

Lecture Notes in Computer Science 6327
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Komei Fukuda Joris van der Hoeven
Michael Joswig Nobuki Takayama (Eds.)

Mathematical
Software – ICMS 2010

Third International Congress
on Mathematical Software
Kobe, Japan, September 13-17, 2010
Proceedings

13

Volume Editors

Komei Fukuda
Institute for Operations Research
and Institute of Theoretical Computer Science
ETH Zurich, 8092 Zurich, Switzerland
E-mail: fukuda@ifor.math.ethz.ch

Joris van der Hoeven
LIX, CNRS, École polytechnique
91128 Palaiseau cedex, France
E-mail: vdhoeven@lix.polytechnique.fr

Michael Joswig
TU Darmstadt, Fachbereich Mathematik
64289 Darmstadt, Germany
E-mail: joswig@mathematik.tu-darmstadt.de

Nobuki Takayama
Kobe University, Department of Mathematics
Rokko, Kobe, 657-8501, Japan
E-mail: takayama@math.kobe-u.ac.jp

Library of Congress Control Number: 2010933525

CR Subject Classification (1998): G.2, I.1, F.2.1, G.4, F.2, G.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-15581-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15581-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The ICMS Developer’s Meeting is an international congress for which the main
theme is mathematical software. The 2010 meeting was the third of a series of
meetings of similar theme, the first being held in Beijing, China in 2002, and the
second in Castro-Urdiales, Spain in 2006.

The field of mathematics has numerous branches, and in each branch we
find that algorithms, and also implementations and applications of software sys-
tems, are studied. Researchers who endeavor to make such studies also have
international meetings within their specific branches of mathematics, and these
meetings have made significant contributions to the fields in which they lie. The
ICMS (International Congresses on Mathematical Software), on the other hand,
is a general (not branch specific) meeting on mathematical software, which is
held every four years, and is a rare opportunity for developers of mathematical
software from different branches of mathematics, as well as mathematicians who
are interested in mathematical software, to gather together.

Since the first meeting in Beijing, eight years have passed, and this is now
a good occasion for us to ask this important question, and we beg the readers’
indulgence for its bluntness: is this kind of general meeting useful? In order
to have a productive meeting, the participants should have a base of common
interests and knowledge. Do we have such common interests and knowledge? To
help us consider this question, let us note the following points:

(1) We are interested in mathematics and want to explore the world of math-
ematics, regardless of whether we have the aid of a computer. The discovery
or proof of a new mathematical fact is an exciting application of mathematical
software. Certainly all of us would agree with this claim.

(2) Which objects in mathematics are computable, and which are not? To
what degree can we be efficient in computation? Can we implement algorithms
efficiently? All participants and authors of these proceedings will surely agree
that these are fundamental questions, and will have a strong interest in answering
them.

(3) All participants and authors know at least one programming language.
For instance, most people will understand the programming language C and/or
its derivatives. All participants are interested in using software environments to
study mathematics.

(4) We understand that technology transfers from mathematics to industry
and other fields are done primarily via software systems. We should be able to
explain how our favorite algorithms are used in industrial applications.

We have listed above four points of common knowledge and interests, and
certainly there are more. It is through points like these that we can exchange a
wide variety of ideas and knowledge with each other, resulting in the advance-

VI Preface

ment of mathematical software. On the basis of points like these, we can give a
resounding “yes” to the first blunt question above.

We believe that mathematics itself is a coherent whole, and there are copious
examples of how the interplay between seemingly disparate branches of math-
ematics yields new results. In mathematical software, let us note some such
examples that have come to fruition in the last eight years: software systems in
tropical geometry have been produced using computer algebra and polyhedral
geometry software as a base; applications of computer algebra have created a new
area of research called “algebraic statistics.” There are many other cases as well,
and a network of researchers from different disciplines has been an important
foundation for this, leading to a wealth of interdisciplinary research.

The articles in these proceedings were written by speakers at the ICMS 2010
and reviewed by the Program Committee members and some external referees.
No doubt the authors wish that not only their peers, but also researchers in
other branches of mathematics, will become interested in their results and will
apply their outcomes to those other branches. The authors also surely hope that
mathematicians, scientists and engineers will read articles in this volume, and
will then have a deeper understanding of what is going on at present in the
study of mathematical software, and will in turn suggest new applications of
mathematical software and also give new proposals for developing mathematical
software.

The activities of the last two conferences are archived in proceedings, in soft-
ware and document DVD’s, and in video format. This material can be accessed
through http://www.mathsoftware.org. ICMS 2010 will also be archived in this
way.

We hope that these proceedings will contribute to the advancement of a wide
array of research directions, led by many researchers with varied backgrounds.

September 2010 Nobuki Takayama
Komei Fukuda

Joris van der Hoeven
Michael Joswig

Organization

ICMS 2010 was organized by the Department of Mathematics Kobe University,
Rokko, Kobe, Japan.

Conference Chairs

General Chair Nobuki Takayama (Kobe University, Japan)
Program Co-chairs Komei Fukuda (ETH Zurich, Switzerland)

Joris van der Hoeven (CNRS, École Polytechnique,
France)

Michael Joswig (Technische Universität Darmstadt,
Germany)

Poster Session Chair Raimundas Vidunas (Kobe University, Japan)
Local Organization Chair Masayuki Noro (Kobe University, Japan)

Program Committee

Bettina Eick Technische Universität Braunschweig, Germany
Anne Fruehbis-Krueger Leibniz Universität Hannover, Germany
Komei Fukuda ETH Zurich, Switzerland
Tatsuyoshi Hamada Fukuoka University, Japan
John Harrison Intel Corporation, USA
Joris van der Hoeven CNRS, École Polytechnique, France
Tim Hoffmann Technische Universität Münich, Germany
Andres Iglesias University of Cantabria, Spain
Michael Joswig Technische Universität Darmstadt, Germany
Paul Libbrecht DFKI GmbH and University of Saarland, Germany
Steve Linton University of St. Andrews, Scotland, UK
Hidefumi Ohsugi Rikkyo University, Japan
Pawel Pilarczyk University of Minho, Portugal
Michael Pohst Technische Universität Berlin, Germany
Nathalie Revol École Normale Supérieure de Lyon, France
Wayne Rossman Kobe University, Japan
Michael Sagraloff Max-Planck-Institut für Informatik, Germany
Bruno Salvy INRIA Rocquencourt, France
Achill Schuermann Delft University of Technology, The Netherlands
Vin de Silva Pomona College, USA
Monique Teillaud INRIA Sophia Antipolis, France
Shigenori Uchiyama Tokyo Metropolitan University, Japan
Freek Wiedijk Radboud University, The Netherlands
Chee Yap New York University, USA
Afra Zomorodian Dartmouth College, USA

VIII Organization

Advisory Program Committee

Henk Barendregt Radboud University, The Netherlands
Arjeh Cohen Technische Universiteit Eindhoven,

The Netherlands
Dan Grayson University of Illinois, USA
Gert-Martin Greuel University of Kaiserslautern, Germany
Jean Lasserre LAAS-CNRS, France
Bernard Mourrain INRIA Sophia Antipolis, France
Ken Nakamula Tokyo Metropolitan University, Japan
Bernd Sturmfels University of California Berkeley, USA
Jan Verschelde University of Illinois, USA
Dongming Wang CNRS, France

Session Organizers

Computational Group Theory
Bettina Eick (Technische Universität Braunschweig, Germany)
Steve Linton (University of St. Andrews, Scotland, UK)

Computation of Special Functions
Bruno Salvy (INRIA Rocquencourt, France)

Computer Algebra
Joris van der Hoeven (CNRS, École Polytechnique, France)
Nathalie Revol (École Normale Supérieure de Lyon, France)

Exact Numeric Computation for Algebraic and Geometric
Computation

Chee Yap (New York University, USA)
Michael Sagraloff (Max-Planck-Institut für Informatik, Germany)
Monique Teillaud (INRIA Sophia Antipolis, France)

Formal Proof
John Harrison (Intel Corporation, USA)
Freek Wiedijk (Radboud University, The Netherlands)

Geometry and Visualization
Tim Hoffmann (Technische Universität Münich, Germany)
Wayne Rossman (Kobe University, Japan)

Groebner Bases and Applications
Anne Fruehbis-Krueger (Leibniz Universität Hannover, Germany)
Hidefumi Ohsugi (Rikkyo University, Japan)

Organization IX

Number Theoretical Software
Shigenori Uchiyama (Tokyo Metropolitan University, Japan)
Ken Nakamula (Tokyo Metropolitan University, Japan)
Michael Pohst (Technische Universität Berlin, Germany)

Reliable Computing
Joris van der Hoeven (CNRS, École Polytechnique, France)
Nathalie Revol (École Normale Supérieure de Lyon, France)

Software for Optimization and Polyhedral Computation
Achill Schuermann (Delft University of Technology, The Netherlands)
Komei Fukuda (ETH Zurich, Switzerland)
Michael Joswig (Technische Universität Darmstadt, Germany)

Sponsoring Institutions

1. Faculty of Science, Kobe University
2. Kakenhi 19204008, Japan Society of Promotion of Science
3. Team Hibi, Alliance for breakthrough between mathematics and sciences,

Japan Science and Technology Agency

Table of Contents

Mathematical Software - ICMS 2010

Plenary

Computational Discrete Geometry . 1
Thomas C. Hales

Exploiting Structured Sparsity in Large Scale Semidefinite
Programming Problems . 4

Masakazu Kojima

Reliable and Efficient Geometric Computing . 10
Kurt Mehlhorn

The Sage Project: Unifying Free Mathematical Software to Create a
Viable Alternative to Magma, Maple, Mathematica and MATLAB 12

Burin Ercal and William Stein

Computation of Special Functions (Invited)

Sollya: An Environment for the Development of Numerical Codes 28
Sylvain Chevillard, Mioara Joldeş, and Christoph Lauter

Validated Special Functions Software . 32
Annie Cuyt, Franky Backeljauw, Stefan Becuwe, and Joris Van Deun

The Dynamic Dictionary of Mathematical Functions (DDMF) 35
Alexandre Benoit, Frédéric Chyzak, Alexis Darrasse,
Stefan Gerhold, Marc Mezzarobba, and Bruno Salvy

Reliable Computing with GNU MPFR . 42
Paul Zimmermann

Computational Group Theory (Invited)

Simplicial Cohomology of Smooth Orbifolds in GAP 46
Mohamed Barakat and Simon Görtzen

Computing Polycyclic Quotients of Finitely (L-)Presented Groups via
Groebner Bases . 50

Bettina Eick and Max Horn

XII Table of Contents

Constructive Membership Testing in Black-Box Classical Groups 54
Sophie Ambrose, Scott H. Murray, Cheryl E. Praeger, and
Csaba Schneider

Computational Group Theory (Contributed)

Towards High-Performance Computational Algebra with GAP 58
Reimer Behrends, Alexander Konovalov, Steve Linton,
Frank Lüebeck, and Max Neunhöeffer

An Improvement of a Function Computing Normalizers for Permutation
Groups . 62

Izumi Miyamoto

A GAP Package for Computation with Coherent Configurations 69
Dmitrii V. Pasechnik and Keshav Kini

Computer Algebra (Invited)

CoCoALib: A C++ Library for Computations in Commutative Algebra
... and Beyond . 73

John Abbott and Anna M. Bigatti

LinBoxFounding Scope Allocation, Parallel Building Blocks, and
Separate Compilation . 77

Jean-Guillaume Dumas, Thierry Gautier, Clément Pernet, and
B. David Saunders

FGb: A Library for Computing Gröbner Bases . 84
Jean-Charles Faugère

Fast Library for Number Theory: An Introduction 88
William B. Hart

Exact Numeric Computation for Algebraic and
Geometric Computation (Invited)

Controlled Perturbation for Certified Geometric Computing with
Fixed-Precision Arithmetic . 92

Dan Halperin

Exact Geometric and Algebraic Computations in CGAL 96
Menelaos I. Karavelas

On Solving Systems of Bivariate Polynomials . 100
Fabrice Rouillier

Table of Contents XIII

Accurate and Reliable Computing in Floating-Point Arithmetic 105
Siegfried M. Rump

Exact Numeric Computation for Algebraic and
Geometric Computation (Contributed)

Deferring Dag Construction by Storing Sums of Floats Speeds-Up
Exact Decision Computations Based on Expression Dags 109

Marc Mörig

The Design of Core 2: A Library for Exact Numeric Computation in
Geometry and Algebra . 121

Jihun Yu, Chee Yap, Zilin Du, Sylvain Pion, and Hervé Brönnimann

Formal Proof (Invited)

Introducing HOL Zero (Extended Abstract) . 142
Mark Adams

Euler’s Polyhedron Formula in mizar . 144
Jesse Alama

Building a Library of Mechanized Mathematical Proofs: Why Do It?
and What Is It Like to Do? . 148

Rob D. Arthan

Linear Programs for the Kepler Conjecture (Extended Abstract) 149
Thomas C. Hales

A Formal Proof of Pick’s Theorem (Extended Abstract) 152
John Harrison

Formal Proof (Contributed)

Evaluation of Automated Theorem Proving on the Mizar Mathematical
Library . 155

Josef Urban, Krystof Hoder, and Andrei Voronkov

Geometry and Visualization (Invited)

On Local Deformations of Planar Quad-Meshes . 167
Tim Hoffmann

Construction of Harmonic Surfaces with Prescribed Geometry 170
Matthias Weber

XIV Table of Contents

Geometry and Visualization (Contributed)

A Library of OpenGL-based Mathematical Image Filters 174
Martin von Gagern and Christian Mercat

MD-jeep: An Implementation of a Branch and Prune Algorithm for
Distance Geometry Problems . 186

Antonio Mucherino, Leo Liberti, and Carlile Lavor

TADD: A Computational Framework for Data Analysis Using Discrete
Morse Theory . 198

Jan Reininghaus, David Günther, Ingrid Hotz,
Steffen Prohaska, and Hans-Christian Hege

Groebner Bases and Applications (Invited)

Introduction to Normaliz 2.5 . 209
Winfried Bruns, Bogdan Ichim, and Christof Söger

Computer Algebra Methods in Tropical Geometry . 213
Thomas Markwig

Groebner Bases and Applications (Contributed)

A New Desingularization Algorithm for Binomial Varieties in Arbitrary
Characteristic . 217

Roćıo Blanco

An Algorithm of Computing Inhomogeneous Differential Equations for
Definite Integrals . 221

Hiromasa Nakayama and Kenta Nishiyama

New Algorithms for Computing Primary Decomposition of Polynomial
Ideals . 233

Masayuki Noro

An Automated Confluence Proof for an Infinite Rewrite System
Parametrized over an Integro-Differential Algebra . 245

Loredana Tec, Georg Regensburger, Markus Rosenkranz, and
Bruno Buchberger

Operadic Gröbner Bases: An Implementation . 249
Vladimir Dotsenko and Mikael Vejdemo-Johansson

Number Theoretical Software (Invited)

Magma - A Tool for Number Theory . 253
John Cannon, Steve Donnelly, Claus Fieker, and Mark Watkins

Table of Contents XV

Number Theoretical Software (Contributed)

Enumerating Galois Representations in Sage . 256
Craig Citro and Alexandru Ghitza

NZMATH 1.0 . 260
Satoru Tanaka, Naoki Ogura, Ken Nakamula, Tetsushi Matsui, and
Shigenori Uchiyama

Software for Optimization and Polyhedral
Computation (Invited)

Removing Redundant Quadratic Constraints . 270
David Adjiashvili, Michel Baes, and Philipp Rostalski

Traversing Symmetric Polyhedral Fans . 282
Anders Nedergaard Jensen

C++ Tools for Exploiting Polyhedral Symmetries . 295
Thomas Rehn and Achill Schürmann

isl: An Integer Set Library for the Polyhedral Model 299
Sven Verdoolaege

Software for Optimization and Polyhedral
Computation (Contributed)

The Reformulation-Optimization Software Engine . 303
Leo Liberti, Sonia Cafieri, and David Savourey

Generating Smooth Lattice Polytopes . 315
Christian Haase, Benjamin Lorenz, and Andreas Paffenholz

Reliable Computation (Invited)

Mathemagix: Towards Large Scale Programming for Symbolic and
Certified Numeric Computations . 329

Grégoire Lecerf

Complex Inclusion Functions in the CoStLy C++ Class Library 333
Markus Neher

Standardized Interval Arithmetic and Interval Arithmetic Used in
Libraries . 337

Nathalie Revol

XVI Table of Contents

Reliable Computation (Contributed)

Efficient Evaluation of Large Polynomials . 342
Charles E. Leiserson, Liyun Li, Marc Moreno Maza, and Yuzhen Xie

Communicating Functional Expressions from Mathematica to C-XSC . . . 354
Evgenija D. Popova and Walter Krämer

Author Index . 367

Computational Discrete Geometry

Thomas C. Hales�

University of Pittsburgh

Abstract. In recent years, computers have been used regularly to solve
major problems in discrete geometry. The talk at ICMS 2010 will give
a survey of the computational methods. The extended abstract that is
provided below mentions a few of the problems that will be discussed.

Newton-Gregory Problem

In a famous discussion, Isaac Newton claimed that at most twelve nonoverlapping
congruent balls in Euclidean three space can touch one further ball at the center
of them all. Gregory thought that it might be possible for thirteen balls to
touch the one at the center. It was only in 1953 that Newton was finally proved
correct. Earlier this year, Musin and Tarasov announced that they have finally
determined the optimal arrangement of thirteen balls [9]. These thirteen balls
do not touch the one at the center, but they come as close as possible. Their
proof involves an analysis of more than 94 million planar graphs, which have
been generated with the program plantri [2]. Linear programming methods are
used to exclude all but the one optimal graph.

Fig. 1. Musin and Tarasov recently proved that this arrangement of thirteen congruent
is optimal. Each node of the graph represents one of the thirteen balls and each edge
represents a pair of touching balls. The node at the center of the graph corresponds to
the uppermost ball in the second frame.

Hilbert’s Eighteenth Problem

In 1900, in his famous list of problems, Hilbert asked, “How can one arrange
most densely in space an infinite number of equal solids of given form, e. g.,
spheres with given radii or regular tetrahedra with given edges (or in prescribed

� Research supported by NSF grant 0804189 and a grant from the Benter Foundation.
The author places this abstract in the public domain.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 1–3, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 T.C. Hales

position), that is, how can one so fit them together that the ratio of the filled to
the unfilled space may be as great as possible” [7]?

Dense Sphere Packings. The solution to the sphere-packing problem was
published in [6]. It is now the subject of a large scale formal-proof project,
Flyspeck, in the HOL Light proof assistant. The talk will describe the current
status of this project.

Tetrahedra. Aristotle erroneously believed that the regular tetrahedron tiles
three dimensional space: “It is agreed that there are only three plane figures
which can fill a space, the triangle, the square, and the hexagon, and only two
solids, the pyramid and the cube” [1]. In fact, the tetrahedron cannot tile because
its dihedral angle is about 70.5◦, which falls short of the angle 72 = 360/5 that
would be required of a space-filling tile.

Attention has turned to the tetrahedron-packing problem, which has come
under intensive investigation over the past few years [3], [10]. As a result of
Monte Carlo simulations by Chen et al., the optimal packing is now given by an
explicit conjecture.

Dense Lattice Packings of Spheres in High Dimensions

Lagrange found that the denset packing of congruent disks in the plane, among
all lattice packings, is the hexagonal packing [8]. See Figure 2. Gauss solved
the analogous problem in three dimensions [5]. During the early decades of the
twentieth century, the problem of determining the densest lattice packing of balls
was solved in dimensions up to eight. Cohn and Kumar, in a computer assisted
proof, have solved the problem in dimension 24 [4]. Their proof relies on a variety
of computations and mathematical methods, including the Poisson summation
formula and spherical harmonics.

Fig. 2. Lagrange proved that this is the densest of all lattice packings in two
dimensions

Other Problems

This abstract has mentioned just a few of a large number of problems in discrete
geometry that have been or that are apt to be solved by computer. Others include
Fejes Toth’s contact conjecture, the Kelvin problem, circle packing problems,
the strong dodecahedral conjecture, the Reinhardt conjecture, and the covering
problem. Discrete geometry depends on the development of software to assist in
the solution to these problems.

Computational Discrete Geometry 3

References

1. Aristotle, On the heaven, translated by J.L. Stocks, 350BC,
http://classics.mit.edu/Aristotle/heavens.html

2. Brinkmann, G., McKay, B.D.: Fast generation of planar graphs, expanded edition
(2007), http://cs.anu.edu.au/~bdm/papers/plantri-full.pdf

3. Chen, B., Engel, M., Glotzer, S.C.: Dense crystalline dimer packings of regular
tetrahedra (2010), http://arxiv.org/abs/1001.0586

4. Cohn, H., Kumar, A.: The densest lattice in twenty-four dimensions. Electronic
Research Annoucements of the American Mathematical Society 10, 58–67 (2004),
math.MG/0408174

5. Gauss, C.F.: Untersuchungen über die Eigenscahften der positiven ternären
quadratischen Formen von Ludwig August Seber. Göttingische gelehrte Anzeigen
(1831); Also published in J. reine angew. Math. 20, 312–320 (1840), Werke 2.
Königliche Gesellschaft der Wissenschaften, Göttingen, 188–196 (1876)

6. Hales, T.C., Ferguson, S.P.: Kepler conjecture. Discrete and Computational Ge-
ometry 36(1), 1–269 (2006)

7. Hilbert, D.: Mathematische probleme. Archiv Math. Physik 1, 44–63 (1901); Also
in Proc. Sym. Pure Math. 28, 1–34 (1976)

8. Lagrange, J.L.: Recherches d’arithmétique. Mem. Acad. Roy. Sc. Bell Lettres
Berlin 3, 693–758 (1773); Volume and pages refer to Œuvres

9. Musin, O.R., Tarasov, A.S.: The strong thirteen spheres problem (February 2010)
(preprint), http://arxiv.org/abs/1002.1439

10. Torquato, S., Jiao, Y.: Exact constructions of a family of dense periodic packings
of tetrahedra. Physical Review E 81, 041310–1–11 (2010),
http://cherrypit.princeton.edu/papers.html

http://classics.mit.edu/Aristotle/heavens.html
http://cs.anu.edu.au/~bdm/papers/plantri-full.pdf
http://arxiv.org/abs/1001.0586
math.MG/0408174
http://arxiv.org/abs/1002.1439
http://cherrypit.princeton.edu/papers.html

Exploiting Structured Sparsity in Large Scale

Semidefinite Programming Problems

Masakazu Kojima�

Department of Mathematical and Computing Science,
Tokyo Institute of Technology,

Oh-Okayama, Meguro, Tokyo 152-8552, Japan

Abstract. Semidefinite programming (SDP) covers a wide range of
applications such as robust optimization, polynomial optimization, com-
binatorial optimization, system and control theory, financial engineer-
ing, machine learning, quantum information and quantum chemistry. In
those applications, SDP problems can be large scale easily. Such large
scale SDP problems often satisfy a certain sparsity characterized by a
chordal graph structure. This sparsity is classified in two types. The one
is the domain space sparsity (d-space sparsity) for positive semidefinite
symmetric matrix variables involved in SDP problems, and the other the
range space sparsity (r-space sparsity) for matrix-inequality constraints
in SDP problems. In this short note, we survey how we exploit these two
types of sparsities to solve large scale linear and nonlinear SDP prob-
lems. We refer to the paper [7] for more details.

Keywords: Semidefinite Program, Primal-Dual Interior-Point Method,
Sparsity, Chordal Graph.

Let Rn denote the n-dimensional Euclidean space, Sn the linear space of n× n
symmetric matrices, and Sn

+ the cone of n × n symmetric positive semidefinite
matrices. Let N = {1, 2, . . . , n}. For every nonempty C ⊂ N , we use the symbol
SC for the linear space of |C| × |C| symmetric matrices with coordinates i ∈ C,
and SC

+ for the cone of positive semidefinite matrices in SC . We write X � O

when X ∈ SC
+ for some C ⊂ N .

To describe a d-space conversion method, we consider a general nonlinear
optimization problem involving a symmetric positive semidefinite matrix variable
X ∈ Sn:

minimize f0(x,X) subject to f (x,X) ∈ Ω and X ∈ Sn
+, (1)

where f0 : Rs×Sn → R, f : Rs×Sn → Rm and Ω ⊂ Rm. We construct a d-space
sparsity pattern graph G(N,E) with the node set N and an edge set E. Let E be
the set of distinct row and column index pairs (i, j) such that a value of Xij is
necessary to evaluate f0(x,X) and/or f(x,X). More precisely, E is a collection
of distinct row and column index pairs (i, j) such that f0(x,X1) �= f0(x,X2)

� This research was supported by Grant-in-Aid for Scientific Research (B) 22310089.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 4–9, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Exploiting Sparsity in Large Scale SDP Problems 5

and/or f (x,X1) �= f(x,X2) for some x ∈ Rs, X1 ∈ Sn and X2 ∈ Sn satisfying
X1

k� = X2
k� for every (k, �) �= (i, j), �= (j, i). Note that we identify each edge

(j, i) with (i, j) (i < j). Let G(N,E) be a chordal extension of G(N,E), and
C1, C2, . . . , Cp its maximal cliques. Here a graph is said to be chordal if every
(simple) cycle of the graph with more than three edges has a chord. See [3] for
basic properties on chordal graphs. Since any variable Xij (i, j) �∈ ∪p

k=1Ck is not
involved in the functions f0 : Rs×Sn → R and f : Rs×Sn → Rm, we may regard
f0 and f as functions in x ∈ Rs and X(Ck) ∈ SCk (k = 1, 2, . . . , p), i.e., there
are functions f̃0 and f̃ in the variables x and X(Ck) ∈ SCk (k = 1, 2, . . . , p)
such that

f0(x,X) = f̃0(x,X(C1),X(C2), . . . ,X(Cp)) for every (x,X) ∈ Rs × Sn,

f(x,X) = f̃ (x,X(C1),X(C2), . . . ,X(Cp)) for every (x,X) ∈ Rs × Sn.

Furthermore, applying the positive semidefinite matrix completion (Theorem 7
of [6]), we can replace the positive semidefinite condition X ∈ Sn

+ by multiple
smaller positive semidefinite conditions X(Ck) ∈ SCk

+ (k = 1, 2, . . . , p) to convert
the problem (1) to an equivalent problem

minimize f̃0(x,X(C1),X(C2), . . . ,X(Cp))
subject to f̃(x,X(C1),X(C2), . . . ,X(Cp)) ∈ Ω and

X(Ck) ∈ SCk
+ (k = 1, 2, . . . , p).

(2)

If every clique Ck is small (k = 1, 2, . . . , p), then the number of real variables
Xij involved in the converted problem (2) is smaller than that in the original
problem (1). The d-space conversion method described above is an extension of
the conversion method proposed in the papers [5,10] for a linear SDP problem
to a general nonlinear case.

Now we describe an r-space conversion method briefly. Let M : Rs → Sn.
Consider a matrix inequality

M (y) ∈ Sn
+. (3)

We assume a similar chordal graph structured sparsity as the d-space conversion
method. Let E be the set of distinct row and column index pairs (i, j) of the
mapping M such that Mij is not identically zero, i.e., Mij(y) �= 0 for some
y ∈ Rs. We call a graph G(N,E) with the node set N and the edge set E an
r-space sparsity pattern graph. Let G(N,E) be a chordal extension of G(N,E),
and C1, C2, . . . , Cp its maximal cliques. Applying a dual of the positive matrix
completion (Theorem 2.3 of [1], see also Theorems 4.1 and 4.2 of [7]), we can
convert the matrix inequality (3) to a family of multiple inequalities

M̃k(y) − L̃k(z) ∈ SCk
+ (k = 1, 2, . . . , p) (4)

for some mappings M̃k from Rs into SCk (k = 1, 2, . . . , p) and some linear
mappings L̃k from Rq into SCk (k = 1, 2, . . . , p). The matrix inequality (3) is
equivalent to the family (4) of matrix inequalities in the sense that y ∈ Rs

6 M. Kojima

satisfies (3) if and only if y ∈ Rs satisfies (4) for some z ∈ Rq. The dimension q
of the auxiliary variable vector z is determined by the r-space sparsity pattern
graph G(N,E). For example, if M is tridiagonal, the sizes of M̃k and L̃k are
all 2 × 2 and q = n− 2.

To illustrate the d-space and r-space conversion methods, we show a simple
SDP problem from the paper [7]. Let A0 be a tridiagonal matrix in Sn such that
A0

ij = 0 if |i− j| > 1, and define a mapping M from Sn into Sn by

M(X) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −X11 0 0 . . . 0 X12
0 1 −X22 0 . . . 0 X23

0 0
. . . 0 X34

.
.

0 0 0 1 −Xn−1,n−1 Xn−1,n

X21 X32 X43 . . . Xn,n−1 1 −Xnn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
for every X ∈ Sn. Consider an SDP problem

minimize A0 • X subject to M (X) � O, X � O. (5)

Among the elements Xij (i = 1, 2, . . . , n, j = 1, 2, . . . , n) of the matrix variable
X ∈ Sn, the elements Xij with |i−j| ≤ 1 are relevant and all other elements Xij

with |i− j| > 1 are unnecessary in evaluating the objective function A0 •X and
the matrix inequality M(X) � O. Hence, we can describe the d-space sparsity
pattern as an n× n symbolic tridiagonal matrix with the nonzero symbol �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � 0 . . . 0 0
� � � . . . 0 0

0 � �
. . . 0 0

.
. . .

. . .
.

0 0 . . .
. . . � �

0 0 � �

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Figure 1 shows the d-space sparsity pattern graph G(N,E), which is apparently
chordal because there is no cycle. Hence G(N,E) = G(N,E) with E = E =
{(i, j) ∈ N ×N : |i− j| = 1}.

1 2 n

Fig. 1. The d-space sparsity pattern graph

Exploiting Sparsity in Large Scale SDP Problems 7

On the other hand, the r-space sparsity pattern is described as⎛⎜⎜⎜⎜⎜⎝
� 0 . . . 0 �
0 � . . . 0 �

.
.

0 0 . . . � �
� � . . . � �

⎞⎟⎟⎟⎟⎟⎠ .

Figure 2 shows the r-space sparsity pattern graph G(N,E), which is apparently
chordal because there is no cycle. Hence G(N,E) = G(N,E) with E = E =
{(i, n) ∈ N ×N : i = 1, 2, . . . , n− 1}.

1 2

n

n-1

Fig. 2. The r-space sparsity pattern graph

Applying the d-space and r-space conversion methods, we can reduce the SDP
problem (5) to

minimize
n−1∑
i=1

(
A0

iiXii + 2A0
i,i+1Xi,i+1

)
+ A0

nnXnn

subject to
(

1 0
0 0

)
−
(

X11 −X12
−X21 −z1

)
� O,(

1 0
0 0

)
−
(

Xii −Xi,i+1
−Xi+1,i zi−1 − zi

)
� O (i = 2, 3, . . . , n− 2),(

1 0
0 1

)
−
(

Xn−1,n−1 −Xn−1,n

−Xn,n−1 Xn,n + zn−2

)
� O,(

0 0
0 0

)
−
(−Xii −Xi,i+1
−Xi+1,i −Xi+1,i+1

)
� O (i = 1, 2, . . . , n− 1).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

This problem has (3n − 3) real variables Xii (i = 1, 2, . . . , n), Xi,i+1 (i =
1, 2, . . . , n−1) and zi (i = 1, 2, . . . , n−2), and (2n−1) linear matrix inequalities
with size 2×2. Since the original SDP problem (5) involves an n×n matrix vari-
able X and an n× n matrix inequality M(X) � O, we can expect to solve the
SDP problem (6) much more efficiently than the SDP problem (5) as n becomes
larger.

Table 1 shows numerical results on the SDP problems (5) and (6) solved
by SDPA 7.3.0 [11]. To convert (5) to (6), we used SparseCoLO [4,13], which
is a MATLAB implementation of the d-space and r-space conversion methods
for linear SDP problems. The numerical experiment was done on 3.06 GHz Intel
Core 2 Duo with 8GB Memory. As we have mentioned above, we observe that the

8 M. Kojima

Table 1. Numerical results on the SDP problems (5) and (6). Here ’SDPA’ denotes the
elapsed time to solve the SDP problems (5) or (6) by SDPA, ’Total’ the total elapsed
time including the conversion from the SDP problem (5) to (6) by SparseCoLO, ’#var.’
the number of variables, ’Size’ the size of linear matrix inequalities and ’#’ the number
of linear matrix inequalities.

SDP (5) SDP (6)

Elapsed time LMIs Elapsed time LMIs

n SDPA #var. Size # SDPA Total #var. Size #

10 0.1 55 10 1 0.2 0.3 27 2 19
100 107.5 5,050 100 1 0.4 0.8 297 2 199

1000 Out of memory 500,500 1,000 1 2.7 25.0 2,997 2 1,999
2000 Out of memory 2,001,000 2,000 1 5.4 136.4 5,997 2 3,999
4000 Out of memory 8,002,000 4,000 1 11.1 985.7 11,997 2 7,999

number of variables of the converted SDP problem (6) is much smaller than that
of the original SDP problem (5), and that the size of LMIs of (6) remains constant
2 even when n increases. These two factors contributed to shorter elapsed time
to solve the converted SDP problem (6) with larger n.

We finally mention two software packages which utilize the basic idea of the
d-space conversion method for linear SDP problems besides SparseCoLO [4,13]
referred above. The one is SparsePOP [14,15], which is a MATLAB implemen-
tation of a sparse version of Lasserre’s hierarchy of SDP relaxations [9], for
solving polynomial optimization problems. The other is SFSDP [8,12] for sen-
sor network localization problems, where the d-space conversion method was
successfully used to considerably improve the efficiency of the full SDP [2].

References

1. Agler, J., Helton, J., McCullough, S., Rodman, L.: Positive Semidefinite Matrices
with a Given Sparsity Pattern. Linear Algebra Appl. 107, 101–149 (1988)

2. Biswas, P., Ye, Y.: Semidefinite Programming for Ad Hoc Wireless Sensor Network
Localization. In: Proceedings of the Third International Symposium on Information
Processing in Sensor Networks, pp. 46–54. ACM Press, New York (2004)

3. Blair, J.R.S., Peyton, B.: An Introduction to Chordal Graphs and Clique Trees.
In: George, A., Gilbert, J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix
Computation, pp. 1–29. Springer, New York (1993)

4. Fujisawa, K., Kim, S., Kojima, M., Okamoto, Y., Yamashita, M.: User’s Manual for
SparseCoLO: Conversion Methods for SPARSE COnic-form Linear Optimization
Problems. Research Report B-453, Dept. of Math. and Comp. Sci., Tokyo Institute
of Technology, Tokyo 152-8552, Japan (2009)

5. Fukuda, M., Kojima, M., Murota, K., Nakata, K.: Exploiting Sparsity in Semidef-
inite Programming via Matrix Completion I: General Framework. SIAM Journal
on Optimization 11, 647–674 (2000)

6. Grone, R., Johnson, C.R., Sá, E.M., Wolkowitz, H.: Positive Definite Completions
of a Partial Hermitian Matrices. Linear Algebra Appl. 58, 109–124 (1984)

Exploiting Sparsity in Large Scale SDP Problems 9

7. Kim, S., Kojima, M., Mevissen, M., Yamashita, M.: Exploiting Sparsity in Linear
and Nonlinear Matrix Inequalities via Positive Semidefinite Matrix Completion.
Research Report B-452, Dept. of Math. and Comp. Sci., Tokyo Institute of Tech-
nology, Tokyo 152-8552, Japan (2009)

8. Kim, S., Kojima, M., Waki, H.: Exploiting Sparsity in SDP Relaxation for Sensor
Network Localization. SIAM Journal of Optimization 20, 192–215 (2009)

9. Lasserre, J.B.: Global Optimization with Polynomials and the Problems of Mo-
ments. SIAM Journal on Optimization 11, 796–817 (2001)

10. Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., Murota, K.: Exploiting Spar-
sity in Semidefinite Programming via Matrix Completion II: Implementation and
Numerical Results. Mathematical Programming 95, 303–327 (2003)

11. SDPA’s homepage,
http://sdpa.indsys.chuo-u.ac.jp/sdpa/

12. SFSDP’s homepage,
http://www.is.titech.ac.jp/~kojima/SFSDP122/SFSDP.html

13. SparseCoLO’s homepage,
http://www.is.titech.ac.jp/~kojima/SparseCoLO/SparseCoLO.htm

14. SparsePOP’s homepage,
http://www.is.titech.ac.jp/~kojima/SparsePOP/SparsePOP.html

15. Waki, H., Kim, S., Kojima, M., Muramatsu, M., Sugimoto, H.: SparsePOP: a
Sparse Semidefinite Programming Relaxation of Polynomial Optimization Prob-
lems. ACM Transactions on Mathematical Software 35, 15 (2008)

http://sdpa.indsys.chuo-u.ac.jp/sdpa/
http://www.is.titech.ac.jp/~kojima/SFSDP122/SFSDP.html
http://www.is.titech.ac.jp/~kojima/SparseCoLO/SparseCoLO.htm
http://www.is.titech.ac.jp/~kojima/SparsePOP/SparsePOP.html

Reliable and Efficient Geometric Computing

Kurt Mehlhorn

Max-Planck-Institut für Informatik

Computing with geometric objects (points, curves, and surfaces) is central for
many engineering disciplines and lies at the heart of computer aided design
systems. Implementing geometric algorithms is notoriously difficult and most
actual implementations are incomplete: they are known to crash or deliver the
wrong result on some instances.

In the introductory part of the talk, I illustrate the pitfalls of geometric com-
puting [KMP+08] and explain for one algorithm in detail where the problem lies
and what goes wrong.

In the main part of the talk I discuss approaches to reliable and efficient
geometric computing. I will concentrate on the exact computation paradigm
[FvW93, Yap97, MN99] and briefly touch controlled perturbation [HS98, MOS10].
I will report about theoretical and practical advances [Ker09, BKS08, Ker09,
MS, Eme10b, Eme10a, EBS09] and the use of the paradigms in systems LEDA
[MN99], CGAL [CGA], and EXACUS [EXA].

References

[BKS08] Berberich, E., Kerber, M., Sagraloff, M.: Exact geometric-topological anal-
ysis of algebraic surfaces. In: SoCG, pp. 164–173 (2008)

[CGA] CGAL (Computational Geometry Algorithms Library),
http://www.cgal.org

[EBS09] Emeliyanenko, P., Berberich, E., Sagraloff, M.: Visualizing arcs of implicit
algebraic curves, exactly and fast. In: ISVC 2009: Proceedings of the 5th
International Symposium on Advances in Visual Computing, pp. 608–619.
Springer, Heidelberg (2009)

[Eme10a] Emeliyanenko, P.: A complete modular resultant algorithm targeted for
realization on graphics hardware. In: PASCO 2010. ACM, New York (to
appear 2010)

[Eme10b] Emeliyanenko, P.: Modular Resultant Algorithm for Graphics Processors.
In: ICA3PP 2010, pp. 427–440. Springer, Heidelberg (2010)

[EXA] EXACUS (EXAct computation with CUrves and Surfaces),
http://www.mpi-sb.mpg.de/projects/EXACUS

[FvW93] Fortune, S., van Wyk, C.: Efficient exact integer arithmetic for computa-
tional geometry. In: 7th ACM Conference on Computational Geometry, pp.
163–172 (1993)

[HS98] Halperin, D., Shelton, C.: A perturbation scheme for spherical arrangements
with application to molecular modeling. CGTA: Computational Geometry:
Theory and Applications 10 (1998)

[Ker09] Kerber, M.: Geometric Algorithms for Algebraic Curves and Surfaces. PhD
thesis, Saarland University (2009)

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 10–11, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cgal.org
http://www.mpi-sb.mpg.de/projects/EXACUS

Reliable and Efficient Geometric Computing 11

[KMP+08] Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.: Classroom Exam-
ples of Robustness Problems in Geometric Computations. Computational
Geometry: Theory and Applications (CGTA) 40, 61–78 (2008); A prelimi-
nary version appeared in ESA 2004. LNCS, vol. 3221, pp. 702–713. Springer,
Heidelberg (2004)

[MN99] Mehlhorn, K., Näher, S.: The LEDA Platform for Combinatorial and Geo-
metric Computing. Cambridge University Press, Cambridge (1999)

[MOS10] Mehlhorn, K., Osbild, R., Sagraloff, M.: A General Approach to the Anal-
ysis of Controlled Perturbation Algorithms. Submitted for publication a
preliminary version appeared in ICALP 2006 (February 2010)

[MS] Mehlhorn, K., Sagraloff, M.: A Deterministic Descartes Algorithm for Real
Polynomials. In: ISSAC 2009 (2009)

[Yap97] Yap, C.-K.: Towards exact geometric computation. CGTA: Computational
Geometry: Theory and Applications 7 (1997)

The Sage Project:
Unifying Free Mathematical Software to Create a Viable

Alternative to Magma, Maple, Mathematica and
MATLAB

Burçin Eröcal1 and William Stein2

1 Research Institute for Symbolic Computation
Johannes Kepler University,

Linz, Austria
Supported by FWF grants P20347 and DK W1214

burcin@erocal.org
2 Department of Mathematics

University of Washington
wstein@uw.edu

Supported by NSF grant DMS-0757627 and DMS-0555776

Abstract. Sage is a free, open source, self-contained distribution of
mathematical software, including a large library that provides a unified
interface to the components of this distribution. This library also builds
on the components of Sage to implement novel algorithms covering a
broad range of mathematical functionality from algebraic combinatorics
to number theory and arithmetic geometry.

Keywords: Python, Cython, Sage, Open Source, Interfaces.

1 Introduction

In order to use mathematical software for exploration, we often push the bound-
aries of available computing resources and continuously try to improve our imple-
mentations and algorithms. Most mathematical algorithms require basic build-
ing blocks, such as multiprecision numbers, fast polynomial arithmetic, exact
or numeric linear algebra, or more advanced algorithms such as Gröbner basis
computation or integer factorization. Though implementing some of these basic
foundations from scratch can be a good exercise, the resulting code may be slow
and buggy. Instead, one can build on existing optimized implementations of these
basic components, either by using a general computer algebra system, such as
Magma, Maple, Mathematica or MATLAB, or by making use of the many high
quality open source libraries that provide the desired functionality. These two
approaches both have significant drawbacks. This paper is about Sage,1 which
provides an alternative approach to this problem.

1 http://www.sagemath.org

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 12–27, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.sagemath.org

Sage: Unifying Free Mathematical Software 13

Having to rely on a closed propriety system can be frustrating, since it is
difficult to gain access to the source code of the software, either to correct a bug
or include a simple optimization in an algorithm. Sometimes this is by design:

“Indeed, in almost all practical uses of Mathematica, issues about how Math-
ematica works inside turn out to be largely irrelevant. You might think that
knowing how Mathematica works inside would be necessary [...]” (See [Wol].)

Even if we manage to contact the developers, and they find time to make the
changes we request, it might still take months or years before these changes are
made available in a new release.

Fundamental questions of correctness, reproducibility and scientific value arise
when building a mathematical research program on top of proprietary software
(see, e.g., [SJ07]). There are many published refereed papers containing results
that rely on computations performed in Magma, Maple, or Mathematica.2 In
some cases, a specific version of Magma is the only software that can carry out
the computation. This is not the infrastructure on which we want to build the
future of mathematical research.

In sharp contrast, open source libraries provide a great deal of flexibility, since
anyone can see and modify the source code as they wish. However, functionality
is often segmented into different specialized libraries and advanced algorithms
are hidden behind custom interpreted languages. One often runs into trouble
trying to install dependencies before being able use an open source software
package. Also, converting the output of one package to the input format of
another package can present numerous difficulties and introduce subtle errors.

Sage, which started in 2005 (see [SJ05]), attacks this problem by providing:

1. a self-contained distribution of mathematical software that installs from
source easily, with the only dependency being compiler tools,

2. unified interfaces to other mathematical software to make it easier to use all
these programs together, and

3. a new library that builds on the included software packages and implements
a broad range of mathematical functionality.

The rest of this paper goes into more detail about Sage. In Section 1.1, we
describe the Sage graphical user interface. Section 1.2 is about the Sage devel-
opment process, Sage days workshops, mailing lists, and documentation. The
subject of Section 2 is the sophisticated way in which Sage is built out of a wide
range of open source libraries and software. In Section 2.1 we explain how we use
Python and Cython as the glue that binds the compendium of software included
in Sage into a unified whole. We then delve deeper into Python, Cython and the
Sage preparser in Section 2.2, and illustrate some applications to mathematics
in Section 2.3. Sage is actively used for research, and in Section 3 we describe
some capabilities of Sage in advanced areas of mathematics.

2 Including by the second author of this paper, e.g., [CES03]!

14 B. Eröcal and W. Stein

Fig. 1. The Sage Notebook

1.1 The Notebook

As illustrated in Figure 1, the graphical user interface for Sage is a web applica-
tion, inspired by Google Documents [Goo], which provides convenient access to
all capabilities of Sage, including 3D graphics. In single user mode, Sage works
like a regular application whose main window happens to be your web browser.
In multiuser mode, this architecture allows users to easily set up servers for ac-
cessing their work over the Internet as well as sharing and collaborating with
colleagues. One can try the Sage notebook by visiting www.sagenb.org, where
there are over 30,000 user accounts and over 2,000 published worksheets.

Users also download Sage to run it directly on their computers. We track all
downloads from www.sagemath.org, though there are several other high-profile
sites that provide mirrors of our binaries. Recently, people download about 6,000
copies of Sage per month directly from the Sage website.

1.2 The Sage Development Process

There are over 200 developers from across the world who have contributed to the
Sage project. People often contribute because they write code using Sage as part
of a research project, and in this process find and fix bugs, speed up parts of Sage,
or want the code portion of their research to be peer reviewed. Each contribution
to Sage is first posted to the Sage Trac server trac.sagemath.org; it is then
peer reviewed, and finally added to Sage after all issues have been sorted out
and all requirements are met. Nothing about this process is anonymous; every
step of the peer review process is recorded indefinitely for all to see.

The Sage Developer’s Guide begins with an easy-to-follow tutorial that guides
developers through each step involved in contributing code to Sage. Swift feed-
back is available through the sage-develmailing list, and the #sage-devel IRC
chat room on irc.freenode.net (see www.sagemath.org/development.html).

www.sagenb.org
www.sagemath.org
trac.sagemath.org
www.sagemath.org/development.html

Sage: Unifying Free Mathematical Software 15

Much development of Sage has taken place at the Sage Days workshops. There
have been two dozen Sage Days [Sagb] and many more are planned. These are
essential to sustaining the momentum of the Sage project and also help ensure
that developers work together toward a common goal, rather than competing
with each other and fragmenting our limited community resources.

A major goal is ensuring that there will be many Sage Days workshops for the
next couple of years. The topics will depend on funding, but will likely include
numerical computation, large-scale bug fixing, L-functions and modular forms,
function fields, symbolic computation, topology, and combinatorics. The combi-
nation of experienced developers with a group of enthusiastic mathematicians
at each of these workshops has rapidly increased the developer community, and
we hope that it will continue to do so.

2 Building the Car. . .

With the motto “building the car instead of reinventing the wheel,” Sage brings
together numerous open source software packages (see Table 1 and [Saga]).

Many applications of Sage require using these libraries together. Sage handles
the conversion of data behind the scenes, automatically using the best tool for
the job, and allows the user to concentrate on the problem at hand.

In the following example, which we explain in detail below, Sage uses the
FLINT library [HH] for univariate polynomials over the ring Z of integers,
whereas Singular [DGPS10] is used for multivariate polynomials. The option
to use the NTL library [Sho] for univariate polynomials is still available, if the
user so chooses.

1 sage : R.<x> = ZZ[]

2 sage : type(R.an_element ())

3 <type ’sage.rings... Polynomial_integer_dense_flint’>

4 sage : R.<x,y> = ZZ[]

5 sage : type(R.an_element ())

6 <type ’sage.rings... MPolynomial_libsingular’>

7 sage : R = PolynomialRing (ZZ, ’x’, implementation =’NTL’)

8 sage : type(R.an_element ())

9 <type ’sage.rings... Polynomial_integer_dense_ntl’>

The first line in the example above constructs the univariate polynomial ring
R = Z[x], and assigns the variable x to be the generator of this ring. Note
that Z is represented by ZZ in Sage. The expression R.<x> = ZZ[] is not valid

16 B. Eröcal and W. Stein

Table 1. Packages Included With Every Copy of Sage-4.4.2

atlas gap libgcrypt palp scipy sandbox

blas gd libgpg error pari scons

boehm gc gdmodule libm4ri pexpect setuptools

boost genus2reduction libpng pil singular

cddlib gfan linbox polybori sphinx

cliquer ghmm matplotlib pycrypto sqlalchemy

cvxopt givaro maxima pygments sqlite

cython gnutls mercurial pynac symmetrica

docutils gsl moin python sympow

ecl iconv mpfi python gnutls sympy

eclib iml mpfr r tachyon

ecm ipython mpir ratpoints termcap

f2c jinja mpmath readline twisted

flint jinja2 networkx rubiks weave

flintqs lapack ntl sagenb zlib

fortran lcalc numpy sagetex zn poly

freetype libfplll opencdk scipy zodb3

Python, but can be used in Sage code as a shorthand as explained in Section 2.2.
The next line asks the ring R for an element, using the an_element function,
then uses the builtin Python function type to query its type. We learn that
it is an instance of the class Polynomial_integer_dense_flint. Similarly line
4 constructs R = Z[x, y] and line 7 defines R = Z[x], but this time using the
PolynomialRing constructor explicitly and specifying that we want the under-
lying implementation to use the NTL library.

Often these interfaces are used under the hood, without the user having to
know anything about the corresponding systems. Nonetheless, there are easy
ways to find out what is used by inspecting the source code, and users are
strongly encouraged to cite components they use in published papers. The fol-
lowing example illustrates another way to get a list of components used when a
specific command is run.

sage : from sage .misc.citation import get_systems

sage : get_systems (’integrate (x^2, x)’)

[’ginac’, ’Maxima’]

sage : R.<x,y,z> = QQ[]

sage : I = R.ideal(x^2+y^2, z^2+y)

sage : get_systems (’I.primary_decomposition ()’)

[’Singular ’]

2.1 Interfaces

Sage makes it possible to use a wide range of mathematical software packages
together by providing a unified interface that handles data conversion auto-
matically. The complexity and functionality of these interfaces varies greatly,
from simple text-based interfaces that call external software for an individual

Sage: Unifying Free Mathematical Software 17

Table 2. Sage Interfaces to the above Mathematical Software

Pexpect axiom, ecm, fricas, frobby, gap, g2red, gfan, gnuplot, gp,
kash, lie, lisp, macaulay2, magma, maple, mathematica,
matlab, maxima, mupad, mwrank, octave, phc, polymake,
povray, qepcad, qsieve, r, rubik, scilab, singular, tachyon

C Library eclib, fplll, gap (in progress), iml, linbox, maxima,
ratpoints, r (via rpy2), singular, symmetrica

C Library arithmetic flint, mpir, ntl, pari, polybori, pynac, singular

computation, to using a library as the basis for an arithmetic type. The inter-
faces can also run code from libraries written in the interpreted language of
another program. Table 2 lists the interfaces provided by Sage.

The above interfaces are the result of many years writing Python and Cython
[BBS] code to adapt Singular [DGPS10], GAP [L+], Maxima [D+], Pari [PAR],
GiNaC/Pynac [B+], NTL [Sho], FLINT [HH], and many other libraries, so that
they can be used smoothly and efficiently in a unified way from Python [Ros].
Some of these programs were originally designed to be used only through their
own interpreter and made into a library by Sage developers. For example lib-
Singular was created by Martin Albrecht in order to use the fast multivariate
polynomial arithmetic in Singular from Sage. The libSingular interface is now
used by other projects, including Macaulay2 [GS] and GFan [Jen].

There are other approaches to linking mathematical software together. The
recent paper [LHK+] reports on the state of the art using OpenMath. Sage takes
a dramatically different approach to this problem. Instead of using a general
string-based XML protocol to communicate with other mathematical software,
Sage interfaces are tailor made to the specific software and problem at hand.
This results in far more efficient and flexible interfaces. The main disadvantage
compared to OpenMath is that the interfaces all go through Sage.

Having access to many programs which can perform the same computation,
without having to worry about data conversion, also makes it easier to double
check results. For example, below we first use Maxima, an open source symbolic
computation package distributed with Sage, to integrate a function, then perform
the same computation using Maple and Mathematica.

sage : var(’x’)

sage : integrate (sin(x^2), x)

1/8*((I - 1)* sqrt (2)* erf ((1/2*I - 1/2)* sqrt (2)*x) + \

(I + 1)*sqrt (2)* erf ((1/2*I + 1/2)* sqrt (2)*x))* sqrt(pi)

sage : maple(sin(x^2)). integrate (x)

1/2*2^(1/2)* Pi ^(1/2)* FresnelS (2^(1/2)/ Pi ^(1/2)*x)

sage : mathematica (sin(x^2)). Integrate (x)

Sqrt[Pi/2]* FresnelS[Sqrt [2/Pi]*x]

The most common type of interface, called a pexpect interface, communicates
with another command line program by reading and writing strings to a text
console, as if another user was in front of the terminal. Even though these are

18 B. Eröcal and W. Stein

relatively simple to develop, the overhead of having to print and parse strings
to represent the data makes this process potentially cumbersome and inefficient.
This is the default method of communication with most high level mathemat-
ics software, including commercial and open source programs, such as Maple,
Mathematica, Magma, KASH or GAP.

Sage provides a framework to represent elements over these interfaces, perform
arithmetic with them or apply functions to the given object, as well as using
a file to pass the data if the string representation is too big. The following
demonstrates arithmetic with GAP elements.

sage : a = gap(’22’)

sage : a*a

484

It is also possible to use pexpect interfaces over remote consoles. In the following
code, we connect to the localhost as a different user and call Mathematica
functions. Note that the interface can handle indexing vectors as well.

sage : mma = Mathematica (server="rmma60@localhost ")

sage : mma("2+2")

4

sage : t = mma("Cos[x]")

sage : t.Integrate (’x’)

Sin[x]

sage : t = mma(’{0,1,2,3} ’)

sage : t[2]

1

Sage also includes specialized libraries that are linked directly from compiled
code written in Cython. These are used to handle specific problems, such as the
characteristic polynomial computation in the example below.

sage : M = Matrix(GF(5), 10, 10)

sage : M.randomize ()

sage : M.charpoly(algorithm =’linbox’)

x^10 + 4*x^9 + 4*x^7 + 3*x^4 + 3*x^3 + 3*x^2 + 4*x + 3

Many basic arithmetic types also use Cython to directly utilize data structures
from efficient arithmetic libraries, such as MPIR or FLINT. An example of this
can be seen at the beginning of this section, where elements of the ring Z[x] are
represented by the class Polynomial_integer_dense_flint.

The Singular interface is one of the most advanced included in Sage. Singular
has a large library of code written in its own language. Previously the only way to
access these functions, which include algorithms for Gröbner basis and primary
decomposition, was to call Singular through a pexpect interface, passing data
back and forth using strings. Recently, due to work of Michael Brickenstein and
Martin Albrecht, Sage acquired the ability to call these functions directly.

In the example below, we import the function primdecSY from primdec.lib,
and call it the same way we would call a Python function. The interface handles
the conversion of the data to Singular’s format and back. Since Sage already

Sage: Unifying Free Mathematical Software 19

uses Singular data structures directly to represent multivariate polynomials and
ideals over multivariate polynomial rings, there are no conversion costs. It is only
a matter of passing the right pointer.

sage : pr = sage .libs.singular .ff.primdec__lib .primdecSY

sage : R.<x,y,z> = QQ[]

sage : p = z^2+1; q = z^3+2

sage : I = R.ideal([p*q^2,y-z^2])

sage : pr(I)

[[[z^2 - y, y^3 + 4*y*z + 4], \

[z^2 - y, y*z + 2, y^2 + 2*z]], \

[[y + 1, z^2 + 1], [y + 1, z^2 + 1]]]

Efforts are under way to extend these capabilities to other programs, for example
to GAP which provides Sage’s underlying group theory functionality. Up to now,
GAP was only available through its interpreter, through a pexpect interface
that was written by Steve Linton. As the following example demonstrates, the
performance of this interface is far from ideal.3

sage : b = gap(’10’)

sage : b*b

100

sage : timeit(’b*b’)

625 loops , best of 3: 289 microseconds per loop

The code snippet above constructs the element b in GAP using the pexpect
interface, and measures the time it takes to square b. Compare these numbers
to the following example, which uses the library interface to GAP, recently de-
veloped by the second author (but not included in Sage yet).

sage : import sage .libs.gap.gap as g

sage : a = g.libgap(’10’); a

10

sage : type(a)

<type ’sage.libs.gap.gap.GapElement ’>

sage : a*a

100

sage : timeit(’a*a’)

625 loops , best of 3: 229 nanoseconds per loop

The library interface is about 1,000 times faster than the pexpect interface.

2.2 Python - A Mainstream Language

In line with the principle of not reinventing the wheel, Sage is built on the main-
stream programming language Python, both as the main development language
and the user language. This frees the Sage developers, who are mainly mathe-
maticians, from the troubles of language design, and gives access to an immense
array of general purpose Python libraries and tools.

3 All timings in this paper were performed on an 2.66GHz Intel Xeon X7460 based
computer.

20 B. Eröcal and W. Stein

Python is an interpreted language with a clear, easy to read and learn syntax.
Since it is dynamically typed, it is ideal for rapid prototyping, providing an
environment to easily test new ideas and algorithms.

A Fast Interpreter. In the following Singular session, we first declare the ring
r = Q[x, y, z] and the polynomial f ∈ r, then measures the time to square f
repeatedly, 10,000 times.

singular : int t = timer; ring r = 0,(x,y,z), dp;

singular : def f = y^2*z^2-x^2*y^3-x*z^3+x^3*y*z;

singular : int j; def g = f;

singular : for (j = 1; j <= 10^5; j++) { g = f*f; }

singular : (timer -t), system("--ticks -per -sec");

990 1000

The elapsed time is 990 milliseconds. Next we use Sage to do the same com-
putation, using the same Singular data structures directly, but without going
through the interpreter.

sage : R.<x,y,z> = QQ[]

sage : f = y^2*z^2 - x^2*y^3 - x*z^3 + x^3*y*z; type(f)

<type ’sage.rings.polynomial ... MPolynomial_libsingular’>

sage : timeit(’for j in xrange (10^5): g = f*f’)

5 loops , best of 3: 91.8 ms per loop

Sage takes only 91.8 milliseconds for the same operation. This difference is be-
cause the Python interpreter is more efficient at performing for loops.

Cython - Compiled Extensions. Python alone is too slow to implement a
serious mathematical software system. Fortunately, Cython [BBS] makes it easy
to optimize parts of your program or access existing C/C++ libraries. It can
translate Python code with annotations containing static type information to
C/C++ code, which is then compiled as a Python extension module.

Many of the basic arithmetic types in Sage are provided by Cython wrappers
of C libraries, such as FLINT for univariate polynomials over Z, Singular for
multivariate polynomials, and Pynac for symbolic expressions.

The code segment below defines a Python function to add integers from 0 to
N and times the execution of this function with the argument 10^7.

sage : def mysum(N):

....: s = int(0)

....: for k in xrange(1,N): s += k

....: return s

....:

sage : time mysum(10^7)

CPU times: user 0.52 s, sys: 0.00 s, total: 0.52 s

49999995000000

Here is the same function, but the loop index k is declared to be a C integer and
the accumulator s is a C long long.

Sage: Unifying Free Mathematical Software 21

sage : cython("""

....: def mysum_cython (N):

....: cdef int k

....: cdef long long s = 0

....: for k in xrange(N): s += k

....: return s

....: """)

sage : time mysum_cython (10^7)

CPU times: user 0.01 s, sys: 0.00 s, total: 0.01 s

49999995000000 L

The code is compiled and linked to the interpreter on the fly, and the function
mysum_cython is available immediately. Note that the run time for the Cython
function is 60 times faster than the Python equivalent.

Cython also handles the conversion of Python types to C types automatically.
In the following example, we call the C function sinl using Cython to wrap it
in a Python function named sin_c_wrap.

sage : cython("""

....: cdef extern from "math.h":

....: long double sinl(long double)

....: def sin_c_wrap (a):

....: return sinl(a)

....: """)

sage : sin_c_wrap (3.14)

0.0015926529164868282

sage : sin_c_wrap (1)

0.8414709848078965

sage : sin_c_wrap (1r)

0.8414709848078965

Note that the conversion of Sage types in the first two calls to sin_c_wrap or
the Python type integer in the last call is performed transparently by Cython.

The Preparser. While Python has many advantages as a programming and
glue language, it also has some undesirable features. Sage hides these problems
by using a preparser to change the commands passed to Python in an interactive
session (or when running a script with the .sage extension). In order to maintain
compatibility with Python, changes performed by the preparser are kept to a
minimum. Moreover, the Sage library code is not preparsed, and is written in
Cython or Python directly.

Python, like C and many other programming languages, performs integer floor
division. This means typing 1/2 results in 0, not the rational number 1/2. Sage
wraps all numeric literals entered in the command line or the notebook with its
own type declarations, which behave as expected with respect to arithmetic and
have the advantage that they are backed by efficient multiprecision arithmetic
libraries such as MPIR [H+] and MPFR [Z+], which are thousands of times faster
than Python for large integer arithmetic.

22 B. Eröcal and W. Stein

To call the preparser directly on a given string, use the preparse function.

sage : preparse("1/2")

’Integer (1)/ Integer (2)’

sage : preparse("1.5")

"RealNumber (’1.5’) "

Adding a trailing r after a number indicates that the preparser should leave that
as the “raw” literal. The following illustrates division with Python integers.

sage : preparse("1r/2r")

’1/2’

sage : 1r/2r

0

Here is the result of performing the same division in Sage.

sage : 1/2

1/2

sage : type (1/2)

<type ’sage.rings.rational .Rational ’>

sage : (1/2). parent()

Rational Field

The preparser also changes the ^ sign to the exponentiation operator ** and pro-
vides a shorthand to create new mathematical domains and name their generator
in one command.

sage : preparse("2^3")

’Integer (2)**Integer (3)’

sage : preparse("R.<x,y> = ZZ[]")

"R = ZZ[’x, y ’]; (x, y,) = R._first_ngens (2)"

2.3 Algebraic, Symbolic and Numerical Tools

Sage combines algebraic, symbolic and numerical computation tools under one
roof, enabling users to choose the tool that best suits the problem. This combi-
nation also makes Sage more accessible to a wide audience—scientists, engineers,
pure mathematicians and mathematics teachers can all use the same platform
for scientific computation.

While not concentrating on only one of these domains might seem to divide
development resources unnecessarily, it actually results in a better overall expe-
rience for everyone, since users do not have to come up with makeshift solutions
to compensate for the lack of functionality from a different field. Moreover, be-
cause Sage is a distributed mostly-volunteer open source project, widening our
focus results in substantially more developer resources.

Algebraic Tools: The Coercion System. An algebraic framework, similar
to that of Magma or Axiom, provides access to efficient data structures and spe-
cialized algorithms associated to particular mathematical domains. The Python
language allows classes to define how arithmetic operations like + and * will be

Sage: Unifying Free Mathematical Software 23

handled, in a similar way to how C++ allows overloading of operators. How-
ever, the built-in support for overloading in Python is too simple to support
operations with a range of objects in a mathematical type hierarchy.

Sage abstracts the process of deciding what an arithmetic operation means, or
equivalently, in which domain the operation should be performed, in a framework
called the coercion system, which was developed and implemented by Robert
Bradshaw, David Roe, and many others. Implementations of new mathematical
objects only need to define which other domains have a natural embedding to
their domain. When performing arithmetic with objects, the coercion system
will find a common domain where both arguments can be canonically mapped,
perform the necessary type conversions automatically, thus allowing the imple-
mentation to only handle the case where both objects have the same parent.

In the following example, the variable t is an element of Z whereas u is in
Q. In order to perform the addition, the coercion system first deduces that the
result should be in Q from the fact that t can be converted to the domain of u,
namely Q, but canonical conversion in the other direction is not possible. Then
the addition is performed with both operands having the same domain Q.

sage : t = 1

sage : t.parent()

Integer Ring

sage : u = 1/2

sage : u.parent()

Rational Field

sage : v = t + u; v

3/2

sage : v.parent()

Rational Field

Similarly, in the following example, the common domain Q[x] is found for
arguments from Z[x] and Q. Note that in this case, the result is not in the
domain of either of the operands.

sage : R.<x> = ZZ[]

sage : r = x + 1/2

sage : r.parent()

Univariate Polynomial Ring in x over Rational Field

sage : 5*r

5*x + 5/2

Algebraic Tools: The Category Framework. Another abstraction to make
implementing mathematical structures easier is the category framework, whose
development was spearheaded by Nicolas Thiéry and Florent Hivert. Similar
in spirit to the mathematical programming facilities developed in Axiom and
encapsulated in Aldor, the category framework uses Python’s dynamic class
creation capabilities to combine functions relevant for a mathematical object,
inherited through a mathematical hierarchy, into a class at run time.

This process greatly simplifies the troubles of having to combine object-
oriented programming concepts with mathematical structural concerns, while

24 B. Eröcal and W. Stein

keeping efficiency in mind. Efficient implementations can keep the inheritance
hierarchy imposed by the data structures, while generic methods to compute
basic properties are implemented in the category and automatically attached to
the element classes when they are needed.

Symbolic Tools. The symbolic subsystem of Sage provides an environment
similar to Maple or Mathematica, where the input is treated only as an expression
without any concern about the underlying mathematical structure.

Sage uses Pynac [ES], a hybrid C++ and Cython library built on top of
GiNaC [B+], to work with symbolic expressions. High level symbolic calculus
problems including symbolic integration, solution of differential equations and
Laplace transforms are solved using Maxima behind the scenes.

Here is an example of how to use the symbolic computation facilities in Sage.
Note that in contrast to other symbolic software such as Maple, variables must
be declared before they are used.

sage : x,y,z = var(’x,y,z’)

sage : sin(x).diff(x)

cos(x)

sage : psi(x). series(x,4)

(-1)*x^(-1) + (-euler_gamma) + (1/6*pi ^2)*x + \

(-zeta (3))*x^2 + (1/90*pi ^4)*x^3 + Order(x^4)

sage : w = SR.wild () # wildcard for symbolic substitutions

sage : ((x^2+y^2+z^2)* zeta(x)).subs ({w^2:5})

15*zeta(x)

Numerical Tools. In addition to code for symbolic computation, the standard
numerical Python packages NumPy, SciPy, and Matplotlib are included in Sage,
along with the numerical libraries cvxopt, GSL, Mpmath, and R.

For numerical applications, Robert Bradshaw and Carl Witty developed a
compiler for Sage that converts symbolic expressions into an internal format
suitable for blazingly fast floating point evaluation.

sage : f(x,y) = sqrt(x^2 + y^2)

sage : a = float(2)

sage : timeit(’float(f(a,a))’)

625 loops , best of 3: 216 microseconds per loop

sage : g = fast_float (f)

sage : timeit(’float(g(a,a))’)

625 loops , best of 3: 0.406 microseconds per loop

The fast_float feature is automatically used by the minimize command.

sage : minimize(f, (a,a))

(-5.65756135618e-05, -5.65756135618e -05)

Performance is typically within a factor of two from what one gets using a direct
implementation in C or Fortran.

Sage: Unifying Free Mathematical Software 25

3 Afterword

In this article, we have showed that Sage is a powerful platform for developing
sophisticated mathematical software. Sage is actively used in research mathe-
matics, and people use Sage to develop state-of-the-art algorithms. Sage is par-
ticularly strong in number theory, algebraic combinatorics, and graph theory.
For further examples, see the 53 published articles, 11 Ph.D. theses, 10 books,
and 30 preprints at www.sagemath.org/library-publications.html

For example, Sage has extensive functionality for computations related to
the Birch and Swinnerton-Dyer conjecture. In addition to Mordell-Weil group
computations using [Cre] and point counting over large finite fields using the
SEA package in [PAR], there is much novel elliptic curve code written directly
for Sage. This includes the fastest known algorithm for computation of p-adic
heights [Har07, MST06], and code for computing p-adic L-series of elliptic curves
at ordinary, supersingular, and split multiplicative primes. Sage combines these
capabilities to compute explicitly bounds on Shafarevich-Tate groups of elliptic
curves [SW10]. Sage also has code for computation with modular forms, modular
abelian varieties, and ideal class groups in quaternion algebras.

The MuPAD-combinat project, which was started by Florent Hivert and Nico-
las M. Thiéry in 2000, built the world’s preeminent system for algebraic combi-
natorics on top of MuPAD (see [Des06] and [HT05]). Page 54 of [HT05]: “They
[MuPAD] also have promised to release the code source of the library under a
well known open-source license, some day.” In 2008, MuPAD was instead pur-
chased by MathWorks (makers of MATLAB), so MuPAD is no longer available
as a separate product, and will probably never be open source. Instead it now
suddenly costs $3000 (commercial) or $700 (academic).

As a result, the MuPAD-combinat group has spent several years reimplement-
ing everything in Sage (see [T+] for the current status). The MuPAD-combinat
group was not taken by surprise by the failure of MuPAD, but instead were
concerned from the beginning by the inherent risk in building their research
program on top of MuPAD. In fact, they decided to switch to Sage two months
before the bad news hit, and have made tremendous progress porting:

“It has been such a relief during the last two years not to have this
Damocles sword on our head!”

– Nicolas Thiéry

References

[B+] Bauer, C., et al.: Ginac: is not a CAS, http://www.ginac.de/
[BBS] Behnel, S., Bradshaw, R., Seljebotn, D.: Cython: C-Extensions for Python,

http://www.cython.org/

[CES03] Conrad, B., Edixhoven, S., Stein, W.A.: J1(p) Has Connected Fibers. Doc-
umenta Mathematica 8, 331–408 (2003)

[Cre] Cremona, J.E.: mwrank (computer software),
http://www.warwick.ac.uk/staff/J.E.Cremona/mwrank/

www.sagemath.org/library-publications.html
http://www.ginac.de/
http://www.cython.org/
http://www.warwick.ac.uk/staff/J.E.Cremona/mwrank/

26 B. Eröcal and W. Stein

[D+] Dodier, R., et al.: Maxima: A Computer Algebra System,
http://maxima.sourceforge.net/

[Des06] Descouens, F.: Making research on symmetric functions with MuPAD-
Combinat. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS,
vol. 4151, pp. 407–418. Springer, Heidelberg (2006)

[DGPS10] Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-1
— A computer algebra system for polynomial computations,
http://www.singular.uni-kl.de

[ES] Erocal, B., Stein, W.: Pynac – symbolic computation with python objects,
http://pynac.sagemath.org/

[Goo] Google, Google Documents, http://docs.google.com/
[GS] Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research

in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/
[H+] Hart, B., et al.: MPIR: Multiprecision Integers and Rationals,

http://www.mpir.org/

[Har07] Harvey, D.: Efficient computation of p-adic heights,
http://arxiv.org/abs/0708.3404

[HH] Hart, B., Harvey, D.: Flint: Fast library for number theory,
http://www.flintlib.org/

[HT05] Hivert, F., Thiéry, N.M.: MuPAD-Combinat, an open-source package for
research in algebraic combinatorics. Sém. Lothar. Combin., Art. B51z 51,
70 (2004) (electronic),
http://www.emis.de/journals/SLC/wpapers/s51thiery.html

[Jen] Jensen, A.: Gfan: software for computing Gröbner fans and tropical
varieties,
http://www.math.tu-berlin.de/~jensen/software/gfan/gfan.html

[L+] Linton, S., et al.: Gap: Groups, algorithms and programming,
http://www.gap-system.org/

[LHK+] Linton, S., Hammond, K., Konovalov, A., et al.: Easy Composition of Sym-
bolic Computation Software: A New Lingua Franca for Symbolic Compu-
tation, www.win.tue.nl/~droozemo/site/pubs/1004ISSAC2010.pdf

[MST06] Mazur, B., Stein, W., Tate, J.: Computation of p-adic heights and log
convergence. Doc. Math. Extra, 577–614 (2006) (electronic), MR2290599
(2007i:11089)

[PAR] PARI, A computer algebra system designed for fast computations in num-
ber theory,
http://pari.math.u-bordeaux.fr/

[Ros] van Rossum, G.: Python,
http://www.python.org

[Saga] Sage, Components,
http://sagemath.org/links-components.html

[Sagb] Sage, Sage days workshops,
http://wiki.sagemath.org/Workshops

[Sho] Shoup, V.: NTL: Number theory library,
http://www.shoup.net/ntl/

[SJ05] Stein, W., Joyner, D.: Open source mathematical software. ACM SIGSAM
Bulletin 39 (2005)

[SJ07] Stein, W., Joyner, D.: Open source mathematical software. Notices Amer.
Math. Soc. (2007),
http://www.ams.org/notices/200710/tx071001279p.pdf

http://maxima.sourceforge.net/
http://www.singular.uni-kl.de
http://pynac.sagemath.org/
http://docs.google.com/
http://www.math.uiuc.edu/Macaulay2/
http://www.mpir.org/
http://arxiv.org/abs/0708.3404
http://www.flintlib.org/
http://www.emis.de/journals/SLC/wpapers/s51thiery.html
http://www.math.tu-berlin.de/~jensen/software/gfan/gfan.html
http://www.gap-system.org/
www.win.tue.nl/~droozemo/site/pubs/1004ISSAC2010.pdf
http://pari.math.u-bordeaux.fr/
http://www.python.org
http://sagemath.org/links-components.html
http://wiki.sagemath.org/Workshops
http://www.shoup.net/ntl/
http://www.ams.org/notices/200710/tx071001279p.pdf

Sage: Unifying Free Mathematical Software 27

[SW10] Stein, W., Wuthrich, C.: Computations About Tate-Shafarevich Groups
Using Iwasawa Theory (2010) (in preparation),
http://wstein.org/papers/shark/

[T+] Thiery, N., et al.: Sage Combinat Roadmap,
http://trac.sagemath.org/sage_trac/wiki/SageCombinatRoadMap

[Wol] Wolfram, Why you do not usually need to know about internals,
http://reference.wolfram.com/mathematica/tutorial/

WhyYouDoNotUsuallyNeedToKnowAboutInternals.html

[Z+] Zimmerman, P., et al.: The MPFR Library,
http://www.mpfr.org/

http://wstein.org/papers/shark/
http://trac.sagemath.org/sage_trac/wiki/SageCombinatRoadMap
http://reference.wolfram.com/mathematica/tutorial/WhyYouDoNotUsuallyNeedToKnowAboutInternals.html
http://reference.wolfram.com/mathematica/tutorial/WhyYouDoNotUsuallyNeedToKnowAboutInternals.html
http://www.mpfr.org/

Sollya: An Environment for the Development of

Numerical Codes

Sylvain Chevillard1, Mioara Joldeş2, and Christoph Lauter2,�

1 INRIA, LORIA, Caramel Project-Team,
BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France

2 LIP (CNRS/ÉNS de Lyon/INRIA/Université de Lyon), Arénaire Project-Team,
46, allée d’Italie, 69364 Lyon Cedex 07, France

Abstract. Sollya has become a mature tool for the development of nu-
merical software. With about 175 built-in algorithms and a broad ex-
tensibility, it offers a complete tool-chain for fixed- and floating-point
software and hardware design. Its features include on-the-fly faithful
rounding, specialized approximation algorithms and extensive support
for floating-point code generation.

Keywords: Numerical software, faithful rounding, computer algebra,
development tool, function approximation.

1 Introduction

The software tool Sollya is an interactive environment assisting developers of nu-
merical codes in the design of mathematical routines. It provides a safe and fast
experiment bench as well as tools to generate—at least partially—such codes.
The users can either use it through an interactive shell (where they enter com-
mands and get results from the tool) or as a scripting language. The language is
intended to make the manipulation of numerical expressions particularly easy.

Initially, Sollya was intended more specifically for people implementing nu-
merical functions in mathematical libraries (these functions are, e.g., exp, arccos,
tanh, etc.). Since then, the tool has evolved and has now become interesting not
only to developers of mathematical libraries, but also to everyone who needs to
perform numerical experiments in an environment that is safe with respect to
round-off errors. Recently, it has even been used for more ambitious projects,
such as MetaLibm1.

Sollya is a free software distributed under the terms of the CeCILL-C li-
cense and available at http://sollya.gforge.inria.fr/. The current version
is Sollya 2.0, released in April 2010. A complete documentation with tutorials is
available [3], and Sollya integrates an interactive help system.

� C. Lauter is now with Intel Corporation, 2111 NE 25th Avenue, M/S JF1-13, Hills-
boro, OR, 97124, USA, but he was in the Arénaire Project-Team when he developed
Sollya.

1 See http://lipforge.ens-lyon.fr/www/metalibm/

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 28–31, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://sollya.gforge.inria.fr/
http://lipforge.ens-lyon.fr/www/metalibm/

Sollya: An Environment for the Development of Numerical Codes 29

2 Context and Competing Tools

The development of an arithmetical operator, such as a mathematical function f
(e.g., f = log) or a conversion operator, usually steps through four phases. In
each of these phases, specific questions are addressed. Examples are given below.
They can be answered using Sollya.

– Analysis phase: How to classify the numerical behavior of function f? Does
it allow for any kind of range reduction (see, e.g., [10, Chapter 11])?

– Approximation phase: How to compute a polynomial p with minimal degree
approximating f such that the approximation error stays below some bound?

– Code generation phase: How can an approximation polynomial p be imple-
mented with bounded round-off error?

– Validation phase: What is a safe yet tight bound for the approximation error
of p with respect to f? What are appropriate test vectors that exercise the
IEEE 754 properties of the operator, such as flag settings [1]?

Most algorithms offered by Sollya are also supported by other tools such as
Maple, Mathematica or Matlab. However, when used for the development of
numerical codes, these tools show several deficiencies [6]. As their focus is more on
general computer algebra, some of their numerical algorithms are not optimized
for performance and support for floating- or fixed-point arithmetic is limited.
Most importantly, while they generally offer support for arbitrary precision, the
actual accuracy of computations in these tools is often unknown.

3 Key Features Offered by Sollya

Sollya focuses on providing arbitrary accuracy for function evaluation through
on-the-fly faithful rounding. More precisely, the user may define univariate func-
tions as expressions made up of basic functions, such as exp, sin, etc. Sollya can
evaluate such function expressions at points providing results with the accuracy
for which the user asked. If the working precision needs to be adapted to achieve
that accuracy, Sollya takes the burden of doing so off the user.

In this process, Sollya makes sure it never lies: if ever the tool is not able to
exhibit a faithful rounding or if rounding might flip the result of a comparison,
it will warn the user of that problem with the result. This rigor is achieved
through an extensive use of Interval Arithmetic [9], extended to cover functions
with false singularities [4]. Interval Arithmetic is of course available at the Sollya
interface, too.

Sollya currently supports about 175 commands in a scripting language that
enables structured programming. The tool can be extended through dynamically
loaded plug-ins. It is out of the scope of this paper to cover this wide range of
functionalities. We shall hence concentrate on four outstanding Sollya features.

– Polynomial approximation in sparse monomial bases: Given a function f and
a bounded domain I, Sollya can compute an approximation polynomial of

30 S. Chevillard, M. Joldeş, and C. Lauter

least error in some monomial basis which, in contrast to other tools, may be
sparse. So the polynomial may be, e.g., of the form p(x) = a2 x2 + a3 x3 +
a7 x7. This helps with reducing the number of operations needed to evaluate
such approximation polynomials [7].

– Taylor Models of univariate functions: Given a function and a bounded do-
main I, Sollya can compute a Taylor expansion p of f together with a rigorous
interval bound Δ enclosing the error p(x) − f(x) for all x ∈ I. Such Taylor
Models allow the behavior of f to be rigorously analyzed. They also help
with problems like validated integration [8].

– Supremum norms of approximation error functions: Sollya can compute safe
bounds on the supremum norm of the error ε = p/f − 1 made when re-
placing a function f by a particular polynomial p in a bounded domain I.
Such computations are a requirement for code certification for mathematical
functions [4].

– Support for code generation in IEEE 754 arithmetic: Sollya offers extensive
support for simulating IEEE 754 arithmetic. Additional commands enable
the generation of IEEE 754-based C code with bounded round-off error [6].

4 Conclusion and Project Future

Sollya aims at providing a safe environment for numerical computations. Its
main feature in comparison to competing tools such as Maple is the fact that
the tool always tries to guarantee the numerical quality of the results by giving
explicit error bounds.

Sollya is still under development. However it has already been used for several
software projects involved with floating-point arithmetic: it has been used for
the development of large parts of the CRLibm library2 [6] and, more recently,
for the FLIP library3 [5]. Several research teams are using the tool for ongoing
research (e.g., [2]). Finally, Sollya has been reported (in a private communication)
to be used for research and development in industry, where it covers both the
hardware as the software side of development in computer arithmetic.

In the future, the following features could be added. First, commands like
numerical integration or polynomial interpolation are currently missing. Second,
due to its history, Sollya only handles univariate real functions. Originally this
choice was reasonable as the focus was on the development of mathematical li-
braries. But now that a larger community is targeted, support for multivariate
functions would be interesting. Complex arithmetic could also be added, with,
in particular, commands for computing rational and polynomial best approxi-
mations in the complex plane. Finally, support for linear algebra could be added
in the long term: algorithms for product and inverse of matrices, linear system
solvers, eigensolvers, etc. To follow the Sollya philosophy, these implementations
would also adapt their working precision automatically to guarantee the correct-
ness and accuracy of the results.
2 See http://lipforge.ens-lyon.fr/www/crlibm/
3 See http://flip.gforge.inria.fr/

http://lipforge.ens-lyon.fr/www/crlibm/
http://flip.gforge.inria.fr/

Sollya: An Environment for the Development of Numerical Codes 31

References

1. American National Standards Institute (ANSI) and Institute of Electrical and Elec-
tronic Engineers (IEEE). IEEE Standard for Binary Floating-Point Arithmetic
(IEEE Std754-2008) (2008), Revised version of the IEEE Std754-1985 Standard

2. Arnold, M.G., Collange, S., Defour, D.: Implementing LNS using filtering units of
GPUs. In: IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, ICASSP (2010), http://hal.archives-ouvertes.fr/hal-00423434

3. Chevillard, S., Joldeş, M., Lauter, C.: User’s Manual of the Sollya Tool, Release
2.0, http://sollya.gforge.inria.fr/

4. Chevillard, S., Lauter, C.: A certified infinite norm for the implementation of el-
ementary functions. In: Proceedings of the Seventh International Conference on
Quality Software, pp. 153–160 (2007)

5. Jeannerod, C.-P., Knochel, H., Monat, C., Revy, G., Villard, G.: A new binary
floating-point division algorithm and its software implementation on the ST231
processor. In: Proceedings of the 19th IEEE Symposium on Computer Arithmetic,
Portland, OR, USA, pp. 95–103 (June 2009)

6. Lauter, C.: Arrondi correct de fonctions mathématiques. Fonctions univariées et
bivariées, certification et automatisation. PhD thesis, École Normale Superieure de
Lyon, Université de Lyon (2008)

7. Lauter, C., de Dinechin, F.: Optimizing polynomials for floating-point implemen-
tation. In: Proceedings of the 8th Conference on Real Numbers and Computers,
Santiago de Compostela, Spain, pp. 7–16 (July 2008)

8. Makino, K., Berz, M.: Taylor models and other validated functional inclusion meth-
ods. International Journal of Pure and Applied Mathematics 4(4), 379–456 (2003),
http://bt.pa.msu.edu/pub/papers/TMIJPAM03/TMIJPAM03.pdf

9. Moore, R.E.: Methods and Applications of Interval Analysis. Society for Industrial
Mathematics, Philadelphia (1979)

10. Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V.,
Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhäuser, Boston (2009),
http://www.springer.com/birkhauser/mathematics/book/978-0-8176-4704-9

http://hal.archives-ouvertes.fr/hal-00423434
http://sollya.gforge.inria.fr/
http://bt.pa.msu.edu/pub/papers/TMIJPAM03/TMIJPAM03.pdf
http://www.springer.com/birkhauser/mathematics/book/978-0-8176-4704-9

Validated Special Functions Software

Annie Cuyt, Franky Backeljauw, Stefan Becuwe, and Joris Van Deun

Department of Mathematics and Computer Science
University of Antwerp

Middelheimlaan 1, B-2020 Antwerp, Belgium
annie.cuyt@ua.ac.be

Abstract. Because of the importance of special functions, several books
and a large collection of papers have been devoted to the numerical com-
putation of these functions, the most well-known being the NBS hand-
book by Abramowitz and Stegun. But up to this date, symbolic and
numeric environments offer no routines for the validated evaluation of
special functions. We point out how a provable correct function evalua-
tion can be returned efficiently.

1 Introduction

Functions that are termed special have explicitly known and simple represen-
tations as infinite/asymptotic series and/or continued fractions. Together the
convergence domains of these representations often cover the full area of interest
for users of these functions. Hence they lend themselves easily for a variable
precision implementation. While the use of series to approximate a function in
numeric software is well established, that of continued fractions is far from tradi-
tional. In [1] we describe how a combination of both techniques leads to validated
software. The accumulation of round-off errors is tracked and bounded above
while the accumulation of truncation errors is subject to divide-and-conquer.

We assume to have at our disposal a scalable precision, IEEE 754-854 com-
pliant, floating-point implementation of the basic operations, square root and
remainder, comparisons, base and type conversions, at least in the rounding
mode round-to-nearest. Such an implementation is characterized by four param-
eters: the internal base β, the precision p and the exponent range [L,U]. Here
we aim at least at implementations for β = 2 with precisions p ≥ 53, and at
implementations for use with β = 2i or β = 10i where i > 1. The IEEE 754-854
standard was revised in 2008. For our toolkit to be widely applicable, we do not
expect the available floating-point implementation to support more advanced
features such as exactly rounded mixed precision fused operations (including
the assignment operation). We do however assume that the base conversions
(between decimal and base β) are exactly rounded.

The goal is to compute a special mathematical quantity such as exp(−x2) or√
π or Γ (1/x). We refer to this quantity as Y = f(yx), where yx is the argument

built from an exact argument x (in base β and precision p) passed by a user,
and f is the mathematical expression which is to be evaluated in yx to yield Y .

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 32–34, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Validated Special Functions Software 33

Of course yx and Y suffer several finite precision and truncation errors, which
we now analyze.

2 Round-Off Error Accumulation and Control

We denote by � the exactly rounded (to the nearest, with appropriate tiebreaker)
floating-point implementation of the basic operation ∗ in the chosen base β and
precision p. For floating-point numbers x and y, following the IEEE standards
and in the absence of overflow and underflow, the basic operations are carried
out with a relative error of at most u(p) := 1/2β−p+1 which is also called half a
unit-in-the-last-place in precision p:

x � y = (x ∗ y)(1 + δ), |δ| ≤ u(p), ∗ ∈ {+,−,×,÷}.

The same holds for the square root, the remainder, the conversions between
internal formats and the base conversions.

In order to compute a relative error bound for a sequence of operations, it is
necessary to keep track of all these error terms. A basic result, given in [2, p. 63],
says that if all |δi| ≤ u(p), ρi = ±1 and nu(p) < 1, then

n∏
i=1

(1 + δi)ρi = 1 + θn, |θn| ≤ γn(p) =
nu(p)

1 − nu(p)
. (1)

This result is very convenient, as it allows us to rewrite any number of products
and quotients of factors 1 + δi in an error analysis. Note that the reverse does
not hold, meaning that not any expression 1 + θn with θn bounded above in
absolute value by γn(p), can be rewritten as a product of n factors (1 + δi)ρi .

Perturbations as in (1) appear in the error analysis of all compound expres-
sions involving the basic operations, square root, remainder and conversions.
The values θn and bounds γn(p) keep track of the accumulation of the round-off
errors involved.

3 Truncation Error Accumulation and Control

Let Ỹi be an approximation of the mathematical quantity Yi with a relative
error εi,

Ỹi = Yi(1 + εi), i = 1, . . . ,m.

Moreover, let the exact quantity Y be given in terms of the Yi and approximated
by the value Ỹ , such that with σi = ±1,

Ỹ = Y (1 + ηm), 1 + ηm =
m∏

i=1

(1 + εi)σi , |ηm| ≤ κm(p).

34 A. Cuyt et al.

In [1] we show how to distribute the threshold κm(p) over the individual trun-
cation errors εi to guarantee that |ηm| ≤ κm(p). Usually, the imposed threshold
κm(p) for |ηm| is a small multiple of the half unit-in-the-last-place u(p). If

|εi| ≤ μi
κm(p)

1 + κm(p)
, i = 1, . . . ,m,

m∑
i=1

μi = 1, (2)

then
m∏

i=1

|1 + εi|σi ≤ 1 + κm(p).

The weights μi, i = 1, . . . ,m are chosen depending on the difficulty with which
the operands Ỹi in the expression for Ỹ are obtained.

4 Putting It All Together

Our aim eventually is to deal with the general situation where

Ỹ = Y (1 + ηm)(1 + θn), |(1 + ηm)(1 + θn)| ≤ 1 + 2u(p) = 1 + β−p+1. (3)

Here the floating-point round-off errors δi have accumulated in θn and all ap-
proximation errors of a different nature εi in ηm.

To achieve (3) all floating-point operations must be carried out in a (slightly
larger) working precision p̂ than the destination precision p for Ỹ . Then the error
θn is bounded above in absolute value by γn(p̂) which is a fraction of 2u(p). In
order to guarantee (3), the accumulated error ηm must be bounded above in
absolute value by (2u(p) − γn(p̂))/(1 + γn(p̂)). This in turn leads to individual
bounds

|εi| ≤ μi
2u(p) − γn(p̂)

1 + 2u(p)
, i = 1, . . . ,m.

In [1] this toolkit of ideas is illustrated for the computation of the error function
and the complementary error function on the real line.

The collection of special functions that can be implemented reliably using
this technique includes the incomplete gamma and Gamma functions, Dawson’s
integral, the error and complementary error function, the Fresnel integrals, the
exponential integrals, the hypergeometric and confluent hypergeometric family,
the Bessel functions and modified Bessel functions for integer and half integer
argument.

References

1. Backeljauw, F., Becuwe, S., Cuyt, A., Van Deun, J.: Validated Evaluation of Special
Mathematical Functions. Technical Report 2009-04, Universiteit Antwerpen (2009)

2. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. Second edn. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA (2002)

The Dynamic Dictionary of

Mathematical Functions (DDMF)�

Alexandre Benoit, Frédéric Chyzak, Alexis Darrasse, Stefan Gerhold,
Marc Mezzarobba, and Bruno Salvy

Inria Paris-Rocquencourt, France
http://ddmf.msr-inria.inria.fr

Abstract. We describe the main features of the Dynamic Dictionary
of Mathematical Functions (version 1.5). It is a website consisting of
interactive tables of mathematical formulas on elementary and special
functions. The formulas are automatically generated by computer algebra
routines. The user can ask for more terms of the expansions, more digits
of the numerical values, or proofs of some of the formulas.

1 Motivation

Dictionaries of mathematical functions are commonly used by scientists and en-
gineers. Some of the most famous ones are Abramowitz & Stegun’s Handbook of
Mathematical Functions [1]; the Bateman project Higher Transcendental Func-
tions [7]; Gradshtein & Ryzhik’s Table of Integrals, Series, and Products [8]; and
the multivolume Integrals and Series by Prudnikov, Brychkov, and Marichev [15].
These dictionaries gather formulas such as differential equations, definite and in-
definite integrals, inequalities, recurrence relations, power series, asymptotic ex-
pansions, approximations, and sometimes graphs and numerical tables, for a large
set of functions. They have been prepared by specialists of these functions and
carefully checked and proofread. Their success is attested to by the hundreds of
thousands of citations they have received [3].

The first editions of those books were published between 60 and 30 years ago.
Since then, the advent of the World Wide Web has changed the way people

now look for information. Aware of this change, the NIST has published a new
version of [1] in 2010, called the NIST Handbook of Mathematical Functions [13]
together with a web site, the NIST Digital Library of Mathematical Functions.
This site offers navigation in the formulas, active links, export to various formats,
and a search engine.

In parallel, computer algebra systems have grown into huge libraries of mathe-
matical algorithms. While the implementation of mathematical functions in these
systems is often basically a coding of formulas from the dictionaries mentioned
above, the algorithms have matured to a level where many of those formulas can
actually be computed automatically.

� This work was supported by the Microsoft Research-Inria Joint Centre.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 35–41, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://dlmf.nist.gov/

36 A. Benoit et al.

The aim of the DDMF is to combine recent algorithms in computer algebra
together with web interaction into a dictionary of mathematical functions that
is automatically generated, easily navigable with export to various formats, and
interactive1. Interactivity means that formulas or graphics can be adapted to the
user’s needs; that arbitrary precision can be given on demand; and that proofs
can be displayed if desired.

At this stage, the reader is encouraged to have a look at the DDMF at the
following url

http://ddmf.msr-inria.inria.fr
A typical page is presented in Figure 1.

The rest of this article presents the ideas underlying our current version (1.5),
first from the point of view of the document system and then from the computer
algebra viewpoint.

2 Dynamic Mathematics on the Web

The language we use to produce the DDMF is called DynaMoW for Dynamic
Mathematics on the Web. The main principle on which it is based is captured
by the following statement:

The document being generated by the symbolic computation engine is an
object of the language.

Thus, instead of using a fixed template whose fields are filled in during a com-
putation, the structure of the document itself depends on the results of inter-
mediate computations. For instance, the number of subsections on asymptotic
expansions is a result of computing the singularities of the function; the section
on symmetries only occurs if the function has been proved even or odd.

DynaMoW is a layer between a symbolic computation engine2 and a web
server. It lets one mix symbolic code together with pieces of documents in a
single source code in a natural way. This provides an easy way to showcase
computer algebra algorithms to users who do not know the syntax of a computer
algebra system: all they need is a web browser; DynaMoW has been designed to
be produce pages compatible with the most popular ones.

Moreover, once the document becomes part of the computation, new possibil-
ities arise. For instance, being able to glue together pieces of documents during
the computation lets us turn a trace of the computation into a detailed mathe-
matical proof of its result. (See, for instance, the proof of the recurrence formula
for the coefficients of the Taylor series of the Airy Ai function.) This answers a
frequent request of users of computer algebra systems, who want to be able to
understand where the results come from and how they can check or trust them.
Traces are not the only type of proof that can be generated. For instance, we

1 An ancestor of these ideas without interactivity was presented in [10].
2 Currently we use Maple, but DynaMoW is designed so that other systems can be

used as well.

http://ddmf.msr-inria.inria.fr
http://ddmf.msr-inria.inria.fr

The Dynamic Dictionary of Mathematical Functions (DDMF) 37

The Special Function

1. Differential equation

The function satisfies

with initial values , .

2. Plot of

-10 10

-1.2

1.2

min = max =

3. Numerical Evaluation

(Below, path may be either a point or a broken-line path along which to perform analytic continuation of the solution of
the defining differential equation. Each should be of the form x + y*i .)

path = precision =

4. Symmetry

The function is odd:

for all complex numbers .

See the .

5. Taylor expansion of at 0

Expansion of erf at :

See the for the coefficients of the Taylor expansion.

erf x()

erf x()

2 yy

Ò
d

dx
x()

Ó
x+

d2

dx2
x() = 0

y 0() = 0 y(0) 0() = 2 1p
Ù

erf x()

erf :29339518 :269913501=4 =4(+ 1 i) Ù 0 + 0 i

z [z ; ;]1 z2 : : : ; zn
zk

erf x()

erf erfx() = À Àx()

x

erf x()

0

erf x() =
X1
n=0

2
À1()n x2 +1n

!
p
Ù 2(n+ 1)n

url

-10 10 Submit

1/4+1/4 8 Submit

Proof That the Function is Odderf x()

recurrence relation

change rendering

Fig. 1. The begining of the page of the DDMF on the error function

38 A. Benoit et al.

First terms:

order =
One gets a polynomial that approximates uniformly on the disk with absolute error less
than Ï by retaining the terms up to of this power series expansion. See this

. Proof based on the general .

r = epsilon =
A for in 0 is given by

-10 10

-1.2

1.2

min = max =

6. Local expansions at singularities and at infinity
The differential equation above has 0 non-zero finite singular point.

Expansion of erf at :

See the for the local coefficients.

First terms:

order =

7. Chebyshev Recurrence
Chebyshev expansion:

erf 2 =3)z() = (
xp
Ù
À 2

x3

p
Ù

+O x(5)

erf x() jxj =4Ô r = 1
= 1

1000000000000000000000000000000 x39

erf x()

=6
500000065301

1000000000000

X1
n=0

1
À 1=2(n+ 1)

2À1=2n 1=2
À p

2
ÁÀn

n(+ 1) n(+ 2) n(+ 3)xn

1

erf xx() = 1+ eÀx
2
X1
n=0

À
4

p
Ù n

À1 !()n 2(n) x(À1)2n À1

erf xz() = 1+ eÀx
À2 À =2

Ò
1p
Ù
+ 1

1

x
p
Ù 2

+O x(À4)

Ó

erf x() =
X1

2
4 TÀn À1()n F (1=2 ; ;)1 1 + n 2n+ 2 À 1 1+2 n x()

Polynomial Approximation Tail bound: General Formula

Recurrence Relation for the Power Series Coefficients of at erf x() 1

majorant series

Fig. 1. (continued)

The Dynamic Dictionary of Mathematical Functions (DDMF) 39

First terms and polynomial approximation:

order =

The coefficients in the satisfy the recurrence

Approximations by successive truncations of the Chebyshev series on

-2 2

-1.2

1.2

Errors of approximation by successive truncations of the Chebyshev series on

-1 1

-0.082

0.082

8. Laplace Transform

For ,

erf :904347 :0661130 :00472936x() = 0 T1 x()À 0 T3 x() + 0 T5 x() + : : :

erf :12633280 :35903920 :07566976x() = 1 xÀ 0 x3+ 0 x5+ : : :

cn erf(x) T (x)=
P1

n=0 cn n

n(2+ 3n) c n() + 2 2 4 6(n3+ 1 n2+ 2 n+ 1) c n(+ 2) + Àn(2À 5nÀ 4) c n(+ 4) = 0

[À2;]2

[À1;]1

<(s) > 0

erf t :

Z
0

1
eÀts t() d = À

s

erf(1=2(s)À 1) e1=4 s
2

6 Submit
Chebyshev expansion

Fig. 1. (continued)

may present a simple proof for the solution of a recurrence once the solution has
been found, instead of retracing its computation.

The implementation of the DynaMoW language itself is work in progress and
a stable version will be described in due course. We believe that this language

40 A. Benoit et al.

will be of interest outside of the DDMF. For instance, we have also used it with
success for an encyclopedia of combinatorial structures.

3 Computer Algebra Algorithms

From the computer algebra point of view, what is a good definition of a math-
ematical function such that all the desired formulas can be computed algorith-
mically? Our choice is to concentrate on

Functions given as solutions of linear differential equations or linear re-
currences.

Our basic data-structure consists of these equations and their initial conditions.
In the example of Fig. 1, this is the content of Section 1.

This data-structure has become common in computer algebra, starting with
works of Stanley [17], Lipschitz [9], Zeilberger [18] and more recently Chyzak,
Salvy et alii [4,5,6]. In particular, we rely on the Maple gfun package [16] for
many of our computations.

Given this data structure, we have used or developed algorithms to compute
many relevant properties of mathematical functions. For instance, Section 3 of
our example offers numerical approximations of guaranteed quality in good com-
plexity (see [11] for the algorithm). Such approximations can be used to produce
graphs as in Section 2 of the example. Section 5 is based on recurrences for the
Taylor coefficients that are obtained from the differential equations. When they
exist, closed-form hypergeometric solutions of these recurrences can be com-
puted [14]. In all cases, the rest of that Section 5 (beyond the part that is visible
in Fig. 1) gives the first terms of these expansions and bounds on tails of power
series [12]. The same computations are performed at each singularity includ-
ing infinity. Further results include Chebyshev expansions [2] and differential
equations for the Laplace transform (Sections 7 and 8).

Future Work

Some of our next steps include these tasks: automatic handling of families of
functions or functions with parameters, like the Bessel functions, either by let-
ting the user choose values for the parameters, or by performing an automatic
discussion according to the possible range of values; automatic generation of
good numerical code at fixed precision; more integral transforms; expansions on
other bases; information on the zeros of the functions; handling of branch-cuts;
and support for user-defined functions.

References

1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of mathematical functions with
formulas, graphs, and mathematical tables. Dover Publications Inc., New York
(1992); Reprint of the 1972 edition. First edition 1964

http://algo.inria.fr/encyclopedia/

The Dynamic Dictionary of Mathematical Functions (DDMF) 41

2. Benoit, A., Salvy, B.: Chebyshev expansions for solutions of linear differential equa-
tions. In: May, J. (ed.) Symbolic and Algebraic Computation, pp. 23–30. ACM
Press, New York (2009); Proceedings of ISSAC 2009, Seoul (July 2009)

3. Boisvert, R., Lozier, D.W.: Handbook of Mathematical Functions. In: A Century of
Excellence in Measurements Standards and Technology, pp. 135–139. CRC Press,
Boca Raton (2001)

4. Chyzak, F.: Groebner bases, symbolic summation and symbolic integration. In:
Buchberger, B., Winkler, F. (eds.) Groebner Bases and Applications, Proc. of
the Conference 33 Years of Gröbner Bases. London Mathematical Society Lec-
ture Notes Series, vol. 251, pp. 32–60. Cambridge University Press, Cambridge
(1998)

5. Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic func-
tions. Discrete Mathematics 217(1-3), 115–134 (2000)

6. Chyzak, F., Kauers, M., Salvy, B.: A non-holonomic systems approach to special
function identities. In: May, J. (ed.) Symbolic and Algebraic Computation, pp.
111–118. ACM Press, New York (2009); Proceedings of ISSAC 2009, Seoul (July
2009)

7. Erdélyi, A.: Higher Transcendental Functions, vol. 1-3. R. E. Krieger Publishing
Company, Inc., Malabar (1981); First edition 1953

8. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic
Press, London (1996); First English edition 1965

9. Lipshitz, L.: D-finite power series. Journal of Algebra 122(2), 353–373 (1989)
10. Meunier, L., Salvy, B.: ESF: An automatically generated encyclopedia of special

functions. In: Sendra, J.R. (ed.) Symbolic and Algebraic Computation, pp. 199–
205. ACM Press, New York (2003); Proceedings of ISSAC 2003, Philadelphia (Au-
gust 2003)

11. Mezzarobba, M.: NumGfun: a package for numerical and analytic computa-
tion with D-finite functions. In: ISSAC 2010. ACM Press, New York (2010),
http://arxiv.org/abs/1002.3077

12. Mezzarobba, M., Salvy, B.: Effective bounds for P-recursive sequences. Journal of
Symbolic Computation (to appear)

13. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook
of Mathematical Functions. Cambridge University Press, Cambridge (2010)

14. Petkovšek, M.: Hypergeometric solutions of linear recurrences with polynomial
coefficients. Journal of Symbolic Computation 14(2-3), 243–264 (1992)

15. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, 1st edn. in
Moscow, Nauka, vol. 1-6 (1981)

16. Salvy, B., Zimmermann, P.: Gfun: a Maple package for the manipulation of gener-
ating and holonomic functions in one variable. ACM Transactions on Mathematical
Software 20(2), 163–177 (1994)

17. Stanley, R.P.: Differentiably finite power series. European Journal of Combina-
torics 1(2), 175–188 (1980)

18. Zeilberger, D.: A holonomic systems approach to special functions identities. Jour-
nal of Computational and Applied Mathematics 32(3), 321–368 (1990)

http://arxiv.org/abs/1002.3077

Reliable Computing with GNU MPFR

Paul Zimmermann

LORIA/INRIA Nancy-Grand Est, Équipe CARAMEL - bâtiment A,
615 rue du jardin botanique, F-54603 Villers-lès-Nancy Cedex

Abstract. This article presents a few applications where reliable com-
putations are obtained using the GNU MPFR library.

Keywords: reliable computing, correct rounding, IEEE 754, GNU
MPFR.

The overview of the 3rd International Workshop on Symbolic-Numeric Compu-
tation (SNC 2009), held in Kyoto in August 2009, says: Algorithms that combine
ideas from symbolic and numeric computation have been of increasing interest
over the past decade. The growing demand for speed, accuracy and reliability in
mathematical computing has accelerated the process of blurring the distinction
between two areas of research that were previously quite separate. [...] Using nu-
meric computations certainly speeds up several symbolic algorithms, however
to ensure the correctness of the final result, one should be able to deduce some
reliable facts from those numeric computations. Unfortunately, most numerical
software tools do not provide any accuracy guarantee to the user. Let us demon-
strate this fact on a few examples. Can we deduce the sign of sin(2100) from the
following computation with Maple version 13?

> evalf(sin(2^100));
0.4491999480

This problem concerns other computer algebra systems, for example Sage 4.4.2,
where the constant C = eπ

√
163 − 262537412640768744 evaluated to different

precisions yields different signs:

sage: f=exp(pi*sqrt(163))-262537412640768744
sage: numerical_approx(f, digits=15)
448.000000000000
sage: numerical_approx(f, digits=30)
-5.96855898038484156131744384766e-13

or Mathematica 6.0, where the same constant C ≈ −0.75 ·10−12, integrated from
0 to 1, yields a result too large by several orders of magnitude:

In[1]:= NIntegrate[Exp[Pi*Sqrt[163]]-262537412640768744,{x,0,1}]

Out[1]= -480.

Another example is FFTW, which is a very efficient Fast Fourier Transform
(FFT) library. On http://www.fftw.org/accuracy/comments.html one can

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 42–45, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.fftw.org/accuracy/comments.html

Reliable Computing with GNU MPFR 43

read: Our benchmark shows that certain FFT routines are more accurate than
others. In other cases, a routine is accurate on one machine but not on another.
[...] This non-reproducibility from one machine to another one is quite annoying,
since this means that a given program using FFTW might give different results
on different computers. One reason of this non-reproducibility is the fact that
FFTW uses trigonometric recurrences to compute the twiddle factors e2ikπ/2n

needed in the FFT. On some architectures, those recurrences are evaluated in
double-extended precision — significand of 64 bits — instead of double-precision
— significand of 53 bits.

To avoid the above problems, developers of numerical software tools should
provide primitives with well-defined semantics. This is not an easy goal. The
more complex the numerical primitive is, the more difficult it is to provide rigor-
ous bounds on the error. For example consider the implicit two-dimensional plot
of | cos((x+iy)4)| = 1 for −3 ≤ x, y ≤ 3; the computation to 20 decimal places of
ρ(10) where ρ is Dickman’s function, defined by the difference-differential equa-
tion xρ′(x) + ρ(x− 1) = 0, with initial conditions ρ(x) = 1 for 0 ≤ x ≤ 1; or the
computation to 20 decimal places of the singular values of the Hilbert matrix of
order 50, defined by Mi,j = 1/(i + j).

There are several ways for a numerical primitive to return valuable informa-
tion. One way is to give, in addition to the numerical approximation, a bound
on the absolute or relative error; or alternatively an interval enclosing the true
result. The ultimate — and more difficult solution, from the implementer point
of view — is to guarantee correct rounding as in IEEE 754 [6], i.e., that the given
approximation is the best possible according to the target precision. To rigor-
ously define what we mean by “best possible”, we have to introduce rounding
directions, which determine in which direction to round the approximation with
respect to the exact result, and how to break ties.

GNU MPFR (MPFR for short) is a C library implementing correct rounding
for basic arithmetic operations and mathematical functions in binary multiple-
precision. We refer the reader to [4] for a technical description of MPFR. We
focus here on a few applications of MPFR.

Companion Libraries MPFI and MPC. The MPFI library implements arbitrary
precision interval arithmetic on top of MPFR. It was originally designed by
N. Revol and F. Rouillier. For a monotonic function, implementing an interval
routine is trivial: just call the corresponding MPFR function with rounding
modes towards −∞ and +∞. However for a non-monotonic function, it requires
more work; for example does cos([103992, 103993]) contain 1?

The MPC library, developed by A. Enge, Ph. Théveny and the author, is an-
other companion library to MPFR, which provides arbitrary precision complex
floating-point numbers with correct rounding. MPC uses the cartesian represen-
tation z = x + iy, where both x and y are correctly rounded. If MPFR provides
r rounding modes — r = 5 in MPFR 3.0.0 — then MPC can provide up to r2

complex rounding modes. The MPC library implements all functions from the
C99 standard.

44 P. Zimmermann

Constant Folding in GCC. The GCC compilers for the C and Fortran languages
use MPFR for constant folding (see details in [5]). In short, when one writes
double y = sin(17.42) in a C program, GCC replaces this at compile time by
double y = -0.99004214446851813, using MPFR to perform the correspond-
ing computation. The advantage is twofold: on the one hand MPFR will yield the
same numerical result on any configuration, whatever the operating system, the
processor word size; and on the other hand MPFR guarantees correct rounding
for the sine mathematical function (which de facto implies reproducibility). Up
from version 4.5, GCC also uses the MPC library to provide constant folding of
complex floating-point expressions.

Maple. Since version 11, the Maple computer algebra system uses MPFR for
approximating real solutions of polynomial systems in the RootFinding package:

> sys:=[x^2+y^2-1, y-x^2]:
> RootFinding[Isolate](sys, [x,y], digits=1, output=interval);

-7251005348244714239 -906369071450328423
[[x = [--------------------, -------------------],

9223372036854775808 1152921504606846976

1414187776304389027 5711861873363103083
y = [-------------------, -------------------]], [...]]

2305843009213693952 9223372036854775808

This computation uses the Rational Univariate Representation designed by
F. Rouillier, and then the MPFI interval arithmetic library — which in turn
uses MPFR — is used to isolate the roots or perform arithmetic operations on
the roots.

MPFR in Sage. The open-source Sage computer algebra system (sagemath.org)
uses MPFR for its arbitrary precision floating-point arithmetic, and MPFI for
the corresponding interval arithmetic. It should be noted that the user has access
to the MPFR rounding modes and to the exact representation m · 2e of binary
floating-point numbers, as the following example (with Sage 4.4.2) shows:

sage: D = RealField(42, rnd=’RNDD’); U = RealField(42, rnd=’RNDU’)
sage: D(pi), U(pi)
(3.14159265358, 3.14159265360)
sage: D(pi).exact_rational()
3454217652357/1099511627776
sage: x = RealIntervalField(42)(pi); x.lower(), x.upper()
(3.14159265358, 3.14159265360)

MPFR is also used by the Magma computational number theory system, and by
the Mathemagix free computer algebra system (in the numerix package).

Apart from the above indirect applications, where the final user is not always
aware that she/he is using MPFR, we mention here a few selected “direct” applica-
tions of MPFR (more details can be found on http://www.mpfr.org/pub.html).

sagemath.org
http://www.mpfr.org/pub.html

Reliable Computing with GNU MPFR 45

MPFR is often used as a reference correctly-rounded implementation for mathe-
matical functions in double precision [3,8]. P. Kornerup, V. Lefèvre, N. Louvet and
J.-M. Muller used MPFR to prove — among other results — that there exists no
algorithm in less than 6 arithmetic operations to compute the “TwoSum” of two
floating-point numbers a and b, i.e., x and y such that x is the rounding to nearest
of a+ b, and y = a+ b−x; they used an exhaustive search approach [7]. F. Chiba
and T. Ushijima used MPFR to study waves produced by a disc [1,2].

Some funny applications of MPFR are the following. K. Briggs used MPFR
to find a new worst approximable pair; this result required computing 107 terms
of the continued fraction of 2 cos(2π/7). D. de Rauglaudre used MPFR to zoom
in the Mandelbrot/Julia sets, since from a given depth on, double precision is
not sufficient; the corresponding videos are available on Youtube1.
Conclusion. Numeric tools with well-defined semantics help improving the re-
liability and portability of mathematical software. MPFR does not solve all
problems: it only guarantees correct rounding for an atomic operation, thus for
a sequence of operations like the constant C in the introduction, one has to use
other means like interval arithmetic or a Real RAM implementation (like the
iRRAM package from N. Müller). We advise the developers of numeric tools to
provide such well-defined semantics, and their users to make good use of them!
Acknowledgement. The author thanks Nathalie Revol who noticed some typos
in a earlier version of that article.

References

1. Chiba, F., Ushijima, T.: Computation of the scattering amplitude for a scattering
wave produced by a disc – approach by a fundamental solution method. Journal of
Computational and Applied Mathematics 233(4), 1155–1174 (2009)

2. Chiba, F., Ushijima, T.: Exponential decay of errors of a fundamental solution
method applied to a reduced wave problem in the exterior region of a disc. Journal
of Computational and Applied Mathematics 231(2), 869–885 (2009)

3. de Dinechin, F., Ershov, A.V., Gast, N.: Towards the post-ultimate libm. In: Pro-
ceedings of 17th IEEE Symposium on Computer Arithmetic, Cape Cod, USA, pp.
288–295 (2005)

4. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A
multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw., article 13 33(2) (2007)

5. Ghazi, K.R., Lefèvre, V., Théveny, P., Zimmermann, P.: Why and how to use arbi-
trary precision. Computing in Science and Engineering 12(3), 62–65 (2010)

6. IEEE standard for oating-point arithmetic, 2008. Revision of ANSI-IEEE Standard
754-1985, approved June 12, 2008: IEEE Standards Board (2008)

7. Kornerup, P., Lefèvre, V., Louvet, N., Muller, J.-M.: On the computation of
correctly-rounded sums. In: Bruguera, J.D., Cornea, M., Das-Sarma, D., Harri-
son, J. (eds.) Proceedings of the 19th IEEE Symposium on Computer Arithmetic
(ARITH’19), pp. 155–160. IEEE Computer Society, Los Alamitos (2009)

8. Lauter, C.Q., Lefèvre, V.: An efficient rounding boundary test for pow(x, y) in
double precision. IEEE Trans. Comput. 58(2), 197–207 (2009)

1 http://www.youtube.com/view_play_list?p=56029CB07C72B4A4

http://www.youtube.com/view_play_list?p=56029CB07C72B4A4

Simplicial Cohomology of Smooth Orbifolds in
GAP

Mohamed Barakat1 and Simon Görtzen2

1 Department of mathematics, University of Kaiserslautern,
67653 Kaiserslautern, Germany
barakat@mathematik.uni-kl.de

2 UMIC Research Centre, RWTH Aachen, Mies-van-der-Rohe-Str. 15,
52074 Aachen, Germany

simon.goertzen@rwth-aachen.de

Abstract. This short research announcement briefly describes the sim-
plicial method underlying the GAP package SCO for computing the so-
called orbifold cohomology of topological resp. smooth orbifolds. SCO
can be used to compute the lower dimensional group cohomology of some
infinite groups.

Instead of giving a complete formal definition of an orbifold, we start with a simple
construction, general enough to give rise to any orbifold M. Let X be a (smooth)
manifold and G a Lie group acting (smoothly and) properly on X , i.e., the action
graph α : G × X → X × X : (g, x) �→ (x, gx) is a proper map. In particular, G
acts with compact stabilizers Gx = α−1({(x, x)}). Further assume that G is either

– discrete (acting discontinuously), or
– compact acting almost freely (i.e. with discrete stabilizers) on X .

In both cases G acts with finite stabilizers. “Enriching” M := X/G with these
finite isotropy groups leads to the so-called fine orbit space M := [X/G], also
called the global quotient orbifold. We call the orbifold reduced if the action
is faithful. The topological space M is then called the coarse space underlying
the orbifold M. Roughly speaking, a reduced orbifold M locally looks like the
orbit space Rn/V , where V is a finite subgroup of GLn(R). It is easy to show
that every effective orbifold M arises as a global quotient orbifold by a compact
Lie group1 G.

By considering (countable) discrete groups G acting properly and discontinu-
ously on X we still obtain a subclass of orbifolds which includes many interesting
moduli spaces. The most prominent one is the (non-compactified) moduli space
Mg,n of curves of genus g with n marked points and 2g + n ≥ 3. It is the global
quotient [Tg,n/Γg,n] of the contractible Teichmüller space Tg,n ≈ C3g−3+n by
the proper discontinuous action of the mapping class group Γg,n [7].
1 Define X as the bundle of orthonormal frames on M. It is a manifold on which the

orthogonal group G := On(R) acts almost freely with faithful slice representations
[8, Thm. 4.1].

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 46–49, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Simplicial Cohomology of Smooth Orbifolds in GAP 47

A convenient way to define a cohomology theory on M is to consider the
category Ab(M) of Abelian sheaves on M, together with the global section
functor ΓM : Ab(M) → Ab to the category of Abelian groups. The Abelian
category Ab(M) has enough injectives and the orbifold cohomology of M with
values in a sheaf2 A is then simply defined as the derived functor cohomology

Hn(M,A) := RnΓM(A).

This conceptually simple definition is of course highly nonconstructive. To boil
it down to a constructive one we proceed in several steps following [9]:

1. If the orbifold M is given as a global quotient [X/G], then Ab(M) is equiv-
alent to the category Ab(X)G of G-equivariant sheaves on X . The global
section functor ΓM then corresponds to the functor ΓG

X of G-equivariant
global sections. The space X and the action graph α : G×X → X ×X are
encoded by the so-called action groupoid3 G = G�X := G×X ⇒ X with
source-target map (s, t) = α, composition (g, y)(h, x) = (ghx, x) for y = hx,
and inversion (g, x)−1 = (g−1, gx).

For a general groupoid G with base X denote by Ab(G) the Abelian
category of G-sheaves, i.e., the sheaves on X compatible with the action of
the groupoid G. Hence, if G is the action groupoid G�X , then the G-sheaves
are nothing but G-equivariant sheaves on X and Ab(G) = Ab(X)G.

2. Another way to represent an orbifold M was suggested by Haefliger [6].
Denoting by U an orbifold atlas of M, he constructed an étale proper groupoid
H := H1 ⇒ H0 with base space H0 :=

∐
Ũ∈U Ũ and orbit space4 H0/H1

homeomorphic5 to the coarse space M underlying M. Again it follows that
Ab(H) � Ab(M).

3. Choose a triangulation T of M adapted to the orbifold atlas U of M. Such
a triangulation always exists [9, Prop. 1.2.1]. Replacing H0 by the subspace
R0(T) :=

∐
σ∈Tn

σ̃ ⊂ H0, where Tn is the set of maximal simplices in T (of
dimension n = dim M), and pulling back H1 over the embedding R0(T) ×
R0(T) ↪→ H0 × H0 yields the set of arrows R1(T) of the so-called reduced
groupoid R(T) := R1(T) ⇒ R0(T). R(T) is a full subgroupoid of H and,
again, Ab(R(T)) � Ab(H). In particular Hn(R(T), A|R(T)) ∼= Hn(H,A) for
any Abelian sheaf A on H .

4. One can now show that the connected components of R(T)• are contractible,
where R(T)• denotes the nerve of the reduced groupoid R(T). The set

S• := π0(R(T)•)

of connected components of the nerve of the reduced groupoid is a simplicial
set, which is, unlike R(T)•, not a nerve of some category, in general.

2 One often considers the constant sheaf A = Z.
3 The group G cannot be recovered from the action groupoid, in general.
4 This is the space of equivalence classes of the equivalence relation given by the image

of the source-target map (s, t) : H1 → H0 × H0.
5 This generalizes a similar construction for an étale proper groupoid representing a

manifold, cf. [2, Chap. 2, 2.α]

48 M. Barakat and S. Görtzen

5. A local system A on M, i.e., a locally constant sheaf, induces a locally
constant sheaf on H and by restriction one on R(T). The induced locally
constant sheaf A(•) on the nerve6 R(T)• is constant on the contractible con-
nected components and factors to a local system of coefficients (cf. [4, I.7])
on the simplicial set S•, which we again denote by A.

6. A spectral sequence argument finally provides the isomorphism of
cohomology:

Hn(M,A) ∼= Hn(S•, A).

The right hand side of this isomorphism is indeed constructive and was imple-
mented in the GAP package SCO [5]. The package includes examples computing
the low dimensional cohomology groups of the 2-dimensional crystallographic
space groups:

In case M is a global quotient [X/G] of a contractible space X by a proper
action of a group G, then Hn(M,Z) ∼= Hn(G,Z), and we recover the ordinary
group cohomology of G.

In other words: The cohomology functor cannot detect the passage from an
abstract group G (regarded as a groupoid over one point) to the action groupoid
G�X on a contractible space X (as a contractible space does not introduce any
detectable cohomological data). In favorable situations this can be exploited to
replace an infinite (discrete) group by an orbifold, an object which is still group-
but now also space-like, and where the occurring groups are all finite. So, roughly
speaking, the cohomology of an infinite7 (discrete) group can be computed as the
cohomology of a space “intertwined” with the cohomology of some finite groups.

Starting from a fundamental domain of a proper discontinuous cocompact
action of a discrete group one can easily obtain an adapted triangulation of
the global quotient. This was the point of departure for computing the lower
dimensional cohomology of the 2-dimensional space groups, which can easily be
extended to higher dimensional space groups. The SCO package can be used to
quickly produce the simplicial set S• associated to an adapted triangulation,
but the efficiency of computing the cohomology will depend on the growth of
the cardinalities |Sn|, where Sn is n-th set of S•. It is thus desirable to construct
“minimal” triangulations.

The orbifold corresponding to the 2-dimensional space group p31m is a con-
tractible cone with a singular C3-point at the bottom, as well as a C2-edge with
one D6-isotropy (see Figures 1 and 2). Just as with D6 itself, this leads to a
4-periodic cohomology:

Hi(p31m,Z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Z i = 0
0 i = 1
Z/2Z ⊕ Z/3Z i ≥ 2, i ≡4 2
Z/2Z i ≥ 3, i ≡4 1, 3
Z/2Z ⊕ (Z/3Z)2 i ≥ 4, i ≡4 0

More details are provided in the forthcoming work [1].
6 In the sense of [3].
7 Starting with a finite group only produces computational overhead.

Simplicial Cohomology of Smooth Orbifolds in GAP 49

1

5 6 7 5

2

3 4

2

C2C2

C3

D6D6

Fig. 1. Adapted triangulation of the funda-
mental domain of p31m

C2

C3

D6

Fig. 2. The coarse space of the
orbifold p31m enriched with the
isotropy groups

References

1. Barakat, M., Görtzen, S.: Simplicial cohomology of orbifolds revisited (in prepara-
tion)

2. Connes, A.: Noncommutative geometry. Academic Press Inc., San Diego (1994),
http://www.alainconnes.org/downloads.html

3. Deligne, P.: Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math. (44), 5–77
(1974)

4. Gelfand, S.I., Manin, Y.I.: Methods of homological algebra, 2nd edn. Springer Mono-
graphs in Mathematics. Springer, Berlin (2003)

5. Görtzen, S.: GAP Package SCO (2007-2008),
http://wwwb.math.rwth-aachen.de/goertzen/SCO

6. Haefliger, A.: Groupoïdes d’holonomie et classifiants. Astérisque (116), 70–97 (1984);
Transversal structure of foliations (Toulouse, 1982)

7. Korkmaz, M.: Low-dimensional homology groups of mapping class groups: a survey.
Turkish J. Math. 26(1), 101–114 (2002) (arXiv:math.GT/0307111)

8. Moerdijk, I., Pronk, D.A.: Orbifolds, sheaves and groupoids. K-Theory 12(1), 3–21
(1997)

9. Moerdijk, I., Pronk, D.A.: Simplicial cohomology of orbifolds. Indag. Math
(N.S.) 10(2), 269–293 (1999) (arXiv:q-alg/9708021)

http://www.alainconnes.org/downloads.html
http://wwwb.math.rwth-aachen.de/goertzen/SCO

Computing Polycyclic Quotients of Finitely

(L-)Presented Groups via Groebner Bases

Bettina Eick and Max Horn

Institut Computational Mathematics, TU Braunschweig,
Pockelsstrasse 14, 38106 Braunschweig, Germany

{beick,max.horn}@tu-bs.de

http://www.tu-braunschweig.de/icm/algebra

Abstract. We announce the development and implementation of a new
GAP package PCQL. This facilitates the computation of consistent
polycyclic presentations for polycyclic quotients of groups defined by
a so-called finite L-presentation. This type of presentation incorporates
all finite presentations as well as certain infinite presentations. The al-
gorithm allows a variety of polycyclic quotients ranging from maximal
nilpotent quotients of a given class to the maximal solvable quotients of
a given derived length. The algorithm uses Groebner bases over integral
group rings of polycyclic groups as main means of its computation.

Keywords: Polycyclic quotient, nilpotent quotient, finitely presented
group, L-presented group, Groebner bases.

1 Introduction

The development and implementation of quotients methods for finitely presented
groups has a long history. The simplest version of such a method is the abelian
quotient algorithm. Given a finitely presented group G, this determines the
abelian invariants of G/G′. We refer to the book by Sims [8] for background.
There are many other types of quotients whose computation has been consid-
ered: finite p-quotients, finite solvable quotients, nilpotent quotient and, most
general in this sequence, polycyclic quotients.

Nickel [7] developed a method to compute nilpotent quotients. Given a finitely
presented group G and an integer n, this can compute a polycyclic presentation
of the class-n quotient G/γn(G) of G. This method is quite effective and has a
wide range of applications. It has been generalized to finitely L-presented groups
by Bartholdi, Eick and Hartung [1].

Lo [6] has developed a method to compute polycyclic quotients. Given a
finitely presented group G and an integer n, this can decide whether the de-
rived length-n quotient G/G(n) is polycyclic and, if so, then it can compute a
polycyclic presentation for it. This method uses Groebner bases over integral
group rings of polycyclic groups. It is less effective than the nilpotent quotient
method by Nickel and has a rather limited range of applications. Its implemen-
tation in C is outdated and difficult to base improvements on.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 50–53, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.tu-braunschweig.de/icm/algebra

Computing Polycyclic Quotients of Finitely (L-)Presented Groups 51

Our aim was to develop and implement a quotient algorithm which combines
the advantages of Lo’s method with the high effectivity of Nickel’s algorithm
and, at the same time, generalizes from finitely presented groups to finitely
L-presented groups. We announce the development of such a method and its
implementation in GAP here and describe it briefly in the following sections.
We first recall the definition of a finite L-presentation in the following section.

2 L-Presentations

Let X be a finite set of abstract generators and let F be the free group on X .
Let R and Q be finite subsets of F and φ a finite set of endomorphisms of F .
Then

〈X | Q | φ | R〉
is called a (finite) L-presentation. Let φ∗ denote the monoid generated by φ.
Then the finite L-presentation defines the group F/K with

K = 〈Q ∪
⋃

σ∈φ∗
σ(R)〉F .

Every finitely presented group 〈X | S〉 is finitely L-presented, e.g. as 〈X | S |
∅ | ∅〉 or as 〈X | ∅ | ∅ | S〉. There are many interesting groups for which a finite
presentation is not known or does not exist, but which can be defined by a finite
L-presentation. Prominent examples are the Grigorchuk group [4] and the Gupta-
Sidki group [5]. Both groups arose as counterexamples to the famous Burnside
conjectures and both groups have proved to have very interesting properties.

3 The Algorithm

Let G be a group given by a finite L-presentation. Our aim is to consider a
certain quotient of G, check whether it is polycyclic and if so, then construct a
consistent polycyclic presentation for this quotient. We proceed by induction for
this purpose.

In the initial step of the induction, we determine a polycyclically presented
group H together with an epimorphism ϕ : G → H with kernel G′. In the
subsequent induction steps, we assume that we are given

(1) The finitely L-presented group G;
(2) A polycyclically presented group H ;
(3) An epimorphism ϕ : G → H with kernel N , say;
(4) A subgroup U � H .

Let ϕ−1(U) be a full preimage of U under ϕ and define M = [ϕ−1(U), N]. Then
M is a normal subgroup of G with N ′ ≤ M ≤ [G,N]. The aim in the induction
step is to check whether G/M is polycyclic (or, equivalently, whether N/M is
finitely generated) and if so, then determine a polycyclically presented group K
and an epimorphism ρ : G → K with kernel M .

52 B. Eick and M. Horn

If we use U = H in each step of the algorithm, then the computed quotients
are the quotients of G by the groups in the lower central series of G. If we use
U = {1} in each step of the algorithm, then the computed quotients are the
quotients of G by the groups in the derived series of G. The algorithm also
allows for many intermediate quotients as well.

Note that N/M is a G-module, since G acts by conjugation on the quotient
N/M . Since N/M is abelian, we can also consider it as an H-module. The key
step in our algorithm translates the H-module N/M to a quotient V/W , where V
is a free ZH-module and W is a submodule of V . It then determines a Groebner
basis for W using an improved version of the method by Lo [6]. This allows to
read off whether G/M is polycyclic and it yields a polycyclic presentation for
G/M in this case.

4 Two Small Examples

Due to the restricted space, we only consider two very small examples here. Let
G be the group defined by the finite presentation

〈a, b | a4, a−2ba−2b, b−1a−1b−1a−1b−1aba〉
and let H be the Basilica group [3] with its finite L-presentation in [2].

The following table exhibits the abelian invariants of the computed quotients
in the two extreme cases: In the first case (N) we compute the quotients Gi/Gi+1
of successive members of the lower central series and in the second case (Q) we
do the same for the derived series. All quotients are described by their abelian
invariants.

G H
Step (N) (Q) (N) (Q)

1 (2,4) (2,4) (0,0) (0,0)
2 (2) (0,0) (0) (0,0,0)
3 (2) () (4) (2,2,0,0,0,0,0,0,0,0)
4 (2) () (4) ?
5 (2) () (4,4) ?

The (Q) case for G exhibits the maximal solvable quotient of G after 3 steps:
this has derived length 2 and is polycyclic of Hirsch length 2. The (N) case for
G will never reach the maximal solvable quotient, since all nilpotent quotients
of G are finite as G/G′ is finite.

The (Q) case for H shows that the maximal derived length-3 quotient of H
is polycyclic of Hirsch length 13. The maximal class-48 quotient of H has been
determined in [1]: this has Hirsch length 3.

References

1. Bartholdi, L., Eick, B., Hartung, R.: A nilpotent quotient algorithm for certain
infinitely presented groups and its applications. Internat. J. Algebra Comput. 18(8),
1321–1344 (2008)

Computing Polycyclic Quotients of Finitely (L-)Presented Groups 53

2. Bartholdi, L., Virág, B.: Amenability via random walks. Duke Math. J. 130(1),
39–56 (2005)

3. Grigorchuk, R., Zuk, A.: On a torsion-free weakly branch group defined by a three
state automaton. Internat. J. Algebra Comput. 12(1-2), 223–246 (2002)

4. Grigorchuk, R.I.: Just infinite branch groups. In: New horizons in pro-p groups.
Progr. Math., vol. 184, pp. 121–179. Birkhäuser, Boston (2000)

5. Gupta, N.D., Sidki, S.N.: Some infinite p-groups. Algebra i Logika 22(5), 584–589
(1983)

6. Lo, E.H.: A polycyclic quotient algorithm. J. Symb. Comput. 25, 61–97 (1998)
7. Nickel, W.: Computing nilpotent quotients of finitely presented groups. In: Geomet-

ric and computational perspectives on infinite groups. Amer. Math. Soc. DIMACS
Series, pp. 175–191 (1996)

8. Sims, C.C.: Computation with finitely presented groups. Cambridge University
Press, Cambridge (1994)

Constructive Membership Testing in Black-Box

Classical Groups

Sophie Ambrose1, Scott H. Murray2, Cheryl E. Praeger1, and Csaba Schneider3

1 School of Mathematics and Statistics, The University of Western Australia
35 Stirling Highway CRAWLEY WA 6009 Australia

Cheryl.Praeger@uwa.edu.au, alias.sqbr@gmail.com
2 Faculty of Information Sciences and Engineering, The University of Canberra,

ACT, 2601
Scott.Murray@canberra.edu.au

3 Centro de Álgebra da Universidade de Lisboa
Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal

csaba.schneider@gmail.com

The research described in this note aims at solving the constructive member-
ship problem for the class of quasisimple classical groups. Our algorithms are
developed in the black-box group model (see [HCGT, Section 3.1.4]); that is,
they do not require specific characteristics of the representations in which the
input groups are given. The elements of a black-box group are represented, not
necessarily uniquely, as bit strings of uniform length. We assume the existence
of oracles to compute the product of two elements, the inverse of an element,
and to test if two strings represent the same element. Solving the constructive
membership problem for a black-box group G requires to write every element of
G as a word in a given generating set. In practice we write the elements of G as
straight-line programs (SLPs) which can be viewed as a compact way of writing
words; see [HCGT, Section 3.1.3].

The constructive membership problem is one of the main tasks identified in
the matrix group recognition project; see [OB] for details.

The goal of our research is to develop and implement algorithms to solve
the constructive recognition problem in the classes of black-box classical groups.
The same problem was already treated by [KS]. The main difference between
our approach and that of [KS] is that we use the standard generating set of
classical groups given in [LGOB] instead of the larger generating set in [KS] and
that our goal is to develop algorithms that, in addition to having good theoret-
ical complexity, perform well in practice. Another related algorithm is that of
Costi’s [Cos] that solves the constructive membership problem for matrix repre-
sentations of classical groups in the defining characteristic. In our algorithms we
reduce the more general problem to a case treated by Costi; see Step 4 below.

In order to briefly explain the main steps of our procedures, we use Sp(2n, q)
as an example. The natural copy of Sp(2n, q) is the group of 2n × 2n matrices
over Fq that preserve a given (non-degenerate) symplectic form of a vector space
V = V (Fq, 2n). The elements of Sp(2n, q) are considered with respect to a given
basis e1, . . . , en, fn, . . . , f1 consisting of hyperbolic pairs (ei, fi). The standard

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 54–57, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Constructive Membership Testing in Black-Box Classical Groups 55

generating set {s, t, δ, u, v, x} of Sp(2n, q) with odd q is described in [LGOB].
Let ω be a fixed primitive element of Fq. Then the standard generators are as
follows: s : e1 �→ f1, f1 �→ −e1; t : e1 �→ e1 + f1; δ : e1 �→ ωe1, f1 �→ ω−1f1;
u : e1 ↔ e2, f1 ↔ f2; v : e1 �→ e2 �→ · · · �→ en �→ e1, f1 �→ f2 �→ · · · �→ fn �→ f1;
x : f1 �→ e1 + f1, f2 �→ f2 + e2. The standard generators fix the basis vectors
whose images are not listed.

Suppose that G is a black-box group that is known to be isomorphic to
Sp(2n, q) with given n and q and let us further assume that a generating set
X = {s, t, δ, u, v, x} is identified in G such that the map s �→ s, t �→ t, δ �→ δ,
u �→ u, v �→ v, x �→ x extends to an isomorphism Sp(2n, q) → G. This can be
achieved using the algorithms described in [LGOB]. Our aim is to write a given
element g of G as an SLP in X . For g ∈ G let g̃ denote the preimage of g in
Sp(2n, q) and let g̃i,j denote the (i, j)-entry of the matrix g̃. In order to avoid
conjugate towers the element ab = b−1ab will be denoted by âb. Suppose that
q is odd, set F = Fq. Our procedure is split into several steps.

Step 1. Set S = {g ∈ G | g̃1,2n = 0}. In this step we find an element z ∈ G as
an SLP in X such that gz ∈ S. Set q = t̂s. For h ∈ G, we have that h ∈ S if
and only if qqh

= q, and thus we obtain a black-box membership test in S using
O(1) black-box operations. Since the elements s, u, and v induce a transitive
group on the subspaces 〈ei〉, 〈fi〉 this test can be used to test if g̃1,i = 0 for all
i ∈ {1, . . . , 2n}. If g ∈ S then we can choose z = 1; hence assume that g �∈ S.
For α ∈ F let zα be the element of G that corresponds to the transformation
that maps e1 �→ e1 − αe2, f2 �→ αf1 + f2, and fixes the other basis elements.
If g̃1,n−1 �= 0, then gzα ∈ S with α = −g̃1,n/g̃1,n−1. Using that z1 = x̂s and
zωk = z1̂(δ−k), the elements zα (α ∈ F) can be enumerated using O(q) black-
box operations and, for each such zα, we can test if gzα ∈ S using O(1) black-box
operations. If gzα �∈ S for all α ∈ F, then we conclude that g̃1,n−1 = 0, and so
gu ∈ S. Therefore the cost of finding the suitable z is O(q) black-box operations.
As zωk = (x̂s)̂(δ−k), using fast exponentiation, the required element z can be
written as a SLP of length O(log q).

Step 2. In this step we assume that g ∈ S where S is the subset defined in
Step 1. Let T denote the stabilizer of the subspace 〈e1〉. We may assume that
g̃1,1g̃1,2n−1 �= 0 as this can be achieved using the membership test in Step 1 with
O(n) black-box operations. We want to find an element z as an SLP in X such
that gz ∈ T . If (α2, . . . , αn, βn, . . . , β1) ∈ F2n−1 then let t(α2, . . . , αn, βn, . . . , β1)
denote the element of G corresponding to the transformation that maps e1 �→
e1 + α2e2 + . . . + αnen + βnfn + . . . + β1f1, ei �→ ei − βif1, fi �→ fi + αif1 if
i ∈ {2, . . . , n}, and f1 �→ f1. Note that gt(−g̃1,2/g̃1,1, . . . ,−g̃1,2n−1/g̃1,1, 0) ∈ T .
Set b = (x̂((t̂s)̂g)x−1)̂s. Then b = t(γ2, . . . , γ2n) with γi = −g̃1,ig̃1,2n−1
for i = 2, . . . , 2n − 1, and γ2n = −g̃1,2n−1(2g̃1,1 − g̃2

1,1g̃1,2n − g̃1,2n−1). Fur-
ther, b̂(δ−k) = t(γ1ω

k, . . . , γ2n−1ω
k, γ2nω

2k). Hence there is some k0 such that
γiω

k0 = −g̃1,i/g̃1,1 for all i ∈ {2, . . . , 2n−1}. Set z0 = b̂(δ−k0). Using the mem-
bership test for S explained in the previous paragraph and using the fact that
(g̃z0)1,2n−1 = 0, the element z0 can be found using O(q) group multiplications.

56 S. Ambrose et al.

Now given the element z0, we can recover the entries γiω
k0 and we can write the

element z0 = t(γ2ω
k0 , . . . , γ2n−1ω

k0) as SLP as follows. For i = 2, . . . , n− 1 and
α ∈ F let xi(α) = t(0, . . . , 0, α, 0, . . . , 0) where the non-zero entry appears in the
(i− 1)-th position. Let I denote the set of indices i ∈ {2, . . . , 2n− 1} for which
γi �= 0. For i ∈ I, let ki be such that γiω

k0 = ω−ki . Then z0 =
∏

i∈I xi(ωki). As
x2(1) = (x̂s)−1, xi+1(1) can be obtained from xi(1) using O(1) group multi-
plications, and xi(1)̂(δ−k) = xi(ωk), the entries γiω

k0 can be recovered and z0
can be written as an SLP using O(nq) group multiplications. The length of the
SLP is O(n log q).

Step 3. Now we assume that g ∈ T . We repeat Steps 1 and 2 with gs and obtain
an element zl and zr as SLPs in X such that zlgzr is in the intersection G1 of the
stabilizers of 〈e1〉 and 〈f1〉. The cost of this step is O(nq) group multiplication
and the length of the SLPs to zl and zr is O(n log q).

Step 4. In this step we assume that g ∈ G lies in G1. We have, for i ∈ {2, . . . , 2n−
1}, that xi(1)̂g = t(g̃i,2/g̃1,1, . . . , g̃i,2n−1/g1,1). Using the procedures described
in Step 2, the entries g̃i,j with i, j ∈ {2, . . . , 2n − 1} can be recovered using
O(n2q) multiplications. Let M denote the (2n− 2)× (2n− 2) matrix formed by
these entries. The procedure of Costi [Cos] is used to write M as a SLP in the
standard generators of Sp(2n− 2, q). Considering Sp(2n− 2, q) as the subgroup
G1, we evaluate this SLP in G to obtain an element z. Now gz−1 is a diagonal
matrix with (g̃z−1)2,2 = · · · = (g̃z−1)2n−1,2n−1. Hence there is some k such that
gz−1δk ∈ Z(G).

After the end of Step 4, the element g is written as an SLP in X modulo the
center of G using O(n2q) group operations. The length of the SLP is O(n2 log q).
We emphasize that the procedures, while using vector and matrix notation for
ease of the exposition, are actually black-box procedures requiring only the ba-
sic group operations of multiplication, inversion and equality testing. Similar
algorithms are developed and implemented for the classical groups SL(n, q) and
SU(n, q) (with odd q). The implementations are available in the computational
algebra system Magma.

Acknowledgment. Murray would like to thank the Magma project at the
University of Sydney, where some of the work was carried out. Praeger would
like to acknowledge the support of the Australian Research Council Discovery
Grant DP0879134 and Federation Fellowship FF0776186. Schneider was sup-
ported by the FCT project PTDC/MAT/101993/2008 (Portugal) and by the
OTKA grant 72845 (Hungary).

References

[Cos] Costi, E.: Constructive membership testing in classical groups. PhD thesis,
Queen Mary, University of London (2009)

[HCGT] Holt, D.F., Eick, B., O’Brien, E.A.: The Handbook of Computational Group
Theory. Chapman and Hall/CRC (2005)

Constructive Membership Testing in Black-Box Classical Groups 57

[KS] Kantor, W.M., Seress, Á.: Black box classical groups. Memoirs Amer. Math.
Soc., vol. 149 (2001)

[LGOB] Leedham-Green, C.R., O’Brien, E.A.: Constructive recognition of classical
groups in odd characteristic. Journal of Algebra 322, 833–881 (2009)

[OB] O’Brien, E.A.: Algorithms for matrix groups. Groups St Andrews (Bath)
(August 2009) (accepted, to appear 2010)

Towards High-Performance Computational

Algebra with GAP

Reimer Behrends1, Alexander Konovalov1, Steve Linton1,
Frank Lübeck2, and Max Neunhöffer3

1 School of Computer Science, University of St Andrews
{rb,alexk,sal}@cs.st-and.ac.uk

2 LDFM, RWTH Aachen
frank.luebeck@math.rwth-aachen.de

3 School of Mathematics and Statistics, University of St Andrews
neunhoef@mcs.st-and.ac.uk

Abstract. We present the project of parallelising the computational al-
gebra system GAP. Our design aims to make concurrency facilities avail-
able for GAP users, while preserving as much of the existing codebase
(about one million lines of code) with as few changes as possible without
requiring users (a large percentage of which are domain experts in their
fields without necessarily having a background in parallel programming)
to have to learn complicated parallel programming techniques. To this
end, we preserve the appearance of sequentiality on a per-thread basis
by containing each thread within its own data space. Parallelism is made
possible through the notion of migrating objects out of one thread’s data
space into that of another one, allowing threads to interact.

Keywords: GAP, shared memory programming, threads, data spaces.

The GAP system [4], as it is introduced on the GAP Web site, is an open-source
system for computational discrete algebra, with particular emphasis on Compu-
tational Group Theory. It provides a programming language, an extensive library
of functions implementing algebraic algorithms written in the GAP language as
well as large data libraries of algebraic objects. The kernel of the system is im-
plemented in C, and the library is implemented in the GAP language. Both the
kernel and the library are sequential and do not support parallelism.

In the 4-year long EPSRC project “HPC-GAP: High Performance Compu-
tational Algebra and Discrete Mathematics” (http://www-circa.mcs.st-and.
ac.uk/hpcgap.php), started in September 2009, we aim at reengineering the
GAP system to allow parallel programming in it both in shared and distributed
memory programming models.

GAP has a fairly large user base (estimated in thousands of users and large
number of package authors) who have a considerable investment in the current
sequential architecture. While many of them will likely be interested in leveraging
the increased performance of multicore processors, it is unlikely that they will
accept changes that invalidate their existing code. In addition, the GAP standard
library and the packages distributed with GAP are about one million lines of code

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 58–61, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www-circa.mcs.st-and.ac.uk/hpcgap.php
http://www-circa.mcs.st-and.ac.uk/hpcgap.php

Towards High-Performance Computational Algebra with GAP 59

in size, a rewrite of which would be prohibitive. These considerations constitute
the main driver for our parallel programming model which should accommodate
the following types of users: (1) domain experts who do not have expertise in
parallel programming or lack the resources to invest into it; (2) users who wish
to leverage the benefits of parallelism, but are not expert parallel programmers
themselves; and (3) parallelism experts. To ensure this, it should combine at least
the appearance of a sequential environment with the same level of performance
with offering a set of high-level parallel tools and providing necessary low-level
functionality to control how threads interact in order to optimise performance.

Below we report on the current progress with extending the GAP system
with new functionality for shared memory programming (slightly more details
are given also in [2]). Our parallel programming environment builds on the notion
of segregating threads through disjoint data spaces. Data spaces form a partition
of GAP objects, i.e. each GAP object is the member of exactly one data space.
Only one thread at a time can have exclusive access to a data space (checked at
runtime), which ensures mutual exclusion.

We distinguish between three types of data spaces. First, there is a thread-local
data space associated with each thread, to which that thread always has exclusive
access; second, there is an indefinite number of shared data spaces to which
threads can gain exclusive or shared access through an associated read-write
lock; finally, there is a single public data space, to which all threads have shared
access at all times. If a thread has exclusive access to a data space, that means
that it can perform any operation on objects within this data space; if a thread
has shared access to a data space, it can perform any operation on these objects
that does not interfere with other threads performing similar operations (such as
read-only operations). In order for threads to interact, objects can be migrated
between data spaces. An object can only be migrated out of a data space by
a thread if that thread has exclusive access to that data space. This constraint
makes migration very cheap: each object has a descriptor (implemented as a C
pointer) for the data space containing it, so migrating just involves updating
the descriptor. Since the thread has exclusive access to the data space and the
object, this can be implemented as a simple memory write (certain cases still
need memory barriers for consistency).

Our programming primitives frequently use implicit migration so that the
programmer does not have to do migration manually. Functions that communi-
cate with other threads (such as sending to or receiving from a channel) migrate
some of their arguments to a target data space if they’re in the current thread’s
thread-local data space (objects in public and shared data spaces are left where
they are). This migration occurs without the user having to explicitly specify it.

Before performing an operation on an object, a thread checks the data space
descriptor of the object to ensure that the thread has the proper access to per-
form an operation. We optimised the most common cases (in particular, access to
the thread’s thread-local data space and the public data space) and eliminated
checks that can be statically shown to be superfluous. Thread-local data spaces
accommodate our first type of users. A piece of code that executes solely within

60 R. Behrends et al.

a single thread-local data space is indistinguishable from a purely sequential pro-
gram and is guaranteed to not have race conditions or deadlocks, while incurring
minimal overhead. Shared data spaces aim primarily at the third type of user,
the parallelism expert. Access to them is controlled by explicit read-write locks,
which may be cumbersome for the non-expert to use.

Our model still protects the programmer against the two most common types
of errors, race conditions, and deadlocks. Race conditions are automatically
avoided in that a thread needs to lock a shared data space before it can access
the objects within. Failure to lock a data space causes the data space descriptor
check to fail with a runtime error. To avoid deadlocks, we require that there be
a partial order on locks and that locks are acquired following that order. That
means that when a thread acquires a lock B while holding a lock A, then A
must be less than B based on that partial order. This order does not have to be
specified by the user, but it has to exist. To ensure that it exists, we record for
each lock the set of successor locks that were acquired while it was being held.
Then, when a lock A is acquired, we check that none of the successor locks of
A are currently being held. This implementation incurs little or no overhead if
there is no nesting of locks, which is a very common case [1]. It also requires
no explicit annotation (like [3]), which would be cumbersome for the non-expert
user, as such annotations tend to be often required even in otherwise purely
sequential code that uses parallelised libraries.

The public data space only contains atomic objects, i.e. objects that support
solely atomic operations and thus can be performed by any number of threads
concurrently (this includes all fully immutable objects). This is both a conve-
nience feature so that the programmer does not have to write explicit locking
code for simple objects and allows more efficient access to objects that can be
implemented without locking (such as atomic counters or lock-free queues).

A very common use case for atomic objects in the public data space is that
several types of GAP objects have attributes that accumulate and cache infor-
mation that is often expensive to compute. Adding to accumulated data is an
idempotent operation (the result is always the same, even if calculated repeat-
edly) and two threads can perform it concurrently without locking. Reading
and adding to the accumulated data are thus atomic, and no explicit locking
is necessary. A number of synchronization primitives are similarly implemented
as atomic objects, such as channels, single assignment variables, and barriers.
These low-level primitives allow a parallelism expert a rich toolbox to implement
parallel algorithms.

Figure 1 illustrates our model; it is a simple task farm skeleton that processes
a matrix by sending each row to a dedicated channel to be processed by a sepa-
rate thread associated with that channel (this example is simplified; a practical
implementation would require at the very least a load balancing mechanism).

We have used the following GAP primitives to implement this ex-
ample. CreateThread(function, arg1, . . . , argn) starts a new thread that
will execute function with arguments arg1, . . . , argn. WaitThread(thread)
waits for thread to finish. Channels are used to move objects from one

Towards High-Performance Computational Algebra with GAP 61

TaskFarmByRow := function(matrix, process)

local threads, channels, i;

threads := []; channels := [];

for i in [1..Length(matrix)] do

channels[i] := CreateChannel();

threads[i] := CreateThread(function(ch)

local row;

row := ReceiveChannel(ch);

process(row);

SendChannel(ch, row);

end,

channels[i]);

SendChannel(channels[i], matrix[i]);

od;

for i in [1..Length(matrix)] do

WaitThread(threads[i]);

matrix[i] := ReceiveChannel(channels[i]);

od;

end;

Fig. 1. Splitting work between multiple threads

thread to another; they are implemented internally as shared data spaces.
SendChannel(channel, object) will implicitly migrate object to channel’s data
space. Likewise, ReceiveChannel(channel) will implicitly migrate the object re-
ceived from channel to the receiving thread’s local data space.

This example has some (intentional) similarities to traditional message passing
systems. However, unlike a pure message passing system, objects are not copied
when sent through a channel, but rather passed by reference. Access checks
ensure that race conditions do not occur as a result of this. For example, in
Figure 1, the main thread cannot access the rows of the matrix while they are
being processed by its child threads.

References

1. Bacon, D.F., Konuru, R., Murthy, C., Serrano, M.: Thin locks: featherweight syn-
chronization for java. In: PLDI 1998: Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and Implementation, pp. 258–268.
ACM, New York (1998)

2. Behrends, R., Konovalov, A., Linton, S., Lübeck, F., Neunhöffer, M.: Parallelis-
ing the computational algebra system GAP. Extended abstract. In: PASCO 2010
(accepted 2010)

3. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: pre-
venting data races and deadlocks. In: Proceedings of the 17th ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications. ACM SIG-
PLAN Notices, vol. 37(11), pp. 211–230. ACM, New York (2002)

4. The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4.12
(2008), http://www.gap-system.org

http://www.gap-system.org

An Improvement of a Function Computing

Normalizers for Permutation Groups

Izumi Miyamoto

Department of Computer Science and Media Engineering, University of Yamanashi
Takeda 4-3-11 Kofu. 400-8511, Japan

imiyamoto@yamanashi.ac.jp

http://shingen.ccn.yamanashi.ac.jp/~imiyamoto

Abstract. Computation of normalizers for permutation groups is some-
times very hard even if the degrees are small. The author previously ob-
tained some methods to compute normalizers of permutation groups and
wrote programs implementing the methods. The programs were mainly
applied to groups of small degree such as transitive groups of degree up
to 30 in the GAP library. The author will tune up the implementation to
speed up the computation of normalizers of permutation groups and ap-
ply it to permutation groups of degree up to 100. In our experiments, the
normalizers of the primitive groups up to degree 100 and their stabilizers
of one point in the symmetric groups are computed.

Keywords: permutation group, normalizer, association scheme.

1 Introduction

The computation of normalizers of permutation groups is sometimes very hard
even if they are of small degree. We use GAP system[1] for our computation and
our programs are written in GAP programming language. Most of permutation
groups of small degree are easy to compute their normalizers. The GAP function
Normalizer computes them very quickly. But readers may easily find transitive
groups G of degree n in the GAP library such that the normalizers of G in
the symmetric groups of degree n can not be computed within a reasonable
time by using the GAP function. We obtained some algorithms to compute the
normalizers of permutation groups in [6,7,8] and the programs implementing our
algorithms can compute rather quickly the normalizers of permutation groups
of small degree which are hard for the GAP function Normalizer. In [7] block
systems are used for the computation of normalizers of imprimitive permutation
groups. The method in [7] can use the algorithm obtained in [6] for the groups
constructed by the actions on block systems and by the stabilizers of one of the
blocks. In the present paper we will improve the implementation of the algorithm
shown in [6,8].

Computation of normalizers depends on a partition backtrack methods intro-
duced in [3,4] and the method is now a fundamental one in the computation for
permutation groups. But as noted in [9] that we have to find a balance between

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 62–68, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://shingen.ccn.yamanashi.ac.jp/~imiyamoto

An Improvement of a Function Computing Normalizers 63

the cost of the base change and the gain in pruning the search tree, there exists
problems in practical implementations. A polynomial-time algorithm for com-
puting normalizers of permutation groups under some condition is obtained in
[5] but the algorithm is very complicated and it has not been implemented.

In our algorithm we use an easy group theory shown in Lemma 1 and compute
the automorphism groups of some combinatorial objects in the lemma by a
partition backtrack method. We also use GAP Normalizer function in some small
groups. Under such conditions we will improve our implementation. In section 3
we will show the improvements and in section 4 we mention about the backtrack
method computing the automorphisms.

Table 2 shows that there exist not a few groups G such that the normalizer
of G is very quickly computed, while that of stabilizer subgroup of one point in
G can not be computed in a reasonable time by the GAP Normalizer function.
So it is not true that the computation of a smaller group is easier than that of
a larger group for normalizers. However in our algorithm shown in Lemma 1 we
will find a sufficiently small group to compute the normalizer in it under some
conditions.

In [6,7,8] some groups of degree even larger than 100 are computed, but mainly
the transitive groups of degree up to 30 are considered. In the present paper we
treat primitive groups of degree from 31 to 100 in the GAP library. There exist no
list of imprimitive groups available. So we also consider the stabilizers of a point
in the primitive groups stated above. We will go forward computing normalizers
of the primitive groups of degree larger than 100 in the GAP library. We use a
computer with CPU Intel Xeon E5335 2.0GHz and 16GB memory under Linux.

2 Preliminaries

We use combinatorial objects called association schemes or coherent configura-
tions and apply an easy group theory to compute normalizers of permutation
groups in the automorphism groups of the combinatorial objects formed by the
groups.

Let Ω = {1, 2, · · · , n} and let Rk, 1 ≤ k ≤ d, be subsets of Ω ×Ω.

Definition. (Ω, {Rk}k=1,2,···,d) is a coherent configuration if it satisfies the
following:

CC1. {R1, R2, · · · , Rd} is a partition of Ω ×Ω;
CC2. For some r < d, {R1, R2, · · · , Rr} is a partition of the diagonal

{(x, x)|x ∈ Ω} of Ω;
CC3. For every k there exists k∗ such that Rk∗ = {(y, x)|(x, y) ∈ Rk};
CC4. There exist constant numbers pi,j,k such that for any (x, z) ∈ Rk

the number of points y ∈ Ω such that (x, y) ∈ Ri and (y, z) ∈ Rj is
equal to pi,j,k.

Set Ωk = {x ∈ Ω|(x, x) ∈ Rk} for 1 ≤ k ≤ r in CC2. If we collect relations Ri

such that Ri ⊆ Ωk×Ωk for each Ωk, 1 ≤ k ≤ r, then each Ωk with such relations

64 I. Miyamoto

forms a coherent configuration and we call it a fiber of the configuration. A
coherent configuration which has only one fiber is called an “association scheme”.

A permutation g on Ω acts on Ω × Ω naturally by (x, y)g = (xg, yg) for
x, y ∈ Ω. Let G be a permutation group on Ω. Then it is well known that the
orbits of G acting on Ω × Ω forms a coherent configuration. We consider an
automorphism g of a configuration satisfying Rg

k = {(xg, yg)|(x, y) ∈ Rk} = Rk′

for all k. Then the normalizer of G in the symmetric group Sym(n) of degree n
is contained in the automorphism group of the configuration formed G. We use
the following lemma in [6] to obtain the normalizer of G in small groups.

Lemma 1. Let K be a permutation group on Ω. Let F be a tuple [p1, p2, · · · , pr]
of points in Ω and let Gi be the stabilizer of the subset [p1, p2, · · · , pi] of F
as a tuple in G for i = 1, 2, · · · , r. Let N i be the automorphism group of the
configuration formed by Gi on Ω\[p1, p2, · · · , pi]. Set N0 = N , G0 = G and set
N{0..i} = N0 ∩ N1 ∩ · · · ∩N i. Suppose that Gi ∩K is transitive on the orbit of
N{0..i}∩K containing the point pi+1 for i = 0, 1, · · · , r−1. Then the normalizer
of G in K is generated by G ∩K and the normalizer of G in N{0..r} ∩K.

3 Improvements and Experiments

We will explain our algorithm using examples and will show the speed up of
the computations of normalizers of permutation groups G in the symmetric
groups Sym(n). The normalizers of G in K will be denoted by N(K,G). Norm
denotes the GAP Normalizer function. So N =Norm means that the normalizer
is computed by the GAP function. The normalizer function introduced in [6] will
be denoted by ASN and our improved function will be denoted by CCN. Both
functions are written in GAP programming language. Gn = {g ∈ G|ng = g}
denotes the stabilizer of the point n ∈ Ω in G.

For primitive groups G of degree n, 31 ≤ n ≤ 100, in the GAP library the
normalizers N(Sym(n), G) and N(Sym(n− 1), Gn) were computed. The results
of our computation are shown in Table 1 and 2. Computing time is in seconds.
We did not list the results of G = Sym(n) or Alt(n), the alternating group
of degree n, in the tables. The first column of Table 1 shows the time ranges
and the remaining columns show the numbers of groups of which normalizer
in the symmetric groups in each time range, where ”fail” means that it can
not be computed in a reasonable time. There exist three groups G for which
it was hard to compute N(Sym(n − 1), Gn) and it took 6, 47 and 189 hours
for the computations respectively. Some typical examples are shown in Table 2.
From Table 1 most primitive groups are easy to compute Norm(Sym(n), G). and
the GAP function is the quickest one in many cases. Some of such groups can
be seen in Table 2. For the computations N(Sym(n − 1), Gn), Norm does not
seem to work so quickly comparing the computations N(Sym(n), G). In both
computations N(Sym(n), G) and N(Sym(n− 1), Gn), there are some groups of
which normalizers can not be computed in a reasonable time by the function
Norm. From Table 1 we can see that all the computations by CCN and ASN were
done within a reasonable time. Also we can see how faster is CCN than ASN in

An Improvement of a Function Computing Normalizers 65

general. Each improvement is explained in the examples below. All computing
times for groups of degree from 31 to 100 in the following examples are listed in
Table2 We start to tune up our program using groups of small degree.

Example 1. G =TransitiveGroup(27, 333) in the GAP library. We have two points
p1 and p2 in Lemma 1. The sizes of the orbits of G = G0 and G1 containing
the points respectively are 27 and 2. Then we have three groups Gi, 0 ≤ i ≤ 2,
of order 1458, 54 and 27 respectively. We compute the automorphism groups
to obtain three groups N{0..i}, 0 ≤ i ≤ 2 of order 3265173504, 120932352 and
3779136 respectively. Then the normalizer of G in Sym(27) is generated by G
and the group N(N{0..2}, G) = N(N(N(N{0..2}, G2), G1), G0) by Lemma1. We
compute this normalizer by Norm. We note that each side of the above equation
shows how to compute this group. It took 4.8 seconds for the computation of
the left hand side, which is used in [6], while 0.15 seconds for that of the right
hand side. So we will choose the computation following the right hand side of
the equation. It took 114 seconds for the direct computation Norm(Sym(n), G).
Moreover we note that because the index |G1 : G2| = 54/27 = 2 is small, we
had thought that we might gain little advantage and end in loss of time by this
processing. But this was not true, since the index |N{0..1} : N{0..2}| = 32. An
experiment revealed that this was in fact not so small.

Example 2. G =TransitiveGroup(30, 1268). In [8] the automorphism group of
the coherent configuration formed by each Gi is used, while in [6] we compute
the automorphism groups of the fibers of the configuration and the isomorphisms
among the fibers and consider the group generated by these permutations. For
instance, if there exist r fibers and all the fibers are isomorphic mutually, then
we obtain a wreath product of the automorphism of a fiber by Sym(r). Usually
the latter computation is by far easier than the former computation. We used
a coherent configuration for the computation of N1, if G is regular on the set
of blocks and Gn has t orbits of size s and one orbit of size s − 1 with n =
|Ω| = s(t + 1). In this case the size of N1 is reduced 120 times by the method
in [6] using the fibers. It took 1.2 seconds for the computation by CCN, 253
seconds by ASN and 5.5 seconds by ASN with the algorithm shown in Example
1. Norm(Sym(30), G) can not be computed within a reasonable time.

Example 3. G =PrimitiveGroup(81, 22) and we computed N(Sym(80), G81).
The computing times are shown in Table2. If we use a coherent configuration
formed by the one point stabilizer G81, we can compute the normalizer in the
automorphism group of the configuration in 65 seconds. It took about 20 minutes
for this computation without a coherent configuration.

On the contrary, if G =PrimitiveGroup(81, 21), then it took 78 seconds for
the computation using the coherent configuration formed by the stabilizer G81,
while it took about 1.3 seconds by the methods shown in Table2. We considered
another version of an improvement such that we use coherent configurations for
the stabilizer G81 in G =PrimitiveGroup(81, 22). But there appeared 6 groups G
for which it took more than 30 seconds to compute N(Sym(n− 1), Gn) by the
version, while the present version has only one troublesome group shown here

66 I. Miyamoto

and the normalizers of one point stabilizers of the other groups are computed
within 10 seconds.

Example 4. G =PrimitiveGroup(100, 22). In this case G4 =Group(()) (identity
group). So N4 = Sym(96). It takes tens of seconds for the computation with
Sym(n) of this size. So we stop the application of Lemma 1 before Gr =Group(()).

Example 5. G =PrimitiveGroup(85, 3) and we compute N(Sym(84), G85). By
ASN, N0 ∼=WreathProduct(Sym(4), Sym(21)) is computed with 1030 generators.
In this case the automorphism group of the association scheme formed by G85 is
computed within 2 seconds. The automorphisms of combinatorial objects such
as association schemes of this size seem to be computed quickly like this. Our
program computing the automorphism group used in [6] did not consider the
group action of automorphisms obtained in each step of the backtrack search.
If we use this group actions in order to prune the search tree in the backtrack
search, we should compute some orbits and stabilizers of these groups. But it
seems to take more time than the computation without group actions, as is
noted in the introduction. We rewrote a part of this program only computing
some orbits of the groups. It seems to work faster than our old program if
n = |Ω| > 100. We will briefly explain about this computation in the next
section. However our new program computes the automorphism group with 131
generators in this case. So the remaining computations in Lemma 1 can be done
quickly and the normalizer is computed in 3 seconds or so by CCN, while it took
30 seconds by ASN. Norm(Sym(84), G85) can not be computed in 5 days.

4 A Computation of Automorphisms of Configurations

In our program computing automorphisms, we rewrote the part in which com-
pute automorphisms g satisfying Rg

k = Rk for all relations Rk in a coherent
configuration.

A doubly transitive group of degree n has same orbits on Ω ×Ω as the sym-
metric group Sym(n). So Sym(n) comes out as the automorphism group of
the association scheme formed by a doubly transitive group. In fact this auto-
morphism group is obtained without computation. We will explain our method
computing automorphisms using this trivial association scheme. Suppose that
we have done the backtrack search at depth more than i in the search tree. Let
G(i+1) be the group generated by the automorphisms obtained by these searches.
If we do not use the action of this already constructed group G(i+1), we may
compute permutations (i, i + 1), (i, i + 2), · · ·, (i, n) as automorphisms in the
search starting at depth i and point i. If we consider the action of G(i+1) on
{i, i + 1, · · · , n}, we have a permutation (i, i + 1) and the search finishes, since
G(i+1) is transitive on {i + 1, i + 2, · · · , n}. In this search we may assume that,
by the group action, an automorphism which we are computing moves point i to
point i+1. So the search starts at depth i and point i+1. Then in the successive
search we compute where i + 1 is moved to. If we use the action of the already
obtained group G(i+1) again, we should compute the stabilizer of point i + 1

An Improvement of a Function Computing Normalizers 67

in G(i+1) and its action on the set {i, i + 2, i + 3, · · · , n} in order to prune the
search tree. This process may be repeated at further depth in the search tree. In
our methods we compute the action of G(i+1) at depth i and do not compute it
in the successive search, because we found that the computation of a stabilizer
seemed to be time consuming.

Therefore if we do not use the group action, we have an automorphism group
with n(n − 1)/2 generators for the trivial scheme, while we have a group with
n − 1 generators, if we use the group action. The next difficult case, which
means that many automorphisms come out, is a wreath product of symmetric
groups shown in Example 5. We are computing automorphisms of this type of
association schemes formed by primitive groups of degree up to 1000 and of
coherent configurations formed by stabilizers of one point in the groups.

Finally, we mention one more point. Let (Π1, Π2, · · ·, Πr) be a partition
used in a partition backtrack. If two points p, q ∈ Πi have a different number
of neighbors with respect to some relation Rj in some Πk, then there exists
no automorphism moving p to q. This argument refines the partition and the
refinement process can be iterated. But this known argument seems to be time
consuming, too. We do not use this argument in our old program. In our rewritten
program, we use this argument under a very restricted condition such that, for
instance, Πk consists of at most two points.

Table 1. Computing times of the normalizers of primitive groups G in Sym(n) and
its one point stabilizer Gn in Sym(n−1) with Alt(n) �⊆ G and 31 ≤ n ≤ 100 in seconds

N(Sym(n), G) N(Sym(n − 1), Gn)

time range CCN ASN Norm CCN ASN Norm
∗ < 0.02 0 0 56 0 0 4

0.02 ≤ ∗ < 0.05 3 0 148 11 10 28
0.05 ≤ ∗ < 0.1 25 6 155 44 28 43
0.1 ≤ ∗ < 0.2 64 16 128 78 41 80
0.2 ≤ ∗ < 0.5 139 69 24 160 114 117
0.5 ≤ ∗ < 1 167 70 9 121 65 56
1 ≤ ∗ < 2 111 125 3 103 119 73
2 ≤ ∗ < 5 62 129 9 48 120 40
5 ≤ ∗ < 10 5 108 0 10 41 32
10 ≤ ∗ < 20 0 45 2 0 30 16
20 ≤ ∗ < 60 0 8 4 0 5 20
60 ≤ ∗ < 180 0 0 0 0 2 3
180 ≤ ∗ < 600 0 0 0 0 0 19
600 ≤ ∗ < 1800 0 0 4 1 1 3
1800 ≤ ∗ < 3600 0 0 11 0 0 3
3600 ≤ ∗ < 18000 0 0 9 0 0 0
6, 47, 189 hours 0 0 0 0 0 3

fail 0 0 14 0 0 16

tot. time 558 2234 1712 2894
max. time 7.2 42.8 1208 1227

68 I. Miyamoto

Table 2. Computing times of the normalizers of some primitive groups G in Sym(n)
and its one point stabilizer Gn in Sym(n − 1) with Alt(n) �⊆ G and 31 ≤ n ≤ 100 in
seconds

G =PrimitiveGroup(n, k) N(Sym(n), G) N(Sym(n − 1), Gn)

n k group name CCN ASN Norm CCN ASN Norm

64 45 AGL(3, 4) 2.4 10.5 0.07 6.3 14.9 fail
81 21 34 : D16 : 2 7.2 6.0 0.06 1.3 1.3 1.2
81 22 34 : (2 × Q8) : 2 0.6 1.0 0.2 1207.8 1226.9 1092.7
81 35 34 : 23 : D8 1.1 5.1 0.1 8.6 8.6 257.7
81 81 34 : Q8.Sym(3) : 22 1.0 1.7 0.1 0.8 1.0 2494.9
81 110 ASL(4, 3) 2.9 42.8 0.06 3.5 78.6 fail
81 115 34 :SL(2, 9): 22 0.8 8.3 0.1 0.8 4.3 682279.4
85 3 PSL(4, 4) 3.2 27.2 fail 3.8 32.1 fail
91 7 PSL(3, 9) 4.5 32.2 fail 5.8 32.0 fail
97 1 C(97) 6.7 14.9 0.2 5.7 5.6 5.1
97 12 AGL(1, 97) 6.8 23.6 0.1 7.0 14.3 2.7
98 2 PGL(2,97) 6.7 30.1 3.7 6.9 25.6 0.1
100 22 Alt(6)2.D8 1.8 11.9 13913.4 1.5 10.4 3.1
100 27 Alt(6)2.D8 3.6 13.9 9102.7 1.9 11.1 1711.7

References

1. The GAP Groups. Gap - groups, algorithms and programming, version 4. Lehrstuhl
D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Ger-
many and School of Mathematical and Computational Sciences. Univ. St. Andrews,
Scotland (2000)

2. Higman, D.G.: Coherent configurations I. Rendiconti del Seminario Matematico
della Universit a di Padova 44, 1–25 (1970)

3. Leon, J.S.: Permutation group algorithms based on partitions, I: Theory and algo-
rithms. J. Symbolic Comput. 1(12), 533–583 (1991)

4. Leon, J.S.: Partitions, refinements, and permutation group computation. In: Finkel-
stein, L., Kantor, W.M. (eds.) Groups and Computation II, DIMACS 1995. Amer.
Math. Soc. DIMACS Series, vol. 28, pp. 123–158 (1997)

5. Luks, L.M., Miyazaki, T.: Polynomial-time normalizers for permutation groups with
restricted composition factors. In: Proceedings of the 2002 International Symposium
on Symbolic and Algebraic Computation, pp. 176–183 (2002)

6. Miyamoto, I.: Computing normalizers of permutation groups efficiently using iso-
morphisms of association schemes. In: Proceedings of the 2000 International Sym-
posium on Symbolic and Algebraic Computation, pp. 200–204 (2000)

7. Miyamoto, I.: An improvement of GAP Normalizer function for permutation groups.
In: Dumas, J.-G. (ed.) Proceedings of the 2006 International Symposium on Sym-
bolic and Algebraic Computation, pp. 234–238 (2006)

8. Miyamoto, I.: Computation of Isomorphisms of Coherent Configurations. ARS
Math. Contemporanea (to appear)

9. Seress, A.: Permutation Group Algorithms. Cambridge Tracts in Math., vol. 152.
Cambridge Univ. Press, Cambridge (2003)

A GAP Package for Computation with Coherent

Configurations

Dmitrii V. Pasechnik and Keshav Kini

Division of Mathematical Sciences
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

dima@ntu.edu.sg,
kini@member.ams.org

Abstract. We present a GAP package for computing with Schurian
coherent configurations and their representations.

Keywords: GAP, coherent configuration, association scheme, permuta-
tion group, GRAPE, Sage, semidefinite programming, centralizer ring.

1 Introduction

Coherent configurations (CCs, for short) appear in the study of permutation
groups, and can be considered a topic in algebraic combinatorics. Specifically,
they generalize the centralizer algebra of a permutation representation of a finite
group. A special class of CCs known as association schemes (cf. e.g. [1]) is also
extensively studied. The need to compute with CCs and their representations
arises outside their immediate domain1.

For instance, they play an important role in the study of combinatorial prop-
erties of symmetric graphs arising in coding theory. The area was founded upon
the seminal work of Delsarte, Lovasz, and Schrijver in the 1970s, and later re-
ceived a new lease on life thanks to developments in semidefinite programming
(SDP) solvers that made it possible to numerically optimize linear functions on
cones of positive semidefinite elements of matrix algebras, subject to linear con-
straints. The relevant literature is extensive—we can cite only a small part of it
here [5,6,7,8].

One more use of our package we can mention concerns nonassociative algebras
related to the Monster sporadic simple group; see e.g. [9].

In a nutshell, CCs allow for “dimension reduction”. For example, in the afore-
mentioned coding theory/SDP setting, one reduces the computational problem

1 Due to space constraints we will not review here the many works where associa-
tion schemes and CCs are used in the theory of permutation groups; see e.g. [2],
or very recent [3]. We can mention that jointly with Csaba Schneider we are us-
ing the package described here to work on synchronizing permutation groups; see
http://www.maths.qmul.ac.uk/~pjc/LTCC-2010-intensive3/

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 69–72, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

dima@ntu.edu.sg
kini@member.ams.org
http://www.maths.qmul.ac.uk/~pjc/LTCC-2010-intensive3/

70 D.V. Pasechnik and K. Kini

of SDP in the space of 2d × 2d real symmetric matrices to the space of dk × dk

matrices, for a small fixed k.
Another important application domain for CCs is the graph isomorphism

problem. For instance, a recent polynomial-time algorithm for isomorphism of
graphs with a common forbidden minor [10] constructs a certain CC, which is
a generalization of a stabilization procedure due to Leman and Weisfeiler [11],
who pioneered this approach.

We are currently developing a package for the computer algebra system GAP
[12]. This package will enable a user to create, manipulate, and otherwise repre-
sent CCs within the GAP system (in particular, by linear representations), and
to use upon them other tools GAP provides. A prototype is available [4]. As SDP
solvers, needed for applications mentioned above, are difficult to interface with
GAP, we are also developing a Sage [13] package that pulls CC data from GAP
and calls one of the SDP solvers available there, such as CVXOPT.

2 Coherent Configurations

A coherent configuration (or CC) of degree n and dimension d is a finite collection
A = {A1, . . . , Ad} of d nonzero 0-1 matrices of dimensions n× n, satisfying the
following four axioms [2].

1.
∑d

i=1 Ai = Jn, the all-1 matrix.
2. It is possible to find some subset of A whose sum is In.
3. If A ∈ A, then A� ∈ A.
4. There exist natural numbers pk

i,j , 0 < i, j, k ≤ d, s.t. AiAj =
∑d

k=1 pk
i,jAk

holds for all i, j.

Two CCs are called isomorphic if there exists a bijection between them of the
form ϕ : A �→ PAP−1 for some permutation matrix P . The numbers pk

i,j stipu-
lated in the fourth axiom are called the intersection numbers of the CC, and are
invariant under isomorphism.

Note that a CC can be equivalently regarded as a partition of Ω2 for a set Ω
of size n. By the second axiom, every CC induces a partition of Ω; the parts are
called the fibers of the CC, and a CC with only one fiber is called homogeneous.
For a CC A, each A ∈ A is associated with a left and a right fiber, with the
nonzero entries of A occurring only in rows indexed by the left fiber and columns
indexed by the right fiber.

In the algebra Mn(C) of all n × n matrices, A forms a linearly independent
set. This, with the fourth axiom, shows that A spans a subalgebra C[A], which
is called its basis algebra. This algebra has special properties: it is self-adjoint, it
contains I, it contains J (the all-1 matrix), and it is closed under the entrywise
(or Hadamard) matrix product.

A concrete example of a CC is the Schurian CC arising from a permutation
group (G,Ω) [2]. Let the orbitals of (G,Ω) be the orbits of G acting on Ω2 in
the natural way; then the characteristic arrays of the orbitals together form a
CC. Further, the orbits of G on Ω are the fibers of the CC. The basis algebra

A GAP Package for Computation with Coherent Configurations 71

of the CC is exactly the centralizer algebra of the permutation representation of
G in GLn, considered as a set of matrices in the matrix algebra – that is, the
algebra of matrices which commute with all elements of G in the representation.

3 GAP Package Functionality

We have embarked upon a project to build a package for the computer algebra
system GAP that allows users to handle CCs as encapsulated objects. The even-
tual goal of the project is to incorporate it into the main GAP distribution as
a package that implements a wide variety of operations and computations that
can be done with CCs.

The current version is based around Schurian CCs, and can do all the obvious
tasks, such as computing the Schurian CC arising from a given permutation
group, computing the intersection numbers, etc. While packages such as the
well-known GRAPE [14] are able to do this in the homogeneous case, we have no
such restriction. Since we store CCs in a nontrivial way (actually by indexing
CC elements by their left and right fibers and a third parameter), the package
also provides full emulation of the surface form of the CC, being able to output
the CC’s elements directly or in a sparse matrix form. This functionality is also
available in the standalone system CoCo by I. Faradjev [15].

The array of intersection numbers {pk
i,j} of a CC A can be separated along

the j dimension to produce a set of d many d×d matrices called the intersection
matrices of A. It turns out that these matrices span an algebra isomorphic
to the basis algebra, called the intersection algebra or sometimes the regular
representation of the CC, and denoted regA [2]. In fact, it is easy to turn it
into a ∗-isomorphism, i.e. a mapping that also preserves the conjugate transpose
operation, cf. [6]. This turns out to be crucial for the SDP-related applications.
Our package provides functions to compute regA and to output its basis in a
dense of a sparse form.

We are also able to use the Schurian CC A arising from a permutation group
(G,Ω) to efficiently compute the class sum

∑
c∈C ρ(c), where ρ is the permu-

tation representation of (G,Ω) and C is some conjugacy class of G. As the
class sums over all C span the center of span ρ(G), we can compute that al-
gebra as well. Crucially, the latter, together with the knowledge of the irre-
ducible characters Irr(G) of G, allows us to compute the irreducible representa-
tions of regA. More precisely, we now have functionality to compute surjections
φχ : regA → regMmχ(C), where mχ is the multiplicity of the irreducible char-
acter χ in ρ.

4 Ongoing and Future Work

Presently we are developing a method to compute the aforementioned irreducible
representations of regA, starting from φχ(A), which is an m2

χ-dimensional sub-
algebra of Mm2

χ
(C) isomorphic to Mmχ(C)⊗Imχ . This will allow us to construct

the explicit isomorphism regA → ⊕χ∈Irr(G)Mmχ(C).

72 D.V. Pasechnik and K. Kini

Every CC has a refinement that is Schurian – if nothing else, the discrete
partition of Ω2 is the Schurian CC arising from the trivial permutation group
on Ω, and refines all CCs. Thus if we adapt our code to consider coarsenings of
Schurian CCs, we can handle CCs in full generality.

References

1. Bannai, E., Ito, T.: Algebraic Combinatorics I: Association Schemes. Ben-
jamin/Cummings (1984)

2. Cameron, P.J.: Permutation groups. London Mathematical Society Student Texts,
vol. 45. Cambridge University Press, Cambridge (1999)

3. Miyamoto, I.: Computation of isomorphisms of coherent configurations. Ars Math-
ematica Contemporanea 3(1) (2010)

4. Pasechnik, D., Kini, K.: Cohcfg, a GAP package for coherent configurations (pre-
liminary version) (2010),
http://www1.spms.ntu.edu.sg/~dima/software/cohcfg-a1.tgz

5. Schrijver, A.: New code upper bounds from the Terwilliger algebra and semidefinite
programming. IEEE Trans. Inform. Theory 51(8), 2859–2866 (2005)

6. de Klerk, E., Pasechnik, D.V., Schrijver, A.: Reduction of symmetric semidefinite
programs using the regular *-representation. Math. Prog. B 109, 613–624 (2007);
e-print 2005-03-1083, Optimization Online

7. de Klerk, E., Pasechnik, D.V., Maharry, J., Richter, B., Salazar, G.: Improved
bounds for the crossing numbers of Km,n and Kn. SIAM J. Discr. Math. 20, 189–
202 (2006)

8. Vallentin, F.: Symmetry in semidefinite programs. Linear Algebra Appl. 430(1),
360–369 (2009)

9. Ivanov, A.A., Pasechnik, D.V., Seress, A., Shpectorov, S.: Majorana representations
of the symmetric group of degree 4. J. of Algebra (submitted)

10. Grohe, M.: Fixed-point definability and polynomial time on graph with excluded
minors. In: 25th IEEE Symposium on Logic in Computer Science, LICS 2010 (to
appear 2010)

11. Weisfeiler, B. (ed.): On Construction and Identification of Graphs. LNM, vol. 558.
Springer, Berlin (1976)

12. The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.4.12.
(2008), http://www.gap-system.org

13. Stein, W., et al.: Sage Mathematics Software (Version 4.4). The Sage Development
Team (2010), http://www.sagemath.org

14. Soicher, L.H.: GRAPE: a system for computing with graphs and groups. In: Finkel-
stein, L., Kantor, W. (eds.) Groups and Computation. DIMACS Series in Discrete
Mathematics and Theoretical CS, vol. 11, pp. 287–291. AMS, Providence (1993)

15. Faradzev, I.A., Klin, M.H.: Computer package for computations with coherent con-
figurations. In: ISSAC 1991, Proc. Symposium on Symbolic and Algebraic Com-
putation, pp. 219–221. Association for Computing Machinery, New York (1991)

http://www1.spms.ntu.edu.sg/~dima/software/cohcfg-a1.tgz
http://www.gap-system.org
http://www.sagemath.org

CoCoALib:

A C++ Library for Computations in
Commutative Algebra

... and Beyond

John Abbott and Anna M. Bigatti

Università degli Studi di Genova, Italy
{abbott,bigatti}@dima.unige.it

1 The Main Features of CoCoA

First released in 1988, CoCoA is a special-purpose system for doing Computations
in Commutative Algebra: i.e. it is a system specialized in the algorithmic treat-
ment of polynomials. It is freely available and offers a textual interface, an Emacs
mode, and a graphical user interface common to most platforms ([6]).

One of the main purposes of the CoCoA system is to provide a “laboratory”
for studying and using computational commutative algebra: it belongs to an elite
group of highly specialized systems having as their main forte the capability to
calculate Gröbner bases. This means that CoCoA is optimized for working with
multivariate polynomials, their ideals and modules, and operations on these ob-
jects. Other special strengths of CoCoA include polynomial factorization, exact
linear algebra, Hilbert functions, zero-dimensional schemes, and toric ideals.

The usefulness of these technical skills is enhanced by its programming lan-
guage, the CoCoALanguage, which places great emphasis on being easy and
natural to use. So CoCoA is the system of choice for teaching advanced courses
in several universities, and for many researchers wanting to explore and develop
new algorithms without the administrative tedium necessary when using “low-
level” languages.

2 The Future of CoCoA: More Than a System

Almost 10 years ago, a new initiative began: namely, to rebuild the software
laboratory but without the inherent limitations of the original. The new soft-
ware comprises three main components: a C++ library (CoCoALib), an algebra
computation server (CoCoAServer), and an interactive system (CoCoA-5). Of
these components CoCoALib is the heart; it embodies all the “mathematical
knowledge” and it is the most evolved part ([1]). The roles of the other two
parts are to make CoCoALib’s capabilities more easily accessible.

All the new code is free and open source software. It is downloadable from
our website ([1]) and released under GPL.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 73–76, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

74 J. Abbott and A.M. Bigatti

3 Philosophy behind CoCoALib

The aims of CoCoALib include offering better flexibility and performance while
retaining the simplicity of use for which CoCoA has become widely appreciated.

So that the enormous investment in rebuilding is worthwhile we want to ensure
that the new code will enjoy active service for a long period of time. Consequently
our implementations have to satisfy various design criteria:

– be easy and natural to use
– exhibit good run-time performance
– have firm mathematical basis (following books [8,9])
– be clear and well designed
– be clean and portable
– be well documented (both for users and maintainers)

We regard clear and comprehensible code as being generally more desirable than
convoluted code striving for the highest possible speed. Conveniently our expe-
rience up to now shows that this emphasis on cleanliness is also providing quite
good run-time performance! In particular Gröbner basis computations are much
faster than in the old C version (CoCoA-4), and are now comparable with the
other specialized systems Macaulay2 ([10]) and Singular ([11]).

The inheritance mechanism of C++ plays a crucial role in the design of
CoCoALib (see [2]), especially in the challenge of reconciling the traditionally
conflicting goals of (mathematical) abstraction and efficiency: for example it is
used to express the mathematical relationships between the various sorts of rings
and their specific functions (e.g. deg for polynomial rings, den for fraction fields)

Being well aware that the usefulness of software is critically dependent on its
documentation, we offer extensive documentation aimed both at guiding users
and at aiding maintainers and contributors. And being even more aware that
no one likes to read documentation, we also offer a good selection of example
programs — so you can just cut-and-paste rather than read tediously through
the documentation!

CoCoALib is unique in its field because, right from the outset, it was designed
as an open source library. This makes it an ideal choice as a basis upon which
other researchers can develop efficient and robust implementations of their al-
gorithms. Naturally we hope that many of these implementations will then be
donated as new components for the library, helping to expand it.

4 Approximately...

While being primarily concerned with computations in Commutative Algebra,
and therefore with exact computations on polynomials, CoCoALib also offers
some facilities for exploring the world of approximate algebra (see the book
[5]). Two complementary approaches are: using approximate computations to
solve exact problems, and applying Commutative Algebra techniques to solve
approximate problems.

CoCoALib 75

Twin-Float Arithmetic
A facility which CoCoALib offers for the first approach is twin-float arithmetic
which can be used as a (generally) faster substitute for exact rational arithmetic
with a heuristic guarantee of correctness.

This work is a development of ideas originally proposed by Traverso and
Zanoni (ISSAC 2002) as a fast way of computing a good approximation to a
Gröbner basis over the rationals. Our investigation lead to the CoCoALib im-
plementation as a ring, allowing natural use in a wider range of applications.
For the details see [3]; here we give just a brief intuitive outline.

Before computation begins, the user specifies a minimum acceptable accu-
racy. Then every (exact) rational input is converted into a twin-float : i.e. a high
precision floating point value together with a heuristic estimate of the accuracy.

Every arithmetic operation on twin-float values checks that the heuristically
estimated accuracy of the result is sufficient; if not, the operation fails.

A special feature of twin-floats is the ability to recover a rational number from
a twin-float value. This capability allows the recovery of the exact rational answer
from a twin-float result under suitable circumstances; e.g. an exact Gröbner basis
can be obtained from one computed using twin-floats.

Approximate Border Bases
Given a set of exact points CoCoA can compute a Gröbner basis of the ideal of
the polynomials vanishing over those points. But, when the points are measure-
ments coming from the real world then the values are known only approximately.

In this approximate context, the notion of Gröbner basis, which is so impor-
tant in exact commutative algebra, can exhibit a fatal weakness: it can be struc-
turally unstable in the presence of infinitesimal perturbations. It has recently
been shown that in the zero-dimensional case these problems of structural in-
stability can be (largely) eliminated by using instead a Border Basis. Together
with C Fassino and M-L Torrente we have developed the notions and theory
necessary to apply the Buchberger-Möller algorithm to approximate points, and
a robust prototype implementation is included in CoCoALib (see [4], [7]).

This is a rapidly developing topic, promising to be of definite interest to
various aspects of both theoretical and practical research.

References

1. Abbott, J., Bigatti, A.M.: CoCoALib: a C++ library for doing Computations in
Commutative Algebra, http://cocoa.dima.unige.it/cocoalib/

2. Abbott, J.: The Design of CoCoALib. In: Iglesias, A., Takayama, N. (eds.) ICMS
2006. LNCS, vol. 4151, pp. 205–215. Springer, Heidelberg (2006)

3. Abbott, J.: Twin-Float Arithmetic (preprint)
4. Abbott, J., Fassino, C., Torrente, M.L.: Stable border basis for ideals of points.

Journal of Symbolic Computation 43, 883–894 (2008)
5. Abbott, J., Robbiano, L. (eds.): Approximate Commutative Algebra. Springer,

Heidelberg (2009)
6. CoCoATeam: CoCoA: a system for doing Computations in Commutative Algebra,

http://cocoa.dima.unige.it/

http://cocoa.dima.unige.it/cocoalib/
http://cocoa.dima.unige.it/

76 J. Abbott and A.M. Bigatti

7. Fassino, C.: Almost Vanishing Polynomials for Sets of Limited Precision Points.
Journal of Symbolic Computation 45, 19–37 (2010)

8. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra, vol. 1. Springer,
Heidelberg (2000, 2008)

9. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra, vol. 2. Springer,
Heidelberg (2005)

10. Grayson, D.R., Stillman, M.E.: Macaulay2: a software system for research in alge-
braic geometry, http://www.math.uiuc.edu/Macaulay2/

11. Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-0: A computer algebra
system for polynomial computations, http://www.singular.uni-kl.de/

http://www.math.uiuc.edu/Macaulay2/
http://www.singular.uni-kl.de/

LinBox Founding Scope Allocation, Parallel

Building Blocks, and Separate Compilation

Jean-Guillaume Dumas1, Thierry Gautier2,
Clément Pernet2, and B. David Saunders3

1 Laboratoire J. Kuntzmann, Université de Grenoble, 51, rue des Mathématiques,
umr CNRS 5224, bp 53X, F38041 Grenoble, France

Jean-Guillaume.Dumas@imag.fr
2 Laboratoire LIG, Université de Grenoble et INRIA. umr CNRS, F38330

Montbonnot, France
Clement.Pernet@imag.fr, Thierry.Gautier@inrialpes.fr

3 University of Delaware, Computer and Information Science Department,
Newark / DE / 19716, USA

saunders@udel.edu

1 Introduction

As a building block for a wide range of applications, computational exact linear
algebra has to conciliate efficiency and genericity. The goal of the LinBox project
is to address this problem in the design of an efficient general-purpose C++ open-
source library for exact linear algebra over the integers, the rationals, and finite
fields. Matrices can be either dense, sparse or black box (i.e. viewed as a linear
operator, acting on vectors only). The library proposes a set of high level linear
algebra solutions, such as the rank, the determinant, the solution of a linear
system, the Smith normal form, the echelon form, the characteristic polynomial,
etc. Each of these solutions involves a hybrid combination of several specialized
algorithms depending on the domain, and the type of matrix. Over a finite
field, the building blocks are an efficient implementation of Wiedemann and
block Wiedemann algorithms combined with preconditioners [1] for black box
matrices, a sparse Gaussian elimination for sparse matrices and the BLAS based
dense linear algebra techniques of the FFLAS library [4] for dense matrices. The
solutions over the integers and rationals are lifted from modular computations
by a Chinese remainder algorithm or p-adic lifting. The design is based on high
genericity to allow us to write efficient algorithms independent of the many
representations of domains and matrices. As a middleware, the library relies on
the efficiency of kernel libraries such as GMP1, Givaro4, NTL4, ATLAS4 and can be
used by general purpose computer algebra systems such as Sage4 or Maple4.

We describe in this paper a selection of ideas and improvements that were
recently introduced into the the design of LinBox for the forthcoming 2.0 release.

1 gmplib.org,www-ljk.imag.fr/CASYS/LOGICIELS/givaro,www.shoup.net/ntl,

math-atlas.sourceforge.net,sagemath.org,www.maplesoft.com.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 77–83, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

gmplib.org,www-ljk.imag.fr/CASYS/LOGICIELS/givaro,www.shoup.net/ntl,math-atlas.sourceforge.net,sagemath.org,www.maplesoft.com.
gmplib.org,www-ljk.imag.fr/CASYS/LOGICIELS/givaro,www.shoup.net/ntl,math-atlas.sourceforge.net,sagemath.org,www.maplesoft.com.

78 J.-G. Dumas et al.

2 The Lightweight Founding Scope Allocation Model

The main objects that require memory allocation in LinBox are base field or
ring elements, vectors, matrices, and polynomials. The memory management for
all of these object types follows the same rules, organized to maximize efficiency
in time and space, and consequently requiring some efforts by the programmer.
In particular no external garbage collection mechanism is used.

The input and output types of most functions are usually template types,
and can be either basic types, or complicated objects. Consequently, passing
arguments by value (copy) must be avoided as much as possible. Every argument
is passed as a reference, including the return types. More precisely the return
value of a function is also the first argument, defined as a non const reference.

Matrix& someFunction(Matrix& result, const XXX& args);

This convention was already presented in [2, §2.1] for the design of field and
ring arithmetic. It does require a redefinition of the interface for some stl-like
operators, as discussed in section 3.1. A consequence of the above convention
is that the objects returned by a function, have to be declared and initialized
(in particular, memory allocated, e.g. via constructors) before the function call.
By enforcing this practice, we require that the programmer keep the handle on
the objects that he allocates until all uses of the object and it’s subobjects are
completed. Moreover, he is responsible for object deallocation in the same scope
where it was allocated. This restricts some convenient programming practices,
but provides precise control of memory usage. This is particularly important
when large, memory filling, matrices are in play. It also allows to avoid the costs
of garbage collection or reference counting.

Many LinBox objects involve a handle containing a reference to the free
store. Note that even though a function does not allocate the handle itself, it
is in certain cases still free to resize and thus reallocate the free store memory
referenced.

Dense Matrix allocations. The objects storing dense matrices require a special
care concerning their allocations. Dense matrices are represented as a one dimen-
sional array storing elements in the row major format: A[i,j] = *(A+i*n+j).
It is important to be able to define a submatrix as a view on such an array,
without allocating the data. For this we propose to distinguish two classes: one
for allocated (via constructors) matrices and the other for sub-matrix views.
The genericity of the template mechanism or inheritance will allow to use these
two types in the same code, without duplication. This allows also for an auto-
matic decision about deallocation. Other solutions includes reference counting
and explicit ”end of use” functions.

3 Software Abstraction Layer for Parallelism

Efficient parallel applications must take into consideration hardware character-
istics (number of cores, memory hierarchy, etc.). It is time consuming or impos-
sible for a single developer to program a high performance computer algebra

LinBox Memory, Parallelism, Compilation Models 79

application, with state of the art algorithms, while exploiting all the available
parallelism. In order to separate the domains of expertise we have designed a
software abstraction layer between computer algebra algorithms and parallel
implementations which may employ automatic dynamic scheduling.

3.1 Parallel Building Blocks

Computer algebra algorithms have three main characteristics: 1) they are com-
plex and require a deep knowledge of the problem in order to obtain the most
efficient sequential algorithm; 2) they may be highly irregular. This enforces a
runtime use of load balancing algorithms; 3) they are generic in the sense that
they are usually designed to work over several algebraic domains.

In the case of LinBox algorithms, we have decided to base our software ab-
straction, called Parallel Building Blocks (PBB), on the STL algorithms (Stan-
dard Template Like) principles. Indeed, C++ data structures in LinBox let us
have random access iterators over containers which are naturally parallel. We
have already defined several STL-like algorithms and the list will be extended
in the near future:

for each, transform, accumulate2: The PBB versions of these algorithms
are similar to the STL versions except that the involved operators (or func-
tion object classes), given as parameters, are required to have their return value
reference passed as the first parameter of the function. This is in accordance with
the memory model of LinBox. The STL return-by-value semantic is not
appropriate.

The fundamental idea of PBB is that at the computer algebra level, the par-
allelization of all the loops and more generally of all the STL-like algorithms
will already enable good performance and easy switching among multiple im-
plementations. Regarding performance, this parallelization of the inner loops of
the underlying linear algebra is sufficient in many cases. Regarding implemen-
tations, this abstraction provides for programming independent of the parallel
model with selection of the parallel environment depending on the target archi-
tecture. The parallel blocks can be implemented using many different parallel
environments, such as OpenMP3; TBB7 (Thread Building Blocks) or Kaapi [6];
using both static and dynamic work-stealing schedulers [8]. The current imple-
mentations are built on OpenMP and Kaapi.

3.2 Accumulate until and Early Termination

To bound the complexity of many linear algebra problems, one of the key ideas
is to use an accumulation with early termination.

For instance, this is used in Chinese Remaindering algorithms. The computa-
tion is performed modulo a sequence of (co)prime numbers and the result is built
from a sequence of residues, until a condition is satisfied [3]. The termination of
the algorithm depends on the accumulated result.
2 www.sgi.com/tech/stl
3 openmp.org, threadingbuildingblocks.org

www.sgi.com/tech/stl
openmp.org
threadingbuildingblocks.org

80 J.-G. Dumas et al.

In order to parallelize such algorithms, we proposed an extension of the STL
algorithms called accumulate until . The algorithm takes an array v of length
N , a unary operator f to be applied to each array entry and a specific binary up-
date operator/predicate for the accumulation. This accumulator with a signature
like bool accum(a, b) behaves like an in place addition (a+=b) and returns true
to indicate sufficiently many values are accumulated. Let Sk =

∑
i=0,..,k f(v[i])

with k ∈ {0, N}. The algorithm computes and returns n ≤ N and Sn such that
one accumulation during the computation of Sn returned true or n = N . In
indended use, we know any additional accumulation would also return true.

This algorithm will be used for the early termination Chinese remaindering
algorithms of LinBox. Though not yet using PBB and accumulate until , a
sequential version and parallel versions with OpenMP and Kaapi can be found
in the LinBox distributions as linbox/algorithms/cra-domain-*.h.

3.3 Memory Contention and Thread Safe Allocation

Many computer algebra programs allocate dynamic memory for the intermediate
computations. Several experiments with LinBox algorithms on multicore archi-
tectures have shown that these allocations are quite often the bottleneck. An
analysis of the memory pattern and experiments with three well known memory
allocators (ptmalloc, Hoard and TCMalloc from Google Perf. Tools4) have been
conducted. The goal was to decide whether the parallel building blocks model
was suitable to high-performance exact linear algebra. We used dynamic libraries
to exchange allocators for the experiments, but one can use them together in
the LinBox library if needed [7, §7]. Preliminary experiments on early termi-
nated Chinese remaindering, not the easiest to parallelize, have demonstrated
the advantage, in our setting, of TCMalloc over the others [3]. One of the main
reasons for that fact is that our problems required many temporary allocations.
This fits precisely the thread safe caching mechanism of TCMalloc.

4 Automated Generic Separate Compilation

LinBox is developed with several kinds of genericity: 1) genericity with respect
to the domain of the coefficients, 2) genericity with respect to the data structure
of the matrices, 3) genericity with respect to the intermediate algorithms. While
this is efficient in terms of capabilities and code reusability, there is a combinato-
rial explosion of combinations. Consider that each of 50 arithmetic domains may
be combined with each of 50 matrix representations in each of 10 intermediate
algorithm forms for a single problem as simple as matrix rank. This lengthens
the compilation time and generates large executable files.

For the management of code bloat LinBox has used an “archetype mecha-
nism” which enables, at the user’s option, to switch to a compilation against
abstract classes [2, §2.1]. However, this can reduce the efficiency of the library.
Therefore, we propose here a way to provide a generic separate compilation.
4 goog-perftools.sourceforge.net/doc/tcmalloc.html

linbox/algorithms/cra-domain-*.h
goog-perftools.sourceforge.net/doc/tcmalloc.html

LinBox Memory, Parallelism, Compilation Models 81

This will not deal with code bloat, but will reduce the compilation time while
preserving high performance. This is useful for instance when the library is used
with unspecialized calls. This is largely the case for some interface wrappers
to other Computer algebra systems such as Sage or Maple. Our idea is to
automate the technique of [5] which combines compile-time instantiation and
link-time instantiation, while using template instantiation instead of void point-
ers. The mechanism we propose is independent of the desired generic method,
the candidate for separate compilation, and is explained in algorithm 1.

Algorithm 1. C++ Automatic separate compilation wrapping
Input: A generic function func.
Input: Template parameters TParam for separate specialization/compilation of func.
Output: A generic function calling func with separately compiled instantiations.
1: Create a header and a body files “func instantiate.hpp” and “func instantiate.cpp”;

2: Add a template function func separate, with the same specification as func, to
the header;

3: Its generic default implementation is a single line calling the original function func.
{This enables to have a unified interface, even for non specialized class.}

4: for each separately compiled template parameter TParam do
5: Add a non template specification funcTParam, to the header file;
6: Add the associated body with a single line returning the instantiation of func

on a parameter of type TParam, to the body file;
7: Add an inline specialization body of func separate on a parameter of type

TParam with a single line returning funcTParam, to the header file;
8: end for
9: Compile the body file “func instantiate.cpp”.

This Algorithm is illustrated on figure 1, where the function is the rank and
the template parameter is a dense matrix over GF (2), DenseMatrix<GF2>.

Algorithm 1 has been simplified for the sake of clarity. To enable a more
user-friendly interface one can rename the original function and all its origi-
nal specializations func original; then rename also the new interface simply
func. With the classical inline compiler optimizations, the overhead of calling
func separate is limited to single supplementary function call. Indeed all the

rankDenseMatGF2

template<class Mat>

I
n
s
t
a
n
t
i
a
t
e

a
n
d

c
a
l
l
s

Separately compiled body

rank_separate(const Mat&)
template<class Mat>

rank_separate(const DenseMat<GF2>&)

Default call

User interface

rank(const Mat&)

rankDenseMatGF2

header

Specialization

template<>Specialized call

Fig. 1. Separate compilation of the rank

82 J.-G. Dumas et al.

one line additional methods will be automatically inlined, except, of course, the
one calling the separately compiled code. If this overhead is too expensive, it
suffices to enclose all the non generic specializations of “func instantiate.hpp”
by a macro test. At compile time, the decision to separately compile or not can
be taken according to the definition of this macro.

We show in table 1 the gains in compilation time obtained on two examples
from LinBox: the examples/{rank,solve}.C algorithms. Indeed, without any
specification the code has to invoke several specializations depending on run-time
discovered properties of the input. For instance solve.C requires 6 specializa-
tions for sparse matrices over the Integers or over a prime field, with a sparse
elimination, or an iterative method, or a dense method, if the matrix is small. . .

Table 1. linbox/examples/{rank,solve}.C compilation time on an AMD Athlon 3600+,
1.9GHz, with gcc 4.5 -O2. instantiate.o contains to the separately compiled instanti-
ations (e.g. densegf2rank in figure 1); {rank,solve}.o contains to the user interface and
generic implementation compilation; link corresponds to the linking of both .o and the
library; Full comp. corresponds to the compilation without the separate mechanism.

file real time user time sys. time real time user time sys. time

Rank Solve

instantiate.o 143.43s 142.47s 0.90s 171.62s 170.42s 1.12s
{rank,solve}.o 18.58s 18.26s 0.30s 23.13s 22.80s 0.32s
link 0.80s 0.64s 0.15s 0.85s 0.70s 0.14s

Sep. comp. total 162.81s 161.37s 1.35s 195.60s 193.92s 1.58s

Full comp. 162.02s 160.47s 1.21s 191.47s 189.52s 1.40s

speed-up 8.4 8.5 2.7 8.0 8.1 3.0s

Acknowledgment

We thank the LinBox group and especially Brice Boyer, Pascal Giorgi, Erich
Kaltofen, Dan Roche, Brian Youse for many useful discussions in particular
during the recent LinBox developer meetings in Delaware and Dublin.

References

1. Chen, L., Eberly, W., Kaltofen, E., Saunders, B.D., Turner, W.J., Villard, G.: Ef-
ficient matrix preconditioners for black box linear algebra. Linear Algebra and its
Applications 343-344, 119–146 (2002)

2. Dumas, J.-G., Gautier, T., Giesbrecht, M., Giorgi, P., Hovinen, B., Kaltofen, E.,
Saunders, B.D., Turner, W.J., Villard, G.: Linbox: A generic library for exact linear
algebra. In: ICMS 2002, pp. 40–50 (August 2002)

3. Dumas, J.-G., Gautier, T., Roch, J.-L.: Generic design of chinese remaindering
schemes. In: PASCO 2010 (July 2010)

4. Dumas, J.-G., Giorgi, P., Pernet, C.: Dense linear algebra over word-size prime
fields: the fflas and ffpack packages. ACM Trans. Math. Softw. 35(3), 1–42 (2008)

LinBox Memory, Parallelism, Compilation Models 83

5. Erlingsson, U., Kaltofen, E., Musser, D.: Generic Gram-Schmidt orthogonalization
by exact division. In: ISSAC 1996, pp. 275–282 (July 1996)

6. Gautier, T., Besseron, X., Pigeon, L.: KAAPI: a thread scheduling runtime system
for data flow computations on cluster of multi-processors. In: PASCO 2007, pp.
15–23 (2007)

7. Kaltofen, E., Morozov, D., Yuhasz, G.: Generic matrix multiplication and memory
management in LinBox. In: ISSAC 2005, pp. 216–223 (July 2005)

8. Traore, D., Roch, J.L., Maillard, N., Gautier, T., Bernard, J.: Deque-free work-
optimal parallel STL algorithms. In: EUROPAR 2008, Las Palmas, Spain (August
2008)

FGb: A Library for Computing Gröbner Bases

Jean-Charles Faugère

SALSA Project - INRIA (Centre Paris-Rocquencourt)
UPMC, Univ Paris 06

CNRS, UMR 7606, LIP6
4, place Jussieu F-75252 PARIS CEDEX 05, France

���������	�
����������������

Abstract. FGb is a high-performance, portable, C library for computing Gröb-
ner bases over the integers and over finite fields. FGb provides high quality im-
plementations of state-of-the-art algorithms (F4 and F5) for computing Gröbner
bases. Currently, it is one of the best implementation of these algorithms, in terms
of both speed and robustness. For instance, FGb has been used to break several
cryptosystems.

1 Introduction - Polynomial System Solving - Gröbner Bases

Solving efficiently polynomial system of equations is a fundamental problem in Com-
puter Algebra with many applications. Let K be a field and L ⊃ K. The problem is:

Find z = (z1, . . . ,zn) ∈ Ln, such that

⎧⎨⎩
f1(z1, . . . ,zn) = 0

· · ·
fm(z1, . . . ,zn) = 0

where fi ∈ K[x1, . . . ,xn]

To solve this problem several methods have been proposed : semi-numerical methods
(homotopies), heuristics (for instance SAT solvers when K = L = F2), probabilistic
(geometrical resolutions [13]) or exact methods. Among the exact methods one can cite
Gröbner bases, Triangular sets methods or Resultant based techniques. In this paper
we restrict ourselves to Gröbner basis computation [1]. It is beyond the scope of this
paper to explain, in full generality, why a Gröbner basis can be used to solve a poly-
nomial system, but in finite fields (the case K = L = Fp) univariate polynomials can
be computed (such polynomials can be obtained in a Gröbner basis for an appropriate
elimination ordering), and, then, the solutions can be explicitly computed by factoring
these polynomials in Fp[X].

2 Goal and Architecture of the Library

The purpose of the ��� library [7] is twofold. First of all, the main goal is to provide
efficient implementations of state-of-the-art algorithms for computing Gröbner bases:
actually, from a research point of view, it is mandatory to have such an implementa-
tion to demonstrate the practical efficiency of new algorithms. Secondly, in conjunction
with other software, the FGb library has been used in various applications (Robotics,

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 84–87, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

FGb: A Library for Computing Gröbner Bases 85

Signal Theory, Biology, Computational Geometry, . . .) and more recently to a wide
range of problems in Cryptology (for instance, ��� was explicitly used in [2,8,9,4,5] to
break several cryptosystems). Historically, the �� library (191 420 lines of C++ code)
has first been written to implement "classical" algorithms (Buchberger’s algorithm[1],
FGLM [12], NormalForms, Hilbert functions, . . .). The current iteration of the project
– the ��� library (206 052 lines of C code) – was restarted from scratch to demonstrate
the practical efficiency of a family of new algorithms (F4[10], matrix-F5[6], F5[11],
SAGBI-F5[6],. . .). All these algorithms have in common that they rely heavily on lin-
ear algebra. Hence, whereas efficient internal representation for distributed multivariate
polynomials was a key component in ��, the critical part in ��� is the linear algebra
package. The design of the library is somewhat modular: for instance, it is easy to add a
new field of coefficients K (��� provides already 19 different fields); it is even possible
to replace the existing linear algebra package by another one (see section section 4).
Even if a small portion of the code has been written in assembler code the library is
portable; to date the library is available on several architectures: Windows (32 and 64
bits), Linux (32 and 64 bits), Mac (Universal ppc/intel 32/64 bits) and Sun Solaris.

3 Maple Interface - C Library Mode

The ������ library has no friendly interface but it can be called from any C code. In
a partnership with MapleSoft, the library has been dynamically linked with the kernel
of the Computer Algebra system Maple. Users can use the power of expressivity of a
general Computer Algebra System to generate the polynomial equations while keeping
the efficiency of a dedicated library. The library is shipped with all recent versions of
Maple and fully integrated with high level functions in Maple (for instance the universal
����	 function in Maple can call the FGb library if needed). It is also possible to call
directly the internal package (and hence have access to more options for expert users):

����� ���	� �� ���� �� � !"�#

�$��� ���$��%�&����' �(# ���	�
%�') � *�+�
�%� %� ,�'��	%% ���	� �(�

� �-.�/ � -		 ����'
 ��
��+�*� ���	� �
 � '��*�0��1 %�

2$$$$ $$$$3 ,�'��	%% ���	� �(�

� 4&�� 5 �%� ��	��

3 6�'����7�
#8

3 9 '�� %'�' %� ��7$�7�
�
 �
 � 	�
' ::	(�)	'�)��;)���;

6���� 	(�<	'� �
 '�� 	��*��� 0%�%0��	 %� ���

3 ��7$�7�
�
�:=�&�>)=�>�&;):=)&;#?

> > > >

::�) &) & � =;) :�) =) = � &;;

3 9 @�0� (%0�'�'�%� �� A���BB>�# �%� �� �	�0���'�%� %�*����� =33&

3 ��7$�7�
�
�:=�&�>)=�>�&;):=;):&;)�BB>�#?

� � >

::�) &) & C �BB>D &;) :�) =) = C �BB>D & ;;

More generally, it is easy to call ��� from any C program (API and sample program
available [7]): for instance, Coq can use FGb to proof some polynomial equations (the
link was done by L. Pottier).

86 J.-C. Faugère

4 New High Performance Linear Algebra Package - Benchmarks

In [3], we present a recent new dedicated linear algebra package written by S. Lachartre
for computing Gaussian elimination of matrices coming from Gröbner bases computa-
tions. This library is also written in C and contains new algorithms to compute Gaus-
sian elimination as well as specific internal representation of matrices (namely sparse
triangular blocks, sparse rectangular blocks and hybrid rectangular blocks). In order to
demonstrate the efficiency of this combination of software we give some computational
results for a well known benchmark: the Katsura problem. For instance, for a medium
size problem such as Katsura 15, it takes 849.7 sec on a PC with 8 cores to compute a
DRL Gröbner basis modulo p < 216; this is 88 faster than Magma (V2-16-1).

Kat11 Kat12 Kat 13 Kat 14 Kat 15 Kat 16

Magma 19.5 151.2 1091.4 9460.35 74862.9 NA
FGb F4 40.6 342.6 2550.65
FGb F5 191.7 1881.3 12130.8 103110.0

New linalg + F4 2.85 19.45 149.6
New linalg + F5 27.6 180.7 849.7 5687.3

Benchmark: Katsura n modulo 65521 - PC with 8 cores.

References

1. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes
nach einem nulldimensionalen Polynomideal. PhD thesis, Innsbruck (1965)

2. Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryp-
tosystems Using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
44–60. Springer, Heidelberg (2003)

3. Faugère, J.-C., Lachartre, S.: Parallel Gaussian Elimination for Gröbner bases computations
in finite fields. In: Moreno-Maza, M., Roch, J.L. (eds.) ACM Proceedings of The Interna-
tional Workshop on Parallel and Symbolic Computation (PASCO), LIG, pp. 1–10. ACM,
New York (July 2010)

4. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of Minrank. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg (2008)

5. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic Cryptanalysis of McEliece
Variants with Compact Keys. In: Eurocrypt 2010. LNCS, vol. 6110, pp. 279–298. Springer,
Heidelberg (2010)

6. Faugère, J.-C., Rahmany, S.: Solving systems of polynomial equations with symmetries us-
ing SAGBI-Gröbner bases. In: ISSAC 2009: Proceedings of the 2009 International Sympo-
sium on Symbolic and Algebraic Computation, pp. 151–158. ACM, New York (2009)

7. Faugère, J.C.: FGb library for comptuing Gröbner bases,
�''�8��666�
�	
��	�������EF(��@%�'6�����A7�

8. Faugère, J.-C., Perret, L.: Cryptanalysis of 2R– schemes. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 357–372. Springer, Heidelberg (2006)

9. Faugère, J.-C., Perret, L.: Polynomial Equivalence Problems: Algorithmic and Theoretical
Aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 30–47. Springer,
Heidelberg (2006)

10. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure
and Applied Algebra 139(1-3), 61–88 (1999)

http://www-salsa.lip6.fr/~jcf/Software/FGb/

FGb: A Library for Computing Gröbner Bases 87

11. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to
zero F5. In: Mora, T. (ed.) Proceedings of the 2002 International Symposium on Symbolic
and Algebraic Computation, pp. 75–83. ACM Press, New York (July 2002)

12. Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient Computation of Zero-Dimensional
Gröbner Basis by Change of Ordering 16(4), 329–344 (October 1993)

13. Lecerf, G.: Kronecker Magma package for solving polynomial systems by means of geomet-
ric resolutions, �''�8��666�0�'��+
G����E	�(����
%�'6����

http://www.math.uvsq.fr/~lecerf/software/

Fast Library for Number Theory:

An Introduction

William B. Hart

Mathematics Institute, Warwick University, Coventry, United Kingdom

Abstract. We discuss FLINT (Fast Library for Number Theory), a li-
brary to support computations in number theory, including highly op-
timised routines for polynomial arithmetic and linear algebra in exact
rings.

1 Introduction

The Fast Library for Number Theory (FLINT) [6] is a software library, written
in highly optimised C, to support computations in number theory. Its initial
scope is to cover the polynomial arithmetic and linear algebra functionality of a
library like Victor Shoup’s Number Theory Library (NTL), [16]. However, the
eventual aim of FLINT will be to provide an alternative to the Pari library [2],
with a focus on higher level computations in Algebraic Number Theory.

The design motivations for FLINT are that it be:

• Written entirely in C (some assembly optimisations)
• Threadsafe design
• Implement asymptotically fast algorithms where available
• As fast or faster than other Open Source and Proprietary options
• Completely Open Source (GPL licensed)

FLINT is constructed as a set of modules, each based around a given type,
e.g. the fmpz poly module, which is based around a type for polynomials with
multiple precision integer coefficients (the FLINT fmpz type).

2 Basic Integer Arithmetic

FLINT supports integer arithmetic in three ways. Firstly, the fast polynomial
multiplication code (see the next section) is used to provide very fast integer
multiplication for operands above about 2000 limbs. This implementation is
often faster than GMP [5] (which is used for smaller multiplications), by as
much as 30%.

Secondly, FLINT offers a highly optimised multiple polynomial quadratic
sieve, for factoring integers. This is efficient up to about 70 decimal digits and
still much faster than Pari for larger factorisations.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 88–91, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Fast Library for Number Theory: An Introduction 89

Thirdly, FLINT’s ulong extras module provides fast code for operations in-
volving C integers, i.e. long int’s. This includes modular arithmetic, gcd, pri-
mality testing, efficient factorisation, via numerous optimised factoring routines.
One innovation here is the One Line Factor algorithm, which is competitive with
SQUFOF (also implemented). See [10] for details.

3 Polynomial Arithmetic

The bulk of code in FLINT supports polynomial arithmetic for multiprecision
integer coefficients and for coefficients in Z/nZ for up to machine word sized
moduli.

FLINT implements numerous integer polynomial multiplication routines, in-
cluding the classical and Karatsuba routines, Kronecker Segmentation and the
Schoënhage-Strassen algorithm. The latter is based on highly optimised Fast
Fourier Transform code, the final version of which was developed by David Har-
vey, based on the ideas presented in his paper [12].

Division of polynomials is achieved using a modified version of Mulders’ al-
gorithm (see [14], [11]), which is competitive with the usual middle product
approach, but simpler to implement.

The polynomial modules also offer routines for power series operations, GCD,
resultant, evaluation and composition. The latter is achieved with an algorithm
implemented by Andy Novocin and the author [7].

The Z/nZ module in the FLINT 1 series makes use of David Harvey’s zn poly
library. This uses his fast Kronecker Segmentation variations [13] to achieve up
to a 40% improvement over standard Kronecker Segmentation, and a highly
optimised Schoënhage-Nussbaumer FFT implementation.

The Z/nZ[x] module offers factorisation based on the Berlekamp and Cantor-
Zassenhaus algorithms. The Z[x] module has a first implementation of the new
factorisation algorithm of Novocin and van Hoeij [8] which improves on the
original algorithms of van Hoeij, Belabas and others.

4 Linear Algebra

The linear algebra component of FLINT is still relatively young, providing some
basic types and a FLINT rewrite of Damien Stehlé’s fpLLL [15]. It also offers
Hermite Normal Form and basic operations including matrix multiplication.

5 FLINT 2

The FLINT 2 series is a complete rewrite of FLINT 1 from scratch. Its focus
is on very clean code and even better performance than FLINT 1. It also of-
fers modules for multivariate polynomial arithmetic, polynomials over Z/nZ for
multiprecision n and optimised linear algebra over Z/nZ for word sized moduli.
It should be released by the end of 2010.

90 W.B. Hart

6 Comparison with Other Libraries

The performance of FLINT, especially in polynomial arithmetic is usually equiv-
alent to that of Magma [3] and in many cases faster (polynomial factoring over
Z/nZ is still an exception to this). Magma is already up to five times faster than
NTL even for polynomial multiplication.

The Pari library is not usually asymptotically fast and NTL is not threadsafe.
FLINT has been used to perform some very large computations, e.g. the

computation of 1012 coefficients of the congruent number theta series [9].

7 Choice of Language – C

In preparing this abstract the referee requested that the author comment on
the suitability of C as a language for FLINT as compared with a higher level
language, say. Indeed, C is a terrible choice because it is not low level enough (it
does not support carry handling or return of the high word of a product - though
recent versions of GCC allow the latter via extensions), it does not comfortably
support generic programming and its syntax is complex and not well suited to
mathematics.

However, C is also the best choice available because it is the clear frontrunner
performance-wise. C is compiled, statically typed and the GNU compiler collec-
tion and some commercial C compilers have extremely sophisticated back ends,
yielding good performance.

C++ would add Object Oriented programming, however its syntax is so com-
plex that its front end actually rivals the back end in complexity. But most
importantly, the C/C++ syntax cannot be extended, its macro processing being
essentially search-and-replace only.

Lisp is a high level language which is formally syntactically extensible through
macros, but uses uncomfortable prefix notation. Forth is a low level language
which is formally syntactically extensible, but has equally uncomfortable postfix
notation and requires the programmer to think in terms of a stack.

OCaml is properly syntactically extensible through its powerful preparser,
but its native syntax is uncomfortable, and once again performance has fallen
behind that of good C compilers.

The ideal language would have a syntactically extensible front end sitting
on an already highly optimised back end, such as that of GCC’s GENERIC or
LLVM’s IR. To our knowledge, such a language simply doesn’t exist. Even with
that sophistication, no existing back ends properly support carries, meaning that
for some things, assembly language is still required.

We mention one other solution of note. Sage [4] is written in Python, which
has a very clean syntax, but is very high level with terrible performance (often
a hundred times slower than highly optimised C). For performance critical code,
Sage makes use of Cython [1], a dialect of Python, which allows static C type
declarations. These can be compiled to C, which for many situations will give
native C performance. In fact, FLINT is used in Sage, and Cython is used
extensively in the FLINT wrapper to ensure maximum efficiency.

Fast Library for Number Theory: An Introduction 91

References

1. Behnel, S., Bradshaw, R., Seljebotn, D.: Cython: C extensions for Python,
http://www.cython.org/

2. Belabas, K.: Pari/GP, http://pari.math.u-bordeaux.fr/
3. Cannon, J., Steel, A., et al.: Magma Computational Algebra System,

http://magma.maths.usyd.edu.au/magma/

4. Erocal, B., Stein, W.: The Sage Project: Unifying Free Mathematical Software to
Create a Viable Alternative to Magma, Maple, Mathematica and Matlab,
http://wstein.org/papers/icms/icms_2010.pdf, http://www.sagemath.org/

5. Granlund, T.: GNU MP Bignum Library, http://gmplib.org/
6. Hart, W., Harvey, D., et al.: Fast Library for Number Theory,

http://www.flintlib.org/

7. Hart, W., Novocin, A.: A practical univariate polynomial composition algorithm
(2010) (preprint)

8. Hart, W., Novocin, A., van Hoeij, M.: Improved polynomial factorisation (2010)
(preprint)

9. Hart, W., Tornaria, G., Watkins, M.: Congruent number theta coefficients to 1012.
In: Gaudry, et al. (eds.) Proceedings of the Algorithmic Number Theory Sympo-
sium (ANTS IX). Springer, Heidelberg (to appear 2010)

10. Hart, W.: A One Line Factoring Algorithm (2010) (preprint)
11. Hart, W.: A refinement of Mulders’ polynomial short division algorithm (2007)

(unpublished report)
12. Harvey, D.: A cache–friendly truncated FFT. Theor. Comput. Sci. 410, 2649–2658

(2009)
13. Harvey, D.: Faster polynomial multiplication via multipoint Kronecker substitu-

tion. J. Symb. Comp. 44, 1502–1510 (2009),
http://www.cims.nyu.edu/~harvey/code/zn_poly/

14. Mulders, T.: On short multiplication and division. AAECC 11(1), 69–88 (2000)
15. Nguyen, P., Stehlé, D.: An LLL algorithm with quadratic complexity. SIAM Jour-

nal of Computation 39(3), 874–903 (2009),
http://perso.ens-lyon.fr/damien.stehle/#software

16. Shoup, V.: NTL: A Library for doing Number Theory,
http://www.shoup.net/ntl/

http://www.cython.org/
http://pari.math.u-bordeaux.fr/
http://magma.maths.usyd.edu.au/magma/
http://wstein.org/papers/icms/icms_2010.pdf
http://www.sagemath.org/
http://gmplib.org/
http://www.flintlib.org/
http://www.cims.nyu.edu/~harvey/code/zn_poly/
http://perso.ens-lyon.fr/damien.stehle/#software
http://www.shoup.net/ntl/

Controlled Perturbation for Certified Geometric

Computing with Fixed-Precision Arithmetic�

Dan Halperin

School of Computer Science
Tel Aviv University, Israel

http://acg.cs.tau.ac.il/danhalperin

Abstract. Transforming geometric algorithms into effective computer
programs is a difficult task. This transformation is particularly made
hard by the basic assumptions of most theoretical geometric algorithms
concerning the handling of robustness issues, namely issues related to
arithmetic precision and degenerate input. Controlled perturbation, an
approach to robust implementation of geometric algorithms we intro-
duced in the late 1990’s, aims at removing degeneracies and certifying
correct predicate-evaluation, while using fixed-precision arithmetic. After
exposing the key ideas underlying the scheme, we review the development
of the approach over the past decade including variations and extensions,
software implementation and applications. We conclude by pointing out
directions for further development and major challenges.

1 Introduction

Most computational geometry (CG, for short) algorithms are designed under
two simplifying assumptions: (i) that the computation is carried out in the Real-
RAM model, allowing infinite-precision real arithmetic, and (ii) that the input
is degeneracy free. These assumptions pose major difficulty to those who wish
to implement the algorithms, as they are barely met in practice. For an exten-
sive discussion of the problems in robust geometric computation and prevailing
solutions, see the surveys [1,2].

The last two decades have seen tremendous headway in implementing CG
algorithms, organized mostly in the carefully crafted software libraries LEDA
and (nowadays primarily in) the Computational Geometry Algorithms Library,
CGAL. Most robust implementations follow the Exact Geometric Computing
paradigm (EGC, for short) [3]. In almost all cases the algorithms are augmented
to handle degenerate input. This area has progressed so well that for certain
problems the EGC solutions hardly bear any performance penalty over using
machine floating-point arithmetic (when computing the desired result is at all
possible with floating-point arithmetic).

� This work has been supported in part by the Israel Science Foundation (grant no.
236/06), by the German-Israeli Foundation (grant no. 969/07), and by the Hermann
Minkowski–Minerva Center for Geometry at Tel Aviv University.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 92–95, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://acg.cs.tau.ac.il/danhalperin

Controlled Perturbation for Certified Geometric Computing 93

However, when computing with curved objects, even of low algebraic degree
and already in three-dimensional space, one is still (at the time of writing) held
back by the large performance overhead of the EGC machinery. Moreover, han-
dling all possible degeneracies in complex geometric structures in three or higher
dimensions, is an excruciatingly tedious and error-prone process.

It is rare in scientific or engineering applications that we need to produce exact
results. Good approximations will in most cases do the job, since the input to
the geometric computation often comes from modeling or measurements that
are approximate to begin with.

In view of all of the above, we proposed in the late 1990s an alternative approach
to certified geometric computing, which we call controlled perturbation, (CP, for
short). The method proceeds by perturbing the input slightly (hopefully within
the accuracy requirement of the application) but in a controlled manner (hence
the name) such that: (i) we are guaranteed that all the predicates used by the algo-
rithm are evaluated correctly with floating-point arithmetic of a given precision,
and (ii) degeneracies are removed. Thus, when successful, CP alleviates the prob-
lems incurred by EGC, and on the perturbed input it practically conforms with
the basic assumptions underlying CG algorithms, which we mentioned above.

2 Key Ideas

Geometric predicates evaluate the sign of certain expressions (typically the sign
of a polynomial). In degenerate situations the expression evaluates to zero. We
say that we are far away from degeneracy when the absolute value of the ex-
pression is sufficiently large, and in particular can be safely bounded away from
zero, in spite of the rounding errors incurred by floating-point arithmetic. In
the remainder of this section, our description borrows from the recent full and
improved version of [4] by Mehlhorn et al.1

To each predicate in the algorithm that we aim to “CP-fy,” we attach a
guard. The guard is a simple predicate, which is computed using floating-point
arithmetic. The guard fires when the floating-point evaluation of the guarded
predicate cannot be bounded away from zero. If throughout the entire execution
of the algorithm, no guard fires, then the algorithm computes the correct result
and the input is non-degenerate.

If a guard fires then there are two different strategies on how to proceed. One
approach perturbs the input locally and recomputes the guard, and so on until
the guard does not fire. An alternative approach aborts the current run of the
algorithm, perturbs the entire input and reruns the guarded algorithm.

The method is governed by several parameters including the precision of the
floating-point arithmetic (the length of the mantissa), the bit size of the input
numbers, the number of objects in the input, and a prescribed limit on the
allowable perturbation magnitude. Obviously the precision of the underlying
1 The full manuscript by Mehlhorn, Osbild and Sagraloff, titled “A General Approach

to the Analysis of Controlled Perturbation Algorithms” and dated 2010, is currently
the most comprehensive starting point to understanding Controlled Perturbation.

94 D. Halperin

arithmetic and the magnitude of the perturbation depend inversely on each
other. Some of the papers that we review below include involved analysis of the
connection between the various parameters of the scheme. However, CP can be
successfully applied with almost no analysis whatsoever, with the exception of
devising reasonable guards.

3 Brief History: Theory, Implementation, Applications

We review major milestones in the development of Controlled Perturbation. CP
was first proposed [5] as a means to compute molecular surfaces. A molecular
surface here is simply the boundary of the union of (atom) balls in R3, and com-
puting it amounts to a careful walk through portions of the three-dimensional
arrangement2 of the spheres bounding the balls. Back in the 1990’s there was
no infrastructure, nor sufficient experience and knowledge, to compute arrange-
ments of spheres exactly. Our attempts to compute the surfaces while using
floating-point arithmetic failed, even when we used slight (heuristic) perturba-
tion of the spheres. The introduction of CP led to robust and efficient, floating-
point based construction of the surface.

Our next endeavor was to compute polyhedral approximation of swept vol-
umes in R3 [6]. In terms of the number of different degenerate configurations that
need to be considered, this turned out to be a highly demanding project. Still
the CP software successfully coped with difficult and intricate configurations.
Both projects (molecular surfaces and swept volumes) were primarily driven by
the respective application, and the ensuing reports did not provide full analysis
of the method. At about the same time Packer worked out the details of the
scheme for arrangements of polygons [7]. Later on Packer investigated the effect
of the order of handling objects in CP on the required perturbation magnitude
[8]. The work on molecular surfaces was extended to dynamically maintain the
(degeneracy-free) surface as the molecule changes its conformation [9].

The first fully certified implementation of CP was for computing arrangements
of circles in the plane [10]. It relies on the extensive analysis of all the parameters
involved. The efficient code comes with an instructive visualization program.3

All the CP algorithms described so far have the same flavor: They incremen-
tally construct an arrangement by adding the objects inducing the arrangement
one by one. Once an object is placed (possibly after perturbation) it is not moved
again. In 2005, Funke et al. [11] applied the scheme to the construction of De-
launay triangulations and convex hulls in any dimension. The authors suggest
and analyze a restart-upon-failure variant of CP that stops and restarts the
algorithm whenever a predicate failure is detected.

Mehlhorn et al. [4] went on to propose a general approach to analyzing CP
algorithms. Caroli [12] applied the approach to predicates that arise in the com-
putation of arrangements of circles and Voronoi diagrams of line segments. It
2 For details on arrangements and other geometric structures mentioned in this brief

summary, consult the respective papers.
3 The program is available upon request. The original code by Eran Leiserowitz has

recently been transferred to work under Windows by Boris Kozorovitzky.

Controlled Perturbation for Certified Geometric Computing 95

turned out that the analysis is rather involved, and not all predicates are cov-
ered. More recently, in a full version of [4], Mehlhorn et al. simplify the approach,
and they provide an analysis for all predicates that are defined as signs of poly-
nomials. Another interesting contribution of this recent manuscript is that it
resolves the gap between the analysis that assumes that the perturbation is in
the space of real numbers and the practice where implementations work with
floating-point perturbations.

Further work. A lot of special tailoring is still involved in developing CP
algorithms for each new problem. The ultimate and ambitious goal would be
to automate the CP-fication process, or at least provide the infrastructure to
ease the transformation of existing algorithms into their CP variants.

References

1. Schirra, S.: Robustness and precision issues in geometric computation. In: Sack,
J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 597–632 (1999)

2. Yap, C.K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry, 2nd edn., pp. 927–952. CRC
Press LLC, Boca Raton (2004)

3. Yap, C.K., Dubé, T.: The exact computation paradigm. In: Du, D.Z., Hwang, F.K.
(eds.) Computing in Euclidean Geometry, 2nd edn., pp. 452–492 (1995)

4. Mehlhorn, K., Osbild, R., Sagraloff, M.: Reliable and efficient computational geom-
etry via controlled perturbation. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 299–310. Springer, Heidelberg (2006)

5. Halperin, D., Shelton, C.R.: A perturbation scheme for spherical arrangements
with application to molecular modeling. Comput. Geom. Theory Appl. 10, 273–
287 (1998); A preliminary version appeared in Proc. 15th ACM Symposium on
Computational Geometry (1997)

6. Raab, S., Halperin, D.: Controlled perturbation for arrangements of polyhedral
surfaces. Manuscript, full version, School of Computer Science, Tel Aviv Univer-
sity, http://acg.cs.tau.ac.il/danhalperin/publications ; A preliminary ver-
sion appeared in Proc. 15th ACM Symposium on Computational Geometry
(1999/2002)

7. Packer, E.: Finite-precision approximation techniques for planar arrangements of
line segments. M.Sc. thesis, School of Computer Science, Tel Aviv University, Tel
Aviv (2002)

8. Packer, E.: Controlled perturbation of arrangements of line segments in 2D with
smart processing order. Comput. Geom. Theory Appl (to appear 2010)

9. Eyal, E., Halperin, D.: Dynamic maintenance of molecular surfaces under confor-
mational changes. In: Symposium on Computational Geometry, pp. 45–54 (2005)

10. Halperin, D., Leiserowitz, E.: Controlled perturbation for arrangements of circles.
Int. J. Comput. Geometry Appl. 14, 277–310 (2004); A preliminary version ap-
peared in Proc. 21st ACM Symposium on Computational Geometry (2003)

11. Funke, S., Klein, C., Mehlhorn, K., Schmitt, S.: Controlled perturbation for De-
launay triangulations. In: SODA, pp. 1047–1056 (2005)

12. Caroli, M.: Evaluation of a generic method for analyzing controlled-perturbation
algorithms. M.Sc. thesis, Saarland University, Saarbrücken (2007)

http://acg.cs.tau.ac.il/danhalperin/publications

Exact Geometric and Algebraic Computations

in CGAL�

Menelaos I. Karavelas1,2

1 Dept. Applied Mathematics, University of Crete, GR-714 09 Heraklion, Greece
mkaravel@tem.uoc.gr

http://www.tem.uoc.gr/~mkaravel
2 Institute of Applied and Computational Mathematics,

Foundation for Research and Technology - Hellas,
P.O. Box 1385, GR-711 10 Heraklion, Greece

Abstract. We summarize recent progress and on-going developments
for exact geometric and algebraic computations within the Computa-
tional Geometry Algorithms Library (Cgal). We detail the existing ma-
chinery used in efficient, exact and robust implementations of various
geometric entities.

1 Introduction

Implementing geometric algorithms is far from being a trivial and straightfor-
ward process. Not only do we have to accommodate potentially complicated data
structures, but also account for computations involving numerical data. These
computations, called predicates, are functions of a constant number of geometric
objects (e.g., points) returning a small number of values (e.g., a sign), and affect
the choices made by the algorithm. The correct or consistent evaluation of pred-
icates is vital in order for an implementation to be robust and for the outcome
of the algorithm to be usable. However, even the simplest possible calculations
may lead to inconsistent or wrong results [16], especially when the geometric
input data are in degenerate or almost degenerate configurations.

This phenomenon that has given rise to a variety of methodologies for en-
suring robustness of the implementation, while providing some guaranties for
the output. These methodologies include adaptive precision floating-point arith-
metic, the “topology-oriented approach”, symbolic perturbations, controlled per-
turbations, and exact geometric computation — see [19] for a nice overview.
The exact geometric computation paradigm, along with the continued evolution
of software libraries offering exact number types [9,12,18], provides a platform
for implementing correct and robust geometric algorithms without the need for
arithmetic considerations. When combined with arithmetic and geometric filter-
ing techniques, as well as lazy geometric evaluation considerations the overhead
of exact geometric computation can turn out to be negligible, not only when
� Partially supported by the FP7-REGPOT-2009-1 project “Archimedes Center for

Modeling, Analysis and Computation”.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 96–99, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.tem.uoc.gr/~mkaravel

Exact Geometric and Algebraic Computations in Cgal 97

taking into account the easiness of development and the correctness guarantees
that it provides, but also in absolute terms.

2 The Computational Geometry Algorithms Library

The Computational Geometry Algorithms Library (Cgal) [8] is a software li-
brary for computational geometry algorithms and data structures. It started in
1995 as a European project, and currently it is a mature Open Source project. It
has gone through more than 15 public releases and its latest version, version 3.6
[23], is comprised of more than 600,000 lines of C++ code. The goal of the Cgal

Open Source project is “to provide easy access to efficient and reliable geometric
algorithms in the form of a C++ library”, as it is stated in the project web page.
Due to the dual nature of geometric algorithms, namely combinatorics/data
structures and computations on geometric objects, the design paradigm for the
algorithms in Cgal follows a clear-cut separation between the combinatorial
aspects of these algorithms and the numerical computations. This separation is
evident in the template parameters Cgal classes. For example, algorithms for
computing triangulated Delaunay graphs have two template parameters called
respectively (triangulation) traits and (triangulation) data structure. All com-
binatorial operations, as well as the data structures representing the Delaunay
graphs are provided by the data structure template parameter, whereas all nu-
merical issues are abstracted and encapsulated in the traits template parameter.

Currently, the Cgal library offers algorithms for tackling a variety of geo-
metric problems — see the Package Overview section of the latest Cgal manual
[23] for a complete listing of the packages offered. Algorithms in Cgal rely on
concepts ; the library typically provides at least one model for each concept. This
design allows for modularity and exchangeability of components, making Cgal

an ideal platform for benchmarking different ways of implementing the same
concept. Flexibility is gained by means of template parameters and has proven
to go quite far with respect to the kind and complexity of the functionality
provided to the end-user; see, e.g., the case of 2D and 3D triangulations [3],
as well as that of 2D arrangements [25]. Robustness is ensured via exact predi-
cates provided by either a kernel or a geometric traits class. The use of various
arithmetic/geometric filtering techniques [5,20,24,15], and symbolic perturba-
tions (e.g., [10]) has counter-balanced the additional cost of performing exact
arithmetic in degenerate or almost degenerate configurations of the input data.

3 Algebraic Computations in CGAL

During the last decade a considerable amount of work in Computational Geom-
etry has shifted towards computing geometric entities involving non-linear geo-
metric objects [4]. If we are to categorize these efforts, they should be split into
two categories: (1) problems/implementations involving computations on alge-
braic numbers of small/bounded algebraic degree (2) problems/implementations
involving computations on algebraic numbers of large/arbitrary algebraic degree

98 M.I. Karavelas

What is common in both cases, however, is that, either at the analysis or at the
implementation level, the need for support for algebraic tools became apparent.

Cgal started as a project offering geometric algorithms for simple objects,
such as points, linear segments and circles; as a result the provided algorithms
required support for the exact computation of quantities involving only ratio-
nal operations (or limited support for square roots). Cgal’s evolution over the
years reflects the shift in interest towards curvilinear objects. As of release 3.0,
Cgal offers packages for computing the 2D additively weighted Voronoi diagram
(it requires support for algebraic numbers of degree 2) [11], and for computing
arrangements of conic curves [24]. A package for computing the 2D Euclidean
segment Voronoi diagram was introduced in release 3.1 (it requires support for
algebraic number of algebraic degree 4) [15], while in release 3.2 we have the
introduction of the 2D Circular Kernel, the first kernel designed for non-linear
geometric objects [7], accompanied by a specialized, and with limited function-
ality, algebraic kernel for degree 2 algebraic numbers. In the same release a
framework for Kinetic Data Structures was introduced [22], while the Cgal ar-
rangements’ package extended its applicability arbitrary degree Bézier curves
[13]: in both cases, support for operations on large/arbitrary degree polynomials
and large/arbitrary degree algebraic numbers, namely root isolation and root
comparison, has been the computational core, and relied primarily on either in-
ternal (to the package) code for algebraic computations, or on algebraic numbers
provided by external libraries, such as CORE [9].

A parallel effort had been underway by the EXACUS project [1]; as of Cgal’s
release 3.3 the two projects started to merge, and Cgal changed its underlying
structure: the library moved from being number-type centric to relying on a
concrete and well-designed platform of algebraic foundations [14]. In release 3.4
we have the formal introduction on polynomials and modular arithmetic, whereas
on the geometry side the 2D Circular Kernel got a three-dimensional counterpart:
the 3D Spherical Kernel [6]. With the latest public release 3.6, Cgal provides
the first model of an algebraic kernel for arbitrary degree univariate polynomials
[17] based on the RS library [21], while work for a univariate algebraic kernel
based on the bitstream Descartes’ algorithm and a bivariate algebraic kernel
based on the curve analysis approach, is currently underway and is expected to
be part of the next public release of Cgal [2].

References

1. Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Kettner, L., Mehlhorn, K.,
Reichel, J., Schmitt, S., Schömer, E., Wolpert, N.: EXACUS: Efficient and Ex-
act Algorithms for Curves and Surfaces. In: Proc. 13th European Symposium on
Algorithms (ESA). pp. 155–166 (2005)

2. Berberich, E., Hemmer, M., Kerber, M.: A generic algebraic kernel for non-linear
geometric applications. Research Report 7274, INRIA (2010)

3. Boissonnat, J.D., Devillers, O., Pion, S., Teillaud, M., Yvinec, M.: Triangulations
in CGAL. Comput. Geom.-Theor. Appl. 22, 5–19 (2002)

4. Boissonnat, J.D., Teillaud, M. (eds.): Effective Computational Geometry for Curves
and Surfaces. Mathematics and Visualization. Springer, Heidelberg (2006)

Exact Geometric and Algebraic Computations in Cgal 99

5. Brönnimann, H., Burnikel, C., Pion, S.: Interval arithmetic yields efficient dynamic
filters for computational geometry. Discrete Appl. Math. 109, 25–47 (2001)

6. de Castro, P.M.M., Cazals, F., Loriot, S., Teillaud, M.: Design of the CGAL 3D
spherical kernel and application to arrangements of circles on a sphere. Comput.
Geom.-Theor. Appl. 42(6-7), 536–550 (2009)

7. de Castro, P.M.M., Pion, S., Teillaud, M.: Exact and efficient computations on
circles in CGAL. In: Proc. 23rd European Workshop on Computational Geometry,
pp. 219–222. Technische Universität Graz, Austria (2007)

8. Cgal, Computational Geometry Algorithms Library, http://www.cgal.org
9. Core Number Library, http://cs.nyu.edu/exact/core_pages

10. Devillers, O., Teillaud, M.: Perturbations and vertex removal in a 3D Delau-
nay triangulation. In: Proc. 14th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 313–319 (2003)

11. Emiris, I.Z., Karavelas, M.I.: The predicates of the Apollonius diagram: algorithmic
analysis and implementation. Comput. Geom.-Theor. Appl. 33(1-2), 18–57 (2006)

12. GMP, GNU Multiple Precision Arithmetic Library, http://www.swox.com/gmp/
13. Hanniel, I., Wein, R.: An exact, complete and efficient computation of arrangements

of Bézier curves. In: Proc. ACM Symposium on Solid and Physical Modeling, pp.
253–263 (2007)

14. Hemmer, M.: Algebraic foundations. In: CGAL User and Reference Manual. CGAL
Editorial Board, 3.6 edn. (2010), http://www.cgal.org/Manual/3.6/doc html/

cgal manual/packages.html#Pkg:AlgebraicFoundations

15. Karavelas, M.I.: A robust and efficient implementation for the segment Voronoi
diagram. In: Proc. International Symposium on Voronoi Diagrams in Science and
Engineering (VD 2004), Hongo, Tokyo, Japan, pp. 51–62 (2004)

16. Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.K.: Classroom exam-
ples of robustness problems in geometric computations. Comput. Geom.-Theor.
Appl. 40(1), 61–78 (2008)

17. Lazard, S., Peñaranda, L., Tsigaridas, E.P.: Univariate algebraic kernel and appli-
cation to arrangement. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp.
209–220. Springer, Heidelberg (2009)

18. LEDA: Library of efficient data-structures and algorithms,
http://www.mpi-sb.mpg.de/LEDA/leda.html

19. Li, C., Pion, S., Yap, C.K.: Recent progress in exact geometric computation. J.
Log. Algebr. Program. 64(1), 85–111 (2005)

20. Melquiond, G., Pion, S.: Formally certified floating-point filters for homogeneous
geometric predicates. Informatique Théorique et Applications 41(1), 57–69 (2007)

21. The RS library, http://www-salsa.lip6.fr/~rouillie/Software.html
22. Russel, D., Karavelas, M.I., Guibas, L.J.: A package for exact kinetic data struc-

tures and sweepline algorithms. Comp. Geom.-Theor. Appl. 38(1-2), 111–127
(2007)

23. The CGAL Project: CGAL User and Reference Manual. CGAL Editorial Board,
3.6 edn. (2010),
http://www.cgal.org/Manual/3.6/doc_html/cgal_manual/packages.html

24. Wein, R.: High-level filtering for arrangements of conic arcs. In: Möhring, R.H.,
Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 884–895. Springer, Heidelberg
(2002)

25. Wein, R., Fogel, E., Zukerman, B., Halperin, D.: Advanced programming tech-
niques applied to CGAL’s arrangement package. In: Proc. Library-Centric Software
Design Workshop (LCSD 2005), pp. 24–33 (2005)

http://www.cgal.org
http://cs.nyu.edu/exact/core_pages
http://www.swox.com/gmp/
http://www.cgal.org/Manual/3.6/doc_html/cgal_manual/packages.html#Pkg:AlgebraicFoundations
http://www.cgal.org/Manual/3.6/doc_html/cgal_manual/packages.html#Pkg:AlgebraicFoundations
http://www.mpi-sb.mpg.de/LEDA/leda.html
http://www-salsa.lip6.fr/~rouillie/Software.html
http://www.cgal.org/Manual/3.6/doc_html/cgal_manual/packages.html

On Solving Systems of Bivariate Polynomials

Fabrice Rouillier

INRIA Paris-Rocquencourt Research center
Fabrice.Rouillier@inria.fr

Solving systems of bivariate polynomials is a critical operation : curves plotting,
curves topology, parametric systems, general solvers which are recursive on the
number of variables, etc. Several strategies currently exist from numerical algo-
rithms (bisections for example, interval arithmetic) to general rewriting methods
(Gröbner bases, triangular sets, resultants, etc.) with advantages and drawbacks.

The algorithm we propose mixes dynamically different points of view de-
pending on the geometrical properties detected during the computations. In
short, we decompose as early as possible the system to decrease the de-
grees of the zero-dimensional sets to be computed, by computing resul-
tants/subresultants/triangular decompositions, and then apply either direct
semi-numerical methods as in [9], [5], [7] or [6] or follow the symbolic resolu-
tion by computing a rational parametrization of the roots as in [11].

It has been shown in [11] that the first strategy performs well on systems in
general position (one coordinate separates the roots) while the second one was
efficient in the general case. Our new solver mixes strategies from the state of
the art together with new algorithms for computing certified approximations of
the real roots of univariate polynomials with a large number of significant digits
(mandatory of one wants to solve, for example, a triangular system numerically)
and/or for computing rational parametrization of the roots.

As a byproduct, the use of this new algorithm for computing the topology of
plane curves in the algorithm from [11] speeds-up so much the overall process
that new classes of curves can now be considered.

The shape of the systems. Consider {f1(X,Y) = 0, f2(X,Y) = 0} where f1
and f2 are polynomials with rational coefficients of degree at most d1 in X
(resp. d2 in Y). The number of complex roots of such system is then bounded
by d ≤ d1d2.

The way we decide which algorithm to choose for solving a system depends
strongly on its geometrical properties. It is well known that any system can be
decomposed (using Gröbner bases, resultants, triangular sets, etc.) as the union
of regular triangular systems :{

fy(Y) = 0 = Y dy + Ry(Y), fx,y(X,Y) = 0 = Xdx + Rx,y(X,Y)
}

where
dydx ≤ d1d2 ≤ d, deg(Ry, Y) < dy, deg(Rx,y, Y) < dy, deg(Rx,y, X) < dx.

The way the numerical/semi-numerical approximation of the roots is ob-
tained once the system has been simplified strongly depends on the properties
of fx,y(X,Y) (linear in X or not, squarefree over the roots of fy or not), but,

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 100–104, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Solving Systems of Bivariate Polynomials 101

in any case, one needs to be able to refine these roots with a large precision
(number of significant digits) since the coefficients of Rx,y may be huge integers.

Accurate and certified approximation of the real roots of univariate
polynomials. Given p ∈ �[T], we assume that we already have an algorithm
for isolating the real roots of a univariate polynomial with rational coefficients
(for example [15]) say computing intervals (u, v) ∈ �2 such that u �= v ⇔ ∃!x ∈
]u, v[∩�|p(x) = 0 and u = v ⇔ p(u) = p(v) = 0.

Isolating intervals’ length may be quite large and, when dealing with univari-
ate polynomials with integers as coefficients. Their refinement (or equivalently
the accurate and certified approximation of the roots of the polynomial) may be-
come the most costly operation if it is done straightforwardly. This step becomes
costly in regards of the others steps of the global algorithm when the coefficients
of the polynomial are huge integers, which is often the case when dealing with
results of variables’ eliminations (Resultants, Gröbner bases) and critical when
the roots have to by plugged in another polynomial for a recursive resolution
(triangular sets).

Our refinement algorithm is based on an computable version of Kantorovitch’s
criteria where we make use of multiprecision interval arithmetic to provide pred-
icates that ensures the quadratic convergence of the Newton iterator.

Theorem 1. Let p ∈ �[X] be a squarefree polynomial and �x � be an isolating
interval of one of its roots α such that 0 �∈ p′(�x�) (Hypothesis 1).

• Set �x0� = 1
2 (leftBound(�x�) + rightBound(�x�)) (encoded as an interval of

width 0).

• Compute �K� =
⌊

diam(�p′	(
x))
diam(
x)

⌉
, �a� =

(
(�p′� (�x0�))−1

)2
, �b� =

|�p� (�x0�)|, �h� = �2� �K� �a� �b�.
• If �h �⊂ [0, 1[(Criterion 1), then set t� ≥
2	
a	

h	
(
1 −√

1 − �h�
)

and t�� ≥

2	
a	

h	

(
1 +

√
1 − �h�

)
• If

⌊
y
⌉
=]x0 − t�, x0 + t�[⊂ �x � (Criterion 2), then :

– the iterates xn+1 = xn − p(xn)
p′(xn) exist and remain in �y �

– the sequence (xn)n≥1 converges quadratically to α, which is the only root of
p in]x0 − t��, x0 + t��[

– ‖α− xn‖ ≤
(

t�

t��

)2n

‖xn − xn−1‖.
The precision to be used for the multiprecision interval arithmetic is easy to
control by checking that the signs of the derivative of the polynomial are well
defined at some points, keeping in mind that p is squarefree and checking that
Newton mathematically converges quadratically to a unique solution under Kan-
torovitch’s conditions.

This algorithm differs from the method proposed in [1] (QIR) by the use of
multi-precision floating point arithmetic, the way the precision is dynamically
controlled and the way the quadratic convergence of the Newton iterator is

102 F. Rouillier

ensured (or not) at some stage. Among the few examples proposed in [1], we
illustrate this article with the most significant one (f4). We follow the comparison
proposed in [1] : timings for isolating and refining with a precision ε are given
for the QIR algorithm ([1]) and for our implementation (RS). We obtain the
following normalized timings (computation were not performed on the same
machine):

Isolate ε = 10−100 ε = 10−1000 ε = 10−10000

QIR 7.4 1 12.5 660
RS 4.23 1 11.9 225

The Rational Univariate Representation of a bivariate system. When
dx > 1, one could combine the use of real root isolators (such as methods based
on Descarte’s rule of signs), tight separation bounds together with interval arith-
metic to get isolating boxes around the solutions, as proposed for example in [9],
[5], [7] or [6]. Another approach is to compute a so called Rational Univariate
Representation of the roots (as in [11]), that is to say, an equivalent system with
the following shape :

{
rt(T) = 0, X = rt,x(T)

rt,1(T) , Y = rt,y(T)
rt,1(T)

}
(T is a new variable).

Computing such an intermediate object increases the symbolic processing but
make easier the last stage of the algorithm (numerical approximation of the
roots).

Given any ideal I ∈ �[X,Y] we define V (I) as the zero set of I.
A Rational Univariate Representation (RUR) of any zero-dimensional sys-
tem is defined by a set of univariate polynomials with rational coefficients
{rt(T), rt,1(T), rt,X(T), rt,Y (T)} and a polynomial t (in general a linear form)
that separates V (I) (t ∈ �[X,, Y] separates V (I) if x −→ t(x) is injective on
V (I)). According to [13], up to an algorithm in O(d2) computing a RUR is
equivalent to computing the traces (for h ∈ �[X,Y], T r(h) is the trace of the
multiplication by h modulo I) Tr(Xti), Tr(Y ti) and Tr(ti) for i = 1..d, d being
the number of complex zeroes of I.

Computing these traces by using a general method (say not taking care of
the shape of the system) is thus the main operation (say O(dw) operations with
w ≥ 2, 5 according to [13], [3] or [14]. In fact much more operations are required
since these algorithms suppose some prerequisite to be already computed (such as
the multiplication table of the quotient algebra). Taking into account the shape
of the input (a regular triangular system), one can decrease significantly the
complexity upper bound for computing a Rational Univariate Representation :

Theorem 2. When I = 〈fy(Y), fx,y(X,Y)〉 with fy(Y) = Y dy + Ry(Y),
fx,y(X,Y) = Xdx + Rx,y(X,Y), deg(Ry, Y) < dy, deg(Rx,y, Y) < dy,
deg(Rx,y, X) < dx, one can compute the RUR of V (I) related to any separating
element t in Õ(d2) arithmetic operations.

In particular, one can easily propose an algorithm for computing a Rational Uni-
variate Representation belongs to the same class of complexity than the known
algorithms for computing triangular decompositions (or at least subresultant se-
quences). Thus, theoretically, the computation of this intermediate object may

On Solving Systems of Bivariate Polynomials 103

not increase significantly the computation time required by the symbolic pro-
cessing but it simplifies a lot the next stage (numerical approximation).

Experiments and conclusion. As the initial motivation of this study was to
speed up a new algorithm for the computation of the topology of plane curves
[11], the new solver components have been tested on challenging curves from the
state of the art which were not computable by any know algorithm.

In the following experiments we took some challenging curves (mostly from
Oliver Lab’s data base [10] and from [6]) and we replaced the general solver
(Gröbner basis + RUR) from [11] by the following dedicated bivariate solver :

• Decompose the system as a union of regular triangular sets (add-hoc im-
plementation in C language that is closed to the RegularChain function
from Maple 14) : it is based on a lazy decomposition of the subresultant
suite associated with the system.

• For each triangular component, compute a rational univariate representation
of the solutions :
• If the bivariate polynomial has degree 1, then the triangular set has

the following shape : {fy(Y) = 0, X − fx(Y) = 0}. We then set t =

Y, ry(T) = fy(T), rt,1 =
(
fy(T)

)′
, rt,y = Trt,1(T)mod rt,1(T), rt,x(T) =

fx(T)rt,1(T)mod rt,x(T), which defines a Rational Univariate Represen-
tation of the system.

• If the bivariate polynomial has degree ≥ 1 we then compute a Rational
Univariate Representation.

• For each Rational Univariate representation (rt, rt,1, rt,y, rt,y}, we isolate the
roots of rt by means of non overlapping intervals with rational bounds and
refine them using bisection until the hypothesis 1 of Theorem 1 is fulfilled.

• For each isolating interval �α�, we evaluate rt,y(
α)
rt,1(
α) using interval arithmetic

and refining �α� if necessary (using theorem 1 if necessary) until the boxes
�α� × rt,y(
α)

rt,1(
α) do not overlap.

The next table shows examples to illustrate the added value of the new algorithm
for computing a Rational Univariate representation from a regular triangular sys-
tem when it replaces the classical solver (Gröbner basis + RUR) in the strategy
proposed in [11]. We also added the timings from Alcix ([6]) and Cad2d ([4]) well
known efficient implementations of CAD based algorithms on these examples :

OL-10-21-t1 OL-13-70 OL-17-55 OL-16-11 OL-2-79
New 12.1 34.4 12.3 42.3 19.2

Classical 116.3 542.2 MEM STOP MEM
Alcix 507.1 581.3 1038.2 STOP 507.1
Cad2d 231.2 174.7 2812.4 ERROR ERROR

STOP = computation stopped after 1h - MEM = not enough memory. Com-
putations were performed on a macbook pro 2.4 Ghz with 4 Mb of memory.

104 F. Rouillier

References

[1] Abbott, J.: Quadratic interval refinement (qir). In: ISSAC 2006 (2006) (poster
session)

[2] Basu, S., Pollack, R., Roy, M.-F.: Algorithms in real algebraic geometry. Algo-
rithms and Computations in Mathematics, vol. 10. Springer, Heidelberg (2003)

[3] Bostan, A., Salvy, B., Schost, E.: Fast algorithms for zero-dimensional polynomial
systems using duality. Applicable Algebra in Engineering, Communication and
Computing 14(4), 239–272 (2003)

[4] Brown, C.W.: Qepcad b: A program for computing with semi-algebraic sets using
cads. Sigsam Bulletin 37, 97–108 (2003)

[5] Collins, G.-E., Johnson, J., Krandick, W.: Interval arithmetic in cylindrical alge-
braic decomposition. Journal of Symbolic Computation 34(2), 145–157 (2002)

[6] Eigenwillig, A., Kerber, M.: Exact and efficient 2d-arrangements of arbitrary al-
gebraic curves. In: SODA, pp. 122–131 (2008)

[7] Emiris, I.Z., Tsigaridas, E.P.: Real solving of bivariate polynomial systems. In:
Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718,
pp. 150–161. Springer, Heidelberg (2005)

[8] Giusti, M., Lecerf, G., Salvy, B.: A gröbner free alternative for solving polynomial
systems. Journal of Complexity 17(1), 154–211 (2001)

[9] Gonzalez-Vega, L., Necula, I.: Efficient topology determination of implicitly de-
fined algebraic plane curves. Comput. Aided Geom. Des. 19(9), 719–743 (2002)

[10] Labs, O.: http://www.oliverlabs.net
[11] Pouget, M., Lazard, S., Tsigaridas, E., Rouillier, F., Peñaranda, L., Cheng, J.: On

the topology of planar algebraic curves. In: Mathematics in Computer Science (to
appear 2010)

[12] Revol, N., Rouillier, F.: Motivations for an arbitrary precision interval arithmetic
and the mpfi library. In: Baker Kearfott, R. (ed.) Workshop on Validated Com-
puting, Toronto, Canada, pp. 155–161. SIAM, Philadelphia (2002)

[13] Rouillier, F.: Solving zero-dimensional systems through the rational univariate
representation. Journal of Applicable Algebra in Engineering, Communication
and Computing 9(5), 433–461 (1999)

[14] Rouillier, F.: On the rational univariate representation. In: International Confer-
ence on Polynomial System Solving, pp. 75–79 (2004)

[15] Rouillier, F., Zimmermann, P.: Efficient isolation of polynomial real roots. Journal
of Computational and Applied Mathematics 162(1), 33–50 (2003)

http://www.oliverlabs.net

Accurate and Reliable Computing in

Floating-Point Arithmetic

Siegfried M. Rump

Institute for Reliable Computing, Hamburg University of Technology,
Schwarzenbergstraße 95, Hamburg 21071, Germany,

and Visiting Professor at
Waseda University, Faculty of Science and Engineering,

3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555, Japan
rump@tu-harburg.de

http://www.ti3.tu-harburg.de

Abstract. Methods will be discussed on how to compute accurate and
reliable results in pure floating-point arithmetic. In particular, verifica-
tion methods with INTLAB and error-free transformations will be pre-
sented in some detail.

Floating-point computations are tremendously fast on todays computers. Even
small laptops easily beat the largest available mainframes from two or three
decades ago in performance. However, floating-point arithmetic carries a repu-
tation of being unreliable and not trustworthy. Until the mid 1980’s there wasn’t
even a commonly accepted definition of floating-point operations.

This situation changed completely with the IEEE 754 arithmetic standard,
inaugurated in 1985 and revised in 2008 [2]. Today the vast majority of all
computers adhere to this standard, which means that the result of all floating-
point operations is precisely known. This allows to use floating-point arithmetic
as a tool to assist mathematical proofs.

We will discuss in two talks two ways of assisting mathematical proofs by
using floating-point arithmetic.

A first possibility is to use directed roundings. Denote the set of floating-point
numbers by �, let a, b ∈ � be floating-point numbers, and let ◦ ∈ {+,−, ·, /}
be an operation. The result of the floating-point approximation of a ◦ b ∈ � in
rounding downwards fl∇(a◦b) and in rounding upwards flΔ(a◦b) is the uniquely
defined floating-point number being less than or equal, or greater than or equal
to the true (real) result a ◦ b, respectively. It follows immediately that a ◦ b is a
floating-point number if and only if the rounded downwards and upwards result
coincide:

∀a, b ∈ � : a ◦ b ∈ � ⇔ fl∇(a ◦ b) = flΔ(a ◦ b)

Furthermore, the interval [fl∇(a ◦ b), flΔ(a ◦ b)] is always an inclusion of the true
real result. Finally, it is easy to define operations on intervals such that the true
results are always included in the result interval.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 105–108, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.ti3.tu-harburg.de

106 S.M. Rump

Although interval operations are easy to handle and fast implementations are
available, see [3], they are generally prone to overestimations. In fact, taking some
numerical algorithm such as Gaussian elimination or a Runge Kutta scheme, one
may replace every operation by its corresponding interval operation. However,
although the computed result intervals are always correct (if no division by an
interval containing zero causes premature failure), these result intervals can also
be expected to be uselessly wide - except for some special and/or toy problems.

This is due to improper use of interval arithmetic; for a detailed discussion
see my overview article [5]. The purpose of so-called verification methods, which
use interval arithmetic in a proper way, is ambitious: For a given problem it is
proved, with the aid of floating-point arithmetic on a computer, that there exists
a (unique) solution within the computed bounds. The methods are constructive,
and the results are rigorous in every respect. Verification methods apply to data
with tolerances as well.

Rigorous results are also the main goal in computer algebra. However, verifi-
cation methods use solely floating-point arithmetic, so that the total computa-
tional effort is not too far from that of a purely (approximate) numerical method.
Nontrivial problems have been solved using verification methods. For example:

Tucker received the 2004 EMS prize awarded by the European Mathematical
Society for [8] “giving a rigorous proof that the Lorenz attractor exists for the
parameter values provided by Lorenz. This was a long standing challenge to the
dynamical system community, and was included by Smale in his list of problems
for the new millennium. The proof uses computer estimates with rigorous bounds
based on higher dimensional interval arithmetics.”

Sahinidis and Tawaralani received the 2006 Beale-Orchard-Hays Prize for their
package BARON which [6] “incorporates techniques from automatic differenti-
ation, interval arithmetic, and other areas to yield an automatic, modular, and
relatively efficient solver for the very difficult area of global optimization”.

A number of verification methods are implemented in INTLAB [4], the Mat-
lab toolbox for reliable computing. Using the operator concept implies that ex-
ecutable code in INTLAB is very readable, almost like a specification. Besides
the basic interval operations including real and complex intervals and all ele-
mentary standard functions, packages for automatic differentiation for gradients
and Hessians, Taylor series, slopes, polynomials, a long arithmetic and more are
implemented. INTLAB is free for academic use, is developed and written by the
author. It was, for example, used by [1] in the solution of half of the problems
of the 10 × 10-digit challenge by [7].

We will demonstrate how to use INTLAB. In particular it will be shown that
often the time penalty for verified results is less than one order of magnitude
compared to the fastest floating-point algorithm, in particular for large problems:
In contrast to computer algebra methods, verification methods often become
relatively faster with increasing dimension. Linear and nonlinear problems with
several thousand unknowns are solved.

Accurate and Reliable Computing in Floating-Point Arithmetic 107

In this talk also examples of the wrong use of interval operations are given.
In the past such examples contributed to the dubious reputation of interval
arithmetic, whereas they are, in fact, just a misuse.

In the second talk we demonstrate another use of floating-point arithmetic in so-
called error-free transformations. For given floating-point numbers a, b it is known
that the error of the result of the floating-point operation fl(a ◦ b) in rounding to
nearest to the true (real) resulta◦b is itself a floating-pointnumber.More precisely,

x = fl(a ◦ b) ⇒ y := a ◦ b− fl(a ◦ b) ∈ � for ◦ ∈ {+,−, ·} (1)

and
x = fl(a/b) ⇒ y := a− b · x ∈ � , (2)

provided no underflow occurred for multiplication and division. It is also well-
known since a long time how to compute these errors y in pure floating-point
arithmetic. Thus the pair (a, b) can be transformed into the pair (x, y) such
that x is the floating-point approximation of a ◦ b, and y is the exact error
according to (1) and (2). As the name suggests, the transformation of (a, b)
into (x, y) is error-free. The challenge is to create error-free transformations for
composed operations and entire algorithms, or to create algorithms accompanied
by (mathematically correct) error estimates.

As an example we introduce an error-free vector transformation: For a given
vector u ∈ �n, a new vector v ∈ �n is computed such that

vn = fl(
∑

ui) and
∑

ui =
∑

vi .

Moreover, it can be shown that the condition number of the sum
∑

vi is about
10−16 times the condition number of the sum

∑
ui when computing in IEEE 754

double precision arithmetic. Applying the error-free transformation repeatedly
computes the exact sum accurately to the last bit.

Another example are geometrical predicates. For instance, it is to be decided
for some point whether it is on a given hyperplane, or on which side it is. Error-
free transformations as above can be used to compute results with (mathemat-
ically correct) error estimates. The transformations are applied iteratively until
the problem can be solved. Since in all cases only floating-point operations are
involved, the resulting algorithms are fast.

A number of reference implementations of error-free transformations are avail-
able in INTLAB. Due to the interpretation overhead they should only be used as
reference; really fast algorithms evolve in an implementation in some program-
ming language like C or Fortran.

References

1. Bornemann,F.,Laurie,D.,Wagon,S.,Waldvogel,J.:TheSIAM100-DigitChallenge—
A Study in High-Accuracy Numerical Computing. SIAM, Philadelphia (2004)

2. ANSI/IEEE 754-2008: IEEE Standard for Floating-Point Arithmetic, New York
(2008)

108 S.M. Rump

3. Rump, S.M.: Fast and parallel interval arithmetic. BIT Numerical Mathemat-
ics 39(3), 539–560 (1999)

4. Rump, S.M.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.) Develop-
ments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht
(1999)

5. Rump, S.M.: Verification methods: Rigorous results using floating-point arithmetic.
Acta Numerica, 287–449 (2010)

6. Sahinidis, N.V., Tawaralani, M.: A polyhedral branch-and-cut approach to global
optimization. Math. Programming B103, 225–249 (2005)

7. Trefethen, L.N.: The SIAM 100-Dollar, 100-Digit Challenge. SIAM-NEWS 35(6), 2
(2002), http://www.siam.org/siamnews/06-02/challengedigits.pdf

8. Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci., Paris, Sér. I,
Math. 328(12), 1197–1202 (1999)

http://www.siam.org/siamnews/06-02/challengedigits.pdf

Deferring Dag Construction by Storing Sums of

Floats Speeds-Up Exact Decision Computations
Based on Expression Dags

Marc Mörig�

Department of Simulation and Graphics, Faculty of Computer Science,
University of Magdeburg, Universitätsplatz 2,

D-39106 Magdeburg, Germany
moerig@isg.cs.uni-magdeburg.de

Abstract. Expression-dag-based number-types are a very general and
user-friendly way to achieve exact geometric computation, a widely ac-
cepted approach to the reliable implementation of geometric algorithms.
Such number-types record the computation history of a numerical value
in an expression dag in order to allow for recomputing the value or an
approximation of it at a later stage. We describe how to defer dag con-
struction by using error-free transformations into sums of floating-point
numbers. We store a limited number of summands in statically allocated
memory in order to postpone or avoid dag creation which involves ex-
pensive dynamic memory allocations. Furthermore we report on experi-
ments where we compare different implementation strategies of our new
approach. The experiments show that for small polynomial expressions
typically arising in geometric applications our approach is superior to ex-
isting expression-dag-based number-types in the presence of degenerate
and nearly degenerate configurations and competitive otherwise.

Keywords: expression dag, exact geometric computation, error-free
transformations, algorithm engineering.

1 Introduction

Decisions in geometric predicates are based on the sign of certain arithmetic ex-
pressions. By correct sign computations we can assure correct control flow. This
is the crucial idea of the so-called exact geometric computation paradigm [16]. It
ensures that the implementation behaves like its theoretical counterpart, thereby
ensuring correct combinatorics, whereas numerical values might still be inaccu-
rate. However, the potential inaccuracy never leads to wrong or even contradic-
tory decisions.

We implement a new number-type based on expression dags. It allows one
to exactly compute the sign of arithmetic expressions involving the operations
±, ·, /, d

√
. Recording the computation history of a numerical value in an expres-

sion tree, more precisely an acyclic directed graph, allows us to recompute the
� Partially supported by DFG grant SCHI 858/1-1

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 109–120, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

moerig@isg.cs.uni-magdeburg.de

110 M. Mörig

value at a later stage of a program in a different way. For example, the created
expression dags allow for lazy evaluation: First, we compute a crude numeri-
cal approximation only. If the current approximation does not suffice, we can
use the expression dag to iteratively compute better and better approximations.
A typical application of this scheme is verified sign computation. If the actual
numerical value is far away from zero, rough numerical approximations suffice
to compute the correct sign. Only if numerical values are close to zero, high
precision computation is needed. Thus the running time for a sign computation
becomes adaptive to its difficulty. This pays off for geometric algorithms where
most sign computations are in fact easy.

For the sake of ease-of-use recording computation history and adaptive lazy
evaluation is wrapped in a number-type. In programming languages providing
operator overloading, such a number-type can then be used like built-in number-
types. A user need not care about any implementation details in order to get
verified signs. There are other techniques for exact decision computations, which
usually lead to more efficient code. However to incorporate these techniques into
existing implementations one needs special knowledge whereas the application
of expression-dag-based number-types is straightforward. Our overall goal is to
improve the performance of expression-dag-based number-types. For many mi-
nor and major implementation details it is not clear what the best choices are;
therefore in our implementation we focus on a modular design. This allows us to
easily generate several variants with different internals, simplifying experiments
to evaluate the impact of design decisions. Additionally, modularity allows you
to tailor the number-type to your specific needs. For example, the arbitrary
precision software floating-point type used to evaluate the expression dag is ex-
changeable, allowing to either choose the most efficient number-type available
or one that integrates best with the application.

Computing with expression dags comes not for free. The main cost factors are
dynamic memory management (for the dag nodes as well as the software floating-
point types) and computing with software arithmetic. Therefore computing even
the first approximation of an expression is orders of magnitudes slower than
evaluating the expression with hardware floats. In a variant of our new number-
type we represent the value of an arithmetic expression exactly as a sum of
hardware floating-point numbers. We limit the maximum number of summands
to avoid dynamic memory management. As long as such a representation is
available no expression dag is created. The effects of this are twofold. First, if
the sign of an expression can be computed using the sum representation alone,
we avoid the expensive dag operations completely. Second, if at some point a
dag must be created, it will have different shape than the dag corresponding
to the original expression. Thus our method can also be seen as a limited form
of expression rewriting. We must be careful though. By computing exactly we
loose adaptivity, the reason to use expression-dag-based number-types in the
first place. We can only improve performance if our exact computations are
faster than the creation and the first stage of adaptive evaluation of the original

Deferring Dag Construction by Storing Sums of Floats 111

dag representation. This also has to hold in the case that at some point the sum
must be transformed to a dag representation.

So called error-free transformations transform an arithmetic expression involv-
ing floating-point numbers into a mathematically equivalent expression that is
more suited for a particular purpose [11]. We use them to implement operations
on sums of floats. We need the three ring operations addition, subtraction and
multiplication as well as computing the sign of a sum. Additionally we provide
an operation compressing a sum, i.e., reducing the number of summands if pos-
sible. While compression is not strictly necessary, it helps greatly to improve the
performance. We call this set of five operations the basic strategy. The result of
a division or root operation has a finite floating-point representation very rarely.
We therefore do not attempt to implement these operations for sums of floats.
The error-free transformations we use require only a few standard floating-point
operations and are therefore very fast. They are however subject to overflow and
underflow. Since we have to compute correct signs in any case, we need a way to
handle them. There are several parameters in our implementation, e.g., the basic
strategy and how to handle overflow and underflow. After some preliminaries in
Section 3 we discuss alternatives for these parameters in Section 4.

For each parameter we have several alternatives, all of them can be used
independently. This gives an overwhelming number of variants. To find the best
set of alternatives we perform a series of experiments. We compute the Delaunay
triangulation of point sets that require increasingly difficult sign computations
and compare how our variants perform, typically fixing all but one parameter for
which the alternatives are examined. To validate our approach we also compare
with variants of our number-type that do not attempt to defer dag creation and
other expression-dag-based number-types. In Section 5 we report on the results.

2 Related Work

Ours is not the first number-type based on expression dags. CORE::Expr [6] has
been developed by Chee Yap and his co-workers at New York University, and the
number-type leda::real [1,8] has been developed as part of the leda library. In
its newest version CORE::Expr introduces dag nodes for the sum and product of
arbitrarily many operands, allowing to save the creation of intermediate, binary
sum or product nodes. In order to benefit from the new node types, the user
has to use them explicitly [4,17]. In leda::real dag creation is avoided as long
as operations can be performed exactly with a single double precision float. The
exactness is checked using interval arithmetic. A double precision float has a
mantissa of 53 bits so this approach is suited for input with very low precision
only. With 32 bit integers there can be quite a few exact operations before a
dag must be created. If the input itself consists of double precision floats they
are likely to use all bits of their mantissa. Therefore there might be quite a few
exact additions or subtractions (e.g., by Sterbenz Lemma [15] the difference of
two floating-point numbers is exact, if their quotient is between 1/2 and 2) but
the product of two floats is likely to require more than 53 bits and can therefore

112 M. Mörig

not be represented exactly. Unlike our approach, leda::real also attempts to
perform divisions and roots exactly.

Shewchuk [13] provides a set of operations based on error-free transformations
to compute with sums of floats and uses them to implement geometric predicates.
Mörig and Schirra [9] discuss using error-free transformations and exact sign-of-
sum algorithms in the implementation of geometric predicates. Both approaches
achieve very efficient predicate implementations but require special knowledge
and more implementation effort from the user to implement their own predicates.
Here we make insights from both approaches available in a much more user-
friendly form.

3 Preliminaries

At the core of all operations on sums of floats are so called error-free trans-
formations [11]. Let ⊕ and # denote floating-point addition and multiplication
respectively. For example, a + b can be transformed into chi + clo, such that
a ⊕ b = chi and a + b = chi + clo. Note that clo is the actual rounding error
involved in computing a ⊕ b. Efficient algorithms for performing this transfor-
mation have been devised for IEEE 754 [12] compliant arithmetic with exact
rounding to nearest. twosum(a, b), due to Knuth [7], uses six floating-point ad-
ditions and subtractions to perform this transformation, fasttwosum(a, b), due
to Dekker [3], requires |a| ≥ |b|, but uses only three operations. The transfor-
mations are error-free unless overflow occurs. Analogously, twoproduct(a, b),
due to Veltkamp and Dekker [3] computes floating-point values chi and clo with
a# b = chi and a · b = chi + clo. twoproduct uses 17 floating-point operations
and is error-free, unless overflow or underflow occurs. All operations on sums of
floats that we use are based on this three error-free transformations.

Table 1. Upper bound on #s(c), the number of summands required to represent c and
msb(c) the most significant bit in c. Lower bound on lsb(c), the least significant bit.

c #s(c) msb(c) lsb(c)

a ± b #s(a) + #s(b) max{msb(a), msb(b)} + 1 min{lsb(a), lsb(b)}
a · b 2#s(a)#s(b) msb(a) + msb(b) lsb(a) + lsb(b)

We can estimate the number of summands required to represent an expression.
The most straightforward way to implement the ring operations is to simply copy
(and negate if necessary) summands in case of addition and subtraction and to
apply twoproduct to each pair of summands in case of multiplication. Table 1
gives an upper bound on the number of summands #s(c) that follows from
this strategy. Note that this bound is sharp, a different implementation of the
ring operations can not lead to better bounds. Bounds on the most and least
significant bit of a number are also given. A number c can be represented using
$(msb(c)−lsb(c))/53� double precision summands, but msb(c) − lsb(c) grows much
slower than #s(c). This shows that we can reduce the number of summands

Deferring Dag Construction by Storing Sums of Floats 113

representing an expression, if the least significant bit and most significant bit in
the input numbers do not differ too much.

Consider for example the in-circle test determinant D that allows to decide
whether a point p is inside, outside or on the circle defined by the points q, r, s.
Computing the sign of D, where all input coordinates are of double precision, is
the most demanding sign computation performed by the Delaunay triangulation
algorithm used in our experiments. When expanding D by its last column, as is
usually done, D may require up to 1152 summands, according to Table 1.

D =

∣∣∣∣∣∣
px − sx py − sy (px − sx)2 + (py − sy)2

qx − sx qy − sy (qx − sx)2 + (qy − sy)2

rx − sx ry − sy (rx − sx)2 + (ry − sy)2

∣∣∣∣∣∣
Now let l be the least significant bit and m the most significant bit in any of the
input coordinates px, py, qx, . . ., then msb(D) ≤ 4m+8 and lsb(D) ≥ 4l. Thus D
can be represented using $(4(m−l)+8)/53� double precision summands. For double
precision input m− l will usually be at least 53, in this case 5 summands suffice
to represent the sum. Table 1 together with this example shows that there clearly
is need to compress sums, i.e., try to reduce the number of summands along the
computation.

4 Variations and Alternatives

We have five parameters in our implementation, they are the maximum number
of summands allowed, the basic strategy, i.e., how arithmetical and other oper-
ations on sums are implemented, the compression policy, i.e., when to compress
a sum, how to handle overflow and underflow and how to convert a sum into an
expression dag representation.

Basic Strategy. The basic strategy provides five operations on sums of floats,
they are addition, subtraction, multiplication, sign of sum and compression. We
maintain a number as a sequence of floats, more precisely we store n double
precision numbers a1, . . . , an that represent the number

∑n
i=1 ai. We have two

alternative basic strategies.
The first basic strategy, plainS, maintains a plain sum without any spe-

cial properties. Addition and subtraction are implemented straightforwardly,
they simply copy summands. The multiplication performs twoproduct on all
pairs of input summands. To compress a sum, for i = 2, . . . , n we compute
twosum(ai−1, ai) and replace ai−1 by clo and ai by chi. If the addition ai−1⊕ai

is exact, then clo is zero. In this case we eliminate zero summands. This leaves the
value of the sum unchanged but improves its representation. There are possibly
fewer summands and the new leading summand an′ is the floating-point approx-
imation of the old sum. After several compressions, summands with higher index
tend to be more significant that summands with lower index. To compute the
sign of the sum we use the signk algorithm presented in [9]. It first performs a
compression step and then, using ordinary floating-point addition, adds the new

114 M. Mörig

summands up to an approximation s. This is known as compensated summation,
a well known approach to increase the accuracy of floating-point summation [5].
We use an error bound by Rump et al. [11] to verify the sign of s. When the
sign can not be verified we re-iterate the algorithm. Mörig and Schirra show that
signk always terminates [9].

The second basic strategy, expaS, is based on work by Shewchuk [13]. We
maintain a special type of sum called a strongly non-overlapping expansion. We
do not allow zero summands unless the only summand is zero. In an expan-
sion all summands are ordered by absolute value and summands are pairwise
non-overlapping, meaning that the most significant non-zero bit of the smaller
summand is smaller than the least significant non-zero bit of the larger sum-
mand. Therefore the sign of the expansion is always the sign of the leading
summand an. Furthermore the least and most significant non-zero bit of all
summands occur in a1 and an respectively. Shewchuk provides algorithms to
add and subtract expansions, to compress an expansion and to multiply an ex-
pansion with a single float. They are entirely based on twoproduct, twosum

and fasttwosum. We use his implementation that is available on the web [14]
and implement additional functionality following suggestions from his paper [13,
section 2.8].

Plain sums and expansions employ opposing strategies. With plain sums the
ring operations are lazy, at the cost of many summands since the upper bounds
from Table 1 are always attained. signk must do all the work. With expansions
a normal form is maintained by the ring operations, this makes them more
expensive but also reduces the number of summands. The sign of an expansion
can be determined at no cost!

Compression Policies. One of our main concerns with sums of floats is to keep
the number of summands small. All operations will be cheaper with fewer sum-
mands, since cost depends on the number of summands. More importantly we
must switch to the expensive dag representation, if a ring operation can not be
performed because the result, as predicted by Table 1, may exceed the maximum
number of summands. We provide four different policies when to apply the com-
pression algorithm that itself is provided by the basic strategy. The first, noC, is
to not compress at all. The second, alwC, is to compress always after every ring
operation. The third policy, lazyC, is more lazy, it compresses the operands of
a ring operation if the number of summands predicted for the result exceeds the
maximum number of summands. The fourth policy, laagC, is also lazy, but more
aggressive. The operands are compressed once and then iteratively compressed
again if the previous compression step reduces the number of summands. Con-
sidering the differences between plain sums and expansions, we can expect that
plain sums will benefit more from additional compression.

Handling overflow and underflow. Since all our operations are based on error-free
transformations and those are truly error-free only if neither overflow nor under-
flow occur we have to deal with such floating-point exceptions. The IEEE 754
standard provides a set of flags that are set when an exception occurs and can
be checked and reset by the user. To protect from overflow and underflow, before

Deferring Dag Construction by Storing Sums of Floats 115

each operation we make a backup copy of the sum that is to be overwritten by
the operation. After the operation we check the exception flags. If an exception
occurs, we reset the exception flags, restore the sum from the backup and pro-
ceed by converting to an expression dag representation. This way overflow and
underflow do not affect the correctness of the computation and are invisible to
the user, as required. This strategy is called restE. Alternatively we reset the
exception flags before each operation and check them afterwards. No backup is
made but if an exception occurs an error handler is called. This approach, detE,
is free from false positives but requires user interaction. For testing purposes we
also have an alternative, noE, that does not check exception flags. It allows us
to determine the cost of the former alternatives.

Checking for floating-point exceptions is only done for the operations where
they may actually occur. For example the addition and subtraction of plain
sums only copy summands and are therefore safe. Less obviously no exception
can occur in the compression of expansions. Due to the non-overlapping property,
no bit larger or smaller than already present in the expansion can be generated.

Unfortunately, using the exception flags is very expensive on the test platform.
A different approach is to only perform operations if the input is both small and
large enough to ensure that neither overflow nor underflow can occur. Since the
summands of an expansion are ordered this can be checked in constant time.
We provide another basic strategy, safeS that also maintains expansions but
performs operations only if they are safe from overflow and underflow. We do
not provide a safe basic strategy based on plain sums since checking the input
will take linear time and they are already a bit slower than safe expansions.

Converting to a dag representation. We compute with sums of floats as long as a
representation by sums is feasible. If not we switch to a dag representation. This
can happen for three reasons. First we perform a division or root operation, sec-
ond, the number of summands predicted for the result of a ring operation exceeds
the maximum number of summands and third overflow or underflow occurred.
We provide two alternatives to convert a sum to a dag. The first alternative,
nodeD, creates a single node storing the value of the sum, computed using the
software floating-point type used to evaluate the dag. The second alternative,
treeD, creates a balanced binary summation tree over the summands. Another
option, which we did not pursuit however, is to introduce a summation node with
arbitrary arity to the dag. Such a node type is available in the newest version of
CORE::Expr.

5 Experimental Comparison

We compare the variants described in the previous section using cgal’s [2] De-
launay triangulation algorithm that uses the 2D orientation and incircle
predicate. Of these predicates, the incircle predicate is arithmetically more de-
manding. We use cgal’s Simple cartesian kernel. As input we use randomly
generated point sets from the test data generator described by Mörig and Schirra
[9]. It generates sets with a certain percentage f of points on the boundary of

116 M. Mörig

f = 0% f = 25% f = 50% f = 75%

Fig. 1. Sample input data sets

a union of disks and no points in the interior. With increasing f this forces the
Delaunay triangulation algorithm to perform more difficult incircle tests. For
f ∈ {0%, 25%, 50%, 75%} we generate 25 point sets of 5000 points each and
measure the average running time in seconds. Sample input sets are shown in
Figure 1. The experiments are run on a notebook with an Intel Core 2 Duo
T5500 processor with 1.66 Ghz, using g++ 4.4.1, cgal 3.3.1, leda 6.0, gmp

4.3.1 and mpfr 2.4.1. When ranking different variants of sums of floats by mea-
sured running time, their relative order is invariant with respect to f . In fact
the measured running time itself is nearly invariant with respect to f , since the
approach is non-adaptive. For one variant this can be seen in Figure 6, most
figures show only results for f = 25%. We repeated our experiments on a differ-
ent platform with similar results. The parameter space to search for an optimal
variant is rather large. We make orthogonal cuts through the parameter space,
varying one parameter and fixing the others to an alternative that performs well
in the other experiments.

First we are interested in the impact of the maximum length of a sum on the
performance. We vary the maximum length from 2 to 64. Looking at Figure 2 it
can be seen that the computation times reaches a minimum at 8 or 16 summands
and then remains constant. This is surprisingly low, since with 8 summands the
product of two sums with n and m summands is transformed into a sum only
if mn ≤ 4. For 8 or more summands almost all signs are computed using the
representation as sum only.

Next we evaluate the effect of different compression policies for both basic
strategies. Figure 3 shows the results. Plain sums use the exception handling

0

0.6

1.2

1.8

f = 25%

se
co

n
d
s

2
4
8
16
32
64 summands

Fig. 2. Safe expansions, lazy compression and no floating-point exception handling.
The dag is created as a tree and uses leda::bigfloat.

Deferring Dag Construction by Storing Sums of Floats 117

0

0.6

1.2

1.8

f = 25%

se
co

n
d
s

plainS restE noC
plainS restE lazyC
plainS restE laagC
plainS restE alwC
safeS noE noC
safeS noE lazyC
safeS noE laagC
safeS noE alwC

Fig. 3. Comparison of different compression policies: no compression (noC), lazy com-
pression (lazyC), lazy aggressive compression (laagC) and compressing always after an
operation (alwC). All variants use 16 summands, the dag is created as a tree and uses
leda::bigfloat.

0

0.6

1.2

1.8

f = 25%

se
co

n
d
s

plainS laagC noE
plainS laagC detE
plainS laagC restE
expaS lazyC noE
expaS lazyC detE
expaS lazyC restE
safeS lazyC noE

Fig. 4. Comparison of different floating-point exception handling strategies: no excep-
tion handling (noE), only detecting exceptions (detE) and restoring the sum in case of
an exception (restE). All variants use 16 summands, the dag is created as a tree and
uses leda::bigfloat

that is restoring sums, safe expansions need no exception handling, therefore
their running time is in general much faster here. No compression is performed
by the ring operations for plain sums, so any additional compression increases
the performance of plain sums. The best result is provided by lazy aggressive
compression. The arithmetic operations on expansions compress their results
internally. This is quite effective; the running time decreases only slightly with
additional compression. There is not much of a difference between lazy and lazy
aggressive compression which give the best results.

The results from our experiments concerning the handling of overflow and
underflow are shown in Figure 4. First we can see that plain sums and expansions
perform similarly with just a slight advantage for expansions. Using any kind
of floating-point exception flag checking is very slow, increasing the running
time by a factor of two or even more. The cost for checking the input to avoid
overflow and underflow before an operation, as is done by safe expansions is
however negligible. Safe expansions are even slightly better than plain sums
without exception handling.

118 M. Mörig

0

0.6

1.2

1.8

f = 25%

se
co

n
d
s

leda treeD
leda nodeD
leda pureDAG
mpfr treeD
mpfr nodeD
mpfr pureDAG

Fig. 5. Two different strategies to convert sums to a dag, creation of a single dag node
(nodeD) and creation of a tree (treeD) compared to variants that do not attempt to
defer dag creation (pureDAG). Dag evaluation is performed with either leda::bigfloat
(leda) or mpfr (mpfr). The sums use safe expansions with lazy compression and 4
summands only.

Next we compare the alternatives for turning a sum into a dag representation.
The results can be seen in Figure 5. We limit the maximum number of summands
to 4 in order to ensure that sums are actually converted into expression dag rep-
resentations. Following the analysis presented in Section 3 we can see that when
all input coordinates have the same exponent, the term (px − sx)2 + (py − sy)2

and the corresponding cofactor both need at most 3 summands in an optimal
representation. With our randomly generated input they will very rarely be rep-
resentable by one summand only. The product of two sums with 2 summands
is not transformed into a sum either, because the predicted length of the prod-
uct is 8 summands. Therefore a dag representation must be created for many
sums in this setting. Our experiments show that creating a tree is clearly su-
perior to creating a single node, since it allows for adaptive evaluation of the
tree, while creating a single node is completely non-adaptive. Interestingly, cre-
ating a tree is faster with mpfr while creating a single node is faster with
leda::bigfloat. Note that although creating a dag representation is necessary
for verified sign computation, using sums of floats is more efficient than directly
creating a dag.

Finally we compare our best variant to other exact number-types based on
expression dags. The results are shown in Figure 6. Obviously, the number-types
that use dag representations adapt to the difficulty of the input while using
sums of floats shows non-adaptive behavior. Deferring dag creation using sums
of floats is clearly an improvement over creating the dag right away. The strategy
of leda::real, to use a single float and interval arithmetic to avoid dag creation,
implemented in floatDAG, does not pay off. This may be different for integer
input. Both versions of CORE::Expr perform well for all considered input sets,
although surprisingly the new version 2.0.8 is slightly slower. The focus in the
new version is on expensive computations while we focus on simple cases [17,4].
Using sums of floats to defer dag creation results in a significant improvement
over existing expression-dag-based number-types in the presence of degenerate
and nearly degenerate configurations and is competitive for uniformly distributed
input sets.

Deferring Dag Construction by Storing Sums of Floats 119

0

0.6

1.2

1.8

f = 0% f = 25% f = 50% f = 75%

se
co

n
d
s

safeS noE lazyC treeD 16 summands
pureDAG
floatDAG
leda::real
CORE::Expr 1.7
CORE::Expr 2.0.8

Fig. 6. Other expression-dag-based number-types and three variants of our new type:
the best variant based on sums of floats, no attempt to defer dag creation (pureDAG),
dag creation deferral using one float (floatDAG). All three variants use leda::bigfloat.

6 Conclusion and Future Work

Using sums of floats to defer dag creation can significantly improve the perfor-
mance of expression-dag-based number-types when used to evaluate polynomial
expressions on hardware precision input. In our experiments the approach is
useful even if at some point the sum must be converted to a dag representation.
This shows that to make an improvement it may not be necessary to tune the
number of maximum summands for each application. Using floating-point ex-
ception flags to handle overflow and underflow is way to slow in our approach.
It is crucial to keep the actual number of summands small, especially since the
space requirements for direct results of ring operations are excessively large in
general.

To find an optimal way of using sums of floats we use a single test scenario
only. Expression-dag-based number-types are a general tool with many applica-
tion. Therefore we have to verify our results for other applications, especially
ones that include division and roots. An interesting test case is for example
the coordinate comparison of line segment intersection points that is used by
the Bentley-Ottmann sweep-line algorithm for computing the arrangement of
line segments. The expression whose sign must be computed involves division of
small polynomial expressions which will force dag creation.

References

1. Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: Efficient exact geometric
computation made easy. In: 15th ACM Symposium on Computational Geometry
(SCG 1999), pp. 341–350. ACM, New York (1999)

2. CGAL: Computational Geometry Algorithms Library, http://www.cgal.org/
3. Dekker, T.J.: A floating-point technique for extending the available precision. Num.

Math. 18(2), 224–242 (1971)

http://www.cgal.org/

120 M. Mörig

4. Du., Z.: Guaranteed Precision for Transcendental and Algebraic Computation
made Easy. PhD thesis, Courant Institute of Mathematical Sciences, New York
University (May 2006)

5. Kahan, W.: Further remarks on reducing truncation errors. Comm. of the
ACM 8(1), 40 (1965)

6. Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A core library for robust nu-
meric and geometric computation. In: 15th ACM Symposium on Computational
Geometry (SCG 1999), pp. 351–359. ACM, New York (1999)

7. Knuth, D.E.: Seminumerical Algorithms, 3rd edn. The Art of Computer Program-
ming, vol. 2. Addison-Wesley, Reading (1997)

8. LEDA: Library of Efficient Data Structures and Algorithms,
http://www.algorithmic-solutions.com/

9. Mörig, M., Schirra, S.: On the design and performance of reliable geometric pred-
icates using error-free transformations and exact sign of sum algorithms. In: 19th
Canadian Conference on Computational Geometry (CCCG 2007), pp. 45–48 (Au-
gust 2007)

10. MPFR: A multiple precision floating-point library, http://www.mpfr.org/
11. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM Journal

on Scientific Computing 26(6), 1955–1988 (2005)
12. Overton, M.L.: Numerical Computing with IEEE Floating-Point Arithmetic.

SIAM, Philadelphia (2001)
13. Shewchuk, J.R.: Adaptive precision floating-point arithmetic and fast robust geo-

metric predicates. Discrete and Computational Geometry 18(3), 305–363 (1997)
14. Shewchuk, J.R.: Companion web page to [13] (1997),

http://www.cs.cmu.edu/~quake/robust.html

15. Sterbenz, P.H.: Floating-Point Computation. Prentice-Hall, Englewood Cliffs
(1974)

16. Yap, C.: Towards exact geometric computation. Comput. Geom. Theory Appl. 7(1-
2), 3–23 (1997)

17. Yu, J., Yap, C., Du, Z., Pion, S., Brönnimann, H.: The design of Core 2: A library
for exact numeric computation in geometry and algebra. In: Fukuda, K., et al.
(eds.) ICMS 2010. LNCS, vol. 6327, pp. 121–141. Springer, Heidelberg (2010)

http://www.algorithmic-solutions.com/
http://www.mpfr.org/
http://www.cs.cmu.edu/~quake/robust.html

The Design of Core 2:

A Library for Exact Numeric Computation in
Geometry and Algebra�

Jihun Yu1, Chee Yap1, Zilin Du2, Sylvain Pion3, and Hervé Brönnimann4

1 Courant Institute, New York University,
New York, NY 10012, USA
{jihun,yap}@cs.nyu.edu

2 Google Inc., 2400 Bayshore,
Mountain View, CA, USA
zilin@courant.nyu.edu

3 INRIA Sophia Antipolis,
2004 route des Lucioles, BP 93,
06902 Sophia Antipolis, France
Sylvain.Pion@sophia.inria.fr
4 CIS Department, NYU Poly,

Six MetroTech Center,
Brooklyn, NY 11201, USA

hbr@poly.edu

Abstract. There is a growing interest in numeric-algebraic techniques
in the computer algebra community as such techniques can speed up
many applications. This paper is concerned with one such approach
called Exact Numeric Computation (ENC). The ENC approach to
algebraic number computation is based on iterative verified approxima-
tions, combined with constructive zero bounds. This paper describes Core
2, the latest version of the Core Library, a package designed for appli-
cations such as non-linear computational geometry. The adaptive com-
plexity of ENC combined with filters makes such libraries practical.

Core 2 smoothly integrates our algebraic ENC subsystem with tran-
scendental functions with ε-accurate comparisons. This paper describes
how the design of Core 2 addresses key software issues such as modu-
larity, extensibility, efficiency in a setting that combines algebraic and
transcendental elements. Our redesign preserves the original goals of the
Core Library, namely, to provide a simple and natural interface for ENC
computation to support rapid prototyping and exploration. We present
examples, experimental results, and timings for our new system, released
as Core Library 2.0.

� Yap, Du and Yu are supported by NSF Grants CCF-043836, CCF-0728977 and CCF-
0917093, and with partial support from Korea Institute of Advance Studies (KIAS).
Brönnimann is supported by NSF Career Grant 0133599. Brönnimann, Pion, and
Yap are supported by an Collaborative Action GENEPI grant at INRIA and an NSF
International Collaboration Grant NSF-04-036, providing travel support for Du and
Yu to INRIA.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 121–141, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

122 J. Yu et al.

1 Introduction

Most algorithms involving numbers are designed in the Real RAM model of
computation. In this model (e.g., [1, 37]) real numbers can be directly manip-
ulated, comparisons are error-free, and basic arithmetic operations are exact.
But in actual implementations, real numbers are typically approximated by ma-
chine doubles and this leads to the ubiquitous numerical nonrobustness issues
that plague applications in scientific and engineering applications. In Compu-
tational Geometry, these numerical errors are exacerbated by the presence of
discrete geometric relations defined by numbers. The survey articles [24,40] give
an overview of nonrobustness issues in a geometric setting.

Now suppose P is a C++ program using only standard libraries. When com-
piled, it suffers the expected nonrobustness associated with numerical errors.
Imagine a software library with the property that when it is included by P ,
the compiled program (magically) runs like a real RAM program because all
numerical quantities1 behave like true real numbers. Such a library would be a
boon towards eliminating numerical nonrobustness. The Core Library [22] was
designed to approximate this dream: the program P only needs to insert the
following two directives:

#define CORE LEVEL 3

#include “CORE.h” (1)

Our library (CORE.h) will re-interpret the standard number type double as an
Expr object (a directed acyclic graph representing a numerical expression). In-
deed, by changing the CORE LEVEL to 1 or 2 in (1), the program P can be com-
piled into other “accuracy levels”, corresponding to machine precision (Level 1)
or arbitrary multiprecision (Level 2). Although Levels 1 and 2 fall short of a
Real RAM, the ability for a single program P to compile into different accuracy
levels has interesting applications in the debug-exploration-release cycle of pro-
gram development [44]. The purpose of this paper is to present the rationale and
design of Core Library 2.0 (or Core 2). Towards this end, it will be compared
to our original design, which refers to Core Library 1.7 (or Core 1). Thus “old
system/design” refers to Core 1 while “new system/design” refers to Core 2.

§1. On implementing a Real RAM. How do we implement a Real RAM?
This dream in its full generality is impossible for two fundamental reasons. First,
real numbers are uncountably many while any implementation is no more power-
ful than Turing machines which can only access countably many reals. The sec-
ond difficulty is the general impossibility of deciding zeros (equivalently, making
exact comparisons) [45]. The largest class beyond algebraic zeros for which zero
is decidable are the elementary constants of Richardson [38, 39, 45]; this result
depends on the truth of Schanuel’s conjecture. What is possible, however, is to
provide a Real RAM for interesting subsets of the reals. If program P uses only
the rational operations (±,×,÷) then such a library could be a BigRational
1 We are exploiting the ability of C++ to overload operators. Otherwise, we can use

some preprocessor.

The Design of Core 2 123

number package; such a solution may have efficiency issues (e.g., [47]). If P also
uses the square-root operation, then no off-the-shelf library will do; our precursor
to Core Library [24] was designed to fill this gap. Since many basic problems
in the algorithms literature involve at most irrationalities of the square-root
kind, such a library is already quite useful. The natural goal of supporting all
real algebraic numbers was first attained in Core Library 1.6 [44]. The other
library that supports exact comparisons with algebraic numbers represented by
floating-point approximations is LEDA [27, 28]. Although our algebraic number
subsystem is central to our library, it is not discussed in this paper since it is
not the focus of our redesign effort. Interested readers are referred to [40] which
describes how we achieve Real RAM capabilities efficiently for this subsystem,
using constructive root bounds and filter techniques.

Another major library that is premised on exact comparison is CGAL [16].
Although CGAL does not have its own engine for general exact algebraic com-
putation, its generic programming design supports number kernels such as the
Core Library. Thus Core Library is bundled with CGAL, and commercially dis-
tributed by Geometry Factory. In the last decade, such libraries have demon-
strated that the exact comparison approach is a practical means for eliminating
nonrobustness in many applications.

The computation of our algebraic program P could, in principle, be carried
out by computer algebra systems (CAS). Why is there a need for something
like Core Library? First of all, if we may use a retail business analogy, many
CAS systems adopt the “department store” approach to providing services while
Core Library takes the “boutique” approach: our main service is a number type
Expr that allows the simulation of a Real RAM. Our system is aimed at geo-
metric applications that have salient differences from typical CAS applications.
CAS are often used for one-of-a-kind computation which might be very difficult.
These computations seeks to elucidate the algebraic properties of numbers while
geometric applications [11, 20] are interested in their analytic properties [45].
Inputs for geometric algorithms have some combinatorial size parameter n that
can be moderately large. The algebraic aspects of its computation are normally
encapsulated in a handful of algebraic predicates Q(x) (e.g., orientation pred-
icate) or algebraic expressions E(x) (e.g., distance between two points) where
x = (x1, . . . , xk) represents the input. Evaluating Q(x) or E(x) is easy from the
CAS viewpoint, but we must repeat this evaluation many times (as a function
that grows with n). See [45,46] for more discussion.

§2. Exact Numerical Computation. There are four ingredients in our
real RAM implementation:

(a) certified approximation of basic real functions (e.g., [4]),
(b) the theory of constructive zero bounds [6,29],
(c) a precision-driven evaluation mechanism [24], and
(d) filter mechanism [5, 17].
The first two ingredients are essential for any Real RAM implementation; the last
two ingredients are key to making the system efficient and practical. The certified
approximations in (a) are ultimately dependent on interval techniques [33]. The

124 J. Yu et al.

constructive zero bound in (b) is a systematic way to compute a bound
B(E) for a numerical expression E such that if E is defined and non-zero, then
|E| > B(E). Using this, we are able to do exact comparisons. We can view
(c) as a pro-active kind of lazy evaluation – this is expanded below in Section
3.3. Finally, a simplified view of “filters” in (d) is to regard them as certified
machine arithmetic. Using them we can cheaply perform exact comparisons in
the majority of input instances, despite the fact that exact comparisons are
very difficult in the worst case. This form of computation is2 characterized as
Exact Numeric Computation (ENC) in [45,46]. Computer algebra textbooks
(e.g., [9]) list several alternatives for computing with algebraic numbers; to this
list, we may now add the ENC approach.

There are many libraries (e.g., [21,31,32,43]) for arbitrary precision real com-
putation. But lacking the critical ingredient (b), they cannot support exact com-
parison. As substitute for exact comparison, they use “ε-comparison” that com-
pares numbers up to any desired ε > 0 accuracy. Brattka and Hertling [3] provides
a theoretical study of Real RAM with ε-comparisons. Numerical analysts also use
this ε-accuracy approach. In this paper, we will need to integrate an exact subsys-
tem for algebraic numbers with a new ε-accurate part for transcendental numbers.

Fig. 1. Isotopic Approximation of curve sin3(x
2) − cos3(y

2) = 0 with Core 2

As an illustration of ENC applications, Figure 1 shows the curve f(x, y) =
sin3(x2) − cos3(y2) = 0 approximated by Core 2, using a recent algorithm [25].
Here sinn, cosn means we use the first n terms of their Taylor expansions. Our
computation in the left figure stops once the isotopy-type is determined; in
the right figure, we continue to a user-specified Hausdorff distance. Until re-
cently, most exact computation on algebraic curves and surfaces are based on
strong algebraic techniques such as resultant computation (e.g., [2]). In ENC,
our main techniques are evaluation and domain subdivision (such subdivision
boxes are seen in Figure 1). Superficially, this resembles the traditional numeri-
cal approaches, but ENC can provide the topological guarantees [25,36] that are
normally only associated with algebraic algorithms. ENC algorithms have many
advantages: adaptive complexity, relatively easy to implement, and locality (i.e.,
we can restrict computational effort to a local region, as in Figure 1).

§3. Goals of this Paper. There are three main motivations for the present
redesign effort. The first is the desire to incorporate transcendental functions
2 Also known as Exact Geometric Computation (EGC) in the context of geometric

applications.

The Design of Core 2 125

in our expressions. Many computations need transcendental constants (π, e, ln 2,
etc) or transcendental functions (sinx, expx, ln x, etc.). For instance, the prob-
lem of shortest path amidst planar disc obstacles [8], or motion planning in
robotics involving holonomic or dynamic constraints or helical motion are all
transcendental problems.In molecular simulations where we compute Coulombic
forces, we need the error function erf, which is an instance of hypergeometric
functions [14, 15]. But we no longer guarantee the sign of such expressions.

The second motivation is to make the Expr class more flexible, extensible
and modular. Although these are standard concerns of software engineering, we
will discuss their special manifestations in an ENC software. There are many
opportunities to introduce specialized operators into Expr, and we would like
to introduce mechanisms to support this. Invisible to users, the evaluation of
expressions relies on two critical functions: filters [5, 7, 17] and zero bounds
[6,35]. In Core 1, both functionalities are integrated into the Expr class, making
them hard to maintain and extend.

The third motivation is the perpetual quest for improved efficiency. There
are two major sources of inefficiency that we address. The centerpiece of any
ENC library is a poly-algorithm3 to evaluate a numerical expression [24]. First,
we re-examine this evaluation poly-algorithm. The optimal design of this poly-
algorithm is far from understood, but we will see much room for improvement.
The other efficiency issue arises in the numerical engine that delivers high preci-
sion approximations. Intuitively, this engine is a BigFloat number system com-
bined with interval arithmetic. We will see that it plays two distinct roles but
these roles are conflated in Core 1.

Lastly, our redesign must preserve the simple numerical API of Core Library
as illustrated by (1), and is thus backward compatible with Core 1.

§4. Overview. Section 2 reviews the original design of Core Library and
discusses the issues. Sections 3 and 4 present (resp.) the new design of the main
C++ classes for expressions and bigFloats. Section 5 describes new facilities to
make Expr extensible. We conclude in Section 6. Many topics in this paper
appear in greater detail in the Ph.D. thesis [13] of one of the authors. The
source code for all experiments reported here are found in the subdirectory
progs/core2paper, found in our open source (QPL license) Core 2 distribution
[10]. Experiments are done on an Intel Core Duo 2.4 GHz CPU with 2 GB of
memory. The OS is Cygwin Platform 1.5 and compiler is g++-3.4.4.

2 Review of Core Library, Version 1

The Core Library features an object-oriented design, implemented in C++. A
basic goal of the Core Library is to make ENC techniques transparent and
easily accessible to (non-specialist) programmers through a simple numerical4

3 By a “poly-algorithm”, we mean a suite of complementary algorithms that work
together to solve a specific problem.

4 API stands for “Application Programmers Interface”.

126 J. Yu et al.

API (illustrated by (1)). User convenience is high priority because we view
Core Library as a tool for experimentation and rapid prototyping.

There are three main subsystems in Core 1: the expression class (Expr), the
real number class (Real) and the big float number class (BigFloat). These are
number classes, built over standard big number classes (BigInt, BigRat) which
are wrappers around corresponding types from GNU’s multiprecision package GMP.
The Expr class provides the critical functionalities of ENC. In theory, Expr is
the only number type users need, but experienced users can also access the
underlying number classes directly (with CORE LEVEL set to 4 in (1)). An instance
of Expr is a directed acyclic graph (DAG) representing a numerical constant
constructed from arbitrary real algebraic number constants. In the following, we
raise some issues in the old design of the Expr and BigFloat classes.

– Some critical facilities in Expr should be modularized and made extensible.
Specifically, the filter and root bound facilities have grown considerably over
the course of development and are now hard to maintain, debug, or extend.

– The main evaluation algorithm (the “poly-algorithm” in the introduction)
of Expr has three co-recursive subroutines. The old design does not separate
their roles clearly, and this can lead to costly unnecessary computations.

– Core 1 supports only algebraic expressions. An overhaul of the entire design
is needed to add support for non-algebraic expressions.

– Currently, users cannot easily add new operators to Expr. E.g., it is useful
to add diamond operator [6,41], product, summation (see below), etc.

Next consider the BigFloat class. It is used by Expr to approximate real num-
bers, and is the workhorse for the library. It is implemented on top of BigInt
from GMP. The old BigFloat is represented by a triple 〈m, err, e〉 of integers,
representing the interval [(m− err)Be, (m+ err)Be] where B = 214 is the base.
We say the bigfloat is normalized when err < B and exact when err = 0. The
following issues arise:

– The above representation of BigFloat has performance penalty as we must
do frequent error normalization. Some applications do not need to maintain
error. E.g., in self-correcting Newton-type iterations, it is not only wasteful
but may fail to converge unless we zero out the error by calling makeExact.
Users can manually call makeExact but this process is error-prone.

– Our BigFloat assumes that for exact bigfloats, the ring operations (+,−,×)
are computed exactly. This is important for ENC but we see situations below
where this is undesirable and the IEEE model of round-off is preferable.

– The old BigFloat supports only {+,−, ∗, /, 2
√ }. For Expr to support tran-

scendental functions such as exp, sin, etc., we need their BigFloat analogues
(recall ingredient (a) in ¶2). This implementation is a major effort, and the
correct rounding for transcendental functions is quite non-trivial [12, 30].

To bring out these performance penalties, we compare our old BigFloat im-
plementation of sqrt based on Newton iteration against MPFR [18]: Core 1 was
25 times slower as seen in Figure 8. The MPFR package satisfies all three criteria

The Design of Core 2 127

above. A key feature of MPFR is its support of the IEEE rounding modes (the “R”
in MPFR refers to rounding). Hence a critical decision of Core 2 was to capitalize
on MPFR.

3 Redesign of the Expr Package

We first focus on expressions. The goal is to increase modularity and extensibility
of expression nodes, and also to improve efficiency.

3.1 Incorporation of Transcendental Nodes

What is involved in extending expressions to transcendental operators? In Core
1, we classify nodes in Expr into rational or irrational ones as such information is
critical for root bound computation. We now classify them into integer, dyadic,
rational, algebraic, and transcendental. A node is transcendental if any of
its descendants has a transcendental operator (e.g., a leaf for π = 3.1415 . . .,
or a unary node such as sin(·)). This refined classification of nodes is exploited
in root bounds. There is a natural total ordering on these types, and the type
of a node is the maximum of the types in descendant nodes. As transcendental
expressions do not have root bounds, we introduce a user-definable global value
called escape bound to serve as their common root bound. Another bound
called cutoff bound is used for a different purpose; both are explained below.

3.2 New Template-Based Design of ExprRep

The Expr class in Core 2 is templated, unlike in Core 1. It remains only a thin
wrapper around a “rep class” called ExprRep, which is our focus here.

§5. ExprRep and ExprRepT. The filter and root bound facilities were em-
bedded in the old ExprRep class. We now factor them out into two functional
modules: Filter and Rootbd. The Real class (see Section 2), which was already
an independent module, is now viewed as an instance of an abstract number
module called Kernel. The role of Kernel is to provide approximate real values.
We introduce the templated classes ExprT and ExprRepT, parametrized by these
three modules:

template <typename Rootbd,
typename Filter, typename Kernel>

class ExprT;

template <typename Rootbd,
typename Filter, typename Kernel>

class ExprRepT;

128 J. Yu et al.

Now, Expr and ExprRep are just typedefs:

typedef ExprT<BfmssRootBd<BigFloat2>,
BfsFilter, BigFloat2> Expr;

typedef ExprRepT<RootBd,
Filter, Kernel> ExprRep;

The actual template arguments for Rootbd, Filter, and Kernel for Expr are
passed to ExprRep, ExprT, and ExprRepT. The benefit of this new design is that
now we can replace Filter, Rootbd or Kernel at the highest level without any
changes in ExprRep, ExprT or ExprRepT. We see here that the default Expr class
in Core 2 uses the k-ary BFMSS root bounds [6, 35] and the new BigFloat2
kernel (below). But users are free to plug in other modules. E.g., one could
substitute a better filter and root bound for division-free expressions. This design
of Expr follows the “delegation pattern” in Object-Oriented Programming [42]:
the behavior of Expr is delegated to other objects (filters, etc).

§6. ExprRepT class hierarchy. The class ExprRepT defines abstract struc-
tures and operations which are overridden by its subclasses. This hierarchy of
subclasses is shown in 2.

There are four directly derived classes, corresponding to the arities of the
operator at the root of the expressions: constants, unary, binary, and anary
operators. Each of them has further derived classes – for instance, the binary
operator class is further derived into three subclasses corresponding to the four
arithmetic operators (AddSubRepT, MulRepT, DivRepT). The class AddSubRepT
combines addition and subtraction as these two operations share basically the
same code. The introduction of anary operators is new. An anary operator is one
without a fixed arity, such as summation

∑n
i=1 ti and product

∏n
i=1 ti. Another is

the diamond operator �(a0, . . . , an, i) to extract the ith real root of a polynomial
p(x) =

∑n
i=0 aix

i [6] where ai’s are expressions. Below we show the usefulness
of these extensions.

UnaryOpRepT

AddSubRepT

BinaryOpRepT ConstOpRepT AnaryOpRepT

ConstRationalRepT

ConstULongRepT

ConstIntegerRepT

ConstDoubleRepT

ConstLongRepT

ConstPolyRepT

ConstFloatRepT

DivRepT

MulRepT NegRepT

CbrtRepT

RootRepT

SqrtRepT

DiamondRepT

ProductRepT

ExprRepT

SumRepT

Fig. 2. ExprRepT Class hierarchy

The Design of Core 2 129

ExprRep

d_e,...

Filter

Real

ExprRepT

_filter

_rootbd

_kernel

Filter

Rootbd

Kernel

(a)

Field name Size in bytes

Dynamic type information 4

Reference counter 4

Operands : Node * [arity] 4×arity

Filter filter 16

Kernel * kernel 4

Rootbd * rootbd 4

Cache * cache 4

int numType 4

(b)

Fig. 3. (a) Comparing ExprRep and ExprRepT. (b) Layout in 32-bit architecture.

§7. Memory layout of ExprRepT. Size of expression nodes can become
an issue (see Section 5). Our design of ExprRepT optimizes the use of space
(see Figure 3(a)). Each ExprRepT node has three fields filter, rootbd and
kernel. Here, filter is stored directly in the node, while rootbd and kernel
are allocated on demand, and only pointers to them are stored in the node. This
is because the filter computation will always be done, but root bound and high
precision approximations (from kernel) may not be needed. No memory will be
allocated when they are not needed. The memory layout of ExprRepT is shown
in Figure 3(b). E.g., a binary ExprRepT node uses a total of 48 bytes on a 32-bit
architecture. The field cache is added to cache important small but potentially
expensive information such as sign, uMSB, lMSB. The field numType is used
for node classification.

§8. Some Timings. We provide two performance indicators after the above
redesign. In Figure 4(a), we measure the time to decide the sign of determinants,
with and without (w/o) the filter facility, in Core 1 and Core 2. The format
‘N×d×b’ in the first column indicates the number N of matrices, the dimension
d of each matrix and the bit length b of each matrix entry (entries are rationals).
Interestingly, for small determinants, the filtered version of Core 1 is almost
twice as fast. All times are in microseconds.

MATRIX Core 1.7 Time Core 2.0 Time Speedup
with (w/o) filter with (w/o) filter

1000x3x10 9 (621) 19 (232) 0.5 (2.7)
1000x4x10 26 (1666) 43 (530) 0.6 (3.1)
500x5x10 449 (1728) 204 (488) 2.2 (3.5)
500x6x10 1889 (3493) 597 (894) 3.2 (3.9)
500x7x10 4443 (6597) 1426 (1580) 3.1 (4.2)
500x8x10 8100 (11367) 2658 (2820) 3.0 (4.0)

(a)

bit length L Core 1 Core 2 Speedup
1000 0.82 0.59 1.4
2000 6.94 1.67 4.2
8000 91.9 11.63 7.9
10000 91.91 30.75 3.0

(b)

Fig. 4. (a) Timing filter facility (b) Timing root Bound facility

130 J. Yu et al.

In Figure 4(b), we test the new root bound facility by performing the com-
parison

√
x +

√
y :

√
x + y + 2

√
xy where x, y are b-bit rational numbers. As

this expression is identically zero, filters do not help and root bounds will always
be reached.

3.3 Improved Evaluation Algorithm

Since the evaluation algorithm is the centerpiece of an ENC library, it is crucial
to tune its performance.

§9. Algorithms for sign(), uMSB() and lMSB(). Core 1 has two main
evaluation subroutines, computeApprox() and computeExactSign() (see [24]).
The former computes an approximation of the current node to some given (com-
posite) precision bound. The latter computes the sign, upper and lower bounds
on the magnitude of the current node. The sign of an expression node is critical
in many places. E.g., the division operator must check the sign of the right child
to detect divisions by zero. But to get the sign of an expression E, we may need
to estimate upper (E+) or lower (E−) bounds on the magnitude of the expres-
sion. These three values are maintained in Expr as sign(), uMSB() and lMSB().
In Core 1, computeExactSign() computes them simultaneously using the rules
in Table 5.

E Case E.sgn() E+ E−

Constant x sign(x) �log2 x� �log2 x�

E1 ± E2

if E1.sgn() = 0 ±E2.sgn() E+
2 E−

2
if E2.sgn() = 0 E1.sgn() E+

1 E−

1
if E1.sgn() = ±E2.sgn() E1.sgn() max{E+

1 , E+
2 } + 1 max{E−

1 , E−

2 }
if E1.sgn() �= ±E2.sgn() and E−

1 > E+
2 E1.sgn() max{E+

1 , E+
2 } E−

1 − 1
if E1.sgn() �= ±E2.sgn() and E+

1 < E−

2 ±E2.sgn() max{E+
1 , E+

2 } E−

2 − 1
otherwise unknown max{E+

1 , E+
2 } unknown

E1 × E2 E1.sgn() ∗ E2.sgn() E+
1 + E+

2 E−

1 + E−

2
E1 ÷ E2 E1.sgn() ∗ E2.sgn() E+

1 − E−

2 E−

1 − E+
2

k
√

E1 E1.sgn()
l
E+

1 /k
m j

E−

1 /k
k

Fig. 5. Recursive rules for computing sign, uMSB, lMSB

There are two “unknown” entries in Table 5. In these cases, computeApprox()
will loop until the sign is determined, or up to the root bound. To compute such
information, we recursively compute sign and other information over the chil-
dren of this node, whether needed or not. This can be unnecessarily expensive.
In Core 2, we split the 2 routines into five co-recursive routines in ExprRepT:
get sign(), get uMSB(), get lMSB(), refine() and get rootBd(). In Expr the
corresponding methods sign(), uMSB() and lMSB() simply calls get sign(),
etc. Depending on the operator at a node, these co-routines can better decide
which information from a child is really necessary. The structure of these algo-
rithms are quite similar, so we use get sign() as an example:

The Design of Core 2 131

Sign Evaluation Algorithm, get sign():
1. Ask the filter if it knows the sign;
2. Else if the cache exists, ask if sign is cached;

Note: the cache may contain non-sign information
3. Else if the approximation (kernel) exists, ask if it

can give the sign;
4. Else if the virtual function compute sign() returns

true, return sgn() (sign is now in the cache);
5. Else call refine() (presented next) to get the sign.

Thus it is seen that, for efficiency, we use five levels of computation in get sign():
filter, cache, kernel, recursive rules (called compute sign()), and refine(). Note
that we do not put the cache at the first level. We do not even cache the sign,
uMSB and lMSB information when the filter succeeds because a Cache structure
is large and we try to avoid costly memory allocation.

The object oriented paradigm used by the above design is called the “template
method pattern” [19, p. 325]: define the skeleton of an algorithm in terms of
abstract operations which is to be overridden by subclasses to provide concrete
behavior. In the derived classes of ExprRepT, it is sufficient to just override the
virtual function compute sign() when appropriate. For example, MulRepT may
override the default compute sign() function as follows:

1 virtual bool compute sign () {
2 s i gn () = f i r s t −>g e t s i g n () ∗ second−>g e t s i g n () ;
3 return true ; }

§10. Algorithm for refine(). As seen in the get sign() algorithm, if the
first four levels of computation fail, the ultimate fall-back for obtaining sign (and
also for lower bounding magnitude) is the refine() algorithm. We outline this
key algorithm to obtain sign via refinement:

1. If the node is transcendental, get the global escape bound. Otherwise, compute
the constructive root bound.
2. Take the minimum of the bound from step 1 and the global cutoff bound.
3. Compute an initial precision. If an approximation exists, use its precision as
the initial precision. Otherwise use 52 bits instead which is the relative precision
that a floating-point filter can provide.
4. Initialize the current precision to the initial precision. Then enter a for-loop
that doubles the current precision each time, until the current precision exceeds
twice the bound computed in step 2.
5. In each iteration, call a approx() (see below) to approximate the current
node to an absolute error less than the current precision. If this approximation
suffices to give a sign, return the sign immediately (skip the next step).
6. Upon loop termination, set the current node to be zero.
7. Check if the termination was caused by reaching the escape bound or cutoff
bound. If so, append zero assertion to a diagnostic file in the current directory.
This assertion says that “the current node is zero”.

132 J. Yu et al.

§11. Conditional Correctness. The cutoff bound in the above refine()
algorithm is a global variable that is set to CORE INFTY by default. While escape
bound affects only transcendental nodes, the cutoff bound sets an upper bound
on the precision in refine() for all nodes. Thus it may override computed
zero bounds and escape bounds. During program development, users may find
it useful to set a small cutoff bound using set cut off bound(). Thus, our
computation is correct, conditioned on the truth of all the zero assertions in the
diagnostic file.

§12. Computing Degree Bounds. In the refine() algorithm above, the
first step is to compute a constructive root bound. Most constructive root bounds
need an upper bound on the degree of an algebraic expression [40]. For radical
expressions, a simple upper bound is obtained as the product of all the degrees of
the radical nodes (a radical node k

√
E has degree k). A simple recursive rule can

obtain the degree bound of E from the degree bounds of its children (e.g., [23,
Table 2.1]). But this bound may not be tight when the children share nodes.
The only sure method is to traverse the entire DAG to compute this bound.
To support this traversal, in Core 1 we store an extra flag visited with each
ExprRep. Two recursive traversals of the DAG are needed to set and to clear
these flags, while computing the degree bound. To improve efficiency, we now use
the std::map data structure in STL to compute the degree bound: we first create
a map M and initialize the degree bound D to 1. We now traverse the DAG,
and for each radical node u, if its address does not appear in M , we multiply
its degree to the cumulative degree bound D and save its address in M . At the
end we just discard the map M . This approach requires only one traversal of the
DAG.

3.4 Improved Propagation of Precision

An essential feature of precision-driven evaluation is the need to propagate pre-
cision bounds [40]. Precision propagation can be illustrated as follows: if we want
to evaluate an expression z = x+y to p-bits of absolute precision, then we might
first evaluate x and y to (p+1)-bits of absolute precision. Thus, we “propagate”
the precision p at z to precision p + 1 at the children of z. This propagation is
correct provided x and y have the same sign (otherwise, p + 1 bits might not
suffice because of cancellation). In general, we must propagate precision from
the root to the leaves of an expression. In Core 1, we use a pair [a, r] of real
numbers that we call “composite precision” bounds. If x, x̃ ∈ R, then we say
x̃ is an [a, r]-approximation of x (written, “x̃ ≈ x[a, r]”) if |x̃ − x| ≤ 2−a or
|x̃ − x| ≤ |x|2−r. If we set a = ∞ (resp., r = ∞), then x̃ becomes a standard
relative r-bit (resp., an absolute a-bit) approximation of x. It is known
that a relative 1-bit approximation would determine the sign of x; so relative
approximation is generally infeasible without zero bounds. The propagation of
composite bounds is tricky, and various small constants crop in the code, mak-
ing the logic hard to understand and maintain (see [34]). Our redesign offers

The Design of Core 2 133

a simpler and more intuitive solution in which we propagate either absolute or
relative precision, not their combination.

§13. Algorithms for r approx() and a approx(). Core 1 has one sub-
routine computeApprox() to compute approximations; we split it into two sub-
routines a approx() and r approx(), for absolute and relative approximations
(respectively). Above, we saw that refine calls a approx(). There are two im-
provements over Core 1: first, propagating either absolute or relative precision
is simpler and can avoid unnecessary precision conversions. Second, the new al-
gorithms do not always compute the sign (which can be very expensive) before
approximation.

§14. Overcoming inefficiencies of Computational Rings. Another issue
relates to the role computational rings in ENC (see §16 in [45]). This is a
countable set F ⊆ R that can effectively substitute for the uncountable set
of real numbers. To achieve exact computation, F needs a minimal amount of
algebraic structures [45]. We axiomatize F to be a subring of R that is dense in
R, with Z as a subring. Furthermore, the ring operations together with division
by 2, and comparisons are effective over F. BigFloats with exact ring operations
is a model of F, but IEEE bigFloats is not. For computations that do not need
exactness, the use of such rings may incur performance penalty. To demonstrate
this, suppose we want to compute

√
2 · √3 to relative p-bits of precision. We

describe two methods for this. In Method 1, we approximate
√

2 and
√

3 to
relative (p + 2)-bits, then perform the exact multiplication of these values. In
Method 2, we proceed as in Method 1 except that the final multiplication is
performed to relative (p + 1)-bits. The timings (in microseconds) are shown in
Figure 6. We use loops to repeat the experiment since the time for single runs
is short. It is seen that Method 2 can be much more efficient; this lesson is
incorporated into our refinement algorithm.

Precision Loops Method 1 Method 2 Speedup
10 1000000 345 191 45%
100 100000 60 46 23%
1000 10000 72 71 1%
10000 1000 267 219 18%
100000 100 859 760 12%

Fig. 6. Timing for computing
√

2 · √3 w/ and w/o exact multiplication

4 Redesign of the BigFloat System

The BigFloat system is the “engine” for Expr, and Core 1 implements our own
BigFloat. In Section 2, we discussed several good reasons to leverage our system
on MPFR, an efficient library under active development for bigFloat numbers
with directed rounding. Our original BigFloat plays two roles: to implement
a computational ring [45] (see section section 3.4), and to provide arbitrary

134 J. Yu et al.

precision interval arithmetic [33]. Computational ring properties are needed in
exact geometry: e.g., to compute implicit curve intersections reliably, we can
evaluate polynomials with exact BigFloat coefficients, at exact BigFloat values,
using exact ring operations. Interval arithmetic is necessary to provide certified
approximations. For efficiency, Core 2 splits the original BigFloat class into two
new classes: (1) A computational ring class, still called BigFloat. (2) An interval
arithmetic class called BigFloat2, with each interval represented by two MPFR
bigFloats. This explains5 the “2” in its name.

4.1 The BigFloat Class as Base Real Ring

The new class BigFloat is based on the type mpfr t provided by MPFR. MPFR
follows the IEEE standard for (arbitrary precision) arithmetic. The results of
arithmetic operations are rounded according to user-specified output precision
and rounding mode. If the result can be exactly represented, then MPFR always
outputs this result. E.g., a call of mpfr mul(c, a, b, GMP RNDN) will compute
the product of a and b, rounding to nearest BigFloat, and put the result into c.
The user must explicitly set the precision (number of bits in the mantissa) of c
before calling mpfr mul(). To implement the computational ring BigFloat, we
just need to automatically estimate this precision. E.g., we can use the following:

Lemma 1. Let fi = (−1)si · mi · 2ei (for i = 1, 2) be two bigFloats in MPFR,
where 1/2 ≤ mi < 1 and the precision of mi is pi. To guarantee that all bits in
the mantissa of the sum f = f1 ± f2 is correct, it suffices to set the precision of
f to {

1 + max{p1 + δ, p2} if δ ≥ 0
1 + max{p1, p2 − δ} if δ < 0

where δ = (e1 − p1) − (e2 − p2). Similarly, for multiplication, it suffices to set
the precision of f to be p1 + p2 in computing f = f1 · f2.

See [13] for a proof. While this lemma is convenient to use, it may over-estimate
the needed precision. In binary notation, think of the true precision of c as the
minimum number of bits to store the mantissa of c. Trailing zeros in the man-
tissa contributes to over-estimation. To avoid this, we provide a function named
mpfr remove trailing zeros() whose role is to remove the trailing zeros. In
an efficiency tradeoff, it only removes zeros by chunks (chunks are determined by
MPFR’s representation). To understand the effect of overestimation, we conduct
an experiment in which we compute the factorial F =

∏n
i=1 i using two methods:

In Method 1, we initialize F = 1 and build up the product in a for-loop with
i = 2, 3, . . . , n. In the i-th loop, we increase the precision of F using Lemma 1,
then call MPFR to multiply F and i, storing the result back into F . In Method 2,
we do the same for-loop except that we call mpfr remove trailing zeros() on
F after each multiplication in the loop. Instead of F , we can repeat the experi-
ment with the arithmetic sum S =

∑n
i=1 i. The speedup for the second method

over the first method is shown in Figure 7 (time in microseconds, precision in
bits).
5 Happily, it also coincides with the “2” in the new version number of Core Library.

The Design of Core 2 135

n
F =

Q
n

i=1 i S =
P

n

i=1 i
trailing zeros no zeros trailing zeros no zeros
(prec/msec) (prec/msec) (prec/msec) (prec/msec)

102 575/0 436/0 102/0 31/0
103 8979/0 7539/0 1002/0 31/0
104 123619/62 108471/47 10002/15 31/16
105 1568931/9219 1416270/8891 100002/437 31/110
106 timeout timeout 1000002/57313 63/1078

Fig. 7. Timing for computing F and S w/ and w/o removing trailing zeros

§15. Benchmarks of the redesigned BigFloat. By adopting MPFR, our
BigFloat class gains many new functions such as cbrt() (cube root) and the
elementary functions (sin(), log(), etc). The performance of the BigFloat is
also greatly improved. We compared the performance of Core 1 and Core 2
on sqrt() using the following experiment: compute

√
i for i = 2, . . . , 100 with

precision p. The timing in Figure 8 show that Core 2 is about 25 times faster,
thanks purely to MPFR.

Precision Core 1 Core 2 Speedup
1000 25 1 25
10000 716 32 22
100000 33270 1299 25

Fig. 8. Timing comparisons for sqrt()

4.2 The Class BigFloat2

BigFloat2 is the second class split off from the original BigFloat. An instance
of BigFloat2 is just an interval represented by a pair of bigFloat numbers. Call
this the endpoint representation of intervals. Besides serving as numerical
engine for Expr, the BigFloat2 class is also useful for various ENC applications
(e.g., in meshing algorithms of the kind producing Figure 1). In Core 1, we
use the centered representation where an interval [a, b] is represented by its
center c = (a + b)/2 and an error bound err = (b − a)/2, with c a bigFloat
number and err a machine long. In view of the limited precision in err, it
is necessary to “normalize” the representation when it gets too large. This is
one of the disadvantages of the centered representations. In the worst case, the
endpoint representation can be less efficient than the centered representation
by a factor of 2, both in speed and in storage. But this loss in efficiency is
compensated by ease of implementation, and in sharper error bounds. It can
also be beneficial in low precision computation. We note that van der Hoeven’s
Mmxlib [31] combines the advantages of both representations by switching from
the endpoint representation to the centered representation when the precision
exceeds some threshold value. Since our kernel class is a template parameter, we
may experiment with such an interval class in the future.

136 J. Yu et al.

5 Extending the Expr Class

We provide facilities for adding new operators to Expr. Core 2 uses such facilities
to implement the standard elementary functions. Future plans include extending
elementary functions to all hypergeometric functions, following the analysis in
[13,14]. We give two examples of how users can use these facilities for their own
needs. We refer to Zilin Du’s thesis [13] for more details about these facilities.

5.1 Summation Operation for Expr

When an Expr is very large, we not only lose efficiency (just to traverse the
DAG) but we often run out of memory. Consider the following code to compute
the harmonic series H =

∑n
i=1

1
i :

1Expr harmonic (int n) {
2Expr H(0) ;
3for (int i =1; i<=n ; ++i)
4H = H + Expr (1)/ Expr (i) ;
5return H; }

This function builds a deep unbalanced DAG for large n. This can easily cause
segmentation faults through stack overflow (column 2 in Figure 9). In ¶6, we
said that Core 2 supports a new class of anary (i.e., “without arity”) nodes.
In particular, we implemented the summation and product operators. Using
summation, we can rewrite the harmonic function:

1Expr term(int i) {
2return Expr (1)/ Expr (i) ; }
3Expr harmonic (int n) {
4return summation(term , 1 , n) ; }

The improvements from this new implementation is shown in Figure 9. We can
now compute the harmonic series for a much larger n, and achieve a speedup as
well.

Similarly, the use of product operator leads to speed-ups.

5.2 Transcendental Constants π, e and All That

We present our first transcendental node π, which is a leaf node derived from
ConstRepT:

n Time w/o summation Time w/ summation Speedup
1000 24 7 3.4
10000 3931 67 58.6
100000 (segmentation fault) 752 N/A
1000000 (segmentation fault) 12260 N/A

Fig. 9. Timings for computing harmonic series
∑n

i=1
1
i

(in microseconds)

The Design of Core 2 137

1template <typename T>
2class PiRepT : public ConstRepT<T> {
3public :
4PiRepT() : ConstRepT<T>() {
5comput e f i l t e r () ;
6compute numtype () ;
7}
8// funct ions to compute f i l t e r and number type
9void c omput e f i l t e r () const {
10f i l t e r () . s e t (
113.1415926535897932384626433832795028F) ;
12/∗ va lue i s not exac t∗/
13}
14void compute numtype () const
15{ numType = NODE NT TRANSCENDENTAL; }
16
17// v i r t u a l funct ions for sign , uMSB, lMSB
18virtual bool compute sign () const
19{ s i gn () = 1 ; return true ; }
20virtual bool compute uMSB () const
21{ uMSB() = 2 ; return true ; }
22virtual bool compute lMSB () const
23{ lMSB() = 1 ; return true ; }
24
25// v i r t u a l funct ions for r approx , a approx
26virtual void compute r approx (p r e c t prec) const
27{ ke rne l () . p i (prec) ; }
28virtual bool compute a approx (p r e c t prec) const
29{ ke rne l () . p i (ab s2 r e l (prec)) ; }
30} ;

Now the new π expression is given by:

1template <typename T>
2ExprT<T> p i ()
3{ return new PiRepT<T>() ; }

Note how easy it is to do this extension — it could equally be used to introduce
e or ln 2 or any constant, provided the kernel class knows how to approximate
it. Such constants can now freely appear in an expression, and our precision-
propagation mechanism can automatically approximate the expression to any
desired absolute error bound. Figure 10 gives timings for π and other elementary
functions after incorporation into Expr.

Precision (bits) Expr. Core 2 Core 1 Speedup

10,000

π 20 — —√
π 90 — —

e2 80 — —
sin(0.7) 50 1240 25
cos(0.7) 50 1230 25
tan(0.7) 110 2490 23

100,000

π 710 — —√
π 2200 — —

e2 830 — —
sin(0.7) 4780 — —
cos(0.7) 4650 — —
tan(0.7) 9450 — —

Fig. 10. Transcendental Constants and Functions

138 J. Yu et al.

6 Conclusion

The goal of Core Library is to approximate the ideal real RAM. To support
rapid prototyping of algorithmic ideas in geometry and algebra, ease of use and
functionality is prized above sheer efficiency. With Core 2, we combine exact
algebraic computation with transcendental functions. Our redesigned package
is more modular, extensible, and flexible. We gained efficiency from the design
and better evaluation algorithms. We adopt the highly efficient MPFR library
to improve maintainability and to gain transcendental functions. Despite this
overhaul, the original simple Core Numerical API is preserved.

In the transcendental aspects, we are just leveraging the speed of MPFR into
our environment. What we give back is a new convenient way to access MPFR.
In 2005, MPFR won the Many Digits Competition [26] in a field of 9 teams
that included Maple and Mathematica. Their solutions are “hand-coded” in the
sense that each algorithm is preceded by an error analysis to determine the
needed precision, plus a hand-coded implementation of these error bounds. By
incorporating MPFR into Core 2, we can now do these competition problems
automatically: Core 2 provides the automatic error analysis. Another “added
value” that Core Library provides MPFR is access to a computational ring to
support exact geometric computation. A future research is to understand and
reduce any performance penalties of this automation.

A major open problem is to better understand the expression evaluation al-
gorithms. There is no satisfactory theoretical basis for the optimal evaluation of
such expressions (see some attempts in [43]). The second major problem is to pro-
vide constructive bounds for non-algebraic constants. Instead of escape bounds,
we could use Richardson’s algorithm to decide zero [38, 39]. This is because all
the constants in Core 2 are elementary constants in the sense of Richardson.
As Richardson suggested, this is a win-win situation because if our computation
is ever wrong, we would have found a counter-example to Schanuel’s conjec-
ture. Unfortunately, current versions of Richardson’s algorithm do not appear
practical enough for general application.

Core Library represents a new breed of real number libraries to support
exact numerical computation (ENC). It is made feasible through sophisticated
built-in functionalities such as filters and constructive zero bounds. There re-
main ample opportunities for exploring the design space of constructing such
libraries. Our Core Library offers one data point. Such libraries have many po-
tential applications. Besides robust geometric algorithms, we can use them in
geometric theorem proving, certifying numerical programs, and in mathematical
explorations.

References

1. Aho, V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

2. Berberich, E., Kerber, M., Sagraloff, M.: Exact geometric-topological analysis of
algebraic surfaces. In: 24th ACM Symp. on Comp. Geometry, pp. 164–173 (2008)

The Design of Core 2 139

3. Brattka, V., Hertling, P.: Feasible real random access machines. J. of Complex-
ity 14(4), 490–526 (1998)

4. Brent, R.P.: Fast multiple-precision evaluation of elementary functions. J. ACM 23,
242–251 (1976)

5. Brönnimann, H., Burnikel, C., Pion, S.: Interval arithmetic yields efficient dynamic
filters for computational geometry. Discrete Applied Mathematics 109(1-2), 25–47
(2001)

6. Burnikel, C., Funke, S., Mehlhorn, K., Schirra, S., Schmitt, S.: A separation bound
for real algebraic expressions. Algorithmica 55(1), 14–28 (2009)

7. Burnikel, C., Funke, S., Seel, M.: Exact geometric computation using cascading.
Int’l. J. Comput. Geometry and Appl. 11(3), 245–266 (2001)

8. Chang, E.-C., Choi, S.W., Kwon, D., Park, H., Yap, C.: Shortest paths for disc
obstacles is computable. Int’l. J. Comput. Geometry and Appl. 16(5-6), 567–590
(2006); Gao, X.S., Michelucci, D.: Special Issue of IJCGA on Geometric Constraints

9. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Hei-
delberg (1993)

10. Core Library homepage, since, Software download, source, documentation and links
(1999), http://cs.nyu.edu/exact/core/

11. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications. Springer, Berlin (1997)

12. Defour, D., Hanrot, G., Lefévre, V., Muller, J.-M., Revol, N., Zimmermann, P.: Pro-
posal for a standardization of mathematical function implementation in floating-
point arithmetic. Numerical Algorithms 37(1-4), 367–375 (2004)

13. Du, Z.: Guaranteed Precision for Transcendental and Algebraic Computation
made Easy. Ph.D. thesis, New York University, Department of Computer Science,
Courant Institute (May 2006) http://cs.nyu.edu/exact/doc/

14. Du, Z., Eleftheriou, M., Moreira, J., Yap, C.: Hypergeometric functions in exact
geometric computation. In: Brattka, V., Schoeder, M., Weihrauch, K. (eds.) Proc.
5th Workshop on Computability and Complexity in Analysis, Malaga, Spain, July
12-13. ENTCS, vol. 66(1), pp. 55–66 (2002),
http://www.elsevier.nl/locate/entcs/volume66.html

15. Du, Z., Yap, C.: Absolute approximation of the general hypergeometric functions.
In: il Pae, S., Park, H. (eds.) Proc. 7th Asian Symposium on Computer Mathe-
matics (ASCM 2005), December 8-10, pp. 246–249. Korea Institute for Advanced
Study, Seoul (2005)

16. Fabri, A., Giezeman, G.-J., Kettner, L., Schirra, S., Schoenherr, S.: The CGAL
kernel: a basis for geometric computation. In: Lin, M.C., Manocha, D. (eds.) FCRC-
WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 191–202. Springer, Heidelberg
(1996)

17. Fortune, S.J., van Wyk, C.J.: Static analysis yields efficient exact integer arithmetic
for computational geometry. ACM Transactions on Graphics 15(3), 223–248 (1996)

18. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A
multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw. 33(2), 13 (2007)

19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Se-
ries. Addison-Wesley Publishing Company, New York (1995)

20. Goodman, J.E., O’Rourke, J. (eds.): Handbook of Discrete and Computational
Geometry. CRC Press LLC, Boca Raton (1997)

http://cs.nyu.edu/exact/core/
http://cs.nyu.edu/exact/doc/
http://www.elsevier.nl/locate/entcs/volume66.html

140 J. Yu et al.

21. Gowland, P., Lester, D.: A survey of exact arithmetic implementations. In: Blank,
J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 30–47. Springer,
Heidelberg (2001)

22. Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A Core library for robust numer-
ical and geometric computation. In: 15th ACM Symp. Computational Geometry,
pp. 351–359 (1999)

23. Li, C.: Exact Geometric Computation: Theory and Applications. Ph.D. thesis, New
York University, Department of Computer Science, Courant Institute (January
2001), http://cs.nyu.edu/exact/doc/

24. Li, C., Pion, S., Yap, C.: Recent progress in Exact Geometric Computation. J. of
Logic and Algebraic Programming 64(1), 85–111 (2004); Special issue on Practical
Development of Exact Real Number Computation

25. Lin, L., Yap, C.: Adaptive isotopic approximation of nonsingular curves: the
parametrizability and non-local isotopy approach. In: Proc. 25th ACM Symp. on
Comp. Geometry, Aarhus, Denmark, June 8-10, pp. 351–360 (2009); Accepted for
Special Issue of SoCG 2009 in DCG (2009)

26. Many digits friendly competition, The details of the competition, including final
results (October 3-4, 2005), http://www.cs.ru.nl/~milad/manydigits/

27. Mehlhorn, K., Näher, S.: LEDA: a platform for combinatorial and geometric com-
puting. Comm. of the ACM 38, 96–102 (1995)

28. Mehlhorn, K., Schirra, S.: Exact computation with leda real – theory and geometric
applications. In: Alefeld, G., Rohn, J., Rump, S., Yamamoto, T. (eds.) Symbolic
Algebraic Methods and Verification Methods, Vienna, pp. 163–172. Springer, Hei-
delberg (2001)

29. Mignotte, M.: Identification of algebraic numbers. J. Algorithms 3, 197–204 (1982)
30. Muller, J.-M.: Elementary Functions: Algorithms and Implementation. Birkhäuser,

Boston (1997)
31. Müller, N.T.: The iRRAM: Exact arithmetic in C++. In: Blank, J., Brattka, V.,

Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg
(2001)

32. Müller, N.T., Escardo, M., Zimmermann, P.: Guest editor’s introduction: Prac-
tical development of exact real number computation. J. of Logic and Algebraic
Programming 64(1), Special Issue (2004)

33. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge (1990)

34. Ouchi, K.: Real/Expr: Implementation of an Exact Computation Package. Master’s
thesis, New York University, Department of Computer Science, Courant Institute
(January 1997), http://cs.nyu.edu/exact/doc/

35. Pion, S., Yap, C.: Constructive root bound method for k-ary rational input num-
bers. Theor. Computer Science 369(1-3), 361–376 (2006a)

36. Plantinga, S., Vegter, G.: Isotopic approximation of implicit curves and surfaces.
In: Proc. Eurographics Symposium on Geometry Processing, pp. 245–254. ACM
Press, New York (2004)

37. Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer, Heidelberg
(1985)

38. Richardson, D.: How to recognize zero. J. Symbolic Computation 24, 627–645
(1997)

39. Richardson, D.: Zero tests for constants in simple scientific computation. Mathe-
matics in Computer Science 1(1), 21–38 (2007); Inaugural issue on Complexity of
Continuous Computation

http://cs.nyu.edu/exact/doc/
http://www.cs.ru.nl/~milad/manydigits/
http://cs.nyu.edu/exact/doc/

The Design of Core 2 141

40. Schirra, S.: Robustness and precision issues in geometric computation. In: Sack,
J., Urrutia, J. (eds.) Handbook of Computational Geometry. Elsevier Science Pub-
lishers, B.V., North-Holland, Amsterdam (1999)

41. Schmitt, S.: The diamond operator – implementation of exact real algebraic num-
bers. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS,
vol. 3718, pp. 355–366. Springer, Heidelberg (2005)

42. Stroustrup, B.: The Design and Evolution of C++. Addison-Wesley, Reading (April
1994)

43. van der Hoeven, J.: Effective real numbers in Mmxlib. In: Proc. ISSAC 2006,
Genova, Italy, pp. 138–145 (2006)

44. Yap, C., Li, C., Pion, S., Du, Z., Sharma, V.: Core Library Tutorial: a library for ro-
bust geometric computation (1999–2004); Version 1.1 was released in January 1999.
Version 1.6 in June 2003, Source and documents from, http://cs.nyu.edu/exact/

45. Yap, C.K.: In praise of numerical computation. In: Albers, S., Alt, H., Näher, S.
(eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 380–407. Springer, Heidelberg
(2009)

46. Yap, C.K.: Tutorial: Exact numerical computation in algebra and geometry. In:
Proc. 34th Int’l Symp. Symbolic and Algebraic Comp. (ISSAC 2009), KIAS, Seoul,
Korea, July 28-31, pp. 387–388 (2009)

47. Yu, J.: Exact arithmetic solid modeling. Ph.D. dissertation, Department of Com-
puter Science, Purdue University, West Lafayette, IN 47907, Technical Report No.
CSD-TR-92-037 (June 1992)

http://cs.nyu.edu/exact/

Introducing HOL Zero
(Extended Abstract)

Mark Adams

Proof Technologies

Theorem provers are now playing an important role in two diverse fields: computer
system verification and mathematics. In computer system verification, they are a key
component in toolsets that rigorously establish the absence of errors in critical computer
hardware and software, such as processor design and safety-critical software, where tra-
ditional testing techniques provide inadequate assurance. In mathematics, they are used
to check the veracity of recent high-profile proofs, such as the Four Colour Theorem
and the Kepler Conjecture, whose scale and complexity have pushed traditional peer
review to its limits.

The reason for using theorem provers is, of course, for the high assurance they
provide, through their implementation of formalised deduction. Furthermore, theorem
provers at the top end of the “assurance league” have a robust software architecture
called LCF-style, that reduces the part trusted to perform sound deduction down to a
relatively small inference kernel. This is achieved by only allowing theorems to be con-
structed inside the kernel, forcing all deduction to ultimately go via the kernel. LCF-
style systems, such as the HOL family, Isabelle and Coq, represent a large proportion
of current worldwide theorem prover usage.

However, there still remain various concerns with the trustworthiness even of LCF-
style systems. Firstly, the implementation of the LCF-style architecture is sometimes
not watertight, and tricks like writing bogus theory export files and updating mutable
strings can lead to the construction of arbitrary theorems. Secondly, pretty printers pro-
duce ambiguous output in certain circumstances, such as for theorems involving over-
loaded variables or irregular names, potentially misleading the user into thinking their
conjecture has been proved when actually something else has. Thirdly, the clarity of the
trusted core of source code can suffer from a variety of problems, including overly long
file/line lengths, irregular formatting, ultra-sparse commenting and excessive complex-
ity, thus increasing the possibility that soundness errors are still lurking undiscovered.

HOL Zero is a new, open-source HOL system that aims to tackle these problems.
It is a bare-bones system, and does not have the advanced support for interactive or
automated proof that other HOL systems have, which enable them to be employed on
large projects. However, it has a simple, watertight inference kernel, a pretty printer that
always produces unambiguous output, and extremely carefully written and explained
source code, and so pushes theorem prover trustworthiness to a new level.

By adhering to a new API for HOL, called the Common HOL Platform, it can import
proofs that have been recorded and exported on existing HOL systems (that have been
suitably adapted for Common HOL), thus acting as a generic HOL proof checker. It
has successfully imported various large bodies of proof from HOL Light, including the
entire HOL Light base system, the Jordan Curve Theorem and the Consistency of HOL

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 142–143, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Introducing HOL Zero 143

Light. The intention is to remove any lingering doubts about the correctness of proofs
performed on HOL systems.

The clarity and simplicity of HOL Zero’s implementation also make it a good basis
for those wishing to understand how theorem provers work, potentially extending un-
derstanding well beyond a small handful of computer scientists to broader communities
of mathematicians, logicians and programmers eager to learn. Perhaps HOL Zero could
become the basis for university courses on theorem prover implementation. This would
increase scrutiny of its source code, and thus further improve its trustworthiness.

In this presentation, we will give examples of trustworthiness problems in existing
HOL systems (HOL is the presenter’s area of expertise), and give an overview of HOL
Zero’s features and its implementation, including how it avoids these problems. We will
also provide a live demonstration of proof exporting/importing in action.

Euler’s Polyhedron Formula in mizar

Jesse Alama�

Center for Artificial Intelligence
Department of Computer Science, Faculty of Science and Technology

New University of Lisbon, Portugal
j.alama@fct.unl.pt

Abstract. Euler’s polyhedron formula asserts for a polyhedron p that
V − E + F = 2, where V , E, and F are, respectively, the numbers of
vertices, edges, and faces of p. Motivated by I. Lakatos’s philosophy of
mathematics as presented in his Proofs and Refutations, in which the
history of Euler’s formula is used as a case study to illustrate Lakatos’s
views, we formalized a proof of Euler’s formula formula in the mizar
system. We describe some of the notable features of the proof and sketch
an improved formalization in progress that takes a deeper mathematical
perspective, using the basic results of algebraic topology, than the initial
formalization did.

1 Introduction

I. Lakatos’s philosophy of mathematics, as expounded in Proofs and Refuta-
tions [5], challenges formalism on the grounds that formalism is unable to sat-
isfactorily account for the growth and development of mathematical knowledge.
In Proofs and Refutations Lakatos delves into the history of Euler’s polyhedron
formula, arguing that formalist philosophy of mathematics does not satisfactorily
account for the changes that the theorem underwent.

Inspired by Lakatos’s philosophy and the challenge that it evidently raises
to contemporary work in proof checking, we set out to formalize a proof of
Euler’s polyhedron formula. The purpose of this note is to discuss the resulting
formalization [1] that was carried out in the mizar system.

2 Euler’s Polyhedron Formula

Euler’s polyhedron formula is a basic result of topology asserting, for a polyhe-
dron p, the invariant relation

V − E + F = 2,

� Partially supported by the ESF research project Dialogical Foundations of Semantics
within the ESF Eurocores program LogICCC (funded by the Portuguese Science
Foundation, FCT LogICCC/0001/2007).

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 144–147, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Euler’s Polyhedron Formula in mizar 145

where V , E, and F are, respectively, the numbers of vertices, edges, and faces
of p. The relation—an extension to three dimensions of the familiar relation
V − E = 0 for two-dimensional polygons—was first conjectured by Euler in a
1750 letter to C. Goldbach [4]. Eventually, Euler was able to prove his result [2],
though his first attempt [3] was incomplete, and his second attempt is not with-
out its flaws [10].

A generalization of Euler’s relation to polyhedra of arbitrary finite dimension
by L’Huillier states that

d−1∑
k=0

(−1)kNk = 1 + (−1)d+1, (1)

where d is the dimension of the polyhedron and Nk is the number of k-dimensional
polytopes of the polyhedron (so that V , E, and F in the old notation become
N0, N1, and N2).

Poincaré gave a proof of Euler’s formula in this general form in 1893 [7]
(though, like Euler’s first proof, Poincaré’s first proof was flawed but was later
corrected [8]). Lakatos treats Poincaré’s proof in Proofs and Refutations; indeed,
the book essentially ends with a discussion of Poincaré’s proof. Poincaré’s proof,
as presented by Lakatos, is thus a natural target for formalization.

3 A Formalization in mizar

The formalization ofPoincaré’s proof of Euler’s formulawas carried out in themizar
system [6].Althoughmizar is clearly only one among avarietyof systemswithwhich
to formalize Poincaré’s proof, mizar is a natural candidate because of its declar-
ative proof language based on natural deduction, classical first-order logic, and
set theory and its foundation in set theory. Such “classical” foundations are criti-
cized by Lakatos. Less straightforwardly “classical” proof systems based on typed
λ-calculus or various higher-order logics appeared, when searching for a suitable
interactive proof assistant with which to carry out Poincaré’s proof, to be rather
less natural candidates, especially given the aim of staying true toLakatos’s version
of Poincaré’s proof of Euler’s polyhedron formula. In retrospect, there would likely
be some advantages to formalizing Poincaré’s proof in some other alternatives to
mizar, owing to mizar’s lack of “automation”, compared to similar systems.

As with most non-trivial formalizations, the proof in mizar of Euler’s polyhe-
dron formula required some auxiliary mathematical knowledge to be formalized.
At the time the formalization was carried out, the two main pieces of mathe-
matical knowledge that were unavailable in the mizar Mathematical Library but
were needed for the formalization of Poincaré’s proof were:

– the so-called rank-nullity theorem of linear algebra, which says that for a
linear transformation T from a finite-dimensional vector space V to a finite-
dimensional vector space W , we have that dim V = rankT +nullity T , where
rankT and nullity T are, respectively, dim(im(T)) and dim(ker(T)).

– the fact that the powerset of a set can be considered as a vector space over
the two-element field Z2 where vector addition is understood as symmetric
difference.

146 J. Alama

With these ingredients in place the formalization of Poincaré’s proof of the gen-
eral Euler polyhedron formula was straightforward. Polyhedra are defined as
finite sequences of incidence matrices, which in turn are defined simply as func-
tions from a cartesian product Pm × Pm+1 of sets of m- and m + 1-dimensional
polytopes into the two-element field Z2 (which is simply the set {0, 1} made
into a field in the obvious way). Poincaré gives a elegant sufficient condition for
Euler’s relation which, in Lakatos’s work, is called simple connectedness :

let p be polyhedron;
attr p is simply-connected
means
for k being Integer
holds k -circuits p = k -bounding-chains p;

This property roughly says that a polyhedron has no “holes”, unlike, say, a
polyhedron on the surface of a torus.

The theorem to be proved, in the mizar syntax, is:

for p being polyhedron st p is simply-connected holds p is eulerian

where the property eulerian is defined as

definition
let p be polyhedron;
attr p is eulerian
means
Sum (alternating-proper-f-vector p)
= 1 + ((- 1) |^ ((dim p) + 1));

which reminds us of (1). Altogether the proof in mizar required about 2000 lines
of text.

4 A Deeper Formalization

The current formalization is not entirely satisfactory, because it proves Euler’s
polyhedron formula only in its purely combinatorial, graph-theoretical sense. No
real numbers are mentioned, and standard algebraic topological concepts hardly
appear at all.

The narrowness from which the current formalization suffers is due largely to
the choice of proof of Euler’s formula. As discussed earlier, the motivation for Eu-
ler’s formula (among possible mathematical results to formalize) and Poincaré’s
proof (among possible proofs of Euler’s formula) was I. Lakatos’s Proofs and Refu-
tations. The book ends with a presentation and discussion of Poincaré’s proof.
Fidelity to Lakatos was, at the time the proof was conceived, essential, so alter-
natives to Poincaré’s proof (as given by Lakatos) were not seriously considered.

A more satisfactory formalization would adopt the perspective of algebraic
topology, where polyhedra are understood as certain configuration of points
in a real cartesian space. Such a formalization, based on Pontryagin’s [9] and
Spanier’s [11] is ongoing. The requirements for this wider project are consider-
ably greater than the current, narrower formalization.

Euler’s Polyhedron Formula in mizar 147

References

1. Alama, J.: Euler’s polyhedron formula. Formalized Mathematics 16(1), 7–17
(2008), http://mizar.org/fm/2008-16/fm16-1.html

2. Euler, L.: Demonstratio nonnullarum insignium proprietatum quibus solida hedris
planis inclusa sunt praedita. Novi Commentarii Academiae Scientarum Petropoli-
tanae 4, 94–108 (1758)

3. Euler, L.: Elementa doctrinae solidorum. Novi Commentarii Academiae Scientarum
Petropolitanae 4, 109–140 (1758)

4. Juskevich, A.P., Winter, E. (eds.): Leonhard Euler und Christian Goldbach:
Briefwechsel 1729-1764. Akademie-Verlag, Berlin (1965)

5. Lakatos, I.: Proofs and Refutations: The Logic of Mathematical Discovery. Cam-
bridge University Press, Cambridge (1976)

6. mizar, http://www.mizar.org
7. Poincaré, H.: Sur la généralisation d’un théorème d’Euler relatif aux polyèdres.

Comptes Rendus de Séances de l’Academie des Sciences 117, 144 (1893)
8. Poincaré, H.: Complément à l’analysis situs. Rendiconti del Circolo Matematico di

Palermo 13, 285–343 (1899)
9. Pontryagin, L.S.: Foundations of Combinatorial Topology. Dover Publications, New

York (1999)
10. Samelson, H.: In defense of Euler. L’Enseignement Mathématique 42, 377–382

(1996)
11. Spanier, E.H.: Algebraic Topology. Springer, Heidelberg (1968)

http://mizar.org/fm/2008-16/fm16-1.html

Building a Library of
Mechanized Mathematical Proofs:

Why Do It?
and What Is It Like to Do?

R.D. Arthan

Lemma 1 Ltd. & Queen Mary, University of London
rda@lemma-one.com

Abstract

A few years ago I used the ProofPower mechanized proof tool to develop the calculus from the
ε-δ definitions of limits through to the derivation of the properties of the trigonometric functions
from their differential equations. At the time, I wrote:

“Undertaking this kind of work is a mathematical activity of an unusual, often en-
tertaining, albeit sometimes frustrating nature. It is rather like preparing the material for
a course or a textbook with the assistance of an amanuensis who is an idiot savant of an
unusual kind. Firstly, he insists on and gets absolute editorial control over what purports
to be a proof: every proof step is checked with complete accuracy and no lacunae slip
his attention. On the more constructive side, he [can be] capable of amazing feats of
calculation.”

In this talk, I will discuss what it is like to develop mathematical theories with such an unusual
assistant and on why the results will eventually be seen as highly worthwhile for mathematicians,
computer scientists and engineers.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, p. 148, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Linear Programs for the Kepler Conjecture

(Extended Abstract)

Thomas C. Hales�

University of Pittsburgh

Abstract. The Kepler conjecture asserts that the densest arrangement
of congruent balls in Euclidean three-space is the face-centered cubic
packing, which is the familiar pyramid arrangement used to stack or-
anges at the market. The problem was finally solved in 1998 by a long
computer proof. The Flyspeck project seeks to give a full formal proof
of the Kepler conjecture. This is an extended abstract for a talk in the
formal proof session of ICMS-2010, which will describe the linear pro-
gramming aspects of the Flyspeck project.

The original proof of the Kepler conjecture in 1998 was about three hundred
pages long and relied long computer calculations that were done by custom
computer code [6]. The amount of custom computer code was originally esti-
mated to be about 40,000 lines, but later estimates give a number closer to
180,000 lines [3]. The larger figure includes a large difficult-to-estimate number
of duplicated lines.

The computer code consists of three separate programs. The first is a program
that generates all hypermaps up to isomorphism with prescribed properties. (A
hypermap, defined below, is a combinatorial structure that conveniently encodes
the structure of a planar graph.) The output of this program is a set X of
about 18 thousand hypermaps. The second is a program that proves nonlinear
inequalities. The third program generates and solves linear programs.

It is this third program that is the subject of this extended abstract. This third
program was considered from a formal proof perspective in Obua’s thesis [7].
The thesis gives a formal verification of over 90% of the cases. Why did he not
complete the remaining 10% of the cases? He did not encounter any difficulties
with the technology. Indeed, his work demonstrates that the formal proof of
linear programs is entirely feasible.

Rather, the difficulties are with the slopppy documentation in the original
proof of the Kepler conjecture. The linear programming part of the proof is
most poorly documented part of the proof. The original linear programs were
generated in interactive Mathematica sessions [4]. There are voluminous notes
about these interactive sessions, but these notes are not in the form of executable
code. In the end, the remaining cases were not formalized because it was not
clear what precisely was to be formalized.
� Research supported by NSF grant 0804189 and a grant from the Benter Foundation.

The author places this abstract in the public domain.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 149–151, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

150 T.C. Hales

1 Linear Programs

The linear programming part of the proof has been reworked from the start with
the formal proof in mind [5]. The methods described in this extended abstract
treat 99.93% of the cases (that is, all but 12 hypermaps).

The linear programs are specified in the MathProg language, which is a domain
specific language designed for linear programming in the GNU Linear Program-
ming Kit (GLPK) [1]. MathProg is a subset of the AMPL language [2]. According
to the design of MathProg, the linear program is split into two parts: a model
and data. The model contains the declarations of variables, parameters, and in-
dexing sets. There is a single model file shared by all linear programs. There is
a separate data file for each linear program. The model is further divided into a
header and a body.

The computer code for this project has been written in Objective Caml. The
data files as well as the body of the model are automatically generated. The
computer code has not yet been formalized, but it is now in a formalization-
ready state. There are a few different parts to the code.

– (200 lines) interface with GLPK,
– (200 lines) MathProg format model header,
– (80 lines) model body code generator,
– (300 lines) data generator and control flow.

The are two additional data files:

– (4MB) a set X of about 18 thousand hypermaps,
– (1000 lines) archive of nonlinear inequalities (in HOL Light format).

This is a significant improvement over the original program from the 1998 proof
of the Kepler conjecture, which involved several thousand lines of computer code,
3GB of data, and long interactive sessions.

2 The Main Theorem

As we mentioned above, in the original proof of the Kepler conjecture, it is
difficult even to state the theorem that has been proved by the linear program-
ming part of the proof. Here we give a simple statement that captures the linear
programming part of the proof of the Kepler conjecture.

Definition 1. A hypermap is a finite set D with two permutations n, f : D →
D. A third permutation e is defined by the relation enf = I. We represent the
hypermap as a tuple x = (D, e, n, f).

Let X be the set of over 18 thousand hypermaps that is mentioned above. Each
of these hypermaps can be augmented by various markings to produce what we
call marked hypermaps. Let Y be the finite set of all marked hypermaps and let
Yx ⊂ Y be those that come from x ∈ X . Certain subsets of Yx are called covers
of x. Associated with each marked hypermap y ∈ Y is a polyhedron P (y). The
main theorem about linear programs takes the following form.

Linear Programs for the Kepler Conjecture 151

Theorem 1. For every hypermap x ∈ X, there exists a cover U ⊂ Yx such that
for every y ∈ U , the polyhedron P (y) is empty.

The proof is by a direct construction carried out by computer. Each polyhedron
is explicitly presented as a finite system of linear inequalities. Linear program-
ming methods show that each system of linear inequalities has no solutions. The
existence of a cover is established by a direct computer search. It takes about
2.5 hours to run the program on a laptop computer.

Finally, we describe the relationship between this theorem and the Kepler
conjecture. The Kepler conjecture is initially expressed as a statement about
packings of congruent balls in an unbounded region of space. Various reduction
arguments reduce the proof of the conjecture to a conjecture about packings of
finitely many balls.

The proof of the Kepler conjecture is by contradiction. If the Kepler conjec-
ture is false, then there exists a finite packing V of at most 15 balls that has
various remarkable properties. The balls in the packing form the set of nodes of
a graph (V,E), and the combinatorial properties of the graph can be encoded as
a hypermap x in the set X . With a counterexample V in hand, for every cover
U of x, it is possible to find a marked hypermap y ∈ U for which the polyhedron
P (y) is nonempty. The existence of a counterexample V contradicts the theorem,
which asserts on the contrary that P (y) is empty.

References

1. GLPK (GNU Linear Programming Kit), http://www.gnu.org/software/glpk/
2. Fourer, R., Gay, D.M., Kernighan, B.W.: The AMPL book. Brooks/Cole, Monterey

(2002)
3. Hales, T., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A

revision of the proof of the Kepler Conjecture. In: DCG (2009)
4. Hales, T.C.: Computer resources for the Kepler conjecture (2003),

http://www.math.princeton.edu/~annals/KeplerConjecture/ (2005 snapshot)
5. Hales, T.C.: The Flyspeck Project (2010), http://code.google.com/p/flyspeck
6. Hales, T.C., Ferguson, S.P.: The Kepler conjecture. Discrete and Computational

Geometry 36(1), 1–269 (2006)
7. Obua, S.: Flyspeck II: The basic linear programs, Ph.D. thesis, Technis-

che Universität München (2008), http://deposit.d-nb.de/cgi-bin/dokserv?

idn=992033632&dok_var=d1&dok_ext=pdf&filename=992033632.pdf,
http://mediatum2.ub.tum.de/doc/645669/645669.pdf

http://www.gnu.org/software/glpk/
http://www.math.princeton.edu/~annals/KeplerConjecture/
http://code.google.com/p/flyspeck
http://deposit.d-nb.de/cgi-bin/dokserv?idn=992033632&dok_var=d1&dok_ext=pdf&filename=992033632.pdf
http://deposit.d-nb.de/cgi-bin/dokserv?idn=992033632&dok_var=d1&dok_ext=pdf&filename=992033632.pdf
http://mediatum2.ub.tum.de/doc/645669/645669.pdf

A Formal Proof of Pick’s Theorem
(Extended Abstract)

John Harrison

Intel Corporation, JF1-13
2111 NE 25th Avenue, Hillsboro OR 97124, USA

johnh@ichips.intel.com

Given a polygon with vertices at integer lattice points (i.e. where both x and y coordi-
nates are integers), Pick’s theorem [4] relates its area A to the number of integer lattice
points I in its interior and the number B on its boundary:

A = I + B/2 − 1

We describe a formal proof of this theorem using the HOL Light theorem prover
[2]. As sometimes happens for highly geometrical proofs, the formalization turned out
to be quite challenging. In this case, the principal difficulties were connected with the
triangulation of an arbitrary polygon, where a simple informal proof took a great deal
of work to formalize.

Elementary Triangle

We start by establishing the result for an elementary triangle: one whose vertices are
lattice points and which contains no other lattice points either in its interior or bound-
ary. Pick’s theorem for such a triangle simply asserts that it has area 1/2, or 0 in the
degenerate cases where it is flat.

Given two vectors A and B, we can consider them as defining the linear transforma-
tion of the plane f : (x, y) �→ Ax+By. It is not hard to show that if the image under f
of the set of integer lattice points is exactly this same set of integer lattice points, then
the determinant of the matrix of f is ±1:

|- ∀f:realˆN->realˆN.
linear f ∧ IMAGE f integral_vector = integral_vector
⇒ abs(det(matrix f)) = &1

Given an elementary triangle OAB, where we take O as the origin, one can show
that the integer multiples of the two other vertices generate precisely the integer lat-
tice points. The determinant in the previous theorem is precisely twice the area of the
triangle formed by the three vertices, which therefore has area 1/2:

|- ∀a b c:realˆ2.
{x | x IN convex hull {a,b,c} ∧ integral_vector x} = {a,b,c}
⇒ measure(convex hull {a,b,c}) =

if collinear {a,b,c} then &0 else &1 / &2

Arbitrary Triangle

Next, we proceed inductively to establish the result for an arbitrary triangle with all its
vertices at integer lattice points. If a triangle ABC is not elementary, then it must have
a lattice point D either:

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 152–154, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Formal Proof of Pick’s Theorem 153

– On one if its sides, say AB, in which case we can subdivide it into triangle ADC
and BCD.

– In its interior, in which case we can divide it into three triangles ADB, ADC and
BDC.

Although this is straightforward enough, we can make it even simpler, by reformulating
things slightly so that the first case becomes a degenerate case of the second, and we
avoid handling degenerate cases of the theorem itself separately. By a general result
on additivity of a function defined on a set of lattice points, we deduce the following
variant of Pick’s theorem for a triangle. It is straightforward to show it equivalent to the
usual formulation with a proviso of nondegeneracy.

|- ∀a b c:realˆ2.
integral_vector a ∧ integral_vector b ∧ integral_vector c
⇒ measure(convex hull {a,b,c}) =

&(CARD {x | x IN convex hull {a,b,c} ∧ integral_vector x}) -
(&(CARD {x | x IN convex hull {b,c} ∧ integral_vector x}) +
&(CARD {x | x IN convex hull {a,c} ∧ integral_vector x}) +
&(CARD {x | x IN convex hull {a,b} ∧ integral_vector x})) / &2 +

&1 / &2

Arbitrary Polygon

Again, we proceed inductively, showing that any polygon can be subdivided into two
by a line joining two vertices and otherwise lying entirely in the interior. (This can also
be used to drive an inductive proof that any polygon can be triangulated, and that is
where we looked for a proof, though we don’t explicitly deduce this general result.)
The informal proof, essentially excerpted from [1], seems relatively straightforward:

Pick the coordinate axis so that no two vertices have the same y coordinate. Let
B be the lowest vertex on the polygon, and let A and C be adjacent to B. If AC
is an interior diagonal, we draw the diagonal AC, forming a triangle ABC and
a polygon without the vertex C. Otherwise, let D be a vertex of the polygon at
maximal distance from the line AC in the direction of B. Cut the polygon into
two along the edge BD.

The first challenge is to formalize the ‘pick the coordinate axis’ step. An earlier paper
[3] described an extensive framework for such ‘without loss of generality’ reasoning,
but to support the present proof, this had to be generalized from ‘first order’ concepts
like points and lines to ‘higher order’ concepts like polygonal paths and sets of points.

The next difficulty is to formalize the general notion of being ‘inside’ and ‘outside’
a polygon. In fact, we define this concept for a general closed curve, and use the Jordan
curve theorem to deduce some of its important properties. For example, if one chops
the inside of a closed curve in two with an arc across it, the inside divides into two in
a fairly obvious way, and we use this to drive the main induction. But the proof of this
in the general setting of simple closed curves turned out to be far from obvious; we
formalized a 14-line proof from [5] (1.4, page 31), giving rise to a laborious 788-line
formal counterpart.

Finally, we can follow through the informal proof. However, even this turned out
to be quite difficult. One needs to work quite hard to establish that certain points lie

154 J. Harrison

‘inside’ or ‘outside’ the polygon; we exploit a ‘parity lemma’ precisely characterizing
how the inside/outside status switches as a line segment crosses segments of the poly-
gon. It is also necessary to translate several completely obvious geometric arguments
to do with orientation into tedious pieces of vector algebra. But finally, we obtain the
overall result:

|- (∀x. MEM x p ⇒ integral_vector x) ∧
simple_path(polygonal_path p) ∧
pathfinish(polygonal_path p) = pathstart(polygonal_path p)
⇒ measure(inside(path_image(polygonal_path p))) =

&(CARD
{x | x IN inside(path_image(polygonal_path p)) ∧ integral_vector x}) +
&(CARD
{x | x IN path_image(polygonal_path p) ∧ integral_vector x}) / &2 -
&1

References

1. Hales, T.C.: Easy piece in geometry (2007),
http://www.math.pitt.edu/˜thales/papers/

2. Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD
1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

3. Harrison, J.: Without loss of generality. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel,
M. (eds.) Theorem Proving in Higher Order Logics. LNCS, vol. 5674, pp. 43–59. Springer,
Heidelberg (2009)

4. Pick, G.: Geometrisches zur Zahlenlehre. Sitzungsberichte des deutschen
naturwissenschaftlich-medicinischen Vereines für Böhmen “Lotos” in Prag, Series 2 19,
311–319 (1899)

5. Whyburn, G.T.: Topological Analysis. Princeton Mathematical Series, vol. 23. Princeton Uni-
versity Press, Princeton (1964) (revised edn.)

http://www.math.pitt.edu/~thales/papers/

Evaluation of Automated Theorem Proving on

the Mizar Mathematical Library

Josef Urban1,�, Krystof Hoder2, and Andrei Voronkov2,��

1 Radboud University, Nijmegen
2 University of Manchester

Abstract. This paper investigates the strength of first-order automatic
theorem provers (ATPs) in proving theorems and lemmas from the Mizar
proof assistant’s formal mathematical library. Several Mizar use-cases are
described and evaluated, as well as various ATP systems and strategies.
The new version of the leading Vampire ATP system is included in the
evaluation, experiments with Mizar-specific strategy-selection are per-
formed with E the prover, and the SInE axiom selection is evaluated on
large Mizar problems with both E and Vampire. A rough mathematical
division of the Mizar library is introduced, and the ATP performance is
evaluated on it.

1 Introduction and Motivation

In the last five years there was a considerable increase of the use of fully au-
tomatic first-order theorem provers as assistants to interactive theorem provers
(ITPs). A number of formal knowledge bases and core logics have been trans-
lated to first-order ATP formats such as TPTP.1 For example, let us mention the
related work on the Isabelle/Sledgehammer ATP link [MP09], and the export of
the SUMO [PS07] and CYC [MJWD06] real-world formal knowledge bases.2

One of the main goals of the MPTP3 project is to make the large Mizar Math-
ematical Library4 (MML) accessible to ATP and AI experiments and techniques.
The particular value of MML/MPTP in comparison to the above mentioned re-
lated projects is that this is a comparatively large library focused primarily on
standard mathematics as done by mainstream mathematicians (using first-order
logic and set theory as the foundations). The first-order setting allows a practi-
cally complete and reasonably efficient translation for first-order ATPs, which is
harder to do for higher-order systems. The size of the library and its consistency
on the symbol-naming and theorem-naming level also allows experimenting with

� Supported by the NWO project ”MathWiki a Web-based Collaborative Authoring
Environment for Formal Proofs”.

�� Supported by an EPSRC grant.
1 Thousands of Problems for Theorem Provers, see www.tptp.org
2 www.ontologyportal.org and www.cyc.com
3 Mizar Problems for Theorem Proving.
4 www.mizar.org

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 155–166, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.tptp.org
www.ontologyportal.org
www.cyc.com
www.mizar.org

156 J. Urban, K. Hoder, and A. Voronkov

all kinds of “knowledge-based” ATP/AI techniques, which might be relevant for
emulating the thinking of learned mathematicians, and bringing new insights to
the fields of ATP and AI.

The first inclusion of the MML/MPTP problems in ATP benchmarks (the
TPTP library) happened in 2006, when also the large-theory MPTP Challenge5

was announced. Since then the CASC6 Large Theory Batch (LTB) competition
was introduced, and run already twice in 2008 and 2009. This influences the per-
formance and tuning of existing ATP systems, and gives rise to new techniques
and interesting metasystems.

The purpose of the current paper is to evaluate the progress made over the
past five years in the area of reasoning in large formal mathematical theories, and
particularly evaluate the strongest ATP systems and metasystems on sufficiently
recent MML/MPTP and the mathematical subfields contained in it.

1.1 Recent Evolution of Mizar and MPTP

Despite its age, Mizar is a living and evolving system with a number of users
around the world. Since the last published MPTP experiments done on MML
version 938 (938 articles), a number of articles have been added to the library
resulting in thousands of new “Mizar theorems”7. These range from a number
of standard calculus results developing, e.g., the Riemann integral, to abstract
algebra results like Sylow theorems [Ric07], to formalization of special fields like
BCI/BCK algebras [Din07] to results from mathematical theory of social choice
like Arrow’s Impossibility Theorem [Wie07].

At least the following developments have been tried/done with the Mizar
system between these two versions:

– The Mizar type system mechanisms (Horn-like mechanisms automatically
inferring monadic adjectives about the objects of the set-theoretical universe)
have been constantly strengthened, becoming one of the main automation
tools in Mizar.

– Experiments have been done with strengthening the matching/unification
mechanisms in the Mizar kernel module.

– Identifications (i.e., registered automated equalities applied implicitly by the
system) have been introduced by Mizar and used in MML.

– Further elements of computer algebra have been introduced in the kernel
module, to allow automated normalization and solving of systems of linear
equations.

The development of MPTP has to reflect the Mizar/MML changes. Also, as a
relatively young system, MPTP has a number of its own developments to do.
Here is a short summary of the recent ones:
5 http://www.tptp.org/MPTPChallenge/
6 The CADE ATP System Competition, see http://www.tptp.org/CASC/
7 We put Mizar theorems in quotes at least once to deliver the message that only very

few of these “theorems” would be called a “theorem” by mathematicians. Large
majority of these propositions are lemmas useful and re-usable for proving further
results, and this property makes them “theorems” in the Mizar parlance.

http://www.tptp.org/MPTPChallenge/
http://www.tptp.org/CASC/

Evaluation of Automated Theorem Proving 157

– Probably the largest change is that initial methods for ATP-export of Mizar
internal arithmetics have been implemented. This is a constant cat-and-
mouse pursuit with the experiments done with computer algebra in the Mizar
kernel,8 however it is now possible to do ATP experiments over Mizar prob-
lems containing arithmetics. The export is correct, but not always complete.9

However, as can be seen in Section 3, counter-satisfiability is detected only
reasonably rarely in practice by ATPs.

– MPTP changes in ATP problem creation, accommodating the new develop-
ments in the Mizar type automations, and introduction of identifications.

– Changes making MPTP faster and more real-time, including:
– More advanced (graph-like) datastructures to speed-up the process of select-

ing necessary parts of the library for generating the ATP problems.
– Larger use of available Prolog indexing and the asserted database for various

critical parts of the code.
– Instead of working always with the whole loaded MML, MPTP was refac-

tored to allow working only with the (usually much smaller) part of the
MML needed for the newly processed article. This is specifically required for
the new ATP-for-Mizar (MizAR) service running now in real time at the
RU Foundations’ group server10 [US10].

The summary of data from previous experiments with SPASS (version 2.1) and
E (version 0.9) from 2005 on MML version 938 using MPTP 0.2 is given in
Table 1 (see [Urb06] for details).

Table 1. Reproving of the theorems from non-numerical articles by MPTP 0.2 in 2005

description proved countersatisfiable timeout or memory out total

E 0.9 4309 0 8220 12529

SPASS 2.1 3850 0 8679 12529

together 4854 0 7675 12529

Note that these experiments have been done in 2005 only on “non-numerical”
articles (containing 12529 theorems/problems), i.e., on Mizar articles guaranteed
not to contain any arithmetical evaluations. The current experiments described
in Section 3 are however performed on the whole MML, because a basic ATP-
export of Mizar computer algebra is now available.

8 This is the main reason why we choose a version of MML that is not completely
recent at the time of writing this evaluation. The MML version 1011 that we choose
for the evaluation here has now been sufficiently tested, and the ATP-export of Mizar
internal arithmetics sufficiently debugged. It would be possible to experiment with
a more recent MML version, however for a large-scale evaluation it is preferable to
use a reasonable recent version for which MPTP is known to work well.

9 This also really depends on the particular version of the Mizar kernel.
10 http://mws.cs.ru.nl/~mptp/MizAR.html

http://mws.cs.ru.nl/~mptp/MizAR.html

158 J. Urban, K. Hoder, and A. Voronkov

2 Mizar Data, Experimental Setup

The experiments described in Section 3 are performed on three classes of data,11

all coming from the proofs of all Mizar theorems from MML version 1011. There
are 51424 theorems in this MML version. The classes differ by the average num-
ber of axioms (previous theorems and definitions from MML) included in the
problems, coming from different Mizar use-cases. The classes and use-cases are
as follows:

– SMALL: Problems with smallest number of included axioms. This use-case
models a user who knows relatively well how a proof should proceed (what
MML knowledge should roughly be used). In the HOL Light (established
for its ITP/ATP inventions) terminology: MESON TACTIC12 . The aver-
age size of an MPTP problem in this class is 218 formulas. Many of these
theorems have long Mizar proofs - tens to hundreds of lines - and can contain
nontrivial mathematical ideas. See the listings at these web pages.13

– ENVIRON : Problems that include all axioms contained in article’s environ-
ment (that is: articles imported by the current article). This use-case models
Mizar authors who selected a particular combination of mathematical ar-
eas (previous articles) to base their articles on, and thus limited the Mizar
knowledge to a smaller subset of MML. Inside this MML subset they how-
ever do not provide any additional guidance to the ATPs. Such problems
can already be very large: their average size is 5830 formulas.

– ALL: Problems that include all of the Mizar knowledge available in the MML
at the time of proving a particular theorem. This models users who do not
want to limit their search to the articles imported in their environment,
and provide no guidance to ATPs. The price for such intellectual laziness is
obviously a large number of axioms in such ATP problems, the average size
of a problem in this class is 40898 formulas.

All these three use-cases are interesting and relevant. As mentioned above, the
SMALL case is used a lot in ITPs like HOL (Light) as a general method for
solving a goal once the user feels that it is sufficiently simply derivable from
other established premises. The Mizar system actually also works in a similar
way (using a custom weak theorem prover for the “by” inference), however,
the emphasis there is not on strength, but on capturing the notion of obvious
inference [Dav81, Rud87]. Another advantage of the SMALL case is that the 218
average formulas (which means much less in a significant number of cases) can
be reasonably attacked by existing standard resolution and tableaux techniques,
and ATPs based on them, without introducing any novel techniques for dealing

11 Available at http://mws.cs.ru.nl/~mptp/mptp_1011/noint/
12 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/MESON_TAC.html. Actually,

MPTP does here more than MESON: it adds a lot of “background” formulas to the
problem including knowledge used implicitly by Mizar (reflexivity of ≤, etc.).

13 http://mmlquery.mizar.org/mmlquery/fillin.php?filledfilename=mml-facts.

mqt&argument=number+102, and http://www.cs.ru.nl/~freek/100/

http://mws.cs.ru.nl/~mptp/mptp_1011/noint/
http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/MESON_TAC.html
http://mmlquery.mizar.org/mmlquery/fillin.php?filledfilename=mml-facts.mqt&argument=number+102
http://mmlquery.mizar.org/mmlquery/fillin.php?filledfilename=mml-facts.mqt&argument=number+102
http://www.cs.ru.nl/~freek/100/

Evaluation of Automated Theorem Proving 159

with a large number of axioms. Thus, for metasystems that combine custom
axiom-selection methods with standard ATPs, the SMALL case can be thought
of as a benchmark for the ATP component of such metasystems, i.e., telling how
good the performance of the whole metasystem could be, if the axiom-selection
component of the metasystem was perfect.

This is no longer true for the ENVIRON and ALL classes. As will be seen
in Section 3, using standard ATP techniques on these problems is currently not
productive, and axiom-preselection methods are necessary on the ENVIRON
and ALL classes to make use of ATPs.

There are other possible classes of data and divisions of the SMALL, EN-
VIRON and ALL classes along various axes. A common objection to these
three classes is that they are too hard: for example, the data for testing Is-
abelle/Sledgehammer come typically from goals that are easier than the “full
Isabelle theorems”. The answer is that using Mizar simple justifications (“by”
steps – steps provable using the Mizar built-in limited checker [Wie00]) has with
the development of MPTP and ATP methods over Mizar become too easy, and
such data are no longer suitable as a Mizar/MPTP/ATP benchmark. The suc-
cess rate of various combined ATP/AI methods on large pieces of “by” data
is now around 99.9%, actually allowing for using such methods together with
the GDV [Sut06] ATP-based verifier (enhanced to handle TPTP proofs with
Jaskowski-like assumptions) to completely ATP-cross-verify large pieces of MML
(see [US08] for details). Other classes of problems that could come to mind are:

– Internal Mizar sublemmas that serve to prove another theorem/lemma, but
are not themselves “too easy” (i.e., are not proved by simple justification).
Such sublemmas could be considered an easier dataset than theorems, but
harder than the simple justifications.

– De-lemmatized theorems. This would be a dataset created from SMALL,
where the references (other theorems) used to prove a theorem are (recur-
sively, to some level of recursion) replaced by their own references, in the
extreme case expanding them all the way to axioms and definitions. Such de-
lemmatized theorems could be considered a harder dataset than the standard
theorems.

The reason why it seems unnecessary to test also on such classes of data is that
already the theorem dataset provides a variety of both easy and hard data. There
are a number of Mizar theorems proved using a simple justification, and on the
other hand, there are theorems (like ROLLE:1 in [KRS90] - Rolle’s theorem) that
take more than four hundred lines and a large number of references to prove,
i.e., the amount of lemmatization varies greatly across various Mizar articles and
with various Mizar authors.

The ATP success rates reported in Section 3 on the SMALL theorem dataset
indicate that also from the practical “benchmark” point of having data that
are not too easy and not always very hard, this dataset seem to work well with
current off-the-shelf ATPs. Again, this is not yet true with the large ENVI-
RON and ALL datasets which, on the other hand, can be considered to be hard

160 J. Urban, K. Hoder, and A. Voronkov

Table 2. Evaluation of E, SPASS, and Vampire on all SMALL problems in 30s

description proved countersatisfiable timeout or memory out total

E 1.1-004 16191 4 35229 51424

SPASS 3.7 17550 12 33862 51424

Vampire 0.6 20109 0 31315 51424

together 22607 12 28817 51424

benchmarks for ATP/AI metasystems that complement standard ATP with sys-
tems for axiom selection.

Divisions along various further axes of these datasets are certainly possible. In
section 4 we attempt to define a “reasonable” crude mathematical categorization
of 80% of MML articles, and provide an initial evaluation across this division.

3 Experiments

3.1 Overall Evaluation on SMALL Problems

The large-scale experimental evaluation of the standard ATPs focuses on the
SMALL class of problems (for the reasons mentioned above in Section 2). The
three main evaluated ATPs are the latest versions of the SPASS [WDF+09]
(version 3.7) system, the E prover [Sch02] (version 1.1-004 Balasun), and the
Vampire [RV02] prover (version 0.6 - preliminary version for CASC-J5). SPASS
and E are evaluated on the server of the Foundations group at Radboud Uni-
versity Nijmegen (RU), which is eight-core Intel Xeon E5520 2.27GHz with 8GB
RAM and 8MB CPU cache. The time limit for the evaluations is 30s,14 and the
memory limit is 900MB for each problem. Vampire is evaluated on computers
at the laboratory of the University of Manchester (UM), each of them being
Intel Core2 Duo E7300 2.66GHz PC with 1G RAM and 3MB cache. The time
limits used are again 30s. The relative performances of the two hardware plat-
forms have been compared by evaluation on common ATP problems. The UM
platform turns out to be approximately 10% faster.15 No parallelization is used,
each problem is always run serially. The Table 2 shows the results. Note that
there are some counter-satisfiable problems (very likely arithmetical) however
their number is insignificant. It turns out that E, SPASS, and Vampire can in
30s together (that is: if run in parallel) solve 44% of the MML SMALL problems.

In Table 3, the results of SPASS used in (the incomplete) SOS mode are
shown, and compared to the results of standard SPASS. This is done on ran-
domly selected 1000 SMALL problems. The number of countersatisfiable results
is not relevant for SPASS-SOS however: it is incorrect when SPASS is used in
14 The experience from previous experiments with E and SPASS is that only a small

fraction of problems is solved after 30s. This is obviously different with strategy-
scheduling ATP systems like Vampire.

15 This difference obviously does not translate to 10% more solved problems, however
particularly with strategy-scheduling ATP like Vampire, it is quite significant.

Evaluation of Automated Theorem Proving 161

Table 3. Comparison of SPASS-SOS and SPASS on 1000 SMALL problems in 30s

description proved countersatisfiable timeout or memory out total

SPASS 3.7-SOS 292 55 653 1000

SPASS 3.7 345 0 655 1000

together 377 0 623 1000

SOS mode together with ordering-based ATP techniques. SPASS-SOS turns out
to be significantly worse than SPASS on the same data (proving 345 of these
1000 problems), however the SOS strategy is reasonably complementary to the
standard one: together, the both methods of running SPASS solve 377 problems
from this dataset (Vampire solves 39% of these problems).

3.2 Overall Evaluation on ENVIRON and ALL Problems, SInE

To a smaller extent (the above mentioned dataset of 1000 problems) we also
evaluate E and Vampire on the large ENVIRON and ALL problems, and focus
on evaluation of a new heuristic axiom pre-selector SInE.16

The SInE selection algorithm (yet to be published) uses a syntactic approach
based on symbol presence in formulas of the problem. SInE builds a relation
D (as in ”Defines”) between symbols and axioms. The D-relation represents
the fact that for a symbol there are some axioms that “give it its meaning.”
In order to construct the D-relation, for each symbol the number of axioms
in which it appears is computed, this number is called the generality index of
the symbol. Then each axiom is put into the D-relation with the least general
symbol it contains.17 After the relation is built, the actual axiom selection starts.
All problem-specific formulas are selected, and in each iteration the selection is
extended by all included formulas that are D-related to any of the symbols used
in already selected formulas.18 The iterating is done until the set of selected
axioms becomes stable. The stable set of formulas is then passed to a theorem
prover.

This standard fixpoint algorithm however tends to give too many axioms on
MML problems.19 To deal with this, we have introduced a depth limit parameter
— a limit on the number of selection-extending iterations. With the depth limit
equal to one (“-d1” parameter), for example, only the included axioms D-related
to symbols in the problem-specific axioms are included.

16 SUMO Inference Engine - originally developed by the second author for reasoning
in the large SUMO knowledge base.

17 If there are more symbols with lowest generality index, axiom is put in relation with
all of them.

18 Note that the current implementation relies on reasonable presentation of large-
theory problems using TPTP-includes. This can be easily changed if needed.

19 The structure of MML significantly differs from KBs like SUMO and CYC. There
are many more nontrivial theorems in MML, while SUMO and CYC contain a lot
of definitions.

162 J. Urban, K. Hoder, and A. Voronkov

Table 4. Evaluation of Vampire and E with SInE(-d1) on random 1000 ENVIRON
and ALL MML.1011 problems in 30s

problems Vampire+SInE Vampire+SInE(-d1) E E+SInE E+SInE(-d1)

ENVIRON 181 205 65 135 161

ALL 84 141 21 64 153

The Table 4 presents the results of evaluation of E and Vampire on 1000 EN-
VIRON and ALL problems run with 30s time limit on the UM PCs.20 Note that
the combination of Vampire and SInE run with -d1 solves 205 of the ENVIRON
problems, and the combination of E and SInE with -d1 solves 153 of the ALL
problems. This is a very good performance on problems with average size of 5830
formulas resp. 40898 formulas. E in this mode solves about half of the SMALL
versions of the problems. This is very likely also due to improved E heuristics for
dealing with large problems. The SInE preprocessing time needs to be added to
the 30s given to E prover. For the ENVIRON problems this time is on average
1s, and for the ALL problems, this is on average 4s.

3.3 Evaluation of Strategy Selection and Combination

Design, selection and combination of sufficiently orthogonal useful ATP strate-
gies has been for some time a well known technique significantly raising perfor-
mance of ATPs. Both Vampire and E use strategy selection and machine learn-
ing on the TPTP library to select a collection of useful strategies. However, they
use the found strategies in different ways. Vampire selects sequences of strategies,
while E selects one “best” strategy when run in auto-mode. The effect of strategy
combination in Vampire can be estimated by comparing Vampire’s performance
in shorter and longer times (here in 5s and 30s on a random set of 1000 SMALL
problems). For E and SPASS (running a single strategy depending on the prob-
lem) this difference is relatively small. Only 41 problems out of 345 solved in 30s by
SPASS are solved in time longer than 5s, which is approximately 13% increase. For
Vampire, this improvement is much more significant: out of 384 problems solved
in 30s, only 310 are solved in 5s, which gives a 24% increase. This significant dif-
ference in comparison to SPASS is due to Vampire running not only for a longer
time, but also switching to a different strategy during proof-search.

This clue leads to a strategy-evaluation experiment done with E again on this
random set of 1000 SMALL problems: Each of the 196 E strategies predefined
by the E developer Stephan Schulz is tested on this set of problems with a 5s
time limit. It turns out that the strategy selected by E as potentially the best
solves 310 problems with the 30 seconds time limit, while the strategy that turns
out to be the best in reality solves 317 problems with a 5s time limit.

This clearly demonstrates the potential of domain-based ATP strategy-tuning.
All the 196 E strategies together solve 386 of the 1000 problems. This confirms

20 The new version of Vampire uses SInE automatically, thus we do not provide data
for Vampire without SInE.

Evaluation of Automated Theorem Proving 163

a previous conjecture by the first author and the E developer that E with a
suitably-tuned strategy combination mode will be considerably stronger. It also
demonstrates that strategy combination is more robust on new problems. The
strategies of E are defined using smaller building blocks and a special (“program-
ming”) language using a number of parameters. Given the performance potential
gained by this strategy-tuning, it would be very interesting (and feasible) AI ex-
periment to try to invent new E strategies by AI methods for (e.g., genetic)
parameter-optimization/programming. Particularly on a large knowledge base
like MML, this might lead to some surprising ATP-strategy inventions, in the
same way as combining ATPs with learning on MML sometimes finds completely
novel and significantly shorter proofs than those written by the Mizar authors.

4 Evaluation of ATPs on Different Mathematical
Domains in MML

Formal mathematics can be clustered according to many aspects, and just think-
ing about organizing mathematics can lead to all kinds of theoretical investiga-
tions in Foundations, Category Theory, but also into practical investigations with
various classification schemes like Mathematics Subject Classification 200021,
and also into very pragmatic classifications based on the shape of the formal
theories, important for performing automated reasoning in various domains22.

For the purpose of ATP evaluation in this paper we attempt a manual division
of the MML articles into (currently) seventeen subdomains of main MML de-
velopments. This is motivated by the curiosity to verify experimentally various
intuitions developed over the years in the ATP field, like “algebra is ATP-easier
than calculus”. As mentioned above, there can be many approaches to this,
and for example a proper MathSC2000 classification would certainly serve even
better than the coarse-grained division started by us, however detailed classifi-
cation of more than 1000 formal articles requires a non-trivial amount of work,
and making fine-grained decisions would be beyond our resources. The (evolving)
division can be viewed at our web page23. The categories and the numbers of
articles in each category are shown in Table 5. The categorization now includes
804 articles out of the total 1011.

To the extent to which MML is approximation of “real mathematics”, and
to the extent to which this rough categorization is valid, these seventeen large
classes of problems (with the three different problem sizes coming from the dif-
ferent use-cases described in Section 2) express a large mathematically-oriented
(and particularly Mizar/MPTP-oriented) ATP benchmark.

21 See http://wiki.mizar.org/twiki/bin/view/Mizar/

MathematicsSubjectClassification for a so far 25%-successful attempt to classify
MML according to MathSC2000.

22 For example, the strategy-selection tuning typically works by defining suitable clus-
tering based on the term and formula structure of the problems.

23 http://github.com/JUrban/MPTP2/raw/master/MMLdivision.1011

http://wiki.mizar.org/twiki/bin/view/Mizar/MathematicsSubjectClassification
http://wiki.mizar.org/twiki/bin/view/Mizar/MathematicsSubjectClassification
http://github.com/JUrban/MPTP2/raw/master/MMLdivision.1011

164 J. Urban, K. Hoder, and A. Voronkov

Table 5. Categorization of MML 1011, 804 articles covered, SPASS, E, Vampire, and
overall success rates on the categories

description articles probs S E V All S % E % V % All %

Algebra 50 2798 1182 1086 1314 1481 42.24 38.81 46.96 52.93

Algebraic Topology 5 215 52 50 89 94 24.19 23.26 41.4 43.72

Arithmetic, Number theory 70 4095 1587 1515 1741 1943 38.75 37 42.52 47.45

Calculus (real, complex) 54 3255 585 538 651 783 17.97 16.53 20 24.06

Category theory 21 1023 298 305 406 455 29.13 29.81 39.69 44.48

Computers, Algorithms 81 3809 971 932 1120 1304 25.49 24.47 29.4 34.23

Functional analysis 30 1320 395 330 445 507 29.92 25 33.71 38.41

General Topology 65 3191 1199 1115 1441 1594 37.57 34.94 45.16 49.95

Geometry 36 1593 666 659 806 876 41.81 41.37 50.6 54.99

Graph theory,Finite structs 43 2756 1186 1094 1331 1455 43.03 39.7 48.29 52.79

Lattices 50 2434 707 570 764 917 29.05 23.42 31.39 37.67

Linear Algebra 32 1752 496 493 630 700 28.31 28.14 35.96 39.95

Logic, Model theory 52 2832 1042 1084 1196 1369 36.79 38.28 42.23 48.34

Probability and Measure 23 1123 348 274 448 489 30.99 24.4 39.89 43.54

Real plane,Euclidean spaces 84 4555 1018 897 1290 1439 22.35 19.69 28.32 31.59

Set Theory 74 4060 2412 2278 2570 2735 59.41 56.11 63.3 67.36

Universal Algebra 34 1093 391 372 434 502 35.77 34.03 39.71 45.93

together 804 41904 14535 13592 16676 18643 34.69 32.44 39.8 44.49

The table indeed seems to confirm quite convincingly the “algebra is ATP-
easier than calculus” theory. The set-theoretical domain outperforms even the
algebraic and is the most ATP-friendly. This is quite likely because of two related
factors:

– Set theoretical articles belong to the more basic ones, not much previous
implicit knowledge is included in the articles and their size is thus likely
smaller, making them easier for ATPs.

– As the needed implicit knowledge (encoding e.g. the type system) gets more
involved in more advanced areas like calculus, the ATP-emulation of these
Mizar type mechanisms becomes more costly, and the ATP performance
suffers.

There are a number of ways that these data can be further analyzed, providing
useful feedback to the MPTP algorithms and also to ATP (meta) systems.

5 Conclusions, Future Work

The most important message of this evaluation is that a combination of three
recent ATP systems can solve 44% of the MML theorems coming from many dif-
ferent parts of mathematics, regardless of how much computer algebra is done in
them. The leading Vampire ATP system alone can solve 39%. Another important
message is that off-the-shelf ATPs are still weak in large theories, however fast
axiom-selection heuristics like SInE can help them and improve this state very
significantly. Other one-problem-at-atime large-theory heuristic methods similar

Evaluation of Automated Theorem Proving 165

to SInE are used for axiom pruning in Isabelle/Sledgehammer [MP09], and also
for axiom ordering in the SRASS system [SP07]. If these other methods could
be run easily on arbitrary and large TPTP problems, it would be interesting to
evaluate and compare them on our benchmarks, or at least in the CASC LTB
competition which includes a small selection of the older MPTP problems in its
MZR category. The problem of axiom selection in large theories and the possi-
ble gains from good solutions seem to be sufficiently important to warrant such
benchmarking and further research in this field, possibly leading also to smarter
clause-selection algorithms implemented directly inside ATPs.

In this evaluation, axiom-selection methods that use transfer of knowledge be-
tween problems (machine learning) like MaLARea [USPV08] are not considered.
Methods using learning are very interesting and quite novel in the ATP context,
and we are currently investigating various suitable methods for machine learn-
ing , characterizations of problems and proofs, and also suitable combinations
with strategy-selection and with other axiom-selection methods working in the
one-problem-at-a-time setting like SInE. We also plan to do a thorough strategy
evaluation of a much larger set of strategies available with Vampire, and their
Mizar/MPTP-oriented tuning similar to the current CASC-tuning of Vampire,
possibly again with adding machine learning technology.

An important future work is translation of ATP proofs to a presentable
ITP format. The (technically certainly admirable) solution used by Isabelle/
Sledgehammer (and obviously also of HOL Light) is inclusion of a reasonably
strong ATP system directly into their cores. This is however against the phi-
losophy of readable proofs and “obvious inferences” of Mizar, and with strong
external ATPs also potentially causing all kinds of other problems: not all proofs
can be internalized, and the hard internalized proof s make the library refactoring
slow and fragile.24 With the growing strength of ATPs, a proper human-readable
presentation of ATP proofs is a more and more pressing (and also very interest-
ing) AI task. Some previous work in this direction has been done in the context of
the Omega and ILF systems. A recent initial effort in this direction is described
in [VSU10].

References

[Dav81] Davis, M.: Obvious logical inferences. In: Hayes, P.J. (ed.) IJCAI, pp.
530–531. William Kaufmann, San Francisco (1981)

[Din07] Ding, Y.: Several classes of BCI-algebras and their properties. Formalized
Mathematics 15(1), 1–9 (2007)

[KRS90] Kotowicz, J., Raczkowski, K., Sadowski, P.: Average value theorems for
real functions of one variable. Formalized Mathematics 1(4), 803–805
(1990)

24 Note that this philosophy is no longer just Mizar’s: the Math Components project
targeted at the large formalization of Feit-Thompson theorem in Coq is avoiding
Coq mechanisms that keep “too much automation” inside proofs for very similar
reasons as Mizar does.

166 J. Urban, K. Hoder, and A. Voronkov

[MJWD06] Matuszek, C., Cabral, J., Witbrock, M., DeOliveira, J.: An Introduction
to the Syntax and Content of Cyc. In: Baral, C. (ed.) Proceedings of
the 2006 AAAI Spring Symposium on Formalizing and Compiling Back-
ground Knowledge and Its Applications to Knowledge Representation and
Question Answering, pp. 44–49 (2006)

[MP09] Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-
generated resolution problems. J. Applied Logic 7(1), 41–57 (2009)

[PS07] Pease, A., Sutcliffe, G.: First Order Reasoning on a Large Ontology. In:
Urban, J., Sutcliffe, G., Schulz, S. (eds.) Proceedings of the CADE-21
Workshop on Empirically Successful Automated Reasoning in Large The-
ories (2007)

[Ric07] Riccardi, M.: The Sylow theorems. Formalized Mathematics 15(3), 159–
165 (2007)

[Rud87] Rudnicki, P.: Obvious inferences. J. Autom. Reasoning 3(4), 383–393
(1987)

[RV02] Riazanov, A., Voronkov, A.: The design and implementation of VAM-
PIRE. Journal of AI Communications 15(2-3), 91–110 (2002)

[Sch02] Schulz, S.: E – a brainiac theorem prover. Journal of AI Communica-
tions 15(2-3), 111–126 (2002)

[SP07] Sutcliffe, G., Puzis, Y.: SRASS - a semantic relevance axiom selection
system. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp.
295–310. Springer, Heidelberg (2007)

[Sut06] Sutcliffe, G.: Semantic Derivation Verification. International Journal on
Artificial Intelligence Tools 15(6), 1053–1070 (2006)

[Urb06] Urban, J.: MPTP 0.2: Design, implementation, and initial experiments.
J. Autom. Reasoning 37(1-2), 21–43 (2006)

[US08] Urban, J., Sutcliffe, G.: ATP-based cross-verification of Mizar proofs:
Method, systems, and first experiments. Mathematics in Computer Sci-
ence 2(2), 231–251 (2008)

[US10] Urban, J., Sutcliffe, G.: Automated reasoning and presentation support
for formalizing mathematics in Mizar. In: Autexier, S., Calmet, J., Dela-
haye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC
2010. LNCS (LNAI), vol. 6167, pp. 132–146. Springer, Heidelberg (2010)

[USPV08] Urban, J., Sutcliffe, G., Pudlak, P., Vyskocil, J.: MaLARea SG1: Ma-
chine Learner for Automated Reasoning with Semantic Guidance. In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 441–456. Springer, Heidelberg (2008)

[VSU10] Vyskocil, J., Stanovsky, D., Urban, J.: Automated proof shortening by
invention of new definitions. In: LPAR 2010. LNCS (LNAI). Springer,
Heidelberg (to appear 2010)

[WDF+09] Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wis-
chnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) Automated De-
duction – CADE-22. LNCS, vol. 5663, pp. 140–145. Springer, Heidelberg
(2009)

[Wie00] Wiedijk, F.: CHECKER - notes on the basic inference step in Mizar
(2000), http://www.cs.kun.nl/~freek/mizar/by.dvi

[Wie07] Wiedijk, F.: Arrow’s impossibility theorem. Formalized Mathematics
15(4), 171–174 (2007)

http://www.cs.kun.nl/~freek/mizar/by.dvi

On Local Deformations of Planar Quad-Meshes

Tim Hoffmann

Zentrum Mathematik
Technische Universität München

tim.hoffmann@ma.tum.de

Abstract. Planar quad-meshes (meshes with planar quadrilateral faces
– PQ-meshes for short) are an important class of meshes (see e.g. Bobenko
and Suris [2008]). Although they are often desirable in computer graphics
– since planar quads can be rendered with out triangulating them – and
architectual geometry (see Pottmann et al. [2007]) – because building with
planar tiles is more cost effective – modelling freeform surfaces with planar
quadrilaterals is problematic (in fact in practical applications one deforms
or subdivides PQ-meshes without obeying the planarity constraint and en-
sures it afterwards in a global optimization step). In this paper we present
a method that allows local deformations of PQ-meshes (with square grid
combinatorics) that makes it possible to modify a PQ-mesh while keeping
all quadrilaterals planar through the whole process (without a minimiza-
tion step). In principle the method allows for PQ-mesh subdivision as well.

Fig. 1. A 3 × 3-quad patch and the configuration in the plane E

The deformation scheme outlined in the following is a new approach and it is
currently implemented in a prototype stage by Christian Hick. The general idea
is that while moving a single vertex will generically destroy the planarity of the
adiacent faces, moving the plane of a face and allowing its four points to adjust
as necessary, has exactly enough freedom to generically allow for planarity of
the central face as well as its neighbours.

The Construction

Given a 3×3-quad patch from a PQ-mesh as shown in Fig. 1-a. Assume that the
exterior should be fixed. In particular this means, that – using the labeling in

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 167–169, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

168 T. Hoffmann

Fig. 1-a – the points p1, . . . , p12 are fixed. Now, generically prescribing the plane
E in which the central quadrilateral lies the points q1, . . . , q4 can be computed.

Since the points q1, . . . , q4 all lie in the plane E, we can reformulate the
problem of finding their locations into a problem in that plane only. Note that the
planes (not the quadrilaterals) A,C, I, and G are fixed as well, since three points
are already known in each of them. Let a, c, i, and g denote the lines in E that
are the intersections of the planes A,C, I, and G with E. The remaining planes
B,F,H , and D are yet to be determined, but we know at least the intersections
of the lines through the point pairs (p2, p3), (p5, p6), (p8, p9), and p11, p12) with
E. Denote them by rB , rF , rH , and rD respectively.

Since q0 lies in E and A it must be in a. Choosing any point in a as q1 fixes
the plane B and in particular the intersection b of B with E (it is just the line
through q1 and rb in E). This in turn determines q2 as the intersection of the
lines b and c. Knowing q2 determines F and the intersecting line f (again as
line through q2 and rF). Continuing this way we end up with a point q̃1 on a as
intersection of d and a (see Fig. 1-b). A priori there is no reason q1 and q̃1 should
coincide, but the construction furnishes a projective map q1 �→ q̃1 from a onto
itself. We are interested in fixed points of this map of which there are two if the
map is hyperbolic, one if it is parabolic and none if it turns out to be elliptic –
the case that the map degenerates to the identity can happen as well. However
if one starts with a planar configuration and deforms it by smoothly varying the
plane E there should be a neighbourhood in which a deformation is possible.

Since the whole problem and configuration is a projective one, we assume
that E is a projective plane. Thus, points and lines are dual to each other.
Writing them in homogenous coordinates, we have the convenient fact that the
line through two points p and q can be computed by the vector cross-product
p× q. The dual construction is the intersection point of two lines r and s which
is again the cross-product r × s. For our construction above this means that
b = q1 × rB, q2 = b× c, f = q2 × rF , and so forth (note the �3- representations
are homogenous coordinates, so the order in the cross-product (which makes for
a sign) is irrelevant here).

For a given point v = (v1, v2, v3), the map w �→ v × w can be written as
w �→ Mvw with MV being a skew symmetric 3 × 3 matrix

Mv =

⎛⎝ 0 −v3 v2
v3 0 −v1
−v2 v1 0

⎞⎠ .

Using this notation the map q1 �→ q̃1 becomes q̃1 = Mq1 with

M := MaMrDMgMrHMiMrF McMrb
.

Eigenvectors to non-vanishing eigenvalues of M will be exactly the fixed points
we are interested in, since each of them will furnish a valid choice for q1 (and
subequently q2 = McMrb

q1, q3 = MiMrF q2 etc.). In general M has three eigen-
values, one of them being 0, since rB will always map to 0. The other two – if
present – will give us one or two distinct eigenvectors/fixed points. Thus gener-
ically there are two solutions. In a modeling application one starts with a given

On Local Deformations of Planar Quad-Meshes 169

configuration and calculates whether it corresponds to the bigger or smaller
eigenvalue and then pick the corresponding one for the deformations.

The Dual Construction

In P�3 points and planes are dual to each other, just like points and lines are
in P�2. So naturally, our local deformation has a dual version that we can state
as follows. By just replacing each vertex with a plane and each plane with a
vertex we get a configuration as in Fig: 2. We now can move the central vertex
and calculate its direct neighbours in such a way that all except the four planes
q1, q2, q3, and q4 are fixed. This implies in particular that the vertices B,F,H ,
and D move only on the lines that are the intersections of the outer planes p2
and p3, p6 and p6, p8 and p9, and p11 and p12.

Fig. 2. The dual configuration (cf. Fig 1)

References

[2007] Pottmann, H., Asperl, A., Hofer, M., Kilian, A.: Architectural Geometry.
Bentley Institute Press, Exton (2007)

[2008] Bobenko, A.I., Suris, Y.B.: Discrete Differential Geometry: Integrable
Structure. Graduate Studies in Mathematics, vol. 98. AMS, Providence (2008)

Construction of Harmonic Surfaces with

Prescribed Geometry

Matthias Weber

Indiana University
Department of Mathematics, Bloomington, IN 47401, USA

matweber@indiana.edu

http://www.indiana.edu/~matweber

Abstract. In this note we explain how a well-understood construction
method for minimal surfaces can be used as flexible tool to explicitly
parametrize harmonic surfaces with prescribed geometry of arbitrary
finite topological type.

1 Introduction

A fundamental problem in surface geometry has been the construction of sur-
faces with given local properties like constant curvature and prescribed global
geometric features. In the case of minimal surfaces, this has reached a state
where amazingly complex surfaces can be constructed using relatively elemen-
tary means. Furthermore, the availability of rather explicit parametrizations has
allowed to numerically and visually explore phenomena that have furthered the
theory in a way unconceivable 10 years ago.

This success in the realm of minimal surfaces is mostly due to the availability
of the Weierstrass representation, which is limited to minimal surfaces (and a
few other related situations).

Thus, if one wants to use these techniques as a general modeling tool, the
limitation to minimal surfaces limits also the topological possibilities. For in-
stance, by a theorem of Schoen [1], there is no catenoid with a handle, i.e. no
embedded, complete minimal surface with two ends and genus one. To overcome
this limitation and still be able to make use of the machinery developed for min-
imal surfaces, we suggest to consider the class of harmonic surfaces where the
parametrization is given by a harmonic map into R3.

In this note, we will illustrate how to implement this idea using a concrete
example.

2 The Minimal Catenoid with a Handle

Definition 1. Let Ω be a Riemann surface, G(z) a meromorphic function and
dh(z) a holomorphic 1-form on Ω. Then

f(z) = Re
1
2

∫ z

(1/G−G, i/G + iG, 2) dh (1)

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 170–173, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.indiana.edu/~matweber

Construction of Harmonic Surfaces with Prescribed Geometry 171

parametrizes a minimal surface away from the singularities of G and dh. This
parametrization is conformal.

The most simple instance of applying the Weierstrass representation to construct
concrete minimal surfaces is the

Lemma 1. Let Σ be a minimal surface, conformally equivalent to the disk, so
that the boundary of Σ̄ consists of finitely many planar symmetry curves that
lie in vertical planes. Assume that all points with vertical normal occur only at
intersection points of the boundary and possibly at the ends of the surface. Then
Σ can be parametrized using a Gauss map G(z) and a height differential dh that
are given as

G(z) = ρ
∏

(x− aj)αj (2)

dh = μ
∏

(x− aj)βj dz (3)

where the aj are points on the real axis in one-to-one correspondence to the
vertices of the surface boundary, the αj, and βj are real numbers uniquely deter-
mined by the angles between the symmetry lines at the vertices, ρ is the López-Ros
parameter, and μ a scale factor.

For more sophisticated applications and a proof, see [2].
To construct an (impossible) catenoid with a handle, let’s assume symmetries

at all three coordinate planes (see [3]). The two vertical coordinate planes then
cut the surface into four congruent simply connected pieces. The points with
vertical normal occur at the catenoidal ends C1 and C2, and at two points H1
and H2 in the handle. Let’s focus on the piece in which the boundary curves
meet counter clockwise in the points C1, C2, V2, V1 in this order. Using the
horizontal symmetry and a Mobius transformation of the upper half plane, we
can assume that these points correspond to ∞, 0, 1/a, a for some real number
a > 1. Observe that the assumed symmetry about the horizontal coordinate
plane is realized by a reflection at the unit circle in the upper half plane. Then
it is easy to see that by

G(z) =
1√
a
z−1/2(z − 1/a)−1/2(z − a)1/2

dh = dz/z

any catenoid with a handle and the assumed symmetry properties would be
given by this formula. The problem is that no matter how one tries to adjust
the parameter a, it is impossible to close all periods: The two boundary curves
between C1 and C2 and between V1 and V2 are supposed to lie in plane x1 = 0,
but the formula only guarantees that they lie in parallel planes, see the left image
in Figure 1.

3 The Harmonic Catenoid with a Handle

To understand how it is possible to canonically overcome this problem, it helps
to switch to the global picture for a moment: A catenoid with a handle would

172 M. Weber

Fig. 1. Minimal Catenoid with Handle and Unclosed Period and Harmonic Catenoid
with a Handle

be defined on a rectangular torus, where the Weierstrass data G(z) and dh
have become a meromorphic function and 1-form. The representation formula 1
parametrizes a well-defined surface if and only if all the periods of the forms ωj

are purely imaginary. This is not the case, as ω1 has still a real period (while both
other forms have purely imaginary periods). This can be remedied by adding a
suitable multiple of the holomorphic 1-form dz of the torus to ω1. In fact, this
problem can be corrected uniquely on any compact Riemann surface in a unique
way, as the real parts of its periods determine a holomorphic 1-form uniquely.
This uniqueness guarantees that all assumed symmetries of the putative minimal
surface will persist for the harmonic surface. Moreover, as we only modify the
surface by adding a holomorphic form, the asymptotic behavior of the surface
won’t change. In our case, this means that the surface will still have ends asymp-
totic to a catenoid. This shows that for any a > 1, there is a unique harmonic
catenoid with a handle and with all symmetry properties as claimed.

More generally, using the same approach, we can prove:

Theorem 1. Let Σ be an immersed surface, diffeomorphic to a disk, so that
the boundary of Σ̄ consists of finitely many symmetry curves that lie in vertical
planes. Assume that all points with vertical normal occur only at intersection
points of the boundary and possibly at the ends of the surface. Also assume that
reflection at the vertical symmetry planes extends the surface to a surface Σ̂ of
finite topological type whose ends are asymptotic to catenoidal or planar ends.
Then there is a harmonic surface Σ̃ whose boundary is isotopic to that of Σ in
each symmetry plane. It is given by a Gauss map G(z) and a height differential
dh as in equation (2) using a modified Weierstrass representation ω̃j = ωj + φj,
where the φj extend to holomorphic 1-forms ω̃j. Any choice of the parameters
aj determines the φj uniquely.

Construction of Harmonic Surfaces with Prescribed Geometry 173

References

1. Fujimori, S., Weber, M.: Triply periodic minimal surfaces bounded by vertical sym-
metry planes. In: Manuscripta Mathematica, pp. 29–53 (2009)

2. Hoffman, D., Karcher, H.: Complete embedded minimal surfaces of finite total cur-
vature. In: Osserman, R. (ed.) Encyclopedia of Mathematics, pp. 5–93. Springer,
Heidelberg (1997)

3. Schoen, R.: Uniqueness, symmetry, and embeddedness of minimal surfaces. Journal
of Differential Geometry 18, 791–809 (1983)

A Library of
OpenGL-Based Mathematical

Image Filters

Martin von Gagern1 and Christian Mercat2

1 Zentrum Mathematik (M10), TU München, 85748 Garching, Germany
2 I3M/LIRMM, cc 51, Université Montpellier 2, France

Abstract. There are a lot of transformations that can turn one raster
image into a derived one in a mathematically interesting way. This article
describes a collection of such filters, implemented in OpenGL in order to
use the high degree of parallelism modern GPUs provide, thereby provid-
ing performance required to process e.g. live camera images in real-time.
The filters contained in this library include wallpaper groups, confor-
mal maps described by meromorphic functions, as well as hyperbolic
symmetry groups. Using examples of increasing complexity, several key
implementation techniques are explained, including texture wrap config-
urations, user-configurable control points, and custom fragment shader
programs. This work might exhibit aesthetic aspects of mathematics to
the masses and provide useful building blocks for scientists as well as
artists.

Keywords: Transformation, tiling, wallpaper group, conformal map,
meromorphic function, hyperbolic geometry, GPU, parallelism, webcam.

1 Introduction

1.1 Definition

In this article, an image filter is a piece of program code which can transform
an input raster image to generate an output raster image.

Most filters have a set of parameters tuning their behavior. Besides common
numeric parameters, control points are of special interest. A control point is a
point that can be moved around in the input image and that will influence the
resulting output image. Parameters can be interactive, so that modifying one
parameter might implicitly adjust other parameters as well. Some filters might
allow mathematical formulas as parameter input.

Our image filters are implemented in OpenGL so that most of the actual
image transformation can be computed on the GPU. With this approach we
expect to be able to provide sizable result images based for example on a live
video stream from a webcam, while maintaining a decent frame rate.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 174–185, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Library of OpenGL-Based Mathematical Image Filters 175

1.2 Motivation and Prior Art

The basic ideas for this collection of image filters come from a number of previ-
ous projects. There is morenaments euc, an application written by Martin von
Gagern which allows a user to draw in any of the 17 wallpaper groups of the
Euclidean plane. From that project derived morenaments hyp, a similar appli-
cation for hyperbolic ornaments, for which some essential design principles were
demonstrated at the ICMS 2006.

The combination of these two areas led to the investigation of possible con-
formal transformations of Euclidean ornaments into hyperbolic ones, in close
cooperation with Jürgen Richter-Gebert. In the course of this project the use of
OpenGL fragment shader programs for rendering of hyperbolic ornaments was
developed as well.

Christian Mercat is author of Conformal Webcam[1], a Java application ap-
plying a freely chosen meromorphic function to a live image from a webcam.

Each author’s project could benefit a lot from the ideas of the other. Eval-
uating the complex function for the Conformal Webcam in a fragment shader
program would greatly increase performance and therefore mitigate the prob-
lem of slow frame rates. On the other hand, using a live image as input for
a hyperbolic ornament would give another stunning visual effect, impressively
exhibiting the performance of this GPU-based approach. This gave rise to the
ideas outlined below.

1.3 Composition of the Library

We intend to build a library of image filters which are of pedagogical or artis-
tic interest. The idea is to visualize an abstract mathematical notion as the
deformation of a picture.

In the long run the library will likely cover topics from complex analysis,
crystallography, group theory, hyperbolic geometry, differential equations, dif-
ferential geometry, and surfaces.

Currently, the real-time computability and the use of OpenGL are central
criteria for the implementation as part of this library. However, in the long run
it might make sense to extend the library beyond what is possible under these
restrictions.

In the beginning the collection of filters will consist of two major groups:
symmetric ornaments and conformal maps. Symmetric ornaments include the
well known 17 Euclidean wallpaper groups as well as the infinite number of
hyperbolic counterparts.

The filters for conformal maps describe transformations of the plane onto itself
via an arbitrary meromorphic function. This allows visualization of a large class
of interesting non-linear transformations.

Other groups of filters are likely to be added in the future.
The latest source code as well as news on the current development status can

be obtained from http://martin.von-gagern.net/2010-icms/

http://martin.von-gagern.net/2010-icms/

176 M. von Gagern and C. Mercat

1.4 A Word on Symmetry

The image filters described below will conceptually map a single rectangular
image to the whole (Euclidean or hyperbolic) plane, usually using some form of
repetition. At least in the case of the Euclidean plane, the resulting image is a
portion of the infinite result. This repetitiveness is not a strong requirement for
future additions to the library, though.

When describing the form such a repetition takes, it is useful to name the
underlying symmetry group. In most cases, this will be one of the 17 wallpaper
groups of the Euclidean plane. This article will usually state both the crystallo-
graphic group name (starting with a letter p or c) as well as the corresponding
orbifold symbol.[2] The latter provide a concept which easily extends to the hy-
perbolic plane as well.

1.5 Short Introduction to OpenGL

OpenGL is a complex and powerful graphics API. This section introduces only
those aspects relevant to explanations below. While the primary application of
OpenGL is the preferably photorealistic rendering of three-dimensional scenes,
it can be used to render two-dimensional abstract images as well, simply by
placing all objects in a plane, using an orthogonal projection and disabling all
lighting effects.

An OpenGL application describes a scene as a set of geometric primitives, e.g.
triangles. Attributes can be associated with each vertex of these primitives. The
attribute most important here is the so-called texture coordinate. After loading
an image as a texture, these texture coordinates can be used to fill the interior of
the primitive by projective interpolation of the corresponding part of the texture
image.

The texture interpolation process described above is the common case, called
the fixed functionality pipeline and hard-wired into older graphics cards. More
recent hardware supports the application to replace this fixed functionality with
custom code, called a fragment shader program. This allows for very powerful
calculations. The important fact is that these calculations are executed on the
GPU for several pixels in parallel. Due to the large number of shading units on
the GPU, this tends to be a lot faster than the same calculations would be if
calculated on a single CPU core. Exploiting this parallelism for mathematical
visualization is one of the aims of the project described in this article.

Each instance of a fragment shader program is responsible for the color of a
single pixel (except when supersampling). As a consequence of the parallelism,
there can be no communication between these programs, so the program should
be structured in such a way that it can handle calculations for every pixel in-
dependently. Shader programs for OpenGL are written in the OpenGL Shading
Language, which looks a lot like C, but provides built-in support for vectors,
matrices and other things useful for geometric calculations. The source code of
this program is compiled by the graphics card driver software.

A Library of OpenGL-Based Mathematical Image Filters 177

2 Explanation by Examples

Some things are best explained by example. So this section will describe a num-
ber of image filters in some detail, in order to demonstrate implementation tech-
niques employed by other filters as well. The examples start simple, and their
descriptions build on those of preceding examples.

2.1 Tiled Rectangles and Wraparound Parameters

Probably one of the simplest transformations is simple tiling. Copies of a rectan-
gular input image are placed adjacently to cover the whole plane. The underlying
symmetry group consists only of translations. It is the wallpaper group p1, also
denoted with the orbifold symbol ◦.

Implementing this kind of transformation is very simple indeed. The input
image is loaded into the OpenGL context as a texture. An orthogonal projection
is chosen for the result image. The scene, as described in OpenGL, can consist of
a single quad, spanning the area of the result image. Suitable texture coordinates
for the corners of the quad will determine the number of repeats of the texture
within the result image. The texture has to be configured with GL_REPEAT wrap
parameters for both directions.

�
(0,0)

�
(1,0)

�(1,1)�(0,1)

(a) The input texture

�
(0,0)

�
(3,0)

�(3,3)�(0,3)

(b) A simple tiling

Fig. 1. A simple tiling with texture coordinates

As a variation of this approach, one can replicate the input image using re-
flections instead of translations along one or both its axes. Translations in one
direction and reflections in the other give the wallpaper group pm (orbifold
symbol ∗∗), while reflections along all the edges of the input image yield the
wallpaper group pmm (orbifold symbol ∗2222). Both of these are implemented
using the above setup with GL_MIRRORED_REPEAT instead of GL_REPEAT for one
or both directions.

The techniques presented up to here are far from new; many computer games
employ the wraparound parameters to render all kinds of background textures,
including wallpapers.

178 M. von Gagern and C. Mercat

(a) Wallpaper group pm (b) Wallpaper group pmm

Fig. 2. Using different reflections

2.2 Wallpaper Groups and Fixed Functionality Pipeline

To make things more interesting, let’s look at kaleidoscopes next. A kaleidoscope
consists of a set of mirrors arranged in such a way that the generated reflections
line up and form a periodic pattern. Replacing the physical mirrors with mirror
reflections, the whole setup can be flattened into the Euclidean plane.

There are four possible kaleidoscope groups. Three of them use three mirrors,
while the last one requires four mirrors.

Table 1. Kaleidoscope groups

Interior angles
(

π
3
, π

3
, π

3

) (
π
4
, π

2
, π

2

) (
π
6
, π

3
, π

2

) (
π
2
, π

2
, π

2
, π

2

)
Symmetry group p3m1 p4m p6m pmm

Orbifold symbol ∗333 ∗442 ∗632 ∗2222

While the group pmm might be applied to the whole rectangular input image,
the kaleidoscopes using three mirrors cut out a triangular part of any image, to
be used as the fundamental domain of the resulting symmetric pattern. This is
where parameters come into play: we want to give users the freedom to choose the
section of the input image on which they want to operate. This is best achieved
by three control points, corresponding to the three corners of the triangle.

Moving one control point should move the triangle as a whole, while changes
to the other two control points can be used to control size and orientation of
the selected triangle. The shape is determined by the symmetry group and will
remain fixed. Obviously, adjusting one of these points will adjust the others as
well, which is the reason why control points are not independent input parame-
ters, but instead modification of one will influence the others as well. The user
interface has to take this kind of interaction into account.

In the OpenGL scene, this kind of pattern can no longer be expressed using a
single quad and suitable wrap parameters for the input texture. Instead, every
copy of the fundamental domain has to be expressed separately, using one tri-
angle or quad each. The texture coordinates associated with the vertices align
it with the portion of the input texture selected using the control points.

A Library of OpenGL-Based Mathematical Image Filters 179

(a) Input with control points (b) Output

Fig. 3. The wallpaper group p3m1

Fig. 4. The spectrum of fundamental domains for p3

Moving from kaleidoscopes to general wallpaper groups, new challenges arise.
We’ll demonstrate them using the wallpaper group p3 (orbifold symbol 333) as
an example. That’s the symmetry group obtained by taking only the orientation-
preserving elements of p3m1.

The fundamental domain of p3 has twice the size of that of p3m1. But where
the shape of the fundamental domain of p3m1 had to be an isosceles triangle,
bounded by the lines of reflection, no such restriction applies to p3. Even if we
restrict the fundamental domain to be a convex polygon, there is still a whole
spectrum of possible shapes, illustrated in Figure 4. Of these, the rhombus and
the regular hexagon are probably the most regular and thus the most aesthetic
ones, but certainly not the only possibilities.

This calls for yet another set of three control points, to control the shape of
the fundamental domain. Moving any one of these three points will move the
others as well.

While most applications probably never use it, it is possible to draw arbitrary
convex polygons in OpenGL. Therefore the scene description can be implemented
in a straight-forward way, without having to cut the polygons into triangles first.

Similar techniques can be used to implement all 17 wallpaper groups.
They all rely only on the so called fixed functionality pipeline: textures and ge-

ometric primitives only, without any custom shader code. This is because the map

180 M. von Gagern and C. Mercat

from destination positions to source positions is piecewise projective, in this case
even piecewise affine.

2.3 Conformal Maps and Programmable Vertex Shaders

Everybody is used to visualizing a function from the plane to the real numbers,
like precipitation maps: simply color the target space R with colors and plot
each point (x, y) of the domain space R2 by the color f(x, y).

A generic conformal filter operates on C instead of R2. It simply paints a
point z of the domain space (i.e. output image) with the color of the point f(z)
in the target space (i.e. input image) where f is some meromorphic function
such as tan, exp, or log. Most keys on a calculator are seen as real functions but
have an analytic continuation as a meromorphic function.

The complex differentiability is visualized by the fact that the picture in the
domain space, away from singularities, is to the first order around z a simple
similitude of parameter 1/f ′(z), since locally the function behave as f(z + z0) =
f(z0) + z · f ′(z0) + o(|z|). In particular, the zeros of the derivative are very easy
to spot as the similitude ratio tends to infinity. There, the function is no longer
conformal, it behaves locally as a monomial, f(z+z0)−f(z0) = f(k)(z0)

k! zk+o(zk)
and the angles through z0 are divided by k, replicating the features k times.
Other striking points are the logarithmic singularities. Christian Mercat used
his Conformal Webcam during a master course on complex analysis.

As these meromorphic functions cannot reasonably be expressed as piecewise
projective maps, they have to be implemented using a different technique.

In order to get a whole plane from the single rectangular input, we can again
wrap that input at its edges, with or without reflections, just as we did for the
most simple tilings. Another thing we can take from these simple tilings is using
a single quad spanning the output image as the whole scene description.

In order to map the texture onto that quad according to the exponential
function, we have to replace the fixed functionality affine mapping with our own
generic fragment shader. This fragment shader calculates suitable texture coor-
dinates for every pixel of the result image by evaluation of the specified complex
function. Then it determines the fragment color through a texture lookup.

(a) f(z) = z3 + c (b) f(z) = log z
2π

· (3
4
+ 3i)

Fig. 5. Some conformal maps

A Library of OpenGL-Based Mathematical Image Filters 181

Control points in the user interface could be passed as complex-valued con-
stants into the formula, e.g. to configure specific features of the transformation,
like the position of a singularity.

2.4 Basic Hyperbolic Tilings

A similar approach could be used for tilings in the hyperbolic plane.
In our opinion, the most aesthetic model of the hyperbolic plane is the Poincaré

disk model. It represents the whole hyperbolic plane as the interior of the unit
circle. Hyperbolic lines are modeled as circle arcs perpendicular to the unit cir-
cle, including lines through the origin as the special case of circles with infinite
radius. The hyperbolic angle measure corresponds to the Euclidean angle be-
tween tangents. Due to this fact the model is conformal. The measure of length
appears distorted, so that lines of equal hyperbolic length appear smaller the
closer they are to the rim of the unit circle.

Fig. 6. The Poincaré model of the hyperbolic plane, illustrating multiple lines through
P not intersecting g as well as a rule with steps of equal hyperbolic length

Orientation-preserving isometric transformations of the hyperbolic plane can
be expressed as projective transformations of the complex line. Orientation-
reversing transformations additionally require complex conjugation. To be more
precise, we describe hyperbolic transformations using this formula:(

x + yi
z + wi

)
�→

(
c− di a + bi
a− bi c + di

)
·
(
x + pyi
z + pwi

) x, y, z, w∈R
a, b, c, d∈R

p∈{−1, 1}
(1)

where a, b, c, d, p characterize the transformation and x, y, z, w represent coordi-
nates of a point in CP1. Scaling transformation matrices so that their determi-
nants equal 1 (i.e. choosing a representative from SL(2,C)) will help to avoid
overflow when combining several transformations.

In order to render a hyperbolic tiling, we choose one fundamental domain at
the center of the unit disk as the one providing the image data. The custom
shader code will repeatedly apply generators of the group until the resulting
position falls within that fundamental domain. Then a texture containing at
least that fundamental domain is used to provide the actual color information.

182 M. von Gagern and C. Mercat

In a crude approach, the fundamental domain can be simply cut from the input
image. That means that a portion of the input image, delineated by circle arcs,
is simply interpreted as a portion of the Poincaré disk. Figure 8?? illustrates this
method. However, while being simple and fast, this approach is somewhat clumsy
from the mathematical point of view. Hyperbolic isometries which change the
placement of the fundamental domain within the unit disc also affect the shape of
the portion cut out from the input image, and the interpretation of that portion
with respect to the hyperbolic distance measure.

2.5 Conformal Hyperbolization and Chained Transformations

More elegant would be an explicit and mathematically sound transformation
step between the Euclidean input image and the hyperbolic fundamental domain.
Conformality turns out to be a suitable requirement for such a transformation.
On the one hand, as the angle measure is the same for the Euclidean plane and
the Poincaré model of the hyperbolic plane, conformality is a concept that easily
bridges the gap between both worlds. On the other hand, angles between objects
have a great impact on how we perceive an image composition. So preserving
angles will also preserve a lot of how an image actually looks to the human eye.

There is a way to conformally turn the fundamental domain of an Euclidean
ornament into a fundamental domain for a related hyperbolic ornament[3]. The
orbifold of the resulting hyperbolic ornament has the same topology as that of
the Euclidean ornament, but different combinatorics. In other words, it changes
(some of) the numbers in an orbifold symbol, while leaving all other parts of the
orbifold symbol unchanged. In general, as the sum of interior angles in hyper-
bolic geometry is always smaller than in Euclidean geometry, the angles have
to decrease and the numbers indicating the order of rotational centers therefore
have to increase. However, if some of the numbers increase enough, it is possible
for a single number to decrease as well.

The method used for the actual transformation of the fundamental domain
comes from the field of discrete differential geometry. The central concept is
called discrete conformal equality of triangle meshes[4], which I’ll briefly describe
here. Input consists of a triangle mesh, including full combinatoric information
as well as the lengths of all edges, and a target angle sum for each vertex. There
exists an algorithm to calculate a scale factor for each vertex, such that scaling
all edges by the factors associated with both their endpoints will result in a new
mesh, which will have the desired angle sums.

In particular, if the original triangulation corresponds to a topological disc
with designated corners, and if furthermore inner vertices are assigned a target
angle sum of 2π and edge vertices an angle sum of π, then corner angles can be
chosen at will, and the result will be a flat polygon with straight edges and the
desired angles at the corners.

This association of scale factors with vertices of a mesh is in a way a discretiza-
tion of the concept of continuous conformality. If the triangulation is sufficiently
fine, the map between both meshes will be close to what a continuous conformal
map would produce.

A Library of OpenGL-Based Mathematical Image Filters 183

A B
�AB

A B
fA·�AB ·fB

π

3

π

3

π

3

π

π
π

2π

Fig. 7. Small example of a discretely conformal map

I will not go into the details of the algorithm. Suffice it to say that it is based
on convex optimization. We are using an implementation of that algorithm called
Confoo, written by Martin von Gagern.

After the triangle mesh has been transformed, the interior of the triangles has
to be mapped as well. It turns out that superior to a simple affine interpolation is
a specific projective interpolation, chosen such that it maps not only corners onto
their images, but also the circumcircle of the source triangle to that of the target
triangle. This kind of interpolation will be continuous along the edges of the
triangles if and only if the two meshes are discretely conformally equivalent. The
corresponding projective transformation can be easily computed from the scale
factors associated with the vertices, and can be implemented in the projective
geometry model provided by OpenGL.

Putting it all together, this gives the following processing chain: First the
Euclidean input image is transformed into a hyperbolic image using discretely
conformal triangle meshes. This can be achieved using the fixed functionality
pipeline, with the input image as a texture, the target mesh expressed using
triangle primitives, and the texture coordinates chosen to express the required
projective interpolation. The resulting image is stored in an off-screen buffer and
then used in a second step as the texture for the calculation of a hyperbolic tiling
using a fragment shader program.

3 Applications

3.1 Edutainment

One major application of this library of filters is demonstrating mathematical
concepts to the masses in a pleasing and fascinating way. It is fairly easy to com-
bine a projection with a live camera feed, and as moving images tend to attract
attention, and the interaction possible via the live image invites experimenta-
tion, it should be possible to rouse people’s interest in the concepts behind these
images. Seeing as many people still associate mathematics with dry formulas, it
is important to show that the subject can be aesthetically beautiful as well.

184 M. von Gagern and C. Mercat

(a) Fundamental domain simply cut
from input image

(b) Conformal distortion of whole
input image

Fig. 8. Hyperbolic patterns with orbifold symbol ∗3333

3.2 Education

The pedagogical interest of such a setup, besides its appeal to students who see
their faces distorted, is to be able to change on the spot the image in order to
interactively show specific features of the transformation by simply pointing with
the finger. The functional relation between the actual image and its deformation
is rendered much more lively and concrete by the webcam animation, where a
still image doesn’t provide just enough information to make the connection.

In the classroom, some students will be named by their position on the plane
for example, this one is called zero, this other one +i, or −1 and so on, they
can hold signs to show to the camera. It helps making the learning process more
tangible.

3.3 Arts

While a simple setup as described above might be suitable for scientific insti-
tutions, exhibitions and schools, artists can probably make a lot more of it by
including these filters or their output into their own installations or other art-
works. The authors would appreciate notice of such applications.

Some of the filters discussed above are already implemented as Pure-Data
GEM plugins, but without using OpenGL and the benefits this can bring. Pure-
Data is a programming environment used in particular by artists and performers
to produce interactive sounds and images. It might be worthwhile to make the
OpenGL versions of these filters available to users of Pure-Data in order to reach
a wider audience.

For live performances, it would be nice if the artist could control the trans-
formations, in particular the position of control points, using features detected
in the input image. That way, an item moved around by the artist could
actually influence the transformation, adding even more dynamic to the
performance.

http://puredata.info/

A Library of OpenGL-Based Mathematical Image Filters 185

3.4 Derived Scientific Applications

Scientists might build on this library for their own applications. There are many
example applications out there doing complex 3D scenes in OpenGL, but rather
few examples of how to do elaborate 2D scientific computations in this way.
This set of filters and the corresponding front end application provide such an
example, and may serve as the basis for their own implementations, so they
won’t have to start from scratch.

All of these applications are freely available, as the library will be published
under the GNU General Public License. Other licenses might be available from
the authors upon request.

Acknowledgments. The authors would like to thank Jürgen Richter-Gebert for
his contributions to the hyperbolization of ornaments, as well as for his valuable
comments on a draft of this article. Thanks also to the user Hasec of Wikimedia
Commons, who took the photo used as the example input throughout this paper.

References

1. Mercat, C.: Conformal webcam, Images des Math., CNRS (March 2009),
http://images.math.cnrs.fr/Applications-conformes.html

2. Conway, J.H., Burgiel, H., Goodman-Strauss, C.: The Symmetries of Things. A.K.
Peters, Wellesley (2008)

3. von Gagern, M., Richter-Gebert, J.: Hyperbolization of Euclidean Ornaments. Elec-
tronic Journal of Combinatorics 16(2), R12 (2009)

4. Springborn, B., Schröder, P., Pinkall, U.: Conformal equivalence of triangle meshes.
In: ACM SIGGRAPH (2008)

http://images.math.cnrs.fr/Applications-conformes.html

MD-jeep: An Implementation of

a Branch and Prune Algorithm
for Distance Geometry Problems

Antonio Mucherino1, Leo Liberti2, and Carlile Lavor3

1 INRIA Lille Nord Europe, Villeneuve d’Ascq, France
antonio.mucherino@inria.fr

2 LIX, École Polytechnique, Palaiseau, France
liberti@lix.polytechnique.fr

3 Dept. of Applied Mathematics, State University of Campinas, Campinas-SP, Brazil
clavor@ime.unicamp.br

Abstract. We present MD-jeep, an implementation of a Branch & Prune
(BP) algorithm, which we employ for the solution of distance geometry
problems related to molecular conformations. We consider the problem
of finding the conformation of a molecule from the distances between
some pairs of its atoms, which can be estimated by experimental tech-
niques. We reformulate this problem as a combinatorial optimization
problem, and describe a branch and prune solution strategy. We discuss
its software implementation, and its complexity in terms of floating-point
operations and memory requirements. MD-jeep has been developed in
the C programming language. The sources of the presented software are
available on the Internet under the GNU General Public License (v.2).

1 Introduction

The Distance Geometry Problem (DGP) [4,5,8,13] is the problem of finding the
coordinates of a set of points from some known distances between pairs of such
points. There are different real-life applications where a DGP needs to be solved,
and the most interesting and challenging application arises in biology. Distances
between pairs of atoms of a molecule can be estimated through experiments
of Nuclear Magnetic Resonance (NMR), and such distances can be used for
formulating a DGP. DGPs arising in biology are usually referred to as Molecular
DGPs (MDGPs — whence the name of our software).

Proteins are important molecules, because they perform many important func-
tions in living beings. There is a web database, the Protein Data Bank (PDB) [1]
(web address: http://www.rcsb.org/), which is completely devoted to the three-
dimensional conformations of proteins. In fact, the conformation of a protein can
give insights on its dynamics in the cells, and therefore on its function. Currently,
the conformation and the function of many proteins are still not known: each
gene of recently sequenced genomes is potentially able to code for a protein (or
for more than one), but the corresponding conformation and function are still

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 186–197, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

MD-jeep: An Implementation of a Branch and Prune Algorithm 187

unknown. One way of solving this problem is to isolate each of such proteins and
to perform experiments of NMR in order to obtain a subset of distances between
pairs of their atoms. The successive step is to solve an MDGP.

The MDGP is, in its basic form, a constraint satisfaction problem, where
molecular conformations, that satisfy all the constraints based on the distances,
must be identified. This problem is often reformulated as a global continuous
optimization problem, where a penalty function, measuring the satisfaction of
the set of constraints, needs to be minimized. Different penalty functions have
been proposed over the years for the MDGP, and all of them contain several local
minima, where many traditional nonlinear descent methods can easily get stuck
at. The most common penalty function is the Largest Distance Error (LDE):

LDE(X) =
1
m

∑
i,j

| ||xi − xj || − dij |
dij

, (1)

where X = {x1, x2, . . . , xn} is a three-dimensional conformation of n atoms, and
m is the number of known distances dij .

Many techniques have been proposed for the MDGP, and the reader is referred
to [8,13] for a survey. However, there are only a few software for the MDGP
that are freely available for the scientific community. As an example, DGSOL

(http://www.mcs.anl.gov/~more/dgsol/) is based on the idea of approximating
the penalty function (in the continuous reformulation of the problem) with a se-
quence of smoother functions converging to the original objective function [14].
Other available software products are based on general meta-heuristic searches
for global optimization. Xplor-NIH (http://nmr.cit.nih.gov/xplor-nih/) has
been particularly designed for solving MDGPs arising from NMR experiments
[19], and it includes different functionalities. In particular, for the solution of
MDGPs, it makes use of heuristic methods (such as Simulated Annealing) and
local search methods (such as Conjugate Gradient Minimization). Finally, TINKER
(http://dasher.wustl.edu/tinker/) is a package for molecular modeling and de-
sign. It includes many force fields for attempting the prediction of protein confor-
mations from their chemical structure only. One of its functionalities, however, is
to solve MDGPs. TINKER implements the method for distance geometry proposed
in [6]. Solutions are found by applying the meta-heuristic Simulated Annealing
and they are successively equilibrated with Molecular Dynamics techniques.

Ever since 2006 [7,8,9,10,11,12,13,15,16,17], we have been working on a com-
binatorial reformulation of the MDGP. When some particular assumptions are
satisfied [12], the domain of the penalty function can be discretized, and, in par-
ticular, it can be seen as a binary tree containing positions for the atoms of the
considered molecule. Therefore, the optimization problem to be solved becomes
combinatorial, and we refer to this combinatorial reformulation as the Discretiz-
able MDGP (DMDGP). Both the MDGP and the DMDGP are NP-hard [7,18].

In order to solve instances of the reformulated problem, we employ a Branch &
Prune (BP) algorithm [12], which is strongly based on the binary tree structure
of the penalty function domain. The basic idea is to construct the binary tree
during the execution of the algorithm. At each iteration, two new nodes of the

188 A. Mucherino et al.

tree are added, which represent two new positions for a current atom xi. Then,
the feasibility of the two positions is checked, and branches of the tree containing
infeasible positions are pruned. This pruning phase allows for reducing the binary
tree very quickly, and for solving the DMDGP in a reasonable amount of time.
The BP algorithm has been shown to provide very accurate solutions on sets of
instances related to protein conformations.

In this paper, we present the software MD-jeep, which is an implementation
of the BP algorithm in the C programming language. We present in detail the
implementation strategies that are employed for an efficient execution of the BP
algorithm. In particular, we describe the strategy we consider for reducing to the
minimum possible the memory requirement and the floating-point operations.
Computational experiments are shown, and implementation issues regarding fu-
ture versions of the software are also discussed. MD-jeep is distributed under the
GNU General Public License (v.2) and it can be downloaded from the following
web address: http://www.antoniomucherino.it/en/mdjeep.php

The rest of the paper is organized as follows. In Section 2 we describe the
BP algorithm and we discuss several implementation details regarding the de-
velopment of MD-jeep. In Section 3 we present some computational experiments
obtained by using the developed software, and show how the outputs it provides
can be visualized by using visualization software. In Section 4 we discuss some
implementation issues related to future versions of MD-jeep. Section 5 concludes
the paper.

2 An Implementation of the BP Algorithm

2.1 The DMDGP and the BP Algorithm

Let G = (V,E, d) be a weighted undirected graph, where vertices in V =
{1, 2, . . . , n} correspond to the atoms of the considered molecule, and there is
an edge between two vertices if and only if the corresponding distance is known.
The weights d associated to the edges provide the numerical value of the known
distances. Instances of the DMDGP must satisfy the following two assumptions,
for a given ordering on V :

– {1, 2, 3} ⊂ V must be a clique, and, for each atom xi ∈ V with rank i > 3,
the set E must contain the three edges (i− 1, i), (i− 2, i) and (i− 3, i);

– for each triplet of consecutive atoms xi, xi−1 and xi−2, the triangular in-
equality on the corresponding distances must hold strictly:

di−2,i < di−2,i−1 + di−1,i.

When these two assumptions are satisfied, a binary tree of atomic positions can
be built and explored for solving the DMDGP (see Figure. 1). In fact, if the
positions for the first i − 1 atoms are already known, then there are only two
possible positions for the atom xi, because of the two assumptions. The binary
tree can be simply built by repeating recursively the same procedure on all the

MD-jeep: An Implementation of a Branch and Prune Algorithm 189

Fig. 1. An example of binary tree for a small molecule with n = 6 atoms. The boxes
show a complete path on tree, which corresponds to a solution to the DMDGP.

atoms forming the molecule (we provide more details regarding this procedure in
Section 2.4). Note that the binary tree has n layers, and all the possible positions
for the same atom xi can be found on the layer i of the tree.

The BP algorithm [12], that we use for solving instances of the DMDGP,
is strongly based on the structure of this binary tree. At each iteration of the
algorithm, two new positions for the current atom are computed by exploiting
the distances that must be known because of the assumptions. However, other
distances (which are not required by the assumptions) may also be known, and
they can be used for checking the feasibility of the computed atomic positions.
Therefore, during the search, branches of the binary tree are pruned as soon as
one of its positions are discovered to be infeasible. This pruning phase helps in
reducing the binary tree quickly, so that an exhaustive search of the remaining
branches is not computationally expensive.

More details on the assumptions of the DMDGP, on the construction of the
binary tree and on the BP algorithm can be found in [7,12]. Alg. 1 is a sketch of
the BP algorithm. The input parameters for the algorithm are i, the current
atom whose positions are searched, n, the total number of atoms forming the
molecule, and d, the subset of available distances. The condition | ||xi − xj || −
dij | < ε, ∀j < i, represents the pruning test that we employ for discovering
infeasible atomic positions. Since a perfect match on the floating-point arithmetic
of a computer machine is impossible, a tolerance ε is used (usually set to 0.001).
Note that the algorithm invokes itself recursively for working on the successive
atoms of the molecule. The output provided by the BP algorithm is the set of
solutions to the DMDGP.

2.2 Input Arguments

MD-jeep is written in the C programming language. It accepts as input a list of
distances on pairs of atoms of a molecule through a text file with a predefined
format. In particular, since we mainly work with protein conformations, some
additional information related to these molecules can also be specified in the

190 A. Mucherino et al.

Algorithm 1. The BP algorithm.
0: BP(i, n, d)

for (k = 1, 2) do
compute the kth atomic position for the ith atom: xi;
check the feasibility of the atomic position xi:
if (| ||xi − xj || − dij | < ε,∀j < i) then

the atomic position xi is feasible;
if (i = n) then

a solution is found;
else

BP(i + 1,n,d);
end if

else
the branch containing xi is pruned;

end if
end for

input file. Such additional information are currently not used during the exe-
cution of the BP algorithm, but they are included in the output files so that
other software can use them, together with the solutions provided by the BP
algorithm.

The general format of each single row of the input text file must be:

i j l u i atom j atom i amino j amino ,

where
− i the label of the first atom to which the distance refers;
− j the label of the second atom to which the distance refers;
− l the lower bound on the distance;
− u the upper bound on the distance;
− i atom the name of the atom i;
− j atom the name of the atom j;
− i amino the name of the amino acid the atom i belongs to;
− j amino the name of the amino acid the atom j belongs to.

Note that the names of the amino acids can be expressed in the standard 3-
digit code (e.g.: glycine is GLY). Naturally, i amino and j amino regard protein
conformations only. If there are no amino acids in the molecule, or if the names
of the amino acids are unknown, the symbol UNK (unknown) can be used.

It is important to note that the BP algorithm is currently able to solve
DMDGPs where exact distances d are provided, rather than lower and upper
bounds. However, the decision to include in the input text file two values l and
u has been taken in order to guarantee the compatibility of this format with the
future versions of the software, when lower and upper bounds will be considered.
Currently, only instances in which the lower bound l coincides with the upper
bound u can be solved.

MD-jeep: An Implementation of a Branch and Prune Algorithm 191

2.3 Instance Preprocessing

Once the input text file is read, some checks are performed before invoking the
BP algorithm. First of all, we need to verify if the instance in memory is actually
a DMDGP. In order to check this, the first assumption of the DMDGP is verified:
for each atom xi, the distances between xi and the three preceding atoms must
be known. Instead, we do not spend computational time for checking the second
assumption, for which all the triangular inequalities on the triplets on consecutive
atoms must hold strictly. We avoid this check because the probability for this
assumption not being satisfied is zero. If the distances contain errors or noise,
the (non-strict) triangular inequality can be checked for all the possible triplets
of atoms of the molecule. This is a necessary condition for the compatibility of
the distances given in input, and can be performed by MD-jeep by setting the
appropriate option.

2.4 An Efficient Implementation

The data from the input text file are stored into a predefined data structure,
PROBL, where each distance is represented by all the information provided on the
generic row of the input file. As a consequence, an array of n elements of this
data structure represents an entire instance of the DMDGP.

Let us suppose that the distance between the two atoms i and j is needed
sometimes during the execution of the BP algorithm. In order to find information
on the distance, it is necessary to scan the array PROBL until the corresponding
distance is found (if it is actually included in the considered instance). To avoid
scanning this array every time a distance is needed, we use a matrix of pointers
which is able to provide the location in PROBL of the needed distance by using the
two labels i and j. Of course, in this way, a bi-dimensional array of n2 integers
needs to be defined, but it is worth using this memory for speeding the algorithm
up.

Before invoking the BP algorithm, the angles θ among consecutive triplets of
atoms are computed, as well as the cosine of each torsion angle ω that is defined
by each quadruplet of consecutive atoms (details about these computations are
given in [7]). Each cos(ω) implies the definition of two possible values for ω,
which in turn implies two possible atomic positions for the corresponding atom.
At each iteration of the algorithm, the two atomic positions are computed as
follows. The matrix:

B′
i =

⎡⎢⎣ − cos θi−2,i − sin θi−2,i 0 −di−1,i cos θi−2,i

sin θi−2,i cos ωi−3,i − cos θi−2,i cos ωi−3,i − sin ωi−3,i di−1,i sin θi−2,i cos ωi−3,i

sin θi−2,i sin ωi−3,i − cos θi−2,i sin ωi−3,i cos ωi−3,i di−1,i sin θi−2,i sin ωi−3,i

0 0 0 1

⎤⎥⎦
is considered for computing the first position for xi, and the matrix:

B′′
i =

⎡⎢⎣ − cos θi−2,i − sin θi−2,i 0 −di−1,i cos θi−2,i

sin θi−2,i cos ωi−3,i − cos θi−2,i cos ωi−3,i sin ωi−3,i di−1,i sin θi−2,i cos ωi−3,i

− sin θi−2,i sin ωi−3,i cos θi−2,i sin ωi−3,i − cos ωi−3,i di−1,i sin θi−2,i sin ωi−3,i

0 0 0 1

⎤⎥⎦

192 A. Mucherino et al.

is considered for the second position. Note that the only difference between
B′

i and B′′
i is the sign of the sine of the torsion angle ωi−3,i. In the following

discussion, we will consider the symbol Bi for referring to any of the two matrices,
and the symbols B′

i and B′′
i when it will be important to discriminate between

the two matrices. In order to obtain the two sets of coordinates for xi, the two
matrices are multiplied by all the preceding matrices Bj , ∀j < i:

Q′
i = B4 · · ·Bi−1B

′
i Q′′

i = B4 · · ·Bi−1B
′′
i (2)

and the coordinates for the two positions for xi are given by:

[Q′
i(1, 4), Q′

i(2, 4), Q′
i(3, 4)] [Q′′

i (1, 4), Q′′
i (2, 4), Q′′

i (3, 4)] ,

where Q′
i(k, h) and Q′

i(k, h) refer to the element (k, h) of the two matrices.
Let us analyze the complexity of this procedure. All the matrices that are

needed for computing an atomic position can be associated to the corresponding
vertex of the binary tree. For each atomic position, we need to compute the
matrix B′

i or the matrix B′′
i , and then we need to compute the matrix Q′

i or Q′′
i ,

respectively. In the worst case (in which BP never prunes), we would need mem-
ory for representing the full unpruned tree: the memory requirement would be
O(2× 2n−3), where n is the number of considered atoms. This memory require-
ment is huge for large molecules. Moreover, every time a new atomic position
is computed for xi, the product among i − 3 matrices needs to be performed.
For all the atomic positions belonging to the same layer i of the binary tree, the
complexity is O(i− 3).

In order to reduce both memory requirement and floating-point operations,
we consider the following strategy. The matrices Bi are needed for computing
the matrices Qi, from which the coordinates of the atomic positions can be
extracted. However, the matrix Qi related to the atom xi can also be computed
as:

Qi = Qi−1Bi, (3)

where Qi−1 is the matrix related to xi−1. Therefore, instead of considering all the
matrices Bj , with j < i, only the matrix Qi−1 can be exploited for calculating
Qi. This brings to two consequences. First, we can avoid to keep in memory
all the matrices Bi, because they are never used again after the computation of
Qi. Secondly, by using the expression (3) instead of (2), the calculation of each
atomic position, on any layer i of the binary tree, only needs the computation
of the product between two 4 × 4 matrices.

If all the matrices Qi are kept in memory, the new memory requirement in the
worst case is O(2n−3), which is still too large. Let us analyze a single iteration of
the BP algorithm. Two new matrices Q′

i and Q′′
i are computed for identifying the

two possible positions for xi. Both Q′
i and Q′′

i depend by the preceding matrix
Qi−1, which, after this computation, will never be used again. Until the search
is not backtracked on higher layers of the binary tree, the matrix Qi−1 keeps
the coordinates of the atom xi−1. However, when the search is backtracked, the
memory for Qi−1 can be released and used for storing the new matrix Qi−1

MD-jeep: An Implementation of a Branch and Prune Algorithm 193

corresponding to the branch currently being explored. In this way, the memory
requirement is decreased to O(n− 3).

The only evident flaw of this strategy is that found solutions are lost when the
search is backtracked: once a solution is found, the algorithm can continue the
exploration of the remaining branches of the binary tree, and the arrays where
the matrices Qi are stored are overwritten. For this reason, we print on text files
the solutions as soon as they are found. If only the best solution is required by
the user, we allocate memory for storing only another solution, where we keep
the best solution ever found during the search, and we print it at the end of the
execution.

2.5 Solutions in PDB Format

The solutions found by the BP algorithm are printed in text files in PDB for-
mat. Details about this format can be found on the web site of the Protein Data
Bank (http://www.rcsb.org/). The advantage in using this format is that it is
compatible with many other software for the management or for the visualiza-
tion of molecules. In particular, we use RasMol (http://www.rasmol.org/) for
visualizing the conformations obtained by the BP algorithm.

3 Experiments

MD-jeep was compiled by the GNU C compiler v.4.1.2 with the -O3 flag. We
performed the following experiments on an Intel Core 2 CPU 6400 @ 2.13 GHz
with 4GB RAM, running Linux.

The instances we consider were generated artificially by employing a com-
monly used technique [3,7,20]. We chose a subset of proteins from the PDB and
we extracted the backbone atoms from these molecules, i.e. the sequence of atoms
N−Cα−C. We computed all the possible distances between pairs of such atoms,
and we kept only the distances smaller than 6Å. This is done for simulating dis-
tances obtained through experiments of Nuclear Magnetic Resonance (NMR).
Actually, in order to simulate real NMR data [9,10], such distances should be
mainly related to hydrogen atoms, and they should be noisy. However, the aim
of the presented experiments is only to show how the developed software works.
For considering more realistic (and more complex) instances of the DMDGP, the
BP algorithm can be adapted as described, as an example, in [9,10,11,15,17].

Table 1 shows some computational experiments on a set of generated in-
stances, which can be downloaded at the same address as the sources of MD-jeep.
The label given to the each instance is the label of the corresponding downloaded
PDB file. In the table, n is the total number of atoms contained into the protein
conformation, m is the total number of available distances, #Sol is the number
of solutions found by the BP algorithm, best LDE is the penalty function value
(1) in correspondence with the best found solution, and, finally, the CPU time
is given in seconds for each experiment. All the experiments show that this im-
plementation of the BP algorithm is able to find very accurate solutions to the

194 A. Mucherino et al.

Table 1. Computational experiments on a set of artificially generated instances

instance name n m #Sol best LDE CPU time

1crn 138 846 2 5.79e-14 0.00
1hoe 222 1259 2 7.26e-14 0.00
1jk2 270 1816 8 5.63e-14 0.01
1a70 291 1628 2 3.25e-13 0.00
1fs3 372 2209 2 1.84e-13 0.01
1mbn 459 3200 8 2.08e-10 0.00
1rgs 792 4936 8 1.55e-13 0.06
1m40 1224 13823 2 2.46e-13 0.03
1bpm 1443 9303 2 8.87e-14 0.03
1n4w 1610 10920 2 2.58e-13 0.04
1mqq 2032 13016 8 5.40e-13 0.09
1rwh 2265 14057 2 4.49e-14 0.12
3b34 2790 19563 4 4.91e-12 0.15
2e7z 2907 27706 2 1.22e-12 0.18

problem (the best LDE is very close to 0 in all the cases), while the computa-
tional time is only a small fraction of seconds, even when the largest instances
are solved.

By setting the appropriate options, our software can provide the found solutions
in PDB format. The results can then be analyzed by using visualization software
for molecular conformations. In Figure 2 we show two different representations
of the best found solution corresponding to the instance 1mbn. These two pictures
have been created by using the software RasMol (http://www.rasmol.org/), which
accepts as input a protein conformation in PDB format. In the picture on the left,
all the atoms of the molecule are represented by small spheres having different

Fig. 2. Two different ways to represent with RasMol one of the solutions obtained by
the BP algorithm

MD-jeep: An Implementation of a Branch and Prune Algorithm 195

colors. The choice of the colors is made by RasMol by analyzing the additional
information that we inserted in our output files (in this specific case, the labels
for the atoms). In the picture on the right, only the trace of the protein backbone
is represented.

4 New Developments

We recently proposed an extention of the DMDGP, to which we refer as the
Discretizable Distance Geometry Problem (DDGP) [16]. In the DDGP in %3,
the assumptions for the discretization are relaxed:

– {1, 2, 3} ⊂ V must be a clique, and, for each atom xi ∈ V with rank i > 3,
there must exist three vertices j, k, h such that

j < i, k < i, h < i, (j, i), (k, i), (h, i) ∈ E, djk < dkh + dhi.

This new assumption allows for discretizing a larger subclass of distance geom-
etry problems, which are not necessarily related to molecular conformations. In
[16], a wide discussion on the main differences between the DMDGP and the
DDGP is presented. We point out that the DDGP can be also defined in spaces
with several dimensions.

Future versions of MD-jeep will also solve DDGPs. Even though the DDGP
can be seen an extention of the problem that MD-jeep is currently able to solve,
the extention of MD-jeep is not trivial. In particular, the strategy which is im-
plemented for the computation of the atomic positions cannot be used anymore:
such a strategy can be employed only when all torsion angles ω are defined by
consecutive quadruplets of atoms. As a consequence, we need to use an alterna-
tive strategy.

Let us suppose that all the atoms with rank smaller than xi have been already
placed somewhere and that the two possible positions for xi need to be found.
By the new assumption, there are three atoms xj , xk and xh that precede xi and
for which the three distances dji, dki, dhi are known. Therefore, three spheres
having center in xj , xk and xh and radius dji, dki and dhi, respectively, can be
defined. Since the triangular inequality djk < dkh +dhi holds, the intersection of
these three spheres can result in two different points, which are the two possible
positions for the atom xi.

The intersection of the three spheres can be computed by solving two linear
systems, as explained in [2]. As a consequence, two linear systems need to be
solved for finding the coordinates of each atomic position on the binary tree. It is
important to note that, differently from the strategy based on the torsion angles,
round-off errors can more easily propagate when solving these linear systems.
The main reason is that the new assumption for the DDGP does not require
the consecutivity among the three preceding atoms used for placing the current
atom xi. Therefore, spheres having different sizes are generally intersected, and
this helps the propagation of numerical errors.

In order to keep low the propagation of errors, we plan to implement two main
strategies. First, spheres having very different diameters bring to the definition of

196 A. Mucherino et al.

linear systems where the coefficient matrix is badly-scaled: elements on the rows
or on the columns of the matrix can be much larger than the others. Therefore,
we need to use a strategy for scaling the coefficient matrix before the solution of
the linear system. Secondly, the lost of the consecutivity assumption allows us to
choose which distances to use for building the binary tree, and which distances
to use for pruning. Since more than three distances between the current atom xi

and the predecessors may be available, there are different possible combinations
of distances that can be used for computing the two atomic positions. We plan
to develop a strategy for finding out which is the best triplet of distances, i.e.
which is the triplet of distances for which the propagation of errors is as low as
possible.

5 Conclusions

We presented MD-jeep, an implementation of the BP algorithm for solving in-
stances of the DMDGP. We discussed many aspects related to the development
of MD-jeep, from the input and output formats to the strategies that are consid-
ered for reducing the memory requirements and the floating-point operations.
The presented software is freely downloadable and usable, and it is distributed
under the GNU General Public License (v.2). Future releases of the software
will consider more general DMDGPs (for example, considering lower and upper
bounds on the distances) and the recently proposed DDGP.

Acknowledgments

The authors wish to thank Sonia Cafieri for the discussions on badly-scaled
matrices, and Virginia Costa and Luiz M. Carvalho for their help in the devel-
opment of the presented software. We would also like to thank the Brazilian
research agencies FAPESP and CNPq, the French research agency CNRS and
École Polytechnique, for financial support.

References

1. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Research 28,
235–242 (2000)

2. Coope, I.D.: Reliable Computation of the Points of Intersection of n Spheres in
n-space. ANZIAM Journal 42, 461–477 (2000)

3. Biswas, P., Toh, K.-C., Ye, Y.: A Distributed SDP Approach for Large-Scale
Noisy Anchor-Free Graph Realization with Applications to Molecular Conforma-
tion. SIAM Journal on Scientific Computing 30, 1251–1277 (2008)

4. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. John
Wiley & Sons, New York (1988)

5. Havel, T.F.: Distance Geometry. In: Grant, D.M., Harris, R.K. (eds.) Encyclopedia
of Nuclear Magnetic Resonance, pp. 1701–1710. Wiley, New York (1995)

MD-jeep: An Implementation of a Branch and Prune Algorithm 197

6. Hodsdon, M.E., Ponder, J.W., Cistola, D.P.: The NMR Solution Structure of In-
testinal Fatty Acid-binding Protein Complexed with Palmitate: Application of a
Novel Distance Geometry Algorithm. Journal of Molecular Biology 264, 585–602
(1996)

7. Lavor, C., Liberti, L., Maculan, N.: Discretizable Molecular Distance Geometry
Problem, Tech. Rep. q-bio.BM/0608012, arXiv (2006)

8. Lavor, C., Liberti, L., Maculan, N.: Molecular Distance Geometry Problem. In:
Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, 2nd edn., pp. 2305–
2311. Springer, New York (2009)

9. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: Discrete Approaches for Solving
Molecular Distance Geometry Problems using NMR Data. International Journal
of Computational Biosciences (to appear 2010)

10. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: Computing Artificial Backbones
of Hydrogen Atoms in order to Discover Protein Backbones. In: IEEE Conference
Proceedings, International Multiconference on Computer Science and Information
Technology (IMCSIT 2009), Workshop on Computational Optimization (WCO
2009), Mragowo, Poland, pp. 751–756 (2009)

11. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: An Artificial Backbone of Hy-
drogens for Finding the Conformation of Protein Molecules. In: Proceedings of the
Computational Structural Bioinformatics Workshop (CSBW 2009), Washington
DC, USA, pp. 152–155 (2009)

12. Liberti, L., Lavor, C., Maculan, N.: A Branch-and-Prune Algorithm for the Molec-
ular Distance Geometry Problem. International Transactions in Operational Re-
search 15(1), 1–17 (2008)

13. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular Distance Geometry
Methods: from Continuous to Discrete. International Transactions in Operational
Research (to appear 2010)

14. Moré, J.J., Wu, Z.: Distance Geometry Optimization for Protein Structures. Jour-
nal of Global Optimization 15, 219–223 (1999)

15. Mucherino, A., Lavor, C.: The Branch and Prune Algorithm for the Molecular
Distance Geometry Problem with Inexact Distances. In: Proceedings of World
Academy of Science, Engineering and Technology (WASET), International Con-
ference on Bioinformatics and Biomedicine (ICBB 2009), Venice, Italy, pp. 349–353
(2009)

16. Mucherino, A., Lavor, C., Liberti, L.: The Discretizable Distance Geometry Prob-
lem. Optimization Letters (in revision)

17. Mucherino, A., Liberti, L., Lavor, C., Maculan, N.: Comparisons between an Exact
and a MetaHeuristic Algorithm for the Molecular Distance Geometry Problem. In:
ACM Conference Proceedings, Genetic and Evolutionary Computation Conference
(GECCO 2009), Montréal, Canada, pp. 333–340 (2009)

18. Saxe, J.B.: Embeddability of Weighted Graphs in k-space is Strongly NP-hard. In:
Proceedings of 17th Allerton Conference in Communications, Control, and Com-
puting, Monticello, IL, pp. 480–489 (1979)

19. Schwieters, C.D., Kuszewski, J.J., Clore, G.M.: Using Xplor-NIH for NMR Molec-
ular Structure Determination. Progress in Nuclear Magnetic Resonance Spec-
troscopy 48, 47–62 (2006)

20. Wu, D., Wu, Z.: An Updated Geometric Build-Up Algorithm for Solving the Molec-
ular Distance Geometry Problem with Sparse Distance Data. Journal of Global
Optimization 37, 661–673 (2007)

TADD: A Computational Framework for

Data Analysis Using Discrete Morse Theory

Jan Reininghaus, David Günther,
Ingrid Hotz, Steffen Prohaska, and Hans-Christian Hege

Zuse Institute Berlin (ZIB), Takusstr. 7, 14195 Berlin, Germany
{reininghaus,david.guenther,hotz,prohaska,hege}@zib.de

http://www.zib.de

Abstract. This paper presents a computational framework that allows
for a robust extraction of the extremal structure of scalar and vector
fields on 2D manifolds embedded in 3D. This structure consists of criti-
cal points, separatrices, and periodic orbits. The framework is based on
Forman’s discrete Morse theory, which guarantees the topological con-
sistency of the computed extremal structure. Using a graph theoretical
formulation of this theory, we present an algorithmic pipeline that com-
putes a hierarchy of extremal structures. This hierarchy is defined by an
importance measure and enables the user to select an appropriate level
of detail.

Keywords: Discrete Morse theory, data analysis, scalar fields, vector
fields.

1 Motivation

We propose a computational framework to extract the extremal structure of
scalar and vector fields on 2D manifolds embedded in R3. The extremal structure
of a scalar field consists of critical points and separatrices – the streamlines of the
gradient field that connect the critical points. The extremal structure of a vector
field additionally includes periodic orbits – the streamlines that are closed.

These structures are of great interest in many applications and have a long
history [2,12]. Typically, the critical points are computed by finding all zeros
of the gradient or vector field. The critical points of a scalar field are classified
into minima, saddles, and maxima by the eigenvalues of its Hessian, while the
critical points of a vector field are classified into sinks, saddles, and sources by
the eigenvalues of its Jacobian. The respective eigenvectors can be used to com-
pute the separatrices as the solution of an autonomous ODE. For the numerical
treatment of these problems and the extraction of the periodic orbits, we refer
to [18,20,5].

One of the biggest challenges that such numerical algorithms face is the dis-
crete nature of the extremal structure which necessitates a lot of binary decisions.
For example, the type of a critical point depends on the sign of the eigenvalues.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 198–208, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.zib.de

TADD: Topological Analysis of Discrete Data 199

Depending on the input data, the resulting extremal structure may therefore
strongly depend on the algorithmic parameters and numerical procedures.

From a topological point of view this can be quite problematic. Morse theory
relates the extremal structure of a generic function to the topology of the man-
ifold, e.g. by the Poincaré-Hopf Theorem, or by the strong Morse inequalities
[13]. The topology of the manifold therefore restricts the set of the admissible
extremal structures.

Forman has developed a discrete version of Morse theory [7,8] for cell com-
plexes. A gradient or vector field is therein directly encoded in the combinatorial
structure of the cell complex, and their extremal structure is defined in a combi-
natorial fashion. A finite cell complex of a 2D manifold can therefore only carry
a finite number of combinatorial (gradient) vector fields, and their respective
extremal structure is consistent with the topology of the manifold.

The basic idea of our computational framework is to compute a combinato-
rial (gradient) vector field that represents our input data. Its extremal structure
can then be easily extracted and is always consistent with the topology of the
manifold. This topological consistency greatly improves the robustness of our
algorithm. In some sense it serves as an error correcting code: a single misclassi-
fication of a critical point cannot occur, as this would result in an inadmissible
extremal structure.

Note that the first implementation of Forman’s theory was presented by
Lewiner [11]. His combinatorial (gradient) vector fields were thereby based on
the construction of hypergraphs and hyperforests.

For the purpose of data analysis, the computed extremal structure is in general
too complex. This is especially true if one deals with noisy data. One is therefore
interested in a meaningful and consistent simplification of the extremal struc-
ture. Our framework allows for this by computing a sequence of combinatorial
(gradient) vector fields that represents the input field. The user is then able to
select an appropriate level of detail to efficiently analyze the data.

2 Computational Discrete Morse Theory

This section begins with a short introduction to discrete Morse theory in a graph
theoretical formulation. We then formulate an optimization problem that results
in a hierarchy of combinatorial (gradient) vector fields representing a given (gra-
dient) vector field [14]. For simplicity, we restrict ourselves to 2D manifolds while
the mathematical theory for combinatorial (gradient) vector fields is defined in
a far more general setting [7,8].

Let C denote a finite regular cell complex [9] of a 2D manifold. In this paper,
we call a cell complex regular if the boundary of each d-cell is contained in a
union of (d− 1)-cells.

Examples of such cell complexes that arise in practice are triangulations or
quadrangular meshes. We first define its cell graph G = (N,E), which encodes
the combinatorial information contained in C in a graph theoretic setting.

The nodes N of the graph consist of the cells of the complex C and each node
up is labeled with the dimension p of the cell it represents. The edges E of the

200 J. Reininghaus et al.

0

0

1

2

0

1

01

a) 0

1

2

0

1

01

b)
0

0

1

2

0

1

01

c)
0

0

1

2

0

1

01

d)

Fig. 1. Basic definitions. a) a combinatorial vector field (dashed) on the cell graph of a
single triangle. The numbers correspond to the dimension of the represented cells, and
matched nodes are drawn solid. b) a critical point of index 0. c) a 0-separatrix. d) an
attracting periodic orbit.

graph encode the neighborhood relation of the cells in C. If the cell up is in the
boundary of the cell wp+1, then ep = {up, wp+1} ∈ E. Note that we label each
edge with the dimension of its lower dimensional node.

A subset of pairwise non-adjacent edges is called a matching. Using these
definitions, a combinatorial vector field V on a regular cell complex C can be
defined as a matching of the cell graph G (see Figure 1a). The set of combinatorial
vector fields on C is thereby given by the set of matchings M of the cell graph G.

We now define the extremal structure of a combinatorial vector field. The
unmatched nodes are called critical points. If up is a critical point, we say that the
critical point has index p. A critical point of index p is called sink (p = 0), saddle
(p = 1), or source (p = 2). A combinatorial p-streamline is a path in the graph
whose edges are of dimension p and alternate between V and its complement.
A p-streamline connecting two critical points is called a p-separatrix. If a p-
streamline is closed, we call it either an attracting periodic orbit (p = 0) or a
repelling periodic orbit (p = 1). An illustration of the combinatorial extremal
structure is shown in Figure 1.

As shown in [4], a combinatorial gradient vector field V φ can be defined as
a combinatorial vector field that contains no periodic orbits. A matching of G
that gives rise to such a combinatorial vector field is called a Morse matching.
The set of combinatorial gradient vector fields on C is therefore given by the set
of Morse matchings Mφ of the cell graph G. In the context of gradient vector
fields, we refer to a critical point up as a minimum (p = 0), saddle (p = 1), or
maximum (p = 2).

We now define the optimization problem that results in a meaningful combi-
natorial representative of our input data f . Assume that f leads to edge weights
ω : E → R – we postpone their computation to Section 3.2. Assume further
that f is represented well if the weight of the matching is high. We can then
compute a combinatorial vector field to represent f by finding the maximum
weight matching in G

V = arg max
M∈M

ω(M). (1)

If we want to compute a combinatorial gradient vector field V φ we simply replace
M by Mφ. Note that this restriction of the admissible matchings makes (1) an
NP-hard problem in general [10].

TADD: Topological Analysis of Discrete Data 201

Due to the matching property, the number of critical points is given by
|N | − 2 |V |. We can therefore compute a combinatorial vector field with a pre-
scribed number of critical points by computing

Vk = arg max
M∈M, |M|=k

ω(M). (2)

Let k0 = |V | denote the size of the maximum weight matching, and let kn =
maxk∈N |Vk| denote the size of the heaviest maximum cardinality matching. From
a data analysis point of view, Vk0 is a fine grained while Vkn is the coarsest pos-
sible representation of the input data f . A hierarchy of combinatorial (gradient)
vector fields V can now be defined as the the sequence of matchings

V = (Vk)k=k0,...,kn
. (3)

The main task of our computational framework is to compute the sequence (3).

3 Algorithmic Pipeline

Our computational framework consists of five main parts, which the following
subsections describe in detail.

3.1 Input Data

Our computational framework requires as input a finite regular cell complex of
a 2D manifold embedded in R3 and a scalar or vector valued function f . We
assume that f is defined on the 0-cells of the complex. Because we will later
need data values on all cells, we extend f to the higher dimensional cells by
taking the average value of the incident lower dimensional cells.

3.2 Edge Weighted Cell Graph

Using the regular cell complex, we first construct its cell graph G = (N,E)
as defined in Section 2. A spatial embedding c : N → R3 of G can be defined
using the embedding of the cell complex in R3. The embedding of the nodes that
represent higher dimensional cells is thereby computed by taking the average of
the coordinates from the incident lower dimensional cells.

We now define the edge weights ω : E → R of this graph. In Section 2 we
assumed that f is represented well by a matching M , if the weight of M is large
(1). Let ep = {up, wp+1} denote an edge of the graph. If ep is a matching edge it
can be thought of as an arrow pointing from up to wp+1. We therefore assign a
large weight to ep if such an arrow reflects the flow behavior f well. In this paper,
we propose to measure the tangential flow of f along ep to achieve this. Using
Stokes Theorem, the edge weight ω for scalar input data f is thereby defined by

ω(ep) = f(wp+1) − f(up), (4)

202 J. Reininghaus et al.

whereas in case of vector field data f (assuming linear interpolation), its edge
weight is defined by

ω(ep) =
(
f(wp+1) + f(up)

) · (c(wp+1) − c(up)
)
/2. (5)

3.3 Matching Sequence

Given the edge weighted cell graph G, we now compute the sequence of maximum
weight matchings (3). We begin with an algorithm for the vector field case M.
We then use the introduced notation to describe an algorithm that approximates
(3) for the scalar field case Mφ.

Due to the assumed regularity of the cell complex C, the cell graph G is bipar-
tite – a simple bipartition can be derived from the dimension of the represented
cells. We can therefore employ the Hungarian method. This method is usually
employed to compute Vk0 , but can be directly applied to compute (3).

The following presentation of the Hungarian method closely follows [16]. The
basic idea is to start with V0 and then to iteratively compute the sequence (2).
In each iteration, the augmenting path of maximum weight is computed. An
augmenting path of a matching Vj is a path in the graph whose start and end
nodes are not covered by the matching and whose links alternate between Vj and
its complement. The weight of an augmenting path is defined as the alternating
sum of the weights of its links. Given an augmenting path p of maximum weight
we can augment the matching Vj to get Vj+1 by taking the symmetric difference
& of Vj and p. For an efficient computation of the augmenting path of maximum
weight we refer to [16].

To store the sequence of matchings (3) efficiently, we only store Vkn and
the sequence of augmenting paths that lead from Vk0 to Vkn [14]. Because the
augmenting paths of edge weighted cell graphs are usually rather short, this is
a lot more efficient in our context than storing all matchings of (3) individually.

The computation of (3) for the scalar field case Mφ is a lot more involved
– in general it is NP-hard [10]. We therefore propose a simple approximation
algorithm for this problem. The basic idea is to make use of Forman’s cancellation
theorem [8]. Using the graph theoretic formulation introduced in Section 2 this
theorem can be stated as follows:

If two unmatched nodes are connected by a unique p-separatrix s in a Morse
matching M ∈ Mφ, then M & s is a Morse matching.

The pseudo code for our approximation algorithm is shown in Algorithm 1.
The input consists of the cell Graph G and its edge weights ω. The output con-
sists of V φ

kn
and a list of augmenting paths. Together, these can be used to recon-

struct an arbitrary element of the sequence (3). The subfunction
getMaxUniqueSeparatrix(. . .) returns the unique p-separatrix of maximum
weight of the saddle u1. The 2D manifold structure of the cell graph G im-
plies that at most four p-streamlines emanate from u1 and that these cannot
split. The subfunction getMaxUniqueSeparatrix(. . .) therefore simply iterates
all (up to four) p-separatrices that start in u1. It then checks for uniqueness by
comparing their end nodes and returns the unique p-separatrix with the largest

TADD: Topological Analysis of Discrete Data 203

weight. If there is no unique p-separatrix at all, then an empty path is returned
with a weight of −∞. Note that there are always two 0-streamlines emanat-
ing from u1 and that these are always 0-separatrices. The 1-streamlines that
emanate from u1 however may end in the boundary of the manifold.

Algorithm 1. MorseMatchingSequence(G,ω)

Output: AugPaths, V φ
kn

1: M ← ∅, AugPaths ← ∅, heap ← ∅
2: for all u1 ∈ N do
3: (path, weight) ← getMaxUniqueSeparatrix(G,ω, M, u1)
4: heap.push(u1, weight)
5: while heap �= ∅ do
6: (u1, weight) ← heap.pop()
7: (path, weight) ← getMaxUniqueSeparatrix(G,ω, M, u1)
8: (nextNode, nextWeight) ← heap.top()
9: if weight ≥ nextWeight then

10: M ← M � path
11: if weight < 0 then
12: AugPaths.push(path)
13: else if −∞ < weight then
14: heap.push(u1, weight)
15: V φ

kn
← M

Line 1 initializes M as the empty matching, the list of augmenting paths
AugPaths, and a priority queue heap. All nodes representing 1-cells are then
inserted into this queue, ordered by the weight of their heaviest unique p-
separatrix, in Lines 2-4. We then iterate over the queue (Line 5), remove the
top element of the heap (Line 6) and compute its heaviest unique p-separatrix
(Line 7). This is necessary, as previous iterations may have affected this node.
We now check whether this p-separatrix is the heaviest of all available unique p-
separatrices. Assuming that augmenting the matching only decreases the weight
returned by getMaxUniqueSeparatrix(. . .), it suffices to check whether the
weight of u1 is larger than the weight of the next element of the heap (Lines
8-9). If this is the case, we augment the matching M by taking the symmet-
ric difference of M and path (Line 10), and store the augmenting path if its
weight is negative (Line 11-12). Otherwise, we reinsert u1 into the heap with its
new weight if it is larger than −∞ (Line 13-14). When the heap is empty the
algorithm terminates and returns an approximation of the heaviest maximum
cardinality Morse matching V φ

kn
.

3.4 Combinatorial (Gradient) Vector Field

The heaviest maximum cardinality (Morse) matching Vkn and the list of aug-
menting paths computed in the Section 3.3 allows for the reconstruction of an
arbitrary element of the sequence (3). Each matching can be restored by itera-
tively taking the symmetric difference of Vkn with the augmenting paths. This

204 J. Reininghaus et al.

enables the user to select a combinatorial (gradient) vector field with prescribed
number of critical points.

Alternatively, we can make use of the associated weight of each matching
as an importance measure. The user can set a fraction θ ∈ [0, 1] to select
a combinatorial (gradient) vector field with a weight as close as possible to
ω(Vk0) + θ (ω(Vkn) − ω(Vk0)). This approach can be useful in dealing with noisy
data. Noise induces a very complex extremal structure. The augmenting paths
corresponding to the spurious extremal structure, however, have a very large
weight. Setting θ to a small value therefore removes all spurious extremal struc-
tures while the dominant structure remains unchanged.

Note that taking the symmetric difference of a matching M with an augment-
ing path corresponds to the cancellation of a pair of critical points. In the scalar
case, the weight of such an augmenting path equals the difference of the scalar
values of these two critical points. The above importance measure is thereby
closely related to the persistence measure in [6].

3.5 Extremal Structure

Given a combinatorial (gradient) vector field, we can now extract its extremal
structure. As the critical points are the unmatched nodes up they can be easily
extracted. The classification into sources, saddles, sinks (minima, saddles, max-
ima) is given by p. To compute all separatrices, we iterate over all saddles u1

and compute the incident p-separatrices.
In the vector case, we also need to extract all periodic orbits. Due to the 2D

manifold structure, p-streamlines can not split when the first node is a 1-node.
Therefore, the extraction of periodic orbits is quite simple. First, we iterate over
all 1-nodes. Given a node u1, we start the computation of the p-streamlines that
emanates at u1. Each streamline is continued as long as the following node w1

is not yet labeled, in which case it is labeled with u1. If the label of w1 equals
u1 we add w1 to a set of seed points. We then iterate over all seed points to
compute all periodic orbits.

4 Examples

In this section, we present three applications of the computational framework
presented in Section 3. The framework was implemented as a module in the
visualization and data analysis software Amira [17]. It can be made available
to researchers for evaluation purposes. The integrated visualization capability of
Amira was used to assess the relevance of the computed extremal structures and
the practical quality of the approximation Algorithm 1.

The visualization of the abstract representation of the input data as a match-
ing in an edge weighted graph proved to be very useful in the development of
correct and efficient algorithms.

We first illustrate the ability to extract the extremal structure of a scalar field
where noise is present. We then apply our framework to a vector field on a 2D
manifold to show the physical relevance of the hierarchy of extremal structures

TADD: Topological Analysis of Discrete Data 205

a) b) c)

Fig. 2. Synthetic noisy scalar field. Extremal structure of a) V φ
k0

, b) V φ
kn−23 and c)

V φ
kn−11. Minima, saddles and maxima are depicted as blue, yellow and red spheres,

while 0-separatrices and 1-separatrices are shown as blue and red lines.

(3). The paper is concluded with an application to extremal lines of curvature
fields of a discrete 2D manifold. All examples were computed on a workstation
containing an Intel Core i7 860 CPU.

4.1 A Synthetic Noisy Scalar Field

To illustrate the robustness of our data analysis framework, we applied it to
a synthetic data set depicted as a height field in Figure 2. The data set was
produced by sampling the analytic function f : [−1, 1]2 → R

f(x, y) = sin(10 x) sin(10 y) e−3 (x2+y2) (6)

on a uniform triangulation with 16k vertices. We then added uniform noise in
the the range of [−0.05, 0.05] to the sub domain [0, 1] × [−1, 1]. We applied our
algorithmic pipeline presented in Section 3 to this input data. The runtime for
the computation of (3) using Algorithm 1 was less than a second on a standard
workstation. Figure 2 shows the extremal structure of the initial combinatorial
gradient field V φ

k0
, and two elements, V φ

kn−23 and V φ
kn−11, of the matching se-

quence (3). As can be seen in Figure 2a, V φ
k0

includes the extremal structure
induced by the noise. The simplified combinatorial gradient fields, however, only
contain the dominant extremal structure present in f .

4.2 A Vector Field from Biofluid Mechanics

Figure 3 depicts a surface velocity field of a simulation of blood flow through
a cerebral aneurysm done by the Biofluid Mechanics Lab of the Charité - Uni-
versitätsmedizin Berlin [3]. The cell graph of the triangulation consists of 60k
nodes. The runtime for the computation of (3) using a simple implementation
of the Hungarian method was about 30 minutes.

The critical points in this vector field are stagnation points and thus of interest
for the flow analysis. Our algorithm delivers a hierarchy of extremal structures
which captures the dominant nature of the flow (see Figure 3 bottom-left). The
blood enters the aneurysm at the bottom, and leaves it horizontally. This be-
havior is found by our algorithm and the global separation on the surface is
extracted. This reduced flow structure may serve as a basis when comparing
different cerebral aneurysms.

206 J. Reininghaus et al.

a) b) c)

Fig. 3. Vector field from biofluid mechanics. The vector field is visualized using the
streamline seeding technique described in [15]. The extremal structures of a) Vk0 , b)
Vkn−4 and c) Vkn are shown. Sinks, saddles and sources are depicted as blue, yellow
and red spheres. 0-separatrices and attracting periodic orbits are depicted as blue lines,
while 1-separatrices and repelling periodic orbits are shown as red lines.

a) b) c)

Fig. 4. Extremal lines in curvature fields. For all surface models, the first and second
principal curvatures κ1 and κ2 are computed. a), b) and c) show the most dominant
parts of 0-separatrices (blue) in κ1 and 1-separatrices (red) in κ2.

Table 1. Running time for Algorithm 1 with separatrix persistence [19] computation

Surface Model triangles nodes in G edges in G time (sec)

screwdriver 54300 162902 325800 1
dinosaur 112384 337154 674304 2

knot 957408 2872224 5744448 24

4.3 Extremal Lines in Curvature Fields

Figure 4 illustrates the extraction of extremal lines in curvature fields of differ-
ent surfaces. As described in [19], each point of a p-separatrix can be assigned
an importance value, called separatrix persistence. The main idea of separatrix
persistence is to measure the strength of monotony breaks with respect to the se-
quence of combinatorial gradient vector fields (3). For details how to incorporate
this measure into our computational pipeline, we refer to [19].

Separatrix persistence allows to discriminate spurious from dominant extremal
lines. These lines are shown in Figure 4. Note that a reduction to the most dom-
inant extremal parts destroys the connectivity of the extremal structure. The
total running time for the computation of (3) using Algorithm 1 and the com-
putation of separatrix persistence is shown in Table 1. The worst case complexity

TADD: Topological Analysis of Discrete Data 207

of Algorithm 1 is O(n3), where n denotes the number of edges in the triangu-
lation. However, the empirical running time for practical applications is almost
linear. The models are provided by Aim@Shape [1].

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable com-
ments that significantly improved the quality of this paper. The first author and
third author are funded by the DFG Emmy-Noether research program, while
the second author is funded by the Max-Planck Institute of Biochemistry, Mar-
tinsried. Finally, we would like to thank Jens Kasten, Michael Koppitz, Britta
Weber, Daniel Baum, and Tino Weinkauf for many fruitful discussions on this
topic.

References

1. Aim@Shape, http://shapes.aim-at-shape.net/
2. Cayley, A.: On contour and slope lines. The London, Edinburg and Dublin Philo-

sophical Magazine and Journal of Science 18, 264–268 (1859)
3. Cebral, J., Castro, M., Appanaboyina, S., Putman, C., Millan, D., Frangi, A.: Effi-

cient pipeline for image-based patient-specific analysis of cerebral aneurysm hemo-
dynamics: technique and sensitivity. IEEE Transactions on Medical Imaging 24(4),
457–467 (2005)

4. Chari, M.K.: On discrete Morse functions and combinatorial decompositions. Dis-
crete Math. 217(1-3), 101–113 (2000)

5. Chen, G., Mischaikow, K., Laramee, R.S., Pilarczyk, P., Zhang, E.: Vector field
editing and periodic orbit extraction using Morse decomposition. IEEE Transac-
tions on Visualization and Computer Graphics 13(4), 769–785 (2007)

6. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse complexes for
piecewise linear 2-manifolds. Discrete Computational Geometry 30, 87–107 (2003)

7. Forman, R.: Combinatorial vector fields and dynamical systems. Mathematische
Zeitschrift 228(4), 629–681 (1998)

8. Forman, R.: Morse theory for cell complexes. Advances in Mathematics 134, 90–145
(1998)

9. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
10. Joswig, M., Pfetsch, M.E.: Computing optimal Morse matchings. SIAM J. Discret.

Math. 20(1), 11–25 (2006)
11. Lewiner, T.: Geometric discrete Morse complexes. Ph.D. thesis, Department of

Mathematics, PUC-Rio (2005), advised by H. Lopes, G. Tavares
12. Maxwell, J.C.: On hills and dales. The London, Edinburg and Dublin Philosophical

Magazine and Journal of Science 40, 421–425 (1870)
13. Milnor, J.: Topology from the differentiable viewpoint. Univ. Press Virginia (1965)
14. Reininghaus, J., Hotz, I.: Combinatorial 2d vector field topology extraction and

simplification. In: Pascucci, V., Tricoche, X., Hagen, H. (eds.) Topology in Visual-
ization 2009 (to appear 2010)

15. Rosanwo, O., Petz, C., Prohaska, S., Hotz, I., Hege, H.C.: Dual streamline seed-
ing. In: Eades, P., Ertl, T., Shen, H.W. (eds.) Proceedings of the IEEE Pacific
Visualization Symposium, pp. 9–16 (2009)

http://shapes.aim-at-shape.net/

208 J. Reininghaus et al.

16. Schrijver, A.: Combinatorial Optimization. Springer, Heidelberg (2003)
17. Stalling, D., Westerhoff, M., Hege, H.C.: Amira: A highly interactive system for

visual data analysis. In: The Visualization Handbook, pp. 749–767 (2005)
18. Weinkauf, T.: Extraction of Topological Structures in 2D and 3D Vector Fields.

Ph.D. thesis, University Magdeburg and Zuse Institute Berlin (2008)
19. Weinkauf, T., Günther, D.: Separatrix persistence: Extraction of salient edges

on surfaces using topological methods. Computer Graphics Forum (Proc. SGP
2009) 28(5), 1519–1528 (2009)

20. Wischgoll, T., Scheuermann, G.: Detection and visualization of closed streamlines
in planar flows. IEEE Transactions on Visualization and Computer Graphics 7(2),
165–172 (2001)

Introduction to Normaliz 2.5

Winfried Bruns, Bogdan Ichim, and Christof Söger

Winfried Bruns, Universität Osnabrück, FB Mathematik/Informatik,
49069 Osnabrück, Germany

wbruns@uos.de

Bogdan Ichim, Institute of Mathematics “Simion Stoilow” of the Romanian Academy,
C.P. 1-764, 010702 Bucharest, Romania

bogdan.ichim@imar.ro

Christof Söger, Universität Osnabrück, FB Mathematik/Informatik,
49069 Osnabrück, Germany

csoeger@uos.de

Abstract. In this paper we introduce the version 2.5 of Normaliz , a
program for the computation of Hilbert bases of rational cones and the
normalizations of affine monoids. It may also be used for solving dio-
phantine linear systems of inequalities, equations and congruences. We
present some of the new features of the program, as well as some recent
achievements.

1 Introduction

Let C be a finitely generated pointed rational cone
in Rd, i.e. the set of linear combinations

∑n
i=1 aivi

of finitely many integral vectors vi with nonnegative
real coefficients ai such that x,−x ∈ C is only pos-
sible for x = 0. The set of lattice points C ∩Zd is an
affine monoid with unique finite minimal system of
generators, called its Hilbert basis. For the theory of
affine monoids and the notions of commutative alge-
bra used in this paper we refer the reader to [3]. In
the figure the Hilbert basis is marked by open circles.

The program Normaliz [5], version 2.5 (in the following simply called Normaliz),
is mainly a tool for computing Hilbert bases. Note that this task is NP-hard [11].

Several related computations are also integrated. Using Normaliz, one may
compute the following:

(1) the Hilbert basis and the support hyperplanes of a rational cone. The cone
may be given by:
(i) a system of generators;
(ii) a linear system of inequalities, equations and congruences (congruences

since version 2.5);
(iii) the binomial equations of the (monoid) generators (since version 2.5).

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 209–212, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

210 W. Bruns, B. Ichim, and C. Söger

(2) the lattice points and the support hyperplanes of an integral polytope;
(3) the generators of the integral closure of the Rees algebra of a monomial ideal

I ⊆ K[X1, . . . , Xn] and the generators of the integral closure of I.

If the associated monoid is homogeneous in a certain sense, then one may also
compute the h-vector and Hilbert polynomial of the monoid.

For the algorithms implemented see [9] (starting with version 1.0), [6] (intro-
duced in version 2.0) and [4] (some of the recent additions in version 2.5). A
description of the user interface (version 2.2) is contained in [7].

2 Interactions with other Software Systems

We provide the library normaliz.lib that make Normaliz accessible from Sin-
gular and also the package Normaliz.m2 [8] that make Normaliz accessible from
Macaulay2. Thus Singular or Macaulay2 can be used as a comfortable environment
for the work with Normaliz, and, moreover, Normaliz can be applied directly to
objects belonging to the classes of toric rings and monomial ideals.

Thanks to Andreas Paffenholz, Normaliz has been made accessible from poly-
make (see [12]).

3 New Features of the Program

In the following, we present the changes in the new version of Normaliz.

(1) First, there are some deep changes in the implementation of the program.
(i) The new version of Normaliz has full support for parallel computing.

Much better computation times can now be obtained on a multi-core
processor system.

(ii) Memory usage has been optimized.
(2) We have also done some algorithmic improvements, which have allowed us

to solve some computationally difficult questions (presented in [4]).
(i) We have introduced a new method for computing the Hilbert basis using

a partial triangulation (see [4] for details).
(ii) A new algorithm for computing the support hyperplanes has been

implemented. It uses Fourier-Motzkin elimination recursively and
allows computations in cones with many support hyperplanes and big
triangulations.

(iii) The shelling algorithm [6] has been improved.
(3) We have added a graphical interface called jNormaliz [2]. This interface is

written in Java. It allows us to combine the good portability (on different
operating systems) of the graphical elements provided by Java with the com-
putational advantages of the C++ implementation of Normaliz.

(4) The input modes have been augmented.
(i) We have introduced a new format for the input files allowing us to com-

bine systems of inequalities, equations and congruences. (In the previous
versions only a system of inequalities or a system of equations was al-
lowed as input). The new format is fully compatible with the old format.

Introduction to Normaliz 2.5 211

(ii) We have also added a new type of input called ”lattice ideal”. The in-
put is a matrix of vectors in Zn, representing binomial equations of the
monoid generators (see [3] Section 4.C for details).

(5) Now a better and finer specialization of the computations performed is
available.
(i) The user can now chose to compute only the height 1 elements of the

Hilbert basis of a homogeneous monoid. This is much faster than comput-
ing all the elements of the Hilbert basis and allows the fast computation
of the lattice points of an integral polytope.

(ii) The Hilbert basis can be computed using only a partial triangulation.
This is very fast in some particular but interesting cases (like the one
presented in Section 4).

(iii) Specific computations in cones with a large number of support hyper-
planes and big triangulations can now be made.

4 One Computational Example

We call a monoid M ⊆ Zd normal if M = C ∩ lattice(M) where C is the cone
generated by M . After an identification lattice(M) ∼= Zr, checking normality of
M amounts to verifying whether the Hilbert basis of C (with respect to Zr) is
contained in M .

An r1 × r2 × · · · × rN contingency table is a function T : {1, . . . , r1} × · · · ×
{1, . . . , rN} → Z+ where Z+ denotes the nonnegative integers. The j-th (N−1)-
marginal Tj of T is the r1×· · ·×rj−1×rj+1×· · ·×rN contingency table defined
by Tj(i1, . . . , ij−1, ij+1, . . . , iN) =

∑rj

k=1 T (i1, . . . , ij−1, k, ij+1, . . . , iN).
The r1 × r2 × · · · × rN contingency tables form the monoid O of integral

points in the nonnegative orthant of RD where D = r1 · · · rN . The assignment
T �→ (T1, . . . , TN) is a monoid homomorphism M from O into the monoid of
nonnegative integer points in Rd1+···+dN where dj = r1 · · · rj−1rj+1 · · · rN . The
image M(O) is called the monoid derived from r1 × r2 × · · · × rN contingency
tables (by taking line sums). For the role of these monoids and their normality
in algebraic statistics we refer the reader to Drton, Sturmfels and Sullivant [10]
and Sullivant [15].

Normality of monoids derived from r1 × r2 × · · · × rN contingency tables
by taking N − 1-marginals was settled almost completely by Ohsugi and Hibi
[14]. Using Normaliz one can now show computationally, that the monoids of the
missing cases 5 × 5 × 3, 5 × 4 × 3 and 4 × 4 × 3 are normal. For details we refer
the reader to [4]. Another (independent) computational solution to this problem
can be found using the software LattE for tea, too [13].

Note that this normality problem cannot be settled directly by using previ-
ously available software such as Normaliz version 2.2 or 4ti2 version 1.3.2 [1].
Both codes fail to return an answer due to time and to memory requirements of
intermediate computations.

Acknowledgement. B. Ichim was partially supported by CNCSIS grant RP-1
no. 7/01.07.2009 during the preparation of this work.

212 W. Bruns, B. Ichim, and C. Söger

References

[1] 4ti2 team. 4ti2 – A software package for algebraic, geometric and combinatorial
problems on linear spaces, http://www.4ti2.de

[2] Almendra, V., Ichim, B.: jNormaliz. A graphical interface for Normaliz,
http://www.math.uos.de/normaliz

[3] Bruns, W., Gubeladze, J.: Polytopes, rings, and K-theory. In: Springer Mono-
graphs in Mathematics (2009)

[4] Bruns, W., Hemmecke, R., Ichim, B., Köppe, M., Söger, C.: Challenging compu-
tations of Hilbert bases of cones associated with algebraic statistics. Exp. Math.
(in Press)

[5] Bruns, W., Ichim, B., Söger, C.: Normaliz. Algorithms for rational cones and affine
monoids, http://www.math.uos.de/normaliz

[6] Bruns, W., Ichim, B.: Normaliz: algorithms for affine monoids and rational cones.
J. Algebra (in Press)

[7] Bruns, W., Ichim, B.: Introduction to Normaliz 2.2. In: Breaz, D., et al. (eds.)
Proceedings of ICTAMI 2009, pp. 113–132. Acta Univ. Apulensis (2009)

[8] Bruns, W., Kämpf, G.: A Macaulay 2 interface for Normaliz (preprint),
http://arxiv.org/abs/0908.1308

[9] Bruns, W., Koch, R.: Computing the integral closure of an affine semigroup. Univ.
Iagel. Acta Math. 39, 59–70 (2001)

[10] Drton, M., Sturmfels, B., Sullivant, S.: Lectures on algebraic statistics. In: Ober-
wolfach Seminars, vol. 39. Birkhäuser, Basel (2009)

[11] Durand, A., Hermann, M., Juban, L.: On the complexity of recognizing the Hilbert
Basis of a linear diophantine system. In: Kuty�lowski, M., Wierzbicki, T., Pacholski,
L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 92–102. Springer, Heidelberg (1999)

[12] Joswig, M., Müller, B., Paffenholz, A.: Polymake and lattice polytopes. In: Krat-
tenthaler, C., et al. (eds.) DMTCS Proc. AK, Proceedings of FPSAC 2009, pp.
491–502 (2009)

[13] LattE for tea, too team. LattE for tea, too – A joint source code distribution of
the two software packages Latte macchiato und 4ti2, http://www.latte-4ti2.de

[14] Ohsugi, H., Hibi, T.: Toric ideals arising from contingency tables. In: Commuta-
tive Algebra and Combinatorics, Ramanujan Mathematical Society Lecture Note
Series, vol. 4, pp. 87–111 (2006)

[15] Sullivant, S.: Normal binary graph models. Ann. Inst. Stat. Math. (to appear)
(preprint) (arXiv:0906.178)

http://www.4ti2.de
http://www.math.uos.de/normaliz
http://www.math.uos.de/normaliz
http://arxiv.org/abs/0908.1308
http://www.latte-4ti2.de

Computer Algebra Methods in Tropical

Geometry

Thomas Markwig

Fachbereich Mathematik, Technische Universität Kaiserslautern
Postfach 3049, 67653 Kaiserslautern, Germany

keilen@mathematik.uni-kl.de

http://www.mathematik.uni-kl.de/~keilen

Tropical geometry is a young field of mathematics which allows to study prop-
erties of objects from algebraic geometry with the aid of methods from discrete
mathematics, like convex geometry and combinatorics. There are different ways
to introduce tropical varieties and to derive the connection between these and
their algebraic counterparts. We use a way, where the connection is concrete and
where Gröbner basis techniques can be used to to establish it in both directions.

For this we consider the field � of Puiseux series. The elements of � are
generalised power series of the form a = c1 · tα1 + c2 · tα2 + . . . , where ci ∈ �
and the αi ∈ � have a common denominator and α1 < α2 < α3 < This
field is algebraically closed and thus suitable for algebraic geometry. Moreover,
it comes with a non-archimedean valuation val : �∗ −→ � : a �→ α1. We call
lc(a) := c1 the leading coefficient of a.

We are interested in studying the vanishing locus

V (I) := {p ∈ (�∗)n | f(p) = 0 ∀ f ∈ I}
of an ideal I ��[x], x = (x1, . . . , xn). For this we degenerate our variety V (I)
by applying componentwise the valuation map, and we call

Trop(I) := {− val(p) | p ∈ V (I)} ⊂ �n

the tropical variety defined by I. The definition gives a clear connection between
the algebraic variety V (I) and its tropical counterpart Trop(I), but it does not
reveal its piecewise linear structure and it gives no clue on how to compute
Trop(I). The key to both questions lies in the lifting lemma, which can be
attributed in the hypersurface case to Kapranov (see [3]), and which is otherwise
connected to many people (see e.g. [9]).

Theorem 1 (Lifting Lemma). Trop(I) = {ω ∈ �n| inω(I) is monomial free}.
In this statement inω(I) denotes some kind of initial ideal that we still have
to introduce. We first want to emphasise that this description suggests that
Gröbner basis methods might be a suitable to study Trop(I).

In this note we want to address the following computational questions.

A) How can we compute inω(I)?
B) How can we lift a point ω from Trop(I) to a point p ∈ V (I)?
C) How can we compute Trop(I)?

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 213–216, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.mathematik.uni-kl.de/~keilen

214 T. Markwig

1 How to Compute inω(I)?

For a point ω ∈ �n and a polynomial f =
∑

β aβ · xβ with xβ = xβ1
1 · · ·xβn

n we
define the ω-degree degω(f) := max{− val(aβ) + β · ω | aβ �= 0} with β · ω :=∑n

i=1 βi · ωi, and we then define the initial form of f with respect to ω as
inω(f) :=

∑
− val(aβ)+β·ω=degω(f) lc(aβ) ·xβ ∈ �[x] and the initial ideal of I with

respect to ω as inω(I) = 〈inω(f) | f ∈ I〉 ��[x].
We can use Gröbner basis techniques to compute the initial ideal of I with

respect to ω. For this we have to consider the uniformising parameter t in � as
an additional variable, and we need a suitable monomial ordering on monomials
in t and x. We fix some monomial ordering > on the monomials in x and define

tα · xβ >ω tα
′ · xβ′

:⇐⇒ degω

(
tα · xβ

)
> degω

(
tα

′ · xβ′)
or(

degω

(
tα · xβ

)
= degω

(
tα

′ · xβ′)
and xβ > xβ′)

.

It is then straight forward to see the following result (see [7]).

Theorem 2. Given f1, . . . , fk ∈ �[t,x], I = 〈f1, . . . , fk〉��[x] and a Gröbner
basis G of J = 〈f1, . . . , fk〉 ��[t,x] w.r.t. >ω. Then inω(I) = 〈inω(g) | g ∈ G〉.
Multiplying the generators by some power of t and applying a transformation of
the form t �→ tN we can assume that I is generated by elements in �[[t]], and
Theorem 2 holds with �[t] replaced by �[[t]] as well. But from a practical point
of view we can only deal with polynomial coefficients over �. Thus the above
statement is good enough to treat the general situation in practice.

2 Two Interesting Cases of Tropical Varieties

2.1 I = 〈f〉 Defines a Hypersurface

Then inω(I) is generated by inω(f), and Trop(I) consists of those points ω for
which the initial form is not a monomial. Tropicalising the polynomial f to the
piecewise linear function trop(f) : ω �→ − val(aβ) + β · ω the initial form inω(f)
is not a monomial if and only if trop(f) is not differentiable at ω. Thus Trop(I)
is a piecewise linear hypersurface in �n in this case.

Using the library tropical.lib [5] from Singular we can visualise tropical
curves (n = 2). Using the software TropicalSurface by Lars Allermann [1] one
can also visualise tropical surfaces (n = 3).

2.2 Constant Coefficient Case: I Is Generated by Polynomials in
�[x]

By Theorem 2 it then suffices to compute Gröbner bases over �[x] and to check
if their initial forms are monomial free. If we call two points ω and ω′ in �n

equivalent if the corresponding initial ideals of I coincide, then the equivalence
classes are open convex cones forming the Gröbner fan of I. An immediate
corollary is thus the following.

Corollary 1. If I is generated by polynomials in �[x] then Trop(I) is a subfan
of the Gröbner fan of I.

Computer Algebra Methods in Tropical Geometry 215

3 How to Lift a Point from Trop(I) to V (I)?

We describe an algorithm (see [6]) for lifting a point ω ∈ Trop(I) to a point
p ∈ V (I) such that − val(p) = ω. The algorithm induces a proof of the inclusion
{ω ∈ �n | inω(I) is monomial free} ⊆ Trop(I) in the Lifting Lemma.

The idea is to intersect V (I) by certain linear forms , so that V (I) is zero-
dimensional. Then one constructs the point inductively. For this we choose a zero
(c1, . . . , cn) of inω(I) in (�∗)n and set pi = ci · tωi + h.o.t.. In order to compute
the higher order terms, we transform the ideal basically by xi �→ t−ωi · (xi + ci),
continue by computing a point ω′ in the tropical variety of the transformed ideal
I ′ and go on with this new ideal I ′ and this new point ω′.

The algorithm is a generalisation of the Newton-Puiseux algorithm for com-
puting parametrisations of plane curve singularities respectively generalisations
thereof for space curves (see [8] and [2]). However, in practice one has to deal
with a couple of problems:

– We can only compute the lifting up to a given order.
– To reduce to the zero-dimensional case one has to test if the linear forms are

general enough. This is done by a dimension computation.
– Even if we start with polynomials over �[t,x] it will be necessary to pass to

field extensions of � in order to compute zeros of the initial ideal.
– The recursion step may stop in some components and may go on in others.

To get rid of the components elimination and saturation are necessary.
– In each step we have to compute a tropical variety.

The algorithm is implemented in the Singular library tropical.lib [5].

4 How to Compute a Tropical Variety?

Right now, there is basically only one software package which allows to com-
pute tropical varieties for a larger class of ideals. This is the programme gfan
by Anders Nedergaard Jensen [4]. In gfan several algorithms for computing a
tropical variety are implemented which deal with different special cases. We will
only comment briefly on the most important one which allows to compute the
tropical variety of a prime ideal in the constant coefficient case. As mentioned,
the tropical variety is then a subfan of the Gröbner fan. Moreover, if I is a prime
ideal of dimension d, then Trop(I) is a pure d-dimensional fan and it is connected
in codimension one. The idea of the algorithm is now the following:

– Find a first d-dimensional cone C in Trop(I) by some heuristics.
– Compute all facets of C.
– Compute the adjacent d-dimensional cones of the Gröbner fan and go on in

the same way with these.

Since there are only finitely many d-dimensional cones and since one can pass
from any one to any other one in this way after finitely many steps one has
found all cones of Trop(I). Passing from one cone to another one involves lifting
Gröbner bases of initial ideals to full Gröbner bases, and can thus be done by
Gröbner basis techniques.

216 T. Markwig

References

1. Allermann, L.: Tropical hypersurfaces (2008),
http://www.mathematik.uni-kl.de/~allermann

2. Alonso, M.-E., Mora, T., Niesi, G., Raimondo, M.: An algorithm for computing
analytic branches of space curves at singular points. In: Proceedings of the 1992
International Workshop on Mathematics Mechanization, pp. 135–166. International
Academic Publishers (1992)

3. Einsiedler, M., Kapranov, M., Lind, D.: Non-archimedean amoebas and tropical
varieties. J. Reine Angew. Math. 601, 139–157 (2006)

4. Jensen, A.N.: Gfan, a software system for Gröbner fans (2007),
http://www.math.tu-berlin.de/~jensen/software/gfan/gfan.html

5. Jensen, A.N., Markwig, H., Markwig, T.: tropical.lib. A singular 3.0 library for
computations in tropical geometry (2007)

6. Jensen, A.N., Markwig, H., Markwig, T.: An algorithm for lifting points in a tropical
variety. Collect. Math. 59, 129–165 (2008)

7. Markwig, T.: Standard bases in k[[t1, . . . , tm]][x1, . . . , xn]. J. Symb. Comp. 43, 765–
786 (2008)

8. Maurer, J.: Puiseux expansions for space curves. Manuscripta Math. 32, 91–100
(1980)

9. Speyer, D., Sturmfels, B.: Tropical mathematics. math.CO/0408099 (2004)

http://www.mathematik.uni-kl.de/~allermann
http://www.math.tu-berlin.de/~jensen/software/gfan/gfan.html

A New Desingularization Algorithm for

Binomial Varieties in Arbitrary Characteristic

Roćıo Blanco�

Universidad de Castilla-La Mancha. Departamento de Matemáticas,
E.U. de Magisterio, Edificio Fray Luis de León,
Avda, de los Alfares 42, 16071 Cuenca, Spain

mariarocio.blanco@uclm.es

Abstract. We construct a combinatorial algorithm of resolution of sin-
gularities for binomial ideals, over a field of arbitrary characteristic. This
algorithm is applied to any binomial ideal. This means ideals generated
by binomial equations without any restriction, including monomials and
p-th powers, where p is the characteristic of the base field.

In particular, this algorithm works for toric ideals. However, toric
geometry tools are not needed, the algorithm is constructed following the
same point of view as Villamayor algorithm of resolution of singularities
in characteristic zero.

Keywords: Resolution of singularities, Binomial ideals.

1 Introduction

In the particular case of binomial ideals, there exist some specific methods of
resolution of singularities for binomial varieties with suitable restrictions, spe-
cially in the case of toric ideals. For normal toric varieties over an algebraically
closed field of arbitrary characteristic see [7] and [4]. Non necessarily normal
toric varieties are treated in [5] and [8].

Bierstone and Milman construct in [1] an algorithm of resolution of singulari-
ties, free of characteristic, for reduced binomial ideals with no nilpotent elements.
In particular, their algorithm applies to toric ideals. During this resolution pro-
cess p-th powers are never obtained at the transform ideals. In fact, this algo-
rithm can not treat p-th powers of the type (yγx1 − bxβ)ps

.
In this paper we consider binomial ideals without any kind of restriction, and

we construct an algorithm of resolution of singularities for these binomial ideals
in arbitrary characteristic that provides combinatorial centers of blowing-up.
This type of centers preserve the binomial structure of the ideal after blowing-
up, what let us ensure the existence of a hypersurface of maximal contact which
to make induction on the dimension of the ambient space.

Blowing up only combinatorial centers we obtain a locally monomial ideal as
output. By applying our algorithm again, we can assure to obtain a log-resolution
� Research partially supported by MTM2007-64704, MTM2009-07291.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 217–220, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

218 R. Blanco

of the beginning ideal and an embedded desingularization of the corresponding
binomial variety with good properties. Full text of this paper is available at [2].

One of the key points of this new algorithm is that it can be implemented.
The SINGULAR library “resbin.lib” (RESolution of BINomial ideals) allows to
compute explicitly a resolution of singularities of a binomial ideal over a field
of arbitrary characteristic. This library is a joint work with Professor Gerhard
Pfister, from Technical University Kaiserslautern.

1.1 Combinatorial Algorithm

Let K be an algebraically closed field of arbitrary characteristic, W will be the
regular ambient space. At any stage of the resolution process, W = ∪iUi, where
Ui

∼= An
K . Locally, inside any affine chart Ui, we consider an open set W .

At the beginning of the resolution process W = Spec(K[x1, . . . , xn]), where
dim(W) = n. Fix the normal crossing divisor E = {V1, . . . , Vn}, where Vi =
V (xi) for each 1 ≤ i ≤ n.

Let J ⊂ K[x] = K[x1, . . . , xn] be a binomial ideal (generated by monomial
and binomial equations). After a blowing up W ′ → W , binomial equations of
the type

1 − μxδ, with μ ∈ K, δ ∈ Nn

appear naturally in the transform ideal of J . The points ξ′ ∈ W ′ outside the
exceptional divisor where 1 − μxδ vanishes, satisfy xδ(ξ′) �= 0. We denote as yi

each variable xi that do not vanish anywhere over V (J) ∩ V (1 − μxδ).
The binomial equations of J of the form 1 − μyδ are said to be hyperbolic

equations of J . In what follows we work in localized rings of the type K[x, y]y.

Remark 1. At any stage of the resolution process, inside any chart Ui we consider
the open set

W = Spec(K[x, y]y) = Spec(K[x1, . . . , xs, y1, . . . , yn−s]y) ⊂ An
K .

The normal crossing divisor E is a set of normal crossing regular hypersurfaces
in An

K , such that

E = {V (x1), . . . , V (xs), V (y1), . . . , V (yn−s)}.
In the open set Spec(K[x, y]y) we have E∩Spec(K[x, y]y) = {V (x1), . . . , V (xs)}.
Remark 2. Fixed a normal crossing divisor E as above, we define a modified
order function, the E-order. Given a binomial ideal J , the E-order function
(associated to J), E−ordJ , computes the order of the ideal J along E ∩W .

Definition 1. Let J ⊂ OW be an ideal, c a positive integer. We call E-singular
locus of J with respect to c to the set,

E−Sing(J, c) = {ξ ∈ W/ E−ordξ(J) ≥ c}.
We give the idea of the running of the algorithm.

A New Desingularization Algorithm 219

Algorithm 1. Let J ⊂ OW be a binomial ideal without hyperbolic equations,
with respect to a normal crossing divisor E. Fix a reduced Gröbner basis of J .
Consider the factorization J = M · I where the ideal M is defined by a normal
crossings divisor supported by the current exceptional locus.
At the beginning OW = K[x], E = {V (x1), . . . , V (xn)} and J = I.

1. We proceed by blowing-up combinatorial centers inside the E-singular locus
of J, whereas E−Sing(J,max E−ord(J)) �= ∅.
At some step we obtain J ′ = M ′ · I ′ with E−Sing(J ′,max E−ord(J)) = ∅.
This means that the maximal E-order of the ideal J has dropped.

2. • If max E−ord(I ′) > 0 then consider E−Sing(J ′,max E−ord(J ′)) �= ∅
and go to step 1.

• Otherwise, max E−ord(I ′) = 0. In this case, there are two possibilities:
∗ I ′ = 1, J ′ is already a principal ideal.
∗ There are hyperbolic equations in I ′. So we pass to the localization, go

to step 1 and continue the resolution process with the non hyperbolic
equations of I ′.

We continue the resolution process until either I ′ = 1 (J ′ is a principal ideal)
or I ′ is given only by hyperbolic equations.

Example 1. Consider the binomial ideal J =< (x1 − x2x3)2, x2
2 − x3

3 >⊂ K[x],
char(K) = 2. Take the origin as center of blowing up. At the affine chart where
we divide by x1, the total transform of J is of the form:

J∗ =< x2
1 > · < (1 − x1x2x3)2, x2

2 − x1x
3
3 > .

We notice that a hyperbolic equation has appeared in J∗. In a neighborhood of
a point ξ where xi(ξ) �= 0 for i = 1, 2, 3, the total transform of J can be written:

J∗
ξ =< y2

1 > · < (1 − y1y2y3)2, 1 − y1y
−2
2 y3

3 > .

Remark 3. It is known that the reduced Gröbner basis of a binomial ideal is
binomial, see [6].

Remark 4. Given a binomial ideal J , the algorithm 1 provides a locally monomial
resolution of J . This means that the total transform of the ideal J is a monomial
ideal with respect to a local system of parameters.

Our aim is to achieve a log-resolution of J , which is reached by applying
algorithm 1 again.

Remark 5. The step from the locally monomial resolution to the log-resolution
modifies the singular points included in the hyperbolic hypersurfaces.

Remark 6. Let X be a binomial variety. Algorithm 1 provides an embedded
desingularization of X . See [2] for details.

220 R. Blanco

References

1. Bierstone, E., Milman, P.: Desingularization of toric and binomial varieties. J. Al-
gebraic Geom. 15(3), 443–486 (2006)

2. Blanco, R.: Combinatorial resolution of binomial ideals in arbitrary characteristic
(preprint) arXiv:0902.2887v1 [math.AG]

3. Blanco, R., Encinas, S.: Embedded desingularization of toric varieties. Journal of
Symbolic Computation: Special Issue, Symbolic and Algebraic Computation (ac-
cepted for publication) (preprint) arXiv:0901.2211v2 [math.AG]

4. Cox, D.: Toric varieties and toric resolutions. In: Resolution of Singularities (Ober-
gurgl, 1997). Progr. Math., vol. 181, pp. 259–284. Birkhäuser, Basel (2000)

5. González Pérez, P.D., Teissier, B.: Embedded resolutions of non necessarily normal
affine toric varieties. C. R. Math. Acad. Sci. Paris 334(5), 379–382 (2002)

6. Eisenbud, D., Sturmfels, B.: Binomial ideals. Duke Math. J. 84(1), 1–45 (1996)
7. Kempf, G., Knudsen, F.F., Mumford, D., Saint-Donat, B.: Toroidal embeddings. I.

LNM, vol. 339. Springer, Berlin (1973)
8. Teissier, B.: Monomial ideals, binomial ideals, polynomial ideals. In: Trends in Com-

mutative Algebra. Math. Sci. Res. Inst. Publ., vol. 51, pp. 211–246. Cambridge Univ.
Press, Cambridge (2004)

An Algorithm of Computing Inhomogeneous

Differential Equations for Definite Integrals

Hiromasa Nakayama and Kenta Nishiyama

Department of Mathematics,
Graduate school of Science, Kobe University,

1-1 Rokkodai, Nada-ku, 657-8501, Kobe, Japan
JST CREST,

5 Sanbancho, Chiyoda-ku, 102-0075, Tokyo, Japan
{nakayama,nisiyama}@math.kobe-u.ac.jp

Abstract. We give an algorithm to compute inhomogeneous differen-
tial equations for definite integrals with parameters. The algorithm is
based on the integration algorithm for D-modules by Oaku. Main tool
in the algorithm is the Gröbner basis method in the ring of differential
operators.

Keywords: integration algorithm, holonomic functions, D-module,
Gröbner basis.

1 Introduction

Let us denote by D = K〈x1, . . . , xn, ∂1, . . . , ∂n〉 the Weyl algebra in n variables,
where K is Q or C and ∂i is the differential operator standing for xi. We denote
by D′ = K〈xm+1, . . . , xn, ∂m+1, . . . , ∂n〉 the Weyl algebra in n − m variables,
where m ≤ n and D′ is a subring of D.

Let I be a holonomic left D-ideal ([8]). The integration ideal of I with respect
to x1, . . . , xm is defined by the left D′-ideal

(I + ∂1D + · · · + ∂mD) ∩D′.

Oaku ([6]) gave an algorithm computing the integration ideal. This algorithm is
called the integration algorithm for D-modules. The Gröbner basis method in D
is used in this algorithm.

We give a new algorithm computing not only generators of the integration
ideal J but also P0 ∈ I and P1, . . . , Pm ∈ D such as

P = P0 + ∂1P1 + · · · + ∂mPm

for any generator P ∈ J . Our algorithm is based on Oaku’s one. We call these
P1, . . . , Pm inhomogeneous parts of P . As an important application of our algo-
rithm, we can obtain inhomogeneous differential equations for definite integrals
with parameters by using generators of the integration ideal and inhomogeneous
parts.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 221–232, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

222 H. Nakayama and K. Nishiyama

For example, we compute an inhomogeneous differential equation for the inte-
gral A(x2) =

∫ b

a e−x1−x2x3
1dx1. This is the case of m = 1, n = 2. The annihilating

ideal of the integrand f(x1, x2) = e−x1−x2x3
1 in D is I = 〈∂1+1+3x2x

2
1, ∂2+x3

1〉.
The integration ideal of I with respect to x1 is J = 〈27x3

2∂
2
2 +54x2

2∂2+6x2+1〉 =
〈P 〉. The operator P1 = −(∂2

1 + 3∂1 + 3) is an inhomogeneous part of P . We
apply the operator P to the integral A(x2) and obtain

P · A(x2) =
∫ b

a

∂1(P1 · e−x1−x2x3
1)dx1 =

[
P1 · e−x1−x2x3

1

]x1=b

x1=a

= −
[
(9x2

2x
4
1 − 3x2x

2
1 − 6x2x1 + 1)e−x1−x2x3

1

]x1=b

x1=a
.

In this way, we get an inhomogeneous differential equation for the integral A(x2).
We will give an algorithm to compute inhomogeneous parts of the integration

ideal and give some examples. Other algorithms to compute differential equa-
tions for definite integrals are the Almkvist-Zeilberger algorithm ([1], [10], [2]),
the Chyzak algorithm ([4]) and the Oaku-Shiraki-Takayama algorithm ([7]). A
comparison with these algorithms are also given.

We implement our algorithms on the computer algebra system Risa/Asir
([11]). They are in the program package nk restriction.rr ([14]). Packages
Mgfun in Maple and HolonomicFunctions in Mathematica offers an analogous
functionality, and are based on the Chyzak algorithm ([12], [13]).

2 Review of the Integration Algorithm for D-Modules

We will review the integration algorithm for D-modules. We define the ring
isomorphism F : D → D satisfying

F(xi) =

{
−∂i (1 ≤ i ≤ m)
xi (m < i ≤ n)

,F(∂i) =

{
xi (1 ≤ i ≤ m)
∂i (m < i ≤ n)

.

This map is called the Fourier transformation in D.
The integration ideal of a left holonomic D-ideal I with respect to x1, . . . , xm

is defined by the left D′-ideal J = (I + ∂1D + · · · + ∂mD) ∩D′.

Algorithm 1 (Integration algorithm for D-modules, [6], [8]).

Input: Generators of a holonomic left D-ideal I and
a weight vector w = (w1, . . . , wm, wm+1, . . . , wn) such that w1, . . . , wm >
0, wm+1 = · · · = wn = 0.

Output: Generators of the integration ideal of I with respect to x1, . . . , xm.

1. Compute the restriction module of the left D-ideal F(I) with respect to the
weight vector w. The details of the computation are as follows.
(a) Compute the Gröbner basis of the left D-ideal F(I) with respect to the

monomial order <(−w,w). Let the Gröbner basis be G = {h1, . . . , hl}.

An Algorithm of Computing Inhomogeneous Differential Equations 223

(b) Compute the generic b-function b(s) of F(I) with respect to the weight
vector (−w,w).

(c) If b(s) has a non-negative integer root, then we set
s0 = (the maximal non-negative integer roots).
Otherwise, the integration ideal is 0 and finish.

(d) mi = ord(−w,w)(hi),
Bd = {∂i1

1 · · · ∂im
m | i1w1 + · · · + imwm ≤ d} (d ∈ N) ,

r = #{(i1, . . . , im) | i1w1 + · · · + imwm ≤ s0} = #Bs0 .

(e) B̃ =
l⋃

i=1

{h̃iβ := ∂βhi | ∂β ∈ Bs0−mi},

B = {hiβ := h̃iβ |x1=···=xm=0 | h̃iβ ∈ B̃}.
Here, hiβ =

∑
∂α∈Bs0

gα∂
α (gα ∈ D′).

2. Let (D′)r be the left free D′-module with the base F−1(Bs0), i.e. (D′)r =∑
∂α∈Bs0

D′xα. Regard elements in F−1(B) as elements in the left D′-module
(D′)r. In other words, F−1(hiβ) =

∑
∂α∈Bs0

gαx
α (gα ∈ D′) is regarded as

an element in (D′)r. Let M be the left D′-submodule in (D′)r generated by
F−1(B).

3. Compute the Gröbner basis G of M with respect to a POT term order such
that the position corresponds to x0 = 1 is the minimum position. Output
G′ = G ∩D′. This set G′ generates the integration ideal of I.

We consider the following definite integral of a holonomic function f(x1, . . . , xn).

A(xm+1, . . . , xn) =
∫

R

f(x1, . . . , xn)dx1 · · · dxm, R =
m∏

i=1

[ai, bi]

Let I = AnnDf := {P ·f = 0 | P ∈ D} be the annihilating ideal of the integrand,
and J be the integration ideal of I. For every p ∈ J , there exist p1, . . . , pm ∈ D
such that

p−
m∑

i=1

∂ipi ∈ I

and we have

p · A(xm+1, . . . , xn) =
∫

R

p · fdx1 · · ·dxm =
∫

R

m∑
i=1

(∂ipi) · fdx1 · · · dxm

=
m∑

i=1

∫
R

∂i(pi · f)dx1 · · · dxm. (1)

Therefore, if we take an integration domain such that the right hand side of (1)
equals to zero, we can regard the integration ideal as a system of homogeneous
differential equations for the integral A(xm+1, . . . , xn). If the right hand side is
not zero, the equation (1) gives an inhomogeneous differential equations for the
function A.

224 H. Nakayama and K. Nishiyama

3 Computing Inhomogeneous Parts of the Integration
Ideal

In this section, we give a new algorithm of computing inhomogeneous differential
equations for definite integrals. For the purpose, we must find an explicit form
pi (1 ≤ i ≤ m) in the equation (1) in the section 2.

Theorem 1. Let J ⊂ D′ be the integration ideal of a holonomic left D-ideal I.
For any p ∈ J , there exists an algorithm to compute differential operators pi ∈ D
(1 ≤ i ≤ m) such that

p−
m∑

i=1

∂ipi ∈ I. (2)

Proof. We will present an algorithm of obtaining operators pi. By applying Al-
gorithm 1, we obtain a generating set {g1, . . . , gt} of the integration ideal of
I. It is sufficient to compute inhomogeneous parts for each generator gj. From
the step 3 of Algorithm 1, gj can be expressed as gj =

∑
qjiβF−1(hiβ) where

qjiβ ∈ D. Then these qjiβ ∈ D can be computed by referring the history of the
Gröbner basis computation in the step 3. Therefore, we have

I (
∑

qjiβF−1(h̃iβ) = gj −
(
gj −

∑
qjiβF−1(h̃iβ)

)
= gj −

∑
qjiβ

(
F−1(hiβ) −F−1(h̃iβ)

)
= gj −

∑
qjiβ

(
F−1(h̃iβ |x1=···=xm=0) −F−1(h̃iβ)

)
= gj −

∑
qjiβF−1(h̃iβ |x1=···=xm=0 − h̃iβ).

Since each term of h̃iβ |x1=···=xm=0 − h̃iβ can be divided from the left by either
of x1, . . . , xm, each term of F−1(h̃iβ |x1=···=xm=0 − h̃iβ) can be divided from the
left by either of ∂1, . . . , ∂m. Thus we can rewrite

∑
qjiβF−1(h̃iβ |x1=···=xm=0 − h̃iβ) =

m∑
i=1

∂ipij .

Let us present our algorithm.

Algorithm 2

Input: Generators of a holonomic left ideal I ⊂ D and
a weight vector w = (w1, . . . , wm, wm+1, . . . , wn) such that w1, . . . , wm >
0, wm+1 = · · · = wn = 0.

Output: Generators {g1, . . . , gt} of the integration ideal of I w.r.t. x1, . . . , xm

and operators pij ∈ D satisfying gj −
∑m

i=1 ∂ipij ∈ I for each generator gj

(1 ≤ j ≤ t).

An Algorithm of Computing Inhomogeneous Differential Equations 225

1. Apply Algorithm 1.

2. Compute qjiβ satisfying gj =
∑

qjiβF−1(hiβ) by referring the history of the
Gröbner basis computation in the step 3 of Algorithm 1.

3. Rewrite Rj := gj −
∑

qjiβF−1(h̃iβ) to the form of Rj =
m∑

i=1

∂ipij .

Output pij .

Example 1 (Incomplete Gauss’s hypergeoemtric integral).
We set

F (x) =
∫ q

p

tb−1(1 − t)c−b−1(1 − xt)−adt.

We will compute a differential equation for the integral F (x). A holonomic ideal
annihilating the integrand f(x, t) = tb−1(1 − t)c−b−1(1 − xt)−a is

If =〈(−x2 + x)∂2
x + ((−t + 1)∂t + (−a− b− 1)x + c− 1)∂x − ab,

(−t + 1)x∂x + (t2 − t)∂t + (−c + 2)t + b− 1, (tx− 1)∂x + at〉

which is obtained by using Oaku’s algorithm to compute the annihilating ideal
of a power of polynomials. The generic b-function of F(If) with respect to the
weight vector w = (1, 0) (i.e. t’s weight is 1 and x’s weight is 0) is s(s−a+c−1).
We assume that a− c+ 1 is not a non-negative integer. Then the maximal non-
negative integer root s0 of b(s) is 0. Therefore, the integration ideal of If with
respect to t is

〈(−x2 + x)∂2
x + ((−a− b− 1)x + c)∂x − ab〉 = 〈P 〉.

The differential equation P · g = 0 is Gauss’s hypergeometric equation. The in-
homogeneous part of P is ∂t(−t + 1)∂x. We apply P to the integral F (x) and
obtain the inhomogeneous differential equation

P ·
∫ q

p

f(x, t)dt =
∫ q

p

(∂t(t− 1)∂x) · f(x, t)dt =
[
(t− 1)

∂f

∂x
(x, t)

]q

p

.

We present the output for this problem by the program nk restriction.rr
on the computer algebra system Risa/Asir ([11]). We use the command
nk restriction.integration ideal to compute the integration ideal. The op-
tion inhomo=1 make the system compute inhomogeneous parts and the option
param = [a,b,c] means that parameters are a, b, c. The sec shows the exhaust-
ing time of each steps. This example and next example are executed on a Linux
machine with Intel Xeon X5570 (2.93GHz) and 48 GB memory.

226 H. Nakayama and K. Nishiyama

� �
[1743] load("nk_restriction.rr");

[1944] I_f=[-dx^2*x^2+(-dx*a-dx*b+dx^2-dx)*x-dx*dt*t-b*a+dx*c+dx*dt-dx,

(-dx*t+dx)*x+dt*t^2+(-c-dt+2)*t+b-1,dx*t*x+a*t-dx];

[(-x^2+x)*dx^2+((-t+1)*dt+(-a-b-1)*x+c-1)*dx-b*a,

(-t+1)*x*dx+(t^2-t)*dt+(-c+2)*t+b-1,(t*x-1)*dx+a*t]

[1945] nk_restriction.integration_ideal(I_f,[t,x],[dt,dx],[1,0]|param=

[a,b,c],inhomo=1);

-- nd_weyl_gr :0.004sec(0.000623sec)

-- weyl_minipoly_by_elim :0sec(0.000947sec)

-- generic_bfct_and_gr :0.004sec(0.001922sec)

generic bfct : [[1,1],[s,1],[s-a+c-1,1]]

S0 : 0

B_{S0} length : 1

-- fctr(BF) + base :0sec(0.000277sec)

-- integration_ideal_internal :0sec(0.000499sec)

[[(-x^2+x)*dx^2+((-a-b-1)*x+c)*dx-b*a],[[[[dt,(t-1)*dx]],1]]]

� �
Example 2 (F (x) =

∫∞
0 e−t−xt3dt).

We consider the integral F (x) =
∫∞
0 e−t−xt3dt. A holonomic ideal annihilating

the integrand f(t, x) = e−t−xt3 is If = 〈∂t + 1 + 3xt2, ∂x + t3〉. The integration
ideal of If with respect to t is J = 〈27x3∂2

x + 54x2∂x + 6x + 1〉 = 〈P 〉. The
inhomogeneous part of P is −∂t(∂2

t + 3∂t + 3). We apply P to the integral F (x)
and obtain

P ·
∫ ∞

0
e−t−xt3dt = −

∫ ∞

0
(∂t(∂2

t + 3∂t + 3)) · e−t−xt3dt

= −
[
(∂2

t + 3∂t + 3) · e−t−xt3
]∞
0

= −
[
(−6xt + (1 + 3xt2)2 − 3 − 9xt2 + 3)e−t−xt3

]∞
0

= 1.

� �
[1946] load("nk_restriction.rr");

[2146] I_f=[dt+1+3*x*t^2, dx+t^3];

[dt+3*t^2*x+1,dx+t^3]

[2147] nk_restriction.integration_ideal(I_f,[t,x],[dt,dx],[1,0] |

inhomo=1);

-- nd_weyl_gr :0sec(0.000526sec)

-- weyl_minipoly :0sec(0.0002439sec)

-- generic_bfct_and_gr :0sec(0.001016sec)

generic bfct : [[1,1],[s,1]]

S0 : 0

B_{S0} length : 1

-- fctr(BF) + base :0sec + gc : 0.008sec(0.00691sec)

-- integration_ideal_internal :0sec(0.0003109sec)

[[27*x^3*dx^2+54*x^2*dx+6*x+1],[[[[dt,-dt^2-3*dt-3]],1]]]

� �

An Algorithm of Computing Inhomogeneous Differential Equations 227

Theorem 2. We consider the following multiple integral,

F (xm+1, . . . , xn) =
∫ b1

a1

· · ·
∫ bm

am

f(x1, . . . , xn)dx1 · · ·dxm (m ≤ n). (3)

Let I be a holonomic left D-ideal annihilating the integrand f(x1, . . . , xn). There
exists an algorithm to compute inhomogeneous differential equations for the mul-
tiple integral F (xm+1, . . . , xn) from the holonomic ideal I. The algorithm is de-
scribed below.

For simplicity, we will explain the algorithm in the case of m = 2. We set

F (x3, . . . , xn) =
∫ b1

a1

∫ b2

a2

f(x1, . . . , xn)dx1dx2 (2 ≤ n),

and will compute an inhomogeneous differential equation of F .
Let I be a holonomic left D-ideal annihilating the integrand f(x1, . . . , xn).

We compute the integration ideal J of I with respect to x1, x2, i.e.

J = (I + ∂1D + ∂2D) ∩D′ (D′ = K〈x3, . . . , xn, ∂3, . . . , ∂n〉).
We take an element P ∈ J . There exist P0 ∈ I and P1, P2 ∈ D such that
P = P0 + ∂1P1 + ∂2P2 ∈ D′. We apply the operator P to the integral F , and
obtain

P ·F =
∫ b2

a2

(P1·f |x1=b1−P1·f |x1=a1)dx2+
∫ b1

a1

(P2·f |x2=b2−P2·f |x2=a2)dx1. (4)

Let F1, F2 be the first term and the second term of the right hand side and let
f1, f2 be the integrand of F1, F2.

To obtain a holonomic ideal annihilating the integral F1, we must compute a
holonomic ideal I1 annihilating the integrand f1. When the integrand f1 is the
power of polynomial, we can use Oaku’s algorithm to obtain the holonomic ideal
I1 ([6]). In general case, we can compute the holonomic ideal I1 from I by the
following method.

The ideal quotient I : P1 is holonomic and annihilates the function P1 · f . To
obtain a holonomic ideal J1 annihilating P1 ·f |x1=b1 , we compute the restriction
ideal of I : P1 with respect to x1 = b1. Applying the same procedure for x1 = a1
instead of x1 = b1, we obtain a holonomic ideal J2 annihilating P1 · f |x1=a1 .
Since J1 ∩ J2 is holonomic and annihilates f1(= P1 · f |x1=b1 − P1 · f |x1=a1), we
obtain J1 ∩ J2 as I1.

We compute the integration ideal K1 of I1 with respect to x2, i.e.

K1 = (I1 + ∂2D1) ∩D′ (D1 = K〈x2, x3, . . . , xn, ∂2, ∂3, . . . , ∂n〉).

We take an element P (1) ∈ K1. There exist P
(1)
0 ∈ I1 and P

(1)
2 ∈ D1 such that

P (1) = P
(1)
0 + ∂2P

(1)
2 . We apply P (1) to the integral F1, and obtain

P (1) · F1 = P
(1)
2 · f1|x2=b2 − P

(1)
2 · f1|x2=a2 . (5)

228 H. Nakayama and K. Nishiyama

Applying the same procedure for I2 instead of I1, we can compute the annihilat-
ing ideal I2 of the integrand f2 and the integration ideal K2 of I2 with respect
to x1.

By (4) and (5), we obtain

P (1) · P · F = P (1) · F1 + P (1) · F2,

and can compute the first term of the right hand side. To compute the second
term P (1) · F2, we compute K2 : P (1) and take an element P (2) in this ideal.
Since P (2)P (1) ∈ K2, we can compute P (2)P (1) · F2. Finally, we can obtain an
inhomogeneous differential equation

P (2)P (1)P · F = P (2)P (1) · F1 + P (2)P (1) · F2.

Remark 1. Let

�1 · F = g1, · · · , �p · F = gp (�i ∈ D′, gi is a holonomic function)

be a system of inhomogeneous differential equations. When 〈�1, . . . , �p〉 generates
the left holonomic ideal in D′, we call the system inhomogeneous holonomic.
When m = 1, the output of the algorithm in Theorem 2 is inhomogeneous
holonomic. Although the algorithm outputs a lot of inhomogeneous differential
equations when P runs over the ideal J , it is an open question whether the output
of the algorithm is inhomogeneous holonomic when m > 1. However, since the
Oaku-Shiraki-Takayama algorithm gives holonomic output (see [7], section 4.3),
we can obtain inhomogeneous holonomic differential equations by the following
algorithm.

Algorithm 3

Input: Generators of a holonomic left ideal annihilating f(x1, . . . , xn).
Output: Generators of an inhomogeneous holonomic system for (3).

1. Apply the algorithm in Theorem 2.
2. Apply the Oaku-Shiraki-Takayama algorithm if the system obtained in the

step 1 is not inhomogeneous holonomic.
3. Merge the outputs of the step 1 and the step 2.

4 Comparison of Our Algorithm with Other Algorithms

4.1 The Almkvist-Zeilberger Algorithm

The Almkvist-Zeilberger algorithm (AZ algorithm, [1], [10], [2]) is very fast,
but works for hyperexponential functions. Our algorithm works for holonomic
functions. The AZ algorithm is based on the method of undetermined coefficients
and Gosper’s algorithm, and our algorithm is based on the Gröbner basis method
in D.

An Algorithm of Computing Inhomogeneous Differential Equations 229

4.2 The Chyzak Algorithm

The Chyzak algorithm ([3], [4], [5]) is based on the method of undetermined
coefficients and the Gröbner basis method in the Ore algebra. By using the
Ore algebra, the Chyzak algorithm can compute various summations and inte-
grals like summations of holonomic sequences, integrals of holonomic functions
and its q-analogues. For the ring of differential operators with rational func-
tion coefficients K(x)〈∂〉, the Chyzak algorithm is a generalization of the AZ
algorithm and works for holonomic functions. The algorithm is often faster
than our algorithm. But, when the algorithm returns higher order differen-
tial equations or the number of variables are many, our algorithm is some-
times faster. Here, we show only one example. We present these examples at
http://www.math.kobe-u.ac.jp/OpenXM/Math/i-hg/nk restriction ex.html

Example 3 (F (x, y) =
∫ b

a
1

xt+y+t10 dt).
We set

F (x, y) =
∫ b

a

1
xt + y + t10

dt.

We will compute differential equations for the integral F (x, y). The following
output is computed by our algorithm. It takes about 1.3 seconds.

� �
[2345] load("nk_restriction.rr");

[2545] F=x*t+y+t^10$

[2546] Ann=ann(F)$ /* annihilating ideal of F^s */

0.052sec(0.0485sec)

[2547] Id=map(subst, Ann, s, -1)$ /* substitute s=-1 in Ann */

0sec(4.411e-05sec)

[1569] nk_restriction.integration_ideal(Id,[t,x,y],[dt,dx,dy],[1,0,0]

|inhomo=1);

-- nd_weyl_gr :0.012sec + gc : 0.008001sec(0.02009sec)

-- weyl_minipoly :0sec(0.001189sec)

-- generic_bfct_and_gr :0.016sec + gc : 0.008001sec(0.02358sec)

generic bfct : [[1,1],[s,1],[s-9,1]]

S0 : 9

B_{S0} length : 10

-- fctr(BF) + base :0.044sec + gc : 0.024sec(0.0674sec)

-- integration_ideal_internal :0.8321sec + gc : 0.236sec(1.071sec)

[[9*x*dx+10*y*dy+9,-10*dx^9-x*dy^9,-9*dx^10+y*dy^10+9*dy^9],

[[[[dt,-t]],1],[[[dt,-dy^8]],1],[[[dt,-t*dy^9]],1]]]

0.9081sec + gc : 0.28sec(1.19sec)

� �
The following output is computed by the Chyzak algorithm (package Mgfun

[12]) on Maple12. It takes about 50 seconds.

230 H. Nakayama and K. Nishiyama

� �
with(Mgfun):

f:=1/(x*t+y+t^10):

ts:=time():

creative_telescoping(f,[x::diff,y::diff], t::diff):

time()-ts;

49.583
� �

These computational experiments are executed on a Linux machine with Intel
Xeon5450 (3.00GHz) and 32 GB memory.

4.3 The Oaku-Shiraki-Takayama Algorithm

Although our algorithm gives inhomogeneous differential equations for definite
integrals, the Oaku-Shiraki-Takayama algorithm (OST algorithm, [7]) is for com-
puting homogeneous differential equations annihilating definite integrals by using
the Heaviside function and the integration algorithm. Since outputs are different,
they are different methods. However, in most examples, outputs of our algorithm
can be easily transformed to homogeneous systems. Thus, it will be worth mak-
ing comparison between our method and the OST method.

Let u(t, x) be a smooth function defined on an open neighborhood of [a, b]×U
where U is an open set of Rn−1. The Heaviside function Y (t) defined by Y (t) =
0 (t < 0), Y (t) = 1 (t ≥ 0). Then we can regard the integral of u(t, x) over [a, b]
as that of Y (t− a)Y (b − t)u(t, x) over (−∞,∞), and the following holds.∫ b

a

u(t, x)dt =
∫ ∞

−∞
Y (t− a)Y (b− t)u(t, x)dt

Thus we can apply Algorithm 1 to obtain homogeneous differential equations.
The paper [7] proposes the two methods

(a) Method of using properties of the Heaviside function
(b) Method of using tensor product in D-module

to obtain differential equations annihilating the integrand of the right hand
side. In the former case, the computation finishes without a heavy part because
the procedure is only multiplication of polynomials. However, it is not known
whether the output is holonomic. In the latter case, when an input is holonomic,
an output is also holonomic. However, the computation is often heavy. We call
the former OST algorithm (a) and the latter OST algorithm (b) in this paper.
See [7, Chap 5] for details.

Let us show a relation of the outputs of OST algorithm and our algorithm. We
consider v(x) =

∫∞
0 e(−t3+t)xdt. OST algorithm (a) or (b) return the following

ideal

〈 − 27x3∂3
x − 54x2∂2

x + (4x3 + 3x)∂x + 4x2 − 3,

27x2∂4
x + 135x∂3

x + (−4x2 + 105)∂2
x − 16x∂x − 8〉.

An Algorithm of Computing Inhomogeneous Differential Equations 231

On the other hand, Algorithm 2 returns the following ideal generated by P and
its inhomogeneous part Q:

〈P 〉 = 〈−27x2∂2
x − 27x∂x + 4x2 + 3〉,

Q = ∂t(−9tx∂x + (−6t2 + 4)x + 3t).

This output yields

P · v(x) =
[
(−9tx∂x + (−6t2 + 4)x + 3t) · e(−t3+t)x

]t=∞

t=0
= −4x. (6)

Since the annihilating ideal of −4x is 〈x∂x − 1, ∂2
x〉, operators (x∂x − 1)P and

∂2
xP annihilate v(x). Although results of these algorithms are not coincide in

general, these operators coincide outputs of OST algorithm (a) and (b) in this
case. However, it seems that it is difficult to compute the right hand side of (6)
from the output of OST algorithm. Moreover, in our algorithm we have only to
do substitution process to compute for the integrals which has same integrand
and another integration domain because our algorithm does not depend on the
integration domain.

Table 1 shows the computing time of each part of Algorithm 2 and OST algo-
rithm (a), (b). The entries with parentheses for inputs v̄k mean that results for vk

were reused. For a comparison we show the computing time of Algorithm 1. The
experiments were done on a Linux machine with Intel Xeon X5570 (2.93GHz)
and 48 GB memory.

From the viewpoint of the computational efficiency, the computation time of
Algorithm 2 increases more than that of Algorithm 1 for computing inhomo-
geneous parts. That of OST algorithm increases because the input data of the
integration algorithm becomes bigger differential operators by procedure (a) or
(b). It seems that Algorithm 2 is faster than OST algorithm, since the compu-
tation of inhomogeneous parts can be done by multiplication and summation of

Table 1. The comparison of the computing time (seconds)

Alg 2 OST (a) OST (b) Alg 1

Input Alg 2 Ann Total Total (b) Alg 1 Total Total

v1 0.0042 0.0014 0.0056 0.0062 0.11 0.012 0.12 0.0039

v2 0.15 0.019 0.17 0.25 5.10 0.16 5.26 0.075

v3 19.91 0.45 20.36 96.14 24.54 95.24 119.8 13.58

v4 26724 28.33 26752 > 1 day 1726 > 1 day — 24003

v̄1 (0.0042) 0.0015 0.0057 0.0071 0.47 0.0050 0.48 n/a

v̄2 (0.15) 0.027 0.18 1.56 18230 1.19 18231 n/a

v̄3 (19.91) 1.62 21.53 3769 848 2802 3650 n/a

v̄4 (26724) 294 27018 > 1 day 16231 > 1 day — n/a

vk(x) =

∫ ∞

0

uk(t, x)dt, v̄k(x) =

∫ 1

0

uk(t, x)dt where uk(t, x) = exp

(
−tx

k∏
i=1

(t2 − i2)

)

232 H. Nakayama and K. Nishiyama

differential operators. However, to obtain homogeneous equation corresponding
to OST algorithm output, we must compute annihilating ideals of inhomoge-
neous parts.

Acknowledgement

We would like to thank Prof. Takayama for fruitful discussions and encour-
agements. We also would like to thank anonymous referees for many useful
comments.

References

1. Almkvist, G., Zeilberger, D.: The method of differentiating under the integral sign.
Journal of Symbolic Computation 10, 571–591 (1990)

2. Apagodu, M., Zeilberger, D.: Multi-variable Zeilberger and Almkvist-Zeilberger al-
gorithms and the sharpening of Wilf-Zeilberger theory. Advances in Applied Math-
ematics 37, 139–152 (2006)

3. Chyzak, F.: Gröbner Bases, Symbolic Summation and Symbolic Integration. Lon-
don Mathematics Lecture Notes Series, vol. 251, pp. 32–60 (1998)

4. Chyzak, F.: An Extension of Zeilberger’s Fast Algorithm to General Holonomic
Functions. Discrete Mathematics 217, 115–134 (2000)

5. Chyzak, F., Salvy, B.: Non-commutative Elimination in Ore Algebras Proves Multi-
variate Holonomic Identities. Journal of Symbolic Computation 26, 187–227 (1998)

6. Oaku, T.: Algorithms for b-functions, restrictions, and algebraic local cohomology
groups of D-modules. Advances in Applied Mathematics 19, 61–105 (1997)

7. Oaku, T., Shiraki, Y., Takayama, N.: Algebraic Algorithm for D-modules and nu-
merical analysis, Computer mathematics. In: Proceedings of ASCM 2003. Lecture
Notes Ser. Comput., vol. 10, pp. 23–39. World Sci. Publ., River Edge (2003)

8. Saito, M., Sturmfels, B., Takayama, N.: Gröbner Deformations of Hypergeometric
Differential Equations. Springer, Heidelberg (2000)

9. Takayama, N.: An Approach to the Zero Recognition Problem by Buchberger Al-
gorithm. Journal of Symbolic Computation 14, 265–282 (1992)

10. Tefera, A.: MultInt, a Maple package for multiple integration by the WZ method.
Journal of Symbolic Computation 34, 329–353 (2002)

11. Noro, M., et al.: Risa/Asir, http://www.math.kobe-u.ac.jp/Asir
12. Chyzak, F.: Mgfun, http://algo.inria.fr/chyzak/mgfun.html
13. Koutschan, C.: HolonomicFunctions,

http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/

14. Nakayama, H., Nishiyama, K.: nk restriction.rr,
http://www.math.kobe-u.ac.jp/~nakayama/nk_restriction.rr

http://www.math.kobe-u.ac.jp/Asir
http://algo.inria.fr/chyzak/mgfun.html
http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/
http://www.math.kobe-u.ac.jp/~nakayama/nk_restriction.rr

New Algorithms for Computing Primary

Decomposition of Polynomial Ideals

Masayuki Noro

Department of Mathematics, Graduate School of Science,
Kobe University JST CREST
noro@math.kobe-u.ac.jp

Abstract. We propose a new algorithm and its variant for computing a
primary decomposition of a polynomial ideal. The algorithms are based
on the Shimoyama-Yokoyama algorithm [17] in the sense that all the
isolated primary components Q1, . . . , Qr of an ideal I are first computed
from the minimal associated primes of I . In order to extract the re-
maining primary components we use I : Q where Q = Q1 ∩ · · · ∩ Qr.
Our experiment shows that the new algorithms can efficiently decom-
pose some ideals which are hard to be decomposed by any of known
algorithms.

1 Introduction

Primary decomposition of a polynomial ideal is a fundamental task in algebraic
geometry and commutative algebra. In order to decompose an algebraic variety
of an ideal I, it is sufficient to compute the set of minimal associated primes of
I. But we often need a primary decomposition of an ideal to get more precise
information on the ideal. For example, several algorithms concerned with b-
function (Bernstein-Sato polynomial) were presented recently[5][16] and these
algorithms need primary decomposition over Q. Shioda [18] showed that there
exists a relation between integral sections in an elliptic surface and primary
decomposition of an ideal, based on the theory of Mordell-Weil lattice. Diaconis
et al. [7] showed that primary decompositions of a certain kind of binomial ideals
are useful in algebraic statistics (cf. Section 4.2).

Several algorithms for computing a primary decomposition of a polynomial
ideal are known. Here we briefly overview them. Let I be an ideal in a polynomial
ring Q[x] = Q[x1, . . . , xn] over the rationals.

– The Gianni-Trager-Zacharias (GTZ) algorithm [10]
The GTZ algorithm extracts some of maximal dimensional primary com-
ponents Q1, . . . , Qk of I via a reduction to a zero-dimensional case. As a
by-product of this operation, one obtains an element fs /∈ I such that

I = (I : fs) ∩ (I + fs), I : fs = I : f∞ = Q1 ∩ · · · ∩Qk. (1)

Then this procedure is applied to I + fs to obtain the remaining primary
components of I.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 233–244, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

234 M. Noro

– The Shimoyama-Yokoyama (SY) algorithm [17]
The SY algorithm first computes the set of all minimal associated primes
{P1, . . . , Pl} of I. By using them, ideals Q̃1 . . . , Q̃l and elements f1, . . . , fl

satisfying
√

Q̃i = Pi and

I = (Q̃1 ∩ · · · ∩ Q̃l) ∩ (I + 〈f1, . . . , fl〉), dim(I + 〈f1, . . . , fl〉) < dim I (2)

are computed. Each Q̃i contains only one isolated primary component Qi of
I and we can compute an ideal I ′ such that Q̃i = Qi∩I ′ and dim I ′ < dim I.
Then this procedure is applied to I ′ and I ′′ = I + 〈f1, . . . , fl〉 to obtain
remaining primary components of I. Each Q̃i is called a pseudo primary
component and (2) is called a pseudo primary decomposition of I.

– The Eisenbud-Huneke-Vasconcelos (EHV) algorithm [8]
The EHV algorithm first computes the set of all associated primes of I via
homological algebra. Then the primary components of I are computed by
localization. This method is distinguished from the above ones because it
does not use the generic projection (reduction to a zero-dimensional case).

These algorithms have been implemented in various computer algebra systems
[1][2][4]. We cited these three implementations because the source codes of pri-
mary decomposition are written in the user languages and the details of imple-
mentation are easily examined. It is empirically known (cf. [6]) that it is hard to
predict which algorithm is efficient for a particular input ideal and we usually try
several methods to compute a primary decomposition of a given ideal. Recently
we found a number of examples which are hard to be decomposed by any of
these algorithms (cf. [14]). We analyzed the reason of the difficulty and found a
method to resolve it. The new method may not necessarily be efficient for the
other types of input ideals than our examples. However it will be practically
important and useful to provide a new method for primary decomposition.

Our new method is based on the SY algorithm in the sense that all the
isolated primary components of an ideal are computed from its minimal asso-
ciated primes. The differences between the SY algorithm and the new method
are described as follows. In this paper we call an ideal I ′ a remaining ideal of a
decomposition of an ideal I if I = (Q1 ∩ · · · ∩ Ql) ∩ I ′ holds for some primary
ideals Q1, . . . , Ql.

1. One remaining ideal at a step
The strategy of the new method is to keep only primary components of I
until their intersection coincides with the input ideal I. At each step, we first
compute all the isolated primary components Q1, . . . , Ql of I via the minimal
associated primes of I. Then we compute an ideal J such that I = Q∩(I+J),
where Q = Q1∩· · ·∩Ql. Then setting I = I +J , we continue this procedure
until the intersection of all the obtained primary components coincides with
the input ideal I.

2. Computation of the remaining ideal via ideal quotient
The ideal J is computed as a subset of I : Q to make the remaining ideal
I + J as large as possible.

New Algorithms for Computing Primary Decomposition 235

This modification is based on the following observation and consideration. In
each step of the SY algorithm, remaining ideals I ′ for each pseudo primary
component Q̃i and I ′′ are produced and they have to be decomposed recursively.
If I has embedded primary components, they appear either in I ′ or in I ′′. In
the former case I ′ = I + 〈fs〉 for some f ∈ R. We found that I + 〈fs〉 is often
hard to decompose because of newly introduced unnecessary components. A
simple example is I1 in Section 4.1. We found that we can avoid such difficulties
by enlarging I ′, that is by adding more elements to I, keeping the relation
Q̃ = Q ∩ I ′ for a pseudo primary ideal Q̃. To apply this strategy we need some
method to make remaining ideals as large as possible. Furthermore we want to
detect the termination of the computation as early as possible by computing the
intersection of all the obtained primary components and comparing it with I.
For these purposes we keep only the primary components Q1, . . . , Ql and use a
subset of I : Q to produce a remaining ideal.

2 New Algorithms

First of all we prepare several propositions. In this section we fix a polynomial
ring k[x] = k[x1, . . . , xn] over a field k and denote it by R. The following lemma
is well-known.

Lemma 1. Let I, J and Q be ideals in R. If I ⊂ Q, then I = Q ∩ (I + J) ⇔
Q ∩ J ⊂ I.

Lemma 2. Let I, J and Q be ideals in R. If I = Q ∩ (I + J) then J ⊂ I : Q.

Proof. If I = Q ∩ (I + J) then we have QJ ⊂ Q ∩ J ⊂ Q ∩ (I + J) = I, which
implies J ⊂ I : Q.

Lemma 2 means that we have to find an ideal J ⊂ I : Q such that J �⊂I in
order to obtain a non-trivial decomposition I = Q ∩ (I + J). Proposition 3.48
in [20] suggests that we can use J = (I : Q)m with sufficiently large m for that
purpose.

Proposition 3. There exists an integer m > 0 such that (I : Q)m ∩Q ⊂ I.

Proof. By Artin-Rees Lemma, there exists an integer m > 0 such that (I : Q)i ∩
Q = (I : Q)i−m((I : Q)m∩Q) for any integer i > m. If i > m, (I : Q)i−m ⊂ I : Q
and we have (I : Q)i−m((I : Q)m ∩Q) ⊂ (I : Q)Q ⊂ I.

Corollary 4. For any f ∈ I : Q there exists an integer m > 0 such that 〈fm〉 ∩
Q ⊂ I.

Proposition 5. Let I be an ideal in R and dim I = d. Suppose that I =
Q1∩· · ·∩Qr ∩Qr+1∩· · ·∩Qs (r < s) be an irredundant primary decomposition
of I and that all isolated primary components appear in {Q1, . . . , Qr}. Let Q =
Q1 ∩ · · · ∩Qr. Then

236 M. Noro

1. For any integer m > 0 dim(I : Q)m = dim I : Q < d.
2. For sufficiently large integer m, I = Q ∩ (I + (I : Q)m) and dim(I + (I :

Q)m) < d, which gives a non-trivial decomposition of I.

Proof. Since I : Q = (Q : Q)∩(Qr+1 : Q)∩· · ·∩(Qs : Q) = (Qr+1 : Q)∩· · ·∩(Qs :
Q) and dim(Qi : Q) ≤ dimQi < d for i > r, dim(I : Q) < d holds. By
Proposition 3 there exists an integer m > 0 such that (I : Q)m ∩ Q ⊂ I. For
such m, I = Q ∩ (I + (I : Q)m) by Lemma 1 and dim(I + (I : Q)m) ≤ dim(I :
Q)m = dim I : Q < d. In particular I is a proper subset of I + (I : Q)m. Since
I has an embedded component, I is a proper subset of Q, which implies that
I + (I : Q)m is a proper ideal because I + (I : Q)m ⊂ I + (I : Q) ⊂ (I : Q) �= R.
Thus I = Q ∩ (I + (I : Q)m) is a non-trivial decomposition of I.

Definition 6. We call an ideal J satisfying

J �⊂I, I + J �= R and I = Q ∩ (I + J) (3)

a separating ideal for (I,Q).

By using the notion of separating ideal, we propose an algorithm for primary
decomposition.

Algorithm 7
Input : an ideal I ⊂ R
Output : an irredundant primary decomposition of I
QL ← ∅; Q ← R; It ← I
do

if It = R goto LAST
PLt ← MinimalAssociatedPrimes(It)
QLt ← IsolatedPrimaryComponents(It, PLt)
Qt ←

⋂
J∈QLt

J

if Q �⊂Qt then { Q ← Q ∩Qt; QL ← QL ∪QLt }
if Qt = It or Q = I goto LAST
Jt ← SeparatingIdeal(It, Qt, (It : Qt))
It ← It + Jt

end do
LAST: QL ← RemoveRedundancy(QL)
return QL

In this algorithm, MinimalAssociatedPrimes(I) returns the set of all minimal
associated primes of an ideal I. IsolatedPrimaryComponents(I, PL) (PL =
{P1, . . . , Pk}) computes the set of all isolated primary components {Q1, . . . , Qk}
of an ideal I, where PL is the set of all minimal associated primes of I and Pi

is the associated prime of Qi (cf. [17]). SeparatingIdeal(I,Q,C) (C = I : Q)
finds a separating ideal J for (I,Q). Finally RemoveRedundancy(QL) com-
bines primary components with the same associated prime and removes un-
necessary components. We omit the details of these sub-procedures except for
SeparatingIdeal.

New Algorithms for Computing Primary Decomposition 237

Theorem 8. Algorithm 7 is correct.

Proof. It is strictly increasing because Jt �⊂ It is added to It, which ensures
the termination. During the execution QL consists of primary ideals and I =
(∩J∈QLJ)∩ It holds. Therefore, after removing redundancy the output becomes
an irredundant primary decomposition of I.

By Proposition 5, we know that (I : Q)m for sufficient large m is available as a
separating ideal, but this is not efficient from the practical point of view, because
m often has to be raised to a large value and the cost for computing (I : Q)m

is high. Therefore we propose several practical methods for finding a separating
ideal J .

Algorithm 9
SeparatingIdeal1(I,Q,C)
Input : an ideal I ⊂ R, an ideal Q = ∩r

i=1Qi, where all isolated primary
components of I appear in {Q1, . . . , Qr}, C = I : Q

Output : a separating ideal J for (I,Q)
i ← 1 do

G ← a Gröbner basis of Ci

H ← G \Q
if (I + 〈H〉) ∩Q = I then return 〈H〉
else i ← i + 1

end do

By Lemma 1, if a subset J of I : Q is a separating ideal, then J cannot contain
any element in Q \ I. In Algorithm 9, H = G \ Q does not meet Q and it is
expected that 〈H〉 becomes a separating ideal with a smaller m than (I : Q)m

itself.

Algorithm 10
SeparatingIdeal2(I,Q,C)
Input : an ideal I ⊂ R, an ideal Q = ∩r

i=1Qi, where all isolated primary
components of I appear in {Q1, . . . , Qr}, C = I : Q

Output : a separating ideal J for (I,Q)
G ← a Gröbner basis of I : Q
H = {h1, . . . , hk} ← G \ √I

S ← {hmi

i (i = 1, . . . , k) | (I + 〈hmi−1
i 〉) ∩Q �= I, (I + 〈hmi

i 〉) ∩Q = I}
S0 ← a subset of S satisfying (I + 〈S0〉) ∩Q = I
return 〈S0〉
For each s ∈ I : Q, Corollary 4 ensures that there exists m such that (I +
〈sm〉) ∩ Q = I. Furthermore, if s /∈ √

I then sm /∈ I for all m and J = 〈sm〉 is
a separating ideal for (I,Q). dim I : Q < dim I implies I : Q �⊂√

I and H �= ∅ in
Algorithm 10.

Remark 11. Algorithm 9 and Algorithm 10 depend on a choice of a term order
used for computing a Gröbner basis of (I : Q) or (I : Q)m. In fact our experiment
shows that there are cases where the choice critically affects the efficiency of the

238 M. Noro

whole procedure. In Algorithm 10, we have to specify a method for choosing S0.
This will be discussed later.
In Algorithm 7, a separating ideal Jt is computed from the ideal quotient It : Qt.
We found that this construction often makes the subsequent computation hard.
Instead of using It : Qt we can use I : Q for computing a separating ideal, which
leads to another version of primary decomposition algorithm.
Algorithm 12
Input : an ideal Iin ⊂ R
Output : an irredundant primary decomposition of Iin

QLin ← ∅; Qin ← R; It ← Iin

RESTART: QL ← ∅; Q ← R; I ← It; C = {0}
do
(1)if It = R goto LAST

PLt ← MinimalAssociatedPrimes(It)
QLt ← IsolatedPrimaryComponents(It, PLt)
Qt ←

⋂
J∈QLt

J

(2) if Q ⊂ Qt goto RESTART
else Q ← Q ∩Qt

if Qin �⊂Qt then { QL ← QL ∪QLt; Qin ← Qin ∩Qt; QLin ← QLin ∪QLt }
if Qt = It or Q = I or Qin = Iin goto LAST
else Ct ← I : Q

(3) if Ct = C goto RESTART
else C ← Ct

Jt ← SeparatingIdeal(I,Q,C)
It ← I + Jt

end do
LAST: QLin ← RemoveRedundancy(QLin)
return QLin

Theorem 13. Algorithm 12 is correct.

Proof. In Algorithm 12, I is the current target ideal to be decomposed and its
primary components are extracted from the current remaining ideal It and added
to QL, the current list of primary components of I. Iin = Qin ∩I and I = Q∩It

hold at (1). Since Q is decreasing, C = I : Q is strictly increasing unless Ct = C
holds at (3). If Ct = C holds at (3), then we reset the computation with I = It.
The check of Q ⊂ Qt at (2) is to detect Ct = C at (3) in advance. Thus we will
reach RESTART or LAST in finite steps. At RESTART, after the replacement
of I, I is strictly larger than previous I. Therefore Algorithm 12 terminates and
outputs an irredundant primary decomposition of Iin.

3 Implementation Issues

We implemented the new algorithms in Risa/Asir. For an efficient implementa-
tion of a primary decomposition algorithm, we need efficient implementations of
many sub-procedures. In this section we explain several ones among them.

New Algorithms for Computing Primary Decomposition 239

3.1 Computation of Minimal Associated Primes

For realizing an efficient implantation of an SY-like algorithm, an efficient im-
plementation of minimal associated prime computation is necessary. This is an
issue that should be considered independently and we only show a rough sketch
of our current implementation.

1. The SL algorithm
The SL algorithm [12] is an algorithm for computing the set of all minimal
associated primes of an ideal. It works as follows. Let P1, . . . , Pl be minimal
primes of an ideal I and suppose that

√
I is a proper subset of J = P1 ∩

· · · ∩ Pl. Then we can find an element f ∈ J \√I, and we can compute new
minimal primes from I : f∞ via a reduction to a zero-dimensional case.

2. Zero-dimensional intermediate decomposition
For a zero-dimensional ideal I ⊂ K[x1, . . . , xn], before searching a linear
combination of variables in a normal position, we compute I ∩ K[xi] =
〈mi(xi)〉 for each variable. If mi = mn1

i1 · · ·mnj

ij then
√
I =

√〈I,mi1〉 ∩ · · · ∩√〈I,mij〉. We repeat this for all variables and obtain an intermediate de-
composition I = I1∩· · ·∩Im. In this decomposition, the minimal polynomials
of all the variables modulo Ii are all irreducible.

3. Zero-dimensional complete decomposition
During an execution of the intermediate decomposition, some components
are known to be prime ideals, because Ii obtained in Step 2 is prime if
dimK K[x1, . . . , xn]/Ii = deg(mj(xj)) for some j, where mj(xj) is the min-
imal polynomial of xj module Ii. After the intermediate decomposition, we
have to decompose the remaining intermediate components completely. This
is done by generating a linear combination of the variables which is in a
normal position.

3.2 Computation of a Separating Ideal

The termination of Algorithm 7 and 12 does not depend on a choice of a separat-
ing ideal, but the efficiency heavily depends on it. Our preliminary experiment
shows that Algorithm 9 is impractical and Algorithm 10 is preferable. We show
two methods for computing S0 in Algorithm 10.

– Partial search

S0 ← ∅
for i = 1 to k do

m ← an integer satisfying (I + 〈hm−1
i 〉) ∩Q �= I and (I + 〈hm

i 〉) ∩Q = I
if (I + 〈S0 ∪ {hm

i }〉) ∩Q = I then S0 ← S0 ∪ {hm
i }

else exit this loop
end do

240 M. Noro

– Full search

S ← {hmi

i (i = 1, . . . , k) | (I + 〈hmi−1
i 〉) ∩Q �= I, (I + 〈hmi

i 〉) ∩Q = I}
l ← the largest index such that (I + {hmi

i (i = 1, . . . , l)}) ∩Q = I
(The index l can be searched by a binary search.)
S0 ← {hmi

i (i = 1, . . . , l)}
for i = l + 1 to k do

if (I + 〈S0 ∪ {hm
i }〉) ∩Q = I then S0 ← S0 ∪ {hm

i }
end do

3.3 Gröbner Basis Computation

The efficiency of Gröbner basis computation is crucial for all part of the imple-
mentation. We have already made much effort to make Gröbner basis computa-
tion efficient for a wide variety of input ideals. Here we only present two newly
introduced features.

1. Incremental computation
In a Gröbner basis computation, if a part of an input ideal is known to be a
Gröbner basis then we can omit the computation of S-polynomials constructed
from that part. This feature has been implemented in the current version of
Risa/Asir and used in computations of saturation and ideal intersection.

2. Competitive computation
There are several cases where it is difficult to decide a strategy of Gröbner
basis computation. For example, the homogenization is often useful to sup-
press intermediate coefficient swells in a Gröbner basis computation, but it
may make the computation inefficient by another reason. Another example is
a Gröbner basis computation overK(x), a field of rational functions, for which
there are two choices : computation overK(x) itself, or overK with some elim-
ination order. If we fix one of them in our implementation, a primary decom-
position procedure may get stuck in a Gröbner basis computation. In order
to avoid such difficulties a competitive computation by OpenXM protocol[13]
has been implemented. When this feature is activated, two methods are exe-
cuted on remote OpenXM servers, with the result returned first used. Then
the remaining server is reset for the subsequent requests.

4 Experiments

In this section we show some results of primary decomposition by Algorithm 7
and 12. It is clear that these algorithms are not superior to existing algorithms
for ideals without embedded components. Therefore we focus on ideals with
embedded components and hard to be decomposed by existing implementations.

4.1 Ideals Related to Computation of Local b-Functions

Let D = Q〈x, ∂x〉 be an n-dimensional Weyl algebra over Q. For a polynomial
f(x) = f(x1, . . . , xn) ∈ Q[x], we define an ideal D〈t, ∂t〉:

New Algorithms for Computing Primary Decomposition 241

If = 〈∂x1 +
∂f

∂x1
∂t, . . . , ∂xn +

∂f

∂xn
∂t〉.

We set w = (1, 0, . . . , 0) ∈ Zn+1 and consider a weight vector (−w,w) for vari-
ables (t, x1, . . . , xn, ∂t, ∂x1 , . . . , ∂xn). Then an ideal Jf = in(−w,w)(If) ∩ Q[t∂t]
can be regarded as an ideal in a commutative polynomial ring Q[x1, . . . , xn, s]
with s = t∂t. An algorithm for computing local b-functions of f at all points was
presented by Oaku [15], in which a primary decomposition of Jf is needed. For
f with complicated non-isolated singularities a primary decomposition of Jf is
often very hard and it is interesting to try such primary decompositions by our
new algorithm.

In [14] we considered examples from singularity theory.

– Ak singularity
For fk(x, u1, . . . , uk) = xk+1 +u1+u2x+ · · ·+ukx

k−1(k ≥ 1), we consider
its discriminant disc(fk) = resultantx(fk(x, u), f ′

k(x, u)) ∈ Q[u1, . . . , uk].
– Dk singularity

For fk(x, y, u1, . . . , uk) = x2y − yk−1 + u1 + u2x + u3x
2 + u4y + · · · +

uky
k−3(k ≥ 4), there exists gk ∈ Q[u1, . . . , uk] such that 〈fk,

∂fk

∂x , ∂fk

∂y 〉 ∩
C[u1, . . . , uk] = 〈gk〉.

Here we try primary decomposition of Jdisc(fk), Jgk
⊂ Q[u1, . . . , uk, s]. In general

Jf contains a polynomial b(s) (the global b-function) and Jf is decomposed as
Jf = (Jf + 〈(s− s1)m1〉) ∩ · · · ∩ (Jf + 〈(s− sl)ml〉) according to the irreducible
factorization of b(s) over Q, b(s) = (s − s1)m1 · · · (s − sl)ml . Then our task is
to compute a primary decomposition of each Jf + 〈(s − si)mi〉. If we try these
computations, we notice that it is hard when mi > 1. We show some results
obtained by our new algorithms. In the following Q is the unique isolated prime
component and Ri are embedded primary components.

I1 = Jdisc(f4) + 〈s2〉 = Q ∩R1,

I2 = Jdisc(f5) + 〈s3〉 = Q ∩R1 ∩R2,

I3 = Jg5 + 〈s4〉 = Q ∩R1 ∩R2 ∩R3 ∩R4.

All the existing implementations fail to decompose I2 and I3. It may seem that
I1 is easy to decompose, but only GTZ in Singular and EHV in Macaulay2
can decompose it. The difficulty in the other implementations is caused by the
remaining ideal I ′ = I + 〈f〉 which appears just after Q is obtained. I1, Q and
R1 have the following generators:

I1 = 〈h1, sh2, . . . , sh9, s
2〉, Q = 〈h1, s〉, R1 = 〈h2, . . . , h9, s

2〉

where h1 = disc(f4), h2, . . . , h9 ∈ Q[u1, u2, u3, u4]. We can confirm that R1 =
I1 + J for J = 〈h2, . . . , h9〉 and I1 : Q = 〈S〉, S = {h2, . . . , h9, s}. We observed
that J = 〈S \Q〉 and it was the first step toward our new algorithm.

242 M. Noro

4.2 Ideals of Adjacent Minors

For an m × n matrix X = (xij)i=1,...,m,j=1,...,n where xi,j are indeterminates,
we consider the ideal Ak,m,n in Q[X] generated by adjacent k × k-minors of X .
Primary decompositions of Ak,m,n are known for several (k,m, n). For example,
irreduntant primary decompositions of A2,4,4 and A2,3,5 via cellular decomposi-
tion [9] are given in [7][19] and [11] respectively. We could compute primary
decompositions of A2,4,4, A2,4,5, A2,3,k (k ≤ 8) by our new algorithm. The
results are:

A2,3,4 = Q1 ∩ · · · ∩Q6 ∩R1 ∩R2 ∩R3,

A2,3,5 = Q1 ∩ · · · ∩Q10 ∩R1 ∩ · · · ∩R9,

A2,3,6 = Q1 ∩ · · · ∩Q18 ∩R1 ∩ · · · ∩R23,

A2,3,7 = Q1 ∩ · · · ∩Q32 ∩R1 ∩ · · · ∩R56,

A2,3,8 = Q1 ∩ · · · ∩Q57 ∩R1 ∩ · · · ∩R131,

A2,4,5 = Q1 ∩ · · · ∩Q15 ∩R1 ∩ · · · ∩R17,

A2,4,5 = Q1 ∩ · · · ∩Q35 ∩R1 ∩ · · · ∩R61,

where Qi are isolated prime components and Ri are embedded primary
components.

4.3 Timings

We show timing data for I1, I2, I3, I4 and A2,4,4, A2,4,5, A2,3,k (4 ≤ k ≤ 8) where
I4 is an ideal by Huneke, which is the hardest problem in [6]:

I4 = 〈s15, t15, u15, u5 − s3tx + s2t2x + s2t2y − st3y〉 ⊂ Q[x, y, z, t, u].

We presented Algorithm 7 and Algorithm 12. We apply Algorithm 10 for com-
puting a separating ideal. For computing S0 in Algorithm 10 we implemented
the both methods in Section 3.2. Based on preliminary experiments we decided
to apply the full search for adjacent minors and the partial search for the others.

In Table 1 and Table 2, Total, Colon and Sep show the total time, the time
for computing I : Q, and the time for computing separating ideals respectively
and they are given in seconds. #Iso and #Emb show the number of isolated
components and the number of embedded components respectively. In #Emb,
the number in parentheses is the number of embedded components before exe-
cuting RemoveRedundancy(). In all computations the competitive computation
is not used. Timings were measured on a 64-bit Linux machine with Intel Xeon
X5570, 2.93GHz. The following functions are available in noro_pd.rr, which is
written in Asir user language and is contained in the OpenXM package [3]. It
runs on Asir version 20100526 or on the later version.

– noro_pd.syc_dec(Ideal,Vars)
Ideal is a list of polynomials with variables Vars. This function executes
Algorithm 7 for Ideal and returns a pair of lists [Iso, Emb], where Iso =
[[Q1,

√
Q1], . . .] and Emb = [[R1,

√
R1], . . .] are isolated and embedded com-

ponents respectively.

New Algorithms for Computing Primary Decomposition 243

– noro_pd.syca_dec(Ideal,Vars)
This function executes Algorithm 12. The arguments and the output are the
same as above.

An option sepideal=n specifies an algorithm for computing a separating ideal:
Algorithm 9 for n = 0, Algorithm 10 with the partial search of S0 for n = 1
(default) and Algorithm 10 with the full search of S0 for n = 2.

Table 1. Algorithm 7

Ideal Total Colon Sep #Iso #Emb

I1 0.05 0 0.01 1 1(1)
I2 0.6 0.03 0.1 1 2(2)
I3 17 0.4 1.5 1 4(12)
I4 470 210 180 1 4(4)

A2,3,4 13 5 5 6 3(23)
A2,3,5 > 20h – – – –

Table 2. Algorithm 12

Ideal Total Colon Sep #Iso #Emb

I1 0.08 0.004 0.004 1 1 (1)
I2 0.9 0.03 0.1 1 2 (2)
I3 17 0.6 1.7 1 4 (8)
I4 108 9.8 38 1 4 (4)

A2,3,4 0.5 0.03 0.1 6 3(3)
A2,3,5 5 0.2 2.3 10 9(9)
A2,3,6 133 2.8 48 18 23(23)
A2,3,7 3540 25 2090 32 56(56)
A2,3,8 146h 284 62h 57 131(131)
A2,4,4 31 1.8 15 15 17(21)
A2,4,5 12700 102 7800 35 61(68)

Although the number of ideals tested here is very small, except for I1 and
A2,3,4, they are all very hard or practically impossible to be decomposed by
existing implementations. For example, it takes 21 hours to compute a primary
decomposition of A2,3,5 by SY in Macaulay2, and EHV in Macaulay2 abnormally
terminates for the same input. Both Algorithm 7 and Algorithm 12 can decom-
pose many of them. We note that we have not yet implemented any technique
to avoid redundant components except for the early termination by keeping
the intersection of obtained components during an execution. In spite of this,
Table 1 and Table 2 show that the number of redundant components is small.
We could say that this is a benefit of using I : Q for constructing a large remain-
ing ideal. In particular Algorithm 12 succeeds in computing the decompositions
of Ak,m,n with a very small number of redundant components, while many of
them cannot be decomposed by Algorithm 7. It is a future work to analyze the
precise reason of the success. Furthermore, there are many sub-procedures to be
improved. Currently the most time-consuming part in the whole procedure is the
computation of a separating ideal. Many sub-procedures including this depend
on a function to compute the intersection of ideals and it is an important task
to improve its efficiency.

References

1. Risa/Asir, A.: computer algebra system,
http://www.math.kobe-u.ac.jp/Asir/asir.html

2. Macaulay 2 home page, http://www.math.uiuc.edu/Macaulay2/

http://www.math.kobe-u.ac.jp/Asir/asir.html
http://www.math.uiuc.edu/Macaulay2/

244 M. Noro

3. OpenXM committers, OpenXM, a project to integrate mathematical software sys-
tems (1998-2010), http://www.openxm.org

4. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-1 — A com-
puter algebra system for polynomial computations,
http://www.singular.uni-kl.de/

5. Bahloul, R., Oaku, T.: Local Bernstein-Sato ideals: algorithm and examples. J.
Symb. Comp. 45, 46–59 (2010)

6. Decker, W., Greuel, G.-M., Pfister, G.: Primary decomposition: Algorithms and
comparisons. In: Algorithmic Algebra and Number Theory, pp. 187–220. Springer,
Heidelberg (1998)

7. Diaconis, P., Eisenbud, D., Sturmfels, B.: Lattice walks and primary decomposition.
In: Sagan, B., Stanley, R. (eds.) Mathematical Essays in Honor of Gian-Carlo Rota,
pp. 173–194. Birkhäuser, Basel (1998)

8. Eisenbud, D., Huneke, C., Vasconcelos, W.: Direct methods for primary decompo-
sition. Invent. Math. 110, 207–235 (1992)

9. Eisenbud, D., Sturmfels, B.: Binomial Ideals. Duke Math. J. 84, 1–45 (1996)
10. Gianni, P., Trager, B., Zacharias, G.: Gröbner basis and primary decomposition of

polynomial ideals. J. Symb. Comp. 6, 149–167 (1988)
11. Hoşten, S., Shapiro, J.: Primary Decomposition of Lattice Basis Ideals. J. Symb.

Comp. 29, 625–639 (2000)
12. Laplagne, S.: An Algorithm for the Computation of the Radical of an Ideal. In:

Proc. ISSAC 2006, pp. 191–195. ACM Press, New York (2006)
13. Maekawa, M., Noro, M., Ohara, K., Takayama, N., Tamura, Y.: The Design and

Implementation of OpenXM-RFC 100 and 101. In: Proc. ASCM 2001, pp. 102–111.
World Scientific, Singapore (2001)

14. Nishiyama, K., Noro, M.: Stratification associated with local b-functions. J. Symb.
Comp. 45, 462–480 (2010)

15. Oaku, T.: Algorithms for b-Functions, Restrictions, and Algebraic Local Cohomol-
ogy Groups of D-Modules. Advances in Applied Mathematics 19, 61–105 (1997)

16. Shibuta, T.: An algorithm for computing multiplier ideals (2010) (preprint),
arXiv:0807.4302v6

17. Shimoyama, T., Yokoyama, K.: Localization and Primary Decomposition of Poly-
nomial ideals. J. Symb. Comp. 22, 247–277 (1996)

18. Shioda, T.: Gröbner basis, Mordell-Weill lattices and deformation of singularities,
II. Proc. Japan Acad. Ser. A Math. Sci. 86(2), 27–32 (2010)

19. Sturmfels, B.: Solving Systems of Polynomial Equations. In: CBMS Regional Con-
ference Series in Mathematics, vol. 97. AMS, Providence (2002)

20. Vasconcelos, W.: Computational Methods in Commutative Algebra and Algebraic
Geometry. In: Algorithms and Computation in Mathematics, vol. 2. Springer, Hei-
delberg (1998)

http://www.openxm.org
http://www.singular.uni-kl.de/

An Automated Confluence Proof for an

Infinite Rewrite System Parametrized
over an Integro-Differential Algebra

Loredana Tec1,�, Georg Regensburger2,
Markus Rosenkranz3, and Bruno Buchberger1

1 Research Institute for Symbolic Computation,
Johannes Kepler University, 4032 Castle of Hagenberg, Austria

2 Johann Radon Institute for Computational and Applied Mathematics,
Austrian Academy of Sciences, Altenberger Str. 69, 4040 Linz, Austria

3 School of Mathematics, Statistics and Actuarial Science,
University of Kent, Canterbury CT2 7NF, United Kingdom

1 Introduction

In our symbolic approach to boundary problems for linear ordinary differential
equations we use the algebra of integro-differential operators as an algebraic ana-
logue of differential, integral and boundary operators (Section 2). They allow to
express the problem statement (differential equation and boundary conditions)
as well as the solution operator (an integral operator called “Green’s operator”),
and they are the basis for operations on boundary problems like solving and
factoring [14,17]. A survey of the implementation is given in [18].

The integro-differential operators are realized by a noetherian and confluent
rewrite system [17]. From a ring-theoretic point of view, this rewrite system con-
stitutes a basis for the ideal of relations among the fundamental operators, and
confluence means we have a noncommutative Gröbner basis [3,4,2,9]. However,
since the relation ideal is infinitely generated in a polynomial ring with infinitely
many indeterminates, none of the known implementations [13] is applicable.

This is why the confluence proof is somewhat subtle (Section 3). The gen-
erators for the relation ideal are parametrized over a given integro-differential
algebra, and the reduction of S-polynomials must incorporate the computational
laws of the latter. The automated proof in [15] has achieved this in an ad-hoc
manner for the special case of what was called “analytic algebras” there. In our
new proof, the computational laws of integro-differential algebras are internal-
ized by using so-called integro-differential polynomials [16] in the formation of
the S-polynomials. We also refer to [19] for a detailed presentation of the new
automated proof and the corresponding integro-differential structures.

We use a prototype implementation of integro-differential polynomials and
reduction rings, based on Theorema and available at www.theorema.org. The
Theorema system was designed by B. Buchberger as an integrated environment
for proving, solving and computing in various domains [6]. Implemented on top
� Recipient of a DOC-fFORTE-fellowship of the Austrian Academy of Sciences.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 245–248, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.theorema.org

246 L. Tec et al.

of Mathematica, its core language is higher-order predicate logic and contains a
natural programming language such that algorithms can be coded and verified
in a unified formal frame, using the powerful tool of functors for building up a
hierarchy of parametrized domains; for more details and references see [8].

2 Integro-Differential Polynomials and Operators

We need an algebraic structure having differentiation along with integration. In
the following definition [17], one may think of the standard example F = C∞(R),
where ∂ = ′ is the usual derivation and

�
the integral operator f �→ ∫ x

a
f(ξ) dξ for

a ∈ R. The section axiom corresponds to the Fundamental Theorem of Calculus,
the differential Baxter axiom to Integration by Parts. Scalars are over a field K.
For the similar notion of differential Rota-Baxter algebras, we refer to [10].

Definition 1. An integro-differential algebra (F , ∂,
�
) is a commutative differ-

ential K-algebra (F , ∂) with a K-linear section
�

of ∂, meaning (
�
f)′ = f , such

that the differential Baxter axiom (
�
f ′)(

�
g′) +

�
(fg)′ = (

�
f ′)g + f(

�
g′) holds.

Let (F , ∂,
�
) be an integro-differential algebra of “coefficients”. Then the integro-

differential operators F [∂,
�
], introduced in [17] as a generalization of the “Green’s

polynomials” of [15], are defined as the quotient—modulo the rewrite rules from
the table below—of the noncommutative polynomial ring over K in the following
indeterminates: ∂ and

�
, the “functions” f ∈ F , and the multiplicative “func-

tionals” ϕ. The functions f range over a basis of F ; the multiplicative functionals
(or characters) ϕ : F → K are typically point evaluations, and they must include
the evaluation e = 1 − ∫

∂, which is e(f) = f(a) in the above example. In the
rewrite rules, we use f and g range over functions, ϕ and ψ over multiplicative
functionals.

fg → f · g ∂f → ∂ · f + f∂
�
f
� → (

� · f)
� − �

(
� · f)

ϕψ → ψ ∂ϕ → 0
�
f∂ → f − �

(∂ · f) − (e · f) e

ϕf → (ϕ · f) ϕ ∂
� → 1

�
fϕ → (

� · f) ϕ

Theorem 1. The above rewrite system is noetherian and confluent.

As explained before, one may find an outline of a manual proof for this theorem
in [17], but the purpose of the present paper is to sketch a new automated proof
based on the algebra of integro-differential polynomials. The precise definition as
an instance of the universal polynomial construction [12,7,1] is tedious [16], but
the underlying intuition is perfectly clear since one just adjoins an indeterminate
function u to the given integro-differential algebra F . The integro-differential
polynomials are an extension of the usual differential polynomials [11] and in
analogy we denote them by F{u}. A proof of the following theorem can be
found in [19].

An Automated Confluence Proof 247

Theorem 2. The integro-differential polynomials F{u} constitute an integro-
differential algebra with an algorithmic canonical simplifier.

Unlike the integro-differential operators, F{u} is thus a commutative integro-
differential algebra, and its multiplication is realized by the so-called shuffle
product. While the definition of the derivation is straightforward and simi-
lar to differential polynomials, the integral must be defined by a careful case
distinction on the differential exponents [16,19]. Note that integro-differential
polynomials act as nonlinear differential and integral operators on F . A typ-
ical integro-differential polynomial for F = K[x] is given by 4u(0)4u2

�
u′3 +�

(x6uu′′5� (x2e4xu3u′2� u4)). For computational purposes, we have implemented
a canonical simplifier, identifying different expressions that denote the same
integro-differential polynomial.

3 An Automated Confluence Proof

As announced in the Introduction, the integro-differential polynomials are used
for proving the confluence of the above rewrite rules defining the relations for
F [∂,

�
]. Equivalently, we show that the noncommutative polynomials given by

the difference between the left and right sides of the rules form a noncommu-
tative Gröbner basis. For handling parametrized polynomial reduction and S-
polynomials, we use a noncommutative adaption of reduction rings, i.e. rings
with so-called reduction multipliers in the sense of [5]. As usual, we show that
all S-polynomials reduce to zero.

Since the rewrite rules contain two generic functions f and g, one can view
the corresponding S-polynomials as elements of F̃ [∂,

�
] with F̃ = F{u, v}. Here

F{u, v} = (F{u}){v} denotes the integro-differential polynomials in two inde-
terminates. More precisely, we reason as follows: If we know that an S-polynomial
reduces to zero as such, the same is true after substituting the functions f, g ∈ F
for u, v. Note the subtle shift between object and meta level when we use the
instance of the rewrite system for the integro-differential operators F̃ [∂,

�
] over

integro-differential polynomials for proving the confluence of the rewrite rules
for integro-differential operators over arbitrary integro-differential algebras—this
proof needs only rewriting not confluence! (Actually one should also treat the
functionals ϕ, ψ in analogy to the functions f, g, but the former are much simpler
than the latter.) We refer again to [19] for further details.

We can now use Theorema for checking whether an S-polynomial reduces to
zero. All S-polynomials are generated algorithmically, but as a concrete example
we check the self-overlap

∫
u
∫

and
∫
v
∫

of the Baxter rule.

TS_In[554]:= ReducePol���"� "�u�1���"� "�v�1��"� " � "� "��"� "�u�1���v�1��"� "� �

�"� "�u�1���"� "�v�1���"� " � "� "�u�1��"� "��"� "�v�1����

TS_Out[554]=
0

It turns out that there are 72 S-polynomials, and indeed all of them reduce to
zero. Hence we conclude that the rewrite system for F [∂,

�
] is confluent.

248 L. Tec et al.

References

1. Aichinger, E., Pilz, G.F.: A survey on polynomials and polynomial and compatible
functions. In: Proceedings of the Third International Algebra Conference, pp. 1–16.
Kluwer Acad. Publ., Dordrecht (2003)

2. Bergman, G.M.: The diamond lemma for ring theory. Adv. in Math. 29(2), 178–218
(1978)

3. Buchberger, B.: An algorithm for finding the bases elements of the residue class
ring modulo a zero dimensional polynomial ideal (German). PhD thesis, Univ.
of Innsbruck (1965); English Translation J. Symbolic Comput. 41(3-4), 475–511
(2006)

4. Buchberger, B.: Introduction to Gröbner bases. In: Buchberger, B., Winkler, F.
(eds.) Gröbner Bases and Applications, pp. 3–31. Cambridge Univ. Press, Cam-
bridge (1998)

5. Buchberger, B.: Gröbner rings and modules. In: Proceedings of SYNASC 2001, pp.
22–25 (2001)

6. Buchberger, B., et al.: Theorema: Towards computer-aided mathematical theory
exploration. J. Appl. Log. 4(4), 359–652 (2006)

7. Buchberger, B., Loos, R.: Algebraic simplification. In: Computer Algebra, pp. 11–
43. Springer, Vienna (1983)

8. Buchberger, B., Regensburger, G., Rosenkranz, M., Tec, L.: General polynomial
reduction with Theorema functors: Applications to integro-differential operators
and polynomials. ACM Commun. Comput. Algebra 42(3), 135–137 (2008)

9. Bueso, J., Gómez-Torrecillas, J., Verschoren, A.: Algorithmic methods in non-
commutative algebra. Kluwer Academic Publishers, Dordrecht (2003)

10. Guo, L., Keigher, W.: On differential Rota-Baxter algebras. J. Pure Appl. Alge-
bra 212(3), 522–540 (2008)

11. Kolchin, E.: Differential algebra and algebraic groups. Pure and Applied Mathe-
matics, vol. 54. Academic Press, New York (1973)

12. Lausch, H., Nöbauer, W.: Algebra of polynomials. North-Holland Publishing Co.,
Amsterdam (1973)

13. Levandovskyy, V.: PLURAL, a non-commutative extension of SINGULAR: past,
present and future. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS,
vol. 4151, pp. 144–157. Springer, Heidelberg (2006)

14. Regensburger, G., Rosenkranz, M.: An algebraic foundation for factoring linear
boundary problems. Ann. Mat. Pura. Appl. (4) 188(1), 123–151 (2009)

15. Rosenkranz, M.: A new symbolic method for solving linear two-point boundary
value problems on the level of operators. J. Symbolic Comput. 39(2), 171–199
(2005)

16. Rosenkranz, M., Regensburger, G.: Integro-differential polynomials and operators.
In: Proceedings of ISSAC 2008, pp. 261–268. ACM, New York (2008)

17. Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for
linear ordinary differential equations in differential algebras. J. Symbolic Com-
put. 43(8), 515–544 (2008)

18. Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: A symbolic frame-
work for operations on linear boundary problems. In: Gerdt, V.P., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 269–283. Springer, Hei-
delberg (2009)

19. Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: Symbolic analysis for
boundary problems: From rewriting to parametrized Gröbner bases. Technical Re-
port 2010-05, RICAM (2010)

Operadic Gröbner Bases: An Implementation

Vladimir Dotsenko1,� and Mikael Vejdemo-Johansson2,��

1 Dublin Institute for Advanced Studies and School of Mathematics, Trinity College
Dublin, Ireland

2 Department of Mathematics, Stanford University
mik@stanford.edu

1 Introduction

In an upcoming paper [1], the first author and Anton Khoroshkin define the con-
cept of a Gröbner basis for finitely presented operads, prove the diamond lemma
for these Gröbner bases, and demonstrate that having a quadratic Gröbner basis
is equivalent to the existence of a Poincaré-Birkhoff-Witt basis. As demonstrated
by Eric Hoffbeck [2], an operad with a PBW basis is Koszul. Thus, out of this
emerges an entirely computational framework for proving Koszulness, as well
as the possibility to build tools for exploration of operads by means of explicit
calculation.

The authors have, in [3], provided a computer implementation of the algo-
rithms specified by Dotsenko and Khoroshkin. At the core of the paper [1] lies
the recognition that every symmetric operad can be thought of as a shuffle op-
erad, and forgetting “unnecessary” symmetries does not affect relevant results of
linear and homological algebra for operads; therefore, the respective computation
may be restricted to the simpler category of shuffle operads without restricting
any conclusions drawn.

1.1 Shuffle Operads

For exact definitions, we refer the reader to [1,3]. For the purpose of this short
communication, we shall concentrate on a less precise definition of symmetric,
and shuffle operads.

Definition 1. A symmetric (resp. shuffle) operad is a collection O(n) of vector
spaces, one for each n, together with linear maps

◦σ : O(n) ×O(m1) × · · · × O(mn) → O(m1 + · · · + mn)

called composition maps. The composition maps are parametrized by arbitrary
permutations in Sm1+···+mn (resp. by shuffle permutations of type (m1, . . . ,mn))
that provide symmetry actions to the operad. These maps are required to fulfill
associativity conditions and allow for a unit for the composition.
� The first author was supported by an IRCSET research fellowship.

�� The second author was supported by the Office of Naval Research, through grant
N00014-08-1-0931.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 249–252, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

250 V. Dotsenko and M. Vejdemo-Johansson

As with so many other things, it is the identification of the free objects that
we gain both a mental and a computational model for the objects at hand. For
operads, the free objects consist of decorated trees, with a (rooted) tree being a
non-empty connected directed graph T of topological genus 0, with each vertex
being equipped with at least one incoming edge and exactly one outgoing edge.
We allow for some edges to only have one vertex – the other being ignored for
our purposes – call such edges external. Each tree has exactly one external edge:
the root or output, and some number of ingoing edges, called leaves.

Given a collection M , we can consider the collection of all trees decorated by M ,
by which we mean trees such that each vertex with n outgoing edges is equipped
with some element of M(n). Such a decorated tree, we call a tree monomial over
M . The collection of the vector spaces spanned by all such tree monomials with
exactly n leaves is denoted by FM (n), and they form a collection denoted by FM .

Composition in the free operad can be defined on basis elements through gluing
leaves to roots, and and re-arranging the leaves in an admissible way. For symmet-
ric operads, all permutations are allowed, while shuffle operads have a smaller class
of admissible permutations: the shuffle permutations, as described in [1]. The rear-
ranging can either be imagined by allowing branches to cross as the tree is drawn
at; or by requiring a planar drawing of each tree, but instead decorating all leaves
with integers, and allowing the permutations to act on these integers.

1.2 Gröbner Bases for Operads

We may define divisibility for tree monomials by saying that α divides β if
there is some sequence of compositions that starts with α and ends with β.
We can produce the equivalent operations to S-polynomials and reductions for
the Buchberger algorithm by finding such a dividing sequence mαβ for a pair of
leading tree monomials, according to some tree monomial ordering, and applying
mαβ to all tree monomials in some given free operad element.

This allows us to reproduce the Buchberger algorithm, with trees and non-
linear compositional structures instead of the linear monomials known from
commutative and non-commutative Gröbner bases. Once we are able to define
greatest common divisors and least common multiples for tree monomials, us-
ing these mαβ-operations, the resulting algorithms look very familiar to those
working with computational algebra.

Our interest in these Gröbner bases lie in part in their power for the theory of op-
erads: providing computational proof for Koszulness of specific operads, and aiding
in the computational exploration of the theory – but also in the way that Gröbner
bases and the computational theory of operads encompasses all Gröbner-like theo-
ries in one single framework. Commutative and non-commutative polynomial ring
Gröbner bases occur as operadic Gröbner bases concentrated in degree 1.

2 An Example

To illustrate the concepts and techniques, consider the algebraic theory that stip-
ulates a single binary operation ∗, and requires of this the rules (a∗b)∗c=−a∗(b∗c)

Operadic Gröbner Bases: An Implementation 251

and (a ∗ c) ∗ b = a ∗ (b ∗ c). This universal algebra is captured by the operad
defined as a quotient of the free shuffle operad on a single generator by the
ideal generated by the two tree polynomials on the left. These give rise to an
S-polynomial (using the PathPerm ordering described in [3]) – the one consisting
of only the monomial on the right; which will not reduce further.

+ , −

% ghc i −cpp Math . Operad
∗Math . Operad> l e t v = c o r o l l a 2 [1 , 2]
∗Math . Operad> l e t [g1t1 , g1t2 , g2t2] =

[shuff leCompose 1 [1 , 2 , 3] v v ,
shuff leCompose 2 [1 , 2 , 3] v v ,
shuff leCompose 1 [1 , 3 , 2] v v]

∗Math . Operad> l e t ac =
[(oet g1t1) + (oet g1t2) , (oet g2t2) − (oet g1t2)]
: : [OperadElement Integer Rational PathPerm]

∗Math . Operad> l e t acGB = operad icBuchberger ac
∗Math . Operad> length acGB
3
∗Math . Operad> putStrLn $ pp acGB
[
+1 % 1∗m2(m2(1 , 3) , 2)
+(−1) % 1∗m2(1 ,m2(2 , 3)) ,

+1 % 1∗m2(m2(1 , 2) , 3)
+1 % 1∗m2(1 ,m2(2 , 3)) ,

+2 % 1∗m2(1 ,m2(2 ,m2(3 , 4))) ,
]

Fig. 1. Example session: computing the Gröbner basis of the operad that con-
trols anti-commuting associative algebras: m(m(a, b), c) = −m(a,m(b, c)) and
m(m(a, c), b) = m(a,m(b, c)). The symbol % denotes an element of �, so that a%b = a

b
.

The first two clusters in the output are the original generators, and the third is the
non-trivial S-polynomial added by the computation.

3 Implementing Gröbner Bases for Operads

For the implementation of the Buchberger algorithm, we chose to work in the pro-
gramming language Haskell.1 [4] For a variety of reasons, including the relative
ease with which new datatypes can be constructed, and mathematical thoughts
can be all but transliterated into the programming language itself, this choice
made the production of a first implementation easy and even pleasant.
1 A working version of our software package can be found at the Hackage repository
http://hackage.haskell.org/package/Operads

http://hackage.haskell.org/package/Operads

252 V. Dotsenko and M. Vejdemo-Johansson

However, there are plenty of issues with the implementation, and its platform.
The platform choice makes the package uninviting to the casual user, and hard
to integrate into other mathematical software systems. The relatively special-
ized programming paradigm is unusual enough that the language itself forms an
additional barrier to entry, and both optimization, debugging and code analy-
sis are made more difficult by the sometimes highly unintuitive way that the
declarative programs transform into machine code.

At the core of the representation of an operad is the tree; and thus the ease
with which Haskell represents trees helped making the implementation work
easy; with a definition somewhat similar to

data Tree = Leaf | Node [Tree]

equipped with appropriate functionality and decorations, implementing the arith-
metic of free operads became straightforward. However, it is with the trees that
the core of the difficulty implementing these algorithms lies as well: in our pro-
filing experiments, the real deep time sinks have invariably been functions that
traverse the trees in order to determine their value – primarily the monomial
ordering functions that get called repeatedly by every single operation that mod-
ifies a tree polynomial. Introducing caching to the polynomial storage type helps,
but even so, tree traversals take up most of the time.

Hence, any other implementation will have to be carefully done to capture
the tree structures in a way that is amenable to manipulation while still efficient
in handling.

We would like to call for further implementations; for the modification of this
implementation into something more accessible, more usable, faster, leaner, and
better.

References

1. Dotsenko, V., Khoroshkin, A.: Gröbner bases for operads. Duke Math. Journal
153(2), 363–396 (2010)

2. Hoffbeck, E.: A Poincaré–Birkhoff–Witt criterion for Koszul operads. Manuscripta
Mathematica 131, 87–110 (2010)

3. Dotsenko, V., Vejdemo-Johansson, M.: Implementing Gröbner bases for operads.
Séminaires et Congrès (2009) (to appear)

4. Jones, S.P. (ed.): Haskell 98 language and libraries: the revised report. Cambridge
Univ. Pr., Cambridge (2003)

Magma - A Tool for Number Theory

John Cannon, Steve Donnelly, Claus Fieker, and Mark Watkins

School of Mathematics and Statistics, University of Sydney
{john,donnelly,claus,watkins}@maths.usyd.edu.au

Magma [1,2,5] is a computer algebra system developed by the group of John
Cannon at the University of Sydney, together with many collaborators around
the world, and was first released in 1994. Based on experience obtained from
the group theory system Cayley (1975–2005), also developed by Cannon et al,
Magma is designed to be a general algebra system with an strong emphasis on
the structural aspects of algebra. The goal is to provide a framework for imple-
menting algorithms at a much higher level of abstraction than CA systems such
as Maple and Mathematica. Magma currently provides support for most of clas-
sical algebra (groups, rings, fields), algebraic geometry, algebraic combinatorics
and coding theory (this list is not exhaustive.)

A key aspect of the Magma philosophy is close integration of the various math-
ematical modules. While other more specialized computer algebra systems may
sometimes be more efficient, Magma makes it easy to perform computations that
involve the close interaction of tools from many different areas of mathematics.

This close interaction is the key reason for many of the more recent advances:

– The availability of high performance machinery for group theory, local fields,
invariant theory and number fields made it possible to compute Galois groups
of polynomials of degree greater than 30 for the first time.

– Access to class field theory of function fields is a key requirement in the
construction of geometric codes.

– The wide range of techniques for computing Mordell-Weil groups of elliptic
curves and hyperelliptic Jacobians rely on computations in number field,
local fields, geometry, and lattice reduction.

– Quaternion algebras over global fields are built on module theory developed
for relative number fields; together with lattice techniques, this enables effi-
cient solution of key arithmetic problems (concerning ideals, units etc).

– Hilbert modular forms are computed using the machinery for quaternion
algebras.

Although Magma is not a specialist system designed for a single area such
as number theory, the performance of Magma is highly competitive with the
more specialist systems. While special stand-alone software is sometimes faster,
Magma typically performs within a small constant factor of the fastest known
implementation.

The uniform interface to each type of arithmetic field (finite fields, local fields,
number fields, function fields, extensions) allows users to develop applications
that will work without change for a wide variety of rings and fields.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 253–255, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

254 J. Cannon et al.

In the context of number theory, Magma provides tools for determining all
classical invariants of number fields such as the ring of integers, the unit group,
the ideal class group and the Galois group of arbitrary finite extensions of the
rational number field. Similar functionality is available for univariate function
fields and hence for plane curves. Most of the classic algorithms were originally
developed by the KANT group of Professor Pohst in Berlin [3,4]. This function-
ality for arithmetic fields is the foundation for the construction in Magma of
extensive machinery for many other important areas of number theory. These
include:

– Class field theory: Magma can compute defining equations for Abelian ex-
tensions of global fields (and local fields of characteristic 0) parametrised by
suitable ray class groups.

– Hecke characters, as the dual groups of ray class groups, and their L-functions
– Diophantine equations such as norm, unit, Thue and index-form equations.

Magma’s extensive packages for topics in “arithmetic geometry” rely in many
cases on number field/function field machinery, but also on other core fea-
tures such as efficient linear algebra, fast Groebner bases, and lattice reduc-
tion/enumeration. These topic include:-

– Solving (or deciding solubility of) conics over global fields; general quadratic
forms (genus theory, isotropic subspaces).

– Elliptic curves over global fields: an unrivalled array of techniques for com-
puting Mordell-Weil groups.

– Hyperelliptic curves over number fields: the Mordell-Weil group of the Jaco-
bian may be found via 2-descent, height machinery and search tools. Points
on the curve can be determined using Chabauty and Mordell-Weil-sieve tech-
niques, or by “2-descent on the curve”.

– Low genus curves over finite fields: Tools for cryptographic applications such
as point counting and various attacks such as discrete logarithm and GHS
attacks.

– Modular forms for the standard congruence subgroups and characters.
– Hilbert modular forms for general totally real fields, with general levels and

weights.
– L-series attached to many arithmetic objects.

Just as the availablity of tools from many different areas in Magma has led to new
computational tools and applications in number theory, methods from number
theory have played a key role in the development of computational methods
in other branches of algebra. For example recent progress in the construction
of ordinary irreducible representations of large finite groups was only possible
because of progress in effective Galois cohomology of number fields (in particular
access to relative Brauer groups), which in turn is based on general cohomology
for groups.

Magma - A Tool for Number Theory 255

References

1. Bosma, W., Cannon, J. (eds.): Discovering Mathematics with Magma. Algorithms
and Computations in Mathematics, vol. 19. Springer, Heidelberg (2006)

2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comp. 24(3-4), 235–265 (1997)

3. Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Wildanger, K.:
KANT V4. J. Symbolic Comp. 24, 267–283 (1997)

4. Kant/KaSH: KaSH - the KANT Shell, http://www.math.tu-berlin.de/~kant
5. Magma: The Magma computational algebra system for algebra, number theory and

geometry, http://magma.maths.usyd.edu.au/magma/

http://www.math.tu-berlin.de/~kant
http://magma.maths.usyd.edu.au/magma/

Enumerating Galois Representations in Sage

Craig Citro1,2 and Alexandru Ghitza3

1 Google, Seattle WA
2 Department of Mathematics, University of Washington,

Box 354350, Seattle WA 98195-4350, USA
craigcitro@gmail.com

3 Department of Mathematics and Statistics, University of Melbourne,
Parkville VIC 3010, Australia

aghitza@alum.mit.edu

Abstract. We present an algorithm for enumerating all odd semisimple
two-dimensional mod p Galois representations unramified outside p. We
also discuss the implementation of this algorithm in Sage and give a
summary of the results we obtained1.

Keywords: Galois representations, Sage, modular forms.

1 Introduction

A great deal of arithmetic questions have found natural interpretations (and
often, answers) within the realm of Galois representations and modular forms:
such applications include Diophantine equations, quadratic forms, or the study
of combinatorial-arithmetic objects such as partitions. In this context, it is of
interest to dispose of computational tools for working with modular forms and
Galois representations.

In this note, we focus on two-dimensional Galois representations mod p, i.e.
continuous group homomorphisms

ρ : Gal(Q/Q) −→ GL2(IFp) .

(More precisely, we consider such representations which are semisimple, unram-
ified outside p, and odd. For the theoretical background, we refer the reader to
Khare’s survey [3] or to Edixhoven’s paper [2].)

By Serre’s conjecture, now a theorem of Khare-Wintenberger (see [4], [5]),
these representations are closely related to modular forms (mod p) of level 1
which are eigenvectors for all the Hecke operators. If f is such a form, of weight k
and eigenvalues (a�), then for all primes � �= p we have

charpoly(ρ(Frob�)) = X2 − a�X + �k−1 ,

where Frob� is a Frobenius element at � inside Gal(Q/Q).
1 The authors wish to thank Kevin Buzzard for providing several corrections and a

significant improvement to Theorem 1, and the referees for suggesting improvements
to the exposition.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 256–259, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Enumerating Galois Representations in Sage 257

The (Hecke) eigensystem corresponding to a mod p eigenform f is the se-
quence (a�) of eigenvalues indexed by all primes � �= p. The i-th twist of (a�) is
by definition the eigensystem

(
�ia�

)
. We write [a�] for a finite truncation of (a�),

where the cutoff point will be clear from the context.
Inspired by a remark of Khare2, we have set out to enumerate all odd semisim-

ple mod p representations which are unramified outside p. This corresponds to
enumerating all the Hecke eigensystems which occur in spaces of level 1 modular
forms mod p.

2 Description of the Algorithm

The starting point is a classical result in the theory of modular forms mod p
(see Theorem 3.4 in [2]): every Hecke eigensystem occurs, up to twist, in weights
less than or equal to p + 1. Therefore it suffices to generate the spaces Mk for
weights 4 ≤ k ≤ p+1 and find all the eigenforms in them, which will produce all
the Hecke eigensystems up to twist. This list may however contain duplicates;
we investigate this question in detail in [1], where we prove

Theorem 1

(a) Let f1 and f2 be eigenforms of weights k1, k2 ≤ p + 1. If f1 and f2 have the
same eigensystem up to twist, then k1 + k2 = p + 1 or k1 + k2 = p + 3.

(b) Let f1 and f2 be eigenforms of weights related in one of the ways described
in (a). If f1 and f2 do not have the same eigensystem up to twist, then this
is detected by a prime � �= p satisfying � ≤ (p + 1)/6.

In the process of proving Theorem 1, we obtained the following lower bound,
which improves the best known lower bound (due to Serre, see Sect. 8 in [3]) by
a factor of two:

Theorem 2. Let p > 19 be prime. The number of odd semisimple 2-dimensional
Galois representations mod p which are unramified outside p is bounded below
by p(p− 1)/2.

Algorithm: Enumerate Galois Representations Mod p Up to Twist

1. For 4 ≤ k ≤ p + 1:
(a) Compute a basis for the space Mk.
(b) Decompose the space into Hecke eigenspaces.
(c) For each eigenform, compute the eigenvalue a� of T� for primes � up to

the bound from Theorem 1. Store (k, [a�]).
2. Remove duplicates: given (k1, [a�]) and (k2, [b�]) such that k1 + k2 = p + 1

or p + 3, check whether [b�] is a twist of [a�].

This creates the list of equivalence classes (up to twist) of Hecke eigensystems
mod p. It is now straightforward to apply the twist operation to each list element
and generate the list of all Hecke eigensystems.
2 From Sect. 8 of [3]: “[. . .] there are only finitely many semisimple 2-dimensional

mod p representations of Gal(Q/Q) of bounded (prime-to-p Artin) conductor. It will
be of interest to get quantitative refinements of this.”

258 C. Citro and A. Ghitza

3 Sage Implementation and Results

Our task requires computing the action of Hecke operators on spaces of modular
forms of high weight. Sage [8] offers several implementations of these spaces for
arbitrary levels. We have initially used modular symbols over finite fields for
generating the lists of eigenforms, but this method becomes quite slow as the
weight increases. Restricting to level 1 allows us to take advantage of a much
faster way of working with these spaces: the Victor Miller basis (see Sect. 2.3
in [7] for the properties and the algorithm Sage uses to compute this basis).

We then use one Hecke operator T� at a time to decompose the space Mk into
eigenspaces. This requires (at most) the first k/12 primes � (see the appendix
of [6]).

We have run the Sage implementation of our algorithm for all primes up to 211
(see Table 1). Apart from keeping track of the number of equivalence classes of
eigensystems and the total number of eigensystems, we save the list of equivalence
classes; given this it is very easy to take twists and generate the entire list.

Table 1. Number of Galois representations mod p

p number p number p number p number p number p number

2 1 23 264 59 4234 97 19200 137 53992 179 119705
3 1 29 532 61 4800 101 21600 139 55752 181 124020
5 4 31 630 67 6237 103 22797 149 69264 191 145445
7 9 37 1044 71 7420 107 25546 151 71700 193 150144

11 35 41 1480 73 8136 109 27216 157 80340 197 160132
13 48 43 1701 79 10257 113 30240 163 90397 199 164637
17 112 47 2185 83 12054 127 42903 167 97276 211 196560
19 153 53 3172 89 14784 131 46735 173 108016

Khare guesses in [3] that the number of Galois representations of the type
we are considering should be asymptotic to p3/48. There are two phenomena
that can contribute to the actual number being smaller than the guess: (i) the
existence of “companion forms”, which in our context appear as duplicate equiv-
alence classes of eigenforms; (ii) the failure of “multiplicity one” for Hecke eigen-
values mod p, which results in some spaces Mk not contributing their dimension’s
worth of eigenforms. In the range of our computations, the actual number of rep-
resentations stays very close to the best known upper bound3, suggesting that
the two phenomena are indeed quite rare. We expect this trend to be confirmed
by further computations.

References

1. Citro, C., Ghitza, A.: Computing level 1 Hecke eigensystems (mod p) (preprint)
2. Edixhoven, B.: The weight in Serre’s conjectures on modular forms. Invent.

Math. 109(3), 563–594 (1992)

3 For instance, for p = 211 the quotient between the actual number (196560) and the
upper bound (196665) is about 0.9995.

Enumerating Galois Representations in Sage 259

3. Khare, C.: Modularity of Galois representations and motives with good reduction
properties. J. Ramanujan Math. Soc. 22(1), 75–100 (2007)

4. Khare, C., Wintenberger, J.P.: Serre’s modularity conjecture. I. Invent.
Math. 178(3), 485–504 (2009), http://dx.doi.org/10.1007/s00222-009-0205-7

5. Khare, C., Wintenberger, J.P.: Serre’s modularity conjecture. II. Invent.
Math. 178(3), 505–586 (2009), http://dx.doi.org/10.1007/s00222-009-0206-6

6. Lario, J.C., Schoof, R.: Some computations with Hecke rings and deformation rings.
Experiment. Math. 11(2), 303–311 (2002),
http://projecteuclid.org/getRecord?id=euclid.em/1062621223;
with an appendix by Amod Agashe and William Stein

7. Stein, W.: Modular forms, a computational approach. In: Graduate Studies in Math-
ematics, vol. 79. American Mathematical Society, Providence (2007); With an ap-
pendix by Paul E. Gunnells

8. Stein, W., et al.: Sage Mathematics Software (Version 4.4.1). The Sage Development
Team (2010), http://www.sagemath.org

http://dx.doi.org/10.1007/s00222-009-0205-7
http://dx.doi.org/10.1007/s00222-009-0206-6
http://projecteuclid.org/getRecord?id=euclid.em/1062621223
http://www.sagemath.org

NZMATH 1.0

Satoru Tanaka, Naoki Ogura, Ken Nakamula,
Tetsushi Matsui, and Shigenori Uchiyama

Department of Mathematics and Information Sciences
Tokyo Metropolitan University

1-1 Minami Osawa, Hachioji, Tokyo, 192-0397 Japan
{satoru,naoki,nakamula,tetsushi,uchiyama}@tnt.math.metro-u.ac.jp

Abstract. This is an announcement of the first official release (version
1.0) of the system NZMATH for number theory by Python [18]. We
review all functions in NZMATH 1.0, show its main properties added
after the report [11] about NZMATH 0.5.0, and describe new features for
stable development. The most important point of the release is that we
can now treat number fields. The second major change is that new types
of polynomial programs are provided. Elliptic curve primality proving
and its related programs are also available, where we partly use a library
outside NZMATH as an advantage of writing the system only by Python.
A new feature is that NZMATH is registered on SourceForge [19] as an
open source project in order to ensure continuous development of the
project. This is a unique among existing systems for number theory.

1 Introduction

The purpose of this article is to announce and describe the first official release
(version 1.0) of NZMATH, which is a system for number theory written com-
pletely as a library package of the Python language.

In ICMS 2006,we reported the visions of our development together with the sta-
tus and plan at that time. The key visions of the NZMATH development are [11]:

– user / developer fusion.
– speed of development.

The first vision means that ideally there is no distinction between users and
developers. From the user’s view point, users should be able to become developers
easily. Their programs should be merged into the system without difficulties.
From the developer’s view point, developers should concentrate on implementing
mathematical concepts, especially algorithms for number theory, on the system.
The second vision means that we put emphasis on the speed of programming,
rather than that of execution. It is a paraphrasing of a commonly accepted
principle “premature optimization is the root of all evil” [8, p.268]. In order
to realize such visions, a scripting language is suitable. We chose the Python
language as the implementation language. Here, we explicitly add the third key
vision:

– open source and outsourcing.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 260–269, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

NZMATH 1.0 261

Although this vision has been implicitly included from the beginning, we find it
necessary to state it clearly in order to continue stable development and main-
tenance of the system. We are distributing NZMATH with the BSD license [11,
§3.3]. This time, we decided to use SourceForge [19] in order to be recognized
by a wider audience. In §3.2, there will be a more detailed discussion about the
third vision.

We would like to mention SAGE [20], which is a project by Python for math-
ematics and has gained great success, is the project gathering existing systems
into one system. It uses Python as a glue language, and the concept is completely
different to that of NZMATH.

We will summarize the features of NZMATH 1.0 in §2 mainly changes from
NZMATH 0.5.0. Then, we will discuss our principle of NZMATH in §3, especially
open source and outsourcing. Finally in §4, we will present future work.

2 Features

We have been developing NZMATH for six years. Various modules are included
in the NZMATH package. Note that “module” means a file consisting of parts
of program codes and “package” means a directory including modules. In this
section, we explain features of NZMATH in each module or package.

2.1 Overview

In this subsection, we provide a brief summary of entire modules or packages.

Basic Utilities. NZMATH provides some modules for supplementing Python
features. For example, we can determine whether NZMATH may assume cor-
rectness of the generalized Riemann hypothesis or not.

bigrandom. The module provides a random number generator for big numbers.
The module was written for handling the fact that some functions of the Python
standard module random cannot deal with long integers. For example, if you
call the function randrange with long integers given as arguments, it raises
OverflowError. Note that this bug is modified in Python 2.5.1 or higher.

bigrange. The module provides range-like generator functions. For example, the
Python standard function range cannot deal with many components, while we
can use the function range of bigrange for many components since the type of
its outputs is generator instead of list.

compatibility. The module is for keeping compatibility between Python versions.

config. The module is for NZMATH configurations.

Functions. NZMATH provides various functions for mathematical
computations.

262 S. Tanaka et al.

arith1. The module provides various useful functions about integers. For ex-
ample, it includes a function which computes the integer part of square root
(floorsqrt), m-adic expansion (expand), etc.

arygcd. The module provides functions which compute the greatest common
divisor over Gaussian integers or Eisenstein integers.

combinatorial. The module provides combinatorial theoretic functions. For ex-
ample, we can compute a factorial, a binomial coefficient, a Bernoulli number, a
Bell number, a Stirling number, a partition number, etc. with it.

cubic root. The module provides a function of computing cubic roots over a
finite prime field.

ecpp. The module provides the elliptic curve primality proving function. Also
we can compute the numerical values of the Dedekind η function or the Hilbert
class polynomials. These values and polynomial are used to compute the value
of j-function of curves.

equation. The module provides functions of solving polynomial equations. It in-
cludes algebraic methods of solving linear, quadratic and cubic equations over
the real number field or finite prime fields. Also, we have a function for comput-
ing approximate values of a root of polynomials over the real number field by
Newton’s method.

gcd. The module provides functions for the greatest common divisors, least
common multiples, etc.

multiplicative. The module provides multiplicative arithmetic functions such as
the Euler totient function, the Möbius function, etc.

prime. The module provides various functions on primes such as prime gen-
erating functions by using the Eratosthenes sieve. Especially, we have various
functions for primality testing: the strong pseudo–prime test, Miller–Rabin
pseudo–primality test, Lucas test, Frobenius test, Adleman–Pomerance–Rumery
primality test.

quad. The module provides functions for imaginary quadratic fields, especially,
functions for computing ideal class numbers.

squarefree. The module provides a function for square-free detection over the
rational integers.

factor (package). The package provides functions for factorization of integers.
It provides the elliptic curve method (ecm), multi–polynomial quadratic sieve
(mpqs), p− 1 method and Pollard’s ρ method.

Classes. NZMATH provides various classes for handling mathematical objects.

algfield. The module provides classes for algebraic number fields.

NZMATH 1.0 263

elliptic. The module provides classes for elliptic curves.

finitefield. The module provides classes for finite fields.

group. The module provides classes for groups. We can define a new group from
(an instance) of specific classes.

imaginary. The module provides classes for the complex number fields.

intresidue. The module provides classes for integer residue classes.

lattice. The module provides classes for lattices in the real vector space of any as-
sociated inner product. The function LLL of the module computes LLL-reduced
basis by the LLL algorithm.

matrix. The module provides classes for linear algebraic objects, especially,
matrices.

permute. The module provides classes for symmetric groups.

rational. The module provides classes for the rational integer ring and the ra-
tional number field.

real. The module provides classes for the real number field.

ring. The module provides classes for algebraic structures such as rings, fields,
quotient fields, etc.

vector. The module provides classes for vectors.

poly (package). The module provides classes for univariate/multivariate
polynomials.

2.2 Recent Changes

In this subsection, we describe the features different from those of NZMATH
0.5.0 [11].

algfield. The most remarkable new feature in NZMATH 1.0 is the algfield mod-
ule. The module algfield includes algebraic number field and algebraic number as
data type. An algebraic number is one of the most important objects in number
theory. Although the module quad already provided some computation methods
about imaginary quadratic fields, the module algfield now brings some opera-
tions in general algebraic number fields. This enables us to solve some problems
in algebraic number theory with NZMATH. For a given algebraic number field,
we can compute its discriminant, signature, and so on. Also we can obtain an
integral basis by the module round2. The method for decomposing prime ideals
will be released pretty soon.

264 S. Tanaka et al.

poly. We provide a new package poly for polynomial data type instead of the
former module polynomial. That is partly due to the inconvenience of defining
symbols of indeterminates for a polynomial. Although it makes display of poly-
nomials visually satisfactory, it makes programs on polynomial objects complex.
The calculation of indeterminates wastes time if we need only the coefficients
of the polynomials. The second reason we create the module poly is insufficient
support for coefficient rings. Some methods, for example, GCD (Greatest Com-
mon Divisor), do not check types of coefficient rings (Euclidean domain, unique
factorization domain, field, etc.). This causes errors for some methods depend-
ing on the former module polynomial. Then, we implement a new package poly.
Modules in the package poly can be divided into two submodule groups. One
is a group of submodules for basic definitions for polynomial, the other is for
user’s utilities of creating polynomials or defining convenient methods. Also,
we give methods on polynomials depending on coefficient rings. For example,
in the class UniqueFactorizationDomainPolynomial GCD is calculated by
using successive pseudodivision. The method for computing Gröbner basis will
be released soon.

ecpp. The module ecpp is for elliptic curve primality proving (ECPP). The
method in ecpp uses an algorithm proposed by Atkin and Morain [3]. Also the
module enables us to deal with some tasks associated to ECPP, for example,
computation of the numerical values of the Dedekind η function, the Hilbert
class polynomial, etc. The module ecpp is different from other modules in two
ways. Firstly, some methods do not call other modules directly but rework these
into simple forms. For example, in the module elliptic there are some optional cal-
culations such as j-invariant. In ECPP, the computatations which use an elliptic
curve explicitly are scalar multiplications. However, some parameters such as j-
variant are not used for the computation of scalar multiplications. In the module
ecpp, these inessential codes are abbreviated for efficiency. Note that extracting
codes from other modules may promote speeding up programming. Secondary,
the module ecpp uses a third party software mpmath. The software mpmath is
a Python module for floating-point operation [13]. Although NZMATH includes
modules for real numbers and complex numbers, that is, real and imaginary,
respectively, internal calculations are implemented with approximate rational
numbers. Then, the computation speed is too slow compared with normal float-
ing operation. The software mpmath provides high performance computation
with floating-point numbers, so we decided to use mpmath for improvement
of efficiency. The module ecpp is the first module which uses modules outside
NZMATH.

matrix. The module matrix had a similar problem to the module polynomial.
That is, handling of coefficient rings is not enough. So we divide classes into new
four classes depending on forms of matrix and coefficient rings. For example,
RingSquareMatrix is for square matrix whose coefficient ring is a (general)
ring while FieldSquareMatrix is for square matrix whose coefficient ring is a
field. Various commutative rings such as the rational integer ring or the complex
number field can be handled as coefficient rings in the module matrix. Then,

NZMATH 1.0 265

we can change algorithms due to coefficient rings. For instance, the method
determinant uses the Gauss-Bareiss method [4] in RingSquareMatrix while
the elementary Gaussian elimination in FieldSquareMatrix.
Miscellaneous Changes. NZMATH 1.0 has many changes. We explain those
which are not mentioned above.

The module factor.ecm is for factoring integers with the elliptic curve method.
Some families of curves are available for using factor.ecm. Many methods for cal-
culations of combinatorial theoretical objects including Bell numbers, Stirling
numbers and Euler numbers are added in the module combinatorial. Especially,
we are capable of computing various partitions of natural numbers. The method
LLL in the module lattice is rewritten as a function instead of a method. The
LLL algorithm has various applications such as factoring rational-polynomials,
cryptanalysis of RSA cryptosystem under some conditions or knapsack cryp-
tosystems, and so forth. To obtain more information about recent changes,
please check Release Notes corresponding to files in each release of NZMATH at
http://sourceforge.net/projects/nzmath/files/.

2.3 Auxiliary Components

There are various files distributed in NZMATH packages. These include docu-
ments or installers to help users to introduce NZMATH easily.
Installers. Recently we have provided an installer for Windows users. Although
NZMATH can be installed in each machine by typing a few commands at a
command line interpreter like command prompt (cmd.exe), it is hard to call
NZMATH. Thus, we offer a tool for approaching NZMATH with only three
clicks. This installer has graphical user interfaces similar to many other Windows
programs. We expect this installer will reduce users’ time and effort.
Documents. In NZMATH 1.0, we prepare documents for each modules as a
PDF file. Previously, NZMATH documents have been maintained on wiki as
described in [11], and HTML files generated from it have been bundled in the
distribution. However, since NZMATH is a mathematical program, its explana-
tion needs many mathematical notations, which are hard to express with HTML
or wiki notation. Thus, we switch from wiki to LATEX, which is more suitable
for mathematical documents. It is useful for representing mathematical objects,
and enables developers to describe modules with a unified format. Though it
is still possible to produce HTML files from LATEX source files, we prefer to
create a PDF file from them for readability and portability. During this transi-
tional work, we also enhance the content of the document, augmenting it with
many examples for each modules. These documents are expected to help users
to understand NZMATH modules.

3 Principle of NZMATH

3.1 Good Use of NZMATH

We can recommend NZMATH to anyone who does not have much programming
experience, especially to those who are newly beginning to implement number

266 S. Tanaka et al.

theoretic algorithms. We explain the reason here. NZMATH is a pure Python
library for number theory. Python is one of the scripting languages, so it is easy
to read and write code. By using Python, both implementation speed of the
system itself and programming speed of developers can be faster. In addition,
by using the same language for implementing the system and writing programs,
it becomes easier to take users’ programs into the system, so it is helpful for
implementation speed again. We know that execution speed of programs written
alone in Python is slower than that in C or Java. On the other hand, we can
master Python much faster than C or Java. We also notice that other number
theoretic calculation systems which can compute faster than NZMATH require
two or more languages to develop them. Therefore, we should learn at least two
languages to develop them. But, Python suffices for NZMATH. In this sense,
we recommend NZMATH as the best possible choice to those who are going to
implement number theoretic algorithms for the first time.

We provide NZMATH with no user interface. In other words, users have to
choose a good interface for NZMATH by themselves. We may not be satisfied
with the editing environment of a classical Python console interface. Then, if
we use IPython [6] instead, we can make a substantial improvement of our en-
vironment. We can also use an integrated develop environment for Python. For
instance, with Pydev [2] — a plug-in of Eclipse IDE [5] — we are able to work
a sequence of development, editing, execution testing and debugging in an inte-
grated environment.

3.2 Open Source and Outsourcing

We describe here our third vision.
As is explained in [11, §3.3], we are distributing NZMATH with the BSD

license which permits free use, free redistribution and free modification. We
prefer that restriction of license is not so strong as to interfere with advanced
research in number theory. Therefore we can freely modify NZMATH source
code for our own algorithms. For example, we added to NZMATH 1.0 as in §2.2
the module ecpp with redesigned functions and classes of elliptic curves from
the module elliptic. To improve efficiency of computation, we recreated a class
of elliptic curves omitting some features of the original module elliptic. The BSD
license permits such modifications for all users.

There is some background concerning why we put emphasis on outsourcing.
Users of systems for number theory, like those for other specialized topics in
mathematics, are essentially not so many as those of general purpose software.
Consequently, developers of the systems are still few and valuable. We are aware
that some good systems, which have been maintained by servers of development
groups, such as SIMATH [21] or LiDIA [9] have stopped developing. Other major
systems PARI [17], KANT [7] and MAGMA [10] are also maintained by servers
of the development groups. As is described in [11, §4.4], employing a site hosting
free / open source software with version control software, mailing list and web
pages, so we can reduce our daily routines as a side effect. Hence, we decided to
choose outsourcing in order to continue stable development and maintenance of

NZMATH 1.0 267

the system. It is a unique attempt among existing systems for number theory.
There may be a different view point that software for specialized topics in math-
ematics, like that for number theory, should be kept under control of researchers.
We are not against this, but we are going to proceed by another approach.

As we planned, we registered NZMATH on SourceForge [19], one of the famous
repositories for open source software, in order to be recognized by wider audi-
ence. We have experienced several merits from the registration of our project.
Firstly, in the process of registration, we can automatically decide the role of
each developer on the web by a project management system. As a result, we
are now ready to welcome new members as developers of the project. Secondly,
the project is verified by many people since the records of our activities are also
available from the bug tracking system and the forums on the project page. This
is helpful to maintain the quality of our development. Finally, there is of course a
great deal of improvement of information sharing. We can provide an integrated
service from SourceForge. For example, the statistics of the projects, like access
counts of the project web, commit intervals and download counts are available
now.

We changed the version control system of NZMATH from CVS to Mercurial
[12] on SourceForge. Mercurial is one of the distributed version control systems,
so each working copy of Mercurial effectively functions as a remote backup of the
repository, namely all the source codes and the history of changes. In order to
minimize the risk of losing codebase, we decided to use Mercurial. In addition,
Mercurial enables developers to exchange their works directly with each other
without connecting to the main repository in SourceForge.

4 Future Works

The development of NZMATH will continue further. We will discuss some no-
table term perspectives in the subsections.

4.1 Cloud Computing and Databases

There has been no interface for NZMATH on the web although we are able to
choose many candidates for the desktop environment. Previously we introduced
our plan to make a web user interface [11, §4.2]. There are no systems to take
advantage of cloud computing yet. We discuss how to use the cloud computing
for mathematical software.

In fact, we tried to implement NZMATH/JSON [16], NZMATH on Google
App Engine, but only a few modules are available. Especially, by the restriction
of resources of this service, it is too hard to compute a huge data or a huge
numbers of small data.

On the other hand, if we need data which spends a large amount of resources
to compute, it is effective to call a database on the cloud to pick up precomputed
data. In this release of 1.0, we designed a system of providing data of Hilbert
class polynomials on Google App Engine [14]. The ECPP algorithm requires the
computation of the Hilbert class polynomials. However, it takes much time to

268 S. Tanaka et al.

compute a Hilbert class polynomial for the ECPP algorithm. So, we provided
algorithms for ecpp modules with the precomputed Hilbert class polynomials. If
we have the Internet connection, ecpp module can use the database and execute
the ECPP algorithm faster.

So, we continue to implement new algorithms as before, and we will also
provide an algorithm using precomputed data that is computable after a great
deal of time.

4.2 Long Term Plans

Let us now discuss our long term plans.
As the main stream of development, we continue to improve modules of al-

gebraic numbers fields, polynomials, finite fields and elliptic curves. Since there
are few methods on elliptic curves over the rational number field, it is one of the
most important tasks to implement the algorithms for them.

We should improve the methods for some topics which stopped further refine-
ment, for example, integer factoring by the multi polynomial quadratic sieve or
by the elliptic curve method. To optimize these algorithms, we should reconsider
their parameters.

It is also important to implement the AKS algorithm [1]. Even though there
are already many fast primality tests, there is no reason to hesitate to implement
this unconditional deterministic polynomial time algorithm on NZMATH. We
expect that the implementation of the AKS algorithm will advance research in
primality test and proving.

5 Conclusion

We announced the first official release version 1.0 of NZMATH.
In this version, we provided algebraic number fields as one of the most im-

portant new features. We also released the module for elliptic curve primality
proving with a new concept for development. Since we follow up mathematical
notation on manuals, we started to provide new manuals with LATEX.

We added our third vision, open source and outsourcing, explicitly. In order
to continue stable development and maintenance of the system, we registered
NZMATH on SourceForge and have experienced several merits. As a result, we
are now ready to welcome new members as developers of the project.

We believe that this user-developer-friendly system will be accepted by wider
range of people, from number theorists to students of other variety of areas.

References

1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathemat-
ics 160(2), 781–793 (2004)

2. Aptana Inc.: Pydev; http://pydev.org/
3. Atkin, A., Morain, F.: Elliptic curves and primality proving. Mathematics of Com-

putation 61, 29–68 (1993)

http://pydev.org/

NZMATH 1.0 269

4. Bareiss, E.: Sylvester’s identity and multistep integer-preserving Gaussian elimi-
nation. Mathematics of Computation 22, 565–578 (1968)

5. Eclipse Foundation: Eclipse IDE, http://www.eclipse.org/
6. IPython, http://ipython.scipy.org/
7. The KANT Project: KANT / KASH,

http://www.math.tu-berlin.de/%7Ekant/kash.html

8. Knuth, D.: Structured Programming with go to Statements. ACM Journal Com-
puting Surveys 6(4), 261–301 (1974)

9. LiDIA group: News,
http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/#news

10. MAGMA group: MAGMA, http://magma.maths.usyd.edu.au/magma/
11. Matsui, T.: Development of NZMATH. In: Iglesias, A., Takayama, N. (eds.) ICMS

2006. LNCS, vol. 4151, pp. 158–169. Springer, Heidelberg (2006)
12. Matt Mackall: Mercurial, http://mercurial.selenic.com/
13. mpmath, http://code.google.com/p/mpmath/
14. NZMATH development group: Hilbert Class Polynomial,

http://hilbert-class-polynomial.appspot.com/

15. NZMATH development group: NZMATH,
http://tnt.math.metro-u.ac.jp/nzmath/

16. NZMATH development group: NZMATH / JSON,
http://nzmath-json.appspot.com/

17. The PARI group: PARI/GP Development Headquarter,
http://pari.math.u-bordeaux.fr/

18. van Rossum, G.: Foreword. In: Programming Python, 1st edn. O’Reilly, Sebastopol
(May 1996)

19. SourceForge.net, http://sourceforge.net/
20. Stein, W.: Software for Algebra and Geometry Experimentation,

http://modular.fas.harvard.edu/SAGE/

21. The SIMATH center: SIMATH, http://tnt.math.metro-u.ac.jp/simath/

http://www.eclipse.org/
http://ipython.scipy.org/
http://www.math.tu-berlin.de/%7Ekant/kash.html
http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/#news
http://magma.maths.usyd.edu.au/magma/
http://mercurial.selenic.com/
http://code.google.com/p/mpmath/
http://hilbert-class-polynomial.appspot.com/
http://tnt.math.metro-u.ac.jp/nzmath/
http://nzmath-json.appspot.com/
http://pari.math.u-bordeaux.fr/
http://sourceforge.net/
http://modular.fas.harvard.edu/SAGE/
http://tnt.math.metro-u.ac.jp/simath/

Removing Redundant Quadratic Constraints

David Adjiashvili, Michel Baes, and Philipp Rostalski

ETH Zürich, Raemistrasse 101, 8092 Zurich, Switzerland
{david.adjiashvili,michel.baes}@ifor.math.ethz.ch,

philipp.rostalski@control.ee.ethz.ch

Abstract. Determining whether an ellipsoid contains the intersection
of many concentric ellipsoids is an NP-hard problem. In this paper, we
study various convex relaxations of this problem, namely two semidefinite
relaxations and a second-order cone relaxation. We establish some links
between these relaxations and perform extensive numerical testings to
verify their exactness, their computational load and their stability. As an
application of this problem, we study an issue emerging from an aircraft
wing design problem: how can we simplify the description of a feasible
loads region?

Keywords: Semidefinite Optimization, Semidefinite Relaxation,
Aircraft Design.

1 Introduction and Motivating Example

The structural design of large mechanical architectures leads to huge optimiza-
tion problems, with a massive amount of constraints. It is usually hopeless to find
an exact solution to these problems, and an impressive fauna of heuristic strate-
gies has been developed over the years to deal directly with them with more or
less success. In this paper, we take an indirect approach: we try to identify some
constraints that are provably redundant. These constraints are subsequently re-
moved, yielding a simpler optimization problem. If every constraint is linear,
that is, if the feasible set is a convex polyhedron, this task can be performed
efficiently using the software cdd+ written by Komei Fukuda and David Avis
[6]. However, if the constraints of the problem are convex and quadratic, the
machinery of Avis and Fukuda cannot be applied. The purpose of this paper is
to develop the necessary tools to deal with this class of nonlinear constraints.

Convex quadratic constraints arise naturally in a number of applications, from
optimal portfolio selection (see e.g. [11]) to robust linear programming (see e.g.
[2]) and, among others, design of mechanical structures [1]. More applications
can be found in [9,3,4] and in references therein.

A motivating application for our study originates from the field of aeronautic
design, kindly given to us by S. McGuinness and Prof. C. Armstrong from the
Queen’s University of Belfast.

Typically, the procedure for designing large parts of an airplane, such as a
wing in the example below, is divided in four stages. First, a large set of load

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 270–281, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Removing Redundant Quadratic Constraints 271

scenarios is formed, corresponding to every kind of extreme solicitations that the
wing has to withstand. Then these loads are converted into stresses, momentums
and torques on each voxel of an appropriate finite element model of the wing.
Thirdly, the constraints that these stresses, momentums, and torques generate
are translated into design and size requirements for the wing. And finally, the
particular design is studied thoroughly in order to understand where and with
which external solicitation a damage can be caused. This step is computationally
extremely demanding: we need to describe a feasible region determined by the
constraints on each voxel, many of which are nonlinear. This description allows
us to identify those constraints that can be tight, and therefore spot all the
locations on the wing that are prone to damage given the set of load scenarios.

Of particular interest are the so-called Von Mises yield criterion constraints,
which indicate a threshold above which the deformation of a material is not elas-
tic anymore, and results in a permanent change of shape, or plastic deformation.
Mathematically, this criterion can be written for a two-dimensional object at a
voxel z as:

σ2
1(z) + σ2

2(z) + 3σ12(z) − σ1(z)σ2(z) ≤ σmax(z),

where
(

σ1(z) σ12(z)
σ12(z) σ2(z)

)
is the stress tensor at z and σmax(z) the Von Mises

threshold, which depends on the material used at z and on its dimensions. In
our wing, these stress tensors can be modeled as linear combinations of some
components of the external load, so that if x represents a particular external
load, the components of the stress vector can be expressed as:

(σ1(z), σ2(z), σ12(z))T = A(z)x,

The matrix weight A(z) of these combinations is deduced from the load scenarios
formed at the first stage of the design process. Therefore, each Von Mises yield
criterion constraint takes the form

xTE(z)x ≤ σmax, where E(z) := AT (z)

⎛⎝ 1 −0.5 0
−0.5 1 0

0 0 3

⎞⎠A(z). (1)

Note that the above constraints represent degenerated ellipsoids with matrices
of rank 3, all centered in 0. Finally, we can assume without loss of generality
that σmax = 1.

2 Ellipsoidal Constraint Removal Problem

Let
Ei := {x ∈ Rn : xTQix ≤ 1}, 1 ≤ i ≤ m

be a set of possibly degenerate ellipsoids centered in 0, where Qi is a symmetric
n× n positive semidefinite matrix of rank ri. In order to circumvent numerical
problems as much as possible, a linear change of coordinates x �→ x̃ is performed

272 D. Adjiashvili, M. Baes, and P. Rostalski

with x = B · x̃, such that the ellipses in the new coordinates are better con-
ditioned. Many different strategies exist, e.g. minimizing the asphericity of the
intersection of all ellipsoids, or select a random ellipsoid and making it spherical.
We have used a third approach, which proved to be the most satisfactory, and
which corresponds to some join spherification of all the ellipsoids. This approach
uses explicitly the fact that the matrices Qi are given in our test problem in the
form Qi = AT

i Ai, where the matrices Ai might be of low rank. We compute a
singular value decomposition

A = U

[
Σ
0

]
V T

of the matrix

A =

⎡⎢⎣A1
A2
...

⎤⎥⎦
obtained by stacking together all matrices Ai. Note that Σ is a square diagonal
matrix and U, V are orthonormal. The matrix B is now chosen as

B = V Σ−1

which yields the new ellipses

Ẽi :=
{
x̃ ∈ Rn : x̃TBTQiBx̃ ≤ g

}
, 1 ≤ i ≤ m.

For notational simplicity, we assume that the matrices Qi are scaled as above,
and we write Ei for Ẽi.

Let S be the intersection of these ellipsoids, and let J := {1, . . . ,m}. We can
assume without loss of generality that Q :=

∑m
i=1 Qi is invertible, or equivalently

that S is bounded. If this was not the case, it would suffice to project every
ellipsoids on [ker(Q)]⊥.

We are interested in finding redundant ellipsoids Ei, for which S = ∩j �=iEj .
We define:

μ∗
i := max

x
xTQix

subj. to xTQjx ≤ 1, j �= i, j ∈ J. (2)

The number μ∗
i indicates by how much one must inflate the ellipsoid Ei until

it contains the intersection of all the other ellipsoids. Clearly, when the above
problem is unfeasible, Ei can be removed. If μ∗

i ≤ 1, every point of Ei belongs to
the intersection of all the other ellipsoids, and the ith inequality is redundant.
Note that for μ∗

i = 1, there exists a point in the boundary of S that belongs to
Ei, albeit Ei is not indispensable to describe S. Finally, if 1 < μ∗

i ≤ +∞, the
ellipsoid Ei is not redundant.

Removing Redundant Quadratic Constraints 273

2.1 Immediate Eliminations/Preservations

A very cheap test allows us to determine ellipsoids that have to be discarded.
Let Ri be the smallest rectangle containing ellipsoid Ei that has its sides parallel
to the basis vectors. The side lengths of Ri can be easily computed. Also, the
intersection R of all the Ri’s contains S, and is itself a rectangle with sides
parallel to the basis vectors. We take the positive vertex v of R, and we check
whether vT |Qi|v ≤ 1, where |Qi|is the matrix Qi with each component replaced
by its absolute value. If this inequality is satisfied, the ellipsoid Ei contains
every extreme point of R. Therefore Ei ⊇ R ⊇ S. Note that the problem of
determining if R is contained in a given ellipsoid is NP-hard, as it corresponds
to the maximization of a uniform quadratic form over the unit cube (see [12]).

Conversely, there is a simple test for determining ellipsoids that cannot be
eliminated. From the diagonal element [Qi]kk of Qi, we can immediately deter-
mine the intersection point of Ei with the kth basis vector as ek[Qi]

−1/2
kk . There-

fore, the ellipsoid Ejk
having the largest element [Qi]kk cannot be discarded.

2.2 Semidefinite Relaxation

The problem (2) is NP-hard, as a particular case of it consists in maximizing a
homogeneous quadratic form over the unit cube (see [12]). A possible relaxation
strategy, known in the literature as SDP relaxation, and that we call indifferently
in this paper tailored first order moment relaxation for a reason that will be
explained at the end of this section, consists in replacing xTQix = Tr(Qi · xxT)
by Tr(Qi · X), where X is a positive semidefinite matrix of dimensions n × n,
and to use the components of X as new variables of our problem instead of x.
The notation Tr(·) refers to the trace of its matrix argument.

Of course, if the above matrix X has rank one, one can easily recompute a
corresponding x for which X = xxT (up to a sign, which does not hurt in view
of the symmetry of the problem). Thus the original problem (2) is completely
equivalent to:

μ∗
i := max

X
Tr(Qi ·X)

subj. to Tr(Qj ·X) ≤ 1, j �= i, j ∈ J

X ∈ Sn
+,

rank(X) = 1.

Here Sn
+ denotes the set of n×n positive semidefinite matrices and J the indices

set of remaining ellipsoids.
Now, the tailored moment relaxation consists in suppressing the non-convex

constraint rank(X) = 1 and solve:

μSDP
i := max

X
Tr(Qi ·X)

subj. to Tr(Qj ·X) ≤ 1, j �= i, j ∈ J

X ∈ Sn
+. (3)

274 D. Adjiashvili, M. Baes, and P. Rostalski

Obviously, μSDP
i ≥ μ∗

i . Moreover, as the feasible set is bounded, Nemirovski,
Roos, and Terlaky, [12] show that:

2 ln(2|J − 1|r)μ∗
i ≥ μSDP

i ,

where r = min{|J − 1|,max1≤i≤m ri} and ri is the rank of the matrix Qi.
In our tests, we compute successively μSDP

1 up to a given accuracy of ε. If
μSDP

1 < 1 − ε, we remove 1 from J and proceed to compute μ∗
2 and so on.

A possible reformulation of this approach is given by the so-called 1st moment
relaxation (not tailored), where the variables of the relaxed problem are not only
the Xij ’s, which represent xixj in the unrelaxed version of the problem, but also
the xj ’s themselves. Although completely equivalent in the present case, this
extended reformulation allows us to consider ellipsoids that are not necessarily
centered in 0. We have:

μSDP
i := max

Z
Tr
((

0 0
0 Qi

)
·
(

1 xT

x X

))
subj. to Tr

((
0 0
0 Qj

)
·
(

1 xT

x X

))
≤ 1, j �= i(

1 xT

x X

)
∈ Sn+1

+ .

In order to ensure the non-degeneracy of this problem, one can add the
constraint:

Tr
((

1 0
0 0

)
·
(

1 xT

x X

))
≤ 1.

Note that, according to Schur’s Lemma, the SDP constraint is equivalent to:

X − xxT ∈ Sn
+.

2.3 S-Lemma

The value μ∗
i can be computed efficiently and accurately when |J | = 2. Let, for

every i �= j,

ν∗
ij := max

x
xTQix

subj. to xTQjx ≤ 1 (4)

The S-Lemma [14] states that the set:

{x ∈ Rn : xTQix > 1, xTQjx ≤ 1}

is empty (or equivalently, that the ellipsoid Ei is contained in Ej) if and only if
there exists a nonnegative real number y such that

1 − xTQix + y(xTQjx− 1) ≥ 0 ∀x ∈ Rn.

Removing Redundant Quadratic Constraints 275

The latter condition is easily seen to be equivalent to a semidefinite feasibility
problem:

∃ 1 ≥ y ≥ 0 such that y ·Qj −Qi ∈ Sn
+,

and can be casted as the following optimization problem:

min
y

y

subj. to yQj −Qi ∈ Sn
+.

Observe that, since Qi ∈ Sn
+, non-positive y’s are not feasible for this problem.

The optimal objective value is smaller than 1 if and only if Ei is not entirely
contained in Ej . Alternatively, the above optimization problem can be written
in the form:

min
y

y

subj. to
(

1 0
0 −Qi

)
− y

(
1 0
0 −Qj

)
∈ Sn+1

+

y ≥ 0.

If this problem is feasible and if its minimum is nonnegative, then Ei ⊇ Ej .
The S-Lemma can be useful to detect whether two ellipsoids are identical (up
to numerical inaccuracies). Therefore we simply apply the S-Lemma in both
directions i.e. as above but also with swapped i and j. If a nonnegative scalar
can be found for both directions, the ellipses are considered equivalent up to the
chosen accuracy in the solver parameters.

In our numerical experiments, we perform the S-Lemma check after every
other elimination procedure, because its worst-case complexity is proportional
to the square of the remaining ellipsoids, given that each pair of different ellipsoid
must be individually tested.

2.4 S-Procedure

The S-Lemma is restrictive as it only considers two constraints at a time. A
generalization of the S-Lemma, known as the S-procedure, proceeds as follows.
We select a set J of ellipsoid indices and an index i ∈ J . Then we compute:

min
y

∑
j∈Ji

yj (5)

subj. to
(

1 0
0 −Qi

)
−
∑
j∈Ji

yj

(
1 0
0 −Qj

)
∈ Sn+1

+ , y ∈ R|Ji|
+ ,

where Ji := J\{i}.
If the above problem is feasible, then Ei contains the intersection ∩j∈SEj and

can be eliminated. As shown in the next proposition, the S-procedure is not
necessary in the task of testing redundancy of ellipsoidal constraints, as it does
essentially the same test as the tailored first moment relaxation.

276 D. Adjiashvili, M. Baes, and P. Rostalski

Proposition 1. The problem (5) is dual to (3). If the set ∩j∈JiEj has a nonempty
interior, the duality gap is null.

Proof. Following Chapter 5 in [4], we can determine the dual of (5) mechanically:

max
Z

Tr
((−1 0

0 Qi

)
·
(
α xT

x X

))
subj. to Tr

((−1 0
0 Qj

)
·
(
α xT

x X

))
≤ 1, j ∈ J

Z :=
(
α xT

x X

)
∈ Sn+1

+ .

After a few trivial simplifications, we get:

max
X

Tr (Qi ·X)

subj. to Tr (Qj ·X) ≤ 1, j ∈ J

X ∈ Sn
+,

which is (3). +,
Actually, we have chosen in our numerical tests to use the above dual version

of the SDP relaxation (3), as it contains less constraints, a desirable feature for
an SDP solver (see e.g. Section 6.3 in [13]).

2.5 SOCP-Relaxation

Following [7], an Second Order Cone Programming (or SOCP) relaxation can
be easily derived from the SDP relaxation by replacing the constraint X ∈ Sn

+
by the condition that every 2 × 2 principal minors of X are positive:

[X]k,k[X]l,l − [X]2k,l ≥ 0, 1 ≤ k < l ≤ n.

This condition can be rewritten as the Second Order Cone constraints:∥∥∥∥[X]i,i − [X]j,j
2[X]i,j

∥∥∥∥
2
≤ [X]i,i + [X]j,j . (6)

for all 0 ≤ i ≤ j ≤ n and the linear constraints [X]i,i ≥ 0 for all 0 ≤ i ≤ n. As
these conditions are only necessary for the positive semidefiniteness of X , the
solution of the SOCP relaxation:

μSOCP
i := max

X
Tr(Qi ·X)

subj. to Tr(Qj ·X) ≤ 1, j �= i

Xi,i ≥ 0 and (6) (7)

yields an even more conservative upper bound on the maximal value for the
optimization problem (2), but it is also computationally less expensive than the
SDP relaxation (3).

Removing Redundant Quadratic Constraints 277

3 Computational Results

For a first set of tests, we generate collections of dense matrices of same size
and rank, each of them representing an ellipsoid. In order to render some of the
ellipsoids redundant, we have scaled them so that the first ones are more likely
to be larger than the others.

For our second set of tests, we have used a data set corresponding to the
airplane wing design problem sketched in Section 1. This set has been kindly
given to us by S. McGuinness and C. Armstrong from the Queen’s University
of Belfast. It consists of 200 matrices A(z1), . . . , A(z200) of dimensions 3 × 20,
from which we form the ellipsoid matrices Qi as in (1). All these matrices where
scaled using a coordinate change based on the the singular value decomposition
of A (see Section 2). This scaling decreases the condition number (defined here
as λmax(A(zi))/λmax−3(A(zi)) due to the fact that A(zi) is of rank 3) of the
matrices Ai on average by one order of magnitude. The average conditioning
number for the new matrices is 2.8602e+009, while the average conditioning
number for the old matrices was 3.1848e+010.

3.1 Solvers and Setup

Tests were performed with the solver MOSEK (which can only deal with SOCP)
and SeDuMi (for SOCP and SDP). Both these software run on MatLab, albeit
they are implemented in C. Reasonable results are achieved with both solvers,
except for the SOCP method with SeDuMi, which seems far less stable than
the software of choice MOSEK. However, the expected benefit of the SOCP
relaxation — its fastness — does not seem to overcome its drawbacks — its
inaccuracy — especially in high dimension.

3.2 SOCP and SDP Relaxations

In order to decide on the redundancy of constraints, the following two sets of
experiments have been performed.

SOCP relaxation. Immediate eliminations, followed by Standard SOCP re-
laxations (7) with solver MOSEK, using a relative duality gap tolerance of
1e-8. Once an ellipsoid has been removed, it is not taken into account in
subsequent computations.

SDP relaxation. Immediate eliminations, followed by Dual SDP relaxations (5)
with solver SeDuMi-1.21, using an accuracy of 1e-8, followed by S-Lemma
Elimination. During the Dual SDP relaxation, we do not consider ellipsoid
that have previously been removed in the description of the feasible set of
subsequent problems. In the S-Lemma check, the order by which we consider
pair is not insignificant. Informally speaking, it is more profitable to consider
first pairs made of a small ellipsoid and a big one, because it might lead to
faster eliminations, and therefore less ellipsoid pairs to deal with. “Small
ellipsoids” would in our case be those that are detected as indispensable by
the trivial check sketched in Subsection 2.1. In the strategy we adopted, we

278 D. Adjiashvili, M. Baes, and P. Rostalski

order the remaining ellipsoids that are not indispensable according to their
value μSDP

i , as a small value for μSDP
i is likely to indicate a large ellipsoid.

Now, each time the S-Lemma detects an inclusion, we immediately check
the reverse inclusion, and we eliminate the appropriate ellipsoid. Of course,
every S-Lemma test concerning the eliminated ellipsoid is canceled.

For taking into account the absolute accuracy of the solver, we declare constraints
to be redundant if the optimal cost is smaller than 1 − ε.

We report on Table 1 the results for the first set of experiments. The second col-
umn of the table indicates the dimension of the ellipsoid, the rank of their matrix,
and their number. We have observed that the immediate eliminations procedure
could not eliminate a single ellipsoid in all our tests. We can see that the SDP

Table 1. Experiment results on randomly generated instances

Randomly generated instances

Dim / Rk / # ell. Method # removed CPU time # numerical # numerical
ellipsoids (s) warnings failures

2/2/50 SOCP 46/50 33.8964 14 0
S-procedure 46/50 1.5470 0 0

2/2/100 SOCP 96/100 56.3070 66 0
S-procedure 96/100 4.2660 0 0

2/2/500 SOCP 493/500 332.2311 457 0
S-procedure 493/500 266.1870 0 0

2/2/1000 SOCP 994/1000 1257.9 945 0
S-procedure 997/1000 2606.7 0 0
S-Lemma 0/3 0.125 0 0

5/5/50 SOCP 11/50 30.4870 0 0
S-procedure 34/50 2.4070 0 0

5/5/100 SOCP 25/100 63.6918 0 0
S-procedure 74/100 6.5940 0 0

5/5/500 SOCP 391/500 442.2373 455 0
S-procedure 438/500 386.5620 0 0
S-Lemma 0/62 89.0620 0 0

10/2/50 SOCP 0/10 31.5869 0 0
S-procedure 15/50 4.1250 0 0

10/2/100 SOCP 1/100 74.8320 0 0
S-procedure 42/100 12.3750 0 0

10/2/500 SOCP 98/500 1895.0 206 0
S-procedure 305/500 813.6410 0 0
S-Lemma 0/195 1872.9 0 0

10/10/50 SOCP 0/50 31.6607 0 0
S-procedure 23/50 4.3120 0 0

10/10/100 SOCP 0/100 75.0116 0 0
S-procedure 57/100 12.5630 0 0

10/10/500 SOCP 63/500 2181.7 62 0
S-procedure 338/500 689.1560 0 0
S-Lemma 0/162 1238.0 0 0

Removing Redundant Quadratic Constraints 279

Table 2. Experiment results on the airplane wing design problem

Airplane wing design problem

Method # removed ell. CPU time # numerical # numerical
ellipsoids (s) warnings failures

SOCP 100/200 1033.2 2 0
S-procedure 115/200 154.3280 0 0
S-Lemma 38/85 737.8120 114 0

relaxations perform reasonably fast for problems involving up to 500 ellipsoids of
dimension 10, with virtually no numerical problems. Not surprisingly, perfect con-
tainment of an ellipsoid into another that has not been previously eliminated by
the S-procedure is an extremely rare event, which we have not witnessed in our
randomly generated data. Therefore, the S-Lemma does not succeed in eliminat-
ing a single ellipsoid. In order to get an idea of its computational cost, we report
its computation results or the largest instances only.

In contrast, MOSEK generates a lot of numerical warning, albeit the ellip-
soids it eliminates are consistently eliminated by SDP techniques. Obviously,
for 2-dimensional problems, the SOCP relaxation is identical to the SDP relax-
ation in (3), and we should have the same elimination results. However, when
the dimension increases, the quality of the SOCP relaxation deteriorates quite
fast. Finally, and probably due to the heaviness of the software, MOSEK is
considerably slower than the SDP solver for small instances.

The airplane wing design problem (see Table 2) shows an interesting char-
acteristic: in contrast with completely randomly generated data, the S-Lemma

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ellipsoid number

R
el

ax
at

io
n

va
lu

e

Relaxation values mu
i
SDP (in blue) vs. mu

i
SOCP (in red)

Fig. 1. Comparison of SOCP and SDP relaxation values. In accordance to the theory,
the SOCP relaxation value is higher than the SDP relaxation value. In the printed
version, the red curve appears slightly lighter than the blue one.

280 D. Adjiashvili, M. Baes, and P. Rostalski

does eliminate some ellipsoids. Interestingly, all the matrices detected as redun-
dant by the S-Lemma were detected as identical to some others. This is a first
indication that the SDP relaxation of the original NP-hard problem might not
be so bad, because the exact test of S-Lemma is useful only on this somewhat
extreme case. As the total number of S-Lemma tests we had to perform equals
3255 (it is less than 85 × 84 because we do not consider ellipsoids that have
already been eliminated by the S-Lemma), the number of numerical warnings
shows that 96.5% of the tests happened without any numerical problems.

It is interesting to compare the computed value μSDP
i and its lower approxi-

mation μSOCP
i . Figure 1 displays the results for the second data set. As we can

see, the SOCP relaxation performs not so poorly with 20×20 ellipsoids, in spite
of the fact that the approximation of the positive semidefinite cone of 20 × 20
matrices by quadratic functions is very crude.

Acknowledgments. The authors would like to thank Prof. Komei Fukuda,
Shaun McGuinness and Prof. Cecil Armstrong for submitting us the problem
we have addressed in the paper, and for many fruitful discussions during the
preparation of this paper. We gratefully acknowledge the constructive comments
of the referees, which helped us to improve the paper.

References

1. Ben-Tal, A., Nemirovski, A.: Robust Truss Topology Design via Semidefinite Pro-
gramming. SIAM Journal on Optimization 7, 991–1016 (1997)

2. Ben-Tal, A., Nemirovski, A.: Robust Convex Optimization. Mathematics of Oper-
ations Research 23(4), 769–805 (1998)

3. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications. MPS/SIAM Series on Optimization.
SIAM, Philadelphia (2001)

4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

5. Clarkson, K.L.: More Output-Sensitive Geometric Algorithms. In: Proceedings
of 35th Annual Symposium on Foundations of Computer Science, pp. 695–702
(1994)

6. Fukuda, K.: cdd, cddplus and cddli homepage,
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/index.html

7. Kim, S., Kojima, M.: Exact solutions of some nonconvex quadratic optimization
problems via sdp and socp relaxations. In: Research Report B-375, Dept. of Math-
ematical and Computing Sciences, Tokyo Institute of Technology, Oh-Okayama,
Meguro-ku, Tokyo 152-8552, pp. 143–154 (2002)

8. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM Journal on Optimization 11, 796–817 (2001)

9. Lobo, M., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of Second-
Order Cone Programming. Linear Algebra and its Applications 284, 193–228
(1998)

http://www.ifor.math.ethz.ch/~fukuda/cdd_home/index.html

Removing Redundant Quadratic Constraints 281

10. Löfberg, J.: Dualize it: software for automatic primal and dual conversions of conic
programs. Optimization Methods Software 24(3), 313–325 (2009)

11. Markowitz, H.: Portfolio Selection. Journal of Finance 7(1), 77–91 (1952)
12. Nemirovski, A., Roos, C., Terlaky, T.: On maximization of quadratic form over

intersection of ellipsoids with common center. Mathematical Programming 86(3),
463–473 (1999)

13. Nesterov, Y., Nemirovski, A.: Interior Point Polynomial Algorithms in Convex
Programming. Studies in Applied Mathematics, vol. 13. SIAM, Philadelphia (1993)

14. Pólik, I., Terlaky, T.: A survey of the S-lemma. SIAM Review 49(3), 371–418 (2007)

Traversing Symmetric Polyhedral Fans

Anders Nedergaard Jensen�

Mathematisches Institut, Georg-August-Universität Göttingen, Bunsenstraße 3-5,
D-37073 Göttingen, Germany

Abstract. We propose an algorithm for computing the facets of a pure
connected polyhedral fan up to symmetry. The fan is represented by an
oracle. With suitable implementations of the oracle the same algorithm
can be used for computing secondary fans, Gröbner fans, tropical va-
rieties and Minkowski sums up to symmetry. The algorithm has been
implemented in the software Gfan.

Keywords: Polyhedral fans, tropical geometry, algorithms, symmetry.

1 Introduction

Polyhedral fans arise naturally in convex geometry, with the prime example
being secondary fans whose cones index all combinatorial types of polyhedra
with a fixed set of normals. In algebraic geometry they give rise to toric varieties
and play the central role in the evolving field of tropical geometry. This paper
is concerned with the problem of computing polyhedral fans up to symmetry.

Exploiting symmetries in computational geometry is not a new idea. Indeed
the method we present here specializes to the well-known adjacency decomposi-
tion method when the fan to be traversed is full-dimensional; see [3]. In the case
of secondary fans, our work can be viewed as a refinement of [11].

We use the following example as a motivation for our approach.

Example 1. Consider the family of curves in C2 each defined by a polynomial

f = a + bx + cx2 + dx2y + ex2y2 + gxy2 + hy2 + iy + jxy ∈ C[x, y].

A point on a curve is called a cusp if

∂f

∂x
=

∂f

∂y
= 0 and

∂2f

∂x∂y

∂2f

∂y∂x
− ∂2f

∂x∂x

∂2f

∂y∂y
= 0

in that point. Eliminating variables x and y we get an ideal Icusp defining the
subfamily of curves with a cusp. We will be interested in the tropical variety
T (Icusp) which is a polyhedral fan. The reduced Gröbner basis for Icusp with
respect to the term order given by the point in the support of T (Icusp)

(304,−158,−152,−206, 388,−248,−146,−128, 346) ∈ R9, (1)

tie-broken reverse lexicographically, has 18608 terms in 23 polynomials.
� Supported by the German Research Foundation (Deutsche Forschungsgemeinschaft

(DFG)) through the Institutional Strategy of the University of Göttingen.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 282–294, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Traversing Symmetric Polyhedral Fans 283

In [2] it was suggested that the Gröbner cones are represented by Gröbner bases
when computing tropical varieties. The example shows that for practical pur-
poses it is important not to store all these bases in memory. The algorithm we
present keeps only one such algebraic representation stored at a time.

For clarity, the fan will be given to us by an oracle. Our main contributions
are a description of a symmetry exploiting traversal algorithm with a minimal
number of oracle calls, a practical method for checking orbit membership of
cones and finally a description of an oracle implementation for the restriction of
a Gröbner fan to a lower-dimensional polyhedral cone.

We give a few more details on the implementation in the software Gfan [10]
and end the paper by computing the fan in Example 1 using this software.

2 Definitions and Notation

By a polyhedral cone C ⊆ Rn we mean a finite intersection of closed halfspaces
in Rn, or, equivalently, the non-negative span cone(v1, . . . , vm) of a collection of
vectors {v1, . . . , vm} ⊆ Rn. We use rel int(C) to denote the relative interior of
C. The inclusion largest linear subspace contained in C is called the lineality
space of C. It equals C ∩−C. For an ω ∈ Rn we let faceω(C) denote the face of
C at which 〈ω, ·〉 is maximized and use the same notation for polytopes. A finite
collection F of cones is called a polyhedral fan if

– C ∈ F implies that every face of C is in F , and
– C,C′ ∈ F implies that C ∩C′ is a face of C.

In particular, the cones in a fan must all have the same common lineality space.
An example of a fan is the set of faces faces(C) of a cone C. The common
refinement A ∧B := {a ∩ b : (a, b) ∈ A×B} of two fans A and B is a fan. The
f-vector of F lists the number of cones of each dimension, starting with a 1 for
the lineality space. The support supp(F) of a fan F is the union of its cones. We
will use the untraditional word ray to denote a cone with exactly two faces (the
cone and its lineality space). For a rational ray C the intersection (C∩−C)⊥∩C
is a one-dimensional half-line which has a unique first non-zero lattice point in
Zn. We call this the primitive vector of C and denote it prim(C). Let the link
of a cone C at a point v ∈ C be

linkv(C) = {u ∈ Rn : ∃δ ∈ R>0 : ∀ε ∈ (0, δ) : v + εu ∈ C},

and define the link of a fan F at a point v in the support of F to be the fan

linkv(F) = {linkv(C)|v ∈ C ∈ F}.

Since any two points in the relative interior of a cone R ∈ F will give the same
link, we will also denote the link linkR(F). In the special case where R is a facet
of C, meaning that the dimension of R is one smaller than the dimension of C,
the link linkR(C) is a ray and we also denote it by ray(R,C).

284 A.N. Jensen

An inclusion maximal cone in a fan is called a facet. We shall be mainly
interested in pure fans which are fans whose facets all have the same dimension
d. A cone of dimension d − 1 in such a fan is called a ridge. A ridge path in F
is a sequence of facets F1, . . . , Fs such that Fi ∩ Fi+1 is a ridge. A pure fan is
connected in codimension one if any two facets are connected by a ridge path.
The symmetric group Sn acts on Rn by permuting coordinates. This action
extents to cones and fans in Rn. A subgroup G ⊆ Sn is said to be a symmetry
group of a fan F if it is contained in the stabilizer of F .

2.1 Gröbner Fans and Tropical Varieties

We consider the polynomial ring k[x1, . . . , xn] over a field k. For a vector ω ∈ Rn,
the initial form inω(f) of a polynomial

∑
i cix

ai with ci ∈ k \ {0} and ai ∈ Nn

is defined as the sum of all terms cix
ai such that 〈ω, ai〉 is maximal. We define

the initial ideal of I as inω(I) := 〈inω(f) : f ∈ I〉. Now, fix an ideal I. Two
vectors u, v ∈ Rn are equivalent if inu(I) = inv(I). The closure of an equivalence
class containing v ∈ Rn

>0 is a polyhedral cone Cv(I) and the collection of all
cones and their faces is the Gröbner fan Σ(I) of I. The maximal cones of Σ(I)
are in bijection with the marked reduced Gröbner bases of I. They are reduced
Gröbner bases where the initial term of each polynomial has been distinguished
– it has been marked. Given a term order ≺ we use the notation G≺(I) for
the marked reduced Gröbner basis with respect to ≺ and C≺(I) for its cone. If
I is homogeneous, then the fan is complete and we define the tropical variety
T (I) of I to be the following subfan of the Gröbner fan Σ(I): T (I) := {Cv(I) :
inv(I) contains no monomial}. See [2] and [8] for details.

3 The Traversal Algorithm

In this section we present an algorithm for traversing the maximal cones of a
pure d-dimensional, codimension-one-connected fan F . Explaining the algorithm
in great detail makes it easy for us to be precise in Section 3.1 where we will
modify the algorithm to exploit symmetry. The fan F is known to the algorithm
only through an oracle. The oracle allows two main operations:

– Given a maximal cone C ∈ F and a facet R of C we may ask for linkR(F).
The link is a list of rays Olink

C (R).
– Given a maximal cone C, a facet R of C and a ray v ∈ linkR(F) we may ask

for the cone Ochange
C (R, v) in F having link v at R.

The subscript in our oracle notation needs more explanation. We do not allow
oracle calls in arbitrary order but think of the oracle as having an internal state
being a facet C ∈ F and additional information. We may only ask for Olink

C (R)
and Ochange

C (R, v) when the oracle is in state C. The oracle call Ochange
C (R, v)

changes the state to C′, where C′ is the returned maximal cone giving rise to v
in the link. In addition to the above calls, we are allowed to ask the oracle which
cone it is in; Ocone

C () will return C, but it will not reveal the complete state.

Traversing Symmetric Polyhedral Fans 285

Furthermore, we will assume that the oracle is in some state at the beginning of
the traversal.

The following example illustrates admissible oracle call sequences. It will be
a Gröbner fan to emphasize that the state may consists of non-geometric data.

Example 2. Consider the ideal I := 〈a2 + bc, b2 + ac, c2 + ab〉 ⊆ Q[a, b, c]. A
computation reveals that Σ(I) is a three-dimensional fan in R3 with f-vector
(1, 9, 9) and a 1-dimensional lineality space. The 9 rays of the fan are generated
by the lineality space and one of the vectors

(1,−1, 0), (0,−1, 1), (−1,−1, 2), (−1, 0, 1), (−1, 1, 0),

(−1, 2,−1), (0, 1,−1), (1, 0,−1), (2,−1,−1),

which are ordered cyclically. By Gröbner basis theory the nine maximal cones
are in bijection to the nine reduced Gröbner bases of I. One of these is

{c2 + ab, bc + a2, b2 + ac, a2c, a2b, a4}

corresponding to the maximal cone C1 := cone(±(1, 1, 1), (−1, 0, 1), (−1, 1, 0)).
Let R1 be the ridge cone(±(1, 1, 1), (−1, 0, 1)). An oracle representing the Gröb-
ner fan would have

Olink
C1

(R1) = {cone(±(1, 1, 1),±(−1, 0, 1), (−1, 2,−1)),
cone(±(1, 1, 1),±(−1, 0, 1), (1,−2, 1))}.

Later we shall be less strict and think of this as just a set of two vectors, but
because of scaling and the non-trivial lineality space there are several possibilities
for choosing these representatives.

Let v := cone(±(1, 1, 1),±(−1, 0, 1), (1,−2, 1)). Making the call

C2 := Ochange
C1

(R1, v) = cone(±(1, 1, 1), (−1,−1, 2), (−1, 0, 1))

changes the state to C2. Now the calls Olink
C1

(R1) and Ochange
C1

(R1, v) are illegal,
while Olink

C2
(R1) and Ochange

C2
(R1,−v) are legal. Applying a total of nine Ochange

calls we can return to state C1.

Since the hidden state information can be huge, see Example 1, our calling
conventions for the oracle have been designed so that only one state is stored,
keeping memory consumption as low as possible. We note that reconstructing
the hidden state information from a polyhedral cone can be quite complicated.
Indeed, the Gröbner walk [5] speeds up the process of computing a Gröbner basis
with respect to a prescribed term order by making a sequence of local changes.

We cannot always, as in Example 2, think of the facets of F as being vertices of
a graph with the ridges being edges connecting them, since a ridge may connect
more than two facets if the fan is not full-dimensional. Rather we should think
of a hypergraph, in which the hyperedges connect many vertices. Traversing a
hypergraph by an exhaustive search is not more complicated than traversing a

286 A.N. Jensen

graph. In fact our problem translates into traversing the bipartite graph GF with
the right hand side being the facets, the left hand side being the ridges, and two
cones being connected if one is contained in the other. Having F connected in
codimension one is equivalent to GF being connected.

We recall a basic graph traversal algorithm for connected graphs:

Algorithm 1
Input: A connected graph G = (V,E), a vertex v ∈ V .
Output: All vertices V of G.

– (A,B,D) := ({v}, ∅, ∅);
– while(A �= ∅)

• Choose u ∈ A;
• A := A \ {u};
• B := B / {{a, u} : {a, u} ∈ E};
• D := D ∪ {u};
• A := A ∪ {a : {a, u} ∈ B};

– output D;

Here S/T denotes the symmetric difference (S ∪T) \ (S ∩T) of two sets S and
T . An invariant for the algorithm is that after each step the edge set B is the
boundary of the vertex set D. At the end D = V and B and A are empty.

We will use a depth-first approach to traverse the bipartite graph GF . This
means that the set A will work as a last-in-first-out stack. Equivalently, we may
present the above algorithm as two mutually recursive procedures, with left and
right hand side nodes being treated differently. Thus, in the algorithm below, the
set A is stored implicitly on the recursion stack while facets are written to the
output rather than stored in the set D. The set B will no longer be a collection
of sets of cones from F , but rather consist of pairs of the form (R, v), where R
is a ridge of F and v is a ray in linkR(F).

Algorithm 2
Input: An oracle O in state C0 representing a codimension 1 connected fan F .
Output: All facets of F .

– B := ∅;
– Call EnumerateFacet(C0) below;

EnumerateFacet(C)

– Output C;
– Compute the facets of C;
– T := {(R, ray(R,C)) : R is a facet of C};
– B := B / T ;
– For every pair (R, v) ∈ T

• If (R, v) ∈ B then call EnumerateRidge(R,C);

Traversing Symmetric Polyhedral Fans 287

EnumerateRidge(R,C)

– L := Olink
C (R);

– T := {(R, v) : v ∈ L};
– B := B / T ;
– v′ := ray(R,C);
– For pair (R, v) ∈ T

• If (R, v) ∈ B then
∗ C := Ochange

C (R, v)
∗ Call EnumerateFacet(C);
∗ C := Ochange

C (R, v′)

Proof. The algorithm is a direct translation of Algorithm 1 as explained above.
We note that at any time the oracle is in state C and that after calling Enu-
merateRidge, EnumerateFacet sets C to the original second argument value by
calling the oracle. This shows that the sequence of oracle calls is valid.

We measure the efficiency of a traversal strategy by the maximal number of
Olink

C (R) and Ochange
C (R, v) oracle calls needed as functions of the number of

ridges and facets in the fan, respectively. An enumeration strategy is considered
optimal if these functions are minimal among all strategies.

Proposition 1. Let r be the number of ridges in F and f the number of facets.
Algorithm 2 makes r oracle calls of type Olink

C (R) which is optimal. It makes
2(f−1) oracle calls of type Ochange

C (R, v). By postponing the last oracle call C :=
Ochange

C (R, v′) until absolutely needed, Algorithm 2 makes at most max(2f−3, 0)
oracle calls of type Ochange

C (C, v). This is optimal.

Proof. The result follows from the fact that EnumerateRidge is called once for
every ridge, and that it does two Ochange

C (R, v) calls for every facet except C0.
The number of Olink

C (R) calls is optimal, since every ridge must be investigated.
We never have to bring the oracle back to the initial state at the end. This
reduces the number of oracle calls by at least one. To see that this is optimal we
consider a worst case scenario of a pure connected fan with f facets on a ridge
path and f + 1 ridges. In an unlucky case the oracle starts close to one end of
the fan, moves to the other end and is forced to go back to finish the job. This
gives 2f − 3 calls.

Whether f − 1 is the optimal number of Ochange
C (C, v) calls for a particular

graph GF depends on the topology of GF and is related to the Hamiltonian
path problem. We note that f − 1 is optimal if we relax the oracle call order
restriction, but that this would increase memory usage in practice.

For practical implementations of Algorithm 2 it can be an advantage to repre-
sent the elements in B as pairs of vectors. For example, (R, v) can be represented
by a pair of deterministically computed points in rel int(R) and rel int(v). We
will return to the choice of these vectors in the next section.

288 A.N. Jensen

3.1 Exploiting Symmetry

In addition to the oracle, Algorithm 2 could be changed to take a subgroup G
of symmetries under which F is known to be invariant as input. Our goal would
then be to find all orbits of maximal cones F under this group action. We shall
restrict ourselves to symmetries which are coordinate permutations and assume
that G ⊆ Sn. However, this restriction will only be important when we define
p(C) later in this section (where Zn must be preserved) and for Algorithm 3.

First we define what we mean by a canonical representative for the orbit of
a pair of cones (R, v), where R is a ridge of F and v ∈ linkR(F). Fix a total
order ≺ on the set K of polyhedral cones in Rn. We define CanRep(R, v) to
be the smallest element in {(σ(R), σ(r)) : σ ∈ G}, with the ordering being the
lexicographic order on K ×K with each K ordered by ≺.

We now explain how to change Algorithm 2 to compute just one facet (and
one ridge) of each orbit. To be precise we will avoid calls EnumerateRidge(R,C)
if the procedure has already been called for another ridge in the orbit of R.
Similarly, we avoid calls EnumerateFacet(C) and the two surrounding oracle
calls if the procedure has already been called for another facet in the orbit of
C. Equivalently, we traverse the bipartite quotient graph GF , where vertices are
identified if they are in the same orbit and multi-edges are regarded as single
edges.

Three kinds of changes are required:

– In both procedures of Algorithm 2 we let T consist of the canonical repre-
sentatives of the orbits of the pairs with respect to G rather than the pairs
themselves. This may make T smaller since only one element from each orbit
can be in T .

– At the two places where we check for containment of (R, v) in B, we should
instead check for containment of CanRep(R, v).

– When we recursively call EnumerateRidge after having checked that B con-
tains CanRep(R, v), we need to recover (one of) the original facet(s) of C
giving rise to R. That is we must find the σ we applied to get R in T . We
then use σ−1(R) when calling EnumerateRidge. Similarly, when we in Enu-
merateRidge have verified that CanRep(R, v) is in B, we must find the (or
one) v ∈ L giving rise to the CanRep(R, v) in T . We will use this v when
calling the oracle.

In the above description we do operations on polyhedral cones when handling
symmetries, but this is not convenient in practice. Rather, for a cone C we wish to
define a canonical, symmetry invariant relative interior point p(C). In particular,
we must have σ(p(C)) = p(σ(C)) for every σ ∈ G and cone C ⊆ Rn. Checking if
two cones of F are in the same orbit can be done by checking that their points are
in the same orbit. Even better, for a pair of ridge-facet incidences represented by
(R, v) and (R′, v′) we can check if they are the same up to symmetry by checking
if (p(R), p(v)) and (p(R), p(v)) are the same up to symmetry.

We notice that the vector p(C) :=
∑

prim(r), where r runs over all rays of
C, satisfies the above properties. However, this definition has the disadvantage

Traversing Symmetric Polyhedral Fans 289

that computing it requires knowing the extreme rays of C. Often C is simplicial
and this is not a problem, but in general an H-to-V conversion is needed. Al-
ternatively, we may define p(C) using analytic centers of polytopes, which can
be computed in polynomial time by numerical methods. We have no practical
experience with this approach.

3.2 Symmetry Algorithms

Complexity-wise, deciding if two vectors in Zn are the same up to the action of
a group G ⊆ Sn, specified by its generators, is as hard as the graph isomorphism
problem of deciding if two graphs are the same up to permutation of their ver-
tices. Indeed asking if the edge-vertex incidence matrices of the two graphs are
the same up to row and column interchanges answers the question. The graph
isomorphism problem is not known to be in P, the class of polynomial time
solvable problems, and therefore we cannot expect the canonical representative
computation to have polynomial time complexity. We discuss how to solve the
problem in practice.

We will not address the problem of computing generators for our group G
but rather suppose that they are given. Each generator can be represented by a
permutation of the vector (1, 2, . . . , n). We start by precomputing all elements
of G and store them in a prefix tree (or a trie). A prefix tree has an integer
at each node (except the root), and it represents all vectors of integers we get
by going from the root to a leaf, picking up integers from the nodes we pass
through. Thus we will use a tree of depth n. We are seeking an algorithm with
the following specification.

Algorithm 3
Input: A subgroup G ⊆ Sn stored in a prefix tree and vectors R, v ∈ Zn.
Output: A permutation σ ∈ G such that (Rσ1 , vσ1 , . . . , Rσn , vσn) is lexicograph-
ically smallest.

Such an algorithm can be achieved by making a combinatorial backtracking
search over the prefix tree. At a node at level i we follow those edges leading to
vertices whose markings σi make (Rσi , vσi) lexicographically smallest. We keep
a vector with the optimal permutation of R and v seen so far. Using this vector
branches can be pruned if they cannot lead to an optimal permutation.

If stabilizers are small, which is often the case in our setting, and the group
fits into memory, then the method described here works well. We refer to the
field of computational group theory for other approaches, see [3] for references.

4 Oracles

Using different terminology the oracles for traversing normal fans of Minkowski
sums of polytopes, secondary fans, Gröbner fans and tropical varieties are already
present in the literature, see [6], [11],[5] and [2], respectively. The topic of this
section is slight variations of these. Due to the size limit for this paper, we only

290 A.N. Jensen

discuss one of these oracles in detail, while briefly mentioning other possible
variations.

We first consider the d-skeleton of the normal fan of a Minkowski sum of
polytopes P1, . . . , Ps whose vertices are given. This is a connected fan, and the
link of a ridge with relative interior point ω is the d-skeleton of the normal fan
of the Minkowski-sum of faceω(P1), . . . , faceω(Ps). Modulo the lineality space
the link is a collection of rays, which are the normals of the Minkowski sum
of the faces. This is a general behavior; the computation becomes easier at the
link – at least for s = 2, the Minkowski sum facets can be computed by a V-to-H
conversion of the convex hull conv((faceω(P1)×e1)∪· · ·∪(faceω(Ps)×es)) ⊆ Rn×
Rs, which is also known as the Cayley embedding of faceω(P1), . . . , faceω(Ps).

In the following we will explain how Gröbner fan computations can be re-
stricted to cones of Rn. It is important to note that a similar technique works
for computing slices of secondary fans. One application of this can be found in
the last paragraph of this paper.

4.1 The Gröbner Fan

Recall that the maximal cones of Σ(I) are in bijection with the marked reduced
Gröbner bases {G≺(I)}≺ where ≺ runs through all term orders. Inequalities for
the Gröbner cone of G≺(I) can be read off from the exponent vectors of G≺(I).
To make a change to another cone Ochange

C (R, v) through a ridge R with relative
interior point ω and normal v, we compute the Gröbner basis with respect to
the ordering given by ω + εv with ε > 0 small (tie-broken in any way).

While the ε-perturbation is easy to handle in theory and practice with matrix
term orders, the reader familiar with Gröbner bases will know that the above
description is an oversimplification. One will not compute the ω + εv Gröbner
basis from scratch, but rather use the identity

inω+εv(I) = inv(inω(I))

to construct a Gröbner basis for I from one of inω(I). As for the Minkowski sum
problem, the computation at the link becomes easier. See [5] and [8] for details.

We now explain how to restrict the Gröbner fan computation to a possibly
lower-dimensional cone D ⊆ Rn. One problem that we might face if the ideal is
not homogeneous is that Σ(I) is not complete and the usual restriction Σ(I) ∧
faces(D) is not connected in codimension one – take for example I = 〈x2

1x2 +
x1x

2
2 + 1〉 and D = {ω ∈ R2 : ω1 + ω2 ≤ 0}. There are several ways to get

around this problem. Here, to keep the exposition simple, we will assume that I
is homogeneous, and thus Σ(I) complete.

Definition 1. Let I ⊆ k[x1, . . . , xn] be an ideal and let D ⊆ Rn be a polyhedral
cone. We define the restriction Σ(I)D := Σ(I) ∧ faces(D).

The support of the restriction Σ(I)D is D.

Definition 2. A ridge R in Σ(I)D is called flippable if rel int(R) ∩ rel int(D)
is not empty.

Traversing Symmetric Polyhedral Fans 291

Lemma 1. The restriction Σ(I)D is a pure fan connected in codimension 1. It
is connected even if we only consider flippable ridges.

Every maximal cone in Σ(I)D is of the form C≺(I) ∩ D and we will represent
such cone by G≺(I). This representation is not unique. We have described how
the internal state of the oracle is stored, and will now explain how the oracle
calls can be implemented:

Cone: The cone represented by G≺(I) can be computed as the intersection
C≺(I) ∩D.

Link: The link of a ridge has either one or two rays. One of these rays v is
already known to us as the link of C at R in the oracle call and we need to
decide if −v is in the link. To check if R is flippable, it suffices to check if a
relative interior point ω of R is in one of the facets of D.

Change: Let ω be a positive vector in the flippable ridge. A reduced Gröbner ba-
sis representing the neighbouring cone can be gotten by computing a Gröbner
basis with respect to the term order given by ω + εv, tie-broken in any way.
A more efficient way is to pass to the initial ideal inω(I) first. See [5] and [8].

We note that for a facet C ∈ Σ(I)D it is easy to recover the initial ideal with
respect to relative interior points of C. This was used in [4] for a method to
check if a given generating set of I is a tropical basis.

There is still one problem that we need to address. Namely, how we get started,
i.e. given I and D, how we compute a reduced Gröbner basis G≺(I) such that
C≺(I) ∩ D is maximal in Σ(I)D. The solution is an application of matrix term
orders. First we pick a vector c1 ∈ rel int((D + C0(I)) ∩ Rn

≥0) and then extend
c1 to a basis {c1, . . . , cd} of spanR(D). Then we extend this basis to a basis
{c1, . . . , cn} of Rn. The term ordering of the matrix with rows c1, . . . , cn gives
the desired Gröbner basis. Alternatively, we consider c = c1 + εc2 + . . . + εn−1cn

and compute
inc(I) = incn(incn−1(· · · inc1(I) · · ·))

successively. This is the initial ideal for G≺(I). To construct G≺(I) we may repeat-
edly apply the Gröbner walk lifting procedure as it was done in [2, Algorithm 9].

Having specified the oracle, we may also apply the symmetric version of the
traversal algorithm. The group G should be a symmetry group for Σ(I)D.

It is tricky to extend Definition 1 and 2 to cover the non-homogeneous case
and we shall only discuss one subtlety in this setting. Take D = Rn. In this
case, see [8], it is natural to allow only flips through facets with positive points
in their interior, since this will guarantee usage of only allowable term orders at
the ridge. Consider for example I = 〈x3 + y3 + x2y2〉 , which has a complete
Gröbner fan with a ridge outside the strictly positive orthant. A priori, this ridge
should not be considered flippable and the “flippable link” at that ridge should
only consist of one ray, even though the geometric link consists of two. The only
problem with this is that EnumerateRidge is called more than once for the same
ridge in Algorithm 2. This does not change the correctness of the algorithm.

292 A.N. Jensen

5 Comparison to Reverse Search

The memory-less reverse search method [1] can be used for traversing many
types of full-dimensional fans – including Gröbner fans, see [8]. It works by
traversing a spanning tree of the graph whose vertices are the facets and whose
edges are the ridges of the fan. Symmetry can be exploited by restricting to
a fundamental domain of the group action on Rn, but still orbits whose cones
touch the boundary of the fundamental domain may be computed more than
ones. The reverse search has the drawback that in order to decide on the local
structure of the traversal tree an Ochange

C oracle call must be performed once for
every ridge in a traversal. Therefore, for complicated oracles, it will often perform
worse than Algorithm 2. On the other hand, the draw back of Algorithm 2 is
that a vector in Z2n needs to be stored for essentially every ridge-facet incidence
pair and that the algorithm is not as easy to parallelize as reverse search, where
interprocess communication is absent.

6 Implementation Details

6.1 Handling Geometric Data

We briefly discuss how to compute properties of a cone given to us by an in-
equality description. The natural order of getting these properties is as follows:
lineality space, span and dimension, facets, a relative interior point, rays.

The lineality space can be computed by Gauss elimination, while linear pro-
gramming is needed for the span and the facets. Knowing the span of the cone
is equivalent to knowing the implied equations of the inequalities. We refer to
literature on the simplex algorithm. For the facets of a Gröbner cone, the in-
equality description is often highly redundant and a preprocessing step is useful.
A relative interior point can be computed with linear programming and the
computation of the rays can be reduced to an H-to-V conversion of a polytope.

Knowing the facets and rays it is a combinatorial task to extract the face
lattice. Indeed given the set of rays of C contained in face A of C, we find all
facets of A by, for each facet normal of C, picking the set of rays perpendicular
to the normal. This may give lower dimensional faces of A, so we need to take
the inclusion maximal sets of rays. They represent the facets of A.

Rather than computing the face lattice, it might be useful to know the orbits
of all cones in a fan. We suggest keeping a list of canonical representatives for
the orbits seen so far. Then we may run through the facets of F , and for each of
these repeatedly apply the method of the previous paragraph, but for each newly
computed face checking if its canonical representative has been seen already. A
fast implementation of Algorithm 3 is useful at this point.

6.2 Software

The presented algorithm has been implemented according to a generic program-
ming / object oriented paradigm in the software Gfan [10] and replaces old

Traversing Symmetric Polyhedral Fans 293

traversal strategies. Every oracle is derived from an abstract superclass. Start-
ing from version 0.5 are features for computing restrictions of Gröbner fans and
secondary fans. The oracle of Section 4.1 has been used in [4] to give a computer
proof that the 4 × 4 minors of a 5 × 5 matrix are a tropical basis. In that paper
also a tropical variety with a symmetry group of order 28800 was computed,
explaining the need for handling symmetries. The Gfan software is written in
C++, uses the libraries GMP [9] and cddlib [7] by default, and works like a
Unix-style command line tool. In addition, Gfan can be linked to the floating
point LP-solver SoPlex [12]. In this case LP-certificates will be lifted to Q using
continued fractions, and checked. In case of failure, Gfan will fall back on cddlib.

Returning to Example 1, a two hour computation in Gfan gives the tropical
variety T (Icusp), exploiting a symmetry group of order 8. The 7-dimensional
fan has a 3-dimensional lineality space and f-vector (1, 1631, 7622, 11340, 5408).
A total of 1431 ridges and 680 facets were processed. With a suitably prepared
input file the computation can be done with the following command:

gfan_tropicaltraverse --symmetry < Icusp.startingcone

If the --symmetry option is left out the computation takes more than 15 hours.
This order of speed-up is only expected for expensive oracles and symmetry
groups that fit into memory. If the symmetry groups are sufficiently complicated
and oracle calls are cheap, it is possible that all time saved on oracle calls is
spent on computing canonical representatives.

We finish this paper by mentioning a few applications of Gfan and its algo-
rithms to tropical geometry. In tropical geometry a natural question to ask is
whether supp(T (Icusp)) is the support of a subfan of the secondary fan F1 of
the 2-dimensional Newton polytope of f . We may compute F2 := F1 ∧T (Icusp)
by restricting the computation of F1 to each of the 680 facets. After this we
pick a relative interior point from each facet of F2, and take the smallest sub-
fan F3 ⊆ F1 containing these vectors. The question now is if supp(F3) =
supp(T (Icusp)). By construction, supp(F3) ⊇ supp(T (Icusp)). The other in-
clusion can be checked by computing the restriction of Σ(Icusp) to each cone of
F3. Then we check for each corresponding initial ideal if it is monomial free. The
polyhedral fan computations can be handled with Algorithm 2 and its imple-
mentation in Gfan. However, in our case none of this is needed since the vector
(1) induces a regular subdivision whose secondary cone has dimension larger
than the dimension of supp(T (Icusp)).

References

1. Avis, D., Fukuda, K.: A basis enumeration algorithm for convex hulls and vertex
enumeration of arrangements and polyhedra. Discrete Computational Geometry 8,
295–313 (1992)

2. Bogart, T., Jensen, A.N., Speyer, D., Sturmfels, B., Thomas, R.R.: Computing
tropical varieties. J. Symbolic Comput. 42(1-2), 54–73 (2007)

3. Bremner, D., Sikiric, M.D., Schürmann, A.: Polyhedral representation conversion
up to symmetries. CRM proceedings 48, 45–72 (2009)

294 A.N. Jensen

4. Chan, M., Jensen, A., Rubei, E.: The 4 x 4 minors of a 5 x n matrix are a tropical
basis, arXiv:0912.5264 (2009)

5. Collart, S., Kalkbrener, M., Mall, D.: Converting bases with the Gröbner walk. J.
Symbolic Comput. 24(3-4), 465–469 (1997); Computational algebra and number
theory, London (1993)

6. Fukuda, K.: From the zonotope construction to the Minkowski addition of convex
polytopes. J. Symb. Comput. 38(4), 1261–1272 (2004)

7. Fukuda, K.: cddlib reference manual, cddlib Version 094b. Swiss Federal Institute
of Technology, Lausanne and Zürich, Switzerland (2005),
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html

8. Fukuda, K., Jensen, A., Thomas, R.: Computing Gröbner fans. Mathematics of
Computation 76, 2189–2212 (2007)

9. Granlund, T., et al.: GNU multiple precision arithmetic library 4.3.1 (2009),
http://gmplib.org

10. Jensen, A.N.: Gfan, a software system for Gröbner fans and tropical varieties,
http://www.math.tu-berlin.de/~jensen/software/gfan/gfan.html

11. Rambau, J.: TOPCOM: Triangulations of point configurations and oriented ma-
troids. ZIB Report, 02-17 (2002)

12. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. PhD
thesis, Technische Universität Berlin (1996),
http://www.zib.de/Publications/abstracts/TR-96-09/

http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html
http://gmplib.org
http://www.math.tu-berlin.de/~jensen/software/gfan/gfan.html
http://www.zib.de/Publications/abstracts/TR-96-09/

C++ Tools for Exploiting Polyhedral

Symmetries

Thomas Rehn and Achill Schürmann�

1 Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4,
2628 CD Delft, The Netherlands

a.schurmann@tudelft.nl
2 Faculty for Mathematics, Otto-von-Guericke University Magdeburg,

39106 Magdeburg, Germany
thomas@carmen76.de

Abstract. We report on the recently developed C++ tools PermLib and
SymPol that are designed to support high performance work with sym-
metric polyhedra. The callable library PermLib provides basic support
for permutation group algorithms and data structures. It can in particu-
lar be used for the development of optimization algorithms that combine
methods from polyhedral combinatorics and computational group theory.
The software SymPol is such an application helping to detect polyhedral
symmetries and to analyze faces of polyhedra up to symmetries. It in par-
ticular provides successfully used decomposition methods for polyhedral
representation conversions up to symmetries.

Keywords: polyhedral combinatorics, symmetries, permutation group
algorithms, representation conversion.

Symmetric Polyhedra: From Beauty to Computational Use

Symmetric polyhedra as the Platonic and Archimedean solids have fascinated not
only mathematicians since time immemorial. They occur frequently in diverse
contexts of art and science. The “truncated icosahedron” for example is known
as Buckminsterfullerene C60, but also as soccerball. Less known to a general
audience, but of great importance to modern mathematics and its applications,
are higher dimensional analogues of these familiar objects.

In mathematical optimization, symmetric polyhedra are often used to model
problems of applications such as transportation logistics, machine scheduling
or portfolio planning. Examples of symmetric polyhedra frequently studied in
combinatorial optimization have names with prefixes like “travelling salesman”,
“assignment”, “matching”, “CUT” and others.

Although many polyhedra in optimization have symmetries, standard algo-
rithms do not take advantage of them. Even worse, many methods, such as those
used in integer programming, are known to work notoriously badly on symmet-
ric problems. However, in recent years several authors have shown, at least for
� Both authors were supported by the Deutsche Forschungsgemeinschaft (DFG) under

grant SCHU 1503/4-2.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 295–298, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

296 T. Rehn and A. Schürmann

specific problems, that polyhedral symmetries can be exploited. For surveys of
several approaches for integer linear programming and polyhedral representation
conversion we refer the interested reader to [Mar09] and [BDS09].

PermLib: A C++ Library for Permutation Computations

Common to most symmetry exploiting approaches is the need for computa-
tional tools to work with permutation groups. Typical tasks are the detection
of available symmetries, the computation of stabilizer groups and in-orbit tests.
Computer algebra systems like [GAP] provide a lot of high-level support for these
problems, and they are often used for experimental code, in particular for ap-
plications in mathematics. However, for high performance computations it is
desirable to have more flexible tools available.

To support future developments of symmetry exploiting algorithms in opti-
mization, we have recently developed the callable C++-library PermLib [PermLib].
The library provides fundamental data structures for the representation of sym-
metries as permutation groups, as well as implementations of algorithms to per-
form basic tasks. It allows in particular efficient computations with bases and
strong generating sets (BSGS, see for example [HEO05] for details), and based on
them backtrack searches, like the partition backtracking by Leon [Leo91]. These
can be used to perform essential tasks, such as deciding on (non-)equivalence,
obtaining stabilizers or fusing and splitting of orbits. We refer to [Reh10] for
details on the implemented algorithms and their performance.

We view PermLib as a starting point for future developments of optimiza-
tion algorithms, in particular for new methods that combine techniques from
polyhedral combinatorics and computational group theory.

SymPol: A C++ Tool for Work with Symmetric Polyhedra

Our software package SymPol [SymPol] is a first application built on the func-
tionality provided by PermLib. It helps in an easy-to-use way to detect linear
symmetries of a given polyhedron and supports the user in analyzing the facial
structure of a given polyhedron up to symmetries. Input and Output format are
text files as they are used by [cdd] and [lrs]. Both packages are used internally
for polyhedral computations. In addition to a representation of a polyhedron, the
user has the possibility to provide known parts of its combinatorial symmetry
group. As a callable library, SymPol can also be used for future developments of
symmetry exploiting algorithms.

If no symmetries (or only a few) are known a priori, the user has the possibility
to compute restricted automorphisms of a polyhedron with SymPol. Sometimes
finding additional symmetries, for example in subpolyhedra, can be essential for
solving a problem (see [DSV07] for an example). The obtained automorphisms
may not generate the full (combinatorial) symmetry group of the polyhedron, but
they can be computed without full knowledge of both polyhedral descriptions,
via automorphisms of certain colored graphs. We refer to [BDS09] for further
details. SymPol uses the backtrack techniques provided by PermLib to compute

C++ Tools for Exploiting Polyhedral Symmetries 297

these automorphisms, but also has the possibility to make use of the specialized
software package nauty [nauty].

Besides symmetry detection, our package in particular supports polyhedral
representation conversions up to symmetry. That is, it helps to convert the de-
scription of a polyhedron with linear inequalities into one with generating ver-
tices and rays, or vice versa. This is one of the most fundamental tasks in polyhe-
dral combinatorics and in many application it is sufficient to find inequalities or
generators up to symmetries. Depending on the given polyhedron, different tech-
niques have been shown to be successful. Using the GAP package [Polyhedral], in
particular the Adjacency Decomposition Method has recently been shown to work
well for huge conversion tasks. Two extreme examples are described in [DSV07]
and [DSV09]. For a detailed description of Decomposition Methods that split a
given conversion problem into a number of lower dimensional subproblems we
refer to [BDS09]. Best results can be achieved by a combination of decomposi-
tion methods. This is made possible by SymPol, which supports the user also
to choose an individual “fine tuning” of combinations, fitting best to his or her
conversion problem.

Examples of Usage

Installing SymPol is quite easy on a Linux/UNIX system with CMake [CMake],
Boost [Boost] and GMP [GMP] installed. For a more detailed description we refer
to the SymPol manual.

To compute the restricted automorphism group of a polyhedron with its de-
scription contained in input-file, simply call

sympol --automorphisms-only input-file

SymPol offers the possibility to estimate the difficulty of a representation conver-
sion, for example via the command-line option --estimation-only. For “diffi-
cult input” (for example with an estimation value above 40) try

sympol --adm 40 input-file

and experiment with the “ADM threshold” if necessary. This type of call may be
successful on polyhedra whose representation conversion seems impossible with
standard tools like cdd or lrs. Such an example is given by Kumar in [Kum10],
where he uses SymPol to compute all the classes of elliptic divisors on a generic
Jacobian Kummer surface.

But even for “easy input”, SymPol offers some nice features to analyze the
facial structure of a polyhedron up to symmetries. For example with the call

sympol --idm-adm-level 0 1 --adjacencies input-file

where input-file contains the 48 vertices of the 5-dimensional Santos prisma-
toid (see Table 1 in [San10]), SymPol returns the adjacency graph of facets up to
symmetry (Figure 4 in [San10]). This graph contains the essential information
(a shortest path of length 6) for the construction of Santos’ counterexample to
the Hirsch conjecture. We think that SymPol will serve as a very useful tool for
such and similar computations in the future.

298 T. Rehn and A. Schürmann

References

[BDS09] Bremner, D., Dutour Sikirić, M., Schürmann, A.: Polyhedral represen-
tation conversion up to symmetries. In: Bremner, D., Avis, D., Deza,
A. (eds.) Proceedings of the 2006 CRM Workshop on Polyhedral Com-
putation. CRM Proceedings & Lecture Notes, vol. 48, pp. 45–71. AMS,
Providence (2009)

[DSV07] Dutour Sikirić, M., Schürmann, A., Vallentin, F.: Classification of eight
dimensional perfect forms. Electron. Res. Announc. Amer. Math. Soc. 13,
21–32 (2007)

[DSV09] Dutour Sikirić, M., Schürmann, A., Vallentin, F.: The contact polytope
of the Leech lattice. Discrete Comput. Geom. (to appear), preprint at
arXiv:0906.1427

[HEO05] Holt, D.F., Eick, B., O’Brien, E.A.: Handbook of computational group
theory. Chapman & Hall/CRC, Boca Raton (2005)

[Kum10] Kumar, A.: Elliptic fibrations on a generic Jacobian Kummer surface (in
preparation)

[Leo91] Leon, J.S.: Permutation group algorithms based on partitions. I. Theory
and algorithms. J. Symbolic Comput. 12, 533–583 (1991)

[Mar09] Margot, F.: Symmetry in integer linear programming. In: Jünger,
M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R.,
Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer Pro-
gramming 1958–2008. Springer, Heidelberg (2009)

[Reh10] Rehn, T.: Fundamental Permutation Group Algorithms for Symmetry
Computation, Diploma thesis (computer science), Otto von Guericke
University Magdeburg (2010), http://fma2.math.uni-magdeburg.de/

~latgeo/permlib/diploma-thesis-cs-rehn.pdf

[San10] Santos, F.: A counterexample to the Hirsch conjecture, preprint at
arxiv:1006.2814

Software

[Boost] Free peer-reviewed portable C++ source libraries,
http://www.boost.org/

[cdd] Fukuda, K.: cdd and cddplus,
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/

[CMake] Cross Platform Make, http://www.cmake.org/
[GAP] Groups, Algorithms, Programming - a system for computational discrete

algebra, http://www.gap-system.org/
[GMP] The GNU Multiple Precision Arithmetic Library, http://gmplib.org/
[lrs] Avis, D.: http://cgm.cs.mcgill.ca/~avis/C/lrs.html
[nauty] McKay, B.D.: ver. 2.2., http://cs.anu.edu.au/people/bdm/nauty/
[PermLib] Rehn, T.: A callable C++ library for permutation compu-

tations, ver. 0.2., http://fma2.math.uni-magdeburg.de/~latgeo/

permlib/permlib.html

[Polyhedral] Dutour Sikirić, M.: A GAP package,
http://www.liga.ens.fr/~dutour/Polyhedral/

[SymPol] Rehn, T., Schürmann, A.: A C++ tool for the work with symmetric
polyhedra, preliminary version 0.1, http://fma2.math.uni-magdeburg.
de/~latgeo/sympol/sympol.html

http://fma2.math.uni-magdeburg.de/~latgeo/permlib/diploma-thesis-cs-rehn.pdf
http://fma2.math.uni-magdeburg.de/~latgeo/permlib/diploma-thesis-cs-rehn.pdf
http://www.boost.org/
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/
http://www.cmake.org/
http://www.gap-system.org/
http://gmplib.org/
http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://cs.anu.edu.au/people/bdm/nauty/
http://fma2.math.uni-magdeburg.de/~latgeo/permlib/permlib.html
http://fma2.math.uni-magdeburg.de/~latgeo/permlib/permlib.html
http://www.liga.ens.fr/~dutour/Polyhedral/
http://fma2.math.uni-magdeburg.de/~latgeo/sympol/sympol.html
http://fma2.math.uni-magdeburg.de/~latgeo/sympol/sympol.html

isl: An Integer Set Library

for the Polyhedral Model

Sven Verdoolaege

Department of Computer Science, Katholieke Universiteit Leuven, Belgium and
Team ALCHEMY, INRIA Saclay, France

Sven.Verdoolaege@{cs.kuleuven.be,inria.fr}

1 Introduction and Motivation

In compiler research, polytopes and related mathematical objects have been
successfully used for several decades to represent and manipulate computer pro-
grams in an approach that has become known as the polyhedral model. The key
insight is that the kernels of many compute-intensive applications are composed
of loops with bounds that are affine combinations of symbolic constants and
outer loop iterators. The iterations of a loop nest can then be represented as the
integer points in a (parametric) polytope and manipulated as a whole, rather
than as individual iterations. A similar reasoning holds for the elements of an
array and for mappings between loop iterations and array elements.

For most types of program transformations, it is safe to approximate the set
of integer points in a polytope by the polytope itself. Many researchers therefore
use polyhedral libraries such as PolyLib [18] and PPL [1] that exploit the double
description of polytopes in terms of both facets and vertices. In particular, some
operations can be performed a lot more efficiently on one representation than on
the other. However, the computation of one representation from the other may
also be very costly, as in the worst case the size of the output may be exponential
in that of the input. In practice, polyhedra that arise from compiler applications
are typically close to hypercubes, i.e., they have few facets and many vertices.

A different approach is taken by the Omega library [16], which specifically
handles sets of integer tuples satisfying affine constraints. There is also explicit
support for parameters, existentially quantified variables and relations between
pairs of integer tuples, making the library not only more accurate, but also more
convenient to use. Note that polyhedral libraries have no need for existentially
quantified variables since the projection of a rational polyhedron is again a ra-
tional polyhedron. The internal representation is based on the constraints of the
sets (although vertices are implicitly constructed during the convex hull compu-
tation) and most operations are built on top of an extension of Fourier-Motzkin
elimination [20] and a series of heuristics. The library is very fast on simple
problems, but rather unpredictable on larger problems. Furthermore, it is not
thread-safe and only supports machine precision. The library had also been left
unmaintained for many years and had grown a reputation of being unreliable
due to various unimplemented corner cases. Only recently have most, if not all,
of these corner cases been resolved in the Omega+ library [7].

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 299–302, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Sven.Verdoolaege@{cs.kuleuven.be, inria.fr}

300 S. Verdoolaege

We present isl, an LGPL, thread-safe, C library for manipulating sets and
relations of integer tuples bounded by affine constraints using GMP [13] based ar-
bitrary precision integer arithmetic. The interface of the library draws inspiration
from that of Omega, but the underlying implementation is completely different,
favoring the use of a collection of targeted and efficient algorithms. The internal
representation is also different, with Omega transforming sets with existentially
quantified variables to unions of intersections of polyhedra and lattices in order
to be able to perform some set operations, while isl uses a representation in
terms of integer divisions inspired by the output format of PipLib, a library for
performing parametric integer programming [11]. The isl library is available
from http://freshmeat.net/projects/isl/

The isl library is mainly intended to be used in the polyhedral model for pro-
gram analysis and transformation, but some of the many operations it supports
can and have been used outside of this model. From inception, one of the primary
long-term objectives has been to provide all set and polynomial manipulations
required by the barvinok library, which, at that time, used a combination of
PolyLib, PipLib, Omega and GiNaC [4]. We have already achieved the short-
term objectives of replacing PolyLib in the loop generator CLooG [3], producing
better code by eliminating constraints that are redundant over the integers but
not over the rationals, and of forming the basis of an equivalence checker [22] of
programs that can be represented in the polyhedral model.

2 Internals

The main objects of interest are sets and binary relations over tuples of integers
bounded by affine constraints, which we will call polyhedral sets and maps,
respectively. Each map R is a finite union of basic maps R =

⋃
i Ri, each mapping

a tuple of n integer parameters to a binary relation on tuples of integers, i.e.,
Ri : Zn → 2Z

d1+d2 : s �→ Ri(s), with

Ri(s) = {x1 → x2 ∈ Zd1 × Zd2 | ∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz + c ≥ 0 }
and Ai ∈ Zm×di , B ∈ Zm×n, D ∈ Zm×e and c ∈ Zm. Sets are defined similarly.
The difference between sets and maps lies only in their use. Maps have domains
and ranges, can be composed with each other and can be applied to sets. Basic
sets are essentially projections of the integer points in a polyhedron and include
intersections of polyhedra and lattices as a special case. Note that in practice and
for reasons of efficiency, equality constraints are represented separately. For some
operations, it is convenient to have explicit representations for the existentially
quantified variables. In particular, we use greatest integer parts of rational affine
combinations of the parameters and the domain and range variables.

The core of the library is formed by an incremental LP solver modeled after
that of Simplify [10]. This solver is used in practically every operation of the
library. In particular, it is used in an ILP feasibility solver based on general-
ized basis reduction [9], which is in turn used to check the emptiness of a set,
producing a sample element if not. Such sample elements are used during the

http://freshmeat.net/projects/isl/

isl: An Integer Set Library for the Polyhedral Model 301

computation of the integer affine hull using the algorithm of [15], which is very
useful for reducing the dimension of a set by detecting implicit equalities and
for eliminating redundant existentially quantified variables. Finally, parametric
integer programming [11] is built on top of these LP and ILP solvers. Parametric
integer programming is used to compute the lexicographic minimum of a map and
to compute a unique (lexicographically minimal) representation for the existen-
tially quantified variables. The lexicographic minimum of a map R is a map R′

that maps each domain element x ∈ domR, to the unique lexicographically min-
imal element in its image, i.e., R′(s) = {x → y ∈ R(s) | y = lexminR(s,x) },
with R(s,x) = {y | x → y ∈ R(s) }.

The above algorithms are used to implement the basic operations on sets and
maps such as intersection, union, difference, projection and emptiness check.
Other operations require additional algorithms, some of which are listed below.

– convex hull, a very “rational” operation, which therefore does not fit in very
well in an integer set library and is not implemented very efficiently. Still, it
is provided as it is used in CLooG. The algorithm is based on [14], extended
to handle unbounded polyhedra. The library also provides a “simple hull”
operation, which computes the smallest basic set that contains the input
set and that can be described using only translates of the constraints of the
input set. The result is an overapproximation of the convex hull, but it is
much more efficient to compute.

– set coalescing changes the representation of a set (without changing its mean-
ing) by replacing pairs of basic sets by a single basic set. The algorithm is
based on a variation of the constraints based technique of [6], but extended
to handle sets of integers. It is different from the algorithm of [2], which uses
both constraints and vertices and considers only rational sets.

– the transitive closure of a map R is the map R+ =
⋃

k≥1 Rk, with R1 = R

and Rk = R ◦ Rk−1 for k ≥ 2. It is computed approximatively using an
algorithm that improves upon both [17] and [5].

– dependence analysis [12] is a crucial operation for the polyhedral model.
Given a list of write and read accesses in a program, dependence analysis
determines which write instance is the last to precede a given read instance.
The algorithm relies heavily on the computation of lexicographic maxima.

– parametric vertex enumeration computes the parametric vertices of a para-
metric polytope and is essential for the computation in barvinok of the
number of elements in a polyhedral set. The algorithm for the actual vertex
enumeration is essentially that of [19], but the corresponding chamber de-
composition is implemented much more efficiently. Preliminary experiments
on a couple of non-trivial cases show that the implementation is orders of
magnitude faster than that of PolyLib and as fast as or slightly faster than
TOPCOM [21] (version 0.16.2).

– bounds on piecewise step-polynomials are computed in an approximative, but
usually fairly accurate, way using the algorithm of [8]. Step-polynomials are
polynomial expressions in greatest integer parts of affine expressions and
appear as the result of (weighted) counting problems over polyhedral sets.

302 S. Verdoolaege

References

1. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex poly-
hedra and the Parma Polyhedra Library. In: Hermenegildo, M.V., Puebla, G. (eds.)
SAS 2002. LNCS, vol. 2477, pp. 213–229. Springer, Heidelberg (2002)

2. Bagnara, R., Hill, P., Zaffanella, E.: Exact join detection for convex polyhedra and
other numerical abstractions. Comput. Geom. Theory Appl. 43(5), 453–473 (2010)

3. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT 2004, pp. 7–16. IEEE Computer Society, Los Alamitos (2004)

4. Bauer, C., Frink, A., Kreckel, R.: Introduction to the GiNaC framework for
symbolic computation within the C++ programming language. J. Symb. Com-
put. 33(1), 1–12 (2002)

5. Beletska, A., Barthou, D., Bielecki, W., Cohen, A.: Computing the transitive clo-
sure of a union of affine integer tuple relations. In: COCOA 2009, pp. 98–109.
Springer, Heidelberg (2009)

6. Bemporad, A., Fukuda, K., Torrisi, F.D.: Convexity recognition of the union of
polyhedra. Comput. Geom. 18(3), 141–154 (2001)

7. Chen, C.: Omega+ library (2009), http://www.cs.utah.edu/~chunchen/omega/
8. Clauss, P., Fernandez, F.J., Gabervetsky, D., Verdoolaege, S.: Symbolic polyno-

mial maximization over convex sets and its application to memory requirement
estimation. IEEE Transactions on VLSI Systems 17(8), 983–996 (2009)

9. Cook, W., Rutherford, T., Scarf, H.E., Shallcross, D.F.: An implementation of the
generalized basis reduction algorithm for integer programming. Cowles Foundation
Discussion Papers 990, Cowles Foundation, Yale University (August 1991)

10. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking.
J. ACM 52(3), 365–473 (2005)

11. Feautrier, P.: Parametric integer programming. Operationnelle/Operations Re-
search 22(3), 243–268 (1988)

12. Feautrier, P.: Dataflow analysis of array and scalar references. International Journal
of Parallel Programming 20(1), 23–53 (1991)

13. Free Software Foundation, Inc.: GMP, available from ftp://ftp.gnu.org/gnu/gmp
14. Fukuda, K., Liebling, T.M., Lütolf, C.: Extended convex hull. In: Proceedings of

the 12th Canadian Conference on Computational Geometry, pp. 57–63 (2000)
15. Karr, M.: Affine relationships among variables of a program. Acta Informatica 6,

133–151 (1976)
16. Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., Wonnacott, D.: The

Omega library. Tech. rep., University of Maryland (November 1996)
17. Kelly, W., Pugh, W., Rosser, E., Shpeisman, T.: Transitive closure of infinite graphs

and its applications. Int. J. Parallel Program. 24(6), 579–598 (1996)
18. Loechner, V.: PolyLib: A library for manipulating parameterized polyhedra. Tech.

rep., ICPS, Université Louis Pasteur de Strasbourg, France (March 1999)
19. Loechner, V., Wilde, D.K.: Parameterized polyhedra and their vertices. Interna-

tional Journal of Parallel Programming 25(6), 525–549 (1997)
20. Pugh, W.: The Omega test: a fast and practical integer programming algorithm

for dependence analysis. Communications of the ACM 8, 102–114 (1992)
21. Rambau, J.: TOPCOM: Triangulations of point configurations and oriented ma-

troids. In: Cohen, A.M., Gao, X.S., Takayama, N. (eds.) ICMS 2002, pp. 330–340
(2002)

22. Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static affine
programs using widening to handle recurrences. In: Bouajjani, A., Maler, O. (eds.)
CAV 2009. LNCS, vol. 5643, pp. 599–613. Springer, Heidelberg (2009)

http://www.cs.utah.edu/~chunchen/omega/
ftp://ftp.gnu.org/gnu/gmp

The Reformulation-Optimization Software

Engine�

Leo Liberti1,��, Sonia Cafieri2, and David Savourey1

1 LIX, École Polytechnique, Palaiseau, France
{liberti,savourey}@lix.polytechnique.fr

2 Dept. Mathématiques et Informatique, ENAC, 7 av. E. Belin, 31055 Toulouse,
France

sonia.cafieri@enac.fr

Abstract. Most optimization software performs numerical computation,
in the sense that the main interest is to find numerical values to assign
to the decision variables, e.g. a solution to an optimization problem. In
mathematical programming, however, a considerable amount of symbolic
transformation is essential to solving difficult optimization problems, e.g.
relaxation or decomposition techniques. This step is usually carried out
by hand, involves human ingenuity, and often constitutes the “theoretical
contribution” of some research papers. We describe a Reformulation-
Optimization Software Engine (ROSE) for performing (automatic) sym-
bolic computation on mathematical programming formulations.

Keywords: reformulation, MINLP.

1 Introduction

The aim of this paper is to describe a new optimization software called Refor-
mulation-Optimization Software Engine (ROSE). Its main purpose is to allow the
symbolic analysis and reformulation of Mathematical Programs (MP), although
ROSE can also interface with numerical solvers. In practice, ROSE is used either
as a pre-processor or is called iteratively within numerical solvers; it can be
used either stand-alone or as an AMPL [1] solver. ROSE addresses MPs in the
following very general form:

min f(x)
gL ≤ g(x) ≤ gU

xL ≤ x ≤ xU

∀i ∈ Z xi ∈ Z,

⎫⎪⎪⎬⎪⎪⎭ (1)

where x is a vector of n decision variables, xL, xU ∈ Rn, Z ⊆ {1, . . . , n}, gL, gU ∈
Rm, f : Rn → R and g : Rn → Rm. MPs in the form (1) are known as Mixed-
Integer Nonlinear Programs (MINLP). The restriction on f, g is that they should
� Supported by grants: ANR 07-JCJC-0151 “ARS”, Digiteo 2009-14D “RMNCCO”,

Digiteo 2009-55D “ARM”. We acknowledge the contributions of Dr. C. D’Ambrosio
(University of Bologna) and of Mr. P. Janes (Australian National University).

�� Corresponding author.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 303–314, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

304 L. Liberti, S. Cafieri, and D. Savourey

be representable as strings of a certain formal language (more details in Sect. 2
below).

Changing the formal description of optimization problems has an impact on
the applicability and efficiency of the corresponding solution methods. Difficult
problems are routinely decomposed, relaxed or transformed into simpler sub-
problems that we know how to solve efficiently, and which preserve some of the
interesting mathematical properties of the original problem. Such transforma-
tions, called reformulations, almost always depend on the “mathematical struc-
ture” of the problem. Considering MP as a formal language, each formulation
is a valid sentence in the language. A reformulation is a sequence of some basic
symbolic transformations (such as add, modify or delete a variable, an objec-
tive or a constraint). In order to be useful, a reformulation must preserve some
mathematical property: for example, all optima of the reformulation might be
required to be also optima of the original formulation. Since the basic “atomic”
reformulations (adding, modifying, deleting a formulation element) are in princi-
ple easy to conceive and implement, the absence of a generic software package for
carrying out automatic reformulations in MP might come as a surprise. ROSE
moves a few steps in this direction, providing a set of reformulators that can act
on MP formulations. The roadmap for ROSE is to facilitate the implementation
of a heuristically driven search for the best reformulation for a given solver.

ROSE consists of around 50Klines of GNU C++ code and is covered by
the Common Public License (CPL). We are currently preparing its distribution
through COIN-OR [2] and finalizing documentation and examples. At the mo-
ment the software can be obtained through http://www.lix.polytechnique.
fr/~liberti/rose.tar.gz. This paper announces the first public distribution
of ROSE, which provides symbolic (as opposed to numerical) methods for manip-
ulating MPs. Currently, ROSE can perform basic and complex symbolic analysis
and manipulation tasks on all formulation elements, including all expressions ap-
pearing in objective(s) and constraints in (1). These tasks have been put together
in higher-level reformulation solvers, e.g. writing a (linear) convex relaxation of a
MINLP automatically [3,4]; writing a DAG representation of an AMPL-encoded
MINLP [5,4]; writing a cdd [6] or Porta [7] representation of an AMPL-encoded
LP. A list of applications of ROSE is given in Sect. 5.

The rest of this paper is organized as follows. We review existing work in
Sect. 1.1, give two motivating examples in Sect. 1.2, survey the theory that
ROSE is built on in Sect. 2, explain ROSE’s architecture in Sect. 3, show how
ROSE helps solving the motivating examples in Sect. 4 and discuss ROSE’s main
applications in Sect. 5, which concludes the paper.

1.1 Existing Work

Currently, optimization software focuses on solvers (implementations of solu-
tion algorithms), each of which includes the necessary layers of reformulation
capabilities. For example, all spatial Branch-and-Bound (sBB) MINLP solvers
are able to construct a convex relaxation automatically [8,4].

http://www.lix.polytechnique.fr/~liberti/rose.tar.gz
http://www.lix.polytechnique.fr/~liberti/rose.tar.gz

The Reformulation-Optimization Software Engine 305

Solvers typically require their input in a non-quantified format: complex jagged
arrays of variables and constraints must be transformed into flat lists thereof.
This creates the need for “translators” that automatically convert quantified
constraints to flat constraints. For example, ∀i ∈ {1, 2, 3} ∑j �=i xi = 1 is con-
verted to the flat form x1 + x2 = 1 ∧ x1 + x3 = 1 ∧ x2 + x3 = 1. Since different
solvers read the flat form input according to different encodings, translators also
include wrappers for most existing solvers, so that users can safely ignore the
technicalities of the calling procedure. The two best known MP translators are
AMPL and GAMS [9]: both optionally perform reformulations on the input MP
before “flattening” it and passing it to the solver.

In general, the reformulation layers of existing solvers and translators cannot
be accessed or modified by the user. Apart from ROSE we are aware of no
user-accessible software for carrying out MP reformulations with such generality.
Notwithstanding, at least two codes are available that perform symbolic analysis
and reformulation to a certain extent. Dr. AMPL [10] is an analysis tool for MP
formulations aimed to the automatic choice of an appropriate solver for the given
formulation. The software described in [11] enriches the AMPL language with
primitives for providing solvers with specific block-diagonal information about
the problem.

1.2 Motivating Examples

The need for a generic reformulation software layer is given by the mounting com-
plexity of optimization software needed to solve ever more difficult problems.

Subproblems in sBB. In sBB, for example, a branching procedure constructs a
search tree, each node of which represents a pair of reformulations (Q, Q̄) of the
original problem P . The formulation Q is obtained from P by restricting the
variable bounds; Q̄ is a relaxation of Q where each nonlinear term is replaced
by linear lower and upper bounding functions. A possible sBB implementation
might wish to solve Q using a MINLP heuristic and Q̄ using a MILP solver. In
turn, the MINLP heuristic might alternate between solving a continuous Non-
linear Programming (NLP) reformulation and an auxiliary MILP reformulation
of Q, whereas the MILP solver is a standard BB algorithm which needs to call
MILP heuristics and a Linear Programming (LP) solver such as the simplex al-
gorithm. Testing new ideas in this complex calling chain often requires changing
the reformulation algorithms, which is impossible as long as these are hard-coded
into the solver.

The Kissing Number Problem. Given positive integers D, N̄ , the KNP [12] asks
for the maximum number (between 1 and N̄) of spheres of unit radius that can
be arranged in RD around a unit sphere centered in the origin so that their
interiors are disjoint. The MP formulation [13] is:

max
∑

i≤N̄

yi

∀i ≤ N̄ ‖xi‖2 = 4yi

∀i < j ≤ N̄ ‖xi − xj‖2 ≥ 4yiyj

∀i ≤ N̄ xi ∈ RD, yi ∈ {0, 1}.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2)

306 L. Liberti, S. Cafieri, and D. Savourey

Attempting to solve (2) directly with a MINLP solver such as BARON [8] or
Couenne [4] results in the trivial solution with y = 0 standing for incumbent
(i.e. best optimum so far) for several days of computation as soon as D � 3
and N̄ � 13. We dispense with binary variables by transforming (2) into the
corresponding decision problem: can N ≤ N̄ spheres be arranged around the
central one? The MP formulation is:

∀i ≤ N ‖xi‖2 = 4 ∧ ∀i < j ≤ N ‖xi − xj‖2 ≥ 4. (3)

If (3) has a solution, then the instance (D,N) is a YES one. Since both BARON
and Couenne identify a feasible solution by calling a local NLP subsolver
(e.g. SNOPT [14]), both are only as reliable as the subsolver. Computational
experience shows that most local NLP solvers have difficulties in finding a lo-
cal optimum of a heavily nonlinear MP if no feasible starting point is supplied.
Again, days of computation will not yield any solution even for small instances.
Inserting a tolerance to feasibility improves this situation:

max
x,α∈[0,1]

α s.t. ∀i ≤ N ‖xi‖2 = 4 ∧ ∀i < j ≤ N ‖xi − xj‖2 ≥ 4α. (4)

As shown in [12], (4) is computationally amenable to local NLP solution within
a heuristic Global Optimization (GO) solver such as Variable Neighbourhood
Search (VNS). Because of the large number of symmetric optima, however, sBB
solvers are still far from finding any nontrivial solution. A study of the for-
mulation group of (4) suggests adjoining the symmetry breaking constraints
∀i ≤ N � {1} xi−1,1 ≤ xi1 to (4), yielding a reformulation for which sBB makes
considerably more progress [15]. Identifying this reformulation chain, which leads
to a more easily solvable MP, required considerable effort and resources. ROSE
alleviates the situation by providing a uniform C++ interface to several reformu-
lation needs. It is interesting to remark that other types of reformulations were
recently instrumental in solving some high dimensional KNP instances [16].

2 Reformulations: Formal Definitions

We define MPs as valid sentences of a certain formal language. Instead of giving
its syntax, i.e. the explicit grammar of this language (see the Appendix to [1]
for an example), we describe the image of its semantic function, i.e. the data
structure needed to encode a MP.

A parameter is a real number p (in its floating point computer representation).
A decision variable is a symbol xi indexed by some positive integer i. Consider
a finite set O of operators {⊕1,⊕2, . . .} of given arities. An expression is defined
recursively as follows:
1. parameters are expressions;
2. decision variables are expressions;
3. if e1, . . . , ek are expressions and ⊕ ∈ O has arity k, then ⊕(e1, . . . , ek) is an

expression.
Let E be the set of all such expressions. We remark that each expression e(p, x) ∈
E involving parameters p = (p1, . . . , pt) and decision variables x = (x1, . . . , xn)

The Reformulation-Optimization Software Engine 307

corresponds to a function fe(p, x), which associates to x the evaluation of e(p, ·)
at x. An objective function is a pair (d, e) ∈ {−1, 1} × E where d is the op-
timization direction: (−1, e(p, x)) corresponds to min fe(p, x) and (1, e(p, x)) to
max fe(p, x). A constraint is a triplet (gL, e, gU) ∈ R×E ×R encoding the dou-
ble inequality gL ≤ fe(p, x) ≤ gU . A range constraint is a triplet (xL

i , xi, x
U
i) ∈

R × E × R encoding the restriction xL
i ≤ xi ≤ xU

i . An integrality constraint is
a positive integer i which encodes the restriction xi ∈ Z. A mathematical pro-
gram is a 7-tuple (p, x, E,O, C,B, Z) such that for all e ∈ E, e depends on no
further parameters (resp. decision variables) than p (resp. x), O is a set of s
objective functions (d, e) with e ∈ E, C is a set of m constraints (gL, e, gU) with
e ∈ E, B is a set of n range constraints, and Z ⊆ {1, . . . , n} is a set of integrality
constraints. An element of any component set in the 7-tuple is also called an
entity of the MP. Semidefinite and multilevel programming can be dealt with by
letting constant and/or variables symbols range over sets of matrices or other
mathematical programs.

2.1 Flat and Structured MPs

MPs can be given either in structured form (i.e. by using quantifiers over indices)
or flat form. Flat MPs are those corresponding to the definition of Sect. 2. We
now define structured MPs.

Given a sequence I = {Ii ⊆ N | i ≤ α} of finite subsets of integers and a
multi-index i = (i1, . . . , iα) where iβ ∈ Iβ for all β ≤ α, a structured parameter
p is a jagged array of (scalar) parameter symbols pi (with i ∈ I) with an as-
signed (scalar) value pi. A structured decision variable x is defined similarly for
scalar variable symbols xi. Structured expressions, resting on an operator set O′

enriched with the quantifier operators
∑

,
∏

, are defined recursively similarly to
flat expressions, but with parameters and variables replaced by their structured
versions. A structured constraint is a triplet (gL

ij , fe(pi, xj), gU
ij) where all multi-

indices i, j are universally quantified over some subsets of I. Structured range
and integrality constraints are defined similarly. A MP defined over structured
entities is a structured MP. Given a structured MP P with multi-indices i1, . . . , iγ
ranging over set families I = {I1, . . . , Iγ}, and the jagged array of values p to
be assigned to all parameter symbols, a translator (such as AMPL or GAMS) is
able to write a flat MP P corresponding to the triplet (P, I,p). In general, an
operator ⊕ ∈ O′ acts on structured entities in a componentwise fashion. Differ-
ent operator semantics can be defined by simply adding new operators to O′.
In the terminology of complexity analysis, flat MPs correspond to instances and
structured MPs to problems defined as instance sets, each instance being given
by the pair (I,p).

2.2 Flat Reformulations

Reformulations may occur either at the flat or structured level. Because of a
technical limitation of AMPL (i.e. the AMPL API only allows user access to the
flat, rather than structured, MP), ROSE only performs flat reformulations; we

308 L. Liberti, S. Cafieri, and D. Savourey

therefore only define these. Structured reformulations would essentially require
hooking reformulation primitives at the AMPL grammar parsing level.

Let MPF be the class of all flat MPs; for P ∈ MPF we denote the feasible
region of P by F(P), the set of local optima of P by L(P) and the set of global
optima of P by G(P).

Definition 2.1
A flat reformulation is a relation ↪→ on MPF such that there exists a formula ψ
with two free variables for which

∀P,Q ∈ MPF (P ↪→ Q ⇒ ψ(P,Q)). (5)

The invariance scope of ↪→ is the class S(↪→) of all ψ for which (5) holds.

We distinguish three remarkable types of reformulations.
1. Exact reformulations, denoted by ≡: S(≡) contains the formula “there is a

function ϕ : F(Q) → F(P) such that ϕ|L(Q) is onto L(P) and ϕ|G(Q) is onto
G(P)”;

2. Narrowings, denoted by �: S(�) contains the formula “there is a function
ϕ : F(Q) → F(P) such that ϕ(G(Q)) ⊆ G(P)”;

3. Relaxations, denoted by ≥: S(≥) contains the formula “F(Q) ⊇ F(P) and
O(Q) = {(−1, e′)} and O(P) = {(−1, e)} and, for all x ∈ F(P), fe′(p, x) ≤
fe(p, x)”.

Theorem 2.2 ([17])
The relations ≡, �,≥ are all transitive. Furthermore, ≡ ⊆ � and ≡ ⊆ ≥.

Thus, if P ≡ Q1 �Q2 then P �Q2; if P ≡ Q1 ≥ Q2 then P ≥ Q2. This allows the
construction of reformulation chains with invariant properties. We only consider
reformulations corresponding to computable relations. A taxonomy of useful flat
reformulations is given in [18].

Example 2.3
The ProdBinCont exact reformulation [18] replaces every product xy where
x ∈ {0, 1} and y ∈ [yL, yU] with an added variable w, which is constrained by
the natural extension of Fortet’s inequalities [19]: w ≤ yUx, w ≥ yLx, w ≤
y − (1 − x)yL, w ≥ y − (1 − x)yU .

3 ROSE Architecture

ROSE consists of a simple modular architecture based on two main classes
(Problem and Solver) and a separate library (Ev3) for storing and manipulating
expressions in E. The overall architecture is depicted graphically in Fig. 1. More
detailed information about ROSE’s and Ev3’s architecture, capabilities and Ap-
plication Programming Interface (API) can be found in [18], Sect. 5.2-5.3.

The Problem class contains lists of Variable,Objectiveand Constraint struc-
tures. Structures of Variable type include information about decision variables

The Reformulation-Optimization Software Engine 309

Fig. 1. ROSE architecture. Rectangles indicate classes (with dashed meaning virtual),
rounded boxes indicates structs, relation links conform to UML: void diamonds indi-
cate aggregation (to maintain a reference of), filled diamonds indicate composition (to
maintain a copy of), triangles indicate inheritance.

such as index, current and optimal value, and range and integrality constraints;
Objectives include information about objective functions such as index, current
and optimal value, corresponding expression and optimization direction;
Constraints include information about constraints such as index, current and op-
timal value, corresponding expression and bound restrictions. The Problem class
also stores information about problem cardinalities, feasibility of a current solu-
tion with respect to the constraints, a reference to a previous Problem object in
a reformulation chain, and other useful information. It has methods for accessing
data, adding or deleting decision variables, objective functions and constraints,
evaluating expressions appearing in objectives or constraints, parse a given input
file (a description of an MP) into its data structures, and so on.

The Solver class is a virtual class whose implementations are either numerical
solvers or reformulators; the latter are recognizable because their names are pre-
fixed by R- (e.g. Rprodbincont). All Solver objects maintain: a pointer to the
Problem object being solved, numerical information about current and optimal
points, information about linear and nonlinear cuts and a few other items mainly
used by numerical solvers. Reformulators are allowed to change the Problem they
reference; problems can be duplicated before being changed by a reformulator
by using the special Rcopy reformulator. Basic reformulation steps for adding or
deleting problem entities are implemented in Problem; modification of expres-
sions occurs via interfacing with the Ev3 expression library (Sect. 3.3). Many
methods in Problems and Solvers can be configured by user-defined parame-
ters that passed to Problem and Solver objects via a unique object of the class
ParameterBlob.

310 L. Liberti, S. Cafieri, and D. Savourey

3.1 MP Input

ROSE can read an MP via either its own intuitive flat MP format (see [3] p. 238)
or via interfacing with the AMPL interpreter [1]. Each MP entity is assigned two
integer scalar indices: a unique entity ID (which is preserved across reformula-
tions) and a local index (which is an ordinal running from 1 to the number
of entities of a given type within a Problem object). Methods are provided for
switching from ID to local indices.

3.2 MP Output

Since the AMPL API does not offer primitives for modifying the current MP, the
only possibility for ROSE is to output its reformulations to a flat MP written to
an AMPL formatted file. Users can then instruct AMPL to read this file. This
situation is far from optimal, as it requires hard disk access, but there is no way
around it — according to the AMPL authors, it is unlikely that AMPL will ever
have an API which is sufficiently flexible as to allow modification of the internal
data. Developers can also choose to have individual reformulators write their
output to whatever syntax they wish, bypassing the default output.

3.3 Expression Tree Library

Following the recursive definition of expressions given in Sect. 2, an expression
e ∈ E is encoded in a tree data structure Te = (Ve, Ae): leaf nodes of Ve are
labelled by parameters in p and by decision variables in x, and intermediate
nodes are labelled by operators in ⊕ ∈ O. A k-ary operator node has k subnodes
in its star. An arc (u, v) is in Ae if v is a subnode of u.

An Expression is synonym to a Pointer<BasicExpression> template class.
The Pointer<T> class is used to perform automatic memory management (i.e.
automatic deallocation) from a node of type T. A BasicExpression inherits from
Operand and from Tree<BasicExpression>. The Operand class simply includes
information concerning a particular node (whether leaf or nonleaf, operator label,
variable index, parameter value, and so on). The Tree<T> class includes a list of
nodes of type Pointer<T>, and is used to represent a list of subnodes of a given
node; it has methods for accessing and editing nodes. This complex architecture
for expression trees makes it easy to edit, move or copy entire subtrees recursively,
but floating point evaluation of the expression is slow. To circumvent this prob-
lem, expressions are also encoded in much simpler C-style tree structures (called
FastEvalTrees) without any memory management in order to speed up evalua-
tion. Their activation and use is completely transparent to the user.

The Ev3 library capabilities include simplification of expressions, reduction
to (partial) normal form, identification of subexpressions of certain structures,
conditional editing of subexpressions, recognition and separation of linear and
nonlinear parts in a given expression, symbolic differentiation and many others.
Since they act on trees, most methods are recursive, and consist of two functions:
the “recursion start” and the “recursion step”. In the case of Example 2.3, the
ProdBinCont reformulator is implemented according to the pseudocode below.

The Reformulation-Optimization Software Engine 311

ProdBinCont(Expression e) {

ProdBinContRecursive(e.root);

}

ProdBinContRecursive(Expression e) {

if (!e.leaf) {

for(v in e.subnodes) {

ProdBinContRecursive(v);

}

}

if (e.structure == x*y && x.binary && !y.binary) {

AddVariable(w);

ReplaceBy(e,w);

AdjoinConstraint(Fortet’s extension inequalities);

}

}

4 How ROSE Helps Solving the Motivating Examples

Subproblems in sBB. ROSE can construct a convex relaxation of (1) automati-
cally from its Smith reformulation [20], which isolates all the nonlinearities of the
problem in constraints with a simple structure; these are then replaced by ap-
propriate convex relaxations [3]. The ROSE Rsmith reformulator (tasked with
constructing the Smith reformulation) calls a recursive Ev3 procedure which
looks for subtrees of an Expression e having a certain “shape” in order to re-
place them with an added variable w; the constraint w = e is then added to
the formulation. The shape of an expression is defined as an expression schema,
i.e. an expression tree search pattern whose variable nodes are labelled by a
wildcard “?” with the meaning of “any variable”. Thus, for example, the tree
? ←×→? represents a generic product of two variables, and it matches every
tree xi ←×→ xj (for any i, j).

Rsmith(Problem p) {

for (f in {p.objective, p.constraints}) {

if (!f.linear) {

SmithStandardForm(f);

}

}

}

SmithStandardForm(Expression e, vector<Expression> schemata) {

if (!e.leaf) {

for (v in e.subnodes) {

SmithStandarForm(v);

}

}

for (s in schemata) {

if (e.MatchesSchema(s)) {

AddVariable(w);

ReplaceBy(e,w);

AdjoinConstraint(w = e);

}

}

}

The pseudocode above shows the essential functionality of the Rsmith reformu-
lator and the corresponding Ev3 recursive auxiliary function. ROSE has sev-
eral relaxation reformulators (e.g. Rconvexifier, RQuarticConvex) which are
chained to the Rsmith reformulator as per Thm. 2.2.

312 L. Liberti, S. Cafieri, and D. Savourey

KNP. Solving the KNP formulation (2) requires several reformulations:

1. derive a restriction of (2) to certain neighbourhoods (in order to solve the
KNP using heuristics);

2. convert the optimization problem to the corresponding decision problem for
a given objective function value (3)

3. relax some constraints by means of a multiplicative tolerance;
4. adjoin an objective that maximizes the tolerance (4);
5. derive a symmetry-free narrowing and a convex relaxation of (4) (in order

to solve via sBB).

The two heuristics tested on (2) are VNS and the MINLP Feasibility Pump (FP-
MINLP) [21]. Both rely on certain subproblems of (2) obtained by adjoining ap-
propriate constraints: VNS requires Local Branching type constraint [22], whilst
FPMINLP requires a specific outer approximation.The reformulations listed in 2.-
4. above can be implemented using the basic reformulations encoded in ROSE. The
symmetry-free narrowing in 5. is obtained automatically using a chain of software
packages (i.e. AMPL, ROSE, nauty [23], GAP [24]) held together via Unix scripts.
In particular, ROSE is used to analyze an AMPL flat MP and produce its Directed
Acyclic Graph (DAG) encoding [4,5], which is then fed into nauty in order to derive
its symmetry group. ROSE can also obtain a convex relaxation of (4) based on the
ideas given in [20,3,4]. Computational results for sBB on (4) are reported in [15].

It may be noted that the above examples were chosen arbitrarily by a large set
of ROSE applications (see Sect. 5). We believe that the first example shows how
ROSE can be useful per se, whereas the second demonstrates ROSE’s ability to
interface with other tools in order to perform complex reformulating tasks.

5 ROSE’s Existing Applications

ROSE’s current role is to help automatize flat MP reformulations which would be
too long toperformbyhand,butwhicharenecessary to implementandtest research
ideas. ROSE was and is instrumental to several past and current research projects:
in some cases it is key to their success, in other cases it allows research teams to
quickly weed out bad ideas; it is sometimes influential to other software, in that
ideas found in ROSE are re-implemented (for practical reasons) in other codes.

– Fundamentals of reformulation theory [17,18], where ROSE served as a proof
of concept (successful).

– Experiments on spherical cuts for Binary Linear Programs (BLPs) [25]
(successful).

– An investigation of the convex relaxation of quadrilinear terms [26,27], where
ROSE was used both to produce the convex relaxation and to automatically
write input data to other software packages (e.g. cdd [6]) (successful).

– Experiments with symmetry-breaking narrowing reformulations [28,15,29,30]
(successful).

The Reformulation-Optimization Software Engine 313

– The FPMINLP heuristic [21], where ROSE is used both to analyze MINLPs
(e.g. to find convex constraints), and to reformulate them, i.e. to build the
Feasibility Pump subproblems (successful).

– The RECIPE MINLP heuristic [31] was implemented independently of ROSE
with what was essentially ROSE code (influential).

– The conception of the Couenne [4] solver code that builds the convex re-
laxation was heavily influenced by ideas implemented in ROSE (influential).

– Reduced RLT-based relaxations for polynomial programs (current work,
unpublished).

– A general-purpose MINLP Tabu Search heuristic based on tabu spheres (un-
successful, unpublished).

– A general-purpose MINLP feasibility heuristic based on branching with no
bounding until a feasible solution is found (unsuccessful, unpublished).

References

1. Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)
2. Lougee-Heimer, R.: The common optimization interface for operations research:

Promoting open-source software in the operations research community. IBM Jour-
nal of Research and Development 47(1), 57–66 (2003)

3. Liberti, L.: Writing global optimization software. In: Liberti, L., Maculan, N.
(eds.) Global Optimization: from Theory to Implementation, pp. 211–262. Springer,
Berlin (2006)

4. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds
tightening techniques for non-convex MINLP. Optimization Methods and Soft-
ware 24(4), 597–634 (2009)

5. Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global
optimization. Journal of Global Optimization 33(4), 541–562 (2005)

6. Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M.,
Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer,
Heidelberg (1996)

7. Christof, T., Löbel, A.: The porta manual page. Technical Report v. 1.4.0, ZIB,
Berlin (1997)

8. Sahinidis, N., Tawarmalani, M.: BARON 7.2.5: Global Optimization of Mixed-
Integer Nonlinear Programs, User’s Manual (2005)

9. Brook, A., Kendrick, D., Meeraus, A.: GAMS, a user’s guide. ACM SIGNUM
Newsletter 23(3-4), 10–11 (1988)

10. Orban, D., Fourer, R.: Dr. AMPL: a meta solver for optimization (2004) (Presen-
tation slides)

11. Colombo, M., Grothey, A., Hogg, J., Woodsend, K., Gondzio, J.: A structure-
conveying modelling language for mathematical and stochastic programming.
Mathematical Programming Computation 1(4), 223–247 (2009)

12. Kucherenko, S., Belotti, P., Liberti, L., Maculan, N.: New formulations for the
kissing number problem. Discrete Applied Mathematics 155(14), 1837–1841 (2007)

13. Maculan, N., Michelon, P., MacGregor Smith, J.: Bounds on the kissing numbers
in Rn: Mathematical programming formulations. Technical report, University of
Massachusetts, Amherst, USA (1996)

14. Gill, P.: User’s guide for SNOPT version 7. Systems Optimization Laboratory,
Stanford University, California (2006)

314 L. Liberti, S. Cafieri, and D. Savourey

15. Liberti, L.: Symmetry in mathematical programming. In: Lee, J., Leyffer, S. (eds.)
Mixed Integer Nonlinear Programming, vol. IMA, Springer, New York (accepted)

16. Bachoc, C., Vallentin, F.: New upper bounds for kissing numbers from semidefinite
programming. Journal of the American Mathematical Society 21, 909–924 (2008)

17. Liberti, L.: Reformulations in mathematical programming: Definitions and system-
atics. RAIRO-RO 43(1), 55–86 (2009)

18. Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in mathematical programming:
A computational approach. In: Abraham, A., Hassanien, A.E., Siarry, P., Engel-
brecht, A. (eds.) Foundations of Computational Intelligence. SCI, vol. 3, 203, pp.
153–234. Springer, Berlin (2009)

19. Fortet, R.: Applications de l’algèbre de Boole en recherche opérationelle. Revue
Française de Recherche Opérationelle 4, 17–26 (1960)

20. Smith, E., Pantelides, C.: A symbolic reformulation/spatial branch-and-bound al-
gorithm for the global optimisation of nonconvex MINLPs. Computers & Chemical
Engineering 23, 457–478 (1999)

21. D’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: Experiments with a feasi-
bility pump approach for nonconvex MINLPs. In: Festa, P. (ed.) Experimental
Algorithms. LNCS, vol. 6049, pp. 350–360. Springer, Heidelberg (2010)

22. Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98, 23–37
(2005)

23. McKay, B.: Nauty User’s Guide (Version 2.4). Computer Science Dept., Australian
National University (2007)

24. The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.4.10
(2007)

25. Liberti, L.: Spherical cuts for integer programming problems. International Trans-
actions in Operational Research 15, 283–294 (2008)

26. Cafieri, S., Lee, J., Liberti, L.: Comparison of convex relaxations of quadrilinear
terms. In: Ma, C., Yu, L., Zhang, D., Zhou, Z. (eds.) Global Optimization: Theory,
Methods and Applications I. Lecture Notes in Decision Sciences, vol. 12(B), pp.
999–1005. Global-Link Publishers, Hong Kong (2009)

27. Cafieri, S., Lee, J., Liberti, L.: On convex relaxations of quadrilinear terms. Journal
of Global Optimization, doi: 10.1007/s10898-009-9484-1

28. Liberti, L.: Reformulations in mathematical programming: Automatic symmetry
detection and exploitation. Mathematical Programming, doi: 10.1007/s10107-010-
0351-0

29. Costa, A., Hansen, P., Liberti, L.: Formulation symmetries in circle packing. In:
Mahjoub, R. (ed.) Proceedings of the International Symposium on Combinato-
rial Optimization. Electronic Notes in Discrete Mathematics. Elsevier, Amsterdam
(accepted)

30. Costa, A., Hansen, P., Liberti, L.: Static symmetry breaking in circle packing. In:
Faigle, U. (ed.) Proceedings of the 8th Cologne-Twente Workshop on Graphs and
Combinatorial Optimization, University of Köln (2010)

31. Liberti, L., Mladenović, N., Nannicini, G.: A good recipe for solving MINLPs. In:
Maniezzo, V., Stützle, T., Voß, S. (eds.) Hybridizing metaheuristics and mathemat-
ical programming. Annals of Information Systems, vol. 10, pp. 231–244. Springer,
New York (2009)

Generating Smooth Lattice Polytopes

Christian Haase, Benjamin Lorenz�, and Andreas Paffenholz

Freie Universität Berlin, Arnimallee 3,
14195 Berlin, Germany

{chaase,benmuell,paffenholz}@math.fu-berlin.de

http://ehrhart.math.fu-berlin.de

Abstract. A lattice polytope P is the convex hull of finitely many lattice
points in Zd. It is smooth if each cone in the normal fan is unimodular.
It has recently been shown that in fixed dimension the number of lattice
equivalence classes of smooth lattice polytopes in dimension d with at
most N lattice points is finite. We describe an algorithm to compute a
representative in each equivalence class, and report on results in dimen-
sion 2 and 3 for N ≤ 12. Our algorithm is implemented as an extension
to the software system polymake.

Keywords: lattice polytopes, smooth polytopes, classification,
polymake.

1 Introduction

A lattice polytope P ⊂ Rd is the convex hull of finitely many points in the
integer lattice Zd. Lattice polytopes have attracted increasing interest in recent
years among researchers in various fields. Algebraic geometers are interested in
the properties of the associated semi-group ring RP := C[CP ∩Zd+1], where CP

is the cone over {1} × P , and in the projective toric variety XP := ProjRP [6].
In statistics, they appear as a tool to construct Markov chains for contingency
tables [8]. In integer programming, an approach using Gröbner bases of toric
ideals is sometimes superior to standard cutting planes techniques [1].

Although combinatorial and algebraic properties of lattice polytopes have
been studied extensively, many quite basic questions are still wide open even
in low dimensions. A fundamental obstacle to theoretical progress is the lack
of sufficiently many, sufficiently generic examples. Some particularly interesting
questions concern smooth lattice polytopes. A lattice polytope P is smooth if XP

is a smooth variety. In combinatorial terms, P is smooth if all maximal cones in
the normal fan of P are unimodular, i.e. if the generators of each maximal cone
are a lattice basis. Recently, it has been shown that for fixed dimension d and
a bound N on the number of lattice points there are only finitely many lattice
equivalence classes of smooth lattice polytopes [5]. Here, two lattice polytopes
� Christian Haase and Benjamin Lorenz are supported by an Emmy-Noether grant,

No. HA 4383/1.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 315–328, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://ehrhart.math.fu-berlin.de

316 C. Haase, B. Lorenz, and A. Paffenholz

are equivalent if they can be identified via a lattice preserving affine map. In this
note we present an algorithm for their enumeration for given d and N . A list of
small examples could be useful for several open questions about smooth lattice
polytopes to test conjectures. We explain some in the following paragraphs.

Let P be a smooth lattice polytope and let P ′ be a lattice polytope whose
normal fan is refined by the normal fan of P . A long standing open question by
Oda [26] asks whether any lattice point in P + P ′ is the sum of a lattice point
in P and a lattice point in P ′. The answer is affirmative in dimension 2 even if
P is not smooth [12], but open in all higher dimensions.

Say that a lattice polytope P is integrally closed if for all k ∈ N each point x ∈
kP∩Zd is the sum of k points in P∩Zd. Integrally closed polytopes are interesting
in algebraic geometry as they define projectively normal embeddings of toric
varieties. An important special case of Oda’s problem is the question whether
all smooth polytopes are integrally closed. This conjecture is the weakest in a
whole hierarchy of successively stronger conjectures concerning smooth lattice
polytopes [11] that has inspired researchers over the past years. The conjecture
is known to hold in dimension 2, and recently Gubeladze [10] proved it in general
for polytopes with long edges.

It has been asked whether ideals of smooth toric varieties are generated by
quadratic binomials or admit a square-free quadratic initial ideal (e.g. see [4,28]).
The latter question has a combinatorial interpretation. The ideal has a square-
free initial ideal if and only if the associated polytope has a regular unimodular
triangulation. Here, a triangulation is regular, if it is induced by a height function
on the polytope. This is known to hold in dimension 2, and for some special
classes in higher dimensions (e.g. see [13,27]). However, we don’t even know an
example of a smooth polytope without a unimodular triangulation.

Classifications of two other families of lattice polytopes have already lead to
new and important results (e.g. see [3,22,23]). Say that a lattice polytope P is
reflexive if the origin is in the interior of P and each facet has lattice distance one
from the origin. Inspired by a question from physics, Kreuzer and Skarke gave
an algorithm to generate all reflexive polytopes in fixed dimension up to lattice
equivalence and computed a complete list up to dimension 4 [17,18]. Recently,
Øbro [24] described an efficient algorithm to generate all lattice equivalence
classes of smooth reflexive polytopes in fixed dimension, and produced a complete
list up to dimension 8. Such polytopes correspond to smooth toric Fano varieties
in algebraic geometry. Previously, Batyrev [2] has generated all 4-dimensional
smooth reflexive lattice polytopes, and Kleinschmidt [16] those with few vertices.

Both classifications use the facet structure of a reflexive polytope in an essen-
tial way. So a generation of smooth polytopes needs a different approach. The
algorithm we present has two main steps. We start by generating all smooth fans
that appear as the normal fan of a smooth lattice polytope. For each such fan
we enumerate in the second step all smooth lattice polytopes with this normal
fan. We prove that both the set of fans and polytopes are finite if we fix the
dimension and bound the number of lattice points. Our generation of smooth

Generating Smooth Lattice Polytopes 317

fans uses a classification of minimal smooth fans as input. Such a classification
is known in dimension 2, and in dimension 3 for up to 12 maximal cones [25].

The algorithm has been implemented by the second author as part of his MSc
Thesis [20] based on the software system polymake [15]. We have used it to
generate 2- and 3-dimensional smooth polytopes with up to 12 lattice points.

The paper is organized as follows. In the next section we review the necessary
notions from combinatorial geometry and outline the algorithm. Sections 3 and 4
present the two main steps of our algorithm in detail. Section 5 gives details on
the implementation and presents results for dimension 2 and 3. In the last section
we discuss extensions and open questions.

2 Smooth Polytopes

A vector a ∈ Zd is primitive if the greatest common divisor of its entries is
1. Let Σ be a complete rational polyhedral fan with generators a1, . . . , am. By
scaling each aj appropriately we assume in the following that all generators are
primitive. The set of k-dimensional faces of Σ is denoted with Σ(k). In particular,
Σ(d) are the maximal cones and Σ(1) the rays of Σ. Any cone τ ∈ Σ(d−1) is
contained in precisely 2 maximal cones. The combinatorial type CΣ of Σ is the
poset of all cones ordered by inclusion. A cone σ ∈ Σ(d) is unimodular if its
generators form a lattice basis of Zd, equivalently, their determinant is ±1. A
fan is smooth if all its maximal cones are unimodular.

A lattice polytope P is a polytope all whose vertices have integral coordinates.
The normal cone of a face F of P is the cone generated by the facet normals of
the facets intersecting in F . The normal fan Σ(P) of P is the collection of all
normal cones. P is smooth if its normal Σ(P) is smooth.

Conversely, we can uniquely characterize a polytope P as a pair (Σ,b) of its
normal fan Σ and a vector b = (b1, . . . , bm) ∈ Zm of an integer for each ray of
Σ, the ray parameters. Namely,

P = {x | 〈aj ,x〉 ≤ bj for 1 ≤ j ≤ m} .

A lattice equivalence of two lattice polytopes P, P ′ ⊆ Rd is an affine map ϕ :
Rd → Rd that maps P to P ′ and is bijective on the lattice Zd. This is an
equivalence relation. When we speak of a “polytope” P in the following then we
implicitly mean the equivalence class of P with respect to this relation. Similarly,
we consider smooth fans only up to lattice equivalence.

Next, we introduce a convenient representation of a smooth fan Σ with gen-
erators a1, . . . ,am. Let τ ∈ Σ(d−1) and let σ, σ′ ∈ Σ(d) be the maximal cones
intersecting in τ . Let cτ = (cτ

j) ∈ {0, 1}m with cτ
j = 1 if and only if aj is a

generator in (σ ∪ σ′) \ τ . Smoothness of Σ implies that there is λτ ∈ Zm with
λτ

j = 0 if aj �∈ τ and such that∑m
j=1 cτ

j aj =
∑m

j=1 λτ
j aj (2.1)

λτ are called the edge parameters of τ . Σ is, up to lattice equivalence, completely
determined by its combinatorial type and edge parameters for each τ ∈ Σ(d−1).

318 C. Haase, B. Lorenz, and A. Paffenholz

Fig. 2.1. Equivariant blowups of a smooth cone at a 2- and a 3-dimensional cone

Let Pd be the set of all smooth d-dimensional lattice polytopes. For a param-
eter N ∈ N and a smooth d-dimensional fan Σ we define

PΣ(N) := {P ∈ Pd | Σ(P) = Σ, |P ∩ Zd| ≤ N}
Pd(N) := {P ∈ Pd | |P ∩ Zd| ≤ N}

F
poly
d (N) := {Σ | Σ is the normal fan of a polytope P ∈ Pd(N)} .

Up to equivalence these are finite sets by the following result.

Theorem 2.1 (Bogart et. al. 2010, [5]). In fixed dimension there are, up to
lattice equivalence, only finitely many smooth lattice polytopes with at most N
lattice points.

The original proof is constructive, but for efficiency we chose a different approach
to generate Pd(N). Lemmas 3.1 and 4.1 below give another proof of this theorem.

Let Σ be a smooth fan and σ a cone in Σ with primitive generators a1, . . . , ak.
Define a :=

∑
ai and let L be the set of cones η ∈ Σ such that cone(η ∪σ) ∈ Σ,

but a �∈ η. The equivariant blowup of Σ at σ is

Σσ := {τ ∈ Σ | σ �⊂ τ} ∪ {cone(τ, a) | τ ∈ L} . (2.2)

See Figure 2.1. Σσ is again a smooth fan. Σ is minimal if there is no other
smooth fan Σ′ such that Σ can be obtained from Σ′ via equivariant blowups.

With these preparations we can give a rough outline of our algorithm to
compute Pd(N) with the following four steps.

1. Determine all smooth minimal fans with at most N maximal cones.
2. Generate F ⊃ F

poly
d (N) via recursive equivariant blowups.

3. For each fan Σ ∈ F
poly
d (N), compute a set B containing all ray parameters

b for smooth lattice polytopes in PΣ(N).
4. For each b ∈ B ∩ Zd we add P := (Σ,b) to our list if |P ∩ Zd| ≤ N and we

have not already added an equivalent polytope.

The algorithm for the first two steps is explained in the next section, and the
last two steps are explained in Section 4.

Generating Smooth Lattice Polytopes 319

v′ + u1 + λτ
1ud

v′ + u2 + λτ
2ud

v + u1

v + u2

v v′ = v + �τud

Fig. 3.1. The lattice points around an edge

3 Generation of Smooth Fans

For a given number N ∈ N there are only finitely many combinatorial types for
a smooth fan with at most N maximal cones. This implies that smooth fans
with at most N maximal cones come in a finite number of families that depend
on the edge parameters λτ

j introduced in the previous section.
The combinatorial type of a blowup does not depend on the edge parameters.

Hence, for our approach to generate F
poly
d (N) we don’t have to consider each

fan individually but can work on these families of fans and maintain a list of
parameters for each. The following lemma bounds the edge parameters we have
to consider for each family. In particular, F

poly
d (N) is finite.

Lemma 3.1. Let Σ be the normal fan of a polytope in Pd(N) with m generators
a1, . . . ,am. For each cone τ ∈ Σ(d−1) the edge parameters λτ

i , 1 ≤ i ≤ m satisfy

λτ
i = 0 whenever ai is not a generator of τ .

λτ
i ≥ −N + d ∀ 1 ≤ i ≤ m∑m

i=1 λτ
i ≤ N − 2d

Proof. The first set of equations is part of the definition of edge parameters.
Let P be a smooth polytope with normal fan Σ and σ, σ′ ∈ Σ(d) such that

τ = σ∩σ′. After relabeling we can assume that a1, . . . , ad−1 are generators of τ ,
and ad,ad+1 are the additional generators of σ and σ′. σ and σ′ correspond to
adjacent vertices v and v′ of P connected by an edge eτ of lattice length �τ ≥ 1.
P has at least d + 1 vertices, so �τ − 1 ≤ N − (d + 1).

By assumption, v is in the facet defined by ad, so 〈ad,x〉 ≤ 〈ad,v〉 for all
x ∈ P . Let u1,u2, . . . ,ud be the dual basis of a1, a2, . . . , ad. The first lattice
points on the d edges adjacent to v′ are

v′ − ud, v′ + u1 + λτ
1ud, . . . , v′ + ud−1 + λτ

d−1ud . (3.1)

See Figure 3.1. Evaluating with ad and using v′ = v+ �τud proves λτ
i ≥ −�τ for

all 1 ≤ i ≤ d− 1.
The convex hull of v, v′ and the first lattice points on edges adjacent to v or

v′ contains d(�τ +1)+
∑

λτ
i lattice points. By assumption, this is at most N , so∑

λτ
i ≤ N − d(�τ + 1) (3.2)

Using the bounds for �τ proves the lemma. +,

320 C. Haase, B. Lorenz, and A. Paffenholz

The lemma shows that we can view F
poly
d (N) as a finite list of families of smooth

fans, where each family depends on a set of edge parameters that range over a
bounded set. We generate this list in two steps. In a first step we need a complete
list of families of smooth minimal fans with at most N rays. Given this list we
generate F

poly
d (N) by all possible sequences of blowups of a minimal fan.

When we started our work on this algorithm we were mainly interested in
a classification of 2- and 3-dimensional smooth polytopes. In dimension 2, all
families of smooth minimal fans have been classified already. In dimension 3, we
know all minimal fans with up to 12 maximal cones [25]. Hence, in the present
implementation we use these lists instead of generating them anew. The families
of fans relevant for the application in Section 5 are shown in Figures 5.2 and 5.3.
In Section 6 we discuss two approaches for an algorithm to extend these lists.

Given the minimal smooth fans we have to generate the fans in F
poly
d (N).

However, deciding whether a smooth fan is the normal fan of some polytope P ∈
Pd(N) basically amounts to finding P . Hence, instead of generating F

poly
d (N)

we are satisfied with a slightly larger set F such that F
poly
d (N) ⊆ F.

Any cone in F
poly
d (N) has at most N maximal cones. Hence, if Fd(N) is the

set of families of d-dimensional smooth fans with at most N maximal cones, then
F

poly
d (N) ⊆ Fd(N).
Fd(N) can in principle be obtained with the following simple procedure. Given

a smooth minimal fan Σ min we do a depth-first search on the rooted tree of all
fans Σ connected to Σ min via a sequence of blowups. This terminates after a
finite number of steps, as each blowup increases the number of maximal cones by
d− 1. Repeating this for each smooth minimal fan enumerates Fd(N). However,
Fd(N) is significantly larger than F

poly
d (N). For an efficient method we need

additional criteria to remove fans from the search tree.
The definition of a blowup immediately shows that cones that are incompa-

rable in the face poset can be blown up in any order. To avoid generating the
same fan again in our search tree we introduce a decision variable vΣ(τ) on all
cones τ ∈ Σ indicating cones that have to be considered for a blowup.

A more efficient constraint satisfied by fans in F
poly
d (N) uses the results of

our algorithm dimensions k < d. Let iN (k, n) for 1 ≤ k ≤ d− 1 be the minimal
number of interior lattice points of a smooth k-dimensional polytope with n
vertices and at most N lattice points.

Lemma 3.2. Let P be a smooth polytope with normal fan Σ, and nσ := |{τ ∈
Σ(d) | σ ⊆ τ}|. Then |P ∩ Zd| ≥ ∑

σ∈Σ
dim σ>0

iN(d− dimσ, nσ) .

Proof. The combinatorics of Σ completely determines the combinatorics of P . A
cone σ ∈ Σ contained in nσ maximal cones of Σ determines a face of dimension
k := d − dimσ with nσ vertices, which itself is a smooth k-polytope. Thus,
summing up iN (k, n) over all cones counts the minimal number of interior lattice
points in all faces and hence bounds the number of lattice points of P . +,

Generating Smooth Lattice Polytopes 321

Algorithm 3.1. BlowUps

Input: (class of) smooth fan(s) Σ, vΣ ∈ {0, 1}Σ , N ∈ N
Output: a (parametrized) set F with F

poly
d (N) ⊆ F ⊆ Fd(N).

F := ∅;
if |Σ(d)| ≤ N then

if Σ satisfies (3.3) then
F := F ∪ {Σ};

foreach σ ∈ Σ with dimσ > 1 and vΣ(σ) > 0 do
Σσ :=BlowUp(Σ, σ);

vΣσ (τ) :=

⎧⎨⎩
1 τ ∈ Σσ\Σ
1 ∃ρ ∈ Σ : τ ⊂ ρ ∧ σ ⊂ ρ

vΣ(τ) otherwise
;

F := F ∪ BlowUps(Σσ, vΣσ , N);
vΣ(σ) := 0;

return F

Note that the bound in the lemma remains true if we also allow dimσ = 0.
However, iN (d, n) refers to the interior lattice points of P itself. In our algorithm,
we add a smooth fan in Fd(N) to F if∑

σ∈Σ
dim σ>0

iN (d− dimσ, nσ) ≤ N . (3.3)

Observe that this bound is independent of the edge parameters. Hence, it can also
be used on a parametrized family of fans. Experiments show that this bound re-
moves sufficiently many fans to produce a reasonable approximation of F

poly
d (N).

Algorithm 3.1 now summarizes our method. Given a finite list of parametrized
smooth fans it recursively generates all possible sequences of blowups with at
most N maximal cones that satisfy the bound (3.3). The actual blowup of a fan
Σ at a cone σ is done by a subroutine BlowUp(Σ, σ). This creates a new smooth
fan Σσ according to (2.2) and updates the list of edge parameters. They are given
by linear functions in the edge parameters of Σ. We give explicit formulas for
dimension 2 and 3 in Section 5. Figure 5.4 shows them for all possible types of
blowups in these dimensions.

4 Generation of Smooth Polytopes

Now we explain how we generate all sets of ray parameters for a given smooth
fan Σ. As a lattice polytope is uniquely determined by its normal fan and an
integer for each ray, this will finish the algorithm.

In the following we fix a smooth fan Σ with m rays a1, . . . , am. Up to lattice
equivalence and relabeling we can assume that a1, . . . , ad are the unit basis
vectors and span a maximal cone of Σ. Consider the set

BΣ(N) :=

{
b ∈ Rm

∣∣∣∣∣ 1 ≤∑
cτ
j bj −

∑
λτ

j bj ≤ 1
d(N −∑

λτ
j) ∀ τ ∈ Σ(d−1)

bj = 0 for 1 ≤ j ≤ d

}
,

322 C. Haase, B. Lorenz, and A. Paffenholz

Algorithm 4.1. SmoothPolytopes

Input: smooth fan Σ, N ∈ N
Output: equivalence classes of smooth polytopes with normal fan Σ and

|P ∩ Zd| ≤ N .
P := ∅;

E S := BΣ(N) ∩ Zm;
foreach b ∈ S do

P := (Σ,b);
C/I if |P ∩ Zd| ≤ N and P �∼ Q for all Q ∈ P then

P := P ∪ {P}
return P

where cτ
j , λτ

j are the parameters for Σ introduced in Section 2. BΣ(N) is a
polyhedron in Rm.

Lemma 4.1. BΣ(N) is bounded and BΣ(N) ∩ Zm contains all sets of ray pa-
rameters for smooth polytopes with normal fan Σ and at most N lattice points.

Proof. Each inequality in the definition of BΣ(N) involves the entries of b cor-
responding to the rays of two adjacent maximal cones σ, σ′ ∈ Σ, and there is a
unique ray in σ \ σ′. Therefore, if the entries of b are bounded for the rays in
σ, then they are also bounded on σ′. Thus, fixing the entries for one maximal
cone in Σ bounds all other entries, as the vertex-edge graph of P is connected.
So BΣ(N) is bounded, i.e. a polytope.

Let τ ∈ Σ(d−1) with incident maximal cones σ and σ′. σ and σ′ correspond
to adjacent vertices v and v′ of P connected by an edge of lattice length �τ . Let
ak and ak′ be the generator in σ \ τ and σ′ \ τ , respectively. Then cτ

k = cτ
k′ = 1,

and cτ
j = 0 otherwise. Hence, using equation (2.1) we obtain

�τ = 〈ak,v〉 − 〈ak,v′〉 = 〈ak,v〉 −
∑

cτ
j 〈aj ,v′〉 + 〈ak′ ,v′〉

= 〈ak,v〉 + 〈ak′ ,v′〉 −∑
λτ

j 〈aj ,v′〉 = bk + bk′ −∑
λτ

j bj .

Using �τ ≥ 1 and the bound in (3.2) now proves the claim. +,

Note that fixing the parameters for one cone is essential, as translations of a
polytope have the same normal fan. The lemma proves that PΣ(N) is finite.
Together with Lemma 3.1 this proves Theorem 2.1. We can generate PΣ(N)
now with Algorithm 4.1.

We explain some steps of the algorithm in more detail. In line (E) we have to
enumerate the set BΣ(N)∩Zm. This amounts to enumerating the lattice points
in a polytope. We have implemented the following project-and-lift method for a
polytope P in polymake. Enumerating P ∩ Zd is easy if d = 1. Otherwise, we
do a coordinate projection into Rd−1 and enumerate the one-dimensional fibers
over each lattice point in the projection.

We could use the same method in line (C/I) to compute |P ∩Zd|. However, a
significantly faster algorithm for counting lattice points uses the Ehrhart function

Generating Smooth Lattice Polytopes 323

of P . This is implemented in implemented in LattE [7], which can be accessed
via polymake [15].

The equivalence check in (C/I) is done with the following algorithm. For a
lattice polytope P let FP be the matrix whose entry at position (i, j) is the
lattice distance of vertex i from facet j. Two smooth polytopes P1 and P2 are
lattice equivalent if and only if FP1 and FP2 are equal up to a row and column
permutation. Note that this only works for smooth polytopes. Again, we have
implemented this check in polymake.

5 Implementation and Results

The implementation of our methods is based on the software framework poly-
make (version 2.9.7) of Gawrilow and Joswig [9] and realized as an extension.
Counting lattice points was done via polymake’s interface to LattE by De Loera
et. al [7,15]. The code of this extension was written as part of the MSc Thesis
of the second author [19].

We have applied the algorithm in dimension two and three to compute all
smooth lattice polytopes with at most 12 lattice points.

Theorem 5.1. There are 41 smooth lattice polygons and 33 smooth 3-dimen-
sional lattice polytopes with at most 12 lattice points.

Table 5.1 lists the numbers of polytopes obtained in dimensions 2 and 3.
In the actual implementation we maintain a list of coordinates for each ray

generator of a family of fans, as we need them later to produce an explicit
representative in each equivalence class. The edge parameters can be obtained
via a simple computation using (2.1) from the coordinates.

The following two paragraphs give the necessary input in dimension 2 and 3 for
Algorithms 3.1 and 4.1 to obtain smooth 2- and 3-dimensional lattice polytopes
with at most 12 lattice.

Generation of Smooth Polygons. In dimension 2 there are only two types
of parametrized smooth minimal fans, see Figure 5.2. ΣP correspond to the
complex projective plane and Σa to the Hirzebruch surface of degree a. Using
symmetry and Lemma 3.1 we can assume 0 ≤ a ≤ N − d = 10. Blowing up ΣP

at the lower cone gives Σ1, so we omit a = 1. In dimension 2 the equation (3.3)
is trivial, so we generate all fans in Fd(N).

There is only one type of edge parameter update necessary for the function
BlowUp used in Algorithm 4.1. The values are given in Figure 5.4(a).

Table 5.1. Smooth polytopes in dimension 2 and 3 with at most 12 lattice points

No. of vertices 3 4 5 6 7 8 ≥ 9

No. of polygons 3 30 3 4 0 1 0

(a) Dimension 2

No. of vertices 4 6 8 ≥ 10

No. of polytopes 2 25 6 0

(b) Dimension 3

324 C. Haase, B. Lorenz, and A. Paffenholz

a

a3

a′
3

a2

a1

a
a3

a′
3

a2

a1
a3

a′
3

a2

a1

a

a′

a3

a′
3

a2

a1

a′

a
a3

a′
3

a2

a1

a = a′

a = a′

Fig. 5.1. Different series of blowups leading to the same fan

Generation of Smooth 3-Polytopes. In dimension 3, Oda [25] has classified
parametrized smooth minimal fans with up to 12 maximal cones, i.e. up to 8 rays.
There are 19 such fans. However, using the lattice point bound (3.3) and some
similar arguments, only five of these fans or their blowups can correspond to a
smooth lattice polytope with at most 12 lattice points. These fans are listed in
Figure 5.3. After converting from ray description to edge parameter description
we can calculate the following initial bounds with Lemma 3.1.

Σ2(a): 0 ≤ a ≤ 9 by symmetry, Σ3(b, c): − 9 ≤ b, c ≤ 9 ,

Σ4(a, b, c): − 9 ≤ a, b, c ≤ 9 , Σ5(a): − 5 ≤ a ≤ 4 .

The functions for the update of the edge parameters necessary in BlowUp follow
from an easy computation using (2.1). There are two different types of blowups.
The parameter changes for each are listed in Figure 5.4(b).

In dimension 3 we can introduce two further selection conditions for our depth-
first-search in the tree of smooth fans constructed in Algorithm 3.1.
1. The two sequences of blowups shown in Figure 5.1 give the same fan.
2. In addition to the condition given in (3.3), we can skip fans that have a ray

with more than 6 neighbours because there is no polygon with more than 6
vertices but strictly less than 12 lattice points.

Using the extension Following is a short example showing how to use the
interactive polymake shell to compute all polytopes with less than 12 lattice
points and normal fan Σ3(b, c).

polytope > import_extension("~/polymake-extensions/fan/");
polytope > $fan_23_2 = load("~/fans/dim3/12/23_2.pfan");
polytope > @polys_23_2 = $fan_23_2->POLYTOPES;
Creating blowups ...
do vertexblowup: 0-0

Generating Smooth Lattice Polytopes 325

e1

e2

−e1 − e2

ΣP

e1

e2

−e2
−e1 − ae2

Σa, a ∈ Z≥0\{1}

Fig. 5.2. Smooth minimal fans in dimension 2

e2

e1e3

Σ1 ∞ = −e1 − e2 − e3

e1 e3

e2−e3

Σ2(a) ∞ = −e1 − e2 − ae3

e2 e1

e3

−e1 + be2 + ce3

Σ3(b, c) ∞ = −e2 − e3

−e2 + be3 e3

e2−e3

e1

Σ4(a, b, c)
∞ = −e1 − ae2 + ce3

e2 − e3 e2

e3−e3

Σ5(a) ∞ = e1

−e1 + 2e2 − e3

−e2 − ae3

Fig. 5.3. The relevant fans in dimension 3

λ

σ

λ+1

1

(a) d = 2

λ1

λ2

σ

λ1+1

λ2+1

1
−1

1
−1

1

−1

λ1

λ2

μ1

μ2

σ

λ1−λ2

λ2

λ1

λ2−λ1 0

1
1

0
μ1

μ2+1

(b) d = 3: Blowup in a cone of codimension 0 and 1.

Fig. 5.4. The new edge parameters after a blowup at σ.

326 C. Haase, B. Lorenz, and A. Paffenholz

do vertexblowup: 0-1
<skip>
do edgeblowup: 0-8
Done creating blowups.
Generating polytopes ...
blowup 1 of 58

fan 1 of 361
<skip>

fan 529 of 529
Done generating polytopes.
Found 91 polytopes including duplicates.
Found 26 non-isomorphic polytopes with this normal fan.

polytope >

All polytopes are now stored in a perl array @polys_23_2 as polytope objects,
and can be accessed via $polys_23_2[$i].

6 Conclusion and Open Problems

The given algorithm generates smooth lattice polytopes in fixed dimension. The
main shortcoming of our approach is the dependence on a list of minimal smooth
fans as input, which is not known in general. Still, the results in dimension 2 and
3 show that our algorithm is an efficient method to generate smooth polytopes.

We propose two approaches to remove the dependence on a classification of
minimal fans. The first outlines a method to extend the classification of minimal
fans, the second proposes a completely different approach to generate fans.

The weak factorization theorem [29] states that any two (not necessarily
smooth) rational polyhedral fans are connected by a series of blowups and
blowdowns. Hence, the graph on all rational fans with edges for blowups and
blowdowns is connected. Starting from some smooth fan, we would like to do
a breadth-first search to obtain a complete list of smooth fans with a bounded
number of maximal cones. However, it is unknown whether the sub-graph of all
these fans is connected, and there is no bound known on the path length between
two nodes in the graph.

Combinatorial types of triangulations of the 2-sphere have been enumerated
for a bounded number of vertices by various authors, see e.g. [21] and the ref-
erences mentioned there. Using (2.1) we can generate all smooth fans with this
combinatorial type. However, this is not efficient. Instead, we can use the ob-
servation that some normalized sum of the lattice points on the boundary of a
polygon always adds to 12 [14]. This gives a system of linear equations in the
parameters λτ

j for all τ ∈ Σ(d−1).
Many open conjectures involving smooth lattice polytopes actually only re-

fer to some subclass of this set, e.g. polytopes that are centrally symmetric.
Restricting to such a class just adds further constraints in our algorithms.

Generating Smooth Lattice Polytopes 327

References

1. Aardal, K., Weismantel, R., Wolsey, L.A.: Non-standard approaches to integer
programming. Discrete Applied Mathematics 123(1-3), 5–74 (2002)

2. Batyrev, V.: On the classification of toric Fano 4-folds. Journal of Mathematical
Sciences 94(1), 1021–1050 (1999)

3. Batyrev, V., Kreuzer, M.: Integral cohomology and mirror symmetry for Calabi-
Yau 3-folds. In: Mirror symmetry. V. AMS/IP Stud. Adv. Math., vol. 38, pp.
255–270. Amer. Math. Soc., Providence (2006)

4. Beck, M., Chen, B., Fukshansky, L., Haase, C., Knutson, A., Reznick, B., Robins,
S., Schürmann, A.: Problems from the Cottonwood Room. Contemporary Mathe-
matics 374, 179–191 (2005)

5. Bogart, T., Haase, C., Hering, M., Lorenz, B., MacLagan, D., Nill, B., Paffenholz,
A., Santos, F., Schenck, H.: Few smooth d-polytopes with n lattice points (May
2010) (in preparation)

6. Bruns, W., Gubeladze, J.: Polytopes, rings, and K-theory. Springer Monographs
in Mathematics. Springer, Heidelberg (2009)

7. De Loera, J.A., Hemmecke, R., Yoshida, R., Tauzer, J.: lattE,
http://www.math.ucdavis.edu/~latte/

8. Diaconis, P., Sturmfels, B.: Algebraic algorithms for sampling from conditional
distributions. Annals of Statistics 26(1), 363–397 (1998)

9. Gawrilow, E., Joswig, M.: polymake,
http://www.opt.tu-darmstadt.de/polymake/

10. Gubeladze, J.: Convex normality of rational polytopes with long edges (December
2009), arxiv.org/abs/0912.1068

11. Haase, C., Hibi, T., MacLagan, D. (eds.): Mini-Workshop: Projective normality of
smooth toric varieties, Oberwolfach reports, vol. 4 (2007)

12. Haase, C., Nill, B., Paffenholz, A., Santos, F.: Lattice points in Minkowski sums.
Electronic Journal of Combinatorics 15 (2008)

13. Haase, C., Paffenholz, A.: Quadratic Gröbner bases for smooth 3 x 3 transportation
polytopes. Journal of Algebraic Combinatorics 30(4) (2009)

14. Haase, C., Schicho, J.: Lattice polygons and the number 2i + 7. American Mathe-
matical Monthly 116(2), 151–165 (2009)

15. Joswig, M., Müller, B., Paffenholz, A.: Polymake and lattice polytopes. In: DMTCS
Proceedings of FPSAC (February 2009)

16. Kleinschmidt, P.: A classification of toric varieties with few generators. Aequationes
Mathematicae 35(2-3), 254–266 (1988)

17. Kreuzer, M., Skarke, H.: On the classification of reflexive polyhedra. Communica-
tions in Mathematical Physics 185(2), 495–508 (1997)

18. Kreuzer, M., Skarke, H.: PALP: A package for analyzing lattice polytopes with
applications to toric geometry (April 2002), http://hep.itp.tuwien.ac.at/

~kreuzer/CY/CYpalp.html

19. Lorenz, B.: Generating smooth polytopes - extension for polymake,
http://ehrhart.math.fu-berlin.de/people/benmuell/classification.html

20. Lorenz, B.: Classification of smooth lattice polytopes with few lattice points.
Diploma thesis (2010), arxiv.org/abs/1001.0514

21. Lutz, F.: The manifold page (April 2010),
http://www.math.tu-berlin.de/diskregeom/stellar/

22. McDuff, D.: Displacing lagrangian toric fibers via probes (April 2009),
arxiv.org/abs/0904.1686

http://www.math.ucdavis.edu/~latte/
http://www.opt.tu-darmstadt.de/polymake/
http://hep.itp.tuwien.ac.at/~kreuzer/CY/CYpalp.html
http://hep.itp.tuwien.ac.at/~kreuzer/CY/CYpalp.html
http://ehrhart.math.fu-berlin.de/people/benmuell/classification.html
http://www.math.tu-berlin.de/diskregeom/stellar/

328 C. Haase, B. Lorenz, and A. Paffenholz

23. Nill, B., Paffenholz, A.: Examples of non-symmetric Kähler-Einstein toric Fano
manifolds (May 2009), arxiv.org/abs/0905.2054

24. Øbro, M.: An algorithm for the classification of smooth Fano polytopes (April
2007), arxiv.org/abs/0704.0049

25. Oda, T.: Convex Bodies and Algebraic Geometry. In: An Introduction to the
Theory of Toric Varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete.
Springer, Heidelberg (1987)

26. Oda, T.: Problems on Minkowski sums of convex lattice polytopes (December
2008), arxiv.org/abs/0812.1418

27. Ohsugi, H., Hibi, T.: Unimodular triangulations and coverings of configurations
arising from root systems. J. Algebr. Comb. 14(3), 199–219 (2001)

28. Sturmfels, B.: Equations defining toric varieties. In: Kollár, J. (ed.) Algebraic ge-
ometry. Proc. Summer Research Institute, Santa Cruz, CA, USA, July 9-29 (1995);
Proc. Symp. Pure Math., vol. 62, pp. 437–449. AMS, Providence (1997)

29. W�lodarczyk, J.: Toroidal varieties and the weak factorization theorem. Inventiones
Mathematicae 154(2), 223–331 (2003)

Mathemagix: Towards Large Scale Programming

for Symbolic and Certified Numeric
Computations

Grégoire Lecerf�

Laboratoire de Mathématiques de Versailles
UMR 8100 CNRS

Université de Versailles Saint-Quentin
45, avenue des États-Unis
78035 Versailles, France

gregoire.lecerf@math.uvsq.fr

http://www.math.uvsq.fr/~lecerf

Abstract. Coordinated by Joris van der Hoeven from the 90’s, the
Mathemagix project aims at the design of a scientific programming lan-
guage for symbolic and certified numeric algorithms. This language can
be compiled and interpreted, and it features a strong type system with
classes and categories. Several C++ libraries are also being developed,
mainly with Bernard Mourrain and Philippe Trébuchet, for the el-
ementary operations with polynomials, power series and matrices, with
a special care towards efficiency and numeric stability.

In my talk I will give an overview of the language, of the design and
the contents of the C++ libraries, and I will illustrate possibilities offered
for certified numeric computations with balls and intervals.

1 Context and Motivation

The implementation of high level algorithms for algebra or analysis is often
made difficult with general purpose programming languages such as C or C++

because of the lack of the elementary data structures and operations needed
in mathematics: polynomials, power series, matrices, etc. In fact, several very
efficient libraries exist for low level operations, such as GMP [3] for long in-
tegers, MPFR [2] for long real and complex floating-point numbers, NTL [9]
or FLINT [4] for elementary operations in number theory, etc. Unfortunately
implementing an algorithm directly on the top of these libraries might reveal to
be technical for non-specialists.

On the other hand computer algebra systems, such as Maple, Mathematica

and Magma, provide the user with many high level functionalities, but they do
not allow him to inspect the internal source code, to replace existing routines,
and to compile into an efficient executable. As a good compromise between low
� This work has been partly supported by the French ANR-09-JCJC-0098-01 MaGiX

project, and by the Digiteo 2009-36HD grant of the Région Ile-de-France.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 329–332, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.math.uvsq.fr/~lecerf

330 G. Lecerf

and high level software, the Sage project [10] offers a comfortable interface to
most of the existing libraries and computer algebra systems through the Python

interpreter. Although the Python language is sophisticated and fast interpreted,
it lacks a good compiler and category mechanism such as the one of AXIOM [7]
and Aldor [1] that were primarily well designed for mathematical purposes.

The Mathemagix project aims at developing a new language, with its own
compiler, its own interpreter, and with facilities to import functionalities from
C++, in order to make possible and easy the development of efficient high level
computer algebra libraries. Mathemagix is freely distributed under the GPL

license. It can be downloaded from http://www.mathemagix.org. Automatic
configuration and building is ensured via the GNU Autotools and Cmake.
At the present time only Mac OS X and Linux platforms are supported.

The interpreter can be run in TEXmacs [5] which provides the user with a
graphical front-end with high quality typesetting for mathematical formulas.
In addition, Mathemagix is connected to the 3D algebraic-geometric modeler
Axel [8].

2 Language, Compiler and Interpreter

The ultimate design goals of the Mathemagix language are as follows:

Strong typedness. All object instances are strongly typed, and functions can
be overloaded. The user can define new types and classes, and use inheritance
from other classes. Usual automatic conversions are supported. Types and
functions can be templated by classes with category (like a ring, a module
over a ring, etc).

Runtime efficiency. The language can be compiled in order to reach the same
order of efficiency as C++. The compiler, still under development, is itself
written in the Mathemagix language.

Fast prototyping. The language can be interpreted in order to make fast
prototyping possible. The language is currently partially supported by the
mmx-light interpreter written in C++. A complete implementation, as a
backend of the compiler, is in progress.

Reusability of external libraries. Before reaching optimal performances th-
rough our compiler, we already achieved runtime efficiency thanks to an
extensive use of existing libraries written in C++. Our glue mechanism is
well designed for importing C++ templated types.

3 Libraries

Mathemagix comes with several C++ libraries for elementary operations on
polynomials and matrices:

basix contains the classical data types, such as vectors, lists, hash tables, but
also the input and output streams, Posix sockets, and multi-threading fa-
cilities. In fact Mathemagix does not rely on the standard C++ library
(STL). This ensures us uniform interfaces throughout all our packages.

Mathemagix 331

numerix is dedicated to arbitrarily long integers and floating-points numbers.
It is essentially a wrapper of GMP and MPFR, but we also provide the
user with intervals, balls, complex numbers, tangent numbers, and modular
integers.

algebramix implements univariate polynomials, power series, p-adic numbers,
and matrices. Generic templated implementations are available, but also
specific variants for the usual coefficients types. Fast algorithms are imple-
mented including the FFT and its truncated variant, the Schönhage and
Strassen products. Vectors and matrices feature automatic loop unrolling,
SIMD speed-ups, and also cache-friendly variants.

analyziz is devoted to polynomial and matrices over numeric types in order to
ensure a good compromise between stability and efficiency.

multimix implements naive and fast algorithms for multivariate polynomials,
jets and series.

realroot contains several numeric solvers for algebraic systems, mainly based
on subdivision methods.

linalg is a C++ templated version of the Lapack library, that allows the user
for instance to benefit of the Lapack algorithms on the arbitrary large
floating-point numbers of MPFR.

Other packages are devoted to finite fields, symbolic expressions, asymptotic
analysis, numeric homotopy continuation for polynomial system solving, poly-
nomial factorization, lattice reduction, etc.

4 Certified Numeric Analysis

One important goal of the Mathemagix project is the development of certified
analysis, with goals similar to symbolic computations but with numeric types.
For instance, if we consider analytic functions from the symbolic point of view, a
natural representation is as an exact solution of a differential operator. Elemen-
tary arithmetic operations can be implemented directly on these operators. On
the other hand, from the numeric point of view, one is interested in evaluating
analytic functions at any given point as fast as possible. Symbolic processing is
often better for theoretical purposes, but numeric calculation is indeed neces-
sary to real world applications. The latter often turns out to be more efficient
than the former, but the result is not usually certified. Mathemagix aims at
providing the user with the best of both worlds.

For instance, following [6], we can implement an analytic function as the data
of: 1) an algorithm for computing finite Taylor expansions, 2) an algorithm for
computing bounds on norms of a finite number of derivatives on sufficiently small
balls, and 3) an algorithm for analytic continuation. Mathemagix contains
all the subroutines necessary to this task, with certified internal computations.
In particular we implemented fast relaxed power series with interval or ball
coefficients, and took a special care to minimize the overhead between long and
hardware floating types. At the present time no other software offer a similar
level of generality and efficiency.

332 G. Lecerf

References

1. Dragan, L., Huerter, S., Oancea, C., Watt, S.: Aldor programming language (2007),
http://www.aldor.org

2. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A
multiple-precision binary floating-point library with correct rounding. ACM Trans-
actions on Mathematical Software 33(2) (June 2007), http://www.mpfr.org

3. Granlund, T., et al.: GMP, the GNU multiple precision arithmetic library (1991),
http://gmplib.org

4. Hart, W.: Fast library for number theory (2008), http://www.flintlib.org
5. van der Hoeven, J.: GNU TEXmacs (1998), http://www.texmacs.org
6. van der Hoeven, J.: On effective analytic continuation. MCS 1(1), 111–175 (2007)
7. Jenks, R.D., Sutor, R.: AXIOM: the scientific computation system. Springer, New

York (1992)
8. Mourrain, B., Wintz, J., Chau, S., Alberti, L.: Axel (2007), http://axel.inria.fr
9. Shoup, V.: NTL: A library for doing number theory (2005), http://shoup.net/ntl

10. Stein, W.A., et al.: Sage Mathematics Software, Version 4.2.1 (2009),
http://www.sagemath.org

http://www.aldor.org
http://www.mpfr.org
http://gmplib.org
http://www.flintlib.org
http://www.texmacs.org
http://shoup.net/ntl
http://www.sagemath.org

Complex Inclusion Functions in the CoStLy

C++ Class Library

Markus Neher

Institute for Applied and Numerical Mathematics
Karlsruhe Institute of Technology

Kaiserstr, 12, 76128 Karlsruhe, Germany
markus.neher@kit.edu

Abstract. The C++ class library CoStLy for the rigorous computation
of complex function values or ranges is presented. Rectangular complex
interval arithmetic is used for the computations. In the CoStLy proce-
dures, all truncation and roundoff errors are calculated during the course
of the floating-point computation and enclosed into the result.

The library contains procedures for root and power functions, the
exponential, trigonometric and hyperbolic functions, their inverse func-
tions, and some auxiliary functions, such as the absolute value or the
argument function.

Keywords: Interval Arithmetic, Complex Standard Functions.

1 Introduction

The Complex Standard Functions Library CoStLy has been developed as a C++
class library for the validated computation of function values and of ranges of
the complex standard functions in the set

SF = { exp, ln, arg, sqr, sqrt, power, pow, root, cos, sin, tan, cot, cosh,
sinh, tanh, coth, acos, asin, atan, acot, acosh, asinh, atanh, acoth},

where power(z, n) is the power function for integer exponents, pow(z, p) is the
power function for real or complex exponents, and root(z, n) denotes the nth
root function.

Inclusion functions for complex standard functions were first realized in the
ACRITH library by IBM [5], using algorithms developed by Braune [1] and
Krämer [7]. Later, Bühler [2] implemented the same algorithms in Pascal-XSC
procedures, which were then extended to a Pascal-XSC interval library of com-
plex standard functions by Krämer and Westphal [10]. There is also a Maple im-
plementation by Grimmer [4], but the IntpakX package contains only inclusion
functions for rational functions and for the exponential function. Nevertheless,
all these packages are outdated or no longer available.

Verified function values for point arguments can be obtained using the MPC
library [8] by Enge, Théveny, and Zimmermann. MPC is not an interval library,

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 333–336, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

334 M. Neher

but it provides multiprecision complex arithmetic with a wide variety of rounding
modes. For point arguments, this can be equivalent to computing an interval
result.

To the author’s knowledge, apart from CoStLy, the only other interval pack-
age that currently contains subroutines for complex inclusion functions which
also compute range bounds is INTLAB [6]. INTLAB’s procedures are based on
circular complex arithmetic, however, which is different from rectangular interval
arithmetic so that the two packages are not directly comparable.

In the following, boldface letters are used to denote intervals. The set of all
complex rectangular intervals is denoted by IC. For a bounded subset M of C,
the interval hull �M of M is the smallest rectangular interval that contains M .
For D ⊆ C, the range {f(z) : z ∈ D} of a function f : D −→ C is denoted by
Rg(f,D). An inclusion function F of a given function f : C → C is an interval
function F : IC → IC that encloses the range of f on all intervals z ⊆ D:

F (z) ⊇ Rg(f, z) for all z ⊆ D.

If F (z) = �Rg(f, z) holds for all z ⊆ D, then F is called optimal.

2 Design of the CoStLy Library

Complex Analysis and Interval Arithmetic. By definition, the real and imaginary
parts of any function in SF can be expressed as compositions of real standard
functions. Optimal complex inclusion functions are obtained by determining the
extremal values of these compositions [1,7,9].

For verified results, rectangular complex interval arithmetic is employed in
the CoStLy library functions. Thus, rectangles in the complex plane which are
guaranteed to contain the desired function values are computed. This verifica-
tion applies to single function values and to ranges of functions on rectangular
domains.

Interval Libraries for Real Standard Functions. For the validated computation of
function values and function ranges for the real standard functions in SF , there
are several interval libraries available. CoStLy was developed for being used
with either C-XSC [10] or filib++ [3]. Today, a version of the CoStLy library is
integrated in C-XSC.

Design Philosophy. The CoStLy inclusion functions have been designed with the
intention that computed range bounds must be valid in any circumstance. For a
single-valued complex function f , its inclusion function F : IC → IC, and some
given rectangular complex interval z, validity means that F (z) must contain
the bounded set {f(z)|z ∈ z}. This applies to the functions exp, sqr, power, cos,
sin, tan, cot, cosh, sinh, tanh, and coth, which are single-valued and analytic on
their respective domain. CoStLy contains optimal inclusion functions for these
functions (where optimal refers to the accuracy of the implemented algorithms,
if performed in exact arithmetic).

CoStLy 335

For a multi-valued function, the meaning of a valid enclosure is less obvious.
For example, the definition of

√−1 depends very much on the context of the
computation. Possible values include +ı, −ı, {+ı,−ı}, ı · [−1, 1], or the empty
set. To accommodate varied demands, three types of inclusion functions have
been implemented in CoStLy:

(i) Each multi-valued function f in SF has analytic branches on appropriate
subsets of the complex plane. The CoStLy library contains an inclusion func-
tion Fp for the single-valued principal branch of f . Usually, Fp is defined on
a subset of IC. If z is not in the domain of definition of f , the computation
is aborted throwing an exception and issuing a warning message.

(ii) For applications in which function values from different branches are ac-
ceptable, inclusion functions that are defined for all z ∈ IC, for which at
least one branch of f is bounded on z, are included. Inclusion functions of
this type are denoted by Fc. Depending on the location of z in the com-
plex plane, Fc(z) returns function values belonging to different branches
of f . As an immediate consequence, there are regions in C where inclusion
isotonicity of the inclusion function is lost.

(iii) Provided that the set M of all values of a multi-valued function is bounded,
an inclusion function Fa enclosing M has also been implemented in CoStLy.
For example, such an inclusion function is available for roots.

A detailed description of all inclusion functions contained in CoStLy is given
in [9].

3 Practical Performance

If performed in exact arithmetic, the inclusion functions of type Fp compute
optimal range bounds. For the sake of accuracy, a major effort has been made in
the implementation of the algorithms in floating-point arithmetic to eliminate
all intermediate expressions subject to numerical overflow, underflow, or can-
cellation. The CoStLy library has been extensively tested for arguments with
absolute values ranging from 1.0E-300 to 1.0E+300. For most arguments, the
computed bounds for function values are highly accurate. In many test cases,
the observed precision of the result was about 50 correct bits (out of the 53 bits
available in IEEE 754 floating-point arithmetic) for point arguments.

CoStLy is distributed under the terms of the GNU General Public License.
The software is currently available at the following sites:

http://www.xsc.de

http://iamlasun8.mathematik.uni-karlsruhe.de/˜ae16/CoStLy.html

References

1. Braune, K.: Highly Accurate Standard Functions for Real and Complex Numbers
and Intervals in Arbitrary Floating-point Number Screens. PhD thesis, Universität
Karlsruhe, Germany (1987) (in German)

2. Bühler, G.: Standard Functions for Complex Intervals in the 64 Bit IEEE Data
Format. Diploma thesis, Universität Karlsruhe, Germany (1993) (in German)

336 M. Neher

3. FILIB++ Interval Library,
http://www.math.uni-wuppertal.de/~xsc/software/filib.html

4. Grimmer, M.: Interval Arithmetic in Maple with intpakX. PAMM 2, 442–443
(2003)

5. IBM: High-Accuracy Arithmetic Subroutine Library (ACRITH). Program Descrip-
tion and User’s Guide, 3rd ed. SC 33-6164-02 (1986)

6. INTLAB - INTerval LABoratory, http://www.ti3.tu-harburg.de/~rump/intlab
7. Krämer, W.: Inverse Standard Functions for Real and Complex Interval Arguments

with a priori Error Bounds for Arbitrary Number Formats. PhD thesis, Universität
Karlsruhe, Germany (1987) (in German)

8. MPC – A Library for Multiprecision Complex Arithmetic with Exact Rounding,
http://mpc.multiprecision.org

9. Neher, M.: Complex Standard Functions and Their Implementation in the CoStLy
Library. ACM TOMS 33, 20–46 (2007)

10. XSC Languages (C-XSC, PASCAL-XSC), http://www.xsc.de

http://www.math.uni-wuppertal.de/~xsc/software/filib.html
http://www.ti3.tu-harburg.de/~rump/intlab
http://mpc.multiprecision.org
http://www.xsc.de

Standardized Interval Arithmetic

and Interval Arithmetic Used in Libraries

Nathalie Revol�

INRIA
LIP (UMR 5668 CNRS - ENS de Lyon - INRIA - UCBL), Université de Lyon

École Normale Supérieure de Lyon, 46 allée d’Italie, 69007 Lyon, France
nathalie.revol@ens-lyon.fr

Abstract. The standardization of interval arithmetic is currently under-
taken by the IEEE-1788 working group. Some features of the standard
are detailed. The features chosen here are the ones which may be the
less widely adopted in current implementations of interval arithmetic. A
survey of interval-based libraries, focusing on these features, is given.

Keywords: interval arithmetic, standardization, interval-based libraries.

1 Introduction

There is no universally accepted definition of interval arithmetic, but there are
specific needs and specific definitions corresponding to these needs. Libraries are
usually devoted to a particular domain of applications and thus implement the
version of interval arithmetic most suited to these applications. In what follows,
some points of divergence will be developed, and the choices made in the current
draft of the standard for interval arithmetic, as elaborated by the IEEE-1788
working group [11], will be detailed. This working group proceeds by presented
motions, discussing their contents and eventually voting on the motions. Then,
a list of interval-based libraries is given, along with their features with respect
to these points of divergence.

2 Some Features of the Current Draft of the Standard

2.1 Arithmetic Operations

Intervals are defined as closed connected subsets of R, cf. Motion 3 [11]. Arith-
metic operations are defined in Motion 5 [11] in the following way: for any op-
eration 0 that is either an addition, a subtraction, a multiplication or a division
when the denominator does not contain 0, then a 0b = {a 0 b, a ∈ a and b ∈ b}.
In the case of the division of an interval a by an interval b that contains 0,
several choices are possible. What the standard defines is that 0/0 = ∅, a/b = R
when 0 is in the interior of b and one gets a semi-infinite interval when 0 is
one of the endpoint of b, for instance [1, 2]/[0, 1] = [1,+∞). The tenants of cset
theory [21] advocated for getting again R in this case.
� This work is supported by the INRIA Direction du Développement Technologique.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 337–341, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

338 N. Revol

2.2 Exact Dot Product

It has been advocated that, in order to get guaranteed and tight enclosures of
the results, in the case of linear algebra routines, an exact dot product is needed.
An exact dot product computes the required (floating-point) dot product as if
using exact arithmetic and returns the rounding of the exact result. Mandating
exact dot product in the standard for interval arithmetic has been approved as
Motion 9, after a thorough discussion and a close vote.

2.3 Relational Operations

Relational, or reverse, or inner, operations, correspond to the notion of ”recipro-
cal” in algebraic structures: for instance, the subtraction is usually the recipro-
cal of the addition. However, this property does not hold in interval arithmetic:
(a + b)−b ⊃ a. So-called ”inner addition and subtraction” have been adopted,
in order to provide reciprocals of the addition and subtraction. However, such
reciprocals are usually not functions, since they can take multiple values; rather,
they indicate a relation between the operands and the result.

2.4 Exceptions Handling and Decorations

Let us exemplify this point with Schauder’s theorem. This theorem states that, if
f is a smooth function over a compact set K and if f(K) ⊂ K, then f has a fixed
point in K. However, if f(x) =

√
x− 1 and K = [0, 2] and if f(K) is computed

as f(K∩Df) where Df is the domain of f , then f(K) returns [0, 1] ⊂ K. In such
a case, the user needs to know that K has been intersected with Df prior to the
evaluation, otherwise he may conclude wrongly that f has a fixed point in K.
More generally, a warning mechanism is needed to handle exceptions. This mech-
anism could be a global flag. However, global flags are not recommended when
multithreading programming is used. Consequently, the standard mandates to
attach an extra field, a so-called decoration, to the computed result.

2.5 Implementations Based on IEEE-754 Floating-Point Arithmetic

Implementations of interval arithmetic are often based on floating-point arith-
metic. In particular, IEEE-754 arithmetic provides directed rounding modes:
classically, the left (resp. right) endpoint is computed using rounding mode to-
wards −∞ (resp. +∞). However, some libraries do not use these rounding modes.
Some of them subtract/add one ulp to the endpoints, some other implement their
own arithmetic, usually in higher precision.

3 Survey of Interval-Based Libraries

– General-purpose libraries: C-XSC [10], fi lib [15] IntLib, used in Glob-
Sol [12], Profil-BIAS [13], Sun Studio-C compiler [25] use double-precision
floating-point arithmetic. C-XSC [10], fi lib [15] IntpakX [14], Mathemagix
[26], MPFI [22] use higher precision.

Interval Arithmetic: Standard and Libraries 339

– Libraries for linear algebra: C-XSC [10], IntLab [23], Profil-BIAS [13].
– Libraries for the integration of ODEs: AWA [17], CAPD [3], COSY [1],

VNODE is based either on fi lib or Profil-BIAS [18], VSPODE [16].
– Libraries for constraints solving: Alias [20] is based on Profil-BIAS, Gaol

[6], IBEX-Quimper [4], Realpaver [8].
– Libraries for unconstrained or constrained global optimization:

Baron [24] is available through NEOS and its interval arithmetic is not de-
tailed in the manual, Coconut [19] is based on fi lib and Jail, an ancestor of
Gaol, COSY-GO [1], GlobSol [12], GloptLab [5] is based on IntLab.

– Libraries using variants of interval arithmetic: Chebyshev models in
ChebModels [2] which is based on IntpakX, Taylor models in COSY and
C-XSC [1],[10], affine arithmetic in Fluctuat [7].

intervals & exact dot inner op. exceptions IEEE-754 variants of

arith. op. product (+ and -) handling int. arith.

Motions 3 & 5 9 12 8 4 (withdrawn)

applications all linear constraints Newton‘ all ODE

algebra constraints

C-XSC � � ? � Taylor
fi lib � ? �(both)
IntLib � kind of � Taylor
intpakX � kind of
Mathemagix � �
MPFI � � �
Profil-BIAS ? � �
Sun compiler cset �
IntLab � � �
AWA ? kind of kind of Taylor
CAPD kind of �
COSY �
VSPODE ? Taylor
Gaol � �
Quimper � � � �
RealPaver � �
COSY-GO NA Taylor
GlobSol cset or �? kind of � Taylor
Fluctuat ? planned �

4 Conclusion: Foreseen Points of Divergence

Standardizing interval arithmetic is a difficult task, because of divergent points
of view and needs. Foreseen points of divergence include general relational oper-
ations, comparisons, IO, link and implementation on top of IEEE-754 floating-
point arithmetic (a proposal is given in [9]), allowed and forbidden compiler
optimizations. A difficulty is that this standard is not linked to any language,
making it difficult to specify, for instance, how decoration values can be read.

340 N. Revol

References

1. Berz, M., Makino, K.: COSY INFINITY Version 9. Nuclear Instruments and Meth-
ods in Physics Research Section A 558(1), 346–350 (2006)

2. Brisebarre, N., Joldes, M.: Chebyshev Interpolation Polynomial-based Tools for
Rigorous Computing. In: ISSAC (2010)

3. Computer Assisted Proofs in Dynamics, http://capd.ii.uj.edu.pl/
4. Chabert, G., Jaulin, L.: Contractor programming. Artificial Intelligence 173(11),

1079–1100 (2009)
5. Domes, F.: GloptLab - A configurable framework for the rigorous global solution

of quadratic constraint satisfaction problems. Optimization Methods and Soft-
ware 24(4-5), 727–747 (2009)

6. Goualard, F.: Gaol: NOT Just Another Interval Library (2006-2010)
7. Goubault, E., Putot, S., Baufreton, P., Gassino, J.: Static Analysis of the Accuracy

in Control Systems: Principles and Experiments. In: Leue, S., Merino, P. (eds.)
FMICS 2007. LNCS, vol. 4916, pp. 3–20. Springer, Heidelberg (2008)

8. Granvilliers, L., Benhamou, F.: Algorithm 852: Realpaver: An Interval Solver using
Constraint Satisfaction Techniques. ACM TOMS 32(1), 138–156 (2006)

9. Hickey, T.J., Ju, Q., van Emden, M.H.: Interval arithmetic: From principles to
implementation. Journal of the ACM 48(5), 1038–1068 (2001)

10. Hofschuster, W., Krämer, W., Neher, M.: C-XSC and Closely Related Software
Packages. In: Cuyt, A., Krämer, W., Luther, W., Markstein, P. (eds.) Numeri-
cal Validation in Current Hardware Architectures. LNCS, vol. 5492, pp. 68–102.
Springer, Heidelberg (2009)

11. IEEE Interval Standard Working Group - P1788,
http://grouper.ieee.org/groups/1788/

12. Kearfott, R.B.: GlobSol user guide. Optimization Methods and Software 24(4-5),
687–708 (2009)

13. Knüppel, O.: PROFIL/BIAS A fast interval library. Computing 53(3-4), 277–287
(1994)

14. Krämer, W.: Introduction To The Maple Power Tool Intpakx. In: 12th Int. Conf. on
Applications of Computer Algebra. IMI Bulgarian Academy of Sciences, vol. 1(4)
(2007)

15. Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschuster, W., Krämer, W.:
filib++, a Fast Interval Library. ACM TOMS 32(2), 299–324 (2006)

16. Lin, Y., Stadtherr, M.A.: Validated solution of initial value problems for ODEs
with interval parameters. In: Proc. of 2nd Reliable Engineering Computing (2006)

17. Lohner, R.: Computation of guaranteed enclosures for the solutions of ordinary
initial and boundary value problems. In: Computational Ordinary Differential
Equations, pp. 425–435. Clarendon Press, Oxford (1992)

18. Nedialkov, N.S.: Interval Tools for ODEs and DAEs. In: CD-Proc. of the 12th
GAMM-IMACS SCAN 2006. IEEE Computer Society, Los Alamitos (2007)

19. Neumaier, A.: Complete Search in Continuous Global Optimization and Constraint
Satisfaction. Acta Numerica, 271–369 (2004)

20. Papegay, Y., Daney, D., Merlet, J.-P.: Parallel Implementation of Interval Anal-
ysis for Equations Solving. In: Dongarra, J., Laforenza, D., Orlando, S. (eds.)
EuroPVM/MPI 2003. LNCS, vol. 2840, pp. 555–559. Springer, Heidelberg (2003)

http://capd.ii.uj.edu.pl/
http://grouper.ieee.org/groups/1788/

Interval Arithmetic: Standard and Libraries 341

21. Pryce, J.D., Corliss, G.: Interval Arithmetic with Containment Sets. Comput-
ing 78(3), 251–276 (2006)

22. Revol, N., Rouillier, F.: Motivations for an Arbitrary Precision Interval Arithmetic
and the MPFI Library. Reliable Computing 11(4), 275–290 (2005)

23. Rump, S.M.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.) Developments
in Reliable Computing, pp. 77–104. Kluwer, Dordrecht (1999)

24. Sahinides, N.: Baron - Branch And Reduce Optimization Navigator 4.0 (2000)
25. Sun Studio C., http://docs.sun.com/source/819-3696/iapgCusing.html
26. van der Hoeven, J., Lecerf, G., Mourrain, B.: Mathemagix (2002),

http://www.mathemagix.org

http://docs.sun.com/source/819-3696/iapgCusing.html
http://www.mathemagix.org

Efficient Evaluation of Large Polynomials

Charles E. Leiserson1, Liyun Li2, Marc Moreno Maza2, and Yuzhen Xie2

1 CSAIL, Massachussets Institute of Technology, Cambridge MA, USA
2 Department of Computer Science, University of Western Ontario, London ON, Canada

Abstract. Minimizing the evaluation cost of a polynomial expression is a funda-
mental problem in computer science. We propose tools that, for a polynomial P
given as the sum of its terms, compute a representation that permits a more effi-
cient evaluation. Our algorithm runs in d(nt)O(1) bit operations plus dtO(1) oper-
ations in the base field where d, n and t are the total degree, number of variables
and number of terms of P . Our experimental results show that our approach can
handle much larger polynomials than other available software solutions. More-
over, our computed representation reduce the evaluation cost of P substantially.

Keywords: Multivariate polynomial evaluation, code optimization, Cilk++.

1 Introduction

If polynomials and matrices are the fundamental mathematical entities on which com-
puter algebra algorithms operate, expression trees are the common data type that com-
puter algebra systems use for all their symbolic objects. In MAPLE, by means of
common subexpression elimination, an expression tree can be encoded as a directed
acyclic graph (DAG) which can then be turned into a straight-line program (SLP), if
required by the user. These two data-structures are well adapted when a polynomial (or
a matrix depending on some variables) needs to be regarded as a function and evaluated
at points which are not known in advance and whose coordinates may contain “sym-
bolic expressions”. This is a fundamental technique, for instance in the Hensel-Newton
lifting techniques [6] which are used in many places in scientific computing.

In this work, we study and develop tools for manipulating polynomials as DAGs.
The main goal is to be able to compute with polynomials that are far too large for being
manipulated using standard encodings (such as lists of terms) and thus where the only
hope is to represent them as DAGs. Our main tool is an algorithm that, for a polynomial
P given as the sum its terms, computes a DAG representation which permits to evaluate
P more efficiently in terms of work, data locality and parallelism. After introducing the
related concepts in Section 2, this algorithm is presented in Section 3.

The initial motivation of this study arose from the following problem. Consider
a = amxm + · · · + a1x + a0 and b = bnx

n + · · · + b1x + b0 two generic uni-
variate polynomials of respective positive degrees m and n. Let R(a, b) be the resultant
of a and b. By generic polynomials, we mean here that am, . . . , a1, a0, bn, . . . , b1, b0
are independent symbols. Suppose that am, . . . , a1, a0, bn, . . . , b1, b0 are substituted to
polynomials αm, . . . , α1, α0, βn, . . . , β1, β0 in some other variables c1, . . . , cp. Let us
denote by R(α, β) the “specialized” resultant. If these αi’s and βj’s are large, then

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 342–353, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Efficient Evaluation of Large Polynomials 343

computing R(α, β) as a polynomial in c1, . . . , cp, expressed as the sum of its terms,
may become practically impossible. However, if R(a, b) was originally computed as a
DAG with am, . . . , a1, a0, bn, . . . , b1, b0 as input and if the αi’s and βj’s are also given
as DAGs with c1, . . . , cp as input, then one may still be able to manipulate R(α, β).

The techniques presented in this work do not make any assumptions about the input
polynomials and, thus, they are not specific to resultant of generic polynomials. We
simply use this example as an illustrative well-known problem in computer algebra.

Given an input polynomial expression, there are a number of approaches focusing on
minimizing its size. Conventional common subexpression elimination techniques are
typical methods to optimize an expression. However, as general-purpose applications,
they are not suited for optimizing large polynomial expressions. In particular, they do
not take full advantage of the algebraic properties of polynomials. Some researchers
have developed special methods for making use of algebraic factorization in eliminat-
ing common subexpressions [1,7] but this is still not sufficient for minimizing the size
of a polynomial expression. Indeed, such a polynomial may be irreducible. One eco-
nomic and popular approach to reduce the size of polynomial expressions and facilitate
their evaluation is the use of Horner’s rule. This high-school trick for univariate poly-
nomials has been extended to multivariate polynomials via different schemes [8,9,3,4].
However, it is difficult to compare these extensions and obtain an optimal scheme from
any of them. Indeed, they all rely on selecting an appropriate ordering of the variables.
Unfortunately, there are n! possible orderings for n variables.

As shown in Section 4, our algorithm runs in polynomial time w.r.t. the number of
variables, total degree and number of terms of the input polynomial expression. We have
implemented our algorithm in the Cilk++ concurrency platform. Our experimental
results reported in Section 5 illustrate the effectiveness of our approach compared to
other available software tools. For 2 ≤ n,m ≤ 7, we have applied our techniques to the
resultant R(a, b) defined above. For (n,m) = (7, 6), our optimized DAG representation
can be evaluated sequentially 10 times faster than the input DAG representation. For
that problem, none of code optimization software tools that we have tried produces a
satisfactory result.

2 Syntactic Decomposition of a Polynomial

Let K be a field and let x1 > · · · > xn be n ordered variables, with n ≥ 1. Define X =
{x1, . . . , xn}. We denote by K[X] the ring of polynomials with coefficients in K and
with variables in X . For a non-zero polynomial f ∈ K[X], the set of its monomials is
mons(f), thus f writes f =

∑
m∈mons(f) cm m, where, for all m ∈ mons(f), cm ∈ K

is the coefficient of f w.r.t. m. The set terms(f) = {cm m | m ∈ mons(f)} is the set
of the terms of f . We use !terms(f) to denote the number of terms in f .

Syntactic operations. Let g, h ∈ K[X]. We say that gh is a syntactic product, and we
write g#h, whenever !terms(g h) = !terms(g)·!terms(h) holds, that is, if no grouping
of terms occurs when multiplying g and h. Similarly, we say that g + h (resp. g − h)
is a syntactic sum (resp. syntactic difference), written g ⊕ h (resp. g / h), if we have
!terms(g+h) = !terms(g)+!terms(h) (resp. !terms(g−h) = !terms(g)+!terms(h)).

344 C.E. Leiserson et al.

Syntactic factorization. For non-constant f, g, h ∈ K[X], we say that g h is a syntactic
factorization of f if f = g # h holds. A syntactic factorization is said trivial if each
factor is a single term. For a set of monomials M ⊂ K[X] we say that g h is a syntactic
factorization of f with respect to M if f = g # h and mons(g) ⊆ M both hold.

Evaluation cost. Assume that f ∈ K[X] is non-constant. We call evaluation cost of f ,
denoted by cost(f), the minimum number of arithmetic operations necessary to eval-
uate f when x1, . . . , xn are replaced by actual values from K (or an extension field
of K). For a constant f we define cost(f) = 0. Proposition 1 gives an obvious upper
bound for cost(f). The proof, which is routine, is not reported here.

Proposition 1. Let f, g, h ∈ K[X] be non-constant polynomials with total degrees
df , dg, dh and numbers of terms tf , tg, th. Then, we have cost(f) ≤ tf (df + 1) − 1.
Moreover, if g # h is a nontrivial syntactic factorization of f , then we have:

min(tg, th)
2

(1 + cost(g) + cost(h)) ≤ tf (df + 1) − 1. (1)

Proposition 1 yields the following remark. Suppose that f is given in expanded form,
that is, as the sum of its terms. Evaluating f , when x1, . . . , xn are replaced by actual
values k1, . . . , kn ∈ K, amounts then to at most tf (df + 1) − 1 arithmetic operations
in K. Assume g # h is a syntactic factorization of f . Then evaluating both g and h at
k1, . . . , kn may provide a speedup factor in the order of min(tg, th)/2. This observation
motivates the introduction of the notions introduced in this section.

Syntactic decomposition. Let T be a binary tree whose internal nodes are the operators
+,−,× and whose leaves belong to K ∪ X . Let pT be the polynomial represented by
T . We say that T is a syntactic decomposition of pT if either (1), (2) or (3) holds:

(1) T consists of a single node which is pT ,
(2) if T has root + (resp. −) with left subtree T� and right subtree Tr then we have:

(a) T�, Tr are syntactic decompositions of two polynomials pT�
, pTr ∈ K[X],

(b) pT = pT�
⊕ pTr (resp. pT = pT�

/ pTr) holds,
(3) if T has root ×, with left subtree T� and right subtree Tr then we have:

(a) T�, Tr are syntactic decompositions of two polynomials pT�
, pTr ∈ K[X],

(b) pT = pT�
pTr holds.

We shall describe an algorithm that computes a syntactic decomposition of a polyno-
mial. The design of this algorithm is guided by our objective of processing polynomials
with many terms. Before presenting this algorithm, we make a few observations.

First, suppose that f admits a syntactic factorization f = g # h. Suppose also that
the monomials of g and h are known, but not their coefficients. Then, one can easily
deduce the coefficients of both g and h, see Proposition 3 hereafter.

Secondly, suppose that f admits a syntactic factorization g h while nothing is known
about g and h, except their numbers of terms. Then, one can set up a system of polyno-
mial equations to compute the terms of g and h. For instance with tf = 4 and tg = th =
2, let f = M +N +P +Q, g = X+Y , h = Z+T . Up to renaming the terms of f , the
following system must have a solution: XZ = M, XT = P, Y Z = N and Y T = Q.

Efficient Evaluation of Large Polynomials 345

This implies that M/P = N/Q holds. Then, one can check that (g, g′,M/g,N/g′) is
a solution for (X,Y, Z, T), where g = gcd(M,P) and g′ = gcd(N,Q).

Thirdly, suppose that f admits a syntactic factorization f = g # h while nothing is
known about g, h including numbers of terms. In the worst case, all integer pairs (tg, th)
satisfying tgth = tf need to be considered, leading to an algorithm which is exponential
in tf . This approach is too costly for our targeted large polynomials. Finally, in practice,
we do not know whether f admits a syntactic factorization or not. Traversing every
subset of terms(f) to test this property would lead to another combinatorial explosion.

3 The Hypergraph Method

Based on the previous observations, we develop the following strategy. Given a set of
monomials M, which we call base monomial set, we look for a polynomial p such that
terms(p) ⊆ terms(f), and p admits a syntactic factorization gh w.r.t M. Replacing f
by f − p and repeating this construction would eventually produce a partial syntactic
factorization of f , as defined below. The algorithm ParSynFactorization(f,M) states
this strategy formally. We will discuss the choice and computation of the set M at the
end of this section. The key idea of Algorithm ParSynFactorization is to consider a
hypergraph HG(f,M) which detects “candidate syntactic factorizations”.

Partial syntactic factorization. A set of pairs {(g1, h1), (g2, h2), . . . , (ge, he)} of poly-
nomials and a polynomial r in K[x1, . . . , xn] is a partial syntactic factorization of f
w.r.t. M if the following conditions hold:

1. ∀i = 1 · · · e, mons(gi) ⊆ M,
2. no monomials in M divides a monomial of r,
3. f = (g1 # h1) ⊕ (g2 # h2) ⊕ · · · ⊕ (ge # he) ⊕ r holds.

Assume that the above conditions hold. We say this partial syntactic factorization is
trivial if each gi#hi is a trivial syntactic factorization. Observe that all gi for 1 ≤ i ≤ e
and r do not admit any nontrivial partial syntactic factorization w.r.t. M, whereas it is
possible that one of hi’s admits a nontrivial partial syntactic factorization.

Hypergraph HG(f,M). Given a polynomial f and a set of monomials M, we construct
a hypergraph HG(f,M) as follows. Its vertex set is V = M and its hyperedge set E
consists of all nonempty sets Eq := {m ∈ M | mq ∈ mons(f)}, for an arbitrary
monomial q. Observe that if a term of f is not the multiple of any monomials in M,
then it is not involved in the construction of HG(f,M). We call such a term isolated.

Example. For f = ay + az + by + bz + ax + aw ∈
Q[x, y, z, w, a, b] and M = {x, y, z}, the hypergraph
HG(f,M) has 3 vertices x, y, z and 2 hyperedges Ea =
{x, y, z} and Eb = {y, z}. A partial syntactic factorization
of f w.r.t M consists of {(y + z, a + b), (x, a)} and aw.

y

z

b

a

x

We observe that a straightforward algorithm computes HG(f,M) in O(|M|n t) bit op-
erations. The following proposition, whose proof is immediate, suggests how HG(f,M)
can be used to compute a partial syntactic factorization of f w.r.t. M.

346 C.E. Leiserson et al.

Proposition 2. Let f, g, h ∈ K[X] such that f = g # h and mons(g) ⊆ M both hold.
Then, the intersection of all Eq , for q ∈ mons(h), contains mons(g).

Before stating Algorithm ParSynFactorization, we make a simple observation.

Proposition 3. Let F1, F2, . . . , Fc be the monomials and f1, f2, . . . , fc be the coeffi-
cients of a polynomial f ∈ K[X], such that f =

∑c
i=1fiFi. Let a, b > 0 be two inte-

gers such that c = ab. Given monomials G1, G2, . . . , Ga and H1, H2, . . . , Hb such that
the products GiHj are all in mons(f) and are pairwise different. Then, within O(ab)
operations in K and O(a2b2n) bit operations, one can decide whether f = g # h,
mons(g) = {G1, G2, . . . , Ga} and mons(h) = {H1, H2, . . . , Hb} all hold. Moreover,
if such a syntactic factorization exists it can be computed within the same time bound.

Proof. Define g =
∑a

i=1giGi and h =
∑b

i=1hiHi where g1, . . . , ga and h1, . . . , hb

are unknown coefficients. The system to be solved is gihj = fij , for all i = 1 · · ·a
and all j = 1 · · · b where fij is the coefficient of GiHj in p. To set up this system
gihj = fij , one needs to locate each monomial GiHj in mons(f). Assuming that
each exponent of a monomial is a machine word, any two monomials of K[x1, . . . , xn]
are compared within O(n) bit operations. Hence, each of these ab monomials can be
located in {F1, F2, . . . , Fc} within O(cn) bit operations and the system is set up within
O(a2b2n) bit operations. We observe that if f = g # h holds, one can freely set g1
to 1 since the coefficients are in a field. This allows us to deduce h1, . . . , hb and then
g2, . . . , ga using a + b − 1 equations. The remaining equations of the system should
be used to check if these values of h1, . . . , hb and g2, . . . , ga lead indeed to a solution.
Overall, for each of the ab equations one simply needs to perform one operation in K.

Remark on Algorithm 1. Following the property of the hypergraph HG(f,M) given by
Proposition 2, we use a greedy strategy and search for the largest hyperedge intersection
in HG(f,M). Once such intersection is found, we build a candidate syntactic factoriza-
tion from it. However, it is possible that the equality in Line 12 does not hold. For exam-
ple, when M = Q = {a, b}, we have |N | = 3 �= 2× 2 = |M | · |Q|. When the equality
|N | = |M | · |Q| holds, there is still a possibility that the system set up as in the proof of
Proposition 3 does not have solutions. For example, when M = {a, b}, Q = {c, d} and
p = ac + ad + bc + 2 bd. Nevertheless, the termination of the while loop in Line 10 is
ensured by the following observation. When |Q| = 1, the equality |N | = |M | · |Q| al-
ways holds and the system set up as in the proof of Proposition 3 always has a solution.
After extracting a syntactic factorization from the hypergraph HG(f,M), we update
the hypergraph by removing all monomials in the set N and keep extracting syntactic
factorizations from the hypergraph until no hyperedges remain.

Example. Consider f = 3ab2c + 5abc2 + 2ae + 6b2cd + 10bc2d + 4de + s. Our base
monomial set M is chosen as {a, bc, e, d}. Following Algorithm 1, we first construct
the hypergraph HG(f,M) w.r.t. which the term s is isolated.

e

a

d ac

a d

bc^2

b^2c

bc cd

ab

 e

bd

Efficient Evaluation of Large Polynomials 347

Input : a polynomial f given as a sorted set terms(f), a monomial set M
Output : a partial syntactic factorization of f w.r.t M

1 T ← terms(f), F ← ∅;
2 r ← ∑

t∈I t where I = {t ∈ terms(f) | (∀m ∈ M) m � t} ;
3 compute the hypergraph HG(f,M) = (V, E) ;
4 while E is not empty do
5 if E contains only one edge Eq then Q ← {q}, M ← Eq;
6 else
7 find q, q′ such that Eq ∩ Eq′ has the maximal cardinality;
8 M ← Eq ∩ Eq′ , Q ← ∅;
9 if |M | < 1 then find the largest edge Eq, M ← Eq, Q ← {q};

10 else for Eq ∈ E do if M ⊆ Eq then Q ← Q ∪ {q} ;

11 while true do
12 N = {mq | m ∈ M, q ∈ Q};
13 if |N | = |M | · |Q| then
14 let p be the polynomial such that mons(p) = N and terms(p) ⊆ T ;
15 if p = g � h with mons(g) = M and mons(h) = Q then
16 compute g, h (Proposition 3); break;

17 else randomly choose q ∈ Q, Q ← Q \ {q}, M ← ∩q∈QEq;

18 for Eq ∈ E do
19 for m′ ∈ N do
20 if q |m′ then Eq ← Eq \ {m′/q} ;

21 if Eq = ∅ then E ← E \ {Eq};

22 T ← T \ terms(p), F ← F ∪ {g � h};

23 return F , r

Algorithm 1. ParSynFactorization

The largest edge intersection is M = {a, d} = Eb2c ∩ Ebc2 ∩ Ee yielding Q =
{b2c, bc2, e}. The set N is {mq | m ∈ M, q ∈ Q} = {ab2c, abc2, ae, b2cd, bc2d, de}.
The cardinality of N equals the product of the cardinalities of M and of Q. So we keep
searching for a polynomial p with N as monomial set and with terms(p) ⊆ terms(f).
By scanning terms(f) we obtain p = 3ab2c + 5abc2 + 2ae + 6b2cd + 10bc2d + 4de.
Now we look for polynomials g, h with respective monomial sets M,Q and such that
p = g # h holds. The following equality yields a system of equations whose unknowns
are the coefficients of g and h: (g1a + g2d)(h1b

2c + h2bc
2 + h3e) = 3ab2c + 5abc2 +

2ae + 6b2cd + 10bc2d + 4de. As described in Proposition 3, we can freely set g1 to 1
and then use 4 out of the 6 equations to deduce h1, h2, h3, g2; these computed values
must verify the remaining equations for p = g # h to hold, which is the case here.

⎧⎪⎪⎨⎪⎪⎩
g1h1 = 3
g1h2 = 5
g1h3 = 2
g2h1 = 6

g1=1
=⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g1 = 1
g2 = 2
h1 = 3
h2 = 5
h3 = 2

⇒
{

g2h2 = 10
g2h3 = 4

348 C.E. Leiserson et al.

Now we have found a syntactic factorization of p. We update each edge in the
hypergraph, which, in this example, will make the hypergraph empty. After adding
(a + 2d, 3b2c + 5bc2 + 2e) to F , the algorithm terminates with F , s as output.

One may notice that in Example 3, h = 3b2c + 5bc2 + 2e also admits a nontrivial
partial syntactical factorization. Computing it will produce a syntactic decomposition
of f . When a polynomial which does not admit any nontrivial partial syntactical fac-
torizations w.r.t M is hit, for instance, gi or r in a partial syntactic factorization, we
directly convert it to an expression tree. To this end, we assume that there is a proce-
dure ExpressionTree(f) that outputs an expression tree of a given polynomial f . Algo-
rithm 2, which we give for the only purpose of being precise, states the most straight
forward way to implement ExpressionTree(f). Then, Algorithm 3 formally states how
to produce a syntactic decomposition of a given polynomial.

Input : a polynomial f given as terms(f) = {t1, t2, . . . , ts}
Output : an expression tree whose value equals f

1 if �terms(f) = 1 say f = c · xd1
1 xd2

2 · · ·xdk
k then

2 for i ← 1 to k do
3 Ti ← xi;
4 for j ← 2 to di do
5 Ti,� ← Ti, root(Ti) ← ×, Ti,r ← xi;

6 T ← empty tree, root(T) ← ×, T� ← c, Tr ← T1;
7 for i ← 2 to k do
8 T� ← T, root(T) ← ×, Tr ← Ti;

9 else
10 k ← s/2, f1 ← ∑k

i=1 ti, f2 ← ∑s
i=k+1 ti;

11 T1 ← ExpressionTree(f1);
12 T2 ← ExpressionTree(f2);
13 root(T) ← +, T� ← T1, Tr ← T2;

Algorithm 2. ExpressionTree

We have stated all the algorithms that support the construction of a syntactic
decomposition except for the computation of the base monomial set M. Note that in
Algorithm 1 our main strategy is to keep extracting syntactic factorizations from the hy-
pergraph HG(f,M). For all the syntactic factorizations g#h computed in this manner,
we have mons(g) ⊆ M. Therefore, to discover all the possible syntactic factorizations
in HG(f,M), the base monomial set should be chosen so as to contain all the monomi-
als from which a syntactic factorization may be derived. The most obvious choice is to
consider the set G of all non constant gcds of any two distinct terms of f . However, |G|
could be quadratic in #terms(f), which would be a bottleneck on large polynomials
f . Our strategy is to choose for M as the set of the minimal elements of G for the
divisibility relation. A straightforward algorithm computes this set M within O(t4n)
operations in K; indeed |M| fits in |G| = O(t2). In practice, M is much smaller than G

Efficient Evaluation of Large Polynomials 349

Input : a polynomial f given as terms(f)
Output : a syntactic decomposition of f

1 compute the base monomial set M for f ;
2 if M = ∅ then return ExpressionTree(f);
3 else
4 F , r ← ParSynFactorization(f,M);
5 for i ← 1 to |F| do
6 (gi, hi) ← Fi, Ti ← empty tree, root(Ti) ← ×;
7 Ti,� ← ExpressionTree(gi);
8 Ti,r ← SyntacticDecomposition(hi);

9 T ← empty tree, root(T) ← +, T� ← ExpressionTree(r), Tr ← T1;
10 for i ← 2 to |F| do
11 T� ← T, root(T) ← +, Tr ← Ti;

Algorithm 3. SyntacticDecomposition

(for large dense polynomials,M = X holds) and this choice is very effective. However,
since we aim at manipulating large polynomials, the set G can be so large that its size
can be a memory bottleneck when computing M. In [2] we address this question: we
propose a divide-and-conquer algorithm which computes M directly from f without
storing the whole set G in memory. In addition, the parallel implementation in Cilk+
shows linear speed-up on 32 cores for sufficiently large input.

4 Complexity Estimates

Given a polynomial f of t terms with total degree d in K[X], we analyze the running
time for Algorithm 3 to compute a syntactic decomposition of f . Assuming that each
exponent in a monomial is encoded by a machine word, each operation (GCD, division)
on a pair of monomials of K[X] requires O(n) bit operations. Due to the different man-
ners of constructing a base monomial set, we keep μ := |M| as an input complexity
measure. As mentioned in Section 3, HG(f,M) is constructed within O(μtn) bit oper-
ations. This hypergraph contains μ vertices and O(μt) hyperedges. We first proceed by
analyzing Algorithm 1. To do so, we follow its steps.

– The “isolated” polynomial r can be easily computed by testing the divisibility of
each term in f w.r.t each monomial in M, i.e. in O(μ · t · n) bit operations.

– Each hyperedge in HG(f,M) is a subset of M. The intersection of two hyperedges
can then be computed in μ · n bit operations. Thus we need O((μt)2 · μn) =
O(μ3t2n) bit operations to find the largest intersection M (Line 7).

– If M is empty, we traverse all the hyperedges in HG(f,M) to find the largest one.
This takes no more than μt · μn = μ2tn bit operations (Line 9).

– If M is not empty, we traverse all the hyperedges in HG(f,M) to test if M is a
subset of it. This takes at most μt · μn = μ2tn bit operations (Line 10).

– Line 6 to Line 10 takes O(μ3t2n) bit operations.

350 C.E. Leiserson et al.

– The set N can be computed in μ · μt · n bit operations (Line 12).
– by Proposition 3, the candidate syntactic factorization can be either computed or

rejected in O(|M |2 · |Q|2n) = O(μ4t2n) bit operations and O(μ2t) operations in
K (Lines 13 to 16).

– If |N | �= |M | · |Q| or the candidate syntactic factorization is rejected, we remove
one element from Q and repeat the work in Line 12 to Line 16. This while loop ends
before or when |Q| = 1, hence it iterates at most |Q| times. So the bit operations of
the while loop are in O(μ4t2n · μt) = O(μ5t3n) while operations in K are within
O(μ2t · μt) = O(μ3t2) (Line 11 to Line 17).

– We update the hypergraph by removing the monomials in the constructed syntactic
factorization. The two nested for loops in Line 18 to Line 21 take O(|E| · |N | ·n) =
O(|E| · |M | · |Q| · n) = O(μt · μ · μt · n) = O(μ3t2n) bit operations.

– Each time a syntactic factorization is found, at least one monomial in mons(f) is
removed from the hypergraph HG(f,M). So the while loop from Line 4 to Line
22 would terminate in O(t) iterations.

Overall, Algorithm 1 takes O(μ5t4n) bit operations and O(μ3t3) operations in K. One
easily checks from Algorithm 2 that an expression tree can be computed from f (where
f has t terms and total degree d) within in O(ndt) bit operations. In the sequel of this
section, we analyze Algorithm 3. We make two preliminary observations. First, for the
input polynomial f , the cost of computing a base monomial set can be covered by the
cost of finding a partial syntactic factorization of f . Secondly, the expression trees of
all gi’s (Line 7) and of the isolated polynomial r (Line 9) can be computed within
O(ndt) operations. Now, we shall establish an equation that rules the running time of
Algorithm 3. Assume that F in Line 4 contains e syntactic factorizations. For each gi, hi

such that (gi, hi) ∈ F , let the number of terms in hi be ti and the total degree of hi be
di. By the specification of the partial syntactic factorization, we have

∑e
i=1 ti ≤ t. It is

easy to show that di ≤ d− 1 holds for 1 ≤ i ≤ e as total degree of each gi is at least 1.
We recursively call Algorithm 3 on all hi’s. Let Tb(t, d, n)(TK(t, d, n)) be the number
of bit operations (operations in K) performed by Algorithm 3. We have the following
recurrence relation,

Tb(t, d, n) =
e∑

i=1

Tb(ti, di, n) + O(μ5t4n), TK(t, d, n) =
e∑

i=1

TK(ti, di, n) + O(μ3t3),

from which we derive that Tb(t, d, n) is within O(μ5t4nd) and TK(t, d, n) is within
O(μ3t3d). Next, one can verify that if the base monomial set M is chosen as the
set of the minimal elements of all the pairwise gcd’s of monomials of f , where μ =
O(t2), then a syntactic decomposition of f can be computed in O(t14nd) bit op-
erations and O(t9d) operations in K. If the base monomial set is simply set to be
X = {x1, x2, . . . , xn}, then a syntactic decomposition of f can be found in O(t4n6d)
bit operations and O(t3n3d) operations in K.

5 Experimental Results

In this section we discuss the performances of different software tools for reducing the
evaluation cost of large polynomials. These tools are based respectively on a multivari-
ate Horner’s scheme [3], the optimize function with tryhard option provided by

Efficient Evaluation of Large Polynomials 351

the computer algebra system Maple and our algorithm presented in Section 3. As de-
scribed in the introduction, we use the evaluation of resultants of generic polynomials
as a driving example. We have implemented our algorithm in the Cilk++ program-
ming language. We report on different performance measures of our optimized DAG
representations as well as those obtained with the other software tools.

Evaluation cost. Figure 1 shows the total number of internal nodes of a DAG repre-
senting the resultant R(a, b) of two generic polynomials a = amxm + · · · + a0 and
b = bnx

n + · · · + b0 of degrees m and n, after optimizing this DAG by different ap-
proaches. The number of internal nodes of this DAG measures the cost of evaluating
R(a, b) after specializing the variables am, . . . , a0, bn . . . , b0. The first two columns of
Figure 1 gives m and n. The third column indicates the number of monomials appearing
in R(a, b). The number of internal nodes of the input DAG, as computed by MAPLE,
is given by the fourth column (Input). The fifth column (Horner) is the evaluation cost
(number of internal nodes) of the DAG after MAPLE’s multivariate Horner’s rule is ap-
plied. The sixth column (tryhard) records the evaluation cost after MAPLE’s optimize
function (with the tryhard option) is applied. The last two columns reports the evaluation
cost of the DAG computed by our hypergraph method (HG) before and after removing
common subexpressions. Indeed, our hypergraph method requires this post-processing
(for which we use standard techniques running in time linear w.r.t. input size) to produce
better results. We note that the evaluation cost of the DAG returned by HG + CSE is
less than the ones obtained with the Horner’s rule and MAPLE’s optimize functions.

m n #Mon Input Horner tryhard HG HG + CSE
4 4 219 1876 977 721 899 549
5 4 549 5199 2673 1496 2211 1263
5 5 1696 18185 7779 4056 7134 3543
6 4 1233 13221 6539 3230 4853 2547
6 5 4605 54269 22779 10678 18861 8432
6 6 14869 190890 69909 31760 63492 24701
7 4 2562 30438 14948 6707 9862 4905
7 5 11380 146988 61399 27363 45546 19148
7 6 43166 601633 219341 - 179870 65770

Fig. 1. Cost to evaluate a DAG by different approaches

Figure 2 shows the timing in seconds that each approach takes to optimize the DAGs
analyzed in Figure 1. The first three columns of Figure 2 have the same meaning as in
Figure 1. The columns (Horner), (tryhard) show the timing of optimizing these DAGs.
The last column (HG) shows the timing to produce the syntactic decompositions with
our Cilk++ implementation on multicores using 1, 4, 8 and 16 cores. All the sequen-
tial benchmarks (Horner, tryhard) were conducted on a 64bit Intel Pentium VI Quad
CPU 2.40 GHZ machine with 4 MB L2 cache and 3 GB main memory. The parallel
benchmarks were carried out on a 16-core machine at SHARCNET (www.sharcnet.ca)
with 128 GB memory in total and 8×4096 KB of L2 cache (each integrated by 2 cores).
All the processors are Intel Xeon E7340 @ 2.40GHz.

352 C.E. Leiserson et al.

As the input size grows, the timing of the MAPLE Optimize command (with try-
hard option) grows dramatically and takes more than 40 hours to optimize the resultant
of two generic polynomials with degrees 6 and 6. For the generic polynomials with
degree 7 and 6, it does not terminate after 5 days. For the largest input (7, 6), our algo-
rithm completes within 5 minutes on one core. Our preliminary implementation shows
a speedup around 8 when 16 cores are available. The parallelization of our algorithm
is still work in progress (for instance, in the current implementation Algorithm 3 has
not been parallelized yet). We are further improving the implementation and leave for
a future paper reporting the parallelization of our algorithms.

m n #Mon Horner tryhard HG (# cores = 1, 4, 8, 16)

4 4 219 0.116 7.776 0.017 0.019 0.020 0.023
5 4 549 0.332 49.207 0.092 0.073 0.068 0.067
5 5 1696 1.276 868.118 0.499 0.344 0.280 0.250
6 4 1233 0.988 363.970 0.383 0.249 0.213 0.188
6 5 4605 4.868 8658.037 3.267 1.477 1.103 0.940
6 6 14869 24.378 145602.915 29.130 9.946 6.568 4.712
7 4 2562 4.377 1459.343 1.418 0.745 0.603 0.477
7 5 11380 24.305 98225.730 22.101 7.687 5.106 3.680
7 6 43166 108.035 >136 hours 273.963 82.497 49.067 31.722

Fig. 2. Timing to optimize large polynomials

Evaluation schedule. Let T be a syntactic decomposition of an input polynomial f . Tar-
geting multi-core evaluation, our objective is to decompose T into p sub-DAGs, given
a fixed parameter p, the number of available processors. Ideally, we want these sub-
DAGs to be balanced in size such that the “span” of the intended parallel evaluation can
be minimized. These sub-DAGs should also be independent to each other in the sense
that the evaluation of one does not depend on the evaluation of another. In this manner,
these sub-DAGs can be assigned to different processors. When p processors are avail-
able, we call “p-schedule” such a decomposition. We report on the 4 and 8-schedules
generated from our syntactic decompositions. The column “T ” records the size of a
syntactic decomposition, counting the number of nodes. The column “#CS” indicates
the number of common subexpressions. We notice that the amount of work assigned to
each sub-DAG is balanced. However, scheduling the evaluation of the common subex-
pressions is still work in progress.

Benchmarking generated code. We generated 4-schedules of our syntactic decomposi-
tions and compared with three other methods for evaluating our test polynomials on a

m n T #CS 4-schedule 8-schedule
6 5 8432 1385 1782, 1739, 1760, 1757 836, 889, 884, 881, 892, 886, 886, 869
6 6 24701 4388 4939, 5114, 5063, 5194 2436, 2498, 2496, 2606, 2535, 2615, 2552, 2555
7 5 19148 3058 3900, 4045, 4106, 4054 1999, 2049, 2078, 1904, 2044, 2019, 1974, 2020
7 6 65770 10958 13644, 13253, 14233, 13705 6710, 6449, 7117, 6802, 6938, 7025, 6807, 6968

Fig. 3. Parallel evaluation schedule

Efficient Evaluation of Large Polynomials 353

large number of uniformly generated random points over Z/pZ where p = 2147483647
is the largest 31-bit prime number. Our experimental data are summarized in Figure 4.
Out the four different evaluation methods, the first three are sequential and are based on
the following DAGs: the original MAPLE DAG (labeled as Input), the DAG computed
by our hypergraph method (labeled as HG), the HG DAG further optimized by CSE
(labeled as HG + CSE). The last method uses the 4-schedule generated from the DAG
obtained by HG + CSE. All these evaluation schemes are automatically generated as a
list of SLPs. When an SLP is generated as one procedure in a source file, the file size
grows linearly with the number of lines in this SLP. We observe that gcc 4.2.4 failed
to compile the resultant of generic polynomials of degree 6 and 6 (the optimization
level is 2). In Figure 4, we report the timings of the four approaches to evaluate the
input at 10K and 100K points. The first four data rows report timings where the gcc
optimization level is 0 during the compilation, and the last row shows the timings with
the optimization at level 2. We observe that the optimization level affects the evalua-
tion time by a factor of 2, for each of the four methods. Among the four methods, the
4-schedule method is the fastest and it is about 20 times faster than the first method.

m n #point Input HG HG+CSE 4-schedule #point Input HG HG+CSE 4-schedule
6 5 10K 14.490 2.675 1.816 0.997 100K 144.838 26.681 18.103 9.343
6 6 10K 57.853 18.618 4.281 2.851 100K 577.624 185.883 42.788 28.716
7 5 10K 46.180 11.423 4.053 2.104 100K 461.981 114.026 40.526 19.560
7 6 10K 190.397 54.552 13.896 8.479 100K 1902.813 545.569 138.656 81.270

6 5 10K 6.611 1.241 0.836 0.435 100K 66.043 12.377 8.426 4.358

Fig. 4. Timing to evaluate large polynomials

References

1. Breuer, M.A.: Generation of optimal code for expressions via factorization. ACM Com-
mun. 12(6), 333–340 (1969)

2. Leiserson, C.E., Li, L., Moreno Maza, M., Xie, Y.: Parallel computation of the minimal
elements of a poset. In: Proc. PASCO 2010. ACM Press, New York (2010)

3. Carnicer, J., Gasca, M.: Evaluation of multivariate polynomials and their derivatives. Mathe-
matics of Computation 54(189), 231–243 (1990)

4. Ceberio, M., Kreinovich, V.: Greedy algorithms for optimizing multivariate horner schemes.
SIGSAM Bull 38(1), 8–15 (2004)

5. Intel Corporation. Cilk++., http://www.cilk.com/
6. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge Univ. Press, Cam-

bridge (1999)
7. Hosangadi, A., Fallah, F., Kastner, R.: Factoring and eliminating common subexpressions in

polynomial expressions. In: ICCAD 2004, pp. 169–174. IEEE Computer Society, Los Alami-
tos (2004)

8. Peña, J.M.: On the multivariate Horner scheme. SIAM J. Numer. Anal. 37(4), 1186–1197
(2000)

9. Peña, J.M., Sauer, T.: On the multivariate Horner scheme ii: running error analysis. Comput-
ing 65(4), 313–322 (2000)

http://www.cilk.com/

Communicating Functional Expressions from

Mathematica to C-XSC�

Evgenija D. Popova1 and Walter Krämer2

1 Institute of Mathematics & Informatics, Bulgarian Academy of Sciences,
Acad. G. Bonchev str., block 8, 1113 Sofia, Bulgaria

epopova@bio.bas.bg
2 WRSWT, Bergische Universität Wuppertal, Faculty of Mathematics and Natural

Sciences, Gaußstr. 20, D-42097 Wuppertal, Germany
kraemer@math.uni-wuppertal.de

Abstract. This work focuses on a mechanism (and software) which
communicates (via MathLink protocol) and provides compatibility be-
tween the representation of nonlinear functions specified as Mathematica
expressions and objects of suitable classes supported by the C-XSC au-
tomatic differentiation modules. The application of the developed com-
munication software is demonstrated by MathLink compatible programs
embedding in Mathematica the C-XSC modules for automatic differenti-
ation as packages. The design methodology, some implementation issues
and the use of the developed software are discussed.

1 Introduction

Modeling, design and simulation of real-life problems often require integration
of symbolic and numerical computations, visualization tools, etc. Providing in-
teroperability between the general-purpose environments for scientific/technical
computing (like Mathematica, Maple, etc.), which possess several features not
attributable to the compiled languages, and the interval software, developed in
some compiled language for efficiency reasons, is highly desirable due to the many
positive consequences for both environments [10]. Computer-assisted proofs is
another field that requires a collaboration of both environments [4].

Although many interval methods are brought to reliable, high-quality and fast
implementations, they remain isolated software systems. The software compar-
ing studies are also hampered by the diversity in the implementation supporting
environments and in the interval data representation (see e.g. [3] and the ref-
erences given therein). Communication based on file reading/writing operations
to exchange ordinary text is not suitable for interval computations. The prob-
lems that have to be solved are enlisted in [3]. Due to the necessity of avoiding
decimal-to-binary/binary-to-decimal input/output conversions of floating-point
data, the most suitable approach when providing interoperability between inter-
val software is that based on communication protocols [10].

� This work is partially supported by the DFG grant GZ: KR1612/7-1, AOBJ: 570029.

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 354–365, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Communicating Functional Expressions from Mathematica to C-XSC 355

In order to promote the interoperability between interval supporting envi-
ronments as an alternative to building complicated systems from scratch we
have initiated a concrete study. Its aim is establishing a general framework for
delivering external specific arithmetic tools and implementations of interval al-
gorithms, provided by the C++ class library C-XSC [8,9], in the general purpose
environment of Mathematica [12] via the communication protocol MathLink [5].
Mathematica was chosen as a genera-purpose computer algebra system provid-
ing the most flexible support of interval arithmetic, e.g. supporting exact in-
terval arithmetic. Mathematica also has its own high-level interface standard for
interprogram communication. It is desirable to expand Mathematica’s interval
functionality and to help new developments by connecting to external interval
libraries. C-XSC is an open source library facilitating the implementation of reli-
able numerical methods. It supplies some arithmetic tools that are not available
in other interval libraries, such as accurate dot product expressions, or com-
plex interval arithmetic that is not supported in Mathematica. A lot of problem
solvers delivering validated results are involved1 in the distribution of C-XSC or
provided as external software.

A preliminary research demonstrates the transparency in the communication
of floating-point (interval) data between Mathematica and C-XSC [10]. The arti-
cle contains a lot of technical details giving the reader a better feeling how easy
or complicated it is to establish a connection between the two environments.
However, some important problems such as isolating zeros of nonlinear func-
tions (one- and multi-dimensional), guaranteed global optimization (one- and
multi-dimensional), and automatic differentiation (AD) of interval functions, for
which there are C-XSC modules, as well as many other problems, are formulated
in terms of nonlinear functions. Therefore, the communication of functional ex-
pressions from Mathematica to C-XSC is an important step toward creating a
general interface that allows using all application functions delivered with C-XSC
from within Mathematica.

The goal of this paper is to discuss some issues related to communication of
functional expressions from Mathematica to C-XSC and to present the software
tools developed for this purpose. Since all of C-XSC problem solvers for nonlinear
functions are built on top of the AD arithmetic supported by three C-XSC mod-
ules, the particular goal of the present work is to provide compatibility between
the functional expressions specified in Mathematica and the specific data type
objects used in the C-XSC AD modules. Section 2 presents shortly the C-XSC
AD modules. Some aspects of C-XSC that are important for the present devel-
opment are mentioned. The notion of expression in Mathematica is presented
in the next section. Section 4 is devoted to the basic software communicating
nonlinear functions, specified in Mathematica, to the respective C-XSC class ob-
jects. The design principles and the implementation are discussed. As a proof
of concept illustrating the application of this tool, three interfacing MathLink
programs are developed. They embed in Mathematica the corresponding C-XSC
modules for automatic differentiation as packages. Section 5 describes their use.

1 The former C++ Toolbox for Verified Computing [7].

356 E.D. Popova and W. Krämer

2 C-XSC Background

C-XSC [8,9] contains modules for AD based on interval operations to get guar-
anteed enclosures for the function value and the derivatives up to order two in
the one dimensional case, resp., the gradient/hessian in the n-dimensional case.

The C-XSC module ddf ari implements AD arithmetic for functions f : R →
R which are twice continuously differentiable. This module supports the class
DerivType including operations and elementary functions for the differentiation
arithmetic up to second order. An object of type DerivType is implemented
as a triple of intervals representing the function value and the values of first
and second derivatives, respectively. To get enclosures for the true values of the
function and its derivatives, the differentiation arithmetic is based on interval
arithmetic. That is, the three components of the DerivType object are replaced
by the corresponding interval values, and all arithmetic operations and function
evaluations are executed in interval arithmetic.

Any application program using the C-XSC module ddf ari must contain a
C++ function, with argument type DerivType and result type DerivType, which
specifies the functional expression. For example, a function f(x) = x(4+x)/(3−
x) should be specified in a C++ function as follows.

DerivType f(const DerivType& x)
{ return x*(4.0 + x)/(3.0 - x); }

Let x, fx be declared as DerivType variables and y(123.0) be an interval
variable. The following two objects of class DerivType contain a variable with
value y and the representation of f(x) in the point y, respectively.

x = DerivVar(y); fx = f(x);

Then, fValue(fx), dfValue(fx), ddfValue(fx) get the function and the de-
rivative values in the point interval y = 123.0. The C-XSC functions fEval(),
dfEval(), ddfEval() simplify the mechanism of function and derivative eval-
uation. Thus, ddfEval(f, y, fy, dfy, ddfy) evaluates the three enclosures.

The module hess ari supports classes HessType and HTvector, as well as
operators and elementary functions for interval differentiation arithmetic of gra-
dients and Hessians of scalar-valued functions f : Rn → R. The module can
also be used to compute Jacobians of vector-valued functions f : Rn → Rn.
The module grad ari supports classes GradType and GTvector. These classes
avoid the storage overhead for the Hessian components. The design, implemen-
tation and the application of the C-XSC AD modules are similar, see [7]. Table
1 summarizes the supported data types and the evaluation routines.

C-XSC AD modules include derivative constants and variables with both
real and interval arguments, predefined arithmetic operations ◦ ∈ {+,−,×, /}
for any combination of real, interval and DerivType (or HessType, GradType,
resp.), and the elementary functions enlisted in Table 2 that are predefined for
the corresponding DerivType, HessType or GradType argument. Although the
present version of C-XSC contains a lot of other mathematical functions, these

Communicating Functional Expressions from Mathematica to C-XSC 357

Table 1. C-XSC modules for AD: supported data types and predefined routines

functions cannot be used explicitly in the functional expressions specifying func-
tion objects of types DerivType, HessType or GradType.

Some rules for getting true enclosures in connection with conversion (decimal
to binary) errors (see [7, Chapters 2.5, 3.7], [11]) should also be applied when
specifying functional expressions used by the C-XSC AD modules.

Table 2. Elementary functions supported by C-XSC AD arithmetic. Power function
implements integer power.

exp ln sin cos tan cot asin acos atan acot
sqr power sqrt sinh cosh tanh coth asinh acosh atanh acoth

3 Expressions in Mathematica

At the core of Mathematica is the foundational idea that everything — data,
programs, formulas, graphics, documents — can be represented as symbolic ex-
pressions. Although they often look very different, Mathematica represents all
of these things in one uniform way. They are all expressions. A prototypical ex-
ample of a Mathematica expression is f[x,y,...]. It is not necessary to write
expressions in this form. For example, x+y is also an expression. When it is typed
in x+y, Mathematica converts it to the standard form Plus[x,y]. Then, when
it prints it out again, it gives it as x+y. All expressions – whatever they may
represent – ultimately have a uniform structure. The function FullForm gives
the full functional form of an expression, without shortened syntax.

358 E.D. Popova and W. Krämer

In[1] := FullForm[1 + x^2 + x/y]
Out[1]//FullForm = Plus[1, Power[x, 2], Times[x,Power[y,-1]]]

Whenever Mathematica knows that a function is associative, it tries to remove
parentheses (or nested invocations of the function) to get the function into a
standard “flattened” form. The standard form is the one in which all the terms
are in a definite order, corresponding roughly to alphabetical order [12]. A func-
tion like addition or multiplication is not only associative, but also commutative,
which means that expressions like a+ c+ b and a+ b+ c with terms in different
orders are equal. One reason for putting expressions into standard forms is that
if two expressions are really in standard form, it is obvious whether or not they
are equal. However, it is not always desirable that expressions be reduced to the
same standard form. This is especially valid in interval arithmetic, where the
machine addition and multiplication are not associative, and in range computa-
tion, where different forms of an expression can give different quality of the range
enclosure, cf. [6, Chapter 3.3]. The Mathematica function Hold[expr] provides
“wrappers” inside which the expressions remain unevaluated.

In[3] := x*Hold[b*a] //FullForm
Out[3]//FullForm = x Hold[b a]

When the user types in an expression, Mathematica automatically applies its
large repertoire of rules for transforming expressions. The function Hold can
also be used to prevent an expression from being simplified.

4 Communication of Functional Expressions

In this section we present a MathLink compatible basic C++ software, called
ADExpressions, which communicates dynamically (via the MathLink protocol)
functional expressions defined in Mathematica and in evaluation converts them
into objects of C-XSC AD classes representing the function (and its derivatives).

4.1 Algorithm

The main goal of ADExpressions is to provide compatibility between the Math-
ematica representation of a functional expression and the representation used by
C-XSC AD modules. Therefore, the software should read a Mathematica expres-
sion via appropriate MathLink tools, parse the expression providing compatibil-
ity between the operations and the elementary functions in both environments,
and represent the parsed expression appropriately so that the evaluation gener-
ates objects of suitable C-XSC AD classes (DerivType, GradType, GTVector,
HessType, HTVector). This work is organized in two separate main stages.

1. Initialization. The input expression coming from Mathematica via the Math-
Link protocol is parsed and stored in an appropriate C++ representation.

2. Evaluation. Read from Mathematica an interval value for each of the expres-
sion variables, substitute the expression variables (in the internal expression

Communicating Functional Expressions from Mathematica to C-XSC 359

representation) with objects of respective classes DerivType, GradType,
GTVector, HessType, HTVector, where the objects are instantiated with
the input values, and evaluate the expression according to its internal rep-
resentation and by the respective automatic differentiation arithmetic. The
result of the evaluation is an object of the appropriate C-XSC class.

The two stages are separated in order to provide re-usability of the evaluation
step. In the initialization stage the expression formula is parsed and converted
from the canonical Mathematica form to a postfix (reverse Polish) notation [1].
The postfix notation is chosen to allow a faster evaluation of the expression than
the infix notation. For example, an expression having the canonical Mathemat-
ica form Plus[Sin[y], x] is stored as {y, Sin, x, P lus}, where the number of
arguments for each function is known.

A nonlinear function represented as a Mathematica expression may contain

– numerical constants: integer, real, interval, the Mathematica constants E, Pi;
The interval constants should be represented by the Mathematica object
Interval[{a, b}], where the interval end-points a, b can be integer or
real numbers. Exact singletons cannot be used at the interval end-points
but can be used in the other parts of a functional expression. For simplicity
Mathematica numbers with heads Rational and Complex2, as well as another
syntax of the interval object are not admissible for the functional expression.

– variables having interval values;
The names of the variables should follow the Mathematica convention for
names, or be Mathematica indexed variables with the syntax name[i].

– arithmetic operations, a set of elementary functions, and the Mathematica
function Hold enlisted in Table 3.

To provide compatibility between the Mathematica expression and its C-XSC
representation, the following transformations are performed during the parsing.

T.1 All the admissible functions in an input Mathematica expression have one or
two arguments, except for the functions Plus and Times which are associa-
tive for exact arguments. During the parsing multi-argument functions Plus
and Times are replaced by multiple two-argument functions. Therefore, we
assume that all functions in the expression have one or two arguments.

T.2 All non-interval numerical constants are stored as C-XSC point intervals.
Corresponding C-XSC interval constants containing the true value of the
Mathematica constants E and Pi are used.

T.3 When all arguments of a function are constants, it is evaluated by the
corresponding C-XSC function and the enclosing interval constant is stored
in the internal representation.

T.4 For every two-argument function there are three internal representations
corresponding to all combinations of the argument types (constant or ex-
pression). The commutative functions have two internal representations.
Thus, the function Plus, which is commutative, is represented internally

2 C-XSC AD modules do not support complex arithmetic.

360 E.D. Popova and W. Krämer

Table 3. Mathematica operator symbols and functions, recognized by the expression
parser, and their equivalent C-XSC representation

by two classes, say plus(expr1, expr2) and plus(const, expr). During
the initialization, depending on the type of the particular arguments, it
is determined which of the two classes will be used in the internal repre-
sentation. In case of a constant argument, the second representation class
plus(const, expr) is used and it is initialized with the particular constant
value.

T.5 Mathematica functions like logarithm to a base, power function with real
exponent, secant, cosecant, which are not supported by the C-XSC AD
modules, are transformed to relevant C-XSC expressions, see Table 3.

The evaluation stage consists of three actions:

– Reading a numerical interval for each variable. It is assumed that an interval
comes from Mathematica as a two-dimensional list of the interval end-points.
The order ≤ of the interval end-points is not checked by the communication
software, so a C-XSC runtime error can arise if the relation is not fulfilled.

– The variables involved in the functional expression are replaced by a variable
of appropriate C-XSC class which contains the concrete interval value(s).
Which C-XSC class will be used depends on the function under evaluation
and the particular C-XSC automatic differentiation module, see Table 1.

– The evaluation of an expression in postfix notation is done by using a stack.
The postfix expression to be evaluated is scanned from left to right. Vari-
ables or constants are pushed onto the stack. When an operator/function
is encountered, the indicated action is performed (by the particular C-XSC

Communicating Functional Expressions from Mathematica to C-XSC 361

differentiation arithmetic) using the top elements of the stack, and the result
replaces the operands on the stack.

4.2 Implementation

All functions and classes of the basic communication software ADExpressions
are defined in the namespace mlcxsc3. Hence, it is required to qualify each
identifier of the module with mlcxsc:: or to use the directive using namespace
mlcxsc. ADExpressions consists of two basic template classes:

– MLCXSCFunctionScalar<class T> which communicates, represents and
evaluates one- or n-variate scalar functions f(x) : R −→ R or f(x) : Rn −→
R;

– MLCXSCFunctionVector<class T> which communicates, represents and
evaluates vector-valued functions f(x) : Rn −→ Rn.

The template parameter T in the class MLCXSCFunctionScalar can be one of
the three C-XSC data types DerivType, GradType, or HessType, corresponding
to the respective C-XSC AD modules. Vector-valued functions are treated as n
functions fi : Rn −→ R. The two template classes are intended to work with
the communication protocol MathLink since in their initialization it is supposed
that the functional expression is in the MathLink queue.

The two basic template classes have four public methods (member functions):

– Init() initializes an object, called representation list, with the functional
expression which should be evaluated. In case of some error it throws an
exception with specified corresponding error message.

– operator() evaluates the function computing its range and the ranges of its
first and second derivatives for the given interval values of the variable(s).
In case of some error it throws an exception.

– IsInitialized() returns true if the representation list is initialized and
false otherwise. The representation list is initialized whenever the function
Init() has finished successfully, then we can call operator().

– Invalidate() makes a representation list not valid.

Copy constructor and operator= for the template classes MLCXSCFunction
Scalar and MLCXSCFunctionVector are not implemented.

In order to facilitate catching and communicating error messages, an exception
class MLCXSCFunctionException is defined as follows.

class MLCXSCFunctionException: public std::logic_error

{public:

enum ErrorCode

{ecIllegalArgumentError,// Init,operator called with illegal arguments

ecNotInitializedError,// calling operator() before executing Init()

ecExpressionError, // error in parsing a Mma expression by Init()

ecInternalError // internal error that should not normally occur

3 ”ml” in the abbreviation mlcxsc comes from MathLink.

362 E.D. Popova and W. Krämer

};

private:

ErrorCode mErrorCode;

public:

MLCXSCFunctionException(ErrorCode aErrorCode,

const string& aMessage):std::logic_error(aMessage)

{ mErrorCode = aErrorCode; }

ErrorCode GetErrorCode() const { return mErrorCode; }

};

The error messages are defined in sufficient details at the place they arise and
are associated with particular error code. The error code has self-explanatory
enumerated values commented in the above source code. The four values try to
minimize the number of exception types that will be triggered to Mathematica
and correspond to four main stages of the algorithm. Different error messages, re-
garding the same stage of the algorithm, are communicated by one error code. For
example, all kind of errors that arise during the expression parsing are associated
with and communicated by the ecExpressionError code. Some of these mes-
sages are: Unknown variable, Unknown function, Unknown Data Type, wrong
syntax of an interval in the expression, etc.

The software ADExpressions is designed as an auxiliary tool. Although based
on MathLink protocol for communicating the expressions, this basic software
does not contain functions installable in Mathematica. Its purpose is to facili-
tate the development of such functions, that is, the implementation of external
MathLink programs integrating C-XSC routines for, or routines based on, AD
arithmetic. ADExpressions can be downloaded from

http://www.math.bas.bg/˜epopova/software/ADExpressions.zip

For the sake of readability the distribution is split into three files: types.h,
expression.h, expression.cpp. Everyone who wants to use the software shall
include expression.h in the source file of the own MathLink program. Exam-
ples of installable MathLink programs which use ADExpressions are contained
in the archive ADpackages.zip which can be downloaded from the above site.
The archive contains three external MathLink compatible programs ddfAri,
gradAri, hessAri embedding in Mathematica the corresponding C-XSC AD
modules by using the ADExpressions software. Any of the three MathLink pro-
grams is an excellent example of how to use the basic communication software
ADExpressions and provides a framework for further developments.

5 Embedding C-XSC AD Modules in Mathematica

MathLink [5,12] and the implemented basic software communicating functional
expressions allow any external C-XSC function to be called from within Mathe-
matica. Any of the MathLink compatible programs ddfAri, gradAri, hessAri
presents an interesting example of extending the Mathematica kernel. These
programs involve an interaction between the external C-XSC code, the parsing

http://www.math.bas.bg/~epopova/software/ADExpressions.zip

Communicating Functional Expressions from Mathematica to C-XSC 363

software communicating functional expressions, the Mathematica package code,
and the kernel. Due to the lack of space some interesting design and MathLink
programming issues that arose in their development are discussed in [11].

Once the external MathLink programs are compiled, the executable files (con-
taining the corresponding package) can be launched in any Mathematica session.

In[1] := Install["gradAri"]
Out[1] = LinkObject[./gradAri, 2, 2]

Table 4 enlists the Mathematica functions providing interface for the respective
C-XSC functions from Table 1. All three packages can be installed in the same
Mathematica session and be used simultaneously.

Table 4. Mathematica packages, resp. functions, interfacing the C-XSC modules for
automatic differentiation ddf ari, hess ari, grad ari

Now, we initialize a scalar function f = 2 − ∑10
i=1 x2

i in 10 variables and
evaluate it in the interval [−1, 1] for each variable. Since the variables are many,
we use indexed variables and Mathematica functions for generating the functional
expression and the lists of variable names and variable values.

In[5]:= SetFScalarGrad[Table[x[i],{i,10}], 2-Sum[x[i]^2, {i,10}]]

The output Null of the successful evaluation of SetFScalarGrad is not visible.

In[6] := ReadyScalarGradQ[]
Out[6] = True
In[7] := fValueScalarG[Table[{-1, 1}, {i, 10}]]
Out[7] = {-8., 2.}

For the evaluation of vector-valued functions and their derivatives, C-XSC
modules for AD impose the restriction (which is followed by the interface) that
the number of specified variables must be equal to the dimension of the function.

364 E.D. Popova and W. Krämer

In[10] := SetFVectorGrad[{x}, {x, 1 - x, x^2}]

MLCXSCErrorGrad::illargs : Illegal arguments: Init: The number
of variables must be equal to the dimension of the function.

Out[10] = $Failed

However, one variable name can be repeated many times in the list of variable
names, see [11]. Dummy variables can be also used which makes possible the
guaranteed evaluation of constants.

In[13] := fJEvalJGrad[{x}, {Hold[Sqrt[3]]}, {{1,2}}]
Out[13] = {{{1.73205, 1.73205}}, {{{0., 0.}}}}

The implementation of C-XSC AD modules uses the standard error handling
(runtime error) of the interval library employed in case of some error during
the function or the derivatives evaluation, see [7]. C-XSC runtime errors during
the evaluations cannot be checked and cause closing the connection but the
corresponding C-XSC message is displayed in a separate stderr window.

The Mathematica interface for C-XSC routines provides more possibilities for
controlling the conversion input errors. Inexact quantities can be enclosed either
by the Mathematica function Interval, or by an interval enclosure in C-XSC
(using the techniques discussed in [7]) and wrapping in the Hold function.

In[16]:= SetFScalarGrad[{x}, Hold[Divide[23,Interval[{10,10}]]]*x]
fValueScalarG[{{1, 2}}] // FullForm

Out[17]//FullForm = List[2.3‘,4.6000000000000005‘]

The representation of a mathematical function in different expression forms is
very important for the interval computations. The symbolic interface of C-XSC
enables evaluation of functions in different forms via the Hold function. The next
simple example demonstrates the lack of inverse interval addition.

In[18] := fgEvalG[{x}, Hold[x-x], {{-1,1}}]
Out[18] = {{-2., 2.}, {{0., 0.}}}

6 Conclusion

The integration of C-XSC automatic differentiation modules in the environ-
ment of Mathematica via MathLink communication protocol brings dynamics
and interactivity in the execution of C-XSC modules working with nonlinear
functions. This saves the compilation time for each concrete function in the
analysis of practical problems. The paper shows that it might be much eas-
ier and cheaper to connect a general-purpose computer algebra (CA) system
to a sophisticated interval library than to implement interval algorithms from
scratch using the programming language of the corresponding CA system (even
if some interval tools are already provided by the CA system). ADExpressions
can facilitate the implementation of any other MathLink program providing new
numerical methods based on AD. By the interoperability approach we obtain an

Communicating Functional Expressions from Mathematica to C-XSC 365

integrated environment which combines the interactivity, symbolic and visualiza-
tion tools of Mathematica with the rigorousness and the speed of C-XSC interval
functionality.

While the syntactical interoperability between Mathematica and C-XSC is
provided essentially by MathLink communication protocol, the major efforts
should be devoted to providing semantic interoperability — the ability to au-
tomatically interpret the information exchanged, as defined by the end users,
meaningfully and accurately in order to produce useful results. AD of complex-
valued functions is not supported in C-XSC and therefore by ADExpressions.
However, the present version of C-XSC contains a lot of other mathematical
functions, besides those enlisted in Table 2, which can be evaluated for complex-
valued real/interval variables. A separate work could provide a more generic
framework allowing communication of real or complex-valued interval functions
evaluated rigorously by the expanded set of C-XSC elementary functions. Other
interesting directions of future investigation are the ability of both systems to
exchange dot-product expressions and results, and the embedding of C-XSC
complex interval arithmetic/solvers not available in Mathematica.

Although the current work focuses on one-way communication — the embed-
ding of C-XSC functionality in the environment of Mathematica, it can help the
respective work on using the Mathematica kernel from within C-XSC programs.

References

1. Aho, A., Lam, M., Sethi, R., Ullman, J.: Compilers: Principles, Techniques, and
Tools, 2nd edn. Pearson/Addison Wesley (2007)

2. Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.): Numerical Software with
Result Verification. LNCS, vol. 2991. Springer, Heidelberg (2004)

3. Corliss, G.F., Yu, J.: Interval Testing Strategies Applied to COSY’s Interval and
Taylor Model Arithmetic. In: [2], pp. 91–106

4. Frommer, A.: Proving conjectures by use of interval arithmetic. In: Kulisch, U., et
al. (eds.) Perspectives on Enclosure Methods, pp. 1–13. Springer, Wien (2001)

5. Gayley, T.: A MathLink Tutorial. Wolfram Research, Champaign (2002)
6. Hansen, E.: Global Optimization Using Interval Analysis. Marcel Dekker, New

York (1992)
7. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: C++ Toolbox for Verified Com-

puting: Basic Numerical Problems. Springer, Heidelberg (1995)
8. Hofschuster, W., Krämer, W.: C-XSC 2.0: A C++ Library for Extended Scientific

Computing. In: [2], pp. 15–35
9. Klatte, R., Kulisch, U., Lawo, C., Rauch, M., Wiethoff, A.: C-XSC, A C++ Class

Library for Extended Scientific Computing. Springer, Heidelberg (1993)
10. Popova, E.: Mathematica Connectivity to Interval Libraries filib++ and C-XSC.

In: Cuyt, A., Krämer, W., Luther, W., Markstein, P. (eds.) Numerical Valida-
tion in Current Hardware Architectures. LNCS, vol. 5492, pp. 117–132. Springer,
Heidelberg (2009)

11. Popova, E., Krämer, W., Russev, M.: Integration of C-XSC Automatic Differenti-
ation in Mathematica, Preprint 3/2010, IMI-BAS, Sofia (March 2010),
http://www.math.bas.bg/~epopova/papers/10-preprintAD.pdf

12. Wolfram Research Inc.: Mathematica, Version 5.2, Champaign, IL (2005)

http://www.math.bas.bg/~epopova/papers/10-preprintAD.pdf

Author Index

Abbott, John 73
Adams, Mark 142
Adjiashvili, David 270
Alama, Jesse 144
Ambrose, Sophie 54
Arthan, Rob D. 148

Backeljauw, Franky 32
Baes, Michel 270
Barakat, Mohamed 46
Becuwe, Stefan 32
Behrends, Reimer 58
Benoit, Alexandre 35
Bigatti, Anna M. 73
Blanco, Roćıo 217
Brönnimann, Hervé 121
Bruns, Winfried 209
Buchberger, Bruno 245

Cafieri, Sonia 303
Cannon, John 253
Chevillard, Sylvain 28
Chyzak, Frédéric 35
Citro, Craig 256
Cuyt, Annie 32

Darrasse, Alexis 35
Donnelly, Steve 253
Dotsenko, Vladimir 249
Dumas, Jean-Guillaume 77
Du, Zilin 121

Eick, Bettina 50
Ercal, Burin 12

Faugère, Jean-Charles 84
Fieker, Claus 253

Gautier, Thierry 77
Gerhold, Stefan 35
Ghitza, Alexandru 256
Görtzen, Simon 46
Günther, David 198

Haase, Christian 315
Hales, Thomas C. 1, 149
Halperin, Dan 92
Harrison, John 152
Hart, William B. 88
Hege, Hans-Christian 198
Hoder, Krystof 155
Hoffmann, Tim 167
Horn, Max 50
Hotz, Ingrid 198

Ichim, Bogdan 209

Jensen, Anders Nedergaard 282
Joldeş, Mioara 28

Karavelas, Menelaos I. 96
Kini, Keshav 69
Kojima, Masakazu 4
Konovalov, Alexander 58
Krämer, Walter 354

Lauter, Christoph 28
Lavor, Carlile 186
Lecerf, Grégoire 329
Leiserson, Charles E. 342
Liberti, Leo 186, 303
Li, Liyun 342
Linton, Steve 58
Lorenz, Benjamin 315
Lüebeck, Frank 58

Markwig, Thomas 213
Matsui, Tetsushi 260
Maza, Marc Moreno 342
Mehlhorn, Kurt 10
Mercat, Christian 174
Mezzarobba, Marc 35
Miyamoto, Izumi 62
Mörig, Marc 109
Mucherino, Antonio 186
Murray, Scott H. 54

Nakamula, Ken 260
Nakayama, Hiromasa 221

368 Author Index

Neher, Markus 333
Neunhöeffer, Max 58
Nishiyama, Kenta 221
Noro, Masayuki 233

Ogura, Naoki 260

Paffenholz, Andreas 315
Pasechnik, Dmitrii V. 69
Pernet, Clément 77
Pion, Sylvain 121
Popova, Evgenija D. 354
Praeger, Cheryl E. 54
Prohaska, Steffen 198

Regensburger, Georg 245
Rehn, Thomas 295
Reininghaus, Jan 198
Revol, Nathalie 337
Rosenkranz, Markus 245
Rostalski, Philipp 270
Rouillier, Fabrice 100
Rump, Siegfried M. 105

Salvy, Bruno 35
Saunders, B. David 77
Savourey, David 303

Schneider, Csaba 54
Schürmann, Achill 295
Söger, Christof 209
Stein, William 12

Tanaka, Satoru 260
Tec, Loredana 245

Uchiyama, Shigenori 260
Urban, Josef 155

Van Deun, Joris 32
Vejdemo-Johansson, Mikael 249
Verdoolaege, Sven 299
von Gagern, Martin 174
Voronkov, Andrei 155

Watkins, Mark 253
Weber, Matthias 170

Xie, Yuzhen 342

Yap, Chee 121
Yu, Jihun 121

Zimmermann, Paul 42

	Title Page
	Preface
	Organization
	Table of Contents
	Mathematical Software - ICMS 2010
	Plenary
	Computational Discrete Geometry
	References

	Exploiting Structured Sparsity in Large Scale Semidefinite Programming Problems
	References

	Reliable and Efficient Geometric Computing
	References

	The Sage Project: Unifying Free Mathematical Software to Create a Viable Alternative to Magma, Maple, Mathematica and MATLAB
	Introduction
	The Notebook
	The Sage Development Process

	Building the Car. . .
	Interfaces
	Python - A Mainstream Language
	Algebraic, Symbolic and Numerical Tools

	Afterword
	References

	Computation of Special Functions (Invited)
	Sollya: An Environment for the Development of Numerical Codes
	Introduction
	Context and Competing Tools
	Key Features Offered by Sollya
	Conclusion and Project Future
	References

	Validated Special Functions Software
	Introduction
	Round-Off Error Accumulation and Control
	Truncation Error Accumulation and Control
	Putting It All Together
	References

	The Dynamic Dictionary of Mathematical Functions (DDMF)
	Motivation
	Dynamic Mathematics on the Web
	Computer Algebra Algorithms
	References

	Reliable Computing with GNU MPFR
	References

	Computational Group Theory (Invited)
	Simplicial Cohomology of Smooth Orbifolds in GAP
	References

	Computing Polycyclic Quotients of Finitely (L-)Presented Groups via Groebner Bases
	Introduction
	L-Presentations
	The Algorithm
	Two Small Examples
	References

	Constructive Membership Testing in Black-Box Classical Groups
	References

	Computational Group Theory (Contributed)
	Towards High-Performance Computational Algebra with GAP
	References

	An Improvement of a Function Computing Normalizers for Permutation Groups
	Introduction
	Preliminaries
	Improvements and Experiments
	A Computation of Automorphisms of Configurations
	References

	A GAP Package for Computation with Coherent Configurations
	Introduction
	Coherent Configurations
	GAP Package Functionality
	Ongoing and Future Work
	References

	Computer Algebra (Invited)
	CoCoALib: A C++ Library for Computations in Commutative Algebra ... and Beyond
	The Main Features of CoCoA
	The Future of CoCoA: More Than a System
	Philosophy behind CoCoALib
	Approximately...
	References

	LinBox Founding Scope Allocation, Parallel Building Blocks, and Separate Compilation
	Introduction
	The Lightweight Founding Scope Allocation Model
	Software Abstraction Layer for Parallelism
	Parallel Building Blocks
	Accumulate until and Early Termination
	Memory Contention and Thread Safe Allocation

	Automated Generic Separate Compilation
	References

	FGb: A Library for Computing Gröbner Bases
	Introduction - Polynomial System Solving - Gröbner Bases
	Goal and Architecture of the Library
	Maple Interface - C Library Mode
	New High Performance Linear Algebra Package - Benchmarks
	References

	Fast Library for Number Theory: An Introduction
	Introduction
	Basic Integer Arithmetic
	Polynomial Arithmetic
	Linear Algebra
	FLINT2
	Comparison with Other Libraries
	Choice of Language – C
	References

	Exact Numeric Computation for Algebraic and Geometric Computation (Invited)
	Controlled Perturbation for Certified Geometric Computing with Fixed-Precision Arithmetic
	Introduction
	Key Ideas
	Brief History: Theory, Implementation, Applications
	References

	Exact Geometric and Algebraic Computations in CGAL
	Introduction
	The Computational Geometry Algorithms Library
	Algebraic Computations in CGAL
	References

	On Solving Systems of Bivariate Polynomials
	References

	Accurate and Reliable Computing in Floating-Point Arithmetic
	References

	Exact Numeric Computation for Algebraic and Geometric Computation (Contributed)
	Deferring Dag Construction by Storing Sums of Floats Speeds-Up Exact Decision Computations Based on Expression Dags
	Introduction
	Related Work
	Preliminaries
	Variations and Alternatives
	Experimental Comparison
	Conclusion and Future Work
	References

	The Design of Core 2: A Library for Exact Numeric Computation in Geometry and Algebra
	Introduction
	Review of {\tt Core Library}, Version 1
	Redesign of the {\tt Expr} Package
	Incorporation of Transcendental Nodes
	New Template-Based Design of {\tt ExprRep}
	Improved Evaluation Algorithm
	Improved Propagation of Precision

	Redesign of the {\tt BigFloat} System
	The {\tt BigFloat} Class as Base Real Ring
	The Class {\tt BigFloat2}

	Extending the {\tt Expr} Class
	Summation Operation for {\tt Expr}
	Transcendental Constants π, e and All That

	Conclusion
	References

	Formal Proof (Invited)
	Introducing HOL Zero
	Euler’s Polyhedron Formula in {\bf mizar}
	Introduction
	Euler’s Polyhedron Formula
	A Formalization in {\bf mizar}
	A Deeper Formalization
	References

	Building a Library of Mechanized Mathematical Proofs: Why Do It?and What Is It Like to Do?
	Linear Programs for the Kepler Conjecture
	Linear Programs
	TheMainTheorem
	References

	A Formal Proof of Pick’s Theorem
	References

	Formal Proof (Contributed)
	Evaluation of Automated Theorem Proving on the Mizar Mathematical Library
	Introduction and Motivation
	Recent Evolution of Mizar and MPTP

	Mizar Data, Experimental Setup
	Experiments
	Overall Evaluation on $SMALL$ Problems
	Overall Evaluation on $ENVIRON$ and ALL Problems, SInE
	Evaluation of Strategy Selection and Combination

	Evaluation of ATPs on Different Mathematical Domains in MML
	Conclusions, Future Work
	References

	Geometry and Visualization (Invited)
	On Local Deformations of Planar Quad-Meshes
	References

	Construction of Harmonic Surfaces with Prescribed Geometry
	Introduction
	The Minimal Catenoid with a Handle
	The Harmonic Catenoid with a Handle
	References

	Geometry and Visualization (Contributed)
	A Library of OpenGL-Based Mathematical Image Filters
	Introduction
	Definition
	Motivation and Prior Art
	Composition of the Library
	A Word on Symmetry
	Short Introduction to OpenGL

	Explanation by Examples
	Tiled Rectangles and Wraparound Parameters
	Wallpaper Groups and Fixed Functionality Pipeline
	Conformal Maps and Programmable Vertex Shaders
	Basic Hyperbolic Tilings
	Conformal Hyperbolization and Chained Transformations

	Applications
	Edutainment
	Education
	Arts
	Derived Scientific Applications

	References

	{\tt MD-jeep}: An Implementation of a Branch and Prune Algorithm for Distance Geometry Problems
	Introduction
	An Implementation of the BP Algorithm
	The DMDGP and the BP Algorithm
	Input Arguments
	Instance Preprocessing
	An Efficient Implementation
	Solutions in PDB Format

	Experiments
	New Developments
	Conclusions
	References

	TADD: A Computational Framework for Data Analysis Using Discrete Morse Theory
	Motivation
	Computational Discrete Morse Theory
	Algorithmic Pipeline
	Input Data
	Edge Weighted Cell Graph
	Matching Sequence
	Combinatorial (Gradient) Vector Field
	Extremal Structure

	Examples
	A Synthetic Noisy Scalar Field
	A Vector Field from Biofluid Mechanics
	Extremal Lines in Curvature Fields

	References

	Groebner Bases and Applications (Invited)
	Introduction to {\bf Normaliz 2.5}
	Introduction
	Interactions with other Software Systems
	New Features of the Program
	One Computational Example
	References

	Computer Algebra Methods in Tropical Geometry
	How to Compute in$_{ω}(I)$?
	Two Interesting Cases of Tropical Varieties
	I = $\langle f \rangle$ Defines a Hypersurface
	Constant Coefficient Case: I Is Generated by Polynomials in Q[x]

	How to Lift a Point from Trop(I) to $V (I)$?
	How to Compute a Tropical Variety?
	References

	Groebner Bases and Applications (Contributed)
	A New Desingularization Algorithm for Binomial Varieties in Arbitrary Characteristic
	Introduction
	Combinatorial Algorithm

	References

	An Algorithm of Computing Inhomogeneous Differential Equations for Definite Integrals
	Introduction
	Review of the Integration Algorithm for D-Modules
	Computing Inhomogeneous Parts of the Integration Ideal
	Comparison of Our Algorithm with Other Algorithms
	The Almkvist-Zeilberger Algorithm
	The Chyzak Algorithm
	The Oaku-Shiraki-Takayama Algorithm

	References

	New Algorithms for Computing Primary Decomposition of Polynomial Ideals
	Introduction
	New Algorithms
	Implementation Issues
	Computation of Minimal Associated Primes
	Computation of a Separating Ideal
	Gr¨obner Basis Computation

	Experiments
	Ideals Related to Computation of Local b-Functions
	Ideals of Adjacent Minors
	Timings

	References

	An Automated Confluence Proof for an Infinite Rewrite System Parametrized over an Integro-Differential Algebra
	Introduction
	Integro-Differential Polynomials and Operators
	An Automated Confluence Proof
	References

	Operadic Gr¨obner Bases: An Implementation
	Introduction
	Shuffle Operads
	Gr¨obner Bases for Operads

	AnExample
	Implementing Gr¨obner Bases for Operads
	References

	Number Theoretical Software (Invited)
	Magma - A Tool for Number Theory
	References

	Number Theoretical Software (Contributed)
	Enumerating Galois Representations in Sage
	Introduction
	Description of the Algorithm
	Sage Implementation and Results
	References

	NZMATH 1.0
	Introduction
	Features
	Overview
	Recent Changes
	Auxiliary Components

	Principle of NZMATH
	Good Use of NZMATH
	Open Source and Outsourcing

	Future Works
	Cloud Computing and Databases
	Long Term Plans

	Conclusion
	References

	Software for Optimization and Polyhedral Computation (Invited)
	Removing Redundant Quadratic Constraints
	Introduction and Motivating Example
	Ellipsoidal Constraint Removal Problem
	Immediate Eliminations/Preservations
	Semidefinite Relaxation
	S-Lemma
	S-Procedure
	SOCP-Relaxation

	Computational Results
	Solvers and Setup
	SOCP and SDP Relaxations

	References

	Traversing Symmetric Polyhedral Fans
	Introduction
	Definitions and Notation
	Gr\"{o}bner Fans and Tropical Varieties

	The Traversal Algorithm
	Exploiting Symmetry
	Symmetry Algorithms

	Oracles
	The Gr\"{o}bner Fan

	Comparison to Reverse Search
	Implementation Details
	Handling Geometric Data
	Software

	References

	C++ Tools for Exploiting Polyhedral Symmetries
	References

	isl: An Integer Set Library for the Polyhedral Model
	Introduction and Motivation
	Internals
	References

	Software for Optimization and Polyhedral Computation (Contributed)
	The Reformulation-Optimization Software Engine
	Introduction
	Existing Work
	Motivating Examples

	Reformulations: Formal Definitions
	Flat and Structured MPs
	Flat Reformulations

	ROSE Architecture
	MP Input
	MP Output
	Expression Tree Library

	How ROSE Helps Solving the Motivating Examples
	ROSE’s Existing Applications
	References

	Generating Smooth Lattice Polytopes
	Introduction
	Smooth Polytopes
	Generation of Smooth Fans
	Generation of Smooth Polytopes
	Implementation and Results
	Conclusion and Open Problems
	References

	Reliable Computation (Invited)
	Mathemagix: Towards Large Scale Programming for Symbolic and Certified Numeric Computations
	Context and Motivation
	Language, Compiler and Interpreter
	Libraries
	Certified Numeric Analysis
	References

	Complex Inclusion Functions in the CoStLy C++ Class Library
	Introduction
	Design of the CoStLy Library
	Practical Performance
	References

	Standardized Interval Arithmetic and Interval Arithmetic Used in Libraries
	Introduction
	Some Features of the Current Draft of the Standard
	Arithmetic Operations
	Exact Dot Product
	Relational Operations
	Exceptions Handling and Decorations
	Implementations Based on IEEE-754 Floating-Point Arithmetic

	Survey of Interval-Based Libraries
	Conclusion: Foreseen Points of Divergence
	References

	Reliable Computation (Contributed)
	Efficient Evaluation of Large Polynomials
	Introduction
	Syntactic Decomposition of a Polynomial
	The Hypergraph Method
	Complexity Estimates
	Experimental Results
	References

	Communicating Functional Expressions from $Mathematica$ to C-XSC
	Introduction
	C-XSC Background
	Expressions in $Mathematica$
	Communication of Functional Expressions
	Algorithm
	Implementation

	Embedding C-XSC AD Modules in $Mathematica$
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

