolongation of the point Lie algebra, it is
possible to apply Lemma 1 and the corollary, which immediately leads to the
following theorem.

Theorem 4. A necessary and sufficient condition for the linearizability of (1)
with n ≥ 3 via a contact transformation is the existence of an n-dimensional
abelian subalgebra in the contact symmetry algebra.

Proof. By reducibility, this subalgebra can be taken as a point Lie algebra. In
the light of Lemma 1, its n generators under new variables (t, u) imply that the
n-dimensional symmetry group acts on some solution u0(t) by rule

u(t) = u0 +
n∑

i=1

Cifi(t) ,

where Ci are group parameters. Without loss of generality, we can assume that
u0 = 0, otherwise we apply one more transformation of variables by the rule
U = u − u0, T = t. Every solution u(t) of an nth order scalar ODE is defined
completely by its initial conditions u(t0), u′(t0), . . . , u(n−1)(t0) at some point t0.
Varying Ci, it is possible to get any set of initial conditions from the list, because
it has a non-zero Wronskian determinant. Finally, if v(t) and w(t) are solutions,
then u(t) = v(t) + w(t) is also a solution. This concludes the proof.

Important results for contact symmetries of linear ODE were obtained by
Svirshchevskii and Yumaguzhin described by the two following theorems.

Theorem 5. ([19]) A linear ODE of kth order with k ≥ 4 does not possess
nontrivial (non-point) contact symmetries.
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Theorem 6. ([20]) The dimension of the contact symmetry algebra of any third
order linear ODE is equal to one of the following numbers: 4, 5, and 10. More-
over,

1. any third order linear ODE with a 10-dimensional contact symmetry algebra
is equivalent to the trivial equation y′′′ = 0 ,

2. any third order linear ODE with 5-dimensional contact symmetry algebra is
equivalent to one of the equations of the form y′′′ = Ky′ + y,K = const.

Theorem 6, together with Theorem 2 and Theorem 5, shows that except for
y′′′ = 0, all other linear cases do not posses nontrivial contact symmetries. Thus,
the dimensions are

1. n = 3 , m = 10 ,
2. n ≥ 4 , m = n + 4 ,
3. n ≥ 3 , m ∈ {n + 1, n + 2} .

The first two items characterize the case of a maximal symmetry dimension.
A remarkable point is that it implies linearizability like it was shown by Lie.

Theorem 7. ([4,5]) Let Eq. (1) be an nth order scalar ODE.

1. If n = 3, then Eq. (1) admits at most a ten-dimensional symmetry group of
contact transformations. Moreover, the symmetry group is ten-dimensional
if and only if Eq. (1) is equivalent (up to a local contact transformation) to
u(3)(t) = 0.

2. If n ≥ 4, then Eq. (1) admits at most an (n + 4)-parameter symmetry
group of contact transformations. In addition, the symmetry group is (n+4)-
dimensional if and only if Eq. (1) is equivalent (up to a local contact trans-
formation) to u(n)(t) = 0.

According to Theorem 5 and Theorem 6, a linear equation which is not
trivializable should correspond to the third case (i.e., n ≥ 3 and m ∈ {n+1, n+
2}). Thus, its derived algebra is abelian and has the dimension n. Vice versa,
following Theorem 4, this is also a sufficient condition.

Theorem 8. Equation (1) with n ≥ 3 is linearizable by a contact transformation
if and only if one of the following conditions is fulfilled:

1. n = 3 , m = 10 or n ≥ 4 , m = n + 4 (maximal dimension) ,
2. n ≥ 3 , m = n + 1 or n + 2 and the derived algebra of contact symmetry is

abelian of dimension n.

4 Algorithm and Examples

The main result of this paper is Theorem 8, which serves as the foundation for the
algebraic test for exact linearizability by contact transformations. Once a system
of determining equations for symmetry generators is given, we can complete them
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to involution [15,16], and then by computing the differential Hilbert polynomial
find the dimension of the symmetry algebra [3]. In this regard, we prefer to use
the differential Thomas decomposition [1] which already showed its convenience
and superiority for such kind of tasks. There are a lot of packages for finding
particular solutions of determining systems based on some heuristics. It is of
great relevance in geometry and physics. Unfortunately, there is no algorithm to
solve completely any determining system of symmetries for scalar ODEs, because
the existence of this algorithm would immediately imply the ability to solve any
linear ODE.

A beautiful property of the finite-dimensional Lie symmetry algebra is that
the structure constants could be found exactly without any heuristics. We follow
here an approach proposed by Reid [14]. Any N linear independent solutions of
the determining system span an N -dimensional Lie symmetry algebra. They
could be expressed via a power series solution for the determining system in
involution. Substitution of these expressions into (4) leads to an infinite system
of linear equations for a finite number of structure constants Ck

i,j . This system is
always equivalent to some truncated version, which leads to an efficient procedure
for obtaining structure constants given by Algorithm 13.

Algorithm 1. Contact Linearization Test
Input: q, a nonlinear differential equation of form (1) .
Output: True, if q is linearizable, and False, otherwise .
1: n :=DifferentialOrder (q);
2: DS := DeterminingSystem (q);
3: IDS := InvolutiveDeterminingSystem (DS);
4: m := dim(LieSymmetryAlgebra (IDS));
5: if (n = 3 ∧ m = 10) ∨ (n > 3 ∧ m = n+ 4) then
6: return True;
7: else if n ≥ 3 ∧ (m = n+ 1 ∨ m = n+ 2) then
8: SC := StructureConstants (IDS);
9: DA := DerivedAlgebra (SC);

10: if DA is abelian and dim(DA) = n then
11: return True;
12: end if
13: end if
14: return False;

We illustrate our theory by presenting the following two examples.

Example 1. [18] We start with a classical example. Equation

y′′′ =
3y′′2

2y′

3 A modern package for calculations of determining systems is discussed in the
literature [6].
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describes the family of hyperbolas. As it was shown by Lie, it could be trans-
formed into the simplest equation y′′′ = 0 using a Legendre transformation.
Computation of the Hilbert dimension polynomial for the determining system
for contact symmetries shows that the dimension is 10, which by Theorem 8
immediately implies trivialization. Let us compute the same for the point trans-
formation. The dimension of symmetry group then is 6, which corresponds to
the case in which the linearization is not possible. Thus, it is essentially a contact
transformation.

Example 2. [18] Let us consider

− 16y′2y′′y(4) + 48y′2y′′′2 + y′y′′5x − 48y′y′′2y′′′ − y′′5y + 12y′′4 = 0 . (5)

This example also passes our linearization test with dimension m = 6. It requires
also the computation of the derived algebra which is 4-dimensional and abelian.

In order to recover the linearizing mapping, we will use an analog of the
method described in [10–12]. We will briefly discuss it here. Our analysis is
based on the Bluman-Kumei equations:

ξ(x, y, p)
∂X

∂x
+ η(x, y, p)

∂X

∂y
+ η[1](x, y, p)

∂X

∂p
= ξ̄(x, y, p) ,

ξ(x, y, p)
∂Y

∂x
+ η(x, y, p)

∂Y

∂y
+ η[1](x, y, p)

∂Y

∂p
= η̄(x, y, p) ,

ξ(x, y, p)
∂P

∂x
+ η(x, y, p)

∂P

∂y
+ η[1](x, y, p)

∂P

∂p
= η̄[1](x, y, p) ,

where ξ̄(x, y, p), η̄(x, y, p), η̄[1](x, y, p) are generators mapped by contact trans-
formation (X,Y, P ) being expressed in old coordinates. So, in Example 1, we

1. solve the system of contact symmetry of y(3) = 0 (i.e. ξ̄, η̄, η̄[1] are expressed
in polynomials of X,Y, P );

2. solve ξ, η from Bluman-Kumei equations (as a linear system);
3. substitute the solution from the previous step into the system of ξ, η (i.e., the

determining system of contact symmetry algebra of y′′′ = 3y′′2

2y′ ).

Completion to involution forms giant nonlinear determining system4. It has one
particular solution X =

√
p, Y = xp − y which coincides with [18].

Example 2 corresponds to the constant coefficient case, and requires different
consideration. Since every linear constant coefficient ODE admits only trivial
contact symmetries (point symmetries), by Lemma 1, all elements in derived
algebra (DA) have the form f(X) ∂

∂Y + f ′(X) ∂
∂P (being expressed in new coor-

dinates), thus we

1. set ξ̄ = 0, η̄x

Xx
= η̄y

Xy
= η̄p

Xp
;

2. reduce the equations in step 1 with the system of DA;
4 We will not write it down for brevity.
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3. vanish all the coefficients of parametric derivatives in step 2.

Completion to involution gives the system of differential equations and in
equations

{Xx = 0,Xy = 0, Yxx = 0, Yxy = 0, Yx + pYy = 0}, {Xp �= 0, Yp �= 0, Yx �= 0}

which forms basis of linearizing mappings of (5).

5 Conclusion

We constructed a new algebraic linearization test for scalar ordinary differen-
tial equations by contact transformation. It indicates that this approach could be
applied to large classes of differential equations including systems of ordinary and
partial differential equations. Of course, in the case of partial differential equa-
tions the main problem is the infinite-dimensionality of their symmetry algebras.
Thus, devising a general scheme for the detection of infinite-dimensional abelian
symmetry subalgebras is still a challenge.
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Abstract. Root-finding for a univariate polynomial is four millennia old
and still highly important for Computer Algebra and various other fields.
Subdivision root-finders for a complex univariate polynomial are known
to be highly efficient and practically promising. The recent one by Becker
et al. [2] competes for user’s choice and is nearly optimal for dense poly-
nomials represented in monomial basis, but [18] proposes and analyzes
further significant acceleration, which becomes dramatic for polynomi-
als admitting their fast evaluation (e.g., sparse ones). Here and in the
companion paper [19], we present some of these results and algorithms.

Keywords: Polynomial roots · Subdivision · Sparse polynomials ·
Real polynomial root-finding

1 Introduction

1.1 State of the Art

Root-finding for univariate polynomials has been the central subject of Mathe-
matics and Computational Mathematics for four millennia since Sumerian times
and until the middle of 19th century A.D and began its new life with the advent
of computers. Presently this subject is highly important for Computer Algebra
and many other computational areas. Since 2000, the root-finder of user’s choice
has been the package MPSolve (Multiprecision Polynomial Solver) [3,5], which
implements Ehrlich’s, aka Aberth’s iterations, but recent progress in subdivi-
sion iterations has made them potentially competitive. Due to [23], advanced in
[2,8,14,21], and known in Computational Geometry as Quad-tree Construction,
c© Springer Nature Switzerland AG 2020
F. Boulier et al. (Eds.): CASC 2020, LNCS 12291, pp. 431–446, 2020.
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they extend bisection of a line segment to root-finding in the complex plane.
Their advanced version of 2016–2018 by Becker et al. [2] is the second known
nearly optimal root-finder1 for a polynomial represented in monomial basis – by
its coefficients:

p = p(x) =
d∑

i=0

pix
i = pd

d∏

j=1

(x − xj), pd �= 0. (1)

The implementation in [11] has slightly outperformed MPSolve for root-finding
in a region containing a small number of roots,2 while the implementation in [12]
is user’s current choice for the highly important task of real polynomial root-
finding, where the input and output are real.

The main and bottleneck block of the known subdivision iterations, including
those of [2,14,21], is the application of an exclusion test, which either certifies
or does not certify that a fixed disc on the complex plane contains no roots
of an input polynomial p. This test is a special case of root-counting in the
disc, which is another basic block of subdivision algorithms. According to [2] its
main algorithmic novelty versus its predecessors is its root-counting by means of
pairwise comparison of the absolute values of the coefficients of p(x) and invoking
Pellet’s classical theorem.

1.2 Our Progress

A new significant acceleration in [18] relies on another novel approach to root-
counting and exclusion tests. Unlike the case of [2] these blocks and the whole
root-finder work for a black box input polynomial – defined by a black box for
its evaluation at a given point. This class includes polynomials represented in
Bernstein and Chebyshev bases – admitting numerically stable evaluation, as
well as sparse, Mandelbrot’s, and various other polynomials, which admit dra-
matically faster evaluation. [2] takes no advantage of this huge benefit, but [18]
fully exploits it and thus dramatically accelerates [2] for the latter input class.
In particular, Taylor’s shift of the variable and Dandelin–Lobachevsky–Gräffe’s
recursive root-squaring [9], being two well-known drawbacks of the subdivision
root-finder [2], are avoided in [18].

Work [18] also accelerates polynomial root-finding based on Ehrlich’s, New-
ton’s, and other functional iterations, as well as numerical multipoint polyno-
mial evaluation, extensively involved in polynomial root-finding but also having
independent importance. Because of the size limitation, however, we skip these
subjects, omit many details, and leave to [18] formal support for our algorithms,

1 The first such root-finder, of [16], is nearly optimal also for the task of numerical fac-
torization of a polynomial into the product of its linear factors, having independent
importance.

2 Throughout the paper we count m times a root of multiplicity m and handle it as
a cluster of m roots whose diameter is smaller than the tolerance to the output
approximation errors.
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including correctness proof and Boolean cost estimates. We occasionally esti-
mate arithmetic complexity where we can control the precision of computing.
Already an initial implementation of our algorithms in [10] demonstrates 3-fold
acceleration of the previous best implementation of subdivision root-finding,
even though we have not yet incorporated many promising directions for further
progress specified in [18]. Our present paper and its companion [19] together
cover only a fraction of the results of [18], focusing on new exclusion test and
root-counting in subdivision iterations and extension to real root-finding.

1.3 Power Sums and Cauchy Sums

We adopt rather than counter the subdivision iterations of [2,14,21] but enrich
them with performing their main two blocks by means of the approximation of
the power sums of the roots of p(x) that lie in a fixed disc on the complex plain:
(i) the sum of their 0th powers is precisely the number of the roots in the disc,
and (ii) such a disc contains no roots if and only if all the power sums vanish.
We only approximate integers (0 or the number of roots), perform computations
with a low precision, and use just order of log(d) arithmetic operations in an
exclusion test and root-counting for a degree d input polynomial.

A technical point of our departure was the study of the power sums in the
extensive advanced work on the Boolean complexity of polynomial root-finding
by Schönhage in [22, Sects. 12 and 13]. He has approximated the power sums sh

of the roots lying in the unit disc D(0, 1) = {x : |x| ≤ 1} by means of Cauchy
sums s∗

h, being discretizations of Cauchy’s contour integral:3

sh :=
∑

xj∈D(c,ρ)

xh
j =

∫

C(c,ρ)

p′(x)
p(x)

xh dx, for h = 0, 1, . . . , (2)

s∗
h :=

1
q

q−1∑

g=0

ζ(h+1)g p′(c + ρζg)
p(c + ρζg)

for h = 0, 1, . . . , q − 1, ζ := exp
(2πi

q

)
, (3)

where ζ denotes a primitive qth root of unity, for a fixed q > 1.

1.4 Real Root-Finding

Real root-finding is highly important because in many applications, e.g., to geo-
metric and algebraic-geometric optimization, only real roots of a polynomial are
of interest and because they are typically much less numerous than all d complex
roots. In particular, under a random coefficient model, a polynomial of degree d
is expected to have O(log(d)) real roots (cf. [6]).

Real roots of a polynomial defined numerically, with rounding errors, turn
into nearly real roots, whose approximation has rarely if at all been addressed
properly in the known algorithms, while we handle this issue by following [18].
3 Schönhage was seeking a factor of p(x) with root set made up of the roots of p(x)

lying in that disc; he only approximated the power sums sh for positive h.
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Namely [18] proposes, elaborates upon and analyzes efficient root-counting and
deflation techniques for the roots of a polynomial lying on and near a circle on
the complex plane, and in Sect. 4, we extend these techniques to the roots lying
on and near a fixed segment of the real axis by applying Zhukovsky’s function
and its inverse. Given a black box polynomial p(x), we deflate its factor f whose
root set is precisely the root set of p(x) lying on or near a fixed segment of the
real axis. Since deg(f) tends to be much smaller than d, deflation of the factor f
and its subsequent root-finding are performed at a low Boolean cost [18].

A preliminary version of this algorithm appeared in [17, Section 7], but
presently we simplify it substantially.4 We perform its stage 1 by means of eval-
uation and interpolation without involving more advanced algorithm of [4]. At
its stage 3, we use more efficient [18, Algorithm 46] instead of [18, Algorithm
45], and we simplify root-finding stage 4 by first applying our new Algorithm 4,
which decreases by twice the degree of the factor f of p and still keeps in its root
set the images of all real roots of p.

Moreover we propose an alternative extension of our study of root-counting
from the complex plain to real interval. This achieves less than deflation but at a
much lower cost, and is still a major stage of real and nearly real root-finding. Our
non-costly root-counter in and near a line segment provides more information
than the customary ones – based on the Descartes rule of signs or Budan–Fourier
theorem, involves no costly computation used in Sturm sequences and, unlike
Budan–Fourier theorem, can be applied to black box polynomials. And as we
said already, unlike the known real root-counters we output the overall number
of roots lying in and near a fixed segment of the real axis.

[18, Section 6] and the paper [20] approximate pairwise well-isolated real roots
fast by narrowing the range for their search.

1.5 Organization of the Paper

We recall some background material in the next section, cover Cauchy sum
computation, root-counting and exclusion tests in Sect. 3, and devote Sect. 4
to real polynomial root-finding. The Boolean complexity of the new algorithms
is estimated in [18] in some detail; we do not include this study because of
size limitation.

2 Background

2.1 Definitions and Auxiliary Results

– S(c, ρ), D(c, ρ), C(c, ρ), and A(c, ρ1, ρ2) denote square, disc, circle (circum-
ference), and annulus on the complex plain, respectively:

S(c, ρ) := {x : |�(c − x)| ≤ ρ, |�(c − x)| ≤ ρ},

D(c, ρ) := {x : |x − c| ≤ ρ|}, (4)

4 Otherwise [17] focuses on deflation, and only half-page [17, Section 6.3] overlaps
with us.
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C(c, ρ) := {x : |x − c| = ρ|}, A(c, ρ1, ρ2) := {x : ρ1 ≤ |x − c| ≤ ρ2|}. (5)

– An annulus A(c, ρ1, ρ2) has relative width ρ2
ρ1

.
– We freely denote polynomials p(x), t(x) =

∑
i tix

i, u(x) =
∑

i uix
i etc. by p,

t, u, etc. unless this can cause confusion.
– |u| =

∑d
i=0 |ui| denotes the norm of a polynomial u(x) =

∑d
i=0 uix

i.
– IND(R), the index of a region R of the complex plain (e.g., a square, a disc,

an annulus, or a circle), is the number of roots of p contained in it.
– A disc D(c, ρ) and circle C(c, ρ) have an isolation ratio θ or equivalently are

θ-isolated for a polynomial p, real θ ≥ 1, and complex c if no roots of p
lie in the open annulus A(c, ρ/θ, ρθ), of relative width θ2, or equivalently if
IND(D(c, ρ/θ)) =IND(D(c, ρθ)). (See Fig. 1.)
A disc and a circle are well-isolated if they are θ-isolated for θ − 1 exceeding
a positive constant.

– Define the reverse polynomial of p(x):

prev(x) := xdp
( 1

x

)
=

d∑

i=0

pix
d−i, prev(x) = p0

d∏

j=1

(
x − 1

xj

)
if p0 �= 0. (6)

Fig. 1. The internal disc D(X, r) (cf. (4)) is R/r-isolated

Equation (6) implies that the roots of prev are the reciprocals of the roots
of p, which leads to the following results:

rj(0, p)rd+1−j(0, prev) = 1 for j = 1, . . . , d. (7)
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Proposition 1. The unit disc D(0, 1) is θ-isolated for p if and only if it is
θ-isolated for prev.

The proof of the following theorem of [13] and [1, Theorem 2] is constructive.

Theorem 1. An algorithm that evaluates at x0 a black box polynomial p(x) over
a field K of constants by using A additions/subtractions, S multiplications by
elements from the field K, and M other multiplications/divisions can be extended
to evaluate both p(x0) and p′(x0) at the cost 2A + M , 2S, and 3M .

2.2 Subdivision Iterations

Suppose that we seek all roots of p in a fixed square on the complex plane
well-isolated from the external roots of p; call this square suspect. One can read-
ily compute such a square centered at the origin and containing all roots of p
(cf. [18, Section 6.2]). A subdivision iteration divides every suspect square into
four congruent sub-squares and to each of them applies an exclusion test: a sub-
square is discarded if the test proves that it contains no roots of p; otherwise the
sub-square is called suspect and is processed in the next iteration (see Fig. 2).

Fig. 2. Four roots of p are marked by asterisks; sub-squares that contain them are
suspect; the other sub-squares are discarded

There are at most kd suspect squares at every iteration for a constant k. A
root of p can make at most four squares suspect if an exclusion test enabled us to
discard every square that contains no roots of p, and then we would have k ≤ 4.
Realistically the subdivision processes have been made less expensive overall by
means of incorporation of soft exclusion tests, which keep a tested square S(c, ρ)



Faster Numerical Univariate Polynomial Root-Finding 437

suspect if a disc D(c, uρ) contains a root of p for some u exceeding
√

2. Then
the constant k grows above 4, but the cost of performing exclusion test and the
overall cost of subdivision root-finding decrease.

A subdivision iteration begins with approximation of every root of p by the
center of some suspect square with an error of at most one half of the diameter
of the square and ends with decreasing this bound by twice; the papers [2,14,21]
accelerate such a linear convergence to a root to quadratic based on Newton’s
or QIR iterations applied where one knows: (i) a component formed by suspect
squares containing a root of a polynomial p and covered with a well-isolated disc
and (ii) a number of the roots of p in that component.

3 Cauchy Root-Counting and Soft Exclusion Test

Algorithm 1. Cauchy sum computation.
Input: An integer q > 1, a disc D(c, ρ), and a black box polynomial p of degree
d satisfying the following inequalities (cf. Remark 1):

p(c + ρζg) �= 0 for g = 0, 1, . . . , q − 1. (8)

Output:5 The vector s∗ = (s∗
q−1, s

∗
0, . . . , s

∗
q−2)

T for s∗
0, . . . , s

∗
q−1 of (3).

Computations: Successively compute the values

1. p(c + ρζg) and p′(c + ρζg) for g = 0, 1, . . . , q − 1.
2. rg := p′(c+ρζg)

p(c+ρζg) for g = 0, 1, . . . , q − 1,

3. s̃h :=
∑q−1

g=0 ζ(h+1)grg for h = q − 1, 0, 1, . . . , q − 2, and
4. s∗

h = s̃h/q for h = q − 1, 0, 1, . . . , q − 2.

We evaluate the polynomials p(x) and p′(x) at the q points c + ρζg for g =
0, 1, . . . , q − 1, perform q divisions at each of stages 2 and 4, and perform DFT
on q points at stage 3.

Remark 1. We can ensure (8) with probability 1 if we randomly rotate an input
disc D(c, ρ): p(x) ← t(x) for t(x − c) = p(α · (x − c)) and a random α sampled
under the uniform probability distribution on C(0, 1). At stage 1, we can detect
if p(c + ρζg) ≈ 0 and then recursively reapply random rotation. The rotation
can be generalized to other maps [18, Remark 8].

Hereafter Algorithm 1a denotes Algorithm 1 restricted to the computation
of just the first Cauchy sum s∗

0 and its closest integer s̄0 provided that it breaks
ties by assigning s̄0 = 
s∗

0�. In transition to Algorithm 1a both stages 1 (dom-
inant) and 2 of Algorithm 1 stay unchanged, but stages 3 and 4 are simplified
and involve just 2q arithmetic operations.
5 With this order of its components the vector s∗ turns into the vector of discrete

Fourier transform (DFT) at q points (upon a reviewer request we recall its celebrated
fast solution FFT in the Appendix). Here and hereafter we assume that v denotes
a column vector, while vT denotes its transpose.
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In the special case where D(c, ρ) = D(0, 1), expressions (3) are simplified and
if a polynomial p is represented in the monomial basis, then the computation at
the bottleneck stage 1 of Algorithm 1a can be reduced to performing DFT at q
points twice [18, Sub-algorithm 7.1].

Cauchy sum s∗
h is a weighted power sum sh, with the weights 1

1−xq
j

(see

Theorem 2); as a simple Corollary 1, we obtain the bounds of [22] on |s∗
h − sh|.

Theorem 2 [18]. For the roots xj of p(x) and all h, the Cauchy sums s∗
h (3)

satisfy s∗
h =

∑d
j=1

xh
j

1−xq
j
unless xq

j = 1 for some j.

Corollary 1 [22].6 Let the disc D(0, 1) be θ-isolated and let din and dout =
d − din denote the numbers of the roots of p lying in and outside that disc,
respectively. Write η := 1/θ. Then

|s∗
h − sh| ≤ dinη

q+h + doutη
q−h

1 − ηq
for h = 0, 1, . . . , q − 1. (9)

In particular7

sh = 0 and |s∗
h| ≤ dηq+h

1 − ηq
for h = 0, 1, . . . , q − 1 if din = 0. (10)

μ := |s∗
0 − s0| ≤ d

θq − 1
, and so μ < 1/2 if q >

log(2d + 1)
log(θ)

, (11)

θ ≤
(μ + d

μ

)1/q

, and so θ ≤ (d + 1)1/q if μ = |s∗
0 − s0| ≥ 1. (12)

Corollary 2. Suppose that Algorithm 1a, applied to the unit disc D(0, 1) for
q ≥ b log2(2d + 1) and b > 0, outputs s∗

0 > 1/2 and consequently outputs a
positive integer s̄0. Then the disc D(0, θ) contains a root of p for θ = 21/b.

Proof. Suppose that the disc D(0, θ) contains no roots of p. Then the unit
disc D(0, 1) contains no roots of p as well and is θ-isolated. Apply bound (11)
for θ = 21/b and obtain |s∗

0 − s0| ≤ d
2q/b−1

and q ≥ b log2(2d + 1). Conclude that
2q/b ≥ 2d + 1 and hence |s∗

0 − s0| ≤ 1/2, while we assumed that s∗
0 > 1/2.

Remark 2. (i) By applying equations (3) to the reverse polynomial prev(x) =
xdp( 1

x ) rather than p(x) extend Corollaries 1 and 2 to the approximation of the
power sums of the roots of p(x) lying outside the unit disc D(0, 1), whose isolation

6 Unlike paper [22], this result is deduced in [18] from Theorem 2, which is also the
basis for probabilistic support of correctness of Cauchy root-counter in [18].

7 Clearly, we can only improve our approximation of the integer s0 by the Cauchy
sum s∗

0 if we drop its imaginary part �(s∗
0). The power sum s0 of the roots in a

well-isolated disc is only slightly closer to �(s∗
0) than to s∗

0 but can be dramatically
closer when some or all roots lie on the boundary circle of an input disc (see [18,
Section 3.7]).
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ratio is invariant in the transition from p to prev, by virtue of Proposition 1.
(ii) Extend Corollaries 1 and 2 and part (i) of this remark to the case of any
disc D(c, ρ) by means of shifting and scaling the variable y ← x−c

ρ and observing
that this does not change the isolation ratio of the disc (see the definition of the
isolation ratio and Proposition 1).

We obtain a root-counter s0 in a disc by means of rounding the 0th Cauchy
sum s∗

0 if τ = |s0 − s∗
0| < 0.5, e.g., if q > logθ(2d + 1) for θ > 1 by virtue of (11),

and if θ = 2, then we can choose any q ≥ 21 for d ≤ 1, 000, 000.
Seeking correct output of a Cauchy root-counter or exclusion test without

unnecessary increase of the parameter q, one can first apply Algorithm 1a for a
small integer q and then recursively double it, reusing the results of the previous
computations, until the computed values of the Cauchy sum s∗

0 stabilize near an
integer or just until they approximate an integer closely enough. [18, Section 5]
proves that such an integer is s0 with a high probability (hereafter whp) under
random root models.

This result supports root-finding computations in [18, Section 6.4], but not
in the subdivision processes of [2,14,21], where root-counting is applied only
where an input disc is well-isolated, and then Algorithm 1a yields non-costly
solution s0 by virtue of Corollary 1. For correctness of our exclusion test, we
seek stronger support because in the subdivision iterations of [2,14,21], such a
test is applied to the discs for whose isolation ratios no estimates are known.
By virtue of Corollary 2 Algorithm 1a applied to such a disc certifies that its
controlled dilation contains a root of p unless the algorithm outputs s̄0 = 0. The
following algorithm completes an exclusion test in the latter case.

Algorithm 2. Completion of a Cauchy soft exclusion test.
Input: A black box polynomial p(x) of degree d such that Algorithm 1a, applied
to the or equivalently to the disc D(0, 2) and8 the polynomial p(x), has out-
put s̄0 = 0.
Output: Certification that (i) the disc D(0, 2) contains a root of p definitely if
q > d or whp otherwise or (ii) the unit disc D(0, 1) definitely contains no roots
of p, where cases (i) and (ii) are compatible.
Initialization: Choose an integer q such that

q0 < q ≤ 2q0 for q0 ≥ max{1, log2(
d

q0αd

√
3
)} and αd =

√
d +

√
d. (13)

Computations: Apply Algorithm 1 to the unit disc D(0, 1) for the selected q.
Let

s∗ := (s∗
q−1, s

∗
0, s

∗
1, . . . , s

∗
q−2)

T (14)

denote the vector of the values s∗
h of the Cauchy sums output by the algorithm

and let |s∗| denote the Euclidean norm (
∑q−1

h=0 |s∗
h|2)1/2. If |s∗| q0 αd ≥ 1, con-

clude that the disc D(0, θ) definitely contains a root of p. Otherwise conclude
that the disc D(0, 1) contains no roots of p definitely if q > d or whp otherwise.
8 One can extend the algorithm by applying Algorithm 1a to a disc D(0, θ) for smaller

θ > 1 and modifying bound (13) accordingly.
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Correctness proof. If the disc D(0, θ) contains no roots of p, then the unit disc
D(0, 1) is θ-isolated, and we can apply bound (10) to the Cauchy sums s∗

h output
in the above application of Algorithm 1. This would imply that |s∗

h| ≤ d
(θq−1)θh ,

and then we would deduce that |s∗
h|2 ≤ d2

(θq−1)2θ2h , and so |s∗|2 ≤ d2

(θq−1)2(θ2−1) .
Under the assumed choice of θ = 2 it follows that

|s∗| ≤ d

(2q − 1)
√

3
<

d

(2q0 − 1)
√

3
for q0 < q,

and then (13) would imply that |s∗| q0 αd ≤ 1 and hence |s∗| q αd < 1. Therefore,
the disc D(0, θ) contains a root of p unless the latter bound holds, as claimed.
Correctness of the algorithm in the case where |s∗| q αd < 1 follows from [18,
Corollaries 4.2 and 4.3].

Remark 3. For the computation of Cauchy sums for q of order of d we should
evaluate p and p′ at order of d points; by applying our reduction of multi-
point polynomial evaluation (MPE) to fast multipole method (FMM) (see [18,
Appendix E]) we can do this by using order of d log2(d) arithmetic operations,
performed numerically with the precision of order log(d) bits. It outputs the vec-
tor of the first q Cauchy sums s0, . . . , sq−1 within a relative error of order log(d).
This should be sufficient in order to verify the bounds of Algorithm 2 [18, The-
orem 19 and Corollaries 4.2 and 4.3], because FMM is celebrated for being very
stable numerically, although further formal and experimental study is in order.

The algorithm runs faster as we decrease integer q, and already for q0 of order
of log(d) the disc D(0, 2) contains a root of p if |s∗| q0 αd ≥ 1, while the unit
disc D(0, 1) contains a root of p with a probability that fast converges to 1 as the
value |s∗| q0 αd decreases under a random coefficient model for the polynomial p,
by virtue of [18, Corollary 4.3].

For q ≤ d we have only probabilistic support of correctness of Algorithm 2
in the case where |s∗| q0 αd < 1, but we can try to strengthen reliability of our
exclusion tests by verifying additional necessary conditions for correctness of our
exclusion test and root-counting:

(a) the Cauchy sums s∗
h for h = 0, 1, . . . , q − 1 still nearly vanish for the polyno-

mials t(x) obtained from p(x) by means of various mappings of the variable
x that keep an input disc and the power sum s0 invariant (cf. Remark 1);

(b) an exclusion test should succeed for any disc lying in the disc D(c, ρ). In
particular, if the disc covers a suspect square, then exclusion tests should
succeed for the four discs that cover the four congruent sub-squares obtained
from sub-dividing the input square;

(c) all suspect squares of a subdivision iteration together contain precisely d
roots of p.

If these additional necessary conditions hold, it is still plausible that the
disc D(c, ρ) contains a root of p.9 We can, however, detect whether we have lost
9 A polynomial p has no roots in a closed disc D(0, 1) if and only if prev has precisely d

roots in the open disc D(0, 1); similar property holds for Cauchy sums s∗
0 (see [18]).
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any roots at the end of the subdivision process, when d−w roots are tamed, that
is, closely approximated, and when w roots remain at large; we call the latter
roots wild. If 0 < w � d, then at a low cost we can deflate the wild factor of p,
whose root set is made up of the w wild roots; then we can approximate the
roots of this factor at a low cost (see [18, Section 7]).

It is natural to call a point c a tame root of p if rd(c, p) ≤ TOL for a
fixed tolerance TOL. The algorithm of [18, Section 6.2] closely approximates
rd(c, p) at a relatively low cost, but it is even less expensive to verify whether
d |p′(c)/p(c)| ≤TOL and then to recall that rd(c, p) ≤ d |p′(c)/p(c)| (see [8, The-
orem 6.4g]), although his upper bound on rd(c, p) is extremely poor for a worst
case input such as p(x) = xd − hd for h �= 0.

Empirical support from the initial implementation and testing of our algo-
rithms in [10] has substantially superseded their formal support here and in [18].
In these tests, subdivision iterations with Cauchy exclusion tests by means
of Algorithm 1a have consistently approximated the integer s0 = 0 within
1/4 for q = 
log(4d + 1)/ log(4θ)�. For discs containing no roots and for
q = 
log(4d + 1)/ log(4θ)� + 1 Algorithm 1 has consistently approximated both
s0 and s1 within 1/4 (cf. [10, equation (22) in Corollary 12 for e = 1/4]).

4 Real Root-Finding

The algorithm of [12] specializes subdivision iterations of [2] to real univariate
polynomial root-finding and is currently the user’s choice algorithm, but we can
readily accelerate it by narrowing the search for the real roots by means of
incorporation of the techniques of [18, Section 6].

Furthermore, we can extend all our other accelerations of subdivision itera-
tions from a disc to a line segment. E.g., our simple root-counting Algorithm 5
provides more information than the customary counting based on the Descartes
rule of signs and on Budan–Fourier theorem, involves no costly computation
of the Sturm sequences, and unlike Budan–Fourier theorem can be applied to
black box polynomials. Our real root-counter amounts essentially to multipoint
evaluation. Allowing also interpolation we deflate a factor of p whose root set is
precisely the set of roots of p that lie in a fixed segment of real axis. Typically,
the degree of the factor is dramatically smaller than d, even where the line seg-
ment contains all real roots of p (cf. [6]), and so root-finding on the segment is
simplified accordingly.

Actually by saying “real roots” we mean both real and nearly real roots,
which is appropriate where an input polynomial is studied numerically with
rounding errors.

Next we extend our root-counters and deflation algorithms from the unit
disc D(0, 1) to the unit segment S[−1, 1], but this actually covers the case of
any disc and any segment: we can perform the relevant shift and scaling of
the variable implicitly because we reduce our real root-counting essentially to
multipoint evaluation and reduce real root-finder to multipoint evaluation and
interpolation.
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We first reduce root-counting and root-finding on the unit segment S[−1, 1]
to that on the unit circle C(0, 1). We assume that the segment is reasonably well
isolated from the external roots of p, and this implies that so is the unit circle
(see Remark 4). Then Algorithm 5 for root-counting is readily reduced to our
root-counting on the complex plane.

Root-counting and root-finding on an isolated circle are reduced to the same
tasks for a pair of θ-isolated discs D(0, θ−) and D(0, θ+) for a constant θ > 1;
for root-counting it is sufficient to apply Algorithm 1a (see Algorithm 5).

By scaling the variable x we reduce the root-finding task to that in the well-
isolated unit disc D(0, 1), and then apply highly efficient deflation algorithms
of [22, Section 13].

It remains to specify back and forth transition between the segment and the
circle. We apply the two-to-one Zhukovsky’s function z = J(x) and its one-to-
two inverse, for complex variables x and z. It maps the circle C(0, 1) to the
segment S[−1, 1], and vice versa:

x = J(z) :=
1
2

(
z +

1
z

)
; z = J−1(x) := x ±

√
x2 − 1. (15)

Algorithm 3. Root-finding on a line segment.
Input: A polynomial p = p(x) of (1).
Output: The number w of its roots on the unit segment S[−1, 1] and approxi-
mations to all these roots.
Computations:

1. Compute the values vh = p(�(ζh
2d)) of the polynomial p at the Chebyshev

points �(ζh
2d) = cos(πh

2d ) for h = 0, 1, . . . , 2d − 1 and ζ2d of (3).
2. Interpolate to the polynomial s(z) of degree 2d such that

s(z) = zdp(x) for x =
1
2
(z + z−1) (16)

from its values

s(ζh
2d) = (−1)hvh for h = 0, 1, . . . , 2d − 1

by means of applying Inverse DFT. [Recall that ζdh
2d = (−1)h.]

3. Approximate a factor (e.g., the monic factor) g = g(z) of p whose root set is
made up of all roots of the polynomial s(z) that lie on the unit circle C(0, 1).
[By virtue of (15) �(s(zj)) = 0 if �(s(z−1

j )) = 0, and so these roots appear
in complex conjugate pairs; if p(x) = 0 for x = 1 and/or x = −1, then 1
and/or −1 are also the roots of g(z) with double multiplicity.] At this stage,
first compute the power sums of the roots of g(z) by applying Algorithm 1 to
the discs D(0, 1/θ) and D(0, θ) provided that the circle C(0, 1) is θ2-isolated;
then recover the coefficients of g(z) from the power sums by applying [22,
Algorithm 46]. Output w = 0.5 deg(g).

4. By applying MPSolve, subdivision iterations, or another root-finder approx-
imate all 2w roots of g(z). Let z1, . . . , zw denote the first w of them in the
order of increasing their arguments from 0.
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5. Compute and output the w roots of p lying in the segment S[−1, 1] and given
by the values xj = 1

2 (zj + 1
zj

) for j = 1, . . . , w.

Correctness of this algorithm follows from (15) and (16).
Its Stage 2 is DFT. Its Stage 1 of the evaluation at Chebyshev’s points can

be performed by means of the algorithm of [7] or Discrete Cosine Transform,
which is similar to DFT (cf. [15, Section 3.11 and the notes to it in Sect. 3.12]).
In both cases, the computation is simplified if d is a power of 2; we ensure this
by replacing p with xup for the minimal non-negative integer u such that d + u
is a power of 2. Studying stage 3 observe that the polynomial g(z) has the same
roots z1, . . . , z2w on the circle C(0, 1) and in a concentric annulus defined as the
difference of two θ-isolated discs D(0, θ) and D(0, 1/θ) for some θ > 1.

All power sums sh of these roots are the differences of the power sums sh of
the roots in these two discs. At first closely approximate these pairs of power
sums by applying Algorithm 1; their differences approximate the power sums of
the roots of g(z) on the circle C(0, 1). Then approximate g(z) by applying the
algorithms of [22, Section 13].

The converse transition from the unit circle C(0, 1) to the unit segment
S[−1, 1] enables us to simplify stages 4 and 5 of Algorithm 3 by moving from g(z)
to a polynomial of degree w whose all roots lie in the segment S[−1, 1]. Then
again we achieve this by means of evaluation and interpolation.

Algorithm 4. Transition to unit segment.

1. Compute the values uh = g(ζh
2K) of the polynomial g(z) at the 2K-th roots

of unity for h = 0, 1, . . . ,K − 1 and K > w.
2. Interpolate to the polynomial f(x) of degree at most w from its values

f(�(ζh
2K)) = (−1)huh at the Chebyshev points �(ζh

2K) = cos( πh
2K ), for

h = 0, 1, . . . , K − 1. [Recall that ζKh
2K = (−1)h.]

3. Approximate the w roots of the polynomial f = f(x) by applying to it
MPSolve, subdivision iterations, or another real polynomial root-finder, e.g.,
that of [12].

We propose to perform steps 1 and 2 above by means of forward DFT and
inverse Cosine Transforms, applying them to the polynomial zvg(z), replac-
ing g(x), for the minimal non-negative integer v such that w + v is a power 2.

Remark 4. Represent complex numbers as z := u + vi. Then Zhukovsky’s map
transforms a circle C(0, ρ) for ρ �= 1 into the ellipse E(0, ρ) whose points (u, v)
satisfy the following equation,

u2

s2
+

v2

t2
= 1 for s =

1
2

(
ρ +

1
ρ

)
, t =

1
2

(
ρ − 1

ρ

)
.

Consequently it transforms the annulus A(0, 1/θ, θ) into the domain bounded by
the ellipses E(0, 1/θ) and E(0, θ), and so the circle C(0, 1) is θ-isolated if and
only if no roots of p lie in the latter domain.
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We can simplify Algorithm 3 and use only evaluations if we restrict our task
to counting the roots that lie on or near a line segment. Here is a high level
description of this algorithm where we do not specify the parameters θ and q
and assume that the input includes the polynomial s(z).

Algorithm 5. Root-counting on a line segment.
Input: A real θ > 1 and the polynomial s(z) of Eq. (16) such that the unit
circle C(0, 1) is θ2-isolated, that is, the annulus A(0, 1/θ2, θ2) contains no roots
of s(z) except possibly some roots on the unit circle C(0, 1).
Output: The number w of the roots of p in the segment S[−1, 1] or FAILURE.
Computations:

1. Compute the polynomial s−(z) = s(z/
√

θ).
2. Choose a sufficiently large q and compute Cauchy’s sums s̃∗

0,− of the roots of
s−(z) in the unit disc D(0, 1).

3. If the value s∗
0,− is sufficiently close to an integer s̃0,−, then output w :=

d − s̃0,− and stop. Otherwise output FAILURE.

By assumption, the circle C(0, 1/θ) is (θ−ε)-isolated for s(z) and any positive ε,
and so s̃0,− is the number of the roots of s(z) in the disc D(0, 1/θ) by virtue of
bound (11). Clearly the same number s̃0,− of the roots of the polynomial s(z)
of degree 2d lie inside and outside the unit disc, and so 2d − 2s̃0,− its roots lie
on the unit circle C(0, 1). Divide this bound by 2 and obtain the number of the
roots of p(x) on the unit segment [−1, 1].
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Appendix A. Discrete Fourier transform (DFT)

DFT(p) outputs the vector of the values p(ζj) =
∑d−1

i=0 piζ
ij of a polynomial

p(x) =
∑d−1

i=0 pix
i on the set {1, ζ, . . . , ζd−1}. The fast Fourier transform (FFT)

algorithm, for d = 2h recursively splits p(x):

p(x) = p0(y) + xp1(y), where y = x2,

p0(y) = p0 + p2x
2 + · · · + pd−2x

d−2, p1(y) = x(p1 + p3x
2 + · · · + pd−1x

d−2).

This reduces DFTd for p(x) to two DFTd/2 (for p0(y) and p1(y)) at a cost of d
multiplications of p1(y) by x, for x = ζi, i = 0, 1, . . . , d − 1, and of the pairwise
addition of the d output values to p0(ζ2i). Since ζi+d/2 = −ζi for even d, we
perform multiplication only d/2 times, that is, f(d) ≤ 2f(d/2)+1.5d if f(k) ops
are sufficient for DFTk. Recursively we obtain the following estimate.

Theorem 3. For d = 2h and a positive integer h, the DFTd only involves
f(d) ≤ 1.5dh = 1.5d log2 d arithmetic operations.
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Inverse DFT is the converse problem of interpolation to a polynomial p(x) from
its values at the dth roots of unity. At the cost of performing d divisions, this
task can be reduced to DFT (see, e.g., [15, Theorem 2.2.2]).
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6. Erdős, P., Turán, P.: On the distribution of roots of polynomials. Ann. Math 2(51),
105–119 (1950)

7. Gerasoulis, A.: A fast algorithm for the multiplication of generalized Hilbert matri-
ces with vectors. Math. Comput. 50(181), 179–188 (1988)

8. Henrici, P.: Applied and Computational Complex Analysis, Vol. 1: Power Series,
Integration, Conformal Mapping, Location of Zeros. Wiley, New York (1974)

9. Householder, A.S.: Dandelin, Lobachevskii, or Graeffe? Amer. Math. Mon. 66,
464–466 (1959). https://doi.org/10.2307/2310626

10. Imbach, R., Pan, V.Y.: New progress in univariate polynomial root-finding. In:
Proceedings of ACM-SIGSAM ISSAC 2020, pp. 249–256, July 20–23, 2020, Kala-
mata, Greece, ACM Press, New York (2020). ACM ISBN 978-1-4503-7100-1/20/07.
https://doi.org/10.1145/3373207.3403979

11. Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex root
clustering algorithm. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.)
ICMS 2018. LNCS, vol. 10931, pp. 235–244. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96418-8 28

12. Kobel, A., Rouillier, F., Sagralo, M.: Computing real roots of real polynomials...
and now for real! In: Proceedings of the ACM on International Symposium on
Symbolic and Algebraic Computation (ISSAC 2016), pp. 301–310. ACM Press,
New York (2016) https://doi.org/10.1145/2930889.2930937

13. Linnainmaa, S.: Taylor expansion of the accumulated rounding errors. BIT 16,
146–160 (1976)

14. Pan, V.Y.: Approximation of complex polynomial zeros: modified quadtree
(Weyl’s) construction and improved Newton’s iteration. J. Complex. 16(1), 213–
264 (2000). https://doi.org/10.1006/jcom.1999

15. Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms.
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Abstract. An effective method for computing parametric standard ba-
ses of Jacobian ideals is introduced for semi-weighted homogeneous iso-
lated hypersurface singularities. The advantage is that the proposed
method is algorithmically simple. The main ideas of the method are
the use of a negative weighted term ordering and coefficients in a field of
rational functions. The correctness of the method is proved by utilizing
algebraic local cohomology classes associated to semi-weighted homoge-
neous singularities.
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1 Introduction

An effective method is proposed for computing parametric standard bases of
Jacobian ideals of semi-weighted homogeneous isolated hypersurface singulari-
ties. There are two main advantages of the proposed method. The first advan-
tage is that the output does not depend on the values of parameters, namely,
the decomposition of the parameter space is not needed. The second one is that
the proposed method is algorithmically simple. The keys of the method are a
negative weighted term ordering and computing a standard basis of a parametric
ideal in a local ring with coefficients in a field of rational functions.

Semi-weighted homogeneous (or semi-quasihomogeneous [1]) isolated hyper-
surface singularities are traditional research objects in singularity theory, and it
is known that there are several relationships between properties of semi-weighted
homogeneous singularities and their weighted homogeneous parts [1,2,4,5,16–
19,22–24]. In our previous works [10,11], algorithms for computing algebraic
local cohomology classes associated to the semi-weighted homogeneous singular-
ities are considered in the context of symbolic computation. The key of previous
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works is a weighted vector of a weighted homogeneous part. For the weight fil-
tration on the space of the algebraic local cohomology classes induced by the
weight vector of the weighted homogeneous part, the list of weighted degrees
of the basis of algebraic local cohomology classes is completely determined by
the weight vector [14]. Thus, in [10], an effective algorithm for computing the
algebraic local cohomology classes has been constructed by utilizing the prop-
erties of the semi-weighted homogeneous singularity and the weight vector, and
as an application of algebraic local cohomology, an algorithm for computing
(parametric) standard bases of the Jacobian ideals has been also introduced.

In this paper we consider a parametric standard basis of the Jacobian
ideal of a semi-weighted homogeneous polynomial. To be more precise, let
f = f0 +

∑m
i=1 uix

γi in C[x1, . . . , xn] be a semi-weighted homogeneous polyno-
mial where the polynomial f0 is weighted homogeneous w.r.t. the weight vector
w ∈ N

n, xγi are upper terms and u = {u1, . . . , um} are parameters. Then, f
can be regarded as a μ-constant deformation where μ is the Milnor number of
the singularity. Each hypersurface defined by f is topologically equivalent to the
hypersurface defined by the weighted homogeneous part of f . Let �−w be a
negative weighted term ordering with −w ∈ Z

n and let S be the reduced stan-
dard basis of the Jacobian ideal 〈 ∂f

∂x1
, . . . , ∂f

∂xn
〉 w.r.t. �−w in a local ring with

coefficients in C(u), the field of rational functions. We show that for all u ∈ C
m,

S is always the reduced standard basis of the Jacobian ideal w.r.t. �−w in the
local ring. Thus, we do not need special computation techniques to obtain the
parametric standard basis with the parameters u. This fact is proved by utiliz-
ing algebraic local cohomology classes associated to semi-weighted homogeneous
isolated hypersurface singularities.

This paper is organized as follows. Section 2 reviews relations between alge-
braic local cohomology classes and standard bases. Section 3 presents the main
results.

2 Preliminaries

2.1 Notations

Throughout this paper, we fix the following notations. The set of natural num-
bers N includes zero, C is the field of complex numbers. Let X be an open
neighborhood of the origin O of the n-dimensional complex space C

n with coor-
dinates x = (x1, . . . , xn). Let

C[x]〈x〉 =
{

g1(x)
g2(x)

∣
∣
∣
∣g1(x), g2(x) ∈ C[x], g2(O) �= 0

}

be the localization of C[x] at O, and T
n the monoid of terms in C[x].

Definition 1. Let � be a term ordering on T
n.

(1) � is called global if xα � 1 for all α �= (0, . . . , 0).
(2) � is called local if 1 � xα for all α �= (0, . . . , 0).
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Definition 2. Let � be a term ordering. Then, the inverse ordering �−1 of �
is defined by

xα � xβ ⇐⇒ xβ �−1 xα,

where α, β ∈ N
n.

Note that if a term ordering � is global, then the inverse term ordering �−1

is local.

Definition 3. A basis {xα1 , . . . , xα�} for a monomial ideal, in C[x], is said to be
minimal if no xαi in the basis divides other xαj for i �= j, where α1, . . . , α� ∈ N

n.

Let us fix a term ordering � on T
n. For a given polynomial f ∈ C[x]

(or C[x]〈x〉), we write the head term of f as ht(f), the head coefficient of f
as hc(f) and the head monomial of f as hm(f) (i.e., hm(f) = hc(f) ht(f)). For
P ⊂ C[x] (or C[x]〈x〉), ht(P ) = {ht(p)|p ∈ P} and hm(P ) = {hm(p)|p ∈ P}.

Let S ⊂ C[x]〈x〉 and � a local term ordering on T
n. Then, f ∈ C[x]〈x〉 is called

reduced w.r.t. S if no term of the power series expansion of f is contained in ht(S).

Definition 4. Let I be an ideal in C[x]〈x〉. Fix a local term ordering.

(1) A finite set S ⊂ C[x]〈x〉 is called a standard basis of I if S ⊂ I, and
〈hm(I)〉 = 〈hm(S)〉.

(2) A finite set S ⊂ C[x]〈x〉 is called a reduced standard basis of I if S is a
standard basis of I such that

(i) hc(f) = 1, for all f ∈ S.
(ii) For any two elements f �= g in S, ht(g) � ht(f).
(iii) For all f ∈ S, f − hm(f) is reduced w.r.t. S.

2.2 Algebraic Local Cohomology Classes and Standard Bases

Here we briefly review algebraic local cohomology classes, supported at O, and
the relation between the algebraic local cohomology classes and standard bases.
The details are given in [7,12–14,20,21].

All local cohomology classes, in this paper, are algebraic local cohomology
classes that belong to the set defined by

Hn
[O](C[x]) = lim

k→∞
Extn

C[x](C[x]/〈x1, x2, . . . , xn〉k, C[x])

where 〈x1, x2, . . . , xn〉 is the maximal ideal generated by x1, x2, . . . , xn. Con-
sider the pair (X,X − {O}) and its relative Čech covering. Then, any section of
Hn

[O](C[x]) can be represented as an element of relative Čech cohomology. Any
algebraic local cohomology class in Hn

[O](C[x]) can be represented as a finite sum
of the form

∑
cλ

[
1

xλ+1

]

=
∑

cλ

[
1

xλ1+1
1 xλ2+1

2 · · · xλn+1
n

]
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where [ ] stands for the Grothendieck symbol [9], cλ ∈ C and λ = (λ1, λ2, . . . , λn)
∈ N

n. Note that the multiplication is defined as

xα

[
1

xλ+1

]

=

⎧
⎪⎪⎨

⎪⎪⎩

[
1

xλ+1−α

]

, λi ≥ αi, i = 1, . . . , n,

0, otherwise,

where α = (α1, . . . , αn) ∈ N
n and λ + 1 − α = (λ1 + 1 − α1, . . . , λn + 1 − αn).

We represent an algebraic local cohomology class
∑

cλ

[
1

xλ+1

]

as a poly-

nomial in n variables
∑

cλξλ (called: polynomial representation) to manipulate
algebraic local cohomology classes efficiently, where ξ = (ξ1, ξ2, . . . , ξn). The
multiplication by xα is defined as

xα ∗ ξλ =

⎧
⎨

⎩

ξλ−α, λi ≥ αi, i = 1, . . . , n,

0, otherwise,

where λ − α = (λ1 − α1, . . . , λn −αn) ∈ N
n.

The action of monomials on algebraic local cohomology classes is extended
to polynomials by linearity. For example, let f = 2x2

1x
3
2 + 3x1x2 ∈ C[x1, x2] and

ψ = ξ51ξ
3
2 − 5ξ1ξ

2
2 ∈ H2

[O](C[x1, x2]). Then,

f ∗ ψ = 2x2
1x

3
2 ∗ ψ + 3x1x2 ∗ ψ

= (2x2
1x

3
2 ∗ ξ51ξ

3
2 + 2x2

1x
3
2 ∗ (−5ξ1ξ

2
2)) + (3x1x2 ∗ ξ51ξ

3
2 + 3x1x2 ∗ (−5ξ1ξ

2
2))

= (2ξ31 + 0) + (3ξ41ξ
2
2 − 15ξ2)

= 3ξ41ξ
2
2 + 2ξ31 − 15ξ2.

Let Ξn be the monoid of terms in Hn
[O](C[x]) (or C[ξ]). Let us fix a global

term ordering � on Ξn. For a given algebraic local cohomology class of the form

ψ = cλξλ +
∑

ξλ�ξλ′
cλ′ξλ′

(cλ �= 0),

we call ξλ the head term, cλ the head coefficient and ξλ′
the lower terms. We

write the head term as ht(ψ), the head coefficient as hc(ψ), the set of terms of ψ
as supp(ψ) = {ξα|ψ =

∑
α∈Nn cαξα, cα �= 0, cα ∈ C} and the set of lower terms

of ψ as LL(ψ) = {ξα|ξα �= ht(ψ), ξα ∈ supp(ψ)}. Let Ψ ⊂ Hn
[O](C[x]). We define

supp(Ψ) =
⋃

ψ∈Ψ supp(ψ), ht(Ψ) = {ht(ψ)|ψ ∈ Ψ} and LL(Ψ) =
⋃

ψ∈Ψ LL(ψ)
(i.e., LL(Ψ) = supp(Ψ)\ht(Ψ)). Moreover, we write the set of monomial elements
of Ψ as ML(Ψ), and the set of linear combination elements of Ψ as SL(Ψ), i.e.,
Ψ = ML(Ψ) ∪ SL(Ψ).

We assume that F = {f1, . . . , fs} ⊂ C[x] satisfies V(F ) ∩ X = {O} where
V(F ) = {ā ∈ C

n |f1(ā) = · · · = fs(ā) = 0}.
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We define a set HF to be the set of algebraic local cohomology classes in
Hn

[O](C[x]) that are annihilated by the ideal 〈F 〉, i.e.,

HF =
{

ψ ∈ Hn
[O](C[x])

∣
∣
∣ f1 ∗ ψ = f2 ∗ ψ = · · · = fs ∗ ψ = 0

}
.

Then, since V(F ) ∩ X = {O}, HF is a finite dimensional vector space. In
[13,21], algorithms for computing a basis of the vector spaces HF are introduced.

We recall the following important theorems.

Theorem 1 ([21]). Let � be a global term ordering on Ξn and I = 〈F 〉 ⊂
C[x]〈x〉. Let Ψ be a basis of the vector space HF such that for all ψ ∈ Ψ , hc(ψ) =
1, ht(ψ) /∈ ht(Ψ\{ψ}) and ht(ψ) /∈ LL(Ψ). Assume that ψ ∈ Ψ forms ξτ +∑

ξτ �ξκ

c(τ,κ)ξ
κ where c(τ,κ) ∈ C and τ, κ ∈ N

n.

(1) If ξλ ∈ LL(Ψ), then xλ ≡
∑

ξκ∈ht(Ψ)

c(κ,λ)x
κ mod I in C[x]〈x〉,

i.e., xλ −
∑

ξκ∈ht(Ψ)

c(κ,λ)x
κ ∈ I.

(2) If ξλ ∈ ht(Ψ), then xλ /∈ I.
(3) If ξλ /∈ supp(Ψ), then xλ ∈ I.

Let ξλ be a term and Λ a set of terms in C[ξ] where λ ∈ N
n. We call

ξiξ
λ a neighbor of ξλ for each i = 1, 2, . . . , n. We write the neighbors of Λ as

Neighbor(Λ), i.e., Neighbor(Λ) = {ξiξ
λ|ξλ ∈ Λ, 1 ≤ i ≤ n}.

Theorem 2 ([13]). Using the same notations as in Theorem 1, let Λ be
the minimal basis of the ideal generated by Neighbor(ht(Ψ))\ht(Ψ). Let ξτ +∑

ξτ �ξκ

c(τ,κ)ξ
κ in Ψ where c(τ,κ) ∈ C and τ, κ ∈ N

n. The transfer SBΨ is defined

by the following:
⎧
⎨

⎩

SBΨ (ξλ) = xλ −
∑

ξκ∈ht(Ψ)

c(κ,λ)x
κ, if ξλ ∈ LL(Ψ),

SBΨ (ξλ) = xλ, if ξλ /∈ LL(Ψ),

where λ ∈ N
n.

Then, SBΨ (Λ) = {SBΨ (ξλ)|ξλ ∈ Λ} is the reduced standard basis of the ideal
I w.r.t. �−1 in C[x]〈x〉. (Note that ξα � ξβ ⇐⇒ xβ �−1 xα where α, β ∈ N

n.)

Notice that the reduced standard basis Sred of 〈F 〉 w.r.t. the local term
ordering �−1 always exists, and f ∈ Sred has finitely many terms since supp(Λ)
and supp(Ψ) are finite sets.

3 Parametric Standard Bases for Semi-weighted
Homogeneous Isolated Hypersurface Singularities

Here, first, we briefly review properties of semi-weighted homogeneous isolated
hypersurface singularities, and second, we introduce the main results.
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3.1 Semi-weighted Homogeneous Isolated Hypersurface
Singularities and Algebraic Local Cohomology Classes

Before describing the main results of this paper, we review Theorem 9 of [10]
that is utilized for the main theorems.

Let us fix a weight vector w = (w1, w2, . . . , wn) in N
n for coordinate sys-

tems x = (x1, x2, . . . , xn) and ξ = (ξ1, ξ2, . . . , ξn). We define a weighted degree
of the term xα = xα1

1 xα2
2 · · · xαn

n and ξα = ξα1
1 ξα2

2 · · · ξαn
n , with respect to w

by |xα|w =
∑n

i=1 wiαi and |ξα|w =
∑n

i=1 wiαi, respectively. For f ∈ C[x]
and ψ ∈ Hn

[O](C[x]), degw(f) = max{|xα|w|xα ∈ supp(f)} and degw(ψ) =
max{|ξα|w|ξα ∈ supp(ψ)}.

Definition 5. Let � be a global term ordering on T
n. The (global) weighted

term ordering with � is defined by the following:

xα �w xβ ⇐⇒ |xα|w > |xβ |w, or
|xα|w = |xβ |w and xα � xβ .

The definition of semi-weighted homogeneous isolated hypersurface singular-
ities is as follows.

Definition 6 ([1]). Let f be a nonzero polynomial in C[x] and let ordw(f) =
min{|xα|w|xα ∈ supp(f)} (ordw(0) = −1).

(1) A nonzero polynomial f is weighted homogeneous of type (d;w) if all
terms of f have the same weighted degree d with respect to w, i.e., f =∑

|xα|w=d

cαxα where cα ∈ C.

(2) The polynomial f is called semi-weighted homogeneous of type (d;w) if
f is of the form f = f0 +g where f0 is a weighted homogeneous polynomials
of type (d;w) with an isolated singularity at the origin O, f = f0 or ordw(f−
f0) > d.

Lists of weighted homogeneous polynomials are given in [2,17–19,23].

Let f = f0 + g be a semi-weighted homogeneous polynomial of type (d;w)
where the polynomial f0 is weighted homogeneous of type (d;w) with an
isolated singularity at O and ordw(g) > d. Let F0 =

{
∂f0
∂x1

, . . . , ∂f0
∂xn

}
and

F =
{

∂f
∂x1

, . . . , ∂f
∂xn

}
. Set

HF0 =
{

ψ ∈ Hn
[O](C[x])

∣
∣
∣
∣
∂f0
∂x1

∗ ψ = · · · =
∂f0
∂xn

∗ ψ = 0
}

,

and

HF =
{

ψ ∈ Hn
[O](C[x])

∣
∣
∣
∣
∂f

∂x1
∗ ψ = · · · =

∂f

∂xn
∗ ψ = 0

}

.
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Then, since V(F ) ∩ X = {O} and V(F0) ∩ X = {O}, HF and HF0 are finite
dimensional vector spaces. In [10], an algorithm for computing a basis of the
vector space HF is introduced.

The following theorem, given in [10], shows the relation between a basis
of HF0 and a basis of HF . (This theorem also follows immediately from Propo-
sition 3.2. of [14].)

Theorem 3 (Theorem 9 of [10]). Let Ψ0 = {ψ1, ψ2, . . . , ψ�} be a basis of the
vector space HF0 that satisfies the condition “for all ψ ∈ Ψ0, hc(ψ) = 1, ht(ψ) /∈
ht(Ψ0\{ψ}) and ht(ψ) /∈ LL(Ψ)” w.r.t. a (global) weighted term ordering �w.
Then, for each i = 1, . . . , , there exists ρi such that degw(ψi) > degw(ρi) and
ϕi = ψi + ρi is an element of HF . (It is possible to take ρi = 0.) Moreover,
{ϕ1, ϕ2, . . . , ϕ�} is a basis of the vector space HF .

3.2 Main Results

Let f = f0+
m∑

i=1

uix
γi be a semi-weighted homogeneous polynomial of type (d;w)

where the polynomial f0 is weighted homogeneous of type (d;w) with an iso-
lated singularity at O, for each i ∈ {1, . . . , m}, γi ∈ N

n, |xγi |w > d and
u = {u1, . . . , um} are parameters. The aim of this paper is to introduce an effec-
tive method for computing a parametric standard basis of the Jacobian ideal
〈 ∂f

∂x1
, . . . , ∂f

∂xn
〉 with the parameters u.

For an arbitrary ā ∈ C
m, the specialization homomorphism σā :

C[u][x]〈x〉 −→ C[x]〈x〉 (or σā : C[u][ξ] −→ C[ξ]) is defined as the map that
substitutes ā into m variables u. For P ⊂ C[u][x]〈x〉, σā(P ) = {σā(h)|h ∈ P}.
We regard u as parameters throughout the rest of the paper.

Notice that since f0 does not have the parameters u, for all ā ∈ C
m, σā(f) = 0

always defines an isolated singularity at the origin O.
Now, we are ready to present the main theorems.

Theorem 4. Let f = f0 +
m∑

i=1

uix
γi be a semi-weighted homogeneous polyno-

mial of type (d;w) where the polynomial f0 is weighted homogeneous of type
(d;w) with an isolated singularity at O, for each i ∈ {1, . . . , m}, γi ∈ N

n,
|xγi |w > d and u = {u1, . . . , um} are parameters. Set F0 =

{
∂f0
∂x1

, . . . , ∂f0
∂xn

}
,

F =
{

∂f
∂x1

, . . . , ∂f
∂xn

}
and Owx

= T
n \ht(〈F0〉) w.r.t. �−1

w where �−1
w is the

inverse ordering of a weighted term ordering �w. Then the following holds.

(1) For all ā ∈ C
m, T

n \ht(〈σā(F )〉) = Owx
.

(2) Fix the weighted term ordering �w. Let Owξ
= {ξα|xα ∈ Owx

}. There exists
a finite set Ψ in C[u][ξ] (or Hn

[O](C[u][x])) such that for all ā ∈ C
m and ψ ∈ Ψ ,

σā(Ψ) is a basis of the vector space Hσā(F ) and hc(ψ) = 1, ht(ψ) /∈ ht(Ψ\{ψ}),
ht(ψ) /∈ LL(Ψ). Moreover, for all ā ∈ C

m, ht(σā(Ψ)) = Owξ
.

(3) There exists a unique set S in C[u][x]〈x〉 such that, for all ā ∈ C
m, σā(S) is

the reduced standard basis of 〈σā(F )〉 w.r.t. �−1
w in C[x]〈x〉.
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Proof. (1) As f0 does not have the parameters u, a basis Ψ0 ⊂ HF0 that satisfies
the condition “for all ψ ∈ Ψ0, hc(ψ) = 1, ht(ψ) /∈ ht(Ψ0\{ψ}) and ht(ψ) /∈ LL(Ψ0)
w.r.t. �w”, does not have the parameters u. Set O′ = {xα|ξα ∈ ht(Ψ0)}
w.r.t. �w, then by Theorem 2, O′ = T

n \ht(〈F0〉) w.r.t. the inverse order-
ing �−1

w . Theorem 3 shows that, for all ā ∈ C
m, there exists a basis Φā of

the vector space Hσā(F ) that satisfies ht(Φā) = ht(Ψ0) w.r.t. �w. Therefore,
O′ = T

n \ht(〈σā(F )〉) = Owx
.

(2) Let Ψ0 = {ψ1, . . . , ψ�} be a basis of HF0 that satisfies the condition

“for all ψ ∈ Ψ0, hc(ψ) = 1, ht(ψ) /∈ ht(Ψ0\{ψ}) and ht(ψ) /∈ LL(Ψ0)”.

For each i ∈ {1, . . . , }, let

Li = {ξα | |ht(ψi)|w > |ξα|w, ξα /∈ ht(Ψ0)} .

As Li is finite, we rewrite Li as {ξλ1 , . . . , ξλr} where λ1, . . . , λr ∈ N
n. Set

φi = ψi +
r∑

j=1

cijξ
λj where ci1, . . . , cir are indeterminates. In order to determine

ci1, . . . , cir, for all k ∈ {1, . . . , n}, let us consider

∂f

∂xk
∗ φi =

∑
pτξτ = 0

where pτ s are linear polynomials of ci1, . . . , cir with coefficients in C[u]. Since the
terms ξτ are linearly independent, we need to solve the system of the all obtained
linear equations pτ = 0. Let us write the system of ν linear equations as Ac = b
where A is the coefficient matrix, tc = (ci1 · · · cir), ν ∈ N and b ∈ C[u]ν . By
utilizing elementary row operations, the extended coefficient matrix (A|b) can
be transformed to the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q1(u) 0 · · · 0 b′
1(u)

0 q2(u) · · · 0 b′
2(u)

...
...

. . .
...

...
0 0 · · · qr(u) b′

r(u)
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

because by Theorem 4 for arbitrary values of u the system always has unique
solution, where q1(u), . . . , qr(u), b′

1(u), . . . , b′
r(u) ∈ C[u] and the greatest common

divisor of qj(u) and b′
j(u) (write gcd(qj(u), b′

j(u))) (1 ≤ j ≤ r) is 1, i.e.,

gcd(q1(u), b′
1(u)) = gcd(q2(u), b′

2(u)) = · · · = gcd(qr(u), b′
r(u)) = 1.

If there exists j ∈ {1, . . . , r} such that qj(u) /∈ C \{0}, then when qj(u) = 0 (i.e.,
u ∈ V(qj) �= ∅ in C

m), the rank of the matrix becomes less than r or the system
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has no solution. This is contradiction. Hence, q1(u), . . . , qr(u) are constant in
C \{0}, and thus ci1, . . . , cir are uniquely determined as polynomials in C[u].
Therefore,

Ψ = {φ1, . . . , φ�} ⊂ C[u][ξ] (or Hn
[O](C[u][x])),

and for all ā ∈ C
m, σā(Ψ) is a basis of the vector space Hσā(F ). As Ψ0 has no

parameters and φi = ψi+
r∑

j=1

cijξ
λj , for all ϕ ∈ Ψ , hc(ϕ) = 1, ht(ϕ) /∈ ht(Ψ\{ϕ}),

ht(ϕ) /∈ LL(Ψ). Moreover, ht(σā(Ψ)) = Owξ
holds from (1). This completes the

proof.
(3). By combining (2) and Theorem 2, (3) holds. ��

Notice that Ψ and S of Theorem 4 do not depend on the values of the
parameters u. The key of the theorem is the weighted ordering �w.

The following theorem shows how to compute a parametric standard basis
of the Jacobian ideal in C[u][x]〈x〉.

Theorem 5. Using the same notations as in Theorem 4, let Sred be the reduced
standard basis of 〈F 〉 w.r.t. �−1

w in C(u)[x]〈x〉 where C(u) is the field of rational
functions. Then, Sred ⊂ C[u][x]〈x〉, and for all ā ∈ C

m, σā(Sred) is the reduced
standard basis of 〈σā(F )〉 w.r.t. �−1

w in C[x]〈x〉.

Proof. As we described in Theorem 4 (3), there exists a unique set S in C[u][x]〈x〉
such that, for all ā ∈ C

m, σā(S) is the reduced standard basis of 〈σā(F )〉 w.r.t.
�−1

w in C[x]〈x〉. We show that Sred = S. For each element g ∈ Sred ⊂ C(u)[x]〈x〉,
there exists h ∈ S ⊂ C[u][x]〈x〉 such that ht(g) = ht(h). Suppose that lcm(u)
is the least common multiple of denominators of all coefficients of g. Then,
lcm(u)g ∈ C[u][x]〈x〉. Since Sred is a generic standard basis of 〈F 〉, there exists a
Zariski open subset A ⊂ C

m such that, for all ā ∈ A, ht(σā(S)) = ht(Sred) and
σā(g), σā(h) ∈ 〈σā(F )〉. Then, for all ā ∈ A,

σā(lcm(u)g − lcm(u)h) = σā(lcm(u)(g − ht(g)) − lcm(u)(h − ht(h)))

=
∑

ht(g)�−1
w xα

σā(gα(u) − hα(u))xα ∈ 〈σā(F )〉

where gα(u), hα(u) ∈ C[u]. As the Zariski open subset A has infinitely many
elements and xα is smaller than ht(g) ∈ ht(Sred) w.r.t. �−1

w , we have gα(u) −
hα(u) = 0, namely, lcm(u)h = lcm(u)g. This fact implies h = g. Therefore,
Sred = S. ��

We are able to compute the parametric standard basis in C(u)[x]〈x〉 by the
usual algorithm for computing a standard basis w.r.t. �−1

w in the ring. We do
not need a special algorithm for computing comprehensive standard systems [8].
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The local term ordering �−1
w (so-called the negative weighted term ordering)

can be represented as a matrix [6,15], for example, the following n × n matrices
⎛

⎜
⎜
⎜
⎜
⎜
⎝

−w1 −w2 · · · −wn−1 −wn

−1 0 · · · 0 0
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−w1 −w2 · · · −wn−1 −wn

0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
...

0 1 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

represent local term orderings �−1
w where w = (w1, w2, . . . , wn) ∈ N

n.

Method.

Input : f = f0 +
∑m

i=1 uix
γi : semi-weighted homogeneous polynomial of type

(d;w) where the polynomial f0 ⊂ C[x] is weighted homogeneous of type
(d;w) with an isolated singularity at O, for each i ∈ {1, . . . , m}, γi ∈ N

n,
|xγi |w > d and u = {u1, . . . , um} are parameters.

Output: S ⊂ C[u][x]〈x〉 : for all ā ∈ C
m, σā(S) is a standard basis of

〈σā( ∂f
∂x1

), . . . , σā( ∂f
∂xn

)〉 w.r.t. �−1
w in C[x]〈x〉.

BEGIN
S ← Compute a standard basis of 〈 ∂f

∂x1
, . . . , ∂f

∂xn
〉 w.r.t. �−1

w in C(u)[x]〈x〉;
return S;
END

Note that since a standard basis S is generated by the reduced standard
basis Sred and 〈hm(S)〉 = 〈hm(Sred)〉, if we change “reduced standard basis” to
“(normal) standard basis” in Theorem 5, then Theorem 5 still holds.

We illustrate the method above with the following example.

Example 1. Let f0 = x3+yz2+y10 and let w = (20, 6, 27) be a weight vector for
the variables (x, y, z). Set f = f0 + sxy7 + txy8 + uxz2 ∈ C[s, t, u][x, y, z] where
s, t, u are parameters. Then, f is a semi-weighted homogeneous polynomial of
type (60;w).

The computer algebra system Singular [3] can define the inverse order-
ing �−1

w as a matrix.
Singular outputs the reduced standard basis of J = 〈∂f

∂x , ∂f
∂y , ∂f

∂z 〉 w.r.t. �−1
w

in C(s, t, u)[x, y, z]〈x,y,z〉 as follows.

> intmat m[3][3]=-20,-6,-27,-1,0,0,0,-1,0;
> m;
-20,-6,-27,
-1,0,0,
0,-1,0
> ring A=(0,s,t,u),(x,y,z),M(m);
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> poly f=x3+yz2+y10+s*xy7+t*xy8+u*xz2;
> ideal J=jacob(f);
> option(redSB);
> std(J);
_[1]=yz+(u)*xz
_[2]=3*x2+(s)*y7+(t)*y8+(-10u)*y9+(-7su)*xy6+(-8tu)*xy7
_[3]=z2+10*y9+(7s)*xy6+(8t)*xy7
_[4]=10*y10+(7s)*xy7+(8t)*xy8+(10u)*xy9

In the display above, m[3][3] means the matrix ordering of �−1
w . The output

means

S = {yz + uxz, 3x2 + sy7 + ty8 − 10uy9 − 7suxy6 − 8tuxy7, z2 + 10y9 + 7sxy6 +
8txy7, 10y10 + 7sxy7 + 8txy8 + 10uxy9}
is the reduced standard basis of J w.r.t. m[3][3] in C(s, t, u)[x, y, z]〈x,y,z〉. There-
fore, S is a parametric standard basis of J with the parameters s, t, u, namely,
for all ā ∈ C

3, σā(S) is the reduced standard basis of 〈σā(∂f
∂x ), σā(∂f

∂y ), σā(∂f
∂z )〉

in C[x, y, z]〈x,y,z〉.

The output of the proposed method does not depend on the values of the
parameters u. This is the big advantage of the method.

In [8], an algorithm for computing comprehensive standard systems (CSS)
is introduced. We have implemented the algorithm for computing CSS in the
computer algebra system Singular1. Let us compare S with the output of
CSS.

Our Singular implementation returns a CSS of J w.r.t. the negative degree
lexicographic term ordering � with x � y � z, as follows.

1. If the parameters (s, t, u) belong to C
3 \ V(u, s), then the standard basis is

the following.

[1]: 3x2+z2u+y7s+y8t
[2]: xzu+yz
[3]: z2+7xy6s+8xy7t+10y9
[4]: 3xyz-z3u2-y7zsu-y8ztu
[5]: 3y2z+z3u3+y7zsu2+y8ztu2
[6]: 21xy7s-7y6z2su2+24x2y7tu+24xy8t+30xy9u+30y10-7y13s2u-7y14
stu
[7]: 30xy10-10y9z2u2-7xy13s2u-7y14s2-15xy14stu-15y15st-8xy15t2
u-10y16su-8y16t2-10y17tu
[8]: 300y13+100y11z2u3+49xy13s3u+49y14s3+161xy14s2tu+161y15s2t
+70xy15s2u2+176xy15st2u+70y16s2u+176y16st2+150xy16stu2+64xy16t
3u+150y17stu+64y17t3+80xy17t2u2+100y18su2+80y18t2u+100y19tu2

The display above is from Singular.
1 The Singular implementation of CSS is in the author’s web-page or the following

URL. https://www-math.ias.tokushima-u.ac.jp/∼nabesima/softwares.html.

https://www-math.ias.tokushima-u.ac.jp/~nabesima/softwares.html
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2. If the parameters (s, t, u) belong to V(u)\ V(s), then the standard basis is the
following.

[1]: 3x2+z2u+y7s+y8t
[2]: yz
[3]: z2+7xy6s+8xy7t+10y9
[4]: 7xy7s+8xy8t+10y10
[5]: 30xy10-7y14s2-15y15st-8y16t2
[6]: y13

3. If the parameters (s, t, u) belong to V(u, s)\ V(t), then the standard basis is
the following.

[1]: 3x2+z2u+y7s+y8t
[2]: yz
[3]: z2+7xy6s+8xy7t+10y9
[4]: 4xy8t+5y10
[5]: 15xy10-4y15st-4y16t2
[6]: y12

4. If the parameters (s, t, u) belong to V(u, s, t), then the standard basis is the
following.

[1]: 3x2+z2u+y7s+y8t
[2]: yz
[3]: z2+7xy6s+8xy7t+10y9
[4]: y10

5. If the parameters (s, t, u) belong to V(s)\ V(u, t), then the standard basis is
the following.

[1]: 3x2+z2u+y7s+y8t
[2]: xzu+yz
[3]: z2+7xy6s+8xy7t+10y9
[4]: 3xyz-z3u2-y7zsu-y8ztu
[5]: 3y2z+z3u3+y7zsu2+y8ztu2
[6]: 12xy8t-4y7z2tu2+15xy9u+15y10-4y14stu-4y15t2u
[7]: 30xy10-10y9z2u2-7xy14stu-8y15st-8xy15t2u-8y16t2-10y17tu
[8]: 150y12+50y10z2u3+28xy14st2u+32y15st2+35xy15stu2+32xy15t3u
+32y16t3+40xy16t2u2+40y17t2u+50y18tu2

6. If the parameters (s, t, u) belong to V(s, t)\ V(u), then the standard basis is
the following.

[1]: 3x2+z2u+y7s+y8t
[2]: xzu+yz
[3]: z2+7xy6s+8xy7t+10y9
[4]: 3xyz-z3u2-y7zsu-y8ztu
[5]: 3y2z+z3u3+y7zsu2+y8ztu2
[6]: xy9u+y10
[7]: 3xy10-y9z2u2
[8]: 3y11+y9z2u3
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The parameter space C
3 is divided to 6 strata.

The output S of the proposed method is simpler than the CSS above.

The algorithm [8] for computing CSS needs to compute several standard bases
in C[u][x]〈x〉, however, the proposed method needs only one standard basis w.r.t.
the negative weighted term ordering in C(u)[x]〈x〉. In general, the computational
complexity of a standard basis in C[u][x]〈x〉 is higher than that of a standard basis
in C(u)[x]〈x〉. Thus, the proposed method is more effective than the algorithm [8]
in the cases of semi-weighted homogeneous isolated hypersurface singularities.
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Abstract. Univariate polynomial root-finding has been studied for four
millennia and is still the subject of intensive research. Hundreds of effi-
cient algorithms for this task have been proposed. A recent front-running
algorithm relies on subdivision iterations. Already its initial implemen-
tation of 2018 has competed for user’s choice for root-finding in a region
that contains a small number of roots. Recently, we significantly accel-
erated the basic blocks of these iterations, namely root-counting and
exclusion tests. In [18], we solidified this approach and made our acceler-
ation dramatic in the case of sparse polynomials and other ones defined
by a black box for their fast evaluation. Our techniques are novel and
should be of independent interest. In the present paper and its compan-
ion [19], we expose a substantial part of that work.

Keywords: Polynomial root-finding · Subdivision · Sparse
polynomials · Exclusion test · Root-counting · Power sums of roots

1 The State of the Art and Our Progress

Univariate polynomial root-finding has been the central problem of mathematics
and computational mathematics for four millennia and remains the subject of
intensive research motivated by applications in Computer Algebra and various
other areas of computing (see pointers to the huge bibliography in [18]).

Subdivision iterations traced back to [5,14,20,22], recently became a leading
root-finder due to the progress reported in [2,9–11]. Our current paper and its
companion [19] represent part of a large work [18] on significant acceleration of
the previous algorithm of [2]. Already the initial implementation of the new algo-
rithm in [9] shows 3-fold acceleration, but further implementation work should
demonstrate substantially stronger progress, including dramatic acceleration in
the important case of a black box polynomial, represented by a subroutine for its
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fast or numerically stable evaluation rather than its coefficients. E.g., black box
evaluation is very fast for sparse, Mandelbrot’s polynomials defined by recurrence
expressions,

p0(x) = 1, p1(x) = x, pi+1(x) = xpi(x)2 + 1 for i = 0, 1, . . . , (1)

and various other polynomials, while evaluation is numerically stable for poly-
nomials represented in Bernstein or Chebyshev bases. Furthermore, dealing
with black box polynomials, we avoid the costly auxiliary stages of Dandelin–
Lobachevsky–Gräffe’s recursive root-squaring [7] and Taylor’s shift of the vari-
able, which greatly slow down the computations of [2].

We refer the reader to [18] for full exposition of this work, which includes
its comparison with other leading root-finders, their acceleration, and Boolean
cost estimates, while we occasionally estimate arithmetic complexity where we
can control the precision of computing. [18] specifies a number of directions for
further progress in subdivision iterations and fully develops some of them. Their
implementation should make the algorithm of [18] competitive with MPSolve
(Multiprecision Polynomial Solver) of [3,4], which is the package of root-finding
subroutines of user’s choice since 2000. Actually already the previous imple-
mentation of subdivision iterations in [10], based on the algorithm of [2], has
slightly outperformed MPSolve for root-finding in a region of the complex plane
containing only a small number of roots.

Organization of the Paper. We devote the next short section to background,
where, in particular, we briefly cover subdivision iterations. We extensively study
their amendments based on the computation of Cauchy sums in a disc on the
complex plane in Sect. 3. We devote Sects. 4 and 5 to deterministic and proba-
bilistic support of the application of our Cauchy sum approach to root-counting
and exclusion tests for a disc without estimation of the isolation of its boundary
circle from the roots.

2 Background

Quite typically in the literature, a polynomial p = p(x) is represented in mono-
mial basis – with its coefficients,

p(x) =
d∑

i=0

pix
i = pd

d∏

j=1

(x − xj), pd �= 0, (2)

where we may have xk = xl for k �= l, but we allow its representation just by a
black box for its evaluation.

We study roots numerically: we count a root of multiplicity m as m simple
roots and do not distinguish it from their cluster whose diameter is within a
fixed tolerance bound.

We deal with the discs D(c, ρ), annuli A(c, ρ, ρ′), and circles C(c, ρ) having
complex centers c and positive radii ρ and ρ′ > ρ.

ζ := ζq = exp(2π
√

i/q) denotes a primitive qth root of unity.
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Definition 1. A domain on the complex plain with a center c and its boundary
have an isolation ratio θ or equivalently are θ-isolated for a polynomial p, real
θ ≥ 1, and complex c if the root set of p in the domain is invariant in its θ-
and 1

θ -dilation with the center c. In particular (see Fig. 1), a disc D(c, ρ) and its
boundary circle C(c, ρ) are θ-isolated for p, θ ≥ 1, and complex c if no roots of p
lie in the open annulus A(c, ρ/θ, ρθ). A domain and its boundary are well-isolated
if they are θ-isolated for θ − 1 exceeding a positive constant.

Fig. 1. The internal disc D(X, r) is R/r-isolated

Subdivision iterations extend the bisection iterations from root-finding on
a line to polynomial root-finding in the complex plane and under the name of
Quad-tree Construction have been extensively used in Computational Geometry.
Their version of Becker et al. Algorithm of [2] has nearly optimal Boolean com-
plexity, up to polylogarithmic factor in the input size, provided that an input
polynomial is represented by its coefficients.1

Suppose that we seek all roots of p in a fixed square on the complex plane,
which is well isolated from the external roots of p, e.g., contains all d roots;
call this square suspect. At a low cost, one can readily compute such a square
centered at the origin and containing all roots of p (cf., e.g., [18, Sec. 4.8]).

A subdivision iteration divides every suspect square into four congruent sub-
squares and to each of them applies an exclusion test: a sub-square is discarded
if the test proves that it contains no roots of p; otherwise the sub-square is called
suspect and is processed at the next iteration (see Fig. 2).

1 It becomes the second such root-finder. The first one, of [13,16], has provided nearly
optimal solution also for numerical factorization of a polynomial into the product of
its linear factors, which is a problem of high independent interest [18].
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Fig. 2. Four roots of p are marked by asterisks; sub-squares that contain them are
suspect; the other sub-squares are discarded

A root of p can make at most four squares suspect if an exclusion test enabled
us to discard every square that contains no roots of p, and then we would have
k ≤ 4. Realistically, the subdivision processes have been made less expensive
overall by means of incorporation of soft exclusion tests, which keep a tested
square S(c, ρ) suspect if a disc D(c, uρ) contains a root of p for some u exceed-
ing

√
2. Then the constant k grows above 4, but the cost of performing exclusion

test and the overall cost of subdivision root-finding can decrease.
Exclusion tests are the main computational block; their cost strongly domi-

nates the overall complexity of subdivision root-finding.
At every subdivision iteration, all roots are approximated by the centers of

suspect squares, within at most their half-diameter. This bound decreases by
twice at every subdivision, and [2,14,20] accelerate such a linear convergence to
the roots to superlinear – by using Newton’s or QIR iterations, which combine
the secant and Newton’s iterations. The transition to faster iterations involves
root-counting in a disc on a complex plane – the second main computational
block of the algorithms of [2,14,20].

Work [2] proposed a novel exclusion test and root-counter by means of Pel-
let’s classical theorem, based on pairwise comparison of the absolute values of
the coefficients of p. The authors justly referred to its as the main algorithmic
novelty versus [20] and [14], but [18] achieves new significant progress based on
novel efficient root-counting and exclusion test for a black box polynomial, not
handled by [2].

The new approach relies on the approximation of the power sums of the roots
of a polynomial lying in a disc D(c, ρ) on the complex plane

sh = sh(D(c, ρ)) :=
∑

xj∈D(c,ρ)

xh
j =

∫

C(c,ρ)

p′(x)
p(x)

xh dx, h = 0, 1, . . . ; (3)

the latter representation is valid by virtue of Cauchy integral theorem.
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3 Power Sums, Cauchy Sums, Root-Counting,
and Exclusion Test

3.1 Cauchy Sum Computation

Let f :=
∏din

j=1(x − xj) where the roots x1, . . . , xdin of p lie in a disc D(c, ρ),
while all other roots lie outside it; f = p for d = din. We approximate the power
sums sh, h = 0, 1, . . . , of the roots of p in a disc D(c, ρ) with the Cauchy sums
in that disc, which discretize the contour integral above:

s∗
h :=

1
q

q−1∑

g=0

ζ(h+1)g p′(c + ρζg)
p(c + ρζg)

for h = 0, 1, . . . , q − 1. (4)

Algorithm 1. Computation of Cauchy sum in a disc D(c, ρ).
Fix a positive integer q and assume that p(c + ρζg) �= 0 for g = 0, 1, . . . , q − 1.
Successively compute the values

(i) p(c + ρζg), p′(c + ρζg), σg = p′(c+ρζg)
p(c+ρζg) for g = 0, 1, . . . , q − 1,

(ii) s∗
h of (4) for h = 0, 1, . . . , q − 1.

qs∗
h =

∑q−1
g=0 σgζ

(h+1)g for h = q − 1, 1, 2, . . . , q − 2 are the values of the poly-
nomial σ(x) =

∑q−1
g=0 σgx at the qth roots of unity, and so the computation of

qs∗
h for h = q−1, 1, 2, . . . , q−2 at stage (ii) is precisely the discrete Fourier trans-

form (DFT) on q points, which one can perform fast by using FFT (see, e.g., [15,
Section 2.2] or [19, Appendix]). Consequently, at a dominated cost of performing
less than 3q log2 q arithmetic operations one can extend the computation of the
Cauchy sum s∗

0 to the computation of all Cauchy sums s∗
h, h = 0, 1, . . . , q − 1.

Remark 1. Instead of assuming that p(c + ρζg) �= 0 for all g we can ensure
these inequalities with probability 1 by applying Algorithm 1 to the polynomial
t(x) = p(ax−c

ρ ) for a = exp(φi) or aq = exp(φi) and a random scalar φ ∈ [0, 2π).

The constructive proof of the following theorem supports application of
Algorithm 1 to a black box polynomial (see [12] or [1]).

Theorem 1. Given an algorithm that evaluates at a point x a black box polyno-
mial p(x) over a field K of constants by using A additions and subtractions, S
scalar multiplications (that is, multiplications by elements from the field K), and
M other multiplications and divisions, one can extend this algorithm to the eval-
uation at x of both p(x) and p′(x) by using 2A + M additions and subtractions,
2S scalar multiplications, and 3M other multiplications and divisions.
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3.2 Cauchy Sums: Their Link to the Roots and Approximation of
Power Sums

The following basic result is [18, Corollary 4.1].

Theorem 2. For the roots xj of p(x) and all h, the Cauchy sums s∗
h of (4) for

c = 0, ρ − 1 satisfy s∗
h =

∑d
j=1

xh
j

1−xq
j

unless xq
j = 1 for some j.

By virtue of this theorem, the Cauchy sum s∗
h is the power sums sh =∑d

j=1 xh
j with the weights 1

1−xq
j

assigned to the terms xh
j for j = 1, . . . , d. This

defines an upper bound on |sh−s∗
h| that converges to 0 exponentially fast in q−h.

Corollary 1 [21].2 Let the disc D(0, 1) be θ-isolated and contain precisely din
roots of p. Write η := 1/θ. Then

|s∗
h − sh| ≤ dinη

q+h + (d − din)ηq−h

1 − ηq
for h = 0, 1, . . . , q − 1, (5)

and, in particular,

sh = 0 and |s∗
h| ≤ dηq+h

1 − ηq
for h = 0, 1, . . . , q − 1 if din = 0. (6)

μ := |s∗
0 − s0| ≤ d

θq − 1
, and so μ < 1/2 if q >

log(2d + 1)
log(θ)

, (7)

θ ≤
(μ + d

μ

)1/q

, and so θ ≤ (d + 1)1/q if μ = |s∗
0 − s0| ≥ 1. (8)

Corollary 2. Suppose that Algorithm 1, applied to the unit disc D(0, 1) for
q ≥ b log2(2d + 1) and b > 0, outputs s∗

0 > 1/2. Then the disc D(0, θ) contains
a root of p for θ = 21/b.

3.3 Cauchy Root-Counting, Cauchy Exclusion Test, and Isolation
of a Disc

Clearly the 0th Cauchy sum s∗
0 can serve as a root-counter in a disc if μ =

|s0 − s∗
0| < 0.5. By virtue of (7), this holds if q ≥ logθ(2d + 1), e.g., if θ = 2 and

d ≤ 1, 000, 000, and then we can choose any q ≥ 21.

Remark 2. We can narrow Cauchy root-counting to Cauchy exclusion test if we
only check whether s∗

0 ≈ 0, but we can strengthen this test at a low additional
cost by verifying whether s∗

h ≈ 0 for h = 0, . . . , q−1. Indeed, (i) we can compute
the Cauchy sums s∗

h for h = 0, . . . , q−1 at the cost of the computation of s∗
0 and

performing DFT at q points and (ii) s0 = 0 if and only if sh = 0 for h = 0, 1, . . . .

2 Unlike paper [21], this result is deduced in [18] from Theorem 2, which is also the
basis for correctness proof of Sect. 5 for our probabilistic root-counter.
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Hereafter we refer to Algorithm 1 restricted to the computation of s∗
0 as

Algorithm 1a. Seeking correct output of a Cauchy root-counter or exclusion
test but avoiding unnecessary increase of the parameter q, one can first apply
Algorithm 1a for a small integer q and then recursively double it, reusing the
results of the previous computations, until the computed values of the Cauchy
sum s∗

0 stabilize near an integer or just until they approximate an integer closely
enough. Later we prove that such an integer is s0 with a high probability (here-
after whp) under random root models.

This result supports root-finding computations in [18, Section 6.4], but not
in the subdivision processes of [2,14,20], where root-counting is applied only
to well-isolated discs, in which case Algorithm 1a yields non-costly solution s0
by virtue of Corollary 1. For correctness of our exclusion test, we seek stronger
support because in the subdivision iterations of [2,14,20], such a test is applied
to the discs for whose isolation ratios no estimates are known. By virtue of
Corollary 2, Algorithm 1a applied to such a disc certifies that its controlled
dilation contains a root of p unless the algorithm outputs s∗

0 close to 0. The
following algorithm completes an exclusion test in the latter case.

Algorithm 2. Completion of a Cauchy soft exclusion test.
Input: A black box polynomial p(x) of degree d such that Algorithm 1a, applied
to the disc D(0, 2) and3 the polynomial p(x) has output s∗

0 close to 0.
Output: Certification that (i) the disc D(0, 2) contains a root of p definitely if
q > d or whp otherwise or (ii) the unit disc D(0, 1) definitely contains no roots
of p, where cases (i) and (ii) are compatible.
Initialization: Choose an integer q such that

q0 < q ≤ 2q0 for q0 ≥ max
{

1, log2
( d

q0αd

√
3

)}
and αd =

√
d +

√
d. (9)

Computations: Apply Algorithm 1 to the unit disc D(0, 1) for the selected q.
Hereafter

s∗ := (s∗
q−1, s

∗
0, s

∗
1, . . . , s

∗
q−2)

T (10)

denotes the vector of the values s∗
h of the Cauchy sums output by the algorithm

and ||s∗|| denotes the Euclidean norm (
∑q−1

h=0 |s∗
h|2)1/2. If ||s∗|| q0 αd ≥ 1, con-

clude that the disc D(0, θ) definitely contains a root of p. Otherwise conclude
that the disc D(0, 1) contains no roots of p definitely if q > d or whp otherwise.

Work [18] as well as [19] readily prove that the disc D(0, 2) contains a root
of p if ||s∗|| q0 αd ≥ 1, and this reduces correctness proof of the algorithm to
certification that the disc D(0, 1) contains no roots of p if the vector of the q
Cauchy sums s∗ has Euclidean norm satisfying ||s∗|| q0 αd < 1. This certification,
deterministic for q > d and probabilistic for 2 ≤ q ≤ d, is the subject of the next
two sections.
3 One can extend the algorithm by applying Algorithm 1a to a disc D(0, θ) for smaller

θ > 1 and modifying bound (9) accordingly. See a refined version of this algorithm
in [18].
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Remark 3. For the computation of Cauchy sums for q of order of d, we should
evaluate p and p′ at order of d points; by applying our reduction of multi-
point polynomial evaluation (MPE) to fast multipole method (FMM) (see [18,
Appendix E]), we can do this by using order of d log2(d) arithmetic operations,
performed numerically with the precision of order log(d) bits. It outputs the
vector of the first q Cauchy sums s0, . . . , sq−1 within a relative error of order
log(d). This should be sufficient in order to verify the bounds of Algorithm 2,
[18, Theorem 19 and Corollaries 4.2 and 4.3] because FMM is celebrated for
being very stable numerically, although further formal and experimental study
is in order.

The algorithm runs faster as we decrease integer q, and already under the
choice of q0 of order of log(d) the disc D(0, 2) contains a root of p if ||s∗|| q0 αd ≥
1. For q ≤ d, we have only probabilistic support of correctness of Algorithm 2
in the case where ||s∗|| q0 αd < 1, but we can try to strengthen reliability of
our exclusion tests by verifying additional necessary conditions for correctness
of our exclusion test and root-counting:

(a) the Cauchy sums s∗
h for h = 0, 1, . . . , q −1 still nearly vanish for the polyno-

mials t(x) obtained from p(x) by means of various mappings of the variable
x that keep an input disc and the power sum s0 invariant (cf. Remark 1);

(b) an exclusion test should succeed for any disc lying in the disc D(c, ρ). In
particular, if the disc covers a suspect square, then exclusion tests should
succeed for the four discs that cover the four congruent sub-squares obtained
from sub-dividing the input square;

(c) all suspect squares of a subdivision iteration together contain precisely d
roots of p.

If these additional necessary conditions hold, it is still plausible that the disc
D(c, ρ) contains a root of p. We can, however, detect whether we have lost any
root at the end of the subdivision process, when d − w roots are tamed, that is,
closely approximated, and when w roots remain at large; we call the latter roots
wild. If 0 < w � d, then at a low cost, we can deflate the wild factor of p, whose
root set is made up of the w wild roots; then we can approximate the roots of
this factor at a low cost (see [18, Section 7]).

It is natural to call a point c a tame root of p if rd(c, p) ≤ TOL for
a fixed tolerance TOL. The algorithm of [18, Section 6.2] closely approxi-
mates rd(c, p) at a relatively low cost, but it is even less expensive to verify
whether d |p′(c)/p(c)| ≤TOL and then to recall that rd(c, p) ≤ d |p′(c)/p(c)| (see
[5, Theorem 6.4g]).

Empirical support from the initial implementation and testing of our algo-
rithms in [9] has substantially superseded their formal support here and in [18].
In these tests, subdivision iterations with Cauchy exclusion tests by means
of Algorithm 1a have consistently approximated the integer s0 = 0 within
1/4 for q = 	log(4d + 1)/ log(4θ)
. For discs containing no roots and for
q = 	log(4d + 1)/ log(4θ)
 + 1, Algorithm 1 has consistently approximated both
s0 and s1 within 1/4 (cf. [9, equation(22) in Corollary 12 for e = 1/4]).
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4 Correctness Certification of an Exclusion Test

In this section, we complete the correctness certification of the exclusion test by
means of Algorithm 2.

4.1 Deterministic Certification

We begin with a lemma that implies q linear equations on the coefficients of the
polynomial p provided that s∗

h = 0 for h = 0, 1, . . . , q − 1.

Lemma 1. Suppose that s∗
h = 0 for a polynomial p(x), s∗

h of (4), c = 0, ρ = 1,
h = 0, 1, . . . , q − 1, and a positive q. Then the polynomial p′(x) is divided by
xq − 1.

Proof. Observe that

s∗ = Fv for v =
( p′(ζg)

qp(ζg)

)q−1

g=0
, ζ = exp

(2π
√

i
q

)
, F := (ζij)q−1

i,j=0 (11)

denoting the matrix of DFT at q points, and s∗ := (s∗
q−1, s

∗
0, . . . , s

∗
q−2)

T of (10).
Under the assumptions of the lemma s∗ = Fv = 0 for the vector 0 of length q

filled with 0s. Pre-multiply this vector equation by the matrix 1
q F ∗ of the inverse

DFT at q points and obtain that p′(ζg)
qp(ζg) = 0 for all g. Hence p′(ζg) = 0, for

g = 0, 1, . . . , q − 1, and, therefore, xq − 1 divides p′(x).

Corollary 3. Under the assumptions of Lemma 1 let q ≥ d. Then the polyno-
mial p′(x) is identically 0, and so the polynomial p(x) is a constant and has no
roots unless it is identically 0.

Next we assume that q > d and extend the corollary under much weaker
assumption that ||s∗|| < 1

qαd
rather than s∗ = 0. Recall that ||v|| =

(
∑k

i=1 |vi|2)1/2 denotes the Euclidean norm of a vector v = (vi)k
i=1vi.

Theorem 3. Given a polynomial p(x) of (2) and a positive integer q, write

p̂(x) := p(x) mod (xq − 1), p̂′(x) := p′(x) mod (xq − 1), (12)

and p̂0 := p̂(0), let p̂′, p̂, and p̂1 denote the coefficient vectors of the polynomials
p̂′(x), p̂(x), and p̂(x) − p̂0, respectively, and suppose that

||s∗|| = ||Fv|| ≤ τ, (13)

for s∗ = Fv, F and v of (11), and a positive tolerance τ . Then

|p̂0|2 ≥ |(τq)−2 − 1| ||p̂1||2. (14)
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Proof. Multiply equation (13) by the matrix 1
q F ∗ of the inverse DFT and obtain

1
q
F ∗s∗ = v.

Hence
||v|| ≤ 1

q
||F ∗|| ||s∗|| ≤ τ√

q
.

Therefore, ∣∣∣
∣∣∣
( p′(ζg)

qp(ζg)

)q−1

g=0

∣∣∣
∣∣∣ ≤ τ√

q
,

and consequently

||(p′(ζg))q−1
g=0|| ≤ τ

√
q

q−1
max
g=0

|p(ζg)| ≤ τq ||(p(ζg))q−1
g=0||.

Substitute the equations p(ζg) = p̂(ζg) and p′(ζg) = p̂′(ζg) in the above and
obtain

||(p̂′(ζg))q−1
g=0|| ≤ τq ||(p̂(ζg))q−1

g=0|| (15)

for the polynomials p̂′(x) and p̂(x) of (12) with the coefficient vectors p̂′ and p̂,
respectively. Observe that

(p̂′(ζg))q−1
g=0 = F p̂′ and (p̂(ζg))q−1

g=0 = F p̂

for the DFT matrix F = (ζij)q−1
i,j=0 of (11).

Substitute these expressions into bound (15) and obtain ||F p̂′|| ≤ τq ||F p̂||.
Hence

||p̂′|| ≤ τq ||p̂|| (16)

because F is a unitary matrix up to scaling by
√

q.
Furthermore observe that

||p̂||2 = |p̂0|2 + ||p̂1||2 and ||p̂′||2 ≥ ||p̂1||2

for p̂0 = p̂(0) and the vector p̂1 of the coefficients of p̂(x) − p̂0.
Combine these observations with bound (16) and obtain the theorem.

Corollary 4. Under the assumptions of Theorem 3 let

q > d and (1 +
√

d)τ2q2
√

d < 1.

Then the polynomial p(x) has no roots in the unit disc D(0, 1) = {x : |x| ≤ 1}.
Proof. The bound (1 +

√
d)τ2q2 < 1 implies that (τq)−2 − 1 >

√
d, while the

bound q > d implies that p̂(x) = p(x) and p̂0 = p(0) = p0. Hence Theorem 3
implies that |p0|2 >

√
d

∑d
i=1 |pi|2 and so |p0| > |p| =

∑d
i=1 |pi|. The latter

bound is impossible if p(x) = 0 for |x| ≤ 1.
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Remark 4. We proved this corollary assuming that Cauchy exclusion test by
means of Algorithm 2 has been applied to the roots of a polynomial p(x) in the
unit disc D(0, 1), but our proof supports such a test for the roots of a polynomial
t(x) = p((x − c)/ρ) in that disc for any complex c and positive ρ. Hence the
corollary also holds if the test is applied to the roots of a polynomial p(x) in a
disc D(c, ρ).

4.2 Probabilistic Certification Under Random Coefficient Model

Our next extensions of the result to the case 2 ≤ q ≤ d are probabilistic under
a random coefficient model. We only state asymptotic probability estimates in
the case where τ → 0, but specific estimates for fixed bounds on τ are implicit
in the proofs.

Corollary 5. Define a Random Coefficient Model such that the coefficients p0,
p1, . . . , pd of p are independent Gaussian random variables having expected val-
ues ai and positive variance σ2

i , for i = 0, 1, . . . , d. Suppose that the Cauchy
exclusion test by means of Algorithm 2 has been applied to the unit disc D(0, 1)
and a polynomial p(x) under this model and let 2 ≤ q ≤ d. Then the bound of
Theorem 3 holds with a probability that fast converges to 0 as τ → 0.

Proof. Let d = (k − 1)q + l for k ≥ 0 and 0 ≤ l ≤ q − 1 and write

p̂i :=
ki∑

j=0

pjq+i, i = 0, 1, . . . , q − 1, ki = k for i < l, ki = k − 1 for i ≥ l.

Then
p̂ = (p̂i)

q−1
i=0 , p̂1 = (p̂i)

q−1
i=1 (17)

where p̂i for all i are independent Gaussian variables with expected values âi

and positive variance values σ̂2
i given by

âi =
ki∑

j=0

ajq+i and σ̂2
i =

ki∑

j=0

σ2
jq+i, i = 0, 1, . . . , q − 1. (18)

Such variables are strongly concentrated about their expected values. Bound (14)
of Theorem 3 implies that

|â0| = |
k0∑

j=0

ajq| ≥ |(τq)−2 − 1| q−1
max
i=1

|âi|

for âi of (18).4 Since p̂0, . . . , p̂q−1 are independent Gaussian random variables,
which are strongly concentrated about their expected values âi, this inequality
strongly restricts the class of polynomials p(x) satisfying (14) for small τ and
q ≥ 2; furthermore, the probability that this inequality and bound (14) hold
converges to 0 exponentially fast as τ → 0.
4 One can slightly strengthen our estimates based on the observation that |p̂0|2 and
||p̂1||2 are χ2-functions of dimension 1 and q − 1, respectively.
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Now suppose that the Cauchy exclusion test has been applied to the disc
D(c, ρ) for a complex c and a positive ρ and restate the above argument for the
polynomial t(x) :=

∑d
j=0 tjx

j := p(x−c
ρ ) where (cf. [15, Problem 2.4.3])

tj =
d∑

i=j

pi · (−c)i−jρ−i

(
i
j

)
, j = 0, 1, . . . , d, (19)

and so the partial sums t̂j , j = 0, 1, . . . , q − 1, are still independent Gaussian
variables strongly concentrated about their expected values E(t̂j). Equations (19)
imply that

E(t̂j) =
d∑

i=j

ai · (−c)i−jρ−i

(
i
j

)
, j = 0, 1, . . . , d. (20)

Expressions t̂ = (t̂i)
q−1
i=0 , t̂1 = (t̂i)

q−1
i=1 replace (17), and bound (14) restricts

the classes of polynomials t(x) and consequently p(x).
Now observe that limρ→∞ t̂0 = t0, where t0 does not depend on ρ. Further-

more, tj → 0 as ρ → ∞ for j �= 0, and so limρ→∞ t̂1 = 0. Therefore, the value
E|t̂0|2 strongly dominates the value E||̂t1||2, and this strongly restricts the the
classes of polynomials t(x) and consequently p(x).

Next assume that the ratio |p0| = |t0|/maxd
i=1 |ti| is not large and then

argue that bound (14) strongly restricts the classes of polynomials t(x) and p(x).
Indeed rewrite equation (20) as follows:

E(tj) =
d∑

i=j

ui(−c)−j

(
i
j

)
, for ui = ai(−c)iρ−i, i, j = 0, 1, . . . , d.

Now observe that L0 = E(t̂0 − t0) and L1 = E(t̂1) are linear combinations in the
same variables ui, for i = 0, 1, . . . , d, whose coefficients are polynomials in −1/c
with positive integer coefficients. Furthermore, such polynomials in L0 and L1

consist of the terms (−c)j
(

i
j

)
, which make up pairs of terms, such that one term

of every pair is in L0, another is in L1, and dc exceeds the ratio of these terms
in every pair. It follows that bound (14) for |(τq)−2 −1| |  dc strongly restricts
the classes of polynomials p(x) and t(x). Then again this follows because of the
strong concentration of a Gaussian variable about its expected value.

5 Cauchy Root-Counting Under Two Random Root
Models

5.1 Error Estimates

Random root models are less popular in the study of root-finding than random
coefficient models but still enable some insight into this subject: indeed, if a
property holds whp under a random root model, then it must hold for a large
input class if not for most of inputs.
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Definition 2. Under Random Root Models 1 and 2, the roots of p are iid ran-
dom variables sampled under the uniform probability distribution from some fixed
regions D on the complex plain.

1. D is the disc D(0, R) for a fixed positive R in Random Root Model 1.
2. D is the union of two distinct domains in Random Root Models 2: for a fixed

R > 1 and a fixed nonnegative integer k ≤ d, the roots xk+1, . . . , xd of p are
sampled from a disc D(0, R), but the roots {x1, . . . , xk} are sampled from
a fixed narrow annulus A(0, 1/θ, θ) about the boundary circle C(0, 1), for a
reasonably small positive θ − 1.

The following readily verified theorem implies that the roots of p lie on or
near any fixed circle on the complex plain with a low probability (wlp) under
Random Root Model 1.

Theorem 4. For a polynomial p = p(x), θ > 1, a complex c, and positive ρ
and R such that R > ρ + |c| and ρ

√
d = O(R), assume Random Root Model 1.

(i) Then for any fixed integer j in the range [0, d], the root xj lies in the
annulus A(c, ρ/θ, ρθ) with the probability PR,ρ,θ = (θ4−1)ρ2

R2θ2 .
(ii) The probability that at least one root of p lies in the annulus A(c, ρ/θ, ρθ)

is at most PR,ρ,θd = (θ4−1)ρ2d
R2θ2 .

Proof. Recall that the probability PR,ρ,θ is the ratio of the areas (θ4 − 1)ρ2/θ2

and πR2 of the annulus A(c, ρ/θ, ρθ) and the disc D(0, R), respectively, and
obtain claim (i). Immediately extend it to claim (ii).

Notice that the bound PR,ρ,θd converges to 0 as ρ
R

√
(θ − 1)d → 0, where the

ratio ρ/R never exceeds 1 and decreases by twice at every subdivision iteration
and hence by a factor of d in 	log2(d)
 iterations.

Combine claim (ii) of the theorem with bound (7) and conclude that the
Cauchy sum s∗

0 approximates the power sum s0 within less than 1/2 unless some
roots of p(x) lie on or very close to the boundary circle C(c, ρ), and the latter
property of the roots holds wlp under Random Root Model 1.

5.2 Probabilistic Correctness Verification

The latter claim is no longer valid under Random Root Model 2 because of the
impact of the roots lying on or near boundary circle the Cauchy sum s∗

0 can
be misleading, that is close to a wrong integer, distinct from s0. We are going
to prove, however, that this can only occur wlp. We begin with an alternative
proof that the value |s∗

0 − s0| is small whp under Random Root Model 1 and
then readily extend it to proving similar results under Random Root Model 2.

We will only deduce that

|s∗
0 − u| ≤ 0.1v (21)

wlp P for a fixed complex number u and a fixed positive v under Random
Root Models 1 and 2. This will immediately imply that |s∗

0 − i| ≤ 0.1v for i ∈
{0, 1, . . . , d} with a probability at most (d + 1)P . Therefore, if (21) holds, then
i = s0 with a probability at least 1−(d+1)P under Random Root Models 1 and 2.
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Lemma 2. Write

y :=
1

1 − xq
, ỹ :=

1
1 − x̃q

, and δ = |ỹ − y| (22)

where |y| ≥ v > 10δ > 0. Then

|x̃ − x| ≤ ∇ for ∇ :=
δ

q
·
(
1 +

1
0.81v2

)(1−q)/q

. (23)

Proof. Equation (22) implies that

x =
(
1 − 1

y

)1/q

, x̃ =
(
1 − 1

ỹ

)1/q

, and x̃ − x =
(
1 − 1

ỹ

)1/q

−
(
1 − 1

y

)1/q

.

Apply Taylor–Lagrange formula to the function x(y) =
(
1 − 1

y

)1/q

and obtain

x̃ − x = (ỹ − y)
d

dy

((
1 − 1

y

)1/q)
=

ỹ − y

q

(
1 +

1
(y + ξ)2

)(1−q)/q

for ξ ∈ [0, ỹ − y]. Substitute δ = |ỹ − y| and |y + ξ| ≥ 0.9|y| ≥ 0.9v.

Theorem 5. For R > 1 and any fixed complex number u, write s :=∑d
j=2

1
1−xq

j
= s∗

0 − 1
1−xq

1
, v := 1

Rq−1 , and δ := |s∗
0 − u| for the Cauchy sum s∗

0 in

the unit disc D(0, 1) and assume Random Root Model 1. Then δ ≤ 0.1v with a
probability at most

P =
4∇
R

·
(
1 − ∇

R

)
for ∇ of (23). (24)

In particular, bound (24) is close to

4∇
R

≈ 4δ

Rq
(25)

if v is a small positive number, in which case ∇ ≈ δ/q.

Proof. Keep the root x1 random, but fix the other roots x2, . . . , xd. Apply
Lemma 2 for x = x1, y = 1

1−xq
1
, ỹ = u − s, and x̃ such that ỹ = 1

1−x̃q . Notice
that in this case, |y| ≥ v because |x1| ≤ R, and so the assumptions of the lemma
are fulfilled.

The lemma implies that |x1 − x̃| ≤ ∇ for ∇ of (23). Hence x1 lies in the
annulus

A(0, |x̃| − ∇, |x̃| + ∇) = {z : |x̃| − ∇ ≤ z ≤ |x̃| + ∇}, (26)

whose area is maximized for x̃ = R − ∇ and then reaches

π · (R2 − (R − 2∇)2) = 4π · (R − ∇)∇.

Divide this by the area πR2 of the disc D(0, R) and obtain bound (24).



Acceleration of Subdivision Root-Finding for Sparse Polynomials 475

We have proved Theorem 5 assuming that the Cauchy sum s∗
0 is computed

for the unit disc D(0, 1). We can extend this study to any disc D(c, ρ) such
that R + |c| > ρ by replacing an input polynomial p(x) with the polynomial
t(x) = p(x−c

ρ ). We can apply the same proof if we replace the disc D(0, R) with

D(c, R−|c|
ρ ). This would imply that in the statement of the theorem, R changes

into R/ρ and v := 1
Rq−1 changes into

v :=
1

R(c, ρ)q − 1
for R(c, ρ) =

R + |c|
ρ

> 1. (27)

Here is the resulting extended version of this theorem.

Theorem 6. Let the assumptions of Theorem 5 hold except that now the Cauchy
sum s∗

0 has been computed in a sub-disc D(c, ρ) of the disc D(0, R) for a complex c
and a positive ρ. Then δ := |s∗

0 − u| ≤ 0.1v with a probability at most

P =
4∇ρ

R
·
(
1 − ∇

R

)
for ∇ of (23). (28)

We can readily extend the estimates of Theorems 5 and 6 to the case where
the roots are sampled under Random Root Model 2 because under that model,
we can prove that the contribution of the roots x1, . . . , xk to the Cauchy sum s∗

0

moves it close to an integer distinct from s0 wlp if ∇ = o(θ−1). Indeed repeat the
proof of Theorem 5 but replace R by θ while estimating the area of annulus (26).
Then divide this area by the area π · (θ2 − 1

θ2 ) of the annulus A(0, 1
θ , θ) and thus

extend Theorem 5. Similarly extend Theorem 6.

Theorem 7. Under Random Root Model 2, write v := 1
θq−1 and fix ∇ of (23)

and a complex number u. Then |s∗
0 − u| ≤ 0.1v with a probability at most

P =
4∇ · (ρθ − ∇)

ρ2 · (θ2 − 1/θ2)
, and in particular

4∇ · (θ − ∇)
θ2 − 1/θ2

for ρ = 1. (29)

In the rest of this subsection, we soften the assumption that y can be required to
be as small as v := 1

Rq−1 under Random Root Model 1 (cf. (27)). Under Random
Root Model 2, (27) turns into quite a reasonable bound v := 1

θq−1 , and we do
not need to soften it.

Theorem 8. Let the assumptions of Theorem 5 hold except that we can choose
any positive value v. Then δ := |s∗

0 − u| ≤ 0.1v for the Cauchy sum s∗
0 with a

probability at most P0 + P1 for ∇ of (23),

P0 =
( r

R

)2d

≤
( 1

R

)2d

, P1 =
4r∇

R2 − r2
≤ 4∇

R2 − 1
, and r =

∣∣∣
v − 1

v

∣∣∣
1/q

. (30)

Proof. P0 bounds the probability that all d independent random variables
x1, . . . , xd lie in the disc D(0, r), whose area is πr2, while the area of the disc
D(0, R) is πR2.
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Hence xj lies outside the disc D(0, r) for at least one j, say, j = 1 with a
probability at least 1 − P0. In this case, |y1| ≥ v, and then Theorem 5 narrows
the range for x1 from the annulus A(0, r, R) = D(0, R) − D(0, r) to the annulus
A(0, r−∇, r+∇) = D(0, r+∇)−D(0, r−∇) for ∇ of (23). Obtain the bound P1

as the ratio of the areas of these two annuli.

We extend Theorem 6 similarly.

Theorem 9. Let the assumptions of Theorem 6 hold except that we can choose
any positive value v. Then δ := |s∗

0 − u| ≤ 0.1v for the Cauchy sum s∗
0 with a

probability at most P0 + P1 for

P0 =
(rρ

R

)2d

, P1 =
4rρ∇

R2 − (rρ)2
, r =

∣∣∣
v − 1

v

∣∣∣
1/q

, and ∇ of (23). (31)

Remark 5 [Optimization of the probability bound.] For a fixed pair of a disc
D(c, r/ρ) and an integer q, Theorem 9 bounds the probability P0 +P1 of having
|s∗ − u| ≤ 0.1v as a function of a single parameter v in the range [0, 1

R(c,ρ)q−1 ]

for R(c, ρ) = R+|c|
ρ . We leave to the reader the challenge of the choice of this

parameter that would minimize our bound on P0 + P1 or a similar bound under
the inequalities |s∗

0 − u| ≤ βu for any reasonable choice of a small positive β.
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Abstract. The translational-rotational motion of a non-stationary tri-
axial body with constant dynamic shape in a non-stationary Newtonian
central gravitational field is considered. Differential equations determin-
ing translational motion of the triaxial body around a spherical body and
its rotation about the center of mass are obtained in terms of the oscu-
lating Delaunay–Andoyer elements. The force function is expanded in
power series in terms of the Delaunay–Andoyer elements up to the second
harmonic element inclusive. Averaging the equations of motion over the
“fast” variables, we obtain the evolution equations of the translational-
rotational motion of the non-stationary triaxial body which may be
integrated numerically for any given laws of the masses and principal
moments of inertia variation. All the relevant symbolic calculations are
performed with the aid of the computer algebra system Wolfram Math-
ematica.

Keywords: Non-stationary two-body problem ·
Translational-rotational motion · Secular perturbations · Evolution
equations · Wolfram mathematica

1 Introduction

The classical two-body problem describes the motion of two points of constant
masses interacting according to Newton’s law of gravitation, and its general
solution is well known. Since this solution describes translational motion of two
finite bodies with spherically symmetric density distribution, as well, such a
model is usually used as the first approximation in describing the orbital motion
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of real celestial bodies, for example, a planet around the Sun or a satellite around
a planet (see [1,2]). If at least one of the bodies is not spherically symmetric,
the problem becomes much more complicated because a mutual gravitational
interaction depends on the geometrical shape and mass distribution of the bodies.
Besides, translational and rotational motions depend on each other, and the
corresponding equations of motion should be integrated together (see [3–6]).

On the other hand, real celestial bodies are non-stationary, their characteris-
tics, such as mass, size, and shape may vary with time (see [7–11]). Such changes
occur especially intensively in double and multiple systems [12]. So it is quite
natural to consider the problem of many bodies of variable mass and to investi-
gate an influence of the mass variation on the dynamic evolution of the system
(see, for example, [13–21]). It should be noted that dependence of masses on
time significantly complicates the problem, and even in case of two interacting
bodies of variable mass, a general solution to the equations of motion can be
written only in some special cases (see [10,11,22]).

In the present paper, we consider a generalized case of the two-body prob-
lem when the first body of variable mass m1(t) is spherically symmetric while
the second one has an arbitrary dynamic structure and its principal moments of
inertia are different (a triaxial body). It is assumed that the mass and size of the
second body change with time but the dynamic shape of the bodies is preserved.
Besides, the variation of the body masses and sizes do not result in the appear-
ance of reactive forces and their torques (see [11]). In spite of these simplifying
assumptions, the problem is not integrable and the perturbation theory should
be applied for its investigation. To derive the equations of motion and to reduce
them to the form convenient for application of the perturbation theory quite
tedious symbolic computations should be done. The purpose of this paper is to
describe the main types of computational problems occurring in the derivation
of evolution equations and their investigation. All the relevant computations are
performed with the computer algebra system Wolfram Mathematica (see [23]).

The paper is organized as follows. In Sect. 2, we formulate the physical prob-
lem and derive the equations of motion in the form that is convenient for apply-
ing the perturbation theory. Section 3 is devoted to integrating the unperturbed
equations of motion. Then the perturbing functions are computed in Sect. 4 and
the evolution equations are obtained in Sect. 5. We summarize the results in the
Conclusions.

2 Equations of Motion

Let ξi, ηi, ζi (i = 1, 2) be the Cartesian coordinates of the centers of mass O1, O2

of the bodies P1 and P2, respectively, relative to some inertial reference frame.
Then the translational motion of the body P2 about body P1 may be described
by the radius-vector R = (x, y, z) connecting the points O1, O2, and its Cartesian
coordinates are

x = ξ2 − ξ1, y = η2 − η1, z = ζ2 − ζ1. (1)
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To describe the rotational motion of the body P2 we introduce two Cartesian
coordinate systems with the same origin located at its center of mass O2. The
axes of the first coordinate system O2XY Z are parallel to the axes of the inertial
frame. The second coordinate system O2xyz is attached to the body P2 and its
axes coincide with the principal central axes of inertia. Then orientation of the
body P2 relative to the O2XY Z frame can be specified in terms of the three
Euler angles ψ, θ, and ϕ (see Fig. 1). The projections of the angular velocity
vector onto the axes O2x, O2y, and O2z are given by (see [1,3])

p = ψ̇ sin θ sin ϕ + θ̇ cos ϕ, q = ψ̇ sin θ cos ϕ − θ̇ sinϕ, r = ψ̇ cos θ + ϕ̇, (2)

where the dot over a symbol denotes the total derivative of the corresponding
function with respect to time.

Denoting the principal central moments of inertia of the body P2 by A(t),
B(t), and C(t), we can write the equations of translational and rotational motion
in the form (see [11,20])

μ(t)
d2x

dt2
=

∂U

∂x
, μ(t)

d2y

dt2
=

∂U

∂y
, μ(t)

d2z

dt2
=

∂U

∂z
, (3)

d

dt
(A(t)p) + (C(t) − B(t))qr =

sin ϕ

sin θ

[
∂U

∂ψ
− cos θ

∂U

∂ϕ

]
+ cos ϕ

∂U

∂θ
,

d

dt
(B(t)q) + (A(t) − C(t))rp =

cos ϕ

sin θ

[
∂U

∂ψ
− cos θ

∂U

∂ϕ

]
− sin ϕ

∂U

∂θ
,

d

dt
(C(t)r) + (B(t) − A(t))pq =

∂U

∂ϕ
. (4)

Here μ(t) = m1(t)m2(t)/ (m1(t) + m2(t)) is the reduced mass, the force function
U is a series in powers of the inverse distance R between the centers of mass of
the bodies accurate to the third order (see [1,3])

U = U1 + U2, U1 =
Gm1m2

R
, R =

(
x2 + y2 + z2

)1/2
, (5)

U2 = Gm1
A + B + C − 3I

2R3
, (6)

G is a gravitational constant, and

I = Aα2
1 + Bα2

2 + Cα2
3

is the moment of inertia of the triaxial body P2 relative to the axis given by the
vector R, and α1, α2, α3 are the direction cosines of the vector R relative to the
body fixed coordinate system O2xyz.

Remind that the masses m1(t), m2(t) and the principal moments of inertia
A(t), B(t), C(t) change with time. We assume that the body P1 remains spheri-
cally symmetric and the body P2 retains its initial dynamic structure. Therefore,
the principal moments of inertia satisfy the condition

A(t)
A0

=
B(t)
B0

=
C(t)
C0

= νχ2, (7)
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where A0 = A(t0), B0 = B(t0), C0 = C(t0), t0 is an initial instant of time, and
m1 = m1(t), m2 = m2(t0)ν(t), χ = χ(t) are given functions of time satisfying
the conditions ν(t0) = 1, χ(t0) = 1 and ν(t) > 0, χ(t) > 0 for t > t0. The
functions m1(t) and ν(t) determine the mass variation of the bodies and may be
chosen according to the Eddington–Jeans law, for example (see [7,8]). Remind
that the moment of inertia of a rigid body is proportional to its mass and a
square of its geometric sizes (see, for example, [24]). As the body P2 is assumed
to retain its initial dynamic structure, the function χ(t) in (7) determining its
characteristic size variation is the same for the three principal moments of inertia
A(t), B(t), and C(t).

3 Unperturbed Motion

Since equations (3)–(4) are not integrable, we can apply a perturbation theory to
the investigation of the system dynamics (see, for instance, [25]). This assumes
that equations (3)–(4) are reduced to two perturbed problems of which each is
integrable in the case when there are no perturbations.

3.1 Translational Motion

Let us substitute (5) and (6) into (3) and rewrite (3) in the form

ẍ + G(m1 + m2)
x

R3
− γ̈

γ
x =

∂V

∂x
,

ÿ + G(m1 + m2)
y

R3
− γ̈

γ
y =

∂V

∂y
,

z̈ + G(m1 + m2)
z

R3
− γ̈

γ
z =

∂V

∂z
, (8)

where

V =
m1 + m2

m1m2
U2 − γ̈

2γ
R2, γ(t) =

m1(t0) + m2(t0)
m1(t) + m2(t)

. (9)

Such representation of Eq. (3) is convenient because Eq. (8) are integrable in case
of V = 0 for any doubly continuously differentiable function γ(t) (see [11]); the
corresponding solution is given by

x = γρ(cos(υ + ω) cos Ω − sin(υ + ω) sin Ω cos i),
y = γρ(cos(υ + ω) sin Ω + sin(υ + ω) cos Ω cos i),
z = γρ sin(υ + ω) sin i, (10)

where

ρ =
a(1 − e2)
1 + e cos υ

, (11)

and the parameters a, e, i, Ω, ω determined from the initial conditions corre-
spond to the Kepler orbital elements known from the classical two-body problem;
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they are analogs of the major semi-axis, eccentricity, inclination, longitude of the
ascending node, and the longitude of the peri-center of the unperturbed quasi-
elliptic orbit of the body P2 (see, for example, [11,16]). The true anomaly υ is
determined by the equation∫ υ

0

dυ

(1 + e cos υ)2
=

1
(1 − e2)3/2

(E − e sin E)

=
M

(1 − e2)3/2
=

√
K0

a3/2(1 − e2)3/2
(Φ(t) − Φ(τ)) , (12)

where τ is the time when the body P2 passes through the pericenter, M is the
mean anomaly,

Φ(t) =
∫ t

t0

dt

γ2(t)
, K0 = G(m1(t0) + m2(t0)) ,

and the eccentric anomaly E is related to the true anomaly υ by

tan
υ

2
=

√
1 + e

1 − e
tan

E

2
. (13)

Given the function γ(t), which depends on the laws of mass variation of
the bodies P1, P2, equations (12) and (13) make it possible to find the mean
anomaly M , the eccentric anomaly E, and the true anomaly υ as the functions
of time. As a result, relations (10) and (11) allow us to compute the relative
Cartesian coordinates of the body P2 and completely describe its unperturbed
translational motion.

Note that in the case of constant masses, when γ(t) = 1, equations (10)–(13)
determine the translational motion of the body P2 around the body P1 along
conic section. The presence of the scale factor γ(t) that depends on time in (10)
results in deforming the conic section and makes the motion aperiodic. For this
reason, the solution to the equations (8) in the case V = 0 is said to describe
aperiodic motion of the body P2 along quasi-conic section (see [11]).

If the perturbing function V �= 0 is taken into account in Eq. (8) the orbital
parameters a, e, i, Ω, and ω become the functions of time. To derive the dif-
ferential equations determining their evolution, it is convenient to use canonical
variables known as Delaunay elements and rewrite Eq. (8) in canonical form
(see [6,11]). The generating function for the corresponding canonical transfor-
mation is determined by the complete integral of the Hamilton–Jacobi equa-
tion (see, for example, [24,25]) and its constructing involves quite standard
but tedious symbolic computations (see [16]). Note that the system Wolfram
Mathematica (see [23]) offers many built-in functions such as Expand, Replace,
Integrate, Simplify, Solve, for example, which help a lot in doing such com-
putation. Finally, we determine three pairs of canonically conjugate coordinates
and momenta (l1, L1), (g1, G1), and (h1,H1); they are related to the analogs of
the Kepler orbital elements by

l1 = M , L1 =
√

K0a , g1 = ω , G1 =
√

K0a(1 − e2) ,
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h1 = Ω , H1 =
√

K0a(1 − e2) cos i . (14)

The corresponding Hamiltonian is given by

H(trans) = − K2
0

2γ2L2
1

− V , (15)

where the perturbing function V defined in (9) must be expressed in terms of
the canonical variables.

3.2 Rotational Motion

To write Eq. (4) in the canonical form let us define the angular momentum vector
G2 = (Lx, Ly, Lz) and the kinetic energy of rotation T as

Lx = Ap , Ly = Bq , Lz = Cr , T =
1
2

(
Ap2 + Bq2 + Cr2

)
. (16)

Taking into account (2) and using the Mathematica built-in function D, we
differentiate the kinetic energy T and obtain the momenta pψ, pθ, pϕ canonically
conjugate to the coordinates ψ, θ, ϕ in the form

pψ =
∂T

∂ψ̇
= Lx sin θ sinϕ + Ly sin θ cos ϕ + Lz cos θ ,

pθ =
∂T

∂θ̇
= Lx cos ϕ − Ly sinϕ , pϕ =

∂T

∂ϕ̇
= Cr = Lz . (17)

Solving system (17) and substituting Lx, Ly, Lz into (16), we obtain the Hamil-
tonian determining rotational motion of the body P2

H(rot) =
1

2A

(
1

sin2 θ

(
(pψ − pϕ cos θ)2 + p2θ

))
+ H(rot)

1 , (18)

where

H(rot)
1 =

1
2

(
1
B

− 1
A

)(cos ϕ

sin θ
(pψ − pϕ cos θ) − pθ sinϕ

)2

− U2. (19)

In case of H(rot)
1 = 0, the equations of motion determined by the Hamil-

tonian (18) are integrable and their general solution may be written in sym-
bolic form. However, to write this solution in the simplest form and to sim-
plify further calculations it is convenient to introduce “new” canonical variables
(l2, g2, h2, L2, G2,H2) which are known as the Andoyer ones (see [6,26]). The
momenta L2, G2, H2 are given by

L2 = pϕ , G2 =
(
(pψ − pϕ cos θ)2/ sin2 θ + p2θ + p2ϕ

)1/2
, H2 = pψ , (20)

where L2 may be interpreted as the projection of the angular momentum vec-
tor G2 onto the body fixed axis O2z, G2 = |G2| is the angular momentum, H2

is the projection of G2 onto the axis O2Z (see Fig. 1).
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New coordinates l2, g2, and h2 are connected with the Euler angles ψ, θ, ϕ
and momenta by the relations (see [26])

cos θ = cos I cos J − sin I sin J cos g2 ,

sin(ψ − h2)
sinJ

=
sin(ϕ − l2)

sin I
=

sin g2
sin θ

, (21)

where the angles J and I (see Fig. 1) are given by

cos I =
H2

G2
, sin I =

√
1 − H2

2

G2
2

, cos J =
L2

G2
, sinJ =

√
1 − L2

2

G2
2

. (22)

Geometrical interpretation of the Andoyer variables is shown in Fig. 1.

Fig. 1. Euler angles and Andoyer variables.

Solving Eq. (17) for Lx, Ly, Lz and using (19)–(21), one can express old
canonical variables ψ, θ, ϕ, pψ, pθ, pϕ via the new ones l2, g2, h2, L2, G2,H2 and
rewrite the Hamiltonian (18) in terms of the Andoyer variables as

H(rot) =
1

2A

(
G2

2 − L2
2

)
+

1
2C

L2
2 + H(rot)

1 , (23)

where

H(rot)
1 =

1
2

(
1
B

− 1
A

) (
G2

2 − L2
2

)
cos2 l2 − U2, (24)

and the term U2 defined in (6) is expressed in terms of the canonical variables
l2, g2, h2, L2, G2, and H2.
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Equations of unperturbed rotational motion of the body P2 about its center
of mass are obtained in case of H(rot)

1 = 0 and may be written in the canonical
form as

l̇2 =
∂

∂L2

(
H(rot) − H(rot)

1

)
=

(
1
C0

− 1
A0

)
L2

ν(t)χ2(t)
,

ġ2 =
∂

∂G2

(
H(rot) − H(rot)

1

)
=

G2

A0

1
ν(t)χ2(t)

,

ḣ2 = 0, L̇2 = 0, Ġ2 = 0, Ḣ2 = 0. (25)

System (25) is integrable and its general solution is

l2 =
(

1
C0

− 1
A0

)
L2

∫ t

t0

dτ

ν(τ)χ2(τ)
+ l20, L2 = const,

g2 =
G2

A0

∫ t

t0

dτ

ν(τ)χ2(τ)
+ g20, G2 = const, h2 = const, H2 = const. (26)

One can readily see that the angles l2(t) and g2(t) are increasing functions
of time while the rest four canonical variables h2, L2, G2, H2 are constants.

4 The Perturbing Functions

To write out the differential equations determining the perturbed translational-
rotational motion of the body P2 we need to express the perturbing functions (15)
and (24) in terms of the Delaunay–Andoyer variables. It means that we need
to find the corresponding expressions for the distance R between the centers
of masses of the bodies and the direction cosines of the vector R relative to
the body fixed coordinate system O2xyz (see (6), (9)). These direction cosines
α1, α2, α3 are determined from the dot product of the unit vectors directed along
the vector R and the axes O2x, O2y, O2z, respectively, and may be represented
in the form

α1 = a11
x

R
+ a21

y

R
+ a31

z

R
, α2 = a12

x

R
+ a22

y

R
+ a32

z

R
,

α3 = a13
x

R
+ a23

y

R
+ a33

z

R
, (27)

where x
R , y

R , z
R are the direction cosines of the vector R with respect to the axes

of the non-rotating coordinate system O1XY Z which have the form (see (10))

x

R
=

x

γρ
= cos(υ + ω) cos Ω − sin(υ + ω) sin Ω cos i,

y

R
=

y

γρ
= cos(υ + ω) sin Ω + sin(υ + ω) cos Ω cos i,

z

R
=

z

γρ
= sin(υ + ω) sin i, ρ =

a
(
1 − e2

)
1 + e cos υ

. (28)
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Coefficients aij in (27) are the direction cosines of the axes of the coordinate
system O2xyz fixed to the triaxial body P2 with respect to the non-rotating
coordinate systems O2XY Z. Note that the axes O2x, O2y, O2z are obtained from
the axes O2X, O2Y , O2Z by means of the five successive rotations (see Fig. 1):
rotation about the axis O2Z by the angle h2, rotation about the axis O2M by
the angle I, rotation about the axis O2G2 by the angle g2, rotation about the
axis O2N by the angle J , and rotation about the axis O2z by the angle l2. The
matrices of the corresponding transformations are given by

Q1 =

⎛
⎝ cos h2 − sin h2 0

sin h2 cos h2 0
0 0 1

⎞
⎠ , Q2 =

⎛
⎝1 0 0

0 cos I − sin I
0 sin I cos I

⎞
⎠ ,

Q3 =

⎛
⎝ cos g2 − sin g2 0

sin g2 cos g2 0
0 0 1

⎞
⎠ , Q4 =

⎛
⎝1 0 0

0 cos J − sin J
0 sin J cos J

⎞
⎠ ,

Q5 =

⎛
⎝ cos l2 − sin l2 0

sin l2 cos l2 0
0 0 1

⎞
⎠ .

Defining these matrices and using the built-in Mathematica function Dot,
we obtain the matrix

Q = Dot[Q1, Q2, Q3, Q4, Q5].

Note that the columns of the matrix Q determine the direction cosines aij = Qij

in terms of Andoyer variables. They are

a11 = cos g2 cos h2 cos l2 − cos h2 cos J sin g2 sin l2 − cos I cos l2 sin g2 sin h2−
− cos g2 cos I cos J sin h2 sin l2 + sinh2 sin I sinJ sin l2,

a21 = cos g2 cos l2 sinh2 − cos J sin g2 sinh2 sin l2 + cos h2 cos I cos l2 sin g2+

+ cos g2 cos h2 cos I cos J sin l2 − cos h2 sin I sinJ sin l2,

a31 = cos l2 sin g2 sin I + cos g2 cos J sin I sin l2 + cos I sin J sin l2,

a12 = − sin g2 cos h2 cos J cos l2−cos g2 cos h2 sin l2−cos g2 sin h2 cos I cos J cos l2

+ sin g2 sinh2 cos I sin l2 + sin h2 sin I sin J cos l2,

a22 = − sin g2 sin h2 cos J cos l2−cos g2 sinh2 sin l2+cos g2 cos h2 cos I cos J cos l2

− sin g2 cos h2 cos I sin l2 − cos h2 sin I sin J cos l2,

a32 = cos g2 sin I cos J cos l2 − sin g2 sin I sin l2 + cos I sin J cos l2,

a13 = sin g2 cos h2 sin J + sin h2 sin I cos J + cos g2 sinh2 cos I sinJ,

a23 = sin g2 sin h2 sinJ − cos h2 sin I cos J − cos g2 cos h2 cos I sin J,

a33 = cos I cos J − cos g2 sin I sinJ. (29)
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One can readily see that the direction cosines a13, a23, a33 do not depend on
the angle l2. To simplify further computation it is convenient to rewrite the rest
direction cosines in (29) in the form

a11 = κ11 cos l2 + κ12 sin l2,

a21 = κ21 cos l2 + κ22 sin l2,

a31 = κ31 cos l2 + κ32 sin l2,

a12 = κ12 cos l2 − κ11 sin l2, (30)
a22 = κ22 cos l2 − κ21 sin l2,

a32 = κ32 cos l2 − κ31 sin l2,

where
κ11 = cos g2 cos h2 − sin g2 sin h2

H2

G2
,

κ12 = sin h2

√(
1 − H2

2

G2
2

)(
1 − L2

2

G2
2

)
− cos g2 sin h2

H2L2

G2
2

− sin g2 cos h2
L2

G2
,

κ21 = cos g2 sinh2 + sin g2 cos h2
H2

G2
,

κ22 = − cos h2

√(
1 − H2

2

G2
2

)(
1 − L2

2

G2
2

)
+ cos g2 cos h2

H2L2

G2
2

− sin g2 sin h2
L2

G2
,

κ31 = sin g2

√
1 − H2

2

G2
2

, κ32 = cos g2
L2

G2

√
1 − H2

2

G2
2

+
H2

G2

√
1 − L2

2

G2
2

.

Using the obvious relation α2
1 +α2

2 +α2
3 = 1 and (11), we can rewrite expres-

sion (6) in the form

U2 =
Gm1(1 + e cos υ)3

2γ3a3(1 − e2)3
(
A + B − 2C − 3(A − C)α2

1 − 3(B − C)α2
2

)
, (31)

where the direction cosines α1, α2 are defined in (27).
Note that equations (28)–(30) enable us to rewrite (31) and the perturbing

functions (15), (24) in terms of the Delaunay–Andoyer variables and to write out
the equations of the perturbed motion in the explicit form. However, the corre-
sponding expressions are quite cumbersome and we do not write out them here.

5 Evolution Equations

Remind that in the absence of perturbations, the center of mass of the
body P2 moves along quasi-conic section determined by solution (10)–(12),
its orbital parameters a, e, i, Ω, ω and the corresponding Delaunay variables
g1, h1, L1, G1,H1 (see (14)) are constants, and only its mean anomaly l1 = M
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is an increasing function of time. Rotational motion is independent of transla-
tional one and solution (26) determines free rotation of the body P2 about the
axis O2z and precession of this axis about the angular momentum vector G2.
Both angles l2(t) and g2(t) are increasing functions of time but we assume that
A0 > C0 and the angle l2(t) increases much faster than the angle g2(t). The rest
four Andoyer variables h2, L2, G2, and H2 are constant.

Taking into account the perturbing function in the Hamiltonian (15) and (24)
results in the dependence of the Delaunay–Andoyer variables on time. Equa-
tions (10), (14), (27)–(30) show that the angle variables l1, l2, g1, g2, h1, h2 appear
in the perturbing functions only as arguments of the sine and cosine functions.
As the angles l1 and l2 are increasing functions of time, they may be considered
as “fast” variables which result in the oscillation of some terms in the perturbing
functions. If the frequencies of these oscillations are incommensurable the cor-
responding short-term oscillations of the Delaunay–Andoyer variables may be
eliminated by averaging the perturbing functions. The averaging is performed in
the revolution period of the body P2 over the mean anomaly l1 of its translational
motion and over the variable l2 describing rotation of the body around the O2z
axis. Using the averaged perturbing functions in the Hamiltonian (15) and (24)
we can write out the evolution equations describing the long-term behavior of
the Delaunay–Andoyer variables in the standard canonical form.

Note that using the Hamiltonian (15), (24), one could write out first the
equations of the perturbed motion in the explicit form and to average them
afterwards to obtain the evolution equations but in this case, the calculations
would be much more complicated.

To find the averaged perturbing functions F we need to calculate the follow-
ing integral

1
4π2

∫ 2π

0

∫ 2π

0

Fdl1dl2 =
(1 − e2)3/2

4π2

∫ 2π

0

∫ 2π

0

F

(1 + e cos υ)2
dυdl2. (32)

Note that the integration over the angle l1 in (32) is convenient to replace by
integration over the true anomaly υ (see (12)).

Integrating the expressions (15) and (24), we obtain the secular parts of the
Hamiltonians in the form

H̃(trans) = − K2
0

2γ2L2
1

− G(m1 + m2)
2m2γ3

(A + B − 2C)(W2 − 3W3) +
1
2
γ̈γW1, (33)

H̃(rot) =
1
2

(
1
C

− 1
A

)
L2
2 +

1
2A

G2
2 +

1
4

(
1
B

− 1
A

)(
G2

2 − L2
2

) −

− Gm1

2γ3
(A + B − 2C)(W2 − 3W3), (34)

where

W1 = a2

(
1 +

3
2
e2

)
=

L4
1

2K2
0

(
5 − 3G2

1

L2
1

)
, W2 =

1
a3(1 − e2)3/2

=
K3

0

L3
1G

3
1

,
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W3 =
K3

0

4L3
1G

5
1

(
(G2

1 − H2
1 )(κ2

31 + κ2
32) +

+G2
1

(
(κ11 cos h1 + κ21 sin h1)2 + (κ12 cos h1 + κ22 sin h1)2

)
+

+H2
1

(
(κ11 sin h1 − κ21 cos h1)2 + (κ12 sin h1 − κ22 cos h1)2

)
+

+2G1H1

√
1 − H2

1

G2
1

((κ21κ31 + κ22κ32) cos h1 −

− (κ11κ31 + κ12κ32) sin h1)) .

Finally, using (33) and (34), we can write the evolution equations in the
canonical form

L̇1 = −∂H̃(trans)

∂l1
= 0, Ġ1 = −∂H̃(trans)

∂g1
, Ḣ1 = −∂H̃(trans)

∂h1
,

l̇1 =
∂H̃(trans)

∂L1
, ġ1 =

∂H̃(trans)

∂G1
, ḣ1 =

∂H̃(trans)

∂H1
, (35)

L̇2 = −∂H̃(rot)

∂l2
= 0, Ġ2 = −∂H̃(rot)

∂g2
, Ḣ2 = −∂H̃(rot)

∂h2
,

l̇2 =
∂H̃(rot)

∂L2
, ġ2 =

∂H̃(rot)

∂G2
, ḣ2 =

∂H̃(rot)

∂H2
. (36)

Note that differentiation of the Hamiltonian in (35) and (36) is performed
with the built-in Mathematica function D but the obtained expressions are quite
cumbersome and we do not write out them here.

6 Conclusions

Equations for secular perturbations of the translational-rotational motion of a
triaxial satellite in osculating elements of Delaunay–Andoyer are obtained and
can be used to analyze the dynamic evolution of the system of two non-stationary
bodies attracting each other according to the Newton law of gravitation. Note
that in case of m1(t) = const, ν(t) = 1, χ(t) = 1, γ(t) = 1, equations (35)
and (36) describe translational-rotational motion of a stationary triaxial rigid
body in the central gravitational field (see, for example, [26]). Non-stationarity of
the bodies complicates the problem substantially and solutions to the evolution
equations (35) and (36) cannot be found in symbolic form. So further develop-
ment of this work involves numerical analysis of the obtained evolution equations
of translational-rotational motion of a triaxial body of constant dynamic shape
and variable size and mass.

Note that using the Hamiltonian (15), (23) one can write out the equations
of translational-rotational motion of the body P2 in explicit form and apply
purely numerical methods for their solution. However, in addition to the secular
parts, such numerical solutions contain short-term oscillations and an accuracy
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of calculations should be very high to obtain correct result. As any numerical
solution is determined by some initial conditions, special attention should be
paid to avoid a commensurability of frequencies in the system. Besides, the
short-term oscillations only perturb the solution but they do not influence the
long-term behavior of the system we are interested in. Thus, the derivation of
the evolution equations in symbolic form enables one to eliminate short-term
perturbations and to simplify analysis of the problem.

Note also that all the relevant symbolic calculations have been performed
with the aid of the computer algebra system Wolfram Mathematica.
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Abstract. Motivated by problems from Chemical Reaction Network
Theory, we investigate whether steady state ideals of reversible reac-
tion networks are generated by binomials. We take an algebraic app-
roach considering, besides concentrations of species, also rate constants
as indeterminates. This leads us to the concept of unconditional bino-
miality, meaning binomiality for all values of the rate constants. This
concept is different from conditional binomiality that applies when rate
constant values or relations among rate constants are given. We start by
representing the generators of a steady state ideal as sums of binomials,
which yields a corresponding coefficient matrix. On these grounds, we
propose an efficient algorithm for detecting unconditional binomiality.
That algorithm uses exclusively elementary column and row operations
on the coefficient matrix. We prove asymptotic worst case upper bounds
on the time complexity of our algorithm. Furthermore, we experimentally
compare its performance with other existing methods.

Keywords: Binomial ideals · Linear algebra · Reversible chemical
reaction networks

1 Introduction

A chemical reaction is a transformation between two sets of chemical objects
called chemical complexes. The objects that form a chemical complex are chemi-
cal species. In other words, complexes are formal sums of chemical species repre-
senting the left hand and the right hand sides of chemical reactions. A chemical
reaction network is a set of chemical reactions. For example

CO2 + H2
k 12

k 21
CO + H2O,

2 CO k 34

k 43
CO2 + C

is a chemical reaction network with two reversible reactions.
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A kinetics of a chemical reaction network is an assignment of a rate func-
tion, depending on the concentrations of chemical species at the left hand side,
to each reaction in the network. A kinetics for a chemical reaction network is
called mass-action if for each reaction in the chemical reaction network, the
rate function is a monomial in the concentrations of the chemical species with
exponents given by the numbers of molecules of the species consumed in the
reaction, multiplied by a constant called rate constant. Reactions are classified
as zero-order, first-order, etc. according to the order of the monomial giving the
rate. For reversible reactions, the net reaction rate is a binomial, the difference
between the forward and backward rates. In the example above, k12, k21, k23,
and k32 are the rate constants. In this article we generally assume mass-action
kinetics. We furthermore assume that reactions are reversible, unless explicitly
specified otherwise.

The change in the concentration of each species over time in a reaction can
be described via a system of autonomous ordinary differential equations. For
instance, consider the chemical reaction network above and let x1, x2, x3, x4, x5

be the indeterminates representing the concentrations of the species CO2, H2,
CO, H2O, and C, respectively. The corresponding differential equations are

ẋ1 = p1, p1 = −k12x1x2 + k21x3x4 + k34x
2
3 − k43x1x5, (1)

ẋ2 = p2, p2 = −k12x1x2 + k21x3x4, (2)

ẋ3 = p3, p3 = k12x1x2 − k21x3x4 + −2k34x
2
3 + 2k43x1x5, (3)

ẋ4 = p4, p4 = k12x1x2 − k21x3x4, (4)

ẋ5 = p5, p5 = k34x
2
3 − k43x1x5. (5)

Each zero of the polynomials p1, p2, p3, p4, p5 gives a concentration of species
in which the system is in equilibrium. The zeros of p1, p2, p3, p4, and p5 are
called the steady states of the chemical reaction network. Accordingly, the ideal
generated by 〈p1, p2.p3, p4, p5〉 in Q[k12, k21, k34, k43, x1, x2, x3, x4, x5] is called
the steady state ideal of the chemical reaction network. We consider the coefficient
field Q because of computability issue. Otherwise, theoretically, our results hold
for any coefficient field. The solutions of these polynomials can be in R or in C.

For a thorough introduction to chemical reaction network theory, we refer
to Feinberg’s Book [16] and his lecture notes [15]. We follow the notation of
Feinberg’s book in this article.

An ideal is called binomial if it is generated by a set of binomials. In this
article, we investigate whether the steady state ideal of a given chemical reac-
tion network is binomial. We are interested in efficient algorithms for testing
binomiality. Consider the steady state ideal

I = 〈p1, p2, p3, p4, p5〉 ⊆ Q[k12, k21, k34, k43, x1, x2, x3, x4, x5], (6)

given by Eqs. (1)–(5). Reducing p1, p3, and p4 with respect to p2 and p5, we
have

I = 〈−k12x1x2 + k21x3x4,−k34x
2
3 + k43x1x5〉, (7)
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which shows that the ideal I is binomial. In this article, we work over the ring
Q[kij , x1, . . . , xn] and investigate binomiality over this ring.

Note that in the literature there exist also slightly different notions of bino-
miality. Eisenbud and Sturmfels in [11] call an ideal binomial if it is generated by
polynomials with at most two terms. Following this definition, some authors, e.g.,
Dickenstein et al. in [32] have considered the steady state ideal as an ideal in the
ring Q(kij)[x1, . . . , xn] and studied the binomiality of these ideals in R[x1, . . . , xn]
after specialising kij with positive real values. In order to distinguish between
the two notions, we call unconditionally binomial a steady state ideal that is
binomial in Q[k, x] (the notion used in this paper) and conditionally binomial a
steady state ideal that is binomial in Q[x], i.e., for specified parameters k (the
notion used in [32]).

The notions of binomial ideals and toric varieties have roots in thermody-
namics, dating back to Boltzmann. Binomiality corresponds to detailed balance,
which for reaction networks means that at thermodynamic equilibrium the for-
ward and backward rates should be equal for all reactions. Detailed balance
is a very important concept in thermodynamics, for instance it has been used
by Einstein in his Nobel prize winning theory of the photoelectric effect [10], by
Wegscheider in his thermodynamic theory of chemical reaction networks [37] and
by Onsager for deriving his famous reciprocity relations [30]. Because detailed
balance implies time reversal symmetry, systems with detailed balance can not
produce directed movement and can only dissipate heat. This is important in
applications, for instance, in molecular biology, where molecular motors can
not function with detailed balance. Although most interesting molecular devices
function without detailed balance and binomiality, some of their subsystems can
satisfy these conditions. The interest of studying binomiality relies in the sim-
plicity of the analysis of such subsystems. For instance, important properties
such as multistationarity and stability are easier to establish for binomial sys-
tems. Toricity, also known as complex, or cyclic, or semi-detailed balance is also
known since Boltzmann that has used it as a sufficient condition for deriving his
famous H-theorem [1]. Binomiality implies toricity, but the converse is not true:
in order to have binomiality, a toric system must obey constraints on the rates
constants, such as the well known Weigscheider-Kolmogorov condition asking for
the equality of the products of forward and backward rates constants in cycles
of reversible reactions. In this paper, we focus on the situation when detailed
balance is satisfied without conditions on the rate constants.

Detecting binomiality of an ideal, particularly of a steady state ideal, is a
difficult problem, both from a theoretical and a practical point of view. The
problem is typically solved by computing a Gröbner basis, which is EXPSPACE-
complete [28]. Recent linear algebra approaches for solving the problem in a
different setting than our problem construct large matrices which also points at
the difficulty of the problem [6,29].

There is quite comprehensive literature on chemical reaction network theory.
An excellent reference to this topic is [15,16]. As mathematical concepts, bino-
miality and toricity have been widely studied and their properties have been
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investigated by various authors, e.g., Fulton [17], Sturmfels [35], Eisenbud et al.
[11]. Binomiality and toricity show up quite often in chemical reaction networks.
Binomiality in the case of detailed balancing of reversible chemical reactions has
been studied by Gorban et al. [19,20] and Grigoriev and Weber [24]. Feinberg
[14] and Horn and Jackson [25] have studied toric dynamical systems. Gater-
mann et al. studied deformed toricity in [18]. Craciun, et al. have considered
the toricity problem over the real numbers in [7] and have presented several
interesting results in this regard, among them, they have shown that complex
balanced systems are the same as toric dynamical systems, although toric steady
states are different from that. It has been shown in [9,34] that the binomial
structure will imply much simpler criteria for multistationarity. These results
give strong motivation for one to study algorithms for detecting binomial net-
works. Especially, in [9], the authors defined linearly binomial network and they
proposed sufficient conditions for a network to be linearly binomial. The proof
is constructive even though it has not been presented as an algorithm. Their
method is also quite straightforward and can handle more general networks in
many applications.

Dickenstein et al. have presented sufficient linear algebra conditions with
inequalities for binomiality of the steady state ideals in [29]. Their idea has been
developed in [31], where the concept of MESSI reactions has been introduced.
Conradi and Kahle have proved in [6] that for homogenous ideals (i.e., for chem-
ical reaction networks without zero-order reactions), the sufficient condition of
Dickenstein et al. is necessary as well and also introduced an algorithm for testing
binomiality of homogenous ideals. As many biochemical networks are not homo-
geneous, the algorithm requires heuristics in such cases. The algorithm has been
implemented in Maple and Macaulay II in [26,27] and experiments have been car-
ried out on several biological models. Grigoriev et al. in [22] have considered the
toricity of steady state ideals from a geometric point of view. Introducing shifted
toricity, they presented algorithms, complexity bounds as well as experimental
results for testing toricity using two important tools from symbolic computa-
tion, quantifier elimination [8,21,38] and Gröbner bases [4,5,12,13]. Recently,
first order logic test for toricity have been introduced [33].

The main idea of this article is to consider the generators of the steady state
ideal as sums of the binomials associated with the reactions rather than the
monomials associated with the complexes. This is feasible for a reversible chem-
ical reaction network. Following the above observation and assigning a binomial
to each reaction, one can write the generators of the steady state ideal as sums
of those binomials with integer coefficients.

As our main result, we have proved that a reversible chemical reaction net-
work is unconditionally binomial if and only if it is “linearly” binomial (i.e.,
there exist linear combinations of the generators such that these combinations
are binomials). More precisely, having represented of the generators of the steady
state ideal as sum of binomials, one can test the binomiality exclusively using ele-
mentary row and column operations on the coefficient matrix of these binomials.
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This can be done by computing the reduced row echelon form of the coefficient
matrix, which yields an efficient method for testing binomiality.

Our main contributions in this article are the following.

1. We introduce a new representation of the generators of the steady state ideal
of a reversible chemical reaction as a sum of certain binomials rather than
monomials.

2. Using that representation, we assign a matrix with entries in Z to a reversible
chemical reaction network, such that the binomiality of the steady state ideal
can be tested by computing the reduced row echelon form of this matrix.

3. We prove a worst-case upper bound on the time complexity of our binomiality
test. We experimentally compare our test with the existing binomiality tests
in the literature, which demonstrates the applicability of our method.

Our representation of the steady state ideal as a sum of certain binomials, as
well as the matrices associated with them are further original ideas presented in
this paper. While typically complex-species matrices are used for testing bino-
miality, we use reaction-species matrices for this purpose.

The plan of the article is as follows. Section 1 gives an introduction to the
necessary concepts of chemical reaction network theory, reviews the literature
and presents the idea of this work. Section 2 includes the main definitions and
results. In this section, we show our representation of the generators of the steady
state ideal of a reversible chemical reaction network and present our algorithm
for testing binomiality. In Sect. 3, we discuss the complexity of our method.
We furthermore compare our algorithm with other existing algorithms in the
literature via experiments. In Sect. 4 we summarise our results and draw some
conclusions.

2 Testing Binomiality

In this section, we present our main result based on which we present an algo-
rithm for testing unconditional binomiality of reversible chemical reaction net-
works. In Subsect. 2.1, we introduce a representation for the generators of the
steady state ideal of a chemical reaction network as sum of binomials. We show
that this representation is unique for reversible reaction networks, considering
rate constants as indeterminates. In Subsect. 2.2, we define a matrix associated
with a chemical reaction network which is essentially the species–reaction matrix,
rather than the stoichiometric matrix which is the species–complex matrix. Hav-
ing considered constant rates as indeterminates, the uniqueness of our matrix
for reversible reactions comes from the uniqueness of representing the generators
of the steady state ideal as sum of binomials.

2.1 Sum of Binomial Representation

Consider the following reversible reaction between two complexes C1 and C2.
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C1
k 12

k 21
C2.

Let mi, i = 1, 2, be the product of the concentrations of the species in Ci

with the stoichiometric coefficients as the powers. We call mi the monomial
associated with Ci. Also let x1 be the concentration of a species that is in C1

with the stoichiometric coefficient α1 and is not in C2. The differential equation
describing the kinetics of this species is

ẋ1 = −α1(k12m1 + k21m2). (8)

For a species in C2 with stoichiometric coefficient α2 which is not in C1 with the
concentration x2, the differential equation will be

ẋ2 = α2(k12m1 − k21m2). (9)

For a species with concentration x3 that appears in both C1 and C2, the dif-
ferential equation will be ẋ3 = c(k12m1 − k21m2), where c ∈ Z is the differ-
ence between the corresponding stoichiometric coefficients in C2 and C1. Set
b12 := −k12m1 + k21m2 and b21 := k12m1 − k21m2. The steady state ideal
of the above chemical reaction network is 〈b12, b21〉, which is equal to 〈b12〉,
since b12 = −b21.

For a reversible reaction network with more than one reaction, one can asso-
ciate a binomial of the form bij := kijmi − kjimj with each reaction. Then the
polynomials generating the steady state ideal can be written as sums of bij with
integer coefficients. We make this more precise in the following definition.

Definition 1. Let C be a reversible chemical reaction network with the com-
plexes C1, . . . ,Cs, let kij, 1 ≤ i �= j ≤ s, be the rate constant of the reaction
from Ci to Cj, and let x1, . . . , xn be the concentrations of the species in the chem-
ical reaction network. We call a monomial mi the monomial associated with Ci

if mi is the product of the concentrations of those species that appear in Ci with
the stoichiometric coefficients of the species as the powers. If there is a reaction
between Ci and Cj, then bij := −kijmi + kjimj is called the binomial associated
with the reaction from Ci to Cj, otherwise bij := 0.

Example 1. Recall the following chemical reaction network form Sect. 1:

CO2 + H2
k 12

k 21
CO + H2O,

2 CO k 34

k 43
CO2 + C.

Following the notation in Sect. 1, let x1, x2, x3, x4, x5 be the concentrations
of CO2, H2, CO, H2O and C, respectively. The monomials associated with the
complexes CO2+H2, CO+H2O, 2CO and CO2+C are x1x2, x3x4, x2

3 and x1x5,
respectively. The binomials associated with the two reactions in this network
are b12 = −k12x1x2 + k21x3x4 and b34 = −k34x

2
3 + k43x1x5. As there is no
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reaction between the first and third complexes we have b13 = b31 = 0. Similarly,
b23 = b32 = 0, b14 = b41 = 0 and b24 = b42 = 0. Also, by definition, b21 = −b12,
b34 = −b43, etc. Using the binomials associated with the reactions, one can write
the polynomials generating the steady state ideal as

p1 = b12 − b34, (10)
p2 = b12, (11)
p3 = −b12 + 2b34, (12)
p2 = −b12, (13)
p2 = −b34. (14)

Hence, the steady state ideal can be written as

〈p1, p2, p3, p4, p5〉 = 〈b12, b34〉. (15)

As Example 1 and the definition of the binomials bij in Definition 1 suggests
one can write the generators of the steady state ideal of every reversible chemical
reaction networks as sums of bij with integer coefficients, i.e., assuming that R
is the set of reactions in the chemical reaction network

ẋk = pk =
∑

Ci→Cj∈R
c
(k)
ij bij , (16)

for k = 1 . . . n and c
(k)
ij ∈ Z.

For clarification, we may remind the reader that in this article we assume
working over Q[kij , x1, . . . , xn]. This is the case, in particular, for Definition 1
and the discussion afterwards. In [32], the authors specialise kij with positive
real values, in which case, the steady state ideal may or may not be binomial over
R[x1, . . . , xn]. Similarly, specialising kij in Equation 16 can result in writing pk as
sum of different binomials. In other words, if kij specialised, the representation
of pk as sum of binomials in 16 is not necessarily unique. This is illustrated in
the following example.

Example 2. [32, Example 2.3] Let C1 = 2A, C2 = 2B and C3 = A+B. Consider
the reversible chemical reaction network given by the following reactions:

2 A k 12

k 21
2 B,

2 A k 13

k 31
A + B,

A + B k 32

k 23
2 B.

Assuming x1 and x2 to be the concentrations of A and B, respectively, by
Definition 1,

b12 = −k12x
2
1 + k21x

2
2, (17)

b13 = −k13x
2
1 + k31x1x2, (18)

b23 = k23x
2
2 − k32x1x2. (19)
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It can be checked that the generators of the steady state ideal can be written as

p1 = 2b12 + b13 + b23, (20)
p2 = −2b12 − b13 − b23. (21)

If k31 = k32 then k31x1x2 = k32x1x2, hence k31x1x2 will occur in b13 and b23
with opposite signs which will be cancelled out in b13+b23, resulting in writing p1
as sum of b12 and −k13x

2
1 + k23x

2
2. This is another way of writing p1 as sum of

binomials. Because binomiality relies here on the condition k31 = k32, this is an
example of conditional binomiality.

If we consider the rate constants kij as indeterminates, i.e., if we consider the
steady state ideal as an ideal over the ring Q[kij , x1, . . . , xn], then the represen-
tation in Eq. (16) as sum of binomials bij will be unique. This has been presented
in the following lemma. We may mention that having a different rate constant
for different complexes is sometimes not guaranteed, however, this is the case for
several models, e.g.. it happens in a model in [36], where the degradation rate
δpa on the complex C = Pa + Pr is the same as the degradation rate of Pa.

Lemma 1. Given a reversible chemical reaction network with the notation of
Definition 1, if kij are indeterminates then the generators of the steady state
ideal can be uniquely written as sum of the binomials presented in Eq. (16).

Proof. Assuming that kij , 1 ≤ i, j ≤ s are indeterminates, they will be alge-
braically independent over Q[x1, . . . , xn]. Therefore, for monomials mt and
mt′ in Q[x1, . . . , xn] associated with two distinct complexes and for all 1 ≤
i, j, i′, j′ ≤ s, kijmt and ki′j′mt′ will be distinct monomials in Q[kij , x1, . . . , xn].
Hence binomials bij associated with the reversible reactions are not only pairwise
distinct, but also their monomials are pairwise distinct in Q[kij , x1, . . . , xn]. This
implies that the generators of the steady state ideal have unique representations
in Q[kij , x1, . . . , xn] as sum of bij with integer coefficients.

Having a unique representation as in Eq. (16) enables us to represent our
binomial coefficient matrix, defined later, which is the base of our efficient
algorithm for testing unconditional binomiality of reversible chemical reac-
tion networks.

Considering rate constants kij as indeterminates, if a steady state ideal is
unconditionally binomial, i.e., binomial in the ring Q[kij , x1, . . . , xn], then its
elimination ideal is binomial in the ring Q[x1, . . . , xn]. Indeed, the elimination of
a binomial ideal is a binomial ideal. This can be seen from elimination property of
Gröbner bases. Authors of [11] have studied binomial ideals and their properties
intensively. In particular Corollary 1.3 in the latter article state the binomiality of
the elimination ideal of a binomial ideal. We remind the reader that the definition
of binomiality in this article is different from [11]. In the latter, binomial ideals
have binomial and monomial generators, however, in the current article, we
only consider binomial generators. Restricting the definition of binomial ideal to
the ideals with only binomial generators, most of the result in [11] still holds,
in particular the one about the elimination of binomial ideals. Therefore, if the
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steady state ideal of a chemical reaction network is binomial in Q[kij , x1, . . . , xn],
then its elimination I ∩ Q[x1, . . . , xn] is also a binomial ideal.

Geometrically, the above discussion can be explained via projection of the
corresponding varieties. Given a chemical reaction network, assume that reaction
rates kij are indeterminates and let the number of kij be t. Let V denote the
steady state variety, i.e., the variety of the steady state ideal. V is a Zariski
closed subset of Kt+n, where K is an appropriate field (e.g., C). If V is a coset of
a subgroup of the multiplicative group (K∗)t+n, then the projection of V onto
the space generated by x1 . . . , xn, i.e., V ∩ (K∗)n is also a coset. In particular,
the projection of a group is a group. Since the variety of a binomial ideal is a
coset [22,23], the projection of the variety of a binomial ideal is the variety of a
binomial ideal. As special cases, the projection of a toric variety, a shifted toric
variety and a binomial variety (defined in [22,23]) is a toric, a shifted toric and
a binomial variety, respectively. For a detailed study of toricity of steady state
varieties, we refer to [22].

Remark 1.

– We may mention that in [7], the authors have studied toric dynamical systems,
where they have considered working over Q[kij , x1, . . . , xn] and presented sev-
eral interesting results. In particular, Theorem 7 in that article states that a
chemical reaction network is toric if and only if the rate constants lie in the
variety of a certain ideal in Q[kij ], called the moduli ideal.

– Toric dynamical systems are known as complex balancing mass action systems
[7].

2.2 The Algorithm

Definition 2. Let C be a reversible chemical reaction network as in Definition 1
and assume that the generators of its steady state ideal are written as the linear
combination of the binomials associated with its reactions as in Eq. 16, i.e.,

pk =
s∑

Ci→Ci∈R
c
(k)
ij bij for k = 1, . . . , n.

We define the binomial coefficient matrix of C to be the matrix whose rows are
labeled by p1, . . . , pn and whose columns are labeled by non-zero bij and the entry
in row pk and column bij is c

(k)
ij ∈ Z.

By the definition, the binomial coefficient matrix of a reversible chemical
reaction network is the coefficient matrix of the binomials that occur in the
representation of the generators of the steady state ideal as sum of binomials.
As we consider kij indeterminates, the representation of the generators of the
steady state ideal of a given complex is unique, which implies that the binomial
coefficient matrix of a given complex is unique too.
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Example 3. Consider the chemical reaction network in Example 1, with genera-
tors of the steady state ideal as follows.

p1 = b12 − b34, (22)
p2 = b12, (23)
p3 = −b12 + 2b34, (24)
p2 = −b12, (25)
p2 = −b34. (26)

The binomial coefficient matrix of this chemical reaction network is

M =

⎛

⎜⎜⎜⎜⎝

b12 b34
p1 1 −1
p2 1 0
p3 −1 2
p4 −1 0
p5 0 −1

⎞

⎟⎟⎟⎟⎠
. (27)

Example 4. Another simple example is the reaction

4 A k 12

k 21
A + B,

with the binomial associated with it as b12 := −k12x
4
1 +k21x1x2, where x1 is the

concentration of A and x2 is the concentration of B. The steady state ideal is
generated by {3b12,−b12}, and the binomial coefficient matrix for this network
is

(
3

−1

)
.

One can test binomiality of the steady state ideal of a reversible reaction
network using its binomial coefficient matrix.

Theorem 1. The steady state ideal of a reversible chemical reaction network
is unconditionally binomial, i.e., binomial in Q[kij , x1, . . . , xn], if and only if
the reduced row echelon form of its binomial coefficient matrix has at most one
non-zero entry at each row.

Proof. Let G = {p1, . . . , pn} ⊆ Q[kij , x1, . . . , xn] be a generating set for the
steady state ideal of a given reversible chemical reaction network C, and let
{bij | 1 ≤ i �= j ≤ s} be the ordered set of non-zero binomials associated with
the reactions. Fix a term order on the monomials in Q[kij , x1, . . . , xn].

First we prove that if the reduced row echelon form of the binomial coefficient
matrix has at most one non-zero entry at each row, then the steady state ideal is
binomial. The proof of this side of the proposition comes from the definition of
reduced row echelon form. In fact, the reduced row echelon form of the binomial
coefficient matrix of C can be computed by row reduction in that matrix, which
is equivalent to the reduction of the generators of the steady state ideal with
respect to each other. Therefore, computing the reduced row echelon form of the
binomial coefficient matrix and multiplying it with the vector of binomials bij ,
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one can obtain another basis for the steady state ideal. Having this, if the reduced
row echelon form has at most one non-zero entry at each row, then the new basis
for the steady state ideal will only include bij . Therefore the steady state ideal
will be binomial.

Now we prove the “only if” part of the proposition, that is, if the steady
state ideal of C is binomial, then the reduced row echelon form of the binomial
coefficient matrix has at most one non-zero entry at each row. We claim that for
each pair of polynomials pt, pm ∈ G, pt is reducible with respect to pm if and
only if there exists a binomial bij that occurs in both pt and pm and includes
their leading terms. The “only if” part of the claim is obvious. To prove the “if”
part of the claim, let pm be reducible with respect to pt. Then the leading term
of pm divides the leading term of pt. Since the leading terms are multiples of kij

and these are disjoint indeterminates, this is only possible if both of the leading
terms are equal. If the leading terms are equal, then bij in which the leading terms
occur, must itself occur in both pt and pm. Therefore pt and pm share a binomial
associated with a reaction, which is in contradiction with our assumption.

From the above claim and the definition of the reduced row echelon form
one can see that p1, . . . , pn are pairwise irreducible if and only if the binomial
coefficient matrix of C is in reduced row echelon form.

Now we prove that p1, . . . , pn are pairwise irreducible if and only if they form
a Gröbner basis in which polynomials are pairwise irreducible. Note that this
does not necessarily imply that G is a a reduced Gröbner basis, as pi are not
necessarily monic. Assume that p1, . . . , pn are pairwise irreducible. We prove that
the greatest common divisor of each pair of the leading terms of the p1, . . . , pn

is 1. By contradiction, assume that there exists a monomial not equal to 1
which divides the leading terms of both pt, pm, for 1 ≤ t,m ≤ n. Then there
exists a variable xl such that xl divides the leading terms of pt and pm. Since
each leading term is the monomial associated with a complex, the species with
concentration x1 occurs in two complexes with associated monomials as the
leading terms of pt and pm. Then both pt and pm have as their summand the
binomials that are associated with the reactions including those complexes. As
for each complex there exists at least one binomial associated, both pm and
pt have as a summand one common binomial bij . However, we had already
proved that this implies that pt and pm are not pairwise irreducible, which is a
contradiction to the assumption that the greatest common divisor of the leading
terms of pt and pm is not 1. Now by Buchberger’s first criterion if the greatest
common divisor of the leading terms of each pair of polynomials in G is 1 then
G is a Gröbner basis. The other side of this claim is obvious.

From what we have proved until now, we can conclude that the binomial
coefficient matrix of C is in reduced row echelon form if and only if G is a
Gröbner basis with pairwise irreducible elements. On the other hand, by a result
of Eisenbud and Sturmfels [11], the steady state ideal of C is binomial if and
only if every Gröbner basis of it includes binomials. Therefore we conclude that
the steady state ideal is binomial if and only if the reduced row echelon form of
the binomial coefficient matrix has at most one non-zero entry in each row. 	
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Function BinomialityTest(C)
Input: C = {(m1, . . . ,ms) ∈ [X]n, kij}
Output: Binomial or NotBinomial

1 bij := −kijmi + kjimj , 1 ≤ i �= j ≤ s
2 B := (bij , 1 ≤ i �= j ≤ m)

3 pk :=
∑

ckijbij , 1 ≤ k ≤ n

4 M := Matrix(ckij)

5 M̃ = ReducedRowEchelonForm(M )

6 G := M̃B
7 if IsBinomial(G) then
8 R := Binomial
9 else

10 R := NotBinomial

11 return R

Algorithm 1: Testing Unconditional Binomiality of Reversible Chemical
Reaction Networks

Example 5. Following Example 3, one case easily see that the reduced row ech-
elon form of the binomial coefficient matrix (27) is

M =

⎛

⎜⎜⎜⎜⎝

b12 b34
p1 1 0
p2 0 1
p3 0 0
p4 0 0
p5 0 0

⎞

⎟⎟⎟⎟⎠
, (28)

which means that the steady state ideal is unconditionally binomial and is gen-
erated by {b12, b34}.

Theorem 1 yields Algorithm 1 for testing unconditional binomiality. The
input of the algorithm is a reversible chemical reaction network, given by the vec-
tor of monomials associated with its complexes, (m1, . . . ,ms), and the rates kij .
It uses a function IsBinomial which takes a set of polynomials and checks if all
of them are binomial.

Generalisation to Non-Reversible Networks. The unconditional binomiality test
via the binomial coefficient matrix for a reversible chemical reaction network
can be used as a subroutine for testing unconditional binomiality of an arbitrary
chemical reaction network. In order to do so, partition a given chemical reaction
network C into a reversible reaction network C1 and a non–reversible reaction
network C2. Apply Algorithm 1 to C1, construct its binomial coefficient matrix,
say M1. Construct the stoichiometric coefficient matrix of C2, say M2, and con-
sider the block matrix M := (M̃1|M2). Compute the row reduced echelon form
of M , say M̃ . If all the rows of M̃ have at most one non-zero entry, then the
steady state ideal is binomial.
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Otherwise, one can consider computing M̃ as a preprocessing step and run
another method, e.g., Gröbner bases, quantifier elimination as in [22], or the
method in Dickenstein, et al. [29].

3 Complexity and Comparisons

Proposition 1. Let r be the number of reactions and n be the number of species
of a reversible chemical reaction network C. The asymptotic worst case time
complexity of testing unconditional binomiality of the steady state ideal of C via
Algorithm 1 can be bounded by O(max(r, n)ω) where ω ≈ 2.3737, which is also
the complexity of matrix multiplication.

Proof. The operations in steps 1–4 and 7–11 are at most linear in terms of r
and n. Since M is a matrix of size n × r, where r = |bij |, and B is a vector
of size r, computing reduced row echelon form in step 5 and also the matrix
multiplication in step 6 will cost at most O(max(r, n)ω). Therefore the total
number of operations in the algorithm can be bounded by O(max(r, n)ω).

In [22, Section 4 ] it has been shown that there exists an exponential asymp-
totic worst case upper bound on the time complexity of testing toricity. An imme-
diate consequence of that result is that the time complexity of testing binomiality
can be bounded by the same exponential function. Following the arguments in
[22, Section 4], one can show that there exists an algorithm for testing binomial-
ity over Q[kij , x1, . . . , xn] and Q[x1, . . . , xn] simultaneously, with an exponential
upper bound for the worst case time complexity.

As mentioned earlier in Sect. 2, the reduced Gröbner basis of a binomial
ideal, with respect to every term order, includes only binomials. This directly
can be seen from running Buchberger’s algorithm and that S–polynomials and
their reductions by binomials are binomial. Eisenbud et al.’ article [11], with
a slightly different definition of binomial ideals, investigates many properties
of binomial ideals using the latter fact. Following this fact, a typical method
for testing binomiality is via computing a reduced Gröbner basis of a steady
state ideal I ⊆ Q[kij , x1, . . . , xn] The drawback of computing Gröbner bases
is that this is EXPSPACE-complete [28]. So our algorithm is asymptotically
considerably more efficient than Gröbner basis computation.

Example 6. (Models from the BioModels Repository1).

– There are twenty non–reversible biomodels in which Gröbner basis compu-
tations done in [22] for testing conditional binomiality do not terminate in
a six–hour time limit, however our algorithm terminates in less than three
seconds. Also there are six cases in which Gröbner basis computations ter-
minate in less than six hours, but are at least 1000 times slower than our
algorithm. Finally there are ten models in which Gröbner basis is at least 500
times slower than our computations.

1 https://www.ebi.ac.uk/biomodels/.

https://www.ebi.ac.uk/biomodels/
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– There are sixty nine biomodels that are not considered for computation in
[22] because of the of the unclear numeric value of their rate constants. Our
computations on almost all of those cases terminated in less than a second.

– (Reversible models from the BioModels Repository) Biomodels 491 and 492
are both reversible. Biomodel 491 has 52 species and 86 reactions. The bino-
mial coefficient matrix of this biomodel has size 52×86 and has ±1 entries. A
reduced row echelon form computation in Maple reveals in 0.344 s that it is
unconditionally binomial, while a Gröbner basis computation takes more than
12 s to check its conditional binomiality. BioModel 492 has also 52 species,
and includes 88 reactions. The binomial coefficient matrix has entries ±1 and
is of size 52 × 88. This biomodel is also unconditionally binomial. It takes
0.25 s for Maple to check its unconditional binomiality via Algorithm 1 in
Maple, while a Gröbner basis computation takes near 18 s, as one can see
in the computations in [22, Table 3], which show the group structure of the
steady state varieties of the models.

Dickenstein et al. in [29] have proposed a method for testing toricity of
a chemical reaction network. The definitions and purpose of that work are
slightly different from our article, hence comparisons between those two meth-
ods should be treated with caution. While we focus on unconditional binomial-
ity of the steady state ideals of reversible reaction networks, i.e., binomiality in
Q[kij , x1, . . . , xn], with the aim of efficiency of the computations, the authors of
the above article are interested in conditional binomiality with algebraic depen-
dencies between kij such that the elimination ideal is binomial. Having men-
tioned that, our method leads to the computation of reduced row echelon form
of a matrix of size n × r with integer entries which is polynomial time, while
Theorem 3.3. in [29] requires constructing a matrix of size n × s with entries
from Z[kij ] and finding a particular partition of its kernel.

Considering Example 2.3 in [32], our algorithm constructs the matrix M and
its reduced row echelon form M̃ :

M =
(

1 1 −2
−1 −1 2

)
, M̃ =

(
1 1 2
0 0 0

)
, (29)

and we see that the steady state ideal is not unconditionally binomial over
Q[kij , x1, . . . , xn]. The method in [32] constructs

(−2k12 − k13 2k21 + k23 k31 − k32
2k12 + k13 −2k21 − k23 −k31 + k32

)
, (30)

and finds an appropriate partition, which shows that the steady state ideal is
binomial in Q[x1, . . . , xn] if and only if k31 = k32. As a larger example, consider
the chemical reaction network given in Example 3.13 in [32] and assume that it
is a reversible chemical reaction network. Our method constructs a matrix with
entries ±1 of size 9 × 8 and computes its reduced row echelon form (in this case
reduced row echelon form, as entries are ±1). The method described in [32] leads
to a 9 × 10 matrix with entries as linear polynomials in Z[kij ] and computes a
particular partition of the kernel of the matrix.
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For homogeneous ideals, Conradi and Kahle have shown in [6] that the
sufficient condition for conditional binomiality in [32] is necessary, too. Their
Algorithm 3.3 tests conditional binomiality of a homogeneous ideal, which can
be generalised by homogenising. The algorithm computes a basis for the ideal
degree by degree and performs reductions with respect to the computed basis
elements at each degree step. Since our algorithm is intended for steady state
ideals of reversible chemical reaction networks, which are not necessarily homo-
geneous, our following comparison with the Conradi–Kahle algorithm bears a
risk of being biased by homogenisation. We discuss the execution of both algo-
rithms on Example 3.15 in [32]. This chemical reaction network does not satisfy
the sufficient condition presented in [32, Theorem 3.3]. Testing this condition
leads to the construction of a 9 × 13 matrix with entries in Z[kij ], followed
by further computations, including finding a particular partition of its kernel.
Theorem 3.19 in [32] is a generalisation of Theorem 3.3 there, which can test
conditional binomiality of this example by adding further rows and columns to
the matrix. Conradi and Kahle also treat this example with their algorithm.
This requires the construction of a coefficient matrix of size 9 × 13 with entries
in Z[kij ] and certain row reductions. If we add reactions so that the reaction
network becomes reversible, our algorithm will construct a matrix of size 9 × 9
with entries ±1 and compute its reduced row echelon form to test unconditional
binomiality in Q[kij , x1, . . . , x9].

4 Conclusions

Binomiality of steady state ideals is an interesting problem in chemical reac-
tion network theory. It has a rich history and literature and is still an active
research area. For instance, recently MESSI systems have been introduced [31]
following the authors’ work on binomiality of a system. Finding binomiality
and toricity is computationally hard from both a theoretical and a practical
point of view. It typically involves computations of Gröbner bases, which is
EXPSPACE-complete.

In a recent work [22], we investigated toricity of steady state varieties and
gave efficient algorithms. In particular, we experimentally investigated toricity
of biological models systematically via quantifier elimination. Besides that, we
presented exponential theoretical bounds on the toricity problem. The current
article, restricting to reversible reaction networks, aims at an efficient linear
algebra approach to the problem of unconditional binomiality, which can be
considered as a special case of the toricity problem.

In that course, considering rate constants as indeterminates, we assign a
unique binomial to each reaction and construct the coefficient matrix with
respect to these binomials. Our algorithm proposed here computes a reduced
row echelon form of this matrix in order to detect unconditional binomiality.
The algorithm is quite efficient, as it constructs comparatively small matrices
whose entries are integers. It is a polynomial time algorithm in terms of the
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number of species and reactions. While other existing methods for testing con-
ditional binomiality have different settings and purposes than our algorithm, for
the common cases, our algorithm has advantages in terms of efficiency.

Acknowledgments. This work has been supported by the bilateral project ANR-17-
CE40-0036 and DFG-391322026 SYMBIONT [2,3].
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Abstract. Motivated by problems arising with the symbolic analysis
of steady state ideals in Chemical Reaction Network Theory, we con-
sider the problem of testing whether the points in a complex or real
variety with non-zero coordinates form a coset of a multiplicative group.
That property corresponds to Shifted Toricity, a recent generalization of
toricity of the corresponding polynomial ideal. The key idea is to take
a geometric view on varieties rather than an algebraic view on ideals.
Recently, corresponding coset tests have been proposed for complex and
for real varieties. The former combine numerous techniques from commu-
tative algorithmic algebra with Gröbner bases as the central algorithmic
tool. The latter are based on interpreted first-order logic in real closed
fields with real quantifier elimination techniques on the algorithmic side.
Here we take a new logic approach to both theories, complex and real,
and beyond. Besides alternative algorithms, our approach provides a uni-
fied view on theories of fields and helps to understand the relevance and
interconnection of the rich existing literature in the area, which has been
focusing on complex numbers, while from a scientific point of view the
(positive) real numbers are clearly the relevant domain in chemical reac-
tion network theory. We apply prototypical implementations of our new
approach to a set of 129 models from the BioModels repository.

Keywords: Binomial ideals · Chemical reaction networks · Logic
computation · Scientific computation · Symbolic computation · Toric
varieties.

1 Introduction

We are interested in situations where the points with non-zero coordinates in
a given complex or real variety form a multiplicative group or, more generally,
a coset of such a group. For irreducible varieties this corresponds to toricity
[16,23] and shifted toricity [27,28], respectively, of both the varieties and the
corresponding ideals.

While toric varieties are well established and have an important role in alge-
braic geometry [16,23], our principal motivation here to study generalizations of
toricity comes from the sciences, specifically chemical reaction networks such as
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the following model of the kinetics of intra- and intermolecular zymogen acti-
vation with formation of an enzyme-zymogen complex [22], which can also be
found as model no. 921 in the BioModels database [9]:

Z 0.004 P + E

Z + E 1000

2.1E-4
E Z 5.4E-4 P + 2 E

Here Z stands for zymogen, P is a peptide, E is an enzyme, E—Z is the enzyme
substrate complex formed from that enzyme and zymogen. The reactions are
labelled with reaction rate constants.

Let x1, . . . , x4 : R → R denote the concentrations over time of the
species Z, P, E, E–Z, respectively. Assuming mass action kinetics one can derive
reaction rates and furthermore a system of autonomous ordinary differential
equations describing the development of concentrations in the overall network
[20, Section 2.1.2]:

ẋ1 = f1/100000, f1 = −100000000x1x2 − 400x1 + 21x4,

ẋ2 = f2/100000, f2 = −100000000x1x2 + 400x1 + 129x4,

ẋ3 = f3/50000, f3 = 200x1 + 27x4,

ẋ4 = f4/4000, f4 = 4000000x1x2 − 3x4.

The chemical reaction is in equilibrium for positive concentrations of species
lying in the real variety of the steady state ideal

〈f1, . . . , f4〉 ⊆ Z[x1, . . . , x4],

intersected with the first orthant of R4.
Historically, the principle of detailed balancing has attracted considerable

attention in the sciences. It states that at equilibrium every single reaction
must be in equilibrium with its reverse reaction. Detailed balancing was used by
Boltzmann in 1872 in order to prove his H-theorem [4], by Einstein in 1916
for his quantum theory of emission and absorption of radiation [15], and by
Wegscheider [51] and Onsager [43] in the context of chemical kinetics, which
lead to Onsager’s Nobel prize in Chemistry in 1968. In the field of symbolic
computation, Grigoriev and Weber [29] applied results on binomial varieties to
study reversible chemical reactions in the case of detailed balancing.

In particular with the assumption of irreversible reactions, like in our exam-
ple, detailed balancing has been generalized to complex balancing [19,20,33],
which has widely been used in the context of chemical reaction networks. Here
one considers complexes, like Z, P + E, Z + E, etc. in our example, and requires
for every such complex that the sum of the reaction rates of its inbound reactions
equals the sum of the reaction rates of its outbound reactions.

1 https://www.ebi.ac.uk/compneur-srv/biomodels-main/publ-model.do?
mid=BIOMD0000000092.

https://www.ebi.ac.uk/compneur-srv/biomodels-main/publ-model.do?mid=BIOMD0000000092
https://www.ebi.ac.uk/compneur-srv/biomodels-main/publ-model.do?mid=BIOMD0000000092
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Craciun et al. [11] showed that toric dynamical systems [18,33], in turn,
generalize complex balancing. The generalization of the principle of complex
balancing to toric dynamical systems has obtained considerable attention in the
last years [11,24,41,45]. Millan et al. [45] considered steady state ideals with
binomial generators. They presented a sufficient linear algebra condition on the
stoichiometry matrix of a chemical reaction network in order to test whether the
steady state ideal has binomial generators. Conradi and Kahle showed that the
sufficient condition is even equivalent when the ideal is homogenous [10,34,35].
That condition also led to the introduction of MESSI systems [44]. Recently,
binomiality of steady states ideals was used to infer network structure of chemical
reaction networks out of measurement data [50]. Katthän et al. [36] discussed
several questions that are in connection with toric varieties and binomial ideals.
For instance they consider whether an ideal can be transformed into a binomial
ideal by a change of coordinates.

Besides its scientific adequacy as a generalization of complex balancing there
are practical motivations for studying toricity. Relevant models are typically
quite large. For instance, with our comprehensive computations in this article
we will encounter one system with 90 polynomials in dimension 71, in the sense
that there are 71 variables originating from different species. This brings sym-
bolic computation to its limits. Our best hope is to discover systematic occur-
rences of specific structural properties in the models coming from a specific
context, e.g. the life sciences, and to exploit those structural properties towards
more efficient algorithms. In that course, toricity could admit tools from toric
geometry, e.g., for dimension reduction.

Detecting toricity of varieties in general, and of steady state varieties of chem-
ical reaction networks in particular, is a difficult problem. The first issue in this
regard is finding suitable notions to describe the structure of the steady states.
Existing work, such as the publications mentioned above, typically focuses on
the complex numbers and addresses algebraic properties of the steady state
ideal, e.g., the existence of binomial Gröbner bases. Only recently, a group of
researchers including the authors of this article have taken a geometric approach,
focusing on varieties rather than ideals [27,28]. Besides irreducibility, the char-
acteristic property for varieties V to be toric over a field K is that V ∩ (K∗)n

forms a multiplicative group. More generally, one considers shifted toricity, where
V ∩ (K∗)n forms a coset of a multiplicative group.

It is important to understand that chemical reaction network theory generally
takes place in the interior of the first orthant of Rn, i.e., all species concentrations
and reaction rates are assumed to be strictly positive [20]. Considering (C∗)n in
contrast to C

n resembles the strictness condition, and considering also (R∗)n in
[27] was another step in the right direction.

The plan of the article is as follows. In Sect. 2 we motivate and formally intro-
duce first-order characterizations for shifted toricity, which have been used already
in [27], but there exclusively with real quantifier elimination methods. In Sect. 3
we put a model theoretic basis and prove transfer principles for our characteriza-
tions throughout various classes of fields, with zero as well as with positive char-
acteristics. In Sect. 4 we employ Hilbert’s Nullstellensatz as a decision procedure
for uniform word problems and use logic tests also over algebraically closed fields.
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This makes the link between the successful logic approach from [27] and the com-
prehensive existing literature cited above. Section 5 clarifies some asymptotic
worst-case complexities for the sake of scientific rigor. In Sect. 6 it turns out that
for a comprehensive benchmark set of 129 models from the BioModels database
[9] quite simple and maintainable code, requiring only functionality available in
most decent computer algebra systems and libraries, can essentially compete with
highly specialized and more complicated purely algebraic methods. This motivates
in Sect. 7 a perspective that our symbolic computation approach has a potential
to be interesting for researchers in the life sciences, with communities much larger
than our own, with challenging applications, not least in the health sector.

2 Syntax: First-Order Formulations of Characteristic
Properties of Groups and Cosets

In this section we set up our first-order logic framework. We are going to use
interpreted first-order logic with equality over the signature L = (0, 1,+,−, ·) of
rings.

For any field K we denote its multiplicative group K \ {0} by K
∗. For a coef-

ficient ring Z ⊆ K and F ⊆ Z[x1, . . . , xn] we denote by VK(F ), or shortly V (F ),
the variety of F over K. Our signature L naturally induces coefficient rings
Z = Z/p for finite characteristic p, and Z = Z for characteristic 0, where Z

denotes the integers. We define V (F )∗ = V (F ) ∩ (K∗)n ⊆ (K∗)n. Note that the
direct product (K∗)n establishes again a multiplicative group.

Let F = {f1, . . . , fm} ⊆ Z[x1, . . . , xn]. The following semi-formal conditions
state that V (F )∗ establishes a coset of a multiplicative subgroup of (K∗)n:

∀g, x ∈ (K∗)n:

g ∈ V (F ) ∧ gx ∈ V (F ) ⇒ gx−1 ∈ V (F ) (1)
∀g, x, y ∈ (K∗)n:

g ∈ V (F ) ∧ gx ∈ V (F ) ∧ gy ∈ V (F ) ⇒ gxy ∈ V (F ) (2)
V (F ) ∩ (K∗)n �= ∅. (3)

If we replace (3) with the stronger condition

1 ∈ V (F ), (4)

then V (F )∗ establishes even a multiplicative subgroup of (K∗)n. We allow our-
selves to less formally say that V (F )∗ is a coset or group over K, respectively.

Denote M = {1, . . . , m}, N = {1, . . . , n}, and for (i, j) ∈ M × N let dij =
degxj

(fi). We shortly write x = (x1, . . . , xn), y = (y1, . . . , yn), g = (g1, . . . , gn).
Multiplication between x, y, g is coordinate-wise, and xdi = xdi1

1 · · · xdin
n . As a

first-order L-sentence, condition (1) yields
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ι =̇ ∀g1 . . . ∀gn∀x1 . . . ∀xn

(
n∧

j=1

gj �= 0 ∧
n∧

j=1

xj �= 0 ∧
m∧
i=1

fi(g1, . . . , gn) = 0 ∧
m∧
i=1

fi(g1x1, . . . , gnxn) = 0

−→
m∧
i=1

xdifi(g1x−1
1 , . . . , gnx−1

n ) = 0
)

.

Here the multiplications with xdi drop the principal denominators from the
rational functions fi(g1x−1

1 , . . . , gnx−1
n ). This is an equivalence transformation,

because the left hand side of the implication constrains x1, . . . , xn to be different
from zero.

Similarly, condition (2) yields a first-order L-sentence

μ =̇ ∀g1 . . . ∀gn∀x1 . . . ∀xn∀y1 . . . ∀yn

(
n∧

j=1

gj �= 0 ∧
n∧

j=1

xj �= 0 ∧
n∧

j=1

yj �= 0 ∧
m∧
i=1

fi(g1, . . . , gn) = 0 ∧
m∧
i=1

fi(g1x1, . . . , gnxn) = 0 ∧
m∧
i=1

fi(g1y1, . . . , gnyn) = 0

−→
m∧
i=1

fi(g1x1y1, . . . , gnxnyn) = 0
)

.

For condition (3) we consider its logical negation V (F ) ∩ (K∗)n = ∅, which
gives us an L-sentence

η =̇ ∀x1 . . . ∀xn

(
m∧
i=1

fi = 0 −→
n∨

j=1

xj = 0
)

.

Accordingly, the L-sentence ¬η formally states (3).
Finally, condition (4) yields a quantifier-free L-sentence

γ =̇
m∧
i=1

fi(1, . . . , 1) = 0.

3 Semantics: Validity of Our First-Order
Characterizations over Various Fields

Let p ∈ N be 0 or prime. We consider the L-model classes Kp of fields of character-
istic p and Ap ⊆ Kp of algebraically closed fields of characteristic p. Recall that Ap

is complete, decidable, and admits effective quantifier elimination [49, Note 16].
We assume without loss of generality that L-sentences are in prenex nor-

mal form Q1x1 . . . Qnxnψ with Q1, . . . , Qn ∈ {∃,∀} and ψ quantifier-free. An
L-sentence is called universal if it is of the form ∀x1 . . . ∀xnψ and existential if
it is of the form ∃x1 . . . ∃xnψ with ψ quantifier-free. A quantifier-free L-sentence
is both universal and existential.



First-Order Tests for Toricity 515

Lemma 1. Let ϕ be a universal L-sentence. Then

Kp |= ϕ if and only if Ap |= ϕ.

Proof. The implication from the left to the right immediately follows from Ap ⊆
Kp. Assume, conversely, that Ap |= ϕ, and let K ∈ Kp. Then K has an algebraic
closure K ∈ Ap, and K |= ϕ due to the completeness of Ap. Since K ⊆ K and ϕ
as a universal sentence is persistent under substructures, we obtain K |= ϕ.

All our first-order conditions ι, μ, η, and γ introduced in the previous section 2
are universal L-sentences. Accordingly, ¬η is equivalent to an existential L-
sentence.

In accordance with our language L we are going to use polynomial coefficient
rings Zp = Z/p for finite characteristic p, and Z0 = Z. Let F ⊆ Zp[x1, . . . , xn].
Then V (F )∗ is a coset over K ∈ Kp if and only if

K |= ι ∧ μ ∧ ¬η. (5)

Especially, V (F )∗ is a group over K if even

K |= ι ∧ μ ∧ γ, (6)

where γ entails ¬η.

Proposition 2. Let F ⊆ Zp[x1, . . . , xn], and let K ∈ Kp. Then V (F )∗ is a group
over K if and only if at least one of the following conditions holds:

(a) K
′ |= ι ∧ μ ∧ γ for some K ⊆ K

′ ∈ Kp;
(b) K

′ |= ι ∧ μ ∧ γ for some K
′ ∈ Ap.

Proof. Recall that V (F )∗ is a group over K if and only if K |= ι∧μ∧γ. If V (F )∗

is a group over K, then (a) holds for K
′ = K. Conversely, there are two cases.

In case (a), we can conclude that K |= ι ∧ μ ∧ γ because the universal sentence
ι∧μ∧γ is persistent under substructures. In case (b), we have Ap |= ι∧μ∧γ by
the completeness of that model class. Using Lemma 1 we obtain Kp |= ι ∧ μ ∧ γ,
in particular K |= ι ∧ μ ∧ γ.

Example 3

(i) Assume that V (F )∗ is a group over C. Then V (F )∗ is a group over any
field of characteristic 0. Alternatively, it suffices that V (F )∗ is a group over
the countable algebraic closure Q of Q.

(ii) Assume that V (F )∗ is a group over the countable field of real algebraic
numbers, which is not algebraically closed. Then again V (F )∗ is a group
over any field of characteristic 0.

(iii) Let ε be a positive infinitesimal, and assume that V (F )∗ is a group over
R(ε). Then V (F )∗ is group also over Q and R, but not necessarily over Q.
Notice that R(ε) is not algebraically closed.
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(iv) Assume that V (F )∗ is a group over the algebraic closure of Fp. Then
V (F )∗ is a group over any field of characteristic p. Alternatively, it suffices
that V (F )∗ is a group over the algebraic closure of the rational func-
tion field Fp(t), which has been studied with respect to effective computa-
tions [37].

Proposition 4. Let F ⊆ Zp[x1, . . . , xn] and let K ∈ Kp. Then V (F )∗ is a coset
over K if and only if K |= ¬η and at least one of the following conditions holds:

(a) K
′ |= ι ∧ μ for some K ⊆ K

′ ∈ Kp;
(b) K

′ |= ι ∧ μ for some K
′ ∈ Ap.

Proof. Recall that V (F )∗ is a coset over K if and only if K |= ι∧μ∧¬η. If V (F )∗

is a coset over K, then K |= ¬η, and (a) holds for K′ = K. Conversely, we require
that K |= ¬η and obtain K |= ι ∧ μ analogously to the proof of Proposition 2.

Example 5

(i) Assume that V (F )∗ is a coset over C. Then V (F )∗ is a coset over R if and
only if V (F )∗ �= ∅ over R. This is the case for F = {x2 − 2} but not for
F = {x2 + 2}.

(ii) Consider F = {x4 − 4} = {(x2 − 2)(x2 + 2)}. Then over R, V (F )∗ =
{±√

2} is a coset, because V (F )∗/
√

2 = {±1} is a group. Similarly over
C, V (F )∗ = {±√

2,±i
√

2} is a coset, as V (F )∗/
√

2 = {±1,±i} is a group.
(iii) Consider F = {x4 + x2 − 6} = {(x2 − 2)(x2 + 3)}. Then over R, V (F )∗ =

{±√
2} is a coset, as V (F )∗/

√
2 = {±1} is a group. Over C, in contrast,

V (F )∗ = {±√
2,±i

√
3} is not a coset.

4 Hilbert’s Nullstellensatz as a Swiss Army Knife

A recent publication [27] has systematically applied coset tests to a large number
of real-world models from the BioModels database [9], investigating varieties
over both the real and the complex numbers. Over R it used essentially our first-
order sentences presented in Sect. 2 and applied efficient implementations of real
decision methods based on effective quantifier elimination [13,14,39,46,52,53].

Over C, in contrast, it used a purely algebraic framework combining vari-
ous specialized methods from commutative algebra, typically based on Gröbner
basis computations [8,17]. This is in line with the vast majority of the exist-
ing literature (cf. the Introduction for references), which uses computer algebra
over algebraically closed fields, to some extent supplemented with heuristic tests
based on linear algebra.

Generalizing the successful approach for R and aiming at a more uniform over-
all framework, we want to study here the application of decision methods for alge-
braically closed fields to our first-order sentences. Recall that our sentences ι, μ, η,
and γ are universal L-sentences. Every such sentence ϕ can be equivalently trans-
formed into a finite conjunction of universal L-sentences of the following form:
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ϕ̂ =̇ ∀x1 . . . ∀xn

(
m∧
i=1

fi(x1, . . . , xn) = 0 −→ g(x1, . . . , xn) = 0
)

,

where f1, . . . , fm, g ∈ Zp[x1, . . . , xn]. Such L-sentences are called uniform word
problems [3]. Over an algebraically closed field K̄ of characteristic p, Hilbert’s
Nullstellensatz [31] provides a decision procedure for uniform word problems. It
states that

K̄ |= ϕ̂ if and only if g ∈
√

〈f1, . . . , fm〉.
Recall that Ap is complete so that we furthermore have Ap |= ϕ̂ if and only if
K̄ |= ϕ̂.

Our L-sentence ι for condition (1) can be equivalently transformed into

∀g1 . . . ∀gn∀x1 . . . ∀xn

(
n∨

j=1

gj = 0 ∨
n∨

j=1

xj = 0 ∨
m∨
i=1

fi(g1, . . . , gn) �= 0 ∨
m∨
i=1

fi(g1x1, . . . , gnxn) �= 0

∨
m∧
i=1

xdifi(g1x−1
1 , . . . , gnx−1

n ) = 0
)

,

which is in turn equivalent to

ι̂ =̇
m∧

k=1

∀g1 . . . ∀gn∀x1 . . . ∀xn

(
m∧
i=1

fi(g1, . . . , gn) = 0 ∧
m∧
i=1

fi(g1x1, . . . , gnxn) = 0

−→ xdkfk(g1x−1
1 , . . . , gnx−1

n )
n∏

j=1

gjxj = 0
)

.

Hence, by Hilbert’s Nullstellensatz, (1) holds in K̄ if and only if

xdkfk(g1x−1
1 , . . . , gnx−1

n )
n∏

j=1

gjxj ∈ R1 for all k ∈ M, (7)

where R1 =
√〈 fi(g1, . . . , gn), fi(g1x1, . . . , gnxn) | i ∈ M 〉.

Similarly, our L-sentence μ for condition (2) translates into

μ̂ =̇
m∧

k=1

∀g1 . . . ∀gn∀x1 . . . ∀xn∀y1 . . . ∀yn

(
m∧
i=1

fi(g1, . . . , gn) = 0 ∧
m∧
i=1

fi(g1x1, . . . , gnxn) = 0

∧
m∧
i=1

fi(g1y1, . . . , gnyn) = 0

−→ fk(g1x1y1, . . . , gnxnyn)
n∏

j=1

gjxjyj = 0
)

.
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Again, by Hilbert’s Nullstellensatz, (2) holds in K̄ if and only if

fk(g1x1y1, . . . , gnxnyn)
n∏

j=1

gjxjyj ∈ R2 for all k ∈ M, (8)

where R2 =
√〈 fi(g), fi(gx), fi(gy) | i ∈ M 〉.

Next, our L-sentence η is is equivalent to

η̂ =̇ ∀x1 . . . ∀xn

(
m∧
i=1

fi = 0 −→
n∏

j=1

xj = 0
)

.

Using once more Hilbert’s Nullstellensatz, K̄ |= η̂ if and only if

n∏
j=1

xj ∈ R3, (9)

where R3 =
√〈f1, . . . , fm〉. Hence our non-emptiness condition (3) holds in K̄ if

and only if
n∏

j=1

xj /∈ R3. (10)

Finally, our L-sentence γ for condition (4) is equivalent to

γ̂ =̇
m∧

k=1

(
0 = 0 −→ fk(1, . . . , 1) = 0

)
.

Here Hilbert’s Nullstellensatz tells us that condition (4) holds in K̄ if and only if

fk(1, . . . , 1) ∈ R4 for all k ∈ M, (11)

where R4 =
√〈0〉 = 〈0〉. Notice that the radical membership test quite naturally

reduces to the obvious test with plugging in.

5 Complexity

Let us briefly discuss asymptotic complexity bounds around problems and meth-
ods addressed here. We do so very roughly, in terms of the input word length.
The cited literature provides more precise bounds in terms of several complexity
parameters, such as numbers of quantifiers, or degrees.

The decision problem for algebraically closed fields is double exponential [30]
in general, but only single exponential when the number of quantifier alternations
is bounded [25], which covers in particular our universal formulas. The decision
problem for real closed fields is double exponential as well [12], even for linear
problems [52]; again it becomes single exponential when bounding the number
of quantifier alternations [26].

Ideal membership tests are at least double exponential [40], and it was widely
believed that this would impose a corresponding lower bound also for any algo-
rithm for Hilbert’s Nullstellensatz. Quite surprisingly, it turned out that there
are indeed single exponential such algorithms [7,38].
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On these grounds it is clear that our coset tests addressed in the previous
sections can be solved in single exponential time for algebraically closed fields
as well as for real closed fields. Recall that our consideration of those tests is
actually motivated by our interest in shifted toricity, which requires, in addition,
the irreducibility of the considered variety over the considered domain. Recently
it has been shown that testing shifted toricity, including irreducibility, is also only
single exponential over algebraically closed fields as well as real closed fields [27].

Most asymptotically fast algorithms mentioned above are not implemented
and it is not clear that they would be efficient in practice.

6 Computational Experiments

We have studied 129 models from the BioModels2 database [9]. Technically, we
took our input from ODEbase3 which provides preprocessed versions for symbolic
computation. Our 129 models establish the complete set currently provided by
ODEbase for which the relevant systems of ordinary differential equations have
polynomial vector fields.

We limited ourselves to characteristic 0 and applied the tests (7), (8), (9), and
(11) derived in Section 4 using Hilbert’s Nullstellensatz. Recall that those tests
correspond to ι, μ, η, γ from Sect. 3, respectively, and that one needs ι ∧ μ ∧ ¬η
or ι ∧ μ ∧ γ for cosets or groups, respectively. From a symbolic computation
point of view, we used exclusively polynomial arithmetic and radical membership
tests. The complete Maple code for computing a single model is presented in
AppendixB; it is surprisingly simple.

We conducted our computations on a 2.40 GHz Intel Xeon E5-4640 with 512
GB RAM and 32 physical cores providing 64 CPUs via hyper-threading. For
parallelization of the jobs for the individual models we used GNU Parallel [48].
Results and timings are collected in Appendix A. With a time limit of one hour
CPU time per model we succeeded on 78 models, corresponding to 60%, the
largest of which, no. 559, has 90 polynomials in 71 dimensions. The median of
the overall computation times for the successful models is 1.419 s. We would
like to emphasize that our focus here is illustrating and evaluating our overall
approach, rather than obtaining new insights into the models. Therefore our code
in Appendix B is very straightforward without any optimization. In particular,
computation continues even when one relevant subtest has already failed. More
comprehensive results on our dataset can be found in [27].

Among our 78 successfully computed models, we detected 20 coset cases,
corresponding to 26%. Two out of those 20 are even group cases. Among the 58
other cases, 46, corresponding to 78%, fail only due to their emptiness η; we know
from [27] that many such cases exhibit in fact coset structure when considered in
suitable lower-dimensional spaces, possibly after prime decomposition. Finally
notice that our example reaction from the Introduction, no. 92, is among the
smallest ones with a coset structure.
2 https://www.ebi.ac.uk/biomodels/.
3 http://odebase.cs.uni-bonn.de/.

https://www.ebi.ac.uk/biomodels/
http://odebase.cs.uni-bonn.de/
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7 Conclusions and Future Work

We have used Hilbert’s Nullstellensatz to derive important information about
the varieties of biological models with a polynomial vector field F . The key tech-
nical idea was generalizing from pure algebra to more general first-order logic.
Recall from Sect. 3 that except for non-emptiness of V (F )∗ the information we
obtained is valid in all fields of characteristic 0. Wherever we discovered non-
emptiness, this holds at least in all algebraically closed fields of characteristic 0.
For transferring our obtained results to real closed fields, e.g., subtropical meth-
ods [21,32,47] provide fast heuristic tests for the non-emptiness of V (F )∗ there.

Technically, we only used polynomial arithmetic and polynomial radical
membership tests. This means that on the software side there are many off-
the-shelf computer algebra systems and libraries available where our ideas could
be implemented, robustly and with little effort. This in turn makes it attractive
for the integration with software from systems biology, which could open excit-
ing new perspectives for symbolic computation with applications ranging from
the fundamental research in the life sciences to state-of-the-art applied research
in medicine and pharmacology.

We had motivated our use of Hilbert’s Nullstellensatz by viewing it as a
decision procedure for the universal fragment of first-order logic in algebraically
closed fields, which is sufficient for our purposes. Our focus on algebraically
closed fields here is in accordance with the majority of existing literature on
toricity. However, due to the relevance of the first orthant mentioned with our
example in the introduction, it is generally accepted in the context of chemical
reaction network theory that real closed fields are the relevant domain [20].
Our Proposition 2 and Proposition 4 assert that existing computations over the
complex numbers are adequate and almost complete. Only the non-emptiness of
cosets must be checked over the reals.

We have seen in Sect. 5 that the theoretical complexities for general decision
procedures in algebraically closed fields vs. real closed fields strongly resemble
each other. What could now take the place of Hilbert’s Nullstellensatz over the
reals with respect to practical computations on model sizes as in Appendix A
or even larger? A factor of 10 could put us in the realm of models currently
used in the development of drugs for diabetes or cancer. One possible answer
is satisfiability modulo theories solving (SMT) [42].4 SMT is incomplete in the
sense that it often proves or disproves validity, but it can yield “unknown” for
specific input problems. When successful, it is typically significantly faster than
traditional algebraic decision procedures. For coping with incompleteness one can
still fall back into real quantifier elimination. Interest in collaboration between
the SMT and the symbolic computation communities exists on both sides [1,2].

4 SMT technically aims at the existential fragment, which in our context is equivalent
to the universal fragment via logical negation.
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A Computation Results

We present results and computation times (in seconds) of our computations on
models from the BioModels database [9].

Model m n ι tι μ tμ η tη γ tγ Coset Group tΣ

001 12 12 True 7.826 True 7.86 False 4.267 False 0.053 True False 20.007

040 5 3 False 1.415 False 0.173 False 0.114 False 0.043 False False 1.746

050 14 9 True 1.051 True 2.458 True 0.113 False 0.05 False False 3.673

052 11 6 True 3.605 True 1.635 True 0.096 False 0.059 False False 5.396

057 6 6 True 0.271 True 0.263 False 0.858 False 0.045 True False 1.438

072 7 7 True 0.763 True 0.496 True 0.08 False 0.06 False False 1.4

077 8 7 True 0.296 True 0.356 False 0.097 False 0.051 True False 0.801

080 10 10 True 0.714 True 1.341 True 0.103 False 0.06 False False 2.219

082 10 10 True 0.384 True 0.39 True 0.086 False 0.041 False False 0.902

091 16 14 True 0.031 True 0.045 True 0.003 False 0.062 False False 0.142

092 4 3 True 0.293 True 0.244 False 0.104 False 1.03 True False 1.671

099 7 7 True 0.298 True 0.698 False 0.087 False 0.036 True False 1.119

101 6 6 False 4.028 False 10.343 False 0.917 False 0.073 False False 15.361

104 6 4 True 0.667 True 0.146 True 0.084 False 0.039 False False 0.937

105 39 26 True 0.455 True 0.367 True 0.043 False 0.038 False False 0.905

125 5 5 False 0.193 False 0.098 False 0.078 False 0.038 False False 0.408

150 4 4 True 0.173 True 0.153 False 0.094 False 0.043 True False 0.464

156 3 3 True 2.638 True 0.248 False 0.86 False 0.052 True False 3.8

158 3 3 False 0.148 False 0.149 False 0.16 False 0.045 False False 0.503

159 3 3 True 0.959 True 0.175 False 0.083 False 0.04 True False 1.257

178 6 4 True 0.52 True 1.71 True 0.877 False 1.201 False False 4.308

186 11 10 True 31.785 True 1026.464 True 1.956 False 0.095 False False 1060.301

187 11 10 True 27.734 True 1023.648 True 0.103 False 0.062 False False 1051.548

188 20 10 True 0.075 True 0.079 True 0.04 False 0.047 False False 0.242

189 18 7 True 0.035 True 0.02 True 0.002 False 0.062 False False 0.12

194 5 5 False 2.338 False 1.922 False 0.612 False 0.05 False False 4.922

197 7 5 False 7.562 False 71.864 False 0.485 False 0.05 False False 79.962

198 12 9 True 0.397 True 0.793 True 0.077 False 0.042 False False 1.31

199 15 8 True 1.404 True 1.531 False 0.215 False 0.054 True False 3.205

220 58 56 True 146.146 True 534.832 True 6.921 False 0.964 False False 688.866

227 60 39 True 0.273 True 0.485 True 0.01 False 0.077 False False 0.847

229 7 7 True 1.917 True 3.348 False 0.131 False 0.062 True False 5.458

233 4 2 False 0.16 False 0.44 False 0.17 False 0.557 False False 1.328

243 23 19 True 8.598 True 1171.687 True 2.512 False 0.171 False False 1182.97

(continued)
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Model m n ι tι μ tμ η tη γ tγ Coset Group tΣ

259 17 16 True 1.334 True 1.913 True 0.092 False 0.045 False False 3.385

260 17 16 True 2.182 True 0.748 True 0.079 False 0.047 False False 3.057

261 17 16 True 3.359 True 2.872 True 0.113 False 0.095 False False 6.44

262 11 9 True 0.402 True 0.41 True 0.091 False 0.071 False False 0.975

263 11 9 True 0.379 True 0.403 True 0.085 False 0.066 False False 0.934

264 14 11 True 1.031 True 2.036 True 0.136 False 0.063 False False 3.268

267 4 3 True 1.084 True 0.246 True 0.095 False 0.049 False False 1.475

271 6 4 True 0.286 True 0.283 True 0.746 False 0.045 False False 1.361

272 6 4 True 0.361 True 0.323 True 0.086 False 0.055 False False 0.826

281 32 32 True 20.987 True 29.791 True 0.602 False 0.055 False False 51.437

282 6 3 True 0.205 True 0.19 True 0.087 False 0.046 False False 0.528

283 4 3 True 0.294 True 0.211 True 0.087 False 0.412 False False 1.005

289 5 4 False 2.291 False 1.118 False 0.165 False 0.044 False False 3.619

292 6 2 True 0.06 True 0.048 True 0.063 False 0.046 False False 0.218

306 5 2 True 0.149 True 0.121 False 0.079 False 0.041 True False 0.391

307 5 2 True 0.129 True 0.121 True 0.043 False 0.148 False False 0.441

310 4 1 True 0.053 True 0.369 True 0.047 False 0.04 False False 0.509

311 4 1 True 0.076 True 0.048 True 0.224 False 0.048 False False 0.397

312 3 2 True 0.098 True 0.512 True 0.043 False 0.043 False False 0.697

314 12 10 True 0.515 True 1.789 True 0.1 False 0.059 False False 2.464

321 3 3 True 0.163 True 0.148 True 0.042 False 0.039 False False 0.393

357 9 8 True 0.353 True 1.517 True 0.07 False 0.045 False False 1.986

359 9 8 True 1.677 True 3.605 True 0.11 False 0.055 False False 5.448

360 9 8 True 0.479 True 0.47 True 0.096 False 0.05 False False 1.096

361 8 8 True 1.069 True 2.746 True 0.156 False 0.045 False False 4.017

363 4 3 True 0.244 True 0.199 True 0.077 False 0.041 False False 0.561

364 14 12 True 2.483 True 7.296 True 0.55 False 0.064 False False 10.394

413 5 5 False 1.55 False 22.323 False 0.117 False 0.053 False False 24.044

459 4 3 True 0.542 True 0.224 False 0.18 False 0.068 True False 1.014

460 4 3 False 1.025 False 0.936 False 0.143 False 0.216 False False 2.321

475 23 22 True 97.876 True 3377.021 True 0.231 False 0.062 False False 3475.192

484 2 1 True 0.384 True 0.143 False 0.099 False 0.048 True False 0.674

485 2 1 False 0.564 False 0.354 False 0.209 False 0.042 False False 1.169

486 2 2 True 0.119 True 0.106 False 0.073 False 0.041 True False 0.339

487 6 6 True 0.475 True 1.008 False 0.099 False 0.045 True False 1.628

491 57 57 True 123.138 True 536.865 False 2.067 True 0.007 True True 662.08

492 52 52 True 85.606 True 284.753 False 1.123 True 0.003 True True 371.489

519 3 3 True 1.357 True 2.367 False 5.142 False 0.097 True False 8.964

546 7 3 True 0.327 True 0.338 True 0.109 False 0.042 False False 0.817

559 90 71 True 4.742 True 7.525 True 0.19 False 0.053 False False 12.515

584 35 9 True 0.4 True 0.655 False 0.095 False 0.043 True False 1.194

619 10 8 True 0.411 True 0.443 True 0.087 False 0.052 False False 0.994

629 5 5 True 0.209 True 0.197 False 0.079 False 0.046 True False 0.532

647 11 11 False 0.854 False 16.436 False 0.165 False 0.051 False False 17.507

B Program Code Used for Our Computations

The following is Maple code for computing one row of the table in Appendix A.
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Abstract. The author has a long experience in railway engineering soft-
ware development, mainly using computer algebra systems. Now a soft-
ware package that allows the user to obtain compatible routes in an
overtaking station of any number of tracks and any topology, based in
dealing with cycles, has been developed. It has been implemented in the
computer algebra system Maple and takes advantage of its GraphTheory
package. There are two main uses of such a package. One is complement-
ing topology independent railway interlocking systems, providing alter-
native routes. The other is to easily explore alternative track layouts.
The package can only deal with overtaking stations (the most common
ones in double track lines). Note that the latter use is important: for
instance, the Spanish infrastructure administrator is nowadays remodel-
ing the track layouts of the main railway stations of Madrid, Seville and
Barcelona.

Keywords: Railway interlocking systems · Routes · Railway station
layout · Graphs · Computer algebra systems

1 Introduction

Decision making in railway stations, junctions, yards, etc. is supervised by rail-
way interlocking systems [29]. That is, a proposed aspect of mechanical signals
(semaphores) and color light signals and position of the switches of the turnouts
has to be checked to be compatible.

Traditionally, the compatibility of routes is established in advance by a panel
of experts when the station is designed. It is therefore topology dependent. The
first ones were mechanical and were installed in the XIX century [45]. In the
XX century relays interlocking systems were introduced. And from the 80’s,
computer based railway interlocking systems (called “electronic interlocking sys-
tems”) were installed (see, for instance, the technical project [1] or the brochures
[2–4]).
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The latter made much simpler the adaptation of the railway interlocking
system when changes in the layout were made, as reprogramming is much simpler
than rewiring (adaptation to changes is almost impossible for the mechanical
interlocking systems).

The most modern railway interlocking were introduced in the 90’s and such
systems are topology independent [44], that is, the layout of the railway station
is yet another datum for the decision making software.

A recent step forward (2018) is the use of digital networks for the railway
interlocking communications (computer ↔ turnouts, signals, etc.) [11,43].

The author has a long experience in developing railways related software,
some in cooperation with the ‘Fundación de los Ferrocarriles Españoles’ (Spanish
Railway Foundation) or in research projects funded by this foundation [39,40].

There are many different approaches to decision making in a railway
interlocking, some by this author, like [9,13,14,18–21,23–25,27,28,32–34,36–
38,41,47,48] (a survey can be found in [8]). A related issue not yet explored
is automatically looking for a route compatible with a given one (we know of no
topology independent package for this purpose). If the layout is not simple this
can be very helpful in both the station design step and in case of a degraded
condition (derailment, works in the tracks, turnout breakdown, etc.), but the
tradition is that experts set the non-conflicting routes in advance, during the
design of the interlocking.

We have addressed this problem in the frame of an overtaking station of
any topology. Overtaking stations are stations on double track lines with sidings
(connected to a main track or to other sidings at either end, also called loops)
on each side of the main line and one or two crossovers at the two throats of
the overtaking station (Fig. 1). According to [49] ‘Overtaking stations are set on
double track railways and responsible for dealing with the overtaking of trains
in the same direction’.

We have used for our purpose the GraphTheory package [16,17] of the com-
puter algebra system (CAS) Maple 2020 1 [7,15,22,30,42]. However, the code
has been tested with much earlier versions, up to the 2009 Maple 13, with no
problems, except an avoidable stylesheet plot option (see [35]).

This could be a perfect complement for railway interlocking systems imple-
mented in the same CAS, such as [36] (based on the use of Boolean matrices)
and [37] (based on the use of Groebner bases [12]).

Moreover, it could also be used to compare alternative layouts prior to the
railway station design or when the track layout is remodeled (the later is not
so unusual: for instance the track layout of the two main railway stations at
Madrid, Madrid Chamart́ın [26] and Madrid Atocha [10], as well as Barcelona
main station, Barcelona Sants [5], ans Seville main station, Sevilla Santa Justa
[6], are being remodeled nowadays (as well as the track layout of several other
smaller railway facilities in Spain).

1 Maple is a trademark of Waterloo Maple Inc.
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Fig. 1. Standard layout of an overtaking station (transversal type layout, according to
the notation of [49]) with one siding (tracks 3 and 4) on each side of the main tracks
(tracks 1, 2)

2 Key Idea

Let us illustrate the key idea with the diagram of an overtaking station with two
sidings on each side of the main tracks (Fig. 2)2.

Let us consider that sections exist between every turnout (Fig. 3), as already
done, for instance in the approaches to decision making in railway interlocking
systems [36,37].

Fig. 2. Standard layout of an overtaking station with two sidings (tracks 3, 5 and 4,
6) on each side of the main tracks (tracks 1, 2)

We are focusing on the concrete problem of checking whether two disjoint
routes exist between the throats of the railway station (that is, if two non stop-
ping trains can cross each other in the proposed layout). Obviously, in the layout
of Fig. 2 and 3, this is:
2 Note that the layouts of Fig. 1 and 2 and simpler ones can be found in many rail-

way networks. They are proposed as standards, with some extra dead-end sidings
(introduced for safety reasons), that don’t affect the process proposed in this article,
in [31] (p. 155). A real example of the layout of Fig. 1 is El Prat, in the high-speed
line Madrid–Barcelona. ([31], p. 62). Many other similar examples of the layouts of
Fig. 1 and 2 can be found in the high speed lines of Japan, France and Spain [31],
as well as in classic railway networks all around the world.
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Fig. 3. Sections considered in the layout of Fig. 2

– true, if the conditions are not degraded, as we have, for example, the disjoint
routes:
Route I: 1x, 1y, 1z, 1, 1a, 1b, 1c
Route II: 2c, 2b ,2a, 2a46, 4, 2z46, 2z, 2y, 2x,

– false, for instance, if there was a derailment affecting sections 2, 4 and 6.

Let us connect the end sections at the two throats with two imaginary sec-
tions, 1c2c and 1x2x(Fig. 4). Then the existence of the two disjoint routes men-
tioned in the previous paragraph would be trivially equivalent to the existence
of a cycle containing both Section 1c2c and 2x2y.

Fig. 4. Adding two imaginary sections that transform the problem of existence of two
compatible routes into the existence of cycles through two certain edges

3 Algorithm

Maple’s GraphTheory package provides a command, CycleBasis, that returns
a basis for the cycle space of the given graph. All cycles in G can be obtained
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from applying symmetric differences to the cycles in the basis, considered as sets
of edges (in fact all the Eulerian subgraphs can be obtained this way).

We have implemented an algorithm that looks for cycles through two given
edges (edge1,edge2), starting from a basis of the cycle space. It is incremental,
beginning with the cycles in the basis that contain edge1 and computing their
symmetric difference with the rest of the cycles that share an edge with it. These
new cycles are added to the list of cycles considered. This process is repeated
until a cycle containing both edge1 and edge2 is found or until this incremental
process stabilizes. The algorithm is formally detailed in Algorithm 1.

Algorithm 1
1: procedure FindCyclesThrough2Edges(list cycles, edge1, edge2)

� (This procedure is recursive. The first time it is executed, the given list of edges
should be a basis of the cycle space of the graph.)
� (Note: # represents the number of elements in the list afterwards.)

2: Copy list cycles into a new list, ELC.
3: for i to #ELC do
4: for for j from i + 1 to #ELC do
5: if (edge1 ∈ ELCi or edge1 ∈ ELCj) and ELCi ∩ ELCj �= ∅ then
6: compute the symmetric difference of both cycles and add it to ELC
7: end if
8: end for
9: end for

10: if there are cycles in ELC containing both edge1 and edge2 then
11: return these cycles
12: else
13: if #ELC > #list cycles then
14: Find Cycles Through 2 Edges(ELC, edge1, edge2)
15: else
16: print ’No solution’
17: end if
18: end if
19: end procedure

Regarding the complexity of Algorithm 1, the first input (list cycles) has
to be a cycle basis the first time it is executed, but it is only calculated once.
If k is the number of cycles in the cycle basis and n is the number of edges
in the graph, as there are two nested for loops (i = 1, ..., k) and a symmetric
difference of two cycles (of at most n edges) could have to be computed each
time, the worst case complexity of the algorithm each time it is executed is at
most O(2 ·k2 ·n2). But this process should be carried out recursively... However,
these railway facilities have associated graphs that are usually rather simple from
the graph theory point of view, so, probably, a worst case complexity is not very
meaningful in this case. The timings obtained when executing the example of
Sect. 5 are very small (they can be found at the end of that section), so more
complex layouts could be easily addressed.
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4 Maple Implementation

Only an auxiliary procedure and the main procedure have to be implemented.
The auxiliary procedure obtains the edges of a cycle given as a list of vertices
(something similar to what Edges(Graph(...,...)) does:

edges_cycle:=proc(listaV)
local i,setE;
setE:={};
for i to nops(listaV) - 1 do

setE:={op(setE),{op(i,listaV),op(i+1,listaV)}}
end do;
setE:={op(setE),{op(nops(listaV),listaV),op(1,listaV)}};

end proc:

The previous procedure initializes the local variable setE as the empty set.
It then goes through the input list listaV, adding to setE the edges connecting
the i-th element of listaV with the (i+1)-th element of listaV, for i =1 to the
number of elements of listaV minus one. It finally adds the edge connecting
the (i + 1)-th element of listaV with the first element of listaV, this way
closing the cycle. Note that command op returns the elements of a list or set as
a sequence and nops returns the number of elements of a list or set.

Meanwhile, the main procedure (described in the algorithm in the previous
section) can be implemented as follows:

findCyclesThrough2Edges:=proc(list_cycles,edge1,edge2)
local i,j,l,numb;
global sols,ELC;
ELC:=list_cycles;
numb:=nops(ELC):
for i to numb do

for j from i+1 to numb do
if (member(edge1,op(i,ELC))

or member(edge1,op(j,ELC)))
and op(i,ELC) intersect op(j,ELC) <> {} then

ELC:=[op(ELC),symmdiff(op(i,ELC),op(j,ELC))];
end if;

end do;
end do;
sols:=[];
for l in ELC do

if member(edge1,l) and member(edge2,l) then
sols:=[op(sols),l]

end if;
end do;
if sols<>[] then

sols
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elif list_cycles<>ELC then
findCyclesThrough2Edges(ELC,edge1,edge2)

else
print(‘No solution‘)

end if;
end proc:

Variable ELC is initialized as the (input) list cycles and variable numb is
assigned the number of elements of ELC. Observe that the recursive procedure
findCyclesThrough2Edges(list cycles,edge1,edge2) detects new cycles in
the graph starting from list cycles, initially a basis of the cycle space, using
the operation symmetric difference (thanks to a nested for).

Variable sols is initialized as the empty list. Those cycles in ELC containing
the edge {edge1,edge2} are added to variable sols. If at least one such a cycle
has been found (that is, if sols is not the empty list), sols is returned. If the pro-
cess has added new edges to ELC but sols is empty, findCyclesThrough2Edges
is called with ELC as first input. Otherwise a“No solution” message is printed.

5 Example

Let us consider the layout of Fig. 3. We have to first load the GraphTheory
package:

with(GraphTheory):

Now we can introduce the graph to Maple, declaring the list of vertices and the
set of edges:

ListVer:=["5","3","1a35","1z35","1c","1b","1a","1","1z","1y","1x",
"1c2b","1a2b","1z2y","1x2y","2c","2b","2a","2","2z",
"2y","2x","2a46","2z46","4","6"]:

G := Graph(ListVer,
{{"1x","1y"},{"1x","1x2y"},{"1y","1z"},{"1z","1"},
{"1","1a"},{"1z","1z35"},{"1z35","3"},{"1z35","5"},
{"5","1a35"},{"3","1a35"},{"1a35","1a"},{"1a","1b"},
{"1a","1a2b"},{"1b","1c"},{"2x","2y"},{"2y","2z"},
{"2y","1z2y"},{"2z","2"},{"2","2a"},{"2z","2z46"},
{"2z46","4"},{"2z46","6"},{"6","2a46"},{"4","2a46"},
{"2a46","2a"},{"2a","2b"},{"2b","2c"},{"2b","1c2b"},
{"1x2y","2y"},{"1z2y","1z"},{"1a2b","2b"},
{"1c2b","1c"}}):

The default allocation of vertices produces an unclear drawing (for our purposes).
It is convenient to manually allocate the vertices (so that the diagram resembles
the track layout), for instance:
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vp := [[0.5,0.9], [0.5,0.8], [0.4,0.7], [0.6,0.7], [0,0.6],
[0.15,0.6], [0.3,0.6], [0.5,0.6], [0.7,0.6], [0.85,0.6],
[1,0.6], [0.1,0.5], [0.2,0.5], [0.8,0.5], [0.9,0.5],
[0,0.4], [0.15,0.4], [0.3,0.4], [0.5,0.4], [0.7,0.4],
[0.85,0.4], [1,0.4], [0.4,0.3], [0.6,0.3], [0.5,0.2],
[0.5,0.1]]:

SetVertexPositions(G, vp):

Now DrawGraph(G); produces the nice drawing of Fig. 5.

Fig. 5. Maple 2020 plot of the graph corresponding to the layout and section naming
of Fig. 3

It is time to add the imaginary edges at the throats of the station (see Fig. 4):

G_:=AddEdge(G,{"1c","2c"});
G_:=AddEdge(G_,{"1x","2x"});

and now DrawGraph(G ); produces the nice drawing of Fig. 6.
We can look for the cycles containing the two imaginary edges at the throats

of the station, just typing:

LC:=CycleBasis(G_):
LCE:=map(edges_cycle,LC):
findCyclesThrough2Edges(LCE,{"1c","2c"},{"1x","2x"});



536 E. Roanes-Lozano

Fig. 6. Maple 2020 plot of the graph corresponding to the layout and section naming
of Fig. 4 (with the two imaginary edges at the throats of the station)

and the following output is obtained:

[{{"1a", "1a35"}, {"1a", "1b"}, {"1a35", "5"}, {"1b", "1c"},
{"1c", "2c"}, {"1x", "1y"}, {"1x", "2x"}, {"1y", "1z"},
{"1z", "1z35"}, {"1z35", "5"}, {"2", "2a"}, {"2", "2z"},
{"2a", "2b"}, {"2b", "2c"}, {"2x", "2y"}, {"2y", "2z"}},

{{"1a", "1a35"}, {"1a", "1b"}, {"1a35", "5"}, {"1b", "1c"},
{"1c", "2c"}, {"1x", "1y"}, {"1x", "2x"}, {"1y", "1z"},
{"1z", "1z35"}, {"1z35", "5"}, {"2a", "2a46"}, {"2a", "2b"},
{"2a46", "4"}, {"2b", "2c"}, {"2x", "2y"}, {"2y", "2z"},
{"2z", "2z46"}, {"2z46", "4"}},

{{"1a", "1a35"}, {"1a", "1b"}, {"1a35", "5"}, {"1b", "1c"},
{"1c", "2c"}, {"1x", "1y"}, {"1x", "2x"}, {"1y", "1z"},
{"1z", "1z35"}, {"1z35", "5"}, {"2a", "2a46"}, {"2a", "2b"},
{"2a46", "6"}, {"2b", "2c"}, {"2x", "2y"}, {"2y", "2z"},
{"2z", "2z46"}, {"2z46", "6"}}]

that is, three cycles have been found (they are stored in variable sols). We can
easily visualize, for example, the first cycle obtained by typing:

HighlightEdges(G_,op(1,sols), stylesheet = [thickness = 3]);
DrawGraph(G_);

and the drawing of Fig. 7 is obtained, where the two disjoint routes are clearly
visible (erasing the two imaginary edges):
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Route I: "1x", "1y", "1z", "1z35", "5", "1a35",
"1a", "1b", "1c"

Route II: "2c", "2b", "2a", "2", "2z", "2y", "2x"

Fig. 7. On of the three cycles found through edges {"1c","2c"} and {"1x","2x"} by
the proposed procedure

The Maple 2020 worksheet corresponding to this example can be downloaded
from [35]. The timings obtained for this example on an ordinary laptop are 0.016 s
for obtaining the cycle basis and 0.015 s for running the main procedure.

6 Conclusions and Future Work

CASs have evolved including new and exciting possibilities, like numeric algo-
rithms, symbolic-numeric approaches, implementations of packages dealing with
related fields (like, in this case, graph theory), etc.

The extension presented here, although limited to overtaking stations (of any
number of tracks and of any topology) has two main uses:

– To complement decision making software for railway interlocking systems,
allowing to look for another compatible route when a pair of proposed routes
is not compatible.

– To analyze alternative topologies to those traditionally accepted. For instance,
the standard layout of an overtaking station of transversal type layout (Fig.
2 and 3) has the advantage that the 6 tracks of the station can be accessed
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from both tracks from both throats of the station. Nevertheless, it has the
disadvantage that a problem in the tracks on one side of the station that
made impossible, for instance, to use tracks 2, 4, 6 (a derailment affecting
Section 2a and 2a46, for example), would make impossible to find two dis-
joint routes between the throats of the station. Note that such a degraded
condition wouldn’t be so strange, as an important percentage of derailments
take place when passing through turnouts. Meanwhile, an alternative topol-
ogy, such as the one proposed in Fig. 8, allows to establish these compatible
routes in such a degraded condition, with the added advantage that two
fewer turnouts (an expensive element of the infrastructure) are required, and
the small disadvantage that only 4 tracks can be accessed from both tracks
from both throats of the station. The possibilities of the different alternative
topologies can be comfortably checked with the proposed package in more
complex layouts.

Fig. 8. A possible alternative layout for overtaking stations of transversal type. The
four crossovers between the main tracks have been substituted by a long bypass of the
station (track 0), accessible from both throats of the station from both tracks.

The approach could be also applied to small terminal stations (of any topol-
ogy) at the end of a double track line. Given two origins and destinations, it could
be determined if two compatible routes with these origins and destinations exist,
and at least one solution would be found in the affirmative case.

For example, let us consider the tiny terminal station of Fig. 9. Let us suppose
that there is a train in section 5 that has to leave the station and there is an
incoming train that we would like to situate at track 2. It would be enough to
add the virtual edges {1c,2c} and {5,2} to the graph and to apply an approach
similar to the one proposed in this paper (to look for a cycle containing these
two edges).
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Fig. 9. A tiny terminal station at the end of a double track line
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Abstract. Logarithmic vector fields along an isolated complete inter-
section singularity (ICIS) are considered in the context of computational
complex analysis. Based on the theory of local polar varieties, an effec-
tive method is introduced for computing a set of generators, over a local
ring, of the modules of germs of logarithmic vector fields. Underlying
ideas of our approach are the use of a parametric version of the concept
of local cohomology and the Matlis duality. The algorithms are designed
to output a set of representatives of logarithmic vector fields which is
suitable to study their complex analytic properties. Some examples are
given to illustrate the resulting algorithms.
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duality · Isolated complete intersection singularity

1 Introduction

The concept of logarithmic vector fields introduced by Saito [36], is of con-
siderable importance in complex analysis and singularity theory. Logarithmic
vector fields have been extensively studied and utilized by several authors and
are known to be related to many areas of mathematics [8,10,13,17,18,43]. The
concept of logarithmic vector fields which is closely related with logarithmic
differential forms and logarithmic residues, is actually profound. We refer the
readers to [5–7,15,35] for recent results on logarithmic vector fields, logarith-
mic differential forms and related topics. Note also that logarithmic vector fields
are related with the Nash blow-up, or limiting tangent spaces and contain rich
information on singularities.
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In our previous papers [25,38], we considered the case of hypersurfaces with
an isolated singularity and, by utilizing the concept of local polar variety [41,42],
gave methods for computing logarithmic vector fields. In [29], with an inten-
tion to study complex analytic structure of logarithmic vector fields, we derived
another method by improving the previous one which takes care of genericity of
local polar varieties. As applications, in [28,29] we gave algorithms of comput-
ing Bruce-Roberts Milnor and Tjurina numbers [8,33] and in [40], based on a
result of A. G. Aleksandrov [4], gave an algorithm for computing torsion differ-
ential forms, that can be used to study logarithmic differential forms and related
problems.

In singularity theory, Aleksandrov [3] and Wahl [45] studied complete inter-
section singularities and independently gave, among other results, a closed for-
mula of the generators of logarithmic vector fields along quasi-homogeneous
complete intersection singularities. Note that their results were effectively used
in [8,32,34]. By contrast, for non-quasi homogeneous complete intersection cases,
no closed formula is known. Complex analytic structure of modules of logarithmic
vector fields is difficult even for an isolated singularity case. In fact, as is noticed
in [38], a direct use of syzygy computation is not enough to reveal their analytic
properties. Therefore, effective methods for computing logarithmic vector fields
are desirable.

In the present paper we consider logarithmic vector fields along an ICIS and
address the problem of computation of logarithmic vector fields in the context
of computational complex analysis. The aim is providing new effective tools for
studying complex analytic properties of logarithmic vector fields. We show that,
by adopting ideas given in [26,30], the use of local cohomology and the Matlis
duality allows us to derive an effective method for computing them. The resulting
algorithms that take care of genericity conditions compute a set of generators of
the module of germs of logarithmic vector fields along an ICIS.

In Sect. 2, we recall some basics on local cohomology and the Matlis duality.
In Sect. 3, we describe an underlying idea for computing logarithmic vector fields
associated to an ICIS. In Sect. 4, we recall a result of B. Teissier on polar varieties,
which will be used for selecting a generic local coordinate system. In Sect. 5, we
present algorithms for computing logarithmic vector fields. In Sect. 6, we give
examples for illustration.

All algorithms in this paper have been implemented in the computer algebra
system Risa/Asir [31].

2 Preliminaries

In this section, we recall some basics on a complex analytic version of local
cohomology and that of Matlis duality.

2.1 Matlis Duality

Let X be an open neighborhood of the origin O in C
n with a local coordinate

system x = (x1, x2, . . . , xn). Let OX be the sheaf on X of holomorphic func-
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tions, Ωn
X the sheaf of holomorphic n-forms. Let OX,O be the stalk at O of

the sheaf OX and let Hn
{O}(Ω

n
X) denote the local cohomology of Ωn

X supported
at O [16,20].

For a positive integer �, let

res{O}(∗, ∗) : (OX,O)� × (Hn
{O}(Ω

n
X))� −→ C

be the pairing defined as follows: for p = (h1, h2, . . . , h�) ∈ (OX,O)� and

ω =

⎛
⎜⎜⎜⎝

ω1

ω2

...
ω�

⎞
⎟⎟⎟⎠ ∈ (Hn

{O}(Ω
n
X))�,

we set

res{O}(p, ω) := res{O}

(
�∑

i=1

hiωi

)
,

where res{O}
(∑�

i=1 hiωi

)
is the Grothendieck local residue at the origin O of

the local cohomology class pω =
∑�

i=1 hiωi ∈ Hn
{O}(Ω

n
X) [21]. The above pairing

res gives rise to a duality between (OX,O)� and (Hn
{O}(Ω

n
X))�. More precisely,

(OX,O)� and (Hn
{O}(Ω

n
X))� have a structure of locally convex topological vector

space (one is Fréchet Schwartz and the other is dual Fréchet Schwartz [44]) and
they are mutually dual [20].

Now let N be an OX,O-submodule of (OX,O)� generated by p1, p2, . . . , pm

and let WN denote the set of local cohomology classes in (Hn
{O}(Ω

n
X))� that are

killed by N :

WN =

⎧⎪⎨
⎪⎩

ω =

⎛
⎜⎝

ω1

...
ω�

⎞
⎟⎠ ∈ (Hn

{O}(Ω
n
X))�

∣∣∣∣∣∣∣

�∑
i=1

hiωi = 0,∀p = (h1, h2, . . . , h�) ∈ N

⎫⎪⎬
⎪⎭

.

Assume that N has finite colength, namely the quotient space (OX,O)�/N
is assumed to be a finite dimensional vector space. Then, the classical Matlis
duality [23] says that the pairing

res{O}(∗, ∗) : (OX,O)�/N × WN −→ C

induced by res is also non-degenerate [9].
Let ÔX,O be the ring of formal power series and let Hn

[O](Ω
n
X) denote the

algebraic local cohomology of Ωn
X supported at O defined to be

Hn
[O](Ω

n
X) = lim

k→∞
Extn(OX/mk, Ωn

X),
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where m = (x1, x2, . . . , xn) is the maximal ideal generated by x1, x2, . . . , xn,
supported at the origin. Let N̂ = ÔX,O ⊗ N ⊂ (ÔX,O)� and let

ŴN =

⎧⎪⎨
⎪⎩

ω̂ =

⎛
⎜⎝

ω̂1

...
ω̂�

⎞
⎟⎠ ∈ (Hn

[O](Ω
n
X))�

∣∣∣∣∣∣∣

�∑
i=1

ĥiω̂i = 0,∀p̂ = (ĥ1, ĥ2, . . . , ĥ�) ∈ N̂

⎫⎪⎬
⎪⎭

.

Then, we also have the following non-degenerate pairing [9]

res{O}(∗, ∗) : (ÔX,O)�/N̂ × ŴN −→ C.

2.2 Algebraic Local Cohomology

Let N ⊂ (OX,O)� be an OX,O-submodule, as previously of finite colength, gen-
erated by p1, p2, . . . , pm ∈ (OX,O)�. Set

HN = {σ ∈ (Hn
{O}(OX))� | piσ = 0, i = 1, 2, . . . , m}

and
ĤN = {σ̂ ∈ (Hn

[O](OX))� | piσ̂ = 0, i = 1, 2, . . . ,m}.

Let dx = dx1 ∧ dx2 ∧ · · · ∧ dxn denote a holomorphic n-form. Then, we have

WN = {σdx | σ ∈ HN}, ŴN = {σ̂dx | σ̂ ∈ ĤN}.

Since the finite dimensionality dimC((OX,O)�/N) < ∞ implies ĤN
∼= HN ,

the local cohomology module WN can be identified with algebraic local coho-
mology module ĤN . In what follows, we identify ĤN with HN .

If the given generators pi = (hi,1, hi,2, . . . , hi,�), i = 1, 2, . . . ,m belong to the
module (Q[x])�, then, a basis as a vector space of HN is computable by using an
algorithm described in [37].

Note that the non-degeneracy of the Matlis duality implies the following.
Assume that p = (h1, h2, . . . , h�) ∈ (OX,O)� is given. Then p is in N if and only
if res{O}(pσdx) = 0, for all σ ∈ HN .

3 Logarithmic Vector Fields Along ICIS and Matlis
Duality

Let X be an open neighborhood of the origin O in C
n. Let

V = {x ∈ X | f1(x) = f2(x) = · · · = f�(x) = 0}
be a complex analytic variety, where x = (x1, x2, . . . , xn) and f1, f2, . . . , f� are
holomorphic functions defined on X. We assume that V is an ICIS, isolated
complete intersection singularity at O, that is, codim(V ) = � and the singular
set Sing(V ) of V in X is the origin O. Let IO = (f1, f2, . . . , f�) be the ideal in
the local ring OX,O generated by f1, f2, . . . , f�.

Let v be a germ of holomorphic vector field on X at the origin O.
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Definition 1 [8,36]. A germ of holomorphic vector field v is said to be loga-
rithmic along V , when considered as a derivation v : OX,O → OX,O, we have
v(f) ∈ IO for all f ∈ IO. The OX,O-module that consists of such vector fields is
denoted by DerX,O(− log V ).

Let

pi =
(

∂f1
∂xi

,
∂f2
∂xi

, · · · ,
∂f�

∂xi

)
∈ (OX,O)�, i = 1, 2, . . . , n,

and let
pi,j = eifj ∈ (OX,O)�, i, j = 1, 2, . . . , �,

where ei = (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ Z
� is the i-th unit vector.

Let
v = a1(x)

∂

∂x1
+ a2(x)

∂

∂x2
+ · · · + an(x)

∂

∂xn

be a germ of holomorphic vector field at the origin O, where ai ∈ OX,O, i =
1, 2, . . . , n. Then, v is in DerX,O(− log V ) if and only if there exists a set of
holomorphic functions ci,j ∈ OX,O, i, j = 1, 2, . . . , � s.t.

∑
ai(x)pi =

∑
ci,j(x)pi,j .

Let NΓ denote the OX,O-submodule of (OX,O)� generated by p2, p3, . . . , pn

and pi,j , i, j = 1, 2, . . . , � :

NΓ = (p2, p3, . . . , pn, p1,1, p1,2, . . . , p�,�) ⊂ (OX,O)�.

Now let us consider a germ of holomorphic function a ∈ OX,O. Then, it is
easy to see that there exists a logarithmic vector fields v ∈ DerX,O(− log V ) of
a form

v = a(x)
∂

∂x1
+ a2(x)

∂

∂x2
+ · · · + an(x)

∂

∂xn

if and only if a(x)p1 ∈ NΓ .
Assume that dimC((OX,O)�/NΓ ) < ∞ and we set

HNΓ
= {σ ∈ (Hn

{O}(OX))� | piσ = 0, i = 2, . . . n, pi,jσ = 0, i, j = 1, 2, . . . , �}
and

HNΔ
= {p1σ | σ ∈ HNΓ

} ⊂ Hn
{O}(OX).

Let AnnOX,O
(HNΔ

) denote the annihilator in OX,O of HNΔ
:

AnnOX,O
(HNΔ

) = {a ∈ OX,O | aδ = 0, ∀δ ∈ HNΔ
}.

Then, we have the following:

Theorem 1. Let a(x) ∈ OX,O be a germ of holomorphic function. Then, there
exists a logarithmic vector fields v ∈ DerX,O(− log V ) of a form

v = a(x)
∂

∂x1
+ a2(x)

∂

∂x2
+ · · · + an(x)

∂

∂xn

if and only if a(x) ∈ AnnOX,O
(HNΔ

).
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Proof. Let a(x) be a germ of holomorphic function. Then a(x) is in the annihila-
tor AnnOX,O

(HNΔ
) of HNΔ

if and only if a(x)δ = 0 for every local cohomology
class δ in HNΔ

. Since, a(x)(p1σ) = 0 holds for any local cohomology σ ∈ HNΓ
,

we see that a(x)p1 belongs to the module NΓ . This completes the proof.

The above theorem says that if dimC((OX,O)�/NΓ ) < ∞, then the coeffi-
cient a(x) in front of ∂

∂x1
of a logarithmic vector field can be described in terms

of AnnOX,O
(HNΔ

).
Note that, if the defining functions f1, f2, . . . , f� of a germ of the variety V are

in Q[x], then bases of the vector spaces HNΓ
and HNΔ

are computable. Therefore,
a standard basis of the annihilator AnnOX,O

(HNΔ
) is also computable by using

algorithms given in [27,39].
Let γ : HNΓ

−→ Hn
{O}(OX) denote the map defined by γ(σ) = p1σ, where

p1 =
(

∂f1
∂x1

,
∂f2
∂x1

, . . . ,
∂f�

∂x1

)
∈ (OX,O)�.

We define HNT
⊂ (Hn

{O}(OX))� as follows:

HNT
= {τ ∈ (Hn

{O}(OX))� | piτ = 0, i = 1, . . . , n, pi,jτ = 0, i, j = 1, 2, . . . , �}.

Then, we have the following:

Lemma 1. Ker(γ) = HNT
holds.

Proof. Since Ker(γ) = {τ ∈ HNΓ
| p1τ = 0}, the above statement follows

immediately from the definition of HNΓ
.

Therefore the following sequence is exact:

0 −→ HNT
−→ HNΓ

−→ HNΔ
−→ 0.

Accordingly, we have the following:

Proposition 1. Assume that the OX,O-submodule NΓ has a finite colength.
Then, the following holds:

dimC(OX,O/AnnOX,O
(HNΔ

)) = dimC(HNΓ
) − dimC(HNT

).

Proof. The Grothendieck local duality says that the quotient space
OX,O/AnnOX,O

(HNΔ
) and HNΔ

are dual to each other. Therefore we have

dimC(OX,O/AnnOX,O
(HNΔ

)) = dim(HNΔ
).

The exactness of the above sequence yields the proof.
Note that the above statement is a generalization of a result given in [38]

to ICIS.
Notice that the dimension of the space HNT

is an complex analytic invariant
of the variety V (see [19,22]). Whereas, the dimension of HNΔ

depends on the
choice of a local coordinate system, or a hyperplane.
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4 Genericity

In order to obtain good representations of logarithmic vector fields, it is impor-
tant to choose an appropriate coordinate system, or a generic hyperplane
(see [29,38,41]). For this purpose, we recall in this section a result of B. Teissier
on generic hyperplanes [42,43].

For ξ = (ξ1, ξ2, . . . , ξn) ∈ C
n\(0, 0, . . . , 0), let Lξ denote the hyperplane

Lξ = {x ∈ C
n | ξ1x1 + ξ2x2 + · · · + ξnxn = 0}.

We may assume without loss of generality there is a non-zero ξk for some k and
ξk = 1.

Let zi = xi for i �= k and

zk = ξ1x1 + · · · + ξk−1xk−1 + xk + ξk+1xk+1 + · · · + ξnxn.

Set
gj(z, ξ) = fj(z1, . . . , zk−1, zk − ξ1z1 − ξ2z2 − · · · − ξk−1zk−1

−ξk+1zk+1 − · · · − ξnzn, zk+1, . . . , zn).
Let

qi(z, ξ) =
(

∂g1
∂zi

,
∂g2
∂zi

, . . . ,
∂g�

∂zi

)
∈ (OX,O)�,

and

qi,j(z, ξ) = eigj(z, ξ) ∈ (OX,O)�,

where i, j = 1, 2, . . . , �. Here, ξ = (ξ1, ξ2, . . . , ξn) are regarded as parameters.
Let NΓξ

denote the OX,O-submodule of (OX,O)� generated by qi, i �= k and
qi,j , i, j = 1, 2, . . . , � :

NΓξ
= (q1, q2, . . . , qk−1, qk+1, . . . , qn, q1,1, q1,2, . . . , q�,�).

Note that NΓξ
depends only on a hyperplane Lξ and does not depend on the

choice of an index k.
We define a number ν as

ν = min
[ξ]∈Pn−1

(
dimC((OX,O)�/NΓξ

)
)
,

where [ξ] stands for the class in the projective space Pn−1 of ξ = (ξ1, ξ2, . . . , ξn) ∈
C

n\(0, 0, . . . , 0) Note that there is a possibility that the colength of Nγξ
in O�

X,O

is not finite for some ξ, whereas since the variety V is assumed to be an ICIS,
the number ν defined above is finite.

Let
U =

{
[ξ] ∈ P

n−1 | dimC((OX,O)�/NΓξ
) = ν

}
.

Then, a result in [42] of B. Teissier on polar varieties implies that U is a Zariski
open dense subset of Pn−1.
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Let γξ,k : HNΓξ
−→ Hn

{O}(OX) denote the map defined by γξ,k(σ) = qkσ,

where

HNΓξ
= {σ ∈ (Hn

{O}(OX))� | qiσ = 0, i �= k, qi,jσ = 0, i, j = 1, 2, . . . , �}

and let HNΔξ
be the image γξ,k(HNΓξ

) of γξ,k :

HNΔξ
= {qkσ | σ ∈ HNΓξ

}.

Now let us define d as

d = min
[ξ]∈Pn−1

(
dimC(HNΔξ

)
)

.

Definition 2. Let β = (β1, β2, . . . , βn) ∈ C
n\(0, 0, . . . , 0).

(i) The hyperplane Lβ = {(x1, x2, . . . , xn) | β1x1 + β2x2 + · · · + βnxn = 0}
satisfies the condition F if

dimC(HΓβ
) < ∞.

(ii) The hyperplane Lβ satisfies the condition G if

dimC((OX,O/AnnOX,O
(HNΔβ

)) = d.

Note that, it is easy to see that, if Lβ satisfies the condition F, the kernel
Ker(γβ,k) of the map γβ,k is equal to HNT

. Accordingly, the following holds
(see [29])

dimC(HNΔβ
) = d + (dimC(HNΓβ

) − ν).

We arrive at the following criterion:

Proposition 2. The following are equivalent.

(i) The hyperplane Lβ satisfies the condition G.
(ii) dimC(HNΓβ

) = ν.

Proof. Since

dimC(OX,O/AnnOX,O
(HNΔβ

)) = dimC(HNΔβ
)

by the Grothendieck local duality, Lβ satisfies the condition G if and only if
dimC(HNΓβ

) = ν.

5 Algorithms

Let f1, f2, . . . , f� ∈ Q[x] be � polynomials, where Q[x] = Q[x1, x2, . . . , xn].
Assume that there is an open neighborhood X of the origin O in C

n so that
the dimension of the variety V = {x ∈ X | f1(x) = f2(x) = · · · = f�(x) = 0} is
equal to n − � and the singular set of V in X is the origin O.
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We give a method for computing logarithmic vector fields along the ICIS V.
The method consists of three blocks. The first block computes the invariant ν
of V. The second block tests whether a chosen hypersurface Lβ satisfies the
condition G or not and if so, computes algebraic local cohomology module HNΓβ

.

The last block computes a standard basis of AnnOX,O
(HNΔβ

) and computes a
set of generators of germs of logarithmic vector fields.

In the first two blocks, the Matlis duality is utilized. In the last block, the
algorithm that computes standard basis from local cohomology classes and a
module version of the extended membership algorithm [26] is used. See [12] for
the theory of standard bases.

In order to compute the number ν of the variety V introduced in the previous
section, we adopt a method described in [30] and use a parametric version of the
algorithm presented in [37] of computing Matlis duality. To be more precise, let
Hn

[O](Q(ξ)[z]) denote algebraic local cohomology with coefficients in the field of
rational functions Q(ξ) defined to be

Hn
[O](Q(ξ)[z]) = lim

k→∞
Extn(Q(ξ)[z]/(z1, z2, . . . , zn)k,Q(ξ)[z]),

where ξ = (ξ1, ξ2, . . . , ξn−1, 1) are indeterminates. Algorithm I uses the algorithm
that computes local cohomology classes with coefficients in the field of rational
functions Q(ξ) in the module (Hn

[O](Q(ξ)[z]))� and compute the number ν of the
variety V.

Algorithm I

Input : f1(x), f2(x), . . . , f�(x) ∈ Q[x] defines a germ of isolated complete inter-
section singularity V at O in C

n.
Output: ν.

BEGIN
NΓξ

← ∅;
for each j from 1 to � do
gj(z, ξ) ← fj(z1, . . . , zn−1, zn − ξ1z1 − ξ2z2 − · · · − ξn−1zn−1) ∈ Q(ξ)[z];
end-for
for each i from 1 to n − 1 do
qi(z, ξ) ← (∂g1

∂zi
, ∂g2

∂zi
, . . . , ∂g�

∂zi
) ∈ Q(ξ)[z] ;

NΓξ
← NΓξ

∪ {qi(z, ξ)};
end-for
for each i and j from 1 to � do
qi,j(z, ξ) ← eigj(z, ξ) ∈ (Q(ξ)[z])�;
NΓξ

← NΓξ
∪ {qi,j(z, ξ)};

end-for
Σ ← compute a basis of the vector space HNΓξ

in (Hn
[O](Q(ξ)[z]))�;

/* use a parametric version of the algorithm presented in [37] on Matlis duality
*/
ν ← |Σ|; /* the number of the elements of Σ */
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return ν;
END

The correctness of Algorithm I above follows from an argument given in [30].

Algorithm II

Input : f1, f2, . . . , f�, ν, β = (β1, β2, . . . , βn) ∈ Q
n\(0, 0, . . . , 0) and k with

βk = 1.
/* ν is the output of Algorithm I */

Output: A basis of HNΓβ
, if β is generic.

BEGIN
NΓβ

← ∅;
for each j from 1 to � do
gj(z, β) ← fj(z1, . . . , zk−1, zk − β1z1 − β2z2 − · · ·
−βk−1zk−1 − βk+1zk+1 − · · · − βnzn, zk+1, . . . , zn);
end-for
for each i from 1 to n do
if i �= k then
qi(z) ← (∂g1

∂zi
, ∂g2

∂zi
, . . . , ∂g�

∂zi
) ∈ (Q[z])�;

NΓβ
← NΓβ

∪ {qi(z)};
end-if
end-for
for each i and j from 1 to � do
qi,j(z) ← eigj(z) ∈ (Q[z])�;
NΓβ

← NΓβ
∪ {qi,j(z)};

end-for
Σβ ← compute a basis of the vector space HNΓβ

in (Hn
[O](Q[z]))�;

/* use the algorithm presented in [37] on Matlis duality */
if |Σβ | exceeds ν then
return “the hyperplane is not generic”;
else if |Σβ | = ν then
return Σβ ;
end-if
END

Since |Σβ | = ν if and only if Lβ satisfies the condition G, Algorithm II is
correct.

Note that there is a possibility that the dimension of the vector space HΓβ

becomes infinite for some input β. Even for such a case, Algorithm II stops
computation if the number |Σβ | exceeds ν, and outputs the message “the hyper-
plane is not generic”. Therefore Algorithm II terminates within a finite number
of steps.

We give an example for illustration. The following is taken from a paper of
M. Giusti [14].
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Example 1. Let f1(x, y, z) = x2 + yz, f2(x, y, z) = xy + z3, and

V = {(x, y, z) | f1(x, y, z) = f2(x, y, z) = 0}.

Then, V is quasi-homogeneous ICIS. We use a parametric version of the algo-
rithm presented in [37] and execute Algorithm I. Then, Algorithm I outputs
ν = 10.

Next, we input β = (1, 0, 0), β = (0, 1, 0) and β = (0, 0, 1) into Algorithm II.
Then, Algorithm II detects that these three cases do not satisfy the condition G.
Therefore the three hyperplanes x = 0, y = 0, and z = 0 are not generic.
Actually, for instance for the case y = 0, we have dimC(HΓ(0,1,0)) = 12.

Then we choose β = (1, 1, 1) as a candidate of generic hyperplanes and input
(1, 1, 1) into Algorithm II. Then, Algorithm II computes a basis Σ(1,1,1) of the
space HNΓ(1,1,1)

whose cardinality is equal to 11(=ν). This ensures the genericity
of the hyperplane x + y + z = 0.

Notice that the example shows that a direct use of syzygy computation is not
appropriate to study complex analytic properties of logarithmic vector fields.

Now we are ready to describe an outline for computing logarithmic vector
fields from the basis Σβ of the local cohomology module HNΓβ

associated to β

with βk = 1.
First, we compute qk(z)σ for each σ ∈ Σβ ⊂ (Hn

[O](Q[z]))� and compute a
basis of the vector space

HΔβ
= SpanQ{qkσ | σ ∈ Σβ},

where qk =
(

∂g1
∂zk

,
∂g2
∂zk

, . . . ,
∂g�

∂zk

)
∈ (Q[z])�. Next, we compute a standard

basis of AnnOX,O
(HNΔβ

) by using an algorithm described in [39]. Recall that
for each element a(z) in the standard basis of AnnOX,O

(HNΔβ
), the product

a(z)qk ∈ (Q[z])� belongs, as an element of (OX,O)�, to the OX,O-module NΓβ
.

Now consider a Q[z]-submodule of (Q[z])� generated by qi, i = 1, 2, . . . , k −
1, k + 1, . . . , n and qi,j , i, j = 1, 2, . . . , � and denotes it by MΓβ

. We have NΓβ
=

OX,O ⊗ MΓβ
, whereas a(z)qk does not belong to MΓβ

in general. Therefore we
consider the colon ideal MΓβ

: (a(z)qk) of modules in the polynomial ring Q[z].
There exists a polynomial, say u(z), in the colon ideal MΓβ

: (a(z)qk) such that
u(O) �= 0. Hence, u(z)a(z)qk belongs to the module MΓβ

.
Now, logarithmic vector fields in the local ring can be computed by using

syzygy for module over the polynomial ring [1]. In order to reduce computational
cost, we devise another tool by adopting approach given in [27] as follows.

Let

QQ = [q1, q2, . . . , qk−1, qk+1, . . . , qn, q1,1, q1,2, . . . , q1,�, q2,1, . . . , q2,�, . . . , q�,�]

and let GMΓβ
= {g1, g2, . . . , gλ} denote a Gröbner basis of the module MΓβ

generated by elements in QQ.
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Let RQQ be a list of relations between gj and QQ :

gj′ =
∑
i�=k

rj′,iqi +
∑
i,j

rj′,i,jqi,j ,

where rj,i, rj,i,j′ ∈ Q[z].
Let SQ be a Gröbner basis of the syzygies of

Q = [q1, q2, . . . , qk−1, qk+1, . . . , qn].

Procedure

Input : β = (β1, β2, ..., βn) and k with βk = 1,
GMΓβ

: a Gröbner basis of the module MΓβ
generated by QQ

RQQ : a list of relations between an element of GMΓβ
and QQ

SQ : a Gröbner basis of the syzygies of Q
−u(z)a(z)qk, where

qk =
(

∂g1
∂zk

,
∂g2
∂zk

, ...,
∂g�

∂zk

)
,

a(z) ∈ AnnOX,O
(HNΔβ

)
u(z) ∈ MΓβ

: a(z)qk,
Output: [b1, b2, . . . , bk−1, bk+1, . . . , bn] such that there exist di,j , i, j = 1, 2, . . . , �

that satisfy

−u(z)a(z)qk(z) = b1(z)q1(z) + b2(z)q2(z) + · · ·
+bk−1(z)qk−1(z) + bk+1(z)qk+1(z) + · · · + bn(z)qn(z)
+d1,1(z)q1,1(z) + d1,2(z)q1,2(z) + · · · + d�,�(z)q�,�(z).
BEGIN

Step1: divide −uaqk by the Gröbner basis GMΓβ
= {g1, g2, . . . , gλ};

−uaqk = c1g1 + c2g2 + · · · + cλgλ

Step2: rewrite the above relation by using RQQ;

−uaqk =
∑
i�=k

(
∑
j′

cj′rj′,i)qi +
∑
i,j

(
∑
j′

cj′rj′,i,j)qi,J

Step3: simplify the above expression by using SQ;

−u(z)a(z)qk(z) = b1(z)q1(z) + b2(z)q2(z) + · · ·
+bk−1(z)qk−1(z) + bk+1(z)qk+1(z) + · · · + bn(z)qn(z)
+d1,1(z)q1,1(z) + d1,2(z)q1,2(z) + · · · + d�,�(z)q�,�(z).

return [b1, b2, . . . , bk−1, bk+1, . . . , bn];
END
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The above procedure is implemented on [31] by using [24]. Notice that in
Step 3 of the procedure, only the coefficients of q1, q2, . . . , qk−1, qk+1, . . . , qn are
simplified by using SQ. Since u(O) �= 0, the above procedure solves an extended
membership problem for a(z)qk(z) w.r.t. the module NΓβ

⊂ (OX,O)� and outputs
required data for computing logarithmic vector fields.

The final step of the resulting algorithms that computes a set of generators
of logarithmic vector fields from Σβ is Algorithm III.

Algorithm III

Input : Σβ . / * a basis of HNΓβ
, associated to β s.t. βk = 1 */

Output: A set of generators of germs of logarithmic vector fields along V .

BEGIN
D ← ∅; T ← ∅;
GMΓβ

← compute a Gröbner basis of the module MΓβ
;

RQQ ← compute a list of relation between GMΓβ
and QQ;

SQ ← compute a Gröbner basis of the syzygies of Q;
Δ ← compute a basis of the vector space HNΔ

; /* use the algorithm in [39] */
A ← compute a standard basis of AnnOX,O

(HNΔβ
) by using Δβ ;

/* use the algorithm in [39] */
while A �= ∅ do
select a(z) from A;
A ← A\{a(z)};
Colon ← compute a Gröbner basis of the colon ideal of modules
MΓβ

: (uaqk) = {u(z) ∈ Q[z] | u(z)a(z)qk ⊂ MΓβ
};

u(z) ← select u(z) ∈ Colon s.t. u(O) �= 0;
{b1, b2, . . . , bk−1, bk+1, . . . , bn} ← compute b1, b2, . . . , bk−1, bk+1, . . . , bn

that satisfy
−u(z)a(z)qk(z) = b1(z)q1(z) + b2(z)q2(z) + · · ·
+bk−1(z)qk−1(z) + bk+1(z)qk+1(z) + · · · + bn(z)qn(z)
+d1,1(z)q1,1(z) + d1,2(z)q1,2(z) + · · · + d�,�(z)q�,�(z)
by using Procedure for solving the extended membership problem for
u(z)a(z)qk(z) with respect to
QQ = [q1, q2, . . . , qk−1, qk+1, . . . , qn, q1,1, q1,2, . . . , q�,�];
v ← b1

∂
∂z1

+ b2
∂

∂z2
+ · · · + bk−1

∂
∂zk−1

+ u(z)a(z) ∂
∂zk

+ bk+1
∂

∂zk+1
+ · · · + bn

∂
∂zn

;
D ← D ∪ {v};
end-while
Syz ← compute a Gröbner basis of syzygies of QQ = [q1, q2, . . . , qk−1,
qk+1, . . . , qn, q1,1, q1,2, . . . , q�,�];
while Syz �= ∅ do
select syz = (s1, s2, . . . , sk−1, sk+1, . . . , sn, d1,1, d1,2, . . . , d�,�) from Syz;
Syz ← Syz\syz;
if (s1, s2, . . . , sk−1, sk+1, . . . , sn) �= (0, 0, . . . , 0) then
w ← s1

∂
∂z1

+ s2
∂

∂z2
+ · · · + sk−1

∂
∂zk−1

+ sk+1
∂

∂zk+1
+ · · · + sn

∂
∂zn

;
T ← T ∪ {w};



556 S. Tajima et al.

end-if
end-while
return D ∪ T;
END

6 Examples

In this section, we present two examples for illustration. The first one taken
from [14] is quasi-homogeneous, the second one taken from [2] is non-quasi homo-
geneous ICIS.

Example 2. Let f1(x, y, z) = x2 + z3, f2(x, y, z) = y2 + xz and

V = {(x, y, z) ∈ X | f1(x, y, z) = f2(x, y, z) = 0},

where X is an open neighborhood of the origin O in C
3.

I: By Algorithm I, we find ν = 11.
II: We input β = (0, 0, 1) into Algorithm II. Then by Algorithm II, we find that
the hyperplane z = 0 is generic. Algorithm II outputs following 11 elements

⎛
⎝

[
1

xyz

]

0

⎞
⎠ ,

⎛
⎝

[
1

xy2z

]

0

⎞
⎠ ,

⎛
⎝

[
1

xyz2

]

0

⎞
⎠ ,

⎛
⎝

[
1

xy2z2

]

0

⎞
⎠ ,

⎛
⎝

[
1

xyz3

]

0

⎞
⎠ ,

⎛
⎝

[
1

xy2z3

]

0

⎞
⎠ ,

⎛
⎝

0[
1

xyz

]
⎞
⎠ ,

⎛
⎝

0[
1

x2yz

]
⎞
⎠ ,

⎛
⎜⎜⎝

−1
2

[
1

x2yz

]

[
1

xyz2

]

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−1
2

[
1

x2yz2

]
+

1
2

[
1

xy3z

]

[
1

xyz3

]

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−1
2

[
1

x2yz3

]
+

1
2

[
1

x2y3z

]

[
1

xyz4

]
−

[
1

x3yz

]

⎞
⎟⎟⎠ ,

as a basis Σ of HNΓ
⊂ (H[O](Q[x, y, z]))2, where [ ] stands for the Grothendieck

symbol [21].

III: We input these results into Algorithm III. Then, a basis Δ of HΔ =
{p3σ | σ ∈ HNΓ

} is

Δ =
{[

1
xyz

]
,

[
1

xy2z

]
,

[
1

x2yz

]}
.

A standard basis A of AnnOX,O
(HΔ) is given by

A = {x2, y2, xy, z}.
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The colon ideal of the modules MΓ : (ap3) is trivial for all a ∈ A , that is
MΓ : (ap3) = Q[x, y, z]. We set u = 1 and compute logarithmic vector fields by
using extended membership algorithm.

Algorithm III outputs D = {v1, v2, v3, v4}, where

v1 = 6y2z
∂

∂x
− 5yz2

∂

∂y
+ 4x2 ∂

∂z
,

v2 = −6x2 ∂

∂x
− 5xy

∂

∂y
+ 4y2 ∂

∂z
,

v3 = −6yz2
∂

∂x
− 5x2 ∂

∂y
+ 4xy

∂

∂z
,

v4 = 6x
∂

∂x
+ 5y

∂

∂y
+ 4z

∂

∂z
,

and

T =
{

f1
∂

∂x
, f2

∂

∂x
, (x3 − y2z2)

∂

∂x
, (x4 + y4z)

∂

∂x
, (x5 − y6)

∂

∂x
,

f1
∂

∂y
, f2

∂

∂y
, (x3 − y2z2)

∂

∂y
, (x4 + y4z)

∂

∂y
, (x5 − y6)

∂

∂y

}
.

It is easy to see that f1
∂
∂x , f2

∂
∂x , f1

∂
∂y , f2

∂
∂y generate every vector field in T.

Therefore,
{

v1, v2, v3, v4, f1
∂

∂x
, f2

∂

∂x
, f1

∂

∂y
, f2

∂

∂y

}

is a set of generators, over the local ring OX,O, of the module DerX,O(− log V )
of germs of logarithmic vector fields along V.

Now we present a non-quasihomogeneous example.

Example 3. Let f1(x, y, z) = xy + z2, f2(x, y, z) = x2 + y3 + yz2 and consider
an ICIS defined by f1, f2:

V = {(x, y, z) ∈ X | f1(x, y, z) = f2(x, y, z) = 0},

where X is an open neighborhood of the origin O in C
3 (See [2]).

I: We set
g1(x, y, z, ξ1, ξ2) = f1(x, y, z − ξ1x − ξ2y),
g2(x, y, z, ξ1, ξ2) = f2(x, y, z − ξ1x − ξ2y),
where ξ1, ξ2 are regarded as indeterminates. We first compute ν by applying
Algorithm I. Then, we have ν = 11.
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II:

(i) We take the hyperplane z = 0 as a candidate of generic hyperplane. We set
β = (0, 0, 1) and g1 = f1, g2 = f2. Then, q1 = p1 = (y, 2x), q2 = p2 =
(x, 3y2 + z2), q3 = p3 = (2z, 2yz), qi,j = eifj , i, j = 1, 2.

We execute Algorithm II to test whether the hyperplane z = 0 is generic or
not by inputting β = (0, 0, 1) into Algorithm II. Then, Algorithm II detects
that z = 0 is not generic.

In fact, we can verify that the dimension of the vector space HNβ
is equal

to 12. Note that the dimension of HNT
is equal to 8 and

dimC(OX,O/AnnOX,O
(HNΔβ

)) = 4.

(ii) We take the hyperplane y = 0 as a candidate of generic hyperplane. We set
β = (0, 1, 0) and as previously, we have g1 = f1, g2 = f2, q1 = p1, q2 =
p2, q3 = p3, qi,j = eifj , i, j = 1, 2.

Then, NΓβ
is generated by q1, q3, qi,j , i, j = 1, 2 and the dimension of the

vector space HΓβ
is equal to 11. In fact, Algorithm II outputs

⎛
⎝

[
1

xyz

]

0

⎞
⎠ ,

⎛
⎝

[
1

x2yz

]

0

⎞
⎠ ,

⎛
⎝

0[
1

xyz

]
⎞
⎠ ,

⎛
⎝

0[
1

xy2z

]
⎞
⎠ ,

⎛
⎝

0[
1

xy3z

]
⎞
⎠ ,

⎛
⎝

0[
1

xyz2

]
⎞
⎠ ,

⎛
⎜⎜⎝

−2
[

1
xy2z

]

[
1

x2yz

]

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−
[

1
xyz2

]

[
1

xy2z2

]

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−2
[

1
xy3z

]

[
1

x2y2z

]
−

[
1

xyz2

]

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−
[

1
xy2z2

]

[
1

xy3z2

]
+

1
2

[
1

x2yz2

]

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−2
[

1
xy4z

]
+ 2

[
1

x3yz

]
−

[
1

x2y2z

]
+

[
1

xyz3

]

[
1

x2y3z

]
+

1
2

[
1

xy4z

]
−

[
1

xy2z3

]
+

1
2

[
1

x3yz

]

⎞
⎟⎟⎠

as a basis Σβ of HΓβ
.

III: We continue the computation of the second case (ii). We follow Algo-
rithm III. We first compute a basis Δ of HΔβ

= {p2σ | σ ∈ HΓβ
} and a standard

basis A of the ideal AnnOX,O
(HNΔ

) by using Δ.
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We have

Δ =
{[

1
xyz

]
,

[
1

xyz2

]
,

[
1

x2yz

]
− 1

10

[
1

xy2z

]}
.

Notice that d = dimC(HΔ) = 3. A standard basis A is given by

A = {x2, x + 10y, xz, z2}.

Gröbner bases of the colon ideal of modules MΓβ
: aM2 for a ∈ A are all

equal to {x − 8, y − 4, z2 + 32}. We set u = y − 4.
Then, Algorithm III outputs D = {v1, v2, v3, v4}, where

v1 = (4x3 + 14xz2 − 12yz2) ∂
∂x + 2ux2 ∂

∂y + (3x2z + 10y2z + 11z3) ∂
∂z ,

v2 = (−120x + 4x2 − 8y2 − 26z2) ∂
∂x + 2u(x + 10y) ∂

∂y + (−100z + 3xz + 19yz) ∂
∂z ,

v3 = (4x2z + 12y2z + 14z3) ∂
∂x + 2uxz ∂

∂y + (10x2 + 3xz2 − yz2) ∂
∂z ,

v4 = (12x2 + 4xz2 − 2yz2) ∂
∂x + 2uz2 ∂

∂y + (10xz + y2z + 3z3) ∂
∂z ,

where u = y − 4 and

T =
{

f1
∂

∂x
, f2

∂

∂x
, (x3 − y2z2 − z4)

∂

∂x
, (x4 − xz4 + yz4)

∂

∂x
,

f1
∂

∂z
, f2

∂

∂z
, (x3 − y2z2 − z4)

∂

∂z
, (x4 − xz4 + yz4)

∂

∂z

}
.

Note that D = {v1, v2, v3, v4} corresponds to the standard basis A =
{x2, x + 10y, xz, z2}. Notice that the logarithmic vector fields f1

∂
∂y and f2

∂
∂y

are generated by D.
It is easy to see that T is generated by f1

∂
∂x , f2

∂
∂x , f1

∂
∂z , f2

∂
∂z . Therefore,

{
v1, v2, v3, v4, f1

∂

∂x
, f2

∂

∂x
, f1

∂

∂z
, f2

∂

∂z

}

is a set of generators, over the local ring OX,O, of the module DerX,O(− log V )
of germs of logarithmic vector fields along V.

The following is a session of the computer algebra system Singular [11] to
compute a basis of germs of logarithmic vector fields. We use directly the classical
syzygy computation in the local ring. We input f = f1, g = f2. M is the module
generated by

(
∂f
∂x
∂g
∂x

)
,

(
∂f
∂y
∂g
∂y

)
,

(
∂f
∂z
∂g
∂z

)
,

(
f
0

)
,

(
g
0

)
,

(
0
f

)
,

(
0
g

)
.
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> ring A=0,(x,y,z),(c,ds);
> poly f=x*y+z^2;
> poly g=x^2+y^3+y*z^2;
> module M=[diff(f,x),diff(g,x)],[diff(f,y),diff(g,y)],[diff(f,z),
diff(g,z)],[f,0],[g,0],[0,f],[0,g];
> syz(M);
_[1]=[60x+4y2-2z2+8xy2-4xz2+18yz2,4x+40y+8x2-2z2+6yz2,50z+xz+3yz-9
y2z-3z3,-100+6z2,-4-8x,-20y-40xy+2z2,-120]
_[2]=[xy+z2,0,0,-y,0,-2x]
_[3]=[12xz-10y2z-4z3,8xz+8yz-6y2z,10z2+9y3+3yz2,-20z+6yz,-8z,-4yz,
-24z]
_[4]=[12y3+4xz2+2yz2,-8x2+12xy+20z2-6yz2,-10xz+9y2z+3z3,-8y2-6z2,8
x-12y,24xy-60y2-20z2]
_[5]=[6y2z+4z3,-4xz+2y2z,2x2-3y3-yz2,-2yz,0,-4xz]
_[6]=[18yz2-10y2z2-4z4,12x2+8xz2+14yz2-6y2z2,-15y2z+z3+9y3z+3yz3,1
2y2-2z2+6yz2,-12x-8z2,-36xy-4yz2,-12z2]
_[7]=[0,xy+z2,0,-x,0,-3y2-z2]
_[8]=[0,0,xy+z2,-2z,0,-2yz]

The output of syz(M) is the basis of DerX,O(− log V ).
Notice that it is difficult to read off, from the above output, the fact that

(x2, x+10y, xz, z2) is a standard basis of the ideal generated by coefficients of ∂
∂y

of logarithmic vector fields.
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6. Aleksandrov, A.G., Tsikh, A.K.: Théorie des résidus de Leray et formes de Barlet
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Abstract. We consider the problem of tracking one solution path
defined by a polynomial homotopy on a parallel shared memory com-
puter. Our robust path tracker applies Newton’s method on power series
to locate the closest singular parameter value. On top of that, it com-
putes singular values of the Hessians of the polynomials in the homotopy
to estimate the distance to the nearest different path. Together, these
estimates are used to compute an appropriate adaptive step size. For
n-dimensional problems, the cost overhead of our robust path tracker
is O(n), compared to the commonly used predictor-corrector methods.
This cost overhead can be reduced by a multithreaded program on a
parallel shared memory computer.

Keywords: Adaptive step size control · Multithreading · Newton’s
method · Parallel shared memory computer · Path tracking ·
Polynomial homotopy · Polynomial system · Power series

1 Introduction

A polynomial homotopy is a system of polynomials in several variables with one
of the variables acting as a parameter, typically denoted by t. At t = 0, we know
the values for a solution of the system, where the Jacobian matrix has full rank:

M. Van Barel—Supported by the Research Council KU Leuven, C1-project (Numer-
ical Linear Algebra and Polynomial Computations), and by the Fund for Scientific
Research–Flanders (Belgium), G.0828.14N (Multivariate polynomial and rational inter-
polation and approximation), and EOS Project no 30468160.
J. Verschelde—Supported by the National Science Foundation under grant DMS
1854513.

c© Springer Nature Switzerland AG 2020
F. Boulier et al. (Eds.): CASC 2020, LNCS 12291, pp. 563–582, 2020.
https://doi.org/10.1007/978-3-030-60026-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60026-6_33&domain=pdf
https://doi.org/10.1007/978-3-030-60026-6_33


564 S. Telen et al.

we start at a regular solution. With series developments we extend the values of
the solution to values of t > 0.

As a demonstration of what robust in the title of this paper means, on track-
ing one million paths on the 20-dimensional benchmark system posed by Kat-
sura [14], Table 3 of [15] reports 4 curve jumpings. A curve jumping occurs when
approximations from one path jump onto another path. In the runs with the
MPI version for our code (reported in [18]) no path failures and no curve jump-
ings happened. Our path tracking algorithm applies Padé approximants in the
predictor. These rational approximations have also been applied to solve non-
linear systems arising in power systems [19,20]. In [13], Padé approximants are
used in symbolic deformation methods.

This paper describes a multithreaded version of the robust path tracking
algorithm of [18]. In [18] we demonstrated the scaling of our path tracker to
polynomial homotopies with more than one million solution paths, applying
message passing for distributed memory parallel computers. In this paper we
consider shared memory parallel computers and, starting at one single solution,
we investigate the scalability for increasing number of equations and variables,
and for an increasing number of terms in the power series developments.

As to a comparison with our MPI version used in [18], the current parallel
version is made threadsafe and more efficient. These improvements also benefit
the implementation with message passing.

In addition to speedup, we ask the quality up question: if we can afford
the running time of a sequential run in double precision, with a low degree of
truncation, how many threads do we need (in a run which takes the same time
as a sequential run) if we want to increase the working precision and the degrees
at which we truncate the power series?

Our programming model is that of a work crew, working simultaneously to
finish a number of jobs in a queue. Each job in the queue is done by one single
member of the work crew. All members of the work crew have access to all data
in the random access memory of the computer. The emphasis in this research is
on the high level development of parallel algorithms and software [16]. The code
is part of the free and open source PHCpack [21], available on github.

The parallel implementation of medium grained evaluation and differentia-
tion algorithms provide good speedups. The solution of a blocked lower triangular
linear system is most difficult to compute accurately and with good speedup. We
describe a pipelined algorithm, provide an error analysis, and propose to apply
double double and quad double arithmetic [12].

2 Overview of the Computational Tasks

We consider a homotopy H given by n polynomials f1, . . . , fn in n + 1 variables
x1, . . . , xn, t, where t is thought of as the continuation parameter. A solution path
of the homotopy is denoted by x(t). For a local power series expansion x(t) =
c0 + c1t + c2t

2 + · · · of x(t), where x(t) is assumed analytic in a neighborhood
of t = 0, the theorem of Fabry [9] allows us to determine the location of the
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parameter value nearest to t = 0 where x(t) is singular. With the singular
values of the Jacobian matrix J = (∂fi/∂xj)1≤i,j≤n and the Hessian matrices of
f1, . . . , fn, we estimate the distance to the nearest solution for t fixed to zero.
The step size Δt is the minimum of two bounds, denoted by C and R.

1. C is an estimate for the nearest different solution path at t = 0. To obtain this
estimate we compute the first and second partial derivatives at a point and
organize these derivatives in the Jacobian and Hessian matrices. The bound
is then computed from the singular values of those matrices:

C =
2σn(J)√

σ2
1,1 + σ2

2,1 + · · · + σ2
n,1

, (1)

where σn(J) is the smallest singular value of the Jacobian matrix J and σk,1

is the largest singular value of the Hessian of the k-th polynomial.
2. R is the radius of convergence of the power series developments. Applying the

theorem of Fabry, R is computed as the ratio of the moduli of two consecutive
coefficients in the series. For a series truncated at degree d:

x(t) = c0 + c1t + c2t
2 + · · · + cdt

d, z = cd−1/cd, R = |z|, (2)

where z indicates the estimate for the location of the nearest singular param-
eter value.

The computations of R and C require evaluation, differentiation, and linear
algebra operations. Once Δt is determined, the solution for the next value of the
parameter is predicted by evaluating Padé approximants constructed from the
power series developments. The last stage is the shift of the coefficients with −Δt,
so the next step starts again at t = 0.

The stages are justified in [18]. In [18], we compared with v1.6 of Bertini [4]
(both in runs in double precision and in runs in adaptive precision [3]) and v1.1
of HomotopyContinuation.jl [6]. In this paper we focus on parallel algorithms.

3 Parallel Evaluation and Differentiation

The parallel algorithms in this section are medium grained. The jobs in the eval-
uation and differentiation correspond to the polynomials in the system. While
the number of polynomials is not equal to the number of threads, the jobs are
distributed evenly among the threads.

3.1 Algorithmic Differentiation on Power Series

Consider a polynomial system f in n variables with power series (all truncated to
the same fixed degree d), as coefficients; and a vector x of n power series, trun-
cated to the same degree d. Our problem is to evaluate f at x and to compute
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all n partial derivatives. We illustrate the reverse mode of algorithmic differen-
tiation [11] with an example, on f = x1x2x3x4x5.

x1x2 = x1 � x2

x1x2x3 = x1x2 � x3

x1x2x3x4 = x1x2x3 � x4

x1x2x3x4x5 = x1x2x3x4 � x5

x5x4 = x5 � x4

x5x4x3 = x5x4 � x3

x5x4x3x2 = x5x4x3 � x2

x1x3x4x5 = x1 � x5x4x3

x1x2x4x5 = x1x2 � x5x4

x1x2x3x5 = x1x2x3 � x5

(3)
In the first column of (3), we see ∂f

∂x5
and the evaluated f on the last two rows.

The last row of the middle column gives ∂f
∂x1

and the remaining partial derivatives
are in the last column of (3).

Evaluating and differentiating a product of n variables in this manner takes
3n − 5 multiplications. For our problem, every multiplication is a convolution
of two truncated power series xi = xi,0 + xi,1t + xi,2t

2 + · · · + xi,dt
d and xj =

xj,0 + xj,1t + xj,2t
2 + · · · + xj,dt

d, up to degree d. Coefficients of xi � xj of terms
higher than d are not computed.

Any monomial is represented as the product of the variables that occur in
the monomial and the product of the monomial divided by that product. For
example, x3

1x2x
6
3 is represented as (x1x2x3) · (x2

1x
5
3) We call the second part in

this representation the common factor, as this factor is common to all partial
derivatives of the monomial. This common factor is computed via a power table
of the variables. For every variable xi, the power table stores all powers xe

i , for e
from 2 to the highest occurrence in a common factor. Once the power table
is constructed, the computation of any common factor requires at most n − 1
multiplications of two truncated power series.

As we expect the number of equations and variables to be a multiple of the
number of available threads, one job is the evaluation and differentiation of one
single polynomial. Assuming each polynomial has roughly the same number of
terms, we may apply a static job scheduling mechanism. Let n be the number of
equations (indexed from 1 to n), p the number of threads (labeled from 1 to p),
where n ≥ p. Thread i evaluates and differentiates polynomials i + kp, for k
starting at 0, as long as i + kp ≤ n.

3.2 Jacobians, Hessians at a Point, and Singular Values

If we have n equations, then the computation of C, defined in (1), requires n+1
singular value decompositions, which can all be computed independently.

For any product of n variables, after the computation of its gradient with the
reverse mode, any element of its Hessian needs only a couple of multiplications,
independent of n. We illustrate this idea with an example for n = 8. The third
row of the Hessian of x1x2x3x4x5x6x7x8, starting at the fourth column, after
the zero on the diagonal is

x1x2 � x5x6x7x8, x1x2 � x4 � x6x7x8, x1x2x4 � x5 � x7x8,
x1x2x4x5 � x6 � x8, x1x2x4x5x6 � x7.

(4)
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In the reverse mode for the gradient we already computed the forward products
x1x2, x1x2x3, x1x2x3x4, x1x2x3x4x5, x1x2x3x4x5x6, and x1x2x3x4x5x6x7. We
also computed the backward products x8x7, x8x7x6, x8x7x6x5, x8x7x6x5x4.

For a monomial xe1
1 xe2

2 · · · xen
n with higher powers ek > 1, for some indices k,

the off diagonal elements are multiplied with the common factor xe1−1
1 � xe2−1

2

� · · · � xen−1
n multiplied with eiej at the (i, j)-th position in the Hessian. The

computation of this common factor requires at most n−1 multiplications (fewer
than n−1 if there are any ek equal to one), after the computation of table which
stores the values of all powers xek

k of all values for xk, for k = 1, 2, . . . , n.
Taking only those m indices ik for which eik > 1, the common factor for all

diagonal elements is x
ei1−2
i1

x
ei2−2
i2

· · · x
eim−2
im

. The k-th element on the diagonal
then needs to be multiplied with eik(eik − 1) and the product of all squares x2

ij
,

for all j �= k for which eij > 1. The efficient computation of the sequence x2
i2

x2
i3· · · x2

im
, x2

i1
x2

i3
· · · x2

im
, x2

i1
x2

i2
· · · x2

im−1
happens along the same lines as the

computation of the gradient, requiring 3m − 5 multiplications.
In the above paragraphs, we summarized the key ideas and results of the

application for algorithmic differentiation. A detailed algorithmic description
can be found in [7].

4 Solving a Lower Triangular Block Linear System

In Newton’s method, the update Δx(t) to the power series x(t) is computed as
the solution of a linear system, with series for the coefficient entries.

Applying linearization, we solve a sequence of as many linear systems (with
complex numbers as coefficients), as the degree of the series. For each linear
system in the sequence, the right hand side is computed with the solution of
the previous system in the sequence. If in each step we lose one decimal place of
accuracy, at the end of sequence we have lost as many decimal places of accuracy
as the degree of the series.

4.1 Pipelined Solution of Matrix Series

We introduce the pipelined solution of a system of power series by example.
Consider a power series A(t), with coefficients n-by-n matrices, and a series b(t),
with coefficients n-dimensional vectors. We want to find the solution x(t) to
A(t)x(t) = b(t). For series truncated to degree 5, the equation

(
A5t

5 + A4t
4 + A3t

3 + A2t
2 + A1t + A0

) · (
x5t

5 + x4t
4 + x3t

3 (5)

+ x2t
2 + x1t + x0

)
= b5t

5 + b4t
4 + b3t

3 + b2t
2 + b1t + b0 (6)
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leads to the triangular system (derived in [5] applying linearization)

A0x0 = b0 (7)
A0x1 = b1 − A1x0 (8)
A0x2 = b2 − A2x0 − A1x1 (9)
A0x3 = b3 − A3x0 − A2x1 − A1x2 (10)
A0x4 = b4 − A4x0 − A3x1 − A2x2 − A1x3 (11)
A0x5 = b5 − A5x0 − A4x1 − A3x2 − A2x3 − A1x4. (12)

To solve this triangular system, denote by F0 = F (A0) the factorization of A0

and x0 = S(F0, b0), the solution of A0x0 = b0 making use of the factorization F0.
Then the Eqs. (7) through (12) are solved in the following steps.

1. F0 = F (A0)
2. x0 = S(F0, b0)
3. b1 = b1 − A1x0, b2 = b2 − A2x0, b3 = b3 − A3x0, b4 = b4 − A4x0,

b5 = b5 − A5x0

4. x1 = S(F0, b1)
5. b2 = b2 − A1x1, b3 = b3 − A2x1, b4 = b4 − A3x1, b5 = b5 − A4x1

6. x2 = S(F0, b2)
7. b3 = b3 − A1x2, b4 = b4 − A2x2, b5 = b5 − A3x2

8. x3 = S(F0, b3)
9. b4 = b4 − A1x3, b5 = b5 − A2x3

10. x4 = S(F0, b4)
11. b5 = b5 − A1x4

12. x5 = S(F0, b5)

(13)

Statements on the same line can be executed simultaneously. With 5 threads, the
number of steps is reduced from 22 to 12. For truncation degree d and d threads,
the number of steps in the pipelined algorithm equals 2(d + 1). On one thread,
the number of steps equals 2(d + 1) + 1 + 2 + · · · + d − 1 = d(d − 1)/2 + 2(d + 1).
With d threads, the speedup is then

d(d − 1)/2 + 2(d + 1)
2(d + 1)

= 1 +
d(d − 1)
4(d + 1)

. (14)

As d → ∞, this ratio equals 1 + d/4. Note that the first step is typically O(n3),
whereas the other steps are O(n2).

Observe in (13) that the first operation on every line is on the critical path
of all possible parallel executions. For the example in (13) this implies that the
total number of steps will never become less than 12, even as the number of
threads goes to infinity. The speedup of 22/12 remains the same as we reduce
the number of threads from 5 to 3, as the updates of b4 and b5 in step 3 can be
postponed to the next step. Likewise, the update of b5 in step 5 may happen in
step 6. Generalizing this observation, the formula for the speedup in (14) remains
the same for d/2 + 1 threads (instead of d) in case d is odd. In case d is even,
then the best speedup is obtained with d/2 threads.
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Better speedups will be obtained for finer granularities, if the matrix factor-
izations are executed in parallel as well.

4.2 Error Analysis of a Lower Triangular Block Toeplitz Solver

In Sect. 4.1, we designed a pipelined method to solve the following lower trian-
gular block Toeplitz system of equations

⎡
⎢⎢⎢⎢⎢⎣

A0

A1 A0

A2 A1 A0

...
...

...
. . .

Ai Ai−1 Ai−2 · · · A0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x0

x1

x2

...
xi

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

b0
b1
b2
...
bi

⎤
⎥⎥⎥⎥⎥⎦

. (15)

In this section, we do not intend to give a very detailed error analysis but indicate
using a rough estimate of the norm of the blocks involved, where and how there
could be a loss of precision in some typical situations. In our analysis we will use
the Euclidean 2-norm ‖ · ‖ = ‖ · ‖2 on finite dimensional complex vector spaces
and the induced operator norm on matrices. Without loss of generality, we can
always assume that the system is scaled such that

‖A0‖ = ‖x0‖ = 1. (16)

Hence, assuming that the components of x0 in the direction of the right singular
vectors of A0 corresponding to the larger singular values are not too small, the
norm of the first block b0 of the right-hand side satisfies

‖b0‖ = ‖A0x0‖ � ‖A0‖‖x0‖. (17)

To determine the first component x0 of the solution vector, we solve the system
A0x0 = b0. We solve this first system in a backward stable way, i.e., the computed
solution x̂0 = x0 + Δx0 can be considered as the exact solution of the system

A0x̂0 = b0 + Δb0 with
‖Δb0‖
‖b0‖ ≈ εmach. (18)

If we denote the condition number of A0 by κ, we get

‖Δx0‖
‖x0‖ ≤ κ

‖Δb0‖
‖b0‖ ≤ κO(εmach). (19)

We study now how this error influences the remainder of the calculations. In
the remaining steps, we use rough estimates of the order of magnitude of the
different blocks Ai of the coefficient matrix, the blocks xi of the solution vector
and the blocks bi of the right-hand side. First we will assume that the sizes of
the blocks xi as well as Ai behave as ρi, i.e.,

‖xi‖ ≈ ρi and ‖Ai‖ ≈ ρi. (20)
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Hence, also the sizes of the blocks bi behave as

‖bi‖ ≈ ρi. (21)

In our context, the parameter ρ should be thought of as the inverse of the
convergence radius R, as defined in (2), for the series expansions. Note that
when ρ is larger, this indicates that the distance to the nearest singularity is
smaller. Consider now the second system

A0x1 = b̃1, (22)

where b̃1 = b1 − A1x0. Using the computed value x̂0, we find an approximation
x̂1 = x1 + Δx1 for x1 by solving the system

A0X = b1 − A1x̂0 = b1 − A1x0 − A1Δx0 = b̃1 − A1Δx0 (23)

for X. We have that ‖b̃1‖ = ‖A0x1‖ ≈ ρ1. Because ‖Δx0‖ ≈ κεmach, this results
in an absolute error Δb̃1 = −A1Δx0 on b̃1 of size κεmachρ or a relative error of
size κεmach. Hence,

‖Δx1‖
‖x1‖ ≈ κ

‖Δb̃1‖
‖b̃1‖

≈ κ2εmach. (24)

In the same way, one derives that

‖Δxi‖
‖xi‖ ≈ κi+1εmach. (25)

Hence, when ‖xi‖ ≈ ρi and ‖Ai‖ ≈ ρi, we lose all precision as soon as
κi+1εmach = O(1). When the matrix A0 is ill-conditioned (i.e., when κ is large),
this may happen already after a few number of steps i.

Assuming now that ‖xi‖ ≈ ρi and ‖Ai‖ ≈ ρ0, we solve for the second block
equation

A0X = b1 − A1x̂0 = b̃1 − A1Δx0 (26)

with ‖b̃1‖ = ‖A0x1‖ ≈ ρ1. However, in this case the absolute error ‖Δx0‖ ≈
κεmach is not amplified and results in an absolute error Δb̃1 = −A1Δx0 of
size κεmach or a relative error of size κεmach/ρ. If κ ≥ ρ this is the dominant
error on b̃1. If κ ≤ ρ, the dominant error is the error of computing b̃1 in finite
precision. In that case, the relative error will be of size εmach. In what follows,
we will assume that κ ≥ ρ. The other case can be treated in a similar way. It
follows that

‖Δx1‖
‖x1‖ ≈ κ

‖Δb̃1‖
‖b̃1‖

≈ κ
κ

ρ
εmach. (27)

Next, the approximation x̂2 = x2 + Δx2 of x2 is computed by solving

A0X = b2 − A2x̂0 − A1x̂1 = b̃2 − A2Δx0 − A1Δx1 (28)

for X, with b̃2 = b2 − A2x0 − A1x1 and ‖b̃2‖ = ‖A0x2‖ ≈ ρ2. The absolute
error Δx0 plays a minor role compared to Δx1. The relative error on x1 of
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magnitude κ(κ/ρ)εmach multiplied by A1 of norm ρ leads to a relative error of
magnitude (κ/ρ)2εmach on b̃2. Hence,

‖Δx2‖
‖x2‖ ≈ κ

‖Δb̃2‖
‖b̃2‖

≈ κ
κ2

ρ2
εmach. (29)

In a similar way, one derives that, when κ ≥ ρ:

‖Δxi‖
‖xi‖ ≈ κ

κi

ρi
εmach. (30)

In an analogous way the other possibilities in the summary hereafter can be
deduced. Assuming that ‖xi‖ ≈ ρi we have the following possibilities:

1. When ‖Ai‖ ≈ ρi, we cannot do much about the loss of accuracy:

‖Δxi‖
‖xi‖ ≈ κi+1εmach. (31)

2. When ‖Ai‖ ≈ 1i, we can distinguish two possibilities:

when κ ≥ ρ :
‖Δxi‖
‖xi‖ ≈ κ

κi

ρi
εmach; (32)

when κ ≤ ρ :
‖Δxi‖
‖xi‖ ≈ κεmach. (33)

The second case cannot arise when ρ < 1.

We observe in computational experiments that in our path tracking method
we are usually dealing with the first case, where ‖Ai‖ ≈ ρi, ‖xi‖ ≈ ρi. This
means that the number of coefficients that we can compute with reasonable
accuracy is bounded roughly by − log(εmach)/ log(κ), where κ is the condition
number of the Jacobian A0.

4.3 Newton’s Method, Rational Approximations, Coefficient Shift

In Newton’s method, the evaluation and differentiation algorithms are followed
by the solution of the matrix series system to compute all coefficients of a power
series at a regular solution of a polynomial homotopy. There are two remaining
stages. Both stages use the same type of parallel algorithm, summarized in the
next two paragraphs.

A Padé approximant is the quotient of two polynomials. To construct an
approximant of degree K in the numerator and L in the denominator, we need
the first K+L+1 coefficients of the power series. Given K and L, we truncate the
power series at degree d = K + L. All components of an n-dimensional vector
can be computed independently from each other, so each job in the parallel
algorithm is the construction and evaluation of one Padé approximant.
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All power series are assumed to originate at t = 0. After incrementing the
step size with Δt, we shift all coefficients of the power series in the polynomial
homotopy with −Δt, so at the next step we start again at t = 0. The shift
operation happens independently for every polynomial in the homotopy, so the
threads take turns in shifting the coefficients.

As the computational experiments show, the construction of rational approx-
imations and the shifting of coefficients are computationally less intensive than
running Newton’s method, or than computing the Jacobian, all Hessians, and
singular values at a point.

5 Computational Experiments

The goal of the computational experiments is to examine the relative compu-
tational costs of the various stages and to detect potential bottlenecks in the
scalability. After presenting tables for random input data, we end with a descrip-
tion of a run on a cyclic n-root, for n = 64, 96, 128, a sample of a well known
benchmark problem [8] in polynomial system solving.

Our computational experiments run on two 22-core 2.2 GHz Intel Xeon
E5-2699 processors in a CentOS Linux workstation with 256 GB RAM. In our
speedup computation, we compare against a sequential implementation, using
the same primitive operations.

For each run on p threads, we report the speedup S(p), the ratio between the
serial time over the parallel execution time, and the efficiency E(p) = S(p)/p.
Although our workstation has 44 cores, we stop the runs at 40 threads to avoid
measuring the interference with other unrelated processes.

The units of all times reported in the tables below are seconds and the times
themselves are elapsed wall clock times. These times include the allocation and
deallocation of all data structures, for inputs, results, and work space.

Table 1. Evaluation and differentiation at power series truncated at increasing
degrees d, for increasing number of threads p, in quad double precision

p d = 8 d = 16 d = 32 d = 48

Time S(p) E, % Time S(p) E, % Time S(p) E, % Time S(p) E, %

1 44.851 154.001 567.731 1240.761

2 24.179 1.86 92.8 82.311 1.87 93.6 308.123 1.84 92.1 659.332 1.88 94.1

4 12.682 3.54 88.4 41.782 3.69 92.2 154.278 3.68 92.0 339.740 3.65 91.3

8 6.657 6.74 84.2 22.332 6.90 86.2 82.250 6.90 86.3 179.424 6.92 86.4

16 3.695 12.14 75.9 12.747 12.08 75.5 45.609 12.45 77.8 100.732 12.32 76.9

32 2.055 21.82 68.2 6.332 24.32 76.0 23.451 24.21 75.7 50.428 24.60 76.9

40 1.974 22.72 56.8 6.303 24.43 61.1 23.386 24.28 60.7 51.371 24.15 60.4
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Fig. 1. Efficiency plots for evaluation and differentiation of power series, with data
from Table 1. Efficiency tends to decrease for increasing p. The efficiency improves a
little as the truncation degree d of the series increases from 8, 16, 32, to 48.

5.1 Random Input Data

The randomly generated problems represent polynomial systems of dimension 64
(or higher), with 64 (or more) terms in each polynomial and exponents of the
variables between zero and eight.

Algorithmic Differentiation on Power Series. The computations in Table 1
illustrate the cost overhead of working with power series of increasing degrees
of truncation. We start with degree d = 8 (the default in [18]) and consider the
increase in wall clock times as we increase d. Reading Table 1 diagonally, observe
the quality up. Figure 1 shows the efficiencies.

The drop in efficiency with p = 40 is because the problem size n = 64 is not
a multiple of p, which results in load imbalancing. As quad double arithmetic is
already very computationally intensive, the increase in the truncation degree d
does little to improve the efficiency. Using more threads increases the memory
usage, as each thread needs its own work space for all data structures used in
the computation of its gradient with algorithmic differentiation. In a sequential
computation where gradients are computed one after the other, there is only
one vector with forward, backward, and cross products. When p gradients are
computed simultaneously, there are p work space vectors to store the intermedi-
ate forward, backward, and cross products for each gradient. The portion of the
parallel code that allocates and deallocates all work space vectors grows as the
number of threads increases and the wall clock times incorporate the time spent
on that data management as well.

Jacobians, Hessians at a Point, and Singular Values. Table 2 summarizes
runs on the evaluation and singular value computations on random input data,



574 S. Telen et al.

Table 2. Evaluation of Jacobian and Hessian matrices at a point, singular value decom-
positions, for p threads, in double, double double, and quad double precision

n p Double Double double Quad double

Time S(p) E(p), % Time S(p) E(p), % Time S(p) E(p), %

64 1 0.729 3.964 51.998

2 0.521 1.40 70.0 2.329 1.70 85.1 29.183 1.78 89.1

4 0.308 2.37 59.2 1.291 3.07 76.8 16.458 3.16 79.0

8 0.208 3.50 43.7 0.770 5.15 64.3 9.594 5.42 67.8

16 0.166 4.39 27.4 0.498 7.96 49.8 6.289 8.27 51.7

32 0.153 4.77 14.9 0.406 9.76 30.5 4.692 11.08 34.6

40 0.129 5.65 14.1 0.431 9.19 23.0 4.259 12.21 30.5

96 1 3.562 18.638 240.70

2 2.051 1.74 86.8 11.072 1.68 84.17 132.76 1.81 90.7

4 1.233 2.89 72.2 5.851 3.19 79.64 72.45 3.32 83.1

8 0.784 4.54 56.8 3.374 5.52 69.06 41.20 5.84 73.0

16 0.521 6.84 42.7 2.188 8.52 53.25 25.87 9.30 58.1

32 0.419 8.50 26.6 1.612 11.56 36.13 15.84 15.20 47.5

40 0.398 8.94 22.4 1.442 12.92 32.31 15.84 15.20 38.0

128 1 12.464 62.193 730.50

2 6.366 1.96 97.9 33.213 1.87 93.6 399.98 1.83 91.3

4 3.570 3.49 87.3 17.436 3.57 89.2 213.04 3.43 85.7

8 2.170 5.75 71.8 9.968 6.24 78.0 119.81 6.10 76.2

16 1.384 9.01 56.3 6.101 10.19 63.7 73.09 9.99 62.5

32 1.033 12.06 37.7 4.138 15.03 47.9 43.44 16.82 52.6

40 0.981 12.70 31.7 3.677 16.92 42.3 42.44 17.21 43.0

Fig. 2. Efficiency plots for computing Jacobians, Hessians, and their singular values,
with data from Table 2. The three ranges for p = 2, 4, 8, 16, 32, 40 are from left to right
for n = 64, 96, and 128 respectively. Efficiency decreases for increasing values of p.
Efficiency increases for increasing values of n and for increased precision, where d =
double, dd = double double, and qd = quad double.

for n-dimensional problems. The n polynomials have each n terms, where the
exponents of the variables range from zero to eight.
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Reading the columns of Table 2 vertically, we observe increasing speedups,
which increase as n increases. Reading Table 2 horizontally, we observe the cost
overhead of the arithmetic. To see how many threads are needed to compensate
for this overhead, read Table 2 diagonally. Figure 2 shows the efficiencies.

To explain the drop in efficiencies we apply the same reasoning as before and
point out that the work space increases even more as more threads are applied,
because the total memory consumption has increased with the two dimensional
Hessian matrices.

Pipelined Solution of Matrix Series. Elapsed wall clock times and speedups
are listed in Table 3, on randomly generated linear systems of 64 equations
in 64 unknowns, for series truncated to increasing degrees. The dimensions are
consistent with the setup of Table 1, to relate the cost of linear system solving
to the cost of evaluation and differentiations. Figure 3 shows the efficiencies.

Table 3. Solving a linear system for power series truncated at increasing degrees d,
for increasing number of threads p, in quad double precision

p d = 8 d = 16 d = 32 d = 48

Time S(p) E, % Time S(p) E, % Time S(p) E, % Time S(p) E, %

1 0.232 0.605 2.022 4.322

2 0.222 1.05 52.4 0.422 1.44 71.7 1.162 1.74 87.0 2.553 1.69 84.7

4 0.218 1.07 26.6 0.349 1.74 43.4 0.775 2.61 65.3 1.512 2.86 71.5

8 0.198 1.18 14.7 0.291 2.08 26.0 0.554 3.65 45.6 0.927 4.66 58.3

16 0.166 1.40 8.7 0.225 2.69 16.8 0.461 4.39 27.5 0.636 6.80 42.5

32 0.197 1.18 3.7 0.225 2.69 8.4 0.371 5.45 17.0 0.554 7.81 24.4

40 0.166 1.40 3.5 0.227 2.67 6.7 0.369 5.48 13.7 0.531 8.14 20.3

Consistent with the above analysis, the speedups in Table 3 level off for
p > d/2. A diagonal reading shows that with multithreading, we can keep the
time below one second, while increasing the degree of the truncation from 8 to 48.

Fig. 3. Efficiency plots for pipelined solution of a matrix series with data from Table 3.
Efficiency tends to decrease for increasing p and increase for increasing d.
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Relative to the cost of evaluation and differentiation, the seconds in Table 3 are
significantly smaller than the seconds in Table 1.

Multithreaded Newton’s Method on Power Series. In the randomly
generated problems, we add the parameter t to every polynomial to obtain a
Newton homotopy. The elapsed wall clock times in Table 4 come from running
Newton’s method, which requires the repeated evaluation, differentiation, and
linear system solving. The dimensions of the randomly generated problems are
64 equations in 64 variables, with 8 as the highest degree in each variable. The
parameter t appears with degree one. Figure 4 shows the efficiencies.

Table 4. Running 8 steps with Newton’s method for power series truncated at increas-
ing degrees d, for increasing number of threads p, in quad double precision.

p d = 8 d = 16 d = 32 d = 48

Time S(p) E, % Time S(p) E, % Time S(p) E, % Time S(p) E, %

1 347.85 1176.88 4525.08 7005.91

2 188.92 1.84 92.1 658.93 1.79 89.3 2323.20 1.95 97.4 3806.19 1.84 92.0

4 98.28 3.54 88.5 330.49 3.56 89.0 1193.76 3.79 94.8 1925.04 3.64 91.0

8 54.55 6.38 79.7 191.57 6.14 76.8 638.20 7.09 88.6 1014.85 6.90 86.3

16 31.26 11.13 69.5 97.34 12.09 75.6 352.10 12.85 80.3 571.25 12.26 76.7

32 17.62 19.74 61.7 50.80 23.16 72.4 180.31 25.60 78.4 291.92 24.00 75.0

40 17.45 19.93 49.8 51.70 22.76 56.9 181.56 24.92 62.3 292.55 23.95 59.9

Fig. 4. Efficiency plots for running Newton’s method with data from Table 4. Efficiency
tends to decrease for increasing p and increase for increasing degree d.
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Table 5. Construction and evaluation of Padé approximants for increasing degrees d,
for increasing number of threads p, in quad double precision

p d = 8 d = 16 d = 32 d = 48

Time S(p) E, % Time S(p) E, % Time S(p) E, % Time S(p) E, %

1 0.034 0.109 0.684 2.193

2 0.025 1.36 68.1 0.110 0.99 49.4 0.452 1.51 75.6 1.231 1.78 89.1

4 0.013 2.61 65.2 0.064 1.71 42.6 0.238 2.87 71.8 0.642 3.42 85.4

8 0.007 4.79 59.8 0.035 3.07 38.4 0.189 3.63 45.4 0.365 6.01 75.1

16 0.006 6.09 38.1 0.020 5.52 34.5 0.098 6.96 43.5 0.219 10.00 62.5

32 0.004 9.47 29.6 0.013 8.66 27.1 0.058 11.70 36.6 0.138 15.89 49.7

40 0.003 11.48 28.7 0.009 11.57 28.9 0.039 17.58 43.9 0.130 16.93 42.3

Fig. 5. Efficiency plots for rational approximations with data from Table 5.

The improvement in the efficiencies as the degrees increase can be explained
by the improvement in the efficiencies in the pipelined solution of matrix series,
see Fig. 3.

Rational Approximations. In Table 5, wall clock times and speedups are
listed for the construction and evaluation of vectors of Padé approximants, of
dimension 64 and for increasing degrees d = 8, 16, 24, and 32. For each d, we
take K = L = d/2. Figure 5 shows the efficiencies. The fast drop in efficiency
for d = 8 is due to the tiny wall clock times. There is not much that can be
improved with multithreading once the time drops below 10 ms.

Shifting the Coefficients of the Power Series. Table 6 summarizes exper-
iments on a randomly generated system of 64 polynomials in 64 unknowns,
with 64 terms in every polynomial. Figure 6 shows the efficiencies.

Proportional Costs. Comparing the times in Tables 1, 2, 3, 5, and 6, we
get an impression on the relative costs of the different tasks. The evaluation



578 S. Telen et al.

Table 6. Shifting the coefficients of a polynomial homotopy, for increasing degrees d,
for increasing number of threads p, in quad double precision

p d = 8 d = 16 d = 32 d = 48

Time S(p) E, % Time S(p) E, % Time S(p) E, % Time S(p) E, %

1 0.358 1.667 9.248 26.906

2 0.242 1.48 74.0 0.964 1.73 86.5 5.134 1.80 90.1 14.718 1.83 91.4

4 0.154 2.32 58.0 0.498 3.35 83.8 2.642 3.50 87.5 7.294 3.69 92.2

8 0.101 3.55 44.4 0.289 5.77 72.1 1.392 6.64 83.0 3.941 6.83 85.3

16 0.058 6.13 38.3 0.181 9.23 57.7 0.788 11.73 73.3 2.307 11.66 72.9

32 0.035 10.30 32.2 0.116 14.40 45.0 0.445 20.80 65.0 1.212 22.20 69.4

40 0.031 11.49 28.7 0.115 14.51 36.3 0.419 22.05 55.1 1.156 23.28 58.2

Fig. 6. Efficiency plots for shifting series of a polynomial homotopy with data from
Table 6. Efficiency tends to decrease for increasing p and increase for increasing d.

and differentiation at power series, truncated at d = 8 dominates the cost with
348 s for one thread, or 17 s for 40 threads, in quad double arithmetic, from
Table 1. The second largest cost comes from Table 2, for n = 64, in quad double
arithmetic: 52 s for one thread, or 4 s on 40 threads. The other three stages take
less than one second on one thread.

5.2 One Cyclic n-Root, n = 64, 96, 128

Our algorithms are developed to run on highly nonlinear problems such as the
cyclic n-roots problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x0 + x1 + · · · + xn−1 = 0

i = 2, 4, . . . , n − 1 :
n−1∑
j=0

j+i−1∏
k=j

xk mod n = 0

x0x1x2 · · · xn−1 − 1 = 0.

(34)
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Table 7. Computing C for one cyclic n-root, for n = 64, 96, 128, for an increasing
number of threads p, in quad double precision

p n = 64 n = 96 n = 128

Time S(p) E, % Time S(p) E, % Time S(p) E, %

1 36.862 152.457 471.719

2 21.765 1.69 84.7 87.171 1.75 87.5 262.678 1.80 89.8

4 12.390 2.98 74.4 47.268 3.23 80.6 143.262 3.29 82.3

8 7.797 4.73 59.1 28.127 5.42 67.8 83.044 5.68 71.0

16 5.600 6.58 41.1 18.772 8.12 50.8 53.235 8.86 55.4

32 4.059 9.08 28.4 12.988 11.74 36.7 34.800 13.56 42.4

40 4.046 9.11 22.8 12.760 11.95 29.9 33.645 14.02 35.1

Fig. 7. Efficiency plots for computing C for one cyclic n-root, for n = 64, 96, 128, with
data from Table 7. Efficiency decreases for increasing p and increases for increasing n.

This well known benchmark problem in polynomial system solving is important
in the study of biunimodular vectors [10].

Problem Setup. By Backelin’s Lemma [2], we know there is a 7-dimensional
surface of cyclic 64-roots, along with a recipe to generate points on this surface.
To generate points, a tropical formulation of Backelin’s Lemma [1] is used. The
surface has degree eight. Seven linear equations with random complex coeffi-
cients are added to obtain isolated points on the surface. The addition of seven
linear equations gives 71 equations in 64 variables. As in [17], we add extra slack
variables in an embedding to obtain an equivalent square 71-dimensional sys-
tem. Similarly, there is a 3-dimensional surface of cyclic 96-roots and again a
7-dimensional surface of cyclic 128-roots.

In [23], running the typical predictor-corrector methods, we experienced that
the hardware double precision is no longer sufficient to track a solution path on
this 7-dimensional surface of cyclic 64-roots. Observe the high degrees of the
polynomials in (34).

Table 7 contains wall clock times, speedups and efficiencies for computing
the curvature bound C for one cyclic n-root. Efficiencies are shown in Fig. 7.
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Table 8. Computing R for one cyclic n-root, for n = 64, 96, 128, for degrees d =
8, 16, 24, and for an increasing number of threads p, in quad double precision.

d p n = 64 n = 96 n = 128

Time S(p) E, % Time S(p) E, % Time S(p) E, %

8 1 139.185 483.137 1123.020

2 78.057 1.78 89.2 257.023 1.88 94.0 614.750 1.83 91.3

4 42.106 3.31 82.6 141.329 3.42 85.5 318.129 3.53 88.3

8 24.452 5.69 71.2 81.308 5.94 74.3 176.408 6.37 79.6

16 15.716 8.86 55.4 47.585 10.15 63.5 105.747 10.62 66.4

32 12.370 11.25 35.2 35.529 13.60 42.5 68.025 16.51 51.6

40 12.084 11.52 28.8 35.212 13.72 34.3 62.119 18.08 45.2

16 1 477.956 1606.174 3829.567

2 256.846 1.86 93.0 861.214 1.87 93.3 2066.680 1.85 92.7

4 136.731 3.50 87.4 454.917 3.53 88.3 1072.106 3.57 89.3

8 77.034 6.20 77.6 251.066 6.40 80.0 584.905 6.55 81.8

16 47.473 10.07 62.9 149.288 10.76 67.2 344.430 11.12 69.5

32 32.744 14.60 45.6 97.514 16.47 51.5 205.034 18.68 58.4

40 32.869 14.54 36.4 89.260 18.00 45.0 180.207 21.25 53.1

24 1 1023.968 3420.576 8146.102

2 555.771 1.84 92.1 1855.748 1.84 92.2 4360.870 1.87 93.4

4 304.480 3.36 84.1 956.443 3.58 89.4 2268.632 3.59 89.8

8 160.978 6.36 79.5 523.763 6.53 81.6 1235.338 6.59 82.4

16 98.336 10.41 65.1 312.698 10.94 68.4 726.287 11.22 70.1

32 65.448 15.65 48.9 196.488 17.41 54.4 416.735 19.55 61.1

40 63.412 16.15 40.4 170.474 20.07 50.2 360.419 22.60 56.5

Table 8 contains wall clock times, speedups and efficiencies for computing the
radius bound R for one cyclic n-root. See Fig. 8.

For n = 64, the inverse condition number of the Jacobian matrix is estimated
as 3.9E−5 and after 8 iterations, the maximum norm of the last vector in the
last update to the series equals respectively 4.6E−44, 1.1E−24, and 4.1E−5,
for d = 8, 16, and 24. For n = 96, the estimated inverse condition number
is 2.0E−4 and the maximum norm for d = 8, 16, and 24 is then respectively
1.4E−47, 9.6E−31, and 7.3E−14. The condition worsens for n = 128, estimated
at 4.6E−6 and then for d = 8, the maximum norm of the last update vector is
2.2E−30. For d = 16 and 24, the largest maximum norm less than one occurs at
the coefficients with t15 and equals about 1.1E−1.
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Fig. 8. Efficiency plots for computing R for one cyclic n-root, for n = 64, 96, 128, for
degrees d = 8, 16, 24, with data from Table 8. Efficiency decreases for increasing p.
Efficiency increases as n and/or d increase.

6 Conclusions

The cost overhead of our robust path tracker is O(n), compared with the current
numerical predictor-corrector algorithms. For n = 64, we expect a cost overhead
factor of about 64. We interpret the speedups in Table 7 and Table 8 as follows.
With a speedup of about 10, then this factor drops to about 6. The plan is to
integrate the new algorithms in the parallel blackbox solver [22].

References

1. Adrovic, D., Verschelde, J.: Polyhedral methods for space curves exploiting sym-
metry applied to the cyclic n-roots problem. In: Gerdt, V.P., Koepf, W., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 10–29. Springer,
Cham (2013). https://doi.org/10.1007/978-3-319-02297-0 2

2. Backelin, J.: Square multiples n give infinitely many cyclic n-roots. Reports,
Matematiska Institutionen 8, Stockholms universitet (1989)

3. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Adaptive multi-
precision path tracking. SIAM J. Numer. Anal. 46(2), 722–746 (2008)

4. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solv-
ing Polynomial Systems with Bertini, vol. 25. SIAM (2013)

5. Bliss, N., Verschelde, J.: The method of Gauss-Newton to compute power series
solutions of polynomial homotopies. Linear Algebra Appl. 542, 569–588 (2018)

6. Breiding, P., Timme, S.: HomotopyContinuation.jl: a package for homotopy con-
tinuation in Julia. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.)
ICMS 2018. LNCS, vol. 10931, pp. 458–465. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96418-8 54

7. Christianson, B.: Automatic Hessians by reverse accumulation. IMA J. Numer.
Anal. 12, 135–150 (1992)

https://doi.org/10.1007/978-3-319-02297-0_2
https://doi.org/10.1007/978-3-319-96418-8_54
https://doi.org/10.1007/978-3-319-96418-8_54


582 S. Telen et al.

8. Davenport, J.H.: Looking at a set of equations. Bath Computer Science Technical
report 87–06 (1987)

9. Fabry, E.: Sur les points singuliers d’une fonction donnée par son développement en
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Abstract. The expansion of a given multivariate polynomial into Bern-
stein polynomials is considered. Matrix methods for the calculation of the
Bernstein expansion of the product of two polynomials and of the Bern-
stein expansion of a polynomial from the expansion of one of its partial
derivatives are provided which allow also a symbolic computation.
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1 Introduction

In this paper, we consider the expansion of a multivariate polynomial into Bern-
stein polynomials over a box, i.e., an axis-aligned region, in R

n. This expansion
has many applications, e.g., in computer aided geometric design, robust control,
global optimization, differerential and integral equations, finite element analysis
[6]. A very useful property of this expansion is that the interval spanned by the
minimum and maximum of the coefficients of this expansion, the so-called Bern-
stein coefficients, provides bounds for the range of the given polynomial over the
considered box, see, e.g., [8,10]. A simple (but by no means economic) method
for the computation of the Bernstein coefficients from the coefficients of the given
polynomial is the use of formula (5) below. This formula (and also similar ones
for the Bernstein coefficients over more general sets like sinplexes and polytopes)
allows the symbolic computation of these quantities when the coefficients of the
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given polynomial depend on parameters. Some applications are making use of
this symbolic computation: in [4, Sections 3.2 and 3.3], [5], see also the many
references therein, the reachability computation and parameter synthesis with
applications in biological modelling are considered. In [2,3], parametric polyno-
mial inequalities over parametric boxes and polytopes are treated. Applications
in static program analysis and optimization include dependence testing between
references with linearized subscripts, dead code elimination of conditional state-
ments, and estimation of memory requirements in the development of embedded
systems. Applications which involve polynomials of higher degree or many vari-
ables require a computation of the Bernstein coefficients which is more economic
than by formula (5). In [14] and [16], we have presented a matrix method for
the computation of the Bernstein coefficients which is faster than the methods
developed so far. In this paper, we consider firstly the case where we have already
computed the Bernstein coefficients of two multivariate polynomials and wish
to compute the Bernstein expansion of their product for which we present two
approaches. For the univariate case see [7, Subsection 4.2]. Secondly, we show
how the Bernstein coefficients of a multivariate polynomial can be computed
from the Bernstein coefficients of its partial derivatives. This problem appears
for example when bounds for the range of a complex polynomial over a rectangu-
lar region in the complex plane are wanted and the Cauchy-Riemann equations
are employed, see [13, Section 4.3], [17], but it is also of interest by its own.

The organization of our paper is as follows. In the next section, we introduce
the notation which is used throughout the paper. In Sect. 3, we first briefly recall
the expansion of a multivariate real polynomial into Bernstein polynomials over
a box and some of its fundamental properties. In the second part, we recall from
[14,16] amatrixmethod for the computation of theBernstein coefficients. In Sect. 4
we present two matrix methods for the computation of the Bernstein coefficients
of the product of two polynomials and in Sect. 5 the computation of the Bernstein
coefficients of a polynomial from those of one of its partial derivatives.

2 Notation

In this section, we introduce the notation that we are using throughout this paper.
Let n ∈ N (set of the nonnegative integers) be the number of variables. A multi-
index (i1, . . . , in) ∈ N

n is abbreviated by i. In particular, we write 0 for (0, . . . , 0)
and es for the multi-index that has a 1 in position s and 0’s otherwise. Arithmetic
operations with multi-indices are defined entry-wise; the same applies to compar-
ison between multi-indices. For the multi-index i = (i1, . . . , is, . . . , in) we define
is,q := (i1, . . . , is +q, . . . , in) and i[s,q] := (i1, . . . , q, . . . , in), s ∈ {1, . . . , n} , q ∈ Z.

For x = (x1, . . . , xn) ∈ R
n, its monomials are defined as xi :=

n∏

s=1

xis
s . For

d = (d1, . . . , dn) ∈ N
n such that i ≤ d, we use the compact notations

d∑

i=0

:=
d1∑

i1=0

. . .

dn∑

in=0

,

(
d

i

)

:=
n∏

s=1

(
ds

is

)

.

For the ease of presentation, we index all array entries starting from zero.
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3 Bernstein Expansion

3.1 Bernstein Representation over the Unit Box

In this section, we present fundamental properties of the Bernstein expansion
over a box, e.g., [6, Subsection 5.1], [8,10], that are employed throughout the
paper. For simplicity we consider the unit box u := [0, 1]n, since any compact
nonempty box x of R

n can be mapped affinely onto u . Let � ∈ N
n, aj ∈ R,

j = 0, . . . , �, such that for s = 1, . . . , n

�s := max
{
q | aj1,...,js−1,q,js+1,...,jn �= 0

}
. (1)

Let p be an �-th degree n-variate polynomial with the power representation

p(x) =
�∑

j=0

ajx
j . (2)

We expand p into Bernstein polynomials of degree d, d ≥ �, over u as

p(x) =
d∑

j=0

b
(d)
j B

(d)
j (x), (3)

where B
(d)
j is the j-th Bernstein polynomial of degree d, defined as

B
(d)
j (x) :=

(
d

j

)

xj(1 − x)d−j , (4)

and b
(d)
j is the j-th Bernstein coefficient of p of degree d over u which is given by

b
(d)
j =

j∑

i=0

(
j
i

)

(
d
i

)ai, 0 ≤ j ≤ d, (5)

with the convention that ai := 0 if i ≥ �, i �= �. We call (3) the Bernstein
representation of p and arrange the Bernstein coefficients in a multidimensional
array B(u) = (b(d)j )0≤j≤d, the so-called Bernstein patch. Note that the Bernstein
coefficients lying on the vertices of B(u) are values of p at the respective vertices
of u . More generally, the Bernstein coefficients on an r-dimensional face of u ,
r = 0, 1, . . . , n−1, are just the Bernstein coefficients lying on the respective faces
of B(u) [9, Lemma 2]. E.g., assume that v is an (n − 1)-dimensional face of u
that is obtained by setting xs = 0 or 1, for some s ∈ {1, . . . , n}. For i ∈ N

n and
r ∈ N we define

i[s,r] := (i1, . . . , is−1, r, is+1, . . . , in). (6)

Then, the Bernstein coefficients of p over v are given by

b
(d)
i (p, v) =

{
bi[s,0] , if xs = 0,
bi[s,ds] , if xs = 1.
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3.2 Computation of the Bernstein Coefficients

We recall from [16] a method for the computation of the Bernstein coefficients
of the n-variate polynomial p given in (2).

Matrix Method for the Unit Box. The superscript c denotes the cyclic
ordering of the sequence of the indices, i.e., the order of the indices of the entries
of the array under consideration is changed cyclically. This means that the index
in the first position is replaced by the index in the second one, the index in the
second position by the one in the third, . . . , the index in the n-th position
by the one in the first position (see Fig. 1 as an illustration in the trivariate
case). So after n cyclic orderings the sequence of the indices is again in its initial
order. Note that in the bivariate case the cyclic ordering is just the usual matrix
transposition.

Fig. 1. Cyclic ordering of a three-dimensional array with �1 = 1, �2 = 2, and �3 = 3
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The coefficients of p are arranged in an (�1 + 1) × �∗ matrix A, where �∗ :=
n∏

s=2

(�s + 1). The correspondence between the coefficients aj of p and the entry

of A in row i and column j is as follows:

i = j1, (7a)

j = j2 +
n∑

s=3

js(�2 + 1) · . . . · (�s−1 + 1). (7b)

Then A can be represented as the matrix

⎡

⎢
⎢
⎢
⎣

a0,0,0,...,0 a0,1,0,...,0 . . . a0,�2,0,...,0 a0,0,1,...,0 . . . a0,�2,1,...,0 . . .
a1,0,0,...,0 a1,1,0,...,0 . . . a1,�2,0,...,0 a1,0,1,...,0 . . . a1,�2,1,...,0 . . .

...
... . . .

...
... . . .

... . . .
a�1,0,0,...,0 a�1,1,0,...,0. . . a�1,�2,0,...,0 a�1,0,1,...,0 . . . a�1,�2,1,...,0 . . .

(8)

. . . a0,0,�3,...,0 . . . a0,�2,�3,...,0 . . . a0,0,�3,...,�n a0,1,�3,...,�n . . . a0,�2,�3,...,�n

. . . a1,0,�3,...,0 . . . a1,�2,�3,...,0 . . . a1,0,�3,...,�n a1,1,�3,...,�n . . . a1,�2,�3,...,�n

. . .
... . . .

... . . .
...

... . . .
...

. . . a�1,0,�3,...,0 . . . a�1,�2,�3,...,0 . . . a�1,0,�3,...,�n a�1,1,�3,...,�n . . . a�1,�2,�3,...,�n

⎤

⎥
⎥
⎥
⎦

.

The matrix Λ(u) is obtained from A by multiplying aj by
(

�
j

)−1
. We put Λ0 :=

Λ(u) and define for s = 1, . . . , n

Λs := (PsΛs−1)c, (9)

where Ps is the lower triangular Pascal matrix,

(Ps)ij :=

{(
i
j

)
, if j ≤ i,

0, otherwise.
(10)

In (9), the matrix multiplication is performed according to the factorization,
e.g., [1, Lemma 1],

Ps =
�s∏

μ=1

Ks
μ, (11)

where the bidiagonal matrices Ks
μ, μ = 1, . . . , �s, are given by

(Ks
μ)ij :=

⎧
⎪⎨

⎪⎩

1, if i = j,

1, if i = j + 1, �s − μ ≤ j ≤ �s − 1,

0, otherwise.
(12)
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Define for s = 1, . . . , n, r := s mod n. Then for s = 1, . . . , n, the entry in
position (v1, v2) in Λs−1 becomes (v ′

1 , v ′
2 ) in Λs, where

v ′
1 = v2 mod (�r+1 + 1),

v ′
2 =

⌊
v2

�r+1 + 1

⌋

+ v1

n∏

m=1,
m �=s,r

(�m + 1).

The Bernstein patch B(u) arranged accordingly in the (�1 + 1) × �∗ Bernstein
matrix, denoted by B(u), is given by Λn.

Matrix Method for a General Box. Firstly, we affinely map a given box x ,

x = ([xs, xs])n
s=1, with xs < xs, s = 1, . . . , n, (13)

to the unit box u by

zs =
xs − xs

xs − xs

, s = 1, . . . , n. (14)

We sequentially transform xs, s = 1, . . . , n. By substituting (14) in (2) for
one xs, s = 1, . . . , n, at a time, we obtain a polynomial p� over u . The coefficients
of p� arranged in an (�1 + 1) × �� matrix, say A�, can be derived as follows from
the matrix A of the coefficients of p given in (8): For s = 1, . . . , n define

Qs :=

{
D̃s(

xs−xs

xs
)PT

s D̃s(xs), xs �= 0,

D̃s(xs), xs = 0,
(15)

where D̃s(t) is the diagonal matrix of order �s + 1

D̃s(t) := diag(1, t, t2, . . . , t�s), s = 1, . . . , n.

Then A� can be represented as

A� = (Qn(· · · (Q2(Q1A)c)c · · · )c)c. (16)

By applying the procedure for the unit box to the matrix A�, we obtain the
Bernstein patch of p over x .

Amount of Arithmetic Operations. Assuming that κ = �s for all s =
1, . . . , n, the presented matrix method requires nκ (κ+1)n

2 additions and n(κ+1)n

multiplications for the computation of the Bernstein coefficients over the unit box
u , and needs nκ(κ+1)n+n additions and 3n(κ+1)n+2n(κ−1)+n multiplications
for a general box. A verified version of this method which is taking into account
of all rounding errors as well as data uncertainties was implemented by Dr.
Florian Bünger, Hamburg University of Technology, Germany. It is included in
the version 12 of the MATLAB toolbox INTLAB [11].



Symbolic-Numeric Computation of the Bernstein Coefficients 589

4 Computation of the Bernstein Coefficients of the
Product of Two Multivariate Polynomials

Let p and q be two n-variate polynomials of degree �(p) and �(q), respectively,
with the Bernstein expansions of degrees d(p) ≥ �(p) and d(q) ≥ �(q) over x

p(x) =
d(p)∑

j=0

bj(p)B(d(p))
j (x), (17a)

q(x) =
d(q)∑

i=0

bi(q)B
(d(q))
i (x). (17b)

For the ease of presentation we consider here only the unit box u and assume that
d(p) = �(p) and d(q) = �(q). Then, the polynomial pq resulting when multiplying
p and q is of degree � = �(p) + �(q). Hence, the Bernstein representation of pq
over u is given as

pq(x) =
�∑

m=0

bm(pq)B(�)
m (x), (18)

where bm(pq) is the m-th Bernstein coefficient of pq of degree � over u ,
m = 0, . . . , �. Let B(p,u), B(q,u), and B(pq,u) denote the Bernstein patches
of p, q, and pq over u , respectively, and their corresponding Bernstein matri-
ces are given by B(p,u), B(q,u) and B(pq,u). In this section, we present two
matrix methods, which are named the first method and second method, for the
computation of the Bernstein coefficients bm(pq) of pq.

4.1 First Method

By this method the Bernstein coefficients of pq are computed from the Bern-
stein representation of p and q. The representations (17a) and (17b) can be
rewritten as

p(x) = (1 − x)�(p)

�(p)∑

j=0

cj(p)
(

x

1 − x

)j

, (19a)

q(x) = (1 − x)�(q)

�(q)∑

i=0

ci(q)
(

x

1 − x

)i

, (19b)

where cj(p) and ci(q) are called the scaled Bernstein coefficients of p and q which
are given by

cj(p) = bj(p)
(

�(p)
j

)

, j = 0, . . . , �(p), (20a)

ci(q) = bi(q)
(

�(q)
i

)

, i = 0, . . . , �(q). (20b)
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From (19a) and (19b), the power representation of pq is obtained as

pq(x) = (1 − x)�
�∑

m=0

cm

(
x

1 − x

)m

,

where the m-th scaled Bernstein coefficient cm of pq is given as

cm =
m∑

μ=0

cμ(p)cm−μ(q), m = 0, . . . , �, (21)

with cμ(p) := 0 if μs > �s(p) and cμ(q) := 0 if μs > �s(q) for some s ∈ {1, . . . , n}.
Then, from (21) the m-th Bernstein coefficient of pq is

bm(pq) =
cm
(

�
m

) , 0 ≤ m ≤ �. (22)

In matrix language, the first method can be described as follows: let for s =
1, . . . , n, the diagonal matrix Ds of order �s(p) + 1 be defined by

Ds := diag
((

�s(p)
0

)

,

(
�s(p)

1

)

, . . . ,

(
�s(p)
�s(p)

))

, (23)

and let C(p) be the (�1(p) + 1) × ��(p) matrix, where ��(p) :=
n∏

s=2

(�s(p) + 1),

which is obtained by

C(p) = (Dn(· · · (D2(D1B(p,u))c)c · · · )c)c. (24)

It is easy to see that (C(p))q1,q2 = cj(p), q1 = 0, . . . , �1(p), q2 = 0, . . . , ��(p) − 1
and j = 0, . . . , �(p), where the correspondence between the scaled Bernstein
coefficient cj(p) and the entries of C(p) can be determined by using (7).

Let us define for s = 1, . . . , n, t = 0, . . . , �s(q), the following (�s+1)×(�s(p)+1)
matrices W

(t)
s row-wise by

W (t)
s [0, . . . , t − 1] := 0,

W (t)
s [t, . . . , �s(p) + t] := I�s(p)+1 (identity matrix of order �s(p) + 1),

W (t)
s [�s(p) + t + 1, . . . , �s] := 0;

as a convention, we define for t = 0, �s(q)

W (t)
s [0, . . . ,−1] = φ,

W (t)
s [�s + 1, . . . , �s] = φ,

where φ is a matrix of size 0 × 0. Assume that the scaled Bernstein coefficients

of pq, see (21), are arranged in the (�1+1)×�� matrix C(pq), with �� =
n∏

s=2

(�s+1)

that is given by

C(pq) =

�n(q)∑

in=0

· · ·
�1(q)∑

i1=0

(
W (in)

n

(
· · ·

(
W

(i2)
2

(
W

(i1)
1 ci1,...,in(q)C(p)

)c)c

· · ·
)c)c

(25)
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such that (C(pq))q1,q2 = cm, q1 = 0, . . . , �1, q2 = 0, . . . , �� − 1, and m =
0, . . . , �. Here, the relation between the entries of C(pq) and the scaled Bernstein
coefficients of pq, cm, m = 0, . . . , �, can be determined as in (7). From (25),
we get

B(pq,u) =
(
D′

n

(· · · (D′
2 (D′

1C(pq))c)c · · · )c
)c

, (26)

where D′
s is the inverse of the diagonal matrix diag

((
�s
0

)
,
(
�s
1

)
, . . . ,

(
�s
�s

))
for

s = 1, . . . , n. A pseudocode for the first method is given in Algorithm 1. Its
performance is illustrated in Appendix A.

4.2 Second Method

Let aj(p) and ai(q) be the j-th and the i-th coefficients of the power represen-
tations of p and q, respectively, such that j = 0, . . . , �(p) and i = 0, . . . , �(q).
Assume that aj(p) are arranged in an (�1(p) + 1) × ��(p) matrix A(p). Recall
that pq is an n-variate polynomial of degree �. Then the power representation
of pq is given by

pq(x) =
�∑

m=0

amxm. (27)

We arrange the coefficients of pq in an (�1 + 1) × �� matrix Â. In this method,
the computation of the Bernstein coefficients of pq, see (18), is based on its
power representation (27). The matrix description of this method is as follows:
the entries of Â are the entries of the matrix that is obtained from (25), where
the (r1, r2)-th entry of C(p) is replaced by the (r1, r2)-th entry of A(p), where
r1 = 0, . . . �1(p), r2 = 0 . . . , ��(p)−1, and ci(q) is replaced by ai(q), 0 ≤ i ≤ �(q).
Then the method presented in Subsect. 3.2 is applied to compute the Bernstein
coefficients of pq starting from Â.

4.3 Amount of Arithmetic Operations

In Tables 1 and 2, the number of the arithmetic operations of both methods
are presented. For simplicity, we assume that �s(p) = �s(q) = κ for s = 1, . . . , n.
Furthermore, we use the method from Subsect. 3.2 for the computation of B(p,u)
and B(q,u) in the first method, see (24), and B(pq,u) in the second method.

For the ease of comparison, we assume that the basis operations (addition,
multiplication, and division) are taking the same time. Then we conclude that
for n ≥ 4 and κ = 1, n ≥ 2 and κ = 2, 3, and for all n and κ ≥ 4 the first method
is superior to the second method. In addition, the first method has the advantage
that all computations are performed ab initio in the Bernstein representation so
that the numerical stability of this representation with respect to perturbations
of initial data, or rounding errors that occur during floating point calculations
can be fully employed, see [6, Section 6].
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Algorithm 1. First method for the computation of the Bernstein coefficients of
pq over the unit box u

1: Input: The coefficients of the power representation of p and q over u
2: Output: The matrix B(pq,u) containing the Bernstein coefficients of pq over u
3: Step 1: Compute the Bernstein coefficients of p, q and arrange them in matrices
4: B(p,u) and B(q,u), respectively, by using the method from Subsection 3.2.
5: Step 2: Compute C(p).
6: Put C0(p) := B(p,u).
7: for s = 1, . . . , n do
8: Compute Cs(p) := (DsCs−1(p))c.
9: end for

10: Put C0(pq) := O.
11: Step 3: Computation of C(pq)
12: for i1 = 0, . . . , �1(q) do

13:
. . .

14: for in = 0, . . . , �n(q) do

15: Put M
(i)
0 := ci(q)Cn(p), where ci(q) is given by (20b).

16: for r = 1, . . . , n do
17: M

(i)
r := (W

(ir)
r M

(i)
r−1)

c.
18: end for
19: C0(pq) := M

(i)
n + C0(pq).

20: end for

21:
...

22: end for
23: Step 4: Computation of B(pq,u)
24: Put F0 := C0(pq).
25: for s = 1, . . . , n do
26: Compute Fs := (D′

sFs−1)
c, see (26).

27: end for
28: Put B(pq,u) := Fn.
29: Step 5: End of the algorithm

Table 1. Number of real arithmetic operations required to obtain B(pq,u) by the first
method

Calculation of Number of additions Number of multi-
plications/divisions

B(p,u) and B(q,u) by the
method in Subsect. 3.2

nκ(κ + 1)n 2n(κ + 1)n

C(p) 0 n(κ + 1)n

C(pq) (κ + 1)n[(κ + 1)n − 1]− nκ(κ + 1)n−1 (κ + 1)2n

B(pq,u) 0 n(2κ + 1)n
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Table 2. Number of arithmetic operations to obtain B(pq,u) by the second method

Calculation of Number of additions Number of multi-
plications/divisions

C(pq) (κ + 1)n[(κ + 1)n − 1]− nκ(κ + 1)n−1 (κ + 1)2n

B(pq,u) by the method in
Subsect. 3.2

nκ(2κ + 1)n n(2κ + 1)n

5 Matrix Method for the Computation of the Bernstein
Coefficients of a Multivariate Polynomial from Those
of One of Its Partial Derivatives

Let p be an n-variate polynomial of degree � with the power representation
given as in (2). Assume that its coefficients are arranged in the matrix A, which
is presented in (8). We expand p into Bernstein polynomials of degree d, d ≥ �,
over the box x (13) as in (3). Without loss of generality, we assume that d = �.
Recall that the Bernstein representation of the first partial derivative of p with
respect to xs, s ∈ {1, . . . , n}, is given by

∂p

∂xs
=

∑

i≤�s,−1

b̃
(�s,−1)
i B

(�s,−1)
i (x), (28)

where for j = 0, . . . , �s,−1

b̃
(�s,−1)
j = �s(b

(�)
js,1

− b
(�)
j ) (29)

denotes the j-th Bernstein coefficient of ∂p
∂xs

of degree �s,−1 over x , i.e., the Bern-
stein coefficients of ∂p

∂xs
can be obtained from differences between its successive

Bernstein coefficients, e.g., [9, formula (4)].
Assume that the Bernstein coefficients of ∂p

∂xs
, s ∈ {1, . . . , n}, are given and

are arranged in the Bernstein patch B( ∂p
∂xs

,x ). In the following, we present a
matrix method by which the Bernstein patch B(p,x ) that comprises the Bern-
stein coefficients of p over x can be computed using B( ∂p

∂xs
,x ). Without loss of

generality, we assume that s = 1. From (29), it follows that

b
(�)
i1,1

=
b̃
(�1,−1)
i

�1
+ b

(�)
i , i = 0, . . . , �1,−1. (30)

In other words, for computing B(p,x ) it is sufficient to compute the Bernstein
coefficients b

(�)
i[1,0]

, see (6), then the remaining coefficients can be obtained iter-

atively using (30). The coefficients b
(�)
i[1,0]

are the Bernstein coefficients of p for
x1 = x1. By the face value property of the Bernstein coefficients, see Subsect. 3.1,
these coefficients are identical to those that are located at the corresponding
(n − 1)-dimensional face of B(p,x ); they are obtained from B(p,x ) by firstly
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freezing p on the face of x with x1 = x1 and then computing the Bernstein
coefficients of the resulting polynomial. In matrix language, the computation is

as follows. Denote by C1 the row vector of length ��, where �� =
n∏

s=2

(�s + 1),

that contains the coefficients of p such that x1 = x1. For μ = 1, . . . , �1, we define
the elementary bidiagonal matrices Hμ(x) ∈ R

μ,μ+1 by

(Hμ(x))i,j :=

⎧
⎪⎨

⎪⎩

1, i = j,

x, i = μ, j = μ + 1,

0, otherwise.
(31)

Then, C1 can be obtained as

C1 = H1(x1) · · · H�1−1(x1)H�1(x1)A. (32)

From C1, we define the (�2 + 1) ×
n∏

r=3

(�r + 1) matrix A1 with coefficients given

for q1 = 0, . . . , �2 and q2 = 0, . . . ,
n∏

r=3

(�r + 1) − 1 by

(A1)q1,q2 := (C1)q1+q2(�2+1)+1. (33)

Then the method from Subsect. 3.2 for the computation of the Bernstein coeffi-
cients of p on the face of x with x1 = x1 starting from A1 is applied. We denote
the resulting matrix by B1 and arrange its entries in the row vector C ′

1 of length

��, such that for r1 = 1, . . . , ��, v1 = 0, . . . , �2, and v2 = 0, . . . ,
n∏

r=3

(�r + 1) − 1,

we have

(C ′
1)r1 = (B1)v1,v2 , (34)

where

r1 = v1 + v2(�2 + 1) + 1.

Let B′
1 be the (�1 + 1) × �� matrix defined for r1 = 0, . . . , �1 and r2 =

0, . . . , �� − 1 by

(B′
1)r1,r2 =

{
(C ′

1)r2+1, if r1 = 0,

( 1
�1

B( ∂p
∂xs

,x ))r1−1,r2 , if r1 = 1, . . . , �1.
(35)

For μ = 1, . . . , �1, we define the square matrices H
(1)
μ of order �1 + 1, such that

for rv = 0, . . . , �1, v = 1, 2, it is given by

(H(1)
μ )r1,r2 :=

⎧
⎪⎨

⎪⎩

1, r1 = r2,

1, r1 = �1 − μ + 1, r2 = �1 − μ,

0, otherwise.
(36)
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Then, the Bernstein matrix B(p,x ) that comprises the Bernstein coefficients of p
of degree � over x , can be calculated by

B(p,x ) = H
(1)
1 · · · H(1)

�1−1H
(1)
�1

B′
1, (37)

where the correspondence between B(p,x ) and B(p,x ) can be determined by
using (7). As a consequence of our initial assumption, for computing B(p,x )
from B( ∂p

∂xs
,x ), where s ∈ {2, . . . , n}, we firstly employ the cyclic ordering with

respect to xs, in such a way that the multiplications in (32) and (37) are well
defined.

In Table 3, the number of arithmetic operations needed for the computation
of B(p,x ) is presented. For simplicity, we assume here that �s = κ, s = 1, . . . , n.

Table 3. Number of real arithmetic operations required to obtain B(p, x ) from one of
the partial derivatives of p

Calculation of Number of additions Number of multipli-
cations/divisions

C1 by (32) κ(κ + 1)n−1 κ(κ + 1)n−1

B1 over a general box x ′

which is obtained from x by
freezing x1 = x1 using the
method in Subsect. 3.2

(n − 1)κ(κ + 1)n−1 + n − 1 3(n− 1)(κ + 1)n−1 +
2(n−1)(κ−1)+n−1

B′
1 by (35) 0 κ(κ + 1)n−1

B(p, x ) by (37) κ(κ + 1)n−1 0

In total, the computation of B(p,x ) requires (n + 1)κ(κ + 1)n−1 + n − 1
additions and 2κ(κ + 1)n−1 + 3(n − 1)(κ + 1)n−1 + 2(n − 1)(κ − 1) + n − 1
multiplications.

Appendix A. Example for the Performance of Algorithm1

Let p and q be bivariate polynomials of degree (4, 2) and (3, 2), respectively, with
Bernstein matrices over u

B(p,u) =

⎡

⎢
⎢
⎢
⎢
⎣

2 0 −1
−2 3 0

1 3 −3
1 0 1
0 −1 0

⎤

⎥
⎥
⎥
⎥
⎦

and B(q,u) =

⎡

⎢
⎢
⎣

−1 −4 −1
2 0 5

−2 3 0
0 1 1

⎤

⎥
⎥
⎦ .
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Then

D1 = diag(1, 4, 6, 4, 1) and D2 = diag(1, 2, 1),

C1(p) = (D1C0(p))c =

⎡

⎣
2 −8 6 4 0
0 12 18 0 −1

−1 0 −18 4 0

⎤

⎦ ,

C2(p) = (D2C1(p))c =

⎡

⎢
⎢
⎢
⎢
⎣

2 0 −1
−8 24 0

6 36 −18
4 0 4
0 −2 0

⎤

⎥
⎥
⎥
⎥
⎦

;

M
(1,1)
0 = M

(2,2)
0 = M

(3,0)
0 = O5,3,

M
(0,0)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

−2 0 1
8 −24 0

−6 −36 18
−4 0 −4

0 2 0

⎤

⎥
⎥
⎥
⎥
⎦

, M
(0,1)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

−16 0 8
64 −192 0

−48 −288 144
−32 0 −32

0 16 0

⎤

⎥
⎥
⎥
⎥
⎦

, M
(0,2)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

−2 0 1
8 −24 0

−6 −36 18
−4 0 −4

0 2 0

⎤

⎥
⎥
⎥
⎥
⎦

,

M
(1,0)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

12 0 −6
−48 144 0

36 216 −108
24 0 24
0 −12 0

⎤

⎥
⎥
⎥
⎥
⎦

, M
(1,2)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

30 0 −15
−120 360 0

90 540 −270
60 0 60
0 −30 0

⎤

⎥
⎥
⎥
⎥
⎦

,

M
(2,0)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

−12 0 6
48 −144 0

−36 −216 108
−24 0 −24

0 12 0

⎤

⎥
⎥
⎥
⎥
⎦

, M
(2,1)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

36 0 −18
−144 432 0

108 648 −324
72 0 72
0 −36 0

⎤

⎥
⎥
⎥
⎥
⎦

,

M
(3,1)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

4 0 −2
−16 48 0

12 72 −36
8 0 8
0 −4 0

⎤

⎥
⎥
⎥
⎥
⎦

, M
(3,2)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

2 0 −1
−8 24 0

6 36 −18
4 0 4
0 −2 0

⎤

⎥
⎥
⎥
⎥
⎦

;
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M
(0,0)
1 =

⎡

⎣
−2 8 −6 −4 0 0 0 0

0 −24 −36 0 2 0 0 0
1 0 18 −4 0 0 0 0

⎤

⎦ , M
(0,0)
2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 0 1 0 0
8 −24 0 0 0

−6 −36 18 0 0
−4 0 −4 0 0

0 2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M
(0,1)
1 =

⎡

⎣
−16 64 −48 −32 0 0 0 0

0 −192 −288 0 16 0 0 0
8 0 144 −32 0 0 0 0

⎤

⎦ , M
(0,1)
2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −16 0 8 0
0 64 −192 0 0
0 −48 −288 144 0
0 −32 0 −32 0
0 0 16 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M
(0,2)
1 =

⎡

⎣
−2 8 −6 −4 0 0 0 0

0 −24 −36 0 2 0 0 0
1 0 18 −4 0 0 0 0

⎤

⎦ , M
(0,2)
2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 −2 0 1
0 0 8 −24 0
0 0 −6 −36 18
0 0 −4 0 −4
0 0 0 2 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The remaining 18 matrices M
(i)
s , s = 1, 2, are formed analogously.

F0 = C0(pq) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 −16 −1 8 1
20 40 −160 −24 −15

−66 96 −390 450 18
80 −100 408 506 −275

−12 −122 896 −298 60
−24 72 54 42 −18

0 20 −32 8 4
0 0 4 −2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

D′
1 = diag(1,

1
7
,

1
21

,
1
35

,
1
35

,
1
21

,
1
7
, 1), D′

2 = diag(1,
1
4
,
1
6
,
1
4
, 1).
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The Bernstein matrix of the product of the polynomials p and q is given by

B(pq,u) = F2 = (D′
2(D

′
1F0)c)c =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 −4 −1
6 2 1

20
7

10
7

−80
21

−6
7

−15
7

−22
7

8
7

−65
21

75
14

6
7

16
7

−5
7

68
35

253
70

−55
7

−12
35

−61
70

64
15

−149
70

12
7

−8
7

6
7

3
7

1
2

−6
7

0 5
7

−16
21

2
7

4
7

0 0 2
3

−1
2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Appendix B. Example for the Performance of the Method
Presented in Sect. 5

Let p(x1, x2) = −504x4
1x

2
2 −84x4

1x2 +288x4
1 +6x3

1x
2
2 +30x3

1x2 −60x3
1 +36x2

1x
2
2 −

20x2
1x2 + 28x2

1 − 54x1x
2
2 + 21x1x2 − 24x1 + 24x2

2 − 24x2 + 48. Then

B(
∂p

∂x1
,u) =

⎡

⎢
⎢
⎢
⎢
⎣

−24 −27
2 −57

−4 −9
6

−83
3

−140
3

−207
6

−67
6

1004 −1743
2 −1241

⎤

⎥
⎥
⎥
⎥
⎦

and C ′
1 = B(p(0, x2), [0, 1]) =

[
48 36 48

]
;

B′
1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

48 36 48
−6 −27

8
−57
4

−4
3

−9
24

−83
12

−140
12

−207
24

−67
12

251 −1743
8

−1241
4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The Bernstein coefficients of p over u are obtained from

B(p,u) = H1H2H3H4B
′
1

=

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

48 36 48

−6 −27
8

−57
4

−4
3

−9
24

−83
12

−140
12

−207
24

−67
12

251 −1743
8

−1241
4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

48 36 48

42 261
8

135
4

122
3

774
24

322
12

29 567
24

255
12

280 483
2 −289

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Abstract. The Runge–Kutta–Nyström (RKN) explicit symplectic dif-
ference schemes with the number of stages from 1 to 5 for the numerical
solution of molecular dynamics problems described by the systems with
separable Hamiltonians have been considered. All schemes have been
compared in terms of the accuracy and stability with the use of Gröbner
bases. For each specific number of stages, the schemes are found, which
are the best in terms of accuracy and stability. The efficiency parameter
of RKN schemes has been introduced by analogy with the efficiency
parameter for Runge–Kutta schemes and the values of this parame-
ter have been computed for all considered schemes. The verification of
schemes has been done by solving a problem having the exact solution.
It has been shown that the symplectic five-stage RKN scheme ensures
a more accurate conservation of the total energy of a system of parti-
cles than the schemes of lower accuracy orders. All investigations of the
accuracy and stability of schemes have been carried out in the analytic
form with the aid of the computer algebra system (CAS) Mathematica.

Keywords: Molecular dynamics · Hamilton equations · Symplectic
difference schemes · Gröbner bases · CAS Mathematica

1 Introduction

The investigation of the behavior of materials under their shockwave loading by
the molecular dynamics (MD) methods is at present one of the topical directions
of the research in solid mechanics. The essence of the MD method lies in the
solution of the equations of the motion of atoms, which interact via a potential
depending on the coordinates of atoms. At the use of the given method, there
is no need in formulating the equations of state. As is known, the obtaining of
these equations is one of the most complex problems of fluid mechanics [1].
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It was shown in [2] that in the limit as the number of particles within a
volume tends to infinity, the MD equations go over to the well-known equations
of the continuum mechanics.

The molecular dynamics equations are represented by the Hamilton’s ordi-
nary differential equations for the solid body atoms. The MD equations have an
exact analytic solution in a very limited number of cases [3]. These equations
are, therefore, solved in the general case numerically with the aid of difference
schemes in which the differential operator has been replaced with a difference
operator.

At the solution of Hamilton’s equations, it is natural to use the difference
schemes preserving the symplectic properties of these equations. The violation of
this condition leads to the violation of the conservation of Poincaré invariants and
the rise of the non-physical instability in numerical computations [4]. It follows
from here that the difference operator of the numerical scheme must possess
the properties of the canonical transformation. Symplectic difference schemes
are derived by the operator technique [5–8] and by the Runge–Kutta–Nyström
method [7,9–11].

As is known, the explicit difference schemes impose a restriction on the inte-
gration step [2,12]. On the other hand, the advantage of explicit schemes is their
simple computer implementation. Besides, the increased speed of desktop com-
puters enables one to solve with the aid of explicit schemes many important
applied tasks with acceptable CPU time expenses. Therefore, in the present
work, preference is given to explicit difference schemes.

According to the theory of Hamilton equations, the conservation law for the
total energy of the system of particles must be satisfied [3]. It is natural to
require that the difference scheme also ensures the total energy conservation.
However, as the practice of computations shows, the imbalance of the system
total energy proves more considerable for the explicit symplectic Runge–Kutta–
Nyström (RKN) schemes of low accuracy orders (the second and third orders).
At the same time, it was shown in [12] that the three-stage fourth-order RKN
scheme ensures a smaller error in the energy imbalance than the schemes of
orders 2 and 3. From this a conclusion follows about the advisability of the
development of explicit symplectic RKN schemes of higher orders of accuracy.
As was shown in [12], the derivation of symplectic three-stage RKN schemes is
associated with a large amount of symbolic computations.

2 Governing Equations

In the method of molecular dynamics, the computation of the motion of N
particles is carried out with the aid of the Hamilton equations

dxiα

dt = ∂H
∂piα

, dPiα

dt = − ∂H
∂xiα

,H(xiα, piα) = K(piα) + V (xiα),

K(piα) =
N∑

i=1

3∑

α=1

p2
iα

2mi
,

(1)

where i is the particle number, α is the number of the coordinate xiα and of the
momentum piα, mi is the particle mass, K(piα) is the kinetic energy, V (xiα) is
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the potential energy of the interaction of particles, H(xiα, piα) is the Hamiltonian
of the system of particles. The solution of the system of Eq. (1) under the given
initial conditions xiα(t = 0) = x0

iα, piα(t = 0) = p0iα represents a canonical
transformation from the initial state to the final state

xiα = xiα(x0
iα, p0iα, t), piα = piα(x0

iα, p0iα, t). (2)

The solution (2) of Hamilton Eq. (1) preserves the phase volume (the Liouville
theorem [3]). The condition of the phase volume conservation is [2]

GT JG = J, G =
∂(xiα, piα)
∂(x0

iα, p0iα)
, J =

∣
∣
∣
∣

∣
∣
∣
∣

0 IN

−IN 0

∣
∣
∣
∣

∣
∣
∣
∣ , (3)

where G is the Jacobi matrix, J is the symplectic matrix, IN is the N×N identity
matrix. From (3), it follows the equality to unity of the transformation Jacobian
|G| = 1. For the following, we rewrite Hamilton Eq. (1) for the one-dimensional
case in the form

dxi/dt = pi(t)/m, dpi/dt = fi(xi), (4)

where fi(xi) is the force acting on the ith particle, fi(xi) = −∂V (xi)/∂xi, i =
1, 2, . . . , N . In the following, we will omit the subscript i at the discussion of
difference schemes for solving the system of ordinary differential Eq. (4).

3 Runge–Kutta–Nyström Symplectic Difference Schemes

The conventional (non-symplectic) explicit difference schemes with a structure
similar to Runge–Kutta schemes were proposed for the first time by Nyström
in [9]. The K-stage Runge–Kutta–Nyström (RKN) scheme for Hamilton Eq. (4)
has the following form:

x(i) = xn + hαi
pn

m + h2

m

K∑

j=1

aijf(x(j)), i = 1, . . . , K,

xn+1 = xn + hpn

m + h2

m

K∑

j=1

βjf(x(j)), pn+1 = pn + h
K∑

j=1

γjf(x(j)),
(5)

where h is the time step, n is the time layer number, n = 0, 1, 2, . . .; αi, βi, γi,
i = 1, . . . , K are constant parameters, K ≥ 1.

It is required that the RKN scheme (5) performs a canonical transformation
(xn, pn) → (xn+1, pn+1) at a passage from the time layer n to the layer n + 1.
To this end, one must impose in accordance with (3) the following condition on
the Jacobi matrix Gn+1:

Gn+1,T JGn+1 = J, Gn+1 = ∂(xn+1,pn+1)
∂(xn,pn) , J =

(
0 1

−1 0

)

, (6)
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where the superscript T denotes the transposition operation, J is the symplectic
matrix. Condition (6) gives rise to a class of explicit two-parameter RKN(α, γ)
schemes for which βi, aij in (5) satisfy the conditions [11]

βi = γi(1 − αi), aij =
{

0, 1 ≤ i ≤ j ≤ K
γj(αi − αj), 1 ≤ j < i ≤ K

. (7)

It was noted in [11] that there exist no explicit Runge–Kutta schemes preserving
the canonicity of transformation (6).

Verlet [10] proposed a one-stage second-order RKN scheme for system (4).
Ruth [5] was the first to show that the Verlet scheme is symplectic (canonical)
and discovered three-stage canonical RKN method of order three. In the work [7],
an explicit three-stage symplectic RKN method of order four was derived. The
analytic expressions were obtained in [12] for the coefficients αi, βi, γi of this
method with the aid of symbolic computations in the CAS Maple 12 and the
technique of Gröbner bases.

We now describe a technique for determining the accuracy order of any RKN
scheme by the example of the RKN scheme for computing the momentum pn+1

at the moment of time tn+1 = tn +h. Let the value pn be known. The solution in
the next node tn+1 is calculated by the formula pn+1 = pn +Δph,n. The formula
for computing Δph,n depends on the number of stages K of the RKN method
under consideration and on 3K constants αi, βi, γi, i = 1, . . . , K. On the other
hand, one can easily derive the “exact” formula for the increment Δp by using
the expansion of the quantity pn into the truncated Taylor series:

Δpn = p(tn + h) − p(tn) ≈
NT∑

j=1

hj

j!

djp(tn)

dtj
,

where NT is a given natural number, NT ≥ K + 1. If the difference δpn =
Δpn − Δph,n satisfies the relation δpn/h = O(hq), where q > 0, then the RKN
scheme has the order of accuracy O(hq). The maximization of the degree q is
done by choosing the parameters αi, βi, γi (i = 1, . . . , K) for each specific K.

3.1 One-Stage RKN Scheme

Let us set K = 1 in (5) and determine by means of symbolic computations the
highest possible order of accuracy of the given scheme (the Verlet scheme) as
applied to the computation of the momentum pn+1 by varying the coefficients α1

and γ1. Before presenting the corresponding fragments of a program in the lan-
guage of the CAS Mathematica, let us elucidate the meaning of the notations
used in this program: ntayl = NT , tn = tn, pnew = pn+1, u[t] = ẋ(t), dp =
Δpn, dph = Δph,n, errp = δpn, a1 = α1, g1 = γ1.

One computes at first the “exact” expansion Δpn:

pnew= Normal[Series[p[t], {t,tn,ntayl}]] /.t -> tn + h; dp= pnew- p[tn];

These operations yield the following expression for Δpn:
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h p’[tn] + 1/2 h^2 p"[tn] + 1/6 h^3 p^{(3)}[tn]

To facilitate the collection of terms of similar structure in the expression for δpn,
it is useful to carry out in the expression obtained above a number of sufficiently
obvious transformations using the Hamilton equations (4): p′(tn) = f(x(t)),
p′′(tn) = f ′(x(t))u(t), p(3)(tn) = u2(t)f ′′(x(t)) + f ′(x(t))u′(t).

These transformations are implemented efficiently in the CAS Mathematica:

dp = dp/.{p’[tn] -> f[x[t]], p"[tn] -> f’[x[t]] u[t],

p^{(3)}[tn] -> u[t]^2 f"[x[t]] + f’[x[t]] u’[t]}

According to Hamilton Eq. (4), the quantity x(1) will be needed for comput-
ing pn+1. It was computed in our Mathematica program in the symbolic form
as follows: x1[t ] := x[t] + h*a1*u[t]. After that, the quantity Δph,n was
computed in symbolic form as follows:

ftayl1 = Normal[Series[f[y],{y,y0,ntayl}]]; ftayl1 = ftayl1/.{y-> x1[t],

y0-> x[t]}; dph = h*g1*ftayl1;

The sought quantity δpn is computed as follows: errp = Simplify[dp - dph].
As a result, the following expression has been obtained for the error δpn:

δpn = hP1f(x) + (h2/2)P2u(t)f ′(x) + (h3/6)
(
f(x)f ′(x)/m + P3u

2f ′′(x)
)
. (8)

Here P1 = 1−γ1, P2 = 1−2α1γ1, P3 = 1−3α2
1γ1. It follows from these formulas

that in order to ensure the second order of accuracy of the Verlet scheme it
is necessary to choose the parameters α1 and γ1 in such a way that P1 = 0,
P2 = 0. We find from these conditions that γ1 = 1, α1 = 1/2. At these values of
parameters, the value of the polynomial P3 is different from zero: P3 = 1/4.

3.2 Two-Stage RKN Scheme

In the case under consideration, one must set K = 2 in (5). Doing symbolic com-
putations similarly to the case of the one-stage scheme, we obtain the expression
for δpn of the following form:

δpn = hP1f(x) +
h2

2
P2u(t)f ′(x) +

h3

6
(
P31f(x)f ′(x)/m + P32u

2f ′′(x)
)
, (9)

where

P1 = 1 −
K∑

j=1

γj , P2 = 1 − 2
K∑

j=1

αjγj , P31 = 1 − 6
K∑
i=1

∑
j<i

γiγj(αi − αj),

P32 = 1 − 3
K∑

j=1

α2
jγj .

(10)

The system of four nonlinear algebraic equations P1 = 0, P2 = 0, P31 = 0,
P32 = 0 gives the following two solutions for parameters α1, α2, γ1, γ2 (they were
found with the aid of the Mathematica function Solve[...]):

α1 = (3 ± i
√

3)/12, α2 = (9 ± i
√

3)/12, γ1 = (3 ± i
√

3)/6, γ2 = (3 ∓ i
√

3)/6.



Comparative Study of the Accuracy of Higher-Order Difference Schemes 605

This means that in the given case, there are no real third-order schemes. The
selection of parameters α1, α2, γ1, γ2 from the conditions P1 = 0, P2 = 0 ensures
the second order of accuracy of the RKN scheme under study. These two equa-
tions are linear in γ1 and γ2. Let us write them in the form of the system
V · X = f , where V is the Vandermonde matrix:

V =
(

1 1
α1 α2

)

, X =
(

γ1
γ2

)

, f =
(

1
1
2

)

. (11)

We consider at first the case when the determinant DetV = α2 − α1 = 0. In
this case, we find from (11) the one-parameter solution in the form γ2 = 1 − γ1,
α1 = α2 = 1/2. Besides, we obtain from (10): P31 = 1, P32 = 1/4 so that
144 · (P 2

31 + P 2
32) = 144 · 17

16 = 153.
Now consider the case when α1 �= α2. In this case, we obtain from the

conditions P1 = 0, P2 = 0 the following two-parameter solution ensuring the
second order of accuracy of the two-stage RKN scheme:

γ1 = (1 − 2α2)/[2(α1 − α2)], γ2 = (2α1 − 1)/[2(α1 − α2)]. (12)

In the theory of conventional (non-symplectic) multistage Runge–Kutta schemes,
it is a usual practice to search for such scheme parameters (in the case under
consideration, the parameters α1, α2), which ensure the minimum of error terms,
which have in the given case the order of smallness O(h3) [13]. Since the both
polynomials P31 and P32 depend on the parameters α1, α2, it makes sense to
introduce the following quadratic functional:

F (α1, α2) = 144(P 2
31+P 2

32) = (α1(8−12α2)+4α2−3)2

(α1−α2)2
+ (α1(6α2 − 3) + 2 − 3α2)2.

(13)
This expression is obtained as a result of substituting formulas (12) in P31

and P32. At the point of the minimum of the function F (α1, α2), the equa-
tions ∂F (α1, α2)/∂αl = 0, l = 1, 2, must be satisfied. They lead to the following
two polynomial equations:

Q1 = −3 + 8α1 − 2α3
1 + 3α4

1 + 16α2 − 44α1α2 + 6α2
1α2 − 2α3

1 α2 − 12α4
1 α2 − 28α2

2

+ 74α1α
2
2 − 12α2

1 α2
2 + 30α3

1 α2
2 + 12α4

1 α2
2 + 18α3

2 − 30α1α
3
2 − 18α2

1α
3
2 − 36α3

1α
3
2

− 7α4
2 − 6α1α

4
2 + 36α2

1α
4
2 + 6α5

2 − 12α1α
5
2,

Q2 = 3 − 20α1 + 44α2
1 − 34α3

1 + 7α4
1 − 6α5

1 − 4α2 + 28α1α2 − 58α2
1α2 + 30α3

1α2

+ 6α4
1α2 + 12α5

1α2 − 6α1α
2
2 + 12α2

1α
2
2 + 18α3

1α
2
2 − 36α4

1α
2
2 + 2α3

2 + 2α1α
3
2

− 30α2
1α

3
2 + 36α3

1α
3
2 − 3α4

2 + 12α1α
4
2 − 12α2

1α
4
2 .

The solution of this system has been found with the aid of Gröbner bases. To this
end, we have used the built-in function of the CAS Mathematica: GroebnerBasis
[{Q1,Q2},{a1,a2}]. Here a1= α1, a2= α2. The Gröbner basis consists of four
polynomials. The first three polynomials are reducible as this was found with
the aid of the function Factor[...]:
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G1 = (−1 + 2α2)
9
(15 + 2α2)

(
7 − 18α2 + 12α2

2
) (

−3 + 7α2 − 9α2
2
+ 6α2

3
)

, (14)

G2 = −((−1 + 2α2)
2
(−782292886326335781 + 84791412129792α1 + 13518496830811327517 α2

− 105687991753500756247α
2
2 + 494822074007590215378 α2

3 − 1547761103857501203524 α2
4

+ 3413403141608874304288α
5
2 − 5445027180463857323808α

6
2 + 6305466223138181638976α

7
2

− 5183080249993946906752α
8
2 + 2828691383728661777664α

9
2 − 855368209356906329856α

10
2

+ 51213785868624923136 α2
11

+ 30677230391300103168 α2
12

)), (15)

G3 = (−1 + 2α2)
(
138375335965152699 + 15898389774336 α1 − 31796779548672α1

2

+ 21197853032448α1
3 − 2643993979226915641 α2 + 23052596110039882255 α2

2

− 121523546615414976256 α2
3
+ 432612502387510859032 α2

4− 1099597565438948027224 α2
5

+ 2054466563803837779616α
6
2 − 2852904523255219553920α

7
2 + 2925159692595283888384 α2

8

− 2147987507024103404032α
9
2 + 1048555229436013268736α

10
2 − 279638949859173402624α

11
2

+ 10628391427610609664α
12
2 + 9693762746554238976α

13
2

)
,

G4 = −6378840443102352741 + 105989265162240 α1 − 402759207616512α1
2

+ 423957060648960α
3
1 − 42395706064896α

4
1 + 134645083671004390385α2

+ 339165648519168α1α2 − 339165648519168α
2
1α2 − 1306553371471540227807α

2
2

+ 7728385463568967182882α
3
2 − 31152292224976113655272α

4
2 + 90595546230140582933880α

5
2

− 196140611828089238849712α
6
2 + 321032661222529636238400α

7
2

− 398020598628892865210880α
8
2 + 368863060403416970198016α

9
2

− 246489793612098299292928α
10
2 + 109621999423243454814720α

11
2

− 26287557235123544745984α
12
2 + 533712029766168066048α

13
2

+ 894285199654734163968α
14
2 . (16)

Equation G1 = 0 has 15 solutions in total, counted with multiplicities. Equation
−1 + 2α2 = 0 yields the root α2 = 1/2. Substituting this value in (16), we
obtain: G4 = −2649731629056(−17 + 2α1)(−1 + 2α1)3. We find from here that
the following two α1 roots correspond to the root α2 = 1

2 : α1 = 17
2 and α1 = 1

2 .
The pair α1 = 1

2 , α2 = 1
2 has already been obtained above as a singular case

when the Vandermonde determinant DetV vanishes.
The second polynomial factor in G1 yields the only root α2 = − 15

2 . Substi-
tuting this value in G4 we obtain the following factored polynomial:

−2649731629056 (−1 + 2α1)
2 (−239 − 36α1 + 4α2

1

)
.

One of the roots is α1 = 1
2 . Note that F ( 12 ,− 15

2 ) = 17
4 . The equation

4α2
1 − 36α1 − 239 = 0 has the following two roots: α

(4),(5)
1 = 1

2 (9 ± 8
√

5).
The third polynomial factor in G1 yields two complex roots. The fourth fac-
tor in G1 leads to the equation 6α3

2 − 9α2
2 + 7α2 − 3 = 0, which has one real

solution α2 = 1
6

(
3 − 5

z + z
) ≈ 0.8207801830727278, where z =

(
18 +

√
449

) 1
3 .

Substituting the found value of α2 in G4 we obtain a fourth-degree equation for
finding α1. This equation is not presented here in view of its bulky form. It has
two real roots: α1 = 0.1792198169272722 and α1 = 8.1664593831518564. Thus,
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we have obtained seven real solutions. The value of the function F is shown in
the following to the right of each pair of the α1, α2 values:

(
α
(1)
1 = 1

2 , α
(1)
2 = 1

2 , 153
)
,

(
α
(2)
1 = 17

2 , α
(2)
2 = 1

2 , 17
4

)
,

(
α
(3)
1 = 1

2 , α
(3)
2 = − 15

2 , 17
4

)
,

(
α
(4)
1 = 1

2 (9 − 8
√

5), α
(4)
2 = − 15

2 , 80071.2
)
,

(
α
(5)
1 = 1

2 (9 + 8
√

5), α
(5)
2 = − 15

2 , 389185
)
,

(
α
(6)
1 = 0.1792198169272722, α

(6)
2 = 0.8207801830727278, 0.019455592

)
,

(
α
(7)
1 = 8.1664593831518564, α

(7)
2 = 0.8207801830727278, 236.8001073

)
.

(17)

It follows from here that the values α
(6)
1 and α

(6)
2 are the optimal values providing

the minimum of functional (13).
General conclusion: the two-stage scheme has only the second order of accu-

racy, and its order cannot be increased to the third-order accuracy.

3.3 Three-Stage RKN Scheme

The given RKN scheme was investigated in the work [12] with the use of CAS
Maple 12 and Gröbner bases. We will compare in Sect. 4 the three-stage scheme
in terms of accuracy with the remaining four schemes, therefore, we present
below two sets of the parameters αl, γl, l = 1, 2, 3, which were obtained in [12]
and which ensure the fourth order of accuracy of the three-stage scheme under
consideration:

α1 = 3∓z
6 , α2 = 3±z

6 , α3 = 3∓z
6 , γ1 = 3±2z

12 , γ2 = 1
2 , γ3 = 3∓2z

12 , (18)

where z =
√

3. We will call the scheme with these parameters the RKN34A
scheme. The second set of parameters is as follows (z = 21/3):

α1 = z
6 + z2

12 + 1
3 , α2 = 1

2 , α3 = 2
3 − z

6 − z2

12 ,

γ1 = z
3 + z2

6 + 2
3 , γ2 = − 2z

3 − z2

3 − 1
3 , γ3 = z

3 + z2

6 + 2
3 .

(19)

We will call this scheme the RKN34B scheme.

3.4 Four-Stage RKN Scheme

Setting K = 4 in (5) and performing symbolic computations similarly to the
case of the one-stage scheme, we obtain the expression for δpn in the form

δpn,4 = δpn + (h4u)/(24m)
(
P41(f ′(x))2 + 3P42f(x)f ′′(x) + P43mu2f (3)(x)

)

−(
h5/(120m2)

)(
3P51f

2(x)f ′′(x) + f(x)(P52(f ′(x))2 − 6P53mu2f (3)(x)
−mu2(5P54f

′(x)f ′′(x) + P55mu2f (4)(x))
)
,

(20)
where the expression for δpn is given by (9). The expressions for P1, P2, P31,
P32 coincide with formulas (10). The formulas for P41, P42, P43, P51, P52, P53,
P54, and P55 are as follows (K = 4)
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P41 = 1 − 24
K∑
i=1

∑
j<i

γiγjαj(αi − αj), P42 = 1 − 8
K∑
i=1

∑
j<i

γiγjαi(αi − αj),

P43 = 1 − 4
K∑

j=1

α3
jγj , P51 = 20

K∑
i=1

∑
j<i

∑
l<i

γiγjγl(αi − αj)(αi − αl) − 1,

P52 = 120
K∑
i=1

∑
j<i

∑
l<j

γiγjγl(αi − αj)(αj − αl) − 1, (21)

P53 = 1 − 10
K∑
i=1

∑
j<i

γiγjα
2
i (αi − αj), P55 = 1 − 5

K∑
j=1

α4
jγj ,

P54 = 12
K∑
i=1

∑
j<i

γiγjα
2
j (αi + αj) − 24

K∑
i=1

∑
j>i

γiγjαiα
2
j + 1.

The call GroebnerBasis[{P1,P2,P31,P32,P41,P42,P43,P51,P52,P53,
P54,P55},{a1,a2,a3,a4, g1,g2,g3,g4}] outputs the following result: {1}. By
the Hilbert Nullstellensatz [16], if the ideal is {1}, then the 12 polynomials P1, . . .,
P55 have no common zero. This involves the conclusion about the absence of the
four-stage fifth-order schemes.

The system of equations P1 = 0, P2 = 0, P32 = 0, P43 = 0 is linear in γi,
i = 1, . . . , 4. Its matrix is the Vandermonde 4 × 4 matrix V and

DetV = (α1 − α2)(α1 − α3)(α2 − α3)(α1 − α4)(α2 − α4)(α3 − α4). (22)

We begin the study of the four-stage RKN scheme by analogy with the two-stage
RKN scheme (see Sect. 3.2) with the consideration of the cases when DetV = 0.
The authors of [12] also studied the three-stage RKN scheme by considering at
first the cases of the vanishing determinant of the Vandermonde matrix. Expres-
sion (22) involves five factors so that it is desirable to consider the cases of the
vanishing of all these factors in the search for the best scheme in terms of the
accuracy and stability. However, the limitations for the paper size make this
study impossible within the present paper. Therefore, we have taken arbitrar-
ily the first factor in DetV and considered the case of its vanishing: α2 = α1,
α3 �= α1, α3 �= α2, α4 �= α1, α4 �= α2, α4 �= α3. Our objective is the deriva-
tion of at least one real four-stage RKN scheme. A detailed analysis of all cases
will be published elsewhere. Let us substitute the relation α2 = α1 into the
polynomials P2, P31, P32, P41, P42, P43 and denote the obtained polynomials by
P20, P310, P320, P410, P420, and P430. The call GroebnerBasis[{P1, P20, P310,
P320, P410, P420, P430},{a1, a3, a4, g1, g2, g3, g4}] has enabled the
obtaining of the Gröbner basis consisting of the following six polynomials:
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G1 = (1 − 3γ4 + 6γ2
4)(−1 − 24γ4 + 48γ2

4)(−1 + 6γ4 − 12γ2
4 + 6γ3

4),
G2 = 537408γ6

4 − 1405440γ5
4 + 1276020γ4

4 − 578046γ3
4 + 138720γ2

4− 11224γ4 + 2398γ3 − 1877,
G3 = −537408γ6

4 + 1405440γ5
4 − 1276020γ4

4 + 578046γ3
4 − 138720γ2

4
+ 13622γ4 + 2398γ1 + 2398γ2 − 521,

G4 = 7194α4 + 331776γ6
4 − 965376γ5

4 + 1058688γ4
4 − 626304γ3

4
+ 218880γ2

4 − 39603γ4 − 3418,
G5 = 4796α3 − 537408γ6

4 + 1405440γ5
4 − 1276020γ4

4 + 578046γ3
4

− 138720γ2
4 + 16020γ4 − 2919,

G6 = 14388α1 + 489024γ6
4 − 976896γ5

4 + 574884γ4
4 − 237318γ3

4
+ 49248γ2

4 − 2526γ4 − 3227.

(23)

The roots of equation 1 − 3γ4 + 6γ2
4 = 0 are complex: γ4 = (1/12)(3 ± i

√
15).

The roots of the equation −1 − 24γ4 + 48γ2
4 = 0 are real: γ4 = (1/12)(3 ± 2

√
3).

It is easy to find from Eq. (23) the values of remaining parameters of the RKN
scheme under study (z =

√
3):

α1 = 1
6 (3 ± z), α2 = 1

6 (3 ± z), α3 = 1
6 (3 ∓ z), α4 = 1

6 (3 ± z),
γ2 = 1

12 (3 ∓ 2z − 12γ1), γ3 = 1
2 , γ4 = 1

12 (3 ± 2z).
(24)

One can see from (24) that one parameter, γ1, remains indefinite. This is due to
the fact that the number of polynomials in the Gröbner basis (23) is less than
the number of parameters α1, α2 = α1, α3, α4, γj , j = 1, . . . , 4.

Consider in more detail a scheme, which is obtained at the use of lower sym-
bols “+” or “−” in (24). We call this scheme the RKN4A scheme. Let us calculate
the weighted root-mean-square value of five polynomials P5j , j = 1, . . . , 5:

P5A,rms =
(

1
5

5∑

j=1

(σjP5j)2
)1/2

=
(

1
5

((
σ1

7
72

)2 +
(
σ2

7
12

)2 +
(

σ3
36

)2

+
(

σ4
6

)2 +
(

σ5
36

)2)
)1/2

= 0.47924.

(25)

Here σ1, . . . , σ5 are problem-independent factors affecting the polynomials P5j

in (20), σ1 = −3, σ2 = −1, σ3 = 6, σ4 = 5, σ5 = 1.
Now consider a scheme, which is obtained at the use of the upper symbols

“+” or “−” in (24). Let us call this scheme the RKN4B scheme. We have for it

P5B,rms =
(

1
5

5∑

j=1

(σjP5j)2
) 1

2
=

(
1
5

(
9.3910σ1)2+ (2.4187σ2)2

+ (4.3102σ3)2 + (3.8374σ4)2 + (0.0497σ5)2
)) 1

2 = 19.16514.

(26)

The value 19.16514 is by the factor of 40 larger than the quantity P5A,rms.
Equation 6γ3

4 − 12γ2
4 + 6γ4 − 1 = 0 has one real root γ4 = (1/3)(2 + z2

2 + z)
and two complex conjugate roots, where z = 21/3. We find from equations (23)
the values of remaining parameters of the RKN scheme under study (we call it
the RKN4C scheme):

α1 = 1
12 (4 + 2z + z2), α2 = α1, α3 = 1

2 , α4 = 1
12 (8 − 2z − z2),

γ2 = 1
6 (4 + 2z + z2 − 6γ1), γ3 = − 1

3 (1 + z)2, γ4 = 1
3 (2 + z2

2 + z).
(27)
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One can see from (27) that one parameter, γ1, remains indefinite. In the case
under consideration,

P5C,rms =
(

1
5

5∑

j=1

(σjP5j)2
) 1

2
=

(
1
5

(
(8.1092σ1)2 + (2.3780σ2)2

+ (2.0962σ3)2 + (10.3143σ4)2 + (0.6386σ5)2
)) 1

2 = 26.13695.

(28)

The value P5C,rms = 26.13695 is by the factor of 54.54 larger than the quantity
P5A,rms. Therefore, the RKN4A scheme is preferable for the computations using
the above three four-stage schemes.

3.5 Five-Stage RKN Scheme

At K = 5 in (5), the expression for δpn has the following form in view of (20):

δpn = δpn,4 +
(
h6u/(720m2)

)((
f ′(x)

)3 − 15P61f
2(x)f (3)(x)

+ f ′(x)
(
P62f(x)f ′′(x) + P63mu2f (3)(x)

)

+ mu2
(
5P64

(
f ′′(x)

)2 + 10P65f(x)f (4)(x) + mP66u
2f (5)(x)

))
, (29)

where the polynomials P1, P2, P31, P32, P41, P42, P43, and P51–P55 are given
by formulas (21) at K = 5. Let us present the expressions for polynomials
P61, . . . , P66:

P61 = 24

⎛

⎝
K∑

i=1

K∑

j=i+1

γ2
i γjαj(αi − αj)

2 + 2
K∑

i=1

∑

j>i

∑

l>j

γiγjγlαl(αi − αl)(αj − αl)

⎞

⎠ − 1,

P62 = 18 − 720
( K∑
i=1

K∑
j=i+1

γ2
i γjαi(αi − αj)

2

+
K∑
i=1

∑
i<j

∑
j<l

γiγjγl(αj − αl)
(
(α2

i − α2
j ) + 2αj(αi − αl)

))
,

P63 = 11 + 120
( K∑
i=1

K∑
j=i+1

γiγjαi(αi − αj)(α
2
i + 3α2

j )
)
,

P64 = 72
K∑
i=1

K∑
j=i+1

γiγjα
2
i αj(αi − αj) + 1,

P65 = 1 + 12
K∑
i=1

K∑
j=i+1

α3
jγiγj(αi − αj), P66 = 1 − 6

K∑
j=1

α5
jγj .

(30)

It was shown in the works [17,18] that the conditions P41 = 0, P52 = 0 are redun-
dant. The call GroebnerBasis[{P1,P2,P31,P32,P42,P43,P51,P53,P54,P55},
{a1, a2, a3, a4, a5, g1, g2, g3, g4, g5}] requires too a big CPU time.
For this reason, the symbolic expressions for the polynomials of the Gröbner basis
have not been obtained. The numerical values of parameters αi, γi (i = 1, . . . , 5)
were found in the work [17] by numeric computations with an error below 10−12.
As a result, four real methods were obtained, see Table 1 in [17].
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To find the method, which is the most accurate among the four methods, we
have computed the root-mean-square values

P6,rms =
(
(1/6)

6∑

j=1

P 2
6j

)1/2

(31)

for all four fifth-order RKN methods. It was found that P6,rms = 5.18771 for
methods 1 and 3; P6,rms = 0.72114 for methods 2 and 4. The coincidence of
the quantity (31) for the pairs of methods 1, 3 and 2, 4 is not accidental: it was
explained in [17] that method 3 is the adjoint of method 1, and method 4 is
the adjoint of method 2 (see also Table 1 in [17]). The adjoint of a method is
obtained by interchanging h, xn, and un, respectively, with −h, xn+1, and un+1.

3.6 Stability Conditions of the RKN Schemes

It is well known that if a symplectic scheme is stable then all roots of its char-
acteristic equation lie on the unit circle in the complex plane. As a physical
model we consider an oscillator with a quadratic potential V (x) = mω2x2/2, for
which the equilibrium position is located at x = 0, p = 0. Substituting the given
expression V (x) in Eq. (4), we obtain the linear motion equations

dx/dt = p/m, dp/dt = −mω2x. (32)

Let us introduce the column vectors Xn = (xn, pn)T and Xn+1 = (xn+1, pn+1)T .
In the matrix form, equations (5) as applied to system (32) are as follows:
Xn+1 = GXn, where G is the 2 × 2 amplification matrix. Let gij , i, j = 1, 2
be the entries of this matrix. The characteristic equation of matrix G is
|G − λE| = λ2 + Tr(G)λ + 1 = 0, where Tr(G) is the trace of the matrix
G, Tr(G) = −g11−g22; E is the 2×2 identity matrix. The stability conditions of
scheme (5) are the conditions |λi| ≤ 1, where λi, i = 1, 2 are the eigenvalues of
the matrix G that is the roots of the characteristic equation. If the discriminant
of this equation D = [Tr(G)/2]2 − 1 < 0, then it has two complex conjugate
roots λ1, λ2 such that |λ1| = |λ2| = 1 according to the Vieta’s theorem. In this
case, there is a nonzero stability region 0 < |κ| ≤ κcr, where κcr is the critical
Courant number. For the RKN schemes under consideration, κcr is the solution
of the equation |Tr(G)| − 2 = 0.

One-Stage RKN Scheme. When the Verlet scheme (5), K = 1 is applied to
linear equations (32) it takes the following form:

x(1) = xn + h
2

pn

m , xn+1 = xn + hpn

m − h2ω2

2 x(1), pn+1 = pn − hmω2x(1). (33)

The program in the language of the CAS Mathematica for computing the entries
of the matrix G is as follows:

x1 = xn + h*pn/(2m); xnew = xn + h*pn/m - h^2*\[Omega]^2*x1/2;

pnew = pn - h*m*\[Omega]^2*x1; xnew = xnew; g11 = Coefficient[xnew, xn];
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g12 = Coefficient[xnew, pn]; g21 = Coefficient[pnew, xn];

g22 = Coefficient[pnew, pn]; G = {{g11, g12}, {g21, g22}};

G = G /. \[Omega] -> \[Kappa]/h;

The Courant number κ = ωh has been introduced in the last row of this code
fragment. The matrix G is obtained in the form

G =
(

1 − κ2/2 h/m − hκ2/(4m)
−mκ2/h 1 − κ2/2

)

.

The coefficients of the characteristic equation are calculated with the aid of the
call Det[G - λ*IdentityMatrix[2]], and the equation has the following form:
1 − 2λ + κ2λ + λ2 = 0. The discriminant D = κ2(κ2/4 − 1) is found from here.
The stability condition is satisfied if D ≤ 0. In the region of positive κ, this leads
to the stability condition of the form 0 < κ ≤ 2.

As is known, the Hamilton equations are reversible in time at a simultaneous
reversal of time and of the particle velocities [2]. It follows from here that the
symplectic difference schemes are also reversible in time as the Hamilton equa-
tions. It is easy to show that D ≤ 0 also in the interval [−2, 0] that is the Verlet
scheme is stable also in this interval. Therefore, the stability condition of this
scheme should be written as 0 < |κ| ≤ 2.

Two-Stage RKN Scheme. The stability analysis of RKN schemes at K > 1
in (5) proceeds similarly to the case K = 1, only the length of the expressions
for the entries of the 2 × 2 amplification matrix G increases with increasing K.

At l = 6 in (17), the following expression has been obtained for the dis-
criminant D: D = 0.00082628

(
κ4 − 17.3943κ2 + 34.7886

)2 − 1. Denote the
roots of the equation D = 0 by κ1, . . . , κ8. They are as follows: κ1 = −κ8,
κ2 = −κ7, κ3 = −κ6, κ4 = κ5 = 0, κ6 = 2.496957971257, κ7 = 3.340580819059,
κ8 = 4.170644952389. With regard for the intervals, where D ≤ 0, we obtain
the following stability conditions of the two-stage RKN scheme: 0 < |κ| ≤ κ6,
κ7 ≤ |κ| ≤ κ8.

Three-Stage RKN Scheme. The RKN34A scheme is determined by parame-
ters (18). In this case, the equation |Tr(G)|− 2 = 0 has two real roots κ = ±κcr,
where κcr = 2

√
2 + 21/3 − 22/3 ≈ 2.5865189. Thus, the stability region of the

RKN34A scheme has the form 0 < |κ| ≤ κcr.
The RKN34B scheme is determined by parameters (19). In this case, the

equation for determining κcr has four real roots and two complex-conjugate
roots. Real roots: κ = 0 (the root of multiplicity 2) and κ = ±κcr, where
κcr = [6(2 − 22/3)]1/2 ≈ 1.573401947435. The stability region of the RKN34B
has the form 0 < |κ| ≤ κcr.

Four-Stage RKN Scheme. The RKN4A scheme is determined by parame-
ters (24) with lower plus and minus signs. The equation |Tr(G)| − 2 = 0 has
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two real roots κ = ±κcr, where κcr = 2
√

2 + 21/3 − 22/3 ≈ 2.5865189; thus, the
stability region of the RKN4A scheme coincides with the stability region of the
RKN34A scheme.

In the case of the RKN4B scheme, the equation |Tr(G)| − 2 = 0 has two
real roots κ = ±κcr, where κcr =

(
6(−3 + (9 + 12z2)1/2

)1/2
/z ≈ 2.5149188 and

z = 1 + 21/3. Thus, the stability region of the RKN4B scheme has the form
0 < |κ| ≤ κcr.

In the case of the RKN4C scheme determined by parameters (27), equa-
tion Tr(G) − 2 = 0 has two real roots κ = ±κcr at Tr(G) > 0, where
κcr = 1.854382524682. Thus, the stability region of the RKN4C scheme is
described by the inequalities 0 < |κ| ≤ κcr.

From the results obtained in Subsect. 3.4 at the consideration of coefficients
affecting h5 and from the above-obtained values of κcr for the RKN4A, RKN4B,
and RKN4C schemes, it follows that the RKN4A scheme is the best scheme
from the viewpoint of the smallness of coefficients affecting h5 and the size of
the stability region.

Five-Stage RKN Scheme. The stability conditions were obtained for each of
the four methods.
Methods 1 and 3, Tr(G) > 0: −4 + κ2 − κ4/12 + κ6/360 + 0.019206667644κ8

+ 0.001488249575κ10 = 0, the stability region: 0 < |κ| ≤ 1.709678742327.

Methods 2 and 4, Tr(G) > 0: −4 + κ2 − κ4/12 + κ6/360 + 0.009374405183κ8

+ 0.000595080910κ10 = 0, the stability region: 0 < |κ| ≤ 1.836026193724.

It follows from the above analysis that methods 2 and 4 possess a some-
what larger stability region than methods 1 and 3. Besides, as was shown in
Subsect. 3.5, the root-mean-square value of polynomials P61, . . . , P66 is in the
case of methods 2 and 4 seven times smaller than in the case of methods 1 and
3. Therefore, methods 2 and 4 are more preferable for their use at the solution
of molecular dynamics problems than methods 1 and 3.

Table 1. Efficiency ef for a number of RKN methods

RKN method K κcr ef

Verlet 1 2 2

the values of α
(l)
1 , α

(l)
2 in (17) at l = 1, 2, 3 2 2 1

α1 = 0.17922, α2 = 0.82078 2 4.17064 2.08532

RKN34A scheme 3 2.58652 0.86217

RKN34B scheme 3 1.57340 0.52447

RKN4A scheme 4 2.58652 0.64663

RKN5 scheme, methods 1, 3 5 1.70968 0.34193

RKN5 scheme, methods 2, 4 5 1.83603 0.36721
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Comparison of the Efficiency of Considered RKN Schemes. To compute
the values xn+1 and pn+1 with the aid of the K-stage RKN scheme it is necessary
to calculate K values of the function f(x). At the first glance, the required CPU
time must increase linearly with increasing number of stages. But it is necessary
to account here also for the magnitude of the critical Courant number κcr, which
is different for different RKN schemes.

It was shown in [14,15] that with increasing number of stages of a conven-
tional (non-symplectic) explicit Runge–Kutta scheme, the value of the critical
Courant number increases. Therefore, one can perform stable computations with
larger values of the Courant number than in the case of Runge–Kutta schemes
with a small number of stages. This may finally lead to a reduction of the CPU
time needed for problem solution. In this connection, the quantitative charac-
teristic of the efficiency of the Runge–Kutta schemes was introduced for the
first time in the work [14], which will be denoted by ef : ef = κcr/K. In the
works [14,15], the values of the efficiency parameter ef were presented for sev-
eral explicit non-symplectic Runge–Kutta schemes.

Table 1 presents the values of ef for all RKN schemes considered above.
In particular, the quantity ef of the RKN34A scheme is 1.56 times higher than
in the case of the RKN34B scheme. Table 1 shows that the quantity ef drops with
increasing number of stages K. This constitutes a significant difference of sym-
plectic RKN schemes from the explicit non-symplectic Runge–Kutta schemes.

We have also compared the error terms of the order O(h4) of the RKN34A
and RKN34B schemes. This error is 20 times less in the case of the RKN34A
scheme than in the case of the RKN34B scheme. Therefore, the RKN34A scheme
is more preferable at the numerical solution of the molecular dynamics problems.

4 Kepler’s Problem

We consider Kepler’s problem, in which the both particles move in the (x, y)
plane. The Hamiltonian of such a system is as follows: H = |p1|/(2m1) +
|p2|/(2m2) + U(|r1 − r2|), where p1 and p2 are the vectors of the momen-
tums of the first and of the second particle, pj = (mjuj ,mjvj), rj = (xj , yj),
j = 1, 2, mj is the mass of the jth particle, uj and vj are the components
of the velocity vector of the jth particle along the axes x and y, respectively;
|pj |2/(2mj) = mj(u2

j +v2
j )/2 is the kinetic energy of the jth particle. The poten-

tial energy is specified in the form U(|r1 − r2|) = −Gm1m2/|r1 − r2|, where G
is the gravitational constant.

We consider below a particular case when m1 = m2 = 1 and G = 1. Intro-
duce the notation pj = (pjx, pjy), j = 1, 2. The solution of the problem under
consideration then reduces to the solution of the following system of ordinary
differential equations:

dp1x

dt = − (x1−x2)
r3 , dx1

dt = p1x,
dp1y

dt = − (y1−y2)
r3 , dy1

dt = p1y,
dp2x

dt = (x1−x2)
r3 , dx2

dt = p2x,
dp2y

dt = (y1−y2)
r3 , dy2

dt = p2y.
(34)
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Here r is the distance between the both particles, r = |r1 − r2| =
[
(x1 −

x2)2+(y1−y2)2
]1/2 and it is assumed that x1, y1, x2, y2, p1x, p1y, p2x, p2y are the

functions depending on the time t.
System (34) is solved under the following initial conditions specified at t = 0:

x1(0) = a0, y1(0) = 0, x2(0) = −a0, y2(0) = 0,
p1x(0) = 0, p1y(0) = v0, p2x(0) = 0, p2y(0) = −v0,

(35)

see also Fig. 1. Here a0 is a given positive number, v0 is the absolute value of the
initial velocity of each particle in the direction of the y axis; the value v0 > 0 is
the user-specified quantity.

According to the Noether’s theorem [3], at t > 0, the total energy E of the
system of two particles must remain constant. With (35) in view we obtain:

|E| = |H| = |v2
0 − 1/(2a0)|. (36)

As was shown in [3], at E < 0 the motion of the system of two bodies is
finite, and at E > 0, it is infinite. We consider the case of a finite motion in
the following. To ensure the finiteness the constants v0 and a0 must satisfy the
inequality v2

0 − 1/(2a0) < 0. In this case, the motion of each particle at t > 0
occurs along its own ellipse. Introduce the vector of the mutual distance between
the both points r = r2−r1 and place the coordinate origin at the inertia center.
This leads to the equality m1r1+m2r2 = 0. We find from the last two equalities:

r1 = −(m/m1)r, r2 = (m/m2)r. (37)

The quantity m = m1m2/(m1+m2) is called the reduced mass; m = 1/2 because
m1 = m2 = 1 in our case. The formula for r = (x(t), y(t)) is presented in [3]:

x = a(cos ξ − e), y = a
√

1 − e2 sin ξ. (38)

Here a is the ellipse large semiaxis, e is the elliptic orbit eccentricity,

a = α/(2|E|), e =
[
1 + 2EM2/(mα2)

]1/2
, (39)

where α = Gm1m2 = 1 in accordance with the values of quantities G,m1,m2,
which were chosen above; M is the magnitude of the moment vector, which is
directed along a normal to the (x, y) plane. The law of the moment conservation
takes place [3]: M = const ∀t ≥ 0. We obtain from the initial conditions (35):
M = 2a0v0, where 2a0 is the initial distance between the particles.

It follows from (37) and (38) that at e = 0, the particles move along the
circles. This fact can be used for the additional verification of the computer code
implementing the RKN method for the solution of the problem of two bodies. Let
us find the condition for parameters a0 and v0, under which e = 0. Substituting
in (39) the expressions for E,M , and α, we obtain e2 = 1 + 2EM2/(mα2) =
1+4(v2

0−1/(2a0))4a2
0v

2
0 = (4a0v

2
0−1)2 = 0. It follows from here that for ensuring

the zero eccentricity it is sufficient to set v0 = 0.5/
√

a0. In particular, we have
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Fig. 1. Initial velocity vectors of parti-
cles

Fig. 2. Circular orbits of particles in
the interval 0 < t ≤ 35.7: ( )—
particle 1, (· · ·) — particle 2

at a0 = 2: v0 = 0.5/
√

2 ≈ 0.35355. The eccentricity e > 0, if the following
inequalities are satisfied: either 4a0v

2
0 < 1 or 1

4 < a0v
2
0 < 1

2 . The inequality
a0v

2
0 < 1

2 ensures the finiteness of the motion of both particles in view of (36).
In the case of Kepler’s problem, we have the following column vector

of sought quantities: X = (x1, p1x, y1, p1y, x2, p2x, y2, p2y)T , where the super-
script T denotes the transposition operation. To apply the K-stage RKN method
for the solution of the problem under consideration one must replace in (5) the
column vector (x, p)T with X. As a result, we come to the necessity of solving
the system of eight ordinary differential equations (34).

To verify the developed Fortran code we have done the computations of the
problem of two bodies using all RKN schemes considered in foregoing sections
with the numbers of stages K = 1, 2, 3, 4, 5 for the cases of the zero and nonzero
eccentricity e in (39). The numerical solution for the coordinates of both par-
ticles, which has been obtained at e = 0 by all considered RKN schemes after
the execution of 7140 time steps with the step h = 0.005, is shown in Fig. 2.
The coordinates of particles were stored after every 80 time steps. One can see
that the both particles move along the same circular orbit. Using formula (15,8)
from [3], it is not difficult to find the period of time T necessary for the particle
to make a full revolution along a circular orbit in the case of the zero eccentricity:
T = π

√
a, where a is the radius of a circle along which each particle moves; in

our case, a = 2.
Table 2 presents the results of the computations of the problem of the motion

of both particles along a circular orbit by all five RKN schemes considered in the
foregoing sections. The quantities δEmean and |δE|mean were calculated as the
arithmetic means of the quantities δEn and |δEn|, where δEn = (En − E0)/E0,
En = (1/2)[(pn

1x)2+(pn
1y)2+(pn

2x)2+(pn
2y)2]−1/rn, E0 = v2

0 −1/(2a0) according
to (36), rn = [(xn

1 − xn
2 )2 + (yn

1 − yn
2 )2]1/2. Besides, δrm,max is the maximum

relative deviation of the magnitude of the radius vector rn of the mth particle
(m = 1, 2) from the exact radius a = 2 of the circular orbit that is δrm,max =

max
j

(√
x2

mj + y2
mj −a

)
/a. It has turned out that at least the first 14 digits of the

decimal mantissa of the numbers δr1,max and δr2,max coincide. Therefore, Table 2
presents only the quantity δr1,max. From the viewpoint of practical applications,
the accuracy of the computation of the coordinates of points (xn

m, yn
m) is the most
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Fig. 3. Elliptic orbits of particle 1 (the right ellipse) and particle 2 (the left ellipse)
in the interval 0 < t ≤ 164. Solid lines are the exact ellipses, dotted lines show the
numerical solution by the RKN method

Table 2. Errors δEmean, |δE|mean, and δrm,max at e = 0 for different RKN methods

K Scheme error δEmean |δE|mean δr1,max

1 O(h2) −1.783e − 14 1.783e − 14 1.953e − 7

2 O(h2) −7.879e − 15 7.889e − 15 9.605e − 8

3 O(h4) −3.918e − 15 4.048e − 15 5.684e − 14

4 O(h4) −3.685e − 15 3.805e − 15 5.662e − 14

5 O(h5) −5.876e − 15 5.957e − 15 1.510e − 14

Table 3. Errors δEmean, |δE|mean, and δy1,mean at v0 = 0.2 for different RKN methods

K δEmean |δE|mean δy1,mean

1 2.749e − 7 2.749e − 7 −3.384e − 5

2 8.754e − 8 8.838e − 8 −1.067e − 5

3 5.438e − 13 6.230e − 13 −2.762e − 7

4 6.047e − 13 5.753e − 13 −2.762e − 7

5 −5.512e − 15 9.388e − 15 −2.761e − 7

important. One can see in Table 2 that the best accuracy of the computation of
these coordinates is achieved at the use of the five-stage RKN scheme.

In order to consider the case of the motion of each particle along its ellip-
tic orbit let us set in (35) v0 = 0.2 and a0 = 2. The inequality 4a0v

2
0 < 1

is then satisfied, therefore, the eccentricity e �= 0 and E < 0. Each particle
performs one complete revolution along its elliptic orbit during the period of
time [3] T = πα

√
m/(2|E|3). Substituting here the values α = 1, m = 1/2, and

E = v2
0 − 1/(2a0), we obtain T = 16.3227. By the physical time t = 164, each

particle makes 10 complete revolutions along its elliptic orbit. Fig. 3 shows the
numerical solution for the coordinates of both particles, which was obtained by
all considered RKN methods at the moment of time t = 164 after the execution
of 82000 time steps with the step h = 0.002. One can see that each particle
moves along its elliptic orbit and the locations of particles agree very well with
the exact elliptic orbits.

Table 3 presents the values of relative errors δEmean and |δE|mean, which
were obtained at the numerical solution of Kepler’s problem on the motion of
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Fig. 4. Kepler’s problem, the case of a nonzero eccentricity. The quantities 105δE as
the functions of time at different numbers of stages K of the RKN methods: (a) K = 1,
(b) K = 2, (c) K = 3, (d) K = 4, (e) K = 5

Fig. 5. Graph of the curve r(t) = |r1 − r2| at a nonzero eccentricity e

two particles along the elliptic orbits. Note that in the case of the fifth-order
RKN scheme, these errors are by two decimal orders less than in the case of the
fourth-order scheme (see also Fig. 4). The quantity δy1,mean was computed as
the arithmetic mean of quantities δy1j = y1j −y1,ex. Here y1,ex is the exact value
of the coordinate y at the point of the intersection of the line x = x1j with the
ellipse of the first particle (see the right ellipse in Fig. 3). The quantity δy2,mean

is computed similarly with the use of exact formulas for the ellipse of the second
particle. It has turned out that there is a coincidence of the first ten digits of
the machine numbers δy1,mean and δy2,mean, but the signs of these numbers are
opposite. For example, at K = 5, the value δy2,mean = +2.761e − 7 has been
obtained.

The error δy1j is overall much larger than the error δEmean. An analysis has
shown that the given error increases in its absolute value up to the value of the
order 10−5 near the x axis at |y1j | < 0.1 that is where the ellipse curvature is
the largest. When the particles (at e = 0) move along a circle, such a problem
does not arise because the curvature of the circle is constant (see Table 2).

It is easy to see in Fig. 4 that at each K, the number of peaks is equal to 10
that is it is equal to the number of the motion periods of each particle along its
elliptic orbit. To explain this phenomenon let us turn to Fig. 5. In this figure,
r = r(t) = |r1 − r2|. The shape of the curve depicted in this figure is the
same for all considered RKN schemes. One can see that the curve r(t) has 10
minima. At each point of the minimum, the curvature radius is very small.
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The curvature is inversely proportional to the curvature radius, therefore, it is
clear that it is maximum at the points of the minimum of the function r(t). In
its turn, the curvature is proportional to the second derivative of this function.
Therefore, this derivative is maximum in its absolute value at the points of the
minimum of the function r(t). The derivatives of the second and higher orders
of the functions x(t) and y(t) enter the leading terms of the errors of the RKN
methods. It follows from here that the scheme error must increase at the points
of the minimum of the function r(t), what is just observed in Fig. 4.

5 Conclusions

A comparative investigation of the accuracy and stability of the explicit RKN
schemes with the number of stages from 1 to 5 has been carried out using the
computer algebra system Mathematica. The built-in function GroebnerBasis[ ]
of this CAS enables an efficient solution of the question about the possibility of
deriving a scheme of the accuracy order O(hK+1) based on the K-stage RKN
scheme. It has turned out that the RKN methods of even orders (orders 2 and 4)
do not admit the construction of the method of the order O(hK+1). For the
RKN schemes with the number of stages K = 3 and K = 4, the function
GroebnerBasis[...] enables the obtaining of exact solutions of the polynomial
systems for the weight parameters αj , γj (j = 1, . . . , K).

The application of considered RKN methods for the numerical solution of
Kepler’s problem having the exact solution has made it possible to establish
the fact that an increase in the number of stages K leads to an increase in the
accuracy of the satisfaction of the conservation law for the energy of particles.
This makes the higher-order RKN schemes preferable in the cases when it is
required to solve an applied problem in a large time interval.

An extension of the efficiency concept ef of a multistage non-symplectic RK
scheme has been proposed for the cases of multistage symplectic RKN schemes.
It has been shown that with increasing number of stages K, the quantity ef
decreases. This constitutes a substantial difference of symplectic RKN schemes
from the explicit non-symplectic Runge–Kutta schemes.
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Characterizing Triviality of the Exponent
Lattice of a Polynomial Through Galois

and Galois-Like Groups
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Abstract. The problem of computing the exponent lattice which con-
sists of all the multiplicative relations between the roots of a univariate
polynomial has drawn much attention in the field of computer algebra.
As is known, almost all irreducible polynomials with integer coefficients
have only trivial exponent lattices. However, the algorithms in the liter-
ature have difficulty in proving such triviality for a generic polynomial.
In this paper, the relations between the Galois group (respectively, the
Galois-like groups) and the triviality of the exponent lattice of a poly-
nomial are investigated. The Q-trivial pairs, which are at the heart of
the relations between the Galois group and the triviality of the expo-
nent lattice of a polynomial, are characterized. An effective algorithm
is developed to recognize these pairs. Based on this, a new algorithm is
designed and implemented to prove the triviality of the exponent lat-
tice of a generic irreducible polynomial, which considerably improves a
state-of-the-art implementation of an algorithm of the same type when
the polynomial degree becomes larger. In addition, the concept of the
Galois-like groups of a polynomial is introduced. Some properties of the
Galois-like groups are proved and, more importantly, a sufficient and
necessary condition is given for a polynomial (which is not necessarily
irreducible) to have trivial exponent lattice.

Keywords: Polynomial root · Multiplicative relation · Exponent
lattice · Trivial · Galois group · Galois-like

1 Introduction

Set Q
∗

to be the set of nonzero algebraic numbers. Suppose that n ∈ Z>0. For
any v ∈ (Q

∗
)n, define the exponent lattice of v to be Rv = {u ∈ Zn | vu = 1},

where vu =
∏n

i=1 vui
i with vi the ith coordinate of v and ui the one of u. For a

univariate polynomial f ∈ Q[x] (with f(0) �= 0) of degree n, denote by �Ω ∈ (Q
∗
)n

the vector formed by listing all the complex roots of f with multiplicity in some
order. For convenience, we call R �Ω the exponent lattice of the polynomial f and
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use the notation Rf instead of R �Ω , if no confusion is caused. Moreover, we define
RQ

f = {u ∈ Zn | �Ωu ∈ Q}.
The exponent lattice has been studied extensively from the perspective of

number theory and algorithmic mathematics since 1977. In [23] Theorem 1, an
upper bound of the length of a nonzero vector in a nonzero exponent lattice
is given for the first time. Further results are obtained in [17] Theorem 3 by
the same authors of [23]. Latter in [20] by D. W. Masser, a common upper
bound of the lengths of the vectors in a basis of an exponent lattice is given,
which indicates that a basis of a given exponent lattice is computable. Other
related theoretical results can be found in [21,22]. In [13] and [16], the first
algorithm, named “FindRelations”, is proposed to compute the lattice Rv for
any v ∈ (Q

∗
)n based on Masser’s bound and the well-known LLL algorithm.

A variation of that algorithm named “GetBasis” is introduced in [27], which
constructs a triangular lattice basis in an incremental manner.

There are applications of the exponent lattice to many other areas or prob-
lems concerning, for example, linear recurrence sequences [1,16], loop invariants
[18,19], algebraic groups [6], compatible rational functions [4], and difference
equations [16]. Many of the applications involve computing the exponent lattice
of a polynomial in Q[x]. A lattice R ⊂ Zn or a linear subspace R ⊂ Qn is called
trivial if any v ∈ R satisfies v1 = · · · = vn. It is proved in [11] that almost all
irreducible monic polynomials in Z[x] have trivial exponent lattices. However,
the state-of-the-art algorithms FindRelations and GetBasis, which deal with
a general v ∈ (Q

∗
)n, have difficulty in proving the triviality of Rf for an irre-

ducible monic polynomial f in Z[x] with a slightly large degree. Motivated by
that, an algorithm called “FastBasis” is introduced recently in [26] to efficiently
prove the triviality of the exponent lattice of a given generic polynomial. More
references on the multiplicative relations between the roots of a polynomials is
provided therein.

In Sect. 2, the relations between the Galois group and the triviality of the
exponent lattice of an irreducible polynomial are studied. By characterizing the
so called Q-trivial pairs from varies points of view (Propositions 1, 2, and 3), we
design an algorithm (Algorithm 1) recognizing all those Q-trivial pairs derived
from transitive Galois groups. Base on this, an algorithm called “FastBasis+”
is obtained by adjusting the algorithm FastBasis in [26]. It turns out that the
Magma implementation of FastBasis+ is much more efficient than the imple-
mentation of FastBasis in proving the triviality of the exponent lattice of a
generic irreducible polynomial when the degree of the polynomial is large.

In Sect. 3, we define the Galois-like groups of a polynomial since the Galois
group of a polynomial does not contain enough information to decide whether
the exponent lattice is triviality or not (Example 1). We prove that a Galois-like
group of a polynomial is a subgroup of the automorphism group of the multi-
plicative group generated by the polynomial roots (Proposition 8). Furthermore,
almost all conditions on the Galois group assuring the triviality of the exponent
lattice can be generalized to correspondent ones on the Galois-like groups (see
Sect. 3.2). More importantly, a sufficient and necessary condition is given for a
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polynomial (not necessarily irreducible) to have trivial exponent lattice through
the Galois-like groups (see Theorem 1 and 2).

2 Lattice Triviality Through Galois Groups

2.1 Q-Triviality Implying Lattice Triviality

Set G to be a finite group, H a subgroup of G. Set g = gH for any g ∈ G,
then G can be regarded as a permutation group on the set of the left co-sets
G/H = {g | g ∈ G} via acting sg = sg. The pair (G,H) is called faithful,
primitive, imprimitive, doubly transitive, doubly homogeneous, etc., when the
permutation representation of G on G/H has the respective property. The group
algebra Q[G] = {∑

s∈G ass | s ∈ G, as ∈ Q} is defined as usual and the Q-vector
space Q[G/H] =

{ ∑
s∈G/H ass | s ∈ G, as ∈ Q

}
becomes a left Q[G]-module

via acting λt =
∑

s∈G asst, with λ =
∑

s∈G ass ∈ Q[G] and t ∈ G/H. We set
Z[G/H] =

{ ∑
s∈G/H ass | s ∈ G, as ∈ Z

}
for convenience.

A subset M of Q[G/H] is called Q-admissible if there is an element μ ∈ Q[G]
with stabilizer Gμ = H so that mμ = 0 for any m ∈ M (Definition 3 of [14]).
Set V1 =

{
a

∑
s∈G/H s | a ∈ Q

}
. Then the pair (G,H) is called Q-trivial if 0

and V1 are the only two Q[G]-submodules that are Q-admissible (Definition 7
of [14]). A polynomial f ∈ Q[x] (f(0) �= 0) without multiple roots is called
non-degenerate if the quotient of any two roots of f is not a root of unity, and
degenerate otherwise. The relations between the Q-triviality of a pair and the
triviality of an exponent lattice is given below:

Proposition 1. Suppose that L is a finite Galois extension of the field Q with
Galois group G, and that H < G is a subgroup of G so that G operates on the set
G/H faithfully. Then the pair (G,H) is Q-trivial iff for any f ∈ Q[x] (f(0) �= 0)
satisfying all the following conditions, Rf is trivial:

(i) f is irreducible over Q and non-degenerate;
(ii) the splitting field of f equals L and its Galois group Gf = G;
(iii) H is the stabilizer of a root of f .

Proof. “If”: Suppose on the contrary that the pair (G,H) is not Q-trivial. Then
there is a Q-admissible Q[G]-submodule M of Q[G/H] containing an element
v =

∑
s∈G/H vss ∈ Z[G/H] so that there are s1 �= s2 ∈ G/H satisfying vs1 �= vs2 .

By definition, there is an element μ ∈ Q[G] with Gμ = H such that vμ =
0. Since Q is an algebraic number field, [14] Proposition 4 indicates that M
is admissible in the multiplicative sense. Now by [14] Proposition 2, there is
an algebraic number α ∈ L∗ with stabilizer Gα = H and the element v is a
non-trivial multiplicative relation between the conjugations of α. What’s more,
any quotient of two conjugations of α cannot be a root of unity. These mean
that the minimal polynomial f of α over the field Q is non-degenerate and the
lattice Rf is nontrivial. Denote by F the splitting field of f over Q. Then F
is a subfield of L and the Galois group Gf of f is isomorphic to G/Gal(L/F ).
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Since Gα = H, Gg(α) = gHg−1 for any g ∈ G. Hence the fixed field of the group
gHg−1 is Q[g(α)]. Note that Q[g(α)] ⊂ F , gHg−1 ⊃ Gal(L/F ) by Galois theory.
Thus, ∩g∈G gHg−1 ⊃ Gal(L/F ). Since the subgroup ∩g∈G gHg−1 of G operates
trivially on the set G/H and the group G operates faithfully on this set, ∩g∈G

gHg−1 = 1. Hence Gal(L/F ) = 1 and Gf � G. In fact, L = F and Gf = G.
So the existence of f leads to a contradiction.

“Only If”: Assume that there is an irreducible non-degenerate polynomial
f ∈ Q[x] (f(0) �= 0) satisfying the condition (iii) with splitting field equal to L
and exponent lattice Rf nontrivial. Suppose that the set of the roots of f is Ω and
α ∈ Ω ⊂ L∗ is with stabilizer Gα = H. Thus, there is a bijection τ : G/H → Ω,
g 	→ g(α) through which the permutation representations of G on these two sets
are isomorphic and we have the Z-module isomorphism ZΩ � Z[G/H]. By [14]
Proposition 2, the lattice Rf ⊂ ZΩ � Z[G/H] provides an admissible subset M
of Z[G/H] in the multiplicative sense. Then by Proposition 3 and Definition 3
in [14], one sees that M is a Q-admissible subset. Since Rf is nontrivial, the
Q[G]-module generated by M in Q[G/H] is neither 0 nor V1. Hence the pair
(G,H) is not Q-trivial, which is a contradiction. 
�
For any irreducible non-degenerate polynomial f ∈ Q[x] with Galois group G
and a root stabilizer H < G, Proposition 1 gives the weakest sufficient condition
on the pair (G,H) for Rf to be trivial (i.e., (G,H) being Q-trivial). However,
the pair (G,H) does not contain all the information needed to decide whether
the lattice Rf is trivial. This is shown in the following example.

Example 1. Set g(x) = x4 − 4x3 + 4x2 + 6, then g is irreducible in Q[x]. By the
Unitary-Test algorithm in [25], one proves that g is non-degenerate. Set L to
be the splitting field of g over the rational field and G = Gal(L/Q) its Galois
group. Denote by

α = (2.35014 · · · ) +
√−1 · (0.90712 · · · )

one of the roots of g, and set H = Gα to be its stabilizer. Computing with
Algorithm 7.16 in [16], we obtain Rg = Z· (−2, 2, 2,−2)T , which is nontrivial
(thus, (G,H) is not Q-trivial by Proposition 1).

Set f(x) = g(x − 1), then f is irreducible over Q with splitting field L and
Galois group G. Moreover, the number α+1 is a root of f with stabilizer H. We
note that the polynomials g and f share the same pair (G,H). However, com-
puting with [16] Algorithm 7.16, we obtain that the lattice Rf = {0} is trivial.

2.2 Characterization of Q-Triviality from The Perspective of
Representation Theory and Group Theory

Proposition 2. Suppose that G is a finite group and H < G is a subgroup so
that G operates faithfully on G/H. Denote by 1G

H the character of the permuta-
tion representation of G on the set G/H. Then the pair (G,H) is Q-trivial iff
the character 1G

H − 1 is Q-irreducible.
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Proof. By [14] Proposition 12, the pair (G,H) is Q-trivial iff (G,H) is primitive
and the character 1G

H − 1 is Q-irreducible. By [8] Theorem 3, if the character
1G

H − 1 is Q-irreducible, then (G,H) is primitive. 
�
Throughout the paper, a root of rational refers to an algebraic number α such
that there is a positive rational integer k ensuring αk ∈ Q.

Remark 1. In the settings of Proposition 1, when (G,H) is Q-trivial, (G,H) is
primitive. This is equivalent to the condition that H is a maximal subgroup
of G. A polynomial f satisfying the conditions (ii) and (iii) in Proposition 1 has
a root α with stabilizer Gα = H and the fixed field Q[α] of the group H is a
minimal intermediate field of the extension L/Q by Galois theory. Note that f
is irreducible over Q. If f is degenerate with no root being a root of rational,
then there is an integer k �= 0 so that 1 < deg(αk) < deg(α). Thus, Q � Q[αk] �

Q[α], which contradicts the minimality of the field Q[α]. Thus, when (G,H) is
Q-trivial, a polynomial f satisfying the conditions (ii) and (iii) is either non-
degenerate or with all roots being roots of rational. Hence the condition (i) in
Proposition 1 can be replaced by the condition that “f is irreducible over Q with
no root being a root of rational”.

Proposition 3. Let (G,H) be as in Proposition 2. Then, regarded as a permu-
tation group operating on the set G/H, the group G satisfies exactly one of the
following conditions iff the pair (G,H) is Q-trivial:

(i) G is doubly transitive;
(ii) G is of affine type (but not doubly transitive) of degree pd for some prime

number p and G = M � H, where M � Fd
p is the socle of G and the

subgroup H is isomorphic to a subgroup of GL(d, p); moreover, let Z be
the center of the group GL(d, p) and regard H as a subgroup of GL(d, p),
the group HZ/Z is a transitive subgroup of PGL(d, p) operating on the
projective points;

(iii) G is almost simple (but not doubly transitive) of degree 1
2q(q − 1), where

q = 2f ≥ 8 and q − 1 is a prime number, and either G = PSL2(q) or
G = PΓL2(q) with the size of the nontrivial subdegrees q + 1 or (q + 1)f ,
respectively.

Proof. This is a combination of Theorem 3 and Theorem 12 in [8] together with
Corollary 1.6 in [2]. 
�
Denote by P the set of prime numbers and by Pω the set of prime powers
{pd| p ∈ P, d ∈ Z≥1}. A useful corollary is as follows:

Corollary 1. Suppose that a polynomial f ∈ Q[x] (f(0) �= 0) is irreducible with
Galois group G and a root stabilizer H. If the number deg(f) is NOT in the set

S = Pω ∪ {
2f−1(2f − 1)

∣
∣ f ∈ Z≥3, 2f − 1 ∈ P}

, (1)

then the pair (G,H) is Q-trivial iff it is doubly transitive.



626 T. Zheng

2.3 Particular Q-Trivial Pairs

Besides the doubly transitive pairs (G,H), the author has provided some other
particular Q-trivial pairs in [14] Proposition 13–15. A permutation group G on
a set S is called doubly homogeneous if for any two subsets {s1, s2}, {t1, t2} of S,
there is some g ∈ G so that {g(s1), g(s2)} = {t1, t2}. In this subsection, we prove
that any doubly homogeneous pair (G,H) is also Q-trivial.

Proposition 4. Suppose that G is a finite group and H < G is a subgroup so
that G operates faithfully on G/H. If the pair (G,H) is doubly homogeneous,
then it is Q-trivial.

Proof. When the pair (G,H) is doubly transitive, the character 1G
H −1 is actually

absolutely irreducible. So we are done. Suppose that the pair (G,H) is doubly
homogeneous but not doubly transitive, then G is of odd order (Exe. 2.1.11 of
[9]). Hence G is soluble (see [12]). Then by Theorem 7 of [24] (which says: for
a given algebraic number field F and a given finite soluble group G, there is a
finite Galois extension F of F so that Gal(F/F ) � G), G is the Galois group of
a finite Galois extension of the rational field.

Let f ∈ Q[x] (f(0) �= 0) be any polynomial satisfying the conditions (i)–(iii)
in Proposition 1. Then f is irreducible and non-degenerate with Galois group G.
Since the pair (G,H) is doubly homogeneous and the condition (iii) holds, G
operates in a doubly homogeneous way on the set Ω of the roots of f . Doubly
homogeneousness naturally requires that deg(f) = |Ω| = |G/H| ≥ 2. Hence f
has no root being a root of rational since it is non-degenerate. By [26] Theo-
rem 3.2, the lattice RQ

f is trivial and so is the lattice Rf . Finally, according to
Proposition 1, the pair (G,H) is Q-trivial. 
�
The following example shows that a Q-trivial pair needs not be doubly
homogeneous.

Example 2. Set L to be the splitting field of the irreducible polynomial f =
x5 − x4 − 4x3 + 3x2 + 3x − 1 over the rational field, G the Galois group. In fact,
G � C5 is the cyclic group of order 5, and the stabilizer of any root of f is
trivial. The faithful pair (C5, 1) is Q-trivial by Proposition 5. Nevertheless, the
pair (C5, 1) is not doubly homogeneous.

Proposition 5. Let (G,H) be as in Proposition 1. If the cardinality of the set
G/H is a prime number, then (G,H) is Q-trivial.

Proof. When |G/H| = 2, the pair (G,H) is doubly homogeneous and we are
done. When |G/H| is an odd prime number, the proposition is a straightforward
result of [10] Theorem 1 and Proposition 1. 
�

Figure 1 shows the relations between different classes of Q-trivial pairs. This
is based on Theorem 3 of [8], Corollary 1.6 of [2], and Proposition 3.1 of [15].



Lattice Triviality Through Groups 627

2-Transitive

2-Homogeneous

Affine Type Almost Simple

Fig. 1. Classification of Q-trivial pairs

2.4 An Algorithm Deciding Q-Triviality of Galois Groups

Assume that f ∈ Q[x] (f(0) �= 0) is irreducible with Galois Group G and a
root stabilizer H. In this subsection, we develop an algorithm deciding whether
a pair (G,H) is Q-trivial for such a polynomial f . Moreover, numerical results
show that the algorithm is quite efficient compared with some other relative
algorithms (see Table 3 and 4). All numerical results are obtained on a desktop
with Windows 7 operating system, 8 GB RAM and a 3.30 GHz Intel Core i5-4590
processor with 4 cores.

The “IsQtrivial” Algorithm. Algorithm 1 shown below is designed accord-
ing to Sect. 2.2 and Sect. 2.3. Step 4 of this algorithm is due to Proposition 5
while Step 5 is based on Corollary 1. The Q[G]-submodule B generated by u in
Step 6 is contained in the Q[G]-submodule

V0 =
{ ∑

t∈G/H

att
∣
∣
∣ at ∈ Q,

∑

t∈G/H

at = 0
}

with character 1G
H − 1 and Q-dimension deg(f) − 1. So the correctness of Steps

7–10 follows from Proposition 2.

Algorithm 1: IsQtrivial
Input: An irreducible polynomial f ∈ Q[x] with f(0) �= 0;
Output: “True” if the pair (G,H) is Q-trivial and “False” otherwise.

1 if (f is reducible or f(0) == 0) then {Return “Error!”} end
2 if (deg(f) is a prime number) then {Return True;} end
3 Compute the Galois group G of f ;
4 if (G is doubly transitive) then {Return True;} end
5 if (deg(f) /∈ S as defined in (1)) then {Return False;} end

6 Compute B = Q[G]〈u〉 with u = s − 1 ∈ Q[G/H] for an s /∈ H;
7 if (dim(B) == deg(f) − 1 and B is Q-irreducible) then
8 Return True;
9 end

10 Return False;

The cost of Algorithm 1 depends mainly on the cost of computing the Galois
group in Step 3 and the cost of deciding whether the module B is Q-irreducible
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in Step 7. The algorithm is implemented with Magma. In particular, Step 7 is
rendered by the Magma function IsIrreducible introduced in the section titled
by “Representation Theory” in the Magma handbook. However, the algorithm
used to implement that function is not specified explicitly therein. Thus, its cost
is not known. Nevertheless, in the following, a great deal of random examples
are generated to test Algorithm 1 in Table 1 to show its efficiency. But before
that, we need to define “a random polynomial” technically:

For an f ∈ Q[x] of degree at most n, we define its height h(f) = max
0≤i≤n

|cf,i|
with cf,i the coefficient of the term xi of f . Then we set

ZH,n[x] = {f ∈ Z[x] |h(f) ≤ H,deg(f) ≤ n}
to be the set of the integer polynomials with height bounded by a positive
integer H and degree not higher than n. Further, we set

Z̄ir
H,n[x] = {f ∈ ZH,n[x] | deg(f) = n, f(0) �= 0 and f is irreducible}.

One notices that both ZH,n[x] and Z̄ir
H,n[x] are finite sets. Hence we can equip

the set ZH,n[x] (resp., the set Z̄ir
H,n[x]) with the probability measure PH,n (resp.,

with the probability measure P̄ir
H,n) determined by the discrete uniform distri-

bution on it.
The random polynomials used in Table 1 ar generated in accordance with

the probability measure P̄ir
10,n. The way to generate such a polynomial f is as

follows: First, generate each of its leading coefficient and constant term by picking
an integer number equiprobably from the set {±1, . . . ,±10}, then pick each of
the rest of the coefficients of f equiprobably from the set {−10,−9, . . . , 10}.
Second, check whether f is irreducible: if it is, then we are done; otherwise, go
back to the first step.

In Table 1 (and throughout the section), the notation “#Poly” denotes the
number of the polynomials that are generated and tested in a single class. As can
be seen, almost all the randomly generated polynomials have doubly transitive
Galois groups. In fact, most of the Galois groups in Table 1 are symmetry groups
(which is consistent with Theorem 1 in [5]). The algorithm is effective and effi-
cient for the randomly generated examples in the sets Z̄ir

10,n[x]. In order to test
the algorithm for other types of groups, we take advantage of the Magma func-
tion PolynomialWithGaloisGroup, which provides polynomials with all types
of transitive Galois groups of degree between 2 and 15. The results are shown in
Table 2.

In both tables, the “GaloisFail” columns show, for each degree, the numbers of
the polynomials with Galois groups computed unsuccessfully in Algorithm 1 Step
3, which is implemented by the Magma functions GaloisGroup and GaloisProof.
There are more “GaloisFail” cases in Table 2. The problem is: in those “GaloisFail”
cases, though the Galois groups can be computed by the first function (which does
not provide proven results), the second function returns error and fails to support
the result. The “Average Time” in Table 2 excludes the “GaloisFail” examples,
i.e., it only counts in the “Qtrivial” and the “NotQtrivial” cases. We see that the
algorithm is still efficient when the Galois group is successfully computed.
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Table 1. Random test for IsQtrivial

Deg #Poly 2-Transitive Qtrivial NotQtrivial GaloisFail Average time (s)

6 10000 9989 9989 11 0 0.025644

8 10000 9998 9998 2 0 0.055090

9 10000 10000 10000 0 0 0.069871

15 10000 10000 10000 0 0 0.301505

20 10000 10000 10000 0 0 0.698264

28 10000 10000 10000 0 0 1.532056

60 40 40 40 0 0 32.2309

81 40 40 40 0 0 107.486

90 40 40 40 0 0 231.638

120 40 40 40 0 0 2057.24

Table 2. Testing IsQtrivial by different galois groups

Deg #Poly 2-Transitive Qtrivial NotQtrivial GaloisFail Average time (s)

4 5 2 2 3 0 0.019

6 16 4 4 12 0 0.027

8 50 6 6 43 1 0.086

9 34 2 2 23 9 0.095

10 45 2 2 36 7 0.103

12 301 2 2 292 7 0.165

14 63 2 2 41 20 0.215

15 104 2 2 62 40 0.222

Ensuring Lattice Triviality. By [11] Theorem 2, almost all irreducible poly-
nomials f with f(0) �= 0 have trivial lattice Rf . However, the general algorithms
FindRealtions in [13,16] and GetBasis in [27], dealing with the general inputs
which are arbitrarily given nonzero algebraic numbers instead of all the roots of
a certain polynomial, are not very efficient in proving exponent lattice triviality
in the latter case.

For an irreducible polynomial f ∈ Q[x] with f(0) �= 0, if the function
IsQtrivial(f) returns True and f is proved to have no root being a root of
rational by Algorithm 5 in [28] (named “RootOfRationalTest” therein, we call
it “IsROR” here instead), then Rf is trivial by Proposition 1 and Remark 1. We
call this the “IsQtrivial+IsROR” procedure. Table 3 shows the efficiency of that
procedure to prove the triviality of the exponent lattice of a random polynomial
picked from the set Z10,n[x] in accordance with the probability measure P10,n[x].



630 T. Zheng

Table 3. IsQtrivial Ensuring triviality efficiently

Class Polynomial Runtime (s)

FindRelations GetBasis IsQtrivial + IsROR

n = 4 f (1) 32.8947 83.7598 0.016

f (2) 19.1995 54.343 0.016

f (3) 34.6466 90.4592 0.016

n = 5 g(1) OT OT 0.000

g(2) OT OT 0.000

g(3) OT OT 0.000

n = 9 h(1) OT OT 0.047

h(2) OT OT 0.078

h(3) OT OT 0.047

The notation “OT” in Table 3 (and throughout the section) means the com-
putation is not finished within two hours. As is shown in Table 3, it is time-
consuming for the general algorithms FingRelations and GetBasis to prove the
exponent lattice triviality of a random polynomial. So the “IsQtrivial+IsROR”
procedure can be used before running either of the two general algorithms, when
the inputs are all the roots of a certain polynomial. If the procedure fails to prove
the triviality, then one turns to the general algorithms.

In the next part of this subsection, the “IsQtrivial+IsROR” procedure is
slightly extended to render an algorithm called “Fastbasis+”, whose efficiency
will be tested with a great deal of examples of much larger degree bound n.

The “FastBasis+” Algorithm. Similarly to the “IsQtrivial+IsROR” proce-
dure, Theorem 3.2 in [26] allows one to prove lattice triviality of a polynomial
by proving doubly homogeneousness of its Galois group and by checking the
condition that none of its roots is a root of a rational. Slightly extending this
“Is2Homo+IsROR” procedure, the algorithm FastBasis in [26] aims at comput-
ing the lattice Rf fast for any f in a generic set E ⊂ Q[x] consisting of the
polynomials f for which both the following two conditions hold:

(i) ∃c ∈ Q∗, g ∈ Q[x], k ∈ Z≥1 so that f = cgk, g is irreducible and x does
not divide g(x);

(ii) all the roots of g are roots of rational or the Galois group of g is doubly
homogeneous.

Similarly, we can define another set E+ ⊂ Q[x] consisting of the polynomials f
for which both the condition (i) above and the following condition hold:

(ii)′ all the roots of g are roots of rational or IsQtrivial(g) == True.



Lattice Triviality Through Groups 631

Then, by Proposition 4 and Example 2, one claims that E+ � E. Thus, E+ is
also generic in the sense of [26]. That is we have the following proposition similar
to [26] Corollary 5.5:

Proposition 6. For any n ≥ 2, lim
H→∞

PH,n(E+ ∩ ZH,n[x]) = 1.

By replacing Steps 6 – 7 in Algorithm 6.1 of [26] (namely, FastBasis) by a
new step, i.e., Step 8 of Algorithm 2, we obtain an algorithm “FastBasis+”,
which slightly extends the “IsQTrivial+IsROR” procedure. Like FastBasis, the
algorithm FastBasis+ computes the lattice Rf for any f ∈ E+ while returning
a special symbol “F” when f /∈ E+. Hence by Proposition 6, the probability
of success of FastBasis+, when applied to a random polynomial in ZH,n[x], is
close to one if the height bound H is large.

The algorithm FastBasis+ is implemented with Magma while the algorithm
FastBasis is implemented with Mathematica in [26]. In Table 4 we compare these
two implementations by applying them to a great deal of random polynomials
of varies degree. The polynomials in Table 4 are picked randomly from the

Algorithm 2: FastBasis+
Input: A polynomial f ∈ Z[x];
Output: A basis of Rf if f ∈ E+, the symbol “F” if otherwise.

1 if (f has at least two co-prime irreducible factors or x|f(x)) then
2 Return “F”;
3 end

4 Suppose that the only irreducible factor of f is g (i.e., f = cgk, c ∈ Q∗, k ≥ 1);
5 if (all the roots of g are roots of rational) then
6 Compute a basis of Rg by the algorithm GetBasis in [27];
7 else
8 if (IsQtrivial(g) == False) then {Return “F”} end if ;
9 Compute a basis of Rg by Prop. 3.3 of [26];

10 end
11 Return the basis of Rf derived from the basis of Rg via Prop. 5.2 of [26];

class Z10,n[x] in accordance with the probability measure P10,n. The notation
“#Success” therein denotes the number of those polynomials in each class for
which the algorithm returns a lattice basis successfully within two hours, while
the notation “#F” gives the number of the polynomials in each class that are
proved to be outside of the set E+ within two hours. The average time only
counts in all the “Success” examples. We can see from Table 4 and Fig. 2 that
for the small inputs with n < 15, the implementation of FastBasis is slightly
more efficient while for those lager inputs with n > 15, the implementation of
FastBasis+ is much more efficient. This allows one to handle inputs with higher
degree that were intractable before. Furthermore, the table shows that although
the height bound H = 10 is not large, the success probability of the algorithm
FastBasis+ is still high when no “OT” occurs.
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Fig. 2. Comparing average runtime of two implementations
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Table 4. FastBasis v.s. FastBasis+

Class #Poly FastBasis FastBasis+

# Success # F OT Average time (s) OT # F # Success

n = 6 10000 9011 989 0 0.007304 0.025499 0 989 9011

n = 8 10000 9064 936 0 0.018372 0.055328 0 936 9064

n = 9 10000 9113 887 0 0.029044 0.069996 0 887 9113

n = 15 10000 9227 773 0 0.305941 0.301110 0 773 9227

n = 20 10000 9243 757 0 1.502110 0.700131 0 757 9243

n = 28 10000 9279 721 0 9.29961 1.527806 0 721 9279

n = 40 100 93 7 0 76.3928 6.788000 0 7 93

n = 50 100 96 4 0 315.523 15.70400 0 4 96

n = 60 35 33 1 1 1291.38 31.27800 0 1 34

n = 81 40 15 1 24 5539.67 104.515 0 1 39

n = 90 40 0 2 38 – 224.413 0 2 38

n = 120 40 – – – – 2058.228 0 2 38

During the experiment, we find that a large proportion of the polynomials
randomly picked from the class Z10,n[x] are in the set E+ and are irreducible
with no root being a root of rational. For these polynomials, the algorithm
FastBasis+ is essentially reduced to the “IsQTrivial+IsROR” procedure. So the
examples of larger n shown in Table 4 can be regarded as complementary mate-
rials for Table 3.

3 Lattice Triviality Through Galois-Like Groups

As is shown in Example 1, provided only the pair (G,H), one may not be able to
decide whether the lattice Rf is trivial or not. Here f is an irreducible polynomial
with Galois group G and a root stabilizer H. In this section, the concept of a
Galois-like group is introduced. An equivalent condition for the lattice Rf to be
trivial is given through the concept of a Galois-like group.

3.1 Root Permutations Preserving Multiplicative Relations

Set f ∈ Q[x] (f(0) �= 0) to be a polynomial with no multiple roots. Denote
by Σ the symmetry group operating on the set Ω = {r1, . . . , rn} of the roots
of f . In the sequel, we denote by �Ω = (r1, . . . , rn)T a vector of the roots and by
σ( �Ω) = (σ(r1), . . . , σ(rn))T a permutation of �Ω with σ ∈ Σ.

Definition 1. A Galois-like group of the polynomial f refers to any one of the
following groups:
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(i) Gf = {σ ∈ Σ | ∀v ∈ Zn, �Ωv = 1 ⇒ σ( �Ω)v = 1};
(ii) GB

f = {σ ∈ Σ | ∀v ∈ Zn, �Ωv ∈ Q ⇒ σ( �Ω)v = �Ωv};
(iii) GQ

f = {σ ∈ Σ | ∀v ∈ Zn, �Ωv ∈ Q ⇒ σ( �Ω)v ∈ Q};

To verify the terms used above in the definition, we need to prove that any
subset of Σ defined in Definition 1 is indeed a group:

Proposition 7. Suppose that f ∈ Q[x] (f(0) �= 0) is a polynomial with no
multiple roots. If G = Gf ,GB

f or GQ

f , then G is a subgroup of Σ.

Proof. Any σ ∈ Σ results in a coordinate permutation σ̂ operating on the
space Cn with n = |Ω| in a manner so that for any vector v = (v1, . . . , vn)T ∈ Cn,
σ̂(v) = (b1, . . . , bn)T with bi = vj whenever σ(ri) = rj . Then one observes that
the equalities σ̂−1 = (σ̂)−1, σ( �Ω)σ̂(v) = �Ωv and �Ωσ̂(v) = σ−1( �Ω)v hold for any
σ ∈ Σ and any v ∈ Zn.

Set G = Gf (GB
f or GQ

f respectively) and R = Rf (RQ

f , respectively). Then,
by definition, σ̂−1(v) ∈ R for any σ ∈ G and any v ∈ R. Hence the set σ̂−1(R) =
{σ̂−1(v) | v ∈ R} is a subset of the lattice R. Noting that σ̂−1 operates linearly,
one concludes that σ̂−1(R) is also a lattice. Thus, σ̂−1(R) is a sub-lattice of R.
Since σ̂−1 is linear and non-singular, any basis of R is transformed into a basis
of σ̂−1(R) by σ̂−1. Hence rank(R) = rank(σ̂−1(R)). Since σ̂−1 is orthogonal
on the space Rn and orthogonal operations preserve the lattice determinant,
R = σ̂−1(R). Thus, σ̂(R) = R.

So σ̂(v) ∈ R for any σ ∈ G and any v ∈ R. If G = Gf (or GQ

f ) and R = Rf

(or RQ

f , respectively), then �Ωσ̂(v) = 1 (or �Ωσ̂(v) ∈ Q, respectively). Equivalently,
σ−1( �Ω)v = 1 (or σ−1( �Ω)v ∈ Q). Hence σ−1 ∈ G for any σ ∈ G. Now suppose
that G = GB

f and R = RQ

f . Since σ̂(v) ∈ RQ

f and �Ωσ̂(v) ∈ Q, σ( �Ω)σ̂(v) = �Ωσ̂(v)

follows from the definition of GB
f . The left-hand side of this equality equals �Ωv

while its right-hand side equals σ−1( �Ω)v. Hence σ−1( �Ω)v = �Ωv for any σ ∈ GB
f

and v ∈ RQ

f . Thus, σ−1 ∈ GB
f .

The closure of the multiplication in the subset G of Σ and the fact that 1 ∈ G
are straightforward. Thus G is a group. 
�

Define groups 〈Ω〉 = { �Ωv | v ∈ Zn} and 〈Ω〉Q = {c �Ωv | c ∈ Q∗, v ∈
Zn}. The following proposition asserts that the Galois-like groups Gf and GB

f

of a polynomial f are subgroups of the automorphism groups of 〈Ω〉 and 〈Ω〉Q,
respectively.

Proposition 8. The following relations hold:

(i) Gf � {η ∈Aut (〈Ω〉) | ∀ri ∈ Ω, η(ri) ∈ Ω};
(ii) GB

f � {
η ∈Aut (〈Ω〉Q)

∣
∣ ∀ri ∈ Ω, η(ri) ∈ Ω; η|Q∗ = idQ∗

}
.

Proof. Denote by AutΩ(〈Ω〉) the group in the right side of the formula in (i)
and by AutQΩ(〈Ω〉Q) the one in the right-hand side of the formula in (ii).
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Set G = Gf (or GB
f ) and A = AutΩ(〈Ω〉) (or AutQΩ(〈Ω〉Q) respectively). For

any σ ∈ G, we define an element Eσ in A in the following way: for any �Ωv ∈ 〈Ω〉,
Eσ( �Ωv) = σ( �Ω)v (or, for any c �Ωv ∈ 〈Ω〉Q, Eσ(c �Ωv) = cσ( �Ω)v). From the
definition of G, we see that σ( �Ω)v = σ( �Ω)v′

whenever �Ωv = �Ωv′ ∈ 〈Ω〉 (or
that c1σ( �Ω)v = c2σ( �Ω)v′

whenever c1 �Ωv = c2 �Ωv′ ∈ 〈Ω〉Q). Thus the map Eσ:
〈Ω〉 → 〈Ω〉 (or Eσ: 〈Ω〉Q → 〈Ω〉Q) is well defined. It is trivial to verify the fact
that Eσ is an automorphism of 〈Ω〉 (or of 〈Ω〉Q) and the property that for all
ri ∈ Ω, Eσ(ri) = σ(ri) ∈ Ω (or, moreover, Eσ(c) = c for any c ∈ Q∗). Hence Eσ

is indeed in the set A. Thus E • is a map from G to A.
For any η ∈ A, η is injective and η(Ω) ⊂ Ω. Since Ω is finite, η(Ω) = Ω.

Hence η|Ω ∈ Σ. Because η is an automorphism (or an automorphism fixing every
rational number), η|Ω( �Ω)v = 1 whenever �Ωv = 1 (or η|Ω( �Ω)v = �Ωv whenever
�Ωv ∈ Q). Thus, η|Ω ∈ G. Define Rη = η|Ω , then R • is a map from A to G.

It is clear that both the maps E • and R • are group homomorphisms. That
is Eσ1σ2 = Eσ1Eσ2 and Rη1η2 = Rη1Rη2 for any σ1, σ2 ∈ G and any η1, η2 ∈ A.
One also verifies easily that E

R • = idA and R
E • = idG . Hence G � A. 
�

By definition, a Galois-like group of a polynomial f is the group of the per-
mutations between its roots that preserve all the multiplicative relations between
them. Since any element in the Galois group of f preserves all polynomial rela-
tions between the roots, the following relations between the Galois group and a
Galois-like group of f is straightforward:

Proposition 9. Suppose that f ∈ Q[x] (f(0) �= 0) has no multiple roots. Then,
regarded as a permutation group operating on the roots of f , the Galois group
of f is a subgroup of any Galois-like group of f .

Besides, the following relations between the Galois-like groups are straightfor-
ward but noteworthy:

Proposition 10. Let f be as in Proposition 9. Then GB
f ≤ Gf and GB

f ≤ GQ

f .

3.2 Generalization of Sufficient Conditions of Exponent Lattice
Triviality

With the help of the concept of Galois-like groups, we can generalize many
sufficient conditions that imply the triviality of exponent lattices.

Lemma 1. Set f ∈ Q[x] (f(0) �= 0) to be a polynomial without multiple roots.
Denote by �Ω = (α1, . . . , αs, γ1, . . . , γt)T the vector of all the roots of f with αi the
roots that are not roots of rational. Suppose that the Galois-like group Gf is doubly
transitive, then any multiplicative relation v = (v1, . . . , vs+t)T ∈ R �Ω = Rf

satisfies the following condition:

v1 = · · · = vs =
v1 + · · · + vs+t

s + t
. (2)
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Lemma 2. Let f and �Ω be as in Lemma 1. Suppose that the Galois-like group
GB

f or GQ

f is doubly transitive, then any multiplicative relation v ∈ RQ

�Ω
= RQ

f

satisfies the condition (2).

The proofs of those two propositions above are both almost the same to the one
of Theorem 3 in [3], because of which we do not give any of them here. A direct
corollary of these propositions are as follows:

Proposition 11. Set f ∈ Q[x] (f(0) �= 0) to be a polynomial without mul-
tiple roots and none of its roots is a root of rational. If the group GB

f or GQ

f

(respectively, Gf ) is doubly transitive, then the lattice RQ

f (respectively, Rf ) is
trivial.

This is a generalization of Theorem 3 in [3]. The essential idea is that the proof
of Theorem 3 in [3] relies only on the properties of Galois-like groups (i.e.,
preserving all the multiplicative relations) but not on those properties that are
possessed uniquely by the Galois groups.

Noting that GB
f ≤ Gf , one concludes from Proposition 11 that both the

lattices RQ

f and Rf are trivial whenever the group GB
f is doubly transitive and

none of the roots of f is a root of rational. More generally, we have the following
proposition and Corollary 2:

Proposition 12. Set f ∈ Q[x] (f(0) �= 0) to be a polynomial without multiple
roots. Define Wf = Q ⊗ Rf and WQ

f = Q ⊗ RQ

f with “⊗” the tensor product of
Z-modules. Set V0 = {v ∈ Qn | ∑n

i=1 vi = 0} and V1 = {c(11 , . . . , 1n)T | c ∈ Q}
with n = deg(f). Suppose that GB

f is transitive, then the following conclusions
hold:

(i) WQ

f ∩ V0 = Wf ∩ V0;
(ii) WQ

f = Wf + V1 and thus WQ

f = Wf iff f(0) ∈ {1,−1}.
Proof. The proof is almost the same to the one of Lemma 1 in [7], except that we
require the transitivity of the Galois-like group GB

f instead of the the transitivity
of the Galois group of f . 
�
Corollary 2. Let f be as in Proposition 12 such that the group GB

f is transitive,
then the lattice Rf is trivial iff the lattice RQ

f is.

Proof. Since the group GB
f is transitive, WQ

f = Wf + V1 by Proposition 12. So
WQ

f is trivial iff Wf is trivial. Hence

Rf is trivial ⇐⇒ Wf is trivial

⇐⇒ WQ

f is trivial

⇐⇒ RQ

f is trivial.


�
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Similarly to Proposition 11, we have the following result:

Proposition 13. Let f ∈ Q[x] be as in Proposition 11. If the group GB
f or GQ

f

is doubly homogeneous, then the lattice RQ

f is trivial.

This is a generalization of [26] Theorem 3.2. The proof of this proposition is
almost the same with the one given in [26], hence we omit it. Another general-
ization trough Galois-like groups of the “Only If” part of Proposition 1 is given
below:

Proposition 14. Set f ∈ Q[x] (f(0) �= 0) to be a polynomial without multiple
roots and one of its roots is not a root of rational. Set G = Gf (respectively,
G = GB

f or GQ

f ) and R = Rf (resp., R = RQ

f ). If G is transitive and the pair
(G,H), with H a root stabilizer, is Q-trivial, then R is trivial.

Proof. Let V1,V0 and W = Q ⊗ R be as in Proposition 12. For any σ ∈ G, we
define a coordinate permutation σ̂ as in the proof of Proposition 7. Then W is a
Q[G]-submodule of Qn by the definition of a Galois-like group (for any v ∈ Qn

or v ∈ W, a group element σ operates in the way so that it maps v to the
vector σ̂−1(v)).

Since the pair (G,H) is Q-trivial, Qn can be decomposed into two irreducible
Q[G]-submodules: Qn = V1 ⊕ V0 ([14] Proposition 12). Since G is transitive, V0

and V1 are the only two irreducible Q[G]-submodules of Qn:
Suppose that V �= V0 is an irreducible Q[G]-submodules and assume that

V ∩ V0 � {0}. Then V � V ∩ V0 or V0 � V ∩ V0. This contradicts the fact that
both V and V0 are irreducible, since V ∩ V0 � {0} is a proper Q[G]-submodules
of at least one of them. So we have V ∩ V0 = {0}. Noting that the Q-dimension
of V0 is n − 1, one concludes that dimQ(V) = 1. Set v ∈ V\{0}, then v /∈ V0 and
∑n

i=1 vi �= 0. Thus V � ∑
σ∈G σ̂−1(v) = |G|

n (
∑n

i=1 vi)(11 , . . . , 1n)T �= 0 follows
from the transitivity of G. Hence V = V1.

Thus all the Q[G]-submodules of Qn are {0}, V1, V0 and Qn itself. If V0 ⊂ W,
then W ⊂ WQ

f and V1 ⊂ WQ

f imply that WQ

f = Qn, which contradicts the
assumption that f has a root that is not a root of rational. Hence V0 �⊂ W,
which means W = {0} or W = V1. Thus W is trivial and so is the lattice R. 
�

3.3 Necessary and Sufficient Condition for Exponent Lattice
Triviality

In this subsection, we characterize those polynomials f with a trivial exponent
lattice by giving a necessary and sufficient condition through the concept of a
Galois-like group.

Theorem 1. Set f ∈ Q[x] (f(0) �= 0) to be a polynomial without multiple roots.
Denote by β1, . . . , βt the rational roots of f (if there are any) and by β0 the
rational number which is the product of all non-root-of-rational roots of f (if
there are any). Then the lattice Rf is trivial iff all the following conditions hold:

(i) the Galois-like group Gf = Σ;
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(ii) any root of f is rational or non-root-of-rational;
(iii) the lattice RVec(f) is trivial with the vector Vec(f) given by:

Vec(f) =

⎧
⎪⎪⎨

⎪⎪⎩

(β0, β1, . . . , βt)T , if f has both rational and
non-root-of-rational roots,

(β1, . . . , βt)T , if any root of f is rational,
(β0), if any root of f is non-root-of-rational.

Proof. “If”: When deg(f) = 1, Rf is trivial and we are done. Suppose in the
following that deg(f) ≥ 2. Then the pair (Gf ,H) = (Σ,H) is doubly homoge-
neous, thus, also Q-trivial for any root stabilizer H. If f has a root that is not
a root of rational, then Rf is trivial by Proposition 14. When all the roots of f
are rational, the lattice Rf = RVec(f) is trivial.

“Only If”: Now that Rf is trivial, the condition (i) is straightforward. Sup-
pose that f has a root r which is a root of rational but not a rational number.
Then each of the conjugations of r, say, {r = r(1), r(2), . . . , r(s)}, with s ≥ 2, is a
root of f . Then there is a positive integer m so that (r/r(2))m = 1. Thus, Rf is
non-trivial, which contradicts the assumption. So the condition (ii) holds. Since
any nontrivial multiplicative relation of the vector Vec(f) results in a nontrivial
multiplicative relation between the roots of f , the condition (iii) holds. 
�

From the “If” part of the proof we observe that, when restricted to polynomi-
als f with degree higher than one, the condition (i) in Theorem 1 can be replaced
by the statement “Gf is transitive and the pair (Gf ,H) is Q-trivial for any root
stabilizer H”. An interesting result follows directly from this observation:

Corollary 3. Let f be as in Theorem 1. If deg(f) ≥ 2 and the conditions
(ii) – (iii) in Theorem 1 hold, then the following conditions are equivalent to
each other:

(i) Gf = Σ;
(ii) Gf is doubly transitive;
(iii) Gf is doubly homogeneous;
(iv) Gf is transitive and the pair (Gf ,H) is Q-trivial for any root stabilizer H.

Proof. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) are trivial. The implication
(iv) ⇒ (i) follows from the “If” part of the proof of 1. Now we prove the
implication (iii) ⇒ (iv): If deg(f) = 2 and f has only rational roots, the lattice
Rf = RVec(f) is trivial. So Gf = Σ. If deg(f) = 2 but f has a root that is not a
root of rational, f is irreducible over Q and Σ = Gf ≤ Gf with Gf the Galois
group of f . In either case Gf is transitive. When deg(f) ≥ 3, the transitivity
of Gf follows from [9] Theorem 9.4A. Now the Q-triviality of the pair (G,H)
follows from Proposition 4. 
�
Thus, the condition (i) of Theorem 1 can be replaced by any one of the conditions
(ii) – (iv) in Corollary 3.

For the lattice RQ

f , we have a similar result:
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Theorem 2. Set f ∈ Q[x] (f(0) �= 0) to be a polynomial without multiple roots.
Then the lattice RQ

f is trivial iff all the following conditions hold:

(i) the Galois-like group GB
f = Σ;

(ii) either deg(f) = 1 or any root of f is not a root of rational;
(iii) f is irreducible over Q.

Proof. “If”: When deg(f) = 1, this is trivial. Suppose in the following that
deg(f) ≥ 2 and any root of f is not a root of rational. Then GB

f = Σ is transi-
tive and doubly homogeneous. Thus, the pair (GB

f ,H) is Q-trivial for any root
stabilizer H by Proposition 4. So RQ

f is trivial by Proposition 14.
“Only If”: Now that RQ

f is trivial, it is clear that GB
f = Σ. Suppose on the

contrary that f is reducible and g1, g2 are two of its factors. Let α1, . . . , αs denote
the roots of g1 and γ1, . . . , γt the ones of g2. Then for any two distinct integers k
and l, (α1 . . . αs)k(γ1 . . . γt)l ∈ Q. This contradicts the assumption that RQ

f is
trivial. So f is irreducible. Assume that deg(f) ≥ 2 and one of the roots r
of f is a root of rational. The conjugations of r, say, {r = r(1), r(2), . . . , r(n)}
(n ≥ 2) are exactly all the roots of f . Then there is a positive integer m so that
(r/r(2))m = 1. Thus, Rf is non-trivial and so is the lattice RQ

f . This contradicts
the assumption. 
�
Remark 2. Theorem 2 still holds when the equality GB

f = Σ is replaced by
GQ

f = Σ in the condition (i). The proof is almost the same. Moreover, from
the “If” part of the proof we observe that, when restricted to polynomials f
with degree higher than one, the condition (i) in Theorem 2 can be replaced by
the statement “GB

f is transitive and the pair (GB
f ,H) is Q-trivial for any root

stabilizer H” or the statement “GQ

f is transitive and the pair (GQ

f ,H) is Q-trivial
for any root stabilizer H”.

The counterpart of Corollary 3 in this case is given below:

Corollary 4. Let f be as in Theorem 2 and G ∈ {GB
f ,GQ

f }. If deg(f) ≥ 2 and
the conditions (ii) – (iii) in Theorem 2 hold, then the following conditions are
equivalent to each other:

(i) G = Σ;
(ii) G is doubly transitive;
(iii) G is doubly homogeneous;
(iv) G is transitive and the pair (G,H) is Q-trivial for any root stabilizer H.

Proof. The proof is similar to the one of Corollary 3. 
�
Theorem 1 and 2 characterize, for the first time, the polynomial f with a trivial
exponent lattice Rf or RQ

f with the help of the concept of a Galois-like group.
The conditions (ii) – (iii) in both theorems can be decided very efficiently (by
Sect. 5.1 of [28] and Sect. 2.2.1 of [27]). However, an effective algorithm deciding
whether a Galois-like group, of a given polynomial f , equals the symmetry group
Σ or not is not available at present.
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4 Conclusion

We characterize the polynomials with trivial exponent lattices through the Galois
and the Galois-like groups. Based on the algorithm IsQtrivial, we extensively
improve the main algorithm in [26] proving triviality of the exponent lattice
of a generic polynomial (when the polynomial degree is large). In addition, a
sufficient and necessary condition is given with the help of the concept of a
Galois-like group, which turns out to be essential in the study on multiplicative
relations between the roots of a polynomial. Further study on Galois-like groups
seems to be interesting and promising.

Acknowledgments. The author is very grateful to the referees for their careful read-
ing and useful suggestions that have helped improve this paper a lot.
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