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Preface

These are the proceedings of the 7th International Congress on Mathematical Software,
which was held during July 13–16, 2020, and hosted by the Technische Universität
Braunschweig, Germany. In fact, in the middle of the pandemic caused by the
Sars-Cov-2 virus, the conference took place online, and the video recordings of the
talks are available on the conference website to accompany this book.

The ICMS community believes that the appearance of mathematical software is one
of the most important current developments in mathematics, and this phenomenon
should be studied as a coherent whole. We hope this conference can serve as the main
forum for mathematicians, scientists, and programmers who are interested in devel-
opment of mathematical software. The program of the 2020 meeting consisted of 14
topical sessions, which made up the core of the program, consisting of more than 120
contributed talks. Session contributors were given the option to submit their work for
publication in these proceedings, and 48 papers were selected through a peer-review
process. For the first time this ICMS featured a special session with parallel software
demonstrations.

The conference also featured three invited talks. Erika Ábrahám gave a talk on
“Solving Real-Algebraic Formulas with SMT-RAT,” Alan Edelman on “Julia—The
Power of Language,” and Victor Shoup on “NTL: a Library for Doing Number The-
ory.” Short abstracts of these talks also appear in these proceedings. We thank the
invited speakers for accepting our invitations to speak at ICMS 2020. We also thank all
the contributors, session organizers, PC members, as well the local arrangement team
and the members of the Advisory Board for helping to make this conference a success.
Finally, we thank our sponsors, listed on the following pages, for the financial support
of the event. Sebastian Gutsche and Amazon kindly provided technical support.

July 2020 Anna Maria Bigatti
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A Design and an Implementation
of an Inverse Kinematics Computation

in Robotics Using Gröbner Bases

Noriyuki Horigome1,2P, Akira Terui1(B) , and Masahiko Mikawa1

1 University of Tsukuba, Tsukuba, Japan
{horigome,terui}@math.tsukuba.ac.jp, mikawa@slis.tsukuba.ac.jp

2 Internet Initiative Japan Inc., Tokyo, Japan
https://researchmap.jp/aterui

https://www.iij.ad.jp/en/

Abstract. The solution and a portable implementation of the inverse
kinematics computation of a 3 degree-of-freedom (DOF) robot manipu-
lator using Gröbner bases are presented. The main system was written
Python with computer algebra system SymPy. Gröbner bases are com-
puted with computer algebra system Risa/Asir, called from Python via
OpenXM infrastructure for communicating mathematical software sys-
tems. For solving a system of algebraic equations, several solvers (both
symbolic and numerical) are used from Python, and their performance
has been compared. Experimental results with different solvers for solv-
ing a system of algebraic equations are shown.

Keywords: Gröbner bases · Robotics · Inverse kinemetics

1 Introduction

In robotics, inverse kinematics computation is one of the central topics in motion
planning [17]. In the field of computer algebra, methods of the inverse kinemat-
ics computation using Gröbner bases have been proposed ([2,7,22,23], and the
references therein). After formulating the forward kinematics problem using the
Denavit–Hartenberg convention, the inverse kinematics problem is derived as a
system of algebraic equations by conversion of trigonometric expressions to poly-
nomials. Then, the system is triangularized by computing the Gröbner basis with
respect to the lexicographic ordering and solved by appropriate solvers.

Since methods using Gröbner bases solve the inverse kinematics problem
directly, these methods have advantages that one can verify if the given inverse
kinematics problem is solvable (with the certification of the solution if needed),
and if it is solvable, one can obtain the configuration of parameters for the desired
motion of the robot directly, before the actual motion. On the other hand, the
computational cost of methods using Gröbner bases tends to be high compared
to that of numerical methods, thus it is desired to decrease computational cost for
c© Springer Nature Switzerland AG 2020
A. M. Bigatti et al. (Eds.): ICMS 2020, LNCS 12097, pp. 3–13, 2020.
https://doi.org/10.1007/978-3-030-52200-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52200-1_1&domain=pdf
http://orcid.org/0000-0003-0846-3643
http://orcid.org/0000-0002-2193-3198
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effective computation of solving the inverse kinematics problem using Gröbner
bases. Furthermore, for the use of these methods in robotics simulators such as
the Robot Operating System (ROS) [9], an implementation that can easily be
integrated with these simulators is needed.

In this paper, we present the solution and a portable implementation of the
inverse kinematics computation of a 3 degree-of-freedom (DOF) robot manip-
ulator using Gröbner bases. For portable implementation and rapid develop-
ment, the main program is developed in Python with computer algebra system
SymPy [12]. Gröbner bases are computed effectively using computer algebra
system Risa/Asir [14], connected to Python with OpenXM infrastructure for
communicating mathematical software systems [10]. Then, the system of alge-
braic equations is solved using an appropriate solver called within Python. As
the main focus of our paper, several solvers for solving a system of algebraic
equations have been compared: an exact solver included in SymPy, a multivari-
ate numerical solver using the secant method, and a univariate numerical solver
with successive substitutions.

The rest of the paper is organized as follows. In Sect. 2, the method of
inverse kinematics computation of a 3 DOF manipulator using Gröbner bases
is explained. In Sect. 3, the description of the proposed system for solving the
inverse kinematics problem is presented. In Sect. 4, the result of experiments is
presented.

2 Inverse Kinematics of a 3 Degree-of-Freedom (DOF)
Robot Manipulator

In this paper, an example of 3 degree-of-freedom (DOF) manipulator has been
built using LEGO R© MINDSTORMS R© EV3 Education1 (henceforth abbreviated
to EV3) (Fig. 1). An EV3 set has a computer (which is called “EV3 Intelligent
Brick”), servo motors and sensors (gyro, ultrasonic, color and touch sensors),
along with bricks used for constructing building blocks of robots. While a GUI-
based programming environment for controlling the robot is available, several
programming languages such as Python, Ruby, C, and Java can also be used on
the top of other programming environments.

We first solve the forward kinematics problem. Components of the manip-
ulator are defined as shown in Fig. 2. Segments (links) are called Segment i
(i = 1, 2, 3, 4) from the one fixed on the ground towards the end effector, and a
joint connecting Segment i and i + 1 is called Joint i. For Joint i, the coordi-
nate system Σi, with the xi, yi and zi axes and the origin at Joint i, is defined
according to the Denavit–Hartenberg convention [18] (Fig. 2). Note that, since
the present coordinate system is right-handed, the positive axis pointing upwards
and downwards is denoted by “�” and “⊗”, respectively. Furthermore, let Σ0 be
the coordinate system satisfying that the origin is placed at the perpendicular
foot from the origin of Σ1, and the direction of axes x0, y0 and z0 are the same

1 LEGO and MINDSTORMS are trademarks of the LEGO Group.
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Fig. 1. A 3 DOF manipulator built with EV3.

as that of axes x1, y1 and z1, respectively. Also, let Joint 5 be the end effector,
and Σ5 be the coordinate system with the origin placed at the position of Joint
5 and that the axes x5, y5 and z5 have the same direction as the axes x4, y4 and
z4, respectively.

Let ai be the distance between axes zi−1 and zi, αi the angle between axes
zi−1 and zi with respect to xi axis, di the distance between axes xi−1 and xi,
and θi be the angle between axes xi−1 and xi with respect to zi axis. Then, the
coordinate transformation matrix i−1Ti from the coordinate system Σi−1 to Σi

is expressed as

i−1Ti =

⎛
⎜⎜⎝

1 0 0 ai

0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 cos αi − sin αi 0
0 sin αi cos αi 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

cos θi − sin θi 0 ai

cos αi sin θi cos αi cos θi − sin αi −di sin αi

sin αi sin θi sin αi cos θi cos αi di cos αi

0 0 0 1

⎞
⎟⎟⎠ .

Since the joint parameters ai, αi, di and θi for EV3 are given as shown in Table 1
(note that the unit of ai and di is centimeters) and the transformation matrix
T from the coordinate system Σ5 to Σ0 is calculated as T = 0T1

1T2
2T3

3T4
4T5,

the position t(x, y, z) of the end effector with respect to the coordinate system
Σ0 is expressed as

⎛
⎝

x
y
z

⎞
⎠ =

⎛
⎝

8(2 cos(θ2 + π/4) + 2 cos(θ2 + θ3 + π/4) +
√

2) cos θ1
8(2 cos(θ2 + π/4) + 2 cos(θ2 + θ3 + π/4) +

√
2) sin θ1

16 sin(θ2 + θ3 + π/4) + 8 + 8
√

2

⎞
⎠ . (1)
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x5 y5

Fig. 2. Components and the coordinate systems of the manipulator.

Table 1. Joint parameters for EV3.

i ai (cm) αi di (cm) θi

1 0 0 8 θ1

2 0 π/2 0 π/4

3 16 0 0 θ2

4 16 0 0 θ3

5 16 0 0 0

Next, for solving the inverse kinematics problem, we solve Eq. (1) with respect
to θ1, θ2, θ3. With the expansion of trigonometric functions using the trigonometric
addition formulas and transformation of trigonometric functions defined as

ci = cos θi, si = sin θi,

subject to c21 + s2i = 1, Eq. (1) is transferred to a system of algebraic equations:

f1 = 8
√

2c1(c2 + c3(c2 − s2) − s2 − s3(c2 + s2) + 1) − x = 0,

f2 = 8
√

2s1(c2 + c3(c2 − s2) − s2 − s3(c2 + s2) + 1) − y = 0,

f3 = 8
√

2(c2 + c3(c2 + s2) + s2 + s3(c2 − s2) + 1) + 8 − z = 0,

f4 = s21 + c21 − 1 = 0, f5 = s22 + c22 − 1 = 0, f6 = s23 + c23 − 1 = 0.

(2)

Then, by putting the coordinate t(x, y, z) into Eq. (2) and computing Gröbner
basis of an ideal 〈f1, . . . , f6〉 with respect to the lexicographic (lex) ordering, a
“triangularized” system of equations is obtained. By solving the triangularized
system of equations, configuration of the joint angles θ1, θ2, θ3 are obtained.
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Remark 1. We see that the ideal 〈f1, . . . , f6〉 is zero-dimensional for generic
values of x, y, z, as follows. By computing the comprehensive Gröbner sys-
tem [8] of 〈f1, . . . , f6〉 with parameters x, y, z and variables c1, s1, c2, s2, c3, s3
in R[x, y, z, c1, s1, c2, s2, c3, s3] with respect to lex order with c1 � s1 � c2 �
s2 � c3 � s3, we have {g1, g2, g3, g4, g5, g6} as the Gröbner basis for the generic
case2. In the generic case, we have LM(g1) = s43, LM(g2) = c3, LM(g3) = s2,
LM(g4) = c2, LM(g5) = s1, LM(g6) = c1, where LM(g) denotes the leading
monomial of g. This shows that the ideal is zero-dimensional for the generic
case [1].

3 Implementation

We have implemented a system for the inverse kinematics computation of the
manipulator in SymPy [12] on the top of Python, connecting with the computer
algebra system Risa/Asir [14] via OpenXM infrastructure for communicating
mathematical software systems [10].

Python (and SymPy) has been chosen for rapid development including the
use of the library for solving algebraic equations, and interoperability with the
Robot Operating System (ROS) [9] for embedding our present implementation
as a simulation environment or an inverse kinematics solver in the future.

OpenXM (which stands for “Open message eXchange protocol for Mathe-
matics”) consists of definitions of protocols and data formats for communication
and/or interchange of mathematical information among mathematical software
systems. It also includes implementation of interface for various mathemati-
cal softwares including Risa/Asir, Kan/sm1 [20], Maple [11], Mathematica [26],
MixedVol [3], NTL [16], PHC Pack [25] and TiGERS [4].

Risa/Asir is used for effective computation of Gröbner bases. After receiving
input polynomials from Python/SymPy, it first computes the Gröbner basis with
respect to the graded reverse lexicographic (grlex) ordering. Then, it converts the
basis to the one with respect to lex ordering (with a modular FGLM algorithm
[14]) before returning the final result to the host program. Risa/Asir can be
called from Python easily using ctypes library [15] with the OpenXM interface
library for Risa/Asir.

4 Experiments

We have tested our implementation for inverse kinematics computation for ran-
domly given points within the feasible region.

For solving a system of algebraic equations, the following solvers have been
used:

1. a built-in exact solver in SymPy (sympy.solvers.solvers.solve),

2 We have computed the comprehensive Gröbner system on Risa/Asir using an imple-
mentation by Nabeshima [13].
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2. a numerical solver in Python’s npmath library [6] (mpmath.findroot) using
multivariate secant method3 (called by sympy.solvers.solvers.nsolve
function in SymPy package),

3. a numerical solver in Python’s NumPy package [24] (numpy.roots) solving
univariate algebraic equations with successive substitutions.

For each solver, 10 sets of experiments were conducted with 100 random points
given in each set of experiments (thus 1000 random points were given in total).

The computing environment is as follows.
Host environment. Intel Core i5-7360U 2.3GHz, RAM 8GB, macOS 10.15.1,

Parallels Desktop Lite 1.4.0.
Guest environment. RAM 2GB, Linux 4.15.0, Python 2.7.12, SymPy 1.4,

mpmath 1.1.0, numpy 1.11.0, OpenXM 1.3.3-1, Asir 20191101.

Remark 2. As shown in Remark 1, if the given point is within the feasible region,
the system of algebraic equations g1 = · · · = g6 = 0 has real solution(s) and
can be solved rigorously, where {g1, . . . , g6} is the Gröbner basis of the ideal
〈f1, . . . , f6〉 with respect to lex order.

Remark 3. For the exact computation of Gröbner bases, the coordinates of the
sample points are given as rational numbers with the magnitude of the denomi-
nator is less than 100.

4.1 The Result with an Exact Solver (solve)

Table 2 shows the result of experiments with the exact solver
(sympy.solvers.solvers.solve) [19]. For a system of algebraic equations, the
solver computes a Gröbner basis with lex order, solve univariate equations and
substitute the roots in the other equations to obtain the other coordinate4.

In each test, TGB is the average of computing time of Gröbner basis, TSolve

is the average of computing time for solving the system of algebraic equations,
TTotal is the average of total computing time for inverse kinematics computa-
tion, and ‘Error’ is the average of absolute error of the position of the end
effector with the configuration of joint angles θ1, θ2, θ3, computed by solving the
inverse kinematics problem, from the randomly given position. Note that TTotal

includes the time for synchronizing received data of Gröbner basis from Risa/Asir
(� 1.5 s) and the time for evaluation of Error. The bottom row ‘Average’ shows
the average of the values in each column of the 10 test sets.

In all the test cases, the system of algebraic equations has been rigorously
solved with finding appropriate real roots, although it took much time for finding
the roots. For finding joint angles θ1, θ2, θ3, the solutions s1, c1, s2, c2, s3, c3 have
been approximated by double precision floating-point numbers for efficient use
of arctan function. We see that, though the approximation of the solution, the
position of the end effector has been computed with high precision, compared
to the length of the segments (Table 1).
3 As the initial values, (c1, s1, c2, s2, c3, s3) = (1, 1, 1, 1, 1, 1) were given.
4 The solver may not need a Gröbner basis of lex order as an input, but it might be

better to compute beforehand for faster computation.
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Table 2. A result of the inverse kinematics computation with the exact solver (nsolve).

Test TGB (s) Tsolve (s) TTotal (s) Error (cm)

1 0.511 37.410 58.771 4.775 × 10−11

2 0.244 38.268 60.528 4.747 × 10−11

3 0.378 37.890 59.970 5.015 × 10−11

4 0.311 38.123 57.955 4.951 × 10−11

5 0.234 38.615 61.405 4.633 × 10−11

6 0.471 37.599 59.809 4.525 × 10−11

7 0.292 37.839 59.784 4.884 × 10−11

8 0.166 22.145 36.476 4.976 × 10−11

9 0.254 21.568 35.650 4.794 × 10−11

10 0.267 21.501 34.217 4.960 × 10−11

Average 0.312 33.092 52.457 4.826 × 10−11

4.2 The Result with the Multivariate Numerical Solver (nsolve)

Table 3 shows the result of experiments with the multivariate numerical solver
(mpmath.findroot) [5]. The columns ‘Test’, TGB, TSolve, TTotal, ‘Error’, and
the bottom row ‘Average’ are the same as those in Table 2. In these sets of
experiments, we have observed that the method did not converge in many cases,
so the column ‘#Fail’ shows the number of tests in which the method did not
converge in each test set. Note that the data in TGB, TSolve, TTotal, ‘Error’ and
‘Average’ have been taken for the tests in which the method has successfully
converged. The number ‘(564)’ in the ‘Average’ row and the ‘#Fail’ column
shows the total number of tests in which the method did not converge5.

The result shows that the method did not converge in approximately half of
the test cases, while, in the cases that the method converged, the method is more
efficient than the exact root-finding method. It also shows that, in the cases that
the method converged, the magnitude of the absolute error of the solution is
approximately 10 times larger than those in the case of the exact method, which
is sufficiently small for practical use 6.

5 We have tested the method with other initial values. With the initial values
(1, 0, 1, 0, 1, 0), the number of test cases in which approximate roots do not con-
verge was the same as the test cases with initial values (1, 1, 1, 1, 1, 1). With initial
values (0, 1, 0, 1, 0, 1), the approximate roots have never converged to the roots.

6 We have also applied the multivariate numerical solver to the original system
of equations with initial values (1, 1, 1, 1, 1, 1), (0, 0, 0, 0, 0, 0), (1, 0, 1, 0, 1, 0) and
(0, 1, 0, 1, 0, 1), and found that none of the initial values converge to true roots in all
the test cases.



10 N. Horigome et al.

Table 3. A result of the inverse kinematics computation with the multivariate numer-
ical solver (nsolve).

Test TGB (s) TSolve (s) TTotal (s) Error (cm) #Fail

1 0.249 0.261 4.096 2.689 × 10−10 54

2 0.248 0.256 4.086 2.819 × 10−10 49

3 0.274 0.275 4.140 2.648 × 10−10 55

4 0.264 0.268 4.112 3.182 × 10−10 60

5 0.264 0.271 4.121 2.375 × 10−10 62

6 0.264 0.269 4.119 2.618 × 10−10 68

7 0.268 0.276 4.126 2.612 × 10−10 52

8 0.272 0.274 4.133 2.770 × 10−10 50

9 0.270 0.265 4.119 2.995 × 10−10 50

10 0.290 0.254 4.118 2.705 × 10−10 64

Average 0.266 0.267 4.117 2.741 × 10−10 (564)

Table 4. The result of the inverse kinematics computation with the univariate numer-
ical solver (roots) with successive substitutions.

Test TGB (s) TSolve (s) TTotal (s) Error (cm)

1 0.245 0.309 4.181 2.720 × 10−10

2 0.246 0.306 4.179 2.659 × 10−10

3 0.246 0.306 4.179 2.639 × 10−10

4 0.247 0.307 4.181 2.741 × 10−10

5 0.251 0.313 4.187 2.757 × 10−10

6 0.250 0.316 4.197 2.720 × 10−10

7 0.254 0.314 4.198 2.588 × 10−10

8 0.252 0.307 4.183 2.653 × 10−10

9 0.254 0.309 4.186 2.773 × 10−10

10 0.253 0.307 4.181 2.755 × 10−10

Average 0.250 0.309 4.185 2.700 × 10−10

4.3 The Result with the Univariate Numerical Solver (roots) with
successive substitutions

Table 4 shows the result of experiments with the univariate numerical solver
(numpy.roots) [21]. The columns ‘Test’, TGB, TSolve, TTotal, ‘Error’, and the
bottom row ‘Average’ are the same as those in Tables 2 and 3. The result shows
that the method successfully converged and found appropriate solutions with
sufficiently small errors in all the tests.
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5 Concluding Remarks

In this paper, we have presented a portable implementation of the inverse kine-
matics computation of a 3 DOF robot manipulator using Gröbner bases. The
implementation is made on the top of Python and SymPy with using Risa/Asir
for efficient computation of Gröbner bases and symbolic and/or numerical solvers
called within Python for solving a system of algebraic equations. Risa/Asir can
easily be called from Python via OpenXM infrastructure.

The experiments have shown the following features of solvers used in solving
the system of algebraic equations used in the present computation:

1. Symbolic solver can be used for inverse kinematics computation with high
accuracy with the certification of real roots, although the computing time
increases.

2. Multivariate numerical solver is often unstable, although it can be used to
solve the inverse kinematics problem with high efficiency and accuracy in
stable cases.

3. Univariate numerical solver with successive substitutions is stable with high
efficiency and accuracy for all the tests in the present paper.

Thus, we see that univariate numerical solver with successive substitutions is
effective for solving the inverse kinematics problem in the present case, although
certification of real roots may be needed.

For future research, we need to improve implementation for calling Risa/Asir
from Python via OpenXM in a more sophisticated way for more efficient com-
putation.7 Furthermore, we intend to extend our implementation for embedding
our solver in robotics simulators such as ROS and/or controlling the actual EV3
manipulators including the one we have built in the present paper.
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Abstract. This paper is part of our ongoing research on the adaptation
of Lazard’s CAD to benefit from equational constraints in formulae. In
earlier work we combined the CAD methods of McCallum and Lazard
so as to produce an efficient algorithm for decomposing a hypersurface
rather than the whole of Rn (exploiting an equational constraint f = 0).
That method, however, fails if f is nullified (in McCallum’s terminology):
we call the set where this happens a curtain. Here we provide a further
modification which, at the cost of a trade off in terms of complexity, is
valid for any hypersurface, including one containing curtains.

1 Introduction

A Cylindrical Algebraic Decomposition (CAD) is a decomposition of a semi-
algebraic set S ⊆ R

n (for any n) into semi-algebraic sets (also known as cells)
homeomorphic to R

m, where 0 ≤ m ≤ n, such that the projection of any two cells
onto the first k coordinates is either the same or disjoint. We generally want the
cells to have some property relative to some given set of input polynomials, often
used to form constraints using sign conditions. For example, we might require
sign-invariance, i.e. the sign of each input polynomial is constant on each cell,
as in the original algorithm of [3].

CAD algorithms have many applications: epidemic modelling [1], artificial
intelligence to pass exams [13], financial analysis [10], and many more, so efficient
algorithms are of more than theoretical interest.

If S is contained in a subvariety of R
n it is clearly wasteful to compute a

decomposition of Rn. McCallum, in [7], adapts his earlier algorithm [6] to this
situation. To explain this idea more precisely, we need some terminology.

Definition 1. A Quantifier Free Tarski Formula (QFF) is made up of atoms
connected by the standard boolean operators ∧,∨ and ¬. The atoms are state-
ments about signs of polynomials f ∈ R[x1, . . . , xn], of the form f ∗ 0 where
∗ ∈ {=, <,>} (and by combination also {≥,≤, 	=}).

Strictly speaking we need only the relation <, but this form is more conve-
nient because of the next definition.
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Definition 2. [4] An Equational Constraint (EC) is a polynomial equation log-
ically implied by a QFF. If it is an atom of the formula, it is said to be explicit;
if not, then it is implicit. If the constraint is visibly an equality one from the
formula, i.e. the formula Φ is f = 0 ∧ Φ′, we say the constraint is syntactically
explicit.

Although implicit and explicit ECs have the same logical status, in practice
only the syntactically explicit ECs will be known to us and therefore be available
to be exploited.

Example 1. [4] Let f and g be two real polynomials.

1. The formula f = 0 ∧ g > 0 has an explicit EC, f = 0.
2. The formula f = 0 ∨ g = 0 has no explicit EC, but the equation fg = 0 is an

implicit EC.
3. The formula f2 +g2 ≤ 0 also has no explicit EC, but it has two implicit ECs:

f = 0 and g = 0.
4. The formula f = 0 ∨ f2 + g2 ≤ 0 logically implies f = 0, and the equation

is an atom of the formula which makes it an explicit EC according to the
definition. However, since this deduction is semantic rather than syntactic, it
is more like an implicit EC rather than an explicit EC.

Definition 3. Let A be a set of polynomials in R[x1, . . . , xn] and P :
R[x1, . . . , xn] × R

n → Σ a function to some set Σ. If C ⊂ R
n is a cell and

the value of P (f, α) is independent of α ∈ C for every f ∈ A, then A is called
P -invariant over that cell. If this is true for all the cells of a decomposition, we
say the decomposition is P -invariant.

Much work has been done on sign-invariant CADs, but we first focus our
attention on the algorithm for lex-least invariant CADs introduced by Lazard [5]
(for a validity proof, see [9]). Unlike the algorithm in [6] it works in the presence
of curtains (see Definition 11 below), and has some complexity advantages also.
In [12] we adapted [5] to the case of an EC, analogously to the adaptation of [6]
in [7], but in doing so we reintroduced the problem of curtains. This paper
revisits [12] and provides a hybrid algorithm, which we believe to be the first
one that directly gives a CAD of the variety defined by an EC and yet is valid
even on curtains. This process avoids going via a CAD of R

n (Cn for regular
chains [2]).

In Sect. 3 we analyse the reasons why curtains are a problem, and explain
how the previous literature has concentrated on valuations rather than curtains
themselves. Section 4 consists of the complexity analysis of our algorithm. As
in [12], this algorithm cannot be used recursively because the projection oper-
ator used in the first stage of projection would output a partial CAD which is
a hybrid between sign-invariant and lex-least invariant on curtains of the equa-
tional constraint.
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2 Lex-Least Valuation and Its Applications in CAD

In order to understand lex-least valuation, let us recall lexicographic order ≥lex

on N
n, where n ≥ 1.

Definition 4. We say that v = (v1, . . . , vn) ≥lex (w1, . . . , wn) = w if and only
if either v = w or there exists an i ≤ n such that vi > wi and vk = wk for all k
in the range 1 ≤ k < i.

Definition 5. [9, Definition 2.4] Let n ≥ 1 and suppose that f ∈ R[x1, . . . , xn]
is non-zero and α = (α1, . . . , αn) ∈ R

n. The lex-least valuation να(f) at α is the
least (with respect to ≥lex) element v = (v1, . . . , vn) ∈ N

n such that f expanded
about α has the term

c(x1 − α1)v1 · · · (xn − αn)vn ,

where c 	= 0.

Note that να(f) = (0, . . . , 0) if and only if f(α) 	= 0. The lex-least valuation
is referred to as the Lazard valuation in [9].

Example 2. If n = 1 and f(x1) = x3
1 − 2x2

1 + x1, then ν0(f) = 1 and ν1(f) = 2.
If n = 2 and f(x1, x2) = x1(x2 − 1)2, then ν(0,0)(f) = (1, 0), ν(2,1)(f) = (0, 2)
and ν(0,1)(f) = (1, 2).

Definition 6. [9] Let n ≥ 2, and suppose that f ∈ R[x1, . . . , xn] is non-zero
and that β ∈ R

n−1. The Lazard residue fβ ∈ R[xn] of f at β, and the lex-least
valuation Nβ(f) = (ν, . . . , νn−1) of f above β are defined to be the result of
Algorithm 1.

Algorithm 1. Lazard residue
Input: f ∈ R[x1, . . . , xn] and β ∈ R

n−1.
Output: Lazard residue fβ andLex-least valuation of f above β.

1: fβ ← f
2: for i ← 1 to n − 1 do
3: νi ← greatest integer ν such that (xi − βi)

ν |fβ .
4: fβ ← fβ/(xi − βi)

νi .
5: fβ ← fβ(βi, xi+1, . . . , xn)
6: end for
7: return fβ , (ν1, . . . , νn−1)

Do not confuse the lex-least valuation Nβ(f) ∈ Z
n−1 of f above β ∈ R

n−1

with the lex-least valuation να(f) ∈ Z
n at α ∈ R

n, defined in Definition 5. Notice
that if α = (β, bn) ∈ R

n then να(f) = (Nβ(f), νn) for some integer νn: in other
words, Nβ(f) consists of the first n − 1 coordinates of the valuation of f at any
point above β.
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Definition 7. [9, Definition 2.10] Let S ⊆ R
n−1 and f ∈ R[x1, . . . , xn]. We say

that f is Lazard delineable on S if:

i) The lex-least valuation of f above β is the same for each point β ∈ S.
ii) There exist finitely many continuous functions θi : S → R, such that θ1 <

. . . < θk if k > 0 and such that for all β ∈ S, the set of real roots of fβ is
{θ1(β), . . . , θk(β)}.

iii) If k = 0, then the hypersurface f = 0 does not pass over S. If k ≥ 1, then
there exist positive integers m1, . . . , mk such that, for all β ∈ S and for all
1 ≤ i ≤ k, mi is the multiplicity of θi(β) as a root of fβ.

Definition 8. [9, Definition 2.10] Let f be Lazard delineable on S ⊆ R
n−1.

Then

i) The graphs θi are called Lazard sections and mi is the associated multiplicity
of these sections.

ii) The regions between consecutive Lazard sections1 are called Lazard sectors.

Remark 1. If f is Lazard delineable on S and the valuation of f above any point
in S is the zero vector, then the Lazard sections of f are the same as the sections
of f defined as in [3] and [7].

Remark 2. We can use Algorithm 1 to compute the lex-least valuation of f at
α ∈ R

n. After the loop is finished, we proceed to the first step of the loop and
perform it for i = n and the n-tuple ν1, . . . , νn is the required valuation.

Definition 9. [12] Let A ⊂ R[x1, . . . , xn] be a set of polynomials. Let E ⊆ A,
and define the projection operator PLE(A) as follows

PLE(A) = ldcf(E) ∪ trcf(E) ∪ disc(E) ∪ {resxn
(f, g) | f ∈ E, g ∈ A \ E}.

Here ldcf(E) and trcf(E) are the sets of leading and trailing coefficients of ele-
ments of E. The set disc(E) is the set of all discriminants of E and res(E) =
{res(f, g) : f, g ∈ E} the set of cross-resultants. We will be comparing this to
Lazard’s projection operator PL(A) defined in [9]. Note that in the practical use
of the operator the set E corresponds to equational constraints.

Theorem 1. [9] Let f(x, xn) ∈ R[x, xn] have positive degree d in xn, where
x = (x1, . . . , xn−1). Let D(x), l(x) and t(x) denote the discriminant, leading
coefficient and trailing coefficient (with respect to xn) of f , respectively, and
suppose that each of these polynomials is non-zero (as an element of R[x]). Let
S be a connected analytic subset of R

n−1 in which D(x), l(x) and t(x) are all
lex-least invariant. Then f is Lazard delineable on S, and hence f is lex-least
invariant in every Lazard section and sector over S. Moreover, the same conclu-
sion holds for the polynomial f∗(x, xn) = xnf(x, xn).

1 Including θ0 = −∞ and θk+1 = +∞.



Curtains in CAD: Why Are They a Problem and How Do We Fix Them? 21

Theorem 2. [12] Let n ≥ 2 and let f, g ∈ R[x1, . . . , xn] be of positive degrees in
the main variable xn. Suppose that f is Lazard delineable on a connected subset
S ⊂ R

n−1, in which R = resxn
(f, g) is lex-least invariant, and f does not have a

curtain on S (see Definition 12 below). Then g is sign-invariant in each section
of f over S.

Definition 10. Let A be a set of polynomials and D be the lex-least invariant
CAD of A. Let C be a cell of D. The valuation of cell C with respect to a
polynomial f ∈ A is the lex-least valuation f at any point α ∈ C.

3 Implications of Curtains on CAD

We propose some geometric terminology to describe the conditions under which
a polynomial is nullified in the terminology of [7].

Definition 11. A variety C ⊆ R
n is called a curtain if, whenever (x, xn) ∈ C,

then (x, y) ∈ C for all y ∈ R.

Definition 12. Suppose f ∈ R[x1, . . . , xn] and W ⊆ R
n−1. We say that f has

a curtain at W if for all x ∈ W and y ∈ R we have f(x, y) = 0.

Remark 3. Lazard delineability differs from delineability as in [3] and [7] in two
important ways. First, we require lex-least invariance on the sections. Second,
delineability is not defined on curtains, but Lazard delineability is because the
Lazard sections are of fβ rather than f .

Fig. 1. Example illustrating the problems with curtains.
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The algorithms in [7] and [8] exploit ECs but both rely on order-invariance.
Because order is not defined on curtains, these algorithms fail there. It is there-
fore natural to try to use Lazard’s algorithm, which does not have this issue
when used to construct a full CAD of Rn. However, when we try to exploit an
EC, a difficulty does still arise if the EC has a curtain (Fig. 1).

Example 3. Let f = x2 + y2 − 1 (which we assume to be an EC), g1 = z − x − 1
and g2 = z − y − 1 (which we assume are not ECs). Then res(f, g1) = x2 + y2 −
1 = res(f, g2), and this gives us no information about res(g1, g2). In such cases,
when the EC has a curtain, it becomes impossible to use PLE to detect the
intersections of the other constraints on that curtain. Because of this, we must
resort to a general-purpose projection such as the one in [3], which includes these
resultants, when we are on a curtain contained in the hypersurface defined by
the EC.

In one common case, where W in Definition 12 is a single point, we can avoid this
complication.

Definition 13. We say that f ∈ R[x1, . . . , xn] has a point curtain at α ∈ R
n−1

if Nα(f) 	= (0, . . . , 0) and there exists a neighbourhood U of α such that Nα′(f) =
(0, . . . , 0) for all α′ ∈ U \ {α}.
In this case we do not need to consider the resultants between the non-equational
constraints A\{f} when projecting.

Theorem 3. Let f ∈ R[x1, . . . , xn] and let α ∈ R
n−1. If f is an equational

constraint and has a point curtain at α, then PLE is sufficient to obtain a sign-
invariant CAD.

Indeed, if f has a curtain on a set S of positive dimension, we need the resultants
of the non-equational constraints to determine sample points in R

n−1 above
which two such constraints meet, as in Example 3. For a point curtain, there
is only one sample point in R

n−1, namely α. We calculate the roots of Lazard
residues of all constraints to determine the sample points on the curtain (which
is the fibre above α), and nothing more is needed: the algorithm still produces
a lex-least invariant CAD. Further details will appear in [11].

For this to be useful we need to be able to detect and classify curtains (i.e.
tell whether or not they are point curtains), Algorithm 2 describes this process.

Remark 4. In steps 5 and 6 of Algorithm 2 we explicitly are looking at the
neighbouring cells of the sample points rather than just checking the parity of
their indices. This measure is taken to avoid cases where a sample point might
seem to be a point curtain, but is actually a part of a larger curtain. This can
be seen in Example 3, where the curtains above (1, 0) and (−1, 0) are part of a
larger curtain.

Remark 5. Algorithm 3 is called once a CAD is computed using the reduced
Lazard projection operator. This algorithm focuses only on decomposing the
curtains of the equational constraint.
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Algorithm 2. Detecting and Classifying Curtains
(B) ← PC(f, I, S, n)
Input = Set of indices I, set of sample points S with respect to the indices I which
correspond to the CAD cells, equational constraint f ∈ R[x1, . . . , xn].
Output = B, B′, where B is the set of sample points that are point cur-
tains and B′ is the set of sample points that are curtains (but not point cur-
tains).

1: B ← Empty List
2: B′ ← Empty List
3: for α ∈ S do
4: if να(f) �= 0 then
5: Check if the nearest 1-cell neighbours have zero valuation.
6: If all neighbours are zero valuation add α to B otherwise add it to B′

7: end if
8: end for
9: return (B,B′)

Algorithm 3. Partial CAD for Curtains
(I ′, S′) ← DCBS(A, I, S, C, n)
Input = Set of indices I, set of sample points S with respect to the indices I, set of
polynomials A, C is a list of tuples of sample points that are non-point curtains and
their respective indices and n the dimension of our space.
Output = I ′, S′ list of sample points and their indices for sections of the equational
constraints that are curtains.

1: If n ≥ 2 then go to step 5.
2: for each (c, i) ∈ C do
3: Isolate the real roots of the irreducible factors of the non-zero elements of A

between the neighbours of c. Construct cell indices I ′ and sample points S′ from
the real roots. Exit.

4: end for
5: B ← the square free basis of the primitive parts of all elements of A.
6: P ← cont(A) ∪ PL(B).
7: (I ′′, S′′) ← DCBS(P, I, S, C, n − 1).
8: (I ′, S′) ← (empty list,empty list).
9: for each α ∈ S′′ do

10: f∗ ← {fα | f ∈ B}.
11: for each (c, i) ∈ C do
12: Isolate the real roots of all the polynomials in f∗ between the neighbours of

c (looking at the nth coordinate).
13: Construct cell indices and sample points for Lazard sections and sectors of

elements of B from i, α and the isolated real roots of f∗.
14: Add the sample points to I ′ and S′.
15: end for
16: return (I ′, S′).
17: end for
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Example 4. Suppose Fig. 2 describes the sample points obtained using the CAD
algorithm with the reduced Lazard projection operator. In this example, sample
points S3,3,1, S3,3,2 and S3,3,3 describe the cells that are part of the curtain
of the equational constraint. The sample points circled in blue represent the
sample points that lead to S3,3,1, S3,3,2 and S3,3,3 during lifting. The following
steps describe Algorithm 3. First, we project all non-equational constraints using
Lazard’s original projection operator. When computing sample points, we only
consider those which lie within the neighbours of the curtain sample point. For
example in our case, at level x1, we calculate all sample points between S2 and
S4.

Since we are only decomposing the curtain part of the equational constraint,
we only need to look at the cell described by S3. This results in computing the
roots between S2 and S4 (and their respective sample points as well). We lift
these sample points to level x2. When computing at level x2, we consider the
roots (and their respective sample points) between S3,2 and S3,4, by the same
argument. If at any level the index of the sample point is even, we do not need
to calculate roots, but consider that value as our sample point for lifting. Once
we lift to x3, we have successfully decomposed our curtain.

CAD

S1 S2 S3

S3,1 S3,2 S3,3

S3,3,1 S3,3,2 S3,3,3

S3,4 S3,5

S4 S5 x1

x2

x3

Fig. 2. Example of root finding in the lifting modification

4 Complexity Analysis of Curtain Solving Method

In this section we look at the complexity of the number of cells produced by
Algorithm 3. Note that Algorithm 3 works so to speak on top of the algorithm
described in [12]. The idea is to do a second decomposition on the sections of
the equational constraint that contain curtains.

Theorem 4. Given a set A of m polynomials in n variables with maximum
degree d in any one variable, Algorithm 3 outputs a partial CAD (i.e. a CAD of
{f = 0} only) with the number of cells being at most

22
n−1(m(3m + 1)2

n−1−1 + (m − 1)m2n−1−1)d2
n−1. (1)



Curtains in CAD: Why Are They a Problem and How Do We Fix Them? 25

This complexity is an improvement on the existing method of using [5] in full
without exploiting the EC, and unlike [12] and [7] the algorithm is valid on
curtains.

Proof. The first step, using a single equational constraint, has the same com-
plexity as [7]. Further to this, if the equational constraint has curtains, we need
to re-project the non-equational constraints, thus performing a CAD of m − 1
polynomials of maximum total degree d. Combining these two gives the bound
in (1).

The following verifies that the modified algorithm is better than [5] in terms
of complexity. It has worse complexity than [12] but is valid for equational con-
straints with curtains.

The complexity of [5] is 22
n−1(m + 1)2

n−2md2
n−1 so after removing a factor

of 22
n−1md2

n−1 the claim is that

(3m + 1)2
n−1−1 + (m − 1)m2n−1−2 < (m + 1)2

n−2.

We may assume m ≥ 2 and n ≥ 2 (otherwise there is nothing to do) so

(3m + 1)2
n−1−1 + (m − 1)m2n−1−2 < 32

n−1−1(m + 1)2
n−1−1 + (m + 1)2

n−1−1

= (32
n−1−1 + 1)(m + 1)2

n−1−1

= (m + 1)2
n−2 32

n−1−1 + 1
(m + 1)2n−2n−1−1

≤ (m + 1)2
n−2 32

n−1−1 + 1
32n−2n−1−1

= (m + 1)2
n−2(3−2n + 3−2n+2n−1+1)

< (m + 1)2
n−2

since 3−2n + 3−2n+2n−1+1 ≤ 3−4 + 3−1 = 28
81 < 1.

5 Conclusion and Further Research

Algorithm 3 is the first partial CAD algorithm which is a hybrid between
sign-invariant and lex-least invariant CAD algorithms. It allows us to exploit
equational constraints unconditionally. The novelty lies in performing a second
decomposition of the curtain sections of the equational constraints: the worst
case for the complexity analysis is when the entire equational constraint is a
curtain. More analysis needs to done, as better complexity should be achievable,
and we hope to do this the near future. We are currently looking into extending
this approach so as to produce as output a partial CAD that has a hybrid of
order invariance and lex-least invariance. Note that lex-least invariance over a
given region does not imply order invariance, but an order invariant CAD is also
lex-least invariant. The desire to produce lex-least invariance in future work is
driven by the aim of a recursive result.
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Abstract. In this paper, we first prove that the incremental algorithm
for computing triangular decompositions proposed by Chen and Moreno
Maza in ISSAC’ 2011 in its original form preserves chordality, which
is an important property on sparsity of variables. On the other hand,
we find that the current implementation in Triangularize command of
the RegularChains library in Maple may not always respect chordality
due to the use of some simplification operations. Experimentation show
that modifying these operations, together with some other optimizations,
brings significant speedups for some super sparse polynomial systems.

Keywords: Triangular decomposition · Chordal graph · Incremental
algorithm · Regular chain

1 Introduction

The method of triangular decomposition pioneered by Ritt [19] and Wu [23]
has become a basic tool for computing the solutions of polynomial systems over
an algebraically closed field. Given a finite set of polynomials F , this method
decomposes F into finitely many systems of triangular shape such that the
union of their zero sets is the same as that of F . With such decomposition
in hand, many information on the solution set, such as emptiness, dimension,
cardinality, etc., can be easily obtained. Triangular decomposition has been stud-
ied and gradually improved by many others in both theory [1,2,14,15,25] and
algorithms [7,10,12,13,16,17,22,24]. Efficient implementations exist in a Maple
built-in package RegularChains as well as many other libraries and softwares,
such as Epsilon, Wsolve, Magma, and so on.

Nowadays, triangular decomposition has also become an important back-
end engine for several algorithms in studying semi-algebraic sets, such as real
root classification [24] and comprehensive triangular decomposition of paramet-
ric semi-algebraic sets [5], computing sample points of semi-algebraic sets [4],
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describing semi-algebraic sets [4], as well as computing cylindrical algebraic
decompositions and performing quantifier elimination [3,8,9]. These algorithms
and their implementations make triangular decomposition become an efficient
tool in many applications, such as theorem proving, program verification, sta-
bility analysis of biological systems, and so on.

To further improve the efficiency of triangular decomposition, one impor-
tant direction is to explore the structure of input systems, such as symmetry
and sparsity. The work of [11] brings the concept of variable sparsity to the
world of triangular decomposition by virtue of the chordal graph of polynomial
systems. Chordal graph already exists in many other contexts, such as Gauss
elimination [20] and semidefinite optimization [21].

It has already been shown that some top-down algorithms [22] (up to minor
modification of its original form) preserve chordality [18]. Incremental algo-
rithms [7,16,17] are another important class, which compute triangular decom-
positions by induction on the number of polynomials. It is a natural question
to ask if the incremental algorithms can also preserve chordality. In this paper,
we provide an affirmative answer to this question for the incremental algorithm
proposed in [6,7]. On the other hand, we find that the current implementation of
this algorithm in Triangularize command of the RegularChains library in Maple
may not always respect chordality. After a careful examination of the imple-
mentation, we point out this is due to the use of some simplification operations.
Finally, we show by experimentation that modifying these operations, together
with some other optimizations, bring significant speedups for Triangularize on
some super sparse polynomial systems.

2 Basic Lemmas

Definition 1 (Graph). Let x = x1, . . . , xn and F ⊂ k[x]. The (associated)
graph G(F ) of F is an undirected graph defined as follows:

– The set V of vertices of G(F ) is the set of variables appearing in F .
– The set E of edges of G(F ) is the set of (xi, xj), i �= j, where xi and xj

simultaneously appear in some f ∈ F .

Denote by v(G(F )) an operation which returns V .

Definition 2 (Perfect elimination ordering). Let G = (V,E) be a graph
with vertices V = {x1, . . . , xn}. An ordering x = xi1 > · · · > xin is a perfect
elimination ordering for G if for any xij , the induced subgraph on the set of
vertices Vij = {xij}∪{xik | xik < xij and (xij , xik) ∈ E} is a clique. If a perfect
elimination ordering x exists for G, we say G is chordal (w.r.t. x). We say that
a graph G with vertices V = {x1, . . . , xn} is a chordal completion of G, if G is
chordal and G is a subgraph of G.

Example 1. Let F := {x2
1 − x2

2 + x2x4, x
2
2 − x3x4}. Then G(F ) is illustrated in

Fig. 1, where the vertex xi is renamed as i for short. The ordering x1 > x2 >
x3 > x4 is a perfect elimination ordering and G is chordal w.r.t. this ordering.
Another ordering x2 > x1 > x3 > x4 is not a perfect elimination ordering.
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Fig. 1. Chordal graph.

Definition 3. Let x be a given ordering and F ⊂ k[x]. Let M : 2k[x] → 22
k[x]

.
Let G(F ) be any chordal completion of G(F ) w.r.t. the ordering x (that is x is a
perfect elimination ordering for G(F )). We say that M preserves chordality in
G(F ) (resp. G(F )) if for any S ∈ M(F ), we have G(S) ⊆ G(F ) (resp. G(S) ⊆
G(F )). In the former case, we say that M strongly preserves chordality (for F ).
In the latter case, that is M preserves chordality in any chordal completion of
G(F ) w.r.t. x, we say that M preserves chordality (for F ).

Remark 1. Let O : k[x] → 2k[x] be a unary operation which maps f ∈ k[x]
to O(f) ⊂ k[x]. Then it induces a map M which maps {f} to {O(f)}. Let
O : k[x] × k[x] → 2k[x] be a binary operation which maps (f, g) to O(f, g).
Then it induces a map M which maps {f, g} to {O(f, g)}. For both cases, if M
(strongly) preserves chordality, we say that the operation O (strongly) preserves
chordality.

Example 2. Consider F := {x1
3 − 1, x2

3 − 1, x3
3 − 1, x4

3 − 1, x1
2 + x1x2 +

x2
2, x2

2 + x2x3 + x3
2, x3

2 + x3x4 + x4
2, x1

2 + x1x4 + x4
2}. Figure 1 depicts a

chordal completion G(F ) of G(F ) w.r.t. the ordering x1 > x2 > x3 > x4. Let
M be the Triangularize command in Maple 2019, which computes a set of regular
chains as follows:

{{x1 + x4 + 1, x2 − x4, x3 + x4 + 1, x4
2 + x4 + 1},

{x1 − 1, x2 − x4, x3 + x4 + 1, x4
2 + x4 + 1},

{(x4 − 1)x1 − x4 − 2, x2 − 1, x3 + x4 + 1, x4
2 + x4 + 1},

{x1 − 1, x2
2 + x2 + 1, x3 − 1, x4

2 + x4 + 1},
{x1 + x4 + 1, (x4 + 2)x2 − x4 + 1, x3 − 1, x4

2 + x4 + 1},
{(x3 + 2)x1 − x3 + 1, x2 + x3 + 1, x3

2 + x3 + 1, x4 − 1},
{x1

2 + x1 + 1, x2 − 1, x3
2 + x3 + 1, x4 − 1}}.

As we see, it does not preserve chordality since the graph of the fifth regular
chain is not a subgraph of G(F ).

Definition 4. Let O : K[x] → 2K[x] be a unary operation. We say that it
respects the (elimination) ordering x for f ∈ k[x] if v(O(f)) ⊆ v(f).

Lemma 1. If a unary operation O respects the ordering, then it strongly pre-
serves chordality.
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Proof. It trivially holds since G(f) is a clique for any f ∈ k[x].

Definition 5. Given f ∈ k[x], let mvar(f) be the largest variable appearing in
f . Let O : k[x] × k[x] → 2k[x] be a binary operation. Let S := O(f, g). We say
that O respects the ordering x (for f and g) if the following are satisfied:

– If mvar(f) = mvar(g), we have v(S) ⊆ v({f, g}).
– If mvar(f) �= mvar(g), we have v(S) ⊆ v(f) or v(S) ⊆ v(g).

Lemma 2. Suppose that O respects the ordering x, then we have the following.

– If mvar(f) �= mvar(g), then O strongly preserves chordality.
– If mvar(f) = mvar(g), then O preserves chordality.

Proof. Let G be any chordal completion of G({f, g}) and xi be the common
main variable of f and g. By the definition of chordal graph, the subgraph of G
induced by the set of vertices v(G) \ {xi} is a clique. So the conclusion holds.

Corollary 1. The irreducible factorization Factor strongly preserves chordality.
If the two input polynomials have the same main variable, then the subresul-
tant chain SubRes, the resultant res, the pseudo remainder prem and the pseudo
quotient pquo operations w.r.t. the main variable preserve chordality.

If the input two polynomials do not have the same main variable, then these
operations may destroy chordality, see Example 3.

Example 3. Consider the system F := {f1, f2} again from Example 1 and the
ordering x1 > x2 > x3 > x4. We have mvar(f1) = x1 and mvar(f2) = x2. Then
prem(f1, f2, x2) = x1

2 + x2x4 − x3x4. Clearly prem does not preserve chordality
for f1 and f2.

Lemma 3. Let F ⊂ Q[x]. Let p be a polynomial in F . Assume that F is chordal
w.r.t. the variable order x. Let F ′ := F \ {p}. Then there exists a chordal com-
pletion G(F ′) of G(F ′) (with the same set of vertices) w.r.t. the order x such
that G(F ′) ⊆ G(F ).

Proof. Let G(F ′) := {(u, v) | (u, v) ∈ G(F ), v < u, u ∈ G(F ′) and v ∈ G(F ′)}.
For any u in v(F ′), the set {(u, v), v < u, v ∈ v(F ′)} is a also clique since
{(u, v) | (u, v) ∈ G(F ), v < u, v ∈ v(F )} is a clique by the assumption that F is
chordal. Thus G(F ′) is a chordal completion of G(F ′).

3 The Incremental Algorithm Preserves Chordality

In this section, we prove that the incremental algorithm, namely Algorithm 1,
proposed in [7] preserves chordality. The main subroutine of Algorithm 1 is the
Intersect operation, which takes a polynomial p and a regular chain T as input,
and returns a sequence of regular chains T1, . . . , Tr such that

V (p) ∩ W (T ) ⊆ ∪r
i=1W (Ti) ⊆ V (p) ∩ W (T ), (1)
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where V (p) is the variety of p, W (T ) is the quasi-component of T and W (T ) is
the Zariski closure of W (T ). Due to limited space, we refer the reader to [7] for
a precise definition of these concepts and a detailed description of the algorithm
Intersect and its subroutines Extend, IntersectAlgebraic, IntersectFree, CleanChain,
and RegularGcd.

Algorithm 1: Triangularize(F,R)
1 if F = { } then return {∅};
2 Choose a polynomial p ∈ F ;
3 for T ∈ Triangularize(F \ {p}, R) do output Intersect(p, T,R);

Lemma 4. One can transform Algorithm Triangularize into an equivalent one
with the original flow graph illustrated by the left subgraph of Fig. 2 replaced by
the one depicted in the right subgraph of Fig. 2.

Proof. The transformation can be done in two steps. Firstly one can easily
replace the direct recursions in Extend, Triangularize and IntersectAlgebraic by
iterations. Secondly one can make the function calls to Extend, IntersectAlgebraic,
IntersectFree, CleanChain, RegularGcd inline. As a consequence, one obtains an
equivalent form of Triangularize with the flow graph of function calls depicted in
the right subfig of Fig. 2.

CleanChain

IntersectAlgebraic

IntersectFree

Regularize

Extend

Intersect

RegularGcd

Triangularize

Original flow graph.

Intersect

Triangularize

Regularize

Transformed flow
graph.

Fig. 2. Transform flow graph of the algorithm.
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Lemma 5. For each algorithm in Fig. 2, any polynomial in it, if appearing in
the output of the algorithm or appearing as the output or input of subroutines
in Fig. 2 of the algorithm, is obtained through chordality preserving operations.
Moreover, if we remove step 1 in Intersect, which calls prem to test if p belongs
to the saturated ideal of T (the algorithm is still correct), all basic operations
appearing in the algorithm preserve chordality.

Lemma 6. Let F ⊂ Q[x] be finite and assume that F is chordal. Let p be
a polynomial and T be a regular chain of Q[x] such that G(p) ⊆ G(F ) and
G(T ) ⊆ G(F ). Let (p1, T1), . . . , (pe, Te) be the processes in the output of Intersect
or Regularize, then we have G(pi, Ti) ⊆ G(F ). (The output Ti is treated as a spe-
cial process (0, Ti).) If this is true, we say that Intersect and Regularize preserves
chordality (w.r.t. F ).

Proof. We prove this by induction on the rank of the process (p, T ).

– Base: For each returned process (pi, Ti), if it is obtained without relying on
the output of recursive calls to Intersect or Regularize, then G({pi} ∪ Ti) ⊆
G({p} ∪ T ) holds.

– Induction: For each recursive calls to Intersect or Regularize, the rank of input
process is less than that of (p, T ). By the induction hypothesis, the recursive
calls preserve chordality. Moreover, by Lemma 5, we notice that the input
process for each recursive call is obtained by chordality preserving operations
as well as the output process of each recursive call is processed by chordality
preserving operations. Thus the lemma holds.

Theorem 1. Algorithm Triangularize preserves chordality.

Proof. We prove it by induction on the number of elements of F . The base case
trivially holds. Let p ∈ F and F ′ := F \{p}. By Lemma 3, there exists a chordal
completion G(F ′) of G(F ′) such that G(F ′) ⊆ G(F ). By induction hypothesis,
for each regular chain T in the output of the recursive call to Triangularize, we
have G(T ) ⊆ G(F ′) ⊆ G(F ). Then the conclusion follows from Lemma 6.

4 Modifying the Implementation of Triangularize

Algorithm 1 has been implemented in the RegularChains library with the same
name. After carefully tracing the code, we find that the only operation in the
implementation of Triangularize that may destroy the chordality is the pseudo-
reminder operation prem. As illustrated by Example 3 in Sect. 2, if two input
polynomials do not have the same main variable, prem can destroy chordality.
In particular, the operation prem was empolyed in several places for performing
the simplification q := prem(p, T ), where p, q are two polynomials and T is a reg-
ular chain. Such simplification does not hurt the correctness of the algorithm,
although it may affect the efficiency and should be empolyed with caution. For
instance, it was empolyed as a preprocessing step for Intersect but only if the
initials of polynomials in T are constants, which may reduce the degree of the
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polynomial. Note that we have V (p)∩W (T ) = V (q)∩W (T ), thus the correctness
of Intersect is not hurt by Eq. (1). However, if q is involved in producing poly-
nomials as input or output of some algorithms in Fig. 2, then Triangularize may
not preserve chordality. Thus, for all these places, we simply do not call prem to
preserve chordality. Note that q = 0 if and only if p is contained in the saturated
ideal of T (membership testing) [6]. If prem is only used for membership testing,
we do not suspend the call to prem as it does not affect chordality. There are
some other operations, such as iterated resultant, which may not preserve the
chordality either. But since they do not produce polynomials as input or output
of algorithms in Fig. 2, we keep the calls to them unchanged.

There are several other changes we made to improve the efficiency of the
code for chordal input. One is to control the generation of redundant regular
chains in Algorithm 1 after each recursive call. Another is to change the order
of polynomials in F to solve in Algorithm 1. In the current implementation of
Triangularize, one first solves polynomials with smaller rank (in particular with
smaller main variables). But this strategy seems to increase the chance of calling
operations not preserving chordality. So we instead now first solve polynomials
with larger rank. As an example, for lattice-r-10 in Table 1, the two different
strategies respectively lead to calling prem(p, T ) 2659 and 964 times.

The implementation preserving chordality is available in Triangularize in
the updated RegularChains library (downloadable from http://www.arcnl.org/
cchen/software/chordal) through option chordal = true.

5 Experiments

Table 2 compares its performance with Triangularize in Maple 2019. We also
include the performance of the regser command of the Epsilon library as a ref-
erence. In Table 1, the examples minor-k, lattice-k and coloring-k are chosen
from [11]. The examples minor-r-k (resp. lattice-r-k) is a slight modification of
minor-k (resp. lattice-k), but have the same associated graph as minor-k (resp.
lattice-k).

Table 1. Benchmark examples.

minor-k {x2i−1x2i+2 − x2ix2i+1 | i = 1, . . . , k}
minor-r-k {x2i−1x2i+2 − x2ix2i+1 + x2i + x2i+1 | i = 1, . . . , k}
lattice-k {xixi+3 − xi+1xi+2 | i = 1, . . . , k}
lattice-r-k {xixi+3 − xi+1xi+2 + x2

i+3 | i = 1, . . . , k}
coloring-k {x3

i − 1 | i = 1, . . . , k} ∪ {∑2
j=0 x

2−j
i xj

(i mod k)+1
| i = 1, . . . , k}

In Table 2, we write Triangularize for short as Tri and Triangularize with
chordal = true as Tri-C. Denote by K and L respectively the Kalkbrener and
Lazard triangular decomposition. For each system F , let n be the number of

http://www.arcnl.org/cchen/software/chordal
http://www.arcnl.org/cchen/software/chordal
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variables, m be the number of polynomials in F , d be the maximum degree of
polynomials in F , t be the computation time (in seconds), c be the number of
components in the output. The timeout (−) is set as one hour. As we can see from
the table, for these particular sparse systems, Tri-C significantly outperforms Tri.
Meanwhile, Tri-C and regser each have their own favorite examples.

Table 2. Benchmark.

Sys n m d regser Tri (K) Tri (L) Tri-C (K) Tri-C (L)

Time c Time c Time c Time c Time c

minor-10 22 10 2 2.334 455 27.08 89 467.6 875 6.738 89 24.75 767

minor-15 32 15 2 86.13 8236 1701.9 987 − − 1147.7 987 − −
minor-18 38 18 2 1402.1 46810 − − − − − − − −
minor-20 42 20 2 − − − − − − − − − −
minor-r-10 22 10 2 32.05 2214 10.72 1 227.0 498 1.700 1 11.98 351

minor-r-12 26 12 2 336.7 11667 41.30 1 1859.6 1713 5.366 1 75.51 1081

minor-r-14 30 14 2 − − 153.4 1 − − 17.87 1 584.8 3329

minor-r-15 32 15 2 − − − − − − 33.23 1 1762.4 5842

lattice-10 13 10 2 0.140 18 7.065 15 7.6 15 0.417 24 0.417 24

lattice-20 23 20 2 1.640 154 − − − − 8.93 187 8.913 187

lattice-30 33 30 2 19.47 1285 − − − − 409.4 1549 406.2 1549

lattice-40 43 40 2 259.6 10733 − − − − − − − −
lattice-r-10 13 10 2 0.459 13 21.41 1 26.27 13 0.436 1 0.506 13

lattice-r-15 18 15 2 27.19 18 − − − − 2.134 1 2.297 18

lattice-r-18 21 18 2 − − − − − − 150.2 1 152.7 21

lattice-r-20 23 20 2 − − − − − − − − − −
coloring-10 10 20 3 6.45 123 13.45 123 9.89 123 4.916 102 4.636 102

coloring-12 12 24 3 56.87 322 92.67 322 56.96 322 23.06 267 22.79 267

coloring-14 14 28 3 986.5 843 667.7 843 380.1 843 128.8 699 130.2 699

coloring-15 15 30 3 − − − − − − 315.7 1131 312.7 1131

6 Conclusion

In this paper, we first proved that the incremental algorithm for computing
triangular decompositions proposed in [7] preserves chordality. Then we pointed
out that some simplification operations used in the implementation may destroy
chordality. We resolve this problem by carefully modifying the implementation
in Triangularize and the experimentation shows that significant speedups are
obtained for some very sparse polynomial systems. Finally, we remark that more
extensive experimentations on diverse polynomial systems are needed to decide
the best use of these simplifications with the guidance of theory and possibly
the help of artificial intelligence rather than simply relying on experience.
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Abstract. We use an extension of quadratic Chabauty to number fields,
recently developed by the author with Balakrishnan, Besser and Müller,
combined with a sieving technique, to determine the integral points over
Q(

√−3) on the Mordell curve y2 = x3 − 4.
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1 Introduction

Let E be an elliptic curve over a number field K, described by a Weierstrass
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ OK , (1)

where OK is the ring of integers of K. By the set of (K-)integral points on E
we mean the subset of solutions (x, y) to (1) with x, y ∈ OK . Such a set is finite
by Siegel’s Theorem [19].

Assume for now that K = Q. Different solutions to the problem of effectively
determining the set of integral points for a fixed elliptic curve have been given.
The most notable include reducing the problem to solving some Thue equations,
and using elliptic logarithms. See [24] for an overview.

An alternative more recent approach to an effective version of Siegel’s Theo-
rem for elliptic curves comes from a very special instance of Kim’s non-abelian
Chabauty programme. At present, explicit versions of this are known only for
elliptic curves of Mordell–Weil rank at most 1 [5,6,11,16] and can be understood
in terms of the theory of p-adic heights and formal group logarithms, where p is
some fixed prime. Algorithmically, this method, often referred to as “quadratic
Chabauty” in the literature, outputs a finite set of (approximations of) p-adic
points on E, containing the integral points. When the rank is equal to one, this
set typically also contains some points that we cannot recognise as rational, or
even as algebraic. In order to determine the integral points, we need to be able
to prove that such points are not p-adic approximations of rational points.

c© Springer Nature Switzerland AG 2020
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Unfortunately, there is no known method to achieve this, which might place
this approach at a disadvantage compared to the previously mentioned ones.
However, the idea of using p-adic heights and linear Qp-valued functionals on
E(Q) and E(Qp) to study the integral points turned out to be amenable to
extensions to some curves of higher genus [2,3], where the Mordell–Weil sieve
is an effective tool used to address the problem of eliminating spurious p-adic
points.

Generalisations to higher genus curves are very interesting from a Diophan-
tine point of view. Nevertheless, we are left with the somewhat unsatisfactory
impression that most quadratic Chabauty computations for integral points on
elliptic curves appearing in the literature are carried out more as a “proof of con-
cept” than as an actual way to determine integral points (but see [3, Appendix
A] and [10, Appendix 4.A] for some examples of full computations of integral
points).

In recent work with Balakrishnan, Besser and Müller [1], using restriction of
scalars, we extended these explicit quadratic Chabauty techniques for integral
points on elliptic curves, and, more generally, odd degree hyperelliptic curves,
to arbitrary number fields. Combined with the Mordell–Weil sieve, the method
successfully determined the integral points over an imaginary quadratic field on
a genus 2 curve, as well as the rational points over some quadratic fields on some
genus 2 bielliptic curves. Once again, though, examples of quadratic Chabauty
computations for elliptic curves over number fields were also presented, but not
turned into a provable determination of the set of integral points.

In this note we use the techniques of [1] to determine the set of Q(
√−3)-

integral points on the Mordell curve

E : y2 = x3 − 4. (2)

The goal is twofold. First, we want to show that quadratic Chabauty can indeed
be a tool to determine the set of integral points on an elliptic curve (even over
number fields), and that it is not only a test case for more general techniques that
apply to higher genus curves. In order to achieve this, we need to substitute the
Mordell–Weil sieve step with an analogous sieve for elliptic curves: we do this by
extending to number fields the technique of [3, Appendix A]. Secondly, presenting
this particular computation allows us to overcome a lot of the technicalities and
notational complexity of [1], while still conveying the general strategy.

A few words about our choices of curve and field. The techniques for the com-
putation of integral points of elliptic curves over Q were extended to arbitrary
number fields by Smart and Stephens [23]. However, it appears that they are cur-
rently implemented in Magma [12] only over totally real fields; hence the choice of
an imaginary quadratic field. In order to get rid of presumed non-integral points
in the quadratic Chabauty computation, it is convenient to compare quadratic
Chabauty outputs at different primes. For our choice of curve, there are two
prime numbers, namely p1 = 7 and p2 = 13, which satisfy #E(IFpi

) ≡ 0 mod pj

for i �= j, making the comparison of the respective quadratic Chabauty outputs
easier. In fact, this was used in [3, Appendix A] to compute the integral points
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over Q, since E has rank 1 over Q and hence “classical” quadratic Chabauty
is applicable. Finally, E attains rank 2 over Q(

√−3), both p1 and p2 split in
Q(

√−3), and the latter is also the field of complex multiplication of E, making
it a nice example to which our techniques can be applied.

The code to perform quadratic Chabauty for an elliptic curve over Q base-
changed to an imaginary quadratic field, as well as for the sieving routines of
this example, is available at [9].

2 Quadratic Chabauty for E/Q(
√−3)

Let K be a number field of degree d and let A
×
K,f be the group of finite ideles of

K; let p be an odd prime, unramified in K. For ease of exposition, we assume
that K has class number 1 and for every prime q of K we fix a generator ξq
for q. Furthermore, we let | · |q be the absolute value on Kq, normalised so that
|q|q = q−1, if q is the rational prime below q. Thus |ξq| = q−1/rq , for some
positive integer rq which divides the degree nq of the extension Kq/Qq.

An idele class character is a continuous homomorphism

χ =
∑

q

χq : A
×
K,f/K× → Qp.

In principle, the idele class character χ is determined by the value, at each
prime q, of χq on ξq and on the units O×

q of the ring of integers of Kq. However,
the incompatibility between the q-adic and p-adic topology for q �= p and the
required vanishing of χ on K× have two strong consequences:

– The restrictions of χp to O×
p at the primes p | p uniquely determine χ. Indeed,

χq vanishes on O×
q if q � p, and for every prime q we have the formula

χq(ξq) = −
∑

p|p
p �=q

χp(ξq). (3)

– Each fundamental unit for K imposes an additional constraint on the charac-
ters χp. In particular, the idele class characters for K form a Qp-vector space
V of dimension greater than or equal to d − rank(O×

K).

Computing a basis for V amounts to doing some linear algebra.

Example 1. In our situation of interest, K is an imaginary quadratic field, in
which p splits, say p = p1p2, and we may fix isomorphisms Kpi

� Qp. Then V is
spanned by two characters: the cyclotomic character χcyc and the anticyclotomic
character χanti. The cyclotomic character is the unique character satisfying

χcyc
pi

(x) = log(x) for all x ∈ O×
pi

,



42 F. Bianchi

where log : ZZ×
p → Qp is the p-adic logarithm, and we view x as an element of

ZZ×
p via our fixed isomorphism. The anticyclotomic character (depending on our

choice of ordering of the primes above p) is determined by

χanti
p1

(x) = log(x) for all x ∈ O×
p1

; χanti
p2

(x) = − log(x) for all x ∈ O×
p2

.

The p-adic logarithm comes in the picture because we are considering homomor-
phisms from the multiplicative O×

pi
to the additive Qp.

Formula (3) gives

χcyc
q (q) = rqχ

cyc
q (ξq) = −nq log(q) for all q �= p; (4)

χanti
q (q) = rqχ

cyc
q (ξq) = 0 for all q �= p such that nq = 2. (5)

Let E/K now be an elliptic curve with good reduction at all primes above p,
described by an equation of the form (2), which, for simplicity, we further assume
to be minimal at all primes. Let S be the set of primes of bad reduction for E,
and for each prime q of K, let cq be the Tamagawa number of E at q (cf. [18,
Theorem 4.11]).

If none of the primes above p is in S, by work of Bernardi [7], Mazur–Tate
[17], Coleman–Gross [14] and others, to every idele class character χ ∈ V we can
attach a quadratic function

hχ
p : E(K) → Qp by hχ

p (P ) =

{
(
∏

q∈S cq)−1χ(ι(P )) if P �= O,

0 otherwise,

for some suitably chosen ι(P ) ∈ A
×
K,f , which is independent of χ and whose

p-adic component at a prime p | p depends on the choice of a subspace of
H1

dR(E/Kp), complementary to the space of holomorphic forms.
We call hχ

p the (global) p-adic height attached to χ, where we should not for-
get, however, that we have made some preliminary choices that are not reflected
in our notation.

More generally, at every prime q, given Pq ∈ E(Kq) \ {O}, there exists
ιq(Pq) ∈ K×

q and a local p-adic height function

λχ
q : E(Kq) \ {O} → Qp, λχ

q (Pq) = c−1
q χq(ιq(Pq)),

so that ι(P )q = ιq(P )(
∏

r∈S\q cr) and hence

hχ
p (P ) =

∑

q

λχ
q (P ) if P ∈ E(K) \ {O}.

The failure of each λχ
q to be a quadratic function is absorbed into the van-

ishing of χ on K×, i.e. we have

hχ
p (mP ) = m2hχ

p (P ) for every m ∈ ZZ and P ∈ E(K). (6)

We do not go into the details here of how to define ιq(Pq). We just note that
the definition of hχ

p mimics Néron’s definition of the real canonical height (for
which see, for instance, [21, Chapter VI]), and we record the following properties.
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Proposition 1. 1. At a prime p | p, the function λχ
p restricts to a locally ana-

lytic function on E(Op), whose power series expansion in a local coordinate
t in each residue disc1 can be computed up to any desired p-adic and t-adic
precision.

2. At a prime q � p, ιq(P ) is independent of p. We have
– If P reduces to a non-singular point modulo q, then

ιq(P ) = max{1, |x(P )|q}−cq .

– If P reduces to a singular point, then ιq(P )rq ∈ Wq, where Wq ⊂ Q× is a
finite set which can be deduced from knowledge of the Tamagawa number
and Kodaira symbol of E at q.

Corollary 1. Let S be the set of primes of K at which E has bad reduction. For
every q ∈ S, there exists a finite set Tq ⊂ Q× such that for every P ∈ E(OK)
there exists tq ∈ Tq with

hχ
p (P ) =

∑

p|p
λχ
p (P ) +

∑

q∈S

c−1
q r−1

q χq(tq).

Moreover, Tq and tq are independent of p and χ.

Corollary 1 and Eq. (6) are the key ingredients for our method. In fact, a
point P ∈ E(OK) carries global information by its being a point in E(K). This
is encoded in (6), but alone would not suffice to give it a finite characterisation
inside

∏
p|p E(Kp), since E(K) could be infinite. Thus, we also need to exploit

the local information that it carries by its being integral at every prime and this
is where Corollary 1 comes into play.

In order to use (6) effectively, we need to express the p-adic height hχ
p as the

restriction of a locally analytic function
∏

p|p E(Kp) → Qp. This is where we
are forced to impose some conditions on the rank of E(K). We will focus now
on our example of interest; see [1] for the general treatment of the quadratic
Chabauty steps. The sieving method that we describe is an extension to number
fields of [3, Appendix A]; while for the moment we restrict the exposition to this
example, the method would apply more generally: see Sect. 3.

Example 2. Let E be the curve over K = Q(
√−3) defined by (2). Let

E−3 : y2 = x3 + 108 (7)

be the quadratic twist of E by −3. By computing generators for E(Q) and
E−3(Q) with SageMath [25], we deduce that

E(K) = 〈Q,R〉 � ZZ2,

1 A residue disc is a fibre of the reduction map E(Kp) → E(IFp) where IFp is the
residue field of Kp.
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where
Q = (2, 2), R = (−√−3 + 1, 2

√−3).

The set of primes at which E/K has bad reduction is

S = {(2), (
√−3)}, with c(2) = 4, c(

√−3) = 3.

Let p ∈ {7, 13}. The prime p splits completely in K and we are in the situation
of Example 1, so we have two global p-adic heights

hcyc
p := hχcyc

p , hanti
p := hχanti

p : E(K) → Qp,

where we have chosen the local heights at pi to be the ones of Mazur–Tate (which
coincide with Bernardi’s in this case). For i ∈ {1, 2}, we may also consider

fi : E(K) ↪→ E(Kpi
)

Logi−−−→ Qp,

where Logi is the unique homomorphism of abelian groups which restricts to
the formal group logarithm (composed with Kpi

� Qp) on the formal group. By
construction, the functions Log1 and Log2 are locally analytic, and Lemma 6.4
of [1] shows that f1 and f2 (or, more precisely, their extensions to E(K) ⊗ Qp)
are linearly independent. Since the rank of E(K) is 2 by (2), it follows that any
Qp-valued quadratic function on it must be a Qp-linear combination of

f2
1 , f1f2, f2

2 .

In particular, there exist αcyc
i , αanti

i ∈ Qp such that

hcyc
p = αcyc

1 f2
1 +αcyc

2 f1f2+αcyc
3 f2

2 , hanti
p = αanti

1 f2
1 +αanti

2 f1f2+αanti
3 f2

2 . (8)

Properties of the cyclotomic and anticyclotomic characters show that αcyc
1 =

αcyc
3 ; αanti

1 = −αanti
3 and αanti

2 = 0 (cf. [1, §6.2]). Furthermore, since hχ
p is

invariant under any automorphism of E/K (while f2
1 and f2

2 are only invariant
under ±1), in this case all the constants are identically zero, except for αcyc

2 ,
which is non-zero by [8]. We can compute it up to our desired precision, by
comparing the values of the p-adic height and of f1f2 on any point of infinite
order of E(K).

To make (8) sensitive to the difference between K-rational and K-integral
points, we use Corollary 1. By work of Cremona–Prickett–Siksek [15] (see also
[11, Proposition 2.4]), we may take

T(2) = {1, 24}, T(
√−3) = {1, 32}.

Consider the locally analytic functions

ρcycp : E(Op1) × E(Op2) → Qp, ρantip : E(Op1) × E(Op2) → Qp,

defined by

ρ�
p(P1, P2) = λ�

p1
(P1) + λ�

p2
(P2) − α�

2Log1(P1)Log2(P2).
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By Corollary 1 and (4)-(5), for every P ∈ E(OK), there exists t(2) ∈ T(2) and
t(

√−3) ∈ T(
√−3) such that

ρcycp (ψp(P )) − 1
2

log t(2) − 1
3

log t(
√−3) = 0 = ρantip (ψp(P )),

where ψp : E(OK) ↪→ E(Op1) × E(Op2) is the map induced by the completion
maps. The strategy is then as follows.

1. Fix a positive integer B and compute2

E(OK)known = {nQ + mR : |n|, |m| ≤ B and nQ + mR ∈ E(OK)}.

By picking B sufficiently large, we might expect that E(OK)known = E(OK)
and the following steps try to prove the equality.

2. Fix (t(2), t(√−3)) ∈ T(2) × T(
√−3).

3. Let p = 7. Compute, modulo some fixed p-adic precision, all (P1, P2) ∈
E(Op1) × E(Op2) such that

ρcyc7 (P1, P2) − 1
2

log t(2) − 1
3

log t(
√−3) = 0 = ρanti7 (P1, P2). (9)

If ϕ ∈ Aut(E/K) with induced ϕi ∈ Aut(E/Kpi
), then (ϕ1(P1), ϕ2(P2)) is

a solution to (9) if (P1, P2) is. Furthermore, if (P1, P2) is a solution, then
so is (P2, P1) where we are abusing notation, in view of the isomorphisms
Kp1 � Qp � Kp2 .

4. For every (P1, P2) computed in step 3, check if there exists P ∈ E(OK)known

with ψ7(P ) ≡ (P1, P2). If such P does not exist, suppose there exists T ∈
E(OK) \ E(OK)known with ψ7(T ) = (P1, P2). Then T = nQ + mR for some
n,m ∈ ZZ satisfying

(
n
m

)
=

(
f1(Q) f1(R)
f2(Q) f2(R)

)−1 (
Log1(P1)
Log2(P2)

)
mod 7.

Furthermore we can compute
(

n
m

)
mod 13,

by considering the images of P1, P2, Q,R in E(IFp1) and E(IFp2), since
#E(IFpi

) = #E(IF7) = 13. (Note that it is straightforward to verify that
there can be at most one such possibility).

5. The solution set of

ρcyc13 (P1, P2) − 1
2

log t(2) − 1
3

log t(
√−3) = 0 = ρanti13 (P1, P2)

2 This step could be skipped; assuming this computation just simplifies the exposition
of the other steps.
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must contain ψ13(T ). Since #E(IF13) = 3 · 7, we can, similarly to steps 3 and
4, deduce another list of possibilities for the pair

(
n
m

)
mod 13,

(
n
m

)
mod 7.

If none of these pairs matches the one of step 4, then we have shown that
(P1, P2) is not in the image of ψ7.

6. We repeat steps 3–5 for each element of T(2) × T(
√−3).

Remark 1. The computations of the zero sets in steps 3 and 5 are carried out
locally, i.e. for every pair (P1, P2) ∈ E(IFp1)×E(IFp2), we can give a two-variable
parametrisation of the points in E(Kp1)×E(Kp2) reducing to (P1, P2). The task
is then reduced to computing zero sets of systems of two-variable equations in
two variables. This can be done either naively, or, when the hypotheses apply,
using a two-variable version of Hensel’s lemma [1, Appendix A]. For the strategy
to give a provable determination of the integral points, it is necessary to verify
that the approximations of the zeros corresponding to points in E(OK) lift to
unique zeros. It is on the other hand not necessary in general to show that the
other zeros lift uniquely.

We implement this technique in SageMath and run it with B = 10. As we vary
t(2) and t(

√−3), this gives 426 solutions to (9) which do not come from points
in E(OK)known. Out of these 426, there are only 4 up to automorphisms and
conjugation which survive our sieve.

We need to show these 4 solutions do not come from points in E(OK). We
first note that they are p-adically isolated. Then we show that, if one of them did
come from a point T in E(OK), then, up to automorphism, it would come from
a point in E(ZZ) or a point in E−3(ZZ) where we take the minimal model (7)
(this amounts to showing that in the automorphism class of the solution, there is
a point of the form (P1, P1) or (P1,−P1), where we are using our isomorphisms
Kpi

� Qp). At this point, we could invoke existing implementations to compute
E(ZZ) and E−3(ZZ), to show that all the points in E(OK) coming from points in
these sets are in E(OK)known. Alternatively, we observe that being in the image
of E(ZZ) or E−3(ZZ) imposes additional contraints on the local heights away
from p of P , which allow us to eliminate at once 3 of the automorphisms classes.
The remaining one must come from E−3(ZZ) and hence must be of the form
mR. There is some information that we have not used yet: since 3 | #E(IF13),
we also know m mod 3. In particular, m ≡ 0 mod 3. But then mR is a multiple
of 3R, which is in the formal group at (

√−3): thus mR cannot be integral. This
shows that

Theorem 1. E(OK) = {ϕ(P ), ϕ(P c) : P ∈ G,ϕ ∈ Aut(E/K)}, where P c is
the Galois conjugate of P and

G = {(2, 2), (5, 11), (−2, 2
√−3), (1,

√−3),

(−122, 778
√−3), (3

√−3 − 5, 4
√−3 + 18)}.
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3 A More General Approach

We end this article with an outline of the strategy that was implicitly used in
Example 2, in the hope that this discussion will convince the reader that similar
methods could be used to determine the integral points of other elliptic curves
over number fields.

Let E be an elliptic curve over an imaginary quadratic field K. Suppose
further that existing algorithms - e.g. as implemented in [12] - succeed in the
computation of the rank r of E(K). If r ≥ 3, our methods are not applicable. If
r = 0, the computation of E(OK) is trivial; if r = 1, minor modifications to the
quadratic Chabauty method over Q are sufficient [4].

Thus, we may assume that r is exactly equal to 2, and that we can compute
generators for the Mordell–Weil group E(K). For simplicity, we further assume
that the torsion subgroup of E(K) is trivial. Hence,

E(K) = 〈Q,R〉

for some points of infinite order Q and R. Our goal is the computation of the
integral points E(OK).

It is reasonable to first compute the integral points up to a certain height
bound and we shall denote the resulting set by E(OK)known. Indeed, for instance,
if Q and R are non-integral at the same prime q, then E(OK) is empty and no
further step should be taken (see [22, Chapter VII]).

Let p be an odd prime such that E has good reduction at every p | p. Current
restrictions in the implementation of some of the techniques that we need also
require us to assume that p is split in K, say pOK = p1p2 for distinct primes p1
and p2 of OK . We have homomorphisms

fi : E(K) → Qp,

obtained by composing the completion map E(K) ↪→ E(Kpi
) with pi-adic

abelian integration and with the isomorphism Kpi
∼= Qp. If f1 and f2 are linearly

independent, then we can carry out quadratic Chabauty for the prime p on E/K.
Linear independence is guaranteed by [1, Lemma 6.4] if E is the base-change of
an elliptic curve over Q of rank 1, and we also expect it to hold if E does not
descend to Q.

In the belief that the exposition of the quadratic Chabauty computation in
Sect. 2 was, when not already in full generality, easily generalisable, we do not
elaborate on that further. The upshot is that we can compute a set Up of points
in E(Op1) × E(Op2) such that if P ∈ E(OK) \ E(OK)known then the image of P
under the completion maps lies in Up. By “computing”, we mean that given a
large enough integer n we can find the finite set of approximations modulo3 pn

of the points in Up. This is provided that we can show that, modulo pn, there are
no points in Up that have the same reduction as any point in E(OK)known. Based
on experimental data, we can say that the latter task can generally be addressed

3 Given that Kpi
∼= Qp, the phrasing “modulo pn” has the obvious meaning.
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using the multivariable Hensel’s lemma, but occasionally needs support from
theoretical arguments [1, Appendix A] (see also Remark 1).

If Up is empty, we deduce that E(OK) = E(OK)known. Otherwise, we can
try to extrapolate more information from Up, or compute Up for more than one
choice of p. If the primes are chosen wisely, it is possible to compare the outputs
Up. We explain here a good choice; many others could be possible.

For i ∈ {1, 2}, let kpi
be the greatest common divisor of the orders in E(IFpi

)
of the reduction of Q and R. Assume that (Pp1 , Pp2) ∈ Up is the localisation of
a point P ∈ E(OK) \ E(OK)known. Then there must exist n,m ∈ ZZ such that

P = nQ + mR.

Using pi-adic abelian integration, we may compute a unique pair (np,mp) ∈
(ZZ/pZZ)2 such that

(n,m) ≡ (np,mp) mod p. (10)

Furthermore, for every i we can compute a list of possibilities for

(n,m) mod kpi
, (11)

by considering the images of Q, R and Ppi
in E(IFpi

).
If p | kpi

for at least one i, then (10) and (11) can sometimes be used to rule
out points in Up from being localisations of points in E(OK).

If this is not sufficient to prove that no point in Up can correspond to a point
in E(OK), or if p is coprime with each kpi

, then we may look for a split odd
prime q of good reduction such that q | kpi

and p | kqj
for at least one (i, j), if

qOK = q1q2. If the element (Pp1 , Pp2) ∈ Up corresponds to P ∈ E(OK), then
P must map to some (Pq1 , Pq2) ∈ Uq under the (q1, q2)-completion maps. By
running through Uq, we obtain a list of possibilities for the pair

(n,m) mod q and (n,m) mod kqj
,

which we can compare with (10) and (11).
If this is still not sufficient to show that E(OK) = E(OK)known, we can look

for sequences of primes with similar patterns.
Elliptic curves E over Q admitting a pair of primes of good reduction (p, q)

satisfying #E(IFp) = q and #E(IFq) = p were studied by Silverman–Stange [20].
Assuming that there are infinitely many primes � for which #E(IF�) is prime, the
authors conjectured that the number of such pairs (p, q) with p < q and p ≤ X
should grow like a multiple of X/(log X)2 if E has CM, and of

√
X/(log X)2

otherwise. More generally, they considered sequences of primes (p1, . . . , pm) of
arbitrary length m such that #E(IFpi

) = pi+1, where i is taken modulo m.
This study is relevant for us if our elliptic curve over K is the base-change

of an elliptic curve over Q, as the one of Example 2. For more general elliptic
curves over number fields, see [13].

Finally, the discussion of this section is readily generalisable to number fields
other than imaginary quadratic ones, after deriving the analogue of Example 1
and suitably replacing the condition r = 2 (see [1]).
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Abstract. We develop a numerical nonlinear algebra approach for com-
puting the Euler characteristic of an affine variety. Our approach is to
relate Euler characteristics of a smooth affine variety with the number of
critical points using Morse theory. In general, we stratify a variety into
the union of smooth affine varieties to obtain results on singular varieties.

Keywords: Euler characteristic · Numerical algebraic geometry ·
Homotopy continuation

1 Introduction

The Euler characteristic is one of the most fundamental topological invariants.
In the past decade, a series of work appeared which relate Euler characteris-
tics of complex algebraic varieties with the complexity of algebraic optimization
problems [1,5,15,20,21]. There are several existing approaches to compute the
Euler characteristics of complex algebraic varieties [3,6,16,19], each having their
own benefits. Our new approach has the following advantages.

1. Our methods directly compute the Euler characteristic of an affine variety
without involving any compactification. This is useful because the closure of
a smooth affine variety can have singularities along infinity.

2. We stratify and compute the Euler characteristics of smooth affine varieties.
In theory, any d-dimensional affine variety can be stratified into the union of
at most d + 1 smooth affine varieties. In contrast to the inclusion-exclusion
principle, our method does not involve too many varieties.

3. We can tailor the stratification to reduce the degree of each stratum.

A standard method to compute Euler characteristics of complex algebraic
varieties is to reduce to the projective hypersurface case. The drawback of this
method is that to compute the Euler characteristic of a projective variety, the
number of involved hypersurfaces grows exponentially in the codimension.

In contrast, we compute the Euler characteristic of a smooth equidimensional
affine variety X by counting the critical points of dim(X)+1 algebraic functions.
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Given a singular complex affine variety, we stratify it into smooth affine varieties
to reduce to the smooth case. In theory, we can always stratify a d-dimensional
affine variety into d + 1 smooth (possibly not connected) equidimensional affine
varieties of dimension d, d − 1, . . . , 1, 0. So we need to compute the number of
critical points of at most (d + 1)(d + 2)/2 algebraic functions. Our algorithms
also have the practical feature of minimizing the degree of the algebraic functions
at the expense of increasing the number of functions to consider.

This work is organized follows. In Sect. 2, we recall a theorem to determine the
Euler characteristic of a smooth equidimensional variety with a general hyper-
plane removed by counting critical points of a function. In Sect. 3, we provide
some key definitions from numerical algebraic geometry. In Sects. 4–5 we present
algorithms for computing Euler characteristics.

2 Euler Characteristics and Critical Points

Let X be a topological space that is homotopy equivalent to a finite CW-complex.
The Euler characteristic of X, denoted by χ(X), is the alternating sum of the
Betti numbers of X [9, Page 146]. We are only interested in the situation where
X is a (complex) affine algebraic variety [8, Corollary 6.10]. In this case, the
Euler characteristic of X is an alternating sum of cardinalities of several sets of
critical points as shown in Theorem 1.

Given a singular affine algebraic variety, it admits a stratification into locally
closed smooth subvarieties. We can always refine the stratification into locally
closed smooth affine subvarieties. Since the Euler characteristic is additive for
a stratification of locally closed subvarieties, it is enough to compute the Euler
characteristic of smooth affine varieties. In this paper, we discuss the following
two objectives.

1. Compute the Euler characteristics of smooth affine varieties.
2. Find algorithms to stratify singular affine varieties into locally closed smooth

subvarieties.

Let X be a smooth subvariety of C
n. Let f : C

n → C be a regular function.
If X is defined by polynomials g1, . . . , gl ∈ C[x1, . . . , xn], then the critical points
of f |X for a polynomial f ∈ C[x1, . . . , xn] are the points P ∈ X such that the
vector ( df

dx1
, . . . , df

dxn
)|P is in the linear span of {( dgi

dx1
, . . . , dgi

dxn
)|P : i = 1, . . . , l}.

This theorem relates the number of critical points to the Euler characteristic.

Theorem 1 ([20]). Let � denote a general affine linear function � : C
n → C

and let X denote a smooth equidimensional affine subvariety of C
n. Then

(−1)dim(X)χ
(
X \ V (�)

)
= #{critical points of �|X}.

As a corollary we are able to determine the Euler characteristic of X itself.

Corollary 1. Let X be a smooth subvariety of C
n. For i = 1, . . . ,dim(X), let

hi denote a general affine linear function C
n → C. Then we have the equality

χ
(
X

)
= p +

dim(X)∑

i=1

(−1)dim(X)−i+1ηi
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where ηi is the number of critical points of hi|X∩V (h1,...,hi−1) and p is the cardi-
nality of X ∩ V (h1, . . . , hdim(X)).

Proof. The additive property of Euler characteristic implies the equality

χ(X) =
dim(X)∑

i=1

χ
(
X ∩ V (h1, . . . hi−1) \ V (hi)

)
+ χ

(
X ∩ V (h1, . . . , hdim(X))

)
.

It follows from Bertini’s theorem that each intersection X ∩ V (h1, . . . hi−1) is
smooth and X ∩ V (h1, . . . , hdim(X)) is a set of p points. By Theorem 1, we have
ηi = (−1)dim(X)−i+1χ(X∩V (h1, . . . hi−1)\V (hi)). �

3 Numerical Algebraic Geometry Basics

In this section we recall a witness set [4,23], which is a fundamental concept in
numerical algebraic geometry. A witness set is used to analyze algebraic varieties
and is manipulated using homotopy continuation [2], as seen in Sects. 3.2–3.3.

3.1 Witness Sets and Numerical Irreducible Decomposition

Let X be an equidimensional subvariety of affine space C
n. As a consequence

of Bertini’s Theorem, there are two invariants, dimension and degree, of X that
can be understood by intersecting X with a general linear space. The dimension
dim(X) of a subvariety X of C

n is the codimension of a general affine linear
space L ⊆ C

n such that X ∩ L is finite and nonempty. The degree deg(X) of X
is the number of points in X ∩ L.

Definition 1 (Witness set). Suppose X is an equidimensional subvariety of
C

n. A witness set for X is a triple (F,L,W ), where F is a finite set of polyno-
mials with each irreducible component of X being an irreducible component of
V (F ), L is a set of dim(X) general1 affine linear functions, and W is the set of
points X ∩ V (L).

In numerical algebraic geometry, W is called a witness point set for X. Since L
consists of general affine linear functions, the affine linear space V (L) is general and
the cardinality of the set W is deg(X). Throughout, we assume the ideal generated
by F in Definition 1 defines a reduced scheme by using deflation [13,18].

Given a (not necessarily equidimensional) subvariety X of C
n, we denote by

Xi the union of i-dimensional irreducible components of X. We call a set of
witness sets of Xi for i = 0, 1, . . . , k a numerical equidimensional decomposition
of X. This decomposition can be refined to a numerical irreducible decomposition
of X by providing a witness set for each irreducible component of X (see [4]).

1 By “general” here, we mean the intersection X ∩ V (L) is transverse and has cardi-
nality deg(X).
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Example 1 (Embedding). Suppose X is an equidimensional subvariety of C
n and

h is a linear function C
n → C. Let X̂ be the image of X under the closed embed-

ding C
n → C

n+1 given by x �→ (x, h(x)). Given a witness set (F,L,W ) for X,
we construct a witness set for X̂ as (F ∪ {h − xn+1}, L, {(x, h(x)) : x ∈ W )}).

Example 2. We can also easily construct a witness set for the Cartesian product
of two varieties. Suppose Xi is a subvariety of C

ni for i = 1, 2. If (Fi, Li,Wi)
is a witness set for Xi, then (F1 ∪ F2, L1 ∪ L2,W1 × W2) is a witness set for
X1 × X2 ⊂ C

n1 × C
n2 .

3.2 Witness Collections of Subvarieties in C
n × C

n

A witness collection is a generalization of a witness set and is used to study
varieties that are defined by polynomials with a natural multi-variable group
structure. For a complete description of witness collections see [10,11,17]. For
our purposes, it suffices to study the following special case.

A witness collection for a d-dimensional irreducible subvariety Z of C
n × C

n

is the following collection of triples, which we call multi-affine witness sets:
(
F,Li ∪ Md−i, Z ∩ (Li × Md−i)

)
for i = 0, 1, . . . , d,

where F is a set of polynomials such that V (F ) contains Z as an irreducible
component; Li and Mi are general codimension i affine linear spaces in C

n

defined the sets of general linear functions Li and M i respectively.
Witness collections are used to understand the intersection of Z with a Carte-

sian product of linear spaces. Let Ai and Bi denote general codimension i affine
linear spaces in C

n. With homotopy continuation, we determine the isolated
points in the intersection Z ∩ (Ai × Bd−i). These points are contained in the set
of endpoints of the homotopy Hi : C

n × C
n × C → C

N+d with

(x, y, t) �→ (
F (x, y), tLi(x) + (1 − t)Ai(x), tMd−i(y) + (1 − t)Bd−i(y)

)
(1)

where Li, Ai,Md−i, Bd−i are sets of affine linear functions defining Li,Ai,Md−i

and Bd−i respectively. For more details see [10, Remark 1.3]. To conveniently
denote linear functions, for a, x ∈ C

n, we take a◦x to be the usual inner product.

Example 3 (Conormal variety). Let X = V (f1, . . . , fk) be a smooth equidimen-
sional variety in C

n with (f1, . . . , fk) generating a radical ideal. The (affine)
conormal variety of X is a subvariety C(X) in C

n × C
n with an ideal

〈f1, . . . , fk〉 + 〈(1 + codim(X))-minors of Jacx(x ◦ y, f1, . . . , fk)〉 ⊂ C[x, y],

where Jacx(x ◦ y, f1, . . . , fk) is a (k + 1) × n matrix of partial derivatives with
respect to x. The dimension of C(X) is n. For a projective formulation, see [22].

A witness collection for the conormal variety of X is given by
(
F, Li ∪ Mn−i, Wi

)
for i = 0, . . . , n, (2)
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where V (F ) contains C(X) as an irreducible component and

Wi := C(X) ∩ (Li × Mn−i).

Each multi-affine witness set
(
F, Li ∪ Mn−i, Wi

)
has information about the

variety X. For example, the dimension of X is the maximal i such that Wi �= ∅
and the degree of X is the cardinality of Wdim(X). Moreover, for i = 0, the linear
space V (Mn) ⊂ C

n contains a unique point, say c. The set of points (x, y) in
W0 such that x ◦ c �= 0 is the set of critical points of the general linear function
x ◦ c on X \ V (x ◦ c). The cardinality of the set W0 \ V (x ◦ c) is the Euler
characteristic of X \ V (x ◦ c) up to a sign. In general, the number of points in
Wi is an upperbound for the ηi appearing in Corollary 1.

Fig. 1. We illustrate W0 (left) and W1 (right) for the circle X = V (x2
1 +x2

2 −1) in C
2.

3.3 Regeneration and Removing a Hypersurface

Given a witness collection for an irreducible variety X and a polynomial g,
regeneration determines a witness set for X ∩ V (g). One of two situations can
occur. First, if X is contained in V (g), then X = X ∩ V (g) and we are done.
Second, if X is not contained in V (g), then for i = 1, . . . ,deg(g) compute a
witness set (F ∪ {�i}, L,Wi) for X ∩ V (�i) where �i : C

n → C is a general
affine linear function. This is easy to do using standard homotopy continuation
methods when given the witness set (F,L ∪ {�},W ) for X. This produces a
witness set

(
F ∪ {�1 · · · �deg(g)}, L, ∪deg(g)

i=1 Wi

)
for X ∩ V (�1 · · · �deg(g)). Finally,

the homotopy H(x, t) = (F (x), t�1(x) · · · �deg(g)(x) + (1 − t)g(x), L(x)) provides
a witness set for X ∩ V (g) when t = 0. This procedure for computing a witness
set for X ∩ V (g) from a witness set for X is called regeneration [11,12,14].

Example 4. For X ⊂ C
n, consider the embedding X̂ ⊂ C

n+1 as in Example 1.
Fix a polynomial g ∈ C[x1, . . . , xn]. The affine variety X̂ ∩ V (gxn+1 − 1) is
isomorphic to X \V (g). A useful application of regeneration computes a witness
set for X̂ ∩ V (gxn+1 − 1). From a witness set for X̂ ⊂ C

n+1 and a polynomial
gxn+1 − 1, regeneration produces a witness set for X̂ ∩ V (gxn+1 − 1).
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4 Euler Characteristics of Smooth Varieties

Theorem 1 leads to an algorithm that outputs the the Euler characteristic of an
algebraic variety by computing critical points. The proof of correctness of the
following algorithm is easily derived from Corollary 1.

Algorithm 1. Smooth X

1: Input
2: X A smooth equidimensional affine variety in C

n

3: Output
4: χ(X) Euler characteristic of the variety X

5: procedure
6: for i = 1, . . . , dim X do
7: hi ← general affine linear functions C

n → C

8: ηi ← the number of critical points of hi on X ∩ V (h1, . . . , hi−1) \ V (hi)
9: end for

10: p ← number of points in X ∩ V (h1, . . . , hdim(X))

11: χ(X) ← ∑dim(X)
i=1 (−1)dim(X)−i+1ηi + p

12: return χ(X)

We can compute these critical points from a witness set as follows.

Algorithm 2. Numerical Smooth X

1: Input
2: WX A witness set for a smooth equidimensional affine variety X ⊂ C

n

3: Output
4: χ(X) Euler characteristic of the variety X

5: procedure
6: WX×Cn ← Witness set for X × C

n, computed by using WX and methods
described in example 2

7: WC(X) ← Witness collection for the conormal variety C(X) ⊂ C
n × C

n, by
regeneration � Recall a witness collection consists of multi-affine witness sets
(F, Li ∪ Mn−i, Wi) as described in equation (2).

8: for i = 1, . . . , dim X do
9: p1, . . . , pi ← general points in C

n

10: q1, . . . , qn−i ← basis for the perpendicular complement of the linear span of
p1, . . . , pi

11: a, b ← general points in C
n

12: Ai ← {p1 ◦ (x − a), . . . , pi ◦ (x − a)} � set of i affine linear functions
13: Bn−i ← {q1 ◦ (y − b), . . . , qn−i ◦ (y − b)} � set of n − i affine linear functions
14: Si ← the endpoints of the homotopy (1) with Li, Mn−i and Ai, Bn−i as

above and start points Wi.
15: ζi ← the number of nonsingular isolated points (x, y) in Si such that x◦b �= 0
16: end for
17: χ(X) ← ∑dim(X)

i=0 (−1)dim(X)−iζi
18: return χ(X)
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Proof. (Correctness sketch). Example 3 explains how ζdim(X) = p and ζ0 =
ηdim(X). With some substitutions and algebra one shows ζi = ηdim(X)−i for
i = 1, . . . ,dim(X), and then the result follows. �
Example 5. Consider the smooth curve X = V (x2

1 +x2
2 − 1) ⊂ C

2 and its conor-
mal variety C(X) = V (x2

1 + x2
2 − 1, x2y1 − x1y2) ⊂ C

2 × C
2. The algorithms

find (p, η1, η2) = (ζ2, ζ1, ζ0) = (2, 2, 0) and both output χ(X) = 0. The points
corresponding to p and η are illustrated in Fig. 1 by plotting points on X with
the respective normal vectors. The homotopy used to determine ζi is given by
Hi : C

2 × C
2 × C → C

4. Concretely, for H1, with general affine linear functions
�,m : C

2 → C, we have H1(x, y, t) is
(
x2
1 + x2

2 − 1, x2y1 − x1y2, (1 − t)�(x) + tp1 ◦ (x − a), (1 − t)m(y) + tq1 ◦ (y − b)
)
.

5 Euler Characteristics of Singular Varieties

In this section, an excision-restriction method to compute χ(X) is presented.

Algorithm 3. Excision-restriction method
1: Input
2: X An affine variety in C

n

3: Output
4: χ(X) Euler characteristic of the variety X

5: procedure
6: for i = 1, . . . , dim X do
7: Xi ← i-dimensional irreducible components of X
8: end for
9: S ← |X0|, the cardinality of X0

10: Y ← ∪dim(X)
i=1 Xi

11: if Y is smooth then
12: for i = 1, . . . , dim X do
13: if Xi �= ∅ then
14: S ← S + χ(Xi) (Algorithm 1)
15: end if
16: end for
17: else
18: C ← a union of irreducible components of Sing(Y ) ∪ ⋃dim(X)−1

i=1 Xi

19: Choose a polynomial g such that Xdim(X) � V (g) and V (g) contains C.
20: S1 ← χ(Y ∩ V (g)) � Algorithm 3, recursion
21: S2 ← χ(Y \V (g)) � Algorithm 3, recursion � Here, Y \V (g) is considered as

a subvariety of C
n+1 with coordinate functions x1, . . . , xn, 1/g as in Example 4.

22: end if
23: χ(X) ← S + S1 + S2

24: return χ(X)

The freedom of choosing g in step 19 is a feature of this algorithm. One way
to find such a g is by taking a generic linear combination of minimal generators
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of the ideal of Sing(Y ) ∪ ⋃dim(X)−1
i=1 Xi. An alternative numerical approach is to

sample a set of points from an irreducible component of Sing(Y )∪⋃dim(X)−1
i=1 Xi.

to use numerical implicitization, which has been implemented in [7]. To mini-
mize the number of recursions, choose a g vanishing on Sing(Y )∪⋃dim(X)−1

i=1 Xi.
Alternatively, we could choose g so that the degree is small as possible. This
heuristic works well for a numerical approach.

Next, we tailor the previous algorithm for regeneration, which was described
in Sect. 3.3.

Algorithm 4. Numerical Excision-Restriction
1: Input
2: ∪i(Fi, Li, Wi)A numerical equidimensional decomposition for an affine variety

X ⊂ C
n where (Fi, Li, Wi) is a witness set for Xi, the union of i-dimensional

irreducible components of X

3: Output
4: χ(X) Euler characteristic of the variety X

5: procedure
6: S ← |W0|
7: Y ← ∪dim(X)

i=1 Xi

8: if Y is smooth then
9: for i = 1, . . . , dim X do

10: S ← S + χ(Xi) � Input (Fi, Li, Wi) to Algorithm 2.
11: end for
12: else
13: C ← a union of irreducible components of Sing(Y ) ∪ ⋃dim(X)−1

i=1 Xi

14: g ← a polynomial such that Xdim(X) � V (g) and V (g) contains C
15: D1 ← a numerical decomposition for Y ∩V (g), using methods in Section 3.3
16: S1 ← χ(Y ∩ V (g)) � Input D1 to Algorithm 4, recursion
17: D2 ← a numerical decomposition for Y \V (g), using methods in Example 4
18: S2 ← χ(Y \V (g)) � Input D2 to Algorithm 4, recursion
19: end if
20: χ(X) ← S + S1 + S2

21: return χ(X)

Example 6. Consider the Whitney umbrella X = V (x2y−z2) ⊂ C
3. The variety

X is two dimensional with a singular locus given by the y-axis. The output of
the algorithm to compute χ(X) is summarized by the following equations,

χ(X) = χ(X ∩ V (g)) + χ(X \ V (g))
= χ(X ∩ V (g) ∩ V (g′)) + χ(X ∩ V (g) \ V (g′)) + χ(X \ V (g))
= 1 + 0 + 0,

where we have made the following choices: g = 2x + 5z and g′ = y − x − 4/25
such that V (g) ⊃ Sing(X) and V (g′) ⊃ Sing(X ∩ V (g)).
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We input a numerical equidimensional decomposition for X. Since X is itself
irreducible, we have Y = X and S = |W0| = 0. Using regeneration we compute
a numerical decomposition D1 for X ∩ V (g), which is a union of two lines that
intersect at the point (0, 4/25, 0).

In step 16, we apply Algorithm 4 to D1, and in this recursive step we let g′

play the role of g. The variety X ∩ V (g) ∩ V (g′) is the point (0, 4/25, 0) so we
have χ(X ∩ V (g) ∩ V (g′)) = 1. On the other hand, X ∩ V (g) \ V (g′) is smooth,
so by using Algorithm 2 we get χ(X ∩ V (g) \ V (g′)) = 0.

Lastly, in step 17, we find a numerical decomposition D2 for X\V (g) to do
step 18. Since X\V (g) is smooth, we use Algorithm 2 to find χ(X \ V (g)) = 0.

In this paper we focussed on algorithm development, and we are working
towards implementing Algorithm 4. In addition, we are also working to imple-
ment Algorithm 3 using Grobner basis to compare with the numerical version
and previous techniques.
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Abstract. Polynomials which arise via elimination can be difficult to
compute explicitly. By using a pseudo-witness set, we develop an algo-
rithm to explicitly compute the restriction of a polynomial to a given
line. The resulting polynomial can then be used to evaluate the original
polynomial and directional derivatives along the line at any point on the
given line. Several examples are used to demonstrate this new algorithm
including examples of computing the critical points of the discriminant
locus for parameterized polynomial systems.

Keywords: Numerical algebraic geometry · Pseudo-witness set ·
Implicit polynomial · Directional derivatives · Critical points

1 Introduction

Parameterized polynomial systems arise in various applications in science and
engineering, such as in computer vision [15,17,22], kinematics [14,23], and chem-
istry [1,19]. Often in these applications, real solutions are desired. The comple-
ment of the discriminant locus associated with the parameterized polynomial
system consists of cells where the number of real solutions is constant. Elim-
ination methods (e.g., see [8, Chap. 3]) theoretically provide an approach to
explicitly compute a defining equation for the discriminant locus. If the discrim-
inant locus is a curve or surface, there are several numerical methods that can
be used to plot it, e.g., [6,7,18]. When the explicit expression is difficult to com-
pute, this paper develops a numerical algebraic geometric approach based on
pseudo-witness sets [13] for both evaluating implicitly defined polynomials and
directional derivatives. In particular, the approach yields an explicit univariate
polynomial equal to the defining equation restricted to a line which can then be
evaluated or differentiated as needed. When the parameterized system and line
have rational coefficients, the resulting univariate polynomial also has rational
coefficients which can be computed exactly from the numerical data [2].

One application of this new approach is to compute the critical points of
the discriminant polynomial which are outside of the discriminant locus without
explicitly computing the discriminant. This set of critical points contains at least
c© Springer Nature Switzerland AG 2020
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one point in each compact cell in the complement of the discriminant locus [10]
which can be useful for determining the possible number of real solutions as well
as the real monodromy structure [11].

The remainder of the paper is as follows. Section 2 describes the approach
based on using pseudo-witness sets. Section 3 presents an algorithm for perform-
ing the computations with some illustrative examples. Section 4 provides two
examples of computing critical points.

2 Implicit Representation of a Polynomial

In numerical algebraic geometry, e.g., see [4,21], a witness point set for a hyper-
surface H ⊂ C

n consists of the intersection points of H with a line L ⊂ C
n.

Suppose that f(x) is a given polynomial and H is the hypersurface defined by
the vanishing of f . Then, the witness point set for H corresponds with the roots
of the univariate polynomial obtained by restricting f to the line L. Since every
univariate polynomial is defined up to scale by its roots, one can recover f |L by
computing its roots along with knowing f |L(T ) for some value T which is not a
root of f |L. The following is an illustration of this basic setup.

Example 1. Consider the polynomial f(x, y) = y−x2 with corresponding hyper-
surface H ⊂ C

2 and the line L ⊂ C
2 defined parametrically by:

x(t) = t y(t) = 2t + 1.

Therefore, one can explicitly compute

f |L(t) = f(x(t), y(t)) = −t2 + 2t + 1 = −
(
t − 1 +

√
2
)(

t − 1 −
√

2
)

. (1)

For t1 = 1 − √
2 and t2 = 1 +

√
2, one has

H ∩ L = {(t1, 2t1 + 1), (t2, 2t2 + 1)}. (2)

Hence, f |L(t) = s(t − t1)(t − t2) for some constant s which can be computed
from, say, requiring f |L(T ) = 1 where T = 2, i.e., s = −1. Therefore, one has
recovered f |L(t) in (1) from H ∩ L with f |L(T ) = 1 as illustrated in Fig. 1(a).

The remainder of this section extends this idea using pseudo-witness sets
when f is a polynomial over C that is not known explicitly, but the corresponding
hypersurface H arises as the closure of a projection of an algebraic set. For
simplicity of presentation, assume that F : CN → C

r is a polynomial system
and that V is a pure d-dimensional subset of V(F ) = {x ∈ C

N | F (x) = 0}.
Let π(x1, . . . , xN ) = (x1, . . . , xn) such that H = π(V ) ⊂ C

n. Note that one has
n − 1 ≤ d ≤ N − 1. A pseudo-witness set [13] for H, say {F, π,M,W}, is a
numerical algebraic geometric data structure that permits computations on H
without knowing the defining polynomial f for H. The last two items are a linear
space M ⊂ C

N and a finite set W = V ∩ M. In particular, M = L × L′ where
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Fig. 1. A visual representation of the pseudo-witness set for H defined by y − x2 with
a linear slice, L, that is (a) generic, (b) special with one root of multiplicity one, and
(c) tangent. The black dots represent the roots t1, . . . , tk and the black stars represent T
selected for scale.

L′ ⊂ C
N−n is a codimension d − (n − 1) general linear space so that M has

codimension d. Hence, π(W ) = H ∩ L is a witness point set for H with respect
to L. With this setup, the local multiplicity of each point in H ∩ L can be easily
computed via [5, Prop. 6] (see also [9, pg. 158]). Thus, parameterizing L by t
and denoting t1, . . . , tk as the corresponding points in H ∩ L with multiplicity
m1, . . . ,mk, respectively, yields

f |L(t) =
f |L(T )

(T − t1)m1 · · · (T − tk)mk
· (t − t1)m1 · · · (t − tk)mk (3)

as shown in the following.

Theorem 1. The univariate polynomial describing f along the line L is cor-
rectly described by (3).

Proof. The assumption on T is that f |L(T ) �= 0, i.e., L �⊂ H. Hence, f |L is a
nonzero polynomial which has finitely many roots, namely t1, . . . , tk with multi-
plicity m1, . . . ,mk, respectively. Thus, mi ≥ 1 with deg (f |L) = m1 + · · · + mk.
Since the roots define the univariate polynomial up to scale, the leading coeffi-
cient is used to achieve the desired value at T and thus everywhere along L.

The following illustrates a pseudo-witness set and Theorem 1.

Example 2. Consider the hypersurface H ⊂ C
2 from Example 1 under the

assumption that we are given H = π(V ) where π(x, y, s) = (x, y) and V = V(F )
with

F (x, y, s) =
[

x − s2

y − s4

]
.

Since n = 2 and d = dimV = 1, we have M = L × C with

W = V ∩ M = {(t1, 2t1 + 1,±√
t1), (t2, 2t2 + 1,±√

t2)}
where t1 and t2 are as in Example 1 with m1 = m2 = 1. Hence, π(W ) = H ∩ L
as in (2). Therefore, with T = 2 and f |L(T ) = 1, (3) simplifies to f |L(t) in (1).
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The only assumption on the line L is that L �⊂ H so that one can find T
such that f |L(T ) �= 0. Of course, one can check if L ⊂ H by a pseudo-witness set
membership test [12] in which case one would simply have fL(t) ≡ 0. Thus, L is
not necessarily assumed to intersect H transversely, so the number of roots and
multiplicities can vary for different choices of L. Nonetheless, Theorem 1 applies
as is illustrated in the following two examples.

Example 3. Reconsider Example 2 with L being the vertical line parametrized
by

x(t) = 1 y(t) = t

as shown in Fig. 1(b). One has M = L ×C and W = V ∩ M = {(1, 1,±1)} with
t1 = 1 and m1 = 1. For scale, consider T = 2 with f |L(T ) = 1. Thus, (3) yields

f |L(t) = t − 1.

Example 4. Reconsider Example 2 with L being the horizontal line parametrized
by

x(t) = t y(t) = 0

as shown in Fig. 1(c). One has M = L × C and W = V ∩ M = {(0, 0, 0)} with
t1 = 0 and m1 = 2. For scale, consider T = 1 with f |L(T ) = −1. Thus, (3) yields

f |L(t) = −t2.

Clearly, once the univariate polynomial f |L(t) in (3) is computed explicitly,
one can easily determine the value of f at any point along L via evaluation.
Moreover, if L is parameterized by v · t + u, then f |(k)L (t) is equal to the kth

directional derivative of f with respect to v at v · t + u, denoted D
(k)
v f(v · t + u).

Example 5. For L in Example 3 and Example 4, one has v = (0, 1) and v =
(1, 0), respectively. Hence, the corresponding directional derivatives are simply
partial derivatives of f(x, y) = y − x2 with respect to y and x, respectively.
From Example 3, one obtains ∂f

∂y (1, t) = 1 while Example 4 yields ∂f
∂x (t, 0) = −2t

and ∂2f
∂x2 (t, 0) = −2.

3 Algorithm

Theorem 1 immediately justifies Algorithm 1 for explicitly computing a polyno-
mial restricted to a line. The following two examples exemplify this algorithm
applied to the discriminant locus.

Example 6. Consider the discriminant locus H ⊂ C
2 for g(x; b, c) = x2 + bx + c.

Hence, H = π(V ) where π(b, c, x) = (b, c) and V = V(F ) with

F (b, c, x) =

[
x2 + bx + c

2x + b

]
.
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Algorithm 1. Computing a polynomial restricted to a line
Input: A line L ⊂ C

n parameterized by t, a pseudo-witness set {F, π, M, W} for a
hypersurface H defined by f such that M = L × L′, and T along with f |L(T ) �= 0.

Output: The univarite polynomial f |L(t) corresponding to f restricted to L.

1: Use the pseudo-witness set to extract the roots t1, . . . , tk of f along L and the
corresponding multiplicities m1, . . . , mk.

2: Compute the scale factor s :=
f |L(T )

(T − t1)m1 · · · (T − tk)mk
.

3: Construct the univariate polynomial f |L(t) := s · (t − t1)
m1 · · · (t − tk)

mk .
4: (Optional) If L and F are defined with rational coefficients and T and f |L(T ) are

rational, expand f |L(t) and use exactness recovery [2] to compute the exact rational
coefficients of f |L(t).

5: Return f |L(t).

For the line L ⊂ C
2 parameterized by

b(t) = t c(t) = t/3

with M = L ×C, one has W = V ∩ M = {(0, 0, 0), (4/3, 4/9,−2/3)}. The other
input for Algorithm 1 is, say, T = 3 with f |L(T ) = 5 to set the scale. This setup
is illustrated in Fig. 2(a).

The pseudo-witness set yields t1 = 0 and t2 = 4/3 with m1 = m2 = 1. The
corresponding scale factor is

s =
5

(3 − 0)(3 − 4/3)
= 1

so that Algorithm 1 returns f |L(t) = t(t − 4/3) = t2 − 4t/3.
Of course, one can easily compute that the discriminant of g satisfying

f(b(T ), c(T )) = 5 is f(b, c) = b2 − 4c with f |L(t) = f(b(t), c(t)) = t2 − 4t/3.

Example 7. Consider the discriminant locus H ⊂ C
2 for g(x) = x3 + bx + c.

Hence, H = π(V ) where π(b, c, x) = (b, c) and V = V(F ) with

F (b, c, x) =

[
x3 + bx + c

3x2 + b

]
.

For the line L ⊂ C
2 parameterized by

b(t) = t c(t) = t + 3

with M = L × C, one has, rounded to 4 decimal places with i =
√−1,

W = V ∩ M =
{

(−1.9511, 1.0489, 0.8064),
(−2.3995 ± 5.0378i, 0.6005 ± 5.0378i, −1.1532 ± 0.7281i)

}
.

The other input for Algorithm 1 is, say, T = −3 with f |L(T ) = −108 for scale.
This setup is illustrated in Fig. 2(b).
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The pseudo-witness set yields t1 = −1.9511, t2 = −2.3995 + 5.0378i, and
t3 = −2.3995−5.0378i with m1 = m2 = m3 = 1. The corresponding scale factor
is s = 4 so that f |L(t) = 4t3 + 27t2 + 162t + 243.

As in Example 6, one can easily compute that the discriminant of g satisfying
f(b(T ), c(T )) = −108 is f(b, c) = 4b3 + 27c2 with f(b(t), c(t)) = f |L(t) as above.

Fig. 2. Pseudo-witness set for the discriminant locus of (a) the quadratic x2 + bx + c
and (b) the cubic x3 + bx + c.

4 Computing Critical Points

When the line L is fixed, Algorithm 1 computes the restriction of a polynomial f
to L. The following presents two examples of combining this idea with homotopy
continuation to compute critical points of f , namely ∇f = 0. The set of real
solutions to ∇f = 0 with f �= 0 contains at least one point in each compact cell
of Rn ∩{f �= 0} [10]. The website dx.doi.org/10.7274/r0-0mc0-gt33 contains the
necessary files to perform these computations using Bertini [3].

4.1 Lemniscate

This first example demonstrates the approach given f(x, y) = x4−x2+y2 which
defines a lemniscate, but utilizes a pseudo-witness set for the computation. The
aim is to compute all real solutions of ∇f = 0 and f �= 0. For genericity, replace
∇f = 0 with the equivalent condition that the directional derivatives of f in
both the α = (α1, α2) and β = (β1, β2) directions, namely Dαf and Dβf , vanish
for general α and β. We used α1 = 1, α2 = 5+3

√−1, β1 = 4+
√−1, and β2 = 1

in our computation.
Since one is setting directional derivatives equal to zero, the scale factor is

irrelevant and can be simply set to 1. We first compute a witness set for each
of the cubic curves defined by Dαf = 0 and Dβf = 0 where each of them are
expressed in terms of univariate roots following Sect. 2. Then, we simply intersect
these two cubic curves using a diagonal homotopy [20] that tracks 32 = 9 paths.
There are 3 finite endpoints corresponding with the 3 solutions of ∇f = 0, all
of which are real and shown in Fig. 3(a). Two of these have f �= 0 with one in
each of the two compact cells of R2 ∩ {f �= 0}.



Evaluating and di Erentiating a Polynomial Using a Pseudo-witness Set 67

4.2 Kuramoto Model

The Kuramoto model [16] is a mathematical model of an oscillating system to
describe synchronization. After a standard conversion to polynomials, the dis-
criminant locus for the steady states of the 3-oscillator Kuramoto model is mod-
eled by H = π(V ) where π(ω1, ω2, c1, c2, s1, s2) = (ω1, ω2) and V = V(F ) with

F (ω1, ω2, c1, c2, s1, s2) =

⎡
⎢⎢⎢⎢⎣

(s1c2 − c1s2) + (s1c3 − c1s3) − 3ω1

(s2c1 − c2s1) + (s2c3 − c2s3) − 3ω2

s21 + c21 − 1
s22 + c22 − 1

c21c2 + c1c
2
2 + c1c2 + s1s2c1 + s1s2c2

⎤
⎥⎥⎥⎥⎦ . (4)

Letting f be a defining polynomial for H, the aim is to compute the real solutions
of ∇f = 0 with f �= 0 using a pseudo-witness set for H. As in Sect. 4.1, we replace
∇f = 0 with the equivalent condition that two general directional derivatives
vanish. In this case, the vanishing of a general directional derivative of f yields
a degree 11 curve, so a diagonal homotopy [20] to intersect the vanishing of two
directional derivatives tracks 112 = 121 paths. This yields 103 finite solutions
consisting of 37 that satisfy f �= 0 which can be verified using a membership
test via a pseudo-witness set for H [12]. Sorting through these 37 yields 19 real
critical points with f �= 0. Figure 3(b) plots the real part of H along with these 19
real critical points on a contour plot of f showing that at least one is contained
in each compact cell of R2 ∩ {f �= 0}.

Fig. 3. (a) The lemniscate with 2 critical points satisfying f �= 0 (red) and the other
satisfying f = 0 (green), and (b) the discriminant locus (black) for the 3-oscillator
Kuramoto model with contour plot and 19 real critical points (red) in the complement.
(Color figure online)
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Abstract. In the theory of special functions, a particular kind of mul-
tidimensional integral appears frequently. It is called the Euler integral.
In order to understand the topological nature of the integral, twisted
de Rham cohomology theory plays an important role. We propose an
algorithm of computing an invariant cohomology intersection number of
a given basis of the twisted cohomology group. We also develop an algo-
rithm of computing the Paffian system that a given basis satisfies. These
algorithms are based on the fact that the Euler integral satisfies GKZ
system and utilizes algorithms to find rational function solutions of dif-
ferential equations. We provide software to perform this algorithm.

Keywords: Cohomology intersection numbers · GKZ hypergeometric
systems · Gröbner basis

1 Introduction

In the study of hypergeometric functions in several variables, one often considers
the integral of the following form:

〈ω〉 =
∫

Γ

h1(x)−γ1 · · · hk(x)−γkxcω, (1)

where hl(x; z) = hl,z(l)(x) =
∑Nl

j=1 z
(l)
j xa(l)(j) (l = 1, . . . , k) are Laurent

polynomials in torus variables x = (x1, . . . , xn), a(l)(j) ∈ Z
n, γl ∈ C and

c = t(c1, . . . , cn) ∈ C
n are parameters, xc = xc1

1 . . . xcn
n , Γ is a suitable integration

cycle, and ω is an algebraic n-form on Vz = {x ∈ C
n | x1 . . . xnh1(x) . . . hk(x) �=

0}. As a function of the independent variable z = (z(l)j )j,l, the integral (1) defines
a hypergeometric function. We call the integral (1) the Euler integral.
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We can naturally define the twisted de Rham cohomology group associated
to the Euler integral (1). We set N = N1+ · · ·+Nk, Gn

m = Specm C[x±
1 , . . . , x±

n ],
and A

N = Specm C[z(l)j ]. For any z ∈ A
N , we can define an integrable connection

∇x = dx − ∑k
l=1 γl

dxhl

hl
∧ +

∑n
i=1 ci

dxi

xi
∧ : OVz

→ Ω1
Vz

. The algebraic de Rham
cohomology group H∗

dR (Vz; (OVz
,∇x)) is defined as the hypercohomology group

H∗
dR (Vz; (OVz

,∇x)) = H
∗
(
Vz; (0 → OVz

∇x→ Ω1
Vz

∇x→ · · · ∇x→ Ωn
Vz

→ 0)
)

. (2)

Under a genericity assumption on the parameters γl and c, we have the vanishing
result Hm

dR (Vz; (OVz
,∇x)) = 0 (m �= n). Moreover, we can define a perfect

pairing 〈•, •〉ch : Hn
dR (Vz; (OVz

,∇x)) × Hn
dR

(
Vz; (O∨

Vz
,∇∨

x )
) → C which is called

the cohomology intersection form. Here, (O∨
Vz

,∇∨
x ) is the dual connection of

(OVz
,∇x).

The study of intersection numbers of twisted cohomology groups and twisted
period relations for hypergeometric functions started with the celebrated work by
K. Cho and K. Matsumoto [6]. They clarified that the cohomology intersection
number appears naturally as a part of the quadratic relation, a class of functional
relations of hypergeometric functions. They also developed a systematic method
of computing the cohomology intersection number for 1-dimensional integrals.
Since this work, several methods have been proposed to evaluate intersection
numbers of twisted cohomology groups, see, e.g., [2,3,10,11,14,17,19] and refer-
ences therein. All methods utilize comparison theorems of twisted cohomology
groups and residue calculus.

When z belongs to a certain non-empty Zariski open subset of A
N (the

non-singular locus), we proposed a new method in the paper [16] to obtain
cohomology intersection numbers by constructing a rational function solution of
a system of linear partial differential equations. One weak point of the method
was that it was not algorithmic to construct the Pfaffian system (the explicit form
of the integrable connection) for a given basis of the twisted cohomology group.
We will give a new algorithm to construct the Pfaffian system for a given basis
in this paper (Algorithm 1). To our knowledge, algorithms to find the Pfaffian
system (or equation) with respect to a given basis of twisted cohomology group
do not appear in the literature except the twisted logarithmic cohomology case1.
Our algorithm works for a more general class of twisted cohomology groups.
Moreover, it is more efficient by utilizing Saito’s b-function [23] expressed in
terms of facets of a polytope. The Sect. 2 is a brief overview of the paper [16]. The
Sect. 3 is the main part and in the Sects. 4 and 5, we will give demonstrations
of our implementation. As to the construction of rational function solutions,
we utilize the algorithm and the implementation by M. Barkatou, T. Cluzeau,
C. El Bacha, J.-A. Weil [5] (see also [4,18] and their references).

1 K. Nishitani, master thesis 2011 (in Japanese), Kobe University.
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2 General Results

2.1 The Cohomology Intersection Form

We denote by Hn
dR,c

(
V an

z ; (OV an
z

,∇an
x )

)
the analytic de Rham cohomology group

with compact support. By Poincaré-Verdier duality, the bilinear pairing

Hn
dR,c

(
V an

z ; (OV an
z

,∇an
x )

) × Hn
dR

(
V an

z ; (O∨
V an

z
,∇an∨

x )
)

→ C

∈ ∈

(φ, ψ) 	→ ∫
V an

z
φ ∧ ψ

(3)

is perfect. We say that the regularization condition is satisfied if the canoni-
cal morphism Hn

dR,c

(
V an

z ; (OV an
z

,∇an
x )

) → Hn
dR

(
V an

z ; (OV an
z

,∇an
x )

)
is an iso-

morphism. In the following, we always assume that the regularization condi-
tion is satisfied. A criterion for this assumption is explained in Sect. 2.3. Since
(OVz

,∇x) is a regular connection, the canonical morphism Hn
dR (Vz; (OVz

,∇x))
→ Hn

dR

(
V an

z ; (OV an
z

,∇an
x )

)
is always an isomorphism by Deligne-Grothendieck

comparison theorem ([7, Corollaire 6.3]). Therefore, we have a canonical iso-
morphism reg : Hn

dR (Vz; (OVz
,∇x)) → Hn

dR,c

(
V an

z ; (OV an
z

,∇an
x )

)
. Note that the

Poincaré dual of the isomorphism reg is called a regularization map in the the-
ory of special functions ([2, § 3.2]). Finally, we define the cohomology intersection
form 〈•, •〉ch between algebraic de Rham cohomology groups by the formula

〈•, •〉ch : Hn
dR (Vz; (OVz

,∇x)) × Hn
dR

(
Vz; (O∨

Vz
,∇∨

x )
) → C

∈ ∈
(φ, ψ) 	→ ∫

V an
z

reg(φ) ∧ ψ.
(4)

The value above is called the cohomology intersection number of φ and ψ.

2.2 The Secondary Equation

Now, we treat z as a variable. Let π : X = (Gm)n
x ×A

N
z \⋃k

l=1{(x, z) | hl,z(l)(x) =
0} → A

N
z = Y be the natural projection where subscripts stand for coordinates.

We define an OY -module Hn
dR by the hypercohomology group

Hn
dR = H

n
(
X;

(
0 → Ω0

X/Y
∇x→ Ω1

X/Y
∇x→ · · · ∇x→ Ωn

X/Y → 0
))

. (5)

Here, Ω•
X/Y denotes the sheaf of relative differential forms ⊕|I|=•OXdxI with

respect to the morphism π. Since Y is affine, Hn
dR is also identified with the

sheaf Rnπ∗(Ω•
X/Y ,∇x). For any z ∈ Y , there is a natural evaluation morphism

evz : Hn
dR → Hn

dR (Vz; (OVz
,∇x)). We define the dual object Hn∨

dR by replacing
∇x by ∇∨

x in the construction above. By the general theory of relative de Rham
cohomology, there exists a non-empty Zariski open subset U of Y such that
Hn

dR �U� O⊕r
U . Therefore, for any global sections φ of Hn

dR �U and ψ of Hn∨
dR �U ,

we can define the cohomology intersection number 〈φ, ψ〉ch as a function of z ∈ U
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by the formula U � z 	→ 〈evz(φ), evz(ψ)〉ch ∈ C. This actually defines a OU -
bilinear map 〈•, •〉ch : Hn

dR �U ×Hn∨
dR �U→ OU .

We can equip Hn
dR with a structure of a DY -module. For this purpose, we

only need to define a connection ∇GM : Hn
dR → Ω1

Y (Hn
dR) := Ωn

Y ⊗ Hn
dR. For

any section φ ∈ Hn
dR, we define

∇GMφ = dzφ −
∑
j,l

γl
xa(l)(j)

hl,z(l)(x)
dz

(l)
j ∧ φ. (6)

Here, the superscript GM stands for “Gauß-Manin”. The dual connection
∇∨GM : Hn∨

dR → Ω1
Y (Hn∨

dR) is defined by replacing γl by −γl in (6).
The DY -module structures of Hn

dR and Hn∨
dR are compatible with the coho-

mology intersection form. Namely, for any local sections φ of Hn
dR �U and ψ of

Hn∨
dR �U , we have

dz〈φ, ψ〉ch = 〈∇GMφ, ψ〉ch + 〈φ,∇∨GMψ〉ch. (7)

We call (7) the secondary equation. Let us rewrite it in terms of local frames.
Let {φi}r

i=1 (resp. {ψi}r
i=1) be a free basis of Hn

dR �U (resp. Hn∨
dR �U ). We set

I = Ich = (〈φi, ψj〉ch)i,j and call it the cohomology intersection matrix. On the
other hand, there is a r × r matrix Ω (resp. Ω∨) with values in 1-forms on U
such that the connection ∇GM (resp. ∇∨GM ) is trivialized as dz + Ω∧ (resp.
dz + Ω∨∧). Then, the secondary equation is equivalent to the system

dzI = tΩI + IΩ∨. (8)

We also call (8) the secondary equation. The theorem which our algorithm is
based on is the following

Theorem 1 [16]. Under the regularization condition, all the entries of the coho-
mology intersection matrix Ich are rational functions. Moreover, any rational
function solution I of the secondary equation (8) is, up to a scalar multiplica-
tion, equal to Ich.

2.3 GKZ System Behind

In [16], it is discussed that Theorem 1 is true for more general direct image
D-modules. However, by employing the combinatorial structure behind our inte-
grable connection Hn

dR �U , we can show that the cohomology intersection number
in question has a rational expression with respect to z and δ.

Let us recall the definition of GKZ system [8]. For a given d × N (d < N)
integer matrix A = (a(1)| · · · |a(N)) and a parameter vector δ ∈ C

d, GKZ system
MA(δ) is defined as a system of partial differential equations on C

N given by

MA(δ) :
{

Ei · f(z) = 0 (i = 1, . . . , d) (a)
�u · f(z) = 0

(
u ∈ Ker(A× : ZN×1 → Z

d×1)
)
, (b) (9)
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where Ei and �u for u = t(u1, . . . , uN ) are differential operators defined by

Ei =
N∑

j=1

aijzj
∂

∂zj
+ δi, �u =

∏
uj>0

(
∂

∂zj

)uj

−
∏

uj<0

(
∂

∂zj

)−uj

. (10)

For convenience, we assume an additional condition ZA
def
= Za(1)+· · ·+Za(N) =

Z
d. In our setting, we put Al = (a(l)(1)| . . . |a(l)(Nl)), d = n+k, N = N1 + · · ·+

Nk. We define an (n + k) × N matrix A by

A =

⎛
⎜⎜⎜⎜⎜⎝

1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0

...
...

. . .
...

0 · · · 0 0 · · · 0 · · · 1 · · · 1
A1 A2 · · · Ak

⎞
⎟⎟⎟⎟⎟⎠

. (11)

We put δ =
(

γ
c

)
. By abuse of notation, we also denote by MA(δ) the quotient

DY -module DY /J where J is the left ideal of DY generated by the operators
(10). It is known that GKZ system MA(δ) is holonomic ([1]). We say that the
parameter δ is non-resonant if it does not belong to any CΓ + Z

d where Γ is
any facet of the cone

∑N
j=1 R≥0a(j). Hn

dR (resp. Hn∨
dR) is isomorphic to GKZ

system MA(δ) (resp. MA(−δ)) and the regularization condition is true when the
parameter vector δ is non-resonant and γl /∈ Z (see [9, 2.9] and [15, Theorem
2.12]). We set dx

x = dx1
x1

∧ · · · ∧ dxn

xn
. The isomorphism MA(δ) � Hn

dR is given
by the correspondence [1] 	→ [dx

x ]. Thus, any section φ of Hn
dR can be written as

φ = P · [dx
x ] for some linear differential operator P ∈ DY . We define the field

Q(δ) as the field extension Q(γ1, . . . , γk, c1, . . . , cn) of Q.

Theorem 2 [16]. Suppose that A as in (11) admits a unimodular regular trian-
gulation T and δ is non-resonant and γl /∈ Z. Then, for any P1, P2 ∈ Q(δ)〈z, ∂z〉,
the cohomology intersection number 〈P1· dx

x ,P2· dx
x 〉ch

(2π
√−1)n belongs to the field Q(δ)(z).

3 An Algorithm of Finding the Pfaffian System for a
Given Basis

In this section, we set β := −δ. With this notation, we put HA(β) := MA(δ).
This is because we use some results from [12] and [23] where the hypergeometric
ideal is denoted by HA(β) while our main references [15,16] denote it by MA(δ).

Let ωq be the differential form

k∏
l=1

h
−q′

l

l xq′′ dx

x
, q = (q′, q′′) ∈ Z

k × Z
n. (12)

It is known that there exists a basis of the twisted cohomology group of which
elements are of the form ωq when δ is generic (see, e.g., [13, Th 2]). Let {ωq | q ∈
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Q} be a basis of the twisted cohomology group. We will give an algorithm to
find the Pfaffian system ∂

∂zi
ω = Piω with respect to this basis ω = (ωq | q ∈ Q)T .

Note that algorithms to translate a given holonomic ideal to a Pfaffian system
are well known (see, e.g., [12, Chap 6]). However, as long as we know, algorithms
to find the Pfaffian system with respect to a given basis of twisted cohomology
group do not appear in the literature. Note that the pairing of the twisted
homology and cohomology groups is perfect under our assumption. Then, the
Pfaffian equation of the fundamental solution matrix of solutions of the GKZ
system can be regarded as a relation of the twisted cycles.

Put ∂i = ∂
∂zi

. In this subsection, we use • to denote the action to avoid a
confusion with the multiplication. The function 〈ωq〉 is a solution of the hyper-
geometric system HA(β − q). The main point of our method is of use of the
following contiguity relation

1
a′

i · (β − q)
∂i • 〈ωq〉 = 〈ωq′〉, q′ = q + ai (13)

where ai= a(i) is the i-th column vector of A and a′
i is the column vector that

the first k elements are equal to those of ai and the last n elements are 0. For
example, a′

1 = (1, 0, . . . , 0), a′
2 = (1, 0, . . . , 0), . . ., a′

N1+1 = (0, 1, 0, . . . , 0)T , . . .,
a′

N = (0, . . . , 0, 1)T . The relation (13) can be proved by differentiating 〈ωq〉 =∫
Γ

h
−γ1−q′

1
1 · · · h−γk−q′

k

k xc+q′′ dx
x , with respect to zi where we have β−q = (−γ1−

q′
1, . . . ,−γk − q′

k,−c1 − q′′
1 , . . . ,−cn − q′′

n)T .
In [23, Algorithm 3.2], an algorithm to obtain an operator Ci satisfying

Ci∂i − bi(β) = 0 mod HA(β) (14)

is given. The polynomial bi is a b-function in the direction i [23, Th 3.2]. Note
that the algorithm outputs the operator Ci in C〈z1, . . . , zN , ∂1, . . . , ∂N 〉, which
does not depend on the parameter β. Since 〈ωq〉 is a solution of HA(β − q), we
have the following inverse contiguity relation

a′
i · (β − q′′)
bi(β − q′′)

Ci • 〈ωq〉 = 〈ωq′′〉, q′′ = q − ai. (15)

Example 1. (Gauss hypergeometric function 2F1.) Put

A =

⎛
⎝1 1 0 0

0 0 1 1
0 1 0 1

⎞
⎠ (16)

Then, h1 = z1 + z2x, h2 = z3 + z4x. We have

〈ω(1,0,0)〉 =
∫

Γ

h−γ1
1 h−γ2

2 xc 1
h1

dx

x
. (17)

We can show that {ω(1,0,0), ω(1,0,0) −ω(0,1,0)} is a basis of the twisted cohomolgy
group. This A is normal and the b-function b4(s) ∈ Q[s1, s2, s3] for the direction
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z4 is b4(s) = s2s3. Then, C4 = z2z3∂1 + (θ2 + θ3 + θ4)z4 where θi = zi∂i by
reducing (θ3 + θ4)(θ2 + θ4) by the toric ideal IA = 〈∂2∂3 − ∂1∂4〉 (see Algorithm
3.2 of [23]).

Our algorithm to find a Pfaffian system with respect to a given basis of the
twisted cohomology group is as follows.

Algorithm 1. Input: {ωq | q ∈ Q}, a basis of the twisted cohomology group. A
direction (index) i.
Output: Pi, the coefficient matrix of the Pfaffian system ∂i − Pi.

1. Compute a Gröbner basis G of HA(β) in the ring of differential operators
with rational function coefficients. Let S be a column vector of the standard
monomials with respect to G.

2. Put

F (Q) = (F (q) | q ∈ Q)T , F (q) =
∏
ri<0

C−ri
i

∏
ri>0

∂ri
i

1
BB′ , q =

N∑
i=1

riai

(18)
It is a vector with entries in the ring of differential operators and the order
of the product is i = N,N − 1, . . . , 3, 2, 1. In other words, we apply operators
from ∂1. The polynomial B is derived from the coefficient of the contiguity
relation (15) and is equal to

B =
N∏

j=1,rj<0

bj(β′
j + aj)

a′
j · (β′

j + aj)
bj(β′

j + 2aj)
a′

j · (β′
j + 2aj)

· · · bj(β′
j + (−rj)aj)

a′
j · (β′

j + (−rj)aj)
, (19)

β′
j = β −

∑
rl>0

rlal +
j−1∑

l=1,rl<0

(−rl)al. (20)

The polynomial B′ comes from the denominator of the contiguity relation
(13) and is equal to

B′ =
N∏

j=1,rj>0

(
a′

j · (β′
j)

) (
a′

j · (β′
j − aj)

) · · · (a′
j · (β′

j − (rj − 1)aj)
)
, (21)

β′
j = β −

∑
rl>0,l<j

rlal. (22)

3. Compute the normal form of the vectors ∂iF (Q) and F (Q). Write the normal
forms of them as P ′S and P ′′S respectively where P ′ and P ′′ are matrices
with rational function entries.

4. Output Pi = P ′(P ′′)−1.

The matrix P ′′ is invertible if and only if the given set of differential forms {ωq}
is a basis of the twisted cohomology group.
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We show the correctness of the algorithm. Take an element q ∈ Q. We express
〈ωq〉 in terms of 〈ω0〉, which is a solution of HA(β), by the contiguity relations
(13) and (15). Note that the contiguity relations for functions 〈ωq〉 give the
contiguity relations for cohomology classes [ωq] by virtue of the perfectness of
the pairing between the twisted homology and the twisted cohomology groups.
The point of the correctness is the following identity

F (q) • ω0 = ωq. (23)

Let us illustrate how to prove (23) by examples. We assume that q = 2a1 + a2
and N1 ≥ 2. Then ωq can be obtained by applying (13) with i = 1 for two times
and that with i = 2. We have

ωa1 =
1

a′
1 · β

∂1 • ω0, (24)

ω2a1 =
1

a′
1 · (β − a1)

∂1 • ωa1 , (25)

ω2a1+a2 =
1

a′
2 · (β − 2a1)

∂2 • ω2a1 . (26)

Thus, we obtain the numbers (21) and then (23). Let us consider the case that
q = −2a1−a2 and N1 ≥ 2. Then ωq can be obtained by applying (15) with i = 1
for two times and that with i = 2. Since 〈ω−a1〉 is a solution of HA(β + a1), we
have

[c1∂1 − b1(β + a1)] • ω−a1 = 0 (27)

from [23]. Then, we have

ω−a1 =
a′
1 · (β + a1)
b1(β + a1)

c1 • ω0, (28)

ω−2a1 =
a′
1 · (β + 2a1)
b1(β + 2a1)

c1 • ω−a1 , (29)

ω−2a1−a2 =
a′
2 · (β + 2a1 + a2)
b2(β + 2a1 + a2)

c2 • ω−2a1 . (30)

Thus, we obtain the numbers (19) and then (23). The general case can be shown
by repeating these procedures. When the normal form F (q) with respect to the
Gröbner basis G is

∑
p′′

i si where S = (si) and p′′
i is a rational function in z and

β, we have ωq = F (q) • ω0 =
∑

p′′
i si • ω0. The correctness of the last two steps

follows from this fact.

Example 2. This is a continuation of Example 1. We have (1, 0, 0)T = a1 and
(0, 1, 0)T = a3. Then, the basis of the twisted cohomology group F (Q) is
expressed as F (Q) = (∂1/β1, ∂1/β1−∂3/β2)T and ∂4F (Q) = (∂4∂1/β1, ∂4∂1/β1−
∂4∂3/β2)T . We can obtain a Gröbner basis whose set of the standard mono-
mials is {∂4, 1} by the graded reverse lexicographic order such that ∂i >
∂i+1. We multiply β1β2 to F (Q) and ∂4F (Q) in order to avoid ratio-
nal polynomial arithmetic. Then, the normal form, for example, of β2∂1 is
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1
z1z4−z2z3

(
(β1(β1 + β2)z4)∂4 − β2

2β3

)
. By computing the other normal forms, we

obtain the matrix

P4 =

( −β2(z3−z1)
z1z4−z2z3

β2z3
z1z4−z2z3−((β2z3+(−β2+β3)z1)z4+(β1−β3)z2z3−β1z1z2)

z4(z1z4−z2z3)
(β2z3+β3z1)z4+(β1−β3)z2z3

z4(z1z4−z2z3)

)
.

(31)

4 Implementation and Examples

We implemented our algorithms on the computer algebra system Risa/Asir [21]
with a Polymake interface. Polymake (see, e.g., [20,22]) is a system for polyhedral
geometry and it is used for an efficient computation of contiguity relations ([23,
Algorithm 3.2]). Here is an input2 to find the coefficient matrix P4 for Example
1 with respect to the variable z4 when z1 = z2 = z3 = 1 (note that in our
implementation x is used instead of z).
P4=pfaff_eq(A=[[1,1,0,0],[0,0,1,1],[0,1,0,1]],

Beta=[-gamma1,-gamma2,-c],

Ap = [[1,1,0,0],[0,0,1,1],[0,0,0,0]],

Rvec = [[1,0,0,0],[0,0,1,0]],DirX=[dx4] //Rvec is the set of r’s in Algorithm 1.

| xrule=[[x1,1],[x2,1],[x3,1]],

cg=matrix_list_to_matrix([[1,0], [1,-1]]));//get Pfaffian sys for cg*(the basis omega_q)

It outputs the following coefficient matrix

P4 =

(
0 −γ2

x4−1
c

x4

(−c−γ2)x4+c−γ1
(x4−1)x4

)
(32)

Example 3. (3F2, see, e.g., [24, p.224], [19].) Let A =

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 0 1 0 0
0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎠. The inte-

grals are ∫
Γ

(z1x1 + z2)−γ1(z3x2 + z4x1)−γ2(z5 + z6x2)−γ3xc1
1 xc2

2 ωi (33)

where

ω1 =
dx1dx2

(z1x1 + z2)x1x2
, ω2 =

dx1dx2

(z5 + z6x2)x1x2
, ω3 =

dx1dx2

(z3x2 + z4x1)x1x2
(34)

When z2 = −1, z3 = z4 = z5 = z6 = 1, the coefficient matrix for z1 for the basis
(〈ω1〉, 〈ω2〉, 〈ω3〉)T is

P1 =

⎛
⎜⎝

β4z1+β2+β3+β4+β5
z1(z1−1)

β3(β4−β1−β2)
β1z1(z1−1)

(−β4+1)β2(−β2+β4+β5+1)
β4β1z1(z1−1)

(β2+β3−β5)β1
β3(z1−1)

β1z1+β2−β4
z1(z1−1)

(−β4+1)β2(−β2+β4+β5+1)
β4β3z1(z1−1)

β4(β2+β3−β5)β1
(−β4+1)β2(z1−1)

β4β3(β1+β2−β4)
(−β4+1)β2(z1−1)

(−β2+β4+β5+1)
z1−1

⎞
⎟⎠ (35)

The result can be obtained in a few seconds.
2 The Algorithm 1 is implemented in saito-b.rr distributed at [25].
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5 An Algorithm of Finding the Cohomology Intersection
Matrix

Theorem 3 [16]. Given a matrix A = (aij) as in (11) admitting a unimod-
ular regular triangulation T . When parameters are non-resonant, γl /∈ Z and
moreover the set of series solutions by T is linearly independent, the intersec-
tion matrix of the twisted cohomology group of the GKZ system associated to the
matrix A can be algorithmically determined.

We denote by Ωi the coefficient matrix of Ω with respect to the 1-form dzi.
The algorithm we propose is summarized as follows.

Algorithm 2. (A modified version of the algorithm in [16]).
Input: Free bases {φj}j ⊂ Hn

dR �U , {ψj}j ⊂ Hn∨
dR �U which are expressed as

(12).
Output: The secondary equation (8) and the cohomology intersection matrix

Ich = (〈φi, ψj〉ch)i,j.

1. Obtain a Pfaffian system with respect to the given bases {φj}j and {ψj}j,
i.e., obtain matrices Ωi = (ωijk) and Ω∨

i = (ω∨
ijk) so that the equalities

∂iφj =
∑

k

ωikjφk, ∂iψj =
∑

k

ω∨
ikjψk (36)

hold by Algorithm 1.
2. Find a non-zero rational function solution I of the secondary equation

∂iI − tΩiI − IΩ∨
i = 0, i = 1, . . . , N. (37)

To be more precise, see, e.g., [4,5,18] and references therein.
3. Determine the scalar multiple of I by [15, Theorem 8.1].

Example 4. This is a continuation of Example 3. We want to evaluate the
cohomology intersection matrix Ich = (〈ωi, ωj〉ch)3i,j=1. By solving the sec-
ondary equation (for example, using [5]), we can verify that (1, 1), (1, 2), (2, 1),
(2, 2) entries of Ich are all independent of z1. Therefore, we can obtain the
exact values of these entries by taking a unimodular regular triangulation
T = {23456, 12456, 12346} and substituting z1 = 0 in [15, Theorem 8.1]. Thus,
we get a correct normalization of Ich and the matrix Ich

(2π
√−1)2

is given by

⎡
⎢⎢⎢⎣

r11
β4+β5

β5β4(β2−β4−β5)
β4+β5

β5β4(β2−β4−β5) r22
β4(β1+β2−β4−β5)z1−β5β3

β5(β4−1)(β2−β4−β5)(β2−β4−β5−1)
−β4β1z1+β5(β2+β3−β4−β5)

β5(β4−1)(β2−β4−β5)(β2−β4−β5−1)

β4(β1+β2−β4−β4)z1−β5β3
β5(β4+1)(β2−β4−β5)(β2−β4−β5+1)

−(β4β1z1−β5β2−β5β3+β5β4+β2
5)

β5(β4+1)(β2−β4−β5)(β2−β4−β5+1)
r33

⎤
⎥⎥⎥⎦ (38)
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where

r11 = − (β4β2 + (β4 + β5)β3)β1 + β4β2
2 + (β4β3 − β2

4 − β5β4)β2 + (−β2
4 − β5β4)β3

β5β4β1(β2 − β4 − β5)(β2 + β3 − β5)
(39)

r22 = − (β5β2 + (β4 + β5)β3 − β5β4 − β2
5)β1 + β5β

2
2 + (β5β3 − β5β4 − β2

5)β2

β5β4β3(β2 − β4 − β5)(β1 + β2 − β4)
(40)

r33 = − β4{a0z1
2−2β1β3β4β5z1+a2}

β5β2(β4−1)(β4+1)(β2−β4−β5)(β2−β4−β5−1)(β2−β4−β5+1) (41)

a0 = (β1β2 − β1β5 + β2
2 − β2β4 − 2β2β5 + β4β5 + β5

2)β1β4 (42)

a2 = (β2
2 + β2β3 − 2β2β4 − β2β5 − β3β4 + β4

2 + β4β5)β3β5 (43)

Example 5. Let A =

⎛
⎝1 1 1 1 1

0 1 0 2 0
0 0 1 0 2

⎞
⎠. The integrals are

∫
Γ

h−γ1
1 xc1

1 xc2
2 ωi, h1 = z1 + z2x1 + z3x2 + x4x

2
1 + z5x

2
2 (44)

where

ω1 =
dx1dx2

x1x2
, ω2 = x1ω1 =

dx1dx2

x2
, ω3 = x2

2ω1 =
x2dx1dx2

x1
, ω4 = x1x2ω1 = dx1dx2. (45)

Note that this A is not normal. When z1 = z4 = z5 = 1, we have obtained the
coefficient matrices P2 and P3 in about 9 h 45 min on a machine with Intel(R)
Xeon(R) CPU E5-4650 2.70 GHz and 256 GB memory. The (1, 1) element of P2

is
((b2z22 + b123)z23 + b2z

4
2 + b132z

2
2 − 32b1 + 16b2 + 16b3 − 16)

z2(z2 − 2)(z2 + 2)(z23 + z22 − 4)
(46)

where b1 = −γ1, b2 = −c1, b3 = −c2 and bijk = 8bi − 4bj − 8bk + 4. A complete
data of P2 and P3 is at [25]. The intersection matrix can be obtained by [5] in
a few seconds when we specialize bi’s to rational numbers. See [25] as to Maple
inputs for it.
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Differential Equations. Springer, Heidelberg (2000). https://doi.org/10.1007/978-
3-662-04112-3

25. Rational function solutions and intersection numbers (software appendix of this
paper). http://www.math.kobe-u.ac.jp/OpenXM/Math/intersection2

https://www.unilim.fr/pages_perso/thomas.cluzeau/Packages/IntegrableConnections/PDS.html
https://www.unilim.fr/pages_perso/thomas.cluzeau/Packages/IntegrableConnections/PDS.html
https://doi.org/10.1007/BFb0061194
https://doi.org/10.1007/978-4-431-54574-3
https://www.springer.com/gp/book/9784431545736
http://arxiv.org/abs/1904.00565
http://arxiv.org/abs/1904.01253
https://polymake.org
http://www.math.kobe-u.ac.jp/Asir
http://www.openxm.org
https://doi.org/10.1007/978-3-662-04112-3
https://doi.org/10.1007/978-3-662-04112-3
http://www.math.kobe-u.ac.jp/OpenXM/Math/intersection2


Software for Number Theory and
Arithmetic Geometry



Computations with Algebraic Surfaces

Andreas-Stephan Elsenhans1(B) and Jörg Jahnel2

1 Mathematisches Institut, Universität Würzburg, Emil-Fischer-Straße 30,
97074 Würzburg, Germany

stephan.elsenhans@mathematik.uni-wuerzburg.de
2 Department Mathematik, Universität Siegen, Walter-Flex-Straße 3,

57068 Siegen, Germany
jahnel@mathematik.uni-siegen.de,

https://www.mathematik.uni-wuerzburg.de/computeralgebra/team/

elsenhans-stephan-prof-dr/, https://www.uni-math.gwdg.de/jahnel/

Abstract. Computations with algebraic number fields and algebraic
curves have been carried out for a long time. They resulted in many
interesting examples and the formation of various conjectures.

The aim of this talk is to report on some computations with algebraic
surfaces that are currently possible.

Keywords: Algebraic surfaces · Computer algebra · Point counting

1 Introduction

Algebraic geometry is the study of the sets of solutions of systems of algebraic
equations. In dimension zero, these sets consist of a finite number of points.
From an arithmetic perspective, the points are usually not defined over the base
field. Thus, a detailed inspection requires to work with algebraic number fields.
Many algorithms for them are described in [9] and [10].

In dimension 1, the solution sets are algebraic curves. Projective curves are
classified by the degree, abstract irreducible curves by the genus. A smooth plane
curve of degree 1 or 2 has genus 0. Thus, from a geometric perspective, the curve
is isomorphic to the projective line. However, the isomorphism is only defined
over the base field if the curve has a rational point. The answer to this question
can be found using the famous theorem of Hasse-Minkowski.

Smooth curves of degree 3 are of genus one. They have been studied by many
authors from various perspectives. Most notable are the investigations towards
the Birch and Swinnerton-Dyer conjecture [1,2].

Increasing the dimension once more leads us to algebraic surfaces. Here, we
have the Enriques-Kodaira classification, which is based on the Kodaira dimen-
sion. Prominent surfaces of Kodaira dimensions −∞ are the projective plane,
quadratic and cubic surfaces. Ruled surfaces, i.e. surfaces birationally equivalent
to P1 × C, for a curve C of arbitrary genus, are in this class too.
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A. M. Bigatti et al. (Eds.): ICMS 2020, LNCS 12097, pp. 87–93, 2020.
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The most important family of surfaces of Kodaira dimension 0 are K3 sur-
faces. This family includes all smooth quartic surfaces. Further, abelian surfaces
have Kodaira dimension 0, as well.

Finally, there are surfaces of Kodaira-dimensions 1 and 2. They will not be
considered in this talk.

The algorithms presented in this article have been implemented by the
authors over the past 10 years as a part of their research. The given examples
are based on magma [4], version 2.25.

2 Computation with Cubic Surfaces

2.1 Definition

A cubic surface is a smooth algebraic surface in P3 given as the zero set of a
homogeneous cubic form in four variables.

2.2 Properties of Cubic Surfaces

1. It is well known that every smooth cubic surface contains exactly 27 lines. As
the lines generate the Picard group of the surface, many other properties of
the surface relate to them [24].

2. The moduli stack of cubic surfaces if of dimension 4.

For a modern presentation of the geometry of cubic surfaces we refer the inter-
ested read to [12, Chap. 9].

2.3 Computational Questions

1. Given two cubic surfaces, can we test for isomorphy?
2. Given a cubic surface over a finite field, can we count the number of points

on the surface efficiently?
3. Given a cubic surface over the rationals, what is known about the number of

rational points on the surface? Is there a computational approach to this?

2.4 Invariants and Isomorphy Testing

As proven by Clebsch, the ring of invariants of even weight of cubic surfaces is
generated by five invariants of degrees 8, 16, 24, 32, and 40 [8]. Further, there
is an invariant of odd weight an degree 100. These invariants can be computed
in magma:

r4<x,y,z,w>:= PolynomialRing(Rationals(),4);
f:= x^3 + y^3 + z^3 + w^3 + (3*x+3*z+4*w)^3;
time ClebschSalmonInvariants(f);
[ -2579, -46656, 0, 0, 0 ]
-708235798046072773554016875
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Time: 0.010
> time Factorization(708235798046072773554016875);
[ <3, 27>, <5, 4>, <13, 4>, <2281, 2> ]
Time: 0.000
> time SkewInvariant100(f);
0
Time: 0.010

The last return value of ClebschSalmonInvariants is the discriminant of the
surface. Thus, this surface has bad reduction only at 3, 5, 13 and 2281. Fur-
ther, the degree 100 invariant vanishes. This shows that the surface has at least
one non-trivial automorphism. Multiplication of y by a 3rd root of unity and
interchanging x- and z-coordinate are automorphisms of the example.

A detailed description of the algorithm is given in [19]. As an isomorphism
of smooth cubic surfaces is always given by a projective linear map, they are
isomorphic if and only if the invariants coincide.

2.5 Counting Points over Finite Fields

The number of points on a variety over a finite field relates to the Galois module
structure on its etale cohomology [25]. In the case of a cubic surface, the coho-
mology is generated by the lines on the surface. Using Gröbner bases, one can
explicitly determine the lines on a cubic surface and compute the Galois module
structure. In magma, this is available as follows:

r4<x,y,z,w>:= PolynomialRing(Rationals(),4);
f:= x^3 + y^3 + z^3 + w^3 + (x+2*x+3*z+4*w)^3;
p:= NextPrime(17^17);
time NumberOfPointsOnCubicSurface(PolynomialRing(GF(p),4)!f);
684326450885775034172205518946819088355253 9
Time: 0.170

The second return value is the action of the Frobenius on the lines encoded by its
Swinnerton-Dyer number. A detailed description of the lines on a cubic surface
and potential Frobenius actions are given in [24].

2.6 Rational Points on Cubic Surfaces

As soon as a smooth cubic surface over Q has one rational point, one can con-
struct infinitely many other rational points. Further, there are numerous conjec-
tures and questions towards the set of rational points.

If we fix a search bound B, then we can ask for the number of points,

n(B) := #{(x : y : z : w) ∈ P3(Q) | x, y, z, w ∈ Z, |x|, |y|, |z|, |w| < B,

f(x, y, z, w) = 0} ,
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on the surface, given by f = 0. For cubic surfaces, this question is covered by
the Manin conjecture [20]. More precisely, when counting only the points that
are not contained in any of the lines on the surface

n′(B) := #{(x : y : z : w) ∈ P3(Q) | x, y, z, w ∈ Z, |x|, |y|, |z|, |w| < B,

f(x, y, z, w) = 0, (x : y : z : w) not on a line of f = 0} ,
the conjecture predicts the existence of a constant C such that

n′ ∼ C · B logr−1(B) .

Here, r is the rank of the arithmetic Picard group. A conjecture for the value of
C is presented in [26]. Today, we have a lot of numerical and theoretical evidence
for this conjecture. Some numerical examples of smooth cubics are given in [15].
Examples such that a more complex set than just a fixed finite collection of lines
on the variety needs to be excluded from the count are given in [13] and [14].

Finally, the conjecture is proven for some singular surfaces [5]. The interested
reader my also consult [6] for a general introduction to the Manin conjecture.

3 Computations with K3 Surfaces

3.1 Definition

A K3 surface is a smooth algebraic surface which is simply connected and has
trivial canonical class.

3.2 Examples

As the definition of K3 surfaces is abstract, they arise in various forms.

1. Let f6(x, y, z) = 0 be a smooth plane curve of degree 6. Then the double
cover of P2, given by

w2 = f6(x, y, z),

is a K3 surface of degree 2 in P(1, 1, 1, 3).
2. A smooth quartic surface in P3 is a K3 surface.
3. A smooth complete intersection of a quadric and a cubic in P4 is a K3 surface

of degree 6.
4. A smooth complete intersection of three quadrics in P5 is a K3 surface of

degree 8.

If a surface of the shape above has only ADE-singularites, then the minimal
resolution of singularities is still a K3 surface.

3.3 Questions Towards K3 Surfaces

1. Can we test isomorphy of K3 surfaces?
2. What is known about its cohomology?
3. Can we count point over finite fields on K3 surfaces efficiently?
4. What is known about the rational points on a K3 surface defined over Q?
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3.4 Invariants and Isomorphy

For none of the above models of K3 surfaces, a complete system of invariants
is known. In contrast to cubic surfaces, an isomorphism of K3 surfaces may not
be given by a projective linear map. Thus, the isomorphy test is harder in this
instance as different embeddings have to be taken into account.

3.5 Cohomology of K3 Surfaces

The cohomology H2(V,Z) of a K3 surface V over Q is isomorphic to Z
22. All

algebraic cycles defined over Q generate a sublattice called the geometric Picard
group. Its rank r ∈ {1, . . . , 20} is called the geometric Picard rank.

3.6 Counting Points over Finite Fields

Counting points over finite fields can always be done naively by enumeration.
However, there are more efficient methods available. Most notable are the p-adic
methods developed by Kedlaya, Harvey, and others [11,21,22]. The following is
available in magma:

r3<x,y,z>:= PolynomialRing(Rationals(),3);

f:= x^6+y^6+z^6+(x+2*y+3*z)^6;

time WeilPolynomialOfDegree2K3Surface(f,31);

Time: 72.700

t^22 + 58*t^21 + 372*t^20 - 55738*t^19 - 1549132*t^18

- 12929294*t^17 - 572583020*t^16 - 15975066258*t^15

+ 495227053998*t^14 + 10234692449292*t^13 - 608111309695433*t^12

+ 584394968617311113*t^10 - 9451953405462597132*t^9

- 439515833354010766638*t^8 + 13624990833974333765778*t^7

+ 469305239836893718599020*t^6 + 10183923704460593693598734*t^5

+ 1172606072256462645291511372*t^4

+ 40545109959944612235271873978*t^3

- 260047946639644754336571329652*t^2

- 38963850671506772358096270892858*t

- 645590698195138073036733040138561

This gives us the characteristic polynomial of the Frobenius on the etale
cohomology and the number of points over F31d is encoded in this. Some details
on this function are given in [18].

3.7 Computing Algebraic Cycles

As explained above, the algebraic cycles on a K3 surface form a lattice of
rank r = 1, . . . , 20. Thus, a first step to determine its rank is a computa-
tion of lower and upper bounds. Lower bounds can be generated by enumer-
ating cycles. Upper bounds can be derived by point counting [23]. Applying
WeilPolynomialToRankBound to the above example gives us the bound r ≤ 10.
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Combining this with a modulo 71 computation and ArtinTateFormula, one can
sharpen this bound to r ≤ 9. These functions were implemented as part of the
research described in [16].

As worked out by Charles [7], primes resulting in sharp upper bounds have
positive density, as long as the surface does not have real multiplication. The
first explicit family Vt of K3 surfaces such that the approach fails was given
in [17]:

Vt : w2 = q1q2q3

with

q1 :=
(

1
8
t2 − 1

2
t +

1
4

)
y2 + (t2 − 2t + 2)yz + (t2 − 4t + 2)z2,

q2 :=
(

1
8
t2 +

1
2
t +

1
4

)
x2 + (t2 + 2t + 2)xz + (t2 + 4t + 2)z2,

q3 := 2x2 + (t2 + 2)xy + t2y2.

3.8 Rational Points

For the structure of the set of rational points on K3 surfaces, only conjectures
are known. Most notable is a conjecture of Bogomolov [3]: Every rational point
on a K3 surfaces lies on some rational curve on the surface.

Up to the authors knowledge, there are no computational investigations on
this conjecture.
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Abstract. We present a method for evaluating the reverse Grünwald-
Letnikov fractional derivatives of the Riemann Zeta function ζ(s) and use
it to explore the location of zeros of integral and fractional derivatives
on the left half plane.

1 Introduction

The Riemann zeta function ζ(s) and its derivatives ζ(k)(s) are defined by

ζ(s) =
∞∑

n=1

1
ns

and ζ(k)(s) = (−1)k
∞∑

n=2

(log n)k

ns
(1)

everywhere in the half-plane �(s) > 1. By a process of analytic continuation
these functions can be extended to meromorphic functions with a single pole at
s = 1. Moreover, ζ(s) has the Laurent series expansion:

ζ(s) =
1

s − 1
+

∞∑

n=0

(−1)nγn

n!
(s − 1)n, (2)

where γ0 is the Euler constant and for n ≥ 1 γn are the Stieltjes constants.
Unlike ζ(s) itself, the functions ζ(k)(s) have neither Euler products nor func-

tional equations. Thus their nontrivial zeros do not lie on a line, but appear to
be distributed seemingly at random with most zeros located to the right of the
critical line σ = 1

2 . Speiser [16] was the first to show, in 1934, that the Riemann
Hypothesis is equivalent to the fact that ζ ′(s) has no zeros with 0 < σ < 1

2 . Spira
[17] noticed that the zeros of ζ ′(s) and ζ ′′(s) seem to come in pairs, where a zero
of ζ ′′(s) is located to the right of a zero of ζ ′(s). More recently, with the help
of extensive computations, Skorokhodov [15] observed this behavior for higher
derivatives as well.

Our results from [2] support a straightforward one-to-one correspondence
between the zeros of ζ(k)(s) and ζ(m)(s) for large k and m on the right half
plane. Furthermore in [3] we have observed an interesting behavior of the zeros
of ζ(k)(s) on the left half plane, namely they seem to lie on curves which are
extensions of chains of zeros of ζ(k)(s) that were observed on the right half plane.
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Also some of the zeros of ζ(k)(s) on the negative real axis appeared to be part
the chains.

We are investigating this correspondence between the zeros of different
derivatives by considering curves of zeros of fractional derivatives ζ(k)(s) that
connect the zeros of integral derivatives. We have found that among the mul-
titude of existing definitions of fractional derivatives, the reverse Grünwald-
Letnikov fractional derivative works best for situations dealing with ζ(s).

In [4] we have applied it in a proof of a conjecture by Kreminski [10] and in
[5] we have been able to apply some of the properties of the fractional Stieltjes
constants to prove that the zero free region of ζ(s) of radius one about s = 1
generalizes to fractional derivatives.

In [14] we present generalizations of the zero free regions of integral deriva-
tives of ζ(s) on the right half plane from [2] to fractional derivatives. This yields
the existence of curves of zeros of fractional derivatives on the right half plane.
Here we conduct numerical investigations of the zeros of fractional derivatives
where we concentrate our attention to the left half plane.

2 Grünwald-Letnikov Fractional Derivatives of ζ(s)

The fractional derivative introduced by Grünwald [7] in 1867 was simplified both
in approach and notation, by Letnikov in 1869 [11,12]. For N ∈ N and h > 0,
let

ΔN
h f(z) = (−1)N

N∑

k=0

(−1)k

(
N

k

)
f(z + kh)

be the N -th finite difference of f . Then for all n ∈ N we have:

f (n)(z) = lim
h→0

Δn
hf(z)
hn

This can be naturally extended to the fractional case with the generalization of
ΔN

h f(z)

Δα
hf(z) = (−1)α

∞∑

k=0

(−1)k

(
α

k

)
f(z + kh),

where α ∈ C and
(
α
k

)
= Γ (α+1)

Γ (k+1)Γ (α−k+1) . The reverse αth Grünwald-Letnikov
derivative of a function f(z) is now defined as:

Dα
z [f(z)] = lim

h→0+

Δα
hf(z)
hα

= lim
h→0+

(−1)α
∞∑

k=0

(−1)k
(
α
k

)
f(z + kh)

hα
, (3)

whenever the limit exists.
Defined this way, the fractional derivatives Dα

s [f(s)] coincides with the inte-
gral derivatives for all α ∈ N. Furthermore, they satisfy D0

s [f(s)] = f(s) and
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Dα
s

[
Dβ

s [f(s)]
]

= Dα+β
s [f(s)], for all α, β ∈ C. For c ∈ C we have that Dα

s [c] = 0
and for m �= 0 we have Dα

s [ems] = mαems. So for s ∈ C with �(s) > 1 and
α > 0 we have as the generalization of (1) that

ζ(α)(s) = Dα
s [ζ(s)] = (−1)α

∞∑

n=1

logα(n + 1)
ns

. (4)

We have already used the generalization of (2) to the fractional domain in our
proof [4] of a conjecture of Kreminski [10]. For 1 �= s ∈ C and α > 0 we have

ζ(α)(s) = Dα
s [ζ(s)] = (−1)−α Γ (α + 1)

(s − 1)α+1
+

∞∑

n=0

(−1)nγα+n

n!
(s − 1)n,

where the γα are the fractional Stieltjes constants. Because of the branch cut
of the complex logarithm there is a discontinuity along (−∞, 1] for α �∈ N. On
C \ (−∞, 1] the fractional derivative is analytic. As a direct consequence we
obtain the following useful property:

Proposition 1. Let α be a positive real number.

1. If σ ∈ (1,∞) and α �∈ N then Dα
σ [ζ(σ)] is non-real.

2. For s ∈ C \ (−∞, 1] we have Dα
σ [ζ(s)] = (−1)2αDα

σ [ζ(s)].

While this establishes symmetry for the location of the zeros Dα
σ [ζ(s)] in C,

with respect to the real axis, the symmetry is not perfect. It only refers to the
location, and not the actual mirroring of properties, or the dynamics surrounding
the zeros. Nevertheless it asserts that chains of zeros can be observed on the
upper as well as lower half plane.

3 Evaluating Dα
s [ζ(s)]

One of the most effective ways for evaluating (4) and its analytic continuations
to the regions where σ < 1 is Euler-Maclaurin summation. We use the following
form of the summation formula:

N∑

k=m

g(k) =

N∫

m

g(x)dx+
v∑

k=1

(−1)kBk

k!
g(k−1)(x)

∣∣∣∣
N

x=m

+(−1)v+1

N∫

m

Pv(x)g(v)(x)dx,

where g(x) ∈ Cv [m,n], v ∈ N, Bk denotes the k-th Bernoulli number, and
Pk(x) = Bk(x−�x�)

k! is the kth periodic Bernoulli polynomial. If g(x) decreases
rapidly enough for N → ∞, then

∞∑

k=2

g(k) =
m−1∑

k=2

g(k) +

∞∫

m

g(x)dx +
v∑

k=1

(−1)kBk

k!
g(k−1)(x)

∣∣∣∣
∞

x=m

(5)

+ (−1)v+1

∞∫

m

Pv(x)g(v)(x)dx
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Fig. 1. Zeros σ+it with t ≥ 0 of the fractional derivatives of ζ(s) on the left half plane.
For k ∈ N zeros of ζ(k)(s) are labeled with k. Not all zeros on the real axis are shown.
The values for α are 1/100 apart. For details about σ = −6 see Fig. 2.

We now use this to approximate ζ(α)(s) = Dα
s [ζ(s)] = (−1)α

∑∞
k=2

logα k
ks where

s ∈ C with �(s) > 1. Let g(x) = log(α)(x)
xs . Then

∑∞
k=2 g(k) converges for �(s) >

1. We assume that v is even. We evaluate the first summand of (5) as is, namely
as

Gα
s (m) =

m−1∑

k=2

g(k) =
m−1∑

k=2

logα k

ks
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The second term of the right hand side of (5) can be written in terms of the
Upper Incomplete Gamma function Γ (α, s) (compare [6, p. 346] and [1, 6.5.3]):

Iα
s (m) =

∞∫

m

g(x)dx =

∞∫

m

logα x

xs
dx =

Γ (α + 1, (s − 1) log(m))
(s − 1)α+1

For the third term we get:

Bα
s (m, v) =

1
2

logα(m)
ms

−
v/2∑

j=1

B2j

(2j)!

(
logα(x)

xs

)(2j−1)

Now we determine a bound for the fourth term of (5). We denote the falling
factorial by (α)i = Γ (α+1)

Γ (α−i+1) and the Stirling numbers of the first kind by s(j, i).
Let

S(k, i, s) =
k−i∑

j=0

(−1)k−i+j(−1)k

(
k

j

)
(−α)js(k − j, i) (6)

be the the non-central Stirling numbers. The derivatives of g can be written as
[8, Theorem 1]:

g(k)(x) =
(

logα x

xs

)(k)

=
k∑

i=0

S(k, i, s)(α)i
logα−i(x)

xs+k

Writing s = σ + it and

Eα
s (m, v) =

1
v!

∞∫

m

Pv(x)g(v)(x)dx

we obtain

|Eα
s (m, v)| =

∣∣∣∣
1
v!

∫ ∞

m

Pv(x)g(v)(x)dx

∣∣∣∣ ≤ |Bv|
v!

∫ ∞

m

|g(v)(x)|dx

≤ |Bv|
v!

v∑

j=0

∫ ∞

m

∣∣∣∣∣S(v, j, s)(α)j
logα−j(x)

xs+v

∣∣∣∣∣ dx

≤ |Bv|
v!

⎛

⎝
v∑

j=0

|S(v, j, s)(α)j |
⎞

⎠
(∫ ∞

m

logk(x)
xσ+v

dx

)

=
|Bv|
v!

⎛

⎝
v∑

j=0

|S(v, j, s)(α)j |
⎞

⎠ Γ (α + 1, (σ + v − 1) log(m))
(σ + v − 1)α+1
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The error term Eα
s (m, v) converges for σ + v > 1 and m > 2.

For all s ∈ C \ (∞, 1] we can choose m ∈ N and v ∈ N such that |Eα
s (m, v)|

becomes arbitrarily small. We can thus approximate Dα
s [ζ(s)] as

Dα
s [ζ(s)] ≈ (−1)α (Gα

s (m) + Iα
s (m) + Bα

s (m, v))

where the error is |Eα
s (m, v)|.

We have implemented the method described above in the computer algebra
system SageMath [18] using the library mpmath [9]. A considerable increase in
speed was obtained by caching the values of the non-central Stirling numbers,
which we evaluate by their recurrence relation. Figures 1 and 2 were generated
with our implementation.

4 Exploring the Left Half Plane

With our implementation of the approximation to ζ(α)(s), see Sect. 3, we have
investigated the distribution of the zeros on the left half plane. We observe, see
Fig. 1, that the zeros on the left half plane given in [3] appear to be connected
in a similar manner as on the right half plane.

Furthermore they connect to zeros of integral derivatives on the negative real
axis. Note that there is a discontinuity of ζ(α)(s) for α �∈ N∪{0} on the real axis
σ < 1. We find different patterns how zeros of integral derivatives are connected,
see Fig. 2. Some of the curves start and stop at zeros of integral derivatives on
the left real axis such as shown in the first plot in Fig. 2. Further to the left we
find curves touching (or crossing) the real line at integral derivative and jumping
between those points, as shown in the second, third, and fourth plot in Fig. 2.

Levinson and Montgomery [13] have shown that ζ(k)(s) for k ∈ N has only
finitely many non-real zeros on the left half plane. Taking derivatives of the
Laurent series expansion (2) of ζ(s) one immediately sees that the order of the
pole of the k-th derivative of ζ(s) is k + 1. Thus the argument of ζ(k)(γ(t)) on
a curve γ : [0, 2π) → C around s = 1 whose interior does not contain any zeros
cycles through all of [0, 2π) exactly k + 1 times. Each of these cycles “spawns”
at most 2 zeros of ζ(k)(s). If those zeros were evenly distributed, there would be
at most k+1

2 such zeros in the upper left half plane. Experiments suggest that
this is indeed an upper bound for the count of such zeros (see Table 1) and that
these are the only non-real zeros on the upper left half plane (see Fig. 1). This
leads us to conjecture:
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Fig. 2. Selected zeros of the fractional derivatives of ζ(s) on the upper left half plane.
For k ∈ N zeros of ζ(k)(s) are labeled with k. The values for α are 1/100 apart.

Conjecture 1. Let k ∈ N. The number of pairs of non-real zeros of ζ(k)(s) with
σ ≤ 0 is at most k+1

2 .

Fig. 2 shows that this is not the case for fractional derivatives.

Table 1. The number N of pairs of non-real zeros of ζ(k)(s) for �(s) < 1.† Levinson
and Montgomery [13, Theorem 9], ‡ Yıldırım [19, Theorems 2 and 3]. The values for
k > 3 are experimental.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
⌊
k+1
2

⌋
0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

N 0 0† 1‡ 1‡ 2 3 3 3 4 4 4 4 4 5 5 5 6
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Abstract. We present the ideas behind an algorithm to compute nor-
malizers of primitive groups with non-regular socle in polynomial time.
We highlight a concept we developed called permutation morphisms and
present timings for a partial implementation of our algorithm. This arti-
cle is a collection of results from the author’s PhD thesis.

Keywords: Normalizers · Primitive groups · Permutation group
algorithms

1 Introduction

One of the tools to study the internal structure of groups is the normalizer. For
two groups G and H, which are contained in a common overgroup K, we call the
normalizer of G in H, denoted NH(G), the subgroup of H consisting of those
elements that leave G invariant under conjugation.

We only consider finite sets, finite groups, and permutation groups acting on
finite sets. We assume permutation groups to always be given by generating sets
and say that a problem for permutation groups can be solved in polynomial time,
if there exists an algorithm which, given permutation groups of degree n, solves
it in time bounded polynomially in n and in the sizes of the given generating
sets. While many problems for permutation groups can be solved efficiently both
in theory and in practice, no polynomial time algorithm to compute normalizers
of permutation groups is known.

A transitive permutation group G acting on a set Ω is called primitive if
there exists no non-trivial G-invariant partition of Ω. Primitive groups have
a rich and well-understood structure. Hence many algorithms use the natural
recursion from general permutation groups to transitive and in turn to primitive
ones. For two permutation groups G,H ≤ Sym Ω computing the normalizer of
G in H in general is done by searching for the normalizer of G in the symmetric
group SymΩ and simultaneously computing the intersection with H. We focus
on computing the normalizer of a primitive group G ≤ Sym Ω in SymΩ. Being
able to compute normalizers for primitive groups efficiently may lead to improved
algorithms for more general situations.

Our results build substantially on the O’Nan-Scott classification of primitive
groups, see [17], and on the classification of finite simple groups (CFSG).
c© Springer Nature Switzerland AG 2020
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Recall that the socle of a group G, denoted SocG, is the subgroup gener-
ated by all minimal normal subgroups of G. Our theoretical main result is the
following theorem.

Theorem 1 ([23, Theorem 9.1]). Let a primitive group G ≤ Sym Ω with non-
regular socle1 be given. Then we can compute NSymΩ(G) in polynomial time.

As is often the case in computational group theory, ideas from theoreti-
cal algorithms can be employed in practical algorithms and vice versa. While
the algorithms in [23] are primarily theoretical ones, we also provide proba-
bilistic nearly-linear time versions where possible. The author is developing the
GAP package NormalizersOfPrimitiveGroups, hosted at https://github.com/
ssiccha/NormalizersOfPrimitiveGroups2, with the aim to implement practical
versions of the algorithms developed in [23]. Until now, algorithms concern-
ing permutation morphisms and primitive groups of type PA are implemented.
First experiments indicate that already for moderate degrees these outperform
the GAP built-in algorithm Normalizer by several orders of magnitude, see
Table 1.

Since no polynomial time solutions are known for the normalizer problem, the
generic practical algorithms resolve to backtracking over the involved groups in
one way or another. The fundamental framework of modern backtrack algorithms
for permutation groups is Leon’s partition backtrack algorithm [16], which gener-
alizes previous backtrack approaches [5,6,12,24] and generalizes ideas of nauty
[19] to the permutation group setting. Partition backtrack is implemented in
GAP [9] and Magma [4]. Recently, the partition backtrack approach was gener-
alized to a “graph backtrack” framework [14].

Theißen developed a normalizer algorithm which uses orbital graphs to prune
the backtrack search [25]. Chang is currently developing specialized algorithms
for highly intransitive permutation groups, her PhD thesis should appear shortly.
It is to expect that the work in [14] can also be extended to normalizer problems.
Hulpke also implemented normalizer algorithms in [13] using group automor-
phisms and the GAP function NormalizerViaRadical based on [10].

In Sect. 2 we outline the strategy behind our algorithms. In Sect. 3 we
recall the O’Nan-Scott Theorem. We present our new concept of permutation
morphisms in Sect. 4. In Sect. 5 we sketch how we use our results to obtain
Theorem 1. In Sect. 6 we discuss our implementation.

2 Strategy

We describe the strategy of the theoretical algorithm behind Theorem 1. Com-
ments regarding the implementation of its building blocks are given at the end
of each following section.

In this section let G ≤ Sym Ω be a primitive group with non-regular socle
H. The normalizer of H in SymΩ plays a central role in our algorithm, in this
1 This excludes groups of affine and of twisted wreath type.
2 May move to https://github.com/gap-packages/NormalizersOfPrimitiveGroups.

https://github.com/ssiccha/NormalizersOfPrimitiveGroups
https://github.com/ssiccha/NormalizersOfPrimitiveGroups
https://github.com/gap-packages/NormalizersOfPrimitiveGroups
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section we denote it by M . Observe that to compute NSymΩ(G) it suffices to
compute NM (G) since the former is contained in M .

The socle H is isomorphic to T � for some finite non-abelian simple group T
and some positive integer �. The group G is isomorphic to a subgroup of the
wreath product Aut(T ) � S�, see Sect. 3 for a definition of wreath products. By
the O’Nan-Scott Theorem the respective isomorphism extends to an embedding3

of the normalizer M into Aut(T ) � S�. Furthermore � is of the order O(log|Ω|).
Hence the index of G in M , and thus also the search-space of the normalizer
computation NM (G), is tiny in comparison to the index of G in SymΩ.

Our approach can be divided into two phases. First we compute M , this is
by far the most labor intensive part. To this end we compute a sufficiently well-
behaved conjugate of G, such that we can exhibit the wreath structure mentioned
above. In [23] we make this more precise and define a weak canonical form for
primitive groups. Using that conjugate and the O’Nan-Scott Theorem we can
write down generators for M . In the second phase, we compute a reduction
homomorphism ρ : M → Sk with k ≤ 6 log|Ω|. After this logarithmic reduction,
we use Daniel Wiebking’s simply exponential time algorithm [26,27], which is
based on the canonization framework [22], to compute NSk

(ρ(G)). Note that
the running time of a simply exponential time algorithm called on a problem
of size log n is 2O(log n) and thus is bounded by 2c log n = nc for some constant
c > 0. Then we use Babai’s famous quasipolynomial time algorithm for graph-
isomorphism [1,2] to compute the group intersection Nρ(M)(ρ(G)) = ρ(M) ∩
NSk

(ρ(G)). Notice that since we perform these algorithms on at most 6 log n
points they run in time polynomial in n. The homomorphism ρ is constructed in
such a way, that computing the preimage of the above normalizer Nρ(M)(ρ(G))
yields NM (G). Recall that NM (G) is equal to NSymΩ(G).

In our implementation we do not use the algorithms by Wiebking and Babai
since these are purely theoretical. Instead we use the partition backtrack imple-
mented in GAP.

3 The O’Nan-Scott Theorem

The goal of this and the next section is to illustrate how we use the O’Nan-Scott
Theorem to prove the following theorem. In this article we limit ourselves to
groups of type PA, which we define shortly.

Theorem 2 ([23, Theorem 8.1]). Let a primitive group G ≤ Sym Ω with
non-abelian socle be given. Then we can compute NSymΩ(Soc G) in polynomial
time.

Proof. For groups of type PA this will follow from Corollary 5 and Lemma 6.

The O’Nan-Scott Theorem classifies how the socles of primitive groups can
act, classifies the normalizers of the socles, and determines criteria to decide
which subgroups of these normalizers act primitively. We follow the division of
3 For twisted wreath type the situation is slightly more complicated.
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primitive groups into eight O’Nan-Scott types as it was suggested by László G.
Kovács and first defined by Cheryl Praeger in [21]. In this section we define
the types AS and PA and recall some of their basic properties. In particular we
describe the normalizer of the socle for groups of type PA and how to construct
the normalizer of the socle, if the group is given in a sufficiently well-behaved
form.

The version of the O’Nan-Scott Theorem we use, for a proof see [17], is:

Theorem 3. Let G be a primitive group on a set Ω. Then G is a group of type
HA, AS, PA, HS, HC, SD, CD, or TW.

The abbreviation AS stands for Almost Simple. A group is called almost
simple if it contains a non-abelian simple group and can be embedded into the
automorphism group of said simple group. A primitive group G is of AS type if
its socle is a non-regular non-abelian simple group.

The abbreviation PA stands for Product Action. The groups of AS type form
the building blocks for the groups of PA type. To define this type, we shortly
recall the notion of wreath products and their product action.

The wreath product of two permutation groups H ≤ Sym Δ and K ≤ Sd is
denoted by H � K and defined as the semidirect product Hd

� K where K acts
per conjugation on Hd by permuting its components. We identify Hd and K
with the corresponding subgroups of H � K and call them the base group and
the top group, respectively.

For two permutation groups H ≤ Sym Δ and K ≤ Sd the product action of
the wreath product H � K on the set of tuples Δd is given by letting the base
group act component-wise on Δd and letting the top group act by permuting
the components of Δd.

Definition 4. Let G ≤ Sym Ω be a primitive group. We say that G is of type
PA if there exist an � ≥ 2 and a primitive group H ≤ Sym Δ of type AS such
that G is permutation isomorphic to a group ̂G ≤ Sym Δ� with

(Soc H)� ≤ ̂G ≤ H � S�

in product action on Δ�.

The product action wreath products A5 � 〈(1, 2, 3)〉 and A5 � 〈(1, 2)〉 are examples
for primitive groups of type PA.

Let ̂G ≤ Sym(Δ�) and H ≤ Sym Δ be as in Definition 4. We sketch how to
construct the normalizer of the socle of ̂G. Let T := SocH ≤ Sym Δ. Since ̂G
is given acting in product action we can read off H and thus compute T . By [8,
Lemma 4.5A] we know that the normalizer of Soc ̂G in SymΔ� is NSymΔ(T ) �S�.
By recent work of Luks and Miyazaki we can compute the normalizer of T , in
polynomial time [18, Corollary 3.24]. More precisely this approach yields the
following corollary:

Corollary 5. Let G ≤ Sym(Δ�) be a primitive group of type PA with socle
T � in component-wise action on Δ�. Then NSym(Δ�)(T �) can be computed in
polynomial time.
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In the practical implementation we use the GAP built-in algorithm to com-
pute the normalizer of T in SymΔ. Our long-term goal is to use the constructive
recognition provided by the recog package [20]. Computing the normalizer of T
in SymΔ is then only a matter of iterating through representatives for the outer
automorphisms of T .

4 Permutation Morphisms

In general a group of PA type might be given on an arbitrary set and needs
only be permutation isomorphic to a group in product action. In this section we
discuss how to construct such a permutation isomorphism:

Lemma 6. Let G ≤ Sym Ω be a primitive group of type PA. Then we can
compute a non-abelian simple group T ≤ Sym Δ, a positive integer �, and a
permutation isomorphism from G to a permutation group ̂G ≤ Sym(Δ�) such
that the socle of ̂G is T � in component-wise action on Δ�.

To this end we present the notion of permutation morphisms developed in [23].
They arise from permutation isomorphisms by simply dropping the condition
that the domain map and the group homomorphism be bijections. We illustrate
how to use them to prove Lemma 6.

4.1 Basic Definitions

For two maps f : A → B and g : C → D we denote by f × g the product map
A × C → B × D, (a, c) 	→ (f(a), g(c)). For a right-action ρ : Ω × G → Ω of a
group G and g ∈ G, ω ∈ Ω we also denote ρ(ω, g) by ωg.

Definition 7. Let G and H be permutation groups on sets Ω and Δ, respec-
tively, let f : Ω → Δ be a map, and let ϕ : G → H be a group homomorphism.
Furthermore let ρ and τ be the natural actions of G and H on Ω and Δ, respec-
tively. We call the pair (f, ϕ) a permutation morphism from G to H if the
following diagram commutes:

Ω × G Ω

Δ × H Δ ,

ρ

f×ϕ f

τ

that is if f(ωg) = f(ω)ϕ(g) holds for all ω ∈ Ω, g ∈ G. We call ϕ the group
homomorphism of (f, ϕ) and f the domain map of (f, ϕ).

It is immediate from the definition, that the component-wise composition of
two permutation morphisms again yields a permutation morphism. In particular
we define the category of permutation groups as the category with all permutation
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groups as objects, all permutation morphisms as morphisms, and the component-
wise composition as the composition of permutation morphisms. We rely on this
categorical perspective in many of our proofs.

We denote a permutation morphism F from a permutation group G to a
permutation group H by F : G → H. When encountering this notation keep
in mind that F itself is not a map but a pair of a domain map and a group
homomorphism. We use capital letters for permutation morphisms.

It turns out that a permutation morphism F is a mono-, epi-, or isomor-
phism in the categorical sense if and only if both its domain map and group
homomorphism are injective, surjective, or bijective, respectively.

For a permutation group G ≤ Sym Ω we call a map f : Ω → Δ compatible
with G if there exists a group homomorphism ϕ such that F = (f, ϕ) is a
permutation morphism. We say that a partition Σ of Ω is G-invariant if for all
A ∈ Σ and g ∈ G we have Ag ∈ Σ.

Lemma 8 ([23, Lemma 4.2.10]). Let G ≤ Sym Ω be a permutation group
and f : Ω → Δ a map. Then f is compatible with G if and only if the partition
of Ω into the non-empty fibers {f−1({δ}) | δ ∈ f(Ω)} is G-invariant.

If G is transitive, then the G-invariant partitions of Ω are precisely the block
systems of G. Hence for a given blocksystem we can define a compatible map f
by sending each point to the block it is contained in.

Let G ≤ Sym Ω be a permutation group and f : Ω → Δ a surjective map
compatible with G. Then there exist a unique group H ≤ Sym Δ and a unique
group homomorphism ϕ : G → H such that F := (f, ϕ) is a permutation
epimorphism, see [23, Corollary 4.2.7]. We call F the permutation epimorphism
and ϕ the group epimorphism of G induced by f .

Example 9. Let Ω = {1, . . . , 4}, a := (1, 2)(3, 4), b := (1, 3)(2, 4), and V := 〈a, b〉.
Further consider the set Ω1 := {1, 2}, the map p1 : Ω → Ω1, 1, 3 	→ 1, 2, 4 	→ 2,
and the following geometric arrangement of the points 1, . . . , 4:

1 2

3 4

Observe that a acts on Ω by permuting the points horizontally, while b acts
on Ω by permuting the points vertically. The map p1 projects Ω vertically or
“to the top”. Notice how the fibers of p1 correspond to a block-system of V . We
determine the group epimorphism π1 of V induced by p1. By definition π1(a) is
the permutation which makes the following square commute:

Ω Ω

Ω1 Ω1

a

p1 p1

π1(a)
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Take 1 ∈ Ω1. We have p−1
1 ({1}) = {1, 3}, a({1, 3}) = {2, 4}, and p1({2, 4}) =

{2}. Hence π1(a) = (1, 2). Correspondingly we get π1(b) = idΩ1 .

4.2 Products of Permutation Morphisms

For two permutation groups H ≤ Sym Δ and K ≤ Sym Γ we define the product
of the permutation groups H and K as the permutation group given by H ×K in
component-wise action on Δ×Γ. Correspondingly, for an additional permutation
group G ≤ Sym Ω and two permutation morphisms (f, ϕ) and (g, ψ) from G to
H and K, respectively, we define the product permutation morphism G → H×K
as (f ×g, ϕ×ψ). Iteratively, we define the product of several permutation groups
or permutation morphisms.

To prove Lemma 6 it suffices to be able to compute the following: given the
socle H ≤ Sym Ω of a PA type group compute a non-abelian simple group T ≤
Sym Δ and permutation epimorphisms, think projections, P1, . . . , P� : H → T
such that the product morphism P : H → T � is an isomorphism. Since every
surjective map compatible with H induces a unique permutation epimorphism,
it in turn suffices to compute suitable maps pi : Ω → Δ.

Example 10. Consider the situation in Example 9. Let P1 := (p1, π1) and Ω2 :=
{1, 3}. Then the map p2 : Ω → Ω2, 1, 2 	→ 1, 3, 4 	→ 3 is compatible with V
and induces the permutation epimorphism P2 : V → 〈(1, 3)〉. The product maps
p1 × p2 : Ω → Ω1 × Ω2 and P1 × P2 : V → 〈(1, 2)〉 × 〈(1, 3)〉 are isomorphisms of
sets and permutation groups, respectively.

We illustrate how to construct one of the needed projections for PA type groups.

Example 11. Let Δ = {1, . . . , 5} and H := A5 × A5 ≤ Sym(Δ2). We denote by
1Δ the trivial permutation group on Δ. The subgroup H1 := A5×1Δ ≤ Sym(Δ2)
is normal in H. Let us denote sets of the form {(δ, x2) | δ ∈ Δ} by {(∗, x2)}. Then
partitioning Δ2 into orbits under H1 yields the block system

Σ = {{(∗, δ2)} | δ2 ∈ Δ}.

Note how mapping each x ∈ Δ2 to the block of Σ it is contained in is
equivalent to mapping each x to x2. Thus we have essentially constructed the
map p2 : Δ2 → Δ, x 	→ x2. Observe that we only used the group theoretic
property that H1 is a maximal normal subgroup of H and thus in particular did
not use the actual product structure of Δ2.

Analogously we can construct the map p1 : Δ2 → Δ, x 	→ x1. For i = 1, 2
let Pi : H → A5 be the permutation epimorphisms of H induced by p1 and p2,
respectively. Since p1×p2 is an isomorphism, P1×P2 must be a monomorphism.
By order arguments P1 × P2 is thus an isomorphism.

In general the above construction does not yield permutation epimorphisms
with identical images. We can alleviate this by computing elements of the given
group which conjugate the minimal normal subgroups of its socle to each other.
For the general construction see the (homogenized) product decomposition by
minimal normal subgroups in [23, Definitions 5.1.3 and 5.1.5]. Lemma 6 then
follows from [23, Corollary 5.19].
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5 Reduction Homomorphism

Recall from Sect. 2 that a key ingredient of our second phase is a group homo-
morphism which reduces the original problem on n points to a problem on less
or equal than 6 log n points. We illustrate shortly how to construct this homo-
morphism, for the details refer to [23, Theorem 9.1.6].

Let G ≤ Sym Ω be a primitive group with non-regular socle and T ≤ Sym Δ
be a socle-component of G, confer [23, Chapters 5 and 7] for a definition. Then
T is a non-abelian simple group, there exists a positive integer � such that Soc G
is isomorphic to T �, and by [23, Lemma 2.6.1] we have |Ω| = |Δ|s for some
s ∈ {�/2, . . . , �}. Denote by R the permutation group induced by the right-
regular action of OutT on itself. We show that we can evaluate the following
two group homomorphisms: first an embedding NSymΩ(Soc G) → AutT �S� and
second an epimorphism AutT � S� → R � S�, where R � S� is the imprimitive
wreath product and thus acts on |R| · � points.

We sketch the proof that |R| · � ≤ 6 log n. Let m := |Δ| and r := |R|. Note
that for � we have � ≤ 2s = 2 logm n. Since R is regular, we have r = |OutT |.
Since T is a socle-component of G, we have |OutT | ≤ 3 log m by [11, Lemma 7.7].
In total we have r · � ≤ 3 log m · 2 logm n = 6 log n.

In our implementation we use a modified version of this reduction. For groups
of type PA we can directly compute an isomorphism from the product action
wreath product into the corresponding imprimitive wreath product.

6 Implementation

A version of our normalizer algorithm for groups of type PA is implemented in
the GAP package NormalizersOfPrimitiveGroups.

Table 1 shows a comparison of runtimes of our algorithm and the GAP
function Normalizer. At the time of writing, there are two big bottlenecks in
the implementation. First, the GAP built-in algorithm to compute the socle
of a group is unnecessarily slow. State-of-the-art algorithms as in [7] are not
yet implemented. Secondly, computing a permutation which transforms a given
product decomposition into a so-called natural product decomposition currently
also is slow. The latter may be alleviated by implementing the corresponding
routines in for example C [15] or Julia [3]. Note that the actual normalizer com-
putation inside the normalizer of the socle appears to be no bottleneck: in the
example with socle type (A5)7 it took only 40 ms!
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Table 1. Table with runtime comparison.

Socle type Degree Our algorithm GAP built-in alg.

(A5)
2 25 24 ms 200 ms

(A5)
3 125 50 ms 1500 ms

(A5)
4 625 300 ms 29400 ms

(A5)
7 78125 67248 ms –

PSL(2, 5)2 36 40 ms 300 ms

PSL(2, 5)3 216 90 ms 1900 ms

PSL(2, 5)4 1296 400 ms 64000 ms

(A7)
2 49 38 ms 900 ms

(A7)
3 343 200 ms 16800 ms

(A7)
4 2401 1400 ms 839000 ms
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Abstract. This paper is a compressed summary of some principal def-
initions and concepts in the approach to the black box algebra being
developed by the authors [6–8]. We suggest that black box algebra could
be useful in cryptanalysis of homomorphic encryption schemes [11], and
that homomorphic encryption is an area of research where cryptography
and black box algebra may benefit from exchange of ideas.
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1 Homomorphic Encryption

“Cloud computing” appears to be a hot topic in information technology; in a
nutshell, this is the ability of small and computationally weak devices to delegate
hard resource-intensive computations to third party (and therefore untrusted)
computers. To ensure the privacy of the data, the untrusted computer should
receive data in an encrypted form but still being able to process it. It means that
encryption should preserve algebraic structural properties of the data. This is
one of the reasons for popularity of the idea of homomorphic encryption [1,2,10,
11,13,14,18,19,21–23] which we describe here with some simplifications aimed
at clarifying connections with black box algebra (as defined in Sect. 2.1).

1.1 Homomorphic Encryption: Basic Definitions

Let A and X denote the sets of plaintexts and ciphertexts, respectively, and
assume that we have some (say, binary) operators �A on A needed for process-
ing data and corresponding operators �X on X. An encryption function E is
homomorphic if

E(a1 �A a2) = E(a1) �X E(a2)

for all plaintexts a1, a2 and all operators on A.
Suppose that Alice is the owner of data represented by plaintexts in A which

she would like to process using operators �A but has insufficient computational
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resources, while Bob has computational facilities for processing ciphertexts using
operators �X. Alice may wish to enter into a contract with Bob; in a realistic
scenario, Alice is one of the many customers of the encrypted data processing
service run by Bob, and all customers use the same ambient structure A upto
isomorphism and formats of data and operators which are for that reason are
likely to be known to Bob. What is not known to Bob is the specific password
protected encryption used by Alice. This is what is known in cryptology as
Kerckhoff’s Principle: obscurity is no security, the security of encryption should
not rely on details of the protocol being held secret; see [11] for historic details.

Alice encrypts plaintexts a1 and a2 and sends ciphertexts E(a1) and E(a2)
to Bob, who computes

x = E(a1) �X E(a2)

without having access to the content of plaintexts a1 and a2, then return the
output x to Alice who decrypts it using the decryption function E−1:

E−1(x) = a1 �A a2

In this set-up, we say that the homomorphic encryption scheme is based on the
algebraic structure A or the homomorphism E is a homomorphic encryption of
the algebraic structure A.

To simplify exposition, we assume that the encryption function E is deter-
ministic, that is, E establishes a one-to-one correspondence between A and X.
Of course, this is a strong assumption in the cryptographic context; it is largely
unnecessary for our analysis, but, for the purposes of this paper, allows us to
avoid technical details and makes it easier to explain links with the black box
algebra.

1.2 Back to Algebra

In algebraic terms, A and X as introduced above are algebraic structures with
operations on them which we refer to as algebraic operations and E : A −→ X
is a homomorphism. In this paper we assume that the algebraic structure A is
finite as a set. This is not really essential for our analysis, many observations are
relevant for the infinite case as well, but handling probability distributions (that
is, random elements) on infinite sets is beyond the scope of the present paper.

We discuss a class of potential attacks on homomorphic encryption of A.
Our discussion is based on a simple but fundamental fact of algebra that a map
E : A −→ X of algebraic structures of the same type is a homomorphism if and
only if its graph

Γ (E) = {(a,E(a)) | a ∈ A}
is a substructure of A×X, that is, closed under all algebraic operations on A×X.
Obviously, Γ (E) is isomorphic to A and we shall note the following observation:

if an algebraic structure A has a rich internal configuration (has
many substructures with complex interactions between them),
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the graph Γ (E) of a homomorphic encryption E : A −→ X also
has a rich (admittedly hidden) internal configuration, and this
could make it vulnerable to an attack from Bob.

We suggest that

before attempting to develop a homomorphic encryption scheme
based on a particular algebraic structure A, the latter needs to
be examined by black box theory methods – as examples in this
paper show, it could happen that all homomorphic encryption
schemes on A are insecure.

2 Black Box Algebra

2.1 Axiomatic Description of Black Box Algebraic Structures

A black box algebraic structure X is a black box (device, algorithm, or oracle)
which produces and operates with 0–1 strings of uniform length l(X) encrypting
(not necessarily in a unique way) elements of some fixed algebraic structure A:
if x is one of these strings then it corresponds to a unique (but unknown to us)
element π(x) ∈ A. Here, π is the decrypting map, not necessarily known to us
in advance. We call the strings produced or computed by X cryptoelements.

Our axioms for black boxes are the same as in [6–8], but stated in a more
formal language.

BB1 On request, X produces a ‘random’ cryptoelement x as a string of fixed
length l(X), which depends on X, which encrypts an element π(x) of some
fixed explicitly given algebraic structure A; this is done in time polynomial
in l(X). When this procedure is repeated, the elements π(x1), π(x2), . . . are
independent and uniformly distributed in A.

To avoid messy notation, we assume that operations on A are unary or binary;
a general case can be treated in exactly the same way.

BB2 On request, X performs algebraic operations on the encrypted strings which
correspond to operations in A in a way which makes the map π (unknown to
us!) a homomorphism: for every binary (unary case is similar) operation �
and strings x and y produced or computed by X,

π(x � y) = π(x) � π(y).

It should be noted that we do not assume the existence of an algorithm which
allows us to decide whether a specific string can be potentially produced by X;
requests for operations on strings can be made only in relation to cryptoelements
previously output by X. Also, we do not make any assumptions on probabilistic
distribution of cryptoelements.
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BB3 On request, X determines, in time polynomial in l(X), whether two cryp-
toelements x and y encrypt the same element in A, that is, check whether
π(x) = π(y).

We say in this situation that a black box X encrypts the algebraic structure
A and we denote this as X � A.

Clearly, in black box problems, the decrypting map π is not given in advance.
However, it is useful to think about any algebraic structure (say, a finite field)
implemented on a computer as a trivial black box, with π being the identity
map, and with random elements produced with the help of a random number
generator. In this situation, obviously, the axioms BB1–BB3 hold.

In our algorithms, we have to build new black boxes from existing ones and
work with several black box structures at once: this is why we have to keep track
of the length l(X) on which a specific black box X operates. For example, it turns
out in [8] that it is useful to consider an automorphism of A as a graph in A×A.
This produces an another algebraic structure isomorphic to A which can be seen
as being encrypted by a black box Z producing, and operating on, certain pairs
of strings from X, see [8] for more examples. In this case, clearly, l(Z) = 2l(X).

2.2 Morphisms

Given two black boxes X and Y encrypting algebraic structures A and B, respec-
tively, we say that a map φ which assigns strings produced by X to strings
produced by Y is a morphism of black boxes, if

– the map φ is computable in time polynomial in l(X) and l(Y), and
– there is a homomorphism φ : A → B such that the following diagram is

commutative:

X
φ� Y

A

πX
�

......... φ� B

πY
�

.........

where πX and πY are the canonical projections of X and Y onto A and B,
respectively.

We say in this situation that a morphism φ encrypts the homomorphism φ and
call φ bijective, injective, etc., if φ has these properties.

2.3 Construction and Interpretation

Construction of a new black box Y in a given black box X � A can be formally
described as follows.

Strings of Y are concatenated n-tuples of strings (x1, . . . , xn) from X produced
by a polynomial time algorithm which uses operations on X; new operations on
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Y are also polynomial time algorithms running on X, as well as the algorithm
for checking the new identity relation =Y on Y.

If this is done in a consistent way and axioms BB1–BB3 hold in Y, then Y
encrypts an algebraic structure B which can be obtained from the structure A by
a similar construction, with algorithms replaced by description of their outputs
by formulae of first order language in the signature of A. At this point we are
entering the domain of model theory, and full discussion of this connection can
be found in our forthcoming paper [9]. Here we notice only that in model theory
B is said to be interpreted in A, and if A is in its turn interpreted in B then A
and B are called bi-intrepretable. A recent result on bi-interpretability between
Chevalley groups and rings, relevant to our project is [20].

2.4 A Few Historic Remarks

Black box algebraic structures had been introduced by Babai and Szeméredi [4]
in the special case of groups as an idealized setting for randomized algorithms for
solving permutation and matrix group problems in computational group theory.
Our Axioms BB1–BB3 are a slight modification – and generalization to arbitrary
algebraic structures – of their original axioms.

So far, it appears that only finite groups, fields, rings, and, very recently,
projective planes (in our paper [8]) got a black box treatment. In the case of
finite fields, the concept of a black box field can be traced back to Lenstra Jr
[16] and Boneh and Lipton [5], and in the case of rings – to Arvind [3].

A higher level of abstraction introduced in our papers produces new tools
allowing us to solve problems which previously were deemed to be intractable.
For example, recently, a fundamental problem of constructing a unipotent ele-
ment in black box groups encrypting PSL2 was solved in odd characteristics via
constructing a black box projective plane and its underlying black box field [8].
There is an analogous recognition algorithm for the black box groups encrypting
PSL2 in even characteristic [15].

2.5 Recognition of Black Box Fields

A black box (finite) field K is a black box operating on 0-1 strings of uniform
length which encrypts some finite field F. The oracle can compute x+ y, xy, and
x−1 (the latter for x �= 0) and decide whether x = y for any strings x, y ∈ K.
Notice in this definition that the characteristic of the field is not known. Such
a definition is needed in our paper [8] to produce black box group algorithms
which does not use characteristic of the underlying field. If the characteristic p
of K is known then we say that K is a black box field of known characteristic
p. We refer the reader to [5,17] for more details on black box fields of known
characteristic and their applications to cryptography.

The following theorem is a reformulation of the fundamental results in [17].

Theorem 1. Let K � Fpn be a black box field of known characteristic p and K0

the prime subfield of K. Then the problem of finding two way morphisms between
K and Fpn can be reduced to the same problem for K0 and Fp. In particular,
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– a morphism K0 −→ Fp can be extended in time polynomial in the input length
l(K) to a morphism K −→ Fpn ;

– there is a morphism Fpn −→ K computable in time polynomial in l(K).

Here and in the rest of the paper, “efficient” means “computable in time
polynomial in the input length”.

In our terminology (Sect. 2.6), Theorem 1 provides a structural proxy for
black box fields of known characteristic. Indeed, if K is a black box field of known
characteristic p, then we can construct an isomorphism Fp = Z/pZ −→ K0 by
the map

m �→ 1 + 1 + · · · + 1 (m times)

where 1 is the unit in K0; it is computable in linear in log p time by double-and-
add method. We say that p is small if it is computationally feasible to make a
lookup table for the inverse K0 −→ Fp of this map. Construction of a morphism
Fp ←− K0 remains an open problem. However, we can observe that

Corollary 1. Let K � Fpn , where p is a known small prime number. Then there
exist two way morphisms between K and Fpn .

2.6 Construction of a Structural Proxy

Most groups of Lie type (we exclude 2B2, 2F4 and 2G2 to avoid technical details)
can be seen as functors G : F −→ G from the category of fields F with an
automorphism of order � 2 to the category of groups G. There are also other
algebraic structures which can be defined in a similar way as functors from F , for
example projective planes or simple Lie algebras (viewed as rings). The following
problem is natural and, as our results show, useful in this context.

Construction of a structural proxy: Suppose that we are given a black box
structure X � A(F). Construct, in time polynomial in l(X),

• a black box field K � F, and
• two way bijective morphisms A(K) ←→ X.

If we construct a black box field K by using X as a computational engine,
then we can construct the natural representation A(K) of the structure A over
the black box field K. By Theorem 1, we can construct a polynomial time iso-
morphism Fq −→ K which further provides an isomorphism A(Fq) −→ A(K)
completing a structure recovery of X.

Structural proxies and structure recovery play a crucial role for algorithms
developed in Theorem 3. We summarize relevant results about constructing
structural proxies of black box algebraic structures from our papers [6,8].

Theorem 2. We can construct structural proxies for the following black box
structures.

(a) P � P
2(F), a projective plane with a polarity encrypting a projective plane

P
2(F) over a finite field F of odd characteristic.
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(b) X � SO3(F), (P)SL2(F) over a finite field F of unknown odd characteristic,
under the assumption that we know a global exponent E of X, that is, E
such that xE = 1 for all x ∈ X and log E is polynomially bounded in terms
of l(X).

(c) R � M2×2(Fq), a black box ring encrypting the ring of 2 × 2 matrices over
the known finite field Fq of odd characteristic.

2.7 Black Boxes Associated with Homomorphic Encryption

As explained in Subsection 1.1, we assume that the algebraic structure A of
plaintexts is represented in some standard form known to Bob. In agreement
with the standard language of algebra – and with our terminology in [8] – we
shall use the words plain element or just element in place of ‘plaintext’ and
cryptoelement in place of ‘ciphertext’.

Let A be a set of plain elements, X a set of cryptoelements, and E be the
encryption function, that is, an isomorphism E : A −→ X.

Supply of random cryptoelements from X postulated in Axiom BB1 can be
achieved by sampling a big dataset of cryptoelements provided by Alice, or com-
puted on request from Alice. The computer system controlled by Bob performs
algebraic operations referred to in Axiom BB2.

Axiom BB3 is redundant under the assumption that E : A −→ X is a bijec-
tion but it gives us more freedom to construct new black boxes, for example,
homomorphic images of X. Axiom BB3 could also be useful for handling another
quite possible scenario: For Alice, the cost of computing homomorphisms E
and E−1 could be higher than the price charged by Bob for processing cryp-
toelements. In that case, it could be cheaper to transfer initial data to Bob (in
encrypted form) and ask Bob to run a computer programme which uses the black
box but does not send intermediate values back to Alice, returns only the final
result; checking equality of cryptoelements becomes unavoidable.

3 A Black Box Attack on Homomorphic Encryption

We assume that Bob can accumulate a big dataset of cryptoelements sent
from/to Alice, or intermediate results from running Alice’s programme, and that
he can feed, without Alice’s knowledge, cryptoelements into a computer system
(the black box ) which performs operations on them, and retain the outputs for
peruse – again without Alice’s knowledge. Bob’s aim is to compute the decryp-
tion function E−1 efficiently, that is, in time polynomial in terms of the lengths
of plain elements and cryptoelements involved.

3.1 Bob’s Attack

As we discussed in Sect. 1.1, we can assume that Bob knows the algebraic struc-
ture A. Bob’s aim is to find an efficient algorithm which maps cryptoelements
from X to elements in A and vice versa while preserving the algebraic operations
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on X and A. This means solving the constructive recognition problem for X, that
is, finding bijective morphisms

α : X −→ A and β : A −→ X

such that α ◦ β is the identity map on A.
Assume that Bob solved the constructive recognition problem and can effi-

ciently compute α and β.
Alice’s encryption function is a map E : A −→ X; the composition δ = α ◦ E

is an automorphism of A. Therefore Bob reads not Alice’s plaintexts a ∈ A, but
their images δ(a) = α(E(a)) under an automorphism δ of A still unknown to
him. This means that

solving the constructive recognition problem for X reduces the
problem of inverting the encryption homomorphism E : A −→ X
to a much simpler problem of inverting the automorphism

δ : A −→ A.

We are again in the situation of homomorphic encryption, but this time the sets
of plaintexts and ciphertexts are the same. One would expect that this encryp-
tion is easier to break. For example, if Bob can guess the plaintexts of a few
cryptoelements, and if the automorphism group AutA of A is well understood,
computation of δ and δ−1 could be a more accessible problem than the construc-
tive recognition for X. For example, automorphism groups of finite fields are very
small, and in that case δ−1 can be found by direct inspection.

As soon as δ−1 is known, Bob knows E−1 = δ−1 ◦ α and can decrypt every-
thing. Moreover, since E = β ◦ δ, the map E is also known and allows Bob to
return to Alice cryptoelements which encrypt plaintexts of Bob’s choice.

We suggest that this approach to analysis of homomorphic encryption is
useful because it opens up connections to black box algebra. Indeed the theory
of black box structures is reasonably well developed for groups and fields, and
its methods could provide insight into assessment of security of other algebraic
structures if any are proposed for use in homomorphic encryption.

4 Application of Theorem 2 to Homomorphic Encryption

The procedures described in Theorem 3 below are reformulations of the principal
results of our Theorem 2 in a homomorphic encryption setup. They demonstrate
the depth of structural analysis involved and suggest that a similarly deep but
revealing structural theory can be developed for other algebraic structures if
they are sufficiently rich (‘rich’ here can mean, for example, ‘bi-interpretable
with a finite field’). Also, it is worth noting that the procedures do not use
any assumptions about the encryption homomorphism E, the analysis is purely
algebraic.
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Theorem 3. Assume that Alice and Bob run a homomorphic encryption pro-
tocol over the group A = SL2(Fq), q odd, with Bob doing computations with
cryptoelements using a black box X � A. Assume that Bob knows A, including
the representation of the field Fq used by Alice. Then, by Theorem 2, Bob can
construct a structural proxy SL2(K) for X. Moreover:

(a) If, in addition, Bob has two way bijective morphisms between a black box
field K and an explicitly given field Fq (see Corollary 1), he gets two way
bijective morphisms X ←→ SL2(Fq).
(b) Under assumptions of (a), Bob gets an image of Alice’s data transformed
by an automorphism δ : SL2(Fq) −→ SL2(Fq) since Alice’s group A is an
explicitly given SL2(Fq).
(c) Automorphisms of the group SL2(Fq) are well known: every automorphism
is a product of an inner automorphism and a field automorphism induced by
an automorphism of the field Fq. Therefore if Bob can run a few instances of
known plaintexts attacks against Alice, he can compute the automorphism δ
and after that read plaintexts of all Alice’s cryptoelements.
(d) Moreover, under assumptions of (a) and (c), Bob can compute the inverse
of δ and pass to Alice, as answers to Alice’s requests, values of his choice.

Items (c) and (d) in Theorem 3 look as serious vulnerabilities of homomorphic
encryptions of the groups SL2(Fq). We conclude that homomorphic encryption
of groups SL2(Fq) is no more secure than homomorphic encryption of the field
Fq. As a consequence of Theorem 1, homomorphic encryption of SL2(Fq), q = pk,
does not survive a known plaintext attack when the prime p > 2 is small.

We think that this is a manifestation of a more general issue: for small odd
primes p, there are no secure homomorphic encryption schemes based on suffi-
ciently rich (say, bi-interpretable with finite fields) algebraic structures functo-
rially defined over finite fields of characteristic p.

Acknowledgement. The authors worked on this paper during their visits to the
Nesin Mathematics Village, Turkey. We thank Jeff Burdges, Adrien Deloro, Alexander
Konovalov, and Chris Stephenson for fruitful advice, and the referees for their most
perceptive comments.

References

1. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption
schemes: theory and implementation. ACM Comput. Surv. 51(4), 79 (2018)

2. Aguilar-Melchor, C., Fau, S., Fontaine, C., Gogniat, G., Sirdey, R.: Recent advances
in homomorphic encryption: a possible future for signal processing in the encrypted
domain. IEEE Sig. Process. Mag. 30(2), 108–117 (2013)

3. Arvind, V., Das, B., Mukhopadhyay, P.: The complexity of black-box ring prob-
lems. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 126–
135. Springer, Heidelberg (2006). https://doi.org/10.1007/11809678 15
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7. Borovik, A., Yalçınkaya, Ş.: New approaches in black box group theory. In: Hong,
H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 53–58. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44199-2 10

8. Borovik, A., Yalçınkaya, Ş.: Adjoint representations of black box groups PSL2(Fq).
J. Algebra 506, 540–591 (2018)
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Abstract. We describe the functionality of the package zalgs for the
computer algebra system GAP. The package contains an implementa-
tion of the nilpotent quotient algorithm for finitely presented associative
Z-algebras described in [3]. As an application of this algorithm we cal-
culate augmentation quotients, i.e. successive quotients of powers of the
augmentation ideal I(G) of the integral group ring ZG, where G is a
finitely presented group. We apply these methods to obtain conjectures
for augmentation quotients of the Baumslag-Solitar groups BS(m,n)
with |m− n| equal to 0, 1 or a prime p.

Keywords: Associative algebras · Augmentation quotients ·
Computer algebra · Group theory · Nilpotent quotient algorithm

1 Introduction

An associative Z-algebra A is called nilpotent of class c ∈ N if its series of power
ideals has the form A = A1 > A2 > . . . > Ac > Ac+1 = {0}. The power ideal Ai,
i ∈ N is the ideal in A generated by all products of length i. In [3] we introduced
so called nilpotent presentations to describe such algebras in a way that exhibits
their nilpotent structure. We also introduced a nilpotent quotient algorithm,
which computes a nilpotent presentation for the class-c quotient A/Ac+1 for a
given finitely presented associative Z-algebra A and a non-negative integer c.
An implementation of this algorithm is available in the package zalgs [5] for the
computer algebra system GAP [4].

The purpose of this paper is to describe the functionality of the zalgs package
and to exhibit applications of the nilpotent quotient algorithm. In particular, we
apply the algorithm in the calculation of augmentation quotients, i.e. the quo-
tients Qk(G) = Ik(G)/Ik+1(G), where G is a finitely presented group and I(G)
denotes the augmentation ideal of the integral group ring ZG. The augmentation
ideal I(G) is defined as the kernel of the augmentation map

ε : ZG → Z,
∑

i

aigi �→
∑

i

ai,
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where ai ∈ Z and gi ∈ G. The augmentation quotients are interesting objects
studied in the integral representation theory of groups. We present conjectures
on the augmentation quotients of certain Baumslag-Solitar groups, which are
based on computer experiments using the zalgs package.

2 Nilpotent Presentations and Nilpotent Quotient
Systems

As all algebras considered in this paper will be associative Z-algebras, we will
simply refer to them as algebras. For completeness we recall several important
definitions from [3].

Definition 1. Let A be a finitely generated algebra of class c and s ∈ N. We
call (b1, . . . , bs) a weighted generating sequence for A with powers (e1, . . . , es)
and weights (w1, . . . , ws) if

(a) A = 〈b1, . . . , bs〉, i.e. A is the Z-span of b1, . . . , bs.
(b) bibj ∈ 〈bmax{i,j}, . . . , bs〉 for 1 ≤ i, j ≤ s.
(c) ei is minimal in N with respect to the property that eibi ∈ 〈bi+1, . . . , bs〉, or

ei = 0, if such an ei ∈ N does not exist.
(d) The elements bi + Ak+1 with 1 ≤ i ≤ s such that wi = k generate Ak/Ak+1

for 1 ≤ k ≤ c.

Definition 2. A consistent weighted nilpotent presentation for a finitely gen-
erated nilpotent algebra A is given by a weighted generating sequence (b1, . . . , bs)
with powers (e1, . . . , es), weights (w1, . . . , ws) and relations of the following
form:

(a) eibi = xi,i+1bi+1 + . . . + xi,sbs for all 1 ≤ i ≤ s where ei > 0.
(b) bibj = yi,j,l+1bl+1 + . . . + yi,j,sbs for 1 ≤ i, j ≤ s and l = max{i, j}.
(c) The xi,k and yi,j,k are integers with 0 ≤ xi,k, yi,j,k < ek if ek > 0.

We note that every finitely generated nilpotent algebra has a consistent
weighted nilpotent presentation, see [3, Theorem 7]. In an algebra A given by a
consistent weighted nilpotent presentation, we can determine a normal form for
each a ∈ A, i.e. there are uniquely determined zi ∈ Z with

a = z1b1 + . . . + zsbs

and 0 ≤ zi < ei if ei > 0.

Definition 3. Let A = 〈x1, . . . , xn | R1, . . . , Rt〉 be a finitely presented algebra,
c ∈ N and let ϕ : A → A/Ac+1 be the natural homomorphism. A nilpotent
quotient system describes ϕ using the following data:

(a) A consistent weighted nilpotent presentation for A/Ac+1 with generators
(b1, . . . , bs), powers (e1, . . . , es), weights (w1, . . . , ws), multiplication rela-
tions for bibj and power relations eibi if ei > 0.
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(b) Images ϕ(xi) for 1 ≤ i ≤ n given in normal form.
(c) Definitions (d1, . . . , ds), with di being an integer or a pair of integers, s.t.

– If di is an integer, then wi = 1 and bi = ϕ(xdi
).

– If di = (k, j), then bi = bkbj, where wk = 1 and wj = wi − i.

The description of ϕ using this data is very useful for computational purposes
and usually the output of our calculations will be in the form of nilpotent quo-
tient systems. The following example shall illustrate the definition of nilpotent
quotient systems.

Example 1. Consider the finitely presented algebra given by

A = 〈x1, x2 | 2x1, x
2
2, x

2
1 − x1x2〉.

Then a nilpotent quotient system for ϕ : A → A/A2 consists of:

– generators (b1, b2) with powers (2, 0) and weights (1, 1),
– the power relation 2b1 = 0 and the multiplication relations bibj = 0 for

1 ≤ i, j ≤ 2,
– images ϕ(x1) = b1 and ϕ(x2) = b2, and
– definitions (1, 2).

A nilpotent quotient system for ϕ : A → A/A3 consists of:

– generators (b1, b2, b3, b4) with powers (2, 0, 2, 2) and weights (1, 1, 2, 2),
– the power relations 2b1 = 2b3 = 2b4 = 0 and the multiplication relations

b1b1 = b3, b1b2 = b3, b2b1 = b4 and bibj = 0 for all other 1 ≤ i, j ≤ 4,
– images ϕ(x1) = b1 and ϕ(x2) = b2, and
– definitions (1, 2, (1, 2), (2, 1)).

3 Functionality

The central functionality provided by the zalgs package is the function
� NilpotentQuotientFpZAlgebra(A, c),

which takes as input a finitely presented associative Z-algebra A and a non-
negative integer c. The output is a nilpotent quotient system for ϕ : A → A/Ac+1.

Example 2. The following is an example calculation of a nilpotent quotient sys-
tem in GAP for the class-2 quotient of the associative Z-algebra considered in
Example 1 above, i.e.

A = 〈x1, x2 | 2x1, x
2
2, x

2
1 − x1x2〉.

To carry out the computation, we start by defining A as the quotient of the
free associative Z-algebra on two generators by the given relations.

gap> F := FreeAssociativeAlgebra(Integers, 2);;
gap> x1 := F.1;; x2 := F.2;;
gap> A := F / [2*x1, x2^2, x1^2-x1*x2];;
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We then call NilpotentQuotientFpZAlgebra(A, 2) to compute the class-2
quotient. The output contains lists for the definitions dfs, the powers pows, the
weights wgs and an integer dim indicating the dimension of the quotient. The
entries for the images imgs, power relations ptab and multiplication relations
mtab are to be interpreted as coefficients of normal forms. For computational
purposes there is an additional entry rels in the output.

gap> NilpotentQuotientFpZAlgebra(A, 2);
rec( dfs := [1,2,[1,2],[2,1]],

dim := 4,
imgs := [ [1,0,0,0], [0,1,0,0] ],
mtab := [ [[0,0,1,0], [0,0,1,0], [0,0,0,0], [0,0,0,0]],

[[0,0,0,1], [0,0,0,0], [0,0,0,0], [0,0,0,0]],
[[0,0,0,0], [0,0,0,0], [0,0,0,0], [0,0,0,0]],
[[0,0,0,0], [0,0,0,0], [0,0,0,0], [0,0,0,0]] ],

pows := [2,0,2,2],
ptab := [ [0,0,0,0], [0,0,0,0], [0,0,0,0], [0,0,0,0] ],
rels := [ <- omitted -> ],
wgs := [1,1,2,2] )

In [3, Section 5], we describe how to obtain a presentation P for an algebra,
such that I(G)/Ic+1(G) is isomorphic to the class-c quotient of P . The nilpotent
quotient algorithm can now be applied to determine this nilpotent quotient.
The following functions are available to calculate the class-c quotient of the
augmentation ideal of integral group rings.

� AugmentationQuotientFpGroup(G, c),
� AugmentationQuotientPcpGroup(G, c),

which take as input a finitely presented group or a polycyclically presented group
G, respectively, and a non-negative integer c. The output in both cases is a nilpo-
tent quotient system for I(G)/Ic+1(G). Note that the augmentation quotients
Qn(G) for n ≤ c can be read off from this.

4 Augmentation Quotients of Baumslag-Solitar Groups

In [3, Section 5], we describe how to obtain, for a given finitely presented group
G, a presentation for an algebra A, such that I(G)/Ic+1(G) is isomorphic to
the class-c quotient of A. We apply these methods to compute augmentation
quotients of the Baumslag-Solitar groups BS(m,n), which for m,n ∈ Z\{0} are
given by the presentations

BS(m,n) = 〈a, b | bamb−1 = an〉.

These one-relator groups form an interesting set of groups with applications
in combinatorial and geometric group theory, e.g. the group BS(1, 1) is the
free abelian group on two generators and BS(1,−1) arises as the fundamental
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group of the Klein bottle. The Baumslag-Solitar groups were introduced in [2] as
examples of non-Hopfian groups and the isomorphism problem for these groups
has been considered in [6].

We carried out computer experiments to gain some insight into the structure
of the augmentation quotients Qk(BS(m,n)) for |m|, |n| ≤ 10 and small values of
k. Our computations suggest the following conjectures for certain special cases:

Conjecture 1. Let p be a prime.
(a) If |m − n| = 0 and |m| = |n| = p, then

Qk(BS(m,n)) =

{
Z

k+1 ⊕ Z
A(k,1)
p , if k ≤ p + 2,

Z
k+1 ⊕ Z

A(k,1)−C(k)
p , if k > p + 2,

where

A(u, v) =
v∑

�=0

(−1)�

(
u + 1

�

)
(v + 1 − �)u

are the Eulerian numbers and the values C(k) are given by the recursion

C(1) = 1, C(k) = C(k − 1) + B(k + 8) for all k ≥ 2,

where B(u) is the number of 8-element subsets of {1, . . . , u} whose elements
sum to a triangular number, i.e. a number of the form Tw =

(
w+1
2

)
, w ∈ N.

(b) If |m − n| = 1, then for all k ∈ N:

Qk(BS(m,n)) ∼= Z.

(c) If |m − n| = p, then for all k ∈ N:

Qk(BS(m,n)) ∼= Z ⊕ Z
Tk
p ,

where Tk =
(
k+1
2

)
is the k-th triangular number.

The behaviour appears to be more complicated if |m − n| contains several
(not necessarily distinct) prime factors, as is illustrated in the following example.

Example 3. Let G be the Baumslag-Solitar group BS(5,−1). Then the first few
augmentation quotients are as follows:

Q1(G) ∼= Z ⊕ Z6

Q2(G) ∼= Z ⊕ Z
3
6

Q3(G) ∼= Z ⊕ Z
6
6

Q4(G) ∼= Z ⊕ Z2 ⊕ Z
8
6 ⊕ Z18

Q5(G) ∼= Z ⊕ Z
3
2 ⊕ Z

10
6 ⊕ Z18 ⊕ Z54

Q6(G) ∼= Z ⊕ Z
5
2 ⊕ Z

13
6 ⊕ Z18 ⊕ Z

2
54

Q7(G) ∼= Z ⊕ Z
8
2 ⊕ Z

16
6 ⊕ Z18 ⊕ Z

2
54 ⊕ Z162

Q8(G) ∼= Z ⊕ Z
11
2 ⊕ Z

20
6 ⊕ Z18 ⊕ Z

2
54 ⊕ Z

2
162

Q9(G) ∼= Z ⊕ Z
15
2 ⊕ Z

23
6 ⊕ Z

2
18 ⊕ Z

2
54 ⊕ Z

3
162

Q10(G) ∼= Z ⊕ Z
19
2 ⊕ Z

27
6 ⊕ Z

3
18 ⊕ Z

2
54 ⊕ Z

4
162
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5 Further Aims

Bachmann and Grünenfelder [1] showed that for finite groups G the sequence
Qn(G) for n ∈ N is virtually periodic, i.e. there exist N ∈ N and k ∈ N such that
Qn(G) ∼= Qn+k(G) for all n ≥ N . It will be interesting to extend our methods to
allow the determination of these parameters, which in theory allows to determine
all augmentation quotients for a given finite group G.

Furthermore, we plan to extend our algorithms to compute nilpotent pre-
sentations for the largest associative Z-algebra on d generators so that every
element a of the algebra satisfies an = 0, i.e. compute Z-algebra analogues of
Burnside groups and Kurosh algebras.
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Abstract. A symbolic Lie p-ring defines a family of Lie rings with pn

elements for infinitely many different primes p and a fixed positive integer
n. Symbolic Lie p-rings are used to describe the classification of isomor-
phism types of nilpotent Lie rings of order pn for all primes p and all
n ≤ 7. This classification is available as the LiePRing package of the
computer algebra system GAP. We give a brief description of this pack-
age, including an approach towards computing the automorphism group
of a symbolic Lie p-ring.

Keywords: Lie ring · Automorphism group · Finite p-group

1 Introduction

A Lie ring is an additive abelian group with a multiplication, denoted by [., .],
that is bilinear, alternating and satisfies the Jacobi identity. A Lie p-ring is a
nilpotent Lie ring with pn elements for some prime power pn. Such a Lie p-ring
of order pn can be described by a presentation P (A) on n generators b1, . . . , bn
with coefficients A = (aijk, aik | 1 ≤ i < j < k ≤ n), so that aijk and aik are
integers in the range {0, . . . , p − 1} and the following relations hold:

[bj , bi] =
n∑

k=j+1

aijkbk for 1 ≤ i < j ≤ n, and

pbi =
n∑

k=i+1

aikbk for 1 ≤ i ≤ n.

We generalize this type of presentation so that it defines a family of Lie p-
rings for various different primes. For this purpose let p be an indeterminate, let
R = Z[w, x1, . . . , xm] be a polynomial ring in m + 1 commuting variables and
let aijk and aik in R. In some (rare) cases it is convenient to allow some of the
coefficients aijk and aik to be rational functions over R; note that we use this
only for coefficients aijk or aik if pbk = 0 so that bk is an element of order p.

If a fixed prime P and integers X1, . . . , Xm are given, then we specify the a
polynomial a ∈ R at these values by choosing W to be the smallest primitive
c© Springer Nature Switzerland AG 2020
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root mod P and evaluating a = a(W,X1, . . . , Xm) in Z. We specify a rational
function a/b with a, b ∈ R by specifying the polynomials a and b to a and b in
Z, and then we determine a c where c ∈ {1, . . . P − 1} satisfies cb ≡ 1 mod P .
Note that only choices of W,X1, . . . , Xm with P � b are valid.

Let P be an infinite set of primes, let m ∈ N0 and for P ∈ P let

ΣP ⊆ {(X1, . . . , Xm) ∈ Z
m | 0 ≤ Xi < P}.

Then the presentation P (A) defines a symbolic Lie p-ring with respect to P and
ΣP if for each P ∈ P and each (X1, . . . , Xm) ∈ ΣP the presentation P (A)
specified at these points is a finite Lie p-ring of order Pn.

A symbolic Lie p-ring describes a family of finite Lie p-rings: for each P ∈ P

this contains |ΣP | ≤ Pm members. Symbolic Lie p-rings are used to describe
the complete classification up to isomorphism of all Lie p-rings of order dividing
p7 for p > 3 as obtained by Newman, O’Brien and Vaughan-Lee [6,7]. This is
available in computational form in the LiePRing package [4] of the computer
algebra system GAP [9]. The following exhibits an example.

Example 1. We consider the symbolic Lie p-ring L with generators b1, . . . , b7 and
the (non-trivial) relations

[b2, b1] = b4, pb1 = b4 + b6 + x2b7,

[b3, b1] = b5, pb3 = x1b6.

[b3, b2] = b6,

[b5, b1] = b6,

[b5, b3] = b7,

Let P be the set of all primes and let

ΣP = {(X1,X2) | 0 < X1 < P, 0 ≤ X2 < P}.

Then L defines a family of P (P − 1) Lie p-rings of order P 7 for each P ∈ P.

The LiePRing package allows symbolic computations with symbolic Lie p-
rings L. “Symbolic computations” means that it computes with L as if computing
with all Lie p-rings L in the family defined by L simultaneously. For example, it
allows us

• to compute series of ideals such as the lower central series of L,
• to describe the automorphism group of L, and
• to determine the Schur multiplier of L, see [3].

Let P be a prime and let n ∈ N with n ≤ P . The Lazard correspondence
[5] associates to each Lie p-ring L of order Pn a group G(L) of order Pn. This
correspondence translates Lie ring isomorphisms to group isomorphisms and vice
versa. Cicalo, de Graaf and Vaughan-Lee [2] determined an effective version of
the Lazard correspondence and implemented this in the LieRing package [1] of
GAP.

The following sections give a brief overview of some of the algorithms in
the LiePRing package and they exhibit how the Lazard correspondence can be
evaluated in GAP in this setting.
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2 Elementary Computations

In this section we investigate computations with elements, subrings and ideals.
Throughout, let L be a symbolic Lie p-ring with respect to ΣP , let L be a
finite Lie p-ring in the family defined by L and let P be the prime of L. We
write P (A) for the defining presentation in the finite and in the symbolic case.
Thus depending on the context A is an integer matrix or a matrix over the ring
Quot(R) of rational functions over the polynomial ring R.

2.1 Ring Invariants

The definition of ΣP can often be used for computations with L. For example,
if ΣP = {(x1, x2, x3) ∈ Z

3
P | x1 �= 1, x3 = ±1}, then (x1 − 1) specifies to an

invertible element in L and (x3 − 1)(x3 + 1) = (x2
3 − 1) specifies to 0. Hence we

can treat (x1−1) as a unit and (x2
3−1) as zero. The following example illustrates

this for ΣP = {(x, y) | x �= 0, y ∈ {1, w}}.

gap> L := LiePRingsByLibrary(7)[3195];
<LiePRing of dimension 7 over prime p with parameters [ x, y ]>
gap> ViewPCPresentation(L);
p*l2 = x*l7, p*l3 = l5 + y*l7, p*l4 = l6,
[l2,l1] = l5, [l3,l1] = l6, [l4,l1] = l7
gap> RingInvariants(L);
rec( units := [ x, y ], zeros := [ w*y-y^2-w+y ] )

2.2 The Word Problem

Consider the case of a finite Lie p-ring L and let a be an arbitrary word in the
generators of P (A). Then the relations in P (A) readily allow us to rewrite a to
a unique equivalent normal form

c1b1 + . . . + cnbn with ci ∈ {0, . . . , P − 1} for 1 ≤ i ≤ n.

Now consider the case of a symbolic Lie p-ring L and let a be a word in the
generators of P (A). Then the relations and the zeros of L allow us to translate
this to an equivalent reduced form; that is, a linear combination of the form

c1b1 + . . . + cnbn with ci ∈ R for 1 ≤ i ≤ n,

where c1, . . . , cn ∈ R are reduced modulo the polynomials in zeros; that is, the
polynomial division algorithm dividing ci by the polynomials in zeros yields only
trivial quotients. If c1 = . . . = ck = 0 and ck+1 �= 0, then k + 1 is the depth
of this reduced form and ck+1 is its leading coefficient. We say that (c1, . . . , cn)
represents the element a.

Example 2. We continue Example 1.
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(1) Consider the element a = pb1 − [b2, b1] − [b3, b2] − [[b3, b1], b3]. Using the
relations of L this reduces to a = b4 + b6 + x2b7 − b4 − b6 − [b5, b3] =
x2b7 − b7 = (x2 − 1)b7. Note that a can be zero and non-zero in the Lie
p-rings in the family defined by L, depending on the choice of x2.

(2) Consider the element a = pb3. Then a = x1b6 and hence, since x1 �= 0 in
L, it follows that a is a non-zero element in each Lie p-ring in the family
defined by L.

2.3 Subrings, Ideals and Series

Let L be a symbolic Lie p-ring, let w1, . . . , wk be words in the generators
b1, . . . , bn of P (A) and let U be the subring of L generated by these words.
Our aim is to determine an echelon generating set for U ; that is, a generating
set v1, . . . , vl so that each vi is a reduced form in the generators with leading
coefficient 1, the depths satisfy d(v1) < . . . < d(vl) and each element in U is a
linear combination in v1, . . . , vl with coefficients in Quot(R). This may require
the distinction of finitely many cases, as the following example indicates.

Example 3. We continue Example 1.

(1) Let U = 〈[b3, b1], pb3〉. As [b3, b1] = b5 and pb3 = x1b6 with x1 �= 0, it follows
that U = 〈b5, b6〉 in each Lie ring in the family defined by L.

(2) Let U = 〈pb1 − b4 − b6, [b3, b2]〉. Then using the relations of L it follows that
U = 〈x2b7, b6〉. Hence U = 〈b6, b7〉 if x2 �= 0 and U = 〈b6〉 otherwise. Thus a
case distinction is necessary to determine an echelon generating set for U .

Ideals are subrings that are closed under multiplication and hence they can
also be described via echelon generating sets (subject to a case distinction). In
turn, this then allows us to determine series such as the lower central series and
the derived series of L. The following example illustrates the handling of case
distinctions in GAP.

gap> L := LiePRingsByLibrary(6)[267];
<LiePRing of dimension 6 over prime p with parameters [x,y,z,t]>
gap> ViewPCPresentation(L);
p*l1 = t*l5 + x*l6, p*l2 = y*l5 + z*l6,
[l2,l1] = l4, [l3,l1] = l6, [l4,l1] = l5,
[l3,l2] = w*l5, [l4,l2] = l6
gap> RingInvariants(L);
rec( units := [ -x*y+z*t ], zeros := [ ] )
gap> S := LiePRecSubring(L, [p*b[1]]);
[<LiePRing of dimension 1 over prime p with parameters [x,y,z,t]>,
<LiePRing of dimension 1 over prime p with parameters [x,y,z,t]>]

Here the LiePRing package returns two new symbolic Lie p-rings S[1] and
S[2]. These have different ring invariants and different bases:
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gap> RingInvariants(S[1]);
rec( units := [ y, x ], zeros := [ t ] )
gap> BasisOfLiePRing(S[1]);
[ l6 ]
gap> RingInvariants(S[2]);
rec( units := [ -x*y+z*t, t ], zeros := [ ] )
gap> BasisOfLiePRing(S[2]);
[ l5 + x/t*l6 ]

In particular, in S[2] the polynomial t is a unit and the rational function x/t
turns up as coefficient for the basis element l6.

3 Automorphism Groups

Given a symbolic Lie p-ring L, we show how to determine a generic description
for Aut(L) for each finite Lie p-ring L in the family defined by L. The following
gives a first illustration.

Example 4. We continue Example 1.
We note that L is generated by b1, b2, b3. This allows us to describe each

automorphism of L via its images of b1, b2, b3 and the same holds for each finite
Lie p-ring in the family defined by L. Write gr for the image of br. Then gr =
gr1b1 + . . . + gr7b7 for certain integers grs. We say that the automorphism is
represented by the 3×7 matrix (grs). Note that different matrices may represent
the same automorphism for a finite Lie p-ring L; for example, if P is the prime
of L, then b7 has order P and g37 and g37 + P give the same automorphism. We
expand on this below.

Our algorithm determines that each automorphism of L corresponds to a
matrix of the form

⎛

⎝
g11 g12 0 g14 g15 g16 g17
0 1 0 g24 0 g26 g27
0 g32 g11 g34 g35 g36 g37

⎞

⎠

with g11 = ±1 and grs arbitrary otherwise. If P is prime and L is a finite
Lie p-ring over P , then we can choose grs ∈ {0, . . . , P − 1} for (r, s) �= (1, 1) and
thus Aut(L) has order 2P 13.

Given a finite Lie p-ring L with prime P , we define its radical R(L) as the
ideal of L generated by {[bj , bi], P bk | 1 ≤ i < j ≤ n, 1 ≤ k ≤ n}. The additive
group of L/R(L) is an elementary abelian group of order P d, say, and the Lie
ring multiplication of L/R(L) is trivial. Burnside’s Basis theorem (for example,
see [8, page 140]) for finite p-groups translates readily to the following.

Lemma 1. Let L be a finite Lie p-ring and let ϕ : L → L/R(L) the natural ring
homomorphism.

(a) R(L) is the intersection of all maximal Lie subrings of L.
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(b) Each minimal generating set of L has d elements and maps under ϕ onto a
minimal generating set of L/R(L).

(c) Each list of preimages under ϕ of a minimal generating set of L/R(L) is a
minimal generating set of L.

Next, let P (A) be the presentation for the finite Lie p-ring L with generators
b1, . . . , bn so that R(L) = 〈bd+1, . . . , bn〉. Then b1, . . . , bd is a minimal generating
set of L. Thus each automorphism α of L is defined by its images on b1, . . . , bd.
These have the general form

α(br) = gr1b1 + . . . + grnbn for 1 ≤ r ≤ d,

with integer coefficients grs. For k > d we note that bk ∈ R(L). This allows us
to write bk as a word in the ideal generators [bj , bi] and Pbi of R(L) and that,
in turn, allows us to determine the image α(bk) in the form

α(bk) = wk1b1 + . . . + wknbn,

where wkj is a word in {grs}.

Theorem 1. The matrix (grs)1≤r≤d,1≤s≤n defines an automorphism α of L if
and only if

(a) det(G) �≡ 0 mod P , where G = (grs)1≤r,s≤d, and
(b) the images α(b1), . . . , α(bn) satisfy the relations of L.

Proof. First recall that a map bi 
→ vi for 1 ≤ i ≤ n with v1, . . . , vn ∈ L extends
to a Lie ring homomorphism L → L if and only if v1, . . . , vn satisfy the defining
relations of L. This is von Dyck’s theorem (for example, see [8, page 51]) in
the case of finitely presented groups and it translates readily to other algebraic
objects such as Lie rings.

⇒: Suppose that the coefficients grs define an automorphism α. Then α
induces an automorphism β : L/R(L) → L/R(L). As L/R(L) ∼= Z

d
P with triv-

ial multiplication, it follows that Aut(L/R(L)) ∼= GL(d, ZP ). Hence det(G) �≡
0 mod P so (a) follows. (b) follows from von Dyck’s theorem.

⇐: Suppose that (a) and (b) hold. As (b) holds, von Dyck’s theorem asserts
that α is a Lie ring homomorphism. As P � det(G). it follows that the images
of b1, . . . , bd generate L as Lie ring. Hence α is surjective. Since L is finite, it
follows that α is also injective and hence an automorphism.

This allows us to determine a generic description for Aut(L). Suppose that
we have an automorphism given by indeterminates {grs | 1 ≤ r ≤ d, 1 ≤ s ≤ n}
and write gi = gi1b1 + . . . + ginbn for 1 ≤ i ≤ d. For k > d write bk as a word
wk in the generators b1, . . . , bd and use this to determine gk = wk(g1, . . . , gd).
Evaluate the defining relations R1, . . . , Rm of L in g1, . . . , gn. For each relation
Ri this leads to an expression

Ri = Ri(g1, . . . , gn) = wi d+1bd+1 + . . . + winbn,

with wij a polynomial in the indeterminates {grs | 1 ≤ r ≤ d, 1 ≤ s ≤ n}.
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Lemma 2. Let P be a prime and k minimal with P kbi = 0 for d < i ≤ n.
If wij ≡ 0 mod P k for all i, j and if det(G) �≡ 0 mod P , then the matrix
(grs)1≤r≤d,1≤s≤n defines an automorphism.

Proof. The generators that appear in the relations Ri = 0 all lie in the radical,
and so wij ≡ 0 mod P k ensures that wijbj = 0 for all i, j. Hence the conditions
of Theorem 1 are satisfied and the matrix (grs)1≤r≤d,1≤s≤n defines an automor-
phism.

The integer P k in Lemma 2 is called the characteristic of R(L). If k = 1, then
the conditions in Lemma 2 clearly determine all automorphisms of L. If k > 1,
then the conditions in Lemma 2 may miss some automorphisms and there are
examples where

Ri = wi d+1bd+1 + . . . + winbn = 0,

but some of the summands wijbj are non-zero. So it seems possible that
restricting our search to integer matrices (grs) which satisfy the equations
wij = 0 mod P k could miss some automorphisms in some cases. In practice,
we have not found a case where this happens.

Example 5. We continue Example 1 for a specific prime P .
Since the radical has characteristic P our method shows that the matrix

⎛

⎝
g11 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 g11 0 0 0 0

⎞

⎠

gives an automorphism if and only if g211 = 1 mod P . Let P = 5. Then

B =

⎛

⎝
4 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 4 0 0 0 0

⎞

⎠

gives an automorphism. There was no need in this case to look for solutions to
g211 = 1 mod P 2, but it is easy to “lift” B to a matrix C = (hrs) which gives
the same automorphism as B, but where h2

11 = 1 mod 25. The first row of the
matrix B represents the element 4b1. Now 5b1 = b4 + b6 +x2b7 and so the vector
(−1, 0, 0, 1, 0, 1, x2) also represents 4b1. Similarly the vector (0, 0,−1, 0, 0, x1, 0)
represents the same element of L as the third row of B. So

C =

⎛

⎝
−1 0 0 1 0 1 x2

0 1 0 0 0 0 0
0 0 −1 0 0 x1 0

⎞

⎠

gives the same automorphism as B, but the (1, 1) entry in C satisfies the equation
x2 = 1 mod 25. Note that B gives an automorphism, but does not have the form
specified in Example 4, whereas C gives the same automorphism as B, but does
have the form specified.
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More generally, in every case of Lie p-rings from our database that we have
examined, we can show that if B is an integer matrix which gives an automor-
phism of L for some prime P , and if k is any positive integer, then B can be
“lifted” to an integer matrix C = (hrs) which gives the same automorphism as B
but where the entries hrs satisfy all the equations wij = 0 mod P k. So in every
case that we have examined our method finds the full automorphism group.

We do not have a proof that our method always finds the full automorphism
group. But there are several general criteria (such as the radical having charac-
teristic P ) which imply that our method does not miss any automorphisms. So
in most cases our program is able to issue a “certificate of correctness”. In some
cases it may be necessary to examine the output from our program to prove that
it has found the full automorphism group.

Example 6. We consider the symbolic Lie p-ring L on 7 generators with the
non-trivial relations

[b2, b1] = b3, pb1 = b5 + xb7,

[b3, b1] = b4, pb2 = w2b6 + yb7,

[b3, b2] = b5, pb3 = w2b7.

[b4, b1] = b6,

[b5, b2] = −w2b7,

[b6, b1] = b7,

Then R(L) = 〈b3, . . . , b7〉 and each Lie p-ring L in the family of L is generated
by {b1, b2}. We define

g1 = g11b1 + . . . + g17b7 and g2 = g21b1 + . . . + g27b7.

Next, we write b3, . . . , b7 as words in {b1, b2}. It can be read off from the defining
relations that b3 = [b2, b1], b4 = [b3, b1], b5 = [b3, b2], b6 = [b4, b1], b7 = [b6, b1].
Using this, we expand the mapping defined by {grs} to the remaining generators
b3, . . . , b7. For example, for b3 this yields

g3 = [g2, g1]
= (g11g22 − g12g21)b3 + (g11g23 − g13g21)b4 + (g12g23 − g13g22)b5
+ (g11g24 − g14g21)b6 + (−g12g25w

2 + g15g22w
2 + g11g26 − g16g21)b7.

We now evaluate the defining relations of L in g1, . . . , gn. For example pb1 =
b5 + xb7 evaluates to

pg1 − g5 − xg7 = 0b1 + 0b2 + 0b3

+ (−g11g21g22 + g12g
2
21)b4

+ (−g11g
2
22 + g12g21g22 + g11)b5

+ (−g11g21g23 + g12w
2 + g13g

2
21)b6

+ (−g411g22x + g311g12g21x + g12g22g23w
2 − g13g

2
22w

2 − g11g21g24

+ g13w
2 + g14g

2
21 + g11x + g12y)b7



The GAP Package LiePRing 139

Note that the coefficient of b3 in this relation is zero. More generally, if Ri is any
of the relations then

Ri = wi4b4 + . . . + wi7b7 = 0,

and b4, b5, b6, b7 all have order p. So we obtain an automorphism at the prime P
if and only if wij = 0 mod P (j = 4, 5, 6, 7) for all relations Ri.

Now let L be a finite Lie p-ring in the family defined by L and let P be its
prime. If the integer coefficients grs define an automorphism of L, then det(G)
is coprime to P . Hence, examining the coefficient of b4 in the relation above we
see that

−g11g21g22 + g12g
2
21 = −g21det(G) ≡ 0 mod P

is equivalent to g21 ≡ 0 mod P . In turn, this can now be used to simplify the
remaining coefficients. Using g21 ≡ 0 mod P now yields

−g11g
2
22 + g12g21g22 + g11 = −g11g

2
22 + g11 = −g11(g222 − 1)

As det(G) ≡ g11g22 mod P via g21 ≡ 0 mod P , it follows that g11 is coprime
to P and g222 = 1 mod P . We now iterate this approach. Introducing another
indeterminate D with Ddet(G) ≡ 1 mod P we finally obtain that

g21, g12, x(g22 − 1), g222 − 1, y(g11 − 1), y(D − g22),Dg22 − g211,

Dg11 − g22,D
2 − g11, x(g211 − D), g211g22 − D, g311 − 1

evaluate to 0 modulo P . We use this to eliminate indeterminates in the descrip-
tions of g1, g2; for example, we can replace g21 by 0. We obtain

g1 = (D2 0 g13 g14 g15 g16 g17)
g2 = (0 D3 g23 g24 g25 g26 g27)

,

subject to the additional condition that the polynomials

(D − 1)xy, (D2 − 1)y, (D3 − 1)x,D6 − 1

must evaluate to 0 mod P . This is the resulting description of the automor-
phism groups of the Lie p-rings L in the family defined by L. It implies that
|Aut(L)| = kP 10, where k ∈ {1, 2, 3, 6}. The precise value of k depends on the
two parameters x, y. When P ≡ 1 mod 3, if x = y = 0 then k = 6; if x = 0 and
y �= 0 then k = 2; if x �= 0 and y = 0 then k = 3; finally if x, y �= 0 then k = 1.
When P ≡ 2 mod 3 then k = 1 or 2.

4 The Lazard Correspondence

The final example of this abstract illustrates how the Lazard correspondent G(L)
to a finite Lie p-ring L can be determined using the LieRing package [1].
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gap> L := LiePRingsByLibrary(7)[300];
<LiePRing of dimension 7 over prime p with parameters [ x ]>
gap> NumberOfLiePRingsInFamily(L);
p
gap> LiePRingsInFamily(L, 7);
[ <LiePRing of dimension 7 over prime 7>,
...
gap> List(last, x -> PGroupByLiePRing(x));
[ <pc group of size 823543 with 7 generators>,
...
gap> List(last, x -> Size(AutomorphismGroup(x)));
[80707214,80707214,80707214,80707214,80707214,80707214,80707214]
gap> a := AutGroupDescription(L);
rec( auto := [ [ A11, A12, A13, A14, A15, A16, A17 ],

[ 0, 1, A23, 0, A25, A26, A27 ] ],
eqns := [ A11^2-1, A12*w*x-A11*A26 ] )

gap> 2*7^9;
80707214
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Anton Betten(B) and Tarun Mukthineni

Department of Mathematics, Colorado State University,
Fort Collins, CO 80523-1874, USA

{betten,tarun}@math.colostate.edu

Abstract. A convex polyhedron is the convex hull of a finite set of
points in R

3. A triangulation of a convex polyhedron is a decomposition
into a finite number of 3-simplices such that any two intersect in a com-
mon face or are disjoint. A simplicial dissection is a decomposition into
a finite number of 3-simplices such that no two share an interior point.
We present an algorithm to classify the simplicial dissections of a regular
polyhedron under the symmetry group of the prolyhedron.

Keywords: Dissection · Triangulation · Polyhedra · Geometry ·
Classification · Computational group theory

1 Introduction

A convex polyhedron is the convex hull of a finite set of points in R
3. A tri-

angulation of a convex polyhedron is a decomposition into a finite number of
3-simplices such that any two intersect in a common face or are disjoint. A sim-
plicial dissection is a decomposition into a finite number of 3-simplices such that
no two share an interior point. A simplicial dissection is a triangulation but not
conversely. The problem is that the intersection of two simplices in a dissection
may not be face.

Standard implementations for enumerating triangulations include TOPCOM
and mptopcom [10] (neither one can enumerate dissections, though). A parallel
algorithm to classify regular triangulations with applications in tropical geome-
try is described in [6]. Regarding the enumeration of all triangulations, see [4].
For minimal dissections, see [1].

The goal of this paper is to present an efficient algorithm to classify the
simplicial dissections of a regular polyhedron under the symmetry group (or
automorphism group) G of the polyhedron P. Two dissections of P are equiva-
lent is there is a symmetry g ∈ G which maps one to the other. The classification
algorithm utilizes the concept of a partially ordered set under a group action,
using the theory developed by Plesken [9] as a framework. The partially ordered
set is the search space, which is to be partitioned into orbits. The ranking of the
poset introduces level sets, and the orbits partition these level sets. The efficiency
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of the orbit algorithm is based on an effective use of isomorph rejection. This is
the problem of deciding when two objects belong to the same G-orbit. Isomorph
rejection is necessary to avoid duplicates, and it helps reduce the number of
objects in the search space that have to be examined. The ultimate goal of the
classification algorithm is to establish the poset of orbits of G. Isomorphism test-
ing is expensive, and the algorithm that we propose avoids backtracking at the
cost of memory. Such trade-off between time complexity and space complexity
is common in algorithm design, and it has proved to be useful for other clas-
sification problems before. The first author has previously used this technique
to classify objects like cubic surfaces, packings in projective space and other
objects.

In this note, we will develop an efficient algorithm to classify the simplicial
dissections of a polyhedra. As an application, we compute and classify the sim-
plicial dissections of the cube. We use the binary representation of the integers
from 0 to 7 to denote the vertices of the cube (cf. Figure 1), with two vertices
adjacent if their Hamming distance is one.

Fig. 1. The cube with labels

The Hamming distance is the number of components which differ in the
binary expansion. The automorphism group of the cube has order 48 and is
generated by the three permutations

(0, 1, 3, 2)(4, 5, 7, 6), (0, 1, 5, 4)(2, 3, 7, 6), (0, 1)(2, 3)(4, 5)(6, 7).

The tetrahedra are encoded using the lexicographic rank of their vertex set
among the set of 4-subsets of {0, . . . , 7}:

0 = {0, 1, 2, 3}
1 = {0, 1, 2, 4}
2 = {0, 1, 2, 5}
3 = {0, 1, 2, 6}
4 = {0, 1, 2, 7}
5 = {0, 1, 3, 4}

6 = {0, 1, 3, 5}
7 = {0, 1, 3, 6}
8 = {0, 1, 3, 7}
9 = {0, 1, 4, 5}
10 = {0, 1, 4, 6}
11 = {0, 1, 4, 7}

12 = {0, 1, 5, 6}
13 = {0, 1, 5, 7}
14 = {0, 1, 6, 7}
15 = {0, 2, 3, 4}
16 = {0, 2, 3, 5}
17 = {0, 2, 3, 6}

18 = {0, 2, 3, 7}
19 = {0, 2, 4, 5}
20 = {0, 2, 4, 6}
21 = {0, 2, 4, 7}
22 = {0, 2, 5, 6}
23 = {0, 2, 5, 7}
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24 = {0, 2, 6, 7}
25 = {0, 3, 4, 5}
26 = {0, 3, 4, 6}
27 = {0, 3, 4, 7}
28 = {0, 3, 5, 6}
29 = {0, 3, 5, 7}
30 = {0, 3, 6, 7}
31 = {0, 4, 5, 6}
32 = {0, 4, 5, 7}
33 = {0, 4, 6, 7}
34 = {0, 5, 6, 7}
35 = {1, 2, 3, 4}

36 = {1, 2, 3, 5}
37 = {1, 2, 3, 6}
38 = {1, 2, 3, 7}
39 = {1, 2, 4, 5}
40 = {1, 2, 4, 6}
41 = {1, 2, 4, 7}
42 = {1, 2, 5, 6}
43 = {1, 2, 5, 7}
44 = {1, 2, 6, 7}
45 = {1, 3, 4, 5}
46 = {1, 3, 4, 6}
47 = {1, 3, 4, 7}

48 = {1, 3, 5, 6}
49 = {1, 3, 5, 7}
50 = {1, 3, 6, 7}
51 = {1, 4, 5, 6}
52 = {1, 4, 5, 7}
53 = {1, 4, 6, 7}
54 = {1, 5, 6, 7}
55 = {2, 3, 4, 5}
56 = {2, 3, 4, 6}
57 = {2, 3, 4, 7}
58 = {2, 3, 5, 6}
59 = {2, 3, 5, 7}

60 = {2, 3, 6, 7}
61 = {2, 4, 5, 6}
62 = {2, 4, 5, 7}
63 = {2, 4, 6, 7}
64 = {2, 5, 6, 7}
65 = {3, 4, 5, 6}
66 = {3, 4, 5, 7}
67 = {3, 4, 6, 7}
68 = {3, 5, 6, 7}
69 = {4, 5, 6, 7}

Theorem 1. The number of equivalence classes of simplicial dissections of the
cube under its automorphism group of order 48 is exactly 10. Six of these are
triangulations as described in [5]. A system of representatives is given in Table 1,
together with the order of the automorphism group. A more detailed drawing of
the representatives is shown in Table 2.

Table 1. The simplicial dissections of the cube

i Ri |Aut(Ri)|
1 {1,38,41,52,63} 24

2 {1,35,45,56,65,68} 4

3 {1,35,45,56,66,67} 2

4 {1,35,45,57,63,66} 2

5 {1,35,45,58,61,68} 2

6 {1,35,45,59,61,64} 1

7 {1,35,45,59,62,63} 2

8 {1,35,47,52,57,63} 6

9 {2,19,36,56,66,67} 4

10 {2,19,36,59,61,64} 12

A tretrahedron is spatial if it has positive volume. Out of the list of 70 tetra-
hedra, 12 are flat. The remaining 58 are spatial and can be used for triangulating
the cube. Following Takeuchi and Imai [12], triangulations can be identified using
large cliques in a certain graph Γ , which we call the disjointness graph. This ter-
minology is somewhat abusive, since the graph measures if the interior point sets
of the tetrahedra are disjoint: Boundary points may or may not intersect. The
vertices of Γ are the spatial tetrahedra. Two vertices are adjacent if the asso-
ciated tetrahedra are non-overlapping, i.e. they do not share an interior point.
The adjacency matrix of Γ is shown in Table 2.
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Fig. 2. The simplicial dissections R1, . . . , R10 of the cube up to equivalence
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Table 2. The adjacency matrix of the disjointness graph

2 The Types

As pointed out by De Loera et al. [5], there are four types of tetrahedra under
the action of the group. The four types are listed in Table 3.

The table lists the volume of each tetrahedron, based on a cube of side length
one. The type vector of a triangulation is the vector (a, b, c, d) where a is the num-
ber of Cores, b is the number of Corners, c is the number of Staircases, and d is
the number of Slanted pieces. The Corner, Staircase and Slanted pieces each have
volume 1

6 , whereas the Core piece has volume 1
3 . From this it follows that a trian-

gulation or dissection either has 5 tetrahedra and includes a Core piece, or it has
6 tetrahedra, none of which are Core. This means that the type vector satisfies

2a + b + c + d = 6, a ≤ 1.
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Table 3. The types of tetrahedra

Name Representative Numeric # Ago Volume

Corner = {0, 1, 2, 4} 1 8 6
1
6

Staircase = {0, 1, 2, 5} 2 24 2
1
6

Slanted = {1, 3, 4, 7} 47 24 2
1
6

Core = {1, 2, 4, 7} 41 2 24
1
3

Table 4. The dissections and triangulations of the cube with tetrahedra sorted by type

i Core Corner Staircase Slanted Type |Aut(Ri)| DL

1 41 1, 38, 52, 63 (1, 4, 0, 0) 24 1

2 1, 68 45, 56 35, 65 (0, 2, 2, 2) 4 4

3 1 45, 56, 66, 67 35 (0, 1, 4, 1) 2 5

4 1, 63 45, 66 35, 57 (0, 2, 2, 2) 2 3

5 1, 68 45, 61 35, 58 (0, 2, 2, 2) 2 dissection

6 1 45, 59, 61, 64 35 (0, 1, 4, 1) 1 dissection

7 1, 63 45, 59 35, 62 (0, 2, 2, 2) 2 dissection

8 1, 52, 63 35, 47, 57 (0, 3, 0, 3) 6 2

9 2, 19, 36, 56, 66, 67 (0, 0, 6, 0) 4 dissection

10 2, 19, 36, 59, 61, 64 (0, 0, 6, 0) 12 6

In Table 4, the list of dissections from Theorem 1 is listed, with tetrahedra
separated out by type. The type vector is listed in the column headed type.
For triangulations, the De Loera number is in the column headed DL. This will
be discussed in Sect. 4.
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3 Poset Classification

Poset classification is a technique to classify combinatorial objects. Canonical
augmentation due to McKay [7] is a very popular technique. McKay intro-
duces the idea of a canonical predecessor to achieve the isomorph classification.
McKay’s work relies on the notion of a canonical form. His computer package
Nauty [8] can compute canonical forms for graphs efficiently. This has led many
authors to reduce the classification of different types of combinatorial structures
to that of graphs. The original combinatorial objects are equivalent if and only if
the associated graphs are isomorphic. By using Nauty to solve the isomorphism
problem for the associated graphs, the combinatorial objects at hand are classi-
fied as well. For many combinatorial objects, this reduction is efficient and works
very well. However, there are combinatorial objects for which this reduction is
inefficient. Also, there is an interest in solving the isomorphism problem for the
original combinatorial objects at hand directly, and avoiding the reduction to
graphs altogether.

A second approach to classify combinatorial objects is losely based on ideas
of Schmalz [11] for the enumeration of double cosets in groups. This has been
adapted to the problem of classifying the orbits of groups on various posets. The
critical operation in any poset orbit classification algorithm is the isomorphism
testing. Using the ideas of Schmalz, backtracking can be avoided at the expense
of higher memory complexity. The poset is examined breadth-first, using the
rank of the combinatorial objects at hand. For most combinatorial objects, such
rank functions are implicit. For instance, for orbits on sets, the size of the set is
the rank of the set. In order to do isomorphism test in linear time, previously
computed data in lower levels of the poset is utilized when constructing the next
level in the poset. For a recent description of this technique, including some
comparisons with canonical augmentation, see [3].

Let (P,≺) be a partially ordered set with rank function. Assume that G is
a group that acts on P (with the action written on the right). This means that
for all g ∈ G and all a, b ∈ P we have

a ≺ b ⇐⇒ ag ≺ bg.

Let Pi be the set of objects at level i in P. The poset of orbits for the action of
G on P has as elements the orbits of G. Two orbits O1 and O2 are related with
there exists a ∈ O1 and b ∈ O2 with a ≺ b.

For computing dissections of a polyhedron P with automorphism group G,
let P be the set of partial dissections. A partial dissection is a set of spacial
tetrahedra (simplices) which do not intersect in an interior point. The poset
P is ordered with respect to inclusion. The group G of the polyhedron acts
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on this poset. The rank of a dissection is the number of simpices in it. The
level set Pi contains all partial dissection size i. The dissections of the cube can
be recognized using the volume function from Table 3. Dissections containing a
Core tetrahedra have rank 5. All other dissections have rank 6. As all partial
dissections correspond to cliques in the disjointness graph Γ of Table 2, the
problem of finding dissections is reduced to that of finding suitable cliques in
the graph Γ.

Let us present some results from the classification, computed using
Orbiter [2]. The number of orbits of G on each of the levels Pi for i = 0, . . . , 6 is
shown in Table 5.

Table 5. The number of orbits on the poset by level

Level # Aut distribution

0 1 (48)

1 4 (24, 6, 22)

2 24 (12, 6, 44, 29, 19)

3 59 (64, 4, 215, 139)

4 72 (24, 8, 6, 46, 3, 219, 143)

5 32 (24, 6, 211, 119)

6 9 (12, 6, 42, 24, 1)

The poset of orbits for the action of the group of the cube on the partial
dissections is shown in Fig. 3.

The labeling of the representatives of the dissections is as in Table 1.

4 Comparison with the Types of de Loera et al.

De Loera, Rambau and Santos [5] list six types of triangulations of the cube.
In Table 6, the De Loera triangulations are listed and identified with orbits in
Table 4. An isomorphism from the representative picked by De Loera to the
representative in Table 4 is given.
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Fig. 3. The poset of orbits on partial dissections

Table 6. The triangulations listed by De Loera et al.

i Representative Type Table 4 Isomorphism

1 {1, 38, 41, 52, 63} (1, 4, 0, 0) 1 id

2 {4, 11, 21, 38, 52, 63} (0, 3, 0, 3) 8 (0, 3, 5)(2, 7, 4)

3 {6, 17, 29, 30, 32, 33} (0, 2, 2, 2) 4 (0, 4, 5, 1)(2, 6, 7, 3)

4 {6, 18, 21, 29, 32, 63} (0, 2, 2, 2) 2 (0, 4, 5, 1)(2, 6, 7, 3)

5 {6, 18, 24, 29, 32, 33} (0, 1, 4, 1) 3 (0, 4, 6, 7, 3, 1)(2, 5)

6 {8, 13, 18, 24, 32, 33} (0, 0, 6, 0) 10 (0, 2, 3, 1)(4, 6, 7, 5)
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Classification Results for Hyperovals
of Generalized Quadrangles
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Abstract. A hyperoval of a point-line geometry is a nonempty set of
points meeting each line in either 0 or 2 points. We discuss a combination
of theoretical and practical techniques that are helpful for classifying
hyperovals of generalized quadrangles. These techniques are based on
the connection between hyperovals, even sets and pseudo-embeddings of
point-line geometries.

Keywords: Generalized quadrangle · Hyperoval · Pseudo-embedding ·
Even set · Ideal

1 Introduction

A (point-line) geometry is a triple S = (P,L, I) consisting of a nonempty point
set P, a line set L and an incidence relation I ⊆ P × L between these sets.
One of the most important classes of geometries are the so-called (axiomatic)
projective planes [17]. A finite projective plane π contains n2 + n + 1 points and
n2 + n + 1 lines for some n ∈ N, called the order of π. The standard exam-
ples are the Desarguesian projective planes PG(2, q) with q some prime power.
Axiomatic projective planes have been intensively investigated, in particular sev-
eral construction and classification results have been obtained about them. Some
of these results have been obtained by means of computer computations, like the
classifications of all projective planes of order 8, 9 and 10 [15,18,19].

Besides classification results and constructions, also special sets of points in
projective planes have been investigated. Certain of these sets have relationships
with other mathematical areas, like coding theory, or certain geometries can
be constructed from them, like partial geometries and generalized quadrangles.
One of the substructures of finite projective planes that have been thoroughly
investigated are the hyperovals. These are nonempty sets of points meeting each
line in either 0 or 2 points, in which case it can be shown that the hyperoval
has size n + 2 with n the (necessarily even) order of the plane. The classical
examples of hyperovals here are those in PG(2, q), q even, by adding to an irre-
ducible conic C its nucleus, that is the point that lies in all tangent lines of C.
The construction and classification problem of hyperovals in arbitrarily not nec-
essarily Desarguesian projective planes has been intensively studied. Hyperovals
c© Springer Nature Switzerland AG 2020
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also play a crucial role in the nonexistence proof for the projective plane of order
10 [19]. Indeed this proof essentially relies on the fact that a plane of order 10
cannot have hyperovals [20].

The concept of a hyperoval, namely a nonempty set of points meeting each
line in either 0 or 2 points, can be defined for general point-line geometries.
Two families of point-line geometries that have attracted attention here are the
generalized quadrangles (GQ’s) [25] and the polar spaces [2]. The standard exam-
ples of polar spaces are related to symplectic polarities, quadrics and Hermitian
varieties in projective spaces [16], but also every generalized quadrangle is an
example of a polar space. A generalized quadrangle of order (s, t), or shortly a
GQ(s, t), is defined as a geometry that satisfies the following three properties:

1. Every two distinct points are incident with at most one line.
2. Every line is incident with exactly s + 1 points and every point is incident

with precisely t + 1 lines.
3. For every non-incident point-line pair (x,L), there exists a unique point y on

L collinear with x (i.e. y is in some line together with x).

Hyperovals of polar spaces, in particular of GQ’s, are not only interesting point
sets. They are also related to other combinatorial structures in finite geometry.
Hyperovals (or local subspaces) of polar spaces were first considered in [1] because
of their connection with so-called locally polar spaces. Hyperovals of GQ’s have a
number of additional applications. They naturally arise in the study of extended
generalized quadrangles and play a fundamental role in their study, see [3,21–
23]. Lower and upper bounds for the size of a hyperoval H in a GQ(s, t) were
obtained in [3, Lemmas 3.9 and 3.11] and [14, Theorems 2.1 and 2.2]. The size
|H| is even and satisfies max(2(t + 1), (t − s + 2)(s + 1)) ≤ |H| ≤ 2(st + 1).

In recent years, many construction and classification results for hyperovals in
GQ’s have been obtained. These regard theoretical constructions of infinite fam-
ilies [4–9,14,24], or computer backtrack searches as in [22,23]. We will emphasise
here on a number of techniques that can help in studying and classifying hyper-
ovals, both from a theoretical as a computational point of view. Hyperovals are
special cases of even sets, these are sets of points that meet each line in an
even number of points. The intention is to discuss some tools for classifying
hyperovals inside the family of all even sets. The complements of the even sets
were coined pseudo-hyperplanes in [11]. There exist close relationships between
pseudo-hyperplanes and certain representations of the geometry in projective
spaces, called pseudo-embeddings. Some of these relationships will be mentioned
in Sect. 2. Via the connection with pseudo-embeddings, we show in Sect. 3 that
the family of hyperovals is related to certain ideals in polynomial rings and that
Gröbner bases can sometimes help in their study and/or classification.
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2 Pseudo-embeddings, Pseudo-hyperplanes and Even
Sets

Suppose S = (P,L, I) is a geometry for which the number of points on each line
is finite and at least 3. A pseudo-embedding of S is a map ε from P to the point
set of a projective space PG(V ) defined over the field F2 of order 2 such that:

– the image of ε generates the whole projective space PG(V );
– ε maps every line L ∈ L to a frame of a subspace of PG(V ), i.e. ε(L) is a set

of the form {〈v̄1〉, 〈v̄2〉, . . . , 〈v̄k〉}, where k is the size of L, v̄1, v̄2, . . . , v̄k−1 are
k − 1 linearly independent vectors of V and v̄k = v̄1 + v̄2 + . . . + v̄k−1.

We denote such a pseudo-embedding also by ε : S → PG(V ). A pseudo-
embedding thus maps the lines of a geometry S to frames of subspaces of a
projective space PG(V ). This is different from the notion of an (ordinary) embed-
ding of S which maps the lines of S to lines of PG(V ).

Two pseudo-embeddings ε1 : S → PG(V1) and ε2 : S → PG(V2) of the same
point-line geometry S are called isomorphic if there exist a linear isomorphism
θ between the vector spaces V1 and V2 such that ε2 = θ ◦ ε1.

If ε : S → PG(V ) is a pseudo-embedding, then projecting the image of ε from
a (suitable) subspace on a complementary subspace can give rise to another
pseudo-embedding ε′, which is called a projection of ε. If ε1 and ε2 are two
pseudo-embeddings of the same point-line geometry S, then we write ε1 ≥ ε2
if ε2 is isomorphic to a projection of ε1. If ε̃ is a pseudo-embedding of S such
that ε̃ ≥ ε for any other pseudo-embedding ε of S, then ε̃ is called universal. If
S has pseudo-embeddings, then it also has a universal pseudo-embedding which
is moreover unique, up to isomorphism. The vector dimension of the universal
pseudo-embedding is called the pseudo-embedding rank, and (in case |P| < ∞)
is equal to |P| − dim(C), where C is the binary code of length |P| generated by
the characteristic vectors of the lines of S. Note that dim(C) equals the F2-rank
of an incidence matrix of S. We thus see that there exist connections between
pseudo-embeddings and coding theory. There also exist connections between
pseudo-embeddings and modular representation theory of groups.

Pseudo-hyperplanes and hence also even sets are closely related to pseudo-
embeddings as the following theorem shows.

Theorem 1 ([11]). If ε : S → PG(V ) is a pseudo-embedding, then for every
hyperplane Π of PG(V ), the set ε−1(ε(P)∩Π) is a pseudo-hyperplane of S. Every
pseudo-hyperplane of S arises in this way from the universal pseudo-embedding
of S.

More background information about pseudo-embeddings, pseudo-hyperplanes
and the above facts can be found in [10–13]. In [11] it was also shown that all GQ’s
have pseudo-embeddings and hence also universal pseudo-embeddings.

Hyperovals of GQ’s can often be computationally classified without imple-
menting a backtrack algorithm. One way to achieve this goal is to determine all
(isomorphism classes of) even sets, and subsequently to verify which even sets
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are also hyperplanes. The number of even sets can be determined in advance:
it equals 2k, with k the pseudo-embedding rank. As soon as a computer model
of the geometry has been implemented along with its automorphism group (e.g.
with GAP [27]), it is easy to generate even sets, the size of the orbit to which
a given even set belongs can readily be computed, and it can easily be veri-
fied whether two hyperovals are isomorphic. Based on these three principles, it
is often easy to compute all isomorphism classes of even sets. This has been
illustrated in the papers [12,13]. We mention two reasons why it is so easy to
generate even sets with a computer:

1. An even set can be found as a set whose characteristic vector is F2-orthogonal
with all characteristic vectors of the lines.

2. The symmetric difference of any two even sets is again an even set.

The above method (as well as a backtrack search) has the disadvantage that
it does not provide unified and explicit descriptions for the hyperovals. The
method which we will discuss in the following section does have this potential.
It is still based on the connection with even sets but it also takes into account a
description of the universal pseudo-embedding.

3 Related Ideals in Polynomial Rings

The material discussed in this section is new with exception of Theorem 4,
which is taken from [13, Corollary 1.3]. We continue with the notation in Sect. 2.
We suppose that S has pseudo-embeddings and we denote by ε̃ : S → PG(˜V )
the universal pseudo-embedding of S. If k := dim(˜V ), then there exist k maps
fi : P → F2 (i ∈ {1, 2, . . . , k}) such that ε̃ maps a point p of S to the point
(f1(p), f2(p), . . . , fk(p)) of PG(˜V ). Using these fi’s, Theorem 1 can now be
rephrased as follows.

Theorem 2. The even sets of S are precisely the subsets of P satisfying an
equation of the form

∑k
i=1 aifi(p) = 1 with a1, a2, . . . , ak ∈ F2.

We denote by E(ā) the even set corresponding to a tuple ā = (a1, a2, . . . , ak).
Suppose α = {p1, p2, . . . , pl} is a line of S. The condition that the point pi of α
belongs to E(ā) implies by Theorem 2 that a certain linear combination Li(ā)
of the ai’s is equal to 1. If E(ā) is a hyperoval of S, then the number of i’s for
which Li(ā) is equal to 1 is therefore either 0 to 2.

Theorem 3. There exists a gα(a1, a2, . . . , ak) ∈ F2[a1, a2, . . . , ak] such that the
following two conditions are equivalent for any ā = (a1, a2, . . . , ak) ∈ F

k
2 :

– the number of i’s for which Li(ā) is equal to 1 is either 0 to 2;
– gα(a1, a2, . . . , ak) = 0.
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Proof. We define h(a1, a2, . . . , ak) := (L1(ā) + 1)(L2(ā) + 1) · · · (Ll(ā) + 1) + 1
and huv(a1, a2, . . . , ak) := 1 + Lu(ā) · Lv(ā) · ∏

w �∈{u,v}(Lw(ā) + 1) for all u, v ∈
{1, 2, . . . , l} with u < v. Then the following hold:

– h(a1, a2, . . . , ak) = 0 if and only if there are no i’s for which Li(ā) = 1;
– huv(a1, a2, . . . , ak) = 0 if and only if u, v are the only i’s for which Li(ā) = 1.

We can then put gα(a1, a2, . . . , ak) equal to the product of h and all huv’s with
1 ≤ u < v ≤ l.

There exists such a polynomial gα(a1, a2, . . . , ak) ∈ F2[a1, a2, . . . , ak] for each
line α of S. Such a polynomial is not unique. If I is the ideal generated by the
polynomials a2

i +ai, i ∈ {1, 2, . . . , k}, then any polynomial in gα(a1, a2, . . . , ak)+I
also satisfies the required property. By the above discussion, we know:

Corollary 1. The even set E(ā) with ā ∈ F
k
2 \ {ō} is a hyperoval if and only if

gα(a1, a2, . . . , ak) = 0 for all α ∈ L.
If we know all gα’s, we can directly determine all ā ∈ F

k
2 for which E(ā) is a

hyperoval. From a computational point of view, this can go faster (see example
later) than verifying which of the sets E(ā) with ā ∈ F

k
2 intersects each line of the

geometry in either 0 or 2 points. In the latter approach we first need to determine
the set E(ā) by solving the equation mentioned in Theorem 2 (with respect to
p) before verifying that E(ā) intersects each of the lines in 0 or 2 points. The
method of working with the polynomials gα has two additional benefits.

1. If φ is an automorphism of S, then the fact that ε̃ is so-called homogeneous
(see e.g. [12]) implies that there exists a linear automorphism φ′ of Fk

2 such
that φ maps the even set E(ā) to the even set E(āφ′

). If α and β are lines of S
such that α = βφ, then we have gβ(ā) = gα(āφ′

). Information about automor-
phisms of S and their corresponding actions on F

k
2 thus implies that certain

of the gα’s can be derived from others. In particular, if we have such informa-
tion for a set of automorphisms that generate a line-transitive automorphism
group, then one of the gα’s determines all the others.

2. If we take the ideal G generated by I and all gα’s, then any polynomial in G
determines a necessary condition for a set E(ā) to be a hyperoval. In partic-
ular, we can look for polynomials that have a simple form. Such polynomials
can often be found with the aid of Gröbner bases (implemented in computer
algebra systems), and can be useful for theoretical and computational pur-
poses.

Both benefits are illustrated by the following example. Consider in the projec-
tive space PG(3, 4) the Hermitian variety H with equation X1X

2
2 + X2X

2
1 +

X3X
2
4 + X4X

2
3 = 0. The points and lines contained in H then define a general-

ized quadrangle H(3, 4) of order (4, 2) [25]. The universal pseudo-embedding of
H(3, 4) was described in [13, Section 1] and has vector dimension 24. From this
description, we easily deduce the following (see also [13, Corollary 1.3]).
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Theorem 4. The even sets of H(3, 4) are precisely the subsets of H satisfying
an equation of the form

∑
1(aiX

3
i ) + a5(ωX3X2

4 + ω2X4X2
3 ) + a6

(
(X3

1 + X3
2 + X3

1X3
2 )(X

3
3 + X3

4 + X3
3X3

4 ) + 1
)

+
∑

2(b
′
ijXiX

2
j + (b′

ij)
2XjX

2
i ) +

∑
3

(
b′
ijkXiXjXk + (b′

ijk)
2X2

i X2
j X2

k

)
= 1,

with the ai’s belonging to F2 and the b′
ij’s and b′

ijk’s belonging to F4.

In Theorem 4, F4 = {0, 1, ω, ω2} is the finite field of order 4, Σ1 denotes
the summation over all i ∈ {1, 2, 3, 4}, Σ2 denotes the summation over all i, j ∈
{1, 2, 3, 4} with i < j and (i, j) �= (3, 4), and Σ3 denotes the summation over
all i, j, k ∈ {1, 2, 3, 4} with i < j < k. We can now put b′

ij = bij + ωcij and
b′
ijk = bijk + ωcijk, where all bij ’s, cij ’s, bijk’s and cijk’s belong to F2. Using

the terminology of Theorem 2, the maps fi(p) with i ∈ {1, 2, . . . , 24} and p =
(X1,X2,X3,X4) can then be taken as follows:

f1(p) = X3
1 , f2(p) = X3

2 , f3(p) = X3
3 , f4(p) = X3

4 , f5(p) = ωX3X
2
4 + ω2X2

3X4,

f6(p) = (X3
1 + X3

2 + X3
1X3

2 )(X3
3 + X3

4 + X3
3X3

4 ) + 1, f7(p) = X1X
2
2 + X2X

2
1 ,

f8(p) = ωX1X
2
2 + ω2X2X

2
1 , . . . , f24(p) = ωX2X3X4 + ω2X2

2X2
3X2

4 .

We now determine one of the gα’s.

Theorem 5. If α is the line of H(3, 4) with equation X2 = X4 = 0, then gα is
equal to a1 + a3 + (b13 + c13 + b13c13)(a1 + a3 + a6 + a1a3 + a1a6 + a3a6).

Proof. The even set determined by the tuple (a1, a2, . . . , c234) ∈ F
24
2 intersects α

in either 0 or 2 points if the equation a1X
3
1 +a3X

3
3 +a6(X3

1X3
3 +1)+b′

13X1X
2
3 +

(b′
13)

2X3X
2
1 = 0 has 0 or 2 solutions for (X1,X3) ∈ {(0, 1), (1, x) |x ∈ F4}.

This means that precisely two of the equations a3 + a6 = 1, a1 + a6 = 1,
a1+a3+b′

13+(b′
13)

2 = 1, a1+a3+b′
13ω

2+(b′
13)

2ω = 1, a1+a3+b′
13ω+(b′

13)
2ω2 = 1

are satisfied. We denote these equations respectively by (1), (2), (3), (4) and (5).
Suppose b′

13 = 0. If a1 + a3 = 1, then (3), (4) and (5) imply that at least
three of the equations are satisfied which is impossible. So, a1 +a3 = 0, but then
(3), (4) and (5) are never satisfied. As a1 + a3 = 0, either (1), (2) are satisfied
or none of them is satisfied. So, if b′

13 = 0, then necessarily a1 + a3 = 0.
Suppose b′

13 �= 0 and a1 + a3 = 1. Then precisely one of (1), (2) is satisfied.
As precisely one of b′

13, b′
13ω

2, b′
13ω belongs to F2, we also see that precisely one

of (3), (4), (5) is satisfied. So, this case is always OK.
Suppose b′

13 �= 0 and a1 +a3 = 0. As precisely one of b′
13, b′

13ω
2, b′

13ω belongs
to F2, precisely two of the equations (3), (4), (5) are satisfied. So, none of (1),
(2) can be satisfied. This implies that a3 + a6 = 0.

The overall condition is thus ((b′
13)

3 + 1)(a1 + a3) + (b′
13)

3((a1 + a3 + 1)(a3 +
a6)) = 0 which simplifies to a1 +a3 +(b′

13)
3(a1 +a3 +a6 +a1a3 +a1a6 +a3a6) =

a1 + a3 + (b13 + c13 + b13c13)(a1 + a3 + a6 + a1a3 + a1a6 + a3a6).
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In Section 5 of [13], we described a list of 6 generators φ1, φ2, . . . , φ6 for the
(line-transitive) automorphism group of H(3, 4), along with their corresponding
actions on the even sets E(ā), see [13, Tables 1 and 2]. From this information, the
corresponding actions of φ′

1, φ
′
2, . . . , φ

′
6 on F

24
2 (see above) can easily be derived:

• āφ′
1 = (a3, a4, a1, a2, c12, a6, b12, a5, b13+c13, c13, b23+c23, c23, b14+c14,

c14, b24+c24, c24, b134, c134, b234, c234, b123, c123, b124, c124);
• āφ′

2 = (a1, a2, a3, a4, a5, a6, b12, c12, c13, b13+c13, c14, b14+c14, c23,
b23+c23, c24, b24+c24, b123+c123, b123, b124+c124, b124, c134, b134+c134,
c234, b234+c234);

• āφ′
3 = (a1+a3+a6+c13, a2, a3, a4+a2+a6+c24, a5+c23+c234, a6, b12+b123+

c123+b234, c12+c123+c23, b13+a3+a6, c13, b14+b12+b23+c23+b123+c123+
b124+b134+c134+b234, c14+a5+c12+c23+c123+c124+c134+c234, b23, c23,
b24+a2+a6, c24, b123, c123, b124+a6+b234, c124+c234, b134+a6+b123,
c134+c123, b234, c234);

• āφ′
4 = (a1, a2, a3, a4+a3+a5, a5, a6, b12+a3, c12, b13, c13, b14+b13+b134,

c14+c13+c134, b23, c23, b24+b23+b234, c24+c23+c234, b123, c123, b124+b123,
c124+c123, b134, c134, b234, c234);

• āφ′
5 = (a1, a2, a3+a4+a5, a4, a5, a6, b12+a4, c12, b13+b14+b134, c13+c14

+c134, b14, c14, b23+b24+b234, c23+c24+c234, b24, c24, b123+b124, c123+c124,
b124, c124, b134, c134, b234, c234);

• āφ′
6 = (a1, a2, a3, a4, a5, a6, b12+c12+a5, c12, b13+c13, c13, b14+c14, c14,

b23+c23, c23, b24+c24, c24, b123+c123, c123, b124+c124, c124, b134+c134, c134,
b234+c234, c234).

Based on this information, we have computed with the aid of SageMath [26] all
gα’s. The ideal G generated by I and the gα’s contains polynomials that have
fewer terms than the gα’s themselves. These have been found by computing
Gröbner bases of ideals generated by some of these gα’s. Specifically, G contains
the eight polynomials that are obtained from a1a3b13 +a1a6b13 +a3a6b13 +a6b13
and a1a3c13 + a1a6c13 + a3a6c13 + a6c13 by applying one of the permutations
(), (12), (34), (12)(34) on the subindices. G also contains the eight polynomials
that are obtained from a1b13c13 +a6b13c13 +a1a3 +a1a6 +a3a6 +a1b13 +a6b13 +
a1c13 +a6c13 +a1 by applying one of the permutations (), (12), (13), (34), (132),
(143), (12)(34), (14)(23) on the subindices.

4 Summary

We have discussed here three methods by which hyperovals can be computed:

(1) via the connection with even sets discussed at the end of Sect. 2;
(2) by finding all ā ∈ F

k
2 for which E(ā) is a hyperoval (via Theorem 2);

(3) by finding all ā ∈ F
k
2 for which gα(ā) = 0 holds for all lines α ∈ L.

For the example of hyperovals of H(3, 4), our implementation of the methods
(1) and (2) had similar performances (± 1h40min, iMac, 2.7 GHz Intel Core
i5-4570R processor). Methods (1) and (2) were already used in [13] to show that
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H(3, 4) has 23 nonisomorphic hyperovals. The third method was almost three
times faster. Note also that the three polynomials of G mentioned at the end
of Sect. 3 give the conditions (a1 + a6)(a3 + a6)b13 = (a1 + a6)(a3 + a6)c13 =
(a1 + a6)(b13c13 + b13 + c13 + a1 + a3) = 0, and that the remaining polynomials
give similar equations. This means that certain of the entries of ā are 0 or can
be expressed in terms of the others, a fact that would allow to speed up further
the computations for the third method. Some of the code (in SageMath [26] and
GAP [27]) used in our computations can be found on https://cage.ugent.be/
geometry/preprints.php.

Our main intention here was to discuss theoretical and computational tech-
niques that are useful for classifying hyperovals of generalized quadrangles. These
techniques suffice so far for classifying all hyperovals of all finite generalized
quadrangles of order (s, t) with s ≤ 4. These GQ’s comprise the 3 × 3, 4 × 4 and
5 × 5-grids as well as the GQ’s W (2), Q(5, 2), W (3), Q(4, 3), GQ(3, 5), Q(5, 3),
H(3, 4), W (4), GQ(4, 6), H(4, 4) and GQ(5, 4) (see [25] for definitions). With
exception of the GQ’s W (4), GQ(4, 6), H(4, 4) and Q(5, 4), these classifications
have already appeared in the literature (below).

Our work on classifying hyperovals of generalized quadrangles is work in
progress where on the one hand we try to obtain additional classification results
(for larger GQ’s) and on the other hand we try to obtain computer free uniform
descriptions for all the hyperovals of a given GQ. As in [13], the latter problem
can involve that algebraic descriptions of the universal pseudo-embeddings need
to be found.
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Abstract. We consider the computer-aided constructive classification
of parallelisms with predefined automorphism groups in small finite pro-
jective spaces. The usage of a backtrack search algorithm makes it very
important to filter away equivalent partial solutions as soon as possible
and to use a fast method for checking for isomorphism of any two paral-
lelisms. The rejection of most of the equivalent solutions can be done by
a test which uses the normalizer of the predefined automorphism group.
We consider the applicability and effectiveness of such a test, and present
sensitive invariants of resolutions of Steiner 2-designs. They can be used
to facilitate any type of test for isomorphism of parallelisms.

Keywords: Resolutions of combinatorial designs · Parallelisms of
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1 Introduction

1.1 The Isomorphism Problem and Invariants

The approaches to solving the isomorphism problem are of major importance for
the success of computer-aided classifications up to isomorphism of various combi-
natorial structures, such as graphs, designs, design resolutions, codes, Hadamard
matrices, etc. Since the number of isomorphic solutions might be extremely big,
classification is usually impossible without an efficient method for their rejection.
Many authors consider this problem (recently [1,8,9,17,19,21,24]) and software
solving it is available, for instance [4,23,25,32]. Regardless of the difference in
methods, they all make use of suitable invariants, namely functions which yield
the same value for all members of an isomorphism class. An invariant is complete
if its value is provably different for members of different isomorphism classes. The
invariants that are usually applied are not complete. Structures with different
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invariants, however, can obviously not be isomorphic to each other, and this is
very useful. The sensitivity of an invariant is measured by the ratio of the number
of classes it distinguishes to the number of non-isomorphic objects under consid-
eration [10]. A complete invariant has sensitivity 1. In a less formal manner, an
invariant with relatively high sensitivity is called sensitive. Very often, however,
sensitive invariants need considerable time to be calculated, and a considerable
amount of memory to be stored.

The present paper describes invariants of design resolutions and parallelisms
of projective spaces. These invariants are quite simple. They can be calculated
and compared relatively fast and do not need much memory to be stored. We
do not know previous papers presenting them. We show their effectiveness on
some of our recent classifications of parallelisms with a predefined automorphism
group. The invariants are used after the rejection of most of the isomorphic
solutions by a normalizer-based minimality test (NM test). We present the main
principles of such a test and point out the cases in which it may not establish that
two parallelisms are isomorphic, and therefore the calculation of good invariants
might be very helpful.

1.2 Design Resolutions and Parallelisms of Projective Spaces

The basic concepts and notations concerning designs and resolutions, and
spreads and parallelisms in projective spaces, can be found, for instance, in
[14,16,38].

A t-spread in the projective space PG(n, q) is a set of distinct t-dimensional
subspaces which partition the point set. A t-parallelism is a partition of the set
of t-dimensional subspaces by t-spreads. Usually 1-spreads and 1-parallelisms
are called line spreads (parallelisms) or just spreads (parallelisms). There can
be line spreads and parallelisms if n is odd. Two parallelisms are isomorphic if
there exists an automorphism of the projective space which maps each spread
of the first parallelism to a spread of the second one.

Let v, k, and λ be positive integers, 1 < k < v/2. Let V = {Pi}vi=1 be a finite
set of points, and B = {Bj}bj=1 a finite collection of k-element subsets of V ,
called blocks. D = (V,B) is a 2-design with parameters 2-(v,k,λ) if any 2-subset
of V is contained in exactly λ blocks of B. If λ = 1 the design is called a Steiner
2-design. A parallel class is a partition of the point set by blocks. A resolution
of the design is a partition of the collection of blocks by parallel classes. Two
resolutions are isomorphic if there exists an automorphism of the design which
maps each parallel class of the first resolution to a parallel class of the second
one.

Proposition 1. [37, 2.35-2.36] The incidence of the points and t-dimensional
subspaces of PG(n, q) defines a 2-design. There is a one-to-one correspondence
between the t-parallelisms of PG(n, q) and the resolutions of this design.

Example 1. A parallelism of PG(3, 2). The projective space PG(3, 2) has 15
points and 35 lines with 3 points each. A parallelisms has 7 spreads consisting
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of 5 disjoint lines. The point-line incidence defines a 2-(15, 3, 1) design (Fig. 1)
whose points and blocks correspond respectively to the points and lines of the
projective space. The parallelisms of PG(3, 2) correspond to resolutions of this
design (Fig. 2).

P\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
5 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
6 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
7 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
8 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
9 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
10 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
11 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
12 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
13 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
14 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
15 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

Fig. 1. PG(3, 2) - the point-line incidence defines a 2-(15, 3, 1) design

C1

P \ B 1 20 26 31 33
1 1 0 0 0 0
2 1 0 0 0 0
3 1 0 0 0 0
4 0 1 0 0 0
5 0 0 1 0 0
6 0 0 0 1 0
7 0 0 0 0 1
8 0 1 0 0 0
9 0 0 0 0 1
10 0 0 1 0 0
11 0 0 0 1 0
12 0 1 0 0 0
13 0 0 0 1 0
14 0 0 0 0 1
15 0 0 1 0 0

C1

bl points
B1 1,2,3
B20 4,8,12
B26 5,10,15
B31 6,11,13
B33 7,9,14

C2

bl points
B2 1,4,5
B10 2,8,10
B19 3,13,14
B29 6,9,15
B35 7,11,12

C3

bl points
B3 1,6,7
B11 2,9,11
B18 3,12,15
B22 4,10,14
B24 5,8,13

C4

bl points
B4 1,8,9
B12 2,12,14
B15 3,5,6
B23 4,11,15
B34 7,10,13

C5

bl points
B5 1,10,11
B13 2,13,15
B14 3,4,7
B25 5,9,12
B28 6,8,14

C6

bl points
B6 1,12,13
B8 2,4,6
B17 3,9,10
B27 5,11,14
B32 7,8,15

C7

bl points
B7 1,14,15
B9 2,5,7
B16 3,8,11
B21 4,9,13
B30 6,10,12

Fig. 2. A parallelism of PG(3, 2) - a resolution of the 2-(15, 3, 1) point-line design. The
7 spreads correspond to the 7 parallel classes C1, C2, . . . , C7.

There are several theoretical constructions of infinite families of parallelisms
that are presently known [2,7,11,15,28,42]. A full classification is available in
PG(3, 2) and PG(3, 3) [3], but it is currently out of reach in the other projective
spaces. There are computer aided classifications of parallelisms with predefined
automorphism groups [5,6,13,29–31,34,36,39–41].
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1.3 The Present Paper

Section 2 briefly describes the specifics of the classification problem for paral-
lelisms and the approach that we have used in several recent works. One of the
major difficulties in all these cases is the final test for isomorphism of the obtained
parallelisms. Since parallelisms can be considered as resolutions of the point-line
design of PG(n, q), Sect. 3 is devoted to invariants of design resolutions. The
invariants that we offer, are fast to calculate, do not need too much memory to
store, and partition the parallelisms to numerous invariant classes. Section 4 is
a comment on their further usability for the classification of parallelisms with
bigger parameters, and on their applicability to other problems.

2 Computer-Aided Classification of Parallelisms

The software for construction of parallelisms is based on the exhaustive backtrack
search techniques. A lexicographic order can be defined both on the parallelisms,
and on the partial solutions. This allows the rejection of partial solutions which
are not minimal with respect to the lexicographic order. Such a technique for
classification of various combinatorial structures is known as orderly generation
[12], [21, chapter 4], [33]. One way to implement the method is by applying a
minimality test to some of the partial solutions and to all full solutions.

The automorphism group G ∼= PΓL(n+1, q) of the projective space PG(n, q),
however, is very rich, and this makes the minimality test too slow. That is why
only a normalizer-based minimality test (NM test) is usually applied when
parallelisms invariant under some predefined automorphism group Gc are clas-
sified. The NM test checks if the normalizer N(Gc) =

{
g ∈ G | gGcg

−1 = Gc

}

contains an element which maps the constructed (partial) parallelism to a lex-
icographically smaller (partial) solution. If so, the current (partial) solution is
discarded. We briefly explain below how the normalizer can help us remove iso-
morphic solutions.

Proposition 2. Let Gc be a Sylow subgroup of the automorphism group of
PG(n, q), and let each of the parallelisms P and P ′ be invariant under Gc.
Then to establish an isomorphism of P and P ′ it is enough to check if there is
an element of the normalizer NG(Gc) of Gc in G which maps P to P ′.

Proof. The statement was first proved in [31] for parallelisms of PG(3, 5) with
automorphisms of order 31. We present here the main ideas for the general case.
Denote by GP the full automorphism group of P . We have to check if there
is some ϕ ∈ G such that P ′ = ϕP . Let α ∈ Gc. Then ϕP = αϕP and thus
P = ϕ−1αϕP . Namely ϕ−1αϕ is also an automorphism of P . That is why P is
invariant both under Gc and under ϕ−1Gcϕ. If ϕ−1Gcϕ = Gc, then ϕ is in the
normalizer NG(Gc) of Gc in G. If ϕ is not in NG(Gc), then ϕ−1Gcϕ is a conjugate
subgroup of Gc in G, and |GP | > |Gc|. If Gc and ϕ−1Gcϕ are conjugate in GP

too (for instance, this always holds if Gc is a Sylow subgroup of G), then since ϕ
is not an automorphism of P , there must exist an automorphism β ∈ GP , such
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that ϕ−1Gcϕ = βGcβ
−1. Then Gc = ϕβGcβ

−1ϕ−1 and therefore ϕβ ∈ NG(Gc).
Since ϕβP = ϕP , the statement follows.

If the predefined group is not a Sylow subgroup of G, the normalizer-based
minimality test may not succeed in removing all isomorphic parallelisms. That
is why a further test for isomorphism must be applied.

Our experience shows that a very small number of isomorphic parallelisms
remain if an NM test has been applied to them. In [40] and [41] we classify par-
allelisms with predefined groups which are of prime order, but not Sylow, and
observe that the NM test removes all isomorphic solutions. Constructing paral-
lelisms of PG(3, 4) invariant under cyclic groups of order 4 [6] we obtain 253344
parallelisms after the NM test, and 252738 after a full test for isomorphism, i.e.
the latter removed 0.23% of the solutions obtained after the NM test.

If the number of parallelisms is big, we can first determine the order of
their full automorphism groups. Whatever algorithm or software we use for that
purpose, invariants of the points, lines and spreads of the parallelism might be
very helpful, because only points (lines, spreads) with the same invariants can be
mapped to one another. When we know the full automorphism groups, we can
look for isomorphisms only among parallelisms with |GP | > |Gc|. In the cases
that we have considered, the percentage of these parallelisms is very small. Their
number, however, might be quite big, and therefore it might be very slow to test
for isomorphisms any two of them. If we can easily calculate sensitive invariants
of the parallelisms, we can only check for isomorphisms among parallelisms with
the same invariants.

Parallelisms can be considered as resolutions of the point-line design of the
projective space. The next section presents the invariants we use, as invariants
of resolutions of Steiner 2-designs, because we believe that they can also have
various applications outside the parallelisms classification problem.

3 Invariants of Resolutions and Parallelisms

Resolutions of designs with small parameters have been classified in many papers
(for instance, [20,22,26,27]). The invariants that are usually used, are the order
of the automorphism group and some properties of the underlying design.

The resolution isomorphism problem can be transformed to graph isomor-
phism problems (for instance, Betten’s approach in [5]). This makes it possible
to use Nauty [25] or some other graph isomorphism software [4,18,23,32], and to
use graph invariants to distinguish resolutions in a way similar to that for designs
(for example, [22,24]). These invariants, however, do not take in consideration
the fact that we deal with resolutions and are therefore quite complex.

Invariants of resolutions (not of their underlying design, or related graph) are
used in the works of Morales and Velarde [26,27] and Kaski et al. [20] who con-
struct matrices of the intersections between the parallel classes. The invariants
and their usage are different from those that we describe. Invariants of resolu-
tions of 2-(v, 3, 1) designs (Kirkman triple systems) are applied by Stinson and



Isomorphism and Invariants of Parallelisms 167

Vanstone in [35]. They are defined by a function which maps 3-subsets of points
to 3-subsets of parallel classes and are different from the invariants we present.

Our first aim is to describe the relation of each block to each resolution
class. Consider a resolution of a 2-(v, k, λ) design with b blocks and r parallel
classes. Denote by B1, B2, . . . Bb the blocks of the design, and by C1, C2, . . . Cr

the parallel classes of the resolution. Denote by Nd
j the number of blocks in the

parallel class of block Bj , which are different from Bj and disjoint with all the
blocks of class Cd that contain some of the points of Bj . The number Nd

j remains
unchanged by a permutation of the points of the design, and a permutation of
the blocks which maps parallel classes to parallel classes defines a permutation
on the numbers Nd

j , where d = 1, 2, . . . r and j = 1, 2, . . . b.
For each block Bj define a vector Ωj = (bj0, b

j
1, . . . b

j
v/k−1), where bjm is the

number of parallel classes Cd for which Nd
j = m. A resolution isomorphism maps

parallel classes to parallel classes. That is why the vector Ωj will be the same
for the image of Bj under a resolution isomorphism. So we will call these vectors
resolution block invariant vectors, or just block invariants. To compare block
invariants we define a lexicographic order such that Ωj′ < Ωj′′ if bj

′
k < bj

′′
k and

bj
′

i = bj
′′

i for i < k. Let nb be the number of the different block invariants and
let us denote them by β1, β2, . . . βnb

, and the set they form, by β. The block
invariants are relatively easy to calculate, because they are based on the relation
of each block to the r parallel classes, while the most used block invariants of
designs [22] present the relation of each block to all the (b-1)(b-2)/2 pairs of
different other blocks. For the design considered in Example 2, for instance,
r = 21 and b = 357.

Each point Pi is in r blocks. Their block invariants become the elements of
a resolution point invariant vector Πi = (βi1 , βi2 , . . . βir ), such that βij ≤ βij+1 .
We next find the number np of the different point invariants and denote them
by π1, π2, . . . πnp

, and the set of these invariants by π. Each parallel class Cl

contains v/k blocks. Their block invariants make up a resolution class invariant
vector Γl = (βl1 , βl2 , . . . βlv/k

), such that βlj ≤ βlj+1 . We denote the different
class invariants by γ1, γ2, . . . γnc

and the set they comprise by γ.

Example 2. Parallelisms of PG(3, 4). They can be considered as resolutions of
the 2-(85, 5, 1) point-line design. There are 21 parallel classes with 17 blocks each.
Table 1 presents three of the parallel classes of a resolution with automorphism
group order 960. The blocks are given by their points.

In this example N2
2 = 12, because each of the blocks B6, B7, . . . , B17 of

parallel class C1 is disjoint with each of the blocks B18, B19, . . . , B22 (these
blocks of C2 contain points of B2). In the same manner N3

2 = 6 because blocks
B1, B3, B6, B7, B8, B9 are pairwise disjoint with blocks B40, B44, B46, B49, B50,
and N1

2 = 16 because B1, B3, B4, . . . , B17 are disjoint with B2. In the same
way we find Nd

2 for d = 4, 5, . . . , 21 (for the classes that are not given in
Table 1). In total, the value is 6 for 15 classes, 12 for five, and 16 for C1, namely
Ω2 = (0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 5, 0, 0, 0, 1). We proceed with finding Ωj for
each j = 1, 3, 4, . . . 357, and establish that there are nb = 5 different vectors
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Table 1. Three parallel classes of a resolution of a 2-(85, 5, 1) design.

C1 C2 C3

Block Points Inv Block Points Inv Block Points Inv

B1 1,2,3,4,5 1 B18 1,6,7,8,9 3 B35 1,10,11,12,13 3

B2 6,22,38,54,70 2 B19 2,22,26,30,34 4 B36 2,24,28,32,36 4

B3 7,26,43,60,77 2 B20 3,38,43,48,53 4 B37 3,40,45,46,51 4

B4 8,30,48,65,79 2 B21 4,54,60,65,67 4 B38 4,57,59,62,68 4

B5 9,34,53,67,84 2 B22 5,70,77,79,84 4 B39 5,73,74,80,83 4

B6 10,28,40,68,80 2 B23 10,29,41,69,81 5 B40 6,23,39,55,71 5

B7 11,24,45,62,83 2 B24 11,25,44,63,82 5 B41 7,27,42,61,76 5

B8 12,36,46,59,73 2 B25 12,37,47,58,72 5 B42 8,31,49,64,78 5

B9 13,32,51,57,74 2 B26 13,33,50,56,75 5 B43 9,35,52,66,85 5

B10 14,33,41,61,85 2 B27 14,31,39,59,83 5 B44 14,30,38,58,82 5

B11 15,37,44,55,78 2 B28 15,35,42,57,80 5 B45 15,34,43,56,81 5

B12 16,25,47,66,76 2 B29 16,23,49,68,74 5 B46 16,22,48,69,75 5

B13 17,29,50,64,71 2 B30 17,27,52,62,73 5 B47 17,26,53,63,72 5

B14 18,35,39,63,75 2 B31 18,36,40,64,76 5 B48 18,37,41,65,77 5

B15 19,31,42,69,72 2 B32 19,32,45,66,71 5 B49 19,33,44,67,70 5

B16 20,27,49,56,82 2 B33 20,28,46,55,85 5 B50 20,29,47,54,84 5

B17 21,23,52,58,81 2 B34 21,24,51,61,78 5 B51 21,25,50,60,79 5

Table 2. The set β of the different block invariants, nb = 5

#inv b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16

β1 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 1

β2 0 0 0 0 0 0 15 0 0 0 0 0 5 0 0 0 1

β3 0 0 0 0 19 0 0 0 0 0 0 0 1 0 0 0 1

β4 0 0 8 3 4 4 0 0 0 0 0 0 1 0 0 0 1

β5 4 0 2 4 9 0 1 0 0 0 0 0 0 0 0 0 1

β1, β2, . . . , β5. They are presented in Table 2. The number m in column inv of
Table 1 means that the block invariant is βm.

We next calculate the point invariants and establish that np = 2, namely
Πi = π1 = (1, 3, . . . , 3, 4, 4, 4, 4) for i ≤ 5 and Πi = π2 = (2, 3, 3, 3, 3, 4, 5, . . . , 5)
for i > 5. This means that the first five points, for instance, are in one block with
invariant β1, 12 blocks with invariant β3, and 4 blocks with invariant β4. Finally
we calculate the invariants of the classes and obtain that Γ1 = γ1 = (1, 2, . . . , 2)
for the first parallel class and Γl = γ2 = (3, 3, 3, 3, 4, 5, . . . , 5) for l > 1.
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Interested readers can obtain the whole example using the invariant calcula-
tion C++ source available at http://www.moi.math.bas.bg/moiuser/∼stela and
the example files going with it.

The invariant sets β = {β1, β2, . . . , βnb
}, π =

{
π1, π2, . . . , πnp

}
and γ =

{γ1, γ2, . . . , γnc
} make up an invariant of the resolution. We calculated the reso-

lution invariants for some of the known nonisomorphic parallelisms of PG(3, 4)
[5,6,39–41]. They partition the parallelisms to invariant classes that contain
either one, or two parallelisms. The results are presented in Table 3, where |GP |
is the order of the full automorphism group, I the number of invariant classes,
N the number of isomorphism classes, and S the sensitivity of the invariant,
S = I/N .

Table 3. PG(3,4)

|GP | 4 5 6 7 10 12 15 20 24 30 48 60 96 960 All

I 251836 31648 4488 482 72 40 26 52 14 20 12 4 2 3 288699

N 251836 31830 4488 482 76 52 40 52 14 38 12 8 2 4 288934

S 1 0.9943 1 1 0.9474 0.7692 0.65 1 1 0.5263 1 0.5 1 0.75 0.9992

The most complex part of the invariant calculation is the determination of
the block invariants Ω1, Ω2, . . . , Ωb. It can be done, for instance, as shown in
Example 3, where the main operations are repeated b3

r times, b is the number
of blocks, and r the number of parallel classes. The complexity is O(b3), but the
actual performance is faster because b

r = v
k is much smaller than b.

Example 3. Calculation of Ω1, Ω2, . . . , Ωb. All arrays in this code segment are
of integer type, except covered (boolean); pclass[j] is the parallel class of
block j, cpoints[j1][j2] is the number of common points of blocks j1 and j2,
Omega[j] is Ωj , and covered and inv are auxiliary arrays.
for(j=1; j<=b; j++) // b iterations
{

for(i=0; i<=r; i++) inv[i]=0;

for(i=0; i<b/r; i++) Omega[j][i]=0;

for(jj=1; jj<=b; jj++) if(jj!=j && pclass[jj]==pclass[j])//b/r iterations
{
for(i=1; i<=r; i++) covered[i] = false;

for(j1=1; j1<=b; j1++) if (!covered[pclass[j1]]) //at most b iterations
if(cpoints[j1][j]>0 && cpoints[j1][jj]>0) covered[pclass[j1]]=true;

for(i=1; i<=r; i++) if(!covered[i]) inv[i]++;

}
for(i=1; i<=r; i++) Omega[j][inv[i]]++;

}

http://www.moi.math.bas.bg/moiuser/~stela
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4 Comments

– Our experience with classification of parallelisms with predefined automor-
phism groups, shows that the normalizer-based minimality test is a powerful
fast way of filtering away most of the isomorphic solutions.

– The invariants presented in Sect. 3 are very useful for the classification of
the parallelisms we applied them to, because they partition them to numer-
ous small invariant classes. We believe that they will be helpful to future
classifications of parallelisms with bigger parameters too.

– We suppose that these invariants will work well on the resolutions of any
2-(v, k, 1) design (Steiner 2-design). For resolutions of designs with λ �= 1,
however, modifications of the block invariants might be more suitable, such
that the exact number of common points of two blocks is encountered (not
only if these blocks are disjoint or not).
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20. Kaski, P., Morales, L.B., Österg̊ard, P., Rosenblueth, D.A., Velarde, C.: Classi-
fication of resolvable 2-(14,7,12) and 3-(14,7,5) designs. J. Comb. Math. Comb.
Comput. 47, 65–74 (2003)
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Abstract. An approach for classification of linear codes with given
parameters starting from their proper residual codes or subcodes is pre-
sented. The base of the algorithm is the concept of canonical augmenta-
tion which is important for parallel implementations. The algorithms are
implemented in the programs LengthExtension and DimExtension
of the package QextNewEdition. As an application, the nonexistence
of binary [41, 14, 14] codes is proved.
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1 Introduction

The paper is a contribution to the problem of classifying linear codes with given
parameters over finite fields with q elements. Many authors have considered this
problem before [2,3,5,10], and it is known to be very hard. The structure of the
codes for classification is very important in the generation process. We discuss
an algorithm that solves the following problem: Find all inequivalent codes with
given parameters if the set of all residual codes with respect to a codeword with
a given weight is given. The extension of the generator matrix of a given residual
code can be done row by row or column by column. We consider in more details
the problem how to generate only inequivalent codes and obtain all of needed
codes. To do this, we use the concept of canonical augmentation [10,12]. This
concept is very important for parallel implementations. We also mention the
dual problem namely the classification of linear codes by extending their proper
subcodes.

The algorithms presented in this paper are implemented in the programs
LengthExtension and DimExtension of the package QextNewEdition.
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Restrictions on the dual distance, minimum distance, etc. can be applied. The
program will be available on the webpage
http://www.moi.math.bas.bg/moiuser/∼data/Software/QextNewEdition

2 Preliminaries

Let q be a prime power and Fq the finite field with q elements, F∗
q = Fq \ {0}.

A linear code of length n, dimension k, and minimum distance d over Fq is
called an [n, k, d]q code. Two linear codes of the same length and dimension are
equivalent if one can be obtained from the other by a sequence of the following
transformations: (1) a permutation of the coordinate positions of all codewords;
(2) a multiplication of a coordinate of all codewords with a nonzero element
from Fq; (3) a field automorphism. A sequence of the transformations given
above that maps a code C to itself is called an automorphism of C. The set of
all automorphisms of C forms a group, called the automophism group of the
code and denoted by Aut(C). The action of Aut(C) on the code partitions the
set of its codewords into orbits.

The defined equivalence relation in the set of all linear [n, k, d]q codes par-
titions this set into equivalence classes. We choose a canonical representative
of each equivalence class. If C is a linear [n, k, d]q code, we call the canonical
representative of its equivalence class the canonical form of C and denote it by
ρ(C). If two codes C1 and C2 are equivalent they have the same canonical form,
or ρ(C1) = ρ(C2).

Let C be an [n, k, d]q code and let c be a codeword of weight w. Then the
residual code of C with respect to c, denoted Res(C; c), is the code of length
n − w punctured on the set of coordinates on which c is nonzero. If only the
weight w of c is of importance, we will denote it by Res(C;w). The next result
gives a lower bound for the minimum distance of residual codes.

Theorem 1. [8] Let C be an [n, k, d] code over Fq and let c be a codeword
of weight w < qd/(q − 1). Then Res(C; c) is an [n − w, k − 1, d′] code, where
d′ ≥ d − w + �w/q�.

We need also the following theorem

Theorem 2. Let C be an [n, k, d] code over Fq and x, y ∈ C be codewords of the
same weight w < qd/(q−1) such that y = φ(x) for an automorphism φ ∈ Aut(C).
Then the residual codes Res(C;x) and Res(C; y) are equivalent.

Proof. Let φ = diag(γ1, . . . , γn)π, where γi ∈ F
∗
q , π ∈ Sn. Then for any v =

(v1, v2, . . . , vn) ∈ C we have

φ(v) = (γ1v1, . . . , γnvn)π = (γ1π−1v1π−1 , . . . , γnπ−1vnπ−1) ∈ C.

Without loss of generality we can take x = (00 · · · 0 11 · · · 1
︸ ︷︷ ︸

w

). Then the sup-

port of y = φ(x) will be {(n − w + 1)π−1, . . . , nπ−1}. If v is a codeword in C

http://www.moi.math.bas.bg/moiuser/~data/Software/QextNewEdition
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then (v1, . . . , vn−w) ∈ Res(C;x) and (γ1π−1v1π−1 , . . . , γ(n−w)π−1v(n−w)π−1) ∈
Res(C; y). Hence the restriction of φ on the first n − w coordinates maps
Res(C;x) to Res(C; y).

To see the connection to the dual code, we use a theorem that gives the
relation between a punctured of a code C and a shortened of its dual code
C⊥. A code C can be punctured on a coordinate set T of size t. We denote the
resulting code by CT . Consider the set C(T ) of codewords whose i-th coordinate
is 0 if i ∈ T . C(T ) is a subcode of C. Shortening C(T ) on T gives a code of length
n − t called shortened code of C on T and denoted by CT . If we take T to be
the support of the codeword c ∈ C of weight w, then CT is the residual code of
Res(C; c) with respect to c.

Theorem 3 ([9, Theorem 1.5.7]). Let C be an [n, k, d] code and T be a set
of t coordinates. Then:

(i) (C⊥)T = (CT )⊥ and (C⊥)T = (CT )⊥;
(ii) if t < d, then CT and (C⊥)T have dimensions k and n− t−k, respectively;
(iii) if t = d and T is the set of coordinates where a minimum weight codeword

is nonzero, then CT and (C⊥)T have dimensions k − 1 and n − d − k + 1,
respectively.

As a corollary we obtain

Corollary 1. Let C be an [n, k, d] code over Fq with dual distance d⊥ and let c be
a codeword of weight w < qd/(q−1). If T is the support of c then Res(C; c) = CT

is a linear [n−w, k − 1, d′] code and Res(C; c)⊥ = (C⊥)T is a linear [n−w, n−
w − k + 1,≥ d⊥] code.

Since Res(C; c)⊥ is a shortened code of C⊥, its minimum distance is at least
d⊥. Therefore we consider all [n−w, k − 1, d′ ≥ d−w + �w/q�]q codes with dual
distance ≥ d⊥ as residual codes and then extend them to the linear [n, k, d]q
codes with dual distance ≥ d⊥.

We developed a second algorithm which extends all possible [n−w, k−w+1,≥
d] shortened codes to the [n, k, d] codes provided that their dual codes contain
codewords of weight w, w < qd⊥/(q − 1). The theoretical base of this algorithm
is the following corollary.

Corollary 2. If C is a linear [n, k, d]q code whose dual code C⊥ contains a
codeword of weight w, w < qd⊥/(q − 1), then C has a shortened code with
parameters [n − w, k − w + 1,≥ d]q and dual distance d′ ≥ d⊥ − w + �w/q�.
Proof. Let x ∈ C⊥ be a vector of weight w. According to Theorem 2, its residual
code Res(C⊥;x) has parameters [n−w, n−k−1, d′] where d′ ≥ d⊥ −w+�w/q�.
Then Res(C⊥;x)⊥ is a shortened code of C with parameters [n−w, k−w+1,≥ d]
(see Theorem 3 and Corollary 1).

Corollary 3. Let C be a linear [n, k, d]q code with dual distance d⊥. If no linear
[n − i, k − i + 1,≥ d]q codes exist for 1 ≤ i ≤ w − 1 then d⊥ ≥ w.
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Proof. Suppose that d⊥ = i < w and x ∈ C⊥ is a vector of weight d⊥. Then
Res(C⊥;x)⊥ is a shortened code of C with parameters [n − i, k − i + 1,≥ d]q
which is not possible. Hence d⊥ ≥ w.

3 The Construction

We are looking for all inequivalent linear codes with length n, dimension k, min-
imum distance d and dual distance at least d⊥ ≥ 2. We propose two algorithms
depending on the input codes.

The input in the first algorithm is a set of all inequivalent linear [n−w, k−1,≥
d′]q codes with dual distance ≥ d⊥ where d′ > d − w + �w/q�. These codes are
all possible residual codes of [n, k, d]q linear codes with dual distance at least d⊥

with respect to a codeword of weight w.
Without loss of generality, we can consider the generator matrices in the form

(

00 · · · 0 11 · · · 1
Gres G1

)

where Gres is a (k−1)×(n−w) matrix that generates the residual code Res(C;x),
x = (00 · · · 0, 11 · · · 1) ∈ C, wt(x) = w. We construct the matrix G1 row by row
in the same way as it is in the program qext l of the package Q-Extension
[3]. The main question is which of the constructed in this way codes to take in
our set of representatives of the equivalence classes. To do this, we use canonical
augmentation [10,12]. The presentation that follows differs from the original
McKay’s paper [12] but the idea is the same.

First, we find the canonical form and the automorphism group of the con-
structed [n, k, d] code C. The orbits are ordered in the way described in [1] and
this ordering depends on the canonical form ρ(C) and the automorphism group
Aut(C). Then we check if the vector x is in the first orbit in the set of all
codewords of weight w in C. If not, we reject it (it can be obtained by another
residual code), if yes we say that this code passes the parent test. Finally, we
check for equivalence the codes obtained from the same residual code that have
passed the parent test. A pseudocode is presented in Algorithm 1.

Theorem 4. The set M , obtained by Algorithm 1, consists of all inequivalent
[n, k, d]q codes with dual distance ≥ d⊥ that have codewords of weight w.

Proof. We have to prove that (1) any [n, k, d]q code with the needed dual distance
is equivalent to a code in the set M , and (2) the codes in M are not equivalent.

(1) Let C be an [n, k, d]q code with dual distance ≥ d⊥. The set of all codewords
of weight w is partitioned into orbits under the action of Aut(C). These
orbits are ordered depending on the canonical form ρ(C) (see [1] for details).
Take a codeword x in the first orbit and the residual code Res(C;x). There
is a code B ∼= Res(C;x) in the set R. If φ maps Res(C;x) into B, we
can extend the map φ to φ : C → C ′, C ′ = φ(C). If x′ = φ(x), then
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B = Res(C ′, x′) and the code C ′ passes the parent test (the codeword
x′ ∈ C ′ belongs to the first orbit in the partition of the set of all codewords of
weight w in C ′ since ρ(C) = ρ(C ′)). Hence there is a code that is equivalent
to C, has a residual code in the set R and passes the parent test.

(2) If C1
∼= C2 are two codes with the needed parameters, xi ∈ Ci, i = 1, 2 are

vectors of weight w, and both codes pass the parent test, then their residuals
Res(C1, x1) and Res(C2, x2) are also equivalent (see Theorem 2).

Algorithm 1: Extension of a residual code.

Input: The set R of all inequivalent linear [n−w, k −1,≥ d′]q codes with dual
distance at least d⊥

Output: A set M of all inequivalent linear [n, k, d]q codes with dual distance
≥ d⊥

begin M = ∅
| for all codes B ∈ R do
| MB = ∅;
| for all constructed codes C with a residual code B do:
| Obtain ρ(C) and Aut(C);
| if x ∈ O1 then MB = MB ∪ C
| end for;
| Remove equivalent codes from the set MB

| M = M ∪ MB;
| end for;

end.

The second algorithm extends all [n−w, k−w+1,≥ d] codes to the [n, k,≥ d]
codes with dual distance d⊥ whose dual codes contain codewords of weight w.
The generator matrices of the considered codes have the form

⎛

⎜

⎜

⎜

⎝

1

Iw−1

... A
1

O G0

⎞

⎟

⎟

⎟

⎠

where Iw−1 is the identity matrix, O is the (k − w + 1) × w zero matrix, A and
G0 are (w −1)× (n−w) and (k −w +1)× (n−w) matrices, respectively. We fill
out the matrix A row by row in a similar way as it is done in [4]. The dual code

C⊥ has a generation matrix
(

11 · · · 1 00 · · · 0
G1 G2

)

where G2 generates the residual

code of C⊥ with respect to the codewords (11 · · · 100 · · · 0) of weight w and it is
the dual code of C0. To take only inequivalent codes, we apply Algorithm 1 to
the dual codes.
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4 Examples

We use the presented algorithms implemented in the programs LengthExten-
sion and DimExtension to obtain a systematic classification of linear codes
with specific properties and parameters over fields with 2, 3 and 4 elements.
Besides specifying the parameters such as length (n), dimension (k) and mini-
mum distance (d), many other constraints can be considered. We give two exam-
ples, both over the filed F2, but the first one uses the program LengthExten-
sion and the second one DimExtension. All calculations have been done on
2 × Intel Xeon E5-2620 V4, 32 thread computer.

Example 1. We construct all inequivalent [45, 8, 20]2 codes from their residual
[25, 7, 10]2 codes with respect to a codeword of minimum weight 20. Since no
[44, 8, 20]2 code exists, the dual distance d⊥ must be at least 2. Using the pro-
gram Generation, we obtain 188572 inequivalent [25, 7, 10]2 codes. Six of these
codes have dual distance 1 (these codes have a zero coordinate) and therefore
we cannot use them as residual codes. The other 188566 have dual distances 2
(30522 codes), 3 (158036 codes), and 4 (only 8 codes). Considering these codes
as residual codes, the program LengthExtension constructs 424208 inequiva-
lent [45, 8, 20]2 codes. The calculations took 459 min. All doubly-even [45, 8, 20]2
codes are classified in [11] and their number is 424207. There is only one code
(up to equivalence) with these parameters which is not doubly-even. This code
has a generator matrix

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

111111111111111111110000000000000000000000000
000000000001111111100001111111111111111000000
000000011110011111101110000000001111110100000
000111100010100011100110000111110001110010000
011001100100101100100110011001110110010001000
100110101101000101100010101110011010010000100
101011010010110101000101100010110110100000010
101010101011010110001001010110101000110000001

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and weight enumerator W (y) = 1 + 99y20 + 90y22 + 15y24 + 45y28 + 6y30. Its
automorphism group is isomorphic to (C15 : C4)×S3, where C15 : C4 is the semi-
direct product of the cyclic groups of orders 15 and 4, and S3 is the symmetric
group (calculated by GAP Computer Algebra System [6]). The group acts
transitively on the coordinates and has order 360. The code is not self-orthogonal.

The following proposition allows one to reduce the number of cases that need
to be considered for an exhaustive search for a certain class of codes.

Proposition 1. If binary linear [n, k, 2d] codes exist then at least one of these
codes is even.

Proof. Let C be a binary linear [n, k, 2d] code. Suppose that C contains code-
words of odd weight. If C∗ is the punctured code of C on the right-most coordi-
nate then C∗ is an [n − 1, k, d∗] code where d∗ = 2d − 1 or 2d. Then we extend
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C∗ with one coordinate by adding an overall parity check. The resulting code
̂C∗ is even and its parameters are [n, k, 2d].

Proposition 2. Binary linear [41, 14, 14] codes do not exist.

Proof. According to Proposition 1, it is enough to prove the nonexistence of even
codes with these parameters. Feulner proved in [5] that binary [35, 10, 13] code
does not exist. We prove that binary [36, 11, 13] and [37, 12, 13] codes do not
exist. The nonexistence of codes with these parameters proves that binary linear
[36, 10, 14], [37, 11, 14] and [38, 12, 14] codes do not exist. This gives us that no
linear [41− i, 15− i, 14]2 codes exist for 1 ≤ i ≤ 5. According to Corollary 3, the
dual distance of a binary [41, 14, 14] must be at least 6. Since no [41, 27,≥ 7]2
codes exist [7], d⊥ = 6. Therefore we are looking for binary even [41, 14, 14] codes
with dual distance 6 and we try to construct them by extending all possible
even [35, 9, 14]2 codes with dual distance ≥ 3. The program Generation shows
that there are exactly 209 inequivalent even [35, 9, 14]2 codes with needed dual
distance. Then we try to extend them using the program DimExtension. The
result is ‘RES 0, Elapsed time: 432m’ which means that these codes cannot
be extended to [41, 14, 14] codes and this result is obtained in 432 min.

Remark 1. The table of optimal codes [7] indicates that the existence of
[40, 13, 14] binary codes is also unknown. If a code with these parameters exists,
its dual distance can be 5 or 6. If C is a [40, 13, 14] binary even code with dual dis-
tance 5, it contains an even [35, 9, 14] shortened code with dual distance ≥ 3. By
the program DimExtension, we obtain that these codes cannot be extended to
[40, 13, 14] binary codes. This means that if a [40, 13, 14] binary even code exists,
its dual distance is 6. Then this code contains a shortened code with parameters
[34, 8, 14] and dual distance ≥ 3. There are 10 607 917 inequivalent [34, 8, 14]
codes with needed dual distance. We were not able to extend all these codes for
a reasonable time and therefore we have no result for the codes with parameters
[40, 13, 14].

Acknowledgements. We are greatly indebted to the unknown referees for their useful
suggestions.

References

1. Bouyukliev, I.: About the code equivalence. In: Shaska, T., Huffman, W., Joyner,
D., Ustimenko, V. (eds.) Advances in Coding Theory and Cryptology, pp. 126–151
(2007)

2. Bouyukliev, I., Bouyuklieva, S., Kurz, S.: Computer classification of linear codes.
arXiv:2002.07826 [cs.IT] (2020)

3. Bouyukliev, I., Simonis, J.: Some new results for optimal ternary linear codes.
IEEE Trans. Inf. Theory 48(4), 981–985 (2002)

4. Bouyuklieva, S., Bouyukliev, I.: Classification of the extremal formally self-dual
even codes of length 30. Adv. Math. Commun. 4(3), 433–439 (2010)

5. Feulner, T.: Classification and nonexistence results for linear codes with prescribed
minimum distances. Des. Codes Cryptogr. 70, 127–138 (2014)

http://arxiv.org/abs/2002.07826


180 S. Bouyuklieva and I. Bouyukliev

6. The GAP Group: GAP - Groups, Algorithms, and Programming, Version 4.11.0
(2020). https://www.gap-system.org

7. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes.
http://www.codetables.de. Accessed 10 Mar 2020

8. Hill, R., Newton, D.E.: Optimal ternary linear codes. Des. Codes Crypt. 2, 137–157
(1992)

9. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge
University Press, Cambridge (2003)
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Abstract. This paper is devoted to the program Generation which
is a self-containing console application for classification of linear codes.
It can be used for codes over fields with q < 8 elements and with wide-
range parameters. The base of the implemented algorithm is the concept
of canonical augmentation.
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1 Introduction

The classification problem of linear codes is important and difficult. Com-
puter algorithms have been used to find the best linear codes for given length
and dimension. There are many computational results for classification of lin-
ear codes over finite fields (see for example [3,12,13]), but there is not much
related software available (for example Magma [4], GUAVA [1], Orbiter [2],
Q-Extension [5]). Our paper is a contribution to this research.

The system QextNewEdition is a software package consisting of several
user interface programs for classification of linear codes over finite fields, along
with the necessary supporting functions. Here we describe the program Gener-
ation for classification of linear codes over fields with q < 8 elements and with
wide-range parameters. Despite its simple interface, it allows a lot of restrictions
on the considered codes. It gives the possibility to classify not only codes with
fixed parameters but also all codes with a given length n and dimensions from
k0 to k for given integers 1 ≤ k0 ≤ k. To use the program, a knowledge of a
programming language is not needed. This program is supported by many differ-
ent basic functions which implement complicated (in some cases) algorithms and
has specific data organizations. The most important of these functions give the
minimum distance, a list of codewords with weights smaller than a given inte-
ger (for large dimensions Brouwer-Zimmerman algorithm is applied), canonical
form, automorphism group.
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This paper tries to give answers to the following questions:

– What type of algorithms are implemented and why they allow parallel imple-
mentation?

– What is the data organization?
– What is the difference with the previous version?
– How can the interface be used to enter parameters and what type of restric-

tions are possible and suitable for different cases?
– What can be expected from the program?

The remaining part of the paper is organized as follows. Section 2 contains
the needed definitions. In Sects. 3 and 4 we describe the main algorithms in the
program Generation and its basic functions and data organization, respec-
tively. Sections 5 and 6 answer the questions how we can use Generation for
code classification and what can be expected from the program. Finally, we draw
a brief conclusion in Sect. 7.

2 Basic Definitions

In this section we present some definitions following [11]. Let F
n
q denote the

vector space of n-tuples over the q-element field Fq. A q-ary linear code C of
length n and dimension k, or an [n, k]q code, is a k-dimensional subspace of Fn

q .
A k × n matrix G whose rows form a basis of C is called a generator matrix of
C. The number of nonzero coordinates of a vector x ∈ F

n
q is called its Hamming

weight wt(x). The Hamming distance d(x,y) between two vectors x,y ∈ F
n
q is

defined by d(x,y) = wt(x − y). The minimum distance of a linear code C is

d(C) = min{d(x,y) | x,y ∈ C,x �= y} = min{wt(c) | c ∈ C, c �= 0}.

A q-ary linear code of length n, dimension k and minimum distance d is said to
be an [n, k, d]q code. Let Ai denote the number of codewords in C of weight i.
Then the n + 1-tuple (A0, . . . , An) is called the weight spectrum of the code C.

An inner product (x,y) of vectors x,y ∈ F
n
q defines orthogonality: Two

vectors are said to be orthogonal if their inner product is 0. The set of all vectors
of Fn

q orthogonal to all codewords in C is called the orthogonal code C⊥ to C:

C⊥ = {x ∈ F
n
q | (x,y) = 0 for any y ∈ C}.

It is well-known that the code C⊥ is a linear [n, n−k]q code. If C ⊆ C⊥, the code
C is called self-orthogonal. Self-orthogonal codes with n = 2k are of particular
interest, then C = C⊥ and these codes are called self-dual.

The program Generation has an option for classification of self-orthogonal
codes over fields with 2, 3 and 4 elements. In the binary and ternary cases, we
consider Euclidean inner product defined by u ·v = u1v1+u2v2+ · · ·+unvn ∈ Fq

for u = (u1, u2, . . . , un), and v = (v1, v2, . . . , vn). For q = 4 the considered inner
product is the Hermitian inner product defined by u · v = u1v

2
1 + u2v

2
2 + · · · +

unv2
n ∈ F4 where u = (u1, u2, . . . , un),v = (v1, v2, . . . , vn) ∈ F

n
4 .

Two linear q-ary codes C1 and C2 are said to be equivalent if the codewords of
C2 can be obtained from the codewords of C1 via a sequence of transformations
of the following types:
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1. permutation of coordinates;
2. multiplication of the elements in a given coordinate by a nonzero element of

Fq;
3. application of a field automorphism to the elements in all coordinates simul-

taneously.

This equivalence may not preserve self-orthogonality over fields with q ≥ 5
elements, for that reason we exclude the classification of self-orthogonal codes
over fields with 5 and 7 elements.

An automorphism of a linear code C is a sequence of such transformations
that maps each codeword of C onto a codeword of C. The automorphisms of a
code C form a group, called the automorphism group of the code and denoted
by Aut(C).

Practically, we will identify a linear code with its generator matrix. We
consider the code classification problem as follows. Given a set of parameters
q, n, k, d find generator matrices of all inequivalent [n, k, d] q-ary codes. In geo-
metrical aspect, we can define an [n, k, d]q code C as a multiset of n points in
PG(k − 1, q) such that (a) each hyperplane of PG(k − 1, q) meets C in at most
n − d points and (b) there is a hyperplane meeting C in exactly n − d points.
This definition is equivalent to the one given in [9].

Codes which are equivalent belong to the same equivalence class. Every code
can serve as a representative for its equivalence class. We use the concept for a
canonical representative, selected on the base of some specific conditions.

Let G be a group that acts on a set Ω. This action defines an equivalence
relation in Ω as two elements X,Y ∈ Ω are equivalent, X ∼= Y , if they belong
to the same orbit. A canonical representative map for this action is a function
ρ : Ω → Ω that satisfies the following two properties: (1) for all X ∈ Ω it holds
that ρ(X) ∼= X; (2) for all X,Y ∈ Ω it holds that X ∼= Y implies ρ(X) = ρ(Y ).
We take Ω to be the set of all linear [n, k]q codes. For a code C ∈ Ω, the code
ρ(C) is the canonical form of C with respect to ρ. Analogously, C is in canonical
form if ρ(C) = C. The code ρ(C) is the canonical representative of its equivalence
class with respect to ρ. Let γC : C → ρ(C) maps the code C to its canonical
form, or γC(C) = ρ(C). According to the definition given above, γC induces a
permutation of the coordinates which we denote by πC . The permutation πC

defines an ordering of the coordinates and the orbits of C with respect to the
action of Aut(C).

To find the canonical form and the automorphism group of C, we need a
sufficiently large set M(C) of codewords of the code C (we will call it sufficient
set) with the following properties:

– M(C) generates the code C;
– M(C) is stable with respect to Aut(C);
– if C ′ ∼= C ′′ and ψ(C ′) = C ′′ then ψ(M(C ′)) ≡ M(C ′′), ψ ∈ G.

This set is not uniquely determined. Usually, we can accept as a sufficient set
the set of all codewords with minimum weight. If the rank of this set is smaller
than the dimension of the code, a larger set of codewords is used.
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3 Main Algorithms in the Program Generation

In the program Generation any linear code is represented by its generator
matrix. The program has two main parts. The first one implements a construc-
tion method for generator matrices. This method is based on row by row back-
tracking with k×k identity matrix as a fixed part. In the m-th step the considered
matrices have the following form

G = (Ik A′) =
(

Im O Am

O Ik−m X

)

where the columns of the matrix Am are lexicographically ordered, and X is the
unknown part of G. In that case any vector vm of length n− k which fits for the
m-th row of Am strictly depends on one of the vectors put on the previous rows.
Consider, for example, the binary case. If m = 1 there are only two options for
columns of matrix A1, namely 0 and 1, four options for m = 2, namely (00)T ,
(01)T , (10)T and (11)T , and so on. Let the matrix Am−2 already be constructed.
We define a set Tm−1 of all suitable vectors for the last row in the next matrix
Am−1. Taking vm−1 ∈ Tm−1, we obtain the matrix Am−1. The vector vm−1

defines an ordered partition Πvm−1 of the set S = {k + 1, k + 2, . . . , n}. The
possibilities for the next m-th row correspond to the refinement partitions of
Πvm−1 induced by the vectors in Tm−1.

Example 1. Let us try to construct all [11, 3, 6] binary even codes taking their
generator matrices in a systematic form: G = (I3|X). Any row in the unknown
matrix X must have 5 or 7 nonzero coordinates. For the set T1 we have T1 =
{(00011111), (01111111)}. The current possible matrices G are

⎛
⎝100 00011111

010 X
001

⎞
⎠ , and

⎛
⎝100 01111111

010 X
001

⎞
⎠ .

Take v1 = (00011111). The vector v1 induces the partition Πv1 = {{1, 2, 3}, {4,
5, 6, 7, 8}} and the set T2 = {t1 = (01100111), t2 = (11100011), t3 = (1110
1111)}. Let fix v2 = t1,

A2 =
(
0 00 11 111
0 11 00 111

)
and G =

⎛
⎝100 00011111

010 01100111
001 X

⎞
⎠ .

Then Πv1,v2 = {{1}, {2, 3}, {4, 5}, {6, 7, 8}}. Now we have to find the solutions
for the last row. The first vector t1 ∈ T2 and Πv1 give the information that
we have to put two 1’s in the first three coordinate positions, and three 1’s in
the last 5 positions. We obtain the following possibilities (taking in mind also
the lexicographical ordering and the partition Πv1,v2) (01100111), (01101011),
(01111001), (10100111), (10101011), (10111001). Only the last two vectors give
[11, 3, 6] even codes (the other four codes have minimum distance ≤ 4). In the
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same way we consider the second and the third vectors in T2. By exhausting all
possibilities in this way, we get all inequivalent codes we are looking for.

As a result, we obtain only one (up to equivalence) binary even [11, 3, 6] code.
This example explains the construction part given above.

There are several advantages of this approach:

– the number of equivalent candidates in the search tree becomes smaller,
– the construction of generator matrices is very effective,
– it allows us to consider codes with relatively large length - more than a hun-

dred in the binary case.

Moreover, this construction is also appropriate to the other part of the program
that determines inequivalent objects. In fact, this has been a key idea in the pack-
age Q-Extension (more detail for this approach and the implementation can
be found in [8]). To the rest of construction part we add functions for minimum
and dual distances, orthogonality check and restrictions on weights.

The second part of the program is related to the identification of non-
equivalent objects in the whole generation process. The general method which
we apply is known as canonical augmentation [13,14]. Description for this spe-
cific case is given in [6]. The basic idea is to accept only non-equivalent objects
without an equivalence test (in some cases with a small number of tests) at every
step of the generation process. Instead of an equivalence test, a canonical form
of the objects and a canonical ordering of orbits are used. So for every vector
vm in the construction that fits as a m-th row (we call these vectors possible
solutions), the algorithm decides acceptance (possible solution becomes real) or
rejection. In this model, the different branches of the search tree are independent
and therefore it is easy for parallel implementation.

The main algorithms are developed by the basic functions of the package.
Some of them are presented in the next section.

4 Basic Functions and Data Organization

To present the basic functions used in the program Generation, we have to give
some information for the whole package QextNewEdition. It contains several
hierarchically ordered modules with functions written in C/C++. Each module
depends on the previous one and makes it possible to realize the functions of the
next one. The interface programs (like Generation) stays on the top of this
hierarchy.

The first module deals with the safe allocation of dynamic memory for the
whole package. The main structures of the package are matrices (two dimensional
arrays) of different types. These structures are used to store generator matrices,
check matrices, sets of generator matrices with non-intersecting information sets,
sets of all or some of the codewords of considered linear codes, sufficient sets,
their corresponding binary matrices, the canonical forms and so on. The concept
of the package is to investigate linear codes one by one (in consecutive execution).
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Therefore, it is convenient to use some global variables. The size of the dynamic
variables for different types of data related to linear codes changes when the main
function considers the next object. In the beginning, the first module allocates
memory for the first object. If this memory is not enough for some of the following
objects, it allocates more memory by default.

The second module consists of functions related to the rank of a system of
codewords, information set, orthogonal code, construction of different generator
matrices (with non-intersecting information sets), etc.

The following module is related to functions for generating some or all code-
words. They give minimum distance, weight spectrum, sufficient set of code-
words, coset leaders, etc. We use two general approaches for calculating the
weight characteristics of linear codes. One of them is exhaustive search (for
small dimensions only) and the other is based on Brouwer-Zimmerman algo-
rithm. Many of the functions check if the minimum distance, weight spectrum
and other distance parameters are suitable.

A very important part of the package is the module for canonical form and
automorphism group. The central object here is the (0,1)-matrix or bipartite
graph. The main function in this module obtains canonical form, generators of
the automorphism group and orbits of rows and columns (and their ordering)
of a given binary matrix. For a linear code C, we use sufficient set M(C) of
codewords and invertible mapping of this set to a binary matrix T (C) (see [7]).
If two codes C1 and C2 are equivalent their corresponding binary matrices T (C1)
and T (C2) are isomorphic. Moreover, the automorphism groups of C and T (C)
are isomorphic, too.

5 How Can We Use the Program for Code Classification?

In this section, we show how the program Generation can be used with exam-
ples. Let us consider the binary codes with parameters [24, 7, 10]. It is known
that there are 6 inequivalent codes with these parameters [12].

After starting, Generation gives us the following by default:

Generating Linear Codes (Generation v1.1 QextNewEdition first module)
Generate [24,12,8;2] Linear codes
With weights:

wt1= 8, wt2= 12, wt3= 16, wt4= 20, wt5= 24,
Proportional columns:

d2->800, d3->800, d4->800, d5->800, d6->800, d7->800, d8->800,
d9->800, d10->800, d11->800, d12->800,

1. Start
2. Change input parameters
3. Restriction on weights
4. Restriction on proportional coordinates
5. Dual distance 1
6. Brute generation
7. About QextNewEdition
8. Exit
Choose:
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To obtain the generator matrices of all 6 inequivalent binary [24,7,10] codes
in the file with name 24_7_10.2 we just have to choose point 2, enter the param-
eters and start the calculations choosing 1. The generator matrices of all inequiv-
alent codes obtained in the generation process (157 in our case) will be written in
a file with name 24_7_10.2h. They correspond to all real solutions for k �= 1, 7.
The table of optimal codes [10] indicates that binary linear codes with param-
eters [22, 6, 10] do not exist. Therefore binary [24, 7, 10] codes do not have two
proportional coordinates and can be obtained from [23,6,10] codes. That is why
we can use restrictions for proportional coordinates (point 4) as follows: up to 4
proportional coordinates in dimension five, 2 in dimension six and no (enter 1)
in dimension 7. In this case, the calculation time is 25% less.

If we are interested only in codes with dual distance 4, we can use point 5.
The program looks for the codes with dual distance 2 in dimension five and 3 in
dimension six. The number of inequivalent codes in the file 24_7_10.2h becomes
smaller - 146.

The program has two options for restrictions on possible weights of the codes
under investigation. With point 2 we can set an integer w which divides all the
weights. After that with point 3 we can choose only some of the weights between
d and n, divisible by w. The restriction for self orthogonality works only for
codes over fields with 2, 3 and 4 elements.

In the general case, when the program have to generate [n, k, d] codes, the
codes with parameters [n− t, k − i, d] are in the search tree, where 1 ≤ i ≤ k −1,
i ≤ t ≤ n − k + i.

For optimal search of all codes with fixed n and d, and dimensions from
kmin to kmax, we use point 6. In that case the results will be written in files
with extensions “2b” and “2bh”. For example, the search trees for constructing
[25, 6, 10], [25, 5, 10] and [25, 4, 10] self-orthogonal binary codes have 226, 289
and 99 nodes, respectively (614 summary). If we look for the self-orthogonal
codes with the same parameters simultaneously by point 6, the nodes of the
corresponding search tree are only 430.

6 Computational Results

In this section we present some examples. To obtain the results, we use one thread
of Intel Xeon E5-2620 V4 processor. For natural reasons, the calculational
time in the case of relatively small parameters depends on the size of the search
tree. For given n, k and q the search tree strictly depends on the restrictions
for minimum distance, self-orthogonality, possible weights, dual distance and
proportional columns.

In the case of codes with large length, the number of objects that need to be
checked for acceptability increases exponentially. That is why, even with a small
search tree, the computational time grows.
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The following table contains classification results for linear codes with differ-
ent parameters and restrictions. The first and second columns show the param-
eters and the used restrictions, respectively. Column 3 contains the execution
times in seconds, and the number of equivalent codes in each case is given in the
fourth column.

Parameters Restrictions Time #

[109, 5, 56]2 Weights: 56 64 72 1145.38 s 1
[34, 12, 12]2 Weights:12 16 20 24 28 32 19404.67 s 11
[18, 6, 4]2 Even 2337.91 s 434906
[19, 7, 9]3 72.01 s 61
[22, 6, 12]3 114.52 s 701
[24, 12, 9]3 Self-orthogonal 148.73 s 2
[28, 8, 15]3 47.17 s 1
[24, 5, 16]4 Weights: 16 18 20 22 24 472.49 s 1

7 Conclusion

In this paper, we present the first interface program Generation of the software
package QextNewEdition. There are freely available versions for Windows
and Linux on the webpage
http://www.moi.math.bas.bg/moiuser/~data/Software/QextNewEdition
The package contains two more programs, namely LengthExtension and
DimExtension which will be available on the same webpage.

The package QextNewEdition is a successor of Q-Extension [5]. The
aim of both systems is classification of linear codes with different properties and
restrictions. They share some ideas in the development of algorithms and have
similar interface. The package Q-Extension is written in Pascal (Delphi)
with static variables depending on the size of the field. QextNewEdition is a
new software system, written in C/C++, designed to be widely portable and
suitable for parallelization. All basic functions are rewritten, looking for optimal
implementation. The main concept and used methods for classification are dif-
ferent. The classification here is based on canonical augmentation as opposed to
Q-Extension where the used method is isomorph-free generation via recorded
objects [13].

There are many differences between QextNewEdition and Q-Extension.
We list some new points:

– Programming language is C/C++ which make program portable and proper
for MPI parallelization.

– Dynamically allocated variables are used. This means that the size of the
input data depends only on the hardware and the range of the program can
easily be extended to larger fields.

http://www.moi.math.bas.bg/moiuser/~data/Software/QextNewEdition
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– The implementation of the generating part presented in Sect. 3 is different. In
the beginning, it was by nested loops and now it is based on specific integer
partitions [8].

– The algorithm for canonical form is optimized by additional invariants for the
partitioning process.

– The representation of the sufficient set as a binary matrix now is much more
flexible [7].

With these features, the program Generation is a powerful tool for classi-
fying linear codes.

Acknowledgements. We are greatly indebted to the unknown referees for their useful
suggestions.
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Abstract. We describe the implementation of algebraic polyhedra in
Normaliz. In addition to convex hull computation/vertex enumeration,
Normaliz computes triangulations, volumes, lattice points, face lattices
and automorphism groups. The arithmetic is based on the package
e-antic by V. Delecroix.
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Algebraic polytopes lacking a rational realization are among the first geometric
objects encountered in high school geometry: at least one vertex of an equilateral
triangle in the plane has non-rational coordinates. Three of the five Platonic
solids, namely the tetrahedron, the icosahedron and the dodecahedron are non-
rational, and, among the 4-dimensional regular polytopes, the 120-cell and the
600-cell live outside the rational world.

But algebraic polytopes do not only appear in connection with Cox-
eter groups. Other contexts include enumerative combinatorics [17], Dirichlet
domains of hyperbolic group actions [8], SL(2,R)-orbit closures in the moduli
space of translation surfaces, and parameter spaces and perturbation polyhedra
of cut-generating functions in integer programming.

1 Real Embedded Algebraic Number Fields

The notion of convexity is defined over any ordered field, not only over the
rationals Q or the reals R. Real embedded algebraic number fields are subfields of
the real numbers (and therefore ordered) that have finite dimension as a Q-vector
space. It is well known that such a field A has a primitive element, i.e., an element
a such that no proper subfield of A contains a. The minimal polynomial of a is the
least degree monic polynomial μ with coefficients in Q such that μ(a) = 0. It is an
irreducible polynomial, and dimQ A = deg μ. In particular, every element b of A
has a unique representation b = αn−1a

n−1+· · ·+α1a+α0 with αn−1, . . . , α0 ∈ Q,
n = deg μ. The arithmetic in A is completely determined by μ: addition is the
addition of polynomials and multiplication is that of polynomials followed by
reduction modulo μ. The multiplicative inverse can be computed by the extended
Euclidean algorithm. The unique determination of the coefficients αi allows one
c© Springer Nature Switzerland AG 2020
A. M. Bigatti et al. (Eds.): ICMS 2020, LNCS 12097, pp. 193–201, 2020.
https://doi.org/10.1007/978-3-030-52200-1_19
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to decide whether b = 0. Every element of A can be written as the quotient of a
polynomial expression αn−1a

n−1 + · · · + α1a + α0 with αi ∈ Z for all i and an
integer denominator; this representation is used in the implementation.

However, the algebraic structure alone does not define an ordering of A. For
example,

√
2 and

√−2 cannot be distinguished algebraically: there exists an
automorphism of Q[

√
2] that exchanges them. For the ordering we must fix a

real number a whose minimal polynomial is μ. (Note that not every algebraic
number field has an embedding into R.) In order to decide whether b > 0 for
some b ∈ A we need a floating point approximation to b of controlled precision.

Normaliz [4] uses the package e-antic of V. Delecroix [7] for the arithmetic and
ordering in real algebraic number fields. The algebraic operations are realized
by functions taken from the package antic of W. Hart and F. Johansson [11]
(imported to e-antic) while the controlled floating point arithmetic is delivered
by the package arb of F. Johansson [13]. Both packages are based on W. Hart’s
Flint [12].

In order to specify an algebraic number field, one chooses the minimal poly-
nomial μ of a and an interval I in R such that μ has a unique zero in I, namely
a. An initial approximation to a is computed at the start. Whenever the current
precision of b does not allow to decide whether b > 0, first the approximation
of b is improved, and if the precision of a is not sufficient, it is replaced by one
with twice the number of correct digits.

2 Polyhedra

A subset P ⊂ R
d is a polyhedron if it is the intersection of finitely many affine

halfspaces:

P =
s⋂

i=0

H+
i , H+

i = {x : λi(x) ≥ βi}, i = 1, . . . , s,

where λi is a linear form and βi ∈ R. It is a cone if one can choose βi = 0 for all
i, and it is a polytope if it is bounded.

By the theorem of Minkowski-Weyl-Motzkin [2, 1.C] one can equivalently
describe polyhedra by “generators”: there exist c1, . . . , ct ∈ R

d and v1, . . . , vu ∈
R

d such that
P = C + Q

where C =
{
cγ1c1 + · · · + γtct : γi ∈ R, γi ≥ 0

}
is the recession cone and

Q =
{
κ1v1 + · · · + κuvu : κi ∈ R, κi ≥ 0,

∑
κi = 1

}
is a polytope. These

two descriptions are often called H-representation and V-representation. The
conversion from H to V is vertex enumeration and the opposite conversion is
convex hull computation.

For theoretical and computational reasons it is advisable to present a poly-
hedron P as the intersection of a cone and a hyperplane. Let C(P ) be the cone
over P , i.e., the smallest cone containing P × {1}, and D = {x : xd+1 = 1} the
dehomogenizing hyperplane. Then P can be identified with C(P )∩D. After this
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step, convex hull computation and vertex enumeration are two sides of the same
coin, namely the dualization of cones.

In the definition of polyhedra and all statements following it, the field R can
be replaced by an arbitrary subfield (and even by an arbitrary ordered field), for
example a real algebraic number field A. The smallest choice for A is Q: for it we
obtain the class of rational polyhedra. For general A we get algebraic polyhedra.

For the terminology related to polyhedra and further details we refer the
treader to [2].

3 Normaliz

Normaliz tackles many computational problems for rational and algebraic poly-
hedra:

– dual cones: convex hulls and vertex enumeration
– projections of cones and polyhedra
– triangulations, disjoint decompositions and Stanley decompositions
– Hilbert bases of rational, not necessarily pointed cones
– normalizations of affine monoids (hence the name)
– lattice points of polytopes and (unbounded) polyhedra
– automorphisms (euclidean, integral, rational/algebraic, combinatorial)
– face lattices and f-vectors
– Euclidean and lattice normalized volumes of polytopes
– Hilbert (or Ehrhart) series and (quasi) polynomials under Z-gradings
– generalized (or weighted) Ehrhart series and Lebesgue integrals of polynomi-

als over rational polytopes

Of course, not all of these computation goals make sense for algebraic poly-
hedra. The main difference between the rational and the non-rational case can
be described as follows: the monoid of lattice points in a full dimensional cone
is finitely generated if and only if the cone is rational.

Normaliz is based on a templated C++ library. The template allows one to
choose the arithmetic, and so it would be possible to extend Normaliz to more
general ordered fields. The main condition is that the arithmetic of the field has
been coded in a C++ class library. There is no restriction on the real algebraic
number fields that Normaliz can use.

Normaliz has a library as well as a file interface. It can be reached from
CoCoA, GAP [9], Macaulay2, Singular, Python [10] and SageMath. The full
functionality is reached on Linux and Mac OS platforms, but the basic function-
ality for rational polyhedra is also available on MS Windows systems.

Its history goes back to the mid 90ies. For recent developments see [3] and
[6]. The extension to algebraic polytopes was done in several steps since 2016.
We are grateful to Matthias Köppe for suggesting it.

The work on algebraic polytopes has been done in cooperation with Vincent
Delecroix (e-antic), Sebastian Gutsche (PyNormaliz), Matthias Köppe and Jean-
Phiippe Labbé (integration into SageMath). A comprehensive article with these
coauthors is in preparation.
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4 The Icosahedron

Let us specify the icosahedron, a Platonic solid, by its vertices:
amb_space 3

number_field min_poly (a^2 - 5) embedding [2 +/- 1]

vertices 12

0 2 (a + 1) 4

0 -2 (a + 1) 4

2 (a + 1) 0 4

...

(-a - 1) 0 -2 4

Volume

LatticePoints

FVector

EuclideanAutomorphisms

The first line specifies the dimension of the affine space. The second defines
the unique positive sqare root of 5 as the generator of the number field. It is
followed by the 12 vertices. Each of them is given as a vector with 4 components
for which the fourth component acts as a common denominator of the first three.
Expressions involving a are enclosed in round brackets. The last lines list the
computation goals for Normaliz. (Picture by J.-P. Labbé)

Normaliz has a wide variety of input data types. For example, it would be
equally possible to define the icosahedron by inequalities. Now we have a look
into the output file. (We indicate omitted lines by . . . )

Real embedded number field:

min_poly (a^2 - 5) embedding [2.23606797...835961152572 +/- 5.14e-54]

1 lattice points in polytope

12 vertices of polyhedron

0 extreme rays of recession cone

20 support hyperplanes of polyhedron (homogenized)

f-vector:

1 12 30 20 1

embedding dimension = 4

affine dimension of the polyhedron = 3 (maximal)

rank of recession cone = 0 (polyhedron is polytope)

...

volume (lattice normalized) = (5/2*a+15/2 ~ 13.090170)

volume (Euclidean) = 2.18169499062

Euclidean automorphism group has order 120

***********************************************************************

1 lattice points in polytope:

0 0 0 1

12 vertices of polyhedron:

...

0 extreme rays of recession cone:

20 support hyperplanes of polyhedron (homogenized):

(-a+1 ~ -1.236068) (-2*a+4 ~ -0.472136) 0 1
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...

(a-1 ~ 1.236068) (2*a-4 ~ 0.472136) 0 1

The output (in homogenized coordinates) is self-explanatory. Note that non-
integral numbers in the output are printed as polynomials in a together with a
rational approximation. At the top we can see to what precision

√
5 had to be

computed. The automorphism group is described in another output file:

Euclidean automorphism group of order 120

************************************************************************

3 permutations of 12 vertices of polyhedron

Perm 1: 1 2 4 3 7 8 5 6 10 9 11 12

Perm 2: 1 3 2 5 4 6 7 9 8 11 10 12

Perm 3: 2 1 3 4 6 5 8 7 9 10 12 11

Cycle decompositions

Perm 1: (3 4) (5 7) (6 8) (9 10) --

Perm 2: (2 3) (4 5) (8 9) (10 11) --

Perm 3: (1 2) (5 6) (7 8) (11 12) --

1 orbits of vertices of polyhedron

Orbit 1 , length 12: 1 2 3 4 5 6 7 8 9 10 11 12

************************************************************************

3 permutations of 20 support hyperplanes

Perm 1: 2 1 5 6 3 4 7 8 11 12 9 10 13 14 17 18 15 16 20 19

...

Cycle decompositions

Perm 1: (1 2) (3 5) (4 6) (9 11) (10 12) (15 17) (16 18) (19 20) --

...

1 orbits of support hyperplanes

Orbit 1 , length 20: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 Computation Goals for Algebraic Polyhedra

The basic computation in linear convex geometry is the dualization of cones. We
start from a cone C ⊂ R

d, given by generators x1, . . . , xn. The first (easy) step
is to find a coordinate transformation that replaces R

d by the vector subspace
generated by x1, . . . , xn. In other words, we can assume dim C = d.

The goal is to find a minimal generating set σ1, . . . , σs ∈ (Rd)∗ of the dual
cone C∗ =

{
λ : λ(xi) ≥ 0, i = 1, . . . , n

}
. Because of dim C = d, the linear

forms σ1, . . . , σs are uniquely determined up to positive scalars: they are the
extreme rays of C∗. By a slight abuse of terminology we call the hyperplanes
Si = {x : σi(x) = 0} the support hyperplanes of C.

Let Ck be the cone generated by x1, . . . , xk. Normaliz proceeds as follows:

1. It finds a basis of Rd among the generators x1, . . . , xn, say x1, . . . , xd. Com-
puting C∗

d amounts to a matrix inversion.
2. Iteratively it extends the cone Ck to Ck+1, and shrinks C∗

k to C∗
k+1, k =

d . . . , n − 1.
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Step 2 is done by Fourier-Motzkin elimination: if σ1, . . . , σt generate C∗
k , then

C∗
k+1 is generated by

{
σi : σi(xk+1) ≥ 0

} ∪ {
σi(xk+1)σj − σj(xk+1)σi : σi(xk+1) > 0, σj(xk+1) < 0

}
.

From this generating set of C∗
k+1 the extreme rays of C∗

k+1 must be selected.
This step is of critical complexity. Normaliz has a sophisticated implementa-

tion in which pyramid decomposition is a crucial tool; see [5]. It competes very
well with dedicated packages (see [14]). The implementation is independent of
the field of coefficients. As said above, R can be replaced by an algebraic number
field A. In this case Normaliz uses the arithmetic over the field A realized by
e-antic, whereas arithmetic over Q is avoided in favor of arithmetic over Z.

In addition to the critical complexity caused by the combinatorics of cones,
one must tame the coordinates of the linear combination λ = σi(xk+1)σj −
σj(xk+1)σi. For example, if, over Z, both σi and σj are divisible by 2, then λ
is divisible by 4. If this observation is ignored, a doubly exponential explosion
of coefficients will happen. One therefore extracts the gcd of the coordinates.
But there is usually no well-defined gcd of algebraic integers, and even if one
has unique decomposition into prime elements, there is in general no Euclidean
algorithm. Normaliz therefore applies two steps:

1. λ is divided by the absolute value of the last nonzero component (or by
another “norm”).

2. All integral denominators are cleared by multiplication with their lcm.

Computational experience has shown that these two steps together are a very
good choice.

Normaliz tries to measure the complexity of the arithmetic in A and to control
the algorithmic alternatives of the dualization by the measurements. There are
several “screws” that can be turned, and it is difficult to find the optimal tuning
beforehand.

Normaliz computes lexicographic triangulations of algebraic cones in the
same way as triangulations of rational cones. Their construction is interleaved
with the extension from Ck to Ck+1: the already computed triangulation of Ck

is extended by the simplicial cones generated by xk+1 and those subcones in the
triangulation of Ck that are “visible” from xk+1.

An algebraic polytope P contains only finitely many integral points. They
are computed by Normaliz’ project-and-lift algorithm. The truncated Hilbert
basis approaches, which Normaliz can also use for rational polytopes, are not
applicable in the algebraic case. Once the lattice points are known, one can
compute their convex hull, called the integer hull of P .

At present Normaliz computes volumes only for full-dimensional algebraic
polytopes. The volume is the sum of the volumes of the simplices in a triangula-
tion, and these are simply (absolute values of) determinants. We do not see any
reasonable definition of “algebraic volume” for lower dimensional polytopes that
could replace the lattice normalized volume. The latter is defined for all rational
polytopes and is a rational number that can be computed precisely.
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It would certainly be possible to extend the computation of the approximate
Euclidean volume to all algebraic polytopes, and this extension may be included
in future Normaliz versions. Note that the Euclidean volume does in general not
belong to A if P is lower dimensional. Its precise computation would require an
extension of A by square roots.

The computation of automorphism groups follows the suggestions in [1]. First
one transforms the defining data into a graph, and then computes the automor-
phism group of this graph by nauty [15]. For algebraic polytopes the Euclidean
and the algebraic automorphism groups can be computed, and the combinatorial
automorphism group is accessible for all polyhedra.

The Euclidean automorphism group is the group of rigid motions of the
ambient space that map the polytope to itself, and the algebraic automorphism
group is the group of affine transformations over A stabilizing the polytope.
Both groups are finite, as well as the combinatorial automorphism group, the
automorphism group of the face lattice, which can be computed from the facet-
vertex incidence vectors, just as in the rational case.

We do not try to define the algebraic (or Euclidean) automorphism group for
unbounded polyhedra. First of all, the algebraic automorphism group is infinite
in general. Second, it would have to be realized as the permutation group of
a vector configuration, and there seems to be no reasonable way to norm the
involved vectors. But for polytopes we can and must use the vertices.

6 Scaled Convex Hull Computations

We illustrate the influence of the algebraic number field on the computation time
by some examples. For each of them we start from a cone (over a polyhedron)
that is originally defined over the integers. Then we scale some coordinates by
elements of the field A. This transformation preserves the combinatorial struc-
ture throughout. It helps to isolate the complexity of the arithmetic operations.
The types of arithmetic that we compare are

int: original input, computation with machine integers,
mpz: same input as int, but computation with GMP mpz class integers,
rat: same input as int, but computation in Q[

√
5],

sc2: scaled input in Q[
√

5],
sc8: scaled input in Q[ 8

√
5],

p12: scaled input in Q[a], a12 + a6 + a5 + a2 − 5 = 0, a > 1.

The test candidates are A553 (from the Ohsugi-Hibi classification of contin-
gency tables [16]), the cone q27f1 from [14], the linear order polytope for S6, and
the cyclic polytope of dimension 15 with 30 vertices. The last two are classical
polytopes. While the other three cones are given by their extreme rays, q27f1 is
defined by 406 equations and inequalities (Table 1).

The Normaliz version is 3.8.4, compiled into a static binary with gcc 5.4 under
Ubuntu 16-04. The computations use 8 parallel threads (the default choice of
Normaliz). They were taken on the author’s PC with an AMD Ryzen 7 1700X
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Table 1. Combinatorial data of the test candidates

amb space dim ext rays supp hyps

A553 55 43 75 306, 955

q27f1 30 13 68, 216 92

lo6 16 16 720 910

cyc15-30 16 16 30 341088

at 3.2 GHz. Table 2 lists wall times in seconds. As a rule of thumb, for a single
thread the times must be multiplied by 6.

Table 2. Wall times of scaled convex hull computations in seconds

Coeff A553 q27f1 lo6 cyc15-30

int 57 16 5 –

mpz 299 58 5 7

rat 277 40 5 7

sc2 783 166 4 14

sc8 1272 475 15 28

p12 2908 905 31 42

The cyclic polytope and all intermediate polytopes coming up in its com-
putation are simplicial. Therefore it profits from Normaliz’ special treatment
of simplicial facets—almost everything can be done by set theoretic operations.
Also lo6 is combinatorially not complicated. That lo6 is fastest with sc2, is caused
by the fine tuning of the pyramid decomposition, which is not always optimal.

Surprisingly, rat is faster than mpz for A553 and q27f1. This can be explained
by the fact that linear algebra over Z must use the Euclidean algorithm, and
therefore needs more steps than the true rational arithmetic of rat.
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1 Introduction

Hilbert’s 16th problem asks about topological constraints for real algebraic
hypersurfaces in projective space. In the 1980s Viro developed patchworking
as a combinatorial method to construct real algebraic hypersurfaces with unusu-
ally large Z2-Betti numbers [14–17]. A major breakthrough of this idea was
Itenberg’s refutation of Ragsdale’s Conjecture [9]. Today patchworking is most
naturally interpreted within the larger framework of tropical geometry [12]. In
this way patchworking is a combinatorial avenue to real tropical hypersurfaces.

Here we report on a recent implementation of patchworking and real tropical
hypersurfaces in polymake [1], version 4.1 of June 2020. The first software for
patchworking that we are aware of is the “Combinatorial Patchworking Tool” [4],
which works web-based and is restricted to the planar case. A second implemen-
tation is Viro.sage [18] which is capable of patchworking in arbitrary dimension
and degree. Our implementation has the same scope as Viro.sage but it is supe-
rior in two ways. First, it naturally ties in with a comprehensive hierarchy of
polyhedral objects in polymake; e.g., this allows for a rich choice of construc-
tions of real tropical hypersurfaces. Second, our implementation is more efficient.
This is demonstrated by several experiments with curves and surfaces of vari-
ous degrees. As a new mathematical contribution we provide a census of Betti
numbers of real tropical surfaces.

1.1 Tropical Hypersurfaces in TP
n−1

Let f =
⊕

v∈V cv � xv ∈ T[x1, . . . , xn] be a tropical polynomial where V is
a finite subset of Z

n. We use the multi-index notation xv = xv1
1 · · · xvn

n , and
T = R∪ {∞}, ⊕= min and �=+. The tropical hypersurface T (f) is the tropical
vanishing locus of f , i.e., the set of points in R

n, where the minimum of the
evaluation function x �→ f(x) is attained at least twice. Throughout we will
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assume that f is homogeneous of degree d, i.e., for each v ∈ V we have v1 + · · ·+
vn = d. In that case T (f) descends to the tropical projective torus R

n/R1, where
1 = (1, . . . , 1). The Newton polytope of f is N (f) = conv V , and the coefficients
of f induce a regular subdivision, S(f). The latter is dual to T (f). We refer to
[12] and [3] for further details.

The tropical projective space TPn−1 = (Tn−{∞1})/R1 compactifies Rn/R1.
It is naturally stratified into lower dimensional tropical projective tori, marked
by those coordinates which are finite. In this way the pair (TPn−1,Rn/R1) is
naturally homeomorphic with an (n−1)-simplex and its interior. Often we will
identify the tropical hypersurface T (f) with its compactification in TP

n−1.

1.2 Viro’s Patchworking

The following is essentially a condensed version of [13, §3.1], with minor varia-
tions. A sign distribution ε ∈ Z

V
2 can be symmetrized to the function

sε : Zn
2 → Z

V
2 , sε(z)(v) := ε(v) + 〈z, v〉 mod 2.

As in [6] we choose our signs in Z2 = {0, 1}, which corresponds to ±1 via
z �→ (−1)z. Further, the elements z ∈ Z

n
2 are in bijection with the 2n orthants

of Rn via z �→ pos{(−1)z1e1, . . . , (−1)znen}, where e1, . . . , en are the standard
basis vectors of R

n, and pos(·) denotes the nonnegative hull. We will use this
identification throughout and, consequently, we call z itself an orthant.

The tropical hypersurface T (f) is a polyhedral complex in TP
n−1, and its

k-dimensional cells are dual to the (n−1−k)-cells of S(f). In particular, each
maximal cell F of T (f) corresponds to an edge, V (F ) ⊂ V , of S(f). We write
Tn−2 for the set of maximal cells (which are (n−2)-dimensional polyhedra) and
denote powersets as P(·).

Note that there are no (n−2)-cells of T (f) in the boundary TP
n−1 −R

n/R1.
The real phase structure on T (f) induced by ε is the map

φε : Tn−2 → P(Zn
2 ) , F �→ {z ∈ Z

n
2 | sε(z)(v) �= sε(z)(w)} for {v, w} = V (F ).

That is, for each maximal cell F of T (f) this describes the set of orthants, in
which the symmetrized sign distribution takes distinct values on the two vertices
of the dual edge V (F ) in S(f). This extends to all cells G of T (f) by setting
φε(G) :=

⋃
φε(F ), where the union is taken over all maximal cells F ∈ Tn−2

containing G. The pair Tε(f) = (T (f), ε) is a real tropical hypersurface.
Let z, defined by zi = 1 − zi, be the antipode of z ∈ Z

n
2 . We define an

equivalence relation ∼ on Z
n
2 × TP

n−1, which identifies copies of TPn−1 along
common strata, by letting

(z, x) ∼ (z′, y) : ⇐⇒ x = y and
(
z = z′ or (xi = ∞ = yi ⇔ zi = 1 = z′

i)
)
.

This identifies {z} × TP
n−1 and {z} × TP

n−1 one to one for each z. It follows
that the quotient (Zn

2 ×TP
n−1)/∼ is homeomorphic to the real projective space

RP
n−1. Combinatorially that construction can be seen as follows: the union of
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Fig. 1. Real tropical elliptic curve (left) and its real part (right)

the 2n simplices conv{(−1)z1e1, . . . , (−1)znen}, where z ranges over all orthants,
gives the boundary of the regular cross polytope conv{±e1, . . . ,±en} in R

n.
Taking the quotient modulo antipodes yields RP

n−1.
The real part of the real tropical hypersurface Tε(f) = (T (f), ε), denoted

RTε(f), is now defined as the collection of polyhedral complexes in Z
n
2 × TP

n−1

consisting of the polyhedra
{
{z} × F | F ∈ Tn−2 and z ∈ φε(F )

}

and their faces. Note that {z} × F ∈ RTε(f) if and only if {z} × F ∈ RTε(f),
and hence we may restrict to the part of RTε(f) in ({0} × Z

n−1
2 ) × TP

n−1.
To avoid cumbersome notation and language we call the quotient of RTε(f)

by ∼ also the real part of Tε(f) and use the same symbol, RTε(f). In this way
RTε(f) becomes a piecewise linear hypersurface in RP

n−1 ≈ Z
n
2 × TP

n−1/∼.
The above construction is relevant for its connection with real algebraic

geometry. To simplify the exposition we now consider a special case: Setting
Δn−1 = conv{e1, . . . , en}, we assume that the set V = d ·Δn−1 ∩Z

n is the set of
lattice points in the dilated unit simplex. This entails that the projective toric
variety generated from V is the (complex) projective space CPn−1. The following
result comes in various guises; this version occurs in [15] and [8, Proposition 2.6].

Theorem 1 (Viro’s combinatorial patchworking theorem). Let f be a
homogeneous tropical polynomial of degree d with support V = d · Δn−1 ∩ Z

n.
Then, for each sign distribution ε ∈ Z

n
2 , there exists a nonsingular real algebraic

hypersurface X in CP
n−1, also with Newton polytope N (f) = d · Δn−1, such

that

(Zn
2 × TP

n−1/∼, RTε(f)) isZ2-homologous to (RPn−1, RX).

If additionally S(f) is unimodular, i.e., each simplex has normalized volume
one, this is “primitive patchworking”. In the primitive case stronger conclusions
hold [13,16]. The notion “combinatorial patchworking” refers to the condition
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N (f) = d·Δn−1. This is what our implementation supports, for arbitrary degrees
and dimensions. More general results require to carefully take into account the
toric geometry of N (f).

Example 2. With n = d = 3 we consider the tropical polynomial

f = x3 ⊕ 1x2y ⊕ 1x2z ⊕ 4xy2 ⊕ 3xyz ⊕ 4xz2 ⊕ 9y3 ⊕ 7y2z ⊕ 7yz2 ⊕ 9z3

in T[x, y, z], where we omit ‘�’ for improved readability. The tropical hyper-
surface T (f) is the tropical elliptic curve in R

3/R1 in Fig. 1 (left). The sign
distribution ε = (0, 1, 0, 1, 1, 1, 1, 0, 1, 1) yields a real tropical curve with real
part in Z

3
2 ×TP

2/∼ which has two components; cf. Fig. 1 (right). This primitive
patchwork corresponds to a classical Harnack curve of degree 3; cf. [9, Sec. 5].

2 Betti Numbers from Combinatorial Patchworking

Our goal is to exhibit a census of Betti numbers of real tropical surfaces in
Z
4
2×TP

3/∼. Throughout the following let f be a tropical polynomial of degree d
in n = 4 homogeneous variables; we will assume that S(f) is a regular and full
triangulation of V = d ·Δ3 ∩Z

4. That is, we focus on combinatorial patchworks.
A triangulation of V is full if it uses all points in V ; a unimodular triangulation
is necessarily full. While the converse holds in the plane, there are many more
full triangulations of d · Δ3 than unimodular ones if d ≥ 3. Further, with

k :=
1
6
d3 + d2 +

11
6

d + 1, (1)

which is the cardinality of V , we pick a sign vector ε ∈ Z
k
2 . This gives rise to a

real algebraic surface X in CP
3 whose real part RX is “near the tropical limit”

RTε(f) in the sense of [13]. Itenberg [6, Theorems 3.2/3.3] showed that the Euler
characteristic satisfies

χ(RX) ≥ 4d − d3

3
, (2)

with equality attained in the primitive/unimodular case. Moreover, by [6, The-
orem 4.2],

b1(RX) ≤ 2d3 − 6d2 + 7d

3
, (3)

where bq(·) are Z2-Betti numbers; see also [7] for bounds without the fullness
assumption. However, if S(f) is even unimodular then, by [6, Theorem 4.1],

b0(RX) ≤
(

d − 1
3

)

+ 1. (4)

See Table 1 for explicit numbers in the range which is relevant for our experi-
ments. The main result of [13] furnishes a vast generalization of (4) to arbitrary
dimensions.
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Table 1. Bounds for Euler characteristic and Betti numbers, depending on the degree d.
The values k, χ′, b′

0 and b′
1 are the right hand sides of (1), (2), (4) and (3), respectively.

d k χ′ b′
0 b′

1

3 20 −5 1 7

4 35 −16 2 20

5 56 −35 5 45

6 84 −64 11 86

Example 3. The subdivision S(f) induced by the tropical polynomial

f = 5x3 ⊕ 1x2y ⊕ 1xy2 ⊕ 5y3 ⊕ 2x2z ⊕ 0xyz ⊕ 2y2z

⊕ 0xz2 ⊕ 0yz2 ⊕ 1z3 ⊕ 2x2w ⊕ 0xyw ⊕ 2y2w ⊕ 1xzw

⊕ 1yzw ⊕ 1z2w ⊕ 3xw2 ⊕ 3yw2 ⊕ 4zw2 ⊕ 8w3

is a full triangulation of 3 · Δ3 which is not unimodular. Its f -vector reads
(20, 60, 64, 23), and its automorphism group is of order 6. The sign distribution

ε = (0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0)

yields a real tropical surface RTε(f) whose real part has Betti vector (2, 1, 2)
(Fig. 2).

Fig. 2. The real part of a cubic surface with Betti vector (2, 1, 2). There are three affine
sheets, of which the outer two account for one connected component in RP

3, which is
homeomorphic to S

2; the middle sheet forms a component homeomorphic to RP
2.
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Fig. 3. Distribution of Betti vectors for surfaces of degrees 3 and 4. The colors indicate
values for b0 = b2, the values on the x-axis indicate values for b1. For d = 3 the most
frequent vector is (1, 7, 1) with 67.52%. For d = 4 it is (1, 10, 1) with 19.86%.

2.1 Combinatorial Description of the Homology

The polyhedral description of RTε(f) directly gives a combinatorial description
of the homology; see also [13, Proposition 3.17]. The cellular chain modules read

Cq(RTε(f);Z2) =
⊕

σ cell of Tε(f),dimσ=q

⎛

⎝
⊕

z∈φε(σ)

Z
{σ×{z}}
2

⎞

⎠ (5)

and ∂(σ×{z}) = ∂(σ)×{z} defines the boundary maps. In fact this construction
is a special case of a cellular (co-)sheaf [11]. Algorithmically it is beneficial that
this does not require the geometric construction of RTε(f).

2.2 A Census of Betti Numbers of Real Tropical Surfaces

We used mptopcom [10] to compute regular and full triangulations of d · Δ3 for
3 ≤ d ≤ 6, which are not necessarily unimodular. For d = 3 the total number
of such triangulations is known to be 21 125 102 [10, Table 3], up to the natural
action of the symmetric group S4. For higher degrees the corresponding numbers
are unknown and probably out of reach for current hard- and software. Still we
can compute some of those triangulations, for each degree.

Our experiments suggest that, in order to see many different Betti vectors
(b0, b1, b0), it is preferable to look at many different triangulations. This is feasible
for degrees 3 and 4, where we created 1 000 000 and 100 000 orbits of triangula-
tions, respectively. Each of them was equipped with 20 sign distributions which
were picked uniformly at random; cf. Fig. 3. For d = 3 we obtain all values for
b1 which are allowed by (3) if the surface is connected (i.e., b0 = 1). Addition-
ally, 965 times we saw the Betti vector (2, 1, 2); cf. Example 3. In view of (4)
this occurs for non-unimodular triangulations only; all our examples of this kind
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Fig. 4. Distribution of Betti vectors for surfaces of degrees 5 and 6. The colors indicate
values for b0 = b2, the values on the x-axis indicate values for b1. For d = 5 the most
frequent vector is (1, 35, 1) with 21.9%. For d = 6 it is (1, 52, 1) with 18.97%.

share the same f -vector (20, 60, 64, 23). For d = 4 all the possible Betti vectors
occur; cf. (2) and (3).

The case of d = 5 turned out to be surprisingly difficult. In our standard
setup mptopcom quickly produced about a hundred full and regular triangulations
before it stalled. mptopcom’s algorithm employs a very special search through
the flip graph of the point configuration, and it finds all regular triangulations
plus some non-regular ones connected by a sequence of flips. Apparently, most
neighbors to our first 100 triangulations of 5 · Δ3 are not regular or not full.
As we were interested in exploring many different Betti vectors, we created a
second sample of triangulations; to this end we employed a random walk on the
flip graph of 5 · Δ3. After eliminating multiples, this gave an additional 13 000
regular and full triangulations. On each of the resulting 13 100 triangulations we
tried 500 random sign distributions; cf. Fig. 4 (left) for the combined statistic.
For d = 6 we checked 1 500 triangulations with 500 sign distributions each; cf.
Fig. 4 (right).

No matter how hard we try we will only see a tiny fraction of all possible real
tropical surfaces of higher degrees. So the distributions for d = 5 and d = 6 may
not even be close to the “truth”. Yet for d = 5 we observed b1 = 43, whereas
b′
1 = 45; cf. Table 1. We found 61 triangulations of 5 · Δ3 with five components,

none of which were unimodular. The maximal number of components in the
unimodular case was four. For d = 6 our census is way off the theoretical bounds.

3 Implementation in polymake

polymake is a comprehensive software system for polyhedral geometry and
related areas of mathematics [1]. Mathematical objects like tropical hyper-
surfaces are determined by their properties. Upon a user query the system
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directly returns a property (e.g., a tropical polynomial or the dual polyhedral
subdivision) if it is known, or it computes it by applying a sequence of rules.
Subsequently, the property asked for becomes known, along with any interme-
diate results. Throughout the life of such a big object the number of properties
grows; objects, with their properties, can be saved and loaded again. The latter
is useful, e.g., for processing data on a cluster and examining them on a laptop
later.

The computation which is relevant here takes a tropical polynomial f (such
that the Newton polytope N (f) is a dilated simplex) and a sign distribution ε
as input and computes the Z2-Betti numbers of the real part RTε(f) of the real
tropical hypersurface Tε(f). The individual steps are: (i) find the maximal cells
of T (f) via a dual convex hull computation; (ii) compute the Hasse diagram of
the entire face lattice of T (f); (iii) construct the chain complex (5) from that
Hasse diagram; (iv) compute ranks of the boundary matrices mod 2. Each step
is implemented as a separate rule, which makes the code highly modular and
reusable. In particular, the only nontrivial implementation which is really new
is step (iii).

We wish to give some details about the first two steps. Often the dual convex
hull computation is the most expensive part. For this polymake has interfaces to
several algorithms and implementations, the default being PPL [2] which is also
used here. In general, it is difficult to predict which algorithm performs best;
see [1] for extensive convex hull experiments. The computation of the Hasse
diagram uses a combinatorial procedure whose complexity is linear in the size
of the output, i.e., the total number of cells of the tropical hypersurface; cf. [5].

3.1 Running Times

To compare the running times of Viro.sage and polymake for computing the
Betti numbers of patchworked hypersurfaces we conducted two experiments, one
for Harnack curves and one for surfaces. All computations were carried out on
an AMD Phenom II X6 1090T (3.2 GHz, 38528 bmips).

For the Harnack curves, where we have just one curve per degree (the cubic
case is Example 2), we repeated the same computation ten times each. Figure 5
(left) shows the mean running time depending on the degree. The Viro.sage
code showed a rather wide variety, while the polymake computations gave almost
identical running times for each test.

The experiment for the surfaces is slightly different in that both the tropical
polynomials (and triangulations) and the sign distributions were varied. For
degrees 3, 4, 5, and 6 we took the first 2000, 1000, 100, and 75 triangulations (as
enumerated by mptopcom), respectively, and measured the running time for 10
random sign distributions each. Figure 5 (right) shows a box plot for each degree.
The boxes indicate the 2nd and 3rd quartiles, the whiskers mark the minimum
and maximum time measurements, excluding outliers (i.e., measurements whose
ratio to the median is either bigger than 4, or smaller than 0.25), which are
marked separately. Again Viro.sage exhibits a much greater variety of running
times than polymake.
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Fig. 5. Time taken to compute Betti numbers (in seconds). Left: Harnack curves,
average time by degree. Right: various surfaces, boxplots for each degree.

4 Conclusion

We have shown that our new implementation is capable of determining the Z2-
Betti numbers of a patchworked surface of moderate degree within a few seconds.
This allows for providing a rich census.

One major reason for polymake being faster than Viro.sage [18] is that
we avoid the explicit construction of a simplicial complex model of RTε(f).
Moreover, polymake computes Z2 Betti numbers directly, while Viro.sage goes
through a standard homology computation with integer coefficients. polymake
provides geometric realizations (and integral homology), too, but this is unnec-
essary here.
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Abstract. We study the problem of estimating the volume of convex
polytopes, focusing on zonotopes. Although a lot of effort is devoted
to practical algorithms for polytopes given as an intersection of halfs-
paces, there is no such method for zonotopes. Our algorithm is based on
Multiphase Monte Carlo (MMC) methods, and our main contributions
include: (i) a new uniform sampler employing Billiard Walk for the first
time in volume computation, (ii) a new simulated annealing generalizing
existing MMC by making use of adaptive convex bodies which fit to the
input, thus drastically reducing the number of phases. Extensive exper-
iments on zonotopes show our algorithm requires sub-linear number of
oracle calls in the dimension, while the best theoretical bound is cubic.
Moreover, our algorithm can be easily generalized to any convex body.
We offer an open-source, optimized C++ implementation, and analyze its
performance. Our code tackles problems intractable so far, offering the
first efficient algorithm for zonotopes which scales to high dimensions
(e.g. one hundred dimensions in less than 1 h).

Keywords: Volume approximation · Zonotope · Simulated annealing ·
Billiard Walk · Mathematical software

1 Introduction

Volume computation is a fundamental problem with many applications. It is
#P-hard for explicit polytopes [7,11], and APX-hard [9] for convex bodies in
the oracle model. Therefore, a significant effort has been devoted to randomized
approximation algorithms, starting with the celebrated result in [8] with com-
plexity O∗(d23) oracle calls, where O∗(·) suppresses polylog factors and depen-
dence on error parameters, and d is the dimension. Improved algorithms reduced
the exponent to 5 [13] and further results [5,14] reduced the exponent to 3. Cur-
rent theoretical results consider either the general oracle model or polytopes
given as an intersection of halfspaces (i.e. H-polytopes). Regarding implemen-
tations, the approach of [13] led to the first practical implementation in [10]
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for high dimensions, followed by another practical implementation [6] based on
[5,14]. However, both implementations can handle only H-polytopes.

An important class of convex polytopes are zonotopes [15]. A zonotope is
the Minkowski sum of k d-dimensional segments. Equivalently, given a matrix
G ∈ R

d×k a zonotope can be seen as the affine projection of the hypercube
[−1, 1]k to R

d using the matrix G, while the columns of G are the corresponding
segments (or generators). Zonotopes are centrally symmetric and each of their
faces are again zonotopes. We call the order of a zonotope P the ratio between
the number of generators of P over the dimension. For a nice introduction to
zonotopes we refer to [20].

Volume approximation for zonotopes is of special interest in several applica-
tions in smart grids [1], in autonomous driving [2] or human-robot collaboration
[16]. The complexity of algorithms that work on zonotopes strongly depends on
their order. Thus, to achieve efficient computations, a solution that is common in
practice is to over-approximate P , as tight as possible, with a second zonotope
Pred of smaller order, while vol(Pred) is given by, an easy to compute, closed
formula. A good measure for the quality of the approximation is the ratio of fit-
ness, ρ = (vol(Pred)/vol(P ))1/d, which involves a volume computation problem
[3]. Existing work (e.g. in [12]) uses exact - deterministic volume computation
[11], and thus ρ can not be computed for d > 10 in certain applications.

A typical randomized algorithm uses a Multiphase Monte Carlo (MMC) tech-
nique, which reduces volume approximation of convex P to computing a telescop-
ing product of ratios of integrals. Then each ratio is estimated by means of ran-
dom walks sampling from a proper multivariate distribution. In this paper we rely
on MMC of [13] which specifies a sequence of convex bodies Pm ⊆ · · · ⊆ P0 = P ,
assuming P is well-rounded, i.e. Bd ⊆ P ⊆ C

√
dBd, where C is constant

and Bd is the unit ball. We define a sequence of scaled copies of Bd, and let
Pi = (2(m−i)/dBd) ∩ P, i = 0, . . . ,m. One computes vol(Pm) and applies:

vol(P ) = vol(Pm)
vol(Pm−1)
vol(Pm)

· · · vol(P0)
vol(P1)

,

m = O(d lg d), P0 = C
√

dBd ∩ P.

(1)

There is a closed-form expression to compute vol(Pm) = vol(Bd) . Each ratio
ri = vol(Pi+1)/vol(Pi) in Eq. (1) can be estimated within arbitrary small error εi

by sampling uniformly distributed points in Pi and accept/reject points in Pi+1

so vol(P ) can be derived after m multiplications. The estimation of ri shows
how sampling comes into the picture. In [10], assuming rBd ⊆ P ⊆ RBd for
r < R, they get m = �d lg(R/r)�. The issue is to minimize m while each ratio
remains bounded by a constant, and to use a random walk that converges, after
a minimum number of steps, to the uniform distribution. The first would permit
a larger approximation error per ratio without compromising overall error, while
it would require a smaller uniform sample to estimate each ratio. The second
would reduce the cost per sample point. Total complexity is determined by the
number of ratios, or phases, multiplied by the number of points, or steps, to
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estimate each ratio, multiplied by the cost to generate a point. The first two
factors are determined by the MMC and the third by the random walk.

Previous Work. Exact volume computation for zonotopes can be reduced to
a sum of absolute values of determinants, with an exponential number of sum-
mands in d [11]. Practical algorithms for volume computation of zonotopes are
limited to low dimensions (typically ≤ 10 in [6]). This is due to two main reasons:
current algorithms create a long sequence of phases in MMC for zonotopes, and
the boundary and membership oracles are costlier than for H-polytope, as they
both reduce to Linear Programs (LP). In [6], they consider low dimensional
zonotopes: in R

10 with k = 20 generators, the algorithm performs 1.92 × 105

Boundary Oracle Calls (BOC), whereas our algorithm requires only 8.50 × 103

BOCs, and for d = 100, k = 200 it performs 6.51 × 104 BOCs (see Table 1).
In [19] they present an implementation of an efficient algorithm that computes
Minkowski sums of polytopes (generalization of zonotopes). In [18] they propose
a randomized algorithm for enumerating the vertices of a zonotope.

Our Contribution. We focus on zonotopes and introduce crucial algorithmic
innovations to overcome the existing barriers, by reducing significantly the num-
ber of oracle calls. Thus, our method scales to high dimensions (d = 100 in ≤1 h),
performing computations which were intractable till now.

We use a new simulated annealing method in order to define a sequence
of appropriate convex bodies, instead of balls, in MMC, and we exploit the
fast convergence of Billiard Walk (BW) [17] to the uniform distribution. We
experimentally analyze complexity by counting the number of BOCs, since BW
uses boundary reflections.

The new simulated annealing specifies the Pi’s by exploiting the statistical
properties of the telescoping ratios to drastically reduce the number of phases.
In particular, we bound each ratio ri = vol(Pi+1)/vol(Pi) to a given interval
[r, r + δ] with high probability, for some real r. Moreover, our MMC generalizes
balls, used in [13] and previous papers, by taking as input any convex body C
and constructing the sequence by only scaling C. It does not need an enclosing
body of P nor an inscribed ball (or body), unlike [10,13].

Most of the previous algorithms use a rounding step before volume compu-
tation, as preprocessing, to reduce the number of phases in MMC. However,
rounding requires uniform sampling from P which makes it costly for zonotopes
because of the expensive oracle calls. Our approach is to exploit the fact that
the schedule uses any body C and skip rounding by letting C be an H-polytope
that fits well to P . The idea is to construct C fast and reduce the number of
phases and the total runtime more than a rounding preprocessing would do in
practice.

We prove that the number of bodies defined in MMC is, with high probability,
m = O(lg(vol(P )/vol(Pm))), where Pm = qC ∩ P , for some q ∈ R, is the body

with minimum volume, and vol(qC∩P )

vol(qC)
∈ [r, r + δ]. The bound on m is not

surprising, as it does not improve worst-case complexity [5], if C is a ball, but
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offers crucial advantages in practice. First, the hidden constant is small. More
importantly, if C is a good fit to P , vol(Pm) increases and m decreases (Fig. 1).

Fig. 1. Different selection of body in our algorithm’s MMC; r = 0.8 and r + δ = 0.85.
Body C: left is the unit ball; right is the centrally symmetric H-polytope of Sect. 2.3.

We also show that, for constant d, and k (number of generators) increasing,
m decreases to 1, when we use ball in MMC, since the schedule constructs an
enclosing ball of P . Intuitively, while order increases for constant d, a random
zonotope approximates the hypersphere. The latter can be approximated up to
ε in the Hausdorff metric by a zonotope with k ≤ c(d)(ε2| lg ε|)(d−1)/(d+2), c(d)
being a constant [4]. This does not directly prove our claim on m but strengthens
it intuitively. So, in our experiments, the number of phases is m ≤ 3 for any order,
without rounding for d ≤ 100.

Considering uniform sampling, BW defines a linear trajectory starting at
the current point, using boundary reflections [17]. No theoretical mixing time
exists. We show that with the right selection of parameters, BW behaves like an
almost perfect uniform sampler even if the walk length is 1. In particular, for this
walk length, it generates just O∗(1) points per phase, with sub-linear number of
reflections per point, and provides the desired accuracy. To stop sampling when
estimating ratio ri we modify the binomial proportion confidence interval. We
use the standard deviation of a sliding window of the last l ratios, thus defining
a new empirical convergence criterion; l = O(1) suffices with BW.

Our software contributions build upon and enhance volesti1 a C++ open
source library for high dimensional sampling and volume computation with an
R interface. We experimentally show that the total number of oracle calls grows
as o∗(d) for random zonotopes; the best available theoretical bound is O∗(d3)
[5].

2 Volume Algorithm

The algorithm first constructs a sequence of convex bodies C1 ⊇ · · · ⊇ Cm

intersecting the zonotope P ; the Ci’s are determined by simulated annealing.

1 https://github.com/GeomScale/volume approximation.

https://github.com/GeomScale/volume_approximation
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A typical choice of Ci’s in this paper is co-centric balls, or centrally symmetric
H-polytopes. Cm is chosen for its volume to be computed faster than vol(P ) and
easily sampled. Then,

vol(P ) =

vol(Pm)

vol(Cm)

vol(P1)

vol(P0)

vol(P2)

vol(P1)
· · · vol(Pm)

vol(Pm−1)

vol(Cm), Pi = Ci ∩ P, i = 1, . . . ,m,

where P0 = P . Let ri = vol(Pi+1)

vol(Pi)
, i = 0, . . . , m − 1, rm = vol(Pm)

vol(Cm)
.

2.1 Uniform Sampling and Oracles for Zonotopes

We use BW to sample approximately uniform points in Pi at each phase i. BW
picks a uniformly distributed line � through the current point. It walks on a
linear trajectory of length L = −τ ln η, η ∼ U(0, 1), reflecting at the boundary.
BW can be used to sample only uniform points; in [17] they experimentally show
that BW converges fast to the uniform distribution when τ ≈ diam(P ).

The membership oracle is a feasibility problem. A point p ∈ P iff the following
region is feasible:

∑k
i=1 xigi = p, −1 ≤ xi ≤ 1, where gi are the generators of P .

Let the uniformly distributed vector on the boundary of the unit ball v define
the line � through the current point. The boundary oracle for the intersection
�∩∂P is expressed as a LP. One extreme point of the segment can be computed
as follows: min −λ, s.t. p + λv =

∑k
i=1 xigi − 1 ≤ xi ≤ 1. The second

extreme point which corresponds to a negative value of λ is not used by BW.
For the BW we need the normal of the facet that intersects � to compute the
reflection of the trajectory if needed. We keep the generators that corresponds
to xi �= −1, 1 and then the normal vector is computed straightforwardly.

2.2 Annealing Schedule for Convex Bodies

Given P , the annealing schedule generates the sequence of convex bodies C1 ⊇
· · · ⊇ Cm defining Pi = Ci ∩ P and P0 = P . The main goal is to restrict each
ratio ri in the interval [r, r + δ] with high probability. We define the following
two statistical tests, which can be reduced to t-tests:

[U-test(P1, P2)] H0: vol(P2)/vol(P1) ≥ r + δ
[L-test (P1, P2)] H0: vol(P2)/vol(P1) ≤ r

The U-test and L-test are successful iff null hypothesis H0 is rejected,
namely ri is upper bounded by r+δ or lower bounded by r, with high probability,
respectively. If we sample N uniform points from Pi then r.v. X that counts
points in Pi+1, follows X ∼ b(N, ri), the binomial distribution, and Y = X/N ∼
N (ri, ri(1 − ri)/N). Then each sample proportion that counts successes in Pi+1

over N is an unbiased estimator for the mean of Y , which is ri.
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Perform L-test and U-test
Input : convex bodies P1, P2, cooling parameters r, δ, s.l. α, ν,N ∈ N

Sample νN uniform points from P1

Partition νN points to lists S1, . . . , Sν , each of length N
Compute ratios r̂i = |{p ∈ P2 : p ∈ Si}|/N , i = 1, . . . , ν
Compute the mean, μ̂, and st.d., s, of the ν ratios
if μ̂ ≥ r + tν−1,α

s√
ν
then L-test holds, otherwise L-test fails

if μ̂ ≤ r + δ − tν−1,α
s√
ν
then U-test holds, otherwise U-test fails

Let us now describe the annealing schedule: Each Ci in C1 ⊇ · · · ⊇ Cm is a
scalar multiple of a given body C. Since our algorithm does not use an inscribed
body, initialization computes the body with minimum volume, denoted by C ′

or Cm. This is the last body in the sequence. The algorithm sets P0 = P and
employs C ′ to decide stopping at the i-th phase.

Initialization. Given C, and interval [qmin, qmax], one employs binary search to
compute q ∈ [qmin, qmax] s.t. both U-test(qC, qC ∩ P ) and L-test(qC, qC ∩ P )
are successful. Let q = (qmin + qmax)/2. If U-test(qC, qC ∩ P ) succeeds and
L-test(qC, qC∩P ) fails, we continue to the left-half of the interval. With inverse
outcomes, we continue to the right-half of the interval. If both succeed, stop and
set C ′ = qC. The output is C ′, denoted by Cm at termination.

Regular Iteration. At iteration i, the algorithm determines Pi+1 s.t. volume
ratio ri ∈ [r, r + δ] with high probability. The schedule samples νN points from
Pi and binary searches for a qi+1 in an updated interval [qmin, qmax] s.t. both
U-test(Pi, qi+1C∩P ) and L-test(Pi, qi+1C∩P ) are successful. Then set Pi+1 =
qi+1C ∩ P .

Stopping and Termination. The algorithm uses C ′ ∩ P in the i-th iteration
for checking whether vol(C ′ ∩ P )/vol(Pi) > r with high probability, using only
L-test, and then stops if L-test(Pi, C

′ ∩ P ) holds. Then, set m = i + 1, and
Pm = C ′ ∩ P .

In the t-tests, errors of different types may occur, thus, binary search may
enter intervals that do not contain ratios in [r, r+δ]. Hence, there is a probability
that annealing schedule fails to terminate. Let β capture the power of a t-test:
pow = Pr[reject H0 | H0 false] = 1 − β.

Theorem 1. Let J be the minimum number of steps by annealing schedule,
corresponding to no errors occurring in the t-tests. Let the algorithm perform
M ≥ J iterations. Let βmax, βmin be the maximum and minimum among all β’s
in the M pairs of t-tests in the U-test and L-test, respectively. Then, annealing
schedule terminates with constant probability, namely:

Pr[an. sched. terminates] ≥ 1 − 2
α(1 − βmin) + βmax

1 − α(1 − βmin) + βmax
− 2βmax − β2

min

1 − 2βmax − β2
min

.
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Fig. 2. Number of bodies in MMC. For each dimension we generate 10 random zono-
topes and we compute the number of bodies, m, in MMC when C is ball. We keep
the zonotope with the larger m and then, for that one, we compute m when C is the
P-approx.

2.3 Rounding and Convex Bodies in MMC

The annealing schedule allows as to use any C which must (a) be a good fit
to P , (b) allow for more efficient sampling than in P , and (c) for faster volume
calculation than of vol(P ). For low order ones C shall be an enclosing H-polytope
that fits well to P . Indeed it is possible that with certain choices for C rounding
is not needed. We define a centrally symmetric H-polytope with ≤ 2k facets:

Construct P-approx
Input : The generator matrix G ∈ R

d×k of zonotope P
Output: An H-polytope C ⊃ P

compute the eigenvectors of GT G (has k − d zero eigenvalues)
let the eigenvectors of k − d zero eigenvalues of GT G form E ∈ R

k×(k−d).
compute an orthonormal basis for E, and the orthogonal complement W⊥
Let Ay ≤ b0, A ∈ R

2k×k be an H-representation of [−1, 1]k

C := {x|Mx ≤ b0},M = AWT
⊥ (GWT

⊥ )−1 ∈ R
2k×d

return C;

2.4 Experimental Complexity

We perform extended experiments analyzing practical complexity. We use
eigen2 for linear algebra and lpSolve3 for LPs. All experiments were performed
on a PC with Intel R© CoreTM i7-6700 3.40 GHz 8 CPU and 32 GB RAM. We
use three zonotope generators. All of them pick uniformly a direction for each
one of the k segments. Then, (a) ZU -d-k: the length of each segment is uniformly
sampled from [0, 100], (b) ZN -d-k: the length of each segment is random from
2 eigen.tuxfamily.org.
3 lpsolve.sourceforge.net.

http://eigen.tuxfamily.org
http://lpsolve.sourceforge.net
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Fig. 3. Experimental complexity for order = 2. Total number of oracle calls is given
by the #phases (bodies) × #steps (points) per phase × #reflections per step.

N (50, (50/3)2) truncated to [0, 100], (c) ZExp-d-k: the length of each segment is
random from Exp(1/30) truncated to [0, 100]. Total number of boundary oracle
calls of our algorithm:

#BOCs= #phases(bodies)×#steps(points)/phase×#reflections/point.

Figure 2 denotes the best choice between ball and P-approx in MMC. It
moreover shows that for order ≤ 5, the number of phases m ≤ 3 for d ≤ 100.
In particular, when we use P-approx, m is smaller for order ≤ 4 compared
to using balls without rounding. For order equal to 5 the number of balls in
MMC is smaller compared to the number of bodies when the choice is the P-
approx. Notice than when we use balls in MMC, m decreases for constant d as
k increases. Table 1 shows that, for high-order zonotopes, m = 1, which implies
one or two rejection steps, while the run-time is smaller when we use ball in
MMC. It also reports the difference in the run-time for random zonotopes of
order = 2 between the cases of using ball and the P-approx in MMC. In all our
experiments, BW performs only O∗(1) steps per phase with just a factor of εi

hidden in the complexity. The plot that counts the BW reflections per point in
Fig. 3 imply this number grows sub-linearly in d. Hence, the total number of
BOCs grows sub-linearly in d.
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Table 1. Volume estimation for zonotopes. For each Z-d-k we approximate its volume
using ball and the P-approx in MMC. Body stands for the type of body in MMC;
order = k/d, Vol the average of volumes over 10 runs; m the average number of bodies
in MMC; OracleCalls is the average number of BOCs; time is average time in seconds.
We set the error parameter ε = 0.1 in all cases.

Z-d-k Body order Vol m OralceCalls time

ZN -20-2000 Ball 100 3.69e+83 1 3.52e+03 1 442

ZN -20-2000 P-approx 100 3.54e+83 1 4.10e+03 1 647

ZU -30-600 Ball 20 3.93e+104 1 5.26e+03 451

ZU -30-600 P-approx 20 3.84e+104 1 5.34e+03 554

ZU -60-120 Ball 2 4.31e+139 6 7.94e+04 694

ZU -60-120 P-approx 2 4.18e+139 2 3.39e+04 361

ZExp-80-160 Ball 2 1.68e+187 9 1.67e+05 3 045

ZExp-80-160 P-approx 2 1.82e+187 2 4.22e+04 950

ZN -100-200 Ball 2 9.77e+233 12 2.81e+05 12 223

ZN -100-200 P-approx 2 1.03e+234 3 6.51e+04 2 815
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Abstract. Recently Gouveia, Thomas and the authors introduced the
slack realization space, a new model for the realization space of a poly-
tope. It represents each polytope by its slack matrix, the matrix obtained
by evaluating each facet inequality at each vertex. Unlike the classical
model, the slack model naturally mods out projective transformations.
It is inherently algebraic, arising as the positive part of a variety of a
saturated determinantal ideal, and provides a new computational tool
to study classical realizability problems for polytopes. We introduce the
package SlackIdeals for Macaulay2, that provides methods for creating
and manipulating slack matrices and slack ideals of convex polytopes
and matroids. Slack ideals are often difficult to compute. To improve the
power of the slack model, we develop two strategies to simplify compu-
tations: we scale as many entries of the slack matrix as possible to one;
we then obtain a reduced slack model combining the slack variety with
the more compact Grassmannian realization space model. This allows us
to study slack ideals that were previously out of computational reach.
As applications, we show that the well-known Perles polytope does not
admit rational realizations and prove the non-realizability of a large sim-
plicial sphere.

Keywords: Polytopes · Slack matrices · Slack ideals · Matroids

1 Introduction

Slack matrices of polytopes are nonnegative real matrices whose entries express
the slack of a vertex in a facet inequality. In particular, the zero pattern of a
slack matrix encodes the vertex-facet incidence structure of the polytope. Slack
matrices have found remarkable use in the theory of extended formulations of
polytopes: Yannakakis [10] proved that the extension complexity of a polytope
is equal to the nonnegative rank of its slack matrix.

More generally, one can define the slack matrix of a matroid by computing
the slacks of the ground set vectors in the hyperplanes of the matroid.

If P is d-dimensional polytope, replacing all positive entries in the slack
matrix with distinct variables, one obtains a new sparse generic matrix SP (x),
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called the symbolic slack matrix of P . Then we define the slack ideal IP of P as
the ideal of all (d + 2)-minors of SP (x), saturated with respect to the product
of all variables in SP (x).

Slack ideals were introduced for polytopes in [5], where it was also noted
that they could be used to model the realization space of a polytope. The details
of this realization space model and further properties of the slack ideal were
studied in [2,3] and [4]. An analogous realization space model for matroids was
introduced in [1].

In this paper, we describe the Macaulay2 [6] package SlackIdeals.m2, that is
available at https://bitbucket.org/macchia/slackideals/src/master/SlackIdeals.
m2. It provides methods to define and manipulate slack matrices of polytopes,
matroids, polyhedra, and cones; obtain a slack matrix directly from the Gale
transform of a polytope; compute the symbolic slack matrix and the slack ideal
from a slack matrix; compute the graphic ideal of a polytope, the cycle ideal and
the universal ideal of a matroid.

Slack ideal computations are often out of computational reach. Therefore we
develop two techniques to speed up and simplify computations. First, we suitably
set to one as many entries of the slack matrix as possible. One can compute
the slack ideal of this dehomogenized slack matrix and then rehomogenize the
resulting ideal (see Proposition 1). The new ideal coincides with the original slack
ideal if the latter is radical. Second, we obtain a reduced slack matrix by keeping
the columns of a set of facets F that contains a flag (a maximal chain in the face
lattice of P) and such that the facets not in F are simplicial. Combining these two
strategies, we have a powerful tool for the study of hard realizability questions.
As applications, we show that the well-known Perles polytope does not admit
rational realizations and prove the non-realizability of a large simplicial sphere.

2 Slack Matrices and Slack Ideals

Given a collection of points V = {v1, . . . ,vn} ⊂ R
d and a collection of (affine)

hyperplanes H = {{x ∈ R
d : bi − α�

i x = 0} : i = 1 . . . f} we can define a slack
matrix of the pair (V,H) by

S(V,H) =

⎡
⎢⎣
1 v1

...
...

1 vn

⎤
⎥⎦

[
b1 · · · bf
α1 · · · αf

]
∈ R

n×f .

If P is a d-polytope, we take V = vert(P ) and H to be the set of facet
defining hyperplanes. Then SP = S(V,H). When coordinates V are given for the
vectors of a matroid M , they are always assumed to be an affine configuration
which gets homogenized to form the matroid; in particular, this means that if
V = vert(P ), then the associated matroid is the matroid of the polytope P . The
hyperplanes are taken to be all hyperplanes of M , and then SM = S(V,H).

https://bitbucket.org/macchia/slackideals/src/master/SlackIdeals.m2
https://bitbucket.org/macchia/slackideals/src/master/SlackIdeals.m2
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i1 : needsPackage "SlackIdeals";
i2 : V = {{0,0},{0,1},{1,1},{1,0}};
-- Compute the slack matrix of P=conv(V)
i3 : slackMatrix(V)
o3 = | 0 1 0 1 |

| 1 0 0 1 |
| 0 1 1 0 |
| 1 0 1 0 |

-- Compute the slack matrix of matroid of V
i4 : slackMatrix(V, Object=>"matroid")
o4 = | -1 -1 0 -1 0 0 |

| -1 0 1 0 1 0 |
| 0 1 1 0 0 -1 |
| 0 0 0 -1 -1 -1 |

The slackMatrix command also takes a pre-computed matroid, polyhedron
or cone object as input.

Another way to compute the slack matrix of a polytope is from its Gale
transform using the command slackFromGaleCircuits. Let G be a matrix with
real entries whose columns are the vectors of a Gale transform of a polytope P .
A slack matrix of P is computed by finding the minimal positive circuits of G,
see [7, Section 5.4]. Alternatively, the command slackFromGalePlucker applies
the maps of [4, Section 5] to fill a slack matrix with Plücker coordinates of the
Gale transform.

The slack matrices of a few specific polytopes and matroids of theoretical
importance are built-in, using the command specificSlackMatrix.

The symbolic slack matrix can be obtained by replacing the nonzero entries
of a slack matrix by distinct variables; that is,

[S(V,H)(x)]i,j =

{
0 if vi ∈ Hj

xi,j if vi /∈ Hj

.

From this sparse generic matrix we obtain the slack ideal as the saturation
of the ideal of its (d + 2)-minors by the product of all variables in S(V,H)(x):

I(V,H) = 〈(d + 2) − minors of S(V,H)(x)〉 :

⎛
⎝

f∏
j=1

∏
i:v i /∈Hj

xi,j

⎞
⎠

∞

.

Given a (symbolic) slack matrix of a d-polytope, (d + 1)-dimensional cone,
or rank d + 1 matroid, we can compute the associated slack ideal, specifying d
as an input. Unless we pass variable names as an option, the function labels the
variables consecutively by rows with a single index starting from 1:

-- Compute slack ideal of d-polytope P=conv(V)
i10 : V = {{0,0},{0,1},{1,1},{1,0}};
i11 : slackIdeal(2, slackMatrix(V)) -- here d=2
o11 = ideal(x x x x - x x x x )

1 4 6 7 2 3 5 8
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We get the same result if we compute slackIdeal(2,V), giving only the
list of vertices of a d-polytope or ground set vectors of a matroid instead of a
slack matrix. We also get the same result with slackIdeal(V), but the com-
putation is faster if you provide d as an argument. As optional argument, one
can choose the object to be set as "polytope", "cone", or "matroid" (default
is Object=>"polytope").

To a polytope or matroid we can also associate a specific toric ideal, known
as the graphic or cycle ideal, respectively. These ideals are important in the
classification of certain projectively unique polytopes [3] and matroids [1], and
can be computed using the commands graphicIdeal and cycleIdeal.

In [4, Section 4] it is shown that a slack matrix can be filled with Plücker
coordinates of a matrix formed from the vertex coordinates of a polytope (or
extreme ray generators of a cone or ground set vectors of a matroid). This idea
is the basis for the reduction technique described in [4, Section 6] and Sect. 4.
The Grassmannian section ideal of a polytope is also defined and shown to cut
out exactly a set of representatives of the slack variety that are constructed in
this way [4, Section 4.1]. The command grassmannSectionIdeal computes this
section ideal given a set of vertices of a polytope and the indices of vertices that
span each facet.

3 On the Dehomogenization of the Slack Ideal

Let P be a polytope and SP its slack matrix. We define the non-incidence graph
GP as the bipartite graph whose vertices are the vertices and facets of P , and
whose edges are the vertex-facet pairs of P such that the vertex is not on the
facet. This graphic structure provides a systematic way to scale a maximal num-
ber of entries in SP to 1, as spelled out in [3, Lemma 5.2]. In particular, we may
scale the rows and columns of SP (x) so that it has ones in the entries indexed
by the edges in a maximal spanning forest of the graph GP . This can be done
using setOnesForest, which outputs a sequence (Y, F ) where Y is the scaled
symbolic slack matrix and F is the spanning forest used to scale Y .

i23 : V = {{0,0,0},{1,0,0},{0,1,0},{0,0,1},{1,0,1},{1,1,0}};
i24 : (Y, F) = setOnesForest(X); Y
o24 = | 0 0 1 0 1 |

| 1 0 1 0 0 |
| 0 1 0 0 x_5 |
| x_6 1 0 0 0 |
| 0 0 1 1 0 |
| 0 1 0 1 0 |

This leads to a dehomogenized version of the slack ideal defined as follows.
Given SP and a maximal spanning forest F of GP , let SP (xF ) be the symbolic
slack matrix of P with all the variables corresponding to edges in F set to 1.
Then the dehomogenized ideal, IFP , is the slack ideal of this scaled slack matrix:

IFP := 〈(d + 2) − minors of SP (xF )〉 :
(∏

xF
)∞

.
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It is natural to ask what is the relation between IFP and the original slack
ideal IP . In particular, we might wish to know if we can recover the full slack
ideal from IFP . From [3, Lemma 5.2] we know that any slack matrix in V(IP )
(or, in fact, any point in the slack variety with all coordinates that correspond
to F being nonzero) can be scaled to a matrix in V(IFP ). Conversely, it is clear
that any point in V(IFP ) can be thought of as a point in V(IP ). Thus, in terms
of the varieties we have V(IP )∗/(Rv × R

f ) ∼= V(IFP )∗, where V(I)∗ denotes the
part of the variety where all coordinates are nonzero.

To see the algebraic implications of this, let us introduce the following reho-
mogenization process. Notice that in the proof of [3, Lemma 5.2], we dehomog-
enize by following the edges of forest F starting from some chosen root(s) and
moving toward the leaves. The destination vertex of each edge tells us which row
or column to scale, and the edge label is the variable by which we scale. Now,
given a polynomial in IFP , using the same forest and orientation we proceed in
the reverse order: starting at the leaves, for each edge of the forest, we reintro-
duce the variable corresponding to it in order to rehomogenize the polynomial
with respect to the row or column corresponding to the destination vertex of
that edge.

Example 1. Consider the slack matrix SP (xF ) of the triangular prism P scaled
according to forest F , pictured in Fig. 1. Then IFP =
〈x8 −1, x12 −1〉. So we can rehomogenize, for exam-
ple, the element x8 −x12 with respect to forest F as
follows.
First, consider the leaf corresponding to column 3.

SP (xF )=

⎡
⎢⎢⎢⎣

0 1 0 0 1
1 0 0 0 1
0 1 1 0 0
1 0 x8 0 0
0 1 0 1 0
1 0 0 x12 0

⎤
⎥⎥⎥⎦

Its edge is labeled with x6, so we reintroduce that variable to the monomial x12

since its degree in column 3 is currently 0, while the degree of x8 in that column
is 1. We continue this process until all the edges of F have been used.

Call the resulting ideal H(IFP ). By the tree structure, the rehomogenization
process does indeed end with a polynomial that is homogeneous, as once we
make it homogeneous for a row or column we never add variables in that row or
column again. We now consider the effect of this rehomogenization on minors.

Lemma 1. Let p be a minor of SP (x) and pF its dehomogenization by F . Then
its rehomogenization H(pF ) equals p divided by the product of all variables in F
that divide p.

Proof. Note that all monomials in a minor have degree precisely one on every
relevant row and column. In fact they can be interpreted as perfect matchings
on the subgraph of GP corresponding to the (d + 2) × (d + 2) submatrix being
considered. Let xa and xb be two distinct monomials in the minor, then their
dehomogenizations are also distinct. To see this, note that if we interpret a and
b as matchings, a common dehomogenization would be a common submatching
c of both, with all the remaining edges being in F . But a\c and b\c would then
be distinct matchings on the same set of variables, hence their union contains a
cycle, so they would not be both contained in the forest F .
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F

c1

r2
r4

r6

c5

r1

c2

r3 r5

c3 c4

x3

x4

x2

x1

x5

x6

x7

x11

x9

x10

x10x8 − x12x6, both terms now have degree 1 in columns 3 and 4

x5x10x8 − x12x6x9, both terms now have degree 1 in rows 3 and 5

x5x10x8 − x12x6x9, both terms already have degree 1 in column 2

x5x10x8 − x12x6x9, both terms already have degree 0 in row 1

x5x10x8 − x12x6x9, both terms already have degree 0 in column 5

x11x5x10x8 − x12x6x9x7,

both terms already have degree 0 in row 2,

both terms now have degree 0 in rows 4 and 6

Fig. 1. A spanning forest for the triangular prism

Now note that when rehomogenizing a minor, we start with all degrees being
zero or one for every row and column, and since we visit each node (corresponding
to each of the rows/columns) exactly once by the tree structure, the degree of
every row and column is at most one after homogenizing. In the first step of
rehomogenizing, we start with a leaf of F , which means the variable xi labeling
its edge is the only variable in the row or column corresponding to that leaf
which was set to 1. Thus if any monomial of the minor has degree zero on that
row or column, it must be because xi occurred in that monomial in the original
minor.

Hence rehomogenizing will just add that variable to the monomials where it
was originally present, with the exception of the case where it was present on all
monomials, in which case there will be no need to add it, as the dehomogenized
polynomial would be homogeneous (of degree 0) for that particular row/column.

All degrees remain 0 or 1 after this process, and now the node incident to
the leaf we just rehomogenized corresponds to a row/column with exactly one
variable that is still dehomogenized. Thus we can repeat the argument on the
entire forest to find that each monomial rehomogenizes to itself divided by the
variables that were originally present in all monomials of the minor.

Remark 1. It is important to note that H(IFP ) is the ideal of all elements of
IFP rehomogenized. In general, this is different from the ideal generated by the
rehomogenized generators of IFP . In the package, we rehomogenize the whole
ideal by rehomogenizing the generators and saturating the resulting ideal by all
the variables we just homogenized by.

For example, let V be the set of vertices of the triangular prism with spanning
forest Y as computed before, and let us compute the rehomogenized ideal H(IFP ).
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i25 : HIF = rehomogenizeIdeal(3, Y, F)

o25 = ideal (x x x x - x x x x , x x x x - x x x x ,
3 6 9 10 2 7 8 11 0 5 9 10 1 4 8 11

x x x x - x x x x )
1 3 4 6 0 2 5 7

Notice that, in this case the rehomogenized ideal H(IFP ) equals the slack
ideal IP .

Example 2. Recall that the generators of IFP for the triangular prism were x8−1
and x12 − 1, which rehomogenize to x2x3x5x8 − x1x4x6x7 and x2x3x9x12 −
x1x4x10x11, respectively. However,

〈x2x3x5x8 − x1x4x6x7, x2x3x9x12 − x1x4x10x11〉 �= H(IFP ).

The relation between the rehomogenized ideal H(IFP ) and the original slack
ideal is given in the following lemma. The proof relies on the key fact that the
variety of the rehomogenized ideal is still the same as the slack variety that we
started with.

Proposition 1. Given a spanning forest F for the non-incidence graph of poly-
tope P , the rehomogenization of its scaled slack ideal is an intermediate ideal
between the slack ideal and its radical: IP ⊆ H(IFP ) ⊆ √

IP .

Proof. To prove the inclusion IP ⊆ H(IFP ), note that p ∈ IP happens if and
only if xap ∈ J for some exponent vector a, where J is the ideal generated by
all (d + 2)-minors of the symbolic slack matrix of P . Dehomogenizing we get
xbpF ∈ JF , which means pF is in the saturation of JF by the product of all
variables, which is precisely the definition of IFP . From Lemma 1 it follows that
p ∈ H(IFP ).

To prove that H(IFP ) ⊆ √
IP , it is enough to show that any polynomial in

H(IFP ) vanishes in the slack variety. By construction, any such polynomial must
vanish on the points of the slack variety where the variables corresponding to the
forest F are nonzero, V(IP )\V(〈xF 〉). Thus, they vanish on the Zariski closure
of that set. Considering the following containments,

V(IP )\V(〈x〉) ⊂ V(IP )\V(〈xF 〉) ⊂ V(IP ),

we get that this closure is exactly the slack variety since V(IP )\V(〈x〉) = V(IP :
〈x〉∞) = V(IP ).

Remark 2. One would like to say that IP = H(IFP ), and so far we have no
counterexample for this equality, since it always holds if IP is radical, and we
also have no examples of non-radical slack ideals.
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4 Reduced Slack Matrices

In general, computing the slack ideal may take a long time or be infeasible,
especially if the dimension of the polytope is small compared to its number of
vertices and facets. In some cases we can speed up this computation combining
the slack and the Grassmannian realization space models [4, Section 6]. In fact,
we do not need to work with the full slack matrix, since the essential information
is contained into a sufficiently large submatrix.

We will see in Examples 3 and 4, that slack ideals which we were not even able
to compute (using personal computers) are now able to be calculated in a matter
of a few seconds. To give an estimate of the improvement, computing the slack
ideal of the full slack matrix in Example 3 requires the computation of about
8.6 · 109 minors, whereas the reduced slack ideal only requires the computation
of about 1.9 · 104 minors.

More precisely, let P be a realizable polytope and F be a set of facets of P
such that F contains a set of facets that can be intersected to form a flag in the
face lattice of P and all facets of P not in F are simplicial. We call a reduced slack
matrix for P the submatrix, SF , of SP consisting of only the columns indexed
by F . Set VF to be the nonzero part of the slack variety V(IF ).

If VF is irreducible, then VF × C
h ∼= V(IP )∗ are birationally equivalent,

where h denotes the number of facets of P outside F [4, Proposition 6.9].

Example 3. Let P be the Perles projectively unique polytope with no rational
realization coming from the point configuration in [7, Figure 5.5.1, p. 93]. This is
an 8-polytope with 12 vertices and 34 facet and its symbolic slack matrix SP (x)
is a 12 × 34 matrix with 120 variables.

Let SF be the following submatrix of SP whose 13 columns correspond to all
the nonsimplicial facets of P :

i28 : S = specificSlackMatrix("perles1");
-- Checking that the first 13 columns of S indeed contain a flag
i29 : containsFlag(toList(0..12),S)
o29 = true
i30 : SF = reducedSlackMatrix(8, S, FlagIndices=>toList(0..12));

The associated symbolic slack matrix is:

SF (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 x1 x2 x3 0 0 0 0 0 0 0
0 0 0 x4 0 0 x5 x6 x7 0 0 0 0
0 0 0 0 0 0 x8 0 0 x9 x10 0 0
0 0 0 0 x11 0 0 0 0 0 0 x12 x13

0 0 0 0 0 0 0 x14 0 x15 0 x16 0
x17 0 0 0 0 0 0 0 0 0 x18 0 x19

0 x20 0 0 0 0 0 0 x21 0 0 0 0
0 0 x22 0 0 x23 0 0 0 0 0 0 0

x24 0 0 x25 0 0 0 x26 0 0 0 0 0
0 x27 0 0 x28 0 0 0 0 x29 0 0 0
0 0 x30 0 0 0 x31 0 0 0 0 0 x32

0 0 0 0 0 x33 0 0 x34 0 x35 x36 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Using [3, Lemma 5.2], we first set xi = 1 for i = 1, 4, 5, 6, 7, 8, 9, 10, 13, 15,
16, 17, 18, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 35. The resulting scaled reduced
slack ideal is:

〈x2
36 + x36 − 1, x34 − x36 − 1, x25 − x36, x24 − x36, x23 − 1, x20 − x36,

x19 − x36, x14 − x36 − 1, x12 − x36, x11 − 1, x3 − 1, x2 − x36 − 1〉.

It follows that x36 = −1±√
5

2 . Hence, P does not admit rational realizations.

Example 4. Let P be the following 3-dimensional simplicial sphere, constructed
by Jockusch [8] and studied by Novik and Zheng [9], with 12 vertices labeled by
1, 2, . . . , 6 and −1,−2, . . . ,−6, and with the following 48 facets:

{1, 2, 5, 6}, {2, 3, 5, 6}, {3, 4, 5, 6}, {−1,−2, 5, 6}, {−2,−3, 5, 6}, {−3,−4, 5, 6},
{1,−4, 5, 6}, {1,−4,−5, 6}, {−1, 4, 5, 6}, {1, 2, 3, 5}, {1, 2, 4, 6}, {2, 3, 4, 6},

{−1,−2, 3, 5}, {−1,−2, 4, 6}, {−2,−3, 4, 6}, {1,−2, 3, 5}, {1,−3, 4, 6}, {2, 3, 4,−5},
{3, 4, 5,−6}, {−1, 2, 4,−5}, {−1, 3, 5,−6}, {1, 2,−3, 4}, {1, 2, 3,−4}, {1,−2, 3,−4}.

The remaining 24 facets are antipodes of the above ones, i.e., they are of the
form {−x,−y,−z,−t} for each {x, y, z, t} from the above list.

This sphere, denoted by Δ3,2
6 in [9], is centrally symmetric, and is not real-

izable as the boundary complexes of a centrally symmetric polytope. However,
it is not known whether it is realizable as (a non-centrally symmetric) polytope
[9, Problem 6.1].

The symbolic slack matrix SP (x) is a 12 × 48 matrix with 384 variables. A
reduced slack matrix (where facets 1, 3, 4, 5, 7 form a flag) is the matrix SF (x)
below, where vertices 1, 3, 5, 6, 9 form a flag of SF (x)�. Since row 10 of SF (x)
contains four zeros, we can further reduce the above matrix and scale some of
the entries according to [3, Lemma 5.2], obtaining the matrix SG(x).

SF (x)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4 x5 x6 x7

0 0 x8 x9 x10 x11 x12

x13 x14 0 0 x15 x16 x17

0 x18 x19 x20 0 x21 x22

x23 x24 0 0 0 0 0
x25 x26 0 x27 x28 0 0
0 x29 x30 0 x31 x32 x33

0 0 x34 x35 x36 x37 x38

x39 0 0 x40 x41 0 x42

x43 0 x44 x45 x46 x47 x48

x49 x50 x51 0 0 0 0
x52 x53 x54 x55 0 x56 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

SG(x)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4 x5 x6 1
0 0 1 1 1 1 1

x13 1 0 0 x15 x16 1
0 x18 x19 x20 0 x21 1
1 x24 0 0 0 0 0

x25 x26 0 1 x28 0 0
0 x29 x30 0 x31 x32 1
0 0 x34 x35 x36 x37 1

x39 0 0 x40 x41 0 1
1 0 x44 x45 x46 x47 1

x52 x53 x54 x55 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We then reconstruct row 10 by applying the map GrV defined in [4, Section 4.1]
to SG(x)�:
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-- We denote by symbSG the symbolic slack matrix S_G(x) above
i31 : reconstructSlackMatrix(transpose symbSG, {{3,4,5,6}})
o31 = .Macaulay2/local/share/Macaulay2/SlackIdeals.m2:1405:44:(3):

[4]: error: Cannot extend matrix

The above error means that in reconstructing row 10, we get more than four
zero entries. Computing explicitly the map GrV, we can see that five entries
are zero. This shows that P is not realizable as a polytope.

The previous example shows that the reduction process can be a powerful
tool to show nonrealizability of large simplicial spheres.
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Abstract. Hyperplane arrangements form the latest addition to the
zoo of combinatorial objects dealt with by polymake. We report on
their implementation and on a algorithm to compute the associated cell
decomposition. The implemented algorithm performs significantly better
than brute force alternatives, as it requires fewer convex hulls computa-
tions. The implementation is included in polymake since release 4.0.

Keywords: Hyperplane arrangements · Cell decomposition

1 Introduction

Hyperplane arrangements are ubiquitous objects appearing in different areas
of mathematics such as discrete geometry, algebraic combinatorics and algebraic
geometry. A common theme is to understand the combinatorics and the topology
of the cells in the complement of the arrangement. Combinatorics and its con-
nections to other areas of mathematics are the focus of the software framework
polymake [GJ00], hence hyperplane arrangements form an almost mandatory
addition to the objects available. We will discuss the implementation, such as
the datatypes and properties, as well as some basic algorithms for analyzing
hyperplane arrangements.

One of the main advantages of polymake are its various interfaces to other
software. This allows keeping the codebase slim, while using powerful software
developed by experts from other fields. Still polymake provides basic algorithms
for many tasks, in case other software is not available. Hence the idea of the
hyperplane arrangements is to provide a datatype with basic functionality as a
basis for future interfaces to other software, e.g. to ZRAM [Brü+99] for com-
puting the cell decomposition from the hyperplanes. Nevertheless, the polymake
implementation of hyperplane arrangements comes with a basic algorithm for
computing the associated cell decomposition that performs significantly better
than brute force alternatives. Thus, we will discuss the main ideas of this algo-
rithm in this article as well.

The combinatorics of hyperplane arrangements in real space is linked to zono-
topes. Each arrangement endows the support space with a fan structure which

Research by L. Kastner is supported by Deutsche Forschungsgemeinschaft (SFB-TRR
195: “Symbolic Tools in Mathematics and their Application”).
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is the normal fan of a zonotope. Each hyperplane subdivides the space in two
halfspaces. Therefore we can encode relative positions of points with respect to
the arrangement. In other words, hyperplane arrangements are examples of (ori-
ented) matroids. Moreover, the hyperplanes in an arrangement can be seen as
mirrors hyperplanes of a reflection group.

An interesting application is in Geometric Invariant Theory. GIT constructs
quotients of algebraic varieties modulo group actions. The quotients depend on
the choice of a linearized ample line bundle. Variation of geometric invariant
theory quotients studies how quotients vary when changing the line bundle.
Under some hypothesis the classes of equivalent quotients are convex subsets,
called chambers. The walls among chambers are defined by certain hyperplane
arrangements, see [DH98, Example 3.3.24].

2 Main Definitions

We begin with the basic definitions in the theory of hyperplane arrangements
following our implementation in polymake.

Definition 1. A hyperplane arrangement H = (H,SH) in R
d is given by the

following data:

1. a finite set of linear forms encoding hyperplanes H =
{
h ∈ R

d \ {0}} and
2. a polyhedral cone SH ⊆ R

d which we call the support cone.

Given a hyperplane arrangement H, the induced fan ΣH is a fan with support
SH given by subdividing SH along all {x ∈ R

d | 〈x, h〉 = 0} for h ∈ H.
Every hyperplane in the arrangement subdivides the space into two halfspaces

h+ := {x ∈ R
d | 〈x, h〉 > 0} and h− := {x ∈ R

d | 〈x, h〉 < 0}.

We remark that in the definition we allow duplicate hyperplanes, but from
each hyperplane arrangement we can construct a reduced one. Let H be a hyper-
plane arrangement given by the hyperplanes {h1, h2, . . . , hn}. The reduced hyper-
plane arrangement Hred has the same support cone as H and hi ∈ Hred if and
only if hi �= λb, for any λ ∈ R and any b ∈ {h1, . . . , hi−1}.

To a hyperplane arrangement H = {h1, . . . , hn} ⊆ R
d we associate the

polytope

ZH :=
n∑

i=1

[−hi, hi] + S∨
H ,

the Minkowski sum of all the line segments [−hi, hi] and the dual support cone
S∨
H . If SH = R

d, then S∨
H = 0 and ZH is a zonotope.

Remark 1. Often hyperplane arrangements are defined without a support cone,
i.e. only for the case SH = R

d. The connection between intersecting ΣH ∩ SH

is done via taking the Minkowski sum ZH + S∨
H on the dual side. The main

ingredient is the fact that

(σ + τ)∨ = σ∨ ∩ τ∨

holds for two cones σ and τ .
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Proposition 2.1 [Zie95, Thm. 7.16] The fan ΣH is the normal fan of ZH .

Definition 2. To a maximal cone σ ∈ ΣH we associate its signature, which is
a set sig(σ) :=

{
i ∈ {1, . . . , n} | σ ⊆ h+

i

}
.

Remark 2. In polymake release 4.0 the signature was defined as the set of indices
such that σ ⊆ h−

i . The signature will be automatically updated for data saved
in polymake 4.0 and loaded in the subsequent releases.

Example 1. Let H be given by

H = {(0, 1), (1, 1), (−2, 1)} ⊆ R
2.

We will have a look at the induced fans for different support cones SH . The fan
ΣH and the polytope ZH are visualized in Fig. 1 for varying SH .

Fig. 1. Visualization of ΣH and ZH for Example 1

In each of the pictures, the support cone is indicated as the shaded area. The
structure of the fan ΣH depends heavily on the support cone SH . In particular,
it is possible for hyperplanes to only intersect SH trivially and thereby becoming
irrelevant for ΣH . Thus, one may loose information when going from H to ΣH .

The labels at the hyperplanes in the first picture indicate which side con-
stitutes h+, h− respectively. Using these one can read of the signatures of the
single cells, for example the cell σ generated by the rays (1, 0) and (1, 2) has
signature sig(σ) = {1, 2}.
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2.1 Affine Hyperplane Arrangements

An affine hyperplane arrangement is usually given by a finite set of affine hyper-
planes:

Haff := {[a, b] ∈ R
d × R}.

The whole space R
d is then subdivided along the hyperplanes

{x ∈ R
d | 〈a, x〉 = b}, for all [a, b] ∈ H,

resulting in a polyhedral complex PCHaff ⊆ R
d.

Analogously to the connection between polytopes and cones, or polyhedral
complexes and fans, every affine hyperplane arrangement gives rise to a (projec-
tive) hyperplane arrangement by embedding it at height 1:

Hproj := {[−b, a] | [a, b] ∈ H}.

If we intersect the fan ΣHproj with the affine hyperplane [x0 = 1] ⊆ R
d+1,

the resulting polyhedral complex is isomorphic to PCHaff , via the embedding
R

d → R
d+1, x 	→ [1, x].

The support cone allows one to deal with affine hyperplanes computationally.
Set

SHproj := {[x0, x1, . . . , xd] ∈ R
d+1 | x0 ≥ 0},

then the maximal cones of ΣHproj are in one-to-one correspondence with the max-
imal cells of PCHaff . In particular, polymake can interpret ΣHproj as a polyhedral
complex via the embedding mentioned above, and this polyhedral complex will
be exactly PCHaff .

Example 2. As a simple example, choose the following hyperplanes in R
1:

x1 = −1, x1 = 0, x1 = 2.

The associated hyperplanes of Hproj in R
2 are exactly those of the hyperplane

arrangement from Example 1. For SH we choose the cone {x0 ≥ 0}, then Haff

will be at height one.

PCHaff

The induced affine hyperplane arrangement is indicated by the dots and thick
line. It is one dimensional and the associated polyhedral complex PCHaff has
four maximal cells.
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Example 3. The following is an example of code in polymake.

fan > $HA = new HyperplaneArrangement(HYPERPLANES

=>[[0,1],[1,1],[-2,1]],"SUPPORT.INEQUALITIES"= >[[1 ,0]]);

fan > $HA ->CELL_DECOMPOSITION ->RAYS; # Force computation

fan > $pc = new PolyhedralComplex($HA ->CELL_DECOMPOSITION);

fan > print "(".join(") ,(",@{$pc ->VERTICES }).")\n";

(0 -1) ,(0 1) ,(1 -1) ,(1 0) ,(1 2)

fan > print join(",",@{$pc ->MAXIMAL_POLYTOPES })."\n";

{0 2},{1 4},{2 3},{3 4}

3 Implementation

Hyperplane arrangements are implemented in the software polymake as a
new object HyperplaneArrangement, which is derived from the already exist-
ing object VectorConfiguration. We augment the existing properties of
VectorConfiguration with the following properties and methods.

1. HYPERPLANES A matrix encoding the hyperplanes as rows, this is just an
override of the property VECTORS of VectorConfiguration

2. SUPPORT A polymake Cone, denoting the support SH .
3. CELL DECOMPOSITION A polymake PolyhedralFan, the cell decomposi-

tion ΣH .
4. CELL SIGNATURES A Array<Set<Int>>, the i-th set in the array contains

the indices of hyperplanes evaluating positively on the i-th maximal cone of
CELL DECOMPOSITION.

5. signature to cell Given a signature as Set<Int>, get the maximal cone
with this signature, if it exists.

6. cell to signature Given a cell, a maximal cone of CELL DECOMPOSITION,
determine its signature.

3.1 Cell Decomposition Algorithm

Given H = {h1, . . . , hn}, we want to compute the subdivision of SH induced by
the hyperplanes, the induced fan ΣH . This means, we want to find all the rays
and maximal cones of ΣH . In terms of the zonotope ZH , this is equivalent to
knowing the facets and vertices of ZH , see [Fuk04,GS93]. The facet directions
of ZH are the rays of ΣH . For very vertex of ZH we get a maximal cone by
determining which facets contain it.

The brute force approach is to loop over all possible signatures in s ∈ 2{1,...,n}

and for every signature s to build the cone
⋂

i∈s

h+
i ∩

⋂

i/∈s

h−
i ∩ SH .

For comparing the different algorithms, we count the number of times they have
to perform a convex hull computation for converting a signature to a cone. There
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are 2n signatures, so we have to perform 2n convex hull computations. As we
saw in Example 1, it can happen that some hyperplanes are irrelevant, either
completely or just for single cells. Furthermore, in Example 1 the fan ΣH had at
most six maximal cones, however we would have to compute eight intersections
with the brute force approach regardless.

Remark 3. This brute force approach is in some ways parallel to the brute force
approach for computing the Minkowski sum making up ZH , by taking consid-
ering all possible sums of the endpoints of the line segments. One arrives at 2n

points whose convex hull is ZH . There are several ways to go on: either attempt
a massive convex hull computation directly, or check each point individually
whether it is a vertex.

Our approach is to first find a full-dimensional cone σ of ΣH and then to flip
hyperplanes in order to compute its neighbors. First take a facet f of σ, then set

sig′ := (sig(σ) \ {i ∈ sig(σ) | hi||f}) ∪ {i /∈ sig(σ) | hi||f}),

where hi||f denotes that hi and f are parallel. This is the signature of the cell
neighboring σ at facet f , so we can use it to determine the rays of the neighboring
cell. Finding the neighbors of a cell allows one to traverse the dual graph of the
fan ΣH . Taking the support cone SH into account just requires some minor
tweaks, like ignoring facets of σ that are also facets of SH . By storing signatures
one can avoid recomputation of cones.

To find a starting cone, one selects a generic point x from SH . A generic
point will be contained in a maximal cone, this maximal cone will be

σ(x) :=
⋂

i | x∈h+
i

h+
i ∩

⋂

i | x∈h−
i

h−
i .

The point x may be contained in some hyperplanes, but these hyperplanes are
exactly those that also contain the entire SH . Using this approach we would
do one convex hull computation per maximal cone, arriving at #maxcones(ΣH)
convex hull computations.

Remark 4. As the fan ΣH is polytopal, there is a reverse search structure on
it, corresponding to the edge graph of the zonotope ZH . This has already been
exploited by Sleumer in [Sle99] using the software framework [Brü+99]. Reverse
search allows for different kinds of parallelisation and it would be interesting to
study the performance of budgeted reverse search [AJ18,AJ16] on this particular
problem. Note that the dual problem, finding the vertices of ZH , is equally hard,
as it is a Minkowski sum with potentially many summands. We refer the reader
to [GS93] for a detailed analysis.

3.2 Sample Code

We conclude with a few examples which illustrate the object
HyperplaneArrangement and its properties. Example 6 reports the comparison
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between the running times of the new algorithm implemented in polymake and
the brute force algorithm to compute cell decompositions.

Example 4. The following examples compute the 4! = 24 cells in the Coxeter
arrangement of type A3. The 6 linear hyperplanes in the arrangements are

xi − xj = 0, 1 ≤ i < j ≤ 4.

fan > $A3 = new HyperplaneArrangement(HYPERPLANES=>

root_system("A3")->VECTORS ->minor(All ,~[0]));

fan > $CDA3 = $A3 ->CELL_DECOMPOSITION;

fan > print $CDA3 ->N_MAXIMAL_CONES;

24

Now we compute the 36 cells in the Linial arrangement [PS00] given by the 6
affine hyperplanes

xi − xj = 1, 1 ≤ i < j ≤ 4.

As explained in Sect. 2.1, the support cone allows us to deal with affine hyper-
planes. We transform the hyperplanes [a, b] ∈ R

4 × R in the projective arrange-
ment Hproj with hyperplanes [−b, a] and then we intersect the latter with the
support cone SHproj := {[x0, x1, . . . , x5] ∈ R

5 | x0 ≥ 0} (Fig. 2).

fan > $Hyps = new Matrix ([[-1,1,-1,0,0],[-1,1,0,-1,0],

[-1,1,0,0,-1],[-1,0,1,-1,0],[-1,0,1,0,-1],[-1,0,0,1,-1]]);

fan > $Lin = new HyperplaneArrangement(HYPERPLANES=>$Hyps ,

"SUPPORT.INEQUALITIES"=>[[1,0,0,0,0]]);

fan > $CDLin = $Lin ->CELL_DECOMPOSITION;

fan > print $CDLin ->N_MAXIMAL_CONES;

36

Fig. 2. The arrangement of type A3.
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Example 5. This example is based on [Süß19]. Let X be a del Pezzo surface of
degree 5 and [KX ] the class of the canonical divisor. The cone of effective divisors
Eff(X) is spanned by ten exceptional curves [Cij ] indexed by 0 ≤ i < j ≤ 4 and
characterized by [Cij ]2 = −1 and [Cij ] · [KY ] = −1. Applying the change of basis
[Cij ] = bi + bj , described in [Süß19, Section 3], we see that the polytope P given
by points in Eff(X) intersecting [KX ] with multiplicity −1 coincides with the
hypersimplex Δ(2, 5). In the aforementioned article the author considers the cell
decomposition of P induced by the hyperplane arrangement defined by

{[D] ∈ Eff(X) | [D] · [Cij ] = 0}.

The decomposition is used to study the toric topology of the Grassmannian of
planes in complex 5-dimensional space.

The following code allows one to compute the cell decomposition in polymake.
We first compute the new pairing in the new basis b0, b1, . . . , b4.

polytope > $pairing = new Matrix (1/4* ones_matrix (5,5));

polytope > $pairing ->row (4) *= -1;

polytope > $pairing ->col (4) *= -1;

polytope > for(my $i=0; $i <4; $i++){ $pairing ->elem($i,$i) =

-3/4; }

We then introduce the support cone given by the hypersimplex Δ(2, 5) in the
new basis

polytope > $R = hypersimplex (2,5) ->VERTICES;

polytope > $Z = zero_vector (10);

polytope > $M = hypersimplex (2,5) ->VERTICES ->minor(All ,~[0]);

polytope > $M = $M * $pairing;

polytope > $H = $Z|$M;

Finally, we can compute the cell decomposition.

fan > $HA = new HyperplaneArrangement(HYPERPLANES=>$H,

"SUPPORT.INPUT_RAYS"=>$R);

fan > print $HA ->CELL_DECOMPOSITION ->N_RAYS;

15

fan > print $HA ->CELL_DECOMPOSITION ->N_MAXIMAL_CONES;

27

Example 6. Let H be the hyperplane arrangement in R
d given by the 2d − 1

hyperplanes normal to 0/1-vectors. The number of maximal cones in ΣH are
known up to d = 8, see entry A034997 in the Online Encyclopedia of Integer
Sequences. We run polymake implementations of the BFS algorithm described
above and the brute force alternative. Our results are reported in Table 1, where
we can see that the BFS algorithm performs better than the brute force app-
roach.
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Table 1. Results and runtimes for arrangements in Example 6

d # hyperplanes # rays # maximal cones Time BFS (s) Time brute force (s)

2 3 6 6 0.10 0.1

3 7 18 32 0.40 1.2

4 15 90 370 4.98 324.1

5 31 1250 11292 209.19 –

6 63 57750 1066044 40517.84 –
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[Süß19] Süß, H.: Toric topology of the Grassmannian of planes in C5 and the del
Pezzo surface of degree 5. arXiv e-prints arxiv.org/abs/1904.13301 (2019)

[Zie95] Ziegler, G.M.: Lectures on Polytopes. GTM, vol. 152. Springer, New York
(1995). https://doi.org/10.1007/978-1-4613-8431-1. pp. ix + 370

https://doi.org/10.1007/s12532-017-0129-y
https://doi.org/10.1007/s12532-017-0129-y
http://arxiv.org/abs/1610.07735
https://doi.org/10.1023/A:1018972901171
https://doi.org/10.1007/BF02698859
https://doi.org/10.1007/BF02698859
https://doi.org/10.1007/978-3-0348-8438-9_2
http://arxiv.org/abs/org/abs/1904.13301
https://doi.org/10.1007/978-1-4613-8431-1


A Convex Programming Approach
to Solve Posynomial Systems

Marianne Akian, Xavier Allamigeon, Marin Boyet(B), and Stéphane Gaubert
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Abstract. We exhibit a class of classical or tropical posynomial sys-
tems which can be solved by reduction to linear or convex programming
problems. This relies on a notion of colorful vectors with respect to a
collection of Newton polytopes. This extends the convex programming
approach of one player stochastic games.

1 Introduction

A posynomial is a function of the form

P (x) =
∑

a∈A

caxa1
1 xa2

2 · · · xan
n

where the variable x = (x1, . . . , xn) is a vector with real positive entries, A is
a finite subset of vectors of Rn, and the ca are positive real numbers. Here for
any a ∈ Rn, we denote by ai the i-th coordinate of a. The set A is called the
support of P , also denoted by SP , its elements are called the exponents of the
posynomial and the ca its coefficients.

Unlike polynomials, posynomials can have arbitrary exponents. They arise
in convex optimization, especially in geometric and entropic programming [6]
and in polynomial optimization [7]. They also arise in the theory of nonnegative
tensors [8,11], in risk sensitive control [3] and game theory [1].

A tropical posynomial is a function of the form

P trop(x) = max
a∈A

(ca + 〈a, x〉)

where 〈·, ·〉 is the usual dot product of Rn, the ca are now real coefficients, and
x = (x1, . . . , xn) can take its values in Rn. The terminology used comes from
the tropical (or max-plus) semi-field, whose additive law is the maximum and
the multiplicative law is the usual sum.

In this paper, we are interested in solving (square) classical posynomial sys-
tems, that are of the form

Pi(x) = 1 for all i ∈ [n] := {1, . . . , n} (1)

c© Springer Nature Switzerland AG 2020
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with x ∈ (R>0)n, and the Pi are classical posynomials. We will also study the
tropical counterpart,

P trop
i (x) = 0 for all i ∈ [n] (2)

with now x ∈ Rn, and the P trop
i are tropical posynomials (hereafter we shall write

Pi instead of P trop
i , for brevity). The optimality equations of Markov decision

processes [13] are special cases of tropical posynomial systems. More general
tropical posynomial systems arise in the performance analysis of timed discrete
event systems, see [2].

Solving (square) posynomial systems is in general NP-hard (Sect. 2). How-
ever, we identify a tractable subclass. The tropical version can be solved exactly
in polynomial time by reduction to a linear program (Sect. 3), whereas the clas-
sical version can be solved approximately by reduction to a geometric program
(Sect. 4). Our approach is based on a notion of colorful interior of a collection
of cones. A point is in the colorful interior if it is a positive linear combination
of vectors of these cones, and if at least one vector of every cone is needed in
such a linear combination. Our reductions are valid when the colorful interior of
the cone generated by the supports of the posynomials is nonempty, and when a
point in this interior is known. As special cases, we recover the linear program-
ming formulation of Markov decision processes, and the geometric programming
formulation of risk sensitive problems. Properties of the colorful interior and
related open problems are discussed in Sect. 5.

2 Solving Posynomial Systems Is NP-hard

The following two results show that the feasibility problems for classical or trop-
ical posynomial systems are NP-hard, even with integer exponents.

Proposition 1. Solving a square tropical posynomial system is NP-hard.

Proof. We reduce 3-SAT to the problem (2). Let us consider a Boolean formula
in conjunctive normal form C1 ∧ · · · ∧ Cp made of p clauses, each one of them
using three out of n real variables x1, . . . , xn (p, n ∈ N).

We introduce the following tropical posynomial system in the 2n+2p variables
(x1, . . . , xn, y1, . . . , yn, z1 . . . , zp, s1, . . . , sp), with the same number of equations:

∀i ∈ [n] max(xi − 1, yi − 1) = 0, xi + yi − 1 = 0,

∀j ∈ [p] max
(

max
xi∈Cj

(xi − zj), max
¬xi∈Cj

(yi − zj)
)

= 0, max(12 − zj , sj − zj) = 0.

This system can be constructed in polynomial time from the Boolean formula.
The first 2n equations ensure that for all i ∈ [n], xi ∈ {0, 1} and that xi and yi

have opposite logical values. The next p equations express that for all j ∈ [p],
the variable zj has the same Boolean value as the clause Cj , with the notation
xi ∈ Cj (resp. ¬xi ∈ Cj) if the variable xi occurs positively (resp. negatively) in
the clause Cj . The last equations ensure that zj = 1 for all j ∈ [p]. The instance
C1 ∧ · · · ∧ Cp is satisfiable if and only if this system admits a solution. ��
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Theorem 2. Solving a square classical posynomial system is NP-hard.

Proof. We modify the previous construction to obtain a square posynomial sys-
tem over R

2n+2p
>0 , along the lines of Maslov’s dequantization principle [12] or

Viro’s method [14]:

∀i ∈ [n] 2
5xi + 2

5yi = 1, xiyi = 1,

∀j ∈ [p]
∑

xi∈Cj

1
6xiz

−1
j +

∑

¬xi∈Cj

1
6yiz

−1
j = 1 1

3z−1
j + sjz

−1
j = 1.

From the first 2n equations, the variables xi and yi range over {2, 1/2},
the values 2 and 1/2 respectively encode the true and false Boolean values.
The variable yi = 1/xi corresponds to the Boolean negation of xi. Since each
clause has precisely three literals, using the p next equations, we deduce that the
variable zj takes one of the values {1/2, 3/4, 1} if the clause Cj is satisfied, and
that it takes the value 1/4 otherwise. The last p equations impose that zj can
take any value in (1/3,∞). We deduce that the formula C1 ∧ · · · ∧Cp is satisfied
if and only if the posynomial system that we have obtained in this way admits
a solution in R

2n+2p
>0 . ��

3 A Linear Programming Approach to Solve Tropical
Posynomial Systems

Given tropical posynomials P1, . . . , Pn, we write the system (2) as P (x) = 0,
where P := (P1, . . . , Pn). The support of this system, denoted S, is defined as
the disjoint union

⊎
i∈[n] SPi

of the supports of the posynomials Pi. By disjoint
union, we mean the coproduct in the category of sets (these supports may have
non-empty intersections, and they may even coincide).

Definition 1. We say that a vector y in the (convex) conic hull cone(S) is
colorful if, for all μ ∈ (R�0)S,

y =
∑

a∈S

μa a =⇒ ∀i ∈ [n], ∃a ∈ SPi
, μa > 0.

In other words, a vector y ∈ Rn is colorful if it arises as a nonnegative combi-
nation of the exponents of P , but also if all such combinations make use of at
least one exponent of each of the tropical posynomials P1, . . . , Pn.

In this way, if we think of SP1 , . . . , SPn
as colored sets, we need all the colors

to decompose a colorful vector y over these. Moreover, by Carathéodory’s the-
orem, every vector in the conic hull cone(S) can be written as a positive linear
combination of an independent family of vectors of S. Hence, when y is a color-
ful vector, it is obtained as a positive linear combination of precisely one vector
ai in each color class SPi

, and the family a1, . . . , an must be a basis. (If not,
Carathéodory’s Theorem would imply that y is a positive linear combination of
a proper subset of {a1, . . . , an}, so that y could not be a colorful vector.)
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Given a vector y, we consider the following linear program:

Maximize 〈y, x〉 subject to ∀a ∈ S, ca + 〈a, x〉 � 0. (LP(y))

Remark that the feasibility set of this linear program consists of the vectors
x ∈ Rn satisfying P (x) � 0. In other words, it can be thought of as a relaxation of
the system P (x) = 0. The following theorem shows that this relaxation provides
a solution of P (x) = 0 if y is a colorful vector.

Theorem 3. Assume that y is a colorful vector, and that the linear program
(LP(y)) is feasible. Then, the linear program (LP(y)) has an optimal solution,
and any optimal solution x satisfies P (x) = 0.

Proof. Since the feasibility set of (LP(y)), F := {x ∈ Rn : P (x) � 0}, is
nonempty, we can consider its recession cone, which is given by C = {x ∈
Rn : ∀a ∈ S, 〈a, x〉 � 0}. As a colorful vector, y belongs to the polyhedral cone
generated by the vectors a ∈ S, so 〈y, x〉 � 0 for all x ∈ C. By the Minkowski–
Weyl theorem, F is a Minkowski sum of the form P + C where P is a polytope,
i.e., every feasible point x can be written as x = x′ +x′′ with x′ ∈ P and x′′ ∈ C.
Since 〈y, x′′〉 � 0, the maximum of the objective function x �→ 〈y, x〉 over the
polyhedron F is attained (by an element of P).

Let x� ∈ Rn be an optimal solution of (LP(y)). From the strong duality
theorem, the dual linear program admits an optimal solution (μ�

a)a∈S ∈ (R�0)S

which satisfies y =
∑

a∈S μ�
a a and μ�

a(ca + 〈a, x�〉) = 0 for all a ∈ S. Since y is a
colorful vector, for all i ∈ [n], there is some ai ∈ SPi

such that μ�
ai

> 0. We then
get that, for all i ∈ [n], Pi(x�) � cai

+ 〈ai, x
�〉 = 0. As a result, P (x�) = 0. ��

We next provide a geometric condition ensuring that the linear program
(LP(y)) is feasible regardless of the coefficients ca. We say that the tropical
posynomial function P has pointed exponents if its support is contained in an
open halfspace, i.e. there exists z ∈ Rn such that ∀a ∈ S, 〈a, z〉 < 0. Our interest
for pointed systems comes from the following property:

Proposition 4. The inequality problem P (x) � 0 has a solution x ∈ Rn regard-
less of the coefficients of P if and only if P has pointed exponents.

Proof. Suppose that for all values of (ca)a∈S, there exists x ∈ Rn such that
P (x) � 0. By choosing ca ≡ 1, there exists x0 ∈ Rn that satisfies ∀a ∈ S,
1 + 〈a, x0〉 � 0. Hence, for all i ∈ [n], the exponents of Pi lie in the open
halfspace {a ∈ Rn | 〈a, x0〉 < 0}.

Suppose now that P has pointed exponents. Then there is some z ∈ Rn such
that for all a ∈ S, we have 〈a, z〉 < 0. We define λ := maxa∈S (−ca)/〈a, z〉 so
that ∀a ∈ S, ca + 〈a, λz〉 � 0 and therefore for all i ∈ [n], Pi(λz) � 0. ��

As a consequence of Theorem 3 and Proposition 4, if the tropical posynomial
system P (x) = 0 has pointed exponents and there exists a colorful vector, then
the system admits a solution which can be found by linear programming.

A remarkable special case consists of Markov decision processes. In this
framework, the set [n] represents the state space, and at each state i ∈ [n],
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a player has a finite set Bi of available actions included in the n-dimensional
simplex {p ∈ Rn

�0 :
∑n

j=1 pj � 1}. If p ∈ Bi, pj stands for the probability that
the next state is j, given that the current state is i and action p is chosen by the
player, so the difference 1−∑n

j=1 pj is the death probability in state i when this
action is picked. To each action p is attached a reward cp ∈ R. Given an initial
state i ∈ [n], one looks for the value vi ∈ R, which is defined as the maximum
over all the strategies of the expectation of the sum of rewards up to the death
time, we refer the reader to [13] for background. The value vector v = (vi)i∈[n]

is solution of the tropical posynomial problem

vi = max
p∈Bi

(cp + 〈p, v〉), ∀i ∈ [n].

This reduces to the form (2) with SPi
:= Bi − ei, where ei denotes the i-th

element of the canonical basis of Rn. We say that a Markov decision process is
of discounted type if for every state i ∈ [n] there is at least one action p ∈ Bj

such that
∑n

j=1 pj < 1.

Proposition 5. If a Markov decision process is of discounted type, then any
negative vector is colorful with respect to the associated posynomial system.

Thus, we recover the linear programming approach to Markov decision pro-
cesses (see [13]), showing that the value is obtained by minimizing the function
v �→ ∑

i∈[n] vi subject to the constraints vi � cp + 〈p, v〉 for i ∈ [n] and p ∈ Bi.

4 Geometric Programming Approach of Posynomials
Systems

We refer the reader to [6] for background on geometric programming.
Given a collection P = (P1, . . . , Pn) of classical posynomials, we now deal

with the system Pi(x) = 1 for all i ∈ [n], which, for brevity, we denote by
P (x) = 1. We keep the notation of Sect. 3 for the supports of the posynomials.
Moreover, the definitions of colorful vectors and pointed exponents, which only
depend on these supports, still make sense in the setting of this section.

Lemma 6. If y is a colorful vector, the polyhedron P defined by

P :=
{
x ∈ Rn : ∀a ∈ S, log ca + 〈a, x〉 � 0 and 〈y, x〉 � μ

}

is bounded (possibly empty), regardless of our choice of positive (ca)a∈S or μ ∈ R.

Proof. If P is nonempty, let C := {x ∈ Rn | ∀a ∈ S, 〈a, x〉 � 0, 〈y, x〉 � 0}
denote its recession cone, and let x ∈ C. Since y is a colorful vector, there
exists (λ1, . . . , λn) ∈ Rn

>0 and a basis (a1, . . . , an) ∈ ∏
i∈[n] SPi

such that
y =

∑n
i=1 λiai. Thus, 〈y, x〉 � 0, and so 〈y, x〉 =

∑n
i=1 λi〈ai, x〉 = 0. As a

consequence, since λi > 0 for all i ∈ [n], 〈ai, x〉 = 0. Since (a1, . . . , an) is a
basis, we get x = 0. Thus, C = {0}, and P is bounded by Minkowski–Weyl
Theorem. ��
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Given X ∈ Rn, we denote by exp X the vector with entries exp Xi, i ∈ [n].

Theorem 7. Let P (x) = 1 be a posynomial system with pointed exponents, and
y be a colorful vector. Then, the system has a solution x = exp X∗ ∈ (R>0)n,
where X∗ is an arbitrary solution of the following geometric program:

Maximize 〈y,X〉 subject to ∀i ∈ [n] gi(X) � 0, (G)

where gi(X) := log
( ∑

a∈SPi
ca e〈a,X〉

)
.

Proof. For x ∈ Rn
>0, we define X = log(x) (component-wise) so that P (x) = 1

is equivalent to solving gi(X) = 0 for all i ∈ [n]. By Hölder’s inequality, the
functions (gi)i∈[n] are convex. We define hi : X �→ maxa∈SPi

(
log(ca) + 〈a,X〉)

for i ∈ [n] and we observe that hi(X) � gi(X) � hi(X) + log(|SPi
|).

Since the system P (x) = 1 has pointed exponents, by Proposition 4, the
polyhedron {X ∈ Rn : ∀i ∈ [n], hi(X) + log(|SPi

|) � 0} is nonempty. A fortiori,
the feasible set of (G) is nonempty.

Let us now prove that the maximum of (G) is finite and attained, by proving
that the μ-superlevel set Sμ = {X ∈ Rn : 〈y,X〉 � μ and ∀i ∈ [n], gi(X) � 0}
of the objective function (included in the feasible set) is compact for all μ ∈ R.
Closedness is direct, and we observe that for μ ∈ R, Sμ ⊂ {X ∈ Rn : 〈y,X〉 �
μ and ∀i ∈ [n], hi(X) � 0}, but by Lemma6, this polyhedron is bounded.
Hence, (G) admits an optimal solution X�.

Furthermore, again by Proposition 4, there exists X such that for all i ∈ [n],
hi(X)+log(|SPi

|)+1 � 0. Therefore, for all i ∈ [n], gi(X) < 0, which means that
(G) satisfies Slater’s condition. Problem (G) being convex, optimality of X� is
characterized by the Karush–Kuhn–Tucker conditions (see [4]). Hence, there is
a vector of nonnegative multipliers λ� = (λ�

1, . . . , λ
�
n) such that (X�, λ�) is a sta-

tionary point of the Lagrangian of (G), and the complementarity slackness condi-
tions hold, i.e. for all i ∈ [n], λ�

i gi(X�) = 0. Defining Zi :=
∑

a∈SPi
cae〈a,X�〉 > 0

for i ∈ [n], the stationarity conditions give

y =
n∑

i=1

λ�
i

Zi

∑

a∈SPi

ca e〈a,X�〉 a.

Since y is colorful, for all i ∈ [n], λ�
i > 0. The complementarity slack-

ness conditions yield gi(X�) = 0 for all i ∈ [n]. So x� := exp(X�) satisfies
P (x�) = 1. ��

5 Properties of the Colorful Interior of Convex Sets

Theorems 3 and 7 rely on the existence of a colorful vector. The purpose of this
section is to study the properties of the set of such vectors. In fact, colorful
vectors can be defined more generally from a family of n closed convex cones.



A Convex Programming Approach to Solve Posynomial Systems 247

Definition 2. Let C = (C1, . . . , Cn) be a collection of n closed convex cones of
Rn. A vector y ∈ Rn is said to be colorful if it belongs to the set

cone(C1 ∪ · · · ∪ Cn) \ ⋃
i∈[n]

cone
( ⋃
j �=i

Cj

)
.

The latter set is referred to as the colorful interior of C.

Remark that Definition 1 can be recovered by taking Ci := cone(SPi
) for all

i ∈ [n]. In what follows, we restrict to the case where the collection C is pointed,
i.e. cone(C1 ∪ · · · ∪ Cn) is a pointed cone (in the non pointed case, the colorful
interior enjoys much less structure than the one proved in Theorem10, in par-
ticular it may not even be connected). Suppose that {x ∈ Rn : 〈z, x〉 > 0} is an
open halfspace containing the (Ci)i∈[n]. Then, as a cone, the colorful interior of
C can be more simply studied from its cross-section with {x ∈ Rn : 〈x, z〉 = 1

}
.

The latter can be shown to coincide with the set

conv(S1 ∪ · · · ∪ Sn) \ ⋃
i∈[n]

conv
( ⋃
j �=i

Sj

)
(3)

where for i ∈ [n], Si is the cross-section of the cone Ci by {x ∈ Rn : 〈x, z〉 = 1
}
.

Given a collection S = (S1, . . . , Sn) of closed convex sets of Rn−1, we refer to
the set (3) as the colorful interior of S, and denote it by colintS. We start with
a lemma justifying the terminology we have chosen:

Lemma 8. Let S = (S1, . . . , Sn) be a collection of n closed convex sets of Rn−1.
Then colint S is an open set included in int conv(S1 ∪ · · · ∪ Sn).

The set colint S has appeared in a work of Lawrence and Soltan [9], in the
proof of the characterization of the intersection of convex transversals to a col-
lection of sets. In more details, Lemma 8 and [9, Lemma 6] imply:

Proposition 9. Let S = (S1, . . . , Sn) be a collection of n closed convex sets
of Rn−1. Define D := {conv({x1, . . . , xn}) : x1 ∈ S1, . . . , xn ∈ Sn}, the set of
colorful simplices, i.e. with one vertex in each colored set. Then we have

colint S =
⋂

Δ∈D
int Δ = int

⋂

Δ∈D
Δ.

Remark that Proposition 9 still holds if the colorful simplices Δ ∈ D are replaced
by the convex transversals to the sets S1, . . . , Sn.

Given a hyperplane H := {x ∈ Rn−1 : 〈h, x〉 = b}, we shall denote below
by H> (resp. H�) the open (resp. closed) halfspace {x ∈ Rn−1 : 〈h, x〉 > b}
(resp. {x ∈ Rn−1 : 〈h, x〉 � b}). As a corollary of [9, Th. 2], we get the following
characterization of the colorful interior:

Theorem 10. Let S = (S1, . . . , Sn) be a collection of n closed convex sets of
Rn−1, and assume that colint S is nonempty. Then, colint S is the interior of a
(n − 1)-dimensional simplex.

Moreover, if the sets (Si)i∈[n] are bounded, then there are n unique hyper-
planes (Hi)i∈[n] such that for all i ∈ [n], Si ⊂ H>

i , and for all j �= i, Sj ⊂ H�
i

and Sj ∩ Hi �= ∅. In this case, we have colint S =
⋂

i∈[n] H
>
i .
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(a)
(b)

Fig. 1. (a) three convex sets S1 (blue), S2 (green) and S3 (orange) in R2 and their

colorful interior (white). The sets (̂Si)1�i�3 (resp. (Si)1�i�3) are seen by taking convex

hulls of (Si)1�i�n (resp. intersection of (̂Si)1�i�3) pairwise. Observe that the edges of
the colorful interior are supported by tangent hyperplanes to two sets of (S1, S2, S3). (b)
the colorful interior of (S1, S2, S3) is here empty, although these sets are separated (any
three points in each of them are in general position), contrary to the sets (S1, S2, S3),
whose intersection is seen in the center of the figure. (Color figure online)

Geometrically, every Hi in Theorem 10 is a tangent hyperplane to the convex sets
(Sj)j �=i which separates them from the set Si. The existence (and uniqueness)
of such tangent hyperplanes follows from the work of Cappell et al. [5], see also
the work of Lewis, Klee and von Hohenbalken [10] for a constructive proof. We
depict on Fig. 1a three colored sets S1, S2 and S3 in R2 with nonempty colorful
interior colint (S1, S2, S3), illustrating that the latter is the interior of a simplex
as claimed in Theorem 10.

Given a collection S = (S1, . . . , Sn) of n closed convex sets of Rn−1, we now
discuss necessary and sufficient conditions for colintS to be nonempty. To this
purpose we recall that the collection S is separated if for any choice of k � n
points x1, . . . , xk in Si1 × · · · × Sik

(where i1, . . . , ik are pairwise distinct), the
points x1, . . . , xk are in general position (spanning a (k − 1)-dimensional affine
space).

Proposition 11. Let S1, . . . , Sn be a collection of n compact convex sets of
Rn−1, and let us define Ŝi := conv(

⋃
j �=i Sj) for all i ∈ [n].

Then, the family (Si)i∈[n] is separated if and only if
⋂

i∈[n] Ŝi = ∅.

Proposition 12. Let S1, . . . , Sn be a collection of n compact convex sets of
Rn−1. Let us define, for all i ∈ [n],

Si :=
⋂
j �=i

conv
( ⋃
k �=j

Sk

)
.

Then, if colint S is nonempty, the family (Si)i∈[n] is separated.

Proposition 12 provides a necessary condition to ensure that colint S �= ∅.
Since for all i ∈ [n], we have Si ⊂ Si, we also obtain that the separation of
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(Si)i∈[n] is necessary as well for colint S to be nonempty. However, Fig. 1b shows
that this last condition is not sufficient. We conjecture that the necessary con-
dition stated in Proposition 12 is sufficient:

Conjecture 13. Let S1, . . . , Sn be a collection of n compact convex sets of Rn−1.
Then colint S is nonempty if and only if the family (Si)i∈[n] is separated.

We prove this conjecture in the case where n = 3 (it is also straightforward
to establish for n = 2).

Proposition 14. Let S = (S1, S2, S3) be a collection of three convex compact
sets of R2. Then, colint S is nonempty if and only if (S1, S2, S3) is separated.

Proof. Suppose that (S1, S2, S3) is separated. We know from [10] that for all
i ∈ {1, 2, 3} we have two hyperplanes (in this case affine lines) tangent to sets
of the collection (Sj)j �=i and inducing opposite orientation on these. Such lines
cannot meet Si by separation property, so one of them, denoted Hi, is such that
Si ⊂ H>

i and Sj ⊂ H�
i for j �= i. In particular, note that conv((Sj)j �=i) ⊂ H�

i .
For i, j ∈ {1, 2, 3} and j �= i, the hyperplane Hi is not only tangent to Sj but
also to Sj : indeed take a support yj

i of Hi in Sj , it arises as a convex combination
yj

i =
∑

k �=i λkxk with xi ∈ Sk for yj
i ∈ Ŝi. By Si ⊂ Si, we derive for all k �= i,

xk ∈ Hk or λk = 0, the latter being ruled out by separation. Hence, let us
denote by xj

i a support of hyperplane Hi in Sj . Note that once again from the
separation of (S1, S2, S3), two supports of a tangent line in two different colors
cannot be equal.

If x := (a, b)T and y := (a′, b′)T are two distinct vectors of R2, we denote
x∧y := (ab′ −a′b)−1(b−b′, a′ −a)T , the usual cross-product of two vectors in P2.
As is customary, h1 := x2

1 ∧x3
1 (resp. h2 := x3

2 ∧x1
2 and h3 := x1

3 ∧x2
3) is a normal

vector to H1 (resp. H2 and H3), and 〈hi, x〉 + 1 = 0 is an equation defining Hi.
Furthermore, the intersection of H1 and H2 is given by s3 := h1 ∧ h2, or using
the triple product formula, by

s3 = h1 ∧ (x3
2 ∧ x1

2) =
(〈h1, x

1
2〉 + 1)x3

2 − (〈h1, x
3
2〉 + 1)x1

2

(〈h1, x1
2〉 + 1) − (〈h1, x3

2〉 + 1)
. (4)

Because x1
2 ∈ S1 ⊂ H>

1 and x3
2 ∈ S3 ⊂ H�

1 , we have that 〈h1, x
1
2〉 + 1

is nonzero and (〈h1, x
1
2〉 + 1)(〈h1, x

3
2〉 + 1) � 0. As a result of (4), s3 indeed

exists and arises as a convex combination of x3
2 and x1

2, so s3 ∈ conv(S1 ∪ S3).
By writing s3 = (x2

1 ∧ x3
1) ∧ h2 as in (4), we show likewise that s3 is a convex

combination of x2
1 and x3

1, thus s3 ∈ conv(S2 ∪ S3). This finally entails that
s3 ∈ S3 and therefore s3 ∈ H>

3 . It now suffices to define s1 := h2 ∧ h3 and
s2 := h3 ∧ h1 in a similar way and consider y = (s1 + s2 + s3)/3. It is clear
that y ∈ conv(S1 ∪ S2 ∪ S3), and for all i ∈ {1, 2, 3}, y ∈ H>

i , in particular
y /∈ conv((Sj)j �=i). As a consequence, y is a colorful vector for S1, S2 and S3. ��

To conclude, we point out that another interesting problem is the computa-
tional complexity of determining whether the colorful interior is empty or not, in
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the case where the sets Si are polytopes. Remark that as a consequence of Propo-
sition 11, if Conjecture 13 holds, then we can determine if colintS is empty in
polynomial time using linear programming. Alternatively, the problem could be
tackled by studying the complexity of separating a point from the colorful inte-
rior. This is tightly linked with the computation of the tangent hyperplanes of
Theorem 10, for which the status of the complexity is not well understood.
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pean Congress of Mathematics, pp. 135–146. Birkhäuser Basel, Basel (2001).
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Abstract. We designed a user-extensible judgemental equality checking
algorithm for general type theories that supports computation rules and
extensionality rules. The user needs only provide the equality rules they
wish to use, after which the algorithm devises an appropriate notion of
normal form. The algorithm is a generalization of type-directed equal-
ity checking for Martin-Löf type theory, and we implemented it in the
Andromeda 2 prover.

Keywords: Algorithmic equality checking · Dependent type theory ·
Proof assistant

1 Introduction

Equality checking algorithms are essential components of proof assistants based
on type theories [1,3,7,9,11,13]. They free users from the burden of prov-
ing judgemental equalities, and provide computation-by-normalization engines.
Indeed, the type theories found in the most popular proof assistants are designed
to provide such algorithms. Some systems [6,8] go further by allowing (possibly
unsafe) user extensions to the built-in equality checkers.

The situation is less pleasant in a proof assistant that supports arbitrary
user-definable theories, such as Andromeda 2 [4,5], where in general no equal-
ity checking algorithm may be available. For example, the well-known Martin-
Löf “extensional” type theory that includes the equality reflection rule is well-
known to have undecidable judgemental equality, and is readily definable in
Andromeda 2. Short of implementing exhaustive proof search, the construction
of equality proofs must be delegated to the user (and still checked by the trusted
nucleus). While some may appreciate the opportunity to tinker with equality
checking procedures, they are surely outnumbered by those who prefer good
support that automates equality checking with minimal effort, at least for well-
behaved type theories that one encounters in practice.

We have designed and implemented in Andromeda 2 an extensible equality
checking algorithm that supports user-defined computation rules (β-rules) and

This material is based upon work supported by the Air Force Office of Scientific
Research under award number FA9550-17-1-0326.
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extensionality rules (inter-derivable with η-rules). The user needs only to provide
the equality rules they wish to use, after which the algorithm automatically
classifies them either as computation or extensionality rules (and rejects those
that are of neither kind), and devises an appropriate notion of weak normal
form. For the usual kinds of type theories (simply typed λ-calculus, Martin-Löf
type theory), the algorithm behaves like well-known standard equality checkers.

Our algorithm is a variant of a type-directed equality checking [2,14], as
outlined below. It is implemented in about 1300 lines of OCaml code, which
resides outside the trusted nucleus. The algorithm calls the nucleus to build
a trusted certificate of every equality step, and of every term normalization it
performs, so all equalities established by the algorithm, including intermediate
steps, are verified. It is easy to experiment with different sets of equality rules,
and dynamically switch between them depending on the situation at hand. Our
initial experiments are encouraging, although many opportunities for optimiza-
tion and improvements await.

2 Andromeda 2

Andromeda 2 is an experimental LCF-style proof assistant, i.e., it is a meta-
level programming language with an abstract datatype of judgements whose
constructors are controlled by a trusted nucleus. We review just enough of it to
be able to explain the equality checking algorithm.

In Andromeda 2 the user defines their own type theory by declaring the infer-
ence rules for types, terms and equalities. For example, formation of dependent
products and the successor for natural numbers,

Γ � A type Γ, x:A � B type

Γ � ∏
(x:A) . B type

Γ � x : N
Γ � s(x) : N

are written respectively as

rule Π (A type) ({x:A} B type) type

rule s (x : N) : N

The typing context Γ is left implicit (henceforth we shall elide Γ from all rules),
while the context extension x:A in the second premise of the product rule is
expressed as an abstraction. In Andromeda 2 {x:A} e is a primitive operation
that abstracts the variable x in e.

The user may also specify equality rules. For instance, the β-rule for functions
is written as

where app and are the expected term formers corresponding to application and
λ-abstraction, respectively. The notation t{a} instantiates the bound variable x

in t with a. Note that all terms are fully annotated with types.
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The object type theory has no primitive notion of definition (not to be con-
fused with let-binding at the meta-language level). Instead, the user may simply
declare an equational rule that serves as a definition, e.g.,

Structural rules are built into the nucleus. These are reflexivity, symmetry,
and transitivity of equality, as well as support for abstraction and substitution.
The nucleus automatically generates congruence rules for all term and type for-
mers. For example, the computation

derives by an application of the congruence rule for products.
Here and are computations that further consult the nucleus to compute
equalities and , respectively.

3 Computation and Extensionality Rules

We describe precisely what form computation and extensionality rules take. For
this purpose, define an object judgement to be one of the form A type or t : A,
and an equation judgement of the form A ≡ B or s ≡ t : A. Accordingly, a
premise of an inference rule may be either an object or an equation premise.

Term and type computation rules respectively have the forms

P1 · · · Pn

� u ≡ v : A

P1 · · · Pn

� A ≡ B

where the Pi’s are object premises. Furthermore, in a term computation rule the
left-hand side u must take the form s(e1, . . . , em) where s is a term symbol. In
other words, u may not be a variable or a meta-variable. Likewise, in an equation
computation rule the left-hand side A must take the form S(e1, . . . , em) where S
is a type symbol. Additionally, all the meta-variables introduced by the premises
must appear in the arguments ej . These conditions ensure that, given a term
t, performing simple pattern matching of t against u tells us whether the rule
applies to t and how. An example of a computation rule is the usual β-rule for
simple products:

� A type � B type � p : A � r : B

� fst(A,B, pair(A,B, p, r)) ≡ p : A
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Observe that the left-hand side of the equation mentions all four meta-variables
A, B, p, r. In Andromeda 2 the above rule is postulated as

and installed into the equality checker with The equality
checker automatically determines that is a computation rule.

An extensionality rule says, broadly speaking, that two types or terms are
equal when their eliminations are equal. Such a rule has the form

P1 · · · Pn � x : A � y : A Q1 · · · Qm

� x ≡ y : A
,

where P1, . . . , Pn are object premises and Q1, . . . , Qm are equality premises. We
require that every meta-variable introduced by the premises appear in A. To
tell whether such a rule applies to s ≡ t : B, we pattern match B against
A, and recursively check suitably instantiated subsidiary equalities Q1, . . . , Qm.
Note that both sides of the conclusion of an extensionality rule must be meta-
variables, so that the rule applies as soon as the type matches.

As an example we give the extensionality rule for simple products:

� A type � B type � p : A × B � q : A × B

� fst(A,B, p) ≡ fst(A,B, q) : A � snd(A,B, p) ≡ snd(A,B, q) : B

� p ≡ q : A × B

In Andromeda 2 it is postulated as

Again, the rule is installed with the command eq.add_rule prod_ext.
A second example is the extensionality rule for dependent functions (not to

be confused with function extensionality):

� A type x:A � B type � f :
∏

(x:A) . B � g :
∏

(x:A) . B

x:A � app(A,B, f, x) ≡ app(A,B, g, x) : B(x)
� f ≡ g :

∏
(x:A) . B

which in Andromeda is written as

It is easy to see that the Π_ext rule is inter-derivable with the η-rule for functions.
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4 Normalizing Arguments and Normal Forms

The equality checking algorithm from Sect. 5 requires a notion of normal forms.
We define an expression to be normal if no computation rule applies to it,
and its normalizing arguments are in normal form. Thus, our notion of normal
form depends on the computation and extensionality rules, as well as on which
arguments of term and type symbols are normalizing.

In Andromeda 2 the user may specify the normalizing arguments directly, or
let the algorithm determine the normalizing arguments from the computation
rules automatically as follows: if s(u1, . . . , un) appears as a left-hand side of a
computation rule, then the normalizing arguments of s are those ui’s that are
not meta-variables, i.e., matching against them does not automatically succeed,
and so they have to be normalized before they are matched.

By varying the notion of normalizing arguments we can control how expres-
sions are normalized. The automatic procedure results in weak head-normal
forms, while strong normal forms are obtained if all the arguments are declared
to be normalizing.

The normal form of a term t of type A is computed by a call to the command
eq.normalize t, which outputs a certified equation t ≡ t′ : A where t′ is the
normal form of t. Similarly the command eq.compute t provides the strong normal
form of t. Normalization of types works analogously.

The user may also verify an equation, say equality of types A and B, by
running the command

The equality checker outputs a certified judgement A ≡ B, or reports failure. In
the above command, is a boundary, which is a primitive notion in
Andromeda 2 that expresses a goal. Each judgement form has a corresponding
boundary: “??:A” is the goal asking that the type A be inhabited, “?? type”
that a type be constructed, and that equality of terms s and t
be proved.

5 An Overview of the Equality-Checking Algorithm

The equality-checking algorithm has several mutually recursive sub-algorithms:

1. Normalize a type A: the user-provided type computation rules are applied to
A to give a sequence of (nucleus verified) equalities A ≡ A1 ≡ · · · ≡ An, until
no more rules apply. Then the normalizing arguments of An are normalized
recursively to obtain An ≡ A′

n, after which the equality A ≡ A′
n is output.

2. Normalize a term t of type A: analogously to normalization of types, the
user-provided term computation rules are applied to t until no more rules
apply, after which the normalizing arguments are normalized.

3. Check equality of types A ≡ B: the types A and B are normalized and their
normal forms are compared.
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4. Check equality of normal types A ≡ B: normal types are compared struc-
turally, i.e., by an application of a suitable congruence rule. The arguments
are compared recursively: the normalizing ones by applications of congruence
rules, and the non-normalizing ones by applications of the algorithm.

5. Check equality of terms s and t of type A:
(a) type-directed phase: normalize the type A and based on its normal form

apply user-provided extensionality rules, if any, to reduce the equality to
subsidiary equalities,

(b) normalization phase: if no extensionality rules apply, normalize s and t
and compare their normal forms.

6. Check equality of normal terms s and t of type A: normal terms are compared
structurally, analogously to comparison of normal types.

One needs to choose the notions of “computation rule”, “extensionality rule” and
“normalizing argument” wisely in order to guarantee completeness. In particular,
in the type-directed phase the type at which the comparisons are carried out
should decrease with respect to a well-founded notion of size, while normalization
should be confluent and terminating. These concerns are external to the system,
and so the user is allowed to install rules without providing any guarantees of
completeness or termination.

6 Related and Future Work

Dedukti [8] is a proof assistant based on λΠ modulo user-definable equational
theories. Its pattern matching and rewriting capabilities are more advanced than
ours. It does not have a type-directed phase through which user-defined exten-
sionality rules could be applied, although of course one can reformulate those as
η-rules.

Similar in spirit to Andromeda 2 is the equality checking algorithm used in
the reconstruction phase of MMT [10,12], a meta-meta-language for description
of formal theories. While in Andromeda 2 the user specifies the rules in declar-
ative style that cannot break the trust in the nucleus, in MMT inference rules
are implemented directly as executable code. This makes MMT more flexible at
the price of importing arbitrary user-code into the trusted part of the system.

Our equality checker is general enough to support a wide range of equality
checking algorithms that are based on a type-directed phase followed by nor-
malization. It is easy to use because it automatically classifies equality rules as
either computation or extensionality rules, and determines which arguments are
normalizing. There are several possible future directions of research, of which we
mention three.

First, we have already experimented with local equality rules that are
installed temporarily. This is sometimes necessary to establish that an object
appearing in a rule is well-formed due to an equational premise. More work is
needed to design a usable interface for such local rules.

Second, there is no support for checking termination or confluence of the
given rules. Consequently, the user may inadvertently install rules that cause
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the normalization phase to diverge, or experience unpredictable behaviour when
the rules are not confluent. It would be worthwhile helping the user in this
respect.

Third, combining our equality checker with other kinds of equality-checking
algorithms would further facilitate proof development. Even naive proof search
could be useful in certain situations. In principle, the user may direct
Andromeda 2 to use a specific equality checker in a given situation, but it would
be friendlier if the system behaved in an intelligent way with minimal direction
from the user.
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Abstract. Domain of mathematical logic in computers is dominated
by automated theorem provers (ATP) and interactive theorem provers
(ITP). Both of these are hard to access by AI from the human-imitation
approach: ATPs often use human-unfriendly logical foundations while
ITPs are meant for formalizing existing proofs rather than problem solv-
ing. We aim to create a simple human-friendly logical system for math-
ematical problem solving. We picked the case study of Euclidean geom-
etry as it can be easily visualized, has simple logic, and yet potentially
offers many high-school problems of various difficulty levels. To make the
environment user friendly, we abandoned strict logic required by ITPs,
allowing to infer topological facts from pictures. We present our system
for Euclidean geometry, together with a graphical application GeoLogic,
similar to GeoGebra, which allows users to interactively study and prove
properties about the geometrical setup.

Keywords: Euclidean geometry · Logical system

1 Overview

The article discusses GeoLogic 0.2 which can be downloaded from https://
github.com/mirefek/geo logic. It is a logic system for Euclidean geometry
together with a graphical application capable of automatic visualization of basic
facts (equal angles, equal distances, point being on a line, ...) and allowing user
interaction with the logic system. GeoLogic can be used for proving many clas-
sical high school geometry problems such as Simson’s line, Pascal’s theorem, or
some problems from International Mathematical Olympiad. Examples of such
proofs are available in the package. In this paper, we first explain our motiva-
tion, then we describe the underlying logical system, and finally, we present an
example of proving the Simson’s line to demonstrate GeoLogic’s proving and
visualization capabilities.

There are many mathematical competitions testing mathematical problem
solving capabilities of human beings, presumably most famous of which is the
International Mathematical Olympiad (IMO). Writing an automated theorem
prover (ATP) that could solve a large portion of IMO problems is a challenge
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Fig. 1. GeoLogic screenshot

recognized in the field of artificial intelligence [6], and could potentially lead to
strong ATPs in general.

IMO, as well as many regional mathematical olympiads divide problems into
four categories: algebra, geometry, combinatorics, and number theory. From a
human solver’s perspective, computers can significantly help with solving geom-
etry problems using an application such as GeoGebra – it allows the user to
draw the configuration precisely, and observe how it changes when moving the
initial points.

This is one of the reasons why we focused on geometry. Our objective is to
capture the steps performed by such human solver in more detail, hoping it could
eventually lead to better understanding of human thinking in general.

Therefore, we are building an interactive theorem prover, while preserving
usability as an exploration tool. We have implemented a very simple logic, as it
is sufficient for Euclidean geometry: most of the geometrical reasoning involves
only direct proofs without higher-order logic or case analysis. While some geo-
metrical proofs use case analysis for different topological configurations, we use
a different approach. In GeoLogic, we allow inferring topological facts (such as
the orientation of a triangle) from the picture (numerical model). This proves
only one case of the problem (and its neighborhood), and could potentially lead
to inconsistencies caused by numerical errors. However, we believe inconsistency
caused by a numerical error is unlikely because we require the fact to be satisfied
by a sufficient margin for postulating it.

In the future, we would like to experiment with machine learning agents
leading to human-like ATPs for geometry. We would like to also experiment with
computer vision components based on the GeoLogic’s image output. Another
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interesting research direction would be adding tools for case analysis, or proving
topological facts, so that a solving process of a problem would consist first from
finding a solution in the current GeoLogic’s flexible logic, and then transforming
it into a rigorous one. We believe that such an approach would be very close to
the geometrical problem-solving procedure of human beings.

Finally, even though our main motivation was not to make a pedagogical
tool, and we do not market GeoLogic as an application for an arbitrary high
school student in its current form, we also believe that GeoLogic can be already
interesting for talented students. Our objective of making a user-friendly inter-
active theorem prover for geometry is well-aligned with educational purposes,
and if it will get adopted in the future, it can help us with obtaining data for
machine learning experiments.

2 Logical System

The logical system of GeoLogic consists of a logical core interacting with tools.
The logical core contains the following data.

– The set of all geometrical objects constructed so far. Every object can be
accessed as a reference (for logical manipulation), or as the numerical object
(e.g. coordinates of points, for numerical checking).

– The knowledge database. It consists of a disjoint-set data structure for equal-
ity checking, equation systems for ratios and angles, and a lookup table for
tools.

The logical core also possesses basic automation techniques for angle and ratio
calculations, and deductions around equality.

A tool is a general concept for construction steps, predicates, or inference
rules. It takes a list of geometrical references on an input (and sometimes addi-
tional hyper-parameters), possibly adds some objects and some knowledge to
the logical core and returns a list of geometrical references on the output, or
fails. A tool always fails if the numerical data do not fit.

Besides that, every tool can be executed in a check mode or a postulate mode.
A tool fails in the check mode (and not in the postulate mode) if it requires a
fact which is not known by the knowledge database. Otherwise, the outcomes of
the two modes are the same.

Most tools are memoized. When they are called, their input is associated
with their output in the lookup table of the logical core. In the next call of
the same tool on the same input, the tool does not fail (even in check mode)
and returns the stored output (the same logical references). This serves three
purposes: computation optimization, functional extensionality, and as a database
for predicates. In particular, a primitive predicate lies on is a memoized tool
which in postulate mode only checks whether a given point is contained by a
given line or circle. If it is not, it fails, otherwise, it returns an empty output. In
check mode, however, this tool always fails. It means that the only way how to
make this tool executable in the check mode is to have the input already stored
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in the lookup table by calling it in the postulate mode before. This differs from
topological (coexact) predicates such as not on which in both modes only checks
the numerical conditions – whether a given point is not contained by the given
line or circle.

By proving a fact (any tool applied to given input) in the logic system, we
mean executing certain tools in the check mode (proof), so that in the end the
given fact can be also run in the check mode. The graphical interface allows
users to run tools in check mode only.

2.1 Composite Tools

A composite tool is a sequence of other tool steps applied to the input objects.
More precisely, a composite tool starts with just the input objects, runs several
previously defined tools on the objects it has so far, and in the end, it returns
some output objects selected from the available created objects. All composite
tools are loaded from an external file, so we will explain them together with their
format. An example code of the composite tool angle follows.

angle l0:L l1:L -> alpha:A
d0 <- direction_of l0
d1 <- direction_of l1
alpha <- angle_compute 0 d0 -1 d1 1

The first line of a composite tool is a header specifying the tool name, input,
and output objects, the other lines define the individual steps. The header line
consists of the name, input objects, forward arrow ->, and output objects sep-
arated by space. Every input or output object is given by its label before the
colon and its type after the colon. Types are given by letters P (point), L (line),
C (circle), A (angle), D (ratio/dimension). Note that the format allows name
overloading as long as the input types are different, so there can be an angle
tool accepting two lines, and also another angle tool accepting three points. The
lines after header describe the tool steps by output objects, backward arrow <-,
tool name, and input objects related to the subtool (possibly with numerical
hyperparameters) separated by space. Now, we use only labels without types
since the parser already knows the input types and it can infer the output types
by the used tool. The output labels must be unique unless an anonymous label
is used. Among the input parameters, there can be also hyperparameters in the
form of integers, floats, or fractions. It is not relevant how we mix the hyperpa-
rameters with the standard parameters but the order among hyperparameters,
and among parameters matters.

The composite tool we described so far is the simplest composite tool (we
call it a macro) which runs all its tool steps in the same mode as in what the
macro is called. If any of the steps fail, the entire macro fails as well. Next
to macros, there can be axioms and lemmata. The axiomatic tool is such a
composite tool that contains a single line THEN among the steps. All the steps
after THEN are then executed in postulate mode, even if the axiomatic tool is
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called in a check mode. We call the steps before THEN assumptions and the steps
after THEN implications. Axiomatic tools are used for wrapping up primitive
constructions (see direction of, and line), or formulating real axioms (see
isosceles ss).

direction_of l:L -> a:A
THEN
a <- prim__direction_of l

line A:P B:P -> p:L
<- not_eq A B
THEN
p <- prim__line A B
<- lies_on A p
<- lies_on B p

isosceles_ss A:P B:P C:P ->
<- not_eq B C
<- eq_dist A B A C
THEN
<- eq_angle A B C B C A

Finally, a lemma is similar to the axiomatic tool with the exception that
there is a third sequence of steps (called proof ) following a PROOF line. When a
lemma is executed in a check-mode, it works the same as an axiomatic tool, but
it also calls a proof check. The proof check consists of the following steps:

1. opening a new logical core for the following steps,
2. adding the numerical values of input objects as the initial objects,
3. running the assumptions in postulate mode,
4. running the proof in check mode,
5. running the implications in check mode.

If all the tools succeed, the proof check is considered successful. In the following
example of isosceles aa, we have a lemma stating that if the angles β, γ in
a triangle ABC are equal, so are the sides b, c. This is proven using an axiom
sim aa r which takes two indirectly similar triangles CAB and BAC, checks
that they are non-degenerated, and their angles are proven to be equal, and
infers that the ratios of the sides of the two triangles are equal.

isosceles_aa A:P B:P C:P ->
<- not_collinear A B C
<- eq_angle A B C B C A
THEN
<- eq_dist A B A C
PROOF
<- sim_aa_r C A B B A C
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Adding a macro or a lemma to the toolset creates a conservative extension
of the logic – anything that is provable with the usage of lemmata and macros
can be proven without them.

3 Example – Simson’s Line

We provide an example GeoLogic usage on the example of proving Simson’s line.
We used Geologic’s graphical interface to define the following construction steps
written as a code. During the construction, we also directly exported pictures
from GeoLogic to show how GeoLogic visualizes known facts.

We start by drawing a triangle ABC, and a point X on its circumcircle.

A <- free_point -79.20758056640625 -119.095947265625
B <- free_point -126.97052001953125 23.91351318359375
C <- free_point 108.5352783203125 19.20867919921875
a <- line B C
b <- line C A
c <- line A B
o <- circumcircle A B C
X <- m_point_on 0.6169557687823527 o

Simson’s line is a line passing through feet Fa, Fb, Fc of the point X to the
sides of the triangle. However, GeoLogic is not aware (yet) of the fact that these
three points are collinear.

Fa <- foot X a
Fb <- foot X b
Fc <- foot X c
d <- line Fc Fa
e <- line Fb Fa
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We can use the fact that the angles CFaX and CFbX are equal (they are both
right angles) to conclude that points C, X, Fa, Fb are concyclic. We consequently
use this fact to obtain that the angles FbFaC and FbXC are equal.

<- angles_to_concyclic C X Fa Fb
<- concyclic_to_angles Fb C X Fa

We can similarly reason that the points B, X, Fa, Fc are concyclic and
consequently the angles BFaFc and BXFc are equal.

<- angles_to_concyclic B X Fc Fa
<- concyclic_to_angles Fc B Fa X

Finally, we use concyclicity of X, A, C, B to conclude that the angle XCA
is equal to the complementary angle of ABX.

<- concyclic_to_angles X A C B

From this point on, GeoLogic’s logical core realizes by itself that

∠BFaFc = ∠BXFc = 90◦ − FcBX = 90◦ − FbCX = CXFb = CFaFb,

and since BFaC are collinear, FcFaFb are collinear as well.
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4 Related Work

Jeremy Avigad et al. [1] developed a logical system for formalizing elementary
geometrical proofs from Euclid’s elements, also distinguishing exact and coexact
predicates. Their approach is more formal than ours allowing also proving the
coexact statements in the end but it is less extensible by further tools. Michael
Beeson et al. [2] connected the interactive theorem prover CoQ with GeoGebra
for visualization of the theorem (but not for the proving procedure). Also, note
that using a rigid logic system such as in CoQ does not allow numerical checks
to be trusted in coexact statements.

The logical core of GeoLogic is partially inspired by General Deduction
Database [3] and Full Angle [4] methods for automated synthetic proofs in
Euclidean Geometry. These methods are supported by a graphical application
Geometry Expert [7] which allows user to state a geometrical problem, run an
automated geometrical theorem prover on it, and visualize the proof. Julien
Narboux presented a similar graphical interface for construction of geometrical
statement translated to CoQ [5]. None of these tools, however, supports con-
structing and checking proofs in the graphical interface.

5 Conclusion

We designed a semi-formal logic for Euclidean geometry which can be to a great
extent controlled with a graphical interface and allows us to prove many standard
high school problems. In the future, we would like to perform experiments with
machine learning agents.
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Abstract. Formal mathematics is getting increasing attention in math-
ematics and computer science. In particular, the formalization of cal-
culus has important applications in engineering design and analysis. In
this paper, we present a formal proof of some fundamental theorems of
continuous functions on closed intervals based on the Coq proof assis-
tant. In this formalization, we build a real number system referring to
Landau’s Foundations of Analysis. Then we complete the formalization
of the basic definitions of interval, function, and limit and formally prove
the theorems including completeness theorem, intermediate value theo-
rem, uniform continuity theorem and others in Coq. The proof process
is normalized, rigorous and reliable.

Keywords: Coq · Formalization · Limits · Continuous functions ·
Closed intervals

1 Introduction

Analysis is one of the greatest achievements in the history of mathematics. The
achievement opens a new era of mathematical progress and plays an important
role in development of physics, astronomy, signal processing and other disci-
plines. Analysis which evolved from calculus is a branch of mathematics that
studies limits and related theories [12].

At the end of the 19th century, mathematicians deduced many properties of
continuous functions on closed intervals, which undoubtedly promoted the devel-
opment of analytical theory. There are some important properties of continuous
functions on closed intervals including Weierstrass second theorem: Boundedness
theorem, Weierstrass first theorem: Extreme value theorem, Bolzano-Cauchy sec-
ond theorem: Intermediate value theorem, Cantor theorem: Uniform continuity
theorem.
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Bolzano’s Function Theory gives the earliest proofs of the Boundedness the-
orem and the Extreme value theorem (but published some 100 years later) [15],
and Weierstrass proved the Extreme value theorem in Berlin lecture. The Inter-
mediate value theorem was first proved in 1817 by Bolzano, and then Cauchy [7]
gave a proof in 1821. The definition of uniform continuity is proposed by Heine,
and he published a proof of the Uniform continuity theorem.

With the further research of limits by mathematicians, the establishment of
a rigorous and complete system of real numbers theory has become a key issue.
In 1872, three major real numbers theories appeared in Germany: Dedekind cut
theory, Cantor-Henie-Meray “basic sequence” theory, and Weierstrass “bounded
monotone sequence” theory. Among them, the Dedekind cut is particularly rec-
ognized, and it is called the creation of human intelligence that does not rely on
the intuitiveness of space and time. Then Peano established a natural number
theory through a set of axioms, thereby solving the core problems of rational
number theory and also the basic problems of real number theory.

In recent years, with the rapid development of computer science, especially
the emergence of proof assistant Coq, Isabelle and HOL Light and so on [2,4,
8,10,14,17], formal proof of mathematical theorems has made great progress.
In 2005, the international computer experts Gonthier and Werner provided the
formal proof in Coq of the famous “four-color theorem” successfully [5]. After
years of hard work, Gonthier again achieved the machine proof in Coq of the “odd
order theorem” in 2012 [6]. Those progress make Coq more and more popular
in academia. Wiedijk pointed out that relevant research teams around the world
have completed or plan to formalize the proof of theorems such as Gödel’s first
incompleteness theorem, Jordan curve theorem, Prime theorem and Fermat last
theorem of a hundred well-known mathematical theorems [17].

Based on “Real number theory” formal system, we formalize the properties
of continuous functions on closed intervals. Moreover, we give formal proofs of
these theorems, which include the Boundedness theorem, the Extreme value
theorem, the Intermediate value theorem, the Uniform continuity theorem. It
should be noted that the properties of continuous functions on closed intervals
is an important theorem in analysis.

The structure of this article is as follows: In Sect. 2, we introduce the “real
number theory” machine proof system. In Sect. 3, we present the formal def-
inition of the function limit and related properties. In Sect. 4, we discuss the
machine proof of the properties of continuous functions on closed intervals in
detail, which are derived by supremum theorem. In Sect. 5, we draw conclusions
and discuss some potential further work.

2 Real Number Theory System

Before formally proving the properties of continuous functions on closed inter-
vals, we first need to build a formal system of real number theory. van Benthem
Jutting [1] completed the formalization in Automath of Landau’s “Foundations
of Analysis”, which was a significant early progress in formal mathematics.
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Harrison [9] presents formalized real numbers and differential calculus on his
HOL Light system. The definition of real numbers in Coq standard library uses
the axiomatic way, and based on this, excellent real analysis library Coquelicot
[3] has been established. This library accomplishes many achievements, but its
definition of real number is non-constructive. Hornung [11] completed the first
four chapters of the “Foundations of Analysis” in Coq, which is closed related
to our work, however our system is closer to the expression of Landau and more
readable. We also completed the complex number part and proved equivalence
between eight completeness theorems of real number.

There are several ways to define natural numbers in Coq. Based on Morse-
Kelley axiomatic set theory, it is designed to give quickly and naturally a foun-
dation for mathematics, and meanwhile deduce the Peano axioms as theorems
[16,18]. If we start from the more higher type rather than set theory, we can
formalize straight Peano axioms as follows:

Parameter Nat :Type.

Axiom One :Nat.

Notation "1" := One.

Axiom Successor :Nat -> Nat.

Notation " x ‘ " := (Successor x)(at level 0).

Axiom AxiomIII : ∀ x, x‘ <> 1.

Axiom AxiomIV : ∀ x y, x‘ = y‘ -> x = y.

Axiom AxiomV : ∀ M, 1 ∈ M /\ (∀ x, x ∈ M -> x‘ ∈ M) -> ∀ z, z ∈ M.

Based on this, we can use “Parameter” and “Axiom” to define natural number
related functions such as addition and multiplication. This way is intuitive but
not elegant. The natural numbers defined by “Inductive” can recursively define
natural number related functions.

Landau’s “Foundations of Analysis” [13] is based on naive set theory and
some basic logic. Starting from the Peano axioms, natural numbers (positive
integers), fractions (positive), rational numbers/integer (positive) are defined
in order. The real number, defined by Dedekind cut, defines complex numbers
through real numbers for constructing systematically the whole number system
theory. We have completed the Coq formalization of the system, and the com-
plete source is available online:

https://github.com/coderfys/analysis/

In this system, we can prove Dedekind fundamental theorem, and derive
Supremum theorem. The proof details are not described, and the formalization
is as follows.

2.1 Dedekind Fundamental Theorem

Divide all real numbers into two classes, so that the first class and second class
are not empty, and each number in the first class is less than each number in
the second class. Then there is a unique real number E, so that any number less
than E belongs to the first class, and any number greater than E belongs to the
second class.

https://github.com/coderfys/analysis/
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Section Dedekind.
Variables Fst Snd :Ensemble Real.
Definition R_Divide := ∀ r, r ∈ Fst \/ r ∈ Snd.
Definition ILT_Class := ∀ e f, e ∈ Fst -> f ∈ Snd -> e < f.
Definition Split E := (∀ H, H < E -> H ∈ Fst)
/\ (∀ G, G > E -> G ∈ Snd).

End Dedekind.

Theorem DedekindCut_Unique :
∀ Fst Snd, R_Divide Fst Snd -> No_Empty Fst -> No_Empty Snd ->
ILT_Class Fst Snd -> ∀ Z1 Z2, Split Fst Snd Z1 ->
Split Fst Snd Z2 -> Z1 = Z2.

Theorem DedekindCut :
∀ Fst Snd, R_Divide Fst Snd -> No_Empty Fst -> No_Empty Snd ->
ILT_Class Fst Snd -> ∃ E, Split Fst Snd E.

2.2 Supremum Theorem

If a non-empty real number set has a upper bound, then there must be a least
bound (the Supremum as an example).

Definition bound_up y A := ∀ z, z ∈ A -> z ≤ y.
Definition supremum y A := bound_up y A /\

∀ z, bound_up z -> y ≤ z.
Theorem SupremumT : ∀ R, No_Empty R -> ∃ x, bound_up x R ->

∃ y, supremum_s y R.

3 Basic Definitions and Properties

The formal definition of functions in this system is as follows:

Definition Fun := Real -> Real.

Related definitions of function continuity:

Definition FunDot_con (f :Fun) x0 := ∀ ε, ε > O ->

∃ δ, δ > O /\ ∀ x, | x - x0 | < δ -> | f x - f x0 | < ε.

Definition FunDot_con (f :Fun) x0 := ∀ ε, ε > O ->

∃ δ, δ > O /\ ∀ x, | x - x0 | < δ -> | f x - f x0 | < ε.

Definition FunDot_conr (f :Fun) x0 := ∀ ε, ε > O ->

∃ δ, δ > O /\ ∀ x, x - x0 < δ -> O ≤ x - x0 -> | f x - f x0 | < ε.

Definition FunDot_conl (f :Fun) x0 := ∀ ε, ε > O ->

∃ δ, δ > O /\ ∀ x, x0 - x < δ -> O ≤ x0 - x -> | f x - f x0 | < ε.

Definition FunOpen_con f a b := a < b /\

(∀ z, z ∈ (a,b) -> FunDot_con f z).

Definition FunClose_con f a b := a < b /\ FunDot_conr f a /\

FunDot_conl f b /\ (∀ z, z ∈ (a,b) -> FunDot_con f z).
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The function f(x) is continuous at one point implying that

Corollary Pr_FunDot : ∀ f x0, FunDot_con f x0 -> ∀ ε, ε > O ->
∃ δ, δ > O /\ ∀ x, | x - x0 | ≤ δ -> | f x - f x0 | < ε.

The function f(x) is continuous (left, right) at a point, then the function
f(x) is locally bounded at this point (take right continuous for example):

Lemma limP1 : ∀ f a, FunDot_conr f a -> f a > O -> ∀ r, r > O ->

r < f a -> ∃ δ, δ > O /\ ∀ x, x - a < δ -> O ≤ x - a -> f x > r.

Lemma limP1’ : ∀ f a, FunDot_conr f a -> f a > O ->

∃ δ, δ > O /\ ∀ x, x - a < δ -> O ≤ x - a -> f x > ((f a)/2) NoO_N.

In this real number system, division function requires three parameters, and the
third of which is the proof that the second is not 0. Therefore, the “NoO N”
above means “2 �= 0”.

The function f(x) is continuous on [a, b], then −f(x) is continuous on [a, b].
The function f(x) is continuous on [a, b] and is not everywhere 0, then 1

f(x) is
continuous on (take f(x) > 0 as an example).

Lemma Pr_Fun1 : ∀ f M a b, FunClose_con f a b ->
FunClose_con (λ x, M - (f x)) a b.

Lemma Pr_Fun2 : ∀ f a b (P: ∀ z, z ∈ [a, b] -> neq_zero (f z))
(Q:∀ z, z ∈ [a, b] -> (f z) > O), FunClose_con f a b ->
FunClose_con (λ x, match classic (x ∈ [a, b]) with

| left l => (1 / (f x)) (P _ l)
| right _ => f x end) a b.

4 Properties of Continuous Functions on Closed Intervals

Continuous functions have four fundamental properties on closed intervals:
Boundedness theorem (Weierstrass second theorem), Extreme value theorem
(Weierstrass first theorem), Intermediate value theorem (Bolzano-Cauchy sec-
ond theorem), Uniform continuity theorem (Cantor theorem). These theorems
are the basis of mathematical analysis and the direct expression of real number
theory in functions. Our formalizations rely on a logical axiom law of excluded
middle.

Theorem 1. Boundedness theorem: A continuous function on a closed interval
must be bounded on that interval.

Definition FunClose_boundup f a b := a < b /\

∃ up, (∀ z, z ∈ [a,b] -> f z ≤ up).

Definition FunClose_bounddown f a b := a < b /\

∃ down, (∀ z, z ∈ [a,b] -> down ≤ f z).

Theorem T1 : ∀ f a b, FunClose_con f a b -> FunClose_boundup f a b.

Theorem T1’ : ∀ f a b, FunClose_con f a b -> FunClose_bounddown f a b.



A Formalization of Properties of Continuous Functions on Closed Intervals 277

First, we prove a lemma L1: if f(x) is continuous on [a, b], then some neigh-
borhood of z is bounded for any z ∈ (a, b). The notation “[x0| − δ]” below
represents Ux0(δ) in mathematics.

Lemma L1 : ∀ f a b, FunClose_con f a b -> ∀ x0, x0 ∈ (a,b) ->
∃ δ, δ > O /\ (∃ up down, (11∀ z, z ∈ [x0|-δ] -> f z ≤ up) /\
(∀ z, z ∈ [x0|-δ] -> down ≤ f z)).

Upper bound: Construct a real number set {t : f(x) has an upper bound on
[a, t]}. The formal definition is as follows:

R:=/{ t | FunClose_boundup f a t /\ t ≤ b /}

As f(x) is right continuous at the point a, there exists δ > 0, and f(x) has an
upper bound on (a, a+δ), when b ≤ a+δ proves the proposition. When a+δ < b,
R is not empty. On the other hand, b is an upper bound of R obviously, so R
has supremum ξ, and ξ ≤ b.

Case 1(ξ < b): According to Lemma L1, there exists δ1 > 0, and f(x) has an
upper bound on (a, ξ + δ1). The proposition is proved when b < ξ + δ1. When
ξ + δ1 ≤ b, there is ξ + δ1 ∈ R, which contradicts ξ is the supremum of R.

Case 2(ξ = b): The proposition is proved because of b < ξ + δ1.
Lower bound: According to the lemma Pr fun1, it can be deduced that −f(x)

is continuous on [a, b]. From Theorem T1, we know that −f(x) has the upper
bound “up”, then “-up” is the lower bound of f(x) on [a, b].

Theorem 2. Extreme value theorem: The continuous function on the closed
interval must achieve the maximum and minimum values in this interval.

Theorem T2 : ∀ f a b, FunClose_con f a b ->
∃ z, z ∈ [a,b] /\ (∀ w, w ∈ [a,b] -> f w ≤ f z).

Theorem T2’ : ∀ f a b, FunClose_con f a b ->
∃ z, z ∈ [a,b] /\ (∀ w, w ∈ [a,b] -> f z ≤ f w).

Maximum value: Construct a real number set {f(x) : x ∈ [a, b]}. The formal
definition is as follows:

R:=/{ w | ∃ z, z ∈ [a,b] /\ w = f z /}.

Obviously, R is not empty and we can deduce R has an upper bound by
T1, hence R has a supremum M . If there exists x ∈ (a, b) and f(x) = M , the
proposition is proved. Otherwise, f(x) < M for any x ∈ [a, b]. Construct a new
function g(x) = 1

M−f(x) . Since g(x) > 0 for any x ∈ [a, b], so g(x) is continuous
on [a, b] by Pr fun2. From T1, g(x) has an supremum K on [a, b], and K > 0.
After derivation, M − 1

K is the upper bound of f(x) on [a, b], which contradicts
M is the supremum of R.

Minimum value: According to the lemma Pr fun1, it can be deduced that
−f(x) is continuous on [a, b]. From Theorem T2, we know that −f(x) has a
maximum value “max”, then “-max” is the minimum value of f(x) on [a, b].
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Theorem 3. Intermediate value theorem: If f(a) �= f(b), then for any real num-
ber C between f(a), f(b), at least one point c on (a, b) satisfies f (c) = C.

Theorem T3 : ∀ f a b, FunClose_con f a b -> f a < f b ->
∀ C, f a < C -> C < f b -> ∃ ξ, ξ ∈ (a,b) /\ f ξ = C.

Theorem T3’ : ∀ f a b, FunClose_con f a b -> f a > f b ->
∀ C, f b < C -> C < f a -> ∃ ξ, ξ ∈ (a,b) /\ f ξ = C.

First, we prove a lemma L3: if f(x) is left continuous at point b, a < b and
f(b) > C, then there is z between a, b, satisfies f(z) > C.

Lemma L3 : ∀ f a b C, FunDot_conl f b -> b > a -> f b > C ->
∃ z, a < z /\ z < b /\ f z > C.

f(a) < f(b): Construct a real number set {t : f(x) < C for any x in [a, t]}.
The formal definition is as follows:

R:=/{ t | (∀ x, x ∈ [a,t] -> f x < C) /\ t < b /}.

f(a) > f(b): f(x) is right continuous at point a, then there exists δ1 > 0,
and |f(x) − f(a)| < C − f(a) in (a, a + δ1), which can be deduced f(x) < C.
(a + δ1

2 ) ∈ R when δ1 < (b − a) and a+b
2 ∈ R when (b − a) ≤ δ1. In summary,

R is not empty and b is an upper bound of R, so R has a supremum ξ, and
ξ ≤ b. When ξ = b, it can deduce contradiction according to Pr supremum and
L3. Therefore ξ ∈ (a, b).

Case 1(f(ξ) < C): Because f(x) is continuous at point ξ, by Pr FunDot there
is δ > 0, and |f(x) − f(ξ)| < C−f(ξ)

2 for any x ∈ [ξ − δ, ξ + δ], which can be
deduced f(x) < C. Further, we can conclude that (ξ + δ) ∈ R which contradicts
ξ is the supremum of R.

Case 2(f(ξ) > C): f(x) is continuous at point ξ, hence f(x) is left continuous
at point ξ. By L3 there must exist z ∈ (a, ξ) and f(z) > C, so z is the upper
bound of R, which contradicts ξ is the supremum of R.

f(a) > f(b): Refer to T1’, T2’ proof.

Theorem 4. Uniform continuity theorem: A function is continuous on a closed
interval then the function is uniformly continuous on that interval.

Definition Un_Con f a b := a < b /\ ∀ ε, ε > O ->
∃ δ, δ > O /\ ∀ x1 x2, x1 ∈ [a,b] -> x2 ∈ [a,b] ->
|x1 - x2| < δ -> |f x1 - f x2| < ε.

Theorem T4 : ∀ f a b, FunClose_con f a b -> Un_Con f a b.

Let f(x) be continuous on [a, b], fix any ε > 0. we construct a real number set
{t : ∃δ > 0 and |f(x1) − f(x2)| < ε when x1, x2 ∈ [a, t] and |x1 − x2| ≤ δ}. The
formal definition is as follows:

R:=/{ t | (a<t /\ ∃δ, δ > O /\ (∀x1 x2,x1 ∈ [a,t] -> x2 ∈ [a,t]
-> | x1 - x2 | < δ -> | f x1 - f x2 | < ε)) /\ t ≤ b /}.
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Because f(x) is right continuous at point a, there must exists δ1 > 0, and
|f(x) − f(a)| < ε

2 for any x ∈ [a, a + δ1). Let δ2 = min(a + δ1
2 )(b − a), we prove

that a+δ2 ∈ R. Obviously, b is an upper bound of R, So R has a supremum ξ and
ξ ≤ b. As f(x) is continuous at point ξ, there exists δ > 0, and |f(x)− f(ξ)| < ε

2
for any x ∈ [ξ − δ, ξ + δ]. Further, we can deduce |f(x1) − f(x2)| < ε for any
x1, x2 ∈ [ξ − δ, ξ + δ]. Therefore, |f(x1) − f(x2)| < ε for any x1, x2 ∈ [a, ξ + δ]
and |x1 − x2| ≤ δ.

Case 1(ξ < b): When b < ξ+δ, the proposition is proved due to the arbitrariness
of ε. When ξ + δ ≤ b, we further prove ξ + δ ∈ R, which contradicts ξ is the
supremum of R.

Case 2(ξ = b): b < ξ + δ, the proposition is proved by the arbitrariness of ε.

5 Conclusion

This paper formalizes limits, continuous functions and related theorems. These
theorems include Boundedness theorem, Extreme value theorem, Intermediate
value theorem, and Uniform continuity theorem. We have completed their for-
mal proofs based on the real number theory system developed by ourselves. In
the future, we will formalize more theorems of continuous functions and make
meaningful attempts for formal work in the fields of real analysis and complex
analysis. We are grateful to the anonymous reviewers, whose comments much
helped to improve the presentation of the research in this article.
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Abstract. Cylindrical algebraic decomposition (CAD) is a fundamen-
tal tool in computational real algebraic geometry. Previous studies have
shown that machine learning (ML) based approaches may outperform
traditional heuristic ones on selecting the best variable ordering when
the number of variables n ≤ 4. One main challenge for handling the
general case is the exponential explosion of number of different order-
ings when n increases. In this paper, we propose an iterative method for
generating candidate variable orderings and an ML approach for select-
ing the best ordering from them via learning neural network classifiers.
Experimentations show that this approach outperforms heuristic ones
for n = 4, 5, 6.

Keywords: Cylindrical algebraic decomposition · Variable ordering ·
Machine learning · Neural network

1 Introduction

Cylindrical algebraic decomposition (CAD) was introduced by Collins for solving
real quantifier elimination problems [14]. The original framework for computing
CAD introduced by Collins is based on a projection and lifting scheme, which
has now been gradually improved by many others [1,3,5,19–23]. In 2009, Moreno
Maza, Xia, Yang and the first author [13] proposed a new way for computing
CAD, which first computes a cylindrical decomposition of complex space and
then transforms it into a CAD of real space based on the technique of triangular
decompositions and regular chains [13]. Its efficiency was substantially improved
in [7] based on an incremental algorithm, which can also take advantage of
equational constraints. A complete and efficient algorithm for real quantifier
elimination based on it was proposed in [12]. Moreover, it can utilize disjunctive
equational constraints via computing a truth table invariant CAD [2].

Today, despite of its doubly exponential complexity [6,14], CAD has been effi-
ciently implemented in many softwares such as QEPCAD, Mathematica, RED-
LOG and Maple, and found wide applications in geometry theorem proving,
c© Springer Nature Switzerland AG 2020
A. M. Bigatti et al. (Eds.): ICMS 2020, LNCS 12097, pp. 281–291, 2020.
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stability analysis of dynamical systems, control system design, verification of
hybrid systems, program verification, nonlinear optimization, automatic paral-
lelization, and so on. Recently, it also finds applications on studying quantum
nonlocality [8].

The choice of variable ordering has been shown to have a great impact on
the performance of CAD, both theoretically [6] and in practice [15]. Several
heuristic methods for variable ordering selection have been proposed. In partic-
ular, two heuristic strategies [4,9] are implemented in the SuggestVariableOrder
(SVO) command of the RegularChains library in Maple. On the other hand,
it also becomes a natural option to predict the best variable ordering by the
approaches of artificial intelligence, among which machine learning is a natural
choice [16–18,24,25].

Existing work for selecting variable ordering by machine learning focus on the
trivariate case. For more than three variables, it becomes more difficult to obtain
sufficient labelled data due to the doubly exponential behavior of CAD in terms
of the number of variables n. Another difficulty is the exponential explosion of
number of different orderings when n increases. In this paper, we first propose
an iterative approach for generating a better variable ordering starting from the
one given by SVO. Then we reduce the potential n! number of classes to predict
for the variable ordering problem to n by training a neural network classifier
with data generated by the iterative approach. Experiments show that both
the iterative approach and the machine learning approach outperform SVO for
n = 4, 5, 6.

The organization of the paper is as follows. In Sect. 2, we briefly review
the concept of CAD and the problem of variable ordering selection. In Sect. 3
and Sect. 4, we present respectively the iterative and the machine learning
approaches. In Sect. 5, we show the effectiveness of our approaches by exper-
imentation. Finally, we draw the conclusion in Sect. 6.

2 Cylindrical Algebraic Decomposition

Consider a set of polynomials F ⊂ Q[x1, . . . , xn] and a variable ordering xi1 >
· · · > xin . An F -invariant cylindrical algebraic decomposition (CAD) partitions
R

n into disjoint and cylindrically arranged semi-algebraic subsets (called cells)
such that the projection of any two cells onto R

k (with coordinate variables
xin−k+1 , . . . , xin), 1 ≤ k ≤ n − 1, is either disjoint or identically equal. The
variable ordering also specifies the order to eliminate variables and the order to
construct CAD from projection factors or a complex cylindrical decomposition.

The algorithms presented in [2,10,13] for computing CADs based on regu-
lar chains have been implemented in the command CylindricalAlgebraicDecom-
pose in the RegularChains library of Maple [11]. Its latest version is available
from http://www.regularchains.org and we use the version from http://www.
arcnl.org/cchen/software/cadorder. In the RegularChains library, the command
SuggestVariableOrder (SVO for short) implements two different heuristic meth-
ods for variable ordering selection, namely the one by Brown [4] (with option

http://www.regularchains.org
http://www.arcnl.org/cchen/software/cadorder
http://www.arcnl.org/cchen/software/cadorder
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“decomposition = cad”, SVO(B) for short) and the one by Chen et al. [9] (default
option, SVO(C) for short).

The variable ordering plays an important role in the efficiency of computing
CAD, as illustrated by the following example.

Example 1. Let F := {68 x1 2−12 x3 x2 +46 x3 −126,−54 x2 x1 +11 x1 +92 x2 −
21,−60 x3 x1 2 − 42 x3 x2 x1 + 45 x4 2 − 35}. Table 1 lists the computation times
and number of cells for several variable orders. As we can see, for this example,
current heuristic methods avoid picking the worst variable order, but also miss
the best variable order.

Table 1. Impact of different variable orders

Order Method Timing (seconds) #cells

x4 � x3 � x2 � x1 – 5 3373

x3 � x1 � x4 � x2 – 93 43235

x2 � x3 � x4 � x1 SVO(B) 16 11953

x3 � x2 � x4 � x1 SVO(C) 14 9253

3 An Iterative Method

In this section, we present an iterative variable ordering selection method, called
IVO, for cylindrical algebraic decomposition. It starts with an initial ordering
xi1 > xi2 > · · · > xin provided by SVO. Then it calls a subroutine, called
RVO, to generate n orderings in a round-robin manner and picks the best by
calculating the shortest time of computing CAD with them. Next, it fixes the
largest variable and calls RVO again on the rest ones to select the second largest
variable, and so on. Precise description of IVO and RVO are given as below. We
denote by || the concatenation of two sequences.

– Algorithm RVO.
– Input: a set of polynomials F ; a sequence of variables O defining a descending

ordering; the time t for running CAD(F,O), an integer k.
– Output: a new ordering O′ and running time t′ of CAD(F,O′) such that t′ ≤ t.
– Steps:

1. Let P := O1, . . . , Ok and Q := Ok+1, . . . , On.
2. Let Q(i) := Qi, Q \ {Qi}, i = 1, . . . , |Q|.
3. For each Q(i) �= Q, i = 1, . . . , |Q|, call CAD(F, P ||Q(i)), Q(i) �= Q and

record the running times.
4. Compare these running times with t and return the shortest one and the

corresponding order.
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– Algorithm IVO.
– Input: a set of polynomials F ; a sequence of variables X.
– Output: a permutation of X, which defines a descending variable order.
– Steps:

1. If X ≤ 1, return X.
2. Let OB := SVO(F,X,B) and OC := SVO(F,X,C).
3. Let t be the shorter running time between CAD(F,OB) and CAD(F,OC)

and let O be the corresponding order with shorter time (if equal, we use
OB).

4. For k from 0 to n − 2 do
(a) O, t := RVO(F,O, t, k).

5. Return O.

It is easy to see that IVO calls CAD at most 2 +
∑n

k=1(k − 1) = (n2 − n + 2)/2
times. In the rest of this paper, if no confusion arises, we denote by SVO(*) an
oracle that always returns the better ordering between SVO(B) and SVO(C) and
by SVO either of the three.

4 A Machine Learning Approach

To train a useful machine learning model for predicting the best variable ordering
for CAD, it is important to have a dataset of enough labelled examples and the
size of the dataset cannot be too small. On the other hand, since computing
CAD is expensive when the number of variables is larger than 3, a larger dataset
demands more computing resources. To make the learned model useful, it is
better that the training dataset contains diverse examples. On the other hand, if
the data are too diverse, it will be hard to learn. The following table summarizes
the information of the dataset we generate using random polynomials as input
to IVO. The whole dataset is divided into three datasets, used respectively for
training, validation and testing with ratio 9/1/1. The validation dataset is used
for tuning the machine learning model while the testing dataset is treated as
unseen data used only once for reporting experimental results in the paper and
showing the generalization ability of the ML model.

Table 2. Dataset

n Degree #terms #polynomials Equations #valid examples

4 2..3 2..5 2 No 10957

5 2..3 3..6 2 No 6875

6 2..3 4..6 2 No 3751

The data in Table 2 were generated on a cluster (4 compute nodes, each of
which has two Intel E5-2620 CPU (6-core each) and 64 GB memory). On each
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node, 6 Maple sessions were run in parallel. The time limit is set as 15 min.
The total time for generating the dataset is about 1 month. In Table 2, we only
record the number of valid examples. An example is valid if CAD finishes the
computation within the time limit for at least one ordering computed by IVO.
Note that it is possible that SVO returns an ordering for which CAD times out.

Next, we recall the features to represent the polynomials introduced in our
earlier work [24]. These features are generated based on a graph structure defined
for polynomial systems. For a given variable xi, i = 1, . . . , n, an equivalent
description of the features is summarized in the following Table 3. Let E(i) be
the features associated with xi. Then the feature vector E = ∪n

i=1E(i).

Table 3. Features

Feature Description

E1(xi) |{xj : xj , j �= i, appears in the same polynomial as xi}|
E2(xi) |{f ∈ F : xi appears in f}|
E3(xi) maxf∈F {deg(f, xi)}
E4(xi)

∑
f∈F deg(f, xi)

E5(xi) maxf∈F {deg(lc(f, xi))}, where lc denotes for leading coefficient

E6(xi) maxf∈F {|{M : M is a monomial of f and xi|M}|}
E7(xi) maxf∈F {deg(M) : M is a monomial of f and xi|M}
E8(xi)

∑
f∈F

∑
M is a monomial of f and xi|M deg(M,xi)

E9(xi)
∑

f∈F {deg(lc(f, xi))}
E10(xi)

∑
f∈F |{M : M is a monomial of f and xi|M}|

We aim to train a model which can predict variable orders for n = 4, 5, 6.
Instead of treating a variable order as a class, which may lead to huge number of
classes for a fixed n, we would like to train a multiclass classifier Mn, which only
predicts the largest variable in an ordering. To achieve this, for each example in
the dataset, we will call SVO to return an initial ordering, and then call RVO
once to get a hopefully better ordering. Then the first variable in the ordering

Fig. 1. The neural network classifier
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is set as the label of the example. For each n = 4, 5, 6, we train an artificial
neural network classification model implemented in TensorFlow. The structure
and parameters of the neural network are illustrated in Fig. 1. Each Mn is a
full-connected neural network with one input layer, three hidden layers and one
softmax output layer. The activation function used is ReLu. Hyperparameters
of the network are hand-tuned to maximize validation accuracy.

Suppose that we have obtained the well-trained models Mn, n = 4, 5, 6. We
then employ the following procedure PVO to predict the variable ordering.

– Algorithm PVO
– Input: a set of polynomials F ; a sequence of n variables X.
– Output: a permutation of X, which defines a descending variable order.
– Steps:

1. Compute a sequence of feature vectors E = E(1), . . . , E(n) for F .
2. Let O := SVO(F,X).
3. Let xi := Mn(E).
4. Return O \ {xi}.

The overall training and predicting process is depicted in Fig. 2.

Fig. 2. The flow graph for finding variable order based on an artificial neural network.

5 Experiments

In this section, we report on the experimental results of the iterative method
and the machine learning approach for selecting variable orderings.

Note that when we call PVO to predict the variable ordering, we have three
options. One can use SVO(B) or SVO(C) to get an initial ordering without
calling CAD. Or one can use SVO(*) to get the better one between SVO(B)
and SVO(C), but this requires calling CAD twice. Nevertheless, for a = B,C, ∗,
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we use IVO(a), RVO(a) and PVO(a) to denote the iterative method, the first
iteration of the iterative method and the ML-based method for variable ordering
selection which uses SVO(a) as an initial ordering. As a result, the testing dataset
for a = B,C, ∗ is respectively the set of examples, for which SVO(a) provides
the initial ordering in the original testing dataset. Table 4 summarizes the size
of the datasets. Note that the dataset for a = C does not contain timeout
examples. This is because whenever CAD times out with the ordering given
by SVO(C), IVO will use the ordering given by SVO(B). Although the testing
datasets and inference procedures for a = B and a = C are different, for a
given n, both a = B and a = C use the same classifier trained with the dataset
in Table 2, where the examples are labelled by RVO(*) with an initial variable
ordering provided by SVO(*). Table 5 summarizes the average computation times
(in seconds) and timeout rates of IVO(*) and RVO(*) for the whole datasets. Note
that the datasets only contain examples on which IVO(*) succeeds.

Table 4. Size of testing datasets

n B C ∗ n B C ∗ n B C ∗
4 593 404 997 5 359 266 625 6 214 127 341

Table 5. Comparison between IVO(*) and RVO(*)

n RVO(*) (time) IVO(*) (time) RVO(*) (timeout) IVO(*) (timeout)

4 7.46 2.25 0.5225 0

5 38.45 9.91 0.3025 0

6 63.69 18.36 0.1954 0

Fig. 3. Accuracies of different order selecting methods
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Figure 3 summarizes the accuracies of six ordering selecting methods. Here
the ground truth for SVO(a) and PVO(a) is given by RVO(a), for a = B,C, ∗. The
accuracy is defined as the percentage of best orderings chosen by each method
over the total number of test examples, given in Table 4. We observe that the
accuracy of PVO(a) is higher than SVO(a) for n = 5, 6, for all a = B,C, ∗. For
n = 4, the accuracy of PVO(a) is slightly lower than SVO(a) for a = C, ∗ and
higher than SVO(a) for a = B.

Figure 4 provides the average running time of CAD with the variable order-
ings predicted by different methods. If there is a timeout, the time is counted as
twice the time limit, that is half an hour. For n = 4, 5, 6 and a = ∗, B, the aver-
age computation time of PVO(a) is considerably less than SVO(a). The average
computation time of PVO(C) is less than SVO(C) for n = 4, 6 but greater than
SVO(C) for n = 5.

Fig. 4. Average running time of CAD with different variable orderings

Figure 5 gives the percentage of timeout examples for CAD with the variable
orderings predicted by different methods. The phenomenon here is similar to the
computation time as illustrated in Fig. 4.
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Fig. 5. Percentage of timeout examples for CAD with different variable orderings

6 Conclusion and Future Work

In this paper, we propose a machine learning based approach for predicting
the best variable ordering for CAD targeting on n > 3. The experiments show
that it outperforms traditional heuristic approaches for n = 4, 5, 6 on randomly
generated datasets. The CylindricalAlgebebraicDecompose command can compute
CAD for even larger n, say n ≤ 10 in reasonable time if there are several equa-
tional constraints in the system [7]. It will be interesting to extend the model
for n > 6, test it on CAD-QE problems from real applications and finally make
the ML-based variable ordering selection method a useful option for Suggest-
VariableOrder. The data and code used in this paper is available at http://doi.
org/10.5281/zenodo.3818086.
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22. Strzeboński, A.: Solving systems of strict polynomial inequalities. J. Symb. Com-
put. 29(3), 471–480 (2000)
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Abstract. This paper considers the application of machine learning
to automatically generating heuristics for real polynomial constraint
solvers. We consider a specific choice-point in the algorithm for construct-
ing an open Non-uniform Cylindrical Algebraic Decomposition (NuCAD)
for a conjunction of constraints, and we learn a heuristic for making that
choice. Experiments demonstrate the effectiveness of the learned heuris-
tic. We hope that the approach we take to learning this heuristic, which
is not a natural fit to machine learning, can be applied effectively to
other choices in constraint solving algorithms.

Keywords: Non-linear polynomial constraints · Machine learning

1 Introduction

In [2] the first author proposed Non-uniform Cylindrical Algebraic Decomposi-
tion (NuCAD) as an alternative to the well-known Cylindrical Algebraic Decom-
position (CAD) as a data-structure for representing sets of points in Euclidean
space defined by boolean combinations of real polynomial equalities and inequal-
ities. The process of constructing a NuCAD involves many points at which an
arbitrary choice needs to be made—a choice that does not affect correctness,
but can have a considerable impact on running time, memory usage, and qual-
ity of solution. The purpose of this work is to consider one such choice, and
attempt to use machine learning to automatically learn a successful heuristic.
This paper will introduce the problem, explain why the application of machine
learning to the problem is exceptionally challenging, describe the process we
developed to handle not just this heuristic-learning problem, but others with
similar challenges, and report experimental results.

2 The Problem

A semi-algebraic set is a set of points in Euclidean space defined by a boolean
combination of polynomial equalities and inequalities (known as a Tarski for-
mula). Non-uniform Cylindrical Algebraic Decomposition (NuCAD) is a data
structure providing an explicit representation of semi-algebraic sets. From this
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data structure, a variety of questions can be answered. In this article we only
address the question of whether the semi-algebraic set is non-empty or, equiva-
lently, whether the associated Tarski formula is satisfiable. For example, to deter-
mine the satisfiability of the Tarski formula [x2+y2 < 1∧y > x2∧3x > 2y2+1],
we would construct a NuCAD data structure representing the decomposition of
R

2 depicted in Fig. 1.

Fig. 1. Depicted on the left is the semi-algebraic set defined by the Tarski formula
[x2 + y2 < 1 ∧ y > x2 ∧ 3x > 2y2 + 1] along with the curves defined by the three
polynomials in the formula. On the right is depicted the decomposition described by
a NuCAD data structure produced from the formula. This is not unique, as different
choices during the construction lead to different NuCADs.

The NuCAD data structure contains a sample point for each cell in the
decomposition it represents. In this case, two cells have sample points at which
the input formula is satisfied. Thus, not only do we learn that the formula is
satisfiable, but we also have witness points to prove it.

NuCADs are constructed by a simple refinement process. At each step a cell
is selected, and from amongst the constraints that are violated at its sample
point, one is chosen to be the basis for splitting the selected cell into subcells—
thus refining the decomposition. The key idea is that the subcell containing the
original sample point has the property that the chosen constraint is violated
throughout the subcell. To illustrate, suppose that in the previous example our
initial sample point was (0, 0). Two constraints (the parabolas) are violated at
this point, so we must choose one. It is this choice that we concentrate on in the
present paper. We would like to learn a heuristic for it. To be precise, we give
the following definition of a choice function.

Definition 1. A choice function maps a set of multivariate polynomials and a
variable ordering to an element of the input polynomial set. When a cell has
been selected to refine, the set of polynomials from constraints that are violated
at the selected cell’s sample point is given as input to a choice function, and
the output of the choice function is the constraint that will be used for the next
refining step. Additional input consisting of state information from the selected
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cell and the NuCAD as a whole (e.g. the polynomials defining the selected cell’s
boundaries) are optionally allowed.

It is important to point out that making good choices vs. bad choices can
make orders of magnitude differences in computing time and number of cells in
the resulting NuCAD. Of course for very easy problems, the difference is not
that great. Likewise, there are combinations of problem and initial point for
which, at every sample point, there is only one violated constraint. This means
that there never is a real choice, and so the heuristic is not needed. However, as
our experiments show, there are also problems for which a good choice heuristic
vs. bad choice heuristic means the difference between problems that are solvable
within a reasonable amount of time and those that are not.

3 ML and and Why Learning a Choice Function Is Hard

Machine Learning (ML) is a huge field, and one very much in the spotlight at
the moment. Moreover, machine learning has been applied to related problems
(see for example [5–8]), though in a significantly different ways than what we
do in this paper. So we will not try to explain what machine learning is, and
trust that any reader who is not sufficiently conversant in the subject will have
many options for obtaining the necessary background. Machine learning typically
centers around trying to learn a function that maps input feature vectors to
output result vectors. The dimensions and component types of these vectors is
fixed for a given learning problem. Also pertinent to this discussion is the basic
categorizations of learning as “supervised” vs. “unsupervised” and “regressions”
vs. “classification”.

Unfortunately, learning a choice function does not fit these typical machine
learning paradigms well. There is no limit on the size of the input space, since
there is no bound on the number of polynomials in the input set, nor is there a
bound on the number of variables, degrees, or number of terms in the individual
polynomials within the set. So it does not even fit the general framework. It
does not fit as a regression problem, because we don’t have continuous outputs
(the output being one polynomial from the set). It doesn’t fit as a classification
problem, because each polynomial from the input set constitutes a class label,
and there is not a fixed number of polynomials in the set (classification usually
assuming a fixed set of labels). It does not fit as a supervised learning problem
because we have no ground truth, i.e. we do not know what the “right” decisions
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are, so we do not have labeled data1. Unsupervised learning, at first, seems
like it might be promising. Specifically, we could try to cast learning a choice
function as a reinforcement learning problem, in which a decision made during
the construction of a NuCAD for an input is rewarded or penalized by the
success of the final result, appropriately discounted by its distance from that
result. Unfortunately, there are two problems with this approach. First is that
we have no basis for determining an award or penalty. If we end up with a
decomposition consisting of 500 cells, is that good? Perhaps a different sequence
of choices would have yielded a decomposition into 20 cells, or perhaps 500 is in
fact the minimum achievable. With no way of knowing, we cannot determine an
award or penalty. Second, the choices made during the construction of a NuCAD
are not generally linear. The first choice, for example, produces several sibling
cells, and the further refinement of each of those sibling cells is independent of
the others. It is then unclear how to split up rewards.

Another substantial impediment to applying ML to the problem of producing
an effective choice function is the very common problem of finding good data.
In the case of polynomial constraints, we have the issue that the problem space
is so vast, that it is not feasible to have anything like reasonable coverage of
the space. Moreover, it is typically observed that most symbolic algorithms for
dealing with polynomial constraints behave very differently on random problems
than on “real-world” problems. This means that if we learn from randomly
generated inputs we have to be concerned that the result might not transfer well
to real-world problems or, indeed, problems that were not generated in a similar
way to the training data. While we do have the SMT-LIB [1] QF NRA library
of problems as a valuable resource, we have to be careful learning from it as
well. This is specifically true because most problems come from a large group
generated by one of a relatively few applications. Typically all the problems
within a group are very similar. This means, that if you learn from some of the
problems in a given group and you evaluate on others from the same group, the
learned function may test well because it has memorized correct actions for that
group. This may result in overfitting that would only get exposed if you were
to test on problems that were not from any of the groups that were used in

1 In some other contexts in which machine learning has been applied to learn heuristic
choice functions in symbolic computing, for example in work about learning to choose
good variable orderings, the approach has been to compute the results of all possible
choices, so that one does indeed know ground truth. That is impractical in our
context for the following reason: in order to determine the best option for the first
choice-point, it is not enough to try each of the options for just that choice; one
has to make the optimum decision for each of the follow-on choices until NuCAD
construction is complete. This means that one would have to try every option at
every choice-point! One can compute that for the three-variable formula ∧3

i=1(0 <
xi + 1/5 ∧ 0 < xi + 2/5 ∧ 0 > xi + 3/5 ∧ 0 > xi + 4/5), which consists solely of
linear univariate constraints, there are 5,760 ways that these choices can be made,
each resulting in a different NuCAD data structure in the end. By comparison, for
three variables there are exactly six variable orders to consider. So this exhaustive
approach to finding ground truth to learn from is not feasible for our problem.
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training. Finally, the current implementation of NuCAD is for “open” NuCAD
only, and only for conjunctions. This means that we are restricted to problems
from the SMT-LIB that are conjunctions of strict inequalities.

4 Using ML to Learn Choice Functions

The preceding examination of all the reasons why it might not appear to be
promising to apply ML to the problem of learning choice functions is important
to understanding why we developed the approach described below.

Reduce to Binary Classification: Trying to learn a choice function directly
is problematic in part because the number of classes is not fixed, rather it is
determined by the size of the input set of polynomials, which varies from choice-
to-choice. In a crucial change of perspective, we redefine our problem to learn-
ing a choice ordering predicate, i.e. a function that takes two polynomials (and
optionally extra information about the underlying cell and NuCAD context),
and returns 1 if the first polynomial is a preferable choice to the second, and 0
otherwise. The choice function applied to a set of n polynomials then becomes
n − 1 applications of the choice ordering predicate, at each step retaining the
polynomial preferred by the predicate. If the choice ordering predicate fails to
induce a proper total order, the order in which the predicate is applied to the
polynomials in the set could affect the result. In the present experiments we
accept this fact.

Reduce Inputs to Fixed Size Feature Set: Having restricted the learning
problem to learning a choice ordering predicate, we have reduced the dimension
of the input vector to the function to be learned, but not yet fixed it to a
constant. After all, while there are now always two input polynomials, rather
than an arbitrary sized set, those polynomials are still unbounded in the number
of variables, degrees, number of terms and coefficient sizes. The solution to this is
clear cut from a machine learning perspective: extract from the two polynomials
(and optionally from the cell and NuCAD context) a fixed sized set of features.
Although part of the revolution in deep learning is that the learning algorithm
is, in some sense, supposed to do this “feature engineering” for us, in this case
our domain forces us to do it. However, because of our restriction to learning
choice ordering predicates, there are a number of natural comparative features,
for example the difference in level2 of the two input polynomials, or the difference
in the two polynomials’ total degrees, number of terms, etc.

Reduce to Supervised Learning: The biggest hurdle to applying ML to this
problem is that, as described above, it fits neither the supervised nor unsuper-
vised paradigms. To address this, we use the fact that we have total control of
the executing algorithm. In particular, for a given input problem, we execute

2 Prior to constructing a NuCAD, a variable ordering is fixed, and the level of a
polynomial is highest index within that ordering of any variable appearing in the
polynomial.
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NuCAD construction following the “current” choice ordering predicate, but we
stop at a random point in the process at which we have more than one constraint
violated at a sample point and thus have a choice to make. At this point, we sep-
arately try each of the possible choices (i.e. each polynomial), finishing out the
entire construction from that point using the “current” choice ordering predicate
for all subsequent choices. This gives us the exact number of cells resulting from
each polynomial we could have chosen. Thus, for each pairing of polynomials
from the set, we construct the associated feature vector and, since we know the
correct result for the choice ordering predicate with that pair as input, we have
the correct output to go along with it. By collecting these feature vectors and
correct output values over many inputs, we produce a data set that can be used
for a supervised, binary classification machine learning problem.

Of course, the “correct” results we gathered are only correct for what was
then the “current” choice ordering predicate, and by learning we have derived a
new choice ordering predicate. This means we should iterate the process until the
performance of NuCAD construction using the learned choice ordering predicate
converges. It is not clear that this convergence will happen. For example, the
initial choice ordering function is chosen at random, and it could easily happen
that NuCADs constructed with it are so far off from NuCADs constructed with
a good choice ordering predicate, that the data we try to learn from is garbage.
However, our experiments indicate that we get good performance in relatively
few iterations.

Learn from Randomly Generated Inputs, Evaluate With “Real”
Input: Our approach was to learn from randomly generated formulas—formulas
in five variables with many constraints, both linear and non-linear, different lev-
els of sparsity, and different numbers of variables appearing. Each input formula
was used to analyze only one choice-point. The rationale for this choice is sim-
ply that we need a lot of data to learn from. The justification is that our initial
experiments show that the learned choice ordering predicate does indeed trans-
fer well to the “real” problems pulled from SMT-LIB, despite the fact that they
often have very different shape and that all the problems we tested against had
fewer than five variables.

5 Experiments

The Tarski3 system [9] was used in our experiments for its implementation of
NuCAD. For our machine learning, we used the Keras [4] package.

Random formulas were generated to consist of 13 “<” constraints, eight
quadratic and five linear, with between two and four terms. Below is an example
of one of them.

[0 < 18v − 9w ∧ 0 < 9vx + 4vy − 3y + 3 ∧ 0 < 5yz + 8y + 2 ∧ 0 < −4x2 + 6w − 6y − 7 ∧ 0 < −8wz

+9z2 + 8w ∧ 0 < −3vz + 6w − 8z − 4 ∧ 0 < v2 + 22vy + 13y2 + 4 ∧ 0 < −27w2 − 72wz − 48z2

− 20v + 14w − 8z ∧ 0 < −10w − 10y − 5z ∧ 0 < 9v + 8w − 4x ∧ 0 < −8v + 7w + 7x ∧ 0 < −8v

− 5w + 1 ∧ 0 < −4w − 8x + 1]

(1)

3 Tarski is available from https://www.usna.edu/Users/cs/wcbrown/tarski/.

https://www.usna.edu/Users/cs/wcbrown/tarski/
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Given a choice-point in a NuCAD construction and two polynomials, we con-
struct a vector of 22 features capturing individual and comparative properties of
the two polynomials and the context of the NuCAD construction. These features
are described in the table below. The first six are comparative features based
on the two polynomials under consideration (p1 and p2). Note that “spsize” is a
function that measures the size of the internal representation of a polynomial—it
is roughly proportional to the print length, but without any dependency on the
length of variable names. Features 6–10 are comparative, but based on “p∗

1” and
“p∗

2”. Here p∗
1 is the same as p1, but with any term removed for which p2 has a

term with the same power product, and p∗
2 is defined analogously. For example,

if p1 = 2xz2 −3zy +x+1 and p2 = −xz2 −2y2 +y −5x then p∗
1 = −3zy +1 and

p∗
2 = −2y2 + y. Features 11–14 involve a process we call “pseudo-projection”,

which gives estimates of the size of the projection set arising from choosing a
particular polynomial with which to refine the current cell. It gives a very rough
estimate, as no resultants or discriminants are computed. Features 15–18 are
based on geometric information concerning the roots of p1(α1, . . . , αn−1, z) and
p2(α1, . . . , αn−1, z), where α is the cell’s sample point. Feature 21 is an arbitrary
feature—in the context of learning, it is pure noise.

0 ite tdeg p1 = 1 ∧ tdeg p2 > 1,−1, (ite tdeg p1 > 1 ∧ tdeg p2 = 1,+1, 0)
1 (level p1 − level p2)/(n − 1), where n = number of variables
2 (tdeg p1 − tdeg p2)/5
3 spsize p1 − spsize p2, where spsize is the internal data structures size
4 degree of p1 in its main variable
5 degree of p2 in its main variable

6−10 same as 1–5 except with p∗
1 and p∗

2

11−14 pseudo-projection sizes and weighted sizes for p1 and p2
15 number of roots of p1(α1, . . . , αn−1, z) inside cell
16 number of roots of p2(α1, . . . , αn−1, z) inside cell
17 ±1 according to which polynomial gives a weaker lower bound over α
18 ±1 according to which polynomial gives a weaker upper bound over α
19 number of constraint polynomials known to be sign-invariant in cell
20 number of constraint polynomials not known to be sign-invariant in cell
21 ±1 based on hashes of p1 and p2

There is an existing hand-crafted heuristic used in Tarski, called “BPC”,
against which we will compare our learned heuristic. It is expressible in terms
of features zero, one and three of the feature vector F for polynomials p1 and
p2, but we describe it more directly here as follows: if exactly one of p1 and
p2 has total degree one, choose it; otherwise choose the polynomial with lower
level, breaking ties by choosing the polynomial with smaller “spsize”. The first
feature in our feature vector was included so that other, less capable, learning
paradigms (like decision lists) would still be expressive enough to learn BPC.
For neural nets we could have replaced features zero and one with tdeg p1 and
tdeg p2, which would have been more natural, but these same feature vectors
were used for experiments outside of the scope of this paper.
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For our learning model, we use a feed forward neural network that takes a
dense network with 22 inputs and dimension 22 × 22 × 5 × 5 × 1 with ReLU
activation functions for internal nodes and sigmoid activation function for the
output node. This network, seeded with random weights initially, represents the
“current” choice ordering predicate.

Learning proceeded in rounds. In each round the neural net is used as the
choice ordering predicate for producing data, as described in the previous section.
From this training data, a new set of network weights was learned (starting from
a different set of random weights), and this newly learned function served as the
“current” choice ordering predicate for the subsequent round. This process ran
for 10 rounds, producing the initial (randomly weighted) choice ordering predi-
cate, and 10 learned predicates. Figure 2 shows the performance of the learned
heuristics. Also shown is performance of “BPC” the hand-crafted heuristic that
is used by default in our implementation of NuCAD. The performance does not
smoothly increase from one iteration to the next, nor show the classic “U” shape
often seen in machine learning, which warrants further investigation. The neural
net resulting from the 6th iteration, “NN06”, is the best performing network on
these test problems.

Fig. 2. This plot shows the performance of the trained neural networks for each round
on the test data, which consists of problems generated randomly in the same way as
the training data. Though difficult to see, “NN06”, the network generated after the 6th
round performs the best. Also shown is the performance of “BPC” the hand-crafted
heuristic that is used by default in our implementation of NuCAD.
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The crucial question is whether our learned choice ordering predicate trans-
fers to problems that aren’t of the same “shape” as the problems on which we
trained. To evaluate this, we considered two data sets. The first is a set of 4,235
problems from [3]. These problems are conjunctions of strict inequalities derived
from a subset of problems in the SMT-LIB QF NRA collection by simplifica-
tions and case splittings. Essentially, in these problems “simplification” alone
was insufficient, so we need to turn to a solver, like NuCAD. They are a natural
choice for us to test with, as they meet the requirements of the current NuCAD
implementation, namely that they are conjunctions of strict inequalities. None of
these problems are terribly difficult—almost all have three or fewer variables—so
we also produced a more challenging set consisting of 1,000 randomly generated
four variable problems, generated in a different way than our test problems:
each formula consisted of x > 0 ∧ y > 0 and nine conditions generated in
Maple as randpoly([x,y,z,w],degree=2,terms=4,coeffs=rand(-9..9))>0.
These examples differ from the training data in a number of ways. They have
four variables instead of five. The only linear constraints are x > 0 and y > 0,
whereas the training examples had five linear constraints, each of which was a
multi-term constraint, like −8v+7w+7x > 0, that ties variables together. Finally
the eight non-linear constraints in the training data were generated differently.
Figure 3 shows the performance of BPC, NN06, and NN00, a randomly weighted
neural net, which serves to show the performance of a random choice function.
These experiments indicate that what gets learned from the training set does
transfer over to other, unrelated input formulas. Obviously more testing on a
wider range of inputs is required to be very confident of this, but these results
are promising.

Fig. 3. Plots showing the performance of the hand-crafted heuristic BPC, the randomly
weighted network NN00, and NN06, the trained network that performed best on the
original set of training data. The left plot shows performance for the problem set
stemming from the SMT-LIB, and the right plot shows performance on the four-variable
randomly generated problem set. Note that NN00 failed to solve 51 problems within
the 60 s timeout, BPC failed 13 problems within the 60 s timeout, and NN06 failed to
solve two problems within the 60 s timeout.
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6 Future Work and Acknowledgments

There are several avenues for future work that should be considered. The first is
to improve upon what we’ve already done by training on a broader range of input
formula “shapes”—different numbers of variables, different distributions for the
constraints within formula, etc.—and by evaluating on a wider range of data sets,
especially more “real” rather than randomly generated problems. The second
avenue is to apply the basic approach outlined here to different problems, for
example to the problem of selecting a variable ordering in Cylindrical Algebraic
Decomposition, considered in [7], or choosing pivots in parametric Gaussian
elimination.
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ported by National Science Foundation Grant 1525896.

References

1. Barrett, C., Fontaine, P., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB) (2016). www.SMT-LIB.org

2. Brown, C.W.: Open non-uniform cylindrical algebraic decompositions. In: Proceed-
ings of the 2015 ACM on International Symposium on Symbolic and Algebraic
Computation, ISSAC 2015, pp. 85–92. ACM, New York (2015)

3. Brown, C.W., Vale-Enriquez, F.: From simplification to a partial theory solver for
non-linear real polynomial constraints. J. Symb. Comput. 100, 72–101 (2020). Sym-
bolic Computation and Satisfiability Checking

4. Chollet, F., et al.: Keras (2015). https://keras.io
5. Florescu, D., England, M.: Algorithmically generating new algebraic features of

polynomial systems for machine learning (2019)
6. Huang, Z., England, M., Davenport, J.H., Paulson, L.C.: Using machine learning

to decide when to precondition cylindrical algebraic decomposition with Groebner
bases. In: 18th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC 2016), pp. 45–52, September 2016

7. Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L.C., Bridge, J.:
Applying machine learning to the problem of choosing a heuristic to select the
variable ordering for cylindrical algebraic decomposition. In: Watt, S.M., Davenport,
J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543,
pp. 92–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08434-3 8

8. Kobayashi, M., Iwane, H., Matsuzaki, T., Anai, H.: Efficient subformula orders
for real quantifier elimination of non-prenex formulas. In: Kotsireas, I.S., Rump,
S.M., Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 236–251. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-32859-1 21

9. Vale-Enriquez, F., Brown, C.W.: Polynomial constraints and unsat cores in Tarski.
In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS,
vol. 10931, pp. 466–474. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96418-8 55

www.SMT-LIB.org
https://keras.io
https://doi.org/10.1007/978-3-319-08434-3_8
https://doi.org/10.1007/978-3-319-32859-1_21
https://doi.org/10.1007/978-3-319-96418-8_55
https://doi.org/10.1007/978-3-319-96418-8_55


A Machine Learning Based Software
Pipeline to Pick the Variable Ordering
for Algorithms with Polynomial Inputs

Dorian Florescu and Matthew England(B)

Faculty of Engineering, Environment and Computing,
Coventry University, Coventry CV1 5FB, UK

fdorian88@gmail.com, Matthew.England@coventry.ac.uk

Abstract. We are interested in the application of Machine Learning
(ML) technology to improve mathematical software. It may seem that
the probabilistic nature of ML tools would invalidate the exact results
prized by such software, however, the algorithms which underpin the
software often come with a range of choices which are good candidates
for ML application. We refer to choices which have no effect on the math-
ematical correctness of the software, but do impact its performance.

In the past we experimented with one such choice: the variable order-
ing to use when building a Cylindrical Algebraic Decomposition (CAD).
We used the Python library Scikit-Learn (sklearn) to experiment with
different ML models, and developed new techniques for feature genera-
tion and hyper-parameter selection.

These techniques could easily be adapted for making decisions other
than our immediate application of CAD variable ordering. Hence in this
paper we present a software pipeline to use sklearn to pick the variable
ordering for an algorithm that acts on a polynomial system. The code
described is freely available online.

Keywords: Machine learning · Scikit-learn · Mathematical software ·
Cylindrical algebraic decomposition · Variable ordering

1 Introduction and Context

Mathematical Software, i.e. tools for effectively computing mathematical objects,
is a broad discipline: the objects in question may be expressions such as poly-
nomials or logical formulae, algebraic structures such as groups, or even mathe-
matical theorems and their proofs. In recent years there have been examples of
software that acts on such objects being improved through the use of artificial
intelligence techniques. For example, [21] uses a Monte-Carlo tree search to find
the representation of polynomials that are most efficient to evaluate; [22] uses a
machine learnt branching heuristic in a SAT-solver for formulae in Boolean logic;
[18] uses pattern matching to determine whether a pair of elements from a speci-
fied group are conjugate; and [1] uses deep neural networks for premise selection
c© Springer Nature Switzerland AG 2020
A. M. Bigatti et al. (Eds.): ICMS 2020, LNCS 12097, pp. 302–311, 2020.
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in an automated theorem prover. See the survey article [12] in the proceedings
of ICMS 2018 for more examples.

Machine Learning (ML), that is statistical techniques to give computer sys-
tems the ability to learn rules from data, may seem unsuitable for use in mathe-
matical software since ML tools can only offer probabilistic guidance, when such
software prizes exactness. However, none of the examples above risked the cor-
rectness of the end-result in their software. They all used ML techniques to make
non-critical choices or guide searches: the decisions of the ML carried no risk to
correctness, but did offer substantial increases in computational efficiency. All
mathematical software, no matter the mathematical domain, will likely involve
such choices, and our thesis is that in many cases an ML technique could make
a better choice than a human user, so-called magic constants [6], or a traditional
human-designed heuristic.

Contribution and Outline

In Sect. 2 we briefly survey our recent work applying ML to improve an algorithm
in a computer algebra system which acts on sets of polynomials. We describe how
we proposed a more appropriate definition of model accuracy and used this to
improve the selection of hyper-parameters for ML models; and a new technique
for identifying features of the input polynomials suitable for ML.

These advances can be applied beyond our immediate application: the fea-
ture identification to any situation where the input is a set of polynomials, and
the hyper-parameter selection to any situation where we are seeking to take a
choice that minimises a computation time. Hence we saw value in packaging our
techniques into a software pipeline so that they may be used more widely. Here,
by pipeline we refer to a succession of computing tasks that can be run as one
task. The software is freely available as a Zenodo repository here: https://doi.
org/10.5281/zenodo.3731703

We describe the software pipeline and its functionality in Sect. 3. Then in
Sect. 4 we describe its application on a dataset we had not previously studied.

2 Brief Survey of Our Recent Work

Our recent work has been using ML to select the variable ordering to use for
calculating a cylindrical algebraic decomposition relative to a set of polynomials.

2.1 Cylindrical Algebraic Decomposition

A Cylindrical Algebraic Decomposition (CAD) is a decomposition of ordered
R

n space into cells arranged cylindrically, meaning the projections of cells all
lie within cylinders over a CAD of a lower dimensional space. All these cells
are (semi)-algebraic meaning each can be described with a finite sequence of
polynomial constraints. A CAD is produced for either a set of polynomials, or
a logical formula whose atoms are polynomial constraints. It may be used to

https://doi.org/10.5281/zenodo.3731703
https://doi.org/10.5281/zenodo.3731703
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analyse these objects by finding a finite sample of points to query and thus
understand the behaviour over all Rn. The most important application of CAD
is to perform Quantifier Elimination (QE) over the reals. I.e. given a quantified
formula, a CAD may be used to find an equivalent quantifier free formula1.

CAD was introduced in 1975 [10] and is still an active area of research.
The collection [7] summarises the work up to the mid-90s while the background
section of [13], for example, includes a summary of progress since. QE has numer-
ous applications in science [2], engineering [25], and even the social sciences [23].

CAD requires an ordering of the variables. QE imposes that the ordering
matches the quantification of variables, but variables in blocks of the same quan-
tifier and the free variables can be swapped2. The ordering can have a great effect
on the time/memory use of CAD, the number of cells, and even the underly-
ing complexity [5]. Human designed heuristics have been developed to make the
choice [3,4,11,14] and are used in most implementations.

The first application of ML to the problem was in 2014 when a support vector
machine was trained to choose which of these heuristics to follow [19,20]. The
machine learned choice did significantly better than any one heuristic overall.

2.2 Recent Work on ML for CAD Variable Ordering

The present authors revisited these experiments in [15] but this time using ML
to predict the ordering directly (because there were many problems where none
of the human-made heuristics made good choices and although the number of
orderings increases exponentially, the current scope of CAD application means
this is not restrictive). We also explored a more diverse selection of ML methods
available in the Python library scikit-learn (sklearn) [24]. All the models
tested outperformed the human made heuristics.

The ML models learn not from the polynomials directly, but from features:
properties which evaluate to a floating point number for a specific polynomial
set. In [20] and [15] only a handful of features were used (measures of degree
and frequency of occurrence for variables). In [16] we developed a new feature
generation procedure which used combinations of basic functions (average, sign,
maximum) evaluated on the degrees of the variables in either one polynomial
or the whole system. This allowed for substantially more features and improved
the performance of all ML models. The new features could be used for any ML
application where the input is a set of polynomials.

The natural metric for judging a CAD variable ordering is the corresponding
CAD runtime: in the work above models were trained to pick the ordering which
minimises this for a given input. However, this meant the training did not dis-
tinguish between any non-optimal ordering even though the difference between
these could be huge. This led us to a new definition of accuracy in [17]: to picking
an ordering which leads to a runtime within x% of the minimum possible.

1 E.g. QE would transform ∃x, ax2+bx+c = 0∧a �= 0 into the equivalent b2−4ac ≥ 0.
2 In Footnote 1 we must decompose (x, a, b, c)-space with x last, but the other variables

can be in any order. Using a ≺ b ≺ c requires 27 cells but c ≺ b ≺ a requires 115.
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We then wrote a new version of the sklearn procedure which uses cross-
validation to select model hyper-parameters to minimise the total CAD runtime
of its choices, rather than maximise the number of times the minimal ordering is
chosen. This also improved the performance of all ML models in the experiments
of [17]. The new definition and procedure are suitable for any situation where
we are seeking to take a choice that minimises a computation time.

3 Software Pipeline

The input to our pipeline is given by two distinct datasets used for training and
testing, respectively. An individual entry in the data set is a set of polynomials
that represent an input to a symbolic computation algorithms, in our case CAD.
The output is a corresponding sequence of variable ordering suggestions for each
set of polynomials in the testing dataset.

The pipeline is fully automated: it generates and uses the CAD runtimes
for each set of polynomials under each admissible variable ordering; uses the
runtimes from the training dataset to select the hyper-parameters with cross-
validation and tune the parameters of the model; and evaluates the performance
of those classifiers (along with some other heuristics for the problem) for the sets
of polynomials in the testing dataset.

We describe these key steps in the pipeline below. Each of the numbered
stages can be individually marked for execution or not in a run of the pipeline
(avoiding duplication of existing computation). The code for this pipeline, writ-
ten all in Python, is freely available at: https://doi.org/10.5281/zenodo.3731703.

I. Generating a Model Using the Training Dataset

(a) Measuring the CAD Runtimes: The CAD routine is run for each set
of polynomials in the training dataset. The runtimes for all possible variable
orderings are stored in a different file for each set of polynomials. If the runtime
exceeds a pre-defined timeout, the value of the timeout is stored instead.

(b) Polynomial Data Parsing: The training dataset is first converted to a
format that is easier to process into features. For this purpose, we chose the
format given by the terms() method from the Poly class located in the sympy
package for symbolic computation in Python.

Here, each monomial is defined by a tuple, containing another tuple with
the degrees of each variable, and a value defining the monomial coefficient. The
polynomials are then defined by lists of monomials given in this format, and a
point in the training dataset consists of a list of polynomials. For example, one
entry in the dataset is the set {235x1 + 42x2

2, 2x
2
1x3 − 1} which is represented as

[[((1, 0, 0), 235) , ((0, 2, 0), 42)] , [((2, 0, 1), 2) , ((0, 0, 0),−1)]] .

All the data points in the training dataset are then collected into a single
file called terms train.txt after being placed into this format. Subsequently,

https://doi.org/10.5281/zenodo.3731703
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the file y train.txt is created storing the index of the variable ordering with
the minimum computing times for each set of polynomials, using the runtimes
measured in Step I(a).

(c) Feature Generation: Here each set of polynomials in the training dataset
is processed into a fixed length sequence of floating point numbers, called fea-
tures, which are the actual data used to train the ML models in sklearn. This
is done with the following steps:

i. Raw feature generation
We systematically consider applying all meaningful combinations of the func-
tions average, sign, maximum, and sum to polynomials with a given number
of variables. This generates a large set of feature descriptions as proposed
in [16]. The new format used to store the data described above allows for
an easy evaluation of these features. An example of computing such features
is given in Fig. 1. In [16] we described how the method provides 1728 pos-
sible features for polynomials constructed with three variables for example.
This step generates the full set of feature descriptions, saved in a file called
features descriptions.txt, and the corresponding values of the features
on the training dataset, saved in a file called features train raw.txt.

Fig. 1. Generating feature avp (maxm (dm,p
1 )) from data stored in the format of Section

I(b). Here dm,p
1 denotes the degree of variable x1 in polynomial number p and monomial

number m, and avp denotes the average function computed for all polynomials [16].

ii. Feature simplification
After computing the numerical values of the features in Step I(c)i this step
will remove those features that are constant or repetitive for the dataset in
question, as described in [16]. The descriptions of the remaining features are
saved in a new file called features descriptions final.txt.

iii. Final feature generation
The final set of features is computed by evaluating the descriptions in
features descriptions final.txt for the training dataset. Even though
these were already evaluated in Step I(c)i we repeat the evaluation for the
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final set of feature descriptions. This is to allow the possibility of users enter-
ing alternative features manually and skipping steps i and ii. As noted above,
any of the named steps in the pipeline can be selected or skipped for execu-
tion in a given run. The final values of the features are saved in a new file
called features train.txt.

(d) Machine Learning Classifier Training:

i. Fitting the model hyperparameters by cross-validation
The pipeline can apply four of the most commonly used deterministic ML
models (see [15] for details), using the implementations in sklearn [24].

– The K-Nearest Neighbors (KNN) classifier
– The Multi-Layer Perceptron (MLP) classifier
– The Decision Tree (DT) classifier
– The Support Vector Machine (SVM) classifier

Of course, additional models in sklearn and its extensions could be included
with relative ease. The pipeline can use two different methods for fitting
the hyperparameters via a cross-validation procedure on the training set, as
described in [17]:

– Standard cross-validation: maximizing the prediction accuracy (i.e. the
number of times the model picks the optimum variable ordering).

– Time-based cross-validation: minimizing the CAD runtime (i.e. the time
taken to compute CADs with the model’s choices).

Both methods tune the hyperparameters with cross-validation using the rou-
tine RandomizedSearchCV from the sklearn package in Python (the latter an
adapted version we wrote). The cross-validation results (i.e. choice of hyper-
parameters) are saved in a file hyperpar D** ** T** **.txt, where D** **
is the date and T** ** denotes the time when the file was generated.

ii. Fitting the parameters
The parameters of each model are subsequently fitted using the standard
sklearn algorithms for each chosen set of hyperparameters. These are saved
in a file called par D** ** T** **.txt.

II. Predicting the CAD Variable Orderings Using the Testing
Dataset

The models in Step I are then evaluated according to their choices of variable
orderings for the sets of polynomials in the testing dataset. The steps below are
listed without detailed description as they are performed similarly to Step I for
the testing dataset.

(a) Polynomial Data Parsing: The values generated are saved in a new file
called terms test.txt.
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(b) Feature Generation: The final set of features is computed by evaluating
the descriptions in Step I(b)ii for the testing dataset. These values are saved in
a new file called features test.txt.

(c) Predictions Using ML: Predictions on the testing dataset are generated
using the model computed in Step I(c). The model is run with the data in Step
II(a)ii, and the predictions are stored in a file called y D** ** T** ** test.txt.

(d) Predictions Using Human-Made Heuristics: In our prior papers [15–
17] we compared the performance of the ML models with the human-designed
heuristics in [4] and [11]. For details on how these are applied see [15]. Their
choices are saved in two files entitled y brown test.txt and y sotd test.txt,
respectively.

(e) Comparative Results: Finally, in order to compare the performance of
the proposed pipeline, we must measure the actual CAD runtimes on the testing
dataset. The results of the comparison is saved in a file with the template:
comparative results D** ** T** **.txt.

Adapting the Pipeline to Other Algorithms

The pipeline above was developed for choosing the variable ordering for the CAD
implementation in Maple’s Regular Chains Library [8,9]. But it could be used
to pick the variable ordering for other procedures which take sets of polynomials
as input by changing the calls to CAD in Steps I(a) and II(e) to that of another
implementation/algorithm. Step II(d) would also have to be edited to call an
appropriate competing heuristic.

4 Application of Pipeline to New Dataset

The pipeline described in the previous section makes it easy for us to repeat our
past experiments (described in Sect. 2) for a new dataset. All that is needed to
do is replace the files storing the polynomials and run the pipeline.

To demonstrate this we test the proposed pipeline on a new dataset of ran-
domly generated polynomials. We are not suggesting that it is appropriate to
test classifiers on random data: we simply mean to demonstrate the ease with
which the experiments in [15–17] that originally took many man-hours can be
repeated with just a single code execution.

The randomly generated parameters are: the degrees of the three variables
in each polynomial term, the coefficient of each term, the number of terms in a
polynomial and the number of polynomials in a set. The means and standard
deviations of these parameters were extracted from the problems in the nlsat
dataset3, which was used in our previous work [15] so that the dataset is of a
3 https://cs.nyu.edu/∼dejan/nonlinear/.

https://cs.nyu.edu/~dejan/nonlinear/
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Table 1. The comparative performance of DT, KNN, MLP, SVM, the Brown and sotd
heuristics on the testing data for our randomly generated dataset. A random prediction,
and the virtual best (VB) and virtual worst (VW) predictions are also included.

DT KNN MLP SVM Brown sotd rand VB VW

Prediction time (s) 4.8 · e−4 0.68 2.8 · e−4 0.99 53.01 15 819

Total time (s) 6 548 6 610 6 548 6 565 6 614 22 313 16 479 5 610 25 461

comparable scale. We generated 7500 sets of random polynomials, where 5000
were used for training, and the remaining 2500 for testing.

The results of the proposed processing pipeline, including the comparison
with the existing human-made heuristics are given in Table 1. The prediction
time is the time taken for the classifier or heuristic to make its predictions for
the problems in the training set. The total time adds to this the time for the
actual CAD computations using the suggested orderings. We do not report the
training time of the ML as this is a cost paid only once in advance. The virtual
solvers are those which always make the best/worst choice for a problem (in zero
prediction time) and are useful to show the range of possible outcomes. We note
that further details on our experimental methodology are given in [15–17].

As with the tests on the original dataset [15,16] the ML classifiers outper-
formed the human made heuristics, but for this dataset the difference compared
to the Brown heuristic was marginal. We used a lower CAD timeout which may
benefit the Brown heuristic as past analysis shows that when it makes sub-
optimal choices these tend to be much worse. We also note that the relative
performance of the Brown heuristic fell significantly when used on problems
with more than three variables in [17]. The results for the sotd heuristic are bad
because it had a particularly long prediction time on this random dataset. We
note that there is scope to parallelize sotd which may make it more competitive.

5 Conclusions

We presented our software pipeline for training and testing ML classifiers that
select the variable ordering to use for CAD, and described the results of an
experiment applying it to a new dataset.

The purpose of the experiment in Sect. 4 was to demonstrate that the pipeline
can easily train classifiers that are competitive on a new dataset with almost no
additional human effort, at least for a dataset of a similar scale (we note that
the code is designed to work on higher degree polynomials but has only been
tested on datasets of 3 and 4 variables so far). The pipeline makes it possible
for a user to easily tune the CAD variable ordering choice classifiers to their
particular application area.

Further, with only a little modification, as noted at the end of Sect. 3, the
pipeline could be used to select the variable ordering for alternative algorithms
that act on sets of polynomials and require a variable ordering. We thus expect
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the pipeline to be a useful basis for future research and plan to experiment with
its use on such alternative algorithms in the near future.
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Abstract. We present the Mathematical Functions Grimoire (Fun-
Grim), a website and database of formulas and theorems for special
functions. We also discuss the symbolic computation library used as the
backend and main development tool for FunGrim, and the Grim for-
mula language used in these projects to represent mathematical content
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1 Introduction

The Mathematical Functions Grimoire1 (FunGrim, http://fungrim.org/) is an
open source library of formulas, theorems and data for mathematical functions.
It currently contains around 2600 entries. As one example entry, the modular
transformation law of the Eisenstein series G2k on the upper half-plane H is
given in http://fungrim.org/entry/0b5b04/ as follows:

G2k

(
aτ + b

cτ + d

)
= (cτ + d)2kG2k(τ)

Assumptions: k ∈ Z≥2 and τ ∈ H and
(

a b
c d

)
∈ SL2(Z)

FunGrim stores entries as symbolic expressions with metadata, in this case:

Entry(ID("0b5b04"),

Formula(Equal(EisensteinG(2*k, (a*tau+b)/(c*tau+d)),

(c*tau+d)**(2*k) * EisensteinG(2*k, tau))),

Variables(k, tau, a, b, c, d),

Assumptions(And(Element(k, ZZGreaterEqual(2)), Element(tau, HH),

Element(Matrix2x2(a, b, c, d), SL2Z))))

1 A grimoire is a book of magic formulas.

c© Springer Nature Switzerland AG 2020
A. M. Bigatti et al. (Eds.): ICMS 2020, LNCS 12097, pp. 315–323, 2020.
https://doi.org/10.1007/978-3-030-52200-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52200-1_31&domain=pdf
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Formulas are fully quantified (assumptions give conditions for the free vari-
ables such that the formula is valid) and context-free (symbols have a globally
consistent meaning), giving precise statements of mathematical theorems. The
metadata may also include bibliographical references. Being easily computer-
readable, the database may be used for automatic term rewriting in symbolic
algorithms. This short paper discusses the semantic representation of mathemat-
ics in FunGrim and the underlying software.

2 Related Projects

FunGrim is in part a software project and in part a reference work for mathemat-
ical functions in the tradition of Abramowitz and Stegun [1] but with updated
content and a modern interface. There are many such efforts, notably the NIST
Digital Library of Mathematical Functions (DLMF) [4] and the Wolfram Func-
tions Site (WFS) [10], which have two rather different approaches:

– DLMF uses LaTeX together with prose for its content. Since many formulas
depend on implicit context and LaTeX is presentation-oriented rather than
semantic (although DLMF adds semantic extensions to LaTeX to alleviate
this problem), the content is not fully computer-readable and can also some-
times be ambiguous to human readers. DLMF is edited for conciseness, giving
an overview of the main concepts and omitting in-depth content.

– WFS represents the content as context-free symbolic expressions written in
the Wolfram Language. The formulas can be parsed by Mathematica, whose
evaluation semantics provide concrete meaning. Most formulas are computer-
generated, sometimes exhaustively (for example, WFS lists tens of thousands
of transformations between elementary functions and around 200,000 formu-
las for special cases of hypergeometric functions).

FunGrim uses a similar approach to that of WFS, but does not depend on the
proprietary Wolfram technology. Indeed, one of the central reasons for starting
FunGrim is that both DLMF and WFS are not open source (though freely
accessible). Another central idea behind FunGrim is to provide even stronger
semantic guarantees; this aspect is discussed in a later section.

Part of the motivation is also to offer complementary content: in the author’s
experience, the DLMF and WFS are strong in some areas and weak in others.
For example, both have minimal coverage of some important functions of num-
ber theory and they cover inequalities far less extensively than equalities. At
this time, FunGrim has perhaps 10% of the content needed for a good general
reference on special functions, but as proof as concept, it has detailed content
for some previously-neglected topics. The reader may compare the following:

– http://fungrim.org/topic/Modular lambda function/ versus
http://functions.wolfram.com/EllipticFunctions/ModularLambda/ versus
formulas for λ(τ) in https://dlmf.nist.gov/23.15 + https://dlmf.nist.gov/23.17.

http://fungrim.org/topic/Modular_lambda_function/
http://functions.wolfram.com/EllipticFunctions/ModularLambda/
https://dlmf.nist.gov/23.15
https://dlmf.nist.gov/23.17
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– http://fungrim.org/topic/Barnes G-function/ versus
https://dlmf.nist.gov/5.17. (The Barnes G-function is not covered in WFS.)

Most FunGrim content is hand-written so far; adding computer-generated
entries in the same fashion as WFS is a future possibility.

We mention three other related projects:

– FunGrim shares many goals with the NIST Digital Repository of Mathemat-
ical Formulas (DRMF) [3], a companion project to the DLMF. We will not
attempt to compare the projects in depth since DRMF is not fully developed,
but we mention one important difference: DRMF represents formulas using
a semantic form of LaTeX which is hard to translate perfectly to symbolic
expressions, whereas FunGrim (like WFS) uses symbolic expressions as the
source representation and generates LaTeX automatically for presentation.

– The Dynamic Dictionary of Mathematical Functions (DDMF) [2] generates
information about mathematical functions algorithmically, starting ab initio
only from the defining differential equation of each function. This has many
advantages: it enables a high degree of reliability (human error is removed
from the equation, so to speak), the presentation is uniform, and it is easy
to add new functions. The downside is that the approach is limited to a
restricted class of properties for a restricted class of functions.

– The LMFDB [7] is a large database of L-functions, modular forms, and related
objects. The content largely consists of data tables and does not include “free-
form” symbolic formulas and theorems.

3 Grim Formula Language

Grim is the symbolic mathematical language used in FunGrim.2 Grim is designed
to be easy to write and parse and to be embeddable within a host programming
language such as Python, Julia or JavaScript using the host language’s native
syntax (similar to SymPy [8]). The reference implementation is Pygrim, a Python
library which implements Grim-to-LaTeX conversion and symbolic evaluation of
Grim expressions. Formulas are converted to HTML using KaTeX for display on
the FunGrim website; Pygrim also provides hooks to show Grim expressions as
LaTeX-rendered formulas in Jupyter notebooks. The FunGrim database itself is
currently part of the Pygrim source code.3

Grim has a minimal core language, similar to Lisp S-expressions and Wol-
fram language M-expressions. The only data structure is an expression tree com-
posed of function calls f(x, y, ...) and atoms (integer literals, string literals,
alphanumerical symbol names). For example, Mul(2, Add(a, b)) represents
2(a + b). For convenience, Pygrim uses operator overloading in Python so that
the same expression may be written more simply as 2*(a+b).

2 Documentation of the Grim language is available at http://fungrim.org/grim/.
3 Pygrim is currently in early development and does not have an official release. The

source code is publicly available at https://github.com/fredrik-johansson/fungrim.

http://fungrim.org/topic/Barnes_G-function/
https://dlmf.nist.gov/5.17
http://fungrim.org/grim/
https://github.com/fredrik-johansson/fungrim
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On top of the core language, Grim provides a vocabulary of hundreds of
builtin symbols (For, Exists, Matrix, Sin, Integral, etc.) for variable-binding,
logical operations, structures, mathematical functions, calculus operations, etc.

The following dummy formula is a more elaborate example:

Where(Sum(1/f(n), For(n, -N, N), NotEqual(n, 0)), Def(f(n),

Cases(Tuple(n**2, CongruentMod(n, 0, 3)), Tuple(1, Otherwise))))

N∑
n=−N
n�=0

1
f(n)

where f(n) =

{
n2, n ≡ 0 (mod 3)
1, otherwise

Grim can be used both as a mathematical markup language and as a simple
functional programming language. Its design is deliberately constrained:

– Grim is not intended to be a typesetting language: the Grim-to-LaTeX con-
verter takes care of most presentation details automatically. (The results are
not always perfect, and Grim does allow including typesetting hints where
the default rendering is inadequate.)

– Grim is not intended to be a general-purpose programming language. Unlike
full-blown Lisp-like programming languages, Grim is not meant to be used to
manipulate symbolic expressions from within, and it lacks concrete data struc-
tures for programming, being mainly concerned with representing immutable
mathematical objects. Grim is rather meant to be embedded in a host pro-
gramming language where the host language can be used to traverse expres-
sion trees or implement complex algorithms.

Grim formulas entered in Pygrim are preserved verbatim until explicitly eval-
uated. This contrasts with most computer algebra systems, which automatically
convert expressions to “canonical” form. For example, SymPy automatically
rewrites 2(b + a) as 2a + 2b (distributing the numerical coefficient and sorting
the terms). SymPy’s behavior can be overridden with a special “hold” command,
but this can be a hassle to use and might not be recognized by all functions.

4 Evaluation Semantics

FunGrim and the Grim language have the following fundamental semantic rules:

– Every mathematical object or operator must have an unambiguous inter-
pretation, which cannot vary with context. In principle, every syntactically
valid constant expression should represent a definitive mathematical object
(possibly the special object undefined when a function is evaluated outside
its domain of definition). This means, for example, that multivalued func-
tions have fixed branch cuts (analytic continuation must be expressed explic-
itly), and removable singularities do not cancel automatically. Many sym-
bols which have an overloaded meaning in standard mathematical notation
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require disambiguation; for example, Grim provides separate SequenceLimit,
RealLimit and ComplexLimit operators to express limx→c f(x), depending
on whether the set of approach is meant as Z, R or C.

– The standard logical and set operators (= and ∈, etc.) compare identity of
mathematical objects, not equivalence under morphisms. The mathematical
universe is constructed to have few, orthogonal “types”: for example, the
integer 1 and the complex number 1 are the same object, with Z ⊂ C.

– Symbolic evaluation (rewriting an expression as a simpler expression, e.g.
2 + 2 → 4) must preserve the exact value of the input expression. Formu-
las containing free variables are implicitly quantified over the whole universe
unless explicit assumptions are provided, and may only be rewritten in ways
that preserve the value for all admissible values of the free variables. For
example, yx → xy is not a valid rewrite operation a priori since the uni-
verse contains noncommutative objects such as matrices, but it is valid when
quantified with assumptions that make x and y commute, e.g. x, y ∈ C.

These semantics are stronger than in most symbolic computing environments.
Computer algebra systems traditionally ignore “exceptional cases” when rewrit-
ing expressions. For example, many computer algebra systems automatically
simplify x/x to 1, ignoring the exceptional case x = 0 where a division by zero
occurs.4 A more extreme example is to blindly simplify

√
x2 → x (invalid for

negative numbers), and more generally to ignore branch cuts or complex values.
Indeed, one section of the Wolfram Mathematica documentation helpfully

warns users: “The answer might not be valid for certain exceptional values of
the parameters.” As a concrete illustration, we can use Mathematica to “prove”
that e = 2 by evaluating the hypergeometric function 1F1(a, b, 1) at a = b = −1
using two different sequences of substitutions:

– 1F1(a, b, 1) → [a = b] → e → [b = −1] → e
– 1F1(a, b, 1) → [a = −1] → 1 − 1

b → [b = −1] → 2

The contradiction happens because Mathematica uses two different rules to
rewrite the 1F1 function, and the rules are inconsistent with each other in the
exceptional case a = b ∈ Z≤0).5 (SymPy has the same issue.)

Our aspiration for the Grim formula language and the FunGrim database is
to make such contradictions impossible through strong semantics and pedantic
use of assumptions. This should aid human understanding (a user can inspect
the source code of a formula and look up the definitions of the symbols) and help
support symbolic computation, automated testing, and possibly formal theorem-
proving efforts. Perfect consistency is particularly important for working with
multivariate functions, where corner cases can be extremely difficult to spot.
4 The simplification is valid if x is viewed as a formal indeterminate generating C[x]

rather than a free variable representing a complex number. The point remains that
some computer algebra systems overload variables to serve both purposes, and this
ambiguity is a frequent source of bugs. In Grim, the distinction is explicit.

5 In WFS, corresponding contradictory formulas are http://functions.wolfram.com/
07.20.03.0002.01 and http://functions.wolfram.com/07.20.03.0118.01.

http://functions.wolfram.com/07.20.03.0002.01
http://functions.wolfram.com/07.20.03.0002.01
http://functions.wolfram.com/07.20.03.0118.01
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In reality, eliminating inconsistencies is an asymptotic goal: there are cer-
tainly present and future mathematical errors in the FunGrim database and
bugs in the Pygrim reference implementation. We believe that such errors can
be minimized through randomized testing (ideally combined with formal verifi-
cation in the future, where such methods are applicable).

5 Evaluation with Pygrim

Pygrim has rudimentary support for evaluating and simplifying Grim expres-
sions. It is able to perform basic logical and arithmetic operations, expand spe-
cial cases of mathematical functions, perform simple domain inferences, partially
simplify symbolic arithmetic expressions, evaluate and compare algebraic num-
bers using an exact implementation of Q arithmetic, and compare real or complex
numbers using Arb enclosures [5] (only comparisons of unequal numbers can be
decided in this way; equal numbers have overlapping enclosures and can only be
compared conclusively when an algebraic or symbolic simplification is possible).

Calling the .eval() method in Pygrim returns an evaluated expression:

>>> Element(Pi, SetMinus(OpenInterval(3, 4), QQ)).eval()

True_

>>> Zeros(x**5 - x**4 - 4*x**3 + 4*x**2 + 2*x - 2,

... ForElement(x, CC), Greater(Re(x), 0)).eval()

...

Set(Sqrt(Add(2, Sqrt(2))), 1, Sqrt(Sub(2, Sqrt(2))))

>>> ((DedekindEta(1 + Sqrt(-1)) / Gamma(Div(5, 4))) ** 12).eval()

Div(-4096, Pow(Pi, 9))

To simplify formulas involving free variables, the user needs to supply suffi-
cient assumptions:

>>> (x / x).eval()

Div(x, x)

>>> (x / x).eval(assumptions=Element(x, CC))

Div(x, x)

>>> (x / x).eval(assumptions=And(Element(x, CC), NotEqual(x, 0)))

1

>>> Sin(Pi * n).eval()

Sin(Mul(Pi, n))

>>> Sin(Pi * n).eval(assumptions=Element(n, ZZ))

0

In some cases, Pygrim can output conditional expressions: for example, the
evaluation 2F1(1, 1, 2, x) = − log(1 − x)/x is made with an explicit case distinc-
tion for the removable singularity at x = 0 (the singularity at x = 1 is consistent
with log(0) = −∞ and does not require a case distinction).
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>>> f = Hypergeometric2F1(1, 1, 2, x); f.eval()

Hypergeometric2F1(1, 1, 2, x) # no domain -- no evaluation

>>> f.eval(assumptions=Element(x, CC))

Cases(Tuple(Div(Neg(Log(Sub(1, x))), x), NotEqual(x, 0)),

Tuple(1, Equal(x, 0))) # separate case for x = 0

>>> f.eval(assumptions=Element(x, SetMinus(CC, Set(0))))

Div(Neg(Log(Sub(1, x))), x) # no case distinction needed

Pygrim is not a complete computer algebra system; its features are tailored
to developing FunGrim and exploring special function identities. Users may also
find it interesting as a symbolic interface to Arb (the .n() method returns an
arbitrary-precision enclosure of a constant expression).

6 Testing Formulas

To test a formula P (x1, . . . , xn) with free variables x1, . . . , xn and corresponding
assumptions Q(x1, . . . , xn), we generate pseudorandom values x1, . . . , xn sat-
isfying Q(x1, . . . , xn), and for each such assignment we evaluate the constant
expression P (x1, . . . , xn). If P evaluates to False, the test fails (a counterexam-
ple has been found). If P evaluates to True or cannot be simplified to True/False
(the truth value is unknown), the test instance passes.

As an example, we test P (x) = [
√

x2 = x] with assumptions Q(x) = [x ∈ R]:

>>> formula = Equal(Sqrt(x**2), x)

>>> formula.test(variables=[x], assumptions=Element(x, RR))

{x: 0} ... True

{x: Div(1, 2)} ... True

{x: Sqrt(2)} ... True

{x: Pi} ... True

{x: 1} ... True

{x: Neg(Div(1, 2))} ... False

The test passes for x = 0, 1
2 ,

√
2, π, 1, but x = − 1

2 is a counterexample. With
correct assumptions x ∈ C ∧ (Re(x) > 0 ∨ (Re(x) = 0 ∧ Im(x) > 0)), it passes:

>>> formula.test(variables=[x], assumptions=And(Element(x, CC),

... Or(Greater(Re(x), 0), And(Equal(Re(x), 0), Greater(Im(x), 0)))))

...

Passed 91 instances (77 True, 14 Unknown, 0 False)

It currently takes two CPU hours to test the FunGrim database with up to
100 test instances (assignments x1, . . . , xn that satisfy the assumptions) per
entry. We estimate that around 75% of the entries are effectively testable. For
the other 25%, either the symbolic evaluation code in Pygrim is not powerful
enough to generate any admissible values (for which Q is provably True), or P
contains constructs for which Pygrim does not yet support symbolic or numeri-
cal evaluation. For 30% of the entries, Pygrim is able to symbolically simplify P
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to True in at least one test instance (in the majority of cases, it is only able to
check consistency via Arb). We aim to improve all these statistics in the future.

The test strategy is effective: the first run to test the FunGrim database
found errors in 24 out of 2618 entries. Of these, 4 were mathematically wrong
formulas (for example, the Bernoulli number inequality (−1)nB2n+2 > 0 had the
prefactor negated as (−1)n+1), 6 had incorrect assumptions (for example, the
Lambert W-function identity W0(x log(x)) = log(x) was given with assumptions
x ∈ [−e−1,∞) instead of the correct x ∈ [e−1,∞)); the remaining errors were
due to incorrect metadata or improperly constructed symbolic expressions.

A similar number of additional errors were found and corrected after improv-
ing Pygrim’s evaluation code further. An error rate near 5% seems plausible for
untested formulas entered by hand (by this author!). We did not specifically
search for errors in the literature used as reference material for FunGrim; how-
ever, many corrections were naturally made when the entries were first added,
prior to the development of the test framework.

7 Formulas as Rewrite Rules

The FunGrim database can be used for term rewriting, most easily by applying
a specific entry as a rewrite rule. For example, FunGrim entry ad6c1c is the
trigonometric identity sin(a) sin(b) = 1

2 (cos (a − b) − cos (a + b)):

>>> (Sin(2) * Sin(Sqrt(2))).rewrite_fungrim("ad6c1c")

Div(Sub(Cos(Sub(2, Sqrt(2))), Cos(Add(2, Sqrt(2)))), 2)

This depends on pattern matching. To ensure correctness, a match is only
made if parameters in the input expression satisfy the assumptions for free vari-
ables listed in the FunGrim entry. The pattern matching is currently imple-
mented naively and will fail to match expressions that are mathematically equiv-
alent but structurally different (better implementations are possible [6]).

A rather interesting idea is to search the whole database automatically for
rules to apply to simplify a given formula. We have used this successfully on toy
examples, but much more work is needed to develop a useful general-purpose
simplification engine; this would require stronger pattern matching as well as
heuristics for applying sequences of rewrite rules. Rewriting using a database is
perhaps most likely to be successful for specific tasks and in combination with
advanced hand-written search heuristics (or heuristics generated via machine
learning). A prominent example of the hand-written approach is Rubi [9] which
uses a decision tree of thousands of rewrite rules to simplify indefinite integrals.
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Abstract. The Open Research Knowledge Graph (ORKG) provides
machine-actionable access to scholarly literature that habitually is writ-
ten in prose. Following the FAIR principles, the ORKG makes tradi-
tional, human-coded knowledge findable, accessible, interoperable, and
reusable in a structured manner in accordance with the Linked Open
Data paradigm. At the moment, in ORKG papers are described man-
ually, but in the long run the semantic depth of the literature at scale
needs automation. Operational Research is a suitable test case for this
vision because the mathematical field and, hence, its publication habits
are highly structured: A mundane problem is formulated as a mathemat-
ical model, solved or approximated numerically, and evaluated systemat-
ically. We study the existing literature with respect to the Assembly Line
Balancing Problem and derive a semantic description in accordance with
the ORKG. Eventually, selected papers are ingested to test the semantic
description and refine it further.

Keywords: Knowledge graph · Mathematical knowledge
management · Operational research literature · Operations research
literature

1 Introduction

Today’s scholarly communication behaviour and logistics is still defined by cen-
turies of printed document culture. Although there is progress by transforming
journals into digital article repositories that, in principle, provide access to the
content at all times and irrespective of a researcher’s location, the nature of an
article itself has not changed: The investigated hypothesis, the used method-
ology, the experiment, and the outcome are written in prosaic form; the final
document is usually published for no other purposes than reading, seemingly
optimised for human cognition.

The Open Research Knowledge Graph (ORKG) [8] questions the “paradigm
of document-centric scholarly information communication” [2]. It aims at trans-
forming research literature into structured, machine-actionable data in order to
c© Springer Nature Switzerland AG 2020
A. M. Bigatti et al. (Eds.): ICMS 2020, LNCS 12097, pp. 327–334, 2020.
https://doi.org/10.1007/978-3-030-52200-1_32
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represent and express information through semantically rich, interlinked knowl-
edge graphs. Similarly to DBpedia, a prosaic knowledge source is transformed
according to Linked Open Data standards [1]. Users are enabled to compare
papers, discover patterns across methods or disciplines, or get a structured
overview in a chosen context.

The main use cases of the ORKG’s beta version1 are article search, a machine-
actionable, semantic representation, and especially paper comparison as intro-
duced in [10]. To date, it indexes about 400 research articles. More than half are
assigned to the subject cluster Physical Sciences & Mathematics.

1.1 Operational Research as a Use Case from Mathematics

The structural science mathematics provides particularly suitable content for
the ORKG: Its published prose is clear and dense from a linguistic point of
view. However, as [4] have shown the high degree of abstraction in mathematics
makes a conceptualisation consisting of the categories process, method, mate-
rial, and data, which have been adapted to empirical sciences, inexpedient. The
ORKG is not limited to this model but its feature, the abstract annotator, has
been shown to be out of its depth with regard to mathematics. The applied
mathematical science of operational research (OR) combines the rather abstract
fields of combinatorics and numerical analysis with mundane research questions
from economics. In favour of this study, we narrowed the topic down to the
optimisation problem of Assembly Line Balancing. Its name derives from mass
production where the intricate logistics for paced manufacturing assembly lines
have to be organised efficiently, i.e. optimally. The Assembly Line Balancing
Problem (ALBP) and its variations are not only well-covered in scholarly lit-
erature but also provide an abundance of structured overviews of exact and
heuristic algorithms or benchmarks thereof. Thus, the research literature about
ALBPs is an appropriate use case for the ORKG. In a first step, we choose liter-
ature reviews and articles that suggest minor optimisations to existing methods,
which are compared to each other. Then, we suggest a semantic description that
covers the content of the collection. It will serve as a prospective template for
the ORKG. Furthermore, we will look for elements and patterns in the papers
that are suited for automatic extraction in the future. Third, we ingest those
literature reviews or articles that are published under an eligible licence, i.e.
a CC-BY, CC-BY-SA, or arXiv’s Non-exclusive licence to distribute into the
ORKG. During this intellectual step, we will test and refine the proposed data
model. Finally, we consider the representations and comparisons of the scholarly
contributions in the ORKG and discuss its added value for researchers.

2 A Template for the Assembly Line Balancing Problem

Scholarly research of the ALBP can be traced back to the 1960s when it was
shown to be a NP-hard combinatorial optimisation problem [7]. Since then scien-
tists work on the sophistication of the mathematical model, exact algorithms for
1 https://orkg.org/.

https://orkg.org/
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defined special cases or heuristic algorithms in order to find optimal solutions in
adequate time. Recently, several reviews have been published to benchmark the
stated mathematical model, exemplary data scenarios [5] or performances of the
selected methods. We chose to set a focus on these reviews at first, but most pub-
lications were not openly accessible or free to be reused in the ORKG according
to their respective licences. Eventually, articles introducing a new model state-
ment for the ALBP or a heuristic to solve it were also considered. The collection
comprised 28 topically relevant papers of which eight provide openly accessi-
ble preprints on arXiv2. These were manually ingested into the ORKG with
varying degrees of thoroughness (cf. Sect. 2.2): From the single statement of the
research problem to detailed descriptions of the algorithms and data sets that
were applied3.

The collection of research articles was organised in the open source reference
management system Zotero4, also including documented experiences of the whole
process.

2.1 A Semantic Model to Reflect ALBP Research

The ORKG’s performance depends on a data model that is well-tuned to the
content it is supposed to represent. That means expert knowledge in both the
considered field and data modelling is required. Authors who possess the domain
knowledge may not be able to squeeze it into the RDF scheme of the ORKG
because there is no or little expertise in knowledge engineering. Data curators
on the other hand may struggle with the proper in-depth indexing of the latest
research knowledge. The ORKG’s flexibility is an advantage because it allows
almost limitless adaptions to describing papers by reusing existing concepts
(mostly entries by former contributors) and relations but also by introducing
new ones. The default schema stems from the comprehension of empirical sci-
ences: A method is applied to a defined research question. This application causes
a process that involves material to be observed or changed. Meanwhile observa-
tional data is collected and eventually evaluated in order to prove or disprove a
hypothesis constructed prior to the experiment.

In operational research in general and with respect to the ALBP in particular,
there is also a rather standardised development that can be represented by a
data model: The practical problem is formulated as a mathematical model or
programme. Depending on the choice of the model, there is a toolbox of direct
or heuristic algorithms to yield an exact (or approximate) solution to the model.
Usually, in scholarly literature either a new variant of the ALBP is stated and the
derived model is traced back to established methods or a new or rather slightly
modified method is tested against known methods to solve the same problem.
Thus, we conclude that most research papers about the ALBP are comprised of
the elements listed in Table 1.
2 arxiv.org.
3 An exemplary comparison of three selected papers can be found at https://www.
orkg.org/orkg/comparison?contributions=R12018,R12059,R12193.

4 https://www.zotero.org/.

https://arxiv.org/
https://www.orkg.org/orkg/comparison?contributions=R12018,R12059,R12193
https://www.orkg.org/orkg/comparison?contributions=R12018,R12059,R12193
https://www.zotero.org/
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Table 1. A semantic model translating the OR research process into the ORKG
scheme. The arrows connote a hierarchical descent, the asterisks connote a newly intro-
duced property.

OR Term ORKG Properties Example

Name of the optimisation problem Has research ALBP

Model/programme Has approach → MIP

Has model∗

Exact method Has method → Branch & Bound

Has exact solution method∗

Heuristic Has method → Tabu search

Has heuristic∗

Instance data set Has instance∗ Roszieg

Programming language Has implementation → C, GCC 3.4.0

Has programming language∗

System specifications Has implementation → Athlon 64 X2 4400

Has system specification∗

Performance Has performance∗ O(n logn), 0,2 ms

Has Performance contains the results that depend on the method that is
applied, the graph the algorithm is applied on, and the specification of the imple-
mentation and system. Thus, it is semantically interlinked with other elements.

If the suggested structure in Table 1 proves valid, it can be cast into a topic-
specific template on its own in order to facilitate highly consistent knowledge
graphs of further relevant papers independent of the curator.

2.2 Entering ALBP Literature into the ORKG

After careful study and annotation of the eight papers from arXiv, we entered
the data into the ORKG. In the first of three steps of the procedure, the formal
metadata can be automatically ingested via DOI5 or a BibTeX entry. There is
an additional fallback option to enter the formal metadata manually. Since the
preprint repository arXiv does not provide a DOI for its documents, we chose
BibTeX entries for the import.

In the second step, the document is classified by subject. The ORKG’s spec-
ified, hierarchical classification does currently not allow for several attributions.
Hence, when assigning a single subject, a multidisciplinary field such as opera-
tional research is prone to inconsistencies with respect to its main focus in the
respective paper or the curator. We chose to consistently assign the collection to
Applied Mathematics → Numerical Analysis & Computation, although several
other closely related fields would have been adequate as well, for example Engi-
neering → Operations Research (and more). However, OR being predominantly
5 https://www.doi.org/.

https://www.doi.org/
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a multidisciplinary subject involving mathematics, computer science, and eco-
nomics, engineering seemed too misleading for a semantically sound assignment.

The curator may choose between several templates; the template called
Research Problem is closest to the data model as suggested in Sect. 2.1. The
template provides the field Has research where keywords can be chosen from
the suggested list or entered manually. Each entry is added to a bag-of-words
and, thus, will be provided for autocompletion further on. This unrestricted
freedom leads to a number of challenges. We struggled with typos (e.g. ‘optim-
sation’) as it was not immediately obvious how to correct these. Moreover, the
same word was included in its American and British form, respectively, i.e. ‘opti-
mization’ and ‘optimisation’. We plan to add some functionality to ORKG to
semi-automatically interlink such surface forms as they are describing the same
concept. An underlying controlled vocabulary with an additional feature to enter
free text would avoid wreaking havoc in the bag-of-words. A user entering ‘opti-
misation problem’ may thus be faced with four versions of which one contains a
typo and two are identical.

Further predefined fields are Has evaluation, Has approach, Has method, Has
implementation, Has result, Has value, and Has metric. Not all of these semantic
relations make sense for describing a mathematical paper, or rather, they lack
distinctive accuracy, e.g. when does an approach become a method; or do we
mean the outcome of the algorithm or its performance when stating the result?
Yet, the relevant semantic units of an OR paper can be transferred and amended
easily.

Each field contains further fields in turn that may be annotated and indexed.
And as a last resort, new relations can be introduced on every hierarchical level.
The OR terms introduced in Table 1 were mapped by employing existing rela-
tions and introducing new ones (marked by an asterisk in the table). After leaving
the hierarchical top level which is edited in the main browser window, every edit
thereafter is conducted in a small overlay window. So while modelling, there is
no visual aid where the description process is hierarchically taking place at the
moment. However, we made it a habit to describe the top level first, save the
description, such that the visualisation of the graph is available. From there,
refinement is more accessible.

The eight papers are not consistently described in this fashion because each
paper gave reason to a refinement iteration of previous graphs. Thus, after each
paper, there are (or should be) well-documented, retroactive modifications to
each graph representing a paper. Again, this inevitably leads to inconsistencies
even among papers that are ingested by the same curator. Another critical obser-
vation is our choice of terms: General denominations such as Has model, Has
instance, or Has performance could mean completely different things in another
context. Even between OR researchers these terms might not be semantically
tight enough to guarantee frictionless communication. Hence, the relations are
prone to cross-contextual use that might make the otherwise carefully created
model fuzzy.
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In theory, a paper can be thoroughly represented by modelling each sentence
as Linked Data, at arbitrary granularity. Again, in agreement with another field
expert from biochemistry, we concluded: when to finish the indexing procedure
is at the margin of discretion. Of course, the ORKG’s crowd-sourcing philosophy
allows and even demands for further refinement by others or at a later stage.
Thus, a knowledge graph is never truly complete, especially if dynamic data
such as citations will be taken into account in the future. An exemplary paper
description is shown in Fig. 1.

Fig. 1. Visualisation of a paper’s knowledge graph.

3 Conclusion and Further Work

OR is a suitable test case for the ORKG, because the topic itself and the appro-
priate publication habits are highly structured and can easily be mapped to the
default data schema already provided by the ORKG. However, on the basis of
this study we tackle several general and subject-specific further improvements
in the future:

– Creating checklists and guidelines to define both minimum requirements and
a gold standard for a paper’s knowledge graph.
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– Underlying a general, and for templates a subject-specific, vocabulary with
moderated editing workflows. Also, the resources should be displayed alpha-
betically or by assigned relevance instead of a last-in-first-out fashion in the
tabular view.

– Linear user guidance for generating a skeleton data set and visual support for
the refinement.

– Similarly described papers with identical or semantically close descriptions
should yield similarity.

– The selected papers met our expectations of being highly structured and easy
to parse for the defined information patterns. They are well suited for a pilot
study of automated extraction for information framing a basic knowledge
graph. Automated indexing where scientific literature is indexed with terms
of well-maintained thesauri like the German Authority File or automatically
classified with the Mathematics Subject Classification (MSC)6 may provide
a first draft to be ingested into the ORKG [9].

– The aforementioned MSC would provide the obvious classification backbone
for contributions from the mathematical sphere. The extremely confined
example of the ALBP suggests that this would not only call for 63 template
schemas for each top level class but at least 5.000 refinements accounting for
MSC’s subclasses. However, with this first experiment we cannot estimate the
structural synergies between classes. We rather expect, given a wisely chosen
sample that future work might result in a manageable number of mathemati-
cal templates with few extensions for the subclass topics. An example are the
MSC classes 44 and 45 covering ordinary and partial differential equations,
respectively. Even if they turn out to differ minutely in their ORKG template,
these differences will be provided for in other templates, e.g. (numerical) anal-
ysis.

– Since the ORKG follows a crowdsourcing philosophy, seeking support from
and collaborate with further projects in the field of mathematical knowl-
edge engineering guarantees high quality and integrity of the data and
its community-curated modelling. Critical exchange with the researchers of
MathDataHub is established [3], but projects like swMATH, a database for
mathematical software, should be considered more closely [6].
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Abstract. Scientists increasingly rely on computer algebra systems
and digital mathematical libraries to compute, validate, or experiment
with mathematical formulae. However, the focus in digital mathematical
libraries and scientific documents often lies more on an accurate pre-
sentation of the formulae rather than providing uniform access to the
semantic information. But, presentational math formats do not provide
exclusive access to the underlying semantic meanings. One has to derive
the semantic information from the context. As a consequence, the work-
flow of experimenting and publishing in the Sciences often includes time-
consuming, error-prone manual conversions between presentational and
computational math formats. As a contribution to improve this workflow,
we propose a context-sensitive approach that extracts semantic informa-
tion from a given context, embeds the information into the given input,
and converts the semantically enhanced expressions to computer algebra
systems.

Keywords: Presentation to computation · Translation · Computer
algebra systems · Mathematical information retrieval

1 Introduction

The document preparation system LATEX has become a de facto standard1 for
writing scientific papers in STEM disciplines over the last 30 years [1]. Numerous
other editors, such as the editor for Wikipedia articles2 or Microsoft Word [11],
entirely or partially support LATEX expressions. LATEX provides a syntax for
printing mathematical formulae that is similar to the way a person would write
1 https://www.latex-project.org/ [Accessed 03-24-2020].
2 https://en.wikipedia.org/wiki/Help:Displaying a formula [Accessed 03-24-2020].
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the math by hand. Thus, LATEX focuses on the presentation of formulae but does
not explicitly carry their semantic information.

For a human reader, LATEX’s focus on formulae presentation is typically
not a problem since readers can deduce the semantics of the formulae from
the surrounding context and the reader’s prior knowledge. Consider the Euler-
Mascheroni constant represented by the Greek letter γ. Without further informa-
tion, γ is just a Greek letter, often used to describe this mathematical constant
but can also be used to represent curve parametrization, among other things.
Based on the context, a human reader can interpret γ correctly and connect
the letter with the semantic background. Computational systems, however, have
issues identifying the correct semantics of formulae if the formulae do not provide
enough context. For example, in LATEX, γ is represented as \gamma.

Explicitly given semantic information in mathematical expressions becomes
increasingly relevant in computational mathematics. Nowadays, many scientists
also compute formulae from their papers [2,3]. They evaluate specific values,
create diagrams, and search or calculate practical solutions. Computer Algebra
Systems (CAS) are software tools that allow for such computations and visu-
alizations of mathematical expressions. CAS create their representations (here-
after referred to as CAS input) with the intent of creating an input syntax
that is intuitive and easy to type. CAS input must be unambiguous to CAS.
Otherwise, a CAS is unable to perform computations and visualizations. CAS
input is not standardized; instead, each CAS provider has created its own syntax
that differs from other systems [10]. The workflow of writing a paper, therefore,
leads to the problem of continually transforming mathematical expressions from
LATEX to CAS input and back. Since LATEX does not carry the semantic infor-
mation explicitly, the CAS is unable to parse complex input directly. Thus, the
author must perform the transformation manually, which is time-consuming and
error-prone.

Transformations between CAS input and LATEX are not straightforward and
require substantial knowledge of the internal processes for the CAS [10]. Table 1
illustrates the differences in representations exemplified for a Jacobi polyno-
mial [5]. The expression in generic LATEX, i.e., general LATEX without custom
macros, sharply differs from the semantically unique terms in CAS inputs. To
overcome the issue of missing explicit semantic information in LATEX expres-
sions, the National Institute of Standards and Technology (NIST) has developed
a unique set of semantic LATEX macros. NIST uses these macros for the Digital
Library of Mathematical Functions (DLMF) [13] and the Digital Repository of
Mathematical Formulae (DRMF) [4]. Both DLMF and DRMF macros enhance
the search capabilities on the DLMF and DRMF websites and establish info
boxes that provide short descriptions of the symbols, link to their definitions, and
further literature. Table 1 shows that the semantically enhanced LATEX is closer
to the syntax supported by a CAS. In the following, we will refer to seman-
tically enhanced LATEX as semantic LATEX, and general LATEX expressions as
generic LATEX, respectively. In the following, we will propose a context-sensitive
approach to convert the generic LATEX expressions to CAS. The approach will
take advantage of existing tools and datasets.
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Table 1. Representations of a Jacobi polynomial in different systems.

snoitatneserpeRsmetsyS
Rendered Version P

(α,β)
n (cos(aΘ))

Generic LATEX P_n^{(\alpha,\beta)}(\cos(a\Theta))

Semantic LATEX \JacobiP{\alpha}{\beta}{n}@{\cos@{a\Theta}}

CAS Maple JacobiP(n,alpha,beta,cos(a*Theta))

CAS Mathematica JacobiP[n,\[Alpha],\[Beta],Cos[a \[CapitalTheta]]]

1.1 Related Work

To the best of our knowledge, there is no system nor a theoretical concept yet
that allows for translating LATEX expressions to CAS and taking the context of
the expression into account. Existing tools, such as the inbuild import/export
functions of CAS, ignore context information and are therefore limited to simple,
unambiguous cases (e.g., \frac{1}{2} or \cos x) [10].

We previously developed a system called LACAST, that converts semantic
LATEX expressions to the CAS Maple and Mathematica [10]. LACAST is essen-
tially a rule-based engine that performs translations based on manually crafted
patterns. The engine follows a modular concept, which allows for extending the
system without additional coding, e.g., by extending or creating new lists of
translation patterns. Cohl et al. [8] have shown that LACAST is able to identify
errors in digital mathematical libraries and CAS. However, LACAST also does not
consider the context of math formulae, since the necessary semantic information
is encoded in the semantic macros. Moreover, the use of the semantic LATEX
dialect is currently limited to the DLMF and DRMF. Hence, the next step is to
extend the system to work with generic LATEX inputs.

2 Towards a Context-Sensitive Approach

LACAST performs the translation based on parse trees, which are generated by
the Part-of-Math (POM) tagger [7]. Similar to the Part-of-Speech (POS) tag-
gers in natural language processing (NLP), the POM tagger also tags tokens with
additional information. In its current state, the POM tagger does not consider
context information. Thus, the parse tree generated by the POM tagger should
not be misunderstood as a syntax tree of equations. Since semantic LATEX is an
extension of generic LATEX, the POM tagger is also able to parse semantic LATEX
expressions. The POM tagger stores the information about tokens in a manually
crafted database, called lexicons. The lexicons contain possible semantic infor-
mation for symbols. For example, the lexicon entry for ζ contains twelve different
meanings [7,10]. Three of the twelve entries are special functions: the Weierstrass
zeta function, the Riemann zeta function, and the Hurwitz zeta function. Each
meaning also provides information about the structure of the function. For exam-
ple, the Hurwitz zeta function ζ(s, a) has two arguments. The first argument is
a complex variable, while the second is a complex parameter.
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The semantic information of a mathematical formula is either given in the
context or can be derived from the structure of the formula (e.g., when the
notation of an expression is unambiguous). The lexicons of the POM tagger and
the definitions of the semantic LATEX macros provide a database of standardized
notations of mathematical functions. Hence, this knowledgebase can be used to
derive semantic information from the structure of an expression. To analyze the
textual context, we can use the Mathematical Language Processor (MLP) [6].
The MLP aims to extract the textual descriptions, called definiens, from the
context of a mathematical expression. The MLP focuses on single mathematical
symbols, named identifiers. An identifier might also include the subscript since
a symbol with a subscript is often interpreted as one mathematical object. The
basic approach of the MLP is that candidates of definiens and identifiers are
connected when the distance between them is small, i.e., fewer words appear
between the identifier and its definiens. The score also considers the distance of
identifier-definiens pairs to complex mathematical expressions that contain the
identifier. Schubotz et al. [6] also presented ten patterns of phrases, defined by
domain experts, that introduce a new pair of definiens and identifier, such as
<identifier> (is|are) <definiens>. The authors reported the precision of
p = 0.4860 and the recall of r = 0.2806 for their new machine learning approach.
The concept of the MLP is implemented in a publicly available Java framework
called mathosphere3.

For the Jacobi polynomial from Table 1, P
(α,β)
n (x), mathosphere extracts

four identifier Pn, α, β, and x rather than groups of tokens, such as P
(α,β)
n (x).

Without considering P
(α,β)
n (x) as one mathematical object, it is challenging to

identify α, β, and n as parameters and x as the variable. We addressed this issue
in [12] by identifying so-called Mathematical Objects of Interest (MOI). MOI
represent meaningful groups of tokens rather than single identifiers. In [12], we
developed a search engine to find MOI by a given textual query. For example, the
top-3 results for the search query ‘Jacobi Polynomial ’ were P

(α,β)
n (x), P

(α,β)
n , and

β > −1 (which is one of the constraints of Jacobi polynomials). The search engine
allows for linking mathematical expressions with textual queries. The retrieved
MOIs are based on the distributions of mathematical formulae in the corpus of
arXiv4 and zbMATH5. Hence, they represent common relevant expressions for
a given textual query.

3 Conversion and Evaluation Pipeline

Figure 1 illustrates the pipeline of the proposed system to convert generic LATEX
expressions to CAS. The figure contains numbered badges that represent the
different steps in the system. Steps 2–5 represent the conversion pipeline, while
steps 1, 6, and 7 are different ways to evaluate the system. Mathosphere [6] will

3 https://github.com/ag-gipp/mathosphere [Accessed 03-24-2020].
4 https://arxiv.org [Accessed 03-24-2020].
5 https://zbmath.org [Accessed 03-24-2020].

https://github.com/ag-gipp/mathosphere
https://arxiv.org
https://zbmath.org
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Fig. 1. Pipeline of the proposed context-sensitive conversion process. The project
extracts semantic information from real-world documents (2), enhances the mathe-
matical input expressions with the extracted information (3–4), and transforms the
math into CAS representations in the final step (6–7).

serve as the baseline. With MathMLben [9], a benchmark for MathML, we tested
the performance of several LATEX to MathML conversion tools. MathMLben pro-
vides a manually crafted semantically annotated dataset for 300 mathematical
formulae. We evaluate mathosphere on this annotated dataset in step 1a.

The conversion pipeline starts with mathosphere (step 2a) to extract
identifier-definiens pairs from the given context. Since mathosphere only con-
siders single identifiers, we will use the developed search engine in [12] to derive
MOIs for the extracted definiens (step 2b). The identified MOIs can be matched
against complex expressions in the context. Therefore, we end up with MOI-
definiens pairs in step 2c, where the scores are calculated based on the relevance
of MOIs and the original scores generated by mathosphere.

Once we extracted the MOI-definiens pairs, we replace the generic LATEX
expressions by their semantic counterparts (steps 3–4). This can be done based
on the lexicons of the POM tagger and the DLMF Macro definition files, which
both provide information about the argument layout of functions. This infor-
mation is important to identify fixed notations, i.e., P in P

(α,β)
n (x), and the

variables/parameters, i.e., α, β, n, and x in P
(α,β)
n (x). After these steps, we

have the option to evaluate the system in three different ways.
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First, we improve the conversion process of LATEX to MathML conversion
tools by considering the extracted MOI-definiens pairs. Thus, we can measure
the improvement of considering the context against the results in the MathML-
ben benchmark tests in [9], which did not use the information from the context.
Second, we evaluate the generated semantic LATEX expressions on the DLMF
dataset. The DLMF is internally written in semantic LATEX, but provides exter-
nal access to the generic LATEX version of each formula. Hence, the DLMF can
be interpreted as a manually annotated dataset of LATEX expressions. Third, we
use the evaluation system of LACAST [8], which uses CAS to check if a translated
equation is still valid after the translation system. The latter is useful to compare
the performance of the conversion from LATEX to CAS with manually (seman-
tic LATEX from the DLMF) and automatically (proposed pipeline) annotated
semantic information.

4 Conclusion

We presented a novel context-sensitive approach to convert mathematical LATEX
expressions to CAS. The proposed pipeline based on existing tools and datasets,
such as MLP [6], POM tagger [7], LACAST [10], and MathMLben [9]. Realizing
the proposed pipeline is part of our current research.
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Abstract. We discuss design aspects of the open-source Basic Polyno-
mial Algebra Subprograms (BPAS) library. We build on standard C++11
template mechanisms to improve ease of use and accessibility. The BPAS
computer algebra library looks to enable end-users to do work more easily
and efficiently through optimized C code wrapped in an object-oriented
and user-friendly C++ interface. Two key aspects of this interface to be
discussed are the encoding of the algebraic hierarchy as a class hierarchy
and a mechanism to support the combination of algebraic types as a new
type. Existing libraries, if encoding the algebraic hierarchy at all, use run-
time value checks to determine if two elements belong to the same ring
for an incorrect false sense of type safety in an otherwise statically-typed
language. On the contrary, our template metaprogramming mechanism
provides true compile-time type safety and compile-time code generation.
The details of this mechanism are transparent to end-users, providing a
very natural interface for an end-user mathematician.

Keywords: Algebraic hierarchy · C++ templates · Type safety

1 Introduction

In the world of computer algebra software there are two main categories. The first
is computer algebra systems, self-contained environments providing an interac-
tive user-interface and usually their own programming language. Custom inter-
preters and languages yield powerful functionality and expressibility, however,
obstacles remain. For a basic user, they must learn yet another programming
language. For an advanced user, interoperability and obtaining fine control of
hardware resources is challenging. Axiom [12] is a classic example of such a
system. Moreover, these problems are exacerbated by systems being proprietary
and closed-source, such as Maple [5], Magma [6], and Mathematica [18].
The second category is computer algebra libraries, which add support for sym-
bolic computation to an existing programming environment. Since such libraries
extend existing environments, and are often free (as in free software), they can
have a lower barrier to entry and better accessibility. Some examples are NTL
[14], FLINT [11], and CoCoALib [1].
c© Springer Nature Switzerland AG 2020
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The Basic Polynomial Algebra Subprograms (BPAS) library [2] is a free and
open-source computer algebra library for polynomial algebra, and is the sub-
ject of this paper. The BPAS library looks to improve the efficiency of end-users
through both usability and performance, providing high-performance code along
with an interface which incorporates some of the expressibility of a custom com-
puter algebra system. The library’s core is implemented in C for performance and
wrapped in a C++ interface for usability. Like any computer algebra software,
functionality is highly important, yet usability makes the software practical.

The implementation of BPAS is focused on performance for modern com-
puter architectures by optimizing for data locality and through the effective
use of parallelization. These techniques have been applied to our implementa-
tions of multi-dimensional FFTs, real root isolation, dense modular polynomial
arithmetic, and dense integer polynomial multiplications; see [7] and references
therein. Recent works have extended BPAS to include arithmetic over large
prime fields [8] and sparse multivariate polynomial arithmetic [3]. Experimenta-
tion presented in those works indicates that the performance of BPAS surpasses
other existing works. All of this functionality culminates into a high-performance
and parallel polynomial system solver (currently under development) based on
the theory of regular chains [4]. However, in the present discussion, we look to
describe our efforts to make these existing high-performance implementations
accessible and practical through user-interface design and improved usability.

Usability includes many things: ease of use in interfaces, syntax, and seman-
tics; mathematical correctness; accessibility and extensibility for end-users; and
maintainability for developers. The BPAS library follows two driving principles
in its design. The first is to encapsulate as much complexity as possible on the
developer’s side, where the developer’s intimacy with the code allows her to bear
such a burden, in order to leave the end-user’s code as clean as possible. The
second can be described by a common phrase in user experience design: “make
it hard to do the wrong thing.”

The object-oriented nature of C++, along with its automatic memory man-
agement, provides a very natural environment for a user-interface. While C++
is notoriously difficulty to learn, it remains ubiquitous in industry and scien-
tific computing, making it reasonably accessible, and particularly so, if com-
plexity can be well-encapsualted. Moreover, C++ being a compiled, statically-
and strongly-typed language, further aids the end-user. The compilation process
itself provides the user with checks on their code before it even runs. Meanwhile,
statically-typed languages have been shown to be beneficial to usability, and
decreases development time, compared to dynamic languages [10].

In the present work, we discuss our early efforts to use C++ metaprogram-
ming to aid in the usability of our interface, for which we hope that BPAS will
be easily adopted by other practitioners. Our discussion focuses on two aspects
relating to type safety and expressibility. First, encoding the algebraic hierar-
chy as a class hierarchy is discussed in Sect. 2. Doing so while maintaining type
safety is difficult; syntactically valid operations may yield mathematically invalid
operations between incompatible rings. Secondly, we examine a mechanism to
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automatically adjust the definition of a class created from the composition of
other classes. In particular, we look at polynomials adapting to different ground
rings in Sect. 3. Our techniques are discussed and contrasted with existing works
in Sect. 4. We conclude and present future work in Section 5.

We note that our techniques are not entirely new; the underlying template
metaprogramming constructs have been adopted into the C++ standard since as
early as C++11. Nevertheless, it remains useful to explore how these advanced
concepts can be employed in the context of computer algebra. For details on
C++, templates, and their capabilities, see [17].

2 Algebraic Hierarchy as a Class Hierarchy

In object-oriented programming (OOP) classes form a fundamental part of soft-
ware design. A class defines a type and how all instances of that type should
behave. Through a class hierarchy, or a tree of inheritance, classes have increas-
ing specialization while maintaining all of the functionality of their superclasses.
The benefits of a class hierarchy are numerous, including providing a common
interface to which all objects should adhere, minimizing code duplication, facil-
itating incremental design, and of course, polymorphism. All of this provides
better maintainability of the software and a more natural use of the classes
themselves since they directly model their real-world counterparts.

For algebraic structures, the chain of class inclusions naturally admits an
encoding as a class hierarchy. For example, the class inclusions of some rings1,

field ⊂ Euclidean domain ⊂ GCD domain ⊂ integral domain ⊂ ring,

would allow rings as the topmost superclass with an incremental design down
to fields. Let us call such an encoding of algebraic types as a class hierarchy the
algebraic class hierarchy. Particularly, we look to implement this hierarchy as
a collection of abstract classes for the benefits of code re-use and enforcing a
uniform interface across all concrete types (e.g. integers, rational numbers).

Unfortunately, an encoding of algebraic structures as classes in this way yields
incorrect type safety. Through polymorphism, two objects sharing a superclass
interact and behave in a uniform way, without regard to if they are mathemat-
ically compatible. Consider the C++ function declaration which could appear
in the topmost Ring class: Ring add(Ring x, Ring y). By polymorphism, any
two Ring objects could be passed to this function to produce valid code, but,
if those objects are from mathematically incompatible rings, this will certainly
lead to errors. A more robust system is needed to facilitate strict type safety.

Some libraries (see Sect. 4) solve this by checking runtime values to ensure
compatibility, throwing an error otherwise. Instead, our main idea is to define
the interface of a ring (or a particular subclass, e.g. integral domain) in such
a way where a function declaration itself restricts its parameters to be from
compatible rings.

1 Throughout this paper we assume commutative rings with unity.
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In our algebraic class hierarchy, function declarations themselves restrict their
parameters to be from compatible rings through the use of template parameters.
Particularly, our algebraic class hierarchy is a hierarchy of class templates with
the template parameter Derived. This template parameter identifies the con-
crete ring(s) with which the one being defined is compatible. In this design, all
abstract classes in the hierarchy have the template parameter Derived while
the concrete classes instantiate this template parameter of their superclass with
that concrete class itself being defined. This yields the C++ idiom, the Curiously
Recurring Template Pattern (CRTP) (see [17, Ch. 16]).

While CRTP has several functions, it is used here to facilitate static poly-
morphism. That is to say, it forces function resolution to occur at compile-time,
instead of dynamically at runtime via virtual tables, providing compile-time
errors for incompatibility. For example, the topmost Ring class would become
a class template Ring<Derived> and the add function would become Derived
add(Derived x, Derived y).

This process works from a key observation when considering simultaneously
templates and class inheritance: different template parameter specializations pro-
duce distinct classes and thus distinct inheritance hierarchies. Recall that tem-
plate instantiation in fact causes code generation at compile-time. Thus, each
concrete ring defined via CRTP exists in its own class hierarchy, and dynamic
dispatch via polymorphism cannot cause runtime inconsistencies. This concept is
illustrated in Listing 1 where the abstract classes for ring and Euclidean domain
are shown, as well as the concrete class for the ring of integers. The Integer
class uses template instantiation where it defines its superclass, specializing the
Derived parameter of BPASEuclideanDomain to be Integer, following CRTP.

1 template <class Derived >
2 class BPASRing;
3

4 //... more abstract algebraic classes , e.g. BPASGCDDomain , BPASField
5

6 template <class Derived >
7 class BPASEuclideanDomain : BPASGCDDomain <Derived >;
8

9 class Integer : BPASEuclideanDomain <Integer >;

Listing 1. A subset of the algebraic class hierarchy, using CRTP to declare the integers.

While this design provides the desired compile-time type safety, it may be
viewed as too strict, since each concrete ring exists in an independent class hier-
archy. For example, arithmetic between integers and rational numbers would be
restricted. More generally, natural ring embeddings are neglected. However, we
can make use of implicit conversion in C++. Where a constructor exists for
type A taking an object of type B as input, an object of type B can be implic-
itly converted to an object of type A, and used anywhere type A is expected. A
RationalNumber constructor taking an Integer parameter thus allows for auto-
matic and implicit conversion, allowing integers to be used as rational numbers.

This design via implicit conversion can be seen as giving permission for
compatibility between rings by defining such a constructor. Errors are then
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discovered at compile-time where implicit conversion fails. This is in opposi-
tion to other methods which act in a restrictive manner, allowing everything at
compile-time and then throwing errors at runtime if incompatible.

We now look to extend the abstract algebraic class hierarchy to include poly-
nomials. For genericity and a common structured interface we wish to parameter-
ize polynomials by their ground ring. This can be accomplished with a secondary
template parameter in addition to the Derived parameter already included by
virtue of polynomials existing in the algebraic class hierarchy (see Listing 2).

However, this is not fully sufficient, and two issues arise. First, while poly-
nomials do form a ring, they often form more specialized algebraic structures,
e.g. a GCD domain. We leave that discussion to Sect. 3. Secondly, there is no
restriction on the types which can be used as template parameter specializations
of the ground ring. Any type used as a specialization of this ground ring tem-
plate parameter should truly be a ring and not any other nonsense type. Recall,
it should be hard to do the wrong thing.

Leveraging another template trick along with multiple inheritance, this can
be solved with the so-called Derived from class2 which determines at compile-
time if one class is the subclass of another. Derived from is a template class
with two parameters: one a potential subclass, and the other a superclass. This
class defines a function converting the apparent subclass type to the superclass.
If the conversion is valid via implicit up-casting, then the function is well-formed,
otherwise, a compiler error occurs.

To make use of Derived from, a class template inherits from Derived from,
passing its own template parameter to Derived from as the potential subclass,
along with a statically defined superclass type. This enforces that the template
parameter be a subclass of that superclass. In our implementation, shown in List-
ing 2, polynomial classes enforce that their ground ring should be a BPASRing,
our abstract class for rings (recall the declaration of BPASRing from Listing 1).

1 // If T is not a subclass of Base , a compiler error occurs
2 template <class T, class Base> class Derived_from {
3 static void constraints(T* p) { Base* pb = p; }
4 Derived_from () { void(*p)(T*) = constraints; }
5 };
6

7 template <class Ring , class Derived >
8 class BPASPolynomial : BPASRing <Derived >, Derived_from <Ring , BPASRing <Ring

>>;

Listing 2. An implementation of a polynomial interface using CRTP and
Derived from.

All of these functionalities together create an algebraic hierarchy as a class
hierarchy while maintaining strict type safety. Yet, our scheme remains flexible
enough to support implicit conversions, such as natural ring embeddings, and
generic enough to allow, for example, polynomials over user-defined classes, as
long as those classes inherit from BPASRing. What remains now is to address the

2 Derived from is a long-known trick, but is now adopted into the C++20 standard.
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issue of polynomial rings sometimes forming different algebraic types depending
on their particular ground ring.

3 “Dynamic” Type Creation, Conditional Export

In object-oriented design, the combination of types to create another type is
known as composition. In this section, let us consider univariate polynomial
rings; one can always work recursively for multivariate polynomials. Viewing a
polynomial ring as a ring extension of its ground ring, polynomials can be seen as
the composition of some finite number of elements of that ground ring. Moreover,
we know that the properties of a polynomial ring depend on the properties of
the ground ring. For example, the ring of univariate polynomials over a field is
a Euclidean domain while the ring of polynomials over a ring is itself only a
ring. Recall from the previous section that our implementation of polynomials
are templated by their ground ring. Our goal then is to capture the idea that the
position of a polynomial ring in the algebraic class hierarchy changes depending
on the particular specialization of this template parameter.

More generally, we would like that the type resulting from the composition of
another type depends on the type being composed. Hence, a sort-of “dynamic”
type creation. This is not truly dynamic, since it is a compile-time operation,
but it nonetheless feels dynamic since it is an automatic process by the compiler
via template instantiation. In fact, having this occur at compile-time is actually
a benefit where errors can be determined preemptively. One can also view this
mechanism as a way of controlling the methods which the newly created type
exports. That is, conditionally exposing methods (or other attributes) in its
interface depending on the particular template parameter specialization. This
technique relies on compile-time introspection and SFINAE.

3.1 SFINAE and Compile-Time Introspection

Substitution Failure Is Not An Error (SFINAE), coined by Vandevoorde in [17],
refers to a fundamental part of C++ templating. The invalid substitution of a
type as a template parameter is itself not an error. Such a principle is required for
templates to be practical. Where two or more template specializations exist, it
is not required that the substitution of the template parameter fit all of the spe-
cializations, but only one. This principle, combined with compile-time function
overload resolution, provides template metaprogramming its power. In particu-
lar, compile-time introspection is possible: using templates, truth values about
a type can be determined and then made use of within the program.

Consider the typical example, adapted from [17, Section 8.3], shown in List-
ing 3. type has X determines if a type has a member X by checking the size of
the return type of a function. By function overload resolution, if T has a member
X the test<T> function chosen will be the first, whose return type has size 1.
Otherwise the second function is chosen with return type of size (at least) 2.
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1 template <typename T> char test(typename T::X const*);
2 template <typename T> int test(...);
3 #define type_has_X(T) (sizeof(test<T>(NULL)) == 1);

Listing 3. A simple compile-time introspection to determine if type T has member X.

This idea can be generalized to many introspective metaprogramming tech-
niques. For example, is base of, a standard feature in C++11, is much like
Derived from. However, instead of creating a compiler error, is base of deter-
mines a Boolean value representing if one type is derived from another.

Using introspection, one may think that enable if, another standard
C++11 template construct, is sufficient. The enable if struct template con-
ditionally compiles and exposes a function template based on the value of a
Boolean known at compile-time. This Boolean value can of course be deter-
mined by introspection. Unfortunately, function templates cannot be virtual,
thus this solution cannot be used within a class hierarchy. Conditionally exposing
methods in our algebraic class hierarchy requires a different solution.

3.2 Conditional Inheritance for Polynomials

Defining new types dependent on the value of another type, as well as condition-
ally exposing member functions, can both be fulfilled by conditional inheritance.
Specifically, we implement a compile-time case discussion for inheritance based
on introspective values. In the context of polynomials in our algebraic class hier-
archy, that case discussion works as a cascade of type checks on the ground ring,
say R, when forming the polynomial ring R[x]. For example: if R is a field, then
R[x] is a Euclidean domain; else if R is a GCD domain, so is R[x]; else if R is
an integral domain, so is R[x]; else R[x] is a ring. This case discussion can be
extended to include as much granularity as needed.

To perform this case discussion, we use the C++11 metaprogramming fea-
ture conditional, which uses a Boolean value known at compile-time to choose
between two types. This is much like the ternary conditional operator which uses
a Boolean to choose between two statements. Using is base of to determine the
Boolean, conditional chooses one of two types to use as a class’s superclass.

As a simple example, consider Listing 4. The definition of BPASPolynomial
tests if the Ring template parameter is a subclass of BPASField. If
so, conditional chooses BPASEuclideanDomain as the the superclass of
BPASPolynomial, otherwise BPASRing is chosen. Additionally, a concrete class
SparseUnivarPoly is shown, still parameterized by a coefficient ring. In this
concrete class, the interface of the class will adapt “dynamically” to a particular
template specialization via the conditional in its superclass. Notice also that
the template parameter of SparseUnivarPoly is enforced to be a subclass of
BPASRing on specialization via the Derived from of its superclass.
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1 template <class Ring , class Derived >
2 class BPASPolynomial : conditional < is_base_of <Ring , BPASField <Ring>>::

value ,
3 BPASEuclideanDomain <Derived >,
4 BPASRing <Derived > >::type ,
5 Derived_from < Ring , BPASRing <Ring> >;
6

7 template <class CoefRing >
8 class SparseUnivarPoly : BPASPolynomial <CoefRing ,SparseUnivarPoly <CoefRing

>>;

Listing 4. A simple use of conditional to choose between Euclidean domain or ring
as the algebraic type of a polynomial based on its template parameter.

The presented code for BPASPolynomial in Listing 4 is rather simple, show-
ing only a single type check. To implement a chain of type checks, the “else”
branch of a conditional should simply be another conditional. To improve
the readability of this case discussion, we avoid directly implementing nested
if-else chains, and thus avoid using one conditional inside another. Instead, we
create two symmetric class hierarchies, one representing the true algebraic class
inclusions while the other is a “tester” hierarchy.

This tester hierarchy uses one conditional to determine if a property holds
and, if so, chooses the corresponding class from the algebraic hierarchy as super-
class. Otherwise, the next tester in the hierarchy is chosen as superclass to trigger
the evaluation of the next conditional. Finally, all concrete polynomial classes
inherit from BPASPolynomial to automatically determine their correct interface
based on their ground ring. This structure is shown in Fig. 1, with the algebraic
hierarchy on the left, and the tester hierarchy on the right.

Ring is a GCD domain

Ring is an integral domain

Ring is not an integral domain

BPASBasePolynomial

Ring,Derived

BPASIntegralDomainPoly

Ring,Derived

BPASGCDDomainPoly

Ring,Derived

BPASIntegralPolyTester

Ring,Derived

BPASGCDPolyTester

Ring,Derived

BPASPolynomial

Ring,Derived

Ring is not a GCD domain

BPASRing

BPASIntegralDomain

BPASGCDDomain

Fig. 1. UML diagram for a subset of the polynomial abstract class hierarchy. Recall in
UML that template parameters are shown in dashed boxes. Template parameters for
non-polynomial classes are omitted for clarity. Note also that the multiple inheritance
diamond problem is easily solved using virtual inheritance.
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This technique of conditional inheritance is a powerful tool in any class tem-
plate hierarchy. By understanding the properties of a type via introspection, it
can automatically be incorporated into an existing class hierarchy either as itself
or when used in composition to create a new type. For example, based on the
specialization of a template parameter, the definition of a class template can
be changed automatically and dynamically. Not only does this enforce a proper
class interface, but it allows the possibility of choosing between several different
abstract implementations in order to best support the new type (i.e. the result
of a composition).

4 Discussion and Related Work

For decades, computer algebra systems have worked towards type safety. Axiom
[12] is a pioneering work on that front, but has grown out of popularity. Func-
tional languages, like Scala and Haskell, have seen some progress in develop-
ing computer algebra systems thanks to type classes (see, e.g., [13] and refer-
ences therein). These languages and their type classes provide a very suitable
environment to define algebraic structures. However, while powerful, functional
languages can be seen as an obscure and inaccessible programming paradigm
compared to the mainstream imperative paradigm.

Considering other C/C++ computer algebra libraries, there are many exam-
ples with interesting mechanisms for handling algebraic structures. The Singu-
lar library [9] perhaps has the most simple mechanism: a single class represents
all rings, using a number of enum and Boolean variables to determine proper-
ties of instances at runtime. In CoCoALib [1] an abstract base class RingBase
declares many functions returning Boolean values. Concrete subclasses define
these functions to determine properties at runtime. While rings are subclasses
of RingBase, elements of a ring are an entirely different class. Elements have
pointers to the ring they belong, which are then compared at runtime to ensure
compatibility in arithmetic between two elements. LinBox [15] also has sep-
arate classes for rings and their elements. There, ring properties are encoded
as class templates where concrete rings use explicit template specialization to
define properties.

Much like the previous cases, the Mathemagix system requires instances
(i.e. elements) of a ring to have a specific reference to a separate entity encod-
ing the ring itself. Notably, Mathemagix also includes a scheme to import and
export C++ code to and from the Mathemagix language [16]. This uses tem-
plates to allow, for example, a ring specified in the Mathemagix language to
be used as the coefficient ring for polynomials defined in C++.

In all of these cases there is some limiting factor. Most often, mathematical
type safety is only a runtime property maintained by checking values. In some
cases this is implemented by separating rings themselves from elements of a ring,
a process counterintuitive to object-oriented design where one class should define
the behaviour of all instances of that type.

On the contrary, our scheme does not rely on runtime checks. Instead, a func-
tion declaration itself restricts its arguments to be mathematically compatible
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at compile-time via the use of template parameters and the Curiously Recur-
ring Template Pattern. By using an abstract class hierarchy many such function
declarations are combined through consecutive inheritances to build up an inter-
face incrementally. This closely follows the chain of class inclusions for algebraic
types, where each type adds properties to the previous. The symmetry between
the algebraic hierarchy and our class hierarchy hopes to make our interfaces
natural and approachable to an end-user. This symmetry comes at the price of
creating a deep class hierarchy, and thus strong coupling within the class hier-
archy. Yet, this price is worth the symmetry and comprehensibility of the class
hierarchy with the algebraic hierarchy.

In contrast with our class hierarchy solution to type safety, a different
compile-time solution could be crafted through further use of type traits (see,
e.g., [17, Ch. 15, 17]). Type traits are template metaprogramming constructs
for type introspection and modification, some of which have already been seen,
such as is base of, and conditional. Type traits are arguably more flexible,
however, template metaprogramming is already rather difficult, and is essen-
tially limited to C++. Class hierarchies, on the other hand, are present in every
object-oriented language and should therefore be more accessible to end-users.
The use of class hierarchies, in addition to encapsulating much of the template
metaprogramming in our design, should provide better extensibility to end-users
in general.

5 Conclusion and Future Work

In this work we have explored part of the implementation and design of the C++
interface of the BPAS library. Through the use of template metaprogramming
we have devised a so-called algebraic class hierarchy which directly models the
algebraic hierarchy while providing compile-time type safety. This hierarchy is
type-safe both in the programming language sense and the mathematical sense.

Using inheritance throughout the algebraic abstract class hierarchy, the inter-
face of algebraic types is constructed incrementally. Therefore, a concrete type’s
properties and interface is determined by its particular abstract superclass from
this hierarchy. Through additional templating techniques, we can automatically
infer, at compile-time, the correct superclass (and thus interface) of new types
created by template parameter specialization (e.g. polynomials). The result is a
consistent and enforced interface for all classes modelling algebraic types.

We are currently working to extend our algebraic class hierarchy to include
multivariate power series, polynomials with power series coefficients, and polyno-
mials in prime characteristic. This more capable hierarchy will be used within our
library to implement a sophisticated solver for systems of polynomial equations,
a prototype of which is already available in recent releases of BPAS. Finally, we
hope to create a Python interface to the BPAS library (i.e. an extension module)
to further improve the accessibility and ease of use of our library.
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Abstract. The purpose of this project is to test and evaluate an app-
roach for Formula Concept Discovery (FCD). FCD aims at retrieving
a formula concept (in the form of a Wikidata item) together with its
defining formula within documents, in this case 100 English Wikipedia
articles. To correctly identify the defining formula of a Wikipedia arti-
cle, this approach searches for shared formulae across Wikipedia articles
available in different languages. The formula shared in the most lan-
guages is then assumed to be the defining formula. The results show that
neither this approach alone nor a combination with an existing approach
that considers the order of the formulae inside an article leads to satis-
fying results. It is thus concluded that the number of times a formula
is shared across a Wikipedia article in different languages is not a good
indicator to determine the defining formula with the current approach.
Consequently, several ideas for further research are proposed which could
improve the results.

1 Introduction

For many generations mathematical textbooks were the primary source of infor-
mation for pupils and laypersons to acquire mathematical knowledge. However,
since the beginning of the 21st century and the rise of collaborative online ency-
clopaediae such as Wikipedia, this situation is changing. Wikipedia can basically
be seen as a digital book organized in classical articles with cross-references. This
format is similar to printed textbooks and not designed to be machine-readable.
Thus, the automated retrieval of properties (like a formula) describing a related
topic is a non-trivial task. To assist this task, the Wikidata knowledge graph was
established in 2012. Wikidata connects different language versions of Wikipedia
and stores data related to Wikipedia as triples, linking a data item (via its unique
identifier called a ‘QID’) to one or multiple properties and their respective value.
One such property can be the so called defining formula of a Wikidata item,
which can be stored in the Wikidata knowledge graph since 2016. For example
the Wikidata item on Schwarz’s theorem (Q1503239) connects Wikipedia arti-
cles in 15 languages on the topic. Here the formula
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is the defining formula of this concept and thus included in most of the 15
articles, although partly in different mathematical notations (see Fig. 1). As the
data format, Wikidata uses Presentation MathML as the exchange format and
the LaTeX dialect texvc as the input format.

Fig. 1. The Wikipedia articles on Schwarz’s theorem in the languages Polish, English,
German and French. Accessed on 28th of March, 2020.

While some versions of Wikipedia like German and Portuguese include the
exact form of the formula, the French and Spanish versions use a rather than x
for the function argument and the English article lacks the function argument.
Moreover, the Russian and Polish versions use numeric indices for the variables,
i.e, x1, x2 instead of x, y. Still, judging from this one example, it seems possible
to infer the defining formula from the reoccurrence of a formula across different
Wikipedias, although advanced techniques might be needed, e.g. to recognize
slightly different formulae as representing the same mathematical concept.

In this paper, we aim at improving the automatic extraction of defining
formulae over an already existing approach from Schubotz et al. [2], who chose
to extract the first formula included in the English Wikipedia article after a
manual investigation showed that the first formula is often the most relevant
one for that article [2] as it is frequently included in the introductory part of
an article. Knowing the formula with the highest probability to be the defining
formula can then be used to suggest formula edits to Wikidata editors.
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2 Method

The Wikipedia articles used are obtained from a collection of Wikipedia article
dumps1 for all 309 official Wikipedia languages2. Specifically, we use the 100
articles defined as QIDs in the dataset from Schubotz et al. and their respective
articles in other Wikipedia languages available. We infer the articles titles from
the 100 QID using the MediaWiki API and use these titles to filter the dumps
for all pages containing one of the titles in their title-tag. These pages will then
be filtered to extract the formulae. Schubotz et al. consider a string a formula if
it fulfills the following two conditions: Firstly, it has to be enclosed in a wikitext
tag, namely ‘math’, ‘ce’, or ‘chem’. Secondly, it needs to include (at least) one
formula-indicator [1,4], in our case ‘=’, ‘<’, ‘>’, ‘≤’, ‘≥’, ‘≈’ and/or ‘≡’ were
used. These formula-indicators prevent that variables are recognized as formulae
since a formula typically relates the definiens and the definiendum using formula-
indicators.

After filtering all articles for formulae, the extracted strings3 of all articles
with the same QID are compared to determine the string shared by the most
articles corresponding to each QID. The resulting 100 most common strings
are then compared to a gold standard dataset derived from [2] to evaluate the
results. This dataset has been built by randomly choosing 100 English Wikipedia
articles, each containing at least one math-tag, and manually determining the
correct defining formula for each article.4 Thus, the gold standard consists of
100 defining formulae and their respective QID of the corresponding article(s).
Instead of using the Latex notations for the 100 defining formulae provided by the
gold standard dataset, we copied the current Latex notations from the dumps.
This decreases the probability that a most common formula does not match
an equivalent defining formula simply due to slightly different Latex notations:
The notations were found to have changed since the publication of the dataset
of [2], e.g. optional brackets were added in the formulae. Thus, this approach
ensures better comparability of our results with the results from [2]: While they

1 The downloaded Wikipedia data dump files were created on 2nd & 3rd of March,
2020, and are available on https://dumps.wikimedia.org/.

2 https://meta.wikimedia.org/wiki/List of Wikipedias. Accessed on 6th of March,
2020.

3 Note: While the word ‘string’ typically refers to a formula in this paper, it can also
mean an empty string (if no formula exists in the article or the string shared most
often across all articles is ‘none’).

4 Note: While our definition of a ‘formula’ means a string containing a formula-
indicator, the term ‘defining formula’ references an arbitrary, possibly empty string
in the gold standard. This definition is in accordance with Wikidatas defining for-
mula property, which does allow strings without a formula-indicator. Thus, it is
obvious that our filtering approach cannot find the four defining formulae without
a formula-indicator (e.g. π

∫ b

a
[R(x)]2 dx is the defining formula of the article about

Disc integration (Q3825524)).

https://dumps.wikimedia.org/
https://meta.wikimedia.org/wiki/List_of_Wikipedias
https://www.wikidata.org/wiki/Q3825524
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manually confirmed if each extracted formula visually5 matches the defining
formula - an approach that does not depend on exactly matching Latex notations
- we automatically check for matching strings. To ensure that we recognize most
formulae that visually match their defining formula as a true positive, we check
if they are similar: Two mathematical expressions are considered similar if they
only differ due to whitespaces, irrelevant characters at the end (like a comma or
dot that are part of the sentence surrounding the formula) or optional brackets
around a sub- or superscript. These factors were found to be the cause for most
different, despite visually matching formulae in a small manual investigation.
We rectified the entry for ‘plastic number’ in the gold standard dataset by using

ρ = 3
√

9+
√
69

18 + 3
√

9−√
69

18 instead of an empty string (no defining formula).
We classified a result as relevant if and only if its defining formula is not

an empty string and is included in (at least) one of the articles of the corre-
sponding QID. To make sure we correctly identify relevant results as such, a
defining formula is considered ‘included’ in an article if (at least) one mathe-
matical expression is similar to it. If a result is relevant and gets retrieved, i.e.
the most common formula is the defining formula, it is counted as a true positive
(TP). If a result is relevant, but the defining formula is not retrieved, this is clas-
sified as a false negative (FN). Non-relevant results are counted as true negatives
(TN) if the most common string matches the defining formula, otherwise as false
positives (FP). These definitions are in accordance with Schubotz et al. in order
to ensure the comparability of the results.

We first investigate the results of our approach of counting the occurrences
of formulae as well as a combined approach that also considers the order of
the formulae in the articles. Afterwards, we inspect the findings of the combined
approach with regard to the number of Wikipedia languages used. When filtering
only a number of all 309 Wikipedia languages, we choose to filter the biggest
language (English) as well as the biggest five and 20 Wikipedias, while excluding
Cebuano and Waray-Waray, since both have a high number of bot-generated
articles6 and low number of community members (see footnote 2).7 We determine
the size of the Wikipedias by the number of articles in its respective language
according to a list of all Wikipedias (see footnote 2). Afterwards we use our
definition of similarity to determine the most common formula and investigate
the number of true positives.

5 Two mathematical expressions are considered visually matching if the expressions
generated from the (possibly different) Latex notations look the same, e.g. x i and
x {i} generate the same expression.

6 https://stats.wikimedia.org/EN/BotActivityMatrixCreates.htm. Accessed on 22nd
of March, 2020.

7 As it turns out, this measure was unnecessary since neither language included an
article corresponding to one of the 100 QIDs.

https://stats.wikimedia.org/EN/BotActivityMatrixCreates.htm
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3 Evaluation

As a first, simple approach we filter one, five, 20, and all 309 Wikipedias while
counting the number of articles a formula occurs in. If more than one formula is
the most common one, the extracted formula is chosen randomly among them.
The results show that while we do get better results by using more Wikipedias,
the number of false results is always higher than 70 (mostly due to FN), irre-
spective of the number of Wikipedias used, and thus too high for this approach
to reliably work. An investigation of the results when using 309 languages shows
that more than half of the most common strings only occur in one or two lan-
guages, thus 54 most common strings have at least one other string with the
same number of occurrences. Consequently, ∼80% of those are falsely identi-
fied — in comparison to ∼61% for the more common formulae. This shows an
obvious problem in the data: A lot of strings only reoccur very rarely across
articles, mostly because they occur in a similar mathematical form or depend
on a different Latex notation to generate a visually equivalent formula. Before
trying to solve this problem by recognizing similar formulae when determining
the most common formula, we will focus on another point: Randomly choos-
ing the extracted string among multiple most common strings is a simple but
unsophisticated approach. Instead, we now use the order of the formulae as a
measure in case two formulae have the same number of occurrences.

As it turns out, this allows us to easily reproduce the findings of Schubotz
et al. when using English as the sole language to filter: Since we only count
every formula in an article once, we essentially disregard the occurrences of the
formulae when using only one language; instead only the order of the formulae
will be taken into account, as is the case in [2].

The results in Table 1 reveal that we find nine TP less, while getting five FP
and six FN more than Schubotz et al. The higher number of FN is in about four
cases attributed to the fact that we — in contrast to Schubotz et al. — autom-
atized the comparison of the extracted formulae with the defining formulae. As
a consequence, four extracted formulae could not be identified as equal to their
visually equivalent defining formula since they were not similar. The remain-
ing five missing TP are probably attributable to the time-conditioned changes
of the Wikipedia articles since the publication date of [2]: The gold standard
depends on the defining formulae that were based on mathematical expressions
of former Wikipedia sites. As such, today some Wikipedia articles only include a
mathematically equivalent, but different formulation, which does not match our
defining formula, e.g. a = b and b = a. Thus, such a result is falsely recognized
as ‘non-relevant’ and classified as a FP instead of TP.

Altogether, we can verify the findings of Schubotz et al. The investigation
of the results revealed that an automated classification of results in ‘relevant’
and ‘non-relevant’ is not perfectly accomplishable with the current approach
and a more sophisticated method is needed to determine if a formula matches
its defining formula.
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Table 1. Contingency table comparison of (a) our results and (b) the findings from
Schubotz et al. when using one Wikipedia language (English)

(a)

relevant not relevant

retrieved 62 (TP) 22 (FP)

not retrieved 16 (FN) 0 (TN)

(b)

relevant not relevant

retrieved 71 (TP) 17 (FP)

not retrieved 10 (FN) 2 (TN)

Next, we take a look at the impact the combination of the approach of
Schubotz et al. with our approach has on the results when using more than
one language. The results in Fig. 2 show that we do get less TP as the num-
ber of languages increases and that we get the best results with one language.
In other words, as the influence of the order of the formulae gets smaller and,
consequently, as the influence of the reoccurrences of formulae gets bigger, the
results worsen. This suggests that the order is significantly more important and
thus, that the approach of using only the order of the formulae is most proba-
bly better than only choosing the most common formula. Note, however, that
we cannot verify this: A direct comparison of both methods is not possible as
the method of simply counting the reoccurrences always needs an accompanying
measure in case multiple most common strings exist. While we could generate
an arbitrary dataset such that in no case multiple most common strings exist
— simply by excluding all QIDs whose article(s) contain more than one most
common string — such a dataset would probably be biased: The number of most
common strings might correlate with the number of formulae in the article and
thus the length and quality of the article, consequently influencing the results.
This was not further investigated.

Fig. 2. Number of true positives (TP) depending on the number of Wikipedia languages
used.

In the following, we examine the impact that checking for similarity has on
the results when we check this not only when comparing a formula and a defining
formula as before, but also when determining the most common formula. This
allows us to recognize ∼13% of the formulae as similar to another formula found
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and thus increases our number of occurrences per formula. Figure 3 shows that
the number of TP negatively correlates with the number of languages used, as
is the case in the last approach (see Fig. 2). Contrary to our initial expectations,
the current approach could not improve our results compared to Fig. 2. The
reason is most probably that the average number of articles containing the most
common string increased from 4.0 to ∼4.7 (for 309 languages), thus the number
of cases where only one most common string exists increased from 46 to 54. As
a consequence, in eight fewer cases the order of the formulae is considered. This
is another indicator that, as the impact of the occurrences of formulae on our
results gets bigger, our results worsen.

Fig. 3. Number of true positives (TP) depending on the number of Wikipedia languages
used when checking for similarity in every comparison between strings.

4 Future Work

The current approach only takes the number of occurrences of a formula and the
order of the formulae into consideration, which leaves out a lot of information like
the quality of the article, the formula-indicator used in each formula or whether a
formula is visually highlighted by placing it in a separate line. Thus, we propose
a score-based system using all the information to determine the defining formula
more accurately. The information should also include the number of occurrences
of a formula, even though it might not improve the results as seen in this project.
It is still believed that knowing how often a formula occurs across multiple
articles is important information that can improve the detection-rate if used
correctly. As the investigation shows, it cannot be the only information used in
conjunction with the order of the formulae, although no advanced techniques
like unification [3] were used to verify more similar formulae as actually being
similar, which might better the results, although the results indicate otherwise.
We suggest that in this proposed approach the occurrences of formulae should
probably not be weighted heavily as this might negatively impact the results
considering our findings.

To build the proposed score, it is necessary to find an optimal weighting of
the different pieces of information. To do so, a bigger dataset is needed. We
suggest to use Wikidata, which contains a manual assignment of the QIDs of
more than 4,300 Wikipedia articles to their respective defining formula.



360 D. T. Halbach

5 Conclusion

Our findings verify the results of Schubotz et al. who extracted the first formula
of a Wikipedia article as an approach to obtain the defining formula related
to an article. Nevertheless, it was not possible to achieve the same amount of
true positives as Schubotz et al., most probably due to the lack of advanced
techniques used to determine whether two formulae are equivalent.

Furthermore, our results were negatively impacted when considering the
order of the formulae in their respective article together with the number of
languages it occurs in. This suggests that the order of the formulae is a much
more important indicator to determine the defining formulae than the number
of its occurrences across multiple languages. Thus, reducing the influence the
order has on the results in favor of the number of occurrences decreases the
number of extracted defining formulae. This assumption is further supported by
the fact that the number of true positives negatively correlates with the number
of Wikipedia languages used, which in turn influences the number of languages a
formula occurs in. Furthermore, when we determine the most common formula
by regarding formulae as equal if they match our definition of being similar,
the number of true positives further decreases. This is reasoned to be another
indication that the number of occurrences of a string across articles is a bad fac-
tor for determining the most common formula. Consequently, other indicators
are proposed that should be able to improve the current approach. It is worth
including the number of occurrences across articles as one of the factors, as it
cannot be said with certainty that the number of occurrences is an inherently
bad indicator. It might be possible that much more sophisticated measures are
needed to determine if two formulae are similar, though our findings suggest oth-
erwise. Improving the results of the current approach will be a focus of future
work.
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Abstract. Software, and software source code inparticular, iswidelyused
inmodern research. Itmust beproperly archived, referenced, described and
cited in order to build a stable and long lasting corpus of scientific knowl-
edge. In this article we show how the Software Heritage universal source
code archive provides a means to fully address the first two concerns, by
archiving seamlessly all publicly available software source code, andbypro-
viding intrinsic persistent identifiers that allow to reference it at various
granularities in a way that is at the same time convenient and effective.

We call upon the research community to adopt widely this approach.

Keywords: Software source code · Archival · Reference ·
Reproducibility

1 Introduction

Software source code is an essential research output, and there is a growing gen-
eral awareness of its importance for supporting the research process [6,20,27].
Many research communities focus on the issue of scientific reproducibility and
strongly encourage making the source code of the artefact available by archiving
it in publicly-accessible long-term archives; some have even put in place mecha-
nisms to assess research software, like the Artefact Evaluation process introduced
in 2011 and now widely adopted by many computer science conferences [7], and
the Artifact Review and Badging program of the ACM [4]. Other raise the com-
plementary issues of making it easier to discover existing research software, and
giving academic credit to authors [21,22,25].

These are important issues that are similar in spirit to those that led to the
current FAIR data movement [28], and as a first step it is important to clearly
identify the different concerns that come into play when addressing software,
and in particular its source code, as a research output. They can be classified as
follows:

Archival: software artifacts must be properly archived, to ensure we
can retrieve them at a later time;

Reference: software artifacts must be properly referenced to ensure we
can identify the exact code, among many potentially archived copies,
used for reproducing a specific experiment;

c© Springer Nature Switzerland AG 2020
A. M. Bigatti et al. (Eds.): ICMS 2020, LNCS 12097, pp. 362–373, 2020.
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Description: software artifacts must be equipped with proper metadata
to make it easy to find them in a catalog or through a search engine;

Citation: research software must be properly cited in research articles
in order to give credit to the people that contributed to it.

As already pointed out in the literature, these are not only different con-
cerns, but also separate ones. Establishing proper credit for contributors via
citations or providing proper metadata to describe the artifacts requires a cura-
tion process [2,5,18] and is way more complex than simply providing stable,
intrinsic identifiers to reference a precise version of a software source code for
reproducibility purposes [3,16,21]. Also, as remarked in [3,20], resarch software
is often a thin layer on top of a large number of software dependencies that are
developed and maintained outside of academia, so the usual approach based on
institutional archives is not sufficient to cover all the software that is relevant
for reproducibility of research.

In this article, we focus on the first two concerns, archival and reference,
showing how they can be addressed fully by leveraging the Software Heritage
universal archive [1], and also mention some recent evolutions in best practices
for embedding metadata in software development repositories.

In Sect. 2 we briefly recall what is Software Heritage and what makes it
special; in Sect. 3 we show how researchers can easily ensure that any relevant
source code is archived; in Sect. 4 we explain how to use the intrinsic identifiers
provided by Software Heritage to enrich research articles, making them more
useful and appealing for the readers, and providing stable links between articles
and source code in the web of scientific knowledge we are all building. Finally,
we point to ongoing collaborations and future perspectives in Sect. 5.

2 Software Heritage: The Universal Archive of Software
Source Code

Software Heritage [1,17] is a non profit initiative started by Inria in partnership
with UNESCO, to build a long term universal archive specifically designed for
software source code, and able to store not only a software artifact, but also its
full development history.

Software Heritage’s mission is to collect, preserve, and make easily accessible
the source code of all publicly available software. Among the strategies designed
for collecting the source code there is the development of a large scale automated
crawler for source code, whose architecture is shown in Fig. 1.

The sustainability plan is based on several pillars. The first one is the support
of Inria, a national research institution that is involved for the long term. A
second one is the fact that Software Heritage provides a common infrastructure
catering to the needs of a variety of stakeholders, ranging from industry to
academia, from cultural heritage to public administrations. As a consequence,
funding comes from a diverse group of sponsors, ranging from IT companies to
public institutions.
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Fig. 1. Architecture of the Software Heritage crawler

Finally, an extra layer of security is provided by a network of independent,
international mirrors that maintain a full copy of the archive1.

We recall here a few key properties that set Software Heritage apart from all
other scholarly infrastructures:

– it proactively archives all software, making it possible to store and reference
any piece of publicly available software relevant to a research result, indepen-
dently from any specific field of endeavour, and even when the author(s) did
not take any step to have it archived [1,17];

– it stores the source code with its development history in a uniform data struc-
ture, a Merkle DAG [23], that allows to provide uniform, intrinsic identifiers
for the billions of software artifacts of the archive, independently of the ver-
sion control system or package format used [16].

At the time of writing this article, the Software Heritage archive contains
over 7 billions unique source code files, from more than 100 million different
software origins2.

It provides the ideal place to preserve research software artifacts, and offers
powerful mechanisms to enhance research articles with precise references to
relevant fragments of your source code. Using Software Heritage is straight-
forward and involves very simple steps, that we detail in the following sections.

1 More details can be found at https://www.softwareheritage.org/support/sponsors
and https://www.softwareheritage.org/mirrors.

2 See https://www.archive.softwareheritage.org for the up to date figures.

https://www.softwareheritage.org/support/sponsors
https://www.softwareheritage.org/mirrors
https://archive.softwareheritage.org
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3 Archiving and Self Archiving

In a research article one may want to reference different kinds of source code
artifacts: some may be popular open source components, some may be general
purpose libraries developed by others, and some may be one’s own software
projects.

All these different kinds of software artifacts can be archived extremely easily
in Software Heritage: it’s enough that their source code is hosted on a publicly
accessible repository (Github, Bitbucket, any GitLab instance, an institutional
software forge, etc.) using one of the version control systems supported by Soft-
ware Heritage, currently Subversion, Mercurial and Git3.

For source code developed on popular development platforms, chances are
that the code one wants to reference is already archived in Software Heritage,
but one can make sure that the archived version history is fully up to date, as
follows:

– go to https://save.softwareheritage.org,
– pick the right version control system in the drop-down list, enter the code

repository url4,
– click on the Submit button (see Fig. 2).

Fig. 2. The save code now form

That’s all. No need to create an account or disclose personal information of
any kind. If the provided URL is correct, Software Heritage will archive the
repository shortly after, with its full development history. If it is hosted on one
of the major forges we already know, this process will take just a few hours; if
it is in a location we never saw before, it can take longer, as it will need to be
manually screened5.

3 For up to date information, see https://archive.softwareheritage.org/browse/origin/
save/.

4 Make sure to use the clone/checkout url as given by the development platform host-
ing your code. It can easily be found in the web interface of the development platform.

5 It is also possible to request archival programmatically, using the Software Her-
itage API, which can be quite handy to integrate in a Makefile; see https://archive.
softwareheritage.org/api/1/origin/save/ for details.

https://save.softwareheritage.org
https://archive.softwareheritage.org/browse/origin/save/
https://archive.softwareheritage.org/browse/origin/save/
https://archive.softwareheritage.org/api/1/origin/save/
https://archive.softwareheritage.org/api/1/origin/save/
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3.1 Preparing Source Code for Self Archiving

In case the source code is one own’s, before requesting its archival it is important
to structure the software repository following well established good practices for
release management [24]. In particular one should add README and AUTHORS files
as well as licence information following industry standard terminology [19,26].

Future users that find the artifact useful might want to give credit by citing
it. To this end, one might want to provide instructions on how one prefers the
artifact to be cited. We would recommend to also provide structured meta-
data information in machine readable formats. While practices in this area
are still evolving, one can use the CodeMeta generator available at https://
codemeta.github.io/codemeta-generator/ to produces metadata conformant to
the CodeMeta schema: the JSON-LD output can be put at the root of the
project in a codemeta.json file. Another option is to use the Citation File
Format, CFF (usually in a file named citation.cff).

4 Referencing

Once the source code has been archived, the Software Heritage intrinsic identi-
fiers, called SWH-ID, fully documented online and shown in Fig. 3, can be used
to reference with great ease any version of it.

Fig. 3. Schema of the core Software Heritage identifiers

SWH-IDs are URIs with a very simple schema: the swh prefix makes explicit
that these identifiers are related to Software Heritage; the colon (:) is used as
separator between the logical parts of identifiers; the schema version (currently 1)

https://codemeta.github.io/codemeta-generator/
https://codemeta.github.io/codemeta-generator/
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
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is the current version of this identifier schema; then follows the type of the objects
identified and finally comes a hex-encoded (using lowercase ASCII characters)
cryptographic signature of this object, computed in a standard way, as detailed
in [15,16].

These core identifiers may be equipped with the qualifiers that carry contex-
tual extrinsic information about the object:

origin : the software origin where an object has been found or observed in the
wild, as an URI;

visit : persistent identifier of a snapshot corresponding to a specific visit of a
repository containing the designated object;

anchor : a designated node in the Merkle DAG relative to which a path to the
object is specified;

path : the absolute file path, from the root directory associated to the anchor
node, to the object;

lines : line number(s) of interest, usually within a content object

The combination of the core SWH-IDs with these qualifiers provides a very
powerful means of referring in a research article to all the software artefacts of
interest.

To make this concrete, in what follows we use as a running example the
article A “minimal disruption” skeleton experiment: seamless map and reduce
embedding in OCaml by Marco Danelutto and Roberto Di Cosmo [9] published
in 2012. This article introduced Parmap [12], an elegant library for multicore
parallel programming that was distributed via the gitorious.org collaborative
development platform, at gitorious.org/parmap. Since Gitorious has been shut
down a few years ago, like Google Code and CodePlex, this example is particu-
larly fit to show why pointing to an archive of the code is better than pointing
to the collaborative development platform where it is developed.

4.1 Specific Version

The Parmap article describes a specific version of the Parmap library, the one
that was used for the experiments reported in the article, so in order to support
reproducibility of these results, we need to be able to pinpoint precisely the
state(s) of the source code used in the article.

The exact revision of the source code of the library used in the article has
the following SWH-ID:

swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;
origin=https://gitorious.org/parmap/parmap.git;
visit=swh:1:snp:78209702559384ee1b5586df13eca84a5123aa82

This identifier can be turned into a clickable URL by prepending to it the pre-
fix https://archive.softwareheritage.org/ (one can try it by clicking on this link).

http://www.gitorious.org
http://www.gitorious.org/parmap
https://archive.softwareheritage.org/
https://archive.softwareheritage.org/browse/revision/0064fbd0ad69de205ea6ec6999f3d3895e9442c2/?origin_url=https://gitorious.org/parmap/parmap.git&snapshot=78209702559384ee1b5586df13eca84a5123aa82
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Fig. 4. Code fragment from the published article compared to the content in the Soft-
ware Heritage archive

4.2 Code Fragment

Having a link to the exact archived revision of a software project is important
in all research articles that use software, and the core SWH-IDs allow to drill
down and point to a given directory or even a file content, but sometimes, like
in our running example, one would like to do more, and pinpoint a fragment of
code inside a specific version of a file. This is possible using the lines= qualifier
available for identifiers that point to file content.

Let’s see this feature at work in our running example, showing how the expe-
rience of studying or reviewing an article can be greatly enhanced by providing
pointers to code fragments.

In Figure 1 of [9], which is shown here as Fig. 4a, the authors want to present
the core part of the code implementing the parallel functionality that constitutes
the main contribution of their article. The usual approach is to typeset in the
article itself an excerpt of the source code, and let the reader try to find it by
delving into the code repository, which may have evolved in the mean time.
Finding the exact matching code can be quite difficult, as the code excerpt is
often edited a bit with respect to the original, sometimes to drop details that
are not relevant for the discussion, and sometimes due to space limitations.

In our case, the article presented 29 lines of code, slightly edited from the 43
actual lines of code in the Parmap library: looking at Fig. 4a, one can easily see
that some lines have been dropped (102–103, 118–121), one line has been split
(117) and several lines simplified (127, 132–133, 137–142).
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Using Software Heritage, the authors can do a much better job, because the
original code fragment can now be precisely identified by the following Software
Heritage identifier:

swh:1:cnt:d5214ff9562a1fe78db51944506ba48c20de3379;
origin=https://gitorious.org/parmap/parmap.git;
visit=swh:1:snp:78209702559384ee1b5586df13eca84a5123aa82;
anchor=swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;
path=/parmap.ml;
lines=101-143

This identifier will always point to the code fragment shown in Fig. 4b.
The caption of the original article shown in Fig. 4a can then be significantly

enhanced by incorporating a clickable link containing the SWH-ID shown above:
it’s all is needed to point to the exact source code fragment that has been edited
for inclusion in the article, as shown in Fig. 5. The link contains, thanks to
the SWH-ID qualifiers, all the contextual information necessary to identify the
context in which this code fragment is intended to be seen.

Simple implementation of the distribution, fork, and recollection phases in Parmap (slightly

simplified from the the actual code in the version of Parmap used for this article)

Fig. 5. A caption text with the link to the code fragment and its contextual information

When clicking on the hyperlinked text in the caption shown above, the reader
is brought seamlessly to the Software Heritage archive on a page showing the
corresponding source code archived in Software Heritage, with the relevant lines
highlighted (see Fig. 4b).

4.3 Software Bibliographies with biblatex-software

Another way to enrich an article with precise pointers to software source code is
by adding entries for it in the bibliography. Unfortunately, standard bibliography
styles do not treat software as a first class citizen, and for example BibTeX users
often resort to the @misc entry to this end, which is really unsatisfactory.

Since April 2020, users of the BibLaTeX package can leverage the
biblatex-software package [10], available on CTAN [8], to produce rich soft-
ware bibliographies.

This package support four kind of different entries:

– @software for describing the general information about a software project
– @softwareversion for describing a specific version or release of a software

project

https://archive.softwareheritage.org/swh:1:cnt:d5214ff9562a1fe78db51944506ba48c20de3379;origin=https://gitorious.org/parmap/parmap.git;visit=swh:1:snp:78209702559384ee1b5586df13eca84a5123aa82;anchor=swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;path=/parmap.ml;lines=101-143
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– @softwaremodule for describing a module that is part of a larger software
project

– @codefragment for describing a fragment of code (full file, or selected lines
of a file)

Using these special BibTeX entries, the various examples presented in the
previous sections above can be described as follows

@software {parmap,

title = {The Parmap library},

author = {Di Cosmo, Roberto and Marco Danelutto},

year = {2012},

institution = {{University Paris Diderot} and {University of Pisa}},

url = {https://rdicosmo.github.io/parmap/},

license = {LGPL-2.0},

}

@softwareversion {parmap-0.9.8,

title = {The Parmap library},

author = {Di Cosmo, Roberto and Marco Danelutto},

version = {0.9.8},

swhid = {swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;

origin=https://gitorious.org/parmap/parmap.git;

visit=swh:1:snp:78209702559384ee1b5586df13eca84a5123aa82},

crossref = {parmap}

}

@codefragment {simplemapper,

subtitle = {Core mapping routine},

swhid = {

swh:1:cnt:d5214ff9562a1fe78db51944506ba48c20de3379;

origin=https://gitorious.org/parmap/parmap.git;

visit=swh:1:snp:78209702559384ee1b5586df13eca84a5123aa82;

anchor=swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;

path=/parmap.ml;

lines=101-143},

crossref = {parmap-0.9.8}

}

The result can be seen in the bibliography of this article as [13,14].

4.4 Getting the SWH-ID

A fully qualified SWH-ID is rather long, and it needs to be, as it contains quite a lot
of information that is essential to convey. In order to make it easy to use SWH-IDs,
we provide a very simple way of getting the right SWH-ID without having to type
it by hand. Just browse the archived code in Software Heritage and navigate to
the software artifact of interest. Clicking on the permalinks vertical red tab that is
present on all pages of the archive, opens up a tab that allows to select the identifier
for the object of interest: an example is shown in Fig. 6.
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The two buttons on the bottom right allow to copy the identifier or the full
permalink in the clipboard, and to paste it in an article as needed.

Fig. 6. Obtaining a Software Heritage identifier using the permalink box on the archive
Web user interface

4.5 Generating and Verifying SWH-IDs

An important consequence of the fact that SWH-IDs are intrinsic identifiers
is that they can be generated and verified independently of Software Heritage,
using swh-identify, an open source tool developed by Software Heritage, and
distributed via PyPI as swh.model, with the stable version at the time of writing
being this one.

Version 1 of the SWH-IDs uses git-compatible hashes, so if the source code
that one wants to reference uses git as a version control system, one can create
the right SWH-ID by just prepending swh:1:rev: to the commit hash. This
comes handy to automate the generation of the identifiers to be included in an
article, as one will always have code and article in sync.

5 Perspectives for the Scholarly World

We have shown how Software Heritage and the associated SWH-IDs enables the
seamless archival of all publicly available source code. It provides for all kind
of software artifacts the intrinsic identifiers that are needed to establish long
lasting, resilient links between research articles and the software they use or
describe.

All researchers can use right now the mechanisms presented here to produce
improved and enhanced research articles. More can be achieved by establishing
collaborations with academic journals, registries and institutional repositories

https://archive.softwareheritage.org/browse/revision/919db4f50e500d1c63879ddab20cf4fc1346c275/?branch=releases/0.0.62&origin_url=https://pypi.org/project/swh.model/&snapshot=9f7a900d46f609f60c194d142abef1965ff28e02
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and registries, in particular in terms of description and support for software
citation. Among the initial collaborations that have been already established, we
are happy to mention the cross linking with the curated mathematical software
descriptions maintained by the swMath.org portal [5], and the curated deposit
of software artefacts into the HAL french national open access portal [18], which
is performed via a standard SWORD protocol inteface, an approach that is
currently being explored by other academic journals.

We believe that the time has come to see software become a first class citizen
in the scholarly world, and Software Heritage provides a unique infrastructure to
support an open, non profit, long term and resilient web of scientific knowledge.
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Abstract. We present the Julia interface Polymake.jl to polymake, a
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1 Introduction

polymake is an open source software system for computing with a wide range
of objects from polyhedral geometry and related areas [4]. This includes convex
polytopes and polyhedral fans as well as matroids, finite permutation groups,
ideals in polynomial rings and tropical varieties. The user is interfacing the
polymake library through Perl language.

In this note we provide a brief overview of a new interface Polymake.jl, which
allows the use of polymake in Julia [1]. Julia is a high-level, dynamic programming
language. Distinctive aspects of Julia’s design include a type system with para-
metric polymorphism and multiple dispatch as its core programming paradigm.
The package Polymake.jl can be installed, without any preparations, using the
build-in package manager that comes with Julia. The source code is available at
https://github.com/oscar-system/Polymake.jl.

2 Functionality

In polymake the objects that a user encounters can be roughly divided into the
following three classes

M. Kaluba—The author was supported by the National Science Center, Poland grant
2017/26/D/ST1/00103. This research is carried out in the framework of the DFG
funded Cluster of Excellence EXC 2046 MATH+: The Berlin Mathematics Research
Center within the Emerging Fields area.
S. Timme—The author was supported by the Deutsche Forschungsgemeinschaft (Ger-
man Research Foundation) Graduiertenkolleg Facets of Complexity (GRK 2434).
c© Springer Nature Switzerland AG 2020
A. M. Bigatti et al. (Eds.): ICMS 2020, LNCS 12097, pp. 377–385, 2020.
https://doi.org/10.1007/978-3-030-52200-1_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52200-1_37&domain=pdf
http://orcid.org/0000-0002-8777-8223
http://orcid.org/0000-0001-8093-1937
https://github.com/oscar-system/Polymake.jl
https://doi.org/10.1007/978-3-030-52200-1_37


378 M. Kaluba et al.

– big objects (e.g., cones, polytopes, simplicial complexes),
– small objects (e.g., matrices, polynomials, tropical numbers),
– user functions.

Broadly speaking, big objects correspond to mathematical concepts with well
defined semantics. These can be queried, accumulate information (e.g., a poly-
tope defined by a set of points can “learn” its hyperplane representation), and are
constructed usually in Perl. Big objects implement methods, i.e., functions which
operate on, and perform computations specific to the corresponding object. Small
objects correspond to types or data structures which are implemented in C++.
Standalone user functions are exposed to the user via the Perl interpreter.

These entities are mapped to Julia in the following way:

– big objects are exposed as opaque Perl objects that can be queried for their
properties (they are only computed when queried for the first time),

– small objects are wrapped through an intermediate C++ layer between Julia
and generated by CxxWrap.jl,

– methods and user functions are mapped to Julia functions, in the case of
methods, the parent object being the first argument.

A unique feature of Polymake.jl is based on the affinity of Julia to C and C++

programming languages. As Julia provides the possibility to call functions from
dynamic libraries directly, one can call any function from the polymake library
as long as the function symbol is exported. In polymake, due to extensive use of
templates in the C++ library, the precise definition of a function needs to be often
explicitly instantiated. Such instantiaton can be easily added to the Polymake.jl
C++ wrapper. An example of such functionality is

a function, which directly taps into the polymake framework for linear program-
ming. It is worth pointing that the signature of the exposed solve_LP will accept
any instances of Julias or (where appropri-
ate) in the paradigm of generic programming.

3 Technical Contribution

The Polymake.jl interface is based on CxxWrap.jl1, a Julia package which aims
to provide a seamless interoperability between C++ and Julia. The interface is
separated into two parts: a C++ wrapper library and a Julia package. The former,

, a dynamic library, wraps the data structures (small types) in
a Julia-compatible way and exposes functions from the callable C++ polymake
library. It is then loaded through CxxWrap.jl where the Julia part of the package
generates functions accessible from Julia.

The installation of Polymake.jl is performed through Julia’s package manager
with the help of infrastructure. Thanks to this infrastructure
1 Available at https://github.com/JuliaInterop/CxxWrap.jl.

https://github.com/JuliaInterop/CxxWrap.jl
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it is not necessary for the user to perform any preparations except for installing
Julia itself. All dependencies of Polymake.jl (including the polymake library, the
Perl interpreter and supplementary libraries) are installed in a binary form. The
complete installation of Polymake.jl should take no longer than 5 minutes on
modern hardware

Due to extensive use of metaprogramming, relatively little code was neces-
sary to make most of the functionality of polymake available in Julia: as of version
0.4.1 Polymake.jl consists of about 1200 lines of C++ code and 1600 lines of Julia
code. In particular, only the small objects need to be manually wrapped, while
functions, constructors for big objects and their methods are generated auto-
matically from the information provided by polymake itself. This automatic code
generation takes place during precompilation which is done only once during the
installation. Loading Polymake.jl brings the familiar polymake welcome banner.

The latest version of Polymake.jl is 0.4.1 which is compatible with at Julia 1.3
and newer. The latest polymake version is available in Polymake.jl within two
weeks of release (currently polymake 4.0).

Big Objects

All big objects are constructed by direct calls to their constructors, e.g.

polytope.Polytope(POINTS=[1 1 2; 1 3 4])

constructs a rational polytope from (homogeneous) coordinates of points given
row-wise. We attach the polymake docstring to the structure such that the doc-
umentation is readily available in Julia.
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Template parameters can also be passed to big objects, e.g., to construct a
polytope with floating point precision it is sufficient to call

A caveat is that all parameters must be valid Julia objects.2 The properties of big
objects are accessible through the syntax which mirrors
the syntax in polymake. Note that some properties of
big objects in polymake are indeed methods with no arguments and therefore in
Julia they are only available as such.

Small Objects

The list of small objects available in Polymake.jl includes basic types such as
arbitrary size integers (subtypes , rationals (subtypes , vectors and
matrices (subtypes of ), and many more. These data types can be
converted to appropriate Julia types, but are also subtypes of the corresponding
Julia abstract types (as indicated above). This allows to use Polymake.jl types
in generic methods, which is the paradigm of Julia programming.

As already mentioned, these small objects need to be manually wrapped in
the C++ part of Polymake.jl. In particular, all possible combinations of such
types, e.g., an array of sets of rationals, need to be explicitly wrapped. Note
that polymake is able to generate dynamically any combination of small objects.
Thus, we cannot guarantee that all small objects a user will encounter is covered.
However, the small objects available in Polymake.jl are sufficient for the most
common use cases.

Functions

A function in Polymake.jl calling polymake may return either a big or a small
object, and the generic return type (PropertyValue, a container opaque to Julia)
is transparently converted to one of the known (small) data types3. If the data
type of the returned function value is not known to Polymake.jl, the conversion
fails and an instance of PropertyValue is returned. It can be either passed back
as an argument to a Polymake.jl function, or converted to a known type using
the macro.

2 For advanced use (when this is not the case) we provide the @pm macro.
3 This conversion can be deactivated by passing PropertyValue type as the first argu-

ment to function/method call.
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All user functions from polymake are available in modules corresponding to
their applications, e.g. functions from the application topaz can be
called as in Julia. Moreover polymake docstrings for func-
tions are available in Julia to allow for easy help4:

Function Arguments. Functions in Polymake.jl accept the following as their
arguments: simple data types (bools, machine integers, floats), wrapped native
types, or objects returned by polymake (e.g., , or PropertyValue). Due
to the easy extendability of methods in Julia, a foreign type could be passed
seamlessly to Polymake.jl function if an appropriate Base.convert method, which
return one of the above types, is defined:

Polymake.jl also wraps the extensive visualization methods of polymake
which can be used to produce images and animations of geometric objects.
These include the interactive visualizations using three.js. Due to the con-
venient extendability of Julia, the visualization also integrates seamlessly with
Jupyter notebooks.

4 Example

This section demonstrates the interface of Polymake.jl on a concrete example. An
advantage of the package is that it allows effortless combination of computations
in polyhedral geometry with e.g., state-of-the-art numerical software. Here we
combine Polymake.jl with [3], a Julia package for
4 The documentation currently uses the Perl syntax.
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numerically solving systems of polynomial equations. In particular, we test a
theoretical result from Soprunova and Sottile [8] on non-trivial lower bounds for
the number of real solutions to sparse polynomial systems.

The results show how we can construct a sparse polynomial system that has a
non-trivial lower bound on the number of real solutions starting from an integral
point configuration. We start with the 10 lattice points A = {a1, . . . , a10} ⊂ Z

2

of the scaled two-dimensional simplex 3Δ2 and look at the regular triangulation
T induced by the lifting λ = [12, 3, 0, 0, 8, 1, 0, 9, 5, 15].

Fig. 1. Foldable subdivision of 3Δ2.

The triangulation T is very special in that it is foldable (or “balanced”), i.e., the
dual graph is bipartite. This means that the triangles can be colored, say, black
and white such that no two triangles of the same color share an edge. See Fig. 1
for an illustration. The signature σ(T ) of a balanced triangulation of a polygon
is the absolute value of the difference of the number of black triangles and the
number of the white triangles whose normalized volume is odd. The vertices of
a foldable triangulation can be colored by d + 1 colors [6] (such that vertices of
the same color do not share an edge), where d is the dimension. Here d = 2, so
3 colors suffice. We can check both properties with polymake.
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Now, a Wroński polynomial WT ,s(x) has the lifted lattice points as expo-
nents, and only one non-zero coefficient ci ∈ R per color class of vertices of the
triangulation

WT ,s(x) =
d∑

i=0

ci

⎛

⎝
∑

j: color(aj)=i

sλixaj

⎞

⎠ .

A Wroński system consists of d Wroński polynomials with respect to the same
lattice points A and lifting λ such that for general s = s0 ∈ [0, 1] it has precisely
d! vol(conv(A)) distinct complex solutions, which is the highest possible number
by Kushnirenko’s Theorem [7].

Soprunova and Sottile showed that a Wroński system has at least σ(T ) dis-
tinct real solutions if two conditions are satisfied. First, a certain double cover of
the real toric variety associated with A must be orientable. This is the case here.
Second, the Wroński center ideal, a zero-dimensional ideal in coordinates x1, x2

and s depending on T , has no real roots with s coordinate between 0 and 1.
Let us verify this condition using . Luckily for us,
polymake already has an implementation of the Wroński center ideal. However,
we have to convert the ideal returned by Polymake.jl to a polynomial system
which understands. This can be accomplished with
a simple routine.

Since we are only interested in solutions in the algebraic torus (C∗)3 we can use
polyhedral homotopy [5] to efficiently compute the solutions.

Out of the 54 complex roots only two solutions are real. Strictly speaking, this
is here only checked heuristically by looking at the size of the imaginary parts.
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However, a certified version can be obtained by using [2]. By
closer inspection, we see that no solution has the s-coordinate in (0, 1).

Therefore, the Wroński system with respect to A and λ for s = 1 has at least
σ(T ) = 3 real solutions. Let us verify this on an example.

Finally, we can use the package to visualize the real solutions
of the Wroński system W (Fig. 2).

Fig. 2. Visualization of the Wroński system W and its 3 solutions.

Acknowledgements. We would like to express our thanks to Alexej Jordan and
Sebastian Gutsche for all their help during the development of Polymake.jl.
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Abstract. Since 2012, web based notebooks have been used as interface
for computer algebra systems in teaching mathematics courses at Univer-
sidad de Zaragoza. We present an overview of the experience, detailing
the advantages and problems that have been noticed during this time.

1 Introduction

Computer algebra systems, both proprietary and free, have been used as part
of some mathematics related courses since several decades ago. In particular,
the Universidad de Zaragoza used to have campus licenses for Mathematica,
Maple and Matlab. Some professors were not happy with the use of proprietary
software, and opted for free systems such as CoCoA [1] or GAP [2].

However, the user interfaces of these systems used to be less friendly to the
user than the ones of the mentioned proprietary systems, which constituted a
problem for the adoption. Moreover, many of the free systems were oriented
to a very specific area of mathematics (e.g. CoCoA is focused specifically in
computations in polynomial rings, GAP is focused in group theory and so on).

By 2010, SageMath [6] had reached a level of maturity that made its use for
these tasks viable. It was feature rich enough for the courses, and it had a user
interface that was much more user friendly than the ones of other free systems.
An aspect that was very unusual at that time was that this user interface was
web-based (that is pretty common nowadays, but at that point SageMath was a
pioneer). But the main drawback was that it couldn’t be installed over Windows
operating systems, which is what most students used in their personal computers.

We then decided to take advantage of the fact that the user interface was web
based to use a server-centered approach, setting up a server that run SageMath’s
web interface, students could log in and use SageMath without installing any
software in their computers.

This approach has been used for nine years. In the 2019–2020 academic
year we started a migration process from the classic SageMath notebook to
a Jupyter [3] based one. In the rest of the paper we will describe the technical
details of the setups we have used, and analyze their differences. We will also
mention the advantages and drawbacks that we have experienced in each case.
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cación Matemática” of Gobierno de Aragón/Fondo Social Europeo.
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2 The SageNB Notebook

SageMath included from the very beginning a web based notebook GUI. It
included some options that were useful for our use case:

– It allowed using user accounts, so each instructor and student could log in,
and keep his/her worksheets in the server.

– It allowed publishing worksheets, so everybody could see them, and logged in
users could make a copy to work in them.

– It allowed to share a worksheet with other specific users, so they could both
see and edit it.

Our usual workflow was the following:

1. The instructor of each course creates a worksheet with explanations, exam-
ples, and exercises; and published it.

2. The students create a copy of it, work on their copy solving the exercises, and
share it with the instructor.

3. The instructor sees the work done by each student, and modifies the student’s
worksheet to grade it or add further comments or explanations. In some cases,
they can include further work or corrections for the students to do.

4. The student does the extra corrections requested by the instructor.

This approach worked reasonably well, although there were some problems
that were solved on the way. We will now mention some of them, and how they
were dealt with.

The server we used couldn’t handle the peaks of work. It was solved by adding
another machine and using the ability of SageNB to create sessions in remote
machines through ssh.

The number of published worksheets, and the list of worksheets shared to
each user kept growing to the point of making it hard for the user to find a
specific one. Sadly, SageNB never included a proper method to organize them
with folders or tags. We partially mitigated this by restarting the database of
worksheets each academic year. Besides, we kept different instances of the note-
book server for different degrees. All of them run in the same server, with a
proxy server that filtered and redirected connections by domain name. That is,
for example, requests to sage-mtm.unizar.es were redirected to the port were
one of the notebook servers was listening; whereas sage-inf.unizar.es was
redirected to another port.

The problems of lack of CPU and RAM were specially usual during exams.
We suspect that it was due to some students trying to sabotage the exams by
overloading the server. We tried limiting the amount of RAM and CPU that
each session could use, but this remained a problem.

Also, users were created manually (theoretically, SageNB allowed LDAP iden-
tification, but we were never able to make it work with our university’s directory).
So we had to create scripts to create the users each academic year, from a list
of students registered in each course.
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The tasks of installing, updating and managing the server were done mainly
by one person, with another one helping in minor issues. Both admins were
professors that dedicated part of their spare time for this task. Most of the time
this wasn’t a problem, but at some specific times they couldn’t handle the issues
that appeared as quickly as it would be desirable.

Overall, it was a viable option, although far from perfect.

3 JupyterHub and JupyterLab

The SageNB notebook was deprecated in SageMath version 9 (although its devel-
opment was virtually abandoned long ago). Instead, SageMath had been moving
since several years ago towards the Jupyter notebook. In these circumstances,
we had to start migrating our infrastructure to this new model. However, we
kept the old SageNB server running for one more year to allow a grace period
for the instructors that had a hard time making the switch.

When we started considering the options to switch to, our desired features
were the following:

1. It should allow different users to log in, ideally using the university’s directory.
2. It should allow users to organize their worksheets in folders or similar.
3. It should allow a persistent storage of the work of each user.
4. It should allow users to share worksheets with other users, at least in a similar

fashion than the workflow we had in SageNB.
5. It should be able to scale to many users.
6. It should be able to isolate the computations of each users, in such a way that

one user cannot exhaust the available resources.

The obvious answer for several of the requirement was to use the Jupyter
ecosystem.

The Jupyter notebook [3] is a web based application that allows to combine
text, executable code and graphics in the same document. The code can be exe-
cuted interactively. It uses a specific protocol to communicate with the different
kernels, which are programs that execute the corresponding code and return the
result. That way, one can run sessions of different programming languages (the
name was chosen as a combination of Julia, Python and R, but many more ker-
nels have been added since then). JupyterLab is a redesign of Jupyter, including
a desktop-like environment, with a file browser, an embedded tiling window (and
tabs) manager for notebooks, interactive consoles and file editors.

Both Jupyter and JupyterLab are single-user applications, but there is a
front-end that can handle Jupyter sessions for several users called JupyterHub
[4]. It has different modules for authenticating users and spawning sessions. In
the authentication side, we used the CAS authenticator, that worked seamlessly
with our university’s Single Sign On system.

As for the spawner choice, one of the most popular solutions to accomplish
the isolation requirement is to use Docker. However, the Docker approach is
hard to mix with the requirement of having persistent storage for each user. So
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we opted for the Systemd spawner that runs each session as the corresponding
system’s user, under a Systemd container that allows to limit the CPU and RAM
available.

To better handle the requirement of organizing the files in folders, we opted
for JupyterLab instead of plain Jupyter (since it allows, for example, moving
files to folders by just dragging them). Moreover, the Jupyter project has already
stated that their long term plan is to move to JupyterLab and deprecate plain
Jupyter.

As for the requirement to share worksheets with other users, we looked into
nbgrader [5], which is a tool designed for this specific purpose, but it wasn’t a
good fit since it assumes that the user logs in a session that is dedicated to each
course; whereas we envisioned a global system for all the university, where each
student could log in and have access to his/her files related to all courses. We
started working on a JupyterLab extension that would allow instructors to send
files to the students enrolled in a certain course, and students to send them back
to instructors. However, that work is no ready yet, so for the moment we are
using external channels (Moodle and email) to send files back and forth. Luckily,
the JupyterLab interface makes uploading and downloading files easier than the
SageNB one.

To achieve the scalability, we contacted a research institute in our university
that provides cloud services. They were kind to provide us with some virtual
machines to make a test deployment. In those machines, we deployed the follow-
ing design:

– A HAProxy server acts as a web frontal and https terminator. It redirects
each http session to one of the computation nodes.

– A database node provides a persistent NFS volume to the computing nodes,
and also a user database to make sure that usernames and uid’s are kept in
sync in all computing nodes. We also planned to keep here the database of
teachers/students/courses for the extension that would allow to share files
between users, but it is not ready yet.

– In each computing node, JupyterHub and JupyterLab are installed. Each
request is authenticated by the CASauthenticator against the university’s
SSO. Then the system user is created (if it doesn’t exist already) and the
session is started under a Systemd container.

As a backup option in case of failures, a single instance was also installed in
a regular computer (so it is not scalable).

The work of making the systems design, installing and configuring the soft-
ware was done by a student as part of his degree thesis, together with the pro-
fessor that managed the older server. This professor has also been the one that
has worked in the JupyterLab extension to send files back and forth between
students and instructors. Both that and the task of administering the server and
deal with the problems that have arisen have proven to be too much load for the
time he can dedicate to this task, which is the main reason why the extension is
still in early development phase.
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This approach has worked during the current academic year, where we have
had troubles with the peak capacity. A limit of 1 GB RAM per user seemed
insufficient for some tasks (partly due to the fact that most of them didn’t
properly shut down the worksheets that they don’t use anymore, the UI allows
to do so, but it is not evident, and most assume that just closing the tab is
enough). However, if we raised that limit to 1.5 GB or 2 GB, we encountered
that the whole computing node got its RAM exhausted, and didn’t respond until
the service was restarted. This contrasts with the peaks that the SageNB server
was able to handle, which, we suspect, shows that the Jupyter server introduces
a non-negligible overhead.

4 Impact on Teaching and Learning

We started with a test experience with only three instructors on the 2011–2012 aca-
demic year. After that, it was offered to all instructors that wanted to use it in their
courses. The adoption was modest the first year, but then it growed quickly and has
been stable since then. At the current academic year, the JupyterLab servers were
used by 24 instructors and 442 students. Most of them used SageMath notebooks,
but some used other ones, such as Python and R.

The typical way to use it was during problem/exercises sessions in the com-
puter lab: the students got a notebook document that combined the theoretical
explanations, code examples, and the questions they should answer by running
the corresponding computations (either by using the CAS as a calculator or
writing some actual code to solve the problems). Maybe the instructor could
combine it with a general explanation, and/or give specific hints to the students
that got stuck at some point.

As we can see, adoption increased quickly when the first notebook was intro-
duced; and then it has remained stable. The introduction of the Jupyter environ-
ment resulted in some instructors migrating to it, while others preferred to keep
using the legacy one (under the warning that it would be eventually deprecated).
An undesired result of this way of switching is that some students are forced to
use the legacy system for some courses, and the new one for others.

Although we didn’t make a general survey about the satisfaction of students,
we did receive some comments (that should only be taken as anecdotal). Some
of those comments were:

– Some engineering students felt overwhelmed by having to learn one program-
ming language (C++) for their programming courses, and a different one
(Sage/Python) for their mathematics courses.

– Several complained about the punctual availability and stability problems of
the server.

– Several students of science degrees without a big mathematical content
(Optics, Biotech...) had a very hard time grasping the general ideas of a
programming language.
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Fig. 1. Number of students that used the notebooks each year.

– In general, students of mathematics and physics degree showed a more pos-
itive attitude towards these tools. Some of them used these tools also as an
assistance for doing exercises in courses where it was not formally used (Fig.
1).

During the confinement declared in the COVID-19 pandemic, the university
switched to an on-line model with virtually no time to redesign the courses
and workflows. It was very hard in general, and some aspects could not really
be adapted. However, in particular, the computer lab lessons were one of the
aspects that was more easily adapted, since it didn’t require the students to
install any software on their computers, and the instructors could use the same
exercises and documents that were planned.

5 Conclusions

The combination of JupyterHub/JupyterLab has the potential to be a very useful
tool in teaching, and maybe some day it might be considered as a standard
service provided by universities (just like email or virtual campus). Its modularity
and flexibility makes it adaptable to each institution’s needs. However, most of
the development, modules and documentation seems to be focused to different
use cases, which makes it non obvious how to proceed for the university wide
approach.
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To find a setup that fits our requirements is still a challenge. Significant
computing resources would be necessary to provide this kind of services at a
whole university level. It would also require dedicated personnel to install and
maintain it. An estimate of this requirements would be:

– A minimum of 2 GB of RAM per expected simultaneous user at peak time. A
conservative security threshold should be added to that to prevent problems
in case of an unexpectedly high peak.

– CPU doesn’t seem to be a big limitation, unless the students are expected
to do very CPU intensive computations. And even in that case, the only
expected problem is that they would take longer.

– About personnel requirements, the initial installation and setup could be done
by a small group (one or two persons) with the appropriate skills and docu-
mentation, within a few days. Proper maintenance would require a sysadmin
with knowledge of the system (although, as many sysadmin work, the differ-
ence in workload between normal days and peak times would be very big).
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Abstract. In this extended abstract, we present how to compute and
visualize phase portraits of bi-dimensional Zeta Values. Such technology
is useful to explore bi-dimensional Zeta Values and in long-term quest
to discover a 2D-Riemann hypothesis.

To reach this goal, we need two preliminary steps:
• the notion of phase portraits and a general tool to visualize phase

portrait based on interactive Jupyter widgets.
• the ability to compute numerical approximations of bi-dimensional

Zeta values, using mpmath, a Python library for arbitrary-precision
floating-point arithmetic. To this end, we develop a theory to numer-
ically compute double sums and produce the first algorithm to com-
pute bi-dimensional Zeta Values with complex parameters.

Keywords: Phase portrait · Lindelöf formula · double Zeta Values

1 Introduction

The Riemann Zeta function ζ and the bi-dimensional Zeta Values, also called
2D-Zeta Value, bizetas or double Zeta Values, are respectively defined by:

ζ(s) =
∑

k>0

1
ks

, for all s ∈ C , �e s > 1. (1)

Zes1,s2 =
∑

k>l>0

1
ks1 ls2

, for all s1, s2 ∈ C ,

{�e s1 > 1.
�e (s1 + s2) > 2.

(2)

It is well-known that these functions can be respectively meromorphically
extended to C and C

2 (see [9]). It is also conjectured that the zeros of the

Riemann Zeta function be complex numbers with real part
1
2
: this is the Rie-

mann hypothesis, stated by Riemann himself in 1859 in [10]. A nice long term
quest is to discover the location of zeros of bi-dimensional Zeta Values.

This quest needs first a tool to visualize a representation of a function f
defined over (a part of) C and valued in C, such that looking for zeros of f
becomes easy.
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Constructing a graphical representation of a function f : R −→ R is quite
easy, we just need a 2-dimensional space. However, constructing the graph of a
function f : C −→ C is not so simple because we need a 4-dimensional space. In
particular, this implies that most of us have difficulties visualizing such a graph.
The first objective of this note is to review how to read and construct phase
portraits, which are heat maps where colors encode simultaneously phase and
modulus (see Sect. 2).

Let us notice that there already exists a tool, developed by Elias Wegert in
Matlab (see [12]), to represent phase portraits of complex functions. In parti-
cular, it has been used to explore many functions and illustrate a first course
on complex analysis (see [13]). Unfortunately, this tool computes a lot of values
to produce the desired representation and does not save them. So, research the
localization of the zeros of a function with it is necessarily time-consuming. In
other words, it is not an efficient tool for our purpose.

Nevertheless, Jupyter widgets (see [14]) are wonderful tools that easily enable
us to construct a general phase portrait visualization tool, where the input is just
a complex function. The author has implemented such a widget (see [1]) where,
with interactivity, the user can change the visualization window, the number of
pixels used in a unit square, reuse already computed values or store new ones in
a database, save pictures or see information on how the computations progress.

This widget can be extended to visualize phase portraits of functions with two
complex variables. Visualizing such a function is nothing else than drawing a rep-
resentation of the partial functions and move inside them. According to this, the
author has implemented a second interactive Jupyter widget to realize this walk.

To benefit from the power of the second widget, we need to have an efficient
algorithm to numerically compute bi-dimensional Zeta Value. This is the second
preliminary step to look for a 2D-Riemann hypothesis.

Nowadays, researchers can compute multiple zeta values (and in particular
bizetas), with integer parameters, with as many digits as we wanted (see [3]).
But, to the best of the author’s knowledge, nothing is known to compute these
numbers with complex parameters in any length.

Therefore, the last objective of this note is to present how a double sum can be
numerically computed, and apply the developed method to bizetas. This method
is based on a generalization of a poorly known Lindelöf formula explaining how
to compute the sum of the values at integers of a class of holomorphic functions.
Section 3 contains a presentation of Lindelöf formula, as well as a comparison
between three methods to compute evaluations of the Riemann Zeta function.

Lindelöf formula generalization to double sum, and therefore to bizetas, is
discussed in Sect. 4. One could notice that Lindelöf formula can be written as
an integral. Therefore, we generalize the process to compute double sums using
double integrals and, then, expansions of these integrals. Of course, this technic
is still valid for multiple sums and gives, in theory, an algorithm to compute
multiple Zeta Value in any length, with complex parameters!
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Finally, once the Jupyter visualization widget of a two complex variables
function is available and the computational machinery is developed, we can
explore phase portraits of convergent 2D-Zeta Values, or linear combinations
of these numbers, to find out some zeros. Therefore, the last necessary point is
to be able to numerically compute the analytic extension of bizetas. Only then,
using our Jupyter widget, a Riemann hypothesis for bizetas could be conjectured.

2 Drawing Function from C to C: Phase Portraits

In this section, we review how to construct and read phase portraits. We will see
how to find zeros and poles of a function, but also points (called color saddle)
where the derivative becomes null. References for this section are [11] and [13].

2.1 Analytic Landscapes vs Phase Portraits

Drawing a function R
2 �−→ R is typically achieved through 2D heat maps

(see [15]) or 3D plots. For a function f : C �−→ C, these approaches may be
used to visualize the modulus; that is analytic landscapes. We could also use
such plots to visualize the phase of f .

However, many applications like ours require to visualize the modulus and
the phase at the same time to visualize poles and zeroes. In addition, such
visualization should highlight simultaneously very small modulus (near zeroes)
and huge modulus (near poles).

Here come into play phase portraits: heat maps where the color of a pixel
z encodes simultaneously the phase of f(z) (by giving color to its values) and
the (logarithm of the) modulus (by using different brightness). Eventually, the
modulus can then be emphasized by adding contours.

2.2 HSL-representation of Colors

Fig. 1. The HSL cylinder Source:
Wikipedia, “HSL and HSV” (Color figure
online)

The HSL-representation of colors is an alterna-
tive representation of the RGB color model and
can be seen as a cylindrical geometry (see Fig. 1).
Its angular dimension, the hue, starts at the red
color at 0◦, passing through the green color at
120◦ and the blue one at 240◦ to finally come
back to red at 360◦. The lightness, i.e. the cen-
tral vertical axis, describes the gray colors, rang-
ing from black at the bottom of the cylinder with
lightness or value 0 to white at the top of the cylinder with lightness or value 1.
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2.3 Principle of Phase Portraits

A pixel of coordinates (x, y) is associated with a complex number z. Then, we
find a color c related to the value f(z) = ρeiθ using the HLS representation of
colors. Therefore, the pixel (x, y) is colored by the color c. (See Fig. 2).

Let us mention that zeros and poles play an important role when visualizing a
phase portrait. Using the logarithm of the modulus, instead of the modulus itself,
allows us to have a smoother graphic representation and also to have symmetrical
behavior between zeros and poles, as well as symmetric visualization of small
and big values.

Moreover, to encounter all the possible values of the modulus, we compactify
the extended real number line [−∞; +∞] to [−1; 1], using x �−→ x

1 + |x| .

x

y

ρ′
=

ln ρ

1 + | ln ρ|

θ

(x, y) ∈ N
2 ←→ z ∈ C

f(z) = ρeiθ

Fig. 2. Color coding of pixels to draw phase portraits of a complex function f

Consequently, a pixel of coordinates (x, y), via its associated complex number
z, is associated with the color obtained in the HSL model by:

H = phase
(
f(z)

)
L =

1
2

(
ln |f(z)|

1 +
∣∣ ln |f(z)|∣∣ + 1

)
S = 1. (3)

In particular, positive real numbers appear reddish in a phase portrait when
negative real numbers appear cyan. Moreover, a zero is a black point while a
pole is a white point.

Let us notice that the color map can be, in principle, adapted to colorblind
people provided that the inherent periodicity of color be fulfilled.

2.4 Easy Properties to Read on Phase Portraits

The phase portraits not only show the location of zeros and poles of a function
but also reveal their multiplicity. As an example, Fig. 3a shows a zero with
multiplicity three. It is easily recognizable: z3 travels 3 times around 0 when
z moves once around 0 along a small circle. We emphasize that the colors met
are in the reverse order for zeros and poles (compare the pole 0 to the three
zeros located in cube root of −2 in Fig. 3b).
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Moreover, it can be shown that the points where f ′(z) = 0, with f(z) �= 0,
are where the isochromatic lines meet. Such points are called color saddles. See
Fig. 3b where the color saddles are located at cube roots of −2. See also Fig. 3c.

2.5 Necessary Precision to Choose Exact Color

In most cases, only a few significant digits (typically five), need to be known to
plot phase portraits of a function f : C −→ C. In particular, we do not assume
that the underlying system can do arbitrary precision computations.

We review here how to assess the required precision and how to achieve that
precision.

If εL and εH denote the absolute error of L and H, the RGB components

of the associated color are fixed as soon as we have:
εH

60
+ 6εL ≤ 1

255
. More

precisely, we seek to have: εL ≤ 2040−1 and εH ≤ 20−1.
If we assume that Re f(z) and Im f(z) are known up to ε > 0, then, |f(z)|

is known up to 2ε. If |f(z)| ≥ 1, then we can prove that εL ≤ 2ε. If |f(z)| < 1,

then this time εL ≤ k + 2
ln2(k + 2)

ε, where k ∈ N
∗ is such that |f(z)| ∈

[
1

k + 1
;
1
k

[
.

(a) A zero with multiplicity 3:
phase portrait on [−2; 2] + i[−2; 2]
of z →−� z3

(b) A pole, three simple zeros:
phase portrait on [−2; 2] + i[−2; 2]
of z →−� z − z−2

(c) Alternating color saddles with
zeros: phase portrait of sin on
[−7; 7] + i[−7; 7]

Fig. 3. Examples of easy properties seen on phase portraits

Consequently, if f(z) is computed up to ε = 10−4 and satisfied |f(z)| ≥ 0.01,
we have εL ≤ 2040−1 for all cases and the parameter L is well-approximated.

On the H-side, if we assume that R = Re f(z) and I = Im f(z) are known
up to ε > 0 and satisfied |R|, |I| ≥ α for a positive real number α, then, we
can show that εH ≤ ε

(
α−1 + (α − ε)−1

)
. In particular, for α = 5 · 10−3 and

ε = 10−4, we thus have εH ≤ 20−1 and the parameter H is well-approximated.
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Consequently, in most cases, we compute the function f : C −→ C up to 10−4.
However, in the other cases, i.e. when |f(z)| < 0.01, or |Re f(z)| < 5 · 10−3 or
|Im f(z)| < 5 · 10−3, then we will compute again f(z) up to a smaller precision,
e.g. ε = 10−5 or 10−6, in order to finaly have εL ≤ 2040−1 and εH ≤ 20−1.

2.6 Interactive Visualization of Phase Portraits for Jupyter
Notebook

The next step is to create a tool to visualize phase portraits of a given complex
function C −→ C.

Let us remind such a tool was already available in Matlab (see [12]). However,
for our long-term quest of a 2D Riemann hypothesis, we need a tool where the
visualization window of our phase portraits can be easily modified.

According to the official website, a “Jupyter Notebook is an open-source
web application that allows you to create and share documents that contain live
code, equations, visualizations and narrative text” (see also [7] about Jupyter).
Moreover, interactive widgets like Sliders, Buttons or Images are now available
in Jupyter (see [14]).

Consequently, the author has implemented an interactive Jupyter widget for
general visualization of phase portraits (see [1]). Figure 4 is a graphic representa-
tion of its usage. For examples of outputs, let us note that all the phase portraits
shown in this paper have been constructed from this widget.

The code of this interactive widget is already freely available in the following
GitHub repository: https://github.com/tolliob/PhasePortrait. In particular, the
interested reader will find in this repository an online usable Jupyter notebook.
The widget can also be installed using the pip Unix command.

The input of this widget is a complex function f : C −→ C. Interactivity
allows the user to fix a visualization window by setting the left below and right
upper corners. Once these corners fixed, the user can:
� launch the needed evaluations of the function f , or retrieve them;
� show the phase portrait of f in the desired window;
� save the produced image
Then, the user can change the visualization window by going back to these steps.

Another interactive Jupyter widget has also been implemented by the author.
It aims to visualize phase portraits of two variables complex functions from its
partial functions phase portraits. The input is a function f : C2 −→ C, outputs
are again phase portraits, alternatively of f(s0, ·) and f(·, s0). Interactivity allows
the user to move a partial function to another one by moving the point s0 to a
close complex point, or to switch from a partial function to the other one.

https://github.com/tolliob/PhasePortrait
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Fig. 4. Interactive Jupyter widget to construct phase portraits

3 Computation of the 1D-Zeta Value

In this section, we present a poorly known formula due to Lindelöf (see [8],
chapter 3) which explains how to compute the sum of the values at integers of
holomorphic functions. Then, we apply it to the Riemann Zeta Function and
compare its performances to the Euler-Mac Laurin summation.

However, we warn the reader that Lindelöf formula application to the Zeta
function could not compete computation technics dedicated to the Zeta function,
such that the Riemann-Siegel formula or the Odlyzko-Schönhage algorithm (see
[5] for example). However, Eqs. (7) and (9) will prove that Lindelöf formula
can be extended to the numerical computation of double sums, and so to the
numerical computation of 2D-Zeta Values, while it seems nowadays impossible
to adapt specific ζ computational technics to 2D-Zeta Values.

3.1 On Lindelöf Formula

Before giving the Lindelöf formula, we first emphasize a technical definition from
Chapter 3, p. 54, of [8].

Definition 1. Let m0 >
1
2

be a real number. Let also Ωs be the set defined for

all real number s by Ωs = {z ∈ C , Re z ≥ s}.
A holomorphic function f : Ωm0− 1

2
−→ C satisfies the 1D-Lindelöf hypothesis if:

1. for all s ≥ m0− 1
2
, lim

t−→±∞ e−2π|t|f(τ + it) = 0 uniformly for τ ∈
[
m0 − 1

2
; s

]
;

2. for all s ≥ m0 − 1
2
, t �−→ e−2π|t|f(s + it) ∈ L1(R) and

lim
s−→+∞

∫ +∞

−∞
e−2π|t||f(s + it) dt = 0. (4)
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Now, exploring Chapter 3 of [8], one can reconstruct the following theorem
which gives an integral representation of sums of values of holomorphic functions.
The proof is based on a clever use of the residuum principle. Nevertheless, the
result is quite unknown.

Theorem 1. (Lindelöf, 1905)

Let m0 >
1
2

be a real number, m a positive integer such that m ≥ m0 and
f : Ωm0− 1

2
−→ C be an holomorphic function over Ωm0− 1

2
satisfying

• the 1D-Lindelöf hypothesis ; •
∑

ν≥m

f(ν) is a convergent series.
Then, f ∈ L1([m0 − 1

2 ; +∞[) and

∑

ν≥m

f(ν) =
∫ +∞

m− 1
2

f(t) dt − i

∫ +∞

0

f(m − 1
2 + it) − f(m − 1

2 − it)
e2πt + 1

dt. (5)

The Lindelöf formula (5) can be used to numerically compute sums, expand-
ing its second integral using Taylor expansion with integral remainder: this gives
us a Lindelöf’s Euler-Maclaurin like formula.

Theorem 2. (Lindelöf, 1905)
Let m0, m and f be like in Theorem 1. Then:

∀K ∈ N,
∑

ν≥m

f(ν) ≈
∫ +∞

m− 1
2

f(t) dt+
K∑

k=1

(
1 − 1

22k−1

)
B2k

(2k)!
f (2k−1)

(
m − 1

2

)
. (6)

Coefficients in (6) are nothing else than the Taylor coefficients of
z �−→ x

2 sinh
(z

2

) . So, in a certain sens, Eq. (6) means that:

∑

ν≥m

f(ν) ≈
∫ +∞

m− 1
2

d

dz

2 sinh
(

1
2

d

dz

) (f)(t) dt. (7)

While in Lindelöf’s days, it was not necessary to have a precise estimate of
the approximation error, we now need it due to the existence of computers and
their immense associated computing power.

Theorem 3. Let m0, m, K and f be like in Theorem 1. Let also assume that,

for all u ≥ m0 − 1
2
, the quantity Mu(f) = sup

ζ∈C

Re ζ≥u

|f(ζ)| is well-defined.

If we denote by RK,m(f) the Lindelöf remainder in Eq. (6), i.e. the difference
between the right hand side and the left hand side of Eq. (6), then we have the
following upper bound:

|RK,m(f)| ≤
Mm0− 1

2
(f)

(m − m0)2K+1
· (2K + 1)!

(2π)2K+1
. (8)



Phase Portraits of 2D MZV 401

3.2 Application to the Riemann Zeta Function

To produce a phase portrait of the Riemann Zeta function ζ, we will compute
the values ζ(s) for s in a grid up to 10−4.

First, the Euler-Maclaurin summation process applies (see [2]).
Moreover, the functions fs : z �−→ eiπzz−s satisfy the 1D-Lindelöf hypothesis

for all complex numbers s such that �es > 0. So, Eq. (5) can be used, its second
integral being numerically computed with the mpmath Python library.

Equation (6) can also be used. We just have to find the best choice of triplet
(m0,m,K). Note that the bigger K is, the longest the computation, due to
the computation of the successive derivative which concentrates most of the
multiplications. However, the size of m also intervenes.

This allows us to compute η(s) =
∑

n>0

(−1)nn−s and ζ(s), for all s ∈ Ω 1
2
.

Now, classical tools can be used to compute ζ on the whole punctured complex
plane C − {1} (reflection formula, analytic continuation process; see [4]). Using
the Jupyter widget [1], this generates the phase portraits available in Figs. 5a–5c.

3.3 Comparaison of the Three Methods

Figures 6a to 6d show some comparisons between the three previous methods
(i.e. the Euler-Maclaurin summation process, the Lindelöf formula (5) and the
Lindelöf Euler-Maclaurin like formula given by Eq. (6)).

First, we can see that the integral Lindelöf method is the most stable method,
even if there are some discontinuities (see Fig. 6c and 6d). This is explained by
the different numerical integration methods used by the mpmath Python library.

According to these Figures, we see that to have numerous exact digits, the
bigger |s| is, the more efficient the Lindelöf Euler-Maclaurin-like method is.

Finally, for the three methods, we observe that the computation gets longer
as we want more exact digits. This increase is correlated to the modulus of |s|.
It turns out that Lindelöf Euler-Maclaurin-like formula is the method with the
slower computation time increase relatively to the required number of digits in
the computation of ζ(s).

(a) On [−40; 20] + i[−40; 40] (b) On [−18; 14] + i[−10; 10] (c) Near the first non triv-
ial zero z1 ≈ 0.5 + 14.135

Fig. 5. Three phase portraits of the Rieman Zeta function ζ
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(a) ζ(n) for n ∈ [[2; 50]] up to 10−4 (b) ζ(2 + i im) up to 10−50

(c) ζ(2+ i) with different precision (d) ζ(2 + 40i) with different precision

Fig. 6. Comparaison between three methods to compute Zeta Values

4 Computation of Convergent Two Dimentional Multiple
Zeta Values by a 2D-Lindelöf Formula

To the best of the author’s knowledge, no one was able to numerically com-
pute a convergent Multiple Zeta Values (MZV) with complex exponents so far.
The only known algorithm was dedicated to MZV with integers parameters: it
uses binomial expansions where exponents are related to the MZV parameters
(see [3]).

To produce and explore phase portraits of 2D-Zeta Values, we nevertheless
need, first, to be able to compute these numbers, then to compute them efficently
because producing phase portraits of 2D-Zeta Values could easily require millions
of different evaluations. This difficulty is, of course, the cornerstone of our quest
for a 2D-Riemann hypothesis.

Hopefully, one of the most important advantages of Lindelöf formulas (5)
and (6) over Euler-Maclaurin formula is that it could be extended to higher
dimensions. Consequently, in this section, we will present the first general method
to compute double sums and then apply it to produce the first bi-dimensional
Zeta Values with complex exponents computing algorithm.

Efficientness will not be discussed here for technical reasons, as well as the
upper bound of the error term in the computation of a double sum.
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4.1 On the 2D-Lindelöf Formula

First, we extend the 1D-Lindelöf hypothesis to the bi-dimensional case:

Definition 2. We say that a function f : Ωm01 × Ωm02 −→ C satisfies the
2D-Lindelöf hypothesis when:

1. ∀z1 ∈ Ωm01 , f(z1, ·) satisfies the 1D-Lindelöf hypothesis over Ωm02 ;
2. S =

∑

l≥m2

f(·, l) is a well-defined function over Ωm01 satisfying the 1D-Lindelöf

hypothesis;

Then, using an iteration of (7), we can prove the following:

Theorem 4. Let m01 and m02 be two real number greater than 1
2 , m1 and m2 be

two positive integers such that mi ≥ m0i, i ∈ {1; 2} and f : Ωm01 × Ωm02 −→ C

a fonction satisfying the 2D-Lindelöf hypothesis.
Let us also suppose that

∑

k≥m1
l≥m2

f(k, l) is a convergent double series. Then:

•
∑

k≥m1
l≥m2

f(k, l) ≈
∫ +∞

m1− 1
2

∫ +∞

m2− 1
2

d

dz1

2 sinh

(
1

2

d

dz1

)

d

dz2

2 sinh

(
1

2

d

dz2

) (f)(u, v) dudv (9)

•
∑

k≥m1
l≥m2

f(k, l) ≈
∑

p,q∈N

p+q≤K

(
1 − 1

22p−1

) (
1 − 1

22q−1

)
B2p

(2p)!

B2q

(2q)!

×
(∫ +∞

m1− 1
2

∫ +∞

m2− 1
2

∂2p+2qf

∂2p
z1 ∂2q

z2

(u, v) du dv

)
(10)

for all integers K.

Some of the integrals in Eq. (10) could be explicitely computed; some could
not. So, to obtain numerical approximation, we use the mpmath Python library
for arbitrary-precision floating-point arithmetic (see [6]).

4.2 Computation of a Double Sum over N
2

Now, we are able to compute a double sum over N2 by cutting N
2 onto six parts

(see Fig. 7):

∑

k≥0

∑

l≥0

f(k, l) =
m1−1∑

k=0

m2−1∑

l=0

f(k, l) +
m1−1∑

k=0

q−1∑

l=m2

f(k, l) +
m1−1∑

k=0

∑

l≥q

f(k, l)

+
p−1∑

k=m1

m2−1∑

l=0

f(k, l) +
∑

k≥p

m2−1∑

l=0

f(k, l) +
∑

k≥m1

∑

l≥m2

f(k, l). (11)
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For “good” functions f , we can compute
m1−1∑

k=0

∑

l≥q

f(k, l) and
∑

k≥p

m2−1∑

l=0

f(k, l)

using the 1D-Lindelöf Euler-Maclaurin-like formula, while
∑

k≥m1

∑

l≥m2

f(k, l) is

computed using the 2D-Lindelöf Euler-Maclaurin-like formula.

Let us consider the function fs1,s2 : (z1, z2) �−→(z1 + 1)−s2(z1 + z2 + 2)−s1 .

k

l

finite
sum

finite
sum

finite
sum

simple
infinitesum

simple
infinitesum

double
infinitesum

m1

m2

p

q

Fig. 7. Decomposition of N
2

onto 6 parts to compute a dou-
ble sum

fs1,s2 satisfies the 2D Lindelöf hypothesis, while
its partial functions satisfy the 1D-Lindelöf
hypothesis. Therefore, we can use the decompo-
sition (11) to compute the double Zeta Value
(see Fig. 8a and 8b).

According to Fig. 8a, we could conjecture
that there is a pole near (s1, s2) = (1, 0).

According to [9], we know exactly the local-
ization of the poles of double Zeta values and
(1, 0) is actualy a pole. Up to long computations,
we now are able to find out zeros of convergent
double Zeta Values.

k = −10 k = −9 k = −8 k = −7 k = −6 k = −5 k = −4

k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3

k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

(a) s �−→ Zes, 6+ik
5 , on

[
6

5
; 3

]
+ i[−2; 2]

k = 6 k = 7 k = 8 k = 9 k = 10

k = 11 k = 12 k = 13 k = 14 k = 15

(b) s �−→ Ze
k
5 −2i,s, on

[
6

5
; 3

]
+ i[−2; 5]

Fig. 8. Expansion of phase portrait of partial functions of double Zeta values
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Abstract. The Grammatical Logical Framework (GLF) is a framework
for prototyping the translation of natural language sentences into logic.
The motivation behind GLF was to apply it to mathematical language, as
the classical compositional approach to semantics construction seemed
most suitable for a domain where high precision was mandatory—even
at the price of limited coverage. In particular, software for formal math-
ematics (such as proof checkers) require formal input languages. These
are typically difficult to understand and learn, raising the entry barrier
for potential users. A solution is to design input languages that closely
resemble natural language. Early results indicate that GLF can be a use-
ful tool for quickly prototyping such languages. In this paper, we will
explore how GLF can be used to prototype such languages and present
a new Jupyter kernel that4 adds visual support for the development of
GLF-based syntax/semantics interfaces.

1 Introduction

The work of mathematicians is increasingly supported by computer software
ranging from computer algebra systems to proof checkers and automated theo-
rem provers. Such software typically requires a specialized input language, which
users have to learn to use the software themselves and in order to understand
how it was used by other people. The latter is of particular interest when it comes
to computer supported theorem proving. In mathematics, proofs are much more
than mere correctness certificates: they give insights into why a theorem is true.
A computer proof cannot fulfil this duty if the reader cannot understand it in the
first place. The obvious consequence is that input languages should be designed
to be as intuitive as possible. In some cases, this could be in the form of a con-
trolled natural language—a formal language with well-defined semantics that
closely resembles natural language. There are some general-purpose controlled
natural languages, most notably Attempto Controlled English (ACE) [FSS98].
But for input languages for mathematical software, we need controlled math-
ematical languages.

State of the Art. A controlled natural language (CNL) consists of i) a nat-
ural language fragment e.g. defined by a grammar, ii) a formal target language,

c© Springer Nature Switzerland AG 2020
A. M. Bigatti et al. (Eds.): ICMS 2020, LNCS 12097, pp. 406–415, 2020.
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and iii) a program that translates from i) to ii). Different controlled mathemat-
ical languages (CML) have been developed in the past, especially for automatic
proof checkers. An example for this is ForTheL [Pas07], the language of the Sys-
tem for Automated Deduction (SAD). It appears that ForTheL has reached a
sweet spot between expressivity and parseability. Implemented with hand-crafted
parser combinators in Haskell, however, it is hard to maintain and even harder
to extend. More recently, SAD was extended by some of the people behind
the Naproche system [Cra13], which has a controlled mathematical language
that supports a “controlled” LATEX input. This resulted in the Naproche-SAD
project [FK19]. Over the last few years, research into controlled mathematical
languages has gained momentum with Thomas Hales’ Formal Abstracts project
(e.g. [Hal19]). Its goal is the creation of a controlled mathematical language that
translates into the language of the lean theorem prover – a type theory based on
the calculus of inductive constructions.

Overview. In this paper, we present a setup for prototyping controlled mathe-
matical language. Section 2 describes the underlying technology: the Grammat-
ical Logical Framework (GLF) [KS19]. In Sect. 3 we introduce a new Jupyter
kernel for GLF that makes GLF much more accessible and supports the develop-
ment and testing of controlled mathematical languages with a variety of features.
All listings in this paper are screenshots of Jupyter notebooks. In Sect. 4, we will
discuss some of our insights from our attempts to re-implement ForTheL with
GLF. Section 5 concludes the paper.

2 Grammatical Logical Framework

The Grammatical Logical Framework (GLF) [KS19] is a tool for prototyp-
ing translation pipelines from natural language to logic. As a running exam-
ple, we will develop a pipeline that translates sentences like “the derivative of
any holomorphic function is holomorphic” into expressions in first-order logic:
∀f(holomorphic(f) ⇒ holomorphic(derivative(f))). This translation pipeline
consists of two steps: parsing and semantics construction.

Listing 1.1. Sketch of a very simple GF grammar to talk about mathematics.



408 J. F. Schaefer et al.

Parsing is done with the Grammatical Framework (GF) [Ran11], which is
a powerful tool for the development of natural-language grammars. A GF gram-
mar consists of an abstract syntax that describes the parse trees and (possibly
multiple) concrete syntaxes that describe how these parse trees correspond
to strings in a particular language. Listing 1.1 sketches an example GF gram-
mar that can parse sentences like “every integer is even”1. The abstract syntax
introduces categories (node types) and function constants that describe how
nodes can be combined. E.g. state combines a term and a property into a state-
ment. The sentence “every integer is even” thus corresponds to the expression
state (every integer) even. For our simple example, the concrete syntax is very
straight-forward, but in general the concrete syntax has to handle the complex
morphology and syntax of natural language. GF supports this with a powerful
type system and various mechanisms for modularity and reusability. GF also sup-
plies the Resource Grammar Library, which provides re-usable implementations
of the morphology and basic syntax for many (≥ 35) languages.

Listing 1.2. Example logic, domain theory, and semantics construction in MMT.

The semantics construction describes how the parse trees are translated
into logical expressions. GLF uses the Meta Meta Tool (MMT) for the logic
development and semantics construction. MMT is a foundation-independent
framework for knowledge representation [Uni]. In MMT, knowledge is represented
as theories, which contain sequences of constant declarations of the form

1 Note that neither parsing nor the semantics construction are concerned with the
validity of a statement.
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CONSTANT [: TYPE] [ = DEFINITION] [ # NOTATION]

While MMT itself is foundation independent, MMT theories are typically based
on the Edinburgh Logical Framework (LF) [HHP93] and extensions of that
in practice. Listing 1.2 contains a theory FOL that defines the syntax of first-
order logic. First, we need types for propositions and individuals, denoted by
o and ι respectively. Afterwards, we can declare logical connectives as bina-
ry/ternary operators on propositions with the expected prefix/infix notations.
For quantifiers, we use higher-order abstract syntax. Together with a domain
theory, this allows us to express the meaning of our example sentence as
∀x(integer(x) ⇒ even(x)).

Before we can define the semantics construction, we need to be able to rep-
resent GF parse trees as MMT terms. For this, GLF creates a language theory
from the abstract syntax, i.e. an MMT theory that contains the GF categories as
type constants and the GF functions as function constants. Then, we can define
the semantics construction as an MMT view from the language theory into the
domain theory (see Listing 1.2). A view maps every constant in the source the-
ory to a term in the target theory – e.g. statements are mapped to propositions
(o) and properties to unary predicates (ι→o). A term like “every integer” should
have the meaning λp.∀x(integer(x) ⇒ p(x)), i.e. we apply properties to terms,
not the other way around. Note that λx.M is denoted in MMT by [x] M.

With all this in place, we can parse the sentence “every integer is even” to
obtain the parse tree state (every integer) even, and then apply the semantics
construction to obtain the MMT expression
([term,prop] term prop) (([n] [p] ∀ [x] n x ⇒ p x) integer) even, which β-reduces
to the desired ∀ [x] integer x ⇒ even x.

Given the declarative treatment of semantics construction and target logic,
GLF can serve as the basis for a rapid prototyping system for the development
and implementation of controlled (mathematical) languages. To complete that,
we need a good user interface (the extended GF shell that GLF comes with does
not qualify).

3 Jupyter Integration

Jupyter [Jup] provides a user environment for working with notebooks, which
can contain code cells, explanatory text and interactive widgets. The code cells
can be executed in-document, resulting in a very interactive experience. We
developed a new Jupyter kernel to bring these features to GLF.

The code cells in a GLF notebook either enrich the language context or con-
tain executable commands. The language context consists of GF grammars
and MMT theories and views. A user can explore and test the language context
with commands for e.g. parsing a sentence with the specified grammar and
applying the semantics construction.
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When a code cell is executed, the first step is to identify its content type.
We use simple pattern matching for this. If the code cell extends the language
context, we write its content to a file. The file name is simply the name of
the grammar/theory/view, which is also extracted during the pattern matching.
Afterwards, grammars are imported into GF and MMT (for the language theory)
and theories and views are imported into MMT.

NB
GLF
Kernel

GF

MMT

grammar

file

abstr. syn.,
logic, view

For this, GF and MMT are running as subprocesses
in the background and the GLF kernel communicates
with them via pipes and HTTP respectively. The user
gets feedback whether the imports succeeded along
with possible error messages.

If a code cell contains commands, on the other hand,
they are executed and the output is returned to the
user. As GF is an integral part of the system, the GLF
kernel supports all of the GF shell commands by simply passing them on to
the GF shell. On top of that, we have added a number of kernel commands
peculiar to GLF. Some of them are stand-alone commands such as for specifying
where the GF and MMT files should be stored. Other commands are intended
to be used in combination with GF commands. In the GF shell, commands can
be combined with the pipe operator |. For example, one might want to use the
parse command to obtain the parse tree of an English sentence and then use the
linearize command to transform the parse tree into e.g. an Italian sentence.
The Jupyter kernel imitates this behaviour, i.e. if the user enters a command of
the form a | b, the output of command a is used as input for command b. By
imitating this behaviour, rather than letting the GF shell handle the piping, we
can add kernel commands that can also be used in combination with pipes, which
lets them blend in more naturally. The construct command takes a parse tree
as argument and sends a semantics construction request to MMT. Therefore, it
is commonly used in combination with the parse command. The show command
can be used for in-notebook visualization of parse trees (see Fig. 1). It is usually
used in combination with certain GF commands that generate graph descriptions
in the .dot format. The show command then uses GraphViz to generate images
that are displayed in a widget. If there are multiple parse trees (e.g. due to
ambiguity), a drop-down menu is created, where the user can select which parse
tree to display.

The GLF kernel provides a number of convenience features. Syntax high-
lighting is based on CodeMirror. In JupyterLab, which has been used for the
screenshots in this paper, syntax highlighting is provided by an extension. The
syntax highlighting also depends on the content type of the cell, i.e. different
rules are used for GF content, MMT content and commands.

Other features are built around tab-completion. MMT theories often use uni-
code characters for notations. The Jupyter kernel has a list of (currently 426)
character sequences that can be tab-completed into unicode characters This is
based on a similar list used in other MMT services. The character sequences
are inspired by LATEX macros, which most users should be familiar with. For
example, \subseteq is completed to ⊆.
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Fig. 1. Fragment of a GLForTheL notebook.

Tab-completion is also used for stub generation. A common workflow when
writing a GF grammar is to first write the abstract syntax and then implement
(possibly multiple) concrete syntaxes. A concrete syntax simply defines a lin-
earization for all symbols introduced in the abstract syntax. The GLF kernel
comes with a small script that can parse GF’s abstract syntaxes—as long as
they only contain commonly used features—and then generate a stub for the
concrete syntaxes. This allows the user to fill out the concrete syntax without
having to repeatedly scroll back to the abstract syntax to copy all the symbol
names. Similarly, views for the semantics construction have to map every symbol
in the abstract syntax to a logical expression, so stubs are generated for that
as well (Fig. 2). Experience has shown that it is beneficial to add the types of
function constants as comments in the generated stubs.

Fig. 2. Generated stub.

Smaller GLF pipelines like the example
in Sect. 2 can be conveniently implemented
and tested in Jupyter notebooks. Of
course, larger projects (like the GLForTheL
project discussed in the next section) are
usually not implemented inside notebooks,
but rather in text editors and IDEs. GLF
pipelines inherit the modularity of GF
grammars and MMT pipelines, and the
GLF kernel can use grammars/theories/
views defined elsewhere. This way, note-
books can be used for testing and docu-
menting the pipeline, as well as for inter-
actively exploring specific problems during the course of the project.
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4 Case Study: GLForTheL

ForTheL [Pas07] is the controlled mathematical language of the System for Auto-
mated Deduction. We have recently started to experiment with re-implementing
ForTheL in GLF (we call the result GLForTheL). This can serve as a case study
that highlights both the capabilities of GLF and the role of Jupyter notebooks
during development. In the following paragraphs, we will discuss some of the
challenges we encountered during the implementation of GLForTheL.

Binding Variables. Our running example already covers quantification in natural
language (“every integer”). However, in mathematical language this is further
complicated by the use of variables, as exemplified in this ForTheL statement:

“there is an integer” N “that is even”
Here, N has to be bound to a quantifier. This is a problem in GLF, because N
is treated as a constant during the semantics construction. Our current work-
around in GLForTheL is a special λ binder that turns the bound constant into
a variable. For example, the semantics construction might map the statement
above to ∃(λ′ N. (int(N) ∧ even(N))), where λ′ and N are simple (function)
constants. A post-processing step transforms the “bound constant” N into a
variable (including all its occurrences in the body) and replaces λ′ by a real λ.

Redundancy in Logical Expressions. The handling of variable sequences in
GLForTheL results in some artefacts in the logical expressions. An example are
trailing ∧ true in some statements. While simple artefacts like this could be
removed by MMT, there are also more complicated redundancies: GLForTheL
translates the statement “there are sets X, Y such that every element of X is an
element of Y” into the expression

∃Y (∃X(set(Y ) ∧ ∀n(n ∈ X ⇒ n ∈ Y ) ∧ set(X) ∧ ∀n(n ∈ X ⇒ n ∈ Y )))

because both X and Y are “sets such that every. . . ”. We are currently working
on an extension of GLF that adds an inference step to the pipeline (see [SK20]),
which could—among other things—be used to implement advanced simplifica-
tion algorithms.

Lexicon Management. Adding another word to the grammar usually requires
new entries to the abstract syntax, concrete syntax, domain theory, and seman-
tics construction. To simplify this, we have developed a tool that automati-
cally creates these entries from a custom lexicon file. Especially in mathemat-
ics, though, there is another problem: new words and notations are introduced
whenever needed, so the lexicon is growing while a document is processed. This
problem is currently unsolved in GLF, which relies on a pre-defined lexicon. In
the context of controlled languages, it may be argued that a document should
have a preamble defining the necessary lexicon. Another solution could be a
two-pass process, where a document-specific lexicon could be generated in a
pre-processing step that harvests the definienda.
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Better Target Logic. DRT Discourse Representation Theory (DRT) [KR93] solves
various problems that arise from using first-order logic as the target representa-
tion in compositional natural-language semantics by introducing discourse rep-
resentation structures as an intermediate representation, which can be compiled
into first-order logic. Variants of DRT have been repeatedly used in the context
of mathematical language (e.g. [Cra+10]).

Neither ForTheL nor GLForTheL use DRT. One of the consequences is that
statements like

if the square of some integer N is even then N is even

get translated into

(∃v(int(v) ∧ even(square(v)))) ⇒ even(N),

because “some” usually means that the expression is existentially quantified
(think e.g. of “H is contained in some ball B ⊆ U”). Of course, one would
expect to get

∀v((int(v) ∧ even(square(v))) ⇒ even(v)).

To remedy this in the future, we are currently looking into different ways of
representing DRT in MMT.

From Sentences to Discourse. GLF operates on the sentence level. This becomes
a problem when variables are introduced in one sentence (“let G be a group”)
and then used in another sentence. Our implementation extracts the restrictions
(G : group) and keeps G as a free variable in the following sentences. In general,
our goal is to extend GLF with an inference step (as mentioned above), which
could be used to combine this information. It would also allow experimentation
with other discourse-level challenges such as anaphor resolution.

5 Conclusion and Evaluation

We have introduced a new Jupyter front-end for GLF; together they form a rapid
prototyping system for controlled mathematical languages.

So far, it has been mostly used in a one-semester course on logic-based natural
language processing [LBS20] at FAU Erlangen-Nürnberg. In previous years, we
connected GF and MMT via some rather fragile Scala code, which was so incon-
venient that we mostly used GF and MMT independently. Last semester we had
the first iteration of the lecture using GLF and Jupyter. In the lab sessions (half
of the course), we explored different natural-language semantics phenomena by
implementing the language-to-logic pipeline in GLF. Since the class was rather
small, we basically asked the students to tell us what to enter into the notebook
and could immediately test the ideas. After some cleanup, the notebooks could
be shared with students—much more easily than the messy file collections we
had in previous years. The modularity of GLF also allowed us to try different
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semantics constructions for the same grammar. We also used Jupyter notebooks
for homework assignments, providing partial implementations where the stu-
dents had to implement the critical parts. The students also had the option to
implement the homework without Jupyter notebooks (using command line tools
for testing), but almost all students chose to use Jupyter notebooks. One of the
biggest challenges was the installation on students’ computers. This was further
complicated by the need for updates throughout the semester as we improved
the implementation. Going forward, we are planning to provide Docker images
and online notebooks that can be used instead.

The newly reached maturity of GLF allowed us to return to our original
motivation to apply it to mathematical language. As a larger case study, we have
discussed our attempts to implement GLForTheL, a variant of ForTheL, which
was our first larger project. Since the goal of GLForTheL is to imitate ForTheL,
our experimentation was primarily focused on the ways technical challenges can
be handled. While Jupyter notebooks were the go-to tool for these experiments,
they were less useful for implementing the actual GLForTheL project, since it was
much larger (currently 39 different node types and over 50 production rules).
GLForTheL imposes tighter restrictions on the input language than ForTheL,
rejecting ungrammatical statements like “S are a sets”, which are accepted by
ForTheL. For a long time we supported both a German and an English concrete
syntax. All this was possible without much effort, due to GF’s powerful grammar
mechanisms.

At its current state, our GLForTheL re-implementation can translate two
example files from the SAD repository (excluding proofs). Since GLForTheL
requires well-formed English sentences, it will never have the same coverage as
ForTheL, but this was not our goal after all. One of the more complex sentences
GLForTheL can currently handle is the definition “a subset of S is a set T such
that every element of T belongs to S”, which results (after some α-renaming for
readability) in

∀T.(subsetof T S) ⇔ (set T ) ∧ ∀x.(elementof x T ) ∧ 
 ⇒ (belongto x S) ∧ 
.

Expanding the coverage to more examples mostly boils down to extending the
lexicon and adding the occasional grammatical rule. However, more work is
needed to handle binary relations imposed on variable sequences as in “let x, y,
z be pairwise linearly independent vectors”.

Our GLForTheL case study also indicated the need for a processing step after
the semantics construction. [SK20] describes an extension of GLF that adds
an inference component, which can be used for e.g. simplification, ambiguity
resolution or theorem proving. Additional work is needed for lexicon management
and regression testing.

Overall, we believe our experiences with GLForTheL confirm our hypothesis
that GLF+Jupyter provide a flexible framework for the quick prototyping of
controlled mathematical languages. The Jupyter kernel along with a link to an
online version can be found at [GLFa] and the GLForTheL code at [GLFb].
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Abstract. When studying mathematics, it is important to solve exer-
cises of an appropriate level. Recently, web-based assessment systems
with a computer algebra system (CAS), e.g., Moodle with Stack and
the Möbius platform with Maple, have become popular. Such web-based
systems are convenient; however, they have some problems relative to
inputting and evaluating mathematical formulas. In addition, when con-
sidering and solving mathematical problems, handwriting mathematics
is important. We want management system of paper-oriented exercises.
Auto multiple choice (AMC), which was developed by Alexis Bienvenüe,
is open source software for creating and managing multiple choice ques-
tionnaires with automated marking. LATEX is the native AMC language
for questionnaire descriptions. We propose to combine AMC and CAS
using LuaTEX, which is a TEX-based computer typesetting system with an
embedded Lua scripting engine. We can embed CAS scripts into LuaTEX
source, and, by creating exercises with CAS, we can generate various prob-
lems with random coefficients or terms. By providing various patterns
of practice problems and facilitating discussions with each student, we
expect sufficient educational benefits of providing opportunities to com-
municate about mathematical concepts and algorithms among students.

Keywords: CAS · Multiple choice exercises · Calculus

1 Introduction

Exercises are important when learning mathematics, especially if we really want
to understand something. We can find many exercises of various levels in text-
books. However, solving exercises in textbooks can be difficult for some students
who are not good at calculations. Teachers must prepare and mark various levels
of exercises for students. Feedback to students after evaluation should be given
quickly; however, for many students, evaluation is very hard work for teachers.
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Recently, web-based assessment systems that use a computer algebra system
(CAS), e.g., Moodle with Stack [1], which uses the Maxima [2] open source
computer algebra system, and the Möbius platform [3] with Maple [4], have
become popular. Creating exercises for web-based educational system has been
investigated by Yoshitomi [5], where he attempted to generate question data for
linear algebra. However, with web-based systems, there are problems related to
inputting and evaluating mathematical formulas. Some studies have investigated
mathematical input methods, e.g., [6–9]. However, there is no standard method
for typical usage. In addition, handwritten work is important when considering
and solving mathematical problems.

We would like to exploit the power of CAS to create mathematical exercises
with auto multiple choice (AMC), which was developed by Alexis Bienvenüe
[10]. AMC is open source software for creating and managing multiple choice
questionnaires with automated marking. LATEX is the native AMC language for
questionnaire descriptions. The potential of AMC has been examined by many
researchers and educators, e.g., [11] and [12]. Milana Lima dos Santos et al.
presented results from the application of examination papers for engineering
courses developed using Matlab/Octave scripts and the AMC, [13]. The first and
second author presented the applications of AMC at the workshop in Japan, [19].

We use LuaTEX [14] for AMC. LuaTEX is an extended version of pdfTEX
that uses Lua as an embedded scripting language. Lua [15] is a powerful and
lightweight scripting language, that supports procedural programming and data
descriptions. Using Lua’s “table” data structure, we can implement arrays,
records, lists, queues and sets efficiently.

In addition, we can embed Maxima scripts into LuaTEX source. Maxima is
the most famous general purpose open source computer algebra system (cf. [16]).
By creating exercises using Maxima, we can generate various calculus problems
with random coefficients or terms. By offering various practice problem pattern
and facilitating discussions for each student, we expect sufficient educational
effects of providing opportunities to communicate about mathematical concepts
and algorithms among students.

2 AMC and CAS

AMC is a set of utilities that use of multiple choice questionnaires written in
plain text or LATEX, as well automated correction and grading from scans of
answer sheets using optical mark recognition. The following software packages
are required to use AMC: LATEX, the ImageMagick image processing libraries,
OpenCV, and Perl with Gtk2-Perl and Glade::XML for the graphical user inter-
face. AMC has effective documentation, the developers of AMC operate a com-
munity support website and French and English user forums.

For users who are not ready to use LATEX, AMC includes a filter to process
simple plain text files in AMC-TXT format, which is a type of markdown script.
However, we embed CAS script in LATEX code (we do not use AMC-TXT).
AMC can create questions and answers in random order for each sheet, and
we can distribute unique exercises for each student. Mathematical questions
with randomized statements are supported by the original AMC with the fp
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LATEX package or LuaTEX. However, these are for random coefficients of fixed
or floating point numbers, (not rational numbers), and they do not support
mathematical symbolic formulations. Thus we must create naturally symbolic
formulated exercises with rational numbers. Initially, it may a little time to
create problems, because of the incomprehensible error messages of LATEX and
CAS. However, we can recycle sets of questions easily. Using automated grading
and creating answers, teacher’s time is much saved. We found that students are
less likely to give up when using the proposed approach, in fact, even after the
lecture, many students didn’t give up for solving problems.

In the following, we describe a simple example. In this source code, we
changed the mark box to an oval using the \AMCboxDimensions LATEX com-
mand, and the script of code acquisition was omitted. Code acquisition can be
performed easily using the \AMCcodeGridInt[options]{key}{n} LATEX com-
mand, e.g., to allow each student to enter her/his student id on an answer sheet.

The \onecopy LATEX command produces as many distinct realizations of the
test as desired (10 in our case).
� �

\documentclass[a4paper ]{ article}

\usepackage[box ,completemulti ,lang=EN]{ automultiplechoice}

\usepackage{luacode , tikz}

\newcommand *{\ var }[1]{\ luaexec{tex.print (#1)}}

\begin{document}

\AMCboxDimensions {shape=oval ,width =1.8ex,height =2.5ex}

\AMCcodeVspace =0em

\luaexec{math.randomseed (20200713)}

\begin{luacode *}

function execMaxima(cmd)

local texcmd ="echo ’tex1 (".. cmd .."); ’| maxima --very -quiet"

local hdl=io.popen(texcmd , "r")

local content=string.gsub(hdl:read ("* all"), "\n", "")

hdl:close ()

return content

end

\end{luacode *}

\onecopy {10}{

%%% start of the header

% Code acquisition script

%%% end of the header

%%% start of the questions

\begin{question }{1 st_question}

...

\end{question}

\begin{question }{2 nd_question}

...

\end{question}

...

%%% end of the questions

}

\end{document}
� �
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We used Maxima in LuaTEX to create exercises. LuaTEX supports Lua as
embedded scripting. The io.popen() function of Lua is used to execute com-
mand line arguments. Note that this function is system dependent and is not
available on all platforms. We used MathLibre [17] or the Debian GNU/Linux
10.3 “buster” release. One of the authors (Y. Nakagawa) is currently check-
ing Lua scripting under Microsoft Windows (with some modifications). LuaTEX
supports the \directlua command, which can sometimes be tricky. When exe-
cuting Lua code within TEX using the \directlua command, there is no easy
way to use the percent character, and counting backslashes can be difficult. We
used luacode environments and the \luaexec command from the luacode pack-
age [18]. We set the default LATEX engine using “lualatex --shell-escape” in
AMC preferences to execute CAS script1.

First, we call the environment luacode in our TEX source code.
� �

\usepackage{luacode}
� �

The following TEX command is used to evaluate variables as TEX output.
� �

\newcommand *{\ var }[1]{\ luaexec{tex.print (#1)}}
� �

To fix the random seed to obtain the same results across different typesetting,
we must set random seed after the \begin{document}.
� �

\luaexec{math.randomseed (20200713)}
� �

We define the new execMaxima() function in luacode*. In this script, cmd
is the argument for an arbitrary Maxima script.
� �

\begin{luacode *}

function execMaxima(cmd)

local texcmd ="echo ’tex1 (".. cmd .."); ’| maxima --very -quiet"

local hdl=io.popen(texcmd , "r")

local content=string.gsub(hdl:read ("* all"), "\n", "")

hdl:close ()

return content

end

\end{luacode *}
� �

We used Maxima in the article. However many of CASs support LATEX for-
matting conventions; thus you can use your preferred CAS, e.g., Sage, Maple, or
Mathematica.
� �

texcmd ="sage -c ’print(latex (".. cmd ..")) ’"
� �

� �

texcmd ="echo ’latex (".. cmd ..");’ | maple -q"
� �

� �

texcmd =" wolframscript -code ’TeXForm [".. cmd .."]’"
� �

1 Enabling “shell-escape” by default is dangerous, because it makes the LATEX binary
execute arbitrary shell commands in LATEX files.
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3 Example

The following example is a partial differentiation exercise. Here, coefficients
a, b, s, t in this script are random numbers created using the Lua math.random()
function. The string concatenation operator in Lua is denoted by two dots (‘..’),
the exp function represents an exponential function and diff(expr, x) returns
the derivative of expr relative to variable x in Maxima.
� �

\begin{question }{ pdiff01}

\luaexec{

a=math.random(2, 9);

b=math.random(2, 9);

s=( -1)^( math.random(0, 1));

t=( -1)^( math.random(0, 1));

g=s*a..’*x+’..t*b..’*y’;

g1=s*(a-1).. ’*x+’..t*b..’*y’;

g2=s*a..’*x+’..t*(b-1).. ’*y’;

f=’exp(’..g..’)’;

f1=’exp(’..g1..’)’;

f2=’exp(’..g2..’)’;

formula=execMaxima(f);

correct1=execMaxima(’diff(’..f..’, x)’);

wrong1=execMaxima(’diff(’..f1..’, x)’);

wrong2=execMaxima(’diff(’..f2..’, x)’);

wrong3=execMaxima(’diff(’..f..’, x)/’..a*s);

wrong4=execMaxima(’diff(’..f1..’, x)/’..a*s);

}

Find \(f_{x}\) where \(f(x, y)=\ var{formula }\).

\begin{choiceshoriz}

\correctchoice {\(\ var{correct1 }\)}

\wrongchoice {\(\ var{wrong1 }\)}

\wrongchoice {\(\ var{wrong2 }\)}

\wrongchoice {\(\ var{wrong3 }\)}

\wrongchoice {\(\ var{wrong4 }\)}

\end{choiceshoriz}

\end{question}
� �

The result of upper script is here (Fig. 1).

Fig. 1. A question for partial differentiation
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4 Conclusions

This paper has proposed an automated approach to create several patterns of
calculus exercises for different students at the undergraduate level. The primary
advantages of the proposed approach are summarized as follows:

– Initially, it may take a little time to create problems using this system. How-
ever with random coefficients and the CAS, we can recycle sets of questions,
easily.

– The proposed approach provides different types of problems for different
student.

– The proposed approach facilitates discussions about different problems for
each student, and it provides opportunities to communicate about mathe-
matical concepts and algorithms.

– We found that students are less likely to give up when using the proposed
approach.

We believe that automatically creating mathematical exercises at appropriate
levels is significant challenge in mathematical software research.

The Scripts demonstrated in this paper are available at the GitHub public
repository [20].
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Abstract. In this article, we show a flow-based programming environ-
ment for interactive geometry software. Flow-based programming is one
of the programming paradigms. All of the processes and data are rep-
resented as nodes, and we connect processes and data with edges. We
call the figure with nodes and edges graph because the figure looks like
a planar graph.

There is a lot of software implementing flow-based programming. How-
ever, there are few mathematical software based on a flow-based pro-
gramming environment. So, we develop experimental interactive geome-
try software to generate kaleidoscope patterns based on flow-based pro-
gramming.

The software shows us some advantages of flow-based programming.
First, it is easy to understand the procedure of construction. Second,
flow-based programming is flexible. Third, flow-based programming has
high extensibility. We seek possibilities of practical use of the geometrical
construction software with flow-based programming.

Keywords: Flow-based programming · Interactive geometry
software · Kaleidoscope patterns

1 Introduction

In this article, we show interactive geometry software with flow-based program-
ming. Interactive geometry software is software that creates geometrical con-
structions, and we can manipulate geometrical objects by hand keeping rela-
tionships between the geometrical objects. For example, see Fig. 1. There are
three points, and they form three lines. When we move one of the points, the
lines are also moved according to the positions of points. One of the most famous
interactive geometry software is GeoGebra.

Flow-based programming is one of the programming paradigms. See Fig. 2.
All processes and data are represented as nodes. We connect sockets of nodes
with edges. We also call the resulting figure graph because the figure looks like a
planar graph. In Fig. 2, there are three Point nodes, and they are connected to
the three LineTwoPoints nodes by edges. The data is sent left to right through
the edges. The geometrical objects are rendered as in Fig. 1.
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Fig. 1. Three points and three lines Fig. 2. Nodes and edges

Flow-based programming is often used for creative coding or algorithmic
design environments. For example, Max/MSP, PureData, vvvv, TouchDesigner,
Grasshopper for Rhinoceros, and shader node graph editor implemented in three-
dimensional modeling software like Blender or Maya. However, there is few math-
ematical software adopting a flow-based programming environment. We guess
flow-based programming is suited for geometrical construction, that is, interac-
tive geometry software. There are three advantages of flow-based programming.
They are shown in the summary part.

Fig. 3. Point and LineTwoPoints nodes generating a line

The first author is developing an experimental interactive geometry software
based on flow-based programming. The software also can draw kaleidoscope pat-
terns. The name of the software is Flower. Flower is web application developed
by JavaScript. It is published on the web site of the first author1. Also, we have
an introductory video on YouTube2. It introduces basic operations of Flower.
1 https://soma-arc.net/Flower/.
2 https://youtu.be/FWp-eF5gz5o.

https://soma-arc.net/Flower/
https://youtu.be/FWp-eF5gz5o
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2 Implementation

Flower is shown in Fig. 3. In Fig. 3, the left panel is a node graph editor. There are
two Point nodes and one LineTwoPoints node. The right panel shows geometrical
construction based on the graph. In Fig. 3, the Point nodes represent points, and
a line passes through the points. They are rendered in the right panel. Also, we
can move the point by mouse dragging. Then, the line is also moved according
to the positions of points.

All processes and data are represented as nodes and edges. The flows of data
are represented by edges. We can find a procedure of construction from the node
graph.

Fig. 4. Kaleidoscope pattern generated by half-planes

A LineMirror node receives a line and generates half-plane. In the graph of
Fig. 4, all of the LineTwoPoints nodes are connected to LineMirror nodes. A
kaleidoscope pattern generated by three half-planes is shown in the right panel
of Fig. 4. Three half-planes are reflected in each other and filling all of the planes
with triangles. Also, the image of a cat is repeatedly reflected.

In this software, to generate a kaleidoscope pattern, not only half-planes,
but we also use reflections by circles. It is also called inversion in circles. The
equation is as follows. Let C be the center of the circle and let R be the radius
of the circle. Inversion map of the circle is f(z) = R2

z−C
+ C in the complex

coordinate. Figure 5 shows the image of the cat and its inverted image. Circle
inversion transforms a circle as a circle, but other images are inverted with
distortion.

Figure 6 shows a kaleidoscope pattern generated by inversions in four circles.
The cats and circles are transformed infinitely repeated reflections by circles. So, it
may take much time to render Fig. 6 because the number of circles and cats expo-
nentially increases in the process of the reflections. So,weuse our original algorithm
called Iterated Inversion System (IIS) to render the right panel in Fig. 6.
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Fig. 5. Reflections of circles

Fig. 6. Kaleidoscope pattern generated by circles

IIS is simple. For each point in the canvas, if the point is in the circle or half-
plane, we apply a reflection of the geometrical object. We continue iterating the
reflections until the point transformed outside of all of the objects. Finally, we
determine color according to the number of reflections or refer to the pixel value
of the iterated point. We can parallelize this algorithm easily. So, the figures are
rendered in real-time when we use parallel processing. For more details, read [1]
or [2].

We obtain this kind of fractal patterns in Fig. 7. It is generated by reflections
of three half-planes and one circle. It is also rendered with IIS in real-time.

Next, we show technical details about Flower. The left panel is rendered by
Canvas 2D Context of html5. On the other hand, We have to use parallel pro-
cessing to render images of the right panel in real-time with IIS. So, Flower uses
fragment shader of OpenGL Shading Language (GLSL) on WebGL. From graph
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Fig. 7. Fractal patterns generated by inversions in half-planes and a circle

of the left panel, shader code to render geometrical components and kaleido-
scope patterns is generated by template engine and compiled by WebGL. The
positions of geometrical components are operated by uniform variables of the
shader in the every frame.

Originally fragment shader is used to shade polygon model. However, in this
case, we prepare rectangle composed of two triangles cover the screen. Then
fragment shader determines the colors of screen pixel by pixel. For more details
about this kind of shader graphics technique, read The Book of Shaders3 by
Patricio Gonzalez Vivo and Jen Lowe.

3 Summary and Future Work

Fig. 8. Sin wave node connected to the y-coordinate of the Point node

3 https://thebookofshaders.com/.

https://thebookofshaders.com/
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There are some advantages to adopting flow-based programming. Firstly,
we can understand the procedure of constructions easily. We understand the
relationships between mathematical components from the graph. Secondly, flow-
based programming is flexible. We can insert processes wherever we like. For
example, see Fig. 8. We can use a time-series data node such as SinWave node.
It is connected to the y-coordinate socket of the Point node, and the point moves
according to sin wave. Thirdly, flow-based programming has high extensibility.
The users of the software can make their own node or script by their ideas, and
add or extend functions of the software easily.

In this system, we only construct kaleidoscope patterns. Software with flow-
based has prominent features. We aim to develop not only kaleidoscope pattern
editor but also general-purpose geometrical construction software. We pursue
the possibility of flow-based programming and interactive geometry software.
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Abstract. When synthesizing feedback controllers for large-scale dynam-
ical systems, often a reduction of the plantmodel bymodel order reduction
is required. This is a typical task in computer-aided control system design
environments. Therefore, in the last years, model order reduction became
an essential tool for the practical use of mathematical models in engineer-
ing processes. For the integration of established model order reduction
methods into those processes, software solutions are needed. In this paper,
we describe the MORLAB (Model Order Reduction LABoratory) toolbox
as such a software solution in MathWorks MATLABR© and GNU Octave,
and its featured integration into established software tools used in simula-
tions and controller design. We give benchmark examples for two impor-
tant extensions of the toolbox.

Keywords: Model order reduction · Dynamical systems · MATLAB ·
Octave

1 Introduction

Dynamical input-output systems are a usual way of modeling natural phenomena
as, e.g., fluid dynamics, mechanical systems or the behavior of electrical circuits.
In general, they are described by differential and algebraic equations

G :

{
0 = f(x(t),Dx(t), . . . ,Dkx(t), u(t)),

y(t) = h(x(t),Dx(t), . . . ,Dkx(t), u(t)),
(1)

This work was supported by the German Research Foundation (DFG) Research Train-
ing Group 2297 “MathCoRe”, Magdeburg.

c© Springer Nature Switzerland AG 2020
A. M. Bigatti et al. (Eds.): ICMS 2020, LNCS 12097, pp. 432–441, 2020.
https://doi.org/10.1007/978-3-030-52200-1_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52200-1_43&domain=pdf
http://orcid.org/0000-0003-3362-4103
http://orcid.org/0000-0003-1667-4862
https://doi.org/10.1007/978-3-030-52200-1_43


MORLAB – Model Order Reduction LABoratory 433

where the inputs, u(t) ∈ R
m, are used to influence the internal states, x(t) ∈ R

n,
to get the desired outputs, y(t) ∈ R

p. Nowadays, dynamical systems (1) are an
essential tool in simulation and the design of controllers. But due to the use of
highly accurate models, involving a large number of differential equations in (1),
the demand for computational resources, e.g., time and memory, is often too high
for a practical usage. The aim of model order reduction is the construction of a
surrogate model Ĝ, with a much smaller number of internal states, x̂(t) ∈ R

r, and
differential equations, r � n, which approximates the input-to-output behavior
of (1), i.e.,

‖y − ŷ‖ ≤ tolerance · ‖u‖,

for an appropriately defined norm and all admissible inputs u, where ŷ denotes
the outputs of the reduced-order model.

For the integration into established engineering processes, software solutions
for the model reduction problem are needed. One such software solution, compat-
ible with MathWorks MATLAB R© and GNU Octave, is the MORLAB (Model
Order Reduction LABoratory) toolbox [6,8]. As a free and open source soft-
ware, the main aim of the toolbox is the model order reduction of linear, medium-
scale dynamical systems.

In Sect. 2, we will briefly describe the fundamentals of the MORLAB toolbox
and afterwards, in Sect. 3, provide the ideas behind the integration of MORLAB
in other MATLAB and Octave software, also presenting some numerical exam-
ples.

2 The MORLAB Toolbox

The MORLAB toolbox originated in [2] as a repository of MATLAB codes for
model order reduction of linear standard systems. The current version [6] comes
with 10 different model reduction techniques for continuous- and discrete-time
standard, descriptor and second-order systems. The implementation of the tool-
box is based on spectral projection methods, like the matrix sign function [11]
and the right matrix pencil disk function [3], which are used for the solution of
underlying matrix equations. Therefore, the toolbox comes with many different
solvers for different types of matrix equations, e.g., for continuous- and discrete-
time algebraic Riccati or Lyapunov equations. To support the work with linear
dynamical systems, the toolbox also implements a number of system-theoretic
subroutines, e.g., the additive decomposition of dynamical systems, and eval-
uation tools for the time and frequency domain with support for the different
implemented system structures.
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An overview of the basic principles of the MORLAB toolbox can be found
in [8] and is also given in the following:

Open source and free The toolbox is licensed under the GNU Affero
General Public License v3.0 and is freely avail-
able on the project website and Zenodo.

Fast and accurate Based on the spectral projection methods, the
toolbox can outperform other available model
reduction and system-theoretic software.

Unified framework All model reduction routines share the same
interface and allow for quick exchange and easy
comparison between the methods.

Configurable All routines can be configured separately using
option structs.

Modular Each subroutine can be called on its own by the
user to be used and combined in various ways.

Portable No binary extensions are required, which allows
for running the toolbox with bare MATLAB or
Octave installations.

Documentation The toolbox comes with an extensive documen-
tation for every function in HTML and MAT-
LAB inline format.

Dependencies MATLAB (≥ 2012b), Octave (≥ 4.0.0).

See [8] for a more detailed discussion of the toolbox structure, implementa-
tional details and overviews about the currently supported system classes.

3 Toolbox Integration in MATLAB and Octave

An important point for the design decisions in MORLAB was the compatibility
with other highly-used system-theoretic software tools. Two of the most impor-
tant ones are Simulink R© and the Control System ToolboxTM in MATLAB. In
the following, we describe first the integration of MORLAB into those toolboxes
using the state-space object and give then an overview of the extensions that
MORLAB introduces itself.

The numerical experiments, used here for illustration, have been executed
on a machine with 2 Intel(R) Xeon(R) Silver 4110 CPU processors running at
2.10 GHz and equipped with 192 GB total main memory. The computer runs on
CentOS Linux release 7.5.1804 (Core) with MATLAB 9.7.0.1190202 (R2019b).

3.1 Standard First-Order Systems and the State-Space Object

The system class corresponding to state-space models as (1), which is fully sup-
ported in MATLAB, are standard linear time-invariant systems, e.g., in the
continuous-time case
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sys / rom

LTI System

. . . . . .

sys: ss object

rom = ml ct ss bt(sys)

M R

O LAB

rom: ss object

Fig. 1. Idea of integrating MORLAB into Simulink and the Control System Toolbox
in MATLAB.

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(2)

with A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and D ∈ R

p×m. The way in MATLAB
to efficiently deal with (2) are so-called state-space model objects (ss objects).
Those objects are, in principle, a collection of the most important properties
of (2), e.g., the matrices A,B,C,D, corresponding measured data, units of the
state variables and so forth.

The Control System Toolbox is the main toolbox for dealing with dynamical
systems in MATLAB. It provides a lot of important system-theoretic routines
for the analysis and simulation of (2). The toolbox uses the ss object as its
main interface. On the other hand, Simulink is a modeling toolkit for hierarchi-
cal system design and numerical experiments using graphical blocks. Complete
dynamical processes are usually modeled here, especially embedding LTI system
blocks, which correspond to (2) and use the ss object in its backend.

Now, the task is the integration of model order reduction into the computer-
aided control system design workflow. Concerning the model order reduction
of (2), the reduced-order surrogate model reads as

x̂(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t),

with Â ∈ R
r×r, B̂ ∈ R

r×m, Ĉ ∈ R
p×r and D̂ ∈ R

p×m, which belongs to the
same system class as (2). Therefore, MORLAB provides consistent interfaces for
the model order reduction routines, i.e., the reduced-order models will be of the
same data type as the original models. Besides an interface for the single matrices



436 P. Benner and S. W. R. Werner

of (2) and one using structs, MORLAB fully supports ss objects. An example
of the resulting workflow is given in Fig. 1. Let sys be the original ss object,
e.g., in a Simulink LTI system block. This object can be directly put into a
MORLAB routine (here ml ct ss bt), which produces a new ss object, namely
rom. Due to the consistent data type of rom, the reduced-order model can now
directly replace the original sys object for the acceleration of the surrounding
process. The important point here is that the model reduction with MORLAB
only concerns the ss object to be exchanged but the surrounding process is
untouched. The example function used in Fig. 1 can be replaced by any model
order reduction routine of choice from MORLAB. Overviews about supported
methods for (2) can be found in [4,8].

Remark 1. Parts of the Control System Toolbox are also available in Octave
implemented in the ‘control’ package. There, the same interfaces and integration
options are provided as for the MATLAB software. Due to the lack of system-
theoretic subroutines in Octave, MORLAB additionally provides analysis and
simulation tools that are compatible with MATLAB and Octave, which highly
extend the functionality of Octave for dynamical systems in its current state.

Remark 2. Besides the continuous-time version (2), the ss object supports dis-
crete-time linear time-invariant standard systems, which are also implemented
in the MORLAB toolbox with appropriate model reduction routines.

It should be noted that also the default MATLAB toolboxes provide some
model reduction routines for small-scale dense standard systems in the Control
System Toolbox and the Robust Control ToolboxTM. In comparison, MORLAB
can be applied to way larger systems due to its efficient underlying spectral pro-
jection routines, which also often allow MORLAB to outperform the routines
from the default MATLAB toolboxes by far. Also, the variety of the MOR-
LAB model order reduction routines is so far not known to be matched by any
other comparable model order reduction software for any of the provided sys-
tem classes. Especially, the following two sections describe significant extensions
of the MORLAB toolbox, which, in large parts, cannot be found in any other
published model reduction software.

3.2 Extension for Descriptor Systems

The first extension of the standard MATLAB functionality for linear dynam-
ical systems that was done in MORLAB are descriptor systems, e.g., in the
continuous-time case

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(3)

with E ∈ R
n×n and A,B,C,D as in (2). In principle, the ss object supports

general E matrices but most of the routines in the system-theoretic toolboxes
reformulate (3) as (2) by explicitly inverting the E matrix to the right. Beside
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Fig. 2. Frequency response results for the PI-circuit example.

explicit inversion often has a negative influence on numerical accuracy, in case
of differential-algebraic equations describing the system dynamics, the E matrix
might not be invertible anymore. In that case, a lot of the routines in the Con-
trol System Toolbox and Simulink are unusable. But MORLAB supports this
case in corresponding model reduction and system-theoretic routines by proper
handling of possible algebraic system parts. The idea of model order reduction
of descriptor systems with MORLAB can be found in [5] and the underlying
additive decomposition of descriptor systems also in [8].

In many cases, the use of the MORLAB toolbox makes the integration of
descriptor system models into other MATLAB software possible as we will see
in the following example. We consider the model of an RLC circuit described
by cascaded PI-circuits from [9]. The chosen S40PI n benchmark system has
the form (3) with n = 2182, m = 1 and p = 1 and we apply an α-shift with
α = 10−4 as in [10] to stabilize the system. By construction, the E matrix
is not invertible and the overall system has a complicated nested structure of
differential-algebraic equations. For this system, we are going to use the balanced
truncation method for descriptor systems as it is implemented in MORLAB by

[rom, info] = ml ct dss bt(sys, opts),

where sys contains the original model as ss object, opts is an option struct
that could be used to adjust parameters of the subroutines, rom is again the
reduced-order model and info contains information about the subroutines and
the full- and reduced-order systems.

First, we take a closer look at the resulting info struct. Here, we can see the
resulting sizes of additive decomposed system parts. The matrix pencil λE − A
of the original model had nf = 2028 finite eigenvalues in the left open half-plane
and n∞ = 154 infinite eigenvalues, which correspond to the algebraic equations
of the system. The reduced-order model instead has r = 262 states, where the
matrix pencil λÊ − Â has only finite stable eigenvalues left, i.e., the Ê matrix
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is now invertible and the reduced-order system can be treated as (2). In other
words, the reduced-order model generated by MORLAB can now be used in
all the system-theoretic routines in MATLAB, which was not possible for the
original descriptor system.

To analyze the quality of the resulting reduced-order model, we plotted the
frequency response and the absolute error of the original and reduced-order
system using the ml sigmaplot function from MORLAB. The results can be
seen in Fig. 2. The two transfer functions are indistinguishable in the eye ball
norm and the absolute error shows the good approximation behavior of the
reduced-order model. Additionally, we added the absolute error bound to the
plot that was provided in the info struct.

Remark 3. As for the standard system case, MORLAB supports discrete-time
descriptor systems with appropriate model reduction methods.

3.3 Extension for Second-Order Systems

A very important but currently unsupported system class in the Control System
Toolbox and Simulink are linear systems involving second-order time derivatives

Mẍ(t) + Eẋ(t) + Kx(t) = Buu(t),
y(t) = Cpx(t) + Cvẋ(t) + Du(t),

(4)

with M,E,K ∈ R
n×n, Bu ∈ R

n×m, Cp, Cv ∈ R
p×n, D ∈ R

p×m. Those systems
usually arise in the modeling process of mechanical or electro-mechanical sys-
tems. In principle, every second-order system (4) can be rewritten as a first-order
system (3), e.g., by introducing an extended state vector q(t) =

[
x(t)T, ẋ(t)T

]T.
The drawback of this process is the resulting first-order system of order 2n, for
which most computational methods ignore the internal second-order structure.
This makes computations with second-order systems potentially more expensive
than they need to be. This can be avoided by directly working on the second-
order system structure (4). In MORLAB, the struct data type “soss” is used to
handle second-order system objects. Appropriate evaluation tools for the time
and frequency evaluation that work directly with the second-order structure are
implemented in the toolbox to give, as addition to established software, the
opportunity to efficiently work with second-order systems.

Corresponding to the direct use of the second-order structure in analysis and
evaluation of dynamical systems, the application of model order reduction should
preserve the system structure, i.e., it is beneficial if a reduced-order model of (4)
has the same structure

M̂ ¨̂x(t) + Ê ˙̂x(t) + K̂x̂(t) = B̂uu(t),

y(t) = Ĉpx̂(t) + Ĉv
˙̂x(t) + D̂u(t),

(5)

with M̂, Ê, K̂ ∈ R
r×r, B̂u ∈ R

r×m, Ĉp, Ĉv ∈ R
p×r, D̂ ∈ R

p×m. This not only
allows to use (5) directly as a surrogate model that can be handled by the same
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Fig. 3. Time simulation of the artificial fishtail example.

tools as (4) but usually a structure-preserving approximation is more accurate
than an unstructured one and also might allow for interesting re-interpretations
of the reduced-order system quantities. MORLAB provides several structure-
preserving model reduction methods for (4).

As example, we take a look at the benchmark model [13], describing the
movement of an artificial fishtail designed for autonomous underwater vehicles.
The model has a mechanical second-order structure (4) with Cv = 0, D =
0 and n = 779 232, m = 1, p = 3. It is crucial to employ the second-order
structure since the corresponding first-order realization would be of order ≈
1.5 · 106. Due to the size of the model, the dense model reduction methods from
MORLAB cannot be applied directly to the system. Therefore, we use the same
approach as in [7,12] by applying a structure-preserving pre-reduction following
the theory from [1] with the same setup as in [7]. The second-order frequency-
limited balanced truncation method (ml ct soss flbt) was then applied to the
pre-reduced model of order 100 for the frequency interval [0, 20] Hz. As this
MORLAB routine allows for computing several reduced-order models at once,
we created reduced-order models for the 8 different balancing formulas from [7].
Independent of the balancing formula, the reduced-order models were of order 1
and stable.

To test the results, the original system and one of the reduced-order models,
namely the one created by the so formula (see [7] for details), were simulated
with the input signal

u(t) = 2500(sin(10π(t − 1.35)) + 1)

using the MORLAB function ml ct soss simulate ss22. Figure 3 shows the
second output entry with the displacement of the fishtail tip in y-direction.
In the simulation, no difference between the full- and reduced-order models is
visible. To compare, the simulation of the full-order model took around 4 h.
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The main computational work for the model order reduction was the intermedi-
ate model, which took 21 h followed by the computation of the final reduced-order
models with 0.45 s. The simulation of the reduced-order model took then 0.06 s
using the same time discretization scheme as for the original model, i.e., the
reduced-order model allows now for real time simulations, which could be even
implemented on an onboard chip in a fish drone.
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Abstract. In this paper we present the SageMath package Flex-
RiLoG (short for flexible and rigid labelings of graphs). Based on recent
results the software generates motions of graphs using special edge color-
ings. The package computes and illustrates the colorings and the motions.
We present the structure and usage of the package.

Keywords: Motion · Flexible labeling · Flexible graph · NAC-coloring

1 Introduction

A graph with a placement of its vertices in the plane is considered to be flexible if
the placement can be continuously deformed by an edge length preserving motion
into a non-congruent placement. The study of such graphs and their motions has
a long history (see for instance [1,4,11,12,14–17]). Recently we provided a series
of results [7,8] with a deeper analysis of the existence of flexible placements. This
is done via special edge colorings called NAC-colorings (“No Almost Cycles”, see
[7]). These colorings classify the existence of a flexible placement in the plane
and give a construction of the motion.

Basic Definitions. We briefly give a precise definition of flexibility of a graph.
A framework is a pair (G, p) where G = (VG, EG) is a graph and p : VG → R

2 is
a placement of G in R

2. The placement might be possibly non-injective but for
all edges uv ∈ EG we require p(u) �= p(v).

Two frameworks (G, p) and (G, q) are equivalent if for all uv ∈ EG,

‖p(u) − p(v)‖ = ‖q(u) − q(v)‖ . (1)

Two placements p, q of G are said to be congruent if (1) holds for all pairs of
vertices u, v ∈ VG. Equivalently, p and q are congruent if there exists a Euclidean
isometry M of R2 such that Mq(v) = p(v) for all v ∈ VG.
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A flex of the framework (G, p) is a continuous path t �→ pt, t ∈ [0, 1], in
the space of placements of G such that p0 = p and each (G, pt) is equivalent
to (G, p). The flex is called trivial if pt is congruent to p for all t ∈ [0, 1].

We define a framework to be flexible if there is a non-trivial flex in R
2.

Otherwise is is called rigid (see Fig. 1). We say that a labeling λ : EG → R>0 of
a graph G is flexible if there is a flexible framework (G, p) such that p induces
λ, namely, ‖p(u) − p(v)‖ = λ(uv) for all uv ∈ EG. On the other hand, λ is rigid
if (G, p) is rigid for all placements p inducing λ. A flexible labeling λ of a graph
is proper if there exists a framework (G, p) such that p induces λ and it has a
non-trivial flex with all but finitely many placements being injective. We call a
graph movable if it has a proper flexible labeling.

Fig. 1. A rigid and a flexible framework for the three-prism graph.

Outline of the Paper. We have given the necessary definitions. Section 2
describes the main functionality of the FlexRiLoG dealing with colorings and
motions. In this paper we do not provide the algorithms themselves but refer
to the respective theorems and literature. In Sect. 3 we describe how to use the
package to ask for movable graphs.

2 The Package

FlexRiLoG [5] is a package for SageMath running in versions 8.9 and 9.0
[13]. The latest release of the package can be installed by executing:

sage -pip install --upgrade flexrilog

The development version of FlexRiLoG can be found in the repository [6],
where also other options of installation are described.

A convenient way of using the package instead of the sage console is a
Jupyter notebook (coming with SageMath, launch by sage -n jupyter). The
file examples/flexrilog_Motions_of_Graphs.ipynb in [6] provides a Jupyter
notebook version of this paper1.

The package allows to check whether a graph has a NAC-coloring, in partic-
ular to list all of them. A motion or flex obtained from a NAC-coloring can be
constructed and displayed. Moreover, it implements the results of [8] regarding

1 See also https://jan.legersky.cz/flexrilogICMS2020 redirecting to a version of the
notebook executable on-line using Binder.

https://jan.legersky.cz/flexrilogICMS2020
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the existence of proper flexible labelings, namely, the check of a necessary con-
dition and construction of a proper flex from a pair of NAC-colorings. There is
also functionality providing tools for classification of all proper flexible labeling,
which is out of the scope of this paper (see [9] for details).

2.1 Data Types

The package provides data types in different classes for dealing with graphs,
colorings and motions. In order to use the data types provided by the package,
they have to be loaded.

sage: from flexrilog import FlexRiGraph, GraphMotion

The main object will always be of type FlexRiGraph. This class inherits prop-
erties of the standard Graph from SageMath and adds specific properties for
investigations of flexibility and rigidity. In this paper we focus on the flexibility
part. A FlexRiGraph can be constructed by the following command.

sage: FlexRiGraph([[0,1],[1,2],[0,2]])
FlexRiGraph with the vertices [0, 1, 2] and edges [(0, 1), (0, 2), (1, 2)]

Further constructions can be made via integer encoding described in [2] and via
objects of the standard Graph class.

sage: FlexRiGraph(graphs.CompleteBipartiteGraph(2,3))
Complete bipartite graph of order 2+3: FlexRiGraph with the vertices [0, 1, 2, 3, 4]

and edges [(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)]

Besides the class for graphs there is a class for colorings (NACcoloring).
We do not discuss the class itself here but rather show how to compute color-
ings of graphs (see Sect. 2.2). Furthermore, motions are stored in a third class,
GraphMotion. They are discussed in Sect. 2.3. The GraphGenerator class stores
the code for some important graphs from the area of rigidity and flexibility
theory. We do not go into detail but some of the graphs are used in the paper.

2.2 NAC-Colorings

NAC-colorings are a special type of edge colorings using two colors. Unlike proper
edge colorings in Graph Theory we do not require incident edges to have different
colors.

Definition 1. Let G be a graph. A coloring of edges δ : EG → {blue, red} is
called a NAC-coloring, if it is surjective and for every cycle in G, either all
edges have the same color, or there are at least 2 edges in each color.

FlexRiLoG contains functionality for computing and showing NAC-
colorings of a given graph. The standard output is a textual list but the colorings
can be shown in figures as well.
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sage: C4 = FlexRiGraph([[0,1],[1,2],[2,3],[0,3]])
sage: C4.NAC_colorings()
[NAC-coloring with red edges [[0, 1], [0, 3]] and blue edges [[1, 2], [2, 3]],

NAC-coloring with red edges [[0, 1], [1, 2]] and blue edges [[0, 3], [2, 3]],

NAC-coloring with red edges [[0, 1], [2, 3]] and blue edges [[0, 3], [1, 2]]]

sage: C4.show_all_NAC_colorings()

It can be checked in polynomial time whether a coloring is a NAC-coloring
using [7, Lemma 2.4]. Hence, the question if a graph has a NAC-coloring is in
NP, but it is subject to further investigations whether there is a polynomial time
algorithm for a general graph. For instance every graph that is not generically
rigid has a NAC-coloring due to Theorem 1. It can be checked in polynomial
time whether a graph is generically rigid [10].

In order to compute all NAC-colorings, lists of edges that necessarily have the
same color due to being in 3-cycles (so called �-connected components, see [7])
are determined. So far, we then test all possible combinations how to color them
by red and blue. The edges colored the same in the following picture must have
the same color in any NAC-coloring, but no combination satisfies the conditions
of NAC-coloring.

sage: from flexrilog import GraphGenerator
sage: N = GraphGenerator.NoNACGraph()
sage: N.has_NAC_coloring()
False

sage: N.plot(show_triangle_components=True)

For graphs with symmetries we get many similar colorings, in a sense that after
applying the symmetry one NAC-coloring yields the other. We call such NAC-
colorings isomorphic. In order to visualize this, NAC-colorings can be named so
that isomorphic ones have the same Greek letter but differ by their index.

sage: C4.set_NAC_colorings_names()
sage: C4.NAC_colorings_isomorphism_classes()
[[alpha1: NAC-coloring with red edges [[0, 1], [0, 3]] and blue edges [[1, 2], [2, 3]],
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alpha2: NAC-coloring with red edges [[0, 1], [1, 2]] and blue edges [[0, 3], [2, 3]]],

[beta: NAC-coloring with red edges [[0, 1], [2, 3]] and blue edges [[0, 3], [1, 2]]]]

2.3 Constructing Motions

Given a NAC-coloring we are able to construct a motion. The following result
from [7] describes the relation.
Theorem 1. A connected non-trivial graph has a flexible labeling if and only if
it has a NAC-coloring.
The main idea to construct a flex is to place the vertices on a grid in such a
way that all the edges lie on grid lines. This can be achieved by placing vertices
according to the color component of the graph. For color components we remove
all edges of the other color and then take connected components of the remaining
graph. Then all vertices which lie in the same red component are placed in the
same column of the grid and all vertices from the same blue component are
placed in the same row of the grid. By this procedure each vertex is assigned a
unique grid point and all edges of the graph lie on the grid lines. In FlexRiLoG
this can be done with the classmethod GraphMotion.GridConstruction.

sage: from flexrilog import GraphMotion, GraphGenerator
sage: P = GraphGenerator.ThreePrismGraph()
sage: delta = P.NAC_colorings()[0]
sage: motion_P = GraphMotion.GridConstruction(P, delta)
sage: motion_P.parametrization()
{0: (0, 0),

1: (sin(alpha) + 1, cos(alpha)),

2: (2*sin(alpha) + 1, 2*cos(alpha)),

3: (2*sin(alpha), 2*cos(alpha)),

4: (sin(alpha), cos(alpha)),

5: (1, 0)}

There is also the option to generate an animated SVG showing the NAC-coloring,
which is automatically displayed when used in a Jupyter notebook (the picture
below is a screenshot). If the fileName is specified, the SVG animation is stored
and a web browser can be used to view it. Note that not all web browsers support
SVG animations. It can be chosen, whether the edges are colored according to the
NAC-coloring in use. The package also distinguishes the vertex layout depending
on whether it is drawing a graph having no specific placement properties (dark
vertices), or drawing a motion, in which edge lengths are fixed (light vertices).

sage: motion_P.animation_SVG(edge_partition="NAC",
....: fileName="3-prism_grid")
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More generally the base points of the grid can be chosen arbitrarily to get a zig-
zag grid. This can be used to avoid degenerate subgraphs. Base points consist of
two lists. The standard values consists of lists with points (i, 0) and (0, i) respec-
tively. Using them we get a rectangular initial grid. A zig-zag grid in general
does not need to be initially rectangular. It is uniquely determined by the base
points and drawing parallel lines. Doing so the grid consists of parallelograms.
Usually the grid itself is not easily visible from the output motion.

sage: motion_P = GraphMotion.GridConstruction(P, delta,
....: zigzag=[[[0,0], [3/4,1/2], [2,0]],
....: [[0,0], [1,0]]])
sage: motion_P.animation_SVG(edge_partition="NAC")

3 Movable Graphs

Using the grid construction, non-adjacent vertices might overlap, i.e., the con-
structed framework is not proper. Note, that this cannot be avoided by zig-zag
constructions either but depends solely on the NAC-coloring in use. For some
graphs all NAC-colorings result in overlapping vertices. In FlexRiLoG it can
be checked whether this is the case.

sage: P.has_injective_grid_construction()
True

sage: Q1 = GraphGenerator.Q1Graph() # see the picture below
sage: Q1.has_injective_grid_construction()
False

For some graphs, a proper flexible labeling exists due to the following lemma [8],
which relates movability to spatial embeddings.

Lemma 1. Let G be a graph with an injective embedding ω : VG → R
3 such

that for every edge uv ∈ EG, the vector ω(u) − ω(v) is parallel to one of the
four vectors (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1,−1,−1), and all four directions are
present. Then G is movable. Moreover, there exist two NAC-colorings of G such
that two edges are parallel in the embedding ω if and only if they receive the same
pair of colors.

The package tries to construct such a spatial embedding for all pairs of NAC-
colorings.

sage: inj, nacs = Q1.has_injective_spatial_embedding(
....: certificate=True); inj
True

sage: graphics_array([d.plot() for d in nacs])



448 G. Grasegger and J. Legerský

From the spatial embedding we can construct a motion of the graph. The
motion can be transformed in such a way that a particular edge is fixed.
sage: motion_Q1 = GraphMotion.SpatialEmbeddingConstruction(Q1, nacs)

sage: motion_Q1.fix_edge([5,6])

sage: motion_Q1.parametrization()

{1: ((3*t^2 - 3)/(t^2 + 1), -6*t/(t^2 + 1)),

2: ((t^4 + 23*t^2 + 4)/(t^4 + 5*t^2 + 4), (6*t^3 - 12*t)/(t^4 + 5*t^2 + 4)),

3: ((4*t^2 - 2)/(t^2 + 1), -6*t/(t^2 + 1)),

4: (18*t^2/(t^4 + 5*t^2 + 4), (6*t^3 - 12*t)/(t^4 + 5*t^2 + 4)),

5: (0, 0),

6: (2, 0),

7: (1, 0)}

sage: motion_Q1.animation_SVG()

Besides the sufficient condition on movability above, there is also a necessary
condition given in [8]. For this condition we consider all NAC-colorings and look
for monochromatic paths. Adding certain edges according to these paths we get
a bigger graph with similar movability properties.

For a graph G, let U(G) denote the set of all pairs {u, v} ⊂ VG such that
uv /∈ EG and there exists a path from u to v which is monochromatic for all
NAC-colorings δ of G. If there exists a sequence of graphs G0, . . . , Gn such that
G = G0, Gi = (VGi−1 , EGi−1 ∪U(Gi−1)) for i ∈ {1, . . . , n}, and U(Gn) = ∅, then
the graph Gn is called the constant distance closure of G, denoted by CDC(G).

Theorem 2. A graph G is movable if and only if CDC(G) is movable. Partic-
ularly, if CDC(G) is the complete graph, then G is not movable.

We can see that the following graph G is not movable (G1 has no NAC-
coloring since {3, 4}, {5, 6} ∈ U(G), hence, U(G1) are all non-edges of G1).

sage: G = GraphGenerator.MaxEmbeddingsLamanGraph(7)
sage: G.show_all_NAC_colorings()
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sage: G.constant_distance_closure().is_complete()
True

4 Conclusion

We gave a brief overview of the package and therefore did not cover all function-
ality. The package contains a documentation. As research in the field of flexible
and movable graphs is going on the package is further developed, both regard-
ing improvements as well as new functionality (for instance n-fold rotationally
symmetric frameworks, see [3]). The most current version of FlexRiLoG can
be found in [6].
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3. Dewar, S., Grasegger, G., Legerský, J.: Flexible placements of graphs with rota-
tional symmetry. arXiv:2003.09328 (2020)

4. Dixon, A.: On certain deformable frameworks. Messenger 29(2), 1–21 (1899)
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Abstract. Computer software interfaces for mathematics collaboration
and problem solving rely, as all interfaces do, on user identification and
recognition of symbols (via icons and other contextual widgets). In this
paper we examine the results of a short study which examined users inter-
acting with mathematics software (Mathematics Classroom Communi-
cator, MC2) designed for education, real-time communication and col-
laboration. Videos were recorded of 14 users working through seven com-
prehensive problems in the MC2 interface. Extensive second-by-second
coding was completed of the user’s actions and status throughout their
work, and a set of transition matrices were tabulated, estimating transi-
tion probabilities between symbols, operators and other aspects of math-
ematical expressions. We discuss the results of these matrices, and their
implications in the translation of abstract mathematical concepts into
software interfaces, and further conclude with a brief discussion of sug-
gestions for mathematical software interface design. This study also has
applications in mathematical software usability and accessibility.

Keywords: Mathematical notation · Eye-tracking · Mathematical
software interfaces · Transitions

1 Introduction

Computer software applications which support the transcription of mathematics
make use of a number of models to represent mathematical structure. For most
experts, the 1-dimensional model used in LATEX is preferred once time is taken
to learn the syntax due to the power and expressiveness of the system. In LATEX
the transcription proceeds as a single string of characters, transformed into pos-
sibly complex two-dimensional mathematical structures upon compilation. Due
to the lack of immediate connection between this 1-dimensional LATEX code and
the compiled output, and the accompanying learning curve, this approach can
present significant challenges for novice users. Due to the extreme market pene-
tration of Microsoft Word, many novice users simply do any required electronic
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mathematical transcription using the WYSIWYG (what you see is what you
get) Microsoft Word Equation Editor or similar products. These products tend
to be somewhat intuitive in their use, with extensive menu and icon systems
that allow for eventual (if not efficient) implementation of marginally complex
mathematical expressions. Further, as WYSIWYG editors provide users with
the ability to directly edit the mathematical output within the user interface
without a need to recompile the document, their use by novice level users has
been shown to result in fewer output errors [4]. While LATEX provides users with
many positive features not available in WYSIWYG editors there are a large
number of individuals who rely solely on WYSIWYG editors (and often are not
even aware of the existence of LATEX). Therefore, it is important that users are
able to use these editors with the highest level of efficiency and effectiveness. To
improve these editors we must have a thorough understanding of how individuals
interact with their respective environments.

Within the subset of WYSIWYG editors, there are different representative
models for mathematical structure utilized, and it remains unclear which model
provides an overall more positive user experience in their respective environments
[4–6]. It is likely the case that there is not one model which is superior to others
for all elements of mathematical notation, but rather that each model handles
some mathematical structures better than others. To examine this, the following
study was designed to compare the execution of insertion and editing of different
types of mathematical structures by novice users through examination of the
probabilities of symbol entry order.

MC2, an application created by Pollanen and Kang (co-authors on this
paper), with colleagues Cater, Chen & Lee, allows users to construct expressions
in a free-form manner through a 2-dimensional drag and drop interface in which
symbols are inserted onto a ‘blank canvas’ workspace from a series of menus and
can subsequently be moved and resized using the mouse. The technical details of
MC2 specifications can be found in Pollanen et al. [7]. As a typical default choice
due to ubiquitous availability, Microsoft Equation Editor was used as a compara-
tor. Equation Editor is a 2-dimensional structure-based editor, in which users
generally insert the mathematical structures first (with imposed dimensionality,
e.g., powers or subscripts), and then users interact with the input options of
the structures to insert symbols in the form of 1-dimensional strings. Though
users interact directly with the 2-dimensional mathematical structures in both
programs, they must do so in different ways [1]. Through this study we aim to
show that the model chosen within these typesetting applications changes the
order in which users enter symbols into their workspace resulting in a change in
their workflow, with some implications for future design.

2 Methods

The study consisted of 14 first-year undergraduate student participants (10
female and 4 male), who are not from quantitative fields, and none of whom
had any previous experience using any mathematical equation software. They
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were instructed to transcribe a series of four different mathematical expres-
sions using the two digital typesetting applications (MC2 and Equation Editor).
Each expression was first transcribed with MC2 and subsequently with Microsoft
Equation Editor (in Word). This resulted in 8 experimental trials per participant.
All participants completed the experiment simultaneously and communication
with the researcher occurred through a chat screen contained within the user
interface of MC2. All participants completed the 8 trials in identical order. The
expressions provided to the participants are displayed in Table 1.

Table 1. Expressions provided to participants for transcription using the computa-
tional environment.

1. s =

√
√
√
√

1

n − 1

n∑

i=1

(x − x̄)2 3.

∫ ∞

0

e−ydy

2.

∫
1√
2π

e− x2
2 dx 4.

√√
x2+2x+2

x

x2 + 1

The video recordings (screen captures) of the 14 participants’ actions were
analyzed by a research assistant, who carefully watched the videos and assigned
a time-stamped code to each significant, discrete action performed by the partic-
ipant while working towards completion of the transcription task. Coded actions
consisted of: insertion of a symbol; deletion of a symbol; resizing of a symbol; and
movement of a symbol. Each symbol in every expression was assigned a unique
reference within the given expression. The assigned codes contained information
indicating both the action and the unique symbol upon which the action was
performed. For example, the action of inserting the symbol assigned the number
4 would have been assigned the code, “i-4”.

From this analysis, we were then able to analyze the order in which individu-
als inserted the mathematical structures relative to other symbols in the expres-
sion through Markov Chain transition matrices. Markov Chains were applied in
a similar fashion by Jansen, Marriott, and Yelland to model the relative order
in which individuals read symbols in algebraic expressions [2]. As this proved to
be an effective analysis, we applied this approach to model the relative order of
symbol insertion when digitally transcribing mathematical expression.

The resulting transition matrices contain the conditional probabilities that
a symbol in a particular part of the expression will be inserted, given that a
symbol from another part of the expression was the previously inserted symbol.
Therefore, in a transition matrix T , the entry in position Ti,j represents the
probability that the symbol from the part of the expression indicated in column
j is inserted, given that the symbol from part of the expression in row i was
the symbol previously inserted. We initially created these transition matrices
to represent the probability of transition between all individual symbols within
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the four expressions. However, the experimental expressions contained numer-
ous symbols (>20), and we therefore decided it was more clear and concise to
create transition matrices which tabulated transition probabilities relative to
the mathematical structure found in these expressions with a unique transition
matrix. We then analyzed the transitions between structural components of the
expression. To create these transition matrices, we first recorded all insertion
events which occurred in each experiment video recording. We then categorized
the transitions between insertions, increasing the count in Ti,j by one when the
symbol in column j was inserted following insertion of the symbol in row i. For
these matrices we chose to ignore transitions occurring within the same region
of an expression. Therefore, all counts of Ti,i were 0. We then normalized each
row, so that the sum of all entries in each respective row was 1 or 0 in the case
where the symbol represented by that row was the last symbol inserted in all
trials. The result was a transition probability matrix for each experimental trial
for a given structure, for the 14 participants in the experiment. The transition
matrices from the applicable individual trials within each participant were then
normalized, summed, and re-normalized, resulting in our final transition proba-
bility matrices for each of the mathematical structures found in the experimental
stimuli.

The transition probability matrices for the four types of mathematical struc-
tures included in the experimental stimuli are shown in the Results below
(Tables 2, 3, 4 and 5), displaying transition probabilities related to all square
roots, fractions, definite integrals and summations present in the four expres-
sions used in the study. Though the exponent structure was featured in these
expressions, we did not choose to model their insertion order due to significant
inconsistencies in the manner of their insertion when using MC2 and Microsoft
Word Equation Editor.

3 Results

3.1 Markov Chain Transition Probability Matrices for Square Root
Structures

The matrices in Table 2 highlight some key differences observed in how users
inserted the square root structure into their workspace. Notably, users were
about 16% more likely to insert a symbol inside of the square root immediately
following insertion of the square root structure when using Equation Editor than
when using MC2. Users were also about 23% more likely to insert the square
root structure immediately following insertion of a symbol inside of the square
root when using MC2 than they were when using Equation Editor.

From these transition probability matrices, we can compute the probability
of the order of entry for an expression containing a radical when using both
interfaces. One logical order of entry, if we assume the user starts from outside
of the radical, for such an expression is Outside → Radical → Radicand. The
probability of this symbol entry order after 2 transitions when using MC2 was
approximately 0.56 versus 0.70 when using Equation Editor. On the other hand,
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an alternative order of symbol entry is Outside → Radicand → Radical. The
probability of symbols being inserted in this order after 2 transitions when using
MC2 was approximately 0.16 versus 0.09 in Equation Editor, indicating users
were nearly twice as likely to insert the expression in this order when using the
2-dimensional free-form model found in the MC2 user interface.

Table 2. Square root transition probability matrix for expressions transcribed with
MC2 (left) and Microsoft Word Equation Editor (right)

To

From Outside Radical Radicand

Outside 0.000 0.726 0.274

Radical 0.232 0.000 0.768

Radicand 0.399 0.601 0.000

To

From Outside Radical Radicand

Outside 0.000 0.758 0.242

Radical 0.071 0.000 0.929

Radicand 0.633 0.367 0.000

3.2 Markov Chain Transition Probability Matrices for Fraction
Structures

Table 3. Fraction transition probability matrix for expressions transcribed with MC2

(top) and Microsoft Word Equation Editor (bottom)

To

From Numerator Denominator Fraction bar Outside

Numerator 0.000 0.387 0.472 0.141

Denominator 0.262 0.000 0.071 0.667

Fraction bar 0.507 0.332 0.000 0.161

Outside 0.506 0.018 0.476 0.000

To

From Numerator Denominator Fraction bar Outside

Numerator 0.000 0.386 0.391 0.223

Denominator 0.268 0.000 0.089 0.643

Fraction bar 0.691 0.214 0.000 0.095

Outside 0.281 0.018 0.701 0.000

Similar to the matrices exploring square roots in the previous section, the
matrices in Table 3 show important differences in how users insert fractions
when using the two models featured in the applications featured in this study.
When using Microsoft Equation Editor, we can see from the transition matrices
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that users are about 18% more likely to enter the numerator following inser-
tion of the fraction bar or structure than they are when using MC2. Further-
more, users were about 23% more likely the insert the numerator of a frac-
tion following insertion of a symbol outside the fraction when using MC2 than
when using Equation Editor, where they are more likely to insert the frac-
tion structure following insertion of a symbol outside of the fraction. These
results show evidence that users are more likely to enter a fraction in the order,
Outside → Numerator → Fraction Bar → Denominator, when using MC2,
with a probability of 0.08 after 3 transitions, than they were when using Equa-
tion Editor with a probability of 0.02 after three transitions. On the other hand,
the transition matrices also show evidence that users are more likely to enter a
fraction in the order, Outside → Fraction Bar → Numerator → Denominator
when using Microsoft Equation Editor than they are when using MC2. Again,
we propose that this is due in part to differences in the flexibility of symbol
insertion order when using these two applications. Generally, when using the
structure based model featured in Equation Editor, an attempt to insert the
fraction structure following insertion of the numerator will not result in the
intended fraction and will require the user to delete the numerator and re-insert
it into the numerator position of the fraction structure.

3.3 Markov Chain Transition Probability Matrices for Definite
Integral Structures

Table 4. Definite integral transition probability matrix for expressions transcribed
with MC2 (top) and Microsoft Word Equation Editor (bottom)

To

From Integral Upper bound Lower bound Integrand

Integral 0.000 0.536 0.428 0.036

Upper bound 0.000 0.000 0.571 0.429

Lower bound 0.000 0.462 0.000 0.538

Integrand 1.000 0.000 0.000 0.000

To

From Integral Upper bound Lower bound Integrand

Integral 0.000 1.000 0.000 0.000

Upper bound 0.000 0.000 0.893 0.107

Lower bound 0.036 0.036 0.000 0.928

Integrand 0.500 0.000 0.500 0.000
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The transition matrices for the order of insertion of symbols relative to definite
integral structures, shown in Table 4, also show interesting results. Of primary
interest is the conditional probability of the subsequent symbol inserted, given
that the integral was inserted. In Microsoft Equation Editor, the upper bound
of the definite integral was always the symbol inserted following insertion of the
integral. However, in MC2, the upper bound was inserted about 54% of the time
following the insertion of the integral, and the lower bound was inserted about
43% of the time. Furthermore, users of MC2 never inserted the integral following
insertion of the upper bound or lower bound. This may be a result of the different
models used in the two applications. We suggest there may be an element of
the 2-dimensional structural model used in Equation Editor which makes users
more likely to enter in the upper bound of a definite integral following insertion
of the integral itself. It should also be noted that there was only one definite
integral present in the experimental stimuli and that the trials using MC2 always
occurred prior to those with Equation Editor. Therefore, these differences could
be attributed to a learning or familiarity effect rather than a true difference in
the two models.

3.4 Markov Chain Transition Probability Matrices for Summation
Notation Structures

Table 5. Summation transition probability matrix for expressions transcribed with
MC2 (top) and Microsoft Word Equation Editor (bottom)

To

From Sum Upper index Lower index Inside Outside

Sum 0.000 0.769 0.077 0.154 0.000

Upper index 0.000 0.000 0.917 0.083 0.000

Lower index 0.000 0.167 0.000 0.833 0.000

Inside 0.000 0.111 0.333 0.000 0.566

Outside 0.929 0.000 0.000 0.071 0.000

To

From Sum Upper index Lower index Inside Outside

Sum 0.000 0.869 0.071 0.036 0.024

Upper index 0.000 0.000 0.823 0.107 0.000

Lower index 0.000 0.077 0.000 0.808 0.115

Inside 0.100 0.167 0.000 0.000 0.733

Outside 0.881 0.000 0.0595 0.0595 0.000
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In Table 5 we see the transition matrices related to the summation notation
for MC2 and Microsoft Equation Editor respectively. These matrices show less
drastic differences than those related to the other structures. One difference
to note is the conditional probabilities of symbol insertion following insertion
of the summation symbol. We can see that users are approximately 10% more
likely to insert the upper index following the summation symbol when using
Equation Editor than MC2, similar to the integral approach explored above.
Though not a large difference, this is interesting to note as there was only one
summation notation present in the experimental stimuli. The relative similarity
between these transition matrices gives more merit to the differences seen in the
transition matrices for the definite integral structures, of which there was also
only one present in the stimuli. Therefore, if there were learning effects which
occurred, they were not necessarily consistent across all structures.

4 Limitations and Discussion

This study was designed to test and compare properties of the two featured
models for representing mathematical structure in the applications used: a 2-
dimensional structure-based model (Equation Editor) and a 2-dimensional free-
form model (MC2), rather than test which of the two programs performs better
as a whole. Previously, Kang et al. [3] analyzed the completion time between
these two software platforms, controlled for quality of expressions. It is worth not-
ing that Microsoft Equation Editor has been adapted over the years to improve
the user experience, and now includes many shortcuts which allow users to enter
expressions in a more intuitive manner (including a limited subset of the LATEX
syntax). Participants were not given any instruction on the manner in which to
use Equation Editor, and were therefore free to make use of these shortcuts if
they wished. Most did not, most likely due to the fact that they were not aware
that these existed, as the participants in this study were novices. To evaluate
the overall effectiveness of the Equation Editor application in Microsoft Word,
it might be more useful to make users aware that these shortcuts exist. How-
ever, the fact that most beginner level users were not able to discern that these
shortcuts could be used may speak to the user experience of Equation Editor in
itself.

There were a number of limitations present in this study. The most notable
was the fact that all expressions were first transcribed using MC2 followed by
transcription with Microsoft Equation Editor. Therefore, for all 4 experimental
stimuli, participants were more familiar with the expression to be transcribed
during the Equation Editor trial than during the MC2 trial. This could result
in less interference with working memory caused by the Equation Editor user
interface as the mathematical content would be internalized to a greater degree
during these trials [8]. Furthermore, the mathematical expressions which were
chosen as experimental stimuli were not chosen in a systematic fashion control-
ling for the complexity of each expression or the number of symbols or different
types of mathematical structures found in each expression. This makes it diffi-
cult to fully attribute some of the effects found in this study to how the models
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handle certain structures without considering some sort of interaction which may
have occurred. Therefore, future research should be done to examine how the
two featured models in these applications handle each of the structures, such
as square roots, fractions, and exponents, in less complex expressions in which
these structures are not featured in combination. Finally, the sample size for this
study was rather small and although we control for the technical levels of stu-
dents, we did not consider covariates while we constructed the Markov Chains,
many of which may provide insight if sample sizes were sufficient.

Despite these limitations, this study presents a number of notable findings
related to the user experience of typesetting applications which feature two differ-
ent structural models for representation of mathematical notation. The Markov
Chain analysis provides us with interesting insight into the process users are
more likely to follow regarding the order of symbol insertion while transcribing
mathematical content. Perhaps the most important finding is simply the fact
that there is a difference in the order in which symbols are entered in both inter-
faces. If we assume that there is a natural order which individuals are more likely
to follow when transcribing these expressions, regardless of the environment in
which they are doing so, any sort of difference found here shows that either one,
or possibly both of the models used in these interfaces forces users to need to
adapt and adjust this order of insertion. Given the tendency found for users
of the structure-based editor to insert the symbols in the upper position of an
inserted structure (such as the numerator of a fraction) immediately following
insertion of that structure, we recommend that editors using structure-based
models place the cursor in this upper location immediately following insertion
of the structure. In the Microsoft Equation Editor interface the cursor is placed
outside and to the right of an inserted fraction structure. If the user wishes to
insert the numerator next, they must navigate to the respective location using
the arrow keys (pressing the left arrow twice) or click in the location using the
mouse. Placing the cursor in the numerator position immediately following inser-
tion of the fraction would increase the efficiency of the program as well as reduce
the cognitive load, which could in turn decrease the working memory interference
which has been shown to occur when digitally typesetting mathematics [8].

A number of differences in the conditional probabilities can likely be
attributed to the reduced flexibility allowed by the 2-dimensional structure-based
model found in Equation Editor. For example, when using the traditional imple-
mentation of this model in Word, a user cannot insert the numerator of a fraction
before inserting the fraction bar itself. However, it is quite interesting that in all
2-dimensional structures with notation in which a symbol is located in an upper
position and another one located in a lower position (fractions, definite integrals,
summations) users were more likely when using Equation Editor to insert the
symbol in the upper location following insertion of the structure itself (as com-
pared to when using MC2). While the reasoning behind this effect is unclear,
it merits further study. As all of the experimental stimuli featured expressions
with multiple structures, it would be interesting to observe whether the tran-
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sition matrices were similar for expressions containing only one of the featured
structures, or if there is some level of interaction taking place.

5 Conclusion

In this paper we explored the user experience while engaged with two mathemat-
ical typesetting models and discovered several insights into the order symbols
were entered when novice users transcribed mathematics. These insights suggest
that further research in this direction could have important implications into the
design of mathematical user interfaces, in particular interfaces for mathemati-
cal novices. Though findings should be interpreted with caution, the application
of Markov transition matrices to symbol order entry in this research serves to
guide future studies on the characteristics and usability of different models fea-
tured in WYSIWYG mathematical typesetting applications. Similar experiments
should be conducted with more standardized experimental stimuli (mathemat-
ical expressions), varying the nested nature of the mathematical structure, to
investigate how certain interactions might manifest themselves. Furthermore,
for a more complete picture of how users see and interact with mathematical
expression structure in software, future research might also include how novice
users revise and fix input errors in an expression they have written. As more edu-
cation moves online, developing and studying mathematical input models that
are intuitive for novice users will likely become a more pressing issue. While this
area has so far not received significant attention in the academic literature, we
believe this paper makes an important first step in this direction.
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Abstract. We consider the question of certifying that a polynomial in
Z[x] or Q[x] is irreducible. Knowing that a polynomial is irreducible lets
us recognise that a quotient ring is actually a field extension (equiv. that
a polynomial ideal is maximal). Checking that a polynomial is irreducible
by factorizing it is unsatisfactory because it requires trusting a relatively
large and complicated program (whose correctness cannot easily be ver-
ified). We present a practical method for generating certificates of irre-
ducibility which can be verified by relatively simple computations; we
assume that primes and irreducibles in Fp[x] are self-certifying.

Keywords: Certificate · Irreducibility

1 Introduction

1.1 What Is a “Certificate”?

A certificate that object X has property P is a “small” amount of extra infor-
mation C such that some quick and simple computations with X and C suffice
to confirm that X does have the property. We illustrate this vague definition
with a well-known, concrete example.

Example 1. We can certify that a positive integer n is prime using a Lucas-Pratt
certificate [9]. The idea is to find a witness w such that wn−1 ≡ 1 mod n and
w(n−1)/q �≡ 1 mod n for all prime factors q of n − 1.

These certificates have a recursive structure, since in general we must certify
each prime factor q of n − 1. To avoid infinite recursion we say that all small
primes up to some limit are “self-certifying” (i.e. they need no certificate).

Thus a Lucas-Pratt certificate comprises a witness w, and a list of prime
factors q1, q2, . . . of n − 1 (and certificates for each qj). Verification involves:

– verify that wn−1 ≡ 1 mod n;
– verify that each w(n−1)/qj �≡ 1 mod n;
– verify that n − 1 =

∏
j q

ej

j for positive exponents ej ;
– recursively verify that each qj is prime.

The operations required to verify such a certificate are: iteration over a list,
exponentiation modulo an integer, comparison with 1, division of integers, and
divisibility testing of integers. These are all simple operations, and the entire
function to verify a Lucas-Pratt certificate is small enough to be fully verifiable
itself.
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An important point in this example is that the certificate actually involves
several cases: namely, if the prime is small enough, the certificate just says that it
is a “small prime” (e.g. we can verify by table-lookup); otherwise the certificate
contains a non-trivial body. In this instance there are just two possible cases.

We note that generating a Lucas-Pratt certificate could be costly because
the prime factorization of n − 1 must be computed.

1.2 Costs of a Certificate

The total cost of a certificate comprises several components:

– computational cost of generating the certificate;
– size of the certificate (e.g. cost of storage or transmission);
– computational cost of verification given the certificate;
– size and code complexity of the verifier.

In the case of certifying the irreducibility of a polynomial in Z[x] we could
issue trivial certificates for all polynomials, and say that the verifier simply has to
be an implementation of a polynomial factorizer. We regard this as unsatisfactory
because the size and code complexity of the verifier are too high.

2 Irreducibility Criteria for Z[x] and Q[x]

We can immediately reduce from Q[x] to Z[x] thanks to Gauss’s Lemma (for
polynomials): let f ∈ Q[x] be non-constant then f is irreducible if and only if
prim(f) ∈ Z[x] is irreducible, where prim(f) = αf and the uniquely defined,
non-zero factor α ∈ Q is such that all coefficients of prim(f) are integers with
common factor 1, and the leading coefficient is positive,

The problem of certifying irreducibility in Z[x] has a long history, and has
already been considered by several people. Here is a list of some approaches:

– give a “large” evaluation point n such that f(n) has a large prime factor;
– degree analysis (from factorizations over one or more finite fields)1;
– a linear polynomial is obviously irreducible;
– Newton polygon methods (e.g. Schönemann, Eisenstein, and Dumas [4]);
– Vahlen-Capelli lemma [10] for binomials
– Perron’s Criterion [8];
– the coefficients are (non-negative) digits of a prime to some base b (e.g. [8]).

The first technique in the list was inspired by ideas from [3]; it seems to be new.
In this presentation, we shall assume that the degree is at least 2, and shall

concentrate on the first two methods as they are far more widely applicable than
others listed.

1 Degree analysis has likely been known for a long time.
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2.1 Factor Degree Analysis

Factor degree analysis is a well-known, behind-the-scenes technique in polyno-
mial factorization. It involves using degrees of modular factors to obtain a list
of excluded degrees for factors in Z[x].

We define a factor degree lower bound for f ∈ Z[x] to be Δ ∈ N such that
we have excluded all degrees less than Δ, e.g. through factor degree analysis. We
can certify this lower bound by accompanying it with the modular factorizations
used. Clearly, if degree analysis excludes all degrees up to 1

2 deg f then we have
proved that f is irreducible. Finally, we may always take Δ = 1 without any
degree analysis.

In many cases we can indeed prove/certify irreducibility via degree analysis.
However, there are some (infinite) families of polynomials where one must use
“larger” primes, and there are also (infinite) families where irreducibility cannot
be proved via factor degree analysis (e.g. resultants, in particular Swinnerton-
Dyer polynomials, see also [6]).

Example 2. The well-known, classical example of a polynomial which cannot be
proved irreducible by degree analysis is x4 + 1: every modular factorization is
into either 4 linears or 2 quadratics, so this does not let us exclude the possible
existence of a degree 2 factor.

There are also many polynomials which can be proved irreducible by degree
analysis, but are not irreducible modulo any prime; this property depends on the
Galois group of the polynomial. For instance, f = x4 + x3 + 3x + 4 is one such
polynomial: modulo 2 the irreducible factors have degrees 1 and 3, and modulo 5
both factors have degree 2; but it is never irreducible modulo p.

Degree Analysis Certificate. A degree analysis certificate comprises

– a subset D ⊆ {1, 2, . . . , 1
2 deg f} of “not excluded” factor degrees

– a list, L, of pairs: a prime p, and the irreducible factors of f modulo p

If D = ∅, we have a certificate of ireducibility; otherwise the smallest element of
the set is a factor degree lower bound.

Verification of the certificate involves the following steps:

– for each entry in L, check that the product of the modular factors is f ;
– for each entry in L, compute the set of degrees of all possible products of the

modular factors; verify that their intersection is D;
– check that each modular factor is irreducible (e.g. use gaussian reduction to

compute the rank of B − I where B is the Berlekamp matrix).

The main cost of the verification is the computation of B and the rank of B − I;
the cost of computing B is greater for larger primes, so we prefer to generate
certificates which use smaller primes if possible.
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Practical Matters. We would like to know, in practice, how costly it is to
produce a useful degree analysis certificate, and how large the resulting certificate
could be. More specifically:

– How many different primes should we consider? And how large?
– How to find a minimal set of primes yielding the factor degree subset?
– How many primes are typically in the minimal set?

In our experience, a minimal length list very rarely contains more than 3 entries,
but we should expect to consider many more primes during generation of the
certificate. We can construct irreducible polynomials which require considering
“large” primes to obtain useful degree information (e.g. x2 + Nx + N where
N = 1000000!) but in many cases “small” primes up to around deg f suffice.

2.2 Irreducibility Certificates for Z[x] via Evaluation

Bunyakowski’s conjecture (e.g. see page 323 of [7]) states that if f ∈ Z[x] is
irreducible (and has trivial fixed divisor) then |f(n)| is prime for infinitely many
n ∈ Z. Assuming the conjecture is true, we can get a certificate of irreducibility
by finding a suitable evaluation point n (and perhaps including a certificate that
|f(n)| is prime).

Applying Bunyakowski’s conjecture directly is inconvenient for two reasons:

– we want to handle polynomials with non-trivial fixed divisor;
– finding a suitable n may be costly, and the resulting |f(n)| may be large.

The first point is solved by an easy generalization of the conjecture: let f ∈ Z[x]
be irreducible and δ be its fixed divisor, then there are infinitely many n ∈ Z such
that |f(n)|/δ is prime. The second point is a genuine inconvenience: for some
polynomials, it can be costly to find a “Bunyakowski prime,” and the prime itself
will be large (and thus costly to verify). For example, let f = x16+4x14+6x2+4
then the smallest good evaluation point is n = 6615, and |f(n)| ≈ 1.3 × 1061.

A Large Prime Factor Suffices. Here we present a much more practical way
of certifying irreducibility by evaluation: we require just a sufficiently large prime
factor. Let f ∈ Z[x] be non-constant, and let ρ ∈ Q be a root bound for f :
that is, for every α ∈ C such that f(α) = 0 we have |α| ≤ ρ. We note that it is
relatively easy to compute root bounds (e.g. see [2]). The following proposition
was partly inspired by Theorem 2 in [3], but appears to be new.

Proposition 1. Let f ∈ Z[x] be non-constant, and let ρ ∈ Q be a root bound
for f . Let Δ ∈ N be a factor degree lower bound for f . If we have n ∈ Z with
|n| > 1 + ρ such that |f(n)| = sp where s < (|n| − ρ)Δ and p is prime then f is
irreducible.

Proof. For a contradiction, suppose that f = gh ∈ Z[x] is a non-trivial factor-
ization. We may assume that Δ ≤ deg g ≤ deg h. We have f = Cf

∏d
j=1(x − αj)
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where d = deg f , Cf ∈ Z is the leading coefficient, and the αj are the roots
of f in C. We may assume that the αj are indexed so that the roots of g are
α1, . . . , αdg

where dg = deg g.
By evaluation we have f(n) = g(n)h(n) with all values in Z. Also f(n) �= 0

since |n| > ρ. We now estimate |g(n)|:

g(n) = Cg

dg∏

j=1

(n − αj)

where Cg ∈ Z is the leading coefficient. Each factor in the product has magnitude
greater than 1, so |g(n)| ≥ (|n|−ρ)Δ > s. Similarly, |h(n)| > s. This contradicts
the given factorization f(n) = sp. �

When we have an evaluation point to which Proposition 1 applies we call
it a large prime factor witness (abbr. LPFW) for f, ρ and Δ. We conjec-
ture that every irreducible polynomial has infinitely many LPFWs; note that
Bunyakowski’s conjecture implies this.

Example 3. This example shows that it can be beneficial to look for large prime
factor witnesses rather than Bunyakowski prime witnesses.

Let f = x12 + 12x4 + 92 and take Δ = 1. We compute ρ = 7
4 as root bound,

and then we obtain a LPFW at n = 5 with prime factor p = 81382739. In
contrast, the smallest Bunyakowski prime is ≈ 3.06 × 1041 at n = 2865.

In the light of this example we exclude consideration of a certificate based
on Bunyakowski’s conjecture, and consider only LPFWs.

We prefer to issue an LPFW certificate where the prime p is as small as “rea-
sonably possible”. Our implementation searches for suitable n in an incremental
way, since smaller values of |n| produce smaller values of |f(n)|, and we expect
smaller values of |f(n)| to be more likely to lead to an “sp” factorization with
small prime factor p—this is only a heuristic, and does not guarantee to find the
smallest such p. We look for the factorization |f(n)| = sp by trial division by
the first few small primes (and GMP’s probabilistic prime test for p).

LPFW Certificate. An LPFW certificate comprises the following information:

– a root bound ρ,
– a factor degree lower bound Δ ←− with degree analysis certificate,

– the evaluation point n > 1 + ρ,
– the large prime factor p of |f(n)| ←− (opt.) with certificate of primality.

Verification of an LPFW certificate entails:

– evaluating f(n) and verifying that p is a factor;
– verifying that the discarded factor s = |f(n)|/p satisfies s < (|n| − ρ)Δ;
– verifying that ρ is a root bound for f ←− see comment below;
– (if Δ > 1) verifying that Δ is a factor degree lower bound;
– verifying that p is (probably) prime.
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In many cases the root bound can be verified simply by evaluation of a
modified polynomial: let f(x) =

∑d
j=0 ajx

j and set f∗(x) = |ad|xd−∑d−1
j=0 |aj |xj ,

then if f∗(ρ) > 0 then ρ is a root bound for f . Some tighter root bounds may
require applying an (iterated) Gräffe transform to f first (e.g. see [2]).

Example 4. This example shows how degree information can be useful in finding
a small LPFW. Let f = x4 − 1036x2 + 7744. We find that ρ = 33 is a root
bound. Without degree information (i.e. taking Δ = 1) we obtain the first
LPFW at n = 65 with corresponding prime p = 13481269. In contrast, from
the factorization of f modulo 3 we can certify that Δ = 2 is a factor degree
lower bound for f . This information lets us obtain an LPFW at n = 47 with far
smaller corresponding prime p = 14519.

3 Möbius Transformations

We define a (minor generalization of) a Möbius transformation for Z[x]. The cru-
cial property for us is that these transformations preserve irreducibility (except
for some polynomials of degree 1).

Definition 1. Let M =
(

a b
c d

)
be a 2 × 2 matrix. Let f =

∑deg(f)
j=0 cjx

j be a
polynomial in Z[x]. We define the Möbius transform of f induced by M to be
the polynomial μM (f) =

∑deg f
j=0 cj (ax + b)j (cx + d)deg(f)−j.

In our applications the matrix entries will be integers, and we shall suppose that
at least one of a and c is non-zero.

Definition 2. A Möbius transformation μM is degenerate if det M = 0.

Definition 3. Let μM be a Möbius transform. We define the pseudo-inverse
of μM to be the Möbius transformation corresponding to the classical adjoint
Madj =

(
d −b

−c a

)
. We write μ∗

M to denote the pseudo-inverse.

Here is a summary of useful properties of a Möbius transformation μM .

Proposition 2. Let M =
(

a b
c d

)
be non-singular, so μM is non-degenerate.

(a) Let f = αx + β be a linear polynomial. If f(a
c ) �= 0 then μM (f) is linear;

otherwise μM (f) = αb + βd is a non-zero constant.
(b) μM respects multiplication: μM (gh) = μM (g)μM (h).
(c) deg(μM (f)) = deg(f) ⇐⇒ f(a

c ) �= 0.
(d) If deg(μM (f)) = deg(f) then μ∗

M (μM (f)) = Ddeg(f)f(x) where D = det M .
(e) If deg(μ∗

M (f)) = deg(f) then μM (μ∗
M (f)) = Ddeg(f)f(x) where D = det M .

(f) If a, b, c, d ∈ Z and f ∈ Z[x] is irreducible and deg(μM (f)) = deg(f) then
prim(μM (f)) is irreducible.
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Proof. Parts (a) and (b) are elementary algebra. Part (c) follows from (a) and (b)
by considering the factorization of f over a splitting field. Parts (d) and (e)
are elementary for linear f ; the general case follows by repeated application of
part (b).

For part (f), suppose we have a counter-example f ∈ Z[x], then we have
a non-trivial factorization μM (f) = gh, but by (b) and (d) we deduce that
Ddeg(f)f = μ∗

M (g)μ∗
M (h) which is a non-trivial factorization, contradicting the

assumption that f was irreducible.

Our interest in Möbius transformations is that they offer the possibility of
finding a better LPFW certificate. Unfortunately we do not yet have a good way
of determining which Möbius transformations are helpful.

Example 5. Let f = 97x4 +76x3 +78x2 +4x+2. We obtain a LPFW certificate
with ρ = 7/5, Δ = 1, n = −4 with corresponding prime factor p = 10601.

Let M =
(

1 1−3 2

)
. Let g = prim(μM (f)) = (x4 + 1); by Proposition 2.(f)

since deg g = deg f a LPFW certificate for g also certifies that f is irreducible.
For g we obtain a certificate with ρ = 1, Δ = 1, n = 2 with much smaller
corresponding prime factor p = 17.

Unsolved Problem: How to find a good Möbius matrix M given just f?

3.1 Certifying a Transformed Polynomial

Naturally, if we generate a LPFW certificate for a transformed polynomial μM (f)
then we must indicate which Möbius transformation was used. Given two poly-
nomials f, g ∈ Z[x] of the same degree d, and M ∈ Mat2×2(Z), one can easily
verify that g = prim(μM (f)) by evaluating f at deg(f) distinct rational points,
and g at the (rational) transforms of these points, and then checking that the
ratios of the values are all equal. So the extra information needed is M and
μM (f).

3.2 Fixed Divisors

Definition 4. Let f ∈ Z[x] be non-zero. The fixed divisor of f is defined to
be FD(f) = gcd {f(n) | n ∈ Z}.
Some content-free polynomials have non-trivial fixed divisors: an example is
f = x2 + x + 2 which is content-free but has fixed divisor 2.

Proposition 3. Let f ∈ Z[x] be non-zero. Its fixed divisor is equal to:

FD(f) = gcd(f(1), f(2), . . . , f(deg f))

Proof. The standard proof follows easily from representating of f with respect
to the “binomial basis” for Z[x], namely {(x

k

) | k ∈ N}.
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Polynomials having large fixed divisor δ cannot have small LPFW certificates
because we are forced to choose large evaluation points since we must have
(|n|−ρ)Δ > δ. This problem becomes more severe for higher degree polynomials
since the fixed divisor can be as large as d! where d is the degree.

We can reduce the size of the fixed divisor by scaling the indeterminate
(i.e. a Möbius transformation for a diagonal matrix), or perhaps reversing the
polynomial and scaling the indeterminate (i.e. a Möbius transformation for an
anti-diagonal matrix). We have not yet investigated the use of more general
Möbius transformations.

Let f ∈ Z[x] be content-free, irreducible with fixed divisor δ. Let q be a prime
factor of δ, and let k be the multiplicity of q in |f(0)|. Then g(x) = q−kf(qkx) ∈
Z[x] has fixed divisor δ/qk. In practice, we consider several polynomials obtained
by scaling x by q1, q2, . . . , qk; in fact scaling by q−1, q−2, . . . can also be beneficial.

4 Implementation and Experimentation

Our prototype implementation runs degree analysis and LPFW search “in par-
allel”: i.e. it repeatedly alternates a few iterations of degree analysis with a few
iterations of LPFW search. If degree analysis finds a new factor degree lower
bound, Δ, this information is passed to the LPFW search.

4.1 Degree Analysis

We adopted the following strategy for choosing primes during degree analysis:
initially we create a list of “preferential primes” (e.g. including the first few
primes greater than the degree), then we pick primes alternately from this list or
from a random generator. The range for randomly generated primes is gradually
increased to favour finding quickly a certificate involving smaller primes (since
these are computationally cheaper to verify).

This strategy was inspired by some experimentation. There exist polynomials
whose degree analysis certificates must involve “large” primes: e.g. a good set of
primes for x4 + 16x3 + 5x2 − 14x − 18 must contain at least one prime greater
than 101. Also, empirically we find that a degree analysis certificate for an (even)
Hermite polynomial must use primes greater than the degree.

To issue a certificate, we look for a minimal cardinality subset of the primes
used which suffices. This subset search is potentially exponential, but in our
experiments it is very rare for a minimal subset to need more than 3 primes.

4.2 Large Prime Factor Witness

As already mentioned, not all polynomials can be certified irreducible by degree
analysis. A well-known class of polynomials for which irreducibility cannot be
shown by degree analysis are the Swinnerton-Dyer polynomials: they are the
minimal polynomials for sums of square-roots of “independent” integers. A more
general class of such polynomials was presented in [6].
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We saw in Example 5, it can be better to issue a LPFW certificate for a trans-
formed polynomial, but we do not yet have a good way of finding a good Möbius
transformation. Our current prototype implementation considers only indeter-
minate scaling and possibly reversal: i.e. the Möbius matrix must be diagonal
or anti-diagonal. A list of all scaling and reverse-scaling transforms by “simple”
rationals is maintained, and the resulting polynomials are considered “in par-
allel”. For each transformed polynomial we keep track of two evaluation points
(one positive, one negative) and the corresponding evaluations. The evaluations
are then considered in order of increasing absolute value; once an evaluation
has been processed the corresponding evaluation point is incremented (or decre-
mented, if it is negative).

The LPFW search depends on a factor degree lower bound, Δ, which is
initially 1. The degree analysis “thread” may at any time furnish a better value
for Δ. So that this asynchrony can work well the LPFW search records, for each
possible factor degree lower bound, any certificates it finds. When a higher Δ is
received, the search first checks whether a corresponding LPFW certificate has
already been recorded; if so, that certificate is produced as output. Otherwise
searching proceeds using the new Δ.

4.3 Examples

Here are a few examples as computed by the current prototype, since degree
analysis picks primes in a pseudo-random order different certificates may be
issued for the same polynomial.

– x16 + 4x14 + 6x2 + 4: degree analysis with prime list L = [13, 127]
– x4 + 16x3 + 5x2 − 14x − 18: degree analysis with prime list L = [107]
– 21-st cyclotomic polynomial: LPFW with ρ = 2, Δ = 1, n = 3, and prime

factor p = 368089
– Swinnerton-Dyer polynomial for [71, 113, 163]: LPFW with ρ = 43, Δ = 2

(with L = [3]), n = 82 and prime factor p = 2367715751029
– 97x4 + 76x3 + 78x2 + 4x + 2: transform x → 2

x , LPFW ρ = 67/5, Δ = 2
(with L = [3]), n = −29 and prime factor p = 3041

A quick comment about run-times: our interpreted prototype favours producing
certificates which are cheap to verify (rather than cheap to generate); the degree
analysis certificates took ∼0.25 s each to generate, the others ∼0.5 s each. We
did not measure verification run-time, but fully expect it to be less than 0.01 s
in each case. In comparison, the polynomial factorizer in CoCoA took less than
0.01 s for all of these polynomials.

As a larger example: the prototype took ∼ 20 s (we expect the final imple-
mentation to be significantly faster) to produce a certificate for the degree 64
(Swinnerton-Dyer) minimal polynomial of

√
61 +

√
79 +

√
139 +

√
181 +

√
199 +

√
211
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This polynomial has fixed divisor δ = 229 514 134 ≈ 1.2 × 1028. Our prototype
found and applied the transformation x → 52

15x, then produced an LPFW certifi-
cate for the transformed polynomial: ρ = 451/16, Δ = 2 (with L = [19]), n = 46
and p ≈ 7.5 × 10180 which was confirmed to be “probably prime” (according
to GMP [5]). The classical Berlekamp-Zassenhaus factorizer in CoCoA [1] took
about 300 s to recognize irreducibility.

4.4 A Comment About Run-Time

An anonymous referee reasonably asked about expected run-time or a (possibly
heuristic) complexity analysis. The answer is “It depends . . . ”. For “almost all”
polynomials, degree analysis suffices and is quick. In our setting, the LPFW
search effectively happens only if a degree analysis certificate cannot be quickly
found. In our experiments, the number of iterations in LPFW search before
producing a certificate was quite irregular.

5 Conclusion

As mentioned in the introduction there are many different criterions for certifying
the irreducibility of a polynomial in Z[x]. Here we have concentrated on just two
of them, and have pointed out how they can “collaborate”.

We have built a prototype implementation in CoCoA [1], and plan to inte-
grate it into CoCoALib, the underlying C++ library (where we expect significant
performance gains).

An interesting future possibility is for the requester of the certificate to state
which criterions may be used (dictated by the implemented verifiers that the
requester has available). But, a too restrictive choice of criterions may make it
impossible to generate a certificate: e.g. there is no “Eisenstein” certificate for
most polynomials.
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Abstract. It is observed that some OpenMath objects may benefit from
containing comments. A content dictionary with suitable attribution
symbols is proposed. This content dictionary also provides application
symbols for constructing comments that are somewhat more than just
plain text strings.

1 Introduction

OpenMath [1], of which is Content MathML [6, Ch. 4] is one encoding, is the
open standard for machine-readable formalised mathematics. Though an early
motivating application was the exchange of formulae between different Computer
Algebra Systems, the standard is by means restricted to that context; other
applications include the formalised mathematics aspect of documents written in
the Lurch [2] word processor and semantic export of material [5] from the Digital
Library of Mathematical Functions (DLMF) [3].

One key ingredient in the standard is that the many symbols needed to
express mathematical claims as object are not defined in the standard itself,
but by separate documents called Content Dictionaries (CDs) that may be cre-
ated by anyone; ultimately each symbol is uniquely identified by a URI, and a
web browser might use this to fetch the defining CD if that is made available
by an appropriately located and configured server. The content dictionaries are
also where OpenMath (OM) gets a bit recursive, since CDs typically contain
OM objects (formulae) stating Formal Mathematical Properties (FMPs) of the
symbols being defined. Though not necessarily the kind of rigorous axiomati-
sations one would expect in an automated theorem prover system, FMPs have
the potential of fulfilling that role, and as such they may sometimes need to be
rather large. Sheer size can then make it difficult for a reader to understand what
is being stated (e.g., what would happen in a particular edge case), even when
being well versed in the mathematics as such. This phenomenon of unavoidable
complexity making things difficult to understand is utterly familiar from the
realm of programming, and there it has a time-tested solution: document your
code, and in particular include appropriate comments in it!

Being an application of XML, the OpenMath CD format of course allows
XML comments, but those would only benefit a person editing the CD, which is
c© Springer Nature Switzerland AG 2020
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a minor activity. More common is to use the CD as a reference or even authority
on the meanings of symbols, and what that kind of document needs in order to
be more easily digested are annotations—comments that are visible to the reader
of a presentation of the document. Since the normative form of the CD will go
through XML processing when generating such a presentation, XML comments
are no good. Luckily the OpenMath standard already contains a feature that
suits this end perfectly: attributions. One may to any OpenMath element (sub-
formula) attach anything, and as long as the attribution symbol is not of the
semantic variety, any OpenMath phrasebook (processor of OM data) is free to
ignore it.

What prevents authors of CDs, and other OM objects of a more persistent
nature, from already including annotations in them is that there has not existed
any CD with appropriate symbols (they need to be declared as having the Role
of ‘attribution’) to use as keys in these attributions. That is of course easily
remedied by creating such a CD, and the primary contribution in this work.
Secondarily, this work also provides some additional symbols that may be used
to provide simple markup of the comments; the rationale behind this is discussed
below, in conjunction with the actual symbol definitions.

One example below shows the OM-XML encoding of a comment attribu-
tion, for maximal clarity, but most of them employ a more compact “semifor-
mula” format. In those examples, @ denotes application (OMA), attr denotes
attribution (OMATTR), bind denotes binding (OMBIND), and symbols are
written as cd.name (e.g. ‘relation1.eq’ for the standard equality relation =).
Outside of semiformulae, references to symbols are rather written on the URI
form cd#name, e.g. relation1#eq.

2 The comment1 Content Dictionary

Description: Symbols to attach comments as attributions of OpenMath
objects.
Standard OpenMath licence terms apply.

Note 1. Due to the size constraints of the ICMS proceedings, some material
(including entire symbol definitions) have been omitted from this presentation.
On the other hand, this section is based on the literate source for the content
dictionary.

2.1 Basics

The purpose of attaching comments to objects may need an explanation, since
not all kinds of comments make sense in all OpenMath usage scenarios. One
factor of importance is the lifetime of the objects in question; objects that only
stick around for a short time will at most have comments that are generated
automatically (perhaps inserted by tools examining OpenMath objects, as a
means of reporting on their findings), but objects of a very long duration (such
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as those in Formal Mathematical Properties) could well acquire manually written
comments as part of content dictionary maintenance.

Symbol remark (attribution)

The generic (neutral) comment attribution symbol.

Commented Mathematical Property. As an attribution, the value may be data
in some foreign format, but expressing comments as OpenMath objects can be
more to the point as well as easier on implementors (since any tool working
with comment attributions must already be able to read and/or write OM). In
particular, a comment that is a piece of plain text can be succintly encoded as
an OpenMath string.

Example.
<OMOBJ>

<OMA> <OMS cd="arith1" name="divide"/>

<OMATTR>

<OMATP>

<OMS cd="comment1" name="remark"/>

<OMSTR>This cancellation may degrade numeric precision.</OMSTR>

</OMATP>

<OMA> <OMS cd="arith1" name="minus"/>

<OMI> 1 </OMI>

<OMA> <OMS cd="transc1" name="cos"/>

<OMV name="x"/>

</OMA>

</OMA>

</OMATTR>

<OMA> <OMS cd="transc1" name="sin"/>

<OMV name="x"/>

</OMA>

</OMA>

</OMOBJ>

In particular, using instead e.g. XHTML+MathML as format for comments,
one would create an “industry standard” situation rather than a “math in the
middle” situation: it would be easy on tools that aim to output HTML or the
like, but very demanding for tools that do not target HTML.

Comments are primarily aimed at human readers, so the tools that take notice
of comments would normally be those that generate a presentation. Even in that
context, comments need not have much visible effect; in an interactive medium
(e.g. a web page) it might be most appropriate to leave comments invisible until
the user undertakes some action to display them (such as placing the cursor on
top of the commented object, for displaying the comment as a tooltip).

One type of comment that might require visibility by default are headings,
i.e., comments that aim to help a reader discern the essential structure of an OM
object. In normal text, headings present little trouble as they apply at distinct
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vertical positions and may be inserted between paragraphs or in the margin, but
an OM object presented as a standard typeset formula may well warrant several
headings on a single line, and then the problem of what falls under which heading
becomes more troublesome. (One approach worth exploring could be to tint the
background according to the heading which applies.) Generating presentations
is not the issue here, but providing the information required to do so is, and just
saying “heading” risks creating an ambiguity regarding the commenter’s intents.

The problem is that text headings are normally understood as applying to
all text up to the next (same level) heading, and someone editing an OM object
in e.g. OM-XML format is likely to apply that interpretation, but OM objects
grammatically rather have a tree structure, so phrasebook authors are likely
to instead interpret a heading as applying only to the explicitly attributed ele-
ment. In order to curtail that ambiguity, this CD has two heading symbols that
explicitly state which kind of scope is intended.

Symbol s-heading (attribution)

This symbol attaches a comment to an object, classifying that comment as
a heading. The scope of that heading consists of the attributed element and
all its later siblings (up to the next sibling with an s-heading attribution, if
any).

Example. While giving a long list of conditions, an author will often spon-
taneously organise these into blocks, but is perhaps not prepared to let those
blocks be explicit in the structure of the formula; authors may be more willing
to write

@(logic1.and, attr(comment1.s-heading “First block”, c1 ), c2 , c3 , c4 , c5,
attr(comment1.s-heading “Second block”, c6 ), c7 , c8 )

than the logically equivalent

@(logic1.and, attr(comment1.t-heading “First block”,
@(logic1.and, c1 , c2 , c3 , c4 , c5 )),

attr(comment1.t-heading “Second block”, @(logic1.and, c6 , c7 , c8 )))

Symbol t-heading (attribution)

This symbol attaches a comment to an object, classifying that comment as
a heading. The scope of that heading is exactly the element to which the
comment is attached, i.e., it adheres strictly to the tree structure of the OM
object.

Example. The distinction between left and right hand side of an implication is
explicit in the tree structure of the formula, but inserting explicit headings can
still improve the overall human readability.
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bind(quant1.forall; desc, p, epsilon;
@(logic1.implies;attr(comment1.t-heading “Conditions”,

@(logic1.and,@(Riemann-surface.is description, desc),
@(set1.in, p,@(comment1.set, desc)),
@(set1.in, epsilon, setname1.R),@(relation1.gt, epsilon; 0))),

attr(comment1.t-heading “Claims”;
@(logic1.and,@(set1.prsubset,@(set1.set, p),

@(Riemann-surface.neighbourhood, desc, p, epsilon)),
@(set1.subset,@(Riemann-surface.neighbourhood, desc, p, epsilon),

@(Riemann-surface.set, desc))))))

Symbol question (attribution)

This symbol attaches a comment to an object, classifying that comment as
a question.

Example

attr(comment1.question

“Is this formalisation what we want also under intuitionistic logic?”,

@(logic1.implies,@(logic1.not, Q),@(logic1.not, P )))

Commented Mathematical Property. The extra signal sent by classifying a com-
ment as a question is that an answer to it is sought. Presentation-wise, it might
not be much different from a plain remark, but if one has a large collection of
OM objects then the ability to easily search for those with pending questions is
obviously valuable.

Symbol warning (attribution)

This symbol attaches a comment to an object, classifying that comment as
a warning.

Symbol diagnostic (attribution)

This symbol attaches a comment to an object, classifying that comment as
containing diagnostic information.

2.2 Comment Format Functions

A human reader can usually guess what format a piece of text is, but automated
processing is much aided by allowing material of a specific form to be marked
up as such.
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Symbol uri (application)

This function expects a string as argument, and asserts that this string is a
Uniform (or more generally Internationalized) Resource Identifier, producing
a corresponding comment object as result.

Example. Does fns1#range denote the image of a function or the codomain of
a function? There is a tracker issue on this.

@(attr(comment1.question
@(comment1.uri, “https://github.com/OpenMath/CDs/issues/4”),
fns1.range), f)

Symbol formula (application)

This function can take an arbitrary OpenMath object as argument, and
asserts that the comment is this object as a formula, rather than the inter-
pretation of that object. To the author, this is essentially to enter “math
mode”.

Example. An expression ln(-x) strikes most readers as strange, but in the case
that x < 0 there is of course nothing strange or problematic about it at all.

attr(comment1.remark@(comment1.formula,@(relation1.lt, x, 0)),
@(transc1.ln,@(arith1.unary minus, x)))

A content dictionary only specifies what an OM object means, not how it is
to be processed, but a reasonable mode of processing comments is to see each
function as returning a presentation (in some suitable form) of the comment in
question; this is feasible because the vocabulary of “comment-valued” applica-
tions is fairly small. However if a general formula is to be used as a comment then
this may obviously contain arbitrary symbols and constructions, so the formula
symbol serves as a sign to any processing phrasebook that a different mode of
processing should be applied for this subobject.

The meta#Example symbol arguably provides an imperfect encoding of OM
CD Examples because it lacks this kind of symbol: it cannot distinguish between
a string that is text and a string that is an embedded OMOBJ that is just a
string, whereas the standard encoding of that content dictionary document would
make this distinction.

Commented Mathematical Property. It is a feature of formulae in comments that
they may contain variables whose scopes extend outside the comment. Renaming
a variable through alpha-conversion then causes not only occurrences of that
variable in the main OMOBJ to be renamed, but also occurrences in comment
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attributions in that OMOBJ, and this happens as a consequence of the general
principles in the OM standard. Foreign encodings of comments would not be so
lucky.

Symbol mixed (application)

This function concatenates an arbitrary number of arbitrary comment pieces
into one comment.

This is named for the multipart/mixed content-type in MIME.

Commented Mathematical Property. Heuristics may be applied when joining
different pieces together, but expect there to be interword spaces between the
pieces when concatenated.

Example

attr(comment1.remark
@(comment1.mixed, “This comment is”, “split over two strings.”),
@(relation1.eq,@(arith1.plus, 1, 1), 2))

2.3 Comment Structuring Functions

It can sometimes be useful to attach metadata to comments. The following are
some function symbols which take a comment as their first argument, producing
an embellished comment as result.

Symbol when (application)

This function attaches a timestamp to a comment.

Commented Mathematical Property. The first argument is the comment to act
upon, and the second argument is the timestamp to attach. If the second argu-
ment is a number, then that is interpreted as the number of seconds since the
new year 1970 CE (the UNIX epoch). The second argument may alternatively
be a string expressing the date; the format of that string is then not mandated,
but ISO 8601 is recommended.

Symbol language (application)

This function specifies the language used in a comment.

Commented Mathematical Property. The first argument is the comment. The
second argument is an IETF language tag.



480 L. Hellström

Symbol alternatives (application)

This function takes an arbitrary number of comments as arguments, making
the assertion that they all say the same thing (although probably in different
ways) and return a combined comment where the individual comments are
distinct pieces.

Example. This can be combined with the language symbol to collect different
language versions of the same comment.

attr(comment1.remark
@(comment1.alternatives,@(comment1.language, “continuous”, “en”),

@(comment1.language, “stetig”, “de”)), f)

Symbol signed (application)

This function attaches a signature to a comment.

Commented Mathematical Property. The first argument is the comment. The
second argument identifies the entity (not necessarily a person) signing the com-
ment.

Commented Mathematical Property. If there are additional arguments, then the
third argument names a digital signature scheme and the fourth is a signature
under that scheme. (This CD does not define any signature schemes.)

On the other hand, for example RFC5652 [4] does define signature schemes.
What those sign are octet-sequences, so one need only define a way of encoding
the OpenMath objects being signed as such. One obvious possibility is to use
the binary encoding of the material signed, normalised to make this encoding
canonical (expanding all references and using the shortest possible encoding form
should suffice quite far).
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Abstract. The tangent Graeffe method has been developed for the effi-
cient computation of single roots of polynomials over finite fields with
multiplicative groups of smooth order. It is a key ingredient of sparse
interpolation using geometric progressions, in the case when blackbox
evaluations are comparatively cheap. In this paper, we improve the com-
plexity of the method by a constant factor and we report on a new
implementation of the method and a first parallel implementation.

1 Introduction

Consider a polynomial function f : Kn → K over a field K given through a black
box capable of evaluating f at points in Kn. The problem of sparse interpolation
is to recover the representation of f ∈ K[x1, . . . , xn] in its usual form, as a linear
combination

f =
∑

1�i�t

cix
ei (1)

of monomials xei = x
e1,1
1 · · · xe1,n

n . One popular approach to sparse interpolation
is to evaluate f at points in a geometric progression. This approach goes back
to work of Prony in the eighteen’s century [15] and became well known after
Ben-Or and Tiwari’s seminal paper [2]. It has widely been used in computer
algebra, both in theory and in practice; see [16] for a nice survey.

More precisely, if a bound T for the number of terms t is known, then we
first evaluate f at 2T − 1 pairwise distinct points α0,α1, . . . ,α2T−2, where
α = (α1, . . . , αn) ∈ Kn and αk := (αk

1 , . . . , α
k
n) for all k ∈ N. The generating

function of the evaluations at αk satisfies the identity

∑

k∈N

f(αk)zk =
∑

1�i�t

∑

k∈N

ciα
eikzk =

∑

1�i�t

ci

1 − αeiz
=

N(z)
Λ(z)

,

where Λ = (1 − αe1z) · · · (1 − αetz) and N ∈ K[z] is of degree < t. The rational
function N/Λ can be recovered from f(α0), f(α1), . . . , f(α2T−2) using fast Padé
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approximation [4]. For well chosen points α, it is often possible to recover the
exponents ei from the values αei ∈ K. If the exponents ei are known, then the
coefficients ci can also be recovered using fast structured linear algebra [5]. This
leaves us with the question how to compute the roots α−ei of Λ in an efficient
way.

For practical applications in computer algebra, we usually have K = Q,
in which case it is most efficient to use a multi-modular strategy, and reduce to
coefficients in a finite field K = Fp, where p is a prime number that we are free to
choose. It is well known that polynomial arithmetic over Fp can be implemented
most efficiently using FFTs when the order p − 1 of the multiplicative group is
smooth. In practice, this prompts us to choose p of the form s2l + 1 for some
small s and such that p fits into a machine word.

The traditional way to compute roots of polynomials over finite fields is
using Cantor and Zassenhaus’ method [6]. In [10,11], alternative algorithms were
proposed for our case of interest when p−1 is smooth. The fastest algorithm was
based on the tangent Graeffe transform and it gains a factor log t with respect
to Cantor–Zassenhaus’ method. The aim of the present paper is to report on a
parallel implementation of this new algorithm and on a few improvements that
allow for a further constant speed-up.

In Sect. 2, we recall the Graeffe transform and the heuristic root finding
method based on the tangent Graeffe transform from [10]. In Sect. 3, we present
the main new theoretical improvements, which all rely on optimizations in the
FFT-model for fast polynomial arithmetic. Our contributions are twofold. In the
FFT-model, one backward transform out of four can be saved for Graeffe trans-
forms of order two (see Sect. 3.2). When composing a large number of Graeffe
transforms of order two, FFT caching can be used to gain another factor of 3/2
(see Sect. 3.3). In the longer preprint version of the paper [12], we also show how
to generalize our methods to Graeffe transforms of general orders and how to
use it in combination with the truncated Fourier transform.

Section 4 is devoted to our new sequential and parallel implementations of the
algorithm in C and Cilk C. Our sequential implementation confirms the gain of
a new factor of two when using the new optimizations. So far, we have achieved
a parallel speed-up by a factor of 4.6 on an 8-core machine. Our implementation
is freely available at http://www.cecm.sfu.ca/CAG/code/TangentGraeffe.

2 Root Finding Using the Tangent Graeffe Transform

2.1 Graeffe Transforms

The traditional Graeffe transform of a monic polynomial P ∈ K[z] of degree d
is the unique monic polynomial G(P ) ∈ K[z] of degree d such that

G(P )(z2) = P (z)P (−z). (2)

If P splits over K into linear factors P = (z − β1) · · · (z − βd), then one has

G(P ) = (z − β2
1) · · · (z − β2

d).

http://www.cecm.sfu.ca/CAG/code/TangentGraeffe
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More generally, given r � 2, we define the Graeffe transform of order r to be
the unique monic polynomial Gr(P ) ∈ K[z] of degree d such that Gr(P )(z) =
(−1)rd Resu(P (u), ur − z). If P = (z − β1) · · · (z − βd), then

Gr(P ) = (z − βr
1) · · · (z − βr

d).

If r, s � 2, then we have

Grs = Gr ◦ Gs = Gs ◦ Gr. (3)

2.2 Root Finding Using Tangent Graeffe Transforms

Let ε be a formal indeterminate with ε2 = 0. Elements in K[ε]/(ε2) are called
tangent numbers. Now let P ∈ K[z] be of the form P = (z−α1) · · · (z−αd) where
α1, . . . , αd ∈ K are pairwise distinct. Then the tangent deformation P̃ (z) :=
P (z + ε) satisfies

P̃ = P + P ′ε = (z − (α1 − ε)) · · · (z − (αd − ε)).

The definitions from the previous subsection readily extend to coefficients in K[ε]
instead of K. Given r � 2, we call Gr(P̃ ) the tangent Graeffe transform of P of
order r. We have

Gr(P̃ ) = (z − (α1 − ε)r) · · · (z − (αd − ε)r),

where
(αk − ε)r = αr

k − rαr−1
k ε, k = 1, . . . , d.

Now assume that we have an efficient way to determine the roots αr
1, . . . , α

r
d of

Gr(P ). For some polynomial T ∈ K[z], we may decompose Gr(P̃ ) = Gr(P )+Tε
For any root αr

k of Gr(P ), we then have

Gr(P̃ )(αr
k − rαr−1

k ε) = Gr(P )(αr
k) + (T (αr

k) − Gr(P )′(αr
k)rαr−1

k )ε
= (T (αr

k) − Gr(P )′(αr
k)rαr−1

k )ε = 0.

Whenever αr
k happens to be a single root of Gr(P ), it follows that

rαr−1
k =

T (αr
k)

Gr(P )′(αr
k)

.

If αr
k �= 0, this finally allows us to recover αk as αk = r

αr
k

rαr−1
k

.

2.3 Heuristic Root Finding over Smooth Finite Fields

Assume now that K = Fp is a finite field, where p is a prime number of the form
p = σ2m + 1 for some small σ. Assume also that ω ∈ Fp be a primitive element
of order p − 1 for the multiplicative group of Fp.
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Let P = (z − α1) · · · (z − αd) ∈ Fp[z] be as in the previous subsection.
The tangent Graeffe method can be used to efficiently compute those αk of P
for which αr

k is a single root of Gr(P ). In order to guarantee that there are a
sufficient number of such roots, we first replace P (z) by P (z + τ) for a random
shift τ ∈ Fp, and use the following heuristic:

H For any subset {α1, . . . , αd} ⊆ Fp of cardinality d and any r � (p − 1)/(4d),
there exist at least p/2 elements τ ∈ Fp such that {(α1 − τ)r, . . . , (αd − τ)r}
contains at least 2d/3 elements.

For a random shift τ ∈ Fp and any r � (p − 1)/(4d), the assumption ensures
with probability at least 1/2 that Gr(P (z + τ)) has at least d/3 single roots.

Now take r to be the largest power of two such that r � (p − 1)/(4d) and
let s = (p − 1)/r. By construction, note that s = O(d). The roots αr

1, . . . , α
r
d of

Gr(P ) are all s-th roots of unity in the set {1, ωr, . . . , ω(s−1)r}. We may thus
determine them by evaluating Gr(P ) at ωi for i = 0, . . . , s − 1. Since s = O(d),
this can be done efficiently using a discrete Fourier transform. Combined with the
tangent Graeffe method from the previous subsection, this leads to the following
probabilistic algorithm for root finding:

Algorithm 1
Input: P ∈ Fp[z] of degree d and only order one factors, p = σ2m + 1
Output: the set {α1, . . . , αd} of roots of P

1. If d = 0 then return ∅

2. Let r = 2N ∈ 2N be largest such that r � (p − 1)/(4d) and let s := (p − 1)/r
3. Pick τ ∈ Fp at random and compute P ∗ := P (z + τ) ∈ Fp[z]
4. Compute P̃ (z) := P ∗(z + ε) = P ∗(z) + P ∗(z)′ε ∈ (Fp[ε]/(ε2))[z]
5. For i = 1, . . . , N , set P̃ := G2(P̃ ) ∈ (Fp[ε]/(ε2))[z]
6. Let ω have order p−1 in Fp. Write P̃ = A+Bε and compute A(ωir), A′(ωir),

and B(ωir) for 0 � i < s
7. If P (τ) = 0, then set S := {τ}, else set S := ∅

8. For β ∈ {1, ωr, . . . , ω(s−1)r} if A(β) = 0 and A′(β) �= 0, set S := S ∪
{rβA′(β)/B(β) + τ}

9. Compute Q :=
∏

α∈S(z − α)
10. Recursively determine the set of roots S′ of P/Q
11. Return S ∪ S′

Remark 1. To compute G2(P̃ ) = G2(A + Bε) we may use G2(P̃ (z2)) =
A(z)A(−z)+(A(z)B(−z)+B(z)A(−z))ε, which requires three polynomial mul-
tiplications in Fp[z] of degree d. In total, step 5 thus performs O(log(p/s)) such
multiplications. We discuss how to perform step 5 efficiently in the FFT model
in Sect. 3.
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Remark 2. For practical implementations, one may vary the threshold r �
(p−1)/(4d) for r and the resulting threshold s � 4d for s. For larger values of s,
the computations of the DFTs in step 6 get more expensive, but the proportion
of single roots goes up, so more roots are determined at each iteration. From
an asymptotic complexity perspective, it would be best to take s � d

√
log p.

In practice, we actually preferred to take the lower threshold s � 2d, because
the constant factor of our implementation of step 6 (based on Bluestein’s algo-
rithm [3]) is significant with respect to our highly optimized implementation of
the tangent Graeffe method. A second reason we prefer s of size O(d) instead
of O(d

√
log p) is that the total space used by the algorithm is linear in s. In the

future, it would be interesting to further speed up step 6 by investing more time
in the implementation of high performance DFTs of general orders s.

3 Computing Graeffe Transforms

3.1 Reminders About Discrete Fourier Transforms

Assume n ∈ N is invertible in K and let ω ∈ K be a primitive n-th root of unity.
Consider a polynomial A = a0 + a1z + · · · + an−1z

n−1 ∈ K[z]. Then the discrete
Fourier transform (DFT) of order n of the sequence (ai)0�i<n is defined by

DFTω((ai)0�i<n) := (âk)0�k<n, âk := A(ωk).

We will write FK(n) for the cost of one discrete Fourier transform in terms
of the number of operations in K and assume that n = o (FK(n)). For any
i ∈ {0, . . . , n − 1}, we have

DFTω−1((âk)0�k<n)i =
∑

0�k<n

âkω−ik =
∑

0�j<n

aj

∑

0�k<n

ω(j−i)k = nai. (4)

If n is invertible in K, then it follows that DFT−1
ω = n−1 DFTω−1 . The costs of

direct and inverse transforms therefore coincide up to a factor O(n).
If n = n1n2 is composite, 0 � k1 < n1, and 0 � k2 < n2, then it is well

known [7] that

âk2n1+k1 = DFTωn1

((
ωi2k1 DFTωn2 ((ai1n2+i2)0�i1<n1)k1

)
0�i2<n2

)

k2

. (5)

This means that a DFT of length n reduces to n1 transforms of length n2 plus
n2 transforms of length n1 plus n multiplications in K:

FK(n1n2) � n1FK(n2) + n2FK(n1) + O(n).

In particular, if r = O(1), then FK(rn) ∼ rFK(n).
It is sometimes convenient to apply DFTs directly to polynomials as well;

for this reason, we also define DFTω(A) := (âk)0�k<n. Given two polynomials
A,B ∈ K[z] with deg(AB) < n, we may then compute the product AB using

AB = DFT−1
ω (DFTω(A)DFTω(B)).
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In particular, if MK(n) denotes the cost of multiplying two polynomials of degree
< n, then we obtain MK(n) ∼ 3FK(2n) ∼ 6FK(n).

Remark 3. In Algorithm 1, we note that step 6 comes down to the computation
of three DFTs of length s. Since r is a power of two, this length is of the form
s = σ2k for some k ∈ N. In view of (5), we may therefore reduce step 6 to 3σ
DFTs of length 2k plus 3 · 2k DFTs of length σ. If σ is very small, then we
may use a naive implementation for DFTs of length σ. In general, one may use
Bluestein’s algorithm [3] to reduce the computation of a DFT of length σ into
the computation of a product in K[z]/(zσ − 1), which can in turn be computed
using FFT-multiplication and three DFTs of length a larger power of two.

3.2 Graeffe Transforms of Order Two

Let K be a field with a primitive (2n)-th root of unity ω. Let P ∈ K[z] be a
polynomial of degree d = deg P < n. Then the relation (2) yields

G(P )(z2) = DFT−1
ω (DFTω(P (z))DFTω(P (−z))). (6)

For any k ∈ {0, . . . , 2n − 1}, we further note that

DFTω(P (−z))k = P (−ωk) = P (ω(k+n) rem 2n) = DFTω(P (z))(k+n) rem 2n, (7)

so DFTω(P (−z)) can be obtained from DFTω(P ) using n transpositions of ele-
ments in K. Concerning the inverse transform, we also note that

DFTω(G(P )(z2))k = G(P )(ω2k) = DFTω2(G(P ))k,

for k = 0, . . . , n − 1. Plugging this into (6), we conclude that

G(P ) = DFT−1
ω2 ((DFTω(P )k DFTω(P )k+n)0�k<n).

This leads to the following algorithm for the computation of G(P ):

Algorithm 2
Input: P ∈ K[z] with deg P < n and a primitive (2n)-th root of unity ω ∈ K

Output: G(P )

1. Compute (P̂k)0�k<2n := DFTω(P )
2. For k = 0, . . . , n − 1, compute Ĝk := P̂kP̂k+n

3. Return DFT−1
ω2 ((Ĝk)0�k<n)

Proposition 1. Let ω ∈ K be a primitive 2n-th root of unity in K and assume
that 2 is invertible in K. Given a monic polynomial P ∈ K[z] with deg P < n,
we can compute G(P ) in time G2,K(n) ∼ 3FK(n).
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Proof. We have already explained the correctness of Algorithm2. Step 1 requires
one forward DFT of length 2n and cost FK(2n) = 2FK(n) + O(n). Step 2 can be
done in O(n). Step 3 requires one inverse DFT of length n and cost FK(n)+O(n).
The total cost of Algorithm 2 is therefore 3FK(n) + O(n) ∼ 3FK(n).

Remark 4. In terms of the complexity of multiplication, we obtain G2,K(n) ∼
(1/2)MK(n). This gives a 33.3% improvement over the previously best known
bound G2,K(n) ∼ (2/3)MK(n) that was used in [10]. Note that the best known
algorithm for squaring polynomials of degree < n is ∼ (2/3)MK(n). It would be
interesting to know whether squares can also be computed in time ∼ (1/2)MK(n).

3.3 Graeffe Transforms of Power of Two Orders

In view of (3), Graeffe transforms of power of two orders 2m can be computed
using

G2m(P ) =
(
G ◦ m×. . . ◦ G

)
(P ). (8)

Now assume that we computed the first Graeffe transform G(P ) using
Algorithm 2 and that we wish to apply a second Graeffe transform to the result.
Then we note that

DFTω(G(P ))2k = DFTω2(G(P ))k = Ĝ2k (9)

is already known for k = 0, . . . , n− 1. We can use this to accelerate step 1 of the
second application of Algorithm2. Indeed, in view of (5) for n1 = 2 and n2 = n,
we have

DFTω(G(P ))2k+1 = DFTω2((ωiG(P )i )0�i<n)k (10)

for k = 0, . . . , n−1. In order to exploit this idea in a recursive fashion, it is useful
to modify Algorithm 2 so as to include DFTω2(P ) in the input and DFTω2(G(P ))
in the output. This leads to the following algorithm:

Algorithm 3
Input: P ∈ K[z] with deg P < n, a primitive (2n)-th root of unity ω ∈ K,

and (Q̂k)0�k<n = DFTω2(P )
Output: G(P ) and DFTω2(G(P ))

1. Set (P̂2k)0�k<n := (Q̂k)0�k<n

2. Set (P̂2k+1)0�k<n := DFTω2((ωiPi)0�i<n)
3. For k = 0, . . . , n − 1, compute Ĝk := P̂kP̂k+n

4. Return DFT−1
ω2 ((Ĝk)0�k<n) and (Ĝk)0�k<n

Proposition 2. Let ω ∈ K be a primitive 2n-th root of unity in K and assume
that 2 is invertible in K. Given a monic polynomial P ∈ K[z] with deg P < n
and m � 1, we can compute G2m(P ) in time G2m,K(n) ∼ (2m + 1)FK(n).
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Proof. It suffices to compute DFTω2(P ) and then to apply Algorithm3 recur-
sively, m times. Every application of Algorithm3 now takes 2FK(n) + O(n) ∼
2FK(n) operations in K, whence the claimed complexity bound.

Remark 5. In [10], Graeffe transforms of order 2m were directly computed using
the formula (8), using ∼ 4mFK(n) operations in K, which is twice as slow as the
new algorithm.

4 Implementation and Benchmarks

We have implemented the tangent Graeffe root finding algorithm (Algorithm1)
in C with the optimizations presented in Sect. 3. Our C implementation supports
primes of size up to 63 bits. In what follows all complexities count arithmetic
operations in Fp.

In Tables 1 and 2 the input polynomial P (z) of degree d is constructed by
choosing d distinct values αi ∈ Fp for 1 � i � d at random and creating P (z) =∏d

i=1(z − αi). We will use p = 3 × 29 × 256 + 1, a smooth 63 bit prime. For this
prime M(d) is O(d log d).

One goal we have is to determine how much faster the Tangent Graeffe (TG)
root finding algorithm is in practice when compared with the Cantor-Zassenhaus
(CZ) algorithm which is implemented in many computer algebra systems. In
Table 1 we present timings comparing our sequential implementation of the TG
algorithm with Magma’s implementation of the CZ algorithm. For polynomials in
Fp[z], Magma uses Shoup’s factorization algorithm from [17]. For our input P (z),
with d distinct linear factors, Shoup uses the Cantor–Zassenhaus equal degree
factorization method. The average complexity of TG is O(M(d)(log(p/s)+log d))
and of CZ is O(M(d) log p log d).

Table 1. Sequential timings in CPU seconds for p = 3·29·256+1 and using s ∈ [2d, 4d).

d Our sequential TG implementation in C Magma CZ timings

Total First %roots Step 5 Step 6 Step 9 V2.25-3 V2.25-5

212 − 1 0.11 s 0.07 s 69.8% 0.04 s 0.02 s 0.01 s 23.22 s 8.43

213 − 1 0.22 s 0.14 s 69.8% 0.09 s 0.03 s 0.01 s 56.58 s 18.94

214 − 1 0.48 s 0.31 s 68.8% 0.18 s 0.07 s 0.02 s 140.76 s 44.07

215 − 1 1.00 s 0.64 s 69.2% 0.38 s 0.16 s 0.04 s 372.22 s 103.5

216 − 1 2.11 s 1.36 s 68.9% 0.78 s 0.35 s 0.10 s 1494.0 s 234.2

217 − 1 4.40 s 2.85 s 69.2% 1.62 s 0.74 s 0.23 s 6108.8 s 534.5

218 − 1 9.16 s 5.91 s 69.2% 3.33 s 1.53 s 0.51 s NA 1219

219 − 1 19.2 s 12.4 s 69.2% 6.86 s 3.25 s 1.13 s NA 2809

The timings in Table 1 are sequential timings obtained on a Linux server with
an Intel Xeon E5-2660 CPU with 8 cores. In Table 1 the time in column “first”
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is for the first application of the TG algorithm (steps 1–9 of Algorithm1), which
obtains about 69% of the roots. The time in column “total” is the total time for
the TG algorithm. Columns step 5, step 6, and step 9 report the time spent in
steps 5, 6, and 9 in Algorithm1 and do not count time in the recursive call in
step 10.

The Magma timings are for Magma’s Factorization command. The timings
for Magma version V2.25-3 suggest that Magma’s CZ implementation involves a
subalgorithm with quadratic asymptotic complexity. Indeed it turns out that the
author of the code implemented all of the sub-quadratic polynomial arithmetic
correctly, as demonstrated by the second set of timings for Magma in column
V2.25-5, but inserted the d linear factors found into a list using linear insertion!
Allan Steel of the Magma group identified and fixed the offending subroutine
for Magma version V2.25-5. The timings show that TG is faster than CZ by a
factor of 76.6 (=8.43/0.11) to 146.3 (=2809/19.2).

We also wanted to attempt a parallel implementation. To do this we used
the MIT Cilk C compiler from [8]. Cilk provides a simple fork-join model of
parallelism. Unlike the CZ algorithm, TG has no gcd computations that are
hard to parallelize. We present some initial parallel timing data in Table 2. The
timings in parentheses are parallel timings for 8 cores.

Table 2. Real times in seconds for 1 core (8 cores) and p = 3 · 29 · 256 + 1.

d Our parallel tangent Graeffe implementation in Cilk C

Total First Step 5 Step 6 Step 9

219 − 1 18.30 s(9.616 s) 11.98 s(2.938 s) 6.64 s(1.56 s) 3.13 s(0.49 s) 1.09 s(0.29 s)

220 − 1 38.69 s(12.40 s) 25.02 s(5.638 s) 13.7 s(3.03 s) 6.62 s(1.04 s) 2.40 s(0.36 s)

221 − 1 79.63 s(20.16 s) 52.00 s(11.52 s) 28.1 s(5.99 s) 13.9 s(2.15 s) 5.32 s(0.85 s)

222 − 1 166.9 s(41.62 s) 107.8 s(23.25 s) 57.6 s(11.8 s) 28.9 s(4.57 s) 11.7 s(1.71 s)

223 − 1 346.0 s(76.64 s) 223.4 s(46.94 s) 117 s(23.2 s) 60.3 s(9.45 s) 25.6 s(3.54 s)

224 − 1 712.7 s(155.0 s) 459.8 s(95.93 s) 238 s(46.7 s) 125 s(19.17) 55.8 s(7.88 s)

225 − 1 1465 s(307.7 s) 945.0 s(194.6 s) 481 s(92.9 s) 259 s(39.2 s) 121 s(16.9 s)

4.1 Implementation Notes

To implement the Taylor shift P (z + τ) in step 3, we used the O(M(d))
method from [1, Lemma 3]. For step 5 we use Algorithm 3. It has complex-
ity O(M(d) log p

s ). To evaluate A(z), A′(z) and B(z) in step 6 in O(M(s))
we used the Bluestein transformation [3]. In step 9 to compute the product
Q(z) = Πα∈S(z − α), for t = |S| roots, we used the O(M(t) log t) product tree
multiplication algorithm [9]. The division in step 10 is done in O(M(d)) with the
fast division.

The sequential timings in Tables 1 and 2 show that steps 5, 6 and 9 account
for about 90% of the total time. We parallelized these three steps as follows.
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For step 5, the two forward and two inverse FFTs are done in parallel. We also
parallelized our radix 2 FFT by parallelizing recursive calls for size n � 217 and
the main loop in blocks of size m � 218 as done in [14]. For step 6 there are three
applications of Bluestein to compute A(ωir), A′(ωir) and B(ωir). We parallelized
these (thereby doubling the overall space used by our implementation). The main
computation in the Bluestein transformation is a polynomial multiplication of
two polynomials of degree s. The two forward FFTs are done in parallel and
the FFTs themselves are parallelized as for step 5. For the product in step 9 we
parallelize the two recursive calls in the tree multiplication for large sizes and
again, the FFTs are parallelized as for step 5.

To improve parallel speedup we also parallelized the polynomial multipli-
cation in step 3 and the computation of the roots in step 8. Although step 8
is O(|S|), it is relatively expensive because of two inverse computations in Fp.
Because we have not parallelized about 5% of the computation the maximum
parallel speedup we can obtain is a factor of 1/(0.05 + 0.95/8) = 5.9. The best
overall parallel speedup we obtained is a factor of 4.6 = 1465/307.7 for d = 225−1.
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